1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "messages.h" 11 #include "misc.h" 12 #include "ctree.h" 13 #include "transaction.h" 14 #include "btrfs_inode.h" 15 #include "extent_io.h" 16 #include "disk-io.h" 17 #include "compression.h" 18 #include "delalloc-space.h" 19 #include "qgroup.h" 20 #include "subpage.h" 21 #include "file.h" 22 23 static struct kmem_cache *btrfs_ordered_extent_cache; 24 25 static u64 entry_end(struct btrfs_ordered_extent *entry) 26 { 27 if (entry->file_offset + entry->num_bytes < entry->file_offset) 28 return (u64)-1; 29 return entry->file_offset + entry->num_bytes; 30 } 31 32 /* returns NULL if the insertion worked, or it returns the node it did find 33 * in the tree 34 */ 35 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 36 struct rb_node *node) 37 { 38 struct rb_node **p = &root->rb_node; 39 struct rb_node *parent = NULL; 40 struct btrfs_ordered_extent *entry; 41 42 while (*p) { 43 parent = *p; 44 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 45 46 if (file_offset < entry->file_offset) 47 p = &(*p)->rb_left; 48 else if (file_offset >= entry_end(entry)) 49 p = &(*p)->rb_right; 50 else 51 return parent; 52 } 53 54 rb_link_node(node, parent, p); 55 rb_insert_color(node, root); 56 return NULL; 57 } 58 59 /* 60 * look for a given offset in the tree, and if it can't be found return the 61 * first lesser offset 62 */ 63 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 64 struct rb_node **prev_ret) 65 { 66 struct rb_node *n = root->rb_node; 67 struct rb_node *prev = NULL; 68 struct rb_node *test; 69 struct btrfs_ordered_extent *entry; 70 struct btrfs_ordered_extent *prev_entry = NULL; 71 72 while (n) { 73 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 74 prev = n; 75 prev_entry = entry; 76 77 if (file_offset < entry->file_offset) 78 n = n->rb_left; 79 else if (file_offset >= entry_end(entry)) 80 n = n->rb_right; 81 else 82 return n; 83 } 84 if (!prev_ret) 85 return NULL; 86 87 while (prev && file_offset >= entry_end(prev_entry)) { 88 test = rb_next(prev); 89 if (!test) 90 break; 91 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 92 rb_node); 93 if (file_offset < entry_end(prev_entry)) 94 break; 95 96 prev = test; 97 } 98 if (prev) 99 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 100 rb_node); 101 while (prev && file_offset < entry_end(prev_entry)) { 102 test = rb_prev(prev); 103 if (!test) 104 break; 105 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 106 rb_node); 107 prev = test; 108 } 109 *prev_ret = prev; 110 return NULL; 111 } 112 113 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 114 u64 len) 115 { 116 if (file_offset + len <= entry->file_offset || 117 entry->file_offset + entry->num_bytes <= file_offset) 118 return 0; 119 return 1; 120 } 121 122 /* 123 * look find the first ordered struct that has this offset, otherwise 124 * the first one less than this offset 125 */ 126 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode, 127 u64 file_offset) 128 { 129 struct rb_node *prev = NULL; 130 struct rb_node *ret; 131 struct btrfs_ordered_extent *entry; 132 133 if (inode->ordered_tree_last) { 134 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent, 135 rb_node); 136 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 137 return inode->ordered_tree_last; 138 } 139 ret = __tree_search(&inode->ordered_tree, file_offset, &prev); 140 if (!ret) 141 ret = prev; 142 if (ret) 143 inode->ordered_tree_last = ret; 144 return ret; 145 } 146 147 static struct btrfs_ordered_extent *alloc_ordered_extent( 148 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes, 149 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes, 150 u64 offset, unsigned long flags, int compress_type) 151 { 152 struct btrfs_ordered_extent *entry; 153 int ret; 154 u64 qgroup_rsv = 0; 155 156 if (flags & 157 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 158 /* For nocow write, we can release the qgroup rsv right now */ 159 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv); 160 if (ret < 0) 161 return ERR_PTR(ret); 162 } else { 163 /* 164 * The ordered extent has reserved qgroup space, release now 165 * and pass the reserved number for qgroup_record to free. 166 */ 167 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv); 168 if (ret < 0) 169 return ERR_PTR(ret); 170 } 171 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 172 if (!entry) 173 return ERR_PTR(-ENOMEM); 174 175 entry->file_offset = file_offset; 176 entry->num_bytes = num_bytes; 177 entry->ram_bytes = ram_bytes; 178 entry->disk_bytenr = disk_bytenr; 179 entry->disk_num_bytes = disk_num_bytes; 180 entry->offset = offset; 181 entry->bytes_left = num_bytes; 182 entry->inode = igrab(&inode->vfs_inode); 183 entry->compress_type = compress_type; 184 entry->truncated_len = (u64)-1; 185 entry->qgroup_rsv = qgroup_rsv; 186 entry->flags = flags; 187 refcount_set(&entry->refs, 1); 188 init_waitqueue_head(&entry->wait); 189 INIT_LIST_HEAD(&entry->list); 190 INIT_LIST_HEAD(&entry->log_list); 191 INIT_LIST_HEAD(&entry->root_extent_list); 192 INIT_LIST_HEAD(&entry->work_list); 193 INIT_LIST_HEAD(&entry->bioc_list); 194 init_completion(&entry->completion); 195 196 /* 197 * We don't need the count_max_extents here, we can assume that all of 198 * that work has been done at higher layers, so this is truly the 199 * smallest the extent is going to get. 200 */ 201 spin_lock(&inode->lock); 202 btrfs_mod_outstanding_extents(inode, 1); 203 spin_unlock(&inode->lock); 204 205 return entry; 206 } 207 208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry) 209 { 210 struct btrfs_inode *inode = BTRFS_I(entry->inode); 211 struct btrfs_root *root = inode->root; 212 struct btrfs_fs_info *fs_info = root->fs_info; 213 struct rb_node *node; 214 215 trace_btrfs_ordered_extent_add(inode, entry); 216 217 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes, 218 fs_info->delalloc_batch); 219 220 /* One ref for the tree. */ 221 refcount_inc(&entry->refs); 222 223 spin_lock_irq(&inode->ordered_tree_lock); 224 node = tree_insert(&inode->ordered_tree, entry->file_offset, 225 &entry->rb_node); 226 if (node) 227 btrfs_panic(fs_info, -EEXIST, 228 "inconsistency in ordered tree at offset %llu", 229 entry->file_offset); 230 spin_unlock_irq(&inode->ordered_tree_lock); 231 232 spin_lock(&root->ordered_extent_lock); 233 list_add_tail(&entry->root_extent_list, 234 &root->ordered_extents); 235 root->nr_ordered_extents++; 236 if (root->nr_ordered_extents == 1) { 237 spin_lock(&fs_info->ordered_root_lock); 238 BUG_ON(!list_empty(&root->ordered_root)); 239 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 240 spin_unlock(&fs_info->ordered_root_lock); 241 } 242 spin_unlock(&root->ordered_extent_lock); 243 } 244 245 /* 246 * Add an ordered extent to the per-inode tree. 247 * 248 * @inode: Inode that this extent is for. 249 * @file_offset: Logical offset in file where the extent starts. 250 * @num_bytes: Logical length of extent in file. 251 * @ram_bytes: Full length of unencoded data. 252 * @disk_bytenr: Offset of extent on disk. 253 * @disk_num_bytes: Size of extent on disk. 254 * @offset: Offset into unencoded data where file data starts. 255 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 256 * @compress_type: Compression algorithm used for data. 257 * 258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 259 * tree is given a single reference on the ordered extent that was inserted, and 260 * the returned pointer is given a second reference. 261 * 262 * Return: the new ordered extent or error pointer. 263 */ 264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent( 265 struct btrfs_inode *inode, u64 file_offset, 266 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 267 u64 disk_num_bytes, u64 offset, unsigned long flags, 268 int compress_type) 269 { 270 struct btrfs_ordered_extent *entry; 271 272 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 273 274 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes, 275 disk_bytenr, disk_num_bytes, offset, flags, 276 compress_type); 277 if (!IS_ERR(entry)) 278 insert_ordered_extent(entry); 279 return entry; 280 } 281 282 /* 283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 284 * when an ordered extent is finished. If the list covers more than one 285 * ordered extent, it is split across multiples. 286 */ 287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 288 struct btrfs_ordered_sum *sum) 289 { 290 struct btrfs_inode *inode = BTRFS_I(entry->inode); 291 292 spin_lock_irq(&inode->ordered_tree_lock); 293 list_add_tail(&sum->list, &entry->list); 294 spin_unlock_irq(&inode->ordered_tree_lock); 295 } 296 297 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered) 298 { 299 if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 300 mapping_set_error(ordered->inode->i_mapping, -EIO); 301 } 302 303 static void finish_ordered_fn(struct btrfs_work *work) 304 { 305 struct btrfs_ordered_extent *ordered_extent; 306 307 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 308 btrfs_finish_ordered_io(ordered_extent); 309 } 310 311 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 312 struct page *page, u64 file_offset, 313 u64 len, bool uptodate) 314 { 315 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 316 struct btrfs_fs_info *fs_info = inode->root->fs_info; 317 318 lockdep_assert_held(&inode->ordered_tree_lock); 319 320 if (page) { 321 ASSERT(page->mapping); 322 ASSERT(page_offset(page) <= file_offset); 323 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE); 324 325 /* 326 * Ordered (Private2) bit indicates whether we still have 327 * pending io unfinished for the ordered extent. 