1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 static const struct inode_operations btrfs_dir_inode_operations; 70 static const struct inode_operations btrfs_symlink_inode_operations; 71 static const struct inode_operations btrfs_dir_ro_inode_operations; 72 static const struct inode_operations btrfs_special_inode_operations; 73 static const struct inode_operations btrfs_file_inode_operations; 74 static const struct address_space_operations btrfs_aops; 75 static const struct address_space_operations btrfs_symlink_aops; 76 static const struct file_operations btrfs_dir_file_operations; 77 static struct extent_io_ops btrfs_extent_io_ops; 78 79 static struct kmem_cache *btrfs_inode_cachep; 80 static struct kmem_cache *btrfs_delalloc_work_cachep; 81 struct kmem_cache *btrfs_trans_handle_cachep; 82 struct kmem_cache *btrfs_transaction_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 86 #define S_SHIFT 12 87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 95 }; 96 97 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 98 static int btrfs_truncate(struct inode *inode); 99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 100 static noinline int cow_file_range(struct inode *inode, 101 struct page *locked_page, 102 u64 start, u64 end, int *page_started, 103 unsigned long *nr_written, int unlock); 104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 105 u64 len, u64 orig_start, 106 u64 block_start, u64 block_len, 107 u64 orig_block_len, u64 ram_bytes, 108 int type); 109 110 static int btrfs_dirty_inode(struct inode *inode); 111 112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 113 void btrfs_test_inode_set_ops(struct inode *inode) 114 { 115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 116 } 117 #endif 118 119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 120 struct inode *inode, struct inode *dir, 121 const struct qstr *qstr) 122 { 123 int err; 124 125 err = btrfs_init_acl(trans, inode, dir); 126 if (!err) 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 128 return err; 129 } 130 131 /* 132 * this does all the hard work for inserting an inline extent into 133 * the btree. The caller should have done a btrfs_drop_extents so that 134 * no overlapping inline items exist in the btree 135 */ 136 static int insert_inline_extent(struct btrfs_trans_handle *trans, 137 struct btrfs_path *path, int extent_inserted, 138 struct btrfs_root *root, struct inode *inode, 139 u64 start, size_t size, size_t compressed_size, 140 int compress_type, 141 struct page **compressed_pages) 142 { 143 struct extent_buffer *leaf; 144 struct page *page = NULL; 145 char *kaddr; 146 unsigned long ptr; 147 struct btrfs_file_extent_item *ei; 148 int err = 0; 149 int ret; 150 size_t cur_size = size; 151 unsigned long offset; 152 153 if (compressed_size && compressed_pages) 154 cur_size = compressed_size; 155 156 inode_add_bytes(inode, size); 157 158 if (!extent_inserted) { 159 struct btrfs_key key; 160 size_t datasize; 161 162 key.objectid = btrfs_ino(inode); 163 key.offset = start; 164 key.type = BTRFS_EXTENT_DATA_KEY; 165 166 datasize = btrfs_file_extent_calc_inline_size(cur_size); 167 path->leave_spinning = 1; 168 ret = btrfs_insert_empty_item(trans, root, path, &key, 169 datasize); 170 if (ret) { 171 err = ret; 172 goto fail; 173 } 174 } 175 leaf = path->nodes[0]; 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_file_extent_item); 178 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 180 btrfs_set_file_extent_encryption(leaf, ei, 0); 181 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 182 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 183 ptr = btrfs_file_extent_inline_start(ei); 184 185 if (compress_type != BTRFS_COMPRESS_NONE) { 186 struct page *cpage; 187 int i = 0; 188 while (compressed_size > 0) { 189 cpage = compressed_pages[i]; 190 cur_size = min_t(unsigned long, compressed_size, 191 PAGE_CACHE_SIZE); 192 193 kaddr = kmap_atomic(cpage); 194 write_extent_buffer(leaf, kaddr, ptr, cur_size); 195 kunmap_atomic(kaddr); 196 197 i++; 198 ptr += cur_size; 199 compressed_size -= cur_size; 200 } 201 btrfs_set_file_extent_compression(leaf, ei, 202 compress_type); 203 } else { 204 page = find_get_page(inode->i_mapping, 205 start >> PAGE_CACHE_SHIFT); 206 btrfs_set_file_extent_compression(leaf, ei, 0); 207 kaddr = kmap_atomic(page); 208 offset = start & (PAGE_CACHE_SIZE - 1); 209 write_extent_buffer(leaf, kaddr + offset, ptr, size); 210 kunmap_atomic(kaddr); 211 page_cache_release(page); 212 } 213 btrfs_mark_buffer_dirty(leaf); 214 btrfs_release_path(path); 215 216 /* 217 * we're an inline extent, so nobody can 218 * extend the file past i_size without locking 219 * a page we already have locked. 220 * 221 * We must do any isize and inode updates 222 * before we unlock the pages. Otherwise we 223 * could end up racing with unlink. 224 */ 225 BTRFS_I(inode)->disk_i_size = inode->i_size; 226 ret = btrfs_update_inode(trans, root, inode); 227 228 return ret; 229 fail: 230 return err; 231 } 232 233 234 /* 235 * conditionally insert an inline extent into the file. This 236 * does the checks required to make sure the data is small enough 237 * to fit as an inline extent. 238 */ 239 static noinline int cow_file_range_inline(struct btrfs_root *root, 240 struct inode *inode, u64 start, 241 u64 end, size_t compressed_size, 242 int compress_type, 243 struct page **compressed_pages) 244 { 245 struct btrfs_trans_handle *trans; 246 u64 isize = i_size_read(inode); 247 u64 actual_end = min(end + 1, isize); 248 u64 inline_len = actual_end - start; 249 u64 aligned_end = ALIGN(end, root->sectorsize); 250 u64 data_len = inline_len; 251 int ret; 252 struct btrfs_path *path; 253 int extent_inserted = 0; 254 u32 extent_item_size; 255 256 if (compressed_size) 257 data_len = compressed_size; 258 259 if (start > 0 || 260 actual_end > PAGE_CACHE_SIZE || 261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 262 (!compressed_size && 263 (actual_end & (root->sectorsize - 1)) == 0) || 264 end + 1 < isize || 265 data_len > root->fs_info->max_inline) { 266 return 1; 267 } 268 269 path = btrfs_alloc_path(); 270 if (!path) 271 return -ENOMEM; 272 273 trans = btrfs_join_transaction(root); 274 if (IS_ERR(trans)) { 275 btrfs_free_path(path); 276 return PTR_ERR(trans); 277 } 278 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 279 280 if (compressed_size && compressed_pages) 281 extent_item_size = btrfs_file_extent_calc_inline_size( 282 compressed_size); 283 else 284 extent_item_size = btrfs_file_extent_calc_inline_size( 285 inline_len); 286 287 ret = __btrfs_drop_extents(trans, root, inode, path, 288 start, aligned_end, NULL, 289 1, 1, extent_item_size, &extent_inserted); 290 if (ret) { 291 btrfs_abort_transaction(trans, root, ret); 292 goto out; 293 } 294 295 if (isize > actual_end) 296 inline_len = min_t(u64, isize, actual_end); 297 ret = insert_inline_extent(trans, path, extent_inserted, 298 root, inode, start, 299 inline_len, compressed_size, 300 compress_type, compressed_pages); 301 if (ret && ret != -ENOSPC) { 302 btrfs_abort_transaction(trans, root, ret); 303 goto out; 304 } else if (ret == -ENOSPC) { 305 ret = 1; 306 goto out; 307 } 308 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 310 btrfs_delalloc_release_metadata(inode, end + 1 - start); 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 312 out: 313 /* 314 * Don't forget to free the reserved space, as for inlined extent 315 * it won't count as data extent, free them directly here. 316 * And at reserve time, it's always aligned to page size, so 317 * just free one page here. 318 */ 319 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE); 320 btrfs_free_path(path); 321 btrfs_end_transaction(trans, root); 322 return ret; 323 } 324 325 struct async_extent { 326 u64 start; 327 u64 ram_size; 328 u64 compressed_size; 329 struct page **pages; 330 unsigned long nr_pages; 331 int compress_type; 332 struct list_head list; 333 }; 334 335 struct async_cow { 336 struct inode *inode; 337 struct btrfs_root *root; 338 struct page *locked_page; 339 u64 start; 340 u64 end; 341 struct list_head extents; 342 struct btrfs_work work; 343 }; 344 345 static noinline int add_async_extent(struct async_cow *cow, 346 u64 start, u64 ram_size, 347 u64 compressed_size, 348 struct page **pages, 349 unsigned long nr_pages, 350 int compress_type) 351 { 352 struct async_extent *async_extent; 353 354 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 355 BUG_ON(!async_extent); /* -ENOMEM */ 356 async_extent->start = start; 357 async_extent->ram_size = ram_size; 358 async_extent->compressed_size = compressed_size; 359 async_extent->pages = pages; 360 async_extent->nr_pages = nr_pages; 361 async_extent->compress_type = compress_type; 362 list_add_tail(&async_extent->list, &cow->extents); 363 return 0; 364 } 365 366 static inline int inode_need_compress(struct inode *inode) 367 { 368 struct btrfs_root *root = BTRFS_I(inode)->root; 369 370 /* force compress */ 371 if (btrfs_test_opt(root, FORCE_COMPRESS)) 372 return 1; 373 /* bad compression ratios */ 374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 375 return 0; 376 if (btrfs_test_opt(root, COMPRESS) || 377 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 378 BTRFS_I(inode)->force_compress) 379 return 1; 380 return 0; 381 } 382 383 /* 384 * we create compressed extents in two phases. The first 385 * phase compresses a range of pages that have already been 386 * locked (both pages and state bits are locked). 387 * 388 * This is done inside an ordered work queue, and the compression 389 * is spread across many cpus. The actual IO submission is step 390 * two, and the ordered work queue takes care of making sure that 391 * happens in the same order things were put onto the queue by 392 * writepages and friends. 393 * 394 * If this code finds it can't get good compression, it puts an 395 * entry onto the work queue to write the uncompressed bytes. This 396 * makes sure that both compressed inodes and uncompressed inodes 397 * are written in the same order that the flusher thread sent them 398 * down. 399 */ 400 static noinline void compress_file_range(struct inode *inode, 401 struct page *locked_page, 402 u64 start, u64 end, 403 struct async_cow *async_cow, 404 int *num_added) 405 { 406 struct btrfs_root *root = BTRFS_I(inode)->root; 407 u64 num_bytes; 408 u64 blocksize = root->sectorsize; 409 u64 actual_end; 410 u64 isize = i_size_read(inode); 411 int ret = 0; 412 struct page **pages = NULL; 413 unsigned long nr_pages; 414 unsigned long nr_pages_ret = 0; 415 unsigned long total_compressed = 0; 416 unsigned long total_in = 0; 417 unsigned long max_compressed = 128 * 1024; 418 unsigned long max_uncompressed = 128 * 1024; 419 int i; 420 int will_compress; 421 int compress_type = root->fs_info->compress_type; 422 int redirty = 0; 423 424 /* if this is a small write inside eof, kick off a defrag */ 425 if ((end - start + 1) < 16 * 1024 && 426 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 427 btrfs_add_inode_defrag(NULL, inode); 428 429 actual_end = min_t(u64, isize, end + 1); 430 again: 431 will_compress = 0; 432 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 433 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 434 435 /* 436 * we don't want to send crud past the end of i_size through 437 * compression, that's just a waste of CPU time. So, if the 438 * end of the file is before the start of our current 439 * requested range of bytes, we bail out to the uncompressed 440 * cleanup code that can deal with all of this. 441 * 442 * It isn't really the fastest way to fix things, but this is a 443 * very uncommon corner. 444 */ 445 if (actual_end <= start) 446 goto cleanup_and_bail_uncompressed; 447 448 total_compressed = actual_end - start; 449 450 /* 451 * skip compression for a small file range(<=blocksize) that 452 * isn't an inline extent, since it dosen't save disk space at all. 453 */ 454 if (total_compressed <= blocksize && 455 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 456 goto cleanup_and_bail_uncompressed; 457 458 /* we want to make sure that amount of ram required to uncompress 459 * an extent is reasonable, so we limit the total size in ram 460 * of a compressed extent to 128k. This is a crucial number 461 * because it also controls how easily we can spread reads across 462 * cpus for decompression. 463 * 464 * We also want to make sure the amount of IO required to do 465 * a random read is reasonably small, so we limit the size of 466 * a compressed extent to 128k. 467 */ 468 total_compressed = min(total_compressed, max_uncompressed); 469 num_bytes = ALIGN(end - start + 1, blocksize); 470 num_bytes = max(blocksize, num_bytes); 471 total_in = 0; 472 ret = 0; 473 474 /* 475 * we do compression for mount -o compress and when the 476 * inode has not been flagged as nocompress. This flag can 477 * change at any time if we discover bad compression ratios. 478 */ 479 if (inode_need_compress(inode)) { 480 WARN_ON(pages); 481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 482 if (!pages) { 483 /* just bail out to the uncompressed code */ 484 goto cont; 485 } 486 487 if (BTRFS_I(inode)->force_compress) 488 compress_type = BTRFS_I(inode)->force_compress; 489 490 /* 491 * we need to call clear_page_dirty_for_io on each 492 * page in the range. Otherwise applications with the file 493 * mmap'd can wander in and change the page contents while 494 * we are compressing them. 495 * 496 * If the compression fails for any reason, we set the pages 497 * dirty again later on. 498 */ 499 extent_range_clear_dirty_for_io(inode, start, end); 500 redirty = 1; 501 ret = btrfs_compress_pages(compress_type, 502 inode->i_mapping, start, 503 total_compressed, pages, 504 nr_pages, &nr_pages_ret, 505 &total_in, 506 &total_compressed, 507 max_compressed); 508 509 if (!ret) { 510 unsigned long offset = total_compressed & 511 (PAGE_CACHE_SIZE - 1); 512 struct page *page = pages[nr_pages_ret - 1]; 513 char *kaddr; 514 515 /* zero the tail end of the last page, we might be 516 * sending it down to disk 517 */ 518 if (offset) { 519 kaddr = kmap_atomic(page); 520 memset(kaddr + offset, 0, 521 PAGE_CACHE_SIZE - offset); 522 kunmap_atomic(kaddr); 523 } 524 will_compress = 1; 525 } 526 } 527 cont: 528 if (start == 0) { 529 /* lets try to make an inline extent */ 530 if (ret || total_in < (actual_end - start)) { 531 /* we didn't compress the entire range, try 532 * to make an uncompressed inline extent. 533 */ 534 ret = cow_file_range_inline(root, inode, start, end, 535 0, 0, NULL); 536 } else { 537 /* try making a compressed inline extent */ 538 ret = cow_file_range_inline(root, inode, start, end, 539 total_compressed, 540 compress_type, pages); 541 } 542 if (ret <= 0) { 543 unsigned long clear_flags = EXTENT_DELALLOC | 544 EXTENT_DEFRAG; 545 unsigned long page_error_op; 546 547 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 548 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 549 550 /* 551 * inline extent creation worked or returned error, 552 * we don't need to create any more async work items. 553 * Unlock and free up our temp pages. 554 */ 555 extent_clear_unlock_delalloc(inode, start, end, NULL, 556 clear_flags, PAGE_UNLOCK | 557 PAGE_CLEAR_DIRTY | 558 PAGE_SET_WRITEBACK | 559 page_error_op | 560 PAGE_END_WRITEBACK); 561 goto free_pages_out; 562 } 563 } 564 565 if (will_compress) { 566 /* 567 * we aren't doing an inline extent round the compressed size 568 * up to a block size boundary so the allocator does sane 569 * things 570 */ 571 total_compressed = ALIGN(total_compressed, blocksize); 572 573 /* 574 * one last check to make sure the compression is really a 575 * win, compare the page count read with the blocks on disk 576 */ 577 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 578 if (total_compressed >= total_in) { 579 will_compress = 0; 580 } else { 581 num_bytes = total_in; 582 } 583 } 584 if (!will_compress && pages) { 585 /* 586 * the compression code ran but failed to make things smaller, 587 * free any pages it allocated and our page pointer array 588 */ 589 for (i = 0; i < nr_pages_ret; i++) { 590 WARN_ON(pages[i]->mapping); 591 page_cache_release(pages[i]); 592 } 593 kfree(pages); 594 pages = NULL; 595 total_compressed = 0; 596 nr_pages_ret = 0; 597 598 /* flag the file so we don't compress in the future */ 599 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 600 !(BTRFS_I(inode)->force_compress)) { 601 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 602 } 603 } 604 if (will_compress) { 605 *num_added += 1; 606 607 /* the async work queues will take care of doing actual 608 * allocation on disk for these compressed pages, 609 * and will submit them to the elevator. 610 */ 611 add_async_extent(async_cow, start, num_bytes, 612 total_compressed, pages, nr_pages_ret, 613 compress_type); 614 615 if (start + num_bytes < end) { 616 start += num_bytes; 617 pages = NULL; 618 cond_resched(); 619 goto again; 620 } 621 } else { 622 cleanup_and_bail_uncompressed: 623 /* 624 * No compression, but we still need to write the pages in 625 * the file we've been given so far. redirty the locked 626 * page if it corresponds to our extent and set things up 627 * for the async work queue to run cow_file_range to do 628 * the normal delalloc dance 629 */ 630 if (page_offset(locked_page) >= start && 631 page_offset(locked_page) <= end) { 632 __set_page_dirty_nobuffers(locked_page); 633 /* unlocked later on in the async handlers */ 634 } 635 if (redirty) 636 extent_range_redirty_for_io(inode, start, end); 637 add_async_extent(async_cow, start, end - start + 1, 638 0, NULL, 0, BTRFS_COMPRESS_NONE); 639 *num_added += 1; 640 } 641 642 return; 643 644 free_pages_out: 645 for (i = 0; i < nr_pages_ret; i++) { 646 WARN_ON(pages[i]->mapping); 647 page_cache_release(pages[i]); 648 } 649 kfree(pages); 650 } 651 652 static void free_async_extent_pages(struct async_extent *async_extent) 653 { 654 int i; 655 656 if (!async_extent->pages) 657 return; 658 659 for (i = 0; i < async_extent->nr_pages; i++) { 660 WARN_ON(async_extent->pages[i]->mapping); 661 page_cache_release(async_extent->pages[i]); 662 } 663 kfree(async_extent->pages); 664 async_extent->nr_pages = 0; 665 async_extent->pages = NULL; 666 } 667 668 /* 669 * phase two of compressed writeback. This is the ordered portion 670 * of the code, which only gets called in the order the work was 671 * queued. We walk all the async extents created by compress_file_range 672 * and send them down to the disk. 673 */ 674 static noinline void submit_compressed_extents(struct inode *inode, 675 struct async_cow *async_cow) 676 { 677 struct async_extent *async_extent; 678 u64 alloc_hint = 0; 679 struct btrfs_key ins; 680 struct extent_map *em; 681 struct btrfs_root *root = BTRFS_I(inode)->root; 682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 683 struct extent_io_tree *io_tree; 684 int ret = 0; 685 686 again: 687 while (!list_empty(&async_cow->extents)) { 688 async_extent = list_entry(async_cow->extents.next, 689 struct async_extent, list); 690 list_del(&async_extent->list); 691 692 io_tree = &BTRFS_I(inode)->io_tree; 693 694 retry: 695 /* did the compression code fall back to uncompressed IO? */ 696 if (!async_extent->pages) { 697 int page_started = 0; 698 unsigned long nr_written = 0; 699 700 lock_extent(io_tree, async_extent->start, 701 async_extent->start + 702 async_extent->ram_size - 1); 703 704 /* allocate blocks */ 705 ret = cow_file_range(inode, async_cow->locked_page, 706 async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1, 709 &page_started, &nr_written, 0); 710 711 /* JDM XXX */ 712 713 /* 714 * if page_started, cow_file_range inserted an 715 * inline extent and took care of all the unlocking 716 * and IO for us. Otherwise, we need to submit 717 * all those pages down to the drive. 718 */ 719 if (!page_started && !ret) 720 extent_write_locked_range(io_tree, 721 inode, async_extent->start, 722 async_extent->start + 723 async_extent->ram_size - 1, 724 btrfs_get_extent, 725 WB_SYNC_ALL); 726 else if (ret) 727 unlock_page(async_cow->locked_page); 728 kfree(async_extent); 729 cond_resched(); 730 continue; 731 } 732 733 lock_extent(io_tree, async_extent->start, 734 async_extent->start + async_extent->ram_size - 1); 735 736 ret = btrfs_reserve_extent(root, 737 async_extent->compressed_size, 738 async_extent->compressed_size, 739 0, alloc_hint, &ins, 1, 1); 740 if (ret) { 741 free_async_extent_pages(async_extent); 742 743 if (ret == -ENOSPC) { 744 unlock_extent(io_tree, async_extent->start, 745 async_extent->start + 746 async_extent->ram_size - 1); 747 748 /* 749 * we need to redirty the pages if we decide to 750 * fallback to uncompressed IO, otherwise we 751 * will not submit these pages down to lower 752 * layers. 753 */ 754 extent_range_redirty_for_io(inode, 755 async_extent->start, 756 async_extent->start + 757 async_extent->ram_size - 1); 758 759 goto retry; 760 } 761 goto out_free; 762 } 763 /* 764 * here we're doing allocation and writeback of the 765 * compressed pages 766 */ 767 btrfs_drop_extent_cache(inode, async_extent->start, 768 async_extent->start + 769 async_extent->ram_size - 1, 0); 770 771 em = alloc_extent_map(); 772 if (!em) { 773 ret = -ENOMEM; 774 goto out_free_reserve; 775 } 776 em->start = async_extent->start; 777 em->len = async_extent->ram_size; 778 em->orig_start = em->start; 779 em->mod_start = em->start; 780 em->mod_len = em->len; 781 782 em->block_start = ins.objectid; 783 em->block_len = ins.offset; 784 em->orig_block_len = ins.offset; 785 em->ram_bytes = async_extent->ram_size; 786 em->bdev = root->fs_info->fs_devices->latest_bdev; 787 em->compress_type = async_extent->compress_type; 788 set_bit(EXTENT_FLAG_PINNED, &em->flags); 789 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 790 em->generation = -1; 791 792 while (1) { 793 write_lock(&em_tree->lock); 794 ret = add_extent_mapping(em_tree, em, 1); 795 write_unlock(&em_tree->lock); 796 if (ret != -EEXIST) { 797 free_extent_map(em); 798 break; 799 } 800 btrfs_drop_extent_cache(inode, async_extent->start, 801 async_extent->start + 802 async_extent->ram_size - 1, 0); 803 } 804 805 if (ret) 806 goto out_free_reserve; 807 808 ret = btrfs_add_ordered_extent_compress(inode, 809 async_extent->start, 810 ins.objectid, 811 async_extent->ram_size, 812 ins.offset, 813 BTRFS_ORDERED_COMPRESSED, 814 async_extent->compress_type); 815 if (ret) { 816 btrfs_drop_extent_cache(inode, async_extent->start, 817 async_extent->start + 818 async_extent->ram_size - 1, 0); 819 goto out_free_reserve; 820 } 821 822 /* 823 * clear dirty, set writeback and unlock the pages. 824 */ 825 extent_clear_unlock_delalloc(inode, async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1, 828 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 829 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 830 PAGE_SET_WRITEBACK); 831 ret = btrfs_submit_compressed_write(inode, 832 async_extent->start, 833 async_extent->ram_size, 834 ins.objectid, 835 ins.offset, async_extent->pages, 836 async_extent->nr_pages); 837 if (ret) { 838 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 839 struct page *p = async_extent->pages[0]; 840 const u64 start = async_extent->start; 841 const u64 end = start + async_extent->ram_size - 1; 842 843 p->mapping = inode->i_mapping; 844 tree->ops->writepage_end_io_hook(p, start, end, 845 NULL, 0); 846 p->mapping = NULL; 847 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 848 PAGE_END_WRITEBACK | 849 PAGE_SET_ERROR); 850 free_async_extent_pages(async_extent); 851 } 852 alloc_hint = ins.objectid + ins.offset; 853 kfree(async_extent); 854 cond_resched(); 855 } 856 return; 857 out_free_reserve: 858 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 859 out_free: 860 extent_clear_unlock_delalloc(inode, async_extent->start, 861 async_extent->start + 862 async_extent->ram_size - 1, 863 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 864 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 865 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 866 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 867 PAGE_SET_ERROR); 868 free_async_extent_pages(async_extent); 869 kfree(async_extent); 870 goto again; 871 } 872 873 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 874 u64 num_bytes) 875 { 876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 877 struct extent_map *em; 878 u64 alloc_hint = 0; 879 880 read_lock(&em_tree->lock); 881 em = search_extent_mapping(em_tree, start, num_bytes); 882 if (em) { 883 /* 884 * if block start isn't an actual block number then find the 885 * first block in this inode and use that as a hint. If that 886 * block is also bogus then just don't worry about it. 887 */ 888 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 889 free_extent_map(em); 890 em = search_extent_mapping(em_tree, 0, 0); 891 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 892 alloc_hint = em->block_start; 893 if (em) 894 free_extent_map(em); 895 } else { 896 alloc_hint = em->block_start; 897 free_extent_map(em); 898 } 899 } 900 read_unlock(&em_tree->lock); 901 902 return alloc_hint; 903 } 904 905 /* 906 * when extent_io.c finds a delayed allocation range in the file, 907 * the call backs end up in this code. The basic idea is to 908 * allocate extents on disk for the range, and create ordered data structs 909 * in ram to track those extents. 910 * 911 * locked_page is the page that writepage had locked already. We use 912 * it to make sure we don't do extra locks or unlocks. 913 * 914 * *page_started is set to one if we unlock locked_page and do everything 915 * required to start IO on it. It may be clean and already done with 916 * IO when we return. 917 */ 918 static noinline int cow_file_range(struct inode *inode, 919 struct page *locked_page, 920 u64 start, u64 end, int *page_started, 921 unsigned long *nr_written, 922 int unlock) 923 { 924 struct btrfs_root *root = BTRFS_I(inode)->root; 925 u64 alloc_hint = 0; 926 u64 num_bytes; 927 unsigned long ram_size; 928 u64 disk_num_bytes; 929 u64 cur_alloc_size; 930 u64 blocksize = root->sectorsize; 931 struct btrfs_key ins; 932 struct extent_map *em; 933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 934 int ret = 0; 935 936 if (btrfs_is_free_space_inode(inode)) { 937 WARN_ON_ONCE(1); 938 ret = -EINVAL; 939 goto out_unlock; 940 } 941 942 num_bytes = ALIGN(end - start + 1, blocksize); 943 num_bytes = max(blocksize, num_bytes); 944 disk_num_bytes = num_bytes; 945 946 /* if this is a small write inside eof, kick off defrag */ 947 if (num_bytes < 64 * 1024 && 948 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 949 btrfs_add_inode_defrag(NULL, inode); 950 951 if (start == 0) { 952 /* lets try to make an inline extent */ 953 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 954 NULL); 955 if (ret == 0) { 956 extent_clear_unlock_delalloc(inode, start, end, NULL, 957 EXTENT_LOCKED | EXTENT_DELALLOC | 958 EXTENT_DEFRAG, PAGE_UNLOCK | 959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 960 PAGE_END_WRITEBACK); 961 962 *nr_written = *nr_written + 963 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 964 *page_started = 1; 965 goto out; 966 } else if (ret < 0) { 967 goto out_unlock; 968 } 969 } 970 971 BUG_ON(disk_num_bytes > 972 btrfs_super_total_bytes(root->fs_info->super_copy)); 973 974 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 975 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 976 977 while (disk_num_bytes > 0) { 978 unsigned long op; 979 980 cur_alloc_size = disk_num_bytes; 981 ret = btrfs_reserve_extent(root, cur_alloc_size, 982 root->sectorsize, 0, alloc_hint, 983 &ins, 1, 1); 984 if (ret < 0) 985 goto out_unlock; 986 987 em = alloc_extent_map(); 988 if (!em) { 989 ret = -ENOMEM; 990 goto out_reserve; 991 } 992 em->start = start; 993 em->orig_start = em->start; 994 ram_size = ins.offset; 995 em->len = ins.offset; 996 em->mod_start = em->start; 997 em->mod_len = em->len; 998 999 em->block_start = ins.objectid; 1000 em->block_len = ins.offset; 1001 em->orig_block_len = ins.offset; 1002 em->ram_bytes = ram_size; 1003 em->bdev = root->fs_info->fs_devices->latest_bdev; 1004 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1005 em->generation = -1; 1006 1007 while (1) { 1008 write_lock(&em_tree->lock); 1009 ret = add_extent_mapping(em_tree, em, 1); 1010 write_unlock(&em_tree->lock); 1011 if (ret != -EEXIST) { 1012 free_extent_map(em); 1013 break; 1014 } 1015 btrfs_drop_extent_cache(inode, start, 1016 start + ram_size - 1, 0); 1017 } 1018 if (ret) 1019 goto out_reserve; 1020 1021 cur_alloc_size = ins.offset; 1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1023 ram_size, cur_alloc_size, 0); 1024 if (ret) 1025 goto out_drop_extent_cache; 1026 1027 if (root->root_key.objectid == 1028 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1029 ret = btrfs_reloc_clone_csums(inode, start, 1030 cur_alloc_size); 1031 if (ret) 1032 goto out_drop_extent_cache; 1033 } 1034 1035 if (disk_num_bytes < cur_alloc_size) 1036 break; 1037 1038 /* we're not doing compressed IO, don't unlock the first 1039 * page (which the caller expects to stay locked), don't 1040 * clear any dirty bits and don't set any writeback bits 1041 * 1042 * Do set the Private2 bit so we know this page was properly 1043 * setup for writepage 1044 */ 1045 op = unlock ? PAGE_UNLOCK : 0; 1046 op |= PAGE_SET_PRIVATE2; 1047 1048 extent_clear_unlock_delalloc(inode, start, 1049 start + ram_size - 1, locked_page, 1050 EXTENT_LOCKED | EXTENT_DELALLOC, 1051 op); 1052 disk_num_bytes -= cur_alloc_size; 1053 num_bytes -= cur_alloc_size; 1054 alloc_hint = ins.objectid + ins.offset; 1055 start += cur_alloc_size; 1056 } 1057 out: 1058 return ret; 1059 1060 out_drop_extent_cache: 1061 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1062 out_reserve: 1063 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1064 out_unlock: 1065 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1066 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1067 EXTENT_DELALLOC | EXTENT_DEFRAG, 1068 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1069 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1070 goto out; 1071 } 1072 1073 /* 1074 * work queue call back to started compression on a file and pages 1075 */ 1076 static noinline void async_cow_start(struct btrfs_work *work) 1077 { 1078 struct async_cow *async_cow; 1079 int num_added = 0; 1080 async_cow = container_of(work, struct async_cow, work); 1081 1082 compress_file_range(async_cow->inode, async_cow->locked_page, 1083 async_cow->start, async_cow->end, async_cow, 1084 &num_added); 1085 if (num_added == 0) { 1086 btrfs_add_delayed_iput(async_cow->inode); 1087 async_cow->inode = NULL; 1088 } 1089 } 1090 1091 /* 1092 * work queue call back to submit previously compressed pages 1093 */ 1094 static noinline void async_cow_submit(struct btrfs_work *work) 1095 { 1096 struct async_cow *async_cow; 1097 struct btrfs_root *root; 1098 unsigned long nr_pages; 1099 1100 async_cow = container_of(work, struct async_cow, work); 1101 1102 root = async_cow->root; 1103 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1104 PAGE_CACHE_SHIFT; 1105 1106 /* 1107 * atomic_sub_return implies a barrier for waitqueue_active 1108 */ 1109 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1110 5 * 1024 * 1024 && 1111 waitqueue_active(&root->fs_info->async_submit_wait)) 1112 wake_up(&root->fs_info->async_submit_wait); 1113 1114 if (async_cow->inode) 1115 submit_compressed_extents(async_cow->inode, async_cow); 1116 } 1117 1118 static noinline void async_cow_free(struct btrfs_work *work) 1119 { 1120 struct async_cow *async_cow; 1121 async_cow = container_of(work, struct async_cow, work); 1122 if (async_cow->inode) 1123 btrfs_add_delayed_iput(async_cow->inode); 1124 kfree(async_cow); 1125 } 1126 1127 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1128 u64 start, u64 end, int *page_started, 1129 unsigned long *nr_written) 1130 { 1131 struct async_cow *async_cow; 1132 struct btrfs_root *root = BTRFS_I(inode)->root; 1133 unsigned long nr_pages; 1134 u64 cur_end; 1135 int limit = 10 * 1024 * 1024; 1136 1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1138 1, 0, NULL, GFP_NOFS); 1139 while (start < end) { 1140 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1141 BUG_ON(!async_cow); /* -ENOMEM */ 1142 async_cow->inode = igrab(inode); 1143 async_cow->root = root; 1144 async_cow->locked_page = locked_page; 1145 async_cow->start = start; 1146 1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1148 !btrfs_test_opt(root, FORCE_COMPRESS)) 1149 cur_end = end; 1150 else 1151 cur_end = min(end, start + 512 * 1024 - 1); 1152 1153 async_cow->end = cur_end; 1154 INIT_LIST_HEAD(&async_cow->extents); 1155 1156 btrfs_init_work(&async_cow->work, 1157 btrfs_delalloc_helper, 1158 async_cow_start, async_cow_submit, 1159 async_cow_free); 1160 1161 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1162 PAGE_CACHE_SHIFT; 1163 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1164 1165 btrfs_queue_work(root->fs_info->delalloc_workers, 1166 &async_cow->work); 1167 1168 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1169 wait_event(root->fs_info->async_submit_wait, 1170 (atomic_read(&root->fs_info->async_delalloc_pages) < 1171 limit)); 1172 } 1173 1174 while (atomic_read(&root->fs_info->async_submit_draining) && 1175 atomic_read(&root->fs_info->async_delalloc_pages)) { 1176 wait_event(root->fs_info->async_submit_wait, 1177 (atomic_read(&root->fs_info->async_delalloc_pages) == 1178 0)); 1179 } 1180 1181 *nr_written += nr_pages; 1182 start = cur_end + 1; 1183 } 1184 *page_started = 1; 1185 return 0; 1186 } 1187 1188 static noinline int csum_exist_in_range(struct btrfs_root *root, 1189 u64 bytenr, u64 num_bytes) 1190 { 1191 int ret; 1192 struct btrfs_ordered_sum *sums; 1193 LIST_HEAD(list); 1194 1195 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1196 bytenr + num_bytes - 1, &list, 0); 1197 if (ret == 0 && list_empty(&list)) 1198 return 0; 1199 1200 while (!list_empty(&list)) { 1201 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1202 list_del(&sums->list); 1203 kfree(sums); 1204 } 1205 return 1; 1206 } 1207 1208 /* 1209 * when nowcow writeback call back. This checks for snapshots or COW copies 1210 * of the extents that exist in the file, and COWs the file as required. 1211 * 1212 * If no cow copies or snapshots exist, we write directly to the existing 1213 * blocks on disk 1214 */ 1215 static noinline int run_delalloc_nocow(struct inode *inode, 1216 struct page *locked_page, 1217 u64 start, u64 end, int *page_started, int force, 1218 unsigned long *nr_written) 1219 { 1220 struct btrfs_root *root = BTRFS_I(inode)->root; 1221 struct btrfs_trans_handle *trans; 1222 struct extent_buffer *leaf; 1223 struct btrfs_path *path; 1224 struct btrfs_file_extent_item *fi; 1225 struct btrfs_key found_key; 1226 u64 cow_start; 1227 u64 cur_offset; 1228 u64 extent_end; 1229 u64 extent_offset; 1230 u64 disk_bytenr; 1231 u64 num_bytes; 1232 u64 disk_num_bytes; 1233 u64 ram_bytes; 1234 int extent_type; 1235 int ret, err; 1236 int type; 1237 int nocow; 1238 int check_prev = 1; 1239 bool nolock; 1240 u64 ino = btrfs_ino(inode); 1241 1242 path = btrfs_alloc_path(); 1243 if (!path) { 1244 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1245 EXTENT_LOCKED | EXTENT_DELALLOC | 1246 EXTENT_DO_ACCOUNTING | 1247 EXTENT_DEFRAG, PAGE_UNLOCK | 1248 PAGE_CLEAR_DIRTY | 1249 PAGE_SET_WRITEBACK | 1250 PAGE_END_WRITEBACK); 1251 return -ENOMEM; 1252 } 1253 1254 nolock = btrfs_is_free_space_inode(inode); 1255 1256 if (nolock) 1257 trans = btrfs_join_transaction_nolock(root); 1258 else 1259 trans = btrfs_join_transaction(root); 1260 1261 if (IS_ERR(trans)) { 1262 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1263 EXTENT_LOCKED | EXTENT_DELALLOC | 1264 EXTENT_DO_ACCOUNTING | 1265 EXTENT_DEFRAG, PAGE_UNLOCK | 1266 PAGE_CLEAR_DIRTY | 1267 PAGE_SET_WRITEBACK | 1268 PAGE_END_WRITEBACK); 1269 btrfs_free_path(path); 1270 return PTR_ERR(trans); 1271 } 1272 1273 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1274 1275 cow_start = (u64)-1; 1276 cur_offset = start; 1277 while (1) { 1278 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1279 cur_offset, 0); 1280 if (ret < 0) 1281 goto error; 1282 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1283 leaf = path->nodes[0]; 1284 btrfs_item_key_to_cpu(leaf, &found_key, 1285 path->slots[0] - 1); 1286 if (found_key.objectid == ino && 1287 found_key.type == BTRFS_EXTENT_DATA_KEY) 1288 path->slots[0]--; 1289 } 1290 check_prev = 0; 1291 next_slot: 1292 leaf = path->nodes[0]; 1293 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1294 ret = btrfs_next_leaf(root, path); 1295 if (ret < 0) 1296 goto error; 1297 if (ret > 0) 1298 break; 1299 leaf = path->nodes[0]; 1300 } 1301 1302 nocow = 0; 1303 disk_bytenr = 0; 1304 num_bytes = 0; 1305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1306 1307 if (found_key.objectid > ino || 1308 found_key.type > BTRFS_EXTENT_DATA_KEY || 1309 found_key.offset > end) 1310 break; 1311 1312 if (found_key.offset > cur_offset) { 1313 extent_end = found_key.offset; 1314 extent_type = 0; 1315 goto out_check; 1316 } 1317 1318 fi = btrfs_item_ptr(leaf, path->slots[0], 1319 struct btrfs_file_extent_item); 1320 extent_type = btrfs_file_extent_type(leaf, fi); 1321 1322 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1323 if (extent_type == BTRFS_FILE_EXTENT_REG || 1324 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1325 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1326 extent_offset = btrfs_file_extent_offset(leaf, fi); 1327 extent_end = found_key.offset + 1328 btrfs_file_extent_num_bytes(leaf, fi); 1329 disk_num_bytes = 1330 btrfs_file_extent_disk_num_bytes(leaf, fi); 1331 if (extent_end <= start) { 1332 path->slots[0]++; 1333 goto next_slot; 1334 } 1335 if (disk_bytenr == 0) 1336 goto out_check; 1337 if (btrfs_file_extent_compression(leaf, fi) || 1338 btrfs_file_extent_encryption(leaf, fi) || 1339 btrfs_file_extent_other_encoding(leaf, fi)) 1340 goto out_check; 1341 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1342 goto out_check; 1343 if (btrfs_extent_readonly(root, disk_bytenr)) 1344 goto out_check; 1345 if (btrfs_cross_ref_exist(trans, root, ino, 1346 found_key.offset - 1347 extent_offset, disk_bytenr)) 1348 goto out_check; 1349 disk_bytenr += extent_offset; 1350 disk_bytenr += cur_offset - found_key.offset; 1351 num_bytes = min(end + 1, extent_end) - cur_offset; 1352 /* 1353 * if there are pending snapshots for this root, 1354 * we fall into common COW way. 1355 */ 1356 if (!nolock) { 1357 err = btrfs_start_write_no_snapshoting(root); 1358 if (!err) 1359 goto out_check; 1360 } 1361 /* 1362 * force cow if csum exists in the range. 