1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 28 static u64 entry_end(struct btrfs_ordered_extent *entry) 29 { 30 if (entry->file_offset + entry->len < entry->file_offset) 31 return (u64)-1; 32 return entry->file_offset + entry->len; 33 } 34 35 /* returns NULL if the insertion worked, or it returns the node it did find 36 * in the tree 37 */ 38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 39 struct rb_node *node) 40 { 41 struct rb_node **p = &root->rb_node; 42 struct rb_node *parent = NULL; 43 struct btrfs_ordered_extent *entry; 44 45 while (*p) { 46 parent = *p; 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 48 49 if (file_offset < entry->file_offset) 50 p = &(*p)->rb_left; 51 else if (file_offset >= entry_end(entry)) 52 p = &(*p)->rb_right; 53 else 54 return parent; 55 } 56 57 rb_link_node(node, parent, p); 58 rb_insert_color(node, root); 59 return NULL; 60 } 61 62 /* 63 * look for a given offset in the tree, and if it can't be found return the 64 * first lesser offset 65 */ 66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 67 struct rb_node **prev_ret) 68 { 69 struct rb_node *n = root->rb_node; 70 struct rb_node *prev = NULL; 71 struct rb_node *test; 72 struct btrfs_ordered_extent *entry; 73 struct btrfs_ordered_extent *prev_entry = NULL; 74 75 while (n) { 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 77 prev = n; 78 prev_entry = entry; 79 80 if (file_offset < entry->file_offset) 81 n = n->rb_left; 82 else if (file_offset >= entry_end(entry)) 83 n = n->rb_right; 84 else 85 return n; 86 } 87 if (!prev_ret) 88 return NULL; 89 90 while (prev && file_offset >= entry_end(prev_entry)) { 91 test = rb_next(prev); 92 if (!test) 93 break; 94 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 95 rb_node); 96 if (file_offset < entry_end(prev_entry)) 97 break; 98 99 prev = test; 100 } 101 if (prev) 102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 103 rb_node); 104 while (prev && file_offset < entry_end(prev_entry)) { 105 test = rb_prev(prev); 106 if (!test) 107 break; 108 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 109 rb_node); 110 prev = test; 111 } 112 *prev_ret = prev; 113 return NULL; 114 } 115 116 /* 117 * helper to check if a given offset is inside a given entry 118 */ 119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 120 { 121 if (file_offset < entry->file_offset || 122 entry->file_offset + entry->len <= file_offset) 123 return 0; 124 return 1; 125 } 126 127 /* 128 * look find the first ordered struct that has this offset, otherwise 129 * the first one less than this offset 130 */ 131 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 132 u64 file_offset) 133 { 134 struct rb_root *root = &tree->tree; 135 struct rb_node *prev; 136 struct rb_node *ret; 137 struct btrfs_ordered_extent *entry; 138 139 if (tree->last) { 140 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 141 rb_node); 142 if (offset_in_entry(entry, file_offset)) 143 return tree->last; 144 } 145 ret = __tree_search(root, file_offset, &prev); 146 if (!ret) 147 ret = prev; 148 if (ret) 149 tree->last = ret; 150 return ret; 151 } 152 153 /* allocate and add a new ordered_extent into the per-inode tree. 154 * file_offset is the logical offset in the file 155 * 156 * start is the disk block number of an extent already reserved in the 157 * extent allocation tree 158 * 159 * len is the length of the extent 160 * 161 * The tree is given a single reference on the ordered extent that was 162 * inserted. 