xref: /linux/fs/btrfs/inode.c (revision fc4fa6e112c0f999fab022a4eb7f6614bb47c7ab)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78 
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85 
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
89 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
90 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
91 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
92 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
93 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
94 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
95 };
96 
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 				   struct page *locked_page,
102 				   u64 start, u64 end, int *page_started,
103 				   unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 					   u64 len, u64 orig_start,
106 					   u64 block_start, u64 block_len,
107 					   u64 orig_block_len, u64 ram_bytes,
108 					   int type);
109 
110 static int btrfs_dirty_inode(struct inode *inode);
111 
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118 
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 				     struct inode *inode,  struct inode *dir,
121 				     const struct qstr *qstr)
122 {
123 	int err;
124 
125 	err = btrfs_init_acl(trans, inode, dir);
126 	if (!err)
127 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 	return err;
129 }
130 
131 /*
132  * this does all the hard work for inserting an inline extent into
133  * the btree.  The caller should have done a btrfs_drop_extents so that
134  * no overlapping inline items exist in the btree
135  */
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 				struct btrfs_path *path, int extent_inserted,
138 				struct btrfs_root *root, struct inode *inode,
139 				u64 start, size_t size, size_t compressed_size,
140 				int compress_type,
141 				struct page **compressed_pages)
142 {
143 	struct extent_buffer *leaf;
144 	struct page *page = NULL;
145 	char *kaddr;
146 	unsigned long ptr;
147 	struct btrfs_file_extent_item *ei;
148 	int err = 0;
149 	int ret;
150 	size_t cur_size = size;
151 	unsigned long offset;
152 
153 	if (compressed_size && compressed_pages)
154 		cur_size = compressed_size;
155 
156 	inode_add_bytes(inode, size);
157 
158 	if (!extent_inserted) {
159 		struct btrfs_key key;
160 		size_t datasize;
161 
162 		key.objectid = btrfs_ino(inode);
163 		key.offset = start;
164 		key.type = BTRFS_EXTENT_DATA_KEY;
165 
166 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 		path->leave_spinning = 1;
168 		ret = btrfs_insert_empty_item(trans, root, path, &key,
169 					      datasize);
170 		if (ret) {
171 			err = ret;
172 			goto fail;
173 		}
174 	}
175 	leaf = path->nodes[0];
176 	ei = btrfs_item_ptr(leaf, path->slots[0],
177 			    struct btrfs_file_extent_item);
178 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 	btrfs_set_file_extent_encryption(leaf, ei, 0);
181 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 	ptr = btrfs_file_extent_inline_start(ei);
184 
185 	if (compress_type != BTRFS_COMPRESS_NONE) {
186 		struct page *cpage;
187 		int i = 0;
188 		while (compressed_size > 0) {
189 			cpage = compressed_pages[i];
190 			cur_size = min_t(unsigned long, compressed_size,
191 				       PAGE_CACHE_SIZE);
192 
193 			kaddr = kmap_atomic(cpage);
194 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 			kunmap_atomic(kaddr);
196 
197 			i++;
198 			ptr += cur_size;
199 			compressed_size -= cur_size;
200 		}
201 		btrfs_set_file_extent_compression(leaf, ei,
202 						  compress_type);
203 	} else {
204 		page = find_get_page(inode->i_mapping,
205 				     start >> PAGE_CACHE_SHIFT);
206 		btrfs_set_file_extent_compression(leaf, ei, 0);
207 		kaddr = kmap_atomic(page);
208 		offset = start & (PAGE_CACHE_SIZE - 1);
209 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 		kunmap_atomic(kaddr);
211 		page_cache_release(page);
212 	}
213 	btrfs_mark_buffer_dirty(leaf);
214 	btrfs_release_path(path);
215 
216 	/*
217 	 * we're an inline extent, so nobody can
218 	 * extend the file past i_size without locking
219 	 * a page we already have locked.
220 	 *
221 	 * We must do any isize and inode updates
222 	 * before we unlock the pages.  Otherwise we
223 	 * could end up racing with unlink.
224 	 */
225 	BTRFS_I(inode)->disk_i_size = inode->i_size;
226 	ret = btrfs_update_inode(trans, root, inode);
227 
228 	return ret;
229 fail:
230 	return err;
231 }
232 
233 
234 /*
235  * conditionally insert an inline extent into the file.  This
236  * does the checks required to make sure the data is small enough
237  * to fit as an inline extent.
238  */
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 					  struct inode *inode, u64 start,
241 					  u64 end, size_t compressed_size,
242 					  int compress_type,
243 					  struct page **compressed_pages)
244 {
245 	struct btrfs_trans_handle *trans;
246 	u64 isize = i_size_read(inode);
247 	u64 actual_end = min(end + 1, isize);
248 	u64 inline_len = actual_end - start;
249 	u64 aligned_end = ALIGN(end, root->sectorsize);
250 	u64 data_len = inline_len;
251 	int ret;
252 	struct btrfs_path *path;
253 	int extent_inserted = 0;
254 	u32 extent_item_size;
255 
256 	if (compressed_size)
257 		data_len = compressed_size;
258 
259 	if (start > 0 ||
260 	    actual_end > PAGE_CACHE_SIZE ||
261 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 	    (!compressed_size &&
263 	    (actual_end & (root->sectorsize - 1)) == 0) ||
264 	    end + 1 < isize ||
265 	    data_len > root->fs_info->max_inline) {
266 		return 1;
267 	}
268 
269 	path = btrfs_alloc_path();
270 	if (!path)
271 		return -ENOMEM;
272 
273 	trans = btrfs_join_transaction(root);
274 	if (IS_ERR(trans)) {
275 		btrfs_free_path(path);
276 		return PTR_ERR(trans);
277 	}
278 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279 
280 	if (compressed_size && compressed_pages)
281 		extent_item_size = btrfs_file_extent_calc_inline_size(
282 		   compressed_size);
283 	else
284 		extent_item_size = btrfs_file_extent_calc_inline_size(
285 		    inline_len);
286 
287 	ret = __btrfs_drop_extents(trans, root, inode, path,
288 				   start, aligned_end, NULL,
289 				   1, 1, extent_item_size, &extent_inserted);
290 	if (ret) {
291 		btrfs_abort_transaction(trans, root, ret);
292 		goto out;
293 	}
294 
295 	if (isize > actual_end)
296 		inline_len = min_t(u64, isize, actual_end);
297 	ret = insert_inline_extent(trans, path, extent_inserted,
298 				   root, inode, start,
299 				   inline_len, compressed_size,
300 				   compress_type, compressed_pages);
301 	if (ret && ret != -ENOSPC) {
302 		btrfs_abort_transaction(trans, root, ret);
303 		goto out;
304 	} else if (ret == -ENOSPC) {
305 		ret = 1;
306 		goto out;
307 	}
308 
309 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 	/*
314 	 * Don't forget to free the reserved space, as for inlined extent
315 	 * it won't count as data extent, free them directly here.
316 	 * And at reserve time, it's always aligned to page size, so
317 	 * just free one page here.
318 	 */
319 	btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
320 	btrfs_free_path(path);
321 	btrfs_end_transaction(trans, root);
322 	return ret;
323 }
324 
325 struct async_extent {
326 	u64 start;
327 	u64 ram_size;
328 	u64 compressed_size;
329 	struct page **pages;
330 	unsigned long nr_pages;
331 	int compress_type;
332 	struct list_head list;
333 };
334 
335 struct async_cow {
336 	struct inode *inode;
337 	struct btrfs_root *root;
338 	struct page *locked_page;
339 	u64 start;
340 	u64 end;
341 	struct list_head extents;
342 	struct btrfs_work work;
343 };
344 
345 static noinline int add_async_extent(struct async_cow *cow,
346 				     u64 start, u64 ram_size,
347 				     u64 compressed_size,
348 				     struct page **pages,
349 				     unsigned long nr_pages,
350 				     int compress_type)
351 {
352 	struct async_extent *async_extent;
353 
354 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
355 	BUG_ON(!async_extent); /* -ENOMEM */
356 	async_extent->start = start;
357 	async_extent->ram_size = ram_size;
358 	async_extent->compressed_size = compressed_size;
359 	async_extent->pages = pages;
360 	async_extent->nr_pages = nr_pages;
361 	async_extent->compress_type = compress_type;
362 	list_add_tail(&async_extent->list, &cow->extents);
363 	return 0;
364 }
365 
366 static inline int inode_need_compress(struct inode *inode)
367 {
368 	struct btrfs_root *root = BTRFS_I(inode)->root;
369 
370 	/* force compress */
371 	if (btrfs_test_opt(root, FORCE_COMPRESS))
372 		return 1;
373 	/* bad compression ratios */
374 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 		return 0;
376 	if (btrfs_test_opt(root, COMPRESS) ||
377 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 	    BTRFS_I(inode)->force_compress)
379 		return 1;
380 	return 0;
381 }
382 
383 /*
384  * we create compressed extents in two phases.  The first
385  * phase compresses a range of pages that have already been
386  * locked (both pages and state bits are locked).
387  *
388  * This is done inside an ordered work queue, and the compression
389  * is spread across many cpus.  The actual IO submission is step
390  * two, and the ordered work queue takes care of making sure that
391  * happens in the same order things were put onto the queue by
392  * writepages and friends.
393  *
394  * If this code finds it can't get good compression, it puts an
395  * entry onto the work queue to write the uncompressed bytes.  This
396  * makes sure that both compressed inodes and uncompressed inodes
397  * are written in the same order that the flusher thread sent them
398  * down.
399  */
400 static noinline void compress_file_range(struct inode *inode,
401 					struct page *locked_page,
402 					u64 start, u64 end,
403 					struct async_cow *async_cow,
404 					int *num_added)
405 {
406 	struct btrfs_root *root = BTRFS_I(inode)->root;
407 	u64 num_bytes;
408 	u64 blocksize = root->sectorsize;
409 	u64 actual_end;
410 	u64 isize = i_size_read(inode);
411 	int ret = 0;
412 	struct page **pages = NULL;
413 	unsigned long nr_pages;
414 	unsigned long nr_pages_ret = 0;
415 	unsigned long total_compressed = 0;
416 	unsigned long total_in = 0;
417 	unsigned long max_compressed = 128 * 1024;
418 	unsigned long max_uncompressed = 128 * 1024;
419 	int i;
420 	int will_compress;
421 	int compress_type = root->fs_info->compress_type;
422 	int redirty = 0;
423 
424 	/* if this is a small write inside eof, kick off a defrag */
425 	if ((end - start + 1) < 16 * 1024 &&
426 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
427 		btrfs_add_inode_defrag(NULL, inode);
428 
429 	actual_end = min_t(u64, isize, end + 1);
430 again:
431 	will_compress = 0;
432 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
434 
435 	/*
436 	 * we don't want to send crud past the end of i_size through
437 	 * compression, that's just a waste of CPU time.  So, if the
438 	 * end of the file is before the start of our current
439 	 * requested range of bytes, we bail out to the uncompressed
440 	 * cleanup code that can deal with all of this.
441 	 *
442 	 * It isn't really the fastest way to fix things, but this is a
443 	 * very uncommon corner.
444 	 */
445 	if (actual_end <= start)
446 		goto cleanup_and_bail_uncompressed;
447 
448 	total_compressed = actual_end - start;
449 
450 	/*
451 	 * skip compression for a small file range(<=blocksize) that
452 	 * isn't an inline extent, since it dosen't save disk space at all.
453 	 */
454 	if (total_compressed <= blocksize &&
455 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 		goto cleanup_and_bail_uncompressed;
457 
458 	/* we want to make sure that amount of ram required to uncompress
459 	 * an extent is reasonable, so we limit the total size in ram
460 	 * of a compressed extent to 128k.  This is a crucial number
461 	 * because it also controls how easily we can spread reads across
462 	 * cpus for decompression.
463 	 *
464 	 * We also want to make sure the amount of IO required to do
465 	 * a random read is reasonably small, so we limit the size of
466 	 * a compressed extent to 128k.
467 	 */
468 	total_compressed = min(total_compressed, max_uncompressed);
469 	num_bytes = ALIGN(end - start + 1, blocksize);
470 	num_bytes = max(blocksize,  num_bytes);
471 	total_in = 0;
472 	ret = 0;
473 
474 	/*
475 	 * we do compression for mount -o compress and when the
476 	 * inode has not been flagged as nocompress.  This flag can
477 	 * change at any time if we discover bad compression ratios.
478 	 */
479 	if (inode_need_compress(inode)) {
480 		WARN_ON(pages);
481 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
482 		if (!pages) {
483 			/* just bail out to the uncompressed code */
484 			goto cont;
485 		}
486 
487 		if (BTRFS_I(inode)->force_compress)
488 			compress_type = BTRFS_I(inode)->force_compress;
489 
490 		/*
491 		 * we need to call clear_page_dirty_for_io on each
492 		 * page in the range.  Otherwise applications with the file
493 		 * mmap'd can wander in and change the page contents while
494 		 * we are compressing them.
495 		 *
496 		 * If the compression fails for any reason, we set the pages
497 		 * dirty again later on.
498 		 */
499 		extent_range_clear_dirty_for_io(inode, start, end);
500 		redirty = 1;
501 		ret = btrfs_compress_pages(compress_type,
502 					   inode->i_mapping, start,
503 					   total_compressed, pages,
504 					   nr_pages, &nr_pages_ret,
505 					   &total_in,
506 					   &total_compressed,
507 					   max_compressed);
508 
509 		if (!ret) {
510 			unsigned long offset = total_compressed &
511 				(PAGE_CACHE_SIZE - 1);
512 			struct page *page = pages[nr_pages_ret - 1];
513 			char *kaddr;
514 
515 			/* zero the tail end of the last page, we might be
516 			 * sending it down to disk
517 			 */
518 			if (offset) {
519 				kaddr = kmap_atomic(page);
520 				memset(kaddr + offset, 0,
521 				       PAGE_CACHE_SIZE - offset);
522 				kunmap_atomic(kaddr);
523 			}
524 			will_compress = 1;
525 		}
526 	}
527 cont:
528 	if (start == 0) {
529 		/* lets try to make an inline extent */
530 		if (ret || total_in < (actual_end - start)) {
531 			/* we didn't compress the entire range, try
532 			 * to make an uncompressed inline extent.
533 			 */
534 			ret = cow_file_range_inline(root, inode, start, end,
535 						    0, 0, NULL);
536 		} else {
537 			/* try making a compressed inline extent */
538 			ret = cow_file_range_inline(root, inode, start, end,
539 						    total_compressed,
540 						    compress_type, pages);
541 		}
542 		if (ret <= 0) {
543 			unsigned long clear_flags = EXTENT_DELALLOC |
544 				EXTENT_DEFRAG;
545 			unsigned long page_error_op;
546 
547 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
548 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
549 
550 			/*
551 			 * inline extent creation worked or returned error,
552 			 * we don't need to create any more async work items.
553 			 * Unlock and free up our temp pages.
554 			 */
555 			extent_clear_unlock_delalloc(inode, start, end, NULL,
556 						     clear_flags, PAGE_UNLOCK |
557 						     PAGE_CLEAR_DIRTY |
558 						     PAGE_SET_WRITEBACK |
559 						     page_error_op |
560 						     PAGE_END_WRITEBACK);
561 			goto free_pages_out;
562 		}
563 	}
564 
565 	if (will_compress) {
566 		/*
567 		 * we aren't doing an inline extent round the compressed size
568 		 * up to a block size boundary so the allocator does sane
569 		 * things
570 		 */
571 		total_compressed = ALIGN(total_compressed, blocksize);
572 
573 		/*
574 		 * one last check to make sure the compression is really a
575 		 * win, compare the page count read with the blocks on disk
576 		 */
577 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
578 		if (total_compressed >= total_in) {
579 			will_compress = 0;
580 		} else {
581 			num_bytes = total_in;
582 		}
583 	}
584 	if (!will_compress && pages) {
585 		/*
586 		 * the compression code ran but failed to make things smaller,
587 		 * free any pages it allocated and our page pointer array
588 		 */
589 		for (i = 0; i < nr_pages_ret; i++) {
590 			WARN_ON(pages[i]->mapping);
591 			page_cache_release(pages[i]);
592 		}
593 		kfree(pages);
594 		pages = NULL;
595 		total_compressed = 0;
596 		nr_pages_ret = 0;
597 
598 		/* flag the file so we don't compress in the future */
599 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 		    !(BTRFS_I(inode)->force_compress)) {
601 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
602 		}
603 	}
604 	if (will_compress) {
605 		*num_added += 1;
606 
607 		/* the async work queues will take care of doing actual
608 		 * allocation on disk for these compressed pages,
609 		 * and will submit them to the elevator.
610 		 */
611 		add_async_extent(async_cow, start, num_bytes,
612 				 total_compressed, pages, nr_pages_ret,
613 				 compress_type);
614 
615 		if (start + num_bytes < end) {
616 			start += num_bytes;
617 			pages = NULL;
618 			cond_resched();
619 			goto again;
620 		}
621 	} else {
622 cleanup_and_bail_uncompressed:
623 		/*
624 		 * No compression, but we still need to write the pages in
625 		 * the file we've been given so far.  redirty the locked
626 		 * page if it corresponds to our extent and set things up
627 		 * for the async work queue to run cow_file_range to do
628 		 * the normal delalloc dance
629 		 */
630 		if (page_offset(locked_page) >= start &&
631 		    page_offset(locked_page) <= end) {
632 			__set_page_dirty_nobuffers(locked_page);
633 			/* unlocked later on in the async handlers */
634 		}
635 		if (redirty)
636 			extent_range_redirty_for_io(inode, start, end);
637 		add_async_extent(async_cow, start, end - start + 1,
638 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
639 		*num_added += 1;
640 	}
641 
642 	return;
643 
644 free_pages_out:
645 	for (i = 0; i < nr_pages_ret; i++) {
646 		WARN_ON(pages[i]->mapping);
647 		page_cache_release(pages[i]);
648 	}
649 	kfree(pages);
650 }
651 
652 static void free_async_extent_pages(struct async_extent *async_extent)
653 {
654 	int i;
655 
656 	if (!async_extent->pages)
657 		return;
658 
659 	for (i = 0; i < async_extent->nr_pages; i++) {
660 		WARN_ON(async_extent->pages[i]->mapping);
661 		page_cache_release(async_extent->pages[i]);
662 	}
663 	kfree(async_extent->pages);
664 	async_extent->nr_pages = 0;
665 	async_extent->pages = NULL;
666 }
667 
668 /*
669  * phase two of compressed writeback.  This is the ordered portion
670  * of the code, which only gets called in the order the work was
671  * queued.  We walk all the async extents created by compress_file_range
672  * and send them down to the disk.
673  */
674 static noinline void submit_compressed_extents(struct inode *inode,
675 					      struct async_cow *async_cow)
676 {
677 	struct async_extent *async_extent;
678 	u64 alloc_hint = 0;
679 	struct btrfs_key ins;
680 	struct extent_map *em;
681 	struct btrfs_root *root = BTRFS_I(inode)->root;
682 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 	struct extent_io_tree *io_tree;
684 	int ret = 0;
685 
686 again:
687 	while (!list_empty(&async_cow->extents)) {
688 		async_extent = list_entry(async_cow->extents.next,
689 					  struct async_extent, list);
690 		list_del(&async_extent->list);
691 
692 		io_tree = &BTRFS_I(inode)->io_tree;
693 
694 retry:
695 		/* did the compression code fall back to uncompressed IO? */
696 		if (!async_extent->pages) {
697 			int page_started = 0;
698 			unsigned long nr_written = 0;
699 
700 			lock_extent(io_tree, async_extent->start,
701 					 async_extent->start +
702 					 async_extent->ram_size - 1);
703 
704 			/* allocate blocks */
705 			ret = cow_file_range(inode, async_cow->locked_page,
706 					     async_extent->start,
707 					     async_extent->start +
708 					     async_extent->ram_size - 1,
709 					     &page_started, &nr_written, 0);
710 
711 			/* JDM XXX */
712 
713 			/*
714 			 * if page_started, cow_file_range inserted an
715 			 * inline extent and took care of all the unlocking
716 			 * and IO for us.  Otherwise, we need to submit
717 			 * all those pages down to the drive.
718 			 */
719 			if (!page_started && !ret)
720 				extent_write_locked_range(io_tree,
721 						  inode, async_extent->start,
722 						  async_extent->start +
723 						  async_extent->ram_size - 1,
724 						  btrfs_get_extent,
725 						  WB_SYNC_ALL);
726 			else if (ret)
727 				unlock_page(async_cow->locked_page);
728 			kfree(async_extent);
729 			cond_resched();
730 			continue;
731 		}
732 
733 		lock_extent(io_tree, async_extent->start,
734 			    async_extent->start + async_extent->ram_size - 1);
735 
736 		ret = btrfs_reserve_extent(root,
737 					   async_extent->compressed_size,
738 					   async_extent->compressed_size,
739 					   0, alloc_hint, &ins, 1, 1);
740 		if (ret) {
741 			free_async_extent_pages(async_extent);
742 
743 			if (ret == -ENOSPC) {
744 				unlock_extent(io_tree, async_extent->start,
745 					      async_extent->start +
746 					      async_extent->ram_size - 1);
747 
748 				/*
749 				 * we need to redirty the pages if we decide to
750 				 * fallback to uncompressed IO, otherwise we
751 				 * will not submit these pages down to lower
752 				 * layers.
753 				 */
754 				extent_range_redirty_for_io(inode,
755 						async_extent->start,
756 						async_extent->start +
757 						async_extent->ram_size - 1);
758 
759 				goto retry;
760 			}
761 			goto out_free;
762 		}
763 		/*
764 		 * here we're doing allocation and writeback of the
765 		 * compressed pages
766 		 */
767 		btrfs_drop_extent_cache(inode, async_extent->start,
768 					async_extent->start +
769 					async_extent->ram_size - 1, 0);
770 
771 		em = alloc_extent_map();
772 		if (!em) {
773 			ret = -ENOMEM;
774 			goto out_free_reserve;
775 		}
776 		em->start = async_extent->start;
777 		em->len = async_extent->ram_size;
778 		em->orig_start = em->start;
779 		em->mod_start = em->start;
780 		em->mod_len = em->len;
781 
782 		em->block_start = ins.objectid;
783 		em->block_len = ins.offset;
784 		em->orig_block_len = ins.offset;
785 		em->ram_bytes = async_extent->ram_size;
786 		em->bdev = root->fs_info->fs_devices->latest_bdev;
787 		em->compress_type = async_extent->compress_type;
788 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
790 		em->generation = -1;
791 
792 		while (1) {
793 			write_lock(&em_tree->lock);
794 			ret = add_extent_mapping(em_tree, em, 1);
795 			write_unlock(&em_tree->lock);
796 			if (ret != -EEXIST) {
797 				free_extent_map(em);
798 				break;
799 			}
800 			btrfs_drop_extent_cache(inode, async_extent->start,
801 						async_extent->start +
802 						async_extent->ram_size - 1, 0);
803 		}
804 
805 		if (ret)
806 			goto out_free_reserve;
807 
808 		ret = btrfs_add_ordered_extent_compress(inode,
809 						async_extent->start,
810 						ins.objectid,
811 						async_extent->ram_size,
812 						ins.offset,
813 						BTRFS_ORDERED_COMPRESSED,
814 						async_extent->compress_type);
815 		if (ret) {
816 			btrfs_drop_extent_cache(inode, async_extent->start,
817 						async_extent->start +
818 						async_extent->ram_size - 1, 0);
819 			goto out_free_reserve;
820 		}
821 
822 		/*
823 		 * clear dirty, set writeback and unlock the pages.
824 		 */
825 		extent_clear_unlock_delalloc(inode, async_extent->start,
826 				async_extent->start +
827 				async_extent->ram_size - 1,
828 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
830 				PAGE_SET_WRITEBACK);
831 		ret = btrfs_submit_compressed_write(inode,
832 				    async_extent->start,
833 				    async_extent->ram_size,
834 				    ins.objectid,
835 				    ins.offset, async_extent->pages,
836 				    async_extent->nr_pages);
837 		if (ret) {
838 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 			struct page *p = async_extent->pages[0];
840 			const u64 start = async_extent->start;
841 			const u64 end = start + async_extent->ram_size - 1;
842 
843 			p->mapping = inode->i_mapping;
844 			tree->ops->writepage_end_io_hook(p, start, end,
845 							 NULL, 0);
846 			p->mapping = NULL;
847 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 						     PAGE_END_WRITEBACK |
849 						     PAGE_SET_ERROR);
850 			free_async_extent_pages(async_extent);
851 		}
852 		alloc_hint = ins.objectid + ins.offset;
853 		kfree(async_extent);
854 		cond_resched();
855 	}
856 	return;
857 out_free_reserve:
858 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
859 out_free:
860 	extent_clear_unlock_delalloc(inode, async_extent->start,
861 				     async_extent->start +
862 				     async_extent->ram_size - 1,
863 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
864 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
866 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 				     PAGE_SET_ERROR);
868 	free_async_extent_pages(async_extent);
869 	kfree(async_extent);
870 	goto again;
871 }
872 
873 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 				      u64 num_bytes)
875 {
876 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 	struct extent_map *em;
878 	u64 alloc_hint = 0;
879 
880 	read_lock(&em_tree->lock);
881 	em = search_extent_mapping(em_tree, start, num_bytes);
882 	if (em) {
883 		/*
884 		 * if block start isn't an actual block number then find the
885 		 * first block in this inode and use that as a hint.  If that
886 		 * block is also bogus then just don't worry about it.
887 		 */
888 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 			free_extent_map(em);
890 			em = search_extent_mapping(em_tree, 0, 0);
891 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 				alloc_hint = em->block_start;
893 			if (em)
894 				free_extent_map(em);
895 		} else {
896 			alloc_hint = em->block_start;
897 			free_extent_map(em);
898 		}
899 	}
900 	read_unlock(&em_tree->lock);
901 
902 	return alloc_hint;
903 }
904 
905 /*
906  * when extent_io.c finds a delayed allocation range in the file,
907  * the call backs end up in this code.  The basic idea is to
908  * allocate extents on disk for the range, and create ordered data structs
909  * in ram to track those extents.
910  *
911  * locked_page is the page that writepage had locked already.  We use
912  * it to make sure we don't do extra locks or unlocks.
913  *
914  * *page_started is set to one if we unlock locked_page and do everything
915  * required to start IO on it.  It may be clean and already done with
916  * IO when we return.
917  */
918 static noinline int cow_file_range(struct inode *inode,
919 				   struct page *locked_page,
920 				   u64 start, u64 end, int *page_started,
921 				   unsigned long *nr_written,
922 				   int unlock)
923 {
924 	struct btrfs_root *root = BTRFS_I(inode)->root;
925 	u64 alloc_hint = 0;
926 	u64 num_bytes;
927 	unsigned long ram_size;
928 	u64 disk_num_bytes;
929 	u64 cur_alloc_size;
930 	u64 blocksize = root->sectorsize;
931 	struct btrfs_key ins;
932 	struct extent_map *em;
933 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 	int ret = 0;
935 
936 	if (btrfs_is_free_space_inode(inode)) {
937 		WARN_ON_ONCE(1);
938 		ret = -EINVAL;
939 		goto out_unlock;
940 	}
941 
942 	num_bytes = ALIGN(end - start + 1, blocksize);
943 	num_bytes = max(blocksize,  num_bytes);
944 	disk_num_bytes = num_bytes;
945 
946 	/* if this is a small write inside eof, kick off defrag */
947 	if (num_bytes < 64 * 1024 &&
948 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
949 		btrfs_add_inode_defrag(NULL, inode);
950 
951 	if (start == 0) {
952 		/* lets try to make an inline extent */
953 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 					    NULL);
955 		if (ret == 0) {
956 			extent_clear_unlock_delalloc(inode, start, end, NULL,
957 				     EXTENT_LOCKED | EXTENT_DELALLOC |
958 				     EXTENT_DEFRAG, PAGE_UNLOCK |
959 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 				     PAGE_END_WRITEBACK);
961 
962 			*nr_written = *nr_written +
963 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 			*page_started = 1;
965 			goto out;
966 		} else if (ret < 0) {
967 			goto out_unlock;
968 		}
969 	}
970 
971 	BUG_ON(disk_num_bytes >
972 	       btrfs_super_total_bytes(root->fs_info->super_copy));
973 
974 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
975 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976 
977 	while (disk_num_bytes > 0) {
978 		unsigned long op;
979 
980 		cur_alloc_size = disk_num_bytes;
981 		ret = btrfs_reserve_extent(root, cur_alloc_size,
982 					   root->sectorsize, 0, alloc_hint,
983 					   &ins, 1, 1);
984 		if (ret < 0)
985 			goto out_unlock;
986 
987 		em = alloc_extent_map();
988 		if (!em) {
989 			ret = -ENOMEM;
990 			goto out_reserve;
991 		}
992 		em->start = start;
993 		em->orig_start = em->start;
994 		ram_size = ins.offset;
995 		em->len = ins.offset;
996 		em->mod_start = em->start;
997 		em->mod_len = em->len;
998 
999 		em->block_start = ins.objectid;
1000 		em->block_len = ins.offset;
1001 		em->orig_block_len = ins.offset;
1002 		em->ram_bytes = ram_size;
1003 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1004 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1005 		em->generation = -1;
1006 
1007 		while (1) {
1008 			write_lock(&em_tree->lock);
1009 			ret = add_extent_mapping(em_tree, em, 1);
1010 			write_unlock(&em_tree->lock);
1011 			if (ret != -EEXIST) {
1012 				free_extent_map(em);
1013 				break;
1014 			}
1015 			btrfs_drop_extent_cache(inode, start,
1016 						start + ram_size - 1, 0);
1017 		}
1018 		if (ret)
1019 			goto out_reserve;
1020 
1021 		cur_alloc_size = ins.offset;
1022 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1023 					       ram_size, cur_alloc_size, 0);
1024 		if (ret)
1025 			goto out_drop_extent_cache;
1026 
1027 		if (root->root_key.objectid ==
1028 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 			ret = btrfs_reloc_clone_csums(inode, start,
1030 						      cur_alloc_size);
1031 			if (ret)
1032 				goto out_drop_extent_cache;
1033 		}
1034 
1035 		if (disk_num_bytes < cur_alloc_size)
1036 			break;
1037 
1038 		/* we're not doing compressed IO, don't unlock the first
1039 		 * page (which the caller expects to stay locked), don't
1040 		 * clear any dirty bits and don't set any writeback bits
1041 		 *
1042 		 * Do set the Private2 bit so we know this page was properly
1043 		 * setup for writepage
1044 		 */
1045 		op = unlock ? PAGE_UNLOCK : 0;
1046 		op |= PAGE_SET_PRIVATE2;
1047 
1048 		extent_clear_unlock_delalloc(inode, start,
1049 					     start + ram_size - 1, locked_page,
1050 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1051 					     op);
1052 		disk_num_bytes -= cur_alloc_size;
1053 		num_bytes -= cur_alloc_size;
1054 		alloc_hint = ins.objectid + ins.offset;
1055 		start += cur_alloc_size;
1056 	}
1057 out:
1058 	return ret;
1059 
1060 out_drop_extent_cache:
1061 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1062 out_reserve:
1063 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1064 out_unlock:
1065 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1066 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1070 	goto out;
1071 }
1072 
1073 /*
1074  * work queue call back to started compression on a file and pages
1075  */
1076 static noinline void async_cow_start(struct btrfs_work *work)
1077 {
1078 	struct async_cow *async_cow;
1079 	int num_added = 0;
1080 	async_cow = container_of(work, struct async_cow, work);
1081 
1082 	compress_file_range(async_cow->inode, async_cow->locked_page,
1083 			    async_cow->start, async_cow->end, async_cow,
1084 			    &num_added);
1085 	if (num_added == 0) {
1086 		btrfs_add_delayed_iput(async_cow->inode);
1087 		async_cow->inode = NULL;
1088 	}
1089 }
1090 
1091 /*
1092  * work queue call back to submit previously compressed pages
1093  */
1094 static noinline void async_cow_submit(struct btrfs_work *work)
1095 {
1096 	struct async_cow *async_cow;
1097 	struct btrfs_root *root;
1098 	unsigned long nr_pages;
1099 
1100 	async_cow = container_of(work, struct async_cow, work);
1101 
1102 	root = async_cow->root;
1103 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 		PAGE_CACHE_SHIFT;
1105 
1106 	/*
1107 	 * atomic_sub_return implies a barrier for waitqueue_active
1108 	 */
1109 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1110 	    5 * 1024 * 1024 &&
1111 	    waitqueue_active(&root->fs_info->async_submit_wait))
1112 		wake_up(&root->fs_info->async_submit_wait);
1113 
1114 	if (async_cow->inode)
1115 		submit_compressed_extents(async_cow->inode, async_cow);
1116 }
1117 
1118 static noinline void async_cow_free(struct btrfs_work *work)
1119 {
1120 	struct async_cow *async_cow;
1121 	async_cow = container_of(work, struct async_cow, work);
1122 	if (async_cow->inode)
1123 		btrfs_add_delayed_iput(async_cow->inode);
1124 	kfree(async_cow);
1125 }
1126 
1127 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 				u64 start, u64 end, int *page_started,
1129 				unsigned long *nr_written)
1130 {
1131 	struct async_cow *async_cow;
1132 	struct btrfs_root *root = BTRFS_I(inode)->root;
1133 	unsigned long nr_pages;
1134 	u64 cur_end;
1135 	int limit = 10 * 1024 * 1024;
1136 
1137 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 			 1, 0, NULL, GFP_NOFS);
1139 	while (start < end) {
1140 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1141 		BUG_ON(!async_cow); /* -ENOMEM */
1142 		async_cow->inode = igrab(inode);
1143 		async_cow->root = root;
1144 		async_cow->locked_page = locked_page;
1145 		async_cow->start = start;
1146 
1147 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1149 			cur_end = end;
1150 		else
1151 			cur_end = min(end, start + 512 * 1024 - 1);
1152 
1153 		async_cow->end = cur_end;
1154 		INIT_LIST_HEAD(&async_cow->extents);
1155 
1156 		btrfs_init_work(&async_cow->work,
1157 				btrfs_delalloc_helper,
1158 				async_cow_start, async_cow_submit,
1159 				async_cow_free);
1160 
1161 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 			PAGE_CACHE_SHIFT;
1163 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164 
1165 		btrfs_queue_work(root->fs_info->delalloc_workers,
1166 				 &async_cow->work);
1167 
1168 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 			wait_event(root->fs_info->async_submit_wait,
1170 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 			    limit));
1172 		}
1173 
1174 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1175 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 			wait_event(root->fs_info->async_submit_wait,
1177 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 			   0));
1179 		}
1180 
1181 		*nr_written += nr_pages;
1182 		start = cur_end + 1;
1183 	}
1184 	*page_started = 1;
1185 	return 0;
1186 }
1187 
1188 static noinline int csum_exist_in_range(struct btrfs_root *root,
1189 					u64 bytenr, u64 num_bytes)
1190 {
1191 	int ret;
1192 	struct btrfs_ordered_sum *sums;
1193 	LIST_HEAD(list);
1194 
1195 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1196 				       bytenr + num_bytes - 1, &list, 0);
1197 	if (ret == 0 && list_empty(&list))
1198 		return 0;
1199 
1200 	while (!list_empty(&list)) {
1201 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 		list_del(&sums->list);
1203 		kfree(sums);
1204 	}
1205 	return 1;
1206 }
1207 
1208 /*
1209  * when nowcow writeback call back.  This checks for snapshots or COW copies
1210  * of the extents that exist in the file, and COWs the file as required.
1211  *
1212  * If no cow copies or snapshots exist, we write directly to the existing
1213  * blocks on disk
1214  */
1215 static noinline int run_delalloc_nocow(struct inode *inode,
1216 				       struct page *locked_page,
1217 			      u64 start, u64 end, int *page_started, int force,
1218 			      unsigned long *nr_written)
1219 {
1220 	struct btrfs_root *root = BTRFS_I(inode)->root;
1221 	struct btrfs_trans_handle *trans;
1222 	struct extent_buffer *leaf;
1223 	struct btrfs_path *path;
1224 	struct btrfs_file_extent_item *fi;
1225 	struct btrfs_key found_key;
1226 	u64 cow_start;
1227 	u64 cur_offset;
1228 	u64 extent_end;
1229 	u64 extent_offset;
1230 	u64 disk_bytenr;
1231 	u64 num_bytes;
1232 	u64 disk_num_bytes;
1233 	u64 ram_bytes;
1234 	int extent_type;
1235 	int ret, err;
1236 	int type;
1237 	int nocow;
1238 	int check_prev = 1;
1239 	bool nolock;
1240 	u64 ino = btrfs_ino(inode);
1241 
1242 	path = btrfs_alloc_path();
1243 	if (!path) {
1244 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1246 					     EXTENT_DO_ACCOUNTING |
1247 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1248 					     PAGE_CLEAR_DIRTY |
1249 					     PAGE_SET_WRITEBACK |
1250 					     PAGE_END_WRITEBACK);
1251 		return -ENOMEM;
1252 	}
1253 
1254 	nolock = btrfs_is_free_space_inode(inode);
1255 
1256 	if (nolock)
1257 		trans = btrfs_join_transaction_nolock(root);
1258 	else
1259 		trans = btrfs_join_transaction(root);
1260 
1261 	if (IS_ERR(trans)) {
1262 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1264 					     EXTENT_DO_ACCOUNTING |
1265 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1266 					     PAGE_CLEAR_DIRTY |
1267 					     PAGE_SET_WRITEBACK |
1268 					     PAGE_END_WRITEBACK);
1269 		btrfs_free_path(path);
1270 		return PTR_ERR(trans);
1271 	}
1272 
1273 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1274 
1275 	cow_start = (u64)-1;
1276 	cur_offset = start;
1277 	while (1) {
1278 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1279 					       cur_offset, 0);
1280 		if (ret < 0)
1281 			goto error;
1282 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 			leaf = path->nodes[0];
1284 			btrfs_item_key_to_cpu(leaf, &found_key,
1285 					      path->slots[0] - 1);
1286 			if (found_key.objectid == ino &&
1287 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 				path->slots[0]--;
1289 		}
1290 		check_prev = 0;
1291 next_slot:
1292 		leaf = path->nodes[0];
1293 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 			ret = btrfs_next_leaf(root, path);
1295 			if (ret < 0)
1296 				goto error;
1297 			if (ret > 0)
1298 				break;
1299 			leaf = path->nodes[0];
1300 		}
1301 
1302 		nocow = 0;
1303 		disk_bytenr = 0;
1304 		num_bytes = 0;
1305 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306 
1307 		if (found_key.objectid > ino ||
1308 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1309 		    found_key.offset > end)
1310 			break;
1311 
1312 		if (found_key.offset > cur_offset) {
1313 			extent_end = found_key.offset;
1314 			extent_type = 0;
1315 			goto out_check;
1316 		}
1317 
1318 		fi = btrfs_item_ptr(leaf, path->slots[0],
1319 				    struct btrfs_file_extent_item);
1320 		extent_type = btrfs_file_extent_type(leaf, fi);
1321 
1322 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1323 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1324 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1325 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1326 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1327 			extent_end = found_key.offset +
1328 				btrfs_file_extent_num_bytes(leaf, fi);
1329 			disk_num_bytes =
1330 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1331 			if (extent_end <= start) {
1332 				path->slots[0]++;
1333 				goto next_slot;
1334 			}
1335 			if (disk_bytenr == 0)
1336 				goto out_check;
1337 			if (btrfs_file_extent_compression(leaf, fi) ||
1338 			    btrfs_file_extent_encryption(leaf, fi) ||
1339 			    btrfs_file_extent_other_encoding(leaf, fi))
1340 				goto out_check;
1341 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1342 				goto out_check;
1343 			if (btrfs_extent_readonly(root, disk_bytenr))
1344 				goto out_check;
1345 			if (btrfs_cross_ref_exist(trans, root, ino,
1346 						  found_key.offset -
1347 						  extent_offset, disk_bytenr))
1348 				goto out_check;
1349 			disk_bytenr += extent_offset;
1350 			disk_bytenr += cur_offset - found_key.offset;
1351 			num_bytes = min(end + 1, extent_end) - cur_offset;
1352 			/*
1353 			 * if there are pending snapshots for this root,
1354 			 * we fall into common COW way.
