1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 #include "disk-io.h" 28 29 static struct kmem_cache *btrfs_ordered_extent_cache; 30 31 static u64 entry_end(struct btrfs_ordered_extent *entry) 32 { 33 if (entry->file_offset + entry->len < entry->file_offset) 34 return (u64)-1; 35 return entry->file_offset + entry->len; 36 } 37 38 /* returns NULL if the insertion worked, or it returns the node it did find 39 * in the tree 40 */ 41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 42 struct rb_node *node) 43 { 44 struct rb_node **p = &root->rb_node; 45 struct rb_node *parent = NULL; 46 struct btrfs_ordered_extent *entry; 47 48 while (*p) { 49 parent = *p; 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 51 52 if (file_offset < entry->file_offset) 53 p = &(*p)->rb_left; 54 else if (file_offset >= entry_end(entry)) 55 p = &(*p)->rb_right; 56 else 57 return parent; 58 } 59 60 rb_link_node(node, parent, p); 61 rb_insert_color(node, root); 62 return NULL; 63 } 64 65 static void ordered_data_tree_panic(struct inode *inode, int errno, 66 u64 offset) 67 { 68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 70 "%llu", offset); 71 } 72 73 /* 74 * look for a given offset in the tree, and if it can't be found return the 75 * first lesser offset 76 */ 77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 78 struct rb_node **prev_ret) 79 { 80 struct rb_node *n = root->rb_node; 81 struct rb_node *prev = NULL; 82 struct rb_node *test; 83 struct btrfs_ordered_extent *entry; 84 struct btrfs_ordered_extent *prev_entry = NULL; 85 86 while (n) { 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 88 prev = n; 89 prev_entry = entry; 90 91 if (file_offset < entry->file_offset) 92 n = n->rb_left; 93 else if (file_offset >= entry_end(entry)) 94 n = n->rb_right; 95 else 96 return n; 97 } 98 if (!prev_ret) 99 return NULL; 100 101 while (prev && file_offset >= entry_end(prev_entry)) { 102 test = rb_next(prev); 103 if (!test) 104 break; 105 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 106 rb_node); 107 if (file_offset < entry_end(prev_entry)) 108 break; 109 110 prev = test; 111 } 112 if (prev) 113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 114 rb_node); 115 while (prev && file_offset < entry_end(prev_entry)) { 116 test = rb_prev(prev); 117 if (!test) 118 break; 119 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 120 rb_node); 121 prev = test; 122 } 123 *prev_ret = prev; 124 return NULL; 125 } 126 127 /* 128 * helper to check if a given offset is inside a given entry 129 */ 130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 131 { 132 if (file_offset < entry->file_offset || 133 entry->file_offset + entry->len <= file_offset) 134 return 0; 135 return 1; 136 } 137 138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 139 u64 len) 140 { 141 if (file_offset + len <= entry->file_offset || 142 entry->file_offset + entry->len <= file_offset) 143 return 0; 144 return 1; 145 } 146 147 /* 148 * look find the first ordered struct that has this offset, otherwise 149 * the first one less than this offset 150 */ 151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 152 u64 file_offset) 153 { 154 struct rb_root *root = &tree->tree; 155 struct rb_node *prev = NULL; 156 struct rb_node *ret; 157 struct btrfs_ordered_extent *entry; 158 159 if (tree->last) { 160 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 161 rb_node); 162 if (offset_in_entry(entry, file_offset)) 163 return tree->last; 164 } 165 ret = __tree_search(root, file_offset, &prev); 166 if (!ret) 167 ret = prev; 168 if (ret) 169 tree->last = ret; 170 return ret; 171 } 172 173 /* allocate and add a new ordered_extent into the per-inode tree. 174 * file_offset is the logical offset in the file 175 * 176 * start is the disk block number of an extent already reserved in the 177 * extent allocation tree 178 * 179 * len is the length of the extent 180 * 181 * The tree is given a single reference on the ordered extent that was 182 * inserted. 