1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/slab.h> 7 #include <linux/blkdev.h> 8 #include <linux/writeback.h> 9 #include <linux/sched/mm.h> 10 #include "messages.h" 11 #include "misc.h" 12 #include "ctree.h" 13 #include "transaction.h" 14 #include "btrfs_inode.h" 15 #include "extent_io.h" 16 #include "disk-io.h" 17 #include "compression.h" 18 #include "delalloc-space.h" 19 #include "qgroup.h" 20 #include "subpage.h" 21 #include "file.h" 22 #include "super.h" 23 24 static struct kmem_cache *btrfs_ordered_extent_cache; 25 26 static u64 entry_end(struct btrfs_ordered_extent *entry) 27 { 28 if (entry->file_offset + entry->num_bytes < entry->file_offset) 29 return (u64)-1; 30 return entry->file_offset + entry->num_bytes; 31 } 32 33 /* returns NULL if the insertion worked, or it returns the node it did find 34 * in the tree 35 */ 36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 37 struct rb_node *node) 38 { 39 struct rb_node **p = &root->rb_node; 40 struct rb_node *parent = NULL; 41 struct btrfs_ordered_extent *entry; 42 43 while (*p) { 44 parent = *p; 45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 46 47 if (file_offset < entry->file_offset) 48 p = &(*p)->rb_left; 49 else if (file_offset >= entry_end(entry)) 50 p = &(*p)->rb_right; 51 else 52 return parent; 53 } 54 55 rb_link_node(node, parent, p); 56 rb_insert_color(node, root); 57 return NULL; 58 } 59 60 /* 61 * look for a given offset in the tree, and if it can't be found return the 62 * first lesser offset 63 */ 64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 65 struct rb_node **prev_ret) 66 { 67 struct rb_node *n = root->rb_node; 68 struct rb_node *prev = NULL; 69 struct rb_node *test; 70 struct btrfs_ordered_extent *entry; 71 struct btrfs_ordered_extent *prev_entry = NULL; 72 73 while (n) { 74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 75 prev = n; 76 prev_entry = entry; 77 78 if (file_offset < entry->file_offset) 79 n = n->rb_left; 80 else if (file_offset >= entry_end(entry)) 81 n = n->rb_right; 82 else 83 return n; 84 } 85 if (!prev_ret) 86 return NULL; 87 88 while (prev && file_offset >= entry_end(prev_entry)) { 89 test = rb_next(prev); 90 if (!test) 91 break; 92 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 93 rb_node); 94 if (file_offset < entry_end(prev_entry)) 95 break; 96 97 prev = test; 98 } 99 if (prev) 100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 101 rb_node); 102 while (prev && file_offset < entry_end(prev_entry)) { 103 test = rb_prev(prev); 104 if (!test) 105 break; 106 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 107 rb_node); 108 prev = test; 109 } 110 *prev_ret = prev; 111 return NULL; 112 } 113 114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 115 u64 len) 116 { 117 if (file_offset + len <= entry->file_offset || 118 entry->file_offset + entry->num_bytes <= file_offset) 119 return 0; 120 return 1; 121 } 122 123 /* 124 * look find the first ordered struct that has this offset, otherwise 125 * the first one less than this offset 126 */ 127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode, 128 u64 file_offset) 129 { 130 struct rb_node *prev = NULL; 131 struct rb_node *ret; 132 struct btrfs_ordered_extent *entry; 133 134 if (inode->ordered_tree_last) { 135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent, 136 rb_node); 137 if (in_range(file_offset, entry->file_offset, entry->num_bytes)) 138 return inode->ordered_tree_last; 139 } 140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev); 141 if (!ret) 142 ret = prev; 143 if (ret) 144 inode->ordered_tree_last = ret; 145 return ret; 146 } 147 148 static struct btrfs_ordered_extent *alloc_ordered_extent( 149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes, 150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes, 151 u64 offset, unsigned long flags, int compress_type) 152 { 153 struct btrfs_ordered_extent *entry; 154 int ret; 155 u64 qgroup_rsv = 0; 156 157 if (flags & 158 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) { 159 /* For nocow write, we can release the qgroup rsv right now */ 160 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv); 161 if (ret < 0) 162 return ERR_PTR(ret); 163 } else { 164 /* 165 * The ordered extent has reserved qgroup space, release now 166 * and pass the reserved number for qgroup_record to free. 167 */ 168 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv); 169 if (ret < 0) 170 return ERR_PTR(ret); 171 } 172 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 173 if (!entry) 174 return ERR_PTR(-ENOMEM); 175 176 entry->file_offset = file_offset; 177 entry->num_bytes = num_bytes; 178 entry->ram_bytes = ram_bytes; 179 entry->disk_bytenr = disk_bytenr; 180 entry->disk_num_bytes = disk_num_bytes; 181 entry->offset = offset; 182 entry->bytes_left = num_bytes; 183 entry->inode = igrab(&inode->vfs_inode); 184 entry->compress_type = compress_type; 185 entry->truncated_len = (u64)-1; 186 entry->qgroup_rsv = qgroup_rsv; 187 entry->flags = flags; 188 refcount_set(&entry->refs, 1); 189 init_waitqueue_head(&entry->wait); 190 INIT_LIST_HEAD(&entry->list); 191 INIT_LIST_HEAD(&entry->log_list); 192 INIT_LIST_HEAD(&entry->root_extent_list); 193 INIT_LIST_HEAD(&entry->work_list); 194 INIT_LIST_HEAD(&entry->bioc_list); 195 init_completion(&entry->completion); 196 197 /* 198 * We don't need the count_max_extents here, we can assume that all of 199 * that work has been done at higher layers, so this is truly the 200 * smallest the extent is going to get. 201 */ 202 spin_lock(&inode->lock); 203 btrfs_mod_outstanding_extents(inode, 1); 204 spin_unlock(&inode->lock); 205 206 return entry; 207 } 208 209 static void insert_ordered_extent(struct btrfs_ordered_extent *entry) 210 { 211 struct btrfs_inode *inode = BTRFS_I(entry->inode); 212 struct btrfs_root *root = inode->root; 213 struct btrfs_fs_info *fs_info = root->fs_info; 214 struct rb_node *node; 215 216 trace_btrfs_ordered_extent_add(inode, entry); 217 218 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes, 219 fs_info->delalloc_batch); 220 221 /* One ref for the tree. */ 222 refcount_inc(&entry->refs); 223 224 spin_lock_irq(&inode->ordered_tree_lock); 225 node = tree_insert(&inode->ordered_tree, entry->file_offset, 226 &entry->rb_node); 227 if (node) 228 btrfs_panic(fs_info, -EEXIST, 229 "inconsistency in ordered tree at offset %llu", 230 entry->file_offset); 231 spin_unlock_irq(&inode->ordered_tree_lock); 232 233 spin_lock(&root->ordered_extent_lock); 234 list_add_tail(&entry->root_extent_list, 235 &root->ordered_extents); 236 root->nr_ordered_extents++; 237 if (root->nr_ordered_extents == 1) { 238 spin_lock(&fs_info->ordered_root_lock); 239 BUG_ON(!list_empty(&root->ordered_root)); 240 list_add_tail(&root->ordered_root, &fs_info->ordered_roots); 241 spin_unlock(&fs_info->ordered_root_lock); 242 } 243 spin_unlock(&root->ordered_extent_lock); 244 } 245 246 /* 247 * Add an ordered extent to the per-inode tree. 248 * 249 * @inode: Inode that this extent is for. 250 * @file_offset: Logical offset in file where the extent starts. 251 * @num_bytes: Logical length of extent in file. 252 * @ram_bytes: Full length of unencoded data. 253 * @disk_bytenr: Offset of extent on disk. 254 * @disk_num_bytes: Size of extent on disk. 255 * @offset: Offset into unencoded data where file data starts. 256 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*). 257 * @compress_type: Compression algorithm used for data. 258 * 259 * Most of these parameters correspond to &struct btrfs_file_extent_item. The 260 * tree is given a single reference on the ordered extent that was inserted, and 261 * the returned pointer is given a second reference. 262 * 263 * Return: the new ordered extent or error pointer. 264 */ 265 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent( 266 struct btrfs_inode *inode, u64 file_offset, 267 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr, 268 u64 disk_num_bytes, u64 offset, unsigned long flags, 269 int compress_type) 270 { 271 struct btrfs_ordered_extent *entry; 272 273 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0); 274 275 entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes, 276 disk_bytenr, disk_num_bytes, offset, flags, 277 compress_type); 278 if (!IS_ERR(entry)) 279 insert_ordered_extent(entry); 280 return entry; 281 } 282 283 /* 284 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 285 * when an ordered extent is finished. If the list covers more than one 286 * ordered extent, it is split across multiples. 287 */ 288 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry, 289 struct btrfs_ordered_sum *sum) 290 { 291 struct btrfs_inode *inode = BTRFS_I(entry->inode); 292 293 spin_lock_irq(&inode->ordered_tree_lock); 294 list_add_tail(&sum->list, &entry->list); 295 spin_unlock_irq(&inode->ordered_tree_lock); 296 } 297 298 static void finish_ordered_fn(struct btrfs_work *work) 299 { 300 struct btrfs_ordered_extent *ordered_extent; 301 302 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 303 btrfs_finish_ordered_io(ordered_extent); 304 } 305 306 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 307 struct page *page, u64 file_offset, 308 u64 len, bool uptodate) 309 { 310 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 311 struct btrfs_fs_info *fs_info = inode->root->fs_info; 312 313 lockdep_assert_held(&inode->ordered_tree_lock); 314 315 if (page) { 316 ASSERT(page->mapping); 317 ASSERT(page_offset(page) <= file_offset); 318 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE); 319 320 /* 321 * Ordered (Private2) bit indicates whether we still have 322 * pending io unfinished for the ordered extent. 