1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/fs_struct.h> 13 #include <linux/pagemap.h> 14 #include <linux/highmem.h> 15 #include <linux/time.h> 16 #include <linux/init.h> 17 #include <linux/string.h> 18 #include <linux/backing-dev.h> 19 #include <linux/writeback.h> 20 #include <linux/compat.h> 21 #include <linux/xattr.h> 22 #include <linux/posix_acl.h> 23 #include <linux/falloc.h> 24 #include <linux/slab.h> 25 #include <linux/ratelimit.h> 26 #include <linux/btrfs.h> 27 #include <linux/blkdev.h> 28 #include <linux/posix_acl_xattr.h> 29 #include <linux/uio.h> 30 #include <linux/magic.h> 31 #include <linux/iversion.h> 32 #include <linux/swap.h> 33 #include <linux/migrate.h> 34 #include <linux/sched/mm.h> 35 #include <linux/iomap.h> 36 #include <linux/unaligned.h> 37 #include <linux/fsverity.h> 38 #include "misc.h" 39 #include "ctree.h" 40 #include "disk-io.h" 41 #include "transaction.h" 42 #include "btrfs_inode.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "delalloc-space.h" 52 #include "block-group.h" 53 #include "space-info.h" 54 #include "zoned.h" 55 #include "subpage.h" 56 #include "inode-item.h" 57 #include "fs.h" 58 #include "accessors.h" 59 #include "extent-tree.h" 60 #include "root-tree.h" 61 #include "defrag.h" 62 #include "dir-item.h" 63 #include "file-item.h" 64 #include "uuid-tree.h" 65 #include "ioctl.h" 66 #include "file.h" 67 #include "acl.h" 68 #include "relocation.h" 69 #include "verity.h" 70 #include "super.h" 71 #include "orphan.h" 72 #include "backref.h" 73 #include "raid-stripe-tree.h" 74 #include "fiemap.h" 75 #include "delayed-inode.h" 76 77 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0) 78 #define COW_FILE_RANGE_NO_INLINE (1UL << 1) 79 80 struct btrfs_iget_args { 81 u64 ino; 82 struct btrfs_root *root; 83 }; 84 85 struct btrfs_rename_ctx { 86 /* Output field. Stores the index number of the old directory entry. */ 87 u64 index; 88 }; 89 90 /* 91 * Used by data_reloc_print_warning_inode() to pass needed info for filename 92 * resolution and output of error message. 93 */ 94 struct data_reloc_warn { 95 struct btrfs_path path; 96 struct btrfs_fs_info *fs_info; 97 u64 extent_item_size; 98 u64 logical; 99 int mirror_num; 100 }; 101 102 /* 103 * For the file_extent_tree, we want to hold the inode lock when we lookup and 104 * update the disk_i_size, but lockdep will complain because our io_tree we hold 105 * the tree lock and get the inode lock when setting delalloc. These two things 106 * are unrelated, so make a class for the file_extent_tree so we don't get the 107 * two locking patterns mixed up. 108 */ 109 static struct lock_class_key file_extent_tree_class; 110 111 static const struct inode_operations btrfs_dir_inode_operations; 112 static const struct inode_operations btrfs_symlink_inode_operations; 113 static const struct inode_operations btrfs_special_inode_operations; 114 static const struct inode_operations btrfs_file_inode_operations; 115 static const struct address_space_operations btrfs_aops; 116 static const struct file_operations btrfs_dir_file_operations; 117 118 static struct kmem_cache *btrfs_inode_cachep; 119 120 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 121 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 122 123 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 124 struct folio *locked_folio, u64 start, 125 u64 end, struct writeback_control *wbc, 126 bool pages_dirty); 127 128 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 129 u64 root, void *warn_ctx) 130 { 131 struct data_reloc_warn *warn = warn_ctx; 132 struct btrfs_fs_info *fs_info = warn->fs_info; 133 struct extent_buffer *eb; 134 struct btrfs_inode_item *inode_item; 135 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL; 136 struct btrfs_root *local_root; 137 struct btrfs_key key; 138 unsigned int nofs_flag; 139 u32 nlink; 140 int ret; 141 142 local_root = btrfs_get_fs_root(fs_info, root, true); 143 if (IS_ERR(local_root)) { 144 ret = PTR_ERR(local_root); 145 goto err; 146 } 147 148 /* This makes the path point to (inum INODE_ITEM ioff). */ 149 key.objectid = inum; 150 key.type = BTRFS_INODE_ITEM_KEY; 151 key.offset = 0; 152 153 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 154 if (ret) { 155 btrfs_put_root(local_root); 156 btrfs_release_path(&warn->path); 157 goto err; 158 } 159 160 eb = warn->path.nodes[0]; 161 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 162 nlink = btrfs_inode_nlink(eb, inode_item); 163 btrfs_release_path(&warn->path); 164 165 nofs_flag = memalloc_nofs_save(); 166 ipath = init_ipath(4096, local_root, &warn->path); 167 memalloc_nofs_restore(nofs_flag); 168 if (IS_ERR(ipath)) { 169 btrfs_put_root(local_root); 170 ret = PTR_ERR(ipath); 171 ipath = NULL; 172 /* 173 * -ENOMEM, not a critical error, just output an generic error 174 * without filename. 175 */ 176 btrfs_warn(fs_info, 177 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 178 warn->logical, warn->mirror_num, root, inum, offset); 179 return ret; 180 } 181 ret = paths_from_inode(inum, ipath); 182 if (ret < 0) { 183 btrfs_put_root(local_root); 184 goto err; 185 } 186 187 /* 188 * We deliberately ignore the bit ipath might have been too small to 189 * hold all of the paths here 190 */ 191 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 192 btrfs_warn(fs_info, 193 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 194 warn->logical, warn->mirror_num, root, inum, offset, 195 fs_info->sectorsize, nlink, 196 (char *)(unsigned long)ipath->fspath->val[i]); 197 } 198 199 btrfs_put_root(local_root); 200 return 0; 201 202 err: 203 btrfs_warn(fs_info, 204 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 205 warn->logical, warn->mirror_num, root, inum, offset, ret); 206 207 return ret; 208 } 209 210 /* 211 * Do extra user-friendly error output (e.g. lookup all the affected files). 212 * 213 * Return true if we succeeded doing the backref lookup. 214 * Return false if such lookup failed, and has to fallback to the old error message. 215 */ 216 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 217 const u8 *csum, const u8 *csum_expected, 218 int mirror_num) 219 { 220 struct btrfs_fs_info *fs_info = inode->root->fs_info; 221 struct btrfs_path path = { 0 }; 222 struct btrfs_key found_key = { 0 }; 223 struct extent_buffer *eb; 224 struct btrfs_extent_item *ei; 225 const u32 csum_size = fs_info->csum_size; 226 u64 logical; 227 u64 flags; 228 u32 item_size; 229 int ret; 230 231 mutex_lock(&fs_info->reloc_mutex); 232 logical = btrfs_get_reloc_bg_bytenr(fs_info); 233 mutex_unlock(&fs_info->reloc_mutex); 234 235 if (logical == U64_MAX) { 236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 237 btrfs_warn_rl(fs_info, 238 "csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 240 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 241 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 242 mirror_num); 243 return; 244 } 245 246 logical += file_off; 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 249 btrfs_root_id(inode->root), 250 btrfs_ino(inode), file_off, logical, 251 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 252 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 253 mirror_num); 254 255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 256 if (ret < 0) { 257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 258 logical, ret); 259 btrfs_release_path(&path); 260 return; 261 } 262 eb = path.nodes[0]; 263 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 264 item_size = btrfs_item_size(eb, path.slots[0]); 265 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 266 unsigned long ptr = 0; 267 u64 ref_root; 268 u8 ref_level; 269 270 while (true) { 271 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 272 item_size, &ref_root, 273 &ref_level); 274 if (ret < 0) { 275 btrfs_warn_rl(fs_info, 276 "failed to resolve tree backref for logical %llu: %d", 277 logical, ret); 278 break; 279 } 280 if (ret > 0) 281 break; 282 283 btrfs_warn_rl(fs_info, 284 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 285 logical, mirror_num, 286 (ref_level ? "node" : "leaf"), 287 ref_level, ref_root); 288 } 289 btrfs_release_path(&path); 290 } else { 291 struct btrfs_backref_walk_ctx ctx = { 0 }; 292 struct data_reloc_warn reloc_warn = { 0 }; 293 294 btrfs_release_path(&path); 295 296 ctx.bytenr = found_key.objectid; 297 ctx.extent_item_pos = logical - found_key.objectid; 298 ctx.fs_info = fs_info; 299 300 reloc_warn.logical = logical; 301 reloc_warn.extent_item_size = found_key.offset; 302 reloc_warn.mirror_num = mirror_num; 303 reloc_warn.fs_info = fs_info; 304 305 iterate_extent_inodes(&ctx, true, 306 data_reloc_print_warning_inode, &reloc_warn); 307 } 308 } 309 310 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 311 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 312 { 313 struct btrfs_root *root = inode->root; 314 const u32 csum_size = root->fs_info->csum_size; 315 316 /* For data reloc tree, it's better to do a backref lookup instead. */ 317 if (btrfs_is_data_reloc_root(root)) 318 return print_data_reloc_error(inode, logical_start, csum, 319 csum_expected, mirror_num); 320 321 /* Output without objectid, which is more meaningful */ 322 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 323 btrfs_warn_rl(root->fs_info, 324 "csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 325 btrfs_root_id(root), btrfs_ino(inode), 326 logical_start, 327 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 328 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 329 mirror_num); 330 } else { 331 btrfs_warn_rl(root->fs_info, 332 "csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 333 btrfs_root_id(root), btrfs_ino(inode), 334 logical_start, 335 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 336 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 337 mirror_num); 338 } 339 } 340 341 /* 342 * Lock inode i_rwsem based on arguments passed. 343 * 344 * ilock_flags can have the following bit set: 345 * 346 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 347 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 348 * return -EAGAIN 349 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 350 */ 351 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 352 { 353 if (ilock_flags & BTRFS_ILOCK_SHARED) { 354 if (ilock_flags & BTRFS_ILOCK_TRY) { 355 if (!inode_trylock_shared(&inode->vfs_inode)) 356 return -EAGAIN; 357 else 358 return 0; 359 } 360 inode_lock_shared(&inode->vfs_inode); 361 } else { 362 if (ilock_flags & BTRFS_ILOCK_TRY) { 363 if (!inode_trylock(&inode->vfs_inode)) 364 return -EAGAIN; 365 else 366 return 0; 367 } 368 inode_lock(&inode->vfs_inode); 369 } 370 if (ilock_flags & BTRFS_ILOCK_MMAP) 371 down_write(&inode->i_mmap_lock); 372 return 0; 373 } 374 375 /* 376 * Unlock inode i_rwsem. 377 * 378 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 379 * to decide whether the lock acquired is shared or exclusive. 380 */ 381 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 382 { 383 if (ilock_flags & BTRFS_ILOCK_MMAP) 384 up_write(&inode->i_mmap_lock); 385 if (ilock_flags & BTRFS_ILOCK_SHARED) 386 inode_unlock_shared(&inode->vfs_inode); 387 else 388 inode_unlock(&inode->vfs_inode); 389 } 390 391 /* 392 * Cleanup all submitted ordered extents in specified range to handle errors 393 * from the btrfs_run_delalloc_range() callback. 394 * 395 * NOTE: caller must ensure that when an error happens, it can not call 396 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 397 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 398 * to be released, which we want to happen only when finishing the ordered 399 * extent (btrfs_finish_ordered_io()). 400 */ 401 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 402 u64 offset, u64 bytes) 403 { 404 pgoff_t index = offset >> PAGE_SHIFT; 405 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 406 struct folio *folio; 407 408 while (index <= end_index) { 409 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 410 if (IS_ERR(folio)) { 411 index++; 412 continue; 413 } 414 415 index = folio_next_index(folio); 416 /* 417 * Here we just clear all Ordered bits for every page in the 418 * range, then btrfs_mark_ordered_io_finished() will handle 419 * the ordered extent accounting for the range. 420 */ 421 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 422 offset, bytes); 423 folio_put(folio); 424 } 425 426 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 427 } 428 429 static int btrfs_dirty_inode(struct btrfs_inode *inode); 430 431 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 432 struct btrfs_new_inode_args *args) 433 { 434 int ret; 435 436 if (args->default_acl) { 437 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 438 ACL_TYPE_DEFAULT); 439 if (ret) 440 return ret; 441 } 442 if (args->acl) { 443 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 444 if (ret) 445 return ret; 446 } 447 if (!args->default_acl && !args->acl) 448 cache_no_acl(args->inode); 449 return btrfs_xattr_security_init(trans, args->inode, args->dir, 450 &args->dentry->d_name); 451 } 452 453 /* 454 * this does all the hard work for inserting an inline extent into 455 * the btree. The caller should have done a btrfs_drop_extents so that 456 * no overlapping inline items exist in the btree 457 */ 458 static int insert_inline_extent(struct btrfs_trans_handle *trans, 459 struct btrfs_path *path, 460 struct btrfs_inode *inode, bool extent_inserted, 461 size_t size, size_t compressed_size, 462 int compress_type, 463 struct folio *compressed_folio, 464 bool update_i_size) 465 { 466 struct btrfs_root *root = inode->root; 467 struct extent_buffer *leaf; 468 const u32 sectorsize = trans->fs_info->sectorsize; 469 char *kaddr; 470 unsigned long ptr; 471 struct btrfs_file_extent_item *ei; 472 int ret; 473 size_t cur_size = size; 474 u64 i_size; 475 476 /* 477 * The decompressed size must still be no larger than a sector. Under 478 * heavy race, we can have size == 0 passed in, but that shouldn't be a 479 * big deal and we can continue the insertion. 480 */ 481 ASSERT(size <= sectorsize); 482 483 /* 484 * The compressed size also needs to be no larger than a page. 485 * That's also why we only need one folio as the parameter. 486 */ 487 if (compressed_folio) { 488 ASSERT(compressed_size <= sectorsize); 489 ASSERT(compressed_size <= PAGE_SIZE); 490 } else { 491 ASSERT(compressed_size == 0); 492 } 493 494 if (compressed_size && compressed_folio) 495 cur_size = compressed_size; 496 497 if (!extent_inserted) { 498 struct btrfs_key key; 499 size_t datasize; 500 501 key.objectid = btrfs_ino(inode); 502 key.type = BTRFS_EXTENT_DATA_KEY; 503 key.offset = 0; 504 505 datasize = btrfs_file_extent_calc_inline_size(cur_size); 506 ret = btrfs_insert_empty_item(trans, root, path, &key, 507 datasize); 508 if (ret) 509 goto fail; 510 } 511 leaf = path->nodes[0]; 512 ei = btrfs_item_ptr(leaf, path->slots[0], 513 struct btrfs_file_extent_item); 514 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 515 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 516 btrfs_set_file_extent_encryption(leaf, ei, 0); 517 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 518 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 519 ptr = btrfs_file_extent_inline_start(ei); 520 521 if (compress_type != BTRFS_COMPRESS_NONE) { 522 kaddr = kmap_local_folio(compressed_folio, 0); 523 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 524 kunmap_local(kaddr); 525 526 btrfs_set_file_extent_compression(leaf, ei, 527 compress_type); 528 } else { 529 struct folio *folio; 530 531 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 532 ASSERT(!IS_ERR(folio)); 533 btrfs_set_file_extent_compression(leaf, ei, 0); 534 kaddr = kmap_local_folio(folio, 0); 535 write_extent_buffer(leaf, kaddr, ptr, size); 536 kunmap_local(kaddr); 537 folio_put(folio); 538 } 539 btrfs_release_path(path); 540 541 /* 542 * We align size to sectorsize for inline extents just for simplicity 543 * sake. 544 */ 545 ret = btrfs_inode_set_file_extent_range(inode, 0, 546 ALIGN(size, root->fs_info->sectorsize)); 547 if (ret) 548 goto fail; 549 550 /* 551 * We're an inline extent, so nobody can extend the file past i_size 552 * without locking a page we already have locked. 553 * 554 * We must do any i_size and inode updates before we unlock the pages. 555 * Otherwise we could end up racing with unlink. 556 */ 557 i_size = i_size_read(&inode->vfs_inode); 558 if (update_i_size && size > i_size) { 559 i_size_write(&inode->vfs_inode, size); 560 i_size = size; 561 } 562 inode->disk_i_size = i_size; 563 564 fail: 565 return ret; 566 } 567 568 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 569 u64 offset, u64 size, 570 size_t compressed_size) 571 { 572 struct btrfs_fs_info *fs_info = inode->root->fs_info; 573 u64 data_len = (compressed_size ?: size); 574 575 /* Inline extents must start at offset 0. */ 576 if (offset != 0) 577 return false; 578 579 /* 580 * Even for bs > ps cases, cow_file_range_inline() can only accept a 581 * single folio. 582 * 583 * This can be problematic and cause access beyond page boundary if a 584 * page sized folio is passed into that function. 585 * And encoded write is doing exactly that. 586 * So here limits the inlined extent size to PAGE_SIZE. 587 */ 588 if (size > PAGE_SIZE || compressed_size > PAGE_SIZE) 589 return false; 590 591 /* Inline extents are limited to sectorsize. */ 592 if (size > fs_info->sectorsize) 593 return false; 594 595 /* We do not allow a non-compressed extent to be as large as block size. */ 596 if (data_len >= fs_info->sectorsize) 597 return false; 598 599 /* We cannot exceed the maximum inline data size. */ 600 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 601 return false; 602 603 /* We cannot exceed the user specified max_inline size. */ 604 if (data_len > fs_info->max_inline) 605 return false; 606 607 /* Inline extents must be the entirety of the file. */ 608 if (size < i_size_read(&inode->vfs_inode)) 609 return false; 610 611 /* Encrypted file cannot be inlined. */ 612 if (IS_ENCRYPTED(&inode->vfs_inode)) 613 return false; 614 615 return true; 616 } 617 618 /* 619 * conditionally insert an inline extent into the file. This 620 * does the checks required to make sure the data is small enough 621 * to fit as an inline extent. 622 * 623 * If being used directly, you must have already checked we're allowed to cow 624 * the range by getting true from can_cow_file_range_inline(). 625 */ 626 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 627 u64 size, size_t compressed_size, 628 int compress_type, 629 struct folio *compressed_folio, 630 bool update_i_size) 631 { 632 struct btrfs_drop_extents_args drop_args = { 0 }; 633 struct btrfs_root *root = inode->root; 634 struct btrfs_fs_info *fs_info = root->fs_info; 635 struct btrfs_trans_handle *trans = NULL; 636 u64 data_len = (compressed_size ?: size); 637 int ret; 638 struct btrfs_path *path; 639 640 path = btrfs_alloc_path(); 641 if (!path) { 642 ret = -ENOMEM; 643 goto out; 644 } 645 646 trans = btrfs_join_transaction(root); 647 if (IS_ERR(trans)) { 648 ret = PTR_ERR(trans); 649 trans = NULL; 650 goto out; 651 } 652 trans->block_rsv = &inode->block_rsv; 653 654 drop_args.path = path; 655 drop_args.start = 0; 656 drop_args.end = fs_info->sectorsize; 657 drop_args.drop_cache = true; 658 drop_args.replace_extent = true; 659 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 660 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 661 if (unlikely(ret)) { 662 btrfs_abort_transaction(trans, ret); 663 goto out; 664 } 665 666 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 667 size, compressed_size, compress_type, 668 compressed_folio, update_i_size); 669 if (unlikely(ret && ret != -ENOSPC)) { 670 btrfs_abort_transaction(trans, ret); 671 goto out; 672 } else if (ret == -ENOSPC) { 673 ret = 1; 674 goto out; 675 } 676 677 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 678 ret = btrfs_update_inode(trans, inode); 679 if (unlikely(ret && ret != -ENOSPC)) { 680 btrfs_abort_transaction(trans, ret); 681 goto out; 682 } else if (ret == -ENOSPC) { 683 ret = 1; 684 goto out; 685 } 686 687 btrfs_set_inode_full_sync(inode); 688 out: 689 /* 690 * Don't forget to free the reserved space, as for inlined extent 691 * it won't count as data extent, free them directly here. 692 * And at reserve time, it's always aligned to page size, so 693 * just free one page here. 694 * 695 * If we fallback to non-inline (ret == 1) due to -ENOSPC, then we need 696 * to keep the data reservation. 697 */ 698 if (ret <= 0) 699 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 700 btrfs_free_path(path); 701 if (trans) 702 btrfs_end_transaction(trans); 703 return ret; 704 } 705 706 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 707 struct folio *locked_folio, 708 u64 offset, u64 end, 709 size_t compressed_size, 710 int compress_type, 711 struct folio *compressed_folio, 712 bool update_i_size) 713 { 714 struct extent_state *cached = NULL; 715 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 716 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 717 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 718 int ret; 719 720 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 721 return 1; 722 723 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 724 ret = __cow_file_range_inline(inode, size, compressed_size, 725 compress_type, compressed_folio, 726 update_i_size); 727 if (ret > 0) { 728 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 729 return ret; 730 } 731 732 /* 733 * In the successful case (ret == 0 here), cow_file_range will return 1. 734 * 735 * Quite a bit further up the callstack in extent_writepage(), ret == 1 736 * is treated as a short circuited success and does not unlock the folio, 737 * so we must do it here. 738 * 739 * In the failure case, the locked_folio does get unlocked by 740 * btrfs_folio_end_all_writers, which asserts that it is still locked 741 * at that point, so we must *not* unlock it here. 742 * 743 * The other two callsites in compress_file_range do not have a 744 * locked_folio, so they are not relevant to this logic. 745 */ 746 if (ret == 0) 747 locked_folio = NULL; 748 749 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 750 clear_flags, PAGE_UNLOCK | 751 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 752 return ret; 753 } 754 755 struct async_extent { 756 u64 start; 757 u64 ram_size; 758 u64 compressed_size; 759 struct folio **folios; 760 unsigned long nr_folios; 761 int compress_type; 762 struct list_head list; 763 }; 764 765 struct async_chunk { 766 struct btrfs_inode *inode; 767 struct folio *locked_folio; 768 u64 start; 769 u64 end; 770 blk_opf_t write_flags; 771 struct list_head extents; 772 struct cgroup_subsys_state *blkcg_css; 773 struct btrfs_work work; 774 struct async_cow *async_cow; 775 }; 776 777 struct async_cow { 778 atomic_t num_chunks; 779 struct async_chunk chunks[]; 780 }; 781 782 static noinline int add_async_extent(struct async_chunk *cow, 783 u64 start, u64 ram_size, 784 u64 compressed_size, 785 struct folio **folios, 786 unsigned long nr_folios, 787 int compress_type) 788 { 789 struct async_extent *async_extent; 790 791 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 792 if (!async_extent) 793 return -ENOMEM; 794 async_extent->start = start; 795 async_extent->ram_size = ram_size; 796 async_extent->compressed_size = compressed_size; 797 async_extent->folios = folios; 798 async_extent->nr_folios = nr_folios; 799 async_extent->compress_type = compress_type; 800 list_add_tail(&async_extent->list, &cow->extents); 801 return 0; 802 } 803 804 /* 805 * Check if the inode needs to be submitted to compression, based on mount 806 * options, defragmentation, properties or heuristics. 807 */ 808 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 809 u64 end) 810 { 811 struct btrfs_fs_info *fs_info = inode->root->fs_info; 812 813 if (!btrfs_inode_can_compress(inode)) { 814 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 815 return 0; 816 } 817 818 /* Defrag ioctl takes precedence over mount options and properties. */ 819 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 820 return 0; 821 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 822 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 823 return 1; 824 /* force compress */ 825 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 826 return 1; 827 /* bad compression ratios */ 828 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 829 return 0; 830 if (btrfs_test_opt(fs_info, COMPRESS) || 831 inode->flags & BTRFS_INODE_COMPRESS || 832 inode->prop_compress) 833 return btrfs_compress_heuristic(inode, start, end); 834 return 0; 835 } 836 837 static inline void inode_should_defrag(struct btrfs_inode *inode, 838 u64 start, u64 end, u64 num_bytes, u32 small_write) 839 { 840 /* If this is a small write inside eof, kick off a defrag */ 841 if (num_bytes < small_write && 842 (start > 0 || end + 1 < inode->disk_i_size)) 843 btrfs_add_inode_defrag(inode, small_write); 844 } 845 846 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 847 { 848 const pgoff_t end_index = end >> PAGE_SHIFT; 849 struct folio *folio; 850 int ret = 0; 851 852 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 853 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 854 if (IS_ERR(folio)) { 855 if (!ret) 856 ret = PTR_ERR(folio); 857 continue; 858 } 859 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 860 end + 1 - start); 861 folio_put(folio); 862 } 863 return ret; 864 } 865 866 /* 867 * Work queue call back to started compression on a file and pages. 868 * 869 * This is done inside an ordered work queue, and the compression is spread 870 * across many cpus. The actual IO submission is step two, and the ordered work 871 * queue takes care of making sure that happens in the same order things were 872 * put onto the queue by writepages and friends. 873 * 874 * If this code finds it can't get good compression, it puts an entry onto the 875 * work queue to write the uncompressed bytes. This makes sure that both 876 * compressed inodes and uncompressed inodes are written in the same order that 877 * the flusher thread sent them down. 878 */ 879 static void compress_file_range(struct btrfs_work *work) 880 { 881 struct async_chunk *async_chunk = 882 container_of(work, struct async_chunk, work); 883 struct btrfs_inode *inode = async_chunk->inode; 884 struct btrfs_fs_info *fs_info = inode->root->fs_info; 885 struct address_space *mapping = inode->vfs_inode.i_mapping; 886 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 887 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 888 u64 blocksize = fs_info->sectorsize; 889 u64 start = async_chunk->start; 890 u64 end = async_chunk->end; 891 u64 actual_end; 892 u64 i_size; 893 int ret = 0; 894 struct folio **folios = NULL; 895 unsigned long nr_folios; 896 unsigned long total_compressed = 0; 897 unsigned long total_in = 0; 898 unsigned int loff; 899 int i; 900 int compress_type = fs_info->compress_type; 901 int compress_level = fs_info->compress_level; 902 903 if (unlikely(btrfs_is_shutdown(fs_info))) 904 goto cleanup_and_bail_uncompressed; 905 906 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 907 908 /* 909 * We need to call clear_page_dirty_for_io on each page in the range. 910 * Otherwise applications with the file mmap'd can wander in and change 911 * the page contents while we are compressing them. 912 */ 913 ret = extent_range_clear_dirty_for_io(inode, start, end); 914 915 /* 916 * All the folios should have been locked thus no failure. 917 * 918 * And even if some folios are missing, btrfs_compress_folios() 919 * would handle them correctly, so here just do an ASSERT() check for 920 * early logic errors. 921 */ 922 ASSERT(ret == 0); 923 924 /* 925 * We need to save i_size before now because it could change in between 926 * us evaluating the size and assigning it. This is because we lock and 927 * unlock the page in truncate and fallocate, and then modify the i_size 928 * later on. 929 * 930 * The barriers are to emulate READ_ONCE, remove that once i_size_read 931 * does that for us. 932 */ 933 barrier(); 934 i_size = i_size_read(&inode->vfs_inode); 935 barrier(); 936 actual_end = min_t(u64, i_size, end + 1); 937 again: 938 folios = NULL; 939 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1; 940 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift); 941 942 /* 943 * we don't want to send crud past the end of i_size through 944 * compression, that's just a waste of CPU time. So, if the 945 * end of the file is before the start of our current 946 * requested range of bytes, we bail out to the uncompressed 947 * cleanup code that can deal with all of this. 948 * 949 * It isn't really the fastest way to fix things, but this is a 950 * very uncommon corner. 951 */ 952 if (actual_end <= start) 953 goto cleanup_and_bail_uncompressed; 954 955 total_compressed = actual_end - start; 956 957 /* 958 * Skip compression for a small file range(<=blocksize) that 959 * isn't an inline extent, since it doesn't save disk space at all. 960 */ 961 if (total_compressed <= blocksize && 962 (start > 0 || end + 1 < inode->disk_i_size)) 963 goto cleanup_and_bail_uncompressed; 964 965 total_compressed = min_t(unsigned long, total_compressed, 966 BTRFS_MAX_UNCOMPRESSED); 967 total_in = 0; 968 ret = 0; 969 970 /* 971 * We do compression for mount -o compress and when the inode has not 972 * been flagged as NOCOMPRESS. This flag can change at any time if we 973 * discover bad compression ratios. 974 */ 975 if (!inode_need_compress(inode, start, end)) 976 goto cleanup_and_bail_uncompressed; 977 978 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 979 if (!folios) { 980 /* 981 * Memory allocation failure is not a fatal error, we can fall 982 * back to uncompressed code. 983 */ 984 goto cleanup_and_bail_uncompressed; 985 } 986 987 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 988 compress_type = inode->defrag_compress; 989 compress_level = inode->defrag_compress_level; 990 } else if (inode->prop_compress) { 991 compress_type = inode->prop_compress; 992 } 993 994 /* Compression level is applied here. */ 995 ret = btrfs_compress_folios(compress_type, compress_level, 996 inode, start, folios, &nr_folios, &total_in, 997 &total_compressed); 998 if (ret) 999 goto mark_incompressible; 1000 1001 /* 1002 * Zero the tail end of the last folio, as we might be sending it down 1003 * to disk. 1004 */ 1005 loff = (total_compressed & (min_folio_size - 1)); 1006 if (loff) 1007 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff); 1008 1009 /* 1010 * Try to create an inline extent. 1011 * 1012 * If we didn't compress the entire range, try to create an uncompressed 1013 * inline extent, else a compressed one. 1014 * 1015 * Check cow_file_range() for why we don't even try to create inline 1016 * extent for the subpage case. 1017 */ 1018 if (total_in < actual_end) 1019 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1020 BTRFS_COMPRESS_NONE, NULL, false); 1021 else 1022 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1023 compress_type, folios[0], false); 1024 if (ret <= 0) { 1025 if (ret < 0) 1026 mapping_set_error(mapping, -EIO); 1027 goto free_pages; 1028 } 1029 1030 /* 1031 * We aren't doing an inline extent. Round the compressed size up to a 1032 * block size boundary so the allocator does sane things. 1033 */ 1034 total_compressed = ALIGN(total_compressed, blocksize); 1035 1036 /* 1037 * One last check to make sure the compression is really a win, compare 1038 * the page count read with the blocks on disk, compression must free at 1039 * least one sector. 1040 */ 1041 total_in = round_up(total_in, fs_info->sectorsize); 1042 if (total_compressed + blocksize > total_in) 1043 goto mark_incompressible; 1044 1045 /* 1046 * The async work queues will take care of doing actual allocation on 1047 * disk for these compressed pages, and will submit the bios. 1048 */ 1049 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1050 nr_folios, compress_type); 1051 BUG_ON(ret); 1052 if (start + total_in < end) { 1053 start += total_in; 1054 cond_resched(); 1055 goto again; 1056 } 1057 return; 1058 1059 mark_incompressible: 1060 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1061 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1062 cleanup_and_bail_uncompressed: 1063 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1064 BTRFS_COMPRESS_NONE); 1065 BUG_ON(ret); 1066 free_pages: 1067 if (folios) { 1068 for (i = 0; i < nr_folios; i++) { 1069 WARN_ON(folios[i]->mapping); 1070 btrfs_free_compr_folio(folios[i]); 1071 } 1072 kfree(folios); 1073 } 1074 } 1075 1076 static void free_async_extent_pages(struct async_extent *async_extent) 1077 { 1078 int i; 1079 1080 if (!async_extent->folios) 1081 return; 1082 1083 for (i = 0; i < async_extent->nr_folios; i++) { 1084 WARN_ON(async_extent->folios[i]->mapping); 1085 btrfs_free_compr_folio(async_extent->folios[i]); 1086 } 1087 kfree(async_extent->folios); 1088 async_extent->nr_folios = 0; 1089 async_extent->folios = NULL; 1090 } 1091 1092 static void submit_uncompressed_range(struct btrfs_inode *inode, 1093 struct async_extent *async_extent, 1094 struct folio *locked_folio) 1095 { 1096 u64 start = async_extent->start; 1097 u64 end = async_extent->start + async_extent->ram_size - 1; 1098 int ret; 1099 struct writeback_control wbc = { 1100 .sync_mode = WB_SYNC_ALL, 1101 .range_start = start, 1102 .range_end = end, 1103 .no_cgroup_owner = 1, 1104 }; 1105 1106 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1107 ret = run_delalloc_cow(inode, locked_folio, start, end, 1108 &wbc, false); 1109 wbc_detach_inode(&wbc); 1110 if (ret < 0) { 1111 if (locked_folio) 1112 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1113 start, async_extent->ram_size); 1114 btrfs_err_rl(inode->root->fs_info, 1115 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1116 __func__, btrfs_root_id(inode->root), 1117 btrfs_ino(inode), start, async_extent->ram_size, ret); 1118 } 1119 } 1120 1121 static void submit_one_async_extent(struct async_chunk *async_chunk, 1122 struct async_extent *async_extent, 1123 u64 *alloc_hint) 1124 { 1125 struct btrfs_inode *inode = async_chunk->inode; 1126 struct extent_io_tree *io_tree = &inode->io_tree; 1127 struct btrfs_root *root = inode->root; 1128 struct btrfs_fs_info *fs_info = root->fs_info; 1129 struct btrfs_ordered_extent *ordered; 1130 struct btrfs_file_extent file_extent; 1131 struct btrfs_key ins; 1132 struct folio *locked_folio = NULL; 1133 struct extent_state *cached = NULL; 1134 struct extent_map *em; 1135 int ret = 0; 1136 bool free_pages = false; 1137 u64 start = async_extent->start; 1138 u64 end = async_extent->start + async_extent->ram_size - 1; 1139 1140 if (async_chunk->blkcg_css) 1141 kthread_associate_blkcg(async_chunk->blkcg_css); 1142 1143 /* 1144 * If async_chunk->locked_folio is in the async_extent range, we need to 1145 * handle it. 1146 */ 1147 if (async_chunk->locked_folio) { 1148 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1149 u64 locked_folio_end = locked_folio_start + 1150 folio_size(async_chunk->locked_folio) - 1; 1151 1152 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1153 locked_folio = async_chunk->locked_folio; 1154 } 1155 1156 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1157 ASSERT(!async_extent->folios); 1158 ASSERT(async_extent->nr_folios == 0); 1159 submit_uncompressed_range(inode, async_extent, locked_folio); 1160 free_pages = true; 1161 goto done; 1162 } 1163 1164 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1165 async_extent->compressed_size, 1166 async_extent->compressed_size, 1167 0, *alloc_hint, &ins, true, true); 1168 if (ret) { 1169 /* 1170 * We can't reserve contiguous space for the compressed size. 1171 * Unlikely, but it's possible that we could have enough 1172 * non-contiguous space for the uncompressed size instead. So 1173 * fall back to uncompressed. 1174 */ 1175 submit_uncompressed_range(inode, async_extent, locked_folio); 1176 free_pages = true; 1177 goto done; 1178 } 1179 1180 btrfs_lock_extent(io_tree, start, end, &cached); 1181 1182 /* Here we're doing allocation and writeback of the compressed pages */ 1183 file_extent.disk_bytenr = ins.objectid; 1184 file_extent.disk_num_bytes = ins.offset; 1185 file_extent.ram_bytes = async_extent->ram_size; 1186 file_extent.num_bytes = async_extent->ram_size; 1187 file_extent.offset = 0; 1188 file_extent.compression = async_extent->compress_type; 1189 1190 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1191 if (IS_ERR(em)) { 1192 ret = PTR_ERR(em); 1193 goto out_free_reserve; 1194 } 1195 btrfs_free_extent_map(em); 1196 1197 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1198 1U << BTRFS_ORDERED_COMPRESSED); 1199 if (IS_ERR(ordered)) { 1200 btrfs_drop_extent_map_range(inode, start, end, false); 1201 ret = PTR_ERR(ordered); 1202 goto out_free_reserve; 1203 } 1204 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1205 1206 /* Clear dirty, set writeback and unlock the pages. */ 1207 extent_clear_unlock_delalloc(inode, start, end, 1208 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1209 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1210 btrfs_submit_compressed_write(ordered, 1211 async_extent->folios, /* compressed_folios */ 1212 async_extent->nr_folios, 1213 async_chunk->write_flags, true); 1214 *alloc_hint = ins.objectid + ins.offset; 1215 done: 1216 if (async_chunk->blkcg_css) 1217 kthread_associate_blkcg(NULL); 1218 if (free_pages) 1219 free_async_extent_pages(async_extent); 1220 kfree(async_extent); 1221 return; 1222 1223 out_free_reserve: 1224 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1225 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1226 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1227 extent_clear_unlock_delalloc(inode, start, end, 1228 NULL, &cached, 1229 EXTENT_LOCKED | EXTENT_DELALLOC | 1230 EXTENT_DELALLOC_NEW | 1231 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1232 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1233 PAGE_END_WRITEBACK); 1234 free_async_extent_pages(async_extent); 1235 if (async_chunk->blkcg_css) 1236 kthread_associate_blkcg(NULL); 1237 btrfs_debug(fs_info, 1238 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1239 btrfs_root_id(root), btrfs_ino(inode), start, 1240 async_extent->ram_size, ret); 1241 kfree(async_extent); 1242 } 1243 1244 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1245 u64 num_bytes) 1246 { 1247 struct extent_map_tree *em_tree = &inode->extent_tree; 1248 struct extent_map *em; 1249 u64 alloc_hint = 0; 1250 1251 read_lock(&em_tree->lock); 1252 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1253 if (em) { 1254 /* 1255 * if block start isn't an actual block number then find the 1256 * first block in this inode and use that as a hint. If that 1257 * block is also bogus then just don't worry about it. 1258 */ 1259 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1260 btrfs_free_extent_map(em); 1261 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1262 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1263 alloc_hint = btrfs_extent_map_block_start(em); 1264 if (em) 1265 btrfs_free_extent_map(em); 1266 } else { 1267 alloc_hint = btrfs_extent_map_block_start(em); 1268 btrfs_free_extent_map(em); 1269 } 1270 } 1271 read_unlock(&em_tree->lock); 1272 1273 return alloc_hint; 1274 } 1275 1276 /* 1277 * when extent_io.c finds a delayed allocation range in the file, 1278 * the call backs end up in this code. The basic idea is to 1279 * allocate extents on disk for the range, and create ordered data structs 1280 * in ram to track those extents. 1281 * 1282 * locked_folio is the folio that writepage had locked already. We use 1283 * it to make sure we don't do extra locks or unlocks. 1284 * 1285 * When this function fails, it unlocks all folios except @locked_folio. 1286 * 1287 * When this function successfully creates an inline extent, it returns 1 and 1288 * unlocks all folios including locked_folio and starts I/O on them. 1289 * (In reality inline extents are limited to a single block, so locked_folio is 1290 * the only folio handled anyway). 1291 * 1292 * When this function succeed and creates a normal extent, the folio locking 1293 * status depends on the passed in flags: 1294 * 1295 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked. 1296 * - Else all folios except for @locked_folio are unlocked. 