183 */ 184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 185 u64 start, u64 len, u64 disk_len, 186 int type, int dio, int compress_type) 187 { 188 struct btrfs_root *root = BTRFS_I(inode)->root; 189 struct btrfs_ordered_inode_tree *tree; 190 struct rb_node *node; 191 struct btrfs_ordered_extent *entry; 192 193 tree = &BTRFS_I(inode)->ordered_tree; 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 195 if (!entry) 196 return -ENOMEM; 197 198 entry->file_offset = file_offset; 199 entry->start = start; 200 entry->len = len; 201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) && 202 !(type == BTRFS_ORDERED_NOCOW)) 203 entry->csum_bytes_left = disk_len; 204 entry->disk_len = disk_len; 205 entry->bytes_left = len; 206 entry->inode = igrab(inode); 207 entry->compress_type = compress_type; 208 entry->truncated_len = (u64)-1; 209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 210 set_bit(type, &entry->flags); 211 212 if (dio) 213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 214 215 /* one ref for the tree */ 216 atomic_set(&entry->refs, 1); 217 init_waitqueue_head(&entry->wait); 218 INIT_LIST_HEAD(&entry->list); 219 INIT_LIST_HEAD(&entry->root_extent_list); 220 INIT_LIST_HEAD(&entry->work_list); 221 init_completion(&entry->completion); 222 INIT_LIST_HEAD(&entry->log_list); 223 INIT_LIST_HEAD(&entry->trans_list); 224 225 trace_btrfs_ordered_extent_add(inode, entry); 226 227 spin_lock_irq(&tree->lock); 228 node = tree_insert(&tree->tree, file_offset, 229 &entry->rb_node); 230 if (node) 231 ordered_data_tree_panic(inode, -EEXIST, file_offset); 232 spin_unlock_irq(&tree->lock); 233 234 spin_lock(&root->ordered_extent_lock); 235 list_add_tail(&entry->root_extent_list, 236 &root->ordered_extents); 237 root->nr_ordered_extents++; 238 if (root->nr_ordered_extents == 1) { 239 spin_lock(&root->fs_info->ordered_root_lock); 240 BUG_ON(!list_empty(&root->ordered_root)); 241 list_add_tail(&root->ordered_root, 242 &root->fs_info->ordered_roots); 243 spin_unlock(&root->fs_info->ordered_root_lock); 244 } 245 spin_unlock(&root->ordered_extent_lock); 246 247 return 0; 248 } 249 250 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 251 u64 start, u64 len, u64 disk_len, int type) 252 { 253 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 254 disk_len, type, 0, 255 BTRFS_COMPRESS_NONE); 256 } 257 258 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 259 u64 start, u64 len, u64 disk_len, int type) 260 { 261 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 262 disk_len, type, 1, 263 BTRFS_COMPRESS_NONE); 264 } 265 266 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 267 u64 start, u64 len, u64 disk_len, 268 int type, int compress_type) 269 { 270 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 271 disk_len, type, 0, 272 compress_type); 273 } 274 275 /* 276 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 277 * when an ordered extent is finished. If the list covers more than one 278 * ordered extent, it is split across multiples. 279 */ 280 void btrfs_add_ordered_sum(struct inode *inode, 281 struct btrfs_ordered_extent *entry, 282 struct btrfs_ordered_sum *sum) 283 { 284 struct btrfs_ordered_inode_tree *tree; 285 286 tree = &BTRFS_I(inode)->ordered_tree; 287 spin_lock_irq(&tree->lock); 288 list_add_tail(&sum->list, &entry->list); 289 WARN_ON(entry->csum_bytes_left < sum->len); 290 entry->csum_bytes_left -= sum->len; 291 if (entry->csum_bytes_left == 0) 292 wake_up(&entry->wait); 293 spin_unlock_irq(&tree->lock); 294 } 295 296 /* 297 * this is used to account for finished IO across a given range 298 * of the file. The IO may span ordered extents. If 299 * a given ordered_extent is completely done, 1 is returned, otherwise 300 * 0. 