163 */ 164 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 165 u64 start, u64 len, u64 disk_len, int type) 166 { 167 struct btrfs_ordered_inode_tree *tree; 168 struct rb_node *node; 169 struct btrfs_ordered_extent *entry; 170 171 tree = &BTRFS_I(inode)->ordered_tree; 172 entry = kzalloc(sizeof(*entry), GFP_NOFS); 173 if (!entry) 174 return -ENOMEM; 175 176 entry->file_offset = file_offset; 177 entry->start = start; 178 entry->len = len; 179 entry->disk_len = disk_len; 180 entry->bytes_left = len; 181 entry->inode = inode; 182 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 183 set_bit(type, &entry->flags); 184 185 /* one ref for the tree */ 186 atomic_set(&entry->refs, 1); 187 init_waitqueue_head(&entry->wait); 188 INIT_LIST_HEAD(&entry->list); 189 INIT_LIST_HEAD(&entry->root_extent_list); 190 191 spin_lock(&tree->lock); 192 node = tree_insert(&tree->tree, file_offset, 193 &entry->rb_node); 194 BUG_ON(node); 195 spin_unlock(&tree->lock); 196 197 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 198 list_add_tail(&entry->root_extent_list, 199 &BTRFS_I(inode)->root->fs_info->ordered_extents); 200 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 201 202 BUG_ON(node); 203 return 0; 204 } 205 206 /* 207 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 208 * when an ordered extent is finished. If the list covers more than one 209 * ordered extent, it is split across multiples. 210 */ 211 int btrfs_add_ordered_sum(struct inode *inode, 212 struct btrfs_ordered_extent *entry, 213 struct btrfs_ordered_sum *sum) 214 { 215 struct btrfs_ordered_inode_tree *tree; 216 217 tree = &BTRFS_I(inode)->ordered_tree; 218 spin_lock(&tree->lock); 219 list_add_tail(&sum->list, &entry->list); 220 spin_unlock(&tree->lock); 221 return 0; 222 } 223 224 /* 225 * this is used to account for finished IO across a given range 226 * of the file. The IO should not span ordered extents. If 227 * a given ordered_extent is completely done, 1 is returned, otherwise 228 * 0. 229 * 230 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 231 * to make sure this function only returns 1 once for a given ordered extent. 232 */ 233 int btrfs_dec_test_ordered_pending(struct inode *inode, 234 struct btrfs_ordered_extent **cached, 235 u64 file_offset, u64 io_size) 236 { 237 struct btrfs_ordered_inode_tree *tree; 238 struct rb_node *node; 239 struct btrfs_ordered_extent *entry = NULL; 240 int ret; 241 242 tree = &BTRFS_I(inode)->ordered_tree; 243 spin_lock(&tree->lock); 244 node = tree_search(tree, file_offset); 245 if (!node) { 246 ret = 1; 247 goto out; 248 } 249 250 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 251 if (!offset_in_entry(entry, file_offset)) { 252 ret = 1; 253 goto out; 254 } 255 256 if (io_size > entry->bytes_left) { 257 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 258 (unsigned long long)entry->bytes_left, 259 (unsigned long long)io_size); 260 } 261 entry->bytes_left -= io_size; 262 if (entry->bytes_left == 0) 263 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 264 else 265 ret = 1; 266 out: 267 if (!ret && cached && entry) { 268 *cached = entry; 269 atomic_inc(&entry->refs); 270 } 271 spin_unlock(&tree->lock); 272 return ret == 0; 273 } 274 275 /* 276 * used to drop a reference on an ordered extent. This will free 277 * the extent if the last reference is dropped 278 */ 279 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 280 { 281 struct list_head *cur; 282 struct btrfs_ordered_sum *sum; 283 284 if (atomic_dec_and_test(&entry->refs)) { 285 while (!list_empty(&entry->list)) { 286 cur = entry->list.next; 287 sum = list_entry(cur, struct btrfs_ordered_sum, list); 288 list_del(&sum->list); 289 kfree(sum); 290 } 291 kfree(entry); 292 } 293 return 0; 294 } 295 296 /* 297 * remove an ordered extent from the tree. No references are dropped 298 * and you must wake_up entry->wait. You must hold the tree lock 299 * while you call this function. 