1297 * 1298 * When a failure happens in the second or later iteration of the 1299 * while-loop, the ordered extents created in previous iterations are cleaned up. 1300 */ 1301 static noinline int cow_file_range(struct btrfs_inode *inode, 1302 struct folio *locked_folio, u64 start, 1303 u64 end, u64 *done_offset, 1304 unsigned long flags) 1305 { 1306 struct btrfs_root *root = inode->root; 1307 struct btrfs_fs_info *fs_info = root->fs_info; 1308 struct extent_state *cached = NULL; 1309 u64 alloc_hint = 0; 1310 u64 orig_start = start; 1311 u64 num_bytes; 1312 u64 cur_alloc_size = 0; 1313 u64 min_alloc_size; 1314 u64 blocksize = fs_info->sectorsize; 1315 struct btrfs_key ins; 1316 struct extent_map *em; 1317 unsigned clear_bits; 1318 unsigned long page_ops; 1319 int ret = 0; 1320 1321 if (unlikely(btrfs_is_shutdown(fs_info))) { 1322 ret = -EIO; 1323 goto out_unlock; 1324 } 1325 1326 if (btrfs_is_free_space_inode(inode)) { 1327 ret = -EINVAL; 1328 goto out_unlock; 1329 } 1330 1331 num_bytes = ALIGN(end - start + 1, blocksize); 1332 num_bytes = max(blocksize, num_bytes); 1333 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1334 1335 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1336 1337 if (!(flags & COW_FILE_RANGE_NO_INLINE)) { 1338 /* lets try to make an inline extent */ 1339 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1340 BTRFS_COMPRESS_NONE, NULL, false); 1341 if (ret <= 0) { 1342 /* 1343 * We succeeded, return 1 so the caller knows we're done 1344 * with this page and already handled the IO. 1345 * 1346 * If there was an error then cow_file_range_inline() has 1347 * already done the cleanup. 1348 */ 1349 if (ret == 0) 1350 ret = 1; 1351 goto done; 1352 } 1353 } 1354 1355 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1356 1357 /* 1358 * We're not doing compressed IO, don't unlock the first page (which 1359 * the caller expects to stay locked), don't clear any dirty bits and 1360 * don't set any writeback bits. 1361 * 1362 * Do set the Ordered (Private2) bit so we know this page was properly 1363 * setup for writepage. 1364 */ 1365 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK); 1366 page_ops |= PAGE_SET_ORDERED; 1367 1368 /* 1369 * Relocation relies on the relocated extents to have exactly the same 1370 * size as the original extents. Normally writeback for relocation data 1371 * extents follows a NOCOW path because relocation preallocates the 1372 * extents. However, due to an operation such as scrub turning a block 1373 * group to RO mode, it may fallback to COW mode, so we must make sure 1374 * an extent allocated during COW has exactly the requested size and can 1375 * not be split into smaller extents, otherwise relocation breaks and 1376 * fails during the stage where it updates the bytenr of file extent 1377 * items. 1378 */ 1379 if (btrfs_is_data_reloc_root(root)) 1380 min_alloc_size = num_bytes; 1381 else 1382 min_alloc_size = fs_info->sectorsize; 1383 1384 while (num_bytes > 0) { 1385 struct btrfs_ordered_extent *ordered; 1386 struct btrfs_file_extent file_extent; 1387 1388 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1389 min_alloc_size, 0, alloc_hint, 1390 &ins, true, true); 1391 if (ret == -EAGAIN) { 1392 /* 1393 * btrfs_reserve_extent only returns -EAGAIN for zoned 1394 * file systems, which is an indication that there are 1395 * no active zones to allocate from at the moment. 1396 * 1397 * If this is the first loop iteration, wait for at 1398 * least one zone to finish before retrying the 1399 * allocation. Otherwise ask the caller to write out 1400 * the already allocated blocks before coming back to 1401 * us, or return -ENOSPC if it can't handle retries. 1402 */ 1403 ASSERT(btrfs_is_zoned(fs_info)); 1404 if (start == orig_start) { 1405 wait_on_bit_io(&inode->root->fs_info->flags, 1406 BTRFS_FS_NEED_ZONE_FINISH, 1407 TASK_UNINTERRUPTIBLE); 1408 continue; 1409 } 1410 if (done_offset) { 1411 /* 1412 * Move @end to the end of the processed range, 1413 * and exit the loop to unlock the processed extents. 1414 */ 1415 end = start - 1; 1416 ret = 0; 1417 break; 1418 } 1419 ret = -ENOSPC; 1420 } 1421 if (ret < 0) 1422 goto out_unlock; 1423 cur_alloc_size = ins.offset; 1424 1425 file_extent.disk_bytenr = ins.objectid; 1426 file_extent.disk_num_bytes = ins.offset; 1427 file_extent.num_bytes = ins.offset; 1428 file_extent.ram_bytes = ins.offset; 1429 file_extent.offset = 0; 1430 file_extent.compression = BTRFS_COMPRESS_NONE; 1431 1432 /* 1433 * Locked range will be released either during error clean up or 1434 * after the whole range is finished. 1435 */ 1436 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1437 &cached); 1438 1439 em = btrfs_create_io_em(inode, start, &file_extent, 1440 BTRFS_ORDERED_REGULAR); 1441 if (IS_ERR(em)) { 1442 btrfs_unlock_extent(&inode->io_tree, start, 1443 start + cur_alloc_size - 1, &cached); 1444 ret = PTR_ERR(em); 1445 goto out_reserve; 1446 } 1447 btrfs_free_extent_map(em); 1448 1449 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1450 1U << BTRFS_ORDERED_REGULAR); 1451 if (IS_ERR(ordered)) { 1452 btrfs_unlock_extent(&inode->io_tree, start, 1453 start + cur_alloc_size - 1, &cached); 1454 ret = PTR_ERR(ordered); 1455 goto out_drop_extent_cache; 1456 } 1457 1458 if (btrfs_is_data_reloc_root(root)) { 1459 ret = btrfs_reloc_clone_csums(ordered); 1460 1461 /* 1462 * Only drop cache here, and process as normal. 1463 * 1464 * We must not allow extent_clear_unlock_delalloc() 1465 * at out_unlock label to free meta of this ordered 1466 * extent, as its meta should be freed by 1467 * btrfs_finish_ordered_io(). 1468 * 1469 * So we must continue until @start is increased to 1470 * skip current ordered extent. 1471 */ 1472 if (ret) 1473 btrfs_drop_extent_map_range(inode, start, 1474 start + cur_alloc_size - 1, 1475 false); 1476 } 1477 btrfs_put_ordered_extent(ordered); 1478 1479 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1480 1481 if (num_bytes < cur_alloc_size) 1482 num_bytes = 0; 1483 else 1484 num_bytes -= cur_alloc_size; 1485 alloc_hint = ins.objectid + ins.offset; 1486 start += cur_alloc_size; 1487 cur_alloc_size = 0; 1488 1489 /* 1490 * btrfs_reloc_clone_csums() error, since start is increased 1491 * extent_clear_unlock_delalloc() at out_unlock label won't 1492 * free metadata of current ordered extent, we're OK to exit. 1493 */ 1494 if (ret) 1495 goto out_unlock; 1496 } 1497 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1498 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1499 done: 1500 if (done_offset) 1501 *done_offset = end; 1502 return ret; 1503 1504 out_drop_extent_cache: 1505 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1506 out_reserve: 1507 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1508 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1509 out_unlock: 1510 /* 1511 * Now, we have three regions to clean up: 1512 * 1513 * |-------(1)----|---(2)---|-------------(3)----------| 1514 * `- orig_start `- start `- start + cur_alloc_size `- end 1515 * 1516 * We process each region below. 1517 */ 1518 1519 /* 1520 * For the range (1). We have already instantiated the ordered extents 1521 * for this region, thus we need to cleanup those ordered extents. 1522 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1523 * are also handled by the ordered extents cleanup. 1524 * 1525 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1526 * finish the writeback of the involved folios, which will be never submitted. 1527 */ 1528 if (orig_start < start) { 1529 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1530 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1531 1532 if (!locked_folio) 1533 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1534 1535 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1536 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1537 locked_folio, NULL, clear_bits, page_ops); 1538 } 1539 1540 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1541 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1542 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1543 1544 /* 1545 * For the range (2). If we reserved an extent for our delalloc range 1546 * (or a subrange) and failed to create the respective ordered extent, 1547 * then it means that when we reserved the extent we decremented the 1548 * extent's size from the data space_info's bytes_may_use counter and 1549 * incremented the space_info's bytes_reserved counter by the same 1550 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1551 * to decrement again the data space_info's bytes_may_use counter, 1552 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1553 */ 1554 if (cur_alloc_size) { 1555 extent_clear_unlock_delalloc(inode, start, 1556 start + cur_alloc_size - 1, 1557 locked_folio, &cached, clear_bits, 1558 page_ops); 1559 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1560 } 1561 1562 /* 1563 * For the range (3). We never touched the region. In addition to the 1564 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1565 * space_info's bytes_may_use counter, reserved in 1566 * btrfs_check_data_free_space(). 1567 */ 1568 if (start + cur_alloc_size < end) { 1569 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1570 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1571 end, locked_folio, 1572 &cached, clear_bits, page_ops); 1573 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1574 end - start - cur_alloc_size + 1, NULL); 1575 } 1576 btrfs_err(fs_info, 1577 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d", 1578 __func__, btrfs_root_id(inode->root), 1579 btrfs_ino(inode), orig_start, end + 1 - orig_start, 1580 start, cur_alloc_size, ret); 1581 return ret; 1582 } 1583 1584 /* 1585 * Phase two of compressed writeback. This is the ordered portion of the code, 1586 * which only gets called in the order the work was queued. We walk all the 1587 * async extents created by compress_file_range and send them down to the disk. 1588 * 1589 * If called with @do_free == true then it'll try to finish the work and free 1590 * the work struct eventually. 1591 */ 1592 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1593 { 1594 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1595 work); 1596 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1597 struct async_extent *async_extent; 1598 unsigned long nr_pages; 1599 u64 alloc_hint = 0; 1600 1601 if (do_free) { 1602 struct async_cow *async_cow; 1603 1604 btrfs_add_delayed_iput(async_chunk->inode); 1605 if (async_chunk->blkcg_css) 1606 css_put(async_chunk->blkcg_css); 1607 1608 async_cow = async_chunk->async_cow; 1609 if (atomic_dec_and_test(&async_cow->num_chunks)) 1610 kvfree(async_cow); 1611 return; 1612 } 1613 1614 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1615 PAGE_SHIFT; 1616 1617 while (!list_empty(&async_chunk->extents)) { 1618 async_extent = list_first_entry(&async_chunk->extents, 1619 struct async_extent, list); 1620 list_del(&async_extent->list); 1621 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1622 } 1623 1624 /* atomic_sub_return implies a barrier */ 1625 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1626 5 * SZ_1M) 1627 cond_wake_up_nomb(&fs_info->async_submit_wait); 1628 } 1629 1630 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1631 struct folio *locked_folio, u64 start, 1632 u64 end, struct writeback_control *wbc) 1633 { 1634 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1635 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1636 struct async_cow *ctx; 1637 struct async_chunk *async_chunk; 1638 unsigned long nr_pages; 1639 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1640 int i; 1641 unsigned nofs_flag; 1642 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1643 1644 nofs_flag = memalloc_nofs_save(); 1645 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1646 memalloc_nofs_restore(nofs_flag); 1647 if (!ctx) 1648 return false; 1649 1650 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1651 1652 async_chunk = ctx->chunks; 1653 atomic_set(&ctx->num_chunks, num_chunks); 1654 1655 for (i = 0; i < num_chunks; i++) { 1656 u64 cur_end = min(end, start + SZ_512K - 1); 1657 1658 /* 1659 * igrab is called higher up in the call chain, take only the 1660 * lightweight reference for the callback lifetime 1661 */ 1662 ihold(&inode->vfs_inode); 1663 async_chunk[i].async_cow = ctx; 1664 async_chunk[i].inode = inode; 1665 async_chunk[i].start = start; 1666 async_chunk[i].end = cur_end; 1667 async_chunk[i].write_flags = write_flags; 1668 INIT_LIST_HEAD(&async_chunk[i].extents); 1669 1670 /* 1671 * The locked_folio comes all the way from writepage and its 1672 * the original folio we were actually given. As we spread 1673 * this large delalloc region across multiple async_chunk 1674 * structs, only the first struct needs a pointer to 1675 * locked_folio. 1676 * 1677 * This way we don't need racey decisions about who is supposed 1678 * to unlock it. 1679 */ 1680 if (locked_folio) { 1681 /* 1682 * Depending on the compressibility, the pages might or 1683 * might not go through async. We want all of them to 1684 * be accounted against wbc once. Let's do it here 1685 * before the paths diverge. wbc accounting is used 1686 * only for foreign writeback detection and doesn't 1687 * need full accuracy. Just account the whole thing 1688 * against the first page. 1689 */ 1690 wbc_account_cgroup_owner(wbc, locked_folio, 1691 cur_end - start); 1692 async_chunk[i].locked_folio = locked_folio; 1693 locked_folio = NULL; 1694 } else { 1695 async_chunk[i].locked_folio = NULL; 1696 } 1697 1698 if (blkcg_css != blkcg_root_css) { 1699 css_get(blkcg_css); 1700 async_chunk[i].blkcg_css = blkcg_css; 1701 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1702 } else { 1703 async_chunk[i].blkcg_css = NULL; 1704 } 1705 1706 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1707 submit_compressed_extents); 1708 1709 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1710 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1711 1712 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1713 1714 start = cur_end + 1; 1715 } 1716 return true; 1717 } 1718 1719 /* 1720 * Run the delalloc range from start to end, and write back any dirty pages 1721 * covered by the range. 1722 */ 1723 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1724 struct folio *locked_folio, u64 start, 1725 u64 end, struct writeback_control *wbc, 1726 bool pages_dirty) 1727 { 1728 u64 done_offset = end; 1729 int ret; 1730 1731 while (start <= end) { 1732 ret = cow_file_range(inode, locked_folio, start, end, 1733 &done_offset, COW_FILE_RANGE_KEEP_LOCKED); 1734 if (ret) 1735 return ret; 1736 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1737 start, done_offset, wbc, pages_dirty); 1738 start = done_offset + 1; 1739 } 1740 1741 return 1; 1742 } 1743 1744 static int fallback_to_cow(struct btrfs_inode *inode, 1745 struct folio *locked_folio, const u64 start, 1746 const u64 end) 1747 { 1748 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1749 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1750 const u64 range_bytes = end + 1 - start; 1751 struct extent_io_tree *io_tree = &inode->io_tree; 1752 struct extent_state *cached_state = NULL; 1753 u64 range_start = start; 1754 u64 count; 1755 int ret; 1756 1757 /* 1758 * If EXTENT_NORESERVE is set it means that when the buffered write was 1759 * made we had not enough available data space and therefore we did not 1760 * reserve data space for it, since we though we could do NOCOW for the 1761 * respective file range (either there is prealloc extent or the inode 1762 * has the NOCOW bit set). 1763 * 1764 * However when we need to fallback to COW mode (because for example the 1765 * block group for the corresponding extent was turned to RO mode by a 1766 * scrub or relocation) we need to do the following: 1767 * 1768 * 1) We increment the bytes_may_use counter of the data space info. 1769 * If COW succeeds, it allocates a new data extent and after doing 1770 * that it decrements the space info's bytes_may_use counter and 1771 * increments its bytes_reserved counter by the same amount (we do 1772 * this at btrfs_add_reserved_bytes()). So we need to increment the 1773 * bytes_may_use counter to compensate (when space is reserved at 1774 * buffered write time, the bytes_may_use counter is incremented); 1775 * 1776 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1777 * that if the COW path fails for any reason, it decrements (through 1778 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1779 * data space info, which we incremented in the step above. 1780 * 1781 * If we need to fallback to cow and the inode corresponds to a free 1782 * space cache inode or an inode of the data relocation tree, we must 1783 * also increment bytes_may_use of the data space_info for the same 1784 * reason. Space caches and relocated data extents always get a prealloc 1785 * extent for them, however scrub or balance may have set the block 1786 * group that contains that extent to RO mode and therefore force COW 1787 * when starting writeback. 1788 */ 1789 btrfs_lock_extent(io_tree, start, end, &cached_state); 1790 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1791 EXTENT_NORESERVE, 0, NULL); 1792 if (count > 0 || is_space_ino || is_reloc_ino) { 1793 u64 bytes = count; 1794 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1795 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1796 1797 if (is_space_ino || is_reloc_ino) 1798 bytes = range_bytes; 1799 1800 spin_lock(&sinfo->lock); 1801 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1802 spin_unlock(&sinfo->lock); 1803 1804 if (count > 0) 1805 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1806 &cached_state); 1807 } 1808 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1809 1810 /* 1811 * Don't try to create inline extents, as a mix of inline extent that 1812 * is written out and unlocked directly and a normal NOCOW extent 1813 * doesn't work. 1814 * 1815 * And here we do not unlock the folio after a successful run. 1816 * The folios will be unlocked after everything is finished, or by error handling. 1817 * 1818 * This is to ensure error handling won't need to clear dirty/ordered flags without 1819 * a locked folio, which can race with writeback. 1820 */ 1821 ret = cow_file_range(inode, locked_folio, start, end, NULL, 1822 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED); 1823 ASSERT(ret != 1); 1824 return ret; 1825 } 1826 1827 struct can_nocow_file_extent_args { 1828 /* Input fields. */ 1829 1830 /* Start file offset of the range we want to NOCOW. */ 1831 u64 start; 1832 /* End file offset (inclusive) of the range we want to NOCOW. */ 1833 u64 end; 1834 bool writeback_path; 1835 /* 1836 * Free the path passed to can_nocow_file_extent() once it's not needed 1837 * anymore. 1838 */ 1839 bool free_path; 1840 1841 /* 1842 * Output fields. Only set when can_nocow_file_extent() returns 1. 1843 * The expected file extent for the NOCOW write. 1844 */ 1845 struct btrfs_file_extent file_extent; 1846 }; 1847 1848 /* 1849 * Check if we can NOCOW the file extent that the path points to. 1850 * This function may return with the path released, so the caller should check 1851 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1852 * 1853 * Returns: < 0 on error 1854 * 0 if we can not NOCOW 1855 * 1 if we can NOCOW 1856 */ 1857 static int can_nocow_file_extent(struct btrfs_path *path, 1858 struct btrfs_key *key, 1859 struct btrfs_inode *inode, 1860 struct can_nocow_file_extent_args *args) 1861 { 1862 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1863 struct extent_buffer *leaf = path->nodes[0]; 1864 struct btrfs_root *root = inode->root; 1865 struct btrfs_file_extent_item *fi; 1866 struct btrfs_root *csum_root; 1867 u64 io_start; 1868 u64 extent_end; 1869 u8 extent_type; 1870 int can_nocow = 0; 1871 int ret = 0; 1872 bool nowait = path->nowait; 1873 1874 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1875 extent_type = btrfs_file_extent_type(leaf, fi); 1876 1877 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1878 goto out; 1879 1880 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1881 extent_type == BTRFS_FILE_EXTENT_REG) 1882 goto out; 1883 1884 /* 1885 * If the extent was created before the generation where the last snapshot 1886 * for its subvolume was created, then this implies the extent is shared, 1887 * hence we must COW. 1888 */ 1889 if (btrfs_file_extent_generation(leaf, fi) <= 1890 btrfs_root_last_snapshot(&root->root_item)) 1891 goto out; 1892 1893 /* An explicit hole, must COW. */ 1894 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1895 goto out; 1896 1897 /* Compressed/encrypted/encoded extents must be COWed. */ 1898 if (btrfs_file_extent_compression(leaf, fi) || 1899 btrfs_file_extent_encryption(leaf, fi) || 1900 btrfs_file_extent_other_encoding(leaf, fi)) 1901 goto out; 1902 1903 extent_end = btrfs_file_extent_end(path); 1904 1905 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1906 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1907 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1908 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1909 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1910 1911 /* 1912 * The following checks can be expensive, as they need to take other 1913 * locks and do btree or rbtree searches, so release the path to avoid 1914 * blocking other tasks for too long. 1915 */ 1916 btrfs_release_path(path); 1917 1918 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1919 args->file_extent.disk_bytenr, path); 1920 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1921 if (ret != 0) 1922 goto out; 1923 1924 if (args->free_path) { 1925 /* 1926 * We don't need the path anymore, plus through the 1927 * btrfs_lookup_csums_list() call below we will end up allocating 1928 * another path. So free the path to avoid unnecessary extra 1929 * memory usage. 1930 */ 1931 btrfs_free_path(path); 1932 path = NULL; 1933 } 1934 1935 /* If there are pending snapshots for this root, we must COW. */ 1936 if (args->writeback_path && !is_freespace_inode && 1937 atomic_read(&root->snapshot_force_cow)) 1938 goto out; 1939 1940 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1941 args->file_extent.offset += args->start - key->offset; 1942 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1943 1944 /* 1945 * Force COW if csums exist in the range. This ensures that csums for a 1946 * given extent are either valid or do not exist. 1947 */ 1948 1949 csum_root = btrfs_csum_root(root->fs_info, io_start); 1950 ret = btrfs_lookup_csums_list(csum_root, io_start, 1951 io_start + args->file_extent.num_bytes - 1, 1952 NULL, nowait); 1953 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1954 if (ret != 0) 1955 goto out; 1956 1957 can_nocow = 1; 1958 out: 1959 if (args->free_path && path) 1960 btrfs_free_path(path); 1961 1962 return ret < 0 ? ret : can_nocow; 1963 } 1964 1965 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1966 struct extent_state **cached, 1967 struct can_nocow_file_extent_args *nocow_args, 1968 u64 file_pos, bool is_prealloc) 1969 { 1970 struct btrfs_ordered_extent *ordered; 1971 const u64 len = nocow_args->file_extent.num_bytes; 1972 const u64 end = file_pos + len - 1; 1973 int ret = 0; 1974 1975 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1976 1977 if (is_prealloc) { 1978 struct extent_map *em; 1979 1980 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1981 BTRFS_ORDERED_PREALLOC); 1982 if (IS_ERR(em)) { 1983 ret = PTR_ERR(em); 1984 goto error; 1985 } 1986 btrfs_free_extent_map(em); 1987 } 1988 1989 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1990 is_prealloc 1991 ? (1U << BTRFS_ORDERED_PREALLOC) 1992 : (1U << BTRFS_ORDERED_NOCOW)); 1993 if (IS_ERR(ordered)) { 1994 if (is_prealloc) 1995 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1996 ret = PTR_ERR(ordered); 1997 goto error; 1998 } 1999 2000 if (btrfs_is_data_reloc_root(inode->root)) 2001 /* 2002 * Errors are handled later, as we must prevent 2003 * extent_clear_unlock_delalloc() in error handler from freeing 2004 * metadata of the created ordered extent. 2005 */ 2006 ret = btrfs_reloc_clone_csums(ordered); 2007 btrfs_put_ordered_extent(ordered); 2008 2009 if (ret < 0) 2010 goto error; 2011 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2012 EXTENT_LOCKED | EXTENT_DELALLOC | 2013 EXTENT_CLEAR_DATA_RESV, 2014 PAGE_SET_ORDERED); 2015 return ret; 2016 2017 error: 2018 btrfs_cleanup_ordered_extents(inode, file_pos, len); 2019 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2020 EXTENT_LOCKED | EXTENT_DELALLOC | 2021 EXTENT_CLEAR_DATA_RESV, 2022 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2023 PAGE_END_WRITEBACK); 2024 btrfs_err(inode->root->fs_info, 2025 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d", 2026 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2027 file_pos, len, ret); 2028 return ret; 2029 } 2030 2031 /* 2032 * When nocow writeback calls back. This checks for snapshots or COW copies 2033 * of the extents that exist in the file, and COWs the file as required. 2034 * 2035 * If no cow copies or snapshots exist, we write directly to the existing 2036 * blocks on disk 2037 */ 2038 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2039 struct folio *locked_folio, 2040 const u64 start, const u64 end) 2041 { 2042 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2043 struct btrfs_root *root = inode->root; 2044 struct btrfs_path *path = NULL; 2045 u64 cow_start = (u64)-1; 2046 /* 2047 * If not 0, represents the inclusive end of the last fallback_to_cow() 2048 * range. Only for error handling. 2049 * 2050 * The same for nocow_end, it's to avoid double cleaning up the range 2051 * already cleaned by nocow_one_range(). 2052 */ 2053 u64 cow_end = 0; 2054 u64 nocow_end = 0; 2055 u64 cur_offset = start; 2056 int ret; 2057 bool check_prev = true; 2058 u64 ino = btrfs_ino(inode); 2059 struct can_nocow_file_extent_args nocow_args = { 0 }; 2060 /* The range that has ordered extent(s). */ 2061 u64 oe_cleanup_start; 2062 u64 oe_cleanup_len = 0; 2063 /* The range that is untouched. */ 2064 u64 untouched_start; 2065 u64 untouched_len = 0; 2066 2067 /* 2068 * Normally on a zoned device we're only doing COW writes, but in case 2069 * of relocation on a zoned filesystem serializes I/O so that we're only 2070 * writing sequentially and can end up here as well. 2071 */ 2072 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2073 2074 if (unlikely(btrfs_is_shutdown(fs_info))) { 2075 ret = -EIO; 2076 goto error; 2077 } 2078 path = btrfs_alloc_path(); 2079 if (!path) { 2080 ret = -ENOMEM; 2081 goto error; 2082 } 2083 2084 nocow_args.end = end; 2085 nocow_args.writeback_path = true; 2086 2087 while (cur_offset <= end) { 2088 struct btrfs_block_group *nocow_bg = NULL; 2089 struct btrfs_key found_key; 2090 struct btrfs_file_extent_item *fi; 2091 struct extent_buffer *leaf; 2092 struct extent_state *cached_state = NULL; 2093 u64 extent_end; 2094 int extent_type; 2095 2096 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2097 cur_offset, 0); 2098 if (ret < 0) 2099 goto error; 2100 2101 /* 2102 * If there is no extent for our range when doing the initial 2103 * search, then go back to the previous slot as it will be the 2104 * one containing the search offset 2105 */ 2106 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2107 leaf = path->nodes[0]; 2108 btrfs_item_key_to_cpu(leaf, &found_key, 2109 path->slots[0] - 1); 2110 if (found_key.objectid == ino && 2111 found_key.type == BTRFS_EXTENT_DATA_KEY) 2112 path->slots[0]--; 2113 } 2114 check_prev = false; 2115 next_slot: 2116 /* Go to next leaf if we have exhausted the current one */ 2117 leaf = path->nodes[0]; 2118 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2119 ret = btrfs_next_leaf(root, path); 2120 if (ret < 0) 2121 goto error; 2122 if (ret > 0) 2123 break; 2124 leaf = path->nodes[0]; 2125 } 2126 2127 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2128 2129 /* Didn't find anything for our INO */ 2130 if (found_key.objectid > ino) 2131 break; 2132 /* 2133 * Keep searching until we find an EXTENT_ITEM or there are no 2134 * more extents for this inode 2135 */ 2136 if (WARN_ON_ONCE(found_key.objectid < ino) || 2137 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2138 path->slots[0]++; 2139 goto next_slot; 2140 } 2141 2142 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2143 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2144 found_key.offset > end) 2145 break; 2146 2147 /* 2148 * If the found extent starts after requested offset, then 2149 * adjust cur_offset to be right before this extent begins. 2150 */ 2151 if (found_key.offset > cur_offset) { 2152 if (cow_start == (u64)-1) 2153 cow_start = cur_offset; 2154 cur_offset = found_key.offset; 2155 goto next_slot; 2156 } 2157 2158 /* 2159 * Found extent which begins before our range and potentially 2160 * intersect it 2161 */ 2162 fi = btrfs_item_ptr(leaf, path->slots[0], 2163 struct btrfs_file_extent_item); 2164 extent_type = btrfs_file_extent_type(leaf, fi); 2165 /* If this is triggered then we have a memory corruption. */ 2166 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2167 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2168 ret = -EUCLEAN; 2169 goto error; 2170 } 2171 extent_end = btrfs_file_extent_end(path); 2172 2173 /* 2174 * If the extent we got ends before our current offset, skip to 2175 * the next extent. 2176 */ 2177 if (extent_end <= cur_offset) { 2178 path->slots[0]++; 2179 goto next_slot; 2180 } 2181 2182 nocow_args.start = cur_offset; 2183 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2184 if (ret < 0) 2185 goto error; 2186 if (ret == 0) 2187 goto must_cow; 2188 2189 ret = 0; 2190 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2191 nocow_args.file_extent.disk_bytenr + 2192 nocow_args.file_extent.offset); 2193 if (!nocow_bg) { 2194 must_cow: 2195 /* 2196 * If we can't perform NOCOW writeback for the range, 2197 * then record the beginning of the range that needs to 2198 * be COWed. It will be written out before the next 2199 * NOCOW range if we find one, or when exiting this 2200 * loop. 2201 */ 2202 if (cow_start == (u64)-1) 2203 cow_start = cur_offset; 2204 cur_offset = extent_end; 2205 if (cur_offset > end) 2206 break; 2207 if (!path->nodes[0]) 2208 continue; 2209 path->slots[0]++; 2210 goto next_slot; 2211 } 2212 2213 /* 2214 * COW range from cow_start to found_key.offset - 1. As the key 2215 * will contain the beginning of the first extent that can be 2216 * NOCOW, following one which needs to be COW'ed 2217 */ 2218 if (cow_start != (u64)-1) { 2219 ret = fallback_to_cow(inode, locked_folio, cow_start, 2220 found_key.offset - 1); 2221 if (ret) { 2222 cow_end = found_key.offset - 1; 2223 btrfs_dec_nocow_writers(nocow_bg); 2224 goto error; 2225 } 2226 cow_start = (u64)-1; 2227 } 2228 2229 ret = nocow_one_range(inode, locked_folio, &cached_state, 2230 &nocow_args, cur_offset, 2231 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2232 btrfs_dec_nocow_writers(nocow_bg); 2233 if (ret < 0) { 2234 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2235 goto error; 2236 } 2237 cur_offset = extent_end; 2238 } 2239 btrfs_release_path(path); 2240 2241 if (cur_offset <= end && cow_start == (u64)-1) 2242 cow_start = cur_offset; 2243 2244 if (cow_start != (u64)-1) { 2245 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2246 if (ret) { 2247 cow_end = end; 2248 goto error; 2249 } 2250 cow_start = (u64)-1; 2251 } 2252 2253 /* 2254 * Everything is finished without an error, can unlock the folios now. 2255 * 2256 * No need to touch the io tree range nor set folio ordered flag, as 2257 * fallback_to_cow() and nocow_one_range() have already handled them. 2258 */ 2259 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK); 2260 2261 btrfs_free_path(path); 2262 return 0; 2263 2264 error: 2265 if (cow_start == (u64)-1) { 2266 /* 2267 * case a) 2268 * start cur_offset end 2269 * | OE cleanup | Untouched | 2270 * 2271 * We finished a fallback_to_cow() or nocow_one_range() call, 2272 * but failed to check the next range. 2273 * 2274 * or 2275 * start cur_offset nocow_end end 2276 * | OE cleanup | Skip | Untouched | 2277 * 2278 * nocow_one_range() failed, the range [cur_offset, nocow_end] is 2279 * already cleaned up. 2280 */ 2281 oe_cleanup_start = start; 2282 oe_cleanup_len = cur_offset - start; 2283 if (nocow_end) 2284 untouched_start = nocow_end + 1; 2285 else 2286 untouched_start = cur_offset; 2287 untouched_len = end + 1 - untouched_start; 2288 } else if (cow_start != (u64)-1 && cow_end == 0) { 2289 /* 2290 * case b) 2291 * start cow_start cur_offset end 2292 * | OE cleanup | Untouched | 2293 * 2294 * We got a range that needs COW, but before we hit the next NOCOW range, 2295 * thus [cow_start, cur_offset) doesn't yet have any OE. 2296 */ 2297 oe_cleanup_start = start; 2298 oe_cleanup_len = cow_start - start; 2299 untouched_start = cow_start; 2300 untouched_len = end + 1 - untouched_start; 2301 } else { 2302 /* 2303 * case c) 2304 * start cow_start cow_end end 2305 * | OE cleanup | Skip | Untouched | 2306 * 2307 * fallback_to_cow() failed, and fallback_to_cow() will do the 2308 * cleanup for its range, we shouldn't touch the range 2309 * [cow_start, cow_end]. 2310 */ 2311 ASSERT(cow_start != (u64)-1 && cow_end != 0); 2312 oe_cleanup_start = start; 2313 oe_cleanup_len = cow_start - start; 2314 untouched_start = cow_end + 1; 2315 untouched_len = end + 1 - untouched_start; 2316 } 2317 2318 if (oe_cleanup_len) { 2319 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1; 2320 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len); 2321 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end, 2322 locked_folio, NULL, 2323 EXTENT_LOCKED | EXTENT_DELALLOC, 2324 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2325 PAGE_END_WRITEBACK); 2326 } 2327 2328 if (untouched_len) { 2329 struct extent_state *cached = NULL; 2330 const u64 untouched_end = untouched_start + untouched_len - 1; 2331 2332 /* 2333 * We need to lock the extent here because we're clearing DELALLOC and 2334 * we're not locked at this point. 2335 */ 2336 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached); 2337 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end, 2338 locked_folio, &cached, 2339 EXTENT_LOCKED | EXTENT_DELALLOC | 2340 EXTENT_DEFRAG | 2341 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2342 PAGE_START_WRITEBACK | 2343 PAGE_END_WRITEBACK); 2344 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL); 2345 } 2346 btrfs_free_path(path); 2347 btrfs_err(fs_info, 2348 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d", 2349 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2350 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len, 2351 untouched_start, untouched_len, ret); 2352 return ret; 2353 } 2354 2355 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2356 { 2357 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2358 if (inode->defrag_bytes && 2359 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2360 return false; 2361 return true; 2362 } 2363 return false; 2364 } 2365 2366 /* 2367 * Function to process delayed allocation (create CoW) for ranges which are 2368 * being touched for the first time. 2369 */ 2370 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2371 u64 start, u64 end, struct writeback_control *wbc) 2372 { 2373 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2374 int ret; 2375 2376 /* 2377 * The range must cover part of the @locked_folio, or a return of 1 2378 * can confuse the caller. 2379 */ 2380 ASSERT(!(end <= folio_pos(locked_folio) || 2381 start >= folio_next_pos(locked_folio))); 2382 2383 if (should_nocow(inode, start, end)) { 2384 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2385 return ret; 2386 } 2387 2388 if (btrfs_inode_can_compress(inode) && 2389 inode_need_compress(inode, start, end) && 2390 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2391 return 1; 2392 2393 if (zoned) 2394 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2395 true); 2396 else 2397 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0); 2398 return ret; 2399 } 2400 2401 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2402 struct extent_state *orig, u64 split) 2403 { 2404 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2405 u64 size; 2406 2407 lockdep_assert_held(&inode->io_tree.lock); 2408 2409 /* not delalloc, ignore it */ 2410 if (!(orig->state & EXTENT_DELALLOC)) 2411 return; 2412 2413 size = orig->end - orig->start + 1; 2414 if (size > fs_info->max_extent_size) { 2415 u32 num_extents; 2416 u64 new_size; 2417 2418 /* 2419 * See the explanation in btrfs_merge_delalloc_extent, the same 2420 * applies here, just in reverse. 2421 */ 2422 new_size = orig->end - split + 1; 2423 num_extents = count_max_extents(fs_info, new_size); 2424 new_size = split - orig->start; 2425 num_extents += count_max_extents(fs_info, new_size); 2426 if (count_max_extents(fs_info, size) >= num_extents) 2427 return; 2428 } 2429 2430 spin_lock(&inode->lock); 2431 btrfs_mod_outstanding_extents(inode, 1); 2432 spin_unlock(&inode->lock); 2433 } 2434 2435 /* 2436 * Handle merged delayed allocation extents so we can keep track of new extents 2437 * that are just merged onto old extents, such as when we are doing sequential 2438 * writes, so we can properly account for the metadata space we'll need. 2439 */ 2440 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2441 struct extent_state *other) 2442 { 2443 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2444 u64 new_size, old_size; 2445 u32 num_extents; 2446 2447 lockdep_assert_held(&inode->io_tree.lock); 2448 2449 /* not delalloc, ignore it */ 2450 if (!(other->state & EXTENT_DELALLOC)) 2451 return; 2452 2453 if (new->start > other->start) 2454 new_size = new->end - other->start + 1; 2455 else 2456 new_size = other->end - new->start + 1; 2457 2458 /* we're not bigger than the max, unreserve the space and go */ 2459 if (new_size <= fs_info->max_extent_size) { 2460 spin_lock(&inode->lock); 2461 btrfs_mod_outstanding_extents(inode, -1); 2462 spin_unlock(&inode->lock); 2463 return; 2464 } 2465 2466 /* 2467 * We have to add up either side to figure out how many extents were 2468 * accounted for before we merged into one big extent. If the number of 2469 * extents we accounted for is <= the amount we need for the new range 2470 * then we can return, otherwise drop. Think of it like this 2471 * 2472 * [ 4k][MAX_SIZE] 2473 * 2474 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2475 * need 2 outstanding extents, on one side we have 1 and the other side 2476 * we have 1 so they are == and we can return. But in this case 2477 * 2478 * [MAX_SIZE+4k][MAX_SIZE+4k] 2479 * 2480 * Each range on their own accounts for 2 extents, but merged together 2481 * they are only 3 extents worth of accounting, so we need to drop in 2482 * this case. 2483 */ 2484 old_size = other->end - other->start + 1; 2485 num_extents = count_max_extents(fs_info, old_size); 2486 old_size = new->end - new->start + 1; 2487 num_extents += count_max_extents(fs_info, old_size); 2488 if (count_max_extents(fs_info, new_size) >= num_extents) 2489 return; 2490 2491 spin_lock(&inode->lock); 2492 btrfs_mod_outstanding_extents(inode, -1); 2493 spin_unlock(&inode->lock); 2494 } 2495 2496 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2497 { 2498 struct btrfs_root *root = inode->root; 2499 struct btrfs_fs_info *fs_info = root->fs_info; 2500 2501 spin_lock(&root->delalloc_lock); 2502 ASSERT(list_empty(&inode->delalloc_inodes)); 2503 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2504 root->nr_delalloc_inodes++; 2505 if (root->nr_delalloc_inodes == 1) { 2506 spin_lock(&fs_info->delalloc_root_lock); 2507 ASSERT(list_empty(&root->delalloc_root)); 2508 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2509 spin_unlock(&fs_info->delalloc_root_lock); 2510 } 2511 spin_unlock(&root->delalloc_lock); 2512 } 2513 2514 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2515 { 2516 struct btrfs_root *root = inode->root; 2517 struct btrfs_fs_info *fs_info = root->fs_info; 2518 2519 lockdep_assert_held(&root->delalloc_lock); 2520 2521 /* 2522 * We may be called after the inode was already deleted from the list, 2523 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2524 * and then later through btrfs_clear_delalloc_extent() while the inode 2525 * still has ->delalloc_bytes > 0. 