1355 			 */
1356 			if (!nolock) {
1357 				err = btrfs_start_write_no_snapshoting(root);
1358 				if (!err)
1359 					goto out_check;
1360 			}
1361 			/*
1362 			 * force cow if csum exists in the range.
1363 			 * this ensure that csum for a given extent are
1364 			 * either valid or do not exist.
1365 			 */
1366 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1367 				goto out_check;
1368 			nocow = 1;
1369 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1370 			extent_end = found_key.offset +
1371 				btrfs_file_extent_inline_len(leaf,
1372 						     path->slots[0], fi);
1373 			extent_end = ALIGN(extent_end, root->sectorsize);
1374 		} else {
1375 			BUG_ON(1);
1376 		}
1377 out_check:
1378 		if (extent_end <= start) {
1379 			path->slots[0]++;
1380 			if (!nolock && nocow)
1381 				btrfs_end_write_no_snapshoting(root);
1382 			goto next_slot;
1383 		}
1384 		if (!nocow) {
1385 			if (cow_start == (u64)-1)
1386 				cow_start = cur_offset;
1387 			cur_offset = extent_end;
1388 			if (cur_offset > end)
1389 				break;
1390 			path->slots[0]++;
1391 			goto next_slot;
1392 		}
1393 
1394 		btrfs_release_path(path);
1395 		if (cow_start != (u64)-1) {
1396 			ret = cow_file_range(inode, locked_page,
1397 					     cow_start, found_key.offset - 1,
1398 					     page_started, nr_written, 1);
1399 			if (ret) {
1400 				if (!nolock && nocow)
1401 					btrfs_end_write_no_snapshoting(root);
1402 				goto error;
1403 			}
1404 			cow_start = (u64)-1;
1405 		}
1406 
1407 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1408 			struct extent_map *em;
1409 			struct extent_map_tree *em_tree;
1410 			em_tree = &BTRFS_I(inode)->extent_tree;
1411 			em = alloc_extent_map();
1412 			BUG_ON(!em); /* -ENOMEM */
1413 			em->start = cur_offset;
1414 			em->orig_start = found_key.offset - extent_offset;
1415 			em->len = num_bytes;
1416 			em->block_len = num_bytes;
1417 			em->block_start = disk_bytenr;
1418 			em->orig_block_len = disk_num_bytes;
1419 			em->ram_bytes = ram_bytes;
1420 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1421 			em->mod_start = em->start;
1422 			em->mod_len = em->len;
1423 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1424 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1425 			em->generation = -1;
1426 			while (1) {
1427 				write_lock(&em_tree->lock);
1428 				ret = add_extent_mapping(em_tree, em, 1);
1429 				write_unlock(&em_tree->lock);
1430 				if (ret != -EEXIST) {
1431 					free_extent_map(em);
1432 					break;
1433 				}
1434 				btrfs_drop_extent_cache(inode, em->start,
1435 						em->start + em->len - 1, 0);
1436 			}
1437 			type = BTRFS_ORDERED_PREALLOC;
1438 		} else {
1439 			type = BTRFS_ORDERED_NOCOW;
1440 		}
1441 
1442 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1443 					       num_bytes, num_bytes, type);
1444 		BUG_ON(ret); /* -ENOMEM */
1445 
1446 		if (root->root_key.objectid ==
1447 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1448 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1449 						      num_bytes);
1450 			if (ret) {
1451 				if (!nolock && nocow)
1452 					btrfs_end_write_no_snapshoting(root);
1453 				goto error;
1454 			}
1455 		}
1456 
1457 		extent_clear_unlock_delalloc(inode, cur_offset,
1458 					     cur_offset + num_bytes - 1,
1459 					     locked_page, EXTENT_LOCKED |
1460 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1461 					     PAGE_SET_PRIVATE2);
1462 		if (!nolock && nocow)
1463 			btrfs_end_write_no_snapshoting(root);
1464 		cur_offset = extent_end;
1465 		if (cur_offset > end)
1466 			break;
1467 	}
1468 	btrfs_release_path(path);
1469 
1470 	if (cur_offset <= end && cow_start == (u64)-1) {
1471 		cow_start = cur_offset;
1472 		cur_offset = end;
1473 	}
1474 
1475 	if (cow_start != (u64)-1) {
1476 		ret = cow_file_range(inode, locked_page, cow_start, end,
1477 				     page_started, nr_written, 1);
1478 		if (ret)
1479 			goto error;
1480 	}
1481 
1482 error:
1483 	err = btrfs_end_transaction(trans, root);
1484 	if (!ret)
1485 		ret = err;
1486 
1487 	if (ret && cur_offset < end)
1488 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1489 					     locked_page, EXTENT_LOCKED |
1490 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1491 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1492 					     PAGE_CLEAR_DIRTY |
1493 					     PAGE_SET_WRITEBACK |
1494 					     PAGE_END_WRITEBACK);
1495 	btrfs_free_path(path);
1496 	return ret;
1497 }
1498 
1499 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1500 {
1501 
1502 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1503 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1504 		return 0;
1505 
1506 	/*
1507 	 * @defrag_bytes is a hint value, no spinlock held here,
1508 	 * if is not zero, it means the file is defragging.
1509 	 * Force cow if given extent needs to be defragged.
1510 	 */
1511 	if (BTRFS_I(inode)->defrag_bytes &&
1512 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1513 			   EXTENT_DEFRAG, 0, NULL))
1514 		return 1;
1515 
1516 	return 0;
1517 }
1518 
1519 /*
1520  * extent_io.c call back to do delayed allocation processing
1521  */
1522 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1523 			      u64 start, u64 end, int *page_started,
1524 			      unsigned long *nr_written)
1525 {
1526 	int ret;
1527 	int force_cow = need_force_cow(inode, start, end);
1528 
1529 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1530 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1531 					 page_started, 1, nr_written);
1532 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1533 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1534 					 page_started, 0, nr_written);
1535 	} else if (!inode_need_compress(inode)) {
1536 		ret = cow_file_range(inode, locked_page, start, end,
1537 				      page_started, nr_written, 1);
1538 	} else {
1539 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1540 			&BTRFS_I(inode)->runtime_flags);
1541 		ret = cow_file_range_async(inode, locked_page, start, end,
1542 					   page_started, nr_written);
1543 	}
1544 	return ret;
1545 }
1546 
1547 static void btrfs_split_extent_hook(struct inode *inode,
1548 				    struct extent_state *orig, u64 split)
1549 {
1550 	u64 size;
1551 
1552 	/* not delalloc, ignore it */
1553 	if (!(orig->state & EXTENT_DELALLOC))
1554 		return;
1555 
1556 	size = orig->end - orig->start + 1;
1557 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1558 		u64 num_extents;
1559 		u64 new_size;
1560 
1561 		/*
1562 		 * See the explanation in btrfs_merge_extent_hook, the same
1563 		 * applies here, just in reverse.
1564 		 */
1565 		new_size = orig->end - split + 1;
1566 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1567 					BTRFS_MAX_EXTENT_SIZE);
1568 		new_size = split - orig->start;
1569 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1570 					BTRFS_MAX_EXTENT_SIZE);
1571 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1572 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1573 			return;
1574 	}
1575 
1576 	spin_lock(&BTRFS_I(inode)->lock);
1577 	BTRFS_I(inode)->outstanding_extents++;
1578 	spin_unlock(&BTRFS_I(inode)->lock);
1579 }
1580 
1581 /*
1582  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1583  * extents so we can keep track of new extents that are just merged onto old
1584  * extents, such as when we are doing sequential writes, so we can properly
1585  * account for the metadata space we'll need.
1586  */
1587 static void btrfs_merge_extent_hook(struct inode *inode,
1588 				    struct extent_state *new,
1589 				    struct extent_state *other)
1590 {
1591 	u64 new_size, old_size;
1592 	u64 num_extents;
1593 
1594 	/* not delalloc, ignore it */
1595 	if (!(other->state & EXTENT_DELALLOC))
1596 		return;
1597 
1598 	if (new->start > other->start)
1599 		new_size = new->end - other->start + 1;
1600 	else
1601 		new_size = other->end - new->start + 1;
1602 
1603 	/* we're not bigger than the max, unreserve the space and go */
1604 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1605 		spin_lock(&BTRFS_I(inode)->lock);
1606 		BTRFS_I(inode)->outstanding_extents--;
1607 		spin_unlock(&BTRFS_I(inode)->lock);
1608 		return;
1609 	}
1610 
1611 	/*
1612 	 * We have to add up either side to figure out how many extents were
1613 	 * accounted for before we merged into one big extent.  If the number of
1614 	 * extents we accounted for is <= the amount we need for the new range
1615 	 * then we can return, otherwise drop.  Think of it like this
1616 	 *
1617 	 * [ 4k][MAX_SIZE]
1618 	 *
1619 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1620 	 * need 2 outstanding extents, on one side we have 1 and the other side
1621 	 * we have 1 so they are == and we can return.  But in this case
1622 	 *
1623 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1624 	 *
1625 	 * Each range on their own accounts for 2 extents, but merged together
1626 	 * they are only 3 extents worth of accounting, so we need to drop in
1627 	 * this case.
1628 	 */
1629 	old_size = other->end - other->start + 1;
1630 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1631 				BTRFS_MAX_EXTENT_SIZE);
1632 	old_size = new->end - new->start + 1;
1633 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1634 				 BTRFS_MAX_EXTENT_SIZE);
1635 
1636 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1637 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1638 		return;
1639 
1640 	spin_lock(&BTRFS_I(inode)->lock);
1641 	BTRFS_I(inode)->outstanding_extents--;
1642 	spin_unlock(&BTRFS_I(inode)->lock);
1643 }
1644 
1645 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1646 				      struct inode *inode)
1647 {
1648 	spin_lock(&root->delalloc_lock);
1649 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1650 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1651 			      &root->delalloc_inodes);
1652 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1653 			&BTRFS_I(inode)->runtime_flags);
1654 		root->nr_delalloc_inodes++;
1655 		if (root->nr_delalloc_inodes == 1) {
1656 			spin_lock(&root->fs_info->delalloc_root_lock);
1657 			BUG_ON(!list_empty(&root->delalloc_root));
1658 			list_add_tail(&root->delalloc_root,
1659 				      &root->fs_info->delalloc_roots);
1660 			spin_unlock(&root->fs_info->delalloc_root_lock);
1661 		}
1662 	}
1663 	spin_unlock(&root->delalloc_lock);
1664 }
1665 
1666 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1667 				     struct inode *inode)
1668 {
1669 	spin_lock(&root->delalloc_lock);
1670 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1671 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1672 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1673 			  &BTRFS_I(inode)->runtime_flags);
1674 		root->nr_delalloc_inodes--;
1675 		if (!root->nr_delalloc_inodes) {
1676 			spin_lock(&root->fs_info->delalloc_root_lock);
1677 			BUG_ON(list_empty(&root->delalloc_root));
1678 			list_del_init(&root->delalloc_root);
1679 			spin_unlock(&root->fs_info->delalloc_root_lock);
1680 		}
1681 	}
1682 	spin_unlock(&root->delalloc_lock);
1683 }
1684 
1685 /*
1686  * extent_io.c set_bit_hook, used to track delayed allocation
1687  * bytes in this file, and to maintain the list of inodes that
1688  * have pending delalloc work to be done.
1689  */
1690 static void btrfs_set_bit_hook(struct inode *inode,
1691 			       struct extent_state *state, unsigned *bits)
1692 {
1693 
1694 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1695 		WARN_ON(1);
1696 	/*
1697 	 * set_bit and clear bit hooks normally require _irqsave/restore
1698 	 * but in this case, we are only testing for the DELALLOC
1699 	 * bit, which is only set or cleared with irqs on
1700 	 */
1701 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1702 		struct btrfs_root *root = BTRFS_I(inode)->root;
1703 		u64 len = state->end + 1 - state->start;
1704 		bool do_list = !btrfs_is_free_space_inode(inode);
1705 
1706 		if (*bits & EXTENT_FIRST_DELALLOC) {
1707 			*bits &= ~EXTENT_FIRST_DELALLOC;
1708 		} else {
1709 			spin_lock(&BTRFS_I(inode)->lock);
1710 			BTRFS_I(inode)->outstanding_extents++;
1711 			spin_unlock(&BTRFS_I(inode)->lock);
1712 		}
1713 
1714 		/* For sanity tests */
1715 		if (btrfs_test_is_dummy_root(root))
1716 			return;
1717 
1718 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1719 				     root->fs_info->delalloc_batch);
1720 		spin_lock(&BTRFS_I(inode)->lock);
1721 		BTRFS_I(inode)->delalloc_bytes += len;
1722 		if (*bits & EXTENT_DEFRAG)
1723 			BTRFS_I(inode)->defrag_bytes += len;
1724 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1725 					 &BTRFS_I(inode)->runtime_flags))
1726 			btrfs_add_delalloc_inodes(root, inode);
1727 		spin_unlock(&BTRFS_I(inode)->lock);
1728 	}
1729 }
1730 
1731 /*
1732  * extent_io.c clear_bit_hook, see set_bit_hook for why
1733  */
1734 static void btrfs_clear_bit_hook(struct inode *inode,
1735 				 struct extent_state *state,
1736 				 unsigned *bits)
1737 {
1738 	u64 len = state->end + 1 - state->start;
1739 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1740 				    BTRFS_MAX_EXTENT_SIZE);
1741 
1742 	spin_lock(&BTRFS_I(inode)->lock);
1743 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1744 		BTRFS_I(inode)->defrag_bytes -= len;
1745 	spin_unlock(&BTRFS_I(inode)->lock);
1746 
1747 	/*
1748 	 * set_bit and clear bit hooks normally require _irqsave/restore
1749 	 * but in this case, we are only testing for the DELALLOC
1750 	 * bit, which is only set or cleared with irqs on
1751 	 */
1752 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1753 		struct btrfs_root *root = BTRFS_I(inode)->root;
1754 		bool do_list = !btrfs_is_free_space_inode(inode);
1755 
1756 		if (*bits & EXTENT_FIRST_DELALLOC) {
1757 			*bits &= ~EXTENT_FIRST_DELALLOC;
1758 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1759 			spin_lock(&BTRFS_I(inode)->lock);
1760 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1761 			spin_unlock(&BTRFS_I(inode)->lock);
1762 		}
1763 
1764 		/*
1765 		 * We don't reserve metadata space for space cache inodes so we
1766 		 * don't need to call dellalloc_release_metadata if there is an
1767 		 * error.
1768 		 */
1769 		if (*bits & EXTENT_DO_ACCOUNTING &&
1770 		    root != root->fs_info->tree_root)
1771 			btrfs_delalloc_release_metadata(inode, len);
1772 
1773 		/* For sanity tests. */
1774 		if (btrfs_test_is_dummy_root(root))
1775 			return;
1776 
1777 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1778 		    && do_list && !(state->state & EXTENT_NORESERVE))
1779 			btrfs_free_reserved_data_space_noquota(inode,
1780 					state->start, len);
1781 
1782 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1783 				     root->fs_info->delalloc_batch);
1784 		spin_lock(&BTRFS_I(inode)->lock);
1785 		BTRFS_I(inode)->delalloc_bytes -= len;
1786 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1787 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1788 			     &BTRFS_I(inode)->runtime_flags))
1789 			btrfs_del_delalloc_inode(root, inode);
1790 		spin_unlock(&BTRFS_I(inode)->lock);
1791 	}
1792 }
1793 
1794 /*
1795  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1796  * we don't create bios that span stripes or chunks
1797  */
1798 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1799 			 size_t size, struct bio *bio,
1800 			 unsigned long bio_flags)
1801 {
1802 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1803 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1804 	u64 length = 0;
1805 	u64 map_length;
1806 	int ret;
1807 
1808 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1809 		return 0;
1810 
1811 	length = bio->bi_iter.bi_size;
1812 	map_length = length;
1813 	ret = btrfs_map_block(root->fs_info, rw, logical,
1814 			      &map_length, NULL, 0);
1815 	/* Will always return 0 with map_multi == NULL */
1816 	BUG_ON(ret < 0);
1817 	if (map_length < length + size)
1818 		return 1;
1819 	return 0;
1820 }
1821 
1822 /*
1823  * in order to insert checksums into the metadata in large chunks,
1824  * we wait until bio submission time.   All the pages in the bio are
1825  * checksummed and sums are attached onto the ordered extent record.
1826  *
1827  * At IO completion time the cums attached on the ordered extent record
1828  * are inserted into the btree
1829  */
1830 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1831 				    struct bio *bio, int mirror_num,
1832 				    unsigned long bio_flags,
1833 				    u64 bio_offset)
1834 {
1835 	struct btrfs_root *root = BTRFS_I(inode)->root;
1836 	int ret = 0;
1837 
1838 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1839 	BUG_ON(ret); /* -ENOMEM */
1840 	return 0;
1841 }
1842 
1843 /*
1844  * in order to insert checksums into the metadata in large chunks,
1845  * we wait until bio submission time.   All the pages in the bio are
1846  * checksummed and sums are attached onto the ordered extent record.
1847  *
1848  * At IO completion time the cums attached on the ordered extent record
1849  * are inserted into the btree
1850  */
1851 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1852 			  int mirror_num, unsigned long bio_flags,
1853 			  u64 bio_offset)
1854 {
1855 	struct btrfs_root *root = BTRFS_I(inode)->root;
1856 	int ret;
1857 
1858 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1859 	if (ret) {
1860 		bio->bi_error = ret;
1861 		bio_endio(bio);
1862 	}
1863 	return ret;
1864 }
1865 
1866 /*
1867  * extent_io.c submission hook. This does the right thing for csum calculation
1868  * on write, or reading the csums from the tree before a read
1869  */
1870 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1871 			  int mirror_num, unsigned long bio_flags,
1872 			  u64 bio_offset)
1873 {
1874 	struct btrfs_root *root = BTRFS_I(inode)->root;
1875 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1876 	int ret = 0;
1877 	int skip_sum;
1878 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1879 
1880 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1881 
1882 	if (btrfs_is_free_space_inode(inode))
1883 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1884 
1885 	if (!(rw & REQ_WRITE)) {
1886 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1887 		if (ret)
1888 			goto out;
1889 
1890 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1891 			ret = btrfs_submit_compressed_read(inode, bio,
1892 							   mirror_num,
1893 							   bio_flags);
1894 			goto out;
1895 		} else if (!skip_sum) {
1896 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1897 			if (ret)
1898 				goto out;
1899 		}
1900 		goto mapit;
1901 	} else if (async && !skip_sum) {
1902 		/* csum items have already been cloned */
1903 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1904 			goto mapit;
1905 		/* we're doing a write, do the async checksumming */
1906 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1907 				   inode, rw, bio, mirror_num,
1908 				   bio_flags, bio_offset,
1909 				   __btrfs_submit_bio_start,
1910 				   __btrfs_submit_bio_done);
1911 		goto out;
1912 	} else if (!skip_sum) {
1913 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1914 		if (ret)
1915 			goto out;
1916 	}
1917 
1918 mapit:
1919 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1920 
1921 out:
1922 	if (ret < 0) {
1923 		bio->bi_error = ret;
1924 		bio_endio(bio);
1925 	}
1926 	return ret;
1927 }
1928 
1929 /*
1930  * given a list of ordered sums record them in the inode.  This happens
1931  * at IO completion time based on sums calculated at bio submission time.
1932  */
1933 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1934 			     struct inode *inode, u64 file_offset,
1935 			     struct list_head *list)
1936 {
1937 	struct btrfs_ordered_sum *sum;
1938 
1939 	list_for_each_entry(sum, list, list) {
1940 		trans->adding_csums = 1;
1941 		btrfs_csum_file_blocks(trans,
1942 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1943 		trans->adding_csums = 0;
1944 	}
1945 	return 0;
1946 }
1947 
1948 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1949 			      struct extent_state **cached_state)
1950 {
1951 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1952 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1953 				   cached_state, GFP_NOFS);
1954 }
1955 
1956 /* see btrfs_writepage_start_hook for details on why this is required */
1957 struct btrfs_writepage_fixup {
1958 	struct page *page;
1959 	struct btrfs_work work;
1960 };
1961 
1962 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1963 {
1964 	struct btrfs_writepage_fixup *fixup;
1965 	struct btrfs_ordered_extent *ordered;
1966 	struct extent_state *cached_state = NULL;
1967 	struct page *page;
1968 	struct inode *inode;
1969 	u64 page_start;
1970 	u64 page_end;
1971 	int ret;
1972 
1973 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1974 	page = fixup->page;
1975 again:
1976 	lock_page(page);
1977 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1978 		ClearPageChecked(page);
1979 		goto out_page;
1980 	}
1981 
1982 	inode = page->mapping->host;
1983 	page_start = page_offset(page);
1984 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1985 
1986 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1987 			 &cached_state);
1988 
1989 	/* already ordered? We're done */
1990 	if (PagePrivate2(page))
1991 		goto out;
1992 
1993 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1994 	if (ordered) {
1995 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1996 				     page_end, &cached_state, GFP_NOFS);
1997 		unlock_page(page);
1998 		btrfs_start_ordered_extent(inode, ordered, 1);
1999 		btrfs_put_ordered_extent(ordered);
2000 		goto again;
2001 	}
2002 
2003 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2004 					   PAGE_CACHE_SIZE);
2005 	if (ret) {
2006 		mapping_set_error(page->mapping, ret);
2007 		end_extent_writepage(page, ret, page_start, page_end);
2008 		ClearPageChecked(page);
2009 		goto out;
2010 	 }
2011 
2012 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2013 	ClearPageChecked(page);
2014 	set_page_dirty(page);
2015 out:
2016 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2017 			     &cached_state, GFP_NOFS);
2018 out_page:
2019 	unlock_page(page);
2020 	page_cache_release(page);
2021 	kfree(fixup);
2022 }
2023 
2024 /*
2025  * There are a few paths in the higher layers of the kernel that directly
2026  * set the page dirty bit without asking the filesystem if it is a
2027  * good idea.  This causes problems because we want to make sure COW
2028  * properly happens and the data=ordered rules are followed.
2029  *
2030  * In our case any range that doesn't have the ORDERED bit set
2031  * hasn't been properly setup for IO.  We kick off an async process
2032  * to fix it up.  The async helper will wait for ordered extents, set
2033  * the delalloc bit and make it safe to write the page.
2034  */
2035 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2036 {
2037 	struct inode *inode = page->mapping->host;
2038 	struct btrfs_writepage_fixup *fixup;
2039 	struct btrfs_root *root = BTRFS_I(inode)->root;
2040 
2041 	/* this page is properly in the ordered list */
2042 	if (TestClearPagePrivate2(page))
2043 		return 0;
2044 
2045 	if (PageChecked(page))
2046 		return -EAGAIN;
2047 
2048 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2049 	if (!fixup)
2050 		return -EAGAIN;
2051 
2052 	SetPageChecked(page);
2053 	page_cache_get(page);
2054 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2055 			btrfs_writepage_fixup_worker, NULL, NULL);
2056 	fixup->page = page;
2057 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2058 	return -EBUSY;
2059 }
2060 
2061 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2062 				       struct inode *inode, u64 file_pos,
2063 				       u64 disk_bytenr, u64 disk_num_bytes,
2064 				       u64 num_bytes, u64 ram_bytes,
2065 				       u8 compression, u8 encryption,
2066 				       u16 other_encoding, int extent_type)
2067 {
2068 	struct btrfs_root *root = BTRFS_I(inode)->root;
2069 	struct btrfs_file_extent_item *fi;
2070 	struct btrfs_path *path;
2071 	struct extent_buffer *leaf;
2072 	struct btrfs_key ins;
2073 	int extent_inserted = 0;
2074 	int ret;
2075 
2076 	path = btrfs_alloc_path();
2077 	if (!path)
2078 		return -ENOMEM;
2079 
2080 	/*
2081 	 * we may be replacing one extent in the tree with another.
2082 	 * The new extent is pinned in the extent map, and we don't want
2083 	 * to drop it from the cache until it is completely in the btree.
2084 	 *
2085 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2086 	 * the caller is expected to unpin it and allow it to be merged
2087 	 * with the others.
2088 	 */
2089 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2090 				   file_pos + num_bytes, NULL, 0,
2091 				   1, sizeof(*fi), &extent_inserted);
2092 	if (ret)
2093 		goto out;
2094 
2095 	if (!extent_inserted) {
2096 		ins.objectid = btrfs_ino(inode);
2097 		ins.offset = file_pos;
2098 		ins.type = BTRFS_EXTENT_DATA_KEY;
2099 
2100 		path->leave_spinning = 1;
2101 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2102 					      sizeof(*fi));
2103 		if (ret)
2104 			goto out;
2105 	}
2106 	leaf = path->nodes[0];
2107 	fi = btrfs_item_ptr(leaf, path->slots[0],
2108 			    struct btrfs_file_extent_item);
2109 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2110 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2111 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2112 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2113 	btrfs_set_file_extent_offset(leaf, fi, 0);
2114 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2115 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2116 	btrfs_set_file_extent_compression(leaf, fi, compression);
2117 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2118 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2119 
2120 	btrfs_mark_buffer_dirty(leaf);
2121 	btrfs_release_path(path);
2122 
2123 	inode_add_bytes(inode, num_bytes);
2124 
2125 	ins.objectid = disk_bytenr;
2126 	ins.offset = disk_num_bytes;
2127 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2128 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2129 					root->root_key.objectid,
2130 					btrfs_ino(inode), file_pos,
2131 					ram_bytes, &ins);
2132 	/*
2133 	 * Release the reserved range from inode dirty range map, as it is
2134 	 * already moved into delayed_ref_head
2135 	 */
2136 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2137 out:
2138 	btrfs_free_path(path);
2139 
2140 	return ret;
2141 }
2142 
2143 /* snapshot-aware defrag */
2144 struct sa_defrag_extent_backref {
2145 	struct rb_node node;
2146 	struct old_sa_defrag_extent *old;
2147 	u64 root_id;
2148 	u64 inum;
2149 	u64 file_pos;
2150 	u64 extent_offset;
2151 	u64 num_bytes;
2152 	u64 generation;
2153 };
2154 
2155 struct old_sa_defrag_extent {
2156 	struct list_head list;
2157 	struct new_sa_defrag_extent *new;
2158 
2159 	u64 extent_offset;
2160 	u64 bytenr;
2161 	u64 offset;
2162 	u64 len;
2163 	int count;
2164 };
2165 
2166 struct new_sa_defrag_extent {
2167 	struct rb_root root;
2168 	struct list_head head;
2169 	struct btrfs_path *path;
2170 	struct inode *inode;
2171 	u64 file_pos;
2172 	u64 len;
2173 	u64 bytenr;
2174 	u64 disk_len;
2175 	u8 compress_type;
2176 };
2177 
2178 static int backref_comp(struct sa_defrag_extent_backref *b1,
2179 			struct sa_defrag_extent_backref *b2)
2180 {
2181 	if (b1->root_id < b2->root_id)
2182 		return -1;
2183 	else if (b1->root_id > b2->root_id)
2184 		return 1;
2185 
2186 	if (b1->inum < b2->inum)
2187 		return -1;
2188 	else if (b1->inum > b2->inum)
2189 		return 1;
2190 
2191 	if (b1->file_pos < b2->file_pos)
2192 		return -1;
2193 	else if (b1->file_pos > b2->file_pos)
2194 		return 1;
2195 
2196 	/*
2197 	 * [------------------------------] ===> (a range of space)
2198 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2199 	 * |<---------------------------->| ===> (fs/file tree B)
2200 	 *
2201 	 * A range of space can refer to two file extents in one tree while
2202 	 * refer to only one file extent in another tree.
2203 	 *
2204 	 * So we may process a disk offset more than one time(two extents in A)
2205 	 * and locate at the same extent(one extent in B), then insert two same
2206 	 * backrefs(both refer to the extent in B).
2207 	 */
2208 	return 0;
2209 }
2210 
2211 static void backref_insert(struct rb_root *root,
2212 			   struct sa_defrag_extent_backref *backref)
2213 {
2214 	struct rb_node **p = &root->rb_node;
2215 	struct rb_node *parent = NULL;
2216 	struct sa_defrag_extent_backref *entry;
2217 	int ret;
2218 
2219 	while (*p) {
2220 		parent = *p;
2221 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2222 
2223 		ret = backref_comp(backref, entry);
2224 		if (ret < 0)
2225 			p = &(*p)->rb_left;
2226 		else
2227 			p = &(*p)->rb_right;
2228 	}
2229 
2230 	rb_link_node(&backref->node, parent, p);
2231 	rb_insert_color(&backref->node, root);
2232 }
2233 
2234 /*
2235  * Note the backref might has changed, and in this case we just return 0.
2236  */
2237 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2238 				       void *ctx)
2239 {
2240 	struct btrfs_file_extent_item *extent;
2241 	struct btrfs_fs_info *fs_info;
2242 	struct old_sa_defrag_extent *old = ctx;
2243 	struct new_sa_defrag_extent *new = old->new;
2244 	struct btrfs_path *path = new->path;
2245 	struct btrfs_key key;
2246 	struct btrfs_root *root;
2247 	struct sa_defrag_extent_backref *backref;
2248 	struct extent_buffer *leaf;
2249 	struct inode *inode = new->inode;
2250 	int slot;
2251 	int ret;
2252 	u64 extent_offset;
2253 	u64 num_bytes;
2254 
2255 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2256 	    inum == btrfs_ino(inode))
2257 		return 0;
2258 
2259 	key.objectid = root_id;
2260 	key.type = BTRFS_ROOT_ITEM_KEY;
2261 	key.offset = (u64)-1;
2262 
2263 	fs_info = BTRFS_I(inode)->root->fs_info;
2264 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2265 	if (IS_ERR(root)) {
2266 		if (PTR_ERR(root) == -ENOENT)
2267 			return 0;
2268 		WARN_ON(1);
2269 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2270 			 inum, offset, root_id);
2271 		return PTR_ERR(root);
2272 	}
2273 
2274 	key.objectid = inum;
2275 	key.type = BTRFS_EXTENT_DATA_KEY;
2276 	if (offset > (u64)-1 << 32)
2277 		key.offset = 0;
2278 	else
2279 		key.offset = offset;
2280 
2281 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2282 	if (WARN_ON(ret < 0))
2283 		return ret;
2284 	ret = 0;
2285 
2286 	while (1) {
2287 		cond_resched();
2288 
2289 		leaf = path->nodes[0];
2290 		slot = path->slots[0];
2291 
2292 		if (slot >= btrfs_header_nritems(leaf)) {
2293 			ret = btrfs_next_leaf(root, path);
2294 			if (ret < 0) {
2295 				goto out;
2296 			} else if (ret > 0) {
2297 				ret = 0;
2298 				goto out;
2299 			}
2300 			continue;
2301 		}
2302 
2303 		path->slots[0]++;
2304 
2305 		btrfs_item_key_to_cpu(leaf, &key, slot);
2306 
2307 		if (key.objectid > inum)
2308 			goto out;
2309 
2310 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2311 			continue;
2312 
2313 		extent = btrfs_item_ptr(leaf, slot,
2314 					struct btrfs_file_extent_item);
2315 
2316 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2317 			continue;
2318 
2319 		/*
2320 		 * 'offset' refers to the exact key.offset,
2321 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2322 		 * (key.offset - extent_offset).
2323 		 */
2324 		if (key.offset != offset)
2325 			continue;
2326 
2327 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2328 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2329 
2330 		if (extent_offset >= old->extent_offset + old->offset +
2331 		    old->len || extent_offset + num_bytes <=
2332 		    old->extent_offset + old->offset)
2333 			continue;
2334 		break;
2335 	}
2336 
2337 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2338 	if (!backref) {
2339 		ret = -ENOENT;
2340 		goto out;
2341 	}
2342 
2343 	backref->root_id = root_id;
2344 	backref->inum = inum;
2345 	backref->file_pos = offset;
2346 	backref->num_bytes = num_bytes;
2347 	backref->extent_offset = extent_offset;
2348 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2349 	backref->old = old;
2350 	backref_insert(&new->root, backref);
2351 	old->count++;
2352 out:
2353 	btrfs_release_path(path);
2354 	WARN_ON(ret);
2355 	return ret;
2356 }
2357 
2358 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2359 				   struct new_sa_defrag_extent *new)
2360 {
2361 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2362 	struct old_sa_defrag_extent *old, *tmp;
2363 	int ret;
2364 
2365 	new->path = path;
2366 
2367 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2368 		ret = iterate_inodes_from_logical(old->bytenr +
2369 						  old->extent_offset, fs_info,
2370 						  path, record_one_backref,
2371 						  old);
2372 		if (ret < 0 && ret != -ENOENT)
2373 			return false;
2374 
2375 		/* no backref to be processed for this extent */
2376 		if (!old->count) {
2377 			list_del(&old->list);
2378 			kfree(old);
2379 		}
2380 	}
2381 
2382 	if (list_empty(&new->head))
2383 		return false;
2384 
2385 	return true;
2386 }
2387 
2388 static int relink_is_mergable(struct extent_buffer *leaf,
2389 			      struct btrfs_file_extent_item *fi,
2390 			      struct new_sa_defrag_extent *new)
2391 {
2392 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2393 		return 0;
2394 
2395 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2396 		return 0;
2397 
2398 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2399 		return 0;
2400 
2401 	if (btrfs_file_extent_encryption(leaf, fi) ||
2402 	    btrfs_file_extent_other_encoding(leaf, fi))
2403 		return 0;
2404 
2405 	return 1;
2406 }
2407 
2408 /*
2409  * Note the backref might has changed, and in this case we just return 0.
