1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/spinlock.h> 9 #include <linux/page-flags.h> 10 #include <asm/bug.h> 11 #include <trace/events/btrfs.h> 12 #include "ctree.h" 13 #include "extent_io.h" 14 #include "locking.h" 15 16 /* 17 * Lockdep class keys for extent_buffer->lock's in this root. For a given 18 * eb, the lockdep key is determined by the btrfs_root it belongs to and 19 * the level the eb occupies in the tree. 20 * 21 * Different roots are used for different purposes and may nest inside each 22 * other and they require separate keysets. As lockdep keys should be 23 * static, assign keysets according to the purpose of the root as indicated 24 * by btrfs_root->root_key.objectid. This ensures that all special purpose 25 * roots have separate keysets. 26 * 27 * Lock-nesting across peer nodes is always done with the immediate parent 28 * node locked thus preventing deadlock. As lockdep doesn't know this, use 29 * subclass to avoid triggering lockdep warning in such cases. 30 * 31 * The key is set by the readpage_end_io_hook after the buffer has passed 32 * csum validation but before the pages are unlocked. It is also set by 33 * btrfs_init_new_buffer on freshly allocated blocks. 34 * 35 * We also add a check to make sure the highest level of the tree is the 36 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 37 * needs update as well. 38 */ 39 #ifdef CONFIG_DEBUG_LOCK_ALLOC 40 #if BTRFS_MAX_LEVEL != 8 41 #error 42 #endif 43 44 #define DEFINE_LEVEL(stem, level) \ 45 .names[level] = "btrfs-" stem "-0" #level, 46 47 #define DEFINE_NAME(stem) \ 48 DEFINE_LEVEL(stem, 0) \ 49 DEFINE_LEVEL(stem, 1) \ 50 DEFINE_LEVEL(stem, 2) \ 51 DEFINE_LEVEL(stem, 3) \ 52 DEFINE_LEVEL(stem, 4) \ 53 DEFINE_LEVEL(stem, 5) \ 54 DEFINE_LEVEL(stem, 6) \ 55 DEFINE_LEVEL(stem, 7) 56 57 static struct btrfs_lockdep_keyset { 58 u64 id; /* root objectid */ 59 /* Longest entry: btrfs-block-group-00 */ 60 char names[BTRFS_MAX_LEVEL][24]; 61 struct lock_class_key keys[BTRFS_MAX_LEVEL]; 62 } btrfs_lockdep_keysets[] = { 63 { .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") }, 64 { .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") }, 65 { .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") }, 66 { .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") }, 67 { .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") }, 68 { .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") }, 69 { .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") }, 70 { .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") }, 71 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") }, 72 { .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") }, 73 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") }, 74 { .id = BTRFS_BLOCK_GROUP_TREE_OBJECTID, DEFINE_NAME("block-group") }, 75 { .id = BTRFS_RAID_STRIPE_TREE_OBJECTID, DEFINE_NAME("raid-stripe") }, 76 { .id = 0, DEFINE_NAME("tree") }, 77 }; 78 79 #undef DEFINE_LEVEL 80 #undef DEFINE_NAME 81 82 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, int level) 83 { 84 struct btrfs_lockdep_keyset *ks; 85 86 ASSERT(level < ARRAY_SIZE(ks->keys)); 87 88 /* Find the matching keyset, id 0 is the default entry */ 89 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 90 if (ks->id == objectid) 91 break; 92 93 lockdep_set_class_and_name(&eb->lock, &ks->keys[level], ks->names[level]); 94 } 95 96 void btrfs_maybe_reset_lockdep_class(struct btrfs_root *root, struct extent_buffer *eb) 97 { 98 if (test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 99 btrfs_set_buffer_lockdep_class(btrfs_root_id(root), 100 eb, btrfs_header_level(eb)); 101 } 102 103 #endif 104 105 #ifdef CONFIG_BTRFS_DEBUG 106 static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) 