2526 */ 2527 if (!list_empty(&inode->delalloc_inodes)) { 2528 list_del_init(&inode->delalloc_inodes); 2529 root->nr_delalloc_inodes--; 2530 if (!root->nr_delalloc_inodes) { 2531 ASSERT(list_empty(&root->delalloc_inodes)); 2532 spin_lock(&fs_info->delalloc_root_lock); 2533 ASSERT(!list_empty(&root->delalloc_root)); 2534 list_del_init(&root->delalloc_root); 2535 spin_unlock(&fs_info->delalloc_root_lock); 2536 } 2537 } 2538 } 2539 2540 /* 2541 * Properly track delayed allocation bytes in the inode and to maintain the 2542 * list of inodes that have pending delalloc work to be done. 2543 */ 2544 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2545 u32 bits) 2546 { 2547 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2548 2549 lockdep_assert_held(&inode->io_tree.lock); 2550 2551 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2552 WARN_ON(1); 2553 /* 2554 * set_bit and clear bit hooks normally require _irqsave/restore 2555 * but in this case, we are only testing for the DELALLOC 2556 * bit, which is only set or cleared with irqs on 2557 */ 2558 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2559 u64 len = state->end + 1 - state->start; 2560 u64 prev_delalloc_bytes; 2561 u32 num_extents = count_max_extents(fs_info, len); 2562 2563 spin_lock(&inode->lock); 2564 btrfs_mod_outstanding_extents(inode, num_extents); 2565 spin_unlock(&inode->lock); 2566 2567 /* For sanity tests */ 2568 if (btrfs_is_testing(fs_info)) 2569 return; 2570 2571 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2572 fs_info->delalloc_batch); 2573 spin_lock(&inode->lock); 2574 prev_delalloc_bytes = inode->delalloc_bytes; 2575 inode->delalloc_bytes += len; 2576 if (bits & EXTENT_DEFRAG) 2577 inode->defrag_bytes += len; 2578 spin_unlock(&inode->lock); 2579 2580 /* 2581 * We don't need to be under the protection of the inode's lock, 2582 * because we are called while holding the inode's io_tree lock 2583 * and are therefore protected against concurrent calls of this 2584 * function and btrfs_clear_delalloc_extent(). 2585 */ 2586 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2587 btrfs_add_delalloc_inode(inode); 2588 } 2589 2590 if (!(state->state & EXTENT_DELALLOC_NEW) && 2591 (bits & EXTENT_DELALLOC_NEW)) { 2592 spin_lock(&inode->lock); 2593 inode->new_delalloc_bytes += state->end + 1 - state->start; 2594 spin_unlock(&inode->lock); 2595 } 2596 } 2597 2598 /* 2599 * Once a range is no longer delalloc this function ensures that proper 2600 * accounting happens. 2601 */ 2602 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2603 struct extent_state *state, u32 bits) 2604 { 2605 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2606 u64 len = state->end + 1 - state->start; 2607 u32 num_extents = count_max_extents(fs_info, len); 2608 2609 lockdep_assert_held(&inode->io_tree.lock); 2610 2611 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2612 spin_lock(&inode->lock); 2613 inode->defrag_bytes -= len; 2614 spin_unlock(&inode->lock); 2615 } 2616 2617 /* 2618 * set_bit and clear bit hooks normally require _irqsave/restore 2619 * but in this case, we are only testing for the DELALLOC 2620 * bit, which is only set or cleared with irqs on 2621 */ 2622 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2623 struct btrfs_root *root = inode->root; 2624 u64 new_delalloc_bytes; 2625 2626 spin_lock(&inode->lock); 2627 btrfs_mod_outstanding_extents(inode, -num_extents); 2628 spin_unlock(&inode->lock); 2629 2630 /* 2631 * We don't reserve metadata space for space cache inodes so we 2632 * don't need to call delalloc_release_metadata if there is an 2633 * error. 2634 */ 2635 if (bits & EXTENT_CLEAR_META_RESV && 2636 root != fs_info->tree_root) 2637 btrfs_delalloc_release_metadata(inode, len, true); 2638 2639 /* For sanity tests. */ 2640 if (btrfs_is_testing(fs_info)) 2641 return; 2642 2643 if (!btrfs_is_data_reloc_root(root) && 2644 !btrfs_is_free_space_inode(inode) && 2645 !(state->state & EXTENT_NORESERVE) && 2646 (bits & EXTENT_CLEAR_DATA_RESV)) 2647 btrfs_free_reserved_data_space_noquota(inode, len); 2648 2649 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2650 fs_info->delalloc_batch); 2651 spin_lock(&inode->lock); 2652 inode->delalloc_bytes -= len; 2653 new_delalloc_bytes = inode->delalloc_bytes; 2654 spin_unlock(&inode->lock); 2655 2656 /* 2657 * We don't need to be under the protection of the inode's lock, 2658 * because we are called while holding the inode's io_tree lock 2659 * and are therefore protected against concurrent calls of this 2660 * function and btrfs_set_delalloc_extent(). 2661 */ 2662 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2663 spin_lock(&root->delalloc_lock); 2664 btrfs_del_delalloc_inode(inode); 2665 spin_unlock(&root->delalloc_lock); 2666 } 2667 } 2668 2669 if ((state->state & EXTENT_DELALLOC_NEW) && 2670 (bits & EXTENT_DELALLOC_NEW)) { 2671 spin_lock(&inode->lock); 2672 ASSERT(inode->new_delalloc_bytes >= len); 2673 inode->new_delalloc_bytes -= len; 2674 if (bits & EXTENT_ADD_INODE_BYTES) 2675 inode_add_bytes(&inode->vfs_inode, len); 2676 spin_unlock(&inode->lock); 2677 } 2678 } 2679 2680 /* 2681 * given a list of ordered sums record them in the inode. This happens 2682 * at IO completion time based on sums calculated at bio submission time. 2683 */ 2684 static int add_pending_csums(struct btrfs_trans_handle *trans, 2685 struct list_head *list) 2686 { 2687 struct btrfs_ordered_sum *sum; 2688 struct btrfs_root *csum_root = NULL; 2689 int ret; 2690 2691 list_for_each_entry(sum, list, list) { 2692 trans->adding_csums = true; 2693 if (!csum_root) 2694 csum_root = btrfs_csum_root(trans->fs_info, 2695 sum->logical); 2696 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2697 trans->adding_csums = false; 2698 if (ret) 2699 return ret; 2700 } 2701 return 0; 2702 } 2703 2704 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2705 const u64 start, 2706 const u64 len, 2707 struct extent_state **cached_state) 2708 { 2709 u64 search_start = start; 2710 const u64 end = start + len - 1; 2711 2712 while (search_start < end) { 2713 const u64 search_len = end - search_start + 1; 2714 struct extent_map *em; 2715 u64 em_len; 2716 int ret = 0; 2717 2718 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2719 if (IS_ERR(em)) 2720 return PTR_ERR(em); 2721 2722 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2723 goto next; 2724 2725 em_len = em->len; 2726 if (em->start < search_start) 2727 em_len -= search_start - em->start; 2728 if (em_len > search_len) 2729 em_len = search_len; 2730 2731 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2732 search_start + em_len - 1, 2733 EXTENT_DELALLOC_NEW, cached_state); 2734 next: 2735 search_start = btrfs_extent_map_end(em); 2736 btrfs_free_extent_map(em); 2737 if (ret) 2738 return ret; 2739 } 2740 return 0; 2741 } 2742 2743 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2744 unsigned int extra_bits, 2745 struct extent_state **cached_state) 2746 { 2747 WARN_ON(PAGE_ALIGNED(end)); 2748 2749 if (start >= i_size_read(&inode->vfs_inode) && 2750 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2751 /* 2752 * There can't be any extents following eof in this case so just 2753 * set the delalloc new bit for the range directly. 2754 */ 2755 extra_bits |= EXTENT_DELALLOC_NEW; 2756 } else { 2757 int ret; 2758 2759 ret = btrfs_find_new_delalloc_bytes(inode, start, 2760 end + 1 - start, 2761 cached_state); 2762 if (ret) 2763 return ret; 2764 } 2765 2766 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2767 EXTENT_DELALLOC | extra_bits, cached_state); 2768 } 2769 2770 /* see btrfs_writepage_start_hook for details on why this is required */ 2771 struct btrfs_writepage_fixup { 2772 struct folio *folio; 2773 struct btrfs_inode *inode; 2774 struct btrfs_work work; 2775 }; 2776 2777 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2778 { 2779 struct btrfs_writepage_fixup *fixup = 2780 container_of(work, struct btrfs_writepage_fixup, work); 2781 struct btrfs_ordered_extent *ordered; 2782 struct extent_state *cached_state = NULL; 2783 struct extent_changeset *data_reserved = NULL; 2784 struct folio *folio = fixup->folio; 2785 struct btrfs_inode *inode = fixup->inode; 2786 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2787 u64 page_start = folio_pos(folio); 2788 u64 page_end = folio_next_pos(folio) - 1; 2789 int ret = 0; 2790 bool free_delalloc_space = true; 2791 2792 /* 2793 * This is similar to page_mkwrite, we need to reserve the space before 2794 * we take the folio lock. 2795 */ 2796 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2797 folio_size(folio)); 2798 again: 2799 folio_lock(folio); 2800 2801 /* 2802 * Before we queued this fixup, we took a reference on the folio. 2803 * folio->mapping may go NULL, but it shouldn't be moved to a different 2804 * address space. 2805 */ 2806 if (!folio->mapping || !folio_test_dirty(folio) || 2807 !folio_test_checked(folio)) { 2808 /* 2809 * Unfortunately this is a little tricky, either 2810 * 2811 * 1) We got here and our folio had already been dealt with and 2812 * we reserved our space, thus ret == 0, so we need to just 2813 * drop our space reservation and bail. This can happen the 2814 * first time we come into the fixup worker, or could happen 2815 * while waiting for the ordered extent. 2816 * 2) Our folio was already dealt with, but we happened to get an 2817 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2818 * this case we obviously don't have anything to release, but 2819 * because the folio was already dealt with we don't want to 2820 * mark the folio with an error, so make sure we're resetting 2821 * ret to 0. This is why we have this check _before_ the ret 2822 * check, because we do not want to have a surprise ENOSPC 2823 * when the folio was already properly dealt with. 2824 */ 2825 if (!ret) { 2826 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2827 btrfs_delalloc_release_space(inode, data_reserved, 2828 page_start, folio_size(folio), 2829 true); 2830 } 2831 ret = 0; 2832 goto out_page; 2833 } 2834 2835 /* 2836 * We can't mess with the folio state unless it is locked, so now that 2837 * it is locked bail if we failed to make our space reservation. 2838 */ 2839 if (ret) 2840 goto out_page; 2841 2842 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2843 2844 /* already ordered? We're done */ 2845 if (folio_test_ordered(folio)) 2846 goto out_reserved; 2847 2848 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2849 if (ordered) { 2850 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2851 &cached_state); 2852 folio_unlock(folio); 2853 btrfs_start_ordered_extent(ordered); 2854 btrfs_put_ordered_extent(ordered); 2855 goto again; 2856 } 2857 2858 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2859 &cached_state); 2860 if (ret) 2861 goto out_reserved; 2862 2863 /* 2864 * Everything went as planned, we're now the owner of a dirty page with 2865 * delayed allocation bits set and space reserved for our COW 2866 * destination. 2867 * 2868 * The page was dirty when we started, nothing should have cleaned it. 2869 */ 2870 BUG_ON(!folio_test_dirty(folio)); 2871 free_delalloc_space = false; 2872 out_reserved: 2873 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2874 if (free_delalloc_space) 2875 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2876 PAGE_SIZE, true); 2877 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2878 out_page: 2879 if (ret) { 2880 /* 2881 * We hit ENOSPC or other errors. Update the mapping and page 2882 * to reflect the errors and clean the page. 2883 */ 2884 mapping_set_error(folio->mapping, ret); 2885 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2886 folio_size(folio), !ret); 2887 folio_clear_dirty_for_io(folio); 2888 } 2889 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2890 folio_unlock(folio); 2891 folio_put(folio); 2892 kfree(fixup); 2893 extent_changeset_free(data_reserved); 2894 /* 2895 * As a precaution, do a delayed iput in case it would be the last iput 2896 * that could need flushing space. Recursing back to fixup worker would 2897 * deadlock. 2898 */ 2899 btrfs_add_delayed_iput(inode); 2900 } 2901 2902 /* 2903 * There are a few paths in the higher layers of the kernel that directly 2904 * set the folio dirty bit without asking the filesystem if it is a 2905 * good idea. This causes problems because we want to make sure COW 2906 * properly happens and the data=ordered rules are followed. 2907 * 2908 * In our case any range that doesn't have the ORDERED bit set 2909 * hasn't been properly setup for IO. We kick off an async process 2910 * to fix it up. The async helper will wait for ordered extents, set 2911 * the delalloc bit and make it safe to write the folio. 2912 */ 2913 int btrfs_writepage_cow_fixup(struct folio *folio) 2914 { 2915 struct inode *inode = folio->mapping->host; 2916 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2917 struct btrfs_writepage_fixup *fixup; 2918 2919 /* This folio has ordered extent covering it already */ 2920 if (folio_test_ordered(folio)) 2921 return 0; 2922 2923 /* 2924 * For experimental build, we error out instead of EAGAIN. 2925 * 2926 * We should not hit such out-of-band dirty folios anymore. 2927 */ 2928 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2929 DEBUG_WARN(); 2930 btrfs_err_rl(fs_info, 2931 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2932 btrfs_root_id(BTRFS_I(inode)->root), 2933 btrfs_ino(BTRFS_I(inode)), 2934 folio_pos(folio)); 2935 return -EUCLEAN; 2936 } 2937 2938 /* 2939 * folio_checked is set below when we create a fixup worker for this 2940 * folio, don't try to create another one if we're already 2941 * folio_test_checked. 2942 * 2943 * The extent_io writepage code will redirty the foio if we send back 2944 * EAGAIN. 2945 */ 2946 if (folio_test_checked(folio)) 2947 return -EAGAIN; 2948 2949 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2950 if (!fixup) 2951 return -EAGAIN; 2952 2953 /* 2954 * We are already holding a reference to this inode from 2955 * write_cache_pages. We need to hold it because the space reservation 2956 * takes place outside of the folio lock, and we can't trust 2957 * folio->mapping outside of the folio lock. 2958 */ 2959 ihold(inode); 2960 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2961 folio_get(folio); 2962 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2963 fixup->folio = folio; 2964 fixup->inode = BTRFS_I(inode); 2965 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2966 2967 return -EAGAIN; 2968 } 2969 2970 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2971 struct btrfs_inode *inode, u64 file_pos, 2972 struct btrfs_file_extent_item *stack_fi, 2973 const bool update_inode_bytes, 2974 u64 qgroup_reserved) 2975 { 2976 struct btrfs_root *root = inode->root; 2977 const u64 sectorsize = root->fs_info->sectorsize; 2978 BTRFS_PATH_AUTO_FREE(path); 2979 struct extent_buffer *leaf; 2980 struct btrfs_key ins; 2981 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2982 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2983 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2984 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2985 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2986 struct btrfs_drop_extents_args drop_args = { 0 }; 2987 int ret; 2988 2989 path = btrfs_alloc_path(); 2990 if (!path) 2991 return -ENOMEM; 2992 2993 /* 2994 * we may be replacing one extent in the tree with another. 2995 * The new extent is pinned in the extent map, and we don't want 2996 * to drop it from the cache until it is completely in the btree. 2997 * 2998 * So, tell btrfs_drop_extents to leave this extent in the cache. 2999 * the caller is expected to unpin it and allow it to be merged 3000 * with the others. 3001 */ 3002 drop_args.path = path; 3003 drop_args.start = file_pos; 3004 drop_args.end = file_pos + num_bytes; 3005 drop_args.replace_extent = true; 3006 drop_args.extent_item_size = sizeof(*stack_fi); 3007 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 3008 if (ret) 3009 goto out; 3010 3011 if (!drop_args.extent_inserted) { 3012 ins.objectid = btrfs_ino(inode); 3013 ins.type = BTRFS_EXTENT_DATA_KEY; 3014 ins.offset = file_pos; 3015 3016 ret = btrfs_insert_empty_item(trans, root, path, &ins, 3017 sizeof(*stack_fi)); 3018 if (ret) 3019 goto out; 3020 } 3021 leaf = path->nodes[0]; 3022 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3023 write_extent_buffer(leaf, stack_fi, 3024 btrfs_item_ptr_offset(leaf, path->slots[0]), 3025 sizeof(struct btrfs_file_extent_item)); 3026 3027 btrfs_release_path(path); 3028 3029 /* 3030 * If we dropped an inline extent here, we know the range where it is 3031 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3032 * number of bytes only for that range containing the inline extent. 3033 * The remaining of the range will be processed when clearing the 3034 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3035 */ 3036 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3037 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3038 3039 inline_size = drop_args.bytes_found - inline_size; 3040 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3041 drop_args.bytes_found -= inline_size; 3042 num_bytes -= sectorsize; 3043 } 3044 3045 if (update_inode_bytes) 3046 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3047 3048 ins.objectid = disk_bytenr; 3049 ins.type = BTRFS_EXTENT_ITEM_KEY; 3050 ins.offset = disk_num_bytes; 3051 3052 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3053 if (ret) 3054 goto out; 3055 3056 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3057 file_pos - offset, 3058 qgroup_reserved, &ins); 3059 out: 3060 return ret; 3061 } 3062 3063 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3064 u64 start, u64 len) 3065 { 3066 struct btrfs_block_group *cache; 3067 3068 cache = btrfs_lookup_block_group(fs_info, start); 3069 ASSERT(cache); 3070 3071 spin_lock(&cache->lock); 3072 cache->delalloc_bytes -= len; 3073 spin_unlock(&cache->lock); 3074 3075 btrfs_put_block_group(cache); 3076 } 3077 3078 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3079 struct btrfs_ordered_extent *oe) 3080 { 3081 struct btrfs_file_extent_item stack_fi; 3082 bool update_inode_bytes; 3083 u64 num_bytes = oe->num_bytes; 3084 u64 ram_bytes = oe->ram_bytes; 3085 3086 memset(&stack_fi, 0, sizeof(stack_fi)); 3087 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3088 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3089 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3090 oe->disk_num_bytes); 3091 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3092 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3093 num_bytes = oe->truncated_len; 3094 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3095 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3096 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3097 /* Encryption and other encoding is reserved and all 0 */ 3098 3099 /* 3100 * For delalloc, when completing an ordered extent we update the inode's 3101 * bytes when clearing the range in the inode's io tree, so pass false 3102 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3103 * except if the ordered extent was truncated. 3104 */ 3105 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3106 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3107 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3108 3109 return insert_reserved_file_extent(trans, oe->inode, 3110 oe->file_offset, &stack_fi, 3111 update_inode_bytes, oe->qgroup_rsv); 3112 } 3113 3114 /* 3115 * As ordered data IO finishes, this gets called so we can finish 3116 * an ordered extent if the range of bytes in the file it covers are 3117 * fully written. 3118 */ 3119 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3120 { 3121 struct btrfs_inode *inode = ordered_extent->inode; 3122 struct btrfs_root *root = inode->root; 3123 struct btrfs_fs_info *fs_info = root->fs_info; 3124 struct btrfs_trans_handle *trans = NULL; 3125 struct extent_io_tree *io_tree = &inode->io_tree; 3126 struct extent_state *cached_state = NULL; 3127 u64 start, end; 3128 int compress_type = 0; 3129 int ret = 0; 3130 u64 logical_len = ordered_extent->num_bytes; 3131 bool freespace_inode; 3132 bool truncated = false; 3133 bool clear_reserved_extent = true; 3134 unsigned int clear_bits = EXTENT_DEFRAG; 3135 3136 start = ordered_extent->file_offset; 3137 end = start + ordered_extent->num_bytes - 1; 3138 3139 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3140 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3141 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3142 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3143 clear_bits |= EXTENT_DELALLOC_NEW; 3144 3145 freespace_inode = btrfs_is_free_space_inode(inode); 3146 if (!freespace_inode) 3147 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3148 3149 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) { 3150 ret = -EIO; 3151 goto out; 3152 } 3153 3154 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3155 ordered_extent->disk_num_bytes); 3156 if (ret) 3157 goto out; 3158 3159 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3160 truncated = true; 3161 logical_len = ordered_extent->truncated_len; 3162 /* Truncated the entire extent, don't bother adding */ 3163 if (!logical_len) 3164 goto out; 3165 } 3166 3167 /* 3168 * If it's a COW write we need to lock the extent range as we will be 3169 * inserting/replacing file extent items and unpinning an extent map. 3170 * This must be taken before joining a transaction, as it's a higher 3171 * level lock (like the inode's VFS lock), otherwise we can run into an 3172 * ABBA deadlock with other tasks (transactions work like a lock, 3173 * depending on their current state). 3174 */ 3175 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3176 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3177 btrfs_lock_extent_bits(io_tree, start, end, 3178 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3179 &cached_state); 3180 } 3181 3182 if (freespace_inode) 3183 trans = btrfs_join_transaction_spacecache(root); 3184 else 3185 trans = btrfs_join_transaction(root); 3186 if (IS_ERR(trans)) { 3187 ret = PTR_ERR(trans); 3188 trans = NULL; 3189 goto out; 3190 } 3191 3192 trans->block_rsv = &inode->block_rsv; 3193 3194 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3195 if (unlikely(ret)) { 3196 btrfs_abort_transaction(trans, ret); 3197 goto out; 3198 } 3199 3200 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3201 /* Logic error */ 3202 ASSERT(list_empty(&ordered_extent->list)); 3203 if (unlikely(!list_empty(&ordered_extent->list))) { 3204 ret = -EINVAL; 3205 btrfs_abort_transaction(trans, ret); 3206 goto out; 3207 } 3208 3209 btrfs_inode_safe_disk_i_size_write(inode, 0); 3210 ret = btrfs_update_inode_fallback(trans, inode); 3211 if (unlikely(ret)) { 3212 /* -ENOMEM or corruption */ 3213 btrfs_abort_transaction(trans, ret); 3214 } 3215 goto out; 3216 } 3217 3218 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3219 compress_type = ordered_extent->compress_type; 3220 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3221 BUG_ON(compress_type); 3222 ret = btrfs_mark_extent_written(trans, inode, 3223 ordered_extent->file_offset, 3224 ordered_extent->file_offset + 3225 logical_len); 3226 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3227 ordered_extent->disk_num_bytes); 3228 } else { 3229 BUG_ON(root == fs_info->tree_root); 3230 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3231 if (!ret) { 3232 clear_reserved_extent = false; 3233 btrfs_release_delalloc_bytes(fs_info, 3234 ordered_extent->disk_bytenr, 3235 ordered_extent->disk_num_bytes); 3236 } 3237 } 3238 if (unlikely(ret < 0)) { 3239 btrfs_abort_transaction(trans, ret); 3240 goto out; 3241 } 3242 3243 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3244 ordered_extent->num_bytes, trans->transid); 3245 if (unlikely(ret < 0)) { 3246 btrfs_abort_transaction(trans, ret); 3247 goto out; 3248 } 3249 3250 ret = add_pending_csums(trans, &ordered_extent->list); 3251 if (unlikely(ret)) { 3252 btrfs_abort_transaction(trans, ret); 3253 goto out; 3254 } 3255 3256 /* 3257 * If this is a new delalloc range, clear its new delalloc flag to 3258 * update the inode's number of bytes. This needs to be done first 3259 * before updating the inode item. 3260 */ 3261 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3262 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3263 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3264 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3265 &cached_state); 3266 3267 btrfs_inode_safe_disk_i_size_write(inode, 0); 3268 ret = btrfs_update_inode_fallback(trans, inode); 3269 if (unlikely(ret)) { /* -ENOMEM or corruption */ 3270 btrfs_abort_transaction(trans, ret); 3271 goto out; 3272 } 3273 out: 3274 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3275 &cached_state); 3276 3277 if (trans) 3278 btrfs_end_transaction(trans); 3279 3280 if (ret || truncated) { 3281 /* 3282 * If we failed to finish this ordered extent for any reason we 3283 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3284 * extent, and mark the inode with the error if it wasn't 3285 * already set. Any error during writeback would have already 3286 * set the mapping error, so we need to set it if we're the ones 3287 * marking this ordered extent as failed. 3288 */ 3289 if (ret) 3290 btrfs_mark_ordered_extent_error(ordered_extent); 3291 3292 /* 3293 * Drop extent maps for the part of the extent we didn't write. 3294 * 3295 * We have an exception here for the free_space_inode, this is 3296 * because when we do btrfs_get_extent() on the free space inode 3297 * we will search the commit root. If this is a new block group 3298 * we won't find anything, and we will trip over the assert in 3299 * writepage where we do ASSERT(em->block_start != 3300 * EXTENT_MAP_HOLE). 3301 * 3302 * Theoretically we could also skip this for any NOCOW extent as 3303 * we don't mess with the extent map tree in the NOCOW case, but 3304 * for now simply skip this if we are the free space inode. 3305 */ 3306 if (!btrfs_is_free_space_inode(inode)) { 3307 u64 unwritten_start = start; 3308 3309 if (truncated) 3310 unwritten_start += logical_len; 3311 3312 btrfs_drop_extent_map_range(inode, unwritten_start, 3313 end, false); 3314 } 3315 3316 /* 3317 * If the ordered extent had an IOERR or something else went 3318 * wrong we need to return the space for this ordered extent 3319 * back to the allocator. We only free the extent in the 3320 * truncated case if we didn't write out the extent at all. 3321 * 3322 * If we made it past insert_reserved_file_extent before we 3323 * errored out then we don't need to do this as the accounting 3324 * has already been done. 3325 */ 3326 if ((ret || !logical_len) && 3327 clear_reserved_extent && 3328 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3329 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3330 /* 3331 * Discard the range before returning it back to the 3332 * free space pool 3333 */ 3334 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3335 btrfs_discard_extent(fs_info, 3336 ordered_extent->disk_bytenr, 3337 ordered_extent->disk_num_bytes, 3338 NULL); 3339 btrfs_free_reserved_extent(fs_info, 3340 ordered_extent->disk_bytenr, 3341 ordered_extent->disk_num_bytes, true); 3342 /* 3343 * Actually free the qgroup rsv which was released when 3344 * the ordered extent was created. 3345 */ 3346 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3347 ordered_extent->qgroup_rsv, 3348 BTRFS_QGROUP_RSV_DATA); 3349 } 3350 } 3351 3352 /* 3353 * This needs to be done to make sure anybody waiting knows we are done 3354 * updating everything for this ordered extent. 3355 */ 3356 btrfs_remove_ordered_extent(inode, ordered_extent); 3357 3358 /* once for us */ 3359 btrfs_put_ordered_extent(ordered_extent); 3360 /* once for the tree */ 3361 btrfs_put_ordered_extent(ordered_extent); 3362 3363 return ret; 3364 } 3365 3366 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3367 { 3368 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3369 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3370 list_empty(&ordered->bioc_list)) 3371 btrfs_finish_ordered_zoned(ordered); 3372 return btrfs_finish_one_ordered(ordered); 3373 } 3374 3375 /* 3376 * Calculate the checksum of an fs block at physical memory address @paddr, 3377 * and save the result to @dest. 3378 * 3379 * The folio containing @paddr must be large enough to contain a full fs block. 3380 */ 3381 void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info, 3382 const phys_addr_t paddr, u8 *dest) 3383 { 3384 struct folio *folio = page_folio(phys_to_page(paddr)); 3385 const u32 blocksize = fs_info->sectorsize; 3386 const u32 step = min(blocksize, PAGE_SIZE); 3387 const u32 nr_steps = blocksize / step; 3388 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 3389 3390 /* The full block must be inside the folio. */ 3391 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3392 3393 for (int i = 0; i < nr_steps; i++) { 3394 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT; 3395 3396 /* 3397 * For bs <= ps cases, we will only run the loop once, so the offset 3398 * inside the page will only added to paddrs[0]. 3399 * 3400 * For bs > ps cases, the block must be page aligned, thus offset 3401 * inside the page will always be 0. 3402 */ 3403 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr); 3404 } 3405 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest); 3406 } 3407 3408 /* 3409 * Calculate the checksum of a fs block backed by multiple noncontiguous pages 3410 * at @paddrs[] and save the result to @dest. 3411 * 3412 * The folio containing @paddr must be large enough to contain a full fs block. 3413 */ 3414 void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info, 3415 const phys_addr_t paddrs[], u8 *dest) 3416 { 3417 const u32 blocksize = fs_info->sectorsize; 3418 const u32 step = min(blocksize, PAGE_SIZE); 3419 const u32 nr_steps = blocksize / step; 3420 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3421 3422 shash->tfm = fs_info->csum_shash; 3423 crypto_shash_init(shash); 3424 for (int i = 0; i < nr_steps; i++) { 3425 const phys_addr_t paddr = paddrs[i]; 3426 void *kaddr; 3427 3428 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE); 3429 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr); 3430 crypto_shash_update(shash, kaddr, step); 3431 kunmap_local(kaddr); 3432 } 3433 crypto_shash_final(shash, dest); 3434 } 3435 3436 /* 3437 * Verify the checksum for a single sector without any extra action that depend 3438 * on the type of I/O. 3439 * 3440 * @kaddr must be a properly kmapped address. 3441 */ 3442 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum, 3443 const u8 * const csum_expected) 3444 { 3445 btrfs_calculate_block_csum_folio(fs_info, paddr, csum); 3446 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3447 return -EIO; 3448 return 0; 3449 } 3450 3451 /* 3452 * Verify the checksum of a single data sector, which can be scattered at 3453 * different noncontiguous pages. 3454 * 3455 * @bbio: btrfs_io_bio which contains the csum 3456 * @dev: device the sector is on 3457 * @bio_offset: offset to the beginning of the bio (in bytes) 3458 * @paddrs: physical addresses which back the fs block 3459 * 3460 * Check if the checksum on a data block is valid. When a checksum mismatch is 3461 * detected, report the error and fill the corrupted range with zero. 3462 * 3463 * Return %true if the sector is ok or had no checksum to start with, else %false. 3464 */ 3465 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3466 u32 bio_offset, const phys_addr_t paddrs[]) 3467 { 3468 struct btrfs_inode *inode = bbio->inode; 3469 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3470 const u32 blocksize = fs_info->sectorsize; 3471 const u32 step = min(blocksize, PAGE_SIZE); 3472 const u32 nr_steps = blocksize / step; 3473 u64 file_offset = bbio->file_offset + bio_offset; 3474 u64 end = file_offset + blocksize - 1; 3475 u8 *csum_expected; 3476 u8 csum[BTRFS_CSUM_SIZE]; 3477 3478 if (!bbio->csum) 3479 return true; 3480 3481 if (btrfs_is_data_reloc_root(inode->root) && 3482 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3483 NULL)) { 3484 /* Skip the range without csum for data reloc inode */ 3485 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3486 EXTENT_NODATASUM, NULL); 3487 return true; 3488 } 3489 3490 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3491 fs_info->csum_size; 3492 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum); 3493 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3494 goto zeroit; 3495 return true; 3496 3497 zeroit: 3498 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3499 bbio->mirror_num); 3500 if (dev) 3501 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3502 for (int i = 0; i < nr_steps; i++) 3503 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step); 3504 return false; 3505 } 3506 3507 /* 3508 * Perform a delayed iput on @inode. 3509 * 3510 * @inode: The inode we want to perform iput on 3511 * 3512 * This function uses the generic vfs_inode::i_count to track whether we should 3513 * just decrement it (in case it's > 1) or if this is the last iput then link 3514 * the inode to the delayed iput machinery. Delayed iputs are processed at 3515 * transaction commit time/superblock commit/cleaner kthread. 3516 */ 3517 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3518 { 3519 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3520 unsigned long flags; 3521 3522 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3523 return; 3524 3525 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3526 atomic_inc(&fs_info->nr_delayed_iputs); 3527 /* 3528 * Need to be irq safe here because we can be called from either an irq 3529 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3530 * context. 3531 */ 3532 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3533 ASSERT(list_empty(&inode->delayed_iput)); 3534 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3535 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3536 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3537 wake_up_process(fs_info->cleaner_kthread); 3538 } 3539 3540 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3541 struct btrfs_inode *inode) 3542 { 3543 list_del_init(&inode->delayed_iput); 3544 spin_unlock_irq(&fs_info->delayed_iput_lock); 3545 iput(&inode->vfs_inode); 3546 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3547 wake_up(&fs_info->delayed_iputs_wait); 3548 spin_lock_irq(&fs_info->delayed_iput_lock); 3549 } 3550 3551 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3552 struct btrfs_inode *inode) 3553 { 3554 if (!list_empty(&inode->delayed_iput)) { 3555 spin_lock_irq(&fs_info->delayed_iput_lock); 3556 if (!list_empty(&inode->delayed_iput)) 3557 run_delayed_iput_locked(fs_info, inode); 3558 spin_unlock_irq(&fs_info->delayed_iput_lock); 3559 } 3560 } 3561 3562 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3563 { 3564 /* 3565 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3566 * calls btrfs_add_delayed_iput() and that needs to lock 3567 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3568 * prevent a deadlock. 3569 */ 3570 spin_lock_irq(&fs_info->delayed_iput_lock); 3571 while (!list_empty(&fs_info->delayed_iputs)) { 3572 struct btrfs_inode *inode; 3573 3574 inode = list_first_entry(&fs_info->delayed_iputs, 3575 struct btrfs_inode, delayed_iput); 3576 run_delayed_iput_locked(fs_info, inode); 3577 if (need_resched()) { 3578 spin_unlock_irq(&fs_info->delayed_iput_lock); 3579 cond_resched(); 3580 spin_lock_irq(&fs_info->delayed_iput_lock); 3581 } 3582 } 3583 spin_unlock_irq(&fs_info->delayed_iput_lock); 3584 } 3585 3586 /* 3587 * Wait for flushing all delayed iputs 3588 * 3589 * @fs_info: the filesystem 3590 * 3591 * This will wait on any delayed iputs that are currently running with KILLABLE 3592 * set. Once they are all done running we will return, unless we are killed in 3593 * which case we return EINTR. This helps in user operations like fallocate etc 3594 * that might get blocked on the iputs. 3595 * 3596 * Return EINTR if we were killed, 0 if nothing's pending 3597 */ 3598 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3599 { 3600 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3601 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3602 if (ret) 3603 return -EINTR; 3604 return 0; 3605 } 3606 3607 /* 3608 * This creates an orphan entry for the given inode in case something goes wrong 3609 * in the middle of an unlink. 3610 */ 3611 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3612 struct btrfs_inode *inode) 3613 { 3614 int ret; 3615 3616 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3617 if (unlikely(ret && ret != -EEXIST)) { 3618 btrfs_abort_transaction(trans, ret); 3619 return ret; 3620 } 3621 3622 return 0; 3623 } 3624 3625 /* 3626 * We have done the delete so we can go ahead and remove the orphan item for 3627 * this particular inode. 3628 */ 3629 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3630 struct btrfs_inode *inode) 3631 { 3632 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3633 } 3634 3635 /* 3636 * this cleans up any orphans that may be left on the list from the last use 3637 * of this root. 3638 */ 3639 int btrfs_orphan_cleanup(struct btrfs_root *root) 3640 { 3641 struct btrfs_fs_info *fs_info = root->fs_info; 3642 BTRFS_PATH_AUTO_FREE(path); 3643 struct extent_buffer *leaf; 3644 struct btrfs_key key, found_key; 3645 struct btrfs_trans_handle *trans; 3646 u64 last_objectid = 0; 3647 int ret = 0, nr_unlink = 0; 3648 3649 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3650 return 0; 3651 3652 path = btrfs_alloc_path(); 3653 if (!path) { 3654 ret = -ENOMEM; 3655 goto out; 3656 } 3657 path->reada = READA_BACK; 3658 3659 key.objectid = BTRFS_ORPHAN_OBJECTID; 3660 key.type = BTRFS_ORPHAN_ITEM_KEY; 3661 key.offset = (u64)-1; 3662 3663 while (1) { 3664 struct btrfs_inode *inode; 3665 3666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3667 if (ret < 0) 3668 goto out; 3669 3670 /* 3671 * if ret == 0 means we found what we were searching for, which 3672 * is weird, but possible, so only screw with path if we didn't 3673 * find the key and see if we have stuff that matches 3674 */ 3675 if (ret > 0) { 3676 ret = 0; 3677 if (path->slots[0] == 0) 3678 break; 3679 path->slots[0]--; 3680 } 3681 3682 /* pull out the item */ 3683 leaf = path->nodes[0]; 3684 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3685 3686 /* make sure the item matches what we want */ 3687 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3688 break; 3689 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3690 break; 3691 3692 /* release the path since we're done with it */ 3693 btrfs_release_path(path); 3694 3695 /* 3696 * this is where we are basically btrfs_lookup, without the 3697 * crossing root thing. we store the inode number in the 3698 * offset of the orphan item. 3699 */ 3700 3701 if (found_key.offset == last_objectid) { 3702 /* 3703 * We found the same inode as before. This means we were 3704 * not able to remove its items via eviction triggered 3705 * by an iput(). A transaction abort may have happened, 3706 * due to -ENOSPC for example, so try to grab the error 3707 * that lead to a transaction abort, if any. 3708 */ 3709 btrfs_err(fs_info, 3710 "Error removing orphan entry, stopping orphan cleanup"); 3711 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3712 goto out; 3713 } 3714 3715 last_objectid = found_key.offset; 3716 3717 found_key.objectid = found_key.offset; 3718 found_key.type = BTRFS_INODE_ITEM_KEY; 3719 found_key.offset = 0; 3720 inode = btrfs_iget(last_objectid, root); 3721 if (IS_ERR(inode)) { 3722 ret = PTR_ERR(inode); 3723 inode = NULL; 3724 if (ret != -ENOENT) 3725 goto out; 3726 } 3727 3728 if (!inode && root == fs_info->tree_root) { 3729 struct btrfs_root *dead_root; 3730 int is_dead_root = 0; 3731 3732 /* 3733 * This is an orphan in the tree root. Currently these 3734 * could come from 2 sources: 3735 * a) a root (snapshot/subvolume) deletion in progress 3736 * b) a free space cache inode 3737 * We need to distinguish those two, as the orphan item 3738 * for a root must not get deleted before the deletion 3739 * of the snapshot/subvolume's tree completes. 