328 * 329 * If there's no such bit, we need to skip to next range. 330 */ 331 if (!btrfs_folio_test_ordered(fs_info, page_folio(page), 332 file_offset, len)) 333 return false; 334 btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len); 335 } 336 337 /* Now we're fine to update the accounting. */ 338 if (WARN_ON_ONCE(len > ordered->bytes_left)) { 339 btrfs_crit(fs_info, 340 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu", 341 btrfs_root_id(inode->root), btrfs_ino(inode), 342 ordered->file_offset, ordered->num_bytes, 343 len, ordered->bytes_left); 344 ordered->bytes_left = 0; 345 } else { 346 ordered->bytes_left -= len; 347 } 348 349 if (!uptodate) 350 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 351 352 if (ordered->bytes_left) 353 return false; 354 355 /* 356 * All the IO of the ordered extent is finished, we need to queue 357 * the finish_func to be executed. 358 */ 359 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags); 360 cond_wake_up(&ordered->wait); 361 refcount_inc(&ordered->refs); 362 trace_btrfs_ordered_extent_mark_finished(inode, ordered); 363 return true; 364 } 365 366 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered) 367 { 368 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 369 struct btrfs_fs_info *fs_info = inode->root->fs_info; 370 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ? 371 fs_info->endio_freespace_worker : fs_info->endio_write_workers; 372 373 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL); 374 btrfs_queue_work(wq, &ordered->work); 375 } 376 377 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 378 struct page *page, u64 file_offset, u64 len, 379 bool uptodate) 380 { 381 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 382 unsigned long flags; 383 bool ret; 384 385 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate); 386 387 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 388 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate); 389 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 390 391 if (ret) 392 btrfs_queue_ordered_fn(ordered); 393 return ret; 394 } 395 396 /* 397 * Mark all ordered extents io inside the specified range finished. 398 * 399 * @page: The involved page for the operation. 400 * For uncompressed buffered IO, the page status also needs to be 401 * updated to indicate whether the pending ordered io is finished. 402 * Can be NULL for direct IO and compressed write. 403 * For these cases, callers are ensured they won't execute the 404 * endio function twice. 405 * 406 * This function is called for endio, thus the range must have ordered 407 * extent(s) covering it. 408 */ 409 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 410 struct page *page, u64 file_offset, 411 u64 num_bytes, bool uptodate) 412 { 413 struct rb_node *node; 414 struct btrfs_ordered_extent *entry = NULL; 415 unsigned long flags; 416 u64 cur = file_offset; 417 418 trace_btrfs_writepage_end_io_hook(inode, file_offset, 419 file_offset + num_bytes - 1, 420 uptodate); 421 422 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 423 while (cur < file_offset + num_bytes) { 424 u64 entry_end; 425 u64 end; 426 u32 len; 427 428 node = ordered_tree_search(inode, cur); 429 /* No ordered extents at all */ 430 if (!node) 431 break; 432 433 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 434 entry_end = entry->file_offset + entry->num_bytes; 435 /* 436 * |<-- OE --->| | 437 * cur 438 * Go to next OE. 439 */ 440 if (cur >= entry_end) { 441 node = rb_next(node); 442 /* No more ordered extents, exit */ 443 if (!node) 444 break; 445 entry = rb_entry(node, struct btrfs_ordered_extent, 446 rb_node); 447 448 /* Go to next ordered extent and continue */ 449 cur = entry->file_offset; 450 continue; 451 } 452 /* 453 * | |<--- OE --->| 454 * cur 455 * Go to the start of OE. 456 */ 457 if (cur < entry->file_offset) { 458 cur = entry->file_offset; 459 continue; 460 } 461 462 /* 463 * Now we are definitely inside one ordered extent. 464 * 465 * |<--- OE --->| 466 * | 467 * cur 468 */ 469 end = min(entry->file_offset + entry->num_bytes, 470 file_offset + num_bytes) - 1; 471 ASSERT(end + 1 - cur < U32_MAX); 472 len = end + 1 - cur; 473 474 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) { 475 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 476 btrfs_queue_ordered_fn(entry); 477 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 478 } 479 cur += len; 480 } 481 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 482 } 483 484 /* 485 * Finish IO for one ordered extent across a given range. The range can only 486 * contain one ordered extent. 