300 */ 301 static int __btrfs_remove_ordered_extent(struct inode *inode, 302 struct btrfs_ordered_extent *entry) 303 { 304 struct btrfs_ordered_inode_tree *tree; 305 struct rb_node *node; 306 307 tree = &BTRFS_I(inode)->ordered_tree; 308 node = &entry->rb_node; 309 rb_erase(node, &tree->tree); 310 tree->last = NULL; 311 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 312 313 spin_lock(&BTRFS_I(inode)->accounting_lock); 314 BTRFS_I(inode)->outstanding_extents--; 315 spin_unlock(&BTRFS_I(inode)->accounting_lock); 316 btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root, 317 inode, 1); 318 319 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 320 list_del_init(&entry->root_extent_list); 321 322 /* 323 * we have no more ordered extents for this inode and 324 * no dirty pages. We can safely remove it from the 325 * list of ordered extents 326 */ 327 if (RB_EMPTY_ROOT(&tree->tree) && 328 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 329 list_del_init(&BTRFS_I(inode)->ordered_operations); 330 } 331 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 332 333 return 0; 334 } 335 336 /* 337 * remove an ordered extent from the tree. No references are dropped 338 * but any waiters are woken. 339 */ 340 int btrfs_remove_ordered_extent(struct inode *inode, 341 struct btrfs_ordered_extent *entry) 342 { 343 struct btrfs_ordered_inode_tree *tree; 344 int ret; 345 346 tree = &BTRFS_I(inode)->ordered_tree; 347 spin_lock(&tree->lock); 348 ret = __btrfs_remove_ordered_extent(inode, entry); 349 spin_unlock(&tree->lock); 350 wake_up(&entry->wait); 351 352 return ret; 353 } 354 355 /* 356 * wait for all the ordered extents in a root. This is done when balancing 357 * space between drives. 358 */ 359 int btrfs_wait_ordered_extents(struct btrfs_root *root, 360 int nocow_only, int delay_iput) 361 { 362 struct list_head splice; 363 struct list_head *cur; 364 struct btrfs_ordered_extent *ordered; 365 struct inode *inode; 366 367 INIT_LIST_HEAD(&splice); 368 369 spin_lock(&root->fs_info->ordered_extent_lock); 370 list_splice_init(&root->fs_info->ordered_extents, &splice); 371 while (!list_empty(&splice)) { 372 cur = splice.next; 373 ordered = list_entry(cur, struct btrfs_ordered_extent, 374 root_extent_list); 375 if (nocow_only && 376 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 377 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 378 list_move(&ordered->root_extent_list, 379 &root->fs_info->ordered_extents); 380 cond_resched_lock(&root->fs_info->ordered_extent_lock); 381 continue; 382 } 383 384 list_del_init(&ordered->root_extent_list); 385 atomic_inc(&ordered->refs); 386 387 /* 388 * the inode may be getting freed (in sys_unlink path). 389 */ 390 inode = igrab(ordered->inode); 391 392 spin_unlock(&root->fs_info->ordered_extent_lock); 393 394 if (inode) { 395 btrfs_start_ordered_extent(inode, ordered, 1); 396 btrfs_put_ordered_extent(ordered); 397 if (delay_iput) 398 btrfs_add_delayed_iput(inode); 399 else 400 iput(inode); 401 } else { 402 btrfs_put_ordered_extent(ordered); 403 } 404 405 spin_lock(&root->fs_info->ordered_extent_lock); 406 } 407 spin_unlock(&root->fs_info->ordered_extent_lock); 408 return 0; 409 } 410 411 /* 412 * this is used during transaction commit to write all the inodes 413 * added to the ordered operation list. These files must be fully on 414 * disk before the transaction commits. 415 * 416 * we have two modes here, one is to just start the IO via filemap_flush 417 * and the other is to wait for all the io. When we wait, we have an 418 * extra check to make sure the ordered operation list really is empty 419 * before we return 420 */ 421 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 422 { 423 struct btrfs_inode *btrfs_inode; 424 struct inode *inode; 425 struct list_head splice; 426 427 INIT_LIST_HEAD(&splice); 428 429 mutex_lock(&root->fs_info->ordered_operations_mutex); 430 spin_lock(&root->fs_info->ordered_extent_lock); 431 again: 432 list_splice_init(&root->fs_info->ordered_operations, &splice); 433 434 while (!list_empty(&splice)) { 435 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 436 ordered_operations); 437 438 inode = &btrfs_inode->vfs_inode; 439 440 list_del_init(&btrfs_inode->ordered_operations); 441 442 /* 443 * the inode may be getting freed (in sys_unlink path). 