1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/gfp.h> 20 #include <linux/slab.h> 21 #include <linux/blkdev.h> 22 #include <linux/writeback.h> 23 #include <linux/pagevec.h> 24 #include "ctree.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "extent_io.h" 28 29 static u64 entry_end(struct btrfs_ordered_extent *entry) 30 { 31 if (entry->file_offset + entry->len < entry->file_offset) 32 return (u64)-1; 33 return entry->file_offset + entry->len; 34 } 35 36 /* returns NULL if the insertion worked, or it returns the node it did find 37 * in the tree 38 */ 39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 40 struct rb_node *node) 41 { 42 struct rb_node **p = &root->rb_node; 43 struct rb_node *parent = NULL; 44 struct btrfs_ordered_extent *entry; 45 46 while (*p) { 47 parent = *p; 48 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 49 50 if (file_offset < entry->file_offset) 51 p = &(*p)->rb_left; 52 else if (file_offset >= entry_end(entry)) 53 p = &(*p)->rb_right; 54 else 55 return parent; 56 } 57 58 rb_link_node(node, parent, p); 59 rb_insert_color(node, root); 60 return NULL; 61 } 62 63 /* 64 * look for a given offset in the tree, and if it can't be found return the 65 * first lesser offset 66 */ 67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 68 struct rb_node **prev_ret) 69 { 70 struct rb_node *n = root->rb_node; 71 struct rb_node *prev = NULL; 72 struct rb_node *test; 73 struct btrfs_ordered_extent *entry; 74 struct btrfs_ordered_extent *prev_entry = NULL; 75 76 while (n) { 77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 78 prev = n; 79 prev_entry = entry; 80 81 if (file_offset < entry->file_offset) 82 n = n->rb_left; 83 else if (file_offset >= entry_end(entry)) 84 n = n->rb_right; 85 else 86 return n; 87 } 88 if (!prev_ret) 89 return NULL; 90 91 while (prev && file_offset >= entry_end(prev_entry)) { 92 test = rb_next(prev); 93 if (!test) 94 break; 95 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 96 rb_node); 97 if (file_offset < entry_end(prev_entry)) 98 break; 99 100 prev = test; 101 } 102 if (prev) 103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 104 rb_node); 105 while (prev && file_offset < entry_end(prev_entry)) { 106 test = rb_prev(prev); 107 if (!test) 108 break; 109 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 110 rb_node); 111 prev = test; 112 } 113 *prev_ret = prev; 114 return NULL; 115 } 116 117 /* 118 * helper to check if a given offset is inside a given entry 119 */ 120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 121 { 122 if (file_offset < entry->file_offset || 123 entry->file_offset + entry->len <= file_offset) 124 return 0; 125 return 1; 126 } 127 128 /* 129 * look find the first ordered struct that has this offset, otherwise 130 * the first one less than this offset 131 */ 132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 133 u64 file_offset) 134 { 135 struct rb_root *root = &tree->tree; 136 struct rb_node *prev; 137 struct rb_node *ret; 138 struct btrfs_ordered_extent *entry; 139 140 if (tree->last) { 141 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 142 rb_node); 143 if (offset_in_entry(entry, file_offset)) 144 return tree->last; 145 } 146 ret = __tree_search(root, file_offset, &prev); 147 if (!ret) 148 ret = prev; 149 if (ret) 150 tree->last = ret; 151 return ret; 152 } 153 154 /* allocate and add a new ordered_extent into the per-inode tree. 155 * file_offset is the logical offset in the file 156 * 157 * start is the disk block number of an extent already reserved in the 158 * extent allocation tree 159 * 160 * len is the length of the extent 161 * 162 * The tree is given a single reference on the ordered extent that was 163 * inserted. 