2410  */
2411 static noinline int relink_extent_backref(struct btrfs_path *path,
2412 				 struct sa_defrag_extent_backref *prev,
2413 				 struct sa_defrag_extent_backref *backref)
2414 {
2415 	struct btrfs_file_extent_item *extent;
2416 	struct btrfs_file_extent_item *item;
2417 	struct btrfs_ordered_extent *ordered;
2418 	struct btrfs_trans_handle *trans;
2419 	struct btrfs_fs_info *fs_info;
2420 	struct btrfs_root *root;
2421 	struct btrfs_key key;
2422 	struct extent_buffer *leaf;
2423 	struct old_sa_defrag_extent *old = backref->old;
2424 	struct new_sa_defrag_extent *new = old->new;
2425 	struct inode *src_inode = new->inode;
2426 	struct inode *inode;
2427 	struct extent_state *cached = NULL;
2428 	int ret = 0;
2429 	u64 start;
2430 	u64 len;
2431 	u64 lock_start;
2432 	u64 lock_end;
2433 	bool merge = false;
2434 	int index;
2435 
2436 	if (prev && prev->root_id == backref->root_id &&
2437 	    prev->inum == backref->inum &&
2438 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2439 		merge = true;
2440 
2441 	/* step 1: get root */
2442 	key.objectid = backref->root_id;
2443 	key.type = BTRFS_ROOT_ITEM_KEY;
2444 	key.offset = (u64)-1;
2445 
2446 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2447 	index = srcu_read_lock(&fs_info->subvol_srcu);
2448 
2449 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2450 	if (IS_ERR(root)) {
2451 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2452 		if (PTR_ERR(root) == -ENOENT)
2453 			return 0;
2454 		return PTR_ERR(root);
2455 	}
2456 
2457 	if (btrfs_root_readonly(root)) {
2458 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2459 		return 0;
2460 	}
2461 
2462 	/* step 2: get inode */
2463 	key.objectid = backref->inum;
2464 	key.type = BTRFS_INODE_ITEM_KEY;
2465 	key.offset = 0;
2466 
2467 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2468 	if (IS_ERR(inode)) {
2469 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2470 		return 0;
2471 	}
2472 
2473 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2474 
2475 	/* step 3: relink backref */
2476 	lock_start = backref->file_pos;
2477 	lock_end = backref->file_pos + backref->num_bytes - 1;
2478 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2479 			 0, &cached);
2480 
2481 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2482 	if (ordered) {
2483 		btrfs_put_ordered_extent(ordered);
2484 		goto out_unlock;
2485 	}
2486 
2487 	trans = btrfs_join_transaction(root);
2488 	if (IS_ERR(trans)) {
2489 		ret = PTR_ERR(trans);
2490 		goto out_unlock;
2491 	}
2492 
2493 	key.objectid = backref->inum;
2494 	key.type = BTRFS_EXTENT_DATA_KEY;
2495 	key.offset = backref->file_pos;
2496 
2497 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2498 	if (ret < 0) {
2499 		goto out_free_path;
2500 	} else if (ret > 0) {
2501 		ret = 0;
2502 		goto out_free_path;
2503 	}
2504 
2505 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2506 				struct btrfs_file_extent_item);
2507 
2508 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2509 	    backref->generation)
2510 		goto out_free_path;
2511 
2512 	btrfs_release_path(path);
2513 
2514 	start = backref->file_pos;
2515 	if (backref->extent_offset < old->extent_offset + old->offset)
2516 		start += old->extent_offset + old->offset -
2517 			 backref->extent_offset;
2518 
2519 	len = min(backref->extent_offset + backref->num_bytes,
2520 		  old->extent_offset + old->offset + old->len);
2521 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2522 
2523 	ret = btrfs_drop_extents(trans, root, inode, start,
2524 				 start + len, 1);
2525 	if (ret)
2526 		goto out_free_path;
2527 again:
2528 	key.objectid = btrfs_ino(inode);
2529 	key.type = BTRFS_EXTENT_DATA_KEY;
2530 	key.offset = start;
2531 
2532 	path->leave_spinning = 1;
2533 	if (merge) {
2534 		struct btrfs_file_extent_item *fi;
2535 		u64 extent_len;
2536 		struct btrfs_key found_key;
2537 
2538 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2539 		if (ret < 0)
2540 			goto out_free_path;
2541 
2542 		path->slots[0]--;
2543 		leaf = path->nodes[0];
2544 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2545 
2546 		fi = btrfs_item_ptr(leaf, path->slots[0],
2547 				    struct btrfs_file_extent_item);
2548 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2549 
2550 		if (extent_len + found_key.offset == start &&
2551 		    relink_is_mergable(leaf, fi, new)) {
2552 			btrfs_set_file_extent_num_bytes(leaf, fi,
2553 							extent_len + len);
2554 			btrfs_mark_buffer_dirty(leaf);
2555 			inode_add_bytes(inode, len);
2556 
2557 			ret = 1;
2558 			goto out_free_path;
2559 		} else {
2560 			merge = false;
2561 			btrfs_release_path(path);
2562 			goto again;
2563 		}
2564 	}
2565 
2566 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2567 					sizeof(*extent));
2568 	if (ret) {
2569 		btrfs_abort_transaction(trans, root, ret);
2570 		goto out_free_path;
2571 	}
2572 
2573 	leaf = path->nodes[0];
2574 	item = btrfs_item_ptr(leaf, path->slots[0],
2575 				struct btrfs_file_extent_item);
2576 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2577 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2578 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2579 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2580 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2581 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2582 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2583 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2584 	btrfs_set_file_extent_encryption(leaf, item, 0);
2585 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2586 
2587 	btrfs_mark_buffer_dirty(leaf);
2588 	inode_add_bytes(inode, len);
2589 	btrfs_release_path(path);
2590 
2591 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2592 			new->disk_len, 0,
2593 			backref->root_id, backref->inum,
2594 			new->file_pos);	/* start - extent_offset */
2595 	if (ret) {
2596 		btrfs_abort_transaction(trans, root, ret);
2597 		goto out_free_path;
2598 	}
2599 
2600 	ret = 1;
2601 out_free_path:
2602 	btrfs_release_path(path);
2603 	path->leave_spinning = 0;
2604 	btrfs_end_transaction(trans, root);
2605 out_unlock:
2606 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2607 			     &cached, GFP_NOFS);
2608 	iput(inode);
2609 	return ret;
2610 }
2611 
2612 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2613 {
2614 	struct old_sa_defrag_extent *old, *tmp;
2615 
2616 	if (!new)
2617 		return;
2618 
2619 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2620 		kfree(old);
2621 	}
2622 	kfree(new);
2623 }
2624 
2625 static void relink_file_extents(struct new_sa_defrag_extent *new)
2626 {
2627 	struct btrfs_path *path;
2628 	struct sa_defrag_extent_backref *backref;
2629 	struct sa_defrag_extent_backref *prev = NULL;
2630 	struct inode *inode;
2631 	struct btrfs_root *root;
2632 	struct rb_node *node;
2633 	int ret;
2634 
2635 	inode = new->inode;
2636 	root = BTRFS_I(inode)->root;
2637 
2638 	path = btrfs_alloc_path();
2639 	if (!path)
2640 		return;
2641 
2642 	if (!record_extent_backrefs(path, new)) {
2643 		btrfs_free_path(path);
2644 		goto out;
2645 	}
2646 	btrfs_release_path(path);
2647 
2648 	while (1) {
2649 		node = rb_first(&new->root);
2650 		if (!node)
2651 			break;
2652 		rb_erase(node, &new->root);
2653 
2654 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2655 
2656 		ret = relink_extent_backref(path, prev, backref);
2657 		WARN_ON(ret < 0);
2658 
2659 		kfree(prev);
2660 
2661 		if (ret == 1)
2662 			prev = backref;
2663 		else
2664 			prev = NULL;
2665 		cond_resched();
2666 	}
2667 	kfree(prev);
2668 
2669 	btrfs_free_path(path);
2670 out:
2671 	free_sa_defrag_extent(new);
2672 
2673 	atomic_dec(&root->fs_info->defrag_running);
2674 	wake_up(&root->fs_info->transaction_wait);
2675 }
2676 
2677 static struct new_sa_defrag_extent *
2678 record_old_file_extents(struct inode *inode,
2679 			struct btrfs_ordered_extent *ordered)
2680 {
2681 	struct btrfs_root *root = BTRFS_I(inode)->root;
2682 	struct btrfs_path *path;
2683 	struct btrfs_key key;
2684 	struct old_sa_defrag_extent *old;
2685 	struct new_sa_defrag_extent *new;
2686 	int ret;
2687 
2688 	new = kmalloc(sizeof(*new), GFP_NOFS);
2689 	if (!new)
2690 		return NULL;
2691 
2692 	new->inode = inode;
2693 	new->file_pos = ordered->file_offset;
2694 	new->len = ordered->len;
2695 	new->bytenr = ordered->start;
2696 	new->disk_len = ordered->disk_len;
2697 	new->compress_type = ordered->compress_type;
2698 	new->root = RB_ROOT;
2699 	INIT_LIST_HEAD(&new->head);
2700 
2701 	path = btrfs_alloc_path();
2702 	if (!path)
2703 		goto out_kfree;
2704 
2705 	key.objectid = btrfs_ino(inode);
2706 	key.type = BTRFS_EXTENT_DATA_KEY;
2707 	key.offset = new->file_pos;
2708 
2709 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2710 	if (ret < 0)
2711 		goto out_free_path;
2712 	if (ret > 0 && path->slots[0] > 0)
2713 		path->slots[0]--;
2714 
2715 	/* find out all the old extents for the file range */
2716 	while (1) {
2717 		struct btrfs_file_extent_item *extent;
2718 		struct extent_buffer *l;
2719 		int slot;
2720 		u64 num_bytes;
2721 		u64 offset;
2722 		u64 end;
2723 		u64 disk_bytenr;
2724 		u64 extent_offset;
2725 
2726 		l = path->nodes[0];
2727 		slot = path->slots[0];
2728 
2729 		if (slot >= btrfs_header_nritems(l)) {
2730 			ret = btrfs_next_leaf(root, path);
2731 			if (ret < 0)
2732 				goto out_free_path;
2733 			else if (ret > 0)
2734 				break;
2735 			continue;
2736 		}
2737 
2738 		btrfs_item_key_to_cpu(l, &key, slot);
2739 
2740 		if (key.objectid != btrfs_ino(inode))
2741 			break;
2742 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2743 			break;
2744 		if (key.offset >= new->file_pos + new->len)
2745 			break;
2746 
2747 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2748 
2749 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2750 		if (key.offset + num_bytes < new->file_pos)
2751 			goto next;
2752 
2753 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2754 		if (!disk_bytenr)
2755 			goto next;
2756 
2757 		extent_offset = btrfs_file_extent_offset(l, extent);
2758 
2759 		old = kmalloc(sizeof(*old), GFP_NOFS);
2760 		if (!old)
2761 			goto out_free_path;
2762 
2763 		offset = max(new->file_pos, key.offset);
2764 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2765 
2766 		old->bytenr = disk_bytenr;
2767 		old->extent_offset = extent_offset;
2768 		old->offset = offset - key.offset;
2769 		old->len = end - offset;
2770 		old->new = new;
2771 		old->count = 0;
2772 		list_add_tail(&old->list, &new->head);
2773 next:
2774 		path->slots[0]++;
2775 		cond_resched();
2776 	}
2777 
2778 	btrfs_free_path(path);
2779 	atomic_inc(&root->fs_info->defrag_running);
2780 
2781 	return new;
2782 
2783 out_free_path:
2784 	btrfs_free_path(path);
2785 out_kfree:
2786 	free_sa_defrag_extent(new);
2787 	return NULL;
2788 }
2789 
2790 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2791 					 u64 start, u64 len)
2792 {
2793 	struct btrfs_block_group_cache *cache;
2794 
2795 	cache = btrfs_lookup_block_group(root->fs_info, start);
2796 	ASSERT(cache);
2797 
2798 	spin_lock(&cache->lock);
2799 	cache->delalloc_bytes -= len;
2800 	spin_unlock(&cache->lock);
2801 
2802 	btrfs_put_block_group(cache);
2803 }
2804 
2805 /* as ordered data IO finishes, this gets called so we can finish
2806  * an ordered extent if the range of bytes in the file it covers are
2807  * fully written.
2808  */
2809 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2810 {
2811 	struct inode *inode = ordered_extent->inode;
2812 	struct btrfs_root *root = BTRFS_I(inode)->root;
2813 	struct btrfs_trans_handle *trans = NULL;
2814 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2815 	struct extent_state *cached_state = NULL;
2816 	struct new_sa_defrag_extent *new = NULL;
2817 	int compress_type = 0;
2818 	int ret = 0;
2819 	u64 logical_len = ordered_extent->len;
2820 	bool nolock;
2821 	bool truncated = false;
2822 
2823 	nolock = btrfs_is_free_space_inode(inode);
2824 
2825 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2826 		ret = -EIO;
2827 		goto out;
2828 	}
2829 
2830 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2831 				     ordered_extent->file_offset +
2832 				     ordered_extent->len - 1);
2833 
2834 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2835 		truncated = true;
2836 		logical_len = ordered_extent->truncated_len;
2837 		/* Truncated the entire extent, don't bother adding */
2838 		if (!logical_len)
2839 			goto out;
2840 	}
2841 
2842 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2843 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2844 
2845 		/*
2846 		 * For mwrite(mmap + memset to write) case, we still reserve
2847 		 * space for NOCOW range.
2848 		 * As NOCOW won't cause a new delayed ref, just free the space
2849 		 */
2850 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2851 				       ordered_extent->len);
2852 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2853 		if (nolock)
2854 			trans = btrfs_join_transaction_nolock(root);
2855 		else
2856 			trans = btrfs_join_transaction(root);
2857 		if (IS_ERR(trans)) {
2858 			ret = PTR_ERR(trans);
2859 			trans = NULL;
2860 			goto out;
2861 		}
2862 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2863 		ret = btrfs_update_inode_fallback(trans, root, inode);
2864 		if (ret) /* -ENOMEM or corruption */
2865 			btrfs_abort_transaction(trans, root, ret);
2866 		goto out;
2867 	}
2868 
2869 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2870 			 ordered_extent->file_offset + ordered_extent->len - 1,
2871 			 0, &cached_state);
2872 
2873 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2874 			ordered_extent->file_offset + ordered_extent->len - 1,
2875 			EXTENT_DEFRAG, 1, cached_state);
2876 	if (ret) {
2877 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2878 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2879 			/* the inode is shared */
2880 			new = record_old_file_extents(inode, ordered_extent);
2881 
2882 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2883 			ordered_extent->file_offset + ordered_extent->len - 1,
2884 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2885 	}
2886 
2887 	if (nolock)
2888 		trans = btrfs_join_transaction_nolock(root);
2889 	else
2890 		trans = btrfs_join_transaction(root);
2891 	if (IS_ERR(trans)) {
2892 		ret = PTR_ERR(trans);
2893 		trans = NULL;
2894 		goto out_unlock;
2895 	}
2896 
2897 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2898 
2899 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2900 		compress_type = ordered_extent->compress_type;
2901 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2902 		BUG_ON(compress_type);
2903 		ret = btrfs_mark_extent_written(trans, inode,
2904 						ordered_extent->file_offset,
2905 						ordered_extent->file_offset +
2906 						logical_len);
2907 	} else {
2908 		BUG_ON(root == root->fs_info->tree_root);
2909 		ret = insert_reserved_file_extent(trans, inode,
2910 						ordered_extent->file_offset,
2911 						ordered_extent->start,
2912 						ordered_extent->disk_len,
2913 						logical_len, logical_len,
2914 						compress_type, 0, 0,
2915 						BTRFS_FILE_EXTENT_REG);
2916 		if (!ret)
2917 			btrfs_release_delalloc_bytes(root,
2918 						     ordered_extent->start,
2919 						     ordered_extent->disk_len);
2920 	}
2921 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2922 			   ordered_extent->file_offset, ordered_extent->len,
2923 			   trans->transid);
2924 	if (ret < 0) {
2925 		btrfs_abort_transaction(trans, root, ret);
2926 		goto out_unlock;
2927 	}
2928 
2929 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2930 			  &ordered_extent->list);
2931 
2932 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2933 	ret = btrfs_update_inode_fallback(trans, root, inode);
2934 	if (ret) { /* -ENOMEM or corruption */
2935 		btrfs_abort_transaction(trans, root, ret);
2936 		goto out_unlock;
2937 	}
2938 	ret = 0;
2939 out_unlock:
2940 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2941 			     ordered_extent->file_offset +
2942 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2943 out:
2944 	if (root != root->fs_info->tree_root)
2945 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2946 	if (trans)
2947 		btrfs_end_transaction(trans, root);
2948 
2949 	if (ret || truncated) {
2950 		u64 start, end;
2951 
2952 		if (truncated)
2953 			start = ordered_extent->file_offset + logical_len;
2954 		else
2955 			start = ordered_extent->file_offset;
2956 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2957 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2958 
2959 		/* Drop the cache for the part of the extent we didn't write. */
2960 		btrfs_drop_extent_cache(inode, start, end, 0);
2961 
2962 		/*
2963 		 * If the ordered extent had an IOERR or something else went
2964 		 * wrong we need to return the space for this ordered extent
2965 		 * back to the allocator.  We only free the extent in the
2966 		 * truncated case if we didn't write out the extent at all.
2967 		 */
2968 		if ((ret || !logical_len) &&
2969 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2970 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2971 			btrfs_free_reserved_extent(root, ordered_extent->start,
2972 						   ordered_extent->disk_len, 1);
2973 	}
2974 
2975 
2976 	/*
2977 	 * This needs to be done to make sure anybody waiting knows we are done
2978 	 * updating everything for this ordered extent.
2979 	 */
2980 	btrfs_remove_ordered_extent(inode, ordered_extent);
2981 
2982 	/* for snapshot-aware defrag */
2983 	if (new) {
2984 		if (ret) {
2985 			free_sa_defrag_extent(new);
2986 			atomic_dec(&root->fs_info->defrag_running);
2987 		} else {
2988 			relink_file_extents(new);
2989 		}
2990 	}
2991 
2992 	/* once for us */
2993 	btrfs_put_ordered_extent(ordered_extent);
2994 	/* once for the tree */
2995 	btrfs_put_ordered_extent(ordered_extent);
2996 
2997 	return ret;
2998 }
2999 
3000 static void finish_ordered_fn(struct btrfs_work *work)
3001 {
3002 	struct btrfs_ordered_extent *ordered_extent;
3003 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3004 	btrfs_finish_ordered_io(ordered_extent);
3005 }
3006 
3007 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3008 				struct extent_state *state, int uptodate)
3009 {
3010 	struct inode *inode = page->mapping->host;
3011 	struct btrfs_root *root = BTRFS_I(inode)->root;
3012 	struct btrfs_ordered_extent *ordered_extent = NULL;
3013 	struct btrfs_workqueue *wq;
3014 	btrfs_work_func_t func;
3015 
3016 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3017 
3018 	ClearPagePrivate2(page);
3019 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3020 					    end - start + 1, uptodate))
3021 		return 0;
3022 
3023 	if (btrfs_is_free_space_inode(inode)) {
3024 		wq = root->fs_info->endio_freespace_worker;
3025 		func = btrfs_freespace_write_helper;
3026 	} else {
3027 		wq = root->fs_info->endio_write_workers;
3028 		func = btrfs_endio_write_helper;
3029 	}
3030 
3031 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3032 			NULL);
3033 	btrfs_queue_work(wq, &ordered_extent->work);
3034 
3035 	return 0;
3036 }
3037 
3038 static int __readpage_endio_check(struct inode *inode,
3039 				  struct btrfs_io_bio *io_bio,
3040 				  int icsum, struct page *page,
3041 				  int pgoff, u64 start, size_t len)
3042 {
3043 	char *kaddr;
3044 	u32 csum_expected;
3045 	u32 csum = ~(u32)0;
3046 
3047 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3048 
3049 	kaddr = kmap_atomic(page);
3050 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3051 	btrfs_csum_final(csum, (char *)&csum);
3052 	if (csum != csum_expected)
3053 		goto zeroit;
3054 
3055 	kunmap_atomic(kaddr);
3056 	return 0;
3057 zeroit:
3058 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3059 		"csum failed ino %llu off %llu csum %u expected csum %u",
3060 			   btrfs_ino(inode), start, csum, csum_expected);
3061 	memset(kaddr + pgoff, 1, len);
3062 	flush_dcache_page(page);
3063 	kunmap_atomic(kaddr);
3064 	if (csum_expected == 0)
3065 		return 0;
3066 	return -EIO;
3067 }
3068 
3069 /*
3070  * when reads are done, we need to check csums to verify the data is correct
3071  * if there's a match, we allow the bio to finish.  If not, the code in
3072  * extent_io.c will try to find good copies for us.
3073  */
3074 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3075 				      u64 phy_offset, struct page *page,
3076 				      u64 start, u64 end, int mirror)
3077 {
3078 	size_t offset = start - page_offset(page);
3079 	struct inode *inode = page->mapping->host;
3080 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3081 	struct btrfs_root *root = BTRFS_I(inode)->root;
3082 
3083 	if (PageChecked(page)) {
3084 		ClearPageChecked(page);
3085 		return 0;
3086 	}
3087 
3088 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3089 		return 0;
3090 
3091 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3092 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3093 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3094 				  GFP_NOFS);
3095 		return 0;
3096 	}
3097 
3098 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3099 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3100 				      start, (size_t)(end - start + 1));
3101 }
3102 
3103 struct delayed_iput {
3104 	struct list_head list;
3105 	struct inode *inode;
3106 };
3107 
3108 /* JDM: If this is fs-wide, why can't we add a pointer to
3109  * btrfs_inode instead and avoid the allocation? */
3110 void btrfs_add_delayed_iput(struct inode *inode)
3111 {
3112 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3113 	struct delayed_iput *delayed;
3114 
3115 	if (atomic_add_unless(&inode->i_count, -1, 1))
3116 		return;
3117 
3118 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3119 	delayed->inode = inode;
3120 
3121 	spin_lock(&fs_info->delayed_iput_lock);
3122 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3123 	spin_unlock(&fs_info->delayed_iput_lock);
3124 }
3125 
3126 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3127 {
3128 	LIST_HEAD(list);
3129 	struct btrfs_fs_info *fs_info = root->fs_info;
3130 	struct delayed_iput *delayed;
3131 	int empty;
3132 
3133 	spin_lock(&fs_info->delayed_iput_lock);
3134 	empty = list_empty(&fs_info->delayed_iputs);
3135 	spin_unlock(&fs_info->delayed_iput_lock);
3136 	if (empty)
3137 		return;
3138 
3139 	down_read(&fs_info->delayed_iput_sem);
3140 
3141 	spin_lock(&fs_info->delayed_iput_lock);
3142 	list_splice_init(&fs_info->delayed_iputs, &list);
3143 	spin_unlock(&fs_info->delayed_iput_lock);
3144 
3145 	while (!list_empty(&list)) {
3146 		delayed = list_entry(list.next, struct delayed_iput, list);
3147 		list_del(&delayed->list);
3148 		iput(delayed->inode);
3149 		kfree(delayed);
3150 	}
3151 
3152 	up_read(&root->fs_info->delayed_iput_sem);
3153 }
3154 
3155 /*
3156  * This is called in transaction commit time. If there are no orphan
3157  * files in the subvolume, it removes orphan item and frees block_rsv
3158  * structure.
3159  */
3160 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3161 			      struct btrfs_root *root)
3162 {
3163 	struct btrfs_block_rsv *block_rsv;
3164 	int ret;
3165 
3166 	if (atomic_read(&root->orphan_inodes) ||
3167 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3168 		return;
3169 
3170 	spin_lock(&root->orphan_lock);
3171 	if (atomic_read(&root->orphan_inodes)) {
3172 		spin_unlock(&root->orphan_lock);
3173 		return;
3174 	}
3175 
3176 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3177 		spin_unlock(&root->orphan_lock);
3178 		return;
3179 	}
3180 
3181 	block_rsv = root->orphan_block_rsv;
3182 	root->orphan_block_rsv = NULL;
3183 	spin_unlock(&root->orphan_lock);
3184 
3185 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3186 	    btrfs_root_refs(&root->root_item) > 0) {
3187 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3188 					    root->root_key.objectid);
3189 		if (ret)
3190 			btrfs_abort_transaction(trans, root, ret);
3191 		else
3192 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3193 				  &root->state);
3194 	}
3195 
3196 	if (block_rsv) {
3197 		WARN_ON(block_rsv->size > 0);
3198 		btrfs_free_block_rsv(root, block_rsv);
3199 	}
3200 }
3201 
3202 /*
3203  * This creates an orphan entry for the given inode in case something goes
3204  * wrong in the middle of an unlink/truncate.
3205  *
3206  * NOTE: caller of this function should reserve 5 units of metadata for
3207  *	 this function.
3208  */
3209 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3210 {
3211 	struct btrfs_root *root = BTRFS_I(inode)->root;
3212 	struct btrfs_block_rsv *block_rsv = NULL;
3213 	int reserve = 0;
3214 	int insert = 0;
3215 	int ret;
3216 
3217 	if (!root->orphan_block_rsv) {
3218 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3219 		if (!block_rsv)
3220 			return -ENOMEM;
3221 	}
3222 
3223 	spin_lock(&root->orphan_lock);
3224 	if (!root->orphan_block_rsv) {
3225 		root->orphan_block_rsv = block_rsv;
3226 	} else if (block_rsv) {
3227 		btrfs_free_block_rsv(root, block_rsv);
3228 		block_rsv = NULL;
3229 	}
3230 
3231 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3232 			      &BTRFS_I(inode)->runtime_flags)) {
3233 #if 0
3234 		/*
3235 		 * For proper ENOSPC handling, we should do orphan
3236 		 * cleanup when mounting. But this introduces backward
3237 		 * compatibility issue.
3238 		 */
3239 		if (!xchg(&root->orphan_item_inserted, 1))
3240 			insert = 2;
3241 		else
3242 			insert = 1;
3243 #endif
3244 		insert = 1;
3245 		atomic_inc(&root->orphan_inodes);
3246 	}
3247 
3248 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3249 			      &BTRFS_I(inode)->runtime_flags))
3250 		reserve = 1;
3251 	spin_unlock(&root->orphan_lock);
3252 
3253 	/* grab metadata reservation from transaction handle */
3254 	if (reserve) {
3255 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3256 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3257 	}
3258 
3259 	/* insert an orphan item to track this unlinked/truncated file */
3260 	if (insert >= 1) {
3261 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3262 		if (ret) {
3263 			atomic_dec(&root->orphan_inodes);
3264 			if (reserve) {
3265 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3266 					  &BTRFS_I(inode)->runtime_flags);
3267 				btrfs_orphan_release_metadata(inode);
3268 			}
3269 			if (ret != -EEXIST) {
3270 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3271 					  &BTRFS_I(inode)->runtime_flags);
3272 				btrfs_abort_transaction(trans, root, ret);
3273 				return ret;
3274 			}
3275 		}
3276 		ret = 0;
3277 	}
3278 
3279 	/* insert an orphan item to track subvolume contains orphan files */
3280 	if (insert >= 2) {
3281 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3282 					       root->root_key.objectid);
3283 		if (ret && ret != -EEXIST) {
3284 			btrfs_abort_transaction(trans, root, ret);
3285 			return ret;
3286 		}
3287 	}
3288 	return 0;
3289 }
3290 
3291 /*
3292  * We have done the truncate/delete so we can go ahead and remove the orphan
3293  * item for this particular inode.
3294  */
3295 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3296 			    struct inode *inode)
3297 {
3298 	struct btrfs_root *root = BTRFS_I(inode)->root;
3299 	int delete_item = 0;
3300 	int release_rsv = 0;
3301 	int ret = 0;
3302 
3303 	spin_lock(&root->orphan_lock);
3304 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3305 			       &BTRFS_I(inode)->runtime_flags))
3306 		delete_item = 1;
3307 
3308 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3309 			       &BTRFS_I(inode)->runtime_flags))
3310 		release_rsv = 1;
3311 	spin_unlock(&root->orphan_lock);
3312 
3313 	if (delete_item) {
3314 		atomic_dec(&root->orphan_inodes);
3315 		if (trans)
3316 			ret = btrfs_del_orphan_item(trans, root,
3317 						    btrfs_ino(inode));
3318 	}
3319 
3320 	if (release_rsv)
3321 		btrfs_orphan_release_metadata(inode);
3322 
3323 	return ret;
3324 }
3325 
3326 /*
3327  * this cleans up any orphans that may be left on the list from the last use
3328  * of this root.
3329  */
3330 int btrfs_orphan_cleanup(struct btrfs_root *root)
3331 {
3332 	struct btrfs_path *path;
3333 	struct extent_buffer *leaf;
3334 	struct btrfs_key key, found_key;
3335 	struct btrfs_trans_handle *trans;
3336 	struct inode *inode;
3337 	u64 last_objectid = 0;
3338 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3339 
3340 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3341 		return 0;
3342 
3343 	path = btrfs_alloc_path();
3344 	if (!path) {
3345 		ret = -ENOMEM;
3346 		goto out;
3347 	}
3348 	path->reada = -1;
3349 
3350 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3351 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3352 	key.offset = (u64)-1;
3353 
3354 	while (1) {
3355 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3356 		if (ret < 0)
3357 			goto out;
3358 
3359 		/*
3360 		 * if ret == 0 means we found what we were searching for, which
3361 		 * is weird, but possible, so only screw with path if we didn't
3362 		 * find the key and see if we have stuff that matches
3363 		 */
3364 		if (ret > 0) {
3365 			ret = 0;
3366 			if (path->slots[0] == 0)
3367 				break;
3368 			path->slots[0]--;
3369 		}
3370 
3371 		/* pull out the item */
3372 		leaf = path->nodes[0];
3373 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3374 
3375 		/* make sure the item matches what we want */
3376 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3377 			break;
3378 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3379 			break;
3380 
3381 		/* release the path since we're done with it */
3382 		btrfs_release_path(path);
3383 
3384 		/*
3385 		 * this is where we are basically btrfs_lookup, without the
3386 		 * crossing root thing.  we store the inode number in the
3387 		 * offset of the orphan item.
3388 		 */
3389 
3390 		if (found_key.offset == last_objectid) {
3391 			btrfs_err(root->fs_info,
3392 				"Error removing orphan entry, stopping orphan cleanup");
3393 			ret = -EINVAL;
3394 			goto out;
3395 		}
3396 
3397 		last_objectid = found_key.offset;
3398 
3399 		found_key.objectid = found_key.offset;
3400 		found_key.type = BTRFS_INODE_ITEM_KEY;
3401 		found_key.offset = 0;
3402 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3403 		ret = PTR_ERR_OR_ZERO(inode);
3404 		if (ret && ret != -ESTALE)
3405 			goto out;
3406 
3407 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3408 			struct btrfs_root *dead_root;
3409 			struct btrfs_fs_info *fs_info = root->fs_info;
3410 			int is_dead_root = 0;
3411 
3412 			/*
3413 			 * this is an orphan in the tree root. Currently these
3414 			 * could come from 2 sources:
3415 			 *  a) a snapshot deletion in progress
3416 			 *  b) a free space cache inode
3417 			 * We need to distinguish those two, as the snapshot
3418 			 * orphan must not get deleted.
3419 			 * find_dead_roots already ran before us, so if this
3420 			 * is a snapshot deletion, we should find the root
3421 			 * in the dead_roots list
3422 			 */
3423 			spin_lock(&fs_info->trans_lock);
3424 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3425 					    root_list) {
3426 				if (dead_root->root_key.objectid ==
3427 				    found_key.objectid) {
3428 					is_dead_root = 1;
3429 					break;
3430 				}
3431 			}
3432 			spin_unlock(&fs_info->trans_lock);
3433 			if (is_dead_root) {
3434 				/* prevent this orphan from being found again */
3435 				key.offset = found_key.objectid - 1;
3436 				continue;
3437 			}
3438 		}
3439 		/*
3440 		 * Inode is already gone but the orphan item is still there,
3441 		 * kill the orphan item.
3442 		 */
3443 		if (ret == -ESTALE) {
3444 			trans = btrfs_start_transaction(root, 1);
3445 			if (IS_ERR(trans)) {
3446 				ret = PTR_ERR(trans);
3447 				goto out;
3448 			}
3449 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3450 				found_key.objectid);
3451 			ret = btrfs_del_orphan_item(trans, root,
3452 						    found_key.objectid);
3453 			btrfs_end_transaction(trans, root);
3454 			if (ret)
3455 				goto out;
3456 			continue;
3457 		}
3458 
3459 		/*
3460 		 * add this inode to the orphan list so btrfs_orphan_del does
3461 		 * the proper thing when we hit it
3462 		 */
3463 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3464 			&BTRFS_I(inode)->runtime_flags);
3465 		atomic_inc(&root->orphan_inodes);
3466 
3467 		/* if we have links, this was a truncate, lets do that */
3468 		if (inode->i_nlink) {
3469 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3470 				iput(inode);
3471 				continue;
3472 			}
3473 			nr_truncate++;
3474 
3475 			/* 1 for the orphan item deletion. */
3476 			trans = btrfs_start_transaction(root, 1);
3477 			if (IS_ERR(trans)) {
3478 				iput(inode);
3479 				ret = PTR_ERR(trans);
3480 				goto out;
3481 			}
3482 			ret = btrfs_orphan_add(trans, inode);
3483 			btrfs_end_transaction(trans, root);
3484 			if (ret) {
3485 				iput(inode);
3486 				goto out;
3487 			}
3488 
3489 			ret = btrfs_truncate(inode);
3490 			if (ret)
3491 				btrfs_orphan_del(NULL, inode);
3492 		} else {
3493 			nr_unlink++;
3494 		}
3495 
3496 		/* this will do delete_inode and everything for us */
3497 		iput(inode);
3498 		if (ret)
3499 			goto out;
3500 	}
3501 	/* release the path since we're done with it */
3502 	btrfs_release_path(path);
3503 
3504 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3505 
3506 	if (root->orphan_block_rsv)
3507 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3508 					(u64)-1);
3509 
3510 	if (root->orphan_block_rsv ||
3511 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3512 		trans = btrfs_join_transaction(root);
3513 		if (!IS_ERR(trans))
3514 			btrfs_end_transaction(trans, root);
3515 	}
3516 
3517 	if (nr_unlink)
3518 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3519 	if (nr_truncate)
3520 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3521 
3522 out:
3523 	if (ret)
3524 		btrfs_err(root->fs_info,
3525 			"could not do orphan cleanup %d", ret);
3526 	btrfs_free_path(path);
3527 	return ret;
3528 }
3529 
3530 /*
3531  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3532  * don't find any xattrs, we know there can't be any acls.
3533  *
3534  * slot is the slot the inode is in, objectid is the objectid of the inode
3535  */
3536 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3537 					  int slot, u64 objectid,
3538 					  int *first_xattr_slot)
3539 {
3540 	u32 nritems = btrfs_header_nritems(leaf);
3541 	struct btrfs_key found_key;
3542 	static u64 xattr_access = 0;
3543 	static u64 xattr_default = 0;
3544 	int scanned = 0;
3545 
3546 	if (!xattr_access) {
3547 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3548 					strlen(POSIX_ACL_XATTR_ACCESS));
3549 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3550 					strlen(POSIX_ACL_XATTR_DEFAULT));
3551 	}
3552 
3553 	slot++;
3554 	*first_xattr_slot = -1;
3555 	while (slot < nritems) {
3556 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3557 
3558 		/* we found a different objectid, there must not be acls */
3559 		if (found_key.objectid != objectid)
3560 			return 0;
3561 
3562 		/* we found an xattr, assume we've got an acl */
3563 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3564 			if (*first_xattr_slot == -1)
3565 				*first_xattr_slot = slot;
3566 			if (found_key.offset == xattr_access ||
3567 			    found_key.offset == xattr_default)
3568 				return 1;
3569 		}
3570 
3571 		/*
3572 		 * we found a key greater than an xattr key, there can't
3573 		 * be any acls later on
3574 		 */
3575 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3576 			return 0;
3577 
3578 		slot++;
3579 		scanned++;
3580 
3581 		/*
3582 		 * it goes inode, inode backrefs, xattrs, extents,
3583 		 * so if there are a ton of hard links to an inode there can
3584 		 * be a lot of backrefs.  Don't waste time searching too hard,
3585 		 * this is just an optimization
3586 		 */
3587 		if (scanned >= 8)
3588 			break;
3589 	}
3590 	/* we hit the end of the leaf before we found an xattr or
3591 	 * something larger than an xattr.  We have to assume the inode
3592 	 * has acls
3593 	 */
3594 	if (*first_xattr_slot == -1)
3595 		*first_xattr_slot = slot;
3596 	return 1;
3597 }
3598 
3599 /*
3600  * read an inode from the btree into the in-memory inode
3601  */
3602 static void btrfs_read_locked_inode(struct inode *inode)
3603 {
3604 	struct btrfs_path *path;
3605 	struct extent_buffer *leaf;
3606 	struct btrfs_inode_item *inode_item;
3607 	struct btrfs_root *root = BTRFS_I(inode)->root;
3608 	struct btrfs_key location;
3609 	unsigned long ptr;
3610 	int maybe_acls;
3611 	u32 rdev;
3612 	int ret;
3613 	bool filled = false;
3614 	int first_xattr_slot;
3615 
3616 	ret = btrfs_fill_inode(inode, &rdev);
3617 	if (!ret)
3618 		filled = true;
3619 
3620 	path = btrfs_alloc_path();
3621 	if (!path)
3622 		goto make_bad;
3623 
3624 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3625 
3626 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3627 	if (ret)
3628 		goto make_bad;
3629 
3630 	leaf = path->nodes[0];
3631 
3632 	if (filled)
3633 		goto cache_index;
3634 
3635 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3636 				    struct btrfs_inode_item);
3637 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3638 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3639 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3640 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3641 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3642 
3643 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3644 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3645 
3646 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3647 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3648 
3649 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3650 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3651 
3652 	BTRFS_I(inode)->i_otime.tv_sec =
3653 		btrfs_timespec_sec(leaf, &inode_item->otime);
3654 	BTRFS_I(inode)->i_otime.tv_nsec =
3655 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3656 
3657 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3658 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3659 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3660 
3661 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3662 	inode->i_generation = BTRFS_I(inode)->generation;
3663 	inode->i_rdev = 0;
3664 	rdev = btrfs_inode_rdev(leaf, inode_item);
3665 
3666 	BTRFS_I(inode)->index_cnt = (u64)-1;
3667 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3668 
3669 cache_index:
3670 	/*
3671 	 * If we were modified in the current generation and evicted from memory
3672 	 * and then re-read we need to do a full sync since we don't have any
3673 	 * idea about which extents were modified before we were evicted from
3674 	 * cache.
3675 	 *
3676 	 * This is required for both inode re-read from disk and delayed inode
3677 	 * in delayed_nodes_tree.
3678 	 */
3679 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3680 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3681 			&BTRFS_I(inode)->runtime_flags);
3682 
3683 	/*
3684 	 * We don't persist the id of the transaction where an unlink operation
3685 	 * against the inode was last made. So here we assume the inode might
3686 	 * have been evicted, and therefore the exact value of last_unlink_trans
3687 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3688 	 * between the inode and its parent if the inode is fsync'ed and the log
3689 	 * replayed. For example, in the scenario:
3690 	 *
3691 	 * touch mydir/foo
3692 	 * ln mydir/foo mydir/bar
3693 	 * sync
3694 	 * unlink mydir/bar
3695 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3696 	 * xfs_io -c fsync mydir/foo
3697 	 * <power failure>
3698 	 * mount fs, triggers fsync log replay
3699 	 *
3700 	 * We must make sure that when we fsync our inode foo we also log its
3701 	 * parent inode, otherwise after log replay the parent still has the
3702 	 * dentry with the "bar" name but our inode foo has a link count of 1
3703 	 * and doesn't have an inode ref with the name "bar" anymore.
3704 	 *
3705 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3706 	 * but it guarantees correctness at the expense of ocassional full
3707 	 * transaction commits on fsync if our inode is a directory, or if our
3708 	 * inode is not a directory, logging its parent unnecessarily.
3709 	 */
3710 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3711 
3712 	path->slots[0]++;
3713 	if (inode->i_nlink != 1 ||
3714 	    path->slots[0] >= btrfs_header_nritems(leaf))
3715 		goto cache_acl;
3716 
3717 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3718 	if (location.objectid != btrfs_ino(inode))
3719 		goto cache_acl;
3720 
3721 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3722 	if (location.type == BTRFS_INODE_REF_KEY) {
3723 		struct btrfs_inode_ref *ref;
3724 
3725 		ref = (struct btrfs_inode_ref *)ptr;
3726 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3727 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3728 		struct btrfs_inode_extref *extref;
3729 
3730 		extref = (struct btrfs_inode_extref *)ptr;
3731 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3732 								     extref);
3733 	}
3734 cache_acl:
3735 	/*
3736 	 * try to precache a NULL acl entry for files that don't have
3737 	 * any xattrs or acls
3738 	 */
3739 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3740 					   btrfs_ino(inode), &first_xattr_slot);
3741 	if (first_xattr_slot != -1) {
3742 		path->slots[0] = first_xattr_slot;
3743 		ret = btrfs_load_inode_props(inode, path);
3744 		if (ret)
3745 			btrfs_err(root->fs_info,
3746 				  "error loading props for ino %llu (root %llu): %d",
3747 				  btrfs_ino(inode),
3748 				  root->root_key.objectid, ret);
3749 	}
3750 	btrfs_free_path(path);
3751 
3752 	if (!maybe_acls)
3753 		cache_no_acl(inode);
3754 
3755 	switch (inode->i_mode & S_IFMT) {
3756 	case S_IFREG:
3757 		inode->i_mapping->a_ops = &btrfs_aops;
3758 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3759 		inode->i_fop = &btrfs_file_operations;
3760 		inode->i_op = &btrfs_file_inode_operations;
3761 		break;
3762 	case S_IFDIR:
3763 		inode->i_fop = &btrfs_dir_file_operations;
3764 		if (root == root->fs_info->tree_root)
3765 			inode->i_op = &btrfs_dir_ro_inode_operations;
3766 		else
3767 			inode->i_op = &btrfs_dir_inode_operations;
3768 		break;
3769 	case S_IFLNK:
3770 		inode->i_op = &btrfs_symlink_inode_operations;
3771 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3772 		break;
3773 	default:
3774 		inode->i_op = &btrfs_special_inode_operations;
3775 		init_special_inode(inode, inode->i_mode, rdev);
3776 		break;
3777 	}
3778 
3779 	btrfs_update_iflags(inode);
3780 	return;
3781 
3782 make_bad:
3783 	btrfs_free_path(path);
3784 	make_bad_inode(inode);
3785 }
3786 
3787 /*
3788  * given a leaf and an inode, copy the inode fields into the leaf
3789  */
3790 static void fill_inode_item(struct btrfs_trans_handle *trans,
3791 			    struct extent_buffer *leaf,
3792 			    struct btrfs_inode_item *item,
3793 			    struct inode *inode)
3794 {
3795 	struct btrfs_map_token token;
3796 
3797 	btrfs_init_map_token(&token);
3798 
3799 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3800 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3801 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3802 				   &token);
3803 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3804 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3805 
3806 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3807 				     inode->i_atime.tv_sec, &token);
3808 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3809 				      inode->i_atime.tv_nsec, &token);
3810 
3811 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3812 				     inode->i_mtime.tv_sec, &token);
3813 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3814 				      inode->i_mtime.tv_nsec, &token);
3815 
3816 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3817 				     inode->i_ctime.tv_sec, &token);
3818 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3819 				      inode->i_ctime.tv_nsec, &token);
3820 
3821 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3822 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3823 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3824 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3825 
3826 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3827 				     &token);
3828 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3829 					 &token);
3830 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3831 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3832 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3833 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3834 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3835 }
3836 
3837 /*
3838  * copy everything in the in-memory inode into the btree.
3839  */
3840 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3841 				struct btrfs_root *root, struct inode *inode)
3842 {
3843 	struct btrfs_inode_item *inode_item;
3844 	struct btrfs_path *path;
3845 	struct extent_buffer *leaf;
3846 	int ret;
3847 
3848 	path = btrfs_alloc_path();
3849 	if (!path)
3850 		return -ENOMEM;
3851 
3852 	path->leave_spinning = 1;
3853 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3854 				 1);
3855 	if (ret) {
3856 		if (ret > 0)
3857 			ret = -ENOENT;
3858 		goto failed;
3859 	}
3860 
3861 	leaf = path->nodes[0];
3862 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3863 				    struct btrfs_inode_item);
3864 
3865 	fill_inode_item(trans, leaf, inode_item, inode);
3866 	btrfs_mark_buffer_dirty(leaf);
3867 	btrfs_set_inode_last_trans(trans, inode);
3868 	ret = 0;
3869 failed:
3870 	btrfs_free_path(path);
3871 	return ret;
3872 }
3873 
3874 /*
3875  * copy everything in the in-memory inode into the btree.