323 * 324 * If there's no such bit, we need to skip to next range. 325 */ 326 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len)) 327 return false; 328 btrfs_page_clear_ordered(fs_info, page, file_offset, len); 329 } 330 331 /* Now we're fine to update the accounting. */ 332 if (WARN_ON_ONCE(len > ordered->bytes_left)) { 333 btrfs_crit(fs_info, 334 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu", 335 inode->root->root_key.objectid, btrfs_ino(inode), 336 ordered->file_offset, ordered->num_bytes, 337 len, ordered->bytes_left); 338 ordered->bytes_left = 0; 339 } else { 340 ordered->bytes_left -= len; 341 } 342 343 if (!uptodate) 344 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 345 346 if (ordered->bytes_left) 347 return false; 348 349 /* 350 * All the IO of the ordered extent is finished, we need to queue 351 * the finish_func to be executed. 352 */ 353 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags); 354 cond_wake_up(&ordered->wait); 355 refcount_inc(&ordered->refs); 356 trace_btrfs_ordered_extent_mark_finished(inode, ordered); 357 return true; 358 } 359 360 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered) 361 { 362 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 363 struct btrfs_fs_info *fs_info = inode->root->fs_info; 364 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ? 365 fs_info->endio_freespace_worker : fs_info->endio_write_workers; 366 367 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL); 368 btrfs_queue_work(wq, &ordered->work); 369 } 370 371 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered, 372 struct page *page, u64 file_offset, u64 len, 373 bool uptodate) 374 { 375 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 376 unsigned long flags; 377 bool ret; 378 379 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate); 380 381 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 382 ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate); 383 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 384 385 if (ret) 386 btrfs_queue_ordered_fn(ordered); 387 return ret; 388 } 389 390 /* 391 * Mark all ordered extents io inside the specified range finished. 392 * 393 * @page: The involved page for the operation. 394 * For uncompressed buffered IO, the page status also needs to be 395 * updated to indicate whether the pending ordered io is finished. 396 * Can be NULL for direct IO and compressed write. 397 * For these cases, callers are ensured they won't execute the 398 * endio function twice. 399 * 400 * This function is called for endio, thus the range must have ordered 401 * extent(s) covering it. 402 */ 403 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode, 404 struct page *page, u64 file_offset, 405 u64 num_bytes, bool uptodate) 406 { 407 struct rb_node *node; 408 struct btrfs_ordered_extent *entry = NULL; 409 unsigned long flags; 410 u64 cur = file_offset; 411 412 trace_btrfs_writepage_end_io_hook(inode, file_offset, 413 file_offset + num_bytes - 1, 414 uptodate); 415 416 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 417 while (cur < file_offset + num_bytes) { 418 u64 entry_end; 419 u64 end; 420 u32 len; 421 422 node = ordered_tree_search(inode, cur); 423 /* No ordered extents at all */ 424 if (!node) 425 break; 426 427 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 428 entry_end = entry->file_offset + entry->num_bytes; 429 /* 430 * |<-- OE --->| | 431 * cur 432 * Go to next OE. 433 */ 434 if (cur >= entry_end) { 435 node = rb_next(node); 436 /* No more ordered extents, exit */ 437 if (!node) 438 break; 439 entry = rb_entry(node, struct btrfs_ordered_extent, 440 rb_node); 441 442 /* Go to next ordered extent and continue */ 443 cur = entry->file_offset; 444 continue; 445 } 446 /* 447 * | |<--- OE --->| 448 * cur 449 * Go to the start of OE. 450 */ 451 if (cur < entry->file_offset) { 452 cur = entry->file_offset; 453 continue; 454 } 455 456 /* 457 * Now we are definitely inside one ordered extent. 458 * 459 * |<--- OE --->| 460 * | 461 * cur 462 */ 463 end = min(entry->file_offset + entry->num_bytes, 464 file_offset + num_bytes) - 1; 465 ASSERT(end + 1 - cur < U32_MAX); 466 len = end + 1 - cur; 467 468 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) { 469 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 470 btrfs_queue_ordered_fn(entry); 471 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 472 } 473 cur += len; 474 } 475 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 476 } 477 478 /* 479 * Finish IO for one ordered extent across a given range. The range can only 480 * contain one ordered extent. 