xref: /linux/fs/btrfs/ordered-data.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 
28 static u64 entry_end(struct btrfs_ordered_extent *entry)
29 {
30 	if (entry->file_offset + entry->len < entry->file_offset)
31 		return (u64)-1;
32 	return entry->file_offset + entry->len;
33 }
34 
35 /* returns NULL if the insertion worked, or it returns the node it did find
36  * in the tree
37  */
38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
39 				   struct rb_node *node)
40 {
41 	struct rb_node **p = &root->rb_node;
42 	struct rb_node *parent = NULL;
43 	struct btrfs_ordered_extent *entry;
44 
45 	while (*p) {
46 		parent = *p;
47 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
48 
49 		if (file_offset < entry->file_offset)
50 			p = &(*p)->rb_left;
51 		else if (file_offset >= entry_end(entry))
52 			p = &(*p)->rb_right;
53 		else
54 			return parent;
55 	}
56 
57 	rb_link_node(node, parent, p);
58 	rb_insert_color(node, root);
59 	return NULL;
60 }
61 
62 /*
63  * look for a given offset in the tree, and if it can't be found return the
64  * first lesser offset
65  */
66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
67 				     struct rb_node **prev_ret)
68 {
69 	struct rb_node *n = root->rb_node;
70 	struct rb_node *prev = NULL;
71 	struct rb_node *test;
72 	struct btrfs_ordered_extent *entry;
73 	struct btrfs_ordered_extent *prev_entry = NULL;
74 
75 	while (n) {
76 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
77 		prev = n;
78 		prev_entry = entry;
79 
80 		if (file_offset < entry->file_offset)
81 			n = n->rb_left;
82 		else if (file_offset >= entry_end(entry))
83 			n = n->rb_right;
84 		else
85 			return n;
86 	}
87 	if (!prev_ret)
88 		return NULL;
89 
90 	while (prev && file_offset >= entry_end(prev_entry)) {
91 		test = rb_next(prev);
92 		if (!test)
93 			break;
94 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
95 				      rb_node);
96 		if (file_offset < entry_end(prev_entry))
97 			break;
98 
99 		prev = test;
100 	}
101 	if (prev)
102 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
103 				      rb_node);
104 	while (prev && file_offset < entry_end(prev_entry)) {
105 		test = rb_prev(prev);
106 		if (!test)
107 			break;
108 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
109 				      rb_node);
110 		prev = test;
111 	}
112 	*prev_ret = prev;
113 	return NULL;
114 }
115 
116 /*
117  * helper to check if a given offset is inside a given entry
118  */
119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
120 {
121 	if (file_offset < entry->file_offset ||
122 	    entry->file_offset + entry->len <= file_offset)
123 		return 0;
124 	return 1;
125 }
126 
127 /*
128  * look find the first ordered struct that has this offset, otherwise
129  * the first one less than this offset
130  */
131 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
132 					  u64 file_offset)
133 {
134 	struct rb_root *root = &tree->tree;
135 	struct rb_node *prev;
136 	struct rb_node *ret;
137 	struct btrfs_ordered_extent *entry;
138 
139 	if (tree->last) {
140 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
141 				 rb_node);
142 		if (offset_in_entry(entry, file_offset))
143 			return tree->last;
144 	}
145 	ret = __tree_search(root, file_offset, &prev);
146 	if (!ret)
147 		ret = prev;
148 	if (ret)
149 		tree->last = ret;
150 	return ret;
151 }
152 
153 /* allocate and add a new ordered_extent into the per-inode tree.
154  * file_offset is the logical offset in the file
155  *
156  * start is the disk block number of an extent already reserved in the
157  * extent allocation tree
158  *
159  * len is the length of the extent
160  *
161  * The tree is given a single reference on the ordered extent that was
162  * inserted.
