xref: /linux/fs/btrfs/ordered-data.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23 
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25 
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 		return (u64)-1;
30 	return entry->file_offset + entry->num_bytes;
31 }
32 
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 				   struct rb_node *node)
38 {
39 	struct rb_node **p = &root->rb_node;
40 	struct rb_node *parent = NULL;
41 	struct btrfs_ordered_extent *entry;
42 
43 	while (*p) {
44 		parent = *p;
45 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46 
47 		if (file_offset < entry->file_offset)
48 			p = &(*p)->rb_left;
49 		else if (file_offset >= entry_end(entry))
50 			p = &(*p)->rb_right;
51 		else
52 			return parent;
53 	}
54 
55 	rb_link_node(node, parent, p);
56 	rb_insert_color(node, root);
57 	return NULL;
58 }
59 
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 				     struct rb_node **prev_ret)
66 {
67 	struct rb_node *n = root->rb_node;
68 	struct rb_node *prev = NULL;
69 	struct rb_node *test;
70 	struct btrfs_ordered_extent *entry;
71 	struct btrfs_ordered_extent *prev_entry = NULL;
72 
73 	while (n) {
74 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 		prev = n;
76 		prev_entry = entry;
77 
78 		if (file_offset < entry->file_offset)
79 			n = n->rb_left;
80 		else if (file_offset >= entry_end(entry))
81 			n = n->rb_right;
82 		else
83 			return n;
84 	}
85 	if (!prev_ret)
86 		return NULL;
87 
88 	while (prev && file_offset >= entry_end(prev_entry)) {
89 		test = rb_next(prev);
90 		if (!test)
91 			break;
92 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 				      rb_node);
94 		if (file_offset < entry_end(prev_entry))
95 			break;
96 
97 		prev = test;
98 	}
99 	if (prev)
100 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 				      rb_node);
102 	while (prev && file_offset < entry_end(prev_entry)) {
103 		test = rb_prev(prev);
104 		if (!test)
105 			break;
106 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 				      rb_node);
108 		prev = test;
109 	}
110 	*prev_ret = prev;
111 	return NULL;
112 }
113 
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 			  u64 len)
116 {
117 	if (file_offset + len <= entry->file_offset ||
118 	    entry->file_offset + entry->num_bytes <= file_offset)
119 		return 0;
120 	return 1;
121 }
122 
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 						  u64 file_offset)
129 {
130 	struct rb_node *prev = NULL;
131 	struct rb_node *ret;
132 	struct btrfs_ordered_extent *entry;
133 
134 	if (inode->ordered_tree_last) {
135 		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 				 rb_node);
137 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 			return inode->ordered_tree_last;
139 	}
140 	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 	if (!ret)
142 		ret = prev;
143 	if (ret)
144 		inode->ordered_tree_last = ret;
145 	return ret;
146 }
147 
148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 			u64 offset, unsigned long flags, int compress_type)
152 {
153 	struct btrfs_ordered_extent *entry;
154 	int ret;
155 
156 	if (flags &
157 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158 		/* For nocow write, we can release the qgroup rsv right now */
159 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
160 		if (ret < 0)
161 			return ERR_PTR(ret);
162 	} else {
163 		/*
164 		 * The ordered extent has reserved qgroup space, release now
165 		 * and pass the reserved number for qgroup_record to free.
166 		 */
167 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
168 		if (ret < 0)
169 			return ERR_PTR(ret);
170 	}
171 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
172 	if (!entry)
173 		return ERR_PTR(-ENOMEM);
174 
175 	entry->file_offset = file_offset;
176 	entry->num_bytes = num_bytes;
177 	entry->ram_bytes = ram_bytes;
178 	entry->disk_bytenr = disk_bytenr;
179 	entry->disk_num_bytes = disk_num_bytes;
180 	entry->offset = offset;
181 	entry->bytes_left = num_bytes;
182 	entry->inode = igrab(&inode->vfs_inode);
183 	entry->compress_type = compress_type;
184 	entry->truncated_len = (u64)-1;
185 	entry->qgroup_rsv = ret;
186 	entry->flags = flags;
187 	refcount_set(&entry->refs, 1);
188 	init_waitqueue_head(&entry->wait);
189 	INIT_LIST_HEAD(&entry->list);
190 	INIT_LIST_HEAD(&entry->log_list);
191 	INIT_LIST_HEAD(&entry->root_extent_list);
192 	INIT_LIST_HEAD(&entry->work_list);
193 	INIT_LIST_HEAD(&entry->bioc_list);
194 	init_completion(&entry->completion);
195 
196 	/*
197 	 * We don't need the count_max_extents here, we can assume that all of
198 	 * that work has been done at higher layers, so this is truly the
199 	 * smallest the extent is going to get.