487 * 488 * @cached: The cached ordered extent. If not NULL, we can skip the tree 489 * search and use the ordered extent directly. 490 * Will be also used to store the finished ordered extent. 491 * @file_offset: File offset for the finished IO 492 * @io_size: Length of the finish IO range 493 * 494 * Return true if the ordered extent is finished in the range, and update 495 * @cached. 496 * Return false otherwise. 497 * 498 * NOTE: The range can NOT cross multiple ordered extents. 499 * Thus caller should ensure the range doesn't cross ordered extents. 500 */ 501 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 502 struct btrfs_ordered_extent **cached, 503 u64 file_offset, u64 io_size) 504 { 505 struct rb_node *node; 506 struct btrfs_ordered_extent *entry = NULL; 507 unsigned long flags; 508 bool finished = false; 509 510 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 511 if (cached && *cached) { 512 entry = *cached; 513 goto have_entry; 514 } 515 516 node = ordered_tree_search(inode, file_offset); 517 if (!node) 518 goto out; 519 520 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 521 have_entry: 522 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 523 goto out; 524 525 if (io_size > entry->bytes_left) 526 btrfs_crit(inode->root->fs_info, 527 "bad ordered accounting left %llu size %llu", 528 entry->bytes_left, io_size); 529 530 entry->bytes_left -= io_size; 531 532 if (entry->bytes_left == 0) { 533 /* 534 * Ensure only one caller can set the flag and finished_ret 535 * accordingly 536 */ 537 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 538 /* test_and_set_bit implies a barrier */ 539 cond_wake_up_nomb(&entry->wait); 540 } 541 out: 542 if (finished && cached && entry) { 543 *cached = entry; 544 refcount_inc(&entry->refs); 545 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 546 } 547 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 548 return finished; 549 } 550 551 /* 552 * used to drop a reference on an ordered extent. This will free 553 * the extent if the last reference is dropped 554 */ 555 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 556 { 557 struct list_head *cur; 558 struct btrfs_ordered_sum *sum; 559 560 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 561 562 if (refcount_dec_and_test(&entry->refs)) { 563 ASSERT(list_empty(&entry->root_extent_list)); 564 ASSERT(list_empty(&entry->log_list)); 565 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 566 if (entry->inode) 567 btrfs_add_delayed_iput(BTRFS_I(entry->inode)); 568 while (!list_empty(&entry->list)) { 569 cur = entry->list.next; 570 sum = list_entry(cur, struct btrfs_ordered_sum, list); 571 list_del(&sum->list); 572 kvfree(sum); 573 } 574 kmem_cache_free(btrfs_ordered_extent_cache, entry); 575 } 576 } 577 578 /* 579 * remove an ordered extent from the tree. No references are dropped 580 * and waiters are woken up. 581 */ 582 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 583 struct btrfs_ordered_extent *entry) 584 { 585 struct btrfs_root *root = btrfs_inode->root; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 struct rb_node *node; 588 bool pending; 589 bool freespace_inode; 590 591 /* 592 * If this is a free space inode the thread has not acquired the ordered 593 * extents lockdep map. 594 */ 595 freespace_inode = btrfs_is_free_space_inode(btrfs_inode); 596 597 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); 598 /* This is paired with btrfs_alloc_ordered_extent. */ 599 spin_lock(&btrfs_inode->lock); 600 btrfs_mod_outstanding_extents(btrfs_inode, -1); 601 spin_unlock(&btrfs_inode->lock); 602 if (root != fs_info->tree_root) { 603 u64 release; 604 605 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 606 release = entry->disk_num_bytes; 607 else 608 release = entry->num_bytes; 609 btrfs_delalloc_release_metadata(btrfs_inode, release, 610 test_bit(BTRFS_ORDERED_IOERR, 611 &entry->flags)); 612 } 613 614 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 615 fs_info->delalloc_batch); 616 617 spin_lock_irq(&btrfs_inode->ordered_tree_lock); 618 node = &entry->rb_node; 619 rb_erase(node, &btrfs_inode->ordered_tree); 620 RB_CLEAR_NODE(node); 621 if (btrfs_inode->ordered_tree_last == node) 622 btrfs_inode->ordered_tree_last = NULL; 623 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 624 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 625 spin_unlock_irq(&btrfs_inode->ordered_tree_lock); 626 627 /* 628 * The current running transaction is waiting on us, we need to let it 629 * know that we're complete and wake it up. 630 */ 631 if (pending) { 632 struct btrfs_transaction *trans; 633 634 /* 635 * The checks for trans are just a formality, it should be set, 636 * but if it isn't we don't want to deref/assert under the spin 637 * lock, so be nice and check if trans is set, but ASSERT() so 638 * if it isn't set a developer will notice. 