444 */ 445 inode = igrab(inode); 446 447 if (!wait && inode) { 448 list_add_tail(&BTRFS_I(inode)->ordered_operations, 449 &root->fs_info->ordered_operations); 450 } 451 spin_unlock(&root->fs_info->ordered_extent_lock); 452 453 if (inode) { 454 if (wait) 455 btrfs_wait_ordered_range(inode, 0, (u64)-1); 456 else 457 filemap_flush(inode->i_mapping); 458 btrfs_add_delayed_iput(inode); 459 } 460 461 cond_resched(); 462 spin_lock(&root->fs_info->ordered_extent_lock); 463 } 464 if (wait && !list_empty(&root->fs_info->ordered_operations)) 465 goto again; 466 467 spin_unlock(&root->fs_info->ordered_extent_lock); 468 mutex_unlock(&root->fs_info->ordered_operations_mutex); 469 470 return 0; 471 } 472 473 /* 474 * Used to start IO or wait for a given ordered extent to finish. 475 * 476 * If wait is one, this effectively waits on page writeback for all the pages 477 * in the extent, and it waits on the io completion code to insert 478 * metadata into the btree corresponding to the extent 479 */ 480 void btrfs_start_ordered_extent(struct inode *inode, 481 struct btrfs_ordered_extent *entry, 482 int wait) 483 { 484 u64 start = entry->file_offset; 485 u64 end = start + entry->len - 1; 486 487 /* 488 * pages in the range can be dirty, clean or writeback. We 489 * start IO on any dirty ones so the wait doesn't stall waiting 490 * for pdflush to find them 491 */ 492 filemap_fdatawrite_range(inode->i_mapping, start, end); 493 if (wait) { 494 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 495 &entry->flags)); 496 } 497 } 498 499 /* 500 * Used to wait on ordered extents across a large range of bytes. 501 */ 502 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 503 { 504 u64 end; 505 u64 orig_end; 506 u64 wait_end; 507 struct btrfs_ordered_extent *ordered; 508 int found; 509 510 if (start + len < start) { 511 orig_end = INT_LIMIT(loff_t); 512 } else { 513 orig_end = start + len - 1; 514 if (orig_end > INT_LIMIT(loff_t)) 515 orig_end = INT_LIMIT(loff_t); 516 } 517 wait_end = orig_end; 518 again: 519 /* start IO across the range first to instantiate any delalloc 520 * extents 521 */ 522 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 523 524 /* The compression code will leave pages locked but return from 525 * writepage without setting the page writeback. Starting again 526 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 527 */ 528 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 529 530 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 531 532 end = orig_end; 533 found = 0; 534 while (1) { 535 ordered = btrfs_lookup_first_ordered_extent(inode, end); 536 if (!ordered) 537 break; 538 if (ordered->file_offset > orig_end) { 539 btrfs_put_ordered_extent(ordered); 540 break; 541 } 542 if (ordered->file_offset + ordered->len < start) { 543 btrfs_put_ordered_extent(ordered); 544 break; 545 } 546 found++; 547 btrfs_start_ordered_extent(inode, ordered, 1); 548 end = ordered->file_offset; 549 btrfs_put_ordered_extent(ordered); 550 if (end == 0 || end == start) 551 break; 552 end--; 553 } 554 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 555 EXTENT_DELALLOC, 0, NULL)) { 556 schedule_timeout(1); 557 goto again; 558 } 559 return 0; 560 } 561 562 /* 563 * find an ordered extent corresponding to file_offset. return NULL if 564 * nothing is found, otherwise take a reference on the extent and return it 565 */ 566 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 567 u64 file_offset) 568 { 569 struct btrfs_ordered_inode_tree *tree; 570 struct rb_node *node; 571 struct btrfs_ordered_extent *entry = NULL; 572 573 tree = &BTRFS_I(inode)->ordered_tree; 574 spin_lock(&tree->lock); 575 node = tree_search(tree, file_offset); 576 if (!node) 577 goto out; 578 579 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 580 if (!offset_in_entry(entry, file_offset)) 581 entry = NULL; 582 if (entry) 583 atomic_inc(&entry->refs); 584 out: 585 spin_unlock(&tree->lock); 586 return entry; 587 } 588 589 /* 590 * lookup and return any extent before 'file_offset'. NULL is returned 591 * if none is found 592 */ 593 struct btrfs_ordered_extent * 594 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 595 { 596 struct btrfs_ordered_inode_tree *tree; 597 struct rb_node *node; 598 struct btrfs_ordered_extent *entry = NULL; 599 600 tree = &BTRFS_I(inode)->ordered_tree; 601 spin_lock(&tree->lock); 602 node = tree_search(tree, file_offset); 603 if (!node) 604 goto out; 605 606 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 607 atomic_inc(&entry->refs); 608 out: 609 spin_unlock(&tree->lock); 610 return entry; 611 } 612 613 /* 614 * After an extent is done, call this to conditionally update the on disk 615 * i_size. i_size is updated to cover any fully written part of the file. 616 */ 617 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 618 struct btrfs_ordered_extent *ordered) 619 { 620 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 621 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 622 u64 disk_i_size; 623 u64 new_i_size; 624 u64 i_size_test; 625 u64 i_size = i_size_read(inode); 626 struct rb_node *node; 627 struct rb_node *prev = NULL; 628 struct btrfs_ordered_extent *test; 629 int ret = 1; 630 631 if (ordered) 632 offset = entry_end(ordered); 633 else 634 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 635 636 spin_lock(&tree->lock); 637 disk_i_size = BTRFS_I(inode)->disk_i_size; 638 639 /* truncate file */ 640 if (disk_i_size > i_size) { 641 BTRFS_I(inode)->disk_i_size = i_size; 642 ret = 0; 643 goto out; 644 } 645 646 /* 647 * if the disk i_size is already at the inode->i_size, or 648 * this ordered extent is inside the disk i_size, we're done 649 */ 650 if (disk_i_size == i_size || offset <= disk_i_size) { 651 goto out; 652 } 653 654 /* 655 * we can't update the disk_isize if there are delalloc bytes 656 * between disk_i_size and this ordered extent 657 */ 658 if (test_range_bit(io_tree, disk_i_size, offset - 1, 659 EXTENT_DELALLOC, 0, NULL)) { 660 goto out; 661 } 662 /* 663 * walk backward from this ordered extent to disk_i_size. 664 * if we find an ordered extent then we can't update disk i_size 665 * yet 666 */ 667 if (ordered) { 668 node = rb_prev(&ordered->rb_node); 669 } else { 670 prev = tree_search(tree, offset); 671 /* 672 * we insert file extents without involving ordered struct, 673 * so there should be no ordered struct cover this offset 674 */ 675 if (prev) { 676 test = rb_entry(prev, struct btrfs_ordered_extent, 677 rb_node); 678 BUG_ON(offset_in_entry(test, offset)); 679 } 680 node = prev; 681 } 682 while (node) { 683 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 684 if (test->file_offset + test->len <= disk_i_size) 685 break; 686 if (test->file_offset >= i_size) 687 break; 688 if (test->file_offset >= disk_i_size) 689 goto out; 690 node = rb_prev(node); 691 } 692 new_i_size = min_t(u64, offset, i_size); 693 694 /* 695 * at this point, we know we can safely update i_size to at least 696 * the offset from this ordered extent. But, we need to 697 * walk forward and see if ios from higher up in the file have 698 * finished. 