163  */
164 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
165 			     u64 start, u64 len, u64 disk_len, int type)
166 {
167 	struct btrfs_ordered_inode_tree *tree;
168 	struct rb_node *node;
169 	struct btrfs_ordered_extent *entry;
170 
171 	tree = &BTRFS_I(inode)->ordered_tree;
172 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
173 	if (!entry)
174 		return -ENOMEM;
175 
176 	entry->file_offset = file_offset;
177 	entry->start = start;
178 	entry->len = len;
179 	entry->disk_len = disk_len;
180 	entry->bytes_left = len;
181 	entry->inode = inode;
182 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
183 		set_bit(type, &entry->flags);
184 
185 	/* one ref for the tree */
186 	atomic_set(&entry->refs, 1);
187 	init_waitqueue_head(&entry->wait);
188 	INIT_LIST_HEAD(&entry->list);
189 	INIT_LIST_HEAD(&entry->root_extent_list);
190 
191 	spin_lock(&tree->lock);
192 	node = tree_insert(&tree->tree, file_offset,
193 			   &entry->rb_node);
194 	BUG_ON(node);
195 	spin_unlock(&tree->lock);
196 
197 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
198 	list_add_tail(&entry->root_extent_list,
199 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
200 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
201 
202 	BUG_ON(node);
203 	return 0;
204 }
205 
206 /*
207  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
208  * when an ordered extent is finished.  If the list covers more than one
209  * ordered extent, it is split across multiples.
210  */
211 int btrfs_add_ordered_sum(struct inode *inode,
212 			  struct btrfs_ordered_extent *entry,
213 			  struct btrfs_ordered_sum *sum)
214 {
215 	struct btrfs_ordered_inode_tree *tree;
216 
217 	tree = &BTRFS_I(inode)->ordered_tree;
218 	spin_lock(&tree->lock);
219 	list_add_tail(&sum->list, &entry->list);
220 	spin_unlock(&tree->lock);
221 	return 0;
222 }
223 
224 /*
225  * this is used to account for finished IO across a given range
226  * of the file.  The IO should not span ordered extents.  If
227  * a given ordered_extent is completely done, 1 is returned, otherwise
228  * 0.
229  *
230  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
231  * to make sure this function only returns 1 once for a given ordered extent.
232  */
233 int btrfs_dec_test_ordered_pending(struct inode *inode,
234 				   struct btrfs_ordered_extent **cached,
235 				   u64 file_offset, u64 io_size)
236 {
237 	struct btrfs_ordered_inode_tree *tree;
238 	struct rb_node *node;
239 	struct btrfs_ordered_extent *entry = NULL;
240 	int ret;
241 
242 	tree = &BTRFS_I(inode)->ordered_tree;
243 	spin_lock(&tree->lock);
244 	node = tree_search(tree, file_offset);
245 	if (!node) {
246 		ret = 1;
247 		goto out;
248 	}
249 
250 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
251 	if (!offset_in_entry(entry, file_offset)) {
252 		ret = 1;
253 		goto out;
254 	}
255 
256 	if (io_size > entry->bytes_left) {
257 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
258 		       (unsigned long long)entry->bytes_left,
259 		       (unsigned long long)io_size);
260 	}
261 	entry->bytes_left -= io_size;
262 	if (entry->bytes_left == 0)
263 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
264 	else
265 		ret = 1;
266 out:
267 	if (!ret && cached && entry) {
268 		*cached = entry;
269 		atomic_inc(&entry->refs);
270 	}
271 	spin_unlock(&tree->lock);
272 	return ret == 0;
273 }
274 
275 /*
276  * used to drop a reference on an ordered extent.  This will free
277  * the extent if the last reference is dropped
278  */
279 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
280 {
281 	struct list_head *cur;
282 	struct btrfs_ordered_sum *sum;
283 
284 	if (atomic_dec_and_test(&entry->refs)) {
285 		while (!list_empty(&entry->list)) {
286 			cur = entry->list.next;
287 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
288 			list_del(&sum->list);
289 			kfree(sum);
290 		}
291 		kfree(entry);
292 	}
293 	return 0;
294 }
295 
296 /*
297  * remove an ordered extent from the tree.  No references are dropped
298  * and you must wake_up entry->wait.  You must hold the tree lock
299  * while you call this function.