200 	 */
201 	spin_lock(&inode->lock);
202 	btrfs_mod_outstanding_extents(inode, 1);
203 	spin_unlock(&inode->lock);
204 
205 	return entry;
206 }
207 
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
211 	struct btrfs_root *root = inode->root;
212 	struct btrfs_fs_info *fs_info = root->fs_info;
213 	struct rb_node *node;
214 
215 	trace_btrfs_ordered_extent_add(inode, entry);
216 
217 	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218 				 fs_info->delalloc_batch);
219 
220 	/* One ref for the tree. */
221 	refcount_inc(&entry->refs);
222 
223 	spin_lock_irq(&inode->ordered_tree_lock);
224 	node = tree_insert(&inode->ordered_tree, entry->file_offset,
225 			   &entry->rb_node);
226 	if (node)
227 		btrfs_panic(fs_info, -EEXIST,
228 				"inconsistency in ordered tree at offset %llu",
229 				entry->file_offset);
230 	spin_unlock_irq(&inode->ordered_tree_lock);
231 
232 	spin_lock(&root->ordered_extent_lock);
233 	list_add_tail(&entry->root_extent_list,
234 		      &root->ordered_extents);
235 	root->nr_ordered_extents++;
236 	if (root->nr_ordered_extents == 1) {
237 		spin_lock(&fs_info->ordered_root_lock);
238 		BUG_ON(!list_empty(&root->ordered_root));
239 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240 		spin_unlock(&fs_info->ordered_root_lock);
241 	}
242 	spin_unlock(&root->ordered_extent_lock);
243 }
244 
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265 			struct btrfs_inode *inode, u64 file_offset,
266 			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267 			u64 disk_num_bytes, u64 offset, unsigned long flags,
268 			int compress_type)
269 {
270 	struct btrfs_ordered_extent *entry;
271 
272 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273 
274 	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275 				     disk_bytenr, disk_num_bytes, offset, flags,
276 				     compress_type);
277 	if (!IS_ERR(entry))
278 		insert_ordered_extent(entry);
279 	return entry;
280 }
281 
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 			   struct btrfs_ordered_sum *sum)
289 {
290 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
291 
292 	spin_lock_irq(&inode->ordered_tree_lock);
293 	list_add_tail(&sum->list, &entry->list);
294 	spin_unlock_irq(&inode->ordered_tree_lock);
295 }
296 
297 static void finish_ordered_fn(struct btrfs_work *work)
298 {
299 	struct btrfs_ordered_extent *ordered_extent;
300 
301 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
302 	btrfs_finish_ordered_io(ordered_extent);
303 }
304 
305 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
306 				      struct page *page, u64 file_offset,
307 				      u64 len, bool uptodate)
308 {
309 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
310 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
311 
312 	lockdep_assert_held(&inode->ordered_tree_lock);
313 
314 	if (page) {
315 		ASSERT(page->mapping);
316 		ASSERT(page_offset(page) <= file_offset);
317 		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
318 
319 		/*
320 		 * Ordered (Private2) bit indicates whether we still have
321 		 * pending io unfinished for the ordered extent.
322 		 *
323 		 * If there's no such bit, we need to skip to next range.
324 		 */
325 		if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
326 			return false;
327 		btrfs_page_clear_ordered(fs_info, page, file_offset, len);
328 	}
329 
330 	/* Now we're fine to update the accounting. */
331 	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
332 		btrfs_crit(fs_info,
333 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
334 			   inode->root->root_key.objectid, btrfs_ino(inode),
335 			   ordered->file_offset, ordered->num_bytes,
336 			   len, ordered->bytes_left);
337 		ordered->bytes_left = 0;
338 	} else {
339 		ordered->bytes_left -= len;
340 	}
341 
342 	if (!uptodate)
343 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
344 
345 	if (ordered->bytes_left)
346 		return false;
347 
348 	/*
349 	 * All the IO of the ordered extent is finished, we need to queue
350 	 * the finish_func to be executed.
351 	 */
352 	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
353 	cond_wake_up(&ordered->wait);
354 	refcount_inc(&ordered->refs);
355 	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
356 	return true;
357 }
358 
359 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
360 {
361 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
362 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
363 	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
364 		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
365 
366 	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
367 	btrfs_queue_work(wq, &ordered->work);
368 }
369 
370 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
371 				 struct page *page, u64 file_offset, u64 len,
372 				 bool uptodate)
373 {
374 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
375 	unsigned long flags;
376 	bool ret;
377 
378 	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
379 
380 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
381 	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
382 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
383 
384 	if (ret)
385 		btrfs_queue_ordered_fn(ordered);
386 	return ret;
387 }
388 
389 /*
390  * Mark all ordered extents io inside the specified range finished.
