1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include <linux/fsverity.h> 36 #include "misc.h" 37 #include "ctree.h" 38 #include "disk-io.h" 39 #include "transaction.h" 40 #include "btrfs_inode.h" 41 #include "print-tree.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "volumes.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "free-space-cache.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "delalloc-space.h" 52 #include "block-group.h" 53 #include "space-info.h" 54 #include "zoned.h" 55 #include "subpage.h" 56 57 struct btrfs_iget_args { 58 u64 ino; 59 struct btrfs_root *root; 60 }; 61 62 struct btrfs_dio_data { 63 u64 reserve; 64 loff_t length; 65 ssize_t submitted; 66 struct extent_changeset *data_reserved; 67 }; 68 69 static const struct inode_operations btrfs_dir_inode_operations; 70 static const struct inode_operations btrfs_symlink_inode_operations; 71 static const struct inode_operations btrfs_special_inode_operations; 72 static const struct inode_operations btrfs_file_inode_operations; 73 static const struct address_space_operations btrfs_aops; 74 static const struct file_operations btrfs_dir_file_operations; 75 76 static struct kmem_cache *btrfs_inode_cachep; 77 struct kmem_cache *btrfs_trans_handle_cachep; 78 struct kmem_cache *btrfs_path_cachep; 79 struct kmem_cache *btrfs_free_space_cachep; 80 struct kmem_cache *btrfs_free_space_bitmap_cachep; 81 82 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 83 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 84 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 85 static noinline int cow_file_range(struct btrfs_inode *inode, 86 struct page *locked_page, 87 u64 start, u64 end, int *page_started, 88 unsigned long *nr_written, int unlock); 89 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 90 u64 len, u64 orig_start, u64 block_start, 91 u64 block_len, u64 orig_block_len, 92 u64 ram_bytes, int compress_type, 93 int type); 94 95 static void __endio_write_update_ordered(struct btrfs_inode *inode, 96 const u64 offset, const u64 bytes, 97 const bool uptodate); 98 99 /* 100 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 101 * 102 * ilock_flags can have the following bit set: 103 * 104 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 105 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 106 * return -EAGAIN 107 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 108 */ 109 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 110 { 111 if (ilock_flags & BTRFS_ILOCK_SHARED) { 112 if (ilock_flags & BTRFS_ILOCK_TRY) { 113 if (!inode_trylock_shared(inode)) 114 return -EAGAIN; 115 else 116 return 0; 117 } 118 inode_lock_shared(inode); 119 } else { 120 if (ilock_flags & BTRFS_ILOCK_TRY) { 121 if (!inode_trylock(inode)) 122 return -EAGAIN; 123 else 124 return 0; 125 } 126 inode_lock(inode); 127 } 128 if (ilock_flags & BTRFS_ILOCK_MMAP) 129 down_write(&BTRFS_I(inode)->i_mmap_lock); 130 return 0; 131 } 132 133 /* 134 * btrfs_inode_unlock - unock inode i_rwsem 135 * 136 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 137 * to decide whether the lock acquired is shared or exclusive. 138 */ 139 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 140 { 141 if (ilock_flags & BTRFS_ILOCK_MMAP) 142 up_write(&BTRFS_I(inode)->i_mmap_lock); 143 if (ilock_flags & BTRFS_ILOCK_SHARED) 144 inode_unlock_shared(inode); 145 else 146 inode_unlock(inode); 147 } 148 149 /* 150 * Cleanup all submitted ordered extents in specified range to handle errors 151 * from the btrfs_run_delalloc_range() callback. 152 * 153 * NOTE: caller must ensure that when an error happens, it can not call 154 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 155 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 156 * to be released, which we want to happen only when finishing the ordered 157 * extent (btrfs_finish_ordered_io()). 158 */ 159 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 160 struct page *locked_page, 161 u64 offset, u64 bytes) 162 { 163 unsigned long index = offset >> PAGE_SHIFT; 164 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 165 u64 page_start = page_offset(locked_page); 166 u64 page_end = page_start + PAGE_SIZE - 1; 167 168 struct page *page; 169 170 while (index <= end_index) { 171 /* 172 * For locked page, we will call end_extent_writepage() on it 173 * in run_delalloc_range() for the error handling. That 174 * end_extent_writepage() function will call 175 * btrfs_mark_ordered_io_finished() to clear page Ordered and 176 * run the ordered extent accounting. 177 * 178 * Here we can't just clear the Ordered bit, or 179 * btrfs_mark_ordered_io_finished() would skip the accounting 180 * for the page range, and the ordered extent will never finish. 181 */ 182 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) { 183 index++; 184 continue; 185 } 186 page = find_get_page(inode->vfs_inode.i_mapping, index); 187 index++; 188 if (!page) 189 continue; 190 191 /* 192 * Here we just clear all Ordered bits for every page in the 193 * range, then __endio_write_update_ordered() will handle 194 * the ordered extent accounting for the range. 195 */ 196 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 197 offset, bytes); 198 put_page(page); 199 } 200 201 /* The locked page covers the full range, nothing needs to be done */ 202 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE) 203 return; 204 /* 205 * In case this page belongs to the delalloc range being instantiated 206 * then skip it, since the first page of a range is going to be 207 * properly cleaned up by the caller of run_delalloc_range 208 */ 209 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 210 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 211 offset = page_offset(locked_page) + PAGE_SIZE; 212 } 213 214 return __endio_write_update_ordered(inode, offset, bytes, false); 215 } 216 217 static int btrfs_dirty_inode(struct inode *inode); 218 219 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 220 struct inode *inode, struct inode *dir, 221 const struct qstr *qstr) 222 { 223 int err; 224 225 err = btrfs_init_acl(trans, inode, dir); 226 if (!err) 227 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 228 return err; 229 } 230 231 /* 232 * this does all the hard work for inserting an inline extent into 233 * the btree. The caller should have done a btrfs_drop_extents so that 234 * no overlapping inline items exist in the btree 235 */ 236 static int insert_inline_extent(struct btrfs_trans_handle *trans, 237 struct btrfs_path *path, bool extent_inserted, 238 struct btrfs_root *root, struct inode *inode, 239 u64 start, size_t size, size_t compressed_size, 240 int compress_type, 241 struct page **compressed_pages) 242 { 243 struct extent_buffer *leaf; 244 struct page *page = NULL; 245 char *kaddr; 246 unsigned long ptr; 247 struct btrfs_file_extent_item *ei; 248 int ret; 249 size_t cur_size = size; 250 unsigned long offset; 251 252 ASSERT((compressed_size > 0 && compressed_pages) || 253 (compressed_size == 0 && !compressed_pages)); 254 255 if (compressed_size && compressed_pages) 256 cur_size = compressed_size; 257 258 if (!extent_inserted) { 259 struct btrfs_key key; 260 size_t datasize; 261 262 key.objectid = btrfs_ino(BTRFS_I(inode)); 263 key.offset = start; 264 key.type = BTRFS_EXTENT_DATA_KEY; 265 266 datasize = btrfs_file_extent_calc_inline_size(cur_size); 267 ret = btrfs_insert_empty_item(trans, root, path, &key, 268 datasize); 269 if (ret) 270 goto fail; 271 } 272 leaf = path->nodes[0]; 273 ei = btrfs_item_ptr(leaf, path->slots[0], 274 struct btrfs_file_extent_item); 275 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 276 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 277 btrfs_set_file_extent_encryption(leaf, ei, 0); 278 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 279 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 280 ptr = btrfs_file_extent_inline_start(ei); 281 282 if (compress_type != BTRFS_COMPRESS_NONE) { 283 struct page *cpage; 284 int i = 0; 285 while (compressed_size > 0) { 286 cpage = compressed_pages[i]; 287 cur_size = min_t(unsigned long, compressed_size, 288 PAGE_SIZE); 289 290 kaddr = kmap_atomic(cpage); 291 write_extent_buffer(leaf, kaddr, ptr, cur_size); 292 kunmap_atomic(kaddr); 293 294 i++; 295 ptr += cur_size; 296 compressed_size -= cur_size; 297 } 298 btrfs_set_file_extent_compression(leaf, ei, 299 compress_type); 300 } else { 301 page = find_get_page(inode->i_mapping, 302 start >> PAGE_SHIFT); 303 btrfs_set_file_extent_compression(leaf, ei, 0); 304 kaddr = kmap_atomic(page); 305 offset = offset_in_page(start); 306 write_extent_buffer(leaf, kaddr + offset, ptr, size); 307 kunmap_atomic(kaddr); 308 put_page(page); 309 } 310 btrfs_mark_buffer_dirty(leaf); 311 btrfs_release_path(path); 312 313 /* 314 * We align size to sectorsize for inline extents just for simplicity 315 * sake. 316 */ 317 size = ALIGN(size, root->fs_info->sectorsize); 318 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 319 if (ret) 320 goto fail; 321 322 /* 323 * we're an inline extent, so nobody can 324 * extend the file past i_size without locking 325 * a page we already have locked. 326 * 327 * We must do any isize and inode updates 328 * before we unlock the pages. Otherwise we 329 * could end up racing with unlink. 330 */ 331 BTRFS_I(inode)->disk_i_size = inode->i_size; 332 fail: 333 return ret; 334 } 335 336 337 /* 338 * conditionally insert an inline extent into the file. This 339 * does the checks required to make sure the data is small enough 340 * to fit as an inline extent. 341 */ 342 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 343 u64 end, size_t compressed_size, 344 int compress_type, 345 struct page **compressed_pages) 346 { 347 struct btrfs_drop_extents_args drop_args = { 0 }; 348 struct btrfs_root *root = inode->root; 349 struct btrfs_fs_info *fs_info = root->fs_info; 350 struct btrfs_trans_handle *trans; 351 u64 isize = i_size_read(&inode->vfs_inode); 352 u64 actual_end = min(end + 1, isize); 353 u64 inline_len = actual_end - start; 354 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 355 u64 data_len = inline_len; 356 int ret; 357 struct btrfs_path *path; 358 359 if (compressed_size) 360 data_len = compressed_size; 361 362 if (start > 0 || 363 actual_end > fs_info->sectorsize || 364 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 365 (!compressed_size && 366 (actual_end & (fs_info->sectorsize - 1)) == 0) || 367 end + 1 < isize || 368 data_len > fs_info->max_inline) { 369 return 1; 370 } 371 372 path = btrfs_alloc_path(); 373 if (!path) 374 return -ENOMEM; 375 376 trans = btrfs_join_transaction(root); 377 if (IS_ERR(trans)) { 378 btrfs_free_path(path); 379 return PTR_ERR(trans); 380 } 381 trans->block_rsv = &inode->block_rsv; 382 383 drop_args.path = path; 384 drop_args.start = start; 385 drop_args.end = aligned_end; 386 drop_args.drop_cache = true; 387 drop_args.replace_extent = true; 388 389 if (compressed_size && compressed_pages) 390 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 391 compressed_size); 392 else 393 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 394 inline_len); 395 396 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 397 if (ret) { 398 btrfs_abort_transaction(trans, ret); 399 goto out; 400 } 401 402 if (isize > actual_end) 403 inline_len = min_t(u64, isize, actual_end); 404 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 405 root, &inode->vfs_inode, start, 406 inline_len, compressed_size, 407 compress_type, compressed_pages); 408 if (ret && ret != -ENOSPC) { 409 btrfs_abort_transaction(trans, ret); 410 goto out; 411 } else if (ret == -ENOSPC) { 412 ret = 1; 413 goto out; 414 } 415 416 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 417 ret = btrfs_update_inode(trans, root, inode); 418 if (ret && ret != -ENOSPC) { 419 btrfs_abort_transaction(trans, ret); 420 goto out; 421 } else if (ret == -ENOSPC) { 422 ret = 1; 423 goto out; 424 } 425 426 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 427 out: 428 /* 429 * Don't forget to free the reserved space, as for inlined extent 430 * it won't count as data extent, free them directly here. 431 * And at reserve time, it's always aligned to page size, so 432 * just free one page here. 433 */ 434 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 435 btrfs_free_path(path); 436 btrfs_end_transaction(trans); 437 return ret; 438 } 439 440 struct async_extent { 441 u64 start; 442 u64 ram_size; 443 u64 compressed_size; 444 struct page **pages; 445 unsigned long nr_pages; 446 int compress_type; 447 struct list_head list; 448 }; 449 450 struct async_chunk { 451 struct inode *inode; 452 struct page *locked_page; 453 u64 start; 454 u64 end; 455 unsigned int write_flags; 456 struct list_head extents; 457 struct cgroup_subsys_state *blkcg_css; 458 struct btrfs_work work; 459 atomic_t *pending; 460 }; 461 462 struct async_cow { 463 /* Number of chunks in flight; must be first in the structure */ 464 atomic_t num_chunks; 465 struct async_chunk chunks[]; 466 }; 467 468 static noinline int add_async_extent(struct async_chunk *cow, 469 u64 start, u64 ram_size, 470 u64 compressed_size, 471 struct page **pages, 472 unsigned long nr_pages, 473 int compress_type) 474 { 475 struct async_extent *async_extent; 476 477 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 478 BUG_ON(!async_extent); /* -ENOMEM */ 479 async_extent->start = start; 480 async_extent->ram_size = ram_size; 481 async_extent->compressed_size = compressed_size; 482 async_extent->pages = pages; 483 async_extent->nr_pages = nr_pages; 484 async_extent->compress_type = compress_type; 485 list_add_tail(&async_extent->list, &cow->extents); 486 return 0; 487 } 488 489 /* 490 * Check if the inode has flags compatible with compression 491 */ 492 static inline bool inode_can_compress(struct btrfs_inode *inode) 493 { 494 /* Subpage doesn't support compression yet */ 495 if (inode->root->fs_info->sectorsize < PAGE_SIZE) 496 return false; 497 if (inode->flags & BTRFS_INODE_NODATACOW || 498 inode->flags & BTRFS_INODE_NODATASUM) 499 return false; 500 return true; 501 } 502 503 /* 504 * Check if the inode needs to be submitted to compression, based on mount 505 * options, defragmentation, properties or heuristics. 506 */ 507 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 508 u64 end) 509 { 510 struct btrfs_fs_info *fs_info = inode->root->fs_info; 511 512 if (!inode_can_compress(inode)) { 513 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 514 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 515 btrfs_ino(inode)); 516 return 0; 517 } 518 /* force compress */ 519 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 520 return 1; 521 /* defrag ioctl */ 522 if (inode->defrag_compress) 523 return 1; 524 /* bad compression ratios */ 525 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 526 return 0; 527 if (btrfs_test_opt(fs_info, COMPRESS) || 528 inode->flags & BTRFS_INODE_COMPRESS || 529 inode->prop_compress) 530 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 531 return 0; 532 } 533 534 static inline void inode_should_defrag(struct btrfs_inode *inode, 535 u64 start, u64 end, u64 num_bytes, u64 small_write) 536 { 537 /* If this is a small write inside eof, kick off a defrag */ 538 if (num_bytes < small_write && 539 (start > 0 || end + 1 < inode->disk_i_size)) 540 btrfs_add_inode_defrag(NULL, inode); 541 } 542 543 /* 544 * we create compressed extents in two phases. The first 545 * phase compresses a range of pages that have already been 546 * locked (both pages and state bits are locked). 547 * 548 * This is done inside an ordered work queue, and the compression 549 * is spread across many cpus. The actual IO submission is step 550 * two, and the ordered work queue takes care of making sure that 551 * happens in the same order things were put onto the queue by 552 * writepages and friends. 553 * 554 * If this code finds it can't get good compression, it puts an 555 * entry onto the work queue to write the uncompressed bytes. This 556 * makes sure that both compressed inodes and uncompressed inodes 557 * are written in the same order that the flusher thread sent them 558 * down. 559 */ 560 static noinline int compress_file_range(struct async_chunk *async_chunk) 561 { 562 struct inode *inode = async_chunk->inode; 563 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 564 u64 blocksize = fs_info->sectorsize; 565 u64 start = async_chunk->start; 566 u64 end = async_chunk->end; 567 u64 actual_end; 568 u64 i_size; 569 int ret = 0; 570 struct page **pages = NULL; 571 unsigned long nr_pages; 572 unsigned long total_compressed = 0; 573 unsigned long total_in = 0; 574 int i; 575 int will_compress; 576 int compress_type = fs_info->compress_type; 577 int compressed_extents = 0; 578 int redirty = 0; 579 580 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 581 SZ_16K); 582 583 /* 584 * We need to save i_size before now because it could change in between 585 * us evaluating the size and assigning it. This is because we lock and 586 * unlock the page in truncate and fallocate, and then modify the i_size 587 * later on. 588 * 589 * The barriers are to emulate READ_ONCE, remove that once i_size_read 590 * does that for us. 591 */ 592 barrier(); 593 i_size = i_size_read(inode); 594 barrier(); 595 actual_end = min_t(u64, i_size, end + 1); 596 again: 597 will_compress = 0; 598 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 599 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 600 nr_pages = min_t(unsigned long, nr_pages, 601 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 602 603 /* 604 * we don't want to send crud past the end of i_size through 605 * compression, that's just a waste of CPU time. So, if the 606 * end of the file is before the start of our current 607 * requested range of bytes, we bail out to the uncompressed 608 * cleanup code that can deal with all of this. 609 * 610 * It isn't really the fastest way to fix things, but this is a 611 * very uncommon corner. 612 */ 613 if (actual_end <= start) 614 goto cleanup_and_bail_uncompressed; 615 616 total_compressed = actual_end - start; 617 618 /* 619 * skip compression for a small file range(<=blocksize) that 620 * isn't an inline extent, since it doesn't save disk space at all. 621 */ 622 if (total_compressed <= blocksize && 623 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 624 goto cleanup_and_bail_uncompressed; 625 626 total_compressed = min_t(unsigned long, total_compressed, 627 BTRFS_MAX_UNCOMPRESSED); 628 total_in = 0; 629 ret = 0; 630 631 /* 632 * we do compression for mount -o compress and when the 633 * inode has not been flagged as nocompress. This flag can 634 * change at any time if we discover bad compression ratios. 635 */ 636 if (inode_need_compress(BTRFS_I(inode), start, end)) { 637 WARN_ON(pages); 638 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 639 if (!pages) { 640 /* just bail out to the uncompressed code */ 641 nr_pages = 0; 642 goto cont; 643 } 644 645 if (BTRFS_I(inode)->defrag_compress) 646 compress_type = BTRFS_I(inode)->defrag_compress; 647 else if (BTRFS_I(inode)->prop_compress) 648 compress_type = BTRFS_I(inode)->prop_compress; 649 650 /* 651 * we need to call clear_page_dirty_for_io on each 652 * page in the range. Otherwise applications with the file 653 * mmap'd can wander in and change the page contents while 654 * we are compressing them. 655 * 656 * If the compression fails for any reason, we set the pages 657 * dirty again later on. 658 * 659 * Note that the remaining part is redirtied, the start pointer 660 * has moved, the end is the original one. 661 */ 662 if (!redirty) { 663 extent_range_clear_dirty_for_io(inode, start, end); 664 redirty = 1; 665 } 666 667 /* Compression level is applied here and only here */ 668 ret = btrfs_compress_pages( 669 compress_type | (fs_info->compress_level << 4), 670 inode->i_mapping, start, 671 pages, 672 &nr_pages, 673 &total_in, 674 &total_compressed); 675 676 if (!ret) { 677 unsigned long offset = offset_in_page(total_compressed); 678 struct page *page = pages[nr_pages - 1]; 679 680 /* zero the tail end of the last page, we might be 681 * sending it down to disk 682 */ 683 if (offset) 684 memzero_page(page, offset, PAGE_SIZE - offset); 685 will_compress = 1; 686 } 687 } 688 cont: 689 /* 690 * Check cow_file_range() for why we don't even try to create inline 691 * extent for subpage case. 692 */ 693 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 694 /* lets try to make an inline extent */ 695 if (ret || total_in < actual_end) { 696 /* we didn't compress the entire range, try 697 * to make an uncompressed inline extent. 698 */ 699 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 700 0, BTRFS_COMPRESS_NONE, 701 NULL); 702 } else { 703 /* try making a compressed inline extent */ 704 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 705 total_compressed, 706 compress_type, pages); 707 } 708 if (ret <= 0) { 709 unsigned long clear_flags = EXTENT_DELALLOC | 710 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 711 EXTENT_DO_ACCOUNTING; 712 unsigned long page_error_op; 713 714 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 715 716 /* 717 * inline extent creation worked or returned error, 718 * we don't need to create any more async work items. 719 * Unlock and free up our temp pages. 720 * 721 * We use DO_ACCOUNTING here because we need the 722 * delalloc_release_metadata to be done _after_ we drop 723 * our outstanding extent for clearing delalloc for this 724 * range. 725 */ 726 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 727 NULL, 728 clear_flags, 729 PAGE_UNLOCK | 730 PAGE_START_WRITEBACK | 731 page_error_op | 732 PAGE_END_WRITEBACK); 733 734 /* 735 * Ensure we only free the compressed pages if we have 736 * them allocated, as we can still reach here with 737 * inode_need_compress() == false. 738 */ 739 if (pages) { 740 for (i = 0; i < nr_pages; i++) { 741 WARN_ON(pages[i]->mapping); 742 put_page(pages[i]); 743 } 744 kfree(pages); 745 } 746 return 0; 747 } 748 } 749 750 if (will_compress) { 751 /* 752 * we aren't doing an inline extent round the compressed size 753 * up to a block size boundary so the allocator does sane 754 * things 755 */ 756 total_compressed = ALIGN(total_compressed, blocksize); 757 758 /* 759 * one last check to make sure the compression is really a 760 * win, compare the page count read with the blocks on disk, 761 * compression must free at least one sector size 762 */ 763 total_in = ALIGN(total_in, PAGE_SIZE); 764 if (total_compressed + blocksize <= total_in) { 765 compressed_extents++; 766 767 /* 768 * The async work queues will take care of doing actual 769 * allocation on disk for these compressed pages, and 770 * will submit them to the elevator. 771 */ 772 add_async_extent(async_chunk, start, total_in, 773 total_compressed, pages, nr_pages, 774 compress_type); 775 776 if (start + total_in < end) { 777 start += total_in; 778 pages = NULL; 779 cond_resched(); 780 goto again; 781 } 782 return compressed_extents; 783 } 784 } 785 if (pages) { 786 /* 787 * the compression code ran but failed to make things smaller, 788 * free any pages it allocated and our page pointer array 789 */ 790 for (i = 0; i < nr_pages; i++) { 791 WARN_ON(pages[i]->mapping); 792 put_page(pages[i]); 793 } 794 kfree(pages); 795 pages = NULL; 796 total_compressed = 0; 797 nr_pages = 0; 798 799 /* flag the file so we don't compress in the future */ 800 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 801 !(BTRFS_I(inode)->prop_compress)) { 802 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 803 } 804 } 805 cleanup_and_bail_uncompressed: 806 /* 807 * No compression, but we still need to write the pages in the file 808 * we've been given so far. redirty the locked page if it corresponds 809 * to our extent and set things up for the async work queue to run 810 * cow_file_range to do the normal delalloc dance. 811 */ 812 if (async_chunk->locked_page && 813 (page_offset(async_chunk->locked_page) >= start && 814 page_offset(async_chunk->locked_page)) <= end) { 815 __set_page_dirty_nobuffers(async_chunk->locked_page); 816 /* unlocked later on in the async handlers */ 817 } 818 819 if (redirty) 820 extent_range_redirty_for_io(inode, start, end); 821 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 822 BTRFS_COMPRESS_NONE); 823 compressed_extents++; 824 825 return compressed_extents; 826 } 827 828 static void free_async_extent_pages(struct async_extent *async_extent) 829 { 830 int i; 831 832 if (!async_extent->pages) 833 return; 834 835 for (i = 0; i < async_extent->nr_pages; i++) { 836 WARN_ON(async_extent->pages[i]->mapping); 837 put_page(async_extent->pages[i]); 838 } 839 kfree(async_extent->pages); 840 async_extent->nr_pages = 0; 841 async_extent->pages = NULL; 842 } 843 844 /* 845 * phase two of compressed writeback. This is the ordered portion 846 * of the code, which only gets called in the order the work was 847 * queued. We walk all the async extents created by compress_file_range 848 * and send them down to the disk. 849 */ 850 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 851 { 852 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 853 struct btrfs_fs_info *fs_info = inode->root->fs_info; 854 struct async_extent *async_extent; 855 u64 alloc_hint = 0; 856 struct btrfs_key ins; 857 struct extent_map *em; 858 struct btrfs_root *root = inode->root; 859 struct extent_io_tree *io_tree = &inode->io_tree; 860 int ret = 0; 861 862 again: 863 while (!list_empty(&async_chunk->extents)) { 864 async_extent = list_entry(async_chunk->extents.next, 865 struct async_extent, list); 866 list_del(&async_extent->list); 867 868 retry: 869 lock_extent(io_tree, async_extent->start, 870 async_extent->start + async_extent->ram_size - 1); 871 /* did the compression code fall back to uncompressed IO? */ 872 if (!async_extent->pages) { 873 int page_started = 0; 874 unsigned long nr_written = 0; 875 876 /* allocate blocks */ 877 ret = cow_file_range(inode, async_chunk->locked_page, 878 async_extent->start, 879 async_extent->start + 880 async_extent->ram_size - 1, 881 &page_started, &nr_written, 0); 882 883 /* JDM XXX */ 884 885 /* 886 * if page_started, cow_file_range inserted an 887 * inline extent and took care of all the unlocking 888 * and IO for us. Otherwise, we need to submit 889 * all those pages down to the drive. 890 */ 891 if (!page_started && !ret) 892 extent_write_locked_range(&inode->vfs_inode, 893 async_extent->start, 894 async_extent->start + 895 async_extent->ram_size - 1, 896 WB_SYNC_ALL); 897 else if (ret && async_chunk->locked_page) 898 unlock_page(async_chunk->locked_page); 899 kfree(async_extent); 900 cond_resched(); 901 continue; 902 } 903 904 ret = btrfs_reserve_extent(root, async_extent->ram_size, 905 async_extent->compressed_size, 906 async_extent->compressed_size, 907 0, alloc_hint, &ins, 1, 1); 908 if (ret) { 909 free_async_extent_pages(async_extent); 910 911 if (ret == -ENOSPC) { 912 unlock_extent(io_tree, async_extent->start, 913 async_extent->start + 914 async_extent->ram_size - 1); 915 916 /* 917 * we need to redirty the pages if we decide to 918 * fallback to uncompressed IO, otherwise we 919 * will not submit these pages down to lower 920 * layers. 921 */ 922 extent_range_redirty_for_io(&inode->vfs_inode, 923 async_extent->start, 924 async_extent->start + 925 async_extent->ram_size - 1); 926 927 goto retry; 928 } 929 goto out_free; 930 } 931 /* 932 * here we're doing allocation and writeback of the 933 * compressed pages 934 */ 935 em = create_io_em(inode, async_extent->start, 936 async_extent->ram_size, /* len */ 937 async_extent->start, /* orig_start */ 938 ins.objectid, /* block_start */ 939 ins.offset, /* block_len */ 940 ins.offset, /* orig_block_len */ 941 async_extent->ram_size, /* ram_bytes */ 942 async_extent->compress_type, 943 BTRFS_ORDERED_COMPRESSED); 944 if (IS_ERR(em)) 945 /* ret value is not necessary due to void function */ 946 goto out_free_reserve; 947 free_extent_map(em); 948 949 ret = btrfs_add_ordered_extent_compress(inode, 950 async_extent->start, 951 ins.objectid, 952 async_extent->ram_size, 953 ins.offset, 954 async_extent->compress_type); 955 if (ret) { 956 btrfs_drop_extent_cache(inode, async_extent->start, 957 async_extent->start + 958 async_extent->ram_size - 1, 0); 959 goto out_free_reserve; 960 } 961 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 962 963 /* 964 * clear dirty, set writeback and unlock the pages. 965 */ 966 extent_clear_unlock_delalloc(inode, async_extent->start, 967 async_extent->start + 968 async_extent->ram_size - 1, 969 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 970 PAGE_UNLOCK | PAGE_START_WRITEBACK); 971 if (btrfs_submit_compressed_write(inode, async_extent->start, 972 async_extent->ram_size, 973 ins.objectid, 974 ins.offset, async_extent->pages, 975 async_extent->nr_pages, 976 async_chunk->write_flags, 977 async_chunk->blkcg_css)) { 978 struct page *p = async_extent->pages[0]; 979 const u64 start = async_extent->start; 980 const u64 end = start + async_extent->ram_size - 1; 981 982 p->mapping = inode->vfs_inode.i_mapping; 983 btrfs_writepage_endio_finish_ordered(inode, p, start, 984 end, false); 985 986 p->mapping = NULL; 987 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 988 PAGE_END_WRITEBACK | 989 PAGE_SET_ERROR); 990 free_async_extent_pages(async_extent); 991 } 992 alloc_hint = ins.objectid + ins.offset; 993 kfree(async_extent); 994 cond_resched(); 995 } 996 return; 997 out_free_reserve: 998 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 999 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1000 out_free: 1001 extent_clear_unlock_delalloc(inode, async_extent->start, 1002 async_extent->start + 1003 async_extent->ram_size - 1, 1004 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1005 EXTENT_DELALLOC_NEW | 1006 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1007 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1008 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1009 free_async_extent_pages(async_extent); 1010 kfree(async_extent); 1011 goto again; 1012 } 1013 1014 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1015 u64 num_bytes) 1016 { 1017 struct extent_map_tree *em_tree = &inode->extent_tree; 1018 struct extent_map *em; 1019 u64 alloc_hint = 0; 1020 1021 read_lock(&em_tree->lock); 1022 em = search_extent_mapping(em_tree, start, num_bytes); 1023 if (em) { 1024 /* 1025 * if block start isn't an actual block number then find the 1026 * first block in this inode and use that as a hint. If that 1027 * block is also bogus then just don't worry about it. 1028 */ 1029 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1030 free_extent_map(em); 1031 em = search_extent_mapping(em_tree, 0, 0); 1032 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1033 alloc_hint = em->block_start; 1034 if (em) 1035 free_extent_map(em); 1036 } else { 1037 alloc_hint = em->block_start; 1038 free_extent_map(em); 1039 } 1040 } 1041 read_unlock(&em_tree->lock); 1042 1043 return alloc_hint; 1044 } 1045 1046 /* 1047 * when extent_io.c finds a delayed allocation range in the file, 1048 * the call backs end up in this code. The basic idea is to 1049 * allocate extents on disk for the range, and create ordered data structs 1050 * in ram to track those extents. 1051 * 1052 * locked_page is the page that writepage had locked already. We use 1053 * it to make sure we don't do extra locks or unlocks. 1054 * 1055 * *page_started is set to one if we unlock locked_page and do everything 1056 * required to start IO on it. It may be clean and already done with 1057 * IO when we return. 1058 */ 1059 static noinline int cow_file_range(struct btrfs_inode *inode, 1060 struct page *locked_page, 1061 u64 start, u64 end, int *page_started, 1062 unsigned long *nr_written, int unlock) 1063 { 1064 struct btrfs_root *root = inode->root; 1065 struct btrfs_fs_info *fs_info = root->fs_info; 1066 u64 alloc_hint = 0; 1067 u64 num_bytes; 1068 unsigned long ram_size; 1069 u64 cur_alloc_size = 0; 1070 u64 min_alloc_size; 1071 u64 blocksize = fs_info->sectorsize; 1072 struct btrfs_key ins; 1073 struct extent_map *em; 1074 unsigned clear_bits; 1075 unsigned long page_ops; 1076 bool extent_reserved = false; 1077 int ret = 0; 1078 1079 if (btrfs_is_free_space_inode(inode)) { 1080 WARN_ON_ONCE(1); 1081 ret = -EINVAL; 1082 goto out_unlock; 1083 } 1084 1085 num_bytes = ALIGN(end - start + 1, blocksize); 1086 num_bytes = max(blocksize, num_bytes); 1087 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1088 1089 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1090 1091 /* 1092 * Due to the page size limit, for subpage we can only trigger the 1093 * writeback for the dirty sectors of page, that means data writeback 1094 * is doing more writeback than what we want. 1095 * 1096 * This is especially unexpected for some call sites like fallocate, 1097 * where we only increase i_size after everything is done. 1098 * This means we can trigger inline extent even if we didn't want to. 1099 * So here we skip inline extent creation completely. 1100 */ 1101 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1102 /* lets try to make an inline extent */ 1103 ret = cow_file_range_inline(inode, start, end, 0, 1104 BTRFS_COMPRESS_NONE, NULL); 1105 if (ret == 0) { 1106 /* 1107 * We use DO_ACCOUNTING here because we need the 1108 * delalloc_release_metadata to be run _after_ we drop 1109 * our outstanding extent for clearing delalloc for this 1110 * range. 1111 */ 1112 extent_clear_unlock_delalloc(inode, start, end, 1113 locked_page, 1114 EXTENT_LOCKED | EXTENT_DELALLOC | 1115 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1116 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1117 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1118 *nr_written = *nr_written + 1119 (end - start + PAGE_SIZE) / PAGE_SIZE; 1120 *page_started = 1; 1121 /* 1122 * locked_page is locked by the caller of 1123 * writepage_delalloc(), not locked by 1124 * __process_pages_contig(). 1125 * 1126 * We can't let __process_pages_contig() to unlock it, 1127 * as it doesn't have any subpage::writers recorded. 1128 * 1129 * Here we manually unlock the page, since the caller 1130 * can't use page_started to determine if it's an 1131 * inline extent or a compressed extent. 1132 */ 1133 unlock_page(locked_page); 1134 goto out; 1135 } else if (ret < 0) { 1136 goto out_unlock; 1137 } 1138 } 1139 1140 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1141 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1142 1143 /* 1144 * Relocation relies on the relocated extents to have exactly the same 1145 * size as the original extents. Normally writeback for relocation data 1146 * extents follows a NOCOW path because relocation preallocates the 1147 * extents. However, due to an operation such as scrub turning a block 1148 * group to RO mode, it may fallback to COW mode, so we must make sure 1149 * an extent allocated during COW has exactly the requested size and can 1150 * not be split into smaller extents, otherwise relocation breaks and 1151 * fails during the stage where it updates the bytenr of file extent 1152 * items. 1153 */ 1154 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1155 min_alloc_size = num_bytes; 1156 else 1157 min_alloc_size = fs_info->sectorsize; 1158 1159 while (num_bytes > 0) { 1160 cur_alloc_size = num_bytes; 1161 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1162 min_alloc_size, 0, alloc_hint, 1163 &ins, 1, 1); 1164 if (ret < 0) 1165 goto out_unlock; 1166 cur_alloc_size = ins.offset; 1167 extent_reserved = true; 1168 1169 ram_size = ins.offset; 1170 em = create_io_em(inode, start, ins.offset, /* len */ 1171 start, /* orig_start */ 1172 ins.objectid, /* block_start */ 1173 ins.offset, /* block_len */ 1174 ins.offset, /* orig_block_len */ 1175 ram_size, /* ram_bytes */ 1176 BTRFS_COMPRESS_NONE, /* compress_type */ 1177 BTRFS_ORDERED_REGULAR /* type */); 1178 if (IS_ERR(em)) { 1179 ret = PTR_ERR(em); 1180 goto out_reserve; 1181 } 1182 free_extent_map(em); 1183 1184 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1185 ram_size, cur_alloc_size, 1186 BTRFS_ORDERED_REGULAR); 1187 if (ret) 1188 goto out_drop_extent_cache; 1189 1190 if (root->root_key.objectid == 1191 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1192 ret = btrfs_reloc_clone_csums(inode, start, 1193 cur_alloc_size); 1194 /* 1195 * Only drop cache here, and process as normal. 1196 * 1197 * We must not allow extent_clear_unlock_delalloc() 1198 * at out_unlock label to free meta of this ordered 1199 * extent, as its meta should be freed by 1200 * btrfs_finish_ordered_io(). 1201 * 1202 * So we must continue until @start is increased to 1203 * skip current ordered extent. 1204 */ 1205 if (ret) 1206 btrfs_drop_extent_cache(inode, start, 1207 start + ram_size - 1, 0); 1208 } 1209 1210 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1211 1212 /* 1213 * We're not doing compressed IO, don't unlock the first page 1214 * (which the caller expects to stay locked), don't clear any 1215 * dirty bits and don't set any writeback bits 1216 * 1217 * Do set the Ordered (Private2) bit so we know this page was 1218 * properly setup for writepage. 1219 */ 1220 page_ops = unlock ? PAGE_UNLOCK : 0; 1221 page_ops |= PAGE_SET_ORDERED; 1222 1223 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1224 locked_page, 1225 EXTENT_LOCKED | EXTENT_DELALLOC, 1226 page_ops); 1227 if (num_bytes < cur_alloc_size) 1228 num_bytes = 0; 1229 else 1230 num_bytes -= cur_alloc_size; 1231 alloc_hint = ins.objectid + ins.offset; 1232 start += cur_alloc_size; 1233 extent_reserved = false; 1234 1235 /* 1236 * btrfs_reloc_clone_csums() error, since start is increased 1237 * extent_clear_unlock_delalloc() at out_unlock label won't 1238 * free metadata of current ordered extent, we're OK to exit. 1239 */ 1240 if (ret) 1241 goto out_unlock; 1242 } 1243 out: 1244 return ret; 1245 1246 out_drop_extent_cache: 1247 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1248 out_reserve: 1249 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1250 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1251 out_unlock: 1252 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1253 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1254 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1255 /* 1256 * If we reserved an extent for our delalloc range (or a subrange) and 1257 * failed to create the respective ordered extent, then it means that 1258 * when we reserved the extent we decremented the extent's size from 1259 * the data space_info's bytes_may_use counter and incremented the 1260 * space_info's bytes_reserved counter by the same amount. We must make 1261 * sure extent_clear_unlock_delalloc() does not try to decrement again 1262 * the data space_info's bytes_may_use counter, therefore we do not pass 1263 * it the flag EXTENT_CLEAR_DATA_RESV. 1264 */ 1265 if (extent_reserved) { 1266 extent_clear_unlock_delalloc(inode, start, 1267 start + cur_alloc_size - 1, 1268 locked_page, 1269 clear_bits, 1270 page_ops); 1271 start += cur_alloc_size; 1272 if (start >= end) 1273 goto out; 1274 } 1275 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1276 clear_bits | EXTENT_CLEAR_DATA_RESV, 1277 page_ops); 1278 goto out; 1279 } 1280 1281 /* 1282 * work queue call back to started compression on a file and pages 1283 */ 1284 static noinline void async_cow_start(struct btrfs_work *work) 1285 { 1286 struct async_chunk *async_chunk; 1287 int compressed_extents; 1288 1289 async_chunk = container_of(work, struct async_chunk, work); 1290 1291 compressed_extents = compress_file_range(async_chunk); 1292 if (compressed_extents == 0) { 1293 btrfs_add_delayed_iput(async_chunk->inode); 1294 async_chunk->inode = NULL; 1295 } 1296 } 1297 1298 /* 1299 * work queue call back to submit previously compressed pages 1300 */ 1301 static noinline void async_cow_submit(struct btrfs_work *work) 1302 { 1303 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1304 work); 1305 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1306 unsigned long nr_pages; 1307 1308 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1309 PAGE_SHIFT; 1310 1311 /* 1312 * ->inode could be NULL if async_chunk_start has failed to compress, 1313 * in which case we don't have anything to submit, yet we need to 1314 * always adjust ->async_delalloc_pages as its paired with the init 1315 * happening in cow_file_range_async 1316 */ 1317 if (async_chunk->inode) 1318 submit_compressed_extents(async_chunk); 1319 1320 /* atomic_sub_return implies a barrier */ 1321 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1322 5 * SZ_1M) 1323 cond_wake_up_nomb(&fs_info->async_submit_wait); 1324 } 1325 1326 static noinline void async_cow_free(struct btrfs_work *work) 1327 { 1328 struct async_chunk *async_chunk; 1329 1330 async_chunk = container_of(work, struct async_chunk, work); 1331 if (async_chunk->inode) 1332 btrfs_add_delayed_iput(async_chunk->inode); 1333 if (async_chunk->blkcg_css) 1334 css_put(async_chunk->blkcg_css); 1335 /* 1336 * Since the pointer to 'pending' is at the beginning of the array of 1337 * async_chunk's, freeing it ensures the whole array has been freed. 