481 * 482 * @cached: The cached ordered extent. If not NULL, we can skip the tree 483 * search and use the ordered extent directly. 484 * Will be also used to store the finished ordered extent. 485 * @file_offset: File offset for the finished IO 486 * @io_size: Length of the finish IO range 487 * 488 * Return true if the ordered extent is finished in the range, and update 489 * @cached. 490 * Return false otherwise. 491 * 492 * NOTE: The range can NOT cross multiple ordered extents. 493 * Thus caller should ensure the range doesn't cross ordered extents. 494 */ 495 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode, 496 struct btrfs_ordered_extent **cached, 497 u64 file_offset, u64 io_size) 498 { 499 struct rb_node *node; 500 struct btrfs_ordered_extent *entry = NULL; 501 unsigned long flags; 502 bool finished = false; 503 504 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 505 if (cached && *cached) { 506 entry = *cached; 507 goto have_entry; 508 } 509 510 node = ordered_tree_search(inode, file_offset); 511 if (!node) 512 goto out; 513 514 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 515 have_entry: 516 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 517 goto out; 518 519 if (io_size > entry->bytes_left) 520 btrfs_crit(inode->root->fs_info, 521 "bad ordered accounting left %llu size %llu", 522 entry->bytes_left, io_size); 523 524 entry->bytes_left -= io_size; 525 526 if (entry->bytes_left == 0) { 527 /* 528 * Ensure only one caller can set the flag and finished_ret 529 * accordingly 530 */ 531 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 532 /* test_and_set_bit implies a barrier */ 533 cond_wake_up_nomb(&entry->wait); 534 } 535 out: 536 if (finished && cached && entry) { 537 *cached = entry; 538 refcount_inc(&entry->refs); 539 trace_btrfs_ordered_extent_dec_test_pending(inode, entry); 540 } 541 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 542 return finished; 543 } 544 545 /* 546 * used to drop a reference on an ordered extent. This will free 547 * the extent if the last reference is dropped 548 */ 549 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 550 { 551 struct list_head *cur; 552 struct btrfs_ordered_sum *sum; 553 554 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry); 555 556 if (refcount_dec_and_test(&entry->refs)) { 557 ASSERT(list_empty(&entry->root_extent_list)); 558 ASSERT(list_empty(&entry->log_list)); 559 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 560 if (entry->inode) 561 btrfs_add_delayed_iput(BTRFS_I(entry->inode)); 562 while (!list_empty(&entry->list)) { 563 cur = entry->list.next; 564 sum = list_entry(cur, struct btrfs_ordered_sum, list); 565 list_del(&sum->list); 566 kvfree(sum); 567 } 568 kmem_cache_free(btrfs_ordered_extent_cache, entry); 569 } 570 } 571 572 /* 573 * remove an ordered extent from the tree. No references are dropped 574 * and waiters are woken up. 575 */ 576 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode, 577 struct btrfs_ordered_extent *entry) 578 { 579 struct btrfs_root *root = btrfs_inode->root; 580 struct btrfs_fs_info *fs_info = root->fs_info; 581 struct rb_node *node; 582 bool pending; 583 bool freespace_inode; 584 585 /* 586 * If this is a free space inode the thread has not acquired the ordered 587 * extents lockdep map. 588 */ 589 freespace_inode = btrfs_is_free_space_inode(btrfs_inode); 590 591 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered); 592 /* This is paired with btrfs_alloc_ordered_extent. */ 593 spin_lock(&btrfs_inode->lock); 594 btrfs_mod_outstanding_extents(btrfs_inode, -1); 595 spin_unlock(&btrfs_inode->lock); 596 if (root != fs_info->tree_root) { 597 u64 release; 598 599 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags)) 600 release = entry->disk_num_bytes; 601 else 602 release = entry->num_bytes; 603 btrfs_delalloc_release_metadata(btrfs_inode, release, 604 test_bit(BTRFS_ORDERED_IOERR, 605 &entry->flags)); 606 } 607 608 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes, 609 fs_info->delalloc_batch); 610 611 spin_lock_irq(&btrfs_inode->ordered_tree_lock); 612 node = &entry->rb_node; 613 rb_erase(node, &btrfs_inode->ordered_tree); 614 RB_CLEAR_NODE(node); 615 if (btrfs_inode->ordered_tree_last == node) 616 btrfs_inode->ordered_tree_last = NULL; 617 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 618 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags); 619 spin_unlock_irq(&btrfs_inode->ordered_tree_lock); 620 621 /* 622 * The current running transaction is waiting on us, we need to let it 623 * know that we're complete and wake it up. 624 */ 625 if (pending) { 626 struct btrfs_transaction *trans; 627 628 /* 629 * The checks for trans are just a formality, it should be set, 630 * but if it isn't we don't want to deref/assert under the spin 631 * lock, so be nice and check if trans is set, but ASSERT() so 632 * if it isn't set a developer will notice. 