1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 28 static u64 entry_end(struct btrfs_ordered_extent *entry) 29 { 30 if (entry->file_offset + entry->len < entry->file_offset) 31 return (u64)-1; 32 return entry->file_offset + entry->len; 33 } 34 35 /* returns NULL if the insertion worked, or it returns the node it did find 36 * in the tree 37 */ 38 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 39 struct rb_node *node) 40 { 41 struct rb_node **p = &root->rb_node; 42 struct rb_node *parent = NULL; 43 struct btrfs_ordered_extent *entry; 44 45 while (*p) { 46 parent = *p; 47 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 48 49 if (file_offset < entry->file_offset) 50 p = &(*p)->rb_left; 51 else if (file_offset >= entry_end(entry)) 52 p = &(*p)->rb_right; 53 else 54 return parent; 55 } 56 57 rb_link_node(node, parent, p); 58 rb_insert_color(node, root); 59 return NULL; 60 } 61 62 /* 63 * look for a given offset in the tree, and if it can't be found return the 64 * first lesser offset 65 */ 66 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 67 struct rb_node **prev_ret) 68 { 69 struct rb_node *n = root->rb_node; 70 struct rb_node *prev = NULL; 71 struct rb_node *test; 72 struct btrfs_ordered_extent *entry; 73 struct btrfs_ordered_extent *prev_entry = NULL; 74 75 while (n) { 76 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 77 prev = n; 78 prev_entry = entry; 79 80 if (file_offset < entry->file_offset) 81 n = n->rb_left; 82 else if (file_offset >= entry_end(entry)) 83 n = n->rb_right; 84 else 85 return n; 86 } 87 if (!prev_ret) 88 return NULL; 89 90 while (prev && file_offset >= entry_end(prev_entry)) { 91 test = rb_next(prev); 92 if (!test) 93 break; 94 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 95 rb_node); 96 if (file_offset < entry_end(prev_entry)) 97 break; 98 99 prev = test; 100 } 101 if (prev) 102 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 103 rb_node); 104 while (prev && file_offset < entry_end(prev_entry)) { 105 test = rb_prev(prev); 106 if (!test) 107 break; 108 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 109 rb_node); 110 prev = test; 111 } 112 *prev_ret = prev; 113 return NULL; 114 } 115 116 /* 117 * helper to check if a given offset is inside a given entry 118 */ 119 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 120 { 121 if (file_offset < entry->file_offset || 122 entry->file_offset + entry->len <= file_offset) 123 return 0; 124 return 1; 125 } 126 127 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 128 u64 len) 129 { 130 if (file_offset + len <= entry->file_offset || 131 entry->file_offset + entry->len <= file_offset) 132 return 0; 133 return 1; 134 } 135 136 /* 137 * look find the first ordered struct that has this offset, otherwise 138 * the first one less than this offset 139 */ 140 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 141 u64 file_offset) 142 { 143 struct rb_root *root = &tree->tree; 144 struct rb_node *prev; 145 struct rb_node *ret; 146 struct btrfs_ordered_extent *entry; 147 148 if (tree->last) { 149 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 150 rb_node); 151 if (offset_in_entry(entry, file_offset)) 152 return tree->last; 153 } 154 ret = __tree_search(root, file_offset, &prev); 155 if (!ret) 156 ret = prev; 157 if (ret) 158 tree->last = ret; 159 return ret; 160 } 161 162 /* allocate and add a new ordered_extent into the per-inode tree. 163 * file_offset is the logical offset in the file 164 * 165 * start is the disk block number of an extent already reserved in the 166 * extent allocation tree 167 * 168 * len is the length of the extent 169 * 170 * The tree is given a single reference on the ordered extent that was 171 * inserted. 