3876  */
3877 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3878 				struct btrfs_root *root, struct inode *inode)
3879 {
3880 	int ret;
3881 
3882 	/*
3883 	 * If the inode is a free space inode, we can deadlock during commit
3884 	 * if we put it into the delayed code.
3885 	 *
3886 	 * The data relocation inode should also be directly updated
3887 	 * without delay
3888 	 */
3889 	if (!btrfs_is_free_space_inode(inode)
3890 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3891 	    && !root->fs_info->log_root_recovering) {
3892 		btrfs_update_root_times(trans, root);
3893 
3894 		ret = btrfs_delayed_update_inode(trans, root, inode);
3895 		if (!ret)
3896 			btrfs_set_inode_last_trans(trans, inode);
3897 		return ret;
3898 	}
3899 
3900 	return btrfs_update_inode_item(trans, root, inode);
3901 }
3902 
3903 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3904 					 struct btrfs_root *root,
3905 					 struct inode *inode)
3906 {
3907 	int ret;
3908 
3909 	ret = btrfs_update_inode(trans, root, inode);
3910 	if (ret == -ENOSPC)
3911 		return btrfs_update_inode_item(trans, root, inode);
3912 	return ret;
3913 }
3914 
3915 /*
3916  * unlink helper that gets used here in inode.c and in the tree logging
3917  * recovery code.  It remove a link in a directory with a given name, and
3918  * also drops the back refs in the inode to the directory
3919  */
3920 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3921 				struct btrfs_root *root,
3922 				struct inode *dir, struct inode *inode,
3923 				const char *name, int name_len)
3924 {
3925 	struct btrfs_path *path;
3926 	int ret = 0;
3927 	struct extent_buffer *leaf;
3928 	struct btrfs_dir_item *di;
3929 	struct btrfs_key key;
3930 	u64 index;
3931 	u64 ino = btrfs_ino(inode);
3932 	u64 dir_ino = btrfs_ino(dir);
3933 
3934 	path = btrfs_alloc_path();
3935 	if (!path) {
3936 		ret = -ENOMEM;
3937 		goto out;
3938 	}
3939 
3940 	path->leave_spinning = 1;
3941 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3942 				    name, name_len, -1);
3943 	if (IS_ERR(di)) {
3944 		ret = PTR_ERR(di);
3945 		goto err;
3946 	}
3947 	if (!di) {
3948 		ret = -ENOENT;
3949 		goto err;
3950 	}
3951 	leaf = path->nodes[0];
3952 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3953 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3954 	if (ret)
3955 		goto err;
3956 	btrfs_release_path(path);
3957 
3958 	/*
3959 	 * If we don't have dir index, we have to get it by looking up
3960 	 * the inode ref, since we get the inode ref, remove it directly,
3961 	 * it is unnecessary to do delayed deletion.
3962 	 *
3963 	 * But if we have dir index, needn't search inode ref to get it.
3964 	 * Since the inode ref is close to the inode item, it is better
3965 	 * that we delay to delete it, and just do this deletion when
3966 	 * we update the inode item.
3967 	 */
3968 	if (BTRFS_I(inode)->dir_index) {
3969 		ret = btrfs_delayed_delete_inode_ref(inode);
3970 		if (!ret) {
3971 			index = BTRFS_I(inode)->dir_index;
3972 			goto skip_backref;
3973 		}
3974 	}
3975 
3976 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3977 				  dir_ino, &index);
3978 	if (ret) {
3979 		btrfs_info(root->fs_info,
3980 			"failed to delete reference to %.*s, inode %llu parent %llu",
3981 			name_len, name, ino, dir_ino);
3982 		btrfs_abort_transaction(trans, root, ret);
3983 		goto err;
3984 	}
3985 skip_backref:
3986 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3987 	if (ret) {
3988 		btrfs_abort_transaction(trans, root, ret);
3989 		goto err;
3990 	}
3991 
3992 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3993 					 inode, dir_ino);
3994 	if (ret != 0 && ret != -ENOENT) {
3995 		btrfs_abort_transaction(trans, root, ret);
3996 		goto err;
3997 	}
3998 
3999 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4000 					   dir, index);
4001 	if (ret == -ENOENT)
4002 		ret = 0;
4003 	else if (ret)
4004 		btrfs_abort_transaction(trans, root, ret);
4005 err:
4006 	btrfs_free_path(path);
4007 	if (ret)
4008 		goto out;
4009 
4010 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4011 	inode_inc_iversion(inode);
4012 	inode_inc_iversion(dir);
4013 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4014 	ret = btrfs_update_inode(trans, root, dir);
4015 out:
4016 	return ret;
4017 }
4018 
4019 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4020 		       struct btrfs_root *root,
4021 		       struct inode *dir, struct inode *inode,
4022 		       const char *name, int name_len)
4023 {
4024 	int ret;
4025 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4026 	if (!ret) {
4027 		drop_nlink(inode);
4028 		ret = btrfs_update_inode(trans, root, inode);
4029 	}
4030 	return ret;
4031 }
4032 
4033 /*
4034  * helper to start transaction for unlink and rmdir.
4035  *
4036  * unlink and rmdir are special in btrfs, they do not always free space, so
4037  * if we cannot make our reservations the normal way try and see if there is
4038  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4039  * allow the unlink to occur.
4040  */
4041 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4042 {
4043 	struct btrfs_trans_handle *trans;
4044 	struct btrfs_root *root = BTRFS_I(dir)->root;
4045 	int ret;
4046 
4047 	/*
4048 	 * 1 for the possible orphan item
4049 	 * 1 for the dir item
4050 	 * 1 for the dir index
4051 	 * 1 for the inode ref
4052 	 * 1 for the inode
4053 	 */
4054 	trans = btrfs_start_transaction(root, 5);
4055 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4056 		return trans;
4057 
4058 	if (PTR_ERR(trans) == -ENOSPC) {
4059 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4060 
4061 		trans = btrfs_start_transaction(root, 0);
4062 		if (IS_ERR(trans))
4063 			return trans;
4064 		ret = btrfs_cond_migrate_bytes(root->fs_info,
4065 					       &root->fs_info->trans_block_rsv,
4066 					       num_bytes, 5);
4067 		if (ret) {
4068 			btrfs_end_transaction(trans, root);
4069 			return ERR_PTR(ret);
4070 		}
4071 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4072 		trans->bytes_reserved = num_bytes;
4073 	}
4074 	return trans;
4075 }
4076 
4077 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4078 {
4079 	struct btrfs_root *root = BTRFS_I(dir)->root;
4080 	struct btrfs_trans_handle *trans;
4081 	struct inode *inode = d_inode(dentry);
4082 	int ret;
4083 
4084 	trans = __unlink_start_trans(dir);
4085 	if (IS_ERR(trans))
4086 		return PTR_ERR(trans);
4087 
4088 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4089 
4090 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4091 				 dentry->d_name.name, dentry->d_name.len);
4092 	if (ret)
4093 		goto out;
4094 
4095 	if (inode->i_nlink == 0) {
4096 		ret = btrfs_orphan_add(trans, inode);
4097 		if (ret)
4098 			goto out;
4099 	}
4100 
4101 out:
4102 	btrfs_end_transaction(trans, root);
4103 	btrfs_btree_balance_dirty(root);
4104 	return ret;
4105 }
4106 
4107 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4108 			struct btrfs_root *root,
4109 			struct inode *dir, u64 objectid,
4110 			const char *name, int name_len)
4111 {
4112 	struct btrfs_path *path;
4113 	struct extent_buffer *leaf;
4114 	struct btrfs_dir_item *di;
4115 	struct btrfs_key key;
4116 	u64 index;
4117 	int ret;
4118 	u64 dir_ino = btrfs_ino(dir);
4119 
4120 	path = btrfs_alloc_path();
4121 	if (!path)
4122 		return -ENOMEM;
4123 
4124 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4125 				   name, name_len, -1);
4126 	if (IS_ERR_OR_NULL(di)) {
4127 		if (!di)
4128 			ret = -ENOENT;
4129 		else
4130 			ret = PTR_ERR(di);
4131 		goto out;
4132 	}
4133 
4134 	leaf = path->nodes[0];
4135 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4136 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4137 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4138 	if (ret) {
4139 		btrfs_abort_transaction(trans, root, ret);
4140 		goto out;
4141 	}
4142 	btrfs_release_path(path);
4143 
4144 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4145 				 objectid, root->root_key.objectid,
4146 				 dir_ino, &index, name, name_len);
4147 	if (ret < 0) {
4148 		if (ret != -ENOENT) {
4149 			btrfs_abort_transaction(trans, root, ret);
4150 			goto out;
4151 		}
4152 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4153 						 name, name_len);
4154 		if (IS_ERR_OR_NULL(di)) {
4155 			if (!di)
4156 				ret = -ENOENT;
4157 			else
4158 				ret = PTR_ERR(di);
4159 			btrfs_abort_transaction(trans, root, ret);
4160 			goto out;
4161 		}
4162 
4163 		leaf = path->nodes[0];
4164 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4165 		btrfs_release_path(path);
4166 		index = key.offset;
4167 	}
4168 	btrfs_release_path(path);
4169 
4170 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4171 	if (ret) {
4172 		btrfs_abort_transaction(trans, root, ret);
4173 		goto out;
4174 	}
4175 
4176 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4177 	inode_inc_iversion(dir);
4178 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4179 	ret = btrfs_update_inode_fallback(trans, root, dir);
4180 	if (ret)
4181 		btrfs_abort_transaction(trans, root, ret);
4182 out:
4183 	btrfs_free_path(path);
4184 	return ret;
4185 }
4186 
4187 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4188 {
4189 	struct inode *inode = d_inode(dentry);
4190 	int err = 0;
4191 	struct btrfs_root *root = BTRFS_I(dir)->root;
4192 	struct btrfs_trans_handle *trans;
4193 
4194 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4195 		return -ENOTEMPTY;
4196 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4197 		return -EPERM;
4198 
4199 	trans = __unlink_start_trans(dir);
4200 	if (IS_ERR(trans))
4201 		return PTR_ERR(trans);
4202 
4203 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4204 		err = btrfs_unlink_subvol(trans, root, dir,
4205 					  BTRFS_I(inode)->location.objectid,
4206 					  dentry->d_name.name,
4207 					  dentry->d_name.len);
4208 		goto out;
4209 	}
4210 
4211 	err = btrfs_orphan_add(trans, inode);
4212 	if (err)
4213 		goto out;
4214 
4215 	/* now the directory is empty */
4216 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4217 				 dentry->d_name.name, dentry->d_name.len);
4218 	if (!err)
4219 		btrfs_i_size_write(inode, 0);
4220 out:
4221 	btrfs_end_transaction(trans, root);
4222 	btrfs_btree_balance_dirty(root);
4223 
4224 	return err;
4225 }
4226 
4227 static int truncate_space_check(struct btrfs_trans_handle *trans,
4228 				struct btrfs_root *root,
4229 				u64 bytes_deleted)
4230 {
4231 	int ret;
4232 
4233 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4234 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4235 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4236 	if (!ret)
4237 		trans->bytes_reserved += bytes_deleted;
4238 	return ret;
4239 
4240 }
4241 
4242 static int truncate_inline_extent(struct inode *inode,
4243 				  struct btrfs_path *path,
4244 				  struct btrfs_key *found_key,
4245 				  const u64 item_end,
4246 				  const u64 new_size)
4247 {
4248 	struct extent_buffer *leaf = path->nodes[0];
4249 	int slot = path->slots[0];
4250 	struct btrfs_file_extent_item *fi;
4251 	u32 size = (u32)(new_size - found_key->offset);
4252 	struct btrfs_root *root = BTRFS_I(inode)->root;
4253 
4254 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4255 
4256 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4257 		loff_t offset = new_size;
4258 		loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4259 
4260 		/*
4261 		 * Zero out the remaining of the last page of our inline extent,
4262 		 * instead of directly truncating our inline extent here - that
4263 		 * would be much more complex (decompressing all the data, then
4264 		 * compressing the truncated data, which might be bigger than
4265 		 * the size of the inline extent, resize the extent, etc).
4266 		 * We release the path because to get the page we might need to
4267 		 * read the extent item from disk (data not in the page cache).
4268 		 */
4269 		btrfs_release_path(path);
4270 		return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4271 	}
4272 
4273 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4274 	size = btrfs_file_extent_calc_inline_size(size);
4275 	btrfs_truncate_item(root, path, size, 1);
4276 
4277 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4278 		inode_sub_bytes(inode, item_end + 1 - new_size);
4279 
4280 	return 0;
4281 }
4282 
4283 /*
4284  * this can truncate away extent items, csum items and directory items.
4285  * It starts at a high offset and removes keys until it can't find
4286  * any higher than new_size
4287  *
4288  * csum items that cross the new i_size are truncated to the new size
4289  * as well.
4290  *
4291  * min_type is the minimum key type to truncate down to.  If set to 0, this
4292  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4293  */
4294 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4295 			       struct btrfs_root *root,
4296 			       struct inode *inode,
4297 			       u64 new_size, u32 min_type)
4298 {
4299 	struct btrfs_path *path;
4300 	struct extent_buffer *leaf;
4301 	struct btrfs_file_extent_item *fi;
4302 	struct btrfs_key key;
4303 	struct btrfs_key found_key;
4304 	u64 extent_start = 0;
4305 	u64 extent_num_bytes = 0;
4306 	u64 extent_offset = 0;
4307 	u64 item_end = 0;
4308 	u64 last_size = new_size;
4309 	u32 found_type = (u8)-1;
4310 	int found_extent;
4311 	int del_item;
4312 	int pending_del_nr = 0;
4313 	int pending_del_slot = 0;
4314 	int extent_type = -1;
4315 	int ret;
4316 	int err = 0;
4317 	u64 ino = btrfs_ino(inode);
4318 	u64 bytes_deleted = 0;
4319 	bool be_nice = 0;
4320 	bool should_throttle = 0;
4321 	bool should_end = 0;
4322 
4323 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4324 
4325 	/*
4326 	 * for non-free space inodes and ref cows, we want to back off from
4327 	 * time to time
4328 	 */
4329 	if (!btrfs_is_free_space_inode(inode) &&
4330 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4331 		be_nice = 1;
4332 
4333 	path = btrfs_alloc_path();
4334 	if (!path)
4335 		return -ENOMEM;
4336 	path->reada = -1;
4337 
4338 	/*
4339 	 * We want to drop from the next block forward in case this new size is
4340 	 * not block aligned since we will be keeping the last block of the
4341 	 * extent just the way it is.
4342 	 */
4343 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4344 	    root == root->fs_info->tree_root)
4345 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4346 					root->sectorsize), (u64)-1, 0);
4347 
4348 	/*
4349 	 * This function is also used to drop the items in the log tree before
4350 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4351 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4352 	 * items.
4353 	 */
4354 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4355 		btrfs_kill_delayed_inode_items(inode);
4356 
4357 	key.objectid = ino;
4358 	key.offset = (u64)-1;
4359 	key.type = (u8)-1;
4360 
4361 search_again:
4362 	/*
4363 	 * with a 16K leaf size and 128MB extents, you can actually queue
4364 	 * up a huge file in a single leaf.  Most of the time that
4365 	 * bytes_deleted is > 0, it will be huge by the time we get here
4366 	 */
4367 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4368 		if (btrfs_should_end_transaction(trans, root)) {
4369 			err = -EAGAIN;
4370 			goto error;
4371 		}
4372 	}
4373 
4374 
4375 	path->leave_spinning = 1;
4376 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4377 	if (ret < 0) {
4378 		err = ret;
4379 		goto out;
4380 	}
4381 
4382 	if (ret > 0) {
4383 		/* there are no items in the tree for us to truncate, we're
4384 		 * done
4385 		 */
4386 		if (path->slots[0] == 0)
4387 			goto out;
4388 		path->slots[0]--;
4389 	}
4390 
4391 	while (1) {
4392 		fi = NULL;
4393 		leaf = path->nodes[0];
4394 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4395 		found_type = found_key.type;
4396 
4397 		if (found_key.objectid != ino)
4398 			break;
4399 
4400 		if (found_type < min_type)
4401 			break;
4402 
4403 		item_end = found_key.offset;
4404 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4405 			fi = btrfs_item_ptr(leaf, path->slots[0],
4406 					    struct btrfs_file_extent_item);
4407 			extent_type = btrfs_file_extent_type(leaf, fi);
4408 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4409 				item_end +=
4410 				    btrfs_file_extent_num_bytes(leaf, fi);
4411 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4412 				item_end += btrfs_file_extent_inline_len(leaf,
4413 							 path->slots[0], fi);
4414 			}
4415 			item_end--;
4416 		}
4417 		if (found_type > min_type) {
4418 			del_item = 1;
4419 		} else {
4420 			if (item_end < new_size)
4421 				break;
4422 			if (found_key.offset >= new_size)
4423 				del_item = 1;
4424 			else
4425 				del_item = 0;
4426 		}
4427 		found_extent = 0;
4428 		/* FIXME, shrink the extent if the ref count is only 1 */
4429 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4430 			goto delete;
4431 
4432 		if (del_item)
4433 			last_size = found_key.offset;
4434 		else
4435 			last_size = new_size;
4436 
4437 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4438 			u64 num_dec;
4439 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4440 			if (!del_item) {
4441 				u64 orig_num_bytes =
4442 					btrfs_file_extent_num_bytes(leaf, fi);
4443 				extent_num_bytes = ALIGN(new_size -
4444 						found_key.offset,
4445 						root->sectorsize);
4446 				btrfs_set_file_extent_num_bytes(leaf, fi,
4447 							 extent_num_bytes);
4448 				num_dec = (orig_num_bytes -
4449 					   extent_num_bytes);
4450 				if (test_bit(BTRFS_ROOT_REF_COWS,
4451 					     &root->state) &&
4452 				    extent_start != 0)
4453 					inode_sub_bytes(inode, num_dec);
4454 				btrfs_mark_buffer_dirty(leaf);
4455 			} else {
4456 				extent_num_bytes =
4457 					btrfs_file_extent_disk_num_bytes(leaf,
4458 									 fi);
4459 				extent_offset = found_key.offset -
4460 					btrfs_file_extent_offset(leaf, fi);
4461 
4462 				/* FIXME blocksize != 4096 */
4463 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4464 				if (extent_start != 0) {
4465 					found_extent = 1;
4466 					if (test_bit(BTRFS_ROOT_REF_COWS,
4467 						     &root->state))
4468 						inode_sub_bytes(inode, num_dec);
4469 				}
4470 			}
4471 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4472 			/*
4473 			 * we can't truncate inline items that have had
4474 			 * special encodings
4475 			 */
4476 			if (!del_item &&
4477 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4478 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4479 
4480 				/*
4481 				 * Need to release path in order to truncate a
4482 				 * compressed extent. So delete any accumulated
4483 				 * extent items so far.
4484 				 */
4485 				if (btrfs_file_extent_compression(leaf, fi) !=
4486 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4487 					err = btrfs_del_items(trans, root, path,
4488 							      pending_del_slot,
4489 							      pending_del_nr);
4490 					if (err) {
4491 						btrfs_abort_transaction(trans,
4492 									root,
4493 									err);
4494 						goto error;
4495 					}
4496 					pending_del_nr = 0;
4497 				}
4498 
4499 				err = truncate_inline_extent(inode, path,
4500 							     &found_key,
4501 							     item_end,
4502 							     new_size);
4503 				if (err) {
4504 					btrfs_abort_transaction(trans,
4505 								root, err);
4506 					goto error;
4507 				}
4508 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4509 					    &root->state)) {
4510 				inode_sub_bytes(inode, item_end + 1 - new_size);
4511 			}
4512 		}
4513 delete:
4514 		if (del_item) {
4515 			if (!pending_del_nr) {
4516 				/* no pending yet, add ourselves */
4517 				pending_del_slot = path->slots[0];
4518 				pending_del_nr = 1;
4519 			} else if (pending_del_nr &&
4520 				   path->slots[0] + 1 == pending_del_slot) {
4521 				/* hop on the pending chunk */
4522 				pending_del_nr++;
4523 				pending_del_slot = path->slots[0];
4524 			} else {
4525 				BUG();
4526 			}
4527 		} else {
4528 			break;
4529 		}
4530 		should_throttle = 0;
4531 
4532 		if (found_extent &&
4533 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4534 		     root == root->fs_info->tree_root)) {
4535 			btrfs_set_path_blocking(path);
4536 			bytes_deleted += extent_num_bytes;
4537 			ret = btrfs_free_extent(trans, root, extent_start,
4538 						extent_num_bytes, 0,
4539 						btrfs_header_owner(leaf),
4540 						ino, extent_offset);
4541 			BUG_ON(ret);
4542 			if (btrfs_should_throttle_delayed_refs(trans, root))
4543 				btrfs_async_run_delayed_refs(root,
4544 					trans->delayed_ref_updates * 2, 0);
4545 			if (be_nice) {
4546 				if (truncate_space_check(trans, root,
4547 							 extent_num_bytes)) {
4548 					should_end = 1;
4549 				}
4550 				if (btrfs_should_throttle_delayed_refs(trans,
4551 								       root)) {
4552 					should_throttle = 1;
4553 				}
4554 			}
4555 		}
4556 
4557 		if (found_type == BTRFS_INODE_ITEM_KEY)
4558 			break;
4559 
4560 		if (path->slots[0] == 0 ||
4561 		    path->slots[0] != pending_del_slot ||
4562 		    should_throttle || should_end) {
4563 			if (pending_del_nr) {
4564 				ret = btrfs_del_items(trans, root, path,
4565 						pending_del_slot,
4566 						pending_del_nr);
4567 				if (ret) {
4568 					btrfs_abort_transaction(trans,
4569 								root, ret);
4570 					goto error;
4571 				}
4572 				pending_del_nr = 0;
4573 			}
4574 			btrfs_release_path(path);
4575 			if (should_throttle) {
4576 				unsigned long updates = trans->delayed_ref_updates;
4577 				if (updates) {
4578 					trans->delayed_ref_updates = 0;
4579 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4580 					if (ret && !err)
4581 						err = ret;
4582 				}
4583 			}
4584 			/*
4585 			 * if we failed to refill our space rsv, bail out
4586 			 * and let the transaction restart
4587 			 */
4588 			if (should_end) {
4589 				err = -EAGAIN;
4590 				goto error;
4591 			}
4592 			goto search_again;
4593 		} else {
4594 			path->slots[0]--;
4595 		}
4596 	}
4597 out:
4598 	if (pending_del_nr) {
4599 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4600 				      pending_del_nr);
4601 		if (ret)
4602 			btrfs_abort_transaction(trans, root, ret);
4603 	}
4604 error:
4605 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4606 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4607 
4608 	btrfs_free_path(path);
4609 
4610 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4611 		unsigned long updates = trans->delayed_ref_updates;
4612 		if (updates) {
4613 			trans->delayed_ref_updates = 0;
4614 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4615 			if (ret && !err)
4616 				err = ret;
4617 		}
4618 	}
4619 	return err;
4620 }
4621 
4622 /*
4623  * btrfs_truncate_page - read, zero a chunk and write a page
4624  * @inode - inode that we're zeroing
4625  * @from - the offset to start zeroing
4626  * @len - the length to zero, 0 to zero the entire range respective to the
4627  *	offset
4628  * @front - zero up to the offset instead of from the offset on
4629  *
4630  * This will find the page for the "from" offset and cow the page and zero the
4631  * part we want to zero.  This is used with truncate and hole punching.
4632  */
4633 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4634 			int front)
4635 {
4636 	struct address_space *mapping = inode->i_mapping;
4637 	struct btrfs_root *root = BTRFS_I(inode)->root;
4638 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4639 	struct btrfs_ordered_extent *ordered;
4640 	struct extent_state *cached_state = NULL;
4641 	char *kaddr;
4642 	u32 blocksize = root->sectorsize;
4643 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4644 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4645 	struct page *page;
4646 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4647 	int ret = 0;
4648 	u64 page_start;
4649 	u64 page_end;
4650 
4651 	if ((offset & (blocksize - 1)) == 0 &&
4652 	    (!len || ((len & (blocksize - 1)) == 0)))
4653 		goto out;
4654 	ret = btrfs_delalloc_reserve_space(inode,
4655 			round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
4656 	if (ret)
4657 		goto out;
4658 
4659 again:
4660 	page = find_or_create_page(mapping, index, mask);
4661 	if (!page) {
4662 		btrfs_delalloc_release_space(inode,
4663 				round_down(from, PAGE_CACHE_SIZE),
4664 				PAGE_CACHE_SIZE);
4665 		ret = -ENOMEM;
4666 		goto out;
4667 	}
4668 
4669 	page_start = page_offset(page);
4670 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4671 
4672 	if (!PageUptodate(page)) {
4673 		ret = btrfs_readpage(NULL, page);
4674 		lock_page(page);
4675 		if (page->mapping != mapping) {
4676 			unlock_page(page);
4677 			page_cache_release(page);
4678 			goto again;
4679 		}
4680 		if (!PageUptodate(page)) {
4681 			ret = -EIO;
4682 			goto out_unlock;
4683 		}
4684 	}
4685 	wait_on_page_writeback(page);
4686 
4687 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4688 	set_page_extent_mapped(page);
4689 
4690 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4691 	if (ordered) {
4692 		unlock_extent_cached(io_tree, page_start, page_end,
4693 				     &cached_state, GFP_NOFS);
4694 		unlock_page(page);
4695 		page_cache_release(page);
4696 		btrfs_start_ordered_extent(inode, ordered, 1);
4697 		btrfs_put_ordered_extent(ordered);
4698 		goto again;
4699 	}
4700 
4701 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4702 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4703 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4704 			  0, 0, &cached_state, GFP_NOFS);
4705 
4706 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4707 					&cached_state);
4708 	if (ret) {
4709 		unlock_extent_cached(io_tree, page_start, page_end,
4710 				     &cached_state, GFP_NOFS);
4711 		goto out_unlock;
4712 	}
4713 
4714 	if (offset != PAGE_CACHE_SIZE) {
4715 		if (!len)
4716 			len = PAGE_CACHE_SIZE - offset;
4717 		kaddr = kmap(page);
4718 		if (front)
4719 			memset(kaddr, 0, offset);
4720 		else
4721 			memset(kaddr + offset, 0, len);
4722 		flush_dcache_page(page);
4723 		kunmap(page);
4724 	}
4725 	ClearPageChecked(page);
4726 	set_page_dirty(page);
4727 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4728 			     GFP_NOFS);
4729 
4730 out_unlock:
4731 	if (ret)
4732 		btrfs_delalloc_release_space(inode, page_start,
4733 					     PAGE_CACHE_SIZE);
4734 	unlock_page(page);
4735 	page_cache_release(page);
4736 out:
4737 	return ret;
4738 }
4739 
4740 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4741 			     u64 offset, u64 len)
4742 {
4743 	struct btrfs_trans_handle *trans;
4744 	int ret;
4745 
4746 	/*
4747 	 * Still need to make sure the inode looks like it's been updated so
4748 	 * that any holes get logged if we fsync.
4749 	 */
4750 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4751 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4752 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4753 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4754 		return 0;
4755 	}
4756 
4757 	/*
4758 	 * 1 - for the one we're dropping
4759 	 * 1 - for the one we're adding
4760 	 * 1 - for updating the inode.
4761 	 */
4762 	trans = btrfs_start_transaction(root, 3);
4763 	if (IS_ERR(trans))
4764 		return PTR_ERR(trans);
4765 
4766 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4767 	if (ret) {
4768 		btrfs_abort_transaction(trans, root, ret);
4769 		btrfs_end_transaction(trans, root);
4770 		return ret;
4771 	}
4772 
4773 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4774 				       0, 0, len, 0, len, 0, 0, 0);
4775 	if (ret)
4776 		btrfs_abort_transaction(trans, root, ret);
4777 	else
4778 		btrfs_update_inode(trans, root, inode);
4779 	btrfs_end_transaction(trans, root);
4780 	return ret;
4781 }
4782 
4783 /*
4784  * This function puts in dummy file extents for the area we're creating a hole
4785  * for.  So if we are truncating this file to a larger size we need to insert
4786  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4787  * the range between oldsize and size
4788  */
4789 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4790 {
4791 	struct btrfs_root *root = BTRFS_I(inode)->root;
4792 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4793 	struct extent_map *em = NULL;
4794 	struct extent_state *cached_state = NULL;
4795 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4796 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4797 	u64 block_end = ALIGN(size, root->sectorsize);
4798 	u64 last_byte;
4799 	u64 cur_offset;
4800 	u64 hole_size;
4801 	int err = 0;
4802 
4803 	/*
4804 	 * If our size started in the middle of a page we need to zero out the
4805 	 * rest of the page before we expand the i_size, otherwise we could
4806 	 * expose stale data.
4807 	 */
4808 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4809 	if (err)
4810 		return err;
4811 
4812 	if (size <= hole_start)
4813 		return 0;
4814 
4815 	while (1) {
4816 		struct btrfs_ordered_extent *ordered;
4817 
4818 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4819 				 &cached_state);
4820 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4821 						     block_end - hole_start);
4822 		if (!ordered)
4823 			break;
4824 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4825 				     &cached_state, GFP_NOFS);
4826 		btrfs_start_ordered_extent(inode, ordered, 1);
4827 		btrfs_put_ordered_extent(ordered);
4828 	}
4829 
4830 	cur_offset = hole_start;
4831 	while (1) {
4832 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4833 				block_end - cur_offset, 0);
4834 		if (IS_ERR(em)) {
4835 			err = PTR_ERR(em);
4836 			em = NULL;
4837 			break;
4838 		}
4839 		last_byte = min(extent_map_end(em), block_end);
4840 		last_byte = ALIGN(last_byte , root->sectorsize);
4841 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4842 			struct extent_map *hole_em;
4843 			hole_size = last_byte - cur_offset;
4844 
4845 			err = maybe_insert_hole(root, inode, cur_offset,
4846 						hole_size);
4847 			if (err)
4848 				break;
4849 			btrfs_drop_extent_cache(inode, cur_offset,
4850 						cur_offset + hole_size - 1, 0);
4851 			hole_em = alloc_extent_map();
4852 			if (!hole_em) {
4853 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4854 					&BTRFS_I(inode)->runtime_flags);
4855 				goto next;
4856 			}
4857 			hole_em->start = cur_offset;
4858 			hole_em->len = hole_size;
4859 			hole_em->orig_start = cur_offset;
4860 
4861 			hole_em->block_start = EXTENT_MAP_HOLE;
4862 			hole_em->block_len = 0;
4863 			hole_em->orig_block_len = 0;
4864 			hole_em->ram_bytes = hole_size;
4865 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4866 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4867 			hole_em->generation = root->fs_info->generation;
4868 
4869 			while (1) {
4870 				write_lock(&em_tree->lock);
4871 				err = add_extent_mapping(em_tree, hole_em, 1);
4872 				write_unlock(&em_tree->lock);
4873 				if (err != -EEXIST)
4874 					break;
4875 				btrfs_drop_extent_cache(inode, cur_offset,
4876 							cur_offset +
4877 							hole_size - 1, 0);
4878 			}
4879 			free_extent_map(hole_em);
4880 		}
4881 next:
4882 		free_extent_map(em);
4883 		em = NULL;
4884 		cur_offset = last_byte;
4885 		if (cur_offset >= block_end)
4886 			break;
4887 	}
4888 	free_extent_map(em);
4889 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4890 			     GFP_NOFS);
4891 	return err;
4892 }
4893 
4894 static int wait_snapshoting_atomic_t(atomic_t *a)
4895 {
4896 	schedule();
4897 	return 0;
4898 }
4899 
4900 static void wait_for_snapshot_creation(struct btrfs_root *root)
4901 {
4902 	while (true) {
4903 		int ret;
4904 
4905 		ret = btrfs_start_write_no_snapshoting(root);
4906 		if (ret)
4907 			break;
4908 		wait_on_atomic_t(&root->will_be_snapshoted,
4909 				 wait_snapshoting_atomic_t,
4910 				 TASK_UNINTERRUPTIBLE);
4911 	}
4912 }
4913 
4914 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4915 {
4916 	struct btrfs_root *root = BTRFS_I(inode)->root;
4917 	struct btrfs_trans_handle *trans;
4918 	loff_t oldsize = i_size_read(inode);
4919 	loff_t newsize = attr->ia_size;
4920 	int mask = attr->ia_valid;
4921 	int ret;
4922 
4923 	/*
4924 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4925 	 * special case where we need to update the times despite not having
4926 	 * these flags set.  For all other operations the VFS set these flags
4927 	 * explicitly if it wants a timestamp update.
4928 	 */
4929 	if (newsize != oldsize) {
4930 		inode_inc_iversion(inode);
4931 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4932 			inode->i_ctime = inode->i_mtime =
4933 				current_fs_time(inode->i_sb);
4934 	}
4935 
4936 	if (newsize > oldsize) {
4937 		truncate_pagecache(inode, newsize);
4938 		/*
4939 		 * Don't do an expanding truncate while snapshoting is ongoing.
4940 		 * This is to ensure the snapshot captures a fully consistent
4941 		 * state of this file - if the snapshot captures this expanding
4942 		 * truncation, it must capture all writes that happened before
4943 		 * this truncation.
4944 		 */
4945 		wait_for_snapshot_creation(root);
4946 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4947 		if (ret) {
4948 			btrfs_end_write_no_snapshoting(root);
4949 			return ret;
4950 		}
4951 
4952 		trans = btrfs_start_transaction(root, 1);
4953 		if (IS_ERR(trans)) {
4954 			btrfs_end_write_no_snapshoting(root);
4955 			return PTR_ERR(trans);
4956 		}
4957 
4958 		i_size_write(inode, newsize);
4959 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4960 		ret = btrfs_update_inode(trans, root, inode);
4961 		btrfs_end_write_no_snapshoting(root);
4962 		btrfs_end_transaction(trans, root);
4963 	} else {
4964 
4965 		/*
4966 		 * We're truncating a file that used to have good data down to
4967 		 * zero. Make sure it gets into the ordered flush list so that
4968 		 * any new writes get down to disk quickly.
4969 		 */
4970 		if (newsize == 0)
4971 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4972 				&BTRFS_I(inode)->runtime_flags);
4973 
4974 		/*
4975 		 * 1 for the orphan item we're going to add
4976 		 * 1 for the orphan item deletion.
4977 		 */
4978 		trans = btrfs_start_transaction(root, 2);
4979 		if (IS_ERR(trans))
4980 			return PTR_ERR(trans);
4981 
4982 		/*
4983 		 * We need to do this in case we fail at _any_ point during the
4984 		 * actual truncate.  Once we do the truncate_setsize we could
4985 		 * invalidate pages which forces any outstanding ordered io to
4986 		 * be instantly completed which will give us extents that need
4987 		 * to be truncated.  If we fail to get an orphan inode down we
4988 		 * could have left over extents that were never meant to live,
4989 		 * so we need to garuntee from this point on that everything
4990 		 * will be consistent.
4991 		 */
4992 		ret = btrfs_orphan_add(trans, inode);
4993 		btrfs_end_transaction(trans, root);
4994 		if (ret)
4995 			return ret;
4996 
4997 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4998 		truncate_setsize(inode, newsize);
4999 
5000 		/* Disable nonlocked read DIO to avoid the end less truncate */
5001 		btrfs_inode_block_unlocked_dio(inode);
5002 		inode_dio_wait(inode);
5003 		btrfs_inode_resume_unlocked_dio(inode);
5004 
5005 		ret = btrfs_truncate(inode);
5006 		if (ret && inode->i_nlink) {
5007 			int err;
5008 
5009 			/*
5010 			 * failed to truncate, disk_i_size is only adjusted down
5011 			 * as we remove extents, so it should represent the true
5012 			 * size of the inode, so reset the in memory size and
5013 			 * delete our orphan entry.
5014 			 */
5015 			trans = btrfs_join_transaction(root);
5016 			if (IS_ERR(trans)) {
5017 				btrfs_orphan_del(NULL, inode);
5018 				return ret;
5019 			}
5020 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5021 			err = btrfs_orphan_del(trans, inode);
5022 			if (err)
5023 				btrfs_abort_transaction(trans, root, err);
5024 			btrfs_end_transaction(trans, root);
5025 		}
5026 	}
5027 
5028 	return ret;
5029 }
5030 
5031 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5032 {
5033 	struct inode *inode = d_inode(dentry);
5034 	struct btrfs_root *root = BTRFS_I(inode)->root;
5035 	int err;
5036 
5037 	if (btrfs_root_readonly(root))
5038 		return -EROFS;
5039 
5040 	err = inode_change_ok(inode, attr);
5041 	if (err)
5042 		return err;
5043 
5044 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5045 		err = btrfs_setsize(inode, attr);
5046 		if (err)
5047 			return err;
5048 	}
5049 
5050 	if (attr->ia_valid) {
5051 		setattr_copy(inode, attr);
5052 		inode_inc_iversion(inode);
5053 		err = btrfs_dirty_inode(inode);
5054 
5055 		if (!err && attr->ia_valid & ATTR_MODE)
5056 			err = posix_acl_chmod(inode, inode->i_mode);
5057 	}
5058 
5059 	return err;
5060 }
5061 
5062 /*
5063  * While truncating the inode pages during eviction, we get the VFS calling
5064  * btrfs_invalidatepage() against each page of the inode. This is slow because
5065  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5066  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5067  * extent_state structures over and over, wasting lots of time.
5068  *
5069  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5070  * those expensive operations on a per page basis and do only the ordered io
5071  * finishing, while we release here the extent_map and extent_state structures,
5072  * without the excessive merging and splitting.
5073  */
5074 static void evict_inode_truncate_pages(struct inode *inode)
5075 {
5076 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5077 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5078 	struct rb_node *node;
5079 
5080 	ASSERT(inode->i_state & I_FREEING);
5081 	truncate_inode_pages_final(&inode->i_data);
5082 
5083 	write_lock(&map_tree->lock);
5084 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5085 		struct extent_map *em;
5086 
5087 		node = rb_first(&map_tree->map);
5088 		em = rb_entry(node, struct extent_map, rb_node);
5089 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5090 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5091 		remove_extent_mapping(map_tree, em);
5092 		free_extent_map(em);
5093 		if (need_resched()) {
5094 			write_unlock(&map_tree->lock);
5095 			cond_resched();
5096 			write_lock(&map_tree->lock);
5097 		}
5098 	}
5099 	write_unlock(&map_tree->lock);
5100 
5101 	/*
5102 	 * Keep looping until we have no more ranges in the io tree.
5103 	 * We can have ongoing bios started by readpages (called from readahead)
5104 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5105 	 * still in progress (unlocked the pages in the bio but did not yet
5106 	 * unlocked the ranges in the io tree). Therefore this means some
5107 	 * ranges can still be locked and eviction started because before
5108 	 * submitting those bios, which are executed by a separate task (work
5109 	 * queue kthread), inode references (inode->i_count) were not taken
5110 	 * (which would be dropped in the end io callback of each bio).
5111 	 * Therefore here we effectively end up waiting for those bios and
5112 	 * anyone else holding locked ranges without having bumped the inode's
5113 	 * reference count - if we don't do it, when they access the inode's
5114 	 * io_tree to unlock a range it may be too late, leading to an
5115 	 * use-after-free issue.
