1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "volumes.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 59 struct btrfs_iget_args { 60 u64 ino; 61 struct btrfs_root *root; 62 }; 63 64 struct btrfs_dio_data { 65 ssize_t submitted; 66 struct extent_changeset *data_reserved; 67 }; 68 69 struct btrfs_rename_ctx { 70 /* Output field. Stores the index number of the old directory entry. */ 71 u64 index; 72 }; 73 74 static const struct inode_operations btrfs_dir_inode_operations; 75 static const struct inode_operations btrfs_symlink_inode_operations; 76 static const struct inode_operations btrfs_special_inode_operations; 77 static const struct inode_operations btrfs_file_inode_operations; 78 static const struct address_space_operations btrfs_aops; 79 static const struct file_operations btrfs_dir_file_operations; 80 81 static struct kmem_cache *btrfs_inode_cachep; 82 struct kmem_cache *btrfs_trans_handle_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 struct kmem_cache *btrfs_free_space_bitmap_cachep; 86 87 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 88 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 90 static noinline int cow_file_range(struct btrfs_inode *inode, 91 struct page *locked_page, 92 u64 start, u64 end, int *page_started, 93 unsigned long *nr_written, int unlock); 94 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 95 u64 len, u64 orig_start, u64 block_start, 96 u64 block_len, u64 orig_block_len, 97 u64 ram_bytes, int compress_type, 98 int type); 99 100 static void __endio_write_update_ordered(struct btrfs_inode *inode, 101 const u64 offset, const u64 bytes, 102 const bool uptodate); 103 104 /* 105 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 106 * 107 * ilock_flags can have the following bit set: 108 * 109 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 110 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 111 * return -EAGAIN 112 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 113 */ 114 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 115 { 116 if (ilock_flags & BTRFS_ILOCK_SHARED) { 117 if (ilock_flags & BTRFS_ILOCK_TRY) { 118 if (!inode_trylock_shared(inode)) 119 return -EAGAIN; 120 else 121 return 0; 122 } 123 inode_lock_shared(inode); 124 } else { 125 if (ilock_flags & BTRFS_ILOCK_TRY) { 126 if (!inode_trylock(inode)) 127 return -EAGAIN; 128 else 129 return 0; 130 } 131 inode_lock(inode); 132 } 133 if (ilock_flags & BTRFS_ILOCK_MMAP) 134 down_write(&BTRFS_I(inode)->i_mmap_lock); 135 return 0; 136 } 137 138 /* 139 * btrfs_inode_unlock - unock inode i_rwsem 140 * 141 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 142 * to decide whether the lock acquired is shared or exclusive. 143 */ 144 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 145 { 146 if (ilock_flags & BTRFS_ILOCK_MMAP) 147 up_write(&BTRFS_I(inode)->i_mmap_lock); 148 if (ilock_flags & BTRFS_ILOCK_SHARED) 149 inode_unlock_shared(inode); 150 else 151 inode_unlock(inode); 152 } 153 154 /* 155 * Cleanup all submitted ordered extents in specified range to handle errors 156 * from the btrfs_run_delalloc_range() callback. 157 * 158 * NOTE: caller must ensure that when an error happens, it can not call 159 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 160 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 161 * to be released, which we want to happen only when finishing the ordered 162 * extent (btrfs_finish_ordered_io()). 163 */ 164 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 165 struct page *locked_page, 166 u64 offset, u64 bytes) 167 { 168 unsigned long index = offset >> PAGE_SHIFT; 169 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 170 u64 page_start = page_offset(locked_page); 171 u64 page_end = page_start + PAGE_SIZE - 1; 172 173 struct page *page; 174 175 while (index <= end_index) { 176 /* 177 * For locked page, we will call end_extent_writepage() on it 178 * in run_delalloc_range() for the error handling. That 179 * end_extent_writepage() function will call 180 * btrfs_mark_ordered_io_finished() to clear page Ordered and 181 * run the ordered extent accounting. 182 * 183 * Here we can't just clear the Ordered bit, or 184 * btrfs_mark_ordered_io_finished() would skip the accounting 185 * for the page range, and the ordered extent will never finish. 186 */ 187 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) { 188 index++; 189 continue; 190 } 191 page = find_get_page(inode->vfs_inode.i_mapping, index); 192 index++; 193 if (!page) 194 continue; 195 196 /* 197 * Here we just clear all Ordered bits for every page in the 198 * range, then __endio_write_update_ordered() will handle 199 * the ordered extent accounting for the range. 200 */ 201 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 202 offset, bytes); 203 put_page(page); 204 } 205 206 /* The locked page covers the full range, nothing needs to be done */ 207 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE) 208 return; 209 /* 210 * In case this page belongs to the delalloc range being instantiated 211 * then skip it, since the first page of a range is going to be 212 * properly cleaned up by the caller of run_delalloc_range 213 */ 214 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 215 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 216 offset = page_offset(locked_page) + PAGE_SIZE; 217 } 218 219 return __endio_write_update_ordered(inode, offset, bytes, false); 220 } 221 222 static int btrfs_dirty_inode(struct inode *inode); 223 224 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 225 struct inode *inode, struct inode *dir, 226 const struct qstr *qstr) 227 { 228 int err; 229 230 err = btrfs_init_acl(trans, inode, dir); 231 if (!err) 232 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 233 return err; 234 } 235 236 /* 237 * this does all the hard work for inserting an inline extent into 238 * the btree. The caller should have done a btrfs_drop_extents so that 239 * no overlapping inline items exist in the btree 240 */ 241 static int insert_inline_extent(struct btrfs_trans_handle *trans, 242 struct btrfs_path *path, 243 struct btrfs_inode *inode, bool extent_inserted, 244 size_t size, size_t compressed_size, 245 int compress_type, 246 struct page **compressed_pages, 247 bool update_i_size) 248 { 249 struct btrfs_root *root = inode->root; 250 struct extent_buffer *leaf; 251 struct page *page = NULL; 252 char *kaddr; 253 unsigned long ptr; 254 struct btrfs_file_extent_item *ei; 255 int ret; 256 size_t cur_size = size; 257 u64 i_size; 258 259 ASSERT((compressed_size > 0 && compressed_pages) || 260 (compressed_size == 0 && !compressed_pages)); 261 262 if (compressed_size && compressed_pages) 263 cur_size = compressed_size; 264 265 if (!extent_inserted) { 266 struct btrfs_key key; 267 size_t datasize; 268 269 key.objectid = btrfs_ino(inode); 270 key.offset = 0; 271 key.type = BTRFS_EXTENT_DATA_KEY; 272 273 datasize = btrfs_file_extent_calc_inline_size(cur_size); 274 ret = btrfs_insert_empty_item(trans, root, path, &key, 275 datasize); 276 if (ret) 277 goto fail; 278 } 279 leaf = path->nodes[0]; 280 ei = btrfs_item_ptr(leaf, path->slots[0], 281 struct btrfs_file_extent_item); 282 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 283 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 284 btrfs_set_file_extent_encryption(leaf, ei, 0); 285 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 286 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 287 ptr = btrfs_file_extent_inline_start(ei); 288 289 if (compress_type != BTRFS_COMPRESS_NONE) { 290 struct page *cpage; 291 int i = 0; 292 while (compressed_size > 0) { 293 cpage = compressed_pages[i]; 294 cur_size = min_t(unsigned long, compressed_size, 295 PAGE_SIZE); 296 297 kaddr = kmap_atomic(cpage); 298 write_extent_buffer(leaf, kaddr, ptr, cur_size); 299 kunmap_atomic(kaddr); 300 301 i++; 302 ptr += cur_size; 303 compressed_size -= cur_size; 304 } 305 btrfs_set_file_extent_compression(leaf, ei, 306 compress_type); 307 } else { 308 page = find_get_page(inode->vfs_inode.i_mapping, 0); 309 btrfs_set_file_extent_compression(leaf, ei, 0); 310 kaddr = kmap_atomic(page); 311 write_extent_buffer(leaf, kaddr, ptr, size); 312 kunmap_atomic(kaddr); 313 put_page(page); 314 } 315 btrfs_mark_buffer_dirty(leaf); 316 btrfs_release_path(path); 317 318 /* 319 * We align size to sectorsize for inline extents just for simplicity 320 * sake. 321 */ 322 ret = btrfs_inode_set_file_extent_range(inode, 0, 323 ALIGN(size, root->fs_info->sectorsize)); 324 if (ret) 325 goto fail; 326 327 /* 328 * We're an inline extent, so nobody can extend the file past i_size 329 * without locking a page we already have locked. 330 * 331 * We must do any i_size and inode updates before we unlock the pages. 332 * Otherwise we could end up racing with unlink. 333 */ 334 i_size = i_size_read(&inode->vfs_inode); 335 if (update_i_size && size > i_size) { 336 i_size_write(&inode->vfs_inode, size); 337 i_size = size; 338 } 339 inode->disk_i_size = i_size; 340 341 fail: 342 return ret; 343 } 344 345 346 /* 347 * conditionally insert an inline extent into the file. This 348 * does the checks required to make sure the data is small enough 349 * to fit as an inline extent. 350 */ 351 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 352 size_t compressed_size, 353 int compress_type, 354 struct page **compressed_pages, 355 bool update_i_size) 356 { 357 struct btrfs_drop_extents_args drop_args = { 0 }; 358 struct btrfs_root *root = inode->root; 359 struct btrfs_fs_info *fs_info = root->fs_info; 360 struct btrfs_trans_handle *trans; 361 u64 data_len = (compressed_size ?: size); 362 int ret; 363 struct btrfs_path *path; 364 365 /* 366 * We can create an inline extent if it ends at or beyond the current 367 * i_size, is no larger than a sector (decompressed), and the (possibly 368 * compressed) data fits in a leaf and the configured maximum inline 369 * size. 370 */ 371 if (size < i_size_read(&inode->vfs_inode) || 372 size > fs_info->sectorsize || 373 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 374 data_len > fs_info->max_inline) 375 return 1; 376 377 path = btrfs_alloc_path(); 378 if (!path) 379 return -ENOMEM; 380 381 trans = btrfs_join_transaction(root); 382 if (IS_ERR(trans)) { 383 btrfs_free_path(path); 384 return PTR_ERR(trans); 385 } 386 trans->block_rsv = &inode->block_rsv; 387 388 drop_args.path = path; 389 drop_args.start = 0; 390 drop_args.end = fs_info->sectorsize; 391 drop_args.drop_cache = true; 392 drop_args.replace_extent = true; 393 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 394 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 395 if (ret) { 396 btrfs_abort_transaction(trans, ret); 397 goto out; 398 } 399 400 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 401 size, compressed_size, compress_type, 402 compressed_pages, update_i_size); 403 if (ret && ret != -ENOSPC) { 404 btrfs_abort_transaction(trans, ret); 405 goto out; 406 } else if (ret == -ENOSPC) { 407 ret = 1; 408 goto out; 409 } 410 411 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 412 ret = btrfs_update_inode(trans, root, inode); 413 if (ret && ret != -ENOSPC) { 414 btrfs_abort_transaction(trans, ret); 415 goto out; 416 } else if (ret == -ENOSPC) { 417 ret = 1; 418 goto out; 419 } 420 421 btrfs_set_inode_full_sync(inode); 422 out: 423 /* 424 * Don't forget to free the reserved space, as for inlined extent 425 * it won't count as data extent, free them directly here. 426 * And at reserve time, it's always aligned to page size, so 427 * just free one page here. 428 */ 429 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 430 btrfs_free_path(path); 431 btrfs_end_transaction(trans); 432 return ret; 433 } 434 435 struct async_extent { 436 u64 start; 437 u64 ram_size; 438 u64 compressed_size; 439 struct page **pages; 440 unsigned long nr_pages; 441 int compress_type; 442 struct list_head list; 443 }; 444 445 struct async_chunk { 446 struct inode *inode; 447 struct page *locked_page; 448 u64 start; 449 u64 end; 450 unsigned int write_flags; 451 struct list_head extents; 452 struct cgroup_subsys_state *blkcg_css; 453 struct btrfs_work work; 454 struct async_cow *async_cow; 455 }; 456 457 struct async_cow { 458 atomic_t num_chunks; 459 struct async_chunk chunks[]; 460 }; 461 462 static noinline int add_async_extent(struct async_chunk *cow, 463 u64 start, u64 ram_size, 464 u64 compressed_size, 465 struct page **pages, 466 unsigned long nr_pages, 467 int compress_type) 468 { 469 struct async_extent *async_extent; 470 471 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 472 BUG_ON(!async_extent); /* -ENOMEM */ 473 async_extent->start = start; 474 async_extent->ram_size = ram_size; 475 async_extent->compressed_size = compressed_size; 476 async_extent->pages = pages; 477 async_extent->nr_pages = nr_pages; 478 async_extent->compress_type = compress_type; 479 list_add_tail(&async_extent->list, &cow->extents); 480 return 0; 481 } 482 483 /* 484 * Check if the inode needs to be submitted to compression, based on mount 485 * options, defragmentation, properties or heuristics. 486 */ 487 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 488 u64 end) 489 { 490 struct btrfs_fs_info *fs_info = inode->root->fs_info; 491 492 if (!btrfs_inode_can_compress(inode)) { 493 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 494 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 495 btrfs_ino(inode)); 496 return 0; 497 } 498 /* 499 * Special check for subpage. 500 * 501 * We lock the full page then run each delalloc range in the page, thus 502 * for the following case, we will hit some subpage specific corner case: 503 * 504 * 0 32K 64K 505 * | |///////| |///////| 506 * \- A \- B 507 * 508 * In above case, both range A and range B will try to unlock the full 509 * page [0, 64K), causing the one finished later will have page 510 * unlocked already, triggering various page lock requirement BUG_ON()s. 511 * 512 * So here we add an artificial limit that subpage compression can only 513 * if the range is fully page aligned. 514 * 515 * In theory we only need to ensure the first page is fully covered, but 516 * the tailing partial page will be locked until the full compression 517 * finishes, delaying the write of other range. 518 * 519 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 520 * first to prevent any submitted async extent to unlock the full page. 521 * By this, we can ensure for subpage case that only the last async_cow 522 * will unlock the full page. 523 */ 524 if (fs_info->sectorsize < PAGE_SIZE) { 525 if (!IS_ALIGNED(start, PAGE_SIZE) || 526 !IS_ALIGNED(end + 1, PAGE_SIZE)) 527 return 0; 528 } 529 530 /* force compress */ 531 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 532 return 1; 533 /* defrag ioctl */ 534 if (inode->defrag_compress) 535 return 1; 536 /* bad compression ratios */ 537 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 538 return 0; 539 if (btrfs_test_opt(fs_info, COMPRESS) || 540 inode->flags & BTRFS_INODE_COMPRESS || 541 inode->prop_compress) 542 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 543 return 0; 544 } 545 546 static inline void inode_should_defrag(struct btrfs_inode *inode, 547 u64 start, u64 end, u64 num_bytes, u32 small_write) 548 { 549 /* If this is a small write inside eof, kick off a defrag */ 550 if (num_bytes < small_write && 551 (start > 0 || end + 1 < inode->disk_i_size)) 552 btrfs_add_inode_defrag(NULL, inode, small_write); 553 } 554 555 /* 556 * we create compressed extents in two phases. The first 557 * phase compresses a range of pages that have already been 558 * locked (both pages and state bits are locked). 559 * 560 * This is done inside an ordered work queue, and the compression 561 * is spread across many cpus. The actual IO submission is step 562 * two, and the ordered work queue takes care of making sure that 563 * happens in the same order things were put onto the queue by 564 * writepages and friends. 565 * 566 * If this code finds it can't get good compression, it puts an 567 * entry onto the work queue to write the uncompressed bytes. This 568 * makes sure that both compressed inodes and uncompressed inodes 569 * are written in the same order that the flusher thread sent them 570 * down. 571 */ 572 static noinline int compress_file_range(struct async_chunk *async_chunk) 573 { 574 struct inode *inode = async_chunk->inode; 575 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 576 u64 blocksize = fs_info->sectorsize; 577 u64 start = async_chunk->start; 578 u64 end = async_chunk->end; 579 u64 actual_end; 580 u64 i_size; 581 int ret = 0; 582 struct page **pages = NULL; 583 unsigned long nr_pages; 584 unsigned long total_compressed = 0; 585 unsigned long total_in = 0; 586 int i; 587 int will_compress; 588 int compress_type = fs_info->compress_type; 589 int compressed_extents = 0; 590 int redirty = 0; 591 592 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 593 SZ_16K); 594 595 /* 596 * We need to save i_size before now because it could change in between 597 * us evaluating the size and assigning it. This is because we lock and 598 * unlock the page in truncate and fallocate, and then modify the i_size 599 * later on. 600 * 601 * The barriers are to emulate READ_ONCE, remove that once i_size_read 602 * does that for us. 603 */ 604 barrier(); 605 i_size = i_size_read(inode); 606 barrier(); 607 actual_end = min_t(u64, i_size, end + 1); 608 again: 609 will_compress = 0; 610 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 611 nr_pages = min_t(unsigned long, nr_pages, 612 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 613 614 /* 615 * we don't want to send crud past the end of i_size through 616 * compression, that's just a waste of CPU time. So, if the 617 * end of the file is before the start of our current 618 * requested range of bytes, we bail out to the uncompressed 619 * cleanup code that can deal with all of this. 620 * 621 * It isn't really the fastest way to fix things, but this is a 622 * very uncommon corner. 623 */ 624 if (actual_end <= start) 625 goto cleanup_and_bail_uncompressed; 626 627 total_compressed = actual_end - start; 628 629 /* 630 * Skip compression for a small file range(<=blocksize) that 631 * isn't an inline extent, since it doesn't save disk space at all. 632 */ 633 if (total_compressed <= blocksize && 634 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 635 goto cleanup_and_bail_uncompressed; 636 637 /* 638 * For subpage case, we require full page alignment for the sector 639 * aligned range. 640 * Thus we must also check against @actual_end, not just @end. 641 */ 642 if (blocksize < PAGE_SIZE) { 643 if (!IS_ALIGNED(start, PAGE_SIZE) || 644 !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE)) 645 goto cleanup_and_bail_uncompressed; 646 } 647 648 total_compressed = min_t(unsigned long, total_compressed, 649 BTRFS_MAX_UNCOMPRESSED); 650 total_in = 0; 651 ret = 0; 652 653 /* 654 * we do compression for mount -o compress and when the 655 * inode has not been flagged as nocompress. This flag can 656 * change at any time if we discover bad compression ratios. 657 */ 658 if (inode_need_compress(BTRFS_I(inode), start, end)) { 659 WARN_ON(pages); 660 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 661 if (!pages) { 662 /* just bail out to the uncompressed code */ 663 nr_pages = 0; 664 goto cont; 665 } 666 667 if (BTRFS_I(inode)->defrag_compress) 668 compress_type = BTRFS_I(inode)->defrag_compress; 669 else if (BTRFS_I(inode)->prop_compress) 670 compress_type = BTRFS_I(inode)->prop_compress; 671 672 /* 673 * we need to call clear_page_dirty_for_io on each 674 * page in the range. Otherwise applications with the file 675 * mmap'd can wander in and change the page contents while 676 * we are compressing them. 677 * 678 * If the compression fails for any reason, we set the pages 679 * dirty again later on. 680 * 681 * Note that the remaining part is redirtied, the start pointer 682 * has moved, the end is the original one. 683 */ 684 if (!redirty) { 685 extent_range_clear_dirty_for_io(inode, start, end); 686 redirty = 1; 687 } 688 689 /* Compression level is applied here and only here */ 690 ret = btrfs_compress_pages( 691 compress_type | (fs_info->compress_level << 4), 692 inode->i_mapping, start, 693 pages, 694 &nr_pages, 695 &total_in, 696 &total_compressed); 697 698 if (!ret) { 699 unsigned long offset = offset_in_page(total_compressed); 700 struct page *page = pages[nr_pages - 1]; 701 702 /* zero the tail end of the last page, we might be 703 * sending it down to disk 704 */ 705 if (offset) 706 memzero_page(page, offset, PAGE_SIZE - offset); 707 will_compress = 1; 708 } 709 } 710 cont: 711 /* 712 * Check cow_file_range() for why we don't even try to create inline 713 * extent for subpage case. 714 */ 715 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 716 /* lets try to make an inline extent */ 717 if (ret || total_in < actual_end) { 718 /* we didn't compress the entire range, try 719 * to make an uncompressed inline extent. 720 */ 721 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 722 0, BTRFS_COMPRESS_NONE, 723 NULL, false); 724 } else { 725 /* try making a compressed inline extent */ 726 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 727 total_compressed, 728 compress_type, pages, 729 false); 730 } 731 if (ret <= 0) { 732 unsigned long clear_flags = EXTENT_DELALLOC | 733 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 734 EXTENT_DO_ACCOUNTING; 735 unsigned long page_error_op; 736 737 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 738 739 /* 740 * inline extent creation worked or returned error, 741 * we don't need to create any more async work items. 742 * Unlock and free up our temp pages. 743 * 744 * We use DO_ACCOUNTING here because we need the 745 * delalloc_release_metadata to be done _after_ we drop 746 * our outstanding extent for clearing delalloc for this 747 * range. 748 */ 749 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 750 NULL, 751 clear_flags, 752 PAGE_UNLOCK | 753 PAGE_START_WRITEBACK | 754 page_error_op | 755 PAGE_END_WRITEBACK); 756 757 /* 758 * Ensure we only free the compressed pages if we have 759 * them allocated, as we can still reach here with 760 * inode_need_compress() == false. 761 */ 762 if (pages) { 763 for (i = 0; i < nr_pages; i++) { 764 WARN_ON(pages[i]->mapping); 765 put_page(pages[i]); 766 } 767 kfree(pages); 768 } 769 return 0; 770 } 771 } 772 773 if (will_compress) { 774 /* 775 * we aren't doing an inline extent round the compressed size 776 * up to a block size boundary so the allocator does sane 777 * things 778 */ 779 total_compressed = ALIGN(total_compressed, blocksize); 780 781 /* 782 * one last check to make sure the compression is really a 783 * win, compare the page count read with the blocks on disk, 784 * compression must free at least one sector size 785 */ 786 total_in = round_up(total_in, fs_info->sectorsize); 787 if (total_compressed + blocksize <= total_in) { 788 compressed_extents++; 789 790 /* 791 * The async work queues will take care of doing actual 792 * allocation on disk for these compressed pages, and 793 * will submit them to the elevator. 794 */ 795 add_async_extent(async_chunk, start, total_in, 796 total_compressed, pages, nr_pages, 797 compress_type); 798 799 if (start + total_in < end) { 800 start += total_in; 801 pages = NULL; 802 cond_resched(); 803 goto again; 804 } 805 return compressed_extents; 806 } 807 } 808 if (pages) { 809 /* 810 * the compression code ran but failed to make things smaller, 811 * free any pages it allocated and our page pointer array 812 */ 813 for (i = 0; i < nr_pages; i++) { 814 WARN_ON(pages[i]->mapping); 815 put_page(pages[i]); 816 } 817 kfree(pages); 818 pages = NULL; 819 total_compressed = 0; 820 nr_pages = 0; 821 822 /* flag the file so we don't compress in the future */ 823 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 824 !(BTRFS_I(inode)->prop_compress)) { 825 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 826 } 827 } 828 cleanup_and_bail_uncompressed: 829 /* 830 * No compression, but we still need to write the pages in the file 831 * we've been given so far. redirty the locked page if it corresponds 832 * to our extent and set things up for the async work queue to run 833 * cow_file_range to do the normal delalloc dance. 834 */ 835 if (async_chunk->locked_page && 836 (page_offset(async_chunk->locked_page) >= start && 837 page_offset(async_chunk->locked_page)) <= end) { 838 __set_page_dirty_nobuffers(async_chunk->locked_page); 839 /* unlocked later on in the async handlers */ 840 } 841 842 if (redirty) 843 extent_range_redirty_for_io(inode, start, end); 844 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 845 BTRFS_COMPRESS_NONE); 846 compressed_extents++; 847 848 return compressed_extents; 849 } 850 851 static void free_async_extent_pages(struct async_extent *async_extent) 852 { 853 int i; 854 855 if (!async_extent->pages) 856 return; 857 858 for (i = 0; i < async_extent->nr_pages; i++) { 859 WARN_ON(async_extent->pages[i]->mapping); 860 put_page(async_extent->pages[i]); 861 } 862 kfree(async_extent->pages); 863 async_extent->nr_pages = 0; 864 async_extent->pages = NULL; 865 } 866 867 static int submit_uncompressed_range(struct btrfs_inode *inode, 868 struct async_extent *async_extent, 869 struct page *locked_page) 870 { 871 u64 start = async_extent->start; 872 u64 end = async_extent->start + async_extent->ram_size - 1; 873 unsigned long nr_written = 0; 874 int page_started = 0; 875 int ret; 876 877 /* 878 * Call cow_file_range() to run the delalloc range directly, since we 879 * won't go to NOCOW or async path again. 880 * 881 * Also we call cow_file_range() with @unlock_page == 0, so that we 882 * can directly submit them without interruption. 883 */ 884 ret = cow_file_range(inode, locked_page, start, end, &page_started, 885 &nr_written, 0); 886 /* Inline extent inserted, page gets unlocked and everything is done */ 887 if (page_started) { 888 ret = 0; 889 goto out; 890 } 891 if (ret < 0) { 892 if (locked_page) 893 unlock_page(locked_page); 894 goto out; 895 } 896 897 ret = extent_write_locked_range(&inode->vfs_inode, start, end); 898 /* All pages will be unlocked, including @locked_page */ 899 out: 900 kfree(async_extent); 901 return ret; 902 } 903 904 static int submit_one_async_extent(struct btrfs_inode *inode, 905 struct async_chunk *async_chunk, 906 struct async_extent *async_extent, 907 u64 *alloc_hint) 908 { 909 struct extent_io_tree *io_tree = &inode->io_tree; 910 struct btrfs_root *root = inode->root; 911 struct btrfs_fs_info *fs_info = root->fs_info; 912 struct btrfs_key ins; 913 struct page *locked_page = NULL; 914 struct extent_map *em; 915 int ret = 0; 916 u64 start = async_extent->start; 917 u64 end = async_extent->start + async_extent->ram_size - 1; 918 919 /* 920 * If async_chunk->locked_page is in the async_extent range, we need to 921 * handle it. 922 */ 923 if (async_chunk->locked_page) { 924 u64 locked_page_start = page_offset(async_chunk->locked_page); 925 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 926 927 if (!(start >= locked_page_end || end <= locked_page_start)) 928 locked_page = async_chunk->locked_page; 929 } 930 lock_extent(io_tree, start, end); 931 932 /* We have fall back to uncompressed write */ 933 if (!async_extent->pages) 934 return submit_uncompressed_range(inode, async_extent, locked_page); 935 936 ret = btrfs_reserve_extent(root, async_extent->ram_size, 937 async_extent->compressed_size, 938 async_extent->compressed_size, 939 0, *alloc_hint, &ins, 1, 1); 940 if (ret) { 941 free_async_extent_pages(async_extent); 942 /* 943 * Here we used to try again by going back to non-compressed 944 * path for ENOSPC. But we can't reserve space even for 945 * compressed size, how could it work for uncompressed size 946 * which requires larger size? So here we directly go error 947 * path. 948 */ 949 goto out_free; 950 } 951 952 /* Here we're doing allocation and writeback of the compressed pages */ 953 em = create_io_em(inode, start, 954 async_extent->ram_size, /* len */ 955 start, /* orig_start */ 956 ins.objectid, /* block_start */ 957 ins.offset, /* block_len */ 958 ins.offset, /* orig_block_len */ 959 async_extent->ram_size, /* ram_bytes */ 960 async_extent->compress_type, 961 BTRFS_ORDERED_COMPRESSED); 962 if (IS_ERR(em)) { 963 ret = PTR_ERR(em); 964 goto out_free_reserve; 965 } 966 free_extent_map(em); 967 968 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ 969 async_extent->ram_size, /* num_bytes */ 970 async_extent->ram_size, /* ram_bytes */ 971 ins.objectid, /* disk_bytenr */ 972 ins.offset, /* disk_num_bytes */ 973 0, /* offset */ 974 1 << BTRFS_ORDERED_COMPRESSED, 975 async_extent->compress_type); 976 if (ret) { 977 btrfs_drop_extent_cache(inode, start, end, 0); 978 goto out_free_reserve; 979 } 980 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 981 982 /* Clear dirty, set writeback and unlock the pages. */ 983 extent_clear_unlock_delalloc(inode, start, end, 984 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 985 PAGE_UNLOCK | PAGE_START_WRITEBACK); 986 if (btrfs_submit_compressed_write(inode, start, /* file_offset */ 987 async_extent->ram_size, /* num_bytes */ 988 ins.objectid, /* disk_bytenr */ 989 ins.offset, /* compressed_len */ 990 async_extent->pages, /* compressed_pages */ 991 async_extent->nr_pages, 992 async_chunk->write_flags, 993 async_chunk->blkcg_css, true)) { 994 const u64 start = async_extent->start; 995 const u64 end = start + async_extent->ram_size - 1; 996 997 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0); 998 999 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 1000 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1001 free_async_extent_pages(async_extent); 1002 } 1003 *alloc_hint = ins.objectid + ins.offset; 1004 kfree(async_extent); 1005 return ret; 1006 1007 out_free_reserve: 1008 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1009 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1010 out_free: 1011 extent_clear_unlock_delalloc(inode, start, end, 1012 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1013 EXTENT_DELALLOC_NEW | 1014 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1015 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1016 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1017 free_async_extent_pages(async_extent); 1018 kfree(async_extent); 1019 return ret; 1020 } 1021 1022 /* 1023 * Phase two of compressed writeback. This is the ordered portion of the code, 1024 * which only gets called in the order the work was queued. We walk all the 1025 * async extents created by compress_file_range and send them down to the disk. 1026 */ 1027 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 1028 { 1029 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 1030 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1031 struct async_extent *async_extent; 1032 u64 alloc_hint = 0; 1033 int ret = 0; 1034 1035 while (!list_empty(&async_chunk->extents)) { 1036 u64 extent_start; 1037 u64 ram_size; 1038 1039 async_extent = list_entry(async_chunk->extents.next, 1040 struct async_extent, list); 1041 list_del(&async_extent->list); 1042 extent_start = async_extent->start; 1043 ram_size = async_extent->ram_size; 1044 1045 ret = submit_one_async_extent(inode, async_chunk, async_extent, 1046 &alloc_hint); 1047 btrfs_debug(fs_info, 1048 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1049 inode->root->root_key.objectid, 1050 btrfs_ino(inode), extent_start, ram_size, ret); 1051 } 1052 } 1053 1054 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1055 u64 num_bytes) 1056 { 1057 struct extent_map_tree *em_tree = &inode->extent_tree; 1058 struct extent_map *em; 1059 u64 alloc_hint = 0; 1060 1061 read_lock(&em_tree->lock); 1062 em = search_extent_mapping(em_tree, start, num_bytes); 1063 if (em) { 1064 /* 1065 * if block start isn't an actual block number then find the 1066 * first block in this inode and use that as a hint. If that 1067 * block is also bogus then just don't worry about it. 1068 */ 1069 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1070 free_extent_map(em); 1071 em = search_extent_mapping(em_tree, 0, 0); 1072 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1073 alloc_hint = em->block_start; 1074 if (em) 1075 free_extent_map(em); 1076 } else { 1077 alloc_hint = em->block_start; 1078 free_extent_map(em); 1079 } 1080 } 1081 read_unlock(&em_tree->lock); 1082 1083 return alloc_hint; 1084 } 1085 1086 /* 1087 * when extent_io.c finds a delayed allocation range in the file, 1088 * the call backs end up in this code. The basic idea is to 1089 * allocate extents on disk for the range, and create ordered data structs 1090 * in ram to track those extents. 1091 * 1092 * locked_page is the page that writepage had locked already. We use 1093 * it to make sure we don't do extra locks or unlocks. 1094 * 1095 * *page_started is set to one if we unlock locked_page and do everything 1096 * required to start IO on it. It may be clean and already done with 1097 * IO when we return. 1098 */ 1099 static noinline int cow_file_range(struct btrfs_inode *inode, 1100 struct page *locked_page, 1101 u64 start, u64 end, int *page_started, 1102 unsigned long *nr_written, int unlock) 1103 { 1104 struct btrfs_root *root = inode->root; 1105 struct btrfs_fs_info *fs_info = root->fs_info; 1106 u64 alloc_hint = 0; 1107 u64 num_bytes; 1108 unsigned long ram_size; 1109 u64 cur_alloc_size = 0; 1110 u64 min_alloc_size; 1111 u64 blocksize = fs_info->sectorsize; 1112 struct btrfs_key ins; 1113 struct extent_map *em; 1114 unsigned clear_bits; 1115 unsigned long page_ops; 1116 bool extent_reserved = false; 1117 int ret = 0; 1118 1119 if (btrfs_is_free_space_inode(inode)) { 1120 ret = -EINVAL; 1121 goto out_unlock; 1122 } 1123 1124 num_bytes = ALIGN(end - start + 1, blocksize); 1125 num_bytes = max(blocksize, num_bytes); 1126 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1127 1128 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1129 1130 /* 1131 * Due to the page size limit, for subpage we can only trigger the 1132 * writeback for the dirty sectors of page, that means data writeback 1133 * is doing more writeback than what we want. 1134 * 1135 * This is especially unexpected for some call sites like fallocate, 1136 * where we only increase i_size after everything is done. 1137 * This means we can trigger inline extent even if we didn't want to. 1138 * So here we skip inline extent creation completely. 1139 */ 1140 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1141 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1142 end + 1); 1143 1144 /* lets try to make an inline extent */ 1145 ret = cow_file_range_inline(inode, actual_end, 0, 1146 BTRFS_COMPRESS_NONE, NULL, false); 1147 if (ret == 0) { 1148 /* 1149 * We use DO_ACCOUNTING here because we need the 1150 * delalloc_release_metadata to be run _after_ we drop 1151 * our outstanding extent for clearing delalloc for this 1152 * range. 1153 */ 1154 extent_clear_unlock_delalloc(inode, start, end, 1155 locked_page, 1156 EXTENT_LOCKED | EXTENT_DELALLOC | 1157 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1158 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1159 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1160 *nr_written = *nr_written + 1161 (end - start + PAGE_SIZE) / PAGE_SIZE; 1162 *page_started = 1; 1163 /* 1164 * locked_page is locked by the caller of 1165 * writepage_delalloc(), not locked by 1166 * __process_pages_contig(). 1167 * 1168 * We can't let __process_pages_contig() to unlock it, 1169 * as it doesn't have any subpage::writers recorded. 1170 * 1171 * Here we manually unlock the page, since the caller 1172 * can't use page_started to determine if it's an 1173 * inline extent or a compressed extent. 1174 */ 1175 unlock_page(locked_page); 1176 goto out; 1177 } else if (ret < 0) { 1178 goto out_unlock; 1179 } 1180 } 1181 1182 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1183 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1184 1185 /* 1186 * Relocation relies on the relocated extents to have exactly the same 1187 * size as the original extents. Normally writeback for relocation data 1188 * extents follows a NOCOW path because relocation preallocates the 1189 * extents. However, due to an operation such as scrub turning a block 1190 * group to RO mode, it may fallback to COW mode, so we must make sure 1191 * an extent allocated during COW has exactly the requested size and can 1192 * not be split into smaller extents, otherwise relocation breaks and 1193 * fails during the stage where it updates the bytenr of file extent 1194 * items. 1195 */ 1196 if (btrfs_is_data_reloc_root(root)) 1197 min_alloc_size = num_bytes; 1198 else 1199 min_alloc_size = fs_info->sectorsize; 1200 1201 while (num_bytes > 0) { 1202 cur_alloc_size = num_bytes; 1203 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1204 min_alloc_size, 0, alloc_hint, 1205 &ins, 1, 1); 1206 if (ret < 0) 1207 goto out_unlock; 1208 cur_alloc_size = ins.offset; 1209 extent_reserved = true; 1210 1211 ram_size = ins.offset; 1212 em = create_io_em(inode, start, ins.offset, /* len */ 1213 start, /* orig_start */ 1214 ins.objectid, /* block_start */ 1215 ins.offset, /* block_len */ 1216 ins.offset, /* orig_block_len */ 1217 ram_size, /* ram_bytes */ 1218 BTRFS_COMPRESS_NONE, /* compress_type */ 1219 BTRFS_ORDERED_REGULAR /* type */); 1220 if (IS_ERR(em)) { 1221 ret = PTR_ERR(em); 1222 goto out_reserve; 1223 } 1224 free_extent_map(em); 1225 1226 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, 1227 ins.objectid, cur_alloc_size, 0, 1228 1 << BTRFS_ORDERED_REGULAR, 1229 BTRFS_COMPRESS_NONE); 1230 if (ret) 1231 goto out_drop_extent_cache; 1232 1233 if (btrfs_is_data_reloc_root(root)) { 1234 ret = btrfs_reloc_clone_csums(inode, start, 1235 cur_alloc_size); 1236 /* 1237 * Only drop cache here, and process as normal. 1238 * 1239 * We must not allow extent_clear_unlock_delalloc() 1240 * at out_unlock label to free meta of this ordered 1241 * extent, as its meta should be freed by 1242 * btrfs_finish_ordered_io(). 1243 * 1244 * So we must continue until @start is increased to 1245 * skip current ordered extent. 1246 */ 1247 if (ret) 1248 btrfs_drop_extent_cache(inode, start, 1249 start + ram_size - 1, 0); 1250 } 1251 1252 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1253 1254 /* 1255 * We're not doing compressed IO, don't unlock the first page 1256 * (which the caller expects to stay locked), don't clear any 1257 * dirty bits and don't set any writeback bits 1258 * 1259 * Do set the Ordered (Private2) bit so we know this page was 1260 * properly setup for writepage. 1261 */ 1262 page_ops = unlock ? PAGE_UNLOCK : 0; 1263 page_ops |= PAGE_SET_ORDERED; 1264 1265 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1266 locked_page, 1267 EXTENT_LOCKED | EXTENT_DELALLOC, 1268 page_ops); 1269 if (num_bytes < cur_alloc_size) 1270 num_bytes = 0; 1271 else 1272 num_bytes -= cur_alloc_size; 1273 alloc_hint = ins.objectid + ins.offset; 1274 start += cur_alloc_size; 1275 extent_reserved = false; 1276 1277 /* 1278 * btrfs_reloc_clone_csums() error, since start is increased 1279 * extent_clear_unlock_delalloc() at out_unlock label won't 1280 * free metadata of current ordered extent, we're OK to exit. 1281 */ 1282 if (ret) 1283 goto out_unlock; 1284 } 1285 out: 1286 return ret; 1287 1288 out_drop_extent_cache: 1289 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1290 out_reserve: 1291 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1292 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1293 out_unlock: 1294 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1295 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1296 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1297 /* 1298 * If we reserved an extent for our delalloc range (or a subrange) and 1299 * failed to create the respective ordered extent, then it means that 1300 * when we reserved the extent we decremented the extent's size from 1301 * the data space_info's bytes_may_use counter and incremented the 1302 * space_info's bytes_reserved counter by the same amount. We must make 1303 * sure extent_clear_unlock_delalloc() does not try to decrement again 1304 * the data space_info's bytes_may_use counter, therefore we do not pass 1305 * it the flag EXTENT_CLEAR_DATA_RESV. 1306 */ 1307 if (extent_reserved) { 1308 extent_clear_unlock_delalloc(inode, start, 1309 start + cur_alloc_size - 1, 1310 locked_page, 1311 clear_bits, 1312 page_ops); 1313 start += cur_alloc_size; 1314 if (start >= end) 1315 goto out; 1316 } 1317 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1318 clear_bits | EXTENT_CLEAR_DATA_RESV, 1319 page_ops); 1320 goto out; 1321 } 1322 1323 /* 1324 * work queue call back to started compression on a file and pages 1325 */ 1326 static noinline void async_cow_start(struct btrfs_work *work) 1327 { 1328 struct async_chunk *async_chunk; 1329 int compressed_extents; 1330 1331 async_chunk = container_of(work, struct async_chunk, work); 1332 1333 compressed_extents = compress_file_range(async_chunk); 1334 if (compressed_extents == 0) { 1335 btrfs_add_delayed_iput(async_chunk->inode); 1336 async_chunk->inode = NULL; 1337 } 1338 } 1339 1340 /* 1341 * work queue call back to submit previously compressed pages 1342 */ 1343 static noinline void async_cow_submit(struct btrfs_work *work) 1344 { 1345 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1346 work); 1347 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1348 unsigned long nr_pages; 1349 1350 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1351 PAGE_SHIFT; 1352 1353 /* 1354 * ->inode could be NULL if async_chunk_start has failed to compress, 1355 * in which case we don't have anything to submit, yet we need to 1356 * always adjust ->async_delalloc_pages as its paired with the init 1357 * happening in cow_file_range_async 1358 */ 1359 if (async_chunk->inode) 1360 submit_compressed_extents(async_chunk); 1361 1362 /* atomic_sub_return implies a barrier */ 1363 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1364 5 * SZ_1M) 1365 cond_wake_up_nomb(&fs_info->async_submit_wait); 1366 } 1367 1368 static noinline void async_cow_free(struct btrfs_work *work) 1369 { 1370 struct async_chunk *async_chunk; 1371 struct async_cow *async_cow; 1372 1373 async_chunk = container_of(work, struct async_chunk, work); 1374 if (async_chunk->inode) 1375 btrfs_add_delayed_iput(async_chunk->inode); 1376 if (async_chunk->blkcg_css) 1377 css_put(async_chunk->blkcg_css); 1378 1379 async_cow = async_chunk->async_cow; 1380 if (atomic_dec_and_test(&async_cow->num_chunks)) 1381 kvfree(async_cow); 1382 } 1383 1384 static int cow_file_range_async(struct btrfs_inode *inode, 1385 struct writeback_control *wbc, 1386 struct page *locked_page, 1387 u64 start, u64 end, int *page_started, 1388 unsigned long *nr_written) 1389 { 1390 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1391 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1392 struct async_cow *ctx; 1393 struct async_chunk *async_chunk; 1394 unsigned long nr_pages; 1395 u64 cur_end; 1396 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1397 int i; 1398 bool should_compress; 1399 unsigned nofs_flag; 1400 const unsigned int write_flags = wbc_to_write_flags(wbc); 1401 1402 unlock_extent(&inode->io_tree, start, end); 1403 1404 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1405 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1406 num_chunks = 1; 1407 should_compress = false; 1408 } else { 1409 should_compress = true; 1410 } 1411 1412 nofs_flag = memalloc_nofs_save(); 1413 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1414 memalloc_nofs_restore(nofs_flag); 1415 1416 if (!ctx) { 1417 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1418 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1419 EXTENT_DO_ACCOUNTING; 1420 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1421 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1422 1423 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1424 clear_bits, page_ops); 1425 return -ENOMEM; 1426 } 1427 1428 async_chunk = ctx->chunks; 1429 atomic_set(&ctx->num_chunks, num_chunks); 1430 1431 for (i = 0; i < num_chunks; i++) { 1432 if (should_compress) 1433 cur_end = min(end, start + SZ_512K - 1); 1434 else 1435 cur_end = end; 1436 1437 /* 1438 * igrab is called higher up in the call chain, take only the 1439 * lightweight reference for the callback lifetime 1440 */ 1441 ihold(&inode->vfs_inode); 1442 async_chunk[i].async_cow = ctx; 1443 async_chunk[i].inode = &inode->vfs_inode; 1444 async_chunk[i].start = start; 1445 async_chunk[i].end = cur_end; 1446 async_chunk[i].write_flags = write_flags; 1447 INIT_LIST_HEAD(&async_chunk[i].extents); 1448 1449 /* 1450 * The locked_page comes all the way from writepage and its 1451 * the original page we were actually given. As we spread 1452 * this large delalloc region across multiple async_chunk 1453 * structs, only the first struct needs a pointer to locked_page 1454 * 1455 * This way we don't need racey decisions about who is supposed 1456 * to unlock it. 1457 */ 1458 if (locked_page) { 1459 /* 1460 * Depending on the compressibility, the pages might or 1461 * might not go through async. We want all of them to 1462 * be accounted against wbc once. Let's do it here 1463 * before the paths diverge. wbc accounting is used 1464 * only for foreign writeback detection and doesn't 1465 * need full accuracy. Just account the whole thing 1466 * against the first page. 1467 */ 1468 wbc_account_cgroup_owner(wbc, locked_page, 1469 cur_end - start); 1470 async_chunk[i].locked_page = locked_page; 1471 locked_page = NULL; 1472 } else { 1473 async_chunk[i].locked_page = NULL; 1474 } 1475 1476 if (blkcg_css != blkcg_root_css) { 1477 css_get(blkcg_css); 1478 async_chunk[i].blkcg_css = blkcg_css; 1479 } else { 1480 async_chunk[i].blkcg_css = NULL; 1481 } 1482 1483 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1484 async_cow_submit, async_cow_free); 1485 1486 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1487 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1488 1489 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1490 1491 *nr_written += nr_pages; 1492 start = cur_end + 1; 1493 } 1494 *page_started = 1; 1495 return 0; 1496 } 1497 1498 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1499 struct page *locked_page, u64 start, 1500 u64 end, int *page_started, 1501 unsigned long *nr_written) 1502 { 1503 int ret; 1504 1505 ret = cow_file_range(inode, locked_page, start, end, page_started, 1506 nr_written, 0); 1507 if (ret) 1508 return ret; 1509 1510 if (*page_started) 1511 return 0; 1512 1513 __set_page_dirty_nobuffers(locked_page); 1514 account_page_redirty(locked_page); 1515 extent_write_locked_range(&inode->vfs_inode, start, end); 1516 *page_started = 1; 1517 1518 return 0; 1519 } 1520 1521 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1522 u64 bytenr, u64 num_bytes) 1523 { 1524 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1525 struct btrfs_ordered_sum *sums; 1526 int ret; 1527 LIST_HEAD(list); 1528 1529 ret = btrfs_lookup_csums_range(csum_root, bytenr, 1530 bytenr + num_bytes - 1, &list, 0); 1531 if (ret == 0 && list_empty(&list)) 1532 return 0; 1533 1534 while (!list_empty(&list)) { 1535 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1536 list_del(&sums->list); 1537 kfree(sums); 1538 } 1539 if (ret < 0) 1540 return ret; 1541 return 1; 1542 } 1543 1544 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1545 const u64 start, const u64 end, 1546 int *page_started, unsigned long *nr_written) 1547 { 1548 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1549 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1550 const u64 range_bytes = end + 1 - start; 1551 struct extent_io_tree *io_tree = &inode->io_tree; 1552 u64 range_start = start; 1553 u64 count; 1554 1555 /* 1556 * If EXTENT_NORESERVE is set it means that when the buffered write was 1557 * made we had not enough available data space and therefore we did not 1558 * reserve data space for it, since we though we could do NOCOW for the 1559 * respective file range (either there is prealloc extent or the inode 1560 * has the NOCOW bit set). 