1338 */ 1339 if (atomic_dec_and_test(async_chunk->pending)) 1340 kvfree(async_chunk->pending); 1341 } 1342 1343 static int cow_file_range_async(struct btrfs_inode *inode, 1344 struct writeback_control *wbc, 1345 struct page *locked_page, 1346 u64 start, u64 end, int *page_started, 1347 unsigned long *nr_written) 1348 { 1349 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1350 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1351 struct async_cow *ctx; 1352 struct async_chunk *async_chunk; 1353 unsigned long nr_pages; 1354 u64 cur_end; 1355 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1356 int i; 1357 bool should_compress; 1358 unsigned nofs_flag; 1359 const unsigned int write_flags = wbc_to_write_flags(wbc); 1360 1361 unlock_extent(&inode->io_tree, start, end); 1362 1363 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1364 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1365 num_chunks = 1; 1366 should_compress = false; 1367 } else { 1368 should_compress = true; 1369 } 1370 1371 nofs_flag = memalloc_nofs_save(); 1372 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1373 memalloc_nofs_restore(nofs_flag); 1374 1375 if (!ctx) { 1376 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1377 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1378 EXTENT_DO_ACCOUNTING; 1379 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1380 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1381 1382 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1383 clear_bits, page_ops); 1384 return -ENOMEM; 1385 } 1386 1387 async_chunk = ctx->chunks; 1388 atomic_set(&ctx->num_chunks, num_chunks); 1389 1390 for (i = 0; i < num_chunks; i++) { 1391 if (should_compress) 1392 cur_end = min(end, start + SZ_512K - 1); 1393 else 1394 cur_end = end; 1395 1396 /* 1397 * igrab is called higher up in the call chain, take only the 1398 * lightweight reference for the callback lifetime 1399 */ 1400 ihold(&inode->vfs_inode); 1401 async_chunk[i].pending = &ctx->num_chunks; 1402 async_chunk[i].inode = &inode->vfs_inode; 1403 async_chunk[i].start = start; 1404 async_chunk[i].end = cur_end; 1405 async_chunk[i].write_flags = write_flags; 1406 INIT_LIST_HEAD(&async_chunk[i].extents); 1407 1408 /* 1409 * The locked_page comes all the way from writepage and its 1410 * the original page we were actually given. As we spread 1411 * this large delalloc region across multiple async_chunk 1412 * structs, only the first struct needs a pointer to locked_page 1413 * 1414 * This way we don't need racey decisions about who is supposed 1415 * to unlock it. 1416 */ 1417 if (locked_page) { 1418 /* 1419 * Depending on the compressibility, the pages might or 1420 * might not go through async. We want all of them to 1421 * be accounted against wbc once. Let's do it here 1422 * before the paths diverge. wbc accounting is used 1423 * only for foreign writeback detection and doesn't 1424 * need full accuracy. Just account the whole thing 1425 * against the first page. 1426 */ 1427 wbc_account_cgroup_owner(wbc, locked_page, 1428 cur_end - start); 1429 async_chunk[i].locked_page = locked_page; 1430 locked_page = NULL; 1431 } else { 1432 async_chunk[i].locked_page = NULL; 1433 } 1434 1435 if (blkcg_css != blkcg_root_css) { 1436 css_get(blkcg_css); 1437 async_chunk[i].blkcg_css = blkcg_css; 1438 } else { 1439 async_chunk[i].blkcg_css = NULL; 1440 } 1441 1442 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1443 async_cow_submit, async_cow_free); 1444 1445 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1446 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1447 1448 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1449 1450 *nr_written += nr_pages; 1451 start = cur_end + 1; 1452 } 1453 *page_started = 1; 1454 return 0; 1455 } 1456 1457 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1458 struct page *locked_page, u64 start, 1459 u64 end, int *page_started, 1460 unsigned long *nr_written) 1461 { 1462 int ret; 1463 1464 ret = cow_file_range(inode, locked_page, start, end, page_started, 1465 nr_written, 0); 1466 if (ret) 1467 return ret; 1468 1469 if (*page_started) 1470 return 0; 1471 1472 __set_page_dirty_nobuffers(locked_page); 1473 account_page_redirty(locked_page); 1474 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); 1475 *page_started = 1; 1476 1477 return 0; 1478 } 1479 1480 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1481 u64 bytenr, u64 num_bytes) 1482 { 1483 int ret; 1484 struct btrfs_ordered_sum *sums; 1485 LIST_HEAD(list); 1486 1487 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1488 bytenr + num_bytes - 1, &list, 0); 1489 if (ret == 0 && list_empty(&list)) 1490 return 0; 1491 1492 while (!list_empty(&list)) { 1493 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1494 list_del(&sums->list); 1495 kfree(sums); 1496 } 1497 if (ret < 0) 1498 return ret; 1499 return 1; 1500 } 1501 1502 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1503 const u64 start, const u64 end, 1504 int *page_started, unsigned long *nr_written) 1505 { 1506 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1507 const bool is_reloc_ino = (inode->root->root_key.objectid == 1508 BTRFS_DATA_RELOC_TREE_OBJECTID); 1509 const u64 range_bytes = end + 1 - start; 1510 struct extent_io_tree *io_tree = &inode->io_tree; 1511 u64 range_start = start; 1512 u64 count; 1513 1514 /* 1515 * If EXTENT_NORESERVE is set it means that when the buffered write was 1516 * made we had not enough available data space and therefore we did not 1517 * reserve data space for it, since we though we could do NOCOW for the 1518 * respective file range (either there is prealloc extent or the inode 1519 * has the NOCOW bit set). 1520 * 1521 * However when we need to fallback to COW mode (because for example the 1522 * block group for the corresponding extent was turned to RO mode by a 1523 * scrub or relocation) we need to do the following: 1524 * 1525 * 1) We increment the bytes_may_use counter of the data space info. 1526 * If COW succeeds, it allocates a new data extent and after doing 1527 * that it decrements the space info's bytes_may_use counter and 1528 * increments its bytes_reserved counter by the same amount (we do 1529 * this at btrfs_add_reserved_bytes()). So we need to increment the 1530 * bytes_may_use counter to compensate (when space is reserved at 1531 * buffered write time, the bytes_may_use counter is incremented); 1532 * 1533 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1534 * that if the COW path fails for any reason, it decrements (through 1535 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1536 * data space info, which we incremented in the step above. 1537 * 1538 * If we need to fallback to cow and the inode corresponds to a free 1539 * space cache inode or an inode of the data relocation tree, we must 1540 * also increment bytes_may_use of the data space_info for the same 1541 * reason. Space caches and relocated data extents always get a prealloc 1542 * extent for them, however scrub or balance may have set the block 1543 * group that contains that extent to RO mode and therefore force COW 1544 * when starting writeback. 1545 */ 1546 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1547 EXTENT_NORESERVE, 0); 1548 if (count > 0 || is_space_ino || is_reloc_ino) { 1549 u64 bytes = count; 1550 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1551 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1552 1553 if (is_space_ino || is_reloc_ino) 1554 bytes = range_bytes; 1555 1556 spin_lock(&sinfo->lock); 1557 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1558 spin_unlock(&sinfo->lock); 1559 1560 if (count > 0) 1561 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1562 0, 0, NULL); 1563 } 1564 1565 return cow_file_range(inode, locked_page, start, end, page_started, 1566 nr_written, 1); 1567 } 1568 1569 /* 1570 * when nowcow writeback call back. This checks for snapshots or COW copies 1571 * of the extents that exist in the file, and COWs the file as required. 1572 * 1573 * If no cow copies or snapshots exist, we write directly to the existing 1574 * blocks on disk 1575 */ 1576 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1577 struct page *locked_page, 1578 const u64 start, const u64 end, 1579 int *page_started, 1580 unsigned long *nr_written) 1581 { 1582 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1583 struct btrfs_root *root = inode->root; 1584 struct btrfs_path *path; 1585 u64 cow_start = (u64)-1; 1586 u64 cur_offset = start; 1587 int ret; 1588 bool check_prev = true; 1589 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1590 u64 ino = btrfs_ino(inode); 1591 bool nocow = false; 1592 u64 disk_bytenr = 0; 1593 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1594 1595 path = btrfs_alloc_path(); 1596 if (!path) { 1597 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1598 EXTENT_LOCKED | EXTENT_DELALLOC | 1599 EXTENT_DO_ACCOUNTING | 1600 EXTENT_DEFRAG, PAGE_UNLOCK | 1601 PAGE_START_WRITEBACK | 1602 PAGE_END_WRITEBACK); 1603 return -ENOMEM; 1604 } 1605 1606 while (1) { 1607 struct btrfs_key found_key; 1608 struct btrfs_file_extent_item *fi; 1609 struct extent_buffer *leaf; 1610 u64 extent_end; 1611 u64 extent_offset; 1612 u64 num_bytes = 0; 1613 u64 disk_num_bytes; 1614 u64 ram_bytes; 1615 int extent_type; 1616 1617 nocow = false; 1618 1619 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1620 cur_offset, 0); 1621 if (ret < 0) 1622 goto error; 1623 1624 /* 1625 * If there is no extent for our range when doing the initial 1626 * search, then go back to the previous slot as it will be the 1627 * one containing the search offset 1628 */ 1629 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1630 leaf = path->nodes[0]; 1631 btrfs_item_key_to_cpu(leaf, &found_key, 1632 path->slots[0] - 1); 1633 if (found_key.objectid == ino && 1634 found_key.type == BTRFS_EXTENT_DATA_KEY) 1635 path->slots[0]--; 1636 } 1637 check_prev = false; 1638 next_slot: 1639 /* Go to next leaf if we have exhausted the current one */ 1640 leaf = path->nodes[0]; 1641 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1642 ret = btrfs_next_leaf(root, path); 1643 if (ret < 0) { 1644 if (cow_start != (u64)-1) 1645 cur_offset = cow_start; 1646 goto error; 1647 } 1648 if (ret > 0) 1649 break; 1650 leaf = path->nodes[0]; 1651 } 1652 1653 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1654 1655 /* Didn't find anything for our INO */ 1656 if (found_key.objectid > ino) 1657 break; 1658 /* 1659 * Keep searching until we find an EXTENT_ITEM or there are no 1660 * more extents for this inode 1661 */ 1662 if (WARN_ON_ONCE(found_key.objectid < ino) || 1663 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1664 path->slots[0]++; 1665 goto next_slot; 1666 } 1667 1668 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1669 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1670 found_key.offset > end) 1671 break; 1672 1673 /* 1674 * If the found extent starts after requested offset, then 1675 * adjust extent_end to be right before this extent begins 1676 */ 1677 if (found_key.offset > cur_offset) { 1678 extent_end = found_key.offset; 1679 extent_type = 0; 1680 goto out_check; 1681 } 1682 1683 /* 1684 * Found extent which begins before our range and potentially 1685 * intersect it 1686 */ 1687 fi = btrfs_item_ptr(leaf, path->slots[0], 1688 struct btrfs_file_extent_item); 1689 extent_type = btrfs_file_extent_type(leaf, fi); 1690 1691 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1692 if (extent_type == BTRFS_FILE_EXTENT_REG || 1693 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1694 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1695 extent_offset = btrfs_file_extent_offset(leaf, fi); 1696 extent_end = found_key.offset + 1697 btrfs_file_extent_num_bytes(leaf, fi); 1698 disk_num_bytes = 1699 btrfs_file_extent_disk_num_bytes(leaf, fi); 1700 /* 1701 * If the extent we got ends before our current offset, 1702 * skip to the next extent. 1703 */ 1704 if (extent_end <= cur_offset) { 1705 path->slots[0]++; 1706 goto next_slot; 1707 } 1708 /* Skip holes */ 1709 if (disk_bytenr == 0) 1710 goto out_check; 1711 /* Skip compressed/encrypted/encoded extents */ 1712 if (btrfs_file_extent_compression(leaf, fi) || 1713 btrfs_file_extent_encryption(leaf, fi) || 1714 btrfs_file_extent_other_encoding(leaf, fi)) 1715 goto out_check; 1716 /* 1717 * If extent is created before the last volume's snapshot 1718 * this implies the extent is shared, hence we can't do 1719 * nocow. This is the same check as in 1720 * btrfs_cross_ref_exist but without calling 1721 * btrfs_search_slot. 1722 */ 1723 if (!freespace_inode && 1724 btrfs_file_extent_generation(leaf, fi) <= 1725 btrfs_root_last_snapshot(&root->root_item)) 1726 goto out_check; 1727 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1728 goto out_check; 1729 1730 /* 1731 * The following checks can be expensive, as they need to 1732 * take other locks and do btree or rbtree searches, so 1733 * release the path to avoid blocking other tasks for too 1734 * long. 1735 */ 1736 btrfs_release_path(path); 1737 1738 ret = btrfs_cross_ref_exist(root, ino, 1739 found_key.offset - 1740 extent_offset, disk_bytenr, false); 1741 if (ret) { 1742 /* 1743 * ret could be -EIO if the above fails to read 1744 * metadata. 1745 */ 1746 if (ret < 0) { 1747 if (cow_start != (u64)-1) 1748 cur_offset = cow_start; 1749 goto error; 1750 } 1751 1752 WARN_ON_ONCE(freespace_inode); 1753 goto out_check; 1754 } 1755 disk_bytenr += extent_offset; 1756 disk_bytenr += cur_offset - found_key.offset; 1757 num_bytes = min(end + 1, extent_end) - cur_offset; 1758 /* 1759 * If there are pending snapshots for this root, we 1760 * fall into common COW way 1761 */ 1762 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1763 goto out_check; 1764 /* 1765 * force cow if csum exists in the range. 1766 * this ensure that csum for a given extent are 1767 * either valid or do not exist. 1768 */ 1769 ret = csum_exist_in_range(fs_info, disk_bytenr, 1770 num_bytes); 1771 if (ret) { 1772 /* 1773 * ret could be -EIO if the above fails to read 1774 * metadata. 1775 */ 1776 if (ret < 0) { 1777 if (cow_start != (u64)-1) 1778 cur_offset = cow_start; 1779 goto error; 1780 } 1781 WARN_ON_ONCE(freespace_inode); 1782 goto out_check; 1783 } 1784 /* If the extent's block group is RO, we must COW */ 1785 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1786 goto out_check; 1787 nocow = true; 1788 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1789 extent_end = found_key.offset + ram_bytes; 1790 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1791 /* Skip extents outside of our requested range */ 1792 if (extent_end <= start) { 1793 path->slots[0]++; 1794 goto next_slot; 1795 } 1796 } else { 1797 /* If this triggers then we have a memory corruption */ 1798 BUG(); 1799 } 1800 out_check: 1801 /* 1802 * If nocow is false then record the beginning of the range 1803 * that needs to be COWed 1804 */ 1805 if (!nocow) { 1806 if (cow_start == (u64)-1) 1807 cow_start = cur_offset; 1808 cur_offset = extent_end; 1809 if (cur_offset > end) 1810 break; 1811 if (!path->nodes[0]) 1812 continue; 1813 path->slots[0]++; 1814 goto next_slot; 1815 } 1816 1817 /* 1818 * COW range from cow_start to found_key.offset - 1. As the key 1819 * will contain the beginning of the first extent that can be 1820 * NOCOW, following one which needs to be COW'ed 1821 */ 1822 if (cow_start != (u64)-1) { 1823 ret = fallback_to_cow(inode, locked_page, 1824 cow_start, found_key.offset - 1, 1825 page_started, nr_written); 1826 if (ret) 1827 goto error; 1828 cow_start = (u64)-1; 1829 } 1830 1831 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1832 u64 orig_start = found_key.offset - extent_offset; 1833 struct extent_map *em; 1834 1835 em = create_io_em(inode, cur_offset, num_bytes, 1836 orig_start, 1837 disk_bytenr, /* block_start */ 1838 num_bytes, /* block_len */ 1839 disk_num_bytes, /* orig_block_len */ 1840 ram_bytes, BTRFS_COMPRESS_NONE, 1841 BTRFS_ORDERED_PREALLOC); 1842 if (IS_ERR(em)) { 1843 ret = PTR_ERR(em); 1844 goto error; 1845 } 1846 free_extent_map(em); 1847 ret = btrfs_add_ordered_extent(inode, cur_offset, 1848 disk_bytenr, num_bytes, 1849 num_bytes, 1850 BTRFS_ORDERED_PREALLOC); 1851 if (ret) { 1852 btrfs_drop_extent_cache(inode, cur_offset, 1853 cur_offset + num_bytes - 1, 1854 0); 1855 goto error; 1856 } 1857 } else { 1858 ret = btrfs_add_ordered_extent(inode, cur_offset, 1859 disk_bytenr, num_bytes, 1860 num_bytes, 1861 BTRFS_ORDERED_NOCOW); 1862 if (ret) 1863 goto error; 1864 } 1865 1866 if (nocow) 1867 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1868 nocow = false; 1869 1870 if (root->root_key.objectid == 1871 BTRFS_DATA_RELOC_TREE_OBJECTID) 1872 /* 1873 * Error handled later, as we must prevent 1874 * extent_clear_unlock_delalloc() in error handler 1875 * from freeing metadata of created ordered extent. 1876 */ 1877 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1878 num_bytes); 1879 1880 extent_clear_unlock_delalloc(inode, cur_offset, 1881 cur_offset + num_bytes - 1, 1882 locked_page, EXTENT_LOCKED | 1883 EXTENT_DELALLOC | 1884 EXTENT_CLEAR_DATA_RESV, 1885 PAGE_UNLOCK | PAGE_SET_ORDERED); 1886 1887 cur_offset = extent_end; 1888 1889 /* 1890 * btrfs_reloc_clone_csums() error, now we're OK to call error 1891 * handler, as metadata for created ordered extent will only 1892 * be freed by btrfs_finish_ordered_io(). 1893 */ 1894 if (ret) 1895 goto error; 1896 if (cur_offset > end) 1897 break; 1898 } 1899 btrfs_release_path(path); 1900 1901 if (cur_offset <= end && cow_start == (u64)-1) 1902 cow_start = cur_offset; 1903 1904 if (cow_start != (u64)-1) { 1905 cur_offset = end; 1906 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1907 page_started, nr_written); 1908 if (ret) 1909 goto error; 1910 } 1911 1912 error: 1913 if (nocow) 1914 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1915 1916 if (ret && cur_offset < end) 1917 extent_clear_unlock_delalloc(inode, cur_offset, end, 1918 locked_page, EXTENT_LOCKED | 1919 EXTENT_DELALLOC | EXTENT_DEFRAG | 1920 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1921 PAGE_START_WRITEBACK | 1922 PAGE_END_WRITEBACK); 1923 btrfs_free_path(path); 1924 return ret; 1925 } 1926 1927 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1928 { 1929 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1930 if (inode->defrag_bytes && 1931 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1932 0, NULL)) 1933 return false; 1934 return true; 1935 } 1936 return false; 1937 } 1938 1939 /* 1940 * Function to process delayed allocation (create CoW) for ranges which are 1941 * being touched for the first time. 1942 */ 1943 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1944 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1945 struct writeback_control *wbc) 1946 { 1947 int ret; 1948 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1949 1950 if (should_nocow(inode, start, end)) { 1951 ASSERT(!zoned); 1952 ret = run_delalloc_nocow(inode, locked_page, start, end, 1953 page_started, nr_written); 1954 } else if (!inode_can_compress(inode) || 1955 !inode_need_compress(inode, start, end)) { 1956 if (zoned) 1957 ret = run_delalloc_zoned(inode, locked_page, start, end, 1958 page_started, nr_written); 1959 else 1960 ret = cow_file_range(inode, locked_page, start, end, 1961 page_started, nr_written, 1); 1962 } else { 1963 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1964 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1965 page_started, nr_written); 1966 } 1967 ASSERT(ret <= 0); 1968 if (ret) 1969 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1970 end - start + 1); 1971 return ret; 1972 } 1973 1974 void btrfs_split_delalloc_extent(struct inode *inode, 1975 struct extent_state *orig, u64 split) 1976 { 1977 u64 size; 1978 1979 /* not delalloc, ignore it */ 1980 if (!(orig->state & EXTENT_DELALLOC)) 1981 return; 1982 1983 size = orig->end - orig->start + 1; 1984 if (size > BTRFS_MAX_EXTENT_SIZE) { 1985 u32 num_extents; 1986 u64 new_size; 1987 1988 /* 1989 * See the explanation in btrfs_merge_delalloc_extent, the same 1990 * applies here, just in reverse. 1991 */ 1992 new_size = orig->end - split + 1; 1993 num_extents = count_max_extents(new_size); 1994 new_size = split - orig->start; 1995 num_extents += count_max_extents(new_size); 1996 if (count_max_extents(size) >= num_extents) 1997 return; 1998 } 1999 2000 spin_lock(&BTRFS_I(inode)->lock); 2001 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 2002 spin_unlock(&BTRFS_I(inode)->lock); 2003 } 2004 2005 /* 2006 * Handle merged delayed allocation extents so we can keep track of new extents 2007 * that are just merged onto old extents, such as when we are doing sequential 2008 * writes, so we can properly account for the metadata space we'll need. 2009 */ 2010 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 2011 struct extent_state *other) 2012 { 2013 u64 new_size, old_size; 2014 u32 num_extents; 2015 2016 /* not delalloc, ignore it */ 2017 if (!(other->state & EXTENT_DELALLOC)) 2018 return; 2019 2020 if (new->start > other->start) 2021 new_size = new->end - other->start + 1; 2022 else 2023 new_size = other->end - new->start + 1; 2024 2025 /* we're not bigger than the max, unreserve the space and go */ 2026 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 2027 spin_lock(&BTRFS_I(inode)->lock); 2028 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2029 spin_unlock(&BTRFS_I(inode)->lock); 2030 return; 2031 } 2032 2033 /* 2034 * We have to add up either side to figure out how many extents were 2035 * accounted for before we merged into one big extent. If the number of 2036 * extents we accounted for is <= the amount we need for the new range 2037 * then we can return, otherwise drop. Think of it like this 2038 * 2039 * [ 4k][MAX_SIZE] 2040 * 2041 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2042 * need 2 outstanding extents, on one side we have 1 and the other side 2043 * we have 1 so they are == and we can return. But in this case 2044 * 2045 * [MAX_SIZE+4k][MAX_SIZE+4k] 2046 * 2047 * Each range on their own accounts for 2 extents, but merged together 2048 * they are only 3 extents worth of accounting, so we need to drop in 2049 * this case. 2050 */ 2051 old_size = other->end - other->start + 1; 2052 num_extents = count_max_extents(old_size); 2053 old_size = new->end - new->start + 1; 2054 num_extents += count_max_extents(old_size); 2055 if (count_max_extents(new_size) >= num_extents) 2056 return; 2057 2058 spin_lock(&BTRFS_I(inode)->lock); 2059 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2060 spin_unlock(&BTRFS_I(inode)->lock); 2061 } 2062 2063 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2064 struct inode *inode) 2065 { 2066 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2067 2068 spin_lock(&root->delalloc_lock); 2069 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2070 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2071 &root->delalloc_inodes); 2072 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2073 &BTRFS_I(inode)->runtime_flags); 2074 root->nr_delalloc_inodes++; 2075 if (root->nr_delalloc_inodes == 1) { 2076 spin_lock(&fs_info->delalloc_root_lock); 2077 BUG_ON(!list_empty(&root->delalloc_root)); 2078 list_add_tail(&root->delalloc_root, 2079 &fs_info->delalloc_roots); 2080 spin_unlock(&fs_info->delalloc_root_lock); 2081 } 2082 } 2083 spin_unlock(&root->delalloc_lock); 2084 } 2085 2086 2087 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2088 struct btrfs_inode *inode) 2089 { 2090 struct btrfs_fs_info *fs_info = root->fs_info; 2091 2092 if (!list_empty(&inode->delalloc_inodes)) { 2093 list_del_init(&inode->delalloc_inodes); 2094 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2095 &inode->runtime_flags); 2096 root->nr_delalloc_inodes--; 2097 if (!root->nr_delalloc_inodes) { 2098 ASSERT(list_empty(&root->delalloc_inodes)); 2099 spin_lock(&fs_info->delalloc_root_lock); 2100 BUG_ON(list_empty(&root->delalloc_root)); 2101 list_del_init(&root->delalloc_root); 2102 spin_unlock(&fs_info->delalloc_root_lock); 2103 } 2104 } 2105 } 2106 2107 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2108 struct btrfs_inode *inode) 2109 { 2110 spin_lock(&root->delalloc_lock); 2111 __btrfs_del_delalloc_inode(root, inode); 2112 spin_unlock(&root->delalloc_lock); 2113 } 2114 2115 /* 2116 * Properly track delayed allocation bytes in the inode and to maintain the 2117 * list of inodes that have pending delalloc work to be done. 2118 */ 2119 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2120 unsigned *bits) 2121 { 2122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2123 2124 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2125 WARN_ON(1); 2126 /* 2127 * set_bit and clear bit hooks normally require _irqsave/restore 2128 * but in this case, we are only testing for the DELALLOC 2129 * bit, which is only set or cleared with irqs on 2130 */ 2131 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2132 struct btrfs_root *root = BTRFS_I(inode)->root; 2133 u64 len = state->end + 1 - state->start; 2134 u32 num_extents = count_max_extents(len); 2135 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2136 2137 spin_lock(&BTRFS_I(inode)->lock); 2138 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2139 spin_unlock(&BTRFS_I(inode)->lock); 2140 2141 /* For sanity tests */ 2142 if (btrfs_is_testing(fs_info)) 2143 return; 2144 2145 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2146 fs_info->delalloc_batch); 2147 spin_lock(&BTRFS_I(inode)->lock); 2148 BTRFS_I(inode)->delalloc_bytes += len; 2149 if (*bits & EXTENT_DEFRAG) 2150 BTRFS_I(inode)->defrag_bytes += len; 2151 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2152 &BTRFS_I(inode)->runtime_flags)) 2153 btrfs_add_delalloc_inodes(root, inode); 2154 spin_unlock(&BTRFS_I(inode)->lock); 2155 } 2156 2157 if (!(state->state & EXTENT_DELALLOC_NEW) && 2158 (*bits & EXTENT_DELALLOC_NEW)) { 2159 spin_lock(&BTRFS_I(inode)->lock); 2160 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2161 state->start; 2162 spin_unlock(&BTRFS_I(inode)->lock); 2163 } 2164 } 2165 2166 /* 2167 * Once a range is no longer delalloc this function ensures that proper 2168 * accounting happens. 2169 */ 2170 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2171 struct extent_state *state, unsigned *bits) 2172 { 2173 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2174 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2175 u64 len = state->end + 1 - state->start; 2176 u32 num_extents = count_max_extents(len); 2177 2178 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2179 spin_lock(&inode->lock); 2180 inode->defrag_bytes -= len; 2181 spin_unlock(&inode->lock); 2182 } 2183 2184 /* 2185 * set_bit and clear bit hooks normally require _irqsave/restore 2186 * but in this case, we are only testing for the DELALLOC 2187 * bit, which is only set or cleared with irqs on 2188 */ 2189 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2190 struct btrfs_root *root = inode->root; 2191 bool do_list = !btrfs_is_free_space_inode(inode); 2192 2193 spin_lock(&inode->lock); 2194 btrfs_mod_outstanding_extents(inode, -num_extents); 2195 spin_unlock(&inode->lock); 2196 2197 /* 2198 * We don't reserve metadata space for space cache inodes so we 2199 * don't need to call delalloc_release_metadata if there is an 2200 * error. 2201 */ 2202 if (*bits & EXTENT_CLEAR_META_RESV && 2203 root != fs_info->tree_root) 2204 btrfs_delalloc_release_metadata(inode, len, false); 2205 2206 /* For sanity tests. */ 2207 if (btrfs_is_testing(fs_info)) 2208 return; 2209 2210 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2211 do_list && !(state->state & EXTENT_NORESERVE) && 2212 (*bits & EXTENT_CLEAR_DATA_RESV)) 2213 btrfs_free_reserved_data_space_noquota(fs_info, len); 2214 2215 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2216 fs_info->delalloc_batch); 2217 spin_lock(&inode->lock); 2218 inode->delalloc_bytes -= len; 2219 if (do_list && inode->delalloc_bytes == 0 && 2220 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2221 &inode->runtime_flags)) 2222 btrfs_del_delalloc_inode(root, inode); 2223 spin_unlock(&inode->lock); 2224 } 2225 2226 if ((state->state & EXTENT_DELALLOC_NEW) && 2227 (*bits & EXTENT_DELALLOC_NEW)) { 2228 spin_lock(&inode->lock); 2229 ASSERT(inode->new_delalloc_bytes >= len); 2230 inode->new_delalloc_bytes -= len; 2231 if (*bits & EXTENT_ADD_INODE_BYTES) 2232 inode_add_bytes(&inode->vfs_inode, len); 2233 spin_unlock(&inode->lock); 2234 } 2235 } 2236 2237 /* 2238 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2239 * in a chunk's stripe. This function ensures that bios do not span a 2240 * stripe/chunk 2241 * 2242 * @page - The page we are about to add to the bio 2243 * @size - size we want to add to the bio 2244 * @bio - bio we want to ensure is smaller than a stripe 2245 * @bio_flags - flags of the bio 2246 * 2247 * return 1 if page cannot be added to the bio 2248 * return 0 if page can be added to the bio 2249 * return error otherwise 2250 */ 2251 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2252 unsigned long bio_flags) 2253 { 2254 struct inode *inode = page->mapping->host; 2255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2256 u64 logical = bio->bi_iter.bi_sector << 9; 2257 u32 bio_len = bio->bi_iter.bi_size; 2258 struct extent_map *em; 2259 int ret = 0; 2260 struct btrfs_io_geometry geom; 2261 2262 if (bio_flags & EXTENT_BIO_COMPRESSED) 2263 return 0; 2264 2265 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize); 2266 if (IS_ERR(em)) 2267 return PTR_ERR(em); 2268 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, &geom); 2269 if (ret < 0) 2270 goto out; 2271 2272 if (geom.len < bio_len + size) 2273 ret = 1; 2274 out: 2275 free_extent_map(em); 2276 return ret; 2277 } 2278 2279 /* 2280 * in order to insert checksums into the metadata in large chunks, 2281 * we wait until bio submission time. All the pages in the bio are 2282 * checksummed and sums are attached onto the ordered extent record. 2283 * 2284 * At IO completion time the cums attached on the ordered extent record 2285 * are inserted into the btree 2286 */ 2287 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2288 u64 dio_file_offset) 2289 { 2290 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2291 } 2292 2293 /* 2294 * Split an extent_map at [start, start + len] 2295 * 2296 * This function is intended to be used only for extract_ordered_extent(). 2297 */ 2298 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, 2299 u64 pre, u64 post) 2300 { 2301 struct extent_map_tree *em_tree = &inode->extent_tree; 2302 struct extent_map *em; 2303 struct extent_map *split_pre = NULL; 2304 struct extent_map *split_mid = NULL; 2305 struct extent_map *split_post = NULL; 2306 int ret = 0; 2307 unsigned long flags; 2308 2309 /* Sanity check */ 2310 if (pre == 0 && post == 0) 2311 return 0; 2312 2313 split_pre = alloc_extent_map(); 2314 if (pre) 2315 split_mid = alloc_extent_map(); 2316 if (post) 2317 split_post = alloc_extent_map(); 2318 if (!split_pre || (pre && !split_mid) || (post && !split_post)) { 2319 ret = -ENOMEM; 2320 goto out; 2321 } 2322 2323 ASSERT(pre + post < len); 2324 2325 lock_extent(&inode->io_tree, start, start + len - 1); 2326 write_lock(&em_tree->lock); 2327 em = lookup_extent_mapping(em_tree, start, len); 2328 if (!em) { 2329 ret = -EIO; 2330 goto out_unlock; 2331 } 2332 2333 ASSERT(em->len == len); 2334 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2335 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2336 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); 2337 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); 2338 ASSERT(!list_empty(&em->list)); 2339 2340 flags = em->flags; 2341 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2342 2343 /* First, replace the em with a new extent_map starting from * em->start */ 2344 split_pre->start = em->start; 2345 split_pre->len = (pre ? pre : em->len - post); 2346 split_pre->orig_start = split_pre->start; 2347 split_pre->block_start = em->block_start; 2348 split_pre->block_len = split_pre->len; 2349 split_pre->orig_block_len = split_pre->block_len; 2350 split_pre->ram_bytes = split_pre->len; 2351 split_pre->flags = flags; 2352 split_pre->compress_type = em->compress_type; 2353 split_pre->generation = em->generation; 2354 2355 replace_extent_mapping(em_tree, em, split_pre, 1); 2356 2357 /* 2358 * Now we only have an extent_map at: 2359 * [em->start, em->start + pre] if pre != 0 2360 * [em->start, em->start + em->len - post] if pre == 0 2361 */ 2362 2363 if (pre) { 2364 /* Insert the middle extent_map */ 2365 split_mid->start = em->start + pre; 2366 split_mid->len = em->len - pre - post; 2367 split_mid->orig_start = split_mid->start; 2368 split_mid->block_start = em->block_start + pre; 2369 split_mid->block_len = split_mid->len; 2370 split_mid->orig_block_len = split_mid->block_len; 2371 split_mid->ram_bytes = split_mid->len; 2372 split_mid->flags = flags; 2373 split_mid->compress_type = em->compress_type; 2374 split_mid->generation = em->generation; 2375 add_extent_mapping(em_tree, split_mid, 1); 2376 } 2377 2378 if (post) { 2379 split_post->start = em->start + em->len - post; 2380 split_post->len = post; 2381 split_post->orig_start = split_post->start; 2382 split_post->block_start = em->block_start + em->len - post; 2383 split_post->block_len = split_post->len; 2384 split_post->orig_block_len = split_post->block_len; 2385 split_post->ram_bytes = split_post->len; 2386 split_post->flags = flags; 2387 split_post->compress_type = em->compress_type; 2388 split_post->generation = em->generation; 2389 add_extent_mapping(em_tree, split_post, 1); 2390 } 2391 2392 /* Once for us */ 2393 free_extent_map(em); 2394 /* Once for the tree */ 2395 free_extent_map(em); 2396 2397 out_unlock: 2398 write_unlock(&em_tree->lock); 2399 unlock_extent(&inode->io_tree, start, start + len - 1); 2400 out: 2401 free_extent_map(split_pre); 2402 free_extent_map(split_mid); 2403 free_extent_map(split_post); 2404 2405 return ret; 2406 } 2407 2408 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2409 struct bio *bio, loff_t file_offset) 2410 { 2411 struct btrfs_ordered_extent *ordered; 2412 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2413 u64 file_len; 2414 u64 len = bio->bi_iter.bi_size; 2415 u64 end = start + len; 2416 u64 ordered_end; 2417 u64 pre, post; 2418 int ret = 0; 2419 2420 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2421 if (WARN_ON_ONCE(!ordered)) 2422 return BLK_STS_IOERR; 2423 2424 /* No need to split */ 2425 if (ordered->disk_num_bytes == len) 2426 goto out; 2427 2428 /* We cannot split once end_bio'd ordered extent */ 2429 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2430 ret = -EINVAL; 2431 goto out; 2432 } 2433 2434 /* We cannot split a compressed ordered extent */ 2435 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2436 ret = -EINVAL; 2437 goto out; 2438 } 2439 2440 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2441 /* bio must be in one ordered extent */ 2442 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2443 ret = -EINVAL; 2444 goto out; 2445 } 2446 2447 /* Checksum list should be empty */ 2448 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2449 ret = -EINVAL; 2450 goto out; 2451 } 2452 2453 file_len = ordered->num_bytes; 2454 pre = start - ordered->disk_bytenr; 2455 post = ordered_end - end; 2456 2457 ret = btrfs_split_ordered_extent(ordered, pre, post); 2458 if (ret) 2459 goto out; 2460 ret = split_zoned_em(inode, file_offset, file_len, pre, post); 2461 2462 out: 2463 btrfs_put_ordered_extent(ordered); 2464 2465 return errno_to_blk_status(ret); 2466 } 2467 2468 /* 2469 * extent_io.c submission hook. This does the right thing for csum calculation 2470 * on write, or reading the csums from the tree before a read. 2471 * 2472 * Rules about async/sync submit, 2473 * a) read: sync submit 2474 * 2475 * b) write without checksum: sync submit 2476 * 2477 * c) write with checksum: 2478 * c-1) if bio is issued by fsync: sync submit 2479 * (sync_writers != 0) 2480 * 2481 * c-2) if root is reloc root: sync submit 2482 * (only in case of buffered IO) 2483 * 2484 * c-3) otherwise: async submit 2485 */ 2486 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2487 int mirror_num, unsigned long bio_flags) 2488 2489 { 2490 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2491 struct btrfs_root *root = BTRFS_I(inode)->root; 2492 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2493 blk_status_t ret = 0; 2494 int skip_sum; 2495 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2496 2497 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2498 !fs_info->csum_root; 2499 2500 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2501 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2502 2503 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2504 struct page *page = bio_first_bvec_all(bio)->bv_page; 2505 loff_t file_offset = page_offset(page); 2506 2507 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2508 if (ret) 2509 goto out; 2510 } 2511 2512 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2513 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2514 if (ret) 2515 goto out; 2516 2517 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2518 ret = btrfs_submit_compressed_read(inode, bio, 2519 mirror_num, 2520 bio_flags); 2521 goto out; 2522 } else { 2523 /* 2524 * Lookup bio sums does extra checks around whether we 2525 * need to csum or not, which is why we ignore skip_sum 2526 * here. 2527 */ 2528 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2529 if (ret) 2530 goto out; 2531 } 2532 goto mapit; 2533 } else if (async && !skip_sum) { 2534 /* csum items have already been cloned */ 2535 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2536 goto mapit; 2537 /* we're doing a write, do the async checksumming */ 2538 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2539 0, btrfs_submit_bio_start); 2540 goto out; 2541 } else if (!skip_sum) { 2542 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2543 if (ret) 2544 goto out; 2545 } 2546 2547 mapit: 2548 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2549 2550 out: 2551 if (ret) { 2552 bio->bi_status = ret; 2553 bio_endio(bio); 2554 } 2555 return ret; 2556 } 2557 2558 /* 2559 * given a list of ordered sums record them in the inode. This happens 2560 * at IO completion time based on sums calculated at bio submission time. 2561 */ 2562 static int add_pending_csums(struct btrfs_trans_handle *trans, 2563 struct list_head *list) 2564 { 2565 struct btrfs_ordered_sum *sum; 2566 int ret; 2567 2568 list_for_each_entry(sum, list, list) { 2569 trans->adding_csums = true; 2570 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2571 trans->adding_csums = false; 2572 if (ret) 2573 return ret; 2574 } 2575 return 0; 2576 } 2577 2578 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2579 const u64 start, 2580 const u64 len, 2581 struct extent_state **cached_state) 2582 { 2583 u64 search_start = start; 2584 const u64 end = start + len - 1; 2585 2586 while (search_start < end) { 2587 const u64 search_len = end - search_start + 1; 2588 struct extent_map *em; 2589 u64 em_len; 2590 int ret = 0; 2591 2592 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2593 if (IS_ERR(em)) 2594 return PTR_ERR(em); 2595 2596 if (em->block_start != EXTENT_MAP_HOLE) 2597 goto next; 2598 2599 em_len = em->len; 2600 if (em->start < search_start) 2601 em_len -= search_start - em->start; 2602 if (em_len > search_len) 2603 em_len = search_len; 2604 2605 ret = set_extent_bit(&inode->io_tree, search_start, 2606 search_start + em_len - 1, 2607 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2608 GFP_NOFS, NULL); 2609 next: 2610 search_start = extent_map_end(em); 2611 free_extent_map(em); 2612 if (ret) 2613 return ret; 2614 } 2615 return 0; 2616 } 2617 2618 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2619 unsigned int extra_bits, 2620 struct extent_state **cached_state) 2621 { 2622 WARN_ON(PAGE_ALIGNED(end)); 2623 2624 if (start >= i_size_read(&inode->vfs_inode) && 2625 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2626 /* 2627 * There can't be any extents following eof in this case so just 2628 * set the delalloc new bit for the range directly. 2629 */ 2630 extra_bits |= EXTENT_DELALLOC_NEW; 2631 } else { 2632 int ret; 2633 2634 ret = btrfs_find_new_delalloc_bytes(inode, start, 2635 end + 1 - start, 2636 cached_state); 2637 if (ret) 2638 return ret; 2639 } 2640 2641 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2642 cached_state); 2643 } 2644 2645 /* see btrfs_writepage_start_hook for details on why this is required */ 2646 struct btrfs_writepage_fixup { 2647 struct page *page; 2648 struct inode *inode; 2649 struct btrfs_work work; 2650 }; 2651 2652 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2653 { 2654 struct btrfs_writepage_fixup *fixup; 2655 struct btrfs_ordered_extent *ordered; 2656 struct extent_state *cached_state = NULL; 2657 struct extent_changeset *data_reserved = NULL; 2658 struct page *page; 2659 struct btrfs_inode *inode; 2660 u64 page_start; 2661 u64 page_end; 2662 int ret = 0; 2663 bool free_delalloc_space = true; 2664 2665 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2666 page = fixup->page; 2667 inode = BTRFS_I(fixup->inode); 2668 page_start = page_offset(page); 2669 page_end = page_offset(page) + PAGE_SIZE - 1; 2670 2671 /* 2672 * This is similar to page_mkwrite, we need to reserve the space before 2673 * we take the page lock. 2674 */ 2675 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2676 PAGE_SIZE); 2677 again: 2678 lock_page(page); 2679 2680 /* 2681 * Before we queued this fixup, we took a reference on the page. 2682 * page->mapping may go NULL, but it shouldn't be moved to a different 2683 * address space. 2684 */ 2685 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2686 /* 2687 * Unfortunately this is a little tricky, either 2688 * 2689 * 1) We got here and our page had already been dealt with and 2690 * we reserved our space, thus ret == 0, so we need to just 2691 * drop our space reservation and bail. This can happen the 2692 * first time we come into the fixup worker, or could happen 2693 * while waiting for the ordered extent. 2694 * 2) Our page was already dealt with, but we happened to get an 2695 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2696 * this case we obviously don't have anything to release, but 2697 * because the page was already dealt with we don't want to 2698 * mark the page with an error, so make sure we're resetting 2699 * ret to 0. This is why we have this check _before_ the ret 2700 * check, because we do not want to have a surprise ENOSPC 2701 * when the page was already properly dealt with. 2702 */ 2703 if (!ret) { 2704 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2705 btrfs_delalloc_release_space(inode, data_reserved, 2706 page_start, PAGE_SIZE, 2707 true); 2708 } 2709 ret = 0; 2710 goto out_page; 2711 } 2712 2713 /* 2714 * We can't mess with the page state unless it is locked, so now that 2715 * it is locked bail if we failed to make our space reservation. 2716 */ 2717 if (ret) 2718 goto out_page; 2719 2720 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2721 2722 /* already ordered? We're done */ 2723 if (PageOrdered(page)) 2724 goto out_reserved; 2725 2726 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2727 if (ordered) { 2728 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2729 &cached_state); 2730 unlock_page(page); 2731 btrfs_start_ordered_extent(ordered, 1); 2732 btrfs_put_ordered_extent(ordered); 2733 goto again; 2734 } 2735 2736 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2737 &cached_state); 2738 if (ret) 2739 goto out_reserved; 2740 2741 /* 2742 * Everything went as planned, we're now the owner of a dirty page with 2743 * delayed allocation bits set and space reserved for our COW 2744 * destination. 