172 */ 173 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 174 u64 start, u64 len, u64 disk_len, 175 int type, int dio) 176 { 177 struct btrfs_ordered_inode_tree *tree; 178 struct rb_node *node; 179 struct btrfs_ordered_extent *entry; 180 181 tree = &BTRFS_I(inode)->ordered_tree; 182 entry = kzalloc(sizeof(*entry), GFP_NOFS); 183 if (!entry) 184 return -ENOMEM; 185 186 entry->file_offset = file_offset; 187 entry->start = start; 188 entry->len = len; 189 entry->disk_len = disk_len; 190 entry->bytes_left = len; 191 entry->inode = inode; 192 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 193 set_bit(type, &entry->flags); 194 195 if (dio) 196 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 197 198 /* one ref for the tree */ 199 atomic_set(&entry->refs, 1); 200 init_waitqueue_head(&entry->wait); 201 INIT_LIST_HEAD(&entry->list); 202 INIT_LIST_HEAD(&entry->root_extent_list); 203 204 spin_lock(&tree->lock); 205 node = tree_insert(&tree->tree, file_offset, 206 &entry->rb_node); 207 BUG_ON(node); 208 spin_unlock(&tree->lock); 209 210 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 211 list_add_tail(&entry->root_extent_list, 212 &BTRFS_I(inode)->root->fs_info->ordered_extents); 213 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); 214 215 BUG_ON(node); 216 return 0; 217 } 218 219 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 220 u64 start, u64 len, u64 disk_len, int type) 221 { 222 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 223 disk_len, type, 0); 224 } 225 226 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 227 u64 start, u64 len, u64 disk_len, int type) 228 { 229 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 230 disk_len, type, 1); 231 } 232 233 /* 234 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 235 * when an ordered extent is finished. If the list covers more than one 236 * ordered extent, it is split across multiples. 237 */ 238 int btrfs_add_ordered_sum(struct inode *inode, 239 struct btrfs_ordered_extent *entry, 240 struct btrfs_ordered_sum *sum) 241 { 242 struct btrfs_ordered_inode_tree *tree; 243 244 tree = &BTRFS_I(inode)->ordered_tree; 245 spin_lock(&tree->lock); 246 list_add_tail(&sum->list, &entry->list); 247 spin_unlock(&tree->lock); 248 return 0; 249 } 250 251 /* 252 * this is used to account for finished IO across a given range 253 * of the file. The IO should not span ordered extents. If 254 * a given ordered_extent is completely done, 1 is returned, otherwise 255 * 0. 256 * 257 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 258 * to make sure this function only returns 1 once for a given ordered extent. 259 */ 260 int btrfs_dec_test_ordered_pending(struct inode *inode, 261 struct btrfs_ordered_extent **cached, 262 u64 file_offset, u64 io_size) 263 { 264 struct btrfs_ordered_inode_tree *tree; 265 struct rb_node *node; 266 struct btrfs_ordered_extent *entry = NULL; 267 int ret; 268 269 tree = &BTRFS_I(inode)->ordered_tree; 270 spin_lock(&tree->lock); 271 node = tree_search(tree, file_offset); 272 if (!node) { 273 ret = 1; 274 goto out; 275 } 276 277 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 278 if (!offset_in_entry(entry, file_offset)) { 279 ret = 1; 280 goto out; 281 } 282 283 if (io_size > entry->bytes_left) { 284 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 285 (unsigned long long)entry->bytes_left, 286 (unsigned long long)io_size); 287 } 288 entry->bytes_left -= io_size; 289 if (entry->bytes_left == 0) 290 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 291 else 292 ret = 1; 293 out: 294 if (!ret && cached && entry) { 295 *cached = entry; 296 atomic_inc(&entry->refs); 297 } 298 spin_unlock(&tree->lock); 299 return ret == 0; 300 } 301 302 /* 303 * used to drop a reference on an ordered extent. This will free 304 * the extent if the last reference is dropped 305 */ 306 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 307 { 308 struct list_head *cur; 309 struct btrfs_ordered_sum *sum; 310 311 if (atomic_dec_and_test(&entry->refs)) { 312 while (!list_empty(&entry->list)) { 313 cur = entry->list.next; 314 sum = list_entry(cur, struct btrfs_ordered_sum, list); 315 list_del(&sum->list); 316 kfree(sum); 317 } 318 kfree(entry); 319 } 320 return 0; 321 } 322 323 /* 324 * remove an ordered extent from the tree. No references are dropped 325 * and you must wake_up entry->wait. You must hold the tree lock 326 * while you call this function. 