xref: /linux/fs/btrfs/messages.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "fs.h"
4 #include "messages.h"
5 #include "discard.h"
6 #include "super.h"
7 
8 #ifdef CONFIG_PRINTK
9 
10 #define STATE_STRING_PREFACE	" state "
11 #define STATE_STRING_BUF_LEN	(sizeof(STATE_STRING_PREFACE) + BTRFS_FS_STATE_COUNT + 1)
12 
13 /*
14  * Characters to print to indicate error conditions or uncommon filesystem state.
15  * RO is not an error.
16  */
17 static const char fs_state_chars[] = {
18 	[BTRFS_FS_STATE_REMOUNTING]		= 'M',
19 	[BTRFS_FS_STATE_RO]			= 0,
20 	[BTRFS_FS_STATE_TRANS_ABORTED]		= 'A',
21 	[BTRFS_FS_STATE_DEV_REPLACING]		= 'R',
22 	[BTRFS_FS_STATE_DUMMY_FS_INFO]		= 0,
23 	[BTRFS_FS_STATE_NO_DATA_CSUMS]		= 'C',
24 	[BTRFS_FS_STATE_SKIP_META_CSUMS]	= 'S',
25 	[BTRFS_FS_STATE_LOG_CLEANUP_ERROR]	= 'L',
26 };
27 
28 static void btrfs_state_to_string(const struct btrfs_fs_info *info, char *buf)
29 {
30 	unsigned int bit;
31 	bool states_printed = false;
32 	unsigned long fs_state = READ_ONCE(info->fs_state);
33 	char *curr = buf;
34 
35 	memcpy(curr, STATE_STRING_PREFACE, sizeof(STATE_STRING_PREFACE));
36 	curr += sizeof(STATE_STRING_PREFACE) - 1;
37 
38 	if (BTRFS_FS_ERROR(info)) {
39 		*curr++ = 'E';
40 		states_printed = true;
41 	}
42 
43 	for_each_set_bit(bit, &fs_state, sizeof(fs_state)) {
44 		WARN_ON_ONCE(bit >= BTRFS_FS_STATE_COUNT);
45 		if ((bit < BTRFS_FS_STATE_COUNT) && fs_state_chars[bit]) {
46 			*curr++ = fs_state_chars[bit];
47 			states_printed = true;
48 		}
49 	}
50 
51 	/* If no states were printed, reset the buffer */
52 	if (!states_printed)
53 		curr = buf;
54 
55 	*curr++ = 0;
56 }
57 #endif
58 
59 /*
60  * Generally the error codes correspond to their respective errors, but there
61  * are a few special cases.
62  *
63  * EUCLEAN: Any sort of corruption that we encounter.  The tree-checker for
64  *          instance will return EUCLEAN if any of the blocks are corrupted in
65  *          a way that is problematic.  We want to reserve EUCLEAN for these
66  *          sort of corruptions.
67  *
68  * EROFS: If we check BTRFS_FS_STATE_ERROR and fail out with a return error, we
69  *        need to use EROFS for this case.  We will have no idea of the
70  *        original failure, that will have been reported at the time we tripped
71  *        over the error.  Each subsequent error that doesn't have any context
72  *        of the original error should use EROFS when handling BTRFS_FS_STATE_ERROR.
73  */
74 const char * __attribute_const__ btrfs_decode_error(int error)
75 {
76 	char *errstr = "unknown";
77 
78 	switch (error) {
79 	case -ENOENT:		/* -2 */
80 		errstr = "No such entry";
81 		break;
82 	case -EIO:		/* -5 */
83 		errstr = "IO failure";
84 		break;
85 	case -ENOMEM:		/* -12*/
86 		errstr = "Out of memory";
87 		break;
88 	case -EEXIST:		/* -17 */
89 		errstr = "Object already exists";
90 		break;
91 	case -ENOSPC:		/* -28 */
92 		errstr = "No space left";
93 		break;
94 	case -EROFS:		/* -30 */
95 		errstr = "Readonly filesystem";
96 		break;
97 	case -EOPNOTSUPP:	/* -95 */
98 		errstr = "Operation not supported";
99 		break;
100 	case -EUCLEAN:		/* -117 */
101 		errstr = "Filesystem corrupted";
102 		break;
103 	case -EDQUOT:		/* -122 */
104 		errstr = "Quota exceeded";
105 		break;
106 	}
107 
108 	return errstr;
109 }
110 
111 /*
112  * Decodes expected errors from the caller and invokes the appropriate error
113  * response.
114  */
115 __cold
116 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
117 		       unsigned int line, int error, const char *fmt, ...)
118 {
119 	struct super_block *sb = fs_info->sb;
120 #ifdef CONFIG_PRINTK
121 	char statestr[STATE_STRING_BUF_LEN];
122 	const char *errstr;
123 #endif
124 
125 #ifdef CONFIG_PRINTK_INDEX
126 	printk_index_subsys_emit(
127 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s", KERN_CRIT, fmt);
128 #endif
129 
130 	/*
131 	 * Special case: if the error is EROFS, and we're already under
132 	 * SB_RDONLY, then it is safe here.
133 	 */
134 	if (error == -EROFS && sb_rdonly(sb))
135 		return;
136 
137 #ifdef CONFIG_PRINTK
138 	errstr = btrfs_decode_error(error);
139 	btrfs_state_to_string(fs_info, statestr);
140 	if (fmt) {
141 		struct va_format vaf;
142 		va_list args;
143 
144 		va_start(args, fmt);
145 		vaf.fmt = fmt;
146 		vaf.va = &args;
147 
148 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s (%pV)\n",
149 			sb->s_id, statestr, function, line, error, errstr, &vaf);
150 		va_end(args);
151 	} else {
152 		pr_crit("BTRFS: error (device %s%s) in %s:%d: errno=%d %s\n",
153 			sb->s_id, statestr, function, line, error, errstr);
154 	}
155 #endif
156 
157 	/*
158 	 * Today we only save the error info to memory.  Long term we'll also
159 	 * send it down to the disk.