2745 * 2746 * The page was dirty when we started, nothing should have cleaned it. 2747 */ 2748 BUG_ON(!PageDirty(page)); 2749 free_delalloc_space = false; 2750 out_reserved: 2751 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2752 if (free_delalloc_space) 2753 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2754 PAGE_SIZE, true); 2755 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2756 &cached_state); 2757 out_page: 2758 if (ret) { 2759 /* 2760 * We hit ENOSPC or other errors. Update the mapping and page 2761 * to reflect the errors and clean the page. 2762 */ 2763 mapping_set_error(page->mapping, ret); 2764 end_extent_writepage(page, ret, page_start, page_end); 2765 clear_page_dirty_for_io(page); 2766 SetPageError(page); 2767 } 2768 ClearPageChecked(page); 2769 unlock_page(page); 2770 put_page(page); 2771 kfree(fixup); 2772 extent_changeset_free(data_reserved); 2773 /* 2774 * As a precaution, do a delayed iput in case it would be the last iput 2775 * that could need flushing space. Recursing back to fixup worker would 2776 * deadlock. 2777 */ 2778 btrfs_add_delayed_iput(&inode->vfs_inode); 2779 } 2780 2781 /* 2782 * There are a few paths in the higher layers of the kernel that directly 2783 * set the page dirty bit without asking the filesystem if it is a 2784 * good idea. This causes problems because we want to make sure COW 2785 * properly happens and the data=ordered rules are followed. 2786 * 2787 * In our case any range that doesn't have the ORDERED bit set 2788 * hasn't been properly setup for IO. We kick off an async process 2789 * to fix it up. The async helper will wait for ordered extents, set 2790 * the delalloc bit and make it safe to write the page. 2791 */ 2792 int btrfs_writepage_cow_fixup(struct page *page) 2793 { 2794 struct inode *inode = page->mapping->host; 2795 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2796 struct btrfs_writepage_fixup *fixup; 2797 2798 /* This page has ordered extent covering it already */ 2799 if (PageOrdered(page)) 2800 return 0; 2801 2802 /* 2803 * PageChecked is set below when we create a fixup worker for this page, 2804 * don't try to create another one if we're already PageChecked() 2805 * 2806 * The extent_io writepage code will redirty the page if we send back 2807 * EAGAIN. 2808 */ 2809 if (PageChecked(page)) 2810 return -EAGAIN; 2811 2812 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2813 if (!fixup) 2814 return -EAGAIN; 2815 2816 /* 2817 * We are already holding a reference to this inode from 2818 * write_cache_pages. We need to hold it because the space reservation 2819 * takes place outside of the page lock, and we can't trust 2820 * page->mapping outside of the page lock. 2821 */ 2822 ihold(inode); 2823 SetPageChecked(page); 2824 get_page(page); 2825 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2826 fixup->page = page; 2827 fixup->inode = inode; 2828 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2829 2830 return -EAGAIN; 2831 } 2832 2833 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2834 struct btrfs_inode *inode, u64 file_pos, 2835 struct btrfs_file_extent_item *stack_fi, 2836 const bool update_inode_bytes, 2837 u64 qgroup_reserved) 2838 { 2839 struct btrfs_root *root = inode->root; 2840 const u64 sectorsize = root->fs_info->sectorsize; 2841 struct btrfs_path *path; 2842 struct extent_buffer *leaf; 2843 struct btrfs_key ins; 2844 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2845 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2846 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2847 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2848 struct btrfs_drop_extents_args drop_args = { 0 }; 2849 int ret; 2850 2851 path = btrfs_alloc_path(); 2852 if (!path) 2853 return -ENOMEM; 2854 2855 /* 2856 * we may be replacing one extent in the tree with another. 2857 * The new extent is pinned in the extent map, and we don't want 2858 * to drop it from the cache until it is completely in the btree. 2859 * 2860 * So, tell btrfs_drop_extents to leave this extent in the cache. 2861 * the caller is expected to unpin it and allow it to be merged 2862 * with the others. 2863 */ 2864 drop_args.path = path; 2865 drop_args.start = file_pos; 2866 drop_args.end = file_pos + num_bytes; 2867 drop_args.replace_extent = true; 2868 drop_args.extent_item_size = sizeof(*stack_fi); 2869 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2870 if (ret) 2871 goto out; 2872 2873 if (!drop_args.extent_inserted) { 2874 ins.objectid = btrfs_ino(inode); 2875 ins.offset = file_pos; 2876 ins.type = BTRFS_EXTENT_DATA_KEY; 2877 2878 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2879 sizeof(*stack_fi)); 2880 if (ret) 2881 goto out; 2882 } 2883 leaf = path->nodes[0]; 2884 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2885 write_extent_buffer(leaf, stack_fi, 2886 btrfs_item_ptr_offset(leaf, path->slots[0]), 2887 sizeof(struct btrfs_file_extent_item)); 2888 2889 btrfs_mark_buffer_dirty(leaf); 2890 btrfs_release_path(path); 2891 2892 /* 2893 * If we dropped an inline extent here, we know the range where it is 2894 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2895 * number of bytes only for that range containing the inline extent. 2896 * The remaining of the range will be processed when clearning the 2897 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2898 */ 2899 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2900 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2901 2902 inline_size = drop_args.bytes_found - inline_size; 2903 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2904 drop_args.bytes_found -= inline_size; 2905 num_bytes -= sectorsize; 2906 } 2907 2908 if (update_inode_bytes) 2909 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2910 2911 ins.objectid = disk_bytenr; 2912 ins.offset = disk_num_bytes; 2913 ins.type = BTRFS_EXTENT_ITEM_KEY; 2914 2915 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2916 if (ret) 2917 goto out; 2918 2919 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2920 file_pos, qgroup_reserved, &ins); 2921 out: 2922 btrfs_free_path(path); 2923 2924 return ret; 2925 } 2926 2927 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2928 u64 start, u64 len) 2929 { 2930 struct btrfs_block_group *cache; 2931 2932 cache = btrfs_lookup_block_group(fs_info, start); 2933 ASSERT(cache); 2934 2935 spin_lock(&cache->lock); 2936 cache->delalloc_bytes -= len; 2937 spin_unlock(&cache->lock); 2938 2939 btrfs_put_block_group(cache); 2940 } 2941 2942 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2943 struct btrfs_ordered_extent *oe) 2944 { 2945 struct btrfs_file_extent_item stack_fi; 2946 u64 logical_len; 2947 bool update_inode_bytes; 2948 2949 memset(&stack_fi, 0, sizeof(stack_fi)); 2950 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2951 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2952 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2953 oe->disk_num_bytes); 2954 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2955 logical_len = oe->truncated_len; 2956 else 2957 logical_len = oe->num_bytes; 2958 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2959 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2960 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2961 /* Encryption and other encoding is reserved and all 0 */ 2962 2963 /* 2964 * For delalloc, when completing an ordered extent we update the inode's 2965 * bytes when clearing the range in the inode's io tree, so pass false 2966 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2967 * except if the ordered extent was truncated. 2968 */ 2969 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2970 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2971 2972 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2973 oe->file_offset, &stack_fi, 2974 update_inode_bytes, oe->qgroup_rsv); 2975 } 2976 2977 /* 2978 * As ordered data IO finishes, this gets called so we can finish 2979 * an ordered extent if the range of bytes in the file it covers are 2980 * fully written. 2981 */ 2982 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2983 { 2984 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2985 struct btrfs_root *root = inode->root; 2986 struct btrfs_fs_info *fs_info = root->fs_info; 2987 struct btrfs_trans_handle *trans = NULL; 2988 struct extent_io_tree *io_tree = &inode->io_tree; 2989 struct extent_state *cached_state = NULL; 2990 u64 start, end; 2991 int compress_type = 0; 2992 int ret = 0; 2993 u64 logical_len = ordered_extent->num_bytes; 2994 bool freespace_inode; 2995 bool truncated = false; 2996 bool clear_reserved_extent = true; 2997 unsigned int clear_bits = EXTENT_DEFRAG; 2998 2999 start = ordered_extent->file_offset; 3000 end = start + ordered_extent->num_bytes - 1; 3001 3002 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3003 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3004 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 3005 clear_bits |= EXTENT_DELALLOC_NEW; 3006 3007 freespace_inode = btrfs_is_free_space_inode(inode); 3008 3009 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3010 ret = -EIO; 3011 goto out; 3012 } 3013 3014 if (ordered_extent->bdev) 3015 btrfs_rewrite_logical_zoned(ordered_extent); 3016 3017 btrfs_free_io_failure_record(inode, start, end); 3018 3019 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3020 truncated = true; 3021 logical_len = ordered_extent->truncated_len; 3022 /* Truncated the entire extent, don't bother adding */ 3023 if (!logical_len) 3024 goto out; 3025 } 3026 3027 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3028 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3029 3030 btrfs_inode_safe_disk_i_size_write(inode, 0); 3031 if (freespace_inode) 3032 trans = btrfs_join_transaction_spacecache(root); 3033 else 3034 trans = btrfs_join_transaction(root); 3035 if (IS_ERR(trans)) { 3036 ret = PTR_ERR(trans); 3037 trans = NULL; 3038 goto out; 3039 } 3040 trans->block_rsv = &inode->block_rsv; 3041 ret = btrfs_update_inode_fallback(trans, root, inode); 3042 if (ret) /* -ENOMEM or corruption */ 3043 btrfs_abort_transaction(trans, ret); 3044 goto out; 3045 } 3046 3047 clear_bits |= EXTENT_LOCKED; 3048 lock_extent_bits(io_tree, start, end, &cached_state); 3049 3050 if (freespace_inode) 3051 trans = btrfs_join_transaction_spacecache(root); 3052 else 3053 trans = btrfs_join_transaction(root); 3054 if (IS_ERR(trans)) { 3055 ret = PTR_ERR(trans); 3056 trans = NULL; 3057 goto out; 3058 } 3059 3060 trans->block_rsv = &inode->block_rsv; 3061 3062 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3063 compress_type = ordered_extent->compress_type; 3064 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3065 BUG_ON(compress_type); 3066 ret = btrfs_mark_extent_written(trans, inode, 3067 ordered_extent->file_offset, 3068 ordered_extent->file_offset + 3069 logical_len); 3070 } else { 3071 BUG_ON(root == fs_info->tree_root); 3072 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3073 if (!ret) { 3074 clear_reserved_extent = false; 3075 btrfs_release_delalloc_bytes(fs_info, 3076 ordered_extent->disk_bytenr, 3077 ordered_extent->disk_num_bytes); 3078 } 3079 } 3080 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3081 ordered_extent->num_bytes, trans->transid); 3082 if (ret < 0) { 3083 btrfs_abort_transaction(trans, ret); 3084 goto out; 3085 } 3086 3087 ret = add_pending_csums(trans, &ordered_extent->list); 3088 if (ret) { 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 3093 /* 3094 * If this is a new delalloc range, clear its new delalloc flag to 3095 * update the inode's number of bytes. This needs to be done first 3096 * before updating the inode item. 3097 */ 3098 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3099 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3100 clear_extent_bit(&inode->io_tree, start, end, 3101 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3102 0, 0, &cached_state); 3103 3104 btrfs_inode_safe_disk_i_size_write(inode, 0); 3105 ret = btrfs_update_inode_fallback(trans, root, inode); 3106 if (ret) { /* -ENOMEM or corruption */ 3107 btrfs_abort_transaction(trans, ret); 3108 goto out; 3109 } 3110 ret = 0; 3111 out: 3112 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3113 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3114 &cached_state); 3115 3116 if (trans) 3117 btrfs_end_transaction(trans); 3118 3119 if (ret || truncated) { 3120 u64 unwritten_start = start; 3121 3122 /* 3123 * If we failed to finish this ordered extent for any reason we 3124 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3125 * extent, and mark the inode with the error if it wasn't 3126 * already set. Any error during writeback would have already 3127 * set the mapping error, so we need to set it if we're the ones 3128 * marking this ordered extent as failed. 3129 */ 3130 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3131 &ordered_extent->flags)) 3132 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3133 3134 if (truncated) 3135 unwritten_start += logical_len; 3136 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3137 3138 /* Drop the cache for the part of the extent we didn't write. */ 3139 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3140 3141 /* 3142 * If the ordered extent had an IOERR or something else went 3143 * wrong we need to return the space for this ordered extent 3144 * back to the allocator. We only free the extent in the 3145 * truncated case if we didn't write out the extent at all. 3146 * 3147 * If we made it past insert_reserved_file_extent before we 3148 * errored out then we don't need to do this as the accounting 3149 * has already been done. 3150 */ 3151 if ((ret || !logical_len) && 3152 clear_reserved_extent && 3153 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3154 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3155 /* 3156 * Discard the range before returning it back to the 3157 * free space pool 3158 */ 3159 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3160 btrfs_discard_extent(fs_info, 3161 ordered_extent->disk_bytenr, 3162 ordered_extent->disk_num_bytes, 3163 NULL); 3164 btrfs_free_reserved_extent(fs_info, 3165 ordered_extent->disk_bytenr, 3166 ordered_extent->disk_num_bytes, 1); 3167 } 3168 } 3169 3170 /* 3171 * This needs to be done to make sure anybody waiting knows we are done 3172 * updating everything for this ordered extent. 3173 */ 3174 btrfs_remove_ordered_extent(inode, ordered_extent); 3175 3176 /* once for us */ 3177 btrfs_put_ordered_extent(ordered_extent); 3178 /* once for the tree */ 3179 btrfs_put_ordered_extent(ordered_extent); 3180 3181 return ret; 3182 } 3183 3184 static void finish_ordered_fn(struct btrfs_work *work) 3185 { 3186 struct btrfs_ordered_extent *ordered_extent; 3187 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3188 btrfs_finish_ordered_io(ordered_extent); 3189 } 3190 3191 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3192 struct page *page, u64 start, 3193 u64 end, bool uptodate) 3194 { 3195 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3196 3197 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, 3198 finish_ordered_fn, uptodate); 3199 } 3200 3201 /* 3202 * check_data_csum - verify checksum of one sector of uncompressed data 3203 * @inode: inode 3204 * @io_bio: btrfs_io_bio which contains the csum 3205 * @bio_offset: offset to the beginning of the bio (in bytes) 3206 * @page: page where is the data to be verified 3207 * @pgoff: offset inside the page 3208 * @start: logical offset in the file 3209 * 3210 * The length of such check is always one sector size. 3211 */ 3212 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 3213 u32 bio_offset, struct page *page, u32 pgoff, 3214 u64 start) 3215 { 3216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3217 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3218 char *kaddr; 3219 u32 len = fs_info->sectorsize; 3220 const u32 csum_size = fs_info->csum_size; 3221 unsigned int offset_sectors; 3222 u8 *csum_expected; 3223 u8 csum[BTRFS_CSUM_SIZE]; 3224 3225 ASSERT(pgoff + len <= PAGE_SIZE); 3226 3227 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3228 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; 3229 3230 kaddr = kmap_atomic(page); 3231 shash->tfm = fs_info->csum_shash; 3232 3233 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3234 3235 if (memcmp(csum, csum_expected, csum_size)) 3236 goto zeroit; 3237 3238 kunmap_atomic(kaddr); 3239 return 0; 3240 zeroit: 3241 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3242 io_bio->mirror_num); 3243 if (io_bio->device) 3244 btrfs_dev_stat_inc_and_print(io_bio->device, 3245 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3246 memset(kaddr + pgoff, 1, len); 3247 flush_dcache_page(page); 3248 kunmap_atomic(kaddr); 3249 return -EIO; 3250 } 3251 3252 /* 3253 * When reads are done, we need to check csums to verify the data is correct. 3254 * if there's a match, we allow the bio to finish. If not, the code in 3255 * extent_io.c will try to find good copies for us. 3256 * 3257 * @bio_offset: offset to the beginning of the bio (in bytes) 3258 * @start: file offset of the range start 3259 * @end: file offset of the range end (inclusive) 3260 * 3261 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3262 * csum match. 3263 */ 3264 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3265 struct page *page, u64 start, u64 end) 3266 { 3267 struct inode *inode = page->mapping->host; 3268 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3269 struct btrfs_root *root = BTRFS_I(inode)->root; 3270 const u32 sectorsize = root->fs_info->sectorsize; 3271 u32 pg_off; 3272 unsigned int result = 0; 3273 3274 if (PageChecked(page)) { 3275 ClearPageChecked(page); 3276 return 0; 3277 } 3278 3279 /* 3280 * For subpage case, above PageChecked is not safe as it's not subpage 3281 * compatible. 3282 * But for now only cow fixup and compressed read utilize PageChecked 3283 * flag, while in this context we can easily use io_bio->csum to 3284 * determine if we really need to do csum verification. 3285 * 3286 * So for now, just exit if io_bio->csum is NULL, as it means it's 3287 * compressed read, and its compressed data csum has already been 3288 * verified. 3289 */ 3290 if (io_bio->csum == NULL) 3291 return 0; 3292 3293 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3294 return 0; 3295 3296 if (!root->fs_info->csum_root) 3297 return 0; 3298 3299 ASSERT(page_offset(page) <= start && 3300 end <= page_offset(page) + PAGE_SIZE - 1); 3301 for (pg_off = offset_in_page(start); 3302 pg_off < offset_in_page(end); 3303 pg_off += sectorsize, bio_offset += sectorsize) { 3304 u64 file_offset = pg_off + page_offset(page); 3305 int ret; 3306 3307 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3308 test_range_bit(io_tree, file_offset, 3309 file_offset + sectorsize - 1, 3310 EXTENT_NODATASUM, 1, NULL)) { 3311 /* Skip the range without csum for data reloc inode */ 3312 clear_extent_bits(io_tree, file_offset, 3313 file_offset + sectorsize - 1, 3314 EXTENT_NODATASUM); 3315 continue; 3316 } 3317 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off, 3318 page_offset(page) + pg_off); 3319 if (ret < 0) { 3320 const int nr_bit = (pg_off - offset_in_page(start)) >> 3321 root->fs_info->sectorsize_bits; 3322 3323 result |= (1U << nr_bit); 3324 } 3325 } 3326 return result; 3327 } 3328 3329 /* 3330 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3331 * 3332 * @inode: The inode we want to perform iput on 3333 * 3334 * This function uses the generic vfs_inode::i_count to track whether we should 3335 * just decrement it (in case it's > 1) or if this is the last iput then link 3336 * the inode to the delayed iput machinery. Delayed iputs are processed at 3337 * transaction commit time/superblock commit/cleaner kthread. 3338 */ 3339 void btrfs_add_delayed_iput(struct inode *inode) 3340 { 3341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3342 struct btrfs_inode *binode = BTRFS_I(inode); 3343 3344 if (atomic_add_unless(&inode->i_count, -1, 1)) 3345 return; 3346 3347 atomic_inc(&fs_info->nr_delayed_iputs); 3348 spin_lock(&fs_info->delayed_iput_lock); 3349 ASSERT(list_empty(&binode->delayed_iput)); 3350 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3351 spin_unlock(&fs_info->delayed_iput_lock); 3352 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3353 wake_up_process(fs_info->cleaner_kthread); 3354 } 3355 3356 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3357 struct btrfs_inode *inode) 3358 { 3359 list_del_init(&inode->delayed_iput); 3360 spin_unlock(&fs_info->delayed_iput_lock); 3361 iput(&inode->vfs_inode); 3362 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3363 wake_up(&fs_info->delayed_iputs_wait); 3364 spin_lock(&fs_info->delayed_iput_lock); 3365 } 3366 3367 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3368 struct btrfs_inode *inode) 3369 { 3370 if (!list_empty(&inode->delayed_iput)) { 3371 spin_lock(&fs_info->delayed_iput_lock); 3372 if (!list_empty(&inode->delayed_iput)) 3373 run_delayed_iput_locked(fs_info, inode); 3374 spin_unlock(&fs_info->delayed_iput_lock); 3375 } 3376 } 3377 3378 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3379 { 3380 3381 spin_lock(&fs_info->delayed_iput_lock); 3382 while (!list_empty(&fs_info->delayed_iputs)) { 3383 struct btrfs_inode *inode; 3384 3385 inode = list_first_entry(&fs_info->delayed_iputs, 3386 struct btrfs_inode, delayed_iput); 3387 run_delayed_iput_locked(fs_info, inode); 3388 cond_resched_lock(&fs_info->delayed_iput_lock); 3389 } 3390 spin_unlock(&fs_info->delayed_iput_lock); 3391 } 3392 3393 /** 3394 * Wait for flushing all delayed iputs 3395 * 3396 * @fs_info: the filesystem 3397 * 3398 * This will wait on any delayed iputs that are currently running with KILLABLE 3399 * set. Once they are all done running we will return, unless we are killed in 3400 * which case we return EINTR. This helps in user operations like fallocate etc 3401 * that might get blocked on the iputs. 3402 * 3403 * Return EINTR if we were killed, 0 if nothing's pending 3404 */ 3405 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3406 { 3407 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3408 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3409 if (ret) 3410 return -EINTR; 3411 return 0; 3412 } 3413 3414 /* 3415 * This creates an orphan entry for the given inode in case something goes wrong 3416 * in the middle of an unlink. 3417 */ 3418 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3419 struct btrfs_inode *inode) 3420 { 3421 int ret; 3422 3423 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3424 if (ret && ret != -EEXIST) { 3425 btrfs_abort_transaction(trans, ret); 3426 return ret; 3427 } 3428 3429 return 0; 3430 } 3431 3432 /* 3433 * We have done the delete so we can go ahead and remove the orphan item for 3434 * this particular inode. 3435 */ 3436 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3437 struct btrfs_inode *inode) 3438 { 3439 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3440 } 3441 3442 /* 3443 * this cleans up any orphans that may be left on the list from the last use 3444 * of this root. 3445 */ 3446 int btrfs_orphan_cleanup(struct btrfs_root *root) 3447 { 3448 struct btrfs_fs_info *fs_info = root->fs_info; 3449 struct btrfs_path *path; 3450 struct extent_buffer *leaf; 3451 struct btrfs_key key, found_key; 3452 struct btrfs_trans_handle *trans; 3453 struct inode *inode; 3454 u64 last_objectid = 0; 3455 int ret = 0, nr_unlink = 0; 3456 3457 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3458 return 0; 3459 3460 path = btrfs_alloc_path(); 3461 if (!path) { 3462 ret = -ENOMEM; 3463 goto out; 3464 } 3465 path->reada = READA_BACK; 3466 3467 key.objectid = BTRFS_ORPHAN_OBJECTID; 3468 key.type = BTRFS_ORPHAN_ITEM_KEY; 3469 key.offset = (u64)-1; 3470 3471 while (1) { 3472 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3473 if (ret < 0) 3474 goto out; 3475 3476 /* 3477 * if ret == 0 means we found what we were searching for, which 3478 * is weird, but possible, so only screw with path if we didn't 3479 * find the key and see if we have stuff that matches 3480 */ 3481 if (ret > 0) { 3482 ret = 0; 3483 if (path->slots[0] == 0) 3484 break; 3485 path->slots[0]--; 3486 } 3487 3488 /* pull out the item */ 3489 leaf = path->nodes[0]; 3490 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3491 3492 /* make sure the item matches what we want */ 3493 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3494 break; 3495 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3496 break; 3497 3498 /* release the path since we're done with it */ 3499 btrfs_release_path(path); 3500 3501 /* 3502 * this is where we are basically btrfs_lookup, without the 3503 * crossing root thing. we store the inode number in the 3504 * offset of the orphan item. 3505 */ 3506 3507 if (found_key.offset == last_objectid) { 3508 btrfs_err(fs_info, 3509 "Error removing orphan entry, stopping orphan cleanup"); 3510 ret = -EINVAL; 3511 goto out; 3512 } 3513 3514 last_objectid = found_key.offset; 3515 3516 found_key.objectid = found_key.offset; 3517 found_key.type = BTRFS_INODE_ITEM_KEY; 3518 found_key.offset = 0; 3519 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3520 ret = PTR_ERR_OR_ZERO(inode); 3521 if (ret && ret != -ENOENT) 3522 goto out; 3523 3524 if (ret == -ENOENT && root == fs_info->tree_root) { 3525 struct btrfs_root *dead_root; 3526 int is_dead_root = 0; 3527 3528 /* 3529 * This is an orphan in the tree root. Currently these 3530 * could come from 2 sources: 3531 * a) a root (snapshot/subvolume) deletion in progress 3532 * b) a free space cache inode 3533 * We need to distinguish those two, as the orphan item 3534 * for a root must not get deleted before the deletion 3535 * of the snapshot/subvolume's tree completes. 3536 * 3537 * btrfs_find_orphan_roots() ran before us, which has 3538 * found all deleted roots and loaded them into 3539 * fs_info->fs_roots_radix. So here we can find if an 3540 * orphan item corresponds to a deleted root by looking 3541 * up the root from that radix tree. 3542 */ 3543 3544 spin_lock(&fs_info->fs_roots_radix_lock); 3545 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3546 (unsigned long)found_key.objectid); 3547 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3548 is_dead_root = 1; 3549 spin_unlock(&fs_info->fs_roots_radix_lock); 3550 3551 if (is_dead_root) { 3552 /* prevent this orphan from being found again */ 3553 key.offset = found_key.objectid - 1; 3554 continue; 3555 } 3556 3557 } 3558 3559 /* 3560 * If we have an inode with links, there are a couple of 3561 * possibilities: 3562 * 3563 * 1. We were halfway through creating fsverity metadata for the 3564 * file. In that case, the orphan item represents incomplete 3565 * fsverity metadata which must be cleaned up with 3566 * btrfs_drop_verity_items and deleting the orphan item. 3567 3568 * 2. Old kernels (before v3.12) used to create an 3569 * orphan item for truncate indicating that there were possibly 3570 * extent items past i_size that needed to be deleted. In v3.12, 3571 * truncate was changed to update i_size in sync with the extent 3572 * items, but the (useless) orphan item was still created. Since 3573 * v4.18, we don't create the orphan item for truncate at all. 3574 * 3575 * So, this item could mean that we need to do a truncate, but 3576 * only if this filesystem was last used on a pre-v3.12 kernel 3577 * and was not cleanly unmounted. The odds of that are quite 3578 * slim, and it's a pain to do the truncate now, so just delete 3579 * the orphan item. 3580 * 3581 * It's also possible that this orphan item was supposed to be 3582 * deleted but wasn't. The inode number may have been reused, 3583 * but either way, we can delete the orphan item. 3584 */ 3585 if (ret == -ENOENT || inode->i_nlink) { 3586 if (!ret) { 3587 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3588 iput(inode); 3589 if (ret) 3590 goto out; 3591 } 3592 trans = btrfs_start_transaction(root, 1); 3593 if (IS_ERR(trans)) { 3594 ret = PTR_ERR(trans); 3595 goto out; 3596 } 3597 btrfs_debug(fs_info, "auto deleting %Lu", 3598 found_key.objectid); 3599 ret = btrfs_del_orphan_item(trans, root, 3600 found_key.objectid); 3601 btrfs_end_transaction(trans); 3602 if (ret) 3603 goto out; 3604 continue; 3605 } 3606 3607 nr_unlink++; 3608 3609 /* this will do delete_inode and everything for us */ 3610 iput(inode); 3611 } 3612 /* release the path since we're done with it */ 3613 btrfs_release_path(path); 3614 3615 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3616 3617 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3618 trans = btrfs_join_transaction(root); 3619 if (!IS_ERR(trans)) 3620 btrfs_end_transaction(trans); 3621 } 3622 3623 if (nr_unlink) 3624 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3625 3626 out: 3627 if (ret) 3628 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3629 btrfs_free_path(path); 3630 return ret; 3631 } 3632 3633 /* 3634 * very simple check to peek ahead in the leaf looking for xattrs. If we 3635 * don't find any xattrs, we know there can't be any acls. 3636 * 3637 * slot is the slot the inode is in, objectid is the objectid of the inode 3638 */ 3639 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3640 int slot, u64 objectid, 3641 int *first_xattr_slot) 3642 { 3643 u32 nritems = btrfs_header_nritems(leaf); 3644 struct btrfs_key found_key; 3645 static u64 xattr_access = 0; 3646 static u64 xattr_default = 0; 3647 int scanned = 0; 3648 3649 if (!xattr_access) { 3650 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3651 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3652 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3653 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3654 } 3655 3656 slot++; 3657 *first_xattr_slot = -1; 3658 while (slot < nritems) { 3659 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3660 3661 /* we found a different objectid, there must not be acls */ 3662 if (found_key.objectid != objectid) 3663 return 0; 3664 3665 /* we found an xattr, assume we've got an acl */ 3666 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3667 if (*first_xattr_slot == -1) 3668 *first_xattr_slot = slot; 3669 if (found_key.offset == xattr_access || 3670 found_key.offset == xattr_default) 3671 return 1; 3672 } 3673 3674 /* 3675 * we found a key greater than an xattr key, there can't 3676 * be any acls later on 3677 */ 3678 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3679 return 0; 3680 3681 slot++; 3682 scanned++; 3683 3684 /* 3685 * it goes inode, inode backrefs, xattrs, extents, 3686 * so if there are a ton of hard links to an inode there can 3687 * be a lot of backrefs. Don't waste time searching too hard, 3688 * this is just an optimization 3689 */ 3690 if (scanned >= 8) 3691 break; 3692 } 3693 /* we hit the end of the leaf before we found an xattr or 3694 * something larger than an xattr. We have to assume the inode 3695 * has acls 3696 */ 3697 if (*first_xattr_slot == -1) 3698 *first_xattr_slot = slot; 3699 return 1; 3700 } 3701 3702 /* 3703 * read an inode from the btree into the in-memory inode 3704 */ 3705 static int btrfs_read_locked_inode(struct inode *inode, 3706 struct btrfs_path *in_path) 3707 { 3708 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3709 struct btrfs_path *path = in_path; 3710 struct extent_buffer *leaf; 3711 struct btrfs_inode_item *inode_item; 3712 struct btrfs_root *root = BTRFS_I(inode)->root; 3713 struct btrfs_key location; 3714 unsigned long ptr; 3715 int maybe_acls; 3716 u32 rdev; 3717 int ret; 3718 bool filled = false; 3719 int first_xattr_slot; 3720 3721 ret = btrfs_fill_inode(inode, &rdev); 3722 if (!ret) 3723 filled = true; 3724 3725 if (!path) { 3726 path = btrfs_alloc_path(); 3727 if (!path) 3728 return -ENOMEM; 3729 } 3730 3731 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3732 3733 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3734 if (ret) { 3735 if (path != in_path) 3736 btrfs_free_path(path); 3737 return ret; 3738 } 3739 3740 leaf = path->nodes[0]; 3741 3742 if (filled) 3743 goto cache_index; 3744 3745 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3746 struct btrfs_inode_item); 3747 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3748 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3749 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3750 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3751 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3752 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3753 round_up(i_size_read(inode), fs_info->sectorsize)); 3754 3755 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3756 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3757 3758 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3759 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3760 3761 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3762 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3763 3764 BTRFS_I(inode)->i_otime.tv_sec = 3765 btrfs_timespec_sec(leaf, &inode_item->otime); 3766 BTRFS_I(inode)->i_otime.tv_nsec = 3767 btrfs_timespec_nsec(leaf, &inode_item->otime); 3768 3769 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3770 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3771 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3772 3773 inode_set_iversion_queried(inode, 3774 btrfs_inode_sequence(leaf, inode_item)); 3775 inode->i_generation = BTRFS_I(inode)->generation; 3776 inode->i_rdev = 0; 3777 rdev = btrfs_inode_rdev(leaf, inode_item); 3778 3779 BTRFS_I(inode)->index_cnt = (u64)-1; 3780 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3781 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3782 3783 cache_index: 3784 /* 3785 * If we were modified in the current generation and evicted from memory 3786 * and then re-read we need to do a full sync since we don't have any 3787 * idea about which extents were modified before we were evicted from 3788 * cache. 3789 * 3790 * This is required for both inode re-read from disk and delayed inode 3791 * in delayed_nodes_tree. 3792 */ 3793 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3794 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3795 &BTRFS_I(inode)->runtime_flags); 3796 3797 /* 3798 * We don't persist the id of the transaction where an unlink operation 3799 * against the inode was last made. So here we assume the inode might 3800 * have been evicted, and therefore the exact value of last_unlink_trans 3801 * lost, and set it to last_trans to avoid metadata inconsistencies 3802 * between the inode and its parent if the inode is fsync'ed and the log 3803 * replayed. For example, in the scenario: 3804 * 3805 * touch mydir/foo 3806 * ln mydir/foo mydir/bar 3807 * sync 3808 * unlink mydir/bar 3809 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3810 * xfs_io -c fsync mydir/foo 3811 * <power failure> 3812 * mount fs, triggers fsync log replay 3813 * 3814 * We must make sure that when we fsync our inode foo we also log its 3815 * parent inode, otherwise after log replay the parent still has the 3816 * dentry with the "bar" name but our inode foo has a link count of 1 3817 * and doesn't have an inode ref with the name "bar" anymore. 3818 * 3819 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3820 * but it guarantees correctness at the expense of occasional full 3821 * transaction commits on fsync if our inode is a directory, or if our 3822 * inode is not a directory, logging its parent unnecessarily. 3823 */ 3824 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3825 3826 /* 3827 * Same logic as for last_unlink_trans. We don't persist the generation 3828 * of the last transaction where this inode was used for a reflink 3829 * operation, so after eviction and reloading the inode we must be 3830 * pessimistic and assume the last transaction that modified the inode. 3831 */ 3832 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3833 3834 path->slots[0]++; 3835 if (inode->i_nlink != 1 || 3836 path->slots[0] >= btrfs_header_nritems(leaf)) 3837 goto cache_acl; 3838 3839 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3840 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3841 goto cache_acl; 3842 3843 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3844 if (location.type == BTRFS_INODE_REF_KEY) { 3845 struct btrfs_inode_ref *ref; 3846 3847 ref = (struct btrfs_inode_ref *)ptr; 3848 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3849 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3850 struct btrfs_inode_extref *extref; 3851 3852 extref = (struct btrfs_inode_extref *)ptr; 3853 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3854 extref); 3855 } 3856 cache_acl: 3857 /* 3858 * try to precache a NULL acl entry for files that don't have 3859 * any xattrs or acls 3860 */ 3861 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3862 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3863 if (first_xattr_slot != -1) { 3864 path->slots[0] = first_xattr_slot; 3865 ret = btrfs_load_inode_props(inode, path); 3866 if (ret) 3867 btrfs_err(fs_info, 3868 "error loading props for ino %llu (root %llu): %d", 3869 btrfs_ino(BTRFS_I(inode)), 3870 root->root_key.objectid, ret); 3871 } 3872 if (path != in_path) 3873 btrfs_free_path(path); 3874 3875 if (!maybe_acls) 3876 cache_no_acl(inode); 3877 3878 switch (inode->i_mode & S_IFMT) { 3879 case S_IFREG: 3880 inode->i_mapping->a_ops = &btrfs_aops; 3881 inode->i_fop = &btrfs_file_operations; 3882 inode->i_op = &btrfs_file_inode_operations; 3883 break; 3884 case S_IFDIR: 3885 inode->i_fop = &btrfs_dir_file_operations; 3886 inode->i_op = &btrfs_dir_inode_operations; 3887 break; 3888 case S_IFLNK: 3889 inode->i_op = &btrfs_symlink_inode_operations; 3890 inode_nohighmem(inode); 3891 inode->i_mapping->a_ops = &btrfs_aops; 3892 break; 3893 default: 3894 inode->i_op = &btrfs_special_inode_operations; 3895 init_special_inode(inode, inode->i_mode, rdev); 3896 break; 3897 } 3898 3899 btrfs_sync_inode_flags_to_i_flags(inode); 3900 return 0; 3901 } 3902 3903 /* 3904 * given a leaf and an inode, copy the inode fields into the leaf 3905 */ 3906 static void fill_inode_item(struct btrfs_trans_handle *trans, 3907 struct extent_buffer *leaf, 3908 struct btrfs_inode_item *item, 3909 struct inode *inode) 3910 { 3911 struct btrfs_map_token token; 3912 u64 flags; 3913 3914 btrfs_init_map_token(&token, leaf); 3915 3916 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3917 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3918 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3919 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3920 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3921 3922 btrfs_set_token_timespec_sec(&token, &item->atime, 3923 inode->i_atime.tv_sec); 3924 btrfs_set_token_timespec_nsec(&token, &item->atime, 3925 inode->i_atime.tv_nsec); 3926 3927 btrfs_set_token_timespec_sec(&token, &item->mtime, 3928 inode->i_mtime.tv_sec); 3929 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3930 inode->i_mtime.tv_nsec); 3931 3932 btrfs_set_token_timespec_sec(&token, &item->ctime, 3933 inode->i_ctime.tv_sec); 3934 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3935 inode->i_ctime.tv_nsec); 3936 3937 btrfs_set_token_timespec_sec(&token, &item->otime, 3938 BTRFS_I(inode)->i_otime.tv_sec); 3939 btrfs_set_token_timespec_nsec(&token, &item->otime, 3940 BTRFS_I(inode)->i_otime.tv_nsec); 3941 3942 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3943 btrfs_set_token_inode_generation(&token, item, 3944 BTRFS_I(inode)->generation); 3945 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3946 btrfs_set_token_inode_transid(&token, item, trans->transid); 3947 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3948 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3949 BTRFS_I(inode)->ro_flags); 3950 btrfs_set_token_inode_flags(&token, item, flags); 3951 btrfs_set_token_inode_block_group(&token, item, 0); 3952 } 3953 3954 /* 3955 * copy everything in the in-memory inode into the btree. 3956 */ 3957 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3958 struct btrfs_root *root, 3959 struct btrfs_inode *inode) 3960 { 3961 struct btrfs_inode_item *inode_item; 3962 struct btrfs_path *path; 3963 struct extent_buffer *leaf; 3964 int ret; 3965 3966 path = btrfs_alloc_path(); 3967 if (!path) 3968 return -ENOMEM; 3969 3970 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3971 if (ret) { 3972 if (ret > 0) 3973 ret = -ENOENT; 3974 goto failed; 3975 } 3976 3977 leaf = path->nodes[0]; 3978 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3979 struct btrfs_inode_item); 3980 3981 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3982 btrfs_mark_buffer_dirty(leaf); 3983 btrfs_set_inode_last_trans(trans, inode); 3984 ret = 0; 3985 failed: 3986 btrfs_free_path(path); 3987 return ret; 3988 } 3989 3990 /* 3991 * copy everything in the in-memory inode into the btree. 