327 */ 328 static int __btrfs_remove_ordered_extent(struct inode *inode, 329 struct btrfs_ordered_extent *entry) 330 { 331 struct btrfs_ordered_inode_tree *tree; 332 struct btrfs_root *root = BTRFS_I(inode)->root; 333 struct rb_node *node; 334 335 tree = &BTRFS_I(inode)->ordered_tree; 336 node = &entry->rb_node; 337 rb_erase(node, &tree->tree); 338 tree->last = NULL; 339 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 340 341 spin_lock(&root->fs_info->ordered_extent_lock); 342 list_del_init(&entry->root_extent_list); 343 344 /* 345 * we have no more ordered extents for this inode and 346 * no dirty pages. We can safely remove it from the 347 * list of ordered extents 348 */ 349 if (RB_EMPTY_ROOT(&tree->tree) && 350 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 351 list_del_init(&BTRFS_I(inode)->ordered_operations); 352 } 353 spin_unlock(&root->fs_info->ordered_extent_lock); 354 355 return 0; 356 } 357 358 /* 359 * remove an ordered extent from the tree. No references are dropped 360 * but any waiters are woken. 361 */ 362 int btrfs_remove_ordered_extent(struct inode *inode, 363 struct btrfs_ordered_extent *entry) 364 { 365 struct btrfs_ordered_inode_tree *tree; 366 int ret; 367 368 tree = &BTRFS_I(inode)->ordered_tree; 369 spin_lock(&tree->lock); 370 ret = __btrfs_remove_ordered_extent(inode, entry); 371 spin_unlock(&tree->lock); 372 wake_up(&entry->wait); 373 374 return ret; 375 } 376 377 /* 378 * wait for all the ordered extents in a root. This is done when balancing 379 * space between drives. 380 */ 381 int btrfs_wait_ordered_extents(struct btrfs_root *root, 382 int nocow_only, int delay_iput) 383 { 384 struct list_head splice; 385 struct list_head *cur; 386 struct btrfs_ordered_extent *ordered; 387 struct inode *inode; 388 389 INIT_LIST_HEAD(&splice); 390 391 spin_lock(&root->fs_info->ordered_extent_lock); 392 list_splice_init(&root->fs_info->ordered_extents, &splice); 393 while (!list_empty(&splice)) { 394 cur = splice.next; 395 ordered = list_entry(cur, struct btrfs_ordered_extent, 396 root_extent_list); 397 if (nocow_only && 398 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && 399 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 400 list_move(&ordered->root_extent_list, 401 &root->fs_info->ordered_extents); 402 cond_resched_lock(&root->fs_info->ordered_extent_lock); 403 continue; 404 } 405 406 list_del_init(&ordered->root_extent_list); 407 atomic_inc(&ordered->refs); 408 409 /* 410 * the inode may be getting freed (in sys_unlink path). 411 */ 412 inode = igrab(ordered->inode); 413 414 spin_unlock(&root->fs_info->ordered_extent_lock); 415 416 if (inode) { 417 btrfs_start_ordered_extent(inode, ordered, 1); 418 btrfs_put_ordered_extent(ordered); 419 if (delay_iput) 420 btrfs_add_delayed_iput(inode); 421 else 422 iput(inode); 423 } else { 424 btrfs_put_ordered_extent(ordered); 425 } 426 427 spin_lock(&root->fs_info->ordered_extent_lock); 428 } 429 spin_unlock(&root->fs_info->ordered_extent_lock); 430 return 0; 431 } 432 433 /* 434 * this is used during transaction commit to write all the inodes 435 * added to the ordered operation list. These files must be fully on 436 * disk before the transaction commits. 437 * 438 * we have two modes here, one is to just start the IO via filemap_flush 439 * and the other is to wait for all the io. When we wait, we have an 440 * extra check to make sure the ordered operation list really is empty 441 * before we return 442 */ 443 int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) 444 { 445 struct btrfs_inode *btrfs_inode; 446 struct inode *inode; 447 struct list_head splice; 448 449 INIT_LIST_HEAD(&splice); 450 451 mutex_lock(&root->fs_info->ordered_operations_mutex); 452 spin_lock(&root->fs_info->ordered_extent_lock); 453 again: 454 list_splice_init(&root->fs_info->ordered_operations, &splice); 455 456 while (!list_empty(&splice)) { 457 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 458 ordered_operations); 459 460 inode = &btrfs_inode->vfs_inode; 461 462 list_del_init(&btrfs_inode->ordered_operations); 463 464 /* 465 * the inode may be getting freed (in sys_unlink path). 