3740 * 3741 * btrfs_find_orphan_roots() ran before us, which has 3742 * found all deleted roots and loaded them into 3743 * fs_info->fs_roots_radix. So here we can find if an 3744 * orphan item corresponds to a deleted root by looking 3745 * up the root from that radix tree. 3746 */ 3747 3748 spin_lock(&fs_info->fs_roots_radix_lock); 3749 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3750 (unsigned long)found_key.objectid); 3751 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3752 is_dead_root = 1; 3753 spin_unlock(&fs_info->fs_roots_radix_lock); 3754 3755 if (is_dead_root) { 3756 /* prevent this orphan from being found again */ 3757 key.offset = found_key.objectid - 1; 3758 continue; 3759 } 3760 3761 } 3762 3763 /* 3764 * If we have an inode with links, there are a couple of 3765 * possibilities: 3766 * 3767 * 1. We were halfway through creating fsverity metadata for the 3768 * file. In that case, the orphan item represents incomplete 3769 * fsverity metadata which must be cleaned up with 3770 * btrfs_drop_verity_items and deleting the orphan item. 3771 3772 * 2. Old kernels (before v3.12) used to create an 3773 * orphan item for truncate indicating that there were possibly 3774 * extent items past i_size that needed to be deleted. In v3.12, 3775 * truncate was changed to update i_size in sync with the extent 3776 * items, but the (useless) orphan item was still created. Since 3777 * v4.18, we don't create the orphan item for truncate at all. 3778 * 3779 * So, this item could mean that we need to do a truncate, but 3780 * only if this filesystem was last used on a pre-v3.12 kernel 3781 * and was not cleanly unmounted. The odds of that are quite 3782 * slim, and it's a pain to do the truncate now, so just delete 3783 * the orphan item. 3784 * 3785 * It's also possible that this orphan item was supposed to be 3786 * deleted but wasn't. The inode number may have been reused, 3787 * but either way, we can delete the orphan item. 3788 */ 3789 if (!inode || inode->vfs_inode.i_nlink) { 3790 if (inode) { 3791 ret = btrfs_drop_verity_items(inode); 3792 iput(&inode->vfs_inode); 3793 inode = NULL; 3794 if (ret) 3795 goto out; 3796 } 3797 trans = btrfs_start_transaction(root, 1); 3798 if (IS_ERR(trans)) { 3799 ret = PTR_ERR(trans); 3800 goto out; 3801 } 3802 btrfs_debug(fs_info, "auto deleting %Lu", 3803 found_key.objectid); 3804 ret = btrfs_del_orphan_item(trans, root, 3805 found_key.objectid); 3806 btrfs_end_transaction(trans); 3807 if (ret) 3808 goto out; 3809 continue; 3810 } 3811 3812 nr_unlink++; 3813 3814 /* this will do delete_inode and everything for us */ 3815 iput(&inode->vfs_inode); 3816 } 3817 /* release the path since we're done with it */ 3818 btrfs_release_path(path); 3819 3820 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3821 trans = btrfs_join_transaction(root); 3822 if (!IS_ERR(trans)) 3823 btrfs_end_transaction(trans); 3824 } 3825 3826 if (nr_unlink) 3827 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3828 3829 out: 3830 if (ret) 3831 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3832 return ret; 3833 } 3834 3835 /* 3836 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3837 * can't be any ACLs. 3838 * 3839 * @leaf: the eb leaf where to search 3840 * @slot: the slot the inode is in 3841 * @objectid: the objectid of the inode 3842 * 3843 * Return true if there is xattr/ACL, false otherwise. 3844 */ 3845 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3846 int slot, u64 objectid, 3847 int *first_xattr_slot) 3848 { 3849 u32 nritems = btrfs_header_nritems(leaf); 3850 struct btrfs_key found_key; 3851 static u64 xattr_access = 0; 3852 static u64 xattr_default = 0; 3853 int scanned = 0; 3854 3855 if (!xattr_access) { 3856 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3857 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3858 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3859 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3860 } 3861 3862 slot++; 3863 *first_xattr_slot = -1; 3864 while (slot < nritems) { 3865 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3866 3867 /* We found a different objectid, there must be no ACLs. */ 3868 if (found_key.objectid != objectid) 3869 return false; 3870 3871 /* We found an xattr, assume we've got an ACL. */ 3872 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3873 if (*first_xattr_slot == -1) 3874 *first_xattr_slot = slot; 3875 if (found_key.offset == xattr_access || 3876 found_key.offset == xattr_default) 3877 return true; 3878 } 3879 3880 /* 3881 * We found a key greater than an xattr key, there can't be any 3882 * ACLs later on. 3883 */ 3884 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3885 return false; 3886 3887 slot++; 3888 scanned++; 3889 3890 /* 3891 * The item order goes like: 3892 * - inode 3893 * - inode backrefs 3894 * - xattrs 3895 * - extents, 3896 * 3897 * so if there are lots of hard links to an inode there can be 3898 * a lot of backrefs. Don't waste time searching too hard, 3899 * this is just an optimization. 3900 */ 3901 if (scanned >= 8) 3902 break; 3903 } 3904 /* 3905 * We hit the end of the leaf before we found an xattr or something 3906 * larger than an xattr. We have to assume the inode has ACLs. 3907 */ 3908 if (*first_xattr_slot == -1) 3909 *first_xattr_slot = slot; 3910 return true; 3911 } 3912 3913 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3914 { 3915 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3916 3917 if (WARN_ON_ONCE(inode->file_extent_tree)) 3918 return 0; 3919 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3920 return 0; 3921 if (!S_ISREG(inode->vfs_inode.i_mode)) 3922 return 0; 3923 if (btrfs_is_free_space_inode(inode)) 3924 return 0; 3925 3926 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3927 if (!inode->file_extent_tree) 3928 return -ENOMEM; 3929 3930 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3931 IO_TREE_INODE_FILE_EXTENT); 3932 /* Lockdep class is set only for the file extent tree. */ 3933 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3934 3935 return 0; 3936 } 3937 3938 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3939 { 3940 struct btrfs_root *root = inode->root; 3941 struct btrfs_inode *existing; 3942 const u64 ino = btrfs_ino(inode); 3943 int ret; 3944 3945 if (inode_unhashed(&inode->vfs_inode)) 3946 return 0; 3947 3948 if (prealloc) { 3949 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3950 if (ret) 3951 return ret; 3952 } 3953 3954 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3955 3956 if (xa_is_err(existing)) { 3957 ret = xa_err(existing); 3958 ASSERT(ret != -EINVAL); 3959 ASSERT(ret != -ENOMEM); 3960 return ret; 3961 } else if (existing) { 3962 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING))); 3963 } 3964 3965 return 0; 3966 } 3967 3968 /* 3969 * Read a locked inode from the btree into the in-memory inode and add it to 3970 * its root list/tree. 3971 * 3972 * On failure clean up the inode. 3973 */ 3974 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3975 { 3976 struct btrfs_root *root = inode->root; 3977 struct btrfs_fs_info *fs_info = root->fs_info; 3978 struct extent_buffer *leaf; 3979 struct btrfs_inode_item *inode_item; 3980 struct inode *vfs_inode = &inode->vfs_inode; 3981 struct btrfs_key location; 3982 unsigned long ptr; 3983 int maybe_acls; 3984 u32 rdev; 3985 int ret; 3986 bool filled = false; 3987 int first_xattr_slot; 3988 3989 ret = btrfs_fill_inode(inode, &rdev); 3990 if (!ret) 3991 filled = true; 3992 3993 ASSERT(path); 3994 3995 btrfs_get_inode_key(inode, &location); 3996 3997 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3998 if (ret) { 3999 /* 4000 * ret > 0 can come from btrfs_search_slot called by 4001 * btrfs_lookup_inode(), this means the inode was not found. 4002 */ 4003 if (ret > 0) 4004 ret = -ENOENT; 4005 goto out; 4006 } 4007 4008 leaf = path->nodes[0]; 4009 4010 if (filled) 4011 goto cache_index; 4012 4013 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4014 struct btrfs_inode_item); 4015 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 4016 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 4017 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 4018 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 4019 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 4020 4021 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 4022 btrfs_timespec_nsec(leaf, &inode_item->atime)); 4023 4024 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 4025 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 4026 4027 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 4028 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 4029 4030 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 4031 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 4032 4033 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 4034 inode->generation = btrfs_inode_generation(leaf, inode_item); 4035 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 4036 4037 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 4038 vfs_inode->i_generation = inode->generation; 4039 vfs_inode->i_rdev = 0; 4040 rdev = btrfs_inode_rdev(leaf, inode_item); 4041 4042 if (S_ISDIR(vfs_inode->i_mode)) 4043 inode->index_cnt = (u64)-1; 4044 4045 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 4046 &inode->flags, &inode->ro_flags); 4047 btrfs_update_inode_mapping_flags(inode); 4048 btrfs_set_inode_mapping_order(inode); 4049 4050 cache_index: 4051 /* 4052 * If we were modified in the current generation and evicted from memory 4053 * and then re-read we need to do a full sync since we don't have any 4054 * idea about which extents were modified before we were evicted from 4055 * cache. 4056 * 4057 * This is required for both inode re-read from disk and delayed inode 4058 * in the delayed_nodes xarray. 4059 */ 4060 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 4061 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 4062 4063 /* 4064 * We don't persist the id of the transaction where an unlink operation 4065 * against the inode was last made. So here we assume the inode might 4066 * have been evicted, and therefore the exact value of last_unlink_trans 4067 * lost, and set it to last_trans to avoid metadata inconsistencies 4068 * between the inode and its parent if the inode is fsync'ed and the log 4069 * replayed. For example, in the scenario: 4070 * 4071 * touch mydir/foo 4072 * ln mydir/foo mydir/bar 4073 * sync 4074 * unlink mydir/bar 4075 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4076 * xfs_io -c fsync mydir/foo 4077 * <power failure> 4078 * mount fs, triggers fsync log replay 4079 * 4080 * We must make sure that when we fsync our inode foo we also log its 4081 * parent inode, otherwise after log replay the parent still has the 4082 * dentry with the "bar" name but our inode foo has a link count of 1 4083 * and doesn't have an inode ref with the name "bar" anymore. 4084 * 4085 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4086 * but it guarantees correctness at the expense of occasional full 4087 * transaction commits on fsync if our inode is a directory, or if our 4088 * inode is not a directory, logging its parent unnecessarily. 4089 */ 4090 inode->last_unlink_trans = inode->last_trans; 4091 4092 /* 4093 * Same logic as for last_unlink_trans. We don't persist the generation 4094 * of the last transaction where this inode was used for a reflink 4095 * operation, so after eviction and reloading the inode we must be 4096 * pessimistic and assume the last transaction that modified the inode. 4097 */ 4098 inode->last_reflink_trans = inode->last_trans; 4099 4100 path->slots[0]++; 4101 if (vfs_inode->i_nlink != 1 || 4102 path->slots[0] >= btrfs_header_nritems(leaf)) 4103 goto cache_acl; 4104 4105 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4106 if (location.objectid != btrfs_ino(inode)) 4107 goto cache_acl; 4108 4109 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4110 if (location.type == BTRFS_INODE_REF_KEY) { 4111 struct btrfs_inode_ref *ref; 4112 4113 ref = (struct btrfs_inode_ref *)ptr; 4114 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4115 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4116 struct btrfs_inode_extref *extref; 4117 4118 extref = (struct btrfs_inode_extref *)ptr; 4119 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4120 } 4121 cache_acl: 4122 /* 4123 * try to precache a NULL acl entry for files that don't have 4124 * any xattrs or acls 4125 */ 4126 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4127 btrfs_ino(inode), &first_xattr_slot); 4128 if (first_xattr_slot != -1) { 4129 path->slots[0] = first_xattr_slot; 4130 ret = btrfs_load_inode_props(inode, path); 4131 if (ret) 4132 btrfs_err(fs_info, 4133 "error loading props for ino %llu (root %llu): %d", 4134 btrfs_ino(inode), btrfs_root_id(root), ret); 4135 } 4136 4137 /* 4138 * We don't need the path anymore, so release it to avoid holding a read 4139 * lock on a leaf while calling btrfs_init_file_extent_tree(), which can 4140 * allocate memory that triggers reclaim (GFP_KERNEL) and cause a locking 4141 * dependency. 4142 */ 4143 btrfs_release_path(path); 4144 4145 ret = btrfs_init_file_extent_tree(inode); 4146 if (ret) 4147 goto out; 4148 btrfs_inode_set_file_extent_range(inode, 0, 4149 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 4150 4151 if (!maybe_acls) 4152 cache_no_acl(vfs_inode); 4153 4154 switch (vfs_inode->i_mode & S_IFMT) { 4155 case S_IFREG: 4156 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4157 vfs_inode->i_fop = &btrfs_file_operations; 4158 vfs_inode->i_op = &btrfs_file_inode_operations; 4159 break; 4160 case S_IFDIR: 4161 vfs_inode->i_fop = &btrfs_dir_file_operations; 4162 vfs_inode->i_op = &btrfs_dir_inode_operations; 4163 break; 4164 case S_IFLNK: 4165 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4166 inode_nohighmem(vfs_inode); 4167 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4168 break; 4169 default: 4170 vfs_inode->i_op = &btrfs_special_inode_operations; 4171 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4172 break; 4173 } 4174 4175 btrfs_sync_inode_flags_to_i_flags(inode); 4176 4177 ret = btrfs_add_inode_to_root(inode, true); 4178 if (ret) 4179 goto out; 4180 4181 return 0; 4182 out: 4183 /* 4184 * We may have a read locked leaf and iget_failed() triggers inode 4185 * eviction which needs to release the delayed inode and that needs 4186 * to lock the delayed inode's mutex. This can cause a ABBA deadlock 4187 * with a task running delayed items, as that require first locking 4188 * the delayed inode's mutex and then modifying its subvolume btree. 4189 * So release the path before iget_failed(). 4190 */ 4191 btrfs_release_path(path); 4192 iget_failed(vfs_inode); 4193 return ret; 4194 } 4195 4196 /* 4197 * given a leaf and an inode, copy the inode fields into the leaf 4198 */ 4199 static void fill_inode_item(struct btrfs_trans_handle *trans, 4200 struct extent_buffer *leaf, 4201 struct btrfs_inode_item *item, 4202 struct inode *inode) 4203 { 4204 u64 flags; 4205 4206 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4207 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4208 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4209 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4210 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4211 4212 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4213 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4214 4215 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4216 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4217 4218 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4219 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4220 4221 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4222 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4223 4224 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4225 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4226 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4227 btrfs_set_inode_transid(leaf, item, trans->transid); 4228 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4229 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4230 BTRFS_I(inode)->ro_flags); 4231 btrfs_set_inode_flags(leaf, item, flags); 4232 btrfs_set_inode_block_group(leaf, item, 0); 4233 } 4234 4235 /* 4236 * copy everything in the in-memory inode into the btree. 4237 */ 4238 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4239 struct btrfs_inode *inode) 4240 { 4241 struct btrfs_inode_item *inode_item; 4242 BTRFS_PATH_AUTO_FREE(path); 4243 struct extent_buffer *leaf; 4244 struct btrfs_key key; 4245 int ret; 4246 4247 path = btrfs_alloc_path(); 4248 if (!path) 4249 return -ENOMEM; 4250 4251 btrfs_get_inode_key(inode, &key); 4252 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4253 if (ret) { 4254 if (ret > 0) 4255 ret = -ENOENT; 4256 return ret; 4257 } 4258 4259 leaf = path->nodes[0]; 4260 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4261 struct btrfs_inode_item); 4262 4263 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4264 btrfs_set_inode_last_trans(trans, inode); 4265 return 0; 4266 } 4267 4268 /* 4269 * copy everything in the in-memory inode into the btree. 4270 */ 4271 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4272 struct btrfs_inode *inode) 4273 { 4274 struct btrfs_root *root = inode->root; 4275 struct btrfs_fs_info *fs_info = root->fs_info; 4276 int ret; 4277 4278 /* 4279 * If the inode is a free space inode, we can deadlock during commit 4280 * if we put it into the delayed code. 4281 * 4282 * The data relocation inode should also be directly updated 4283 * without delay 4284 */ 4285 if (!btrfs_is_free_space_inode(inode) 4286 && !btrfs_is_data_reloc_root(root) 4287 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4288 btrfs_update_root_times(trans, root); 4289 4290 ret = btrfs_delayed_update_inode(trans, inode); 4291 if (!ret) 4292 btrfs_set_inode_last_trans(trans, inode); 4293 return ret; 4294 } 4295 4296 return btrfs_update_inode_item(trans, inode); 4297 } 4298 4299 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4300 struct btrfs_inode *inode) 4301 { 4302 int ret; 4303 4304 ret = btrfs_update_inode(trans, inode); 4305 if (ret == -ENOSPC) 4306 return btrfs_update_inode_item(trans, inode); 4307 return ret; 4308 } 4309 4310 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4311 { 4312 struct timespec64 now; 4313 4314 /* 4315 * If we are replaying a log tree, we do not want to update the mtime 4316 * and ctime of the parent directory with the current time, since the 4317 * log replay procedure is responsible for setting them to their correct 4318 * values (the ones it had when the fsync was done). 4319 */ 4320 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4321 return; 4322 4323 now = inode_set_ctime_current(&dir->vfs_inode); 4324 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4325 } 4326 4327 /* 4328 * unlink helper that gets used here in inode.c and in the tree logging 4329 * recovery code. It remove a link in a directory with a given name, and 4330 * also drops the back refs in the inode to the directory 4331 */ 4332 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4333 struct btrfs_inode *dir, 4334 struct btrfs_inode *inode, 4335 const struct fscrypt_str *name, 4336 struct btrfs_rename_ctx *rename_ctx) 4337 { 4338 struct btrfs_root *root = dir->root; 4339 struct btrfs_fs_info *fs_info = root->fs_info; 4340 struct btrfs_path *path; 4341 int ret = 0; 4342 struct btrfs_dir_item *di; 4343 u64 index; 4344 u64 ino = btrfs_ino(inode); 4345 u64 dir_ino = btrfs_ino(dir); 4346 4347 path = btrfs_alloc_path(); 4348 if (!path) 4349 return -ENOMEM; 4350 4351 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4352 if (IS_ERR_OR_NULL(di)) { 4353 btrfs_free_path(path); 4354 return di ? PTR_ERR(di) : -ENOENT; 4355 } 4356 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4357 /* 4358 * Down the call chains below we'll also need to allocate a path, so no 4359 * need to hold on to this one for longer than necessary. 4360 */ 4361 btrfs_free_path(path); 4362 if (ret) 4363 return ret; 4364 4365 /* 4366 * If we don't have dir index, we have to get it by looking up 4367 * the inode ref, since we get the inode ref, remove it directly, 4368 * it is unnecessary to do delayed deletion. 4369 * 4370 * But if we have dir index, needn't search inode ref to get it. 4371 * Since the inode ref is close to the inode item, it is better 4372 * that we delay to delete it, and just do this deletion when 4373 * we update the inode item. 4374 */ 4375 if (inode->dir_index) { 4376 ret = btrfs_delayed_delete_inode_ref(inode); 4377 if (!ret) { 4378 index = inode->dir_index; 4379 goto skip_backref; 4380 } 4381 } 4382 4383 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4384 if (unlikely(ret)) { 4385 btrfs_crit(fs_info, 4386 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4387 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4388 btrfs_abort_transaction(trans, ret); 4389 return ret; 4390 } 4391 skip_backref: 4392 if (rename_ctx) 4393 rename_ctx->index = index; 4394 4395 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4396 if (unlikely(ret)) { 4397 btrfs_abort_transaction(trans, ret); 4398 return ret; 4399 } 4400 4401 /* 4402 * If we are in a rename context, we don't need to update anything in the 4403 * log. That will be done later during the rename by btrfs_log_new_name(). 4404 * Besides that, doing it here would only cause extra unnecessary btree 4405 * operations on the log tree, increasing latency for applications. 4406 */ 4407 if (!rename_ctx) { 4408 btrfs_del_inode_ref_in_log(trans, name, inode, dir); 4409 btrfs_del_dir_entries_in_log(trans, name, dir, index); 4410 } 4411 4412 /* 4413 * If we have a pending delayed iput we could end up with the final iput 4414 * being run in btrfs-cleaner context. If we have enough of these built 4415 * up we can end up burning a lot of time in btrfs-cleaner without any 4416 * way to throttle the unlinks. Since we're currently holding a ref on 4417 * the inode we can run the delayed iput here without any issues as the 4418 * final iput won't be done until after we drop the ref we're currently 4419 * holding. 4420 */ 4421 btrfs_run_delayed_iput(fs_info, inode); 4422 4423 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4424 inode_inc_iversion(&inode->vfs_inode); 4425 inode_set_ctime_current(&inode->vfs_inode); 4426 inode_inc_iversion(&dir->vfs_inode); 4427 update_time_after_link_or_unlink(dir); 4428 4429 return btrfs_update_inode(trans, dir); 4430 } 4431 4432 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4433 struct btrfs_inode *dir, struct btrfs_inode *inode, 4434 const struct fscrypt_str *name) 4435 { 4436 int ret; 4437 4438 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4439 if (!ret) { 4440 drop_nlink(&inode->vfs_inode); 4441 ret = btrfs_update_inode(trans, inode); 4442 } 4443 return ret; 4444 } 4445 4446 /* 4447 * helper to start transaction for unlink and rmdir. 4448 * 4449 * unlink and rmdir are special in btrfs, they do not always free space, so 4450 * if we cannot make our reservations the normal way try and see if there is 4451 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4452 * allow the unlink to occur. 4453 */ 4454 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4455 { 4456 struct btrfs_root *root = dir->root; 4457 4458 return btrfs_start_transaction_fallback_global_rsv(root, 4459 BTRFS_UNLINK_METADATA_UNITS); 4460 } 4461 4462 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4463 { 4464 struct btrfs_trans_handle *trans; 4465 struct inode *inode = d_inode(dentry); 4466 int ret; 4467 struct fscrypt_name fname; 4468 4469 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4470 if (ret) 4471 return ret; 4472 4473 /* This needs to handle no-key deletions later on */ 4474 4475 trans = __unlink_start_trans(BTRFS_I(dir)); 4476 if (IS_ERR(trans)) { 4477 ret = PTR_ERR(trans); 4478 goto fscrypt_free; 4479 } 4480 4481 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4482 false); 4483 4484 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4485 &fname.disk_name); 4486 if (ret) 4487 goto end_trans; 4488 4489 if (inode->i_nlink == 0) { 4490 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4491 if (ret) 4492 goto end_trans; 4493 } 4494 4495 end_trans: 4496 btrfs_end_transaction(trans); 4497 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4498 fscrypt_free: 4499 fscrypt_free_filename(&fname); 4500 return ret; 4501 } 4502 4503 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4504 struct btrfs_inode *dir, struct dentry *dentry) 4505 { 4506 struct btrfs_root *root = dir->root; 4507 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4508 BTRFS_PATH_AUTO_FREE(path); 4509 struct extent_buffer *leaf; 4510 struct btrfs_dir_item *di; 4511 struct btrfs_key key; 4512 u64 index; 4513 int ret; 4514 u64 objectid; 4515 u64 dir_ino = btrfs_ino(dir); 4516 struct fscrypt_name fname; 4517 4518 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4519 if (ret) 4520 return ret; 4521 4522 /* This needs to handle no-key deletions later on */ 4523 4524 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4525 objectid = btrfs_root_id(inode->root); 4526 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4527 objectid = inode->ref_root_id; 4528 } else { 4529 WARN_ON(1); 4530 fscrypt_free_filename(&fname); 4531 return -EINVAL; 4532 } 4533 4534 path = btrfs_alloc_path(); 4535 if (!path) { 4536 ret = -ENOMEM; 4537 goto out; 4538 } 4539 4540 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4541 &fname.disk_name, -1); 4542 if (IS_ERR_OR_NULL(di)) { 4543 ret = di ? PTR_ERR(di) : -ENOENT; 4544 goto out; 4545 } 4546 4547 leaf = path->nodes[0]; 4548 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4549 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4550 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4551 if (unlikely(ret)) { 4552 btrfs_abort_transaction(trans, ret); 4553 goto out; 4554 } 4555 btrfs_release_path(path); 4556 4557 /* 4558 * This is a placeholder inode for a subvolume we didn't have a 4559 * reference to at the time of the snapshot creation. In the meantime 4560 * we could have renamed the real subvol link into our snapshot, so 4561 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4562 * Instead simply lookup the dir_index_item for this entry so we can 4563 * remove it. Otherwise we know we have a ref to the root and we can 4564 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4565 */ 4566 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4567 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4568 if (IS_ERR(di)) { 4569 ret = PTR_ERR(di); 4570 btrfs_abort_transaction(trans, ret); 4571 goto out; 4572 } 4573 4574 leaf = path->nodes[0]; 4575 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4576 index = key.offset; 4577 btrfs_release_path(path); 4578 } else { 4579 ret = btrfs_del_root_ref(trans, objectid, 4580 btrfs_root_id(root), dir_ino, 4581 &index, &fname.disk_name); 4582 if (unlikely(ret)) { 4583 btrfs_abort_transaction(trans, ret); 4584 goto out; 4585 } 4586 } 4587 4588 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4589 if (unlikely(ret)) { 4590 btrfs_abort_transaction(trans, ret); 4591 goto out; 4592 } 4593 4594 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4595 inode_inc_iversion(&dir->vfs_inode); 4596 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4597 ret = btrfs_update_inode_fallback(trans, dir); 4598 if (ret) 4599 btrfs_abort_transaction(trans, ret); 4600 out: 4601 fscrypt_free_filename(&fname); 4602 return ret; 4603 } 4604 4605 /* 4606 * Helper to check if the subvolume references other subvolumes or if it's 4607 * default. 4608 */ 4609 static noinline int may_destroy_subvol(struct btrfs_root *root) 4610 { 4611 struct btrfs_fs_info *fs_info = root->fs_info; 4612 BTRFS_PATH_AUTO_FREE(path); 4613 struct btrfs_dir_item *di; 4614 struct btrfs_key key; 4615 struct fscrypt_str name = FSTR_INIT("default", 7); 4616 u64 dir_id; 4617 int ret; 4618 4619 path = btrfs_alloc_path(); 4620 if (!path) 4621 return -ENOMEM; 4622 4623 /* Make sure this root isn't set as the default subvol */ 4624 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4625 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4626 dir_id, &name, 0); 4627 if (di && !IS_ERR(di)) { 4628 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4629 if (key.objectid == btrfs_root_id(root)) { 4630 ret = -EPERM; 4631 btrfs_err(fs_info, 4632 "deleting default subvolume %llu is not allowed", 4633 key.objectid); 4634 return ret; 4635 } 4636 btrfs_release_path(path); 4637 } 4638 4639 key.objectid = btrfs_root_id(root); 4640 key.type = BTRFS_ROOT_REF_KEY; 4641 key.offset = (u64)-1; 4642 4643 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4644 if (ret < 0) 4645 return ret; 4646 if (unlikely(ret == 0)) { 4647 /* 4648 * Key with offset -1 found, there would have to exist a root 4649 * with such id, but this is out of valid range. 4650 */ 4651 return -EUCLEAN; 4652 } 4653 4654 ret = 0; 4655 if (path->slots[0] > 0) { 4656 path->slots[0]--; 4657 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4658 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4659 ret = -ENOTEMPTY; 4660 } 4661 4662 return ret; 4663 } 4664 4665 /* Delete all dentries for inodes belonging to the root */ 4666 static void btrfs_prune_dentries(struct btrfs_root *root) 4667 { 4668 struct btrfs_fs_info *fs_info = root->fs_info; 4669 struct btrfs_inode *inode; 4670 u64 min_ino = 0; 4671 4672 if (!BTRFS_FS_ERROR(fs_info)) 4673 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4674 4675 inode = btrfs_find_first_inode(root, min_ino); 4676 while (inode) { 4677 if (icount_read(&inode->vfs_inode) > 1) 4678 d_prune_aliases(&inode->vfs_inode); 4679 4680 min_ino = btrfs_ino(inode) + 1; 4681 /* 4682 * btrfs_drop_inode() will have it removed from the inode 4683 * cache when its usage count hits zero. 4684 */ 4685 iput(&inode->vfs_inode); 4686 cond_resched(); 4687 inode = btrfs_find_first_inode(root, min_ino); 4688 } 4689 } 4690 4691 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4692 { 4693 struct btrfs_root *root = dir->root; 4694 struct btrfs_fs_info *fs_info = root->fs_info; 4695 struct inode *inode = d_inode(dentry); 4696 struct btrfs_root *dest = BTRFS_I(inode)->root; 4697 struct btrfs_trans_handle *trans; 4698 struct btrfs_block_rsv block_rsv; 4699 u64 root_flags; 4700 u64 qgroup_reserved = 0; 4701 int ret; 4702 4703 down_write(&fs_info->subvol_sem); 4704 4705 /* 4706 * Don't allow to delete a subvolume with send in progress. This is 4707 * inside the inode lock so the error handling that has to drop the bit 4708 * again is not run concurrently. 4709 */ 4710 spin_lock(&dest->root_item_lock); 4711 if (dest->send_in_progress) { 4712 spin_unlock(&dest->root_item_lock); 4713 btrfs_warn(fs_info, 4714 "attempt to delete subvolume %llu during send", 4715 btrfs_root_id(dest)); 4716 ret = -EPERM; 4717 goto out_up_write; 4718 } 4719 if (atomic_read(&dest->nr_swapfiles)) { 4720 spin_unlock(&dest->root_item_lock); 4721 btrfs_warn(fs_info, 4722 "attempt to delete subvolume %llu with active swapfile", 4723 btrfs_root_id(root)); 4724 ret = -EPERM; 4725 goto out_up_write; 4726 } 4727 root_flags = btrfs_root_flags(&dest->root_item); 4728 btrfs_set_root_flags(&dest->root_item, 4729 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4730 spin_unlock(&dest->root_item_lock); 4731 4732 ret = may_destroy_subvol(dest); 4733 if (ret) 4734 goto out_undead; 4735 4736 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4737 /* 4738 * One for dir inode, 4739 * two for dir entries, 4740 * two for root ref/backref. 4741 */ 4742 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4743 if (ret) 4744 goto out_undead; 4745 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4746 4747 trans = btrfs_start_transaction(root, 0); 4748 if (IS_ERR(trans)) { 4749 ret = PTR_ERR(trans); 4750 goto out_release; 4751 } 4752 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4753 qgroup_reserved = 0; 4754 trans->block_rsv = &block_rsv; 4755 trans->bytes_reserved = block_rsv.size; 4756 4757 btrfs_record_snapshot_destroy(trans, dir); 4758 4759 ret = btrfs_unlink_subvol(trans, dir, dentry); 4760 if (unlikely(ret)) { 4761 btrfs_abort_transaction(trans, ret); 4762 goto out_end_trans; 4763 } 4764 4765 ret = btrfs_record_root_in_trans(trans, dest); 4766 if (unlikely(ret)) { 4767 btrfs_abort_transaction(trans, ret); 4768 goto out_end_trans; 4769 } 4770 4771 memset(&dest->root_item.drop_progress, 0, 4772 sizeof(dest->root_item.drop_progress)); 4773 btrfs_set_root_drop_level(&dest->root_item, 0); 4774 btrfs_set_root_refs(&dest->root_item, 0); 4775 4776 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4777 ret = btrfs_insert_orphan_item(trans, 4778 fs_info->tree_root, 4779 btrfs_root_id(dest)); 4780 if (unlikely(ret)) { 4781 btrfs_abort_transaction(trans, ret); 4782 goto out_end_trans; 4783 } 4784 } 4785 4786 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4787 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4788 if (unlikely(ret && ret != -ENOENT)) { 4789 btrfs_abort_transaction(trans, ret); 4790 goto out_end_trans; 4791 } 4792 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4793 ret = btrfs_uuid_tree_remove(trans, 4794 dest->root_item.received_uuid, 4795 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4796 btrfs_root_id(dest)); 4797 if (unlikely(ret && ret != -ENOENT)) { 4798 btrfs_abort_transaction(trans, ret); 4799 goto out_end_trans; 4800 } 4801 } 4802 4803 free_anon_bdev(dest->anon_dev); 4804 dest->anon_dev = 0; 4805 out_end_trans: 4806 trans->block_rsv = NULL; 4807 trans->bytes_reserved = 0; 4808 ret = btrfs_end_transaction(trans); 4809 inode->i_flags |= S_DEAD; 4810 out_release: 4811 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4812 if (qgroup_reserved) 4813 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4814 out_undead: 4815 if (ret) { 4816 spin_lock(&dest->root_item_lock); 4817 root_flags = btrfs_root_flags(&dest->root_item); 4818 btrfs_set_root_flags(&dest->root_item, 4819 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4820 spin_unlock(&dest->root_item_lock); 4821 } 4822 out_up_write: 4823 up_write(&fs_info->subvol_sem); 4824 if (!ret) { 4825 d_invalidate(dentry); 4826 btrfs_prune_dentries(dest); 4827 ASSERT(dest->send_in_progress == 0); 4828 } 4829 4830 return ret; 4831 } 4832 4833 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4834 { 4835 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4836 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4837 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4838 int ret = 0; 4839 struct btrfs_trans_handle *trans; 4840 struct fscrypt_name fname; 4841 4842 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4843 return -ENOTEMPTY; 4844 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4845 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4846 btrfs_err(fs_info, 4847 "extent tree v2 doesn't support snapshot deletion yet"); 4848 return -EOPNOTSUPP; 4849 } 4850 return btrfs_delete_subvolume(dir, dentry); 4851 } 4852 4853 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4854 if (ret) 4855 return ret; 4856 4857 /* This needs to handle no-key deletions later on */ 4858 4859 trans = __unlink_start_trans(dir); 4860 if (IS_ERR(trans)) { 4861 ret = PTR_ERR(trans); 4862 goto out_notrans; 4863 } 4864 4865 /* 4866 * Propagate the last_unlink_trans value of the deleted dir to its 4867 * parent directory. This is to prevent an unrecoverable log tree in the 4868 * case we do something like this: 4869 * 1) create dir foo 4870 * 2) create snapshot under dir foo 4871 * 3) delete the snapshot 4872 * 4) rmdir foo 4873 * 5) mkdir foo 4874 * 6) fsync foo or some file inside foo 4875 * 4876 * This is because we can't unlink other roots when replaying the dir 4877 * deletes for directory foo. 4878 */ 4879 if (inode->last_unlink_trans >= trans->transid) 4880 btrfs_record_snapshot_destroy(trans, dir); 4881 4882 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4883 ret = btrfs_unlink_subvol(trans, dir, dentry); 4884 goto out; 4885 } 4886 4887 ret = btrfs_orphan_add(trans, inode); 4888 if (ret) 4889 goto out; 4890 4891 /* now the directory is empty */ 4892 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4893 if (!ret) 4894 btrfs_i_size_write(inode, 0); 4895 out: 4896 btrfs_end_transaction(trans); 4897 out_notrans: 4898 btrfs_btree_balance_dirty(fs_info); 4899 fscrypt_free_filename(&fname); 4900 4901 return ret; 4902 } 4903 4904 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4905 { 4906 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4907 blockstart, blocksize); 4908 4909 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4910 return true; 4911 return false; 4912 } 4913 4914 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4915 { 4916 const pgoff_t index = (start >> PAGE_SHIFT); 4917 struct address_space *mapping = inode->vfs_inode.i_mapping; 4918 struct folio *folio; 4919 u64 zero_start; 4920 u64 zero_end; 4921 int ret = 0; 4922 4923 again: 4924 folio = filemap_lock_folio(mapping, index); 4925 /* No folio present. */ 4926 if (IS_ERR(folio)) 4927 return 0; 4928 4929 if (!folio_test_uptodate(folio)) { 4930 ret = btrfs_read_folio(NULL, folio); 4931 folio_lock(folio); 4932 if (folio->mapping != mapping) { 4933 folio_unlock(folio); 4934 folio_put(folio); 4935 goto again; 4936 } 4937 if (unlikely(!folio_test_uptodate(folio))) { 4938 ret = -EIO; 4939 goto out_unlock; 4940 } 4941 } 4942 folio_wait_writeback(folio); 4943 4944 /* 4945 * We do not need to lock extents nor wait for OE, as it's already 4946 * beyond EOF. 4947 */ 4948 4949 zero_start = max_t(u64, folio_pos(folio), start); 4950 zero_end = folio_next_pos(folio); 4951 folio_zero_range(folio, zero_start - folio_pos(folio), 4952 zero_end - zero_start); 4953 4954 out_unlock: 4955 folio_unlock(folio); 4956 folio_put(folio); 4957 return ret; 4958 } 4959 4960 /* 4961 * Handle the truncation of a fs block. 4962 * 4963 * @inode - inode that we're zeroing 4964 * @offset - the file offset of the block to truncate 4965 * The value must be inside [@start, @end], and the function will do 4966 * extra checks if the block that covers @offset needs to be zeroed. 4967 * @start - the start file offset of the range we want to zero 4968 * @end - the end (inclusive) file offset of the range we want to zero. 4969 * 4970 * If the range is not block aligned, read out the folio that covers @offset, 4971 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4972 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4973 * for writeback. 4974 * 4975 * This is utilized by hole punch, zero range, file expansion. 4976 */ 4977 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4978 { 4979 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4980 struct address_space *mapping = inode->vfs_inode.i_mapping; 4981 struct extent_io_tree *io_tree = &inode->io_tree; 4982 struct btrfs_ordered_extent *ordered; 4983 struct extent_state *cached_state = NULL; 4984 struct extent_changeset *data_reserved = NULL; 4985 bool only_release_metadata = false; 4986 u32 blocksize = fs_info->sectorsize; 4987 pgoff_t index = (offset >> PAGE_SHIFT); 4988 struct folio *folio; 4989 gfp_t mask = btrfs_alloc_write_mask(mapping); 4990 int ret = 0; 4991 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4992 blocksize); 4993 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4994 blocksize); 4995 bool need_truncate_head = false; 4996 bool need_truncate_tail = false; 4997 u64 zero_start; 4998 u64 zero_end; 4999 u64 block_start; 5000 u64 block_end; 5001 5002 /* @offset should be inside the range. */ 5003 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 5004 offset, start, end); 5005 5006 /* The range is aligned at both ends. */ 5007 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 5008 /* 5009 * For block size < page size case, we may have polluted blocks 5010 * beyond EOF. So we also need to zero them out. 5011 */ 5012 if (end == (u64)-1 && blocksize < PAGE_SIZE) 5013 ret = truncate_block_zero_beyond_eof(inode, start); 5014 goto out; 5015 } 5016 5017 /* 5018 * @offset may not be inside the head nor tail block. In that case we 5019 * don't need to do anything. 