3992 */ 3993 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3994 struct btrfs_root *root, 3995 struct btrfs_inode *inode) 3996 { 3997 struct btrfs_fs_info *fs_info = root->fs_info; 3998 int ret; 3999 4000 /* 4001 * If the inode is a free space inode, we can deadlock during commit 4002 * if we put it into the delayed code. 4003 * 4004 * The data relocation inode should also be directly updated 4005 * without delay 4006 */ 4007 if (!btrfs_is_free_space_inode(inode) 4008 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 4009 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4010 btrfs_update_root_times(trans, root); 4011 4012 ret = btrfs_delayed_update_inode(trans, root, inode); 4013 if (!ret) 4014 btrfs_set_inode_last_trans(trans, inode); 4015 return ret; 4016 } 4017 4018 return btrfs_update_inode_item(trans, root, inode); 4019 } 4020 4021 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4022 struct btrfs_root *root, struct btrfs_inode *inode) 4023 { 4024 int ret; 4025 4026 ret = btrfs_update_inode(trans, root, inode); 4027 if (ret == -ENOSPC) 4028 return btrfs_update_inode_item(trans, root, inode); 4029 return ret; 4030 } 4031 4032 /* 4033 * unlink helper that gets used here in inode.c and in the tree logging 4034 * recovery code. It remove a link in a directory with a given name, and 4035 * also drops the back refs in the inode to the directory 4036 */ 4037 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4038 struct btrfs_root *root, 4039 struct btrfs_inode *dir, 4040 struct btrfs_inode *inode, 4041 const char *name, int name_len) 4042 { 4043 struct btrfs_fs_info *fs_info = root->fs_info; 4044 struct btrfs_path *path; 4045 int ret = 0; 4046 struct btrfs_dir_item *di; 4047 u64 index; 4048 u64 ino = btrfs_ino(inode); 4049 u64 dir_ino = btrfs_ino(dir); 4050 4051 path = btrfs_alloc_path(); 4052 if (!path) { 4053 ret = -ENOMEM; 4054 goto out; 4055 } 4056 4057 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4058 name, name_len, -1); 4059 if (IS_ERR_OR_NULL(di)) { 4060 ret = di ? PTR_ERR(di) : -ENOENT; 4061 goto err; 4062 } 4063 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4064 if (ret) 4065 goto err; 4066 btrfs_release_path(path); 4067 4068 /* 4069 * If we don't have dir index, we have to get it by looking up 4070 * the inode ref, since we get the inode ref, remove it directly, 4071 * it is unnecessary to do delayed deletion. 4072 * 4073 * But if we have dir index, needn't search inode ref to get it. 4074 * Since the inode ref is close to the inode item, it is better 4075 * that we delay to delete it, and just do this deletion when 4076 * we update the inode item. 4077 */ 4078 if (inode->dir_index) { 4079 ret = btrfs_delayed_delete_inode_ref(inode); 4080 if (!ret) { 4081 index = inode->dir_index; 4082 goto skip_backref; 4083 } 4084 } 4085 4086 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4087 dir_ino, &index); 4088 if (ret) { 4089 btrfs_info(fs_info, 4090 "failed to delete reference to %.*s, inode %llu parent %llu", 4091 name_len, name, ino, dir_ino); 4092 btrfs_abort_transaction(trans, ret); 4093 goto err; 4094 } 4095 skip_backref: 4096 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4097 if (ret) { 4098 btrfs_abort_transaction(trans, ret); 4099 goto err; 4100 } 4101 4102 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4103 dir_ino); 4104 if (ret != 0 && ret != -ENOENT) { 4105 btrfs_abort_transaction(trans, ret); 4106 goto err; 4107 } 4108 4109 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4110 index); 4111 if (ret == -ENOENT) 4112 ret = 0; 4113 else if (ret) 4114 btrfs_abort_transaction(trans, ret); 4115 4116 /* 4117 * If we have a pending delayed iput we could end up with the final iput 4118 * being run in btrfs-cleaner context. If we have enough of these built 4119 * up we can end up burning a lot of time in btrfs-cleaner without any 4120 * way to throttle the unlinks. Since we're currently holding a ref on 4121 * the inode we can run the delayed iput here without any issues as the 4122 * final iput won't be done until after we drop the ref we're currently 4123 * holding. 4124 */ 4125 btrfs_run_delayed_iput(fs_info, inode); 4126 err: 4127 btrfs_free_path(path); 4128 if (ret) 4129 goto out; 4130 4131 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4132 inode_inc_iversion(&inode->vfs_inode); 4133 inode_inc_iversion(&dir->vfs_inode); 4134 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4135 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4136 ret = btrfs_update_inode(trans, root, dir); 4137 out: 4138 return ret; 4139 } 4140 4141 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4142 struct btrfs_root *root, 4143 struct btrfs_inode *dir, struct btrfs_inode *inode, 4144 const char *name, int name_len) 4145 { 4146 int ret; 4147 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4148 if (!ret) { 4149 drop_nlink(&inode->vfs_inode); 4150 ret = btrfs_update_inode(trans, root, inode); 4151 } 4152 return ret; 4153 } 4154 4155 /* 4156 * helper to start transaction for unlink and rmdir. 4157 * 4158 * unlink and rmdir are special in btrfs, they do not always free space, so 4159 * if we cannot make our reservations the normal way try and see if there is 4160 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4161 * allow the unlink to occur. 4162 */ 4163 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4164 { 4165 struct btrfs_root *root = BTRFS_I(dir)->root; 4166 4167 /* 4168 * 1 for the possible orphan item 4169 * 1 for the dir item 4170 * 1 for the dir index 4171 * 1 for the inode ref 4172 * 1 for the inode 4173 */ 4174 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4175 } 4176 4177 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4178 { 4179 struct btrfs_root *root = BTRFS_I(dir)->root; 4180 struct btrfs_trans_handle *trans; 4181 struct inode *inode = d_inode(dentry); 4182 int ret; 4183 4184 trans = __unlink_start_trans(dir); 4185 if (IS_ERR(trans)) 4186 return PTR_ERR(trans); 4187 4188 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4189 0); 4190 4191 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4192 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4193 dentry->d_name.len); 4194 if (ret) 4195 goto out; 4196 4197 if (inode->i_nlink == 0) { 4198 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4199 if (ret) 4200 goto out; 4201 } 4202 4203 out: 4204 btrfs_end_transaction(trans); 4205 btrfs_btree_balance_dirty(root->fs_info); 4206 return ret; 4207 } 4208 4209 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4210 struct inode *dir, struct dentry *dentry) 4211 { 4212 struct btrfs_root *root = BTRFS_I(dir)->root; 4213 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4214 struct btrfs_path *path; 4215 struct extent_buffer *leaf; 4216 struct btrfs_dir_item *di; 4217 struct btrfs_key key; 4218 const char *name = dentry->d_name.name; 4219 int name_len = dentry->d_name.len; 4220 u64 index; 4221 int ret; 4222 u64 objectid; 4223 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4224 4225 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4226 objectid = inode->root->root_key.objectid; 4227 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4228 objectid = inode->location.objectid; 4229 } else { 4230 WARN_ON(1); 4231 return -EINVAL; 4232 } 4233 4234 path = btrfs_alloc_path(); 4235 if (!path) 4236 return -ENOMEM; 4237 4238 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4239 name, name_len, -1); 4240 if (IS_ERR_OR_NULL(di)) { 4241 ret = di ? PTR_ERR(di) : -ENOENT; 4242 goto out; 4243 } 4244 4245 leaf = path->nodes[0]; 4246 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4247 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4248 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4249 if (ret) { 4250 btrfs_abort_transaction(trans, ret); 4251 goto out; 4252 } 4253 btrfs_release_path(path); 4254 4255 /* 4256 * This is a placeholder inode for a subvolume we didn't have a 4257 * reference to at the time of the snapshot creation. In the meantime 4258 * we could have renamed the real subvol link into our snapshot, so 4259 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4260 * Instead simply lookup the dir_index_item for this entry so we can 4261 * remove it. Otherwise we know we have a ref to the root and we can 4262 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4263 */ 4264 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4265 di = btrfs_search_dir_index_item(root, path, dir_ino, 4266 name, name_len); 4267 if (IS_ERR_OR_NULL(di)) { 4268 if (!di) 4269 ret = -ENOENT; 4270 else 4271 ret = PTR_ERR(di); 4272 btrfs_abort_transaction(trans, ret); 4273 goto out; 4274 } 4275 4276 leaf = path->nodes[0]; 4277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4278 index = key.offset; 4279 btrfs_release_path(path); 4280 } else { 4281 ret = btrfs_del_root_ref(trans, objectid, 4282 root->root_key.objectid, dir_ino, 4283 &index, name, name_len); 4284 if (ret) { 4285 btrfs_abort_transaction(trans, ret); 4286 goto out; 4287 } 4288 } 4289 4290 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4291 if (ret) { 4292 btrfs_abort_transaction(trans, ret); 4293 goto out; 4294 } 4295 4296 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4297 inode_inc_iversion(dir); 4298 dir->i_mtime = dir->i_ctime = current_time(dir); 4299 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4300 if (ret) 4301 btrfs_abort_transaction(trans, ret); 4302 out: 4303 btrfs_free_path(path); 4304 return ret; 4305 } 4306 4307 /* 4308 * Helper to check if the subvolume references other subvolumes or if it's 4309 * default. 4310 */ 4311 static noinline int may_destroy_subvol(struct btrfs_root *root) 4312 { 4313 struct btrfs_fs_info *fs_info = root->fs_info; 4314 struct btrfs_path *path; 4315 struct btrfs_dir_item *di; 4316 struct btrfs_key key; 4317 u64 dir_id; 4318 int ret; 4319 4320 path = btrfs_alloc_path(); 4321 if (!path) 4322 return -ENOMEM; 4323 4324 /* Make sure this root isn't set as the default subvol */ 4325 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4326 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4327 dir_id, "default", 7, 0); 4328 if (di && !IS_ERR(di)) { 4329 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4330 if (key.objectid == root->root_key.objectid) { 4331 ret = -EPERM; 4332 btrfs_err(fs_info, 4333 "deleting default subvolume %llu is not allowed", 4334 key.objectid); 4335 goto out; 4336 } 4337 btrfs_release_path(path); 4338 } 4339 4340 key.objectid = root->root_key.objectid; 4341 key.type = BTRFS_ROOT_REF_KEY; 4342 key.offset = (u64)-1; 4343 4344 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4345 if (ret < 0) 4346 goto out; 4347 BUG_ON(ret == 0); 4348 4349 ret = 0; 4350 if (path->slots[0] > 0) { 4351 path->slots[0]--; 4352 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4353 if (key.objectid == root->root_key.objectid && 4354 key.type == BTRFS_ROOT_REF_KEY) 4355 ret = -ENOTEMPTY; 4356 } 4357 out: 4358 btrfs_free_path(path); 4359 return ret; 4360 } 4361 4362 /* Delete all dentries for inodes belonging to the root */ 4363 static void btrfs_prune_dentries(struct btrfs_root *root) 4364 { 4365 struct btrfs_fs_info *fs_info = root->fs_info; 4366 struct rb_node *node; 4367 struct rb_node *prev; 4368 struct btrfs_inode *entry; 4369 struct inode *inode; 4370 u64 objectid = 0; 4371 4372 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4373 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4374 4375 spin_lock(&root->inode_lock); 4376 again: 4377 node = root->inode_tree.rb_node; 4378 prev = NULL; 4379 while (node) { 4380 prev = node; 4381 entry = rb_entry(node, struct btrfs_inode, rb_node); 4382 4383 if (objectid < btrfs_ino(entry)) 4384 node = node->rb_left; 4385 else if (objectid > btrfs_ino(entry)) 4386 node = node->rb_right; 4387 else 4388 break; 4389 } 4390 if (!node) { 4391 while (prev) { 4392 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4393 if (objectid <= btrfs_ino(entry)) { 4394 node = prev; 4395 break; 4396 } 4397 prev = rb_next(prev); 4398 } 4399 } 4400 while (node) { 4401 entry = rb_entry(node, struct btrfs_inode, rb_node); 4402 objectid = btrfs_ino(entry) + 1; 4403 inode = igrab(&entry->vfs_inode); 4404 if (inode) { 4405 spin_unlock(&root->inode_lock); 4406 if (atomic_read(&inode->i_count) > 1) 4407 d_prune_aliases(inode); 4408 /* 4409 * btrfs_drop_inode will have it removed from the inode 4410 * cache when its usage count hits zero. 4411 */ 4412 iput(inode); 4413 cond_resched(); 4414 spin_lock(&root->inode_lock); 4415 goto again; 4416 } 4417 4418 if (cond_resched_lock(&root->inode_lock)) 4419 goto again; 4420 4421 node = rb_next(node); 4422 } 4423 spin_unlock(&root->inode_lock); 4424 } 4425 4426 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4427 { 4428 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4429 struct btrfs_root *root = BTRFS_I(dir)->root; 4430 struct inode *inode = d_inode(dentry); 4431 struct btrfs_root *dest = BTRFS_I(inode)->root; 4432 struct btrfs_trans_handle *trans; 4433 struct btrfs_block_rsv block_rsv; 4434 u64 root_flags; 4435 int ret; 4436 4437 /* 4438 * Don't allow to delete a subvolume with send in progress. This is 4439 * inside the inode lock so the error handling that has to drop the bit 4440 * again is not run concurrently. 4441 */ 4442 spin_lock(&dest->root_item_lock); 4443 if (dest->send_in_progress) { 4444 spin_unlock(&dest->root_item_lock); 4445 btrfs_warn(fs_info, 4446 "attempt to delete subvolume %llu during send", 4447 dest->root_key.objectid); 4448 return -EPERM; 4449 } 4450 root_flags = btrfs_root_flags(&dest->root_item); 4451 btrfs_set_root_flags(&dest->root_item, 4452 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4453 spin_unlock(&dest->root_item_lock); 4454 4455 down_write(&fs_info->subvol_sem); 4456 4457 ret = may_destroy_subvol(dest); 4458 if (ret) 4459 goto out_up_write; 4460 4461 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4462 /* 4463 * One for dir inode, 4464 * two for dir entries, 4465 * two for root ref/backref. 4466 */ 4467 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4468 if (ret) 4469 goto out_up_write; 4470 4471 trans = btrfs_start_transaction(root, 0); 4472 if (IS_ERR(trans)) { 4473 ret = PTR_ERR(trans); 4474 goto out_release; 4475 } 4476 trans->block_rsv = &block_rsv; 4477 trans->bytes_reserved = block_rsv.size; 4478 4479 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4480 4481 ret = btrfs_unlink_subvol(trans, dir, dentry); 4482 if (ret) { 4483 btrfs_abort_transaction(trans, ret); 4484 goto out_end_trans; 4485 } 4486 4487 ret = btrfs_record_root_in_trans(trans, dest); 4488 if (ret) { 4489 btrfs_abort_transaction(trans, ret); 4490 goto out_end_trans; 4491 } 4492 4493 memset(&dest->root_item.drop_progress, 0, 4494 sizeof(dest->root_item.drop_progress)); 4495 btrfs_set_root_drop_level(&dest->root_item, 0); 4496 btrfs_set_root_refs(&dest->root_item, 0); 4497 4498 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4499 ret = btrfs_insert_orphan_item(trans, 4500 fs_info->tree_root, 4501 dest->root_key.objectid); 4502 if (ret) { 4503 btrfs_abort_transaction(trans, ret); 4504 goto out_end_trans; 4505 } 4506 } 4507 4508 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4509 BTRFS_UUID_KEY_SUBVOL, 4510 dest->root_key.objectid); 4511 if (ret && ret != -ENOENT) { 4512 btrfs_abort_transaction(trans, ret); 4513 goto out_end_trans; 4514 } 4515 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4516 ret = btrfs_uuid_tree_remove(trans, 4517 dest->root_item.received_uuid, 4518 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4519 dest->root_key.objectid); 4520 if (ret && ret != -ENOENT) { 4521 btrfs_abort_transaction(trans, ret); 4522 goto out_end_trans; 4523 } 4524 } 4525 4526 free_anon_bdev(dest->anon_dev); 4527 dest->anon_dev = 0; 4528 out_end_trans: 4529 trans->block_rsv = NULL; 4530 trans->bytes_reserved = 0; 4531 ret = btrfs_end_transaction(trans); 4532 inode->i_flags |= S_DEAD; 4533 out_release: 4534 btrfs_subvolume_release_metadata(root, &block_rsv); 4535 out_up_write: 4536 up_write(&fs_info->subvol_sem); 4537 if (ret) { 4538 spin_lock(&dest->root_item_lock); 4539 root_flags = btrfs_root_flags(&dest->root_item); 4540 btrfs_set_root_flags(&dest->root_item, 4541 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4542 spin_unlock(&dest->root_item_lock); 4543 } else { 4544 d_invalidate(dentry); 4545 btrfs_prune_dentries(dest); 4546 ASSERT(dest->send_in_progress == 0); 4547 } 4548 4549 return ret; 4550 } 4551 4552 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4553 { 4554 struct inode *inode = d_inode(dentry); 4555 int err = 0; 4556 struct btrfs_root *root = BTRFS_I(dir)->root; 4557 struct btrfs_trans_handle *trans; 4558 u64 last_unlink_trans; 4559 4560 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4561 return -ENOTEMPTY; 4562 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4563 return btrfs_delete_subvolume(dir, dentry); 4564 4565 trans = __unlink_start_trans(dir); 4566 if (IS_ERR(trans)) 4567 return PTR_ERR(trans); 4568 4569 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4570 err = btrfs_unlink_subvol(trans, dir, dentry); 4571 goto out; 4572 } 4573 4574 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4575 if (err) 4576 goto out; 4577 4578 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4579 4580 /* now the directory is empty */ 4581 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4582 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4583 dentry->d_name.len); 4584 if (!err) { 4585 btrfs_i_size_write(BTRFS_I(inode), 0); 4586 /* 4587 * Propagate the last_unlink_trans value of the deleted dir to 4588 * its parent directory. This is to prevent an unrecoverable 4589 * log tree in the case we do something like this: 4590 * 1) create dir foo 4591 * 2) create snapshot under dir foo 4592 * 3) delete the snapshot 4593 * 4) rmdir foo 4594 * 5) mkdir foo 4595 * 6) fsync foo or some file inside foo 4596 */ 4597 if (last_unlink_trans >= trans->transid) 4598 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4599 } 4600 out: 4601 btrfs_end_transaction(trans); 4602 btrfs_btree_balance_dirty(root->fs_info); 4603 4604 return err; 4605 } 4606 4607 /* 4608 * Return this if we need to call truncate_block for the last bit of the 4609 * truncate. 4610 */ 4611 #define NEED_TRUNCATE_BLOCK 1 4612 4613 /* 4614 * Remove inode items from a given root. 4615 * 4616 * @trans: A transaction handle. 4617 * @root: The root from which to remove items. 4618 * @inode: The inode whose items we want to remove. 4619 * @new_size: The new i_size for the inode. This is only applicable when 4620 * @min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise. 4621 * @min_type: The minimum key type to remove. All keys with a type 4622 * greater than this value are removed and all keys with 4623 * this type are removed only if their offset is >= @new_size. 4624 * @extents_found: Output parameter that will contain the number of file 4625 * extent items that were removed or adjusted to the new 4626 * inode i_size. The caller is responsible for initializing 4627 * the counter. Also, it can be NULL if the caller does not 4628 * need this counter. 4629 * 4630 * Remove all keys associated with the inode from the given root that have a key 4631 * with a type greater than or equals to @min_type. When @min_type has a value of 4632 * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value 4633 * greater than or equals to @new_size. If a file extent item that starts before 4634 * @new_size and ends after it is found, its length is adjusted. 4635 * 4636 * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is 4637 * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block. 4638 */ 4639 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4640 struct btrfs_root *root, 4641 struct btrfs_inode *inode, 4642 u64 new_size, u32 min_type, 4643 u64 *extents_found) 4644 { 4645 struct btrfs_fs_info *fs_info = root->fs_info; 4646 struct btrfs_path *path; 4647 struct extent_buffer *leaf; 4648 struct btrfs_file_extent_item *fi; 4649 struct btrfs_key key; 4650 struct btrfs_key found_key; 4651 u64 extent_start = 0; 4652 u64 extent_num_bytes = 0; 4653 u64 extent_offset = 0; 4654 u64 item_end = 0; 4655 u64 last_size = new_size; 4656 u32 found_type = (u8)-1; 4657 int found_extent; 4658 int del_item; 4659 int pending_del_nr = 0; 4660 int pending_del_slot = 0; 4661 int extent_type = -1; 4662 int ret; 4663 u64 ino = btrfs_ino(inode); 4664 u64 bytes_deleted = 0; 4665 bool be_nice = false; 4666 bool should_throttle = false; 4667 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4668 struct extent_state *cached_state = NULL; 4669 4670 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4671 4672 /* 4673 * For non-free space inodes and non-shareable roots, we want to back 4674 * off from time to time. This means all inodes in subvolume roots, 4675 * reloc roots, and data reloc roots. 4676 */ 4677 if (!btrfs_is_free_space_inode(inode) && 4678 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4679 be_nice = true; 4680 4681 path = btrfs_alloc_path(); 4682 if (!path) 4683 return -ENOMEM; 4684 path->reada = READA_BACK; 4685 4686 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4687 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4688 &cached_state); 4689 4690 /* 4691 * We want to drop from the next block forward in case this 4692 * new size is not block aligned since we will be keeping the 4693 * last block of the extent just the way it is. 4694 */ 4695 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4696 fs_info->sectorsize), 4697 (u64)-1, 0); 4698 } 4699 4700 /* 4701 * This function is also used to drop the items in the log tree before 4702 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4703 * it is used to drop the logged items. So we shouldn't kill the delayed 4704 * items. 4705 */ 4706 if (min_type == 0 && root == inode->root) 4707 btrfs_kill_delayed_inode_items(inode); 4708 4709 key.objectid = ino; 4710 key.offset = (u64)-1; 4711 key.type = (u8)-1; 4712 4713 search_again: 4714 /* 4715 * with a 16K leaf size and 128MB extents, you can actually queue 4716 * up a huge file in a single leaf. Most of the time that 4717 * bytes_deleted is > 0, it will be huge by the time we get here 4718 */ 4719 if (be_nice && bytes_deleted > SZ_32M && 4720 btrfs_should_end_transaction(trans)) { 4721 ret = -EAGAIN; 4722 goto out; 4723 } 4724 4725 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4726 if (ret < 0) 4727 goto out; 4728 4729 if (ret > 0) { 4730 ret = 0; 4731 /* there are no items in the tree for us to truncate, we're 4732 * done 4733 */ 4734 if (path->slots[0] == 0) 4735 goto out; 4736 path->slots[0]--; 4737 } 4738 4739 while (1) { 4740 u64 clear_start = 0, clear_len = 0; 4741 4742 fi = NULL; 4743 leaf = path->nodes[0]; 4744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4745 found_type = found_key.type; 4746 4747 if (found_key.objectid != ino) 4748 break; 4749 4750 if (found_type < min_type) 4751 break; 4752 4753 item_end = found_key.offset; 4754 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4755 fi = btrfs_item_ptr(leaf, path->slots[0], 4756 struct btrfs_file_extent_item); 4757 extent_type = btrfs_file_extent_type(leaf, fi); 4758 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4759 item_end += 4760 btrfs_file_extent_num_bytes(leaf, fi); 4761 4762 trace_btrfs_truncate_show_fi_regular( 4763 inode, leaf, fi, found_key.offset); 4764 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4765 item_end += btrfs_file_extent_ram_bytes(leaf, 4766 fi); 4767 4768 trace_btrfs_truncate_show_fi_inline( 4769 inode, leaf, fi, path->slots[0], 4770 found_key.offset); 4771 } 4772 item_end--; 4773 } 4774 if (found_type > min_type) { 4775 del_item = 1; 4776 } else { 4777 if (item_end < new_size) 4778 break; 4779 if (found_key.offset >= new_size) 4780 del_item = 1; 4781 else 4782 del_item = 0; 4783 } 4784 found_extent = 0; 4785 /* FIXME, shrink the extent if the ref count is only 1 */ 4786 if (found_type != BTRFS_EXTENT_DATA_KEY) 4787 goto delete; 4788 4789 if (extents_found != NULL) 4790 (*extents_found)++; 4791 4792 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4793 u64 num_dec; 4794 4795 clear_start = found_key.offset; 4796 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4797 if (!del_item) { 4798 u64 orig_num_bytes = 4799 btrfs_file_extent_num_bytes(leaf, fi); 4800 extent_num_bytes = ALIGN(new_size - 4801 found_key.offset, 4802 fs_info->sectorsize); 4803 clear_start = ALIGN(new_size, fs_info->sectorsize); 4804 btrfs_set_file_extent_num_bytes(leaf, fi, 4805 extent_num_bytes); 4806 num_dec = (orig_num_bytes - 4807 extent_num_bytes); 4808 if (test_bit(BTRFS_ROOT_SHAREABLE, 4809 &root->state) && 4810 extent_start != 0) 4811 inode_sub_bytes(&inode->vfs_inode, 4812 num_dec); 4813 btrfs_mark_buffer_dirty(leaf); 4814 } else { 4815 extent_num_bytes = 4816 btrfs_file_extent_disk_num_bytes(leaf, 4817 fi); 4818 extent_offset = found_key.offset - 4819 btrfs_file_extent_offset(leaf, fi); 4820 4821 /* FIXME blocksize != 4096 */ 4822 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4823 if (extent_start != 0) { 4824 found_extent = 1; 4825 if (test_bit(BTRFS_ROOT_SHAREABLE, 4826 &root->state)) 4827 inode_sub_bytes(&inode->vfs_inode, 4828 num_dec); 4829 } 4830 } 4831 clear_len = num_dec; 4832 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4833 /* 4834 * we can't truncate inline items that have had 4835 * special encodings 4836 */ 4837 if (!del_item && 4838 btrfs_file_extent_encryption(leaf, fi) == 0 && 4839 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4840 btrfs_file_extent_compression(leaf, fi) == 0) { 4841 u32 size = (u32)(new_size - found_key.offset); 4842 4843 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4844 size = btrfs_file_extent_calc_inline_size(size); 4845 btrfs_truncate_item(path, size, 1); 4846 } else if (!del_item) { 4847 /* 4848 * We have to bail so the last_size is set to 4849 * just before this extent. 4850 */ 4851 ret = NEED_TRUNCATE_BLOCK; 4852 break; 4853 } else { 4854 /* 4855 * Inline extents are special, we just treat 4856 * them as a full sector worth in the file 4857 * extent tree just for simplicity sake. 4858 */ 4859 clear_len = fs_info->sectorsize; 4860 } 4861 4862 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4863 inode_sub_bytes(&inode->vfs_inode, 4864 item_end + 1 - new_size); 4865 } 4866 delete: 4867 /* 4868 * We use btrfs_truncate_inode_items() to clean up log trees for 4869 * multiple fsyncs, and in this case we don't want to clear the 4870 * file extent range because it's just the log. 4871 */ 4872 if (root == inode->root) { 4873 ret = btrfs_inode_clear_file_extent_range(inode, 4874 clear_start, clear_len); 4875 if (ret) { 4876 btrfs_abort_transaction(trans, ret); 4877 break; 4878 } 4879 } 4880 4881 if (del_item) 4882 last_size = found_key.offset; 4883 else 4884 last_size = new_size; 4885 if (del_item) { 4886 if (!pending_del_nr) { 4887 /* no pending yet, add ourselves */ 4888 pending_del_slot = path->slots[0]; 4889 pending_del_nr = 1; 4890 } else if (pending_del_nr && 4891 path->slots[0] + 1 == pending_del_slot) { 4892 /* hop on the pending chunk */ 4893 pending_del_nr++; 4894 pending_del_slot = path->slots[0]; 4895 } else { 4896 BUG(); 4897 } 4898 } else { 4899 break; 4900 } 4901 should_throttle = false; 4902 4903 if (found_extent && 4904 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4905 struct btrfs_ref ref = { 0 }; 4906 4907 bytes_deleted += extent_num_bytes; 4908 4909 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4910 extent_start, extent_num_bytes, 0); 4911 ref.real_root = root->root_key.objectid; 4912 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4913 ino, extent_offset); 4914 ret = btrfs_free_extent(trans, &ref); 4915 if (ret) { 4916 btrfs_abort_transaction(trans, ret); 4917 break; 4918 } 4919 if (be_nice) { 4920 if (btrfs_should_throttle_delayed_refs(trans)) 4921 should_throttle = true; 4922 } 4923 } 4924 4925 if (found_type == BTRFS_INODE_ITEM_KEY) 4926 break; 4927 4928 if (path->slots[0] == 0 || 4929 path->slots[0] != pending_del_slot || 4930 should_throttle) { 4931 if (pending_del_nr) { 4932 ret = btrfs_del_items(trans, root, path, 4933 pending_del_slot, 4934 pending_del_nr); 4935 if (ret) { 4936 btrfs_abort_transaction(trans, ret); 4937 break; 4938 } 4939 pending_del_nr = 0; 4940 } 4941 btrfs_release_path(path); 4942 4943 /* 4944 * We can generate a lot of delayed refs, so we need to 4945 * throttle every once and a while and make sure we're 4946 * adding enough space to keep up with the work we are 4947 * generating. Since we hold a transaction here we 4948 * can't flush, and we don't want to FLUSH_LIMIT because 4949 * we could have generated too many delayed refs to 4950 * actually allocate, so just bail if we're short and 4951 * let the normal reservation dance happen higher up. 4952 */ 4953 if (should_throttle) { 4954 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4955 BTRFS_RESERVE_NO_FLUSH); 4956 if (ret) { 4957 ret = -EAGAIN; 4958 break; 4959 } 4960 } 4961 goto search_again; 4962 } else { 4963 path->slots[0]--; 4964 } 4965 } 4966 out: 4967 if (ret >= 0 && pending_del_nr) { 4968 int err; 4969 4970 err = btrfs_del_items(trans, root, path, pending_del_slot, 4971 pending_del_nr); 4972 if (err) { 4973 btrfs_abort_transaction(trans, err); 4974 ret = err; 4975 } 4976 } 4977 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4978 ASSERT(last_size >= new_size); 4979 if (!ret && last_size > new_size) 4980 last_size = new_size; 4981 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4982 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4983 &cached_state); 4984 } 4985 4986 btrfs_free_path(path); 4987 return ret; 4988 } 4989 4990 /* 4991 * btrfs_truncate_block - read, zero a chunk and write a block 4992 * @inode - inode that we're zeroing 4993 * @from - the offset to start zeroing 4994 * @len - the length to zero, 0 to zero the entire range respective to the 4995 * offset 4996 * @front - zero up to the offset instead of from the offset on 4997 * 4998 * This will find the block for the "from" offset and cow the block and zero the 4999 * part we want to zero. This is used with truncate and hole punching. 5000 */ 5001 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 5002 int front) 5003 { 5004 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5005 struct address_space *mapping = inode->vfs_inode.i_mapping; 5006 struct extent_io_tree *io_tree = &inode->io_tree; 5007 struct btrfs_ordered_extent *ordered; 5008 struct extent_state *cached_state = NULL; 5009 struct extent_changeset *data_reserved = NULL; 5010 bool only_release_metadata = false; 5011 u32 blocksize = fs_info->sectorsize; 5012 pgoff_t index = from >> PAGE_SHIFT; 5013 unsigned offset = from & (blocksize - 1); 5014 struct page *page; 5015 gfp_t mask = btrfs_alloc_write_mask(mapping); 5016 size_t write_bytes = blocksize; 5017 int ret = 0; 5018 u64 block_start; 5019 u64 block_end; 5020 5021 if (IS_ALIGNED(offset, blocksize) && 5022 (!len || IS_ALIGNED(len, blocksize))) 5023 goto out; 5024 5025 block_start = round_down(from, blocksize); 5026 block_end = block_start + blocksize - 1; 5027 5028 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 5029 blocksize); 5030 if (ret < 0) { 5031 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 5032 /* For nocow case, no need to reserve data space */ 5033 only_release_metadata = true; 5034 } else { 5035 goto out; 5036 } 5037 } 5038 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 5039 if (ret < 0) { 5040 if (!only_release_metadata) 5041 btrfs_free_reserved_data_space(inode, data_reserved, 5042 block_start, blocksize); 5043 goto out; 5044 } 5045 again: 5046 page = find_or_create_page(mapping, index, mask); 5047 if (!page) { 5048 btrfs_delalloc_release_space(inode, data_reserved, block_start, 5049 blocksize, true); 5050 btrfs_delalloc_release_extents(inode, blocksize); 5051 ret = -ENOMEM; 5052 goto out; 5053 } 5054 ret = set_page_extent_mapped(page); 5055 if (ret < 0) 5056 goto out_unlock; 5057 5058 if (!PageUptodate(page)) { 5059 ret = btrfs_readpage(NULL, page); 5060 lock_page(page); 5061 if (page->mapping != mapping) { 5062 unlock_page(page); 5063 put_page(page); 5064 goto again; 5065 } 5066 if (!PageUptodate(page)) { 5067 ret = -EIO; 5068 goto out_unlock; 5069 } 5070 } 5071 wait_on_page_writeback(page); 5072 5073 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 5074 5075 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5076 if (ordered) { 5077 unlock_extent_cached(io_tree, block_start, block_end, 5078 &cached_state); 5079 unlock_page(page); 5080 put_page(page); 5081 btrfs_start_ordered_extent(ordered, 1); 5082 btrfs_put_ordered_extent(ordered); 5083 goto again; 5084 } 5085 5086 clear_extent_bit(&inode->io_tree, block_start, block_end, 5087 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5088 0, 0, &cached_state); 5089 5090 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5091 &cached_state); 5092 if (ret) { 5093 unlock_extent_cached(io_tree, block_start, block_end, 5094 &cached_state); 5095 goto out_unlock; 5096 } 5097 5098 if (offset != blocksize) { 5099 if (!len) 5100 len = blocksize - offset; 5101 if (front) 5102 memzero_page(page, (block_start - page_offset(page)), 5103 offset); 5104 else 5105 memzero_page(page, (block_start - page_offset(page)) + offset, 5106 len); 5107 flush_dcache_page(page); 5108 } 5109 ClearPageChecked(page); 5110 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 5111 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 5112 5113 if (only_release_metadata) 5114 set_extent_bit(&inode->io_tree, block_start, block_end, 5115 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 5116 5117 out_unlock: 5118 if (ret) { 5119 if (only_release_metadata) 5120 btrfs_delalloc_release_metadata(inode, blocksize, true); 5121 else 5122 btrfs_delalloc_release_space(inode, data_reserved, 5123 block_start, blocksize, true); 5124 } 5125 btrfs_delalloc_release_extents(inode, blocksize); 5126 unlock_page(page); 5127 put_page(page); 5128 out: 5129 if (only_release_metadata) 5130 btrfs_check_nocow_unlock(inode); 5131 extent_changeset_free(data_reserved); 5132 return ret; 5133 } 5134 5135 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 5136 u64 offset, u64 len) 5137 { 5138 struct btrfs_fs_info *fs_info = root->fs_info; 5139 struct btrfs_trans_handle *trans; 5140 struct btrfs_drop_extents_args drop_args = { 0 }; 5141 int ret; 5142 5143 /* 5144 * If NO_HOLES is enabled, we don't need to do anything. 5145 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5146 * or btrfs_update_inode() will be called, which guarantee that the next 5147 * fsync will know this inode was changed and needs to be logged. 5148 */ 5149 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5150 return 0; 5151 5152 /* 5153 * 1 - for the one we're dropping 5154 * 1 - for the one we're adding 5155 * 1 - for updating the inode. 5156 */ 5157 trans = btrfs_start_transaction(root, 3); 5158 if (IS_ERR(trans)) 5159 return PTR_ERR(trans); 5160 5161 drop_args.start = offset; 5162 drop_args.end = offset + len; 5163 drop_args.drop_cache = true; 5164 5165 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5166 if (ret) { 5167 btrfs_abort_transaction(trans, ret); 5168 btrfs_end_transaction(trans); 5169 return ret; 5170 } 5171 5172 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 5173 offset, 0, 0, len, 0, len, 0, 0, 0); 5174 if (ret) { 5175 btrfs_abort_transaction(trans, ret); 5176 } else { 5177 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5178 btrfs_update_inode(trans, root, inode); 5179 } 5180 btrfs_end_transaction(trans); 5181 return ret; 5182 } 5183 5184 /* 5185 * This function puts in dummy file extents for the area we're creating a hole 5186 * for. So if we are truncating this file to a larger size we need to insert 5187 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5188 * the range between oldsize and size 5189 */ 5190 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5191 { 5192 struct btrfs_root *root = inode->root; 5193 struct btrfs_fs_info *fs_info = root->fs_info; 5194 struct extent_io_tree *io_tree = &inode->io_tree; 5195 struct extent_map *em = NULL; 5196 struct extent_state *cached_state = NULL; 5197 struct extent_map_tree *em_tree = &inode->extent_tree; 5198 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5199 u64 block_end = ALIGN(size, fs_info->sectorsize); 5200 u64 last_byte; 5201 u64 cur_offset; 5202 u64 hole_size; 5203 int err = 0; 5204 5205 /* 5206 * If our size started in the middle of a block we need to zero out the 5207 * rest of the block before we expand the i_size, otherwise we could 5208 * expose stale data. 5209 */ 5210 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5211 if (err) 5212 return err; 5213 5214 if (size <= hole_start) 5215 return 0; 5216 5217 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5218 &cached_state); 5219 cur_offset = hole_start; 5220 while (1) { 5221 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5222 block_end - cur_offset); 5223 if (IS_ERR(em)) { 5224 err = PTR_ERR(em); 5225 em = NULL; 5226 break; 5227 } 5228 last_byte = min(extent_map_end(em), block_end); 5229 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5230 hole_size = last_byte - cur_offset; 5231 5232 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5233 struct extent_map *hole_em; 5234 5235 err = maybe_insert_hole(root, inode, cur_offset, 5236 hole_size); 5237 if (err) 5238 break; 5239 5240 err = btrfs_inode_set_file_extent_range(inode, 5241 cur_offset, hole_size); 5242 if (err) 5243 break; 5244 5245 btrfs_drop_extent_cache(inode, cur_offset, 5246 cur_offset + hole_size - 1, 0); 5247 hole_em = alloc_extent_map(); 5248 if (!hole_em) { 5249 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5250 &inode->runtime_flags); 5251 goto next; 5252 } 5253 hole_em->start = cur_offset; 5254 hole_em->len = hole_size; 5255 hole_em->orig_start = cur_offset; 5256 5257 hole_em->block_start = EXTENT_MAP_HOLE; 5258 hole_em->block_len = 0; 5259 hole_em->orig_block_len = 0; 5260 hole_em->ram_bytes = hole_size; 5261 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5262 hole_em->generation = fs_info->generation; 5263 5264 while (1) { 5265 write_lock(&em_tree->lock); 5266 err = add_extent_mapping(em_tree, hole_em, 1); 5267 write_unlock(&em_tree->lock); 5268 if (err != -EEXIST) 5269 break; 5270 btrfs_drop_extent_cache(inode, cur_offset, 5271 cur_offset + 5272 hole_size - 1, 0); 5273 } 5274 free_extent_map(hole_em); 5275 } else { 5276 err = btrfs_inode_set_file_extent_range(inode, 5277 cur_offset, hole_size); 5278 if (err) 5279 break; 5280 } 5281 next: 5282 free_extent_map(em); 5283 em = NULL; 5284 cur_offset = last_byte; 5285 if (cur_offset >= block_end) 5286 break; 5287 } 5288 free_extent_map(em); 5289 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5290 return err; 5291 } 5292 5293 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5294 { 5295 struct btrfs_root *root = BTRFS_I(inode)->root; 5296 struct btrfs_trans_handle *trans; 5297 loff_t oldsize = i_size_read(inode); 5298 loff_t newsize = attr->ia_size; 5299 int mask = attr->ia_valid; 5300 int ret; 5301 5302 /* 5303 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5304 * special case where we need to update the times despite not having 5305 * these flags set. For all other operations the VFS set these flags 5306 * explicitly if it wants a timestamp update. 5307 */ 5308 if (newsize != oldsize) { 5309 inode_inc_iversion(inode); 5310 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5311 inode->i_ctime = inode->i_mtime = 5312 current_time(inode); 5313 } 5314 5315 if (newsize > oldsize) { 5316 /* 5317 * Don't do an expanding truncate while snapshotting is ongoing. 5318 * This is to ensure the snapshot captures a fully consistent 5319 * state of this file - if the snapshot captures this expanding 5320 * truncation, it must capture all writes that happened before 5321 * this truncation. 5322 */ 5323 btrfs_drew_write_lock(&root->snapshot_lock); 5324 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5325 if (ret) { 5326 btrfs_drew_write_unlock(&root->snapshot_lock); 5327 return ret; 5328 } 5329 5330 trans = btrfs_start_transaction(root, 1); 5331 if (IS_ERR(trans)) { 5332 btrfs_drew_write_unlock(&root->snapshot_lock); 5333 return PTR_ERR(trans); 5334 } 5335 5336 i_size_write(inode, newsize); 5337 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5338 pagecache_isize_extended(inode, oldsize, newsize); 5339 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5340 btrfs_drew_write_unlock(&root->snapshot_lock); 5341 btrfs_end_transaction(trans); 5342 } else { 5343 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5344 5345 if (btrfs_is_zoned(fs_info)) { 5346 ret = btrfs_wait_ordered_range(inode, 5347 ALIGN(newsize, fs_info->sectorsize), 5348 (u64)-1); 5349 if (ret) 5350 return ret; 5351 } 5352 5353 /* 5354 * We're truncating a file that used to have good data down to 5355 * zero. Make sure any new writes to the file get on disk 5356 * on close. 5357 */ 5358 if (newsize == 0) 5359 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5360 &BTRFS_I(inode)->runtime_flags); 5361 5362 truncate_setsize(inode, newsize); 5363 5364 inode_dio_wait(inode); 5365 5366 ret = btrfs_truncate(inode, newsize == oldsize); 5367 if (ret && inode->i_nlink) { 5368 int err; 5369 5370 /* 5371 * Truncate failed, so fix up the in-memory size. We 5372 * adjusted disk_i_size down as we removed extents, so 5373 * wait for disk_i_size to be stable and then update the 5374 * in-memory size to match. 5375 */ 5376 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5377 if (err) 5378 return err; 5379 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5380 } 5381 } 5382 5383 return ret; 5384 } 5385 5386 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5387 struct iattr *attr) 5388 { 5389 struct inode *inode = d_inode(dentry); 5390 struct btrfs_root *root = BTRFS_I(inode)->root; 5391 int err; 5392 5393 if (btrfs_root_readonly(root)) 5394 return -EROFS; 5395 5396 err = setattr_prepare(mnt_userns, dentry, attr); 5397 if (err) 5398 return err; 5399 5400 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5401 err = btrfs_setsize(inode, attr); 5402 if (err) 5403 return err; 5404 } 5405 5406 if (attr->ia_valid) { 5407 setattr_copy(mnt_userns, inode, attr); 5408 inode_inc_iversion(inode); 5409 err = btrfs_dirty_inode(inode); 5410 5411 if (!err && attr->ia_valid & ATTR_MODE) 5412 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5413 } 5414 5415 return err; 5416 } 5417 5418 /* 5419 * While truncating the inode pages during eviction, we get the VFS calling 5420 * btrfs_invalidatepage() against each page of the inode. This is slow because 5421 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5422 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5423 * extent_state structures over and over, wasting lots of time. 5424 * 5425 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5426 * those expensive operations on a per page basis and do only the ordered io 5427 * finishing, while we release here the extent_map and extent_state structures, 5428 * without the excessive merging and splitting. 