1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0) 76 #define COW_FILE_RANGE_NO_INLINE (1UL << 1) 77 78 struct btrfs_iget_args { 79 u64 ino; 80 struct btrfs_root *root; 81 }; 82 83 struct btrfs_rename_ctx { 84 /* Output field. Stores the index number of the old directory entry. */ 85 u64 index; 86 }; 87 88 /* 89 * Used by data_reloc_print_warning_inode() to pass needed info for filename 90 * resolution and output of error message. 91 */ 92 struct data_reloc_warn { 93 struct btrfs_path path; 94 struct btrfs_fs_info *fs_info; 95 u64 extent_item_size; 96 u64 logical; 97 int mirror_num; 98 }; 99 100 /* 101 * For the file_extent_tree, we want to hold the inode lock when we lookup and 102 * update the disk_i_size, but lockdep will complain because our io_tree we hold 103 * the tree lock and get the inode lock when setting delalloc. These two things 104 * are unrelated, so make a class for the file_extent_tree so we don't get the 105 * two locking patterns mixed up. 106 */ 107 static struct lock_class_key file_extent_tree_class; 108 109 static const struct inode_operations btrfs_dir_inode_operations; 110 static const struct inode_operations btrfs_symlink_inode_operations; 111 static const struct inode_operations btrfs_special_inode_operations; 112 static const struct inode_operations btrfs_file_inode_operations; 113 static const struct address_space_operations btrfs_aops; 114 static const struct file_operations btrfs_dir_file_operations; 115 116 static struct kmem_cache *btrfs_inode_cachep; 117 118 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 119 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 120 121 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 122 struct folio *locked_folio, u64 start, 123 u64 end, struct writeback_control *wbc, 124 bool pages_dirty); 125 126 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 127 u64 root, void *warn_ctx) 128 { 129 struct data_reloc_warn *warn = warn_ctx; 130 struct btrfs_fs_info *fs_info = warn->fs_info; 131 struct extent_buffer *eb; 132 struct btrfs_inode_item *inode_item; 133 struct inode_fs_paths *ipath = NULL; 134 struct btrfs_root *local_root; 135 struct btrfs_key key; 136 unsigned int nofs_flag; 137 u32 nlink; 138 int ret; 139 140 local_root = btrfs_get_fs_root(fs_info, root, true); 141 if (IS_ERR(local_root)) { 142 ret = PTR_ERR(local_root); 143 goto err; 144 } 145 146 /* This makes the path point to (inum INODE_ITEM ioff). */ 147 key.objectid = inum; 148 key.type = BTRFS_INODE_ITEM_KEY; 149 key.offset = 0; 150 151 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 152 if (ret) { 153 btrfs_put_root(local_root); 154 btrfs_release_path(&warn->path); 155 goto err; 156 } 157 158 eb = warn->path.nodes[0]; 159 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 160 nlink = btrfs_inode_nlink(eb, inode_item); 161 btrfs_release_path(&warn->path); 162 163 nofs_flag = memalloc_nofs_save(); 164 ipath = init_ipath(4096, local_root, &warn->path); 165 memalloc_nofs_restore(nofs_flag); 166 if (IS_ERR(ipath)) { 167 btrfs_put_root(local_root); 168 ret = PTR_ERR(ipath); 169 ipath = NULL; 170 /* 171 * -ENOMEM, not a critical error, just output an generic error 172 * without filename. 173 */ 174 btrfs_warn(fs_info, 175 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 176 warn->logical, warn->mirror_num, root, inum, offset); 177 return ret; 178 } 179 ret = paths_from_inode(inum, ipath); 180 if (ret < 0) { 181 btrfs_put_root(local_root); 182 goto err; 183 } 184 185 /* 186 * We deliberately ignore the bit ipath might have been too small to 187 * hold all of the paths here 188 */ 189 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 190 btrfs_warn(fs_info, 191 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 192 warn->logical, warn->mirror_num, root, inum, offset, 193 fs_info->sectorsize, nlink, 194 (char *)(unsigned long)ipath->fspath->val[i]); 195 } 196 197 btrfs_put_root(local_root); 198 free_ipath(ipath); 199 return 0; 200 201 err: 202 btrfs_warn(fs_info, 203 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 204 warn->logical, warn->mirror_num, root, inum, offset, ret); 205 206 free_ipath(ipath); 207 return ret; 208 } 209 210 /* 211 * Do extra user-friendly error output (e.g. lookup all the affected files). 212 * 213 * Return true if we succeeded doing the backref lookup. 214 * Return false if such lookup failed, and has to fallback to the old error message. 215 */ 216 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 217 const u8 *csum, const u8 *csum_expected, 218 int mirror_num) 219 { 220 struct btrfs_fs_info *fs_info = inode->root->fs_info; 221 struct btrfs_path path = { 0 }; 222 struct btrfs_key found_key = { 0 }; 223 struct extent_buffer *eb; 224 struct btrfs_extent_item *ei; 225 const u32 csum_size = fs_info->csum_size; 226 u64 logical; 227 u64 flags; 228 u32 item_size; 229 int ret; 230 231 mutex_lock(&fs_info->reloc_mutex); 232 logical = btrfs_get_reloc_bg_bytenr(fs_info); 233 mutex_unlock(&fs_info->reloc_mutex); 234 235 if (logical == U64_MAX) { 236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 237 btrfs_warn_rl(fs_info, 238 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 240 CSUM_FMT_VALUE(csum_size, csum), 241 CSUM_FMT_VALUE(csum_size, csum_expected), 242 mirror_num); 243 return; 244 } 245 246 logical += file_off; 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 249 btrfs_root_id(inode->root), 250 btrfs_ino(inode), file_off, logical, 251 CSUM_FMT_VALUE(csum_size, csum), 252 CSUM_FMT_VALUE(csum_size, csum_expected), 253 mirror_num); 254 255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 256 if (ret < 0) { 257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 258 logical, ret); 259 return; 260 } 261 eb = path.nodes[0]; 262 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 263 item_size = btrfs_item_size(eb, path.slots[0]); 264 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 265 unsigned long ptr = 0; 266 u64 ref_root; 267 u8 ref_level; 268 269 while (true) { 270 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 271 item_size, &ref_root, 272 &ref_level); 273 if (ret < 0) { 274 btrfs_warn_rl(fs_info, 275 "failed to resolve tree backref for logical %llu: %d", 276 logical, ret); 277 break; 278 } 279 if (ret > 0) 280 break; 281 282 btrfs_warn_rl(fs_info, 283 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 284 logical, mirror_num, 285 (ref_level ? "node" : "leaf"), 286 ref_level, ref_root); 287 } 288 btrfs_release_path(&path); 289 } else { 290 struct btrfs_backref_walk_ctx ctx = { 0 }; 291 struct data_reloc_warn reloc_warn = { 0 }; 292 293 btrfs_release_path(&path); 294 295 ctx.bytenr = found_key.objectid; 296 ctx.extent_item_pos = logical - found_key.objectid; 297 ctx.fs_info = fs_info; 298 299 reloc_warn.logical = logical; 300 reloc_warn.extent_item_size = found_key.offset; 301 reloc_warn.mirror_num = mirror_num; 302 reloc_warn.fs_info = fs_info; 303 304 iterate_extent_inodes(&ctx, true, 305 data_reloc_print_warning_inode, &reloc_warn); 306 } 307 } 308 309 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 310 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 311 { 312 struct btrfs_root *root = inode->root; 313 const u32 csum_size = root->fs_info->csum_size; 314 315 /* For data reloc tree, it's better to do a backref lookup instead. */ 316 if (btrfs_is_data_reloc_root(root)) 317 return print_data_reloc_error(inode, logical_start, csum, 318 csum_expected, mirror_num); 319 320 /* Output without objectid, which is more meaningful */ 321 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 322 btrfs_warn_rl(root->fs_info, 323 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 324 btrfs_root_id(root), btrfs_ino(inode), 325 logical_start, 326 CSUM_FMT_VALUE(csum_size, csum), 327 CSUM_FMT_VALUE(csum_size, csum_expected), 328 mirror_num); 329 } else { 330 btrfs_warn_rl(root->fs_info, 331 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 332 btrfs_root_id(root), btrfs_ino(inode), 333 logical_start, 334 CSUM_FMT_VALUE(csum_size, csum), 335 CSUM_FMT_VALUE(csum_size, csum_expected), 336 mirror_num); 337 } 338 } 339 340 /* 341 * Lock inode i_rwsem based on arguments passed. 342 * 343 * ilock_flags can have the following bit set: 344 * 345 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 346 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 347 * return -EAGAIN 348 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 349 */ 350 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 351 { 352 if (ilock_flags & BTRFS_ILOCK_SHARED) { 353 if (ilock_flags & BTRFS_ILOCK_TRY) { 354 if (!inode_trylock_shared(&inode->vfs_inode)) 355 return -EAGAIN; 356 else 357 return 0; 358 } 359 inode_lock_shared(&inode->vfs_inode); 360 } else { 361 if (ilock_flags & BTRFS_ILOCK_TRY) { 362 if (!inode_trylock(&inode->vfs_inode)) 363 return -EAGAIN; 364 else 365 return 0; 366 } 367 inode_lock(&inode->vfs_inode); 368 } 369 if (ilock_flags & BTRFS_ILOCK_MMAP) 370 down_write(&inode->i_mmap_lock); 371 return 0; 372 } 373 374 /* 375 * Unlock inode i_rwsem. 376 * 377 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 378 * to decide whether the lock acquired is shared or exclusive. 379 */ 380 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 381 { 382 if (ilock_flags & BTRFS_ILOCK_MMAP) 383 up_write(&inode->i_mmap_lock); 384 if (ilock_flags & BTRFS_ILOCK_SHARED) 385 inode_unlock_shared(&inode->vfs_inode); 386 else 387 inode_unlock(&inode->vfs_inode); 388 } 389 390 /* 391 * Cleanup all submitted ordered extents in specified range to handle errors 392 * from the btrfs_run_delalloc_range() callback. 393 * 394 * NOTE: caller must ensure that when an error happens, it can not call 395 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 396 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 397 * to be released, which we want to happen only when finishing the ordered 398 * extent (btrfs_finish_ordered_io()). 399 */ 400 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 401 u64 offset, u64 bytes) 402 { 403 pgoff_t index = offset >> PAGE_SHIFT; 404 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 405 struct folio *folio; 406 407 while (index <= end_index) { 408 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 409 if (IS_ERR(folio)) { 410 index++; 411 continue; 412 } 413 414 index = folio_end(folio) >> PAGE_SHIFT; 415 /* 416 * Here we just clear all Ordered bits for every page in the 417 * range, then btrfs_mark_ordered_io_finished() will handle 418 * the ordered extent accounting for the range. 419 */ 420 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 421 offset, bytes); 422 folio_put(folio); 423 } 424 425 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 426 } 427 428 static int btrfs_dirty_inode(struct btrfs_inode *inode); 429 430 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 431 struct btrfs_new_inode_args *args) 432 { 433 int ret; 434 435 if (args->default_acl) { 436 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 437 ACL_TYPE_DEFAULT); 438 if (ret) 439 return ret; 440 } 441 if (args->acl) { 442 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 443 if (ret) 444 return ret; 445 } 446 if (!args->default_acl && !args->acl) 447 cache_no_acl(args->inode); 448 return btrfs_xattr_security_init(trans, args->inode, args->dir, 449 &args->dentry->d_name); 450 } 451 452 /* 453 * this does all the hard work for inserting an inline extent into 454 * the btree. The caller should have done a btrfs_drop_extents so that 455 * no overlapping inline items exist in the btree 456 */ 457 static int insert_inline_extent(struct btrfs_trans_handle *trans, 458 struct btrfs_path *path, 459 struct btrfs_inode *inode, bool extent_inserted, 460 size_t size, size_t compressed_size, 461 int compress_type, 462 struct folio *compressed_folio, 463 bool update_i_size) 464 { 465 struct btrfs_root *root = inode->root; 466 struct extent_buffer *leaf; 467 const u32 sectorsize = trans->fs_info->sectorsize; 468 char *kaddr; 469 unsigned long ptr; 470 struct btrfs_file_extent_item *ei; 471 int ret; 472 size_t cur_size = size; 473 u64 i_size; 474 475 /* 476 * The decompressed size must still be no larger than a sector. Under 477 * heavy race, we can have size == 0 passed in, but that shouldn't be a 478 * big deal and we can continue the insertion. 479 */ 480 ASSERT(size <= sectorsize); 481 482 /* 483 * The compressed size also needs to be no larger than a sector. 484 * That's also why we only need one page as the parameter. 485 */ 486 if (compressed_folio) 487 ASSERT(compressed_size <= sectorsize); 488 else 489 ASSERT(compressed_size == 0); 490 491 if (compressed_size && compressed_folio) 492 cur_size = compressed_size; 493 494 if (!extent_inserted) { 495 struct btrfs_key key; 496 size_t datasize; 497 498 key.objectid = btrfs_ino(inode); 499 key.type = BTRFS_EXTENT_DATA_KEY; 500 key.offset = 0; 501 502 datasize = btrfs_file_extent_calc_inline_size(cur_size); 503 ret = btrfs_insert_empty_item(trans, root, path, &key, 504 datasize); 505 if (ret) 506 goto fail; 507 } 508 leaf = path->nodes[0]; 509 ei = btrfs_item_ptr(leaf, path->slots[0], 510 struct btrfs_file_extent_item); 511 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 512 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 513 btrfs_set_file_extent_encryption(leaf, ei, 0); 514 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 515 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 516 ptr = btrfs_file_extent_inline_start(ei); 517 518 if (compress_type != BTRFS_COMPRESS_NONE) { 519 kaddr = kmap_local_folio(compressed_folio, 0); 520 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 521 kunmap_local(kaddr); 522 523 btrfs_set_file_extent_compression(leaf, ei, 524 compress_type); 525 } else { 526 struct folio *folio; 527 528 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 529 ASSERT(!IS_ERR(folio)); 530 btrfs_set_file_extent_compression(leaf, ei, 0); 531 kaddr = kmap_local_folio(folio, 0); 532 write_extent_buffer(leaf, kaddr, ptr, size); 533 kunmap_local(kaddr); 534 folio_put(folio); 535 } 536 btrfs_release_path(path); 537 538 /* 539 * We align size to sectorsize for inline extents just for simplicity 540 * sake. 541 */ 542 ret = btrfs_inode_set_file_extent_range(inode, 0, 543 ALIGN(size, root->fs_info->sectorsize)); 544 if (ret) 545 goto fail; 546 547 /* 548 * We're an inline extent, so nobody can extend the file past i_size 549 * without locking a page we already have locked. 550 * 551 * We must do any i_size and inode updates before we unlock the pages. 552 * Otherwise we could end up racing with unlink. 553 */ 554 i_size = i_size_read(&inode->vfs_inode); 555 if (update_i_size && size > i_size) { 556 i_size_write(&inode->vfs_inode, size); 557 i_size = size; 558 } 559 inode->disk_i_size = i_size; 560 561 fail: 562 return ret; 563 } 564 565 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 566 u64 offset, u64 size, 567 size_t compressed_size) 568 { 569 struct btrfs_fs_info *fs_info = inode->root->fs_info; 570 u64 data_len = (compressed_size ?: size); 571 572 /* Inline extents must start at offset 0. */ 573 if (offset != 0) 574 return false; 575 576 /* Inline extents are limited to sectorsize. */ 577 if (size > fs_info->sectorsize) 578 return false; 579 580 /* We do not allow a non-compressed extent to be as large as block size. */ 581 if (data_len >= fs_info->sectorsize) 582 return false; 583 584 /* We cannot exceed the maximum inline data size. */ 585 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 586 return false; 587 588 /* We cannot exceed the user specified max_inline size. */ 589 if (data_len > fs_info->max_inline) 590 return false; 591 592 /* Inline extents must be the entirety of the file. */ 593 if (size < i_size_read(&inode->vfs_inode)) 594 return false; 595 596 return true; 597 } 598 599 /* 600 * conditionally insert an inline extent into the file. This 601 * does the checks required to make sure the data is small enough 602 * to fit as an inline extent. 603 * 604 * If being used directly, you must have already checked we're allowed to cow 605 * the range by getting true from can_cow_file_range_inline(). 606 */ 607 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 608 u64 size, size_t compressed_size, 609 int compress_type, 610 struct folio *compressed_folio, 611 bool update_i_size) 612 { 613 struct btrfs_drop_extents_args drop_args = { 0 }; 614 struct btrfs_root *root = inode->root; 615 struct btrfs_fs_info *fs_info = root->fs_info; 616 struct btrfs_trans_handle *trans; 617 u64 data_len = (compressed_size ?: size); 618 int ret; 619 struct btrfs_path *path; 620 621 path = btrfs_alloc_path(); 622 if (!path) 623 return -ENOMEM; 624 625 trans = btrfs_join_transaction(root); 626 if (IS_ERR(trans)) { 627 btrfs_free_path(path); 628 return PTR_ERR(trans); 629 } 630 trans->block_rsv = &inode->block_rsv; 631 632 drop_args.path = path; 633 drop_args.start = 0; 634 drop_args.end = fs_info->sectorsize; 635 drop_args.drop_cache = true; 636 drop_args.replace_extent = true; 637 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 638 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 639 if (unlikely(ret)) { 640 btrfs_abort_transaction(trans, ret); 641 goto out; 642 } 643 644 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 645 size, compressed_size, compress_type, 646 compressed_folio, update_i_size); 647 if (unlikely(ret && ret != -ENOSPC)) { 648 btrfs_abort_transaction(trans, ret); 649 goto out; 650 } else if (ret == -ENOSPC) { 651 ret = 1; 652 goto out; 653 } 654 655 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 656 ret = btrfs_update_inode(trans, inode); 657 if (unlikely(ret && ret != -ENOSPC)) { 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } else if (ret == -ENOSPC) { 661 ret = 1; 662 goto out; 663 } 664 665 btrfs_set_inode_full_sync(inode); 666 out: 667 /* 668 * Don't forget to free the reserved space, as for inlined extent 669 * it won't count as data extent, free them directly here. 670 * And at reserve time, it's always aligned to page size, so 671 * just free one page here. 672 */ 673 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 674 btrfs_free_path(path); 675 btrfs_end_transaction(trans); 676 return ret; 677 } 678 679 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 680 struct folio *locked_folio, 681 u64 offset, u64 end, 682 size_t compressed_size, 683 int compress_type, 684 struct folio *compressed_folio, 685 bool update_i_size) 686 { 687 struct extent_state *cached = NULL; 688 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 689 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 690 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 691 int ret; 692 693 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 694 return 1; 695 696 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 697 ret = __cow_file_range_inline(inode, size, compressed_size, 698 compress_type, compressed_folio, 699 update_i_size); 700 if (ret > 0) { 701 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 702 return ret; 703 } 704 705 /* 706 * In the successful case (ret == 0 here), cow_file_range will return 1. 707 * 708 * Quite a bit further up the callstack in extent_writepage(), ret == 1 709 * is treated as a short circuited success and does not unlock the folio, 710 * so we must do it here. 711 * 712 * In the failure case, the locked_folio does get unlocked by 713 * btrfs_folio_end_all_writers, which asserts that it is still locked 714 * at that point, so we must *not* unlock it here. 715 * 716 * The other two callsites in compress_file_range do not have a 717 * locked_folio, so they are not relevant to this logic. 718 */ 719 if (ret == 0) 720 locked_folio = NULL; 721 722 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 723 clear_flags, PAGE_UNLOCK | 724 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 725 return ret; 726 } 727 728 struct async_extent { 729 u64 start; 730 u64 ram_size; 731 u64 compressed_size; 732 struct folio **folios; 733 unsigned long nr_folios; 734 int compress_type; 735 struct list_head list; 736 }; 737 738 struct async_chunk { 739 struct btrfs_inode *inode; 740 struct folio *locked_folio; 741 u64 start; 742 u64 end; 743 blk_opf_t write_flags; 744 struct list_head extents; 745 struct cgroup_subsys_state *blkcg_css; 746 struct btrfs_work work; 747 struct async_cow *async_cow; 748 }; 749 750 struct async_cow { 751 atomic_t num_chunks; 752 struct async_chunk chunks[]; 753 }; 754 755 static noinline int add_async_extent(struct async_chunk *cow, 756 u64 start, u64 ram_size, 757 u64 compressed_size, 758 struct folio **folios, 759 unsigned long nr_folios, 760 int compress_type) 761 { 762 struct async_extent *async_extent; 763 764 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 765 if (!async_extent) 766 return -ENOMEM; 767 async_extent->start = start; 768 async_extent->ram_size = ram_size; 769 async_extent->compressed_size = compressed_size; 770 async_extent->folios = folios; 771 async_extent->nr_folios = nr_folios; 772 async_extent->compress_type = compress_type; 773 list_add_tail(&async_extent->list, &cow->extents); 774 return 0; 775 } 776 777 /* 778 * Check if the inode needs to be submitted to compression, based on mount 779 * options, defragmentation, properties or heuristics. 780 */ 781 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 782 u64 end) 783 { 784 struct btrfs_fs_info *fs_info = inode->root->fs_info; 785 786 if (!btrfs_inode_can_compress(inode)) { 787 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 788 return 0; 789 } 790 791 /* Defrag ioctl takes precedence over mount options and properties. */ 792 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 793 return 0; 794 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 795 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 796 return 1; 797 /* force compress */ 798 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 799 return 1; 800 /* bad compression ratios */ 801 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 802 return 0; 803 if (btrfs_test_opt(fs_info, COMPRESS) || 804 inode->flags & BTRFS_INODE_COMPRESS || 805 inode->prop_compress) 806 return btrfs_compress_heuristic(inode, start, end); 807 return 0; 808 } 809 810 static inline void inode_should_defrag(struct btrfs_inode *inode, 811 u64 start, u64 end, u64 num_bytes, u32 small_write) 812 { 813 /* If this is a small write inside eof, kick off a defrag */ 814 if (num_bytes < small_write && 815 (start > 0 || end + 1 < inode->disk_i_size)) 816 btrfs_add_inode_defrag(inode, small_write); 817 } 818 819 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 820 { 821 const pgoff_t end_index = end >> PAGE_SHIFT; 822 struct folio *folio; 823 int ret = 0; 824 825 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 826 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 827 if (IS_ERR(folio)) { 828 if (!ret) 829 ret = PTR_ERR(folio); 830 continue; 831 } 832 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 833 end + 1 - start); 834 folio_put(folio); 835 } 836 return ret; 837 } 838 839 /* 840 * Work queue call back to started compression on a file and pages. 841 * 842 * This is done inside an ordered work queue, and the compression is spread 843 * across many cpus. The actual IO submission is step two, and the ordered work 844 * queue takes care of making sure that happens in the same order things were 845 * put onto the queue by writepages and friends. 846 * 847 * If this code finds it can't get good compression, it puts an entry onto the 848 * work queue to write the uncompressed bytes. This makes sure that both 849 * compressed inodes and uncompressed inodes are written in the same order that 850 * the flusher thread sent them down. 851 */ 852 static void compress_file_range(struct btrfs_work *work) 853 { 854 struct async_chunk *async_chunk = 855 container_of(work, struct async_chunk, work); 856 struct btrfs_inode *inode = async_chunk->inode; 857 struct btrfs_fs_info *fs_info = inode->root->fs_info; 858 struct address_space *mapping = inode->vfs_inode.i_mapping; 859 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 860 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 861 u64 blocksize = fs_info->sectorsize; 862 u64 start = async_chunk->start; 863 u64 end = async_chunk->end; 864 u64 actual_end; 865 u64 i_size; 866 int ret = 0; 867 struct folio **folios; 868 unsigned long nr_folios; 869 unsigned long total_compressed = 0; 870 unsigned long total_in = 0; 871 unsigned int loff; 872 int i; 873 int compress_type = fs_info->compress_type; 874 int compress_level = fs_info->compress_level; 875 876 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 877 878 /* 879 * We need to call clear_page_dirty_for_io on each page in the range. 880 * Otherwise applications with the file mmap'd can wander in and change 881 * the page contents while we are compressing them. 882 */ 883 ret = extent_range_clear_dirty_for_io(inode, start, end); 884 885 /* 886 * All the folios should have been locked thus no failure. 887 * 888 * And even if some folios are missing, btrfs_compress_folios() 889 * would handle them correctly, so here just do an ASSERT() check for 890 * early logic errors. 891 */ 892 ASSERT(ret == 0); 893 894 /* 895 * We need to save i_size before now because it could change in between 896 * us evaluating the size and assigning it. This is because we lock and 897 * unlock the page in truncate and fallocate, and then modify the i_size 898 * later on. 899 * 900 * The barriers are to emulate READ_ONCE, remove that once i_size_read 901 * does that for us. 902 */ 903 barrier(); 904 i_size = i_size_read(&inode->vfs_inode); 905 barrier(); 906 actual_end = min_t(u64, i_size, end + 1); 907 again: 908 folios = NULL; 909 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1; 910 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift); 911 912 /* 913 * we don't want to send crud past the end of i_size through 914 * compression, that's just a waste of CPU time. So, if the 915 * end of the file is before the start of our current 916 * requested range of bytes, we bail out to the uncompressed 917 * cleanup code that can deal with all of this. 918 * 919 * It isn't really the fastest way to fix things, but this is a 920 * very uncommon corner. 921 */ 922 if (actual_end <= start) 923 goto cleanup_and_bail_uncompressed; 924 925 total_compressed = actual_end - start; 926 927 /* 928 * Skip compression for a small file range(<=blocksize) that 929 * isn't an inline extent, since it doesn't save disk space at all. 930 */ 931 if (total_compressed <= blocksize && 932 (start > 0 || end + 1 < inode->disk_i_size)) 933 goto cleanup_and_bail_uncompressed; 934 935 total_compressed = min_t(unsigned long, total_compressed, 936 BTRFS_MAX_UNCOMPRESSED); 937 total_in = 0; 938 ret = 0; 939 940 /* 941 * We do compression for mount -o compress and when the inode has not 942 * been flagged as NOCOMPRESS. This flag can change at any time if we 943 * discover bad compression ratios. 944 */ 945 if (!inode_need_compress(inode, start, end)) 946 goto cleanup_and_bail_uncompressed; 947 948 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 949 if (!folios) { 950 /* 951 * Memory allocation failure is not a fatal error, we can fall 952 * back to uncompressed code. 953 */ 954 goto cleanup_and_bail_uncompressed; 955 } 956 957 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 958 compress_type = inode->defrag_compress; 959 compress_level = inode->defrag_compress_level; 960 } else if (inode->prop_compress) { 961 compress_type = inode->prop_compress; 962 } 963 964 /* Compression level is applied here. */ 965 ret = btrfs_compress_folios(compress_type, compress_level, 966 inode, start, folios, &nr_folios, &total_in, 967 &total_compressed); 968 if (ret) 969 goto mark_incompressible; 970 971 /* 972 * Zero the tail end of the last folio, as we might be sending it down 973 * to disk. 974 */ 975 loff = (total_compressed & (min_folio_size - 1)); 976 if (loff) 977 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff); 978 979 /* 980 * Try to create an inline extent. 981 * 982 * If we didn't compress the entire range, try to create an uncompressed 983 * inline extent, else a compressed one. 984 * 985 * Check cow_file_range() for why we don't even try to create inline 986 * extent for the subpage case. 987 */ 988 if (total_in < actual_end) 989 ret = cow_file_range_inline(inode, NULL, start, end, 0, 990 BTRFS_COMPRESS_NONE, NULL, false); 991 else 992 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 993 compress_type, folios[0], false); 994 if (ret <= 0) { 995 if (ret < 0) 996 mapping_set_error(mapping, -EIO); 997 goto free_pages; 998 } 999 1000 /* 1001 * We aren't doing an inline extent. Round the compressed size up to a 1002 * block size boundary so the allocator does sane things. 1003 */ 1004 total_compressed = ALIGN(total_compressed, blocksize); 1005 1006 /* 1007 * One last check to make sure the compression is really a win, compare 1008 * the page count read with the blocks on disk, compression must free at 1009 * least one sector. 1010 */ 1011 total_in = round_up(total_in, fs_info->sectorsize); 1012 if (total_compressed + blocksize > total_in) 1013 goto mark_incompressible; 1014 1015 /* 1016 * The async work queues will take care of doing actual allocation on 1017 * disk for these compressed pages, and will submit the bios. 1018 */ 1019 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1020 nr_folios, compress_type); 1021 BUG_ON(ret); 1022 if (start + total_in < end) { 1023 start += total_in; 1024 cond_resched(); 1025 goto again; 1026 } 1027 return; 1028 1029 mark_incompressible: 1030 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1031 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1032 cleanup_and_bail_uncompressed: 1033 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1034 BTRFS_COMPRESS_NONE); 1035 BUG_ON(ret); 1036 free_pages: 1037 if (folios) { 1038 for (i = 0; i < nr_folios; i++) { 1039 WARN_ON(folios[i]->mapping); 1040 btrfs_free_compr_folio(folios[i]); 1041 } 1042 kfree(folios); 1043 } 1044 } 1045 1046 static void free_async_extent_pages(struct async_extent *async_extent) 1047 { 1048 int i; 1049 1050 if (!async_extent->folios) 1051 return; 1052 1053 for (i = 0; i < async_extent->nr_folios; i++) { 1054 WARN_ON(async_extent->folios[i]->mapping); 1055 btrfs_free_compr_folio(async_extent->folios[i]); 1056 } 1057 kfree(async_extent->folios); 1058 async_extent->nr_folios = 0; 1059 async_extent->folios = NULL; 1060 } 1061 1062 static void submit_uncompressed_range(struct btrfs_inode *inode, 1063 struct async_extent *async_extent, 1064 struct folio *locked_folio) 1065 { 1066 u64 start = async_extent->start; 1067 u64 end = async_extent->start + async_extent->ram_size - 1; 1068 int ret; 1069 struct writeback_control wbc = { 1070 .sync_mode = WB_SYNC_ALL, 1071 .range_start = start, 1072 .range_end = end, 1073 .no_cgroup_owner = 1, 1074 }; 1075 1076 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1077 ret = run_delalloc_cow(inode, locked_folio, start, end, 1078 &wbc, false); 1079 wbc_detach_inode(&wbc); 1080 if (ret < 0) { 1081 if (locked_folio) 1082 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1083 start, async_extent->ram_size); 1084 btrfs_err_rl(inode->root->fs_info, 1085 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1086 __func__, btrfs_root_id(inode->root), 1087 btrfs_ino(inode), start, async_extent->ram_size, ret); 1088 } 1089 } 1090 1091 static void submit_one_async_extent(struct async_chunk *async_chunk, 1092 struct async_extent *async_extent, 1093 u64 *alloc_hint) 1094 { 1095 struct btrfs_inode *inode = async_chunk->inode; 1096 struct extent_io_tree *io_tree = &inode->io_tree; 1097 struct btrfs_root *root = inode->root; 1098 struct btrfs_fs_info *fs_info = root->fs_info; 1099 struct btrfs_ordered_extent *ordered; 1100 struct btrfs_file_extent file_extent; 1101 struct btrfs_key ins; 1102 struct folio *locked_folio = NULL; 1103 struct extent_state *cached = NULL; 1104 struct extent_map *em; 1105 int ret = 0; 1106 bool free_pages = false; 1107 u64 start = async_extent->start; 1108 u64 end = async_extent->start + async_extent->ram_size - 1; 1109 1110 if (async_chunk->blkcg_css) 1111 kthread_associate_blkcg(async_chunk->blkcg_css); 1112 1113 /* 1114 * If async_chunk->locked_folio is in the async_extent range, we need to 1115 * handle it. 1116 */ 1117 if (async_chunk->locked_folio) { 1118 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1119 u64 locked_folio_end = locked_folio_start + 1120 folio_size(async_chunk->locked_folio) - 1; 1121 1122 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1123 locked_folio = async_chunk->locked_folio; 1124 } 1125 1126 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1127 ASSERT(!async_extent->folios); 1128 ASSERT(async_extent->nr_folios == 0); 1129 submit_uncompressed_range(inode, async_extent, locked_folio); 1130 free_pages = true; 1131 goto done; 1132 } 1133 1134 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1135 async_extent->compressed_size, 1136 async_extent->compressed_size, 1137 0, *alloc_hint, &ins, 1, 1); 1138 if (ret) { 1139 /* 1140 * We can't reserve contiguous space for the compressed size. 1141 * Unlikely, but it's possible that we could have enough 1142 * non-contiguous space for the uncompressed size instead. So 1143 * fall back to uncompressed. 1144 */ 1145 submit_uncompressed_range(inode, async_extent, locked_folio); 1146 free_pages = true; 1147 goto done; 1148 } 1149 1150 btrfs_lock_extent(io_tree, start, end, &cached); 1151 1152 /* Here we're doing allocation and writeback of the compressed pages */ 1153 file_extent.disk_bytenr = ins.objectid; 1154 file_extent.disk_num_bytes = ins.offset; 1155 file_extent.ram_bytes = async_extent->ram_size; 1156 file_extent.num_bytes = async_extent->ram_size; 1157 file_extent.offset = 0; 1158 file_extent.compression = async_extent->compress_type; 1159 1160 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1161 if (IS_ERR(em)) { 1162 ret = PTR_ERR(em); 1163 goto out_free_reserve; 1164 } 1165 btrfs_free_extent_map(em); 1166 1167 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1168 1U << BTRFS_ORDERED_COMPRESSED); 1169 if (IS_ERR(ordered)) { 1170 btrfs_drop_extent_map_range(inode, start, end, false); 1171 ret = PTR_ERR(ordered); 1172 goto out_free_reserve; 1173 } 1174 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1175 1176 /* Clear dirty, set writeback and unlock the pages. */ 1177 extent_clear_unlock_delalloc(inode, start, end, 1178 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1179 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1180 btrfs_submit_compressed_write(ordered, 1181 async_extent->folios, /* compressed_folios */ 1182 async_extent->nr_folios, 1183 async_chunk->write_flags, true); 1184 *alloc_hint = ins.objectid + ins.offset; 1185 done: 1186 if (async_chunk->blkcg_css) 1187 kthread_associate_blkcg(NULL); 1188 if (free_pages) 1189 free_async_extent_pages(async_extent); 1190 kfree(async_extent); 1191 return; 1192 1193 out_free_reserve: 1194 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1195 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1196 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1197 extent_clear_unlock_delalloc(inode, start, end, 1198 NULL, &cached, 1199 EXTENT_LOCKED | EXTENT_DELALLOC | 1200 EXTENT_DELALLOC_NEW | 1201 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1202 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1203 PAGE_END_WRITEBACK); 1204 free_async_extent_pages(async_extent); 1205 if (async_chunk->blkcg_css) 1206 kthread_associate_blkcg(NULL); 1207 btrfs_debug(fs_info, 1208 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1209 btrfs_root_id(root), btrfs_ino(inode), start, 1210 async_extent->ram_size, ret); 1211 kfree(async_extent); 1212 } 1213 1214 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1215 u64 num_bytes) 1216 { 1217 struct extent_map_tree *em_tree = &inode->extent_tree; 1218 struct extent_map *em; 1219 u64 alloc_hint = 0; 1220 1221 read_lock(&em_tree->lock); 1222 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1223 if (em) { 1224 /* 1225 * if block start isn't an actual block number then find the 1226 * first block in this inode and use that as a hint. If that 1227 * block is also bogus then just don't worry about it. 1228 */ 1229 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1230 btrfs_free_extent_map(em); 1231 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1232 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1233 alloc_hint = btrfs_extent_map_block_start(em); 1234 if (em) 1235 btrfs_free_extent_map(em); 1236 } else { 1237 alloc_hint = btrfs_extent_map_block_start(em); 1238 btrfs_free_extent_map(em); 1239 } 1240 } 1241 read_unlock(&em_tree->lock); 1242 1243 return alloc_hint; 1244 } 1245 1246 /* 1247 * when extent_io.c finds a delayed allocation range in the file, 1248 * the call backs end up in this code. The basic idea is to 1249 * allocate extents on disk for the range, and create ordered data structs 1250 * in ram to track those extents. 1251 * 1252 * locked_folio is the folio that writepage had locked already. We use 1253 * it to make sure we don't do extra locks or unlocks. 1254 * 1255 * When this function fails, it unlocks all folios except @locked_folio. 1256 * 1257 * When this function successfully creates an inline extent, it returns 1 and 1258 * unlocks all folios including locked_folio and starts I/O on them. 1259 * (In reality inline extents are limited to a single block, so locked_folio is 1260 * the only folio handled anyway). 1261 * 1262 * When this function succeed and creates a normal extent, the folio locking 1263 * status depends on the passed in flags: 1264 * 1265 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked. 1266 * - Else all folios except for @locked_folio are unlocked. 1267 * 1268 * When a failure happens in the second or later iteration of the 1269 * while-loop, the ordered extents created in previous iterations are cleaned up. 1270 */ 1271 static noinline int cow_file_range(struct btrfs_inode *inode, 1272 struct folio *locked_folio, u64 start, 1273 u64 end, u64 *done_offset, 1274 unsigned long flags) 1275 { 1276 struct btrfs_root *root = inode->root; 1277 struct btrfs_fs_info *fs_info = root->fs_info; 1278 struct extent_state *cached = NULL; 1279 u64 alloc_hint = 0; 1280 u64 orig_start = start; 1281 u64 num_bytes; 1282 u64 cur_alloc_size = 0; 1283 u64 min_alloc_size; 1284 u64 blocksize = fs_info->sectorsize; 1285 struct btrfs_key ins; 1286 struct extent_map *em; 1287 unsigned clear_bits; 1288 unsigned long page_ops; 1289 int ret = 0; 1290 1291 if (btrfs_is_free_space_inode(inode)) { 1292 ret = -EINVAL; 1293 goto out_unlock; 1294 } 1295 1296 num_bytes = ALIGN(end - start + 1, blocksize); 1297 num_bytes = max(blocksize, num_bytes); 1298 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1299 1300 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1301 1302 if (!(flags & COW_FILE_RANGE_NO_INLINE)) { 1303 /* lets try to make an inline extent */ 1304 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1305 BTRFS_COMPRESS_NONE, NULL, false); 1306 if (ret <= 0) { 1307 /* 1308 * We succeeded, return 1 so the caller knows we're done 1309 * with this page and already handled the IO. 1310 * 1311 * If there was an error then cow_file_range_inline() has 1312 * already done the cleanup. 1313 */ 1314 if (ret == 0) 1315 ret = 1; 1316 goto done; 1317 } 1318 } 1319 1320 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1321 1322 /* 1323 * We're not doing compressed IO, don't unlock the first page (which 1324 * the caller expects to stay locked), don't clear any dirty bits and 1325 * don't set any writeback bits. 1326 * 1327 * Do set the Ordered (Private2) bit so we know this page was properly 1328 * setup for writepage. 1329 */ 1330 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK); 1331 page_ops |= PAGE_SET_ORDERED; 1332 1333 /* 1334 * Relocation relies on the relocated extents to have exactly the same 1335 * size as the original extents. Normally writeback for relocation data 1336 * extents follows a NOCOW path because relocation preallocates the 1337 * extents. However, due to an operation such as scrub turning a block 1338 * group to RO mode, it may fallback to COW mode, so we must make sure 1339 * an extent allocated during COW has exactly the requested size and can 1340 * not be split into smaller extents, otherwise relocation breaks and 1341 * fails during the stage where it updates the bytenr of file extent 1342 * items. 1343 */ 1344 if (btrfs_is_data_reloc_root(root)) 1345 min_alloc_size = num_bytes; 1346 else 1347 min_alloc_size = fs_info->sectorsize; 1348 1349 while (num_bytes > 0) { 1350 struct btrfs_ordered_extent *ordered; 1351 struct btrfs_file_extent file_extent; 1352 1353 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1354 min_alloc_size, 0, alloc_hint, 1355 &ins, 1, 1); 1356 if (ret == -EAGAIN) { 1357 /* 1358 * btrfs_reserve_extent only returns -EAGAIN for zoned 1359 * file systems, which is an indication that there are 1360 * no active zones to allocate from at the moment. 1361 * 1362 * If this is the first loop iteration, wait for at 1363 * least one zone to finish before retrying the 1364 * allocation. Otherwise ask the caller to write out 1365 * the already allocated blocks before coming back to 1366 * us, or return -ENOSPC if it can't handle retries. 