633 */ 634 spin_lock(&fs_info->trans_lock); 635 trans = fs_info->running_transaction; 636 if (trans) 637 refcount_inc(&trans->use_count); 638 spin_unlock(&fs_info->trans_lock); 639 640 ASSERT(trans || BTRFS_FS_ERROR(fs_info)); 641 if (trans) { 642 if (atomic_dec_and_test(&trans->pending_ordered)) 643 wake_up(&trans->pending_wait); 644 btrfs_put_transaction(trans); 645 } 646 } 647 648 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered); 649 650 spin_lock(&root->ordered_extent_lock); 651 list_del_init(&entry->root_extent_list); 652 root->nr_ordered_extents--; 653 654 trace_btrfs_ordered_extent_remove(btrfs_inode, entry); 655 656 if (!root->nr_ordered_extents) { 657 spin_lock(&fs_info->ordered_root_lock); 658 BUG_ON(list_empty(&root->ordered_root)); 659 list_del_init(&root->ordered_root); 660 spin_unlock(&fs_info->ordered_root_lock); 661 } 662 spin_unlock(&root->ordered_extent_lock); 663 wake_up(&entry->wait); 664 if (!freespace_inode) 665 btrfs_lockdep_release(fs_info, btrfs_ordered_extent); 666 } 667 668 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 669 { 670 struct btrfs_ordered_extent *ordered; 671 672 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 673 btrfs_start_ordered_extent(ordered); 674 complete(&ordered->completion); 675 } 676 677 /* 678 * wait for all the ordered extents in a root. This is done when balancing 679 * space between drives. 680 */ 681 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr, 682 const u64 range_start, const u64 range_len) 683 { 684 struct btrfs_fs_info *fs_info = root->fs_info; 685 LIST_HEAD(splice); 686 LIST_HEAD(skipped); 687 LIST_HEAD(works); 688 struct btrfs_ordered_extent *ordered, *next; 689 u64 count = 0; 690 const u64 range_end = range_start + range_len; 691 692 mutex_lock(&root->ordered_extent_mutex); 693 spin_lock(&root->ordered_extent_lock); 694 list_splice_init(&root->ordered_extents, &splice); 695 while (!list_empty(&splice) && nr) { 696 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 697 root_extent_list); 698 699 if (range_end <= ordered->disk_bytenr || 700 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) { 701 list_move_tail(&ordered->root_extent_list, &skipped); 702 cond_resched_lock(&root->ordered_extent_lock); 703 continue; 704 } 705 706 list_move_tail(&ordered->root_extent_list, 707 &root->ordered_extents); 708 refcount_inc(&ordered->refs); 709 spin_unlock(&root->ordered_extent_lock); 710 711 btrfs_init_work(&ordered->flush_work, 712 btrfs_run_ordered_extent_work, NULL); 713 list_add_tail(&ordered->work_list, &works); 714 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work); 715 716 cond_resched(); 717 spin_lock(&root->ordered_extent_lock); 718 if (nr != U64_MAX) 719 nr--; 720 count++; 721 } 722 list_splice_tail(&skipped, &root->ordered_extents); 723 list_splice_tail(&splice, &root->ordered_extents); 724 spin_unlock(&root->ordered_extent_lock); 725 726 list_for_each_entry_safe(ordered, next, &works, work_list) { 727 list_del_init(&ordered->work_list); 728 wait_for_completion(&ordered->completion); 729 btrfs_put_ordered_extent(ordered); 730 cond_resched(); 731 } 732 mutex_unlock(&root->ordered_extent_mutex); 733 734 return count; 735 } 736 737 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr, 738 const u64 range_start, const u64 range_len) 739 { 740 struct btrfs_root *root; 741 LIST_HEAD(splice); 742 u64 done; 743 744 mutex_lock(&fs_info->ordered_operations_mutex); 745 spin_lock(&fs_info->ordered_root_lock); 746 list_splice_init(&fs_info->ordered_roots, &splice); 747 while (!list_empty(&splice) && nr) { 748 root = list_first_entry(&splice, struct btrfs_root, 749 ordered_root); 750 root = btrfs_grab_root(root); 751 BUG_ON(!root); 752 list_move_tail(&root->ordered_root, 753 &fs_info->ordered_roots); 754 spin_unlock(&fs_info->ordered_root_lock); 755 756 done = btrfs_wait_ordered_extents(root, nr, 757 range_start, range_len); 758 btrfs_put_root(root); 759 760 spin_lock(&fs_info->ordered_root_lock); 761 if (nr != U64_MAX) { 762 nr -= done; 763 } 764 } 765 list_splice_tail(&splice, &fs_info->ordered_roots); 766 spin_unlock(&fs_info->ordered_root_lock); 767 mutex_unlock(&fs_info->ordered_operations_mutex); 768 } 769 770 /* 771 * Start IO and wait for a given ordered extent to finish. 772 * 773 * Wait on page writeback for all the pages in the extent and the IO completion 774 * code to insert metadata into the btree corresponding to the extent. 