164 */ 165 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 166 u64 start, u64 len, u64 disk_len, int type) 167 { 168 struct btrfs_ordered_inode_tree *tree; 169 struct rb_node *node; 170 struct btrfs_ordered_extent *entry; 171 172 tree = &BTRFS_I(inode)->ordered_tree; 173 entry = kzalloc(sizeof(*entry), GFP_NOFS); 174 if (!entry) 175 return -ENOMEM; 176 177 mutex_lock(&tree->mutex); 178 entry->file_offset = file_offset; 179 entry->start = start; 180 entry->len = len; 181 entry->disk_len = disk_len; 182 entry->bytes_left = len; 183 entry->inode = inode; 184 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 185 set_bit(type, &entry->flags); 186 187 /* one ref for the tree */ 188 atomic_set(&entry->refs, 1); 189 init_waitqueue_head(&entry->wait); 190 INIT_LIST_HEAD(&entry->list); 191 INIT_LIST_HEAD(&entry->root_extent_list); 192 193 node = tree_insert(&tree->tree, file_offset, 194 &entry->rb_node); 195 BUG_ON(node); 196 197 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 198 list_add_tail(&entry->root_extent_list, 199 &BTRFS_I(inode)->root->fs_info->ordered_extents); 200 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 201 202 mutex_unlock(&tree->mutex); 203 BUG_ON(node); 204 return 0; 205 } 206 207 /* 208 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 209 * when an ordered extent is finished. If the list covers more than one 210 * ordered extent, it is split across multiples. 211 */ 212 int btrfs_add_ordered_sum(struct inode *inode, 213 struct btrfs_ordered_extent *entry, 214 struct btrfs_ordered_sum *sum) 215 { 216 struct btrfs_ordered_inode_tree *tree; 217 218 tree = &BTRFS_I(inode)->ordered_tree; 219 mutex_lock(&tree->mutex); 220 list_add_tail(&sum->list, &entry->list); 221 mutex_unlock(&tree->mutex); 222 return 0; 223 } 224 225 /* 226 * this is used to account for finished IO across a given range 227 * of the file. The IO should not span ordered extents. If 228 * a given ordered_extent is completely done, 1 is returned, otherwise 229 * 0. 230 * 231 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 232 * to make sure this function only returns 1 once for a given ordered extent. 233 */ 234 int btrfs_dec_test_ordered_pending(struct inode *inode, 235 u64 file_offset, u64 io_size) 236 { 237 struct btrfs_ordered_inode_tree *tree; 238 struct rb_node *node; 239 struct btrfs_ordered_extent *entry; 240 int ret; 241 242 tree = &BTRFS_I(inode)->ordered_tree; 243 mutex_lock(&tree->mutex); 244 node = tree_search(tree, file_offset); 245 if (!node) { 246 ret = 1; 247 goto out; 248 } 249 250 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 251 if (!offset_in_entry(entry, file_offset)) { 252 ret = 1; 253 goto out; 254 } 255 256 if (io_size > entry->bytes_left) { 257 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 258 (unsigned long long)entry->bytes_left, 259 (unsigned long long)io_size); 260 } 261 entry->bytes_left -= io_size; 262 if (entry->bytes_left == 0) 263 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 264 else 265 ret = 1; 266 out: 267 mutex_unlock(&tree->mutex); 268 return ret == 0; 269 } 270 271 /* 272 * used to drop a reference on an ordered extent. This will free 273 * the extent if the last reference is dropped 274 */ 275 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 276 { 277 struct list_head *cur; 278 struct btrfs_ordered_sum *sum; 279 280 if (atomic_dec_and_test(&entry->refs)) { 281 while (!list_empty(&entry->list)) { 282 cur = entry->list.next; 283 sum = list_entry(cur, struct btrfs_ordered_sum, list); 284 list_del(&sum->list); 285 kfree(sum); 286 } 287 kfree(entry); 288 } 289 return 0; 290 } 291 292 /* 293 * remove an ordered extent from the tree. No references are dropped 294 * but, anyone waiting on this extent is woken up. 295 */ 296 int btrfs_remove_ordered_extent(struct inode *inode, 297 struct btrfs_ordered_extent *entry) 298 { 299 struct btrfs_ordered_inode_tree *tree; 300 struct rb_node *node; 301 302 tree = &BTRFS_I(inode)->ordered_tree; 303 mutex_lock(&tree->mutex); 304 node = &entry->rb_node; 305 rb_erase(node, &tree->tree); 306 tree->last = NULL; 307 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 308 309 