1367 */ 1368 ASSERT(btrfs_is_zoned(fs_info)); 1369 if (start == orig_start) { 1370 wait_on_bit_io(&inode->root->fs_info->flags, 1371 BTRFS_FS_NEED_ZONE_FINISH, 1372 TASK_UNINTERRUPTIBLE); 1373 continue; 1374 } 1375 if (done_offset) { 1376 /* 1377 * Move @end to the end of the processed range, 1378 * and exit the loop to unlock the processed extents. 1379 */ 1380 end = start - 1; 1381 ret = 0; 1382 break; 1383 } 1384 ret = -ENOSPC; 1385 } 1386 if (ret < 0) 1387 goto out_unlock; 1388 cur_alloc_size = ins.offset; 1389 1390 file_extent.disk_bytenr = ins.objectid; 1391 file_extent.disk_num_bytes = ins.offset; 1392 file_extent.num_bytes = ins.offset; 1393 file_extent.ram_bytes = ins.offset; 1394 file_extent.offset = 0; 1395 file_extent.compression = BTRFS_COMPRESS_NONE; 1396 1397 /* 1398 * Locked range will be released either during error clean up or 1399 * after the whole range is finished. 1400 */ 1401 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1402 &cached); 1403 1404 em = btrfs_create_io_em(inode, start, &file_extent, 1405 BTRFS_ORDERED_REGULAR); 1406 if (IS_ERR(em)) { 1407 btrfs_unlock_extent(&inode->io_tree, start, 1408 start + cur_alloc_size - 1, &cached); 1409 ret = PTR_ERR(em); 1410 goto out_reserve; 1411 } 1412 btrfs_free_extent_map(em); 1413 1414 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1415 1U << BTRFS_ORDERED_REGULAR); 1416 if (IS_ERR(ordered)) { 1417 btrfs_unlock_extent(&inode->io_tree, start, 1418 start + cur_alloc_size - 1, &cached); 1419 ret = PTR_ERR(ordered); 1420 goto out_drop_extent_cache; 1421 } 1422 1423 if (btrfs_is_data_reloc_root(root)) { 1424 ret = btrfs_reloc_clone_csums(ordered); 1425 1426 /* 1427 * Only drop cache here, and process as normal. 1428 * 1429 * We must not allow extent_clear_unlock_delalloc() 1430 * at out_unlock label to free meta of this ordered 1431 * extent, as its meta should be freed by 1432 * btrfs_finish_ordered_io(). 1433 * 1434 * So we must continue until @start is increased to 1435 * skip current ordered extent. 1436 */ 1437 if (ret) 1438 btrfs_drop_extent_map_range(inode, start, 1439 start + cur_alloc_size - 1, 1440 false); 1441 } 1442 btrfs_put_ordered_extent(ordered); 1443 1444 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1445 1446 if (num_bytes < cur_alloc_size) 1447 num_bytes = 0; 1448 else 1449 num_bytes -= cur_alloc_size; 1450 alloc_hint = ins.objectid + ins.offset; 1451 start += cur_alloc_size; 1452 cur_alloc_size = 0; 1453 1454 /* 1455 * btrfs_reloc_clone_csums() error, since start is increased 1456 * extent_clear_unlock_delalloc() at out_unlock label won't 1457 * free metadata of current ordered extent, we're OK to exit. 1458 */ 1459 if (ret) 1460 goto out_unlock; 1461 } 1462 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1463 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1464 done: 1465 if (done_offset) 1466 *done_offset = end; 1467 return ret; 1468 1469 out_drop_extent_cache: 1470 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1471 out_reserve: 1472 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1473 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1474 out_unlock: 1475 /* 1476 * Now, we have three regions to clean up: 1477 * 1478 * |-------(1)----|---(2)---|-------------(3)----------| 1479 * `- orig_start `- start `- start + cur_alloc_size `- end 1480 * 1481 * We process each region below. 1482 */ 1483 1484 /* 1485 * For the range (1). We have already instantiated the ordered extents 1486 * for this region, thus we need to cleanup those ordered extents. 1487 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1488 * are also handled by the ordered extents cleanup. 1489 * 1490 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1491 * finish the writeback of the involved folios, which will be never submitted. 1492 */ 1493 if (orig_start < start) { 1494 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1495 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1496 1497 if (!locked_folio) 1498 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1499 1500 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1501 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1502 locked_folio, NULL, clear_bits, page_ops); 1503 } 1504 1505 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1506 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1507 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1508 1509 /* 1510 * For the range (2). If we reserved an extent for our delalloc range 1511 * (or a subrange) and failed to create the respective ordered extent, 1512 * then it means that when we reserved the extent we decremented the 1513 * extent's size from the data space_info's bytes_may_use counter and 1514 * incremented the space_info's bytes_reserved counter by the same 1515 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1516 * to decrement again the data space_info's bytes_may_use counter, 1517 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1518 */ 1519 if (cur_alloc_size) { 1520 extent_clear_unlock_delalloc(inode, start, 1521 start + cur_alloc_size - 1, 1522 locked_folio, &cached, clear_bits, 1523 page_ops); 1524 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1525 } 1526 1527 /* 1528 * For the range (3). We never touched the region. In addition to the 1529 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1530 * space_info's bytes_may_use counter, reserved in 1531 * btrfs_check_data_free_space(). 1532 */ 1533 if (start + cur_alloc_size < end) { 1534 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1535 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1536 end, locked_folio, 1537 &cached, clear_bits, page_ops); 1538 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1539 end - start - cur_alloc_size + 1, NULL); 1540 } 1541 btrfs_err(fs_info, 1542 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d", 1543 __func__, btrfs_root_id(inode->root), 1544 btrfs_ino(inode), orig_start, end + 1 - orig_start, 1545 start, cur_alloc_size, ret); 1546 return ret; 1547 } 1548 1549 /* 1550 * Phase two of compressed writeback. This is the ordered portion of the code, 1551 * which only gets called in the order the work was queued. We walk all the 1552 * async extents created by compress_file_range and send them down to the disk. 1553 * 1554 * If called with @do_free == true then it'll try to finish the work and free 1555 * the work struct eventually. 1556 */ 1557 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1558 { 1559 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1560 work); 1561 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1562 struct async_extent *async_extent; 1563 unsigned long nr_pages; 1564 u64 alloc_hint = 0; 1565 1566 if (do_free) { 1567 struct async_cow *async_cow; 1568 1569 btrfs_add_delayed_iput(async_chunk->inode); 1570 if (async_chunk->blkcg_css) 1571 css_put(async_chunk->blkcg_css); 1572 1573 async_cow = async_chunk->async_cow; 1574 if (atomic_dec_and_test(&async_cow->num_chunks)) 1575 kvfree(async_cow); 1576 return; 1577 } 1578 1579 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1580 PAGE_SHIFT; 1581 1582 while (!list_empty(&async_chunk->extents)) { 1583 async_extent = list_first_entry(&async_chunk->extents, 1584 struct async_extent, list); 1585 list_del(&async_extent->list); 1586 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1587 } 1588 1589 /* atomic_sub_return implies a barrier */ 1590 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1591 5 * SZ_1M) 1592 cond_wake_up_nomb(&fs_info->async_submit_wait); 1593 } 1594 1595 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1596 struct folio *locked_folio, u64 start, 1597 u64 end, struct writeback_control *wbc) 1598 { 1599 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1600 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1601 struct async_cow *ctx; 1602 struct async_chunk *async_chunk; 1603 unsigned long nr_pages; 1604 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1605 int i; 1606 unsigned nofs_flag; 1607 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1608 1609 nofs_flag = memalloc_nofs_save(); 1610 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1611 memalloc_nofs_restore(nofs_flag); 1612 if (!ctx) 1613 return false; 1614 1615 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1616 1617 async_chunk = ctx->chunks; 1618 atomic_set(&ctx->num_chunks, num_chunks); 1619 1620 for (i = 0; i < num_chunks; i++) { 1621 u64 cur_end = min(end, start + SZ_512K - 1); 1622 1623 /* 1624 * igrab is called higher up in the call chain, take only the 1625 * lightweight reference for the callback lifetime 1626 */ 1627 ihold(&inode->vfs_inode); 1628 async_chunk[i].async_cow = ctx; 1629 async_chunk[i].inode = inode; 1630 async_chunk[i].start = start; 1631 async_chunk[i].end = cur_end; 1632 async_chunk[i].write_flags = write_flags; 1633 INIT_LIST_HEAD(&async_chunk[i].extents); 1634 1635 /* 1636 * The locked_folio comes all the way from writepage and its 1637 * the original folio we were actually given. As we spread 1638 * this large delalloc region across multiple async_chunk 1639 * structs, only the first struct needs a pointer to 1640 * locked_folio. 1641 * 1642 * This way we don't need racey decisions about who is supposed 1643 * to unlock it. 1644 */ 1645 if (locked_folio) { 1646 /* 1647 * Depending on the compressibility, the pages might or 1648 * might not go through async. We want all of them to 1649 * be accounted against wbc once. Let's do it here 1650 * before the paths diverge. wbc accounting is used 1651 * only for foreign writeback detection and doesn't 1652 * need full accuracy. Just account the whole thing 1653 * against the first page. 1654 */ 1655 wbc_account_cgroup_owner(wbc, locked_folio, 1656 cur_end - start); 1657 async_chunk[i].locked_folio = locked_folio; 1658 locked_folio = NULL; 1659 } else { 1660 async_chunk[i].locked_folio = NULL; 1661 } 1662 1663 if (blkcg_css != blkcg_root_css) { 1664 css_get(blkcg_css); 1665 async_chunk[i].blkcg_css = blkcg_css; 1666 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1667 } else { 1668 async_chunk[i].blkcg_css = NULL; 1669 } 1670 1671 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1672 submit_compressed_extents); 1673 1674 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1675 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1676 1677 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1678 1679 start = cur_end + 1; 1680 } 1681 return true; 1682 } 1683 1684 /* 1685 * Run the delalloc range from start to end, and write back any dirty pages 1686 * covered by the range. 1687 */ 1688 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1689 struct folio *locked_folio, u64 start, 1690 u64 end, struct writeback_control *wbc, 1691 bool pages_dirty) 1692 { 1693 u64 done_offset = end; 1694 int ret; 1695 1696 while (start <= end) { 1697 ret = cow_file_range(inode, locked_folio, start, end, 1698 &done_offset, COW_FILE_RANGE_KEEP_LOCKED); 1699 if (ret) 1700 return ret; 1701 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1702 start, done_offset, wbc, pages_dirty); 1703 start = done_offset + 1; 1704 } 1705 1706 return 1; 1707 } 1708 1709 static int fallback_to_cow(struct btrfs_inode *inode, 1710 struct folio *locked_folio, const u64 start, 1711 const u64 end) 1712 { 1713 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1714 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1715 const u64 range_bytes = end + 1 - start; 1716 struct extent_io_tree *io_tree = &inode->io_tree; 1717 struct extent_state *cached_state = NULL; 1718 u64 range_start = start; 1719 u64 count; 1720 int ret; 1721 1722 /* 1723 * If EXTENT_NORESERVE is set it means that when the buffered write was 1724 * made we had not enough available data space and therefore we did not 1725 * reserve data space for it, since we though we could do NOCOW for the 1726 * respective file range (either there is prealloc extent or the inode 1727 * has the NOCOW bit set). 1728 * 1729 * However when we need to fallback to COW mode (because for example the 1730 * block group for the corresponding extent was turned to RO mode by a 1731 * scrub or relocation) we need to do the following: 1732 * 1733 * 1) We increment the bytes_may_use counter of the data space info. 1734 * If COW succeeds, it allocates a new data extent and after doing 1735 * that it decrements the space info's bytes_may_use counter and 1736 * increments its bytes_reserved counter by the same amount (we do 1737 * this at btrfs_add_reserved_bytes()). So we need to increment the 1738 * bytes_may_use counter to compensate (when space is reserved at 1739 * buffered write time, the bytes_may_use counter is incremented); 1740 * 1741 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1742 * that if the COW path fails for any reason, it decrements (through 1743 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1744 * data space info, which we incremented in the step above. 1745 * 1746 * If we need to fallback to cow and the inode corresponds to a free 1747 * space cache inode or an inode of the data relocation tree, we must 1748 * also increment bytes_may_use of the data space_info for the same 1749 * reason. Space caches and relocated data extents always get a prealloc 1750 * extent for them, however scrub or balance may have set the block 1751 * group that contains that extent to RO mode and therefore force COW 1752 * when starting writeback. 1753 */ 1754 btrfs_lock_extent(io_tree, start, end, &cached_state); 1755 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1756 EXTENT_NORESERVE, 0, NULL); 1757 if (count > 0 || is_space_ino || is_reloc_ino) { 1758 u64 bytes = count; 1759 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1760 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1761 1762 if (is_space_ino || is_reloc_ino) 1763 bytes = range_bytes; 1764 1765 spin_lock(&sinfo->lock); 1766 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1767 spin_unlock(&sinfo->lock); 1768 1769 if (count > 0) 1770 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1771 &cached_state); 1772 } 1773 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1774 1775 /* 1776 * Don't try to create inline extents, as a mix of inline extent that 1777 * is written out and unlocked directly and a normal NOCOW extent 1778 * doesn't work. 1779 * 1780 * And here we do not unlock the folio after a successful run. 1781 * The folios will be unlocked after everything is finished, or by error handling. 1782 * 1783 * This is to ensure error handling won't need to clear dirty/ordered flags without 1784 * a locked folio, which can race with writeback. 1785 */ 1786 ret = cow_file_range(inode, locked_folio, start, end, NULL, 1787 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED); 1788 ASSERT(ret != 1); 1789 return ret; 1790 } 1791 1792 struct can_nocow_file_extent_args { 1793 /* Input fields. */ 1794 1795 /* Start file offset of the range we want to NOCOW. */ 1796 u64 start; 1797 /* End file offset (inclusive) of the range we want to NOCOW. */ 1798 u64 end; 1799 bool writeback_path; 1800 /* 1801 * Free the path passed to can_nocow_file_extent() once it's not needed 1802 * anymore. 1803 */ 1804 bool free_path; 1805 1806 /* 1807 * Output fields. Only set when can_nocow_file_extent() returns 1. 1808 * The expected file extent for the NOCOW write. 1809 */ 1810 struct btrfs_file_extent file_extent; 1811 }; 1812 1813 /* 1814 * Check if we can NOCOW the file extent that the path points to. 1815 * This function may return with the path released, so the caller should check 1816 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1817 * 1818 * Returns: < 0 on error 1819 * 0 if we can not NOCOW 1820 * 1 if we can NOCOW 1821 */ 1822 static int can_nocow_file_extent(struct btrfs_path *path, 1823 struct btrfs_key *key, 1824 struct btrfs_inode *inode, 1825 struct can_nocow_file_extent_args *args) 1826 { 1827 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1828 struct extent_buffer *leaf = path->nodes[0]; 1829 struct btrfs_root *root = inode->root; 1830 struct btrfs_file_extent_item *fi; 1831 struct btrfs_root *csum_root; 1832 u64 io_start; 1833 u64 extent_end; 1834 u8 extent_type; 1835 int can_nocow = 0; 1836 int ret = 0; 1837 bool nowait = path->nowait; 1838 1839 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1840 extent_type = btrfs_file_extent_type(leaf, fi); 1841 1842 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1843 goto out; 1844 1845 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1846 extent_type == BTRFS_FILE_EXTENT_REG) 1847 goto out; 1848 1849 /* 1850 * If the extent was created before the generation where the last snapshot 1851 * for its subvolume was created, then this implies the extent is shared, 1852 * hence we must COW. 1853 */ 1854 if (btrfs_file_extent_generation(leaf, fi) <= 1855 btrfs_root_last_snapshot(&root->root_item)) 1856 goto out; 1857 1858 /* An explicit hole, must COW. */ 1859 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1860 goto out; 1861 1862 /* Compressed/encrypted/encoded extents must be COWed. */ 1863 if (btrfs_file_extent_compression(leaf, fi) || 1864 btrfs_file_extent_encryption(leaf, fi) || 1865 btrfs_file_extent_other_encoding(leaf, fi)) 1866 goto out; 1867 1868 extent_end = btrfs_file_extent_end(path); 1869 1870 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1871 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1872 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1873 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1874 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1875 1876 /* 1877 * The following checks can be expensive, as they need to take other 1878 * locks and do btree or rbtree searches, so release the path to avoid 1879 * blocking other tasks for too long. 1880 */ 1881 btrfs_release_path(path); 1882 1883 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1884 args->file_extent.disk_bytenr, path); 1885 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1886 if (ret != 0) 1887 goto out; 1888 1889 if (args->free_path) { 1890 /* 1891 * We don't need the path anymore, plus through the 1892 * btrfs_lookup_csums_list() call below we will end up allocating 1893 * another path. So free the path to avoid unnecessary extra 1894 * memory usage. 1895 */ 1896 btrfs_free_path(path); 1897 path = NULL; 1898 } 1899 1900 /* If there are pending snapshots for this root, we must COW. */ 1901 if (args->writeback_path && !is_freespace_inode && 1902 atomic_read(&root->snapshot_force_cow)) 1903 goto out; 1904 1905 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1906 args->file_extent.offset += args->start - key->offset; 1907 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1908 1909 /* 1910 * Force COW if csums exist in the range. This ensures that csums for a 1911 * given extent are either valid or do not exist. 1912 */ 1913 1914 csum_root = btrfs_csum_root(root->fs_info, io_start); 1915 ret = btrfs_lookup_csums_list(csum_root, io_start, 1916 io_start + args->file_extent.num_bytes - 1, 1917 NULL, nowait); 1918 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1919 if (ret != 0) 1920 goto out; 1921 1922 can_nocow = 1; 1923 out: 1924 if (args->free_path && path) 1925 btrfs_free_path(path); 1926 1927 return ret < 0 ? ret : can_nocow; 1928 } 1929 1930 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1931 struct extent_state **cached, 1932 struct can_nocow_file_extent_args *nocow_args, 1933 u64 file_pos, bool is_prealloc) 1934 { 1935 struct btrfs_ordered_extent *ordered; 1936 const u64 len = nocow_args->file_extent.num_bytes; 1937 const u64 end = file_pos + len - 1; 1938 int ret = 0; 1939 1940 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1941 1942 if (is_prealloc) { 1943 struct extent_map *em; 1944 1945 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1946 BTRFS_ORDERED_PREALLOC); 1947 if (IS_ERR(em)) { 1948 ret = PTR_ERR(em); 1949 goto error; 1950 } 1951 btrfs_free_extent_map(em); 1952 } 1953 1954 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1955 is_prealloc 1956 ? (1U << BTRFS_ORDERED_PREALLOC) 1957 : (1U << BTRFS_ORDERED_NOCOW)); 1958 if (IS_ERR(ordered)) { 1959 if (is_prealloc) 1960 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1961 ret = PTR_ERR(ordered); 1962 goto error; 1963 } 1964 1965 if (btrfs_is_data_reloc_root(inode->root)) 1966 /* 1967 * Errors are handled later, as we must prevent 1968 * extent_clear_unlock_delalloc() in error handler from freeing 1969 * metadata of the created ordered extent. 1970 */ 1971 ret = btrfs_reloc_clone_csums(ordered); 1972 btrfs_put_ordered_extent(ordered); 1973 1974 if (ret < 0) 1975 goto error; 1976 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 1977 EXTENT_LOCKED | EXTENT_DELALLOC | 1978 EXTENT_CLEAR_DATA_RESV, 1979 PAGE_SET_ORDERED); 1980 return ret; 1981 1982 error: 1983 btrfs_cleanup_ordered_extents(inode, file_pos, len); 1984 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 1985 EXTENT_LOCKED | EXTENT_DELALLOC | 1986 EXTENT_CLEAR_DATA_RESV, 1987 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1988 PAGE_END_WRITEBACK); 1989 btrfs_err(inode->root->fs_info, 1990 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d", 1991 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 1992 file_pos, len, ret); 1993 return ret; 1994 } 1995 1996 /* 1997 * When nocow writeback calls back. This checks for snapshots or COW copies 1998 * of the extents that exist in the file, and COWs the file as required. 1999 * 2000 * If no cow copies or snapshots exist, we write directly to the existing 2001 * blocks on disk 2002 */ 2003 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2004 struct folio *locked_folio, 2005 const u64 start, const u64 end) 2006 { 2007 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2008 struct btrfs_root *root = inode->root; 2009 struct btrfs_path *path; 2010 u64 cow_start = (u64)-1; 2011 /* 2012 * If not 0, represents the inclusive end of the last fallback_to_cow() 2013 * range. Only for error handling. 2014 * 2015 * The same for nocow_end, it's to avoid double cleaning up the range 2016 * already cleaned by nocow_one_range(). 2017 */ 2018 u64 cow_end = 0; 2019 u64 nocow_end = 0; 2020 u64 cur_offset = start; 2021 int ret; 2022 bool check_prev = true; 2023 u64 ino = btrfs_ino(inode); 2024 struct can_nocow_file_extent_args nocow_args = { 0 }; 2025 /* The range that has ordered extent(s). */ 2026 u64 oe_cleanup_start; 2027 u64 oe_cleanup_len = 0; 2028 /* The range that is untouched. */ 2029 u64 untouched_start; 2030 u64 untouched_len = 0; 2031 2032 /* 2033 * Normally on a zoned device we're only doing COW writes, but in case 2034 * of relocation on a zoned filesystem serializes I/O so that we're only 2035 * writing sequentially and can end up here as well. 2036 */ 2037 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2038 2039 path = btrfs_alloc_path(); 2040 if (!path) { 2041 ret = -ENOMEM; 2042 goto error; 2043 } 2044 2045 nocow_args.end = end; 2046 nocow_args.writeback_path = true; 2047 2048 while (cur_offset <= end) { 2049 struct btrfs_block_group *nocow_bg = NULL; 2050 struct btrfs_key found_key; 2051 struct btrfs_file_extent_item *fi; 2052 struct extent_buffer *leaf; 2053 struct extent_state *cached_state = NULL; 2054 u64 extent_end; 2055 int extent_type; 2056 2057 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2058 cur_offset, 0); 2059 if (ret < 0) 2060 goto error; 2061 2062 /* 2063 * If there is no extent for our range when doing the initial 2064 * search, then go back to the previous slot as it will be the 2065 * one containing the search offset 2066 */ 2067 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2068 leaf = path->nodes[0]; 2069 btrfs_item_key_to_cpu(leaf, &found_key, 2070 path->slots[0] - 1); 2071 if (found_key.objectid == ino && 2072 found_key.type == BTRFS_EXTENT_DATA_KEY) 2073 path->slots[0]--; 2074 } 2075 check_prev = false; 2076 next_slot: 2077 /* Go to next leaf if we have exhausted the current one */ 2078 leaf = path->nodes[0]; 2079 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2080 ret = btrfs_next_leaf(root, path); 2081 if (ret < 0) 2082 goto error; 2083 if (ret > 0) 2084 break; 2085 leaf = path->nodes[0]; 2086 } 2087 2088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2089 2090 /* Didn't find anything for our INO */ 2091 if (found_key.objectid > ino) 2092 break; 2093 /* 2094 * Keep searching until we find an EXTENT_ITEM or there are no 2095 * more extents for this inode 2096 */ 2097 if (WARN_ON_ONCE(found_key.objectid < ino) || 2098 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2099 path->slots[0]++; 2100 goto next_slot; 2101 } 2102 2103 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2104 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2105 found_key.offset > end) 2106 break; 2107 2108 /* 2109 * If the found extent starts after requested offset, then 2110 * adjust cur_offset to be right before this extent begins. 2111 */ 2112 if (found_key.offset > cur_offset) { 2113 if (cow_start == (u64)-1) 2114 cow_start = cur_offset; 2115 cur_offset = found_key.offset; 2116 goto next_slot; 2117 } 2118 2119 /* 2120 * Found extent which begins before our range and potentially 2121 * intersect it 2122 */ 2123 fi = btrfs_item_ptr(leaf, path->slots[0], 2124 struct btrfs_file_extent_item); 2125 extent_type = btrfs_file_extent_type(leaf, fi); 2126 /* If this is triggered then we have a memory corruption. */ 2127 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2128 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2129 ret = -EUCLEAN; 2130 goto error; 2131 } 2132 extent_end = btrfs_file_extent_end(path); 2133 2134 /* 2135 * If the extent we got ends before our current offset, skip to 2136 * the next extent. 2137 */ 2138 if (extent_end <= cur_offset) { 2139 path->slots[0]++; 2140 goto next_slot; 2141 } 2142 2143 nocow_args.start = cur_offset; 2144 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2145 if (ret < 0) 2146 goto error; 2147 if (ret == 0) 2148 goto must_cow; 2149 2150 ret = 0; 2151 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2152 nocow_args.file_extent.disk_bytenr + 2153 nocow_args.file_extent.offset); 2154 if (!nocow_bg) { 2155 must_cow: 2156 /* 2157 * If we can't perform NOCOW writeback for the range, 2158 * then record the beginning of the range that needs to 2159 * be COWed. It will be written out before the next 2160 * NOCOW range if we find one, or when exiting this 2161 * loop. 2162 */ 2163 if (cow_start == (u64)-1) 2164 cow_start = cur_offset; 2165 cur_offset = extent_end; 2166 if (cur_offset > end) 2167 break; 2168 if (!path->nodes[0]) 2169 continue; 2170 path->slots[0]++; 2171 goto next_slot; 2172 } 2173 2174 /* 2175 * COW range from cow_start to found_key.offset - 1. As the key 2176 * will contain the beginning of the first extent that can be 2177 * NOCOW, following one which needs to be COW'ed 2178 */ 2179 if (cow_start != (u64)-1) { 2180 ret = fallback_to_cow(inode, locked_folio, cow_start, 2181 found_key.offset - 1); 2182 if (ret) { 2183 cow_end = found_key.offset - 1; 2184 btrfs_dec_nocow_writers(nocow_bg); 2185 goto error; 2186 } 2187 cow_start = (u64)-1; 2188 } 2189 2190 ret = nocow_one_range(inode, locked_folio, &cached_state, 2191 &nocow_args, cur_offset, 2192 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2193 btrfs_dec_nocow_writers(nocow_bg); 2194 if (ret < 0) { 2195 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2196 goto error; 2197 } 2198 cur_offset = extent_end; 2199 } 2200 btrfs_release_path(path); 2201 2202 if (cur_offset <= end && cow_start == (u64)-1) 2203 cow_start = cur_offset; 2204 2205 if (cow_start != (u64)-1) { 2206 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2207 if (ret) { 2208 cow_end = end; 2209 goto error; 2210 } 2211 cow_start = (u64)-1; 2212 } 2213 2214 /* 2215 * Everything is finished without an error, can unlock the folios now. 2216 * 2217 * No need to touch the io tree range nor set folio ordered flag, as 2218 * fallback_to_cow() and nocow_one_range() have already handled them. 2219 */ 2220 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK); 2221 2222 btrfs_free_path(path); 2223 return 0; 2224 2225 error: 2226 if (cow_start == (u64)-1) { 2227 /* 2228 * case a) 2229 * start cur_offset end 2230 * | OE cleanup | Untouched | 2231 * 2232 * We finished a fallback_to_cow() or nocow_one_range() call, 2233 * but failed to check the next range. 2234 * 2235 * or 2236 * start cur_offset nocow_end end 2237 * | OE cleanup | Skip | Untouched | 2238 * 2239 * nocow_one_range() failed, the range [cur_offset, nocow_end] is 2240 * already cleaned up. 2241 */ 2242 oe_cleanup_start = start; 2243 oe_cleanup_len = cur_offset - start; 2244 if (nocow_end) 2245 untouched_start = nocow_end + 1; 2246 else 2247 untouched_start = cur_offset; 2248 untouched_len = end + 1 - untouched_start; 2249 } else if (cow_start != (u64)-1 && cow_end == 0) { 2250 /* 2251 * case b) 2252 * start cow_start cur_offset end 2253 * | OE cleanup | Untouched | 2254 * 2255 * We got a range that needs COW, but before we hit the next NOCOW range, 2256 * thus [cow_start, cur_offset) doesn't yet have any OE. 2257 */ 2258 oe_cleanup_start = start; 2259 oe_cleanup_len = cow_start - start; 2260 untouched_start = cow_start; 2261 untouched_len = end + 1 - untouched_start; 2262 } else { 2263 /* 2264 * case c) 2265 * start cow_start cow_end end 2266 * | OE cleanup | Skip | Untouched | 2267 * 2268 * fallback_to_cow() failed, and fallback_to_cow() will do the 2269 * cleanup for its range, we shouldn't touch the range 2270 * [cow_start, cow_end]. 2271 */ 2272 ASSERT(cow_start != (u64)-1 && cow_end != 0); 2273 oe_cleanup_start = start; 2274 oe_cleanup_len = cow_start - start; 2275 untouched_start = cow_end + 1; 2276 untouched_len = end + 1 - untouched_start; 2277 } 2278 2279 if (oe_cleanup_len) { 2280 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1; 2281 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len); 2282 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end, 2283 locked_folio, NULL, 2284 EXTENT_LOCKED | EXTENT_DELALLOC, 2285 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2286 PAGE_END_WRITEBACK); 2287 } 2288 2289 if (untouched_len) { 2290 struct extent_state *cached = NULL; 2291 const u64 untouched_end = untouched_start + untouched_len - 1; 2292 2293 /* 2294 * We need to lock the extent here because we're clearing DELALLOC and 2295 * we're not locked at this point. 2296 */ 2297 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached); 2298 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end, 2299 locked_folio, &cached, 2300 EXTENT_LOCKED | EXTENT_DELALLOC | 2301 EXTENT_DEFRAG | 2302 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2303 PAGE_START_WRITEBACK | 2304 PAGE_END_WRITEBACK); 2305 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL); 2306 } 2307 btrfs_free_path(path); 2308 btrfs_err(fs_info, 2309 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d", 2310 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2311 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len, 2312 untouched_start, untouched_len, ret); 2313 return ret; 2314 } 2315 2316 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2317 { 2318 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2319 if (inode->defrag_bytes && 2320 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2321 return false; 2322 return true; 2323 } 2324 return false; 2325 } 2326 2327 /* 2328 * Function to process delayed allocation (create CoW) for ranges which are 2329 * being touched for the first time. 2330 */ 2331 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2332 u64 start, u64 end, struct writeback_control *wbc) 2333 { 2334 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2335 int ret; 2336 2337 /* 2338 * The range must cover part of the @locked_folio, or a return of 1 2339 * can confuse the caller. 2340 */ 2341 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio))); 2342 2343 if (should_nocow(inode, start, end)) { 2344 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2345 return ret; 2346 } 2347 2348 if (btrfs_inode_can_compress(inode) && 2349 inode_need_compress(inode, start, end) && 2350 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2351 return 1; 2352 2353 if (zoned) 2354 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2355 true); 2356 else 2357 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0); 2358 return ret; 2359 } 2360 2361 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2362 struct extent_state *orig, u64 split) 2363 { 2364 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2365 u64 size; 2366 2367 lockdep_assert_held(&inode->io_tree.lock); 2368 2369 /* not delalloc, ignore it */ 2370 if (!(orig->state & EXTENT_DELALLOC)) 2371 return; 2372 2373 size = orig->end - orig->start + 1; 2374 if (size > fs_info->max_extent_size) { 2375 u32 num_extents; 2376 u64 new_size; 2377 2378 /* 2379 * See the explanation in btrfs_merge_delalloc_extent, the same 2380 * applies here, just in reverse. 2381 */ 2382 new_size = orig->end - split + 1; 2383 num_extents = count_max_extents(fs_info, new_size); 2384 new_size = split - orig->start; 2385 num_extents += count_max_extents(fs_info, new_size); 2386 if (count_max_extents(fs_info, size) >= num_extents) 2387 return; 2388 } 2389 2390 spin_lock(&inode->lock); 2391 btrfs_mod_outstanding_extents(inode, 1); 2392 spin_unlock(&inode->lock); 2393 } 2394 2395 /* 2396 * Handle merged delayed allocation extents so we can keep track of new extents 2397 * that are just merged onto old extents, such as when we are doing sequential 2398 * writes, so we can properly account for the metadata space we'll need. 2399 */ 2400 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2401 struct extent_state *other) 2402 { 2403 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2404 u64 new_size, old_size; 2405 u32 num_extents; 2406 2407 lockdep_assert_held(&inode->io_tree.lock); 2408 2409 /* not delalloc, ignore it */ 2410 if (!(other->state & EXTENT_DELALLOC)) 2411 return; 2412 2413 if (new->start > other->start) 2414 new_size = new->end - other->start + 1; 2415 else 2416 new_size = other->end - new->start + 1; 2417 2418 /* we're not bigger than the max, unreserve the space and go */ 2419 if (new_size <= fs_info->max_extent_size) { 2420 spin_lock(&inode->lock); 2421 btrfs_mod_outstanding_extents(inode, -1); 2422 spin_unlock(&inode->lock); 2423 return; 2424 } 2425 2426 /* 2427 * We have to add up either side to figure out how many extents were 2428 * accounted for before we merged into one big extent. If the number of 2429 * extents we accounted for is <= the amount we need for the new range 2430 * then we can return, otherwise drop. Think of it like this 2431 * 2432 * [ 4k][MAX_SIZE] 2433 * 2434 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2435 * need 2 outstanding extents, on one side we have 1 and the other side 2436 * we have 1 so they are == and we can return. But in this case 2437 * 2438 * [MAX_SIZE+4k][MAX_SIZE+4k] 2439 * 2440 * Each range on their own accounts for 2 extents, but merged together 2441 * they are only 3 extents worth of accounting, so we need to drop in 2442 * this case. 2443 */ 2444 old_size = other->end - other->start + 1; 2445 num_extents = count_max_extents(fs_info, old_size); 2446 old_size = new->end - new->start + 1; 2447 num_extents += count_max_extents(fs_info, old_size); 2448 if (count_max_extents(fs_info, new_size) >= num_extents) 2449 return; 2450 2451 spin_lock(&inode->lock); 2452 btrfs_mod_outstanding_extents(inode, -1); 2453 spin_unlock(&inode->lock); 2454 } 2455 2456 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2457 { 2458 struct btrfs_root *root = inode->root; 2459 struct btrfs_fs_info *fs_info = root->fs_info; 2460 2461 spin_lock(&root->delalloc_lock); 2462 ASSERT(list_empty(&inode->delalloc_inodes)); 2463 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2464 root->nr_delalloc_inodes++; 2465 if (root->nr_delalloc_inodes == 1) { 2466 spin_lock(&fs_info->delalloc_root_lock); 2467 ASSERT(list_empty(&root->delalloc_root)); 2468 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2469 spin_unlock(&fs_info->delalloc_root_lock); 2470 } 2471 spin_unlock(&root->delalloc_lock); 2472 } 2473 2474 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2475 { 2476 struct btrfs_root *root = inode->root; 2477 struct btrfs_fs_info *fs_info = root->fs_info; 2478 2479 lockdep_assert_held(&root->delalloc_lock); 2480 2481 /* 2482 * We may be called after the inode was already deleted from the list, 2483 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2484 * and then later through btrfs_clear_delalloc_extent() while the inode 2485 * still has ->delalloc_bytes > 0. 2486 */ 2487 if (!list_empty(&inode->delalloc_inodes)) { 2488 list_del_init(&inode->delalloc_inodes); 2489 root->nr_delalloc_inodes--; 2490 if (!root->nr_delalloc_inodes) { 2491 ASSERT(list_empty(&root->delalloc_inodes)); 2492 spin_lock(&fs_info->delalloc_root_lock); 2493 ASSERT(!list_empty(&root->delalloc_root)); 2494 list_del_init(&root->delalloc_root); 2495 spin_unlock(&fs_info->delalloc_root_lock); 2496 } 2497 } 2498 } 2499 2500 /* 2501 * Properly track delayed allocation bytes in the inode and to maintain the 2502 * list of inodes that have pending delalloc work to be done. 2503 */ 2504 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2505 u32 bits) 2506 { 2507 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2508 2509 lockdep_assert_held(&inode->io_tree.lock); 2510 2511 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2512 WARN_ON(1); 2513 /* 2514 * set_bit and clear bit hooks normally require _irqsave/restore 2515 * but in this case, we are only testing for the DELALLOC 2516 * bit, which is only set or cleared with irqs on 2517 */ 2518 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2519 u64 len = state->end + 1 - state->start; 2520 u64 prev_delalloc_bytes; 2521 u32 num_extents = count_max_extents(fs_info, len); 2522 2523 spin_lock(&inode->lock); 2524 btrfs_mod_outstanding_extents(inode, num_extents); 2525 spin_unlock(&inode->lock); 2526 2527 /* For sanity tests */ 2528 if (btrfs_is_testing(fs_info)) 2529 return; 2530 2531 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2532 fs_info->delalloc_batch); 2533 spin_lock(&inode->lock); 2534 prev_delalloc_bytes = inode->delalloc_bytes; 2535 inode->delalloc_bytes += len; 2536 if (bits & EXTENT_DEFRAG) 2537 inode->defrag_bytes += len; 2538 spin_unlock(&inode->lock); 2539 2540 /* 2541 * We don't need to be under the protection of the inode's lock, 2542 * because we are called while holding the inode's io_tree lock 2543 * and are therefore protected against concurrent calls of this 2544 * function and btrfs_clear_delalloc_extent(). 2545 */ 2546 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2547 btrfs_add_delalloc_inode(inode); 2548 } 2549 2550 if (!(state->state & EXTENT_DELALLOC_NEW) && 2551 (bits & EXTENT_DELALLOC_NEW)) { 2552 spin_lock(&inode->lock); 2553 inode->new_delalloc_bytes += state->end + 1 - state->start; 2554 spin_unlock(&inode->lock); 2555 } 2556 } 2557 2558 /* 2559 * Once a range is no longer delalloc this function ensures that proper 2560 * accounting happens. 2561 */ 2562 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2563 struct extent_state *state, u32 bits) 2564 { 2565 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2566 u64 len = state->end + 1 - state->start; 2567 u32 num_extents = count_max_extents(fs_info, len); 2568 2569 lockdep_assert_held(&inode->io_tree.lock); 2570 2571 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2572 spin_lock(&inode->lock); 2573 inode->defrag_bytes -= len; 2574 spin_unlock(&inode->lock); 2575 } 2576 2577 /* 2578 * set_bit and clear bit hooks normally require _irqsave/restore 2579 * but in this case, we are only testing for the DELALLOC 2580 * bit, which is only set or cleared with irqs on 2581 */ 2582 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2583 struct btrfs_root *root = inode->root; 2584 u64 new_delalloc_bytes; 2585 2586 spin_lock(&inode->lock); 2587 btrfs_mod_outstanding_extents(inode, -num_extents); 2588 spin_unlock(&inode->lock); 2589 2590 /* 2591 * We don't reserve metadata space for space cache inodes so we 2592 * don't need to call delalloc_release_metadata if there is an 2593 * error. 2594 */ 2595 if (bits & EXTENT_CLEAR_META_RESV && 2596 root != fs_info->tree_root) 2597 btrfs_delalloc_release_metadata(inode, len, true); 2598 2599 /* For sanity tests. */ 2600 if (btrfs_is_testing(fs_info)) 2601 return; 2602 2603 if (!btrfs_is_data_reloc_root(root) && 2604 !btrfs_is_free_space_inode(inode) && 2605 !(state->state & EXTENT_NORESERVE) && 2606 (bits & EXTENT_CLEAR_DATA_RESV)) 2607 btrfs_free_reserved_data_space_noquota(inode, len); 2608 2609 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2610 fs_info->delalloc_batch); 2611 spin_lock(&inode->lock); 2612 inode->delalloc_bytes -= len; 2613 new_delalloc_bytes = inode->delalloc_bytes; 2614 spin_unlock(&inode->lock); 2615 2616 /* 2617 * We don't need to be under the protection of the inode's lock, 2618 * because we are called while holding the inode's io_tree lock 2619 * and are therefore protected against concurrent calls of this 2620 * function and btrfs_set_delalloc_extent(). 