301 * 302 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 303 * to make sure this function only returns 1 once for a given ordered extent. 304 * 305 * file_offset is updated to one byte past the range that is recorded as 306 * complete. This allows you to walk forward in the file. 307 */ 308 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 309 struct btrfs_ordered_extent **cached, 310 u64 *file_offset, u64 io_size, int uptodate) 311 { 312 struct btrfs_ordered_inode_tree *tree; 313 struct rb_node *node; 314 struct btrfs_ordered_extent *entry = NULL; 315 int ret; 316 unsigned long flags; 317 u64 dec_end; 318 u64 dec_start; 319 u64 to_dec; 320 321 tree = &BTRFS_I(inode)->ordered_tree; 322 spin_lock_irqsave(&tree->lock, flags); 323 node = tree_search(tree, *file_offset); 324 if (!node) { 325 ret = 1; 326 goto out; 327 } 328 329 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 330 if (!offset_in_entry(entry, *file_offset)) { 331 ret = 1; 332 goto out; 333 } 334 335 dec_start = max(*file_offset, entry->file_offset); 336 dec_end = min(*file_offset + io_size, entry->file_offset + 337 entry->len); 338 *file_offset = dec_end; 339 if (dec_start > dec_end) { 340 btrfs_crit(BTRFS_I(inode)->root->fs_info, 341 "bad ordering dec_start %llu end %llu", dec_start, dec_end); 342 } 343 to_dec = dec_end - dec_start; 344 if (to_dec > entry->bytes_left) { 345 btrfs_crit(BTRFS_I(inode)->root->fs_info, 346 "bad ordered accounting left %llu size %llu", 347 entry->bytes_left, to_dec); 348 } 349 entry->bytes_left -= to_dec; 350 if (!uptodate) 351 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 352 353 if (entry->bytes_left == 0) { 354 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 355 if (waitqueue_active(&entry->wait)) 356 wake_up(&entry->wait); 357 } else { 358 ret = 1; 359 } 360 out: 361 if (!ret && cached && entry) { 362 *cached = entry; 363 atomic_inc(&entry->refs); 364 } 365 spin_unlock_irqrestore(&tree->lock, flags); 366 return ret == 0; 367 } 368 369 /* 370 * this is used to account for finished IO across a given range 371 * of the file. The IO should not span ordered extents. If 372 * a given ordered_extent is completely done, 1 is returned, otherwise 373 * 0. 374 * 375 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 376 * to make sure this function only returns 1 once for a given ordered extent. 377 */ 378 int btrfs_dec_test_ordered_pending(struct inode *inode, 379 struct btrfs_ordered_extent **cached, 380 u64 file_offset, u64 io_size, int uptodate) 381 { 382 struct btrfs_ordered_inode_tree *tree; 383 struct rb_node *node; 384 struct btrfs_ordered_extent *entry = NULL; 385 unsigned long flags; 386 int ret; 387 388 tree = &BTRFS_I(inode)->ordered_tree; 389 spin_lock_irqsave(&tree->lock, flags); 390 if (cached && *cached) { 391 entry = *cached; 392 goto have_entry; 393 } 394 395 node = tree_search(tree, file_offset); 396 if (!node) { 397 ret = 1; 398 goto out; 399 } 400 401 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 402 have_entry: 403 if (!offset_in_entry(entry, file_offset)) { 404 ret = 1; 405 goto out; 406 } 407 408 if (io_size > entry->bytes_left) { 409 btrfs_crit(BTRFS_I(inode)->root->fs_info, 410 "bad ordered accounting left %llu size %llu", 411 entry->bytes_left, io_size); 412 } 413 entry->bytes_left -= io_size; 414 if (!uptodate) 415 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 416 417 if (entry->bytes_left == 0) { 418 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 419 if (waitqueue_active(&entry->wait)) 420 wake_up(&entry->wait); 421 } else { 422 ret = 1; 423 } 424 out: 425 if (!ret && cached && entry) { 426 *cached = entry; 427 atomic_inc(&entry->refs); 428 } 429 spin_unlock_irqrestore(&tree->lock, flags); 430 return ret == 0; 431 } 432 433 /* Needs to either be called under a log transaction or the log_mutex */ 434 void btrfs_get_logged_extents(struct inode *inode, 435 struct list_head *logged_list, 436 const loff_t start, 437 const loff_t end) 438 { 439 struct btrfs_ordered_inode_tree *tree; 440 struct btrfs_ordered_extent *ordered; 441 struct rb_node *n; 442 struct rb_node *prev; 443 444 tree = &BTRFS_I(inode)->ordered_tree; 445 spin_lock_irq(&tree->lock); 446 n = __tree_search(&tree->tree, end, &prev); 447 if (!n) 448 n = prev; 449 for (; n; n = rb_prev(n)) { 450 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 451 if (ordered->file_offset > end) 452 continue; 453 if (entry_end(ordered) <= start) 454 break; 455 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 456 continue; 457 list_add(&ordered->log_list, logged_list); 458 atomic_inc(&ordered->refs); 459 } 460 spin_unlock_irq(&tree->lock); 461 } 462 463 void btrfs_put_logged_extents(struct list_head *logged_list) 464 { 465 struct btrfs_ordered_extent *ordered; 466 467 while (!list_empty(logged_list)) { 468 ordered = list_first_entry(logged_list, 469 struct btrfs_ordered_extent, 470 log_list); 471 list_del_init(&ordered->log_list); 472 btrfs_put_ordered_extent(ordered); 473 } 474 } 475 476 void btrfs_submit_logged_extents(struct list_head *logged_list, 477 struct btrfs_root *log) 478 { 479 int index = log->log_transid % 2; 480 481 spin_lock_irq(&log->log_extents_lock[index]); 482 list_splice_tail(logged_list, &log->logged_list[index]); 483 spin_unlock_irq(&log->log_extents_lock[index]); 484 } 485 486 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, 487 struct btrfs_root *log, u64 transid) 488 { 489 struct btrfs_ordered_extent *ordered; 490 int index = transid % 2; 491 492 spin_lock_irq(&log->log_extents_lock[index]); 493 while (!list_empty(&log->logged_list[index])) { 494 ordered = list_first_entry(&log->logged_list[index], 495 struct btrfs_ordered_extent, 496 log_list); 497 list_del_init(&ordered->log_list); 498 spin_unlock_irq(&log->log_extents_lock[index]); 499 500 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 501 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 502 struct inode *inode = ordered->inode; 503 u64 start = ordered->file_offset; 504 u64 end = ordered->file_offset + ordered->len - 1; 505 506 WARN_ON(!inode); 507 filemap_fdatawrite_range(inode->i_mapping, start, end); 508 } 509 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 510 &ordered->flags)); 511 512 list_add_tail(&ordered->trans_list, &trans->ordered); 513 spin_lock_irq(&log->log_extents_lock[index]); 514 } 515 spin_unlock_irq(&log->log_extents_lock[index]); 516 } 517 518 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 519 { 520 struct btrfs_ordered_extent *ordered; 521 int index = transid % 2; 522 523 spin_lock_irq(&log->log_extents_lock[index]); 524 while (!list_empty(&log->logged_list[index])) { 525 ordered = list_first_entry(&log->logged_list[index], 526 struct btrfs_ordered_extent, 527 log_list); 528 list_del_init(&ordered->log_list); 529 spin_unlock_irq(&log->log_extents_lock[index]); 530 btrfs_put_ordered_extent(ordered); 531 spin_lock_irq(&log->log_extents_lock[index]); 532 } 533 spin_unlock_irq(&log->log_extents_lock[index]); 534 } 535 536 /* 537 * used to drop a reference on an ordered extent. This will free 538 * the extent if the last reference is dropped 539 */ 540 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 541 { 542 struct list_head *cur; 543 struct