300  */
301 static int __btrfs_remove_ordered_extent(struct inode *inode,
302 				struct btrfs_ordered_extent *entry)
303 {
304 	struct btrfs_ordered_inode_tree *tree;
305 	struct rb_node *node;
306 
307 	tree = &BTRFS_I(inode)->ordered_tree;
308 	node = &entry->rb_node;
309 	rb_erase(node, &tree->tree);
310 	tree->last = NULL;
311 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
312 
313 	spin_lock(&BTRFS_I(inode)->accounting_lock);
314 	BTRFS_I(inode)->outstanding_extents--;
315 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
316 	btrfs_unreserve_metadata_for_delalloc(BTRFS_I(inode)->root,
317 					      inode, 1);
318 
319 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
320 	list_del_init(&entry->root_extent_list);
321 
322 	/*
323 	 * we have no more ordered extents for this inode and
324 	 * no dirty pages.  We can safely remove it from the
325 	 * list of ordered extents
326 	 */
327 	if (RB_EMPTY_ROOT(&tree->tree) &&
328 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
329 		list_del_init(&BTRFS_I(inode)->ordered_operations);
330 	}
331 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
332 
333 	return 0;
334 }
335 
336 /*
337  * remove an ordered extent from the tree.  No references are dropped
338  * but any waiters are woken.
339  */
340 int btrfs_remove_ordered_extent(struct inode *inode,
341 				struct btrfs_ordered_extent *entry)
342 {
343 	struct btrfs_ordered_inode_tree *tree;
344 	int ret;
345 
346 	tree = &BTRFS_I(inode)->ordered_tree;
347 	spin_lock(&tree->lock);
348 	ret = __btrfs_remove_ordered_extent(inode, entry);
349 	spin_unlock(&tree->lock);
350 	wake_up(&entry->wait);
351 
352 	return ret;
353 }
354 
355 /*
356  * wait for all the ordered extents in a root.  This is done when balancing
357  * space between drives.
358  */
359 int btrfs_wait_ordered_extents(struct btrfs_root *root,
360 			       int nocow_only, int delay_iput)
361 {
362 	struct list_head splice;
363 	struct list_head *cur;
364 	struct btrfs_ordered_extent *ordered;
365 	struct inode *inode;
366 
367 	INIT_LIST_HEAD(&splice);
368 
369 	spin_lock(&root->fs_info->ordered_extent_lock);
370 	list_splice_init(&root->fs_info->ordered_extents, &splice);
371 	while (!list_empty(&splice)) {
372 		cur = splice.next;
373 		ordered = list_entry(cur, struct btrfs_ordered_extent,
374 				     root_extent_list);
375 		if (nocow_only &&
376 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
377 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
378 			list_move(&ordered->root_extent_list,
379 				  &root->fs_info->ordered_extents);
380 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
381 			continue;
382 		}
383 
384 		list_del_init(&ordered->root_extent_list);
385 		atomic_inc(&ordered->refs);
386 
387 		/*
388 		 * the inode may be getting freed (in sys_unlink path).
389 		 */
390 		inode = igrab(ordered->inode);
391 
392 		spin_unlock(&root->fs_info->ordered_extent_lock);
393 
394 		if (inode) {
395 			btrfs_start_ordered_extent(inode, ordered, 1);
396 			btrfs_put_ordered_extent(ordered);
397 			if (delay_iput)
398 				btrfs_add_delayed_iput(inode);
399 			else
400 				iput(inode);
401 		} else {
402 			btrfs_put_ordered_extent(ordered);
403 		}
404 
405 		spin_lock(&root->fs_info->ordered_extent_lock);
406 	}
407 	spin_unlock(&root->fs_info->ordered_extent_lock);
408 	return 0;
409 }
410 
411 /*
412  * this is used during transaction commit to write all the inodes
413  * added to the ordered operation list.  These files must be fully on
414  * disk before the transaction commits.
415  *
416  * we have two modes here, one is to just start the IO via filemap_flush
417  * and the other is to wait for all the io.  When we wait, we have an
418  * extra check to make sure the ordered operation list really is empty
419  * before we return
420  */
421 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
422 {
423 	struct btrfs_inode *btrfs_inode;
424 	struct inode *inode;
425 	struct list_head splice;
426 
427 	INIT_LIST_HEAD(&splice);
428 
429 	mutex_lock(&root->fs_info->ordered_operations_mutex);
430 	spin_lock(&root->fs_info->ordered_extent_lock);
431 again:
432 	list_splice_init(&root->fs_info->ordered_operations, &splice);
433 
434 	while (!list_empty(&splice)) {
435 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
436 				   ordered_operations);
437 
438 		inode = &btrfs_inode->vfs_inode;
439 
440 		list_del_init(&btrfs_inode->ordered_operations);
441 
442 		/*
443 		 * the inode may be getting freed (in sys_unlink path).