391  *
392  * @page:	 The involved page for the operation.
393  *		 For uncompressed buffered IO, the page status also needs to be
394  *		 updated to indicate whether the pending ordered io is finished.
395  *		 Can be NULL for direct IO and compressed write.
396  *		 For these cases, callers are ensured they won't execute the
397  *		 endio function twice.
398  *
399  * This function is called for endio, thus the range must have ordered
400  * extent(s) covering it.
401  */
402 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
403 				    struct page *page, u64 file_offset,
404 				    u64 num_bytes, bool uptodate)
405 {
406 	struct rb_node *node;
407 	struct btrfs_ordered_extent *entry = NULL;
408 	unsigned long flags;
409 	u64 cur = file_offset;
410 
411 	trace_btrfs_writepage_end_io_hook(inode, file_offset,
412 					  file_offset + num_bytes - 1,
413 					  uptodate);
414 
415 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
416 	while (cur < file_offset + num_bytes) {
417 		u64 entry_end;
418 		u64 end;
419 		u32 len;
420 
421 		node = ordered_tree_search(inode, cur);
422 		/* No ordered extents at all */
423 		if (!node)
424 			break;
425 
426 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
427 		entry_end = entry->file_offset + entry->num_bytes;
428 		/*
429 		 * |<-- OE --->|  |
430 		 *		  cur
431 		 * Go to next OE.
432 		 */
433 		if (cur >= entry_end) {
434 			node = rb_next(node);
435 			/* No more ordered extents, exit */
436 			if (!node)
437 				break;
438 			entry = rb_entry(node, struct btrfs_ordered_extent,
439 					 rb_node);
440 
441 			/* Go to next ordered extent and continue */
442 			cur = entry->file_offset;
443 			continue;
444 		}
445 		/*
446 		 * |	|<--- OE --->|
447 		 * cur
448 		 * Go to the start of OE.
449 		 */
450 		if (cur < entry->file_offset) {
451 			cur = entry->file_offset;
452 			continue;
453 		}
454 
455 		/*
456 		 * Now we are definitely inside one ordered extent.
457 		 *
458 		 * |<--- OE --->|
459 		 *	|
460 		 *	cur
461 		 */
462 		end = min(entry->file_offset + entry->num_bytes,
463 			  file_offset + num_bytes) - 1;
464 		ASSERT(end + 1 - cur < U32_MAX);
465 		len = end + 1 - cur;
466 
467 		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
468 			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
469 			btrfs_queue_ordered_fn(entry);
470 			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
471 		}
472 		cur += len;
473 	}
474 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
475 }
476 
477 /*
478  * Finish IO for one ordered extent across a given range.  The range can only
479  * contain one ordered extent.
480  *
481  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
482  *               search and use the ordered extent directly.
483  * 		 Will be also used to store the finished ordered extent.
484  * @file_offset: File offset for the finished IO
485  * @io_size:	 Length of the finish IO range
486  *
487  * Return true if the ordered extent is finished in the range, and update
488  * @cached.
489  * Return false otherwise.
490  *
491  * NOTE: The range can NOT cross multiple ordered extents.
492  * Thus caller should ensure the range doesn't cross ordered extents.
493  */
494 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
495 				    struct btrfs_ordered_extent **cached,
496 				    u64 file_offset, u64 io_size)
497 {
498 	struct rb_node *node;
499 	struct btrfs_ordered_extent *entry = NULL;
500 	unsigned long flags;
501 	bool finished = false;
502 
503 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
504 	if (cached && *cached) {
505 		entry = *cached;
506 		goto have_entry;
507 	}
508 
509 	node = ordered_tree_search(inode, file_offset);
510 	if (!node)
511 		goto out;
512 
513 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
514 have_entry:
515 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
516 		goto out;
517 
518 	if (io_size > entry->bytes_left)
519 		btrfs_crit(inode->root->fs_info,
520 			   "bad ordered accounting left %llu size %llu",
521 		       entry->bytes_left, io_size);
522 
523 	entry->bytes_left -= io_size;
524 
525 	if (entry->bytes_left == 0) {
526 		/*
527 		 * Ensure only one caller can set the flag and finished_ret
528 		 * accordingly
529 		 */
530 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
531 		/* test_and_set_bit implies a barrier */
532 		cond_wake_up_nomb(&entry->wait);
533 	}
534 out:
535 	if (finished && cached && entry) {
536 		*cached = entry;
537 		refcount_inc(&entry->refs);
538 		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
539 	}
540 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
541 	return finished;
542 }
543 
544 /*
545  * used to drop a reference on an ordered extent.  This will free
546  * the extent if the last reference is dropped
547  */
548 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
549 {
550 	struct list_head *cur;
551 	struct btrfs_ordered_sum *sum;
552 
553 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
554 
555 	if (refcount_dec_and_test(&entry->refs)) {
556 		ASSERT(list_empty(&entry->root_extent_list));
557 		ASSERT(list_empty(&entry->log_list));
558 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
559 		if (entry->inode)
560 			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
561 		while (!list_empty(&entry->list)) {
562 			cur = entry->list.next;
563 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
564 			list_del(&sum->list);
565 			kvfree(sum);
566 		}
567 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
568 	}
569 }
570 
571 /*
572  * remove an ordered extent from the tree.  No references are dropped
573  * and waiters are woken up.