775 */ 776 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry) 777 { 778 u64 start = entry->file_offset; 779 u64 end = start + entry->num_bytes - 1; 780 struct btrfs_inode *inode = BTRFS_I(entry->inode); 781 bool freespace_inode; 782 783 trace_btrfs_ordered_extent_start(inode, entry); 784 785 /* 786 * If this is a free space inode do not take the ordered extents lockdep 787 * map. 788 */ 789 freespace_inode = btrfs_is_free_space_inode(inode); 790 791 /* 792 * pages in the range can be dirty, clean or writeback. We 793 * start IO on any dirty ones so the wait doesn't stall waiting 794 * for the flusher thread to find them 795 */ 796 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 797 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end); 798 799 if (!freespace_inode) 800 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent); 801 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); 802 } 803 804 /* 805 * Used to wait on ordered extents across a large range of bytes. 806 */ 807 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 808 { 809 int ret = 0; 810 int ret_wb = 0; 811 u64 end; 812 u64 orig_end; 813 struct btrfs_ordered_extent *ordered; 814 815 if (start + len < start) { 816 orig_end = OFFSET_MAX; 817 } else { 818 orig_end = start + len - 1; 819 if (orig_end > OFFSET_MAX) 820 orig_end = OFFSET_MAX; 821 } 822 823 /* start IO across the range first to instantiate any delalloc 824 * extents 825 */ 826 ret = btrfs_fdatawrite_range(inode, start, orig_end); 827 if (ret) 828 return ret; 829 830 /* 831 * If we have a writeback error don't return immediately. Wait first 832 * for any ordered extents that haven't completed yet. This is to make 833 * sure no one can dirty the same page ranges and call writepages() 834 * before the ordered extents complete - to avoid failures (-EEXIST) 835 * when adding the new ordered extents to the ordered tree. 836 */ 837 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 838 839 end = orig_end; 840 while (1) { 841 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end); 842 if (!ordered) 843 break; 844 if (ordered->file_offset > orig_end) { 845 btrfs_put_ordered_extent(ordered); 846 break; 847 } 848 if (ordered->file_offset + ordered->num_bytes <= start) { 849 btrfs_put_ordered_extent(ordered); 850 break; 851 } 852 btrfs_start_ordered_extent(ordered); 853 end = ordered->file_offset; 854 /* 855 * If the ordered extent had an error save the error but don't 856 * exit without waiting first for all other ordered extents in 857 * the range to complete. 858 */ 859 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 860 ret = -EIO; 861 btrfs_put_ordered_extent(ordered); 862 if (end == 0 || end == start) 863 break; 864 end--; 865 } 866 return ret_wb ? ret_wb : ret; 867 } 868 869 /* 870 * find an ordered extent corresponding to file_offset. return NULL if 871 * nothing is found, otherwise take a reference on the extent and return it 872 */ 873 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode, 874 u64 file_offset) 875 { 876 struct rb_node *node; 877 struct btrfs_ordered_extent *entry = NULL; 878 unsigned long flags; 879 880 spin_lock_irqsave(&inode->ordered_tree_lock, flags); 881 node = ordered_tree_search(inode, file_offset); 882 if (!node) 883 goto out; 884 885 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 886 if (!in_range(file_offset, entry->file_offset, entry->num_bytes)) 887 entry = NULL; 888 if (entry) { 889 refcount_inc(&entry->refs); 890 trace_btrfs_ordered_extent_lookup(inode, entry); 891 } 892 out: 893 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags); 894 return entry; 895 } 896 897 /* Since the DIO code tries to lock a wide area we need to look for any ordered 898 * extents that exist in the range, rather than just the start of the range. 899 */ 900 struct btrfs_ordered_extent *btrfs_lookup_ordered_range( 901 struct btrfs_inode *inode, u64 file_offset, u64 len) 902 { 903 struct rb_node *node; 904 struct btrfs_ordered_extent *entry = NULL; 905 906 spin_lock_irq(&inode->ordered_tree_lock); 907 node = ordered_tree_search(inode, file_offset); 908 if (!node) { 909 node = ordered_tree_search(inode, file_offset + len); 910 if (!node) 911 goto out; 912 } 913 914 while (1) { 915 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 916 if (range_overlaps(entry, file_offset, len)) 917 break; 918 919 if (entry->file_offset >= file_offset + len) { 920 entry = NULL; 921 break; 922 } 923 entry = NULL; 924 node = rb_next(node); 925 if (!node) 926 break; 927 } 928 out: 929 if (entry) { 930 refcount_inc(&entry->refs); 931 trace_btrfs_ordered_extent_lookup_range(inode, entry); 932 } 933 spin_unlock_irq(&inode->ordered_tree_lock); 934 return entry; 935 } 936 937 /* 938 * Adds all ordered extents to the given list. The list ends up sorted by the 939 * file_offset of the ordered extents. 