639 */ 640 spin_lock(&fs_info->trans_lock); 641 trans = fs_info->running_transaction; 642 if (trans) 643 refcount_inc(&trans->use_count); 644 spin_unlock(&fs_info->trans_lock); 645 646 ASSERT(trans || BTRFS_FS_ERROR(fs_info)); 647 if (trans) { 648 if (atomic_dec_and_test(&trans->pending_ordered)) 649 wake_up(&trans->pending_wait); 650 btrfs_put_transaction(trans); 651 } 652 } 653 654 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); 655 656 spin_lock(&root->ordered_extent_lock); 657 list_del_init(&entry->root_extent_list); 658 root->nr_ordered_extents--; 659 660 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 661 662 if (!root->nr_ordered_extents) { 663 spin_lock(&fs_info->ordered_root_lock); 664 BUG_ON(list_empty(&root->ordered_root)); 665 list_del_init(&root->ordered_root); 666 spin_unlock(&fs_info->ordered_root_lock); 667 } 668 spin_unlock(&root->ordered_extent_lock); 669 wake_up(&entry->wait); 670 if (!freespace_inode) 671 btrfs_lockdep_release(fs_info, btrfs_ordered_extent); 672 } 673 674 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 675 { 676 struct btrfs_ordered_extent *ordered; 677 678 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 679 btrfs_start_ordered_extent(ordered); 680 complete(&ordered->completion); 681 } 682 683 /* 684 * wait for all the ordered extents in a root. This is done when balancing 685 * space between drives. 686 */ 687 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 688 const u64 range_start, const u64 range_len) 689 { 690 struct btrfs_fs_info *fs_info = root->fs_info; 691 LIST_HEAD(splice); 692 LIST_HEAD(skipped); 693 LIST_HEAD(works); 694 struct btrfs_ordered_extent *ordered, *next; 695 u64 count = 0; 696 const u64 range_end = range_start + range_len; 697 698 mutex_lock(&root->ordered_extent_mutex); 699 spin_lock(&root->ordered_extent_lock); 700 list_splice_init(&root->ordered_extents, &splice); 701 while (!list_empty(&splice) && nr) { 702 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 703 root_extent_list); 704 705 if (range_end <= ordered->disk_bytenr || 706 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 707 list_move_tail(&ordered->root_extent_list, &skipped); 708 cond_resched_lock(&root->ordered_extent_lock); 709 continue; 710 } 711 712 list_move_tail(&ordered->root_extent_list, 713 &root->ordered_extents); 714 refcount_inc(&ordered->refs); 715 spin_unlock(&root->ordered_extent_lock); 716 717 btrfs_init_work(&ordered->flush_work, 718 btrfs_run_ordered_extent_work, NULL); 719 list_add_tail(&ordered->work_list, &works); 720 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 721 722 cond_resched(); 723 spin_lock(&root->ordered_extent_lock); 724 if (nr != U64_MAX) 725 nr--; 726 count++; 727 } 728 list_splice_tail(&skipped, &root->ordered_extents); 729 list_splice_tail(&splice, &root->ordered_extents); 730 spin_unlock(&root->ordered_extent_lock); 731 732 list_for_each_entry_safe(ordered, next, &works, work_list) { 733 list_del_init(&ordered->work_list); 734 wait_for_completion(&ordered->completion); 735 btrfs_put_ordered_extent(ordered); 736 cond_resched(); 737 } 738 mutex_unlock(&root->ordered_extent_mutex); 739 740 return count; 741 } 742 743 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 744 const u64 range_start, const u64 range_len) 745 { 746 struct btrfs_root *root; 747 LIST_HEAD(splice); 748 u64 done; 749 750 mutex_lock(&fs_info->ordered_operations_mutex); 751 spin_lock(&fs_info->ordered_root_lock); 752 list_splice_init(&fs_info->ordered_roots, &splice); 753 while (!list_empty(&splice) && nr) { 754 root = list_first_entry(&splice, struct btrfs_root, 755 ordered_root); 756 root = btrfs_grab_root(root); 757 BUG_ON(!root); 758 list_move_tail(&root->ordered_root, 759 &fs_info->ordered_roots); 760 spin_unlock(&fs_info->ordered_root_lock); 761 762 done = btrfs_wait_ordered_extents(root, nr, 763 range_start, range_len); 764 btrfs_put_root(root); 765 766 spin_lock(&fs_info->ordered_root_lock); 767 if (nr != U64_MAX) { 768 nr -= done; 769 } 770 } 771 list_splice_tail(&splice, &fs_info->ordered_roots); 772 spin_unlock(&fs_info->ordered_root_lock); 773 mutex_unlock(&fs_info->ordered_operations_mutex); 774 } 775 776 /* 777 * Start IO and wait for a given ordered extent to finish. 778 * 779 * Wait on page writeback for all the pages in the extent and the IO completion 780 * code to insert metadata into the btree corresponding to the extent. 