5020 */ 5021 if (!in_head_block && !in_tail_block) 5022 goto out; 5023 5024 /* 5025 * Skip the truncation if the range in the target block is already aligned. 5026 * The seemingly complex check will also handle the same block case. 5027 */ 5028 if (in_head_block && !IS_ALIGNED(start, blocksize)) 5029 need_truncate_head = true; 5030 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 5031 need_truncate_tail = true; 5032 if (!need_truncate_head && !need_truncate_tail) 5033 goto out; 5034 5035 block_start = round_down(offset, blocksize); 5036 block_end = block_start + blocksize - 1; 5037 5038 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 5039 blocksize, false); 5040 if (ret < 0) { 5041 size_t write_bytes = blocksize; 5042 5043 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 5044 /* For nocow case, no need to reserve data space. */ 5045 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 5046 write_bytes, blocksize); 5047 only_release_metadata = true; 5048 } else { 5049 goto out; 5050 } 5051 } 5052 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 5053 if (ret < 0) { 5054 if (!only_release_metadata) 5055 btrfs_free_reserved_data_space(inode, data_reserved, 5056 block_start, blocksize); 5057 goto out; 5058 } 5059 again: 5060 folio = __filemap_get_folio(mapping, index, 5061 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 5062 if (IS_ERR(folio)) { 5063 if (only_release_metadata) 5064 btrfs_delalloc_release_metadata(inode, blocksize, true); 5065 else 5066 btrfs_delalloc_release_space(inode, data_reserved, 5067 block_start, blocksize, true); 5068 btrfs_delalloc_release_extents(inode, blocksize); 5069 ret = PTR_ERR(folio); 5070 goto out; 5071 } 5072 5073 if (!folio_test_uptodate(folio)) { 5074 ret = btrfs_read_folio(NULL, folio); 5075 folio_lock(folio); 5076 if (folio->mapping != mapping) { 5077 folio_unlock(folio); 5078 folio_put(folio); 5079 goto again; 5080 } 5081 if (unlikely(!folio_test_uptodate(folio))) { 5082 ret = -EIO; 5083 goto out_unlock; 5084 } 5085 } 5086 5087 /* 5088 * We unlock the page after the io is completed and then re-lock it 5089 * above. release_folio() could have come in between that and cleared 5090 * folio private, but left the page in the mapping. Set the page mapped 5091 * here to make sure it's properly set for the subpage stuff. 5092 */ 5093 ret = set_folio_extent_mapped(folio); 5094 if (ret < 0) 5095 goto out_unlock; 5096 5097 folio_wait_writeback(folio); 5098 5099 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 5100 5101 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5102 if (ordered) { 5103 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5104 folio_unlock(folio); 5105 folio_put(folio); 5106 btrfs_start_ordered_extent(ordered); 5107 btrfs_put_ordered_extent(ordered); 5108 goto again; 5109 } 5110 5111 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 5112 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5113 &cached_state); 5114 5115 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5116 &cached_state); 5117 if (ret) { 5118 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5119 goto out_unlock; 5120 } 5121 5122 if (end == (u64)-1) { 5123 /* 5124 * We're truncating beyond EOF, the remaining blocks normally are 5125 * already holes thus no need to zero again, but it's possible for 5126 * fs block size < page size cases to have memory mapped writes 5127 * to pollute ranges beyond EOF. 5128 * 5129 * In that case although such polluted blocks beyond EOF will 5130 * not reach disk, it still affects our page caches. 5131 */ 5132 zero_start = max_t(u64, folio_pos(folio), start); 5133 zero_end = min_t(u64, folio_next_pos(folio) - 1, end); 5134 } else { 5135 zero_start = max_t(u64, block_start, start); 5136 zero_end = min_t(u64, block_end, end); 5137 } 5138 folio_zero_range(folio, zero_start - folio_pos(folio), 5139 zero_end - zero_start + 1); 5140 5141 btrfs_folio_clear_checked(fs_info, folio, block_start, 5142 block_end + 1 - block_start); 5143 btrfs_folio_set_dirty(fs_info, folio, block_start, 5144 block_end + 1 - block_start); 5145 5146 if (only_release_metadata) 5147 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5148 EXTENT_NORESERVE, &cached_state); 5149 5150 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5151 5152 out_unlock: 5153 if (ret) { 5154 if (only_release_metadata) 5155 btrfs_delalloc_release_metadata(inode, blocksize, true); 5156 else 5157 btrfs_delalloc_release_space(inode, data_reserved, 5158 block_start, blocksize, true); 5159 } 5160 btrfs_delalloc_release_extents(inode, blocksize); 5161 folio_unlock(folio); 5162 folio_put(folio); 5163 out: 5164 if (only_release_metadata) 5165 btrfs_check_nocow_unlock(inode); 5166 extent_changeset_free(data_reserved); 5167 return ret; 5168 } 5169 5170 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5171 { 5172 struct btrfs_root *root = inode->root; 5173 struct btrfs_fs_info *fs_info = root->fs_info; 5174 struct btrfs_trans_handle *trans; 5175 struct btrfs_drop_extents_args drop_args = { 0 }; 5176 int ret; 5177 5178 /* 5179 * If NO_HOLES is enabled, we don't need to do anything. 5180 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5181 * or btrfs_update_inode() will be called, which guarantee that the next 5182 * fsync will know this inode was changed and needs to be logged. 5183 */ 5184 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5185 return 0; 5186 5187 /* 5188 * 1 - for the one we're dropping 5189 * 1 - for the one we're adding 5190 * 1 - for updating the inode. 5191 */ 5192 trans = btrfs_start_transaction(root, 3); 5193 if (IS_ERR(trans)) 5194 return PTR_ERR(trans); 5195 5196 drop_args.start = offset; 5197 drop_args.end = offset + len; 5198 drop_args.drop_cache = true; 5199 5200 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5201 if (unlikely(ret)) { 5202 btrfs_abort_transaction(trans, ret); 5203 btrfs_end_transaction(trans); 5204 return ret; 5205 } 5206 5207 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5208 if (ret) { 5209 btrfs_abort_transaction(trans, ret); 5210 } else { 5211 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5212 btrfs_update_inode(trans, inode); 5213 } 5214 btrfs_end_transaction(trans); 5215 return ret; 5216 } 5217 5218 /* 5219 * This function puts in dummy file extents for the area we're creating a hole 5220 * for. So if we are truncating this file to a larger size we need to insert 5221 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5222 * the range between oldsize and size 5223 */ 5224 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5225 { 5226 struct btrfs_root *root = inode->root; 5227 struct btrfs_fs_info *fs_info = root->fs_info; 5228 struct extent_io_tree *io_tree = &inode->io_tree; 5229 struct extent_map *em = NULL; 5230 struct extent_state *cached_state = NULL; 5231 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5232 u64 block_end = ALIGN(size, fs_info->sectorsize); 5233 u64 last_byte; 5234 u64 cur_offset; 5235 u64 hole_size; 5236 int ret = 0; 5237 5238 /* 5239 * If our size started in the middle of a block we need to zero out the 5240 * rest of the block before we expand the i_size, otherwise we could 5241 * expose stale data. 5242 */ 5243 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5244 if (ret) 5245 return ret; 5246 5247 if (size <= hole_start) 5248 return 0; 5249 5250 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5251 &cached_state); 5252 cur_offset = hole_start; 5253 while (1) { 5254 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5255 if (IS_ERR(em)) { 5256 ret = PTR_ERR(em); 5257 em = NULL; 5258 break; 5259 } 5260 last_byte = min(btrfs_extent_map_end(em), block_end); 5261 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5262 hole_size = last_byte - cur_offset; 5263 5264 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5265 struct extent_map *hole_em; 5266 5267 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5268 if (ret) 5269 break; 5270 5271 ret = btrfs_inode_set_file_extent_range(inode, 5272 cur_offset, hole_size); 5273 if (ret) 5274 break; 5275 5276 hole_em = btrfs_alloc_extent_map(); 5277 if (!hole_em) { 5278 btrfs_drop_extent_map_range(inode, cur_offset, 5279 cur_offset + hole_size - 1, 5280 false); 5281 btrfs_set_inode_full_sync(inode); 5282 goto next; 5283 } 5284 hole_em->start = cur_offset; 5285 hole_em->len = hole_size; 5286 5287 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5288 hole_em->disk_num_bytes = 0; 5289 hole_em->ram_bytes = hole_size; 5290 hole_em->generation = btrfs_get_fs_generation(fs_info); 5291 5292 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5293 btrfs_free_extent_map(hole_em); 5294 } else { 5295 ret = btrfs_inode_set_file_extent_range(inode, 5296 cur_offset, hole_size); 5297 if (ret) 5298 break; 5299 } 5300 next: 5301 btrfs_free_extent_map(em); 5302 em = NULL; 5303 cur_offset = last_byte; 5304 if (cur_offset >= block_end) 5305 break; 5306 } 5307 btrfs_free_extent_map(em); 5308 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5309 return ret; 5310 } 5311 5312 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5313 { 5314 struct btrfs_root *root = BTRFS_I(inode)->root; 5315 struct btrfs_trans_handle *trans; 5316 loff_t oldsize = i_size_read(inode); 5317 loff_t newsize = attr->ia_size; 5318 int mask = attr->ia_valid; 5319 int ret; 5320 5321 /* 5322 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5323 * special case where we need to update the times despite not having 5324 * these flags set. For all other operations the VFS set these flags 5325 * explicitly if it wants a timestamp update. 5326 */ 5327 if (newsize != oldsize) { 5328 inode_inc_iversion(inode); 5329 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5330 inode_set_mtime_to_ts(inode, 5331 inode_set_ctime_current(inode)); 5332 } 5333 } 5334 5335 if (newsize > oldsize) { 5336 /* 5337 * Don't do an expanding truncate while snapshotting is ongoing. 5338 * This is to ensure the snapshot captures a fully consistent 5339 * state of this file - if the snapshot captures this expanding 5340 * truncation, it must capture all writes that happened before 5341 * this truncation. 5342 */ 5343 btrfs_drew_write_lock(&root->snapshot_lock); 5344 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5345 if (ret) { 5346 btrfs_drew_write_unlock(&root->snapshot_lock); 5347 return ret; 5348 } 5349 5350 trans = btrfs_start_transaction(root, 1); 5351 if (IS_ERR(trans)) { 5352 btrfs_drew_write_unlock(&root->snapshot_lock); 5353 return PTR_ERR(trans); 5354 } 5355 5356 i_size_write(inode, newsize); 5357 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5358 pagecache_isize_extended(inode, oldsize, newsize); 5359 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5360 btrfs_drew_write_unlock(&root->snapshot_lock); 5361 btrfs_end_transaction(trans); 5362 } else { 5363 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5364 5365 if (btrfs_is_zoned(fs_info)) { 5366 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5367 ALIGN(newsize, fs_info->sectorsize), 5368 (u64)-1); 5369 if (ret) 5370 return ret; 5371 } 5372 5373 /* 5374 * We're truncating a file that used to have good data down to 5375 * zero. Make sure any new writes to the file get on disk 5376 * on close. 5377 */ 5378 if (newsize == 0) 5379 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5380 &BTRFS_I(inode)->runtime_flags); 5381 5382 truncate_setsize(inode, newsize); 5383 5384 inode_dio_wait(inode); 5385 5386 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5387 if (ret && inode->i_nlink) { 5388 int ret2; 5389 5390 /* 5391 * Truncate failed, so fix up the in-memory size. We 5392 * adjusted disk_i_size down as we removed extents, so 5393 * wait for disk_i_size to be stable and then update the 5394 * in-memory size to match. 5395 */ 5396 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5397 if (ret2) 5398 return ret2; 5399 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5400 } 5401 } 5402 5403 return ret; 5404 } 5405 5406 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5407 struct iattr *attr) 5408 { 5409 struct inode *inode = d_inode(dentry); 5410 struct btrfs_root *root = BTRFS_I(inode)->root; 5411 int ret; 5412 5413 if (btrfs_root_readonly(root)) 5414 return -EROFS; 5415 5416 ret = setattr_prepare(idmap, dentry, attr); 5417 if (ret) 5418 return ret; 5419 5420 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5421 ret = btrfs_setsize(inode, attr); 5422 if (ret) 5423 return ret; 5424 } 5425 5426 if (attr->ia_valid) { 5427 setattr_copy(idmap, inode, attr); 5428 inode_inc_iversion(inode); 5429 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5430 5431 if (!ret && attr->ia_valid & ATTR_MODE) 5432 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5433 } 5434 5435 return ret; 5436 } 5437 5438 /* 5439 * While truncating the inode pages during eviction, we get the VFS 5440 * calling btrfs_invalidate_folio() against each folio of the inode. This 5441 * is slow because the calls to btrfs_invalidate_folio() result in a 5442 * huge amount of calls to lock_extent() and clear_extent_bit(), 5443 * which keep merging and splitting extent_state structures over and over, 5444 * wasting lots of time. 5445 * 5446 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5447 * skip all those expensive operations on a per folio basis and do only 5448 * the ordered io finishing, while we release here the extent_map and 5449 * extent_state structures, without the excessive merging and splitting. 5450 */ 5451 static void evict_inode_truncate_pages(struct inode *inode) 5452 { 5453 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5454 struct rb_node *node; 5455 5456 ASSERT(inode_state_read_once(inode) & I_FREEING); 5457 truncate_inode_pages_final(&inode->i_data); 5458 5459 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5460 5461 /* 5462 * Keep looping until we have no more ranges in the io tree. 5463 * We can have ongoing bios started by readahead that have 5464 * their endio callback (extent_io.c:end_bio_extent_readpage) 5465 * still in progress (unlocked the pages in the bio but did not yet 5466 * unlocked the ranges in the io tree). Therefore this means some 5467 * ranges can still be locked and eviction started because before 5468 * submitting those bios, which are executed by a separate task (work 5469 * queue kthread), inode references (inode->i_count) were not taken 5470 * (which would be dropped in the end io callback of each bio). 5471 * Therefore here we effectively end up waiting for those bios and 5472 * anyone else holding locked ranges without having bumped the inode's 5473 * reference count - if we don't do it, when they access the inode's 5474 * io_tree to unlock a range it may be too late, leading to an 5475 * use-after-free issue. 5476 */ 5477 spin_lock(&io_tree->lock); 5478 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5479 struct extent_state *state; 5480 struct extent_state *cached_state = NULL; 5481 u64 start; 5482 u64 end; 5483 unsigned state_flags; 5484 5485 node = rb_first(&io_tree->state); 5486 state = rb_entry(node, struct extent_state, rb_node); 5487 start = state->start; 5488 end = state->end; 5489 state_flags = state->state; 5490 spin_unlock(&io_tree->lock); 5491 5492 btrfs_lock_extent(io_tree, start, end, &cached_state); 5493 5494 /* 5495 * If still has DELALLOC flag, the extent didn't reach disk, 5496 * and its reserved space won't be freed by delayed_ref. 5497 * So we need to free its reserved space here. 5498 * (Refer to comment in btrfs_invalidate_folio, case 2) 5499 * 5500 * Note, end is the bytenr of last byte, so we need + 1 here. 5501 */ 5502 if (state_flags & EXTENT_DELALLOC) 5503 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5504 end - start + 1, NULL); 5505 5506 btrfs_clear_extent_bit(io_tree, start, end, 5507 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5508 &cached_state); 5509 5510 cond_resched(); 5511 spin_lock(&io_tree->lock); 5512 } 5513 spin_unlock(&io_tree->lock); 5514 } 5515 5516 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5517 struct btrfs_block_rsv *rsv) 5518 { 5519 struct btrfs_fs_info *fs_info = root->fs_info; 5520 struct btrfs_trans_handle *trans; 5521 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5522 int ret; 5523 5524 /* 5525 * Eviction should be taking place at some place safe because of our 5526 * delayed iputs. However the normal flushing code will run delayed 5527 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5528 * 5529 * We reserve the delayed_refs_extra here again because we can't use 5530 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5531 * above. We reserve our extra bit here because we generate a ton of 5532 * delayed refs activity by truncating. 5533 * 5534 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5535 * if we fail to make this reservation we can re-try without the 5536 * delayed_refs_extra so we can make some forward progress. 5537 */ 5538 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5539 BTRFS_RESERVE_FLUSH_EVICT); 5540 if (ret) { 5541 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5542 BTRFS_RESERVE_FLUSH_EVICT); 5543 if (ret) { 5544 btrfs_warn(fs_info, 5545 "could not allocate space for delete; will truncate on mount"); 5546 return ERR_PTR(-ENOSPC); 5547 } 5548 delayed_refs_extra = 0; 5549 } 5550 5551 trans = btrfs_join_transaction(root); 5552 if (IS_ERR(trans)) 5553 return trans; 5554 5555 if (delayed_refs_extra) { 5556 trans->block_rsv = &fs_info->trans_block_rsv; 5557 trans->bytes_reserved = delayed_refs_extra; 5558 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5559 delayed_refs_extra, true); 5560 } 5561 return trans; 5562 } 5563 5564 void btrfs_evict_inode(struct inode *inode) 5565 { 5566 struct btrfs_fs_info *fs_info; 5567 struct btrfs_trans_handle *trans; 5568 struct btrfs_root *root = BTRFS_I(inode)->root; 5569 struct btrfs_block_rsv rsv; 5570 int ret; 5571 5572 trace_btrfs_inode_evict(inode); 5573 5574 if (!root) { 5575 fsverity_cleanup_inode(inode); 5576 clear_inode(inode); 5577 return; 5578 } 5579 5580 fs_info = inode_to_fs_info(inode); 5581 evict_inode_truncate_pages(inode); 5582 5583 if (inode->i_nlink && 5584 ((btrfs_root_refs(&root->root_item) != 0 && 5585 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5586 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5587 goto out; 5588 5589 if (is_bad_inode(inode)) 5590 goto out; 5591 5592 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5593 goto out; 5594 5595 if (inode->i_nlink > 0) { 5596 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5597 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5598 goto out; 5599 } 5600 5601 /* 5602 * This makes sure the inode item in tree is uptodate and the space for 5603 * the inode update is released. 5604 */ 5605 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5606 if (ret) 5607 goto out; 5608 5609 /* 5610 * This drops any pending insert or delete operations we have for this 5611 * inode. We could have a delayed dir index deletion queued up, but 5612 * we're removing the inode completely so that'll be taken care of in 5613 * the truncate. 5614 */ 5615 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5616 5617 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5618 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5619 rsv.failfast = true; 5620 5621 btrfs_i_size_write(BTRFS_I(inode), 0); 5622 5623 while (1) { 5624 struct btrfs_truncate_control control = { 5625 .inode = BTRFS_I(inode), 5626 .ino = btrfs_ino(BTRFS_I(inode)), 5627 .new_size = 0, 5628 .min_type = 0, 5629 }; 5630 5631 trans = evict_refill_and_join(root, &rsv); 5632 if (IS_ERR(trans)) 5633 goto out_release; 5634 5635 trans->block_rsv = &rsv; 5636 5637 ret = btrfs_truncate_inode_items(trans, root, &control); 5638 trans->block_rsv = &fs_info->trans_block_rsv; 5639 btrfs_end_transaction(trans); 5640 /* 5641 * We have not added new delayed items for our inode after we 5642 * have flushed its delayed items, so no need to throttle on 5643 * delayed items. However we have modified extent buffers. 5644 */ 5645 btrfs_btree_balance_dirty_nodelay(fs_info); 5646 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5647 goto out_release; 5648 else if (!ret) 5649 break; 5650 } 5651 5652 /* 5653 * Errors here aren't a big deal, it just means we leave orphan items in 5654 * the tree. They will be cleaned up on the next mount. If the inode 5655 * number gets reused, cleanup deletes the orphan item without doing 5656 * anything, and unlink reuses the existing orphan item. 5657 * 5658 * If it turns out that we are dropping too many of these, we might want 5659 * to add a mechanism for retrying these after a commit. 5660 */ 5661 trans = evict_refill_and_join(root, &rsv); 5662 if (!IS_ERR(trans)) { 5663 trans->block_rsv = &rsv; 5664 btrfs_orphan_del(trans, BTRFS_I(inode)); 5665 trans->block_rsv = &fs_info->trans_block_rsv; 5666 btrfs_end_transaction(trans); 5667 } 5668 5669 out_release: 5670 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5671 out: 5672 /* 5673 * If we didn't successfully delete, the orphan item will still be in 5674 * the tree and we'll retry on the next mount. Again, we might also want 5675 * to retry these periodically in the future. 5676 */ 5677 btrfs_remove_delayed_node(BTRFS_I(inode)); 5678 fsverity_cleanup_inode(inode); 5679 clear_inode(inode); 5680 } 5681 5682 /* 5683 * Return the key found in the dir entry in the location pointer, fill @type 5684 * with BTRFS_FT_*, and return 0. 5685 * 5686 * If no dir entries were found, returns -ENOENT. 5687 * If found a corrupted location in dir entry, returns -EUCLEAN. 5688 */ 5689 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5690 struct btrfs_key *location, u8 *type) 5691 { 5692 struct btrfs_dir_item *di; 5693 BTRFS_PATH_AUTO_FREE(path); 5694 struct btrfs_root *root = dir->root; 5695 int ret = 0; 5696 struct fscrypt_name fname; 5697 5698 path = btrfs_alloc_path(); 5699 if (!path) 5700 return -ENOMEM; 5701 5702 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5703 if (ret < 0) 5704 return ret; 5705 /* 5706 * fscrypt_setup_filename() should never return a positive value, but 5707 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5708 */ 5709 ASSERT(ret == 0); 5710 5711 /* This needs to handle no-key deletions later on */ 5712 5713 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5714 &fname.disk_name, 0); 5715 if (IS_ERR_OR_NULL(di)) { 5716 ret = di ? PTR_ERR(di) : -ENOENT; 5717 goto out; 5718 } 5719 5720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5721 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY && 5722 location->type != BTRFS_ROOT_ITEM_KEY)) { 5723 ret = -EUCLEAN; 5724 btrfs_warn(root->fs_info, 5725 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")", 5726 __func__, fname.disk_name.name, btrfs_ino(dir), 5727 BTRFS_KEY_FMT_VALUE(location)); 5728 } 5729 if (!ret) 5730 *type = btrfs_dir_ftype(path->nodes[0], di); 5731 out: 5732 fscrypt_free_filename(&fname); 5733 return ret; 5734 } 5735 5736 /* 5737 * when we hit a tree root in a directory, the btrfs part of the inode 5738 * needs to be changed to reflect the root directory of the tree root. This 5739 * is kind of like crossing a mount point. 5740 */ 5741 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5742 struct btrfs_inode *dir, 5743 struct dentry *dentry, 5744 struct btrfs_key *location, 5745 struct btrfs_root **sub_root) 5746 { 5747 BTRFS_PATH_AUTO_FREE(path); 5748 struct btrfs_root *new_root; 5749 struct btrfs_root_ref *ref; 5750 struct extent_buffer *leaf; 5751 struct btrfs_key key; 5752 int ret; 5753 int err = 0; 5754 struct fscrypt_name fname; 5755 5756 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5757 if (ret) 5758 return ret; 5759 5760 path = btrfs_alloc_path(); 5761 if (!path) { 5762 err = -ENOMEM; 5763 goto out; 5764 } 5765 5766 err = -ENOENT; 5767 key.objectid = btrfs_root_id(dir->root); 5768 key.type = BTRFS_ROOT_REF_KEY; 5769 key.offset = location->objectid; 5770 5771 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5772 if (ret) { 5773 if (ret < 0) 5774 err = ret; 5775 goto out; 5776 } 5777 5778 leaf = path->nodes[0]; 5779 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5780 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5781 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5782 goto out; 5783 5784 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5785 (unsigned long)(ref + 1), fname.disk_name.len); 5786 if (ret) 5787 goto out; 5788 5789 btrfs_release_path(path); 5790 5791 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5792 if (IS_ERR(new_root)) { 5793 err = PTR_ERR(new_root); 5794 goto out; 5795 } 5796 5797 *sub_root = new_root; 5798 location->objectid = btrfs_root_dirid(&new_root->root_item); 5799 location->type = BTRFS_INODE_ITEM_KEY; 5800 location->offset = 0; 5801 err = 0; 5802 out: 5803 fscrypt_free_filename(&fname); 5804 return err; 5805 } 5806 5807 5808 5809 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5810 { 5811 struct btrfs_root *root = inode->root; 5812 struct btrfs_inode *entry; 5813 bool empty = false; 5814 5815 xa_lock(&root->inodes); 5816 /* 5817 * This btrfs_inode is being freed and has already been unhashed at this 5818 * point. It's possible that another btrfs_inode has already been 5819 * allocated for the same inode and inserted itself into the root, so 5820 * don't delete it in that case. 5821 * 5822 * Note that this shouldn't need to allocate memory, so the gfp flags 5823 * don't really matter. 5824 */ 5825 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL, 5826 GFP_ATOMIC); 5827 if (entry == inode) 5828 empty = xa_empty(&root->inodes); 5829 xa_unlock(&root->inodes); 5830 5831 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5832 xa_lock(&root->inodes); 5833 empty = xa_empty(&root->inodes); 5834 xa_unlock(&root->inodes); 5835 if (empty) 5836 btrfs_add_dead_root(root); 5837 } 5838 } 5839 5840 5841 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5842 { 5843 struct btrfs_iget_args *args = p; 5844 5845 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5846 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5847 5848 if (args->root && args->root == args->root->fs_info->tree_root && 5849 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5850 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5851 &BTRFS_I(inode)->runtime_flags); 5852 return 0; 5853 } 5854 5855 static int btrfs_find_actor(struct inode *inode, void *opaque) 5856 { 5857 struct btrfs_iget_args *args = opaque; 5858 5859 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5860 args->root == BTRFS_I(inode)->root; 5861 } 5862 5863 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5864 { 5865 struct inode *inode; 5866 struct btrfs_iget_args args; 5867 unsigned long hashval = btrfs_inode_hash(ino, root); 5868 5869 args.ino = ino; 5870 args.root = root; 5871 5872 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5873 btrfs_init_locked_inode, 5874 (void *)&args); 5875 if (!inode) 5876 return NULL; 5877 return BTRFS_I(inode); 5878 } 5879 5880 /* 5881 * Get an inode object given its inode number and corresponding root. Path is 5882 * preallocated to prevent recursing back to iget through allocator. 5883 */ 5884 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5885 struct btrfs_path *path) 5886 { 5887 struct btrfs_inode *inode; 5888 int ret; 5889 5890 inode = btrfs_iget_locked(ino, root); 5891 if (!inode) 5892 return ERR_PTR(-ENOMEM); 5893 5894 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5895 return inode; 5896 5897 ret = btrfs_read_locked_inode(inode, path); 5898 if (ret) 5899 return ERR_PTR(ret); 5900 5901 unlock_new_inode(&inode->vfs_inode); 5902 return inode; 5903 } 5904 5905 /* 5906 * Get an inode object given its inode number and corresponding root. 5907 */ 5908 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5909 { 5910 struct btrfs_inode *inode; 5911 struct btrfs_path *path; 5912 int ret; 5913 5914 inode = btrfs_iget_locked(ino, root); 5915 if (!inode) 5916 return ERR_PTR(-ENOMEM); 5917 5918 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5919 return inode; 5920 5921 path = btrfs_alloc_path(); 5922 if (!path) { 5923 iget_failed(&inode->vfs_inode); 5924 return ERR_PTR(-ENOMEM); 5925 } 5926 5927 ret = btrfs_read_locked_inode(inode, path); 5928 btrfs_free_path(path); 5929 if (ret) 5930 return ERR_PTR(ret); 5931 5932 if (S_ISDIR(inode->vfs_inode.i_mode)) 5933 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC; 5934 unlock_new_inode(&inode->vfs_inode); 5935 return inode; 5936 } 5937 5938 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5939 struct btrfs_key *key, 5940 struct btrfs_root *root) 5941 { 5942 struct timespec64 ts; 5943 struct inode *vfs_inode; 5944 struct btrfs_inode *inode; 5945 5946 vfs_inode = new_inode(dir->i_sb); 5947 if (!vfs_inode) 5948 return ERR_PTR(-ENOMEM); 5949 5950 inode = BTRFS_I(vfs_inode); 5951 inode->root = btrfs_grab_root(root); 5952 inode->ref_root_id = key->objectid; 5953 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5954 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5955 5956 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5957 /* 5958 * We only need lookup, the rest is read-only and there's no inode 5959 * associated with the dentry 5960 */ 5961 vfs_inode->i_op = &simple_dir_inode_operations; 5962 vfs_inode->i_opflags &= ~IOP_XATTR; 5963 vfs_inode->i_fop = &simple_dir_operations; 5964 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5965 5966 ts = inode_set_ctime_current(vfs_inode); 5967 inode_set_mtime_to_ts(vfs_inode, ts); 5968 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5969 inode->i_otime_sec = ts.tv_sec; 5970 inode->i_otime_nsec = ts.tv_nsec; 5971 5972 vfs_inode->i_uid = dir->i_uid; 5973 vfs_inode->i_gid = dir->i_gid; 5974 5975 return inode; 5976 } 5977 5978 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5979 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5980 static_assert(BTRFS_FT_DIR == FT_DIR); 5981 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5982 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5983 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5984 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5985 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5986 5987 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5988 { 5989 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5990 } 5991 5992 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5993 { 5994 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5995 struct btrfs_inode *inode; 5996 struct btrfs_root *root = BTRFS_I(dir)->root; 5997 struct btrfs_root *sub_root = root; 5998 struct btrfs_key location = { 0 }; 5999 u8 di_type = 0; 6000 int ret = 0; 6001 6002 if (dentry->d_name.len > BTRFS_NAME_LEN) 6003 return ERR_PTR(-ENAMETOOLONG); 6004 6005 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 6006 if (ret < 0) 6007 return ERR_PTR(ret); 6008 6009 if (location.type == BTRFS_INODE_ITEM_KEY) { 6010 inode = btrfs_iget(location.objectid, root); 6011 if (IS_ERR(inode)) 6012 return ERR_CAST(inode); 6013 6014 /* Do extra check against inode mode with di_type */ 6015 if (unlikely(btrfs_inode_type(inode) != di_type)) { 6016 btrfs_crit(fs_info, 6017 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 6018 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 6019 di_type); 6020 iput(&inode->vfs_inode); 6021 return ERR_PTR(-EUCLEAN); 6022 } 6023 return &inode->vfs_inode; 6024 } 6025 6026 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 6027 &location, &sub_root); 6028 if (ret < 0) { 6029 if (ret != -ENOENT) 6030 inode = ERR_PTR(ret); 6031 else 6032 inode = new_simple_dir(dir, &location, root); 6033 } else { 6034 inode = btrfs_iget(location.objectid, sub_root); 6035 btrfs_put_root(sub_root); 6036 6037 if (IS_ERR(inode)) 6038 return ERR_CAST(inode); 6039 6040 down_read(&fs_info->cleanup_work_sem); 6041 if (!sb_rdonly(inode->vfs_inode.i_sb)) 6042 ret = btrfs_orphan_cleanup(sub_root); 6043 up_read(&fs_info->cleanup_work_sem); 6044 if (ret) { 6045 iput(&inode->vfs_inode); 6046 inode = ERR_PTR(ret); 6047 } 6048 } 6049 6050 if (IS_ERR(inode)) 6051 return ERR_CAST(inode); 6052 6053 return &inode->vfs_inode; 6054 } 6055 6056 static int btrfs_dentry_delete(const struct dentry *dentry) 6057 { 6058 struct btrfs_root *root; 6059 struct inode *inode = d_inode(dentry); 6060 6061 if (!inode && !IS_ROOT(dentry)) 6062 inode = d_inode(dentry->d_parent); 6063 6064 if (inode) { 6065 root = BTRFS_I(inode)->root; 6066 if (btrfs_root_refs(&root->root_item) == 0) 6067 return 1; 6068 6069 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6070 return 1; 6071 } 6072 return 0; 6073 } 6074 6075 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 6076 unsigned int flags) 6077 { 6078 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 6079 6080 if (inode == ERR_PTR(-ENOENT)) 6081 inode = NULL; 6082 return d_splice_alias(inode, dentry); 6083 } 6084 6085 /* 6086 * Find the highest existing sequence number in a directory and then set the 6087 * in-memory index_cnt variable to the first free sequence number. 6088 */ 6089 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6090 { 6091 struct btrfs_root *root = inode->root; 6092 struct btrfs_key key, found_key; 6093 BTRFS_PATH_AUTO_FREE(path); 6094 struct extent_buffer *leaf; 6095 int ret; 6096 6097 key.objectid = btrfs_ino(inode); 6098 key.type = BTRFS_DIR_INDEX_KEY; 6099 key.offset = (u64)-1; 6100 6101 path = btrfs_alloc_path(); 6102 if (!path) 6103 return -ENOMEM; 6104 6105 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6106 if (ret < 0) 6107 return ret; 6108 /* FIXME: we should be able to handle this */ 6109 if (ret == 0) 6110 return ret; 6111 6112 if (path->slots[0] == 0) { 6113 inode->index_cnt = BTRFS_DIR_START_INDEX; 6114 return 0; 6115 } 6116 6117 path->slots[0]--; 6118 6119 leaf = path->nodes[0]; 6120 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6121 6122 if (found_key.objectid != btrfs_ino(inode) || 6123 found_key.type != BTRFS_DIR_INDEX_KEY) { 6124 inode->index_cnt = BTRFS_DIR_START_INDEX; 6125 return 0; 6126 } 6127 6128 inode->index_cnt = found_key.offset + 1; 6129 6130 return 0; 6131 } 6132 6133 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6134 { 6135 int ret = 0; 6136 6137 btrfs_inode_lock(dir, 0); 6138 if (dir->index_cnt == (u64)-1) { 6139 ret = btrfs_inode_delayed_dir_index_count(dir); 6140 if (ret) { 6141 ret = btrfs_set_inode_index_count(dir); 6142 if (ret) 6143 goto out; 6144 } 6145 } 6146 6147 /* index_cnt is the index number of next new entry, so decrement it. */ 6148 *index = dir->index_cnt - 1; 6149 out: 6150 btrfs_inode_unlock(dir, 0); 6151 6152 return ret; 6153 } 6154 6155 /* 6156 * All this infrastructure exists because dir_emit can fault, and we are holding 6157 * the tree lock when doing readdir. For now just allocate a buffer and copy 6158 * our information into that, and then dir_emit from the buffer. This is 6159 * similar to what NFS does, only we don't keep the buffer around in pagecache 6160 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6161 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6162 * tree lock. 6163 */ 6164 static int btrfs_opendir(struct inode *inode, struct file *file) 6165 { 6166 struct btrfs_file_private *private; 6167 u64 last_index; 6168 int ret; 6169 6170 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6171 if (ret) 6172 return ret; 6173 6174 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6175 if (!private) 6176 return -ENOMEM; 6177 private->last_index = last_index; 6178 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6179 if (!private->filldir_buf) { 6180 kfree(private); 6181 return -ENOMEM; 6182 } 6183 file->private_data = private; 6184 return 0; 6185 } 6186 6187 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6188 { 6189 struct btrfs_file_private *private = file->private_data; 6190 int ret; 6191 6192 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6193 &private->last_index); 6194 if (ret) 6195 return ret; 6196 6197 return generic_file_llseek(file, offset, whence); 6198 } 6199 6200 struct dir_entry { 6201 u64 ino; 6202 u64 offset; 6203 unsigned type; 6204 int name_len; 6205 }; 6206 6207 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6208 { 6209 while (entries--) { 6210 struct dir_entry *entry = addr; 6211 char *name = (char *)(entry + 1); 6212 6213 ctx->pos = get_unaligned(&entry->offset); 6214 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6215 get_unaligned(&entry->ino), 6216 get_unaligned(&entry->type))) 6217 return 1; 6218 addr += sizeof(struct dir_entry) + 6219 get_unaligned(&entry->name_len); 6220 ctx->pos++; 6221 } 6222 return 0; 6223 } 6224 6225 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6226 { 6227 struct inode *inode = file_inode(file); 6228 struct btrfs_root *root = BTRFS_I(inode)->root; 6229 struct btrfs_file_private *private = file->private_data; 6230 struct btrfs_dir_item *di; 6231 struct btrfs_key key; 6232 struct btrfs_key found_key; 6233 BTRFS_PATH_AUTO_FREE(path); 6234 void *addr; 6235 LIST_HEAD(ins_list); 6236 LIST_HEAD(del_list); 6237 int ret; 6238 char *name_ptr; 6239 int name_len; 6240 int entries = 0; 6241 int total_len = 0; 6242 bool put = false; 6243 struct btrfs_key location; 6244 6245 if (!dir_emit_dots(file, ctx)) 6246 return 0; 6247 6248 path = btrfs_alloc_path(); 6249 if (!path) 6250 return -ENOMEM; 6251 6252 addr = private->filldir_buf; 6253 path->reada = READA_FORWARD; 6254 6255 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6256 &ins_list, &del_list); 6257 6258 again: 6259 key.type = BTRFS_DIR_INDEX_KEY; 6260 key.offset = ctx->pos; 6261 key.objectid = btrfs_ino(BTRFS_I(inode)); 6262 6263 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6264 struct dir_entry *entry; 6265 struct extent_buffer *leaf = path->nodes[0]; 6266 u8 ftype; 6267 6268 if (found_key.objectid != key.objectid) 6269 break; 6270 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6271 break; 6272 if (found_key.offset < ctx->pos) 6273 continue; 6274 if (found_key.offset > private->last_index) 6275 break; 6276 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6277 continue; 6278 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6279 name_len = btrfs_dir_name_len(leaf, di); 6280 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6281 PAGE_SIZE) { 6282 btrfs_release_path(path); 6283 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6284 if (ret) 6285 goto nopos; 6286 addr = private->filldir_buf; 6287 entries = 0; 6288 total_len = 0; 6289 goto again; 6290 } 6291 6292 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6293 entry = addr; 6294 name_ptr = (char *)(entry + 1); 6295 read_extent_buffer(leaf, name_ptr, 6296 (unsigned long)(di + 1), name_len); 6297 put_unaligned(name_len, &entry->name_len); 6298 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6299 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6300 put_unaligned(location.objectid, &entry->ino); 6301 put_unaligned(found_key.offset, &entry->offset); 6302 entries++; 6303 addr += sizeof(struct dir_entry) + name_len; 6304 total_len += sizeof(struct dir_entry) + name_len; 6305 } 6306 /* Catch error encountered during iteration */ 6307 if (ret < 0) 6308 goto err; 6309 6310 btrfs_release_path(path); 6311 6312 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6313 if (ret) 6314 goto nopos; 6315 6316 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6317 goto nopos; 6318 6319 /* 6320 * Stop new entries from being returned after we return the last 6321 * entry. 6322 * 6323 * New directory entries are assigned a strictly increasing 6324 * offset. This means that new entries created during readdir 6325 * are *guaranteed* to be seen in the future by that readdir. 6326 * This has broken buggy programs which operate on names as 6327 * they're returned by readdir. Until we reuse freed offsets 6328 * we have this hack to stop new entries from being returned 6329 * under the assumption that they'll never reach this huge 6330 * offset. 6331 * 6332 * This is being careful not to overflow 32bit loff_t unless the 6333 * last entry requires it because doing so has broken 32bit apps 6334 * in the past. 6335 */ 6336 if (ctx->pos >= INT_MAX) 6337 ctx->pos = LLONG_MAX; 6338 else 6339 ctx->pos = INT_MAX; 6340 nopos: 6341 ret = 0; 6342 err: 6343 if (put) 6344 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6345 return ret; 6346 } 6347 6348 /* 6349 * This is somewhat expensive, updating the tree every time the 6350 * inode changes. But, it is most likely to find the inode in cache. 