5116 	 */
5117 	spin_lock(&io_tree->lock);
5118 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5119 		struct extent_state *state;
5120 		struct extent_state *cached_state = NULL;
5121 		u64 start;
5122 		u64 end;
5123 
5124 		node = rb_first(&io_tree->state);
5125 		state = rb_entry(node, struct extent_state, rb_node);
5126 		start = state->start;
5127 		end = state->end;
5128 		spin_unlock(&io_tree->lock);
5129 
5130 		lock_extent_bits(io_tree, start, end, 0, &cached_state);
5131 
5132 		/*
5133 		 * If still has DELALLOC flag, the extent didn't reach disk,
5134 		 * and its reserved space won't be freed by delayed_ref.
5135 		 * So we need to free its reserved space here.
5136 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5137 		 *
5138 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5139 		 */
5140 		if (state->state & EXTENT_DELALLOC)
5141 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5142 
5143 		clear_extent_bit(io_tree, start, end,
5144 				 EXTENT_LOCKED | EXTENT_DIRTY |
5145 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5146 				 EXTENT_DEFRAG, 1, 1,
5147 				 &cached_state, GFP_NOFS);
5148 
5149 		cond_resched();
5150 		spin_lock(&io_tree->lock);
5151 	}
5152 	spin_unlock(&io_tree->lock);
5153 }
5154 
5155 void btrfs_evict_inode(struct inode *inode)
5156 {
5157 	struct btrfs_trans_handle *trans;
5158 	struct btrfs_root *root = BTRFS_I(inode)->root;
5159 	struct btrfs_block_rsv *rsv, *global_rsv;
5160 	int steal_from_global = 0;
5161 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5162 	int ret;
5163 
5164 	trace_btrfs_inode_evict(inode);
5165 
5166 	evict_inode_truncate_pages(inode);
5167 
5168 	if (inode->i_nlink &&
5169 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5170 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5171 	     btrfs_is_free_space_inode(inode)))
5172 		goto no_delete;
5173 
5174 	if (is_bad_inode(inode)) {
5175 		btrfs_orphan_del(NULL, inode);
5176 		goto no_delete;
5177 	}
5178 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5179 	if (!special_file(inode->i_mode))
5180 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5181 
5182 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5183 
5184 	if (root->fs_info->log_root_recovering) {
5185 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5186 				 &BTRFS_I(inode)->runtime_flags));
5187 		goto no_delete;
5188 	}
5189 
5190 	if (inode->i_nlink > 0) {
5191 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5192 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5193 		goto no_delete;
5194 	}
5195 
5196 	ret = btrfs_commit_inode_delayed_inode(inode);
5197 	if (ret) {
5198 		btrfs_orphan_del(NULL, inode);
5199 		goto no_delete;
5200 	}
5201 
5202 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5203 	if (!rsv) {
5204 		btrfs_orphan_del(NULL, inode);
5205 		goto no_delete;
5206 	}
5207 	rsv->size = min_size;
5208 	rsv->failfast = 1;
5209 	global_rsv = &root->fs_info->global_block_rsv;
5210 
5211 	btrfs_i_size_write(inode, 0);
5212 
5213 	/*
5214 	 * This is a bit simpler than btrfs_truncate since we've already
5215 	 * reserved our space for our orphan item in the unlink, so we just
5216 	 * need to reserve some slack space in case we add bytes and update
5217 	 * inode item when doing the truncate.
5218 	 */
5219 	while (1) {
5220 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5221 					     BTRFS_RESERVE_FLUSH_LIMIT);
5222 
5223 		/*
5224 		 * Try and steal from the global reserve since we will
5225 		 * likely not use this space anyway, we want to try as
5226 		 * hard as possible to get this to work.
5227 		 */
5228 		if (ret)
5229 			steal_from_global++;
5230 		else
5231 			steal_from_global = 0;
5232 		ret = 0;
5233 
5234 		/*
5235 		 * steal_from_global == 0: we reserved stuff, hooray!
5236 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5237 		 * steal_from_global == 2: we've committed, still not a lot of
5238 		 * room but maybe we'll have room in the global reserve this
5239 		 * time.
5240 		 * steal_from_global == 3: abandon all hope!
5241 		 */
5242 		if (steal_from_global > 2) {
5243 			btrfs_warn(root->fs_info,
5244 				"Could not get space for a delete, will truncate on mount %d",
5245 				ret);
5246 			btrfs_orphan_del(NULL, inode);
5247 			btrfs_free_block_rsv(root, rsv);
5248 			goto no_delete;
5249 		}
5250 
5251 		trans = btrfs_join_transaction(root);
5252 		if (IS_ERR(trans)) {
5253 			btrfs_orphan_del(NULL, inode);
5254 			btrfs_free_block_rsv(root, rsv);
5255 			goto no_delete;
5256 		}
5257 
5258 		/*
5259 		 * We can't just steal from the global reserve, we need tomake
5260 		 * sure there is room to do it, if not we need to commit and try
5261 		 * again.
5262 		 */
5263 		if (steal_from_global) {
5264 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5265 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5266 							      min_size);
5267 			else
5268 				ret = -ENOSPC;
5269 		}
5270 
5271 		/*
5272 		 * Couldn't steal from the global reserve, we have too much
5273 		 * pending stuff built up, commit the transaction and try it
5274 		 * again.
5275 		 */
5276 		if (ret) {
5277 			ret = btrfs_commit_transaction(trans, root);
5278 			if (ret) {
5279 				btrfs_orphan_del(NULL, inode);
5280 				btrfs_free_block_rsv(root, rsv);
5281 				goto no_delete;
5282 			}
5283 			continue;
5284 		} else {
5285 			steal_from_global = 0;
5286 		}
5287 
5288 		trans->block_rsv = rsv;
5289 
5290 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5291 		if (ret != -ENOSPC && ret != -EAGAIN)
5292 			break;
5293 
5294 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5295 		btrfs_end_transaction(trans, root);
5296 		trans = NULL;
5297 		btrfs_btree_balance_dirty(root);
5298 	}
5299 
5300 	btrfs_free_block_rsv(root, rsv);
5301 
5302 	/*
5303 	 * Errors here aren't a big deal, it just means we leave orphan items
5304 	 * in the tree.  They will be cleaned up on the next mount.
5305 	 */
5306 	if (ret == 0) {
5307 		trans->block_rsv = root->orphan_block_rsv;
5308 		btrfs_orphan_del(trans, inode);
5309 	} else {
5310 		btrfs_orphan_del(NULL, inode);
5311 	}
5312 
5313 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5314 	if (!(root == root->fs_info->tree_root ||
5315 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5316 		btrfs_return_ino(root, btrfs_ino(inode));
5317 
5318 	btrfs_end_transaction(trans, root);
5319 	btrfs_btree_balance_dirty(root);
5320 no_delete:
5321 	btrfs_remove_delayed_node(inode);
5322 	clear_inode(inode);
5323 	return;
5324 }
5325 
5326 /*
5327  * this returns the key found in the dir entry in the location pointer.
5328  * If no dir entries were found, location->objectid is 0.
5329  */
5330 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5331 			       struct btrfs_key *location)
5332 {
5333 	const char *name = dentry->d_name.name;
5334 	int namelen = dentry->d_name.len;
5335 	struct btrfs_dir_item *di;
5336 	struct btrfs_path *path;
5337 	struct btrfs_root *root = BTRFS_I(dir)->root;
5338 	int ret = 0;
5339 
5340 	path = btrfs_alloc_path();
5341 	if (!path)
5342 		return -ENOMEM;
5343 
5344 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5345 				    namelen, 0);
5346 	if (IS_ERR(di))
5347 		ret = PTR_ERR(di);
5348 
5349 	if (IS_ERR_OR_NULL(di))
5350 		goto out_err;
5351 
5352 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5353 out:
5354 	btrfs_free_path(path);
5355 	return ret;
5356 out_err:
5357 	location->objectid = 0;
5358 	goto out;
5359 }
5360 
5361 /*
5362  * when we hit a tree root in a directory, the btrfs part of the inode
5363  * needs to be changed to reflect the root directory of the tree root.  This
5364  * is kind of like crossing a mount point.
5365  */
5366 static int fixup_tree_root_location(struct btrfs_root *root,
5367 				    struct inode *dir,
5368 				    struct dentry *dentry,
5369 				    struct btrfs_key *location,
5370 				    struct btrfs_root **sub_root)
5371 {
5372 	struct btrfs_path *path;
5373 	struct btrfs_root *new_root;
5374 	struct btrfs_root_ref *ref;
5375 	struct extent_buffer *leaf;
5376 	struct btrfs_key key;
5377 	int ret;
5378 	int err = 0;
5379 
5380 	path = btrfs_alloc_path();
5381 	if (!path) {
5382 		err = -ENOMEM;
5383 		goto out;
5384 	}
5385 
5386 	err = -ENOENT;
5387 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5388 	key.type = BTRFS_ROOT_REF_KEY;
5389 	key.offset = location->objectid;
5390 
5391 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5392 				0, 0);
5393 	if (ret) {
5394 		if (ret < 0)
5395 			err = ret;
5396 		goto out;
5397 	}
5398 
5399 	leaf = path->nodes[0];
5400 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5401 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5402 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5403 		goto out;
5404 
5405 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5406 				   (unsigned long)(ref + 1),
5407 				   dentry->d_name.len);
5408 	if (ret)
5409 		goto out;
5410 
5411 	btrfs_release_path(path);
5412 
5413 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5414 	if (IS_ERR(new_root)) {
5415 		err = PTR_ERR(new_root);
5416 		goto out;
5417 	}
5418 
5419 	*sub_root = new_root;
5420 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5421 	location->type = BTRFS_INODE_ITEM_KEY;
5422 	location->offset = 0;
5423 	err = 0;
5424 out:
5425 	btrfs_free_path(path);
5426 	return err;
5427 }
5428 
5429 static void inode_tree_add(struct inode *inode)
5430 {
5431 	struct btrfs_root *root = BTRFS_I(inode)->root;
5432 	struct btrfs_inode *entry;
5433 	struct rb_node **p;
5434 	struct rb_node *parent;
5435 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5436 	u64 ino = btrfs_ino(inode);
5437 
5438 	if (inode_unhashed(inode))
5439 		return;
5440 	parent = NULL;
5441 	spin_lock(&root->inode_lock);
5442 	p = &root->inode_tree.rb_node;
5443 	while (*p) {
5444 		parent = *p;
5445 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5446 
5447 		if (ino < btrfs_ino(&entry->vfs_inode))
5448 			p = &parent->rb_left;
5449 		else if (ino > btrfs_ino(&entry->vfs_inode))
5450 			p = &parent->rb_right;
5451 		else {
5452 			WARN_ON(!(entry->vfs_inode.i_state &
5453 				  (I_WILL_FREE | I_FREEING)));
5454 			rb_replace_node(parent, new, &root->inode_tree);
5455 			RB_CLEAR_NODE(parent);
5456 			spin_unlock(&root->inode_lock);
5457 			return;
5458 		}
5459 	}
5460 	rb_link_node(new, parent, p);
5461 	rb_insert_color(new, &root->inode_tree);
5462 	spin_unlock(&root->inode_lock);
5463 }
5464 
5465 static void inode_tree_del(struct inode *inode)
5466 {
5467 	struct btrfs_root *root = BTRFS_I(inode)->root;
5468 	int empty = 0;
5469 
5470 	spin_lock(&root->inode_lock);
5471 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5472 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5473 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5474 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5475 	}
5476 	spin_unlock(&root->inode_lock);
5477 
5478 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5479 		synchronize_srcu(&root->fs_info->subvol_srcu);
5480 		spin_lock(&root->inode_lock);
5481 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5482 		spin_unlock(&root->inode_lock);
5483 		if (empty)
5484 			btrfs_add_dead_root(root);
5485 	}
5486 }
5487 
5488 void btrfs_invalidate_inodes(struct btrfs_root *root)
5489 {
5490 	struct rb_node *node;
5491 	struct rb_node *prev;
5492 	struct btrfs_inode *entry;
5493 	struct inode *inode;
5494 	u64 objectid = 0;
5495 
5496 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5497 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5498 
5499 	spin_lock(&root->inode_lock);
5500 again:
5501 	node = root->inode_tree.rb_node;
5502 	prev = NULL;
5503 	while (node) {
5504 		prev = node;
5505 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5506 
5507 		if (objectid < btrfs_ino(&entry->vfs_inode))
5508 			node = node->rb_left;
5509 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5510 			node = node->rb_right;
5511 		else
5512 			break;
5513 	}
5514 	if (!node) {
5515 		while (prev) {
5516 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5517 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5518 				node = prev;
5519 				break;
5520 			}
5521 			prev = rb_next(prev);
5522 		}
5523 	}
5524 	while (node) {
5525 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5526 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5527 		inode = igrab(&entry->vfs_inode);
5528 		if (inode) {
5529 			spin_unlock(&root->inode_lock);
5530 			if (atomic_read(&inode->i_count) > 1)
5531 				d_prune_aliases(inode);
5532 			/*
5533 			 * btrfs_drop_inode will have it removed from
5534 			 * the inode cache when its usage count
5535 			 * hits zero.
5536 			 */
5537 			iput(inode);
5538 			cond_resched();
5539 			spin_lock(&root->inode_lock);
5540 			goto again;
5541 		}
5542 
5543 		if (cond_resched_lock(&root->inode_lock))
5544 			goto again;
5545 
5546 		node = rb_next(node);
5547 	}
5548 	spin_unlock(&root->inode_lock);
5549 }
5550 
5551 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5552 {
5553 	struct btrfs_iget_args *args = p;
5554 	inode->i_ino = args->location->objectid;
5555 	memcpy(&BTRFS_I(inode)->location, args->location,
5556 	       sizeof(*args->location));
5557 	BTRFS_I(inode)->root = args->root;
5558 	return 0;
5559 }
5560 
5561 static int btrfs_find_actor(struct inode *inode, void *opaque)
5562 {
5563 	struct btrfs_iget_args *args = opaque;
5564 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5565 		args->root == BTRFS_I(inode)->root;
5566 }
5567 
5568 static struct inode *btrfs_iget_locked(struct super_block *s,
5569 				       struct btrfs_key *location,
5570 				       struct btrfs_root *root)
5571 {
5572 	struct inode *inode;
5573 	struct btrfs_iget_args args;
5574 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5575 
5576 	args.location = location;
5577 	args.root = root;
5578 
5579 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5580 			     btrfs_init_locked_inode,
5581 			     (void *)&args);
5582 	return inode;
5583 }
5584 
5585 /* Get an inode object given its location and corresponding root.
5586  * Returns in *is_new if the inode was read from disk
5587  */
5588 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5589 			 struct btrfs_root *root, int *new)
5590 {
5591 	struct inode *inode;
5592 
5593 	inode = btrfs_iget_locked(s, location, root);
5594 	if (!inode)
5595 		return ERR_PTR(-ENOMEM);
5596 
5597 	if (inode->i_state & I_NEW) {
5598 		btrfs_read_locked_inode(inode);
5599 		if (!is_bad_inode(inode)) {
5600 			inode_tree_add(inode);
5601 			unlock_new_inode(inode);
5602 			if (new)
5603 				*new = 1;
5604 		} else {
5605 			unlock_new_inode(inode);
5606 			iput(inode);
5607 			inode = ERR_PTR(-ESTALE);
5608 		}
5609 	}
5610 
5611 	return inode;
5612 }
5613 
5614 static struct inode *new_simple_dir(struct super_block *s,
5615 				    struct btrfs_key *key,
5616 				    struct btrfs_root *root)
5617 {
5618 	struct inode *inode = new_inode(s);
5619 
5620 	if (!inode)
5621 		return ERR_PTR(-ENOMEM);
5622 
5623 	BTRFS_I(inode)->root = root;
5624 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5625 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5626 
5627 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5628 	inode->i_op = &btrfs_dir_ro_inode_operations;
5629 	inode->i_fop = &simple_dir_operations;
5630 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5631 	inode->i_mtime = CURRENT_TIME;
5632 	inode->i_atime = inode->i_mtime;
5633 	inode->i_ctime = inode->i_mtime;
5634 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5635 
5636 	return inode;
5637 }
5638 
5639 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5640 {
5641 	struct inode *inode;
5642 	struct btrfs_root *root = BTRFS_I(dir)->root;
5643 	struct btrfs_root *sub_root = root;
5644 	struct btrfs_key location;
5645 	int index;
5646 	int ret = 0;
5647 
5648 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5649 		return ERR_PTR(-ENAMETOOLONG);
5650 
5651 	ret = btrfs_inode_by_name(dir, dentry, &location);
5652 	if (ret < 0)
5653 		return ERR_PTR(ret);
5654 
5655 	if (location.objectid == 0)
5656 		return ERR_PTR(-ENOENT);
5657 
5658 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5659 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5660 		return inode;
5661 	}
5662 
5663 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5664 
5665 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5666 	ret = fixup_tree_root_location(root, dir, dentry,
5667 				       &location, &sub_root);
5668 	if (ret < 0) {
5669 		if (ret != -ENOENT)
5670 			inode = ERR_PTR(ret);
5671 		else
5672 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5673 	} else {
5674 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5675 	}
5676 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5677 
5678 	if (!IS_ERR(inode) && root != sub_root) {
5679 		down_read(&root->fs_info->cleanup_work_sem);
5680 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5681 			ret = btrfs_orphan_cleanup(sub_root);
5682 		up_read(&root->fs_info->cleanup_work_sem);
5683 		if (ret) {
5684 			iput(inode);
5685 			inode = ERR_PTR(ret);
5686 		}
5687 	}
5688 
5689 	return inode;
5690 }
5691 
5692 static int btrfs_dentry_delete(const struct dentry *dentry)
5693 {
5694 	struct btrfs_root *root;
5695 	struct inode *inode = d_inode(dentry);
5696 
5697 	if (!inode && !IS_ROOT(dentry))
5698 		inode = d_inode(dentry->d_parent);
5699 
5700 	if (inode) {
5701 		root = BTRFS_I(inode)->root;
5702 		if (btrfs_root_refs(&root->root_item) == 0)
5703 			return 1;
5704 
5705 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5706 			return 1;
5707 	}
5708 	return 0;
5709 }
5710 
5711 static void btrfs_dentry_release(struct dentry *dentry)
5712 {
5713 	kfree(dentry->d_fsdata);
5714 }
5715 
5716 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5717 				   unsigned int flags)
5718 {
5719 	struct inode *inode;
5720 
5721 	inode = btrfs_lookup_dentry(dir, dentry);
5722 	if (IS_ERR(inode)) {
5723 		if (PTR_ERR(inode) == -ENOENT)
5724 			inode = NULL;
5725 		else
5726 			return ERR_CAST(inode);
5727 	}
5728 
5729 	return d_splice_alias(inode, dentry);
5730 }
5731 
5732 unsigned char btrfs_filetype_table[] = {
5733 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5734 };
5735 
5736 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5737 {
5738 	struct inode *inode = file_inode(file);
5739 	struct btrfs_root *root = BTRFS_I(inode)->root;
5740 	struct btrfs_item *item;
5741 	struct btrfs_dir_item *di;
5742 	struct btrfs_key key;
5743 	struct btrfs_key found_key;
5744 	struct btrfs_path *path;
5745 	struct list_head ins_list;
5746 	struct list_head del_list;
5747 	int ret;
5748 	struct extent_buffer *leaf;
5749 	int slot;
5750 	unsigned char d_type;
5751 	int over = 0;
5752 	u32 di_cur;
5753 	u32 di_total;
5754 	u32 di_len;
5755 	int key_type = BTRFS_DIR_INDEX_KEY;
5756 	char tmp_name[32];
5757 	char *name_ptr;
5758 	int name_len;
5759 	int is_curr = 0;	/* ctx->pos points to the current index? */
5760 
5761 	/* FIXME, use a real flag for deciding about the key type */
5762 	if (root->fs_info->tree_root == root)
5763 		key_type = BTRFS_DIR_ITEM_KEY;
5764 
5765 	if (!dir_emit_dots(file, ctx))
5766 		return 0;
5767 
5768 	path = btrfs_alloc_path();
5769 	if (!path)
5770 		return -ENOMEM;
5771 
5772 	path->reada = 1;
5773 
5774 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5775 		INIT_LIST_HEAD(&ins_list);
5776 		INIT_LIST_HEAD(&del_list);
5777 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5778 	}
5779 
5780 	key.type = key_type;
5781 	key.offset = ctx->pos;
5782 	key.objectid = btrfs_ino(inode);
5783 
5784 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5785 	if (ret < 0)
5786 		goto err;
5787 
5788 	while (1) {
5789 		leaf = path->nodes[0];
5790 		slot = path->slots[0];
5791 		if (slot >= btrfs_header_nritems(leaf)) {
5792 			ret = btrfs_next_leaf(root, path);
5793 			if (ret < 0)
5794 				goto err;
5795 			else if (ret > 0)
5796 				break;
5797 			continue;
5798 		}
5799 
5800 		item = btrfs_item_nr(slot);
5801 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5802 
5803 		if (found_key.objectid != key.objectid)
5804 			break;
5805 		if (found_key.type != key_type)
5806 			break;
5807 		if (found_key.offset < ctx->pos)
5808 			goto next;
5809 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5810 		    btrfs_should_delete_dir_index(&del_list,
5811 						  found_key.offset))
5812 			goto next;
5813 
5814 		ctx->pos = found_key.offset;
5815 		is_curr = 1;
5816 
5817 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5818 		di_cur = 0;
5819 		di_total = btrfs_item_size(leaf, item);
5820 
5821 		while (di_cur < di_total) {
5822 			struct btrfs_key location;
5823 
5824 			if (verify_dir_item(root, leaf, di))
5825 				break;
5826 
5827 			name_len = btrfs_dir_name_len(leaf, di);
5828 			if (name_len <= sizeof(tmp_name)) {
5829 				name_ptr = tmp_name;
5830 			} else {
5831 				name_ptr = kmalloc(name_len, GFP_NOFS);
5832 				if (!name_ptr) {
5833 					ret = -ENOMEM;
5834 					goto err;
5835 				}
5836 			}
5837 			read_extent_buffer(leaf, name_ptr,
5838 					   (unsigned long)(di + 1), name_len);
5839 
5840 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5841 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5842 
5843 
5844 			/* is this a reference to our own snapshot? If so
5845 			 * skip it.
5846 			 *
5847 			 * In contrast to old kernels, we insert the snapshot's
5848 			 * dir item and dir index after it has been created, so
5849 			 * we won't find a reference to our own snapshot. We
5850 			 * still keep the following code for backward
5851 			 * compatibility.
5852 			 */
5853 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5854 			    location.objectid == root->root_key.objectid) {
5855 				over = 0;
5856 				goto skip;
5857 			}
5858 			over = !dir_emit(ctx, name_ptr, name_len,
5859 				       location.objectid, d_type);
5860 
5861 skip:
5862 			if (name_ptr != tmp_name)
5863 				kfree(name_ptr);
5864 
5865 			if (over)
5866 				goto nopos;
5867 			di_len = btrfs_dir_name_len(leaf, di) +
5868 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5869 			di_cur += di_len;
5870 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5871 		}
5872 next:
5873 		path->slots[0]++;
5874 	}
5875 
5876 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5877 		if (is_curr)
5878 			ctx->pos++;
5879 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5880 		if (ret)
5881 			goto nopos;
5882 	}
5883 
5884 	/* Reached end of directory/root. Bump pos past the last item. */
5885 	ctx->pos++;
5886 
5887 	/*
5888 	 * Stop new entries from being returned after we return the last
5889 	 * entry.
5890 	 *
5891 	 * New directory entries are assigned a strictly increasing
5892 	 * offset.  This means that new entries created during readdir
5893 	 * are *guaranteed* to be seen in the future by that readdir.
5894 	 * This has broken buggy programs which operate on names as
5895 	 * they're returned by readdir.  Until we re-use freed offsets
5896 	 * we have this hack to stop new entries from being returned
5897 	 * under the assumption that they'll never reach this huge
5898 	 * offset.
5899 	 *
5900 	 * This is being careful not to overflow 32bit loff_t unless the
5901 	 * last entry requires it because doing so has broken 32bit apps
5902 	 * in the past.
5903 	 */
5904 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5905 		if (ctx->pos >= INT_MAX)
5906 			ctx->pos = LLONG_MAX;
5907 		else
5908 			ctx->pos = INT_MAX;
5909 	}
5910 nopos:
5911 	ret = 0;
5912 err:
5913 	if (key_type == BTRFS_DIR_INDEX_KEY)
5914 		btrfs_put_delayed_items(&ins_list, &del_list);
5915 	btrfs_free_path(path);
5916 	return ret;
5917 }
5918 
5919 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5920 {
5921 	struct btrfs_root *root = BTRFS_I(inode)->root;
5922 	struct btrfs_trans_handle *trans;
5923 	int ret = 0;
5924 	bool nolock = false;
5925 
5926 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5927 		return 0;
5928 
5929 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5930 		nolock = true;
5931 
5932 	if (wbc->sync_mode == WB_SYNC_ALL) {
5933 		if (nolock)
5934 			trans = btrfs_join_transaction_nolock(root);
5935 		else
5936 			trans = btrfs_join_transaction(root);
5937 		if (IS_ERR(trans))
5938 			return PTR_ERR(trans);
5939 		ret = btrfs_commit_transaction(trans, root);
5940 	}
5941 	return ret;
5942 }
5943 
5944 /*
5945  * This is somewhat expensive, updating the tree every time the
5946  * inode changes.  But, it is most likely to find the inode in cache.
5947  * FIXME, needs more benchmarking...there are no reasons other than performance
5948  * to keep or drop this code.
5949  */
5950 static int btrfs_dirty_inode(struct inode *inode)
5951 {
5952 	struct btrfs_root *root = BTRFS_I(inode)->root;
5953 	struct btrfs_trans_handle *trans;
5954 	int ret;
5955 
5956 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5957 		return 0;
5958 
5959 	trans = btrfs_join_transaction(root);
5960 	if (IS_ERR(trans))
5961 		return PTR_ERR(trans);
5962 
5963 	ret = btrfs_update_inode(trans, root, inode);
5964 	if (ret && ret == -ENOSPC) {
5965 		/* whoops, lets try again with the full transaction */
5966 		btrfs_end_transaction(trans, root);
5967 		trans = btrfs_start_transaction(root, 1);
5968 		if (IS_ERR(trans))
5969 			return PTR_ERR(trans);
5970 
5971 		ret = btrfs_update_inode(trans, root, inode);
5972 	}
5973 	btrfs_end_transaction(trans, root);
5974 	if (BTRFS_I(inode)->delayed_node)
5975 		btrfs_balance_delayed_items(root);
5976 
5977 	return ret;
5978 }
5979 
5980 /*
5981  * This is a copy of file_update_time.  We need this so we can return error on
5982  * ENOSPC for updating the inode in the case of file write and mmap writes.
5983  */
5984 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5985 			     int flags)
5986 {
5987 	struct btrfs_root *root = BTRFS_I(inode)->root;
5988 
5989 	if (btrfs_root_readonly(root))
5990 		return -EROFS;
5991 
5992 	if (flags & S_VERSION)
5993 		inode_inc_iversion(inode);
5994 	if (flags & S_CTIME)
5995 		inode->i_ctime = *now;
5996 	if (flags & S_MTIME)
5997 		inode->i_mtime = *now;
5998 	if (flags & S_ATIME)
5999 		inode->i_atime = *now;
6000 	return btrfs_dirty_inode(inode);
6001 }
6002 
6003 /*
6004  * find the highest existing sequence number in a directory
6005  * and then set the in-memory index_cnt variable to reflect
6006  * free sequence numbers
6007  */
6008 static int btrfs_set_inode_index_count(struct inode *inode)
6009 {
6010 	struct btrfs_root *root = BTRFS_I(inode)->root;
6011 	struct btrfs_key key, found_key;
6012 	struct btrfs_path *path;
6013 	struct extent_buffer *leaf;
6014 	int ret;
6015 
6016 	key.objectid = btrfs_ino(inode);
6017 	key.type = BTRFS_DIR_INDEX_KEY;
6018 	key.offset = (u64)-1;
6019 
6020 	path = btrfs_alloc_path();
6021 	if (!path)
6022 		return -ENOMEM;
6023 
6024 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6025 	if (ret < 0)
6026 		goto out;
6027 	/* FIXME: we should be able to handle this */
6028 	if (ret == 0)
6029 		goto out;
6030 	ret = 0;
6031 
6032 	/*
6033 	 * MAGIC NUMBER EXPLANATION:
6034 	 * since we search a directory based on f_pos we have to start at 2
6035 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6036 	 * else has to start at 2
6037 	 */
6038 	if (path->slots[0] == 0) {
6039 		BTRFS_I(inode)->index_cnt = 2;
6040 		goto out;
6041 	}
6042 
6043 	path->slots[0]--;
6044 
6045 	leaf = path->nodes[0];
6046 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6047 
6048 	if (found_key.objectid != btrfs_ino(inode) ||
6049 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6050 		BTRFS_I(inode)->index_cnt = 2;
6051 		goto out;
6052 	}
6053 
6054 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6055 out:
6056 	btrfs_free_path(path);
6057 	return ret;
6058 }
6059 
6060 /*
6061  * helper to find a free sequence number in a given directory.  This current
6062  * code is very simple, later versions will do smarter things in the btree
6063  */
6064 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6065 {
6066 	int ret = 0;
6067 
6068 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6069 		ret = btrfs_inode_delayed_dir_index_count(dir);
6070 		if (ret) {
6071 			ret = btrfs_set_inode_index_count(dir);
6072 			if (ret)
6073 				return ret;
6074 		}
6075 	}
6076 
6077 	*index = BTRFS_I(dir)->index_cnt;
6078 	BTRFS_I(dir)->index_cnt++;
6079 
6080 	return ret;
6081 }
6082 
6083 static int btrfs_insert_inode_locked(struct inode *inode)
6084 {
6085 	struct btrfs_iget_args args;
6086 	args.location = &BTRFS_I(inode)->location;
6087 	args.root = BTRFS_I(inode)->root;
6088 
6089 	return insert_inode_locked4(inode,
6090 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6091 		   btrfs_find_actor, &args);
6092 }
6093 
6094 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6095 				     struct btrfs_root *root,
6096 				     struct inode *dir,
6097 				     const char *name, int name_len,
6098 				     u64 ref_objectid, u64 objectid,
6099 				     umode_t mode, u64 *index)
6100 {
6101 	struct inode *inode;
6102 	struct btrfs_inode_item *inode_item;
6103 	struct btrfs_key *location;
6104 	struct btrfs_path *path;
6105 	struct btrfs_inode_ref *ref;
6106 	struct btrfs_key key[2];
6107 	u32 sizes[2];
6108 	int nitems = name ? 2 : 1;
6109 	unsigned long ptr;
6110 	int ret;
6111 
6112 	path = btrfs_alloc_path();
6113 	if (!path)
6114 		return ERR_PTR(-ENOMEM);
6115 
6116 	inode = new_inode(root->fs_info->sb);
6117 	if (!inode) {
6118 		btrfs_free_path(path);
6119 		return ERR_PTR(-ENOMEM);
6120 	}
6121 
6122 	/*
6123 	 * O_TMPFILE, set link count to 0, so that after this point,
6124 	 * we fill in an inode item with the correct link count.
6125 	 */
6126 	if (!name)
6127 		set_nlink(inode, 0);
6128 
6129 	/*
6130 	 * we have to initialize this early, so we can reclaim the inode
6131 	 * number if we fail afterwards in this function.
6132 	 */
6133 	inode->i_ino = objectid;
6134 
6135 	if (dir && name) {
6136 		trace_btrfs_inode_request(dir);
6137 
6138 		ret = btrfs_set_inode_index(dir, index);
6139 		if (ret) {
6140 			btrfs_free_path(path);
6141 			iput(inode);
6142 			return ERR_PTR(ret);
6143 		}
6144 	} else if (dir) {
6145 		*index = 0;
6146 	}
6147 	/*
6148 	 * index_cnt is ignored for everything but a dir,
6149 	 * btrfs_get_inode_index_count has an explanation for the magic
6150 	 * number
6151 	 */
6152 	BTRFS_I(inode)->index_cnt = 2;
6153 	BTRFS_I(inode)->dir_index = *index;
6154 	BTRFS_I(inode)->root = root;
6155 	BTRFS_I(inode)->generation = trans->transid;
6156 	inode->i_generation = BTRFS_I(inode)->generation;
6157 
6158 	/*
6159 	 * We could have gotten an inode number from somebody who was fsynced
6160 	 * and then removed in this same transaction, so let's just set full
6161 	 * sync since it will be a full sync anyway and this will blow away the
6162 	 * old info in the log.
6163 	 */
6164 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6165 
6166 	key[0].objectid = objectid;
6167 	key[0].type = BTRFS_INODE_ITEM_KEY;
6168 	key[0].offset = 0;
6169 
6170 	sizes[0] = sizeof(struct btrfs_inode_item);
6171 
6172 	if (name) {
6173 		/*
6174 		 * Start new inodes with an inode_ref. This is slightly more
6175 		 * efficient for small numbers of hard links since they will
6176 		 * be packed into one item. Extended refs will kick in if we
6177 		 * add more hard links than can fit in the ref item.
6178 		 */
6179 		key[1].objectid = objectid;
6180 		key[1].type = BTRFS_INODE_REF_KEY;
6181 		key[1].offset = ref_objectid;
6182 
6183 		sizes[1] = name_len + sizeof(*ref);
6184 	}
6185 
6186 	location = &BTRFS_I(inode)->location;
6187 	location->objectid = objectid;
6188 	location->offset = 0;
6189 	location->type = BTRFS_INODE_ITEM_KEY;
6190 
6191 	ret = btrfs_insert_inode_locked(inode);
6192 	if (ret < 0)
6193 		goto fail;
6194 
6195 	path->leave_spinning = 1;
6196 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6197 	if (ret != 0)
6198 		goto fail_unlock;
6199 
6200 	inode_init_owner(inode, dir, mode);
6201 	inode_set_bytes(inode, 0);
6202 
6203 	inode->i_mtime = CURRENT_TIME;
6204 	inode->i_atime = inode->i_mtime;
6205 	inode->i_ctime = inode->i_mtime;
6206 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6207 
6208 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6209 				  struct btrfs_inode_item);
6210 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6211 			     sizeof(*inode_item));
6212 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6213 
6214 	if (name) {
6215 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6216 				     struct btrfs_inode_ref);
6217 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6218 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6219 		ptr = (unsigned long)(ref + 1);
6220 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6221 	}
6222 
6223 	btrfs_mark_buffer_dirty(path->nodes[0]);
6224 	btrfs_free_path(path);
6225 
6226 	btrfs_inherit_iflags(inode, dir);
6227 
6228 	if (S_ISREG(mode)) {
6229 		if (btrfs_test_opt(root, NODATASUM))
6230 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6231 		if (btrfs_test_opt(root, NODATACOW))
6232 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6233 				BTRFS_INODE_NODATASUM;
6234 	}
6235 
6236 	inode_tree_add(inode);
6237 
6238 	trace_btrfs_inode_new(inode);
6239 	btrfs_set_inode_last_trans(trans, inode);
6240 
6241 	btrfs_update_root_times(trans, root);
6242 
6243 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6244 	if (ret)
6245 		btrfs_err(root->fs_info,
6246 			  "error inheriting props for ino %llu (root %llu): %d",
6247 			  btrfs_ino(inode), root->root_key.objectid, ret);
6248 
6249 	return inode;
6250 
6251 fail_unlock:
6252 	unlock_new_inode(inode);
6253 fail:
6254 	if (dir && name)
6255 		BTRFS_I(dir)->index_cnt--;
6256 	btrfs_free_path(path);
6257 	iput(inode);
6258 	return ERR_PTR(ret);
6259 }
6260 
6261 static inline u8 btrfs_inode_type(struct inode *inode)
6262 {
6263 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6264 }
6265 
6266 /*
6267  * utility function to add 'inode' into 'parent_inode' with
6268  * a give name and a given sequence number.
6269  * if 'add_backref' is true, also insert a backref from the
6270  * inode to the parent directory.
6271  */
6272 int btrfs_add_link(struct btrfs_trans_handle *trans,
6273 		   struct inode *parent_inode, struct inode *inode,
6274 		   const char *name, int name_len, int add_backref, u64 index)
6275 {
6276 	int ret = 0;
6277 	struct btrfs_key key;
6278 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6279 	u64 ino = btrfs_ino(inode);
6280 	u64 parent_ino = btrfs_ino(parent_inode);
6281 
6282 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6283 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6284 	} else {
6285 		key.objectid = ino;
6286 		key.type = BTRFS_INODE_ITEM_KEY;
6287 		key.offset = 0;
6288 	}
6289 
6290 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6291 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6292 					 key.objectid, root->root_key.objectid,
6293 					 parent_ino, index, name, name_len);
6294 	} else if (add_backref) {
6295 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6296 					     parent_ino, index);
6297 	}
6298 
6299 	/* Nothing to clean up yet */
6300 	if (ret)
6301 		return ret;
6302 
6303 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6304 				    parent_inode, &key,
6305 				    btrfs_inode_type(inode), index);
6306 	if (ret == -EEXIST || ret == -EOVERFLOW)
6307 		goto fail_dir_item;
6308 	else if (ret) {
6309 		btrfs_abort_transaction(trans, root, ret);
6310 		return ret;
6311 	}
6312 
6313 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6314 			   name_len * 2);
6315 	inode_inc_iversion(parent_inode);
6316 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6317 	ret = btrfs_update_inode(trans, root, parent_inode);
6318 	if (ret)
6319 		btrfs_abort_transaction(trans, root, ret);
6320 	return ret;
6321 
6322 fail_dir_item:
6323 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6324 		u64 local_index;
6325 		int err;
6326 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6327 				 key.objectid, root->root_key.objectid,
6328 				 parent_ino, &local_index, name, name_len);
6329 
6330 	} else if (add_backref) {
6331 		u64 local_index;
6332 		int err;
6333 
6334 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6335 					  ino, parent_ino, &local_index);
6336 	}
6337 	return ret;
6338 }
6339 
6340 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6341 			    struct inode *dir, struct dentry *dentry,
6342 			    struct inode *inode, int backref, u64 index)
6343 {
6344 	int err = btrfs_add_link(trans, dir, inode,
6345 				 dentry->d_name.name, dentry->d_name.len,
6346 				 backref, index);
6347 	if (err > 0)
6348 		err = -EEXIST;
6349 	return err;
6350 }
6351 
6352 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6353 			umode_t mode, dev_t rdev)
6354 {
6355 	struct btrfs_trans_handle *trans;
6356 	struct btrfs_root *root = BTRFS_I(dir)->root;
6357 	struct inode *inode = NULL;
6358 	int err;
6359 	int drop_inode = 0;
6360 	u64 objectid;
6361 	u64 index = 0;
6362 
6363 	if (!new_valid_dev(rdev))
6364 		return -EINVAL;
6365 
6366 	/*
6367 	 * 2 for inode item and ref
6368 	 * 2 for dir items
6369 	 * 1 for xattr if selinux is on
6370 	 */
6371 	trans = btrfs_start_transaction(root, 5);
6372 	if (IS_ERR(trans))
6373 		return PTR_ERR(trans);
6374 
6375 	err = btrfs_find_free_ino(root, &objectid);
6376 	if (err)
6377 		goto out_unlock;
6378 
6379 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6380 				dentry->d_name.len, btrfs_ino(dir), objectid,
6381 				mode, &index);
6382 	if (IS_ERR(inode)) {
6383 		err = PTR_ERR(inode);
6384 		goto out_unlock;
6385 	}
6386 
6387 	/*
6388 	* If the active LSM wants to access the inode during
6389 	* d_instantiate it needs these. Smack checks to see
6390 	* if the filesystem supports xattrs by looking at the
6391 	* ops vector.