574  */
575 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
576 				 struct btrfs_ordered_extent *entry)
577 {
578 	struct btrfs_root *root = btrfs_inode->root;
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	struct rb_node *node;
581 	bool pending;
582 	bool freespace_inode;
583 
584 	/*
585 	 * If this is a free space inode the thread has not acquired the ordered
586 	 * extents lockdep map.
587 	 */
588 	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
589 
590 	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
591 	/* This is paired with btrfs_alloc_ordered_extent. */
592 	spin_lock(&btrfs_inode->lock);
593 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
594 	spin_unlock(&btrfs_inode->lock);
595 	if (root != fs_info->tree_root) {
596 		u64 release;
597 
598 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
599 			release = entry->disk_num_bytes;
600 		else
601 			release = entry->num_bytes;
602 		btrfs_delalloc_release_metadata(btrfs_inode, release, false);
603 	}
604 
605 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
606 				 fs_info->delalloc_batch);
607 
608 	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
609 	node = &entry->rb_node;
610 	rb_erase(node, &btrfs_inode->ordered_tree);
611 	RB_CLEAR_NODE(node);
612 	if (btrfs_inode->ordered_tree_last == node)
613 		btrfs_inode->ordered_tree_last = NULL;
614 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
615 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
616 	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
617 
618 	/*
619 	 * The current running transaction is waiting on us, we need to let it
620 	 * know that we're complete and wake it up.
621 	 */
622 	if (pending) {
623 		struct btrfs_transaction *trans;
624 
625 		/*
626 		 * The checks for trans are just a formality, it should be set,
627 		 * but if it isn't we don't want to deref/assert under the spin
628 		 * lock, so be nice and check if trans is set, but ASSERT() so
629 		 * if it isn't set a developer will notice.
630 		 */
631 		spin_lock(&fs_info->trans_lock);
632 		trans = fs_info->running_transaction;
633 		if (trans)
634 			refcount_inc(&trans->use_count);
635 		spin_unlock(&fs_info->trans_lock);
636 
637 		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
638 		if (trans) {
639 			if (atomic_dec_and_test(&trans->pending_ordered))
640 				wake_up(&trans->pending_wait);
641 			btrfs_put_transaction(trans);
642 		}
643 	}
644 
645 	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
646 
647 	spin_lock(&root->ordered_extent_lock);
648 	list_del_init(&entry->root_extent_list);
649 	root->nr_ordered_extents--;
650 
651 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
652 
653 	if (!root->nr_ordered_extents) {
654 		spin_lock(&fs_info->ordered_root_lock);
655 		BUG_ON(list_empty(&root->ordered_root));
656 		list_del_init(&root->ordered_root);
657 		spin_unlock(&fs_info->ordered_root_lock);
658 	}
659 	spin_unlock(&root->ordered_extent_lock);
660 	wake_up(&entry->wait);
661 	if (!freespace_inode)
662 		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
663 }
664 
665 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
666 {
667 	struct btrfs_ordered_extent *ordered;
668 
669 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
670 	btrfs_start_ordered_extent(ordered);
671 	complete(&ordered->completion);
672 }
673 
674 /*
675  * wait for all the ordered extents in a root.  This is done when balancing
676  * space between drives.