6351 * FIXME, needs more benchmarking...there are no reasons other than performance 6352 * to keep or drop this code. 6353 */ 6354 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6355 { 6356 struct btrfs_root *root = inode->root; 6357 struct btrfs_fs_info *fs_info = root->fs_info; 6358 struct btrfs_trans_handle *trans; 6359 int ret; 6360 6361 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6362 return 0; 6363 6364 trans = btrfs_join_transaction(root); 6365 if (IS_ERR(trans)) 6366 return PTR_ERR(trans); 6367 6368 ret = btrfs_update_inode(trans, inode); 6369 if (ret == -ENOSPC || ret == -EDQUOT) { 6370 /* whoops, lets try again with the full transaction */ 6371 btrfs_end_transaction(trans); 6372 trans = btrfs_start_transaction(root, 1); 6373 if (IS_ERR(trans)) 6374 return PTR_ERR(trans); 6375 6376 ret = btrfs_update_inode(trans, inode); 6377 } 6378 btrfs_end_transaction(trans); 6379 if (inode->delayed_node) 6380 btrfs_balance_delayed_items(fs_info); 6381 6382 return ret; 6383 } 6384 6385 /* 6386 * We need our own ->update_time so that we can return error on ENOSPC for 6387 * updating the inode in the case of file write and mmap writes. 6388 */ 6389 static int btrfs_update_time(struct inode *inode, int flags) 6390 { 6391 struct btrfs_root *root = BTRFS_I(inode)->root; 6392 bool dirty; 6393 6394 if (btrfs_root_readonly(root)) 6395 return -EROFS; 6396 6397 dirty = inode_update_timestamps(inode, flags); 6398 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6399 } 6400 6401 /* 6402 * helper to find a free sequence number in a given directory. This current 6403 * code is very simple, later versions will do smarter things in the btree 6404 */ 6405 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6406 { 6407 int ret = 0; 6408 6409 if (dir->index_cnt == (u64)-1) { 6410 ret = btrfs_inode_delayed_dir_index_count(dir); 6411 if (ret) { 6412 ret = btrfs_set_inode_index_count(dir); 6413 if (ret) 6414 return ret; 6415 } 6416 } 6417 6418 *index = dir->index_cnt; 6419 dir->index_cnt++; 6420 6421 return ret; 6422 } 6423 6424 static int btrfs_insert_inode_locked(struct inode *inode) 6425 { 6426 struct btrfs_iget_args args; 6427 6428 args.ino = btrfs_ino(BTRFS_I(inode)); 6429 args.root = BTRFS_I(inode)->root; 6430 6431 return insert_inode_locked4(inode, 6432 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6433 btrfs_find_actor, &args); 6434 } 6435 6436 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6437 unsigned int *trans_num_items) 6438 { 6439 struct inode *dir = args->dir; 6440 struct inode *inode = args->inode; 6441 int ret; 6442 6443 if (!args->orphan) { 6444 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6445 &args->fname); 6446 if (ret) 6447 return ret; 6448 } 6449 6450 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6451 if (ret) { 6452 fscrypt_free_filename(&args->fname); 6453 return ret; 6454 } 6455 6456 /* 1 to add inode item */ 6457 *trans_num_items = 1; 6458 /* 1 to add compression property */ 6459 if (BTRFS_I(dir)->prop_compress) 6460 (*trans_num_items)++; 6461 /* 1 to add default ACL xattr */ 6462 if (args->default_acl) 6463 (*trans_num_items)++; 6464 /* 1 to add access ACL xattr */ 6465 if (args->acl) 6466 (*trans_num_items)++; 6467 #ifdef CONFIG_SECURITY 6468 /* 1 to add LSM xattr */ 6469 if (dir->i_security) 6470 (*trans_num_items)++; 6471 #endif 6472 if (args->orphan) { 6473 /* 1 to add orphan item */ 6474 (*trans_num_items)++; 6475 } else { 6476 /* 6477 * 1 to add dir item 6478 * 1 to add dir index 6479 * 1 to update parent inode item 6480 * 6481 * No need for 1 unit for the inode ref item because it is 6482 * inserted in a batch together with the inode item at 6483 * btrfs_create_new_inode(). 6484 */ 6485 *trans_num_items += 3; 6486 } 6487 return 0; 6488 } 6489 6490 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6491 { 6492 posix_acl_release(args->acl); 6493 posix_acl_release(args->default_acl); 6494 fscrypt_free_filename(&args->fname); 6495 } 6496 6497 /* 6498 * Inherit flags from the parent inode. 6499 * 6500 * Currently only the compression flags and the cow flags are inherited. 6501 */ 6502 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6503 { 6504 unsigned int flags; 6505 6506 flags = dir->flags; 6507 6508 if (flags & BTRFS_INODE_NOCOMPRESS) { 6509 inode->flags &= ~BTRFS_INODE_COMPRESS; 6510 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6511 } else if (flags & BTRFS_INODE_COMPRESS) { 6512 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6513 inode->flags |= BTRFS_INODE_COMPRESS; 6514 } 6515 6516 if (flags & BTRFS_INODE_NODATACOW) { 6517 inode->flags |= BTRFS_INODE_NODATACOW; 6518 if (S_ISREG(inode->vfs_inode.i_mode)) 6519 inode->flags |= BTRFS_INODE_NODATASUM; 6520 } 6521 6522 btrfs_sync_inode_flags_to_i_flags(inode); 6523 } 6524 6525 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6526 struct btrfs_new_inode_args *args) 6527 { 6528 struct timespec64 ts; 6529 struct inode *dir = args->dir; 6530 struct inode *inode = args->inode; 6531 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6532 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6533 struct btrfs_root *root; 6534 struct btrfs_inode_item *inode_item; 6535 struct btrfs_path *path; 6536 u64 objectid; 6537 struct btrfs_inode_ref *ref; 6538 struct btrfs_key key[2]; 6539 u32 sizes[2]; 6540 struct btrfs_item_batch batch; 6541 unsigned long ptr; 6542 int ret; 6543 bool xa_reserved = false; 6544 6545 path = btrfs_alloc_path(); 6546 if (!path) 6547 return -ENOMEM; 6548 6549 if (!args->subvol) 6550 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6551 root = BTRFS_I(inode)->root; 6552 6553 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6554 if (ret) 6555 goto out; 6556 6557 ret = btrfs_get_free_objectid(root, &objectid); 6558 if (ret) 6559 goto out; 6560 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6561 6562 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6563 if (ret) 6564 goto out; 6565 xa_reserved = true; 6566 6567 if (args->orphan) { 6568 /* 6569 * O_TMPFILE, set link count to 0, so that after this point, we 6570 * fill in an inode item with the correct link count. 6571 */ 6572 set_nlink(inode, 0); 6573 } else { 6574 trace_btrfs_inode_request(dir); 6575 6576 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6577 if (ret) 6578 goto out; 6579 } 6580 6581 if (S_ISDIR(inode->i_mode)) 6582 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6583 6584 BTRFS_I(inode)->generation = trans->transid; 6585 inode->i_generation = BTRFS_I(inode)->generation; 6586 6587 /* 6588 * We don't have any capability xattrs set here yet, shortcut any 6589 * queries for the xattrs here. If we add them later via the inode 6590 * security init path or any other path this flag will be cleared. 6591 */ 6592 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6593 6594 /* 6595 * Subvolumes don't inherit flags from their parent directory. 6596 * Originally this was probably by accident, but we probably can't 6597 * change it now without compatibility issues. 6598 */ 6599 if (!args->subvol) 6600 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6601 6602 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6603 if (S_ISREG(inode->i_mode)) { 6604 if (btrfs_test_opt(fs_info, NODATASUM)) 6605 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6606 if (btrfs_test_opt(fs_info, NODATACOW)) 6607 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6608 BTRFS_INODE_NODATASUM; 6609 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6610 } 6611 6612 ret = btrfs_insert_inode_locked(inode); 6613 if (ret < 0) { 6614 if (!args->orphan) 6615 BTRFS_I(dir)->index_cnt--; 6616 goto out; 6617 } 6618 6619 /* 6620 * We could have gotten an inode number from somebody who was fsynced 6621 * and then removed in this same transaction, so let's just set full 6622 * sync since it will be a full sync anyway and this will blow away the 6623 * old info in the log. 6624 */ 6625 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6626 6627 key[0].objectid = objectid; 6628 key[0].type = BTRFS_INODE_ITEM_KEY; 6629 key[0].offset = 0; 6630 6631 sizes[0] = sizeof(struct btrfs_inode_item); 6632 6633 if (!args->orphan) { 6634 /* 6635 * Start new inodes with an inode_ref. This is slightly more 6636 * efficient for small numbers of hard links since they will 6637 * be packed into one item. Extended refs will kick in if we 6638 * add more hard links than can fit in the ref item. 6639 */ 6640 key[1].objectid = objectid; 6641 key[1].type = BTRFS_INODE_REF_KEY; 6642 if (args->subvol) { 6643 key[1].offset = objectid; 6644 sizes[1] = 2 + sizeof(*ref); 6645 } else { 6646 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6647 sizes[1] = name->len + sizeof(*ref); 6648 } 6649 } 6650 6651 batch.keys = &key[0]; 6652 batch.data_sizes = &sizes[0]; 6653 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6654 batch.nr = args->orphan ? 1 : 2; 6655 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6656 if (unlikely(ret != 0)) { 6657 btrfs_abort_transaction(trans, ret); 6658 goto discard; 6659 } 6660 6661 ts = simple_inode_init_ts(inode); 6662 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6663 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6664 6665 /* 6666 * We're going to fill the inode item now, so at this point the inode 6667 * must be fully initialized. 6668 */ 6669 6670 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6671 struct btrfs_inode_item); 6672 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6673 sizeof(*inode_item)); 6674 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6675 6676 if (!args->orphan) { 6677 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6678 struct btrfs_inode_ref); 6679 ptr = (unsigned long)(ref + 1); 6680 if (args->subvol) { 6681 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6682 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6683 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6684 } else { 6685 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6686 name->len); 6687 btrfs_set_inode_ref_index(path->nodes[0], ref, 6688 BTRFS_I(inode)->dir_index); 6689 write_extent_buffer(path->nodes[0], name->name, ptr, 6690 name->len); 6691 } 6692 } 6693 6694 /* 6695 * We don't need the path anymore, plus inheriting properties, adding 6696 * ACLs, security xattrs, orphan item or adding the link, will result in 6697 * allocating yet another path. So just free our path. 6698 */ 6699 btrfs_free_path(path); 6700 path = NULL; 6701 6702 if (args->subvol) { 6703 struct btrfs_inode *parent; 6704 6705 /* 6706 * Subvolumes inherit properties from their parent subvolume, 6707 * not the directory they were created in. 6708 */ 6709 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6710 if (IS_ERR(parent)) { 6711 ret = PTR_ERR(parent); 6712 } else { 6713 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6714 parent); 6715 iput(&parent->vfs_inode); 6716 } 6717 } else { 6718 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6719 BTRFS_I(dir)); 6720 } 6721 if (ret) { 6722 btrfs_err(fs_info, 6723 "error inheriting props for ino %llu (root %llu): %d", 6724 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6725 } 6726 6727 /* 6728 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6729 * probably a bug. 6730 */ 6731 if (!args->subvol) { 6732 ret = btrfs_init_inode_security(trans, args); 6733 if (unlikely(ret)) { 6734 btrfs_abort_transaction(trans, ret); 6735 goto discard; 6736 } 6737 } 6738 6739 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6740 if (WARN_ON(ret)) { 6741 /* Shouldn't happen, we used xa_reserve() before. */ 6742 btrfs_abort_transaction(trans, ret); 6743 goto discard; 6744 } 6745 6746 trace_btrfs_inode_new(inode); 6747 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6748 6749 btrfs_update_root_times(trans, root); 6750 6751 if (args->orphan) { 6752 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6753 if (unlikely(ret)) { 6754 btrfs_abort_transaction(trans, ret); 6755 goto discard; 6756 } 6757 } else { 6758 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6759 0, BTRFS_I(inode)->dir_index); 6760 if (unlikely(ret)) { 6761 btrfs_abort_transaction(trans, ret); 6762 goto discard; 6763 } 6764 } 6765 6766 return 0; 6767 6768 discard: 6769 /* 6770 * discard_new_inode() calls iput(), but the caller owns the reference 6771 * to the inode. 6772 */ 6773 ihold(inode); 6774 discard_new_inode(inode); 6775 out: 6776 if (xa_reserved) 6777 xa_release(&root->inodes, objectid); 6778 6779 btrfs_free_path(path); 6780 return ret; 6781 } 6782 6783 /* 6784 * utility function to add 'inode' into 'parent_inode' with 6785 * a give name and a given sequence number. 6786 * if 'add_backref' is true, also insert a backref from the 6787 * inode to the parent directory. 6788 */ 6789 int btrfs_add_link(struct btrfs_trans_handle *trans, 6790 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6791 const struct fscrypt_str *name, bool add_backref, u64 index) 6792 { 6793 int ret = 0; 6794 struct btrfs_key key; 6795 struct btrfs_root *root = parent_inode->root; 6796 u64 ino = btrfs_ino(inode); 6797 u64 parent_ino = btrfs_ino(parent_inode); 6798 6799 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6800 memcpy(&key, &inode->root->root_key, sizeof(key)); 6801 } else { 6802 key.objectid = ino; 6803 key.type = BTRFS_INODE_ITEM_KEY; 6804 key.offset = 0; 6805 } 6806 6807 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6808 ret = btrfs_add_root_ref(trans, key.objectid, 6809 btrfs_root_id(root), parent_ino, 6810 index, name); 6811 } else if (add_backref) { 6812 ret = btrfs_insert_inode_ref(trans, root, name, 6813 ino, parent_ino, index); 6814 } 6815 6816 /* Nothing to clean up yet */ 6817 if (ret) 6818 return ret; 6819 6820 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6821 btrfs_inode_type(inode), index); 6822 if (ret == -EEXIST || ret == -EOVERFLOW) 6823 goto fail_dir_item; 6824 else if (unlikely(ret)) { 6825 btrfs_abort_transaction(trans, ret); 6826 return ret; 6827 } 6828 6829 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6830 name->len * 2); 6831 inode_inc_iversion(&parent_inode->vfs_inode); 6832 update_time_after_link_or_unlink(parent_inode); 6833 6834 ret = btrfs_update_inode(trans, parent_inode); 6835 if (ret) 6836 btrfs_abort_transaction(trans, ret); 6837 return ret; 6838 6839 fail_dir_item: 6840 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6841 u64 local_index; 6842 int ret2; 6843 6844 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6845 parent_ino, &local_index, name); 6846 if (ret2) 6847 btrfs_abort_transaction(trans, ret2); 6848 } else if (add_backref) { 6849 int ret2; 6850 6851 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6852 if (ret2) 6853 btrfs_abort_transaction(trans, ret2); 6854 } 6855 6856 /* Return the original error code */ 6857 return ret; 6858 } 6859 6860 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6861 struct inode *inode) 6862 { 6863 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6864 struct btrfs_root *root = BTRFS_I(dir)->root; 6865 struct btrfs_new_inode_args new_inode_args = { 6866 .dir = dir, 6867 .dentry = dentry, 6868 .inode = inode, 6869 }; 6870 unsigned int trans_num_items; 6871 struct btrfs_trans_handle *trans; 6872 int ret; 6873 6874 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6875 if (ret) 6876 goto out_inode; 6877 6878 trans = btrfs_start_transaction(root, trans_num_items); 6879 if (IS_ERR(trans)) { 6880 ret = PTR_ERR(trans); 6881 goto out_new_inode_args; 6882 } 6883 6884 ret = btrfs_create_new_inode(trans, &new_inode_args); 6885 if (!ret) { 6886 if (S_ISDIR(inode->i_mode)) 6887 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC; 6888 d_instantiate_new(dentry, inode); 6889 } 6890 6891 btrfs_end_transaction(trans); 6892 btrfs_btree_balance_dirty(fs_info); 6893 out_new_inode_args: 6894 btrfs_new_inode_args_destroy(&new_inode_args); 6895 out_inode: 6896 if (ret) 6897 iput(inode); 6898 return ret; 6899 } 6900 6901 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6902 struct dentry *dentry, umode_t mode, dev_t rdev) 6903 { 6904 struct inode *inode; 6905 6906 inode = new_inode(dir->i_sb); 6907 if (!inode) 6908 return -ENOMEM; 6909 inode_init_owner(idmap, inode, dir, mode); 6910 inode->i_op = &btrfs_special_inode_operations; 6911 init_special_inode(inode, inode->i_mode, rdev); 6912 return btrfs_create_common(dir, dentry, inode); 6913 } 6914 6915 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6916 struct dentry *dentry, umode_t mode, bool excl) 6917 { 6918 struct inode *inode; 6919 6920 inode = new_inode(dir->i_sb); 6921 if (!inode) 6922 return -ENOMEM; 6923 inode_init_owner(idmap, inode, dir, mode); 6924 inode->i_fop = &btrfs_file_operations; 6925 inode->i_op = &btrfs_file_inode_operations; 6926 inode->i_mapping->a_ops = &btrfs_aops; 6927 return btrfs_create_common(dir, dentry, inode); 6928 } 6929 6930 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6931 struct dentry *dentry) 6932 { 6933 struct btrfs_trans_handle *trans = NULL; 6934 struct btrfs_root *root = BTRFS_I(dir)->root; 6935 struct inode *inode = d_inode(old_dentry); 6936 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6937 struct fscrypt_name fname; 6938 u64 index; 6939 int ret; 6940 6941 /* do not allow sys_link's with other subvols of the same device */ 6942 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6943 return -EXDEV; 6944 6945 if (inode->i_nlink >= BTRFS_LINK_MAX) 6946 return -EMLINK; 6947 6948 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6949 if (ret) 6950 goto fail; 6951 6952 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6953 if (ret) 6954 goto fail; 6955 6956 /* 6957 * 2 items for inode and inode ref 6958 * 2 items for dir items 6959 * 1 item for parent inode 6960 * 1 item for orphan item deletion if O_TMPFILE 6961 */ 6962 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6963 if (IS_ERR(trans)) { 6964 ret = PTR_ERR(trans); 6965 trans = NULL; 6966 goto fail; 6967 } 6968 6969 /* There are several dir indexes for this inode, clear the cache. */ 6970 BTRFS_I(inode)->dir_index = 0ULL; 6971 inode_inc_iversion(inode); 6972 inode_set_ctime_current(inode); 6973 6974 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6975 &fname.disk_name, 1, index); 6976 if (ret) 6977 goto fail; 6978 6979 /* Link added now we update the inode item with the new link count. */ 6980 inc_nlink(inode); 6981 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6982 if (unlikely(ret)) { 6983 btrfs_abort_transaction(trans, ret); 6984 goto fail; 6985 } 6986 6987 if (inode->i_nlink == 1) { 6988 /* 6989 * If the new hard link count is 1, it's a file created with the 6990 * open(2) O_TMPFILE flag. 6991 */ 6992 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6993 if (unlikely(ret)) { 6994 btrfs_abort_transaction(trans, ret); 6995 goto fail; 6996 } 6997 } 6998 6999 /* Grab reference for the new dentry passed to d_instantiate(). */ 7000 ihold(inode); 7001 d_instantiate(dentry, inode); 7002 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent); 7003 7004 fail: 7005 fscrypt_free_filename(&fname); 7006 if (trans) 7007 btrfs_end_transaction(trans); 7008 btrfs_btree_balance_dirty(fs_info); 7009 return ret; 7010 } 7011 7012 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 7013 struct dentry *dentry, umode_t mode) 7014 { 7015 struct inode *inode; 7016 7017 inode = new_inode(dir->i_sb); 7018 if (!inode) 7019 return ERR_PTR(-ENOMEM); 7020 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 7021 inode->i_op = &btrfs_dir_inode_operations; 7022 inode->i_fop = &btrfs_dir_file_operations; 7023 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 7024 } 7025 7026 static noinline int uncompress_inline(struct btrfs_path *path, 7027 struct folio *folio, 7028 struct btrfs_file_extent_item *item) 7029 { 7030 int ret; 7031 struct extent_buffer *leaf = path->nodes[0]; 7032 const u32 blocksize = leaf->fs_info->sectorsize; 7033 char *tmp; 7034 size_t max_size; 7035 unsigned long inline_size; 7036 unsigned long ptr; 7037 int compress_type; 7038 7039 compress_type = btrfs_file_extent_compression(leaf, item); 7040 max_size = btrfs_file_extent_ram_bytes(leaf, item); 7041 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 7042 tmp = kmalloc(inline_size, GFP_NOFS); 7043 if (!tmp) 7044 return -ENOMEM; 7045 ptr = btrfs_file_extent_inline_start(item); 7046 7047 read_extent_buffer(leaf, tmp, ptr, inline_size); 7048 7049 max_size = min_t(unsigned long, blocksize, max_size); 7050 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 7051 max_size); 7052 7053 /* 7054 * decompression code contains a memset to fill in any space between the end 7055 * of the uncompressed data and the end of max_size in case the decompressed 7056 * data ends up shorter than ram_bytes. That doesn't cover the hole between 7057 * the end of an inline extent and the beginning of the next block, so we 7058 * cover that region here. 7059 */ 7060 7061 if (max_size < blocksize) 7062 folio_zero_range(folio, max_size, blocksize - max_size); 7063 kfree(tmp); 7064 return ret; 7065 } 7066 7067 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 7068 { 7069 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 7070 struct btrfs_file_extent_item *fi; 7071 void *kaddr; 7072 size_t copy_size; 7073 7074 if (!folio || folio_test_uptodate(folio)) 7075 return 0; 7076 7077 ASSERT(folio_pos(folio) == 0); 7078 7079 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 7080 struct btrfs_file_extent_item); 7081 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 7082 return uncompress_inline(path, folio, fi); 7083 7084 copy_size = min_t(u64, blocksize, 7085 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 7086 kaddr = kmap_local_folio(folio, 0); 7087 read_extent_buffer(path->nodes[0], kaddr, 7088 btrfs_file_extent_inline_start(fi), copy_size); 7089 kunmap_local(kaddr); 7090 if (copy_size < blocksize) 7091 folio_zero_range(folio, copy_size, blocksize - copy_size); 7092 return 0; 7093 } 7094 7095 /* 7096 * Lookup the first extent overlapping a range in a file. 7097 * 7098 * @inode: file to search in 7099 * @page: page to read extent data into if the extent is inline 7100 * @start: file offset 7101 * @len: length of range starting at @start 7102 * 7103 * Return the first &struct extent_map which overlaps the given range, reading 7104 * it from the B-tree and caching it if necessary. Note that there may be more 7105 * extents which overlap the given range after the returned extent_map. 7106 * 7107 * If @page is not NULL and the extent is inline, this also reads the extent 7108 * data directly into the page and marks the extent up to date in the io_tree. 7109 * 7110 * Return: ERR_PTR on error, non-NULL extent_map on success. 7111 */ 7112 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 7113 struct folio *folio, u64 start, u64 len) 7114 { 7115 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7116 int ret = 0; 7117 u64 extent_start = 0; 7118 u64 extent_end = 0; 7119 u64 objectid = btrfs_ino(inode); 7120 int extent_type = -1; 7121 struct btrfs_path *path = NULL; 7122 struct btrfs_root *root = inode->root; 7123 struct btrfs_file_extent_item *item; 7124 struct extent_buffer *leaf; 7125 struct btrfs_key found_key; 7126 struct extent_map *em = NULL; 7127 struct extent_map_tree *em_tree = &inode->extent_tree; 7128 7129 read_lock(&em_tree->lock); 7130 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7131 read_unlock(&em_tree->lock); 7132 7133 if (em) { 7134 if (em->start > start || em->start + em->len <= start) 7135 btrfs_free_extent_map(em); 7136 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7137 btrfs_free_extent_map(em); 7138 else 7139 goto out; 7140 } 7141 em = btrfs_alloc_extent_map(); 7142 if (!em) { 7143 ret = -ENOMEM; 7144 goto out; 7145 } 7146 em->start = EXTENT_MAP_HOLE; 7147 em->disk_bytenr = EXTENT_MAP_HOLE; 7148 em->len = (u64)-1; 7149 7150 path = btrfs_alloc_path(); 7151 if (!path) { 7152 ret = -ENOMEM; 7153 goto out; 7154 } 7155 7156 /* Chances are we'll be called again, so go ahead and do readahead */ 7157 path->reada = READA_FORWARD; 7158 7159 /* 7160 * The same explanation in load_free_space_cache applies here as well, 7161 * we only read when we're loading the free space cache, and at that 7162 * point the commit_root has everything we need. 7163 */ 7164 if (btrfs_is_free_space_inode(inode)) { 7165 path->search_commit_root = true; 7166 path->skip_locking = true; 7167 } 7168 7169 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7170 if (ret < 0) { 7171 goto out; 7172 } else if (ret > 0) { 7173 if (path->slots[0] == 0) 7174 goto not_found; 7175 path->slots[0]--; 7176 ret = 0; 7177 } 7178 7179 leaf = path->nodes[0]; 7180 item = btrfs_item_ptr(leaf, path->slots[0], 7181 struct btrfs_file_extent_item); 7182 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7183 if (found_key.objectid != objectid || 7184 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7185 /* 7186 * If we backup past the first extent we want to move forward 7187 * and see if there is an extent in front of us, otherwise we'll 7188 * say there is a hole for our whole search range which can 7189 * cause problems. 7190 */ 7191 extent_end = start; 7192 goto next; 7193 } 7194 7195 extent_type = btrfs_file_extent_type(leaf, item); 7196 extent_start = found_key.offset; 7197 extent_end = btrfs_file_extent_end(path); 7198 if (extent_type == BTRFS_FILE_EXTENT_REG || 7199 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7200 /* Only regular file could have regular/prealloc extent */ 7201 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) { 7202 ret = -EUCLEAN; 7203 btrfs_crit(fs_info, 7204 "regular/prealloc extent found for non-regular inode %llu", 7205 btrfs_ino(inode)); 7206 goto out; 7207 } 7208 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7209 extent_start); 7210 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7211 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7212 path->slots[0], 7213 extent_start); 7214 } 7215 next: 7216 if (start >= extent_end) { 7217 path->slots[0]++; 7218 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7219 ret = btrfs_next_leaf(root, path); 7220 if (ret < 0) 7221 goto out; 7222 else if (ret > 0) 7223 goto not_found; 7224 7225 leaf = path->nodes[0]; 7226 } 7227 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7228 if (found_key.objectid != objectid || 7229 found_key.type != BTRFS_EXTENT_DATA_KEY) 7230 goto not_found; 7231 if (start + len <= found_key.offset) 7232 goto not_found; 7233 if (start > found_key.offset) 7234 goto next; 7235 7236 /* New extent overlaps with existing one */ 7237 em->start = start; 7238 em->len = found_key.offset - start; 7239 em->disk_bytenr = EXTENT_MAP_HOLE; 7240 goto insert; 7241 } 7242 7243 btrfs_extent_item_to_extent_map(inode, path, item, em); 7244 7245 if (extent_type == BTRFS_FILE_EXTENT_REG || 7246 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7247 goto insert; 7248 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7249 /* 7250 * Inline extent can only exist at file offset 0. This is 7251 * ensured by tree-checker and inline extent creation path. 7252 * Thus all members representing file offsets should be zero. 7253 */ 7254 ASSERT(extent_start == 0); 7255 ASSERT(em->start == 0); 7256 7257 /* 7258 * btrfs_extent_item_to_extent_map() should have properly 7259 * initialized em members already. 7260 * 7261 * Other members are not utilized for inline extents. 7262 */ 7263 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7264 ASSERT(em->len == fs_info->sectorsize); 7265 7266 ret = read_inline_extent(path, folio); 7267 if (ret < 0) 7268 goto out; 7269 goto insert; 7270 } 7271 not_found: 7272 em->start = start; 7273 em->len = len; 7274 em->disk_bytenr = EXTENT_MAP_HOLE; 7275 insert: 7276 ret = 0; 7277 btrfs_release_path(path); 7278 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) { 7279 btrfs_err(fs_info, 7280 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7281 em->start, em->len, start, len); 7282 ret = -EIO; 7283 goto out; 7284 } 7285 7286 write_lock(&em_tree->lock); 7287 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7288 write_unlock(&em_tree->lock); 7289 out: 7290 btrfs_free_path(path); 7291 7292 trace_btrfs_get_extent(root, inode, em); 7293 7294 if (ret) { 7295 btrfs_free_extent_map(em); 7296 return ERR_PTR(ret); 7297 } 7298 return em; 7299 } 7300 7301 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7302 { 7303 struct btrfs_block_group *block_group; 7304 bool readonly = false; 7305 7306 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7307 if (!block_group || block_group->ro) 7308 readonly = true; 7309 if (block_group) 7310 btrfs_put_block_group(block_group); 7311 return readonly; 7312 } 7313 7314 /* 7315 * Check if we can do nocow write into the range [@offset, @offset + @len) 7316 * 7317 * @offset: File offset 7318 * @len: The length to write, will be updated to the nocow writeable 7319 * range 7320 * @orig_start: (optional) Return the original file offset of the file extent 7321 * @orig_len: (optional) Return the original on-disk length of the file extent 7322 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7323 * 7324 * Return: 7325 * >0 and update @len if we can do nocow write 7326 * 0 if we can't do nocow write 7327 * <0 if error happened 7328 * 7329 * NOTE: This only checks the file extents, caller is responsible to wait for 7330 * any ordered extents. 7331 */ 7332 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7333 struct btrfs_file_extent *file_extent, 7334 bool nowait) 7335 { 7336 struct btrfs_root *root = inode->root; 7337 struct btrfs_fs_info *fs_info = root->fs_info; 7338 struct can_nocow_file_extent_args nocow_args = { 0 }; 7339 BTRFS_PATH_AUTO_FREE(path); 7340 int ret; 7341 struct extent_buffer *leaf; 7342 struct extent_io_tree *io_tree = &inode->io_tree; 7343 struct btrfs_file_extent_item *fi; 7344 struct btrfs_key key; 7345 int found_type; 7346 7347 path = btrfs_alloc_path(); 7348 if (!path) 7349 return -ENOMEM; 7350 path->nowait = nowait; 7351 7352 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7353 offset, 0); 7354 if (ret < 0) 7355 return ret; 7356 7357 if (ret == 1) { 7358 if (path->slots[0] == 0) { 7359 /* Can't find the item, must COW. */ 7360 return 0; 7361 } 7362 path->slots[0]--; 7363 } 7364 ret = 0; 7365 leaf = path->nodes[0]; 7366 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7367 if (key.objectid != btrfs_ino(inode) || 7368 key.type != BTRFS_EXTENT_DATA_KEY) { 7369 /* Not our file or wrong item type, must COW. */ 7370 return 0; 7371 } 7372 7373 if (key.offset > offset) { 7374 /* Wrong offset, must COW. */ 7375 return 0; 7376 } 7377 7378 if (btrfs_file_extent_end(path) <= offset) 7379 return 0; 7380 7381 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7382 found_type = btrfs_file_extent_type(leaf, fi); 7383 7384 nocow_args.start = offset; 7385 nocow_args.end = offset + *len - 1; 7386 nocow_args.free_path = true; 7387 7388 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7389 /* can_nocow_file_extent() has freed the path. */ 7390 path = NULL; 7391 7392 if (ret != 1) { 7393 /* Treat errors as not being able to NOCOW. */ 7394 return 0; 7395 } 7396 7397 if (btrfs_extent_readonly(fs_info, 7398 nocow_args.file_extent.disk_bytenr + 7399 nocow_args.file_extent.offset)) 7400 return 0; 7401 7402 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7403 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7404 u64 range_end; 7405 7406 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7407 root->fs_info->sectorsize) - 1; 7408 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7409 EXTENT_DELALLOC); 7410 if (ret) 7411 return -EAGAIN; 7412 } 7413 7414 if (file_extent) 7415 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7416 7417 *len = nocow_args.file_extent.num_bytes; 7418 7419 return 1; 7420 } 7421 7422 /* The callers of this must take lock_extent() */ 7423 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7424 const struct btrfs_file_extent *file_extent, 7425 int type) 7426 { 7427 struct extent_map *em; 7428 int ret; 7429 7430 /* 7431 * Note the missing NOCOW type. 7432 * 7433 * For pure NOCOW writes, we should not create an io extent map, but 7434 * just reusing the existing one. 7435 * Only PREALLOC writes (NOCOW write into preallocated range) can 7436 * create an io extent map. 7437 */ 7438 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7439 type == BTRFS_ORDERED_COMPRESSED || 7440 type == BTRFS_ORDERED_REGULAR); 7441 7442 switch (type) { 7443 case BTRFS_ORDERED_PREALLOC: 7444 /* We're only referring part of a larger preallocated extent. */ 7445 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7446 break; 7447 case BTRFS_ORDERED_REGULAR: 7448 /* COW results a new extent matching our file extent size. */ 7449 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7450 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7451 7452 /* Since it's a new extent, we should not have any offset. */ 7453 ASSERT(file_extent->offset == 0); 7454 break; 7455 case BTRFS_ORDERED_COMPRESSED: 7456 /* Must be compressed. */ 7457 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7458 7459 /* 7460 * Encoded write can make us to refer to part of the 7461 * uncompressed extent. 7462 */ 7463 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7464 break; 7465 } 7466 7467 em = btrfs_alloc_extent_map(); 7468 if (!em) 7469 return ERR_PTR(-ENOMEM); 7470 7471 em->start = start; 7472 em->len = file_extent->num_bytes; 7473 em->disk_bytenr = file_extent->disk_bytenr; 7474 em->disk_num_bytes = file_extent->disk_num_bytes; 7475 em->ram_bytes = file_extent->ram_bytes; 7476 em->generation = -1; 7477 em->offset = file_extent->offset; 7478 em->flags |= EXTENT_FLAG_PINNED; 7479 if (type == BTRFS_ORDERED_COMPRESSED) 7480 btrfs_extent_map_set_compression(em, file_extent->compression); 7481 7482 ret = btrfs_replace_extent_map_range(inode, em, true); 7483 if (ret) { 7484 btrfs_free_extent_map(em); 7485 return ERR_PTR(ret); 7486 } 7487 7488 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7489 return em; 7490 } 7491 7492 /* 7493 * For release_folio() and invalidate_folio() we have a race window where 7494 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7495 * If we continue to release/invalidate the page, we could cause use-after-free 7496 * for subpage spinlock. So this function is to spin and wait for subpage 7497 * spinlock. 7498 */ 7499 static void wait_subpage_spinlock(struct folio *folio) 7500 { 7501 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7502 struct btrfs_folio_state *bfs; 7503 7504 if (!btrfs_is_subpage(fs_info, folio)) 7505 return; 7506 7507 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7508 bfs = folio_get_private(folio); 7509 7510 /* 7511 * This may look insane as we just acquire the spinlock and release it, 7512 * without doing anything. But we just want to make sure no one is 7513 * still holding the subpage spinlock. 7514 * And since the page is not dirty nor writeback, and we have page 7515 * locked, the only possible way to hold a spinlock is from the endio 7516 * function to clear page writeback. 7517 * 7518 * Here we just acquire the spinlock so that all existing callers 7519 * should exit and we're safe to release/invalidate the page. 7520 */ 7521 spin_lock_irq(&bfs->lock); 7522 spin_unlock_irq(&bfs->lock); 7523 } 7524 7525 static int btrfs_launder_folio(struct folio *folio) 7526 { 7527 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7528 folio_size(folio), NULL); 7529 } 7530 7531 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7532 { 7533 if (try_release_extent_mapping(folio, gfp_flags)) { 7534 wait_subpage_spinlock(folio); 7535 clear_folio_extent_mapped(folio); 7536 return true; 7537 } 7538 return false; 7539 } 7540 7541 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7542 { 7543 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7544 return false; 7545 return __btrfs_release_folio(folio, gfp_flags); 7546 } 7547 7548 #ifdef CONFIG_MIGRATION 7549 static int btrfs_migrate_folio(struct address_space *mapping, 7550 struct folio *dst, struct folio *src, 7551 enum migrate_mode mode) 7552 { 7553 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7554 7555 if (ret) 7556 return ret; 7557 7558 if (folio_test_ordered(src)) { 7559 folio_clear_ordered(src); 7560 folio_set_ordered(dst); 7561 } 7562 7563 return 0; 7564 } 7565 #else 7566 #define btrfs_migrate_folio NULL 7567 #endif 7568 7569 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7570 size_t length) 7571 { 7572 struct btrfs_inode *inode = folio_to_inode(folio); 7573 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7574 struct extent_io_tree *tree = &inode->io_tree; 7575 struct extent_state *cached_state = NULL; 7576 u64 page_start = folio_pos(folio); 7577 u64 page_end = page_start + folio_size(folio) - 1; 7578 u64 cur; 7579 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING; 7580 7581 /* 7582 * We have folio locked so no new ordered extent can be created on this 7583 * page, nor bio can be submitted for this folio. 7584 * 7585 * But already submitted bio can still be finished on this folio. 7586 * Furthermore, endio function won't skip folio which has Ordered 7587 * already cleared, so it's possible for endio and 7588 * invalidate_folio to do the same ordered extent accounting twice 7589 * on one folio. 7590 * 7591 * So here we wait for any submitted bios to finish, so that we won't 7592 * do double ordered extent accounting on the same folio. 7593 */ 7594 folio_wait_writeback(folio); 7595 wait_subpage_spinlock(folio); 7596 7597 /* 7598 * For subpage case, we have call sites like 7599 * btrfs_punch_hole_lock_range() which passes range not aligned to 7600 * sectorsize. 7601 * If the range doesn't cover the full folio, we don't need to and 7602 * shouldn't clear page extent mapped, as folio->private can still 7603 * record subpage dirty bits for other part of the range. 7604 * 7605 * For cases that invalidate the full folio even the range doesn't 7606 * cover the full folio, like invalidating the last folio, we're 7607 * still safe to wait for ordered extent to finish. 7608 */ 7609 if (!(offset == 0 && length == folio_size(folio))) { 7610 btrfs_release_folio(folio, GFP_NOFS); 7611 return; 7612 } 7613 7614 if (!inode_evicting) 7615 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7616 7617 cur = page_start; 7618 while (cur < page_end) { 7619 struct btrfs_ordered_extent *ordered; 7620 u64 range_end; 7621 u32 range_len; 7622 u32 extra_flags = 0; 7623 7624 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7625 page_end + 1 - cur); 7626 if (!ordered) { 7627 range_end = page_end; 7628 /* 7629 * No ordered extent covering this range, we are safe 7630 * to delete all extent states in the range. 7631 */ 7632 extra_flags = EXTENT_CLEAR_ALL_BITS; 7633 goto next; 7634 } 7635 if (ordered->file_offset > cur) { 7636 /* 7637 * There is a range between [cur, oe->file_offset) not 7638 * covered by any ordered extent. 7639 * We are safe to delete all extent states, and handle 7640 * the ordered extent in the next iteration. 7641 */ 7642 range_end = ordered->file_offset - 1; 7643 extra_flags = EXTENT_CLEAR_ALL_BITS; 7644 goto next; 7645 } 7646 7647 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7648 page_end); 7649 ASSERT(range_end + 1 - cur < U32_MAX); 7650 range_len = range_end + 1 - cur; 7651 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7652 /* 7653 * If Ordered is cleared, it means endio has 7654 * already been executed for the range. 7655 * We can't delete the extent states as 7656 * btrfs_finish_ordered_io() may still use some of them. 7657 */ 7658 goto next; 7659 } 7660 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7661 7662 /* 7663 * IO on this page will never be started, so we need to account 7664 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7665 * here, must leave that up for the ordered extent completion. 7666 * 7667 * This will also unlock the range for incoming 7668 * btrfs_finish_ordered_io(). 7669 */ 7670 if (!inode_evicting) 7671 btrfs_clear_extent_bit(tree, cur, range_end, 7672 EXTENT_DELALLOC | 7673 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7674 EXTENT_DEFRAG, &cached_state); 7675 7676 spin_lock(&inode->ordered_tree_lock); 7677 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7678 ordered->truncated_len = min(ordered->truncated_len, 7679 cur - ordered->file_offset); 7680 spin_unlock(&inode->ordered_tree_lock); 7681 7682 /* 7683 * If the ordered extent has finished, we're safe to delete all 7684 * the extent states of the range, otherwise 7685 * btrfs_finish_ordered_io() will get executed by endio for 7686 * other pages, so we can't delete extent states. 