1561 * 1562 * However when we need to fallback to COW mode (because for example the 1563 * block group for the corresponding extent was turned to RO mode by a 1564 * scrub or relocation) we need to do the following: 1565 * 1566 * 1) We increment the bytes_may_use counter of the data space info. 1567 * If COW succeeds, it allocates a new data extent and after doing 1568 * that it decrements the space info's bytes_may_use counter and 1569 * increments its bytes_reserved counter by the same amount (we do 1570 * this at btrfs_add_reserved_bytes()). So we need to increment the 1571 * bytes_may_use counter to compensate (when space is reserved at 1572 * buffered write time, the bytes_may_use counter is incremented); 1573 * 1574 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1575 * that if the COW path fails for any reason, it decrements (through 1576 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1577 * data space info, which we incremented in the step above. 1578 * 1579 * If we need to fallback to cow and the inode corresponds to a free 1580 * space cache inode or an inode of the data relocation tree, we must 1581 * also increment bytes_may_use of the data space_info for the same 1582 * reason. Space caches and relocated data extents always get a prealloc 1583 * extent for them, however scrub or balance may have set the block 1584 * group that contains that extent to RO mode and therefore force COW 1585 * when starting writeback. 1586 */ 1587 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1588 EXTENT_NORESERVE, 0); 1589 if (count > 0 || is_space_ino || is_reloc_ino) { 1590 u64 bytes = count; 1591 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1592 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1593 1594 if (is_space_ino || is_reloc_ino) 1595 bytes = range_bytes; 1596 1597 spin_lock(&sinfo->lock); 1598 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1599 spin_unlock(&sinfo->lock); 1600 1601 if (count > 0) 1602 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1603 0, 0, NULL); 1604 } 1605 1606 return cow_file_range(inode, locked_page, start, end, page_started, 1607 nr_written, 1); 1608 } 1609 1610 /* 1611 * when nowcow writeback call back. This checks for snapshots or COW copies 1612 * of the extents that exist in the file, and COWs the file as required. 1613 * 1614 * If no cow copies or snapshots exist, we write directly to the existing 1615 * blocks on disk 1616 */ 1617 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1618 struct page *locked_page, 1619 const u64 start, const u64 end, 1620 int *page_started, 1621 unsigned long *nr_written) 1622 { 1623 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1624 struct btrfs_root *root = inode->root; 1625 struct btrfs_path *path; 1626 u64 cow_start = (u64)-1; 1627 u64 cur_offset = start; 1628 int ret; 1629 bool check_prev = true; 1630 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1631 u64 ino = btrfs_ino(inode); 1632 bool nocow = false; 1633 u64 disk_bytenr = 0; 1634 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1635 1636 path = btrfs_alloc_path(); 1637 if (!path) { 1638 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1639 EXTENT_LOCKED | EXTENT_DELALLOC | 1640 EXTENT_DO_ACCOUNTING | 1641 EXTENT_DEFRAG, PAGE_UNLOCK | 1642 PAGE_START_WRITEBACK | 1643 PAGE_END_WRITEBACK); 1644 return -ENOMEM; 1645 } 1646 1647 while (1) { 1648 struct btrfs_key found_key; 1649 struct btrfs_file_extent_item *fi; 1650 struct extent_buffer *leaf; 1651 u64 extent_end; 1652 u64 extent_offset; 1653 u64 num_bytes = 0; 1654 u64 disk_num_bytes; 1655 u64 ram_bytes; 1656 int extent_type; 1657 1658 nocow = false; 1659 1660 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1661 cur_offset, 0); 1662 if (ret < 0) 1663 goto error; 1664 1665 /* 1666 * If there is no extent for our range when doing the initial 1667 * search, then go back to the previous slot as it will be the 1668 * one containing the search offset 1669 */ 1670 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1671 leaf = path->nodes[0]; 1672 btrfs_item_key_to_cpu(leaf, &found_key, 1673 path->slots[0] - 1); 1674 if (found_key.objectid == ino && 1675 found_key.type == BTRFS_EXTENT_DATA_KEY) 1676 path->slots[0]--; 1677 } 1678 check_prev = false; 1679 next_slot: 1680 /* Go to next leaf if we have exhausted the current one */ 1681 leaf = path->nodes[0]; 1682 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1683 ret = btrfs_next_leaf(root, path); 1684 if (ret < 0) { 1685 if (cow_start != (u64)-1) 1686 cur_offset = cow_start; 1687 goto error; 1688 } 1689 if (ret > 0) 1690 break; 1691 leaf = path->nodes[0]; 1692 } 1693 1694 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1695 1696 /* Didn't find anything for our INO */ 1697 if (found_key.objectid > ino) 1698 break; 1699 /* 1700 * Keep searching until we find an EXTENT_ITEM or there are no 1701 * more extents for this inode 1702 */ 1703 if (WARN_ON_ONCE(found_key.objectid < ino) || 1704 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1705 path->slots[0]++; 1706 goto next_slot; 1707 } 1708 1709 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1710 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1711 found_key.offset > end) 1712 break; 1713 1714 /* 1715 * If the found extent starts after requested offset, then 1716 * adjust extent_end to be right before this extent begins 1717 */ 1718 if (found_key.offset > cur_offset) { 1719 extent_end = found_key.offset; 1720 extent_type = 0; 1721 goto out_check; 1722 } 1723 1724 /* 1725 * Found extent which begins before our range and potentially 1726 * intersect it 1727 */ 1728 fi = btrfs_item_ptr(leaf, path->slots[0], 1729 struct btrfs_file_extent_item); 1730 extent_type = btrfs_file_extent_type(leaf, fi); 1731 1732 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1733 if (extent_type == BTRFS_FILE_EXTENT_REG || 1734 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1735 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1736 extent_offset = btrfs_file_extent_offset(leaf, fi); 1737 extent_end = found_key.offset + 1738 btrfs_file_extent_num_bytes(leaf, fi); 1739 disk_num_bytes = 1740 btrfs_file_extent_disk_num_bytes(leaf, fi); 1741 /* 1742 * If the extent we got ends before our current offset, 1743 * skip to the next extent. 1744 */ 1745 if (extent_end <= cur_offset) { 1746 path->slots[0]++; 1747 goto next_slot; 1748 } 1749 /* Skip holes */ 1750 if (disk_bytenr == 0) 1751 goto out_check; 1752 /* Skip compressed/encrypted/encoded extents */ 1753 if (btrfs_file_extent_compression(leaf, fi) || 1754 btrfs_file_extent_encryption(leaf, fi) || 1755 btrfs_file_extent_other_encoding(leaf, fi)) 1756 goto out_check; 1757 /* 1758 * If extent is created before the last volume's snapshot 1759 * this implies the extent is shared, hence we can't do 1760 * nocow. This is the same check as in 1761 * btrfs_cross_ref_exist but without calling 1762 * btrfs_search_slot. 1763 */ 1764 if (!freespace_inode && 1765 btrfs_file_extent_generation(leaf, fi) <= 1766 btrfs_root_last_snapshot(&root->root_item)) 1767 goto out_check; 1768 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1769 goto out_check; 1770 1771 /* 1772 * The following checks can be expensive, as they need to 1773 * take other locks and do btree or rbtree searches, so 1774 * release the path to avoid blocking other tasks for too 1775 * long. 1776 */ 1777 btrfs_release_path(path); 1778 1779 ret = btrfs_cross_ref_exist(root, ino, 1780 found_key.offset - 1781 extent_offset, disk_bytenr, false); 1782 if (ret) { 1783 /* 1784 * ret could be -EIO if the above fails to read 1785 * metadata. 1786 */ 1787 if (ret < 0) { 1788 if (cow_start != (u64)-1) 1789 cur_offset = cow_start; 1790 goto error; 1791 } 1792 1793 WARN_ON_ONCE(freespace_inode); 1794 goto out_check; 1795 } 1796 disk_bytenr += extent_offset; 1797 disk_bytenr += cur_offset - found_key.offset; 1798 num_bytes = min(end + 1, extent_end) - cur_offset; 1799 /* 1800 * If there are pending snapshots for this root, we 1801 * fall into common COW way 1802 */ 1803 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1804 goto out_check; 1805 /* 1806 * force cow if csum exists in the range. 1807 * this ensure that csum for a given extent are 1808 * either valid or do not exist. 1809 */ 1810 ret = csum_exist_in_range(fs_info, disk_bytenr, 1811 num_bytes); 1812 if (ret) { 1813 /* 1814 * ret could be -EIO if the above fails to read 1815 * metadata. 1816 */ 1817 if (ret < 0) { 1818 if (cow_start != (u64)-1) 1819 cur_offset = cow_start; 1820 goto error; 1821 } 1822 WARN_ON_ONCE(freespace_inode); 1823 goto out_check; 1824 } 1825 /* If the extent's block group is RO, we must COW */ 1826 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1827 goto out_check; 1828 nocow = true; 1829 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1830 extent_end = found_key.offset + ram_bytes; 1831 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1832 /* Skip extents outside of our requested range */ 1833 if (extent_end <= start) { 1834 path->slots[0]++; 1835 goto next_slot; 1836 } 1837 } else { 1838 /* If this triggers then we have a memory corruption */ 1839 BUG(); 1840 } 1841 out_check: 1842 /* 1843 * If nocow is false then record the beginning of the range 1844 * that needs to be COWed 1845 */ 1846 if (!nocow) { 1847 if (cow_start == (u64)-1) 1848 cow_start = cur_offset; 1849 cur_offset = extent_end; 1850 if (cur_offset > end) 1851 break; 1852 if (!path->nodes[0]) 1853 continue; 1854 path->slots[0]++; 1855 goto next_slot; 1856 } 1857 1858 /* 1859 * COW range from cow_start to found_key.offset - 1. As the key 1860 * will contain the beginning of the first extent that can be 1861 * NOCOW, following one which needs to be COW'ed 1862 */ 1863 if (cow_start != (u64)-1) { 1864 ret = fallback_to_cow(inode, locked_page, 1865 cow_start, found_key.offset - 1, 1866 page_started, nr_written); 1867 if (ret) 1868 goto error; 1869 cow_start = (u64)-1; 1870 } 1871 1872 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1873 u64 orig_start = found_key.offset - extent_offset; 1874 struct extent_map *em; 1875 1876 em = create_io_em(inode, cur_offset, num_bytes, 1877 orig_start, 1878 disk_bytenr, /* block_start */ 1879 num_bytes, /* block_len */ 1880 disk_num_bytes, /* orig_block_len */ 1881 ram_bytes, BTRFS_COMPRESS_NONE, 1882 BTRFS_ORDERED_PREALLOC); 1883 if (IS_ERR(em)) { 1884 ret = PTR_ERR(em); 1885 goto error; 1886 } 1887 free_extent_map(em); 1888 ret = btrfs_add_ordered_extent(inode, 1889 cur_offset, num_bytes, num_bytes, 1890 disk_bytenr, num_bytes, 0, 1891 1 << BTRFS_ORDERED_PREALLOC, 1892 BTRFS_COMPRESS_NONE); 1893 if (ret) { 1894 btrfs_drop_extent_cache(inode, cur_offset, 1895 cur_offset + num_bytes - 1, 1896 0); 1897 goto error; 1898 } 1899 } else { 1900 ret = btrfs_add_ordered_extent(inode, cur_offset, 1901 num_bytes, num_bytes, 1902 disk_bytenr, num_bytes, 1903 0, 1904 1 << BTRFS_ORDERED_NOCOW, 1905 BTRFS_COMPRESS_NONE); 1906 if (ret) 1907 goto error; 1908 } 1909 1910 if (nocow) 1911 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1912 nocow = false; 1913 1914 if (btrfs_is_data_reloc_root(root)) 1915 /* 1916 * Error handled later, as we must prevent 1917 * extent_clear_unlock_delalloc() in error handler 1918 * from freeing metadata of created ordered extent. 1919 */ 1920 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1921 num_bytes); 1922 1923 extent_clear_unlock_delalloc(inode, cur_offset, 1924 cur_offset + num_bytes - 1, 1925 locked_page, EXTENT_LOCKED | 1926 EXTENT_DELALLOC | 1927 EXTENT_CLEAR_DATA_RESV, 1928 PAGE_UNLOCK | PAGE_SET_ORDERED); 1929 1930 cur_offset = extent_end; 1931 1932 /* 1933 * btrfs_reloc_clone_csums() error, now we're OK to call error 1934 * handler, as metadata for created ordered extent will only 1935 * be freed by btrfs_finish_ordered_io(). 1936 */ 1937 if (ret) 1938 goto error; 1939 if (cur_offset > end) 1940 break; 1941 } 1942 btrfs_release_path(path); 1943 1944 if (cur_offset <= end && cow_start == (u64)-1) 1945 cow_start = cur_offset; 1946 1947 if (cow_start != (u64)-1) { 1948 cur_offset = end; 1949 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1950 page_started, nr_written); 1951 if (ret) 1952 goto error; 1953 } 1954 1955 error: 1956 if (nocow) 1957 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1958 1959 if (ret && cur_offset < end) 1960 extent_clear_unlock_delalloc(inode, cur_offset, end, 1961 locked_page, EXTENT_LOCKED | 1962 EXTENT_DELALLOC | EXTENT_DEFRAG | 1963 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1964 PAGE_START_WRITEBACK | 1965 PAGE_END_WRITEBACK); 1966 btrfs_free_path(path); 1967 return ret; 1968 } 1969 1970 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1971 { 1972 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1973 if (inode->defrag_bytes && 1974 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1975 0, NULL)) 1976 return false; 1977 return true; 1978 } 1979 return false; 1980 } 1981 1982 /* 1983 * Function to process delayed allocation (create CoW) for ranges which are 1984 * being touched for the first time. 1985 */ 1986 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1987 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1988 struct writeback_control *wbc) 1989 { 1990 int ret; 1991 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1992 1993 /* 1994 * The range must cover part of the @locked_page, or the returned 1995 * @page_started can confuse the caller. 1996 */ 1997 ASSERT(!(end <= page_offset(locked_page) || 1998 start >= page_offset(locked_page) + PAGE_SIZE)); 1999 2000 if (should_nocow(inode, start, end)) { 2001 /* 2002 * Normally on a zoned device we're only doing COW writes, but 2003 * in case of relocation on a zoned filesystem we have taken 2004 * precaution, that we're only writing sequentially. It's safe 2005 * to use run_delalloc_nocow() here, like for regular 2006 * preallocated inodes. 2007 */ 2008 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root)); 2009 ret = run_delalloc_nocow(inode, locked_page, start, end, 2010 page_started, nr_written); 2011 } else if (!btrfs_inode_can_compress(inode) || 2012 !inode_need_compress(inode, start, end)) { 2013 if (zoned) 2014 ret = run_delalloc_zoned(inode, locked_page, start, end, 2015 page_started, nr_written); 2016 else 2017 ret = cow_file_range(inode, locked_page, start, end, 2018 page_started, nr_written, 1); 2019 } else { 2020 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 2021 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 2022 page_started, nr_written); 2023 } 2024 ASSERT(ret <= 0); 2025 if (ret) 2026 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2027 end - start + 1); 2028 return ret; 2029 } 2030 2031 void btrfs_split_delalloc_extent(struct inode *inode, 2032 struct extent_state *orig, u64 split) 2033 { 2034 u64 size; 2035 2036 /* not delalloc, ignore it */ 2037 if (!(orig->state & EXTENT_DELALLOC)) 2038 return; 2039 2040 size = orig->end - orig->start + 1; 2041 if (size > BTRFS_MAX_EXTENT_SIZE) { 2042 u32 num_extents; 2043 u64 new_size; 2044 2045 /* 2046 * See the explanation in btrfs_merge_delalloc_extent, the same 2047 * applies here, just in reverse. 2048 */ 2049 new_size = orig->end - split + 1; 2050 num_extents = count_max_extents(new_size); 2051 new_size = split - orig->start; 2052 num_extents += count_max_extents(new_size); 2053 if (count_max_extents(size) >= num_extents) 2054 return; 2055 } 2056 2057 spin_lock(&BTRFS_I(inode)->lock); 2058 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 2059 spin_unlock(&BTRFS_I(inode)->lock); 2060 } 2061 2062 /* 2063 * Handle merged delayed allocation extents so we can keep track of new extents 2064 * that are just merged onto old extents, such as when we are doing sequential 2065 * writes, so we can properly account for the metadata space we'll need. 2066 */ 2067 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 2068 struct extent_state *other) 2069 { 2070 u64 new_size, old_size; 2071 u32 num_extents; 2072 2073 /* not delalloc, ignore it */ 2074 if (!(other->state & EXTENT_DELALLOC)) 2075 return; 2076 2077 if (new->start > other->start) 2078 new_size = new->end - other->start + 1; 2079 else 2080 new_size = other->end - new->start + 1; 2081 2082 /* we're not bigger than the max, unreserve the space and go */ 2083 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 2084 spin_lock(&BTRFS_I(inode)->lock); 2085 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2086 spin_unlock(&BTRFS_I(inode)->lock); 2087 return; 2088 } 2089 2090 /* 2091 * We have to add up either side to figure out how many extents were 2092 * accounted for before we merged into one big extent. If the number of 2093 * extents we accounted for is <= the amount we need for the new range 2094 * then we can return, otherwise drop. Think of it like this 2095 * 2096 * [ 4k][MAX_SIZE] 2097 * 2098 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2099 * need 2 outstanding extents, on one side we have 1 and the other side 2100 * we have 1 so they are == and we can return. But in this case 2101 * 2102 * [MAX_SIZE+4k][MAX_SIZE+4k] 2103 * 2104 * Each range on their own accounts for 2 extents, but merged together 2105 * they are only 3 extents worth of accounting, so we need to drop in 2106 * this case. 2107 */ 2108 old_size = other->end - other->start + 1; 2109 num_extents = count_max_extents(old_size); 2110 old_size = new->end - new->start + 1; 2111 num_extents += count_max_extents(old_size); 2112 if (count_max_extents(new_size) >= num_extents) 2113 return; 2114 2115 spin_lock(&BTRFS_I(inode)->lock); 2116 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2117 spin_unlock(&BTRFS_I(inode)->lock); 2118 } 2119 2120 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2121 struct inode *inode) 2122 { 2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2124 2125 spin_lock(&root->delalloc_lock); 2126 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2127 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2128 &root->delalloc_inodes); 2129 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2130 &BTRFS_I(inode)->runtime_flags); 2131 root->nr_delalloc_inodes++; 2132 if (root->nr_delalloc_inodes == 1) { 2133 spin_lock(&fs_info->delalloc_root_lock); 2134 BUG_ON(!list_empty(&root->delalloc_root)); 2135 list_add_tail(&root->delalloc_root, 2136 &fs_info->delalloc_roots); 2137 spin_unlock(&fs_info->delalloc_root_lock); 2138 } 2139 } 2140 spin_unlock(&root->delalloc_lock); 2141 } 2142 2143 2144 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2145 struct btrfs_inode *inode) 2146 { 2147 struct btrfs_fs_info *fs_info = root->fs_info; 2148 2149 if (!list_empty(&inode->delalloc_inodes)) { 2150 list_del_init(&inode->delalloc_inodes); 2151 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2152 &inode->runtime_flags); 2153 root->nr_delalloc_inodes--; 2154 if (!root->nr_delalloc_inodes) { 2155 ASSERT(list_empty(&root->delalloc_inodes)); 2156 spin_lock(&fs_info->delalloc_root_lock); 2157 BUG_ON(list_empty(&root->delalloc_root)); 2158 list_del_init(&root->delalloc_root); 2159 spin_unlock(&fs_info->delalloc_root_lock); 2160 } 2161 } 2162 } 2163 2164 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2165 struct btrfs_inode *inode) 2166 { 2167 spin_lock(&root->delalloc_lock); 2168 __btrfs_del_delalloc_inode(root, inode); 2169 spin_unlock(&root->delalloc_lock); 2170 } 2171 2172 /* 2173 * Properly track delayed allocation bytes in the inode and to maintain the 2174 * list of inodes that have pending delalloc work to be done. 2175 */ 2176 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2177 unsigned *bits) 2178 { 2179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2180 2181 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2182 WARN_ON(1); 2183 /* 2184 * set_bit and clear bit hooks normally require _irqsave/restore 2185 * but in this case, we are only testing for the DELALLOC 2186 * bit, which is only set or cleared with irqs on 2187 */ 2188 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2189 struct btrfs_root *root = BTRFS_I(inode)->root; 2190 u64 len = state->end + 1 - state->start; 2191 u32 num_extents = count_max_extents(len); 2192 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2193 2194 spin_lock(&BTRFS_I(inode)->lock); 2195 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2196 spin_unlock(&BTRFS_I(inode)->lock); 2197 2198 /* For sanity tests */ 2199 if (btrfs_is_testing(fs_info)) 2200 return; 2201 2202 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2203 fs_info->delalloc_batch); 2204 spin_lock(&BTRFS_I(inode)->lock); 2205 BTRFS_I(inode)->delalloc_bytes += len; 2206 if (*bits & EXTENT_DEFRAG) 2207 BTRFS_I(inode)->defrag_bytes += len; 2208 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2209 &BTRFS_I(inode)->runtime_flags)) 2210 btrfs_add_delalloc_inodes(root, inode); 2211 spin_unlock(&BTRFS_I(inode)->lock); 2212 } 2213 2214 if (!(state->state & EXTENT_DELALLOC_NEW) && 2215 (*bits & EXTENT_DELALLOC_NEW)) { 2216 spin_lock(&BTRFS_I(inode)->lock); 2217 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2218 state->start; 2219 spin_unlock(&BTRFS_I(inode)->lock); 2220 } 2221 } 2222 2223 /* 2224 * Once a range is no longer delalloc this function ensures that proper 2225 * accounting happens. 2226 */ 2227 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2228 struct extent_state *state, unsigned *bits) 2229 { 2230 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2231 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2232 u64 len = state->end + 1 - state->start; 2233 u32 num_extents = count_max_extents(len); 2234 2235 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2236 spin_lock(&inode->lock); 2237 inode->defrag_bytes -= len; 2238 spin_unlock(&inode->lock); 2239 } 2240 2241 /* 2242 * set_bit and clear bit hooks normally require _irqsave/restore 2243 * but in this case, we are only testing for the DELALLOC 2244 * bit, which is only set or cleared with irqs on 2245 */ 2246 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2247 struct btrfs_root *root = inode->root; 2248 bool do_list = !btrfs_is_free_space_inode(inode); 2249 2250 spin_lock(&inode->lock); 2251 btrfs_mod_outstanding_extents(inode, -num_extents); 2252 spin_unlock(&inode->lock); 2253 2254 /* 2255 * We don't reserve metadata space for space cache inodes so we 2256 * don't need to call delalloc_release_metadata if there is an 2257 * error. 2258 */ 2259 if (*bits & EXTENT_CLEAR_META_RESV && 2260 root != fs_info->tree_root) 2261 btrfs_delalloc_release_metadata(inode, len, false); 2262 2263 /* For sanity tests. */ 2264 if (btrfs_is_testing(fs_info)) 2265 return; 2266 2267 if (!btrfs_is_data_reloc_root(root) && 2268 do_list && !(state->state & EXTENT_NORESERVE) && 2269 (*bits & EXTENT_CLEAR_DATA_RESV)) 2270 btrfs_free_reserved_data_space_noquota(fs_info, len); 2271 2272 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2273 fs_info->delalloc_batch); 2274 spin_lock(&inode->lock); 2275 inode->delalloc_bytes -= len; 2276 if (do_list && inode->delalloc_bytes == 0 && 2277 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2278 &inode->runtime_flags)) 2279 btrfs_del_delalloc_inode(root, inode); 2280 spin_unlock(&inode->lock); 2281 } 2282 2283 if ((state->state & EXTENT_DELALLOC_NEW) && 2284 (*bits & EXTENT_DELALLOC_NEW)) { 2285 spin_lock(&inode->lock); 2286 ASSERT(inode->new_delalloc_bytes >= len); 2287 inode->new_delalloc_bytes -= len; 2288 if (*bits & EXTENT_ADD_INODE_BYTES) 2289 inode_add_bytes(&inode->vfs_inode, len); 2290 spin_unlock(&inode->lock); 2291 } 2292 } 2293 2294 /* 2295 * in order to insert checksums into the metadata in large chunks, 2296 * we wait until bio submission time. All the pages in the bio are 2297 * checksummed and sums are attached onto the ordered extent record. 2298 * 2299 * At IO completion time the cums attached on the ordered extent record 2300 * are inserted into the btree 2301 */ 2302 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2303 u64 dio_file_offset) 2304 { 2305 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2306 } 2307 2308 /* 2309 * Split an extent_map at [start, start + len] 2310 * 2311 * This function is intended to be used only for extract_ordered_extent(). 2312 */ 2313 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, 2314 u64 pre, u64 post) 2315 { 2316 struct extent_map_tree *em_tree = &inode->extent_tree; 2317 struct extent_map *em; 2318 struct extent_map *split_pre = NULL; 2319 struct extent_map *split_mid = NULL; 2320 struct extent_map *split_post = NULL; 2321 int ret = 0; 2322 unsigned long flags; 2323 2324 /* Sanity check */ 2325 if (pre == 0 && post == 0) 2326 return 0; 2327 2328 split_pre = alloc_extent_map(); 2329 if (pre) 2330 split_mid = alloc_extent_map(); 2331 if (post) 2332 split_post = alloc_extent_map(); 2333 if (!split_pre || (pre && !split_mid) || (post && !split_post)) { 2334 ret = -ENOMEM; 2335 goto out; 2336 } 2337 2338 ASSERT(pre + post < len); 2339 2340 lock_extent(&inode->io_tree, start, start + len - 1); 2341 write_lock(&em_tree->lock); 2342 em = lookup_extent_mapping(em_tree, start, len); 2343 if (!em) { 2344 ret = -EIO; 2345 goto out_unlock; 2346 } 2347 2348 ASSERT(em->len == len); 2349 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2350 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2351 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); 2352 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); 2353 ASSERT(!list_empty(&em->list)); 2354 2355 flags = em->flags; 2356 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2357 2358 /* First, replace the em with a new extent_map starting from * em->start */ 2359 split_pre->start = em->start; 2360 split_pre->len = (pre ? pre : em->len - post); 2361 split_pre->orig_start = split_pre->start; 2362 split_pre->block_start = em->block_start; 2363 split_pre->block_len = split_pre->len; 2364 split_pre->orig_block_len = split_pre->block_len; 2365 split_pre->ram_bytes = split_pre->len; 2366 split_pre->flags = flags; 2367 split_pre->compress_type = em->compress_type; 2368 split_pre->generation = em->generation; 2369 2370 replace_extent_mapping(em_tree, em, split_pre, 1); 2371 2372 /* 2373 * Now we only have an extent_map at: 2374 * [em->start, em->start + pre] if pre != 0 2375 * [em->start, em->start + em->len - post] if pre == 0 2376 */ 2377 2378 if (pre) { 2379 /* Insert the middle extent_map */ 2380 split_mid->start = em->start + pre; 2381 split_mid->len = em->len - pre - post; 2382 split_mid->orig_start = split_mid->start; 2383 split_mid->block_start = em->block_start + pre; 2384 split_mid->block_len = split_mid->len; 2385 split_mid->orig_block_len = split_mid->block_len; 2386 split_mid->ram_bytes = split_mid->len; 2387 split_mid->flags = flags; 2388 split_mid->compress_type = em->compress_type; 2389 split_mid->generation = em->generation; 2390 add_extent_mapping(em_tree, split_mid, 1); 2391 } 2392 2393 if (post) { 2394 split_post->start = em->start + em->len - post; 2395 split_post->len = post; 2396 split_post->orig_start = split_post->start; 2397 split_post->block_start = em->block_start + em->len - post; 2398 split_post->block_len = split_post->len; 2399 split_post->orig_block_len = split_post->block_len; 2400 split_post->ram_bytes = split_post->len; 2401 split_post->flags = flags; 2402 split_post->compress_type = em->compress_type; 2403 split_post->generation = em->generation; 2404 add_extent_mapping(em_tree, split_post, 1); 2405 } 2406 2407 /* Once for us */ 2408 free_extent_map(em); 2409 /* Once for the tree */ 2410 free_extent_map(em); 2411 2412 out_unlock: 2413 write_unlock(&em_tree->lock); 2414 unlock_extent(&inode->io_tree, start, start + len - 1); 2415 out: 2416 free_extent_map(split_pre); 2417 free_extent_map(split_mid); 2418 free_extent_map(split_post); 2419 2420 return ret; 2421 } 2422 2423 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2424 struct bio *bio, loff_t file_offset) 2425 { 2426 struct btrfs_ordered_extent *ordered; 2427 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2428 u64 file_len; 2429 u64 len = bio->bi_iter.bi_size; 2430 u64 end = start + len; 2431 u64 ordered_end; 2432 u64 pre, post; 2433 int ret = 0; 2434 2435 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2436 if (WARN_ON_ONCE(!ordered)) 2437 return BLK_STS_IOERR; 2438 2439 /* No need to split */ 2440 if (ordered->disk_num_bytes == len) 2441 goto out; 2442 2443 /* We cannot split once end_bio'd ordered extent */ 2444 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2445 ret = -EINVAL; 2446 goto out; 2447 } 2448 2449 /* We cannot split a compressed ordered extent */ 2450 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2451 ret = -EINVAL; 2452 goto out; 2453 } 2454 2455 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2456 /* bio must be in one ordered extent */ 2457 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2458 ret = -EINVAL; 2459 goto out; 2460 } 2461 2462 /* Checksum list should be empty */ 2463 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2464 ret = -EINVAL; 2465 goto out; 2466 } 2467 2468 file_len = ordered->num_bytes; 2469 pre = start - ordered->disk_bytenr; 2470 post = ordered_end - end; 2471 2472 ret = btrfs_split_ordered_extent(ordered, pre, post); 2473 if (ret) 2474 goto out; 2475 ret = split_zoned_em(inode, file_offset, file_len, pre, post); 2476 2477 out: 2478 btrfs_put_ordered_extent(ordered); 2479 2480 return errno_to_blk_status(ret); 2481 } 2482 2483 /* 2484 * extent_io.c submission hook. This does the right thing for csum calculation 2485 * on write, or reading the csums from the tree before a read. 2486 * 2487 * Rules about async/sync submit, 2488 * a) read: sync submit 2489 * 2490 * b) write without checksum: sync submit 2491 * 2492 * c) write with checksum: 2493 * c-1) if bio is issued by fsync: sync submit 2494 * (sync_writers != 0) 2495 * 2496 * c-2) if root is reloc root: sync submit 2497 * (only in case of buffered IO) 2498 * 2499 * c-3) otherwise: async submit 2500 */ 2501 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2502 int mirror_num, unsigned long bio_flags) 2503 2504 { 2505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2506 struct btrfs_root *root = BTRFS_I(inode)->root; 2507 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2508 blk_status_t ret = 0; 2509 int skip_sum; 2510 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2511 2512 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2513 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2514 2515 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2516 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2517 2518 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2519 struct page *page = bio_first_bvec_all(bio)->bv_page; 2520 loff_t file_offset = page_offset(page); 2521 2522 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2523 if (ret) 2524 goto out; 2525 } 2526 2527 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2528 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2529 if (ret) 2530 goto out; 2531 2532 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2533 /* 2534 * btrfs_submit_compressed_read will handle completing 2535 * the bio if there were any errors, so just return 2536 * here. 2537 */ 2538 ret = btrfs_submit_compressed_read(inode, bio, 2539 mirror_num, 2540 bio_flags); 2541 goto out_no_endio; 2542 } else { 2543 /* 2544 * Lookup bio sums does extra checks around whether we 2545 * need to csum or not, which is why we ignore skip_sum 2546 * here. 2547 */ 2548 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2549 if (ret) 2550 goto out; 2551 } 2552 goto mapit; 2553 } else if (async && !skip_sum) { 2554 /* csum items have already been cloned */ 2555 if (btrfs_is_data_reloc_root(root)) 2556 goto mapit; 2557 /* we're doing a write, do the async checksumming */ 2558 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2559 0, btrfs_submit_bio_start); 2560 goto out; 2561 } else if (!skip_sum) { 2562 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2563 if (ret) 2564 goto out; 2565 } 2566 2567 mapit: 2568 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2569 2570 out: 2571 if (ret) { 2572 bio->bi_status = ret; 2573 bio_endio(bio); 2574 } 2575 out_no_endio: 2576 return ret; 2577 } 2578 2579 /* 2580 * given a list of ordered sums record them in the inode. This happens 2581 * at IO completion time based on sums calculated at bio submission time. 2582 */ 2583 static int add_pending_csums(struct btrfs_trans_handle *trans, 2584 struct list_head *list) 2585 { 2586 struct btrfs_ordered_sum *sum; 2587 struct btrfs_root *csum_root = NULL; 2588 int ret; 2589 2590 list_for_each_entry(sum, list, list) { 2591 trans->adding_csums = true; 2592 if (!csum_root) 2593 csum_root = btrfs_csum_root(trans->fs_info, 2594 sum->bytenr); 2595 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2596 trans->adding_csums = false; 2597 if (ret) 2598 return ret; 2599 } 2600 return 0; 2601 } 2602 2603 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2604 const u64 start, 2605 const u64 len, 2606 struct extent_state **cached_state) 2607 { 2608 u64 search_start = start; 2609 const u64 end = start + len - 1; 2610 2611 while (search_start < end) { 2612 const u64 search_len = end - search_start + 1; 2613 struct extent_map *em; 2614 u64 em_len; 2615 int ret = 0; 2616 2617 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2618 if (IS_ERR(em)) 2619 return PTR_ERR(em); 2620 2621 if (em->block_start != EXTENT_MAP_HOLE) 2622 goto next; 2623 2624 em_len = em->len; 2625 if (em->start < search_start) 2626 em_len -= search_start - em->start; 2627 if (em_len > search_len) 2628 em_len = search_len; 2629 2630 ret = set_extent_bit(&inode->io_tree, search_start, 2631 search_start + em_len - 1, 2632 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2633 GFP_NOFS, NULL); 2634 next: 2635 search_start = extent_map_end(em); 2636 free_extent_map(em); 2637 if (ret) 2638 return ret; 2639 } 2640 return 0; 2641 } 2642 2643 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2644 unsigned int extra_bits, 2645 struct extent_state **cached_state) 2646 { 2647 WARN_ON(PAGE_ALIGNED(end)); 2648 2649 if (start >= i_size_read(&inode->vfs_inode) && 2650 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2651 /* 2652 * There can't be any extents following eof in this case so just 2653 * set the delalloc new bit for the range directly. 2654 */ 2655 extra_bits |= EXTENT_DELALLOC_NEW; 2656 } else { 2657 int ret; 2658 2659 ret = btrfs_find_new_delalloc_bytes(inode, start, 2660 end + 1 - start, 2661 cached_state); 2662 if (ret) 2663 return ret; 2664 } 2665 2666 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2667 cached_state); 2668 } 2669 2670 /* see btrfs_writepage_start_hook for details on why this is required */ 2671 struct btrfs_writepage_fixup { 2672 struct page *page; 2673 struct inode *inode; 2674 struct btrfs_work work; 2675 }; 2676 2677 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2678 { 2679 struct btrfs_writepage_fixup *fixup; 2680 struct btrfs_ordered_extent *ordered; 2681 struct extent_state *cached_state = NULL; 2682 struct extent_changeset *data_reserved = NULL; 2683 struct page *page; 2684 struct btrfs_inode *inode; 2685 u64 page_start; 2686 u64 page_end; 2687 int ret = 0; 2688 bool free_delalloc_space = true; 2689 2690 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2691 page = fixup->page; 2692 inode = BTRFS_I(fixup->inode); 2693 page_start = page_offset(page); 2694 page_end = page_offset(page) + PAGE_SIZE - 1; 2695 2696 /* 2697 * This is similar to page_mkwrite, we need to reserve the space before 2698 * we take the page lock. 2699 */ 2700 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2701 PAGE_SIZE); 2702 again: 2703 lock_page(page); 2704 2705 /* 2706 * Before we queued this fixup, we took a reference on the page. 2707 * page->mapping may go NULL, but it shouldn't be moved to a different 2708 * address space. 2709 */ 2710 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2711 /* 2712 * Unfortunately this is a little tricky, either 2713 * 2714 * 1) We got here and our page had already been dealt with and 2715 * we reserved our space, thus ret == 0, so we need to just 2716 * drop our space reservation and bail. This can happen the 2717 * first time we come into the fixup worker, or could happen 2718 * while waiting for the ordered extent. 2719 * 2) Our page was already dealt with, but we happened to get an 2720 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2721 * this case we obviously don't have anything to release, but 2722 * because the page was already dealt with we don't want to 2723 * mark the page with an error, so make sure we're resetting 2724 * ret to 0. This is why we have this check _before_ the ret 2725 * check, because we do not want to have a surprise ENOSPC 2726 * when the page was already properly dealt with. 2727 */ 2728 if (!ret) { 2729 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2730 btrfs_delalloc_release_space(inode, data_reserved, 2731 page_start, PAGE_SIZE, 2732 true); 2733 } 2734 ret = 0; 2735 goto out_page; 2736 } 2737 2738 /* 2739 * We can't mess with the page state unless it is locked, so now that 2740 * it is locked bail if we failed to make our space reservation. 2741 */ 2742 if (ret) 2743 goto out_page; 2744 2745 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2746 2747 /* already ordered? We're done */ 2748 if (PageOrdered(page)) 2749 goto out_reserved; 2750 2751 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2752 if (ordered) { 2753 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2754 &cached_state); 2755 unlock_page(page); 2756 btrfs_start_ordered_extent(ordered, 1); 2757 btrfs_put_ordered_extent(ordered); 2758 goto again; 2759 } 2760 2761 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2762 &cached_state); 2763 if (ret) 2764 goto out_reserved; 2765 2766 /* 2767 * Everything went as planned, we're now the owner of a dirty page with 2768 * delayed allocation bits set and space reserved for our COW 2769 * destination. 2770 * 2771 * The page was dirty when we started, nothing should have cleaned it. 2772 */ 2773 BUG_ON(!PageDirty(page)); 2774 free_delalloc_space = false; 2775 out_reserved: 2776 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2777 if (free_delalloc_space) 2778 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2779 PAGE_SIZE, true); 2780 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2781 &cached_state); 2782 out_page: 2783 if (ret) { 2784 /* 2785 * We hit ENOSPC or other errors. Update the mapping and page 2786 * to reflect the errors and clean the page. 2787 */ 2788 mapping_set_error(page->mapping, ret); 2789 end_extent_writepage(page, ret, page_start, page_end); 2790 clear_page_dirty_for_io(page); 2791 SetPageError(page); 2792 } 2793 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); 2794 unlock_page(page); 2795 put_page(page); 2796 kfree(fixup); 2797 extent_changeset_free(data_reserved); 2798 /* 2799 * As a precaution, do a delayed iput in case it would be the last iput 2800 * that could need flushing space. Recursing back to fixup worker would 2801 * deadlock. 2802 */ 2803 btrfs_add_delayed_iput(&inode->vfs_inode); 2804 } 2805 2806 /* 2807 * There are a few paths in the higher layers of the kernel that directly 2808 * set the page dirty bit without asking the filesystem if it is a 2809 * good idea. This causes problems because we want to make sure COW 2810 * properly happens and the data=ordered rules are followed. 2811 * 2812 * In our case any range that doesn't have the ORDERED bit set 2813 * hasn't been properly setup for IO. We kick off an async process 2814 * to fix it up. The async helper will wait for ordered extents, set 2815 * the delalloc bit and make it safe to write the page. 2816 */ 2817 int btrfs_writepage_cow_fixup(struct page *page) 2818 { 2819 struct inode *inode = page->mapping->host; 2820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2821 struct btrfs_writepage_fixup *fixup; 2822 2823 /* This page has ordered extent covering it already */ 2824 if (PageOrdered(page)) 2825 return 0; 2826 2827 /* 2828 * PageChecked is set below when we create a fixup worker for this page, 2829 * don't try to create another one if we're already PageChecked() 2830 * 2831 * The extent_io writepage code will redirty the page if we send back 2832 * EAGAIN. 