677  */
678 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
679 			       const u64 range_start, const u64 range_len)
680 {
681 	struct btrfs_fs_info *fs_info = root->fs_info;
682 	LIST_HEAD(splice);
683 	LIST_HEAD(skipped);
684 	LIST_HEAD(works);
685 	struct btrfs_ordered_extent *ordered, *next;
686 	u64 count = 0;
687 	const u64 range_end = range_start + range_len;
688 
689 	mutex_lock(&root->ordered_extent_mutex);
690 	spin_lock(&root->ordered_extent_lock);
691 	list_splice_init(&root->ordered_extents, &splice);
692 	while (!list_empty(&splice) && nr) {
693 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
694 					   root_extent_list);
695 
696 		if (range_end <= ordered->disk_bytenr ||
697 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
698 			list_move_tail(&ordered->root_extent_list, &skipped);
699 			cond_resched_lock(&root->ordered_extent_lock);
700 			continue;
701 		}
702 
703 		list_move_tail(&ordered->root_extent_list,
704 			       &root->ordered_extents);
705 		refcount_inc(&ordered->refs);
706 		spin_unlock(&root->ordered_extent_lock);
707 
708 		btrfs_init_work(&ordered->flush_work,
709 				btrfs_run_ordered_extent_work, NULL);
710 		list_add_tail(&ordered->work_list, &works);
711 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
712 
713 		cond_resched();
714 		spin_lock(&root->ordered_extent_lock);
715 		if (nr != U64_MAX)
716 			nr--;
717 		count++;
718 	}
719 	list_splice_tail(&skipped, &root->ordered_extents);
720 	list_splice_tail(&splice, &root->ordered_extents);
721 	spin_unlock(&root->ordered_extent_lock);
722 
723 	list_for_each_entry_safe(ordered, next, &works, work_list) {
724 		list_del_init(&ordered->work_list);
725 		wait_for_completion(&ordered->completion);
726 		btrfs_put_ordered_extent(ordered);
727 		cond_resched();
728 	}
729 	mutex_unlock(&root->ordered_extent_mutex);
730 
731 	return count;
732 }
733 
734 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
735 			     const u64 range_start, const u64 range_len)
736 {
737 	struct btrfs_root *root;
738 	LIST_HEAD(splice);
739 	u64 done;
740 
741 	mutex_lock(&fs_info->ordered_operations_mutex);
742 	spin_lock(&fs_info->ordered_root_lock);
743 	list_splice_init(&fs_info->ordered_roots, &splice);
744 	while (!list_empty(&splice) && nr) {
745 		root = list_first_entry(&splice, struct btrfs_root,
746 					ordered_root);
747 		root = btrfs_grab_root(root);
748 		BUG_ON(!root);
749 		list_move_tail(&root->ordered_root,
750 			       &fs_info->ordered_roots);
751 		spin_unlock(&fs_info->ordered_root_lock);
752 
753 		done = btrfs_wait_ordered_extents(root, nr,
754 						  range_start, range_len);
755 		btrfs_put_root(root);
756 
757 		spin_lock(&fs_info->ordered_root_lock);
758 		if (nr != U64_MAX) {
759 			nr -= done;
760 		}
761 	}
762 	list_splice_tail(&splice, &fs_info->ordered_roots);
763 	spin_unlock(&fs_info->ordered_root_lock);
764 	mutex_unlock(&fs_info->ordered_operations_mutex);
765 }
766 
767 /*
768  * Start IO and wait for a given ordered extent to finish.
769  *
770  * Wait on page writeback for all the pages in the extent and the IO completion
771  * code to insert metadata into the btree corresponding to the extent.
772  */
773 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
774 {
775 	u64 start = entry->file_offset;
776 	u64 end = start + entry->num_bytes - 1;
777 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
778 	bool freespace_inode;
779 
780 	trace_btrfs_ordered_extent_start(inode, entry);
781 
782 	/*
783 	 * If this is a free space inode do not take the ordered extents lockdep
784 	 * map.
785 	 */
786 	freespace_inode = btrfs_is_free_space_inode(inode);
787 
788 	/*
789 	 * pages in the range can be dirty, clean or writeback.  We
790 	 * start IO on any dirty ones so the wait doesn't stall waiting
791 	 * for the flusher thread to find them
792 	 */
793 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
794 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
795 
796 	if (!freespace_inode)
797 		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
798 	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
799 }
800 
801 /*
802  * Used to wait on ordered extents across a large range of bytes.