781 */ 782 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry) 783 { 784 u64 start = entry->file_offset; 785 u64 end = start + entry->num_bytes - 1; 786 struct btrfs_inode *inode = BTRFS_I(entry->inode); 787 bool freespace_inode; 788 789 trace_btrfs_ordered_extent_start(inode, entry); 790 791 /* 792 * If this is a free space inode do not take the ordered extents lockdep 793 * map. 794 */ 795 freespace_inode = btrfs_is_free_space_inode(inode); 796 797 /* 798 * pages in the range can be dirty, clean or writeback. We 799 * start IO on any dirty ones so the wait doesn't stall waiting 800 * for the flusher thread to find them 801 */ 802 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 803 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 804 805 if (!freespace_inode) 806 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); 807 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); 808 } 809 810 /* 811 * Used to wait on ordered extents across a large range of bytes. 812 */ 813 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 814 { 815 int ret = 0; 816 int ret_wb = 0; 817 u64 end; 818 u64 orig_end; 819 struct btrfs_ordered_extent *ordered; 820 821 if (start + len < start) { 822 orig_end = OFFSET_MAX; 823 } else { 824 orig_end = start + len - 1; 825 if (orig_end > OFFSET_MAX) 826 orig_end = OFFSET_MAX; 827 } 828 829 /* start IO across the range first to instantiate any delalloc 830 * extents 831 */ 832 ret = btrfs_fdatawrite_range(inode, start, orig_end); 833 if (ret) 834 return ret; 835 836 /* 837 * If we have a writeback error don't return immediately. Wait first 838 * for any ordered extents that haven't completed yet. This is to make 839 * sure no one can dirty the same page ranges and call writepages() 840 * before the ordered extents complete - to avoid failures (-EEXIST) 841 * when adding the new ordered extents to the ordered tree. 842 */ 843 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 844 845 end = orig_end; 846 while (1) { 847 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 848 if (!ordered) 849 break; 850 if (ordered->file_offset > orig_end) { 851 btrfs_put_ordered_extent(ordered); 852 break; 853 } 854 if (ordered->file_offset + ordered->num_bytes <= start) { 855 btrfs_put_ordered_extent(ordered); 856 break; 857 } 858 btrfs_start_ordered_extent(ordered); 859 end = ordered->file_offset; 860 /* 861 * If the ordered extent had an error save the error but don't 862 * exit without waiting first for all other ordered extents in 863 * the range to complete. 864 */ 865 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 866 ret = -EIO; 867 btrfs_put_ordered_extent(ordered); 868 if (end == 0 || end == start) 869 break; 870 end--; 871 } 872 return ret_wb ? ret_wb : ret; 873 } 874 875 /* 876 * find an ordered extent corresponding to file_offset. return NULL if 877 * nothing is found, otherwise take a reference on the extent and return it 878 */ 879 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 880 u64 file_offset) 881 { 882 struct rb_node *node; 883 struct btrfs_ordered_extent *entry = NULL; 884 unsigned long flags; 885 886 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 887 node = ordered_tree_search(inode, file_offset); 888 if (!node) 889 goto out; 890 891 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 892 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 893 entry = NULL; 894 if (entry) { 895 refcount_inc(&entry->refs); 896 trace_btrfs_ordered_extent_lookup(inode, entry); 897 } 898 out: 899 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 900 return entry; 901 } 902 903 /* Since the DIO code tries to lock a wide area we need to look for any ordered 904 * extents that exist in the range, rather than just the start of the range. 905 */ 906 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 907 struct btrfs_inode *inode, u64 file_offset, u64 len) 908 { 909 struct rb_node *node; 910 struct btrfs_ordered_extent *entry = NULL; 911 912 spin_lock_irq(&inode->ordered_tree_lock); 913 node = ordered_tree_search(inode, file_offset); 914 if (!node) { 915 node = ordered_tree_search(inode, file_offset + len); 916 if (!node) 917 goto out; 918 } 919 920 while (1) { 921 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 922 if (range_overlaps(entry, file_offset, len)) 923 break; 924 925 if (entry->file_offset >= file_offset + len) { 926 entry = NULL; 927 break; 928 } 929 entry = NULL; 930 node = rb_next(node); 931 if (!node) 932 break; 933 } 934 out: 935 if (entry) { 936 refcount_inc(&entry->refs); 937 trace_btrfs_ordered_extent_lookup_range(inode, entry); 938 } 939 spin_unlock_irq(&inode->ordered_tree_lock); 940 return entry; 941 } 942 943 /* 944 * Adds all ordered extents to the given list. The list ends up sorted by the 945 * file_offset of the ordered extents. 