5429 */ 5430 static void evict_inode_truncate_pages(struct inode *inode) 5431 { 5432 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5433 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5434 struct rb_node *node; 5435 5436 ASSERT(inode->i_state & I_FREEING); 5437 truncate_inode_pages_final(&inode->i_data); 5438 5439 write_lock(&map_tree->lock); 5440 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5441 struct extent_map *em; 5442 5443 node = rb_first_cached(&map_tree->map); 5444 em = rb_entry(node, struct extent_map, rb_node); 5445 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5446 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5447 remove_extent_mapping(map_tree, em); 5448 free_extent_map(em); 5449 if (need_resched()) { 5450 write_unlock(&map_tree->lock); 5451 cond_resched(); 5452 write_lock(&map_tree->lock); 5453 } 5454 } 5455 write_unlock(&map_tree->lock); 5456 5457 /* 5458 * Keep looping until we have no more ranges in the io tree. 5459 * We can have ongoing bios started by readahead that have 5460 * their endio callback (extent_io.c:end_bio_extent_readpage) 5461 * still in progress (unlocked the pages in the bio but did not yet 5462 * unlocked the ranges in the io tree). Therefore this means some 5463 * ranges can still be locked and eviction started because before 5464 * submitting those bios, which are executed by a separate task (work 5465 * queue kthread), inode references (inode->i_count) were not taken 5466 * (which would be dropped in the end io callback of each bio). 5467 * Therefore here we effectively end up waiting for those bios and 5468 * anyone else holding locked ranges without having bumped the inode's 5469 * reference count - if we don't do it, when they access the inode's 5470 * io_tree to unlock a range it may be too late, leading to an 5471 * use-after-free issue. 5472 */ 5473 spin_lock(&io_tree->lock); 5474 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5475 struct extent_state *state; 5476 struct extent_state *cached_state = NULL; 5477 u64 start; 5478 u64 end; 5479 unsigned state_flags; 5480 5481 node = rb_first(&io_tree->state); 5482 state = rb_entry(node, struct extent_state, rb_node); 5483 start = state->start; 5484 end = state->end; 5485 state_flags = state->state; 5486 spin_unlock(&io_tree->lock); 5487 5488 lock_extent_bits(io_tree, start, end, &cached_state); 5489 5490 /* 5491 * If still has DELALLOC flag, the extent didn't reach disk, 5492 * and its reserved space won't be freed by delayed_ref. 5493 * So we need to free its reserved space here. 5494 * (Refer to comment in btrfs_invalidatepage, case 2) 5495 * 5496 * Note, end is the bytenr of last byte, so we need + 1 here. 5497 */ 5498 if (state_flags & EXTENT_DELALLOC) 5499 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5500 end - start + 1); 5501 5502 clear_extent_bit(io_tree, start, end, 5503 EXTENT_LOCKED | EXTENT_DELALLOC | 5504 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5505 &cached_state); 5506 5507 cond_resched(); 5508 spin_lock(&io_tree->lock); 5509 } 5510 spin_unlock(&io_tree->lock); 5511 } 5512 5513 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5514 struct btrfs_block_rsv *rsv) 5515 { 5516 struct btrfs_fs_info *fs_info = root->fs_info; 5517 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5518 struct btrfs_trans_handle *trans; 5519 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5520 int ret; 5521 5522 /* 5523 * Eviction should be taking place at some place safe because of our 5524 * delayed iputs. However the normal flushing code will run delayed 5525 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5526 * 5527 * We reserve the delayed_refs_extra here again because we can't use 5528 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5529 * above. We reserve our extra bit here because we generate a ton of 5530 * delayed refs activity by truncating. 5531 * 5532 * If we cannot make our reservation we'll attempt to steal from the 5533 * global reserve, because we really want to be able to free up space. 5534 */ 5535 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5536 BTRFS_RESERVE_FLUSH_EVICT); 5537 if (ret) { 5538 /* 5539 * Try to steal from the global reserve if there is space for 5540 * it. 5541 */ 5542 if (btrfs_check_space_for_delayed_refs(fs_info) || 5543 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5544 btrfs_warn(fs_info, 5545 "could not allocate space for delete; will truncate on mount"); 5546 return ERR_PTR(-ENOSPC); 5547 } 5548 delayed_refs_extra = 0; 5549 } 5550 5551 trans = btrfs_join_transaction(root); 5552 if (IS_ERR(trans)) 5553 return trans; 5554 5555 if (delayed_refs_extra) { 5556 trans->block_rsv = &fs_info->trans_block_rsv; 5557 trans->bytes_reserved = delayed_refs_extra; 5558 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5559 delayed_refs_extra, 1); 5560 } 5561 return trans; 5562 } 5563 5564 void btrfs_evict_inode(struct inode *inode) 5565 { 5566 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5567 struct btrfs_trans_handle *trans; 5568 struct btrfs_root *root = BTRFS_I(inode)->root; 5569 struct btrfs_block_rsv *rsv; 5570 int ret; 5571 5572 trace_btrfs_inode_evict(inode); 5573 5574 if (!root) { 5575 fsverity_cleanup_inode(inode); 5576 clear_inode(inode); 5577 return; 5578 } 5579 5580 evict_inode_truncate_pages(inode); 5581 5582 if (inode->i_nlink && 5583 ((btrfs_root_refs(&root->root_item) != 0 && 5584 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5585 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5586 goto no_delete; 5587 5588 if (is_bad_inode(inode)) 5589 goto no_delete; 5590 5591 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5592 5593 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5594 goto no_delete; 5595 5596 if (inode->i_nlink > 0) { 5597 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5598 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5599 goto no_delete; 5600 } 5601 5602 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5603 if (ret) 5604 goto no_delete; 5605 5606 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5607 if (!rsv) 5608 goto no_delete; 5609 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5610 rsv->failfast = 1; 5611 5612 btrfs_i_size_write(BTRFS_I(inode), 0); 5613 5614 while (1) { 5615 trans = evict_refill_and_join(root, rsv); 5616 if (IS_ERR(trans)) 5617 goto free_rsv; 5618 5619 trans->block_rsv = rsv; 5620 5621 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5622 0, 0, NULL); 5623 trans->block_rsv = &fs_info->trans_block_rsv; 5624 btrfs_end_transaction(trans); 5625 btrfs_btree_balance_dirty(fs_info); 5626 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5627 goto free_rsv; 5628 else if (!ret) 5629 break; 5630 } 5631 5632 /* 5633 * Errors here aren't a big deal, it just means we leave orphan items in 5634 * the tree. They will be cleaned up on the next mount. If the inode 5635 * number gets reused, cleanup deletes the orphan item without doing 5636 * anything, and unlink reuses the existing orphan item. 5637 * 5638 * If it turns out that we are dropping too many of these, we might want 5639 * to add a mechanism for retrying these after a commit. 5640 */ 5641 trans = evict_refill_and_join(root, rsv); 5642 if (!IS_ERR(trans)) { 5643 trans->block_rsv = rsv; 5644 btrfs_orphan_del(trans, BTRFS_I(inode)); 5645 trans->block_rsv = &fs_info->trans_block_rsv; 5646 btrfs_end_transaction(trans); 5647 } 5648 5649 free_rsv: 5650 btrfs_free_block_rsv(fs_info, rsv); 5651 no_delete: 5652 /* 5653 * If we didn't successfully delete, the orphan item will still be in 5654 * the tree and we'll retry on the next mount. Again, we might also want 5655 * to retry these periodically in the future. 5656 */ 5657 btrfs_remove_delayed_node(BTRFS_I(inode)); 5658 fsverity_cleanup_inode(inode); 5659 clear_inode(inode); 5660 } 5661 5662 /* 5663 * Return the key found in the dir entry in the location pointer, fill @type 5664 * with BTRFS_FT_*, and return 0. 5665 * 5666 * If no dir entries were found, returns -ENOENT. 5667 * If found a corrupted location in dir entry, returns -EUCLEAN. 5668 */ 5669 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5670 struct btrfs_key *location, u8 *type) 5671 { 5672 const char *name = dentry->d_name.name; 5673 int namelen = dentry->d_name.len; 5674 struct btrfs_dir_item *di; 5675 struct btrfs_path *path; 5676 struct btrfs_root *root = BTRFS_I(dir)->root; 5677 int ret = 0; 5678 5679 path = btrfs_alloc_path(); 5680 if (!path) 5681 return -ENOMEM; 5682 5683 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5684 name, namelen, 0); 5685 if (IS_ERR_OR_NULL(di)) { 5686 ret = di ? PTR_ERR(di) : -ENOENT; 5687 goto out; 5688 } 5689 5690 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5691 if (location->type != BTRFS_INODE_ITEM_KEY && 5692 location->type != BTRFS_ROOT_ITEM_KEY) { 5693 ret = -EUCLEAN; 5694 btrfs_warn(root->fs_info, 5695 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5696 __func__, name, btrfs_ino(BTRFS_I(dir)), 5697 location->objectid, location->type, location->offset); 5698 } 5699 if (!ret) 5700 *type = btrfs_dir_type(path->nodes[0], di); 5701 out: 5702 btrfs_free_path(path); 5703 return ret; 5704 } 5705 5706 /* 5707 * when we hit a tree root in a directory, the btrfs part of the inode 5708 * needs to be changed to reflect the root directory of the tree root. This 5709 * is kind of like crossing a mount point. 5710 */ 5711 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5712 struct inode *dir, 5713 struct dentry *dentry, 5714 struct btrfs_key *location, 5715 struct btrfs_root **sub_root) 5716 { 5717 struct btrfs_path *path; 5718 struct btrfs_root *new_root; 5719 struct btrfs_root_ref *ref; 5720 struct extent_buffer *leaf; 5721 struct btrfs_key key; 5722 int ret; 5723 int err = 0; 5724 5725 path = btrfs_alloc_path(); 5726 if (!path) { 5727 err = -ENOMEM; 5728 goto out; 5729 } 5730 5731 err = -ENOENT; 5732 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5733 key.type = BTRFS_ROOT_REF_KEY; 5734 key.offset = location->objectid; 5735 5736 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5737 if (ret) { 5738 if (ret < 0) 5739 err = ret; 5740 goto out; 5741 } 5742 5743 leaf = path->nodes[0]; 5744 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5745 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5746 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5747 goto out; 5748 5749 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5750 (unsigned long)(ref + 1), 5751 dentry->d_name.len); 5752 if (ret) 5753 goto out; 5754 5755 btrfs_release_path(path); 5756 5757 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5758 if (IS_ERR(new_root)) { 5759 err = PTR_ERR(new_root); 5760 goto out; 5761 } 5762 5763 *sub_root = new_root; 5764 location->objectid = btrfs_root_dirid(&new_root->root_item); 5765 location->type = BTRFS_INODE_ITEM_KEY; 5766 location->offset = 0; 5767 err = 0; 5768 out: 5769 btrfs_free_path(path); 5770 return err; 5771 } 5772 5773 static void inode_tree_add(struct inode *inode) 5774 { 5775 struct btrfs_root *root = BTRFS_I(inode)->root; 5776 struct btrfs_inode *entry; 5777 struct rb_node **p; 5778 struct rb_node *parent; 5779 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5780 u64 ino = btrfs_ino(BTRFS_I(inode)); 5781 5782 if (inode_unhashed(inode)) 5783 return; 5784 parent = NULL; 5785 spin_lock(&root->inode_lock); 5786 p = &root->inode_tree.rb_node; 5787 while (*p) { 5788 parent = *p; 5789 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5790 5791 if (ino < btrfs_ino(entry)) 5792 p = &parent->rb_left; 5793 else if (ino > btrfs_ino(entry)) 5794 p = &parent->rb_right; 5795 else { 5796 WARN_ON(!(entry->vfs_inode.i_state & 5797 (I_WILL_FREE | I_FREEING))); 5798 rb_replace_node(parent, new, &root->inode_tree); 5799 RB_CLEAR_NODE(parent); 5800 spin_unlock(&root->inode_lock); 5801 return; 5802 } 5803 } 5804 rb_link_node(new, parent, p); 5805 rb_insert_color(new, &root->inode_tree); 5806 spin_unlock(&root->inode_lock); 5807 } 5808 5809 static void inode_tree_del(struct btrfs_inode *inode) 5810 { 5811 struct btrfs_root *root = inode->root; 5812 int empty = 0; 5813 5814 spin_lock(&root->inode_lock); 5815 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5816 rb_erase(&inode->rb_node, &root->inode_tree); 5817 RB_CLEAR_NODE(&inode->rb_node); 5818 empty = RB_EMPTY_ROOT(&root->inode_tree); 5819 } 5820 spin_unlock(&root->inode_lock); 5821 5822 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5823 spin_lock(&root->inode_lock); 5824 empty = RB_EMPTY_ROOT(&root->inode_tree); 5825 spin_unlock(&root->inode_lock); 5826 if (empty) 5827 btrfs_add_dead_root(root); 5828 } 5829 } 5830 5831 5832 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5833 { 5834 struct btrfs_iget_args *args = p; 5835 5836 inode->i_ino = args->ino; 5837 BTRFS_I(inode)->location.objectid = args->ino; 5838 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5839 BTRFS_I(inode)->location.offset = 0; 5840 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5841 BUG_ON(args->root && !BTRFS_I(inode)->root); 5842 return 0; 5843 } 5844 5845 static int btrfs_find_actor(struct inode *inode, void *opaque) 5846 { 5847 struct btrfs_iget_args *args = opaque; 5848 5849 return args->ino == BTRFS_I(inode)->location.objectid && 5850 args->root == BTRFS_I(inode)->root; 5851 } 5852 5853 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5854 struct btrfs_root *root) 5855 { 5856 struct inode *inode; 5857 struct btrfs_iget_args args; 5858 unsigned long hashval = btrfs_inode_hash(ino, root); 5859 5860 args.ino = ino; 5861 args.root = root; 5862 5863 inode = iget5_locked(s, hashval, btrfs_find_actor, 5864 btrfs_init_locked_inode, 5865 (void *)&args); 5866 return inode; 5867 } 5868 5869 /* 5870 * Get an inode object given its inode number and corresponding root. 5871 * Path can be preallocated to prevent recursing back to iget through 5872 * allocator. NULL is also valid but may require an additional allocation 5873 * later. 5874 */ 5875 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5876 struct btrfs_root *root, struct btrfs_path *path) 5877 { 5878 struct inode *inode; 5879 5880 inode = btrfs_iget_locked(s, ino, root); 5881 if (!inode) 5882 return ERR_PTR(-ENOMEM); 5883 5884 if (inode->i_state & I_NEW) { 5885 int ret; 5886 5887 ret = btrfs_read_locked_inode(inode, path); 5888 if (!ret) { 5889 inode_tree_add(inode); 5890 unlock_new_inode(inode); 5891 } else { 5892 iget_failed(inode); 5893 /* 5894 * ret > 0 can come from btrfs_search_slot called by 5895 * btrfs_read_locked_inode, this means the inode item 5896 * was not found. 5897 */ 5898 if (ret > 0) 5899 ret = -ENOENT; 5900 inode = ERR_PTR(ret); 5901 } 5902 } 5903 5904 return inode; 5905 } 5906 5907 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5908 { 5909 return btrfs_iget_path(s, ino, root, NULL); 5910 } 5911 5912 static struct inode *new_simple_dir(struct super_block *s, 5913 struct btrfs_key *key, 5914 struct btrfs_root *root) 5915 { 5916 struct inode *inode = new_inode(s); 5917 5918 if (!inode) 5919 return ERR_PTR(-ENOMEM); 5920 5921 BTRFS_I(inode)->root = btrfs_grab_root(root); 5922 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5923 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5924 5925 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5926 /* 5927 * We only need lookup, the rest is read-only and there's no inode 5928 * associated with the dentry 5929 */ 5930 inode->i_op = &simple_dir_inode_operations; 5931 inode->i_opflags &= ~IOP_XATTR; 5932 inode->i_fop = &simple_dir_operations; 5933 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5934 inode->i_mtime = current_time(inode); 5935 inode->i_atime = inode->i_mtime; 5936 inode->i_ctime = inode->i_mtime; 5937 BTRFS_I(inode)->i_otime = inode->i_mtime; 5938 5939 return inode; 5940 } 5941 5942 static inline u8 btrfs_inode_type(struct inode *inode) 5943 { 5944 /* 5945 * Compile-time asserts that generic FT_* types still match 5946 * BTRFS_FT_* types 5947 */ 5948 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5949 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5950 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5951 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5952 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5953 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5954 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5955 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5956 5957 return fs_umode_to_ftype(inode->i_mode); 5958 } 5959 5960 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5961 { 5962 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5963 struct inode *inode; 5964 struct btrfs_root *root = BTRFS_I(dir)->root; 5965 struct btrfs_root *sub_root = root; 5966 struct btrfs_key location; 5967 u8 di_type = 0; 5968 int ret = 0; 5969 5970 if (dentry->d_name.len > BTRFS_NAME_LEN) 5971 return ERR_PTR(-ENAMETOOLONG); 5972 5973 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5974 if (ret < 0) 5975 return ERR_PTR(ret); 5976 5977 if (location.type == BTRFS_INODE_ITEM_KEY) { 5978 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5979 if (IS_ERR(inode)) 5980 return inode; 5981 5982 /* Do extra check against inode mode with di_type */ 5983 if (btrfs_inode_type(inode) != di_type) { 5984 btrfs_crit(fs_info, 5985 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5986 inode->i_mode, btrfs_inode_type(inode), 5987 di_type); 5988 iput(inode); 5989 return ERR_PTR(-EUCLEAN); 5990 } 5991 return inode; 5992 } 5993 5994 ret = fixup_tree_root_location(fs_info, dir, dentry, 5995 &location, &sub_root); 5996 if (ret < 0) { 5997 if (ret != -ENOENT) 5998 inode = ERR_PTR(ret); 5999 else 6000 inode = new_simple_dir(dir->i_sb, &location, sub_root); 6001 } else { 6002 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 6003 } 6004 if (root != sub_root) 6005 btrfs_put_root(sub_root); 6006 6007 if (!IS_ERR(inode) && root != sub_root) { 6008 down_read(&fs_info->cleanup_work_sem); 6009 if (!sb_rdonly(inode->i_sb)) 6010 ret = btrfs_orphan_cleanup(sub_root); 6011 up_read(&fs_info->cleanup_work_sem); 6012 if (ret) { 6013 iput(inode); 6014 inode = ERR_PTR(ret); 6015 } 6016 } 6017 6018 return inode; 6019 } 6020 6021 static int btrfs_dentry_delete(const struct dentry *dentry) 6022 { 6023 struct btrfs_root *root; 6024 struct inode *inode = d_inode(dentry); 6025 6026 if (!inode && !IS_ROOT(dentry)) 6027 inode = d_inode(dentry->d_parent); 6028 6029 if (inode) { 6030 root = BTRFS_I(inode)->root; 6031 if (btrfs_root_refs(&root->root_item) == 0) 6032 return 1; 6033 6034 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6035 return 1; 6036 } 6037 return 0; 6038 } 6039 6040 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 6041 unsigned int flags) 6042 { 6043 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 6044 6045 if (inode == ERR_PTR(-ENOENT)) 6046 inode = NULL; 6047 return d_splice_alias(inode, dentry); 6048 } 6049 6050 /* 6051 * All this infrastructure exists because dir_emit can fault, and we are holding 6052 * the tree lock when doing readdir. For now just allocate a buffer and copy 6053 * our information into that, and then dir_emit from the buffer. This is 6054 * similar to what NFS does, only we don't keep the buffer around in pagecache 6055 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6056 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6057 * tree lock. 6058 */ 6059 static int btrfs_opendir(struct inode *inode, struct file *file) 6060 { 6061 struct btrfs_file_private *private; 6062 6063 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6064 if (!private) 6065 return -ENOMEM; 6066 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6067 if (!private->filldir_buf) { 6068 kfree(private); 6069 return -ENOMEM; 6070 } 6071 file->private_data = private; 6072 return 0; 6073 } 6074 6075 struct dir_entry { 6076 u64 ino; 6077 u64 offset; 6078 unsigned type; 6079 int name_len; 6080 }; 6081 6082 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6083 { 6084 while (entries--) { 6085 struct dir_entry *entry = addr; 6086 char *name = (char *)(entry + 1); 6087 6088 ctx->pos = get_unaligned(&entry->offset); 6089 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6090 get_unaligned(&entry->ino), 6091 get_unaligned(&entry->type))) 6092 return 1; 6093 addr += sizeof(struct dir_entry) + 6094 get_unaligned(&entry->name_len); 6095 ctx->pos++; 6096 } 6097 return 0; 6098 } 6099 6100 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6101 { 6102 struct inode *inode = file_inode(file); 6103 struct btrfs_root *root = BTRFS_I(inode)->root; 6104 struct btrfs_file_private *private = file->private_data; 6105 struct btrfs_dir_item *di; 6106 struct btrfs_key key; 6107 struct btrfs_key found_key; 6108 struct btrfs_path *path; 6109 void *addr; 6110 struct list_head ins_list; 6111 struct list_head del_list; 6112 int ret; 6113 struct extent_buffer *leaf; 6114 int slot; 6115 char *name_ptr; 6116 int name_len; 6117 int entries = 0; 6118 int total_len = 0; 6119 bool put = false; 6120 struct btrfs_key location; 6121 6122 if (!dir_emit_dots(file, ctx)) 6123 return 0; 6124 6125 path = btrfs_alloc_path(); 6126 if (!path) 6127 return -ENOMEM; 6128 6129 addr = private->filldir_buf; 6130 path->reada = READA_FORWARD; 6131 6132 INIT_LIST_HEAD(&ins_list); 6133 INIT_LIST_HEAD(&del_list); 6134 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 6135 6136 again: 6137 key.type = BTRFS_DIR_INDEX_KEY; 6138 key.offset = ctx->pos; 6139 key.objectid = btrfs_ino(BTRFS_I(inode)); 6140 6141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6142 if (ret < 0) 6143 goto err; 6144 6145 while (1) { 6146 struct dir_entry *entry; 6147 6148 leaf = path->nodes[0]; 6149 slot = path->slots[0]; 6150 if (slot >= btrfs_header_nritems(leaf)) { 6151 ret = btrfs_next_leaf(root, path); 6152 if (ret < 0) 6153 goto err; 6154 else if (ret > 0) 6155 break; 6156 continue; 6157 } 6158 6159 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6160 6161 if (found_key.objectid != key.objectid) 6162 break; 6163 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6164 break; 6165 if (found_key.offset < ctx->pos) 6166 goto next; 6167 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6168 goto next; 6169 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6170 name_len = btrfs_dir_name_len(leaf, di); 6171 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6172 PAGE_SIZE) { 6173 btrfs_release_path(path); 6174 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6175 if (ret) 6176 goto nopos; 6177 addr = private->filldir_buf; 6178 entries = 0; 6179 total_len = 0; 6180 goto again; 6181 } 6182 6183 entry = addr; 6184 put_unaligned(name_len, &entry->name_len); 6185 name_ptr = (char *)(entry + 1); 6186 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6187 name_len); 6188 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6189 &entry->type); 6190 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6191 put_unaligned(location.objectid, &entry->ino); 6192 put_unaligned(found_key.offset, &entry->offset); 6193 entries++; 6194 addr += sizeof(struct dir_entry) + name_len; 6195 total_len += sizeof(struct dir_entry) + name_len; 6196 next: 6197 path->slots[0]++; 6198 } 6199 btrfs_release_path(path); 6200 6201 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6202 if (ret) 6203 goto nopos; 6204 6205 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6206 if (ret) 6207 goto nopos; 6208 6209 /* 6210 * Stop new entries from being returned after we return the last 6211 * entry. 6212 * 6213 * New directory entries are assigned a strictly increasing 6214 * offset. This means that new entries created during readdir 6215 * are *guaranteed* to be seen in the future by that readdir. 6216 * This has broken buggy programs which operate on names as 6217 * they're returned by readdir. Until we re-use freed offsets 6218 * we have this hack to stop new entries from being returned 6219 * under the assumption that they'll never reach this huge 6220 * offset. 6221 * 6222 * This is being careful not to overflow 32bit loff_t unless the 6223 * last entry requires it because doing so has broken 32bit apps 6224 * in the past. 6225 */ 6226 if (ctx->pos >= INT_MAX) 6227 ctx->pos = LLONG_MAX; 6228 else 6229 ctx->pos = INT_MAX; 6230 nopos: 6231 ret = 0; 6232 err: 6233 if (put) 6234 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6235 btrfs_free_path(path); 6236 return ret; 6237 } 6238 6239 /* 6240 * This is somewhat expensive, updating the tree every time the 6241 * inode changes. But, it is most likely to find the inode in cache. 6242 * FIXME, needs more benchmarking...there are no reasons other than performance 6243 * to keep or drop this code. 6244 */ 6245 static int btrfs_dirty_inode(struct inode *inode) 6246 { 6247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6248 struct btrfs_root *root = BTRFS_I(inode)->root; 6249 struct btrfs_trans_handle *trans; 6250 int ret; 6251 6252 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6253 return 0; 6254 6255 trans = btrfs_join_transaction(root); 6256 if (IS_ERR(trans)) 6257 return PTR_ERR(trans); 6258 6259 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6260 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6261 /* whoops, lets try again with the full transaction */ 6262 btrfs_end_transaction(trans); 6263 trans = btrfs_start_transaction(root, 1); 6264 if (IS_ERR(trans)) 6265 return PTR_ERR(trans); 6266 6267 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6268 } 6269 btrfs_end_transaction(trans); 6270 if (BTRFS_I(inode)->delayed_node) 6271 btrfs_balance_delayed_items(fs_info); 6272 6273 return ret; 6274 } 6275 6276 /* 6277 * This is a copy of file_update_time. We need this so we can return error on 6278 * ENOSPC for updating the inode in the case of file write and mmap writes. 6279 */ 6280 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6281 int flags) 6282 { 6283 struct btrfs_root *root = BTRFS_I(inode)->root; 6284 bool dirty = flags & ~S_VERSION; 6285 6286 if (btrfs_root_readonly(root)) 6287 return -EROFS; 6288 6289 if (flags & S_VERSION) 6290 dirty |= inode_maybe_inc_iversion(inode, dirty); 6291 if (flags & S_CTIME) 6292 inode->i_ctime = *now; 6293 if (flags & S_MTIME) 6294 inode->i_mtime = *now; 6295 if (flags & S_ATIME) 6296 inode->i_atime = *now; 6297 return dirty ? btrfs_dirty_inode(inode) : 0; 6298 } 6299 6300 /* 6301 * find the highest existing sequence number in a directory 6302 * and then set the in-memory index_cnt variable to reflect 6303 * free sequence numbers 6304 */ 6305 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6306 { 6307 struct btrfs_root *root = inode->root; 6308 struct btrfs_key key, found_key; 6309 struct btrfs_path *path; 6310 struct extent_buffer *leaf; 6311 int ret; 6312 6313 key.objectid = btrfs_ino(inode); 6314 key.type = BTRFS_DIR_INDEX_KEY; 6315 key.offset = (u64)-1; 6316 6317 path = btrfs_alloc_path(); 6318 if (!path) 6319 return -ENOMEM; 6320 6321 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6322 if (ret < 0) 6323 goto out; 6324 /* FIXME: we should be able to handle this */ 6325 if (ret == 0) 6326 goto out; 6327 ret = 0; 6328 6329 /* 6330 * MAGIC NUMBER EXPLANATION: 6331 * since we search a directory based on f_pos we have to start at 2 6332 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6333 * else has to start at 2 6334 */ 6335 if (path->slots[0] == 0) { 6336 inode->index_cnt = 2; 6337 goto out; 6338 } 6339 6340 path->slots[0]--; 6341 6342 leaf = path->nodes[0]; 6343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6344 6345 if (found_key.objectid != btrfs_ino(inode) || 6346 found_key.type != BTRFS_DIR_INDEX_KEY) { 6347 inode->index_cnt = 2; 6348 goto out; 6349 } 6350 6351 inode->index_cnt = found_key.offset + 1; 6352 out: 6353 btrfs_free_path(path); 6354 return ret; 6355 } 6356 6357 /* 6358 * helper to find a free sequence number in a given directory. This current 6359 * code is very simple, later versions will do smarter things in the btree 6360 */ 6361 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6362 { 6363 int ret = 0; 6364 6365 if (dir->index_cnt == (u64)-1) { 6366 ret = btrfs_inode_delayed_dir_index_count(dir); 6367 if (ret) { 6368 ret = btrfs_set_inode_index_count(dir); 6369 if (ret) 6370 return ret; 6371 } 6372 } 6373 6374 *index = dir->index_cnt; 6375 dir->index_cnt++; 6376 6377 return ret; 6378 } 6379 6380 static int btrfs_insert_inode_locked(struct inode *inode) 6381 { 6382 struct btrfs_iget_args args; 6383 6384 args.ino = BTRFS_I(inode)->location.objectid; 6385 args.root = BTRFS_I(inode)->root; 6386 6387 return insert_inode_locked4(inode, 6388 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6389 btrfs_find_actor, &args); 6390 } 6391 6392 /* 6393 * Inherit flags from the parent inode. 6394 * 6395 * Currently only the compression flags and the cow flags are inherited. 6396 */ 6397 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6398 { 6399 unsigned int flags; 6400 6401 if (!dir) 6402 return; 6403 6404 flags = BTRFS_I(dir)->flags; 6405 6406 if (flags & BTRFS_INODE_NOCOMPRESS) { 6407 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6408 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6409 } else if (flags & BTRFS_INODE_COMPRESS) { 6410 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6411 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6412 } 6413 6414 if (flags & BTRFS_INODE_NODATACOW) { 6415 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6416 if (S_ISREG(inode->i_mode)) 6417 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6418 } 6419 6420 btrfs_sync_inode_flags_to_i_flags(inode); 6421 } 6422 6423 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6424 struct btrfs_root *root, 6425 struct user_namespace *mnt_userns, 6426 struct inode *dir, 6427 const char *name, int name_len, 6428 u64 ref_objectid, u64 objectid, 6429 umode_t mode, u64 *index) 6430 { 6431 struct btrfs_fs_info *fs_info = root->fs_info; 6432 struct inode *inode; 6433 struct btrfs_inode_item *inode_item; 6434 struct btrfs_key *location; 6435 struct btrfs_path *path; 6436 struct btrfs_inode_ref *ref; 6437 struct btrfs_key key[2]; 6438 u32 sizes[2]; 6439 int nitems = name ? 2 : 1; 6440 unsigned long ptr; 6441 unsigned int nofs_flag; 6442 int ret; 6443 6444 path = btrfs_alloc_path(); 6445 if (!path) 6446 return ERR_PTR(-ENOMEM); 6447 6448 nofs_flag = memalloc_nofs_save(); 6449 inode = new_inode(fs_info->sb); 6450 memalloc_nofs_restore(nofs_flag); 6451 if (!inode) { 6452 btrfs_free_path(path); 6453 return ERR_PTR(-ENOMEM); 6454 } 6455 6456 /* 6457 * O_TMPFILE, set link count to 0, so that after this point, 6458 * we fill in an inode item with the correct link count. 6459 */ 6460 if (!name) 6461 set_nlink(inode, 0); 6462 6463 /* 6464 * we have to initialize this early, so we can reclaim the inode 6465 * number if we fail afterwards in this function. 6466 */ 6467 inode->i_ino = objectid; 6468 6469 if (dir && name) { 6470 trace_btrfs_inode_request(dir); 6471 6472 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6473 if (ret) { 6474 btrfs_free_path(path); 6475 iput(inode); 6476 return ERR_PTR(ret); 6477 } 6478 } else if (dir) { 6479 *index = 0; 6480 } 6481 /* 6482 * index_cnt is ignored for everything but a dir, 6483 * btrfs_set_inode_index_count has an explanation for the magic 6484 * number 6485 */ 6486 BTRFS_I(inode)->index_cnt = 2; 6487 BTRFS_I(inode)->dir_index = *index; 6488 BTRFS_I(inode)->root = btrfs_grab_root(root); 6489 BTRFS_I(inode)->generation = trans->transid; 6490 inode->i_generation = BTRFS_I(inode)->generation; 6491 6492 /* 6493 * We could have gotten an inode number from somebody who was fsynced 6494 * and then removed in this same transaction, so let's just set full 6495 * sync since it will be a full sync anyway and this will blow away the 6496 * old info in the log. 6497 */ 6498 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6499 6500 key[0].objectid = objectid; 6501 key[0].type = BTRFS_INODE_ITEM_KEY; 6502 key[0].offset = 0; 6503 6504 sizes[0] = sizeof(struct btrfs_inode_item); 6505 6506 if (name) { 6507 /* 6508 * Start new inodes with an inode_ref. This is slightly more 6509 * efficient for small numbers of hard links since they will 6510 * be packed into one item. Extended refs will kick in if we 6511 * add more hard links than can fit in the ref item. 6512 */ 6513 key[1].objectid = objectid; 6514 key[1].type = BTRFS_INODE_REF_KEY; 6515 key[1].offset = ref_objectid; 6516 6517 sizes[1] = name_len + sizeof(*ref); 6518 } 6519 6520 location = &BTRFS_I(inode)->location; 6521 location->objectid = objectid; 6522 location->offset = 0; 6523 location->type = BTRFS_INODE_ITEM_KEY; 6524 6525 ret = btrfs_insert_inode_locked(inode); 6526 if (ret < 0) { 6527 iput(inode); 6528 goto fail; 6529 } 6530 6531 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6532 if (ret != 0) 6533 goto fail_unlock; 6534 6535 inode_init_owner(mnt_userns, inode, dir, mode); 6536 inode_set_bytes(inode, 0); 6537 6538 inode->i_mtime = current_time(inode); 6539 inode->i_atime = inode->i_mtime; 6540 inode->i_ctime = inode->i_mtime; 6541 BTRFS_I(inode)->i_otime = inode->i_mtime; 6542 6543 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6544 struct btrfs_inode_item); 6545 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6546 sizeof(*inode_item)); 6547 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6548 6549 if (name) { 6550 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6551 struct btrfs_inode_ref); 6552 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6553 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6554 ptr = (unsigned long)(ref + 1); 6555 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6556 } 6557 6558 btrfs_mark_buffer_dirty(path->nodes[0]); 6559 btrfs_free_path(path); 6560 6561 btrfs_inherit_iflags(inode, dir); 6562 6563 if (S_ISREG(mode)) { 6564 if (btrfs_test_opt(fs_info, NODATASUM)) 6565 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6566 if (btrfs_test_opt(fs_info, NODATACOW)) 6567 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6568 BTRFS_INODE_NODATASUM; 6569 } 6570 6571 inode_tree_add(inode); 6572 6573 trace_btrfs_inode_new(inode); 6574 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6575 6576 btrfs_update_root_times(trans, root); 6577 6578 ret = btrfs_inode_inherit_props(trans, inode, dir); 6579 if (ret) 6580 btrfs_err(fs_info, 6581 "error inheriting props for ino %llu (root %llu): %d", 6582 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6583 6584 return inode; 6585 6586 fail_unlock: 6587 discard_new_inode(inode); 6588 fail: 6589 if (dir && name) 6590 BTRFS_I(dir)->index_cnt--; 6591 btrfs_free_path(path); 6592 return ERR_PTR(ret); 6593 } 6594 6595 /* 6596 * utility function to add 'inode' into 'parent_inode' with 6597 * a give name and a given sequence number. 6598 * if 'add_backref' is true, also insert a backref from the 6599 * inode to the parent directory. 6600 */ 6601 int btrfs_add_link(struct btrfs_trans_handle *trans, 6602 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6603 const char *name, int name_len, int add_backref, u64 index) 6604 { 6605 int ret = 0; 6606 struct btrfs_key key; 6607 struct btrfs_root *root = parent_inode->root; 6608 u64 ino = btrfs_ino(inode); 6609 u64 parent_ino = btrfs_ino(parent_inode); 6610 6611 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6612 memcpy(&key, &inode->root->root_key, sizeof(key)); 6613 } else { 6614 key.objectid = ino; 6615 key.type = BTRFS_INODE_ITEM_KEY; 6616 key.offset = 0; 6617 } 6618 6619 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6620 ret = btrfs_add_root_ref(trans, key.objectid, 6621 root->root_key.objectid, parent_ino, 6622 index, name, name_len); 6623 } else if (add_backref) { 6624 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6625 parent_ino, index); 6626 } 6627 6628 /* Nothing to clean up yet */ 6629 if (ret) 6630 return ret; 6631 6632 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6633 btrfs_inode_type(&inode->vfs_inode), index); 6634 if (ret == -EEXIST || ret == -EOVERFLOW) 6635 goto fail_dir_item; 6636 else if (ret) { 6637 btrfs_abort_transaction(trans, ret); 6638 return ret; 6639 } 6640 6641 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6642 name_len * 2); 6643 inode_inc_iversion(&parent_inode->vfs_inode); 6644 /* 6645 * If we are replaying a log tree, we do not want to update the mtime 6646 * and ctime of the parent directory with the current time, since the 6647 * log replay procedure is responsible for setting them to their correct 6648 * values (the ones it had when the fsync was done). 6649 */ 6650 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6651 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6652 6653 parent_inode->vfs_inode.i_mtime = now; 6654 parent_inode->vfs_inode.i_ctime = now; 6655 } 6656 ret = btrfs_update_inode(trans, root, parent_inode); 6657 if (ret) 6658 btrfs_abort_transaction(trans, ret); 6659 return ret; 6660 6661 fail_dir_item: 6662 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6663 u64 local_index; 6664 int err; 6665 err = btrfs_del_root_ref(trans, key.objectid, 6666 root->root_key.objectid, parent_ino, 6667 &local_index, name, name_len); 6668 if (err) 6669 btrfs_abort_transaction(trans, err); 6670 } else if (add_backref) { 6671 u64 local_index; 6672 int err; 6673 6674 err = btrfs_del_inode_ref(trans, root, name, name_len, 6675 ino, parent_ino, &local_index); 6676 if (err) 6677 btrfs_abort_transaction(trans, err); 6678 } 6679 6680 /* Return the original error code */ 6681 return ret; 6682 } 6683 6684 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6685 struct btrfs_inode *dir, struct dentry *dentry, 6686 struct btrfs_inode *inode, int backref, u64 index) 6687 { 6688 int err = btrfs_add_link(trans, dir, inode, 6689 dentry->d_name.name, dentry->d_name.len, 6690 backref, index); 6691 if (err > 0) 6692 err = -EEXIST; 6693 return err; 6694 } 6695 6696 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6697 struct dentry *dentry, umode_t mode, dev_t rdev) 6698 { 6699 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6700 struct btrfs_trans_handle *trans; 6701 struct btrfs_root *root = BTRFS_I(dir)->root; 6702 struct inode *inode = NULL; 6703 int err; 6704 u64 objectid; 6705 u64 index = 0; 6706 6707 /* 6708 * 2 for inode item and ref 6709 * 2 for dir items 6710 * 1 for xattr if selinux is on 6711 */ 6712 trans = btrfs_start_transaction(root, 5); 6713 if (IS_ERR(trans)) 6714 return PTR_ERR(trans); 6715 6716 err = btrfs_get_free_objectid(root, &objectid); 6717 if (err) 6718 goto out_unlock; 6719 6720 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6721 dentry->d_name.name, dentry->d_name.len, 6722 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 6723 if (IS_ERR(inode)) { 6724 err = PTR_ERR(inode); 6725 inode = NULL; 6726 goto out_unlock; 6727 } 6728 6729 /* 6730 * If the active LSM wants to access the inode during 6731 * d_instantiate it needs these. Smack checks to see 6732 * if the filesystem supports xattrs by looking at the 6733 * ops vector. 6734 */ 6735 inode->i_op = &btrfs_special_inode_operations; 6736 init_special_inode(inode, inode->i_mode, rdev); 6737 6738 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6739 if (err) 6740 goto out_unlock; 6741 6742 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6743 0, index); 6744 if (err) 6745 goto out_unlock; 6746 6747 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6748 d_instantiate_new(dentry, inode); 6749 6750 out_unlock: 6751 btrfs_end_transaction(trans); 6752 btrfs_btree_balance_dirty(fs_info); 6753 if (err && inode) { 6754 inode_dec_link_count(inode); 6755 discard_new_inode(inode); 6756 } 6757 return err; 6758 } 6759 6760 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6761 struct dentry *dentry, umode_t mode, bool excl) 6762 { 6763 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6764 struct btrfs_trans_handle *trans; 6765 struct btrfs_root *root = BTRFS_I(dir)->root; 6766 struct inode *inode = NULL; 6767 int err; 6768 u64 objectid; 6769 u64 index = 0; 6770 6771 /* 6772 * 2 for inode item and ref 6773 * 2 for dir items 6774 * 1 for xattr if selinux is on 6775 */ 6776 trans = btrfs_start_transaction(root, 5); 6777 if (IS_ERR(trans)) 6778 return PTR_ERR(trans); 6779 6780 err = btrfs_get_free_objectid(root, &objectid); 6781 if (err) 6782 goto out_unlock; 6783 6784 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6785 dentry->d_name.name, dentry->d_name.len, 6786 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 6787 if (IS_ERR(inode)) { 6788 err = PTR_ERR(inode); 6789 inode = NULL; 6790 goto out_unlock; 6791 } 6792 /* 6793 * If the active LSM wants to access the inode during 6794 * d_instantiate it needs these. Smack checks to see 6795 * if the filesystem supports xattrs by looking at the 6796 * ops vector. 