2621 */ 2622 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2623 spin_lock(&root->delalloc_lock); 2624 btrfs_del_delalloc_inode(inode); 2625 spin_unlock(&root->delalloc_lock); 2626 } 2627 } 2628 2629 if ((state->state & EXTENT_DELALLOC_NEW) && 2630 (bits & EXTENT_DELALLOC_NEW)) { 2631 spin_lock(&inode->lock); 2632 ASSERT(inode->new_delalloc_bytes >= len); 2633 inode->new_delalloc_bytes -= len; 2634 if (bits & EXTENT_ADD_INODE_BYTES) 2635 inode_add_bytes(&inode->vfs_inode, len); 2636 spin_unlock(&inode->lock); 2637 } 2638 } 2639 2640 /* 2641 * given a list of ordered sums record them in the inode. This happens 2642 * at IO completion time based on sums calculated at bio submission time. 2643 */ 2644 static int add_pending_csums(struct btrfs_trans_handle *trans, 2645 struct list_head *list) 2646 { 2647 struct btrfs_ordered_sum *sum; 2648 struct btrfs_root *csum_root = NULL; 2649 int ret; 2650 2651 list_for_each_entry(sum, list, list) { 2652 trans->adding_csums = true; 2653 if (!csum_root) 2654 csum_root = btrfs_csum_root(trans->fs_info, 2655 sum->logical); 2656 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2657 trans->adding_csums = false; 2658 if (ret) 2659 return ret; 2660 } 2661 return 0; 2662 } 2663 2664 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2665 const u64 start, 2666 const u64 len, 2667 struct extent_state **cached_state) 2668 { 2669 u64 search_start = start; 2670 const u64 end = start + len - 1; 2671 2672 while (search_start < end) { 2673 const u64 search_len = end - search_start + 1; 2674 struct extent_map *em; 2675 u64 em_len; 2676 int ret = 0; 2677 2678 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2679 if (IS_ERR(em)) 2680 return PTR_ERR(em); 2681 2682 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2683 goto next; 2684 2685 em_len = em->len; 2686 if (em->start < search_start) 2687 em_len -= search_start - em->start; 2688 if (em_len > search_len) 2689 em_len = search_len; 2690 2691 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2692 search_start + em_len - 1, 2693 EXTENT_DELALLOC_NEW, cached_state); 2694 next: 2695 search_start = btrfs_extent_map_end(em); 2696 btrfs_free_extent_map(em); 2697 if (ret) 2698 return ret; 2699 } 2700 return 0; 2701 } 2702 2703 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2704 unsigned int extra_bits, 2705 struct extent_state **cached_state) 2706 { 2707 WARN_ON(PAGE_ALIGNED(end)); 2708 2709 if (start >= i_size_read(&inode->vfs_inode) && 2710 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2711 /* 2712 * There can't be any extents following eof in this case so just 2713 * set the delalloc new bit for the range directly. 2714 */ 2715 extra_bits |= EXTENT_DELALLOC_NEW; 2716 } else { 2717 int ret; 2718 2719 ret = btrfs_find_new_delalloc_bytes(inode, start, 2720 end + 1 - start, 2721 cached_state); 2722 if (ret) 2723 return ret; 2724 } 2725 2726 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2727 EXTENT_DELALLOC | extra_bits, cached_state); 2728 } 2729 2730 /* see btrfs_writepage_start_hook for details on why this is required */ 2731 struct btrfs_writepage_fixup { 2732 struct folio *folio; 2733 struct btrfs_inode *inode; 2734 struct btrfs_work work; 2735 }; 2736 2737 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2738 { 2739 struct btrfs_writepage_fixup *fixup = 2740 container_of(work, struct btrfs_writepage_fixup, work); 2741 struct btrfs_ordered_extent *ordered; 2742 struct extent_state *cached_state = NULL; 2743 struct extent_changeset *data_reserved = NULL; 2744 struct folio *folio = fixup->folio; 2745 struct btrfs_inode *inode = fixup->inode; 2746 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2747 u64 page_start = folio_pos(folio); 2748 u64 page_end = folio_end(folio) - 1; 2749 int ret = 0; 2750 bool free_delalloc_space = true; 2751 2752 /* 2753 * This is similar to page_mkwrite, we need to reserve the space before 2754 * we take the folio lock. 2755 */ 2756 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2757 folio_size(folio)); 2758 again: 2759 folio_lock(folio); 2760 2761 /* 2762 * Before we queued this fixup, we took a reference on the folio. 2763 * folio->mapping may go NULL, but it shouldn't be moved to a different 2764 * address space. 2765 */ 2766 if (!folio->mapping || !folio_test_dirty(folio) || 2767 !folio_test_checked(folio)) { 2768 /* 2769 * Unfortunately this is a little tricky, either 2770 * 2771 * 1) We got here and our folio had already been dealt with and 2772 * we reserved our space, thus ret == 0, so we need to just 2773 * drop our space reservation and bail. This can happen the 2774 * first time we come into the fixup worker, or could happen 2775 * while waiting for the ordered extent. 2776 * 2) Our folio was already dealt with, but we happened to get an 2777 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2778 * this case we obviously don't have anything to release, but 2779 * because the folio was already dealt with we don't want to 2780 * mark the folio with an error, so make sure we're resetting 2781 * ret to 0. This is why we have this check _before_ the ret 2782 * check, because we do not want to have a surprise ENOSPC 2783 * when the folio was already properly dealt with. 2784 */ 2785 if (!ret) { 2786 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2787 btrfs_delalloc_release_space(inode, data_reserved, 2788 page_start, folio_size(folio), 2789 true); 2790 } 2791 ret = 0; 2792 goto out_page; 2793 } 2794 2795 /* 2796 * We can't mess with the folio state unless it is locked, so now that 2797 * it is locked bail if we failed to make our space reservation. 2798 */ 2799 if (ret) 2800 goto out_page; 2801 2802 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2803 2804 /* already ordered? We're done */ 2805 if (folio_test_ordered(folio)) 2806 goto out_reserved; 2807 2808 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2809 if (ordered) { 2810 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2811 &cached_state); 2812 folio_unlock(folio); 2813 btrfs_start_ordered_extent(ordered); 2814 btrfs_put_ordered_extent(ordered); 2815 goto again; 2816 } 2817 2818 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2819 &cached_state); 2820 if (ret) 2821 goto out_reserved; 2822 2823 /* 2824 * Everything went as planned, we're now the owner of a dirty page with 2825 * delayed allocation bits set and space reserved for our COW 2826 * destination. 2827 * 2828 * The page was dirty when we started, nothing should have cleaned it. 2829 */ 2830 BUG_ON(!folio_test_dirty(folio)); 2831 free_delalloc_space = false; 2832 out_reserved: 2833 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2834 if (free_delalloc_space) 2835 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2836 PAGE_SIZE, true); 2837 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2838 out_page: 2839 if (ret) { 2840 /* 2841 * We hit ENOSPC or other errors. Update the mapping and page 2842 * to reflect the errors and clean the page. 2843 */ 2844 mapping_set_error(folio->mapping, ret); 2845 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2846 folio_size(folio), !ret); 2847 folio_clear_dirty_for_io(folio); 2848 } 2849 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2850 folio_unlock(folio); 2851 folio_put(folio); 2852 kfree(fixup); 2853 extent_changeset_free(data_reserved); 2854 /* 2855 * As a precaution, do a delayed iput in case it would be the last iput 2856 * that could need flushing space. Recursing back to fixup worker would 2857 * deadlock. 2858 */ 2859 btrfs_add_delayed_iput(inode); 2860 } 2861 2862 /* 2863 * There are a few paths in the higher layers of the kernel that directly 2864 * set the folio dirty bit without asking the filesystem if it is a 2865 * good idea. This causes problems because we want to make sure COW 2866 * properly happens and the data=ordered rules are followed. 2867 * 2868 * In our case any range that doesn't have the ORDERED bit set 2869 * hasn't been properly setup for IO. We kick off an async process 2870 * to fix it up. The async helper will wait for ordered extents, set 2871 * the delalloc bit and make it safe to write the folio. 2872 */ 2873 int btrfs_writepage_cow_fixup(struct folio *folio) 2874 { 2875 struct inode *inode = folio->mapping->host; 2876 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2877 struct btrfs_writepage_fixup *fixup; 2878 2879 /* This folio has ordered extent covering it already */ 2880 if (folio_test_ordered(folio)) 2881 return 0; 2882 2883 /* 2884 * For experimental build, we error out instead of EAGAIN. 2885 * 2886 * We should not hit such out-of-band dirty folios anymore. 2887 */ 2888 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2889 DEBUG_WARN(); 2890 btrfs_err_rl(fs_info, 2891 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2892 btrfs_root_id(BTRFS_I(inode)->root), 2893 btrfs_ino(BTRFS_I(inode)), 2894 folio_pos(folio)); 2895 return -EUCLEAN; 2896 } 2897 2898 /* 2899 * folio_checked is set below when we create a fixup worker for this 2900 * folio, don't try to create another one if we're already 2901 * folio_test_checked. 2902 * 2903 * The extent_io writepage code will redirty the foio if we send back 2904 * EAGAIN. 2905 */ 2906 if (folio_test_checked(folio)) 2907 return -EAGAIN; 2908 2909 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2910 if (!fixup) 2911 return -EAGAIN; 2912 2913 /* 2914 * We are already holding a reference to this inode from 2915 * write_cache_pages. We need to hold it because the space reservation 2916 * takes place outside of the folio lock, and we can't trust 2917 * folio->mapping outside of the folio lock. 2918 */ 2919 ihold(inode); 2920 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2921 folio_get(folio); 2922 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2923 fixup->folio = folio; 2924 fixup->inode = BTRFS_I(inode); 2925 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2926 2927 return -EAGAIN; 2928 } 2929 2930 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2931 struct btrfs_inode *inode, u64 file_pos, 2932 struct btrfs_file_extent_item *stack_fi, 2933 const bool update_inode_bytes, 2934 u64 qgroup_reserved) 2935 { 2936 struct btrfs_root *root = inode->root; 2937 const u64 sectorsize = root->fs_info->sectorsize; 2938 BTRFS_PATH_AUTO_FREE(path); 2939 struct extent_buffer *leaf; 2940 struct btrfs_key ins; 2941 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2942 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2943 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2944 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2945 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2946 struct btrfs_drop_extents_args drop_args = { 0 }; 2947 int ret; 2948 2949 path = btrfs_alloc_path(); 2950 if (!path) 2951 return -ENOMEM; 2952 2953 /* 2954 * we may be replacing one extent in the tree with another. 2955 * The new extent is pinned in the extent map, and we don't want 2956 * to drop it from the cache until it is completely in the btree. 2957 * 2958 * So, tell btrfs_drop_extents to leave this extent in the cache. 2959 * the caller is expected to unpin it and allow it to be merged 2960 * with the others. 2961 */ 2962 drop_args.path = path; 2963 drop_args.start = file_pos; 2964 drop_args.end = file_pos + num_bytes; 2965 drop_args.replace_extent = true; 2966 drop_args.extent_item_size = sizeof(*stack_fi); 2967 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2968 if (ret) 2969 goto out; 2970 2971 if (!drop_args.extent_inserted) { 2972 ins.objectid = btrfs_ino(inode); 2973 ins.type = BTRFS_EXTENT_DATA_KEY; 2974 ins.offset = file_pos; 2975 2976 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2977 sizeof(*stack_fi)); 2978 if (ret) 2979 goto out; 2980 } 2981 leaf = path->nodes[0]; 2982 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2983 write_extent_buffer(leaf, stack_fi, 2984 btrfs_item_ptr_offset(leaf, path->slots[0]), 2985 sizeof(struct btrfs_file_extent_item)); 2986 2987 btrfs_release_path(path); 2988 2989 /* 2990 * If we dropped an inline extent here, we know the range where it is 2991 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2992 * number of bytes only for that range containing the inline extent. 2993 * The remaining of the range will be processed when clearing the 2994 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2995 */ 2996 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2997 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2998 2999 inline_size = drop_args.bytes_found - inline_size; 3000 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3001 drop_args.bytes_found -= inline_size; 3002 num_bytes -= sectorsize; 3003 } 3004 3005 if (update_inode_bytes) 3006 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3007 3008 ins.objectid = disk_bytenr; 3009 ins.type = BTRFS_EXTENT_ITEM_KEY; 3010 ins.offset = disk_num_bytes; 3011 3012 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3013 if (ret) 3014 goto out; 3015 3016 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3017 file_pos - offset, 3018 qgroup_reserved, &ins); 3019 out: 3020 return ret; 3021 } 3022 3023 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3024 u64 start, u64 len) 3025 { 3026 struct btrfs_block_group *cache; 3027 3028 cache = btrfs_lookup_block_group(fs_info, start); 3029 ASSERT(cache); 3030 3031 spin_lock(&cache->lock); 3032 cache->delalloc_bytes -= len; 3033 spin_unlock(&cache->lock); 3034 3035 btrfs_put_block_group(cache); 3036 } 3037 3038 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3039 struct btrfs_ordered_extent *oe) 3040 { 3041 struct btrfs_file_extent_item stack_fi; 3042 bool update_inode_bytes; 3043 u64 num_bytes = oe->num_bytes; 3044 u64 ram_bytes = oe->ram_bytes; 3045 3046 memset(&stack_fi, 0, sizeof(stack_fi)); 3047 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3048 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3049 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3050 oe->disk_num_bytes); 3051 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3052 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3053 num_bytes = oe->truncated_len; 3054 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3055 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3056 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3057 /* Encryption and other encoding is reserved and all 0 */ 3058 3059 /* 3060 * For delalloc, when completing an ordered extent we update the inode's 3061 * bytes when clearing the range in the inode's io tree, so pass false 3062 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3063 * except if the ordered extent was truncated. 3064 */ 3065 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3066 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3067 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3068 3069 return insert_reserved_file_extent(trans, oe->inode, 3070 oe->file_offset, &stack_fi, 3071 update_inode_bytes, oe->qgroup_rsv); 3072 } 3073 3074 /* 3075 * As ordered data IO finishes, this gets called so we can finish 3076 * an ordered extent if the range of bytes in the file it covers are 3077 * fully written. 3078 */ 3079 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3080 { 3081 struct btrfs_inode *inode = ordered_extent->inode; 3082 struct btrfs_root *root = inode->root; 3083 struct btrfs_fs_info *fs_info = root->fs_info; 3084 struct btrfs_trans_handle *trans = NULL; 3085 struct extent_io_tree *io_tree = &inode->io_tree; 3086 struct extent_state *cached_state = NULL; 3087 u64 start, end; 3088 int compress_type = 0; 3089 int ret = 0; 3090 u64 logical_len = ordered_extent->num_bytes; 3091 bool freespace_inode; 3092 bool truncated = false; 3093 bool clear_reserved_extent = true; 3094 unsigned int clear_bits = EXTENT_DEFRAG; 3095 3096 start = ordered_extent->file_offset; 3097 end = start + ordered_extent->num_bytes - 1; 3098 3099 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3100 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3101 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3102 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3103 clear_bits |= EXTENT_DELALLOC_NEW; 3104 3105 freespace_inode = btrfs_is_free_space_inode(inode); 3106 if (!freespace_inode) 3107 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3108 3109 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) { 3110 ret = -EIO; 3111 goto out; 3112 } 3113 3114 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3115 ordered_extent->disk_num_bytes); 3116 if (ret) 3117 goto out; 3118 3119 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3120 truncated = true; 3121 logical_len = ordered_extent->truncated_len; 3122 /* Truncated the entire extent, don't bother adding */ 3123 if (!logical_len) 3124 goto out; 3125 } 3126 3127 /* 3128 * If it's a COW write we need to lock the extent range as we will be 3129 * inserting/replacing file extent items and unpinning an extent map. 3130 * This must be taken before joining a transaction, as it's a higher 3131 * level lock (like the inode's VFS lock), otherwise we can run into an 3132 * ABBA deadlock with other tasks (transactions work like a lock, 3133 * depending on their current state). 3134 */ 3135 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3136 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3137 btrfs_lock_extent_bits(io_tree, start, end, 3138 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3139 &cached_state); 3140 } 3141 3142 if (freespace_inode) 3143 trans = btrfs_join_transaction_spacecache(root); 3144 else 3145 trans = btrfs_join_transaction(root); 3146 if (IS_ERR(trans)) { 3147 ret = PTR_ERR(trans); 3148 trans = NULL; 3149 goto out; 3150 } 3151 3152 trans->block_rsv = &inode->block_rsv; 3153 3154 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3155 if (unlikely(ret)) { 3156 btrfs_abort_transaction(trans, ret); 3157 goto out; 3158 } 3159 3160 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3161 /* Logic error */ 3162 ASSERT(list_empty(&ordered_extent->list)); 3163 if (unlikely(!list_empty(&ordered_extent->list))) { 3164 ret = -EINVAL; 3165 btrfs_abort_transaction(trans, ret); 3166 goto out; 3167 } 3168 3169 btrfs_inode_safe_disk_i_size_write(inode, 0); 3170 ret = btrfs_update_inode_fallback(trans, inode); 3171 if (unlikely(ret)) { 3172 /* -ENOMEM or corruption */ 3173 btrfs_abort_transaction(trans, ret); 3174 } 3175 goto out; 3176 } 3177 3178 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3179 compress_type = ordered_extent->compress_type; 3180 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3181 BUG_ON(compress_type); 3182 ret = btrfs_mark_extent_written(trans, inode, 3183 ordered_extent->file_offset, 3184 ordered_extent->file_offset + 3185 logical_len); 3186 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3187 ordered_extent->disk_num_bytes); 3188 } else { 3189 BUG_ON(root == fs_info->tree_root); 3190 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3191 if (!ret) { 3192 clear_reserved_extent = false; 3193 btrfs_release_delalloc_bytes(fs_info, 3194 ordered_extent->disk_bytenr, 3195 ordered_extent->disk_num_bytes); 3196 } 3197 } 3198 if (unlikely(ret < 0)) { 3199 btrfs_abort_transaction(trans, ret); 3200 goto out; 3201 } 3202 3203 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3204 ordered_extent->num_bytes, trans->transid); 3205 if (unlikely(ret < 0)) { 3206 btrfs_abort_transaction(trans, ret); 3207 goto out; 3208 } 3209 3210 ret = add_pending_csums(trans, &ordered_extent->list); 3211 if (unlikely(ret)) { 3212 btrfs_abort_transaction(trans, ret); 3213 goto out; 3214 } 3215 3216 /* 3217 * If this is a new delalloc range, clear its new delalloc flag to 3218 * update the inode's number of bytes. This needs to be done first 3219 * before updating the inode item. 3220 */ 3221 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3222 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3223 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3224 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3225 &cached_state); 3226 3227 btrfs_inode_safe_disk_i_size_write(inode, 0); 3228 ret = btrfs_update_inode_fallback(trans, inode); 3229 if (unlikely(ret)) { /* -ENOMEM or corruption */ 3230 btrfs_abort_transaction(trans, ret); 3231 goto out; 3232 } 3233 out: 3234 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3235 &cached_state); 3236 3237 if (trans) 3238 btrfs_end_transaction(trans); 3239 3240 if (ret || truncated) { 3241 /* 3242 * If we failed to finish this ordered extent for any reason we 3243 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3244 * extent, and mark the inode with the error if it wasn't 3245 * already set. Any error during writeback would have already 3246 * set the mapping error, so we need to set it if we're the ones 3247 * marking this ordered extent as failed. 3248 */ 3249 if (ret) 3250 btrfs_mark_ordered_extent_error(ordered_extent); 3251 3252 /* 3253 * Drop extent maps for the part of the extent we didn't write. 3254 * 3255 * We have an exception here for the free_space_inode, this is 3256 * because when we do btrfs_get_extent() on the free space inode 3257 * we will search the commit root. If this is a new block group 3258 * we won't find anything, and we will trip over the assert in 3259 * writepage where we do ASSERT(em->block_start != 3260 * EXTENT_MAP_HOLE). 3261 * 3262 * Theoretically we could also skip this for any NOCOW extent as 3263 * we don't mess with the extent map tree in the NOCOW case, but 3264 * for now simply skip this if we are the free space inode. 3265 */ 3266 if (!btrfs_is_free_space_inode(inode)) { 3267 u64 unwritten_start = start; 3268 3269 if (truncated) 3270 unwritten_start += logical_len; 3271 3272 btrfs_drop_extent_map_range(inode, unwritten_start, 3273 end, false); 3274 } 3275 3276 /* 3277 * If the ordered extent had an IOERR or something else went 3278 * wrong we need to return the space for this ordered extent 3279 * back to the allocator. We only free the extent in the 3280 * truncated case if we didn't write out the extent at all. 3281 * 3282 * If we made it past insert_reserved_file_extent before we 3283 * errored out then we don't need to do this as the accounting 3284 * has already been done. 3285 */ 3286 if ((ret || !logical_len) && 3287 clear_reserved_extent && 3288 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3289 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3290 /* 3291 * Discard the range before returning it back to the 3292 * free space pool 3293 */ 3294 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3295 btrfs_discard_extent(fs_info, 3296 ordered_extent->disk_bytenr, 3297 ordered_extent->disk_num_bytes, 3298 NULL); 3299 btrfs_free_reserved_extent(fs_info, 3300 ordered_extent->disk_bytenr, 3301 ordered_extent->disk_num_bytes, true); 3302 /* 3303 * Actually free the qgroup rsv which was released when 3304 * the ordered extent was created. 3305 */ 3306 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3307 ordered_extent->qgroup_rsv, 3308 BTRFS_QGROUP_RSV_DATA); 3309 } 3310 } 3311 3312 /* 3313 * This needs to be done to make sure anybody waiting knows we are done 3314 * updating everything for this ordered extent. 3315 */ 3316 btrfs_remove_ordered_extent(inode, ordered_extent); 3317 3318 /* once for us */ 3319 btrfs_put_ordered_extent(ordered_extent); 3320 /* once for the tree */ 3321 btrfs_put_ordered_extent(ordered_extent); 3322 3323 return ret; 3324 } 3325 3326 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3327 { 3328 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3329 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3330 list_empty(&ordered->bioc_list)) 3331 btrfs_finish_ordered_zoned(ordered); 3332 return btrfs_finish_one_ordered(ordered); 3333 } 3334 3335 void btrfs_calculate_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, 3336 u8 *dest) 3337 { 3338 struct folio *folio = page_folio(phys_to_page(paddr)); 3339 const u32 blocksize = fs_info->sectorsize; 3340 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3341 3342 shash->tfm = fs_info->csum_shash; 3343 /* The full block must be inside the folio. */ 3344 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3345 3346 if (folio_test_partial_kmap(folio)) { 3347 size_t cur = paddr; 3348 3349 crypto_shash_init(shash); 3350 while (cur < paddr + blocksize) { 3351 void *kaddr; 3352 size_t len = min(paddr + blocksize - cur, 3353 PAGE_SIZE - offset_in_page(cur)); 3354 3355 kaddr = kmap_local_folio(folio, offset_in_folio(folio, cur)); 3356 crypto_shash_update(shash, kaddr, len); 3357 kunmap_local(kaddr); 3358 cur += len; 3359 } 3360 crypto_shash_final(shash, dest); 3361 } else { 3362 crypto_shash_digest(shash, phys_to_virt(paddr), blocksize, dest); 3363 } 3364 } 3365 /* 3366 * Verify the checksum for a single sector without any extra action that depend 3367 * on the type of I/O. 3368 * 3369 * @kaddr must be a properly kmapped address. 3370 */ 3371 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum, 3372 const u8 * const csum_expected) 3373 { 3374 btrfs_calculate_block_csum(fs_info, paddr, csum); 3375 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3376 return -EIO; 3377 return 0; 3378 } 3379 3380 /* 3381 * Verify the checksum of a single data sector. 3382 * 3383 * @bbio: btrfs_io_bio which contains the csum 3384 * @dev: device the sector is on 3385 * @bio_offset: offset to the beginning of the bio (in bytes) 3386 * @bv: bio_vec to check 3387 * 3388 * Check if the checksum on a data block is valid. When a checksum mismatch is 3389 * detected, report the error and fill the corrupted range with zero. 3390 * 3391 * Return %true if the sector is ok or had no checksum to start with, else %false. 3392 */ 3393 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3394 u32 bio_offset, phys_addr_t paddr) 3395 { 3396 struct btrfs_inode *inode = bbio->inode; 3397 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3398 const u32 blocksize = fs_info->sectorsize; 3399 struct folio *folio; 3400 u64 file_offset = bbio->file_offset + bio_offset; 3401 u64 end = file_offset + blocksize - 1; 3402 u8 *csum_expected; 3403 u8 csum[BTRFS_CSUM_SIZE]; 3404 3405 if (!bbio->csum) 3406 return true; 3407 3408 if (btrfs_is_data_reloc_root(inode->root) && 3409 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3410 NULL)) { 3411 /* Skip the range without csum for data reloc inode */ 3412 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3413 EXTENT_NODATASUM, NULL); 3414 return true; 3415 } 3416 3417 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3418 fs_info->csum_size; 3419 if (btrfs_check_block_csum(fs_info, paddr, csum, csum_expected)) 3420 goto zeroit; 3421 return true; 3422 3423 zeroit: 3424 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3425 bbio->mirror_num); 3426 if (dev) 3427 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3428 folio = page_folio(phys_to_page(paddr)); 3429 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3430 folio_zero_range(folio, offset_in_folio(folio, paddr), blocksize); 3431 return false; 3432 } 3433 3434 /* 3435 * Perform a delayed iput on @inode. 3436 * 3437 * @inode: The inode we want to perform iput on 3438 * 3439 * This function uses the generic vfs_inode::i_count to track whether we should 3440 * just decrement it (in case it's > 1) or if this is the last iput then link 3441 * the inode to the delayed iput machinery. Delayed iputs are processed at 3442 * transaction commit time/superblock commit/cleaner kthread. 3443 */ 3444 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3445 { 3446 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3447 unsigned long flags; 3448 3449 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3450 return; 3451 3452 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3453 atomic_inc(&fs_info->nr_delayed_iputs); 3454 /* 3455 * Need to be irq safe here because we can be called from either an irq 3456 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3457 * context. 3458 */ 3459 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3460 ASSERT(list_empty(&inode->delayed_iput)); 3461 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3462 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3463 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3464 wake_up_process(fs_info->cleaner_kthread); 3465 } 3466 3467 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3468 struct btrfs_inode *inode) 3469 { 3470 list_del_init(&inode->delayed_iput); 3471 spin_unlock_irq(&fs_info->delayed_iput_lock); 3472 iput(&inode->vfs_inode); 3473 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3474 wake_up(&fs_info->delayed_iputs_wait); 3475 spin_lock_irq(&fs_info->delayed_iput_lock); 3476 } 3477 3478 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3479 struct btrfs_inode *inode) 3480 { 3481 if (!list_empty(&inode->delayed_iput)) { 3482 spin_lock_irq(&fs_info->delayed_iput_lock); 3483 if (!list_empty(&inode->delayed_iput)) 3484 run_delayed_iput_locked(fs_info, inode); 3485 spin_unlock_irq(&fs_info->delayed_iput_lock); 3486 } 3487 } 3488 3489 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3490 { 3491 /* 3492 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3493 * calls btrfs_add_delayed_iput() and that needs to lock 3494 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3495 * prevent a deadlock. 3496 */ 3497 spin_lock_irq(&fs_info->delayed_iput_lock); 3498 while (!list_empty(&fs_info->delayed_iputs)) { 3499 struct btrfs_inode *inode; 3500 3501 inode = list_first_entry(&fs_info->delayed_iputs, 3502 struct btrfs_inode, delayed_iput); 3503 run_delayed_iput_locked(fs_info, inode); 3504 if (need_resched()) { 3505 spin_unlock_irq(&fs_info->delayed_iput_lock); 3506 cond_resched(); 3507 spin_lock_irq(&fs_info->delayed_iput_lock); 3508 } 3509 } 3510 spin_unlock_irq(&fs_info->delayed_iput_lock); 3511 } 3512 3513 /* 3514 * Wait for flushing all delayed iputs 3515 * 3516 * @fs_info: the filesystem 3517 * 3518 * This will wait on any delayed iputs that are currently running with KILLABLE 3519 * set. Once they are all done running we will return, unless we are killed in 3520 * which case we return EINTR. This helps in user operations like fallocate etc 3521 * that might get blocked on the iputs. 3522 * 3523 * Return EINTR if we were killed, 0 if nothing's pending 3524 */ 3525 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3526 { 3527 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3528 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3529 if (ret) 3530 return -EINTR; 3531 return 0; 3532 } 3533 3534 /* 3535 * This creates an orphan entry for the given inode in case something goes wrong 3536 * in the middle of an unlink. 3537 */ 3538 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3539 struct btrfs_inode *inode) 3540 { 3541 int ret; 3542 3543 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3544 if (unlikely(ret && ret != -EEXIST)) { 3545 btrfs_abort_transaction(trans, ret); 3546 return ret; 3547 } 3548 3549 return 0; 3550 } 3551 3552 /* 3553 * We have done the delete so we can go ahead and remove the orphan item for 3554 * this particular inode. 3555 */ 3556 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3557 struct btrfs_inode *inode) 3558 { 3559 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3560 } 3561 3562 /* 3563 * this cleans up any orphans that may be left on the list from the last use 3564 * of this root. 3565 */ 3566 int btrfs_orphan_cleanup(struct btrfs_root *root) 3567 { 3568 struct btrfs_fs_info *fs_info = root->fs_info; 3569 BTRFS_PATH_AUTO_FREE(path); 3570 struct extent_buffer *leaf; 3571 struct btrfs_key key, found_key; 3572 struct btrfs_trans_handle *trans; 3573 u64 last_objectid = 0; 3574 int ret = 0, nr_unlink = 0; 3575 3576 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3577 return 0; 3578 3579 path = btrfs_alloc_path(); 3580 if (!path) { 3581 ret = -ENOMEM; 3582 goto out; 3583 } 3584 path->reada = READA_BACK; 3585 3586 key.objectid = BTRFS_ORPHAN_OBJECTID; 3587 key.type = BTRFS_ORPHAN_ITEM_KEY; 3588 key.offset = (u64)-1; 3589 3590 while (1) { 3591 struct btrfs_inode *inode; 3592 3593 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3594 if (ret < 0) 3595 goto out; 3596 3597 /* 3598 * if ret == 0 means we found what we were searching for, which 3599 * is weird, but possible, so only screw with path if we didn't 3600 * find the key and see if we have stuff that matches 3601 */ 3602 if (ret > 0) { 3603 ret = 0; 3604 if (path->slots[0] == 0) 3605 break; 3606 path->slots[0]--; 3607 } 3608 3609 /* pull out the item */ 3610 leaf = path->nodes[0]; 3611 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3612 3613 /* make sure the item matches what we want */ 3614 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3615 break; 3616 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3617 break; 3618 3619 /* release the path since we're done with it */ 3620 btrfs_release_path(path); 3621 3622 /* 3623 * this is where we are basically btrfs_lookup, without the 3624 * crossing root thing. we store the inode number in the 3625 * offset of the orphan item. 3626 */ 3627 3628 if (found_key.offset == last_objectid) { 3629 /* 3630 * We found the same inode as before. This means we were 3631 * not able to remove its items via eviction triggered 3632 * by an iput(). A transaction abort may have happened, 3633 * due to -ENOSPC for example, so try to grab the error 3634 * that lead to a transaction abort, if any. 3635 */ 3636 btrfs_err(fs_info, 3637 "Error removing orphan entry, stopping orphan cleanup"); 3638 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3639 goto out; 3640 } 3641 3642 last_objectid = found_key.offset; 3643 3644 found_key.objectid = found_key.offset; 3645 found_key.type = BTRFS_INODE_ITEM_KEY; 3646 found_key.offset = 0; 3647 inode = btrfs_iget(last_objectid, root); 3648 if (IS_ERR(inode)) { 3649 ret = PTR_ERR(inode); 3650 inode = NULL; 3651 if (ret != -ENOENT) 3652 goto out; 3653 } 3654 3655 if (!inode && root == fs_info->tree_root) { 3656 struct btrfs_root *dead_root; 3657 int is_dead_root = 0; 3658 3659 /* 3660 * This is an orphan in the tree root. Currently these 3661 * could come from 2 sources: 3662 * a) a root (snapshot/subvolume) deletion in progress 3663 * b) a free space cache inode 3664 * We need to distinguish those two, as the orphan item 3665 * for a root must not get deleted before the deletion 3666 * of the snapshot/subvolume's tree completes. 3667 * 3668 * btrfs_find_orphan_roots() ran before us, which has 3669 * found all deleted roots and loaded them into 3670 * fs_info->fs_roots_radix. So here we can find if an 3671 * orphan item corresponds to a deleted root by looking 3672 * up the root from that radix tree. 3673 */ 3674 3675 spin_lock(&fs_info->fs_roots_radix_lock); 3676 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3677 (unsigned long)found_key.objectid); 3678 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3679 is_dead_root = 1; 3680 spin_unlock(&fs_info->fs_roots_radix_lock); 3681 3682 if (is_dead_root) { 3683 /* prevent this orphan from being found again */ 3684 key.offset = found_key.objectid - 1; 3685 continue; 3686 } 3687 3688 } 3689 3690 /* 3691 * If we have an inode with links, there are a couple of 3692 * possibilities: 3693 * 3694 * 1. We were halfway through creating fsverity metadata for the 3695 * file. In that case, the orphan item represents incomplete 3696 * fsverity metadata which must be cleaned up with 3697 * btrfs_drop_verity_items and deleting the orphan item. 3698 3699 * 2. Old kernels (before v3.12) used to create an 3700 * orphan item for truncate indicating that there were possibly 3701 * extent items past i_size that needed to be deleted. In v3.12, 3702 * truncate was changed to update i_size in sync with the extent 3703 * items, but the (useless) orphan item was still created. Since 3704 * v4.18, we don't create the orphan item for truncate at all. 3705 * 3706 * So, this item could mean that we need to do a truncate, but 3707 * only if this filesystem was last used on a pre-v3.12 kernel 3708 * and was not cleanly unmounted. The odds of that are quite 3709 * slim, and it's a pain to do the truncate now, so just delete 3710 * the orphan item. 3711 * 3712 * It's also possible that this orphan item was supposed to be 3713 * deleted but wasn't. The inode number may have been reused, 3714 * but either way, we can delete the orphan item. 3715 */ 3716 if (!inode || inode->vfs_inode.i_nlink) { 3717 if (inode) { 3718 ret = btrfs_drop_verity_items(inode); 3719 iput(&inode->vfs_inode); 3720 inode = NULL; 3721 if (ret) 3722 goto out; 3723 } 3724 trans = btrfs_start_transaction(root, 1); 3725 if (IS_ERR(trans)) { 3726 ret = PTR_ERR(trans); 3727 goto out; 3728 } 3729 btrfs_debug(fs_info, "auto deleting %Lu", 3730 found_key.objectid); 3731 ret = btrfs_del_orphan_item(trans, root, 3732 found_key.objectid); 3733 btrfs_end_transaction(trans); 3734 if (ret) 3735 goto out; 3736 continue; 3737 } 3738 3739 nr_unlink++; 3740 3741 /* this will do delete_inode and everything for us */ 3742 iput(&inode->vfs_inode); 3743 } 3744 /* release the path since we're done with it */ 3745 btrfs_release_path(path); 3746 3747 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3748 trans = btrfs_join_transaction(root); 3749 if (!IS_ERR(trans)) 3750 btrfs_end_transaction(trans); 3751 } 3752 3753 if (nr_unlink) 3754 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3755 3756 out: 3757 if (ret) 3758 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3759 return ret; 3760 } 3761 3762 /* 3763 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3764 * can't be any ACLs. 3765 * 3766 * @leaf: the eb leaf where to search 3767 * @slot: the slot the inode is in 3768 * @objectid: the objectid of the inode 3769 * 3770 * Return true if there is xattr/ACL, false otherwise. 3771 */ 3772 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3773 int slot, u64 objectid, 3774 int *first_xattr_slot) 3775 { 3776 u32 nritems = btrfs_header_nritems(leaf); 3777 struct btrfs_key found_key; 3778 static u64 xattr_access = 0; 3779 static u64 xattr_default = 0; 3780 int scanned = 0; 3781 3782 if (!xattr_access) { 3783 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3784 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3785 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3786 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3787 } 3788 3789 slot++; 3790 *first_xattr_slot = -1; 3791 while (slot < nritems) { 3792 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3793 3794 /* We found a different objectid, there must be no ACLs. */ 3795 if (found_key.objectid != objectid) 3796 return false; 3797 3798 /* We found an xattr, assume we've got an ACL. */ 3799 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3800 if (*first_xattr_slot == -1) 3801 *first_xattr_slot = slot; 3802 if (found_key.offset == xattr_access || 3803 found_key.offset == xattr_default) 3804 return true; 3805 } 3806 3807 /* 3808 * We found a key greater than an xattr key, there can't be any 3809 * ACLs later on. 3810 */ 3811 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3812 return false; 3813 3814 slot++; 3815 scanned++; 3816 3817 /* 3818 * The item order goes like: 3819 * - inode 3820 * - inode backrefs 3821 * - xattrs 3822 * - extents, 3823 * 3824 * so if there are lots of hard links to an inode there can be 3825 * a lot of backrefs. Don't waste time searching too hard, 3826 * this is just an optimization. 3827 */ 3828 if (scanned >= 8) 3829 break; 3830 } 3831 /* 3832 * We hit the end of the leaf before we found an xattr or something 3833 * larger than an xattr. We have to assume the inode has ACLs. 3834 */ 3835 if (*first_xattr_slot == -1) 3836 *first_xattr_slot = slot; 3837 return true; 3838 } 3839 3840 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3841 { 3842 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3843 3844 if (WARN_ON_ONCE(inode->file_extent_tree)) 3845 return 0; 3846 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3847 return 0; 3848 if (!S_ISREG(inode->vfs_inode.i_mode)) 3849 return 0; 3850 if (btrfs_is_free_space_inode(inode)) 3851 return 0; 3852 3853 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3854 if (!inode->file_extent_tree) 3855 return -ENOMEM; 3856 3857 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3858 IO_TREE_INODE_FILE_EXTENT); 3859 /* Lockdep class is set only for the file extent tree. */ 3860 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3861 3862 return 0; 3863 } 3864 3865 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3866 { 3867 struct btrfs_root *root = inode->root; 3868 struct btrfs_inode *existing; 3869 const u64 ino = btrfs_ino(inode); 3870 int ret; 3871 3872 if (inode_unhashed(&inode->vfs_inode)) 3873 return 0; 3874 3875 if (prealloc) { 3876 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3877 if (ret) 3878 return ret; 3879 } 3880 3881 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3882 3883 if (xa_is_err(existing)) { 3884 ret = xa_err(existing); 3885 ASSERT(ret != -EINVAL); 3886 ASSERT(ret != -ENOMEM); 3887 return ret; 3888 } else if (existing) { 3889 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3890 } 3891 3892 return 0; 3893 } 3894 3895 /* 3896 * Read a locked inode from the btree into the in-memory inode and add it to 3897 * its root list/tree. 3898 * 3899 * On failure clean up the inode. 