107 { 108 eb->lock_owner = owner; 109 } 110 #else 111 static void btrfs_set_eb_lock_owner(struct extent_buffer *eb, pid_t owner) { } 112 #endif 113 114 /* 115 * Extent buffer locking 116 * ===================== 117 * 118 * We use a rw_semaphore for tree locking, and the semantics are exactly the 119 * same: 120 * 121 * - reader/writer exclusion 122 * - writer/writer exclusion 123 * - reader/reader sharing 124 * - try-lock semantics for readers and writers 125 * 126 * The rwsem implementation does opportunistic spinning which reduces number of 127 * times the locking task needs to sleep. 128 */ 129 130 /* 131 * btrfs_tree_read_lock_nested - lock extent buffer for read 132 * @eb: the eb to be locked 133 * @nest: the nesting level to be used for lockdep 134 * 135 * This takes the read lock on the extent buffer, using the specified nesting 136 * level for lockdep purposes. 137 */ 138 void btrfs_tree_read_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest) 139 { 140 u64 start_ns = 0; 141 142 if (trace_btrfs_tree_read_lock_enabled()) 143 start_ns = ktime_get_ns(); 144 145 down_read_nested(&eb->lock, nest); 146 trace_btrfs_tree_read_lock(eb, start_ns); 147 } 148 149 /* 150 * Try-lock for read. 151 * 152 * Return 1 if the rwlock has been taken, 0 otherwise 153 */ 154 int btrfs_try_tree_read_lock(struct extent_buffer *eb) 155 { 156 if (down_read_trylock(&eb->lock)) { 157 trace_btrfs_try_tree_read_lock(eb); 158 return 1; 159 } 160 return 0; 161 } 162 163 /* 164 * Release read lock. 165 */ 166 void btrfs_tree_read_unlock(struct extent_buffer *eb) 167 { 168 trace_btrfs_tree_read_unlock(eb); 169 up_read(&eb->lock); 170 } 171 172 /* 173 * Lock eb for write. 174 * 175 * @eb: the eb to lock 176 * @nest: the nesting to use for the lock 177 * 178 * Returns with the eb->lock write locked. 179 */ 180 void btrfs_tree_lock_nested(struct extent_buffer *eb, enum btrfs_lock_nesting nest) 181 __acquires(&eb->lock) 182 { 183 u64 start_ns = 0; 184 185 if (trace_btrfs_tree_lock_enabled()) 186 start_ns = ktime_get_ns(); 187 188 down_write_nested(&eb->lock, nest); 189 btrfs_set_eb_lock_owner(eb, current->pid); 190 trace_btrfs_tree_lock(eb, start_ns); 191 } 192 193 /* 194 * Release the write lock. 195 */ 196 void btrfs_tree_unlock(struct extent_buffer *eb) 197 { 198 trace_btrfs_tree_unlock(eb); 199 btrfs_set_eb_lock_owner(eb, 0); 200 up_write(&eb->lock); 201 } 202 203 /* 204 * This releases any locks held in the path starting at level and going all the 205 * way up to the root. 206 * 207 * btrfs_search_slot will keep the lock held on higher nodes in a few corner 208 * cases, such as COW of the block at slot zero in the node. This ignores 209 * those rules, and it should only be called when there are no more updates to 210 * be done higher up in the tree. 211 */ 212 void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 213 { 214 int i; 215 216 if (path->keep_locks) 217 return; 218 219 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 220 if (!path->nodes[i]) 221 continue; 222 if (!path->locks[i]) 223 continue; 224 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 225 path->locks[i] = 0; 226 } 227 } 228 229 /* 230 * Loop around taking references on and locking the root node of the tree until 231 * we end up with a lock on the root node. 232 * 233 * Return: root extent buffer with write lock held 234 */ 235 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 236 { 237 struct extent_buffer *eb; 238 239 while (1) { 240 eb = btrfs_root_node(root); 241 242 btrfs_maybe_reset_lockdep_class(root, eb); 243 btrfs_tree_lock(eb); 244 if (eb == root->node) 245 break; 246 btrfs_tree_unlock(eb); 247 free_extent_buffer(eb); 248 } 249 return eb; 250 } 251 252 /* 253 * Loop around taking references on and