803  */
804 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
805 {
806 	int ret = 0;
807 	int ret_wb = 0;
808 	u64 end;
809 	u64 orig_end;
810 	struct btrfs_ordered_extent *ordered;
811 
812 	if (start + len < start) {
813 		orig_end = OFFSET_MAX;
814 	} else {
815 		orig_end = start + len - 1;
816 		if (orig_end > OFFSET_MAX)
817 			orig_end = OFFSET_MAX;
818 	}
819 
820 	/* start IO across the range first to instantiate any delalloc
821 	 * extents
822 	 */
823 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
824 	if (ret)
825 		return ret;
826 
827 	/*
828 	 * If we have a writeback error don't return immediately. Wait first
829 	 * for any ordered extents that haven't completed yet. This is to make
830 	 * sure no one can dirty the same page ranges and call writepages()
831 	 * before the ordered extents complete - to avoid failures (-EEXIST)
832 	 * when adding the new ordered extents to the ordered tree.
833 	 */
834 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
835 
836 	end = orig_end;
837 	while (1) {
838 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
839 		if (!ordered)
840 			break;
841 		if (ordered->file_offset > orig_end) {
842 			btrfs_put_ordered_extent(ordered);
843 			break;
844 		}
845 		if (ordered->file_offset + ordered->num_bytes <= start) {
846 			btrfs_put_ordered_extent(ordered);
847 			break;
848 		}
849 		btrfs_start_ordered_extent(ordered);
850 		end = ordered->file_offset;
851 		/*
852 		 * If the ordered extent had an error save the error but don't
853 		 * exit without waiting first for all other ordered extents in
854 		 * the range to complete.
855 		 */
856 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
857 			ret = -EIO;
858 		btrfs_put_ordered_extent(ordered);
859 		if (end == 0 || end == start)
860 			break;
861 		end--;
862 	}
863 	return ret_wb ? ret_wb : ret;
864 }
865 
866 /*
867  * find an ordered extent corresponding to file_offset.  return NULL if
868  * nothing is found, otherwise take a reference on the extent and return it
869  */
870 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
871 							 u64 file_offset)
872 {
873 	struct rb_node *node;
874 	struct btrfs_ordered_extent *entry = NULL;
875 	unsigned long flags;
876 
877 	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
878 	node = ordered_tree_search(inode, file_offset);
879 	if (!node)
880 		goto out;
881 
882 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
883 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
884 		entry = NULL;
885 	if (entry) {
886 		refcount_inc(&entry->refs);
887 		trace_btrfs_ordered_extent_lookup(inode, entry);
888 	}
889 out:
890 	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
891 	return entry;
892 }
893 
894 /* Since the DIO code tries to lock a wide area we need to look for any ordered
895  * extents that exist in the range, rather than just the start of the range.
896  */
897 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
898 		struct btrfs_inode *inode, u64 file_offset, u64 len)
899 {
900 	struct rb_node *node;
901 	struct btrfs_ordered_extent *entry = NULL;
902 
903 	spin_lock_irq(&inode->ordered_tree_lock);
904 	node = ordered_tree_search(inode, file_offset);
905 	if (!node) {
906 		node = ordered_tree_search(inode, file_offset + len);
907 		if (!node)
908 			goto out;
909 	}
910 
911 	while (1) {
912 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
913 		if (range_overlaps(entry, file_offset, len))
914 			break;
915 
916 		if (entry->file_offset >= file_offset + len) {
917 			entry = NULL;
918 			break;
919 		}
920 		entry = NULL;
921 		node = rb_next(node);
922 		if (!node)
923 			break;
924 	}
925 out:
926 	if (entry) {
927 		refcount_inc(&entry->refs);
928 		trace_btrfs_ordered_extent_lookup_range(inode, entry);
929 	}
930 	spin_unlock_irq(&inode->ordered_tree_lock);
931 	return entry;
932 }
933 
934 /*
935  * Adds all ordered extents to the given list. The list ends up sorted by the
936  * file_offset of the ordered extents.
937  */
938 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
939 					   struct list_head *list)
940 {
941 	struct rb_node *n;
942 
943 	ASSERT(inode_is_locked(&inode->vfs_inode));
944 
945 	spin_lock_irq(&inode->ordered_tree_lock);
946 	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
947 		struct btrfs_ordered_extent *ordered;
948 
949 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
950 
951 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
952 			continue;
953 
954 		ASSERT(list_empty(&ordered->log_list));
955 		list_add_tail(&ordered->log_list, list);
956 		refcount_inc(&ordered->refs);
957 		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
958 	}
959 	spin_unlock_irq(&inode->ordered_tree_lock);
960 }
961 
962 /*
963  * lookup and return any extent before 'file_offset'.  NULL is returned
964  * if none is found
965  */
966 struct btrfs_ordered_extent *
967 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
968 {
969 	struct rb_node *node;
970 	struct btrfs_ordered_extent *entry = NULL;
971 
972 	spin_lock_irq(&inode->ordered_tree_lock);
973 	node = ordered_tree_search(inode, file_offset);
974 	if (!node)
975 		goto out;
976 
977 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
978 	refcount_inc(&entry->refs);
979 	trace_btrfs_ordered_extent_lookup_first(inode, entry);
980 out:
981 	spin_unlock_irq(&inode->ordered_tree_lock);
982 	return entry;
983 }
984 
985 /*
986  * Lookup the first ordered extent that overlaps the range
987  * [@file_offset, @file_offset + @len).