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 310 list_del_init(&entry->root_extent_list); 311 312 /* 313 * we have no more ordered extents for this inode and 314 * no dirty pages. We can safely remove it from the 315 * list of ordered extents 316 */ 317 if (RB_EMPTY_ROOT(&tree->tree) && 318 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 319 list_del_init(&BTRFS_I(inode)->ordered_operations); 320 } 321 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 322 323 mutex_unlock(&tree->mutex); 324 wake_up(&entry->wait); 325 return 0; 326 } 327 328 /* 329 * wait for all the ordered extents in a root. This is done when balancing 330 * space between drives. 331 */ 332 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) 333 { 334 struct list_head splice; 335 struct list_head *cur; 336 struct btrfs_ordered_extent *ordered; 337 struct inode *inode; 338 339 INIT_LIST_HEAD(&splice); 340 341 spin_lock(&root->fs_info->ordered_extent_lock); 342 list_splice_init(&root->fs_info->ordered_extents, &splice); 343 while (!list_empty(&splice)) { 344 cur = splice.next; 345 ordered = list_entry(cur, struct btrfs_ordered_extent, 346 root_extent_list); 347 if (nocow_only && 348 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 349 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 350 list_move(&ordered->root_extent_list, 351 &root->fs_info->ordered_extents); 352 cond_resched_lock(&root->fs_info->ordered_extent_lock); 353 continue; 354 } 355 356 list_del_init(&ordered->root_extent_list); 357 atomic_inc(&ordered->refs); 358 359 /* 360 * the inode may be getting freed (in sys_unlink path). 361 */ 362 inode = igrab(ordered->inode); 363 364 spin_unlock(&root->fs_info->ordered_extent_lock); 365 366 if (inode) { 367 btrfs_start_ordered_extent(inode, ordered, 1); 368 btrfs_put_ordered_extent(ordered); 369 iput(inode); 370 } else { 371 btrfs_put_ordered_extent(ordered); 372 } 373 374 spin_lock(&root->fs_info->ordered_extent_lock); 375 } 376 spin_unlock(&root->fs_info->ordered_extent_lock); 377 return 0; 378 } 379 380 /* 381 * this is used during transaction commit to write all the inodes 382 * added to the ordered operation list. These files must be fully on 383 * disk before the transaction commits. 384 * 385 * we have two modes here, one is to just start the IO via filemap_flush 386 * and the other is to wait for all the io. When we wait, we have an 387 * extra check to make sure the ordered operation list really is empty 388 * before we return 389 */ 390 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 391 { 392 struct btrfs_inode *btrfs_inode; 393 struct inode *inode; 394 struct list_head splice; 395 396 INIT_LIST_HEAD(&splice); 397 398 mutex_lock(&root->fs_info->ordered_operations_mutex); 399 spin_lock(&root->fs_info->ordered_extent_lock); 400 again: 401 list_splice_init(&root->fs_info->ordered_operations, &splice); 402 403 while (!list_empty(&splice)) { 404 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 405 ordered_operations); 406 407 inode = &btrfs_inode->vfs_inode; 408 409 list_del_init(&btrfs_inode->ordered_operations); 410 411 /* 412 * the inode may be getting freed (in sys_unlink path). 413 */ 414 inode = igrab(inode); 415 416 if (!wait && inode) { 417 list_add_tail(&BTRFS_I(inode)->ordered_operations, 418 &root->fs_info->ordered_operations); 419 } 420 spin_unlock(&root->fs_info->ordered_extent_lock); 421 422 if (inode) { 423 if (wait) 424 btrfs_wait_ordered_range(inode, 0, (u64)-1); 425 else 426 filemap_flush(inode->i_mapping); 427 iput(inode); 428 } 429 430 cond_resched(); 431 spin_lock(&root->fs_info->ordered_extent_lock); 432 } 433 if (wait && !list_empty(&root->fs_info->ordered_operations)) 434 goto again; 435 436 spin_unlock(&root->fs_info->ordered_extent_lock); 437 mutex_unlock(&root->fs_info->ordered_operations_mutex); 438 439 return 0; 440 } 441 442 /* 443 * Used to start IO or wait for a given ordered extent to finish. 