946 */ 947 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 948 struct list_head *list) 949 { 950 struct rb_node *n; 951 952 ASSERT(inode_is_locked(&inode->vfs_inode)); 953 954 spin_lock_irq(&inode->ordered_tree_lock); 955 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) { 956 struct btrfs_ordered_extent *ordered; 957 958 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 959 960 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 961 continue; 962 963 ASSERT(list_empty(&ordered->log_list)); 964 list_add_tail(&ordered->log_list, list); 965 refcount_inc(&ordered->refs); 966 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 967 } 968 spin_unlock_irq(&inode->ordered_tree_lock); 969 } 970 971 /* 972 * lookup and return any extent before 'file_offset'. NULL is returned 973 * if none is found 974 */ 975 struct btrfs_ordered_extent * 976 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 977 { 978 struct rb_node *node; 979 struct btrfs_ordered_extent *entry = NULL; 980 981 spin_lock_irq(&inode->ordered_tree_lock); 982 node = ordered_tree_search(inode, file_offset); 983 if (!node) 984 goto out; 985 986 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 987 refcount_inc(&entry->refs); 988 trace_btrfs_ordered_extent_lookup_first(inode, entry); 989 out: 990 spin_unlock_irq(&inode->ordered_tree_lock); 991 return entry; 992 } 993 994 /* 995 * Lookup the first ordered extent that overlaps the range 996 * [@file_offset, @file_offset + @len). 997 * 998 * The difference between this and btrfs_lookup_first_ordered_extent() is 999 * that this one won't return any ordered extent that does not overlap the range. 1000 * And the difference against btrfs_lookup_ordered_extent() is, this function 1001 * ensures the first ordered extent gets returned. 1002 */ 1003 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 1004 struct btrfs_inode *inode, u64 file_offset, u64 len) 1005 { 1006 struct rb_node *node; 1007 struct rb_node *cur; 1008 struct rb_node *prev; 1009 struct rb_node *next; 1010 struct btrfs_ordered_extent *entry = NULL; 1011 1012 spin_lock_irq(&inode->ordered_tree_lock); 1013 node = inode->ordered_tree.rb_node; 1014 /* 1015 * Here we don't want to use tree_search() which will use tree->last 1016 * and screw up the search order. 1017 * And __tree_search() can't return the adjacent ordered extents 1018 * either, thus here we do our own search. 1019 */ 1020 while (node) { 1021 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1022 1023 if (file_offset < entry->file_offset) { 1024 node = node->rb_left; 1025 } else if (file_offset >= entry_end(entry)) { 1026 node = node->rb_right; 1027 } else { 1028 /* 1029 * Direct hit, got an ordered extent that starts at 1030 * @file_offset 1031 */ 1032 goto out; 1033 } 1034 } 1035 if (!entry) { 1036 /* Empty tree */ 1037 goto out; 1038 } 1039 1040 cur = &entry->rb_node; 1041 /* We got an entry around @file_offset, check adjacent entries */ 1042 if (entry->file_offset < file_offset) { 1043 prev = cur; 1044 next = rb_next(cur); 1045 } else { 1046 prev = rb_prev(cur); 1047 next = cur; 1048 } 1049 if (prev) { 1050 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 1051 if (range_overlaps(entry, file_offset, len)) 1052 goto out; 1053 } 1054 if (next) { 1055 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 1056 if (range_overlaps(entry, file_offset, len)) 1057 goto out; 1058 } 1059 /* No ordered extent in the range */ 1060 entry = NULL; 1061 out: 1062 if (entry) { 1063 refcount_inc(&entry->refs); 1064 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 1065 } 1066 1067 spin_unlock_irq(&inode->ordered_tree_lock); 1068 return entry; 1069 } 1070 1071 /* 1072 * Lock the passed range and ensures all pending ordered extents in it are run 1073 * to completion. 1074 * 1075 * @inode: Inode whose ordered tree is to be searched 1076 * @start: Beginning of range to flush 1077 * @end: Last byte of range to lock 1078 * @cached_state: If passed, will return the extent state responsible for the 1079 * locked range. It's the caller's responsibility to free the 1080 * cached state. 1081 * 1082 * Always return with the given range locked, ensuring after it's called no 1083 * order extent can be pending. 1084 */ 1085 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1086 u64 end, 1087 struct extent_state **cached_state) 1088 { 1089 struct btrfs_ordered_extent *ordered; 1090 struct extent_state *cache = NULL; 1091 struct extent_state **cachedp = &cache; 1092 1093 if (cached_state) 1094 cachedp = cached_state; 1095 1096 while (1) { 1097 lock_extent(&inode->io_tree, start, end, cachedp); 1098 ordered = btrfs_lookup_ordered_range(inode, start, 1099 end - start + 1); 1100 if (!ordered) { 1101 /* 1102 * If no external cached_state has been passed then 1103 * decrement the extra ref taken for cachedp since we 1104 * aren't exposing it outside of this function 1105 */ 1106 if (!cached_state) 1107 refcount_dec(&cache->refs); 1108 break; 1109 } 1110 unlock_extent(&inode->io_tree, start, end, cachedp); 1111 btrfs_start_ordered_extent(ordered); 1112 btrfs_put_ordered_extent(ordered); 1113 } 1114 } 1115 1116 /* 1117 * Lock the passed range and ensure all pending ordered extents in it are run 1118 * to completion in nowait mode. 1119 * 1120 * Return true if btrfs_lock_ordered_range does not return any extents, 1121 * otherwise false. 