2833 */ 2834 if (PageChecked(page)) 2835 return -EAGAIN; 2836 2837 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2838 if (!fixup) 2839 return -EAGAIN; 2840 2841 /* 2842 * We are already holding a reference to this inode from 2843 * write_cache_pages. We need to hold it because the space reservation 2844 * takes place outside of the page lock, and we can't trust 2845 * page->mapping outside of the page lock. 2846 */ 2847 ihold(inode); 2848 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2849 get_page(page); 2850 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2851 fixup->page = page; 2852 fixup->inode = inode; 2853 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2854 2855 return -EAGAIN; 2856 } 2857 2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2859 struct btrfs_inode *inode, u64 file_pos, 2860 struct btrfs_file_extent_item *stack_fi, 2861 const bool update_inode_bytes, 2862 u64 qgroup_reserved) 2863 { 2864 struct btrfs_root *root = inode->root; 2865 const u64 sectorsize = root->fs_info->sectorsize; 2866 struct btrfs_path *path; 2867 struct extent_buffer *leaf; 2868 struct btrfs_key ins; 2869 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2870 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2871 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2872 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2873 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2874 struct btrfs_drop_extents_args drop_args = { 0 }; 2875 int ret; 2876 2877 path = btrfs_alloc_path(); 2878 if (!path) 2879 return -ENOMEM; 2880 2881 /* 2882 * we may be replacing one extent in the tree with another. 2883 * The new extent is pinned in the extent map, and we don't want 2884 * to drop it from the cache until it is completely in the btree. 2885 * 2886 * So, tell btrfs_drop_extents to leave this extent in the cache. 2887 * the caller is expected to unpin it and allow it to be merged 2888 * with the others. 2889 */ 2890 drop_args.path = path; 2891 drop_args.start = file_pos; 2892 drop_args.end = file_pos + num_bytes; 2893 drop_args.replace_extent = true; 2894 drop_args.extent_item_size = sizeof(*stack_fi); 2895 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2896 if (ret) 2897 goto out; 2898 2899 if (!drop_args.extent_inserted) { 2900 ins.objectid = btrfs_ino(inode); 2901 ins.offset = file_pos; 2902 ins.type = BTRFS_EXTENT_DATA_KEY; 2903 2904 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2905 sizeof(*stack_fi)); 2906 if (ret) 2907 goto out; 2908 } 2909 leaf = path->nodes[0]; 2910 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2911 write_extent_buffer(leaf, stack_fi, 2912 btrfs_item_ptr_offset(leaf, path->slots[0]), 2913 sizeof(struct btrfs_file_extent_item)); 2914 2915 btrfs_mark_buffer_dirty(leaf); 2916 btrfs_release_path(path); 2917 2918 /* 2919 * If we dropped an inline extent here, we know the range where it is 2920 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2921 * number of bytes only for that range containing the inline extent. 2922 * The remaining of the range will be processed when clearning the 2923 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2924 */ 2925 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2926 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2927 2928 inline_size = drop_args.bytes_found - inline_size; 2929 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2930 drop_args.bytes_found -= inline_size; 2931 num_bytes -= sectorsize; 2932 } 2933 2934 if (update_inode_bytes) 2935 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2936 2937 ins.objectid = disk_bytenr; 2938 ins.offset = disk_num_bytes; 2939 ins.type = BTRFS_EXTENT_ITEM_KEY; 2940 2941 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2942 if (ret) 2943 goto out; 2944 2945 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2946 file_pos - offset, 2947 qgroup_reserved, &ins); 2948 out: 2949 btrfs_free_path(path); 2950 2951 return ret; 2952 } 2953 2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2955 u64 start, u64 len) 2956 { 2957 struct btrfs_block_group *cache; 2958 2959 cache = btrfs_lookup_block_group(fs_info, start); 2960 ASSERT(cache); 2961 2962 spin_lock(&cache->lock); 2963 cache->delalloc_bytes -= len; 2964 spin_unlock(&cache->lock); 2965 2966 btrfs_put_block_group(cache); 2967 } 2968 2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2970 struct btrfs_ordered_extent *oe) 2971 { 2972 struct btrfs_file_extent_item stack_fi; 2973 bool update_inode_bytes; 2974 u64 num_bytes = oe->num_bytes; 2975 u64 ram_bytes = oe->ram_bytes; 2976 2977 memset(&stack_fi, 0, sizeof(stack_fi)); 2978 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2979 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2980 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2981 oe->disk_num_bytes); 2982 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2983 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2984 num_bytes = ram_bytes = oe->truncated_len; 2985 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2986 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 2987 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2988 /* Encryption and other encoding is reserved and all 0 */ 2989 2990 /* 2991 * For delalloc, when completing an ordered extent we update the inode's 2992 * bytes when clearing the range in the inode's io tree, so pass false 2993 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2994 * except if the ordered extent was truncated. 2995 */ 2996 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2997 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 2998 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2999 3000 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3001 oe->file_offset, &stack_fi, 3002 update_inode_bytes, oe->qgroup_rsv); 3003 } 3004 3005 /* 3006 * As ordered data IO finishes, this gets called so we can finish 3007 * an ordered extent if the range of bytes in the file it covers are 3008 * fully written. 3009 */ 3010 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3011 { 3012 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3013 struct btrfs_root *root = inode->root; 3014 struct btrfs_fs_info *fs_info = root->fs_info; 3015 struct btrfs_trans_handle *trans = NULL; 3016 struct extent_io_tree *io_tree = &inode->io_tree; 3017 struct extent_state *cached_state = NULL; 3018 u64 start, end; 3019 int compress_type = 0; 3020 int ret = 0; 3021 u64 logical_len = ordered_extent->num_bytes; 3022 bool freespace_inode; 3023 bool truncated = false; 3024 bool clear_reserved_extent = true; 3025 unsigned int clear_bits = EXTENT_DEFRAG; 3026 3027 start = ordered_extent->file_offset; 3028 end = start + ordered_extent->num_bytes - 1; 3029 3030 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3031 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3032 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3033 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3034 clear_bits |= EXTENT_DELALLOC_NEW; 3035 3036 freespace_inode = btrfs_is_free_space_inode(inode); 3037 3038 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3039 ret = -EIO; 3040 goto out; 3041 } 3042 3043 /* A valid bdev implies a write on a sequential zone */ 3044 if (ordered_extent->bdev) { 3045 btrfs_rewrite_logical_zoned(ordered_extent); 3046 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3047 ordered_extent->disk_num_bytes); 3048 } 3049 3050 btrfs_free_io_failure_record(inode, start, end); 3051 3052 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3053 truncated = true; 3054 logical_len = ordered_extent->truncated_len; 3055 /* Truncated the entire extent, don't bother adding */ 3056 if (!logical_len) 3057 goto out; 3058 } 3059 3060 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3061 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3062 3063 btrfs_inode_safe_disk_i_size_write(inode, 0); 3064 if (freespace_inode) 3065 trans = btrfs_join_transaction_spacecache(root); 3066 else 3067 trans = btrfs_join_transaction(root); 3068 if (IS_ERR(trans)) { 3069 ret = PTR_ERR(trans); 3070 trans = NULL; 3071 goto out; 3072 } 3073 trans->block_rsv = &inode->block_rsv; 3074 ret = btrfs_update_inode_fallback(trans, root, inode); 3075 if (ret) /* -ENOMEM or corruption */ 3076 btrfs_abort_transaction(trans, ret); 3077 goto out; 3078 } 3079 3080 clear_bits |= EXTENT_LOCKED; 3081 lock_extent_bits(io_tree, start, end, &cached_state); 3082 3083 if (freespace_inode) 3084 trans = btrfs_join_transaction_spacecache(root); 3085 else 3086 trans = btrfs_join_transaction(root); 3087 if (IS_ERR(trans)) { 3088 ret = PTR_ERR(trans); 3089 trans = NULL; 3090 goto out; 3091 } 3092 3093 trans->block_rsv = &inode->block_rsv; 3094 3095 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3096 compress_type = ordered_extent->compress_type; 3097 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3098 BUG_ON(compress_type); 3099 ret = btrfs_mark_extent_written(trans, inode, 3100 ordered_extent->file_offset, 3101 ordered_extent->file_offset + 3102 logical_len); 3103 } else { 3104 BUG_ON(root == fs_info->tree_root); 3105 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3106 if (!ret) { 3107 clear_reserved_extent = false; 3108 btrfs_release_delalloc_bytes(fs_info, 3109 ordered_extent->disk_bytenr, 3110 ordered_extent->disk_num_bytes); 3111 } 3112 } 3113 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3114 ordered_extent->num_bytes, trans->transid); 3115 if (ret < 0) { 3116 btrfs_abort_transaction(trans, ret); 3117 goto out; 3118 } 3119 3120 ret = add_pending_csums(trans, &ordered_extent->list); 3121 if (ret) { 3122 btrfs_abort_transaction(trans, ret); 3123 goto out; 3124 } 3125 3126 /* 3127 * If this is a new delalloc range, clear its new delalloc flag to 3128 * update the inode's number of bytes. This needs to be done first 3129 * before updating the inode item. 3130 */ 3131 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3132 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3133 clear_extent_bit(&inode->io_tree, start, end, 3134 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3135 0, 0, &cached_state); 3136 3137 btrfs_inode_safe_disk_i_size_write(inode, 0); 3138 ret = btrfs_update_inode_fallback(trans, root, inode); 3139 if (ret) { /* -ENOMEM or corruption */ 3140 btrfs_abort_transaction(trans, ret); 3141 goto out; 3142 } 3143 ret = 0; 3144 out: 3145 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3146 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3147 &cached_state); 3148 3149 if (trans) 3150 btrfs_end_transaction(trans); 3151 3152 if (ret || truncated) { 3153 u64 unwritten_start = start; 3154 3155 /* 3156 * If we failed to finish this ordered extent for any reason we 3157 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3158 * extent, and mark the inode with the error if it wasn't 3159 * already set. Any error during writeback would have already 3160 * set the mapping error, so we need to set it if we're the ones 3161 * marking this ordered extent as failed. 3162 */ 3163 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3164 &ordered_extent->flags)) 3165 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3166 3167 if (truncated) 3168 unwritten_start += logical_len; 3169 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3170 3171 /* Drop the cache for the part of the extent we didn't write. */ 3172 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3173 3174 /* 3175 * If the ordered extent had an IOERR or something else went 3176 * wrong we need to return the space for this ordered extent 3177 * back to the allocator. We only free the extent in the 3178 * truncated case if we didn't write out the extent at all. 3179 * 3180 * If we made it past insert_reserved_file_extent before we 3181 * errored out then we don't need to do this as the accounting 3182 * has already been done. 3183 */ 3184 if ((ret || !logical_len) && 3185 clear_reserved_extent && 3186 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3187 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3188 /* 3189 * Discard the range before returning it back to the 3190 * free space pool 3191 */ 3192 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3193 btrfs_discard_extent(fs_info, 3194 ordered_extent->disk_bytenr, 3195 ordered_extent->disk_num_bytes, 3196 NULL); 3197 btrfs_free_reserved_extent(fs_info, 3198 ordered_extent->disk_bytenr, 3199 ordered_extent->disk_num_bytes, 1); 3200 } 3201 } 3202 3203 /* 3204 * This needs to be done to make sure anybody waiting knows we are done 3205 * updating everything for this ordered extent. 3206 */ 3207 btrfs_remove_ordered_extent(inode, ordered_extent); 3208 3209 /* once for us */ 3210 btrfs_put_ordered_extent(ordered_extent); 3211 /* once for the tree */ 3212 btrfs_put_ordered_extent(ordered_extent); 3213 3214 return ret; 3215 } 3216 3217 static void finish_ordered_fn(struct btrfs_work *work) 3218 { 3219 struct btrfs_ordered_extent *ordered_extent; 3220 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3221 btrfs_finish_ordered_io(ordered_extent); 3222 } 3223 3224 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3225 struct page *page, u64 start, 3226 u64 end, bool uptodate) 3227 { 3228 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3229 3230 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, 3231 finish_ordered_fn, uptodate); 3232 } 3233 3234 /* 3235 * check_data_csum - verify checksum of one sector of uncompressed data 3236 * @inode: inode 3237 * @io_bio: btrfs_io_bio which contains the csum 3238 * @bio_offset: offset to the beginning of the bio (in bytes) 3239 * @page: page where is the data to be verified 3240 * @pgoff: offset inside the page 3241 * @start: logical offset in the file 3242 * 3243 * The length of such check is always one sector size. 3244 */ 3245 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3246 u32 bio_offset, struct page *page, u32 pgoff, 3247 u64 start) 3248 { 3249 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3250 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3251 char *kaddr; 3252 u32 len = fs_info->sectorsize; 3253 const u32 csum_size = fs_info->csum_size; 3254 unsigned int offset_sectors; 3255 u8 *csum_expected; 3256 u8 csum[BTRFS_CSUM_SIZE]; 3257 3258 ASSERT(pgoff + len <= PAGE_SIZE); 3259 3260 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3261 csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size; 3262 3263 kaddr = kmap_atomic(page); 3264 shash->tfm = fs_info->csum_shash; 3265 3266 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3267 3268 if (memcmp(csum, csum_expected, csum_size)) 3269 goto zeroit; 3270 3271 kunmap_atomic(kaddr); 3272 return 0; 3273 zeroit: 3274 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3275 bbio->mirror_num); 3276 if (bbio->device) 3277 btrfs_dev_stat_inc_and_print(bbio->device, 3278 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3279 memset(kaddr + pgoff, 1, len); 3280 flush_dcache_page(page); 3281 kunmap_atomic(kaddr); 3282 return -EIO; 3283 } 3284 3285 /* 3286 * When reads are done, we need to check csums to verify the data is correct. 3287 * if there's a match, we allow the bio to finish. If not, the code in 3288 * extent_io.c will try to find good copies for us. 3289 * 3290 * @bio_offset: offset to the beginning of the bio (in bytes) 3291 * @start: file offset of the range start 3292 * @end: file offset of the range end (inclusive) 3293 * 3294 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3295 * csum match. 3296 */ 3297 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3298 u32 bio_offset, struct page *page, 3299 u64 start, u64 end) 3300 { 3301 struct inode *inode = page->mapping->host; 3302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3303 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3304 struct btrfs_root *root = BTRFS_I(inode)->root; 3305 const u32 sectorsize = root->fs_info->sectorsize; 3306 u32 pg_off; 3307 unsigned int result = 0; 3308 3309 if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) { 3310 btrfs_page_clear_checked(fs_info, page, start, end + 1 - start); 3311 return 0; 3312 } 3313 3314 /* 3315 * This only happens for NODATASUM or compressed read. 3316 * Normally this should be covered by above check for compressed read 3317 * or the next check for NODATASUM. Just do a quicker exit here. 3318 */ 3319 if (bbio->csum == NULL) 3320 return 0; 3321 3322 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3323 return 0; 3324 3325 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))) 3326 return 0; 3327 3328 ASSERT(page_offset(page) <= start && 3329 end <= page_offset(page) + PAGE_SIZE - 1); 3330 for (pg_off = offset_in_page(start); 3331 pg_off < offset_in_page(end); 3332 pg_off += sectorsize, bio_offset += sectorsize) { 3333 u64 file_offset = pg_off + page_offset(page); 3334 int ret; 3335 3336 if (btrfs_is_data_reloc_root(root) && 3337 test_range_bit(io_tree, file_offset, 3338 file_offset + sectorsize - 1, 3339 EXTENT_NODATASUM, 1, NULL)) { 3340 /* Skip the range without csum for data reloc inode */ 3341 clear_extent_bits(io_tree, file_offset, 3342 file_offset + sectorsize - 1, 3343 EXTENT_NODATASUM); 3344 continue; 3345 } 3346 ret = check_data_csum(inode, bbio, bio_offset, page, pg_off, 3347 page_offset(page) + pg_off); 3348 if (ret < 0) { 3349 const int nr_bit = (pg_off - offset_in_page(start)) >> 3350 root->fs_info->sectorsize_bits; 3351 3352 result |= (1U << nr_bit); 3353 } 3354 } 3355 return result; 3356 } 3357 3358 /* 3359 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3360 * 3361 * @inode: The inode we want to perform iput on 3362 * 3363 * This function uses the generic vfs_inode::i_count to track whether we should 3364 * just decrement it (in case it's > 1) or if this is the last iput then link 3365 * the inode to the delayed iput machinery. Delayed iputs are processed at 3366 * transaction commit time/superblock commit/cleaner kthread. 3367 */ 3368 void btrfs_add_delayed_iput(struct inode *inode) 3369 { 3370 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3371 struct btrfs_inode *binode = BTRFS_I(inode); 3372 3373 if (atomic_add_unless(&inode->i_count, -1, 1)) 3374 return; 3375 3376 atomic_inc(&fs_info->nr_delayed_iputs); 3377 spin_lock(&fs_info->delayed_iput_lock); 3378 ASSERT(list_empty(&binode->delayed_iput)); 3379 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3380 spin_unlock(&fs_info->delayed_iput_lock); 3381 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3382 wake_up_process(fs_info->cleaner_kthread); 3383 } 3384 3385 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3386 struct btrfs_inode *inode) 3387 { 3388 list_del_init(&inode->delayed_iput); 3389 spin_unlock(&fs_info->delayed_iput_lock); 3390 iput(&inode->vfs_inode); 3391 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3392 wake_up(&fs_info->delayed_iputs_wait); 3393 spin_lock(&fs_info->delayed_iput_lock); 3394 } 3395 3396 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3397 struct btrfs_inode *inode) 3398 { 3399 if (!list_empty(&inode->delayed_iput)) { 3400 spin_lock(&fs_info->delayed_iput_lock); 3401 if (!list_empty(&inode->delayed_iput)) 3402 run_delayed_iput_locked(fs_info, inode); 3403 spin_unlock(&fs_info->delayed_iput_lock); 3404 } 3405 } 3406 3407 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3408 { 3409 3410 spin_lock(&fs_info->delayed_iput_lock); 3411 while (!list_empty(&fs_info->delayed_iputs)) { 3412 struct btrfs_inode *inode; 3413 3414 inode = list_first_entry(&fs_info->delayed_iputs, 3415 struct btrfs_inode, delayed_iput); 3416 run_delayed_iput_locked(fs_info, inode); 3417 cond_resched_lock(&fs_info->delayed_iput_lock); 3418 } 3419 spin_unlock(&fs_info->delayed_iput_lock); 3420 } 3421 3422 /** 3423 * Wait for flushing all delayed iputs 3424 * 3425 * @fs_info: the filesystem 3426 * 3427 * This will wait on any delayed iputs that are currently running with KILLABLE 3428 * set. Once they are all done running we will return, unless we are killed in 3429 * which case we return EINTR. This helps in user operations like fallocate etc 3430 * that might get blocked on the iputs. 3431 * 3432 * Return EINTR if we were killed, 0 if nothing's pending 3433 */ 3434 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3435 { 3436 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3437 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3438 if (ret) 3439 return -EINTR; 3440 return 0; 3441 } 3442 3443 /* 3444 * This creates an orphan entry for the given inode in case something goes wrong 3445 * in the middle of an unlink. 3446 */ 3447 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3448 struct btrfs_inode *inode) 3449 { 3450 int ret; 3451 3452 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3453 if (ret && ret != -EEXIST) { 3454 btrfs_abort_transaction(trans, ret); 3455 return ret; 3456 } 3457 3458 return 0; 3459 } 3460 3461 /* 3462 * We have done the delete so we can go ahead and remove the orphan item for 3463 * this particular inode. 3464 */ 3465 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3466 struct btrfs_inode *inode) 3467 { 3468 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3469 } 3470 3471 /* 3472 * this cleans up any orphans that may be left on the list from the last use 3473 * of this root. 3474 */ 3475 int btrfs_orphan_cleanup(struct btrfs_root *root) 3476 { 3477 struct btrfs_fs_info *fs_info = root->fs_info; 3478 struct btrfs_path *path; 3479 struct extent_buffer *leaf; 3480 struct btrfs_key key, found_key; 3481 struct btrfs_trans_handle *trans; 3482 struct inode *inode; 3483 u64 last_objectid = 0; 3484 int ret = 0, nr_unlink = 0; 3485 3486 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3487 return 0; 3488 3489 path = btrfs_alloc_path(); 3490 if (!path) { 3491 ret = -ENOMEM; 3492 goto out; 3493 } 3494 path->reada = READA_BACK; 3495 3496 key.objectid = BTRFS_ORPHAN_OBJECTID; 3497 key.type = BTRFS_ORPHAN_ITEM_KEY; 3498 key.offset = (u64)-1; 3499 3500 while (1) { 3501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3502 if (ret < 0) 3503 goto out; 3504 3505 /* 3506 * if ret == 0 means we found what we were searching for, which 3507 * is weird, but possible, so only screw with path if we didn't 3508 * find the key and see if we have stuff that matches 3509 */ 3510 if (ret > 0) { 3511 ret = 0; 3512 if (path->slots[0] == 0) 3513 break; 3514 path->slots[0]--; 3515 } 3516 3517 /* pull out the item */ 3518 leaf = path->nodes[0]; 3519 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3520 3521 /* make sure the item matches what we want */ 3522 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3523 break; 3524 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3525 break; 3526 3527 /* release the path since we're done with it */ 3528 btrfs_release_path(path); 3529 3530 /* 3531 * this is where we are basically btrfs_lookup, without the 3532 * crossing root thing. we store the inode number in the 3533 * offset of the orphan item. 3534 */ 3535 3536 if (found_key.offset == last_objectid) { 3537 btrfs_err(fs_info, 3538 "Error removing orphan entry, stopping orphan cleanup"); 3539 ret = -EINVAL; 3540 goto out; 3541 } 3542 3543 last_objectid = found_key.offset; 3544 3545 found_key.objectid = found_key.offset; 3546 found_key.type = BTRFS_INODE_ITEM_KEY; 3547 found_key.offset = 0; 3548 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3549 ret = PTR_ERR_OR_ZERO(inode); 3550 if (ret && ret != -ENOENT) 3551 goto out; 3552 3553 if (ret == -ENOENT && root == fs_info->tree_root) { 3554 struct btrfs_root *dead_root; 3555 int is_dead_root = 0; 3556 3557 /* 3558 * This is an orphan in the tree root. Currently these 3559 * could come from 2 sources: 3560 * a) a root (snapshot/subvolume) deletion in progress 3561 * b) a free space cache inode 3562 * We need to distinguish those two, as the orphan item 3563 * for a root must not get deleted before the deletion 3564 * of the snapshot/subvolume's tree completes. 3565 * 3566 * btrfs_find_orphan_roots() ran before us, which has 3567 * found all deleted roots and loaded them into 3568 * fs_info->fs_roots_radix. So here we can find if an 3569 * orphan item corresponds to a deleted root by looking 3570 * up the root from that radix tree. 3571 */ 3572 3573 spin_lock(&fs_info->fs_roots_radix_lock); 3574 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3575 (unsigned long)found_key.objectid); 3576 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3577 is_dead_root = 1; 3578 spin_unlock(&fs_info->fs_roots_radix_lock); 3579 3580 if (is_dead_root) { 3581 /* prevent this orphan from being found again */ 3582 key.offset = found_key.objectid - 1; 3583 continue; 3584 } 3585 3586 } 3587 3588 /* 3589 * If we have an inode with links, there are a couple of 3590 * possibilities: 3591 * 3592 * 1. We were halfway through creating fsverity metadata for the 3593 * file. In that case, the orphan item represents incomplete 3594 * fsverity metadata which must be cleaned up with 3595 * btrfs_drop_verity_items and deleting the orphan item. 3596 3597 * 2. Old kernels (before v3.12) used to create an 3598 * orphan item for truncate indicating that there were possibly 3599 * extent items past i_size that needed to be deleted. In v3.12, 3600 * truncate was changed to update i_size in sync with the extent 3601 * items, but the (useless) orphan item was still created. Since 3602 * v4.18, we don't create the orphan item for truncate at all. 3603 * 3604 * So, this item could mean that we need to do a truncate, but 3605 * only if this filesystem was last used on a pre-v3.12 kernel 3606 * and was not cleanly unmounted. The odds of that are quite 3607 * slim, and it's a pain to do the truncate now, so just delete 3608 * the orphan item. 3609 * 3610 * It's also possible that this orphan item was supposed to be 3611 * deleted but wasn't. The inode number may have been reused, 3612 * but either way, we can delete the orphan item. 3613 */ 3614 if (ret == -ENOENT || inode->i_nlink) { 3615 if (!ret) { 3616 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3617 iput(inode); 3618 if (ret) 3619 goto out; 3620 } 3621 trans = btrfs_start_transaction(root, 1); 3622 if (IS_ERR(trans)) { 3623 ret = PTR_ERR(trans); 3624 goto out; 3625 } 3626 btrfs_debug(fs_info, "auto deleting %Lu", 3627 found_key.objectid); 3628 ret = btrfs_del_orphan_item(trans, root, 3629 found_key.objectid); 3630 btrfs_end_transaction(trans); 3631 if (ret) 3632 goto out; 3633 continue; 3634 } 3635 3636 nr_unlink++; 3637 3638 /* this will do delete_inode and everything for us */ 3639 iput(inode); 3640 } 3641 /* release the path since we're done with it */ 3642 btrfs_release_path(path); 3643 3644 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3645 trans = btrfs_join_transaction(root); 3646 if (!IS_ERR(trans)) 3647 btrfs_end_transaction(trans); 3648 } 3649 3650 if (nr_unlink) 3651 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3652 3653 out: 3654 if (ret) 3655 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3656 btrfs_free_path(path); 3657 return ret; 3658 } 3659 3660 /* 3661 * very simple check to peek ahead in the leaf looking for xattrs. If we 3662 * don't find any xattrs, we know there can't be any acls. 3663 * 3664 * slot is the slot the inode is in, objectid is the objectid of the inode 3665 */ 3666 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3667 int slot, u64 objectid, 3668 int *first_xattr_slot) 3669 { 3670 u32 nritems = btrfs_header_nritems(leaf); 3671 struct btrfs_key found_key; 3672 static u64 xattr_access = 0; 3673 static u64 xattr_default = 0; 3674 int scanned = 0; 3675 3676 if (!xattr_access) { 3677 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3678 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3679 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3680 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3681 } 3682 3683 slot++; 3684 *first_xattr_slot = -1; 3685 while (slot < nritems) { 3686 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3687 3688 /* we found a different objectid, there must not be acls */ 3689 if (found_key.objectid != objectid) 3690 return 0; 3691 3692 /* we found an xattr, assume we've got an acl */ 3693 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3694 if (*first_xattr_slot == -1) 3695 *first_xattr_slot = slot; 3696 if (found_key.offset == xattr_access || 3697 found_key.offset == xattr_default) 3698 return 1; 3699 } 3700 3701 /* 3702 * we found a key greater than an xattr key, there can't 3703 * be any acls later on 3704 */ 3705 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3706 return 0; 3707 3708 slot++; 3709 scanned++; 3710 3711 /* 3712 * it goes inode, inode backrefs, xattrs, extents, 3713 * so if there are a ton of hard links to an inode there can 3714 * be a lot of backrefs. Don't waste time searching too hard, 3715 * this is just an optimization 3716 */ 3717 if (scanned >= 8) 3718 break; 3719 } 3720 /* we hit the end of the leaf before we found an xattr or 3721 * something larger than an xattr. We have to assume the inode 3722 * has acls 3723 */ 3724 if (*first_xattr_slot == -1) 3725 *first_xattr_slot = slot; 3726 return 1; 3727 } 3728 3729 /* 3730 * read an inode from the btree into the in-memory inode 3731 */ 3732 static int btrfs_read_locked_inode(struct inode *inode, 3733 struct btrfs_path *in_path) 3734 { 3735 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3736 struct btrfs_path *path = in_path; 3737 struct extent_buffer *leaf; 3738 struct btrfs_inode_item *inode_item; 3739 struct btrfs_root *root = BTRFS_I(inode)->root; 3740 struct btrfs_key location; 3741 unsigned long ptr; 3742 int maybe_acls; 3743 u32 rdev; 3744 int ret; 3745 bool filled = false; 3746 int first_xattr_slot; 3747 3748 ret = btrfs_fill_inode(inode, &rdev); 3749 if (!ret) 3750 filled = true; 3751 3752 if (!path) { 3753 path = btrfs_alloc_path(); 3754 if (!path) 3755 return -ENOMEM; 3756 } 3757 3758 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3759 3760 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3761 if (ret) { 3762 if (path != in_path) 3763 btrfs_free_path(path); 3764 return ret; 3765 } 3766 3767 leaf = path->nodes[0]; 3768 3769 if (filled) 3770 goto cache_index; 3771 3772 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3773 struct btrfs_inode_item); 3774 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3775 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3776 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3777 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3778 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3779 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3780 round_up(i_size_read(inode), fs_info->sectorsize)); 3781 3782 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3783 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3784 3785 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3786 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3787 3788 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3789 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3790 3791 BTRFS_I(inode)->i_otime.tv_sec = 3792 btrfs_timespec_sec(leaf, &inode_item->otime); 3793 BTRFS_I(inode)->i_otime.tv_nsec = 3794 btrfs_timespec_nsec(leaf, &inode_item->otime); 3795 3796 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3797 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3798 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3799 3800 inode_set_iversion_queried(inode, 3801 btrfs_inode_sequence(leaf, inode_item)); 3802 inode->i_generation = BTRFS_I(inode)->generation; 3803 inode->i_rdev = 0; 3804 rdev = btrfs_inode_rdev(leaf, inode_item); 3805 3806 BTRFS_I(inode)->index_cnt = (u64)-1; 3807 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3808 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3809 3810 cache_index: 3811 /* 3812 * If we were modified in the current generation and evicted from memory 3813 * and then re-read we need to do a full sync since we don't have any 3814 * idea about which extents were modified before we were evicted from 3815 * cache. 3816 * 3817 * This is required for both inode re-read from disk and delayed inode 3818 * in delayed_nodes_tree. 3819 */ 3820 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3821 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3822 &BTRFS_I(inode)->runtime_flags); 3823 3824 /* 3825 * We don't persist the id of the transaction where an unlink operation 3826 * against the inode was last made. So here we assume the inode might 3827 * have been evicted, and therefore the exact value of last_unlink_trans 3828 * lost, and set it to last_trans to avoid metadata inconsistencies 3829 * between the inode and its parent if the inode is fsync'ed and the log 3830 * replayed. For example, in the scenario: 3831 * 3832 * touch mydir/foo 3833 * ln mydir/foo mydir/bar 3834 * sync 3835 * unlink mydir/bar 3836 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3837 * xfs_io -c fsync mydir/foo 3838 * <power failure> 3839 * mount fs, triggers fsync log replay 3840 * 3841 * We must make sure that when we fsync our inode foo we also log its 3842 * parent inode, otherwise after log replay the parent still has the 3843 * dentry with the "bar" name but our inode foo has a link count of 1 3844 * and doesn't have an inode ref with the name "bar" anymore. 3845 * 3846 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3847 * but it guarantees correctness at the expense of occasional full 3848 * transaction commits on fsync if our inode is a directory, or if our 3849 * inode is not a directory, logging its parent unnecessarily. 3850 */ 3851 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3852 3853 /* 3854 * Same logic as for last_unlink_trans. We don't persist the generation 3855 * of the last transaction where this inode was used for a reflink 3856 * operation, so after eviction and reloading the inode we must be 3857 * pessimistic and assume the last transaction that modified the inode. 3858 */ 3859 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3860 3861 path->slots[0]++; 3862 if (inode->i_nlink != 1 || 3863 path->slots[0] >= btrfs_header_nritems(leaf)) 3864 goto cache_acl; 3865 3866 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3867 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3868 goto cache_acl; 3869 3870 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3871 if (location.type == BTRFS_INODE_REF_KEY) { 3872 struct btrfs_inode_ref *ref; 3873 3874 ref = (struct btrfs_inode_ref *)ptr; 3875 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3876 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3877 struct btrfs_inode_extref *extref; 3878 3879 extref = (struct btrfs_inode_extref *)ptr; 3880 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3881 extref); 3882 } 3883 cache_acl: 3884 /* 3885 * try to precache a NULL acl entry for files that don't have 3886 * any xattrs or acls 3887 */ 3888 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3889 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3890 if (first_xattr_slot != -1) { 3891 path->slots[0] = first_xattr_slot; 3892 ret = btrfs_load_inode_props(inode, path); 3893 if (ret) 3894 btrfs_err(fs_info, 3895 "error loading props for ino %llu (root %llu): %d", 3896 btrfs_ino(BTRFS_I(inode)), 3897 root->root_key.objectid, ret); 3898 } 3899 if (path != in_path) 3900 btrfs_free_path(path); 3901 3902 if (!maybe_acls) 3903 cache_no_acl(inode); 3904 3905 switch (inode->i_mode & S_IFMT) { 3906 case S_IFREG: 3907 inode->i_mapping->a_ops = &btrfs_aops; 3908 inode->i_fop = &btrfs_file_operations; 3909 inode->i_op = &btrfs_file_inode_operations; 3910 break; 3911 case S_IFDIR: 3912 inode->i_fop = &btrfs_dir_file_operations; 3913 inode->i_op = &btrfs_dir_inode_operations; 3914 break; 3915 case S_IFLNK: 3916 inode->i_op = &btrfs_symlink_inode_operations; 3917 inode_nohighmem(inode); 3918 inode->i_mapping->a_ops = &btrfs_aops; 3919 break; 3920 default: 3921 inode->i_op = &btrfs_special_inode_operations; 3922 init_special_inode(inode, inode->i_mode, rdev); 3923 break; 3924 } 3925 3926 btrfs_sync_inode_flags_to_i_flags(inode); 3927 return 0; 3928 } 3929 3930 /* 3931 * given a leaf and an inode, copy the inode fields into the leaf 3932 */ 3933 static void fill_inode_item(struct btrfs_trans_handle *trans, 3934 struct extent_buffer *leaf, 3935 struct btrfs_inode_item *item, 3936 struct inode *inode) 3937 { 3938 struct btrfs_map_token token; 3939 u64 flags; 3940 3941 btrfs_init_map_token(&token, leaf); 3942 3943 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3944 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3945 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3946 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3947 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3948 3949 btrfs_set_token_timespec_sec(&token, &item->atime, 3950 inode->i_atime.tv_sec); 3951 btrfs_set_token_timespec_nsec(&token, &item->atime, 3952 inode->i_atime.tv_nsec); 3953 3954 btrfs_set_token_timespec_sec(&token, &item->mtime, 3955 inode->i_mtime.tv_sec); 3956 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3957 inode->i_mtime.tv_nsec); 3958 3959 btrfs_set_token_timespec_sec(&token, &item->ctime, 3960 inode->i_ctime.tv_sec); 3961 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3962 inode->i_ctime.tv_nsec); 3963 3964 btrfs_set_token_timespec_sec(&token, &item->otime, 3965 BTRFS_I(inode)->i_otime.tv_sec); 3966 btrfs_set_token_timespec_nsec(&token, &item->otime, 3967 BTRFS_I(inode)->i_otime.tv_nsec); 3968 3969 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3970 btrfs_set_token_inode_generation(&token, item, 3971 BTRFS_I(inode)->generation); 3972 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3973 btrfs_set_token_inode_transid(&token, item, trans->transid); 3974 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3975 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3976 BTRFS_I(inode)->ro_flags); 3977 btrfs_set_token_inode_flags(&token, item, flags); 3978 btrfs_set_token_inode_block_group(&token, item, 0); 3979 } 3980 3981 /* 3982 * copy everything in the in-memory inode into the btree. 3983 */ 3984 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3985 struct btrfs_root *root, 3986 struct btrfs_inode *inode) 3987 { 3988 struct btrfs_inode_item *inode_item; 3989 struct btrfs_path *path; 3990 struct extent_buffer *leaf; 3991 int ret; 3992 3993 path = btrfs_alloc_path(); 3994 if (!path) 3995 return -ENOMEM; 3996 3997 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3998 if (ret) { 3999 if (ret > 0) 4000 ret = -ENOENT; 4001 goto failed; 4002 } 4003 4004 leaf = path->nodes[0]; 4005 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4006 struct btrfs_inode_item); 4007 4008 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4009 btrfs_mark_buffer_dirty(leaf); 4010 btrfs_set_inode_last_trans(trans, inode); 4011 ret = 0; 4012 failed: 4013 btrfs_free_path(path); 4014 return ret; 4015 } 4016 4017 /* 4018 * copy everything in the in-memory inode into the btree. 4019 */ 4020 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4021 struct btrfs_root *root, 4022 struct btrfs_inode *inode) 4023 { 4024 struct btrfs_fs_info *fs_info = root->fs_info; 4025 int ret; 4026 4027 /* 4028 * If the inode is a free space inode, we can deadlock during commit 4029 * if we put it into the delayed code. 4030 * 4031 * The data relocation inode should also be directly updated 4032 * without delay 4033 */ 4034 if (!btrfs_is_free_space_inode(inode) 4035 && !btrfs_is_data_reloc_root(root) 4036 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4037 btrfs_update_root_times(trans, root); 4038 4039 ret = btrfs_delayed_update_inode(trans, root, inode); 4040 if (!ret) 4041 btrfs_set_inode_last_trans(trans, inode); 4042 return ret; 4043 } 4044 4045 return btrfs_update_inode_item(trans, root, inode); 4046 } 4047 4048 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4049 struct btrfs_root *root, struct btrfs_inode *inode) 4050 { 4051 int ret; 4052 4053 ret = btrfs_update_inode(trans, root, inode); 4054 if (ret == -ENOSPC) 4055 return btrfs_update_inode_item(trans, root, inode); 4056 return ret; 4057 } 4058 4059 /* 4060 * unlink helper that gets used here in inode.c and in the tree logging 4061 * recovery code. It remove a link in a directory with a given name, and 4062 * also drops the back refs in the inode to the directory 4063 */ 4064 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4065 struct btrfs_inode *dir, 4066 struct btrfs_inode *inode, 4067 const char *name, int name_len, 4068 struct btrfs_rename_ctx *rename_ctx) 4069 { 4070 struct btrfs_root *root = dir->root; 4071 struct btrfs_fs_info *fs_info = root->fs_info; 4072 struct btrfs_path *path; 4073 int ret = 0; 4074 struct btrfs_dir_item *di; 4075 u64 index; 4076 u64 ino = btrfs_ino(inode); 4077 u64 dir_ino = btrfs_ino(dir); 4078 4079 path = btrfs_alloc_path(); 4080 if (!path) { 4081 ret = -ENOMEM; 4082 goto out; 4083 } 4084 4085 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4086 name, name_len, -1); 4087 if (IS_ERR_OR_NULL(di)) { 4088 ret = di ? PTR_ERR(di) : -ENOENT; 4089 goto err; 4090 } 4091 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4092 if (ret) 4093 goto err; 4094 btrfs_release_path(path); 4095 4096 /* 4097 * If we don't have dir index, we have to get it by looking up 4098 * the inode ref, since we get the inode ref, remove it directly, 4099 * it is unnecessary to do delayed deletion. 4100 * 4101 * But if we have dir index, needn't search inode ref to get it. 4102 * Since the inode ref is close to the inode item, it is better 4103 * that we delay to delete it, and just do this deletion when 4104 * we update the inode item. 4105 */ 4106 if (inode->dir_index) { 4107 ret = btrfs_delayed_delete_inode_ref(inode); 4108 if (!ret) { 4109 index = inode->dir_index; 4110 goto skip_backref; 4111 } 4112 } 4113 4114 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4115 dir_ino, &index); 4116 if (ret) { 4117 btrfs_info(fs_info, 4118 "failed to delete reference to %.*s, inode %llu parent %llu", 4119 name_len, name, ino, dir_ino); 4120 btrfs_abort_transaction(trans, ret); 4121 goto err; 4122 } 4123 skip_backref: 4124 if (rename_ctx) 4125 rename_ctx->index = index; 4126 4127 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4128 if (ret) { 4129 btrfs_abort_transaction(trans, ret); 4130 goto err; 4131 } 4132 4133 /* 4134 * If we are in a rename context, we don't need to update anything in the 4135 * log. That will be done later during the rename by btrfs_log_new_name(). 4136 * Besides that, doing it here would only cause extra unncessary btree 4137 * operations on the log tree, increasing latency for applications. 4138 */ 4139 if (!rename_ctx) { 4140 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4141 dir_ino); 4142 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4143 index); 4144 } 4145 4146 /* 4147 * If we have a pending delayed iput we could end up with the final iput 4148 * being run in btrfs-cleaner context. If we have enough of these built 4149 * up we can end up burning a lot of time in btrfs-cleaner without any 4150 * way to throttle the unlinks. Since we're currently holding a ref on 4151 * the inode we can run the delayed iput here without any issues as the 4152 * final iput won't be done until after we drop the ref we're currently 4153 * holding. 4154 */ 4155 btrfs_run_delayed_iput(fs_info, inode); 4156 err: 4157 btrfs_free_path(path); 4158 if (ret) 4159 goto out; 4160 4161 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4162 inode_inc_iversion(&inode->vfs_inode); 4163 inode_inc_iversion(&dir->vfs_inode); 4164 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4165 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4166 ret = btrfs_update_inode(trans, root, dir); 4167 out: 4168 return ret; 4169 } 4170 4171 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4172 struct btrfs_inode *dir, struct btrfs_inode *inode, 4173 const char *name, int name_len) 4174 { 4175 int ret; 4176 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL); 4177 if (!ret) { 4178 drop_nlink(&inode->vfs_inode); 4179 ret = btrfs_update_inode(trans, inode->root, inode); 4180 } 4181 return ret; 4182 } 4183 4184 /* 4185 * helper to start transaction for unlink and rmdir. 