locking the root node of the tree until 254 * we end up with a lock on the root node. 255 * 256 * Return: root extent buffer with read lock held 257 */ 258 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 259 { 260 struct extent_buffer *eb; 261 262 while (1) { 263 eb = btrfs_root_node(root); 264 265 btrfs_maybe_reset_lockdep_class(root, eb); 266 btrfs_tree_read_lock(eb); 267 if (eb == root->node) 268 break; 269 btrfs_tree_read_unlock(eb); 270 free_extent_buffer(eb); 271 } 272 return eb; 273 } 274 275 /* 276 * Loop around taking references on and locking the root node of the tree in 277 * nowait mode until we end up with a lock on the root node or returning to 278 * avoid blocking. 279 * 280 * Return: root extent buffer with read lock held or -EAGAIN. 281 */ 282 struct extent_buffer *btrfs_try_read_lock_root_node(struct btrfs_root *root) 283 { 284 struct extent_buffer *eb; 285 286 while (1) { 287 eb = btrfs_root_node(root); 288 if (!btrfs_try_tree_read_lock(eb)) { 289 free_extent_buffer(eb); 290 return ERR_PTR(-EAGAIN); 291 } 292 if (eb == root->node) 293 break; 294 btrfs_tree_read_unlock(eb); 295 free_extent_buffer(eb); 296 } 297 return eb; 298 } 299 300 /* 301 * DREW locks 302 * ========== 303 * 304 * DREW stands for double-reader-writer-exclusion lock. It's used in situation 305 * where you want to provide A-B exclusion but not AA or BB. 306 * 307 * Currently implementation gives more priority to reader. If a reader and a 308 * writer both race to acquire their respective sides of the lock the writer 309 * would yield its lock as soon as it detects a concurrent reader. Additionally 310 * if there are pending readers no new writers would be allowed to come in and 311 * acquire the lock. 312 */ 313 314 void btrfs_drew_lock_init(struct btrfs_drew_lock *lock) 315 { 316 atomic_set(&lock->readers, 0); 317 atomic_set(&lock->writers, 0); 318 init_waitqueue_head(&lock->pending_readers); 319 init_waitqueue_head(&lock->pending_writers); 320 } 321 322 /* Return true if acquisition is successful, false otherwise */ 323 bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock) 324 { 325 if (atomic_read(&lock->readers)) 326 return false; 327 328 atomic_inc(&lock->writers); 329 330 /* Ensure writers count is updated before we check for pending readers */ 331 smp_mb__after_atomic(); 332 if (atomic_read(&lock->readers)) { 333 btrfs_drew_write_unlock(lock); 334 return false; 335 } 336 337 return true; 338 } 339 340 void btrfs_drew_write_lock(struct btrfs_drew_lock *lock) 341 { 342 while (true) { 343 if (btrfs_drew_try_write_lock(lock)) 344 return; 345 wait_event(lock->pending_writers, !atomic_read(&lock->readers)); 346 } 347 } 348 349 void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock) 350 { 351 /* 352 * atomic_dec_and_test() implies a full barrier, so woken up readers are 353 * guaranteed to see the decrement. 354 */ 355 if (atomic_dec_and_test(&lock->writers)) 356 wake_up(&lock->pending_readers); 357 } 358 359 void btrfs_drew_read_lock(struct btrfs_drew_lock *lock) 360 { 361 atomic_inc(&lock->readers); 362 363 /* 364 * Ensure the pending reader count is perceieved BEFORE this reader 365 * goes to sleep in case of active writers. This guarantees new writers 366 * won't be allowed and that the current reader will be woken up when 367 * the last active writer finishes its jobs. 368 */ 369 smp_mb__after_atomic(); 370 371 wait_event(lock->pending_readers, atomic_read(&lock->writers) == 0); 372 } 373 374 void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock) 375 { 376 /* 377 * atomic_dec_and_test implies a full barrier, so woken up writers 378 * are guaranteed to see the decrement 379 */ 380 if (atomic_dec_and_test(&lock->readers)) 381 wake_up(&lock->pending_writers); 382 } 383