1363 * this ensure that csum for a given extent are 1364 * either valid or do not exist. 1365 */ 1366 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1367 goto out_check; 1368 nocow = 1; 1369 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1370 extent_end = found_key.offset + 1371 btrfs_file_extent_inline_len(leaf, 1372 path->slots[0], fi); 1373 extent_end = ALIGN(extent_end, root->sectorsize); 1374 } else { 1375 BUG_ON(1); 1376 } 1377 out_check: 1378 if (extent_end <= start) { 1379 path->slots[0]++; 1380 if (!nolock && nocow) 1381 btrfs_end_write_no_snapshoting(root); 1382 goto next_slot; 1383 } 1384 if (!nocow) { 1385 if (cow_start == (u64)-1) 1386 cow_start = cur_offset; 1387 cur_offset = extent_end; 1388 if (cur_offset > end) 1389 break; 1390 path->slots[0]++; 1391 goto next_slot; 1392 } 1393 1394 btrfs_release_path(path); 1395 if (cow_start != (u64)-1) { 1396 ret = cow_file_range(inode, locked_page, 1397 cow_start, found_key.offset - 1, 1398 page_started, nr_written, 1); 1399 if (ret) { 1400 if (!nolock && nocow) 1401 btrfs_end_write_no_snapshoting(root); 1402 goto error; 1403 } 1404 cow_start = (u64)-1; 1405 } 1406 1407 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1408 struct extent_map *em; 1409 struct extent_map_tree *em_tree; 1410 em_tree = &BTRFS_I(inode)->extent_tree; 1411 em = alloc_extent_map(); 1412 BUG_ON(!em); /* -ENOMEM */ 1413 em->start = cur_offset; 1414 em->orig_start = found_key.offset - extent_offset; 1415 em->len = num_bytes; 1416 em->block_len = num_bytes; 1417 em->block_start = disk_bytenr; 1418 em->orig_block_len = disk_num_bytes; 1419 em->ram_bytes = ram_bytes; 1420 em->bdev = root->fs_info->fs_devices->latest_bdev; 1421 em->mod_start = em->start; 1422 em->mod_len = em->len; 1423 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1424 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1425 em->generation = -1; 1426 while (1) { 1427 write_lock(&em_tree->lock); 1428 ret = add_extent_mapping(em_tree, em, 1); 1429 write_unlock(&em_tree->lock); 1430 if (ret != -EEXIST) { 1431 free_extent_map(em); 1432 break; 1433 } 1434 btrfs_drop_extent_cache(inode, em->start, 1435 em->start + em->len - 1, 0); 1436 } 1437 type = BTRFS_ORDERED_PREALLOC; 1438 } else { 1439 type = BTRFS_ORDERED_NOCOW; 1440 } 1441 1442 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1443 num_bytes, num_bytes, type); 1444 BUG_ON(ret); /* -ENOMEM */ 1445 1446 if (root->root_key.objectid == 1447 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1448 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1449 num_bytes); 1450 if (ret) { 1451 if (!nolock && nocow) 1452 btrfs_end_write_no_snapshoting(root); 1453 goto error; 1454 } 1455 } 1456 1457 extent_clear_unlock_delalloc(inode, cur_offset, 1458 cur_offset + num_bytes - 1, 1459 locked_page, EXTENT_LOCKED | 1460 EXTENT_DELALLOC, PAGE_UNLOCK | 1461 PAGE_SET_PRIVATE2); 1462 if (!nolock && nocow) 1463 btrfs_end_write_no_snapshoting(root); 1464 cur_offset = extent_end; 1465 if (cur_offset > end) 1466 break; 1467 } 1468 btrfs_release_path(path); 1469 1470 if (cur_offset <= end && cow_start == (u64)-1) { 1471 cow_start = cur_offset; 1472 cur_offset = end; 1473 } 1474 1475 if (cow_start != (u64)-1) { 1476 ret = cow_file_range(inode, locked_page, cow_start, end, 1477 page_started, nr_written, 1); 1478 if (ret) 1479 goto error; 1480 } 1481 1482 error: 1483 err = btrfs_end_transaction(trans, root); 1484 if (!ret) 1485 ret = err; 1486 1487 if (ret && cur_offset < end) 1488 extent_clear_unlock_delalloc(inode, cur_offset, end, 1489 locked_page, EXTENT_LOCKED | 1490 EXTENT_DELALLOC | EXTENT_DEFRAG | 1491 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1492 PAGE_CLEAR_DIRTY | 1493 PAGE_SET_WRITEBACK | 1494 PAGE_END_WRITEBACK); 1495 btrfs_free_path(path); 1496 return ret; 1497 } 1498 1499 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1500 { 1501 1502 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1503 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1504 return 0; 1505 1506 /* 1507 * @defrag_bytes is a hint value, no spinlock held here, 1508 * if is not zero, it means the file is defragging. 1509 * Force cow if given extent needs to be defragged. 1510 */ 1511 if (BTRFS_I(inode)->defrag_bytes && 1512 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1513 EXTENT_DEFRAG, 0, NULL)) 1514 return 1; 1515 1516 return 0; 1517 } 1518 1519 /* 1520 * extent_io.c call back to do delayed allocation processing 1521 */ 1522 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1523 u64 start, u64 end, int *page_started, 1524 unsigned long *nr_written) 1525 { 1526 int ret; 1527 int force_cow = need_force_cow(inode, start, end); 1528 1529 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1530 ret = run_delalloc_nocow(inode, locked_page, start, end, 1531 page_started, 1, nr_written); 1532 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1533 ret = run_delalloc_nocow(inode, locked_page, start, end, 1534 page_started, 0, nr_written); 1535 } else if (!inode_need_compress(inode)) { 1536 ret = cow_file_range(inode, locked_page, start, end, 1537 page_started, nr_written, 1); 1538 } else { 1539 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1540 &BTRFS_I(inode)->runtime_flags); 1541 ret = cow_file_range_async(inode, locked_page, start, end, 1542 page_started, nr_written); 1543 } 1544 return ret; 1545 } 1546 1547 static void btrfs_split_extent_hook(struct inode *inode, 1548 struct extent_state *orig, u64 split) 1549 { 1550 u64 size; 1551 1552 /* not delalloc, ignore it */ 1553 if (!(orig->state & EXTENT_DELALLOC)) 1554 return; 1555 1556 size = orig->end - orig->start + 1; 1557 if (size > BTRFS_MAX_EXTENT_SIZE) { 1558 u64 num_extents; 1559 u64 new_size; 1560 1561 /* 1562 * See the explanation in btrfs_merge_extent_hook, the same 1563 * applies here, just in reverse. 1564 */ 1565 new_size = orig->end - split + 1; 1566 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1567 BTRFS_MAX_EXTENT_SIZE); 1568 new_size = split - orig->start; 1569 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1570 BTRFS_MAX_EXTENT_SIZE); 1571 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1572 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1573 return; 1574 } 1575 1576 spin_lock(&BTRFS_I(inode)->lock); 1577 BTRFS_I(inode)->outstanding_extents++; 1578 spin_unlock(&BTRFS_I(inode)->lock); 1579 } 1580 1581 /* 1582 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1583 * extents so we can keep track of new extents that are just merged onto old 1584 * extents, such as when we are doing sequential writes, so we can properly 1585 * account for the metadata space we'll need. 1586 */ 1587 static void btrfs_merge_extent_hook(struct inode *inode, 1588 struct extent_state *new, 1589 struct extent_state *other) 1590 { 1591 u64 new_size, old_size; 1592 u64 num_extents; 1593 1594 /* not delalloc, ignore it */ 1595 if (!(other->state & EXTENT_DELALLOC)) 1596 return; 1597 1598 if (new->start > other->start) 1599 new_size = new->end - other->start + 1; 1600 else 1601 new_size = other->end - new->start + 1; 1602 1603 /* we're not bigger than the max, unreserve the space and go */ 1604 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1605 spin_lock(&BTRFS_I(inode)->lock); 1606 BTRFS_I(inode)->outstanding_extents--; 1607 spin_unlock(&BTRFS_I(inode)->lock); 1608 return; 1609 } 1610 1611 /* 1612 * We have to add up either side to figure out how many extents were 1613 * accounted for before we merged into one big extent. If the number of 1614 * extents we accounted for is <= the amount we need for the new range 1615 * then we can return, otherwise drop. Think of it like this 1616 * 1617 * [ 4k][MAX_SIZE] 1618 * 1619 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1620 * need 2 outstanding extents, on one side we have 1 and the other side 1621 * we have 1 so they are == and we can return. But in this case 1622 * 1623 * [MAX_SIZE+4k][MAX_SIZE+4k] 1624 * 1625 * Each range on their own accounts for 2 extents, but merged together 1626 * they are only 3 extents worth of accounting, so we need to drop in 1627 * this case. 1628 */ 1629 old_size = other->end - other->start + 1; 1630 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1631 BTRFS_MAX_EXTENT_SIZE); 1632 old_size = new->end - new->start + 1; 1633 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1634 BTRFS_MAX_EXTENT_SIZE); 1635 1636 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1637 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1638 return; 1639 1640 spin_lock(&BTRFS_I(inode)->lock); 1641 BTRFS_I(inode)->outstanding_extents--; 1642 spin_unlock(&BTRFS_I(inode)->lock); 1643 } 1644 1645 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1646 struct inode *inode) 1647 { 1648 spin_lock(&root->delalloc_lock); 1649 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1650 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1651 &root->delalloc_inodes); 1652 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1653 &BTRFS_I(inode)->runtime_flags); 1654 root->nr_delalloc_inodes++; 1655 if (root->nr_delalloc_inodes == 1) { 1656 spin_lock(&root->fs_info->delalloc_root_lock); 1657 BUG_ON(!list_empty(&root->delalloc_root)); 1658 list_add_tail(&root->delalloc_root, 1659 &root->fs_info->delalloc_roots); 1660 spin_unlock(&root->fs_info->delalloc_root_lock); 1661 } 1662 } 1663 spin_unlock(&root->delalloc_lock); 1664 } 1665 1666 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1667 struct inode *inode) 1668 { 1669 spin_lock(&root->delalloc_lock); 1670 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1671 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1672 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1673 &BTRFS_I(inode)->runtime_flags); 1674 root->nr_delalloc_inodes--; 1675 if (!root->nr_delalloc_inodes) { 1676 spin_lock(&root->fs_info->delalloc_root_lock); 1677 BUG_ON(list_empty(&root->delalloc_root)); 1678 list_del_init(&root->delalloc_root); 1679 spin_unlock(&root->fs_info->delalloc_root_lock); 1680 } 1681 } 1682 spin_unlock(&root->delalloc_lock); 1683 } 1684 1685 /* 1686 * extent_io.c set_bit_hook, used to track delayed allocation 1687 * bytes in this file, and to maintain the list of inodes that 1688 * have pending delalloc work to be done. 1689 */ 1690 static void btrfs_set_bit_hook(struct inode *inode, 1691 struct extent_state *state, unsigned *bits) 1692 { 1693 1694 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1695 WARN_ON(1); 1696 /* 1697 * set_bit and clear bit hooks normally require _irqsave/restore 1698 * but in this case, we are only testing for the DELALLOC 1699 * bit, which is only set or cleared with irqs on 1700 */ 1701 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1702 struct btrfs_root *root = BTRFS_I(inode)->root; 1703 u64 len = state->end + 1 - state->start; 1704 bool do_list = !btrfs_is_free_space_inode(inode); 1705 1706 if (*bits & EXTENT_FIRST_DELALLOC) { 1707 *bits &= ~EXTENT_FIRST_DELALLOC; 1708 } else { 1709 spin_lock(&BTRFS_I(inode)->lock); 1710 BTRFS_I(inode)->outstanding_extents++; 1711 spin_unlock(&BTRFS_I(inode)->lock); 1712 } 1713 1714 /* For sanity tests */ 1715 if (btrfs_test_is_dummy_root(root)) 1716 return; 1717 1718 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1719 root->fs_info->delalloc_batch); 1720 spin_lock(&BTRFS_I(inode)->lock); 1721 BTRFS_I(inode)->delalloc_bytes += len; 1722 if (*bits & EXTENT_DEFRAG) 1723 BTRFS_I(inode)->defrag_bytes += len; 1724 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1725 &BTRFS_I(inode)->runtime_flags)) 1726 btrfs_add_delalloc_inodes(root, inode); 1727 spin_unlock(&BTRFS_I(inode)->lock); 1728 } 1729 } 1730 1731 /* 1732 * extent_io.c clear_bit_hook, see set_bit_hook for why 1733 */ 1734 static void btrfs_clear_bit_hook(struct inode *inode, 1735 struct extent_state *state, 1736 unsigned *bits) 1737 { 1738 u64 len = state->end + 1 - state->start; 1739 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1740 BTRFS_MAX_EXTENT_SIZE); 1741 1742 spin_lock(&BTRFS_I(inode)->lock); 1743 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1744 BTRFS_I(inode)->defrag_bytes -= len; 1745 spin_unlock(&BTRFS_I(inode)->lock); 1746 1747 /* 1748 * set_bit and clear bit hooks normally require _irqsave/restore 1749 * but in this case, we are only testing for the DELALLOC 1750 * bit, which is only set or cleared with irqs on 1751 */ 1752 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1753 struct btrfs_root *root = BTRFS_I(inode)->root; 1754 bool do_list = !btrfs_is_free_space_inode(inode); 1755 1756 if (*bits & EXTENT_FIRST_DELALLOC) { 1757 *bits &= ~EXTENT_FIRST_DELALLOC; 1758 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1759 spin_lock(&BTRFS_I(inode)->lock); 1760 BTRFS_I(inode)->outstanding_extents -= num_extents; 1761 spin_unlock(&BTRFS_I(inode)->lock); 1762 } 1763 1764 /* 1765 * We don't reserve metadata space for space cache inodes so we 1766 * don't need to call dellalloc_release_metadata if there is an 1767 * error. 1768 */ 1769 if (*bits & EXTENT_DO_ACCOUNTING && 1770 root != root->fs_info->tree_root) 1771 btrfs_delalloc_release_metadata(inode, len); 1772 1773 /* For sanity tests. */ 1774 if (btrfs_test_is_dummy_root(root)) 1775 return; 1776 1777 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1778 && do_list && !(state->state & EXTENT_NORESERVE)) 1779 btrfs_free_reserved_data_space_noquota(inode, 1780 state->start, len); 1781 1782 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1783 root->fs_info->delalloc_batch); 1784 spin_lock(&BTRFS_I(inode)->lock); 1785 BTRFS_I(inode)->delalloc_bytes -= len; 1786 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1787 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1788 &BTRFS_I(inode)->runtime_flags)) 1789 btrfs_del_delalloc_inode(root, inode); 1790 spin_unlock(&BTRFS_I(inode)->lock); 1791 } 1792 } 1793 1794 /* 1795 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1796 * we don't create bios that span stripes or chunks 1797 */ 1798 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1799 size_t size, struct bio *bio, 1800 unsigned long bio_flags) 1801 { 1802 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1803 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1804 u64 length = 0; 1805 u64 map_length; 1806 int ret; 1807 1808 if (bio_flags & EXTENT_BIO_COMPRESSED) 1809 return 0; 1810 1811 length = bio->bi_iter.bi_size; 1812 map_length = length; 1813 ret = btrfs_map_block(root->fs_info, rw, logical, 1814 &map_length, NULL, 0); 1815 /* Will always return 0 with map_multi == NULL */ 1816 BUG_ON(ret < 0); 1817 if (map_length < length + size) 1818 return 1; 1819 return 0; 1820 } 1821 1822 /* 1823 * in order to insert checksums into the metadata in large chunks, 1824 * we wait until bio submission time. All the pages in the bio are 1825 * checksummed and sums are attached onto the ordered extent record. 1826 * 1827 * At IO completion time the cums attached on the ordered extent record 1828 * are inserted into the btree 1829 */ 1830 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1831 struct bio *bio, int mirror_num, 1832 unsigned long bio_flags, 1833 u64 bio_offset) 1834 { 1835 struct btrfs_root *root = BTRFS_I(inode)->root; 1836 int ret = 0; 1837 1838 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1839 BUG_ON(ret); /* -ENOMEM */ 1840 return 0; 1841 } 1842 1843 /* 1844 * in order to insert checksums into the metadata in large chunks, 1845 * we wait until bio submission time. All the pages in the bio are 1846 * checksummed and sums are attached onto the ordered extent record. 1847 * 1848 * At IO completion time the cums attached on the ordered extent record 1849 * are inserted into the btree 1850 */ 1851 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1852 int mirror_num, unsigned long bio_flags, 1853 u64 bio_offset) 1854 { 1855 struct btrfs_root *root = BTRFS_I(inode)->root; 1856 int ret; 1857 1858 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1859 if (ret) { 1860 bio->bi_error = ret; 1861 bio_endio(bio); 1862 } 1863 return ret; 1864 } 1865 1866 /* 1867 * extent_io.c submission hook. This does the right thing for csum calculation 1868 * on write, or reading the csums from the tree before a read 1869 */ 1870 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1871 int mirror_num, unsigned long bio_flags, 1872 u64 bio_offset) 1873 { 1874 struct btrfs_root *root = BTRFS_I(inode)->root; 1875 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1876 int ret = 0; 1877 int skip_sum; 1878 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1879 1880 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1881 1882 if (btrfs_is_free_space_inode(inode)) 1883 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1884 1885 if (!(rw & REQ_WRITE)) { 1886 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1887 if (ret) 1888 goto out; 1889 1890 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1891 ret = btrfs_submit_compressed_read(inode, bio, 1892 mirror_num, 1893 bio_flags); 1894 goto out; 1895 } else if (!skip_sum) { 1896 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1897 if (ret) 1898 goto out; 1899 } 1900 goto mapit; 1901 } else if (async && !skip_sum) { 1902 /* csum items have already been cloned */ 1903 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1904 goto mapit; 1905 /* we're doing a write, do the async checksumming */ 1906 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1907 inode, rw, bio, mirror_num, 1908 bio_flags, bio_offset, 1909 __btrfs_submit_bio_start, 1910 __btrfs_submit_bio_done); 1911 goto out; 1912 } else if (!skip_sum) { 1913 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1914 if (ret) 1915 goto out; 1916 } 1917 1918 mapit: 1919 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1920 1921 out: 1922 if (ret < 0) { 1923 bio->bi_error = ret; 1924 bio_endio(bio); 1925 } 1926 return ret; 1927 } 1928 1929 /* 1930 * given a list of ordered sums record them in the inode. This happens 1931 * at IO completion time based on sums calculated at bio submission time. 1932 */ 1933 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1934 struct inode *inode, u64 file_offset, 1935 struct list_head *list) 1936 { 1937 struct btrfs_ordered_sum *sum; 1938 1939 list_for_each_entry(sum, list, list) { 1940 trans->adding_csums = 1; 1941 btrfs_csum_file_blocks(trans, 1942 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1943 trans->adding_csums = 0; 1944 } 1945 return 0; 1946 } 1947 1948 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1949 struct extent_state **cached_state) 1950 { 1951 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1952 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1953 cached_state, GFP_NOFS); 1954 } 1955 1956 /* see btrfs_writepage_start_hook for details on why this is required */ 1957 struct btrfs_writepage_fixup { 1958 struct page *page; 1959 struct btrfs_work work; 1960 }; 1961 1962 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1963 { 1964 struct btrfs_writepage_fixup *fixup; 1965 struct btrfs_ordered_extent *ordered; 1966 struct extent_state *cached_state = NULL; 1967 struct page *page; 1968 struct inode *inode; 1969 u64 page_start; 1970 u64 page_end; 1971 int ret; 1972 1973 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1974 page = fixup->page; 1975 again: 1976 lock_page(page); 1977 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1978 ClearPageChecked(page); 1979 goto out_page; 1980 } 1981 1982 inode = page->mapping->host; 1983 page_start = page_offset(page); 1984 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1985 1986 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1987 &cached_state); 1988 1989 /* already ordered? We're done */ 1990 if (PagePrivate2(page)) 1991 goto out; 1992 1993 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1994 if (ordered) { 1995 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1996 page_end, &cached_state, GFP_NOFS); 1997 unlock_page(page); 1998 btrfs_start_ordered_extent(inode, ordered, 1); 1999 btrfs_put_ordered_extent(ordered); 2000 goto again; 2001 } 2002 2003 ret = btrfs_delalloc_reserve_space(inode, page_start, 2004 PAGE_CACHE_SIZE); 2005 if (ret) { 2006 mapping_set_error(page->mapping, ret); 2007 end_extent_writepage(page, ret, page_start, page_end); 2008 ClearPageChecked(page); 2009 goto out; 2010 } 2011 2012 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2013 ClearPageChecked(page); 2014 set_page_dirty(page); 2015 out: 2016 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2017 &cached_state, GFP_NOFS); 2018 out_page: 2019 unlock_page(page); 2020 page_cache_release(page); 2021 kfree(fixup); 2022 } 2023 2024 /* 2025 * There are a few paths in the higher layers of the kernel that directly 2026 * set the page dirty bit without asking the filesystem if it is a 2027 * good idea. This causes problems because we want to make sure COW 2028 * properly happens and the data=ordered rules are followed. 2029 * 2030 * In our case any range that doesn't have the ORDERED bit set 2031 * hasn't been properly setup for IO. We kick off an async process 2032 * to fix it up. The async helper will wait for ordered extents, set 2033 * the delalloc bit and make it safe to write the page. 2034 */ 2035 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2036 { 2037 struct inode *inode = page->mapping->host; 2038 struct btrfs_writepage_fixup *fixup; 2039 struct btrfs_root *root = BTRFS_I(inode)->root; 2040 2041 /* this page is properly in the ordered list */ 2042 if (TestClearPagePrivate2(page)) 2043 return 0; 2044 2045 if (PageChecked(page)) 2046 return -EAGAIN; 2047 2048 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2049 if (!fixup) 2050 return -EAGAIN; 2051 2052 SetPageChecked(page); 2053 page_cache_get(page); 2054 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2055 btrfs_writepage_fixup_worker, NULL, NULL); 2056 fixup->page = page; 2057 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2058 return -EBUSY; 2059 } 2060 2061 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2062 struct inode *inode, u64 file_pos, 2063 u64 disk_bytenr, u64 disk_num_bytes, 2064 u64 num_bytes, u64 ram_bytes, 2065 u8 compression, u8 encryption, 2066 u16 other_encoding, int extent_type) 2067 { 2068 struct btrfs_root *root = BTRFS_I(inode)->root; 2069 struct btrfs_file_extent_item *fi; 2070 struct btrfs_path *path; 2071 struct extent_buffer *leaf; 2072 struct btrfs_key ins; 2073 int extent_inserted = 0; 2074 int ret; 2075 2076 path = btrfs_alloc_path(); 2077 if (!path) 2078 return -ENOMEM; 2079 2080 /* 2081 * we may be replacing one extent in the tree with another. 2082 * The new extent is pinned in the extent map, and we don't want 2083 * to drop it from the cache until it is completely in the btree. 2084 * 2085 * So, tell btrfs_drop_extents to leave this extent in the cache. 2086 * the caller is expected to unpin it and allow it to be merged 2087 * with the others. 2088 */ 2089 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2090 file_pos + num_bytes, NULL, 0, 2091 1, sizeof(*fi), &extent_inserted); 2092 if (ret) 2093 goto out; 2094 2095 if (!extent_inserted) { 2096 ins.objectid = btrfs_ino(inode); 2097 ins.offset = file_pos; 2098 ins.type = BTRFS_EXTENT_DATA_KEY; 2099 2100 path->leave_spinning = 1; 2101 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2102 sizeof(*fi)); 2103 if (ret) 2104 goto out; 2105 } 2106 leaf = path->nodes[0]; 2107 fi = btrfs_item_ptr(leaf, path->slots[0], 2108 struct btrfs_file_extent_item); 2109 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2110 btrfs_set_file_extent_type(leaf, fi, extent_type); 2111 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2112 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2113 btrfs_set_file_extent_offset(leaf, fi, 0); 2114 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2115 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2116 btrfs_set_file_extent_compression(leaf, fi, compression); 2117 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2118 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2119 2120 btrfs_mark_buffer_dirty(leaf); 2121 btrfs_release_path(path); 2122 2123 inode_add_bytes(inode, num_bytes); 2124 2125 ins.objectid = disk_bytenr; 2126 ins.offset = disk_num_bytes; 2127 ins.type = BTRFS_EXTENT_ITEM_KEY; 2128 ret = btrfs_alloc_reserved_file_extent(trans, root, 2129 root->root_key.objectid, 2130 btrfs_ino(inode), file_pos, 2131 ram_bytes, &ins); 2132 /* 2133 * Release the reserved range from inode dirty range map, as it is 2134 * already moved into delayed_ref_head 2135 */ 2136 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2137 out: 2138 btrfs_free_path(path); 2139 2140 return ret; 2141 } 2142 2143 /* snapshot-aware defrag */ 2144 struct sa_defrag_extent_backref { 2145 struct rb_node node; 2146 struct old_sa_defrag_extent *old; 2147 u64 root_id; 2148 u64 inum; 2149 u64 file_pos; 2150 u64 extent_offset; 2151 u64 num_bytes; 2152 u64 generation; 2153 }; 2154 2155 struct old_sa_defrag_extent { 2156 struct list_head list; 2157 struct new_sa_defrag_extent *new; 2158 2159 u64 extent_offset; 2160 u64 bytenr; 2161 u64 offset; 2162 u64 len; 2163 int count; 2164 }; 2165 2166 struct new_sa_defrag_extent { 2167 struct rb_root root; 2168 struct list_head head; 2169 struct btrfs_path *path; 2170 struct inode *inode; 2171 u64 file_pos; 2172 u64 len; 2173 u64 bytenr; 2174 u64 disk_len; 2175 u8 compress_type; 2176 }; 2177 2178 static int backref_comp(struct sa_defrag_extent_backref *b1, 2179 struct sa_defrag_extent_backref *b2) 2180 { 2181 if (b1->root_id < b2->root_id) 2182 return -1; 2183 else if (b1->root_id > b2->root_id) 2184 return 1; 2185 2186 if (b1->inum < b2->inum) 2187 return -1; 2188 else if (b1->inum > b2->inum) 2189 return 1; 2190 2191 if (b1->file_pos < b2->file_pos) 2192 return -1; 2193 else if (b1->file_pos > b2->file_pos) 2194 return 1; 2195 2196 /* 2197 * [------------------------------] ===> (a range of space) 2198 * |<--->| |<---->| =============> (fs/file tree A) 2199 * |<---------------------------->| ===> (fs/file tree B) 2200 * 2201 * A range of space can refer to two file extents in one tree while 2202 * refer to only one file extent in another tree. 2203 * 2204 * So we may process a disk offset more than one time(two extents in A) 2205 * and locate at the same extent(one extent in B), then insert two same 2206 * backrefs(both refer to the extent in B). 2207 */ 2208 return 0; 2209 } 2210 2211 static void backref_insert(struct rb_root *root, 2212 struct sa_defrag_extent_backref *backref) 2213 { 2214 struct rb_node **p = &root->rb_node; 2215 struct rb_node *parent = NULL; 2216 struct sa_defrag_extent_backref *entry; 2217 int ret; 2218 2219 while (*p) { 2220 parent = *p; 2221 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2222 2223 ret = backref_comp(backref, entry); 2224 if (ret < 0) 2225 p = &(*p)->rb_left; 2226 else 2227 p = &(*p)->rb_right; 2228 } 2229 2230 rb_link_node(&backref->node, parent, p); 2231 rb_insert_color(&backref->node, root); 2232 } 2233 2234 /* 2235 * Note the backref might has changed, and in this case we just return 0. 2236 */ 2237 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2238 void *ctx) 2239 { 2240 struct btrfs_file_extent_item *extent; 2241 struct btrfs_fs_info *fs_info; 2242 struct old_sa_defrag_extent *old = ctx; 2243 struct new_sa_defrag_extent *new = old->new; 2244 struct btrfs_path *path = new->path; 2245 struct btrfs_key key; 2246 struct btrfs_root *root; 2247 struct sa_defrag_extent_backref *backref; 2248 struct extent_buffer *leaf; 2249 struct inode *inode = new->inode; 2250 int slot; 2251 int ret; 2252 u64 extent_offset; 2253 u64 num_bytes; 2254 2255 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2256 inum == btrfs_ino(inode)) 2257 return 0; 2258 2259 key.objectid = root_id; 2260 key.type = BTRFS_ROOT_ITEM_KEY; 2261 key.offset = (u64)-1; 2262 2263 fs_info = BTRFS_I(inode)->root->fs_info; 2264 root = btrfs_read_fs_root_no_name(fs_info, &key); 2265 if (IS_ERR(root)) { 2266 if (PTR_ERR(root) == -ENOENT) 2267 return 0; 2268 WARN_ON(1); 2269 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2270 inum, offset, root_id); 2271 return PTR_ERR(root); 2272 } 2273 2274 key.objectid = inum; 2275 key.type = BTRFS_EXTENT_DATA_KEY; 2276 if (offset > (u64)-1 << 32) 2277 key.offset = 0; 2278 else 2279 key.offset = offset; 2280 2281 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2282 if (WARN_ON(ret < 0)) 2283 return ret; 2284 ret = 0; 2285 2286 while (1) { 2287 cond_resched(); 2288 2289 leaf = path->nodes[0]; 2290 slot = path->slots[0]; 2291 2292 if (slot >= btrfs_header_nritems(leaf)) { 2293 ret = btrfs_next_leaf(root, path); 2294 if (ret < 0) { 2295 goto out; 2296 } else if (ret > 0) { 2297 ret = 0; 2298 goto out; 2299 } 2300 continue; 2301 } 2302 2303 path->slots[0]++; 2304 2305 btrfs_item_key_to_cpu(leaf, &key, slot); 2306 2307 if (key.objectid > inum) 2308 goto out; 2309 2310 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2311 continue; 2312 2313 extent = btrfs_item_ptr(leaf, slot, 2314 struct btrfs_file_extent_item); 2315 2316 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2317 continue; 2318 2319 /* 2320 * 'offset' refers to the exact key.offset, 2321 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2322 * (key.offset - extent_offset). 2323 */ 2324 if (key.offset != offset) 2325 continue; 2326 2327 extent_offset = btrfs_file_extent_offset(leaf, extent); 2328 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2329 2330 if (extent_offset >= old->extent_offset + old->offset + 2331 old->len || extent_offset + num_bytes <= 2332 old->extent_offset + old->offset) 2333 continue; 2334 break; 2335 } 2336 2337 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2338 if (!backref) { 2339 ret = -ENOENT; 2340 goto out; 2341 } 2342 2343 backref->root_id = root_id; 2344 backref->inum = inum; 2345 backref->file_pos = offset; 2346 backref->num_bytes = num_bytes; 2347 backref->extent_offset = extent_offset; 2348 backref->generation = btrfs_file_extent_generation(leaf, extent); 2349 backref->old = old; 2350 backref_insert(&new->root, backref); 2351 old->count++; 2352 out: 2353 btrfs_release_path(path); 2354 WARN_ON(ret); 2355 return ret; 2356 } 2357 2358 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2359 struct new_sa_defrag_extent *new) 2360 { 2361 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2362 struct old_sa_defrag_extent *old, *tmp; 2363 int ret; 2364 2365 new->path = path; 2366 2367 list_for_each_entry_safe(old, tmp, &new->head, list) { 2368 ret = iterate_inodes_from_logical(old->bytenr + 2369 old->extent_offset, fs_info, 2370 path, record_one_backref, 2371 old); 2372 if (ret < 0 && ret != -ENOENT) 2373 return false; 2374 2375 /* no backref to be processed for this extent */ 2376 if (!old->count) { 2377 list_del(&old->list); 2378 kfree(old); 2379 } 2380 } 2381 2382 if (list_empty(&new->head)) 2383 return false; 2384 2385 return true; 2386 } 2387 2388 static int relink_is_mergable(struct extent_buffer *leaf, 2389 struct btrfs_file_extent_item *fi, 2390 struct new_sa_defrag_extent *new) 2391 { 2392 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2393 return 0; 2394 2395 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2396 return 0; 2397 2398 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2399 return 0; 2400 2401 if (btrfs_file_extent_encryption(leaf, fi) || 2402 btrfs_file_extent_other_encoding(leaf, fi)) 2403 return 0; 2404 2405 return 1; 2406 } 2407 2408 /* 2409 * Note the backref might has changed, and in this case we just return 0. 