444 		 */
445 		inode = igrab(inode);
446 
447 		if (!wait && inode) {
448 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
449 			      &root->fs_info->ordered_operations);
450 		}
451 		spin_unlock(&root->fs_info->ordered_extent_lock);
452 
453 		if (inode) {
454 			if (wait)
455 				btrfs_wait_ordered_range(inode, 0, (u64)-1);
456 			else
457 				filemap_flush(inode->i_mapping);
458 			btrfs_add_delayed_iput(inode);
459 		}
460 
461 		cond_resched();
462 		spin_lock(&root->fs_info->ordered_extent_lock);
463 	}
464 	if (wait && !list_empty(&root->fs_info->ordered_operations))
465 		goto again;
466 
467 	spin_unlock(&root->fs_info->ordered_extent_lock);
468 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
469 
470 	return 0;
471 }
472 
473 /*
474  * Used to start IO or wait for a given ordered extent to finish.
475  *
476  * If wait is one, this effectively waits on page writeback for all the pages
477  * in the extent, and it waits on the io completion code to insert
478  * metadata into the btree corresponding to the extent
479  */
480 void btrfs_start_ordered_extent(struct inode *inode,
481 				       struct btrfs_ordered_extent *entry,
482 				       int wait)
483 {
484 	u64 start = entry->file_offset;
485 	u64 end = start + entry->len - 1;
486 
487 	/*
488 	 * pages in the range can be dirty, clean or writeback.  We
489 	 * start IO on any dirty ones so the wait doesn't stall waiting
490 	 * for pdflush to find them
491 	 */
492 	filemap_fdatawrite_range(inode->i_mapping, start, end);
493 	if (wait) {
494 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
495 						 &entry->flags));
496 	}
497 }
498 
499 /*
500  * Used to wait on ordered extents across a large range of bytes.
501  */
502 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
503 {
504 	u64 end;
505 	u64 orig_end;
506 	u64 wait_end;
507 	struct btrfs_ordered_extent *ordered;
508 	int found;
509 
510 	if (start + len < start) {
511 		orig_end = INT_LIMIT(loff_t);
512 	} else {
513 		orig_end = start + len - 1;
514 		if (orig_end > INT_LIMIT(loff_t))
515 			orig_end = INT_LIMIT(loff_t);
516 	}
517 	wait_end = orig_end;
518 again:
519 	/* start IO across the range first to instantiate any delalloc
520 	 * extents
521 	 */
522 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
523 
524 	/* The compression code will leave pages locked but return from
525 	 * writepage without setting the page writeback.  Starting again
526 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
527 	 */
528 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
529 
530 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
531 
532 	end = orig_end;
533 	found = 0;
534 	while (1) {
535 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
536 		if (!ordered)
537 			break;
538 		if (ordered->file_offset > orig_end) {
539 			btrfs_put_ordered_extent(ordered);
540 			break;
541 		}
542 		if (ordered->file_offset + ordered->len < start) {
543 			btrfs_put_ordered_extent(ordered);
544 			break;
545 		}
546 		found++;
547 		btrfs_start_ordered_extent(inode, ordered, 1);
548 		end = ordered->file_offset;
549 		btrfs_put_ordered_extent(ordered);
550 		if (end == 0 || end == start)
551 			break;
552 		end--;
553 	}
554 	if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
555 			   EXTENT_DELALLOC, 0, NULL)) {
556 		schedule_timeout(1);
557 		goto again;
558 	}
559 	return 0;
560 }
561 
562 /*
563  * find an ordered extent corresponding to file_offset.  return NULL if
564  * nothing is found, otherwise take a reference on the extent and return it
565  */
566 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
567 							 u64 file_offset)
568 {
569 	struct btrfs_ordered_inode_tree *tree;
570 	struct rb_node *node;