6797 */ 6798 inode->i_fop = &btrfs_file_operations; 6799 inode->i_op = &btrfs_file_inode_operations; 6800 inode->i_mapping->a_ops = &btrfs_aops; 6801 6802 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6803 if (err) 6804 goto out_unlock; 6805 6806 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6807 if (err) 6808 goto out_unlock; 6809 6810 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6811 0, index); 6812 if (err) 6813 goto out_unlock; 6814 6815 d_instantiate_new(dentry, inode); 6816 6817 out_unlock: 6818 btrfs_end_transaction(trans); 6819 if (err && inode) { 6820 inode_dec_link_count(inode); 6821 discard_new_inode(inode); 6822 } 6823 btrfs_btree_balance_dirty(fs_info); 6824 return err; 6825 } 6826 6827 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6828 struct dentry *dentry) 6829 { 6830 struct btrfs_trans_handle *trans = NULL; 6831 struct btrfs_root *root = BTRFS_I(dir)->root; 6832 struct inode *inode = d_inode(old_dentry); 6833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6834 u64 index; 6835 int err; 6836 int drop_inode = 0; 6837 6838 /* do not allow sys_link's with other subvols of the same device */ 6839 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6840 return -EXDEV; 6841 6842 if (inode->i_nlink >= BTRFS_LINK_MAX) 6843 return -EMLINK; 6844 6845 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6846 if (err) 6847 goto fail; 6848 6849 /* 6850 * 2 items for inode and inode ref 6851 * 2 items for dir items 6852 * 1 item for parent inode 6853 * 1 item for orphan item deletion if O_TMPFILE 6854 */ 6855 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6856 if (IS_ERR(trans)) { 6857 err = PTR_ERR(trans); 6858 trans = NULL; 6859 goto fail; 6860 } 6861 6862 /* There are several dir indexes for this inode, clear the cache. */ 6863 BTRFS_I(inode)->dir_index = 0ULL; 6864 inc_nlink(inode); 6865 inode_inc_iversion(inode); 6866 inode->i_ctime = current_time(inode); 6867 ihold(inode); 6868 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6869 6870 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6871 1, index); 6872 6873 if (err) { 6874 drop_inode = 1; 6875 } else { 6876 struct dentry *parent = dentry->d_parent; 6877 6878 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6879 if (err) 6880 goto fail; 6881 if (inode->i_nlink == 1) { 6882 /* 6883 * If new hard link count is 1, it's a file created 6884 * with open(2) O_TMPFILE flag. 6885 */ 6886 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6887 if (err) 6888 goto fail; 6889 } 6890 d_instantiate(dentry, inode); 6891 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6892 } 6893 6894 fail: 6895 if (trans) 6896 btrfs_end_transaction(trans); 6897 if (drop_inode) { 6898 inode_dec_link_count(inode); 6899 iput(inode); 6900 } 6901 btrfs_btree_balance_dirty(fs_info); 6902 return err; 6903 } 6904 6905 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6906 struct dentry *dentry, umode_t mode) 6907 { 6908 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6909 struct inode *inode = NULL; 6910 struct btrfs_trans_handle *trans; 6911 struct btrfs_root *root = BTRFS_I(dir)->root; 6912 int err = 0; 6913 u64 objectid = 0; 6914 u64 index = 0; 6915 6916 /* 6917 * 2 items for inode and ref 6918 * 2 items for dir items 6919 * 1 for xattr if selinux is on 6920 */ 6921 trans = btrfs_start_transaction(root, 5); 6922 if (IS_ERR(trans)) 6923 return PTR_ERR(trans); 6924 6925 err = btrfs_get_free_objectid(root, &objectid); 6926 if (err) 6927 goto out_fail; 6928 6929 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6930 dentry->d_name.name, dentry->d_name.len, 6931 btrfs_ino(BTRFS_I(dir)), objectid, 6932 S_IFDIR | mode, &index); 6933 if (IS_ERR(inode)) { 6934 err = PTR_ERR(inode); 6935 inode = NULL; 6936 goto out_fail; 6937 } 6938 6939 /* these must be set before we unlock the inode */ 6940 inode->i_op = &btrfs_dir_inode_operations; 6941 inode->i_fop = &btrfs_dir_file_operations; 6942 6943 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6944 if (err) 6945 goto out_fail; 6946 6947 btrfs_i_size_write(BTRFS_I(inode), 0); 6948 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6949 if (err) 6950 goto out_fail; 6951 6952 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6953 dentry->d_name.name, 6954 dentry->d_name.len, 0, index); 6955 if (err) 6956 goto out_fail; 6957 6958 d_instantiate_new(dentry, inode); 6959 6960 out_fail: 6961 btrfs_end_transaction(trans); 6962 if (err && inode) { 6963 inode_dec_link_count(inode); 6964 discard_new_inode(inode); 6965 } 6966 btrfs_btree_balance_dirty(fs_info); 6967 return err; 6968 } 6969 6970 static noinline int uncompress_inline(struct btrfs_path *path, 6971 struct page *page, 6972 size_t pg_offset, u64 extent_offset, 6973 struct btrfs_file_extent_item *item) 6974 { 6975 int ret; 6976 struct extent_buffer *leaf = path->nodes[0]; 6977 char *tmp; 6978 size_t max_size; 6979 unsigned long inline_size; 6980 unsigned long ptr; 6981 int compress_type; 6982 6983 WARN_ON(pg_offset != 0); 6984 compress_type = btrfs_file_extent_compression(leaf, item); 6985 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6986 inline_size = btrfs_file_extent_inline_item_len(leaf, 6987 btrfs_item_nr(path->slots[0])); 6988 tmp = kmalloc(inline_size, GFP_NOFS); 6989 if (!tmp) 6990 return -ENOMEM; 6991 ptr = btrfs_file_extent_inline_start(item); 6992 6993 read_extent_buffer(leaf, tmp, ptr, inline_size); 6994 6995 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6996 ret = btrfs_decompress(compress_type, tmp, page, 6997 extent_offset, inline_size, max_size); 6998 6999 /* 7000 * decompression code contains a memset to fill in any space between the end 7001 * of the uncompressed data and the end of max_size in case the decompressed 7002 * data ends up shorter than ram_bytes. That doesn't cover the hole between 7003 * the end of an inline extent and the beginning of the next block, so we 7004 * cover that region here. 7005 */ 7006 7007 if (max_size + pg_offset < PAGE_SIZE) 7008 memzero_page(page, pg_offset + max_size, 7009 PAGE_SIZE - max_size - pg_offset); 7010 kfree(tmp); 7011 return ret; 7012 } 7013 7014 /** 7015 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 7016 * @inode: file to search in 7017 * @page: page to read extent data into if the extent is inline 7018 * @pg_offset: offset into @page to copy to 7019 * @start: file offset 7020 * @len: length of range starting at @start 7021 * 7022 * This returns the first &struct extent_map which overlaps with the given 7023 * range, reading it from the B-tree and caching it if necessary. Note that 7024 * there may be more extents which overlap the given range after the returned 7025 * extent_map. 7026 * 7027 * If @page is not NULL and the extent is inline, this also reads the extent 7028 * data directly into the page and marks the extent up to date in the io_tree. 7029 * 7030 * Return: ERR_PTR on error, non-NULL extent_map on success. 7031 */ 7032 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 7033 struct page *page, size_t pg_offset, 7034 u64 start, u64 len) 7035 { 7036 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7037 int ret = 0; 7038 u64 extent_start = 0; 7039 u64 extent_end = 0; 7040 u64 objectid = btrfs_ino(inode); 7041 int extent_type = -1; 7042 struct btrfs_path *path = NULL; 7043 struct btrfs_root *root = inode->root; 7044 struct btrfs_file_extent_item *item; 7045 struct extent_buffer *leaf; 7046 struct btrfs_key found_key; 7047 struct extent_map *em = NULL; 7048 struct extent_map_tree *em_tree = &inode->extent_tree; 7049 struct extent_io_tree *io_tree = &inode->io_tree; 7050 7051 read_lock(&em_tree->lock); 7052 em = lookup_extent_mapping(em_tree, start, len); 7053 read_unlock(&em_tree->lock); 7054 7055 if (em) { 7056 if (em->start > start || em->start + em->len <= start) 7057 free_extent_map(em); 7058 else if (em->block_start == EXTENT_MAP_INLINE && page) 7059 free_extent_map(em); 7060 else 7061 goto out; 7062 } 7063 em = alloc_extent_map(); 7064 if (!em) { 7065 ret = -ENOMEM; 7066 goto out; 7067 } 7068 em->start = EXTENT_MAP_HOLE; 7069 em->orig_start = EXTENT_MAP_HOLE; 7070 em->len = (u64)-1; 7071 em->block_len = (u64)-1; 7072 7073 path = btrfs_alloc_path(); 7074 if (!path) { 7075 ret = -ENOMEM; 7076 goto out; 7077 } 7078 7079 /* Chances are we'll be called again, so go ahead and do readahead */ 7080 path->reada = READA_FORWARD; 7081 7082 /* 7083 * The same explanation in load_free_space_cache applies here as well, 7084 * we only read when we're loading the free space cache, and at that 7085 * point the commit_root has everything we need. 7086 */ 7087 if (btrfs_is_free_space_inode(inode)) { 7088 path->search_commit_root = 1; 7089 path->skip_locking = 1; 7090 } 7091 7092 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7093 if (ret < 0) { 7094 goto out; 7095 } else if (ret > 0) { 7096 if (path->slots[0] == 0) 7097 goto not_found; 7098 path->slots[0]--; 7099 ret = 0; 7100 } 7101 7102 leaf = path->nodes[0]; 7103 item = btrfs_item_ptr(leaf, path->slots[0], 7104 struct btrfs_file_extent_item); 7105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7106 if (found_key.objectid != objectid || 7107 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7108 /* 7109 * If we backup past the first extent we want to move forward 7110 * and see if there is an extent in front of us, otherwise we'll 7111 * say there is a hole for our whole search range which can 7112 * cause problems. 7113 */ 7114 extent_end = start; 7115 goto next; 7116 } 7117 7118 extent_type = btrfs_file_extent_type(leaf, item); 7119 extent_start = found_key.offset; 7120 extent_end = btrfs_file_extent_end(path); 7121 if (extent_type == BTRFS_FILE_EXTENT_REG || 7122 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7123 /* Only regular file could have regular/prealloc extent */ 7124 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7125 ret = -EUCLEAN; 7126 btrfs_crit(fs_info, 7127 "regular/prealloc extent found for non-regular inode %llu", 7128 btrfs_ino(inode)); 7129 goto out; 7130 } 7131 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7132 extent_start); 7133 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7134 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7135 path->slots[0], 7136 extent_start); 7137 } 7138 next: 7139 if (start >= extent_end) { 7140 path->slots[0]++; 7141 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7142 ret = btrfs_next_leaf(root, path); 7143 if (ret < 0) 7144 goto out; 7145 else if (ret > 0) 7146 goto not_found; 7147 7148 leaf = path->nodes[0]; 7149 } 7150 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7151 if (found_key.objectid != objectid || 7152 found_key.type != BTRFS_EXTENT_DATA_KEY) 7153 goto not_found; 7154 if (start + len <= found_key.offset) 7155 goto not_found; 7156 if (start > found_key.offset) 7157 goto next; 7158 7159 /* New extent overlaps with existing one */ 7160 em->start = start; 7161 em->orig_start = start; 7162 em->len = found_key.offset - start; 7163 em->block_start = EXTENT_MAP_HOLE; 7164 goto insert; 7165 } 7166 7167 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 7168 7169 if (extent_type == BTRFS_FILE_EXTENT_REG || 7170 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7171 goto insert; 7172 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7173 unsigned long ptr; 7174 char *map; 7175 size_t size; 7176 size_t extent_offset; 7177 size_t copy_size; 7178 7179 if (!page) 7180 goto out; 7181 7182 size = btrfs_file_extent_ram_bytes(leaf, item); 7183 extent_offset = page_offset(page) + pg_offset - extent_start; 7184 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7185 size - extent_offset); 7186 em->start = extent_start + extent_offset; 7187 em->len = ALIGN(copy_size, fs_info->sectorsize); 7188 em->orig_block_len = em->len; 7189 em->orig_start = em->start; 7190 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7191 7192 if (!PageUptodate(page)) { 7193 if (btrfs_file_extent_compression(leaf, item) != 7194 BTRFS_COMPRESS_NONE) { 7195 ret = uncompress_inline(path, page, pg_offset, 7196 extent_offset, item); 7197 if (ret) 7198 goto out; 7199 } else { 7200 map = kmap_local_page(page); 7201 read_extent_buffer(leaf, map + pg_offset, ptr, 7202 copy_size); 7203 if (pg_offset + copy_size < PAGE_SIZE) { 7204 memset(map + pg_offset + copy_size, 0, 7205 PAGE_SIZE - pg_offset - 7206 copy_size); 7207 } 7208 kunmap_local(map); 7209 } 7210 flush_dcache_page(page); 7211 } 7212 set_extent_uptodate(io_tree, em->start, 7213 extent_map_end(em) - 1, NULL, GFP_NOFS); 7214 goto insert; 7215 } 7216 not_found: 7217 em->start = start; 7218 em->orig_start = start; 7219 em->len = len; 7220 em->block_start = EXTENT_MAP_HOLE; 7221 insert: 7222 ret = 0; 7223 btrfs_release_path(path); 7224 if (em->start > start || extent_map_end(em) <= start) { 7225 btrfs_err(fs_info, 7226 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7227 em->start, em->len, start, len); 7228 ret = -EIO; 7229 goto out; 7230 } 7231 7232 write_lock(&em_tree->lock); 7233 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7234 write_unlock(&em_tree->lock); 7235 out: 7236 btrfs_free_path(path); 7237 7238 trace_btrfs_get_extent(root, inode, em); 7239 7240 if (ret) { 7241 free_extent_map(em); 7242 return ERR_PTR(ret); 7243 } 7244 return em; 7245 } 7246 7247 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7248 u64 start, u64 len) 7249 { 7250 struct extent_map *em; 7251 struct extent_map *hole_em = NULL; 7252 u64 delalloc_start = start; 7253 u64 end; 7254 u64 delalloc_len; 7255 u64 delalloc_end; 7256 int err = 0; 7257 7258 em = btrfs_get_extent(inode, NULL, 0, start, len); 7259 if (IS_ERR(em)) 7260 return em; 7261 /* 7262 * If our em maps to: 7263 * - a hole or 7264 * - a pre-alloc extent, 7265 * there might actually be delalloc bytes behind it. 7266 */ 7267 if (em->block_start != EXTENT_MAP_HOLE && 7268 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7269 return em; 7270 else 7271 hole_em = em; 7272 7273 /* check to see if we've wrapped (len == -1 or similar) */ 7274 end = start + len; 7275 if (end < start) 7276 end = (u64)-1; 7277 else 7278 end -= 1; 7279 7280 em = NULL; 7281 7282 /* ok, we didn't find anything, lets look for delalloc */ 7283 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7284 end, len, EXTENT_DELALLOC, 1); 7285 delalloc_end = delalloc_start + delalloc_len; 7286 if (delalloc_end < delalloc_start) 7287 delalloc_end = (u64)-1; 7288 7289 /* 7290 * We didn't find anything useful, return the original results from 7291 * get_extent() 7292 */ 7293 if (delalloc_start > end || delalloc_end <= start) { 7294 em = hole_em; 7295 hole_em = NULL; 7296 goto out; 7297 } 7298 7299 /* 7300 * Adjust the delalloc_start to make sure it doesn't go backwards from 7301 * the start they passed in 7302 */ 7303 delalloc_start = max(start, delalloc_start); 7304 delalloc_len = delalloc_end - delalloc_start; 7305 7306 if (delalloc_len > 0) { 7307 u64 hole_start; 7308 u64 hole_len; 7309 const u64 hole_end = extent_map_end(hole_em); 7310 7311 em = alloc_extent_map(); 7312 if (!em) { 7313 err = -ENOMEM; 7314 goto out; 7315 } 7316 7317 ASSERT(hole_em); 7318 /* 7319 * When btrfs_get_extent can't find anything it returns one 7320 * huge hole 7321 * 7322 * Make sure what it found really fits our range, and adjust to 7323 * make sure it is based on the start from the caller 7324 */ 7325 if (hole_end <= start || hole_em->start > end) { 7326 free_extent_map(hole_em); 7327 hole_em = NULL; 7328 } else { 7329 hole_start = max(hole_em->start, start); 7330 hole_len = hole_end - hole_start; 7331 } 7332 7333 if (hole_em && delalloc_start > hole_start) { 7334 /* 7335 * Our hole starts before our delalloc, so we have to 7336 * return just the parts of the hole that go until the 7337 * delalloc starts 7338 */ 7339 em->len = min(hole_len, delalloc_start - hole_start); 7340 em->start = hole_start; 7341 em->orig_start = hole_start; 7342 /* 7343 * Don't adjust block start at all, it is fixed at 7344 * EXTENT_MAP_HOLE 7345 */ 7346 em->block_start = hole_em->block_start; 7347 em->block_len = hole_len; 7348 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7349 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7350 } else { 7351 /* 7352 * Hole is out of passed range or it starts after 7353 * delalloc range 7354 */ 7355 em->start = delalloc_start; 7356 em->len = delalloc_len; 7357 em->orig_start = delalloc_start; 7358 em->block_start = EXTENT_MAP_DELALLOC; 7359 em->block_len = delalloc_len; 7360 } 7361 } else { 7362 return hole_em; 7363 } 7364 out: 7365 7366 free_extent_map(hole_em); 7367 if (err) { 7368 free_extent_map(em); 7369 return ERR_PTR(err); 7370 } 7371 return em; 7372 } 7373 7374 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7375 const u64 start, 7376 const u64 len, 7377 const u64 orig_start, 7378 const u64 block_start, 7379 const u64 block_len, 7380 const u64 orig_block_len, 7381 const u64 ram_bytes, 7382 const int type) 7383 { 7384 struct extent_map *em = NULL; 7385 int ret; 7386 7387 if (type != BTRFS_ORDERED_NOCOW) { 7388 em = create_io_em(inode, start, len, orig_start, block_start, 7389 block_len, orig_block_len, ram_bytes, 7390 BTRFS_COMPRESS_NONE, /* compress_type */ 7391 type); 7392 if (IS_ERR(em)) 7393 goto out; 7394 } 7395 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7396 block_len, type); 7397 if (ret) { 7398 if (em) { 7399 free_extent_map(em); 7400 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7401 } 7402 em = ERR_PTR(ret); 7403 } 7404 out: 7405 7406 return em; 7407 } 7408 7409 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7410 u64 start, u64 len) 7411 { 7412 struct btrfs_root *root = inode->root; 7413 struct btrfs_fs_info *fs_info = root->fs_info; 7414 struct extent_map *em; 7415 struct btrfs_key ins; 7416 u64 alloc_hint; 7417 int ret; 7418 7419 alloc_hint = get_extent_allocation_hint(inode, start, len); 7420 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7421 0, alloc_hint, &ins, 1, 1); 7422 if (ret) 7423 return ERR_PTR(ret); 7424 7425 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7426 ins.objectid, ins.offset, ins.offset, 7427 ins.offset, BTRFS_ORDERED_REGULAR); 7428 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7429 if (IS_ERR(em)) 7430 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7431 1); 7432 7433 return em; 7434 } 7435 7436 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7437 { 7438 struct btrfs_block_group *block_group; 7439 bool readonly = false; 7440 7441 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7442 if (!block_group || block_group->ro) 7443 readonly = true; 7444 if (block_group) 7445 btrfs_put_block_group(block_group); 7446 return readonly; 7447 } 7448 7449 /* 7450 * Check if we can do nocow write into the range [@offset, @offset + @len) 7451 * 7452 * @offset: File offset 7453 * @len: The length to write, will be updated to the nocow writeable 7454 * range 7455 * @orig_start: (optional) Return the original file offset of the file extent 7456 * @orig_len: (optional) Return the original on-disk length of the file extent 7457 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7458 * @strict: if true, omit optimizations that might force us into unnecessary 7459 * cow. e.g., don't trust generation number. 7460 * 7461 * Return: 7462 * >0 and update @len if we can do nocow write 7463 * 0 if we can't do nocow write 7464 * <0 if error happened 7465 * 7466 * NOTE: This only checks the file extents, caller is responsible to wait for 7467 * any ordered extents. 7468 */ 7469 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7470 u64 *orig_start, u64 *orig_block_len, 7471 u64 *ram_bytes, bool strict) 7472 { 7473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7474 struct btrfs_path *path; 7475 int ret; 7476 struct extent_buffer *leaf; 7477 struct btrfs_root *root = BTRFS_I(inode)->root; 7478 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7479 struct btrfs_file_extent_item *fi; 7480 struct btrfs_key key; 7481 u64 disk_bytenr; 7482 u64 backref_offset; 7483 u64 extent_end; 7484 u64 num_bytes; 7485 int slot; 7486 int found_type; 7487 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7488 7489 path = btrfs_alloc_path(); 7490 if (!path) 7491 return -ENOMEM; 7492 7493 ret = btrfs_lookup_file_extent(NULL, root, path, 7494 btrfs_ino(BTRFS_I(inode)), offset, 0); 7495 if (ret < 0) 7496 goto out; 7497 7498 slot = path->slots[0]; 7499 if (ret == 1) { 7500 if (slot == 0) { 7501 /* can't find the item, must cow */ 7502 ret = 0; 7503 goto out; 7504 } 7505 slot--; 7506 } 7507 ret = 0; 7508 leaf = path->nodes[0]; 7509 btrfs_item_key_to_cpu(leaf, &key, slot); 7510 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7511 key.type != BTRFS_EXTENT_DATA_KEY) { 7512 /* not our file or wrong item type, must cow */ 7513 goto out; 7514 } 7515 7516 if (key.offset > offset) { 7517 /* Wrong offset, must cow */ 7518 goto out; 7519 } 7520 7521 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7522 found_type = btrfs_file_extent_type(leaf, fi); 7523 if (found_type != BTRFS_FILE_EXTENT_REG && 7524 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7525 /* not a regular extent, must cow */ 7526 goto out; 7527 } 7528 7529 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7530 goto out; 7531 7532 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7533 if (extent_end <= offset) 7534 goto out; 7535 7536 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7537 if (disk_bytenr == 0) 7538 goto out; 7539 7540 if (btrfs_file_extent_compression(leaf, fi) || 7541 btrfs_file_extent_encryption(leaf, fi) || 7542 btrfs_file_extent_other_encoding(leaf, fi)) 7543 goto out; 7544 7545 /* 7546 * Do the same check as in btrfs_cross_ref_exist but without the 7547 * unnecessary search. 7548 */ 7549 if (!strict && 7550 (btrfs_file_extent_generation(leaf, fi) <= 7551 btrfs_root_last_snapshot(&root->root_item))) 7552 goto out; 7553 7554 backref_offset = btrfs_file_extent_offset(leaf, fi); 7555 7556 if (orig_start) { 7557 *orig_start = key.offset - backref_offset; 7558 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7559 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7560 } 7561 7562 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7563 goto out; 7564 7565 num_bytes = min(offset + *len, extent_end) - offset; 7566 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7567 u64 range_end; 7568 7569 range_end = round_up(offset + num_bytes, 7570 root->fs_info->sectorsize) - 1; 7571 ret = test_range_bit(io_tree, offset, range_end, 7572 EXTENT_DELALLOC, 0, NULL); 7573 if (ret) { 7574 ret = -EAGAIN; 7575 goto out; 7576 } 7577 } 7578 7579 btrfs_release_path(path); 7580 7581 /* 7582 * look for other files referencing this extent, if we 7583 * find any we must cow 7584 */ 7585 7586 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7587 key.offset - backref_offset, disk_bytenr, 7588 strict); 7589 if (ret) { 7590 ret = 0; 7591 goto out; 7592 } 7593 7594 /* 7595 * adjust disk_bytenr and num_bytes to cover just the bytes 7596 * in this extent we are about to write. If there 7597 * are any csums in that range we have to cow in order 7598 * to keep the csums correct 7599 */ 7600 disk_bytenr += backref_offset; 7601 disk_bytenr += offset - key.offset; 7602 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7603 goto out; 7604 /* 7605 * all of the above have passed, it is safe to overwrite this extent 7606 * without cow 7607 */ 7608 *len = num_bytes; 7609 ret = 1; 7610 out: 7611 btrfs_free_path(path); 7612 return ret; 7613 } 7614 7615 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7616 struct extent_state **cached_state, bool writing) 7617 { 7618 struct btrfs_ordered_extent *ordered; 7619 int ret = 0; 7620 7621 while (1) { 7622 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7623 cached_state); 7624 /* 7625 * We're concerned with the entire range that we're going to be 7626 * doing DIO to, so we need to make sure there's no ordered 7627 * extents in this range. 7628 */ 7629 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7630 lockend - lockstart + 1); 7631 7632 /* 7633 * We need to make sure there are no buffered pages in this 7634 * range either, we could have raced between the invalidate in 7635 * generic_file_direct_write and locking the extent. The 7636 * invalidate needs to happen so that reads after a write do not 7637 * get stale data. 7638 */ 7639 if (!ordered && 7640 (!writing || !filemap_range_has_page(inode->i_mapping, 7641 lockstart, lockend))) 7642 break; 7643 7644 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7645 cached_state); 7646 7647 if (ordered) { 7648 /* 7649 * If we are doing a DIO read and the ordered extent we 7650 * found is for a buffered write, we can not wait for it 7651 * to complete and retry, because if we do so we can 7652 * deadlock with concurrent buffered writes on page 7653 * locks. This happens only if our DIO read covers more 7654 * than one extent map, if at this point has already 7655 * created an ordered extent for a previous extent map 7656 * and locked its range in the inode's io tree, and a 7657 * concurrent write against that previous extent map's 7658 * range and this range started (we unlock the ranges 7659 * in the io tree only when the bios complete and 7660 * buffered writes always lock pages before attempting 7661 * to lock range in the io tree). 7662 */ 7663 if (writing || 7664 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7665 btrfs_start_ordered_extent(ordered, 1); 7666 else 7667 ret = -ENOTBLK; 7668 btrfs_put_ordered_extent(ordered); 7669 } else { 7670 /* 7671 * We could trigger writeback for this range (and wait 7672 * for it to complete) and then invalidate the pages for 7673 * this range (through invalidate_inode_pages2_range()), 7674 * but that can lead us to a deadlock with a concurrent 7675 * call to readahead (a buffered read or a defrag call 7676 * triggered a readahead) on a page lock due to an 7677 * ordered dio extent we created before but did not have 7678 * yet a corresponding bio submitted (whence it can not 7679 * complete), which makes readahead wait for that 7680 * ordered extent to complete while holding a lock on 7681 * that page. 7682 */ 7683 ret = -ENOTBLK; 7684 } 7685 7686 if (ret) 7687 break; 7688 7689 cond_resched(); 7690 } 7691 7692 return ret; 7693 } 7694 7695 /* The callers of this must take lock_extent() */ 7696 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7697 u64 len, u64 orig_start, u64 block_start, 7698 u64 block_len, u64 orig_block_len, 7699 u64 ram_bytes, int compress_type, 7700 int type) 7701 { 7702 struct extent_map_tree *em_tree; 7703 struct extent_map *em; 7704 int ret; 7705 7706 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7707 type == BTRFS_ORDERED_COMPRESSED || 7708 type == BTRFS_ORDERED_NOCOW || 7709 type == BTRFS_ORDERED_REGULAR); 7710 7711 em_tree = &inode->extent_tree; 7712 em = alloc_extent_map(); 7713 if (!em) 7714 return ERR_PTR(-ENOMEM); 7715 7716 em->start = start; 7717 em->orig_start = orig_start; 7718 em->len = len; 7719 em->block_len = block_len; 7720 em->block_start = block_start; 7721 em->orig_block_len = orig_block_len; 7722 em->ram_bytes = ram_bytes; 7723 em->generation = -1; 7724 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7725 if (type == BTRFS_ORDERED_PREALLOC) { 7726 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7727 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7728 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7729 em->compress_type = compress_type; 7730 } 7731 7732 do { 7733 btrfs_drop_extent_cache(inode, em->start, 7734 em->start + em->len - 1, 0); 7735 write_lock(&em_tree->lock); 7736 ret = add_extent_mapping(em_tree, em, 1); 7737 write_unlock(&em_tree->lock); 7738 /* 7739 * The caller has taken lock_extent(), who could race with us 7740 * to add em? 7741 */ 7742 } while (ret == -EEXIST); 7743 7744 if (ret) { 7745 free_extent_map(em); 7746 return ERR_PTR(ret); 7747 } 7748 7749 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7750 return em; 7751 } 7752 7753 7754 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7755 struct inode *inode, 7756 struct btrfs_dio_data *dio_data, 7757 u64 start, u64 len) 7758 { 7759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7760 struct extent_map *em = *map; 7761 int ret = 0; 7762 7763 /* 7764 * We don't allocate a new extent in the following cases 7765 * 7766 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7767 * existing extent. 7768 * 2) The extent is marked as PREALLOC. We're good to go here and can 7769 * just use the extent. 7770 * 7771 */ 7772 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7773 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7774 em->block_start != EXTENT_MAP_HOLE)) { 7775 int type; 7776 u64 block_start, orig_start, orig_block_len, ram_bytes; 7777 7778 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7779 type = BTRFS_ORDERED_PREALLOC; 7780 else 7781 type = BTRFS_ORDERED_NOCOW; 7782 len = min(len, em->len - (start - em->start)); 7783 block_start = em->block_start + (start - em->start); 7784 7785 if (can_nocow_extent(inode, start, &len, &orig_start, 7786 &orig_block_len, &ram_bytes, false) == 1 && 7787 btrfs_inc_nocow_writers(fs_info, block_start)) { 7788 struct extent_map *em2; 7789 7790 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7791 orig_start, block_start, 7792 len, orig_block_len, 7793 ram_bytes, type); 7794 btrfs_dec_nocow_writers(fs_info, block_start); 7795 if (type == BTRFS_ORDERED_PREALLOC) { 7796 free_extent_map(em); 7797 *map = em = em2; 7798 } 7799 7800 if (em2 && IS_ERR(em2)) { 7801 ret = PTR_ERR(em2); 7802 goto out; 7803 } 7804 /* 7805 * For inode marked NODATACOW or extent marked PREALLOC, 7806 * use the existing or preallocated extent, so does not 7807 * need to adjust btrfs_space_info's bytes_may_use. 7808 */ 7809 btrfs_free_reserved_data_space_noquota(fs_info, len); 7810 goto skip_cow; 7811 } 7812 } 7813 7814 /* this will cow the extent */ 7815 free_extent_map(em); 7816 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7817 if (IS_ERR(em)) { 7818 ret = PTR_ERR(em); 7819 goto out; 7820 } 7821 7822 len = min(len, em->len - (start - em->start)); 7823 7824 skip_cow: 7825 /* 7826 * Need to update the i_size under the extent lock so buffered 7827 * readers will get the updated i_size when we unlock. 7828 */ 7829 if (start + len > i_size_read(inode)) 7830 i_size_write(inode, start + len); 7831 7832 dio_data->reserve -= len; 7833 out: 7834 return ret; 7835 } 7836 7837 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7838 loff_t length, unsigned int flags, struct iomap *iomap, 7839 struct iomap *srcmap) 7840 { 7841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7842 struct extent_map *em; 7843 struct extent_state *cached_state = NULL; 7844 struct btrfs_dio_data *dio_data = NULL; 7845 u64 lockstart, lockend; 7846 const bool write = !!(flags & IOMAP_WRITE); 7847 int ret = 0; 7848 u64 len = length; 7849 bool unlock_extents = false; 7850 7851 if (!write) 7852 len = min_t(u64, len, fs_info->sectorsize); 7853 7854 lockstart = start; 7855 lockend = start + len - 1; 7856 7857 /* 7858 * The generic stuff only does filemap_write_and_wait_range, which 7859 * isn't enough if we've written compressed pages to this area, so we 7860 * need to flush the dirty pages again to make absolutely sure that any 7861 * outstanding dirty pages are on disk. 7862 */ 7863 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7864 &BTRFS_I(inode)->runtime_flags)) { 7865 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7866 start + length - 1); 7867 if (ret) 7868 return ret; 7869 } 7870 7871 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7872 if (!dio_data) 7873 return -ENOMEM; 7874 7875 dio_data->length = length; 7876 if (write) { 7877 dio_data->reserve = round_up(length, fs_info->sectorsize); 7878 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7879 &dio_data->data_reserved, 7880 start, dio_data->reserve); 7881 if (ret) { 7882 extent_changeset_free(dio_data->data_reserved); 7883 kfree(dio_data); 7884 return ret; 7885 } 7886 } 7887 iomap->private = dio_data; 7888 7889 7890 /* 7891 * If this errors out it's because we couldn't invalidate pagecache for 7892 * this range and we need to fallback to buffered. 7893 */ 7894 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7895 ret = -ENOTBLK; 7896 goto err; 7897 } 7898 7899 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7900 if (IS_ERR(em)) { 7901 ret = PTR_ERR(em); 7902 goto unlock_err; 7903 } 7904 7905 /* 7906 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7907 * io. INLINE is special, and we could probably kludge it in here, but 7908 * it's still buffered so for safety lets just fall back to the generic 7909 * buffered path. 7910 * 7911 * For COMPRESSED we _have_ to read the entire extent in so we can 7912 * decompress it, so there will be buffering required no matter what we 7913 * do, so go ahead and fallback to buffered. 7914 * 7915 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7916 * to buffered IO. Don't blame me, this is the price we pay for using 7917 * the generic code. 7918 */ 7919 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7920 em->block_start == EXTENT_MAP_INLINE) { 7921 free_extent_map(em); 7922 ret = -ENOTBLK; 7923 goto unlock_err; 7924 } 7925 7926 len = min(len, em->len - (start - em->start)); 7927 if (write) { 7928 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7929 start, len); 7930 if (ret < 0) 7931 goto unlock_err; 7932 unlock_extents = true; 7933 /* Recalc len in case the new em is smaller than requested */ 7934 len = min(len, em->len - (start - em->start)); 7935 } else { 7936 /* 7937 * We need to unlock only the end area that we aren't using. 7938 * The rest is going to be unlocked by the endio routine. 7939 */ 7940 lockstart = start + len; 7941 if (lockstart < lockend) 7942 unlock_extents = true; 7943 } 7944 7945 if (unlock_extents) 7946 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7947 lockstart, lockend, &cached_state); 7948 else 7949 free_extent_state(cached_state); 7950 7951 /* 7952 * Translate extent map information to iomap. 7953 * We trim the extents (and move the addr) even though iomap code does 7954 * that, since we have locked only the parts we are performing I/O in. 7955 */ 7956 if ((em->block_start == EXTENT_MAP_HOLE) || 7957 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7958 iomap->addr = IOMAP_NULL_ADDR; 7959 iomap->type = IOMAP_HOLE; 7960 } else { 7961 iomap->addr = em->block_start + (start - em->start); 7962 iomap->type = IOMAP_MAPPED; 7963 } 7964 iomap->offset = start; 7965 iomap->bdev = fs_info->fs_devices->latest_bdev; 7966 iomap->length = len; 7967 7968 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7969 iomap->flags |= IOMAP_F_ZONE_APPEND; 7970 7971 free_extent_map(em); 7972 7973 return 0; 7974 7975 unlock_err: 7976 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7977 &cached_state); 7978 err: 7979 if (dio_data) { 7980 btrfs_delalloc_release_space(BTRFS_I(inode), 7981 dio_data->data_reserved, start, 7982 dio_data->reserve, true); 7983 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7984 extent_changeset_free(dio_data->data_reserved); 7985 kfree(dio_data); 7986 } 7987 return ret; 7988 } 7989 7990 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7991 ssize_t written, unsigned int flags, struct iomap *iomap) 7992 { 7993 int ret = 0; 7994 struct btrfs_dio_data *dio_data = iomap->private; 7995 size_t submitted = dio_data->submitted; 7996 const bool write = !!(flags & IOMAP_WRITE); 7997 7998 if (!write && (iomap->type == IOMAP_HOLE)) { 7999 /* If reading from a hole, unlock and return */ 8000 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 8001 goto out; 8002 } 8003 8004 if (submitted < length) { 8005 pos += submitted; 8006 length -= submitted; 8007 if (write) 8008 __endio_write_update_ordered(BTRFS_I(inode), pos, 8009 length, false); 8010 else 8011 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 8012 pos + length - 1); 8013 ret = -ENOTBLK; 8014 } 8015 8016 if (write) { 8017 if (dio_data->reserve) 8018 btrfs_delalloc_release_space(BTRFS_I(inode), 8019 dio_data->data_reserved, pos, 8020 dio_data->reserve, true); 8021 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 8022 extent_changeset_free(dio_data->data_reserved); 8023 } 8024 out: 8025 kfree(dio_data); 8026 iomap->private = NULL; 8027 8028 return ret; 8029 } 8030 8031 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 8032 { 8033 /* 8034 * This implies a barrier so that stores to dio_bio->bi_status before 8035 * this and loads of dio_bio->bi_status after this are fully ordered. 8036 */ 8037 if (!refcount_dec_and_test(&dip->refs)) 8038 return; 8039 8040 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 8041 __endio_write_update_ordered(BTRFS_I(dip->inode), 8042 dip->logical_offset, 8043 dip->bytes, 8044 !dip->dio_bio->bi_status); 8045 } else { 8046 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 8047 dip->logical_offset, 8048 dip->logical_offset + dip->bytes - 1); 8049 } 8050 8051 bio_endio(dip->dio_bio); 8052 kfree(dip); 8053 } 8054 8055 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 8056 int mirror_num, 8057 unsigned long bio_flags) 8058 { 8059 struct btrfs_dio_private *dip = bio->bi_private; 8060 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8061 blk_status_t ret; 8062 8063 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 8064 8065 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8066 if (ret) 8067 return ret; 8068 8069 refcount_inc(&dip->refs); 8070 ret = btrfs_map_bio(fs_info, bio, mirror_num); 8071 if (ret) 8072 refcount_dec(&dip->refs); 8073 return ret; 8074 } 8075 8076 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 8077 struct btrfs_io_bio *io_bio, 8078 const bool uptodate) 8079 { 8080 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 8081 const u32 sectorsize = fs_info->sectorsize; 8082 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 8083 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8084 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8085 struct bio_vec bvec; 8086 struct bvec_iter iter; 8087 u64 start = io_bio->logical; 8088 u32 bio_offset = 0; 8089 blk_status_t err = BLK_STS_OK; 8090 8091 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 8092 unsigned int i, nr_sectors, pgoff; 8093 8094 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8095 pgoff = bvec.bv_offset; 8096 for (i = 0; i < nr_sectors; i++) { 8097 ASSERT(pgoff < PAGE_SIZE); 8098 if (uptodate && 8099 (!csum || !check_data_csum(inode, io_bio, 8100 bio_offset, bvec.bv_page, 8101 pgoff, start))) { 8102 clean_io_failure(fs_info, failure_tree, io_tree, 8103 start, bvec.bv_page, 8104 btrfs_ino(BTRFS_I(inode)), 8105 pgoff); 8106 } else { 8107 int ret; 8108 8109 ASSERT((start - io_bio->logical) < UINT_MAX); 8110 ret = btrfs_repair_one_sector(inode, 8111 &io_bio->bio, 8112 start - io_bio->logical, 8113 bvec.bv_page, pgoff, 8114 start, io_bio->mirror_num, 8115 submit_dio_repair_bio); 8116 if (ret) 8117 err = errno_to_blk_status(ret); 8118 } 8119 start += sectorsize; 8120 ASSERT(bio_offset + sectorsize > bio_offset); 8121 bio_offset += sectorsize; 8122 pgoff += sectorsize; 8123 } 8124 } 8125 return err; 8126 } 8127 8128 static void __endio_write_update_ordered(struct btrfs_inode *inode, 8129 const u64 offset, const u64 bytes, 8130 const bool uptodate) 8131 { 8132 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, 8133 finish_ordered_fn, uptodate); 8134 } 8135 8136 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 8137 struct bio *bio, 8138 u64 dio_file_offset) 8139 { 8140 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); 8141 } 8142 8143 static void btrfs_end_dio_bio(struct bio *bio) 8144 { 8145 struct btrfs_dio_private *dip = bio->bi_private; 8146 blk_status_t err = bio->bi_status; 8147 8148 if (err) 8149 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8150 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8151 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8152 bio->bi_opf, bio->bi_iter.bi_sector, 8153 bio->bi_iter.bi_size, err); 8154 8155 if (bio_op(bio) == REQ_OP_READ) { 8156 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 8157 !err); 8158 } 8159 8160 if (err) 8161 dip->dio_bio->bi_status = err; 8162 8163 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); 8164 8165 bio_put(bio); 8166 btrfs_dio_private_put(dip); 8167 } 8168 8169 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8170 struct inode *inode, u64 file_offset, int async_submit) 8171 { 8172 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8173 struct btrfs_dio_private *dip = bio->bi_private; 8174 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 8175 blk_status_t ret; 8176 8177 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8178 if (async_submit) 8179 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8180 8181 if (!write) { 8182 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8183 if (ret) 8184 goto err; 8185 } 8186 8187 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8188 goto map; 8189 8190 if (write && async_submit) { 8191 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 8192 btrfs_submit_bio_start_direct_io); 8193 goto err; 8194 } else if (write) { 8195 /* 8196 * If we aren't doing async submit, calculate the csum of the 8197 * bio now. 8198 */ 8199 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 8200 if (ret) 8201 goto err; 8202 } else { 8203 u64 csum_offset; 8204 8205 csum_offset = file_offset - dip->logical_offset; 8206 csum_offset >>= fs_info->sectorsize_bits; 8207 csum_offset *= fs_info->csum_size; 8208 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 8209 } 8210 map: 8211 ret = btrfs_map_bio(fs_info, bio, 0); 8212 err: 8213 return ret; 8214 } 8215 8216 /* 8217 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 8218 * or ordered extents whether or not we submit any bios. 8219 */ 8220 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 8221 struct inode *inode, 8222 loff_t file_offset) 8223 { 8224 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8225 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8226 size_t dip_size; 8227 struct btrfs_dio_private *dip; 8228 8229 dip_size = sizeof(*dip); 8230 if (!write && csum) { 8231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8232 size_t nblocks; 8233 8234 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 8235 dip_size += fs_info->csum_size * nblocks; 8236 } 8237 8238 dip = kzalloc(dip_size, GFP_NOFS); 8239 if (!dip) 8240 return NULL; 8241 8242 dip->inode = inode; 8243 dip->logical_offset = file_offset; 8244 dip->bytes = dio_bio->bi_iter.bi_size; 8245 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 8246 dip->dio_bio = dio_bio; 8247 refcount_set(&dip->refs, 1); 8248 return dip; 8249 } 8250 8251 static blk_qc_t btrfs_submit_direct(const struct iomap_iter *iter, 8252 struct bio *dio_bio, loff_t file_offset) 8253 { 8254 struct inode *inode = iter->inode; 8255 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8257 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8258 BTRFS_BLOCK_GROUP_RAID56_MASK); 8259 struct btrfs_dio_private *dip; 8260 struct bio *bio; 8261 u64 start_sector; 8262 int async_submit = 0; 8263 u64 submit_len; 8264 u64 clone_offset = 0; 8265 u64 clone_len; 8266 u64 logical; 8267 int ret; 8268 blk_status_t status; 8269 struct btrfs_io_geometry geom; 8270 struct btrfs_dio_data *dio_data = iter->iomap.private; 8271 struct extent_map *em = NULL; 8272 8273 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 8274 if (!dip) { 8275 if (!write) { 8276 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8277 file_offset + dio_bio->bi_iter.bi_size - 1); 8278 } 8279 dio_bio->bi_status = BLK_STS_RESOURCE; 8280 bio_endio(dio_bio); 8281 return BLK_QC_T_NONE; 8282 } 8283 8284 if (!write) { 8285 /* 8286 * Load the csums up front to reduce csum tree searches and 8287 * contention when submitting bios. 8288 * 8289 * If we have csums disabled this will do nothing. 8290 */ 8291 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8292 if (status != BLK_STS_OK) 8293 goto out_err; 8294 } 8295 8296 start_sector = dio_bio->bi_iter.bi_sector; 8297 submit_len = dio_bio->bi_iter.bi_size; 8298 8299 do { 8300 logical = start_sector << 9; 8301 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8302 if (IS_ERR(em)) { 8303 status = errno_to_blk_status(PTR_ERR(em)); 8304 em = NULL; 8305 goto out_err_em; 8306 } 8307 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8308 logical, &geom); 8309 if (ret) { 8310 status = errno_to_blk_status(ret); 8311 goto out_err_em; 8312 } 8313 8314 clone_len = min(submit_len, geom.len); 8315 ASSERT(clone_len <= UINT_MAX); 8316 8317 /* 8318 * This will never fail as it's passing GPF_NOFS and 8319 * the allocation is backed by btrfs_bioset. 