btrfs_ordered_sum *sum; 544 545 trace_btrfs_ordered_extent_put(entry->inode, entry); 546 547 if (atomic_dec_and_test(&entry->refs)) { 548 if (entry->inode) 549 btrfs_add_delayed_iput(entry->inode); 550 while (!list_empty(&entry->list)) { 551 cur = entry->list.next; 552 sum = list_entry(cur, struct btrfs_ordered_sum, list); 553 list_del(&sum->list); 554 kfree(sum); 555 } 556 kmem_cache_free(btrfs_ordered_extent_cache, entry); 557 } 558 } 559 560 /* 561 * remove an ordered extent from the tree. No references are dropped 562 * and waiters are woken up. 563 */ 564 void btrfs_remove_ordered_extent(struct inode *inode, 565 struct btrfs_ordered_extent *entry) 566 { 567 struct btrfs_ordered_inode_tree *tree; 568 struct btrfs_root *root = BTRFS_I(inode)->root; 569 struct rb_node *node; 570 571 tree = &BTRFS_I(inode)->ordered_tree; 572 spin_lock_irq(&tree->lock); 573 node = &entry->rb_node; 574 rb_erase(node, &tree->tree); 575 if (tree->last == node) 576 tree->last = NULL; 577 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 578 spin_unlock_irq(&tree->lock); 579 580 spin_lock(&root->ordered_extent_lock); 581 list_del_init(&entry->root_extent_list); 582 root->nr_ordered_extents--; 583 584 trace_btrfs_ordered_extent_remove(inode, entry); 585 586 if (!root->nr_ordered_extents) { 587 spin_lock(&root->fs_info->ordered_root_lock); 588 BUG_ON(list_empty(&root->ordered_root)); 589 list_del_init(&root->ordered_root); 590 spin_unlock(&root->fs_info->ordered_root_lock); 591 } 592 spin_unlock(&root->ordered_extent_lock); 593 wake_up(&entry->wait); 594 } 595 596 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 597 { 598 struct btrfs_ordered_extent *ordered; 599 600 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 601 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 602 complete(&ordered->completion); 603 } 604 605 /* 606 * wait for all the ordered extents in a root. This is done when balancing 607 * space between drives. 608 */ 609 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr) 610 { 611 struct list_head splice, works; 612 struct btrfs_ordered_extent *ordered, *next; 613 int count = 0; 614 615 INIT_LIST_HEAD(&splice); 616 INIT_LIST_HEAD(&works); 617 618 mutex_lock(&root->ordered_extent_mutex); 619 spin_lock(&root->ordered_extent_lock); 620 list_splice_init(&root->ordered_extents, &splice); 621 while (!list_empty(&splice) && nr) { 622 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 623 root_extent_list); 624 list_move_tail(&ordered->root_extent_list, 625 &root->ordered_extents); 626 atomic_inc(&ordered->refs); 627 spin_unlock(&root->ordered_extent_lock); 628 629 btrfs_init_work(&ordered->flush_work, 630 btrfs_flush_delalloc_helper, 631 btrfs_run_ordered_extent_work, NULL, NULL); 632 list_add_tail(&ordered->work_list, &works); 633 btrfs_queue_work(root->fs_info->flush_workers, 634 &ordered->flush_work); 635 636 cond_resched(); 637 spin_lock(&root->ordered_extent_lock); 638 if (nr != -1) 639 nr--; 640 count++; 641 } 642 list_splice_tail(&splice, &root->ordered_extents); 643 spin_unlock(&root->ordered_extent_lock); 644 645 list_for_each_entry_safe(ordered, next, &works, work_list) { 646 list_del_init(&ordered->work_list); 647 wait_for_completion(&ordered->completion); 648 btrfs_put_ordered_extent(ordered); 649 cond_resched(); 650 } 651 mutex_unlock(&root->ordered_extent_mutex); 652 653 return count; 654 } 655 656 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr) 657 { 658 struct btrfs_root *root; 659 struct list_head splice; 660 int done; 661 662 INIT_LIST_HEAD(&splice); 663 664 mutex_lock(&fs_info->ordered_operations_mutex); 665 spin_lock(&fs_info->ordered_root_lock); 666 list_splice_init(&fs_info->ordered_roots, &splice); 667 while (!list_empty(&splice) && nr) { 