7687 */ 7688 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7689 cur, range_end + 1 - cur)) { 7690 btrfs_finish_ordered_io(ordered); 7691 /* 7692 * The ordered extent has finished, now we're again 7693 * safe to delete all extent states of the range. 7694 */ 7695 extra_flags = EXTENT_CLEAR_ALL_BITS; 7696 } 7697 next: 7698 if (ordered) 7699 btrfs_put_ordered_extent(ordered); 7700 /* 7701 * Qgroup reserved space handler 7702 * Sector(s) here will be either: 7703 * 7704 * 1) Already written to disk or bio already finished 7705 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7706 * Qgroup will be handled by its qgroup_record then. 7707 * btrfs_qgroup_free_data() call will do nothing here. 7708 * 7709 * 2) Not written to disk yet 7710 * Then btrfs_qgroup_free_data() call will clear the 7711 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7712 * reserved data space. 7713 * Since the IO will never happen for this page. 7714 */ 7715 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7716 if (!inode_evicting) 7717 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7718 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7719 EXTENT_DEFRAG | extra_flags, 7720 &cached_state); 7721 cur = range_end + 1; 7722 } 7723 /* 7724 * We have iterated through all ordered extents of the page, the page 7725 * should not have Ordered anymore, or the above iteration 7726 * did something wrong. 7727 */ 7728 ASSERT(!folio_test_ordered(folio)); 7729 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7730 if (!inode_evicting) 7731 __btrfs_release_folio(folio, GFP_NOFS); 7732 clear_folio_extent_mapped(folio); 7733 } 7734 7735 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7736 { 7737 struct btrfs_truncate_control control = { 7738 .inode = inode, 7739 .ino = btrfs_ino(inode), 7740 .min_type = BTRFS_EXTENT_DATA_KEY, 7741 .clear_extent_range = true, 7742 .new_size = inode->vfs_inode.i_size, 7743 }; 7744 struct btrfs_root *root = inode->root; 7745 struct btrfs_fs_info *fs_info = root->fs_info; 7746 struct btrfs_block_rsv rsv; 7747 int ret; 7748 struct btrfs_trans_handle *trans; 7749 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7750 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize); 7751 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 7752 7753 /* Our inode is locked and the i_size can't be changed concurrently. */ 7754 btrfs_assert_inode_locked(inode); 7755 7756 if (!skip_writeback) { 7757 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1); 7758 if (ret) 7759 return ret; 7760 } 7761 7762 /* 7763 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7764 * things going on here: 7765 * 7766 * 1) We need to reserve space to update our inode. 7767 * 7768 * 2) We need to have something to cache all the space that is going to 7769 * be free'd up by the truncate operation, but also have some slack 7770 * space reserved in case it uses space during the truncate (thank you 7771 * very much snapshotting). 7772 * 7773 * And we need these to be separate. The fact is we can use a lot of 7774 * space doing the truncate, and we have no earthly idea how much space 7775 * we will use, so we need the truncate reservation to be separate so it 7776 * doesn't end up using space reserved for updating the inode. We also 7777 * need to be able to stop the transaction and start a new one, which 7778 * means we need to be able to update the inode several times, and we 7779 * have no idea of knowing how many times that will be, so we can't just 7780 * reserve 1 item for the entirety of the operation, so that has to be 7781 * done separately as well. 7782 * 7783 * So that leaves us with 7784 * 7785 * 1) rsv - for the truncate reservation, which we will steal from the 7786 * transaction reservation. 7787 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7788 * updating the inode. 7789 */ 7790 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7791 rsv.size = min_size; 7792 rsv.failfast = true; 7793 7794 /* 7795 * 1 for the truncate slack space 7796 * 1 for updating the inode. 7797 */ 7798 trans = btrfs_start_transaction(root, 2); 7799 if (IS_ERR(trans)) { 7800 ret = PTR_ERR(trans); 7801 goto out; 7802 } 7803 7804 /* Migrate the slack space for the truncate to our reserve */ 7805 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7806 min_size, false); 7807 /* 7808 * We have reserved 2 metadata units when we started the transaction and 7809 * min_size matches 1 unit, so this should never fail, but if it does, 7810 * it's not critical we just fail truncation. 7811 */ 7812 if (WARN_ON(ret)) { 7813 btrfs_end_transaction(trans); 7814 goto out; 7815 } 7816 7817 trans->block_rsv = &rsv; 7818 7819 while (1) { 7820 struct extent_state *cached_state = NULL; 7821 7822 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7823 /* 7824 * We want to drop from the next block forward in case this new 7825 * size is not block aligned since we will be keeping the last 7826 * block of the extent just the way it is. 7827 */ 7828 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false); 7829 7830 ret = btrfs_truncate_inode_items(trans, root, &control); 7831 7832 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7833 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7834 7835 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7836 7837 trans->block_rsv = &fs_info->trans_block_rsv; 7838 if (ret != -ENOSPC && ret != -EAGAIN) 7839 break; 7840 7841 ret = btrfs_update_inode(trans, inode); 7842 if (ret) 7843 break; 7844 7845 btrfs_end_transaction(trans); 7846 btrfs_btree_balance_dirty(fs_info); 7847 7848 trans = btrfs_start_transaction(root, 2); 7849 if (IS_ERR(trans)) { 7850 ret = PTR_ERR(trans); 7851 trans = NULL; 7852 break; 7853 } 7854 7855 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7856 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7857 &rsv, min_size, false); 7858 /* 7859 * We have reserved 2 metadata units when we started the 7860 * transaction and min_size matches 1 unit, so this should never 7861 * fail, but if it does, it's not critical we just fail truncation. 7862 */ 7863 if (WARN_ON(ret)) 7864 break; 7865 7866 trans->block_rsv = &rsv; 7867 } 7868 7869 /* 7870 * We can't call btrfs_truncate_block inside a trans handle as we could 7871 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7872 * know we've truncated everything except the last little bit, and can 7873 * do btrfs_truncate_block and then update the disk_i_size. 7874 */ 7875 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7876 btrfs_end_transaction(trans); 7877 btrfs_btree_balance_dirty(fs_info); 7878 7879 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7880 inode->vfs_inode.i_size, (u64)-1); 7881 if (ret) 7882 goto out; 7883 trans = btrfs_start_transaction(root, 1); 7884 if (IS_ERR(trans)) { 7885 ret = PTR_ERR(trans); 7886 goto out; 7887 } 7888 btrfs_inode_safe_disk_i_size_write(inode, 0); 7889 } 7890 7891 if (trans) { 7892 int ret2; 7893 7894 trans->block_rsv = &fs_info->trans_block_rsv; 7895 ret2 = btrfs_update_inode(trans, inode); 7896 if (ret2 && !ret) 7897 ret = ret2; 7898 7899 ret2 = btrfs_end_transaction(trans); 7900 if (ret2 && !ret) 7901 ret = ret2; 7902 btrfs_btree_balance_dirty(fs_info); 7903 } 7904 out: 7905 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7906 /* 7907 * So if we truncate and then write and fsync we normally would just 7908 * write the extents that changed, which is a problem if we need to 7909 * first truncate that entire inode. So set this flag so we write out 7910 * all of the extents in the inode to the sync log so we're completely 7911 * safe. 7912 * 7913 * If no extents were dropped or trimmed we don't need to force the next 7914 * fsync to truncate all the inode's items from the log and re-log them 7915 * all. This means the truncate operation did not change the file size, 7916 * or changed it to a smaller size but there was only an implicit hole 7917 * between the old i_size and the new i_size, and there were no prealloc 7918 * extents beyond i_size to drop. 7919 */ 7920 if (control.extents_found > 0) 7921 btrfs_set_inode_full_sync(inode); 7922 7923 return ret; 7924 } 7925 7926 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7927 struct inode *dir) 7928 { 7929 struct inode *inode; 7930 7931 inode = new_inode(dir->i_sb); 7932 if (inode) { 7933 /* 7934 * Subvolumes don't inherit the sgid bit or the parent's gid if 7935 * the parent's sgid bit is set. This is probably a bug. 7936 */ 7937 inode_init_owner(idmap, inode, NULL, 7938 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7939 inode->i_op = &btrfs_dir_inode_operations; 7940 inode->i_fop = &btrfs_dir_file_operations; 7941 } 7942 return inode; 7943 } 7944 7945 struct inode *btrfs_alloc_inode(struct super_block *sb) 7946 { 7947 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7948 struct btrfs_inode *ei; 7949 struct inode *inode; 7950 7951 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7952 if (!ei) 7953 return NULL; 7954 7955 ei->root = NULL; 7956 ei->generation = 0; 7957 ei->last_trans = 0; 7958 ei->last_sub_trans = 0; 7959 ei->logged_trans = 0; 7960 ei->delalloc_bytes = 0; 7961 /* new_delalloc_bytes and last_dir_index_offset are in a union. */ 7962 ei->new_delalloc_bytes = 0; 7963 ei->defrag_bytes = 0; 7964 ei->disk_i_size = 0; 7965 ei->flags = 0; 7966 ei->ro_flags = 0; 7967 /* 7968 * ->index_cnt will be properly initialized later when creating a new 7969 * inode (btrfs_create_new_inode()) or when reading an existing inode 7970 * from disk (btrfs_read_locked_inode()). 7971 */ 7972 ei->csum_bytes = 0; 7973 ei->dir_index = 0; 7974 ei->last_unlink_trans = 0; 7975 ei->last_reflink_trans = 0; 7976 ei->last_log_commit = 0; 7977 7978 spin_lock_init(&ei->lock); 7979 ei->outstanding_extents = 0; 7980 if (sb->s_magic != BTRFS_TEST_MAGIC) 7981 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7982 BTRFS_BLOCK_RSV_DELALLOC); 7983 ei->runtime_flags = 0; 7984 ei->prop_compress = BTRFS_COMPRESS_NONE; 7985 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7986 7987 ei->delayed_node = NULL; 7988 7989 ei->i_otime_sec = 0; 7990 ei->i_otime_nsec = 0; 7991 7992 inode = &ei->vfs_inode; 7993 btrfs_extent_map_tree_init(&ei->extent_tree); 7994 7995 /* This io tree sets the valid inode. */ 7996 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7997 ei->io_tree.inode = ei; 7998 7999 ei->file_extent_tree = NULL; 8000 8001 mutex_init(&ei->log_mutex); 8002 spin_lock_init(&ei->ordered_tree_lock); 8003 ei->ordered_tree = RB_ROOT; 8004 ei->ordered_tree_last = NULL; 8005 INIT_LIST_HEAD(&ei->delalloc_inodes); 8006 INIT_LIST_HEAD(&ei->delayed_iput); 8007 init_rwsem(&ei->i_mmap_lock); 8008 8009 return inode; 8010 } 8011 8012 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8013 void btrfs_test_destroy_inode(struct inode *inode) 8014 { 8015 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8016 kfree(BTRFS_I(inode)->file_extent_tree); 8017 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8018 } 8019 #endif 8020 8021 void btrfs_free_inode(struct inode *inode) 8022 { 8023 kfree(BTRFS_I(inode)->file_extent_tree); 8024 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8025 } 8026 8027 void btrfs_destroy_inode(struct inode *vfs_inode) 8028 { 8029 struct btrfs_ordered_extent *ordered; 8030 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8031 struct btrfs_root *root = inode->root; 8032 bool freespace_inode; 8033 8034 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8035 WARN_ON(vfs_inode->i_data.nrpages); 8036 WARN_ON(inode->block_rsv.reserved); 8037 WARN_ON(inode->block_rsv.size); 8038 WARN_ON(inode->outstanding_extents); 8039 if (!S_ISDIR(vfs_inode->i_mode)) { 8040 WARN_ON(inode->delalloc_bytes); 8041 WARN_ON(inode->new_delalloc_bytes); 8042 WARN_ON(inode->csum_bytes); 8043 } 8044 if (!root || !btrfs_is_data_reloc_root(root)) 8045 WARN_ON(inode->defrag_bytes); 8046 8047 /* 8048 * This can happen where we create an inode, but somebody else also 8049 * created the same inode and we need to destroy the one we already 8050 * created. 8051 */ 8052 if (!root) 8053 return; 8054 8055 /* 8056 * If this is a free space inode do not take the ordered extents lockdep 8057 * map. 8058 */ 8059 freespace_inode = btrfs_is_free_space_inode(inode); 8060 8061 while (1) { 8062 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8063 if (!ordered) 8064 break; 8065 else { 8066 btrfs_err(root->fs_info, 8067 "found ordered extent %llu %llu on inode cleanup", 8068 ordered->file_offset, ordered->num_bytes); 8069 8070 if (!freespace_inode) 8071 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8072 8073 btrfs_remove_ordered_extent(inode, ordered); 8074 btrfs_put_ordered_extent(ordered); 8075 btrfs_put_ordered_extent(ordered); 8076 } 8077 } 8078 btrfs_qgroup_check_reserved_leak(inode); 8079 btrfs_del_inode_from_root(inode); 8080 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8081 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8082 btrfs_put_root(inode->root); 8083 } 8084 8085 int btrfs_drop_inode(struct inode *inode) 8086 { 8087 struct btrfs_root *root = BTRFS_I(inode)->root; 8088 8089 if (root == NULL) 8090 return 1; 8091 8092 /* the snap/subvol tree is on deleting */ 8093 if (btrfs_root_refs(&root->root_item) == 0) 8094 return 1; 8095 else 8096 return inode_generic_drop(inode); 8097 } 8098 8099 static void init_once(void *foo) 8100 { 8101 struct btrfs_inode *ei = foo; 8102 8103 inode_init_once(&ei->vfs_inode); 8104 #ifdef CONFIG_FS_VERITY 8105 ei->i_verity_info = NULL; 8106 #endif 8107 } 8108 8109 void __cold btrfs_destroy_cachep(void) 8110 { 8111 /* 8112 * Make sure all delayed rcu free inodes are flushed before we 8113 * destroy cache. 8114 */ 8115 rcu_barrier(); 8116 kmem_cache_destroy(btrfs_inode_cachep); 8117 } 8118 8119 int __init btrfs_init_cachep(void) 8120 { 8121 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8122 sizeof(struct btrfs_inode), 0, 8123 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8124 init_once); 8125 if (!btrfs_inode_cachep) 8126 return -ENOMEM; 8127 8128 return 0; 8129 } 8130 8131 static int btrfs_getattr(struct mnt_idmap *idmap, 8132 const struct path *path, struct kstat *stat, 8133 u32 request_mask, unsigned int flags) 8134 { 8135 u64 delalloc_bytes; 8136 u64 inode_bytes; 8137 struct inode *inode = d_inode(path->dentry); 8138 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8139 u32 bi_flags = BTRFS_I(inode)->flags; 8140 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8141 8142 stat->result_mask |= STATX_BTIME; 8143 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8144 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8145 if (bi_flags & BTRFS_INODE_APPEND) 8146 stat->attributes |= STATX_ATTR_APPEND; 8147 if (bi_flags & BTRFS_INODE_COMPRESS) 8148 stat->attributes |= STATX_ATTR_COMPRESSED; 8149 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8150 stat->attributes |= STATX_ATTR_IMMUTABLE; 8151 if (bi_flags & BTRFS_INODE_NODUMP) 8152 stat->attributes |= STATX_ATTR_NODUMP; 8153 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8154 stat->attributes |= STATX_ATTR_VERITY; 8155 8156 stat->attributes_mask |= (STATX_ATTR_APPEND | 8157 STATX_ATTR_COMPRESSED | 8158 STATX_ATTR_IMMUTABLE | 8159 STATX_ATTR_NODUMP); 8160 8161 generic_fillattr(idmap, request_mask, inode, stat); 8162 stat->dev = BTRFS_I(inode)->root->anon_dev; 8163 8164 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8165 stat->result_mask |= STATX_SUBVOL; 8166 8167 spin_lock(&BTRFS_I(inode)->lock); 8168 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8169 inode_bytes = inode_get_bytes(inode); 8170 spin_unlock(&BTRFS_I(inode)->lock); 8171 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8172 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8173 return 0; 8174 } 8175 8176 static int btrfs_rename_exchange(struct inode *old_dir, 8177 struct dentry *old_dentry, 8178 struct inode *new_dir, 8179 struct dentry *new_dentry) 8180 { 8181 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8182 struct btrfs_trans_handle *trans; 8183 unsigned int trans_num_items; 8184 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8185 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8186 struct inode *new_inode = new_dentry->d_inode; 8187 struct inode *old_inode = old_dentry->d_inode; 8188 struct btrfs_rename_ctx old_rename_ctx; 8189 struct btrfs_rename_ctx new_rename_ctx; 8190 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8191 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8192 u64 old_idx = 0; 8193 u64 new_idx = 0; 8194 int ret; 8195 int ret2; 8196 bool need_abort = false; 8197 bool logs_pinned = false; 8198 struct fscrypt_name old_fname, new_fname; 8199 struct fscrypt_str *old_name, *new_name; 8200 8201 /* 8202 * For non-subvolumes allow exchange only within one subvolume, in the 8203 * same inode namespace. Two subvolumes (represented as directory) can 8204 * be exchanged as they're a logical link and have a fixed inode number. 8205 */ 8206 if (root != dest && 8207 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8208 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8209 return -EXDEV; 8210 8211 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8212 if (ret) 8213 return ret; 8214 8215 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8216 if (ret) { 8217 fscrypt_free_filename(&old_fname); 8218 return ret; 8219 } 8220 8221 old_name = &old_fname.disk_name; 8222 new_name = &new_fname.disk_name; 8223 8224 /* close the race window with snapshot create/destroy ioctl */ 8225 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8226 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8227 down_read(&fs_info->subvol_sem); 8228 8229 /* 8230 * For each inode: 8231 * 1 to remove old dir item 8232 * 1 to remove old dir index 8233 * 1 to add new dir item 8234 * 1 to add new dir index 8235 * 1 to update parent inode 8236 * 8237 * If the parents are the same, we only need to account for one 8238 */ 8239 trans_num_items = (old_dir == new_dir ? 9 : 10); 8240 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8241 /* 8242 * 1 to remove old root ref 8243 * 1 to remove old root backref 8244 * 1 to add new root ref 8245 * 1 to add new root backref 8246 */ 8247 trans_num_items += 4; 8248 } else { 8249 /* 8250 * 1 to update inode item 8251 * 1 to remove old inode ref 8252 * 1 to add new inode ref 8253 */ 8254 trans_num_items += 3; 8255 } 8256 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8257 trans_num_items += 4; 8258 else 8259 trans_num_items += 3; 8260 trans = btrfs_start_transaction(root, trans_num_items); 8261 if (IS_ERR(trans)) { 8262 ret = PTR_ERR(trans); 8263 goto out_notrans; 8264 } 8265 8266 if (dest != root) { 8267 ret = btrfs_record_root_in_trans(trans, dest); 8268 if (ret) 8269 goto out_fail; 8270 } 8271 8272 /* 8273 * We need to find a free sequence number both in the source and 8274 * in the destination directory for the exchange. 8275 */ 8276 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8277 if (ret) 8278 goto out_fail; 8279 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8280 if (ret) 8281 goto out_fail; 8282 8283 BTRFS_I(old_inode)->dir_index = 0ULL; 8284 BTRFS_I(new_inode)->dir_index = 0ULL; 8285 8286 /* Reference for the source. */ 8287 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8288 /* force full log commit if subvolume involved. */ 8289 btrfs_set_log_full_commit(trans); 8290 } else { 8291 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8292 btrfs_ino(BTRFS_I(new_dir)), 8293 old_idx); 8294 if (ret) 8295 goto out_fail; 8296 need_abort = true; 8297 } 8298 8299 /* And now for the dest. */ 8300 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8301 /* force full log commit if subvolume involved. */ 8302 btrfs_set_log_full_commit(trans); 8303 } else { 8304 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8305 btrfs_ino(BTRFS_I(old_dir)), 8306 new_idx); 8307 if (ret) { 8308 if (unlikely(need_abort)) 8309 btrfs_abort_transaction(trans, ret); 8310 goto out_fail; 8311 } 8312 } 8313 8314 /* Update inode version and ctime/mtime. */ 8315 inode_inc_iversion(old_dir); 8316 inode_inc_iversion(new_dir); 8317 inode_inc_iversion(old_inode); 8318 inode_inc_iversion(new_inode); 8319 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8320 8321 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8322 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8323 /* 8324 * If we are renaming in the same directory (and it's not for 8325 * root entries) pin the log early to prevent any concurrent 8326 * task from logging the directory after we removed the old 8327 * entries and before we add the new entries, otherwise that 8328 * task can sync a log without any entry for the inodes we are 8329 * renaming and therefore replaying that log, if a power failure 8330 * happens after syncing the log, would result in deleting the 8331 * inodes. 8332 * 8333 * If the rename affects two different directories, we want to 8334 * make sure the that there's no log commit that contains 8335 * updates for only one of the directories but not for the 8336 * other. 8337 * 8338 * If we are renaming an entry for a root, we don't care about 8339 * log updates since we called btrfs_set_log_full_commit(). 8340 */ 8341 btrfs_pin_log_trans(root); 8342 btrfs_pin_log_trans(dest); 8343 logs_pinned = true; 8344 } 8345 8346 if (old_dentry->d_parent != new_dentry->d_parent) { 8347 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8348 BTRFS_I(old_inode), true); 8349 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8350 BTRFS_I(new_inode), true); 8351 } 8352 8353 /* src is a subvolume */ 8354 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8355 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8356 if (unlikely(ret)) { 8357 btrfs_abort_transaction(trans, ret); 8358 goto out_fail; 8359 } 8360 } else { /* src is an inode */ 8361 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8362 BTRFS_I(old_dentry->d_inode), 8363 old_name, &old_rename_ctx); 8364 if (unlikely(ret)) { 8365 btrfs_abort_transaction(trans, ret); 8366 goto out_fail; 8367 } 8368 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8369 if (unlikely(ret)) { 8370 btrfs_abort_transaction(trans, ret); 8371 goto out_fail; 8372 } 8373 } 8374 8375 /* dest is a subvolume */ 8376 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8377 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8378 if (unlikely(ret)) { 8379 btrfs_abort_transaction(trans, ret); 8380 goto out_fail; 8381 } 8382 } else { /* dest is an inode */ 8383 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8384 BTRFS_I(new_dentry->d_inode), 8385 new_name, &new_rename_ctx); 8386 if (unlikely(ret)) { 8387 btrfs_abort_transaction(trans, ret); 8388 goto out_fail; 8389 } 8390 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8391 if (unlikely(ret)) { 8392 btrfs_abort_transaction(trans, ret); 8393 goto out_fail; 8394 } 8395 } 8396 8397 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8398 new_name, 0, old_idx); 8399 if (unlikely(ret)) { 8400 btrfs_abort_transaction(trans, ret); 8401 goto out_fail; 8402 } 8403 8404 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8405 old_name, 0, new_idx); 8406 if (unlikely(ret)) { 8407 btrfs_abort_transaction(trans, ret); 8408 goto out_fail; 8409 } 8410 8411 if (old_inode->i_nlink == 1) 8412 BTRFS_I(old_inode)->dir_index = old_idx; 8413 if (new_inode->i_nlink == 1) 8414 BTRFS_I(new_inode)->dir_index = new_idx; 8415 8416 /* 8417 * Do the log updates for all inodes. 8418 * 8419 * If either entry is for a root we don't need to update the logs since 8420 * we've called btrfs_set_log_full_commit() before. 8421 */ 8422 if (logs_pinned) { 8423 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8424 old_rename_ctx.index, new_dentry->d_parent); 8425 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8426 new_rename_ctx.index, old_dentry->d_parent); 8427 } 8428 8429 out_fail: 8430 if (logs_pinned) { 8431 btrfs_end_log_trans(root); 8432 btrfs_end_log_trans(dest); 8433 } 8434 ret2 = btrfs_end_transaction(trans); 8435 ret = ret ? ret : ret2; 8436 out_notrans: 8437 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8438 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8439 up_read(&fs_info->subvol_sem); 8440 8441 fscrypt_free_filename(&new_fname); 8442 fscrypt_free_filename(&old_fname); 8443 return ret; 8444 } 8445 8446 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8447 struct inode *dir) 8448 { 8449 struct inode *inode; 8450 8451 inode = new_inode(dir->i_sb); 8452 if (inode) { 8453 inode_init_owner(idmap, inode, dir, 8454 S_IFCHR | WHITEOUT_MODE); 8455 inode->i_op = &btrfs_special_inode_operations; 8456 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8457 } 8458 return inode; 8459 } 8460 8461 static int btrfs_rename(struct mnt_idmap *idmap, 8462 struct inode *old_dir, struct dentry *old_dentry, 8463 struct inode *new_dir, struct dentry *new_dentry, 8464 unsigned int flags) 8465 { 8466 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8467 struct btrfs_new_inode_args whiteout_args = { 8468 .dir = old_dir, 8469 .dentry = old_dentry, 8470 }; 8471 struct btrfs_trans_handle *trans; 8472 unsigned int trans_num_items; 8473 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8474 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8475 struct inode *new_inode = d_inode(new_dentry); 8476 struct inode *old_inode = d_inode(old_dentry); 8477 struct btrfs_rename_ctx rename_ctx; 8478 u64 index = 0; 8479 int ret; 8480 int ret2; 8481 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8482 struct fscrypt_name old_fname, new_fname; 8483 bool logs_pinned = false; 8484 8485 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8486 return -EPERM; 8487 8488 /* we only allow rename subvolume link between subvolumes */ 8489 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8490 return -EXDEV; 8491 8492 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8493 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8494 return -ENOTEMPTY; 8495 8496 if (S_ISDIR(old_inode->i_mode) && new_inode && 8497 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8498 return -ENOTEMPTY; 8499 8500 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8501 if (ret) 8502 return ret; 8503 8504 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8505 if (ret) { 8506 fscrypt_free_filename(&old_fname); 8507 return ret; 8508 } 8509 8510 /* check for collisions, even if the name isn't there */ 8511 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8512 if (ret) { 8513 if (ret == -EEXIST) { 8514 /* we shouldn't get 8515 * eexist without a new_inode */ 8516 if (WARN_ON(!new_inode)) { 8517 goto out_fscrypt_names; 8518 } 8519 } else { 8520 /* maybe -EOVERFLOW */ 8521 goto out_fscrypt_names; 8522 } 8523 } 8524 ret = 0; 8525 8526 /* 8527 * we're using rename to replace one file with another. Start IO on it 8528 * now so we don't add too much work to the end of the transaction 8529 */ 8530 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8531 filemap_flush(old_inode->i_mapping); 8532 8533 if (flags & RENAME_WHITEOUT) { 8534 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8535 if (!whiteout_args.inode) { 8536 ret = -ENOMEM; 8537 goto out_fscrypt_names; 8538 } 8539 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8540 if (ret) 8541 goto out_whiteout_inode; 8542 } else { 8543 /* 1 to update the old parent inode. */ 8544 trans_num_items = 1; 8545 } 8546 8547 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8548 /* Close the race window with snapshot create/destroy ioctl */ 8549 down_read(&fs_info->subvol_sem); 8550 /* 8551 * 1 to remove old root ref 8552 * 1 to remove old root backref 8553 * 1 to add new root ref 8554 * 1 to add new root backref 8555 */ 8556 trans_num_items += 4; 8557 } else { 8558 /* 8559 * 1 to update inode 8560 * 1 to remove old inode ref 8561 * 1 to add new inode ref 8562 */ 8563 trans_num_items += 3; 8564 } 8565 /* 8566 * 1 to remove old dir item 8567 * 1 to remove old dir index 8568 * 1 to add new dir item 8569 * 1 to add new dir index 8570 */ 8571 trans_num_items += 4; 8572 /* 1 to update new parent inode if it's not the same as the old parent */ 8573 if (new_dir != old_dir) 8574 trans_num_items++; 8575 if (new_inode) { 8576 /* 8577 * 1 to update inode 8578 * 1 to remove inode ref 8579 * 1 to remove dir item 8580 * 1 to remove dir index 8581 * 1 to possibly add orphan item 8582 */ 8583 trans_num_items += 5; 8584 } 8585 trans = btrfs_start_transaction(root, trans_num_items); 8586 if (IS_ERR(trans)) { 8587 ret = PTR_ERR(trans); 8588 goto out_notrans; 8589 } 8590 8591 if (dest != root) { 8592 ret = btrfs_record_root_in_trans(trans, dest); 8593 if (ret) 8594 goto out_fail; 8595 } 8596 8597 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8598 if (ret) 8599 goto out_fail; 8600 8601 BTRFS_I(old_inode)->dir_index = 0ULL; 8602 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8603 /* force full log commit if subvolume involved. */ 8604 btrfs_set_log_full_commit(trans); 8605 } else { 8606 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8607 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8608 index); 8609 if (ret) 8610 goto out_fail; 8611 } 8612 8613 inode_inc_iversion(old_dir); 8614 inode_inc_iversion(new_dir); 8615 inode_inc_iversion(old_inode); 8616 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8617 8618 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8619 /* 8620 * If we are renaming in the same directory (and it's not a 8621 * root entry) pin the log to prevent any concurrent task from 8622 * logging the directory after we removed the old entry and 8623 * before we add the new entry, otherwise that task can sync 8624 * a log without any entry for the inode we are renaming and 8625 * therefore replaying that log, if a power failure happens 8626 * after syncing the log, would result in deleting the inode. 8627 * 8628 * If the rename affects two different directories, we want to 8629 * make sure the that there's no log commit that contains 8630 * updates for only one of the directories but not for the 8631 * other. 8632 * 8633 * If we are renaming an entry for a root, we don't care about 8634 * log updates since we called btrfs_set_log_full_commit(). 8635 */ 8636 btrfs_pin_log_trans(root); 8637 btrfs_pin_log_trans(dest); 8638 logs_pinned = true; 8639 } 8640 8641 if (old_dentry->d_parent != new_dentry->d_parent) 8642 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8643 BTRFS_I(old_inode), true); 8644 8645 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8646 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8647 if (unlikely(ret)) { 8648 btrfs_abort_transaction(trans, ret); 8649 goto out_fail; 8650 } 8651 } else { 8652 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8653 BTRFS_I(d_inode(old_dentry)), 8654 &old_fname.disk_name, &rename_ctx); 8655 if (unlikely(ret)) { 8656 btrfs_abort_transaction(trans, ret); 8657 goto out_fail; 8658 } 8659 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8660 if (unlikely(ret)) { 8661 btrfs_abort_transaction(trans, ret); 8662 goto out_fail; 8663 } 8664 } 8665 8666 if (new_inode) { 8667 inode_inc_iversion(new_inode); 8668 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8669 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8670 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8671 if (unlikely(ret)) { 8672 btrfs_abort_transaction(trans, ret); 8673 goto out_fail; 8674 } 8675 BUG_ON(new_inode->i_nlink == 0); 8676 } else { 8677 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8678 BTRFS_I(d_inode(new_dentry)), 8679 &new_fname.disk_name); 8680 if (unlikely(ret)) { 8681 btrfs_abort_transaction(trans, ret); 8682 goto out_fail; 8683 } 8684 } 8685 if (new_inode->i_nlink == 0) { 8686 ret = btrfs_orphan_add(trans, 8687 BTRFS_I(d_inode(new_dentry))); 8688 if (unlikely(ret)) { 8689 btrfs_abort_transaction(trans, ret); 8690 goto out_fail; 8691 } 8692 } 8693 } 8694 8695 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8696 &new_fname.disk_name, 0, index); 8697 if (unlikely(ret)) { 8698 btrfs_abort_transaction(trans, ret); 8699 goto out_fail; 8700 } 8701 8702 if (old_inode->i_nlink == 1) 8703 BTRFS_I(old_inode)->dir_index = index; 8704 8705 if (logs_pinned) 8706 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8707 rename_ctx.index, new_dentry->d_parent); 8708 8709 if (flags & RENAME_WHITEOUT) { 8710 ret = btrfs_create_new_inode(trans, &whiteout_args); 8711 if (unlikely(ret)) { 8712 btrfs_abort_transaction(trans, ret); 8713 goto out_fail; 8714 } else { 8715 unlock_new_inode(whiteout_args.inode); 8716 iput(whiteout_args.inode); 8717 whiteout_args.inode = NULL; 8718 } 8719 } 8720 out_fail: 8721 if (logs_pinned) { 8722 btrfs_end_log_trans(root); 8723 btrfs_end_log_trans(dest); 8724 } 8725 ret2 = btrfs_end_transaction(trans); 8726 ret = ret ? ret : ret2; 8727 out_notrans: 8728 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8729 up_read(&fs_info->subvol_sem); 8730 if (flags & RENAME_WHITEOUT) 8731 btrfs_new_inode_args_destroy(&whiteout_args); 8732 out_whiteout_inode: 8733 if (flags & RENAME_WHITEOUT) 8734 iput(whiteout_args.inode); 8735 out_fscrypt_names: 8736 fscrypt_free_filename(&old_fname); 8737 fscrypt_free_filename(&new_fname); 8738 return ret; 8739 } 8740 8741 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8742 struct dentry *old_dentry, struct inode *new_dir, 8743 struct dentry *new_dentry, unsigned int flags) 8744 { 8745 int ret; 8746 8747 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8748 return -EINVAL; 8749 8750 if (flags & RENAME_EXCHANGE) 8751 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8752 new_dentry); 8753 else 8754 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8755 new_dentry, flags); 8756 8757 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8758 8759 return ret; 8760 } 8761 8762 struct btrfs_delalloc_work { 8763 struct inode *inode; 8764 struct completion completion; 8765 struct list_head list; 8766 struct btrfs_work work; 8767 }; 8768 8769 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8770 { 8771 struct btrfs_delalloc_work *delalloc_work; 8772 struct inode *inode; 8773 8774 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8775 work); 8776 inode = delalloc_work->inode; 8777 filemap_flush(inode->i_mapping); 8778 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8779 &BTRFS_I(inode)->runtime_flags)) 8780 filemap_flush(inode->i_mapping); 8781 8782 iput(inode); 8783 complete(&delalloc_work->completion); 8784 } 8785 8786 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8787 { 8788 struct btrfs_delalloc_work *work; 8789 8790 work = kmalloc(sizeof(*work), GFP_NOFS); 8791 if (!work) 8792 return NULL; 8793 8794 init_completion(&work->completion); 8795 INIT_LIST_HEAD(&work->list); 8796 work->inode = inode; 8797 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8798 8799 return work; 8800 } 8801 8802 /* 8803 * some fairly slow code that needs optimization. This walks the list 8804 * of all the inodes with pending delalloc and forces them to disk. 8805 */ 8806 static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write, 8807 bool snapshot, bool in_reclaim_context) 8808 { 8809 struct btrfs_delalloc_work *work, *next; 8810 LIST_HEAD(works); 8811 LIST_HEAD(splice); 8812 int ret = 0; 8813 8814 mutex_lock(&root->delalloc_mutex); 8815 spin_lock(&root->delalloc_lock); 8816 list_splice_init(&root->delalloc_inodes, &splice); 8817 while (!list_empty(&splice)) { 8818 struct btrfs_inode *inode; 8819 struct inode *tmp_inode; 8820 8821 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8822 8823 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8824 8825 if (in_reclaim_context && 8826 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8827 continue; 8828 8829 tmp_inode = igrab(&inode->vfs_inode); 8830 if (!tmp_inode) { 8831 cond_resched_lock(&root->delalloc_lock); 8832 continue; 8833 } 8834 spin_unlock(&root->delalloc_lock); 8835 8836 if (snapshot) 8837 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8838 if (nr_to_write == NULL) { 8839 work = btrfs_alloc_delalloc_work(tmp_inode); 8840 if (!work) { 8841 iput(tmp_inode); 8842 ret = -ENOMEM; 8843 goto out; 8844 } 8845 list_add_tail(&work->list, &works); 8846 btrfs_queue_work(root->fs_info->flush_workers, 8847 &work->work); 8848 } else { 8849 ret = filemap_flush_nr(tmp_inode->i_mapping, 8850 nr_to_write); 8851 btrfs_add_delayed_iput(inode); 8852 8853 if (ret || *nr_to_write <= 0) 8854 goto out; 8855 } 8856 cond_resched(); 8857 spin_lock(&root->delalloc_lock); 8858 } 8859 spin_unlock(&root->delalloc_lock); 8860 8861 out: 8862 list_for_each_entry_safe(work, next, &works, list) { 8863 list_del_init(&work->list); 8864 wait_for_completion(&work->completion); 8865 kfree(work); 8866 } 8867 8868 if (!list_empty(&splice)) { 8869 spin_lock(&root->delalloc_lock); 8870 list_splice_tail(&splice, &root->delalloc_inodes); 8871 spin_unlock(&root->delalloc_lock); 8872 } 8873 mutex_unlock(&root->delalloc_mutex); 8874 return ret; 8875 } 8876 8877 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8878 { 8879 struct btrfs_fs_info *fs_info = root->fs_info; 8880 8881 if (BTRFS_FS_ERROR(fs_info)) 8882 return -EROFS; 8883 return start_delalloc_inodes(root, NULL, true, in_reclaim_context); 8884 } 8885 8886 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8887 bool in_reclaim_context) 8888 { 8889 long *nr_to_write = nr == LONG_MAX ? NULL : &nr; 8890 struct btrfs_root *root; 8891 LIST_HEAD(splice); 8892 int ret; 8893 8894 if (BTRFS_FS_ERROR(fs_info)) 8895 return -EROFS; 8896 8897 mutex_lock(&fs_info->delalloc_root_mutex); 8898 spin_lock(&fs_info->delalloc_root_lock); 8899 list_splice_init(&fs_info->delalloc_roots, &splice); 8900 while (!list_empty(&splice)) { 8901 root = list_first_entry(&splice, struct btrfs_root, 8902 delalloc_root); 8903 root = btrfs_grab_root(root); 8904 BUG_ON(!root); 8905 list_move_tail(&root->delalloc_root, 8906 &fs_info->delalloc_roots); 8907 spin_unlock(&fs_info->delalloc_root_lock); 8908 8909 ret = start_delalloc_inodes(root, nr_to_write, false, 8910 in_reclaim_context); 8911 btrfs_put_root(root); 8912 if (ret < 0 || nr <= 0) 8913 goto out; 8914 spin_lock(&fs_info->delalloc_root_lock); 8915 } 8916 spin_unlock(&fs_info->delalloc_root_lock); 8917 8918 ret = 0; 8919 out: 8920 if (!list_empty(&splice)) { 8921 spin_lock(&fs_info->delalloc_root_lock); 8922 list_splice_tail(&splice, &fs_info->delalloc_roots); 8923 spin_unlock(&fs_info->delalloc_root_lock); 8924 } 8925 mutex_unlock(&fs_info->delalloc_root_mutex); 8926 return ret; 8927 } 8928 8929 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8930 struct dentry *dentry, const char *symname) 8931 { 8932 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8933 struct btrfs_trans_handle *trans; 8934 struct btrfs_root *root = BTRFS_I(dir)->root; 8935 struct btrfs_path *path; 8936 struct btrfs_key key; 8937 struct inode *inode; 8938 struct btrfs_new_inode_args new_inode_args = { 8939 .dir = dir, 8940 .dentry = dentry, 8941 }; 8942 unsigned int trans_num_items; 8943 int ret; 8944 int name_len; 8945 int datasize; 8946 unsigned long ptr; 8947 struct btrfs_file_extent_item *ei; 8948 struct extent_buffer *leaf; 8949 8950 name_len = strlen(symname); 8951 /* 8952 * Symlinks utilize uncompressed inline extent data, which should not 8953 * reach block size. 8954 */ 8955 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8956 name_len >= fs_info->sectorsize) 8957 return -ENAMETOOLONG; 8958 8959 inode = new_inode(dir->i_sb); 8960 if (!inode) 8961 return -ENOMEM; 8962 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8963 inode->i_op = &btrfs_symlink_inode_operations; 8964 inode_nohighmem(inode); 8965 inode->i_mapping->a_ops = &btrfs_aops; 8966 btrfs_i_size_write(BTRFS_I(inode), name_len); 8967 inode_set_bytes(inode, name_len); 8968 8969 new_inode_args.inode = inode; 8970 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8971 if (ret) 8972 goto out_inode; 8973 /* 1 additional item for the inline extent */ 8974 trans_num_items++; 8975 8976 trans = btrfs_start_transaction(root, trans_num_items); 8977 if (IS_ERR(trans)) { 8978 ret = PTR_ERR(trans); 8979 goto out_new_inode_args; 8980 } 8981 8982 ret = btrfs_create_new_inode(trans, &new_inode_args); 8983 if (ret) 8984 goto out; 8985 8986 path = btrfs_alloc_path(); 8987 if (unlikely(!path)) { 8988 ret = -ENOMEM; 8989 btrfs_abort_transaction(trans, ret); 8990 discard_new_inode(inode); 8991 inode = NULL; 8992 goto out; 8993 } 8994 key.objectid = btrfs_ino(BTRFS_I(inode)); 8995 key.type = BTRFS_EXTENT_DATA_KEY; 8996 key.offset = 0; 8997 datasize = btrfs_file_extent_calc_inline_size(name_len); 8998 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8999 if (unlikely(ret)) { 9000 btrfs_abort_transaction(trans, ret); 9001 btrfs_free_path(path); 9002 discard_new_inode(inode); 9003 inode = NULL; 9004 goto out; 9005 } 9006 leaf = path->nodes[0]; 9007 ei = btrfs_item_ptr(leaf, path->slots[0], 9008 struct btrfs_file_extent_item); 9009 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9010 btrfs_set_file_extent_type(leaf, ei, 9011 BTRFS_FILE_EXTENT_INLINE); 9012 btrfs_set_file_extent_encryption(leaf, ei, 0); 9013 btrfs_set_file_extent_compression(leaf, ei, 0); 9014 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9015 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9016 9017 ptr = btrfs_file_extent_inline_start(ei); 9018 write_extent_buffer(leaf, symname, ptr, name_len); 9019 btrfs_free_path(path); 9020 9021 d_instantiate_new(dentry, inode); 9022 ret = 0; 9023 out: 9024 btrfs_end_transaction(trans); 9025 btrfs_btree_balance_dirty(fs_info); 9026 out_new_inode_args: 9027 btrfs_new_inode_args_destroy(&new_inode_args); 9028 out_inode: 9029 if (ret) 9030 iput(inode); 9031 return ret; 9032 } 9033 9034 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9035 struct btrfs_trans_handle *trans_in, 9036 struct btrfs_inode *inode, 9037 struct btrfs_key *ins, 9038 u64 file_offset) 9039 { 9040 struct btrfs_file_extent_item stack_fi; 9041 struct btrfs_replace_extent_info extent_info; 9042 struct btrfs_trans_handle *trans = trans_in; 9043 struct btrfs_path *path; 9044 u64 start = ins->objectid; 9045 u64 len = ins->offset; 9046 u64 qgroup_released = 0; 9047 int ret; 9048 9049 memset(&stack_fi, 0, sizeof(stack_fi)); 9050 9051 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9052 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9053 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9054 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9055 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9056 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9057 /* Encryption and other encoding is reserved and all 0 */ 9058 9059 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9060 if (ret < 0) 9061 return ERR_PTR(ret); 9062 9063 if (trans) { 9064 ret = insert_reserved_file_extent(trans, inode, 9065 file_offset, &stack_fi, 9066 true, qgroup_released); 9067 if (ret) 9068 goto free_qgroup; 9069 return trans; 9070 } 9071 9072 extent_info.disk_offset = start; 9073 extent_info.disk_len = len; 9074 extent_info.data_offset = 0; 9075 extent_info.data_len = len; 9076 extent_info.file_offset = file_offset; 9077 extent_info.extent_buf = (char *)&stack_fi; 9078 extent_info.is_new_extent = true; 9079 extent_info.update_times = true; 9080 extent_info.qgroup_reserved = qgroup_released; 9081 extent_info.insertions = 0; 9082 9083 path = btrfs_alloc_path(); 9084 if (!path) { 9085 ret = -ENOMEM; 9086 goto free_qgroup; 9087 } 9088 9089 ret = btrfs_replace_file_extents(inode, path, file_offset, 9090 file_offset + len - 1, &extent_info, 9091 &trans); 9092 btrfs_free_path(path); 9093 if (ret) 9094 goto free_qgroup; 9095 return trans; 9096 9097 free_qgroup: 9098 /* 9099 * We have released qgroup data range at the beginning of the function, 9100 * and normally qgroup_released bytes will be freed when committing 9101 * transaction. 