571 	struct btrfs_ordered_extent *entry = NULL;
572 
573 	tree = &BTRFS_I(inode)->ordered_tree;
574 	spin_lock(&tree->lock);
575 	node = tree_search(tree, file_offset);
576 	if (!node)
577 		goto out;
578 
579 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
580 	if (!offset_in_entry(entry, file_offset))
581 		entry = NULL;
582 	if (entry)
583 		atomic_inc(&entry->refs);
584 out:
585 	spin_unlock(&tree->lock);
586 	return entry;
587 }
588 
589 /*
590  * lookup and return any extent before 'file_offset'.  NULL is returned
591  * if none is found
592  */
593 struct btrfs_ordered_extent *
594 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
595 {
596 	struct btrfs_ordered_inode_tree *tree;
597 	struct rb_node *node;
598 	struct btrfs_ordered_extent *entry = NULL;
599 
600 	tree = &BTRFS_I(inode)->ordered_tree;
601 	spin_lock(&tree->lock);
602 	node = tree_search(tree, file_offset);
603 	if (!node)
604 		goto out;
605 
606 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
607 	atomic_inc(&entry->refs);
608 out:
609 	spin_unlock(&tree->lock);
610 	return entry;
611 }
612 
613 /*
614  * After an extent is done, call this to conditionally update the on disk
615  * i_size.  i_size is updated to cover any fully written part of the file.
616  */
617 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
618 				struct btrfs_ordered_extent *ordered)
619 {
620 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
621 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
622 	u64 disk_i_size;
623 	u64 new_i_size;
624 	u64 i_size_test;
625 	u64 i_size = i_size_read(inode);
626 	struct rb_node *node;
627 	struct rb_node *prev = NULL;
628 	struct btrfs_ordered_extent *test;
629 	int ret = 1;
630 
631 	if (ordered)
632 		offset = entry_end(ordered);
633 	else
634 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
635 
636 	spin_lock(&tree->lock);
637 	disk_i_size = BTRFS_I(inode)->disk_i_size;
638 
639 	/* truncate file */
640 	if (disk_i_size > i_size) {
641 		BTRFS_I(inode)->disk_i_size = i_size;
642 		ret = 0;
643 		goto out;
644 	}
645 
646 	/*
647 	 * if the disk i_size is already at the inode->i_size, or
648 	 * this ordered extent is inside the disk i_size, we're done
649 	 */
650 	if (disk_i_size == i_size || offset <= disk_i_size) {
651 		goto out;
652 	}
653 
654 	/*
655 	 * we can't update the disk_isize if there are delalloc bytes
656 	 * between disk_i_size and  this ordered extent
657 	 */
658 	if (test_range_bit(io_tree, disk_i_size, offset - 1,
659 			   EXTENT_DELALLOC, 0, NULL)) {
660 		goto out;
661 	}
662 	/*
663 	 * walk backward from this ordered extent to disk_i_size.
664 	 * if we find an ordered extent then we can't update disk i_size
665 	 * yet
666 	 */
667 	if (ordered) {
668 		node = rb_prev(&ordered->rb_node);
669 	} else {
670 		prev = tree_search(tree, offset);
671 		/*
672 		 * we insert file extents without involving ordered struct,
673 		 * so there should be no ordered struct cover this offset
674 		 */
675 		if (prev) {
676 			test = rb_entry(prev, struct btrfs_ordered_extent,
677 					rb_node);
678 			BUG_ON(offset_in_entry(test, offset));
679 		}
680 		node = prev;
681 	}
682 	while (node) {
683 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
684 		if (test->file_offset + test->len <= disk_i_size)
685 			break;
686 		if (test->file_offset >= i_size)
687 			break;
688 		if (test->file_offset >= disk_i_size)
689 			goto out;
690 		node = rb_prev(node);
691 	}
692 	new_i_size = min_t(u64, offset, i_size);
693 
694 	/*
695 	 * at this point, we know we can safely update i_size to at least
696 	 * the offset from this ordered extent.  But, we need to
697 	 * walk forward and see if ios from higher up in the file have
698 	 * finished.