668 root = list_first_entry(&splice, struct btrfs_root, 669 ordered_root); 670 root = btrfs_grab_fs_root(root); 671 BUG_ON(!root); 672 list_move_tail(&root->ordered_root, 673 &fs_info->ordered_roots); 674 spin_unlock(&fs_info->ordered_root_lock); 675 676 done = btrfs_wait_ordered_extents(root, nr); 677 btrfs_put_fs_root(root); 678 679 spin_lock(&fs_info->ordered_root_lock); 680 if (nr != -1) { 681 nr -= done; 682 WARN_ON(nr < 0); 683 } 684 } 685 list_splice_tail(&splice, &fs_info->ordered_roots); 686 spin_unlock(&fs_info->ordered_root_lock); 687 mutex_unlock(&fs_info->ordered_operations_mutex); 688 } 689 690 /* 691 * Used to start IO or wait for a given ordered extent to finish. 692 * 693 * If wait is one, this effectively waits on page writeback for all the pages 694 * in the extent, and it waits on the io completion code to insert 695 * metadata into the btree corresponding to the extent 696 */ 697 void btrfs_start_ordered_extent(struct inode *inode, 698 struct btrfs_ordered_extent *entry, 699 int wait) 700 { 701 u64 start = entry->file_offset; 702 u64 end = start + entry->len - 1; 703 704 trace_btrfs_ordered_extent_start(inode, entry); 705 706 /* 707 * pages in the range can be dirty, clean or writeback. We 708 * start IO on any dirty ones so the wait doesn't stall waiting 709 * for the flusher thread to find them 710 */ 711 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 712 filemap_fdatawrite_range(inode->i_mapping, start, end); 713 if (wait) { 714 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 715 &entry->flags)); 716 } 717 } 718 719 /* 720 * Used to wait on ordered extents across a large range of bytes. 721 */ 722 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 723 { 724 int ret = 0; 725 int ret_wb = 0; 726 u64 end; 727 u64 orig_end; 728 struct btrfs_ordered_extent *ordered; 729 730 if (start + len < start) { 731 orig_end = INT_LIMIT(loff_t); 732 } else { 733 orig_end = start + len - 1; 734 if (orig_end > INT_LIMIT(loff_t)) 735 orig_end = INT_LIMIT(loff_t); 736 } 737 738 /* start IO across the range first to instantiate any delalloc 739 * extents 740 */ 741 ret = btrfs_fdatawrite_range(inode, start, orig_end); 742 if (ret) 743 return ret; 744 745 /* 746 * If we have a writeback error don't return immediately. Wait first 747 * for any ordered extents that haven't completed yet. This is to make 748 * sure no one can dirty the same page ranges and call writepages() 749 * before the ordered extents complete - to avoid failures (-EEXIST) 750 * when adding the new ordered extents to the ordered tree. 751 */ 752 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 753 754 end = orig_end; 755 while (1) { 756 ordered = btrfs_lookup_first_ordered_extent(inode, end); 757 if (!ordered) 758 break; 759 if (ordered->file_offset > orig_end) { 760 btrfs_put_ordered_extent(ordered); 761 break; 762 } 763 if (ordered->file_offset + ordered->len <= start) { 764 btrfs_put_ordered_extent(ordered); 765 break; 766 } 767 btrfs_start_ordered_extent(inode, ordered, 1); 768 end = ordered->file_offset; 769 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 770 ret = -EIO; 771 btrfs_put_ordered_extent(ordered); 772 if (ret || end == 0 || end == start) 773 break; 774 end--; 775 } 776 return ret_wb ? ret_wb : ret; 777 } 778 779 /* 780 * find an ordered extent corresponding to file_offset. return NULL if 781 * nothing is found, otherwise take a reference on the extent and return it 782 */ 783 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 784 u64 file_offset) 785 { 786 struct btrfs_ordered_inode_tree *tree; 787 struct rb_node *node; 788 struct btrfs_ordered_extent *entry = NULL; 789 790 tree = &BTRFS_I(inode)->ordered_tree; 791 spin_lock_irq(&tree->lock); 792 node = tree_search(tree, file_offset); 793 if (!node) 794 goto out; 795 796 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 797 if (!offset_in_entry(entry, file_offset)) 798 entry = NULL; 799 if (entry) 800 atomic_inc(&entry->refs); 801 out: 802 spin_unlock_irq(&tree->lock); 803 return entry; 804 } 805 806 /* Since the DIO code tries to lock a wide area we need to look for any ordered 807 * extents that exist in the range, rather than just the start of the range. 