988  *
989  * The difference between this and btrfs_lookup_first_ordered_extent() is
990  * that this one won't return any ordered extent that does not overlap the range.
991  * And the difference against btrfs_lookup_ordered_extent() is, this function
992  * ensures the first ordered extent gets returned.
993  */
994 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
995 			struct btrfs_inode *inode, u64 file_offset, u64 len)
996 {
997 	struct rb_node *node;
998 	struct rb_node *cur;
999 	struct rb_node *prev;
1000 	struct rb_node *next;
1001 	struct btrfs_ordered_extent *entry = NULL;
1002 
1003 	spin_lock_irq(&inode->ordered_tree_lock);
1004 	node = inode->ordered_tree.rb_node;
1005 	/*
1006 	 * Here we don't want to use tree_search() which will use tree->last
1007 	 * and screw up the search order.
1008 	 * And __tree_search() can't return the adjacent ordered extents
1009 	 * either, thus here we do our own search.
1010 	 */
1011 	while (node) {
1012 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1013 
1014 		if (file_offset < entry->file_offset) {
1015 			node = node->rb_left;
1016 		} else if (file_offset >= entry_end(entry)) {
1017 			node = node->rb_right;
1018 		} else {
1019 			/*
1020 			 * Direct hit, got an ordered extent that starts at
1021 			 * @file_offset
1022 			 */
1023 			goto out;
1024 		}
1025 	}
1026 	if (!entry) {
1027 		/* Empty tree */
1028 		goto out;
1029 	}
1030 
1031 	cur = &entry->rb_node;
1032 	/* We got an entry around @file_offset, check adjacent entries */
1033 	if (entry->file_offset < file_offset) {
1034 		prev = cur;
1035 		next = rb_next(cur);
1036 	} else {
1037 		prev = rb_prev(cur);
1038 		next = cur;
1039 	}
1040 	if (prev) {
1041 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1042 		if (range_overlaps(entry, file_offset, len))
1043 			goto out;
1044 	}
1045 	if (next) {
1046 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1047 		if (range_overlaps(entry, file_offset, len))
1048 			goto out;
1049 	}
1050 	/* No ordered extent in the range */
1051 	entry = NULL;
1052 out:
1053 	if (entry) {
1054 		refcount_inc(&entry->refs);
1055 		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1056 	}
1057 
1058 	spin_unlock_irq(&inode->ordered_tree_lock);
1059 	return entry;
1060 }
1061 
1062 /*
1063  * Lock the passed range and ensures all pending ordered extents in it are run
1064  * to completion.
1065  *
1066  * @inode:        Inode whose ordered tree is to be searched
1067  * @start:        Beginning of range to flush
1068  * @end:          Last byte of range to lock
1069  * @cached_state: If passed, will return the extent state responsible for the
1070  *                locked range. It's the caller's responsibility to free the
1071  *                cached state.
1072  *
1073  * Always return with the given range locked, ensuring after it's called no
1074  * order extent can be pending.
1075  */
1076 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1077 					u64 end,
1078 					struct extent_state **cached_state)
1079 {
1080 	struct btrfs_ordered_extent *ordered;
1081 	struct extent_state *cache = NULL;
1082 	struct extent_state **cachedp = &cache;
1083 
1084 	if (cached_state)
1085 		cachedp = cached_state;
1086 
1087 	while (1) {
1088 		lock_extent(&inode->io_tree, start, end, cachedp);
1089 		ordered = btrfs_lookup_ordered_range(inode, start,
1090 						     end - start + 1);
1091 		if (!ordered) {
1092 			/*
1093 			 * If no external cached_state has been passed then
1094 			 * decrement the extra ref taken for cachedp since we
1095 			 * aren't exposing it outside of this function
1096 			 */
1097 			if (!cached_state)
1098 				refcount_dec(&cache->refs);
1099 			break;
1100 		}
1101 		unlock_extent(&inode->io_tree, start, end, cachedp);
1102 		btrfs_start_ordered_extent(ordered);
1103 		btrfs_put_ordered_extent(ordered);
1104 	}
1105 }
1106 
1107 /*
1108  * Lock the passed range and ensure all pending ordered extents in it are run
1109  * to completion in nowait mode.