466 */ 467 inode = igrab(inode); 468 469 if (!wait && inode) { 470 list_add_tail(&BTRFS_I(inode)->ordered_operations, 471 &root->fs_info->ordered_operations); 472 } 473 spin_unlock(&root->fs_info->ordered_extent_lock); 474 475 if (inode) { 476 if (wait) 477 btrfs_wait_ordered_range(inode, 0, (u64)-1); 478 else 479 filemap_flush(inode->i_mapping); 480 btrfs_add_delayed_iput(inode); 481 } 482 483 cond_resched(); 484 spin_lock(&root->fs_info->ordered_extent_lock); 485 } 486 if (wait && !list_empty(&root->fs_info->ordered_operations)) 487 goto again; 488 489 spin_unlock(&root->fs_info->ordered_extent_lock); 490 mutex_unlock(&root->fs_info->ordered_operations_mutex); 491 492 return 0; 493 } 494 495 /* 496 * Used to start IO or wait for a given ordered extent to finish. 497 * 498 * If wait is one, this effectively waits on page writeback for all the pages 499 * in the extent, and it waits on the io completion code to insert 500 * metadata into the btree corresponding to the extent 501 */ 502 void btrfs_start_ordered_extent(struct inode *inode, 503 struct btrfs_ordered_extent *entry, 504 int wait) 505 { 506 u64 start = entry->file_offset; 507 u64 end = start + entry->len - 1; 508 509 /* 510 * pages in the range can be dirty, clean or writeback. We 511 * start IO on any dirty ones so the wait doesn't stall waiting 512 * for pdflush to find them 513 */ 514 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 515 filemap_fdatawrite_range(inode->i_mapping, start, end); 516 if (wait) { 517 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 518 &entry->flags)); 519 } 520 } 521 522 /* 523 * Used to wait on ordered extents across a large range of bytes. 524 */ 525 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 526 { 527 u64 end; 528 u64 orig_end; 529 u64 wait_end; 530 struct btrfs_ordered_extent *ordered; 531 int found; 532 533 if (start + len < start) { 534 orig_end = INT_LIMIT(loff_t); 535 } else { 536 orig_end = start + len - 1; 537 if (orig_end > INT_LIMIT(loff_t)) 538 orig_end = INT_LIMIT(loff_t); 539 } 540 wait_end = orig_end; 541 again: 542 /* start IO across the range first to instantiate any delalloc 543 * extents 544 */ 545 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 546 547 /* The compression code will leave pages locked but return from 548 * writepage without setting the page writeback. Starting again 549 * with WB_SYNC_ALL will end up waiting for the IO to actually start. 550 */ 551 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 552 553 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 554 555 end = orig_end; 556 found = 0; 557 while (1) { 558 ordered = btrfs_lookup_first_ordered_extent(inode, end); 559 if (!ordered) 560 break; 561 if (ordered->file_offset > orig_end) { 562 btrfs_put_ordered_extent(ordered); 563 break; 564 } 565 if (ordered->file_offset + ordered->len < start) { 566 btrfs_put_ordered_extent(ordered); 567 break; 568 } 569 found++; 570 btrfs_start_ordered_extent(inode, ordered, 1); 571 end = ordered->file_offset; 572 btrfs_put_ordered_extent(ordered); 573 if (end == 0 || end == start) 574 break; 575 end--; 576 } 577 if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, 578 EXTENT_DELALLOC, 0, NULL)) { 579 schedule_timeout(1); 580 goto again; 581 } 582 return 0; 583 } 584 585 /* 586 * find an ordered extent corresponding to file_offset. return NULL if 587 * nothing is found, otherwise take a reference on the extent and return it 588 */ 589 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 590 u64 file_offset) 591 { 592 struct btrfs_ordered_inode_tree *tree; 593 struct rb_node *node; 594 struct btrfs_ordered_extent *entry = NULL; 595 596 tree = &BTRFS_I(inode)->ordered_tree; 597 spin_lock(&tree->lock); 598 node = tree_search(tree, file_offset); 599 if (!node) 600 goto out; 601 602 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 603 if (!offset_in_entry(entry, file_offset)) 604 entry = NULL; 605 if (entry) 606 atomic_inc(&entry->refs); 607 out: 608 spin_unlock(&tree->lock); 609 return entry; 610 } 611 612 /* Since the DIO code tries to lock a wide area we need to look for any ordered 613 * extents that exist in the range, rather than just the start of the range. 