808 */ 809 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 810 u64 file_offset, 811 u64 len) 812 { 813 struct btrfs_ordered_inode_tree *tree; 814 struct rb_node *node; 815 struct btrfs_ordered_extent *entry = NULL; 816 817 tree = &BTRFS_I(inode)->ordered_tree; 818 spin_lock_irq(&tree->lock); 819 node = tree_search(tree, file_offset); 820 if (!node) { 821 node = tree_search(tree, file_offset + len); 822 if (!node) 823 goto out; 824 } 825 826 while (1) { 827 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 828 if (range_overlaps(entry, file_offset, len)) 829 break; 830 831 if (entry->file_offset >= file_offset + len) { 832 entry = NULL; 833 break; 834 } 835 entry = NULL; 836 node = rb_next(node); 837 if (!node) 838 break; 839 } 840 out: 841 if (entry) 842 atomic_inc(&entry->refs); 843 spin_unlock_irq(&tree->lock); 844 return entry; 845 } 846 847 /* 848 * lookup and return any extent before 'file_offset'. NULL is returned 849 * if none is found 850 */ 851 struct btrfs_ordered_extent * 852 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 853 { 854 struct btrfs_ordered_inode_tree *tree; 855 struct rb_node *node; 856 struct btrfs_ordered_extent *entry = NULL; 857 858 tree = &BTRFS_I(inode)->ordered_tree; 859 spin_lock_irq(&tree->lock); 860 node = tree_search(tree, file_offset); 861 if (!node) 862 goto out; 863 864 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 865 atomic_inc(&entry->refs); 866 out: 867 spin_unlock_irq(&tree->lock); 868 return entry; 869 } 870 871 /* 872 * After an extent is done, call this to conditionally update the on disk 873 * i_size. i_size is updated to cover any fully written part of the file. 874 */ 875 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 876 struct btrfs_ordered_extent *ordered) 877 { 878 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 879 u64 disk_i_size; 880 u64 new_i_size; 881 u64 i_size = i_size_read(inode); 882 struct rb_node *node; 883 struct rb_node *prev = NULL; 884 struct btrfs_ordered_extent *test; 885 int ret = 1; 886 887 spin_lock_irq(&tree->lock); 888 if (ordered) { 889 offset = entry_end(ordered); 890 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 891 offset = min(offset, 892 ordered->file_offset + 893 ordered->truncated_len); 894 } else { 895 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 896 } 897 disk_i_size = BTRFS_I(inode)->disk_i_size; 898 899 /* truncate file */ 900 if (disk_i_size > i_size) { 901 BTRFS_I(inode)->disk_i_size = i_size; 902 ret = 0; 903 goto out; 904 } 905 906 /* 907 * if the disk i_size is already at the inode->i_size, or 908 * this ordered extent is inside the disk i_size, we're done 909 */ 910 if (disk_i_size == i_size) 911 goto out; 912 913 /* 914 * We still need to update disk_i_size if outstanding_isize is greater 915 * than disk_i_size. 916 */ 917 if (offset <= disk_i_size && 918 (!ordered || ordered->outstanding_isize <= disk_i_size)) 919 goto out; 920 921 /* 922 * walk backward from this ordered extent to disk_i_size. 923 * if we find an ordered extent then we can't update disk i_size 924 * yet 925 */ 926 if (ordered) { 927 node = rb_prev(&ordered->rb_node); 928 } else { 929 prev = tree_search(tree, offset); 930 /* 931 * we insert file extents without involving ordered