2410 */ 2411 static noinline int relink_extent_backref(struct btrfs_path *path, 2412 struct sa_defrag_extent_backref *prev, 2413 struct sa_defrag_extent_backref *backref) 2414 { 2415 struct btrfs_file_extent_item *extent; 2416 struct btrfs_file_extent_item *item; 2417 struct btrfs_ordered_extent *ordered; 2418 struct btrfs_trans_handle *trans; 2419 struct btrfs_fs_info *fs_info; 2420 struct btrfs_root *root; 2421 struct btrfs_key key; 2422 struct extent_buffer *leaf; 2423 struct old_sa_defrag_extent *old = backref->old; 2424 struct new_sa_defrag_extent *new = old->new; 2425 struct inode *src_inode = new->inode; 2426 struct inode *inode; 2427 struct extent_state *cached = NULL; 2428 int ret = 0; 2429 u64 start; 2430 u64 len; 2431 u64 lock_start; 2432 u64 lock_end; 2433 bool merge = false; 2434 int index; 2435 2436 if (prev && prev->root_id == backref->root_id && 2437 prev->inum == backref->inum && 2438 prev->file_pos + prev->num_bytes == backref->file_pos) 2439 merge = true; 2440 2441 /* step 1: get root */ 2442 key.objectid = backref->root_id; 2443 key.type = BTRFS_ROOT_ITEM_KEY; 2444 key.offset = (u64)-1; 2445 2446 fs_info = BTRFS_I(src_inode)->root->fs_info; 2447 index = srcu_read_lock(&fs_info->subvol_srcu); 2448 2449 root = btrfs_read_fs_root_no_name(fs_info, &key); 2450 if (IS_ERR(root)) { 2451 srcu_read_unlock(&fs_info->subvol_srcu, index); 2452 if (PTR_ERR(root) == -ENOENT) 2453 return 0; 2454 return PTR_ERR(root); 2455 } 2456 2457 if (btrfs_root_readonly(root)) { 2458 srcu_read_unlock(&fs_info->subvol_srcu, index); 2459 return 0; 2460 } 2461 2462 /* step 2: get inode */ 2463 key.objectid = backref->inum; 2464 key.type = BTRFS_INODE_ITEM_KEY; 2465 key.offset = 0; 2466 2467 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2468 if (IS_ERR(inode)) { 2469 srcu_read_unlock(&fs_info->subvol_srcu, index); 2470 return 0; 2471 } 2472 2473 srcu_read_unlock(&fs_info->subvol_srcu, index); 2474 2475 /* step 3: relink backref */ 2476 lock_start = backref->file_pos; 2477 lock_end = backref->file_pos + backref->num_bytes - 1; 2478 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2479 0, &cached); 2480 2481 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2482 if (ordered) { 2483 btrfs_put_ordered_extent(ordered); 2484 goto out_unlock; 2485 } 2486 2487 trans = btrfs_join_transaction(root); 2488 if (IS_ERR(trans)) { 2489 ret = PTR_ERR(trans); 2490 goto out_unlock; 2491 } 2492 2493 key.objectid = backref->inum; 2494 key.type = BTRFS_EXTENT_DATA_KEY; 2495 key.offset = backref->file_pos; 2496 2497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2498 if (ret < 0) { 2499 goto out_free_path; 2500 } else if (ret > 0) { 2501 ret = 0; 2502 goto out_free_path; 2503 } 2504 2505 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2506 struct btrfs_file_extent_item); 2507 2508 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2509 backref->generation) 2510 goto out_free_path; 2511 2512 btrfs_release_path(path); 2513 2514 start = backref->file_pos; 2515 if (backref->extent_offset < old->extent_offset + old->offset) 2516 start += old->extent_offset + old->offset - 2517 backref->extent_offset; 2518 2519 len = min(backref->extent_offset + backref->num_bytes, 2520 old->extent_offset + old->offset + old->len); 2521 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2522 2523 ret = btrfs_drop_extents(trans, root, inode, start, 2524 start + len, 1); 2525 if (ret) 2526 goto out_free_path; 2527 again: 2528 key.objectid = btrfs_ino(inode); 2529 key.type = BTRFS_EXTENT_DATA_KEY; 2530 key.offset = start; 2531 2532 path->leave_spinning = 1; 2533 if (merge) { 2534 struct btrfs_file_extent_item *fi; 2535 u64 extent_len; 2536 struct btrfs_key found_key; 2537 2538 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2539 if (ret < 0) 2540 goto out_free_path; 2541 2542 path->slots[0]--; 2543 leaf = path->nodes[0]; 2544 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2545 2546 fi = btrfs_item_ptr(leaf, path->slots[0], 2547 struct btrfs_file_extent_item); 2548 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2549 2550 if (extent_len + found_key.offset == start && 2551 relink_is_mergable(leaf, fi, new)) { 2552 btrfs_set_file_extent_num_bytes(leaf, fi, 2553 extent_len + len); 2554 btrfs_mark_buffer_dirty(leaf); 2555 inode_add_bytes(inode, len); 2556 2557 ret = 1; 2558 goto out_free_path; 2559 } else { 2560 merge = false; 2561 btrfs_release_path(path); 2562 goto again; 2563 } 2564 } 2565 2566 ret = btrfs_insert_empty_item(trans, root, path, &key, 2567 sizeof(*extent)); 2568 if (ret) { 2569 btrfs_abort_transaction(trans, root, ret); 2570 goto out_free_path; 2571 } 2572 2573 leaf = path->nodes[0]; 2574 item = btrfs_item_ptr(leaf, path->slots[0], 2575 struct btrfs_file_extent_item); 2576 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2577 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2578 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2579 btrfs_set_file_extent_num_bytes(leaf, item, len); 2580 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2581 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2582 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2583 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2584 btrfs_set_file_extent_encryption(leaf, item, 0); 2585 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2586 2587 btrfs_mark_buffer_dirty(leaf); 2588 inode_add_bytes(inode, len); 2589 btrfs_release_path(path); 2590 2591 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2592 new->disk_len, 0, 2593 backref->root_id, backref->inum, 2594 new->file_pos); /* start - extent_offset */ 2595 if (ret) { 2596 btrfs_abort_transaction(trans, root, ret); 2597 goto out_free_path; 2598 } 2599 2600 ret = 1; 2601 out_free_path: 2602 btrfs_release_path(path); 2603 path->leave_spinning = 0; 2604 btrfs_end_transaction(trans, root); 2605 out_unlock: 2606 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2607 &cached, GFP_NOFS); 2608 iput(inode); 2609 return ret; 2610 } 2611 2612 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2613 { 2614 struct old_sa_defrag_extent *old, *tmp; 2615 2616 if (!new) 2617 return; 2618 2619 list_for_each_entry_safe(old, tmp, &new->head, list) { 2620 kfree(old); 2621 } 2622 kfree(new); 2623 } 2624 2625 static void relink_file_extents(struct new_sa_defrag_extent *new) 2626 { 2627 struct btrfs_path *path; 2628 struct sa_defrag_extent_backref *backref; 2629 struct sa_defrag_extent_backref *prev = NULL; 2630 struct inode *inode; 2631 struct btrfs_root *root; 2632 struct rb_node *node; 2633 int ret; 2634 2635 inode = new->inode; 2636 root = BTRFS_I(inode)->root; 2637 2638 path = btrfs_alloc_path(); 2639 if (!path) 2640 return; 2641 2642 if (!record_extent_backrefs(path, new)) { 2643 btrfs_free_path(path); 2644 goto out; 2645 } 2646 btrfs_release_path(path); 2647 2648 while (1) { 2649 node = rb_first(&new->root); 2650 if (!node) 2651 break; 2652 rb_erase(node, &new->root); 2653 2654 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2655 2656 ret = relink_extent_backref(path, prev, backref); 2657 WARN_ON(ret < 0); 2658 2659 kfree(prev); 2660 2661 if (ret == 1) 2662 prev = backref; 2663 else 2664 prev = NULL; 2665 cond_resched(); 2666 } 2667 kfree(prev); 2668 2669 btrfs_free_path(path); 2670 out: 2671 free_sa_defrag_extent(new); 2672 2673 atomic_dec(&root->fs_info->defrag_running); 2674 wake_up(&root->fs_info->transaction_wait); 2675 } 2676 2677 static struct new_sa_defrag_extent * 2678 record_old_file_extents(struct inode *inode, 2679 struct btrfs_ordered_extent *ordered) 2680 { 2681 struct btrfs_root *root = BTRFS_I(inode)->root; 2682 struct btrfs_path *path; 2683 struct btrfs_key key; 2684 struct old_sa_defrag_extent *old; 2685 struct new_sa_defrag_extent *new; 2686 int ret; 2687 2688 new = kmalloc(sizeof(*new), GFP_NOFS); 2689 if (!new) 2690 return NULL; 2691 2692 new->inode = inode; 2693 new->file_pos = ordered->file_offset; 2694 new->len = ordered->len; 2695 new->bytenr = ordered->start; 2696 new->disk_len = ordered->disk_len; 2697 new->compress_type = ordered->compress_type; 2698 new->root = RB_ROOT; 2699 INIT_LIST_HEAD(&new->head); 2700 2701 path = btrfs_alloc_path(); 2702 if (!path) 2703 goto out_kfree; 2704 2705 key.objectid = btrfs_ino(inode); 2706 key.type = BTRFS_EXTENT_DATA_KEY; 2707 key.offset = new->file_pos; 2708 2709 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2710 if (ret < 0) 2711 goto out_free_path; 2712 if (ret > 0 && path->slots[0] > 0) 2713 path->slots[0]--; 2714 2715 /* find out all the old extents for the file range */ 2716 while (1) { 2717 struct btrfs_file_extent_item *extent; 2718 struct extent_buffer *l; 2719 int slot; 2720 u64 num_bytes; 2721 u64 offset; 2722 u64 end; 2723 u64 disk_bytenr; 2724 u64 extent_offset; 2725 2726 l = path->nodes[0]; 2727 slot = path->slots[0]; 2728 2729 if (slot >= btrfs_header_nritems(l)) { 2730 ret = btrfs_next_leaf(root, path); 2731 if (ret < 0) 2732 goto out_free_path; 2733 else if (ret > 0) 2734 break; 2735 continue; 2736 } 2737 2738 btrfs_item_key_to_cpu(l, &key, slot); 2739 2740 if (key.objectid != btrfs_ino(inode)) 2741 break; 2742 if (key.type != BTRFS_EXTENT_DATA_KEY) 2743 break; 2744 if (key.offset >= new->file_pos + new->len) 2745 break; 2746 2747 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2748 2749 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2750 if (key.offset + num_bytes < new->file_pos) 2751 goto next; 2752 2753 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2754 if (!disk_bytenr) 2755 goto next; 2756 2757 extent_offset = btrfs_file_extent_offset(l, extent); 2758 2759 old = kmalloc(sizeof(*old), GFP_NOFS); 2760 if (!old) 2761 goto out_free_path; 2762 2763 offset = max(new->file_pos, key.offset); 2764 end = min(new->file_pos + new->len, key.offset + num_bytes); 2765 2766 old->bytenr = disk_bytenr; 2767 old->extent_offset = extent_offset; 2768 old->offset = offset - key.offset; 2769 old->len = end - offset; 2770 old->new = new; 2771 old->count = 0; 2772 list_add_tail(&old->list, &new->head); 2773 next: 2774 path->slots[0]++; 2775 cond_resched(); 2776 } 2777 2778 btrfs_free_path(path); 2779 atomic_inc(&root->fs_info->defrag_running); 2780 2781 return new; 2782 2783 out_free_path: 2784 btrfs_free_path(path); 2785 out_kfree: 2786 free_sa_defrag_extent(new); 2787 return NULL; 2788 } 2789 2790 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2791 u64 start, u64 len) 2792 { 2793 struct btrfs_block_group_cache *cache; 2794 2795 cache = btrfs_lookup_block_group(root->fs_info, start); 2796 ASSERT(cache); 2797 2798 spin_lock(&cache->lock); 2799 cache->delalloc_bytes -= len; 2800 spin_unlock(&cache->lock); 2801 2802 btrfs_put_block_group(cache); 2803 } 2804 2805 /* as ordered data IO finishes, this gets called so we can finish 2806 * an ordered extent if the range of bytes in the file it covers are 2807 * fully written. 2808 */ 2809 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2810 { 2811 struct inode *inode = ordered_extent->inode; 2812 struct btrfs_root *root = BTRFS_I(inode)->root; 2813 struct btrfs_trans_handle *trans = NULL; 2814 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2815 struct extent_state *cached_state = NULL; 2816 struct new_sa_defrag_extent *new = NULL; 2817 int compress_type = 0; 2818 int ret = 0; 2819 u64 logical_len = ordered_extent->len; 2820 bool nolock; 2821 bool truncated = false; 2822 2823 nolock = btrfs_is_free_space_inode(inode); 2824 2825 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2826 ret = -EIO; 2827 goto out; 2828 } 2829 2830 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2831 ordered_extent->file_offset + 2832 ordered_extent->len - 1); 2833 2834 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2835 truncated = true; 2836 logical_len = ordered_extent->truncated_len; 2837 /* Truncated the entire extent, don't bother adding */ 2838 if (!logical_len) 2839 goto out; 2840 } 2841 2842 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2843 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2844 2845 /* 2846 * For mwrite(mmap + memset to write) case, we still reserve 2847 * space for NOCOW range. 2848 * As NOCOW won't cause a new delayed ref, just free the space 2849 */ 2850 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2851 ordered_extent->len); 2852 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2853 if (nolock) 2854 trans = btrfs_join_transaction_nolock(root); 2855 else 2856 trans = btrfs_join_transaction(root); 2857 if (IS_ERR(trans)) { 2858 ret = PTR_ERR(trans); 2859 trans = NULL; 2860 goto out; 2861 } 2862 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2863 ret = btrfs_update_inode_fallback(trans, root, inode); 2864 if (ret) /* -ENOMEM or corruption */ 2865 btrfs_abort_transaction(trans, root, ret); 2866 goto out; 2867 } 2868 2869 lock_extent_bits(io_tree, ordered_extent->file_offset, 2870 ordered_extent->file_offset + ordered_extent->len - 1, 2871 0, &cached_state); 2872 2873 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2874 ordered_extent->file_offset + ordered_extent->len - 1, 2875 EXTENT_DEFRAG, 1, cached_state); 2876 if (ret) { 2877 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2878 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2879 /* the inode is shared */ 2880 new = record_old_file_extents(inode, ordered_extent); 2881 2882 clear_extent_bit(io_tree, ordered_extent->file_offset, 2883 ordered_extent->file_offset + ordered_extent->len - 1, 2884 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2885 } 2886 2887 if (nolock) 2888 trans = btrfs_join_transaction_nolock(root); 2889 else 2890 trans = btrfs_join_transaction(root); 2891 if (IS_ERR(trans)) { 2892 ret = PTR_ERR(trans); 2893 trans = NULL; 2894 goto out_unlock; 2895 } 2896 2897 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2898 2899 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2900 compress_type = ordered_extent->compress_type; 2901 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2902 BUG_ON(compress_type); 2903 ret = btrfs_mark_extent_written(trans, inode, 2904 ordered_extent->file_offset, 2905 ordered_extent->file_offset + 2906 logical_len); 2907 } else { 2908 BUG_ON(root == root->fs_info->tree_root); 2909 ret = insert_reserved_file_extent(trans, inode, 2910 ordered_extent->file_offset, 2911 ordered_extent->start, 2912 ordered_extent->disk_len, 2913 logical_len, logical_len, 2914 compress_type, 0, 0, 2915 BTRFS_FILE_EXTENT_REG); 2916 if (!ret) 2917 btrfs_release_delalloc_bytes(root, 2918 ordered_extent->start, 2919 ordered_extent->disk_len); 2920 } 2921 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2922 ordered_extent->file_offset, ordered_extent->len, 2923 trans->transid); 2924 if (ret < 0) { 2925 btrfs_abort_transaction(trans, root, ret); 2926 goto out_unlock; 2927 } 2928 2929 add_pending_csums(trans, inode, ordered_extent->file_offset, 2930 &ordered_extent->list); 2931 2932 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2933 ret = btrfs_update_inode_fallback(trans, root, inode); 2934 if (ret) { /* -ENOMEM or corruption */ 2935 btrfs_abort_transaction(trans, root, ret); 2936 goto out_unlock; 2937 } 2938 ret = 0; 2939 out_unlock: 2940 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2941 ordered_extent->file_offset + 2942 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2943 out: 2944 if (root != root->fs_info->tree_root) 2945 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2946 if (trans) 2947 btrfs_end_transaction(trans, root); 2948 2949 if (ret || truncated) { 2950 u64 start, end; 2951 2952 if (truncated) 2953 start = ordered_extent->file_offset + logical_len; 2954 else 2955 start = ordered_extent->file_offset; 2956 end = ordered_extent->file_offset + ordered_extent->len - 1; 2957 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2958 2959 /* Drop the cache for the part of the extent we didn't write. */ 2960 btrfs_drop_extent_cache(inode, start, end, 0); 2961 2962 /* 2963 * If the ordered extent had an IOERR or something else went 2964 * wrong we need to return the space for this ordered extent 2965 * back to the allocator. We only free the extent in the 2966 * truncated case if we didn't write out the extent at all. 2967 */ 2968 if ((ret || !logical_len) && 2969 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2970 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2971 btrfs_free_reserved_extent(root, ordered_extent->start, 2972 ordered_extent->disk_len, 1); 2973 } 2974 2975 2976 /* 2977 * This needs to be done to make sure anybody waiting knows we are done 2978 * updating everything for this ordered extent. 2979 */ 2980 btrfs_remove_ordered_extent(inode, ordered_extent); 2981 2982 /* for snapshot-aware defrag */ 2983 if (new) { 2984 if (ret) { 2985 free_sa_defrag_extent(new); 2986 atomic_dec(&root->fs_info->defrag_running); 2987 } else { 2988 relink_file_extents(new); 2989 } 2990 } 2991 2992 /* once for us */ 2993 btrfs_put_ordered_extent(ordered_extent); 2994 /* once for the tree */ 2995 btrfs_put_ordered_extent(ordered_extent); 2996 2997 return ret; 2998 } 2999 3000 static void finish_ordered_fn(struct btrfs_work *work) 3001 { 3002 struct btrfs_ordered_extent *ordered_extent; 3003 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3004 btrfs_finish_ordered_io(ordered_extent); 3005 } 3006 3007 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3008 struct extent_state *state, int uptodate) 3009 { 3010 struct inode *inode = page->mapping->host; 3011 struct btrfs_root *root = BTRFS_I(inode)->root; 3012 struct btrfs_ordered_extent *ordered_extent = NULL; 3013 struct btrfs_workqueue *wq; 3014 btrfs_work_func_t func; 3015 3016 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3017 3018 ClearPagePrivate2(page); 3019 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3020 end - start + 1, uptodate)) 3021 return 0; 3022 3023 if (btrfs_is_free_space_inode(inode)) { 3024 wq = root->fs_info->endio_freespace_worker; 3025 func = btrfs_freespace_write_helper; 3026 } else { 3027 wq = root->fs_info->endio_write_workers; 3028 func = btrfs_endio_write_helper; 3029 } 3030 3031 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3032 NULL); 3033 btrfs_queue_work(wq, &ordered_extent->work); 3034 3035 return 0; 3036 } 3037 3038 static int __readpage_endio_check(struct inode *inode, 3039 struct btrfs_io_bio *io_bio, 3040 int icsum, struct page *page, 3041 int pgoff, u64 start, size_t len) 3042 { 3043 char *kaddr; 3044 u32 csum_expected; 3045 u32 csum = ~(u32)0; 3046 3047 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3048 3049 kaddr = kmap_atomic(page); 3050 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3051 btrfs_csum_final(csum, (char *)&csum); 3052 if (csum != csum_expected) 3053 goto zeroit; 3054 3055 kunmap_atomic(kaddr); 3056 return 0; 3057 zeroit: 3058 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3059 "csum failed ino %llu off %llu csum %u expected csum %u", 3060 btrfs_ino(inode), start, csum, csum_expected); 3061 memset(kaddr + pgoff, 1, len); 3062 flush_dcache_page(page); 3063 kunmap_atomic(kaddr); 3064 if (csum_expected == 0) 3065 return 0; 3066 return -EIO; 3067 } 3068 3069 /* 3070 * when reads are done, we need to check csums to verify the data is correct 3071 * if there's a match, we allow the bio to finish. If not, the code in 3072 * extent_io.c will try to find good copies for us. 3073 */ 3074 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3075 u64 phy_offset, struct page *page, 3076 u64 start, u64 end, int mirror) 3077 { 3078 size_t offset = start - page_offset(page); 3079 struct inode *inode = page->mapping->host; 3080 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3081 struct btrfs_root *root = BTRFS_I(inode)->root; 3082 3083 if (PageChecked(page)) { 3084 ClearPageChecked(page); 3085 return 0; 3086 } 3087 3088 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3089 return 0; 3090 3091 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3092 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3093 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3094 GFP_NOFS); 3095 return 0; 3096 } 3097 3098 phy_offset >>= inode->i_sb->s_blocksize_bits; 3099 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3100 start, (size_t)(end - start + 1)); 3101 } 3102 3103 struct delayed_iput { 3104 struct list_head list; 3105 struct inode *inode; 3106 }; 3107 3108 /* JDM: If this is fs-wide, why can't we add a pointer to 3109 * btrfs_inode instead and avoid the allocation? */ 3110 void btrfs_add_delayed_iput(struct inode *inode) 3111 { 3112 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3113 struct delayed_iput *delayed; 3114 3115 if (atomic_add_unless(&inode->i_count, -1, 1)) 3116 return; 3117 3118 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 3119 delayed->inode = inode; 3120 3121 spin_lock(&fs_info->delayed_iput_lock); 3122 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 3123 spin_unlock(&fs_info->delayed_iput_lock); 3124 } 3125 3126 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3127 { 3128 LIST_HEAD(list); 3129 struct btrfs_fs_info *fs_info = root->fs_info; 3130 struct delayed_iput *delayed; 3131 int empty; 3132 3133 spin_lock(&fs_info->delayed_iput_lock); 3134 empty = list_empty(&fs_info->delayed_iputs); 3135 spin_unlock(&fs_info->delayed_iput_lock); 3136 if (empty) 3137 return; 3138 3139 down_read(&fs_info->delayed_iput_sem); 3140 3141 spin_lock(&fs_info->delayed_iput_lock); 3142 list_splice_init(&fs_info->delayed_iputs, &list); 3143 spin_unlock(&fs_info->delayed_iput_lock); 3144 3145 while (!list_empty(&list)) { 3146 delayed = list_entry(list.next, struct delayed_iput, list); 3147 list_del(&delayed->list); 3148 iput(delayed->inode); 3149 kfree(delayed); 3150 } 3151 3152 up_read(&root->fs_info->delayed_iput_sem); 3153 } 3154 3155 /* 3156 * This is called in transaction commit time. If there are no orphan 3157 * files in the subvolume, it removes orphan item and frees block_rsv 3158 * structure. 3159 */ 3160 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3161 struct btrfs_root *root) 3162 { 3163 struct btrfs_block_rsv *block_rsv; 3164 int ret; 3165 3166 if (atomic_read(&root->orphan_inodes) || 3167 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3168 return; 3169 3170 spin_lock(&root->orphan_lock); 3171 if (atomic_read(&root->orphan_inodes)) { 3172 spin_unlock(&root->orphan_lock); 3173 return; 3174 } 3175 3176 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3177 spin_unlock(&root->orphan_lock); 3178 return; 3179 } 3180 3181 block_rsv = root->orphan_block_rsv; 3182 root->orphan_block_rsv = NULL; 3183 spin_unlock(&root->orphan_lock); 3184 3185 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3186 btrfs_root_refs(&root->root_item) > 0) { 3187 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3188 root->root_key.objectid); 3189 if (ret) 3190 btrfs_abort_transaction(trans, root, ret); 3191 else 3192 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3193 &root->state); 3194 } 3195 3196 if (block_rsv) { 3197 WARN_ON(block_rsv->size > 0); 3198 btrfs_free_block_rsv(root, block_rsv); 3199 } 3200 } 3201 3202 /* 3203 * This creates an orphan entry for the given inode in case something goes 3204 * wrong in the middle of an unlink/truncate. 3205 * 3206 * NOTE: caller of this function should reserve 5 units of metadata for 3207 * this function. 3208 */ 3209 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3210 { 3211 struct btrfs_root *root = BTRFS_I(inode)->root; 3212 struct btrfs_block_rsv *block_rsv = NULL; 3213 int reserve = 0; 3214 int insert = 0; 3215 int ret; 3216 3217 if (!root->orphan_block_rsv) { 3218 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3219 if (!block_rsv) 3220 return -ENOMEM; 3221 } 3222 3223 spin_lock(&root->orphan_lock); 3224 if (!root->orphan_block_rsv) { 3225 root->orphan_block_rsv = block_rsv; 3226 } else if (block_rsv) { 3227 btrfs_free_block_rsv(root, block_rsv); 3228 block_rsv = NULL; 3229 } 3230 3231 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3232 &BTRFS_I(inode)->runtime_flags)) { 3233 #if 0 3234 /* 3235 * For proper ENOSPC handling, we should do orphan 3236 * cleanup when mounting. But this introduces backward 3237 * compatibility issue. 3238 */ 3239 if (!xchg(&root->orphan_item_inserted, 1)) 3240 insert = 2; 3241 else 3242 insert = 1; 3243 #endif 3244 insert = 1; 3245 atomic_inc(&root->orphan_inodes); 3246 } 3247 3248 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3249 &BTRFS_I(inode)->runtime_flags)) 3250 reserve = 1; 3251 spin_unlock(&root->orphan_lock); 3252 3253 /* grab metadata reservation from transaction handle */ 3254 if (reserve) { 3255 ret = btrfs_orphan_reserve_metadata(trans, inode); 3256 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3257 } 3258 3259 /* insert an orphan item to track this unlinked/truncated file */ 3260 if (insert >= 1) { 3261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3262 if (ret) { 3263 atomic_dec(&root->orphan_inodes); 3264 if (reserve) { 3265 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3266 &BTRFS_I(inode)->runtime_flags); 3267 btrfs_orphan_release_metadata(inode); 3268 } 3269 if (ret != -EEXIST) { 3270 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3271 &BTRFS_I(inode)->runtime_flags); 3272 btrfs_abort_transaction(trans, root, ret); 3273 return ret; 3274 } 3275 } 3276 ret = 0; 3277 } 3278 3279 /* insert an orphan item to track subvolume contains orphan files */ 3280 if (insert >= 2) { 3281 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3282 root->root_key.objectid); 3283 if (ret && ret != -EEXIST) { 3284 btrfs_abort_transaction(trans, root, ret); 3285 return ret; 3286 } 3287 } 3288 return 0; 3289 } 3290 3291 /* 3292 * We have done the truncate/delete so we can go ahead and remove the orphan 3293 * item for this particular inode. 3294 */ 3295 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3296 struct inode *inode) 3297 { 3298 struct btrfs_root *root = BTRFS_I(inode)->root; 3299 int delete_item = 0; 3300 int release_rsv = 0; 3301 int ret = 0; 3302 3303 spin_lock(&root->orphan_lock); 3304 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3305 &BTRFS_I(inode)->runtime_flags)) 3306 delete_item = 1; 3307 3308 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3309 &BTRFS_I(inode)->runtime_flags)) 3310 release_rsv = 1; 3311 spin_unlock(&root->orphan_lock); 3312 3313 if (delete_item) { 3314 atomic_dec(&root->orphan_inodes); 3315 if (trans) 3316 ret = btrfs_del_orphan_item(trans, root, 3317 btrfs_ino(inode)); 3318 } 3319 3320 if (release_rsv) 3321 btrfs_orphan_release_metadata(inode); 3322 3323 return ret; 3324 } 3325 3326 /* 3327 * this cleans up any orphans that may be left on the list from the last use 3328 * of this root. 3329 */ 3330 int btrfs_orphan_cleanup(struct btrfs_root *root) 3331 { 3332 struct btrfs_path *path; 3333 struct extent_buffer *leaf; 3334 struct btrfs_key key, found_key; 3335 struct btrfs_trans_handle *trans; 3336 struct inode *inode; 3337 u64 last_objectid = 0; 3338 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3339 3340 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3341 return 0; 3342 3343 path = btrfs_alloc_path(); 3344 if (!path) { 3345 ret = -ENOMEM; 3346 goto out; 3347 } 3348 path->reada = -1; 3349 3350 key.objectid = BTRFS_ORPHAN_OBJECTID; 3351 key.type = BTRFS_ORPHAN_ITEM_KEY; 3352 key.offset = (u64)-1; 3353 3354 while (1) { 3355 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3356 if (ret < 0) 3357 goto out; 3358 3359 /* 3360 * if ret == 0 means we found what we were searching for, which 3361 * is weird, but possible, so only screw with path if we didn't 3362 * find the key and see if we have stuff that matches 3363 */ 3364 if (ret > 0) { 3365 ret = 0; 3366 if (path->slots[0] == 0) 3367 break; 3368 path->slots[0]--; 3369 } 3370 3371 /* pull out the item */ 3372 leaf = path->nodes[0]; 3373 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3374 3375 /* make sure the item matches what we want */ 3376 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3377 break; 3378 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3379 break; 3380 3381 /* release the path since we're done with it */ 3382 btrfs_release_path(path); 3383 3384 /* 3385 * this is where we are basically btrfs_lookup, without the 3386 * crossing root thing. we store the inode number in the 3387 * offset of the orphan item. 3388 */ 3389 3390 if (found_key.offset == last_objectid) { 3391 btrfs_err(root->fs_info, 3392 "Error removing orphan entry, stopping orphan cleanup"); 3393 ret = -EINVAL; 3394 goto out; 3395 } 3396 3397 last_objectid = found_key.offset; 3398 3399 found_key.objectid = found_key.offset; 3400 found_key.type = BTRFS_INODE_ITEM_KEY; 3401 found_key.offset = 0; 3402 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3403 ret = PTR_ERR_OR_ZERO(inode); 3404 if (ret && ret != -ESTALE) 3405 goto out; 3406 3407 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3408 struct btrfs_root *dead_root; 3409 struct btrfs_fs_info *fs_info = root->fs_info; 3410 int is_dead_root = 0; 3411 3412 /* 3413 * this is an orphan in the tree root. Currently these 3414 * could come from 2 sources: 3415 * a) a snapshot deletion in progress 3416 * b) a free space cache inode 3417 * We need to distinguish those two, as the snapshot 3418 * orphan must not get deleted. 3419 * find_dead_roots already ran before us, so if this 3420 * is a snapshot deletion, we should find the root 3421 * in the dead_roots list 3422 */ 3423 spin_lock(&fs_info->trans_lock); 3424 list_for_each_entry(dead_root, &fs_info->dead_roots, 3425 root_list) { 3426 if (dead_root->root_key.objectid == 3427 found_key.objectid) { 3428 is_dead_root = 1; 3429 break; 3430 } 3431 } 3432 spin_unlock(&fs_info->trans_lock); 3433 if (is_dead_root) { 3434 /* prevent this orphan from being found again */ 3435 key.offset = found_key.objectid - 1; 3436 continue; 3437 } 3438 } 3439 /* 3440 * Inode is already gone but the orphan item is still there, 3441 * kill the orphan item. 3442 */ 3443 if (ret == -ESTALE) { 3444 trans = btrfs_start_transaction(root, 1); 3445 if (IS_ERR(trans)) { 3446 ret = PTR_ERR(trans); 3447 goto out; 3448 } 3449 btrfs_debug(root->fs_info, "auto deleting %Lu", 3450 found_key.objectid); 3451 ret = btrfs_del_orphan_item(trans, root, 3452 found_key.objectid); 3453 btrfs_end_transaction(trans, root); 3454 if (ret) 3455 goto out; 3456 continue; 3457 } 3458 3459 /* 3460 * add this inode to the orphan list so btrfs_orphan_del does 3461 * the proper thing when we hit it 3462 */ 3463 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3464 &BTRFS_I(inode)->runtime_flags); 3465 atomic_inc(&root->orphan_inodes); 3466 3467 /* if we have links, this was a truncate, lets do that */ 3468 if (inode->i_nlink) { 3469 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3470 iput(inode); 3471 continue; 3472 } 3473 nr_truncate++; 3474 3475 /* 1 for the orphan item deletion. */ 3476 trans = btrfs_start_transaction(root, 1); 3477 if (IS_ERR(trans)) { 3478 iput(inode); 3479 ret = PTR_ERR(trans); 3480 goto out; 3481 } 3482 ret = btrfs_orphan_add(trans, inode); 3483 btrfs_end_transaction(trans, root); 3484 if (ret) { 3485 iput(inode); 3486 goto out; 3487 } 3488 3489 ret = btrfs_truncate(inode); 3490 if (ret) 3491 btrfs_orphan_del(NULL, inode); 3492 } else { 3493 nr_unlink++; 3494 } 3495 3496 /* this will do delete_inode and everything for us */ 3497 iput(inode); 3498 if (ret) 3499 goto out; 3500 } 3501 /* release the path since we're done with it */ 3502 btrfs_release_path(path); 3503 3504 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3505 3506 if (root->orphan_block_rsv) 3507 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3508 (u64)-1); 3509 3510 if (root->orphan_block_rsv || 3511 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3512 trans = btrfs_join_transaction(root); 3513 if (!IS_ERR(trans)) 3514 btrfs_end_transaction(trans, root); 3515 } 3516 3517 if (nr_unlink) 3518 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3519 if (nr_truncate) 3520 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3521 3522 out: 3523 if (ret) 3524 btrfs_err(root->fs_info, 3525 "could not do orphan cleanup %d", ret); 3526 btrfs_free_path(path); 3527 return ret; 3528 } 3529 3530 /* 3531 * very simple check to peek ahead in the leaf looking for xattrs. If we 3532 * don't find any xattrs, we know there can't be any acls. 3533 * 3534 * slot is the slot the inode is in, objectid is the objectid of the inode 3535 */ 3536 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3537 int slot, u64 objectid, 3538 int *first_xattr_slot) 3539 { 3540 u32 nritems = btrfs_header_nritems(leaf); 3541 struct btrfs_key found_key; 3542 static u64 xattr_access = 0; 3543 static u64 xattr_default = 0; 3544 int scanned = 0; 3545 3546 if (!xattr_access) { 3547 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3548 strlen(POSIX_ACL_XATTR_ACCESS)); 3549 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3550 strlen(POSIX_ACL_XATTR_DEFAULT)); 3551 } 3552 3553 slot++; 3554 *first_xattr_slot = -1; 3555 while (slot < nritems) { 3556 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3557 3558 /* we found a different objectid, there must not be acls */ 3559 if (found_key.objectid != objectid) 3560 return 0; 3561 3562 /* we found an xattr, assume we've got an acl */ 3563 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3564 if (*first_xattr_slot == -1) 3565 *first_xattr_slot = slot; 3566 if (found_key.offset == xattr_access || 3567 found_key.offset == xattr_default) 3568 return 1; 3569 } 3570 3571 /* 3572 * we found a key greater than an xattr key, there can't 3573 * be any acls later on 3574 */ 3575 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3576 return 0; 3577 3578 slot++; 3579 scanned++; 3580 3581 /* 3582 * it goes inode, inode backrefs, xattrs, extents, 3583 * so if there are a ton of hard links to an inode there can 3584 * be a lot of backrefs. Don't waste time searching too hard, 3585 * this is just an optimization 3586 */ 3587 if (scanned >= 8) 3588 break; 3589 } 3590 /* we hit the end of the leaf before we found an xattr or 3591 * something larger than an xattr. We have to assume the inode 3592 * has acls 3593 */ 3594 if (*first_xattr_slot == -1) 3595 *first_xattr_slot = slot; 3596 return 1; 3597 } 3598 3599 /* 3600 * read an inode from the btree into the in-memory inode 3601 */ 3602 static void btrfs_read_locked_inode(struct inode *inode) 3603 { 3604 struct btrfs_path *path; 3605 struct extent_buffer *leaf; 3606 struct btrfs_inode_item *inode_item; 3607 struct btrfs_root *root = BTRFS_I(inode)->root; 3608 struct btrfs_key location; 3609 unsigned long ptr; 3610 int maybe_acls; 3611 u32 rdev; 3612 int ret; 3613 bool filled = false; 3614 int first_xattr_slot; 3615 3616 ret = btrfs_fill_inode(inode, &rdev); 3617 if (!ret) 3618 filled = true; 3619 3620 path = btrfs_alloc_path(); 3621 if (!path) 3622 goto make_bad; 3623 3624 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3625 3626 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3627 if (ret) 3628 goto make_bad; 3629 3630 leaf = path->nodes[0]; 3631 3632 if (filled) 3633 goto cache_index; 3634 3635 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3636 struct btrfs_inode_item); 3637 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3638 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3639 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3640 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3641 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3642 3643 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3644 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3645 3646 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3647 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3648 3649 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3650 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3651 3652 BTRFS_I(inode)->i_otime.tv_sec = 3653 btrfs_timespec_sec(leaf, &inode_item->otime); 3654 BTRFS_I(inode)->i_otime.tv_nsec = 3655 btrfs_timespec_nsec(leaf, &inode_item->otime); 3656 3657 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3658 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3659 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3660 3661 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3662 inode->i_generation = BTRFS_I(inode)->generation; 3663 inode->i_rdev = 0; 3664 rdev = btrfs_inode_rdev(leaf, inode_item); 3665 3666 BTRFS_I(inode)->index_cnt = (u64)-1; 3667 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3668 3669 cache_index: 3670 /* 3671 * If we were modified in the current generation and evicted from memory 3672 * and then re-read we need to do a full sync since we don't have any 3673 * idea about which extents were modified before we were evicted from 3674 * cache. 3675 * 3676 * This is required for both inode re-read from disk and delayed inode 3677 * in delayed_nodes_tree. 3678 */ 3679 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3681 &BTRFS_I(inode)->runtime_flags); 3682 3683 /* 3684 * We don't persist the id of the transaction where an unlink operation 3685 * against the inode was last made. So here we assume the inode might 3686 * have been evicted, and therefore the exact value of last_unlink_trans 3687 * lost, and set it to last_trans to avoid metadata inconsistencies 3688 * between the inode and its parent if the inode is fsync'ed and the log 3689 * replayed. For example, in the scenario: 3690 * 3691 * touch mydir/foo 3692 * ln mydir/foo mydir/bar 3693 * sync 3694 * unlink mydir/bar 3695 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3696 * xfs_io -c fsync mydir/foo 3697 * <power failure> 3698 * mount fs, triggers fsync log replay 3699 * 3700 * We must make sure that when we fsync our inode foo we also log its 3701 * parent inode, otherwise after log replay the parent still has the 3702 * dentry with the "bar" name but our inode foo has a link count of 1 3703 * and doesn't have an inode ref with the name "bar" anymore. 3704 * 3705 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3706 * but it guarantees correctness at the expense of ocassional full 3707 * transaction commits on fsync if our inode is a directory, or if our 3708 * inode is not a directory, logging its parent unnecessarily. 