6392 	*/
6393 	inode->i_op = &btrfs_special_inode_operations;
6394 	init_special_inode(inode, inode->i_mode, rdev);
6395 
6396 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6397 	if (err)
6398 		goto out_unlock_inode;
6399 
6400 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6401 	if (err) {
6402 		goto out_unlock_inode;
6403 	} else {
6404 		btrfs_update_inode(trans, root, inode);
6405 		unlock_new_inode(inode);
6406 		d_instantiate(dentry, inode);
6407 	}
6408 
6409 out_unlock:
6410 	btrfs_end_transaction(trans, root);
6411 	btrfs_balance_delayed_items(root);
6412 	btrfs_btree_balance_dirty(root);
6413 	if (drop_inode) {
6414 		inode_dec_link_count(inode);
6415 		iput(inode);
6416 	}
6417 	return err;
6418 
6419 out_unlock_inode:
6420 	drop_inode = 1;
6421 	unlock_new_inode(inode);
6422 	goto out_unlock;
6423 
6424 }
6425 
6426 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6427 			umode_t mode, bool excl)
6428 {
6429 	struct btrfs_trans_handle *trans;
6430 	struct btrfs_root *root = BTRFS_I(dir)->root;
6431 	struct inode *inode = NULL;
6432 	int drop_inode_on_err = 0;
6433 	int err;
6434 	u64 objectid;
6435 	u64 index = 0;
6436 
6437 	/*
6438 	 * 2 for inode item and ref
6439 	 * 2 for dir items
6440 	 * 1 for xattr if selinux is on
6441 	 */
6442 	trans = btrfs_start_transaction(root, 5);
6443 	if (IS_ERR(trans))
6444 		return PTR_ERR(trans);
6445 
6446 	err = btrfs_find_free_ino(root, &objectid);
6447 	if (err)
6448 		goto out_unlock;
6449 
6450 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6451 				dentry->d_name.len, btrfs_ino(dir), objectid,
6452 				mode, &index);
6453 	if (IS_ERR(inode)) {
6454 		err = PTR_ERR(inode);
6455 		goto out_unlock;
6456 	}
6457 	drop_inode_on_err = 1;
6458 	/*
6459 	* If the active LSM wants to access the inode during
6460 	* d_instantiate it needs these. Smack checks to see
6461 	* if the filesystem supports xattrs by looking at the
6462 	* ops vector.
6463 	*/
6464 	inode->i_fop = &btrfs_file_operations;
6465 	inode->i_op = &btrfs_file_inode_operations;
6466 	inode->i_mapping->a_ops = &btrfs_aops;
6467 
6468 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6469 	if (err)
6470 		goto out_unlock_inode;
6471 
6472 	err = btrfs_update_inode(trans, root, inode);
6473 	if (err)
6474 		goto out_unlock_inode;
6475 
6476 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6477 	if (err)
6478 		goto out_unlock_inode;
6479 
6480 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6481 	unlock_new_inode(inode);
6482 	d_instantiate(dentry, inode);
6483 
6484 out_unlock:
6485 	btrfs_end_transaction(trans, root);
6486 	if (err && drop_inode_on_err) {
6487 		inode_dec_link_count(inode);
6488 		iput(inode);
6489 	}
6490 	btrfs_balance_delayed_items(root);
6491 	btrfs_btree_balance_dirty(root);
6492 	return err;
6493 
6494 out_unlock_inode:
6495 	unlock_new_inode(inode);
6496 	goto out_unlock;
6497 
6498 }
6499 
6500 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6501 		      struct dentry *dentry)
6502 {
6503 	struct btrfs_trans_handle *trans;
6504 	struct btrfs_root *root = BTRFS_I(dir)->root;
6505 	struct inode *inode = d_inode(old_dentry);
6506 	u64 index;
6507 	int err;
6508 	int drop_inode = 0;
6509 
6510 	/* do not allow sys_link's with other subvols of the same device */
6511 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6512 		return -EXDEV;
6513 
6514 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6515 		return -EMLINK;
6516 
6517 	err = btrfs_set_inode_index(dir, &index);
6518 	if (err)
6519 		goto fail;
6520 
6521 	/*
6522 	 * 2 items for inode and inode ref
6523 	 * 2 items for dir items
6524 	 * 1 item for parent inode
6525 	 */
6526 	trans = btrfs_start_transaction(root, 5);
6527 	if (IS_ERR(trans)) {
6528 		err = PTR_ERR(trans);
6529 		goto fail;
6530 	}
6531 
6532 	/* There are several dir indexes for this inode, clear the cache. */
6533 	BTRFS_I(inode)->dir_index = 0ULL;
6534 	inc_nlink(inode);
6535 	inode_inc_iversion(inode);
6536 	inode->i_ctime = CURRENT_TIME;
6537 	ihold(inode);
6538 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6539 
6540 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6541 
6542 	if (err) {
6543 		drop_inode = 1;
6544 	} else {
6545 		struct dentry *parent = dentry->d_parent;
6546 		err = btrfs_update_inode(trans, root, inode);
6547 		if (err)
6548 			goto fail;
6549 		if (inode->i_nlink == 1) {
6550 			/*
6551 			 * If new hard link count is 1, it's a file created
6552 			 * with open(2) O_TMPFILE flag.
6553 			 */
6554 			err = btrfs_orphan_del(trans, inode);
6555 			if (err)
6556 				goto fail;
6557 		}
6558 		d_instantiate(dentry, inode);
6559 		btrfs_log_new_name(trans, inode, NULL, parent);
6560 	}
6561 
6562 	btrfs_end_transaction(trans, root);
6563 	btrfs_balance_delayed_items(root);
6564 fail:
6565 	if (drop_inode) {
6566 		inode_dec_link_count(inode);
6567 		iput(inode);
6568 	}
6569 	btrfs_btree_balance_dirty(root);
6570 	return err;
6571 }
6572 
6573 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6574 {
6575 	struct inode *inode = NULL;
6576 	struct btrfs_trans_handle *trans;
6577 	struct btrfs_root *root = BTRFS_I(dir)->root;
6578 	int err = 0;
6579 	int drop_on_err = 0;
6580 	u64 objectid = 0;
6581 	u64 index = 0;
6582 
6583 	/*
6584 	 * 2 items for inode and ref
6585 	 * 2 items for dir items
6586 	 * 1 for xattr if selinux is on
6587 	 */
6588 	trans = btrfs_start_transaction(root, 5);
6589 	if (IS_ERR(trans))
6590 		return PTR_ERR(trans);
6591 
6592 	err = btrfs_find_free_ino(root, &objectid);
6593 	if (err)
6594 		goto out_fail;
6595 
6596 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6597 				dentry->d_name.len, btrfs_ino(dir), objectid,
6598 				S_IFDIR | mode, &index);
6599 	if (IS_ERR(inode)) {
6600 		err = PTR_ERR(inode);
6601 		goto out_fail;
6602 	}
6603 
6604 	drop_on_err = 1;
6605 	/* these must be set before we unlock the inode */
6606 	inode->i_op = &btrfs_dir_inode_operations;
6607 	inode->i_fop = &btrfs_dir_file_operations;
6608 
6609 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6610 	if (err)
6611 		goto out_fail_inode;
6612 
6613 	btrfs_i_size_write(inode, 0);
6614 	err = btrfs_update_inode(trans, root, inode);
6615 	if (err)
6616 		goto out_fail_inode;
6617 
6618 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6619 			     dentry->d_name.len, 0, index);
6620 	if (err)
6621 		goto out_fail_inode;
6622 
6623 	d_instantiate(dentry, inode);
6624 	/*
6625 	 * mkdir is special.  We're unlocking after we call d_instantiate
6626 	 * to avoid a race with nfsd calling d_instantiate.
6627 	 */
6628 	unlock_new_inode(inode);
6629 	drop_on_err = 0;
6630 
6631 out_fail:
6632 	btrfs_end_transaction(trans, root);
6633 	if (drop_on_err) {
6634 		inode_dec_link_count(inode);
6635 		iput(inode);
6636 	}
6637 	btrfs_balance_delayed_items(root);
6638 	btrfs_btree_balance_dirty(root);
6639 	return err;
6640 
6641 out_fail_inode:
6642 	unlock_new_inode(inode);
6643 	goto out_fail;
6644 }
6645 
6646 /* Find next extent map of a given extent map, caller needs to ensure locks */
6647 static struct extent_map *next_extent_map(struct extent_map *em)
6648 {
6649 	struct rb_node *next;
6650 
6651 	next = rb_next(&em->rb_node);
6652 	if (!next)
6653 		return NULL;
6654 	return container_of(next, struct extent_map, rb_node);
6655 }
6656 
6657 static struct extent_map *prev_extent_map(struct extent_map *em)
6658 {
6659 	struct rb_node *prev;
6660 
6661 	prev = rb_prev(&em->rb_node);
6662 	if (!prev)
6663 		return NULL;
6664 	return container_of(prev, struct extent_map, rb_node);
6665 }
6666 
6667 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6668  * the existing extent is the nearest extent to map_start,
6669  * and an extent that you want to insert, deal with overlap and insert
6670  * the best fitted new extent into the tree.
6671  */
6672 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6673 				struct extent_map *existing,
6674 				struct extent_map *em,
6675 				u64 map_start)
6676 {
6677 	struct extent_map *prev;
6678 	struct extent_map *next;
6679 	u64 start;
6680 	u64 end;
6681 	u64 start_diff;
6682 
6683 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6684 
6685 	if (existing->start > map_start) {
6686 		next = existing;
6687 		prev = prev_extent_map(next);
6688 	} else {
6689 		prev = existing;
6690 		next = next_extent_map(prev);
6691 	}
6692 
6693 	start = prev ? extent_map_end(prev) : em->start;
6694 	start = max_t(u64, start, em->start);
6695 	end = next ? next->start : extent_map_end(em);
6696 	end = min_t(u64, end, extent_map_end(em));
6697 	start_diff = start - em->start;
6698 	em->start = start;
6699 	em->len = end - start;
6700 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6701 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6702 		em->block_start += start_diff;
6703 		em->block_len -= start_diff;
6704 	}
6705 	return add_extent_mapping(em_tree, em, 0);
6706 }
6707 
6708 static noinline int uncompress_inline(struct btrfs_path *path,
6709 				      struct inode *inode, struct page *page,
6710 				      size_t pg_offset, u64 extent_offset,
6711 				      struct btrfs_file_extent_item *item)
6712 {
6713 	int ret;
6714 	struct extent_buffer *leaf = path->nodes[0];
6715 	char *tmp;
6716 	size_t max_size;
6717 	unsigned long inline_size;
6718 	unsigned long ptr;
6719 	int compress_type;
6720 
6721 	WARN_ON(pg_offset != 0);
6722 	compress_type = btrfs_file_extent_compression(leaf, item);
6723 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6724 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6725 					btrfs_item_nr(path->slots[0]));
6726 	tmp = kmalloc(inline_size, GFP_NOFS);
6727 	if (!tmp)
6728 		return -ENOMEM;
6729 	ptr = btrfs_file_extent_inline_start(item);
6730 
6731 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6732 
6733 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6734 	ret = btrfs_decompress(compress_type, tmp, page,
6735 			       extent_offset, inline_size, max_size);
6736 	kfree(tmp);
6737 	return ret;
6738 }
6739 
6740 /*
6741  * a bit scary, this does extent mapping from logical file offset to the disk.
6742  * the ugly parts come from merging extents from the disk with the in-ram
6743  * representation.  This gets more complex because of the data=ordered code,
6744  * where the in-ram extents might be locked pending data=ordered completion.
6745  *
6746  * This also copies inline extents directly into the page.
6747  */
6748 
6749 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6750 				    size_t pg_offset, u64 start, u64 len,
6751 				    int create)
6752 {
6753 	int ret;
6754 	int err = 0;
6755 	u64 extent_start = 0;
6756 	u64 extent_end = 0;
6757 	u64 objectid = btrfs_ino(inode);
6758 	u32 found_type;
6759 	struct btrfs_path *path = NULL;
6760 	struct btrfs_root *root = BTRFS_I(inode)->root;
6761 	struct btrfs_file_extent_item *item;
6762 	struct extent_buffer *leaf;
6763 	struct btrfs_key found_key;
6764 	struct extent_map *em = NULL;
6765 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6766 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6767 	struct btrfs_trans_handle *trans = NULL;
6768 	const bool new_inline = !page || create;
6769 
6770 again:
6771 	read_lock(&em_tree->lock);
6772 	em = lookup_extent_mapping(em_tree, start, len);
6773 	if (em)
6774 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6775 	read_unlock(&em_tree->lock);
6776 
6777 	if (em) {
6778 		if (em->start > start || em->start + em->len <= start)
6779 			free_extent_map(em);
6780 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6781 			free_extent_map(em);
6782 		else
6783 			goto out;
6784 	}
6785 	em = alloc_extent_map();
6786 	if (!em) {
6787 		err = -ENOMEM;
6788 		goto out;
6789 	}
6790 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6791 	em->start = EXTENT_MAP_HOLE;
6792 	em->orig_start = EXTENT_MAP_HOLE;
6793 	em->len = (u64)-1;
6794 	em->block_len = (u64)-1;
6795 
6796 	if (!path) {
6797 		path = btrfs_alloc_path();
6798 		if (!path) {
6799 			err = -ENOMEM;
6800 			goto out;
6801 		}
6802 		/*
6803 		 * Chances are we'll be called again, so go ahead and do
6804 		 * readahead
6805 		 */
6806 		path->reada = 1;
6807 	}
6808 
6809 	ret = btrfs_lookup_file_extent(trans, root, path,
6810 				       objectid, start, trans != NULL);
6811 	if (ret < 0) {
6812 		err = ret;
6813 		goto out;
6814 	}
6815 
6816 	if (ret != 0) {
6817 		if (path->slots[0] == 0)
6818 			goto not_found;
6819 		path->slots[0]--;
6820 	}
6821 
6822 	leaf = path->nodes[0];
6823 	item = btrfs_item_ptr(leaf, path->slots[0],
6824 			      struct btrfs_file_extent_item);
6825 	/* are we inside the extent that was found? */
6826 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6827 	found_type = found_key.type;
6828 	if (found_key.objectid != objectid ||
6829 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6830 		/*
6831 		 * If we backup past the first extent we want to move forward
6832 		 * and see if there is an extent in front of us, otherwise we'll
6833 		 * say there is a hole for our whole search range which can
6834 		 * cause problems.
6835 		 */
6836 		extent_end = start;
6837 		goto next;
6838 	}
6839 
6840 	found_type = btrfs_file_extent_type(leaf, item);
6841 	extent_start = found_key.offset;
6842 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6843 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6844 		extent_end = extent_start +
6845 		       btrfs_file_extent_num_bytes(leaf, item);
6846 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6847 		size_t size;
6848 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6849 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6850 	}
6851 next:
6852 	if (start >= extent_end) {
6853 		path->slots[0]++;
6854 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6855 			ret = btrfs_next_leaf(root, path);
6856 			if (ret < 0) {
6857 				err = ret;
6858 				goto out;
6859 			}
6860 			if (ret > 0)
6861 				goto not_found;
6862 			leaf = path->nodes[0];
6863 		}
6864 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6865 		if (found_key.objectid != objectid ||
6866 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6867 			goto not_found;
6868 		if (start + len <= found_key.offset)
6869 			goto not_found;
6870 		if (start > found_key.offset)
6871 			goto next;
6872 		em->start = start;
6873 		em->orig_start = start;
6874 		em->len = found_key.offset - start;
6875 		goto not_found_em;
6876 	}
6877 
6878 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6879 
6880 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6881 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6882 		goto insert;
6883 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6884 		unsigned long ptr;
6885 		char *map;
6886 		size_t size;
6887 		size_t extent_offset;
6888 		size_t copy_size;
6889 
6890 		if (new_inline)
6891 			goto out;
6892 
6893 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6894 		extent_offset = page_offset(page) + pg_offset - extent_start;
6895 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6896 				size - extent_offset);
6897 		em->start = extent_start + extent_offset;
6898 		em->len = ALIGN(copy_size, root->sectorsize);
6899 		em->orig_block_len = em->len;
6900 		em->orig_start = em->start;
6901 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6902 		if (create == 0 && !PageUptodate(page)) {
6903 			if (btrfs_file_extent_compression(leaf, item) !=
6904 			    BTRFS_COMPRESS_NONE) {
6905 				ret = uncompress_inline(path, inode, page,
6906 							pg_offset,
6907 							extent_offset, item);
6908 				if (ret) {
6909 					err = ret;
6910 					goto out;
6911 				}
6912 			} else {
6913 				map = kmap(page);
6914 				read_extent_buffer(leaf, map + pg_offset, ptr,
6915 						   copy_size);
6916 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6917 					memset(map + pg_offset + copy_size, 0,
6918 					       PAGE_CACHE_SIZE - pg_offset -
6919 					       copy_size);
6920 				}
6921 				kunmap(page);
6922 			}
6923 			flush_dcache_page(page);
6924 		} else if (create && PageUptodate(page)) {
6925 			BUG();
6926 			if (!trans) {
6927 				kunmap(page);
6928 				free_extent_map(em);
6929 				em = NULL;
6930 
6931 				btrfs_release_path(path);
6932 				trans = btrfs_join_transaction(root);
6933 
6934 				if (IS_ERR(trans))
6935 					return ERR_CAST(trans);
6936 				goto again;
6937 			}
6938 			map = kmap(page);
6939 			write_extent_buffer(leaf, map + pg_offset, ptr,
6940 					    copy_size);
6941 			kunmap(page);
6942 			btrfs_mark_buffer_dirty(leaf);
6943 		}
6944 		set_extent_uptodate(io_tree, em->start,
6945 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6946 		goto insert;
6947 	}
6948 not_found:
6949 	em->start = start;
6950 	em->orig_start = start;
6951 	em->len = len;
6952 not_found_em:
6953 	em->block_start = EXTENT_MAP_HOLE;
6954 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6955 insert:
6956 	btrfs_release_path(path);
6957 	if (em->start > start || extent_map_end(em) <= start) {
6958 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6959 			em->start, em->len, start, len);
6960 		err = -EIO;
6961 		goto out;
6962 	}
6963 
6964 	err = 0;
6965 	write_lock(&em_tree->lock);
6966 	ret = add_extent_mapping(em_tree, em, 0);
6967 	/* it is possible that someone inserted the extent into the tree
6968 	 * while we had the lock dropped.  It is also possible that
6969 	 * an overlapping map exists in the tree
6970 	 */
6971 	if (ret == -EEXIST) {
6972 		struct extent_map *existing;
6973 
6974 		ret = 0;
6975 
6976 		existing = search_extent_mapping(em_tree, start, len);
6977 		/*
6978 		 * existing will always be non-NULL, since there must be
6979 		 * extent causing the -EEXIST.
6980 		 */
6981 		if (start >= extent_map_end(existing) ||
6982 		    start <= existing->start) {
6983 			/*
6984 			 * The existing extent map is the one nearest to
6985 			 * the [start, start + len) range which overlaps
6986 			 */
6987 			err = merge_extent_mapping(em_tree, existing,
6988 						   em, start);
6989 			free_extent_map(existing);
6990 			if (err) {
6991 				free_extent_map(em);
6992 				em = NULL;
6993 			}
6994 		} else {
6995 			free_extent_map(em);
6996 			em = existing;
6997 			err = 0;
6998 		}
6999 	}
7000 	write_unlock(&em_tree->lock);
7001 out:
7002 
7003 	trace_btrfs_get_extent(root, em);
7004 
7005 	btrfs_free_path(path);
7006 	if (trans) {
7007 		ret = btrfs_end_transaction(trans, root);
7008 		if (!err)
7009 			err = ret;
7010 	}
7011 	if (err) {
7012 		free_extent_map(em);
7013 		return ERR_PTR(err);
7014 	}
7015 	BUG_ON(!em); /* Error is always set */
7016 	return em;
7017 }
7018 
7019 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7020 					   size_t pg_offset, u64 start, u64 len,
7021 					   int create)
7022 {
7023 	struct extent_map *em;
7024 	struct extent_map *hole_em = NULL;
7025 	u64 range_start = start;
7026 	u64 end;
7027 	u64 found;
7028 	u64 found_end;
7029 	int err = 0;
7030 
7031 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7032 	if (IS_ERR(em))
7033 		return em;
7034 	if (em) {
7035 		/*
7036 		 * if our em maps to
7037 		 * -  a hole or
7038 		 * -  a pre-alloc extent,
7039 		 * there might actually be delalloc bytes behind it.
7040 		 */
7041 		if (em->block_start != EXTENT_MAP_HOLE &&
7042 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7043 			return em;
7044 		else
7045 			hole_em = em;
7046 	}
7047 
7048 	/* check to see if we've wrapped (len == -1 or similar) */
7049 	end = start + len;
7050 	if (end < start)
7051 		end = (u64)-1;
7052 	else
7053 		end -= 1;
7054 
7055 	em = NULL;
7056 
7057 	/* ok, we didn't find anything, lets look for delalloc */
7058 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7059 				 end, len, EXTENT_DELALLOC, 1);
7060 	found_end = range_start + found;
7061 	if (found_end < range_start)
7062 		found_end = (u64)-1;
7063 
7064 	/*
7065 	 * we didn't find anything useful, return
7066 	 * the original results from get_extent()
7067 	 */
7068 	if (range_start > end || found_end <= start) {
7069 		em = hole_em;
7070 		hole_em = NULL;
7071 		goto out;
7072 	}
7073 
7074 	/* adjust the range_start to make sure it doesn't
7075 	 * go backwards from the start they passed in
7076 	 */
7077 	range_start = max(start, range_start);
7078 	found = found_end - range_start;
7079 
7080 	if (found > 0) {
7081 		u64 hole_start = start;
7082 		u64 hole_len = len;
7083 
7084 		em = alloc_extent_map();
7085 		if (!em) {
7086 			err = -ENOMEM;
7087 			goto out;
7088 		}
7089 		/*
7090 		 * when btrfs_get_extent can't find anything it
7091 		 * returns one huge hole
7092 		 *
7093 		 * make sure what it found really fits our range, and
7094 		 * adjust to make sure it is based on the start from
7095 		 * the caller
7096 		 */
7097 		if (hole_em) {
7098 			u64 calc_end = extent_map_end(hole_em);
7099 
7100 			if (calc_end <= start || (hole_em->start > end)) {
7101 				free_extent_map(hole_em);
7102 				hole_em = NULL;
7103 			} else {
7104 				hole_start = max(hole_em->start, start);
7105 				hole_len = calc_end - hole_start;
7106 			}
7107 		}
7108 		em->bdev = NULL;
7109 		if (hole_em && range_start > hole_start) {
7110 			/* our hole starts before our delalloc, so we
7111 			 * have to return just the parts of the hole
7112 			 * that go until  the delalloc starts
7113 			 */
7114 			em->len = min(hole_len,
7115 				      range_start - hole_start);
7116 			em->start = hole_start;
7117 			em->orig_start = hole_start;
7118 			/*
7119 			 * don't adjust block start at all,
7120 			 * it is fixed at EXTENT_MAP_HOLE
7121 			 */
7122 			em->block_start = hole_em->block_start;
7123 			em->block_len = hole_len;
7124 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7125 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7126 		} else {
7127 			em->start = range_start;
7128 			em->len = found;
7129 			em->orig_start = range_start;
7130 			em->block_start = EXTENT_MAP_DELALLOC;
7131 			em->block_len = found;
7132 		}
7133 	} else if (hole_em) {
7134 		return hole_em;
7135 	}
7136 out:
7137 
7138 	free_extent_map(hole_em);
7139 	if (err) {
7140 		free_extent_map(em);
7141 		return ERR_PTR(err);
7142 	}
7143 	return em;
7144 }
7145 
7146 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7147 						  u64 start, u64 len)
7148 {
7149 	struct btrfs_root *root = BTRFS_I(inode)->root;
7150 	struct extent_map *em;
7151 	struct btrfs_key ins;
7152 	u64 alloc_hint;
7153 	int ret;
7154 
7155 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7156 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7157 				   alloc_hint, &ins, 1, 1);
7158 	if (ret)
7159 		return ERR_PTR(ret);
7160 
7161 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7162 			      ins.offset, ins.offset, ins.offset, 0);
7163 	if (IS_ERR(em)) {
7164 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7165 		return em;
7166 	}
7167 
7168 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7169 					   ins.offset, ins.offset, 0);
7170 	if (ret) {
7171 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7172 		free_extent_map(em);
7173 		return ERR_PTR(ret);
7174 	}
7175 
7176 	return em;
7177 }
7178 
7179 /*
7180  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7181  * block must be cow'd
7182  */
7183 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7184 			      u64 *orig_start, u64 *orig_block_len,
7185 			      u64 *ram_bytes)
7186 {
7187 	struct btrfs_trans_handle *trans;
7188 	struct btrfs_path *path;
7189 	int ret;
7190 	struct extent_buffer *leaf;
7191 	struct btrfs_root *root = BTRFS_I(inode)->root;
7192 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7193 	struct btrfs_file_extent_item *fi;
7194 	struct btrfs_key key;
7195 	u64 disk_bytenr;
7196 	u64 backref_offset;
7197 	u64 extent_end;
7198 	u64 num_bytes;
7199 	int slot;
7200 	int found_type;
7201 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7202 
7203 	path = btrfs_alloc_path();
7204 	if (!path)
7205 		return -ENOMEM;
7206 
7207 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7208 				       offset, 0);
7209 	if (ret < 0)
7210 		goto out;
7211 
7212 	slot = path->slots[0];
7213 	if (ret == 1) {
7214 		if (slot == 0) {
7215 			/* can't find the item, must cow */
7216 			ret = 0;
7217 			goto out;
7218 		}
7219 		slot--;
7220 	}
7221 	ret = 0;
7222 	leaf = path->nodes[0];
7223 	btrfs_item_key_to_cpu(leaf, &key, slot);
7224 	if (key.objectid != btrfs_ino(inode) ||
7225 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7226 		/* not our file or wrong item type, must cow */
7227 		goto out;
7228 	}
7229 
7230 	if (key.offset > offset) {
7231 		/* Wrong offset, must cow */
7232 		goto out;
7233 	}
7234 
7235 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7236 	found_type = btrfs_file_extent_type(leaf, fi);
7237 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7238 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7239 		/* not a regular extent, must cow */
7240 		goto out;
7241 	}
7242 
7243 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7244 		goto out;
7245 
7246 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7247 	if (extent_end <= offset)
7248 		goto out;
7249 
7250 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7251 	if (disk_bytenr == 0)
7252 		goto out;
7253 
7254 	if (btrfs_file_extent_compression(leaf, fi) ||
7255 	    btrfs_file_extent_encryption(leaf, fi) ||
7256 	    btrfs_file_extent_other_encoding(leaf, fi))
7257 		goto out;
7258 
7259 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7260 
7261 	if (orig_start) {
7262 		*orig_start = key.offset - backref_offset;
7263 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7264 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7265 	}
7266 
7267 	if (btrfs_extent_readonly(root, disk_bytenr))
7268 		goto out;
7269 
7270 	num_bytes = min(offset + *len, extent_end) - offset;
7271 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7272 		u64 range_end;
7273 
7274 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7275 		ret = test_range_bit(io_tree, offset, range_end,
7276 				     EXTENT_DELALLOC, 0, NULL);
7277 		if (ret) {
7278 			ret = -EAGAIN;
7279 			goto out;
7280 		}
7281 	}
7282 
7283 	btrfs_release_path(path);
7284 
7285 	/*
7286 	 * look for other files referencing this extent, if we
7287 	 * find any we must cow
7288 	 */
7289 	trans = btrfs_join_transaction(root);
7290 	if (IS_ERR(trans)) {
7291 		ret = 0;
7292 		goto out;
7293 	}
7294 
7295 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7296 				    key.offset - backref_offset, disk_bytenr);
7297 	btrfs_end_transaction(trans, root);
7298 	if (ret) {
7299 		ret = 0;
7300 		goto out;
7301 	}
7302 
7303 	/*
7304 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7305 	 * in this extent we are about to write.  If there
7306 	 * are any csums in that range we have to cow in order
7307 	 * to keep the csums correct
7308 	 */
7309 	disk_bytenr += backref_offset;
7310 	disk_bytenr += offset - key.offset;
7311 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7312 				goto out;
7313 	/*
7314 	 * all of the above have passed, it is safe to overwrite this extent
7315 	 * without cow
7316 	 */
7317 	*len = num_bytes;
7318 	ret = 1;
7319 out:
7320 	btrfs_free_path(path);
7321 	return ret;
7322 }
7323 
7324 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7325 {
7326 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7327 	int found = false;
7328 	void **pagep = NULL;
7329 	struct page *page = NULL;
7330 	int start_idx;
7331 	int end_idx;
7332 
7333 	start_idx = start >> PAGE_CACHE_SHIFT;
7334 
7335 	/*
7336 	 * end is the last byte in the last page.  end == start is legal
7337 	 */
7338 	end_idx = end >> PAGE_CACHE_SHIFT;
7339 
7340 	rcu_read_lock();
7341 
7342 	/* Most of the code in this while loop is lifted from
7343 	 * find_get_page.  It's been modified to begin searching from a
7344 	 * page and return just the first page found in that range.  If the
7345 	 * found idx is less than or equal to the end idx then we know that
7346 	 * a page exists.  If no pages are found or if those pages are
7347 	 * outside of the range then we're fine (yay!) */
7348 	while (page == NULL &&
7349 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7350 		page = radix_tree_deref_slot(pagep);
7351 		if (unlikely(!page))
7352 			break;
7353 
7354 		if (radix_tree_exception(page)) {
7355 			if (radix_tree_deref_retry(page)) {
7356 				page = NULL;
7357 				continue;
7358 			}
7359 			/*
7360 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7361 			 * here as an exceptional entry: so return it without
7362 			 * attempting to raise page count.
7363 			 */
7364 			page = NULL;
7365 			break; /* TODO: Is this relevant for this use case? */
7366 		}
7367 
7368 		if (!page_cache_get_speculative(page)) {
7369 			page = NULL;
7370 			continue;
7371 		}
7372 
7373 		/*
7374 		 * Has the page moved?
7375 		 * This is part of the lockless pagecache protocol. See
7376 		 * include/linux/pagemap.h for details.
7377 		 */
7378 		if (unlikely(page != *pagep)) {
7379 			page_cache_release(page);
7380 			page = NULL;
7381 		}
7382 	}
7383 
7384 	if (page) {
7385 		if (page->index <= end_idx)
7386 			found = true;
7387 		page_cache_release(page);
7388 	}
7389 
7390 	rcu_read_unlock();
7391 	return found;
7392 }
7393 
7394 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7395 			      struct extent_state **cached_state, int writing)
7396 {
7397 	struct btrfs_ordered_extent *ordered;
7398 	int ret = 0;
7399 
7400 	while (1) {
7401 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7402 				 0, cached_state);
7403 		/*
7404 		 * We're concerned with the entire range that we're going to be
7405 		 * doing DIO to, so we need to make sure theres no ordered
7406 		 * extents in this range.
7407 		 */
7408 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7409 						     lockend - lockstart + 1);
7410 
7411 		/*
7412 		 * We need to make sure there are no buffered pages in this
7413 		 * range either, we could have raced between the invalidate in
7414 		 * generic_file_direct_write and locking the extent.  The
7415 		 * invalidate needs to happen so that reads after a write do not
7416 		 * get stale data.
7417 		 */
7418 		if (!ordered &&
7419 		    (!writing ||
7420 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7421 			break;
7422 
7423 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7424 				     cached_state, GFP_NOFS);
7425 
7426 		if (ordered) {
7427 			btrfs_start_ordered_extent(inode, ordered, 1);
7428 			btrfs_put_ordered_extent(ordered);
7429 		} else {
7430 			/* Screw you mmap */
7431 			ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7432 			if (ret)
7433 				break;
7434 			ret = filemap_fdatawait_range(inode->i_mapping,
7435 						      lockstart,
7436 						      lockend);
7437 			if (ret)
7438 				break;
7439 
7440 			/*
7441 			 * If we found a page that couldn't be invalidated just
7442 			 * fall back to buffered.
7443 			 */
7444 			ret = invalidate_inode_pages2_range(inode->i_mapping,
7445 					lockstart >> PAGE_CACHE_SHIFT,
7446 					lockend >> PAGE_CACHE_SHIFT);
7447 			if (ret)
7448 				break;
7449 		}
7450 
7451 		cond_resched();
7452 	}
7453 
7454 	return ret;
7455 }
7456 
7457 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7458 					   u64 len, u64 orig_start,
7459 					   u64 block_start, u64 block_len,
7460 					   u64 orig_block_len, u64 ram_bytes,
7461 					   int type)
7462 {
7463 	struct extent_map_tree *em_tree;
7464 	struct extent_map *em;
7465 	struct btrfs_root *root = BTRFS_I(inode)->root;
7466 	int ret;
7467 
7468 	em_tree = &BTRFS_I(inode)->extent_tree;
7469 	em = alloc_extent_map();
7470 	if (!em)
7471 		return ERR_PTR(-ENOMEM);
7472 
7473 	em->start = start;
7474 	em->orig_start = orig_start;
7475 	em->mod_start = start;
7476 	em->mod_len = len;
7477 	em->len = len;
7478 	em->block_len = block_len;
7479 	em->block_start = block_start;
7480 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7481 	em->orig_block_len = orig_block_len;
7482 	em->ram_bytes = ram_bytes;
7483 	em->generation = -1;
7484 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7485 	if (type == BTRFS_ORDERED_PREALLOC)
7486 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7487 
7488 	do {
7489 		btrfs_drop_extent_cache(inode, em->start,
7490 				em->start + em->len - 1, 0);
7491 		write_lock(&em_tree->lock);
7492 		ret = add_extent_mapping(em_tree, em, 1);
7493 		write_unlock(&em_tree->lock);
7494 	} while (ret == -EEXIST);
7495 
7496 	if (ret) {
7497 		free_extent_map(em);
7498 		return ERR_PTR(ret);
7499 	}
7500 
7501 	return em;
7502 }
7503 
7504 struct btrfs_dio_data {
7505 	u64 outstanding_extents;
7506 	u64 reserve;
7507 };
7508 
7509 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7510 				   struct buffer_head *bh_result, int create)
7511 {
7512 	struct extent_map *em;
7513 	struct btrfs_root *root = BTRFS_I(inode)->root;
7514 	struct extent_state *cached_state = NULL;
7515 	struct btrfs_dio_data *dio_data = NULL;
7516 	u64 start = iblock << inode->i_blkbits;
7517 	u64 lockstart, lockend;
7518 	u64 len = bh_result->b_size;
7519 	int unlock_bits = EXTENT_LOCKED;
7520 	int ret = 0;
7521 
7522 	if (create)
7523 		unlock_bits |= EXTENT_DIRTY;
7524 	else
7525 		len = min_t(u64, len, root->sectorsize);
7526 
7527 	lockstart = start;
7528 	lockend = start + len - 1;
7529 
7530 	if (current->journal_info) {
7531 		/*
7532 		 * Need to pull our outstanding extents and set journal_info to NULL so
7533 		 * that anything that needs to check if there's a transction doesn't get
7534 		 * confused.
7535 		 */
7536 		dio_data = current->journal_info;
7537 		current->journal_info = NULL;
7538 	}
7539 
7540 	/*
7541 	 * If this errors out it's because we couldn't invalidate pagecache for
7542 	 * this range and we need to fallback to buffered.
7543 	 */
7544 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7545 		return -ENOTBLK;
7546 
7547 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7548 	if (IS_ERR(em)) {
7549 		ret = PTR_ERR(em);
7550 		goto unlock_err;
7551 	}
7552 
7553 	/*
7554 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7555 	 * io.  INLINE is special, and we could probably kludge it in here, but
7556 	 * it's still buffered so for safety lets just fall back to the generic
7557 	 * buffered path.
7558 	 *
7559 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7560 	 * decompress it, so there will be buffering required no matter what we
7561 	 * do, so go ahead and fallback to buffered.
7562 	 *
7563 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7564 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7565 	 * the generic code.
7566 	 */
7567 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7568 	    em->block_start == EXTENT_MAP_INLINE) {
7569 		free_extent_map(em);
7570 		ret = -ENOTBLK;
7571 		goto unlock_err;
7572 	}
7573 
7574 	/* Just a good old fashioned hole, return */
7575 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7576 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7577 		free_extent_map(em);
7578 		goto unlock_err;
7579 	}
7580 
7581 	/*
7582 	 * We don't allocate a new extent in the following cases
7583 	 *
7584 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7585 	 * existing extent.
7586 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7587 	 * just use the extent.
7588 	 *
7589 	 */
7590 	if (!create) {
7591 		len = min(len, em->len - (start - em->start));
7592 		lockstart = start + len;
7593 		goto unlock;
7594 	}
7595 
7596 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7597 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7598 	     em->block_start != EXTENT_MAP_HOLE)) {
7599 		int type;
7600 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7601 
7602 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7603 			type = BTRFS_ORDERED_PREALLOC;
7604 		else
7605 			type = BTRFS_ORDERED_NOCOW;
7606 		len = min(len, em->len - (start - em->start));
7607 		block_start = em->block_start + (start - em->start);
7608 
7609 		if (can_nocow_extent(inode, start, &len, &orig_start,
7610 				     &orig_block_len, &ram_bytes) == 1) {
7611 			if (type == BTRFS_ORDERED_PREALLOC) {
7612 				free_extent_map(em);
7613 				em = create_pinned_em(inode, start, len,
7614 						       orig_start,
7615 						       block_start, len,
7616 						       orig_block_len,
7617 						       ram_bytes, type);
7618 				if (IS_ERR(em)) {
7619 					ret = PTR_ERR(em);
7620 					goto unlock_err;
7621 				}
7622 			}
7623 
7624 			ret = btrfs_add_ordered_extent_dio(inode, start,
7625 					   block_start, len, len, type);
7626 			if (ret) {
7627 				free_extent_map(em);
7628 				goto unlock_err;
7629 			}
7630 			goto unlock;
7631 		}
7632 	}
7633 
7634 	/*
7635 	 * this will cow the extent, reset the len in case we changed
7636 	 * it above
7637 	 */
7638 	len = bh_result->b_size;
7639 	free_extent_map(em);
7640 	em = btrfs_new_extent_direct(inode, start, len);
7641 	if (IS_ERR(em)) {
7642 		ret = PTR_ERR(em);
7643 		goto unlock_err;
7644 	}
7645 	len = min(len, em->len - (start - em->start));
7646 unlock:
7647 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7648 		inode->i_blkbits;
7649 	bh_result->b_size = len;
7650 	bh_result->b_bdev = em->bdev;
7651 	set_buffer_mapped(bh_result);
7652 	if (create) {
7653 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7654 			set_buffer_new(bh_result);
7655 
7656 		/*
7657 		 * Need to update the i_size under the extent lock so buffered
7658 		 * readers will get the updated i_size when we unlock.
7659 		 */
7660 		if (start + len > i_size_read(inode))
7661 			i_size_write(inode, start + len);
7662 
7663 		/*
7664 		 * If we have an outstanding_extents count still set then we're
7665 		 * within our reservation, otherwise we need to adjust our inode
7666 		 * counter appropriately.