1122 */ 1123 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, 1124 struct extent_state **cached_state) 1125 { 1126 struct btrfs_ordered_extent *ordered; 1127 1128 if (!try_lock_extent(&inode->io_tree, start, end, cached_state)) 1129 return false; 1130 1131 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); 1132 if (!ordered) 1133 return true; 1134 1135 btrfs_put_ordered_extent(ordered); 1136 unlock_extent(&inode->io_tree, start, end, cached_state); 1137 1138 return false; 1139 } 1140 1141 /* Split out a new ordered extent for this first @len bytes of @ordered. */ 1142 struct btrfs_ordered_extent *btrfs_split_ordered_extent( 1143 struct btrfs_ordered_extent *ordered, u64 len) 1144 { 1145 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1146 struct btrfs_root *root = inode->root; 1147 struct btrfs_fs_info *fs_info = root->fs_info; 1148 u64 file_offset = ordered->file_offset; 1149 u64 disk_bytenr = ordered->disk_bytenr; 1150 unsigned long flags = ordered->flags; 1151 struct btrfs_ordered_sum *sum, *tmpsum; 1152 struct btrfs_ordered_extent *new; 1153 struct rb_node *node; 1154 u64 offset = 0; 1155 1156 trace_btrfs_ordered_extent_split(inode, ordered); 1157 1158 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED))); 1159 1160 /* 1161 * The entire bio must be covered by the ordered extent, but we can't 1162 * reduce the original extent to a zero length either. 1163 */ 1164 if (WARN_ON_ONCE(len >= ordered->num_bytes)) 1165 return ERR_PTR(-EINVAL); 1166 /* We cannot split partially completed ordered extents. */ 1167 if (ordered->bytes_left) { 1168 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); 1169 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) 1170 return ERR_PTR(-EINVAL); 1171 } 1172 /* We cannot split a compressed ordered extent. */ 1173 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) 1174 return ERR_PTR(-EINVAL); 1175 1176 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr, 1177 len, 0, flags, ordered->compress_type); 1178 if (IS_ERR(new)) 1179 return new; 1180 1181 /* One ref for the tree. */ 1182 refcount_inc(&new->refs); 1183 1184 spin_lock_irq(&root->ordered_extent_lock); 1185 spin_lock(&inode->ordered_tree_lock); 1186 /* Remove from tree once */ 1187 node = &ordered->rb_node; 1188 rb_erase(node, &inode->ordered_tree); 1189 RB_CLEAR_NODE(node); 1190 if (inode->ordered_tree_last == node) 1191 inode->ordered_tree_last = NULL; 1192 1193 ordered->file_offset += len; 1194 ordered->disk_bytenr += len; 1195 ordered->num_bytes -= len; 1196 ordered->disk_num_bytes -= len; 1197 ordered->ram_bytes -= len; 1198 1199 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) { 1200 ASSERT(ordered->bytes_left == 0); 1201 new->bytes_left = 0; 1202 } else { 1203 ordered->bytes_left -= len; 1204 } 1205 1206 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) { 1207 if (ordered->truncated_len > len) { 1208 ordered->truncated_len -= len; 1209 } else { 1210 new->truncated_len = ordered->truncated_len; 1211 ordered->truncated_len = 0; 1212 } 1213 } 1214 1215 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) { 1216 if (offset == len) 1217 break; 1218 list_move_tail(&sum->list, &new->list); 1219 offset += sum->len; 1220 } 1221 1222 /* Re-insert the node */ 1223 node = tree_insert(&inode->ordered_tree, ordered->file_offset, 1224 &ordered->rb_node); 1225 if (node) 1226 btrfs_panic(fs_info, -EEXIST, 1227 "zoned: inconsistency in ordered tree at offset %llu", 1228 ordered->file_offset); 1229 1230 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node); 1231 if (node) 1232 btrfs_panic(fs_info, -EEXIST, 1233 "zoned: inconsistency in ordered tree at offset %llu", 1234 new->file_offset); 1235 spin_unlock(&inode->ordered_tree_lock); 1236 1237 list_add_tail(&new->root_extent_list, &root->ordered_extents); 1238 root->nr_ordered_extents++; 1239 spin_unlock_irq(&root->ordered_extent_lock); 1240 return new; 1241 } 1242 1243 int __init ordered_data_init(void) 1244 { 1245 btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0); 1246 if (!btrfs_ordered_extent_cache) 1247 return -ENOMEM; 1248 1249 return 0; 1250 } 1251 1252 void __cold ordered_data_exit(void) 1253 { 1254 kmem_cache_destroy(btrfs_ordered_extent_cache); 1255 } 1256