3900 */ 3901 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3902 { 3903 struct btrfs_root *root = inode->root; 3904 struct btrfs_fs_info *fs_info = root->fs_info; 3905 struct extent_buffer *leaf; 3906 struct btrfs_inode_item *inode_item; 3907 struct inode *vfs_inode = &inode->vfs_inode; 3908 struct btrfs_key location; 3909 unsigned long ptr; 3910 int maybe_acls; 3911 u32 rdev; 3912 int ret; 3913 bool filled = false; 3914 int first_xattr_slot; 3915 3916 ret = btrfs_fill_inode(inode, &rdev); 3917 if (!ret) 3918 filled = true; 3919 3920 ASSERT(path); 3921 3922 btrfs_get_inode_key(inode, &location); 3923 3924 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3925 if (ret) { 3926 /* 3927 * ret > 0 can come from btrfs_search_slot called by 3928 * btrfs_lookup_inode(), this means the inode was not found. 3929 */ 3930 if (ret > 0) 3931 ret = -ENOENT; 3932 goto out; 3933 } 3934 3935 leaf = path->nodes[0]; 3936 3937 if (filled) 3938 goto cache_index; 3939 3940 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3941 struct btrfs_inode_item); 3942 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3943 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3944 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3945 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3946 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3947 3948 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3949 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3950 3951 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3952 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3953 3954 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3955 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3956 3957 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3958 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3959 3960 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3961 inode->generation = btrfs_inode_generation(leaf, inode_item); 3962 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3963 3964 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3965 vfs_inode->i_generation = inode->generation; 3966 vfs_inode->i_rdev = 0; 3967 rdev = btrfs_inode_rdev(leaf, inode_item); 3968 3969 if (S_ISDIR(vfs_inode->i_mode)) 3970 inode->index_cnt = (u64)-1; 3971 3972 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3973 &inode->flags, &inode->ro_flags); 3974 btrfs_update_inode_mapping_flags(inode); 3975 btrfs_set_inode_mapping_order(inode); 3976 3977 cache_index: 3978 ret = btrfs_init_file_extent_tree(inode); 3979 if (ret) 3980 goto out; 3981 btrfs_inode_set_file_extent_range(inode, 0, 3982 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3983 /* 3984 * If we were modified in the current generation and evicted from memory 3985 * and then re-read we need to do a full sync since we don't have any 3986 * idea about which extents were modified before we were evicted from 3987 * cache. 3988 * 3989 * This is required for both inode re-read from disk and delayed inode 3990 * in the delayed_nodes xarray. 3991 */ 3992 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3993 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3994 3995 /* 3996 * We don't persist the id of the transaction where an unlink operation 3997 * against the inode was last made. So here we assume the inode might 3998 * have been evicted, and therefore the exact value of last_unlink_trans 3999 * lost, and set it to last_trans to avoid metadata inconsistencies 4000 * between the inode and its parent if the inode is fsync'ed and the log 4001 * replayed. For example, in the scenario: 4002 * 4003 * touch mydir/foo 4004 * ln mydir/foo mydir/bar 4005 * sync 4006 * unlink mydir/bar 4007 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4008 * xfs_io -c fsync mydir/foo 4009 * <power failure> 4010 * mount fs, triggers fsync log replay 4011 * 4012 * We must make sure that when we fsync our inode foo we also log its 4013 * parent inode, otherwise after log replay the parent still has the 4014 * dentry with the "bar" name but our inode foo has a link count of 1 4015 * and doesn't have an inode ref with the name "bar" anymore. 4016 * 4017 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4018 * but it guarantees correctness at the expense of occasional full 4019 * transaction commits on fsync if our inode is a directory, or if our 4020 * inode is not a directory, logging its parent unnecessarily. 4021 */ 4022 inode->last_unlink_trans = inode->last_trans; 4023 4024 /* 4025 * Same logic as for last_unlink_trans. We don't persist the generation 4026 * of the last transaction where this inode was used for a reflink 4027 * operation, so after eviction and reloading the inode we must be 4028 * pessimistic and assume the last transaction that modified the inode. 4029 */ 4030 inode->last_reflink_trans = inode->last_trans; 4031 4032 path->slots[0]++; 4033 if (vfs_inode->i_nlink != 1 || 4034 path->slots[0] >= btrfs_header_nritems(leaf)) 4035 goto cache_acl; 4036 4037 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4038 if (location.objectid != btrfs_ino(inode)) 4039 goto cache_acl; 4040 4041 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4042 if (location.type == BTRFS_INODE_REF_KEY) { 4043 struct btrfs_inode_ref *ref; 4044 4045 ref = (struct btrfs_inode_ref *)ptr; 4046 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4047 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4048 struct btrfs_inode_extref *extref; 4049 4050 extref = (struct btrfs_inode_extref *)ptr; 4051 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4052 } 4053 cache_acl: 4054 /* 4055 * try to precache a NULL acl entry for files that don't have 4056 * any xattrs or acls 4057 */ 4058 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4059 btrfs_ino(inode), &first_xattr_slot); 4060 if (first_xattr_slot != -1) { 4061 path->slots[0] = first_xattr_slot; 4062 ret = btrfs_load_inode_props(inode, path); 4063 if (ret) 4064 btrfs_err(fs_info, 4065 "error loading props for ino %llu (root %llu): %d", 4066 btrfs_ino(inode), btrfs_root_id(root), ret); 4067 } 4068 4069 if (!maybe_acls) 4070 cache_no_acl(vfs_inode); 4071 4072 switch (vfs_inode->i_mode & S_IFMT) { 4073 case S_IFREG: 4074 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4075 vfs_inode->i_fop = &btrfs_file_operations; 4076 vfs_inode->i_op = &btrfs_file_inode_operations; 4077 break; 4078 case S_IFDIR: 4079 vfs_inode->i_fop = &btrfs_dir_file_operations; 4080 vfs_inode->i_op = &btrfs_dir_inode_operations; 4081 break; 4082 case S_IFLNK: 4083 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4084 inode_nohighmem(vfs_inode); 4085 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4086 break; 4087 default: 4088 vfs_inode->i_op = &btrfs_special_inode_operations; 4089 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4090 break; 4091 } 4092 4093 btrfs_sync_inode_flags_to_i_flags(inode); 4094 4095 ret = btrfs_add_inode_to_root(inode, true); 4096 if (ret) 4097 goto out; 4098 4099 return 0; 4100 out: 4101 iget_failed(vfs_inode); 4102 return ret; 4103 } 4104 4105 /* 4106 * given a leaf and an inode, copy the inode fields into the leaf 4107 */ 4108 static void fill_inode_item(struct btrfs_trans_handle *trans, 4109 struct extent_buffer *leaf, 4110 struct btrfs_inode_item *item, 4111 struct inode *inode) 4112 { 4113 u64 flags; 4114 4115 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4116 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4117 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4118 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4119 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4120 4121 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4122 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4123 4124 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4125 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4126 4127 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4128 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4129 4130 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4131 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4132 4133 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4134 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4135 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4136 btrfs_set_inode_transid(leaf, item, trans->transid); 4137 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4138 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4139 BTRFS_I(inode)->ro_flags); 4140 btrfs_set_inode_flags(leaf, item, flags); 4141 btrfs_set_inode_block_group(leaf, item, 0); 4142 } 4143 4144 /* 4145 * copy everything in the in-memory inode into the btree. 4146 */ 4147 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4148 struct btrfs_inode *inode) 4149 { 4150 struct btrfs_inode_item *inode_item; 4151 BTRFS_PATH_AUTO_FREE(path); 4152 struct extent_buffer *leaf; 4153 struct btrfs_key key; 4154 int ret; 4155 4156 path = btrfs_alloc_path(); 4157 if (!path) 4158 return -ENOMEM; 4159 4160 btrfs_get_inode_key(inode, &key); 4161 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4162 if (ret) { 4163 if (ret > 0) 4164 ret = -ENOENT; 4165 return ret; 4166 } 4167 4168 leaf = path->nodes[0]; 4169 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4170 struct btrfs_inode_item); 4171 4172 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4173 btrfs_set_inode_last_trans(trans, inode); 4174 return 0; 4175 } 4176 4177 /* 4178 * copy everything in the in-memory inode into the btree. 4179 */ 4180 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4181 struct btrfs_inode *inode) 4182 { 4183 struct btrfs_root *root = inode->root; 4184 struct btrfs_fs_info *fs_info = root->fs_info; 4185 int ret; 4186 4187 /* 4188 * If the inode is a free space inode, we can deadlock during commit 4189 * if we put it into the delayed code. 4190 * 4191 * The data relocation inode should also be directly updated 4192 * without delay 4193 */ 4194 if (!btrfs_is_free_space_inode(inode) 4195 && !btrfs_is_data_reloc_root(root) 4196 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4197 btrfs_update_root_times(trans, root); 4198 4199 ret = btrfs_delayed_update_inode(trans, inode); 4200 if (!ret) 4201 btrfs_set_inode_last_trans(trans, inode); 4202 return ret; 4203 } 4204 4205 return btrfs_update_inode_item(trans, inode); 4206 } 4207 4208 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4209 struct btrfs_inode *inode) 4210 { 4211 int ret; 4212 4213 ret = btrfs_update_inode(trans, inode); 4214 if (ret == -ENOSPC) 4215 return btrfs_update_inode_item(trans, inode); 4216 return ret; 4217 } 4218 4219 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4220 { 4221 struct timespec64 now; 4222 4223 /* 4224 * If we are replaying a log tree, we do not want to update the mtime 4225 * and ctime of the parent directory with the current time, since the 4226 * log replay procedure is responsible for setting them to their correct 4227 * values (the ones it had when the fsync was done). 4228 */ 4229 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4230 return; 4231 4232 now = inode_set_ctime_current(&dir->vfs_inode); 4233 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4234 } 4235 4236 /* 4237 * unlink helper that gets used here in inode.c and in the tree logging 4238 * recovery code. It remove a link in a directory with a given name, and 4239 * also drops the back refs in the inode to the directory 4240 */ 4241 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4242 struct btrfs_inode *dir, 4243 struct btrfs_inode *inode, 4244 const struct fscrypt_str *name, 4245 struct btrfs_rename_ctx *rename_ctx) 4246 { 4247 struct btrfs_root *root = dir->root; 4248 struct btrfs_fs_info *fs_info = root->fs_info; 4249 struct btrfs_path *path; 4250 int ret = 0; 4251 struct btrfs_dir_item *di; 4252 u64 index; 4253 u64 ino = btrfs_ino(inode); 4254 u64 dir_ino = btrfs_ino(dir); 4255 4256 path = btrfs_alloc_path(); 4257 if (!path) 4258 return -ENOMEM; 4259 4260 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4261 if (IS_ERR_OR_NULL(di)) { 4262 btrfs_free_path(path); 4263 return di ? PTR_ERR(di) : -ENOENT; 4264 } 4265 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4266 /* 4267 * Down the call chains below we'll also need to allocate a path, so no 4268 * need to hold on to this one for longer than necessary. 4269 */ 4270 btrfs_free_path(path); 4271 if (ret) 4272 return ret; 4273 4274 /* 4275 * If we don't have dir index, we have to get it by looking up 4276 * the inode ref, since we get the inode ref, remove it directly, 4277 * it is unnecessary to do delayed deletion. 4278 * 4279 * But if we have dir index, needn't search inode ref to get it. 4280 * Since the inode ref is close to the inode item, it is better 4281 * that we delay to delete it, and just do this deletion when 4282 * we update the inode item. 4283 */ 4284 if (inode->dir_index) { 4285 ret = btrfs_delayed_delete_inode_ref(inode); 4286 if (!ret) { 4287 index = inode->dir_index; 4288 goto skip_backref; 4289 } 4290 } 4291 4292 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4293 if (unlikely(ret)) { 4294 btrfs_crit(fs_info, 4295 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4296 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4297 btrfs_abort_transaction(trans, ret); 4298 return ret; 4299 } 4300 skip_backref: 4301 if (rename_ctx) 4302 rename_ctx->index = index; 4303 4304 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4305 if (unlikely(ret)) { 4306 btrfs_abort_transaction(trans, ret); 4307 return ret; 4308 } 4309 4310 /* 4311 * If we are in a rename context, we don't need to update anything in the 4312 * log. That will be done later during the rename by btrfs_log_new_name(). 4313 * Besides that, doing it here would only cause extra unnecessary btree 4314 * operations on the log tree, increasing latency for applications. 4315 */ 4316 if (!rename_ctx) { 4317 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4318 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4319 } 4320 4321 /* 4322 * If we have a pending delayed iput we could end up with the final iput 4323 * being run in btrfs-cleaner context. If we have enough of these built 4324 * up we can end up burning a lot of time in btrfs-cleaner without any 4325 * way to throttle the unlinks. Since we're currently holding a ref on 4326 * the inode we can run the delayed iput here without any issues as the 4327 * final iput won't be done until after we drop the ref we're currently 4328 * holding. 4329 */ 4330 btrfs_run_delayed_iput(fs_info, inode); 4331 4332 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4333 inode_inc_iversion(&inode->vfs_inode); 4334 inode_set_ctime_current(&inode->vfs_inode); 4335 inode_inc_iversion(&dir->vfs_inode); 4336 update_time_after_link_or_unlink(dir); 4337 4338 return btrfs_update_inode(trans, dir); 4339 } 4340 4341 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4342 struct btrfs_inode *dir, struct btrfs_inode *inode, 4343 const struct fscrypt_str *name) 4344 { 4345 int ret; 4346 4347 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4348 if (!ret) { 4349 drop_nlink(&inode->vfs_inode); 4350 ret = btrfs_update_inode(trans, inode); 4351 } 4352 return ret; 4353 } 4354 4355 /* 4356 * helper to start transaction for unlink and rmdir. 4357 * 4358 * unlink and rmdir are special in btrfs, they do not always free space, so 4359 * if we cannot make our reservations the normal way try and see if there is 4360 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4361 * allow the unlink to occur. 4362 */ 4363 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4364 { 4365 struct btrfs_root *root = dir->root; 4366 4367 return btrfs_start_transaction_fallback_global_rsv(root, 4368 BTRFS_UNLINK_METADATA_UNITS); 4369 } 4370 4371 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4372 { 4373 struct btrfs_trans_handle *trans; 4374 struct inode *inode = d_inode(dentry); 4375 int ret; 4376 struct fscrypt_name fname; 4377 4378 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4379 if (ret) 4380 return ret; 4381 4382 /* This needs to handle no-key deletions later on */ 4383 4384 trans = __unlink_start_trans(BTRFS_I(dir)); 4385 if (IS_ERR(trans)) { 4386 ret = PTR_ERR(trans); 4387 goto fscrypt_free; 4388 } 4389 4390 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4391 false); 4392 4393 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4394 &fname.disk_name); 4395 if (ret) 4396 goto end_trans; 4397 4398 if (inode->i_nlink == 0) { 4399 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4400 if (ret) 4401 goto end_trans; 4402 } 4403 4404 end_trans: 4405 btrfs_end_transaction(trans); 4406 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4407 fscrypt_free: 4408 fscrypt_free_filename(&fname); 4409 return ret; 4410 } 4411 4412 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4413 struct btrfs_inode *dir, struct dentry *dentry) 4414 { 4415 struct btrfs_root *root = dir->root; 4416 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4417 struct btrfs_path *path; 4418 struct extent_buffer *leaf; 4419 struct btrfs_dir_item *di; 4420 struct btrfs_key key; 4421 u64 index; 4422 int ret; 4423 u64 objectid; 4424 u64 dir_ino = btrfs_ino(dir); 4425 struct fscrypt_name fname; 4426 4427 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4428 if (ret) 4429 return ret; 4430 4431 /* This needs to handle no-key deletions later on */ 4432 4433 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4434 objectid = btrfs_root_id(inode->root); 4435 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4436 objectid = inode->ref_root_id; 4437 } else { 4438 WARN_ON(1); 4439 fscrypt_free_filename(&fname); 4440 return -EINVAL; 4441 } 4442 4443 path = btrfs_alloc_path(); 4444 if (!path) { 4445 ret = -ENOMEM; 4446 goto out; 4447 } 4448 4449 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4450 &fname.disk_name, -1); 4451 if (IS_ERR_OR_NULL(di)) { 4452 ret = di ? PTR_ERR(di) : -ENOENT; 4453 goto out; 4454 } 4455 4456 leaf = path->nodes[0]; 4457 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4458 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4459 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4460 if (unlikely(ret)) { 4461 btrfs_abort_transaction(trans, ret); 4462 goto out; 4463 } 4464 btrfs_release_path(path); 4465 4466 /* 4467 * This is a placeholder inode for a subvolume we didn't have a 4468 * reference to at the time of the snapshot creation. In the meantime 4469 * we could have renamed the real subvol link into our snapshot, so 4470 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4471 * Instead simply lookup the dir_index_item for this entry so we can 4472 * remove it. Otherwise we know we have a ref to the root and we can 4473 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4474 */ 4475 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4476 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4477 if (IS_ERR(di)) { 4478 ret = PTR_ERR(di); 4479 btrfs_abort_transaction(trans, ret); 4480 goto out; 4481 } 4482 4483 leaf = path->nodes[0]; 4484 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4485 index = key.offset; 4486 btrfs_release_path(path); 4487 } else { 4488 ret = btrfs_del_root_ref(trans, objectid, 4489 btrfs_root_id(root), dir_ino, 4490 &index, &fname.disk_name); 4491 if (unlikely(ret)) { 4492 btrfs_abort_transaction(trans, ret); 4493 goto out; 4494 } 4495 } 4496 4497 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4498 if (unlikely(ret)) { 4499 btrfs_abort_transaction(trans, ret); 4500 goto out; 4501 } 4502 4503 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4504 inode_inc_iversion(&dir->vfs_inode); 4505 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4506 ret = btrfs_update_inode_fallback(trans, dir); 4507 if (ret) 4508 btrfs_abort_transaction(trans, ret); 4509 out: 4510 btrfs_free_path(path); 4511 fscrypt_free_filename(&fname); 4512 return ret; 4513 } 4514 4515 /* 4516 * Helper to check if the subvolume references other subvolumes or if it's 4517 * default. 4518 */ 4519 static noinline int may_destroy_subvol(struct btrfs_root *root) 4520 { 4521 struct btrfs_fs_info *fs_info = root->fs_info; 4522 BTRFS_PATH_AUTO_FREE(path); 4523 struct btrfs_dir_item *di; 4524 struct btrfs_key key; 4525 struct fscrypt_str name = FSTR_INIT("default", 7); 4526 u64 dir_id; 4527 int ret; 4528 4529 path = btrfs_alloc_path(); 4530 if (!path) 4531 return -ENOMEM; 4532 4533 /* Make sure this root isn't set as the default subvol */ 4534 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4535 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4536 dir_id, &name, 0); 4537 if (di && !IS_ERR(di)) { 4538 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4539 if (key.objectid == btrfs_root_id(root)) { 4540 ret = -EPERM; 4541 btrfs_err(fs_info, 4542 "deleting default subvolume %llu is not allowed", 4543 key.objectid); 4544 return ret; 4545 } 4546 btrfs_release_path(path); 4547 } 4548 4549 key.objectid = btrfs_root_id(root); 4550 key.type = BTRFS_ROOT_REF_KEY; 4551 key.offset = (u64)-1; 4552 4553 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4554 if (ret < 0) 4555 return ret; 4556 if (unlikely(ret == 0)) { 4557 /* 4558 * Key with offset -1 found, there would have to exist a root 4559 * with such id, but this is out of valid range. 4560 */ 4561 return -EUCLEAN; 4562 } 4563 4564 ret = 0; 4565 if (path->slots[0] > 0) { 4566 path->slots[0]--; 4567 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4568 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4569 ret = -ENOTEMPTY; 4570 } 4571 4572 return ret; 4573 } 4574 4575 /* Delete all dentries for inodes belonging to the root */ 4576 static void btrfs_prune_dentries(struct btrfs_root *root) 4577 { 4578 struct btrfs_fs_info *fs_info = root->fs_info; 4579 struct btrfs_inode *inode; 4580 u64 min_ino = 0; 4581 4582 if (!BTRFS_FS_ERROR(fs_info)) 4583 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4584 4585 inode = btrfs_find_first_inode(root, min_ino); 4586 while (inode) { 4587 if (icount_read(&inode->vfs_inode) > 1) 4588 d_prune_aliases(&inode->vfs_inode); 4589 4590 min_ino = btrfs_ino(inode) + 1; 4591 /* 4592 * btrfs_drop_inode() will have it removed from the inode 4593 * cache when its usage count hits zero. 4594 */ 4595 iput(&inode->vfs_inode); 4596 cond_resched(); 4597 inode = btrfs_find_first_inode(root, min_ino); 4598 } 4599 } 4600 4601 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4602 { 4603 struct btrfs_root *root = dir->root; 4604 struct btrfs_fs_info *fs_info = root->fs_info; 4605 struct inode *inode = d_inode(dentry); 4606 struct btrfs_root *dest = BTRFS_I(inode)->root; 4607 struct btrfs_trans_handle *trans; 4608 struct btrfs_block_rsv block_rsv; 4609 u64 root_flags; 4610 u64 qgroup_reserved = 0; 4611 int ret; 4612 4613 down_write(&fs_info->subvol_sem); 4614 4615 /* 4616 * Don't allow to delete a subvolume with send in progress. This is 4617 * inside the inode lock so the error handling that has to drop the bit 4618 * again is not run concurrently. 4619 */ 4620 spin_lock(&dest->root_item_lock); 4621 if (dest->send_in_progress) { 4622 spin_unlock(&dest->root_item_lock); 4623 btrfs_warn(fs_info, 4624 "attempt to delete subvolume %llu during send", 4625 btrfs_root_id(dest)); 4626 ret = -EPERM; 4627 goto out_up_write; 4628 } 4629 if (atomic_read(&dest->nr_swapfiles)) { 4630 spin_unlock(&dest->root_item_lock); 4631 btrfs_warn(fs_info, 4632 "attempt to delete subvolume %llu with active swapfile", 4633 btrfs_root_id(root)); 4634 ret = -EPERM; 4635 goto out_up_write; 4636 } 4637 root_flags = btrfs_root_flags(&dest->root_item); 4638 btrfs_set_root_flags(&dest->root_item, 4639 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4640 spin_unlock(&dest->root_item_lock); 4641 4642 ret = may_destroy_subvol(dest); 4643 if (ret) 4644 goto out_undead; 4645 4646 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4647 /* 4648 * One for dir inode, 4649 * two for dir entries, 4650 * two for root ref/backref. 4651 */ 4652 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4653 if (ret) 4654 goto out_undead; 4655 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4656 4657 trans = btrfs_start_transaction(root, 0); 4658 if (IS_ERR(trans)) { 4659 ret = PTR_ERR(trans); 4660 goto out_release; 4661 } 4662 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4663 qgroup_reserved = 0; 4664 trans->block_rsv = &block_rsv; 4665 trans->bytes_reserved = block_rsv.size; 4666 4667 btrfs_record_snapshot_destroy(trans, dir); 4668 4669 ret = btrfs_unlink_subvol(trans, dir, dentry); 4670 if (unlikely(ret)) { 4671 btrfs_abort_transaction(trans, ret); 4672 goto out_end_trans; 4673 } 4674 4675 ret = btrfs_record_root_in_trans(trans, dest); 4676 if (unlikely(ret)) { 4677 btrfs_abort_transaction(trans, ret); 4678 goto out_end_trans; 4679 } 4680 4681 memset(&dest->root_item.drop_progress, 0, 4682 sizeof(dest->root_item.drop_progress)); 4683 btrfs_set_root_drop_level(&dest->root_item, 0); 4684 btrfs_set_root_refs(&dest->root_item, 0); 4685 4686 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4687 ret = btrfs_insert_orphan_item(trans, 4688 fs_info->tree_root, 4689 btrfs_root_id(dest)); 4690 if (unlikely(ret)) { 4691 btrfs_abort_transaction(trans, ret); 4692 goto out_end_trans; 4693 } 4694 } 4695 4696 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4697 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4698 if (unlikely(ret && ret != -ENOENT)) { 4699 btrfs_abort_transaction(trans, ret); 4700 goto out_end_trans; 4701 } 4702 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4703 ret = btrfs_uuid_tree_remove(trans, 4704 dest->root_item.received_uuid, 4705 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4706 btrfs_root_id(dest)); 4707 if (unlikely(ret && ret != -ENOENT)) { 4708 btrfs_abort_transaction(trans, ret); 4709 goto out_end_trans; 4710 } 4711 } 4712 4713 free_anon_bdev(dest->anon_dev); 4714 dest->anon_dev = 0; 4715 out_end_trans: 4716 trans->block_rsv = NULL; 4717 trans->bytes_reserved = 0; 4718 ret = btrfs_end_transaction(trans); 4719 inode->i_flags |= S_DEAD; 4720 out_release: 4721 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4722 if (qgroup_reserved) 4723 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4724 out_undead: 4725 if (ret) { 4726 spin_lock(&dest->root_item_lock); 4727 root_flags = btrfs_root_flags(&dest->root_item); 4728 btrfs_set_root_flags(&dest->root_item, 4729 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4730 spin_unlock(&dest->root_item_lock); 4731 } 4732 out_up_write: 4733 up_write(&fs_info->subvol_sem); 4734 if (!ret) { 4735 d_invalidate(dentry); 4736 btrfs_prune_dentries(dest); 4737 ASSERT(dest->send_in_progress == 0); 4738 } 4739 4740 return ret; 4741 } 4742 4743 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4744 { 4745 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4746 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4747 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4748 int ret = 0; 4749 struct btrfs_trans_handle *trans; 4750 struct fscrypt_name fname; 4751 4752 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4753 return -ENOTEMPTY; 4754 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4755 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4756 btrfs_err(fs_info, 4757 "extent tree v2 doesn't support snapshot deletion yet"); 4758 return -EOPNOTSUPP; 4759 } 4760 return btrfs_delete_subvolume(dir, dentry); 4761 } 4762 4763 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4764 if (ret) 4765 return ret; 4766 4767 /* This needs to handle no-key deletions later on */ 4768 4769 trans = __unlink_start_trans(dir); 4770 if (IS_ERR(trans)) { 4771 ret = PTR_ERR(trans); 4772 goto out_notrans; 4773 } 4774 4775 /* 4776 * Propagate the last_unlink_trans value of the deleted dir to its 4777 * parent directory. This is to prevent an unrecoverable log tree in the 4778 * case we do something like this: 4779 * 1) create dir foo 4780 * 2) create snapshot under dir foo 4781 * 3) delete the snapshot 4782 * 4) rmdir foo 4783 * 5) mkdir foo 4784 * 6) fsync foo or some file inside foo 4785 * 4786 * This is because we can't unlink other roots when replaying the dir 4787 * deletes for directory foo. 4788 */ 4789 if (inode->last_unlink_trans >= trans->transid) 4790 btrfs_record_snapshot_destroy(trans, dir); 4791 4792 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4793 ret = btrfs_unlink_subvol(trans, dir, dentry); 4794 goto out; 4795 } 4796 4797 ret = btrfs_orphan_add(trans, inode); 4798 if (ret) 4799 goto out; 4800 4801 /* now the directory is empty */ 4802 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4803 if (!ret) 4804 btrfs_i_size_write(inode, 0); 4805 out: 4806 btrfs_end_transaction(trans); 4807 out_notrans: 4808 btrfs_btree_balance_dirty(fs_info); 4809 fscrypt_free_filename(&fname); 4810 4811 return ret; 4812 } 4813 4814 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4815 { 4816 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4817 blockstart, blocksize); 4818 4819 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4820 return true; 4821 return false; 4822 } 4823 4824 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4825 { 4826 const pgoff_t index = (start >> PAGE_SHIFT); 4827 struct address_space *mapping = inode->vfs_inode.i_mapping; 4828 struct folio *folio; 4829 u64 zero_start; 4830 u64 zero_end; 4831 int ret = 0; 4832 4833 again: 4834 folio = filemap_lock_folio(mapping, index); 4835 /* No folio present. */ 4836 if (IS_ERR(folio)) 4837 return 0; 4838 4839 if (!folio_test_uptodate(folio)) { 4840 ret = btrfs_read_folio(NULL, folio); 4841 folio_lock(folio); 4842 if (folio->mapping != mapping) { 4843 folio_unlock(folio); 4844 folio_put(folio); 4845 goto again; 4846 } 4847 if (unlikely(!folio_test_uptodate(folio))) { 4848 ret = -EIO; 4849 goto out_unlock; 4850 } 4851 } 4852 folio_wait_writeback(folio); 4853 4854 /* 4855 * We do not need to lock extents nor wait for OE, as it's already 4856 * beyond EOF. 4857 */ 4858 4859 zero_start = max_t(u64, folio_pos(folio), start); 4860 zero_end = folio_end(folio); 4861 folio_zero_range(folio, zero_start - folio_pos(folio), 4862 zero_end - zero_start); 4863 4864 out_unlock: 4865 folio_unlock(folio); 4866 folio_put(folio); 4867 return ret; 4868 } 4869 4870 /* 4871 * Handle the truncation of a fs block. 4872 * 4873 * @inode - inode that we're zeroing 4874 * @offset - the file offset of the block to truncate 4875 * The value must be inside [@start, @end], and the function will do 4876 * extra checks if the block that covers @offset needs to be zeroed. 4877 * @start - the start file offset of the range we want to zero 4878 * @end - the end (inclusive) file offset of the range we want to zero. 4879 * 4880 * If the range is not block aligned, read out the folio that covers @offset, 4881 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4882 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4883 * for writeback. 4884 * 4885 * This is utilized by hole punch, zero range, file expansion. 4886 */ 4887 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4888 { 4889 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4890 struct address_space *mapping = inode->vfs_inode.i_mapping; 4891 struct extent_io_tree *io_tree = &inode->io_tree; 4892 struct btrfs_ordered_extent *ordered; 4893 struct extent_state *cached_state = NULL; 4894 struct extent_changeset *data_reserved = NULL; 4895 bool only_release_metadata = false; 4896 u32 blocksize = fs_info->sectorsize; 4897 pgoff_t index = (offset >> PAGE_SHIFT); 4898 struct folio *folio; 4899 gfp_t mask = btrfs_alloc_write_mask(mapping); 4900 int ret = 0; 4901 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4902 blocksize); 4903 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4904 blocksize); 4905 bool need_truncate_head = false; 4906 bool need_truncate_tail = false; 4907 u64 zero_start; 4908 u64 zero_end; 4909 u64 block_start; 4910 u64 block_end; 4911 4912 /* @offset should be inside the range. */ 4913 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4914 offset, start, end); 4915 4916 /* The range is aligned at both ends. */ 4917 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4918 /* 4919 * For block size < page size case, we may have polluted blocks 4920 * beyond EOF. So we also need to zero them out. 4921 */ 4922 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4923 ret = truncate_block_zero_beyond_eof(inode, start); 4924 goto out; 4925 } 4926 4927 /* 4928 * @offset may not be inside the head nor tail block. In that case we 4929 * don't need to do anything. 4930 */ 4931 if (!in_head_block && !in_tail_block) 4932 goto out; 4933 4934 /* 4935 * Skip the truncation if the range in the target block is already aligned. 4936 * The seemingly complex check will also handle the same block case. 4937 */ 4938 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4939 need_truncate_head = true; 4940 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4941 need_truncate_tail = true; 4942 if (!need_truncate_head && !need_truncate_tail) 4943 goto out; 4944 4945 block_start = round_down(offset, blocksize); 4946 block_end = block_start + blocksize - 1; 4947 4948 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4949 blocksize, false); 4950 if (ret < 0) { 4951 size_t write_bytes = blocksize; 4952 4953 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4954 /* For nocow case, no need to reserve data space. */ 4955 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 4956 write_bytes, blocksize); 4957 only_release_metadata = true; 4958 } else { 4959 goto out; 4960 } 4961 } 4962 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4963 if (ret < 0) { 4964 if (!only_release_metadata) 4965 btrfs_free_reserved_data_space(inode, data_reserved, 4966 block_start, blocksize); 4967 goto out; 4968 } 4969 again: 4970 folio = __filemap_get_folio(mapping, index, 4971 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4972 if (IS_ERR(folio)) { 4973 if (only_release_metadata) 4974 btrfs_delalloc_release_metadata(inode, blocksize, true); 4975 else 4976 btrfs_delalloc_release_space(inode, data_reserved, 4977 block_start, blocksize, true); 4978 btrfs_delalloc_release_extents(inode, blocksize); 4979 ret = PTR_ERR(folio); 4980 goto out; 4981 } 4982 4983 if (!folio_test_uptodate(folio)) { 4984 ret = btrfs_read_folio(NULL, folio); 4985 folio_lock(folio); 4986 if (folio->mapping != mapping) { 4987 folio_unlock(folio); 4988 folio_put(folio); 4989 goto again; 4990 } 4991 if (unlikely(!folio_test_uptodate(folio))) { 4992 ret = -EIO; 4993 goto out_unlock; 4994 } 4995 } 4996 4997 /* 4998 * We unlock the page after the io is completed and then re-lock it 4999 * above. release_folio() could have come in between that and cleared 5000 * folio private, but left the page in the mapping. Set the page mapped 5001 * here to make sure it's properly set for the subpage stuff. 5002 */ 5003 ret = set_folio_extent_mapped(folio); 5004 if (ret < 0) 5005 goto out_unlock; 5006 5007 folio_wait_writeback(folio); 5008 5009 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 5010 5011 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5012 if (ordered) { 5013 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5014 folio_unlock(folio); 5015 folio_put(folio); 5016 btrfs_start_ordered_extent(ordered); 5017 btrfs_put_ordered_extent(ordered); 5018 goto again; 5019 } 5020 5021 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 5022 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5023 &cached_state); 5024 5025 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5026 &cached_state); 5027 if (ret) { 5028 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5029 goto out_unlock; 5030 } 5031 5032 if (end == (u64)-1) { 5033 /* 5034 * We're truncating beyond EOF, the remaining blocks normally are 5035 * already holes thus no need to zero again, but it's possible for 5036 * fs block size < page size cases to have memory mapped writes 5037 * to pollute ranges beyond EOF. 5038 * 5039 * In that case although such polluted blocks beyond EOF will 5040 * not reach disk, it still affects our page caches. 5041 */ 5042 zero_start = max_t(u64, folio_pos(folio), start); 5043 zero_end = min_t(u64, folio_end(folio) - 1, end); 5044 } else { 5045 zero_start = max_t(u64, block_start, start); 5046 zero_end = min_t(u64, block_end, end); 5047 } 5048 folio_zero_range(folio, zero_start - folio_pos(folio), 5049 zero_end - zero_start + 1); 5050 5051 btrfs_folio_clear_checked(fs_info, folio, block_start, 5052 block_end + 1 - block_start); 5053 btrfs_folio_set_dirty(fs_info, folio, block_start, 5054 block_end + 1 - block_start); 5055 5056 if (only_release_metadata) 5057 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5058 EXTENT_NORESERVE, &cached_state); 5059 5060 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5061 5062 out_unlock: 5063 if (ret) { 5064 if (only_release_metadata) 5065 btrfs_delalloc_release_metadata(inode, blocksize, true); 5066 else 5067 btrfs_delalloc_release_space(inode, data_reserved, 5068 block_start, blocksize, true); 5069 } 5070 btrfs_delalloc_release_extents(inode, blocksize); 5071 folio_unlock(folio); 5072 folio_put(folio); 5073 out: 5074 if (only_release_metadata) 5075 btrfs_check_nocow_unlock(inode); 5076 extent_changeset_free(data_reserved); 5077 return ret; 5078 } 5079 5080 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5081 { 5082 struct btrfs_root *root = inode->root; 5083 struct btrfs_fs_info *fs_info = root->fs_info; 5084 struct btrfs_trans_handle *trans; 5085 struct btrfs_drop_extents_args drop_args = { 0 }; 5086 int ret; 5087 5088 /* 5089 * If NO_HOLES is enabled, we don't need to do anything. 5090 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5091 * or btrfs_update_inode() will be called, which guarantee that the next 5092 * fsync will know this inode was changed and needs to be logged. 5093 */ 5094 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5095 return 0; 5096 5097 /* 5098 * 1 - for the one we're dropping 5099 * 1 - for the one we're adding 5100 * 1 - for updating the inode. 5101 */ 5102 trans = btrfs_start_transaction(root, 3); 5103 if (IS_ERR(trans)) 5104 return PTR_ERR(trans); 5105 5106 drop_args.start = offset; 5107 drop_args.end = offset + len; 5108 drop_args.drop_cache = true; 5109 5110 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5111 if (unlikely(ret)) { 5112 btrfs_abort_transaction(trans, ret); 5113 btrfs_end_transaction(trans); 5114 return ret; 5115 } 5116 5117 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5118 if (ret) { 5119 btrfs_abort_transaction(trans, ret); 5120 } else { 5121 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5122 btrfs_update_inode(trans, inode); 5123 } 5124 btrfs_end_transaction(trans); 5125 return ret; 5126 } 5127 5128 /* 5129 * This function puts in dummy file extents for the area we're creating a hole 5130 * for. So if we are truncating this file to a larger size we need to insert 5131 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5132 * the range between oldsize and size 5133 */ 5134 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5135 { 5136 struct btrfs_root *root = inode->root; 5137 struct btrfs_fs_info *fs_info = root->fs_info; 5138 struct extent_io_tree *io_tree = &inode->io_tree; 5139 struct extent_map *em = NULL; 5140 struct extent_state *cached_state = NULL; 5141 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5142 u64 block_end = ALIGN(size, fs_info->sectorsize); 5143 u64 last_byte; 5144 u64 cur_offset; 5145 u64 hole_size; 5146 int ret = 0; 5147 5148 /* 5149 * If our size started in the middle of a block we need to zero out the 5150 * rest of the block before we expand the i_size, otherwise we could 5151 * expose stale data. 5152 */ 5153 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5154 if (ret) 5155 return ret; 5156 5157 if (size <= hole_start) 5158 return 0; 5159 5160 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5161 &cached_state); 5162 cur_offset = hole_start; 5163 while (1) { 5164 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5165 if (IS_ERR(em)) { 5166 ret = PTR_ERR(em); 5167 em = NULL; 5168 break; 5169 } 5170 last_byte = min(btrfs_extent_map_end(em), block_end); 5171 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5172 hole_size = last_byte - cur_offset; 5173 5174 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5175 struct extent_map *hole_em; 5176 5177 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5178 if (ret) 5179 break; 5180 5181 ret = btrfs_inode_set_file_extent_range(inode, 5182 cur_offset, hole_size); 5183 if (ret) 5184 break; 5185 5186 hole_em = btrfs_alloc_extent_map(); 5187 if (!hole_em) { 5188 btrfs_drop_extent_map_range(inode, cur_offset, 5189 cur_offset + hole_size - 1, 5190 false); 5191 btrfs_set_inode_full_sync(inode); 5192 goto next; 5193 } 5194 hole_em->start = cur_offset; 5195 hole_em->len = hole_size; 5196 5197 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5198 hole_em->disk_num_bytes = 0; 5199 hole_em->ram_bytes = hole_size; 5200 hole_em->generation = btrfs_get_fs_generation(fs_info); 5201 5202 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5203 btrfs_free_extent_map(hole_em); 5204 } else { 5205 ret = btrfs_inode_set_file_extent_range(inode, 5206 cur_offset, hole_size); 5207 if (ret) 5208 break; 5209 } 5210 next: 5211 btrfs_free_extent_map(em); 5212 em = NULL; 5213 cur_offset = last_byte; 5214 if (cur_offset >= block_end) 5215 break; 5216 } 5217 btrfs_free_extent_map(em); 5218 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5219 return ret; 5220 } 5221 5222 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5223 { 5224 struct btrfs_root *root = BTRFS_I(inode)->root; 5225 struct btrfs_trans_handle *trans; 5226 loff_t oldsize = i_size_read(inode); 5227 loff_t newsize = attr->ia_size; 5228 int mask = attr->ia_valid; 5229 int ret; 5230 5231 /* 5232 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5233 * special case where we need to update the times despite not having 5234 * these flags set. For all other operations the VFS set these flags 5235 * explicitly if it wants a timestamp update. 