3709 */ 3710 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3711 3712 path->slots[0]++; 3713 if (inode->i_nlink != 1 || 3714 path->slots[0] >= btrfs_header_nritems(leaf)) 3715 goto cache_acl; 3716 3717 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3718 if (location.objectid != btrfs_ino(inode)) 3719 goto cache_acl; 3720 3721 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3722 if (location.type == BTRFS_INODE_REF_KEY) { 3723 struct btrfs_inode_ref *ref; 3724 3725 ref = (struct btrfs_inode_ref *)ptr; 3726 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3727 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3728 struct btrfs_inode_extref *extref; 3729 3730 extref = (struct btrfs_inode_extref *)ptr; 3731 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3732 extref); 3733 } 3734 cache_acl: 3735 /* 3736 * try to precache a NULL acl entry for files that don't have 3737 * any xattrs or acls 3738 */ 3739 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3740 btrfs_ino(inode), &first_xattr_slot); 3741 if (first_xattr_slot != -1) { 3742 path->slots[0] = first_xattr_slot; 3743 ret = btrfs_load_inode_props(inode, path); 3744 if (ret) 3745 btrfs_err(root->fs_info, 3746 "error loading props for ino %llu (root %llu): %d", 3747 btrfs_ino(inode), 3748 root->root_key.objectid, ret); 3749 } 3750 btrfs_free_path(path); 3751 3752 if (!maybe_acls) 3753 cache_no_acl(inode); 3754 3755 switch (inode->i_mode & S_IFMT) { 3756 case S_IFREG: 3757 inode->i_mapping->a_ops = &btrfs_aops; 3758 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3759 inode->i_fop = &btrfs_file_operations; 3760 inode->i_op = &btrfs_file_inode_operations; 3761 break; 3762 case S_IFDIR: 3763 inode->i_fop = &btrfs_dir_file_operations; 3764 if (root == root->fs_info->tree_root) 3765 inode->i_op = &btrfs_dir_ro_inode_operations; 3766 else 3767 inode->i_op = &btrfs_dir_inode_operations; 3768 break; 3769 case S_IFLNK: 3770 inode->i_op = &btrfs_symlink_inode_operations; 3771 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3772 break; 3773 default: 3774 inode->i_op = &btrfs_special_inode_operations; 3775 init_special_inode(inode, inode->i_mode, rdev); 3776 break; 3777 } 3778 3779 btrfs_update_iflags(inode); 3780 return; 3781 3782 make_bad: 3783 btrfs_free_path(path); 3784 make_bad_inode(inode); 3785 } 3786 3787 /* 3788 * given a leaf and an inode, copy the inode fields into the leaf 3789 */ 3790 static void fill_inode_item(struct btrfs_trans_handle *trans, 3791 struct extent_buffer *leaf, 3792 struct btrfs_inode_item *item, 3793 struct inode *inode) 3794 { 3795 struct btrfs_map_token token; 3796 3797 btrfs_init_map_token(&token); 3798 3799 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3800 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3801 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3802 &token); 3803 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3804 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3805 3806 btrfs_set_token_timespec_sec(leaf, &item->atime, 3807 inode->i_atime.tv_sec, &token); 3808 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3809 inode->i_atime.tv_nsec, &token); 3810 3811 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3812 inode->i_mtime.tv_sec, &token); 3813 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3814 inode->i_mtime.tv_nsec, &token); 3815 3816 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3817 inode->i_ctime.tv_sec, &token); 3818 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3819 inode->i_ctime.tv_nsec, &token); 3820 3821 btrfs_set_token_timespec_sec(leaf, &item->otime, 3822 BTRFS_I(inode)->i_otime.tv_sec, &token); 3823 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3824 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3825 3826 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3827 &token); 3828 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3829 &token); 3830 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3831 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3832 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3833 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3834 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3835 } 3836 3837 /* 3838 * copy everything in the in-memory inode into the btree. 3839 */ 3840 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3841 struct btrfs_root *root, struct inode *inode) 3842 { 3843 struct btrfs_inode_item *inode_item; 3844 struct btrfs_path *path; 3845 struct extent_buffer *leaf; 3846 int ret; 3847 3848 path = btrfs_alloc_path(); 3849 if (!path) 3850 return -ENOMEM; 3851 3852 path->leave_spinning = 1; 3853 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3854 1); 3855 if (ret) { 3856 if (ret > 0) 3857 ret = -ENOENT; 3858 goto failed; 3859 } 3860 3861 leaf = path->nodes[0]; 3862 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3863 struct btrfs_inode_item); 3864 3865 fill_inode_item(trans, leaf, inode_item, inode); 3866 btrfs_mark_buffer_dirty(leaf); 3867 btrfs_set_inode_last_trans(trans, inode); 3868 ret = 0; 3869 failed: 3870 btrfs_free_path(path); 3871 return ret; 3872 } 3873 3874 /* 3875 * copy everything in the in-memory inode into the btree. 3876 */ 3877 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3878 struct btrfs_root *root, struct inode *inode) 3879 { 3880 int ret; 3881 3882 /* 3883 * If the inode is a free space inode, we can deadlock during commit 3884 * if we put it into the delayed code. 3885 * 3886 * The data relocation inode should also be directly updated 3887 * without delay 3888 */ 3889 if (!btrfs_is_free_space_inode(inode) 3890 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3891 && !root->fs_info->log_root_recovering) { 3892 btrfs_update_root_times(trans, root); 3893 3894 ret = btrfs_delayed_update_inode(trans, root, inode); 3895 if (!ret) 3896 btrfs_set_inode_last_trans(trans, inode); 3897 return ret; 3898 } 3899 3900 return btrfs_update_inode_item(trans, root, inode); 3901 } 3902 3903 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3904 struct btrfs_root *root, 3905 struct inode *inode) 3906 { 3907 int ret; 3908 3909 ret = btrfs_update_inode(trans, root, inode); 3910 if (ret == -ENOSPC) 3911 return btrfs_update_inode_item(trans, root, inode); 3912 return ret; 3913 } 3914 3915 /* 3916 * unlink helper that gets used here in inode.c and in the tree logging 3917 * recovery code. It remove a link in a directory with a given name, and 3918 * also drops the back refs in the inode to the directory 3919 */ 3920 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3921 struct btrfs_root *root, 3922 struct inode *dir, struct inode *inode, 3923 const char *name, int name_len) 3924 { 3925 struct btrfs_path *path; 3926 int ret = 0; 3927 struct extent_buffer *leaf; 3928 struct btrfs_dir_item *di; 3929 struct btrfs_key key; 3930 u64 index; 3931 u64 ino = btrfs_ino(inode); 3932 u64 dir_ino = btrfs_ino(dir); 3933 3934 path = btrfs_alloc_path(); 3935 if (!path) { 3936 ret = -ENOMEM; 3937 goto out; 3938 } 3939 3940 path->leave_spinning = 1; 3941 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3942 name, name_len, -1); 3943 if (IS_ERR(di)) { 3944 ret = PTR_ERR(di); 3945 goto err; 3946 } 3947 if (!di) { 3948 ret = -ENOENT; 3949 goto err; 3950 } 3951 leaf = path->nodes[0]; 3952 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3953 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3954 if (ret) 3955 goto err; 3956 btrfs_release_path(path); 3957 3958 /* 3959 * If we don't have dir index, we have to get it by looking up 3960 * the inode ref, since we get the inode ref, remove it directly, 3961 * it is unnecessary to do delayed deletion. 3962 * 3963 * But if we have dir index, needn't search inode ref to get it. 3964 * Since the inode ref is close to the inode item, it is better 3965 * that we delay to delete it, and just do this deletion when 3966 * we update the inode item. 3967 */ 3968 if (BTRFS_I(inode)->dir_index) { 3969 ret = btrfs_delayed_delete_inode_ref(inode); 3970 if (!ret) { 3971 index = BTRFS_I(inode)->dir_index; 3972 goto skip_backref; 3973 } 3974 } 3975 3976 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3977 dir_ino, &index); 3978 if (ret) { 3979 btrfs_info(root->fs_info, 3980 "failed to delete reference to %.*s, inode %llu parent %llu", 3981 name_len, name, ino, dir_ino); 3982 btrfs_abort_transaction(trans, root, ret); 3983 goto err; 3984 } 3985 skip_backref: 3986 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3987 if (ret) { 3988 btrfs_abort_transaction(trans, root, ret); 3989 goto err; 3990 } 3991 3992 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3993 inode, dir_ino); 3994 if (ret != 0 && ret != -ENOENT) { 3995 btrfs_abort_transaction(trans, root, ret); 3996 goto err; 3997 } 3998 3999 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4000 dir, index); 4001 if (ret == -ENOENT) 4002 ret = 0; 4003 else if (ret) 4004 btrfs_abort_transaction(trans, root, ret); 4005 err: 4006 btrfs_free_path(path); 4007 if (ret) 4008 goto out; 4009 4010 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4011 inode_inc_iversion(inode); 4012 inode_inc_iversion(dir); 4013 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4014 ret = btrfs_update_inode(trans, root, dir); 4015 out: 4016 return ret; 4017 } 4018 4019 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4020 struct btrfs_root *root, 4021 struct inode *dir, struct inode *inode, 4022 const char *name, int name_len) 4023 { 4024 int ret; 4025 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4026 if (!ret) { 4027 drop_nlink(inode); 4028 ret = btrfs_update_inode(trans, root, inode); 4029 } 4030 return ret; 4031 } 4032 4033 /* 4034 * helper to start transaction for unlink and rmdir. 4035 * 4036 * unlink and rmdir are special in btrfs, they do not always free space, so 4037 * if we cannot make our reservations the normal way try and see if there is 4038 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4039 * allow the unlink to occur. 4040 */ 4041 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4042 { 4043 struct btrfs_trans_handle *trans; 4044 struct btrfs_root *root = BTRFS_I(dir)->root; 4045 int ret; 4046 4047 /* 4048 * 1 for the possible orphan item 4049 * 1 for the dir item 4050 * 1 for the dir index 4051 * 1 for the inode ref 4052 * 1 for the inode 4053 */ 4054 trans = btrfs_start_transaction(root, 5); 4055 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 4056 return trans; 4057 4058 if (PTR_ERR(trans) == -ENOSPC) { 4059 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4060 4061 trans = btrfs_start_transaction(root, 0); 4062 if (IS_ERR(trans)) 4063 return trans; 4064 ret = btrfs_cond_migrate_bytes(root->fs_info, 4065 &root->fs_info->trans_block_rsv, 4066 num_bytes, 5); 4067 if (ret) { 4068 btrfs_end_transaction(trans, root); 4069 return ERR_PTR(ret); 4070 } 4071 trans->block_rsv = &root->fs_info->trans_block_rsv; 4072 trans->bytes_reserved = num_bytes; 4073 } 4074 return trans; 4075 } 4076 4077 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4078 { 4079 struct btrfs_root *root = BTRFS_I(dir)->root; 4080 struct btrfs_trans_handle *trans; 4081 struct inode *inode = d_inode(dentry); 4082 int ret; 4083 4084 trans = __unlink_start_trans(dir); 4085 if (IS_ERR(trans)) 4086 return PTR_ERR(trans); 4087 4088 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4089 4090 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4091 dentry->d_name.name, dentry->d_name.len); 4092 if (ret) 4093 goto out; 4094 4095 if (inode->i_nlink == 0) { 4096 ret = btrfs_orphan_add(trans, inode); 4097 if (ret) 4098 goto out; 4099 } 4100 4101 out: 4102 btrfs_end_transaction(trans, root); 4103 btrfs_btree_balance_dirty(root); 4104 return ret; 4105 } 4106 4107 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4108 struct btrfs_root *root, 4109 struct inode *dir, u64 objectid, 4110 const char *name, int name_len) 4111 { 4112 struct btrfs_path *path; 4113 struct extent_buffer *leaf; 4114 struct btrfs_dir_item *di; 4115 struct btrfs_key key; 4116 u64 index; 4117 int ret; 4118 u64 dir_ino = btrfs_ino(dir); 4119 4120 path = btrfs_alloc_path(); 4121 if (!path) 4122 return -ENOMEM; 4123 4124 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4125 name, name_len, -1); 4126 if (IS_ERR_OR_NULL(di)) { 4127 if (!di) 4128 ret = -ENOENT; 4129 else 4130 ret = PTR_ERR(di); 4131 goto out; 4132 } 4133 4134 leaf = path->nodes[0]; 4135 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4136 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4137 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4138 if (ret) { 4139 btrfs_abort_transaction(trans, root, ret); 4140 goto out; 4141 } 4142 btrfs_release_path(path); 4143 4144 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4145 objectid, root->root_key.objectid, 4146 dir_ino, &index, name, name_len); 4147 if (ret < 0) { 4148 if (ret != -ENOENT) { 4149 btrfs_abort_transaction(trans, root, ret); 4150 goto out; 4151 } 4152 di = btrfs_search_dir_index_item(root, path, dir_ino, 4153 name, name_len); 4154 if (IS_ERR_OR_NULL(di)) { 4155 if (!di) 4156 ret = -ENOENT; 4157 else 4158 ret = PTR_ERR(di); 4159 btrfs_abort_transaction(trans, root, ret); 4160 goto out; 4161 } 4162 4163 leaf = path->nodes[0]; 4164 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4165 btrfs_release_path(path); 4166 index = key.offset; 4167 } 4168 btrfs_release_path(path); 4169 4170 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4171 if (ret) { 4172 btrfs_abort_transaction(trans, root, ret); 4173 goto out; 4174 } 4175 4176 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4177 inode_inc_iversion(dir); 4178 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4179 ret = btrfs_update_inode_fallback(trans, root, dir); 4180 if (ret) 4181 btrfs_abort_transaction(trans, root, ret); 4182 out: 4183 btrfs_free_path(path); 4184 return ret; 4185 } 4186 4187 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4188 { 4189 struct inode *inode = d_inode(dentry); 4190 int err = 0; 4191 struct btrfs_root *root = BTRFS_I(dir)->root; 4192 struct btrfs_trans_handle *trans; 4193 4194 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4195 return -ENOTEMPTY; 4196 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4197 return -EPERM; 4198 4199 trans = __unlink_start_trans(dir); 4200 if (IS_ERR(trans)) 4201 return PTR_ERR(trans); 4202 4203 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4204 err = btrfs_unlink_subvol(trans, root, dir, 4205 BTRFS_I(inode)->location.objectid, 4206 dentry->d_name.name, 4207 dentry->d_name.len); 4208 goto out; 4209 } 4210 4211 err = btrfs_orphan_add(trans, inode); 4212 if (err) 4213 goto out; 4214 4215 /* now the directory is empty */ 4216 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4217 dentry->d_name.name, dentry->d_name.len); 4218 if (!err) 4219 btrfs_i_size_write(inode, 0); 4220 out: 4221 btrfs_end_transaction(trans, root); 4222 btrfs_btree_balance_dirty(root); 4223 4224 return err; 4225 } 4226 4227 static int truncate_space_check(struct btrfs_trans_handle *trans, 4228 struct btrfs_root *root, 4229 u64 bytes_deleted) 4230 { 4231 int ret; 4232 4233 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4234 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4235 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4236 if (!ret) 4237 trans->bytes_reserved += bytes_deleted; 4238 return ret; 4239 4240 } 4241 4242 static int truncate_inline_extent(struct inode *inode, 4243 struct btrfs_path *path, 4244 struct btrfs_key *found_key, 4245 const u64 item_end, 4246 const u64 new_size) 4247 { 4248 struct extent_buffer *leaf = path->nodes[0]; 4249 int slot = path->slots[0]; 4250 struct btrfs_file_extent_item *fi; 4251 u32 size = (u32)(new_size - found_key->offset); 4252 struct btrfs_root *root = BTRFS_I(inode)->root; 4253 4254 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4255 4256 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4257 loff_t offset = new_size; 4258 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE); 4259 4260 /* 4261 * Zero out the remaining of the last page of our inline extent, 4262 * instead of directly truncating our inline extent here - that 4263 * would be much more complex (decompressing all the data, then 4264 * compressing the truncated data, which might be bigger than 4265 * the size of the inline extent, resize the extent, etc). 4266 * We release the path because to get the page we might need to 4267 * read the extent item from disk (data not in the page cache). 4268 */ 4269 btrfs_release_path(path); 4270 return btrfs_truncate_page(inode, offset, page_end - offset, 0); 4271 } 4272 4273 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4274 size = btrfs_file_extent_calc_inline_size(size); 4275 btrfs_truncate_item(root, path, size, 1); 4276 4277 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4278 inode_sub_bytes(inode, item_end + 1 - new_size); 4279 4280 return 0; 4281 } 4282 4283 /* 4284 * this can truncate away extent items, csum items and directory items. 4285 * It starts at a high offset and removes keys until it can't find 4286 * any higher than new_size 4287 * 4288 * csum items that cross the new i_size are truncated to the new size 4289 * as well. 4290 * 4291 * min_type is the minimum key type to truncate down to. If set to 0, this 4292 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4293 */ 4294 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4295 struct btrfs_root *root, 4296 struct inode *inode, 4297 u64 new_size, u32 min_type) 4298 { 4299 struct btrfs_path *path; 4300 struct extent_buffer *leaf; 4301 struct btrfs_file_extent_item *fi; 4302 struct btrfs_key key; 4303 struct btrfs_key found_key; 4304 u64 extent_start = 0; 4305 u64 extent_num_bytes = 0; 4306 u64 extent_offset = 0; 4307 u64 item_end = 0; 4308 u64 last_size = new_size; 4309 u32 found_type = (u8)-1; 4310 int found_extent; 4311 int del_item; 4312 int pending_del_nr = 0; 4313 int pending_del_slot = 0; 4314 int extent_type = -1; 4315 int ret; 4316 int err = 0; 4317 u64 ino = btrfs_ino(inode); 4318 u64 bytes_deleted = 0; 4319 bool be_nice = 0; 4320 bool should_throttle = 0; 4321 bool should_end = 0; 4322 4323 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4324 4325 /* 4326 * for non-free space inodes and ref cows, we want to back off from 4327 * time to time 4328 */ 4329 if (!btrfs_is_free_space_inode(inode) && 4330 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4331 be_nice = 1; 4332 4333 path = btrfs_alloc_path(); 4334 if (!path) 4335 return -ENOMEM; 4336 path->reada = -1; 4337 4338 /* 4339 * We want to drop from the next block forward in case this new size is 4340 * not block aligned since we will be keeping the last block of the 4341 * extent just the way it is. 4342 */ 4343 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4344 root == root->fs_info->tree_root) 4345 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4346 root->sectorsize), (u64)-1, 0); 4347 4348 /* 4349 * This function is also used to drop the items in the log tree before 4350 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4351 * it is used to drop the loged items. So we shouldn't kill the delayed 4352 * items. 4353 */ 4354 if (min_type == 0 && root == BTRFS_I(inode)->root) 4355 btrfs_kill_delayed_inode_items(inode); 4356 4357 key.objectid = ino; 4358 key.offset = (u64)-1; 4359 key.type = (u8)-1; 4360 4361 search_again: 4362 /* 4363 * with a 16K leaf size and 128MB extents, you can actually queue 4364 * up a huge file in a single leaf. Most of the time that 4365 * bytes_deleted is > 0, it will be huge by the time we get here 4366 */ 4367 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4368 if (btrfs_should_end_transaction(trans, root)) { 4369 err = -EAGAIN; 4370 goto error; 4371 } 4372 } 4373 4374 4375 path->leave_spinning = 1; 4376 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4377 if (ret < 0) { 4378 err = ret; 4379 goto out; 4380 } 4381 4382 if (ret > 0) { 4383 /* there are no items in the tree for us to truncate, we're 4384 * done 4385 */ 4386 if (path->slots[0] == 0) 4387 goto out; 4388 path->slots[0]--; 4389 } 4390 4391 while (1) { 4392 fi = NULL; 4393 leaf = path->nodes[0]; 4394 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4395 found_type = found_key.type; 4396 4397 if (found_key.objectid != ino) 4398 break; 4399 4400 if (found_type < min_type) 4401 break; 4402 4403 item_end = found_key.offset; 4404 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4405 fi = btrfs_item_ptr(leaf, path->slots[0], 4406 struct btrfs_file_extent_item); 4407 extent_type = btrfs_file_extent_type(leaf, fi); 4408 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4409 item_end += 4410 btrfs_file_extent_num_bytes(leaf, fi); 4411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4412 item_end += btrfs_file_extent_inline_len(leaf, 4413 path->slots[0], fi); 4414 } 4415 item_end--; 4416 } 4417 if (found_type > min_type) { 4418 del_item = 1; 4419 } else { 4420 if (item_end < new_size) 4421 break; 4422 if (found_key.offset >= new_size) 4423 del_item = 1; 4424 else 4425 del_item = 0; 4426 } 4427 found_extent = 0; 4428 /* FIXME, shrink the extent if the ref count is only 1 */ 4429 if (found_type != BTRFS_EXTENT_DATA_KEY) 4430 goto delete; 4431 4432 if (del_item) 4433 last_size = found_key.offset; 4434 else 4435 last_size = new_size; 4436 4437 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4438 u64 num_dec; 4439 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4440 if (!del_item) { 4441 u64 orig_num_bytes = 4442 btrfs_file_extent_num_bytes(leaf, fi); 4443 extent_num_bytes = ALIGN(new_size - 4444 found_key.offset, 4445 root->sectorsize); 4446 btrfs_set_file_extent_num_bytes(leaf, fi, 4447 extent_num_bytes); 4448 num_dec = (orig_num_bytes - 4449 extent_num_bytes); 4450 if (test_bit(BTRFS_ROOT_REF_COWS, 4451 &root->state) && 4452 extent_start != 0) 4453 inode_sub_bytes(inode, num_dec); 4454 btrfs_mark_buffer_dirty(leaf); 4455 } else { 4456 extent_num_bytes = 4457 btrfs_file_extent_disk_num_bytes(leaf, 4458 fi); 4459 extent_offset = found_key.offset - 4460 btrfs_file_extent_offset(leaf, fi); 4461 4462 /* FIXME blocksize != 4096 */ 4463 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4464 if (extent_start != 0) { 4465 found_extent = 1; 4466 if (test_bit(BTRFS_ROOT_REF_COWS, 4467 &root->state)) 4468 inode_sub_bytes(inode, num_dec); 4469 } 4470 } 4471 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4472 /* 4473 * we can't truncate inline items that have had 4474 * special encodings 4475 */ 4476 if (!del_item && 4477 btrfs_file_extent_encryption(leaf, fi) == 0 && 4478 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4479 4480 /* 4481 * Need to release path in order to truncate a 4482 * compressed extent. So delete any accumulated 4483 * extent items so far. 4484 */ 4485 if (btrfs_file_extent_compression(leaf, fi) != 4486 BTRFS_COMPRESS_NONE && pending_del_nr) { 4487 err = btrfs_del_items(trans, root, path, 4488 pending_del_slot, 4489 pending_del_nr); 4490 if (err) { 4491 btrfs_abort_transaction(trans, 4492 root, 4493 err); 4494 goto error; 4495 } 4496 pending_del_nr = 0; 4497 } 4498 4499 err = truncate_inline_extent(inode, path, 4500 &found_key, 4501 item_end, 4502 new_size); 4503 if (err) { 4504 btrfs_abort_transaction(trans, 4505 root, err); 4506 goto error; 4507 } 4508 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4509 &root->state)) { 4510 inode_sub_bytes(inode, item_end + 1 - new_size); 4511 } 4512 } 4513 delete: 4514 if (del_item) { 4515 if (!pending_del_nr) { 4516 /* no pending yet, add ourselves */ 4517 pending_del_slot = path->slots[0]; 4518 pending_del_nr = 1; 4519 } else if (pending_del_nr && 4520 path->slots[0] + 1 == pending_del_slot) { 4521 /* hop on the pending chunk */ 4522 pending_del_nr++; 4523 pending_del_slot = path->slots[0]; 4524 } else { 4525 BUG(); 4526 } 4527 } else { 4528 break; 4529 } 4530 should_throttle = 0; 4531 4532 if (found_extent && 4533 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4534 root == root->fs_info->tree_root)) { 4535 btrfs_set_path_blocking(path); 4536 bytes_deleted += extent_num_bytes; 4537 ret = btrfs_free_extent(trans, root, extent_start, 4538 extent_num_bytes, 0, 4539 btrfs_header_owner(leaf), 4540 ino, extent_offset); 4541 BUG_ON(ret); 4542 if (btrfs_should_throttle_delayed_refs(trans, root)) 4543 btrfs_async_run_delayed_refs(root, 4544 trans->delayed_ref_updates * 2, 0); 4545 if (be_nice) { 4546 if (truncate_space_check(trans, root, 4547 extent_num_bytes)) { 4548 should_end = 1; 4549 } 4550 if (btrfs_should_throttle_delayed_refs(trans, 4551 root)) { 4552 should_throttle = 1; 4553 } 4554 } 4555 } 4556 4557 if (found_type == BTRFS_INODE_ITEM_KEY) 4558 break; 4559 4560 if (path->slots[0] == 0 || 4561 path->slots[0] != pending_del_slot || 4562 should_throttle || should_end) { 4563 if (pending_del_nr) { 4564 ret = btrfs_del_items(trans, root, path, 4565 pending_del_slot, 4566 pending_del_nr); 4567 if (ret) { 4568 btrfs_abort_transaction(trans, 4569 root, ret); 4570 goto error; 4571 } 4572 pending_del_nr = 0; 4573 } 4574 btrfs_release_path(path); 4575 if (should_throttle) { 4576 unsigned long updates = trans->delayed_ref_updates; 4577 if (updates) { 4578 trans->delayed_ref_updates = 0; 4579 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4580 if (ret && !err) 4581 err = ret; 4582 } 4583 } 4584 /* 4585 * if we failed to refill our space rsv, bail out 4586 * and let the transaction restart 4587 */ 4588 if (should_end) { 4589 err = -EAGAIN; 4590 goto error; 4591 } 4592 goto search_again; 4593 } else { 4594 path->slots[0]--; 4595 } 4596 } 4597 out: 4598 if (pending_del_nr) { 4599 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4600 pending_del_nr); 4601 if (ret) 4602 btrfs_abort_transaction(trans, root, ret); 4603 } 4604 error: 4605 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4606 btrfs_ordered_update_i_size(inode, last_size, NULL); 4607 4608 btrfs_free_path(path); 4609 4610 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4611 unsigned long updates = trans->delayed_ref_updates; 4612 if (updates) { 4613 trans->delayed_ref_updates = 0; 4614 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4615 if (ret && !err) 4616 err = ret; 4617 } 4618 } 4619 return err; 4620 } 4621 4622 /* 4623 * btrfs_truncate_page - read, zero a chunk and write a page 4624 * @inode - inode that we're zeroing 4625 * @from - the offset to start zeroing 4626 * @len - the length to zero, 0 to zero the entire range respective to the 4627 * offset 4628 * @front - zero up to the offset instead of from the offset on 4629 * 4630 * This will find the page for the "from" offset and cow the page and zero the 4631 * part we want to zero. This is used with truncate and hole punching. 4632 */ 4633 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4634 int front) 4635 { 4636 struct address_space *mapping = inode->i_mapping; 4637 struct btrfs_root *root = BTRFS_I(inode)->root; 4638 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4639 struct btrfs_ordered_extent *ordered; 4640 struct extent_state *cached_state = NULL; 4641 char *kaddr; 4642 u32 blocksize = root->sectorsize; 4643 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4644 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4645 struct page *page; 4646 gfp_t mask = btrfs_alloc_write_mask(mapping); 4647 int ret = 0; 4648 u64 page_start; 4649 u64 page_end; 4650 4651 if ((offset & (blocksize - 1)) == 0 && 4652 (!len || ((len & (blocksize - 1)) == 0))) 4653 goto out; 4654 ret = btrfs_delalloc_reserve_space(inode, 4655 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE); 4656 if (ret) 4657 goto out; 4658 4659 again: 4660 page = find_or_create_page(mapping, index, mask); 4661 if (!page) { 4662 btrfs_delalloc_release_space(inode, 4663 round_down(from, PAGE_CACHE_SIZE), 4664 PAGE_CACHE_SIZE); 4665 ret = -ENOMEM; 4666 goto out; 4667 } 4668 4669 page_start = page_offset(page); 4670 page_end = page_start + PAGE_CACHE_SIZE - 1; 4671 4672 if (!PageUptodate(page)) { 4673 ret = btrfs_readpage(NULL, page); 4674 lock_page(page); 4675 if (page->mapping != mapping) { 4676 unlock_page(page); 4677 page_cache_release(page); 4678 goto again; 4679 } 4680 if (!PageUptodate(page)) { 4681 ret = -EIO; 4682 goto out_unlock; 4683 } 4684 } 4685 wait_on_page_writeback(page); 4686 4687 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4688 set_page_extent_mapped(page); 4689 4690 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4691 if (ordered) { 4692 unlock_extent_cached(io_tree, page_start, page_end, 4693 &cached_state, GFP_NOFS); 4694 unlock_page(page); 4695 page_cache_release(page); 4696 btrfs_start_ordered_extent(inode, ordered, 1); 4697 btrfs_put_ordered_extent(ordered); 4698 goto again; 4699 } 4700 4701 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4702 EXTENT_DIRTY | EXTENT_DELALLOC | 4703 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4704 0, 0, &cached_state, GFP_NOFS); 4705 4706 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4707 &cached_state); 4708 if (ret) { 4709 unlock_extent_cached(io_tree, page_start, page_end, 4710 &cached_state, GFP_NOFS); 4711 goto out_unlock; 4712 } 4713 4714 if (offset != PAGE_CACHE_SIZE) { 4715 if (!len) 4716 len = PAGE_CACHE_SIZE - offset; 4717 kaddr = kmap(page); 4718 if (front) 4719 memset(kaddr, 0, offset); 4720 else 4721 memset(kaddr + offset, 0, len); 4722 flush_dcache_page(page); 4723 kunmap(page); 4724 } 4725 ClearPageChecked(page); 4726 set_page_dirty(page); 4727 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4728 GFP_NOFS); 4729 4730 out_unlock: 4731 if (ret) 4732 btrfs_delalloc_release_space(inode, page_start, 4733 PAGE_CACHE_SIZE); 4734 unlock_page(page); 4735 page_cache_release(page); 4736 out: 4737 return ret; 4738 } 4739 4740 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4741 u64 offset, u64 len) 4742 { 4743 struct btrfs_trans_handle *trans; 4744 int ret; 4745 4746 /* 4747 * Still need to make sure the inode looks like it's been updated so 4748 * that any holes get logged if we fsync. 4749 */ 4750 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4751 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4752 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4753 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4754 return 0; 4755 } 4756 4757 /* 4758 * 1 - for the one we're dropping 4759 * 1 - for the one we're adding 4760 * 1 - for updating the inode. 4761 */ 4762 trans = btrfs_start_transaction(root, 3); 4763 if (IS_ERR(trans)) 4764 return PTR_ERR(trans); 4765 4766 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4767 if (ret) { 4768 btrfs_abort_transaction(trans, root, ret); 4769 btrfs_end_transaction(trans, root); 4770 return ret; 4771 } 4772 4773 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4774 0, 0, len, 0, len, 0, 0, 0); 4775 if (ret) 4776 btrfs_abort_transaction(trans, root, ret); 4777 else 4778 btrfs_update_inode(trans, root, inode); 4779 btrfs_end_transaction(trans, root); 4780 return ret; 4781 } 4782 4783 /* 4784 * This function puts in dummy file extents for the area we're creating a hole 4785 * for. So if we are truncating this file to a larger size we need to insert 4786 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4787 * the range between oldsize and size 4788 */ 4789 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4790 { 4791 struct btrfs_root *root = BTRFS_I(inode)->root; 4792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4793 struct extent_map *em = NULL; 4794 struct extent_state *cached_state = NULL; 4795 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4796 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4797 u64 block_end = ALIGN(size, root->sectorsize); 4798 u64 last_byte; 4799 u64 cur_offset; 4800 u64 hole_size; 4801 int err = 0; 4802 4803 /* 4804 * If our size started in the middle of a page we need to zero out the 4805 * rest of the page before we expand the i_size, otherwise we could 4806 * expose stale data. 4807 */ 4808 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4809 if (err) 4810 return err; 4811 4812 if (size <= hole_start) 4813 return 0; 4814 4815 while (1) { 4816 struct btrfs_ordered_extent *ordered; 4817 4818 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4819 &cached_state); 4820 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4821 block_end - hole_start); 4822 if (!ordered) 4823 break; 4824 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4825 &cached_state, GFP_NOFS); 4826 btrfs_start_ordered_extent(inode, ordered, 1); 4827 btrfs_put_ordered_extent(ordered); 4828 } 4829 4830 cur_offset = hole_start; 4831 while (1) { 4832 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4833 block_end - cur_offset, 0); 4834 if (IS_ERR(em)) { 4835 err = PTR_ERR(em); 4836 em = NULL; 4837 break; 4838 } 4839 last_byte = min(extent_map_end(em), block_end); 4840 last_byte = ALIGN(last_byte , root->sectorsize); 4841 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4842 struct extent_map *hole_em; 4843 hole_size = last_byte - cur_offset; 4844 4845 err = maybe_insert_hole(root, inode, cur_offset, 4846 hole_size); 4847 if (err) 4848 break; 4849 btrfs_drop_extent_cache(inode, cur_offset, 4850 cur_offset + hole_size - 1, 0); 4851 hole_em = alloc_extent_map(); 4852 if (!hole_em) { 4853 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4854 &BTRFS_I(inode)->runtime_flags); 4855 goto next; 4856 } 4857 hole_em->start = cur_offset; 4858 hole_em->len = hole_size; 4859 hole_em->orig_start = cur_offset; 4860 4861 hole_em->block_start = EXTENT_MAP_HOLE; 4862 hole_em->block_len = 0; 4863 hole_em->orig_block_len = 0; 4864 hole_em->ram_bytes = hole_size; 4865 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4866 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4867 hole_em->generation = root->fs_info->generation; 4868 4869 while (1) { 4870 write_lock(&em_tree->lock); 4871 err = add_extent_mapping(em_tree, hole_em, 1); 4872 write_unlock(&em_tree->lock); 4873 if (err != -EEXIST) 4874 break; 4875 btrfs_drop_extent_cache(inode, cur_offset, 4876 cur_offset + 4877 hole_size - 1, 0); 4878 } 4879 free_extent_map(hole_em); 4880 } 4881 next: 4882 free_extent_map(em); 4883 em = NULL; 4884 cur_offset = last_byte; 4885 if (cur_offset >= block_end) 4886 break; 4887 } 4888 free_extent_map(em); 4889 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4890 GFP_NOFS); 4891 return err; 4892 } 4893 4894 static int wait_snapshoting_atomic_t(atomic_t *a) 4895 { 4896 schedule(); 4897 return 0; 4898 } 4899 4900 static void wait_for_snapshot_creation(struct btrfs_root *root) 4901 { 4902 while (true) { 4903 int ret; 4904 4905 ret = btrfs_start_write_no_snapshoting(root); 4906 if (ret) 4907 break; 4908 wait_on_atomic_t(&root->will_be_snapshoted, 4909 wait_snapshoting_atomic_t, 4910 TASK_UNINTERRUPTIBLE); 4911 } 4912 } 4913 4914 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4915 { 4916 struct btrfs_root *root = BTRFS_I(inode)->root; 4917 struct btrfs_trans_handle *trans; 4918 loff_t oldsize = i_size_read(inode); 4919 loff_t newsize = attr->ia_size; 4920 int mask = attr->ia_valid; 4921 int ret; 4922 4923 /* 4924 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4925 * special case where we need to update the times despite not having 4926 * these flags set. For all other operations the VFS set these flags 4927 * explicitly if it wants a timestamp update. 4928 */ 4929 if (newsize != oldsize) { 4930 inode_inc_iversion(inode); 4931 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4932 inode->i_ctime = inode->i_mtime = 4933 current_fs_time(inode->i_sb); 4934 } 4935 4936 if (newsize > oldsize) { 4937 truncate_pagecache(inode, newsize); 4938 /* 4939 * Don't do an expanding truncate while snapshoting is ongoing. 4940 * This is to ensure the snapshot captures a fully consistent 4941 * state of this file - if the snapshot captures this expanding 4942 * truncation, it must capture all writes that happened before 4943 * this truncation. 4944 */ 4945 wait_for_snapshot_creation(root); 4946 ret = btrfs_cont_expand(inode, oldsize, newsize); 4947 if (ret) { 4948 btrfs_end_write_no_snapshoting(root); 4949 return ret; 4950 } 4951 4952 trans = btrfs_start_transaction(root, 1); 4953 if (IS_ERR(trans)) { 4954 btrfs_end_write_no_snapshoting(root); 4955 return PTR_ERR(trans); 4956 } 4957 4958 i_size_write(inode, newsize); 4959 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4960 ret = btrfs_update_inode(trans, root, inode); 4961 btrfs_end_write_no_snapshoting(root); 4962 btrfs_end_transaction(trans, root); 4963 } else { 4964 4965 /* 4966 * We're truncating a file that used to have good data down to 4967 * zero. Make sure it gets into the ordered flush list so that 4968 * any new writes get down to disk quickly. 4969 */ 4970 if (newsize == 0) 4971 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4972 &BTRFS_I(inode)->runtime_flags); 4973 4974 /* 4975 * 1 for the orphan item we're going to add 4976 * 1 for the orphan item deletion. 4977 */ 4978 trans = btrfs_start_transaction(root, 2); 4979 if (IS_ERR(trans)) 4980 return PTR_ERR(trans); 4981 4982 /* 4983 * We need to do this in case we fail at _any_ point during the 4984 * actual truncate. Once we do the truncate_setsize we could 4985 * invalidate pages which forces any outstanding ordered io to 4986 * be instantly completed which will give us extents that need 4987 * to be truncated. If we fail to get an orphan inode down we 4988 * could have left over extents that were never meant to live, 4989 * so we need to garuntee from this point on that everything 4990 * will be consistent. 4991 */ 4992 ret = btrfs_orphan_add(trans, inode); 4993 btrfs_end_transaction(trans, root); 4994 if (ret) 4995 return ret; 4996 4997 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4998 truncate_setsize(inode, newsize); 4999 5000 /* Disable nonlocked read DIO to avoid the end less truncate */ 5001 btrfs_inode_block_unlocked_dio(inode); 5002 inode_dio_wait(inode); 5003 btrfs_inode_resume_unlocked_dio(inode); 5004 5005 ret = btrfs_truncate(inode); 5006 if (ret && inode->i_nlink) { 5007 int err; 5008 5009 /* 5010 * failed to truncate, disk_i_size is only adjusted down 5011 * as we remove extents, so it should represent the true 5012 * size of the inode, so reset the in memory size and 5013 * delete our orphan entry. 