940 */ 941 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode, 942 struct list_head *list) 943 { 944 struct rb_node *n; 945 946 ASSERT(inode_is_locked(&inode->vfs_inode)); 947 948 spin_lock_irq(&inode->ordered_tree_lock); 949 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) { 950 struct btrfs_ordered_extent *ordered; 951 952 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 953 954 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 955 continue; 956 957 ASSERT(list_empty(&ordered->log_list)); 958 list_add_tail(&ordered->log_list, list); 959 refcount_inc(&ordered->refs); 960 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered); 961 } 962 spin_unlock_irq(&inode->ordered_tree_lock); 963 } 964 965 /* 966 * lookup and return any extent before 'file_offset'. NULL is returned 967 * if none is found 968 */ 969 struct btrfs_ordered_extent * 970 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset) 971 { 972 struct rb_node *node; 973 struct btrfs_ordered_extent *entry = NULL; 974 975 spin_lock_irq(&inode->ordered_tree_lock); 976 node = ordered_tree_search(inode, file_offset); 977 if (!node) 978 goto out; 979 980 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 981 refcount_inc(&entry->refs); 982 trace_btrfs_ordered_extent_lookup_first(inode, entry); 983 out: 984 spin_unlock_irq(&inode->ordered_tree_lock); 985 return entry; 986 } 987 988 /* 989 * Lookup the first ordered extent that overlaps the range 990 * [@file_offset, @file_offset + @len). 991 * 992 * The difference between this and btrfs_lookup_first_ordered_extent() is 993 * that this one won't return any ordered extent that does not overlap the range. 994 * And the difference against btrfs_lookup_ordered_extent() is, this function 995 * ensures the first ordered extent gets returned. 996 */ 997 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range( 998 struct btrfs_inode *inode, u64 file_offset, u64 len) 999 { 1000 struct rb_node *node; 1001 struct rb_node *cur; 1002 struct rb_node *prev; 1003 struct rb_node *next; 1004 struct btrfs_ordered_extent *entry = NULL; 1005 1006 spin_lock_irq(&inode->ordered_tree_lock); 1007 node = inode->ordered_tree.rb_node; 1008 /* 1009 * Here we don't want to use tree_search() which will use tree->last 1010 * and screw up the search order. 1011 * And __tree_search() can't return the adjacent ordered extents 1012 * either, thus here we do our own search. 1013 */ 1014 while (node) { 1015 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 1016 1017 if (file_offset < entry->file_offset) { 1018 node = node->rb_left; 1019 } else if (file_offset >= entry_end(entry)) { 1020 node = node->rb_right; 1021 } else { 1022 /* 1023 * Direct hit, got an ordered extent that starts at 1024 * @file_offset 1025 */ 1026 goto out; 1027 } 1028 } 1029 if (!entry) { 1030 /* Empty tree */ 1031 goto out; 1032 } 1033 1034 cur = &entry->rb_node; 1035 /* We got an entry around @file_offset, check adjacent entries */ 1036 if (entry->file_offset < file_offset) { 1037 prev = cur; 1038 next = rb_next(cur); 1039 } else { 1040 prev = rb_prev(cur); 1041 next = cur; 1042 } 1043 if (prev) { 1044 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); 1045 if (range_overlaps(entry, file_offset, len)) 1046 goto out; 1047 } 1048 if (next) { 1049 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node); 1050 if (range_overlaps(entry, file_offset, len)) 1051 goto out; 1052 } 1053 /* No ordered extent in the range */ 1054 entry = NULL; 1055 out: 1056 if (entry) { 1057 refcount_inc(&entry->refs); 1058 trace_btrfs_ordered_extent_lookup_first_range(inode, entry); 1059 } 1060 1061 spin_unlock_irq(&inode->ordered_tree_lock); 1062 return entry; 1063 } 1064 1065 /* 1066 * Lock the passed range and ensures all pending ordered extents in it are run 1067 * to completion. 1068 * 1069 * @inode: Inode whose ordered tree is to be searched 1070 * @start: Beginning of range to flush 1071 * @end: Last byte of range to lock 1072 * @cached_state: If passed, will return the extent state responsible for the 1073 * locked range. It's the caller's responsibility to free the 1074 * cached state. 1075 * 1076 * Always return with the given range locked, ensuring after it's called no 1077 * order extent can be pending. 1078 */ 1079 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start, 1080 u64 end, 1081 struct extent_state **cached_state) 1082 { 1083 struct btrfs_ordered_extent *ordered; 1084 struct extent_state *cache = NULL; 1085 struct extent_state **cachedp = &cache; 1086 1087 if (cached_state) 1088 cachedp = cached_state; 1089 1090 while (1) { 1091 lock_extent(&inode->io_tree, start, end, cachedp); 1092 ordered = btrfs_lookup_ordered_range(inode, start, 1093 end - start + 1); 1094 if (!ordered) { 1095 /* 1096 * If no external cached_state has been passed then 1097 * decrement the extra ref taken for cachedp since we 1098 * aren't exposing it outside of this function 1099 */ 1100 if (!cached_state) 1101 refcount_dec(&cache->refs); 1102 break; 1103 } 1104 unlock_extent(&inode->io_tree, start, end, cachedp); 1105 btrfs_start_ordered_extent(ordered); 1106 btrfs_put_ordered_extent(ordered); 1107 } 1108 } 1109 1110 /* 1111 * Lock the passed range and ensure all pending ordered extents in it are run 1112 * to completion in nowait mode. 1113 * 1114 * Return true if btrfs_lock_ordered_range does not return any extents, 1115 * otherwise false. 