4186 * 4187 * unlink and rmdir are special in btrfs, they do not always free space, so 4188 * if we cannot make our reservations the normal way try and see if there is 4189 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4190 * allow the unlink to occur. 4191 */ 4192 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4193 { 4194 struct btrfs_root *root = BTRFS_I(dir)->root; 4195 4196 /* 4197 * 1 for the possible orphan item 4198 * 1 for the dir item 4199 * 1 for the dir index 4200 * 1 for the inode ref 4201 * 1 for the inode 4202 */ 4203 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4204 } 4205 4206 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4207 { 4208 struct btrfs_trans_handle *trans; 4209 struct inode *inode = d_inode(dentry); 4210 int ret; 4211 4212 trans = __unlink_start_trans(dir); 4213 if (IS_ERR(trans)) 4214 return PTR_ERR(trans); 4215 4216 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4217 0); 4218 4219 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 4220 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4221 dentry->d_name.len); 4222 if (ret) 4223 goto out; 4224 4225 if (inode->i_nlink == 0) { 4226 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4227 if (ret) 4228 goto out; 4229 } 4230 4231 out: 4232 btrfs_end_transaction(trans); 4233 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4234 return ret; 4235 } 4236 4237 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4238 struct inode *dir, struct dentry *dentry) 4239 { 4240 struct btrfs_root *root = BTRFS_I(dir)->root; 4241 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4242 struct btrfs_path *path; 4243 struct extent_buffer *leaf; 4244 struct btrfs_dir_item *di; 4245 struct btrfs_key key; 4246 const char *name = dentry->d_name.name; 4247 int name_len = dentry->d_name.len; 4248 u64 index; 4249 int ret; 4250 u64 objectid; 4251 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4252 4253 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4254 objectid = inode->root->root_key.objectid; 4255 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4256 objectid = inode->location.objectid; 4257 } else { 4258 WARN_ON(1); 4259 return -EINVAL; 4260 } 4261 4262 path = btrfs_alloc_path(); 4263 if (!path) 4264 return -ENOMEM; 4265 4266 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4267 name, name_len, -1); 4268 if (IS_ERR_OR_NULL(di)) { 4269 ret = di ? PTR_ERR(di) : -ENOENT; 4270 goto out; 4271 } 4272 4273 leaf = path->nodes[0]; 4274 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4275 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4276 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4277 if (ret) { 4278 btrfs_abort_transaction(trans, ret); 4279 goto out; 4280 } 4281 btrfs_release_path(path); 4282 4283 /* 4284 * This is a placeholder inode for a subvolume we didn't have a 4285 * reference to at the time of the snapshot creation. In the meantime 4286 * we could have renamed the real subvol link into our snapshot, so 4287 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4288 * Instead simply lookup the dir_index_item for this entry so we can 4289 * remove it. Otherwise we know we have a ref to the root and we can 4290 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4291 */ 4292 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4293 di = btrfs_search_dir_index_item(root, path, dir_ino, 4294 name, name_len); 4295 if (IS_ERR_OR_NULL(di)) { 4296 if (!di) 4297 ret = -ENOENT; 4298 else 4299 ret = PTR_ERR(di); 4300 btrfs_abort_transaction(trans, ret); 4301 goto out; 4302 } 4303 4304 leaf = path->nodes[0]; 4305 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4306 index = key.offset; 4307 btrfs_release_path(path); 4308 } else { 4309 ret = btrfs_del_root_ref(trans, objectid, 4310 root->root_key.objectid, dir_ino, 4311 &index, name, name_len); 4312 if (ret) { 4313 btrfs_abort_transaction(trans, ret); 4314 goto out; 4315 } 4316 } 4317 4318 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4319 if (ret) { 4320 btrfs_abort_transaction(trans, ret); 4321 goto out; 4322 } 4323 4324 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4325 inode_inc_iversion(dir); 4326 dir->i_mtime = dir->i_ctime = current_time(dir); 4327 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4328 if (ret) 4329 btrfs_abort_transaction(trans, ret); 4330 out: 4331 btrfs_free_path(path); 4332 return ret; 4333 } 4334 4335 /* 4336 * Helper to check if the subvolume references other subvolumes or if it's 4337 * default. 4338 */ 4339 static noinline int may_destroy_subvol(struct btrfs_root *root) 4340 { 4341 struct btrfs_fs_info *fs_info = root->fs_info; 4342 struct btrfs_path *path; 4343 struct btrfs_dir_item *di; 4344 struct btrfs_key key; 4345 u64 dir_id; 4346 int ret; 4347 4348 path = btrfs_alloc_path(); 4349 if (!path) 4350 return -ENOMEM; 4351 4352 /* Make sure this root isn't set as the default subvol */ 4353 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4354 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4355 dir_id, "default", 7, 0); 4356 if (di && !IS_ERR(di)) { 4357 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4358 if (key.objectid == root->root_key.objectid) { 4359 ret = -EPERM; 4360 btrfs_err(fs_info, 4361 "deleting default subvolume %llu is not allowed", 4362 key.objectid); 4363 goto out; 4364 } 4365 btrfs_release_path(path); 4366 } 4367 4368 key.objectid = root->root_key.objectid; 4369 key.type = BTRFS_ROOT_REF_KEY; 4370 key.offset = (u64)-1; 4371 4372 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4373 if (ret < 0) 4374 goto out; 4375 BUG_ON(ret == 0); 4376 4377 ret = 0; 4378 if (path->slots[0] > 0) { 4379 path->slots[0]--; 4380 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4381 if (key.objectid == root->root_key.objectid && 4382 key.type == BTRFS_ROOT_REF_KEY) 4383 ret = -ENOTEMPTY; 4384 } 4385 out: 4386 btrfs_free_path(path); 4387 return ret; 4388 } 4389 4390 /* Delete all dentries for inodes belonging to the root */ 4391 static void btrfs_prune_dentries(struct btrfs_root *root) 4392 { 4393 struct btrfs_fs_info *fs_info = root->fs_info; 4394 struct rb_node *node; 4395 struct rb_node *prev; 4396 struct btrfs_inode *entry; 4397 struct inode *inode; 4398 u64 objectid = 0; 4399 4400 if (!BTRFS_FS_ERROR(fs_info)) 4401 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4402 4403 spin_lock(&root->inode_lock); 4404 again: 4405 node = root->inode_tree.rb_node; 4406 prev = NULL; 4407 while (node) { 4408 prev = node; 4409 entry = rb_entry(node, struct btrfs_inode, rb_node); 4410 4411 if (objectid < btrfs_ino(entry)) 4412 node = node->rb_left; 4413 else if (objectid > btrfs_ino(entry)) 4414 node = node->rb_right; 4415 else 4416 break; 4417 } 4418 if (!node) { 4419 while (prev) { 4420 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4421 if (objectid <= btrfs_ino(entry)) { 4422 node = prev; 4423 break; 4424 } 4425 prev = rb_next(prev); 4426 } 4427 } 4428 while (node) { 4429 entry = rb_entry(node, struct btrfs_inode, rb_node); 4430 objectid = btrfs_ino(entry) + 1; 4431 inode = igrab(&entry->vfs_inode); 4432 if (inode) { 4433 spin_unlock(&root->inode_lock); 4434 if (atomic_read(&inode->i_count) > 1) 4435 d_prune_aliases(inode); 4436 /* 4437 * btrfs_drop_inode will have it removed from the inode 4438 * cache when its usage count hits zero. 4439 */ 4440 iput(inode); 4441 cond_resched(); 4442 spin_lock(&root->inode_lock); 4443 goto again; 4444 } 4445 4446 if (cond_resched_lock(&root->inode_lock)) 4447 goto again; 4448 4449 node = rb_next(node); 4450 } 4451 spin_unlock(&root->inode_lock); 4452 } 4453 4454 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4455 { 4456 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4457 struct btrfs_root *root = BTRFS_I(dir)->root; 4458 struct inode *inode = d_inode(dentry); 4459 struct btrfs_root *dest = BTRFS_I(inode)->root; 4460 struct btrfs_trans_handle *trans; 4461 struct btrfs_block_rsv block_rsv; 4462 u64 root_flags; 4463 int ret; 4464 4465 /* 4466 * Don't allow to delete a subvolume with send in progress. This is 4467 * inside the inode lock so the error handling that has to drop the bit 4468 * again is not run concurrently. 4469 */ 4470 spin_lock(&dest->root_item_lock); 4471 if (dest->send_in_progress) { 4472 spin_unlock(&dest->root_item_lock); 4473 btrfs_warn(fs_info, 4474 "attempt to delete subvolume %llu during send", 4475 dest->root_key.objectid); 4476 return -EPERM; 4477 } 4478 if (atomic_read(&dest->nr_swapfiles)) { 4479 spin_unlock(&dest->root_item_lock); 4480 btrfs_warn(fs_info, 4481 "attempt to delete subvolume %llu with active swapfile", 4482 root->root_key.objectid); 4483 return -EPERM; 4484 } 4485 root_flags = btrfs_root_flags(&dest->root_item); 4486 btrfs_set_root_flags(&dest->root_item, 4487 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4488 spin_unlock(&dest->root_item_lock); 4489 4490 down_write(&fs_info->subvol_sem); 4491 4492 ret = may_destroy_subvol(dest); 4493 if (ret) 4494 goto out_up_write; 4495 4496 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4497 /* 4498 * One for dir inode, 4499 * two for dir entries, 4500 * two for root ref/backref. 4501 */ 4502 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4503 if (ret) 4504 goto out_up_write; 4505 4506 trans = btrfs_start_transaction(root, 0); 4507 if (IS_ERR(trans)) { 4508 ret = PTR_ERR(trans); 4509 goto out_release; 4510 } 4511 trans->block_rsv = &block_rsv; 4512 trans->bytes_reserved = block_rsv.size; 4513 4514 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4515 4516 ret = btrfs_unlink_subvol(trans, dir, dentry); 4517 if (ret) { 4518 btrfs_abort_transaction(trans, ret); 4519 goto out_end_trans; 4520 } 4521 4522 ret = btrfs_record_root_in_trans(trans, dest); 4523 if (ret) { 4524 btrfs_abort_transaction(trans, ret); 4525 goto out_end_trans; 4526 } 4527 4528 memset(&dest->root_item.drop_progress, 0, 4529 sizeof(dest->root_item.drop_progress)); 4530 btrfs_set_root_drop_level(&dest->root_item, 0); 4531 btrfs_set_root_refs(&dest->root_item, 0); 4532 4533 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4534 ret = btrfs_insert_orphan_item(trans, 4535 fs_info->tree_root, 4536 dest->root_key.objectid); 4537 if (ret) { 4538 btrfs_abort_transaction(trans, ret); 4539 goto out_end_trans; 4540 } 4541 } 4542 4543 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4544 BTRFS_UUID_KEY_SUBVOL, 4545 dest->root_key.objectid); 4546 if (ret && ret != -ENOENT) { 4547 btrfs_abort_transaction(trans, ret); 4548 goto out_end_trans; 4549 } 4550 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4551 ret = btrfs_uuid_tree_remove(trans, 4552 dest->root_item.received_uuid, 4553 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4554 dest->root_key.objectid); 4555 if (ret && ret != -ENOENT) { 4556 btrfs_abort_transaction(trans, ret); 4557 goto out_end_trans; 4558 } 4559 } 4560 4561 free_anon_bdev(dest->anon_dev); 4562 dest->anon_dev = 0; 4563 out_end_trans: 4564 trans->block_rsv = NULL; 4565 trans->bytes_reserved = 0; 4566 ret = btrfs_end_transaction(trans); 4567 inode->i_flags |= S_DEAD; 4568 out_release: 4569 btrfs_subvolume_release_metadata(root, &block_rsv); 4570 out_up_write: 4571 up_write(&fs_info->subvol_sem); 4572 if (ret) { 4573 spin_lock(&dest->root_item_lock); 4574 root_flags = btrfs_root_flags(&dest->root_item); 4575 btrfs_set_root_flags(&dest->root_item, 4576 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4577 spin_unlock(&dest->root_item_lock); 4578 } else { 4579 d_invalidate(dentry); 4580 btrfs_prune_dentries(dest); 4581 ASSERT(dest->send_in_progress == 0); 4582 } 4583 4584 return ret; 4585 } 4586 4587 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4588 { 4589 struct inode *inode = d_inode(dentry); 4590 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4591 int err = 0; 4592 struct btrfs_trans_handle *trans; 4593 u64 last_unlink_trans; 4594 4595 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4596 return -ENOTEMPTY; 4597 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4598 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4599 btrfs_err(fs_info, 4600 "extent tree v2 doesn't support snapshot deletion yet"); 4601 return -EOPNOTSUPP; 4602 } 4603 return btrfs_delete_subvolume(dir, dentry); 4604 } 4605 4606 trans = __unlink_start_trans(dir); 4607 if (IS_ERR(trans)) 4608 return PTR_ERR(trans); 4609 4610 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4611 err = btrfs_unlink_subvol(trans, dir, dentry); 4612 goto out; 4613 } 4614 4615 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4616 if (err) 4617 goto out; 4618 4619 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4620 4621 /* now the directory is empty */ 4622 err = btrfs_unlink_inode(trans, BTRFS_I(dir), 4623 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4624 dentry->d_name.len); 4625 if (!err) { 4626 btrfs_i_size_write(BTRFS_I(inode), 0); 4627 /* 4628 * Propagate the last_unlink_trans value of the deleted dir to 4629 * its parent directory. This is to prevent an unrecoverable 4630 * log tree in the case we do something like this: 4631 * 1) create dir foo 4632 * 2) create snapshot under dir foo 4633 * 3) delete the snapshot 4634 * 4) rmdir foo 4635 * 5) mkdir foo 4636 * 6) fsync foo or some file inside foo 4637 */ 4638 if (last_unlink_trans >= trans->transid) 4639 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4640 } 4641 out: 4642 btrfs_end_transaction(trans); 4643 btrfs_btree_balance_dirty(fs_info); 4644 4645 return err; 4646 } 4647 4648 /* 4649 * btrfs_truncate_block - read, zero a chunk and write a block 4650 * @inode - inode that we're zeroing 4651 * @from - the offset to start zeroing 4652 * @len - the length to zero, 0 to zero the entire range respective to the 4653 * offset 4654 * @front - zero up to the offset instead of from the offset on 4655 * 4656 * This will find the block for the "from" offset and cow the block and zero the 4657 * part we want to zero. This is used with truncate and hole punching. 4658 */ 4659 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4660 int front) 4661 { 4662 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4663 struct address_space *mapping = inode->vfs_inode.i_mapping; 4664 struct extent_io_tree *io_tree = &inode->io_tree; 4665 struct btrfs_ordered_extent *ordered; 4666 struct extent_state *cached_state = NULL; 4667 struct extent_changeset *data_reserved = NULL; 4668 bool only_release_metadata = false; 4669 u32 blocksize = fs_info->sectorsize; 4670 pgoff_t index = from >> PAGE_SHIFT; 4671 unsigned offset = from & (blocksize - 1); 4672 struct page *page; 4673 gfp_t mask = btrfs_alloc_write_mask(mapping); 4674 size_t write_bytes = blocksize; 4675 int ret = 0; 4676 u64 block_start; 4677 u64 block_end; 4678 4679 if (IS_ALIGNED(offset, blocksize) && 4680 (!len || IS_ALIGNED(len, blocksize))) 4681 goto out; 4682 4683 block_start = round_down(from, blocksize); 4684 block_end = block_start + blocksize - 1; 4685 4686 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4687 blocksize); 4688 if (ret < 0) { 4689 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4690 /* For nocow case, no need to reserve data space */ 4691 only_release_metadata = true; 4692 } else { 4693 goto out; 4694 } 4695 } 4696 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize); 4697 if (ret < 0) { 4698 if (!only_release_metadata) 4699 btrfs_free_reserved_data_space(inode, data_reserved, 4700 block_start, blocksize); 4701 goto out; 4702 } 4703 again: 4704 page = find_or_create_page(mapping, index, mask); 4705 if (!page) { 4706 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4707 blocksize, true); 4708 btrfs_delalloc_release_extents(inode, blocksize); 4709 ret = -ENOMEM; 4710 goto out; 4711 } 4712 ret = set_page_extent_mapped(page); 4713 if (ret < 0) 4714 goto out_unlock; 4715 4716 if (!PageUptodate(page)) { 4717 ret = btrfs_read_folio(NULL, page_folio(page)); 4718 lock_page(page); 4719 if (page->mapping != mapping) { 4720 unlock_page(page); 4721 put_page(page); 4722 goto again; 4723 } 4724 if (!PageUptodate(page)) { 4725 ret = -EIO; 4726 goto out_unlock; 4727 } 4728 } 4729 wait_on_page_writeback(page); 4730 4731 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4732 4733 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4734 if (ordered) { 4735 unlock_extent_cached(io_tree, block_start, block_end, 4736 &cached_state); 4737 unlock_page(page); 4738 put_page(page); 4739 btrfs_start_ordered_extent(ordered, 1); 4740 btrfs_put_ordered_extent(ordered); 4741 goto again; 4742 } 4743 4744 clear_extent_bit(&inode->io_tree, block_start, block_end, 4745 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4746 0, 0, &cached_state); 4747 4748 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4749 &cached_state); 4750 if (ret) { 4751 unlock_extent_cached(io_tree, block_start, block_end, 4752 &cached_state); 4753 goto out_unlock; 4754 } 4755 4756 if (offset != blocksize) { 4757 if (!len) 4758 len = blocksize - offset; 4759 if (front) 4760 memzero_page(page, (block_start - page_offset(page)), 4761 offset); 4762 else 4763 memzero_page(page, (block_start - page_offset(page)) + offset, 4764 len); 4765 flush_dcache_page(page); 4766 } 4767 btrfs_page_clear_checked(fs_info, page, block_start, 4768 block_end + 1 - block_start); 4769 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4770 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4771 4772 if (only_release_metadata) 4773 set_extent_bit(&inode->io_tree, block_start, block_end, 4774 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4775 4776 out_unlock: 4777 if (ret) { 4778 if (only_release_metadata) 4779 btrfs_delalloc_release_metadata(inode, blocksize, true); 4780 else 4781 btrfs_delalloc_release_space(inode, data_reserved, 4782 block_start, blocksize, true); 4783 } 4784 btrfs_delalloc_release_extents(inode, blocksize); 4785 unlock_page(page); 4786 put_page(page); 4787 out: 4788 if (only_release_metadata) 4789 btrfs_check_nocow_unlock(inode); 4790 extent_changeset_free(data_reserved); 4791 return ret; 4792 } 4793 4794 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4795 u64 offset, u64 len) 4796 { 4797 struct btrfs_fs_info *fs_info = root->fs_info; 4798 struct btrfs_trans_handle *trans; 4799 struct btrfs_drop_extents_args drop_args = { 0 }; 4800 int ret; 4801 4802 /* 4803 * If NO_HOLES is enabled, we don't need to do anything. 4804 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4805 * or btrfs_update_inode() will be called, which guarantee that the next 4806 * fsync will know this inode was changed and needs to be logged. 4807 */ 4808 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4809 return 0; 4810 4811 /* 4812 * 1 - for the one we're dropping 4813 * 1 - for the one we're adding 4814 * 1 - for updating the inode. 4815 */ 4816 trans = btrfs_start_transaction(root, 3); 4817 if (IS_ERR(trans)) 4818 return PTR_ERR(trans); 4819 4820 drop_args.start = offset; 4821 drop_args.end = offset + len; 4822 drop_args.drop_cache = true; 4823 4824 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4825 if (ret) { 4826 btrfs_abort_transaction(trans, ret); 4827 btrfs_end_transaction(trans); 4828 return ret; 4829 } 4830 4831 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 4832 offset, 0, 0, len, 0, len, 0, 0, 0); 4833 if (ret) { 4834 btrfs_abort_transaction(trans, ret); 4835 } else { 4836 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4837 btrfs_update_inode(trans, root, inode); 4838 } 4839 btrfs_end_transaction(trans); 4840 return ret; 4841 } 4842 4843 /* 4844 * This function puts in dummy file extents for the area we're creating a hole 4845 * for. So if we are truncating this file to a larger size we need to insert 4846 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4847 * the range between oldsize and size 4848 */ 4849 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4850 { 4851 struct btrfs_root *root = inode->root; 4852 struct btrfs_fs_info *fs_info = root->fs_info; 4853 struct extent_io_tree *io_tree = &inode->io_tree; 4854 struct extent_map *em = NULL; 4855 struct extent_state *cached_state = NULL; 4856 struct extent_map_tree *em_tree = &inode->extent_tree; 4857 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4858 u64 block_end = ALIGN(size, fs_info->sectorsize); 4859 u64 last_byte; 4860 u64 cur_offset; 4861 u64 hole_size; 4862 int err = 0; 4863 4864 /* 4865 * If our size started in the middle of a block we need to zero out the 4866 * rest of the block before we expand the i_size, otherwise we could 4867 * expose stale data. 4868 */ 4869 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4870 if (err) 4871 return err; 4872 4873 if (size <= hole_start) 4874 return 0; 4875 4876 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4877 &cached_state); 4878 cur_offset = hole_start; 4879 while (1) { 4880 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4881 block_end - cur_offset); 4882 if (IS_ERR(em)) { 4883 err = PTR_ERR(em); 4884 em = NULL; 4885 break; 4886 } 4887 last_byte = min(extent_map_end(em), block_end); 4888 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4889 hole_size = last_byte - cur_offset; 4890 4891 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4892 struct extent_map *hole_em; 4893 4894 err = maybe_insert_hole(root, inode, cur_offset, 4895 hole_size); 4896 if (err) 4897 break; 4898 4899 err = btrfs_inode_set_file_extent_range(inode, 4900 cur_offset, hole_size); 4901 if (err) 4902 break; 4903 4904 btrfs_drop_extent_cache(inode, cur_offset, 4905 cur_offset + hole_size - 1, 0); 4906 hole_em = alloc_extent_map(); 4907 if (!hole_em) { 4908 btrfs_set_inode_full_sync(inode); 4909 goto next; 4910 } 4911 hole_em->start = cur_offset; 4912 hole_em->len = hole_size; 4913 hole_em->orig_start = cur_offset; 4914 4915 hole_em->block_start = EXTENT_MAP_HOLE; 4916 hole_em->block_len = 0; 4917 hole_em->orig_block_len = 0; 4918 hole_em->ram_bytes = hole_size; 4919 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4920 hole_em->generation = fs_info->generation; 4921 4922 while (1) { 4923 write_lock(&em_tree->lock); 4924 err = add_extent_mapping(em_tree, hole_em, 1); 4925 write_unlock(&em_tree->lock); 4926 if (err != -EEXIST) 4927 break; 4928 btrfs_drop_extent_cache(inode, cur_offset, 4929 cur_offset + 4930 hole_size - 1, 0); 4931 } 4932 free_extent_map(hole_em); 4933 } else { 4934 err = btrfs_inode_set_file_extent_range(inode, 4935 cur_offset, hole_size); 4936 if (err) 4937 break; 4938 } 4939 next: 4940 free_extent_map(em); 4941 em = NULL; 4942 cur_offset = last_byte; 4943 if (cur_offset >= block_end) 4944 break; 4945 } 4946 free_extent_map(em); 4947 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4948 return err; 4949 } 4950 4951 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4952 { 4953 struct btrfs_root *root = BTRFS_I(inode)->root; 4954 struct btrfs_trans_handle *trans; 4955 loff_t oldsize = i_size_read(inode); 4956 loff_t newsize = attr->ia_size; 4957 int mask = attr->ia_valid; 4958 int ret; 4959 4960 /* 4961 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4962 * special case where we need to update the times despite not having 4963 * these flags set. For all other operations the VFS set these flags 4964 * explicitly if it wants a timestamp update. 4965 */ 4966 if (newsize != oldsize) { 4967 inode_inc_iversion(inode); 4968 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4969 inode->i_ctime = inode->i_mtime = 4970 current_time(inode); 4971 } 4972 4973 if (newsize > oldsize) { 4974 /* 4975 * Don't do an expanding truncate while snapshotting is ongoing. 4976 * This is to ensure the snapshot captures a fully consistent 4977 * state of this file - if the snapshot captures this expanding 4978 * truncation, it must capture all writes that happened before 4979 * this truncation. 4980 */ 4981 btrfs_drew_write_lock(&root->snapshot_lock); 4982 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 4983 if (ret) { 4984 btrfs_drew_write_unlock(&root->snapshot_lock); 4985 return ret; 4986 } 4987 4988 trans = btrfs_start_transaction(root, 1); 4989 if (IS_ERR(trans)) { 4990 btrfs_drew_write_unlock(&root->snapshot_lock); 4991 return PTR_ERR(trans); 4992 } 4993 4994 i_size_write(inode, newsize); 4995 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 4996 pagecache_isize_extended(inode, oldsize, newsize); 4997 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 4998 btrfs_drew_write_unlock(&root->snapshot_lock); 4999 btrfs_end_transaction(trans); 5000 } else { 5001 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5002 5003 if (btrfs_is_zoned(fs_info)) { 5004 ret = btrfs_wait_ordered_range(inode, 5005 ALIGN(newsize, fs_info->sectorsize), 5006 (u64)-1); 5007 if (ret) 5008 return ret; 5009 } 5010 5011 /* 5012 * We're truncating a file that used to have good data down to 5013 * zero. Make sure any new writes to the file get on disk 5014 * on close. 5015 */ 5016 if (newsize == 0) 5017 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5018 &BTRFS_I(inode)->runtime_flags); 5019 5020 truncate_setsize(inode, newsize); 5021 5022 inode_dio_wait(inode); 5023 5024 ret = btrfs_truncate(inode, newsize == oldsize); 5025 if (ret && inode->i_nlink) { 5026 int err; 5027 5028 /* 5029 * Truncate failed, so fix up the in-memory size. We 5030 * adjusted disk_i_size down as we removed extents, so 5031 * wait for disk_i_size to be stable and then update the 5032 * in-memory size to match. 5033 */ 5034 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5035 if (err) 5036 return err; 5037 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5038 } 5039 } 5040 5041 return ret; 5042 } 5043 5044 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5045 struct iattr *attr) 5046 { 5047 struct inode *inode = d_inode(dentry); 5048 struct btrfs_root *root = BTRFS_I(inode)->root; 5049 int err; 5050 5051 if (btrfs_root_readonly(root)) 5052 return -EROFS; 5053 5054 err = setattr_prepare(mnt_userns, dentry, attr); 5055 if (err) 5056 return err; 5057 5058 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5059 err = btrfs_setsize(inode, attr); 5060 if (err) 5061 return err; 5062 } 5063 5064 if (attr->ia_valid) { 5065 setattr_copy(mnt_userns, inode, attr); 5066 inode_inc_iversion(inode); 5067 err = btrfs_dirty_inode(inode); 5068 5069 if (!err && attr->ia_valid & ATTR_MODE) 5070 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5071 } 5072 5073 return err; 5074 } 5075 5076 /* 5077 * While truncating the inode pages during eviction, we get the VFS 5078 * calling btrfs_invalidate_folio() against each folio of the inode. This 5079 * is slow because the calls to btrfs_invalidate_folio() result in a 5080 * huge amount of calls to lock_extent_bits() and clear_extent_bit(), 5081 * which keep merging and splitting extent_state structures over and over, 5082 * wasting lots of time. 5083 * 5084 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5085 * skip all those expensive operations on a per folio basis and do only 5086 * the ordered io finishing, while we release here the extent_map and 5087 * extent_state structures, without the excessive merging and splitting. 5088 */ 5089 static void evict_inode_truncate_pages(struct inode *inode) 5090 { 5091 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5092 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5093 struct rb_node *node; 5094 5095 ASSERT(inode->i_state & I_FREEING); 5096 truncate_inode_pages_final(&inode->i_data); 5097 5098 write_lock(&map_tree->lock); 5099 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5100 struct extent_map *em; 5101 5102 node = rb_first_cached(&map_tree->map); 5103 em = rb_entry(node, struct extent_map, rb_node); 5104 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5105 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5106 remove_extent_mapping(map_tree, em); 5107 free_extent_map(em); 5108 if (need_resched()) { 5109 write_unlock(&map_tree->lock); 5110 cond_resched(); 5111 write_lock(&map_tree->lock); 5112 } 5113 } 5114 write_unlock(&map_tree->lock); 5115 5116 /* 5117 * Keep looping until we have no more ranges in the io tree. 5118 * We can have ongoing bios started by readahead that have 5119 * their endio callback (extent_io.c:end_bio_extent_readpage) 5120 * still in progress (unlocked the pages in the bio but did not yet 5121 * unlocked the ranges in the io tree). Therefore this means some 5122 * ranges can still be locked and eviction started because before 5123 * submitting those bios, which are executed by a separate task (work 5124 * queue kthread), inode references (inode->i_count) were not taken 5125 * (which would be dropped in the end io callback of each bio). 5126 * Therefore here we effectively end up waiting for those bios and 5127 * anyone else holding locked ranges without having bumped the inode's 5128 * reference count - if we don't do it, when they access the inode's 5129 * io_tree to unlock a range it may be too late, leading to an 5130 * use-after-free issue. 5131 */ 5132 spin_lock(&io_tree->lock); 5133 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5134 struct extent_state *state; 5135 struct extent_state *cached_state = NULL; 5136 u64 start; 5137 u64 end; 5138 unsigned state_flags; 5139 5140 node = rb_first(&io_tree->state); 5141 state = rb_entry(node, struct extent_state, rb_node); 5142 start = state->start; 5143 end = state->end; 5144 state_flags = state->state; 5145 spin_unlock(&io_tree->lock); 5146 5147 lock_extent_bits(io_tree, start, end, &cached_state); 5148 5149 /* 5150 * If still has DELALLOC flag, the extent didn't reach disk, 5151 * and its reserved space won't be freed by delayed_ref. 5152 * So we need to free its reserved space here. 5153 * (Refer to comment in btrfs_invalidate_folio, case 2) 5154 * 5155 * Note, end is the bytenr of last byte, so we need + 1 here. 5156 */ 5157 if (state_flags & EXTENT_DELALLOC) 5158 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5159 end - start + 1); 5160 5161 clear_extent_bit(io_tree, start, end, 5162 EXTENT_LOCKED | EXTENT_DELALLOC | 5163 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5164 &cached_state); 5165 5166 cond_resched(); 5167 spin_lock(&io_tree->lock); 5168 } 5169 spin_unlock(&io_tree->lock); 5170 } 5171 5172 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5173 struct btrfs_block_rsv *rsv) 5174 { 5175 struct btrfs_fs_info *fs_info = root->fs_info; 5176 struct btrfs_trans_handle *trans; 5177 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5178 int ret; 5179 5180 /* 5181 * Eviction should be taking place at some place safe because of our 5182 * delayed iputs. However the normal flushing code will run delayed 5183 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5184 * 5185 * We reserve the delayed_refs_extra here again because we can't use 5186 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5187 * above. We reserve our extra bit here because we generate a ton of 5188 * delayed refs activity by truncating. 5189 * 5190 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5191 * if we fail to make this reservation we can re-try without the 5192 * delayed_refs_extra so we can make some forward progress. 5193 */ 5194 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5195 BTRFS_RESERVE_FLUSH_EVICT); 5196 if (ret) { 5197 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5198 BTRFS_RESERVE_FLUSH_EVICT); 5199 if (ret) { 5200 btrfs_warn(fs_info, 5201 "could not allocate space for delete; will truncate on mount"); 5202 return ERR_PTR(-ENOSPC); 5203 } 5204 delayed_refs_extra = 0; 5205 } 5206 5207 trans = btrfs_join_transaction(root); 5208 if (IS_ERR(trans)) 5209 return trans; 5210 5211 if (delayed_refs_extra) { 5212 trans->block_rsv = &fs_info->trans_block_rsv; 5213 trans->bytes_reserved = delayed_refs_extra; 5214 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5215 delayed_refs_extra, 1); 5216 } 5217 return trans; 5218 } 5219 5220 void btrfs_evict_inode(struct inode *inode) 5221 { 5222 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5223 struct btrfs_trans_handle *trans; 5224 struct btrfs_root *root = BTRFS_I(inode)->root; 5225 struct btrfs_block_rsv *rsv; 5226 int ret; 5227 5228 trace_btrfs_inode_evict(inode); 5229 5230 if (!root) { 5231 fsverity_cleanup_inode(inode); 5232 clear_inode(inode); 5233 return; 5234 } 5235 5236 evict_inode_truncate_pages(inode); 5237 5238 if (inode->i_nlink && 5239 ((btrfs_root_refs(&root->root_item) != 0 && 5240 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5241 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5242 goto no_delete; 5243 5244 if (is_bad_inode(inode)) 5245 goto no_delete; 5246 5247 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5248 5249 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5250 goto no_delete; 5251 5252 if (inode->i_nlink > 0) { 5253 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5254 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5255 goto no_delete; 5256 } 5257 5258 /* 5259 * This makes sure the inode item in tree is uptodate and the space for 5260 * the inode update is released. 5261 */ 5262 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5263 if (ret) 5264 goto no_delete; 5265 5266 /* 5267 * This drops any pending insert or delete operations we have for this 5268 * inode. We could have a delayed dir index deletion queued up, but 5269 * we're removing the inode completely so that'll be taken care of in 5270 * the truncate. 5271 */ 5272 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5273 5274 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5275 if (!rsv) 5276 goto no_delete; 5277 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5278 rsv->failfast = 1; 5279 5280 btrfs_i_size_write(BTRFS_I(inode), 0); 5281 5282 while (1) { 5283 struct btrfs_truncate_control control = { 5284 .inode = BTRFS_I(inode), 5285 .ino = btrfs_ino(BTRFS_I(inode)), 5286 .new_size = 0, 5287 .min_type = 0, 5288 }; 5289 5290 trans = evict_refill_and_join(root, rsv); 5291 if (IS_ERR(trans)) 5292 goto free_rsv; 5293 5294 trans->block_rsv = rsv; 5295 5296 ret = btrfs_truncate_inode_items(trans, root, &control); 5297 trans->block_rsv = &fs_info->trans_block_rsv; 5298 btrfs_end_transaction(trans); 5299 btrfs_btree_balance_dirty(fs_info); 5300 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5301 goto free_rsv; 5302 else if (!ret) 5303 break; 5304 } 5305 5306 /* 5307 * Errors here aren't a big deal, it just means we leave orphan items in 5308 * the tree. They will be cleaned up on the next mount. If the inode 5309 * number gets reused, cleanup deletes the orphan item without doing 5310 * anything, and unlink reuses the existing orphan item. 5311 * 5312 * If it turns out that we are dropping too many of these, we might want 5313 * to add a mechanism for retrying these after a commit. 5314 */ 5315 trans = evict_refill_and_join(root, rsv); 5316 if (!IS_ERR(trans)) { 5317 trans->block_rsv = rsv; 5318 btrfs_orphan_del(trans, BTRFS_I(inode)); 5319 trans->block_rsv = &fs_info->trans_block_rsv; 5320 btrfs_end_transaction(trans); 5321 } 5322 5323 free_rsv: 5324 btrfs_free_block_rsv(fs_info, rsv); 5325 no_delete: 5326 /* 5327 * If we didn't successfully delete, the orphan item will still be in 5328 * the tree and we'll retry on the next mount. Again, we might also want 5329 * to retry these periodically in the future. 5330 */ 5331 btrfs_remove_delayed_node(BTRFS_I(inode)); 5332 fsverity_cleanup_inode(inode); 5333 clear_inode(inode); 5334 } 5335 5336 /* 5337 * Return the key found in the dir entry in the location pointer, fill @type 5338 * with BTRFS_FT_*, and return 0. 5339 * 5340 * If no dir entries were found, returns -ENOENT. 5341 * If found a corrupted location in dir entry, returns -EUCLEAN. 5342 */ 5343 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5344 struct btrfs_key *location, u8 *type) 5345 { 5346 const char *name = dentry->d_name.name; 5347 int namelen = dentry->d_name.len; 5348 struct btrfs_dir_item *di; 5349 struct btrfs_path *path; 5350 struct btrfs_root *root = BTRFS_I(dir)->root; 5351 int ret = 0; 5352 5353 path = btrfs_alloc_path(); 5354 if (!path) 5355 return -ENOMEM; 5356 5357 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5358 name, namelen, 0); 5359 if (IS_ERR_OR_NULL(di)) { 5360 ret = di ? PTR_ERR(di) : -ENOENT; 5361 goto out; 5362 } 5363 5364 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5365 if (location->type != BTRFS_INODE_ITEM_KEY && 5366 location->type != BTRFS_ROOT_ITEM_KEY) { 5367 ret = -EUCLEAN; 5368 btrfs_warn(root->fs_info, 5369 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5370 __func__, name, btrfs_ino(BTRFS_I(dir)), 5371 location->objectid, location->type, location->offset); 5372 } 5373 if (!ret) 5374 *type = btrfs_dir_type(path->nodes[0], di); 5375 out: 5376 btrfs_free_path(path); 5377 return ret; 5378 } 5379 5380 /* 5381 * when we hit a tree root in a directory, the btrfs part of the inode 5382 * needs to be changed to reflect the root directory of the tree root. This 5383 * is kind of like crossing a mount point. 5384 */ 5385 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5386 struct inode *dir, 5387 struct dentry *dentry, 5388 struct btrfs_key *location, 5389 struct btrfs_root **sub_root) 5390 { 5391 struct btrfs_path *path; 5392 struct btrfs_root *new_root; 5393 struct btrfs_root_ref *ref; 5394 struct extent_buffer *leaf; 5395 struct btrfs_key key; 5396 int ret; 5397 int err = 0; 5398 5399 path = btrfs_alloc_path(); 5400 if (!path) { 5401 err = -ENOMEM; 5402 goto out; 5403 } 5404 5405 err = -ENOENT; 5406 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5407 key.type = BTRFS_ROOT_REF_KEY; 5408 key.offset = location->objectid; 5409 5410 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5411 if (ret) { 5412 if (ret < 0) 5413 err = ret; 5414 goto out; 5415 } 5416 5417 leaf = path->nodes[0]; 5418 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5419 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5420 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5421 goto out; 5422 5423 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5424 (unsigned long)(ref + 1), 5425 dentry->d_name.len); 5426 if (ret) 5427 goto out; 5428 5429 btrfs_release_path(path); 5430 5431 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5432 if (IS_ERR(new_root)) { 5433 err = PTR_ERR(new_root); 5434 goto out; 5435 } 5436 5437 *sub_root = new_root; 5438 location->objectid = btrfs_root_dirid(&new_root->root_item); 5439 location->type = BTRFS_INODE_ITEM_KEY; 5440 location->offset = 0; 5441 err = 0; 5442 out: 5443 btrfs_free_path(path); 5444 return err; 5445 } 5446 5447 static void inode_tree_add(struct inode *inode) 5448 { 5449 struct btrfs_root *root = BTRFS_I(inode)->root; 5450 struct btrfs_inode *entry; 5451 struct rb_node **p; 5452 struct rb_node *parent; 5453 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5454 u64 ino = btrfs_ino(BTRFS_I(inode)); 5455 5456 if (inode_unhashed(inode)) 5457 return; 5458 parent = NULL; 5459 spin_lock(&root->inode_lock); 5460 p = &root->inode_tree.rb_node; 5461 while (*p) { 5462 parent = *p; 5463 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5464 5465 if (ino < btrfs_ino(entry)) 5466 p = &parent->rb_left; 5467 else if (ino > btrfs_ino(entry)) 5468 p = &parent->rb_right; 5469 else { 5470 WARN_ON(!(entry->vfs_inode.i_state & 5471 (I_WILL_FREE | I_FREEING))); 5472 rb_replace_node(parent, new, &root->inode_tree); 5473 RB_CLEAR_NODE(parent); 5474 spin_unlock(&root->inode_lock); 5475 return; 5476 } 5477 } 5478 rb_link_node(new, parent, p); 5479 rb_insert_color(new, &root->inode_tree); 5480 spin_unlock(&root->inode_lock); 5481 } 5482 5483 static void inode_tree_del(struct btrfs_inode *inode) 5484 { 5485 struct btrfs_root *root = inode->root; 5486 int empty = 0; 5487 5488 spin_lock(&root->inode_lock); 5489 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5490 rb_erase(&inode->rb_node, &root->inode_tree); 5491 RB_CLEAR_NODE(&inode->rb_node); 5492 empty = RB_EMPTY_ROOT(&root->inode_tree); 5493 } 5494 spin_unlock(&root->inode_lock); 5495 5496 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5497 spin_lock(&root->inode_lock); 5498 empty = RB_EMPTY_ROOT(&root->inode_tree); 5499 spin_unlock(&root->inode_lock); 5500 if (empty) 5501 btrfs_add_dead_root(root); 5502 } 5503 } 5504 5505 5506 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5507 { 5508 struct btrfs_iget_args *args = p; 5509 5510 inode->i_ino = args->ino; 5511 BTRFS_I(inode)->location.objectid = args->ino; 5512 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5513 BTRFS_I(inode)->location.offset = 0; 5514 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5515 BUG_ON(args->root && !BTRFS_I(inode)->root); 5516 return 0; 5517 } 5518 5519 static int btrfs_find_actor(struct inode *inode, void *opaque) 5520 { 5521 struct btrfs_iget_args *args = opaque; 5522 5523 return args->ino == BTRFS_I(inode)->location.objectid && 5524 args->root == BTRFS_I(inode)->root; 5525 } 5526 5527 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5528 struct btrfs_root *root) 5529 { 5530 struct inode *inode; 5531 struct btrfs_iget_args args; 5532 unsigned long hashval = btrfs_inode_hash(ino, root); 5533 5534 args.ino = ino; 5535 args.root = root; 5536 5537 inode = iget5_locked(s, hashval, btrfs_find_actor, 5538 btrfs_init_locked_inode, 5539 (void *)&args); 5540 return inode; 5541 } 5542 5543 /* 5544 * Get an inode object given its inode number and corresponding root. 5545 * Path can be preallocated to prevent recursing back to iget through 5546 * allocator. NULL is also valid but may require an additional allocation 5547 * later. 5548 */ 5549 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5550 struct btrfs_root *root, struct btrfs_path *path) 5551 { 5552 struct inode *inode; 5553 5554 inode = btrfs_iget_locked(s, ino, root); 5555 if (!inode) 5556 return ERR_PTR(-ENOMEM); 5557 5558 if (inode->i_state & I_NEW) { 5559 int ret; 5560 5561 ret = btrfs_read_locked_inode(inode, path); 5562 if (!ret) { 5563 inode_tree_add(inode); 5564 unlock_new_inode(inode); 5565 } else { 5566 iget_failed(inode); 5567 /* 5568 * ret > 0 can come from btrfs_search_slot called by 5569 * btrfs_read_locked_inode, this means the inode item 5570 * was not found. 