160 	 */
161 	WRITE_ONCE(fs_info->fs_error, error);
162 
163 	/* Don't go through full error handling during mount. */
164 	if (!(sb->s_flags & SB_BORN))
165 		return;
166 
167 	if (sb_rdonly(sb))
168 		return;
169 
170 	btrfs_discard_stop(fs_info);
171 
172 	/* Handle error by forcing the filesystem readonly. */
173 	btrfs_set_sb_rdonly(sb);
174 	btrfs_info(fs_info, "forced readonly");
175 	/*
176 	 * Note that a running device replace operation is not canceled here
177 	 * although there is no way to update the progress. It would add the
178 	 * risk of a deadlock, therefore the canceling is omitted. The only
179 	 * penalty is that some I/O remains active until the procedure
180 	 * completes. The next time when the filesystem is mounted writable
181 	 * again, the device replace operation continues.
182 	 */
183 }
184 
185 #ifdef CONFIG_PRINTK
186 static const char * const logtypes[] = {
187 	"emergency",
188 	"alert",
189 	"critical",
190 	"error",
191 	"warning",
192 	"notice",
193 	"info",
194 	"debug",
195 };
196 
197 /*
198  * Use one ratelimit state per log level so that a flood of less important
199  * messages doesn't cause more important ones to be dropped.
200  */
201 static struct ratelimit_state printk_limits[] = {
202 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
203 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
204 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
205 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
206 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
207 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
208 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
209 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
210 };
211 
212 void __cold _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
213 {
214 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
215 	struct va_format vaf;
216 	va_list args;
217 	int kern_level;
218 	const char *type = logtypes[4];
219 	struct ratelimit_state *ratelimit = &printk_limits[4];
220 
221 #ifdef CONFIG_PRINTK_INDEX
222 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);
223 #endif
224 
225 	va_start(args, fmt);
226 
227 	while ((kern_level = printk_get_level(fmt)) != 0) {
228 		size_t size = printk_skip_level(fmt) - fmt;
229 
230 		if (kern_level >= '0' && kern_level <= '7') {
231 			memcpy(lvl, fmt,  size);
232 			lvl[size] = '\0';
233 			type = logtypes[kern_level - '0'];
234 			ratelimit = &printk_limits[kern_level - '0'];
235 		}
236 		fmt += size;
237 	}
238 
239 	vaf.fmt = fmt;
240 	vaf.va = &args;
241 
242 	/* Do not ratelimit if CONFIG_BTRFS_DEBUG is enabled. */
243 	if (IS_ENABLED(CONFIG_BTRFS_DEBUG) || __ratelimit(ratelimit)) {
244 		if (fs_info) {
245 			char statestr[STATE_STRING_BUF_LEN];
246 
247 			btrfs_state_to_string(fs_info, statestr);
248 			_printk("%sBTRFS %s (device %s%s): %pV\n", lvl, type,
249 				fs_info->sb->s_id, statestr, &vaf);
250 		} else {
251 			_printk("%sBTRFS %s: %pV\n", lvl, type, &vaf);
252 		}
253 	}
254 
255 	va_end(args);
256 }
257 #endif
258 
259 #if BITS_PER_LONG == 32
260 void __cold btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info)
261 {
262 	if (!test_and_set_bit(BTRFS_FS_32BIT_WARN, &fs_info->flags)) {
263 		btrfs_warn(fs_info, "reaching 32bit limit for logical addresses");
264 		btrfs_warn(fs_info,
265 "due to page cache limit on 32bit systems, btrfs can't access metadata at or beyond %lluT",
266 			   BTRFS_32BIT_MAX_FILE_SIZE >> 40);
267 		btrfs_warn(fs_info,
268 			   "please consider upgrading to 64bit kernel/hardware");
269 	}
270 }
271 
272 void __cold btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info)
273 {
274 	if (!test_and_set_bit(BTRFS_FS_32BIT_ERROR, &fs_info->flags)) {
275 		btrfs_err(fs_info, "reached 32bit limit for logical addresses");
276 		btrfs_err(fs_info,
277 "due to page cache limit on 32bit systems, metadata beyond %lluT can't be accessed",
278 			  BTRFS_32BIT_MAX_FILE_SIZE >> 40);
279 		btrfs_err(fs_info,
280 			   "please consider upgrading to 64bit kernel/hardware");
281 	}
282 }
283 #endif
284 
285 /*
286  * Decode unexpected, fatal errors from the caller, issue an alert, and either
287  * panic or BUGs, depending on mount options.
288  */
289 __cold
290 void __btrfs_panic(const struct btrfs_fs_info *fs_info, const char *function,
291 		   unsigned int line, int error, const char *fmt, ...)
292 {
293 	char *s_id = "<unknown>";
294 	const char *errstr;
295 	struct va_format vaf = { .fmt = fmt };
296 	va_list args;
297 
298 	if (fs_info)
299 		s_id = fs_info->sb->s_id;
300 
301 	va_start(args, fmt);
302 	vaf.va = &args;
303 
304 	errstr = btrfs_decode_error(error);
305 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR)))
306 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
307 			s_id, function, line, &vaf, error, errstr);
308 
309 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
310 		   function, line, &vaf, error, errstr);
311 	va_end(args);
312 	/* Caller calls BUG() */
313 }
314