7667 		 */
7668 		if (dio_data->outstanding_extents) {
7669 			(dio_data->outstanding_extents)--;
7670 		} else {
7671 			spin_lock(&BTRFS_I(inode)->lock);
7672 			BTRFS_I(inode)->outstanding_extents++;
7673 			spin_unlock(&BTRFS_I(inode)->lock);
7674 		}
7675 
7676 		btrfs_free_reserved_data_space(inode, start, len);
7677 		WARN_ON(dio_data->reserve < len);
7678 		dio_data->reserve -= len;
7679 		current->journal_info = dio_data;
7680 	}
7681 
7682 	/*
7683 	 * In the case of write we need to clear and unlock the entire range,
7684 	 * in the case of read we need to unlock only the end area that we
7685 	 * aren't using if there is any left over space.
7686 	 */
7687 	if (lockstart < lockend) {
7688 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7689 				 lockend, unlock_bits, 1, 0,
7690 				 &cached_state, GFP_NOFS);
7691 	} else {
7692 		free_extent_state(cached_state);
7693 	}
7694 
7695 	free_extent_map(em);
7696 
7697 	return 0;
7698 
7699 unlock_err:
7700 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7701 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7702 	if (dio_data)
7703 		current->journal_info = dio_data;
7704 	return ret;
7705 }
7706 
7707 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7708 					int rw, int mirror_num)
7709 {
7710 	struct btrfs_root *root = BTRFS_I(inode)->root;
7711 	int ret;
7712 
7713 	BUG_ON(rw & REQ_WRITE);
7714 
7715 	bio_get(bio);
7716 
7717 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7718 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7719 	if (ret)
7720 		goto err;
7721 
7722 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7723 err:
7724 	bio_put(bio);
7725 	return ret;
7726 }
7727 
7728 static int btrfs_check_dio_repairable(struct inode *inode,
7729 				      struct bio *failed_bio,
7730 				      struct io_failure_record *failrec,
7731 				      int failed_mirror)
7732 {
7733 	int num_copies;
7734 
7735 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7736 				      failrec->logical, failrec->len);
7737 	if (num_copies == 1) {
7738 		/*
7739 		 * we only have a single copy of the data, so don't bother with
7740 		 * all the retry and error correction code that follows. no
7741 		 * matter what the error is, it is very likely to persist.
7742 		 */
7743 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7744 			 num_copies, failrec->this_mirror, failed_mirror);
7745 		return 0;
7746 	}
7747 
7748 	failrec->failed_mirror = failed_mirror;
7749 	failrec->this_mirror++;
7750 	if (failrec->this_mirror == failed_mirror)
7751 		failrec->this_mirror++;
7752 
7753 	if (failrec->this_mirror > num_copies) {
7754 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7755 			 num_copies, failrec->this_mirror, failed_mirror);
7756 		return 0;
7757 	}
7758 
7759 	return 1;
7760 }
7761 
7762 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7763 			  struct page *page, u64 start, u64 end,
7764 			  int failed_mirror, bio_end_io_t *repair_endio,
7765 			  void *repair_arg)
7766 {
7767 	struct io_failure_record *failrec;
7768 	struct bio *bio;
7769 	int isector;
7770 	int read_mode;
7771 	int ret;
7772 
7773 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7774 
7775 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7776 	if (ret)
7777 		return ret;
7778 
7779 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7780 					 failed_mirror);
7781 	if (!ret) {
7782 		free_io_failure(inode, failrec);
7783 		return -EIO;
7784 	}
7785 
7786 	if (failed_bio->bi_vcnt > 1)
7787 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7788 	else
7789 		read_mode = READ_SYNC;
7790 
7791 	isector = start - btrfs_io_bio(failed_bio)->logical;
7792 	isector >>= inode->i_sb->s_blocksize_bits;
7793 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7794 				      0, isector, repair_endio, repair_arg);
7795 	if (!bio) {
7796 		free_io_failure(inode, failrec);
7797 		return -EIO;
7798 	}
7799 
7800 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7801 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7802 		    read_mode, failrec->this_mirror, failrec->in_validation);
7803 
7804 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7805 				    failrec->this_mirror);
7806 	if (ret) {
7807 		free_io_failure(inode, failrec);
7808 		bio_put(bio);
7809 	}
7810 
7811 	return ret;
7812 }
7813 
7814 struct btrfs_retry_complete {
7815 	struct completion done;
7816 	struct inode *inode;
7817 	u64 start;
7818 	int uptodate;
7819 };
7820 
7821 static void btrfs_retry_endio_nocsum(struct bio *bio)
7822 {
7823 	struct btrfs_retry_complete *done = bio->bi_private;
7824 	struct bio_vec *bvec;
7825 	int i;
7826 
7827 	if (bio->bi_error)
7828 		goto end;
7829 
7830 	done->uptodate = 1;
7831 	bio_for_each_segment_all(bvec, bio, i)
7832 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7833 end:
7834 	complete(&done->done);
7835 	bio_put(bio);
7836 }
7837 
7838 static int __btrfs_correct_data_nocsum(struct inode *inode,
7839 				       struct btrfs_io_bio *io_bio)
7840 {
7841 	struct bio_vec *bvec;
7842 	struct btrfs_retry_complete done;
7843 	u64 start;
7844 	int i;
7845 	int ret;
7846 
7847 	start = io_bio->logical;
7848 	done.inode = inode;
7849 
7850 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7851 try_again:
7852 		done.uptodate = 0;
7853 		done.start = start;
7854 		init_completion(&done.done);
7855 
7856 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7857 				     start + bvec->bv_len - 1,
7858 				     io_bio->mirror_num,
7859 				     btrfs_retry_endio_nocsum, &done);
7860 		if (ret)
7861 			return ret;
7862 
7863 		wait_for_completion(&done.done);
7864 
7865 		if (!done.uptodate) {
7866 			/* We might have another mirror, so try again */
7867 			goto try_again;
7868 		}
7869 
7870 		start += bvec->bv_len;
7871 	}
7872 
7873 	return 0;
7874 }
7875 
7876 static void btrfs_retry_endio(struct bio *bio)
7877 {
7878 	struct btrfs_retry_complete *done = bio->bi_private;
7879 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7880 	struct bio_vec *bvec;
7881 	int uptodate;
7882 	int ret;
7883 	int i;
7884 
7885 	if (bio->bi_error)
7886 		goto end;
7887 
7888 	uptodate = 1;
7889 	bio_for_each_segment_all(bvec, bio, i) {
7890 		ret = __readpage_endio_check(done->inode, io_bio, i,
7891 					     bvec->bv_page, 0,
7892 					     done->start, bvec->bv_len);
7893 		if (!ret)
7894 			clean_io_failure(done->inode, done->start,
7895 					 bvec->bv_page, 0);
7896 		else
7897 			uptodate = 0;
7898 	}
7899 
7900 	done->uptodate = uptodate;
7901 end:
7902 	complete(&done->done);
7903 	bio_put(bio);
7904 }
7905 
7906 static int __btrfs_subio_endio_read(struct inode *inode,
7907 				    struct btrfs_io_bio *io_bio, int err)
7908 {
7909 	struct bio_vec *bvec;
7910 	struct btrfs_retry_complete done;
7911 	u64 start;
7912 	u64 offset = 0;
7913 	int i;
7914 	int ret;
7915 
7916 	err = 0;
7917 	start = io_bio->logical;
7918 	done.inode = inode;
7919 
7920 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7921 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7922 					     0, start, bvec->bv_len);
7923 		if (likely(!ret))
7924 			goto next;
7925 try_again:
7926 		done.uptodate = 0;
7927 		done.start = start;
7928 		init_completion(&done.done);
7929 
7930 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7931 				     start + bvec->bv_len - 1,
7932 				     io_bio->mirror_num,
7933 				     btrfs_retry_endio, &done);
7934 		if (ret) {
7935 			err = ret;
7936 			goto next;
7937 		}
7938 
7939 		wait_for_completion(&done.done);
7940 
7941 		if (!done.uptodate) {
7942 			/* We might have another mirror, so try again */
7943 			goto try_again;
7944 		}
7945 next:
7946 		offset += bvec->bv_len;
7947 		start += bvec->bv_len;
7948 	}
7949 
7950 	return err;
7951 }
7952 
7953 static int btrfs_subio_endio_read(struct inode *inode,
7954 				  struct btrfs_io_bio *io_bio, int err)
7955 {
7956 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7957 
7958 	if (skip_csum) {
7959 		if (unlikely(err))
7960 			return __btrfs_correct_data_nocsum(inode, io_bio);
7961 		else
7962 			return 0;
7963 	} else {
7964 		return __btrfs_subio_endio_read(inode, io_bio, err);
7965 	}
7966 }
7967 
7968 static void btrfs_endio_direct_read(struct bio *bio)
7969 {
7970 	struct btrfs_dio_private *dip = bio->bi_private;
7971 	struct inode *inode = dip->inode;
7972 	struct bio *dio_bio;
7973 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7974 	int err = bio->bi_error;
7975 
7976 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7977 		err = btrfs_subio_endio_read(inode, io_bio, err);
7978 
7979 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7980 		      dip->logical_offset + dip->bytes - 1);
7981 	dio_bio = dip->dio_bio;
7982 
7983 	kfree(dip);
7984 
7985 	dio_end_io(dio_bio, bio->bi_error);
7986 
7987 	if (io_bio->end_io)
7988 		io_bio->end_io(io_bio, err);
7989 	bio_put(bio);
7990 }
7991 
7992 static void btrfs_endio_direct_write(struct bio *bio)
7993 {
7994 	struct btrfs_dio_private *dip = bio->bi_private;
7995 	struct inode *inode = dip->inode;
7996 	struct btrfs_root *root = BTRFS_I(inode)->root;
7997 	struct btrfs_ordered_extent *ordered = NULL;
7998 	u64 ordered_offset = dip->logical_offset;
7999 	u64 ordered_bytes = dip->bytes;
8000 	struct bio *dio_bio;
8001 	int ret;
8002 
8003 again:
8004 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8005 						   &ordered_offset,
8006 						   ordered_bytes,
8007 						   !bio->bi_error);
8008 	if (!ret)
8009 		goto out_test;
8010 
8011 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8012 			finish_ordered_fn, NULL, NULL);
8013 	btrfs_queue_work(root->fs_info->endio_write_workers,
8014 			 &ordered->work);
8015 out_test:
8016 	/*
8017 	 * our bio might span multiple ordered extents.  If we haven't
8018 	 * completed the accounting for the whole dio, go back and try again
8019 	 */
8020 	if (ordered_offset < dip->logical_offset + dip->bytes) {
8021 		ordered_bytes = dip->logical_offset + dip->bytes -
8022 			ordered_offset;
8023 		ordered = NULL;
8024 		goto again;
8025 	}
8026 	dio_bio = dip->dio_bio;
8027 
8028 	kfree(dip);
8029 
8030 	dio_end_io(dio_bio, bio->bi_error);
8031 	bio_put(bio);
8032 }
8033 
8034 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8035 				    struct bio *bio, int mirror_num,
8036 				    unsigned long bio_flags, u64 offset)
8037 {
8038 	int ret;
8039 	struct btrfs_root *root = BTRFS_I(inode)->root;
8040 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8041 	BUG_ON(ret); /* -ENOMEM */
8042 	return 0;
8043 }
8044 
8045 static void btrfs_end_dio_bio(struct bio *bio)
8046 {
8047 	struct btrfs_dio_private *dip = bio->bi_private;
8048 	int err = bio->bi_error;
8049 
8050 	if (err)
8051 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8052 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8053 			   btrfs_ino(dip->inode), bio->bi_rw,
8054 			   (unsigned long long)bio->bi_iter.bi_sector,
8055 			   bio->bi_iter.bi_size, err);
8056 
8057 	if (dip->subio_endio)
8058 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8059 
8060 	if (err) {
8061 		dip->errors = 1;
8062 
8063 		/*
8064 		 * before atomic variable goto zero, we must make sure
8065 		 * dip->errors is perceived to be set.
8066 		 */
8067 		smp_mb__before_atomic();
8068 	}
8069 
8070 	/* if there are more bios still pending for this dio, just exit */
8071 	if (!atomic_dec_and_test(&dip->pending_bios))
8072 		goto out;
8073 
8074 	if (dip->errors) {
8075 		bio_io_error(dip->orig_bio);
8076 	} else {
8077 		dip->dio_bio->bi_error = 0;
8078 		bio_endio(dip->orig_bio);
8079 	}
8080 out:
8081 	bio_put(bio);
8082 }
8083 
8084 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8085 				       u64 first_sector, gfp_t gfp_flags)
8086 {
8087 	struct bio *bio;
8088 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8089 	if (bio)
8090 		bio_associate_current(bio);
8091 	return bio;
8092 }
8093 
8094 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8095 						 struct inode *inode,
8096 						 struct btrfs_dio_private *dip,
8097 						 struct bio *bio,
8098 						 u64 file_offset)
8099 {
8100 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8101 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8102 	int ret;
8103 
8104 	/*
8105 	 * We load all the csum data we need when we submit
8106 	 * the first bio to reduce the csum tree search and
8107 	 * contention.
8108 	 */
8109 	if (dip->logical_offset == file_offset) {
8110 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8111 						file_offset);
8112 		if (ret)
8113 			return ret;
8114 	}
8115 
8116 	if (bio == dip->orig_bio)
8117 		return 0;
8118 
8119 	file_offset -= dip->logical_offset;
8120 	file_offset >>= inode->i_sb->s_blocksize_bits;
8121 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8122 
8123 	return 0;
8124 }
8125 
8126 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8127 					 int rw, u64 file_offset, int skip_sum,
8128 					 int async_submit)
8129 {
8130 	struct btrfs_dio_private *dip = bio->bi_private;
8131 	int write = rw & REQ_WRITE;
8132 	struct btrfs_root *root = BTRFS_I(inode)->root;
8133 	int ret;
8134 
8135 	if (async_submit)
8136 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8137 
8138 	bio_get(bio);
8139 
8140 	if (!write) {
8141 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8142 				BTRFS_WQ_ENDIO_DATA);
8143 		if (ret)
8144 			goto err;
8145 	}
8146 
8147 	if (skip_sum)
8148 		goto map;
8149 
8150 	if (write && async_submit) {
8151 		ret = btrfs_wq_submit_bio(root->fs_info,
8152 				   inode, rw, bio, 0, 0,
8153 				   file_offset,
8154 				   __btrfs_submit_bio_start_direct_io,
8155 				   __btrfs_submit_bio_done);
8156 		goto err;
8157 	} else if (write) {
8158 		/*
8159 		 * If we aren't doing async submit, calculate the csum of the
8160 		 * bio now.
8161 		 */
8162 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8163 		if (ret)
8164 			goto err;
8165 	} else {
8166 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8167 						     file_offset);
8168 		if (ret)
8169 			goto err;
8170 	}
8171 map:
8172 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8173 err:
8174 	bio_put(bio);
8175 	return ret;
8176 }
8177 
8178 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8179 				    int skip_sum)
8180 {
8181 	struct inode *inode = dip->inode;
8182 	struct btrfs_root *root = BTRFS_I(inode)->root;
8183 	struct bio *bio;
8184 	struct bio *orig_bio = dip->orig_bio;
8185 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8186 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8187 	u64 file_offset = dip->logical_offset;
8188 	u64 submit_len = 0;
8189 	u64 map_length;
8190 	int nr_pages = 0;
8191 	int ret;
8192 	int async_submit = 0;
8193 
8194 	map_length = orig_bio->bi_iter.bi_size;
8195 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8196 			      &map_length, NULL, 0);
8197 	if (ret)
8198 		return -EIO;
8199 
8200 	if (map_length >= orig_bio->bi_iter.bi_size) {
8201 		bio = orig_bio;
8202 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8203 		goto submit;
8204 	}
8205 
8206 	/* async crcs make it difficult to collect full stripe writes. */
8207 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8208 		async_submit = 0;
8209 	else
8210 		async_submit = 1;
8211 
8212 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8213 	if (!bio)
8214 		return -ENOMEM;
8215 
8216 	bio->bi_private = dip;
8217 	bio->bi_end_io = btrfs_end_dio_bio;
8218 	btrfs_io_bio(bio)->logical = file_offset;
8219 	atomic_inc(&dip->pending_bios);
8220 
8221 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8222 		if (map_length < submit_len + bvec->bv_len ||
8223 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8224 				 bvec->bv_offset) < bvec->bv_len) {
8225 			/*
8226 			 * inc the count before we submit the bio so
8227 			 * we know the end IO handler won't happen before
8228 			 * we inc the count. Otherwise, the dip might get freed
8229 			 * before we're done setting it up
8230 			 */
8231 			atomic_inc(&dip->pending_bios);
8232 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8233 						     file_offset, skip_sum,
8234 						     async_submit);
8235 			if (ret) {
8236 				bio_put(bio);
8237 				atomic_dec(&dip->pending_bios);
8238 				goto out_err;
8239 			}
8240 
8241 			start_sector += submit_len >> 9;
8242 			file_offset += submit_len;
8243 
8244 			submit_len = 0;
8245 			nr_pages = 0;
8246 
8247 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8248 						  start_sector, GFP_NOFS);
8249 			if (!bio)
8250 				goto out_err;
8251 			bio->bi_private = dip;
8252 			bio->bi_end_io = btrfs_end_dio_bio;
8253 			btrfs_io_bio(bio)->logical = file_offset;
8254 
8255 			map_length = orig_bio->bi_iter.bi_size;
8256 			ret = btrfs_map_block(root->fs_info, rw,
8257 					      start_sector << 9,
8258 					      &map_length, NULL, 0);
8259 			if (ret) {
8260 				bio_put(bio);
8261 				goto out_err;
8262 			}
8263 		} else {
8264 			submit_len += bvec->bv_len;
8265 			nr_pages++;
8266 			bvec++;
8267 		}
8268 	}
8269 
8270 submit:
8271 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8272 				     async_submit);
8273 	if (!ret)
8274 		return 0;
8275 
8276 	bio_put(bio);
8277 out_err:
8278 	dip->errors = 1;
8279 	/*
8280 	 * before atomic variable goto zero, we must
8281 	 * make sure dip->errors is perceived to be set.
8282 	 */
8283 	smp_mb__before_atomic();
8284 	if (atomic_dec_and_test(&dip->pending_bios))
8285 		bio_io_error(dip->orig_bio);
8286 
8287 	/* bio_end_io() will handle error, so we needn't return it */
8288 	return 0;
8289 }
8290 
8291 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8292 				struct inode *inode, loff_t file_offset)
8293 {
8294 	struct btrfs_dio_private *dip = NULL;
8295 	struct bio *io_bio = NULL;
8296 	struct btrfs_io_bio *btrfs_bio;
8297 	int skip_sum;
8298 	int write = rw & REQ_WRITE;
8299 	int ret = 0;
8300 
8301 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8302 
8303 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8304 	if (!io_bio) {
8305 		ret = -ENOMEM;
8306 		goto free_ordered;
8307 	}
8308 
8309 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8310 	if (!dip) {
8311 		ret = -ENOMEM;
8312 		goto free_ordered;
8313 	}
8314 
8315 	dip->private = dio_bio->bi_private;
8316 	dip->inode = inode;
8317 	dip->logical_offset = file_offset;
8318 	dip->bytes = dio_bio->bi_iter.bi_size;
8319 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8320 	io_bio->bi_private = dip;
8321 	dip->orig_bio = io_bio;
8322 	dip->dio_bio = dio_bio;
8323 	atomic_set(&dip->pending_bios, 0);
8324 	btrfs_bio = btrfs_io_bio(io_bio);
8325 	btrfs_bio->logical = file_offset;
8326 
8327 	if (write) {
8328 		io_bio->bi_end_io = btrfs_endio_direct_write;
8329 	} else {
8330 		io_bio->bi_end_io = btrfs_endio_direct_read;
8331 		dip->subio_endio = btrfs_subio_endio_read;
8332 	}
8333 
8334 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8335 	if (!ret)
8336 		return;
8337 
8338 	if (btrfs_bio->end_io)
8339 		btrfs_bio->end_io(btrfs_bio, ret);
8340 
8341 free_ordered:
8342 	/*
8343 	 * If we arrived here it means either we failed to submit the dip
8344 	 * or we either failed to clone the dio_bio or failed to allocate the
8345 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8346 	 * call bio_endio against our io_bio so that we get proper resource
8347 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8348 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8349 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8350 	 */
8351 	if (io_bio && dip) {
8352 		io_bio->bi_error = -EIO;
8353 		bio_endio(io_bio);
8354 		/*
8355 		 * The end io callbacks free our dip, do the final put on io_bio
8356 		 * and all the cleanup and final put for dio_bio (through
8357 		 * dio_end_io()).
8358 		 */
8359 		dip = NULL;
8360 		io_bio = NULL;
8361 	} else {
8362 		if (write) {
8363 			struct btrfs_ordered_extent *ordered;
8364 
8365 			ordered = btrfs_lookup_ordered_extent(inode,
8366 							      file_offset);
8367 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8368 			/*
8369 			 * Decrements our ref on the ordered extent and removes
8370 			 * the ordered extent from the inode's ordered tree,
8371 			 * doing all the proper resource cleanup such as for the
8372 			 * reserved space and waking up any waiters for this
8373 			 * ordered extent (through btrfs_remove_ordered_extent).
8374 			 */
8375 			btrfs_finish_ordered_io(ordered);
8376 		} else {
8377 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8378 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8379 		}
8380 		dio_bio->bi_error = -EIO;
8381 		/*
8382 		 * Releases and cleans up our dio_bio, no need to bio_put()
8383 		 * nor bio_endio()/bio_io_error() against dio_bio.
8384 		 */
8385 		dio_end_io(dio_bio, ret);
8386 	}
8387 	if (io_bio)
8388 		bio_put(io_bio);
8389 	kfree(dip);
8390 }
8391 
8392 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8393 			const struct iov_iter *iter, loff_t offset)
8394 {
8395 	int seg;
8396 	int i;
8397 	unsigned blocksize_mask = root->sectorsize - 1;
8398 	ssize_t retval = -EINVAL;
8399 
8400 	if (offset & blocksize_mask)
8401 		goto out;
8402 
8403 	if (iov_iter_alignment(iter) & blocksize_mask)
8404 		goto out;
8405 
8406 	/* If this is a write we don't need to check anymore */
8407 	if (iov_iter_rw(iter) == WRITE)
8408 		return 0;
8409 	/*
8410 	 * Check to make sure we don't have duplicate iov_base's in this
8411 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8412 	 * when reading back.
8413 	 */
8414 	for (seg = 0; seg < iter->nr_segs; seg++) {
8415 		for (i = seg + 1; i < iter->nr_segs; i++) {
8416 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8417 				goto out;
8418 		}
8419 	}
8420 	retval = 0;
8421 out:
8422 	return retval;
8423 }
8424 
8425 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8426 			       loff_t offset)
8427 {
8428 	struct file *file = iocb->ki_filp;
8429 	struct inode *inode = file->f_mapping->host;
8430 	struct btrfs_root *root = BTRFS_I(inode)->root;
8431 	struct btrfs_dio_data dio_data = { 0 };
8432 	size_t count = 0;
8433 	int flags = 0;
8434 	bool wakeup = true;
8435 	bool relock = false;
8436 	ssize_t ret;
8437 
8438 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8439 		return 0;
8440 
8441 	inode_dio_begin(inode);
8442 	smp_mb__after_atomic();
8443 
8444 	/*
8445 	 * The generic stuff only does filemap_write_and_wait_range, which
8446 	 * isn't enough if we've written compressed pages to this area, so
8447 	 * we need to flush the dirty pages again to make absolutely sure
8448 	 * that any outstanding dirty pages are on disk.
8449 	 */
8450 	count = iov_iter_count(iter);
8451 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8452 		     &BTRFS_I(inode)->runtime_flags))
8453 		filemap_fdatawrite_range(inode->i_mapping, offset,
8454 					 offset + count - 1);
8455 
8456 	if (iov_iter_rw(iter) == WRITE) {
8457 		/*
8458 		 * If the write DIO is beyond the EOF, we need update
8459 		 * the isize, but it is protected by i_mutex. So we can
8460 		 * not unlock the i_mutex at this case.
8461 		 */
8462 		if (offset + count <= inode->i_size) {
8463 			mutex_unlock(&inode->i_mutex);
8464 			relock = true;
8465 		}
8466 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8467 		if (ret)
8468 			goto out;
8469 		dio_data.outstanding_extents = div64_u64(count +
8470 						BTRFS_MAX_EXTENT_SIZE - 1,
8471 						BTRFS_MAX_EXTENT_SIZE);
8472 
8473 		/*
8474 		 * We need to know how many extents we reserved so that we can
8475 		 * do the accounting properly if we go over the number we
8476 		 * originally calculated.  Abuse current->journal_info for this.
8477 		 */
8478 		dio_data.reserve = round_up(count, root->sectorsize);
8479 		current->journal_info = &dio_data;
8480 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8481 				     &BTRFS_I(inode)->runtime_flags)) {
8482 		inode_dio_end(inode);
8483 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8484 		wakeup = false;
8485 	}
8486 
8487 	ret = __blockdev_direct_IO(iocb, inode,
8488 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8489 				   iter, offset, btrfs_get_blocks_direct, NULL,
8490 				   btrfs_submit_direct, flags);
8491 	if (iov_iter_rw(iter) == WRITE) {
8492 		current->journal_info = NULL;
8493 		if (ret < 0 && ret != -EIOCBQUEUED) {
8494 			if (dio_data.reserve)
8495 				btrfs_delalloc_release_space(inode, offset,
8496 							     dio_data.reserve);
8497 		} else if (ret >= 0 && (size_t)ret < count)
8498 			btrfs_delalloc_release_space(inode, offset,
8499 						     count - (size_t)ret);
8500 	}
8501 out:
8502 	if (wakeup)
8503 		inode_dio_end(inode);
8504 	if (relock)
8505 		mutex_lock(&inode->i_mutex);
8506 
8507 	return ret;
8508 }
8509 
8510 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8511 
8512 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8513 		__u64 start, __u64 len)
8514 {
8515 	int	ret;
8516 
8517 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8518 	if (ret)
8519 		return ret;
8520 
8521 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8522 }
8523 
8524 int btrfs_readpage(struct file *file, struct page *page)
8525 {
8526 	struct extent_io_tree *tree;
8527 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8528 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8529 }
8530 
8531 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8532 {
8533 	struct extent_io_tree *tree;
8534 
8535 
8536 	if (current->flags & PF_MEMALLOC) {
8537 		redirty_page_for_writepage(wbc, page);
8538 		unlock_page(page);
8539 		return 0;
8540 	}
8541 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8542 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8543 }
8544 
8545 static int btrfs_writepages(struct address_space *mapping,
8546 			    struct writeback_control *wbc)
8547 {
8548 	struct extent_io_tree *tree;
8549 
8550 	tree = &BTRFS_I(mapping->host)->io_tree;
8551 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8552 }
8553 
8554 static int
8555 btrfs_readpages(struct file *file, struct address_space *mapping,
8556 		struct list_head *pages, unsigned nr_pages)
8557 {
8558 	struct extent_io_tree *tree;
8559 	tree = &BTRFS_I(mapping->host)->io_tree;
8560 	return extent_readpages(tree, mapping, pages, nr_pages,
8561 				btrfs_get_extent);
8562 }
8563 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8564 {
8565 	struct extent_io_tree *tree;
8566 	struct extent_map_tree *map;
8567 	int ret;
8568 
8569 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8570 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8571 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8572 	if (ret == 1) {
8573 		ClearPagePrivate(page);
8574 		set_page_private(page, 0);
8575 		page_cache_release(page);
8576 	}
8577 	return ret;
8578 }
8579 
8580 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8581 {
8582 	if (PageWriteback(page) || PageDirty(page))
8583 		return 0;
8584 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8585 }
8586 
8587 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8588 				 unsigned int length)
8589 {
8590 	struct inode *inode = page->mapping->host;
8591 	struct extent_io_tree *tree;
8592 	struct btrfs_ordered_extent *ordered;
8593 	struct extent_state *cached_state = NULL;
8594 	u64 page_start = page_offset(page);
8595 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8596 	int inode_evicting = inode->i_state & I_FREEING;
8597 
8598 	/*
8599 	 * we have the page locked, so new writeback can't start,
8600 	 * and the dirty bit won't be cleared while we are here.
8601 	 *
8602 	 * Wait for IO on this page so that we can safely clear
8603 	 * the PagePrivate2 bit and do ordered accounting
8604 	 */
8605 	wait_on_page_writeback(page);
8606 
8607 	tree = &BTRFS_I(inode)->io_tree;
8608 	if (offset) {
8609 		btrfs_releasepage(page, GFP_NOFS);
8610 		return;
8611 	}
8612 
8613 	if (!inode_evicting)
8614 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8615 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8616 	if (ordered) {
8617 		/*
8618 		 * IO on this page will never be started, so we need
8619 		 * to account for any ordered extents now
8620 		 */
8621 		if (!inode_evicting)
8622 			clear_extent_bit(tree, page_start, page_end,
8623 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8624 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8625 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8626 					 GFP_NOFS);
8627 		/*
8628 		 * whoever cleared the private bit is responsible
8629 		 * for the finish_ordered_io
8630 		 */
8631 		if (TestClearPagePrivate2(page)) {
8632 			struct btrfs_ordered_inode_tree *tree;
8633 			u64 new_len;
8634 
8635 			tree = &BTRFS_I(inode)->ordered_tree;
8636 
8637 			spin_lock_irq(&tree->lock);
8638 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8639 			new_len = page_start - ordered->file_offset;
8640 			if (new_len < ordered->truncated_len)
8641 				ordered->truncated_len = new_len;
8642 			spin_unlock_irq(&tree->lock);
8643 
8644 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8645 							   page_start,
8646 							   PAGE_CACHE_SIZE, 1))
8647 				btrfs_finish_ordered_io(ordered);
8648 		}
8649 		btrfs_put_ordered_extent(ordered);
8650 		if (!inode_evicting) {
8651 			cached_state = NULL;
8652 			lock_extent_bits(tree, page_start, page_end, 0,
8653 					 &cached_state);
8654 		}
8655 	}
8656 
8657 	/*
8658 	 * Qgroup reserved space handler
8659 	 * Page here will be either
8660 	 * 1) Already written to disk
8661 	 *    In this case, its reserved space is released from data rsv map
8662 	 *    and will be freed by delayed_ref handler finally.
8663 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8664 	 *    space.
8665 	 * 2) Not written to disk
8666 	 *    This means the reserved space should be freed here.
8667 	 */
8668 	btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
8669 	if (!inode_evicting) {
8670 		clear_extent_bit(tree, page_start, page_end,
8671 				 EXTENT_LOCKED | EXTENT_DIRTY |
8672 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8673 				 EXTENT_DEFRAG, 1, 1,
8674 				 &cached_state, GFP_NOFS);
8675 
8676 		__btrfs_releasepage(page, GFP_NOFS);
8677 	}
8678 
8679 	ClearPageChecked(page);
8680 	if (PagePrivate(page)) {
8681 		ClearPagePrivate(page);
8682 		set_page_private(page, 0);
8683 		page_cache_release(page);
8684 	}
8685 }
8686 
8687 /*
8688  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8689  * called from a page fault handler when a page is first dirtied. Hence we must
8690  * be careful to check for EOF conditions here. We set the page up correctly
8691  * for a written page which means we get ENOSPC checking when writing into
8692  * holes and correct delalloc and unwritten extent mapping on filesystems that
8693  * support these features.
8694  *
8695  * We are not allowed to take the i_mutex here so we have to play games to
8696  * protect against truncate races as the page could now be beyond EOF.  Because
8697  * vmtruncate() writes the inode size before removing pages, once we have the
8698  * page lock we can determine safely if the page is beyond EOF. If it is not
8699  * beyond EOF, then the page is guaranteed safe against truncation until we
8700  * unlock the page.
8701  */
8702 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8703 {
8704 	struct page *page = vmf->page;
8705 	struct inode *inode = file_inode(vma->vm_file);
8706 	struct btrfs_root *root = BTRFS_I(inode)->root;
8707 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8708 	struct btrfs_ordered_extent *ordered;
8709 	struct extent_state *cached_state = NULL;
8710 	char *kaddr;
8711 	unsigned long zero_start;
8712 	loff_t size;
8713 	int ret;
8714 	int reserved = 0;
8715 	u64 page_start;
8716 	u64 page_end;
8717 
8718 	sb_start_pagefault(inode->i_sb);
8719 	page_start = page_offset(page);
8720 	page_end = page_start + PAGE_CACHE_SIZE - 1;
8721 
8722 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8723 					   PAGE_CACHE_SIZE);
8724 	if (!ret) {
8725 		ret = file_update_time(vma->vm_file);
8726 		reserved = 1;
8727 	}
8728 	if (ret) {
8729 		if (ret == -ENOMEM)
8730 			ret = VM_FAULT_OOM;
8731 		else /* -ENOSPC, -EIO, etc */
8732 			ret = VM_FAULT_SIGBUS;
8733 		if (reserved)
8734 			goto out;
8735 		goto out_noreserve;
8736 	}
8737 
8738 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8739 again:
8740 	lock_page(page);
8741 	size = i_size_read(inode);
8742 
8743 	if ((page->mapping != inode->i_mapping) ||
8744 	    (page_start >= size)) {
8745 		/* page got truncated out from underneath us */
8746 		goto out_unlock;
8747 	}
8748 	wait_on_page_writeback(page);
8749 
8750 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8751 	set_page_extent_mapped(page);
8752 
8753 	/*
8754 	 * we can't set the delalloc bits if there are pending ordered
8755 	 * extents.  Drop our locks and wait for them to finish
8756 	 */
8757 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8758 	if (ordered) {
8759 		unlock_extent_cached(io_tree, page_start, page_end,
8760 				     &cached_state, GFP_NOFS);
8761 		unlock_page(page);
8762 		btrfs_start_ordered_extent(inode, ordered, 1);
8763 		btrfs_put_ordered_extent(ordered);
8764 		goto again;
8765 	}
8766 
8767 	/*
8768 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8769 	 * if it was already dirty, so for space accounting reasons we need to
8770 	 * clear any delalloc bits for the range we are fixing to save.  There
8771 	 * is probably a better way to do this, but for now keep consistent with
8772 	 * prepare_pages in the normal write path.
8773 	 */
8774 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8775 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8776 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8777 			  0, 0, &cached_state, GFP_NOFS);
8778 
8779 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8780 					&cached_state);
8781 	if (ret) {
8782 		unlock_extent_cached(io_tree, page_start, page_end,
8783 				     &cached_state, GFP_NOFS);
8784 		ret = VM_FAULT_SIGBUS;
8785 		goto out_unlock;
8786 	}
8787 	ret = 0;
8788 
8789 	/* page is wholly or partially inside EOF */
8790 	if (page_start + PAGE_CACHE_SIZE > size)
8791 		zero_start = size & ~PAGE_CACHE_MASK;
8792 	else
8793 		zero_start = PAGE_CACHE_SIZE;
8794 
8795 	if (zero_start != PAGE_CACHE_SIZE) {
8796 		kaddr = kmap(page);
8797 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8798 		flush_dcache_page(page);
8799 		kunmap(page);
8800 	}
8801 	ClearPageChecked(page);
8802 	set_page_dirty(page);
8803 	SetPageUptodate(page);
8804 
8805 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8806 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8807 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8808 
8809 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8810 
8811 out_unlock:
8812 	if (!ret) {
8813 		sb_end_pagefault(inode->i_sb);
8814 		return VM_FAULT_LOCKED;
8815 	}
8816 	unlock_page(page);
8817 out:
8818 	btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
8819 out_noreserve:
8820 	sb_end_pagefault(inode->i_sb);
8821 	return ret;
8822 }
8823 
8824 static int btrfs_truncate(struct inode *inode)
8825 {
8826 	struct btrfs_root *root = BTRFS_I(inode)->root;
8827 	struct btrfs_block_rsv *rsv;
8828 	int ret = 0;
8829 	int err = 0;
8830 	struct btrfs_trans_handle *trans;
8831 	u64 mask = root->sectorsize - 1;
8832 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8833 
8834 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8835 				       (u64)-1);
8836 	if (ret)
8837 		return ret;
8838 
8839 	/*
8840 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8841 	 * 3 things going on here
8842 	 *
8843 	 * 1) We need to reserve space for our orphan item and the space to
8844 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8845 	 * orphan item because we didn't reserve space to remove it.
8846 	 *
8847 	 * 2) We need to reserve space to update our inode.
8848 	 *
8849 	 * 3) We need to have something to cache all the space that is going to
8850 	 * be free'd up by the truncate operation, but also have some slack
8851 	 * space reserved in case it uses space during the truncate (thank you
8852 	 * very much snapshotting).
8853 	 *
8854 	 * And we need these to all be seperate.  The fact is we can use alot of
8855 	 * space doing the truncate, and we have no earthly idea how much space
8856 	 * we will use, so we need the truncate reservation to be seperate so it
8857 	 * doesn't end up using space reserved for updating the inode or
8858 	 * removing the orphan item.  We also need to be able to stop the
8859 	 * transaction and start a new one, which means we need to be able to
8860 	 * update the inode several times, and we have no idea of knowing how
8861 	 * many times that will be, so we can't just reserve 1 item for the
8862 	 * entirety of the opration, so that has to be done seperately as well.
8863 	 * Then there is the orphan item, which does indeed need to be held on
8864 	 * to for the whole operation, and we need nobody to touch this reserved
8865 	 * space except the orphan code.
8866 	 *
8867 	 * So that leaves us with
8868 	 *
8869 	 * 1) root->orphan_block_rsv - for the orphan deletion.
8870 	 * 2) rsv - for the truncate reservation, which we will steal from the
8871 	 * transaction reservation.
8872 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8873 	 * updating the inode.
8874 	 */
8875 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8876 	if (!rsv)
8877 		return -ENOMEM;
8878 	rsv->size = min_size;
8879 	rsv->failfast = 1;
8880 
8881 	/*
8882 	 * 1 for the truncate slack space
8883 	 * 1 for updating the inode.
8884 	 */
8885 	trans = btrfs_start_transaction(root, 2);
8886 	if (IS_ERR(trans)) {
8887 		err = PTR_ERR(trans);
8888 		goto out;
8889 	}
8890 
8891 	/* Migrate the slack space for the truncate to our reserve */
8892 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8893 				      min_size);
8894 	BUG_ON(ret);
8895 
8896 	/*
8897 	 * So if we truncate and then write and fsync we normally would just
8898 	 * write the extents that changed, which is a problem if we need to
8899 	 * first truncate that entire inode.  So set this flag so we write out
8900 	 * all of the extents in the inode to the sync log so we're completely
8901 	 * safe.