5571 */ 5572 if (ret > 0) 5573 ret = -ENOENT; 5574 inode = ERR_PTR(ret); 5575 } 5576 } 5577 5578 return inode; 5579 } 5580 5581 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5582 { 5583 return btrfs_iget_path(s, ino, root, NULL); 5584 } 5585 5586 static struct inode *new_simple_dir(struct super_block *s, 5587 struct btrfs_key *key, 5588 struct btrfs_root *root) 5589 { 5590 struct inode *inode = new_inode(s); 5591 5592 if (!inode) 5593 return ERR_PTR(-ENOMEM); 5594 5595 BTRFS_I(inode)->root = btrfs_grab_root(root); 5596 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5597 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5598 5599 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5600 /* 5601 * We only need lookup, the rest is read-only and there's no inode 5602 * associated with the dentry 5603 */ 5604 inode->i_op = &simple_dir_inode_operations; 5605 inode->i_opflags &= ~IOP_XATTR; 5606 inode->i_fop = &simple_dir_operations; 5607 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5608 inode->i_mtime = current_time(inode); 5609 inode->i_atime = inode->i_mtime; 5610 inode->i_ctime = inode->i_mtime; 5611 BTRFS_I(inode)->i_otime = inode->i_mtime; 5612 5613 return inode; 5614 } 5615 5616 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5617 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5618 static_assert(BTRFS_FT_DIR == FT_DIR); 5619 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5620 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5621 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5622 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5623 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5624 5625 static inline u8 btrfs_inode_type(struct inode *inode) 5626 { 5627 return fs_umode_to_ftype(inode->i_mode); 5628 } 5629 5630 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5631 { 5632 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5633 struct inode *inode; 5634 struct btrfs_root *root = BTRFS_I(dir)->root; 5635 struct btrfs_root *sub_root = root; 5636 struct btrfs_key location; 5637 u8 di_type = 0; 5638 int ret = 0; 5639 5640 if (dentry->d_name.len > BTRFS_NAME_LEN) 5641 return ERR_PTR(-ENAMETOOLONG); 5642 5643 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5644 if (ret < 0) 5645 return ERR_PTR(ret); 5646 5647 if (location.type == BTRFS_INODE_ITEM_KEY) { 5648 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5649 if (IS_ERR(inode)) 5650 return inode; 5651 5652 /* Do extra check against inode mode with di_type */ 5653 if (btrfs_inode_type(inode) != di_type) { 5654 btrfs_crit(fs_info, 5655 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5656 inode->i_mode, btrfs_inode_type(inode), 5657 di_type); 5658 iput(inode); 5659 return ERR_PTR(-EUCLEAN); 5660 } 5661 return inode; 5662 } 5663 5664 ret = fixup_tree_root_location(fs_info, dir, dentry, 5665 &location, &sub_root); 5666 if (ret < 0) { 5667 if (ret != -ENOENT) 5668 inode = ERR_PTR(ret); 5669 else 5670 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5671 } else { 5672 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5673 } 5674 if (root != sub_root) 5675 btrfs_put_root(sub_root); 5676 5677 if (!IS_ERR(inode) && root != sub_root) { 5678 down_read(&fs_info->cleanup_work_sem); 5679 if (!sb_rdonly(inode->i_sb)) 5680 ret = btrfs_orphan_cleanup(sub_root); 5681 up_read(&fs_info->cleanup_work_sem); 5682 if (ret) { 5683 iput(inode); 5684 inode = ERR_PTR(ret); 5685 } 5686 } 5687 5688 return inode; 5689 } 5690 5691 static int btrfs_dentry_delete(const struct dentry *dentry) 5692 { 5693 struct btrfs_root *root; 5694 struct inode *inode = d_inode(dentry); 5695 5696 if (!inode && !IS_ROOT(dentry)) 5697 inode = d_inode(dentry->d_parent); 5698 5699 if (inode) { 5700 root = BTRFS_I(inode)->root; 5701 if (btrfs_root_refs(&root->root_item) == 0) 5702 return 1; 5703 5704 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5705 return 1; 5706 } 5707 return 0; 5708 } 5709 5710 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5711 unsigned int flags) 5712 { 5713 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5714 5715 if (inode == ERR_PTR(-ENOENT)) 5716 inode = NULL; 5717 return d_splice_alias(inode, dentry); 5718 } 5719 5720 /* 5721 * All this infrastructure exists because dir_emit can fault, and we are holding 5722 * the tree lock when doing readdir. For now just allocate a buffer and copy 5723 * our information into that, and then dir_emit from the buffer. This is 5724 * similar to what NFS does, only we don't keep the buffer around in pagecache 5725 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5726 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5727 * tree lock. 5728 */ 5729 static int btrfs_opendir(struct inode *inode, struct file *file) 5730 { 5731 struct btrfs_file_private *private; 5732 5733 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5734 if (!private) 5735 return -ENOMEM; 5736 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5737 if (!private->filldir_buf) { 5738 kfree(private); 5739 return -ENOMEM; 5740 } 5741 file->private_data = private; 5742 return 0; 5743 } 5744 5745 struct dir_entry { 5746 u64 ino; 5747 u64 offset; 5748 unsigned type; 5749 int name_len; 5750 }; 5751 5752 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5753 { 5754 while (entries--) { 5755 struct dir_entry *entry = addr; 5756 char *name = (char *)(entry + 1); 5757 5758 ctx->pos = get_unaligned(&entry->offset); 5759 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5760 get_unaligned(&entry->ino), 5761 get_unaligned(&entry->type))) 5762 return 1; 5763 addr += sizeof(struct dir_entry) + 5764 get_unaligned(&entry->name_len); 5765 ctx->pos++; 5766 } 5767 return 0; 5768 } 5769 5770 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5771 { 5772 struct inode *inode = file_inode(file); 5773 struct btrfs_root *root = BTRFS_I(inode)->root; 5774 struct btrfs_file_private *private = file->private_data; 5775 struct btrfs_dir_item *di; 5776 struct btrfs_key key; 5777 struct btrfs_key found_key; 5778 struct btrfs_path *path; 5779 void *addr; 5780 struct list_head ins_list; 5781 struct list_head del_list; 5782 int ret; 5783 struct extent_buffer *leaf; 5784 int slot; 5785 char *name_ptr; 5786 int name_len; 5787 int entries = 0; 5788 int total_len = 0; 5789 bool put = false; 5790 struct btrfs_key location; 5791 5792 if (!dir_emit_dots(file, ctx)) 5793 return 0; 5794 5795 path = btrfs_alloc_path(); 5796 if (!path) 5797 return -ENOMEM; 5798 5799 addr = private->filldir_buf; 5800 path->reada = READA_FORWARD; 5801 5802 INIT_LIST_HEAD(&ins_list); 5803 INIT_LIST_HEAD(&del_list); 5804 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5805 5806 again: 5807 key.type = BTRFS_DIR_INDEX_KEY; 5808 key.offset = ctx->pos; 5809 key.objectid = btrfs_ino(BTRFS_I(inode)); 5810 5811 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5812 if (ret < 0) 5813 goto err; 5814 5815 while (1) { 5816 struct dir_entry *entry; 5817 5818 leaf = path->nodes[0]; 5819 slot = path->slots[0]; 5820 if (slot >= btrfs_header_nritems(leaf)) { 5821 ret = btrfs_next_leaf(root, path); 5822 if (ret < 0) 5823 goto err; 5824 else if (ret > 0) 5825 break; 5826 continue; 5827 } 5828 5829 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5830 5831 if (found_key.objectid != key.objectid) 5832 break; 5833 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5834 break; 5835 if (found_key.offset < ctx->pos) 5836 goto next; 5837 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5838 goto next; 5839 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5840 name_len = btrfs_dir_name_len(leaf, di); 5841 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5842 PAGE_SIZE) { 5843 btrfs_release_path(path); 5844 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5845 if (ret) 5846 goto nopos; 5847 addr = private->filldir_buf; 5848 entries = 0; 5849 total_len = 0; 5850 goto again; 5851 } 5852 5853 entry = addr; 5854 put_unaligned(name_len, &entry->name_len); 5855 name_ptr = (char *)(entry + 1); 5856 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5857 name_len); 5858 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5859 &entry->type); 5860 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5861 put_unaligned(location.objectid, &entry->ino); 5862 put_unaligned(found_key.offset, &entry->offset); 5863 entries++; 5864 addr += sizeof(struct dir_entry) + name_len; 5865 total_len += sizeof(struct dir_entry) + name_len; 5866 next: 5867 path->slots[0]++; 5868 } 5869 btrfs_release_path(path); 5870 5871 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5872 if (ret) 5873 goto nopos; 5874 5875 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5876 if (ret) 5877 goto nopos; 5878 5879 /* 5880 * Stop new entries from being returned after we return the last 5881 * entry. 5882 * 5883 * New directory entries are assigned a strictly increasing 5884 * offset. This means that new entries created during readdir 5885 * are *guaranteed* to be seen in the future by that readdir. 5886 * This has broken buggy programs which operate on names as 5887 * they're returned by readdir. Until we re-use freed offsets 5888 * we have this hack to stop new entries from being returned 5889 * under the assumption that they'll never reach this huge 5890 * offset. 5891 * 5892 * This is being careful not to overflow 32bit loff_t unless the 5893 * last entry requires it because doing so has broken 32bit apps 5894 * in the past. 5895 */ 5896 if (ctx->pos >= INT_MAX) 5897 ctx->pos = LLONG_MAX; 5898 else 5899 ctx->pos = INT_MAX; 5900 nopos: 5901 ret = 0; 5902 err: 5903 if (put) 5904 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5905 btrfs_free_path(path); 5906 return ret; 5907 } 5908 5909 /* 5910 * This is somewhat expensive, updating the tree every time the 5911 * inode changes. But, it is most likely to find the inode in cache. 5912 * FIXME, needs more benchmarking...there are no reasons other than performance 5913 * to keep or drop this code. 5914 */ 5915 static int btrfs_dirty_inode(struct inode *inode) 5916 { 5917 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5918 struct btrfs_root *root = BTRFS_I(inode)->root; 5919 struct btrfs_trans_handle *trans; 5920 int ret; 5921 5922 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5923 return 0; 5924 5925 trans = btrfs_join_transaction(root); 5926 if (IS_ERR(trans)) 5927 return PTR_ERR(trans); 5928 5929 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5930 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 5931 /* whoops, lets try again with the full transaction */ 5932 btrfs_end_transaction(trans); 5933 trans = btrfs_start_transaction(root, 1); 5934 if (IS_ERR(trans)) 5935 return PTR_ERR(trans); 5936 5937 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5938 } 5939 btrfs_end_transaction(trans); 5940 if (BTRFS_I(inode)->delayed_node) 5941 btrfs_balance_delayed_items(fs_info); 5942 5943 return ret; 5944 } 5945 5946 /* 5947 * This is a copy of file_update_time. We need this so we can return error on 5948 * ENOSPC for updating the inode in the case of file write and mmap writes. 5949 */ 5950 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5951 int flags) 5952 { 5953 struct btrfs_root *root = BTRFS_I(inode)->root; 5954 bool dirty = flags & ~S_VERSION; 5955 5956 if (btrfs_root_readonly(root)) 5957 return -EROFS; 5958 5959 if (flags & S_VERSION) 5960 dirty |= inode_maybe_inc_iversion(inode, dirty); 5961 if (flags & S_CTIME) 5962 inode->i_ctime = *now; 5963 if (flags & S_MTIME) 5964 inode->i_mtime = *now; 5965 if (flags & S_ATIME) 5966 inode->i_atime = *now; 5967 return dirty ? btrfs_dirty_inode(inode) : 0; 5968 } 5969 5970 /* 5971 * find the highest existing sequence number in a directory 5972 * and then set the in-memory index_cnt variable to reflect 5973 * free sequence numbers 5974 */ 5975 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5976 { 5977 struct btrfs_root *root = inode->root; 5978 struct btrfs_key key, found_key; 5979 struct btrfs_path *path; 5980 struct extent_buffer *leaf; 5981 int ret; 5982 5983 key.objectid = btrfs_ino(inode); 5984 key.type = BTRFS_DIR_INDEX_KEY; 5985 key.offset = (u64)-1; 5986 5987 path = btrfs_alloc_path(); 5988 if (!path) 5989 return -ENOMEM; 5990 5991 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5992 if (ret < 0) 5993 goto out; 5994 /* FIXME: we should be able to handle this */ 5995 if (ret == 0) 5996 goto out; 5997 ret = 0; 5998 5999 if (path->slots[0] == 0) { 6000 inode->index_cnt = BTRFS_DIR_START_INDEX; 6001 goto out; 6002 } 6003 6004 path->slots[0]--; 6005 6006 leaf = path->nodes[0]; 6007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6008 6009 if (found_key.objectid != btrfs_ino(inode) || 6010 found_key.type != BTRFS_DIR_INDEX_KEY) { 6011 inode->index_cnt = BTRFS_DIR_START_INDEX; 6012 goto out; 6013 } 6014 6015 inode->index_cnt = found_key.offset + 1; 6016 out: 6017 btrfs_free_path(path); 6018 return ret; 6019 } 6020 6021 /* 6022 * helper to find a free sequence number in a given directory. This current 6023 * code is very simple, later versions will do smarter things in the btree 6024 */ 6025 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6026 { 6027 int ret = 0; 6028 6029 if (dir->index_cnt == (u64)-1) { 6030 ret = btrfs_inode_delayed_dir_index_count(dir); 6031 if (ret) { 6032 ret = btrfs_set_inode_index_count(dir); 6033 if (ret) 6034 return ret; 6035 } 6036 } 6037 6038 *index = dir->index_cnt; 6039 dir->index_cnt++; 6040 6041 return ret; 6042 } 6043 6044 static int btrfs_insert_inode_locked(struct inode *inode) 6045 { 6046 struct btrfs_iget_args args; 6047 6048 args.ino = BTRFS_I(inode)->location.objectid; 6049 args.root = BTRFS_I(inode)->root; 6050 6051 return insert_inode_locked4(inode, 6052 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6053 btrfs_find_actor, &args); 6054 } 6055 6056 /* 6057 * Inherit flags from the parent inode. 6058 * 6059 * Currently only the compression flags and the cow flags are inherited. 6060 */ 6061 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6062 { 6063 unsigned int flags; 6064 6065 if (!dir) 6066 return; 6067 6068 flags = BTRFS_I(dir)->flags; 6069 6070 if (flags & BTRFS_INODE_NOCOMPRESS) { 6071 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6072 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6073 } else if (flags & BTRFS_INODE_COMPRESS) { 6074 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6075 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6076 } 6077 6078 if (flags & BTRFS_INODE_NODATACOW) { 6079 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6080 if (S_ISREG(inode->i_mode)) 6081 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6082 } 6083 6084 btrfs_sync_inode_flags_to_i_flags(inode); 6085 } 6086 6087 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6088 struct btrfs_root *root, 6089 struct user_namespace *mnt_userns, 6090 struct inode *dir, 6091 const char *name, int name_len, 6092 u64 ref_objectid, u64 objectid, 6093 umode_t mode, u64 *index) 6094 { 6095 struct btrfs_fs_info *fs_info = root->fs_info; 6096 struct inode *inode; 6097 struct btrfs_inode_item *inode_item; 6098 struct btrfs_key *location; 6099 struct btrfs_path *path; 6100 struct btrfs_inode_ref *ref; 6101 struct btrfs_key key[2]; 6102 u32 sizes[2]; 6103 struct btrfs_item_batch batch; 6104 unsigned long ptr; 6105 unsigned int nofs_flag; 6106 int ret; 6107 6108 path = btrfs_alloc_path(); 6109 if (!path) 6110 return ERR_PTR(-ENOMEM); 6111 6112 nofs_flag = memalloc_nofs_save(); 6113 inode = new_inode(fs_info->sb); 6114 memalloc_nofs_restore(nofs_flag); 6115 if (!inode) { 6116 btrfs_free_path(path); 6117 return ERR_PTR(-ENOMEM); 6118 } 6119 6120 /* 6121 * O_TMPFILE, set link count to 0, so that after this point, 6122 * we fill in an inode item with the correct link count. 6123 */ 6124 if (!name) 6125 set_nlink(inode, 0); 6126 6127 /* 6128 * we have to initialize this early, so we can reclaim the inode 6129 * number if we fail afterwards in this function. 6130 */ 6131 inode->i_ino = objectid; 6132 6133 if (dir && name) { 6134 trace_btrfs_inode_request(dir); 6135 6136 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6137 if (ret) { 6138 btrfs_free_path(path); 6139 iput(inode); 6140 return ERR_PTR(ret); 6141 } 6142 } else if (dir) { 6143 *index = 0; 6144 } 6145 /* 6146 * index_cnt is ignored for everything but a dir, 6147 * btrfs_set_inode_index_count has an explanation for the magic 6148 * number 6149 */ 6150 BTRFS_I(inode)->index_cnt = 2; 6151 BTRFS_I(inode)->dir_index = *index; 6152 BTRFS_I(inode)->root = btrfs_grab_root(root); 6153 BTRFS_I(inode)->generation = trans->transid; 6154 inode->i_generation = BTRFS_I(inode)->generation; 6155 6156 /* 6157 * We could have gotten an inode number from somebody who was fsynced 6158 * and then removed in this same transaction, so let's just set full 6159 * sync since it will be a full sync anyway and this will blow away the 6160 * old info in the log. 6161 */ 6162 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6163 6164 key[0].objectid = objectid; 6165 key[0].type = BTRFS_INODE_ITEM_KEY; 6166 key[0].offset = 0; 6167 6168 sizes[0] = sizeof(struct btrfs_inode_item); 6169 6170 if (name) { 6171 /* 6172 * Start new inodes with an inode_ref. This is slightly more 6173 * efficient for small numbers of hard links since they will 6174 * be packed into one item. Extended refs will kick in if we 6175 * add more hard links than can fit in the ref item. 6176 */ 6177 key[1].objectid = objectid; 6178 key[1].type = BTRFS_INODE_REF_KEY; 6179 key[1].offset = ref_objectid; 6180 6181 sizes[1] = name_len + sizeof(*ref); 6182 } 6183 6184 location = &BTRFS_I(inode)->location; 6185 location->objectid = objectid; 6186 location->offset = 0; 6187 location->type = BTRFS_INODE_ITEM_KEY; 6188 6189 ret = btrfs_insert_inode_locked(inode); 6190 if (ret < 0) { 6191 iput(inode); 6192 goto fail; 6193 } 6194 6195 batch.keys = &key[0]; 6196 batch.data_sizes = &sizes[0]; 6197 batch.total_data_size = sizes[0] + (name ? sizes[1] : 0); 6198 batch.nr = name ? 2 : 1; 6199 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6200 if (ret != 0) 6201 goto fail_unlock; 6202 6203 inode_init_owner(mnt_userns, inode, dir, mode); 6204 inode_set_bytes(inode, 0); 6205 6206 inode->i_mtime = current_time(inode); 6207 inode->i_atime = inode->i_mtime; 6208 inode->i_ctime = inode->i_mtime; 6209 BTRFS_I(inode)->i_otime = inode->i_mtime; 6210 6211 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6212 struct btrfs_inode_item); 6213 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6214 sizeof(*inode_item)); 6215 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6216 6217 if (name) { 6218 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6219 struct btrfs_inode_ref); 6220 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6221 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6222 ptr = (unsigned long)(ref + 1); 6223 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6224 } 6225 6226 btrfs_mark_buffer_dirty(path->nodes[0]); 6227 btrfs_free_path(path); 6228 6229 btrfs_inherit_iflags(inode, dir); 6230 6231 if (S_ISREG(mode)) { 6232 if (btrfs_test_opt(fs_info, NODATASUM)) 6233 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6234 if (btrfs_test_opt(fs_info, NODATACOW)) 6235 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6236 BTRFS_INODE_NODATASUM; 6237 } 6238 6239 inode_tree_add(inode); 6240 6241 trace_btrfs_inode_new(inode); 6242 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6243 6244 btrfs_update_root_times(trans, root); 6245 6246 ret = btrfs_inode_inherit_props(trans, inode, dir); 6247 if (ret) 6248 btrfs_err(fs_info, 6249 "error inheriting props for ino %llu (root %llu): %d", 6250 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6251 6252 return inode; 6253 6254 fail_unlock: 6255 discard_new_inode(inode); 6256 fail: 6257 if (dir && name) 6258 BTRFS_I(dir)->index_cnt--; 6259 btrfs_free_path(path); 6260 return ERR_PTR(ret); 6261 } 6262 6263 /* 6264 * utility function to add 'inode' into 'parent_inode' with 6265 * a give name and a given sequence number. 6266 * if 'add_backref' is true, also insert a backref from the 6267 * inode to the parent directory. 6268 */ 6269 int btrfs_add_link(struct btrfs_trans_handle *trans, 6270 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6271 const char *name, int name_len, int add_backref, u64 index) 6272 { 6273 int ret = 0; 6274 struct btrfs_key key; 6275 struct btrfs_root *root = parent_inode->root; 6276 u64 ino = btrfs_ino(inode); 6277 u64 parent_ino = btrfs_ino(parent_inode); 6278 6279 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6280 memcpy(&key, &inode->root->root_key, sizeof(key)); 6281 } else { 6282 key.objectid = ino; 6283 key.type = BTRFS_INODE_ITEM_KEY; 6284 key.offset = 0; 6285 } 6286 6287 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6288 ret = btrfs_add_root_ref(trans, key.objectid, 6289 root->root_key.objectid, parent_ino, 6290 index, name, name_len); 6291 } else if (add_backref) { 6292 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6293 parent_ino, index); 6294 } 6295 6296 /* Nothing to clean up yet */ 6297 if (ret) 6298 return ret; 6299 6300 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6301 btrfs_inode_type(&inode->vfs_inode), index); 6302 if (ret == -EEXIST || ret == -EOVERFLOW) 6303 goto fail_dir_item; 6304 else if (ret) { 6305 btrfs_abort_transaction(trans, ret); 6306 return ret; 6307 } 6308 6309 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6310 name_len * 2); 6311 inode_inc_iversion(&parent_inode->vfs_inode); 6312 /* 6313 * If we are replaying a log tree, we do not want to update the mtime 6314 * and ctime of the parent directory with the current time, since the 6315 * log replay procedure is responsible for setting them to their correct 6316 * values (the ones it had when the fsync was done). 6317 */ 6318 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6319 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6320 6321 parent_inode->vfs_inode.i_mtime = now; 6322 parent_inode->vfs_inode.i_ctime = now; 6323 } 6324 ret = btrfs_update_inode(trans, root, parent_inode); 6325 if (ret) 6326 btrfs_abort_transaction(trans, ret); 6327 return ret; 6328 6329 fail_dir_item: 6330 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6331 u64 local_index; 6332 int err; 6333 err = btrfs_del_root_ref(trans, key.objectid, 6334 root->root_key.objectid, parent_ino, 6335 &local_index, name, name_len); 6336 if (err) 6337 btrfs_abort_transaction(trans, err); 6338 } else if (add_backref) { 6339 u64 local_index; 6340 int err; 6341 6342 err = btrfs_del_inode_ref(trans, root, name, name_len, 6343 ino, parent_ino, &local_index); 6344 if (err) 6345 btrfs_abort_transaction(trans, err); 6346 } 6347 6348 /* Return the original error code */ 6349 return ret; 6350 } 6351 6352 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6353 struct btrfs_inode *dir, struct dentry *dentry, 6354 struct btrfs_inode *inode, int backref, u64 index) 6355 { 6356 int err = btrfs_add_link(trans, dir, inode, 6357 dentry->d_name.name, dentry->d_name.len, 6358 backref, index); 6359 if (err > 0) 6360 err = -EEXIST; 6361 return err; 6362 } 6363 6364 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6365 struct dentry *dentry, umode_t mode, dev_t rdev) 6366 { 6367 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6368 struct btrfs_trans_handle *trans; 6369 struct btrfs_root *root = BTRFS_I(dir)->root; 6370 struct inode *inode = NULL; 6371 int err; 6372 u64 objectid; 6373 u64 index = 0; 6374 6375 /* 6376 * 2 for inode item and ref 6377 * 2 for dir items 6378 * 1 for xattr if selinux is on 6379 */ 6380 trans = btrfs_start_transaction(root, 5); 6381 if (IS_ERR(trans)) 6382 return PTR_ERR(trans); 6383 6384 err = btrfs_get_free_objectid(root, &objectid); 6385 if (err) 6386 goto out_unlock; 6387 6388 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6389 dentry->d_name.name, dentry->d_name.len, 6390 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 6391 if (IS_ERR(inode)) { 6392 err = PTR_ERR(inode); 6393 inode = NULL; 6394 goto out_unlock; 6395 } 6396 6397 /* 6398 * If the active LSM wants to access the inode during 6399 * d_instantiate it needs these. Smack checks to see 6400 * if the filesystem supports xattrs by looking at the 6401 * ops vector. 6402 */ 6403 inode->i_op = &btrfs_special_inode_operations; 6404 init_special_inode(inode, inode->i_mode, rdev); 6405 6406 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6407 if (err) 6408 goto out_unlock; 6409 6410 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6411 0, index); 6412 if (err) 6413 goto out_unlock; 6414 6415 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6416 d_instantiate_new(dentry, inode); 6417 6418 out_unlock: 6419 btrfs_end_transaction(trans); 6420 btrfs_btree_balance_dirty(fs_info); 6421 if (err && inode) { 6422 inode_dec_link_count(inode); 6423 discard_new_inode(inode); 6424 } 6425 return err; 6426 } 6427 6428 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6429 struct dentry *dentry, umode_t mode, bool excl) 6430 { 6431 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6432 struct btrfs_trans_handle *trans; 6433 struct btrfs_root *root = BTRFS_I(dir)->root; 6434 struct inode *inode = NULL; 6435 int err; 6436 u64 objectid; 6437 u64 index = 0; 6438 6439 /* 6440 * 2 for inode item and ref 6441 * 2 for dir items 6442 * 1 for xattr if selinux is on 6443 */ 6444 trans = btrfs_start_transaction(root, 5); 6445 if (IS_ERR(trans)) 6446 return PTR_ERR(trans); 6447 6448 err = btrfs_get_free_objectid(root, &objectid); 6449 if (err) 6450 goto out_unlock; 6451 6452 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6453 dentry->d_name.name, dentry->d_name.len, 6454 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 6455 if (IS_ERR(inode)) { 6456 err = PTR_ERR(inode); 6457 inode = NULL; 6458 goto out_unlock; 6459 } 6460 /* 6461 * If the active LSM wants to access the inode during 6462 * d_instantiate it needs these. Smack checks to see 6463 * if the filesystem supports xattrs by looking at the 6464 * ops vector. 6465 */ 6466 inode->i_fop = &btrfs_file_operations; 6467 inode->i_op = &btrfs_file_inode_operations; 6468 inode->i_mapping->a_ops = &btrfs_aops; 6469 6470 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6471 if (err) 6472 goto out_unlock; 6473 6474 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6475 if (err) 6476 goto out_unlock; 6477 6478 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6479 0, index); 6480 if (err) 6481 goto out_unlock; 6482 6483 d_instantiate_new(dentry, inode); 6484 6485 out_unlock: 6486 btrfs_end_transaction(trans); 6487 if (err && inode) { 6488 inode_dec_link_count(inode); 6489 discard_new_inode(inode); 6490 } 6491 btrfs_btree_balance_dirty(fs_info); 6492 return err; 6493 } 6494 6495 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6496 struct dentry *dentry) 6497 { 6498 struct btrfs_trans_handle *trans = NULL; 6499 struct btrfs_root *root = BTRFS_I(dir)->root; 6500 struct inode *inode = d_inode(old_dentry); 6501 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6502 u64 index; 6503 int err; 6504 int drop_inode = 0; 6505 6506 /* do not allow sys_link's with other subvols of the same device */ 6507 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6508 return -EXDEV; 6509 6510 if (inode->i_nlink >= BTRFS_LINK_MAX) 6511 return -EMLINK; 6512 6513 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6514 if (err) 6515 goto fail; 6516 6517 /* 6518 * 2 items for inode and inode ref 6519 * 2 items for dir items 6520 * 1 item for parent inode 6521 * 1 item for orphan item deletion if O_TMPFILE 6522 */ 6523 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6524 if (IS_ERR(trans)) { 6525 err = PTR_ERR(trans); 6526 trans = NULL; 6527 goto fail; 6528 } 6529 6530 /* There are several dir indexes for this inode, clear the cache. */ 6531 BTRFS_I(inode)->dir_index = 0ULL; 6532 inc_nlink(inode); 6533 inode_inc_iversion(inode); 6534 inode->i_ctime = current_time(inode); 6535 ihold(inode); 6536 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6537 6538 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6539 1, index); 6540 6541 if (err) { 6542 drop_inode = 1; 6543 } else { 6544 struct dentry *parent = dentry->d_parent; 6545 6546 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6547 if (err) 6548 goto fail; 6549 if (inode->i_nlink == 1) { 6550 /* 6551 * If new hard link count is 1, it's a file created 6552 * with open(2) O_TMPFILE flag. 6553 */ 6554 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6555 if (err) 6556 goto fail; 6557 } 6558 d_instantiate(dentry, inode); 6559 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6560 } 6561 6562 fail: 6563 if (trans) 6564 btrfs_end_transaction(trans); 6565 if (drop_inode) { 6566 inode_dec_link_count(inode); 6567 iput(inode); 6568 } 6569 btrfs_btree_balance_dirty(fs_info); 6570 return err; 6571 } 6572 6573 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6574 struct dentry *dentry, umode_t mode) 6575 { 6576 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6577 struct inode *inode = NULL; 6578 struct btrfs_trans_handle *trans; 6579 struct btrfs_root *root = BTRFS_I(dir)->root; 6580 int err = 0; 6581 u64 objectid = 0; 6582 u64 index = 0; 6583 6584 /* 6585 * 2 items for inode and ref 6586 * 2 items for dir items 6587 * 1 for xattr if selinux is on 6588 */ 6589 trans = btrfs_start_transaction(root, 5); 6590 if (IS_ERR(trans)) 6591 return PTR_ERR(trans); 6592 6593 err = btrfs_get_free_objectid(root, &objectid); 6594 if (err) 6595 goto out_fail; 6596 6597 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6598 dentry->d_name.name, dentry->d_name.len, 6599 btrfs_ino(BTRFS_I(dir)), objectid, 6600 S_IFDIR | mode, &index); 6601 if (IS_ERR(inode)) { 6602 err = PTR_ERR(inode); 6603 inode = NULL; 6604 goto out_fail; 6605 } 6606 6607 /* these must be set before we unlock the inode */ 6608 inode->i_op = &btrfs_dir_inode_operations; 6609 inode->i_fop = &btrfs_dir_file_operations; 6610 6611 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6612 if (err) 6613 goto out_fail; 6614 6615 btrfs_i_size_write(BTRFS_I(inode), 0); 6616 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6617 if (err) 6618 goto out_fail; 6619 6620 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6621 dentry->d_name.name, 6622 dentry->d_name.len, 0, index); 6623 if (err) 6624 goto out_fail; 6625 6626 d_instantiate_new(dentry, inode); 6627 6628 out_fail: 6629 btrfs_end_transaction(trans); 6630 if (err && inode) { 6631 inode_dec_link_count(inode); 6632 discard_new_inode(inode); 6633 } 6634 btrfs_btree_balance_dirty(fs_info); 6635 return err; 6636 } 6637 6638 static noinline int uncompress_inline(struct btrfs_path *path, 6639 struct page *page, 6640 size_t pg_offset, u64 extent_offset, 6641 struct btrfs_file_extent_item *item) 6642 { 6643 int ret; 6644 struct extent_buffer *leaf = path->nodes[0]; 6645 char *tmp; 6646 size_t max_size; 6647 unsigned long inline_size; 6648 unsigned long ptr; 6649 int compress_type; 6650 6651 WARN_ON(pg_offset != 0); 6652 compress_type = btrfs_file_extent_compression(leaf, item); 6653 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6654 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6655 tmp = kmalloc(inline_size, GFP_NOFS); 6656 if (!tmp) 6657 return -ENOMEM; 6658 ptr = btrfs_file_extent_inline_start(item); 6659 6660 read_extent_buffer(leaf, tmp, ptr, inline_size); 6661 6662 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6663 ret = btrfs_decompress(compress_type, tmp, page, 6664 extent_offset, inline_size, max_size); 6665 6666 /* 6667 * decompression code contains a memset to fill in any space between the end 6668 * of the uncompressed data and the end of max_size in case the decompressed 6669 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6670 * the end of an inline extent and the beginning of the next block, so we 6671 * cover that region here. 6672 */ 6673 6674 if (max_size + pg_offset < PAGE_SIZE) 6675 memzero_page(page, pg_offset + max_size, 6676 PAGE_SIZE - max_size - pg_offset); 6677 kfree(tmp); 6678 return ret; 6679 } 6680 6681 /** 6682 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6683 * @inode: file to search in 6684 * @page: page to read extent data into if the extent is inline 6685 * @pg_offset: offset into @page to copy to 6686 * @start: file offset 6687 * @len: length of range starting at @start 6688 * 6689 * This returns the first &struct extent_map which overlaps with the given 6690 * range, reading it from the B-tree and caching it if necessary. Note that 6691 * there may be more extents which overlap the given range after the returned 6692 * extent_map. 6693 * 6694 * If @page is not NULL and the extent is inline, this also reads the extent 6695 * data directly into the page and marks the extent up to date in the io_tree. 6696 * 6697 * Return: ERR_PTR on error, non-NULL extent_map on success. 6698 */ 6699 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6700 struct page *page, size_t pg_offset, 6701 u64 start, u64 len) 6702 { 6703 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6704 int ret = 0; 6705 u64 extent_start = 0; 6706 u64 extent_end = 0; 6707 u64 objectid = btrfs_ino(inode); 6708 int extent_type = -1; 6709 struct btrfs_path *path = NULL; 6710 struct btrfs_root *root = inode->root; 6711 struct btrfs_file_extent_item *item; 6712 struct extent_buffer *leaf; 6713 struct btrfs_key found_key; 6714 struct extent_map *em = NULL; 6715 struct extent_map_tree *em_tree = &inode->extent_tree; 6716 struct extent_io_tree *io_tree = &inode->io_tree; 6717 6718 read_lock(&em_tree->lock); 6719 em = lookup_extent_mapping(em_tree, start, len); 6720 read_unlock(&em_tree->lock); 6721 6722 if (em) { 6723 if (em->start > start || em->start + em->len <= start) 6724 free_extent_map(em); 6725 else if (em->block_start == EXTENT_MAP_INLINE && page) 6726 free_extent_map(em); 6727 else 6728 goto out; 6729 } 6730 em = alloc_extent_map(); 6731 if (!em) { 6732 ret = -ENOMEM; 6733 goto out; 6734 } 6735 em->start = EXTENT_MAP_HOLE; 6736 em->orig_start = EXTENT_MAP_HOLE; 6737 em->len = (u64)-1; 6738 em->block_len = (u64)-1; 6739 6740 path = btrfs_alloc_path(); 6741 if (!path) { 6742 ret = -ENOMEM; 6743 goto out; 6744 } 6745 6746 /* Chances are we'll be called again, so go ahead and do readahead */ 6747 path->reada = READA_FORWARD; 6748 6749 /* 6750 * The same explanation in load_free_space_cache applies here as well, 6751 * we only read when we're loading the free space cache, and at that 6752 * point the commit_root has everything we need. 6753 */ 6754 if (btrfs_is_free_space_inode(inode)) { 6755 path->search_commit_root = 1; 6756 path->skip_locking = 1; 6757 } 6758 6759 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6760 if (ret < 0) { 6761 goto out; 6762 } else if (ret > 0) { 6763 if (path->slots[0] == 0) 6764 goto not_found; 6765 path->slots[0]--; 6766 ret = 0; 6767 } 6768 6769 leaf = path->nodes[0]; 6770 item = btrfs_item_ptr(leaf, path->slots[0], 6771 struct btrfs_file_extent_item); 6772 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6773 if (found_key.objectid != objectid || 6774 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6775 /* 6776 * If we backup past the first extent we want to move forward 6777 * and see if there is an extent in front of us, otherwise we'll 6778 * say there is a hole for our whole search range which can 6779 * cause problems. 6780 */ 6781 extent_end = start; 6782 goto next; 6783 } 6784 6785 extent_type = btrfs_file_extent_type(leaf, item); 6786 extent_start = found_key.offset; 6787 extent_end = btrfs_file_extent_end(path); 6788 if (extent_type == BTRFS_FILE_EXTENT_REG || 6789 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6790 /* Only regular file could have regular/prealloc extent */ 6791 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6792 ret = -EUCLEAN; 6793 btrfs_crit(fs_info, 6794 "regular/prealloc extent found for non-regular inode %llu", 6795 btrfs_ino(inode)); 6796 goto out; 6797 } 6798 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6799 extent_start); 6800 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6801 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6802 path->slots[0], 6803 extent_start); 6804 } 6805 next: 6806 if (start >= extent_end) { 6807 path->slots[0]++; 6808 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6809 ret = btrfs_next_leaf(root, path); 6810 if (ret < 0) 6811 goto out; 6812 else if (ret > 0) 6813 goto not_found; 6814 6815 leaf = path->nodes[0]; 6816 } 6817 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6818 if (found_key.objectid != objectid || 6819 found_key.type != BTRFS_EXTENT_DATA_KEY) 6820 goto not_found; 6821 if (start + len <= found_key.offset) 6822 goto not_found; 6823 if (start > found_key.offset) 6824 goto next; 6825 6826 /* New extent overlaps with existing one */ 6827 em->start = start; 6828 em->orig_start = start; 6829 em->len = found_key.offset - start; 6830 em->block_start = EXTENT_MAP_HOLE; 6831 goto insert; 6832 } 6833 6834 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6835 6836 if (extent_type == BTRFS_FILE_EXTENT_REG || 6837 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6838 goto insert; 6839 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6840 unsigned long ptr; 6841 char *map; 6842 size_t size; 6843 size_t extent_offset; 6844 size_t copy_size; 6845 6846 if (!page) 6847 goto out; 6848 6849 size = btrfs_file_extent_ram_bytes(leaf, item); 6850 extent_offset = page_offset(page) + pg_offset - extent_start; 6851 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6852 size - extent_offset); 6853 em->start = extent_start + extent_offset; 6854 em->len = ALIGN(copy_size, fs_info->sectorsize); 6855 em->orig_block_len = em->len; 6856 em->orig_start = em->start; 6857 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6858 6859 if (!PageUptodate(page)) { 6860 if (btrfs_file_extent_compression(leaf, item) != 6861 BTRFS_COMPRESS_NONE) { 6862 ret = uncompress_inline(path, page, pg_offset, 6863 extent_offset, item); 6864 if (ret) 6865 goto out; 6866 } else { 6867 map = kmap_local_page(page); 6868 read_extent_buffer(leaf, map + pg_offset, ptr, 6869 copy_size); 6870 if (pg_offset + copy_size < PAGE_SIZE) { 6871 memset(map + pg_offset + copy_size, 0, 6872 PAGE_SIZE - pg_offset - 6873 copy_size); 6874 } 6875 kunmap_local(map); 6876 } 6877 flush_dcache_page(page); 6878 } 6879 set_extent_uptodate(io_tree, em->start, 6880 extent_map_end(em) - 1, NULL, GFP_NOFS); 6881 goto insert; 6882 } 6883 not_found: 6884 em->start = start; 6885 em->orig_start = start; 6886 em->len = len; 6887 em->block_start = EXTENT_MAP_HOLE; 6888 insert: 6889 ret = 0; 6890 btrfs_release_path(path); 6891 if (em->start > start || extent_map_end(em) <= start) { 6892 btrfs_err(fs_info, 6893 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6894 em->start, em->len, start, len); 6895 ret = -EIO; 6896 goto out; 6897 } 6898 6899 write_lock(&em_tree->lock); 6900 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6901 write_unlock(&em_tree->lock); 6902 out: 6903 btrfs_free_path(path); 6904 6905 trace_btrfs_get_extent(root, inode, em); 6906 6907 if (ret) { 6908 free_extent_map(em); 6909 return ERR_PTR(ret); 6910 } 6911 return em; 6912 } 6913 6914 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6915 u64 start, u64 len) 6916 { 6917 struct extent_map *em; 6918 struct extent_map *hole_em = NULL; 6919 u64 delalloc_start = start; 6920 u64 end; 6921 u64 delalloc_len; 6922 u64 delalloc_end; 6923 int err = 0; 6924 6925 em = btrfs_get_extent(inode, NULL, 0, start, len); 6926 if (IS_ERR(em)) 6927 return em; 6928 /* 6929 * If our em maps to: 6930 * - a hole or 6931 * - a pre-alloc extent, 6932 * there might actually be delalloc bytes behind it. 6933 */ 6934 if (em->block_start != EXTENT_MAP_HOLE && 6935 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6936 return em; 6937 else 6938 hole_em = em; 6939 6940 /* check to see if we've wrapped (len == -1 or similar) */ 6941 end = start + len; 6942 if (end < start) 6943 end = (u64)-1; 6944 else 6945 end -= 1; 6946 6947 em = NULL; 6948 6949 /* ok, we didn't find anything, lets look for delalloc */ 6950 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6951 end, len, EXTENT_DELALLOC, 1); 6952 delalloc_end = delalloc_start + delalloc_len; 6953 if (delalloc_end < delalloc_start) 6954 delalloc_end = (u64)-1; 6955 6956 /* 6957 * We didn't find anything useful, return the original results from 6958 * get_extent() 6959 */ 6960 if (delalloc_start > end || delalloc_end <= start) { 6961 em = hole_em; 6962 hole_em = NULL; 6963 goto out; 6964 } 6965 6966 /* 6967 * Adjust the delalloc_start to make sure it doesn't go backwards from 6968 * the start they passed in 6969 */ 6970 delalloc_start = max(start, delalloc_start); 6971 delalloc_len = delalloc_end - delalloc_start; 6972 6973 if (delalloc_len > 0) { 6974 u64 hole_start; 6975 u64 hole_len; 6976 const u64 hole_end = extent_map_end(hole_em); 6977 6978 em = alloc_extent_map(); 6979 if (!em) { 6980 err = -ENOMEM; 6981 goto out; 6982 } 6983 6984 ASSERT(hole_em); 6985 /* 6986 * When btrfs_get_extent can't find anything it returns one 6987 * huge hole 6988 * 6989 * Make sure what it found really fits our range, and adjust to 6990 * make sure it is based on the start from the caller 6991 */ 6992 if (hole_end <= start || hole_em->start > end) { 6993 free_extent_map(hole_em); 6994 hole_em = NULL; 6995 } else { 6996 hole_start = max(hole_em->start, start); 6997 hole_len = hole_end - hole_start; 6998 } 6999 7000 if (hole_em && delalloc_start > hole_start) { 7001 /* 7002 * Our hole starts before our delalloc, so we have to 7003 * return just the parts of the hole that go until the 7004 * delalloc starts 7005 */ 7006 em->len = min(hole_len, delalloc_start - hole_start); 7007 em->start = hole_start; 7008 em->orig_start = hole_start; 7009 /* 7010 * Don't adjust block start at all, it is fixed at 7011 * EXTENT_MAP_HOLE 7012 */ 7013 em->block_start = hole_em->block_start; 7014 em->block_len = hole_len; 7015 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7016 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7017 } else { 7018 /* 7019 * Hole is out of passed range or it starts after 7020 * delalloc range 7021 */ 7022 em->start = delalloc_start; 7023 em->len = delalloc_len; 7024 em->orig_start = delalloc_start; 7025 em->block_start = EXTENT_MAP_DELALLOC; 7026 em->block_len = delalloc_len; 7027 } 7028 } else { 7029 return hole_em; 7030 } 7031 out: 7032 7033 free_extent_map(hole_em); 7034 if (err) { 7035 free_extent_map(em); 7036 return ERR_PTR(err); 7037 } 7038 return em; 7039 } 7040 7041 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7042 const u64 start, 7043 const u64 len, 7044 const u64 orig_start, 7045 const u64 block_start, 7046 const u64 block_len, 7047 const u64 orig_block_len, 7048 const u64 ram_bytes, 7049 const int type) 7050 { 7051 struct extent_map *em = NULL; 7052 int ret; 7053 7054 if (type != BTRFS_ORDERED_NOCOW) { 7055 em = create_io_em(inode, start, len, orig_start, block_start, 7056 block_len, orig_block_len, ram_bytes, 7057 BTRFS_COMPRESS_NONE, /* compress_type */ 7058 type); 7059 if (IS_ERR(em)) 7060 goto out; 7061 } 7062 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start, 7063 block_len, 0, 7064 (1 << type) | 7065 (1 << BTRFS_ORDERED_DIRECT), 7066 BTRFS_COMPRESS_NONE); 7067 if (ret) { 7068 if (em) { 7069 free_extent_map(em); 7070 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7071 } 7072 em = ERR_PTR(ret); 7073 } 7074 out: 7075 7076 return em; 7077 } 7078 7079 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7080 u64 start, u64 len) 7081 { 7082 struct btrfs_root *root = inode->root; 7083 struct btrfs_fs_info *fs_info = root->fs_info; 7084 struct extent_map *em; 7085 struct btrfs_key ins; 7086 u64 alloc_hint; 7087 int ret; 7088 7089 alloc_hint = get_extent_allocation_hint(inode, start, len); 7090 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7091 0, alloc_hint, &ins, 1, 1); 7092 if (ret) 7093 return ERR_PTR(ret); 7094 7095 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7096 ins.objectid, ins.offset, ins.offset, 7097 ins.offset, BTRFS_ORDERED_REGULAR); 7098 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7099 if (IS_ERR(em)) 7100 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7101 1); 7102 7103 return em; 7104 } 7105 7106 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7107 { 7108 struct btrfs_block_group *block_group; 7109 bool readonly = false; 7110 7111 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7112 if (!block_group || block_group->ro) 7113 readonly = true; 7114 if (block_group) 7115 btrfs_put_block_group(block_group); 7116 return readonly; 7117 } 7118 7119 /* 7120 * Check if we can do nocow write into the range [@offset, @offset + @len) 7121 * 7122 * @offset: File offset 7123 * @len: The length to write, will be updated to the nocow writeable 7124 * range 7125 * @orig_start: (optional) Return the original file offset of the file extent 7126 * @orig_len: (optional) Return the original on-disk length of the file extent 7127 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7128 * @strict: if true, omit optimizations that might force us into unnecessary 7129 * cow. e.g., don't trust generation number. 7130 * 7131 * Return: 7132 * >0 and update @len if we can do nocow write 7133 * 0 if we can't do nocow write 7134 * <0 if error happened 7135 * 7136 * NOTE: This only checks the file extents, caller is responsible to wait for 7137 * any ordered extents. 