5014 */ 5015 trans = btrfs_join_transaction(root); 5016 if (IS_ERR(trans)) { 5017 btrfs_orphan_del(NULL, inode); 5018 return ret; 5019 } 5020 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5021 err = btrfs_orphan_del(trans, inode); 5022 if (err) 5023 btrfs_abort_transaction(trans, root, err); 5024 btrfs_end_transaction(trans, root); 5025 } 5026 } 5027 5028 return ret; 5029 } 5030 5031 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5032 { 5033 struct inode *inode = d_inode(dentry); 5034 struct btrfs_root *root = BTRFS_I(inode)->root; 5035 int err; 5036 5037 if (btrfs_root_readonly(root)) 5038 return -EROFS; 5039 5040 err = inode_change_ok(inode, attr); 5041 if (err) 5042 return err; 5043 5044 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5045 err = btrfs_setsize(inode, attr); 5046 if (err) 5047 return err; 5048 } 5049 5050 if (attr->ia_valid) { 5051 setattr_copy(inode, attr); 5052 inode_inc_iversion(inode); 5053 err = btrfs_dirty_inode(inode); 5054 5055 if (!err && attr->ia_valid & ATTR_MODE) 5056 err = posix_acl_chmod(inode, inode->i_mode); 5057 } 5058 5059 return err; 5060 } 5061 5062 /* 5063 * While truncating the inode pages during eviction, we get the VFS calling 5064 * btrfs_invalidatepage() against each page of the inode. This is slow because 5065 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5066 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5067 * extent_state structures over and over, wasting lots of time. 5068 * 5069 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5070 * those expensive operations on a per page basis and do only the ordered io 5071 * finishing, while we release here the extent_map and extent_state structures, 5072 * without the excessive merging and splitting. 5073 */ 5074 static void evict_inode_truncate_pages(struct inode *inode) 5075 { 5076 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5077 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5078 struct rb_node *node; 5079 5080 ASSERT(inode->i_state & I_FREEING); 5081 truncate_inode_pages_final(&inode->i_data); 5082 5083 write_lock(&map_tree->lock); 5084 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5085 struct extent_map *em; 5086 5087 node = rb_first(&map_tree->map); 5088 em = rb_entry(node, struct extent_map, rb_node); 5089 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5090 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5091 remove_extent_mapping(map_tree, em); 5092 free_extent_map(em); 5093 if (need_resched()) { 5094 write_unlock(&map_tree->lock); 5095 cond_resched(); 5096 write_lock(&map_tree->lock); 5097 } 5098 } 5099 write_unlock(&map_tree->lock); 5100 5101 /* 5102 * Keep looping until we have no more ranges in the io tree. 5103 * We can have ongoing bios started by readpages (called from readahead) 5104 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5105 * still in progress (unlocked the pages in the bio but did not yet 5106 * unlocked the ranges in the io tree). Therefore this means some 5107 * ranges can still be locked and eviction started because before 5108 * submitting those bios, which are executed by a separate task (work 5109 * queue kthread), inode references (inode->i_count) were not taken 5110 * (which would be dropped in the end io callback of each bio). 5111 * Therefore here we effectively end up waiting for those bios and 5112 * anyone else holding locked ranges without having bumped the inode's 5113 * reference count - if we don't do it, when they access the inode's 5114 * io_tree to unlock a range it may be too late, leading to an 5115 * use-after-free issue. 5116 */ 5117 spin_lock(&io_tree->lock); 5118 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5119 struct extent_state *state; 5120 struct extent_state *cached_state = NULL; 5121 u64 start; 5122 u64 end; 5123 5124 node = rb_first(&io_tree->state); 5125 state = rb_entry(node, struct extent_state, rb_node); 5126 start = state->start; 5127 end = state->end; 5128 spin_unlock(&io_tree->lock); 5129 5130 lock_extent_bits(io_tree, start, end, 0, &cached_state); 5131 5132 /* 5133 * If still has DELALLOC flag, the extent didn't reach disk, 5134 * and its reserved space won't be freed by delayed_ref. 5135 * So we need to free its reserved space here. 5136 * (Refer to comment in btrfs_invalidatepage, case 2) 5137 * 5138 * Note, end is the bytenr of last byte, so we need + 1 here. 5139 */ 5140 if (state->state & EXTENT_DELALLOC) 5141 btrfs_qgroup_free_data(inode, start, end - start + 1); 5142 5143 clear_extent_bit(io_tree, start, end, 5144 EXTENT_LOCKED | EXTENT_DIRTY | 5145 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5146 EXTENT_DEFRAG, 1, 1, 5147 &cached_state, GFP_NOFS); 5148 5149 cond_resched(); 5150 spin_lock(&io_tree->lock); 5151 } 5152 spin_unlock(&io_tree->lock); 5153 } 5154 5155 void btrfs_evict_inode(struct inode *inode) 5156 { 5157 struct btrfs_trans_handle *trans; 5158 struct btrfs_root *root = BTRFS_I(inode)->root; 5159 struct btrfs_block_rsv *rsv, *global_rsv; 5160 int steal_from_global = 0; 5161 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5162 int ret; 5163 5164 trace_btrfs_inode_evict(inode); 5165 5166 evict_inode_truncate_pages(inode); 5167 5168 if (inode->i_nlink && 5169 ((btrfs_root_refs(&root->root_item) != 0 && 5170 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5171 btrfs_is_free_space_inode(inode))) 5172 goto no_delete; 5173 5174 if (is_bad_inode(inode)) { 5175 btrfs_orphan_del(NULL, inode); 5176 goto no_delete; 5177 } 5178 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5179 if (!special_file(inode->i_mode)) 5180 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5181 5182 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5183 5184 if (root->fs_info->log_root_recovering) { 5185 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5186 &BTRFS_I(inode)->runtime_flags)); 5187 goto no_delete; 5188 } 5189 5190 if (inode->i_nlink > 0) { 5191 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5192 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5193 goto no_delete; 5194 } 5195 5196 ret = btrfs_commit_inode_delayed_inode(inode); 5197 if (ret) { 5198 btrfs_orphan_del(NULL, inode); 5199 goto no_delete; 5200 } 5201 5202 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5203 if (!rsv) { 5204 btrfs_orphan_del(NULL, inode); 5205 goto no_delete; 5206 } 5207 rsv->size = min_size; 5208 rsv->failfast = 1; 5209 global_rsv = &root->fs_info->global_block_rsv; 5210 5211 btrfs_i_size_write(inode, 0); 5212 5213 /* 5214 * This is a bit simpler than btrfs_truncate since we've already 5215 * reserved our space for our orphan item in the unlink, so we just 5216 * need to reserve some slack space in case we add bytes and update 5217 * inode item when doing the truncate. 5218 */ 5219 while (1) { 5220 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5221 BTRFS_RESERVE_FLUSH_LIMIT); 5222 5223 /* 5224 * Try and steal from the global reserve since we will 5225 * likely not use this space anyway, we want to try as 5226 * hard as possible to get this to work. 5227 */ 5228 if (ret) 5229 steal_from_global++; 5230 else 5231 steal_from_global = 0; 5232 ret = 0; 5233 5234 /* 5235 * steal_from_global == 0: we reserved stuff, hooray! 5236 * steal_from_global == 1: we didn't reserve stuff, boo! 5237 * steal_from_global == 2: we've committed, still not a lot of 5238 * room but maybe we'll have room in the global reserve this 5239 * time. 5240 * steal_from_global == 3: abandon all hope! 5241 */ 5242 if (steal_from_global > 2) { 5243 btrfs_warn(root->fs_info, 5244 "Could not get space for a delete, will truncate on mount %d", 5245 ret); 5246 btrfs_orphan_del(NULL, inode); 5247 btrfs_free_block_rsv(root, rsv); 5248 goto no_delete; 5249 } 5250 5251 trans = btrfs_join_transaction(root); 5252 if (IS_ERR(trans)) { 5253 btrfs_orphan_del(NULL, inode); 5254 btrfs_free_block_rsv(root, rsv); 5255 goto no_delete; 5256 } 5257 5258 /* 5259 * We can't just steal from the global reserve, we need tomake 5260 * sure there is room to do it, if not we need to commit and try 5261 * again. 5262 */ 5263 if (steal_from_global) { 5264 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5265 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5266 min_size); 5267 else 5268 ret = -ENOSPC; 5269 } 5270 5271 /* 5272 * Couldn't steal from the global reserve, we have too much 5273 * pending stuff built up, commit the transaction and try it 5274 * again. 5275 */ 5276 if (ret) { 5277 ret = btrfs_commit_transaction(trans, root); 5278 if (ret) { 5279 btrfs_orphan_del(NULL, inode); 5280 btrfs_free_block_rsv(root, rsv); 5281 goto no_delete; 5282 } 5283 continue; 5284 } else { 5285 steal_from_global = 0; 5286 } 5287 5288 trans->block_rsv = rsv; 5289 5290 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5291 if (ret != -ENOSPC && ret != -EAGAIN) 5292 break; 5293 5294 trans->block_rsv = &root->fs_info->trans_block_rsv; 5295 btrfs_end_transaction(trans, root); 5296 trans = NULL; 5297 btrfs_btree_balance_dirty(root); 5298 } 5299 5300 btrfs_free_block_rsv(root, rsv); 5301 5302 /* 5303 * Errors here aren't a big deal, it just means we leave orphan items 5304 * in the tree. They will be cleaned up on the next mount. 5305 */ 5306 if (ret == 0) { 5307 trans->block_rsv = root->orphan_block_rsv; 5308 btrfs_orphan_del(trans, inode); 5309 } else { 5310 btrfs_orphan_del(NULL, inode); 5311 } 5312 5313 trans->block_rsv = &root->fs_info->trans_block_rsv; 5314 if (!(root == root->fs_info->tree_root || 5315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5316 btrfs_return_ino(root, btrfs_ino(inode)); 5317 5318 btrfs_end_transaction(trans, root); 5319 btrfs_btree_balance_dirty(root); 5320 no_delete: 5321 btrfs_remove_delayed_node(inode); 5322 clear_inode(inode); 5323 return; 5324 } 5325 5326 /* 5327 * this returns the key found in the dir entry in the location pointer. 5328 * If no dir entries were found, location->objectid is 0. 5329 */ 5330 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5331 struct btrfs_key *location) 5332 { 5333 const char *name = dentry->d_name.name; 5334 int namelen = dentry->d_name.len; 5335 struct btrfs_dir_item *di; 5336 struct btrfs_path *path; 5337 struct btrfs_root *root = BTRFS_I(dir)->root; 5338 int ret = 0; 5339 5340 path = btrfs_alloc_path(); 5341 if (!path) 5342 return -ENOMEM; 5343 5344 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5345 namelen, 0); 5346 if (IS_ERR(di)) 5347 ret = PTR_ERR(di); 5348 5349 if (IS_ERR_OR_NULL(di)) 5350 goto out_err; 5351 5352 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5353 out: 5354 btrfs_free_path(path); 5355 return ret; 5356 out_err: 5357 location->objectid = 0; 5358 goto out; 5359 } 5360 5361 /* 5362 * when we hit a tree root in a directory, the btrfs part of the inode 5363 * needs to be changed to reflect the root directory of the tree root. This 5364 * is kind of like crossing a mount point. 5365 */ 5366 static int fixup_tree_root_location(struct btrfs_root *root, 5367 struct inode *dir, 5368 struct dentry *dentry, 5369 struct btrfs_key *location, 5370 struct btrfs_root **sub_root) 5371 { 5372 struct btrfs_path *path; 5373 struct btrfs_root *new_root; 5374 struct btrfs_root_ref *ref; 5375 struct extent_buffer *leaf; 5376 struct btrfs_key key; 5377 int ret; 5378 int err = 0; 5379 5380 path = btrfs_alloc_path(); 5381 if (!path) { 5382 err = -ENOMEM; 5383 goto out; 5384 } 5385 5386 err = -ENOENT; 5387 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5388 key.type = BTRFS_ROOT_REF_KEY; 5389 key.offset = location->objectid; 5390 5391 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5392 0, 0); 5393 if (ret) { 5394 if (ret < 0) 5395 err = ret; 5396 goto out; 5397 } 5398 5399 leaf = path->nodes[0]; 5400 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5401 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5402 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5403 goto out; 5404 5405 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5406 (unsigned long)(ref + 1), 5407 dentry->d_name.len); 5408 if (ret) 5409 goto out; 5410 5411 btrfs_release_path(path); 5412 5413 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5414 if (IS_ERR(new_root)) { 5415 err = PTR_ERR(new_root); 5416 goto out; 5417 } 5418 5419 *sub_root = new_root; 5420 location->objectid = btrfs_root_dirid(&new_root->root_item); 5421 location->type = BTRFS_INODE_ITEM_KEY; 5422 location->offset = 0; 5423 err = 0; 5424 out: 5425 btrfs_free_path(path); 5426 return err; 5427 } 5428 5429 static void inode_tree_add(struct inode *inode) 5430 { 5431 struct btrfs_root *root = BTRFS_I(inode)->root; 5432 struct btrfs_inode *entry; 5433 struct rb_node **p; 5434 struct rb_node *parent; 5435 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5436 u64 ino = btrfs_ino(inode); 5437 5438 if (inode_unhashed(inode)) 5439 return; 5440 parent = NULL; 5441 spin_lock(&root->inode_lock); 5442 p = &root->inode_tree.rb_node; 5443 while (*p) { 5444 parent = *p; 5445 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5446 5447 if (ino < btrfs_ino(&entry->vfs_inode)) 5448 p = &parent->rb_left; 5449 else if (ino > btrfs_ino(&entry->vfs_inode)) 5450 p = &parent->rb_right; 5451 else { 5452 WARN_ON(!(entry->vfs_inode.i_state & 5453 (I_WILL_FREE | I_FREEING))); 5454 rb_replace_node(parent, new, &root->inode_tree); 5455 RB_CLEAR_NODE(parent); 5456 spin_unlock(&root->inode_lock); 5457 return; 5458 } 5459 } 5460 rb_link_node(new, parent, p); 5461 rb_insert_color(new, &root->inode_tree); 5462 spin_unlock(&root->inode_lock); 5463 } 5464 5465 static void inode_tree_del(struct inode *inode) 5466 { 5467 struct btrfs_root *root = BTRFS_I(inode)->root; 5468 int empty = 0; 5469 5470 spin_lock(&root->inode_lock); 5471 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5472 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5473 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5474 empty = RB_EMPTY_ROOT(&root->inode_tree); 5475 } 5476 spin_unlock(&root->inode_lock); 5477 5478 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5479 synchronize_srcu(&root->fs_info->subvol_srcu); 5480 spin_lock(&root->inode_lock); 5481 empty = RB_EMPTY_ROOT(&root->inode_tree); 5482 spin_unlock(&root->inode_lock); 5483 if (empty) 5484 btrfs_add_dead_root(root); 5485 } 5486 } 5487 5488 void btrfs_invalidate_inodes(struct btrfs_root *root) 5489 { 5490 struct rb_node *node; 5491 struct rb_node *prev; 5492 struct btrfs_inode *entry; 5493 struct inode *inode; 5494 u64 objectid = 0; 5495 5496 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5497 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5498 5499 spin_lock(&root->inode_lock); 5500 again: 5501 node = root->inode_tree.rb_node; 5502 prev = NULL; 5503 while (node) { 5504 prev = node; 5505 entry = rb_entry(node, struct btrfs_inode, rb_node); 5506 5507 if (objectid < btrfs_ino(&entry->vfs_inode)) 5508 node = node->rb_left; 5509 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5510 node = node->rb_right; 5511 else 5512 break; 5513 } 5514 if (!node) { 5515 while (prev) { 5516 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5517 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5518 node = prev; 5519 break; 5520 } 5521 prev = rb_next(prev); 5522 } 5523 } 5524 while (node) { 5525 entry = rb_entry(node, struct btrfs_inode, rb_node); 5526 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5527 inode = igrab(&entry->vfs_inode); 5528 if (inode) { 5529 spin_unlock(&root->inode_lock); 5530 if (atomic_read(&inode->i_count) > 1) 5531 d_prune_aliases(inode); 5532 /* 5533 * btrfs_drop_inode will have it removed from 5534 * the inode cache when its usage count 5535 * hits zero. 5536 */ 5537 iput(inode); 5538 cond_resched(); 5539 spin_lock(&root->inode_lock); 5540 goto again; 5541 } 5542 5543 if (cond_resched_lock(&root->inode_lock)) 5544 goto again; 5545 5546 node = rb_next(node); 5547 } 5548 spin_unlock(&root->inode_lock); 5549 } 5550 5551 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5552 { 5553 struct btrfs_iget_args *args = p; 5554 inode->i_ino = args->location->objectid; 5555 memcpy(&BTRFS_I(inode)->location, args->location, 5556 sizeof(*args->location)); 5557 BTRFS_I(inode)->root = args->root; 5558 return 0; 5559 } 5560 5561 static int btrfs_find_actor(struct inode *inode, void *opaque) 5562 { 5563 struct btrfs_iget_args *args = opaque; 5564 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5565 args->root == BTRFS_I(inode)->root; 5566 } 5567 5568 static struct inode *btrfs_iget_locked(struct super_block *s, 5569 struct btrfs_key *location, 5570 struct btrfs_root *root) 5571 { 5572 struct inode *inode; 5573 struct btrfs_iget_args args; 5574 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5575 5576 args.location = location; 5577 args.root = root; 5578 5579 inode = iget5_locked(s, hashval, btrfs_find_actor, 5580 btrfs_init_locked_inode, 5581 (void *)&args); 5582 return inode; 5583 } 5584 5585 /* Get an inode object given its location and corresponding root. 5586 * Returns in *is_new if the inode was read from disk 5587 */ 5588 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5589 struct btrfs_root *root, int *new) 5590 { 5591 struct inode *inode; 5592 5593 inode = btrfs_iget_locked(s, location, root); 5594 if (!inode) 5595 return ERR_PTR(-ENOMEM); 5596 5597 if (inode->i_state & I_NEW) { 5598 btrfs_read_locked_inode(inode); 5599 if (!is_bad_inode(inode)) { 5600 inode_tree_add(inode); 5601 unlock_new_inode(inode); 5602 if (new) 5603 *new = 1; 5604 } else { 5605 unlock_new_inode(inode); 5606 iput(inode); 5607 inode = ERR_PTR(-ESTALE); 5608 } 5609 } 5610 5611 return inode; 5612 } 5613 5614 static struct inode *new_simple_dir(struct super_block *s, 5615 struct btrfs_key *key, 5616 struct btrfs_root *root) 5617 { 5618 struct inode *inode = new_inode(s); 5619 5620 if (!inode) 5621 return ERR_PTR(-ENOMEM); 5622 5623 BTRFS_I(inode)->root = root; 5624 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5625 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5626 5627 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5628 inode->i_op = &btrfs_dir_ro_inode_operations; 5629 inode->i_fop = &simple_dir_operations; 5630 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5631 inode->i_mtime = CURRENT_TIME; 5632 inode->i_atime = inode->i_mtime; 5633 inode->i_ctime = inode->i_mtime; 5634 BTRFS_I(inode)->i_otime = inode->i_mtime; 5635 5636 return inode; 5637 } 5638 5639 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5640 { 5641 struct inode *inode; 5642 struct btrfs_root *root = BTRFS_I(dir)->root; 5643 struct btrfs_root *sub_root = root; 5644 struct btrfs_key location; 5645 int index; 5646 int ret = 0; 5647 5648 if (dentry->d_name.len > BTRFS_NAME_LEN) 5649 return ERR_PTR(-ENAMETOOLONG); 5650 5651 ret = btrfs_inode_by_name(dir, dentry, &location); 5652 if (ret < 0) 5653 return ERR_PTR(ret); 5654 5655 if (location.objectid == 0) 5656 return ERR_PTR(-ENOENT); 5657 5658 if (location.type == BTRFS_INODE_ITEM_KEY) { 5659 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5660 return inode; 5661 } 5662 5663 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5664 5665 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5666 ret = fixup_tree_root_location(root, dir, dentry, 5667 &location, &sub_root); 5668 if (ret < 0) { 5669 if (ret != -ENOENT) 5670 inode = ERR_PTR(ret); 5671 else 5672 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5673 } else { 5674 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5675 } 5676 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5677 5678 if (!IS_ERR(inode) && root != sub_root) { 5679 down_read(&root->fs_info->cleanup_work_sem); 5680 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5681 ret = btrfs_orphan_cleanup(sub_root); 5682 up_read(&root->fs_info->cleanup_work_sem); 5683 if (ret) { 5684 iput(inode); 5685 inode = ERR_PTR(ret); 5686 } 5687 } 5688 5689 return inode; 5690 } 5691 5692 static int btrfs_dentry_delete(const struct dentry *dentry) 5693 { 5694 struct btrfs_root *root; 5695 struct inode *inode = d_inode(dentry); 5696 5697 if (!inode && !IS_ROOT(dentry)) 5698 inode = d_inode(dentry->d_parent); 5699 5700 if (inode) { 5701 root = BTRFS_I(inode)->root; 5702 if (btrfs_root_refs(&root->root_item) == 0) 5703 return 1; 5704 5705 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5706 return 1; 5707 } 5708 return 0; 5709 } 5710 5711 static void btrfs_dentry_release(struct dentry *dentry) 5712 { 5713 kfree(dentry->d_fsdata); 5714 } 5715 5716 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5717 unsigned int flags) 5718 { 5719 struct inode *inode; 5720 5721 inode = btrfs_lookup_dentry(dir, dentry); 5722 if (IS_ERR(inode)) { 5723 if (PTR_ERR(inode) == -ENOENT) 5724 inode = NULL; 5725 else 5726 return ERR_CAST(inode); 5727 } 5728 5729 return d_splice_alias(inode, dentry); 5730 } 5731 5732 unsigned char btrfs_filetype_table[] = { 5733 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5734 }; 5735 5736 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5737 { 5738 struct inode *inode = file_inode(file); 5739 struct btrfs_root *root = BTRFS_I(inode)->root; 5740 struct btrfs_item *item; 5741 struct btrfs_dir_item *di; 5742 struct btrfs_key key; 5743 struct btrfs_key found_key; 5744 struct btrfs_path *path; 5745 struct list_head ins_list; 5746 struct list_head del_list; 5747 int ret; 5748 struct extent_buffer *leaf; 5749 int slot; 5750 unsigned char d_type; 5751 int over = 0; 5752 u32 di_cur; 5753 u32 di_total; 5754 u32 di_len; 5755 int key_type = BTRFS_DIR_INDEX_KEY; 5756 char tmp_name[32]; 5757 char *name_ptr; 5758 int name_len; 5759 int is_curr = 0; /* ctx->pos points to the current index? */ 5760 5761 /* FIXME, use a real flag for deciding about the key type */ 5762 if (root->fs_info->tree_root == root) 5763 key_type = BTRFS_DIR_ITEM_KEY; 5764 5765 if (!dir_emit_dots(file, ctx)) 5766 return 0; 5767 5768 path = btrfs_alloc_path(); 5769 if (!path) 5770 return -ENOMEM; 5771 5772 path->reada = 1; 5773 5774 if (key_type == BTRFS_DIR_INDEX_KEY) { 5775 INIT_LIST_HEAD(&ins_list); 5776 INIT_LIST_HEAD(&del_list); 5777 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5778 } 5779 5780 key.type = key_type; 5781 key.offset = ctx->pos; 5782 key.objectid = btrfs_ino(inode); 5783 5784 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5785 if (ret < 0) 5786 goto err; 5787 5788 while (1) { 5789 leaf = path->nodes[0]; 5790 slot = path->slots[0]; 5791 if (slot >= btrfs_header_nritems(leaf)) { 5792 ret = btrfs_next_leaf(root, path); 5793 if (ret < 0) 5794 goto err; 5795 else if (ret > 0) 5796 break; 5797 continue; 5798 } 5799 5800 item = btrfs_item_nr(slot); 5801 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5802 5803 if (found_key.objectid != key.objectid) 5804 break; 5805 if (found_key.type != key_type) 5806 break; 5807 if (found_key.offset < ctx->pos) 5808 goto next; 5809 if (key_type == BTRFS_DIR_INDEX_KEY && 5810 btrfs_should_delete_dir_index(&del_list, 5811 found_key.offset)) 5812 goto next; 5813 5814 ctx->pos = found_key.offset; 5815 is_curr = 1; 5816 5817 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5818 di_cur = 0; 5819 di_total = btrfs_item_size(leaf, item); 5820 5821 while (di_cur < di_total) { 5822 struct btrfs_key location; 5823 5824 if (verify_dir_item(root, leaf, di)) 5825 break; 5826 5827 name_len = btrfs_dir_name_len(leaf, di); 5828 if (name_len <= sizeof(tmp_name)) { 5829 name_ptr = tmp_name; 5830 } else { 5831 name_ptr = kmalloc(name_len, GFP_NOFS); 5832 if (!name_ptr) { 5833 ret = -ENOMEM; 5834 goto err; 5835 } 5836 } 5837 read_extent_buffer(leaf, name_ptr, 5838 (unsigned long)(di + 1), name_len); 5839 5840 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5841 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5842 5843 5844 /* is this a reference to our own snapshot? If so 5845 * skip it. 5846 * 5847 * In contrast to old kernels, we insert the snapshot's 5848 * dir item and dir index after it has been created, so 5849 * we won't find a reference to our own snapshot. We 5850 * still keep the following code for backward 5851 * compatibility. 5852 */ 5853 if (location.type == BTRFS_ROOT_ITEM_KEY && 5854 location.objectid == root->root_key.objectid) { 5855 over = 0; 5856 goto skip; 5857 } 5858 over = !dir_emit(ctx, name_ptr, name_len, 5859 location.objectid, d_type); 5860 5861 skip: 5862 if (name_ptr != tmp_name) 5863 kfree(name_ptr); 5864 5865 if (over) 5866 goto nopos; 5867 di_len = btrfs_dir_name_len(leaf, di) + 5868 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5869 di_cur += di_len; 5870 di = (struct btrfs_dir_item *)((char *)di + di_len); 5871 } 5872 next: 5873 path->slots[0]++; 5874 } 5875 5876 if (key_type == BTRFS_DIR_INDEX_KEY) { 5877 if (is_curr) 5878 ctx->pos++; 5879 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5880 if (ret) 5881 goto nopos; 5882 } 5883 5884 /* Reached end of directory/root. Bump pos past the last item. */ 5885 ctx->pos++; 5886 5887 /* 5888 * Stop new entries from being returned after we return the last 5889 * entry. 5890 * 5891 * New directory entries are assigned a strictly increasing 5892 * offset. This means that new entries created during readdir 5893 * are *guaranteed* to be seen in the future by that readdir. 5894 * This has broken buggy programs which operate on names as 5895 * they're returned by readdir. Until we re-use freed offsets 5896 * we have this hack to stop new entries from being returned 5897 * under the assumption that they'll never reach this huge 5898 * offset. 5899 * 5900 * This is being careful not to overflow 32bit loff_t unless the 5901 * last entry requires it because doing so has broken 32bit apps 5902 * in the past. 5903 */ 5904 if (key_type == BTRFS_DIR_INDEX_KEY) { 5905 if (ctx->pos >= INT_MAX) 5906 ctx->pos = LLONG_MAX; 5907 else 5908 ctx->pos = INT_MAX; 5909 } 5910 nopos: 5911 ret = 0; 5912 err: 5913 if (key_type == BTRFS_DIR_INDEX_KEY) 5914 btrfs_put_delayed_items(&ins_list, &del_list); 5915 btrfs_free_path(path); 5916 return ret; 5917 } 5918 5919 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5920 { 5921 struct btrfs_root *root = BTRFS_I(inode)->root; 5922 struct btrfs_trans_handle *trans; 5923 int ret = 0; 5924 bool nolock = false; 5925 5926 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5927 return 0; 5928 5929 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5930 nolock = true; 5931 5932 if (wbc->sync_mode == WB_SYNC_ALL) { 5933 if (nolock) 5934 trans = btrfs_join_transaction_nolock(root); 5935 else 5936 trans = btrfs_join_transaction(root); 5937 if (IS_ERR(trans)) 5938 return PTR_ERR(trans); 5939 ret = btrfs_commit_transaction(trans, root); 5940 } 5941 return ret; 5942 } 5943 5944 /* 5945 * This is somewhat expensive, updating the tree every time the 5946 * inode changes. But, it is most likely to find the inode in cache. 5947 * FIXME, needs more benchmarking...there are no reasons other than performance 5948 * to keep or drop this code. 5949 */ 5950 static int btrfs_dirty_inode(struct inode *inode) 5951 { 5952 struct btrfs_root *root = BTRFS_I(inode)->root; 5953 struct btrfs_trans_handle *trans; 5954 int ret; 5955 5956 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5957 return 0; 5958 5959 trans = btrfs_join_transaction(root); 5960 if (IS_ERR(trans)) 5961 return PTR_ERR(trans); 5962 5963 ret = btrfs_update_inode(trans, root, inode); 5964 if (ret && ret == -ENOSPC) { 5965 /* whoops, lets try again with the full transaction */ 5966 btrfs_end_transaction(trans, root); 5967 trans = btrfs_start_transaction(root, 1); 5968 if (IS_ERR(trans)) 5969 return PTR_ERR(trans); 5970 5971 ret = btrfs_update_inode(trans, root, inode); 5972 } 5973 btrfs_end_transaction(trans, root); 5974 if (BTRFS_I(inode)->delayed_node) 5975 btrfs_balance_delayed_items(root); 5976 5977 return ret; 5978 } 5979 5980 /* 5981 * This is a copy of file_update_time. We need this so we can return error on 5982 * ENOSPC for updating the inode in the case of file write and mmap writes. 5983 */ 5984 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5985 int flags) 5986 { 5987 struct btrfs_root *root = BTRFS_I(inode)->root; 5988 5989 if (btrfs_root_readonly(root)) 5990 return -EROFS; 5991 5992 if (flags & S_VERSION) 5993 inode_inc_iversion(inode); 5994 if (flags & S_CTIME) 5995 inode->i_ctime = *now; 5996 if (flags & S_MTIME) 5997 inode->i_mtime = *now; 5998 if (flags & S_ATIME) 5999 inode->i_atime = *now; 6000 return btrfs_dirty_inode(inode); 6001 } 6002 6003 /* 6004 * find the highest existing sequence number in a directory 6005 * and then set the in-memory index_cnt variable to reflect 6006 * free sequence numbers 6007 */ 6008 static int btrfs_set_inode_index_count(struct inode *inode) 6009 { 6010 struct btrfs_root *root = BTRFS_I(inode)->root; 6011 struct btrfs_key key, found_key; 6012 struct btrfs_path *path; 6013 struct extent_buffer *leaf; 6014 int ret; 6015 6016 key.objectid = btrfs_ino(inode); 6017 key.type = BTRFS_DIR_INDEX_KEY; 6018 key.offset = (u64)-1; 6019 6020 path = btrfs_alloc_path(); 6021 if (!path) 6022 return -ENOMEM; 6023 6024 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6025 if (ret < 0) 6026 goto out; 6027 /* FIXME: we should be able to handle this */ 6028 if (ret == 0) 6029 goto out; 6030 ret = 0; 6031 6032 /* 6033 * MAGIC NUMBER EXPLANATION: 6034 * since we search a directory based on f_pos we have to start at 2 6035 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6036 * else has to start at 2 6037 */ 6038 if (path->slots[0] == 0) { 6039 BTRFS_I(inode)->index_cnt = 2; 6040 goto out; 6041 } 6042 6043 path->slots[0]--; 6044 6045 leaf = path->nodes[0]; 6046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6047 6048 if (found_key.objectid != btrfs_ino(inode) || 6049 found_key.type != BTRFS_DIR_INDEX_KEY) { 6050 BTRFS_I(inode)->index_cnt = 2; 6051 goto out; 6052 } 6053 6054 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6055 out: 6056 btrfs_free_path(path); 6057 return ret; 6058 } 6059 6060 /* 6061 * helper to find a free sequence number in a given directory. This current 6062 * code is very simple, later versions will do smarter things in the btree 6063 */ 6064 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6065 { 6066 int ret = 0; 6067 6068 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6069 ret = btrfs_inode_delayed_dir_index_count(dir); 6070 if (ret) { 6071 ret = btrfs_set_inode_index_count(dir); 6072 if (ret) 6073 return ret; 6074 } 6075 } 6076 6077 *index = BTRFS_I(dir)->index_cnt; 6078 BTRFS_I(dir)->index_cnt++; 6079 6080 return ret; 6081 } 6082 6083 static int btrfs_insert_inode_locked(struct inode *inode) 6084 { 6085 struct btrfs_iget_args args; 6086 args.location = &BTRFS_I(inode)->location; 6087 args.root = BTRFS_I(inode)->root; 6088 6089 return insert_inode_locked4(inode, 6090 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6091 btrfs_find_actor, &args); 6092 } 6093 6094 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6095 struct btrfs_root *root, 6096 struct inode *dir, 6097 const char *name, int name_len, 6098 u64 ref_objectid, u64 objectid, 6099 umode_t mode, u64 *index) 6100 { 6101 struct inode *inode; 6102 struct btrfs_inode_item *inode_item; 6103 struct btrfs_key *location; 6104 struct btrfs_path *path; 6105 struct btrfs_inode_ref *ref; 6106 struct btrfs_key key[2]; 6107 u32 sizes[2]; 6108 int nitems = name ? 2 : 1; 6109 unsigned long ptr; 6110 int ret; 6111 6112 path = btrfs_alloc_path(); 6113 if (!path) 6114 return ERR_PTR(-ENOMEM); 6115 6116 inode = new_inode(root->fs_info->sb); 6117 if (!inode) { 6118 btrfs_free_path(path); 6119 return ERR_PTR(-ENOMEM); 6120 } 6121 6122 /* 6123 * O_TMPFILE, set link count to 0, so that after this point, 6124 * we fill in an inode item with the correct link count. 6125 */ 6126 if (!name) 6127 set_nlink(inode, 0); 6128 6129 /* 6130 * we have to initialize this early, so we can reclaim the inode 6131 * number if we fail afterwards in this function. 6132 */ 6133 inode->i_ino = objectid; 6134 6135 if (dir && name) { 6136 trace_btrfs_inode_request(dir); 6137 6138 ret = btrfs_set_inode_index(dir, index); 6139 if (ret) { 6140 btrfs_free_path(path); 6141 iput(inode); 6142 return ERR_PTR(ret); 6143 } 6144 } else if (dir) { 6145 *index = 0; 6146 } 6147 /* 6148 * index_cnt is ignored for everything but a dir, 6149 * btrfs_get_inode_index_count has an explanation for the magic 6150 * number 6151 */ 6152 BTRFS_I(inode)->index_cnt = 2; 6153 BTRFS_I(inode)->dir_index = *index; 6154 BTRFS_I(inode)->root = root; 6155 BTRFS_I(inode)->generation = trans->transid; 6156 inode->i_generation = BTRFS_I(inode)->generation; 6157 6158 /* 6159 * We could have gotten an inode number from somebody who was fsynced 6160 * and then removed in this same transaction, so let's just set full 6161 * sync since it will be a full sync anyway and this will blow away the 6162 * old info in the log. 6163 */ 6164 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6165 6166 key[0].objectid = objectid; 6167 key[0].type = BTRFS_INODE_ITEM_KEY; 6168 key[0].offset = 0; 6169 6170 sizes[0] = sizeof(struct btrfs_inode_item); 6171 6172 if (name) { 6173 /* 6174 * Start new inodes with an inode_ref. This is slightly more 6175 * efficient for small numbers of hard links since they will 6176 * be packed into one item. Extended refs will kick in if we 6177 * add more hard links than can fit in the ref item. 6178 */ 6179 key[1].objectid = objectid; 6180 key[1].type = BTRFS_INODE_REF_KEY; 6181 key[1].offset = ref_objectid; 6182 6183 sizes[1] = name_len + sizeof(*ref); 6184 } 6185 6186 location = &BTRFS_I(inode)->location; 6187 location->objectid = objectid; 6188 location->offset = 0; 6189 location->type = BTRFS_INODE_ITEM_KEY; 6190 6191 ret = btrfs_insert_inode_locked(inode); 6192 if (ret < 0) 6193 goto fail; 6194 6195 path->leave_spinning = 1; 6196 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6197 if (ret != 0) 6198 goto fail_unlock; 6199 6200 inode_init_owner(inode, dir, mode); 6201 inode_set_bytes(inode, 0); 6202 6203 inode->i_mtime = CURRENT_TIME; 6204 inode->i_atime = inode->i_mtime; 6205 inode->i_ctime = inode->i_mtime; 6206 BTRFS_I(inode)->i_otime = inode->i_mtime; 6207 6208 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6209 struct btrfs_inode_item); 6210 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6211 sizeof(*inode_item)); 6212 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6213 6214 if (name) { 6215 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6216 struct btrfs_inode_ref); 6217 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6218 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6219 ptr = (unsigned long)(ref + 1); 6220 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6221 } 6222 6223 btrfs_mark_buffer_dirty(path->nodes[0]); 6224 btrfs_free_path(path); 6225 6226 btrfs_inherit_iflags(inode, dir); 6227 6228 if (S_ISREG(mode)) { 6229 if (btrfs_test_opt(root, NODATASUM)) 6230 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6231 if (btrfs_test_opt(root, NODATACOW)) 6232 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6233 BTRFS_INODE_NODATASUM; 6234 } 6235 6236 inode_tree_add(inode); 6237 6238 trace_btrfs_inode_new(inode); 6239 btrfs_set_inode_last_trans(trans, inode); 6240 6241 btrfs_update_root_times(trans, root); 6242 6243 ret = btrfs_inode_inherit_props(trans, inode, dir); 6244 if (ret) 6245 btrfs_err(root->fs_info, 6246 "error inheriting props for ino %llu (root %llu): %d", 6247 btrfs_ino(inode), root->root_key.objectid, ret); 6248 6249 return inode; 6250 6251 fail_unlock: 6252 unlock_new_inode(inode); 6253 fail: 6254 if (dir && name) 6255 BTRFS_I(dir)->index_cnt--; 6256 btrfs_free_path(path); 6257 iput(inode); 6258 return ERR_PTR(ret); 6259 } 6260 6261 static inline u8 btrfs_inode_type(struct inode *inode) 6262 { 6263 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6264 } 6265 6266 /* 6267 * utility function to add 'inode' into 'parent_inode' with 6268 * a give name and a given sequence number. 6269 * if 'add_backref' is true, also insert a backref from the 6270 * inode to the parent directory. 