8902 	 */
8903 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8904 	trans->block_rsv = rsv;
8905 
8906 	while (1) {
8907 		ret = btrfs_truncate_inode_items(trans, root, inode,
8908 						 inode->i_size,
8909 						 BTRFS_EXTENT_DATA_KEY);
8910 		if (ret != -ENOSPC && ret != -EAGAIN) {
8911 			err = ret;
8912 			break;
8913 		}
8914 
8915 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8916 		ret = btrfs_update_inode(trans, root, inode);
8917 		if (ret) {
8918 			err = ret;
8919 			break;
8920 		}
8921 
8922 		btrfs_end_transaction(trans, root);
8923 		btrfs_btree_balance_dirty(root);
8924 
8925 		trans = btrfs_start_transaction(root, 2);
8926 		if (IS_ERR(trans)) {
8927 			ret = err = PTR_ERR(trans);
8928 			trans = NULL;
8929 			break;
8930 		}
8931 
8932 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8933 					      rsv, min_size);
8934 		BUG_ON(ret);	/* shouldn't happen */
8935 		trans->block_rsv = rsv;
8936 	}
8937 
8938 	if (ret == 0 && inode->i_nlink > 0) {
8939 		trans->block_rsv = root->orphan_block_rsv;
8940 		ret = btrfs_orphan_del(trans, inode);
8941 		if (ret)
8942 			err = ret;
8943 	}
8944 
8945 	if (trans) {
8946 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8947 		ret = btrfs_update_inode(trans, root, inode);
8948 		if (ret && !err)
8949 			err = ret;
8950 
8951 		ret = btrfs_end_transaction(trans, root);
8952 		btrfs_btree_balance_dirty(root);
8953 	}
8954 
8955 out:
8956 	btrfs_free_block_rsv(root, rsv);
8957 
8958 	if (ret && !err)
8959 		err = ret;
8960 
8961 	return err;
8962 }
8963 
8964 /*
8965  * create a new subvolume directory/inode (helper for the ioctl).
8966  */
8967 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8968 			     struct btrfs_root *new_root,
8969 			     struct btrfs_root *parent_root,
8970 			     u64 new_dirid)
8971 {
8972 	struct inode *inode;
8973 	int err;
8974 	u64 index = 0;
8975 
8976 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8977 				new_dirid, new_dirid,
8978 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8979 				&index);
8980 	if (IS_ERR(inode))
8981 		return PTR_ERR(inode);
8982 	inode->i_op = &btrfs_dir_inode_operations;
8983 	inode->i_fop = &btrfs_dir_file_operations;
8984 
8985 	set_nlink(inode, 1);
8986 	btrfs_i_size_write(inode, 0);
8987 	unlock_new_inode(inode);
8988 
8989 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8990 	if (err)
8991 		btrfs_err(new_root->fs_info,
8992 			  "error inheriting subvolume %llu properties: %d",
8993 			  new_root->root_key.objectid, err);
8994 
8995 	err = btrfs_update_inode(trans, new_root, inode);
8996 
8997 	iput(inode);
8998 	return err;
8999 }
9000 
9001 struct inode *btrfs_alloc_inode(struct super_block *sb)
9002 {
9003 	struct btrfs_inode *ei;
9004 	struct inode *inode;
9005 
9006 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9007 	if (!ei)
9008 		return NULL;
9009 
9010 	ei->root = NULL;
9011 	ei->generation = 0;
9012 	ei->last_trans = 0;
9013 	ei->last_sub_trans = 0;
9014 	ei->logged_trans = 0;
9015 	ei->delalloc_bytes = 0;
9016 	ei->defrag_bytes = 0;
9017 	ei->disk_i_size = 0;
9018 	ei->flags = 0;
9019 	ei->csum_bytes = 0;
9020 	ei->index_cnt = (u64)-1;
9021 	ei->dir_index = 0;
9022 	ei->last_unlink_trans = 0;
9023 	ei->last_log_commit = 0;
9024 
9025 	spin_lock_init(&ei->lock);
9026 	ei->outstanding_extents = 0;
9027 	ei->reserved_extents = 0;
9028 
9029 	ei->runtime_flags = 0;
9030 	ei->force_compress = BTRFS_COMPRESS_NONE;
9031 
9032 	ei->delayed_node = NULL;
9033 
9034 	ei->i_otime.tv_sec = 0;
9035 	ei->i_otime.tv_nsec = 0;
9036 
9037 	inode = &ei->vfs_inode;
9038 	extent_map_tree_init(&ei->extent_tree);
9039 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9040 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9041 	ei->io_tree.track_uptodate = 1;
9042 	ei->io_failure_tree.track_uptodate = 1;
9043 	atomic_set(&ei->sync_writers, 0);
9044 	mutex_init(&ei->log_mutex);
9045 	mutex_init(&ei->delalloc_mutex);
9046 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9047 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9048 	RB_CLEAR_NODE(&ei->rb_node);
9049 
9050 	return inode;
9051 }
9052 
9053 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9054 void btrfs_test_destroy_inode(struct inode *inode)
9055 {
9056 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9057 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9058 }
9059 #endif
9060 
9061 static void btrfs_i_callback(struct rcu_head *head)
9062 {
9063 	struct inode *inode = container_of(head, struct inode, i_rcu);
9064 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9065 }
9066 
9067 void btrfs_destroy_inode(struct inode *inode)
9068 {
9069 	struct btrfs_ordered_extent *ordered;
9070 	struct btrfs_root *root = BTRFS_I(inode)->root;
9071 
9072 	WARN_ON(!hlist_empty(&inode->i_dentry));
9073 	WARN_ON(inode->i_data.nrpages);
9074 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9075 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9076 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9077 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9078 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9079 
9080 	/*
9081 	 * This can happen where we create an inode, but somebody else also
9082 	 * created the same inode and we need to destroy the one we already
9083 	 * created.
9084 	 */
9085 	if (!root)
9086 		goto free;
9087 
9088 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9089 		     &BTRFS_I(inode)->runtime_flags)) {
9090 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9091 			btrfs_ino(inode));
9092 		atomic_dec(&root->orphan_inodes);
9093 	}
9094 
9095 	while (1) {
9096 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9097 		if (!ordered)
9098 			break;
9099 		else {
9100 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9101 				ordered->file_offset, ordered->len);
9102 			btrfs_remove_ordered_extent(inode, ordered);
9103 			btrfs_put_ordered_extent(ordered);
9104 			btrfs_put_ordered_extent(ordered);
9105 		}
9106 	}
9107 	btrfs_qgroup_check_reserved_leak(inode);
9108 	inode_tree_del(inode);
9109 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9110 free:
9111 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9112 }
9113 
9114 int btrfs_drop_inode(struct inode *inode)
9115 {
9116 	struct btrfs_root *root = BTRFS_I(inode)->root;
9117 
9118 	if (root == NULL)
9119 		return 1;
9120 
9121 	/* the snap/subvol tree is on deleting */
9122 	if (btrfs_root_refs(&root->root_item) == 0)
9123 		return 1;
9124 	else
9125 		return generic_drop_inode(inode);
9126 }
9127 
9128 static void init_once(void *foo)
9129 {
9130 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9131 
9132 	inode_init_once(&ei->vfs_inode);
9133 }
9134 
9135 void btrfs_destroy_cachep(void)
9136 {
9137 	/*
9138 	 * Make sure all delayed rcu free inodes are flushed before we
9139 	 * destroy cache.
9140 	 */
9141 	rcu_barrier();
9142 	if (btrfs_inode_cachep)
9143 		kmem_cache_destroy(btrfs_inode_cachep);
9144 	if (btrfs_trans_handle_cachep)
9145 		kmem_cache_destroy(btrfs_trans_handle_cachep);
9146 	if (btrfs_transaction_cachep)
9147 		kmem_cache_destroy(btrfs_transaction_cachep);
9148 	if (btrfs_path_cachep)
9149 		kmem_cache_destroy(btrfs_path_cachep);
9150 	if (btrfs_free_space_cachep)
9151 		kmem_cache_destroy(btrfs_free_space_cachep);
9152 	if (btrfs_delalloc_work_cachep)
9153 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
9154 }
9155 
9156 int btrfs_init_cachep(void)
9157 {
9158 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9159 			sizeof(struct btrfs_inode), 0,
9160 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9161 	if (!btrfs_inode_cachep)
9162 		goto fail;
9163 
9164 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9165 			sizeof(struct btrfs_trans_handle), 0,
9166 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9167 	if (!btrfs_trans_handle_cachep)
9168 		goto fail;
9169 
9170 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9171 			sizeof(struct btrfs_transaction), 0,
9172 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9173 	if (!btrfs_transaction_cachep)
9174 		goto fail;
9175 
9176 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9177 			sizeof(struct btrfs_path), 0,
9178 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9179 	if (!btrfs_path_cachep)
9180 		goto fail;
9181 
9182 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9183 			sizeof(struct btrfs_free_space), 0,
9184 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9185 	if (!btrfs_free_space_cachep)
9186 		goto fail;
9187 
9188 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9189 			sizeof(struct btrfs_delalloc_work), 0,
9190 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9191 			NULL);
9192 	if (!btrfs_delalloc_work_cachep)
9193 		goto fail;
9194 
9195 	return 0;
9196 fail:
9197 	btrfs_destroy_cachep();
9198 	return -ENOMEM;
9199 }
9200 
9201 static int btrfs_getattr(struct vfsmount *mnt,
9202 			 struct dentry *dentry, struct kstat *stat)
9203 {
9204 	u64 delalloc_bytes;
9205 	struct inode *inode = d_inode(dentry);
9206 	u32 blocksize = inode->i_sb->s_blocksize;
9207 
9208 	generic_fillattr(inode, stat);
9209 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9210 	stat->blksize = PAGE_CACHE_SIZE;
9211 
9212 	spin_lock(&BTRFS_I(inode)->lock);
9213 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9214 	spin_unlock(&BTRFS_I(inode)->lock);
9215 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9216 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9217 	return 0;
9218 }
9219 
9220 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9221 			   struct inode *new_dir, struct dentry *new_dentry)
9222 {
9223 	struct btrfs_trans_handle *trans;
9224 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9225 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9226 	struct inode *new_inode = d_inode(new_dentry);
9227 	struct inode *old_inode = d_inode(old_dentry);
9228 	struct timespec ctime = CURRENT_TIME;
9229 	u64 index = 0;
9230 	u64 root_objectid;
9231 	int ret;
9232 	u64 old_ino = btrfs_ino(old_inode);
9233 
9234 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9235 		return -EPERM;
9236 
9237 	/* we only allow rename subvolume link between subvolumes */
9238 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9239 		return -EXDEV;
9240 
9241 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9242 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9243 		return -ENOTEMPTY;
9244 
9245 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9246 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9247 		return -ENOTEMPTY;
9248 
9249 
9250 	/* check for collisions, even if the  name isn't there */
9251 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9252 			     new_dentry->d_name.name,
9253 			     new_dentry->d_name.len);
9254 
9255 	if (ret) {
9256 		if (ret == -EEXIST) {
9257 			/* we shouldn't get
9258 			 * eexist without a new_inode */
9259 			if (WARN_ON(!new_inode)) {
9260 				return ret;
9261 			}
9262 		} else {
9263 			/* maybe -EOVERFLOW */
9264 			return ret;
9265 		}
9266 	}
9267 	ret = 0;
9268 
9269 	/*
9270 	 * we're using rename to replace one file with another.  Start IO on it
9271 	 * now so  we don't add too much work to the end of the transaction
9272 	 */
9273 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9274 		filemap_flush(old_inode->i_mapping);
9275 
9276 	/* close the racy window with snapshot create/destroy ioctl */
9277 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9278 		down_read(&root->fs_info->subvol_sem);
9279 	/*
9280 	 * We want to reserve the absolute worst case amount of items.  So if
9281 	 * both inodes are subvols and we need to unlink them then that would
9282 	 * require 4 item modifications, but if they are both normal inodes it
9283 	 * would require 5 item modifications, so we'll assume their normal
9284 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9285 	 * should cover the worst case number of items we'll modify.
9286 	 */
9287 	trans = btrfs_start_transaction(root, 11);
9288 	if (IS_ERR(trans)) {
9289                 ret = PTR_ERR(trans);
9290                 goto out_notrans;
9291         }
9292 
9293 	if (dest != root)
9294 		btrfs_record_root_in_trans(trans, dest);
9295 
9296 	ret = btrfs_set_inode_index(new_dir, &index);
9297 	if (ret)
9298 		goto out_fail;
9299 
9300 	BTRFS_I(old_inode)->dir_index = 0ULL;
9301 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9302 		/* force full log commit if subvolume involved. */
9303 		btrfs_set_log_full_commit(root->fs_info, trans);
9304 	} else {
9305 		ret = btrfs_insert_inode_ref(trans, dest,
9306 					     new_dentry->d_name.name,
9307 					     new_dentry->d_name.len,
9308 					     old_ino,
9309 					     btrfs_ino(new_dir), index);
9310 		if (ret)
9311 			goto out_fail;
9312 		/*
9313 		 * this is an ugly little race, but the rename is required
9314 		 * to make sure that if we crash, the inode is either at the
9315 		 * old name or the new one.  pinning the log transaction lets
9316 		 * us make sure we don't allow a log commit to come in after
9317 		 * we unlink the name but before we add the new name back in.
9318 		 */
9319 		btrfs_pin_log_trans(root);
9320 	}
9321 
9322 	inode_inc_iversion(old_dir);
9323 	inode_inc_iversion(new_dir);
9324 	inode_inc_iversion(old_inode);
9325 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9326 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9327 	old_inode->i_ctime = ctime;
9328 
9329 	if (old_dentry->d_parent != new_dentry->d_parent)
9330 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9331 
9332 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9333 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9334 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9335 					old_dentry->d_name.name,
9336 					old_dentry->d_name.len);
9337 	} else {
9338 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9339 					d_inode(old_dentry),
9340 					old_dentry->d_name.name,
9341 					old_dentry->d_name.len);
9342 		if (!ret)
9343 			ret = btrfs_update_inode(trans, root, old_inode);
9344 	}
9345 	if (ret) {
9346 		btrfs_abort_transaction(trans, root, ret);
9347 		goto out_fail;
9348 	}
9349 
9350 	if (new_inode) {
9351 		inode_inc_iversion(new_inode);
9352 		new_inode->i_ctime = CURRENT_TIME;
9353 		if (unlikely(btrfs_ino(new_inode) ==
9354 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9355 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9356 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9357 						root_objectid,
9358 						new_dentry->d_name.name,
9359 						new_dentry->d_name.len);
9360 			BUG_ON(new_inode->i_nlink == 0);
9361 		} else {
9362 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9363 						 d_inode(new_dentry),
9364 						 new_dentry->d_name.name,
9365 						 new_dentry->d_name.len);
9366 		}
9367 		if (!ret && new_inode->i_nlink == 0)
9368 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9369 		if (ret) {
9370 			btrfs_abort_transaction(trans, root, ret);
9371 			goto out_fail;
9372 		}
9373 	}
9374 
9375 	ret = btrfs_add_link(trans, new_dir, old_inode,
9376 			     new_dentry->d_name.name,
9377 			     new_dentry->d_name.len, 0, index);
9378 	if (ret) {
9379 		btrfs_abort_transaction(trans, root, ret);
9380 		goto out_fail;
9381 	}
9382 
9383 	if (old_inode->i_nlink == 1)
9384 		BTRFS_I(old_inode)->dir_index = index;
9385 
9386 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9387 		struct dentry *parent = new_dentry->d_parent;
9388 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9389 		btrfs_end_log_trans(root);
9390 	}
9391 out_fail:
9392 	btrfs_end_transaction(trans, root);
9393 out_notrans:
9394 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9395 		up_read(&root->fs_info->subvol_sem);
9396 
9397 	return ret;
9398 }
9399 
9400 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9401 			 struct inode *new_dir, struct dentry *new_dentry,
9402 			 unsigned int flags)
9403 {
9404 	if (flags & ~RENAME_NOREPLACE)
9405 		return -EINVAL;
9406 
9407 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9408 }
9409 
9410 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9411 {
9412 	struct btrfs_delalloc_work *delalloc_work;
9413 	struct inode *inode;
9414 
9415 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9416 				     work);
9417 	inode = delalloc_work->inode;
9418 	if (delalloc_work->wait) {
9419 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
9420 	} else {
9421 		filemap_flush(inode->i_mapping);
9422 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9423 			     &BTRFS_I(inode)->runtime_flags))
9424 			filemap_flush(inode->i_mapping);
9425 	}
9426 
9427 	if (delalloc_work->delay_iput)
9428 		btrfs_add_delayed_iput(inode);
9429 	else
9430 		iput(inode);
9431 	complete(&delalloc_work->completion);
9432 }
9433 
9434 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9435 						    int wait, int delay_iput)
9436 {
9437 	struct btrfs_delalloc_work *work;
9438 
9439 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9440 	if (!work)
9441 		return NULL;
9442 
9443 	init_completion(&work->completion);
9444 	INIT_LIST_HEAD(&work->list);
9445 	work->inode = inode;
9446 	work->wait = wait;
9447 	work->delay_iput = delay_iput;
9448 	WARN_ON_ONCE(!inode);
9449 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9450 			btrfs_run_delalloc_work, NULL, NULL);
9451 
9452 	return work;
9453 }
9454 
9455 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9456 {
9457 	wait_for_completion(&work->completion);
9458 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
9459 }
9460 
9461 /*
9462  * some fairly slow code that needs optimization. This walks the list
9463  * of all the inodes with pending delalloc and forces them to disk.
9464  */
9465 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9466 				   int nr)
9467 {
9468 	struct btrfs_inode *binode;
9469 	struct inode *inode;
9470 	struct btrfs_delalloc_work *work, *next;
9471 	struct list_head works;
9472 	struct list_head splice;
9473 	int ret = 0;
9474 
9475 	INIT_LIST_HEAD(&works);
9476 	INIT_LIST_HEAD(&splice);
9477 
9478 	mutex_lock(&root->delalloc_mutex);
9479 	spin_lock(&root->delalloc_lock);
9480 	list_splice_init(&root->delalloc_inodes, &splice);
9481 	while (!list_empty(&splice)) {
9482 		binode = list_entry(splice.next, struct btrfs_inode,
9483 				    delalloc_inodes);
9484 
9485 		list_move_tail(&binode->delalloc_inodes,
9486 			       &root->delalloc_inodes);
9487 		inode = igrab(&binode->vfs_inode);
9488 		if (!inode) {
9489 			cond_resched_lock(&root->delalloc_lock);
9490 			continue;
9491 		}
9492 		spin_unlock(&root->delalloc_lock);
9493 
9494 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9495 		if (!work) {
9496 			if (delay_iput)
9497 				btrfs_add_delayed_iput(inode);
9498 			else
9499 				iput(inode);
9500 			ret = -ENOMEM;
9501 			goto out;
9502 		}
9503 		list_add_tail(&work->list, &works);
9504 		btrfs_queue_work(root->fs_info->flush_workers,
9505 				 &work->work);
9506 		ret++;
9507 		if (nr != -1 && ret >= nr)
9508 			goto out;
9509 		cond_resched();
9510 		spin_lock(&root->delalloc_lock);
9511 	}
9512 	spin_unlock(&root->delalloc_lock);
9513 
9514 out:
9515 	list_for_each_entry_safe(work, next, &works, list) {
9516 		list_del_init(&work->list);
9517 		btrfs_wait_and_free_delalloc_work(work);
9518 	}
9519 
9520 	if (!list_empty_careful(&splice)) {
9521 		spin_lock(&root->delalloc_lock);
9522 		list_splice_tail(&splice, &root->delalloc_inodes);
9523 		spin_unlock(&root->delalloc_lock);
9524 	}
9525 	mutex_unlock(&root->delalloc_mutex);
9526 	return ret;
9527 }
9528 
9529 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9530 {
9531 	int ret;
9532 
9533 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9534 		return -EROFS;
9535 
9536 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9537 	if (ret > 0)
9538 		ret = 0;
9539 	/*
9540 	 * the filemap_flush will queue IO into the worker threads, but
9541 	 * we have to make sure the IO is actually started and that
9542 	 * ordered extents get created before we return
9543 	 */
9544 	atomic_inc(&root->fs_info->async_submit_draining);
9545 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9546 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9547 		wait_event(root->fs_info->async_submit_wait,
9548 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9549 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9550 	}
9551 	atomic_dec(&root->fs_info->async_submit_draining);
9552 	return ret;
9553 }
9554 
9555 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9556 			       int nr)
9557 {
9558 	struct btrfs_root *root;
9559 	struct list_head splice;
9560 	int ret;
9561 
9562 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9563 		return -EROFS;
9564 
9565 	INIT_LIST_HEAD(&splice);
9566 
9567 	mutex_lock(&fs_info->delalloc_root_mutex);
9568 	spin_lock(&fs_info->delalloc_root_lock);
9569 	list_splice_init(&fs_info->delalloc_roots, &splice);
9570 	while (!list_empty(&splice) && nr) {
9571 		root = list_first_entry(&splice, struct btrfs_root,
9572 					delalloc_root);
9573 		root = btrfs_grab_fs_root(root);
9574 		BUG_ON(!root);
9575 		list_move_tail(&root->delalloc_root,
9576 			       &fs_info->delalloc_roots);
9577 		spin_unlock(&fs_info->delalloc_root_lock);
9578 
9579 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9580 		btrfs_put_fs_root(root);
9581 		if (ret < 0)
9582 			goto out;
9583 
9584 		if (nr != -1) {
9585 			nr -= ret;
9586 			WARN_ON(nr < 0);
9587 		}
9588 		spin_lock(&fs_info->delalloc_root_lock);
9589 	}
9590 	spin_unlock(&fs_info->delalloc_root_lock);
9591 
9592 	ret = 0;
9593 	atomic_inc(&fs_info->async_submit_draining);
9594 	while (atomic_read(&fs_info->nr_async_submits) ||
9595 	      atomic_read(&fs_info->async_delalloc_pages)) {
9596 		wait_event(fs_info->async_submit_wait,
9597 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9598 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9599 	}
9600 	atomic_dec(&fs_info->async_submit_draining);
9601 out:
9602 	if (!list_empty_careful(&splice)) {
9603 		spin_lock(&fs_info->delalloc_root_lock);
9604 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9605 		spin_unlock(&fs_info->delalloc_root_lock);
9606 	}
9607 	mutex_unlock(&fs_info->delalloc_root_mutex);
9608 	return ret;
9609 }
9610 
9611 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9612 			 const char *symname)
9613 {
9614 	struct btrfs_trans_handle *trans;
9615 	struct btrfs_root *root = BTRFS_I(dir)->root;
9616 	struct btrfs_path *path;
9617 	struct btrfs_key key;
9618 	struct inode *inode = NULL;
9619 	int err;
9620 	int drop_inode = 0;
9621 	u64 objectid;
9622 	u64 index = 0;
9623 	int name_len;
9624 	int datasize;
9625 	unsigned long ptr;
9626 	struct btrfs_file_extent_item *ei;
9627 	struct extent_buffer *leaf;
9628 
9629 	name_len = strlen(symname);
9630 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9631 		return -ENAMETOOLONG;
9632 
9633 	/*
9634 	 * 2 items for inode item and ref
9635 	 * 2 items for dir items
9636 	 * 1 item for xattr if selinux is on
9637 	 */
9638 	trans = btrfs_start_transaction(root, 5);
9639 	if (IS_ERR(trans))
9640 		return PTR_ERR(trans);
9641 
9642 	err = btrfs_find_free_ino(root, &objectid);
9643 	if (err)
9644 		goto out_unlock;
9645 
9646 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9647 				dentry->d_name.len, btrfs_ino(dir), objectid,
9648 				S_IFLNK|S_IRWXUGO, &index);
9649 	if (IS_ERR(inode)) {
9650 		err = PTR_ERR(inode);
9651 		goto out_unlock;
9652 	}
9653 
9654 	/*
9655 	* If the active LSM wants to access the inode during
9656 	* d_instantiate it needs these. Smack checks to see
9657 	* if the filesystem supports xattrs by looking at the
9658 	* ops vector.
9659 	*/
9660 	inode->i_fop = &btrfs_file_operations;
9661 	inode->i_op = &btrfs_file_inode_operations;
9662 	inode->i_mapping->a_ops = &btrfs_aops;
9663 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9664 
9665 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9666 	if (err)
9667 		goto out_unlock_inode;
9668 
9669 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9670 	if (err)
9671 		goto out_unlock_inode;
9672 
9673 	path = btrfs_alloc_path();
9674 	if (!path) {
9675 		err = -ENOMEM;
9676 		goto out_unlock_inode;
9677 	}
9678 	key.objectid = btrfs_ino(inode);
9679 	key.offset = 0;
9680 	key.type = BTRFS_EXTENT_DATA_KEY;
9681 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9682 	err = btrfs_insert_empty_item(trans, root, path, &key,
9683 				      datasize);
9684 	if (err) {
9685 		btrfs_free_path(path);
9686 		goto out_unlock_inode;
9687 	}
9688 	leaf = path->nodes[0];
9689 	ei = btrfs_item_ptr(leaf, path->slots[0],
9690 			    struct btrfs_file_extent_item);
9691 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9692 	btrfs_set_file_extent_type(leaf, ei,
9693 				   BTRFS_FILE_EXTENT_INLINE);
9694 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9695 	btrfs_set_file_extent_compression(leaf, ei, 0);
9696 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9697 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9698 
9699 	ptr = btrfs_file_extent_inline_start(ei);
9700 	write_extent_buffer(leaf, symname, ptr, name_len);
9701 	btrfs_mark_buffer_dirty(leaf);
9702 	btrfs_free_path(path);
9703 
9704 	inode->i_op = &btrfs_symlink_inode_operations;
9705 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9706 	inode_set_bytes(inode, name_len);
9707 	btrfs_i_size_write(inode, name_len);
9708 	err = btrfs_update_inode(trans, root, inode);
9709 	if (err) {
9710 		drop_inode = 1;
9711 		goto out_unlock_inode;
9712 	}
9713 
9714 	unlock_new_inode(inode);
9715 	d_instantiate(dentry, inode);
9716 
9717 out_unlock:
9718 	btrfs_end_transaction(trans, root);
9719 	if (drop_inode) {
9720 		inode_dec_link_count(inode);
9721 		iput(inode);
9722 	}
9723 	btrfs_btree_balance_dirty(root);
9724 	return err;
9725 
9726 out_unlock_inode:
9727 	drop_inode = 1;
9728 	unlock_new_inode(inode);
9729 	goto out_unlock;
9730 }
9731 
9732 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9733 				       u64 start, u64 num_bytes, u64 min_size,
9734 				       loff_t actual_len, u64 *alloc_hint,
9735 				       struct btrfs_trans_handle *trans)
9736 {
9737 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9738 	struct extent_map *em;
9739 	struct btrfs_root *root = BTRFS_I(inode)->root;
9740 	struct btrfs_key ins;
9741 	u64 cur_offset = start;
9742 	u64 i_size;
9743 	u64 cur_bytes;
9744 	u64 last_alloc = (u64)-1;
9745 	int ret = 0;
9746 	bool own_trans = true;
9747 
9748 	if (trans)
9749 		own_trans = false;
9750 	while (num_bytes > 0) {
9751 		if (own_trans) {
9752 			trans = btrfs_start_transaction(root, 3);
9753 			if (IS_ERR(trans)) {
9754 				ret = PTR_ERR(trans);
9755 				break;
9756 			}
9757 		}
9758 
9759 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9760 		cur_bytes = max(cur_bytes, min_size);
9761 		/*
9762 		 * If we are severely fragmented we could end up with really
9763 		 * small allocations, so if the allocator is returning small
9764 		 * chunks lets make its job easier by only searching for those
9765 		 * sized chunks.
9766 		 */
9767 		cur_bytes = min(cur_bytes, last_alloc);
9768 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9769 					   *alloc_hint, &ins, 1, 0);
9770 		if (ret) {
9771 			if (own_trans)
9772 				btrfs_end_transaction(trans, root);
9773 			break;
9774 		}
9775 
9776 		last_alloc = ins.offset;
9777 		ret = insert_reserved_file_extent(trans, inode,
9778 						  cur_offset, ins.objectid,
9779 						  ins.offset, ins.offset,
9780 						  ins.offset, 0, 0, 0,
9781 						  BTRFS_FILE_EXTENT_PREALLOC);
9782 		if (ret) {
9783 			btrfs_free_reserved_extent(root, ins.objectid,
9784 						   ins.offset, 0);
9785 			btrfs_abort_transaction(trans, root, ret);
9786 			if (own_trans)
9787 				btrfs_end_transaction(trans, root);
9788 			break;
9789 		}
9790 
9791 		btrfs_drop_extent_cache(inode, cur_offset,
9792 					cur_offset + ins.offset -1, 0);
9793 
9794 		em = alloc_extent_map();
9795 		if (!em) {
9796 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9797 				&BTRFS_I(inode)->runtime_flags);
9798 			goto next;
9799 		}
9800 
9801 		em->start = cur_offset;
9802 		em->orig_start = cur_offset;
9803 		em->len = ins.offset;
9804 		em->block_start = ins.objectid;
9805 		em->block_len = ins.offset;
9806 		em->orig_block_len = ins.offset;
9807 		em->ram_bytes = ins.offset;
9808 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9809 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9810 		em->generation = trans->transid;
9811 
9812 		while (1) {
9813 			write_lock(&em_tree->lock);
9814 			ret = add_extent_mapping(em_tree, em, 1);
9815 			write_unlock(&em_tree->lock);
9816 			if (ret != -EEXIST)
9817 				break;
9818 			btrfs_drop_extent_cache(inode, cur_offset,
9819 						cur_offset + ins.offset - 1,
9820 						0);
9821 		}
9822 		free_extent_map(em);
9823 next:
9824 		num_bytes -= ins.offset;
9825 		cur_offset += ins.offset;
9826 		*alloc_hint = ins.objectid + ins.offset;
9827 
9828 		inode_inc_iversion(inode);
9829 		inode->i_ctime = CURRENT_TIME;
9830 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9831 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9832 		    (actual_len > inode->i_size) &&
9833 		    (cur_offset > inode->i_size)) {
9834 			if (cur_offset > actual_len)
9835 				i_size = actual_len;
9836 			else
9837 				i_size = cur_offset;
9838 			i_size_write(inode, i_size);
9839 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9840 		}
9841 
9842 		ret = btrfs_update_inode(trans, root, inode);
9843 
9844 		if (ret) {
9845 			btrfs_abort_transaction(trans, root, ret);
9846 			if (own_trans)
9847 				btrfs_end_transaction(trans, root);
9848 			break;
9849 		}
9850 
9851 		if (own_trans)
9852 			btrfs_end_transaction(trans, root);
9853 	}
9854 	return ret;
9855 }
9856 
9857 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9858 			      u64 start, u64 num_bytes, u64 min_size,
9859 			      loff_t actual_len, u64 *alloc_hint)
9860 {
9861 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9862 					   min_size, actual_len, alloc_hint,
9863 					   NULL);
9864 }
9865 
9866 int btrfs_prealloc_file_range_trans(struct inode *inode,
9867 				    struct btrfs_trans_handle *trans, int mode,
9868 				    u64 start, u64 num_bytes, u64 min_size,
9869 				    loff_t actual_len, u64 *alloc_hint)
9870 {
9871 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9872 					   min_size, actual_len, alloc_hint, trans);
9873 }
9874 
9875 static int btrfs_set_page_dirty(struct page *page)
9876 {
9877 	return __set_page_dirty_nobuffers(page);
9878 }
9879 
9880 static int btrfs_permission(struct inode *inode, int mask)
9881 {
9882 	struct btrfs_root *root = BTRFS_I(inode)->root;
9883 	umode_t mode = inode->i_mode;
9884 
9885 	if (mask & MAY_WRITE &&
9886 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9887 		if (btrfs_root_readonly(root))
9888 			return -EROFS;
9889 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9890 			return -EACCES;
9891 	}
9892 	return generic_permission(inode, mask);
9893 }
9894 
9895 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9896 {
9897 	struct btrfs_trans_handle *trans;
9898 	struct btrfs_root *root = BTRFS_I(dir)->root;
9899 	struct inode *inode = NULL;
9900 	u64 objectid;
9901 	u64 index;
9902 	int ret = 0;
9903 
9904 	/*
9905 	 * 5 units required for adding orphan entry
9906 	 */
9907 	trans = btrfs_start_transaction(root, 5);
9908 	if (IS_ERR(trans))
9909 		return PTR_ERR(trans);
9910 
9911 	ret = btrfs_find_free_ino(root, &objectid);
9912 	if (ret)
9913 		goto out;
9914 
9915 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9916 				btrfs_ino(dir), objectid, mode, &index);
9917 	if (IS_ERR(inode)) {
9918 		ret = PTR_ERR(inode);
9919 		inode = NULL;
9920 		goto out;
9921 	}
9922 
9923 	inode->i_fop = &btrfs_file_operations;
9924 	inode->i_op = &btrfs_file_inode_operations;
9925 
9926 	inode->i_mapping->a_ops = &btrfs_aops;
9927 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9928 
9929 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9930 	if (ret)
9931 		goto out_inode;
9932 
9933 	ret = btrfs_update_inode(trans, root, inode);
9934 	if (ret)
9935 		goto out_inode;
9936 	ret = btrfs_orphan_add(trans, inode);
9937 	if (ret)
9938 		goto out_inode;
9939 
9940 	/*
9941 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9942 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9943 	 * through:
9944 	 *
9945 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9946 	 */
9947 	set_nlink(inode, 1);
9948 	unlock_new_inode(inode);
9949 	d_tmpfile(dentry, inode);
9950 	mark_inode_dirty(inode);
9951 
9952 out:
9953 	btrfs_end_transaction(trans, root);
9954 	if (ret)
9955 		iput(inode);
9956 	btrfs_balance_delayed_items(root);
9957 	btrfs_btree_balance_dirty(root);
9958 	return ret;
9959 
9960 out_inode:
9961 	unlock_new_inode(inode);
9962 	goto out;
9963 
9964 }
9965 
9966 /* Inspired by filemap_check_errors() */
9967 int btrfs_inode_check_errors(struct inode *inode)
9968 {
9969 	int ret = 0;
9970 
9971 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9972 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9973 		ret = -ENOSPC;
9974 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9975 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9976 		ret = -EIO;
9977 
9978 	return ret;
9979 }
9980 
9981 static const struct inode_operations btrfs_dir_inode_operations = {
9982 	.getattr	= btrfs_getattr,
9983 	.lookup		= btrfs_lookup,
9984 	.create		= btrfs_create,
9985 	.unlink		= btrfs_unlink,
9986 	.link		= btrfs_link,
9987 	.mkdir		= btrfs_mkdir,
9988 	.rmdir		= btrfs_rmdir,
9989 	.rename2	= btrfs_rename2,
9990 	.symlink	= btrfs_symlink,
9991 	.setattr	= btrfs_setattr,
9992 	.mknod		= btrfs_mknod,
9993 	.setxattr	= btrfs_setxattr,
9994 	.getxattr	= btrfs_getxattr,
9995 	.listxattr	= btrfs_listxattr,
9996 	.removexattr	= btrfs_removexattr,
9997 	.permission	= btrfs_permission,
9998 	.get_acl	= btrfs_get_acl,
9999 	.set_acl	= btrfs_set_acl,
10000 	.update_time	= btrfs_update_time,
10001 	.tmpfile        = btrfs_tmpfile,
10002 };
10003 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10004 	.lookup		= btrfs_lookup,
10005 	.permission	= btrfs_permission,
10006 	.get_acl	= btrfs_get_acl,
10007 	.set_acl	= btrfs_set_acl,
10008 	.update_time	= btrfs_update_time,
10009 };
10010 
10011 static const struct file_operations btrfs_dir_file_operations = {
10012 	.llseek		= generic_file_llseek,
10013 	.read		= generic_read_dir,
10014 	.iterate	= btrfs_real_readdir,
10015 	.unlocked_ioctl	= btrfs_ioctl,
10016 #ifdef CONFIG_COMPAT
10017 	.compat_ioctl	= btrfs_ioctl,
10018 #endif
10019 	.release        = btrfs_release_file,
10020 	.fsync		= btrfs_sync_file,
10021 };
10022 
10023 static struct extent_io_ops btrfs_extent_io_ops = {
10024 	.fill_delalloc = run_delalloc_range,
10025 	.submit_bio_hook = btrfs_submit_bio_hook,
10026 	.merge_bio_hook = btrfs_merge_bio_hook,
10027 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10028 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10029 	.writepage_start_hook = btrfs_writepage_start_hook,
10030 	.set_bit_hook = btrfs_set_bit_hook,
10031 	.clear_bit_hook = btrfs_clear_bit_hook,
10032 	.merge_extent_hook = btrfs_merge_extent_hook,
10033 	.split_extent_hook = btrfs_split_extent_hook,
10034 };
10035 
10036 /*
10037  * btrfs doesn't support the bmap operation because swapfiles
10038  * use bmap to make a mapping of extents in the file.  They assume
10039  * these extents won't change over the life of the file and they
10040  * use the bmap result to do IO directly to the drive.
10041  *
10042  * the btrfs bmap call would return logical addresses that aren't
10043  * suitable for IO and they also will change frequently as COW
10044  * operations happen.  So, swapfile + btrfs == corruption.
10045  *
10046  * For now we're avoiding this by dropping bmap.
10047  */
10048 static const struct address_space_operations btrfs_aops = {
10049 	.readpage	= btrfs_readpage,
10050 	.writepage	= btrfs_writepage,
10051 	.writepages	= btrfs_writepages,
10052 	.readpages	= btrfs_readpages,
10053 	.direct_IO	= btrfs_direct_IO,
10054 	.invalidatepage = btrfs_invalidatepage,
10055 	.releasepage	= btrfs_releasepage,
10056 	.set_page_dirty	= btrfs_set_page_dirty,
10057 	.error_remove_page = generic_error_remove_page,
10058 };
10059 
10060 static const struct address_space_operations btrfs_symlink_aops = {
10061 	.readpage	= btrfs_readpage,
10062 	.writepage	= btrfs_writepage,
10063 	.invalidatepage = btrfs_invalidatepage,
10064 	.releasepage	= btrfs_releasepage,
10065 };
10066 
10067 static const struct inode_operations btrfs_file_inode_operations = {
10068 	.getattr	= btrfs_getattr,
10069 	.setattr	= btrfs_setattr,
10070 	.setxattr	= btrfs_setxattr,
10071 	.getxattr	= btrfs_getxattr,
10072 	.listxattr      = btrfs_listxattr,
10073 	.removexattr	= btrfs_removexattr,
10074 	.permission	= btrfs_permission,
10075 	.fiemap		= btrfs_fiemap,
10076 	.get_acl	= btrfs_get_acl,
10077 	.set_acl	= btrfs_set_acl,
10078 	.update_time	= btrfs_update_time,
10079 };
10080 static const struct inode_operations btrfs_special_inode_operations = {
10081 	.getattr	= btrfs_getattr,
10082 	.setattr	= btrfs_setattr,
10083 	.permission	= btrfs_permission,
10084 	.setxattr	= btrfs_setxattr,
10085 	.getxattr	= btrfs_getxattr,
10086 	.listxattr	= btrfs_listxattr,
10087 	.removexattr	= btrfs_removexattr,
10088 	.get_acl	= btrfs_get_acl,
10089 	.set_acl	= btrfs_set_acl,
10090 	.update_time	= btrfs_update_time,
10091 };
10092 static const struct inode_operations btrfs_symlink_inode_operations = {
10093 	.readlink	= generic_readlink,
10094 	.follow_link	= page_follow_link_light,
10095 	.put_link	= page_put_link,
10096 	.getattr	= btrfs_getattr,
10097 	.setattr	= btrfs_setattr,
10098 	.permission	= btrfs_permission,
10099 	.setxattr	= btrfs_setxattr,
10100 	.getxattr	= btrfs_getxattr,
10101 	.listxattr	= btrfs_listxattr,
10102 	.removexattr	= btrfs_removexattr,
10103 	.update_time	= btrfs_update_time,
10104 };
10105 
10106 const struct dentry_operations btrfs_dentry_operations = {
10107 	.d_delete	= btrfs_dentry_delete,
10108 	.d_release	= btrfs_dentry_release,
10109 };
10110