699 	 */
700 	if (ordered) {
701 		node = rb_next(&ordered->rb_node);
702 	} else {
703 		if (prev)
704 			node = rb_next(prev);
705 		else
706 			node = rb_first(&tree->tree);
707 	}
708 	i_size_test = 0;
709 	if (node) {
710 		/*
711 		 * do we have an area where IO might have finished
712 		 * between our ordered extent and the next one.
713 		 */
714 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
715 		if (test->file_offset > offset)
716 			i_size_test = test->file_offset;
717 	} else {
718 		i_size_test = i_size;
719 	}
720 
721 	/*
722 	 * i_size_test is the end of a region after this ordered
723 	 * extent where there are no ordered extents.  As long as there
724 	 * are no delalloc bytes in this area, it is safe to update
725 	 * disk_i_size to the end of the region.
726 	 */
727 	if (i_size_test > offset &&
728 	    !test_range_bit(io_tree, offset, i_size_test - 1,
729 			    EXTENT_DELALLOC, 0, NULL)) {
730 		new_i_size = min_t(u64, i_size_test, i_size);
731 	}
732 	BTRFS_I(inode)->disk_i_size = new_i_size;
733 	ret = 0;
734 out:
735 	/*
736 	 * we need to remove the ordered extent with the tree lock held
737 	 * so that other people calling this function don't find our fully
738 	 * processed ordered entry and skip updating the i_size
739 	 */
740 	if (ordered)
741 		__btrfs_remove_ordered_extent(inode, ordered);
742 	spin_unlock(&tree->lock);
743 	if (ordered)
744 		wake_up(&ordered->wait);
745 	return ret;
746 }
747 
748 /*
749  * search the ordered extents for one corresponding to 'offset' and
750  * try to find a checksum.  This is used because we allow pages to
751  * be reclaimed before their checksum is actually put into the btree
752  */
753 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
754 			   u32 *sum)
755 {
756 	struct btrfs_ordered_sum *ordered_sum;
757 	struct btrfs_sector_sum *sector_sums;
758 	struct btrfs_ordered_extent *ordered;
759 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
760 	unsigned long num_sectors;
761 	unsigned long i;
762 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
763 	int ret = 1;
764 
765 	ordered = btrfs_lookup_ordered_extent(inode, offset);
766 	if (!ordered)
767 		return 1;
768 
769 	spin_lock(&tree->lock);
770 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
771 		if (disk_bytenr >= ordered_sum->bytenr) {
772 			num_sectors = ordered_sum->len / sectorsize;
773 			sector_sums = ordered_sum->sums;
774 			for (i = 0; i < num_sectors; i++) {
775 				if (sector_sums[i].bytenr == disk_bytenr) {
776 					*sum = sector_sums[i].sum;
777 					ret = 0;
778 					goto out;
779 				}
780 			}
781 		}
782 	}
783 out:
784 	spin_unlock(&tree->lock);
785 	btrfs_put_ordered_extent(ordered);
786 	return ret;
787 }
788 
789 
790 /*
791  * add a given inode to the list of inodes that must be fully on
792  * disk before a transaction commit finishes.
793  *
794  * This basically gives us the ext3 style data=ordered mode, and it is mostly
795  * used to make sure renamed files are fully on disk.
796  *
797  * It is a noop if the inode is already fully on disk.
798  *
799  * If trans is not null, we'll do a friendly check for a transaction that
800  * is already flushing things and force the IO down ourselves.
801  */
802 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
803 				struct btrfs_root *root,
804 				struct inode *inode)
805 {
806 	u64 last_mod;
807 
808 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
809 
810 	/*
811 	 * if this file hasn't been changed since the last transaction
812 	 * commit, we can safely return without doing anything
813 	 */
814 	if (last_mod < root->fs_info->last_trans_committed)
815 		return 0;
816 
817 	/*
818 	 * the transaction is already committing.  Just start the IO and
819 	 * don't bother with all of this list nonsense
820 	 */
821 	if (trans && root->fs_info->running_transaction->blocked) {
822 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
823 		return 0;
824 	}
825 
826 	spin_lock(&root->fs_info->ordered_extent_lock);
827 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
828 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
829 			      &root->fs_info->ordered_operations);
830 	}
831 	spin_unlock(&root->fs_info->ordered_extent_lock);
832 
833 	return 0;
834 }
835