6271 */ 6272 int btrfs_add_link(struct btrfs_trans_handle *trans, 6273 struct inode *parent_inode, struct inode *inode, 6274 const char *name, int name_len, int add_backref, u64 index) 6275 { 6276 int ret = 0; 6277 struct btrfs_key key; 6278 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6279 u64 ino = btrfs_ino(inode); 6280 u64 parent_ino = btrfs_ino(parent_inode); 6281 6282 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6283 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6284 } else { 6285 key.objectid = ino; 6286 key.type = BTRFS_INODE_ITEM_KEY; 6287 key.offset = 0; 6288 } 6289 6290 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6291 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6292 key.objectid, root->root_key.objectid, 6293 parent_ino, index, name, name_len); 6294 } else if (add_backref) { 6295 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6296 parent_ino, index); 6297 } 6298 6299 /* Nothing to clean up yet */ 6300 if (ret) 6301 return ret; 6302 6303 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6304 parent_inode, &key, 6305 btrfs_inode_type(inode), index); 6306 if (ret == -EEXIST || ret == -EOVERFLOW) 6307 goto fail_dir_item; 6308 else if (ret) { 6309 btrfs_abort_transaction(trans, root, ret); 6310 return ret; 6311 } 6312 6313 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6314 name_len * 2); 6315 inode_inc_iversion(parent_inode); 6316 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 6317 ret = btrfs_update_inode(trans, root, parent_inode); 6318 if (ret) 6319 btrfs_abort_transaction(trans, root, ret); 6320 return ret; 6321 6322 fail_dir_item: 6323 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6324 u64 local_index; 6325 int err; 6326 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6327 key.objectid, root->root_key.objectid, 6328 parent_ino, &local_index, name, name_len); 6329 6330 } else if (add_backref) { 6331 u64 local_index; 6332 int err; 6333 6334 err = btrfs_del_inode_ref(trans, root, name, name_len, 6335 ino, parent_ino, &local_index); 6336 } 6337 return ret; 6338 } 6339 6340 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6341 struct inode *dir, struct dentry *dentry, 6342 struct inode *inode, int backref, u64 index) 6343 { 6344 int err = btrfs_add_link(trans, dir, inode, 6345 dentry->d_name.name, dentry->d_name.len, 6346 backref, index); 6347 if (err > 0) 6348 err = -EEXIST; 6349 return err; 6350 } 6351 6352 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6353 umode_t mode, dev_t rdev) 6354 { 6355 struct btrfs_trans_handle *trans; 6356 struct btrfs_root *root = BTRFS_I(dir)->root; 6357 struct inode *inode = NULL; 6358 int err; 6359 int drop_inode = 0; 6360 u64 objectid; 6361 u64 index = 0; 6362 6363 if (!new_valid_dev(rdev)) 6364 return -EINVAL; 6365 6366 /* 6367 * 2 for inode item and ref 6368 * 2 for dir items 6369 * 1 for xattr if selinux is on 6370 */ 6371 trans = btrfs_start_transaction(root, 5); 6372 if (IS_ERR(trans)) 6373 return PTR_ERR(trans); 6374 6375 err = btrfs_find_free_ino(root, &objectid); 6376 if (err) 6377 goto out_unlock; 6378 6379 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6380 dentry->d_name.len, btrfs_ino(dir), objectid, 6381 mode, &index); 6382 if (IS_ERR(inode)) { 6383 err = PTR_ERR(inode); 6384 goto out_unlock; 6385 } 6386 6387 /* 6388 * If the active LSM wants to access the inode during 6389 * d_instantiate it needs these. Smack checks to see 6390 * if the filesystem supports xattrs by looking at the 6391 * ops vector. 6392 */ 6393 inode->i_op = &btrfs_special_inode_operations; 6394 init_special_inode(inode, inode->i_mode, rdev); 6395 6396 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6397 if (err) 6398 goto out_unlock_inode; 6399 6400 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6401 if (err) { 6402 goto out_unlock_inode; 6403 } else { 6404 btrfs_update_inode(trans, root, inode); 6405 unlock_new_inode(inode); 6406 d_instantiate(dentry, inode); 6407 } 6408 6409 out_unlock: 6410 btrfs_end_transaction(trans, root); 6411 btrfs_balance_delayed_items(root); 6412 btrfs_btree_balance_dirty(root); 6413 if (drop_inode) { 6414 inode_dec_link_count(inode); 6415 iput(inode); 6416 } 6417 return err; 6418 6419 out_unlock_inode: 6420 drop_inode = 1; 6421 unlock_new_inode(inode); 6422 goto out_unlock; 6423 6424 } 6425 6426 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6427 umode_t mode, bool excl) 6428 { 6429 struct btrfs_trans_handle *trans; 6430 struct btrfs_root *root = BTRFS_I(dir)->root; 6431 struct inode *inode = NULL; 6432 int drop_inode_on_err = 0; 6433 int err; 6434 u64 objectid; 6435 u64 index = 0; 6436 6437 /* 6438 * 2 for inode item and ref 6439 * 2 for dir items 6440 * 1 for xattr if selinux is on 6441 */ 6442 trans = btrfs_start_transaction(root, 5); 6443 if (IS_ERR(trans)) 6444 return PTR_ERR(trans); 6445 6446 err = btrfs_find_free_ino(root, &objectid); 6447 if (err) 6448 goto out_unlock; 6449 6450 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6451 dentry->d_name.len, btrfs_ino(dir), objectid, 6452 mode, &index); 6453 if (IS_ERR(inode)) { 6454 err = PTR_ERR(inode); 6455 goto out_unlock; 6456 } 6457 drop_inode_on_err = 1; 6458 /* 6459 * If the active LSM wants to access the inode during 6460 * d_instantiate it needs these. Smack checks to see 6461 * if the filesystem supports xattrs by looking at the 6462 * ops vector. 6463 */ 6464 inode->i_fop = &btrfs_file_operations; 6465 inode->i_op = &btrfs_file_inode_operations; 6466 inode->i_mapping->a_ops = &btrfs_aops; 6467 6468 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6469 if (err) 6470 goto out_unlock_inode; 6471 6472 err = btrfs_update_inode(trans, root, inode); 6473 if (err) 6474 goto out_unlock_inode; 6475 6476 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6477 if (err) 6478 goto out_unlock_inode; 6479 6480 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6481 unlock_new_inode(inode); 6482 d_instantiate(dentry, inode); 6483 6484 out_unlock: 6485 btrfs_end_transaction(trans, root); 6486 if (err && drop_inode_on_err) { 6487 inode_dec_link_count(inode); 6488 iput(inode); 6489 } 6490 btrfs_balance_delayed_items(root); 6491 btrfs_btree_balance_dirty(root); 6492 return err; 6493 6494 out_unlock_inode: 6495 unlock_new_inode(inode); 6496 goto out_unlock; 6497 6498 } 6499 6500 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6501 struct dentry *dentry) 6502 { 6503 struct btrfs_trans_handle *trans; 6504 struct btrfs_root *root = BTRFS_I(dir)->root; 6505 struct inode *inode = d_inode(old_dentry); 6506 u64 index; 6507 int err; 6508 int drop_inode = 0; 6509 6510 /* do not allow sys_link's with other subvols of the same device */ 6511 if (root->objectid != BTRFS_I(inode)->root->objectid) 6512 return -EXDEV; 6513 6514 if (inode->i_nlink >= BTRFS_LINK_MAX) 6515 return -EMLINK; 6516 6517 err = btrfs_set_inode_index(dir, &index); 6518 if (err) 6519 goto fail; 6520 6521 /* 6522 * 2 items for inode and inode ref 6523 * 2 items for dir items 6524 * 1 item for parent inode 6525 */ 6526 trans = btrfs_start_transaction(root, 5); 6527 if (IS_ERR(trans)) { 6528 err = PTR_ERR(trans); 6529 goto fail; 6530 } 6531 6532 /* There are several dir indexes for this inode, clear the cache. */ 6533 BTRFS_I(inode)->dir_index = 0ULL; 6534 inc_nlink(inode); 6535 inode_inc_iversion(inode); 6536 inode->i_ctime = CURRENT_TIME; 6537 ihold(inode); 6538 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6539 6540 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6541 6542 if (err) { 6543 drop_inode = 1; 6544 } else { 6545 struct dentry *parent = dentry->d_parent; 6546 err = btrfs_update_inode(trans, root, inode); 6547 if (err) 6548 goto fail; 6549 if (inode->i_nlink == 1) { 6550 /* 6551 * If new hard link count is 1, it's a file created 6552 * with open(2) O_TMPFILE flag. 6553 */ 6554 err = btrfs_orphan_del(trans, inode); 6555 if (err) 6556 goto fail; 6557 } 6558 d_instantiate(dentry, inode); 6559 btrfs_log_new_name(trans, inode, NULL, parent); 6560 } 6561 6562 btrfs_end_transaction(trans, root); 6563 btrfs_balance_delayed_items(root); 6564 fail: 6565 if (drop_inode) { 6566 inode_dec_link_count(inode); 6567 iput(inode); 6568 } 6569 btrfs_btree_balance_dirty(root); 6570 return err; 6571 } 6572 6573 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6574 { 6575 struct inode *inode = NULL; 6576 struct btrfs_trans_handle *trans; 6577 struct btrfs_root *root = BTRFS_I(dir)->root; 6578 int err = 0; 6579 int drop_on_err = 0; 6580 u64 objectid = 0; 6581 u64 index = 0; 6582 6583 /* 6584 * 2 items for inode and ref 6585 * 2 items for dir items 6586 * 1 for xattr if selinux is on 6587 */ 6588 trans = btrfs_start_transaction(root, 5); 6589 if (IS_ERR(trans)) 6590 return PTR_ERR(trans); 6591 6592 err = btrfs_find_free_ino(root, &objectid); 6593 if (err) 6594 goto out_fail; 6595 6596 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6597 dentry->d_name.len, btrfs_ino(dir), objectid, 6598 S_IFDIR | mode, &index); 6599 if (IS_ERR(inode)) { 6600 err = PTR_ERR(inode); 6601 goto out_fail; 6602 } 6603 6604 drop_on_err = 1; 6605 /* these must be set before we unlock the inode */ 6606 inode->i_op = &btrfs_dir_inode_operations; 6607 inode->i_fop = &btrfs_dir_file_operations; 6608 6609 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6610 if (err) 6611 goto out_fail_inode; 6612 6613 btrfs_i_size_write(inode, 0); 6614 err = btrfs_update_inode(trans, root, inode); 6615 if (err) 6616 goto out_fail_inode; 6617 6618 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6619 dentry->d_name.len, 0, index); 6620 if (err) 6621 goto out_fail_inode; 6622 6623 d_instantiate(dentry, inode); 6624 /* 6625 * mkdir is special. We're unlocking after we call d_instantiate 6626 * to avoid a race with nfsd calling d_instantiate. 6627 */ 6628 unlock_new_inode(inode); 6629 drop_on_err = 0; 6630 6631 out_fail: 6632 btrfs_end_transaction(trans, root); 6633 if (drop_on_err) { 6634 inode_dec_link_count(inode); 6635 iput(inode); 6636 } 6637 btrfs_balance_delayed_items(root); 6638 btrfs_btree_balance_dirty(root); 6639 return err; 6640 6641 out_fail_inode: 6642 unlock_new_inode(inode); 6643 goto out_fail; 6644 } 6645 6646 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6647 static struct extent_map *next_extent_map(struct extent_map *em) 6648 { 6649 struct rb_node *next; 6650 6651 next = rb_next(&em->rb_node); 6652 if (!next) 6653 return NULL; 6654 return container_of(next, struct extent_map, rb_node); 6655 } 6656 6657 static struct extent_map *prev_extent_map(struct extent_map *em) 6658 { 6659 struct rb_node *prev; 6660 6661 prev = rb_prev(&em->rb_node); 6662 if (!prev) 6663 return NULL; 6664 return container_of(prev, struct extent_map, rb_node); 6665 } 6666 6667 /* helper for btfs_get_extent. Given an existing extent in the tree, 6668 * the existing extent is the nearest extent to map_start, 6669 * and an extent that you want to insert, deal with overlap and insert 6670 * the best fitted new extent into the tree. 6671 */ 6672 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6673 struct extent_map *existing, 6674 struct extent_map *em, 6675 u64 map_start) 6676 { 6677 struct extent_map *prev; 6678 struct extent_map *next; 6679 u64 start; 6680 u64 end; 6681 u64 start_diff; 6682 6683 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6684 6685 if (existing->start > map_start) { 6686 next = existing; 6687 prev = prev_extent_map(next); 6688 } else { 6689 prev = existing; 6690 next = next_extent_map(prev); 6691 } 6692 6693 start = prev ? extent_map_end(prev) : em->start; 6694 start = max_t(u64, start, em->start); 6695 end = next ? next->start : extent_map_end(em); 6696 end = min_t(u64, end, extent_map_end(em)); 6697 start_diff = start - em->start; 6698 em->start = start; 6699 em->len = end - start; 6700 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6701 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6702 em->block_start += start_diff; 6703 em->block_len -= start_diff; 6704 } 6705 return add_extent_mapping(em_tree, em, 0); 6706 } 6707 6708 static noinline int uncompress_inline(struct btrfs_path *path, 6709 struct inode *inode, struct page *page, 6710 size_t pg_offset, u64 extent_offset, 6711 struct btrfs_file_extent_item *item) 6712 { 6713 int ret; 6714 struct extent_buffer *leaf = path->nodes[0]; 6715 char *tmp; 6716 size_t max_size; 6717 unsigned long inline_size; 6718 unsigned long ptr; 6719 int compress_type; 6720 6721 WARN_ON(pg_offset != 0); 6722 compress_type = btrfs_file_extent_compression(leaf, item); 6723 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6724 inline_size = btrfs_file_extent_inline_item_len(leaf, 6725 btrfs_item_nr(path->slots[0])); 6726 tmp = kmalloc(inline_size, GFP_NOFS); 6727 if (!tmp) 6728 return -ENOMEM; 6729 ptr = btrfs_file_extent_inline_start(item); 6730 6731 read_extent_buffer(leaf, tmp, ptr, inline_size); 6732 6733 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6734 ret = btrfs_decompress(compress_type, tmp, page, 6735 extent_offset, inline_size, max_size); 6736 kfree(tmp); 6737 return ret; 6738 } 6739 6740 /* 6741 * a bit scary, this does extent mapping from logical file offset to the disk. 6742 * the ugly parts come from merging extents from the disk with the in-ram 6743 * representation. This gets more complex because of the data=ordered code, 6744 * where the in-ram extents might be locked pending data=ordered completion. 6745 * 6746 * This also copies inline extents directly into the page. 6747 */ 6748 6749 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6750 size_t pg_offset, u64 start, u64 len, 6751 int create) 6752 { 6753 int ret; 6754 int err = 0; 6755 u64 extent_start = 0; 6756 u64 extent_end = 0; 6757 u64 objectid = btrfs_ino(inode); 6758 u32 found_type; 6759 struct btrfs_path *path = NULL; 6760 struct btrfs_root *root = BTRFS_I(inode)->root; 6761 struct btrfs_file_extent_item *item; 6762 struct extent_buffer *leaf; 6763 struct btrfs_key found_key; 6764 struct extent_map *em = NULL; 6765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6766 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6767 struct btrfs_trans_handle *trans = NULL; 6768 const bool new_inline = !page || create; 6769 6770 again: 6771 read_lock(&em_tree->lock); 6772 em = lookup_extent_mapping(em_tree, start, len); 6773 if (em) 6774 em->bdev = root->fs_info->fs_devices->latest_bdev; 6775 read_unlock(&em_tree->lock); 6776 6777 if (em) { 6778 if (em->start > start || em->start + em->len <= start) 6779 free_extent_map(em); 6780 else if (em->block_start == EXTENT_MAP_INLINE && page) 6781 free_extent_map(em); 6782 else 6783 goto out; 6784 } 6785 em = alloc_extent_map(); 6786 if (!em) { 6787 err = -ENOMEM; 6788 goto out; 6789 } 6790 em->bdev = root->fs_info->fs_devices->latest_bdev; 6791 em->start = EXTENT_MAP_HOLE; 6792 em->orig_start = EXTENT_MAP_HOLE; 6793 em->len = (u64)-1; 6794 em->block_len = (u64)-1; 6795 6796 if (!path) { 6797 path = btrfs_alloc_path(); 6798 if (!path) { 6799 err = -ENOMEM; 6800 goto out; 6801 } 6802 /* 6803 * Chances are we'll be called again, so go ahead and do 6804 * readahead 6805 */ 6806 path->reada = 1; 6807 } 6808 6809 ret = btrfs_lookup_file_extent(trans, root, path, 6810 objectid, start, trans != NULL); 6811 if (ret < 0) { 6812 err = ret; 6813 goto out; 6814 } 6815 6816 if (ret != 0) { 6817 if (path->slots[0] == 0) 6818 goto not_found; 6819 path->slots[0]--; 6820 } 6821 6822 leaf = path->nodes[0]; 6823 item = btrfs_item_ptr(leaf, path->slots[0], 6824 struct btrfs_file_extent_item); 6825 /* are we inside the extent that was found? */ 6826 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6827 found_type = found_key.type; 6828 if (found_key.objectid != objectid || 6829 found_type != BTRFS_EXTENT_DATA_KEY) { 6830 /* 6831 * If we backup past the first extent we want to move forward 6832 * and see if there is an extent in front of us, otherwise we'll 6833 * say there is a hole for our whole search range which can 6834 * cause problems. 6835 */ 6836 extent_end = start; 6837 goto next; 6838 } 6839 6840 found_type = btrfs_file_extent_type(leaf, item); 6841 extent_start = found_key.offset; 6842 if (found_type == BTRFS_FILE_EXTENT_REG || 6843 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6844 extent_end = extent_start + 6845 btrfs_file_extent_num_bytes(leaf, item); 6846 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6847 size_t size; 6848 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6849 extent_end = ALIGN(extent_start + size, root->sectorsize); 6850 } 6851 next: 6852 if (start >= extent_end) { 6853 path->slots[0]++; 6854 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6855 ret = btrfs_next_leaf(root, path); 6856 if (ret < 0) { 6857 err = ret; 6858 goto out; 6859 } 6860 if (ret > 0) 6861 goto not_found; 6862 leaf = path->nodes[0]; 6863 } 6864 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6865 if (found_key.objectid != objectid || 6866 found_key.type != BTRFS_EXTENT_DATA_KEY) 6867 goto not_found; 6868 if (start + len <= found_key.offset) 6869 goto not_found; 6870 if (start > found_key.offset) 6871 goto next; 6872 em->start = start; 6873 em->orig_start = start; 6874 em->len = found_key.offset - start; 6875 goto not_found_em; 6876 } 6877 6878 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6879 6880 if (found_type == BTRFS_FILE_EXTENT_REG || 6881 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6882 goto insert; 6883 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6884 unsigned long ptr; 6885 char *map; 6886 size_t size; 6887 size_t extent_offset; 6888 size_t copy_size; 6889 6890 if (new_inline) 6891 goto out; 6892 6893 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6894 extent_offset = page_offset(page) + pg_offset - extent_start; 6895 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6896 size - extent_offset); 6897 em->start = extent_start + extent_offset; 6898 em->len = ALIGN(copy_size, root->sectorsize); 6899 em->orig_block_len = em->len; 6900 em->orig_start = em->start; 6901 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6902 if (create == 0 && !PageUptodate(page)) { 6903 if (btrfs_file_extent_compression(leaf, item) != 6904 BTRFS_COMPRESS_NONE) { 6905 ret = uncompress_inline(path, inode, page, 6906 pg_offset, 6907 extent_offset, item); 6908 if (ret) { 6909 err = ret; 6910 goto out; 6911 } 6912 } else { 6913 map = kmap(page); 6914 read_extent_buffer(leaf, map + pg_offset, ptr, 6915 copy_size); 6916 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6917 memset(map + pg_offset + copy_size, 0, 6918 PAGE_CACHE_SIZE - pg_offset - 6919 copy_size); 6920 } 6921 kunmap(page); 6922 } 6923 flush_dcache_page(page); 6924 } else if (create && PageUptodate(page)) { 6925 BUG(); 6926 if (!trans) { 6927 kunmap(page); 6928 free_extent_map(em); 6929 em = NULL; 6930 6931 btrfs_release_path(path); 6932 trans = btrfs_join_transaction(root); 6933 6934 if (IS_ERR(trans)) 6935 return ERR_CAST(trans); 6936 goto again; 6937 } 6938 map = kmap(page); 6939 write_extent_buffer(leaf, map + pg_offset, ptr, 6940 copy_size); 6941 kunmap(page); 6942 btrfs_mark_buffer_dirty(leaf); 6943 } 6944 set_extent_uptodate(io_tree, em->start, 6945 extent_map_end(em) - 1, NULL, GFP_NOFS); 6946 goto insert; 6947 } 6948 not_found: 6949 em->start = start; 6950 em->orig_start = start; 6951 em->len = len; 6952 not_found_em: 6953 em->block_start = EXTENT_MAP_HOLE; 6954 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6955 insert: 6956 btrfs_release_path(path); 6957 if (em->start > start || extent_map_end(em) <= start) { 6958 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6959 em->start, em->len, start, len); 6960 err = -EIO; 6961 goto out; 6962 } 6963 6964 err = 0; 6965 write_lock(&em_tree->lock); 6966 ret = add_extent_mapping(em_tree, em, 0); 6967 /* it is possible that someone inserted the extent into the tree 6968 * while we had the lock dropped. It is also possible that 6969 * an overlapping map exists in the tree 6970 */ 6971 if (ret == -EEXIST) { 6972 struct extent_map *existing; 6973 6974 ret = 0; 6975 6976 existing = search_extent_mapping(em_tree, start, len); 6977 /* 6978 * existing will always be non-NULL, since there must be 6979 * extent causing the -EEXIST. 6980 */ 6981 if (start >= extent_map_end(existing) || 6982 start <= existing->start) { 6983 /* 6984 * The existing extent map is the one nearest to 6985 * the [start, start + len) range which overlaps 6986 */ 6987 err = merge_extent_mapping(em_tree, existing, 6988 em, start); 6989 free_extent_map(existing); 6990 if (err) { 6991 free_extent_map(em); 6992 em = NULL; 6993 } 6994 } else { 6995 free_extent_map(em); 6996 em = existing; 6997 err = 0; 6998 } 6999 } 7000 write_unlock(&em_tree->lock); 7001 out: 7002 7003 trace_btrfs_get_extent(root, em); 7004 7005 btrfs_free_path(path); 7006 if (trans) { 7007 ret = btrfs_end_transaction(trans, root); 7008 if (!err) 7009 err = ret; 7010 } 7011 if (err) { 7012 free_extent_map(em); 7013 return ERR_PTR(err); 7014 } 7015 BUG_ON(!em); /* Error is always set */ 7016 return em; 7017 } 7018 7019 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7020 size_t pg_offset, u64 start, u64 len, 7021 int create) 7022 { 7023 struct extent_map *em; 7024 struct extent_map *hole_em = NULL; 7025 u64 range_start = start; 7026 u64 end; 7027 u64 found; 7028 u64 found_end; 7029 int err = 0; 7030 7031 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7032 if (IS_ERR(em)) 7033 return em; 7034 if (em) { 7035 /* 7036 * if our em maps to 7037 * - a hole or 7038 * - a pre-alloc extent, 7039 * there might actually be delalloc bytes behind it. 7040 */ 7041 if (em->block_start != EXTENT_MAP_HOLE && 7042 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7043 return em; 7044 else 7045 hole_em = em; 7046 } 7047 7048 /* check to see if we've wrapped (len == -1 or similar) */ 7049 end = start + len; 7050 if (end < start) 7051 end = (u64)-1; 7052 else 7053 end -= 1; 7054 7055 em = NULL; 7056 7057 /* ok, we didn't find anything, lets look for delalloc */ 7058 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7059 end, len, EXTENT_DELALLOC, 1); 7060 found_end = range_start + found; 7061 if (found_end < range_start) 7062 found_end = (u64)-1; 7063 7064 /* 7065 * we didn't find anything useful, return 7066 * the original results from get_extent() 7067 */ 7068 if (range_start > end || found_end <= start) { 7069 em = hole_em; 7070 hole_em = NULL; 7071 goto out; 7072 } 7073 7074 /* adjust the range_start to make sure it doesn't 7075 * go backwards from the start they passed in 7076 */ 7077 range_start = max(start, range_start); 7078 found = found_end - range_start; 7079 7080 if (found > 0) { 7081 u64 hole_start = start; 7082 u64 hole_len = len; 7083 7084 em = alloc_extent_map(); 7085 if (!em) { 7086 err = -ENOMEM; 7087 goto out; 7088 } 7089 /* 7090 * when btrfs_get_extent can't find anything it 7091 * returns one huge hole 7092 * 7093 * make sure what it found really fits our range, and 7094 * adjust to make sure it is based on the start from 7095 * the caller 7096 */ 7097 if (hole_em) { 7098 u64 calc_end = extent_map_end(hole_em); 7099 7100 if (calc_end <= start || (hole_em->start > end)) { 7101 free_extent_map(hole_em); 7102 hole_em = NULL; 7103 } else { 7104 hole_start = max(hole_em->start, start); 7105 hole_len = calc_end - hole_start; 7106 } 7107 } 7108 em->bdev = NULL; 7109 if (hole_em && range_start > hole_start) { 7110 /* our hole starts before our delalloc, so we 7111 * have to return just the parts of the hole 7112 * that go until the delalloc starts 7113 */ 7114 em->len = min(hole_len, 7115 range_start - hole_start); 7116 em->start = hole_start; 7117 em->orig_start = hole_start; 7118 /* 7119 * don't adjust block start at all, 7120 * it is fixed at EXTENT_MAP_HOLE 7121 */ 7122 em->block_start = hole_em->block_start; 7123 em->block_len = hole_len; 7124 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7125 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7126 } else { 7127 em->start = range_start; 7128 em->len = found; 7129 em->orig_start = range_start; 7130 em->block_start = EXTENT_MAP_DELALLOC; 7131 em->block_len = found; 7132 } 7133 } else if (hole_em) { 7134 return hole_em; 7135 } 7136 out: 7137 7138 free_extent_map(hole_em); 7139 if (err) { 7140 free_extent_map(em); 7141 return ERR_PTR(err); 7142 } 7143 return em; 7144 } 7145 7146 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7147 u64 start, u64 len) 7148 { 7149 struct btrfs_root *root = BTRFS_I(inode)->root; 7150 struct extent_map *em; 7151 struct btrfs_key ins; 7152 u64 alloc_hint; 7153 int ret; 7154 7155 alloc_hint = get_extent_allocation_hint(inode, start, len); 7156 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7157 alloc_hint, &ins, 1, 1); 7158 if (ret) 7159 return ERR_PTR(ret); 7160 7161 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 7162 ins.offset, ins.offset, ins.offset, 0); 7163 if (IS_ERR(em)) { 7164 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7165 return em; 7166 } 7167 7168 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 7169 ins.offset, ins.offset, 0); 7170 if (ret) { 7171 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7172 free_extent_map(em); 7173 return ERR_PTR(ret); 7174 } 7175 7176 return em; 7177 } 7178 7179 /* 7180 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7181 * block must be cow'd 7182 */ 7183 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7184 u64 *orig_start, u64 *orig_block_len, 7185 u64 *ram_bytes) 7186 { 7187 struct btrfs_trans_handle *trans; 7188 struct btrfs_path *path; 7189 int ret; 7190 struct extent_buffer *leaf; 7191 struct btrfs_root *root = BTRFS_I(inode)->root; 7192 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7193 struct btrfs_file_extent_item *fi; 7194 struct btrfs_key key; 7195 u64 disk_bytenr; 7196 u64 backref_offset; 7197 u64 extent_end; 7198 u64 num_bytes; 7199 int slot; 7200 int found_type; 7201 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7202 7203 path = btrfs_alloc_path(); 7204 if (!path) 7205 return -ENOMEM; 7206 7207 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7208 offset, 0); 7209 if (ret < 0) 7210 goto out; 7211 7212 slot = path->slots[0]; 7213 if (ret == 1) { 7214 if (slot == 0) { 7215 /* can't find the item, must cow */ 7216 ret = 0; 7217 goto out; 7218 } 7219 slot--; 7220 } 7221 ret = 0; 7222 leaf = path->nodes[0]; 7223 btrfs_item_key_to_cpu(leaf, &key, slot); 7224 if (key.objectid != btrfs_ino(inode) || 7225 key.type != BTRFS_EXTENT_DATA_KEY) { 7226 /* not our file or wrong item type, must cow */ 7227 goto out; 7228 } 7229 7230 if (key.offset > offset) { 7231 /* Wrong offset, must cow */ 7232 goto out; 7233 } 7234 7235 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7236 found_type = btrfs_file_extent_type(leaf, fi); 7237 if (found_type != BTRFS_FILE_EXTENT_REG && 7238 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7239 /* not a regular extent, must cow */ 7240 goto out; 7241 } 7242 7243 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7244 goto out; 7245 7246 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7247 if (extent_end <= offset) 7248 goto out; 7249 7250 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7251 if (disk_bytenr == 0) 7252 goto out; 7253 7254 if (btrfs_file_extent_compression(leaf, fi) || 7255 btrfs_file_extent_encryption(leaf, fi) || 7256 btrfs_file_extent_other_encoding(leaf, fi)) 7257 goto out; 7258 7259 backref_offset = btrfs_file_extent_offset(leaf, fi); 7260 7261 if (orig_start) { 7262 *orig_start = key.offset - backref_offset; 7263 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7264 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7265 } 7266 7267 if (btrfs_extent_readonly(root, disk_bytenr)) 7268 goto out; 7269 7270 num_bytes = min(offset + *len, extent_end) - offset; 7271 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7272 u64 range_end; 7273 7274 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7275 ret = test_range_bit(io_tree, offset, range_end, 7276 EXTENT_DELALLOC, 0, NULL); 7277 if (ret) { 7278 ret = -EAGAIN; 7279 goto out; 7280 } 7281 } 7282 7283 btrfs_release_path(path); 7284 7285 /* 7286 * look for other files referencing this extent, if we 7287 * find any we must cow 7288 */ 7289 trans = btrfs_join_transaction(root); 7290 if (IS_ERR(trans)) { 7291 ret = 0; 7292 goto out; 7293 } 7294 7295 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7296 key.offset - backref_offset, disk_bytenr); 7297 btrfs_end_transaction(trans, root); 7298 if (ret) { 7299 ret = 0; 7300 goto out; 7301 } 7302 7303 /* 7304 * adjust disk_bytenr and num_bytes to cover just the bytes 7305 * in this extent we are about to write. If there 7306 * are any csums in that range we have to cow in order 7307 * to keep the csums correct 7308 */ 7309 disk_bytenr += backref_offset; 7310 disk_bytenr += offset - key.offset; 7311 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7312 goto out; 7313 /* 7314 * all of the above have passed, it is safe to overwrite this extent 7315 * without cow 7316 */ 7317 *len = num_bytes; 7318 ret = 1; 7319 out: 7320 btrfs_free_path(path); 7321 return ret; 7322 } 7323 7324 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7325 { 7326 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7327 int found = false; 7328 void **pagep = NULL; 7329 struct page *page = NULL; 7330 int start_idx; 7331 int end_idx; 7332 7333 start_idx = start >> PAGE_CACHE_SHIFT; 7334 7335 /* 7336 * end is the last byte in the last page. end == start is legal 7337 */ 7338 end_idx = end >> PAGE_CACHE_SHIFT; 7339 7340 rcu_read_lock(); 7341 7342 /* Most of the code in this while loop is lifted from 7343 * find_get_page. It's been modified to begin searching from a 7344 * page and return just the first page found in that range. If the 7345 * found idx is less than or equal to the end idx then we know that 7346 * a page exists. If no pages are found or if those pages are 7347 * outside of the range then we're fine (yay!) */ 7348 while (page == NULL && 7349 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7350 page = radix_tree_deref_slot(pagep); 7351 if (unlikely(!page)) 7352 break; 7353 7354 if (radix_tree_exception(page)) { 7355 if (radix_tree_deref_retry(page)) { 7356 page = NULL; 7357 continue; 7358 } 7359 /* 7360 * Otherwise, shmem/tmpfs must be storing a swap entry 7361 * here as an exceptional entry: so return it without 7362 * attempting to raise page count. 7363 */ 7364 page = NULL; 7365 break; /* TODO: Is this relevant for this use case? */ 7366 } 7367 7368 if (!page_cache_get_speculative(page)) { 7369 page = NULL; 7370 continue; 7371 } 7372 7373 /* 7374 * Has the page moved? 7375 * This is part of the lockless pagecache protocol. See 7376 * include/linux/pagemap.h for details. 7377 */ 7378 if (unlikely(page != *pagep)) { 7379 page_cache_release(page); 7380 page = NULL; 7381 } 7382 } 7383 7384 if (page) { 7385 if (page->index <= end_idx) 7386 found = true; 7387 page_cache_release(page); 7388 } 7389 7390 rcu_read_unlock(); 7391 return found; 7392 } 7393 7394 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7395 struct extent_state **cached_state, int writing) 7396 { 7397 struct btrfs_ordered_extent *ordered; 7398 int ret = 0; 7399 7400 while (1) { 7401 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7402 0, cached_state); 7403 /* 7404 * We're concerned with the entire range that we're going to be 7405 * doing DIO to, so we need to make sure theres no ordered 7406 * extents in this range. 7407 */ 7408 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7409 lockend - lockstart + 1); 7410 7411 /* 7412 * We need to make sure there are no buffered pages in this 7413 * range either, we could have raced between the invalidate in 7414 * generic_file_direct_write and locking the extent. The 7415 * invalidate needs to happen so that reads after a write do not 7416 * get stale data. 7417 */ 7418 if (!ordered && 7419 (!writing || 7420 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7421 break; 7422 7423 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7424 cached_state, GFP_NOFS); 7425 7426 if (ordered) { 7427 btrfs_start_ordered_extent(inode, ordered, 1); 7428 btrfs_put_ordered_extent(ordered); 7429 } else { 7430 /* Screw you mmap */ 7431 ret = btrfs_fdatawrite_range(inode, lockstart, lockend); 7432 if (ret) 7433 break; 7434 ret = filemap_fdatawait_range(inode->i_mapping, 7435 lockstart, 7436 lockend); 7437 if (ret) 7438 break; 7439 7440 /* 7441 * If we found a page that couldn't be invalidated just 7442 * fall back to buffered. 7443 */ 7444 ret = invalidate_inode_pages2_range(inode->i_mapping, 7445 lockstart >> PAGE_CACHE_SHIFT, 7446 lockend >> PAGE_CACHE_SHIFT); 7447 if (ret) 7448 break; 7449 } 7450 7451 cond_resched(); 7452 } 7453 7454 return ret; 7455 } 7456 7457 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7458 u64 len, u64 orig_start, 7459 u64 block_start, u64 block_len, 7460 u64 orig_block_len, u64 ram_bytes, 7461 int type) 7462 { 7463 struct extent_map_tree *em_tree; 7464 struct extent_map *em; 7465 struct btrfs_root *root = BTRFS_I(inode)->root; 7466 int ret; 7467 7468 em_tree = &BTRFS_I(inode)->extent_tree; 7469 em = alloc_extent_map(); 7470 if (!em) 7471 return ERR_PTR(-ENOMEM); 7472 7473 em->start = start; 7474 em->orig_start = orig_start; 7475 em->mod_start = start; 7476 em->mod_len = len; 7477 em->len = len; 7478 em->block_len = block_len; 7479 em->block_start = block_start; 7480 em->bdev = root->fs_info->fs_devices->latest_bdev; 7481 em->orig_block_len = orig_block_len; 7482 em->ram_bytes = ram_bytes; 7483 em->generation = -1; 7484 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7485 if (type == BTRFS_ORDERED_PREALLOC) 7486 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7487 7488 do { 7489 btrfs_drop_extent_cache(inode, em->start, 7490 em->start + em->len - 1, 0); 7491 write_lock(&em_tree->lock); 7492 ret = add_extent_mapping(em_tree, em, 1); 7493 write_unlock(&em_tree->lock); 7494 } while (ret == -EEXIST); 7495 7496 if (ret) { 7497 free_extent_map(em); 7498 return ERR_PTR(ret); 7499 } 7500 7501 return em; 7502 } 7503 7504 struct btrfs_dio_data { 7505 u64 outstanding_extents; 7506 u64 reserve; 7507 }; 7508 7509 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7510 struct buffer_head *bh_result, int create) 7511 { 7512 struct extent_map *em; 7513 struct btrfs_root *root = BTRFS_I(inode)->root; 7514 struct extent_state *cached_state = NULL; 7515 struct btrfs_dio_data *dio_data = NULL; 7516 u64 start = iblock << inode->i_blkbits; 7517 u64 lockstart, lockend; 7518 u64 len = bh_result->b_size; 7519 int unlock_bits = EXTENT_LOCKED; 7520 int ret = 0; 7521 7522 if (create) 7523 unlock_bits |= EXTENT_DIRTY; 7524 else 7525 len = min_t(u64, len, root->sectorsize); 7526 7527 lockstart = start; 7528 lockend = start + len - 1; 7529 7530 if (current->journal_info) { 7531 /* 7532 * Need to pull our outstanding extents and set journal_info to NULL so 7533 * that anything that needs to check if there's a transction doesn't get 7534 * confused. 7535 */ 7536 dio_data = current->journal_info; 7537 current->journal_info = NULL; 7538 } 7539 7540 /* 7541 * If this errors out it's because we couldn't invalidate pagecache for 7542 * this range and we need to fallback to buffered. 7543 */ 7544 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 7545 return -ENOTBLK; 7546 7547 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7548 if (IS_ERR(em)) { 7549 ret = PTR_ERR(em); 7550 goto unlock_err; 7551 } 7552 7553 /* 7554 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7555 * io. INLINE is special, and we could probably kludge it in here, but 7556 * it's still buffered so for safety lets just fall back to the generic 7557 * buffered path. 7558 * 7559 * For COMPRESSED we _have_ to read the entire extent in so we can 7560 * decompress it, so there will be buffering required no matter what we 7561 * do, so go ahead and fallback to buffered. 7562 * 7563 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7564 * to buffered IO. Don't blame me, this is the price we pay for using 7565 * the generic code. 7566 */ 7567 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7568 em->block_start == EXTENT_MAP_INLINE) { 7569 free_extent_map(em); 7570 ret = -ENOTBLK; 7571 goto unlock_err; 7572 } 7573 7574 /* Just a good old fashioned hole, return */ 7575 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7576 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7577 free_extent_map(em); 7578 goto unlock_err; 7579 } 7580 7581 /* 7582 * We don't allocate a new extent in the following cases 7583 * 7584 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7585 * existing extent. 7586 * 2) The extent is marked as PREALLOC. We're good to go here and can 7587 * just use the extent. 7588 * 7589 */ 7590 if (!create) { 7591 len = min(len, em->len - (start - em->start)); 7592 lockstart = start + len; 7593 goto unlock; 7594 } 7595 7596 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7597 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7598 em->block_start != EXTENT_MAP_HOLE)) { 7599 int type; 7600 u64 block_start, orig_start, orig_block_len, ram_bytes; 7601 7602 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7603 type = BTRFS_ORDERED_PREALLOC; 7604 else 7605 type = BTRFS_ORDERED_NOCOW; 7606 len = min(len, em->len - (start - em->start)); 7607 block_start = em->block_start + (start - em->start); 7608 7609 if (can_nocow_extent(inode, start, &len, &orig_start, 7610 &orig_block_len, &ram_bytes) == 1) { 7611 if (type == BTRFS_ORDERED_PREALLOC) { 7612 free_extent_map(em); 7613 em = create_pinned_em(inode, start, len, 7614 orig_start, 7615 block_start, len, 7616 orig_block_len, 7617 ram_bytes, type); 7618 if (IS_ERR(em)) { 7619 ret = PTR_ERR(em); 7620 goto unlock_err; 7621 } 7622 } 7623 7624 ret = btrfs_add_ordered_extent_dio(inode, start, 7625 block_start, len, len, type); 7626 if (ret) { 7627 free_extent_map(em); 7628 goto unlock_err; 7629 } 7630 goto unlock; 7631 } 7632 } 7633 7634 /* 7635 * this will cow the extent, reset the len in case we changed 7636 * it above 7637 */ 7638 len = bh_result->b_size; 7639 free_extent_map(em); 7640 em = btrfs_new_extent_direct(inode, start, len); 7641 if (IS_ERR(em)) { 7642 ret = PTR_ERR(em); 7643 goto unlock_err; 7644 } 7645 len = min(len, em->len - (start - em->start)); 7646 unlock: 7647 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7648 inode->i_blkbits; 7649 bh_result->b_size = len; 7650 bh_result->b_bdev = em->bdev; 7651 set_buffer_mapped(bh_result); 7652 if (create) { 7653 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7654 set_buffer_new(bh_result); 7655 7656 /* 7657 * Need to update the i_size under the extent lock so buffered 7658 * readers will get the updated i_size when we unlock. 