5236 */ 5237 if (newsize != oldsize) { 5238 inode_inc_iversion(inode); 5239 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5240 inode_set_mtime_to_ts(inode, 5241 inode_set_ctime_current(inode)); 5242 } 5243 } 5244 5245 if (newsize > oldsize) { 5246 /* 5247 * Don't do an expanding truncate while snapshotting is ongoing. 5248 * This is to ensure the snapshot captures a fully consistent 5249 * state of this file - if the snapshot captures this expanding 5250 * truncation, it must capture all writes that happened before 5251 * this truncation. 5252 */ 5253 btrfs_drew_write_lock(&root->snapshot_lock); 5254 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5255 if (ret) { 5256 btrfs_drew_write_unlock(&root->snapshot_lock); 5257 return ret; 5258 } 5259 5260 trans = btrfs_start_transaction(root, 1); 5261 if (IS_ERR(trans)) { 5262 btrfs_drew_write_unlock(&root->snapshot_lock); 5263 return PTR_ERR(trans); 5264 } 5265 5266 i_size_write(inode, newsize); 5267 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5268 pagecache_isize_extended(inode, oldsize, newsize); 5269 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5270 btrfs_drew_write_unlock(&root->snapshot_lock); 5271 btrfs_end_transaction(trans); 5272 } else { 5273 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5274 5275 if (btrfs_is_zoned(fs_info)) { 5276 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5277 ALIGN(newsize, fs_info->sectorsize), 5278 (u64)-1); 5279 if (ret) 5280 return ret; 5281 } 5282 5283 /* 5284 * We're truncating a file that used to have good data down to 5285 * zero. Make sure any new writes to the file get on disk 5286 * on close. 5287 */ 5288 if (newsize == 0) 5289 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5290 &BTRFS_I(inode)->runtime_flags); 5291 5292 truncate_setsize(inode, newsize); 5293 5294 inode_dio_wait(inode); 5295 5296 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5297 if (ret && inode->i_nlink) { 5298 int ret2; 5299 5300 /* 5301 * Truncate failed, so fix up the in-memory size. We 5302 * adjusted disk_i_size down as we removed extents, so 5303 * wait for disk_i_size to be stable and then update the 5304 * in-memory size to match. 5305 */ 5306 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5307 if (ret2) 5308 return ret2; 5309 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5310 } 5311 } 5312 5313 return ret; 5314 } 5315 5316 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5317 struct iattr *attr) 5318 { 5319 struct inode *inode = d_inode(dentry); 5320 struct btrfs_root *root = BTRFS_I(inode)->root; 5321 int ret; 5322 5323 if (btrfs_root_readonly(root)) 5324 return -EROFS; 5325 5326 ret = setattr_prepare(idmap, dentry, attr); 5327 if (ret) 5328 return ret; 5329 5330 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5331 ret = btrfs_setsize(inode, attr); 5332 if (ret) 5333 return ret; 5334 } 5335 5336 if (attr->ia_valid) { 5337 setattr_copy(idmap, inode, attr); 5338 inode_inc_iversion(inode); 5339 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5340 5341 if (!ret && attr->ia_valid & ATTR_MODE) 5342 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5343 } 5344 5345 return ret; 5346 } 5347 5348 /* 5349 * While truncating the inode pages during eviction, we get the VFS 5350 * calling btrfs_invalidate_folio() against each folio of the inode. This 5351 * is slow because the calls to btrfs_invalidate_folio() result in a 5352 * huge amount of calls to lock_extent() and clear_extent_bit(), 5353 * which keep merging and splitting extent_state structures over and over, 5354 * wasting lots of time. 5355 * 5356 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5357 * skip all those expensive operations on a per folio basis and do only 5358 * the ordered io finishing, while we release here the extent_map and 5359 * extent_state structures, without the excessive merging and splitting. 5360 */ 5361 static void evict_inode_truncate_pages(struct inode *inode) 5362 { 5363 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5364 struct rb_node *node; 5365 5366 ASSERT(inode->i_state & I_FREEING); 5367 truncate_inode_pages_final(&inode->i_data); 5368 5369 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5370 5371 /* 5372 * Keep looping until we have no more ranges in the io tree. 5373 * We can have ongoing bios started by readahead that have 5374 * their endio callback (extent_io.c:end_bio_extent_readpage) 5375 * still in progress (unlocked the pages in the bio but did not yet 5376 * unlocked the ranges in the io tree). Therefore this means some 5377 * ranges can still be locked and eviction started because before 5378 * submitting those bios, which are executed by a separate task (work 5379 * queue kthread), inode references (inode->i_count) were not taken 5380 * (which would be dropped in the end io callback of each bio). 5381 * Therefore here we effectively end up waiting for those bios and 5382 * anyone else holding locked ranges without having bumped the inode's 5383 * reference count - if we don't do it, when they access the inode's 5384 * io_tree to unlock a range it may be too late, leading to an 5385 * use-after-free issue. 5386 */ 5387 spin_lock(&io_tree->lock); 5388 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5389 struct extent_state *state; 5390 struct extent_state *cached_state = NULL; 5391 u64 start; 5392 u64 end; 5393 unsigned state_flags; 5394 5395 node = rb_first(&io_tree->state); 5396 state = rb_entry(node, struct extent_state, rb_node); 5397 start = state->start; 5398 end = state->end; 5399 state_flags = state->state; 5400 spin_unlock(&io_tree->lock); 5401 5402 btrfs_lock_extent(io_tree, start, end, &cached_state); 5403 5404 /* 5405 * If still has DELALLOC flag, the extent didn't reach disk, 5406 * and its reserved space won't be freed by delayed_ref. 5407 * So we need to free its reserved space here. 5408 * (Refer to comment in btrfs_invalidate_folio, case 2) 5409 * 5410 * Note, end is the bytenr of last byte, so we need + 1 here. 5411 */ 5412 if (state_flags & EXTENT_DELALLOC) 5413 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5414 end - start + 1, NULL); 5415 5416 btrfs_clear_extent_bit(io_tree, start, end, 5417 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5418 &cached_state); 5419 5420 cond_resched(); 5421 spin_lock(&io_tree->lock); 5422 } 5423 spin_unlock(&io_tree->lock); 5424 } 5425 5426 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5427 struct btrfs_block_rsv *rsv) 5428 { 5429 struct btrfs_fs_info *fs_info = root->fs_info; 5430 struct btrfs_trans_handle *trans; 5431 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5432 int ret; 5433 5434 /* 5435 * Eviction should be taking place at some place safe because of our 5436 * delayed iputs. However the normal flushing code will run delayed 5437 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5438 * 5439 * We reserve the delayed_refs_extra here again because we can't use 5440 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5441 * above. We reserve our extra bit here because we generate a ton of 5442 * delayed refs activity by truncating. 5443 * 5444 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5445 * if we fail to make this reservation we can re-try without the 5446 * delayed_refs_extra so we can make some forward progress. 5447 */ 5448 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5449 BTRFS_RESERVE_FLUSH_EVICT); 5450 if (ret) { 5451 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5452 BTRFS_RESERVE_FLUSH_EVICT); 5453 if (ret) { 5454 btrfs_warn(fs_info, 5455 "could not allocate space for delete; will truncate on mount"); 5456 return ERR_PTR(-ENOSPC); 5457 } 5458 delayed_refs_extra = 0; 5459 } 5460 5461 trans = btrfs_join_transaction(root); 5462 if (IS_ERR(trans)) 5463 return trans; 5464 5465 if (delayed_refs_extra) { 5466 trans->block_rsv = &fs_info->trans_block_rsv; 5467 trans->bytes_reserved = delayed_refs_extra; 5468 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5469 delayed_refs_extra, true); 5470 } 5471 return trans; 5472 } 5473 5474 void btrfs_evict_inode(struct inode *inode) 5475 { 5476 struct btrfs_fs_info *fs_info; 5477 struct btrfs_trans_handle *trans; 5478 struct btrfs_root *root = BTRFS_I(inode)->root; 5479 struct btrfs_block_rsv rsv; 5480 int ret; 5481 5482 trace_btrfs_inode_evict(inode); 5483 5484 if (!root) { 5485 fsverity_cleanup_inode(inode); 5486 clear_inode(inode); 5487 return; 5488 } 5489 5490 fs_info = inode_to_fs_info(inode); 5491 evict_inode_truncate_pages(inode); 5492 5493 if (inode->i_nlink && 5494 ((btrfs_root_refs(&root->root_item) != 0 && 5495 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5496 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5497 goto out; 5498 5499 if (is_bad_inode(inode)) 5500 goto out; 5501 5502 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5503 goto out; 5504 5505 if (inode->i_nlink > 0) { 5506 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5507 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5508 goto out; 5509 } 5510 5511 /* 5512 * This makes sure the inode item in tree is uptodate and the space for 5513 * the inode update is released. 5514 */ 5515 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5516 if (ret) 5517 goto out; 5518 5519 /* 5520 * This drops any pending insert or delete operations we have for this 5521 * inode. We could have a delayed dir index deletion queued up, but 5522 * we're removing the inode completely so that'll be taken care of in 5523 * the truncate. 5524 */ 5525 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5526 5527 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5528 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5529 rsv.failfast = true; 5530 5531 btrfs_i_size_write(BTRFS_I(inode), 0); 5532 5533 while (1) { 5534 struct btrfs_truncate_control control = { 5535 .inode = BTRFS_I(inode), 5536 .ino = btrfs_ino(BTRFS_I(inode)), 5537 .new_size = 0, 5538 .min_type = 0, 5539 }; 5540 5541 trans = evict_refill_and_join(root, &rsv); 5542 if (IS_ERR(trans)) 5543 goto out_release; 5544 5545 trans->block_rsv = &rsv; 5546 5547 ret = btrfs_truncate_inode_items(trans, root, &control); 5548 trans->block_rsv = &fs_info->trans_block_rsv; 5549 btrfs_end_transaction(trans); 5550 /* 5551 * We have not added new delayed items for our inode after we 5552 * have flushed its delayed items, so no need to throttle on 5553 * delayed items. However we have modified extent buffers. 5554 */ 5555 btrfs_btree_balance_dirty_nodelay(fs_info); 5556 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5557 goto out_release; 5558 else if (!ret) 5559 break; 5560 } 5561 5562 /* 5563 * Errors here aren't a big deal, it just means we leave orphan items in 5564 * the tree. They will be cleaned up on the next mount. If the inode 5565 * number gets reused, cleanup deletes the orphan item without doing 5566 * anything, and unlink reuses the existing orphan item. 5567 * 5568 * If it turns out that we are dropping too many of these, we might want 5569 * to add a mechanism for retrying these after a commit. 5570 */ 5571 trans = evict_refill_and_join(root, &rsv); 5572 if (!IS_ERR(trans)) { 5573 trans->block_rsv = &rsv; 5574 btrfs_orphan_del(trans, BTRFS_I(inode)); 5575 trans->block_rsv = &fs_info->trans_block_rsv; 5576 btrfs_end_transaction(trans); 5577 } 5578 5579 out_release: 5580 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5581 out: 5582 /* 5583 * If we didn't successfully delete, the orphan item will still be in 5584 * the tree and we'll retry on the next mount. Again, we might also want 5585 * to retry these periodically in the future. 5586 */ 5587 btrfs_remove_delayed_node(BTRFS_I(inode)); 5588 fsverity_cleanup_inode(inode); 5589 clear_inode(inode); 5590 } 5591 5592 /* 5593 * Return the key found in the dir entry in the location pointer, fill @type 5594 * with BTRFS_FT_*, and return 0. 5595 * 5596 * If no dir entries were found, returns -ENOENT. 5597 * If found a corrupted location in dir entry, returns -EUCLEAN. 5598 */ 5599 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5600 struct btrfs_key *location, u8 *type) 5601 { 5602 struct btrfs_dir_item *di; 5603 BTRFS_PATH_AUTO_FREE(path); 5604 struct btrfs_root *root = dir->root; 5605 int ret = 0; 5606 struct fscrypt_name fname; 5607 5608 path = btrfs_alloc_path(); 5609 if (!path) 5610 return -ENOMEM; 5611 5612 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5613 if (ret < 0) 5614 return ret; 5615 /* 5616 * fscrypt_setup_filename() should never return a positive value, but 5617 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5618 */ 5619 ASSERT(ret == 0); 5620 5621 /* This needs to handle no-key deletions later on */ 5622 5623 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5624 &fname.disk_name, 0); 5625 if (IS_ERR_OR_NULL(di)) { 5626 ret = di ? PTR_ERR(di) : -ENOENT; 5627 goto out; 5628 } 5629 5630 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5631 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY && 5632 location->type != BTRFS_ROOT_ITEM_KEY)) { 5633 ret = -EUCLEAN; 5634 btrfs_warn(root->fs_info, 5635 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5636 __func__, fname.disk_name.name, btrfs_ino(dir), 5637 location->objectid, location->type, location->offset); 5638 } 5639 if (!ret) 5640 *type = btrfs_dir_ftype(path->nodes[0], di); 5641 out: 5642 fscrypt_free_filename(&fname); 5643 return ret; 5644 } 5645 5646 /* 5647 * when we hit a tree root in a directory, the btrfs part of the inode 5648 * needs to be changed to reflect the root directory of the tree root. This 5649 * is kind of like crossing a mount point. 5650 */ 5651 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5652 struct btrfs_inode *dir, 5653 struct dentry *dentry, 5654 struct btrfs_key *location, 5655 struct btrfs_root **sub_root) 5656 { 5657 BTRFS_PATH_AUTO_FREE(path); 5658 struct btrfs_root *new_root; 5659 struct btrfs_root_ref *ref; 5660 struct extent_buffer *leaf; 5661 struct btrfs_key key; 5662 int ret; 5663 int err = 0; 5664 struct fscrypt_name fname; 5665 5666 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5667 if (ret) 5668 return ret; 5669 5670 path = btrfs_alloc_path(); 5671 if (!path) { 5672 err = -ENOMEM; 5673 goto out; 5674 } 5675 5676 err = -ENOENT; 5677 key.objectid = btrfs_root_id(dir->root); 5678 key.type = BTRFS_ROOT_REF_KEY; 5679 key.offset = location->objectid; 5680 5681 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5682 if (ret) { 5683 if (ret < 0) 5684 err = ret; 5685 goto out; 5686 } 5687 5688 leaf = path->nodes[0]; 5689 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5690 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5691 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5692 goto out; 5693 5694 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5695 (unsigned long)(ref + 1), fname.disk_name.len); 5696 if (ret) 5697 goto out; 5698 5699 btrfs_release_path(path); 5700 5701 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5702 if (IS_ERR(new_root)) { 5703 err = PTR_ERR(new_root); 5704 goto out; 5705 } 5706 5707 *sub_root = new_root; 5708 location->objectid = btrfs_root_dirid(&new_root->root_item); 5709 location->type = BTRFS_INODE_ITEM_KEY; 5710 location->offset = 0; 5711 err = 0; 5712 out: 5713 fscrypt_free_filename(&fname); 5714 return err; 5715 } 5716 5717 5718 5719 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5720 { 5721 struct btrfs_root *root = inode->root; 5722 struct btrfs_inode *entry; 5723 bool empty = false; 5724 5725 xa_lock(&root->inodes); 5726 /* 5727 * This btrfs_inode is being freed and has already been unhashed at this 5728 * point. It's possible that another btrfs_inode has already been 5729 * allocated for the same inode and inserted itself into the root, so 5730 * don't delete it in that case. 5731 * 5732 * Note that this shouldn't need to allocate memory, so the gfp flags 5733 * don't really matter. 5734 */ 5735 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL, 5736 GFP_ATOMIC); 5737 if (entry == inode) 5738 empty = xa_empty(&root->inodes); 5739 xa_unlock(&root->inodes); 5740 5741 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5742 xa_lock(&root->inodes); 5743 empty = xa_empty(&root->inodes); 5744 xa_unlock(&root->inodes); 5745 if (empty) 5746 btrfs_add_dead_root(root); 5747 } 5748 } 5749 5750 5751 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5752 { 5753 struct btrfs_iget_args *args = p; 5754 5755 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5756 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5757 5758 if (args->root && args->root == args->root->fs_info->tree_root && 5759 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5760 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5761 &BTRFS_I(inode)->runtime_flags); 5762 return 0; 5763 } 5764 5765 static int btrfs_find_actor(struct inode *inode, void *opaque) 5766 { 5767 struct btrfs_iget_args *args = opaque; 5768 5769 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5770 args->root == BTRFS_I(inode)->root; 5771 } 5772 5773 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5774 { 5775 struct inode *inode; 5776 struct btrfs_iget_args args; 5777 unsigned long hashval = btrfs_inode_hash(ino, root); 5778 5779 args.ino = ino; 5780 args.root = root; 5781 5782 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5783 btrfs_init_locked_inode, 5784 (void *)&args); 5785 if (!inode) 5786 return NULL; 5787 return BTRFS_I(inode); 5788 } 5789 5790 /* 5791 * Get an inode object given its inode number and corresponding root. Path is 5792 * preallocated to prevent recursing back to iget through allocator. 5793 */ 5794 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5795 struct btrfs_path *path) 5796 { 5797 struct btrfs_inode *inode; 5798 int ret; 5799 5800 inode = btrfs_iget_locked(ino, root); 5801 if (!inode) 5802 return ERR_PTR(-ENOMEM); 5803 5804 if (!(inode->vfs_inode.i_state & I_NEW)) 5805 return inode; 5806 5807 ret = btrfs_read_locked_inode(inode, path); 5808 if (ret) 5809 return ERR_PTR(ret); 5810 5811 unlock_new_inode(&inode->vfs_inode); 5812 return inode; 5813 } 5814 5815 /* 5816 * Get an inode object given its inode number and corresponding root. 5817 */ 5818 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5819 { 5820 struct btrfs_inode *inode; 5821 struct btrfs_path *path; 5822 int ret; 5823 5824 inode = btrfs_iget_locked(ino, root); 5825 if (!inode) 5826 return ERR_PTR(-ENOMEM); 5827 5828 if (!(inode->vfs_inode.i_state & I_NEW)) 5829 return inode; 5830 5831 path = btrfs_alloc_path(); 5832 if (!path) { 5833 iget_failed(&inode->vfs_inode); 5834 return ERR_PTR(-ENOMEM); 5835 } 5836 5837 ret = btrfs_read_locked_inode(inode, path); 5838 btrfs_free_path(path); 5839 if (ret) 5840 return ERR_PTR(ret); 5841 5842 unlock_new_inode(&inode->vfs_inode); 5843 return inode; 5844 } 5845 5846 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5847 struct btrfs_key *key, 5848 struct btrfs_root *root) 5849 { 5850 struct timespec64 ts; 5851 struct inode *vfs_inode; 5852 struct btrfs_inode *inode; 5853 5854 vfs_inode = new_inode(dir->i_sb); 5855 if (!vfs_inode) 5856 return ERR_PTR(-ENOMEM); 5857 5858 inode = BTRFS_I(vfs_inode); 5859 inode->root = btrfs_grab_root(root); 5860 inode->ref_root_id = key->objectid; 5861 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5862 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5863 5864 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5865 /* 5866 * We only need lookup, the rest is read-only and there's no inode 5867 * associated with the dentry 5868 */ 5869 vfs_inode->i_op = &simple_dir_inode_operations; 5870 vfs_inode->i_opflags &= ~IOP_XATTR; 5871 vfs_inode->i_fop = &simple_dir_operations; 5872 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5873 5874 ts = inode_set_ctime_current(vfs_inode); 5875 inode_set_mtime_to_ts(vfs_inode, ts); 5876 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5877 inode->i_otime_sec = ts.tv_sec; 5878 inode->i_otime_nsec = ts.tv_nsec; 5879 5880 vfs_inode->i_uid = dir->i_uid; 5881 vfs_inode->i_gid = dir->i_gid; 5882 5883 return inode; 5884 } 5885 5886 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5887 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5888 static_assert(BTRFS_FT_DIR == FT_DIR); 5889 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5890 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5891 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5892 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5893 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5894 5895 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5896 { 5897 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5898 } 5899 5900 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5901 { 5902 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5903 struct btrfs_inode *inode; 5904 struct btrfs_root *root = BTRFS_I(dir)->root; 5905 struct btrfs_root *sub_root = root; 5906 struct btrfs_key location = { 0 }; 5907 u8 di_type = 0; 5908 int ret = 0; 5909 5910 if (dentry->d_name.len > BTRFS_NAME_LEN) 5911 return ERR_PTR(-ENAMETOOLONG); 5912 5913 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5914 if (ret < 0) 5915 return ERR_PTR(ret); 5916 5917 if (location.type == BTRFS_INODE_ITEM_KEY) { 5918 inode = btrfs_iget(location.objectid, root); 5919 if (IS_ERR(inode)) 5920 return ERR_CAST(inode); 5921 5922 /* Do extra check against inode mode with di_type */ 5923 if (unlikely(btrfs_inode_type(inode) != di_type)) { 5924 btrfs_crit(fs_info, 5925 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5926 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5927 di_type); 5928 iput(&inode->vfs_inode); 5929 return ERR_PTR(-EUCLEAN); 5930 } 5931 return &inode->vfs_inode; 5932 } 5933 5934 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5935 &location, &sub_root); 5936 if (ret < 0) { 5937 if (ret != -ENOENT) 5938 inode = ERR_PTR(ret); 5939 else 5940 inode = new_simple_dir(dir, &location, root); 5941 } else { 5942 inode = btrfs_iget(location.objectid, sub_root); 5943 btrfs_put_root(sub_root); 5944 5945 if (IS_ERR(inode)) 5946 return ERR_CAST(inode); 5947 5948 down_read(&fs_info->cleanup_work_sem); 5949 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5950 ret = btrfs_orphan_cleanup(sub_root); 5951 up_read(&fs_info->cleanup_work_sem); 5952 if (ret) { 5953 iput(&inode->vfs_inode); 5954 inode = ERR_PTR(ret); 5955 } 5956 } 5957 5958 if (IS_ERR(inode)) 5959 return ERR_CAST(inode); 5960 5961 return &inode->vfs_inode; 5962 } 5963 5964 static int btrfs_dentry_delete(const struct dentry *dentry) 5965 { 5966 struct btrfs_root *root; 5967 struct inode *inode = d_inode(dentry); 5968 5969 if (!inode && !IS_ROOT(dentry)) 5970 inode = d_inode(dentry->d_parent); 5971 5972 if (inode) { 5973 root = BTRFS_I(inode)->root; 5974 if (btrfs_root_refs(&root->root_item) == 0) 5975 return 1; 5976 5977 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5978 return 1; 5979 } 5980 return 0; 5981 } 5982 5983 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5984 unsigned int flags) 5985 { 5986 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5987 5988 if (inode == ERR_PTR(-ENOENT)) 5989 inode = NULL; 5990 return d_splice_alias(inode, dentry); 5991 } 5992 5993 /* 5994 * Find the highest existing sequence number in a directory and then set the 5995 * in-memory index_cnt variable to the first free sequence number. 5996 */ 5997 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5998 { 5999 struct btrfs_root *root = inode->root; 6000 struct btrfs_key key, found_key; 6001 BTRFS_PATH_AUTO_FREE(path); 6002 struct extent_buffer *leaf; 6003 int ret; 6004 6005 key.objectid = btrfs_ino(inode); 6006 key.type = BTRFS_DIR_INDEX_KEY; 6007 key.offset = (u64)-1; 6008 6009 path = btrfs_alloc_path(); 6010 if (!path) 6011 return -ENOMEM; 6012 6013 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6014 if (ret < 0) 6015 return ret; 6016 /* FIXME: we should be able to handle this */ 6017 if (ret == 0) 6018 return ret; 6019 6020 if (path->slots[0] == 0) { 6021 inode->index_cnt = BTRFS_DIR_START_INDEX; 6022 return 0; 6023 } 6024 6025 path->slots[0]--; 6026 6027 leaf = path->nodes[0]; 6028 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6029 6030 if (found_key.objectid != btrfs_ino(inode) || 6031 found_key.type != BTRFS_DIR_INDEX_KEY) { 6032 inode->index_cnt = BTRFS_DIR_START_INDEX; 6033 return 0; 6034 } 6035 6036 inode->index_cnt = found_key.offset + 1; 6037 6038 return 0; 6039 } 6040 6041 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6042 { 6043 int ret = 0; 6044 6045 btrfs_inode_lock(dir, 0); 6046 if (dir->index_cnt == (u64)-1) { 6047 ret = btrfs_inode_delayed_dir_index_count(dir); 6048 if (ret) { 6049 ret = btrfs_set_inode_index_count(dir); 6050 if (ret) 6051 goto out; 6052 } 6053 } 6054 6055 /* index_cnt is the index number of next new entry, so decrement it. */ 6056 *index = dir->index_cnt - 1; 6057 out: 6058 btrfs_inode_unlock(dir, 0); 6059 6060 return ret; 6061 } 6062 6063 /* 6064 * All this infrastructure exists because dir_emit can fault, and we are holding 6065 * the tree lock when doing readdir. For now just allocate a buffer and copy 6066 * our information into that, and then dir_emit from the buffer. This is 6067 * similar to what NFS does, only we don't keep the buffer around in pagecache 6068 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6069 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6070 * tree lock. 6071 */ 6072 static int btrfs_opendir(struct inode *inode, struct file *file) 6073 { 6074 struct btrfs_file_private *private; 6075 u64 last_index; 6076 int ret; 6077 6078 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6079 if (ret) 6080 return ret; 6081 6082 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6083 if (!private) 6084 return -ENOMEM; 6085 private->last_index = last_index; 6086 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6087 if (!private->filldir_buf) { 6088 kfree(private); 6089 return -ENOMEM; 6090 } 6091 file->private_data = private; 6092 return 0; 6093 } 6094 6095 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6096 { 6097 struct btrfs_file_private *private = file->private_data; 6098 int ret; 6099 6100 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6101 &private->last_index); 6102 if (ret) 6103 return ret; 6104 6105 return generic_file_llseek(file, offset, whence); 6106 } 6107 6108 struct dir_entry { 6109 u64 ino; 6110 u64 offset; 6111 unsigned type; 6112 int name_len; 6113 }; 6114 6115 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6116 { 6117 while (entries--) { 6118 struct dir_entry *entry = addr; 6119 char *name = (char *)(entry + 1); 6120 6121 ctx->pos = get_unaligned(&entry->offset); 6122 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6123 get_unaligned(&entry->ino), 6124 get_unaligned(&entry->type))) 6125 return 1; 6126 addr += sizeof(struct dir_entry) + 6127 get_unaligned(&entry->name_len); 6128 ctx->pos++; 6129 } 6130 return 0; 6131 } 6132 6133 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6134 { 6135 struct inode *inode = file_inode(file); 6136 struct btrfs_root *root = BTRFS_I(inode)->root; 6137 struct btrfs_file_private *private = file->private_data; 6138 struct btrfs_dir_item *di; 6139 struct btrfs_key key; 6140 struct btrfs_key found_key; 6141 BTRFS_PATH_AUTO_FREE(path); 6142 void *addr; 6143 LIST_HEAD(ins_list); 6144 LIST_HEAD(del_list); 6145 int ret; 6146 char *name_ptr; 6147 int name_len; 6148 int entries = 0; 6149 int total_len = 0; 6150 bool put = false; 6151 struct btrfs_key location; 6152 6153 if (!dir_emit_dots(file, ctx)) 6154 return 0; 6155 6156 path = btrfs_alloc_path(); 6157 if (!path) 6158 return -ENOMEM; 6159 6160 addr = private->filldir_buf; 6161 path->reada = READA_FORWARD; 6162 6163 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6164 &ins_list, &del_list); 6165 6166 again: 6167 key.type = BTRFS_DIR_INDEX_KEY; 6168 key.offset = ctx->pos; 6169 key.objectid = btrfs_ino(BTRFS_I(inode)); 6170 6171 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6172 struct dir_entry *entry; 6173 struct extent_buffer *leaf = path->nodes[0]; 6174 u8 ftype; 6175 6176 if (found_key.objectid != key.objectid) 6177 break; 6178 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6179 break; 6180 if (found_key.offset < ctx->pos) 6181 continue; 6182 if (found_key.offset > private->last_index) 6183 break; 6184 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6185 continue; 6186 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6187 name_len = btrfs_dir_name_len(leaf, di); 6188 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6189 PAGE_SIZE) { 6190 btrfs_release_path(path); 6191 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6192 if (ret) 6193 goto nopos; 6194 addr = private->filldir_buf; 6195 entries = 0; 6196 total_len = 0; 6197 goto again; 6198 } 6199 6200 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6201 entry = addr; 6202 name_ptr = (char *)(entry + 1); 6203 read_extent_buffer(leaf, name_ptr, 6204 (unsigned long)(di + 1), name_len); 6205 put_unaligned(name_len, &entry->name_len); 6206 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6207 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6208 put_unaligned(location.objectid, &entry->ino); 6209 put_unaligned(found_key.offset, &entry->offset); 6210 entries++; 6211 addr += sizeof(struct dir_entry) + name_len; 6212 total_len += sizeof(struct dir_entry) + name_len; 6213 } 6214 /* Catch error encountered during iteration */ 6215 if (ret < 0) 6216 goto err; 6217 6218 btrfs_release_path(path); 6219 6220 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6221 if (ret) 6222 goto nopos; 6223 6224 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6225 goto nopos; 6226 6227 /* 6228 * Stop new entries from being returned after we return the last 6229 * entry. 6230 * 6231 * New directory entries are assigned a strictly increasing 6232 * offset. This means that new entries created during readdir 6233 * are *guaranteed* to be seen in the future by that readdir. 6234 * This has broken buggy programs which operate on names as 6235 * they're returned by readdir. Until we reuse freed offsets 6236 * we have this hack to stop new entries from being returned 6237 * under the assumption that they'll never reach this huge 6238 * offset. 6239 * 6240 * This is being careful not to overflow 32bit loff_t unless the 6241 * last entry requires it because doing so has broken 32bit apps 6242 * in the past. 6243 */ 6244 if (ctx->pos >= INT_MAX) 6245 ctx->pos = LLONG_MAX; 6246 else 6247 ctx->pos = INT_MAX; 6248 nopos: 6249 ret = 0; 6250 err: 6251 if (put) 6252 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6253 return ret; 6254 } 6255 6256 /* 6257 * This is somewhat expensive, updating the tree every time the 6258 * inode changes. But, it is most likely to find the inode in cache. 6259 * FIXME, needs more benchmarking...there are no reasons other than performance 6260 * to keep or drop this code. 6261 */ 6262 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6263 { 6264 struct btrfs_root *root = inode->root; 6265 struct btrfs_fs_info *fs_info = root->fs_info; 6266 struct btrfs_trans_handle *trans; 6267 int ret; 6268 6269 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6270 return 0; 6271 6272 trans = btrfs_join_transaction(root); 6273 if (IS_ERR(trans)) 6274 return PTR_ERR(trans); 6275 6276 ret = btrfs_update_inode(trans, inode); 6277 if (ret == -ENOSPC || ret == -EDQUOT) { 6278 /* whoops, lets try again with the full transaction */ 6279 btrfs_end_transaction(trans); 6280 trans = btrfs_start_transaction(root, 1); 6281 if (IS_ERR(trans)) 6282 return PTR_ERR(trans); 6283 6284 ret = btrfs_update_inode(trans, inode); 6285 } 6286 btrfs_end_transaction(trans); 6287 if (inode->delayed_node) 6288 btrfs_balance_delayed_items(fs_info); 6289 6290 return ret; 6291 } 6292 6293 /* 6294 * This is a copy of file_update_time. We need this so we can return error on 6295 * ENOSPC for updating the inode in the case of file write and mmap writes. 6296 */ 6297 static int btrfs_update_time(struct inode *inode, int flags) 6298 { 6299 struct btrfs_root *root = BTRFS_I(inode)->root; 6300 bool dirty; 6301 6302 if (btrfs_root_readonly(root)) 6303 return -EROFS; 6304 6305 dirty = inode_update_timestamps(inode, flags); 6306 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6307 } 6308 6309 /* 6310 * helper to find a free sequence number in a given directory. This current 6311 * code is very simple, later versions will do smarter things in the btree 6312 */ 6313 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6314 { 6315 int ret = 0; 6316 6317 if (dir->index_cnt == (u64)-1) { 6318 ret = btrfs_inode_delayed_dir_index_count(dir); 6319 if (ret) { 6320 ret = btrfs_set_inode_index_count(dir); 6321 if (ret) 6322 return ret; 6323 } 6324 } 6325 6326 *index = dir->index_cnt; 6327 dir->index_cnt++; 6328 6329 return ret; 6330 } 6331 6332 static int btrfs_insert_inode_locked(struct inode *inode) 6333 { 6334 struct btrfs_iget_args args; 6335 6336 args.ino = btrfs_ino(BTRFS_I(inode)); 6337 args.root = BTRFS_I(inode)->root; 6338 6339 return insert_inode_locked4(inode, 6340 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6341 btrfs_find_actor, &args); 6342 } 6343 6344 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6345 unsigned int *trans_num_items) 6346 { 6347 struct inode *dir = args->dir; 6348 struct inode *inode = args->inode; 6349 int ret; 6350 6351 if (!args->orphan) { 6352 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6353 &args->fname); 6354 if (ret) 6355 return ret; 6356 } 6357 6358 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6359 if (ret) { 6360 fscrypt_free_filename(&args->fname); 6361 return ret; 6362 } 6363 6364 /* 1 to add inode item */ 6365 *trans_num_items = 1; 6366 /* 1 to add compression property */ 6367 if (BTRFS_I(dir)->prop_compress) 6368 (*trans_num_items)++; 6369 /* 1 to add default ACL xattr */ 6370 if (args->default_acl) 6371 (*trans_num_items)++; 6372 /* 1 to add access ACL xattr */ 6373 if (args->acl) 6374 (*trans_num_items)++; 6375 #ifdef CONFIG_SECURITY 6376 /* 1 to add LSM xattr */ 6377 if (dir->i_security) 6378 (*trans_num_items)++; 6379 #endif 6380 if (args->orphan) { 6381 /* 1 to add orphan item */ 6382 (*trans_num_items)++; 6383 } else { 6384 /* 6385 * 1 to add dir item 6386 * 1 to add dir index 6387 * 1 to update parent inode item 6388 * 6389 * No need for 1 unit for the inode ref item because it is 6390 * inserted in a batch together with the inode item at 6391 * btrfs_create_new_inode(). 6392 */ 6393 *trans_num_items += 3; 6394 } 6395 return 0; 6396 } 6397 6398 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6399 { 6400 posix_acl_release(args->acl); 6401 posix_acl_release(args->default_acl); 6402 fscrypt_free_filename(&args->fname); 6403 } 6404 6405 /* 6406 * Inherit flags from the parent inode. 6407 * 6408 * Currently only the compression flags and the cow flags are inherited. 6409 */ 6410 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6411 { 6412 unsigned int flags; 6413 6414 flags = dir->flags; 6415 6416 if (flags & BTRFS_INODE_NOCOMPRESS) { 6417 inode->flags &= ~BTRFS_INODE_COMPRESS; 6418 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6419 } else if (flags & BTRFS_INODE_COMPRESS) { 6420 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6421 inode->flags |= BTRFS_INODE_COMPRESS; 6422 } 6423 6424 if (flags & BTRFS_INODE_NODATACOW) { 6425 inode->flags |= BTRFS_INODE_NODATACOW; 6426 if (S_ISREG(inode->vfs_inode.i_mode)) 6427 inode->flags |= BTRFS_INODE_NODATASUM; 6428 } 6429 6430 btrfs_sync_inode_flags_to_i_flags(inode); 6431 } 6432 6433 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6434 struct btrfs_new_inode_args *args) 6435 { 6436 struct timespec64 ts; 6437 struct inode *dir = args->dir; 6438 struct inode *inode = args->inode; 6439 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6440 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6441 struct btrfs_root *root; 6442 struct btrfs_inode_item *inode_item; 6443 struct btrfs_path *path; 6444 u64 objectid; 6445 struct btrfs_inode_ref *ref; 6446 struct btrfs_key key[2]; 6447 u32 sizes[2]; 6448 struct btrfs_item_batch batch; 6449 unsigned long ptr; 6450 int ret; 6451 bool xa_reserved = false; 6452 6453 path = btrfs_alloc_path(); 6454 if (!path) 6455 return -ENOMEM; 6456 6457 if (!args->subvol) 6458 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6459 root = BTRFS_I(inode)->root; 6460 6461 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6462 if (ret) 6463 goto out; 6464 6465 ret = btrfs_get_free_objectid(root, &objectid); 6466 if (ret) 6467 goto out; 6468 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6469 6470 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6471 if (ret) 6472 goto out; 6473 xa_reserved = true; 6474 6475 if (args->orphan) { 6476 /* 6477 * O_TMPFILE, set link count to 0, so that after this point, we 6478 * fill in an inode item with the correct link count. 6479 */ 6480 set_nlink(inode, 0); 6481 } else { 6482 trace_btrfs_inode_request(dir); 6483 6484 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6485 if (ret) 6486 goto out; 6487 } 6488 6489 if (S_ISDIR(inode->i_mode)) 6490 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6491 6492 BTRFS_I(inode)->generation = trans->transid; 6493 inode->i_generation = BTRFS_I(inode)->generation; 6494 6495 /* 6496 * We don't have any capability xattrs set here yet, shortcut any 6497 * queries for the xattrs here. If we add them later via the inode 6498 * security init path or any other path this flag will be cleared. 6499 */ 6500 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6501 6502 /* 6503 * Subvolumes don't inherit flags from their parent directory. 6504 * Originally this was probably by accident, but we probably can't 6505 * change it now without compatibility issues. 6506 */ 6507 if (!args->subvol) 6508 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6509 6510 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6511 if (S_ISREG(inode->i_mode)) { 6512 if (btrfs_test_opt(fs_info, NODATASUM)) 6513 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6514 if (btrfs_test_opt(fs_info, NODATACOW)) 6515 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6516 BTRFS_INODE_NODATASUM; 6517 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6518 } 6519 6520 ret = btrfs_insert_inode_locked(inode); 6521 if (ret < 0) { 6522 if (!args->orphan) 6523 BTRFS_I(dir)->index_cnt--; 6524 goto out; 6525 } 6526 6527 /* 6528 * We could have gotten an inode number from somebody who was fsynced 6529 * and then removed in this same transaction, so let's just set full 6530 * sync since it will be a full sync anyway and this will blow away the 6531 * old info in the log. 6532 */ 6533 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6534 6535 key[0].objectid = objectid; 6536 key[0].type = BTRFS_INODE_ITEM_KEY; 6537 key[0].offset = 0; 6538 6539 sizes[0] = sizeof(struct btrfs_inode_item); 6540 6541 if (!args->orphan) { 6542 /* 6543 * Start new inodes with an inode_ref. This is slightly more 6544 * efficient for small numbers of hard links since they will 6545 * be packed into one item. Extended refs will kick in if we 6546 * add more hard links than can fit in the ref item. 6547 */ 6548 key[1].objectid = objectid; 6549 key[1].type = BTRFS_INODE_REF_KEY; 6550 if (args->subvol) { 6551 key[1].offset = objectid; 6552 sizes[1] = 2 + sizeof(*ref); 6553 } else { 6554 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6555 sizes[1] = name->len + sizeof(*ref); 6556 } 6557 } 6558 6559 batch.keys = &key[0]; 6560 batch.data_sizes = &sizes[0]; 6561 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6562 batch.nr = args->orphan ? 1 : 2; 6563 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6564 if (unlikely(ret != 0)) { 6565 btrfs_abort_transaction(trans, ret); 6566 goto discard; 6567 } 6568 6569 ts = simple_inode_init_ts(inode); 6570 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6571 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6572 6573 /* 6574 * We're going to fill the inode item now, so at this point the inode 6575 * must be fully initialized. 