614 */ 615 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 616 u64 file_offset, 617 u64 len) 618 { 619 struct btrfs_ordered_inode_tree *tree; 620 struct rb_node *node; 621 struct btrfs_ordered_extent *entry = NULL; 622 623 tree = &BTRFS_I(inode)->ordered_tree; 624 spin_lock(&tree->lock); 625 node = tree_search(tree, file_offset); 626 if (!node) { 627 node = tree_search(tree, file_offset + len); 628 if (!node) 629 goto out; 630 } 631 632 while (1) { 633 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 634 if (range_overlaps(entry, file_offset, len)) 635 break; 636 637 if (entry->file_offset >= file_offset + len) { 638 entry = NULL; 639 break; 640 } 641 entry = NULL; 642 node = rb_next(node); 643 if (!node) 644 break; 645 } 646 out: 647 if (entry) 648 atomic_inc(&entry->refs); 649 spin_unlock(&tree->lock); 650 return entry; 651 } 652 653 /* 654 * lookup and return any extent before 'file_offset'. NULL is returned 655 * if none is found 656 */ 657 struct btrfs_ordered_extent * 658 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 659 { 660 struct btrfs_ordered_inode_tree *tree; 661 struct rb_node *node; 662 struct btrfs_ordered_extent *entry = NULL; 663 664 tree = &BTRFS_I(inode)->ordered_tree; 665 spin_lock(&tree->lock); 666 node = tree_search(tree, file_offset); 667 if (!node) 668 goto out; 669 670 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 671 atomic_inc(&entry->refs); 672 out: 673 spin_unlock(&tree->lock); 674 return entry; 675 } 676 677 /* 678 * After an extent is done, call this to conditionally update the on disk 679 * i_size. i_size is updated to cover any fully written part of the file. 680 */ 681 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 682 struct btrfs_ordered_extent *ordered) 683 { 684 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 685 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 686 u64 disk_i_size; 687 u64 new_i_size; 688 u64 i_size_test; 689 u64 i_size = i_size_read(inode); 690 struct rb_node *node; 691 struct rb_node *prev = NULL; 692 struct btrfs_ordered_extent *test; 693 int ret = 1; 694 695 if (ordered) 696 offset = entry_end(ordered); 697 else 698 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 699 700 spin_lock(&tree->lock); 701 disk_i_size = BTRFS_I(inode)->disk_i_size; 702 703 /* truncate file */ 704 if (disk_i_size > i_size) { 705 BTRFS_I(inode)->disk_i_size = i_size; 706 ret = 0; 707 goto out; 708 } 709 710 /* 711 * if the disk i_size is already at the inode->i_size, or 712 * this ordered extent is inside the disk i_size, we're done 713 */ 714 if (disk_i_size == i_size || offset <= disk_i_size) { 715 goto out; 716 } 717 718 /* 719 * we can't update the disk_isize if there are delalloc bytes 720 * between disk_i_size and this ordered extent 721 */ 722 if (test_range_bit(io_tree, disk_i_size, offset - 1, 723 EXTENT_DELALLOC, 0, NULL)) { 724 goto out; 725 } 726 /* 727 * walk backward from this ordered extent to disk_i_size. 728 * if we find an ordered extent then we can't update disk i_size 729 * yet 730 */ 731 if (ordered) { 732 node = rb_prev(&ordered->rb_node); 733 } else { 734 prev = tree_search(tree, offset); 735 /* 736 * we insert file extents without involving ordered struct, 737 * so there should be no ordered struct cover this offset 738 */ 739 if (prev) { 740 test = rb_entry(prev, struct btrfs_ordered_extent, 741 rb_node); 742 BUG_ON(offset_in_entry(test, offset)); 743 } 744 node = prev; 745 } 746 while (node) { 747 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 748 if (test->file_offset + test->len <= disk_i_size) 749 break; 750 if (test->file_offset >= i_size) 751 break; 752 if (test->file_offset >= disk_i_size) 753 goto out; 754 node = rb_prev(node); 755 } 756 new_i_size = min_t(u64, offset, i_size); 757 758 /* 759 * at this point, we know we can safely update i_size to at least 760 * the offset from this ordered extent. But, we need to 761 * walk forward and see if ios from higher up in the file have 762 * finished. 