444 * 445 * If wait is one, this effectively waits on page writeback for all the pages 446 * in the extent, and it waits on the io completion code to insert 447 * metadata into the btree corresponding to the extent 448 */ 449 void btrfs_start_ordered_extent(struct inode *inode, 450 struct btrfs_ordered_extent *entry, 451 int wait) 452 { 453 u64 start = entry->file_offset; 454 u64 end = start + entry->len - 1; 455 456 /* 457 * pages in the range can be dirty, clean or writeback. We 458 * start IO on any dirty ones so the wait doesn't stall waiting 459 * for pdflush to find them 460 */ 461 btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL); 462 if (wait) { 463 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 464 &entry->flags)); 465 } 466 } 467 468 /* 469 * Used to wait on ordered extents across a large range of bytes. 470 */ 471 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 472 { 473 u64 end; 474 u64 orig_end; 475 u64 wait_end; 476 struct btrfs_ordered_extent *ordered; 477 int found; 478 479 if (start + len < start) { 480 orig_end = INT_LIMIT(loff_t); 481 } else { 482 orig_end = start + len - 1; 483 if (orig_end > INT_LIMIT(loff_t)) 484 orig_end = INT_LIMIT(loff_t); 485 } 486 wait_end = orig_end; 487 again: 488 /* start IO across the range first to instantiate any delalloc 489 * extents 490 */ 491 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); 492 493 /* The compression code will leave pages locked but return from 494 * writepage without setting the page writeback. Starting again 495 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 496 */ 497 btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); 498 499 btrfs_wait_on_page_writeback_range(inode->i_mapping, 500 start >> PAGE_CACHE_SHIFT, 501 orig_end >> PAGE_CACHE_SHIFT); 502 503 end = orig_end; 504 found = 0; 505 while (1) { 506 ordered = btrfs_lookup_first_ordered_extent(inode, end); 507 if (!ordered) 508 break; 509 if (ordered->file_offset > orig_end) { 510 btrfs_put_ordered_extent(ordered); 511 break; 512 } 513 if (ordered->file_offset + ordered->len < start) { 514 btrfs_put_ordered_extent(ordered); 515 break; 516 } 517 found++; 518 btrfs_start_ordered_extent(inode, ordered, 1); 519 end = ordered->file_offset; 520 btrfs_put_ordered_extent(ordered); 521 if (end == 0 || end == start) 522 break; 523 end--; 524 } 525 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 526 EXTENT_DELALLOC, 0, NULL)) { 527 schedule_timeout(1); 528 goto again; 529 } 530 return 0; 531 } 532 533 /* 534 * find an ordered extent corresponding to file_offset. return NULL if 535 * nothing is found, otherwise take a reference on the extent and return it 536 */ 537 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 538 u64 file_offset) 539 { 540 struct btrfs_ordered_inode_tree *tree; 541 struct rb_node *node; 542 struct btrfs_ordered_extent *entry = NULL; 543 544 tree = &BTRFS_I(inode)->ordered_tree; 545 mutex_lock(&tree->mutex); 546 node = tree_search(tree, file_offset); 547 if (!node) 548 goto out; 549 550 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 551 if (!offset_in_entry(entry, file_offset)) 552 entry = NULL; 553 if (entry) 554 atomic_inc(&entry->refs); 555 out: 556 mutex_unlock(&tree->mutex); 557 return entry; 558 } 559 560 /* 561 * lookup and return any extent before 'file_offset'. NULL is returned 562 * if none is found 563 */ 564 struct btrfs_ordered_extent * 565 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 566 { 567 struct btrfs_ordered_inode_tree *tree; 568 struct rb_node *node; 569 struct btrfs_ordered_extent *entry = NULL; 570 571 tree = &BTRFS_I(inode)->ordered_tree; 572 mutex_lock(&tree->mutex); 573 node = tree_search(tree, file_offset); 574 if (!node) 575 goto out; 576 577 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 578 atomic_inc(&entry->refs); 579 out: 580 mutex_unlock(&tree->mutex); 581 return entry; 582 } 583 584 /* 585 * After an extent is done, call this to conditionally update the on disk 586 * i_size. i_size is updated to cover any fully written part of the file. 587 */ 588 int btrfs_ordered_update_i_size(struct inode *inode, 589 struct btrfs_ordered_extent *ordered) 590 { 591 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 592 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 593 u64 disk_i_size; 594 u64 new_i_size; 595 u64 i_size_test; 596 struct rb_node *node; 597 struct btrfs_ordered_extent *test; 598 599 mutex_lock(&tree->mutex); 600 disk_i_size = BTRFS_I(inode)->disk_i_size; 601 602 /* 603 * if the disk i_size is already at the inode->i_size, or 604 * this ordered extent is inside the disk i_size, we're done 605 */ 606 if (disk_i_size >= inode->i_size || 607 ordered->file_offset + ordered->len <= disk_i_size) { 608 goto out; 609 } 610 611 /* 612 * we can't update the disk_isize if there are delalloc bytes 613 * between disk_i_size and this ordered extent 614 */ 615 if (test_range_bit(io_tree, disk_i_size, 616 ordered->file_offset + ordered->len - 1, 617 EXTENT_DELALLOC, 0, NULL)) { 618 goto out; 619 } 620 /* 621 * walk backward from this ordered extent to disk_i_size. 622 * if we find an ordered extent then we can't update disk i_size 623 * yet 624 */ 625 node = &ordered->rb_node; 626 while (1) { 627 node = rb_prev(node); 628 if (!node) 629 break; 630 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 631 if (test->file_offset + test->len <= disk_i_size) 632 break; 633 if (test->file_offset >= inode->i_size) 634 break; 635 if (test->file_offset >= disk_i_size) 636 goto out; 637 } 638 new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); 639 640 /* 641 * at this point, we know we can safely update i_size to at least 642 * the offset from this ordered extent. But, we need to 643 * walk forward and see if ios from higher up in the file have 644 * finished. 645 */ 646 node = rb_next(&ordered->rb_node); 647 i_size_test = 0; 648 if (node) { 649 /* 650 * do we have an area where IO might have finished 651 * between our ordered extent and the next one. 652 */ 653 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 654 if (test->file_offset > entry_end(ordered)) 655 i_size_test = test->file_offset; 656 } else { 657 i_size_test = i_size_read(inode); 658 } 659 660 /* 661 * i_size_test is the end of a region after this ordered 662 * extent where there are no ordered extents. As long as there 663 * are no delalloc bytes in this area, it is safe to update 664 * disk_i_size to the end of the region. 665 */ 666 if (i_size_test > entry_end(ordered) && 667 !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, 668 EXTENT_DELALLOC, 0, NULL)) { 669 new_i_size = min_t(u64, i_size_test, i_size_read(inode)); 670 } 671 BTRFS_I(inode)->disk_i_size = new_i_size; 672 out: 673 mutex_unlock(&tree->mutex); 674 return 0; 675 } 676 677 /* 678 * search the ordered extents for one corresponding to 'offset' and 679 * try to find a checksum. This is used because we allow pages to 680 * be reclaimed before their checksum is actually put into the btree 681 */ 682 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 683 u32 *sum) 684 { 685 struct btrfs_ordered_sum *ordered_sum; 686 struct btrfs_sector_sum *sector_sums; 687 struct btrfs_ordered_extent *ordered; 688 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 689 unsigned long num_sectors; 690 unsigned long i; 691 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 692 int ret = 1; 693 694 ordered = btrfs_lookup_ordered_extent(inode, offset); 695 if (!ordered) 696 return 1; 697 698 mutex_lock(&tree->mutex); 699 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 700 if (disk_bytenr >= ordered_sum->bytenr) { 701 num_sectors = ordered_sum->len / sectorsize; 702 sector_sums = ordered_sum->sums; 703 for (i = 0; i < num_sectors; i++) { 704 if (sector_sums[i].bytenr == disk_bytenr) { 705 *sum = sector_sums[i].sum; 706 ret = 0; 707 goto out; 708 } 709 } 710 } 711 } 712 out: 713 mutex_unlock(&tree->mutex); 714 btrfs_put_ordered_extent(ordered); 715 return ret; 716 } 717 718 719 /** 720 * taken from mm/filemap.c because it isn't exported 721 * 722 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 723 * @mapping: address space structure to write 724 * @start: offset in bytes where the range starts 725 * @end: offset in bytes where the range ends (inclusive) 726 * @sync_mode: enable synchronous operation 727 * 728 * Start writeback against all of a mapping's dirty pages that lie 729 * within the byte offsets <start, end> inclusive. 