6576 */ 6577 6578 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6579 struct btrfs_inode_item); 6580 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6581 sizeof(*inode_item)); 6582 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6583 6584 if (!args->orphan) { 6585 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6586 struct btrfs_inode_ref); 6587 ptr = (unsigned long)(ref + 1); 6588 if (args->subvol) { 6589 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6590 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6591 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6592 } else { 6593 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6594 name->len); 6595 btrfs_set_inode_ref_index(path->nodes[0], ref, 6596 BTRFS_I(inode)->dir_index); 6597 write_extent_buffer(path->nodes[0], name->name, ptr, 6598 name->len); 6599 } 6600 } 6601 6602 /* 6603 * We don't need the path anymore, plus inheriting properties, adding 6604 * ACLs, security xattrs, orphan item or adding the link, will result in 6605 * allocating yet another path. So just free our path. 6606 */ 6607 btrfs_free_path(path); 6608 path = NULL; 6609 6610 if (args->subvol) { 6611 struct btrfs_inode *parent; 6612 6613 /* 6614 * Subvolumes inherit properties from their parent subvolume, 6615 * not the directory they were created in. 6616 */ 6617 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6618 if (IS_ERR(parent)) { 6619 ret = PTR_ERR(parent); 6620 } else { 6621 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6622 parent); 6623 iput(&parent->vfs_inode); 6624 } 6625 } else { 6626 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6627 BTRFS_I(dir)); 6628 } 6629 if (ret) { 6630 btrfs_err(fs_info, 6631 "error inheriting props for ino %llu (root %llu): %d", 6632 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6633 } 6634 6635 /* 6636 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6637 * probably a bug. 6638 */ 6639 if (!args->subvol) { 6640 ret = btrfs_init_inode_security(trans, args); 6641 if (unlikely(ret)) { 6642 btrfs_abort_transaction(trans, ret); 6643 goto discard; 6644 } 6645 } 6646 6647 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6648 if (WARN_ON(ret)) { 6649 /* Shouldn't happen, we used xa_reserve() before. */ 6650 btrfs_abort_transaction(trans, ret); 6651 goto discard; 6652 } 6653 6654 trace_btrfs_inode_new(inode); 6655 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6656 6657 btrfs_update_root_times(trans, root); 6658 6659 if (args->orphan) { 6660 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6661 if (unlikely(ret)) { 6662 btrfs_abort_transaction(trans, ret); 6663 goto discard; 6664 } 6665 } else { 6666 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6667 0, BTRFS_I(inode)->dir_index); 6668 if (unlikely(ret)) { 6669 btrfs_abort_transaction(trans, ret); 6670 goto discard; 6671 } 6672 } 6673 6674 return 0; 6675 6676 discard: 6677 /* 6678 * discard_new_inode() calls iput(), but the caller owns the reference 6679 * to the inode. 6680 */ 6681 ihold(inode); 6682 discard_new_inode(inode); 6683 out: 6684 if (xa_reserved) 6685 xa_release(&root->inodes, objectid); 6686 6687 btrfs_free_path(path); 6688 return ret; 6689 } 6690 6691 /* 6692 * utility function to add 'inode' into 'parent_inode' with 6693 * a give name and a given sequence number. 6694 * if 'add_backref' is true, also insert a backref from the 6695 * inode to the parent directory. 6696 */ 6697 int btrfs_add_link(struct btrfs_trans_handle *trans, 6698 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6699 const struct fscrypt_str *name, bool add_backref, u64 index) 6700 { 6701 int ret = 0; 6702 struct btrfs_key key; 6703 struct btrfs_root *root = parent_inode->root; 6704 u64 ino = btrfs_ino(inode); 6705 u64 parent_ino = btrfs_ino(parent_inode); 6706 6707 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6708 memcpy(&key, &inode->root->root_key, sizeof(key)); 6709 } else { 6710 key.objectid = ino; 6711 key.type = BTRFS_INODE_ITEM_KEY; 6712 key.offset = 0; 6713 } 6714 6715 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6716 ret = btrfs_add_root_ref(trans, key.objectid, 6717 btrfs_root_id(root), parent_ino, 6718 index, name); 6719 } else if (add_backref) { 6720 ret = btrfs_insert_inode_ref(trans, root, name, 6721 ino, parent_ino, index); 6722 } 6723 6724 /* Nothing to clean up yet */ 6725 if (ret) 6726 return ret; 6727 6728 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6729 btrfs_inode_type(inode), index); 6730 if (ret == -EEXIST || ret == -EOVERFLOW) 6731 goto fail_dir_item; 6732 else if (unlikely(ret)) { 6733 btrfs_abort_transaction(trans, ret); 6734 return ret; 6735 } 6736 6737 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6738 name->len * 2); 6739 inode_inc_iversion(&parent_inode->vfs_inode); 6740 update_time_after_link_or_unlink(parent_inode); 6741 6742 ret = btrfs_update_inode(trans, parent_inode); 6743 if (ret) 6744 btrfs_abort_transaction(trans, ret); 6745 return ret; 6746 6747 fail_dir_item: 6748 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6749 u64 local_index; 6750 int ret2; 6751 6752 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6753 parent_ino, &local_index, name); 6754 if (ret2) 6755 btrfs_abort_transaction(trans, ret2); 6756 } else if (add_backref) { 6757 int ret2; 6758 6759 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6760 if (ret2) 6761 btrfs_abort_transaction(trans, ret2); 6762 } 6763 6764 /* Return the original error code */ 6765 return ret; 6766 } 6767 6768 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6769 struct inode *inode) 6770 { 6771 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6772 struct btrfs_root *root = BTRFS_I(dir)->root; 6773 struct btrfs_new_inode_args new_inode_args = { 6774 .dir = dir, 6775 .dentry = dentry, 6776 .inode = inode, 6777 }; 6778 unsigned int trans_num_items; 6779 struct btrfs_trans_handle *trans; 6780 int ret; 6781 6782 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6783 if (ret) 6784 goto out_inode; 6785 6786 trans = btrfs_start_transaction(root, trans_num_items); 6787 if (IS_ERR(trans)) { 6788 ret = PTR_ERR(trans); 6789 goto out_new_inode_args; 6790 } 6791 6792 ret = btrfs_create_new_inode(trans, &new_inode_args); 6793 if (!ret) 6794 d_instantiate_new(dentry, inode); 6795 6796 btrfs_end_transaction(trans); 6797 btrfs_btree_balance_dirty(fs_info); 6798 out_new_inode_args: 6799 btrfs_new_inode_args_destroy(&new_inode_args); 6800 out_inode: 6801 if (ret) 6802 iput(inode); 6803 return ret; 6804 } 6805 6806 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6807 struct dentry *dentry, umode_t mode, dev_t rdev) 6808 { 6809 struct inode *inode; 6810 6811 inode = new_inode(dir->i_sb); 6812 if (!inode) 6813 return -ENOMEM; 6814 inode_init_owner(idmap, inode, dir, mode); 6815 inode->i_op = &btrfs_special_inode_operations; 6816 init_special_inode(inode, inode->i_mode, rdev); 6817 return btrfs_create_common(dir, dentry, inode); 6818 } 6819 6820 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6821 struct dentry *dentry, umode_t mode, bool excl) 6822 { 6823 struct inode *inode; 6824 6825 inode = new_inode(dir->i_sb); 6826 if (!inode) 6827 return -ENOMEM; 6828 inode_init_owner(idmap, inode, dir, mode); 6829 inode->i_fop = &btrfs_file_operations; 6830 inode->i_op = &btrfs_file_inode_operations; 6831 inode->i_mapping->a_ops = &btrfs_aops; 6832 return btrfs_create_common(dir, dentry, inode); 6833 } 6834 6835 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6836 struct dentry *dentry) 6837 { 6838 struct btrfs_trans_handle *trans = NULL; 6839 struct btrfs_root *root = BTRFS_I(dir)->root; 6840 struct inode *inode = d_inode(old_dentry); 6841 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6842 struct fscrypt_name fname; 6843 u64 index; 6844 int ret; 6845 6846 /* do not allow sys_link's with other subvols of the same device */ 6847 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6848 return -EXDEV; 6849 6850 if (inode->i_nlink >= BTRFS_LINK_MAX) 6851 return -EMLINK; 6852 6853 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6854 if (ret) 6855 goto fail; 6856 6857 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6858 if (ret) 6859 goto fail; 6860 6861 /* 6862 * 2 items for inode and inode ref 6863 * 2 items for dir items 6864 * 1 item for parent inode 6865 * 1 item for orphan item deletion if O_TMPFILE 6866 */ 6867 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6868 if (IS_ERR(trans)) { 6869 ret = PTR_ERR(trans); 6870 trans = NULL; 6871 goto fail; 6872 } 6873 6874 /* There are several dir indexes for this inode, clear the cache. */ 6875 BTRFS_I(inode)->dir_index = 0ULL; 6876 inode_inc_iversion(inode); 6877 inode_set_ctime_current(inode); 6878 6879 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6880 &fname.disk_name, 1, index); 6881 if (ret) 6882 goto fail; 6883 6884 /* Link added now we update the inode item with the new link count. */ 6885 inc_nlink(inode); 6886 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6887 if (unlikely(ret)) { 6888 btrfs_abort_transaction(trans, ret); 6889 goto fail; 6890 } 6891 6892 if (inode->i_nlink == 1) { 6893 /* 6894 * If the new hard link count is 1, it's a file created with the 6895 * open(2) O_TMPFILE flag. 6896 */ 6897 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6898 if (unlikely(ret)) { 6899 btrfs_abort_transaction(trans, ret); 6900 goto fail; 6901 } 6902 } 6903 6904 /* Grab reference for the new dentry passed to d_instantiate(). */ 6905 ihold(inode); 6906 d_instantiate(dentry, inode); 6907 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent); 6908 6909 fail: 6910 fscrypt_free_filename(&fname); 6911 if (trans) 6912 btrfs_end_transaction(trans); 6913 btrfs_btree_balance_dirty(fs_info); 6914 return ret; 6915 } 6916 6917 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6918 struct dentry *dentry, umode_t mode) 6919 { 6920 struct inode *inode; 6921 6922 inode = new_inode(dir->i_sb); 6923 if (!inode) 6924 return ERR_PTR(-ENOMEM); 6925 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6926 inode->i_op = &btrfs_dir_inode_operations; 6927 inode->i_fop = &btrfs_dir_file_operations; 6928 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6929 } 6930 6931 static noinline int uncompress_inline(struct btrfs_path *path, 6932 struct folio *folio, 6933 struct btrfs_file_extent_item *item) 6934 { 6935 int ret; 6936 struct extent_buffer *leaf = path->nodes[0]; 6937 const u32 blocksize = leaf->fs_info->sectorsize; 6938 char *tmp; 6939 size_t max_size; 6940 unsigned long inline_size; 6941 unsigned long ptr; 6942 int compress_type; 6943 6944 compress_type = btrfs_file_extent_compression(leaf, item); 6945 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6946 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6947 tmp = kmalloc(inline_size, GFP_NOFS); 6948 if (!tmp) 6949 return -ENOMEM; 6950 ptr = btrfs_file_extent_inline_start(item); 6951 6952 read_extent_buffer(leaf, tmp, ptr, inline_size); 6953 6954 max_size = min_t(unsigned long, blocksize, max_size); 6955 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6956 max_size); 6957 6958 /* 6959 * decompression code contains a memset to fill in any space between the end 6960 * of the uncompressed data and the end of max_size in case the decompressed 6961 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6962 * the end of an inline extent and the beginning of the next block, so we 6963 * cover that region here. 6964 */ 6965 6966 if (max_size < blocksize) 6967 folio_zero_range(folio, max_size, blocksize - max_size); 6968 kfree(tmp); 6969 return ret; 6970 } 6971 6972 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6973 { 6974 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6975 struct btrfs_file_extent_item *fi; 6976 void *kaddr; 6977 size_t copy_size; 6978 6979 if (!folio || folio_test_uptodate(folio)) 6980 return 0; 6981 6982 ASSERT(folio_pos(folio) == 0); 6983 6984 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6985 struct btrfs_file_extent_item); 6986 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6987 return uncompress_inline(path, folio, fi); 6988 6989 copy_size = min_t(u64, blocksize, 6990 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6991 kaddr = kmap_local_folio(folio, 0); 6992 read_extent_buffer(path->nodes[0], kaddr, 6993 btrfs_file_extent_inline_start(fi), copy_size); 6994 kunmap_local(kaddr); 6995 if (copy_size < blocksize) 6996 folio_zero_range(folio, copy_size, blocksize - copy_size); 6997 return 0; 6998 } 6999 7000 /* 7001 * Lookup the first extent overlapping a range in a file. 7002 * 7003 * @inode: file to search in 7004 * @page: page to read extent data into if the extent is inline 7005 * @start: file offset 7006 * @len: length of range starting at @start 7007 * 7008 * Return the first &struct extent_map which overlaps the given range, reading 7009 * it from the B-tree and caching it if necessary. Note that there may be more 7010 * extents which overlap the given range after the returned extent_map. 7011 * 7012 * If @page is not NULL and the extent is inline, this also reads the extent 7013 * data directly into the page and marks the extent up to date in the io_tree. 7014 * 7015 * Return: ERR_PTR on error, non-NULL extent_map on success. 7016 */ 7017 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 7018 struct folio *folio, u64 start, u64 len) 7019 { 7020 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7021 int ret = 0; 7022 u64 extent_start = 0; 7023 u64 extent_end = 0; 7024 u64 objectid = btrfs_ino(inode); 7025 int extent_type = -1; 7026 struct btrfs_path *path = NULL; 7027 struct btrfs_root *root = inode->root; 7028 struct btrfs_file_extent_item *item; 7029 struct extent_buffer *leaf; 7030 struct btrfs_key found_key; 7031 struct extent_map *em = NULL; 7032 struct extent_map_tree *em_tree = &inode->extent_tree; 7033 7034 read_lock(&em_tree->lock); 7035 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7036 read_unlock(&em_tree->lock); 7037 7038 if (em) { 7039 if (em->start > start || em->start + em->len <= start) 7040 btrfs_free_extent_map(em); 7041 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7042 btrfs_free_extent_map(em); 7043 else 7044 goto out; 7045 } 7046 em = btrfs_alloc_extent_map(); 7047 if (!em) { 7048 ret = -ENOMEM; 7049 goto out; 7050 } 7051 em->start = EXTENT_MAP_HOLE; 7052 em->disk_bytenr = EXTENT_MAP_HOLE; 7053 em->len = (u64)-1; 7054 7055 path = btrfs_alloc_path(); 7056 if (!path) { 7057 ret = -ENOMEM; 7058 goto out; 7059 } 7060 7061 /* Chances are we'll be called again, so go ahead and do readahead */ 7062 path->reada = READA_FORWARD; 7063 7064 /* 7065 * The same explanation in load_free_space_cache applies here as well, 7066 * we only read when we're loading the free space cache, and at that 7067 * point the commit_root has everything we need. 7068 */ 7069 if (btrfs_is_free_space_inode(inode)) { 7070 path->search_commit_root = 1; 7071 path->skip_locking = 1; 7072 } 7073 7074 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7075 if (ret < 0) { 7076 goto out; 7077 } else if (ret > 0) { 7078 if (path->slots[0] == 0) 7079 goto not_found; 7080 path->slots[0]--; 7081 ret = 0; 7082 } 7083 7084 leaf = path->nodes[0]; 7085 item = btrfs_item_ptr(leaf, path->slots[0], 7086 struct btrfs_file_extent_item); 7087 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7088 if (found_key.objectid != objectid || 7089 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7090 /* 7091 * If we backup past the first extent we want to move forward 7092 * and see if there is an extent in front of us, otherwise we'll 7093 * say there is a hole for our whole search range which can 7094 * cause problems. 7095 */ 7096 extent_end = start; 7097 goto next; 7098 } 7099 7100 extent_type = btrfs_file_extent_type(leaf, item); 7101 extent_start = found_key.offset; 7102 extent_end = btrfs_file_extent_end(path); 7103 if (extent_type == BTRFS_FILE_EXTENT_REG || 7104 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7105 /* Only regular file could have regular/prealloc extent */ 7106 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) { 7107 ret = -EUCLEAN; 7108 btrfs_crit(fs_info, 7109 "regular/prealloc extent found for non-regular inode %llu", 7110 btrfs_ino(inode)); 7111 goto out; 7112 } 7113 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7114 extent_start); 7115 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7116 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7117 path->slots[0], 7118 extent_start); 7119 } 7120 next: 7121 if (start >= extent_end) { 7122 path->slots[0]++; 7123 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7124 ret = btrfs_next_leaf(root, path); 7125 if (ret < 0) 7126 goto out; 7127 else if (ret > 0) 7128 goto not_found; 7129 7130 leaf = path->nodes[0]; 7131 } 7132 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7133 if (found_key.objectid != objectid || 7134 found_key.type != BTRFS_EXTENT_DATA_KEY) 7135 goto not_found; 7136 if (start + len <= found_key.offset) 7137 goto not_found; 7138 if (start > found_key.offset) 7139 goto next; 7140 7141 /* New extent overlaps with existing one */ 7142 em->start = start; 7143 em->len = found_key.offset - start; 7144 em->disk_bytenr = EXTENT_MAP_HOLE; 7145 goto insert; 7146 } 7147 7148 btrfs_extent_item_to_extent_map(inode, path, item, em); 7149 7150 if (extent_type == BTRFS_FILE_EXTENT_REG || 7151 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7152 goto insert; 7153 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7154 /* 7155 * Inline extent can only exist at file offset 0. This is 7156 * ensured by tree-checker and inline extent creation path. 7157 * Thus all members representing file offsets should be zero. 7158 */ 7159 ASSERT(extent_start == 0); 7160 ASSERT(em->start == 0); 7161 7162 /* 7163 * btrfs_extent_item_to_extent_map() should have properly 7164 * initialized em members already. 7165 * 7166 * Other members are not utilized for inline extents. 7167 */ 7168 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7169 ASSERT(em->len == fs_info->sectorsize); 7170 7171 ret = read_inline_extent(path, folio); 7172 if (ret < 0) 7173 goto out; 7174 goto insert; 7175 } 7176 not_found: 7177 em->start = start; 7178 em->len = len; 7179 em->disk_bytenr = EXTENT_MAP_HOLE; 7180 insert: 7181 ret = 0; 7182 btrfs_release_path(path); 7183 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) { 7184 btrfs_err(fs_info, 7185 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7186 em->start, em->len, start, len); 7187 ret = -EIO; 7188 goto out; 7189 } 7190 7191 write_lock(&em_tree->lock); 7192 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7193 write_unlock(&em_tree->lock); 7194 out: 7195 btrfs_free_path(path); 7196 7197 trace_btrfs_get_extent(root, inode, em); 7198 7199 if (ret) { 7200 btrfs_free_extent_map(em); 7201 return ERR_PTR(ret); 7202 } 7203 return em; 7204 } 7205 7206 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7207 { 7208 struct btrfs_block_group *block_group; 7209 bool readonly = false; 7210 7211 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7212 if (!block_group || block_group->ro) 7213 readonly = true; 7214 if (block_group) 7215 btrfs_put_block_group(block_group); 7216 return readonly; 7217 } 7218 7219 /* 7220 * Check if we can do nocow write into the range [@offset, @offset + @len) 7221 * 7222 * @offset: File offset 7223 * @len: The length to write, will be updated to the nocow writeable 7224 * range 7225 * @orig_start: (optional) Return the original file offset of the file extent 7226 * @orig_len: (optional) Return the original on-disk length of the file extent 7227 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7228 * 7229 * Return: 7230 * >0 and update @len if we can do nocow write 7231 * 0 if we can't do nocow write 7232 * <0 if error happened 7233 * 7234 * NOTE: This only checks the file extents, caller is responsible to wait for 7235 * any ordered extents. 7236 */ 7237 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7238 struct btrfs_file_extent *file_extent, 7239 bool nowait) 7240 { 7241 struct btrfs_root *root = inode->root; 7242 struct btrfs_fs_info *fs_info = root->fs_info; 7243 struct can_nocow_file_extent_args nocow_args = { 0 }; 7244 BTRFS_PATH_AUTO_FREE(path); 7245 int ret; 7246 struct extent_buffer *leaf; 7247 struct extent_io_tree *io_tree = &inode->io_tree; 7248 struct btrfs_file_extent_item *fi; 7249 struct btrfs_key key; 7250 int found_type; 7251 7252 path = btrfs_alloc_path(); 7253 if (!path) 7254 return -ENOMEM; 7255 path->nowait = nowait; 7256 7257 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7258 offset, 0); 7259 if (ret < 0) 7260 return ret; 7261 7262 if (ret == 1) { 7263 if (path->slots[0] == 0) { 7264 /* Can't find the item, must COW. */ 7265 return 0; 7266 } 7267 path->slots[0]--; 7268 } 7269 ret = 0; 7270 leaf = path->nodes[0]; 7271 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7272 if (key.objectid != btrfs_ino(inode) || 7273 key.type != BTRFS_EXTENT_DATA_KEY) { 7274 /* Not our file or wrong item type, must COW. */ 7275 return 0; 7276 } 7277 7278 if (key.offset > offset) { 7279 /* Wrong offset, must COW. */ 7280 return 0; 7281 } 7282 7283 if (btrfs_file_extent_end(path) <= offset) 7284 return 0; 7285 7286 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7287 found_type = btrfs_file_extent_type(leaf, fi); 7288 7289 nocow_args.start = offset; 7290 nocow_args.end = offset + *len - 1; 7291 nocow_args.free_path = true; 7292 7293 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7294 /* can_nocow_file_extent() has freed the path. */ 7295 path = NULL; 7296 7297 if (ret != 1) { 7298 /* Treat errors as not being able to NOCOW. */ 7299 return 0; 7300 } 7301 7302 if (btrfs_extent_readonly(fs_info, 7303 nocow_args.file_extent.disk_bytenr + 7304 nocow_args.file_extent.offset)) 7305 return 0; 7306 7307 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7308 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7309 u64 range_end; 7310 7311 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7312 root->fs_info->sectorsize) - 1; 7313 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7314 EXTENT_DELALLOC); 7315 if (ret) 7316 return -EAGAIN; 7317 } 7318 7319 if (file_extent) 7320 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7321 7322 *len = nocow_args.file_extent.num_bytes; 7323 7324 return 1; 7325 } 7326 7327 /* The callers of this must take lock_extent() */ 7328 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7329 const struct btrfs_file_extent *file_extent, 7330 int type) 7331 { 7332 struct extent_map *em; 7333 int ret; 7334 7335 /* 7336 * Note the missing NOCOW type. 7337 * 7338 * For pure NOCOW writes, we should not create an io extent map, but 7339 * just reusing the existing one. 7340 * Only PREALLOC writes (NOCOW write into preallocated range) can 7341 * create an io extent map. 7342 */ 7343 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7344 type == BTRFS_ORDERED_COMPRESSED || 7345 type == BTRFS_ORDERED_REGULAR); 7346 7347 switch (type) { 7348 case BTRFS_ORDERED_PREALLOC: 7349 /* We're only referring part of a larger preallocated extent. */ 7350 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7351 break; 7352 case BTRFS_ORDERED_REGULAR: 7353 /* COW results a new extent matching our file extent size. */ 7354 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7355 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7356 7357 /* Since it's a new extent, we should not have any offset. */ 7358 ASSERT(file_extent->offset == 0); 7359 break; 7360 case BTRFS_ORDERED_COMPRESSED: 7361 /* Must be compressed. */ 7362 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7363 7364 /* 7365 * Encoded write can make us to refer to part of the 7366 * uncompressed extent. 7367 */ 7368 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7369 break; 7370 } 7371 7372 em = btrfs_alloc_extent_map(); 7373 if (!em) 7374 return ERR_PTR(-ENOMEM); 7375 7376 em->start = start; 7377 em->len = file_extent->num_bytes; 7378 em->disk_bytenr = file_extent->disk_bytenr; 7379 em->disk_num_bytes = file_extent->disk_num_bytes; 7380 em->ram_bytes = file_extent->ram_bytes; 7381 em->generation = -1; 7382 em->offset = file_extent->offset; 7383 em->flags |= EXTENT_FLAG_PINNED; 7384 if (type == BTRFS_ORDERED_COMPRESSED) 7385 btrfs_extent_map_set_compression(em, file_extent->compression); 7386 7387 ret = btrfs_replace_extent_map_range(inode, em, true); 7388 if (ret) { 7389 btrfs_free_extent_map(em); 7390 return ERR_PTR(ret); 7391 } 7392 7393 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7394 return em; 7395 } 7396 7397 /* 7398 * For release_folio() and invalidate_folio() we have a race window where 7399 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7400 * If we continue to release/invalidate the page, we could cause use-after-free 7401 * for subpage spinlock. So this function is to spin and wait for subpage 7402 * spinlock. 7403 */ 7404 static void wait_subpage_spinlock(struct folio *folio) 7405 { 7406 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7407 struct btrfs_folio_state *bfs; 7408 7409 if (!btrfs_is_subpage(fs_info, folio)) 7410 return; 7411 7412 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7413 bfs = folio_get_private(folio); 7414 7415 /* 7416 * This may look insane as we just acquire the spinlock and release it, 7417 * without doing anything. But we just want to make sure no one is 7418 * still holding the subpage spinlock. 7419 * And since the page is not dirty nor writeback, and we have page 7420 * locked, the only possible way to hold a spinlock is from the endio 7421 * function to clear page writeback. 7422 * 7423 * Here we just acquire the spinlock so that all existing callers 7424 * should exit and we're safe to release/invalidate the page. 7425 */ 7426 spin_lock_irq(&bfs->lock); 7427 spin_unlock_irq(&bfs->lock); 7428 } 7429 7430 static int btrfs_launder_folio(struct folio *folio) 7431 { 7432 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7433 folio_size(folio), NULL); 7434 } 7435 7436 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7437 { 7438 if (try_release_extent_mapping(folio, gfp_flags)) { 7439 wait_subpage_spinlock(folio); 7440 clear_folio_extent_mapped(folio); 7441 return true; 7442 } 7443 return false; 7444 } 7445 7446 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7447 { 7448 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7449 return false; 7450 return __btrfs_release_folio(folio, gfp_flags); 7451 } 7452 7453 #ifdef CONFIG_MIGRATION 7454 static int btrfs_migrate_folio(struct address_space *mapping, 7455 struct folio *dst, struct folio *src, 7456 enum migrate_mode mode) 7457 { 7458 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7459 7460 if (ret) 7461 return ret; 7462 7463 if (folio_test_ordered(src)) { 7464 folio_clear_ordered(src); 7465 folio_set_ordered(dst); 7466 } 7467 7468 return 0; 7469 } 7470 #else 7471 #define btrfs_migrate_folio NULL 7472 #endif 7473 7474 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7475 size_t length) 7476 { 7477 struct btrfs_inode *inode = folio_to_inode(folio); 7478 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7479 struct extent_io_tree *tree = &inode->io_tree; 7480 struct extent_state *cached_state = NULL; 7481 u64 page_start = folio_pos(folio); 7482 u64 page_end = page_start + folio_size(folio) - 1; 7483 u64 cur; 7484 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7485 7486 /* 7487 * We have folio locked so no new ordered extent can be created on this 7488 * page, nor bio can be submitted for this folio. 7489 * 7490 * But already submitted bio can still be finished on this folio. 7491 * Furthermore, endio function won't skip folio which has Ordered 7492 * already cleared, so it's possible for endio and 7493 * invalidate_folio to do the same ordered extent accounting twice 7494 * on one folio. 7495 * 7496 * So here we wait for any submitted bios to finish, so that we won't 7497 * do double ordered extent accounting on the same folio. 7498 */ 7499 folio_wait_writeback(folio); 7500 wait_subpage_spinlock(folio); 7501 7502 /* 7503 * For subpage case, we have call sites like 7504 * btrfs_punch_hole_lock_range() which passes range not aligned to 7505 * sectorsize. 7506 * If the range doesn't cover the full folio, we don't need to and 7507 * shouldn't clear page extent mapped, as folio->private can still 7508 * record subpage dirty bits for other part of the range. 7509 * 7510 * For cases that invalidate the full folio even the range doesn't 7511 * cover the full folio, like invalidating the last folio, we're 7512 * still safe to wait for ordered extent to finish. 7513 */ 7514 if (!(offset == 0 && length == folio_size(folio))) { 7515 btrfs_release_folio(folio, GFP_NOFS); 7516 return; 7517 } 7518 7519 if (!inode_evicting) 7520 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7521 7522 cur = page_start; 7523 while (cur < page_end) { 7524 struct btrfs_ordered_extent *ordered; 7525 u64 range_end; 7526 u32 range_len; 7527 u32 extra_flags = 0; 7528 7529 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7530 page_end + 1 - cur); 7531 if (!ordered) { 7532 range_end = page_end; 7533 /* 7534 * No ordered extent covering this range, we are safe 7535 * to delete all extent states in the range. 7536 */ 7537 extra_flags = EXTENT_CLEAR_ALL_BITS; 7538 goto next; 7539 } 7540 if (ordered->file_offset > cur) { 7541 /* 7542 * There is a range between [cur, oe->file_offset) not 7543 * covered by any ordered extent. 7544 * We are safe to delete all extent states, and handle 7545 * the ordered extent in the next iteration. 7546 */ 7547 range_end = ordered->file_offset - 1; 7548 extra_flags = EXTENT_CLEAR_ALL_BITS; 7549 goto next; 7550 } 7551 7552 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7553 page_end); 7554 ASSERT(range_end + 1 - cur < U32_MAX); 7555 range_len = range_end + 1 - cur; 7556 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7557 /* 7558 * If Ordered is cleared, it means endio has 7559 * already been executed for the range. 7560 * We can't delete the extent states as 7561 * btrfs_finish_ordered_io() may still use some of them. 7562 */ 7563 goto next; 7564 } 7565 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7566 7567 /* 7568 * IO on this page will never be started, so we need to account 7569 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7570 * here, must leave that up for the ordered extent completion. 7571 * 7572 * This will also unlock the range for incoming 7573 * btrfs_finish_ordered_io(). 7574 */ 7575 if (!inode_evicting) 7576 btrfs_clear_extent_bit(tree, cur, range_end, 7577 EXTENT_DELALLOC | 7578 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7579 EXTENT_DEFRAG, &cached_state); 7580 7581 spin_lock_irq(&inode->ordered_tree_lock); 7582 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7583 ordered->truncated_len = min(ordered->truncated_len, 7584 cur - ordered->file_offset); 7585 spin_unlock_irq(&inode->ordered_tree_lock); 7586 7587 /* 7588 * If the ordered extent has finished, we're safe to delete all 7589 * the extent states of the range, otherwise 7590 * btrfs_finish_ordered_io() will get executed by endio for 7591 * other pages, so we can't delete extent states. 7592 */ 7593 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7594 cur, range_end + 1 - cur)) { 7595 btrfs_finish_ordered_io(ordered); 7596 /* 7597 * The ordered extent has finished, now we're again 7598 * safe to delete all extent states of the range. 7599 */ 7600 extra_flags = EXTENT_CLEAR_ALL_BITS; 7601 } 7602 next: 7603 if (ordered) 7604 btrfs_put_ordered_extent(ordered); 7605 /* 7606 * Qgroup reserved space handler 7607 * Sector(s) here will be either: 7608 * 7609 * 1) Already written to disk or bio already finished 7610 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7611 * Qgroup will be handled by its qgroup_record then. 7612 * btrfs_qgroup_free_data() call will do nothing here. 7613 * 7614 * 2) Not written to disk yet 7615 * Then btrfs_qgroup_free_data() call will clear the 7616 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7617 * reserved data space. 7618 * Since the IO will never happen for this page. 7619 */ 7620 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7621 if (!inode_evicting) 7622 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7623 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7624 EXTENT_DEFRAG | extra_flags, 7625 &cached_state); 7626 cur = range_end + 1; 7627 } 7628 /* 7629 * We have iterated through all ordered extents of the page, the page 7630 * should not have Ordered anymore, or the above iteration 7631 * did something wrong. 7632 */ 7633 ASSERT(!folio_test_ordered(folio)); 7634 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7635 if (!inode_evicting) 7636 __btrfs_release_folio(folio, GFP_NOFS); 7637 clear_folio_extent_mapped(folio); 7638 } 7639 7640 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7641 { 7642 struct btrfs_truncate_control control = { 7643 .inode = inode, 7644 .ino = btrfs_ino(inode), 7645 .min_type = BTRFS_EXTENT_DATA_KEY, 7646 .clear_extent_range = true, 7647 }; 7648 struct btrfs_root *root = inode->root; 7649 struct btrfs_fs_info *fs_info = root->fs_info; 7650 struct btrfs_block_rsv rsv; 7651 int ret; 7652 struct btrfs_trans_handle *trans; 7653 u64 mask = fs_info->sectorsize - 1; 7654 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7655 7656 if (!skip_writeback) { 7657 ret = btrfs_wait_ordered_range(inode, 7658 inode->vfs_inode.i_size & (~mask), 7659 (u64)-1); 7660 if (ret) 7661 return ret; 7662 } 7663 7664 /* 7665 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7666 * things going on here: 7667 * 7668 * 1) We need to reserve space to update our inode. 7669 * 7670 * 2) We need to have something to cache all the space that is going to 7671 * be free'd up by the truncate operation, but also have some slack 7672 * space reserved in case it uses space during the truncate (thank you 7673 * very much snapshotting). 7674 * 7675 * And we need these to be separate. The fact is we can use a lot of 7676 * space doing the truncate, and we have no earthly idea how much space 7677 * we will use, so we need the truncate reservation to be separate so it 7678 * doesn't end up using space reserved for updating the inode. We also 7679 * need to be able to stop the transaction and start a new one, which 7680 * means we need to be able to update the inode several times, and we 7681 * have no idea of knowing how many times that will be, so we can't just 7682 * reserve 1 item for the entirety of the operation, so that has to be 7683 * done separately as well. 7684 * 7685 * So that leaves us with 7686 * 7687 * 1) rsv - for the truncate reservation, which we will steal from the 7688 * transaction reservation. 7689 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7690 * updating the inode. 7691 */ 7692 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7693 rsv.size = min_size; 7694 rsv.failfast = true; 7695 7696 /* 7697 * 1 for the truncate slack space 7698 * 1 for updating the inode. 7699 */ 7700 trans = btrfs_start_transaction(root, 2); 7701 if (IS_ERR(trans)) { 7702 ret = PTR_ERR(trans); 7703 goto out; 7704 } 7705 7706 /* Migrate the slack space for the truncate to our reserve */ 7707 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7708 min_size, false); 7709 /* 7710 * We have reserved 2 metadata units when we started the transaction and 7711 * min_size matches 1 unit, so this should never fail, but if it does, 7712 * it's not critical we just fail truncation. 7713 */ 7714 if (WARN_ON(ret)) { 7715 btrfs_end_transaction(trans); 7716 goto out; 7717 } 7718 7719 trans->block_rsv = &rsv; 7720 7721 while (1) { 7722 struct extent_state *cached_state = NULL; 7723 const u64 new_size = inode->vfs_inode.i_size; 7724 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7725 7726 control.new_size = new_size; 7727 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7728 /* 7729 * We want to drop from the next block forward in case this new 7730 * size is not block aligned since we will be keeping the last 7731 * block of the extent just the way it is. 7732 */ 7733 btrfs_drop_extent_map_range(inode, 7734 ALIGN(new_size, fs_info->sectorsize), 7735 (u64)-1, false); 7736 7737 ret = btrfs_truncate_inode_items(trans, root, &control); 7738 7739 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7740 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7741 7742 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7743 7744 trans->block_rsv = &fs_info->trans_block_rsv; 7745 if (ret != -ENOSPC && ret != -EAGAIN) 7746 break; 7747 7748 ret = btrfs_update_inode(trans, inode); 7749 if (ret) 7750 break; 7751 7752 btrfs_end_transaction(trans); 7753 btrfs_btree_balance_dirty(fs_info); 7754 7755 trans = btrfs_start_transaction(root, 2); 7756 if (IS_ERR(trans)) { 7757 ret = PTR_ERR(trans); 7758 trans = NULL; 7759 break; 7760 } 7761 7762 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7763 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7764 &rsv, min_size, false); 7765 /* 7766 * We have reserved 2 metadata units when we started the 7767 * transaction and min_size matches 1 unit, so this should never 7768 * fail, but if it does, it's not critical we just fail truncation. 7769 */ 7770 if (WARN_ON(ret)) 7771 break; 7772 7773 trans->block_rsv = &rsv; 7774 } 7775 7776 /* 7777 * We can't call btrfs_truncate_block inside a trans handle as we could 7778 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7779 * know we've truncated everything except the last little bit, and can 7780 * do btrfs_truncate_block and then update the disk_i_size. 7781 */ 7782 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7783 btrfs_end_transaction(trans); 7784 btrfs_btree_balance_dirty(fs_info); 7785 7786 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7787 inode->vfs_inode.i_size, (u64)-1); 7788 if (ret) 7789 goto out; 7790 trans = btrfs_start_transaction(root, 1); 7791 if (IS_ERR(trans)) { 7792 ret = PTR_ERR(trans); 7793 goto out; 7794 } 7795 btrfs_inode_safe_disk_i_size_write(inode, 0); 7796 } 7797 7798 if (trans) { 7799 int ret2; 7800 7801 trans->block_rsv = &fs_info->trans_block_rsv; 7802 ret2 = btrfs_update_inode(trans, inode); 7803 if (ret2 && !ret) 7804 ret = ret2; 7805 7806 ret2 = btrfs_end_transaction(trans); 7807 if (ret2 && !ret) 7808 ret = ret2; 7809 btrfs_btree_balance_dirty(fs_info); 7810 } 7811 out: 7812 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7813 /* 7814 * So if we truncate and then write and fsync we normally would just 7815 * write the extents that changed, which is a problem if we need to 7816 * first truncate that entire inode. So set this flag so we write out 7817 * all of the extents in the inode to the sync log so we're completely 7818 * safe. 7819 * 7820 * If no extents were dropped or trimmed we don't need to force the next 7821 * fsync to truncate all the inode's items from the log and re-log them 7822 * all. This means the truncate operation did not change the file size, 7823 * or changed it to a smaller size but there was only an implicit hole 7824 * between the old i_size and the new i_size, and there were no prealloc 7825 * extents beyond i_size to drop. 7826 */ 7827 if (control.extents_found > 0) 7828 btrfs_set_inode_full_sync(inode); 7829 7830 return ret; 7831 } 7832 7833 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7834 struct inode *dir) 7835 { 7836 struct inode *inode; 7837 7838 inode = new_inode(dir->i_sb); 7839 if (inode) { 7840 /* 7841 * Subvolumes don't inherit the sgid bit or the parent's gid if 7842 * the parent's sgid bit is set. This is probably a bug. 7843 */ 7844 inode_init_owner(idmap, inode, NULL, 7845 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7846 inode->i_op = &btrfs_dir_inode_operations; 7847 inode->i_fop = &btrfs_dir_file_operations; 7848 } 7849 return inode; 7850 } 7851 7852 struct inode *btrfs_alloc_inode(struct super_block *sb) 7853 { 7854 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7855 struct btrfs_inode *ei; 7856 struct inode *inode; 7857 7858 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7859 if (!ei) 7860 return NULL; 7861 7862 ei->root = NULL; 7863 ei->generation = 0; 7864 ei->last_trans = 0; 7865 ei->last_sub_trans = 0; 7866 ei->logged_trans = 0; 7867 ei->delalloc_bytes = 0; 7868 /* new_delalloc_bytes and last_dir_index_offset are in a union. */ 7869 ei->new_delalloc_bytes = 0; 7870 ei->defrag_bytes = 0; 7871 ei->disk_i_size = 0; 7872 ei->flags = 0; 7873 ei->ro_flags = 0; 7874 /* 7875 * ->index_cnt will be properly initialized later when creating a new 7876 * inode (btrfs_create_new_inode()) or when reading an existing inode 7877 * from disk (btrfs_read_locked_inode()). 