1116 */ 1117 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end, 1118 struct extent_state **cached_state) 1119 { 1120 struct btrfs_ordered_extent *ordered; 1121 1122 if (!try_lock_extent(&inode->io_tree, start, end, cached_state)) 1123 return false; 1124 1125 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1); 1126 if (!ordered) 1127 return true; 1128 1129 btrfs_put_ordered_extent(ordered); 1130 unlock_extent(&inode->io_tree, start, end, cached_state); 1131 1132 return false; 1133 } 1134 1135 /* Split out a new ordered extent for this first @len bytes of @ordered. */ 1136 struct btrfs_ordered_extent *btrfs_split_ordered_extent( 1137 struct btrfs_ordered_extent *ordered, u64 len) 1138 { 1139 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1140 struct btrfs_root *root = inode->root; 1141 struct btrfs_fs_info *fs_info = root->fs_info; 1142 u64 file_offset = ordered->file_offset; 1143 u64 disk_bytenr = ordered->disk_bytenr; 1144 unsigned long flags = ordered->flags; 1145 struct btrfs_ordered_sum *sum, *tmpsum; 1146 struct btrfs_ordered_extent *new; 1147 struct rb_node *node; 1148 u64 offset = 0; 1149 1150 trace_btrfs_ordered_extent_split(inode, ordered); 1151 1152 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED))); 1153 1154 /* 1155 * The entire bio must be covered by the ordered extent, but we can't 1156 * reduce the original extent to a zero length either. 1157 */ 1158 if (WARN_ON_ONCE(len >= ordered->num_bytes)) 1159 return ERR_PTR(-EINVAL); 1160 /* We cannot split partially completed ordered extents. */ 1161 if (ordered->bytes_left) { 1162 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS)); 1163 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) 1164 return ERR_PTR(-EINVAL); 1165 } 1166 /* We cannot split a compressed ordered extent. */ 1167 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) 1168 return ERR_PTR(-EINVAL); 1169 1170 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr, 1171 len, 0, flags, ordered->compress_type); 1172 if (IS_ERR(new)) 1173 return new; 1174 1175 /* One ref for the tree. */ 1176 refcount_inc(&new->refs); 1177 1178 spin_lock_irq(&root->ordered_extent_lock); 1179 spin_lock(&inode->ordered_tree_lock); 1180 /* Remove from tree once */ 1181 node = &ordered->rb_node; 1182 rb_erase(node, &inode->ordered_tree); 1183 RB_CLEAR_NODE(node); 1184 if (inode->ordered_tree_last == node) 1185 inode->ordered_tree_last = NULL; 1186 1187 ordered->file_offset += len; 1188 ordered->disk_bytenr += len; 1189 ordered->num_bytes -= len; 1190 ordered->disk_num_bytes -= len; 1191 1192 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) { 1193 ASSERT(ordered->bytes_left == 0); 1194 new->bytes_left = 0; 1195 } else { 1196 ordered->bytes_left -= len; 1197 } 1198 1199 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) { 1200 if (ordered->truncated_len > len) { 1201 ordered->truncated_len -= len; 1202 } else { 1203 new->truncated_len = ordered->truncated_len; 1204 ordered->truncated_len = 0; 1205 } 1206 } 1207 1208 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) { 1209 if (offset == len) 1210 break; 1211 list_move_tail(&sum->list, &new->list); 1212 offset += sum->len; 1213 } 1214 1215 /* Re-insert the node */ 1216 node = tree_insert(&inode->ordered_tree, ordered->file_offset, 1217 &ordered->rb_node); 1218 if (node) 1219 btrfs_panic(fs_info, -EEXIST, 1220 "zoned: inconsistency in ordered tree at offset %llu", 1221 ordered->file_offset); 1222 1223 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node); 1224 if (node) 1225 btrfs_panic(fs_info, -EEXIST, 1226 "zoned: inconsistency in ordered tree at offset %llu", 1227 new->file_offset); 1228 spin_unlock(&inode->ordered_tree_lock); 1229 1230 list_add_tail(&new->root_extent_list, &root->ordered_extents); 1231 root->nr_ordered_extents++; 1232 spin_unlock_irq(&root->ordered_extent_lock); 1233 return new; 1234 } 1235 1236 int __init ordered_data_init(void) 1237 { 1238 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1239 sizeof(struct btrfs_ordered_extent), 0, 1240 SLAB_MEM_SPREAD, 1241 NULL); 1242 if (!btrfs_ordered_extent_cache) 1243 return -ENOMEM; 1244 1245 return 0; 1246 } 1247 1248 void __cold ordered_data_exit(void) 1249 { 1250 kmem_cache_destroy(btrfs_ordered_extent_cache); 1251 } 1252