7659 */ 7660 if (start + len > i_size_read(inode)) 7661 i_size_write(inode, start + len); 7662 7663 /* 7664 * If we have an outstanding_extents count still set then we're 7665 * within our reservation, otherwise we need to adjust our inode 7666 * counter appropriately. 7667 */ 7668 if (dio_data->outstanding_extents) { 7669 (dio_data->outstanding_extents)--; 7670 } else { 7671 spin_lock(&BTRFS_I(inode)->lock); 7672 BTRFS_I(inode)->outstanding_extents++; 7673 spin_unlock(&BTRFS_I(inode)->lock); 7674 } 7675 7676 btrfs_free_reserved_data_space(inode, start, len); 7677 WARN_ON(dio_data->reserve < len); 7678 dio_data->reserve -= len; 7679 current->journal_info = dio_data; 7680 } 7681 7682 /* 7683 * In the case of write we need to clear and unlock the entire range, 7684 * in the case of read we need to unlock only the end area that we 7685 * aren't using if there is any left over space. 7686 */ 7687 if (lockstart < lockend) { 7688 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7689 lockend, unlock_bits, 1, 0, 7690 &cached_state, GFP_NOFS); 7691 } else { 7692 free_extent_state(cached_state); 7693 } 7694 7695 free_extent_map(em); 7696 7697 return 0; 7698 7699 unlock_err: 7700 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7701 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7702 if (dio_data) 7703 current->journal_info = dio_data; 7704 return ret; 7705 } 7706 7707 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7708 int rw, int mirror_num) 7709 { 7710 struct btrfs_root *root = BTRFS_I(inode)->root; 7711 int ret; 7712 7713 BUG_ON(rw & REQ_WRITE); 7714 7715 bio_get(bio); 7716 7717 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7718 BTRFS_WQ_ENDIO_DIO_REPAIR); 7719 if (ret) 7720 goto err; 7721 7722 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7723 err: 7724 bio_put(bio); 7725 return ret; 7726 } 7727 7728 static int btrfs_check_dio_repairable(struct inode *inode, 7729 struct bio *failed_bio, 7730 struct io_failure_record *failrec, 7731 int failed_mirror) 7732 { 7733 int num_copies; 7734 7735 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7736 failrec->logical, failrec->len); 7737 if (num_copies == 1) { 7738 /* 7739 * we only have a single copy of the data, so don't bother with 7740 * all the retry and error correction code that follows. no 7741 * matter what the error is, it is very likely to persist. 7742 */ 7743 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7744 num_copies, failrec->this_mirror, failed_mirror); 7745 return 0; 7746 } 7747 7748 failrec->failed_mirror = failed_mirror; 7749 failrec->this_mirror++; 7750 if (failrec->this_mirror == failed_mirror) 7751 failrec->this_mirror++; 7752 7753 if (failrec->this_mirror > num_copies) { 7754 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7755 num_copies, failrec->this_mirror, failed_mirror); 7756 return 0; 7757 } 7758 7759 return 1; 7760 } 7761 7762 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7763 struct page *page, u64 start, u64 end, 7764 int failed_mirror, bio_end_io_t *repair_endio, 7765 void *repair_arg) 7766 { 7767 struct io_failure_record *failrec; 7768 struct bio *bio; 7769 int isector; 7770 int read_mode; 7771 int ret; 7772 7773 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7774 7775 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7776 if (ret) 7777 return ret; 7778 7779 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7780 failed_mirror); 7781 if (!ret) { 7782 free_io_failure(inode, failrec); 7783 return -EIO; 7784 } 7785 7786 if (failed_bio->bi_vcnt > 1) 7787 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7788 else 7789 read_mode = READ_SYNC; 7790 7791 isector = start - btrfs_io_bio(failed_bio)->logical; 7792 isector >>= inode->i_sb->s_blocksize_bits; 7793 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7794 0, isector, repair_endio, repair_arg); 7795 if (!bio) { 7796 free_io_failure(inode, failrec); 7797 return -EIO; 7798 } 7799 7800 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7801 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7802 read_mode, failrec->this_mirror, failrec->in_validation); 7803 7804 ret = submit_dio_repair_bio(inode, bio, read_mode, 7805 failrec->this_mirror); 7806 if (ret) { 7807 free_io_failure(inode, failrec); 7808 bio_put(bio); 7809 } 7810 7811 return ret; 7812 } 7813 7814 struct btrfs_retry_complete { 7815 struct completion done; 7816 struct inode *inode; 7817 u64 start; 7818 int uptodate; 7819 }; 7820 7821 static void btrfs_retry_endio_nocsum(struct bio *bio) 7822 { 7823 struct btrfs_retry_complete *done = bio->bi_private; 7824 struct bio_vec *bvec; 7825 int i; 7826 7827 if (bio->bi_error) 7828 goto end; 7829 7830 done->uptodate = 1; 7831 bio_for_each_segment_all(bvec, bio, i) 7832 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7833 end: 7834 complete(&done->done); 7835 bio_put(bio); 7836 } 7837 7838 static int __btrfs_correct_data_nocsum(struct inode *inode, 7839 struct btrfs_io_bio *io_bio) 7840 { 7841 struct bio_vec *bvec; 7842 struct btrfs_retry_complete done; 7843 u64 start; 7844 int i; 7845 int ret; 7846 7847 start = io_bio->logical; 7848 done.inode = inode; 7849 7850 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7851 try_again: 7852 done.uptodate = 0; 7853 done.start = start; 7854 init_completion(&done.done); 7855 7856 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7857 start + bvec->bv_len - 1, 7858 io_bio->mirror_num, 7859 btrfs_retry_endio_nocsum, &done); 7860 if (ret) 7861 return ret; 7862 7863 wait_for_completion(&done.done); 7864 7865 if (!done.uptodate) { 7866 /* We might have another mirror, so try again */ 7867 goto try_again; 7868 } 7869 7870 start += bvec->bv_len; 7871 } 7872 7873 return 0; 7874 } 7875 7876 static void btrfs_retry_endio(struct bio *bio) 7877 { 7878 struct btrfs_retry_complete *done = bio->bi_private; 7879 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7880 struct bio_vec *bvec; 7881 int uptodate; 7882 int ret; 7883 int i; 7884 7885 if (bio->bi_error) 7886 goto end; 7887 7888 uptodate = 1; 7889 bio_for_each_segment_all(bvec, bio, i) { 7890 ret = __readpage_endio_check(done->inode, io_bio, i, 7891 bvec->bv_page, 0, 7892 done->start, bvec->bv_len); 7893 if (!ret) 7894 clean_io_failure(done->inode, done->start, 7895 bvec->bv_page, 0); 7896 else 7897 uptodate = 0; 7898 } 7899 7900 done->uptodate = uptodate; 7901 end: 7902 complete(&done->done); 7903 bio_put(bio); 7904 } 7905 7906 static int __btrfs_subio_endio_read(struct inode *inode, 7907 struct btrfs_io_bio *io_bio, int err) 7908 { 7909 struct bio_vec *bvec; 7910 struct btrfs_retry_complete done; 7911 u64 start; 7912 u64 offset = 0; 7913 int i; 7914 int ret; 7915 7916 err = 0; 7917 start = io_bio->logical; 7918 done.inode = inode; 7919 7920 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7921 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7922 0, start, bvec->bv_len); 7923 if (likely(!ret)) 7924 goto next; 7925 try_again: 7926 done.uptodate = 0; 7927 done.start = start; 7928 init_completion(&done.done); 7929 7930 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7931 start + bvec->bv_len - 1, 7932 io_bio->mirror_num, 7933 btrfs_retry_endio, &done); 7934 if (ret) { 7935 err = ret; 7936 goto next; 7937 } 7938 7939 wait_for_completion(&done.done); 7940 7941 if (!done.uptodate) { 7942 /* We might have another mirror, so try again */ 7943 goto try_again; 7944 } 7945 next: 7946 offset += bvec->bv_len; 7947 start += bvec->bv_len; 7948 } 7949 7950 return err; 7951 } 7952 7953 static int btrfs_subio_endio_read(struct inode *inode, 7954 struct btrfs_io_bio *io_bio, int err) 7955 { 7956 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7957 7958 if (skip_csum) { 7959 if (unlikely(err)) 7960 return __btrfs_correct_data_nocsum(inode, io_bio); 7961 else 7962 return 0; 7963 } else { 7964 return __btrfs_subio_endio_read(inode, io_bio, err); 7965 } 7966 } 7967 7968 static void btrfs_endio_direct_read(struct bio *bio) 7969 { 7970 struct btrfs_dio_private *dip = bio->bi_private; 7971 struct inode *inode = dip->inode; 7972 struct bio *dio_bio; 7973 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7974 int err = bio->bi_error; 7975 7976 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7977 err = btrfs_subio_endio_read(inode, io_bio, err); 7978 7979 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7980 dip->logical_offset + dip->bytes - 1); 7981 dio_bio = dip->dio_bio; 7982 7983 kfree(dip); 7984 7985 dio_end_io(dio_bio, bio->bi_error); 7986 7987 if (io_bio->end_io) 7988 io_bio->end_io(io_bio, err); 7989 bio_put(bio); 7990 } 7991 7992 static void btrfs_endio_direct_write(struct bio *bio) 7993 { 7994 struct btrfs_dio_private *dip = bio->bi_private; 7995 struct inode *inode = dip->inode; 7996 struct btrfs_root *root = BTRFS_I(inode)->root; 7997 struct btrfs_ordered_extent *ordered = NULL; 7998 u64 ordered_offset = dip->logical_offset; 7999 u64 ordered_bytes = dip->bytes; 8000 struct bio *dio_bio; 8001 int ret; 8002 8003 again: 8004 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8005 &ordered_offset, 8006 ordered_bytes, 8007 !bio->bi_error); 8008 if (!ret) 8009 goto out_test; 8010 8011 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8012 finish_ordered_fn, NULL, NULL); 8013 btrfs_queue_work(root->fs_info->endio_write_workers, 8014 &ordered->work); 8015 out_test: 8016 /* 8017 * our bio might span multiple ordered extents. If we haven't 8018 * completed the accounting for the whole dio, go back and try again 8019 */ 8020 if (ordered_offset < dip->logical_offset + dip->bytes) { 8021 ordered_bytes = dip->logical_offset + dip->bytes - 8022 ordered_offset; 8023 ordered = NULL; 8024 goto again; 8025 } 8026 dio_bio = dip->dio_bio; 8027 8028 kfree(dip); 8029 8030 dio_end_io(dio_bio, bio->bi_error); 8031 bio_put(bio); 8032 } 8033 8034 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 8035 struct bio *bio, int mirror_num, 8036 unsigned long bio_flags, u64 offset) 8037 { 8038 int ret; 8039 struct btrfs_root *root = BTRFS_I(inode)->root; 8040 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8041 BUG_ON(ret); /* -ENOMEM */ 8042 return 0; 8043 } 8044 8045 static void btrfs_end_dio_bio(struct bio *bio) 8046 { 8047 struct btrfs_dio_private *dip = bio->bi_private; 8048 int err = bio->bi_error; 8049 8050 if (err) 8051 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8052 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 8053 btrfs_ino(dip->inode), bio->bi_rw, 8054 (unsigned long long)bio->bi_iter.bi_sector, 8055 bio->bi_iter.bi_size, err); 8056 8057 if (dip->subio_endio) 8058 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8059 8060 if (err) { 8061 dip->errors = 1; 8062 8063 /* 8064 * before atomic variable goto zero, we must make sure 8065 * dip->errors is perceived to be set. 8066 */ 8067 smp_mb__before_atomic(); 8068 } 8069 8070 /* if there are more bios still pending for this dio, just exit */ 8071 if (!atomic_dec_and_test(&dip->pending_bios)) 8072 goto out; 8073 8074 if (dip->errors) { 8075 bio_io_error(dip->orig_bio); 8076 } else { 8077 dip->dio_bio->bi_error = 0; 8078 bio_endio(dip->orig_bio); 8079 } 8080 out: 8081 bio_put(bio); 8082 } 8083 8084 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8085 u64 first_sector, gfp_t gfp_flags) 8086 { 8087 struct bio *bio; 8088 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8089 if (bio) 8090 bio_associate_current(bio); 8091 return bio; 8092 } 8093 8094 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8095 struct inode *inode, 8096 struct btrfs_dio_private *dip, 8097 struct bio *bio, 8098 u64 file_offset) 8099 { 8100 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8101 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8102 int ret; 8103 8104 /* 8105 * We load all the csum data we need when we submit 8106 * the first bio to reduce the csum tree search and 8107 * contention. 8108 */ 8109 if (dip->logical_offset == file_offset) { 8110 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8111 file_offset); 8112 if (ret) 8113 return ret; 8114 } 8115 8116 if (bio == dip->orig_bio) 8117 return 0; 8118 8119 file_offset -= dip->logical_offset; 8120 file_offset >>= inode->i_sb->s_blocksize_bits; 8121 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8122 8123 return 0; 8124 } 8125 8126 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8127 int rw, u64 file_offset, int skip_sum, 8128 int async_submit) 8129 { 8130 struct btrfs_dio_private *dip = bio->bi_private; 8131 int write = rw & REQ_WRITE; 8132 struct btrfs_root *root = BTRFS_I(inode)->root; 8133 int ret; 8134 8135 if (async_submit) 8136 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8137 8138 bio_get(bio); 8139 8140 if (!write) { 8141 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8142 BTRFS_WQ_ENDIO_DATA); 8143 if (ret) 8144 goto err; 8145 } 8146 8147 if (skip_sum) 8148 goto map; 8149 8150 if (write && async_submit) { 8151 ret = btrfs_wq_submit_bio(root->fs_info, 8152 inode, rw, bio, 0, 0, 8153 file_offset, 8154 __btrfs_submit_bio_start_direct_io, 8155 __btrfs_submit_bio_done); 8156 goto err; 8157 } else if (write) { 8158 /* 8159 * If we aren't doing async submit, calculate the csum of the 8160 * bio now. 8161 */ 8162 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8163 if (ret) 8164 goto err; 8165 } else { 8166 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8167 file_offset); 8168 if (ret) 8169 goto err; 8170 } 8171 map: 8172 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8173 err: 8174 bio_put(bio); 8175 return ret; 8176 } 8177 8178 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8179 int skip_sum) 8180 { 8181 struct inode *inode = dip->inode; 8182 struct btrfs_root *root = BTRFS_I(inode)->root; 8183 struct bio *bio; 8184 struct bio *orig_bio = dip->orig_bio; 8185 struct bio_vec *bvec = orig_bio->bi_io_vec; 8186 u64 start_sector = orig_bio->bi_iter.bi_sector; 8187 u64 file_offset = dip->logical_offset; 8188 u64 submit_len = 0; 8189 u64 map_length; 8190 int nr_pages = 0; 8191 int ret; 8192 int async_submit = 0; 8193 8194 map_length = orig_bio->bi_iter.bi_size; 8195 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8196 &map_length, NULL, 0); 8197 if (ret) 8198 return -EIO; 8199 8200 if (map_length >= orig_bio->bi_iter.bi_size) { 8201 bio = orig_bio; 8202 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8203 goto submit; 8204 } 8205 8206 /* async crcs make it difficult to collect full stripe writes. */ 8207 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8208 async_submit = 0; 8209 else 8210 async_submit = 1; 8211 8212 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8213 if (!bio) 8214 return -ENOMEM; 8215 8216 bio->bi_private = dip; 8217 bio->bi_end_io = btrfs_end_dio_bio; 8218 btrfs_io_bio(bio)->logical = file_offset; 8219 atomic_inc(&dip->pending_bios); 8220 8221 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8222 if (map_length < submit_len + bvec->bv_len || 8223 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 8224 bvec->bv_offset) < bvec->bv_len) { 8225 /* 8226 * inc the count before we submit the bio so 8227 * we know the end IO handler won't happen before 8228 * we inc the count. Otherwise, the dip might get freed 8229 * before we're done setting it up 8230 */ 8231 atomic_inc(&dip->pending_bios); 8232 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8233 file_offset, skip_sum, 8234 async_submit); 8235 if (ret) { 8236 bio_put(bio); 8237 atomic_dec(&dip->pending_bios); 8238 goto out_err; 8239 } 8240 8241 start_sector += submit_len >> 9; 8242 file_offset += submit_len; 8243 8244 submit_len = 0; 8245 nr_pages = 0; 8246 8247 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8248 start_sector, GFP_NOFS); 8249 if (!bio) 8250 goto out_err; 8251 bio->bi_private = dip; 8252 bio->bi_end_io = btrfs_end_dio_bio; 8253 btrfs_io_bio(bio)->logical = file_offset; 8254 8255 map_length = orig_bio->bi_iter.bi_size; 8256 ret = btrfs_map_block(root->fs_info, rw, 8257 start_sector << 9, 8258 &map_length, NULL, 0); 8259 if (ret) { 8260 bio_put(bio); 8261 goto out_err; 8262 } 8263 } else { 8264 submit_len += bvec->bv_len; 8265 nr_pages++; 8266 bvec++; 8267 } 8268 } 8269 8270 submit: 8271 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8272 async_submit); 8273 if (!ret) 8274 return 0; 8275 8276 bio_put(bio); 8277 out_err: 8278 dip->errors = 1; 8279 /* 8280 * before atomic variable goto zero, we must 8281 * make sure dip->errors is perceived to be set. 8282 */ 8283 smp_mb__before_atomic(); 8284 if (atomic_dec_and_test(&dip->pending_bios)) 8285 bio_io_error(dip->orig_bio); 8286 8287 /* bio_end_io() will handle error, so we needn't return it */ 8288 return 0; 8289 } 8290 8291 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8292 struct inode *inode, loff_t file_offset) 8293 { 8294 struct btrfs_dio_private *dip = NULL; 8295 struct bio *io_bio = NULL; 8296 struct btrfs_io_bio *btrfs_bio; 8297 int skip_sum; 8298 int write = rw & REQ_WRITE; 8299 int ret = 0; 8300 8301 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8302 8303 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8304 if (!io_bio) { 8305 ret = -ENOMEM; 8306 goto free_ordered; 8307 } 8308 8309 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8310 if (!dip) { 8311 ret = -ENOMEM; 8312 goto free_ordered; 8313 } 8314 8315 dip->private = dio_bio->bi_private; 8316 dip->inode = inode; 8317 dip->logical_offset = file_offset; 8318 dip->bytes = dio_bio->bi_iter.bi_size; 8319 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8320 io_bio->bi_private = dip; 8321 dip->orig_bio = io_bio; 8322 dip->dio_bio = dio_bio; 8323 atomic_set(&dip->pending_bios, 0); 8324 btrfs_bio = btrfs_io_bio(io_bio); 8325 btrfs_bio->logical = file_offset; 8326 8327 if (write) { 8328 io_bio->bi_end_io = btrfs_endio_direct_write; 8329 } else { 8330 io_bio->bi_end_io = btrfs_endio_direct_read; 8331 dip->subio_endio = btrfs_subio_endio_read; 8332 } 8333 8334 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8335 if (!ret) 8336 return; 8337 8338 if (btrfs_bio->end_io) 8339 btrfs_bio->end_io(btrfs_bio, ret); 8340 8341 free_ordered: 8342 /* 8343 * If we arrived here it means either we failed to submit the dip 8344 * or we either failed to clone the dio_bio or failed to allocate the 8345 * dip. If we cloned the dio_bio and allocated the dip, we can just 8346 * call bio_endio against our io_bio so that we get proper resource 8347 * cleanup if we fail to submit the dip, otherwise, we must do the 8348 * same as btrfs_endio_direct_[write|read] because we can't call these 8349 * callbacks - they require an allocated dip and a clone of dio_bio. 8350 */ 8351 if (io_bio && dip) { 8352 io_bio->bi_error = -EIO; 8353 bio_endio(io_bio); 8354 /* 8355 * The end io callbacks free our dip, do the final put on io_bio 8356 * and all the cleanup and final put for dio_bio (through 8357 * dio_end_io()). 8358 */ 8359 dip = NULL; 8360 io_bio = NULL; 8361 } else { 8362 if (write) { 8363 struct btrfs_ordered_extent *ordered; 8364 8365 ordered = btrfs_lookup_ordered_extent(inode, 8366 file_offset); 8367 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 8368 /* 8369 * Decrements our ref on the ordered extent and removes 8370 * the ordered extent from the inode's ordered tree, 8371 * doing all the proper resource cleanup such as for the 8372 * reserved space and waking up any waiters for this 8373 * ordered extent (through btrfs_remove_ordered_extent). 8374 */ 8375 btrfs_finish_ordered_io(ordered); 8376 } else { 8377 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8378 file_offset + dio_bio->bi_iter.bi_size - 1); 8379 } 8380 dio_bio->bi_error = -EIO; 8381 /* 8382 * Releases and cleans up our dio_bio, no need to bio_put() 8383 * nor bio_endio()/bio_io_error() against dio_bio. 8384 */ 8385 dio_end_io(dio_bio, ret); 8386 } 8387 if (io_bio) 8388 bio_put(io_bio); 8389 kfree(dip); 8390 } 8391 8392 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8393 const struct iov_iter *iter, loff_t offset) 8394 { 8395 int seg; 8396 int i; 8397 unsigned blocksize_mask = root->sectorsize - 1; 8398 ssize_t retval = -EINVAL; 8399 8400 if (offset & blocksize_mask) 8401 goto out; 8402 8403 if (iov_iter_alignment(iter) & blocksize_mask) 8404 goto out; 8405 8406 /* If this is a write we don't need to check anymore */ 8407 if (iov_iter_rw(iter) == WRITE) 8408 return 0; 8409 /* 8410 * Check to make sure we don't have duplicate iov_base's in this 8411 * iovec, if so return EINVAL, otherwise we'll get csum errors 8412 * when reading back. 8413 */ 8414 for (seg = 0; seg < iter->nr_segs; seg++) { 8415 for (i = seg + 1; i < iter->nr_segs; i++) { 8416 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8417 goto out; 8418 } 8419 } 8420 retval = 0; 8421 out: 8422 return retval; 8423 } 8424 8425 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 8426 loff_t offset) 8427 { 8428 struct file *file = iocb->ki_filp; 8429 struct inode *inode = file->f_mapping->host; 8430 struct btrfs_root *root = BTRFS_I(inode)->root; 8431 struct btrfs_dio_data dio_data = { 0 }; 8432 size_t count = 0; 8433 int flags = 0; 8434 bool wakeup = true; 8435 bool relock = false; 8436 ssize_t ret; 8437 8438 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8439 return 0; 8440 8441 inode_dio_begin(inode); 8442 smp_mb__after_atomic(); 8443 8444 /* 8445 * The generic stuff only does filemap_write_and_wait_range, which 8446 * isn't enough if we've written compressed pages to this area, so 8447 * we need to flush the dirty pages again to make absolutely sure 8448 * that any outstanding dirty pages are on disk. 8449 */ 8450 count = iov_iter_count(iter); 8451 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8452 &BTRFS_I(inode)->runtime_flags)) 8453 filemap_fdatawrite_range(inode->i_mapping, offset, 8454 offset + count - 1); 8455 8456 if (iov_iter_rw(iter) == WRITE) { 8457 /* 8458 * If the write DIO is beyond the EOF, we need update 8459 * the isize, but it is protected by i_mutex. So we can 8460 * not unlock the i_mutex at this case. 8461 */ 8462 if (offset + count <= inode->i_size) { 8463 mutex_unlock(&inode->i_mutex); 8464 relock = true; 8465 } 8466 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8467 if (ret) 8468 goto out; 8469 dio_data.outstanding_extents = div64_u64(count + 8470 BTRFS_MAX_EXTENT_SIZE - 1, 8471 BTRFS_MAX_EXTENT_SIZE); 8472 8473 /* 8474 * We need to know how many extents we reserved so that we can 8475 * do the accounting properly if we go over the number we 8476 * originally calculated. Abuse current->journal_info for this. 8477 */ 8478 dio_data.reserve = round_up(count, root->sectorsize); 8479 current->journal_info = &dio_data; 8480 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8481 &BTRFS_I(inode)->runtime_flags)) { 8482 inode_dio_end(inode); 8483 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8484 wakeup = false; 8485 } 8486 8487 ret = __blockdev_direct_IO(iocb, inode, 8488 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8489 iter, offset, btrfs_get_blocks_direct, NULL, 8490 btrfs_submit_direct, flags); 8491 if (iov_iter_rw(iter) == WRITE) { 8492 current->journal_info = NULL; 8493 if (ret < 0 && ret != -EIOCBQUEUED) { 8494 if (dio_data.reserve) 8495 btrfs_delalloc_release_space(inode, offset, 8496 dio_data.reserve); 8497 } else if (ret >= 0 && (size_t)ret < count) 8498 btrfs_delalloc_release_space(inode, offset, 8499 count - (size_t)ret); 8500 } 8501 out: 8502 if (wakeup) 8503 inode_dio_end(inode); 8504 if (relock) 8505 mutex_lock(&inode->i_mutex); 8506 8507 return ret; 8508 } 8509 8510 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8511 8512 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8513 __u64 start, __u64 len) 8514 { 8515 int ret; 8516 8517 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8518 if (ret) 8519 return ret; 8520 8521 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8522 } 8523 8524 int btrfs_readpage(struct file *file, struct page *page) 8525 { 8526 struct extent_io_tree *tree; 8527 tree = &BTRFS_I(page->mapping->host)->io_tree; 8528 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8529 } 8530 8531 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8532 { 8533 struct extent_io_tree *tree; 8534 8535 8536 if (current->flags & PF_MEMALLOC) { 8537 redirty_page_for_writepage(wbc, page); 8538 unlock_page(page); 8539 return 0; 8540 } 8541 tree = &BTRFS_I(page->mapping->host)->io_tree; 8542 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8543 } 8544 8545 static int btrfs_writepages(struct address_space *mapping, 8546 struct writeback_control *wbc) 8547 { 8548 struct extent_io_tree *tree; 8549 8550 tree = &BTRFS_I(mapping->host)->io_tree; 8551 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8552 } 8553 8554 static int 8555 btrfs_readpages(struct file *file, struct address_space *mapping, 8556 struct list_head *pages, unsigned nr_pages) 8557 { 8558 struct extent_io_tree *tree; 8559 tree = &BTRFS_I(mapping->host)->io_tree; 8560 return extent_readpages(tree, mapping, pages, nr_pages, 8561 btrfs_get_extent); 8562 } 8563 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8564 { 8565 struct extent_io_tree *tree; 8566 struct extent_map_tree *map; 8567 int ret; 8568 8569 tree = &BTRFS_I(page->mapping->host)->io_tree; 8570 map = &BTRFS_I(page->mapping->host)->extent_tree; 8571 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8572 if (ret == 1) { 8573 ClearPagePrivate(page); 8574 set_page_private(page, 0); 8575 page_cache_release(page); 8576 } 8577 return ret; 8578 } 8579 8580 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8581 { 8582 if (PageWriteback(page) || PageDirty(page)) 8583 return 0; 8584 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8585 } 8586 8587 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8588 unsigned int length) 8589 { 8590 struct inode *inode = page->mapping->host; 8591 struct extent_io_tree *tree; 8592 struct btrfs_ordered_extent *ordered; 8593 struct extent_state *cached_state = NULL; 8594 u64 page_start = page_offset(page); 8595 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 8596 int inode_evicting = inode->i_state & I_FREEING; 8597 8598 /* 8599 * we have the page locked, so new writeback can't start, 8600 * and the dirty bit won't be cleared while we are here. 8601 * 8602 * Wait for IO on this page so that we can safely clear 8603 * the PagePrivate2 bit and do ordered accounting 8604 */ 8605 wait_on_page_writeback(page); 8606 8607 tree = &BTRFS_I(inode)->io_tree; 8608 if (offset) { 8609 btrfs_releasepage(page, GFP_NOFS); 8610 return; 8611 } 8612 8613 if (!inode_evicting) 8614 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 8615 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8616 if (ordered) { 8617 /* 8618 * IO on this page will never be started, so we need 8619 * to account for any ordered extents now 8620 */ 8621 if (!inode_evicting) 8622 clear_extent_bit(tree, page_start, page_end, 8623 EXTENT_DIRTY | EXTENT_DELALLOC | 8624 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8625 EXTENT_DEFRAG, 1, 0, &cached_state, 8626 GFP_NOFS); 8627 /* 8628 * whoever cleared the private bit is responsible 8629 * for the finish_ordered_io 8630 */ 8631 if (TestClearPagePrivate2(page)) { 8632 struct btrfs_ordered_inode_tree *tree; 8633 u64 new_len; 8634 8635 tree = &BTRFS_I(inode)->ordered_tree; 8636 8637 spin_lock_irq(&tree->lock); 8638 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8639 new_len = page_start - ordered->file_offset; 8640 if (new_len < ordered->truncated_len) 8641 ordered->truncated_len = new_len; 8642 spin_unlock_irq(&tree->lock); 8643 8644 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8645 page_start, 8646 PAGE_CACHE_SIZE, 1)) 8647 btrfs_finish_ordered_io(ordered); 8648 } 8649 btrfs_put_ordered_extent(ordered); 8650 if (!inode_evicting) { 8651 cached_state = NULL; 8652 lock_extent_bits(tree, page_start, page_end, 0, 8653 &cached_state); 8654 } 8655 } 8656 8657 /* 8658 * Qgroup reserved space handler 8659 * Page here will be either 8660 * 1) Already written to disk 8661 * In this case, its reserved space is released from data rsv map 8662 * and will be freed by delayed_ref handler finally. 8663 * So even we call qgroup_free_data(), it won't decrease reserved 8664 * space. 8665 * 2) Not written to disk 8666 * This means the reserved space should be freed here. 8667 */ 8668 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE); 8669 if (!inode_evicting) { 8670 clear_extent_bit(tree, page_start, page_end, 8671 EXTENT_LOCKED | EXTENT_DIRTY | 8672 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8673 EXTENT_DEFRAG, 1, 1, 8674 &cached_state, GFP_NOFS); 8675 8676 __btrfs_releasepage(page, GFP_NOFS); 8677 } 8678 8679 ClearPageChecked(page); 8680 if (PagePrivate(page)) { 8681 ClearPagePrivate(page); 8682 set_page_private(page, 0); 8683 page_cache_release(page); 8684 } 8685 } 8686 8687 /* 8688 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8689 * called from a page fault handler when a page is first dirtied. Hence we must 8690 * be careful to check for EOF conditions here. We set the page up correctly 8691 * for a written page which means we get ENOSPC checking when writing into 8692 * holes and correct delalloc and unwritten extent mapping on filesystems that 8693 * support these features. 8694 * 8695 * We are not allowed to take the i_mutex here so we have to play games to 8696 * protect against truncate races as the page could now be beyond EOF. Because 8697 * vmtruncate() writes the inode size before removing pages, once we have the 8698 * page lock we can determine safely if the page is beyond EOF. If it is not 8699 * beyond EOF, then the page is guaranteed safe against truncation until we 8700 * unlock the page. 8701 */ 8702 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8703 { 8704 struct page *page = vmf->page; 8705 struct inode *inode = file_inode(vma->vm_file); 8706 struct btrfs_root *root = BTRFS_I(inode)->root; 8707 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8708 struct btrfs_ordered_extent *ordered; 8709 struct extent_state *cached_state = NULL; 8710 char *kaddr; 8711 unsigned long zero_start; 8712 loff_t size; 8713 int ret; 8714 int reserved = 0; 8715 u64 page_start; 8716 u64 page_end; 8717 8718 sb_start_pagefault(inode->i_sb); 8719 page_start = page_offset(page); 8720 page_end = page_start + PAGE_CACHE_SIZE - 1; 8721 8722 ret = btrfs_delalloc_reserve_space(inode, page_start, 8723 PAGE_CACHE_SIZE); 8724 if (!ret) { 8725 ret = file_update_time(vma->vm_file); 8726 reserved = 1; 8727 } 8728 if (ret) { 8729 if (ret == -ENOMEM) 8730 ret = VM_FAULT_OOM; 8731 else /* -ENOSPC, -EIO, etc */ 8732 ret = VM_FAULT_SIGBUS; 8733 if (reserved) 8734 goto out; 8735 goto out_noreserve; 8736 } 8737 8738 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8739 again: 8740 lock_page(page); 8741 size = i_size_read(inode); 8742 8743 if ((page->mapping != inode->i_mapping) || 8744 (page_start >= size)) { 8745 /* page got truncated out from underneath us */ 8746 goto out_unlock; 8747 } 8748 wait_on_page_writeback(page); 8749 8750 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 8751 set_page_extent_mapped(page); 8752 8753 /* 8754 * we can't set the delalloc bits if there are pending ordered 8755 * extents. Drop our locks and wait for them to finish 8756 */ 8757 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8758 if (ordered) { 8759 unlock_extent_cached(io_tree, page_start, page_end, 8760 &cached_state, GFP_NOFS); 8761 unlock_page(page); 8762 btrfs_start_ordered_extent(inode, ordered, 1); 8763 btrfs_put_ordered_extent(ordered); 8764 goto again; 8765 } 8766 8767 /* 8768 * XXX - page_mkwrite gets called every time the page is dirtied, even 8769 * if it was already dirty, so for space accounting reasons we need to 8770 * clear any delalloc bits for the range we are fixing to save. There 8771 * is probably a better way to do this, but for now keep consistent with 8772 * prepare_pages in the normal write path. 8773 */ 8774 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 8775 EXTENT_DIRTY | EXTENT_DELALLOC | 8776 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8777 0, 0, &cached_state, GFP_NOFS); 8778 8779 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 8780 &cached_state); 8781 if (ret) { 8782 unlock_extent_cached(io_tree, page_start, page_end, 8783 &cached_state, GFP_NOFS); 8784 ret = VM_FAULT_SIGBUS; 8785 goto out_unlock; 8786 } 8787 ret = 0; 8788 8789 /* page is wholly or partially inside EOF */ 8790 if (page_start + PAGE_CACHE_SIZE > size) 8791 zero_start = size & ~PAGE_CACHE_MASK; 8792 else 8793 zero_start = PAGE_CACHE_SIZE; 8794 8795 if (zero_start != PAGE_CACHE_SIZE) { 8796 kaddr = kmap(page); 8797 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 8798 flush_dcache_page(page); 8799 kunmap(page); 8800 } 8801 ClearPageChecked(page); 8802 set_page_dirty(page); 8803 SetPageUptodate(page); 8804 8805 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8806 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8807 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8808 8809 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8810 8811 out_unlock: 8812 if (!ret) { 8813 sb_end_pagefault(inode->i_sb); 8814 return VM_FAULT_LOCKED; 8815 } 8816 unlock_page(page); 8817 out: 8818 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE); 8819 out_noreserve: 8820 sb_end_pagefault(inode->i_sb); 8821 return ret; 8822 } 8823 8824 static int btrfs_truncate(struct inode *inode) 8825 { 8826 struct btrfs_root *root = BTRFS_I(inode)->root; 8827 struct btrfs_block_rsv *rsv; 8828 int ret = 0; 8829 int err = 0; 8830 struct btrfs_trans_handle *trans; 8831 u64 mask = root->sectorsize - 1; 8832 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 8833 8834 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8835 (u64)-1); 8836 if (ret) 8837 return ret; 8838 8839 /* 8840 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 8841 * 3 things going on here 8842 * 8843 * 1) We need to reserve space for our orphan item and the space to 8844 * delete our orphan item. Lord knows we don't want to have a dangling 8845 * orphan item because we didn't reserve space to remove it. 8846 * 8847 * 2) We need to reserve space to update our inode. 8848 * 8849 * 3) We need to have something to cache all the space that is going to 8850 * be free'd up by the truncate operation, but also have some slack 8851 * space reserved in case it uses space during the truncate (thank you 8852 * very much snapshotting). 8853 * 8854 * And we need these to all be seperate. The fact is we can use alot of 8855 * space doing the truncate, and we have no earthly idea how much space 8856 * we will use, so we need the truncate reservation to be seperate so it 8857 * doesn't end up using space reserved for updating the inode or 8858 * removing the orphan item. We also need to be able to stop the 8859 * transaction and start a new one, which means we need to be able to 8860 * update the inode several times, and we have no idea of knowing how 8861 * many times that will be, so we can't just reserve 1 item for the 8862 * entirety of the opration, so that has to be done seperately as well. 8863 * Then there is the orphan item, which does indeed need to be held on 8864 * to for the whole operation, and we need nobody to touch this reserved 8865 * space except the orphan code. 8866 * 8867 * So that leaves us with 8868 * 8869 * 1) root->orphan_block_rsv - for the orphan deletion. 8870 * 2) rsv - for the truncate reservation, which we will steal from the 8871 * transaction reservation. 8872 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 8873 * updating the inode. 8874 */ 8875 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 8876 if (!rsv) 8877 return -ENOMEM; 8878 rsv->size = min_size; 8879 rsv->failfast = 1; 8880 8881 /* 8882 * 1 for the truncate slack space 8883 * 1 for updating the inode. 