7878 */ 7879 ei->csum_bytes = 0; 7880 ei->dir_index = 0; 7881 ei->last_unlink_trans = 0; 7882 ei->last_reflink_trans = 0; 7883 ei->last_log_commit = 0; 7884 7885 spin_lock_init(&ei->lock); 7886 ei->outstanding_extents = 0; 7887 if (sb->s_magic != BTRFS_TEST_MAGIC) 7888 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7889 BTRFS_BLOCK_RSV_DELALLOC); 7890 ei->runtime_flags = 0; 7891 ei->prop_compress = BTRFS_COMPRESS_NONE; 7892 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7893 7894 ei->delayed_node = NULL; 7895 7896 ei->i_otime_sec = 0; 7897 ei->i_otime_nsec = 0; 7898 7899 inode = &ei->vfs_inode; 7900 btrfs_extent_map_tree_init(&ei->extent_tree); 7901 7902 /* This io tree sets the valid inode. */ 7903 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7904 ei->io_tree.inode = ei; 7905 7906 ei->file_extent_tree = NULL; 7907 7908 mutex_init(&ei->log_mutex); 7909 spin_lock_init(&ei->ordered_tree_lock); 7910 ei->ordered_tree = RB_ROOT; 7911 ei->ordered_tree_last = NULL; 7912 INIT_LIST_HEAD(&ei->delalloc_inodes); 7913 INIT_LIST_HEAD(&ei->delayed_iput); 7914 init_rwsem(&ei->i_mmap_lock); 7915 7916 return inode; 7917 } 7918 7919 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7920 void btrfs_test_destroy_inode(struct inode *inode) 7921 { 7922 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7923 kfree(BTRFS_I(inode)->file_extent_tree); 7924 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7925 } 7926 #endif 7927 7928 void btrfs_free_inode(struct inode *inode) 7929 { 7930 kfree(BTRFS_I(inode)->file_extent_tree); 7931 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7932 } 7933 7934 void btrfs_destroy_inode(struct inode *vfs_inode) 7935 { 7936 struct btrfs_ordered_extent *ordered; 7937 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7938 struct btrfs_root *root = inode->root; 7939 bool freespace_inode; 7940 7941 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7942 WARN_ON(vfs_inode->i_data.nrpages); 7943 WARN_ON(inode->block_rsv.reserved); 7944 WARN_ON(inode->block_rsv.size); 7945 WARN_ON(inode->outstanding_extents); 7946 if (!S_ISDIR(vfs_inode->i_mode)) { 7947 WARN_ON(inode->delalloc_bytes); 7948 WARN_ON(inode->new_delalloc_bytes); 7949 WARN_ON(inode->csum_bytes); 7950 } 7951 if (!root || !btrfs_is_data_reloc_root(root)) 7952 WARN_ON(inode->defrag_bytes); 7953 7954 /* 7955 * This can happen where we create an inode, but somebody else also 7956 * created the same inode and we need to destroy the one we already 7957 * created. 7958 */ 7959 if (!root) 7960 return; 7961 7962 /* 7963 * If this is a free space inode do not take the ordered extents lockdep 7964 * map. 7965 */ 7966 freespace_inode = btrfs_is_free_space_inode(inode); 7967 7968 while (1) { 7969 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7970 if (!ordered) 7971 break; 7972 else { 7973 btrfs_err(root->fs_info, 7974 "found ordered extent %llu %llu on inode cleanup", 7975 ordered->file_offset, ordered->num_bytes); 7976 7977 if (!freespace_inode) 7978 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7979 7980 btrfs_remove_ordered_extent(inode, ordered); 7981 btrfs_put_ordered_extent(ordered); 7982 btrfs_put_ordered_extent(ordered); 7983 } 7984 } 7985 btrfs_qgroup_check_reserved_leak(inode); 7986 btrfs_del_inode_from_root(inode); 7987 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7988 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7989 btrfs_put_root(inode->root); 7990 } 7991 7992 int btrfs_drop_inode(struct inode *inode) 7993 { 7994 struct btrfs_root *root = BTRFS_I(inode)->root; 7995 7996 if (root == NULL) 7997 return 1; 7998 7999 /* the snap/subvol tree is on deleting */ 8000 if (btrfs_root_refs(&root->root_item) == 0) 8001 return 1; 8002 else 8003 return inode_generic_drop(inode); 8004 } 8005 8006 static void init_once(void *foo) 8007 { 8008 struct btrfs_inode *ei = foo; 8009 8010 inode_init_once(&ei->vfs_inode); 8011 #ifdef CONFIG_FS_VERITY 8012 ei->i_verity_info = NULL; 8013 #endif 8014 } 8015 8016 void __cold btrfs_destroy_cachep(void) 8017 { 8018 /* 8019 * Make sure all delayed rcu free inodes are flushed before we 8020 * destroy cache. 8021 */ 8022 rcu_barrier(); 8023 kmem_cache_destroy(btrfs_inode_cachep); 8024 } 8025 8026 int __init btrfs_init_cachep(void) 8027 { 8028 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8029 sizeof(struct btrfs_inode), 0, 8030 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8031 init_once); 8032 if (!btrfs_inode_cachep) 8033 return -ENOMEM; 8034 8035 return 0; 8036 } 8037 8038 static int btrfs_getattr(struct mnt_idmap *idmap, 8039 const struct path *path, struct kstat *stat, 8040 u32 request_mask, unsigned int flags) 8041 { 8042 u64 delalloc_bytes; 8043 u64 inode_bytes; 8044 struct inode *inode = d_inode(path->dentry); 8045 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8046 u32 bi_flags = BTRFS_I(inode)->flags; 8047 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8048 8049 stat->result_mask |= STATX_BTIME; 8050 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8051 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8052 if (bi_flags & BTRFS_INODE_APPEND) 8053 stat->attributes |= STATX_ATTR_APPEND; 8054 if (bi_flags & BTRFS_INODE_COMPRESS) 8055 stat->attributes |= STATX_ATTR_COMPRESSED; 8056 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8057 stat->attributes |= STATX_ATTR_IMMUTABLE; 8058 if (bi_flags & BTRFS_INODE_NODUMP) 8059 stat->attributes |= STATX_ATTR_NODUMP; 8060 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8061 stat->attributes |= STATX_ATTR_VERITY; 8062 8063 stat->attributes_mask |= (STATX_ATTR_APPEND | 8064 STATX_ATTR_COMPRESSED | 8065 STATX_ATTR_IMMUTABLE | 8066 STATX_ATTR_NODUMP); 8067 8068 generic_fillattr(idmap, request_mask, inode, stat); 8069 stat->dev = BTRFS_I(inode)->root->anon_dev; 8070 8071 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8072 stat->result_mask |= STATX_SUBVOL; 8073 8074 spin_lock(&BTRFS_I(inode)->lock); 8075 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8076 inode_bytes = inode_get_bytes(inode); 8077 spin_unlock(&BTRFS_I(inode)->lock); 8078 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8079 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8080 return 0; 8081 } 8082 8083 static int btrfs_rename_exchange(struct inode *old_dir, 8084 struct dentry *old_dentry, 8085 struct inode *new_dir, 8086 struct dentry *new_dentry) 8087 { 8088 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8089 struct btrfs_trans_handle *trans; 8090 unsigned int trans_num_items; 8091 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8092 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8093 struct inode *new_inode = new_dentry->d_inode; 8094 struct inode *old_inode = old_dentry->d_inode; 8095 struct btrfs_rename_ctx old_rename_ctx; 8096 struct btrfs_rename_ctx new_rename_ctx; 8097 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8098 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8099 u64 old_idx = 0; 8100 u64 new_idx = 0; 8101 int ret; 8102 int ret2; 8103 bool need_abort = false; 8104 bool logs_pinned = false; 8105 struct fscrypt_name old_fname, new_fname; 8106 struct fscrypt_str *old_name, *new_name; 8107 8108 /* 8109 * For non-subvolumes allow exchange only within one subvolume, in the 8110 * same inode namespace. Two subvolumes (represented as directory) can 8111 * be exchanged as they're a logical link and have a fixed inode number. 8112 */ 8113 if (root != dest && 8114 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8115 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8116 return -EXDEV; 8117 8118 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8119 if (ret) 8120 return ret; 8121 8122 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8123 if (ret) { 8124 fscrypt_free_filename(&old_fname); 8125 return ret; 8126 } 8127 8128 old_name = &old_fname.disk_name; 8129 new_name = &new_fname.disk_name; 8130 8131 /* close the race window with snapshot create/destroy ioctl */ 8132 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8133 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8134 down_read(&fs_info->subvol_sem); 8135 8136 /* 8137 * For each inode: 8138 * 1 to remove old dir item 8139 * 1 to remove old dir index 8140 * 1 to add new dir item 8141 * 1 to add new dir index 8142 * 1 to update parent inode 8143 * 8144 * If the parents are the same, we only need to account for one 8145 */ 8146 trans_num_items = (old_dir == new_dir ? 9 : 10); 8147 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8148 /* 8149 * 1 to remove old root ref 8150 * 1 to remove old root backref 8151 * 1 to add new root ref 8152 * 1 to add new root backref 8153 */ 8154 trans_num_items += 4; 8155 } else { 8156 /* 8157 * 1 to update inode item 8158 * 1 to remove old inode ref 8159 * 1 to add new inode ref 8160 */ 8161 trans_num_items += 3; 8162 } 8163 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8164 trans_num_items += 4; 8165 else 8166 trans_num_items += 3; 8167 trans = btrfs_start_transaction(root, trans_num_items); 8168 if (IS_ERR(trans)) { 8169 ret = PTR_ERR(trans); 8170 goto out_notrans; 8171 } 8172 8173 if (dest != root) { 8174 ret = btrfs_record_root_in_trans(trans, dest); 8175 if (ret) 8176 goto out_fail; 8177 } 8178 8179 /* 8180 * We need to find a free sequence number both in the source and 8181 * in the destination directory for the exchange. 8182 */ 8183 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8184 if (ret) 8185 goto out_fail; 8186 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8187 if (ret) 8188 goto out_fail; 8189 8190 BTRFS_I(old_inode)->dir_index = 0ULL; 8191 BTRFS_I(new_inode)->dir_index = 0ULL; 8192 8193 /* Reference for the source. */ 8194 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8195 /* force full log commit if subvolume involved. */ 8196 btrfs_set_log_full_commit(trans); 8197 } else { 8198 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8199 btrfs_ino(BTRFS_I(new_dir)), 8200 old_idx); 8201 if (ret) 8202 goto out_fail; 8203 need_abort = true; 8204 } 8205 8206 /* And now for the dest. */ 8207 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8208 /* force full log commit if subvolume involved. */ 8209 btrfs_set_log_full_commit(trans); 8210 } else { 8211 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8212 btrfs_ino(BTRFS_I(old_dir)), 8213 new_idx); 8214 if (ret) { 8215 if (unlikely(need_abort)) 8216 btrfs_abort_transaction(trans, ret); 8217 goto out_fail; 8218 } 8219 } 8220 8221 /* Update inode version and ctime/mtime. */ 8222 inode_inc_iversion(old_dir); 8223 inode_inc_iversion(new_dir); 8224 inode_inc_iversion(old_inode); 8225 inode_inc_iversion(new_inode); 8226 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8227 8228 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8229 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8230 /* 8231 * If we are renaming in the same directory (and it's not for 8232 * root entries) pin the log early to prevent any concurrent 8233 * task from logging the directory after we removed the old 8234 * entries and before we add the new entries, otherwise that 8235 * task can sync a log without any entry for the inodes we are 8236 * renaming and therefore replaying that log, if a power failure 8237 * happens after syncing the log, would result in deleting the 8238 * inodes. 8239 * 8240 * If the rename affects two different directories, we want to 8241 * make sure the that there's no log commit that contains 8242 * updates for only one of the directories but not for the 8243 * other. 8244 * 8245 * If we are renaming an entry for a root, we don't care about 8246 * log updates since we called btrfs_set_log_full_commit(). 8247 */ 8248 btrfs_pin_log_trans(root); 8249 btrfs_pin_log_trans(dest); 8250 logs_pinned = true; 8251 } 8252 8253 if (old_dentry->d_parent != new_dentry->d_parent) { 8254 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8255 BTRFS_I(old_inode), true); 8256 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8257 BTRFS_I(new_inode), true); 8258 } 8259 8260 /* src is a subvolume */ 8261 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8262 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8263 if (unlikely(ret)) { 8264 btrfs_abort_transaction(trans, ret); 8265 goto out_fail; 8266 } 8267 } else { /* src is an inode */ 8268 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8269 BTRFS_I(old_dentry->d_inode), 8270 old_name, &old_rename_ctx); 8271 if (unlikely(ret)) { 8272 btrfs_abort_transaction(trans, ret); 8273 goto out_fail; 8274 } 8275 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8276 if (unlikely(ret)) { 8277 btrfs_abort_transaction(trans, ret); 8278 goto out_fail; 8279 } 8280 } 8281 8282 /* dest is a subvolume */ 8283 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8284 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8285 if (unlikely(ret)) { 8286 btrfs_abort_transaction(trans, ret); 8287 goto out_fail; 8288 } 8289 } else { /* dest is an inode */ 8290 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8291 BTRFS_I(new_dentry->d_inode), 8292 new_name, &new_rename_ctx); 8293 if (unlikely(ret)) { 8294 btrfs_abort_transaction(trans, ret); 8295 goto out_fail; 8296 } 8297 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8298 if (unlikely(ret)) { 8299 btrfs_abort_transaction(trans, ret); 8300 goto out_fail; 8301 } 8302 } 8303 8304 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8305 new_name, 0, old_idx); 8306 if (unlikely(ret)) { 8307 btrfs_abort_transaction(trans, ret); 8308 goto out_fail; 8309 } 8310 8311 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8312 old_name, 0, new_idx); 8313 if (unlikely(ret)) { 8314 btrfs_abort_transaction(trans, ret); 8315 goto out_fail; 8316 } 8317 8318 if (old_inode->i_nlink == 1) 8319 BTRFS_I(old_inode)->dir_index = old_idx; 8320 if (new_inode->i_nlink == 1) 8321 BTRFS_I(new_inode)->dir_index = new_idx; 8322 8323 /* 8324 * Do the log updates for all inodes. 8325 * 8326 * If either entry is for a root we don't need to update the logs since 8327 * we've called btrfs_set_log_full_commit() before. 8328 */ 8329 if (logs_pinned) { 8330 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8331 old_rename_ctx.index, new_dentry->d_parent); 8332 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8333 new_rename_ctx.index, old_dentry->d_parent); 8334 } 8335 8336 out_fail: 8337 if (logs_pinned) { 8338 btrfs_end_log_trans(root); 8339 btrfs_end_log_trans(dest); 8340 } 8341 ret2 = btrfs_end_transaction(trans); 8342 ret = ret ? ret : ret2; 8343 out_notrans: 8344 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8345 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8346 up_read(&fs_info->subvol_sem); 8347 8348 fscrypt_free_filename(&new_fname); 8349 fscrypt_free_filename(&old_fname); 8350 return ret; 8351 } 8352 8353 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8354 struct inode *dir) 8355 { 8356 struct inode *inode; 8357 8358 inode = new_inode(dir->i_sb); 8359 if (inode) { 8360 inode_init_owner(idmap, inode, dir, 8361 S_IFCHR | WHITEOUT_MODE); 8362 inode->i_op = &btrfs_special_inode_operations; 8363 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8364 } 8365 return inode; 8366 } 8367 8368 static int btrfs_rename(struct mnt_idmap *idmap, 8369 struct inode *old_dir, struct dentry *old_dentry, 8370 struct inode *new_dir, struct dentry *new_dentry, 8371 unsigned int flags) 8372 { 8373 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8374 struct btrfs_new_inode_args whiteout_args = { 8375 .dir = old_dir, 8376 .dentry = old_dentry, 8377 }; 8378 struct btrfs_trans_handle *trans; 8379 unsigned int trans_num_items; 8380 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8381 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8382 struct inode *new_inode = d_inode(new_dentry); 8383 struct inode *old_inode = d_inode(old_dentry); 8384 struct btrfs_rename_ctx rename_ctx; 8385 u64 index = 0; 8386 int ret; 8387 int ret2; 8388 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8389 struct fscrypt_name old_fname, new_fname; 8390 bool logs_pinned = false; 8391 8392 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8393 return -EPERM; 8394 8395 /* we only allow rename subvolume link between subvolumes */ 8396 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8397 return -EXDEV; 8398 8399 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8400 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8401 return -ENOTEMPTY; 8402 8403 if (S_ISDIR(old_inode->i_mode) && new_inode && 8404 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8405 return -ENOTEMPTY; 8406 8407 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8408 if (ret) 8409 return ret; 8410 8411 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8412 if (ret) { 8413 fscrypt_free_filename(&old_fname); 8414 return ret; 8415 } 8416 8417 /* check for collisions, even if the name isn't there */ 8418 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8419 if (ret) { 8420 if (ret == -EEXIST) { 8421 /* we shouldn't get 8422 * eexist without a new_inode */ 8423 if (WARN_ON(!new_inode)) { 8424 goto out_fscrypt_names; 8425 } 8426 } else { 8427 /* maybe -EOVERFLOW */ 8428 goto out_fscrypt_names; 8429 } 8430 } 8431 ret = 0; 8432 8433 /* 8434 * we're using rename to replace one file with another. Start IO on it 8435 * now so we don't add too much work to the end of the transaction 8436 */ 8437 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8438 filemap_flush(old_inode->i_mapping); 8439 8440 if (flags & RENAME_WHITEOUT) { 8441 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8442 if (!whiteout_args.inode) { 8443 ret = -ENOMEM; 8444 goto out_fscrypt_names; 8445 } 8446 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8447 if (ret) 8448 goto out_whiteout_inode; 8449 } else { 8450 /* 1 to update the old parent inode. */ 8451 trans_num_items = 1; 8452 } 8453 8454 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8455 /* Close the race window with snapshot create/destroy ioctl */ 8456 down_read(&fs_info->subvol_sem); 8457 /* 8458 * 1 to remove old root ref 8459 * 1 to remove old root backref 8460 * 1 to add new root ref 8461 * 1 to add new root backref 8462 */ 8463 trans_num_items += 4; 8464 } else { 8465 /* 8466 * 1 to update inode 8467 * 1 to remove old inode ref 8468 * 1 to add new inode ref 8469 */ 8470 trans_num_items += 3; 8471 } 8472 /* 8473 * 1 to remove old dir item 8474 * 1 to remove old dir index 8475 * 1 to add new dir item 8476 * 1 to add new dir index 8477 */ 8478 trans_num_items += 4; 8479 /* 1 to update new parent inode if it's not the same as the old parent */ 8480 if (new_dir != old_dir) 8481 trans_num_items++; 8482 if (new_inode) { 8483 /* 8484 * 1 to update inode 8485 * 1 to remove inode ref 8486 * 1 to remove dir item 8487 * 1 to remove dir index 8488 * 1 to possibly add orphan item 8489 */ 8490 trans_num_items += 5; 8491 } 8492 trans = btrfs_start_transaction(root, trans_num_items); 8493 if (IS_ERR(trans)) { 8494 ret = PTR_ERR(trans); 8495 goto out_notrans; 8496 } 8497 8498 if (dest != root) { 8499 ret = btrfs_record_root_in_trans(trans, dest); 8500 if (ret) 8501 goto out_fail; 8502 } 8503 8504 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8505 if (ret) 8506 goto out_fail; 8507 8508 BTRFS_I(old_inode)->dir_index = 0ULL; 8509 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8510 /* force full log commit if subvolume involved. */ 8511 btrfs_set_log_full_commit(trans); 8512 } else { 8513 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8514 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8515 index); 8516 if (ret) 8517 goto out_fail; 8518 } 8519 8520 inode_inc_iversion(old_dir); 8521 inode_inc_iversion(new_dir); 8522 inode_inc_iversion(old_inode); 8523 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8524 8525 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8526 /* 8527 * If we are renaming in the same directory (and it's not a 8528 * root entry) pin the log to prevent any concurrent task from 8529 * logging the directory after we removed the old entry and 8530 * before we add the new entry, otherwise that task can sync 8531 * a log without any entry for the inode we are renaming and 8532 * therefore replaying that log, if a power failure happens 8533 * after syncing the log, would result in deleting the inode. 8534 * 8535 * If the rename affects two different directories, we want to 8536 * make sure the that there's no log commit that contains 8537 * updates for only one of the directories but not for the 8538 * other. 8539 * 8540 * If we are renaming an entry for a root, we don't care about 8541 * log updates since we called btrfs_set_log_full_commit(). 8542 */ 8543 btrfs_pin_log_trans(root); 8544 btrfs_pin_log_trans(dest); 8545 logs_pinned = true; 8546 } 8547 8548 if (old_dentry->d_parent != new_dentry->d_parent) 8549 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8550 BTRFS_I(old_inode), true); 8551 8552 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8553 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8554 if (unlikely(ret)) { 8555 btrfs_abort_transaction(trans, ret); 8556 goto out_fail; 8557 } 8558 } else { 8559 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8560 BTRFS_I(d_inode(old_dentry)), 8561 &old_fname.disk_name, &rename_ctx); 8562 if (unlikely(ret)) { 8563 btrfs_abort_transaction(trans, ret); 8564 goto out_fail; 8565 } 8566 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8567 if (unlikely(ret)) { 8568 btrfs_abort_transaction(trans, ret); 8569 goto out_fail; 8570 } 8571 } 8572 8573 if (new_inode) { 8574 inode_inc_iversion(new_inode); 8575 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8576 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8577 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8578 if (unlikely(ret)) { 8579 btrfs_abort_transaction(trans, ret); 8580 goto out_fail; 8581 } 8582 BUG_ON(new_inode->i_nlink == 0); 8583 } else { 8584 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8585 BTRFS_I(d_inode(new_dentry)), 8586 &new_fname.disk_name); 8587 if (unlikely(ret)) { 8588 btrfs_abort_transaction(trans, ret); 8589 goto out_fail; 8590 } 8591 } 8592 if (new_inode->i_nlink == 0) { 8593 ret = btrfs_orphan_add(trans, 8594 BTRFS_I(d_inode(new_dentry))); 8595 if (unlikely(ret)) { 8596 btrfs_abort_transaction(trans, ret); 8597 goto out_fail; 8598 } 8599 } 8600 } 8601 8602 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8603 &new_fname.disk_name, 0, index); 8604 if (unlikely(ret)) { 8605 btrfs_abort_transaction(trans, ret); 8606 goto out_fail; 8607 } 8608 8609 if (old_inode->i_nlink == 1) 8610 BTRFS_I(old_inode)->dir_index = index; 8611 8612 if (logs_pinned) 8613 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8614 rename_ctx.index, new_dentry->d_parent); 8615 8616 if (flags & RENAME_WHITEOUT) { 8617 ret = btrfs_create_new_inode(trans, &whiteout_args); 8618 if (unlikely(ret)) { 8619 btrfs_abort_transaction(trans, ret); 8620 goto out_fail; 8621 } else { 8622 unlock_new_inode(whiteout_args.inode); 8623 iput(whiteout_args.inode); 8624 whiteout_args.inode = NULL; 8625 } 8626 } 8627 out_fail: 8628 if (logs_pinned) { 8629 btrfs_end_log_trans(root); 8630 btrfs_end_log_trans(dest); 8631 } 8632 ret2 = btrfs_end_transaction(trans); 8633 ret = ret ? ret : ret2; 8634 out_notrans: 8635 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8636 up_read(&fs_info->subvol_sem); 8637 if (flags & RENAME_WHITEOUT) 8638 btrfs_new_inode_args_destroy(&whiteout_args); 8639 out_whiteout_inode: 8640 if (flags & RENAME_WHITEOUT) 8641 iput(whiteout_args.inode); 8642 out_fscrypt_names: 8643 fscrypt_free_filename(&old_fname); 8644 fscrypt_free_filename(&new_fname); 8645 return ret; 8646 } 8647 8648 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8649 struct dentry *old_dentry, struct inode *new_dir, 8650 struct dentry *new_dentry, unsigned int flags) 8651 { 8652 int ret; 8653 8654 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8655 return -EINVAL; 8656 8657 if (flags & RENAME_EXCHANGE) 8658 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8659 new_dentry); 8660 else 8661 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8662 new_dentry, flags); 8663 8664 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8665 8666 return ret; 8667 } 8668 8669 struct btrfs_delalloc_work { 8670 struct inode *inode; 8671 struct completion completion; 8672 struct list_head list; 8673 struct btrfs_work work; 8674 }; 8675 8676 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8677 { 8678 struct btrfs_delalloc_work *delalloc_work; 8679 struct inode *inode; 8680 8681 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8682 work); 8683 inode = delalloc_work->inode; 8684 filemap_flush(inode->i_mapping); 8685 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8686 &BTRFS_I(inode)->runtime_flags)) 8687 filemap_flush(inode->i_mapping); 8688 8689 iput(inode); 8690 complete(&delalloc_work->completion); 8691 } 8692 8693 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8694 { 8695 struct btrfs_delalloc_work *work; 8696 8697 work = kmalloc(sizeof(*work), GFP_NOFS); 8698 if (!work) 8699 return NULL; 8700 8701 init_completion(&work->completion); 8702 INIT_LIST_HEAD(&work->list); 8703 work->inode = inode; 8704 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8705 8706 return work; 8707 } 8708 8709 /* 8710 * some fairly slow code that needs optimization. This walks the list 8711 * of all the inodes with pending delalloc and forces them to disk. 8712 */ 8713 static int start_delalloc_inodes(struct btrfs_root *root, 8714 struct writeback_control *wbc, bool snapshot, 8715 bool in_reclaim_context) 8716 { 8717 struct btrfs_delalloc_work *work, *next; 8718 LIST_HEAD(works); 8719 LIST_HEAD(splice); 8720 int ret = 0; 8721 bool full_flush = wbc->nr_to_write == LONG_MAX; 8722 8723 mutex_lock(&root->delalloc_mutex); 8724 spin_lock(&root->delalloc_lock); 8725 list_splice_init(&root->delalloc_inodes, &splice); 8726 while (!list_empty(&splice)) { 8727 struct btrfs_inode *inode; 8728 struct inode *tmp_inode; 8729 8730 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8731 8732 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8733 8734 if (in_reclaim_context && 8735 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8736 continue; 8737 8738 tmp_inode = igrab(&inode->vfs_inode); 8739 if (!tmp_inode) { 8740 cond_resched_lock(&root->delalloc_lock); 8741 continue; 8742 } 8743 spin_unlock(&root->delalloc_lock); 8744 8745 if (snapshot) 8746 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8747 if (full_flush) { 8748 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8749 if (!work) { 8750 iput(&inode->vfs_inode); 8751 ret = -ENOMEM; 8752 goto out; 8753 } 8754 list_add_tail(&work->list, &works); 8755 btrfs_queue_work(root->fs_info->flush_workers, 8756 &work->work); 8757 } else { 8758 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8759 btrfs_add_delayed_iput(inode); 8760 if (ret || wbc->nr_to_write <= 0) 8761 goto out; 8762 } 8763 cond_resched(); 8764 spin_lock(&root->delalloc_lock); 8765 } 8766 spin_unlock(&root->delalloc_lock); 8767 8768 out: 8769 list_for_each_entry_safe(work, next, &works, list) { 8770 list_del_init(&work->list); 8771 wait_for_completion(&work->completion); 8772 kfree(work); 8773 } 8774 8775 if (!list_empty(&splice)) { 8776 spin_lock(&root->delalloc_lock); 8777 list_splice_tail(&splice, &root->delalloc_inodes); 8778 spin_unlock(&root->delalloc_lock); 8779 } 8780 mutex_unlock(&root->delalloc_mutex); 8781 return ret; 8782 } 8783 8784 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8785 { 8786 struct writeback_control wbc = { 8787 .nr_to_write = LONG_MAX, 8788 .sync_mode = WB_SYNC_NONE, 8789 .range_start = 0, 8790 .range_end = LLONG_MAX, 8791 }; 8792 struct btrfs_fs_info *fs_info = root->fs_info; 8793 8794 if (BTRFS_FS_ERROR(fs_info)) 8795 return -EROFS; 8796 8797 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8798 } 8799 8800 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8801 bool in_reclaim_context) 8802 { 8803 struct writeback_control wbc = { 8804 .nr_to_write = nr, 8805 .sync_mode = WB_SYNC_NONE, 8806 .range_start = 0, 8807 .range_end = LLONG_MAX, 8808 }; 8809 struct btrfs_root *root; 8810 LIST_HEAD(splice); 8811 int ret; 8812 8813 if (BTRFS_FS_ERROR(fs_info)) 8814 return -EROFS; 8815 8816 mutex_lock(&fs_info->delalloc_root_mutex); 8817 spin_lock(&fs_info->delalloc_root_lock); 8818 list_splice_init(&fs_info->delalloc_roots, &splice); 8819 while (!list_empty(&splice)) { 8820 /* 8821 * Reset nr_to_write here so we know that we're doing a full 8822 * flush. 8823 */ 8824 if (nr == LONG_MAX) 8825 wbc.nr_to_write = LONG_MAX; 8826 8827 root = list_first_entry(&splice, struct btrfs_root, 8828 delalloc_root); 8829 root = btrfs_grab_root(root); 8830 BUG_ON(!root); 8831 list_move_tail(&root->delalloc_root, 8832 &fs_info->delalloc_roots); 8833 spin_unlock(&fs_info->delalloc_root_lock); 8834 8835 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8836 btrfs_put_root(root); 8837 if (ret < 0 || wbc.nr_to_write <= 0) 8838 goto out; 8839 spin_lock(&fs_info->delalloc_root_lock); 8840 } 8841 spin_unlock(&fs_info->delalloc_root_lock); 8842 8843 ret = 0; 8844 out: 8845 if (!list_empty(&splice)) { 8846 spin_lock(&fs_info->delalloc_root_lock); 8847 list_splice_tail(&splice, &fs_info->delalloc_roots); 8848 spin_unlock(&fs_info->delalloc_root_lock); 8849 } 8850 mutex_unlock(&fs_info->delalloc_root_mutex); 8851 return ret; 8852 } 8853 8854 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8855 struct dentry *dentry, const char *symname) 8856 { 8857 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8858 struct btrfs_trans_handle *trans; 8859 struct btrfs_root *root = BTRFS_I(dir)->root; 8860 struct btrfs_path *path; 8861 struct btrfs_key key; 8862 struct inode *inode; 8863 struct btrfs_new_inode_args new_inode_args = { 8864 .dir = dir, 8865 .dentry = dentry, 8866 }; 8867 unsigned int trans_num_items; 8868 int ret; 8869 int name_len; 8870 int datasize; 8871 unsigned long ptr; 8872 struct btrfs_file_extent_item *ei; 8873 struct extent_buffer *leaf; 8874 8875 name_len = strlen(symname); 8876 /* 8877 * Symlinks utilize uncompressed inline extent data, which should not 8878 * reach block size. 8879 */ 8880 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8881 name_len >= fs_info->sectorsize) 8882 return -ENAMETOOLONG; 8883 8884 inode = new_inode(dir->i_sb); 8885 if (!inode) 8886 return -ENOMEM; 8887 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8888 inode->i_op = &btrfs_symlink_inode_operations; 8889 inode_nohighmem(inode); 8890 inode->i_mapping->a_ops = &btrfs_aops; 8891 btrfs_i_size_write(BTRFS_I(inode), name_len); 8892 inode_set_bytes(inode, name_len); 8893 8894 new_inode_args.inode = inode; 8895 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8896 if (ret) 8897 goto out_inode; 8898 /* 1 additional item for the inline extent */ 8899 trans_num_items++; 8900 8901 trans = btrfs_start_transaction(root, trans_num_items); 8902 if (IS_ERR(trans)) { 8903 ret = PTR_ERR(trans); 8904 goto out_new_inode_args; 8905 } 8906 8907 ret = btrfs_create_new_inode(trans, &new_inode_args); 8908 if (ret) 8909 goto out; 8910 8911 path = btrfs_alloc_path(); 8912 if (unlikely(!path)) { 8913 ret = -ENOMEM; 8914 btrfs_abort_transaction(trans, ret); 8915 discard_new_inode(inode); 8916 inode = NULL; 8917 goto out; 8918 } 8919 key.objectid = btrfs_ino(BTRFS_I(inode)); 8920 key.type = BTRFS_EXTENT_DATA_KEY; 8921 key.offset = 0; 8922 datasize = btrfs_file_extent_calc_inline_size(name_len); 8923 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8924 if (unlikely(ret)) { 8925 btrfs_abort_transaction(trans, ret); 8926 btrfs_free_path(path); 8927 discard_new_inode(inode); 8928 inode = NULL; 8929 goto out; 8930 } 8931 leaf = path->nodes[0]; 8932 ei = btrfs_item_ptr(leaf, path->slots[0], 8933 struct btrfs_file_extent_item); 8934 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8935 btrfs_set_file_extent_type(leaf, ei, 8936 BTRFS_FILE_EXTENT_INLINE); 8937 btrfs_set_file_extent_encryption(leaf, ei, 0); 8938 btrfs_set_file_extent_compression(leaf, ei, 0); 8939 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8940 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8941 8942 ptr = btrfs_file_extent_inline_start(ei); 8943 write_extent_buffer(leaf, symname, ptr, name_len); 8944 btrfs_free_path(path); 8945 8946 d_instantiate_new(dentry, inode); 8947 ret = 0; 8948 out: 8949 btrfs_end_transaction(trans); 8950 btrfs_btree_balance_dirty(fs_info); 8951 out_new_inode_args: 8952 btrfs_new_inode_args_destroy(&new_inode_args); 8953 out_inode: 8954 if (ret) 8955 iput(inode); 8956 return ret; 8957 } 8958 8959 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8960 struct btrfs_trans_handle *trans_in, 8961 struct btrfs_inode *inode, 8962 struct btrfs_key *ins, 8963 u64 file_offset) 8964 { 8965 struct btrfs_file_extent_item stack_fi; 8966 struct btrfs_replace_extent_info extent_info; 8967 struct btrfs_trans_handle *trans = trans_in; 8968 struct btrfs_path *path; 8969 u64 start = ins->objectid; 8970 u64 len = ins->offset; 8971 u64 qgroup_released = 0; 8972 int ret; 8973 8974 memset(&stack_fi, 0, sizeof(stack_fi)); 8975 8976 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8977 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8978 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8979 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8980 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8981 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8982 /* Encryption and other encoding is reserved and all 0 */ 8983 8984 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8985 if (ret < 0) 8986 return ERR_PTR(ret); 8987 8988 if (trans) { 8989 ret = insert_reserved_file_extent(trans, inode, 8990 file_offset, &stack_fi, 8991 true, qgroup_released); 8992 if (ret) 8993 goto free_qgroup; 8994 return trans; 8995 } 8996 8997 extent_info.disk_offset = start; 8998 extent_info.disk_len = len; 8999 extent_info.data_offset = 0; 9000 extent_info.data_len = len; 9001 extent_info.file_offset = file_offset; 9002 extent_info.extent_buf = (char *)&stack_fi; 9003 extent_info.is_new_extent = true; 9004 extent_info.update_times = true; 9005 extent_info.qgroup_reserved = qgroup_released; 9006 extent_info.insertions = 0; 9007 9008 path = btrfs_alloc_path(); 9009 if (!path) { 9010 ret = -ENOMEM; 9011 goto free_qgroup; 9012 } 9013 9014 ret = btrfs_replace_file_extents(inode, path, file_offset, 9015 file_offset + len - 1, &extent_info, 9016 &trans); 9017 btrfs_free_path(path); 9018 if (ret) 9019 goto free_qgroup; 9020 return trans; 9021 9022 free_qgroup: 9023 /* 9024 * We have released qgroup data range at the beginning of the function, 9025 * and normally qgroup_released bytes will be freed when committing 9026 * transaction. 9027 * But if we error out early, we have to free what we have released 9028 * or we leak qgroup data reservation. 9029 */ 9030 btrfs_qgroup_free_refroot(inode->root->fs_info, 9031 btrfs_root_id(inode->root), qgroup_released, 9032 BTRFS_QGROUP_RSV_DATA); 9033 return ERR_PTR(ret); 9034 } 9035 9036 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9037 u64 start, u64 num_bytes, u64 min_size, 9038 loff_t actual_len, u64 *alloc_hint, 9039 struct btrfs_trans_handle *trans) 9040 { 9041 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9042 struct extent_map *em; 9043 struct btrfs_root *root = BTRFS_I(inode)->root; 9044 struct btrfs_key ins; 9045 u64 cur_offset = start; 9046 u64 clear_offset = start; 9047 u64 i_size; 9048 u64 cur_bytes; 9049 u64 last_alloc = (u64)-1; 9050 int ret = 0; 9051 bool own_trans = true; 9052 u64 end = start + num_bytes - 1; 9053 9054 if (trans) 9055 own_trans = false; 9056 while (num_bytes > 0) { 9057 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9058 cur_bytes = max(cur_bytes, min_size); 9059 /* 9060 * If we are severely fragmented we could end up with really 9061 * small allocations, so if the allocator is returning small 9062 * chunks lets make its job easier by only searching for those 9063 * sized chunks. 9064 */ 9065 cur_bytes = min(cur_bytes, last_alloc); 9066 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9067 min_size, 0, *alloc_hint, &ins, 1, 0); 9068 if (ret) 9069 break; 9070 9071 /* 9072 * We've reserved this space, and thus converted it from 9073 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9074 * from here on out we will only need to clear our reservation 9075 * for the remaining unreserved area, so advance our 9076 * clear_offset by our extent size. 9077 */ 9078 clear_offset += ins.offset; 9079 9080 last_alloc = ins.offset; 9081 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9082 &ins, cur_offset); 9083 /* 9084 * Now that we inserted the prealloc extent we can finally 9085 * decrement the number of reservations in the block group. 9086 * If we did it before, we could race with relocation and have 9087 * relocation miss the reserved extent, making it fail later. 9088 */ 9089 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9090 if (IS_ERR(trans)) { 9091 ret = PTR_ERR(trans); 9092 btrfs_free_reserved_extent(fs_info, ins.objectid, 9093 ins.offset, false); 9094 break; 9095 } 9096 9097 em = btrfs_alloc_extent_map(); 9098 if (!em) { 9099 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9100 cur_offset + ins.offset - 1, false); 9101 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9102 goto next; 9103 } 9104 9105 em->start = cur_offset; 9106 em->len = ins.offset; 9107 em->disk_bytenr = ins.objectid; 9108 em->offset = 0; 9109 em->disk_num_bytes = ins.offset; 9110 em->ram_bytes = ins.offset; 9111 em->flags |= EXTENT_FLAG_PREALLOC; 9112 em->generation = trans->transid; 9113 9114 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9115 btrfs_free_extent_map(em); 9116 next: 9117 num_bytes -= ins.offset; 9118 cur_offset += ins.offset; 9119 *alloc_hint = ins.objectid + ins.offset; 9120 9121 inode_inc_iversion(inode); 9122 inode_set_ctime_current(inode); 9123 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9124 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9125 (actual_len > inode->i_size) && 9126 (cur_offset > inode->i_size)) { 9127 if (cur_offset > actual_len) 9128 i_size = actual_len; 9129 else 9130 i_size = cur_offset; 9131 i_size_write(inode, i_size); 9132 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9133 } 9134 9135 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9136 9137 if (unlikely(ret)) { 9138 btrfs_abort_transaction(trans, ret); 9139 if (own_trans) 9140 btrfs_end_transaction(trans); 9141 break; 9142 } 9143 9144 if (own_trans) { 9145 btrfs_end_transaction(trans); 9146 trans = NULL; 9147 } 9148 } 9149 if (clear_offset < end) 9150 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9151 end - clear_offset + 1); 9152 return ret; 9153 } 9154 9155 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9156 u64 start, u64 num_bytes, u64 min_size, 9157 loff_t actual_len, u64 *alloc_hint) 9158 { 9159 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9160 min_size, actual_len, alloc_hint, 9161 NULL); 9162 } 9163 9164 int btrfs_prealloc_file_range_trans(struct inode *inode, 9165 struct btrfs_trans_handle *trans, int mode, 9166 u64 start, u64 num_bytes, u64 min_size, 9167 loff_t actual_len, u64 *alloc_hint) 9168 { 9169 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9170 min_size, actual_len, alloc_hint, trans); 9171 } 9172 9173 static int btrfs_permission(struct mnt_idmap *idmap, 9174 struct inode *inode, int mask) 9175 { 9176 struct btrfs_root *root = BTRFS_I(inode)->root; 9177 umode_t mode = inode->i_mode; 9178 9179 if (mask & MAY_WRITE && 9180 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9181 if (btrfs_root_readonly(root)) 9182 return -EROFS; 9183 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9184 return -EACCES; 9185 } 9186 return generic_permission(idmap, inode, mask); 9187 } 9188 9189 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9190 struct file *file, umode_t mode) 9191 { 9192 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9193 struct btrfs_trans_handle *trans; 9194 struct btrfs_root *root = BTRFS_I(dir)->root; 9195 struct inode *inode; 9196 struct btrfs_new_inode_args new_inode_args = { 9197 .dir = dir, 9198 .dentry = file->f_path.dentry, 9199 .orphan = true, 9200 }; 9201 unsigned int trans_num_items; 9202 int ret; 9203 9204 inode = new_inode(dir->i_sb); 9205 if (!inode) 9206 return -ENOMEM; 9207 inode_init_owner(idmap, inode, dir, mode); 9208 inode->i_fop = &btrfs_file_operations; 9209 inode->i_op = &btrfs_file_inode_operations; 9210 inode->i_mapping->a_ops = &btrfs_aops; 9211 9212 new_inode_args.inode = inode; 9213 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9214 if (ret) 9215 goto out_inode; 9216 9217 trans = btrfs_start_transaction(root, trans_num_items); 9218 if (IS_ERR(trans)) { 9219 ret = PTR_ERR(trans); 9220 goto out_new_inode_args; 9221 } 9222 9223 ret = btrfs_create_new_inode(trans, &new_inode_args); 9224 9225 /* 9226 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9227 * set it to 1 because d_tmpfile() will issue a warning if the count is 9228 * 0, through: 9229 * 9230 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9231 */ 9232 set_nlink(inode, 1); 9233 9234 if (!ret) { 9235 d_tmpfile(file, inode); 9236 unlock_new_inode(inode); 9237 mark_inode_dirty(inode); 9238 } 9239 9240 btrfs_end_transaction(trans); 9241 btrfs_btree_balance_dirty(fs_info); 9242 out_new_inode_args: 9243 btrfs_new_inode_args_destroy(&new_inode_args); 9244 out_inode: 9245 if (ret) 9246 iput(inode); 9247 return finish_open_simple(file, ret); 9248 } 9249 9250 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9251 int compress_type) 9252 { 9253 switch (compress_type) { 9254 case BTRFS_COMPRESS_NONE: 9255 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9256 case BTRFS_COMPRESS_ZLIB: 9257 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9258 case BTRFS_COMPRESS_LZO: 9259 /* 9260 * The LZO format depends on the sector size. 64K is the maximum 9261 * sector size that we support. 