7138 */ 7139 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7140 u64 *orig_start, u64 *orig_block_len, 7141 u64 *ram_bytes, bool strict) 7142 { 7143 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7144 struct btrfs_path *path; 7145 int ret; 7146 struct extent_buffer *leaf; 7147 struct btrfs_root *root = BTRFS_I(inode)->root; 7148 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7149 struct btrfs_file_extent_item *fi; 7150 struct btrfs_key key; 7151 u64 disk_bytenr; 7152 u64 backref_offset; 7153 u64 extent_end; 7154 u64 num_bytes; 7155 int slot; 7156 int found_type; 7157 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7158 7159 path = btrfs_alloc_path(); 7160 if (!path) 7161 return -ENOMEM; 7162 7163 ret = btrfs_lookup_file_extent(NULL, root, path, 7164 btrfs_ino(BTRFS_I(inode)), offset, 0); 7165 if (ret < 0) 7166 goto out; 7167 7168 slot = path->slots[0]; 7169 if (ret == 1) { 7170 if (slot == 0) { 7171 /* can't find the item, must cow */ 7172 ret = 0; 7173 goto out; 7174 } 7175 slot--; 7176 } 7177 ret = 0; 7178 leaf = path->nodes[0]; 7179 btrfs_item_key_to_cpu(leaf, &key, slot); 7180 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7181 key.type != BTRFS_EXTENT_DATA_KEY) { 7182 /* not our file or wrong item type, must cow */ 7183 goto out; 7184 } 7185 7186 if (key.offset > offset) { 7187 /* Wrong offset, must cow */ 7188 goto out; 7189 } 7190 7191 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7192 found_type = btrfs_file_extent_type(leaf, fi); 7193 if (found_type != BTRFS_FILE_EXTENT_REG && 7194 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7195 /* not a regular extent, must cow */ 7196 goto out; 7197 } 7198 7199 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7200 goto out; 7201 7202 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7203 if (extent_end <= offset) 7204 goto out; 7205 7206 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7207 if (disk_bytenr == 0) 7208 goto out; 7209 7210 if (btrfs_file_extent_compression(leaf, fi) || 7211 btrfs_file_extent_encryption(leaf, fi) || 7212 btrfs_file_extent_other_encoding(leaf, fi)) 7213 goto out; 7214 7215 /* 7216 * Do the same check as in btrfs_cross_ref_exist but without the 7217 * unnecessary search. 7218 */ 7219 if (!strict && 7220 (btrfs_file_extent_generation(leaf, fi) <= 7221 btrfs_root_last_snapshot(&root->root_item))) 7222 goto out; 7223 7224 backref_offset = btrfs_file_extent_offset(leaf, fi); 7225 7226 if (orig_start) { 7227 *orig_start = key.offset - backref_offset; 7228 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7229 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7230 } 7231 7232 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7233 goto out; 7234 7235 num_bytes = min(offset + *len, extent_end) - offset; 7236 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7237 u64 range_end; 7238 7239 range_end = round_up(offset + num_bytes, 7240 root->fs_info->sectorsize) - 1; 7241 ret = test_range_bit(io_tree, offset, range_end, 7242 EXTENT_DELALLOC, 0, NULL); 7243 if (ret) { 7244 ret = -EAGAIN; 7245 goto out; 7246 } 7247 } 7248 7249 btrfs_release_path(path); 7250 7251 /* 7252 * look for other files referencing this extent, if we 7253 * find any we must cow 7254 */ 7255 7256 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7257 key.offset - backref_offset, disk_bytenr, 7258 strict); 7259 if (ret) { 7260 ret = 0; 7261 goto out; 7262 } 7263 7264 /* 7265 * adjust disk_bytenr and num_bytes to cover just the bytes 7266 * in this extent we are about to write. If there 7267 * are any csums in that range we have to cow in order 7268 * to keep the csums correct 7269 */ 7270 disk_bytenr += backref_offset; 7271 disk_bytenr += offset - key.offset; 7272 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7273 goto out; 7274 /* 7275 * all of the above have passed, it is safe to overwrite this extent 7276 * without cow 7277 */ 7278 *len = num_bytes; 7279 ret = 1; 7280 out: 7281 btrfs_free_path(path); 7282 return ret; 7283 } 7284 7285 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7286 struct extent_state **cached_state, bool writing) 7287 { 7288 struct btrfs_ordered_extent *ordered; 7289 int ret = 0; 7290 7291 while (1) { 7292 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7293 cached_state); 7294 /* 7295 * We're concerned with the entire range that we're going to be 7296 * doing DIO to, so we need to make sure there's no ordered 7297 * extents in this range. 7298 */ 7299 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7300 lockend - lockstart + 1); 7301 7302 /* 7303 * We need to make sure there are no buffered pages in this 7304 * range either, we could have raced between the invalidate in 7305 * generic_file_direct_write and locking the extent. The 7306 * invalidate needs to happen so that reads after a write do not 7307 * get stale data. 7308 */ 7309 if (!ordered && 7310 (!writing || !filemap_range_has_page(inode->i_mapping, 7311 lockstart, lockend))) 7312 break; 7313 7314 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7315 cached_state); 7316 7317 if (ordered) { 7318 /* 7319 * If we are doing a DIO read and the ordered extent we 7320 * found is for a buffered write, we can not wait for it 7321 * to complete and retry, because if we do so we can 7322 * deadlock with concurrent buffered writes on page 7323 * locks. This happens only if our DIO read covers more 7324 * than one extent map, if at this point has already 7325 * created an ordered extent for a previous extent map 7326 * and locked its range in the inode's io tree, and a 7327 * concurrent write against that previous extent map's 7328 * range and this range started (we unlock the ranges 7329 * in the io tree only when the bios complete and 7330 * buffered writes always lock pages before attempting 7331 * to lock range in the io tree). 7332 */ 7333 if (writing || 7334 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7335 btrfs_start_ordered_extent(ordered, 1); 7336 else 7337 ret = -ENOTBLK; 7338 btrfs_put_ordered_extent(ordered); 7339 } else { 7340 /* 7341 * We could trigger writeback for this range (and wait 7342 * for it to complete) and then invalidate the pages for 7343 * this range (through invalidate_inode_pages2_range()), 7344 * but that can lead us to a deadlock with a concurrent 7345 * call to readahead (a buffered read or a defrag call 7346 * triggered a readahead) on a page lock due to an 7347 * ordered dio extent we created before but did not have 7348 * yet a corresponding bio submitted (whence it can not 7349 * complete), which makes readahead wait for that 7350 * ordered extent to complete while holding a lock on 7351 * that page. 7352 */ 7353 ret = -ENOTBLK; 7354 } 7355 7356 if (ret) 7357 break; 7358 7359 cond_resched(); 7360 } 7361 7362 return ret; 7363 } 7364 7365 /* The callers of this must take lock_extent() */ 7366 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7367 u64 len, u64 orig_start, u64 block_start, 7368 u64 block_len, u64 orig_block_len, 7369 u64 ram_bytes, int compress_type, 7370 int type) 7371 { 7372 struct extent_map_tree *em_tree; 7373 struct extent_map *em; 7374 int ret; 7375 7376 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7377 type == BTRFS_ORDERED_COMPRESSED || 7378 type == BTRFS_ORDERED_NOCOW || 7379 type == BTRFS_ORDERED_REGULAR); 7380 7381 em_tree = &inode->extent_tree; 7382 em = alloc_extent_map(); 7383 if (!em) 7384 return ERR_PTR(-ENOMEM); 7385 7386 em->start = start; 7387 em->orig_start = orig_start; 7388 em->len = len; 7389 em->block_len = block_len; 7390 em->block_start = block_start; 7391 em->orig_block_len = orig_block_len; 7392 em->ram_bytes = ram_bytes; 7393 em->generation = -1; 7394 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7395 if (type == BTRFS_ORDERED_PREALLOC) { 7396 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7397 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7398 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7399 em->compress_type = compress_type; 7400 } 7401 7402 do { 7403 btrfs_drop_extent_cache(inode, em->start, 7404 em->start + em->len - 1, 0); 7405 write_lock(&em_tree->lock); 7406 ret = add_extent_mapping(em_tree, em, 1); 7407 write_unlock(&em_tree->lock); 7408 /* 7409 * The caller has taken lock_extent(), who could race with us 7410 * to add em? 7411 */ 7412 } while (ret == -EEXIST); 7413 7414 if (ret) { 7415 free_extent_map(em); 7416 return ERR_PTR(ret); 7417 } 7418 7419 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7420 return em; 7421 } 7422 7423 7424 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7425 struct inode *inode, 7426 struct btrfs_dio_data *dio_data, 7427 u64 start, u64 len) 7428 { 7429 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7430 struct extent_map *em = *map; 7431 int type; 7432 u64 block_start, orig_start, orig_block_len, ram_bytes; 7433 bool can_nocow = false; 7434 bool space_reserved = false; 7435 u64 prev_len; 7436 int ret = 0; 7437 7438 /* 7439 * We don't allocate a new extent in the following cases 7440 * 7441 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7442 * existing extent. 7443 * 2) The extent is marked as PREALLOC. We're good to go here and can 7444 * just use the extent. 7445 * 7446 */ 7447 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7448 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7449 em->block_start != EXTENT_MAP_HOLE)) { 7450 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7451 type = BTRFS_ORDERED_PREALLOC; 7452 else 7453 type = BTRFS_ORDERED_NOCOW; 7454 len = min(len, em->len - (start - em->start)); 7455 block_start = em->block_start + (start - em->start); 7456 7457 if (can_nocow_extent(inode, start, &len, &orig_start, 7458 &orig_block_len, &ram_bytes, false) == 1 && 7459 btrfs_inc_nocow_writers(fs_info, block_start)) 7460 can_nocow = true; 7461 } 7462 7463 prev_len = len; 7464 if (can_nocow) { 7465 struct extent_map *em2; 7466 7467 /* We can NOCOW, so only need to reserve metadata space. */ 7468 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len); 7469 if (ret < 0) { 7470 /* Our caller expects us to free the input extent map. */ 7471 free_extent_map(em); 7472 *map = NULL; 7473 btrfs_dec_nocow_writers(fs_info, block_start); 7474 goto out; 7475 } 7476 space_reserved = true; 7477 7478 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7479 orig_start, block_start, 7480 len, orig_block_len, 7481 ram_bytes, type); 7482 btrfs_dec_nocow_writers(fs_info, block_start); 7483 if (type == BTRFS_ORDERED_PREALLOC) { 7484 free_extent_map(em); 7485 *map = em = em2; 7486 } 7487 7488 if (IS_ERR(em2)) { 7489 ret = PTR_ERR(em2); 7490 goto out; 7491 } 7492 } else { 7493 /* Our caller expects us to free the input extent map. */ 7494 free_extent_map(em); 7495 *map = NULL; 7496 7497 /* We have to COW, so need to reserve metadata and data space. */ 7498 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7499 &dio_data->data_reserved, 7500 start, len); 7501 if (ret < 0) 7502 goto out; 7503 space_reserved = true; 7504 7505 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7506 if (IS_ERR(em)) { 7507 ret = PTR_ERR(em); 7508 goto out; 7509 } 7510 *map = em; 7511 len = min(len, em->len - (start - em->start)); 7512 if (len < prev_len) 7513 btrfs_delalloc_release_space(BTRFS_I(inode), 7514 dio_data->data_reserved, 7515 start + len, prev_len - len, 7516 true); 7517 } 7518 7519 /* 7520 * We have created our ordered extent, so we can now release our reservation 7521 * for an outstanding extent. 7522 */ 7523 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7524 7525 /* 7526 * Need to update the i_size under the extent lock so buffered 7527 * readers will get the updated i_size when we unlock. 7528 */ 7529 if (start + len > i_size_read(inode)) 7530 i_size_write(inode, start + len); 7531 out: 7532 if (ret && space_reserved) { 7533 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7534 if (can_nocow) { 7535 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7536 } else { 7537 btrfs_delalloc_release_space(BTRFS_I(inode), 7538 dio_data->data_reserved, 7539 start, len, true); 7540 extent_changeset_free(dio_data->data_reserved); 7541 dio_data->data_reserved = NULL; 7542 } 7543 } 7544 return ret; 7545 } 7546 7547 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7548 loff_t length, unsigned int flags, struct iomap *iomap, 7549 struct iomap *srcmap) 7550 { 7551 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7552 struct extent_map *em; 7553 struct extent_state *cached_state = NULL; 7554 struct btrfs_dio_data *dio_data = NULL; 7555 u64 lockstart, lockend; 7556 const bool write = !!(flags & IOMAP_WRITE); 7557 int ret = 0; 7558 u64 len = length; 7559 bool unlock_extents = false; 7560 7561 if (!write) 7562 len = min_t(u64, len, fs_info->sectorsize); 7563 7564 lockstart = start; 7565 lockend = start + len - 1; 7566 7567 /* 7568 * The generic stuff only does filemap_write_and_wait_range, which 7569 * isn't enough if we've written compressed pages to this area, so we 7570 * need to flush the dirty pages again to make absolutely sure that any 7571 * outstanding dirty pages are on disk. 7572 */ 7573 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7574 &BTRFS_I(inode)->runtime_flags)) { 7575 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7576 start + length - 1); 7577 if (ret) 7578 return ret; 7579 } 7580 7581 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7582 if (!dio_data) 7583 return -ENOMEM; 7584 7585 iomap->private = dio_data; 7586 7587 7588 /* 7589 * If this errors out it's because we couldn't invalidate pagecache for 7590 * this range and we need to fallback to buffered. 7591 */ 7592 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7593 ret = -ENOTBLK; 7594 goto err; 7595 } 7596 7597 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7598 if (IS_ERR(em)) { 7599 ret = PTR_ERR(em); 7600 goto unlock_err; 7601 } 7602 7603 /* 7604 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7605 * io. INLINE is special, and we could probably kludge it in here, but 7606 * it's still buffered so for safety lets just fall back to the generic 7607 * buffered path. 7608 * 7609 * For COMPRESSED we _have_ to read the entire extent in so we can 7610 * decompress it, so there will be buffering required no matter what we 7611 * do, so go ahead and fallback to buffered. 7612 * 7613 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7614 * to buffered IO. Don't blame me, this is the price we pay for using 7615 * the generic code. 7616 */ 7617 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7618 em->block_start == EXTENT_MAP_INLINE) { 7619 free_extent_map(em); 7620 ret = -ENOTBLK; 7621 goto unlock_err; 7622 } 7623 7624 len = min(len, em->len - (start - em->start)); 7625 7626 /* 7627 * If we have a NOWAIT request and the range contains multiple extents 7628 * (or a mix of extents and holes), then we return -EAGAIN to make the 7629 * caller fallback to a context where it can do a blocking (without 7630 * NOWAIT) request. This way we avoid doing partial IO and returning 7631 * success to the caller, which is not optimal for writes and for reads 7632 * it can result in unexpected behaviour for an application. 7633 * 7634 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7635 * iomap_dio_rw(), we can end up returning less data then what the caller 7636 * asked for, resulting in an unexpected, and incorrect, short read. 7637 * That is, the caller asked to read N bytes and we return less than that, 7638 * which is wrong unless we are crossing EOF. This happens if we get a 7639 * page fault error when trying to fault in pages for the buffer that is 7640 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7641 * have previously submitted bios for other extents in the range, in 7642 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7643 * those bios have completed by the time we get the page fault error, 7644 * which we return back to our caller - we should only return EIOCBQUEUED 7645 * after we have submitted bios for all the extents in the range. 7646 */ 7647 if ((flags & IOMAP_NOWAIT) && len < length) { 7648 free_extent_map(em); 7649 ret = -EAGAIN; 7650 goto unlock_err; 7651 } 7652 7653 if (write) { 7654 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7655 start, len); 7656 if (ret < 0) 7657 goto unlock_err; 7658 unlock_extents = true; 7659 /* Recalc len in case the new em is smaller than requested */ 7660 len = min(len, em->len - (start - em->start)); 7661 } else { 7662 /* 7663 * We need to unlock only the end area that we aren't using. 7664 * The rest is going to be unlocked by the endio routine. 7665 */ 7666 lockstart = start + len; 7667 if (lockstart < lockend) 7668 unlock_extents = true; 7669 } 7670 7671 if (unlock_extents) 7672 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7673 lockstart, lockend, &cached_state); 7674 else 7675 free_extent_state(cached_state); 7676 7677 /* 7678 * Translate extent map information to iomap. 7679 * We trim the extents (and move the addr) even though iomap code does 7680 * that, since we have locked only the parts we are performing I/O in. 7681 */ 7682 if ((em->block_start == EXTENT_MAP_HOLE) || 7683 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7684 iomap->addr = IOMAP_NULL_ADDR; 7685 iomap->type = IOMAP_HOLE; 7686 } else { 7687 iomap->addr = em->block_start + (start - em->start); 7688 iomap->type = IOMAP_MAPPED; 7689 } 7690 iomap->offset = start; 7691 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7692 iomap->length = len; 7693 7694 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7695 iomap->flags |= IOMAP_F_ZONE_APPEND; 7696 7697 free_extent_map(em); 7698 7699 return 0; 7700 7701 unlock_err: 7702 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7703 &cached_state); 7704 err: 7705 kfree(dio_data); 7706 7707 return ret; 7708 } 7709 7710 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7711 ssize_t written, unsigned int flags, struct iomap *iomap) 7712 { 7713 int ret = 0; 7714 struct btrfs_dio_data *dio_data = iomap->private; 7715 size_t submitted = dio_data->submitted; 7716 const bool write = !!(flags & IOMAP_WRITE); 7717 7718 if (!write && (iomap->type == IOMAP_HOLE)) { 7719 /* If reading from a hole, unlock and return */ 7720 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7721 goto out; 7722 } 7723 7724 if (submitted < length) { 7725 pos += submitted; 7726 length -= submitted; 7727 if (write) 7728 __endio_write_update_ordered(BTRFS_I(inode), pos, 7729 length, false); 7730 else 7731 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7732 pos + length - 1); 7733 ret = -ENOTBLK; 7734 } 7735 7736 if (write) 7737 extent_changeset_free(dio_data->data_reserved); 7738 out: 7739 kfree(dio_data); 7740 iomap->private = NULL; 7741 7742 return ret; 7743 } 7744 7745 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7746 { 7747 /* 7748 * This implies a barrier so that stores to dio_bio->bi_status before 7749 * this and loads of dio_bio->bi_status after this are fully ordered. 7750 */ 7751 if (!refcount_dec_and_test(&dip->refs)) 7752 return; 7753 7754 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7755 __endio_write_update_ordered(BTRFS_I(dip->inode), 7756 dip->file_offset, 7757 dip->bytes, 7758 !dip->dio_bio->bi_status); 7759 } else { 7760 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7761 dip->file_offset, 7762 dip->file_offset + dip->bytes - 1); 7763 } 7764 7765 bio_endio(dip->dio_bio); 7766 kfree(dip); 7767 } 7768 7769 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7770 int mirror_num, 7771 unsigned long bio_flags) 7772 { 7773 struct btrfs_dio_private *dip = bio->bi_private; 7774 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7775 blk_status_t ret; 7776 7777 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7778 7779 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7780 if (ret) 7781 return ret; 7782 7783 refcount_inc(&dip->refs); 7784 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7785 if (ret) 7786 refcount_dec(&dip->refs); 7787 return ret; 7788 } 7789 7790 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip, 7791 struct btrfs_bio *bbio, 7792 const bool uptodate) 7793 { 7794 struct inode *inode = dip->inode; 7795 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7796 const u32 sectorsize = fs_info->sectorsize; 7797 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7798 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7799 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7800 struct bio_vec bvec; 7801 struct bvec_iter iter; 7802 u32 bio_offset = 0; 7803 blk_status_t err = BLK_STS_OK; 7804 7805 __bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) { 7806 unsigned int i, nr_sectors, pgoff; 7807 7808 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7809 pgoff = bvec.bv_offset; 7810 for (i = 0; i < nr_sectors; i++) { 7811 u64 start = bbio->file_offset + bio_offset; 7812 7813 ASSERT(pgoff < PAGE_SIZE); 7814 if (uptodate && 7815 (!csum || !check_data_csum(inode, bbio, 7816 bio_offset, bvec.bv_page, 7817 pgoff, start))) { 7818 clean_io_failure(fs_info, failure_tree, io_tree, 7819 start, bvec.bv_page, 7820 btrfs_ino(BTRFS_I(inode)), 7821 pgoff); 7822 } else { 7823 int ret; 7824 7825 ret = btrfs_repair_one_sector(inode, &bbio->bio, 7826 bio_offset, bvec.bv_page, pgoff, 7827 start, bbio->mirror_num, 7828 submit_dio_repair_bio); 7829 if (ret) 7830 err = errno_to_blk_status(ret); 7831 } 7832 ASSERT(bio_offset + sectorsize > bio_offset); 7833 bio_offset += sectorsize; 7834 pgoff += sectorsize; 7835 } 7836 } 7837 return err; 7838 } 7839 7840 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7841 const u64 offset, const u64 bytes, 7842 const bool uptodate) 7843 { 7844 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, 7845 finish_ordered_fn, uptodate); 7846 } 7847 7848 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7849 struct bio *bio, 7850 u64 dio_file_offset) 7851 { 7852 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false); 7853 } 7854 7855 static void btrfs_end_dio_bio(struct bio *bio) 7856 { 7857 struct btrfs_dio_private *dip = bio->bi_private; 7858 struct btrfs_bio *bbio = btrfs_bio(bio); 7859 blk_status_t err = bio->bi_status; 7860 7861 if (err) 7862 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7863 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7864 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7865 bio->bi_opf, bio->bi_iter.bi_sector, 7866 bio->bi_iter.bi_size, err); 7867 7868 if (bio_op(bio) == REQ_OP_READ) 7869 err = btrfs_check_read_dio_bio(dip, bbio, !err); 7870 7871 if (err) 7872 dip->dio_bio->bi_status = err; 7873 7874 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio); 7875 7876 bio_put(bio); 7877 btrfs_dio_private_put(dip); 7878 } 7879 7880 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7881 struct inode *inode, u64 file_offset, int async_submit) 7882 { 7883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7884 struct btrfs_dio_private *dip = bio->bi_private; 7885 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 7886 blk_status_t ret; 7887 7888 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7889 if (async_submit) 7890 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7891 7892 if (!write) { 7893 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7894 if (ret) 7895 goto err; 7896 } 7897 7898 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7899 goto map; 7900 7901 if (write && async_submit) { 7902 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 7903 btrfs_submit_bio_start_direct_io); 7904 goto err; 7905 } else if (write) { 7906 /* 7907 * If we aren't doing async submit, calculate the csum of the 7908 * bio now. 7909 */ 7910 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false); 7911 if (ret) 7912 goto err; 7913 } else { 7914 u64 csum_offset; 7915 7916 csum_offset = file_offset - dip->file_offset; 7917 csum_offset >>= fs_info->sectorsize_bits; 7918 csum_offset *= fs_info->csum_size; 7919 btrfs_bio(bio)->csum = dip->csums + csum_offset; 7920 } 7921 map: 7922 ret = btrfs_map_bio(fs_info, bio, 0); 7923 err: 7924 return ret; 7925 } 7926 7927 /* 7928 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7929 * or ordered extents whether or not we submit any bios. 7930 */ 7931 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7932 struct inode *inode, 7933 loff_t file_offset) 7934 { 7935 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 7936 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7937 size_t dip_size; 7938 struct btrfs_dio_private *dip; 7939 7940 dip_size = sizeof(*dip); 7941 if (!write && csum) { 7942 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7943 size_t nblocks; 7944 7945 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 7946 dip_size += fs_info->csum_size * nblocks; 7947 } 7948 7949 dip = kzalloc(dip_size, GFP_NOFS); 7950 if (!dip) 7951 return NULL; 7952 7953 dip->inode = inode; 7954 dip->file_offset = file_offset; 7955 dip->bytes = dio_bio->bi_iter.bi_size; 7956 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 7957 dip->dio_bio = dio_bio; 7958 refcount_set(&dip->refs, 1); 7959 return dip; 7960 } 7961 7962 static void btrfs_submit_direct(const struct iomap_iter *iter, 7963 struct bio *dio_bio, loff_t file_offset) 7964 { 7965 struct inode *inode = iter->inode; 7966 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 7967 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7968 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7969 BTRFS_BLOCK_GROUP_RAID56_MASK); 7970 struct btrfs_dio_private *dip; 7971 struct bio *bio; 7972 u64 start_sector; 7973 int async_submit = 0; 7974 u64 submit_len; 7975 u64 clone_offset = 0; 7976 u64 clone_len; 7977 u64 logical; 7978 int ret; 7979 blk_status_t status; 7980 struct btrfs_io_geometry geom; 7981 struct btrfs_dio_data *dio_data = iter->iomap.private; 7982 struct extent_map *em = NULL; 7983 7984 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7985 if (!dip) { 7986 if (!write) { 7987 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7988 file_offset + dio_bio->bi_iter.bi_size - 1); 7989 } 7990 dio_bio->bi_status = BLK_STS_RESOURCE; 7991 bio_endio(dio_bio); 7992 return; 7993 } 7994 7995 if (!write) { 7996 /* 7997 * Load the csums up front to reduce csum tree searches and 7998 * contention when submitting bios. 7999 * 8000 * If we have csums disabled this will do nothing. 8001 */ 8002 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8003 if (status != BLK_STS_OK) 8004 goto out_err; 8005 } 8006 8007 start_sector = dio_bio->bi_iter.bi_sector; 8008 submit_len = dio_bio->bi_iter.bi_size; 8009 8010 do { 8011 logical = start_sector << 9; 8012 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8013 if (IS_ERR(em)) { 8014 status = errno_to_blk_status(PTR_ERR(em)); 8015 em = NULL; 8016 goto out_err_em; 8017 } 8018 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8019 logical, &geom); 8020 if (ret) { 8021 status = errno_to_blk_status(ret); 8022 goto out_err_em; 8023 } 8024 8025 clone_len = min(submit_len, geom.len); 8026 ASSERT(clone_len <= UINT_MAX); 8027 8028 /* 8029 * This will never fail as it's passing GPF_NOFS and 8030 * the allocation is backed by btrfs_bioset. 8031 */ 8032 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8033 bio->bi_private = dip; 8034 bio->bi_end_io = btrfs_end_dio_bio; 8035 btrfs_bio(bio)->file_offset = file_offset; 8036 8037 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8038 status = extract_ordered_extent(BTRFS_I(inode), bio, 8039 file_offset); 8040 if (status) { 8041 bio_put(bio); 8042 goto out_err; 8043 } 8044 } 8045 8046 ASSERT(submit_len >= clone_len); 8047 submit_len -= clone_len; 8048 8049 /* 8050 * Increase the count before we submit the bio so we know 8051 * the end IO handler won't happen before we increase the 8052 * count. Otherwise, the dip might get freed before we're 8053 * done setting it up. 8054 * 8055 * We transfer the initial reference to the last bio, so we 8056 * don't need to increment the reference count for the last one. 8057 */ 8058 if (submit_len > 0) { 8059 refcount_inc(&dip->refs); 8060 /* 8061 * If we are submitting more than one bio, submit them 8062 * all asynchronously. The exception is RAID 5 or 6, as 8063 * asynchronous checksums make it difficult to collect 8064 * full stripe writes. 8065 */ 8066 if (!raid56) 8067 async_submit = 1; 8068 } 8069 8070 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8071 async_submit); 8072 if (status) { 8073 bio_put(bio); 8074 if (submit_len > 0) 8075 refcount_dec(&dip->refs); 8076 goto out_err_em; 8077 } 8078 8079 dio_data->submitted += clone_len; 8080 clone_offset += clone_len; 8081 start_sector += clone_len >> 9; 8082 file_offset += clone_len; 8083 8084 free_extent_map(em); 8085 } while (submit_len > 0); 8086 return; 8087 8088 out_err_em: 8089 free_extent_map(em); 8090 out_err: 8091 dip->dio_bio->bi_status = status; 8092 btrfs_dio_private_put(dip); 8093 } 8094 8095 const struct iomap_ops btrfs_dio_iomap_ops = { 8096 .iomap_begin = btrfs_dio_iomap_begin, 8097 .iomap_end = btrfs_dio_iomap_end, 8098 }; 8099 8100 const struct iomap_dio_ops btrfs_dio_ops = { 8101 .submit_io = btrfs_submit_direct, 8102 }; 8103 8104 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8105 u64 start, u64 len) 8106 { 8107 int ret; 8108 8109 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8110 if (ret) 8111 return ret; 8112 8113 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8114 } 8115 8116 int btrfs_read_folio(struct file *file, struct folio *folio) 8117 { 8118 struct page *page = &folio->page; 8119 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8120 u64 start = page_offset(page); 8121 u64 end = start + PAGE_SIZE - 1; 8122 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 8123 int ret; 8124 8125 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8126 8127 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 8128 if (bio_ctrl.bio) { 8129 int ret2; 8130 8131 ret2 = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags); 8132 if (ret == 0) 8133 ret = ret2; 8134 } 8135 return ret; 8136 } 8137 8138 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8139 { 8140 struct inode *inode = page->mapping->host; 8141 int ret; 8142 8143 if (current->flags & PF_MEMALLOC) { 8144 redirty_page_for_writepage(wbc, page); 8145 unlock_page(page); 8146 return 0; 8147 } 8148 8149 /* 8150 * If we are under memory pressure we will call this directly from the 8151 * VM, we need to make sure we have the inode referenced for the ordered 8152 * extent. If not just return like we didn't do anything. 8153 */ 8154 if (!igrab(inode)) { 8155 redirty_page_for_writepage(wbc, page); 8156 return AOP_WRITEPAGE_ACTIVATE; 8157 } 8158 ret = extent_write_full_page(page, wbc); 8159 btrfs_add_delayed_iput(inode); 8160 return ret; 8161 } 8162 8163 static int btrfs_writepages(struct address_space *mapping, 8164 struct writeback_control *wbc) 8165 { 8166 return extent_writepages(mapping, wbc); 8167 } 8168 8169 static void btrfs_readahead(struct readahead_control *rac) 8170 { 8171 extent_readahead(rac); 8172 } 8173 8174 /* 8175 * For releasepage() and invalidate_folio() we have a race window where 8176 * folio_end_writeback() is called but the subpage spinlock is not yet released. 8177 * If we continue to release/invalidate the page, we could cause use-after-free 8178 * for subpage spinlock. So this function is to spin and wait for subpage 8179 * spinlock. 8180 */ 8181 static void wait_subpage_spinlock(struct page *page) 8182 { 8183 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 8184 struct btrfs_subpage *subpage; 8185 8186 if (fs_info->sectorsize == PAGE_SIZE) 8187 return; 8188 8189 ASSERT(PagePrivate(page) && page->private); 8190 subpage = (struct btrfs_subpage *)page->private; 8191 8192 /* 8193 * This may look insane as we just acquire the spinlock and release it, 8194 * without doing anything. But we just want to make sure no one is 8195 * still holding the subpage spinlock. 8196 * And since the page is not dirty nor writeback, and we have page 8197 * locked, the only possible way to hold a spinlock is from the endio 8198 * function to clear page writeback. 8199 * 8200 * Here we just acquire the spinlock so that all existing callers 8201 * should exit and we're safe to release/invalidate the page. 8202 */ 8203 spin_lock_irq(&subpage->lock); 8204 spin_unlock_irq(&subpage->lock); 8205 } 8206 8207 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8208 { 8209 int ret = try_release_extent_mapping(page, gfp_flags); 8210 8211 if (ret == 1) { 8212 wait_subpage_spinlock(page); 8213 clear_page_extent_mapped(page); 8214 } 8215 return ret; 8216 } 8217 8218 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8219 { 8220 if (PageWriteback(page) || PageDirty(page)) 8221 return 0; 8222 return __btrfs_releasepage(page, gfp_flags); 8223 } 8224 8225 #ifdef CONFIG_MIGRATION 8226 static int btrfs_migratepage(struct address_space *mapping, 8227 struct page *newpage, struct page *page, 8228 enum migrate_mode mode) 8229 { 8230 int ret; 8231 8232 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8233 if (ret != MIGRATEPAGE_SUCCESS) 8234 return ret; 8235 8236 if (page_has_private(page)) 8237 attach_page_private(newpage, detach_page_private(page)); 8238 8239 if (PageOrdered(page)) { 8240 ClearPageOrdered(page); 8241 SetPageOrdered(newpage); 8242 } 8243 8244 if (mode != MIGRATE_SYNC_NO_COPY) 8245 migrate_page_copy(newpage, page); 8246 else 8247 migrate_page_states(newpage, page); 8248 return MIGRATEPAGE_SUCCESS; 8249 } 8250 #endif 8251 8252 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8253 size_t length) 8254 { 8255 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 8256 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8257 struct extent_io_tree *tree = &inode->io_tree; 8258 struct extent_state *cached_state = NULL; 8259 u64 page_start = folio_pos(folio); 8260 u64 page_end = page_start + folio_size(folio) - 1; 8261 u64 cur; 8262 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8263 8264 /* 8265 * We have folio locked so no new ordered extent can be created on this 8266 * page, nor bio can be submitted for this folio. 8267 * 8268 * But already submitted bio can still be finished on this folio. 8269 * Furthermore, endio function won't skip folio which has Ordered 8270 * (Private2) already cleared, so it's possible for endio and 8271 * invalidate_folio to do the same ordered extent accounting twice 8272 * on one folio. 8273 * 8274 * So here we wait for any submitted bios to finish, so that we won't 8275 * do double ordered extent accounting on the same folio. 8276 */ 8277 folio_wait_writeback(folio); 8278 wait_subpage_spinlock(&folio->page); 8279 8280 /* 8281 * For subpage case, we have call sites like 8282 * btrfs_punch_hole_lock_range() which passes range not aligned to 8283 * sectorsize. 8284 * If the range doesn't cover the full folio, we don't need to and 8285 * shouldn't clear page extent mapped, as folio->private can still 8286 * record subpage dirty bits for other part of the range. 8287 * 8288 * For cases that invalidate the full folio even the range doesn't 8289 * cover the full folio, like invalidating the last folio, we're 8290 * still safe to wait for ordered extent to finish. 8291 */ 8292 if (!(offset == 0 && length == folio_size(folio))) { 8293 btrfs_releasepage(&folio->page, GFP_NOFS); 8294 return; 8295 } 8296 8297 if (!inode_evicting) 8298 lock_extent_bits(tree, page_start, page_end, &cached_state); 8299 8300 cur = page_start; 8301 while (cur < page_end) { 8302 struct btrfs_ordered_extent *ordered; 8303 bool delete_states; 8304 u64 range_end; 8305 u32 range_len; 8306 8307 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8308 page_end + 1 - cur); 8309 if (!ordered) { 8310 range_end = page_end; 8311 /* 8312 * No ordered extent covering this range, we are safe 8313 * to delete all extent states in the range. 8314 */ 8315 delete_states = true; 8316 goto next; 8317 } 8318 if (ordered->file_offset > cur) { 8319 /* 8320 * There is a range between [cur, oe->file_offset) not 8321 * covered by any ordered extent. 8322 * We are safe to delete all extent states, and handle 8323 * the ordered extent in the next iteration. 8324 */ 8325 range_end = ordered->file_offset - 1; 8326 delete_states = true; 8327 goto next; 8328 } 8329 8330 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8331 page_end); 8332 ASSERT(range_end + 1 - cur < U32_MAX); 8333 range_len = range_end + 1 - cur; 8334 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8335 /* 8336 * If Ordered (Private2) is cleared, it means endio has 8337 * already been executed for the range. 8338 * We can't delete the extent states as 8339 * btrfs_finish_ordered_io() may still use some of them. 8340 */ 8341 delete_states = false; 8342 goto next; 8343 } 8344 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8345 8346 /* 8347 * IO on this page will never be started, so we need to account 8348 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8349 * here, must leave that up for the ordered extent completion. 8350 * 8351 * This will also unlock the range for incoming 8352 * btrfs_finish_ordered_io(). 8353 */ 8354 if (!inode_evicting) 8355 clear_extent_bit(tree, cur, range_end, 8356 EXTENT_DELALLOC | 8357 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8358 EXTENT_DEFRAG, 1, 0, &cached_state); 8359 8360 spin_lock_irq(&inode->ordered_tree.lock); 8361 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8362 ordered->truncated_len = min(ordered->truncated_len, 8363 cur - ordered->file_offset); 8364 spin_unlock_irq(&inode->ordered_tree.lock); 8365 8366 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8367 cur, range_end + 1 - cur)) { 8368 btrfs_finish_ordered_io(ordered); 8369 /* 8370 * The ordered extent has finished, now we're again 8371 * safe to delete all extent states of the range. 8372 */ 8373 delete_states = true; 8374 } else { 8375 /* 8376 * btrfs_finish_ordered_io() will get executed by endio 8377 * of other pages, thus we can't delete extent states 8378 * anymore 8379 */ 8380 delete_states = false; 8381 } 8382 next: 8383 if (ordered) 8384 btrfs_put_ordered_extent(ordered); 8385 /* 8386 * Qgroup reserved space handler 8387 * Sector(s) here will be either: 8388 * 8389 * 1) Already written to disk or bio already finished 8390 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8391 * Qgroup will be handled by its qgroup_record then. 8392 * btrfs_qgroup_free_data() call will do nothing here. 8393 * 8394 * 2) Not written to disk yet 8395 * Then btrfs_qgroup_free_data() call will clear the 8396 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8397 * reserved data space. 8398 * Since the IO will never happen for this page. 8399 */ 8400 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8401 if (!inode_evicting) { 8402 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8403 EXTENT_DELALLOC | EXTENT_UPTODATE | 8404 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8405 delete_states, &cached_state); 8406 } 8407 cur = range_end + 1; 8408 } 8409 /* 8410 * We have iterated through all ordered extents of the page, the page 8411 * should not have Ordered (Private2) anymore, or the above iteration 8412 * did something wrong. 8413 */ 8414 ASSERT(!folio_test_ordered(folio)); 8415 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8416 if (!inode_evicting) 8417 __btrfs_releasepage(&folio->page, GFP_NOFS); 8418 clear_page_extent_mapped(&folio->page); 8419 } 8420 8421 /* 8422 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8423 * called from a page fault handler when a page is first dirtied. Hence we must 8424 * be careful to check for EOF conditions here. We set the page up correctly 8425 * for a written page which means we get ENOSPC checking when writing into 8426 * holes and correct delalloc and unwritten extent mapping on filesystems that 8427 * support these features. 8428 * 8429 * We are not allowed to take the i_mutex here so we have to play games to 8430 * protect against truncate races as the page could now be beyond EOF. Because 8431 * truncate_setsize() writes the inode size before removing pages, once we have 8432 * the page lock we can determine safely if the page is beyond EOF. If it is not 8433 * beyond EOF, then the page is guaranteed safe against truncation until we 8434 * unlock the page. 8435 */ 8436 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8437 { 8438 struct page *page = vmf->page; 8439 struct inode *inode = file_inode(vmf->vma->vm_file); 8440 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8441 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8442 struct btrfs_ordered_extent *ordered; 8443 struct extent_state *cached_state = NULL; 8444 struct extent_changeset *data_reserved = NULL; 8445 unsigned long zero_start; 8446 loff_t size; 8447 vm_fault_t ret; 8448 int ret2; 8449 int reserved = 0; 8450 u64 reserved_space; 8451 u64 page_start; 8452 u64 page_end; 8453 u64 end; 8454 8455 reserved_space = PAGE_SIZE; 8456 8457 sb_start_pagefault(inode->i_sb); 8458 page_start = page_offset(page); 8459 page_end = page_start + PAGE_SIZE - 1; 8460 end = page_end; 8461 8462 /* 8463 * Reserving delalloc space after obtaining the page lock can lead to 8464 * deadlock. For example, if a dirty page is locked by this function 8465 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8466 * dirty page write out, then the btrfs_writepage() function could 8467 * end up waiting indefinitely to get a lock on the page currently 8468 * being processed by btrfs_page_mkwrite() function. 8469 */ 8470 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8471 page_start, reserved_space); 8472 if (!ret2) { 8473 ret2 = file_update_time(vmf->vma->vm_file); 8474 reserved = 1; 8475 } 8476 if (ret2) { 8477 ret = vmf_error(ret2); 8478 if (reserved) 8479 goto out; 8480 goto out_noreserve; 8481 } 8482 8483 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8484 again: 8485 down_read(&BTRFS_I(inode)->i_mmap_lock); 8486 lock_page(page); 8487 size = i_size_read(inode); 8488 8489 if ((page->mapping != inode->i_mapping) || 8490 (page_start >= size)) { 8491 /* page got truncated out from underneath us */ 8492 goto out_unlock; 8493 } 8494 wait_on_page_writeback(page); 8495 8496 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8497 ret2 = set_page_extent_mapped(page); 8498 if (ret2 < 0) { 8499 ret = vmf_error(ret2); 8500 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8501 goto out_unlock; 8502 } 8503 8504 /* 8505 * we can't set the delalloc bits if there are pending ordered 8506 * extents. Drop our locks and wait for them to finish 8507 */ 8508 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8509 PAGE_SIZE); 8510 if (ordered) { 8511 unlock_extent_cached(io_tree, page_start, page_end, 8512 &cached_state); 8513 unlock_page(page); 8514 up_read(&BTRFS_I(inode)->i_mmap_lock); 8515 btrfs_start_ordered_extent(ordered, 1); 8516 btrfs_put_ordered_extent(ordered); 8517 goto again; 8518 } 8519 8520 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8521 reserved_space = round_up(size - page_start, 8522 fs_info->sectorsize); 8523 if (reserved_space < PAGE_SIZE) { 8524 end = page_start + reserved_space - 1; 8525 btrfs_delalloc_release_space(BTRFS_I(inode), 8526 data_reserved, page_start, 8527 PAGE_SIZE - reserved_space, true); 8528 } 8529 } 8530 8531 /* 8532 * page_mkwrite gets called when the page is firstly dirtied after it's 8533 * faulted in, but write(2) could also dirty a page and set delalloc 8534 * bits, thus in this case for space account reason, we still need to 8535 * clear any delalloc bits within this page range since we have to 8536 * reserve data&meta space before lock_page() (see above comments). 8537 */ 8538 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8539 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8540 EXTENT_DEFRAG, 0, 0, &cached_state); 8541 8542 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8543 &cached_state); 8544 if (ret2) { 8545 unlock_extent_cached(io_tree, page_start, page_end, 8546 &cached_state); 8547 ret = VM_FAULT_SIGBUS; 8548 goto out_unlock; 8549 } 8550 8551 /* page is wholly or partially inside EOF */ 8552 if (page_start + PAGE_SIZE > size) 8553 zero_start = offset_in_page(size); 8554 else 8555 zero_start = PAGE_SIZE; 8556 8557 if (zero_start != PAGE_SIZE) { 8558 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8559 flush_dcache_page(page); 8560 } 8561 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8562 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8563 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8564 8565 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8566 8567 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8568 up_read(&BTRFS_I(inode)->i_mmap_lock); 8569 8570 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8571 sb_end_pagefault(inode->i_sb); 8572 extent_changeset_free(data_reserved); 8573 return VM_FAULT_LOCKED; 8574 8575 out_unlock: 8576 unlock_page(page); 8577 up_read(&BTRFS_I(inode)->i_mmap_lock); 8578 out: 8579 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8580 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8581 reserved_space, (ret != 0)); 8582 out_noreserve: 8583 sb_end_pagefault(inode->i_sb); 8584 extent_changeset_free(data_reserved); 8585 return ret; 8586 } 8587 8588 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8589 { 8590 struct btrfs_truncate_control control = { 8591 .inode = BTRFS_I(inode), 8592 .ino = btrfs_ino(BTRFS_I(inode)), 8593 .min_type = BTRFS_EXTENT_DATA_KEY, 8594 .clear_extent_range = true, 8595 }; 8596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8597 struct btrfs_root *root = BTRFS_I(inode)->root; 8598 struct btrfs_block_rsv *rsv; 8599 int ret; 8600 struct btrfs_trans_handle *trans; 8601 u64 mask = fs_info->sectorsize - 1; 8602 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8603 8604 if (!skip_writeback) { 8605 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8606 (u64)-1); 8607 if (ret) 8608 return ret; 8609 } 8610 8611 /* 8612 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8613 * things going on here: 8614 * 8615 * 1) We need to reserve space to update our inode. 