1110  *
1111  * Return true if btrfs_lock_ordered_range does not return any extents,
1112  * otherwise false.
1113  */
1114 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1115 				  struct extent_state **cached_state)
1116 {
1117 	struct btrfs_ordered_extent *ordered;
1118 
1119 	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1120 		return false;
1121 
1122 	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1123 	if (!ordered)
1124 		return true;
1125 
1126 	btrfs_put_ordered_extent(ordered);
1127 	unlock_extent(&inode->io_tree, start, end, cached_state);
1128 
1129 	return false;
1130 }
1131 
1132 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1133 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1134 			struct btrfs_ordered_extent *ordered, u64 len)
1135 {
1136 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1137 	struct btrfs_root *root = inode->root;
1138 	struct btrfs_fs_info *fs_info = root->fs_info;
1139 	u64 file_offset = ordered->file_offset;
1140 	u64 disk_bytenr = ordered->disk_bytenr;
1141 	unsigned long flags = ordered->flags;
1142 	struct btrfs_ordered_sum *sum, *tmpsum;
1143 	struct btrfs_ordered_extent *new;
1144 	struct rb_node *node;
1145 	u64 offset = 0;
1146 
1147 	trace_btrfs_ordered_extent_split(inode, ordered);
1148 
1149 	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1150 
1151 	/*
1152 	 * The entire bio must be covered by the ordered extent, but we can't
1153 	 * reduce the original extent to a zero length either.
1154 	 */
1155 	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1156 		return ERR_PTR(-EINVAL);
1157 	/* We cannot split partially completed ordered extents. */
1158 	if (ordered->bytes_left) {
1159 		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1160 		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1161 			return ERR_PTR(-EINVAL);
1162 	}
1163 	/* We cannot split a compressed ordered extent. */
1164 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1165 		return ERR_PTR(-EINVAL);
1166 
1167 	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1168 				   len, 0, flags, ordered->compress_type);
1169 	if (IS_ERR(new))
1170 		return new;
1171 
1172 	/* One ref for the tree. */
1173 	refcount_inc(&new->refs);
1174 
1175 	spin_lock_irq(&root->ordered_extent_lock);
1176 	spin_lock(&inode->ordered_tree_lock);
1177 	/* Remove from tree once */
1178 	node = &ordered->rb_node;
1179 	rb_erase(node, &inode->ordered_tree);
1180 	RB_CLEAR_NODE(node);
1181 	if (inode->ordered_tree_last == node)
1182 		inode->ordered_tree_last = NULL;
1183 
1184 	ordered->file_offset += len;
1185 	ordered->disk_bytenr += len;
1186 	ordered->num_bytes -= len;
1187 	ordered->disk_num_bytes -= len;
1188 
1189 	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1190 		ASSERT(ordered->bytes_left == 0);
1191 		new->bytes_left = 0;
1192 	} else {
1193 		ordered->bytes_left -= len;
1194 	}
1195 
1196 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1197 		if (ordered->truncated_len > len) {
1198 			ordered->truncated_len -= len;
1199 		} else {
1200 			new->truncated_len = ordered->truncated_len;
1201 			ordered->truncated_len = 0;
1202 		}
1203 	}
1204 
1205 	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1206 		if (offset == len)
1207 			break;
1208 		list_move_tail(&sum->list, &new->list);
1209 		offset += sum->len;
1210 	}
1211 
1212 	/* Re-insert the node */
1213 	node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1214 			   &ordered->rb_node);
1215 	if (node)
1216 		btrfs_panic(fs_info, -EEXIST,
1217 			"zoned: inconsistency in ordered tree at offset %llu",
1218 			ordered->file_offset);
1219 
1220 	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1221 	if (node)
1222 		btrfs_panic(fs_info, -EEXIST,
1223 			"zoned: inconsistency in ordered tree at offset %llu",
1224 			new->file_offset);
1225 	spin_unlock(&inode->ordered_tree_lock);
1226 
1227 	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1228 	root->nr_ordered_extents++;
1229 	spin_unlock_irq(&root->ordered_extent_lock);
1230 	return new;
1231 }
1232 
1233 int __init ordered_data_init(void)
1234 {
1235 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1236 				     sizeof(struct btrfs_ordered_extent), 0,
1237 				     SLAB_MEM_SPREAD,
1238 				     NULL);
1239 	if (!btrfs_ordered_extent_cache)
1240 		return -ENOMEM;
1241 
1242 	return 0;
1243 }
1244 
1245 void __cold ordered_data_exit(void)
1246 {
1247 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1248 }
1249