763 */ 764 if (ordered) { 765 node = rb_next(&ordered->rb_node); 766 } else { 767 if (prev) 768 node = rb_next(prev); 769 else 770 node = rb_first(&tree->tree); 771 } 772 i_size_test = 0; 773 if (node) { 774 /* 775 * do we have an area where IO might have finished 776 * between our ordered extent and the next one. 777 */ 778 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 779 if (test->file_offset > offset) 780 i_size_test = test->file_offset; 781 } else { 782 i_size_test = i_size; 783 } 784 785 /* 786 * i_size_test is the end of a region after this ordered 787 * extent where there are no ordered extents. As long as there 788 * are no delalloc bytes in this area, it is safe to update 789 * disk_i_size to the end of the region. 790 */ 791 if (i_size_test > offset && 792 !test_range_bit(io_tree, offset, i_size_test - 1, 793 EXTENT_DELALLOC, 0, NULL)) { 794 new_i_size = min_t(u64, i_size_test, i_size); 795 } 796 BTRFS_I(inode)->disk_i_size = new_i_size; 797 ret = 0; 798 out: 799 /* 800 * we need to remove the ordered extent with the tree lock held 801 * so that other people calling this function don't find our fully 802 * processed ordered entry and skip updating the i_size 803 */ 804 if (ordered) 805 __btrfs_remove_ordered_extent(inode, ordered); 806 spin_unlock(&tree->lock); 807 if (ordered) 808 wake_up(&ordered->wait); 809 return ret; 810 } 811 812 /* 813 * search the ordered extents for one corresponding to 'offset' and 814 * try to find a checksum. This is used because we allow pages to 815 * be reclaimed before their checksum is actually put into the btree 816 */ 817 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 818 u32 *sum) 819 { 820 struct btrfs_ordered_sum *ordered_sum; 821 struct btrfs_sector_sum *sector_sums; 822 struct btrfs_ordered_extent *ordered; 823 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 824 unsigned long num_sectors; 825 unsigned long i; 826 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 827 int ret = 1; 828 829 ordered = btrfs_lookup_ordered_extent(inode, offset); 830 if (!ordered) 831 return 1; 832 833 spin_lock(&tree->lock); 834 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 835 if (disk_bytenr >= ordered_sum->bytenr) { 836 num_sectors = ordered_sum->len / sectorsize; 837 sector_sums = ordered_sum->sums; 838 for (i = 0; i < num_sectors; i++) { 839 if (sector_sums[i].bytenr == disk_bytenr) { 840 *sum = sector_sums[i].sum; 841 ret = 0; 842 goto out; 843 } 844 } 845 } 846 } 847 out: 848 spin_unlock(&tree->lock); 849 btrfs_put_ordered_extent(ordered); 850 return ret; 851 } 852 853 854 /* 855 * add a given inode to the list of inodes that must be fully on 856 * disk before a transaction commit finishes. 857 * 858 * This basically gives us the ext3 style data=ordered mode, and it is mostly 859 * used to make sure renamed files are fully on disk. 860 * 861 * It is a noop if the inode is already fully on disk. 862 * 863 * If trans is not null, we'll do a friendly check for a transaction that 864 * is already flushing things and force the IO down ourselves. 865 */ 866 int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 867 struct btrfs_root *root, 868 struct inode *inode) 869 { 870 u64 last_mod; 871 872 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 873 874 /* 875 * if this file hasn't been changed since the last transaction 876 * commit, we can safely return without doing anything 877 */ 878 if (last_mod < root->fs_info->last_trans_committed) 879 return 0; 880 881 /* 882 * the transaction is already committing. Just start the IO and 883 * don't bother with all of this list nonsense 884 */ 885 if (trans && root->fs_info->running_transaction->blocked) { 886 btrfs_wait_ordered_range(inode, 0, (u64)-1); 887 return 0; 888 } 889 890 spin_lock(&root->fs_info->ordered_extent_lock); 891 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 892 list_add_tail(&BTRFS_I(inode)->ordered_operations, 893 &root->fs_info->ordered_operations); 894 } 895 spin_unlock(&root->fs_info->ordered_extent_lock); 896 897 return 0; 898 } 899