struct, 932 * so there should be no ordered struct cover this offset 933 */ 934 if (prev) { 935 test = rb_entry(prev, struct btrfs_ordered_extent, 936 rb_node); 937 BUG_ON(offset_in_entry(test, offset)); 938 } 939 node = prev; 940 } 941 for (; node; node = rb_prev(node)) { 942 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 943 944 /* We treat this entry as if it doesnt exist */ 945 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 946 continue; 947 if (test->file_offset + test->len <= disk_i_size) 948 break; 949 if (test->file_offset >= i_size) 950 break; 951 if (entry_end(test) > disk_i_size) { 952 /* 953 * we don't update disk_i_size now, so record this 954 * undealt i_size. Or we will not know the real 955 * i_size. 956 */ 957 if (test->outstanding_isize < offset) 958 test->outstanding_isize = offset; 959 if (ordered && 960 ordered->outstanding_isize > 961 test->outstanding_isize) 962 test->outstanding_isize = 963 ordered->outstanding_isize; 964 goto out; 965 } 966 } 967 new_i_size = min_t(u64, offset, i_size); 968 969 /* 970 * Some ordered extents may completed before the current one, and 971 * we hold the real i_size in ->outstanding_isize. 972 */ 973 if (ordered && ordered->outstanding_isize > new_i_size) 974 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 975 BTRFS_I(inode)->disk_i_size = new_i_size; 976 ret = 0; 977 out: 978 /* 979 * We need to do this because we can't remove ordered extents until 980 * after the i_disk_size has been updated and then the inode has been 981 * updated to reflect the change, so we need to tell anybody who finds 982 * this ordered extent that we've already done all the real work, we 983 * just haven't completed all the other work. 984 */ 985 if (ordered) 986 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 987 spin_unlock_irq(&tree->lock); 988 return ret; 989 } 990 991 /* 992 * search the ordered extents for one corresponding to 'offset' and 993 * try to find a checksum. This is used because we allow pages to 994 * be reclaimed before their checksum is actually put into the btree 995 */ 996 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 997 u32 *sum, int len) 998 { 999 struct btrfs_ordered_sum *ordered_sum; 1000 struct btrfs_ordered_extent *ordered; 1001 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1002 unsigned long num_sectors; 1003 unsigned long i; 1004 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 1005 int index = 0; 1006 1007 ordered = btrfs_lookup_ordered_extent(inode, offset); 1008 if (!ordered) 1009 return 0; 1010 1011 spin_lock_irq(&tree->lock); 1012 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1013 if (disk_bytenr >= ordered_sum->bytenr && 1014 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1015 i = (disk_bytenr - ordered_sum->bytenr) >> 1016 inode->i_sb->s_blocksize_bits; 1017 num_sectors = ordered_sum->len >> 1018 inode->i_sb->s_blocksize_bits; 1019 num_sectors = min_t(int, len - index, num_sectors - i); 1020 memcpy(sum + index, ordered_sum->sums + i, 1021 num_sectors); 1022 1023 index += (int)num_sectors; 1024 if (index == len) 1025 goto out; 1026 disk_bytenr += num_sectors * sectorsize; 1027 } 1028 } 1029 out: 1030 spin_unlock_irq(&tree->lock); 1031 btrfs_put_ordered_extent(ordered); 1032 return index; 1033 } 1034 1035 int __init ordered_data_init(void) 1036 { 1037 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1038 sizeof(struct btrfs_ordered_extent), 0, 1039 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1040 NULL); 1041 if (!btrfs_ordered_extent_cache) 1042 return -ENOMEM; 1043 1044 return 0; 1045 } 1046 1047 void ordered_data_exit(void) 1048 { 1049 if (btrfs_ordered_extent_cache) 1050 kmem_cache_destroy(btrfs_ordered_extent_cache); 1051 } 1052