9262 */ 9263 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9264 return -EINVAL; 9265 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9266 (fs_info->sectorsize_bits - 12); 9267 case BTRFS_COMPRESS_ZSTD: 9268 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9269 default: 9270 return -EUCLEAN; 9271 } 9272 } 9273 9274 static ssize_t btrfs_encoded_read_inline( 9275 struct kiocb *iocb, 9276 struct iov_iter *iter, u64 start, 9277 u64 lockend, 9278 struct extent_state **cached_state, 9279 u64 extent_start, size_t count, 9280 struct btrfs_ioctl_encoded_io_args *encoded, 9281 bool *unlocked) 9282 { 9283 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9284 struct btrfs_root *root = inode->root; 9285 struct btrfs_fs_info *fs_info = root->fs_info; 9286 struct extent_io_tree *io_tree = &inode->io_tree; 9287 BTRFS_PATH_AUTO_FREE(path); 9288 struct extent_buffer *leaf; 9289 struct btrfs_file_extent_item *item; 9290 u64 ram_bytes; 9291 unsigned long ptr; 9292 void *tmp; 9293 ssize_t ret; 9294 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9295 9296 path = btrfs_alloc_path(); 9297 if (!path) 9298 return -ENOMEM; 9299 9300 path->nowait = nowait; 9301 9302 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9303 extent_start, 0); 9304 if (ret) { 9305 if (unlikely(ret > 0)) { 9306 /* The extent item disappeared? */ 9307 return -EIO; 9308 } 9309 return ret; 9310 } 9311 leaf = path->nodes[0]; 9312 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9313 9314 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9315 ptr = btrfs_file_extent_inline_start(item); 9316 9317 encoded->len = min_t(u64, extent_start + ram_bytes, 9318 inode->vfs_inode.i_size) - iocb->ki_pos; 9319 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9320 btrfs_file_extent_compression(leaf, item)); 9321 if (ret < 0) 9322 return ret; 9323 encoded->compression = ret; 9324 if (encoded->compression) { 9325 size_t inline_size; 9326 9327 inline_size = btrfs_file_extent_inline_item_len(leaf, 9328 path->slots[0]); 9329 if (inline_size > count) 9330 return -ENOBUFS; 9331 9332 count = inline_size; 9333 encoded->unencoded_len = ram_bytes; 9334 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9335 } else { 9336 count = min_t(u64, count, encoded->len); 9337 encoded->len = count; 9338 encoded->unencoded_len = count; 9339 ptr += iocb->ki_pos - extent_start; 9340 } 9341 9342 tmp = kmalloc(count, GFP_NOFS); 9343 if (!tmp) 9344 return -ENOMEM; 9345 9346 read_extent_buffer(leaf, tmp, ptr, count); 9347 btrfs_release_path(path); 9348 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9349 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9350 *unlocked = true; 9351 9352 ret = copy_to_iter(tmp, count, iter); 9353 if (ret != count) 9354 ret = -EFAULT; 9355 kfree(tmp); 9356 9357 return ret; 9358 } 9359 9360 struct btrfs_encoded_read_private { 9361 struct completion *sync_reads; 9362 void *uring_ctx; 9363 refcount_t pending_refs; 9364 blk_status_t status; 9365 }; 9366 9367 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9368 { 9369 struct btrfs_encoded_read_private *priv = bbio->private; 9370 9371 if (bbio->bio.bi_status) { 9372 /* 9373 * The memory barrier implied by the refcount_dec_and_test() here 9374 * pairs with the memory barrier implied by the refcount_dec_and_test() 9375 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9376 * this write is observed before the load of status in 9377 * btrfs_encoded_read_regular_fill_pages(). 9378 */ 9379 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9380 } 9381 if (refcount_dec_and_test(&priv->pending_refs)) { 9382 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9383 9384 if (priv->uring_ctx) { 9385 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9386 kfree(priv); 9387 } else { 9388 complete(priv->sync_reads); 9389 } 9390 } 9391 bio_put(&bbio->bio); 9392 } 9393 9394 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9395 u64 disk_bytenr, u64 disk_io_size, 9396 struct page **pages, void *uring_ctx) 9397 { 9398 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9399 struct btrfs_encoded_read_private *priv, sync_priv; 9400 struct completion sync_reads; 9401 unsigned long i = 0; 9402 struct btrfs_bio *bbio; 9403 int ret; 9404 9405 /* 9406 * Fast path for synchronous reads which completes in this call, io_uring 9407 * needs longer time span. 9408 */ 9409 if (uring_ctx) { 9410 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9411 if (!priv) 9412 return -ENOMEM; 9413 } else { 9414 priv = &sync_priv; 9415 init_completion(&sync_reads); 9416 priv->sync_reads = &sync_reads; 9417 } 9418 9419 refcount_set(&priv->pending_refs, 1); 9420 priv->status = 0; 9421 priv->uring_ctx = uring_ctx; 9422 9423 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9424 btrfs_encoded_read_endio, priv); 9425 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9426 bbio->inode = inode; 9427 9428 do { 9429 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9430 9431 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9432 refcount_inc(&priv->pending_refs); 9433 btrfs_submit_bbio(bbio, 0); 9434 9435 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9436 btrfs_encoded_read_endio, priv); 9437 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9438 bbio->inode = inode; 9439 continue; 9440 } 9441 9442 i++; 9443 disk_bytenr += bytes; 9444 disk_io_size -= bytes; 9445 } while (disk_io_size); 9446 9447 refcount_inc(&priv->pending_refs); 9448 btrfs_submit_bbio(bbio, 0); 9449 9450 if (uring_ctx) { 9451 if (refcount_dec_and_test(&priv->pending_refs)) { 9452 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9453 btrfs_uring_read_extent_endio(uring_ctx, ret); 9454 kfree(priv); 9455 return ret; 9456 } 9457 9458 return -EIOCBQUEUED; 9459 } else { 9460 if (!refcount_dec_and_test(&priv->pending_refs)) 9461 wait_for_completion_io(&sync_reads); 9462 /* See btrfs_encoded_read_endio() for ordering. */ 9463 return blk_status_to_errno(READ_ONCE(priv->status)); 9464 } 9465 } 9466 9467 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9468 u64 start, u64 lockend, 9469 struct extent_state **cached_state, 9470 u64 disk_bytenr, u64 disk_io_size, 9471 size_t count, bool compressed, bool *unlocked) 9472 { 9473 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9474 struct extent_io_tree *io_tree = &inode->io_tree; 9475 struct page **pages; 9476 unsigned long nr_pages, i; 9477 u64 cur; 9478 size_t page_offset; 9479 ssize_t ret; 9480 9481 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9482 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9483 if (!pages) 9484 return -ENOMEM; 9485 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9486 if (ret) { 9487 ret = -ENOMEM; 9488 goto out; 9489 } 9490 9491 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9492 disk_io_size, pages, NULL); 9493 if (ret) 9494 goto out; 9495 9496 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9497 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9498 *unlocked = true; 9499 9500 if (compressed) { 9501 i = 0; 9502 page_offset = 0; 9503 } else { 9504 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9505 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9506 } 9507 cur = 0; 9508 while (cur < count) { 9509 size_t bytes = min_t(size_t, count - cur, 9510 PAGE_SIZE - page_offset); 9511 9512 if (copy_page_to_iter(pages[i], page_offset, bytes, 9513 iter) != bytes) { 9514 ret = -EFAULT; 9515 goto out; 9516 } 9517 i++; 9518 cur += bytes; 9519 page_offset = 0; 9520 } 9521 ret = count; 9522 out: 9523 for (i = 0; i < nr_pages; i++) { 9524 if (pages[i]) 9525 __free_page(pages[i]); 9526 } 9527 kfree(pages); 9528 return ret; 9529 } 9530 9531 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9532 struct btrfs_ioctl_encoded_io_args *encoded, 9533 struct extent_state **cached_state, 9534 u64 *disk_bytenr, u64 *disk_io_size) 9535 { 9536 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9537 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9538 struct extent_io_tree *io_tree = &inode->io_tree; 9539 ssize_t ret; 9540 size_t count = iov_iter_count(iter); 9541 u64 start, lockend; 9542 struct extent_map *em; 9543 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9544 bool unlocked = false; 9545 9546 file_accessed(iocb->ki_filp); 9547 9548 ret = btrfs_inode_lock(inode, 9549 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9550 if (ret) 9551 return ret; 9552 9553 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9554 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9555 return 0; 9556 } 9557 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9558 /* 9559 * We don't know how long the extent containing iocb->ki_pos is, but if 9560 * it's compressed we know that it won't be longer than this. 9561 */ 9562 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9563 9564 if (nowait) { 9565 struct btrfs_ordered_extent *ordered; 9566 9567 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9568 start, lockend)) { 9569 ret = -EAGAIN; 9570 goto out_unlock_inode; 9571 } 9572 9573 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9574 ret = -EAGAIN; 9575 goto out_unlock_inode; 9576 } 9577 9578 ordered = btrfs_lookup_ordered_range(inode, start, 9579 lockend - start + 1); 9580 if (ordered) { 9581 btrfs_put_ordered_extent(ordered); 9582 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9583 ret = -EAGAIN; 9584 goto out_unlock_inode; 9585 } 9586 } else { 9587 for (;;) { 9588 struct btrfs_ordered_extent *ordered; 9589 9590 ret = btrfs_wait_ordered_range(inode, start, 9591 lockend - start + 1); 9592 if (ret) 9593 goto out_unlock_inode; 9594 9595 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9596 ordered = btrfs_lookup_ordered_range(inode, start, 9597 lockend - start + 1); 9598 if (!ordered) 9599 break; 9600 btrfs_put_ordered_extent(ordered); 9601 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9602 cond_resched(); 9603 } 9604 } 9605 9606 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9607 if (IS_ERR(em)) { 9608 ret = PTR_ERR(em); 9609 goto out_unlock_extent; 9610 } 9611 9612 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9613 u64 extent_start = em->start; 9614 9615 /* 9616 * For inline extents we get everything we need out of the 9617 * extent item. 9618 */ 9619 btrfs_free_extent_map(em); 9620 em = NULL; 9621 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9622 cached_state, extent_start, 9623 count, encoded, &unlocked); 9624 goto out_unlock_extent; 9625 } 9626 9627 /* 9628 * We only want to return up to EOF even if the extent extends beyond 9629 * that. 9630 */ 9631 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9632 inode->vfs_inode.i_size) - iocb->ki_pos; 9633 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9634 (em->flags & EXTENT_FLAG_PREALLOC)) { 9635 *disk_bytenr = EXTENT_MAP_HOLE; 9636 count = min_t(u64, count, encoded->len); 9637 encoded->len = count; 9638 encoded->unencoded_len = count; 9639 } else if (btrfs_extent_map_is_compressed(em)) { 9640 *disk_bytenr = em->disk_bytenr; 9641 /* 9642 * Bail if the buffer isn't large enough to return the whole 9643 * compressed extent. 9644 */ 9645 if (em->disk_num_bytes > count) { 9646 ret = -ENOBUFS; 9647 goto out_em; 9648 } 9649 *disk_io_size = em->disk_num_bytes; 9650 count = em->disk_num_bytes; 9651 encoded->unencoded_len = em->ram_bytes; 9652 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9653 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9654 btrfs_extent_map_compression(em)); 9655 if (ret < 0) 9656 goto out_em; 9657 encoded->compression = ret; 9658 } else { 9659 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9660 if (encoded->len > count) 9661 encoded->len = count; 9662 /* 9663 * Don't read beyond what we locked. This also limits the page 9664 * allocations that we'll do. 9665 */ 9666 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9667 count = start + *disk_io_size - iocb->ki_pos; 9668 encoded->len = count; 9669 encoded->unencoded_len = count; 9670 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9671 } 9672 btrfs_free_extent_map(em); 9673 em = NULL; 9674 9675 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9676 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9677 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9678 unlocked = true; 9679 ret = iov_iter_zero(count, iter); 9680 if (ret != count) 9681 ret = -EFAULT; 9682 } else { 9683 ret = -EIOCBQUEUED; 9684 goto out_unlock_extent; 9685 } 9686 9687 out_em: 9688 btrfs_free_extent_map(em); 9689 out_unlock_extent: 9690 /* Leave inode and extent locked if we need to do a read. */ 9691 if (!unlocked && ret != -EIOCBQUEUED) 9692 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9693 out_unlock_inode: 9694 if (!unlocked && ret != -EIOCBQUEUED) 9695 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9696 return ret; 9697 } 9698 9699 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9700 const struct btrfs_ioctl_encoded_io_args *encoded) 9701 { 9702 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9703 struct btrfs_root *root = inode->root; 9704 struct btrfs_fs_info *fs_info = root->fs_info; 9705 struct extent_io_tree *io_tree = &inode->io_tree; 9706 struct extent_changeset *data_reserved = NULL; 9707 struct extent_state *cached_state = NULL; 9708 struct btrfs_ordered_extent *ordered; 9709 struct btrfs_file_extent file_extent; 9710 int compression; 9711 size_t orig_count; 9712 u64 start, end; 9713 u64 num_bytes, ram_bytes, disk_num_bytes; 9714 unsigned long nr_folios, i; 9715 struct folio **folios; 9716 struct btrfs_key ins; 9717 bool extent_reserved = false; 9718 struct extent_map *em; 9719 ssize_t ret; 9720 9721 switch (encoded->compression) { 9722 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9723 compression = BTRFS_COMPRESS_ZLIB; 9724 break; 9725 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9726 compression = BTRFS_COMPRESS_ZSTD; 9727 break; 9728 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9729 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9730 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9731 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9732 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9733 /* The sector size must match for LZO. */ 9734 if (encoded->compression - 9735 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9736 fs_info->sectorsize_bits) 9737 return -EINVAL; 9738 compression = BTRFS_COMPRESS_LZO; 9739 break; 9740 default: 9741 return -EINVAL; 9742 } 9743 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9744 return -EINVAL; 9745 9746 /* 9747 * Compressed extents should always have checksums, so error out if we 9748 * have a NOCOW file or inode was created while mounted with NODATASUM. 9749 */ 9750 if (inode->flags & BTRFS_INODE_NODATASUM) 9751 return -EINVAL; 9752 9753 orig_count = iov_iter_count(from); 9754 9755 /* The extent size must be sane. */ 9756 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9757 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9758 return -EINVAL; 9759 9760 /* 9761 * The compressed data must be smaller than the decompressed data. 9762 * 9763 * It's of course possible for data to compress to larger or the same 9764 * size, but the buffered I/O path falls back to no compression for such 9765 * data, and we don't want to break any assumptions by creating these 9766 * extents. 9767 * 9768 * Note that this is less strict than the current check we have that the 9769 * compressed data must be at least one sector smaller than the 9770 * decompressed data. We only want to enforce the weaker requirement 9771 * from old kernels that it is at least one byte smaller. 9772 */ 9773 if (orig_count >= encoded->unencoded_len) 9774 return -EINVAL; 9775 9776 /* The extent must start on a sector boundary. */ 9777 start = iocb->ki_pos; 9778 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9779 return -EINVAL; 9780 9781 /* 9782 * The extent must end on a sector boundary. However, we allow a write 9783 * which ends at or extends i_size to have an unaligned length; we round 9784 * up the extent size and set i_size to the unaligned end. 9785 */ 9786 if (start + encoded->len < inode->vfs_inode.i_size && 9787 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9788 return -EINVAL; 9789 9790 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9791 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9792 return -EINVAL; 9793 9794 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9795 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9796 end = start + num_bytes - 1; 9797 9798 /* 9799 * If the extent cannot be inline, the compressed data on disk must be 9800 * sector-aligned. For convenience, we extend it with zeroes if it 9801 * isn't. 9802 */ 9803 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9804 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9805 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9806 if (!folios) 9807 return -ENOMEM; 9808 for (i = 0; i < nr_folios; i++) { 9809 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9810 char *kaddr; 9811 9812 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9813 if (!folios[i]) { 9814 ret = -ENOMEM; 9815 goto out_folios; 9816 } 9817 kaddr = kmap_local_folio(folios[i], 0); 9818 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9819 kunmap_local(kaddr); 9820 ret = -EFAULT; 9821 goto out_folios; 9822 } 9823 if (bytes < PAGE_SIZE) 9824 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9825 kunmap_local(kaddr); 9826 } 9827 9828 for (;;) { 9829 struct btrfs_ordered_extent *ordered; 9830 9831 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9832 if (ret) 9833 goto out_folios; 9834 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9835 start >> PAGE_SHIFT, 9836 end >> PAGE_SHIFT); 9837 if (ret) 9838 goto out_folios; 9839 btrfs_lock_extent(io_tree, start, end, &cached_state); 9840 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9841 if (!ordered && 9842 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9843 break; 9844 if (ordered) 9845 btrfs_put_ordered_extent(ordered); 9846 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9847 cond_resched(); 9848 } 9849 9850 /* 9851 * We don't use the higher-level delalloc space functions because our 9852 * num_bytes and disk_num_bytes are different. 9853 */ 9854 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9855 if (ret) 9856 goto out_unlock; 9857 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9858 if (ret) 9859 goto out_free_data_space; 9860 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9861 false); 9862 if (ret) 9863 goto out_qgroup_free_data; 9864 9865 /* Try an inline extent first. */ 9866 if (encoded->unencoded_len == encoded->len && 9867 encoded->unencoded_offset == 0 && 9868 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9869 ret = __cow_file_range_inline(inode, encoded->len, 9870 orig_count, compression, folios[0], 9871 true); 9872 if (ret <= 0) { 9873 if (ret == 0) 9874 ret = orig_count; 9875 goto out_delalloc_release; 9876 } 9877 } 9878 9879 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9880 disk_num_bytes, 0, 0, &ins, 1, 1); 9881 if (ret) 9882 goto out_delalloc_release; 9883 extent_reserved = true; 9884 9885 file_extent.disk_bytenr = ins.objectid; 9886 file_extent.disk_num_bytes = ins.offset; 9887 file_extent.num_bytes = num_bytes; 9888 file_extent.ram_bytes = ram_bytes; 9889 file_extent.offset = encoded->unencoded_offset; 9890 file_extent.compression = compression; 9891 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9892 if (IS_ERR(em)) { 9893 ret = PTR_ERR(em); 9894 goto out_free_reserved; 9895 } 9896 btrfs_free_extent_map(em); 9897 9898 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9899 (1U << BTRFS_ORDERED_ENCODED) | 9900 (1U << BTRFS_ORDERED_COMPRESSED)); 9901 if (IS_ERR(ordered)) { 9902 btrfs_drop_extent_map_range(inode, start, end, false); 9903 ret = PTR_ERR(ordered); 9904 goto out_free_reserved; 9905 } 9906 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9907 9908 if (start + encoded->len > inode->vfs_inode.i_size) 9909 i_size_write(&inode->vfs_inode, start + encoded->len); 9910 9911 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9912 9913 btrfs_delalloc_release_extents(inode, num_bytes); 9914 9915 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9916 ret = orig_count; 9917 goto out; 9918 9919 out_free_reserved: 9920 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9921 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9922 out_delalloc_release: 9923 btrfs_delalloc_release_extents(inode, num_bytes); 9924 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9925 out_qgroup_free_data: 9926 if (ret < 0) 9927 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9928 out_free_data_space: 9929 /* 9930 * If btrfs_reserve_extent() succeeded, then we already decremented 9931 * bytes_may_use. 9932 */ 9933 if (!extent_reserved) 9934 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9935 out_unlock: 9936 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9937 out_folios: 9938 for (i = 0; i < nr_folios; i++) { 9939 if (folios[i]) 9940 folio_put(folios[i]); 9941 } 9942 kvfree(folios); 9943 out: 9944 if (ret >= 0) 9945 iocb->ki_pos += encoded->len; 9946 return ret; 9947 } 9948 9949 #ifdef CONFIG_SWAP 9950 /* 9951 * Add an entry indicating a block group or device which is pinned by a 9952 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9953 * negative errno on failure. 9954 */ 9955 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9956 bool is_block_group) 9957 { 9958 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9959 struct btrfs_swapfile_pin *sp, *entry; 9960 struct rb_node **p; 9961 struct rb_node *parent = NULL; 9962 9963 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9964 if (!sp) 9965 return -ENOMEM; 9966 sp->ptr = ptr; 9967 sp->inode = inode; 9968 sp->is_block_group = is_block_group; 9969 sp->bg_extent_count = 1; 9970 9971 spin_lock(&fs_info->swapfile_pins_lock); 9972 p = &fs_info->swapfile_pins.rb_node; 9973 while (*p) { 9974 parent = *p; 9975 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9976 if (sp->ptr < entry->ptr || 9977 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9978 p = &(*p)->rb_left; 9979 } else if (sp->ptr > entry->ptr || 9980 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9981 p = &(*p)->rb_right; 9982 } else { 9983 if (is_block_group) 9984 entry->bg_extent_count++; 9985 spin_unlock(&fs_info->swapfile_pins_lock); 9986 kfree(sp); 9987 return 1; 9988 } 9989 } 9990 rb_link_node(&sp->node, parent, p); 9991 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9992 spin_unlock(&fs_info->swapfile_pins_lock); 9993 return 0; 9994 } 9995 9996 /* Free all of the entries pinned by this swapfile. */ 9997 static void btrfs_free_swapfile_pins(struct inode *inode) 9998 { 9999 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10000 struct btrfs_swapfile_pin *sp; 10001 struct rb_node *node, *next; 10002 10003 spin_lock(&fs_info->swapfile_pins_lock); 10004 node = rb_first(&fs_info->swapfile_pins); 10005 while (node) { 10006 next = rb_next(node); 10007 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10008 if (sp->inode == inode) { 10009 rb_erase(&sp->node, &fs_info->swapfile_pins); 10010 if (sp->is_block_group) { 10011 btrfs_dec_block_group_swap_extents(sp->ptr, 10012 sp->bg_extent_count); 10013 btrfs_put_block_group(sp->ptr); 10014 } 10015 kfree(sp); 10016 } 10017 node = next; 10018 } 10019 spin_unlock(&fs_info->swapfile_pins_lock); 10020 } 10021 10022 struct btrfs_swap_info { 10023 u64 start; 10024 u64 block_start; 10025 u64 block_len; 10026 u64 lowest_ppage; 10027 u64 highest_ppage; 10028 unsigned long nr_pages; 10029 int nr_extents; 10030 }; 10031 10032 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10033 struct btrfs_swap_info *bsi) 10034 { 10035 unsigned long nr_pages; 10036 unsigned long max_pages; 10037 u64 first_ppage, first_ppage_reported, next_ppage; 10038 int ret; 10039 10040 /* 10041 * Our swapfile may have had its size extended after the swap header was 10042 * written. In that case activating the swapfile should not go beyond 10043 * the max size set in the swap header. 10044 */ 10045 if (bsi->nr_pages >= sis->max) 10046 return 0; 10047 10048 max_pages = sis->max - bsi->nr_pages; 10049 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10050 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10051 10052 if (first_ppage >= next_ppage) 10053 return 0; 10054 nr_pages = next_ppage - first_ppage; 10055 nr_pages = min(nr_pages, max_pages); 10056 10057 first_ppage_reported = first_ppage; 10058 if (bsi->start == 0) 10059 first_ppage_reported++; 10060 if (bsi->lowest_ppage > first_ppage_reported) 10061 bsi->lowest_ppage = first_ppage_reported; 10062 if (bsi->highest_ppage < (next_ppage - 1)) 10063 bsi->highest_ppage = next_ppage - 1; 10064 10065 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10066 if (ret < 0) 10067 return ret; 10068 bsi->nr_extents += ret; 10069 bsi->nr_pages += nr_pages; 10070 return 0; 10071 } 10072 10073 static void btrfs_swap_deactivate(struct file *file) 10074 { 10075 struct inode *inode = file_inode(file); 10076 10077 btrfs_free_swapfile_pins(inode); 10078 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10079 } 10080 10081 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10082 sector_t *span) 10083 { 10084 struct inode *inode = file_inode(file); 10085 struct btrfs_root *root = BTRFS_I(inode)->root; 10086 struct btrfs_fs_info *fs_info = root->fs_info; 10087 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10088 struct extent_state *cached_state = NULL; 10089 struct btrfs_chunk_map *map = NULL; 10090 struct btrfs_device *device = NULL; 10091 struct btrfs_swap_info bsi = { 10092 .lowest_ppage = (sector_t)-1ULL, 10093 }; 10094 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10095 struct btrfs_path *path = NULL; 10096 int ret = 0; 10097 u64 isize; 10098 u64 prev_extent_end = 0; 10099 10100 /* 10101 * Acquire the inode's mmap lock to prevent races with memory mapped 10102 * writes, as they could happen after we flush delalloc below and before 10103 * we lock the extent range further below. The inode was already locked 10104 * up in the call chain. 10105 */ 10106 btrfs_assert_inode_locked(BTRFS_I(inode)); 10107 down_write(&BTRFS_I(inode)->i_mmap_lock); 10108 10109 /* 10110 * If the swap file was just created, make sure delalloc is done. If the 10111 * file changes again after this, the user is doing something stupid and 10112 * we don't really care. 10113 */ 10114 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10115 if (ret) 10116 goto out_unlock_mmap; 10117 10118 /* 10119 * The inode is locked, so these flags won't change after we check them. 10120 */ 10121 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10122 btrfs_warn(fs_info, "swapfile must not be compressed"); 10123 ret = -EINVAL; 10124 goto out_unlock_mmap; 10125 } 10126 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10127 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10128 ret = -EINVAL; 10129 goto out_unlock_mmap; 10130 } 10131 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10132 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10133 ret = -EINVAL; 10134 goto out_unlock_mmap; 10135 } 10136 10137 path = btrfs_alloc_path(); 10138 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10139 if (!path || !backref_ctx) { 10140 ret = -ENOMEM; 10141 goto out_unlock_mmap; 10142 } 10143 10144 /* 10145 * Balance or device remove/replace/resize can move stuff around from 10146 * under us. The exclop protection makes sure they aren't running/won't 10147 * run concurrently while we are mapping the swap extents, and 10148 * fs_info->swapfile_pins prevents them from running while the swap 10149 * file is active and moving the extents. Note that this also prevents 10150 * a concurrent device add which isn't actually necessary, but it's not 10151 * really worth the trouble to allow it. 10152 */ 10153 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10154 btrfs_warn(fs_info, 10155 "cannot activate swapfile while exclusive operation is running"); 10156 ret = -EBUSY; 10157 goto out_unlock_mmap; 10158 } 10159 10160 /* 10161 * Prevent snapshot creation while we are activating the swap file. 10162 * We do not want to race with snapshot creation. If snapshot creation 10163 * already started before we bumped nr_swapfiles from 0 to 1 and 10164 * completes before the first write into the swap file after it is 10165 * activated, than that write would fallback to COW. 10166 */ 10167 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10168 btrfs_exclop_finish(fs_info); 10169 btrfs_warn(fs_info, 10170 "cannot activate swapfile because snapshot creation is in progress"); 10171 ret = -EINVAL; 10172 goto out_unlock_mmap; 10173 } 10174 /* 10175 * Snapshots can create extents which require COW even if NODATACOW is 10176 * set. We use this counter to prevent snapshots. We must increment it 10177 * before walking the extents because we don't want a concurrent 10178 * snapshot to run after we've already checked the extents. 10179 * 10180 * It is possible that subvolume is marked for deletion but still not 10181 * removed yet. To prevent this race, we check the root status before 10182 * activating the swapfile. 10183 */ 10184 spin_lock(&root->root_item_lock); 10185 if (btrfs_root_dead(root)) { 10186 spin_unlock(&root->root_item_lock); 10187 10188 btrfs_drew_write_unlock(&root->snapshot_lock); 10189 btrfs_exclop_finish(fs_info); 10190 btrfs_warn(fs_info, 10191 "cannot activate swapfile because subvolume %llu is being deleted", 10192 btrfs_root_id(root)); 10193 ret = -EPERM; 10194 goto out_unlock_mmap; 10195 } 10196 atomic_inc(&root->nr_swapfiles); 10197 spin_unlock(&root->root_item_lock); 10198 10199 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10200 10201 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10202 while (prev_extent_end < isize) { 10203 struct btrfs_key key; 10204 struct extent_buffer *leaf; 10205 struct btrfs_file_extent_item *ei; 10206 struct btrfs_block_group *bg; 10207 u64 logical_block_start; 10208 u64 physical_block_start; 10209 u64 extent_gen; 10210 u64 disk_bytenr; 10211 u64 len; 10212 10213 key.objectid = btrfs_ino(BTRFS_I(inode)); 10214 key.type = BTRFS_EXTENT_DATA_KEY; 10215 key.offset = prev_extent_end; 10216 10217 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10218 if (ret < 0) 10219 goto out; 10220 10221 /* 10222 * If key not found it means we have an implicit hole (NO_HOLES 10223 * is enabled). 10224 */ 10225 if (ret > 0) { 10226 btrfs_warn(fs_info, "swapfile must not have holes"); 10227 ret = -EINVAL; 10228 goto out; 10229 } 10230 10231 leaf = path->nodes[0]; 10232 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10233 10234 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10235 /* 10236 * It's unlikely we'll ever actually find ourselves 10237 * here, as a file small enough to fit inline won't be 10238 * big enough to store more than the swap header, but in 10239 * case something changes in the future, let's catch it 10240 * here rather than later. 10241 */ 10242 btrfs_warn(fs_info, "swapfile must not be inline"); 10243 ret = -EINVAL; 10244 goto out; 10245 } 10246 10247 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10248 btrfs_warn(fs_info, "swapfile must not be compressed"); 10249 ret = -EINVAL; 10250 goto out; 10251 } 10252 10253 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10254 if (disk_bytenr == 0) { 10255 btrfs_warn(fs_info, "swapfile must not have holes"); 10256 ret = -EINVAL; 10257 goto out; 10258 } 10259 10260 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10261 extent_gen = btrfs_file_extent_generation(leaf, ei); 10262 prev_extent_end = btrfs_file_extent_end(path); 10263 10264 if (prev_extent_end > isize) 10265 len = isize - key.offset; 10266 else 10267 len = btrfs_file_extent_num_bytes(leaf, ei); 10268 10269 backref_ctx->curr_leaf_bytenr = leaf->start; 10270 10271 /* 10272 * Don't need the path anymore, release to avoid deadlocks when 10273 * calling btrfs_is_data_extent_shared() because when joining a 10274 * transaction it can block waiting for the current one's commit 10275 * which in turn may be trying to lock the same leaf to flush 10276 * delayed items for example. 10277 */ 10278 btrfs_release_path(path); 10279 10280 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10281 extent_gen, backref_ctx); 10282 if (ret < 0) { 10283 goto out; 10284 } else if (ret > 0) { 10285 btrfs_warn(fs_info, 10286 "swapfile must not be copy-on-write"); 10287 ret = -EINVAL; 10288 goto out; 10289 } 10290 10291 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10292 if (IS_ERR(map)) { 10293 ret = PTR_ERR(map); 10294 goto out; 10295 } 10296 10297 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10298 btrfs_warn(fs_info, 10299 "swapfile must have single data profile"); 10300 ret = -EINVAL; 10301 goto out; 10302 } 10303 10304 if (device == NULL) { 10305 device = map->stripes[0].dev; 10306 ret = btrfs_add_swapfile_pin(inode, device, false); 10307 if (ret == 1) 10308 ret = 0; 10309 else if (ret) 10310 goto out; 10311 } else if (device != map->stripes[0].dev) { 10312 btrfs_warn(fs_info, "swapfile must be on one device"); 10313 ret = -EINVAL; 10314 goto out; 10315 } 10316 10317 physical_block_start = (map->stripes[0].physical + 10318 (logical_block_start - map->start)); 10319 btrfs_free_chunk_map(map); 10320 map = NULL; 10321 10322 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10323 if (!bg) { 10324 btrfs_warn(fs_info, 10325 "could not find block group containing swapfile"); 10326 ret = -EINVAL; 10327 goto out; 10328 } 10329 10330 if (!btrfs_inc_block_group_swap_extents(bg)) { 10331 btrfs_warn(fs_info, 10332 "block group for swapfile at %llu is read-only%s", 10333 bg->start, 10334 atomic_read(&fs_info->scrubs_running) ? 10335 " (scrub running)" : ""); 10336 btrfs_put_block_group(bg); 10337 ret = -EINVAL; 10338 goto out; 10339 } 10340 10341 ret = btrfs_add_swapfile_pin(inode, bg, true); 10342 if (ret) { 10343 btrfs_put_block_group(bg); 10344 if (ret == 1) 10345 ret = 0; 10346 else 10347 goto out; 10348 } 10349 10350 if (bsi.block_len && 10351 bsi.block_start + bsi.block_len == physical_block_start) { 10352 bsi.block_len += len; 10353 } else { 10354 if (bsi.block_len) { 10355 ret = btrfs_add_swap_extent(sis, &bsi); 10356 if (ret) 10357 goto out; 10358 } 10359 bsi.start = key.offset; 10360 bsi.block_start = physical_block_start; 10361 bsi.block_len = len; 10362 } 10363 10364 if (fatal_signal_pending(current)) { 10365 ret = -EINTR; 10366 goto out; 10367 } 10368 10369 cond_resched(); 10370 } 10371 10372 if (bsi.block_len) 10373 ret = btrfs_add_swap_extent(sis, &bsi); 10374 10375 out: 10376 if (!IS_ERR_OR_NULL(map)) 10377 btrfs_free_chunk_map(map); 10378 10379 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10380 10381 if (ret) 10382 btrfs_swap_deactivate(file); 10383 10384 btrfs_drew_write_unlock(&root->snapshot_lock); 10385 10386 btrfs_exclop_finish(fs_info); 10387 10388 out_unlock_mmap: 10389 up_write(&BTRFS_I(inode)->i_mmap_lock); 10390 btrfs_free_backref_share_ctx(backref_ctx); 10391 btrfs_free_path(path); 10392 if (ret) 10393 return ret; 10394 10395 if (device) 10396 sis->bdev = device->bdev; 10397 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10398 sis->max = bsi.nr_pages; 10399 sis->pages = bsi.nr_pages - 1; 10400 return bsi.nr_extents; 10401 } 10402 #else 10403 static void btrfs_swap_deactivate(struct file *file) 10404 { 10405 } 10406 10407 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10408 sector_t *span) 10409 { 10410 return -EOPNOTSUPP; 10411 } 10412 #endif 10413 10414 /* 10415 * Update the number of bytes used in the VFS' inode. When we replace extents in 10416 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10417 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10418 * always get a correct value. 10419 */ 10420 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10421 const u64 add_bytes, 10422 const u64 del_bytes) 10423 { 10424 if (add_bytes == del_bytes) 10425 return; 10426 10427 spin_lock(&inode->lock); 10428 if (del_bytes > 0) 10429 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10430 if (add_bytes > 0) 10431 inode_add_bytes(&inode->vfs_inode, add_bytes); 10432 spin_unlock(&inode->lock); 10433 } 10434 10435 /* 10436 * Verify that there are no ordered extents for a given file range. 10437 * 10438 * @inode: The target inode. 10439 * @start: Start offset of the file range, should be sector size aligned. 10440 * @end: End offset (inclusive) of the file range, its value +1 should be 10441 * sector size aligned. 10442 * 10443 * This should typically be used for cases where we locked an inode's VFS lock in 10444 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10445 * we have flushed all delalloc in the range, we have waited for all ordered 10446 * extents in the range to complete and finally we have locked the file range in 10447 * the inode's io_tree. 10448 */ 10449 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10450 { 10451 struct btrfs_root *root = inode->root; 10452 struct btrfs_ordered_extent *ordered; 10453 10454 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10455 return; 10456 10457 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10458 if (ordered) { 10459 btrfs_err(root->fs_info, 10460 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10461 start, end, btrfs_ino(inode), btrfs_root_id(root), 10462 ordered->file_offset, 10463 ordered->file_offset + ordered->num_bytes - 1); 10464 btrfs_put_ordered_extent(ordered); 10465 } 10466 10467 ASSERT(ordered == NULL); 10468 } 10469 10470 /* 10471 * Find the first inode with a minimum number. 10472 * 10473 * @root: The root to search for. 10474 * @min_ino: The minimum inode number. 10475 * 10476 * Find the first inode in the @root with a number >= @min_ino and return it. 10477 * Returns NULL if no such inode found. 10478 */ 10479 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10480 { 10481 struct btrfs_inode *inode; 10482 unsigned long from = min_ino; 10483 10484 xa_lock(&root->inodes); 10485 while (true) { 10486 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10487 if (!inode) 10488 break; 10489 if (igrab(&inode->vfs_inode)) 10490 break; 10491 10492 from = btrfs_ino(inode) + 1; 10493 cond_resched_lock(&root->inodes.xa_lock); 10494 } 10495 xa_unlock(&root->inodes); 10496 10497 return inode; 10498 } 10499 10500 static const struct inode_operations btrfs_dir_inode_operations = { 10501 .getattr = btrfs_getattr, 10502 .lookup = btrfs_lookup, 10503 .create = btrfs_create, 10504 .unlink = btrfs_unlink, 10505 .link = btrfs_link, 10506 .mkdir = btrfs_mkdir, 10507 .rmdir = btrfs_rmdir, 10508 .rename = btrfs_rename2, 10509 .symlink = btrfs_symlink, 10510 .setattr = btrfs_setattr, 10511 .mknod = btrfs_mknod, 10512 .listxattr = btrfs_listxattr, 10513 .permission = btrfs_permission, 10514 .get_inode_acl = btrfs_get_acl, 10515 .set_acl = btrfs_set_acl, 10516 .update_time = btrfs_update_time, 10517 .tmpfile = btrfs_tmpfile, 10518 .fileattr_get = btrfs_fileattr_get, 10519 .fileattr_set = btrfs_fileattr_set, 10520 }; 10521 10522 static const struct file_operations btrfs_dir_file_operations = { 10523 .llseek = btrfs_dir_llseek, 10524 .read = generic_read_dir, 10525 .iterate_shared = btrfs_real_readdir, 10526 .open = btrfs_opendir, 10527 .unlocked_ioctl = btrfs_ioctl, 10528 #ifdef CONFIG_COMPAT 10529 .compat_ioctl = btrfs_compat_ioctl, 10530 #endif 10531 .release = btrfs_release_file, 10532 .fsync = btrfs_sync_file, 10533 }; 10534 10535 /* 10536 * btrfs doesn't support the bmap operation because swapfiles 10537 * use bmap to make a mapping of extents in the file. They assume 10538 * these extents won't change over the life of the file and they 10539 * use the bmap result to do IO directly to the drive. 10540 * 10541 * the btrfs bmap call would return logical addresses that aren't 10542 * suitable for IO and they also will change frequently as COW 10543 * operations happen. So, swapfile + btrfs == corruption. 10544 * 10545 * For now we're avoiding this by dropping bmap. 10546 */ 10547 static const struct address_space_operations btrfs_aops = { 10548 .read_folio = btrfs_read_folio, 10549 .writepages = btrfs_writepages, 10550 .readahead = btrfs_readahead, 10551 .invalidate_folio = btrfs_invalidate_folio, 10552 .launder_folio = btrfs_launder_folio, 10553 .release_folio = btrfs_release_folio, 10554 .migrate_folio = btrfs_migrate_folio, 10555 .dirty_folio = filemap_dirty_folio, 10556 .error_remove_folio = generic_error_remove_folio, 10557 .swap_activate = btrfs_swap_activate, 10558 .swap_deactivate = btrfs_swap_deactivate, 10559 }; 10560 10561 static const struct inode_operations btrfs_file_inode_operations = { 10562 .getattr = btrfs_getattr, 10563 .setattr = btrfs_setattr, 10564 .listxattr = btrfs_listxattr, 10565 .permission = btrfs_permission, 10566 .fiemap = btrfs_fiemap, 10567 .get_inode_acl = btrfs_get_acl, 10568 .set_acl = btrfs_set_acl, 10569 .update_time = btrfs_update_time, 10570 .fileattr_get = btrfs_fileattr_get, 10571 .fileattr_set = btrfs_fileattr_set, 10572 }; 10573 static const struct inode_operations btrfs_special_inode_operations = { 10574 .getattr = btrfs_getattr, 10575 .setattr = btrfs_setattr, 10576 .permission = btrfs_permission, 10577 .listxattr = btrfs_listxattr, 10578 .get_inode_acl = btrfs_get_acl, 10579 .set_acl = btrfs_set_acl, 10580 .update_time = btrfs_update_time, 10581 }; 10582 static const struct inode_operations btrfs_symlink_inode_operations = { 10583 .get_link = page_get_link, 10584 .getattr = btrfs_getattr, 10585 .setattr = btrfs_setattr, 10586 .permission = btrfs_permission, 10587 .listxattr = btrfs_listxattr, 10588 .update_time = btrfs_update_time, 10589 }; 10590 10591 const struct dentry_operations btrfs_dentry_operations = { 10592 .d_delete = btrfs_dentry_delete, 10593 }; 10594