699 */ 700 if (ordered) { 701 node = rb_next(&ordered->rb_node); 702 } else { 703 if (prev) 704 node = rb_next(prev); 705 else 706 node = rb_first(&tree->tree); 707 } 708 i_size_test = 0; 709 if (node) { 710 /* 711 * do we have an area where IO might have finished 712 * between our ordered extent and the next one. 713 */ 714 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 715 if (test->file_offset > offset) 716 i_size_test = test->file_offset; 717 } else { 718 i_size_test = i_size; 719 } 720 721 /* 722 * i_size_test is the end of a region after this ordered 723 * extent where there are no ordered extents. As long as there 724 * are no delalloc bytes in this area, it is safe to update 725 * disk_i_size to the end of the region. 726 */ 727 if (i_size_test > offset && 728 !test_range_bit(io_tree, offset, i_size_test - 1, 729 EXTENT_DELALLOC, 0, NULL)) { 730 new_i_size = min_t(u64, i_size_test, i_size); 731 } 732 BTRFS_I(inode)->disk_i_size = new_i_size; 733 ret = 0; 734 out: 735 /* 736 * we need to remove the ordered extent with the tree lock held 737 * so that other people calling this function don't find our fully 738 * processed ordered entry and skip updating the i_size 739 */ 740 if (ordered) 741 __btrfs_remove_ordered_extent(inode, ordered); 742 spin_unlock(&tree->lock); 743 if (ordered) 744 wake_up(&ordered->wait); 745 return ret; 746 } 747 748 /* 749 * search the ordered extents for one corresponding to 'offset' and 750 * try to find a checksum. This is used because we allow pages to 751 * be reclaimed before their checksum is actually put into the btree 752 */ 753 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 754 u32 *sum) 755 { 756 struct btrfs_ordered_sum *ordered_sum; 757 struct btrfs_sector_sum *sector_sums; 758 struct btrfs_ordered_extent *ordered; 759 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 760 unsigned long num_sectors; 761 unsigned long i; 762 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 763 int ret = 1; 764 765 ordered = btrfs_lookup_ordered_extent(inode, offset); 766 if (!ordered) 767 return 1; 768 769 spin_lock(&tree->lock); 770 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 771 if (disk_bytenr >= ordered_sum->bytenr) { 772 num_sectors = ordered_sum->len / sectorsize; 773 sector_sums = ordered_sum->sums; 774 for (i = 0; i < num_sectors; i++) { 775 if (sector_sums[i].bytenr == disk_bytenr) { 776 *sum = sector_sums[i].sum; 777 ret = 0; 778 goto out; 779 } 780 } 781 } 782 } 783 out: 784 spin_unlock(&tree->lock); 785 btrfs_put_ordered_extent(ordered); 786 return ret; 787 } 788 789 790 /* 791 * add a given inode to the list of inodes that must be fully on 792 * disk before a transaction commit finishes. 793 * 794 * This basically gives us the ext3 style data=ordered mode, and it is mostly 795 * used to make sure renamed files are fully on disk. 796 * 797 * It is a noop if the inode is already fully on disk. 798 * 799 * If trans is not null, we'll do a friendly check for a transaction that 800 * is already flushing things and force the IO down ourselves. 801 */ 802 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 803 struct btrfs_root *root, 804 struct inode *inode) 805 { 806 u64 last_mod; 807 808 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 809 810 /* 811 * if this file hasn't been changed since the last transaction 812 * commit, we can safely return without doing anything 813 */ 814 if (last_mod < root->fs_info->last_trans_committed) 815 return 0; 816 817 /* 818 * the transaction is already committing. Just start the IO and 819 * don't bother with all of this list nonsense 820 */ 821 if (trans && root->fs_info->running_transaction->blocked) { 822 btrfs_wait_ordered_range(inode, 0, (u64)-1); 823 return 0; 824 } 825 826 spin_lock(&root->fs_info->ordered_extent_lock); 827 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 828 list_add_tail(&BTRFS_I(inode)->ordered_operations, 829 &root->fs_info->ordered_operations); 830 } 831 spin_unlock(&root->fs_info->ordered_extent_lock); 832 833 return 0; 834 } 835