8320 */ 8321 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8322 bio->bi_private = dip; 8323 bio->bi_end_io = btrfs_end_dio_bio; 8324 btrfs_io_bio(bio)->logical = file_offset; 8325 8326 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8327 status = extract_ordered_extent(BTRFS_I(inode), bio, 8328 file_offset); 8329 if (status) { 8330 bio_put(bio); 8331 goto out_err; 8332 } 8333 } 8334 8335 ASSERT(submit_len >= clone_len); 8336 submit_len -= clone_len; 8337 8338 /* 8339 * Increase the count before we submit the bio so we know 8340 * the end IO handler won't happen before we increase the 8341 * count. Otherwise, the dip might get freed before we're 8342 * done setting it up. 8343 * 8344 * We transfer the initial reference to the last bio, so we 8345 * don't need to increment the reference count for the last one. 8346 */ 8347 if (submit_len > 0) { 8348 refcount_inc(&dip->refs); 8349 /* 8350 * If we are submitting more than one bio, submit them 8351 * all asynchronously. The exception is RAID 5 or 6, as 8352 * asynchronous checksums make it difficult to collect 8353 * full stripe writes. 8354 */ 8355 if (!raid56) 8356 async_submit = 1; 8357 } 8358 8359 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8360 async_submit); 8361 if (status) { 8362 bio_put(bio); 8363 if (submit_len > 0) 8364 refcount_dec(&dip->refs); 8365 goto out_err_em; 8366 } 8367 8368 dio_data->submitted += clone_len; 8369 clone_offset += clone_len; 8370 start_sector += clone_len >> 9; 8371 file_offset += clone_len; 8372 8373 free_extent_map(em); 8374 } while (submit_len > 0); 8375 return BLK_QC_T_NONE; 8376 8377 out_err_em: 8378 free_extent_map(em); 8379 out_err: 8380 dip->dio_bio->bi_status = status; 8381 btrfs_dio_private_put(dip); 8382 8383 return BLK_QC_T_NONE; 8384 } 8385 8386 const struct iomap_ops btrfs_dio_iomap_ops = { 8387 .iomap_begin = btrfs_dio_iomap_begin, 8388 .iomap_end = btrfs_dio_iomap_end, 8389 }; 8390 8391 const struct iomap_dio_ops btrfs_dio_ops = { 8392 .submit_io = btrfs_submit_direct, 8393 }; 8394 8395 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8396 u64 start, u64 len) 8397 { 8398 int ret; 8399 8400 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8401 if (ret) 8402 return ret; 8403 8404 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8405 } 8406 8407 int btrfs_readpage(struct file *file, struct page *page) 8408 { 8409 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8410 u64 start = page_offset(page); 8411 u64 end = start + PAGE_SIZE - 1; 8412 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 8413 int ret; 8414 8415 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8416 8417 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 8418 if (bio_ctrl.bio) 8419 ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags); 8420 return ret; 8421 } 8422 8423 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8424 { 8425 struct inode *inode = page->mapping->host; 8426 int ret; 8427 8428 if (current->flags & PF_MEMALLOC) { 8429 redirty_page_for_writepage(wbc, page); 8430 unlock_page(page); 8431 return 0; 8432 } 8433 8434 /* 8435 * If we are under memory pressure we will call this directly from the 8436 * VM, we need to make sure we have the inode referenced for the ordered 8437 * extent. If not just return like we didn't do anything. 8438 */ 8439 if (!igrab(inode)) { 8440 redirty_page_for_writepage(wbc, page); 8441 return AOP_WRITEPAGE_ACTIVATE; 8442 } 8443 ret = extent_write_full_page(page, wbc); 8444 btrfs_add_delayed_iput(inode); 8445 return ret; 8446 } 8447 8448 static int btrfs_writepages(struct address_space *mapping, 8449 struct writeback_control *wbc) 8450 { 8451 return extent_writepages(mapping, wbc); 8452 } 8453 8454 static void btrfs_readahead(struct readahead_control *rac) 8455 { 8456 extent_readahead(rac); 8457 } 8458 8459 /* 8460 * For releasepage() and invalidatepage() we have a race window where 8461 * end_page_writeback() is called but the subpage spinlock is not yet released. 8462 * If we continue to release/invalidate the page, we could cause use-after-free 8463 * for subpage spinlock. So this function is to spin and wait for subpage 8464 * spinlock. 8465 */ 8466 static void wait_subpage_spinlock(struct page *page) 8467 { 8468 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 8469 struct btrfs_subpage *subpage; 8470 8471 if (fs_info->sectorsize == PAGE_SIZE) 8472 return; 8473 8474 ASSERT(PagePrivate(page) && page->private); 8475 subpage = (struct btrfs_subpage *)page->private; 8476 8477 /* 8478 * This may look insane as we just acquire the spinlock and release it, 8479 * without doing anything. But we just want to make sure no one is 8480 * still holding the subpage spinlock. 8481 * And since the page is not dirty nor writeback, and we have page 8482 * locked, the only possible way to hold a spinlock is from the endio 8483 * function to clear page writeback. 8484 * 8485 * Here we just acquire the spinlock so that all existing callers 8486 * should exit and we're safe to release/invalidate the page. 8487 */ 8488 spin_lock_irq(&subpage->lock); 8489 spin_unlock_irq(&subpage->lock); 8490 } 8491 8492 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8493 { 8494 int ret = try_release_extent_mapping(page, gfp_flags); 8495 8496 if (ret == 1) { 8497 wait_subpage_spinlock(page); 8498 clear_page_extent_mapped(page); 8499 } 8500 return ret; 8501 } 8502 8503 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8504 { 8505 if (PageWriteback(page) || PageDirty(page)) 8506 return 0; 8507 return __btrfs_releasepage(page, gfp_flags); 8508 } 8509 8510 #ifdef CONFIG_MIGRATION 8511 static int btrfs_migratepage(struct address_space *mapping, 8512 struct page *newpage, struct page *page, 8513 enum migrate_mode mode) 8514 { 8515 int ret; 8516 8517 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8518 if (ret != MIGRATEPAGE_SUCCESS) 8519 return ret; 8520 8521 if (page_has_private(page)) 8522 attach_page_private(newpage, detach_page_private(page)); 8523 8524 if (PageOrdered(page)) { 8525 ClearPageOrdered(page); 8526 SetPageOrdered(newpage); 8527 } 8528 8529 if (mode != MIGRATE_SYNC_NO_COPY) 8530 migrate_page_copy(newpage, page); 8531 else 8532 migrate_page_states(newpage, page); 8533 return MIGRATEPAGE_SUCCESS; 8534 } 8535 #endif 8536 8537 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8538 unsigned int length) 8539 { 8540 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8541 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8542 struct extent_io_tree *tree = &inode->io_tree; 8543 struct extent_state *cached_state = NULL; 8544 u64 page_start = page_offset(page); 8545 u64 page_end = page_start + PAGE_SIZE - 1; 8546 u64 cur; 8547 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8548 8549 /* 8550 * We have page locked so no new ordered extent can be created on this 8551 * page, nor bio can be submitted for this page. 8552 * 8553 * But already submitted bio can still be finished on this page. 8554 * Furthermore, endio function won't skip page which has Ordered 8555 * (Private2) already cleared, so it's possible for endio and 8556 * invalidatepage to do the same ordered extent accounting twice 8557 * on one page. 8558 * 8559 * So here we wait for any submitted bios to finish, so that we won't 8560 * do double ordered extent accounting on the same page. 8561 */ 8562 wait_on_page_writeback(page); 8563 wait_subpage_spinlock(page); 8564 8565 /* 8566 * For subpage case, we have call sites like 8567 * btrfs_punch_hole_lock_range() which passes range not aligned to 8568 * sectorsize. 8569 * If the range doesn't cover the full page, we don't need to and 8570 * shouldn't clear page extent mapped, as page->private can still 8571 * record subpage dirty bits for other part of the range. 8572 * 8573 * For cases that can invalidate the full even the range doesn't 8574 * cover the full page, like invalidating the last page, we're 8575 * still safe to wait for ordered extent to finish. 8576 */ 8577 if (!(offset == 0 && length == PAGE_SIZE)) { 8578 btrfs_releasepage(page, GFP_NOFS); 8579 return; 8580 } 8581 8582 if (!inode_evicting) 8583 lock_extent_bits(tree, page_start, page_end, &cached_state); 8584 8585 cur = page_start; 8586 while (cur < page_end) { 8587 struct btrfs_ordered_extent *ordered; 8588 bool delete_states; 8589 u64 range_end; 8590 u32 range_len; 8591 8592 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8593 page_end + 1 - cur); 8594 if (!ordered) { 8595 range_end = page_end; 8596 /* 8597 * No ordered extent covering this range, we are safe 8598 * to delete all extent states in the range. 8599 */ 8600 delete_states = true; 8601 goto next; 8602 } 8603 if (ordered->file_offset > cur) { 8604 /* 8605 * There is a range between [cur, oe->file_offset) not 8606 * covered by any ordered extent. 8607 * We are safe to delete all extent states, and handle 8608 * the ordered extent in the next iteration. 8609 */ 8610 range_end = ordered->file_offset - 1; 8611 delete_states = true; 8612 goto next; 8613 } 8614 8615 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8616 page_end); 8617 ASSERT(range_end + 1 - cur < U32_MAX); 8618 range_len = range_end + 1 - cur; 8619 if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) { 8620 /* 8621 * If Ordered (Private2) is cleared, it means endio has 8622 * already been executed for the range. 8623 * We can't delete the extent states as 8624 * btrfs_finish_ordered_io() may still use some of them. 8625 */ 8626 delete_states = false; 8627 goto next; 8628 } 8629 btrfs_page_clear_ordered(fs_info, page, cur, range_len); 8630 8631 /* 8632 * IO on this page will never be started, so we need to account 8633 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8634 * here, must leave that up for the ordered extent completion. 8635 * 8636 * This will also unlock the range for incoming 8637 * btrfs_finish_ordered_io(). 8638 */ 8639 if (!inode_evicting) 8640 clear_extent_bit(tree, cur, range_end, 8641 EXTENT_DELALLOC | 8642 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8643 EXTENT_DEFRAG, 1, 0, &cached_state); 8644 8645 spin_lock_irq(&inode->ordered_tree.lock); 8646 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8647 ordered->truncated_len = min(ordered->truncated_len, 8648 cur - ordered->file_offset); 8649 spin_unlock_irq(&inode->ordered_tree.lock); 8650 8651 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8652 cur, range_end + 1 - cur)) { 8653 btrfs_finish_ordered_io(ordered); 8654 /* 8655 * The ordered extent has finished, now we're again 8656 * safe to delete all extent states of the range. 8657 */ 8658 delete_states = true; 8659 } else { 8660 /* 8661 * btrfs_finish_ordered_io() will get executed by endio 8662 * of other pages, thus we can't delete extent states 8663 * anymore 8664 */ 8665 delete_states = false; 8666 } 8667 next: 8668 if (ordered) 8669 btrfs_put_ordered_extent(ordered); 8670 /* 8671 * Qgroup reserved space handler 8672 * Sector(s) here will be either: 8673 * 8674 * 1) Already written to disk or bio already finished 8675 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8676 * Qgroup will be handled by its qgroup_record then. 8677 * btrfs_qgroup_free_data() call will do nothing here. 8678 * 8679 * 2) Not written to disk yet 8680 * Then btrfs_qgroup_free_data() call will clear the 8681 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8682 * reserved data space. 8683 * Since the IO will never happen for this page. 8684 */ 8685 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8686 if (!inode_evicting) { 8687 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8688 EXTENT_DELALLOC | EXTENT_UPTODATE | 8689 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8690 delete_states, &cached_state); 8691 } 8692 cur = range_end + 1; 8693 } 8694 /* 8695 * We have iterated through all ordered extents of the page, the page 8696 * should not have Ordered (Private2) anymore, or the above iteration 8697 * did something wrong. 8698 */ 8699 ASSERT(!PageOrdered(page)); 8700 if (!inode_evicting) 8701 __btrfs_releasepage(page, GFP_NOFS); 8702 ClearPageChecked(page); 8703 clear_page_extent_mapped(page); 8704 } 8705 8706 /* 8707 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8708 * called from a page fault handler when a page is first dirtied. Hence we must 8709 * be careful to check for EOF conditions here. We set the page up correctly 8710 * for a written page which means we get ENOSPC checking when writing into 8711 * holes and correct delalloc and unwritten extent mapping on filesystems that 8712 * support these features. 8713 * 8714 * We are not allowed to take the i_mutex here so we have to play games to 8715 * protect against truncate races as the page could now be beyond EOF. Because 8716 * truncate_setsize() writes the inode size before removing pages, once we have 8717 * the page lock we can determine safely if the page is beyond EOF. If it is not 8718 * beyond EOF, then the page is guaranteed safe against truncation until we 8719 * unlock the page. 8720 */ 8721 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8722 { 8723 struct page *page = vmf->page; 8724 struct inode *inode = file_inode(vmf->vma->vm_file); 8725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8726 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8727 struct btrfs_ordered_extent *ordered; 8728 struct extent_state *cached_state = NULL; 8729 struct extent_changeset *data_reserved = NULL; 8730 unsigned long zero_start; 8731 loff_t size; 8732 vm_fault_t ret; 8733 int ret2; 8734 int reserved = 0; 8735 u64 reserved_space; 8736 u64 page_start; 8737 u64 page_end; 8738 u64 end; 8739 8740 reserved_space = PAGE_SIZE; 8741 8742 sb_start_pagefault(inode->i_sb); 8743 page_start = page_offset(page); 8744 page_end = page_start + PAGE_SIZE - 1; 8745 end = page_end; 8746 8747 /* 8748 * Reserving delalloc space after obtaining the page lock can lead to 8749 * deadlock. For example, if a dirty page is locked by this function 8750 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8751 * dirty page write out, then the btrfs_writepage() function could 8752 * end up waiting indefinitely to get a lock on the page currently 8753 * being processed by btrfs_page_mkwrite() function. 8754 */ 8755 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8756 page_start, reserved_space); 8757 if (!ret2) { 8758 ret2 = file_update_time(vmf->vma->vm_file); 8759 reserved = 1; 8760 } 8761 if (ret2) { 8762 ret = vmf_error(ret2); 8763 if (reserved) 8764 goto out; 8765 goto out_noreserve; 8766 } 8767 8768 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8769 again: 8770 down_read(&BTRFS_I(inode)->i_mmap_lock); 8771 lock_page(page); 8772 size = i_size_read(inode); 8773 8774 if ((page->mapping != inode->i_mapping) || 8775 (page_start >= size)) { 8776 /* page got truncated out from underneath us */ 8777 goto out_unlock; 8778 } 8779 wait_on_page_writeback(page); 8780 8781 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8782 ret2 = set_page_extent_mapped(page); 8783 if (ret2 < 0) { 8784 ret = vmf_error(ret2); 8785 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8786 goto out_unlock; 8787 } 8788 8789 /* 8790 * we can't set the delalloc bits if there are pending ordered 8791 * extents. Drop our locks and wait for them to finish 8792 */ 8793 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8794 PAGE_SIZE); 8795 if (ordered) { 8796 unlock_extent_cached(io_tree, page_start, page_end, 8797 &cached_state); 8798 unlock_page(page); 8799 up_read(&BTRFS_I(inode)->i_mmap_lock); 8800 btrfs_start_ordered_extent(ordered, 1); 8801 btrfs_put_ordered_extent(ordered); 8802 goto again; 8803 } 8804 8805 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8806 reserved_space = round_up(size - page_start, 8807 fs_info->sectorsize); 8808 if (reserved_space < PAGE_SIZE) { 8809 end = page_start + reserved_space - 1; 8810 btrfs_delalloc_release_space(BTRFS_I(inode), 8811 data_reserved, page_start, 8812 PAGE_SIZE - reserved_space, true); 8813 } 8814 } 8815 8816 /* 8817 * page_mkwrite gets called when the page is firstly dirtied after it's 8818 * faulted in, but write(2) could also dirty a page and set delalloc 8819 * bits, thus in this case for space account reason, we still need to 8820 * clear any delalloc bits within this page range since we have to 8821 * reserve data&meta space before lock_page() (see above comments). 8822 */ 8823 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8824 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8825 EXTENT_DEFRAG, 0, 0, &cached_state); 8826 8827 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8828 &cached_state); 8829 if (ret2) { 8830 unlock_extent_cached(io_tree, page_start, page_end, 8831 &cached_state); 8832 ret = VM_FAULT_SIGBUS; 8833 goto out_unlock; 8834 } 8835 8836 /* page is wholly or partially inside EOF */ 8837 if (page_start + PAGE_SIZE > size) 8838 zero_start = offset_in_page(size); 8839 else 8840 zero_start = PAGE_SIZE; 8841 8842 if (zero_start != PAGE_SIZE) { 8843 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8844 flush_dcache_page(page); 8845 } 8846 ClearPageChecked(page); 8847 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8848 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8849 8850 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8851 8852 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8853 up_read(&BTRFS_I(inode)->i_mmap_lock); 8854 8855 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8856 sb_end_pagefault(inode->i_sb); 8857 extent_changeset_free(data_reserved); 8858 return VM_FAULT_LOCKED; 8859 8860 out_unlock: 8861 unlock_page(page); 8862 up_read(&BTRFS_I(inode)->i_mmap_lock); 8863 out: 8864 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8865 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8866 reserved_space, (ret != 0)); 8867 out_noreserve: 8868 sb_end_pagefault(inode->i_sb); 8869 extent_changeset_free(data_reserved); 8870 return ret; 8871 } 8872 8873 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8874 { 8875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8876 struct btrfs_root *root = BTRFS_I(inode)->root; 8877 struct btrfs_block_rsv *rsv; 8878 int ret; 8879 struct btrfs_trans_handle *trans; 8880 u64 mask = fs_info->sectorsize - 1; 8881 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8882 u64 extents_found = 0; 8883 8884 if (!skip_writeback) { 8885 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8886 (u64)-1); 8887 if (ret) 8888 return ret; 8889 } 8890 8891 /* 8892 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8893 * things going on here: 8894 * 8895 * 1) We need to reserve space to update our inode. 8896 * 8897 * 2) We need to have something to cache all the space that is going to 8898 * be free'd up by the truncate operation, but also have some slack 8899 * space reserved in case it uses space during the truncate (thank you 8900 * very much snapshotting). 8901 * 8902 * And we need these to be separate. The fact is we can use a lot of 8903 * space doing the truncate, and we have no earthly idea how much space 8904 * we will use, so we need the truncate reservation to be separate so it 8905 * doesn't end up using space reserved for updating the inode. We also 8906 * need to be able to stop the transaction and start a new one, which 8907 * means we need to be able to update the inode several times, and we 8908 * have no idea of knowing how many times that will be, so we can't just 8909 * reserve 1 item for the entirety of the operation, so that has to be 8910 * done separately as well. 8911 * 8912 * So that leaves us with 8913 * 8914 * 1) rsv - for the truncate reservation, which we will steal from the 8915 * transaction reservation. 8916 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8917 * updating the inode. 8918 */ 8919 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8920 if (!rsv) 8921 return -ENOMEM; 8922 rsv->size = min_size; 8923 rsv->failfast = 1; 8924 8925 /* 8926 * 1 for the truncate slack space 8927 * 1 for updating the inode. 8928 */ 8929 trans = btrfs_start_transaction(root, 2); 8930 if (IS_ERR(trans)) { 8931 ret = PTR_ERR(trans); 8932 goto out; 8933 } 8934 8935 /* Migrate the slack space for the truncate to our reserve */ 8936 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8937 min_size, false); 8938 BUG_ON(ret); 8939 8940 trans->block_rsv = rsv; 8941 8942 while (1) { 8943 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8944 inode->i_size, 8945 BTRFS_EXTENT_DATA_KEY, 8946 &extents_found); 8947 trans->block_rsv = &fs_info->trans_block_rsv; 8948 if (ret != -ENOSPC && ret != -EAGAIN) 8949 break; 8950 8951 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8952 if (ret) 8953 break; 8954 8955 btrfs_end_transaction(trans); 8956 btrfs_btree_balance_dirty(fs_info); 8957 8958 trans = btrfs_start_transaction(root, 2); 8959 if (IS_ERR(trans)) { 8960 ret = PTR_ERR(trans); 8961 trans = NULL; 8962 break; 8963 } 8964 8965 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8966 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8967 rsv, min_size, false); 8968 BUG_ON(ret); /* shouldn't happen */ 8969 trans->block_rsv = rsv; 8970 } 8971 8972 /* 8973 * We can't call btrfs_truncate_block inside a trans handle as we could 8974 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8975 * we've truncated everything except the last little bit, and can do 8976 * btrfs_truncate_block and then update the disk_i_size. 8977 */ 8978 if (ret == NEED_TRUNCATE_BLOCK) { 8979 btrfs_end_transaction(trans); 8980 btrfs_btree_balance_dirty(fs_info); 8981 8982 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8983 if (ret) 8984 goto out; 8985 trans = btrfs_start_transaction(root, 1); 8986 if (IS_ERR(trans)) { 8987 ret = PTR_ERR(trans); 8988 goto out; 8989 } 8990 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8991 } 8992 8993 if (trans) { 8994 int ret2; 8995 8996 trans->block_rsv = &fs_info->trans_block_rsv; 8997 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8998 if (ret2 && !ret) 8999 ret = ret2; 9000 9001 ret2 = btrfs_end_transaction(trans); 9002 if (ret2 && !ret) 9003 ret = ret2; 9004 btrfs_btree_balance_dirty(fs_info); 9005 } 9006 out: 9007 btrfs_free_block_rsv(fs_info, rsv); 9008 /* 9009 * So if we truncate and then write and fsync we normally would just 9010 * write the extents that changed, which is a problem if we need to 9011 * first truncate that entire inode. So set this flag so we write out 9012 * all of the extents in the inode to the sync log so we're completely 9013 * safe. 9014 * 9015 * If no extents were dropped or trimmed we don't need to force the next 9016 * fsync to truncate all the inode's items from the log and re-log them 9017 * all. This means the truncate operation did not change the file size, 9018 * or changed it to a smaller size but there was only an implicit hole 9019 * between the old i_size and the new i_size, and there were no prealloc 9020 * extents beyond i_size to drop. 9021 */ 9022 if (extents_found > 0) 9023 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9024 9025 return ret; 9026 } 9027 9028 /* 9029 * create a new subvolume directory/inode (helper for the ioctl). 9030 */ 9031 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9032 struct btrfs_root *new_root, 9033 struct btrfs_root *parent_root, 9034 struct user_namespace *mnt_userns) 9035 { 9036 struct inode *inode; 9037 int err; 9038 u64 index = 0; 9039 u64 ino; 9040 9041 err = btrfs_get_free_objectid(new_root, &ino); 9042 if (err < 0) 9043 return err; 9044 9045 inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2, 9046 ino, ino, 9047 S_IFDIR | (~current_umask() & S_IRWXUGO), 9048 &index); 9049 if (IS_ERR(inode)) 9050 return PTR_ERR(inode); 9051 inode->i_op = &btrfs_dir_inode_operations; 9052 inode->i_fop = &btrfs_dir_file_operations; 9053 9054 set_nlink(inode, 1); 9055 btrfs_i_size_write(BTRFS_I(inode), 0); 9056 unlock_new_inode(inode); 9057 9058 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9059 if (err) 9060 btrfs_err(new_root->fs_info, 9061 "error inheriting subvolume %llu properties: %d", 9062 new_root->root_key.objectid, err); 9063 9064 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 9065 9066 iput(inode); 9067 return err; 9068 } 9069 9070 struct inode *btrfs_alloc_inode(struct super_block *sb) 9071 { 9072 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9073 struct btrfs_inode *ei; 9074 struct inode *inode; 9075 9076 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9077 if (!ei) 9078 return NULL; 9079 9080 ei->root = NULL; 9081 ei->generation = 0; 9082 ei->last_trans = 0; 9083 ei->last_sub_trans = 0; 9084 ei->logged_trans = 0; 9085 ei->delalloc_bytes = 0; 9086 ei->new_delalloc_bytes = 0; 9087 ei->defrag_bytes = 0; 9088 ei->disk_i_size = 0; 9089 ei->flags = 0; 9090 ei->ro_flags = 0; 9091 ei->csum_bytes = 0; 9092 ei->index_cnt = (u64)-1; 9093 ei->dir_index = 0; 9094 ei->last_unlink_trans = 0; 9095 ei->last_reflink_trans = 0; 9096 ei->last_log_commit = 0; 9097 9098 spin_lock_init(&ei->lock); 9099 ei->outstanding_extents = 0; 9100 if (sb->s_magic != BTRFS_TEST_MAGIC) 9101 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9102 BTRFS_BLOCK_RSV_DELALLOC); 9103 ei->runtime_flags = 0; 9104 ei->prop_compress = BTRFS_COMPRESS_NONE; 9105 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9106 9107 ei->delayed_node = NULL; 9108 9109 ei->i_otime.tv_sec = 0; 9110 ei->i_otime.tv_nsec = 0; 9111 9112 inode = &ei->vfs_inode; 9113 extent_map_tree_init(&ei->extent_tree); 9114 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 9115 extent_io_tree_init(fs_info, &ei->io_failure_tree, 9116 IO_TREE_INODE_IO_FAILURE, inode); 9117 extent_io_tree_init(fs_info, &ei->file_extent_tree, 9118 IO_TREE_INODE_FILE_EXTENT, inode); 9119 ei->io_tree.track_uptodate = true; 9120 ei->io_failure_tree.track_uptodate = true; 9121 atomic_set(&ei->sync_writers, 0); 9122 mutex_init(&ei->log_mutex); 9123 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9124 INIT_LIST_HEAD(&ei->delalloc_inodes); 9125 INIT_LIST_HEAD(&ei->delayed_iput); 9126 RB_CLEAR_NODE(&ei->rb_node); 9127 init_rwsem(&ei->i_mmap_lock); 9128 9129 return inode; 9130 } 9131 9132 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9133 void btrfs_test_destroy_inode(struct inode *inode) 9134 { 9135 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9136 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9137 } 9138 #endif 9139 9140 void btrfs_free_inode(struct inode *inode) 9141 { 9142 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9143 } 9144 9145 void btrfs_destroy_inode(struct inode *vfs_inode) 9146 { 9147 struct btrfs_ordered_extent *ordered; 9148 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 9149 struct btrfs_root *root = inode->root; 9150 9151 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 9152 WARN_ON(vfs_inode->i_data.nrpages); 9153 WARN_ON(inode->block_rsv.reserved); 9154 WARN_ON(inode->block_rsv.size); 9155 WARN_ON(inode->outstanding_extents); 9156 WARN_ON(inode->delalloc_bytes); 9157 WARN_ON(inode->new_delalloc_bytes); 9158 WARN_ON(inode->csum_bytes); 9159 WARN_ON(inode->defrag_bytes); 9160 9161 /* 9162 * This can happen where we create an inode, but somebody else also 9163 * created the same inode and we need to destroy the one we already 9164 * created. 9165 */ 9166 if (!root) 9167 return; 9168 9169 while (1) { 9170 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9171 if (!ordered) 9172 break; 9173 else { 9174 btrfs_err(root->fs_info, 9175 "found ordered extent %llu %llu on inode cleanup", 9176 ordered->file_offset, ordered->num_bytes); 9177 btrfs_remove_ordered_extent(inode, ordered); 9178 btrfs_put_ordered_extent(ordered); 9179 btrfs_put_ordered_extent(ordered); 9180 } 9181 } 9182 btrfs_qgroup_check_reserved_leak(inode); 9183 inode_tree_del(inode); 9184 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9185 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 9186 btrfs_put_root(inode->root); 9187 } 9188 9189 int btrfs_drop_inode(struct inode *inode) 9190 { 9191 struct btrfs_root *root = BTRFS_I(inode)->root; 9192 9193 if (root == NULL) 9194 return 1; 9195 9196 /* the snap/subvol tree is on deleting */ 9197 if (btrfs_root_refs(&root->root_item) == 0) 9198 return 1; 9199 else 9200 return generic_drop_inode(inode); 9201 } 9202 9203 static void init_once(void *foo) 9204 { 9205 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9206 9207 inode_init_once(&ei->vfs_inode); 9208 } 9209 9210 void __cold btrfs_destroy_cachep(void) 9211 { 9212 /* 9213 * Make sure all delayed rcu free inodes are flushed before we 9214 * destroy cache. 9215 */ 9216 rcu_barrier(); 9217 kmem_cache_destroy(btrfs_inode_cachep); 9218 kmem_cache_destroy(btrfs_trans_handle_cachep); 9219 kmem_cache_destroy(btrfs_path_cachep); 9220 kmem_cache_destroy(btrfs_free_space_cachep); 9221 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 9222 } 9223 9224 int __init btrfs_init_cachep(void) 9225 { 9226 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9227 sizeof(struct btrfs_inode), 0, 9228 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9229 init_once); 9230 if (!btrfs_inode_cachep) 9231 goto fail; 9232 9233 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9234 sizeof(struct btrfs_trans_handle), 0, 9235 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9236 if (!btrfs_trans_handle_cachep) 9237 goto fail; 9238 9239 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9240 sizeof(struct btrfs_path), 0, 9241 SLAB_MEM_SPREAD, NULL); 9242 if (!btrfs_path_cachep) 9243 goto fail; 9244 9245 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9246 sizeof(struct btrfs_free_space), 0, 9247 SLAB_MEM_SPREAD, NULL); 9248 if (!btrfs_free_space_cachep) 9249 goto fail; 9250 9251 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9252 PAGE_SIZE, PAGE_SIZE, 9253 SLAB_MEM_SPREAD, NULL); 9254 if (!btrfs_free_space_bitmap_cachep) 9255 goto fail; 9256 9257 return 0; 9258 fail: 9259 btrfs_destroy_cachep(); 9260 return -ENOMEM; 9261 } 9262 9263 static int btrfs_getattr(struct user_namespace *mnt_userns, 9264 const struct path *path, struct kstat *stat, 9265 u32 request_mask, unsigned int flags) 9266 { 9267 u64 delalloc_bytes; 9268 u64 inode_bytes; 9269 struct inode *inode = d_inode(path->dentry); 9270 u32 blocksize = inode->i_sb->s_blocksize; 9271 u32 bi_flags = BTRFS_I(inode)->flags; 9272 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 9273 9274 stat->result_mask |= STATX_BTIME; 9275 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9276 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9277 if (bi_flags & BTRFS_INODE_APPEND) 9278 stat->attributes |= STATX_ATTR_APPEND; 9279 if (bi_flags & BTRFS_INODE_COMPRESS) 9280 stat->attributes |= STATX_ATTR_COMPRESSED; 9281 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9282 stat->attributes |= STATX_ATTR_IMMUTABLE; 9283 if (bi_flags & BTRFS_INODE_NODUMP) 9284 stat->attributes |= STATX_ATTR_NODUMP; 9285 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 9286 stat->attributes |= STATX_ATTR_VERITY; 9287 9288 stat->attributes_mask |= (STATX_ATTR_APPEND | 9289 STATX_ATTR_COMPRESSED | 9290 STATX_ATTR_IMMUTABLE | 9291 STATX_ATTR_NODUMP); 9292 9293 generic_fillattr(mnt_userns, inode, stat); 9294 stat->dev = BTRFS_I(inode)->root->anon_dev; 9295 9296 spin_lock(&BTRFS_I(inode)->lock); 9297 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9298 inode_bytes = inode_get_bytes(inode); 9299 spin_unlock(&BTRFS_I(inode)->lock); 9300 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9301 ALIGN(delalloc_bytes, blocksize)) >> 9; 9302 return 0; 9303 } 9304 9305 static int btrfs_rename_exchange(struct inode *old_dir, 9306 struct dentry *old_dentry, 9307 struct inode *new_dir, 9308 struct dentry *new_dentry) 9309 { 9310 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9311 struct btrfs_trans_handle *trans; 9312 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9313 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9314 struct inode *new_inode = new_dentry->d_inode; 9315 struct inode *old_inode = old_dentry->d_inode; 9316 struct timespec64 ctime = current_time(old_inode); 9317 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9318 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9319 u64 old_idx = 0; 9320 u64 new_idx = 0; 9321 int ret; 9322 int ret2; 9323 bool root_log_pinned = false; 9324 bool dest_log_pinned = false; 9325 bool need_abort = false; 9326 9327 /* 9328 * For non-subvolumes allow exchange only within one subvolume, in the 9329 * same inode namespace. Two subvolumes (represented as directory) can 9330 * be exchanged as they're a logical link and have a fixed inode number. 9331 */ 9332 if (root != dest && 9333 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 9334 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 9335 return -EXDEV; 9336 9337 /* close the race window with snapshot create/destroy ioctl */ 9338 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9339 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9340 down_read(&fs_info->subvol_sem); 9341 9342 /* 9343 * We want to reserve the absolute worst case amount of items. So if 9344 * both inodes are subvols and we need to unlink them then that would 9345 * require 4 item modifications, but if they are both normal inodes it 9346 * would require 5 item modifications, so we'll assume their normal 9347 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9348 * should cover the worst case number of items we'll modify. 9349 */ 9350 trans = btrfs_start_transaction(root, 12); 9351 if (IS_ERR(trans)) { 9352 ret = PTR_ERR(trans); 9353 goto out_notrans; 9354 } 9355 9356 if (dest != root) { 9357 ret = btrfs_record_root_in_trans(trans, dest); 9358 if (ret) 9359 goto out_fail; 9360 } 9361 9362 /* 9363 * We need to find a free sequence number both in the source and 9364 * in the destination directory for the exchange. 9365 */ 9366 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9367 if (ret) 9368 goto out_fail; 9369 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9370 if (ret) 9371 goto out_fail; 9372 9373 BTRFS_I(old_inode)->dir_index = 0ULL; 9374 BTRFS_I(new_inode)->dir_index = 0ULL; 9375 9376 /* Reference for the source. */ 9377 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9378 /* force full log commit if subvolume involved. */ 9379 btrfs_set_log_full_commit(trans); 9380 } else { 9381 ret = btrfs_insert_inode_ref(trans, dest, 9382 new_dentry->d_name.name, 9383 new_dentry->d_name.len, 9384 old_ino, 9385 btrfs_ino(BTRFS_I(new_dir)), 9386 old_idx); 9387 if (ret) 9388 goto out_fail; 9389 need_abort = true; 9390 } 9391 9392 /* And now for the dest. */ 9393 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9394 /* force full log commit if subvolume involved. */ 9395 btrfs_set_log_full_commit(trans); 9396 } else { 9397 ret = btrfs_insert_inode_ref(trans, root, 9398 old_dentry->d_name.name, 9399 old_dentry->d_name.len, 9400 new_ino, 9401 btrfs_ino(BTRFS_I(old_dir)), 9402 new_idx); 9403 if (ret) { 9404 if (need_abort) 9405 btrfs_abort_transaction(trans, ret); 9406 goto out_fail; 9407 } 9408 } 9409 9410 /* Update inode version and ctime/mtime. */ 9411 inode_inc_iversion(old_dir); 9412 inode_inc_iversion(new_dir); 9413 inode_inc_iversion(old_inode); 9414 inode_inc_iversion(new_inode); 9415 old_dir->i_ctime = old_dir->i_mtime = ctime; 9416 new_dir->i_ctime = new_dir->i_mtime = ctime; 9417 old_inode->i_ctime = ctime; 9418 new_inode->i_ctime = ctime; 9419 9420 if (old_dentry->d_parent != new_dentry->d_parent) { 9421 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9422 BTRFS_I(old_inode), 1); 9423 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9424 BTRFS_I(new_inode), 1); 9425 } 9426 9427 /* 9428 * Now pin the logs of the roots. We do it to ensure that no other task 9429 * can sync the logs while we are in progress with the rename, because 9430 * that could result in an inconsistency in case any of the inodes that 9431 * are part of this rename operation were logged before. 9432 * 9433 * We pin the logs even if at this precise moment none of the inodes was 9434 * logged before. This is because right after we checked for that, some 9435 * other task fsyncing some other inode not involved with this rename 9436 * operation could log that one of our inodes exists. 9437 * 9438 * We don't need to pin the logs before the above calls to 9439 * btrfs_insert_inode_ref(), since those don't ever need to change a log. 9440 */ 9441 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9442 btrfs_pin_log_trans(root); 9443 root_log_pinned = true; 9444 } 9445 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) { 9446 btrfs_pin_log_trans(dest); 9447 dest_log_pinned = true; 9448 } 9449 9450 /* src is a subvolume */ 9451 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9452 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9453 } else { /* src is an inode */ 9454 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9455 BTRFS_I(old_dentry->d_inode), 9456 old_dentry->d_name.name, 9457 old_dentry->d_name.len); 9458 if (!ret) 9459 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9460 } 9461 if (ret) { 9462 btrfs_abort_transaction(trans, ret); 9463 goto out_fail; 9464 } 9465 9466 /* dest is a subvolume */ 9467 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9468 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9469 } else { /* dest is an inode */ 9470 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9471 BTRFS_I(new_dentry->d_inode), 9472 new_dentry->d_name.name, 9473 new_dentry->d_name.len); 9474 if (!ret) 9475 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9476 } 9477 if (ret) { 9478 btrfs_abort_transaction(trans, ret); 9479 goto out_fail; 9480 } 9481 9482 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9483 new_dentry->d_name.name, 9484 new_dentry->d_name.len, 0, old_idx); 9485 if (ret) { 9486 btrfs_abort_transaction(trans, ret); 9487 goto out_fail; 9488 } 9489 9490 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9491 old_dentry->d_name.name, 9492 old_dentry->d_name.len, 0, new_idx); 9493 if (ret) { 9494 btrfs_abort_transaction(trans, ret); 9495 goto out_fail; 9496 } 9497 9498 if (old_inode->i_nlink == 1) 9499 BTRFS_I(old_inode)->dir_index = old_idx; 9500 if (new_inode->i_nlink == 1) 9501 BTRFS_I(new_inode)->dir_index = new_idx; 9502 9503 if (root_log_pinned) { 9504 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9505 new_dentry->d_parent); 9506 btrfs_end_log_trans(root); 9507 root_log_pinned = false; 9508 } 9509 if (dest_log_pinned) { 9510 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9511 old_dentry->d_parent); 9512 btrfs_end_log_trans(dest); 9513 dest_log_pinned = false; 9514 } 9515 out_fail: 9516 /* 9517 * If we have pinned a log and an error happened, we unpin tasks 9518 * trying to sync the log and force them to fallback to a transaction 9519 * commit if the log currently contains any of the inodes involved in 9520 * this rename operation (to ensure we do not persist a log with an 9521 * inconsistent state for any of these inodes or leading to any 9522 * inconsistencies when replayed). If the transaction was aborted, the 9523 * abortion reason is propagated to userspace when attempting to commit 9524 * the transaction. If the log does not contain any of these inodes, we 9525 * allow the tasks to sync it. 9526 */ 9527 if (ret && (root_log_pinned || dest_log_pinned)) { 9528 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9529 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9530 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9531 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)) 9532 btrfs_set_log_full_commit(trans); 9533 9534 if (root_log_pinned) { 9535 btrfs_end_log_trans(root); 9536 root_log_pinned = false; 9537 } 9538 if (dest_log_pinned) { 9539 btrfs_end_log_trans(dest); 9540 dest_log_pinned = false; 9541 } 9542 } 9543 ret2 = btrfs_end_transaction(trans); 9544 ret = ret ? ret : ret2; 9545 out_notrans: 9546 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9547 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9548 up_read(&fs_info->subvol_sem); 9549 9550 return ret; 9551 } 9552 9553 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9554 struct btrfs_root *root, 9555 struct user_namespace *mnt_userns, 9556 struct inode *dir, 9557 struct dentry *dentry) 9558 { 9559 int ret; 9560 struct inode *inode; 9561 u64 objectid; 9562 u64 index; 9563 9564 ret = btrfs_get_free_objectid(root, &objectid); 9565 if (ret) 9566 return ret; 9567 9568 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 9569 dentry->d_name.name, 9570 dentry->d_name.len, 9571 btrfs_ino(BTRFS_I(dir)), 9572 objectid, 9573 S_IFCHR | WHITEOUT_MODE, 9574 &index); 9575 9576 if (IS_ERR(inode)) { 9577 ret = PTR_ERR(inode); 9578 return ret; 9579 } 9580 9581 inode->i_op = &btrfs_special_inode_operations; 9582 init_special_inode(inode, inode->i_mode, 9583 WHITEOUT_DEV); 9584 9585 ret = btrfs_init_inode_security(trans, inode, dir, 9586 &dentry->d_name); 9587 if (ret) 9588 goto out; 9589 9590 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9591 BTRFS_I(inode), 0, index); 9592 if (ret) 9593 goto out; 9594 9595 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9596 out: 9597 unlock_new_inode(inode); 9598 if (ret) 9599 inode_dec_link_count(inode); 9600 iput(inode); 9601 9602 return ret; 9603 } 9604 9605 static int btrfs_rename(struct user_namespace *mnt_userns, 9606 struct inode *old_dir, struct dentry *old_dentry, 9607 struct inode *new_dir, struct dentry *new_dentry, 9608 unsigned int flags) 9609 { 9610 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9611 struct btrfs_trans_handle *trans; 9612 unsigned int trans_num_items; 9613 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9614 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9615 struct inode *new_inode = d_inode(new_dentry); 9616 struct inode *old_inode = d_inode(old_dentry); 9617 u64 index = 0; 9618 int ret; 9619 int ret2; 9620 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9621 bool log_pinned = false; 9622 9623 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9624 return -EPERM; 9625 9626 /* we only allow rename subvolume link between subvolumes */ 9627 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9628 return -EXDEV; 9629 9630 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9631 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9632 return -ENOTEMPTY; 9633 9634 if (S_ISDIR(old_inode->i_mode) && new_inode && 9635 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9636 return -ENOTEMPTY; 9637 9638 9639 /* check for collisions, even if the name isn't there */ 9640 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9641 new_dentry->d_name.name, 9642 new_dentry->d_name.len); 9643 9644 if (ret) { 9645 if (ret == -EEXIST) { 9646 /* we shouldn't get 9647 * eexist without a new_inode */ 9648 if (WARN_ON(!new_inode)) { 9649 return ret; 9650 } 9651 } else { 9652 /* maybe -EOVERFLOW */ 9653 return ret; 9654 } 9655 } 9656 ret = 0; 9657 9658 /* 9659 * we're using rename to replace one file with another. Start IO on it 9660 * now so we don't add too much work to the end of the transaction 9661 */ 9662 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9663 filemap_flush(old_inode->i_mapping); 9664 9665 /* close the racy window with snapshot create/destroy ioctl */ 9666 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9667 down_read(&fs_info->subvol_sem); 9668 /* 9669 * We want to reserve the absolute worst case amount of items. So if 9670 * both inodes are subvols and we need to unlink them then that would 9671 * require 4 item modifications, but if they are both normal inodes it 9672 * would require 5 item modifications, so we'll assume they are normal 9673 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9674 * should cover the worst case number of items we'll modify. 