8616 * 8617 * 2) We need to have something to cache all the space that is going to 8618 * be free'd up by the truncate operation, but also have some slack 8619 * space reserved in case it uses space during the truncate (thank you 8620 * very much snapshotting). 8621 * 8622 * And we need these to be separate. The fact is we can use a lot of 8623 * space doing the truncate, and we have no earthly idea how much space 8624 * we will use, so we need the truncate reservation to be separate so it 8625 * doesn't end up using space reserved for updating the inode. We also 8626 * need to be able to stop the transaction and start a new one, which 8627 * means we need to be able to update the inode several times, and we 8628 * have no idea of knowing how many times that will be, so we can't just 8629 * reserve 1 item for the entirety of the operation, so that has to be 8630 * done separately as well. 8631 * 8632 * So that leaves us with 8633 * 8634 * 1) rsv - for the truncate reservation, which we will steal from the 8635 * transaction reservation. 8636 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8637 * updating the inode. 8638 */ 8639 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8640 if (!rsv) 8641 return -ENOMEM; 8642 rsv->size = min_size; 8643 rsv->failfast = 1; 8644 8645 /* 8646 * 1 for the truncate slack space 8647 * 1 for updating the inode. 8648 */ 8649 trans = btrfs_start_transaction(root, 2); 8650 if (IS_ERR(trans)) { 8651 ret = PTR_ERR(trans); 8652 goto out; 8653 } 8654 8655 /* Migrate the slack space for the truncate to our reserve */ 8656 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8657 min_size, false); 8658 BUG_ON(ret); 8659 8660 trans->block_rsv = rsv; 8661 8662 while (1) { 8663 struct extent_state *cached_state = NULL; 8664 const u64 new_size = inode->i_size; 8665 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8666 8667 control.new_size = new_size; 8668 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 8669 &cached_state); 8670 /* 8671 * We want to drop from the next block forward in case this new 8672 * size is not block aligned since we will be keeping the last 8673 * block of the extent just the way it is. 8674 */ 8675 btrfs_drop_extent_cache(BTRFS_I(inode), 8676 ALIGN(new_size, fs_info->sectorsize), 8677 (u64)-1, 0); 8678 8679 ret = btrfs_truncate_inode_items(trans, root, &control); 8680 8681 inode_sub_bytes(inode, control.sub_bytes); 8682 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size); 8683 8684 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 8685 (u64)-1, &cached_state); 8686 8687 trans->block_rsv = &fs_info->trans_block_rsv; 8688 if (ret != -ENOSPC && ret != -EAGAIN) 8689 break; 8690 8691 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8692 if (ret) 8693 break; 8694 8695 btrfs_end_transaction(trans); 8696 btrfs_btree_balance_dirty(fs_info); 8697 8698 trans = btrfs_start_transaction(root, 2); 8699 if (IS_ERR(trans)) { 8700 ret = PTR_ERR(trans); 8701 trans = NULL; 8702 break; 8703 } 8704 8705 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8706 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8707 rsv, min_size, false); 8708 BUG_ON(ret); /* shouldn't happen */ 8709 trans->block_rsv = rsv; 8710 } 8711 8712 /* 8713 * We can't call btrfs_truncate_block inside a trans handle as we could 8714 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8715 * know we've truncated everything except the last little bit, and can 8716 * do btrfs_truncate_block and then update the disk_i_size. 8717 */ 8718 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8719 btrfs_end_transaction(trans); 8720 btrfs_btree_balance_dirty(fs_info); 8721 8722 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8723 if (ret) 8724 goto out; 8725 trans = btrfs_start_transaction(root, 1); 8726 if (IS_ERR(trans)) { 8727 ret = PTR_ERR(trans); 8728 goto out; 8729 } 8730 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8731 } 8732 8733 if (trans) { 8734 int ret2; 8735 8736 trans->block_rsv = &fs_info->trans_block_rsv; 8737 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8738 if (ret2 && !ret) 8739 ret = ret2; 8740 8741 ret2 = btrfs_end_transaction(trans); 8742 if (ret2 && !ret) 8743 ret = ret2; 8744 btrfs_btree_balance_dirty(fs_info); 8745 } 8746 out: 8747 btrfs_free_block_rsv(fs_info, rsv); 8748 /* 8749 * So if we truncate and then write and fsync we normally would just 8750 * write the extents that changed, which is a problem if we need to 8751 * first truncate that entire inode. So set this flag so we write out 8752 * all of the extents in the inode to the sync log so we're completely 8753 * safe. 8754 * 8755 * If no extents were dropped or trimmed we don't need to force the next 8756 * fsync to truncate all the inode's items from the log and re-log them 8757 * all. This means the truncate operation did not change the file size, 8758 * or changed it to a smaller size but there was only an implicit hole 8759 * between the old i_size and the new i_size, and there were no prealloc 8760 * extents beyond i_size to drop. 8761 */ 8762 if (control.extents_found > 0) 8763 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8764 8765 return ret; 8766 } 8767 8768 /* 8769 * create a new subvolume directory/inode (helper for the ioctl). 8770 */ 8771 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8772 struct btrfs_root *new_root, 8773 struct btrfs_root *parent_root, 8774 struct user_namespace *mnt_userns) 8775 { 8776 struct inode *inode; 8777 int err; 8778 u64 index = 0; 8779 u64 ino; 8780 8781 err = btrfs_get_free_objectid(new_root, &ino); 8782 if (err < 0) 8783 return err; 8784 8785 inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2, 8786 ino, ino, 8787 S_IFDIR | (~current_umask() & S_IRWXUGO), 8788 &index); 8789 if (IS_ERR(inode)) 8790 return PTR_ERR(inode); 8791 inode->i_op = &btrfs_dir_inode_operations; 8792 inode->i_fop = &btrfs_dir_file_operations; 8793 8794 set_nlink(inode, 1); 8795 btrfs_i_size_write(BTRFS_I(inode), 0); 8796 unlock_new_inode(inode); 8797 8798 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8799 if (err) 8800 btrfs_err(new_root->fs_info, 8801 "error inheriting subvolume %llu properties: %d", 8802 new_root->root_key.objectid, err); 8803 8804 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8805 8806 iput(inode); 8807 return err; 8808 } 8809 8810 struct inode *btrfs_alloc_inode(struct super_block *sb) 8811 { 8812 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8813 struct btrfs_inode *ei; 8814 struct inode *inode; 8815 8816 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8817 if (!ei) 8818 return NULL; 8819 8820 ei->root = NULL; 8821 ei->generation = 0; 8822 ei->last_trans = 0; 8823 ei->last_sub_trans = 0; 8824 ei->logged_trans = 0; 8825 ei->delalloc_bytes = 0; 8826 ei->new_delalloc_bytes = 0; 8827 ei->defrag_bytes = 0; 8828 ei->disk_i_size = 0; 8829 ei->flags = 0; 8830 ei->ro_flags = 0; 8831 ei->csum_bytes = 0; 8832 ei->index_cnt = (u64)-1; 8833 ei->dir_index = 0; 8834 ei->last_unlink_trans = 0; 8835 ei->last_reflink_trans = 0; 8836 ei->last_log_commit = 0; 8837 8838 spin_lock_init(&ei->lock); 8839 ei->outstanding_extents = 0; 8840 if (sb->s_magic != BTRFS_TEST_MAGIC) 8841 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8842 BTRFS_BLOCK_RSV_DELALLOC); 8843 ei->runtime_flags = 0; 8844 ei->prop_compress = BTRFS_COMPRESS_NONE; 8845 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8846 8847 ei->delayed_node = NULL; 8848 8849 ei->i_otime.tv_sec = 0; 8850 ei->i_otime.tv_nsec = 0; 8851 8852 inode = &ei->vfs_inode; 8853 extent_map_tree_init(&ei->extent_tree); 8854 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8855 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8856 IO_TREE_INODE_IO_FAILURE, inode); 8857 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8858 IO_TREE_INODE_FILE_EXTENT, inode); 8859 ei->io_tree.track_uptodate = true; 8860 ei->io_failure_tree.track_uptodate = true; 8861 atomic_set(&ei->sync_writers, 0); 8862 mutex_init(&ei->log_mutex); 8863 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8864 INIT_LIST_HEAD(&ei->delalloc_inodes); 8865 INIT_LIST_HEAD(&ei->delayed_iput); 8866 RB_CLEAR_NODE(&ei->rb_node); 8867 init_rwsem(&ei->i_mmap_lock); 8868 8869 return inode; 8870 } 8871 8872 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8873 void btrfs_test_destroy_inode(struct inode *inode) 8874 { 8875 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8876 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8877 } 8878 #endif 8879 8880 void btrfs_free_inode(struct inode *inode) 8881 { 8882 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8883 } 8884 8885 void btrfs_destroy_inode(struct inode *vfs_inode) 8886 { 8887 struct btrfs_ordered_extent *ordered; 8888 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8889 struct btrfs_root *root = inode->root; 8890 8891 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8892 WARN_ON(vfs_inode->i_data.nrpages); 8893 WARN_ON(inode->block_rsv.reserved); 8894 WARN_ON(inode->block_rsv.size); 8895 WARN_ON(inode->outstanding_extents); 8896 if (!S_ISDIR(vfs_inode->i_mode)) { 8897 WARN_ON(inode->delalloc_bytes); 8898 WARN_ON(inode->new_delalloc_bytes); 8899 } 8900 WARN_ON(inode->csum_bytes); 8901 WARN_ON(inode->defrag_bytes); 8902 8903 /* 8904 * This can happen where we create an inode, but somebody else also 8905 * created the same inode and we need to destroy the one we already 8906 * created. 8907 */ 8908 if (!root) 8909 return; 8910 8911 while (1) { 8912 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8913 if (!ordered) 8914 break; 8915 else { 8916 btrfs_err(root->fs_info, 8917 "found ordered extent %llu %llu on inode cleanup", 8918 ordered->file_offset, ordered->num_bytes); 8919 btrfs_remove_ordered_extent(inode, ordered); 8920 btrfs_put_ordered_extent(ordered); 8921 btrfs_put_ordered_extent(ordered); 8922 } 8923 } 8924 btrfs_qgroup_check_reserved_leak(inode); 8925 inode_tree_del(inode); 8926 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8927 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8928 btrfs_put_root(inode->root); 8929 } 8930 8931 int btrfs_drop_inode(struct inode *inode) 8932 { 8933 struct btrfs_root *root = BTRFS_I(inode)->root; 8934 8935 if (root == NULL) 8936 return 1; 8937 8938 /* the snap/subvol tree is on deleting */ 8939 if (btrfs_root_refs(&root->root_item) == 0) 8940 return 1; 8941 else 8942 return generic_drop_inode(inode); 8943 } 8944 8945 static void init_once(void *foo) 8946 { 8947 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8948 8949 inode_init_once(&ei->vfs_inode); 8950 } 8951 8952 void __cold btrfs_destroy_cachep(void) 8953 { 8954 /* 8955 * Make sure all delayed rcu free inodes are flushed before we 8956 * destroy cache. 8957 */ 8958 rcu_barrier(); 8959 kmem_cache_destroy(btrfs_inode_cachep); 8960 kmem_cache_destroy(btrfs_trans_handle_cachep); 8961 kmem_cache_destroy(btrfs_path_cachep); 8962 kmem_cache_destroy(btrfs_free_space_cachep); 8963 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8964 } 8965 8966 int __init btrfs_init_cachep(void) 8967 { 8968 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8969 sizeof(struct btrfs_inode), 0, 8970 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8971 init_once); 8972 if (!btrfs_inode_cachep) 8973 goto fail; 8974 8975 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8976 sizeof(struct btrfs_trans_handle), 0, 8977 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8978 if (!btrfs_trans_handle_cachep) 8979 goto fail; 8980 8981 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8982 sizeof(struct btrfs_path), 0, 8983 SLAB_MEM_SPREAD, NULL); 8984 if (!btrfs_path_cachep) 8985 goto fail; 8986 8987 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8988 sizeof(struct btrfs_free_space), 0, 8989 SLAB_MEM_SPREAD, NULL); 8990 if (!btrfs_free_space_cachep) 8991 goto fail; 8992 8993 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8994 PAGE_SIZE, PAGE_SIZE, 8995 SLAB_MEM_SPREAD, NULL); 8996 if (!btrfs_free_space_bitmap_cachep) 8997 goto fail; 8998 8999 return 0; 9000 fail: 9001 btrfs_destroy_cachep(); 9002 return -ENOMEM; 9003 } 9004 9005 static int btrfs_getattr(struct user_namespace *mnt_userns, 9006 const struct path *path, struct kstat *stat, 9007 u32 request_mask, unsigned int flags) 9008 { 9009 u64 delalloc_bytes; 9010 u64 inode_bytes; 9011 struct inode *inode = d_inode(path->dentry); 9012 u32 blocksize = inode->i_sb->s_blocksize; 9013 u32 bi_flags = BTRFS_I(inode)->flags; 9014 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 9015 9016 stat->result_mask |= STATX_BTIME; 9017 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9018 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9019 if (bi_flags & BTRFS_INODE_APPEND) 9020 stat->attributes |= STATX_ATTR_APPEND; 9021 if (bi_flags & BTRFS_INODE_COMPRESS) 9022 stat->attributes |= STATX_ATTR_COMPRESSED; 9023 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9024 stat->attributes |= STATX_ATTR_IMMUTABLE; 9025 if (bi_flags & BTRFS_INODE_NODUMP) 9026 stat->attributes |= STATX_ATTR_NODUMP; 9027 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 9028 stat->attributes |= STATX_ATTR_VERITY; 9029 9030 stat->attributes_mask |= (STATX_ATTR_APPEND | 9031 STATX_ATTR_COMPRESSED | 9032 STATX_ATTR_IMMUTABLE | 9033 STATX_ATTR_NODUMP); 9034 9035 generic_fillattr(mnt_userns, inode, stat); 9036 stat->dev = BTRFS_I(inode)->root->anon_dev; 9037 9038 spin_lock(&BTRFS_I(inode)->lock); 9039 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9040 inode_bytes = inode_get_bytes(inode); 9041 spin_unlock(&BTRFS_I(inode)->lock); 9042 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9043 ALIGN(delalloc_bytes, blocksize)) >> 9; 9044 return 0; 9045 } 9046 9047 static int btrfs_rename_exchange(struct inode *old_dir, 9048 struct dentry *old_dentry, 9049 struct inode *new_dir, 9050 struct dentry *new_dentry) 9051 { 9052 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9053 struct btrfs_trans_handle *trans; 9054 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9055 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9056 struct inode *new_inode = new_dentry->d_inode; 9057 struct inode *old_inode = old_dentry->d_inode; 9058 struct timespec64 ctime = current_time(old_inode); 9059 struct btrfs_rename_ctx old_rename_ctx; 9060 struct btrfs_rename_ctx new_rename_ctx; 9061 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9062 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9063 u64 old_idx = 0; 9064 u64 new_idx = 0; 9065 int ret; 9066 int ret2; 9067 bool need_abort = false; 9068 9069 /* 9070 * For non-subvolumes allow exchange only within one subvolume, in the 9071 * same inode namespace. Two subvolumes (represented as directory) can 9072 * be exchanged as they're a logical link and have a fixed inode number. 9073 */ 9074 if (root != dest && 9075 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 9076 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 9077 return -EXDEV; 9078 9079 /* close the race window with snapshot create/destroy ioctl */ 9080 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9081 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9082 down_read(&fs_info->subvol_sem); 9083 9084 /* 9085 * We want to reserve the absolute worst case amount of items. So if 9086 * both inodes are subvols and we need to unlink them then that would 9087 * require 4 item modifications, but if they are both normal inodes it 9088 * would require 5 item modifications, so we'll assume their normal 9089 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9090 * should cover the worst case number of items we'll modify. 9091 */ 9092 trans = btrfs_start_transaction(root, 12); 9093 if (IS_ERR(trans)) { 9094 ret = PTR_ERR(trans); 9095 goto out_notrans; 9096 } 9097 9098 if (dest != root) { 9099 ret = btrfs_record_root_in_trans(trans, dest); 9100 if (ret) 9101 goto out_fail; 9102 } 9103 9104 /* 9105 * We need to find a free sequence number both in the source and 9106 * in the destination directory for the exchange. 9107 */ 9108 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9109 if (ret) 9110 goto out_fail; 9111 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9112 if (ret) 9113 goto out_fail; 9114 9115 BTRFS_I(old_inode)->dir_index = 0ULL; 9116 BTRFS_I(new_inode)->dir_index = 0ULL; 9117 9118 /* Reference for the source. */ 9119 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9120 /* force full log commit if subvolume involved. */ 9121 btrfs_set_log_full_commit(trans); 9122 } else { 9123 ret = btrfs_insert_inode_ref(trans, dest, 9124 new_dentry->d_name.name, 9125 new_dentry->d_name.len, 9126 old_ino, 9127 btrfs_ino(BTRFS_I(new_dir)), 9128 old_idx); 9129 if (ret) 9130 goto out_fail; 9131 need_abort = true; 9132 } 9133 9134 /* And now for the dest. */ 9135 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9136 /* force full log commit if subvolume involved. */ 9137 btrfs_set_log_full_commit(trans); 9138 } else { 9139 ret = btrfs_insert_inode_ref(trans, root, 9140 old_dentry->d_name.name, 9141 old_dentry->d_name.len, 9142 new_ino, 9143 btrfs_ino(BTRFS_I(old_dir)), 9144 new_idx); 9145 if (ret) { 9146 if (need_abort) 9147 btrfs_abort_transaction(trans, ret); 9148 goto out_fail; 9149 } 9150 } 9151 9152 /* Update inode version and ctime/mtime. */ 9153 inode_inc_iversion(old_dir); 9154 inode_inc_iversion(new_dir); 9155 inode_inc_iversion(old_inode); 9156 inode_inc_iversion(new_inode); 9157 old_dir->i_ctime = old_dir->i_mtime = ctime; 9158 new_dir->i_ctime = new_dir->i_mtime = ctime; 9159 old_inode->i_ctime = ctime; 9160 new_inode->i_ctime = ctime; 9161 9162 if (old_dentry->d_parent != new_dentry->d_parent) { 9163 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9164 BTRFS_I(old_inode), 1); 9165 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9166 BTRFS_I(new_inode), 1); 9167 } 9168 9169 /* src is a subvolume */ 9170 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9171 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9172 } else { /* src is an inode */ 9173 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9174 BTRFS_I(old_dentry->d_inode), 9175 old_dentry->d_name.name, 9176 old_dentry->d_name.len, 9177 &old_rename_ctx); 9178 if (!ret) 9179 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9180 } 9181 if (ret) { 9182 btrfs_abort_transaction(trans, ret); 9183 goto out_fail; 9184 } 9185 9186 /* dest is a subvolume */ 9187 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9188 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9189 } else { /* dest is an inode */ 9190 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9191 BTRFS_I(new_dentry->d_inode), 9192 new_dentry->d_name.name, 9193 new_dentry->d_name.len, 9194 &new_rename_ctx); 9195 if (!ret) 9196 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9197 } 9198 if (ret) { 9199 btrfs_abort_transaction(trans, ret); 9200 goto out_fail; 9201 } 9202 9203 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9204 new_dentry->d_name.name, 9205 new_dentry->d_name.len, 0, old_idx); 9206 if (ret) { 9207 btrfs_abort_transaction(trans, ret); 9208 goto out_fail; 9209 } 9210 9211 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9212 old_dentry->d_name.name, 9213 old_dentry->d_name.len, 0, new_idx); 9214 if (ret) { 9215 btrfs_abort_transaction(trans, ret); 9216 goto out_fail; 9217 } 9218 9219 if (old_inode->i_nlink == 1) 9220 BTRFS_I(old_inode)->dir_index = old_idx; 9221 if (new_inode->i_nlink == 1) 9222 BTRFS_I(new_inode)->dir_index = new_idx; 9223 9224 /* 9225 * Now pin the logs of the roots. We do it to ensure that no other task 9226 * can sync the logs while we are in progress with the rename, because 9227 * that could result in an inconsistency in case any of the inodes that 9228 * are part of this rename operation were logged before. 9229 */ 9230 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9231 btrfs_pin_log_trans(root); 9232 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9233 btrfs_pin_log_trans(dest); 9234 9235 /* Do the log updates for all inodes. */ 9236 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9237 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9238 old_rename_ctx.index, new_dentry->d_parent); 9239 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9240 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 9241 new_rename_ctx.index, old_dentry->d_parent); 9242 9243 /* Now unpin the logs. */ 9244 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9245 btrfs_end_log_trans(root); 9246 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9247 btrfs_end_log_trans(dest); 9248 out_fail: 9249 ret2 = btrfs_end_transaction(trans); 9250 ret = ret ? ret : ret2; 9251 out_notrans: 9252 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9253 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9254 up_read(&fs_info->subvol_sem); 9255 9256 return ret; 9257 } 9258 9259 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9260 struct btrfs_root *root, 9261 struct user_namespace *mnt_userns, 9262 struct inode *dir, 9263 struct dentry *dentry) 9264 { 9265 int ret; 9266 struct inode *inode; 9267 u64 objectid; 9268 u64 index; 9269 9270 ret = btrfs_get_free_objectid(root, &objectid); 9271 if (ret) 9272 return ret; 9273 9274 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 9275 dentry->d_name.name, 9276 dentry->d_name.len, 9277 btrfs_ino(BTRFS_I(dir)), 9278 objectid, 9279 S_IFCHR | WHITEOUT_MODE, 9280 &index); 9281 9282 if (IS_ERR(inode)) { 9283 ret = PTR_ERR(inode); 9284 return ret; 9285 } 9286 9287 inode->i_op = &btrfs_special_inode_operations; 9288 init_special_inode(inode, inode->i_mode, 9289 WHITEOUT_DEV); 9290 9291 ret = btrfs_init_inode_security(trans, inode, dir, 9292 &dentry->d_name); 9293 if (ret) 9294 goto out; 9295 9296 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9297 BTRFS_I(inode), 0, index); 9298 if (ret) 9299 goto out; 9300 9301 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9302 out: 9303 unlock_new_inode(inode); 9304 if (ret) 9305 inode_dec_link_count(inode); 9306 iput(inode); 9307 9308 return ret; 9309 } 9310 9311 static int btrfs_rename(struct user_namespace *mnt_userns, 9312 struct inode *old_dir, struct dentry *old_dentry, 9313 struct inode *new_dir, struct dentry *new_dentry, 9314 unsigned int flags) 9315 { 9316 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9317 struct btrfs_trans_handle *trans; 9318 unsigned int trans_num_items; 9319 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9320 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9321 struct inode *new_inode = d_inode(new_dentry); 9322 struct inode *old_inode = d_inode(old_dentry); 9323 struct btrfs_rename_ctx rename_ctx; 9324 u64 index = 0; 9325 int ret; 9326 int ret2; 9327 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9328 9329 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9330 return -EPERM; 9331 9332 /* we only allow rename subvolume link between subvolumes */ 9333 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9334 return -EXDEV; 9335 9336 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9337 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9338 return -ENOTEMPTY; 9339 9340 if (S_ISDIR(old_inode->i_mode) && new_inode && 9341 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9342 return -ENOTEMPTY; 9343 9344 9345 /* check for collisions, even if the name isn't there */ 9346 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9347 new_dentry->d_name.name, 9348 new_dentry->d_name.len); 9349 9350 if (ret) { 9351 if (ret == -EEXIST) { 9352 /* we shouldn't get 9353 * eexist without a new_inode */ 9354 if (WARN_ON(!new_inode)) { 9355 return ret; 9356 } 9357 } else { 9358 /* maybe -EOVERFLOW */ 9359 return ret; 9360 } 9361 } 9362 ret = 0; 9363 9364 /* 9365 * we're using rename to replace one file with another. Start IO on it 9366 * now so we don't add too much work to the end of the transaction 9367 */ 9368 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9369 filemap_flush(old_inode->i_mapping); 9370 9371 /* close the racy window with snapshot create/destroy ioctl */ 9372 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9373 down_read(&fs_info->subvol_sem); 9374 /* 9375 * We want to reserve the absolute worst case amount of items. So if 9376 * both inodes are subvols and we need to unlink them then that would 9377 * require 4 item modifications, but if they are both normal inodes it 9378 * would require 5 item modifications, so we'll assume they are normal 9379 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9380 * should cover the worst case number of items we'll modify. 9381 * If our rename has the whiteout flag, we need more 5 units for the 9382 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9383 * when selinux is enabled). 9384 */ 9385 trans_num_items = 11; 9386 if (flags & RENAME_WHITEOUT) 9387 trans_num_items += 5; 9388 trans = btrfs_start_transaction(root, trans_num_items); 9389 if (IS_ERR(trans)) { 9390 ret = PTR_ERR(trans); 9391 goto out_notrans; 9392 } 9393 9394 if (dest != root) { 9395 ret = btrfs_record_root_in_trans(trans, dest); 9396 if (ret) 9397 goto out_fail; 9398 } 9399 9400 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9401 if (ret) 9402 goto out_fail; 9403 9404 BTRFS_I(old_inode)->dir_index = 0ULL; 9405 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9406 /* force full log commit if subvolume involved. */ 9407 btrfs_set_log_full_commit(trans); 9408 } else { 9409 ret = btrfs_insert_inode_ref(trans, dest, 9410 new_dentry->d_name.name, 9411 new_dentry->d_name.len, 9412 old_ino, 9413 btrfs_ino(BTRFS_I(new_dir)), index); 9414 if (ret) 9415 goto out_fail; 9416 } 9417 9418 inode_inc_iversion(old_dir); 9419 inode_inc_iversion(new_dir); 9420 inode_inc_iversion(old_inode); 9421 old_dir->i_ctime = old_dir->i_mtime = 9422 new_dir->i_ctime = new_dir->i_mtime = 9423 old_inode->i_ctime = current_time(old_dir); 9424 9425 if (old_dentry->d_parent != new_dentry->d_parent) 9426 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9427 BTRFS_I(old_inode), 1); 9428 9429 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9430 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9431 } else { 9432 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9433 BTRFS_I(d_inode(old_dentry)), 9434 old_dentry->d_name.name, 9435 old_dentry->d_name.len, 9436 &rename_ctx); 9437 if (!ret) 9438 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9439 } 9440 if (ret) { 9441 btrfs_abort_transaction(trans, ret); 9442 goto out_fail; 9443 } 9444 9445 if (new_inode) { 9446 inode_inc_iversion(new_inode); 9447 new_inode->i_ctime = current_time(new_inode); 9448 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9449 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9450 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9451 BUG_ON(new_inode->i_nlink == 0); 9452 } else { 9453 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9454 BTRFS_I(d_inode(new_dentry)), 9455 new_dentry->d_name.name, 9456 new_dentry->d_name.len); 9457 } 9458 if (!ret && new_inode->i_nlink == 0) 9459 ret = btrfs_orphan_add(trans, 9460 BTRFS_I(d_inode(new_dentry))); 9461 if (ret) { 9462 btrfs_abort_transaction(trans, ret); 9463 goto out_fail; 9464 } 9465 } 9466 9467 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9468 new_dentry->d_name.name, 9469 new_dentry->d_name.len, 0, index); 9470 if (ret) { 9471 btrfs_abort_transaction(trans, ret); 9472 goto out_fail; 9473 } 9474 9475 if (old_inode->i_nlink == 1) 9476 BTRFS_I(old_inode)->dir_index = index; 9477 9478 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9479 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9480 rename_ctx.index, new_dentry->d_parent); 9481 9482 if (flags & RENAME_WHITEOUT) { 9483 ret = btrfs_whiteout_for_rename(trans, root, mnt_userns, 9484 old_dir, old_dentry); 9485 9486 if (ret) { 9487 btrfs_abort_transaction(trans, ret); 9488 goto out_fail; 9489 } 9490 } 9491 out_fail: 9492 ret2 = btrfs_end_transaction(trans); 9493 ret = ret ? ret : ret2; 9494 out_notrans: 9495 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9496 up_read(&fs_info->subvol_sem); 9497 9498 return ret; 9499 } 9500 9501 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9502 struct dentry *old_dentry, struct inode *new_dir, 9503 struct dentry *new_dentry, unsigned int flags) 9504 { 9505 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9506 return -EINVAL; 9507 9508 if (flags & RENAME_EXCHANGE) 9509 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9510 new_dentry); 9511 9512 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, 9513 new_dentry, flags); 9514 } 9515 9516 struct btrfs_delalloc_work { 9517 struct inode *inode; 9518 struct completion completion; 9519 struct list_head list; 9520 struct btrfs_work work; 9521 }; 9522 9523 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9524 { 9525 struct btrfs_delalloc_work *delalloc_work; 9526 struct inode *inode; 9527 9528 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9529 work); 9530 inode = delalloc_work->inode; 9531 filemap_flush(inode->i_mapping); 9532 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9533 &BTRFS_I(inode)->runtime_flags)) 9534 filemap_flush(inode->i_mapping); 9535 9536 iput(inode); 9537 complete(&delalloc_work->completion); 9538 } 9539 9540 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9541 { 9542 struct btrfs_delalloc_work *work; 9543 9544 work = kmalloc(sizeof(*work), GFP_NOFS); 9545 if (!work) 9546 return NULL; 9547 9548 init_completion(&work->completion); 9549 INIT_LIST_HEAD(&work->list); 9550 work->inode = inode; 9551 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9552 9553 return work; 9554 } 9555 9556 /* 9557 * some fairly slow code that needs optimization. This walks the list 9558 * of all the inodes with pending delalloc and forces them to disk. 9559 */ 9560 static int start_delalloc_inodes(struct btrfs_root *root, 9561 struct writeback_control *wbc, bool snapshot, 9562 bool in_reclaim_context) 9563 { 9564 struct btrfs_inode *binode; 9565 struct inode *inode; 9566 struct btrfs_delalloc_work *work, *next; 9567 struct list_head works; 9568 struct list_head splice; 9569 int ret = 0; 9570 bool full_flush = wbc->nr_to_write == LONG_MAX; 9571 9572 INIT_LIST_HEAD(&works); 9573 INIT_LIST_HEAD(&splice); 9574 9575 mutex_lock(&root->delalloc_mutex); 9576 spin_lock(&root->delalloc_lock); 9577 list_splice_init(&root->delalloc_inodes, &splice); 9578 while (!list_empty(&splice)) { 9579 binode = list_entry(splice.next, struct btrfs_inode, 9580 delalloc_inodes); 9581 9582 list_move_tail(&binode->delalloc_inodes, 9583 &root->delalloc_inodes); 9584 9585 if (in_reclaim_context && 9586 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9587 continue; 9588 9589 inode = igrab(&binode->vfs_inode); 9590 if (!inode) { 9591 cond_resched_lock(&root->delalloc_lock); 9592 continue; 9593 } 9594 spin_unlock(&root->delalloc_lock); 9595 9596 if (snapshot) 9597 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9598 &binode->runtime_flags); 9599 if (full_flush) { 9600 work = btrfs_alloc_delalloc_work(inode); 9601 if (!work) { 9602 iput(inode); 9603 ret = -ENOMEM; 9604 goto out; 9605 } 9606 list_add_tail(&work->list, &works); 9607 btrfs_queue_work(root->fs_info->flush_workers, 9608 &work->work); 9609 } else { 9610 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9611 btrfs_add_delayed_iput(inode); 9612 if (ret || wbc->nr_to_write <= 0) 9613 goto out; 9614 } 9615 cond_resched(); 9616 spin_lock(&root->delalloc_lock); 9617 } 9618 spin_unlock(&root->delalloc_lock); 9619 9620 out: 9621 list_for_each_entry_safe(work, next, &works, list) { 9622 list_del_init(&work->list); 9623 wait_for_completion(&work->completion); 9624 kfree(work); 9625 } 9626 9627 if (!list_empty(&splice)) { 9628 spin_lock(&root->delalloc_lock); 9629 list_splice_tail(&splice, &root->delalloc_inodes); 9630 spin_unlock(&root->delalloc_lock); 9631 } 9632 mutex_unlock(&root->delalloc_mutex); 9633 return ret; 9634 } 9635 9636 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9637 { 9638 struct writeback_control wbc = { 9639 .nr_to_write = LONG_MAX, 9640 .sync_mode = WB_SYNC_NONE, 9641 .range_start = 0, 9642 .range_end = LLONG_MAX, 9643 }; 9644 struct btrfs_fs_info *fs_info = root->fs_info; 9645 9646 if (BTRFS_FS_ERROR(fs_info)) 9647 return -EROFS; 9648 9649 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9650 } 9651 9652 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9653 bool in_reclaim_context) 9654 { 9655 struct writeback_control wbc = { 9656 .nr_to_write = nr, 9657 .sync_mode = WB_SYNC_NONE, 9658 .range_start = 0, 9659 .range_end = LLONG_MAX, 9660 }; 9661 struct btrfs_root *root; 9662 struct list_head splice; 9663 int ret; 9664 9665 if (BTRFS_FS_ERROR(fs_info)) 9666 return -EROFS; 9667 9668 INIT_LIST_HEAD(&splice); 9669 9670 mutex_lock(&fs_info->delalloc_root_mutex); 9671 spin_lock(&fs_info->delalloc_root_lock); 9672 list_splice_init(&fs_info->delalloc_roots, &splice); 9673 while (!list_empty(&splice)) { 9674 /* 9675 * Reset nr_to_write here so we know that we're doing a full 9676 * flush. 9677 */ 9678 if (nr == LONG_MAX) 9679 wbc.nr_to_write = LONG_MAX; 9680 9681 root = list_first_entry(&splice, struct btrfs_root, 9682 delalloc_root); 9683 root = btrfs_grab_root(root); 9684 BUG_ON(!root); 9685 list_move_tail(&root->delalloc_root, 9686 &fs_info->delalloc_roots); 9687 spin_unlock(&fs_info->delalloc_root_lock); 9688 9689 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9690 btrfs_put_root(root); 9691 if (ret < 0 || wbc.nr_to_write <= 0) 9692 goto out; 9693 spin_lock(&fs_info->delalloc_root_lock); 9694 } 9695 spin_unlock(&fs_info->delalloc_root_lock); 9696 9697 ret = 0; 9698 out: 9699 if (!list_empty(&splice)) { 9700 spin_lock(&fs_info->delalloc_root_lock); 9701 list_splice_tail(&splice, &fs_info->delalloc_roots); 9702 spin_unlock(&fs_info->delalloc_root_lock); 9703 } 9704 mutex_unlock(&fs_info->delalloc_root_mutex); 9705 return ret; 9706 } 9707 9708 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9709 struct dentry *dentry, const char *symname) 9710 { 9711 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9712 struct btrfs_trans_handle *trans; 9713 struct btrfs_root *root = BTRFS_I(dir)->root; 9714 struct btrfs_path *path; 9715 struct btrfs_key key; 9716 struct inode *inode = NULL; 9717 int err; 9718 u64 objectid; 9719 u64 index = 0; 9720 int name_len; 9721 int datasize; 9722 unsigned long ptr; 9723 struct btrfs_file_extent_item *ei; 9724 struct extent_buffer *leaf; 9725 9726 name_len = strlen(symname); 9727 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9728 return -ENAMETOOLONG; 9729 9730 /* 9731 * 2 items for inode item and ref 9732 * 2 items for dir items 9733 * 1 item for updating parent inode item 9734 * 1 item for the inline extent item 9735 * 1 item for xattr if selinux is on 9736 */ 9737 trans = btrfs_start_transaction(root, 7); 9738 if (IS_ERR(trans)) 9739 return PTR_ERR(trans); 9740 9741 err = btrfs_get_free_objectid(root, &objectid); 9742 if (err) 9743 goto out_unlock; 9744 9745 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 9746 dentry->d_name.name, dentry->d_name.len, 9747 btrfs_ino(BTRFS_I(dir)), objectid, 9748 S_IFLNK | S_IRWXUGO, &index); 9749 if (IS_ERR(inode)) { 9750 err = PTR_ERR(inode); 9751 inode = NULL; 9752 goto out_unlock; 9753 } 9754 9755 /* 9756 * If the active LSM wants to access the inode during 9757 * d_instantiate it needs these. Smack checks to see 9758 * if the filesystem supports xattrs by looking at the 9759 * ops vector. 9760 */ 9761 inode->i_fop = &btrfs_file_operations; 9762 inode->i_op = &btrfs_file_inode_operations; 9763 inode->i_mapping->a_ops = &btrfs_aops; 9764 9765 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9766 if (err) 9767 goto out_unlock; 9768 9769 path = btrfs_alloc_path(); 9770 if (!path) { 9771 err = -ENOMEM; 9772 goto out_unlock; 9773 } 9774 key.objectid = btrfs_ino(BTRFS_I(inode)); 9775 key.offset = 0; 9776 key.type = BTRFS_EXTENT_DATA_KEY; 9777 datasize = btrfs_file_extent_calc_inline_size(name_len); 9778 err = btrfs_insert_empty_item(trans, root, path, &key, 9779 datasize); 9780 if (err) { 9781 btrfs_free_path(path); 9782 goto out_unlock; 9783 } 9784 leaf = path->nodes[0]; 9785 ei = btrfs_item_ptr(leaf, path->slots[0], 9786 struct btrfs_file_extent_item); 9787 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9788 btrfs_set_file_extent_type(leaf, ei, 9789 BTRFS_FILE_EXTENT_INLINE); 9790 btrfs_set_file_extent_encryption(leaf, ei, 0); 9791 btrfs_set_file_extent_compression(leaf, ei, 0); 9792 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9793 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9794 9795 ptr = btrfs_file_extent_inline_start(ei); 9796 write_extent_buffer(leaf, symname, ptr, name_len); 9797 btrfs_mark_buffer_dirty(leaf); 9798 btrfs_free_path(path); 9799 9800 inode->i_op = &btrfs_symlink_inode_operations; 9801 inode_nohighmem(inode); 9802 inode_set_bytes(inode, name_len); 9803 btrfs_i_size_write(BTRFS_I(inode), name_len); 9804 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9805 /* 9806 * Last step, add directory indexes for our symlink inode. This is the 9807 * last step to avoid extra cleanup of these indexes if an error happens 9808 * elsewhere above. 9809 */ 9810 if (!err) 9811 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9812 BTRFS_I(inode), 0, index); 9813 if (err) 9814 goto out_unlock; 9815 9816 d_instantiate_new(dentry, inode); 9817 9818 out_unlock: 9819 btrfs_end_transaction(trans); 9820 if (err && inode) { 9821 inode_dec_link_count(inode); 9822 discard_new_inode(inode); 9823 } 9824 btrfs_btree_balance_dirty(fs_info); 9825 return err; 9826 } 9827 9828 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9829 struct btrfs_trans_handle *trans_in, 9830 struct btrfs_inode *inode, 9831 struct btrfs_key *ins, 9832 u64 file_offset) 9833 { 9834 struct btrfs_file_extent_item stack_fi; 9835 struct btrfs_replace_extent_info extent_info; 9836 struct btrfs_trans_handle *trans = trans_in; 9837 struct btrfs_path *path; 9838 u64 start = ins->objectid; 9839 u64 len = ins->offset; 9840 int qgroup_released; 9841 int ret; 9842 9843 memset(&stack_fi, 0, sizeof(stack_fi)); 9844 9845 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9846 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9847 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9848 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9849 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9850 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9851 /* Encryption and other encoding is reserved and all 0 */ 9852 9853 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9854 if (qgroup_released < 0) 9855 return ERR_PTR(qgroup_released); 9856 9857 if (trans) { 9858 ret = insert_reserved_file_extent(trans, inode, 9859 file_offset, &stack_fi, 9860 true, qgroup_released); 9861 if (ret) 9862 goto free_qgroup; 9863 return trans; 9864 } 9865 9866 extent_info.disk_offset = start; 9867 extent_info.disk_len = len; 9868 extent_info.data_offset = 0; 9869 extent_info.data_len = len; 9870 extent_info.file_offset = file_offset; 9871 extent_info.extent_buf = (char *)&stack_fi; 9872 extent_info.is_new_extent = true; 9873 extent_info.qgroup_reserved = qgroup_released; 9874 extent_info.insertions = 0; 9875 9876 path = btrfs_alloc_path(); 9877 if (!path) { 9878 ret = -ENOMEM; 9879 goto free_qgroup; 9880 } 9881 9882 ret = btrfs_replace_file_extents(inode, path, file_offset, 9883 file_offset + len - 1, &extent_info, 9884 &trans); 9885 btrfs_free_path(path); 9886 if (ret) 9887 goto free_qgroup; 9888 return trans; 9889 9890 free_qgroup: 9891 /* 9892 * We have released qgroup data range at the beginning of the function, 9893 * and normally qgroup_released bytes will be freed when committing 9894 * transaction. 9895 * But if we error out early, we have to free what we have released 9896 * or we leak qgroup data reservation. 9897 */ 9898 btrfs_qgroup_free_refroot(inode->root->fs_info, 9899 inode->root->root_key.objectid, qgroup_released, 9900 BTRFS_QGROUP_RSV_DATA); 9901 return ERR_PTR(ret); 9902 } 9903 9904 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9905 u64 start, u64 num_bytes, u64 min_size, 9906 loff_t actual_len, u64 *alloc_hint, 9907 struct btrfs_trans_handle *trans) 9908 { 9909 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9910 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9911 struct extent_map *em; 9912 struct btrfs_root *root = BTRFS_I(inode)->root; 9913 struct btrfs_key ins; 9914 u64 cur_offset = start; 9915 u64 clear_offset = start; 9916 u64 i_size; 9917 u64 cur_bytes; 9918 u64 last_alloc = (u64)-1; 9919 int ret = 0; 9920 bool own_trans = true; 9921 u64 end = start + num_bytes - 1; 9922 9923 if (trans) 9924 own_trans = false; 9925 while (num_bytes > 0) { 9926 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9927 cur_bytes = max(cur_bytes, min_size); 9928 /* 9929 * If we are severely fragmented we could end up with really 9930 * small allocations, so if the allocator is returning small 9931 * chunks lets make its job easier by only searching for those 9932 * sized chunks. 9933 */ 9934 cur_bytes = min(cur_bytes, last_alloc); 9935 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9936 min_size, 0, *alloc_hint, &ins, 1, 0); 9937 if (ret) 9938 break; 9939 9940 /* 9941 * We've reserved this space, and thus converted it from 9942 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9943 * from here on out we will only need to clear our reservation 9944 * for the remaining unreserved area, so advance our 9945 * clear_offset by our extent size. 9946 */ 9947 clear_offset += ins.offset; 9948 9949 last_alloc = ins.offset; 9950 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9951 &ins, cur_offset); 9952 /* 9953 * Now that we inserted the prealloc extent we can finally 9954 * decrement the number of reservations in the block group. 9955 * If we did it before, we could race with relocation and have 9956 * relocation miss the reserved extent, making it fail later. 