8884 */ 8885 trans = btrfs_start_transaction(root, 2); 8886 if (IS_ERR(trans)) { 8887 err = PTR_ERR(trans); 8888 goto out; 8889 } 8890 8891 /* Migrate the slack space for the truncate to our reserve */ 8892 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 8893 min_size); 8894 BUG_ON(ret); 8895 8896 /* 8897 * So if we truncate and then write and fsync we normally would just 8898 * write the extents that changed, which is a problem if we need to 8899 * first truncate that entire inode. So set this flag so we write out 8900 * all of the extents in the inode to the sync log so we're completely 8901 * safe. 8902 */ 8903 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8904 trans->block_rsv = rsv; 8905 8906 while (1) { 8907 ret = btrfs_truncate_inode_items(trans, root, inode, 8908 inode->i_size, 8909 BTRFS_EXTENT_DATA_KEY); 8910 if (ret != -ENOSPC && ret != -EAGAIN) { 8911 err = ret; 8912 break; 8913 } 8914 8915 trans->block_rsv = &root->fs_info->trans_block_rsv; 8916 ret = btrfs_update_inode(trans, root, inode); 8917 if (ret) { 8918 err = ret; 8919 break; 8920 } 8921 8922 btrfs_end_transaction(trans, root); 8923 btrfs_btree_balance_dirty(root); 8924 8925 trans = btrfs_start_transaction(root, 2); 8926 if (IS_ERR(trans)) { 8927 ret = err = PTR_ERR(trans); 8928 trans = NULL; 8929 break; 8930 } 8931 8932 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 8933 rsv, min_size); 8934 BUG_ON(ret); /* shouldn't happen */ 8935 trans->block_rsv = rsv; 8936 } 8937 8938 if (ret == 0 && inode->i_nlink > 0) { 8939 trans->block_rsv = root->orphan_block_rsv; 8940 ret = btrfs_orphan_del(trans, inode); 8941 if (ret) 8942 err = ret; 8943 } 8944 8945 if (trans) { 8946 trans->block_rsv = &root->fs_info->trans_block_rsv; 8947 ret = btrfs_update_inode(trans, root, inode); 8948 if (ret && !err) 8949 err = ret; 8950 8951 ret = btrfs_end_transaction(trans, root); 8952 btrfs_btree_balance_dirty(root); 8953 } 8954 8955 out: 8956 btrfs_free_block_rsv(root, rsv); 8957 8958 if (ret && !err) 8959 err = ret; 8960 8961 return err; 8962 } 8963 8964 /* 8965 * create a new subvolume directory/inode (helper for the ioctl). 8966 */ 8967 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8968 struct btrfs_root *new_root, 8969 struct btrfs_root *parent_root, 8970 u64 new_dirid) 8971 { 8972 struct inode *inode; 8973 int err; 8974 u64 index = 0; 8975 8976 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8977 new_dirid, new_dirid, 8978 S_IFDIR | (~current_umask() & S_IRWXUGO), 8979 &index); 8980 if (IS_ERR(inode)) 8981 return PTR_ERR(inode); 8982 inode->i_op = &btrfs_dir_inode_operations; 8983 inode->i_fop = &btrfs_dir_file_operations; 8984 8985 set_nlink(inode, 1); 8986 btrfs_i_size_write(inode, 0); 8987 unlock_new_inode(inode); 8988 8989 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8990 if (err) 8991 btrfs_err(new_root->fs_info, 8992 "error inheriting subvolume %llu properties: %d", 8993 new_root->root_key.objectid, err); 8994 8995 err = btrfs_update_inode(trans, new_root, inode); 8996 8997 iput(inode); 8998 return err; 8999 } 9000 9001 struct inode *btrfs_alloc_inode(struct super_block *sb) 9002 { 9003 struct btrfs_inode *ei; 9004 struct inode *inode; 9005 9006 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9007 if (!ei) 9008 return NULL; 9009 9010 ei->root = NULL; 9011 ei->generation = 0; 9012 ei->last_trans = 0; 9013 ei->last_sub_trans = 0; 9014 ei->logged_trans = 0; 9015 ei->delalloc_bytes = 0; 9016 ei->defrag_bytes = 0; 9017 ei->disk_i_size = 0; 9018 ei->flags = 0; 9019 ei->csum_bytes = 0; 9020 ei->index_cnt = (u64)-1; 9021 ei->dir_index = 0; 9022 ei->last_unlink_trans = 0; 9023 ei->last_log_commit = 0; 9024 9025 spin_lock_init(&ei->lock); 9026 ei->outstanding_extents = 0; 9027 ei->reserved_extents = 0; 9028 9029 ei->runtime_flags = 0; 9030 ei->force_compress = BTRFS_COMPRESS_NONE; 9031 9032 ei->delayed_node = NULL; 9033 9034 ei->i_otime.tv_sec = 0; 9035 ei->i_otime.tv_nsec = 0; 9036 9037 inode = &ei->vfs_inode; 9038 extent_map_tree_init(&ei->extent_tree); 9039 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9040 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9041 ei->io_tree.track_uptodate = 1; 9042 ei->io_failure_tree.track_uptodate = 1; 9043 atomic_set(&ei->sync_writers, 0); 9044 mutex_init(&ei->log_mutex); 9045 mutex_init(&ei->delalloc_mutex); 9046 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9047 INIT_LIST_HEAD(&ei->delalloc_inodes); 9048 RB_CLEAR_NODE(&ei->rb_node); 9049 9050 return inode; 9051 } 9052 9053 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9054 void btrfs_test_destroy_inode(struct inode *inode) 9055 { 9056 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9057 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9058 } 9059 #endif 9060 9061 static void btrfs_i_callback(struct rcu_head *head) 9062 { 9063 struct inode *inode = container_of(head, struct inode, i_rcu); 9064 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9065 } 9066 9067 void btrfs_destroy_inode(struct inode *inode) 9068 { 9069 struct btrfs_ordered_extent *ordered; 9070 struct btrfs_root *root = BTRFS_I(inode)->root; 9071 9072 WARN_ON(!hlist_empty(&inode->i_dentry)); 9073 WARN_ON(inode->i_data.nrpages); 9074 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9075 WARN_ON(BTRFS_I(inode)->reserved_extents); 9076 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9077 WARN_ON(BTRFS_I(inode)->csum_bytes); 9078 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9079 9080 /* 9081 * This can happen where we create an inode, but somebody else also 9082 * created the same inode and we need to destroy the one we already 9083 * created. 9084 */ 9085 if (!root) 9086 goto free; 9087 9088 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9089 &BTRFS_I(inode)->runtime_flags)) { 9090 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9091 btrfs_ino(inode)); 9092 atomic_dec(&root->orphan_inodes); 9093 } 9094 9095 while (1) { 9096 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9097 if (!ordered) 9098 break; 9099 else { 9100 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9101 ordered->file_offset, ordered->len); 9102 btrfs_remove_ordered_extent(inode, ordered); 9103 btrfs_put_ordered_extent(ordered); 9104 btrfs_put_ordered_extent(ordered); 9105 } 9106 } 9107 btrfs_qgroup_check_reserved_leak(inode); 9108 inode_tree_del(inode); 9109 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9110 free: 9111 call_rcu(&inode->i_rcu, btrfs_i_callback); 9112 } 9113 9114 int btrfs_drop_inode(struct inode *inode) 9115 { 9116 struct btrfs_root *root = BTRFS_I(inode)->root; 9117 9118 if (root == NULL) 9119 return 1; 9120 9121 /* the snap/subvol tree is on deleting */ 9122 if (btrfs_root_refs(&root->root_item) == 0) 9123 return 1; 9124 else 9125 return generic_drop_inode(inode); 9126 } 9127 9128 static void init_once(void *foo) 9129 { 9130 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9131 9132 inode_init_once(&ei->vfs_inode); 9133 } 9134 9135 void btrfs_destroy_cachep(void) 9136 { 9137 /* 9138 * Make sure all delayed rcu free inodes are flushed before we 9139 * destroy cache. 9140 */ 9141 rcu_barrier(); 9142 if (btrfs_inode_cachep) 9143 kmem_cache_destroy(btrfs_inode_cachep); 9144 if (btrfs_trans_handle_cachep) 9145 kmem_cache_destroy(btrfs_trans_handle_cachep); 9146 if (btrfs_transaction_cachep) 9147 kmem_cache_destroy(btrfs_transaction_cachep); 9148 if (btrfs_path_cachep) 9149 kmem_cache_destroy(btrfs_path_cachep); 9150 if (btrfs_free_space_cachep) 9151 kmem_cache_destroy(btrfs_free_space_cachep); 9152 if (btrfs_delalloc_work_cachep) 9153 kmem_cache_destroy(btrfs_delalloc_work_cachep); 9154 } 9155 9156 int btrfs_init_cachep(void) 9157 { 9158 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9159 sizeof(struct btrfs_inode), 0, 9160 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 9161 if (!btrfs_inode_cachep) 9162 goto fail; 9163 9164 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9165 sizeof(struct btrfs_trans_handle), 0, 9166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9167 if (!btrfs_trans_handle_cachep) 9168 goto fail; 9169 9170 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9171 sizeof(struct btrfs_transaction), 0, 9172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9173 if (!btrfs_transaction_cachep) 9174 goto fail; 9175 9176 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9177 sizeof(struct btrfs_path), 0, 9178 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9179 if (!btrfs_path_cachep) 9180 goto fail; 9181 9182 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9183 sizeof(struct btrfs_free_space), 0, 9184 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9185 if (!btrfs_free_space_cachep) 9186 goto fail; 9187 9188 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 9189 sizeof(struct btrfs_delalloc_work), 0, 9190 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 9191 NULL); 9192 if (!btrfs_delalloc_work_cachep) 9193 goto fail; 9194 9195 return 0; 9196 fail: 9197 btrfs_destroy_cachep(); 9198 return -ENOMEM; 9199 } 9200 9201 static int btrfs_getattr(struct vfsmount *mnt, 9202 struct dentry *dentry, struct kstat *stat) 9203 { 9204 u64 delalloc_bytes; 9205 struct inode *inode = d_inode(dentry); 9206 u32 blocksize = inode->i_sb->s_blocksize; 9207 9208 generic_fillattr(inode, stat); 9209 stat->dev = BTRFS_I(inode)->root->anon_dev; 9210 stat->blksize = PAGE_CACHE_SIZE; 9211 9212 spin_lock(&BTRFS_I(inode)->lock); 9213 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9214 spin_unlock(&BTRFS_I(inode)->lock); 9215 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9216 ALIGN(delalloc_bytes, blocksize)) >> 9; 9217 return 0; 9218 } 9219 9220 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9221 struct inode *new_dir, struct dentry *new_dentry) 9222 { 9223 struct btrfs_trans_handle *trans; 9224 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9225 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9226 struct inode *new_inode = d_inode(new_dentry); 9227 struct inode *old_inode = d_inode(old_dentry); 9228 struct timespec ctime = CURRENT_TIME; 9229 u64 index = 0; 9230 u64 root_objectid; 9231 int ret; 9232 u64 old_ino = btrfs_ino(old_inode); 9233 9234 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9235 return -EPERM; 9236 9237 /* we only allow rename subvolume link between subvolumes */ 9238 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9239 return -EXDEV; 9240 9241 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9242 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9243 return -ENOTEMPTY; 9244 9245 if (S_ISDIR(old_inode->i_mode) && new_inode && 9246 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9247 return -ENOTEMPTY; 9248 9249 9250 /* check for collisions, even if the name isn't there */ 9251 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9252 new_dentry->d_name.name, 9253 new_dentry->d_name.len); 9254 9255 if (ret) { 9256 if (ret == -EEXIST) { 9257 /* we shouldn't get 9258 * eexist without a new_inode */ 9259 if (WARN_ON(!new_inode)) { 9260 return ret; 9261 } 9262 } else { 9263 /* maybe -EOVERFLOW */ 9264 return ret; 9265 } 9266 } 9267 ret = 0; 9268 9269 /* 9270 * we're using rename to replace one file with another. Start IO on it 9271 * now so we don't add too much work to the end of the transaction 9272 */ 9273 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9274 filemap_flush(old_inode->i_mapping); 9275 9276 /* close the racy window with snapshot create/destroy ioctl */ 9277 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9278 down_read(&root->fs_info->subvol_sem); 9279 /* 9280 * We want to reserve the absolute worst case amount of items. So if 9281 * both inodes are subvols and we need to unlink them then that would 9282 * require 4 item modifications, but if they are both normal inodes it 9283 * would require 5 item modifications, so we'll assume their normal 9284 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9285 * should cover the worst case number of items we'll modify. 9286 */ 9287 trans = btrfs_start_transaction(root, 11); 9288 if (IS_ERR(trans)) { 9289 ret = PTR_ERR(trans); 9290 goto out_notrans; 9291 } 9292 9293 if (dest != root) 9294 btrfs_record_root_in_trans(trans, dest); 9295 9296 ret = btrfs_set_inode_index(new_dir, &index); 9297 if (ret) 9298 goto out_fail; 9299 9300 BTRFS_I(old_inode)->dir_index = 0ULL; 9301 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9302 /* force full log commit if subvolume involved. */ 9303 btrfs_set_log_full_commit(root->fs_info, trans); 9304 } else { 9305 ret = btrfs_insert_inode_ref(trans, dest, 9306 new_dentry->d_name.name, 9307 new_dentry->d_name.len, 9308 old_ino, 9309 btrfs_ino(new_dir), index); 9310 if (ret) 9311 goto out_fail; 9312 /* 9313 * this is an ugly little race, but the rename is required 9314 * to make sure that if we crash, the inode is either at the 9315 * old name or the new one. pinning the log transaction lets 9316 * us make sure we don't allow a log commit to come in after 9317 * we unlink the name but before we add the new name back in. 9318 */ 9319 btrfs_pin_log_trans(root); 9320 } 9321 9322 inode_inc_iversion(old_dir); 9323 inode_inc_iversion(new_dir); 9324 inode_inc_iversion(old_inode); 9325 old_dir->i_ctime = old_dir->i_mtime = ctime; 9326 new_dir->i_ctime = new_dir->i_mtime = ctime; 9327 old_inode->i_ctime = ctime; 9328 9329 if (old_dentry->d_parent != new_dentry->d_parent) 9330 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9331 9332 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9333 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9334 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9335 old_dentry->d_name.name, 9336 old_dentry->d_name.len); 9337 } else { 9338 ret = __btrfs_unlink_inode(trans, root, old_dir, 9339 d_inode(old_dentry), 9340 old_dentry->d_name.name, 9341 old_dentry->d_name.len); 9342 if (!ret) 9343 ret = btrfs_update_inode(trans, root, old_inode); 9344 } 9345 if (ret) { 9346 btrfs_abort_transaction(trans, root, ret); 9347 goto out_fail; 9348 } 9349 9350 if (new_inode) { 9351 inode_inc_iversion(new_inode); 9352 new_inode->i_ctime = CURRENT_TIME; 9353 if (unlikely(btrfs_ino(new_inode) == 9354 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9355 root_objectid = BTRFS_I(new_inode)->location.objectid; 9356 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9357 root_objectid, 9358 new_dentry->d_name.name, 9359 new_dentry->d_name.len); 9360 BUG_ON(new_inode->i_nlink == 0); 9361 } else { 9362 ret = btrfs_unlink_inode(trans, dest, new_dir, 9363 d_inode(new_dentry), 9364 new_dentry->d_name.name, 9365 new_dentry->d_name.len); 9366 } 9367 if (!ret && new_inode->i_nlink == 0) 9368 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9369 if (ret) { 9370 btrfs_abort_transaction(trans, root, ret); 9371 goto out_fail; 9372 } 9373 } 9374 9375 ret = btrfs_add_link(trans, new_dir, old_inode, 9376 new_dentry->d_name.name, 9377 new_dentry->d_name.len, 0, index); 9378 if (ret) { 9379 btrfs_abort_transaction(trans, root, ret); 9380 goto out_fail; 9381 } 9382 9383 if (old_inode->i_nlink == 1) 9384 BTRFS_I(old_inode)->dir_index = index; 9385 9386 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9387 struct dentry *parent = new_dentry->d_parent; 9388 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9389 btrfs_end_log_trans(root); 9390 } 9391 out_fail: 9392 btrfs_end_transaction(trans, root); 9393 out_notrans: 9394 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9395 up_read(&root->fs_info->subvol_sem); 9396 9397 return ret; 9398 } 9399 9400 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9401 struct inode *new_dir, struct dentry *new_dentry, 9402 unsigned int flags) 9403 { 9404 if (flags & ~RENAME_NOREPLACE) 9405 return -EINVAL; 9406 9407 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9408 } 9409 9410 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9411 { 9412 struct btrfs_delalloc_work *delalloc_work; 9413 struct inode *inode; 9414 9415 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9416 work); 9417 inode = delalloc_work->inode; 9418 if (delalloc_work->wait) { 9419 btrfs_wait_ordered_range(inode, 0, (u64)-1); 9420 } else { 9421 filemap_flush(inode->i_mapping); 9422 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9423 &BTRFS_I(inode)->runtime_flags)) 9424 filemap_flush(inode->i_mapping); 9425 } 9426 9427 if (delalloc_work->delay_iput) 9428 btrfs_add_delayed_iput(inode); 9429 else 9430 iput(inode); 9431 complete(&delalloc_work->completion); 9432 } 9433 9434 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9435 int wait, int delay_iput) 9436 { 9437 struct btrfs_delalloc_work *work; 9438 9439 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 9440 if (!work) 9441 return NULL; 9442 9443 init_completion(&work->completion); 9444 INIT_LIST_HEAD(&work->list); 9445 work->inode = inode; 9446 work->wait = wait; 9447 work->delay_iput = delay_iput; 9448 WARN_ON_ONCE(!inode); 9449 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9450 btrfs_run_delalloc_work, NULL, NULL); 9451 9452 return work; 9453 } 9454 9455 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9456 { 9457 wait_for_completion(&work->completion); 9458 kmem_cache_free(btrfs_delalloc_work_cachep, work); 9459 } 9460 9461 /* 9462 * some fairly slow code that needs optimization. This walks the list 9463 * of all the inodes with pending delalloc and forces them to disk. 9464 */ 9465 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9466 int nr) 9467 { 9468 struct btrfs_inode *binode; 9469 struct inode *inode; 9470 struct btrfs_delalloc_work *work, *next; 9471 struct list_head works; 9472 struct list_head splice; 9473 int ret = 0; 9474 9475 INIT_LIST_HEAD(&works); 9476 INIT_LIST_HEAD(&splice); 9477 9478 mutex_lock(&root->delalloc_mutex); 9479 spin_lock(&root->delalloc_lock); 9480 list_splice_init(&root->delalloc_inodes, &splice); 9481 while (!list_empty(&splice)) { 9482 binode = list_entry(splice.next, struct btrfs_inode, 9483 delalloc_inodes); 9484 9485 list_move_tail(&binode->delalloc_inodes, 9486 &root->delalloc_inodes); 9487 inode = igrab(&binode->vfs_inode); 9488 if (!inode) { 9489 cond_resched_lock(&root->delalloc_lock); 9490 continue; 9491 } 9492 spin_unlock(&root->delalloc_lock); 9493 9494 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 9495 if (!work) { 9496 if (delay_iput) 9497 btrfs_add_delayed_iput(inode); 9498 else 9499 iput(inode); 9500 ret = -ENOMEM; 9501 goto out; 9502 } 9503 list_add_tail(&work->list, &works); 9504 btrfs_queue_work(root->fs_info->flush_workers, 9505 &work->work); 9506 ret++; 9507 if (nr != -1 && ret >= nr) 9508 goto out; 9509 cond_resched(); 9510 spin_lock(&root->delalloc_lock); 9511 } 9512 spin_unlock(&root->delalloc_lock); 9513 9514 out: 9515 list_for_each_entry_safe(work, next, &works, list) { 9516 list_del_init(&work->list); 9517 btrfs_wait_and_free_delalloc_work(work); 9518 } 9519 9520 if (!list_empty_careful(&splice)) { 9521 spin_lock(&root->delalloc_lock); 9522 list_splice_tail(&splice, &root->delalloc_inodes); 9523 spin_unlock(&root->delalloc_lock); 9524 } 9525 mutex_unlock(&root->delalloc_mutex); 9526 return ret; 9527 } 9528 9529 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9530 { 9531 int ret; 9532 9533 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9534 return -EROFS; 9535 9536 ret = __start_delalloc_inodes(root, delay_iput, -1); 9537 if (ret > 0) 9538 ret = 0; 9539 /* 9540 * the filemap_flush will queue IO into the worker threads, but 9541 * we have to make sure the IO is actually started and that 9542 * ordered extents get created before we return 9543 */ 9544 atomic_inc(&root->fs_info->async_submit_draining); 9545 while (atomic_read(&root->fs_info->nr_async_submits) || 9546 atomic_read(&root->fs_info->async_delalloc_pages)) { 9547 wait_event(root->fs_info->async_submit_wait, 9548 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9549 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9550 } 9551 atomic_dec(&root->fs_info->async_submit_draining); 9552 return ret; 9553 } 9554 9555 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9556 int nr) 9557 { 9558 struct btrfs_root *root; 9559 struct list_head splice; 9560 int ret; 9561 9562 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9563 return -EROFS; 9564 9565 INIT_LIST_HEAD(&splice); 9566 9567 mutex_lock(&fs_info->delalloc_root_mutex); 9568 spin_lock(&fs_info->delalloc_root_lock); 9569 list_splice_init(&fs_info->delalloc_roots, &splice); 9570 while (!list_empty(&splice) && nr) { 9571 root = list_first_entry(&splice, struct btrfs_root, 9572 delalloc_root); 9573 root = btrfs_grab_fs_root(root); 9574 BUG_ON(!root); 9575 list_move_tail(&root->delalloc_root, 9576 &fs_info->delalloc_roots); 9577 spin_unlock(&fs_info->delalloc_root_lock); 9578 9579 ret = __start_delalloc_inodes(root, delay_iput, nr); 9580 btrfs_put_fs_root(root); 9581 if (ret < 0) 9582 goto out; 9583 9584 if (nr != -1) { 9585 nr -= ret; 9586 WARN_ON(nr < 0); 9587 } 9588 spin_lock(&fs_info->delalloc_root_lock); 9589 } 9590 spin_unlock(&fs_info->delalloc_root_lock); 9591 9592 ret = 0; 9593 atomic_inc(&fs_info->async_submit_draining); 9594 while (atomic_read(&fs_info->nr_async_submits) || 9595 atomic_read(&fs_info->async_delalloc_pages)) { 9596 wait_event(fs_info->async_submit_wait, 9597 (atomic_read(&fs_info->nr_async_submits) == 0 && 9598 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9599 } 9600 atomic_dec(&fs_info->async_submit_draining); 9601 out: 9602 if (!list_empty_careful(&splice)) { 9603 spin_lock(&fs_info->delalloc_root_lock); 9604 list_splice_tail(&splice, &fs_info->delalloc_roots); 9605 spin_unlock(&fs_info->delalloc_root_lock); 9606 } 9607 mutex_unlock(&fs_info->delalloc_root_mutex); 9608 return ret; 9609 } 9610 9611 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9612 const char *symname) 9613 { 9614 struct btrfs_trans_handle *trans; 9615 struct btrfs_root *root = BTRFS_I(dir)->root; 9616 struct btrfs_path *path; 9617 struct btrfs_key key; 9618 struct inode *inode = NULL; 9619 int err; 9620 int drop_inode = 0; 9621 u64 objectid; 9622 u64 index = 0; 9623 int name_len; 9624 int datasize; 9625 unsigned long ptr; 9626 struct btrfs_file_extent_item *ei; 9627 struct extent_buffer *leaf; 9628 9629 name_len = strlen(symname); 9630 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9631 return -ENAMETOOLONG; 9632 9633 /* 9634 * 2 items for inode item and ref 9635 * 2 items for dir items 9636 * 1 item for xattr if selinux is on 9637 */ 9638 trans = btrfs_start_transaction(root, 5); 9639 if (IS_ERR(trans)) 9640 return PTR_ERR(trans); 9641 9642 err = btrfs_find_free_ino(root, &objectid); 9643 if (err) 9644 goto out_unlock; 9645 9646 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9647 dentry->d_name.len, btrfs_ino(dir), objectid, 9648 S_IFLNK|S_IRWXUGO, &index); 9649 if (IS_ERR(inode)) { 9650 err = PTR_ERR(inode); 9651 goto out_unlock; 9652 } 9653 9654 /* 9655 * If the active LSM wants to access the inode during 9656 * d_instantiate it needs these. Smack checks to see 9657 * if the filesystem supports xattrs by looking at the 9658 * ops vector. 9659 */ 9660 inode->i_fop = &btrfs_file_operations; 9661 inode->i_op = &btrfs_file_inode_operations; 9662 inode->i_mapping->a_ops = &btrfs_aops; 9663 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9664 9665 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9666 if (err) 9667 goto out_unlock_inode; 9668 9669 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9670 if (err) 9671 goto out_unlock_inode; 9672 9673 path = btrfs_alloc_path(); 9674 if (!path) { 9675 err = -ENOMEM; 9676 goto out_unlock_inode; 9677 } 9678 key.objectid = btrfs_ino(inode); 9679 key.offset = 0; 9680 key.type = BTRFS_EXTENT_DATA_KEY; 9681 datasize = btrfs_file_extent_calc_inline_size(name_len); 9682 err = btrfs_insert_empty_item(trans, root, path, &key, 9683 datasize); 9684 if (err) { 9685 btrfs_free_path(path); 9686 goto out_unlock_inode; 9687 } 9688 leaf = path->nodes[0]; 9689 ei = btrfs_item_ptr(leaf, path->slots[0], 9690 struct btrfs_file_extent_item); 9691 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9692 btrfs_set_file_extent_type(leaf, ei, 9693 BTRFS_FILE_EXTENT_INLINE); 9694 btrfs_set_file_extent_encryption(leaf, ei, 0); 9695 btrfs_set_file_extent_compression(leaf, ei, 0); 9696 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9697 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9698 9699 ptr = btrfs_file_extent_inline_start(ei); 9700 write_extent_buffer(leaf, symname, ptr, name_len); 9701 btrfs_mark_buffer_dirty(leaf); 9702 btrfs_free_path(path); 9703 9704 inode->i_op = &btrfs_symlink_inode_operations; 9705 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9706 inode_set_bytes(inode, name_len); 9707 btrfs_i_size_write(inode, name_len); 9708 err = btrfs_update_inode(trans, root, inode); 9709 if (err) { 9710 drop_inode = 1; 9711 goto out_unlock_inode; 9712 } 9713 9714 unlock_new_inode(inode); 9715 d_instantiate(dentry, inode); 9716 9717 out_unlock: 9718 btrfs_end_transaction(trans, root); 9719 if (drop_inode) { 9720 inode_dec_link_count(inode); 9721 iput(inode); 9722 } 9723 btrfs_btree_balance_dirty(root); 9724 return err; 9725 9726 out_unlock_inode: 9727 drop_inode = 1; 9728 unlock_new_inode(inode); 9729 goto out_unlock; 9730 } 9731 9732 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9733 u64 start, u64 num_bytes, u64 min_size, 9734 loff_t actual_len, u64 *alloc_hint, 9735 struct btrfs_trans_handle *trans) 9736 { 9737 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9738 struct extent_map *em; 9739 struct btrfs_root *root = BTRFS_I(inode)->root; 9740 struct btrfs_key ins; 9741 u64 cur_offset = start; 9742 u64 i_size; 9743 u64 cur_bytes; 9744 u64 last_alloc = (u64)-1; 9745 int ret = 0; 9746 bool own_trans = true; 9747 9748 if (trans) 9749 own_trans = false; 9750 while (num_bytes > 0) { 9751 if (own_trans) { 9752 trans = btrfs_start_transaction(root, 3); 9753 if (IS_ERR(trans)) { 9754 ret = PTR_ERR(trans); 9755 break; 9756 } 9757 } 9758 9759 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 9760 cur_bytes = max(cur_bytes, min_size); 9761 /* 9762 * If we are severely fragmented we could end up with really 9763 * small allocations, so if the allocator is returning small 9764 * chunks lets make its job easier by only searching for those 9765 * sized chunks. 9766 */ 9767 cur_bytes = min(cur_bytes, last_alloc); 9768 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9769 *alloc_hint, &ins, 1, 0); 9770 if (ret) { 9771 if (own_trans) 9772 btrfs_end_transaction(trans, root); 9773 break; 9774 } 9775 9776 last_alloc = ins.offset; 9777 ret = insert_reserved_file_extent(trans, inode, 9778 cur_offset, ins.objectid, 9779 ins.offset, ins.offset, 9780 ins.offset, 0, 0, 0, 9781 BTRFS_FILE_EXTENT_PREALLOC); 9782 if (ret) { 9783 btrfs_free_reserved_extent(root, ins.objectid, 9784 ins.offset, 0); 9785 btrfs_abort_transaction(trans, root, ret); 9786 if (own_trans) 9787 btrfs_end_transaction(trans, root); 9788 break; 9789 } 9790 9791 btrfs_drop_extent_cache(inode, cur_offset, 9792 cur_offset + ins.offset -1, 0); 9793 9794 em = alloc_extent_map(); 9795 if (!em) { 9796 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9797 &BTRFS_I(inode)->runtime_flags); 9798 goto next; 9799 } 9800 9801 em->start = cur_offset; 9802 em->orig_start = cur_offset; 9803 em->len = ins.offset; 9804 em->block_start = ins.objectid; 9805 em->block_len = ins.offset; 9806 em->orig_block_len = ins.offset; 9807 em->ram_bytes = ins.offset; 9808 em->bdev = root->fs_info->fs_devices->latest_bdev; 9809 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9810 em->generation = trans->transid; 9811 9812 while (1) { 9813 write_lock(&em_tree->lock); 9814 ret = add_extent_mapping(em_tree, em, 1); 9815 write_unlock(&em_tree->lock); 9816 if (ret != -EEXIST) 9817 break; 9818 btrfs_drop_extent_cache(inode, cur_offset, 9819 cur_offset + ins.offset - 1, 9820 0); 9821 } 9822 free_extent_map(em); 9823 next: 9824 num_bytes -= ins.offset; 9825 cur_offset += ins.offset; 9826 *alloc_hint = ins.objectid + ins.offset; 9827 9828 inode_inc_iversion(inode); 9829 inode->i_ctime = CURRENT_TIME; 9830 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9831 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9832 (actual_len > inode->i_size) && 9833 (cur_offset > inode->i_size)) { 9834 if (cur_offset > actual_len) 9835 i_size = actual_len; 9836 else 9837 i_size = cur_offset; 9838 i_size_write(inode, i_size); 9839 btrfs_ordered_update_i_size(inode, i_size, NULL); 9840 } 9841 9842 ret = btrfs_update_inode(trans, root, inode); 9843 9844 if (ret) { 9845 btrfs_abort_transaction(trans, root, ret); 9846 if (own_trans) 9847 btrfs_end_transaction(trans, root); 9848 break; 9849 } 9850 9851 if (own_trans) 9852 btrfs_end_transaction(trans, root); 9853 } 9854 return ret; 9855 } 9856 9857 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9858 u64 start, u64 num_bytes, u64 min_size, 9859 loff_t actual_len, u64 *alloc_hint) 9860 { 9861 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9862 min_size, actual_len, alloc_hint, 9863 NULL); 9864 } 9865 9866 int btrfs_prealloc_file_range_trans(struct inode *inode, 9867 struct btrfs_trans_handle *trans, int mode, 9868 u64 start, u64 num_bytes, u64 min_size, 9869 loff_t actual_len, u64 *alloc_hint) 9870 { 9871 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9872 min_size, actual_len, alloc_hint, trans); 9873 } 9874 9875 static int btrfs_set_page_dirty(struct page *page) 9876 { 9877 return __set_page_dirty_nobuffers(page); 9878 } 9879 9880 static int btrfs_permission(struct inode *inode, int mask) 9881 { 9882 struct btrfs_root *root = BTRFS_I(inode)->root; 9883 umode_t mode = inode->i_mode; 9884 9885 if (mask & MAY_WRITE && 9886 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9887 if (btrfs_root_readonly(root)) 9888 return -EROFS; 9889 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9890 return -EACCES; 9891 } 9892 return generic_permission(inode, mask); 9893 } 9894 9895 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9896 { 9897 struct btrfs_trans_handle *trans; 9898 struct btrfs_root *root = BTRFS_I(dir)->root; 9899 struct inode *inode = NULL; 9900 u64 objectid; 9901 u64 index; 9902 int ret = 0; 9903 9904 /* 9905 * 5 units required for adding orphan entry 9906 */ 9907 trans = btrfs_start_transaction(root, 5); 9908 if (IS_ERR(trans)) 9909 return PTR_ERR(trans); 9910 9911 ret = btrfs_find_free_ino(root, &objectid); 9912 if (ret) 9913 goto out; 9914 9915 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9916 btrfs_ino(dir), objectid, mode, &index); 9917 if (IS_ERR(inode)) { 9918 ret = PTR_ERR(inode); 9919 inode = NULL; 9920 goto out; 9921 } 9922 9923 inode->i_fop = &btrfs_file_operations; 9924 inode->i_op = &btrfs_file_inode_operations; 9925 9926 inode->i_mapping->a_ops = &btrfs_aops; 9927 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9928 9929 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9930 if (ret) 9931 goto out_inode; 9932 9933 ret = btrfs_update_inode(trans, root, inode); 9934 if (ret) 9935 goto out_inode; 9936 ret = btrfs_orphan_add(trans, inode); 9937 if (ret) 9938 goto out_inode; 9939 9940 /* 9941 * We set number of links to 0 in btrfs_new_inode(), and here we set 9942 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9943 * through: 9944 * 9945 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9946 */ 9947 set_nlink(inode, 1); 9948 unlock_new_inode(inode); 9949 d_tmpfile(dentry, inode); 9950 mark_inode_dirty(inode); 9951 9952 out: 9953 btrfs_end_transaction(trans, root); 9954 if (ret) 9955 iput(inode); 9956 btrfs_balance_delayed_items(root); 9957 btrfs_btree_balance_dirty(root); 9958 return ret; 9959 9960 out_inode: 9961 unlock_new_inode(inode); 9962 goto out; 9963 9964 } 9965 9966 /* Inspired by filemap_check_errors() */ 9967 int btrfs_inode_check_errors(struct inode *inode) 9968 { 9969 int ret = 0; 9970 9971 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 9972 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 9973 ret = -ENOSPC; 9974 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 9975 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 9976 ret = -EIO; 9977 9978 return ret; 9979 } 9980 9981 static const struct inode_operations btrfs_dir_inode_operations = { 9982 .getattr = btrfs_getattr, 9983 .lookup = btrfs_lookup, 9984 .create = btrfs_create, 9985 .unlink = btrfs_unlink, 9986 .link = btrfs_link, 9987 .mkdir = btrfs_mkdir, 9988 .rmdir = btrfs_rmdir, 9989 .rename2 = btrfs_rename2, 9990 .symlink = btrfs_symlink, 9991 .setattr = btrfs_setattr, 9992 .mknod = btrfs_mknod, 9993 .setxattr = btrfs_setxattr, 9994 .getxattr = btrfs_getxattr, 9995 .listxattr = btrfs_listxattr, 9996 .removexattr = btrfs_removexattr, 9997 .permission = btrfs_permission, 9998 .get_acl = btrfs_get_acl, 9999 .set_acl = btrfs_set_acl, 10000 .update_time = btrfs_update_time, 10001 .tmpfile = btrfs_tmpfile, 10002 }; 10003 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10004 .lookup = btrfs_lookup, 10005 .permission = btrfs_permission, 10006 .get_acl = btrfs_get_acl, 10007 .set_acl = btrfs_set_acl, 10008 .update_time = btrfs_update_time, 10009 }; 10010 10011 static const struct file_operations btrfs_dir_file_operations = { 10012 .llseek = generic_file_llseek, 10013 .read = generic_read_dir, 10014 .iterate = btrfs_real_readdir, 10015 .unlocked_ioctl = btrfs_ioctl, 10016 #ifdef CONFIG_COMPAT 10017 .compat_ioctl = btrfs_ioctl, 10018 #endif 10019 .release = btrfs_release_file, 10020 .fsync = btrfs_sync_file, 10021 }; 10022 10023 static struct extent_io_ops btrfs_extent_io_ops = { 10024 .fill_delalloc = run_delalloc_range, 10025 .submit_bio_hook = btrfs_submit_bio_hook, 10026 .merge_bio_hook = btrfs_merge_bio_hook, 10027 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10028 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10029 .writepage_start_hook = btrfs_writepage_start_hook, 10030 .set_bit_hook = btrfs_set_bit_hook, 10031 .clear_bit_hook = btrfs_clear_bit_hook, 10032 .merge_extent_hook = btrfs_merge_extent_hook, 10033 .split_extent_hook = btrfs_split_extent_hook, 10034 }; 10035 10036 /* 10037 * btrfs doesn't support the bmap operation because swapfiles 10038 * use bmap to make a mapping of extents in the file. They assume 10039 * these extents won't change over the life of the file and they 10040 * use the bmap result to do IO directly to the drive. 10041 * 10042 * the btrfs bmap call would return logical addresses that aren't 10043 * suitable for IO and they also will change frequently as COW 10044 * operations happen. So, swapfile + btrfs == corruption. 10045 * 10046 * For now we're avoiding this by dropping bmap. 10047 */ 10048 static const struct address_space_operations btrfs_aops = { 10049 .readpage = btrfs_readpage, 10050 .writepage = btrfs_writepage, 10051 .writepages = btrfs_writepages, 10052 .readpages = btrfs_readpages, 10053 .direct_IO = btrfs_direct_IO, 10054 .invalidatepage = btrfs_invalidatepage, 10055 .releasepage = btrfs_releasepage, 10056 .set_page_dirty = btrfs_set_page_dirty, 10057 .error_remove_page = generic_error_remove_page, 10058 }; 10059 10060 static const struct address_space_operations btrfs_symlink_aops = { 10061 .readpage = btrfs_readpage, 10062 .writepage = btrfs_writepage, 10063 .invalidatepage = btrfs_invalidatepage, 10064 .releasepage = btrfs_releasepage, 10065 }; 10066 10067 static const struct inode_operations btrfs_file_inode_operations = { 10068 .getattr = btrfs_getattr, 10069 .setattr = btrfs_setattr, 10070 .setxattr = btrfs_setxattr, 10071 .getxattr = btrfs_getxattr, 10072 .listxattr = btrfs_listxattr, 10073 .removexattr = btrfs_removexattr, 10074 .permission = btrfs_permission, 10075 .fiemap = btrfs_fiemap, 10076 .get_acl = btrfs_get_acl, 10077 .set_acl = btrfs_set_acl, 10078 .update_time = btrfs_update_time, 10079 }; 10080 static const struct inode_operations btrfs_special_inode_operations = { 10081 .getattr = btrfs_getattr, 10082 .setattr = btrfs_setattr, 10083 .permission = btrfs_permission, 10084 .setxattr = btrfs_setxattr, 10085 .getxattr = btrfs_getxattr, 10086 .listxattr = btrfs_listxattr, 10087 .removexattr = btrfs_removexattr, 10088 .get_acl = btrfs_get_acl, 10089 .set_acl = btrfs_set_acl, 10090 .update_time = btrfs_update_time, 10091 }; 10092 static const struct inode_operations btrfs_symlink_inode_operations = { 10093 .readlink = generic_readlink, 10094 .follow_link = page_follow_link_light, 10095 .put_link = page_put_link, 10096 .getattr = btrfs_getattr, 10097 .setattr = btrfs_setattr, 10098 .permission = btrfs_permission, 10099 .setxattr = btrfs_setxattr, 10100 .getxattr = btrfs_getxattr, 10101 .listxattr = btrfs_listxattr, 10102 .removexattr = btrfs_removexattr, 10103 .update_time = btrfs_update_time, 10104 }; 10105 10106 const struct dentry_operations btrfs_dentry_operations = { 10107 .d_delete = btrfs_dentry_delete, 10108 .d_release = btrfs_dentry_release, 10109 }; 10110