9675 * If our rename has the whiteout flag, we need more 5 units for the 9676 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9677 * when selinux is enabled). 9678 */ 9679 trans_num_items = 11; 9680 if (flags & RENAME_WHITEOUT) 9681 trans_num_items += 5; 9682 trans = btrfs_start_transaction(root, trans_num_items); 9683 if (IS_ERR(trans)) { 9684 ret = PTR_ERR(trans); 9685 goto out_notrans; 9686 } 9687 9688 if (dest != root) { 9689 ret = btrfs_record_root_in_trans(trans, dest); 9690 if (ret) 9691 goto out_fail; 9692 } 9693 9694 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9695 if (ret) 9696 goto out_fail; 9697 9698 BTRFS_I(old_inode)->dir_index = 0ULL; 9699 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9700 /* force full log commit if subvolume involved. */ 9701 btrfs_set_log_full_commit(trans); 9702 } else { 9703 ret = btrfs_insert_inode_ref(trans, dest, 9704 new_dentry->d_name.name, 9705 new_dentry->d_name.len, 9706 old_ino, 9707 btrfs_ino(BTRFS_I(new_dir)), index); 9708 if (ret) 9709 goto out_fail; 9710 } 9711 9712 inode_inc_iversion(old_dir); 9713 inode_inc_iversion(new_dir); 9714 inode_inc_iversion(old_inode); 9715 old_dir->i_ctime = old_dir->i_mtime = 9716 new_dir->i_ctime = new_dir->i_mtime = 9717 old_inode->i_ctime = current_time(old_dir); 9718 9719 if (old_dentry->d_parent != new_dentry->d_parent) 9720 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9721 BTRFS_I(old_inode), 1); 9722 9723 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9724 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9725 } else { 9726 /* 9727 * Now pin the log. We do it to ensure that no other task can 9728 * sync the log while we are in progress with the rename, as 9729 * that could result in an inconsistency in case any of the 9730 * inodes that are part of this rename operation were logged 9731 * before. 9732 * 9733 * We pin the log even if at this precise moment none of the 9734 * inodes was logged before. This is because right after we 9735 * checked for that, some other task fsyncing some other inode 9736 * not involved with this rename operation could log that one of 9737 * our inodes exists. 9738 * 9739 * We don't need to pin the logs before the above call to 9740 * btrfs_insert_inode_ref(), since that does not need to change 9741 * a log. 9742 */ 9743 btrfs_pin_log_trans(root); 9744 log_pinned = true; 9745 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9746 BTRFS_I(d_inode(old_dentry)), 9747 old_dentry->d_name.name, 9748 old_dentry->d_name.len); 9749 if (!ret) 9750 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9751 } 9752 if (ret) { 9753 btrfs_abort_transaction(trans, ret); 9754 goto out_fail; 9755 } 9756 9757 if (new_inode) { 9758 inode_inc_iversion(new_inode); 9759 new_inode->i_ctime = current_time(new_inode); 9760 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9761 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9762 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9763 BUG_ON(new_inode->i_nlink == 0); 9764 } else { 9765 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9766 BTRFS_I(d_inode(new_dentry)), 9767 new_dentry->d_name.name, 9768 new_dentry->d_name.len); 9769 } 9770 if (!ret && new_inode->i_nlink == 0) 9771 ret = btrfs_orphan_add(trans, 9772 BTRFS_I(d_inode(new_dentry))); 9773 if (ret) { 9774 btrfs_abort_transaction(trans, ret); 9775 goto out_fail; 9776 } 9777 } 9778 9779 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9780 new_dentry->d_name.name, 9781 new_dentry->d_name.len, 0, index); 9782 if (ret) { 9783 btrfs_abort_transaction(trans, ret); 9784 goto out_fail; 9785 } 9786 9787 if (old_inode->i_nlink == 1) 9788 BTRFS_I(old_inode)->dir_index = index; 9789 9790 if (log_pinned) { 9791 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9792 new_dentry->d_parent); 9793 btrfs_end_log_trans(root); 9794 log_pinned = false; 9795 } 9796 9797 if (flags & RENAME_WHITEOUT) { 9798 ret = btrfs_whiteout_for_rename(trans, root, mnt_userns, 9799 old_dir, old_dentry); 9800 9801 if (ret) { 9802 btrfs_abort_transaction(trans, ret); 9803 goto out_fail; 9804 } 9805 } 9806 out_fail: 9807 /* 9808 * If we have pinned the log and an error happened, we unpin tasks 9809 * trying to sync the log and force them to fallback to a transaction 9810 * commit if the log currently contains any of the inodes involved in 9811 * this rename operation (to ensure we do not persist a log with an 9812 * inconsistent state for any of these inodes or leading to any 9813 * inconsistencies when replayed). If the transaction was aborted, the 9814 * abortion reason is propagated to userspace when attempting to commit 9815 * the transaction. If the log does not contain any of these inodes, we 9816 * allow the tasks to sync it. 9817 */ 9818 if (ret && log_pinned) { 9819 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9820 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9821 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9822 (new_inode && 9823 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9824 btrfs_set_log_full_commit(trans); 9825 9826 btrfs_end_log_trans(root); 9827 log_pinned = false; 9828 } 9829 ret2 = btrfs_end_transaction(trans); 9830 ret = ret ? ret : ret2; 9831 out_notrans: 9832 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9833 up_read(&fs_info->subvol_sem); 9834 9835 return ret; 9836 } 9837 9838 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9839 struct dentry *old_dentry, struct inode *new_dir, 9840 struct dentry *new_dentry, unsigned int flags) 9841 { 9842 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9843 return -EINVAL; 9844 9845 if (flags & RENAME_EXCHANGE) 9846 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9847 new_dentry); 9848 9849 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, 9850 new_dentry, flags); 9851 } 9852 9853 struct btrfs_delalloc_work { 9854 struct inode *inode; 9855 struct completion completion; 9856 struct list_head list; 9857 struct btrfs_work work; 9858 }; 9859 9860 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9861 { 9862 struct btrfs_delalloc_work *delalloc_work; 9863 struct inode *inode; 9864 9865 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9866 work); 9867 inode = delalloc_work->inode; 9868 filemap_flush(inode->i_mapping); 9869 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9870 &BTRFS_I(inode)->runtime_flags)) 9871 filemap_flush(inode->i_mapping); 9872 9873 iput(inode); 9874 complete(&delalloc_work->completion); 9875 } 9876 9877 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9878 { 9879 struct btrfs_delalloc_work *work; 9880 9881 work = kmalloc(sizeof(*work), GFP_NOFS); 9882 if (!work) 9883 return NULL; 9884 9885 init_completion(&work->completion); 9886 INIT_LIST_HEAD(&work->list); 9887 work->inode = inode; 9888 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9889 9890 return work; 9891 } 9892 9893 /* 9894 * some fairly slow code that needs optimization. This walks the list 9895 * of all the inodes with pending delalloc and forces them to disk. 9896 */ 9897 static int start_delalloc_inodes(struct btrfs_root *root, 9898 struct writeback_control *wbc, bool snapshot, 9899 bool in_reclaim_context) 9900 { 9901 struct btrfs_inode *binode; 9902 struct inode *inode; 9903 struct btrfs_delalloc_work *work, *next; 9904 struct list_head works; 9905 struct list_head splice; 9906 int ret = 0; 9907 bool full_flush = wbc->nr_to_write == LONG_MAX; 9908 9909 INIT_LIST_HEAD(&works); 9910 INIT_LIST_HEAD(&splice); 9911 9912 mutex_lock(&root->delalloc_mutex); 9913 spin_lock(&root->delalloc_lock); 9914 list_splice_init(&root->delalloc_inodes, &splice); 9915 while (!list_empty(&splice)) { 9916 binode = list_entry(splice.next, struct btrfs_inode, 9917 delalloc_inodes); 9918 9919 list_move_tail(&binode->delalloc_inodes, 9920 &root->delalloc_inodes); 9921 9922 if (in_reclaim_context && 9923 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9924 continue; 9925 9926 inode = igrab(&binode->vfs_inode); 9927 if (!inode) { 9928 cond_resched_lock(&root->delalloc_lock); 9929 continue; 9930 } 9931 spin_unlock(&root->delalloc_lock); 9932 9933 if (snapshot) 9934 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9935 &binode->runtime_flags); 9936 if (full_flush) { 9937 work = btrfs_alloc_delalloc_work(inode); 9938 if (!work) { 9939 iput(inode); 9940 ret = -ENOMEM; 9941 goto out; 9942 } 9943 list_add_tail(&work->list, &works); 9944 btrfs_queue_work(root->fs_info->flush_workers, 9945 &work->work); 9946 } else { 9947 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9948 btrfs_add_delayed_iput(inode); 9949 if (ret || wbc->nr_to_write <= 0) 9950 goto out; 9951 } 9952 cond_resched(); 9953 spin_lock(&root->delalloc_lock); 9954 } 9955 spin_unlock(&root->delalloc_lock); 9956 9957 out: 9958 list_for_each_entry_safe(work, next, &works, list) { 9959 list_del_init(&work->list); 9960 wait_for_completion(&work->completion); 9961 kfree(work); 9962 } 9963 9964 if (!list_empty(&splice)) { 9965 spin_lock(&root->delalloc_lock); 9966 list_splice_tail(&splice, &root->delalloc_inodes); 9967 spin_unlock(&root->delalloc_lock); 9968 } 9969 mutex_unlock(&root->delalloc_mutex); 9970 return ret; 9971 } 9972 9973 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9974 { 9975 struct writeback_control wbc = { 9976 .nr_to_write = LONG_MAX, 9977 .sync_mode = WB_SYNC_NONE, 9978 .range_start = 0, 9979 .range_end = LLONG_MAX, 9980 }; 9981 struct btrfs_fs_info *fs_info = root->fs_info; 9982 9983 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9984 return -EROFS; 9985 9986 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9987 } 9988 9989 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9990 bool in_reclaim_context) 9991 { 9992 struct writeback_control wbc = { 9993 .nr_to_write = nr, 9994 .sync_mode = WB_SYNC_NONE, 9995 .range_start = 0, 9996 .range_end = LLONG_MAX, 9997 }; 9998 struct btrfs_root *root; 9999 struct list_head splice; 10000 int ret; 10001 10002 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10003 return -EROFS; 10004 10005 INIT_LIST_HEAD(&splice); 10006 10007 mutex_lock(&fs_info->delalloc_root_mutex); 10008 spin_lock(&fs_info->delalloc_root_lock); 10009 list_splice_init(&fs_info->delalloc_roots, &splice); 10010 while (!list_empty(&splice)) { 10011 /* 10012 * Reset nr_to_write here so we know that we're doing a full 10013 * flush. 10014 */ 10015 if (nr == LONG_MAX) 10016 wbc.nr_to_write = LONG_MAX; 10017 10018 root = list_first_entry(&splice, struct btrfs_root, 10019 delalloc_root); 10020 root = btrfs_grab_root(root); 10021 BUG_ON(!root); 10022 list_move_tail(&root->delalloc_root, 10023 &fs_info->delalloc_roots); 10024 spin_unlock(&fs_info->delalloc_root_lock); 10025 10026 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 10027 btrfs_put_root(root); 10028 if (ret < 0 || wbc.nr_to_write <= 0) 10029 goto out; 10030 spin_lock(&fs_info->delalloc_root_lock); 10031 } 10032 spin_unlock(&fs_info->delalloc_root_lock); 10033 10034 ret = 0; 10035 out: 10036 if (!list_empty(&splice)) { 10037 spin_lock(&fs_info->delalloc_root_lock); 10038 list_splice_tail(&splice, &fs_info->delalloc_roots); 10039 spin_unlock(&fs_info->delalloc_root_lock); 10040 } 10041 mutex_unlock(&fs_info->delalloc_root_mutex); 10042 return ret; 10043 } 10044 10045 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 10046 struct dentry *dentry, const char *symname) 10047 { 10048 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10049 struct btrfs_trans_handle *trans; 10050 struct btrfs_root *root = BTRFS_I(dir)->root; 10051 struct btrfs_path *path; 10052 struct btrfs_key key; 10053 struct inode *inode = NULL; 10054 int err; 10055 u64 objectid; 10056 u64 index = 0; 10057 int name_len; 10058 int datasize; 10059 unsigned long ptr; 10060 struct btrfs_file_extent_item *ei; 10061 struct extent_buffer *leaf; 10062 10063 name_len = strlen(symname); 10064 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10065 return -ENAMETOOLONG; 10066 10067 /* 10068 * 2 items for inode item and ref 10069 * 2 items for dir items 10070 * 1 item for updating parent inode item 10071 * 1 item for the inline extent item 10072 * 1 item for xattr if selinux is on 10073 */ 10074 trans = btrfs_start_transaction(root, 7); 10075 if (IS_ERR(trans)) 10076 return PTR_ERR(trans); 10077 10078 err = btrfs_get_free_objectid(root, &objectid); 10079 if (err) 10080 goto out_unlock; 10081 10082 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 10083 dentry->d_name.name, dentry->d_name.len, 10084 btrfs_ino(BTRFS_I(dir)), objectid, 10085 S_IFLNK | S_IRWXUGO, &index); 10086 if (IS_ERR(inode)) { 10087 err = PTR_ERR(inode); 10088 inode = NULL; 10089 goto out_unlock; 10090 } 10091 10092 /* 10093 * If the active LSM wants to access the inode during 10094 * d_instantiate it needs these. Smack checks to see 10095 * if the filesystem supports xattrs by looking at the 10096 * ops vector. 10097 */ 10098 inode->i_fop = &btrfs_file_operations; 10099 inode->i_op = &btrfs_file_inode_operations; 10100 inode->i_mapping->a_ops = &btrfs_aops; 10101 10102 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10103 if (err) 10104 goto out_unlock; 10105 10106 path = btrfs_alloc_path(); 10107 if (!path) { 10108 err = -ENOMEM; 10109 goto out_unlock; 10110 } 10111 key.objectid = btrfs_ino(BTRFS_I(inode)); 10112 key.offset = 0; 10113 key.type = BTRFS_EXTENT_DATA_KEY; 10114 datasize = btrfs_file_extent_calc_inline_size(name_len); 10115 err = btrfs_insert_empty_item(trans, root, path, &key, 10116 datasize); 10117 if (err) { 10118 btrfs_free_path(path); 10119 goto out_unlock; 10120 } 10121 leaf = path->nodes[0]; 10122 ei = btrfs_item_ptr(leaf, path->slots[0], 10123 struct btrfs_file_extent_item); 10124 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10125 btrfs_set_file_extent_type(leaf, ei, 10126 BTRFS_FILE_EXTENT_INLINE); 10127 btrfs_set_file_extent_encryption(leaf, ei, 0); 10128 btrfs_set_file_extent_compression(leaf, ei, 0); 10129 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10130 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10131 10132 ptr = btrfs_file_extent_inline_start(ei); 10133 write_extent_buffer(leaf, symname, ptr, name_len); 10134 btrfs_mark_buffer_dirty(leaf); 10135 btrfs_free_path(path); 10136 10137 inode->i_op = &btrfs_symlink_inode_operations; 10138 inode_nohighmem(inode); 10139 inode_set_bytes(inode, name_len); 10140 btrfs_i_size_write(BTRFS_I(inode), name_len); 10141 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10142 /* 10143 * Last step, add directory indexes for our symlink inode. This is the 10144 * last step to avoid extra cleanup of these indexes if an error happens 10145 * elsewhere above. 10146 */ 10147 if (!err) 10148 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10149 BTRFS_I(inode), 0, index); 10150 if (err) 10151 goto out_unlock; 10152 10153 d_instantiate_new(dentry, inode); 10154 10155 out_unlock: 10156 btrfs_end_transaction(trans); 10157 if (err && inode) { 10158 inode_dec_link_count(inode); 10159 discard_new_inode(inode); 10160 } 10161 btrfs_btree_balance_dirty(fs_info); 10162 return err; 10163 } 10164 10165 static struct btrfs_trans_handle *insert_prealloc_file_extent( 10166 struct btrfs_trans_handle *trans_in, 10167 struct btrfs_inode *inode, 10168 struct btrfs_key *ins, 10169 u64 file_offset) 10170 { 10171 struct btrfs_file_extent_item stack_fi; 10172 struct btrfs_replace_extent_info extent_info; 10173 struct btrfs_trans_handle *trans = trans_in; 10174 struct btrfs_path *path; 10175 u64 start = ins->objectid; 10176 u64 len = ins->offset; 10177 int qgroup_released; 10178 int ret; 10179 10180 memset(&stack_fi, 0, sizeof(stack_fi)); 10181 10182 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 10183 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 10184 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 10185 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 10186 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 10187 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 10188 /* Encryption and other encoding is reserved and all 0 */ 10189 10190 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 10191 if (qgroup_released < 0) 10192 return ERR_PTR(qgroup_released); 10193 10194 if (trans) { 10195 ret = insert_reserved_file_extent(trans, inode, 10196 file_offset, &stack_fi, 10197 true, qgroup_released); 10198 if (ret) 10199 goto free_qgroup; 10200 return trans; 10201 } 10202 10203 extent_info.disk_offset = start; 10204 extent_info.disk_len = len; 10205 extent_info.data_offset = 0; 10206 extent_info.data_len = len; 10207 extent_info.file_offset = file_offset; 10208 extent_info.extent_buf = (char *)&stack_fi; 10209 extent_info.is_new_extent = true; 10210 extent_info.qgroup_reserved = qgroup_released; 10211 extent_info.insertions = 0; 10212 10213 path = btrfs_alloc_path(); 10214 if (!path) { 10215 ret = -ENOMEM; 10216 goto free_qgroup; 10217 } 10218 10219 ret = btrfs_replace_file_extents(inode, path, file_offset, 10220 file_offset + len - 1, &extent_info, 10221 &trans); 10222 btrfs_free_path(path); 10223 if (ret) 10224 goto free_qgroup; 10225 return trans; 10226 10227 free_qgroup: 10228 /* 10229 * We have released qgroup data range at the beginning of the function, 10230 * and normally qgroup_released bytes will be freed when committing 10231 * transaction. 10232 * But if we error out early, we have to free what we have released 10233 * or we leak qgroup data reservation. 10234 */ 10235 btrfs_qgroup_free_refroot(inode->root->fs_info, 10236 inode->root->root_key.objectid, qgroup_released, 10237 BTRFS_QGROUP_RSV_DATA); 10238 return ERR_PTR(ret); 10239 } 10240 10241 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10242 u64 start, u64 num_bytes, u64 min_size, 10243 loff_t actual_len, u64 *alloc_hint, 10244 struct btrfs_trans_handle *trans) 10245 { 10246 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10247 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10248 struct extent_map *em; 10249 struct btrfs_root *root = BTRFS_I(inode)->root; 10250 struct btrfs_key ins; 10251 u64 cur_offset = start; 10252 u64 clear_offset = start; 10253 u64 i_size; 10254 u64 cur_bytes; 10255 u64 last_alloc = (u64)-1; 10256 int ret = 0; 10257 bool own_trans = true; 10258 u64 end = start + num_bytes - 1; 10259 10260 if (trans) 10261 own_trans = false; 10262 while (num_bytes > 0) { 10263 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10264 cur_bytes = max(cur_bytes, min_size); 10265 /* 10266 * If we are severely fragmented we could end up with really 10267 * small allocations, so if the allocator is returning small 10268 * chunks lets make its job easier by only searching for those 10269 * sized chunks. 10270 */ 10271 cur_bytes = min(cur_bytes, last_alloc); 10272 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10273 min_size, 0, *alloc_hint, &ins, 1, 0); 10274 if (ret) 10275 break; 10276 10277 /* 10278 * We've reserved this space, and thus converted it from 10279 * ->bytes_may_use to ->bytes_reserved. Any error that happens 10280 * from here on out we will only need to clear our reservation 10281 * for the remaining unreserved area, so advance our 10282 * clear_offset by our extent size. 10283 */ 10284 clear_offset += ins.offset; 10285 10286 last_alloc = ins.offset; 10287 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 10288 &ins, cur_offset); 10289 /* 10290 * Now that we inserted the prealloc extent we can finally 10291 * decrement the number of reservations in the block group. 10292 * If we did it before, we could race with relocation and have 10293 * relocation miss the reserved extent, making it fail later. 10294 */ 10295 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10296 if (IS_ERR(trans)) { 10297 ret = PTR_ERR(trans); 10298 btrfs_free_reserved_extent(fs_info, ins.objectid, 10299 ins.offset, 0); 10300 break; 10301 } 10302 10303 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10304 cur_offset + ins.offset -1, 0); 10305 10306 em = alloc_extent_map(); 10307 if (!em) { 10308 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10309 &BTRFS_I(inode)->runtime_flags); 10310 goto next; 10311 } 10312 10313 em->start = cur_offset; 10314 em->orig_start = cur_offset; 10315 em->len = ins.offset; 10316 em->block_start = ins.objectid; 10317 em->block_len = ins.offset; 10318 em->orig_block_len = ins.offset; 10319 em->ram_bytes = ins.offset; 10320 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10321 em->generation = trans->transid; 10322 10323 while (1) { 10324 write_lock(&em_tree->lock); 10325 ret = add_extent_mapping(em_tree, em, 1); 10326 write_unlock(&em_tree->lock); 10327 if (ret != -EEXIST) 10328 break; 10329 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10330 cur_offset + ins.offset - 1, 10331 0); 10332 } 10333 free_extent_map(em); 10334 next: 10335 num_bytes -= ins.offset; 10336 cur_offset += ins.offset; 10337 *alloc_hint = ins.objectid + ins.offset; 10338 10339 inode_inc_iversion(inode); 10340 inode->i_ctime = current_time(inode); 10341 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10342 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10343 (actual_len > inode->i_size) && 10344 (cur_offset > inode->i_size)) { 10345 if (cur_offset > actual_len) 10346 i_size = actual_len; 10347 else 10348 i_size = cur_offset; 10349 i_size_write(inode, i_size); 10350 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10351 } 10352 10353 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10354 10355 if (ret) { 10356 btrfs_abort_transaction(trans, ret); 10357 if (own_trans) 10358 btrfs_end_transaction(trans); 10359 break; 10360 } 10361 10362 if (own_trans) { 10363 btrfs_end_transaction(trans); 10364 trans = NULL; 10365 } 10366 } 10367 if (clear_offset < end) 10368 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10369 end - clear_offset + 1); 10370 return ret; 10371 } 10372 10373 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10374 u64 start, u64 num_bytes, u64 min_size, 10375 loff_t actual_len, u64 *alloc_hint) 10376 { 10377 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10378 min_size, actual_len, alloc_hint, 10379 NULL); 10380 } 10381 10382 int btrfs_prealloc_file_range_trans(struct inode *inode, 10383 struct btrfs_trans_handle *trans, int mode, 10384 u64 start, u64 num_bytes, u64 min_size, 10385 loff_t actual_len, u64 *alloc_hint) 10386 { 10387 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10388 min_size, actual_len, alloc_hint, trans); 10389 } 10390 10391 static int btrfs_set_page_dirty(struct page *page) 10392 { 10393 return __set_page_dirty_nobuffers(page); 10394 } 10395 10396 static int btrfs_permission(struct user_namespace *mnt_userns, 10397 struct inode *inode, int mask) 10398 { 10399 struct btrfs_root *root = BTRFS_I(inode)->root; 10400 umode_t mode = inode->i_mode; 10401 10402 if (mask & MAY_WRITE && 10403 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10404 if (btrfs_root_readonly(root)) 10405 return -EROFS; 10406 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10407 return -EACCES; 10408 } 10409 return generic_permission(mnt_userns, inode, mask); 10410 } 10411 10412 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10413 struct dentry *dentry, umode_t mode) 10414 { 10415 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10416 struct btrfs_trans_handle *trans; 10417 struct btrfs_root *root = BTRFS_I(dir)->root; 10418 struct inode *inode = NULL; 10419 u64 objectid; 10420 u64 index; 10421 int ret = 0; 10422 10423 /* 10424 * 5 units required for adding orphan entry 10425 */ 10426 trans = btrfs_start_transaction(root, 5); 10427 if (IS_ERR(trans)) 10428 return PTR_ERR(trans); 10429 10430 ret = btrfs_get_free_objectid(root, &objectid); 10431 if (ret) 10432 goto out; 10433 10434 inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0, 10435 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10436 if (IS_ERR(inode)) { 10437 ret = PTR_ERR(inode); 10438 inode = NULL; 10439 goto out; 10440 } 10441 10442 inode->i_fop = &btrfs_file_operations; 10443 inode->i_op = &btrfs_file_inode_operations; 10444 10445 inode->i_mapping->a_ops = &btrfs_aops; 10446 10447 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10448 if (ret) 10449 goto out; 10450 10451 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10452 if (ret) 10453 goto out; 10454 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10455 if (ret) 10456 goto out; 10457 10458 /* 10459 * We set number of links to 0 in btrfs_new_inode(), and here we set 10460 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10461 * through: 10462 * 10463 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10464 */ 10465 set_nlink(inode, 1); 10466 d_tmpfile(dentry, inode); 10467 unlock_new_inode(inode); 10468 mark_inode_dirty(inode); 10469 out: 10470 btrfs_end_transaction(trans); 10471 if (ret && inode) 10472 discard_new_inode(inode); 10473 btrfs_btree_balance_dirty(fs_info); 10474 return ret; 10475 } 10476 10477 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10478 { 10479 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10480 unsigned long index = start >> PAGE_SHIFT; 10481 unsigned long end_index = end >> PAGE_SHIFT; 10482 struct page *page; 10483 u32 len; 10484 10485 ASSERT(end + 1 - start <= U32_MAX); 10486 len = end + 1 - start; 10487 while (index <= end_index) { 10488 page = find_get_page(inode->vfs_inode.i_mapping, index); 10489 ASSERT(page); /* Pages should be in the extent_io_tree */ 10490 10491 btrfs_page_set_writeback(fs_info, page, start, len); 10492 put_page(page); 10493 index++; 10494 } 10495 } 10496 10497 #ifdef CONFIG_SWAP 10498 /* 10499 * Add an entry indicating a block group or device which is pinned by a 10500 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10501 * negative errno on failure. 10502 */ 10503 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10504 bool is_block_group) 10505 { 10506 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10507 struct btrfs_swapfile_pin *sp, *entry; 10508 struct rb_node **p; 10509 struct rb_node *parent = NULL; 10510 10511 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10512 if (!sp) 10513 return -ENOMEM; 10514 sp->ptr = ptr; 10515 sp->inode = inode; 10516 sp->is_block_group = is_block_group; 10517 sp->bg_extent_count = 1; 10518 10519 spin_lock(&fs_info->swapfile_pins_lock); 10520 p = &fs_info->swapfile_pins.rb_node; 10521 while (*p) { 10522 parent = *p; 10523 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10524 if (sp->ptr < entry->ptr || 10525 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10526 p = &(*p)->rb_left; 10527 } else if (sp->ptr > entry->ptr || 10528 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10529 p = &(*p)->rb_right; 10530 } else { 10531 if (is_block_group) 10532 entry->bg_extent_count++; 10533 spin_unlock(&fs_info->swapfile_pins_lock); 10534 kfree(sp); 10535 return 1; 10536 } 10537 } 10538 rb_link_node(&sp->node, parent, p); 10539 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10540 spin_unlock(&fs_info->swapfile_pins_lock); 10541 return 0; 10542 } 10543 10544 /* Free all of the entries pinned by this swapfile. */ 10545 static void btrfs_free_swapfile_pins(struct inode *inode) 10546 { 10547 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10548 struct btrfs_swapfile_pin *sp; 10549 struct rb_node *node, *next; 10550 10551 spin_lock(&fs_info->swapfile_pins_lock); 10552 node = rb_first(&fs_info->swapfile_pins); 10553 while (node) { 10554 next = rb_next(node); 10555 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10556 if (sp->inode == inode) { 10557 rb_erase(&sp->node, &fs_info->swapfile_pins); 10558 if (sp->is_block_group) { 10559 btrfs_dec_block_group_swap_extents(sp->ptr, 10560 sp->bg_extent_count); 10561 btrfs_put_block_group(sp->ptr); 10562 } 10563 kfree(sp); 10564 } 10565 node = next; 10566 } 10567 spin_unlock(&fs_info->swapfile_pins_lock); 10568 } 10569 10570 struct btrfs_swap_info { 10571 u64 start; 10572 u64 block_start; 10573 u64 block_len; 10574 u64 lowest_ppage; 10575 u64 highest_ppage; 10576 unsigned long nr_pages; 10577 int nr_extents; 10578 }; 10579 10580 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10581 struct btrfs_swap_info *bsi) 10582 { 10583 unsigned long nr_pages; 10584 u64 first_ppage, first_ppage_reported, next_ppage; 10585 int ret; 10586 10587 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10588 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10589 PAGE_SIZE) >> PAGE_SHIFT; 10590 10591 if (first_ppage >= next_ppage) 10592 return 0; 10593 nr_pages = next_ppage - first_ppage; 10594 10595 first_ppage_reported = first_ppage; 10596 if (bsi->start == 0) 10597 first_ppage_reported++; 10598 if (bsi->lowest_ppage > first_ppage_reported) 10599 bsi->lowest_ppage = first_ppage_reported; 10600 if (bsi->highest_ppage < (next_ppage - 1)) 10601 bsi->highest_ppage = next_ppage - 1; 10602 10603 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10604 if (ret < 0) 10605 return ret; 10606 bsi->nr_extents += ret; 10607 bsi->nr_pages += nr_pages; 10608 return 0; 10609 } 10610 10611 static void btrfs_swap_deactivate(struct file *file) 10612 { 10613 struct inode *inode = file_inode(file); 10614 10615 btrfs_free_swapfile_pins(inode); 10616 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10617 } 10618 10619 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10620 sector_t *span) 10621 { 10622 struct inode *inode = file_inode(file); 10623 struct btrfs_root *root = BTRFS_I(inode)->root; 10624 struct btrfs_fs_info *fs_info = root->fs_info; 10625 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10626 struct extent_state *cached_state = NULL; 10627 struct extent_map *em = NULL; 10628 struct btrfs_device *device = NULL; 10629 struct btrfs_swap_info bsi = { 10630 .lowest_ppage = (sector_t)-1ULL, 10631 }; 10632 int ret = 0; 10633 u64 isize; 10634 u64 start; 10635 10636 /* 10637 * If the swap file was just created, make sure delalloc is done. If the 10638 * file changes again after this, the user is doing something stupid and 10639 * we don't really care. 10640 */ 10641 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10642 if (ret) 10643 return ret; 10644 10645 /* 10646 * The inode is locked, so these flags won't change after we check them. 10647 */ 10648 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10649 btrfs_warn(fs_info, "swapfile must not be compressed"); 10650 return -EINVAL; 10651 } 10652 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10653 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10654 return -EINVAL; 10655 } 10656 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10657 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10658 return -EINVAL; 10659 } 10660 10661 /* 10662 * Balance or device remove/replace/resize can move stuff around from 10663 * under us. The exclop protection makes sure they aren't running/won't 10664 * run concurrently while we are mapping the swap extents, and 10665 * fs_info->swapfile_pins prevents them from running while the swap 10666 * file is active and moving the extents. Note that this also prevents 10667 * a concurrent device add which isn't actually necessary, but it's not 10668 * really worth the trouble to allow it. 10669 */ 10670 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10671 btrfs_warn(fs_info, 10672 "cannot activate swapfile while exclusive operation is running"); 10673 return -EBUSY; 10674 } 10675 10676 /* 10677 * Prevent snapshot creation while we are activating the swap file. 10678 * We do not want to race with snapshot creation. If snapshot creation 10679 * already started before we bumped nr_swapfiles from 0 to 1 and 10680 * completes before the first write into the swap file after it is 10681 * activated, than that write would fallback to COW. 10682 */ 10683 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10684 btrfs_exclop_finish(fs_info); 10685 btrfs_warn(fs_info, 10686 "cannot activate swapfile because snapshot creation is in progress"); 10687 return -EINVAL; 10688 } 10689 /* 10690 * Snapshots can create extents which require COW even if NODATACOW is 10691 * set. We use this counter to prevent snapshots. We must increment it 10692 * before walking the extents because we don't want a concurrent 10693 * snapshot to run after we've already checked the extents. 10694 */ 10695 atomic_inc(&root->nr_swapfiles); 10696 10697 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10698 10699 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10700 start = 0; 10701 while (start < isize) { 10702 u64 logical_block_start, physical_block_start; 10703 struct btrfs_block_group *bg; 10704 u64 len = isize - start; 10705 10706 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10707 if (IS_ERR(em)) { 10708 ret = PTR_ERR(em); 10709 goto out; 10710 } 10711 10712 if (em->block_start == EXTENT_MAP_HOLE) { 10713 btrfs_warn(fs_info, "swapfile must not have holes"); 10714 ret = -EINVAL; 10715 goto out; 10716 } 10717 if (em->block_start == EXTENT_MAP_INLINE) { 10718 /* 10719 * It's unlikely we'll ever actually find ourselves 10720 * here, as a file small enough to fit inline won't be 10721 * big enough to store more than the swap header, but in 10722 * case something changes in the future, let's catch it 10723 * here rather than later. 10724 */ 10725 btrfs_warn(fs_info, "swapfile must not be inline"); 10726 ret = -EINVAL; 10727 goto out; 10728 } 10729 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10730 btrfs_warn(fs_info, "swapfile must not be compressed"); 10731 ret = -EINVAL; 10732 goto out; 10733 } 10734 10735 logical_block_start = em->block_start + (start - em->start); 10736 len = min(len, em->len - (start - em->start)); 10737 free_extent_map(em); 10738 em = NULL; 10739 10740 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10741 if (ret < 0) { 10742 goto out; 10743 } else if (ret) { 10744 ret = 0; 10745 } else { 10746 btrfs_warn(fs_info, 10747 "swapfile must not be copy-on-write"); 10748 ret = -EINVAL; 10749 goto out; 10750 } 10751 10752 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10753 if (IS_ERR(em)) { 10754 ret = PTR_ERR(em); 10755 goto out; 10756 } 10757 10758 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10759 btrfs_warn(fs_info, 10760 "swapfile must have single data profile"); 10761 ret = -EINVAL; 10762 goto out; 10763 } 10764 10765 if (device == NULL) { 10766 device = em->map_lookup->stripes[0].dev; 10767 ret = btrfs_add_swapfile_pin(inode, device, false); 10768 if (ret == 1) 10769 ret = 0; 10770 else if (ret) 10771 goto out; 10772 } else if (device != em->map_lookup->stripes[0].dev) { 10773 btrfs_warn(fs_info, "swapfile must be on one device"); 10774 ret = -EINVAL; 10775 goto out; 10776 } 10777 10778 physical_block_start = (em->map_lookup->stripes[0].physical + 10779 (logical_block_start - em->start)); 10780 len = min(len, em->len - (logical_block_start - em->start)); 10781 free_extent_map(em); 10782 em = NULL; 10783 10784 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10785 if (!bg) { 10786 btrfs_warn(fs_info, 10787 "could not find block group containing swapfile"); 10788 ret = -EINVAL; 10789 goto out; 10790 } 10791 10792 if (!btrfs_inc_block_group_swap_extents(bg)) { 10793 btrfs_warn(fs_info, 10794 "block group for swapfile at %llu is read-only%s", 10795 bg->start, 10796 atomic_read(&fs_info->scrubs_running) ? 10797 " (scrub running)" : ""); 10798 btrfs_put_block_group(bg); 10799 ret = -EINVAL; 10800 goto out; 10801 } 10802 10803 ret = btrfs_add_swapfile_pin(inode, bg, true); 10804 if (ret) { 10805 btrfs_put_block_group(bg); 10806 if (ret == 1) 10807 ret = 0; 10808 else 10809 goto out; 10810 } 10811 10812 if (bsi.block_len && 10813 bsi.block_start + bsi.block_len == physical_block_start) { 10814 bsi.block_len += len; 10815 } else { 10816 if (bsi.block_len) { 10817 ret = btrfs_add_swap_extent(sis, &bsi); 10818 if (ret) 10819 goto out; 10820 } 10821 bsi.start = start; 10822 bsi.block_start = physical_block_start; 10823 bsi.block_len = len; 10824 } 10825 10826 start += len; 10827 } 10828 10829 if (bsi.block_len) 10830 ret = btrfs_add_swap_extent(sis, &bsi); 10831 10832 out: 10833 if (!IS_ERR_OR_NULL(em)) 10834 free_extent_map(em); 10835 10836 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10837 10838 if (ret) 10839 btrfs_swap_deactivate(file); 10840 10841 btrfs_drew_write_unlock(&root->snapshot_lock); 10842 10843 btrfs_exclop_finish(fs_info); 10844 10845 if (ret) 10846 return ret; 10847 10848 if (device) 10849 sis->bdev = device->bdev; 10850 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10851 sis->max = bsi.nr_pages; 10852 sis->pages = bsi.nr_pages - 1; 10853 sis->highest_bit = bsi.nr_pages - 1; 10854 return bsi.nr_extents; 10855 } 10856 #else 10857 static void btrfs_swap_deactivate(struct file *file) 10858 { 10859 } 10860 10861 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10862 sector_t *span) 10863 { 10864 return -EOPNOTSUPP; 10865 } 10866 #endif 10867 10868 /* 10869 * Update the number of bytes used in the VFS' inode. When we replace extents in 10870 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10871 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10872 * always get a correct value. 10873 */ 10874 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10875 const u64 add_bytes, 10876 const u64 del_bytes) 10877 { 10878 if (add_bytes == del_bytes) 10879 return; 10880 10881 spin_lock(&inode->lock); 10882 if (del_bytes > 0) 10883 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10884 if (add_bytes > 0) 10885 inode_add_bytes(&inode->vfs_inode, add_bytes); 10886 spin_unlock(&inode->lock); 10887 } 10888 10889 static const struct inode_operations btrfs_dir_inode_operations = { 10890 .getattr = btrfs_getattr, 10891 .lookup = btrfs_lookup, 10892 .create = btrfs_create, 10893 .unlink = btrfs_unlink, 10894 .link = btrfs_link, 10895 .mkdir = btrfs_mkdir, 10896 .rmdir = btrfs_rmdir, 10897 .rename = btrfs_rename2, 10898 .symlink = btrfs_symlink, 10899 .setattr = btrfs_setattr, 10900 .mknod = btrfs_mknod, 10901 .listxattr = btrfs_listxattr, 10902 .permission = btrfs_permission, 10903 .get_acl = btrfs_get_acl, 10904 .set_acl = btrfs_set_acl, 10905 .update_time = btrfs_update_time, 10906 .tmpfile = btrfs_tmpfile, 10907 .fileattr_get = btrfs_fileattr_get, 10908 .fileattr_set = btrfs_fileattr_set, 10909 }; 10910 10911 static const struct file_operations btrfs_dir_file_operations = { 10912 .llseek = generic_file_llseek, 10913 .read = generic_read_dir, 10914 .iterate_shared = btrfs_real_readdir, 10915 .open = btrfs_opendir, 10916 .unlocked_ioctl = btrfs_ioctl, 10917 #ifdef CONFIG_COMPAT 10918 .compat_ioctl = btrfs_compat_ioctl, 10919 #endif 10920 .release = btrfs_release_file, 10921 .fsync = btrfs_sync_file, 10922 }; 10923 10924 /* 10925 * btrfs doesn't support the bmap operation because swapfiles 10926 * use bmap to make a mapping of extents in the file. They assume 10927 * these extents won't change over the life of the file and they 10928 * use the bmap result to do IO directly to the drive. 10929 * 10930 * the btrfs bmap call would return logical addresses that aren't 10931 * suitable for IO and they also will change frequently as COW 10932 * operations happen. So, swapfile + btrfs == corruption. 10933 * 10934 * For now we're avoiding this by dropping bmap. 10935 */ 10936 static const struct address_space_operations btrfs_aops = { 10937 .readpage = btrfs_readpage, 10938 .writepage = btrfs_writepage, 10939 .writepages = btrfs_writepages, 10940 .readahead = btrfs_readahead, 10941 .direct_IO = noop_direct_IO, 10942 .invalidatepage = btrfs_invalidatepage, 10943 .releasepage = btrfs_releasepage, 10944 #ifdef CONFIG_MIGRATION 10945 .migratepage = btrfs_migratepage, 10946 #endif 10947 .set_page_dirty = btrfs_set_page_dirty, 10948 .error_remove_page = generic_error_remove_page, 10949 .swap_activate = btrfs_swap_activate, 10950 .swap_deactivate = btrfs_swap_deactivate, 10951 }; 10952 10953 static const struct inode_operations btrfs_file_inode_operations = { 10954 .getattr = btrfs_getattr, 10955 .setattr = btrfs_setattr, 10956 .listxattr = btrfs_listxattr, 10957 .permission = btrfs_permission, 10958 .fiemap = btrfs_fiemap, 10959 .get_acl = btrfs_get_acl, 10960 .set_acl = btrfs_set_acl, 10961 .update_time = btrfs_update_time, 10962 .fileattr_get = btrfs_fileattr_get, 10963 .fileattr_set = btrfs_fileattr_set, 10964 }; 10965 static const struct inode_operations btrfs_special_inode_operations = { 10966 .getattr = btrfs_getattr, 10967 .setattr = btrfs_setattr, 10968 .permission = btrfs_permission, 10969 .listxattr = btrfs_listxattr, 10970 .get_acl = btrfs_get_acl, 10971 .set_acl = btrfs_set_acl, 10972 .update_time = btrfs_update_time, 10973 }; 10974 static const struct inode_operations btrfs_symlink_inode_operations = { 10975 .get_link = page_get_link, 10976 .getattr = btrfs_getattr, 10977 .setattr = btrfs_setattr, 10978 .permission = btrfs_permission, 10979 .listxattr = btrfs_listxattr, 10980 .update_time = btrfs_update_time, 10981 }; 10982 10983 const struct dentry_operations btrfs_dentry_operations = { 10984 .d_delete = btrfs_dentry_delete, 10985 }; 10986