9957 */ 9958 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9959 if (IS_ERR(trans)) { 9960 ret = PTR_ERR(trans); 9961 btrfs_free_reserved_extent(fs_info, ins.objectid, 9962 ins.offset, 0); 9963 break; 9964 } 9965 9966 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9967 cur_offset + ins.offset -1, 0); 9968 9969 em = alloc_extent_map(); 9970 if (!em) { 9971 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9972 goto next; 9973 } 9974 9975 em->start = cur_offset; 9976 em->orig_start = cur_offset; 9977 em->len = ins.offset; 9978 em->block_start = ins.objectid; 9979 em->block_len = ins.offset; 9980 em->orig_block_len = ins.offset; 9981 em->ram_bytes = ins.offset; 9982 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9983 em->generation = trans->transid; 9984 9985 while (1) { 9986 write_lock(&em_tree->lock); 9987 ret = add_extent_mapping(em_tree, em, 1); 9988 write_unlock(&em_tree->lock); 9989 if (ret != -EEXIST) 9990 break; 9991 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9992 cur_offset + ins.offset - 1, 9993 0); 9994 } 9995 free_extent_map(em); 9996 next: 9997 num_bytes -= ins.offset; 9998 cur_offset += ins.offset; 9999 *alloc_hint = ins.objectid + ins.offset; 10000 10001 inode_inc_iversion(inode); 10002 inode->i_ctime = current_time(inode); 10003 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10004 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10005 (actual_len > inode->i_size) && 10006 (cur_offset > inode->i_size)) { 10007 if (cur_offset > actual_len) 10008 i_size = actual_len; 10009 else 10010 i_size = cur_offset; 10011 i_size_write(inode, i_size); 10012 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10013 } 10014 10015 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10016 10017 if (ret) { 10018 btrfs_abort_transaction(trans, ret); 10019 if (own_trans) 10020 btrfs_end_transaction(trans); 10021 break; 10022 } 10023 10024 if (own_trans) { 10025 btrfs_end_transaction(trans); 10026 trans = NULL; 10027 } 10028 } 10029 if (clear_offset < end) 10030 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10031 end - clear_offset + 1); 10032 return ret; 10033 } 10034 10035 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10036 u64 start, u64 num_bytes, u64 min_size, 10037 loff_t actual_len, u64 *alloc_hint) 10038 { 10039 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10040 min_size, actual_len, alloc_hint, 10041 NULL); 10042 } 10043 10044 int btrfs_prealloc_file_range_trans(struct inode *inode, 10045 struct btrfs_trans_handle *trans, int mode, 10046 u64 start, u64 num_bytes, u64 min_size, 10047 loff_t actual_len, u64 *alloc_hint) 10048 { 10049 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10050 min_size, actual_len, alloc_hint, trans); 10051 } 10052 10053 static int btrfs_permission(struct user_namespace *mnt_userns, 10054 struct inode *inode, int mask) 10055 { 10056 struct btrfs_root *root = BTRFS_I(inode)->root; 10057 umode_t mode = inode->i_mode; 10058 10059 if (mask & MAY_WRITE && 10060 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10061 if (btrfs_root_readonly(root)) 10062 return -EROFS; 10063 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10064 return -EACCES; 10065 } 10066 return generic_permission(mnt_userns, inode, mask); 10067 } 10068 10069 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10070 struct dentry *dentry, umode_t mode) 10071 { 10072 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10073 struct btrfs_trans_handle *trans; 10074 struct btrfs_root *root = BTRFS_I(dir)->root; 10075 struct inode *inode = NULL; 10076 u64 objectid; 10077 u64 index; 10078 int ret = 0; 10079 10080 /* 10081 * 5 units required for adding orphan entry 10082 */ 10083 trans = btrfs_start_transaction(root, 5); 10084 if (IS_ERR(trans)) 10085 return PTR_ERR(trans); 10086 10087 ret = btrfs_get_free_objectid(root, &objectid); 10088 if (ret) 10089 goto out; 10090 10091 inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0, 10092 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10093 if (IS_ERR(inode)) { 10094 ret = PTR_ERR(inode); 10095 inode = NULL; 10096 goto out; 10097 } 10098 10099 inode->i_fop = &btrfs_file_operations; 10100 inode->i_op = &btrfs_file_inode_operations; 10101 10102 inode->i_mapping->a_ops = &btrfs_aops; 10103 10104 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10105 if (ret) 10106 goto out; 10107 10108 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10109 if (ret) 10110 goto out; 10111 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10112 if (ret) 10113 goto out; 10114 10115 /* 10116 * We set number of links to 0 in btrfs_new_inode(), and here we set 10117 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10118 * through: 10119 * 10120 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10121 */ 10122 set_nlink(inode, 1); 10123 d_tmpfile(dentry, inode); 10124 unlock_new_inode(inode); 10125 mark_inode_dirty(inode); 10126 out: 10127 btrfs_end_transaction(trans); 10128 if (ret && inode) 10129 discard_new_inode(inode); 10130 btrfs_btree_balance_dirty(fs_info); 10131 return ret; 10132 } 10133 10134 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10135 { 10136 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10137 unsigned long index = start >> PAGE_SHIFT; 10138 unsigned long end_index = end >> PAGE_SHIFT; 10139 struct page *page; 10140 u32 len; 10141 10142 ASSERT(end + 1 - start <= U32_MAX); 10143 len = end + 1 - start; 10144 while (index <= end_index) { 10145 page = find_get_page(inode->vfs_inode.i_mapping, index); 10146 ASSERT(page); /* Pages should be in the extent_io_tree */ 10147 10148 btrfs_page_set_writeback(fs_info, page, start, len); 10149 put_page(page); 10150 index++; 10151 } 10152 } 10153 10154 static int btrfs_encoded_io_compression_from_extent( 10155 struct btrfs_fs_info *fs_info, 10156 int compress_type) 10157 { 10158 switch (compress_type) { 10159 case BTRFS_COMPRESS_NONE: 10160 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 10161 case BTRFS_COMPRESS_ZLIB: 10162 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 10163 case BTRFS_COMPRESS_LZO: 10164 /* 10165 * The LZO format depends on the sector size. 64K is the maximum 10166 * sector size that we support. 10167 */ 10168 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 10169 return -EINVAL; 10170 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 10171 (fs_info->sectorsize_bits - 12); 10172 case BTRFS_COMPRESS_ZSTD: 10173 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 10174 default: 10175 return -EUCLEAN; 10176 } 10177 } 10178 10179 static ssize_t btrfs_encoded_read_inline( 10180 struct kiocb *iocb, 10181 struct iov_iter *iter, u64 start, 10182 u64 lockend, 10183 struct extent_state **cached_state, 10184 u64 extent_start, size_t count, 10185 struct btrfs_ioctl_encoded_io_args *encoded, 10186 bool *unlocked) 10187 { 10188 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10189 struct btrfs_root *root = inode->root; 10190 struct btrfs_fs_info *fs_info = root->fs_info; 10191 struct extent_io_tree *io_tree = &inode->io_tree; 10192 struct btrfs_path *path; 10193 struct extent_buffer *leaf; 10194 struct btrfs_file_extent_item *item; 10195 u64 ram_bytes; 10196 unsigned long ptr; 10197 void *tmp; 10198 ssize_t ret; 10199 10200 path = btrfs_alloc_path(); 10201 if (!path) { 10202 ret = -ENOMEM; 10203 goto out; 10204 } 10205 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 10206 extent_start, 0); 10207 if (ret) { 10208 if (ret > 0) { 10209 /* The extent item disappeared? */ 10210 ret = -EIO; 10211 } 10212 goto out; 10213 } 10214 leaf = path->nodes[0]; 10215 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10216 10217 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 10218 ptr = btrfs_file_extent_inline_start(item); 10219 10220 encoded->len = min_t(u64, extent_start + ram_bytes, 10221 inode->vfs_inode.i_size) - iocb->ki_pos; 10222 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10223 btrfs_file_extent_compression(leaf, item)); 10224 if (ret < 0) 10225 goto out; 10226 encoded->compression = ret; 10227 if (encoded->compression) { 10228 size_t inline_size; 10229 10230 inline_size = btrfs_file_extent_inline_item_len(leaf, 10231 path->slots[0]); 10232 if (inline_size > count) { 10233 ret = -ENOBUFS; 10234 goto out; 10235 } 10236 count = inline_size; 10237 encoded->unencoded_len = ram_bytes; 10238 encoded->unencoded_offset = iocb->ki_pos - extent_start; 10239 } else { 10240 count = min_t(u64, count, encoded->len); 10241 encoded->len = count; 10242 encoded->unencoded_len = count; 10243 ptr += iocb->ki_pos - extent_start; 10244 } 10245 10246 tmp = kmalloc(count, GFP_NOFS); 10247 if (!tmp) { 10248 ret = -ENOMEM; 10249 goto out; 10250 } 10251 read_extent_buffer(leaf, tmp, ptr, count); 10252 btrfs_release_path(path); 10253 unlock_extent_cached(io_tree, start, lockend, cached_state); 10254 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10255 *unlocked = true; 10256 10257 ret = copy_to_iter(tmp, count, iter); 10258 if (ret != count) 10259 ret = -EFAULT; 10260 kfree(tmp); 10261 out: 10262 btrfs_free_path(path); 10263 return ret; 10264 } 10265 10266 struct btrfs_encoded_read_private { 10267 struct btrfs_inode *inode; 10268 u64 file_offset; 10269 wait_queue_head_t wait; 10270 atomic_t pending; 10271 blk_status_t status; 10272 bool skip_csum; 10273 }; 10274 10275 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode, 10276 struct bio *bio, int mirror_num) 10277 { 10278 struct btrfs_encoded_read_private *priv = bio->bi_private; 10279 struct btrfs_bio *bbio = btrfs_bio(bio); 10280 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10281 blk_status_t ret; 10282 10283 if (!priv->skip_csum) { 10284 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL); 10285 if (ret) 10286 return ret; 10287 } 10288 10289 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 10290 if (ret) { 10291 btrfs_bio_free_csum(bbio); 10292 return ret; 10293 } 10294 10295 atomic_inc(&priv->pending); 10296 ret = btrfs_map_bio(fs_info, bio, mirror_num); 10297 if (ret) { 10298 atomic_dec(&priv->pending); 10299 btrfs_bio_free_csum(bbio); 10300 } 10301 return ret; 10302 } 10303 10304 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio) 10305 { 10306 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK); 10307 struct btrfs_encoded_read_private *priv = bbio->bio.bi_private; 10308 struct btrfs_inode *inode = priv->inode; 10309 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10310 u32 sectorsize = fs_info->sectorsize; 10311 struct bio_vec *bvec; 10312 struct bvec_iter_all iter_all; 10313 u64 start = priv->file_offset; 10314 u32 bio_offset = 0; 10315 10316 if (priv->skip_csum || !uptodate) 10317 return bbio->bio.bi_status; 10318 10319 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 10320 unsigned int i, nr_sectors, pgoff; 10321 10322 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 10323 pgoff = bvec->bv_offset; 10324 for (i = 0; i < nr_sectors; i++) { 10325 ASSERT(pgoff < PAGE_SIZE); 10326 if (check_data_csum(&inode->vfs_inode, bbio, bio_offset, 10327 bvec->bv_page, pgoff, start)) 10328 return BLK_STS_IOERR; 10329 start += sectorsize; 10330 bio_offset += sectorsize; 10331 pgoff += sectorsize; 10332 } 10333 } 10334 return BLK_STS_OK; 10335 } 10336 10337 static void btrfs_encoded_read_endio(struct bio *bio) 10338 { 10339 struct btrfs_encoded_read_private *priv = bio->bi_private; 10340 struct btrfs_bio *bbio = btrfs_bio(bio); 10341 blk_status_t status; 10342 10343 status = btrfs_encoded_read_verify_csum(bbio); 10344 if (status) { 10345 /* 10346 * The memory barrier implied by the atomic_dec_return() here 10347 * pairs with the memory barrier implied by the 10348 * atomic_dec_return() or io_wait_event() in 10349 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10350 * write is observed before the load of status in 10351 * btrfs_encoded_read_regular_fill_pages(). 10352 */ 10353 WRITE_ONCE(priv->status, status); 10354 } 10355 if (!atomic_dec_return(&priv->pending)) 10356 wake_up(&priv->wait); 10357 btrfs_bio_free_csum(bbio); 10358 bio_put(bio); 10359 } 10360 10361 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10362 u64 file_offset, 10363 u64 disk_bytenr, 10364 u64 disk_io_size, 10365 struct page **pages) 10366 { 10367 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10368 struct btrfs_encoded_read_private priv = { 10369 .inode = inode, 10370 .file_offset = file_offset, 10371 .pending = ATOMIC_INIT(1), 10372 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM), 10373 }; 10374 unsigned long i = 0; 10375 u64 cur = 0; 10376 int ret; 10377 10378 init_waitqueue_head(&priv.wait); 10379 /* 10380 * Submit bios for the extent, splitting due to bio or stripe limits as 10381 * necessary. 10382 */ 10383 while (cur < disk_io_size) { 10384 struct extent_map *em; 10385 struct btrfs_io_geometry geom; 10386 struct bio *bio = NULL; 10387 u64 remaining; 10388 10389 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur, 10390 disk_io_size - cur); 10391 if (IS_ERR(em)) { 10392 ret = PTR_ERR(em); 10393 } else { 10394 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ, 10395 disk_bytenr + cur, &geom); 10396 free_extent_map(em); 10397 } 10398 if (ret) { 10399 WRITE_ONCE(priv.status, errno_to_blk_status(ret)); 10400 break; 10401 } 10402 remaining = min(geom.len, disk_io_size - cur); 10403 while (bio || remaining) { 10404 size_t bytes = min_t(u64, remaining, PAGE_SIZE); 10405 10406 if (!bio) { 10407 bio = btrfs_bio_alloc(BIO_MAX_VECS); 10408 bio->bi_iter.bi_sector = 10409 (disk_bytenr + cur) >> SECTOR_SHIFT; 10410 bio->bi_end_io = btrfs_encoded_read_endio; 10411 bio->bi_private = &priv; 10412 bio->bi_opf = REQ_OP_READ; 10413 } 10414 10415 if (!bytes || 10416 bio_add_page(bio, pages[i], bytes, 0) < bytes) { 10417 blk_status_t status; 10418 10419 status = submit_encoded_read_bio(inode, bio, 0); 10420 if (status) { 10421 WRITE_ONCE(priv.status, status); 10422 bio_put(bio); 10423 goto out; 10424 } 10425 bio = NULL; 10426 continue; 10427 } 10428 10429 i++; 10430 cur += bytes; 10431 remaining -= bytes; 10432 } 10433 } 10434 10435 out: 10436 if (atomic_dec_return(&priv.pending)) 10437 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10438 /* See btrfs_encoded_read_endio() for ordering. */ 10439 return blk_status_to_errno(READ_ONCE(priv.status)); 10440 } 10441 10442 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10443 struct iov_iter *iter, 10444 u64 start, u64 lockend, 10445 struct extent_state **cached_state, 10446 u64 disk_bytenr, u64 disk_io_size, 10447 size_t count, bool compressed, 10448 bool *unlocked) 10449 { 10450 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10451 struct extent_io_tree *io_tree = &inode->io_tree; 10452 struct page **pages; 10453 unsigned long nr_pages, i; 10454 u64 cur; 10455 size_t page_offset; 10456 ssize_t ret; 10457 10458 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10459 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10460 if (!pages) 10461 return -ENOMEM; 10462 for (i = 0; i < nr_pages; i++) { 10463 pages[i] = alloc_page(GFP_NOFS); 10464 if (!pages[i]) { 10465 ret = -ENOMEM; 10466 goto out; 10467 } 10468 } 10469 10470 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10471 disk_io_size, pages); 10472 if (ret) 10473 goto out; 10474 10475 unlock_extent_cached(io_tree, start, lockend, cached_state); 10476 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10477 *unlocked = true; 10478 10479 if (compressed) { 10480 i = 0; 10481 page_offset = 0; 10482 } else { 10483 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10484 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10485 } 10486 cur = 0; 10487 while (cur < count) { 10488 size_t bytes = min_t(size_t, count - cur, 10489 PAGE_SIZE - page_offset); 10490 10491 if (copy_page_to_iter(pages[i], page_offset, bytes, 10492 iter) != bytes) { 10493 ret = -EFAULT; 10494 goto out; 10495 } 10496 i++; 10497 cur += bytes; 10498 page_offset = 0; 10499 } 10500 ret = count; 10501 out: 10502 for (i = 0; i < nr_pages; i++) { 10503 if (pages[i]) 10504 __free_page(pages[i]); 10505 } 10506 kfree(pages); 10507 return ret; 10508 } 10509 10510 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10511 struct btrfs_ioctl_encoded_io_args *encoded) 10512 { 10513 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10514 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10515 struct extent_io_tree *io_tree = &inode->io_tree; 10516 ssize_t ret; 10517 size_t count = iov_iter_count(iter); 10518 u64 start, lockend, disk_bytenr, disk_io_size; 10519 struct extent_state *cached_state = NULL; 10520 struct extent_map *em; 10521 bool unlocked = false; 10522 10523 file_accessed(iocb->ki_filp); 10524 10525 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10526 10527 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10528 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10529 return 0; 10530 } 10531 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10532 /* 10533 * We don't know how long the extent containing iocb->ki_pos is, but if 10534 * it's compressed we know that it won't be longer than this. 10535 */ 10536 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10537 10538 for (;;) { 10539 struct btrfs_ordered_extent *ordered; 10540 10541 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10542 lockend - start + 1); 10543 if (ret) 10544 goto out_unlock_inode; 10545 lock_extent_bits(io_tree, start, lockend, &cached_state); 10546 ordered = btrfs_lookup_ordered_range(inode, start, 10547 lockend - start + 1); 10548 if (!ordered) 10549 break; 10550 btrfs_put_ordered_extent(ordered); 10551 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10552 cond_resched(); 10553 } 10554 10555 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10556 if (IS_ERR(em)) { 10557 ret = PTR_ERR(em); 10558 goto out_unlock_extent; 10559 } 10560 10561 if (em->block_start == EXTENT_MAP_INLINE) { 10562 u64 extent_start = em->start; 10563 10564 /* 10565 * For inline extents we get everything we need out of the 10566 * extent item. 10567 */ 10568 free_extent_map(em); 10569 em = NULL; 10570 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10571 &cached_state, extent_start, 10572 count, encoded, &unlocked); 10573 goto out; 10574 } 10575 10576 /* 10577 * We only want to return up to EOF even if the extent extends beyond 10578 * that. 10579 */ 10580 encoded->len = min_t(u64, extent_map_end(em), 10581 inode->vfs_inode.i_size) - iocb->ki_pos; 10582 if (em->block_start == EXTENT_MAP_HOLE || 10583 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10584 disk_bytenr = EXTENT_MAP_HOLE; 10585 count = min_t(u64, count, encoded->len); 10586 encoded->len = count; 10587 encoded->unencoded_len = count; 10588 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10589 disk_bytenr = em->block_start; 10590 /* 10591 * Bail if the buffer isn't large enough to return the whole 10592 * compressed extent. 10593 */ 10594 if (em->block_len > count) { 10595 ret = -ENOBUFS; 10596 goto out_em; 10597 } 10598 disk_io_size = count = em->block_len; 10599 encoded->unencoded_len = em->ram_bytes; 10600 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10601 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10602 em->compress_type); 10603 if (ret < 0) 10604 goto out_em; 10605 encoded->compression = ret; 10606 } else { 10607 disk_bytenr = em->block_start + (start - em->start); 10608 if (encoded->len > count) 10609 encoded->len = count; 10610 /* 10611 * Don't read beyond what we locked. This also limits the page 10612 * allocations that we'll do. 10613 */ 10614 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10615 count = start + disk_io_size - iocb->ki_pos; 10616 encoded->len = count; 10617 encoded->unencoded_len = count; 10618 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10619 } 10620 free_extent_map(em); 10621 em = NULL; 10622 10623 if (disk_bytenr == EXTENT_MAP_HOLE) { 10624 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10625 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10626 unlocked = true; 10627 ret = iov_iter_zero(count, iter); 10628 if (ret != count) 10629 ret = -EFAULT; 10630 } else { 10631 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10632 &cached_state, disk_bytenr, 10633 disk_io_size, count, 10634 encoded->compression, 10635 &unlocked); 10636 } 10637 10638 out: 10639 if (ret >= 0) 10640 iocb->ki_pos += encoded->len; 10641 out_em: 10642 free_extent_map(em); 10643 out_unlock_extent: 10644 if (!unlocked) 10645 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10646 out_unlock_inode: 10647 if (!unlocked) 10648 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10649 return ret; 10650 } 10651 10652 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10653 const struct btrfs_ioctl_encoded_io_args *encoded) 10654 { 10655 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10656 struct btrfs_root *root = inode->root; 10657 struct btrfs_fs_info *fs_info = root->fs_info; 10658 struct extent_io_tree *io_tree = &inode->io_tree; 10659 struct extent_changeset *data_reserved = NULL; 10660 struct extent_state *cached_state = NULL; 10661 int compression; 10662 size_t orig_count; 10663 u64 start, end; 10664 u64 num_bytes, ram_bytes, disk_num_bytes; 10665 unsigned long nr_pages, i; 10666 struct page **pages; 10667 struct btrfs_key ins; 10668 bool extent_reserved = false; 10669 struct extent_map *em; 10670 ssize_t ret; 10671 10672 switch (encoded->compression) { 10673 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10674 compression = BTRFS_COMPRESS_ZLIB; 10675 break; 10676 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10677 compression = BTRFS_COMPRESS_ZSTD; 10678 break; 10679 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10680 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10681 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10682 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10683 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10684 /* The sector size must match for LZO. */ 10685 if (encoded->compression - 10686 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10687 fs_info->sectorsize_bits) 10688 return -EINVAL; 10689 compression = BTRFS_COMPRESS_LZO; 10690 break; 10691 default: 10692 return -EINVAL; 10693 } 10694 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10695 return -EINVAL; 10696 10697 orig_count = iov_iter_count(from); 10698 10699 /* The extent size must be sane. */ 10700 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10701 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10702 return -EINVAL; 10703 10704 /* 10705 * The compressed data must be smaller than the decompressed data. 10706 * 10707 * It's of course possible for data to compress to larger or the same 10708 * size, but the buffered I/O path falls back to no compression for such 10709 * data, and we don't want to break any assumptions by creating these 10710 * extents. 10711 * 10712 * Note that this is less strict than the current check we have that the 10713 * compressed data must be at least one sector smaller than the 10714 * decompressed data. We only want to enforce the weaker requirement 10715 * from old kernels that it is at least one byte smaller. 10716 */ 10717 if (orig_count >= encoded->unencoded_len) 10718 return -EINVAL; 10719 10720 /* The extent must start on a sector boundary. */ 10721 start = iocb->ki_pos; 10722 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10723 return -EINVAL; 10724 10725 /* 10726 * The extent must end on a sector boundary. However, we allow a write 10727 * which ends at or extends i_size to have an unaligned length; we round 10728 * up the extent size and set i_size to the unaligned end. 10729 */ 10730 if (start + encoded->len < inode->vfs_inode.i_size && 10731 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10732 return -EINVAL; 10733 10734 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10735 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10736 return -EINVAL; 10737 10738 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10739 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10740 end = start + num_bytes - 1; 10741 10742 /* 10743 * If the extent cannot be inline, the compressed data on disk must be 10744 * sector-aligned. For convenience, we extend it with zeroes if it 10745 * isn't. 10746 */ 10747 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10748 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10749 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10750 if (!pages) 10751 return -ENOMEM; 10752 for (i = 0; i < nr_pages; i++) { 10753 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10754 char *kaddr; 10755 10756 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10757 if (!pages[i]) { 10758 ret = -ENOMEM; 10759 goto out_pages; 10760 } 10761 kaddr = kmap(pages[i]); 10762 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10763 kunmap(pages[i]); 10764 ret = -EFAULT; 10765 goto out_pages; 10766 } 10767 if (bytes < PAGE_SIZE) 10768 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10769 kunmap(pages[i]); 10770 } 10771 10772 for (;;) { 10773 struct btrfs_ordered_extent *ordered; 10774 10775 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10776 if (ret) 10777 goto out_pages; 10778 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10779 start >> PAGE_SHIFT, 10780 end >> PAGE_SHIFT); 10781 if (ret) 10782 goto out_pages; 10783 lock_extent_bits(io_tree, start, end, &cached_state); 10784 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10785 if (!ordered && 10786 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10787 break; 10788 if (ordered) 10789 btrfs_put_ordered_extent(ordered); 10790 unlock_extent_cached(io_tree, start, end, &cached_state); 10791 cond_resched(); 10792 } 10793 10794 /* 10795 * We don't use the higher-level delalloc space functions because our 10796 * num_bytes and disk_num_bytes are different. 10797 */ 10798 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10799 if (ret) 10800 goto out_unlock; 10801 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10802 if (ret) 10803 goto out_free_data_space; 10804 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes); 10805 if (ret) 10806 goto out_qgroup_free_data; 10807 10808 /* Try an inline extent first. */ 10809 if (start == 0 && encoded->unencoded_len == encoded->len && 10810 encoded->unencoded_offset == 0) { 10811 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10812 compression, pages, true); 10813 if (ret <= 0) { 10814 if (ret == 0) 10815 ret = orig_count; 10816 goto out_delalloc_release; 10817 } 10818 } 10819 10820 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10821 disk_num_bytes, 0, 0, &ins, 1, 1); 10822 if (ret) 10823 goto out_delalloc_release; 10824 extent_reserved = true; 10825 10826 em = create_io_em(inode, start, num_bytes, 10827 start - encoded->unencoded_offset, ins.objectid, 10828 ins.offset, ins.offset, ram_bytes, compression, 10829 BTRFS_ORDERED_COMPRESSED); 10830 if (IS_ERR(em)) { 10831 ret = PTR_ERR(em); 10832 goto out_free_reserved; 10833 } 10834 free_extent_map(em); 10835 10836 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, 10837 ins.objectid, ins.offset, 10838 encoded->unencoded_offset, 10839 (1 << BTRFS_ORDERED_ENCODED) | 10840 (1 << BTRFS_ORDERED_COMPRESSED), 10841 compression); 10842 if (ret) { 10843 btrfs_drop_extent_cache(inode, start, end, 0); 10844 goto out_free_reserved; 10845 } 10846 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10847 10848 if (start + encoded->len > inode->vfs_inode.i_size) 10849 i_size_write(&inode->vfs_inode, start + encoded->len); 10850 10851 unlock_extent_cached(io_tree, start, end, &cached_state); 10852 10853 btrfs_delalloc_release_extents(inode, num_bytes); 10854 10855 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, 10856 ins.offset, pages, nr_pages, 0, NULL, 10857 false)) { 10858 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0); 10859 ret = -EIO; 10860 goto out_pages; 10861 } 10862 ret = orig_count; 10863 goto out; 10864 10865 out_free_reserved: 10866 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10867 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10868 out_delalloc_release: 10869 btrfs_delalloc_release_extents(inode, num_bytes); 10870 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10871 out_qgroup_free_data: 10872 if (ret < 0) 10873 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10874 out_free_data_space: 10875 /* 10876 * If btrfs_reserve_extent() succeeded, then we already decremented 10877 * bytes_may_use. 10878 */ 10879 if (!extent_reserved) 10880 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10881 out_unlock: 10882 unlock_extent_cached(io_tree, start, end, &cached_state); 10883 out_pages: 10884 for (i = 0; i < nr_pages; i++) { 10885 if (pages[i]) 10886 __free_page(pages[i]); 10887 } 10888 kvfree(pages); 10889 out: 10890 if (ret >= 0) 10891 iocb->ki_pos += encoded->len; 10892 return ret; 10893 } 10894 10895 #ifdef CONFIG_SWAP 10896 /* 10897 * Add an entry indicating a block group or device which is pinned by a 10898 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10899 * negative errno on failure. 10900 */ 10901 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10902 bool is_block_group) 10903 { 10904 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10905 struct btrfs_swapfile_pin *sp, *entry; 10906 struct rb_node **p; 10907 struct rb_node *parent = NULL; 10908 10909 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10910 if (!sp) 10911 return -ENOMEM; 10912 sp->ptr = ptr; 10913 sp->inode = inode; 10914 sp->is_block_group = is_block_group; 10915 sp->bg_extent_count = 1; 10916 10917 spin_lock(&fs_info->swapfile_pins_lock); 10918 p = &fs_info->swapfile_pins.rb_node; 10919 while (*p) { 10920 parent = *p; 10921 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10922 if (sp->ptr < entry->ptr || 10923 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10924 p = &(*p)->rb_left; 10925 } else if (sp->ptr > entry->ptr || 10926 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10927 p = &(*p)->rb_right; 10928 } else { 10929 if (is_block_group) 10930 entry->bg_extent_count++; 10931 spin_unlock(&fs_info->swapfile_pins_lock); 10932 kfree(sp); 10933 return 1; 10934 } 10935 } 10936 rb_link_node(&sp->node, parent, p); 10937 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10938 spin_unlock(&fs_info->swapfile_pins_lock); 10939 return 0; 10940 } 10941 10942 /* Free all of the entries pinned by this swapfile. */ 10943 static void btrfs_free_swapfile_pins(struct inode *inode) 10944 { 10945 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10946 struct btrfs_swapfile_pin *sp; 10947 struct rb_node *node, *next; 10948 10949 spin_lock(&fs_info->swapfile_pins_lock); 10950 node = rb_first(&fs_info->swapfile_pins); 10951 while (node) { 10952 next = rb_next(node); 10953 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10954 if (sp->inode == inode) { 10955 rb_erase(&sp->node, &fs_info->swapfile_pins); 10956 if (sp->is_block_group) { 10957 btrfs_dec_block_group_swap_extents(sp->ptr, 10958 sp->bg_extent_count); 10959 btrfs_put_block_group(sp->ptr); 10960 } 10961 kfree(sp); 10962 } 10963 node = next; 10964 } 10965 spin_unlock(&fs_info->swapfile_pins_lock); 10966 } 10967 10968 struct btrfs_swap_info { 10969 u64 start; 10970 u64 block_start; 10971 u64 block_len; 10972 u64 lowest_ppage; 10973 u64 highest_ppage; 10974 unsigned long nr_pages; 10975 int nr_extents; 10976 }; 10977 10978 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10979 struct btrfs_swap_info *bsi) 10980 { 10981 unsigned long nr_pages; 10982 unsigned long max_pages; 10983 u64 first_ppage, first_ppage_reported, next_ppage; 10984 int ret; 10985 10986 /* 10987 * Our swapfile may have had its size extended after the swap header was 10988 * written. In that case activating the swapfile should not go beyond 10989 * the max size set in the swap header. 10990 */ 10991 if (bsi->nr_pages >= sis->max) 10992 return 0; 10993 10994 max_pages = sis->max - bsi->nr_pages; 10995 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10996 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10997 PAGE_SIZE) >> PAGE_SHIFT; 10998 10999 if (first_ppage >= next_ppage) 11000 return 0; 11001 nr_pages = next_ppage - first_ppage; 11002 nr_pages = min(nr_pages, max_pages); 11003 11004 first_ppage_reported = first_ppage; 11005 if (bsi->start == 0) 11006 first_ppage_reported++; 11007 if (bsi->lowest_ppage > first_ppage_reported) 11008 bsi->lowest_ppage = first_ppage_reported; 11009 if (bsi->highest_ppage < (next_ppage - 1)) 11010 bsi->highest_ppage = next_ppage - 1; 11011 11012 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 11013 if (ret < 0) 11014 return ret; 11015 bsi->nr_extents += ret; 11016 bsi->nr_pages += nr_pages; 11017 return 0; 11018 } 11019 11020 static void btrfs_swap_deactivate(struct file *file) 11021 { 11022 struct inode *inode = file_inode(file); 11023 11024 btrfs_free_swapfile_pins(inode); 11025 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 11026 } 11027 11028 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11029 sector_t *span) 11030 { 11031 struct inode *inode = file_inode(file); 11032 struct btrfs_root *root = BTRFS_I(inode)->root; 11033 struct btrfs_fs_info *fs_info = root->fs_info; 11034 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 11035 struct extent_state *cached_state = NULL; 11036 struct extent_map *em = NULL; 11037 struct btrfs_device *device = NULL; 11038 struct btrfs_swap_info bsi = { 11039 .lowest_ppage = (sector_t)-1ULL, 11040 }; 11041 int ret = 0; 11042 u64 isize; 11043 u64 start; 11044 11045 /* 11046 * If the swap file was just created, make sure delalloc is done. If the 11047 * file changes again after this, the user is doing something stupid and 11048 * we don't really care. 11049 */ 11050 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 11051 if (ret) 11052 return ret; 11053 11054 /* 11055 * The inode is locked, so these flags won't change after we check them. 11056 */ 11057 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 11058 btrfs_warn(fs_info, "swapfile must not be compressed"); 11059 return -EINVAL; 11060 } 11061 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 11062 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 11063 return -EINVAL; 11064 } 11065 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 11066 btrfs_warn(fs_info, "swapfile must not be checksummed"); 11067 return -EINVAL; 11068 } 11069 11070 /* 11071 * Balance or device remove/replace/resize can move stuff around from 11072 * under us. The exclop protection makes sure they aren't running/won't 11073 * run concurrently while we are mapping the swap extents, and 11074 * fs_info->swapfile_pins prevents them from running while the swap 11075 * file is active and moving the extents. Note that this also prevents 11076 * a concurrent device add which isn't actually necessary, but it's not 11077 * really worth the trouble to allow it. 11078 */ 11079 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 11080 btrfs_warn(fs_info, 11081 "cannot activate swapfile while exclusive operation is running"); 11082 return -EBUSY; 11083 } 11084 11085 /* 11086 * Prevent snapshot creation while we are activating the swap file. 11087 * We do not want to race with snapshot creation. If snapshot creation 11088 * already started before we bumped nr_swapfiles from 0 to 1 and 11089 * completes before the first write into the swap file after it is 11090 * activated, than that write would fallback to COW. 11091 */ 11092 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 11093 btrfs_exclop_finish(fs_info); 11094 btrfs_warn(fs_info, 11095 "cannot activate swapfile because snapshot creation is in progress"); 11096 return -EINVAL; 11097 } 11098 /* 11099 * Snapshots can create extents which require COW even if NODATACOW is 11100 * set. We use this counter to prevent snapshots. We must increment it 11101 * before walking the extents because we don't want a concurrent 11102 * snapshot to run after we've already checked the extents. 11103 * 11104 * It is possible that subvolume is marked for deletion but still not 11105 * removed yet. To prevent this race, we check the root status before 11106 * activating the swapfile. 11107 */ 11108 spin_lock(&root->root_item_lock); 11109 if (btrfs_root_dead(root)) { 11110 spin_unlock(&root->root_item_lock); 11111 11112 btrfs_exclop_finish(fs_info); 11113 btrfs_warn(fs_info, 11114 "cannot activate swapfile because subvolume %llu is being deleted", 11115 root->root_key.objectid); 11116 return -EPERM; 11117 } 11118 atomic_inc(&root->nr_swapfiles); 11119 spin_unlock(&root->root_item_lock); 11120 11121 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 11122 11123 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 11124 start = 0; 11125 while (start < isize) { 11126 u64 logical_block_start, physical_block_start; 11127 struct btrfs_block_group *bg; 11128 u64 len = isize - start; 11129 11130 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 11131 if (IS_ERR(em)) { 11132 ret = PTR_ERR(em); 11133 goto out; 11134 } 11135 11136 if (em->block_start == EXTENT_MAP_HOLE) { 11137 btrfs_warn(fs_info, "swapfile must not have holes"); 11138 ret = -EINVAL; 11139 goto out; 11140 } 11141 if (em->block_start == EXTENT_MAP_INLINE) { 11142 /* 11143 * It's unlikely we'll ever actually find ourselves 11144 * here, as a file small enough to fit inline won't be 11145 * big enough to store more than the swap header, but in 11146 * case something changes in the future, let's catch it 11147 * here rather than later. 11148 */ 11149 btrfs_warn(fs_info, "swapfile must not be inline"); 11150 ret = -EINVAL; 11151 goto out; 11152 } 11153 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 11154 btrfs_warn(fs_info, "swapfile must not be compressed"); 11155 ret = -EINVAL; 11156 goto out; 11157 } 11158 11159 logical_block_start = em->block_start + (start - em->start); 11160 len = min(len, em->len - (start - em->start)); 11161 free_extent_map(em); 11162 em = NULL; 11163 11164 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 11165 if (ret < 0) { 11166 goto out; 11167 } else if (ret) { 11168 ret = 0; 11169 } else { 11170 btrfs_warn(fs_info, 11171 "swapfile must not be copy-on-write"); 11172 ret = -EINVAL; 11173 goto out; 11174 } 11175 11176 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 11177 if (IS_ERR(em)) { 11178 ret = PTR_ERR(em); 11179 goto out; 11180 } 11181 11182 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 11183 btrfs_warn(fs_info, 11184 "swapfile must have single data profile"); 11185 ret = -EINVAL; 11186 goto out; 11187 } 11188 11189 if (device == NULL) { 11190 device = em->map_lookup->stripes[0].dev; 11191 ret = btrfs_add_swapfile_pin(inode, device, false); 11192 if (ret == 1) 11193 ret = 0; 11194 else if (ret) 11195 goto out; 11196 } else if (device != em->map_lookup->stripes[0].dev) { 11197 btrfs_warn(fs_info, "swapfile must be on one device"); 11198 ret = -EINVAL; 11199 goto out; 11200 } 11201 11202 physical_block_start = (em->map_lookup->stripes[0].physical + 11203 (logical_block_start - em->start)); 11204 len = min(len, em->len - (logical_block_start - em->start)); 11205 free_extent_map(em); 11206 em = NULL; 11207 11208 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 11209 if (!bg) { 11210 btrfs_warn(fs_info, 11211 "could not find block group containing swapfile"); 11212 ret = -EINVAL; 11213 goto out; 11214 } 11215 11216 if (!btrfs_inc_block_group_swap_extents(bg)) { 11217 btrfs_warn(fs_info, 11218 "block group for swapfile at %llu is read-only%s", 11219 bg->start, 11220 atomic_read(&fs_info->scrubs_running) ? 11221 " (scrub running)" : ""); 11222 btrfs_put_block_group(bg); 11223 ret = -EINVAL; 11224 goto out; 11225 } 11226 11227 ret = btrfs_add_swapfile_pin(inode, bg, true); 11228 if (ret) { 11229 btrfs_put_block_group(bg); 11230 if (ret == 1) 11231 ret = 0; 11232 else 11233 goto out; 11234 } 11235 11236 if (bsi.block_len && 11237 bsi.block_start + bsi.block_len == physical_block_start) { 11238 bsi.block_len += len; 11239 } else { 11240 if (bsi.block_len) { 11241 ret = btrfs_add_swap_extent(sis, &bsi); 11242 if (ret) 11243 goto out; 11244 } 11245 bsi.start = start; 11246 bsi.block_start = physical_block_start; 11247 bsi.block_len = len; 11248 } 11249 11250 start += len; 11251 } 11252 11253 if (bsi.block_len) 11254 ret = btrfs_add_swap_extent(sis, &bsi); 11255 11256 out: 11257 if (!IS_ERR_OR_NULL(em)) 11258 free_extent_map(em); 11259 11260 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 11261 11262 if (ret) 11263 btrfs_swap_deactivate(file); 11264 11265 btrfs_drew_write_unlock(&root->snapshot_lock); 11266 11267 btrfs_exclop_finish(fs_info); 11268 11269 if (ret) 11270 return ret; 11271 11272 if (device) 11273 sis->bdev = device->bdev; 11274 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 11275 sis->max = bsi.nr_pages; 11276 sis->pages = bsi.nr_pages - 1; 11277 sis->highest_bit = bsi.nr_pages - 1; 11278 return bsi.nr_extents; 11279 } 11280 #else 11281 static void btrfs_swap_deactivate(struct file *file) 11282 { 11283 } 11284 11285 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11286 sector_t *span) 11287 { 11288 return -EOPNOTSUPP; 11289 } 11290 #endif 11291 11292 /* 11293 * Update the number of bytes used in the VFS' inode. When we replace extents in 11294 * a range (clone, dedupe, fallocate's zero range), we must update the number of 11295 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 11296 * always get a correct value. 11297 */ 11298 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 11299 const u64 add_bytes, 11300 const u64 del_bytes) 11301 { 11302 if (add_bytes == del_bytes) 11303 return; 11304 11305 spin_lock(&inode->lock); 11306 if (del_bytes > 0) 11307 inode_sub_bytes(&inode->vfs_inode, del_bytes); 11308 if (add_bytes > 0) 11309 inode_add_bytes(&inode->vfs_inode, add_bytes); 11310 spin_unlock(&inode->lock); 11311 } 11312 11313 static const struct inode_operations btrfs_dir_inode_operations = { 11314 .getattr = btrfs_getattr, 11315 .lookup = btrfs_lookup, 11316 .create = btrfs_create, 11317 .unlink = btrfs_unlink, 11318 .link = btrfs_link, 11319 .mkdir = btrfs_mkdir, 11320 .rmdir = btrfs_rmdir, 11321 .rename = btrfs_rename2, 11322 .symlink = btrfs_symlink, 11323 .setattr = btrfs_setattr, 11324 .mknod = btrfs_mknod, 11325 .listxattr = btrfs_listxattr, 11326 .permission = btrfs_permission, 11327 .get_acl = btrfs_get_acl, 11328 .set_acl = btrfs_set_acl, 11329 .update_time = btrfs_update_time, 11330 .tmpfile = btrfs_tmpfile, 11331 .fileattr_get = btrfs_fileattr_get, 11332 .fileattr_set = btrfs_fileattr_set, 11333 }; 11334 11335 static const struct file_operations btrfs_dir_file_operations = { 11336 .llseek = generic_file_llseek, 11337 .read = generic_read_dir, 11338 .iterate_shared = btrfs_real_readdir, 11339 .open = btrfs_opendir, 11340 .unlocked_ioctl = btrfs_ioctl, 11341 #ifdef CONFIG_COMPAT 11342 .compat_ioctl = btrfs_compat_ioctl, 11343 #endif 11344 .release = btrfs_release_file, 11345 .fsync = btrfs_sync_file, 11346 }; 11347 11348 /* 11349 * btrfs doesn't support the bmap operation because swapfiles 11350 * use bmap to make a mapping of extents in the file. They assume 11351 * these extents won't change over the life of the file and they 11352 * use the bmap result to do IO directly to the drive. 11353 * 11354 * the btrfs bmap call would return logical addresses that aren't 11355 * suitable for IO and they also will change frequently as COW 11356 * operations happen. So, swapfile + btrfs == corruption. 11357 * 11358 * For now we're avoiding this by dropping bmap. 11359 */ 11360 static const struct address_space_operations btrfs_aops = { 11361 .read_folio = btrfs_read_folio, 11362 .writepage = btrfs_writepage, 11363 .writepages = btrfs_writepages, 11364 .readahead = btrfs_readahead, 11365 .direct_IO = noop_direct_IO, 11366 .invalidate_folio = btrfs_invalidate_folio, 11367 .releasepage = btrfs_releasepage, 11368 #ifdef CONFIG_MIGRATION 11369 .migratepage = btrfs_migratepage, 11370 #endif 11371 .dirty_folio = filemap_dirty_folio, 11372 .error_remove_page = generic_error_remove_page, 11373 .swap_activate = btrfs_swap_activate, 11374 .swap_deactivate = btrfs_swap_deactivate, 11375 }; 11376 11377 static const struct inode_operations btrfs_file_inode_operations = { 11378 .getattr = btrfs_getattr, 11379 .setattr = btrfs_setattr, 11380 .listxattr = btrfs_listxattr, 11381 .permission = btrfs_permission, 11382 .fiemap = btrfs_fiemap, 11383 .get_acl = btrfs_get_acl, 11384 .set_acl = btrfs_set_acl, 11385 .update_time = btrfs_update_time, 11386 .fileattr_get = btrfs_fileattr_get, 11387 .fileattr_set = btrfs_fileattr_set, 11388 }; 11389 static const struct inode_operations btrfs_special_inode_operations = { 11390 .getattr = btrfs_getattr, 11391 .setattr = btrfs_setattr, 11392 .permission = btrfs_permission, 11393 .listxattr = btrfs_listxattr, 11394 .get_acl = btrfs_get_acl, 11395 .set_acl = btrfs_set_acl, 11396 .update_time = btrfs_update_time, 11397 }; 11398 static const struct inode_operations btrfs_symlink_inode_operations = { 11399 .get_link = page_get_link, 11400 .getattr = btrfs_getattr, 11401 .setattr = btrfs_setattr, 11402 .permission = btrfs_permission, 11403 .listxattr = btrfs_listxattr, 11404 .update_time = btrfs_update_time, 11405 }; 11406 11407 const struct dentry_operations btrfs_dentry_operations = { 11408 .d_delete = btrfs_dentry_delete, 11409 }; 11410