730 * 731 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 732 * opposed to a regular memory cleansing writeback. The difference between 733 * these two operations is that if a dirty page/buffer is encountered, it must 734 * be waited upon, and not just skipped over. 735 */ 736 int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, 737 loff_t end, int sync_mode) 738 { 739 struct writeback_control wbc = { 740 .sync_mode = sync_mode, 741 .nr_to_write = mapping->nrpages * 2, 742 .range_start = start, 743 .range_end = end, 744 }; 745 return btrfs_writepages(mapping, &wbc); 746 } 747 748 /** 749 * taken from mm/filemap.c because it isn't exported 750 * 751 * wait_on_page_writeback_range - wait for writeback to complete 752 * @mapping: target address_space 753 * @start: beginning page index 754 * @end: ending page index 755 * 756 * Wait for writeback to complete against pages indexed by start->end 757 * inclusive 758 */ 759 int btrfs_wait_on_page_writeback_range(struct address_space *mapping, 760 pgoff_t start, pgoff_t end) 761 { 762 struct pagevec pvec; 763 int nr_pages; 764 int ret = 0; 765 pgoff_t index; 766 767 if (end < start) 768 return 0; 769 770 pagevec_init(&pvec, 0); 771 index = start; 772 while ((index <= end) && 773 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 774 PAGECACHE_TAG_WRITEBACK, 775 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 776 unsigned i; 777 778 for (i = 0; i < nr_pages; i++) { 779 struct page *page = pvec.pages[i]; 780 781 /* until radix tree lookup accepts end_index */ 782 if (page->index > end) 783 continue; 784 785 wait_on_page_writeback(page); 786 if (PageError(page)) 787 ret = -EIO; 788 } 789 pagevec_release(&pvec); 790 cond_resched(); 791 } 792 793 /* Check for outstanding write errors */ 794 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 795 ret = -ENOSPC; 796 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 797 ret = -EIO; 798 799 return ret; 800 } 801 802 /* 803 * add a given inode to the list of inodes that must be fully on 804 * disk before a transaction commit finishes. 805 * 806 * This basically gives us the ext3 style data=ordered mode, and it is mostly 807 * used to make sure renamed files are fully on disk. 808 * 809 * It is a noop if the inode is already fully on disk. 810 * 811 * If trans is not null, we'll do a friendly check for a transaction that 812 * is already flushing things and force the IO down ourselves. 813 */ 814 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 815 struct btrfs_root *root, 816 struct inode *inode) 817 { 818 u64 last_mod; 819 820 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 821 822 /* 823 * if this file hasn't been changed since the last transaction 824 * commit, we can safely return without doing anything 825 */ 826 if (last_mod < root->fs_info->last_trans_committed) 827 return 0; 828 829 /* 830 * the transaction is already committing. Just start the IO and 831 * don't bother with all of this list nonsense 832 */ 833 if (trans && root->fs_info->running_transaction->blocked) { 834 btrfs_wait_ordered_range(inode, 0, (u64)-1); 835 return 0; 836 } 837 838 spin_lock(&root->fs_info->ordered_extent_lock); 839 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 840 list_add_tail(&BTRFS_I(inode)->ordered_operations, 841 &root->fs_info->ordered_operations); 842 } 843 spin_unlock(&root->fs_info->ordered_extent_lock); 844 845 return 0; 846 } 847