9102 * But if we error out early, we have to free what we have released 9103 * or we leak qgroup data reservation. 9104 */ 9105 btrfs_qgroup_free_refroot(inode->root->fs_info, 9106 btrfs_root_id(inode->root), qgroup_released, 9107 BTRFS_QGROUP_RSV_DATA); 9108 return ERR_PTR(ret); 9109 } 9110 9111 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9112 u64 start, u64 num_bytes, u64 min_size, 9113 loff_t actual_len, u64 *alloc_hint, 9114 struct btrfs_trans_handle *trans) 9115 { 9116 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9117 struct extent_map *em; 9118 struct btrfs_root *root = BTRFS_I(inode)->root; 9119 struct btrfs_key ins; 9120 u64 cur_offset = start; 9121 u64 clear_offset = start; 9122 u64 i_size; 9123 u64 cur_bytes; 9124 u64 last_alloc = (u64)-1; 9125 int ret = 0; 9126 bool own_trans = true; 9127 u64 end = start + num_bytes - 1; 9128 9129 if (trans) 9130 own_trans = false; 9131 while (num_bytes > 0) { 9132 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9133 cur_bytes = max(cur_bytes, min_size); 9134 /* 9135 * If we are severely fragmented we could end up with really 9136 * small allocations, so if the allocator is returning small 9137 * chunks lets make its job easier by only searching for those 9138 * sized chunks. 9139 */ 9140 cur_bytes = min(cur_bytes, last_alloc); 9141 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9142 min_size, 0, *alloc_hint, &ins, true, false); 9143 if (ret) 9144 break; 9145 9146 /* 9147 * We've reserved this space, and thus converted it from 9148 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9149 * from here on out we will only need to clear our reservation 9150 * for the remaining unreserved area, so advance our 9151 * clear_offset by our extent size. 9152 */ 9153 clear_offset += ins.offset; 9154 9155 last_alloc = ins.offset; 9156 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9157 &ins, cur_offset); 9158 /* 9159 * Now that we inserted the prealloc extent we can finally 9160 * decrement the number of reservations in the block group. 9161 * If we did it before, we could race with relocation and have 9162 * relocation miss the reserved extent, making it fail later. 9163 */ 9164 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9165 if (IS_ERR(trans)) { 9166 ret = PTR_ERR(trans); 9167 btrfs_free_reserved_extent(fs_info, ins.objectid, 9168 ins.offset, false); 9169 break; 9170 } 9171 9172 em = btrfs_alloc_extent_map(); 9173 if (!em) { 9174 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9175 cur_offset + ins.offset - 1, false); 9176 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9177 goto next; 9178 } 9179 9180 em->start = cur_offset; 9181 em->len = ins.offset; 9182 em->disk_bytenr = ins.objectid; 9183 em->offset = 0; 9184 em->disk_num_bytes = ins.offset; 9185 em->ram_bytes = ins.offset; 9186 em->flags |= EXTENT_FLAG_PREALLOC; 9187 em->generation = trans->transid; 9188 9189 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9190 btrfs_free_extent_map(em); 9191 next: 9192 num_bytes -= ins.offset; 9193 cur_offset += ins.offset; 9194 *alloc_hint = ins.objectid + ins.offset; 9195 9196 inode_inc_iversion(inode); 9197 inode_set_ctime_current(inode); 9198 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9199 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9200 (actual_len > inode->i_size) && 9201 (cur_offset > inode->i_size)) { 9202 if (cur_offset > actual_len) 9203 i_size = actual_len; 9204 else 9205 i_size = cur_offset; 9206 i_size_write(inode, i_size); 9207 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9208 } 9209 9210 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9211 9212 if (unlikely(ret)) { 9213 btrfs_abort_transaction(trans, ret); 9214 if (own_trans) 9215 btrfs_end_transaction(trans); 9216 break; 9217 } 9218 9219 if (own_trans) { 9220 btrfs_end_transaction(trans); 9221 trans = NULL; 9222 } 9223 } 9224 if (clear_offset < end) 9225 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9226 end - clear_offset + 1); 9227 return ret; 9228 } 9229 9230 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9231 u64 start, u64 num_bytes, u64 min_size, 9232 loff_t actual_len, u64 *alloc_hint) 9233 { 9234 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9235 min_size, actual_len, alloc_hint, 9236 NULL); 9237 } 9238 9239 int btrfs_prealloc_file_range_trans(struct inode *inode, 9240 struct btrfs_trans_handle *trans, int mode, 9241 u64 start, u64 num_bytes, u64 min_size, 9242 loff_t actual_len, u64 *alloc_hint) 9243 { 9244 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9245 min_size, actual_len, alloc_hint, trans); 9246 } 9247 9248 /* 9249 * NOTE: in case you are adding MAY_EXEC check for directories: 9250 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to 9251 * elide calls here. 9252 */ 9253 static int btrfs_permission(struct mnt_idmap *idmap, 9254 struct inode *inode, int mask) 9255 { 9256 struct btrfs_root *root = BTRFS_I(inode)->root; 9257 umode_t mode = inode->i_mode; 9258 9259 if (mask & MAY_WRITE && 9260 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9261 if (btrfs_root_readonly(root)) 9262 return -EROFS; 9263 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9264 return -EACCES; 9265 } 9266 return generic_permission(idmap, inode, mask); 9267 } 9268 9269 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9270 struct file *file, umode_t mode) 9271 { 9272 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9273 struct btrfs_trans_handle *trans; 9274 struct btrfs_root *root = BTRFS_I(dir)->root; 9275 struct inode *inode; 9276 struct btrfs_new_inode_args new_inode_args = { 9277 .dir = dir, 9278 .dentry = file->f_path.dentry, 9279 .orphan = true, 9280 }; 9281 unsigned int trans_num_items; 9282 int ret; 9283 9284 inode = new_inode(dir->i_sb); 9285 if (!inode) 9286 return -ENOMEM; 9287 inode_init_owner(idmap, inode, dir, mode); 9288 inode->i_fop = &btrfs_file_operations; 9289 inode->i_op = &btrfs_file_inode_operations; 9290 inode->i_mapping->a_ops = &btrfs_aops; 9291 9292 new_inode_args.inode = inode; 9293 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9294 if (ret) 9295 goto out_inode; 9296 9297 trans = btrfs_start_transaction(root, trans_num_items); 9298 if (IS_ERR(trans)) { 9299 ret = PTR_ERR(trans); 9300 goto out_new_inode_args; 9301 } 9302 9303 ret = btrfs_create_new_inode(trans, &new_inode_args); 9304 9305 /* 9306 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9307 * set it to 1 because d_tmpfile() will issue a warning if the count is 9308 * 0, through: 9309 * 9310 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9311 */ 9312 set_nlink(inode, 1); 9313 9314 if (!ret) { 9315 d_tmpfile(file, inode); 9316 unlock_new_inode(inode); 9317 mark_inode_dirty(inode); 9318 } 9319 9320 btrfs_end_transaction(trans); 9321 btrfs_btree_balance_dirty(fs_info); 9322 out_new_inode_args: 9323 btrfs_new_inode_args_destroy(&new_inode_args); 9324 out_inode: 9325 if (ret) 9326 iput(inode); 9327 return finish_open_simple(file, ret); 9328 } 9329 9330 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9331 int compress_type) 9332 { 9333 switch (compress_type) { 9334 case BTRFS_COMPRESS_NONE: 9335 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9336 case BTRFS_COMPRESS_ZLIB: 9337 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9338 case BTRFS_COMPRESS_LZO: 9339 /* 9340 * The LZO format depends on the sector size. 64K is the maximum 9341 * sector size that we support. 9342 */ 9343 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9344 return -EINVAL; 9345 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9346 (fs_info->sectorsize_bits - 12); 9347 case BTRFS_COMPRESS_ZSTD: 9348 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9349 default: 9350 return -EUCLEAN; 9351 } 9352 } 9353 9354 static ssize_t btrfs_encoded_read_inline( 9355 struct kiocb *iocb, 9356 struct iov_iter *iter, u64 start, 9357 u64 lockend, 9358 struct extent_state **cached_state, 9359 u64 extent_start, size_t count, 9360 struct btrfs_ioctl_encoded_io_args *encoded, 9361 bool *unlocked) 9362 { 9363 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9364 struct btrfs_root *root = inode->root; 9365 struct btrfs_fs_info *fs_info = root->fs_info; 9366 struct extent_io_tree *io_tree = &inode->io_tree; 9367 BTRFS_PATH_AUTO_FREE(path); 9368 struct extent_buffer *leaf; 9369 struct btrfs_file_extent_item *item; 9370 u64 ram_bytes; 9371 unsigned long ptr; 9372 void *tmp; 9373 ssize_t ret; 9374 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9375 9376 path = btrfs_alloc_path(); 9377 if (!path) 9378 return -ENOMEM; 9379 9380 path->nowait = nowait; 9381 9382 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9383 extent_start, 0); 9384 if (ret) { 9385 if (unlikely(ret > 0)) { 9386 /* The extent item disappeared? */ 9387 return -EIO; 9388 } 9389 return ret; 9390 } 9391 leaf = path->nodes[0]; 9392 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9393 9394 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9395 ptr = btrfs_file_extent_inline_start(item); 9396 9397 encoded->len = min_t(u64, extent_start + ram_bytes, 9398 inode->vfs_inode.i_size) - iocb->ki_pos; 9399 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9400 btrfs_file_extent_compression(leaf, item)); 9401 if (ret < 0) 9402 return ret; 9403 encoded->compression = ret; 9404 if (encoded->compression) { 9405 size_t inline_size; 9406 9407 inline_size = btrfs_file_extent_inline_item_len(leaf, 9408 path->slots[0]); 9409 if (inline_size > count) 9410 return -ENOBUFS; 9411 9412 count = inline_size; 9413 encoded->unencoded_len = ram_bytes; 9414 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9415 } else { 9416 count = min_t(u64, count, encoded->len); 9417 encoded->len = count; 9418 encoded->unencoded_len = count; 9419 ptr += iocb->ki_pos - extent_start; 9420 } 9421 9422 tmp = kmalloc(count, GFP_NOFS); 9423 if (!tmp) 9424 return -ENOMEM; 9425 9426 read_extent_buffer(leaf, tmp, ptr, count); 9427 btrfs_release_path(path); 9428 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9429 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9430 *unlocked = true; 9431 9432 ret = copy_to_iter(tmp, count, iter); 9433 if (ret != count) 9434 ret = -EFAULT; 9435 kfree(tmp); 9436 9437 return ret; 9438 } 9439 9440 struct btrfs_encoded_read_private { 9441 struct completion *sync_reads; 9442 void *uring_ctx; 9443 refcount_t pending_refs; 9444 blk_status_t status; 9445 }; 9446 9447 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9448 { 9449 struct btrfs_encoded_read_private *priv = bbio->private; 9450 9451 if (bbio->bio.bi_status) { 9452 /* 9453 * The memory barrier implied by the refcount_dec_and_test() here 9454 * pairs with the memory barrier implied by the refcount_dec_and_test() 9455 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9456 * this write is observed before the load of status in 9457 * btrfs_encoded_read_regular_fill_pages(). 9458 */ 9459 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9460 } 9461 if (refcount_dec_and_test(&priv->pending_refs)) { 9462 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9463 9464 if (priv->uring_ctx) { 9465 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9466 kfree(priv); 9467 } else { 9468 complete(priv->sync_reads); 9469 } 9470 } 9471 bio_put(&bbio->bio); 9472 } 9473 9474 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9475 u64 disk_bytenr, u64 disk_io_size, 9476 struct page **pages, void *uring_ctx) 9477 { 9478 struct btrfs_encoded_read_private *priv, sync_priv; 9479 struct completion sync_reads; 9480 unsigned long i = 0; 9481 struct btrfs_bio *bbio; 9482 int ret; 9483 9484 /* 9485 * Fast path for synchronous reads which completes in this call, io_uring 9486 * needs longer time span. 9487 */ 9488 if (uring_ctx) { 9489 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9490 if (!priv) 9491 return -ENOMEM; 9492 } else { 9493 priv = &sync_priv; 9494 init_completion(&sync_reads); 9495 priv->sync_reads = &sync_reads; 9496 } 9497 9498 refcount_set(&priv->pending_refs, 1); 9499 priv->status = 0; 9500 priv->uring_ctx = uring_ctx; 9501 9502 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9503 btrfs_encoded_read_endio, priv); 9504 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9505 9506 do { 9507 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9508 9509 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9510 refcount_inc(&priv->pending_refs); 9511 btrfs_submit_bbio(bbio, 0); 9512 9513 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9514 btrfs_encoded_read_endio, priv); 9515 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9516 continue; 9517 } 9518 9519 i++; 9520 disk_bytenr += bytes; 9521 disk_io_size -= bytes; 9522 } while (disk_io_size); 9523 9524 refcount_inc(&priv->pending_refs); 9525 btrfs_submit_bbio(bbio, 0); 9526 9527 if (uring_ctx) { 9528 if (refcount_dec_and_test(&priv->pending_refs)) { 9529 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9530 btrfs_uring_read_extent_endio(uring_ctx, ret); 9531 kfree(priv); 9532 return ret; 9533 } 9534 9535 return -EIOCBQUEUED; 9536 } else { 9537 if (!refcount_dec_and_test(&priv->pending_refs)) 9538 wait_for_completion_io(&sync_reads); 9539 /* See btrfs_encoded_read_endio() for ordering. */ 9540 return blk_status_to_errno(READ_ONCE(priv->status)); 9541 } 9542 } 9543 9544 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9545 u64 start, u64 lockend, 9546 struct extent_state **cached_state, 9547 u64 disk_bytenr, u64 disk_io_size, 9548 size_t count, bool compressed, bool *unlocked) 9549 { 9550 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9551 struct extent_io_tree *io_tree = &inode->io_tree; 9552 struct page **pages; 9553 unsigned long nr_pages, i; 9554 u64 cur; 9555 size_t page_offset; 9556 ssize_t ret; 9557 9558 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9559 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9560 if (!pages) 9561 return -ENOMEM; 9562 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9563 if (ret) { 9564 ret = -ENOMEM; 9565 goto out; 9566 } 9567 9568 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9569 disk_io_size, pages, NULL); 9570 if (ret) 9571 goto out; 9572 9573 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9574 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9575 *unlocked = true; 9576 9577 if (compressed) { 9578 i = 0; 9579 page_offset = 0; 9580 } else { 9581 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9582 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9583 } 9584 cur = 0; 9585 while (cur < count) { 9586 size_t bytes = min_t(size_t, count - cur, 9587 PAGE_SIZE - page_offset); 9588 9589 if (copy_page_to_iter(pages[i], page_offset, bytes, 9590 iter) != bytes) { 9591 ret = -EFAULT; 9592 goto out; 9593 } 9594 i++; 9595 cur += bytes; 9596 page_offset = 0; 9597 } 9598 ret = count; 9599 out: 9600 for (i = 0; i < nr_pages; i++) { 9601 if (pages[i]) 9602 __free_page(pages[i]); 9603 } 9604 kfree(pages); 9605 return ret; 9606 } 9607 9608 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9609 struct btrfs_ioctl_encoded_io_args *encoded, 9610 struct extent_state **cached_state, 9611 u64 *disk_bytenr, u64 *disk_io_size) 9612 { 9613 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9614 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9615 struct extent_io_tree *io_tree = &inode->io_tree; 9616 ssize_t ret; 9617 size_t count = iov_iter_count(iter); 9618 u64 start, lockend; 9619 struct extent_map *em; 9620 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9621 bool unlocked = false; 9622 9623 file_accessed(iocb->ki_filp); 9624 9625 ret = btrfs_inode_lock(inode, 9626 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9627 if (ret) 9628 return ret; 9629 9630 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9631 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9632 return 0; 9633 } 9634 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9635 /* 9636 * We don't know how long the extent containing iocb->ki_pos is, but if 9637 * it's compressed we know that it won't be longer than this. 9638 */ 9639 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9640 9641 if (nowait) { 9642 struct btrfs_ordered_extent *ordered; 9643 9644 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9645 start, lockend)) { 9646 ret = -EAGAIN; 9647 goto out_unlock_inode; 9648 } 9649 9650 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9651 ret = -EAGAIN; 9652 goto out_unlock_inode; 9653 } 9654 9655 ordered = btrfs_lookup_ordered_range(inode, start, 9656 lockend - start + 1); 9657 if (ordered) { 9658 btrfs_put_ordered_extent(ordered); 9659 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9660 ret = -EAGAIN; 9661 goto out_unlock_inode; 9662 } 9663 } else { 9664 for (;;) { 9665 struct btrfs_ordered_extent *ordered; 9666 9667 ret = btrfs_wait_ordered_range(inode, start, 9668 lockend - start + 1); 9669 if (ret) 9670 goto out_unlock_inode; 9671 9672 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9673 ordered = btrfs_lookup_ordered_range(inode, start, 9674 lockend - start + 1); 9675 if (!ordered) 9676 break; 9677 btrfs_put_ordered_extent(ordered); 9678 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9679 cond_resched(); 9680 } 9681 } 9682 9683 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9684 if (IS_ERR(em)) { 9685 ret = PTR_ERR(em); 9686 goto out_unlock_extent; 9687 } 9688 9689 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9690 u64 extent_start = em->start; 9691 9692 /* 9693 * For inline extents we get everything we need out of the 9694 * extent item. 9695 */ 9696 btrfs_free_extent_map(em); 9697 em = NULL; 9698 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9699 cached_state, extent_start, 9700 count, encoded, &unlocked); 9701 goto out_unlock_extent; 9702 } 9703 9704 /* 9705 * We only want to return up to EOF even if the extent extends beyond 9706 * that. 9707 */ 9708 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9709 inode->vfs_inode.i_size) - iocb->ki_pos; 9710 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9711 (em->flags & EXTENT_FLAG_PREALLOC)) { 9712 *disk_bytenr = EXTENT_MAP_HOLE; 9713 count = min_t(u64, count, encoded->len); 9714 encoded->len = count; 9715 encoded->unencoded_len = count; 9716 } else if (btrfs_extent_map_is_compressed(em)) { 9717 *disk_bytenr = em->disk_bytenr; 9718 /* 9719 * Bail if the buffer isn't large enough to return the whole 9720 * compressed extent. 9721 */ 9722 if (em->disk_num_bytes > count) { 9723 ret = -ENOBUFS; 9724 goto out_em; 9725 } 9726 *disk_io_size = em->disk_num_bytes; 9727 count = em->disk_num_bytes; 9728 encoded->unencoded_len = em->ram_bytes; 9729 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9730 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9731 btrfs_extent_map_compression(em)); 9732 if (ret < 0) 9733 goto out_em; 9734 encoded->compression = ret; 9735 } else { 9736 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9737 if (encoded->len > count) 9738 encoded->len = count; 9739 /* 9740 * Don't read beyond what we locked. This also limits the page 9741 * allocations that we'll do. 9742 */ 9743 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9744 count = start + *disk_io_size - iocb->ki_pos; 9745 encoded->len = count; 9746 encoded->unencoded_len = count; 9747 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9748 } 9749 btrfs_free_extent_map(em); 9750 em = NULL; 9751 9752 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9753 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9754 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9755 unlocked = true; 9756 ret = iov_iter_zero(count, iter); 9757 if (ret != count) 9758 ret = -EFAULT; 9759 } else { 9760 ret = -EIOCBQUEUED; 9761 goto out_unlock_extent; 9762 } 9763 9764 out_em: 9765 btrfs_free_extent_map(em); 9766 out_unlock_extent: 9767 /* Leave inode and extent locked if we need to do a read. */ 9768 if (!unlocked && ret != -EIOCBQUEUED) 9769 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9770 out_unlock_inode: 9771 if (!unlocked && ret != -EIOCBQUEUED) 9772 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9773 return ret; 9774 } 9775 9776 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9777 const struct btrfs_ioctl_encoded_io_args *encoded) 9778 { 9779 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9780 struct btrfs_root *root = inode->root; 9781 struct btrfs_fs_info *fs_info = root->fs_info; 9782 struct extent_io_tree *io_tree = &inode->io_tree; 9783 struct extent_changeset *data_reserved = NULL; 9784 struct extent_state *cached_state = NULL; 9785 struct btrfs_ordered_extent *ordered; 9786 struct btrfs_file_extent file_extent; 9787 int compression; 9788 size_t orig_count; 9789 u64 start, end; 9790 u64 num_bytes, ram_bytes, disk_num_bytes; 9791 unsigned long nr_folios, i; 9792 struct folio **folios; 9793 struct btrfs_key ins; 9794 bool extent_reserved = false; 9795 struct extent_map *em; 9796 ssize_t ret; 9797 9798 switch (encoded->compression) { 9799 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9800 compression = BTRFS_COMPRESS_ZLIB; 9801 break; 9802 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9803 compression = BTRFS_COMPRESS_ZSTD; 9804 break; 9805 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9806 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9807 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9808 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9809 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9810 /* The sector size must match for LZO. */ 9811 if (encoded->compression - 9812 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9813 fs_info->sectorsize_bits) 9814 return -EINVAL; 9815 compression = BTRFS_COMPRESS_LZO; 9816 break; 9817 default: 9818 return -EINVAL; 9819 } 9820 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9821 return -EINVAL; 9822 9823 /* 9824 * Compressed extents should always have checksums, so error out if we 9825 * have a NOCOW file or inode was created while mounted with NODATASUM. 9826 */ 9827 if (inode->flags & BTRFS_INODE_NODATASUM) 9828 return -EINVAL; 9829 9830 orig_count = iov_iter_count(from); 9831 9832 /* The extent size must be sane. */ 9833 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9834 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9835 return -EINVAL; 9836 9837 /* 9838 * The compressed data must be smaller than the decompressed data. 9839 * 9840 * It's of course possible for data to compress to larger or the same 9841 * size, but the buffered I/O path falls back to no compression for such 9842 * data, and we don't want to break any assumptions by creating these 9843 * extents. 9844 * 9845 * Note that this is less strict than the current check we have that the 9846 * compressed data must be at least one sector smaller than the 9847 * decompressed data. We only want to enforce the weaker requirement 9848 * from old kernels that it is at least one byte smaller. 9849 */ 9850 if (orig_count >= encoded->unencoded_len) 9851 return -EINVAL; 9852 9853 /* The extent must start on a sector boundary. */ 9854 start = iocb->ki_pos; 9855 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9856 return -EINVAL; 9857 9858 /* 9859 * The extent must end on a sector boundary. However, we allow a write 9860 * which ends at or extends i_size to have an unaligned length; we round 9861 * up the extent size and set i_size to the unaligned end. 9862 */ 9863 if (start + encoded->len < inode->vfs_inode.i_size && 9864 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9865 return -EINVAL; 9866 9867 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9868 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9869 return -EINVAL; 9870 9871 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9872 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9873 end = start + num_bytes - 1; 9874 9875 /* 9876 * If the extent cannot be inline, the compressed data on disk must be 9877 * sector-aligned. For convenience, we extend it with zeroes if it 9878 * isn't. 9879 */ 9880 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9881 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9882 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9883 if (!folios) 9884 return -ENOMEM; 9885 for (i = 0; i < nr_folios; i++) { 9886 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9887 char *kaddr; 9888 9889 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9890 if (!folios[i]) { 9891 ret = -ENOMEM; 9892 goto out_folios; 9893 } 9894 kaddr = kmap_local_folio(folios[i], 0); 9895 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9896 kunmap_local(kaddr); 9897 ret = -EFAULT; 9898 goto out_folios; 9899 } 9900 if (bytes < PAGE_SIZE) 9901 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9902 kunmap_local(kaddr); 9903 } 9904 9905 for (;;) { 9906 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9907 if (ret) 9908 goto out_folios; 9909 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9910 start >> PAGE_SHIFT, 9911 end >> PAGE_SHIFT); 9912 if (ret) 9913 goto out_folios; 9914 btrfs_lock_extent(io_tree, start, end, &cached_state); 9915 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9916 if (!ordered && 9917 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9918 break; 9919 if (ordered) 9920 btrfs_put_ordered_extent(ordered); 9921 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9922 cond_resched(); 9923 } 9924 9925 /* 9926 * We don't use the higher-level delalloc space functions because our 9927 * num_bytes and disk_num_bytes are different. 9928 */ 9929 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9930 if (ret) 9931 goto out_unlock; 9932 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9933 if (ret) 9934 goto out_free_data_space; 9935 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9936 false); 9937 if (ret) 9938 goto out_qgroup_free_data; 9939 9940 /* Try an inline extent first. */ 9941 if (encoded->unencoded_len == encoded->len && 9942 encoded->unencoded_offset == 0 && 9943 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9944 ret = __cow_file_range_inline(inode, encoded->len, 9945 orig_count, compression, folios[0], 9946 true); 9947 if (ret <= 0) { 9948 if (ret == 0) 9949 ret = orig_count; 9950 goto out_delalloc_release; 9951 } 9952 } 9953 9954 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9955 disk_num_bytes, 0, 0, &ins, true, true); 9956 if (ret) 9957 goto out_delalloc_release; 9958 extent_reserved = true; 9959 9960 file_extent.disk_bytenr = ins.objectid; 9961 file_extent.disk_num_bytes = ins.offset; 9962 file_extent.num_bytes = num_bytes; 9963 file_extent.ram_bytes = ram_bytes; 9964 file_extent.offset = encoded->unencoded_offset; 9965 file_extent.compression = compression; 9966 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9967 if (IS_ERR(em)) { 9968 ret = PTR_ERR(em); 9969 goto out_free_reserved; 9970 } 9971 btrfs_free_extent_map(em); 9972 9973 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9974 (1U << BTRFS_ORDERED_ENCODED) | 9975 (1U << BTRFS_ORDERED_COMPRESSED)); 9976 if (IS_ERR(ordered)) { 9977 btrfs_drop_extent_map_range(inode, start, end, false); 9978 ret = PTR_ERR(ordered); 9979 goto out_free_reserved; 9980 } 9981 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9982 9983 if (start + encoded->len > inode->vfs_inode.i_size) 9984 i_size_write(&inode->vfs_inode, start + encoded->len); 9985 9986 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9987 9988 btrfs_delalloc_release_extents(inode, num_bytes); 9989 9990 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9991 ret = orig_count; 9992 goto out; 9993 9994 out_free_reserved: 9995 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9996 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9997 out_delalloc_release: 9998 btrfs_delalloc_release_extents(inode, num_bytes); 9999 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10000 out_qgroup_free_data: 10001 if (ret < 0) 10002 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10003 out_free_data_space: 10004 /* 10005 * If btrfs_reserve_extent() succeeded, then we already decremented 10006 * bytes_may_use. 10007 */ 10008 if (!extent_reserved) 10009 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 10010 out_unlock: 10011 btrfs_unlock_extent(io_tree, start, end, &cached_state); 10012 out_folios: 10013 for (i = 0; i < nr_folios; i++) { 10014 if (folios[i]) 10015 folio_put(folios[i]); 10016 } 10017 kvfree(folios); 10018 out: 10019 if (ret >= 0) 10020 iocb->ki_pos += encoded->len; 10021 return ret; 10022 } 10023 10024 #ifdef CONFIG_SWAP 10025 /* 10026 * Add an entry indicating a block group or device which is pinned by a 10027 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10028 * negative errno on failure. 10029 */ 10030 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10031 bool is_block_group) 10032 { 10033 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10034 struct btrfs_swapfile_pin *sp, *entry; 10035 struct rb_node **p; 10036 struct rb_node *parent = NULL; 10037 10038 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10039 if (!sp) 10040 return -ENOMEM; 10041 sp->ptr = ptr; 10042 sp->inode = inode; 10043 sp->is_block_group = is_block_group; 10044 sp->bg_extent_count = 1; 10045 10046 spin_lock(&fs_info->swapfile_pins_lock); 10047 p = &fs_info->swapfile_pins.rb_node; 10048 while (*p) { 10049 parent = *p; 10050 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10051 if (sp->ptr < entry->ptr || 10052 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10053 p = &(*p)->rb_left; 10054 } else if (sp->ptr > entry->ptr || 10055 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10056 p = &(*p)->rb_right; 10057 } else { 10058 if (is_block_group) 10059 entry->bg_extent_count++; 10060 spin_unlock(&fs_info->swapfile_pins_lock); 10061 kfree(sp); 10062 return 1; 10063 } 10064 } 10065 rb_link_node(&sp->node, parent, p); 10066 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10067 spin_unlock(&fs_info->swapfile_pins_lock); 10068 return 0; 10069 } 10070 10071 /* Free all of the entries pinned by this swapfile. */ 10072 static void btrfs_free_swapfile_pins(struct inode *inode) 10073 { 10074 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10075 struct btrfs_swapfile_pin *sp; 10076 struct rb_node *node, *next; 10077 10078 spin_lock(&fs_info->swapfile_pins_lock); 10079 node = rb_first(&fs_info->swapfile_pins); 10080 while (node) { 10081 next = rb_next(node); 10082 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10083 if (sp->inode == inode) { 10084 rb_erase(&sp->node, &fs_info->swapfile_pins); 10085 if (sp->is_block_group) { 10086 btrfs_dec_block_group_swap_extents(sp->ptr, 10087 sp->bg_extent_count); 10088 btrfs_put_block_group(sp->ptr); 10089 } 10090 kfree(sp); 10091 } 10092 node = next; 10093 } 10094 spin_unlock(&fs_info->swapfile_pins_lock); 10095 } 10096 10097 struct btrfs_swap_info { 10098 u64 start; 10099 u64 block_start; 10100 u64 block_len; 10101 u64 lowest_ppage; 10102 u64 highest_ppage; 10103 unsigned long nr_pages; 10104 int nr_extents; 10105 }; 10106 10107 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10108 struct btrfs_swap_info *bsi) 10109 { 10110 unsigned long nr_pages; 10111 unsigned long max_pages; 10112 u64 first_ppage, first_ppage_reported, next_ppage; 10113 int ret; 10114 10115 /* 10116 * Our swapfile may have had its size extended after the swap header was 10117 * written. In that case activating the swapfile should not go beyond 10118 * the max size set in the swap header. 10119 */ 10120 if (bsi->nr_pages >= sis->max) 10121 return 0; 10122 10123 max_pages = sis->max - bsi->nr_pages; 10124 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10125 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10126 10127 if (first_ppage >= next_ppage) 10128 return 0; 10129 nr_pages = next_ppage - first_ppage; 10130 nr_pages = min(nr_pages, max_pages); 10131 10132 first_ppage_reported = first_ppage; 10133 if (bsi->start == 0) 10134 first_ppage_reported++; 10135 if (bsi->lowest_ppage > first_ppage_reported) 10136 bsi->lowest_ppage = first_ppage_reported; 10137 if (bsi->highest_ppage < (next_ppage - 1)) 10138 bsi->highest_ppage = next_ppage - 1; 10139 10140 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10141 if (ret < 0) 10142 return ret; 10143 bsi->nr_extents += ret; 10144 bsi->nr_pages += nr_pages; 10145 return 0; 10146 } 10147 10148 static void btrfs_swap_deactivate(struct file *file) 10149 { 10150 struct inode *inode = file_inode(file); 10151 10152 btrfs_free_swapfile_pins(inode); 10153 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10154 } 10155 10156 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10157 sector_t *span) 10158 { 10159 struct inode *inode = file_inode(file); 10160 struct btrfs_root *root = BTRFS_I(inode)->root; 10161 struct btrfs_fs_info *fs_info = root->fs_info; 10162 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10163 struct extent_state *cached_state = NULL; 10164 struct btrfs_chunk_map *map = NULL; 10165 struct btrfs_device *device = NULL; 10166 struct btrfs_swap_info bsi = { 10167 .lowest_ppage = (sector_t)-1ULL, 10168 }; 10169 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10170 struct btrfs_path *path = NULL; 10171 int ret = 0; 10172 u64 isize; 10173 u64 prev_extent_end = 0; 10174 10175 /* 10176 * Acquire the inode's mmap lock to prevent races with memory mapped 10177 * writes, as they could happen after we flush delalloc below and before 10178 * we lock the extent range further below. The inode was already locked 10179 * up in the call chain. 10180 */ 10181 btrfs_assert_inode_locked(BTRFS_I(inode)); 10182 down_write(&BTRFS_I(inode)->i_mmap_lock); 10183 10184 /* 10185 * If the swap file was just created, make sure delalloc is done. If the 10186 * file changes again after this, the user is doing something stupid and 10187 * we don't really care. 10188 */ 10189 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10190 if (ret) 10191 goto out_unlock_mmap; 10192 10193 /* 10194 * The inode is locked, so these flags won't change after we check them. 10195 */ 10196 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10197 btrfs_warn(fs_info, "swapfile must not be compressed"); 10198 ret = -EINVAL; 10199 goto out_unlock_mmap; 10200 } 10201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10202 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10203 ret = -EINVAL; 10204 goto out_unlock_mmap; 10205 } 10206 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10207 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10208 ret = -EINVAL; 10209 goto out_unlock_mmap; 10210 } 10211 10212 path = btrfs_alloc_path(); 10213 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10214 if (!path || !backref_ctx) { 10215 ret = -ENOMEM; 10216 goto out_unlock_mmap; 10217 } 10218 10219 /* 10220 * Balance or device remove/replace/resize can move stuff around from 10221 * under us. The exclop protection makes sure they aren't running/won't 10222 * run concurrently while we are mapping the swap extents, and 10223 * fs_info->swapfile_pins prevents them from running while the swap 10224 * file is active and moving the extents. Note that this also prevents 10225 * a concurrent device add which isn't actually necessary, but it's not 10226 * really worth the trouble to allow it. 10227 */ 10228 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10229 btrfs_warn(fs_info, 10230 "cannot activate swapfile while exclusive operation is running"); 10231 ret = -EBUSY; 10232 goto out_unlock_mmap; 10233 } 10234 10235 /* 10236 * Prevent snapshot creation while we are activating the swap file. 10237 * We do not want to race with snapshot creation. If snapshot creation 10238 * already started before we bumped nr_swapfiles from 0 to 1 and 10239 * completes before the first write into the swap file after it is 10240 * activated, than that write would fallback to COW. 10241 */ 10242 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10243 btrfs_exclop_finish(fs_info); 10244 btrfs_warn(fs_info, 10245 "cannot activate swapfile because snapshot creation is in progress"); 10246 ret = -EINVAL; 10247 goto out_unlock_mmap; 10248 } 10249 /* 10250 * Snapshots can create extents which require COW even if NODATACOW is 10251 * set. We use this counter to prevent snapshots. We must increment it 10252 * before walking the extents because we don't want a concurrent 10253 * snapshot to run after we've already checked the extents. 10254 * 10255 * It is possible that subvolume is marked for deletion but still not 10256 * removed yet. To prevent this race, we check the root status before 10257 * activating the swapfile. 10258 */ 10259 spin_lock(&root->root_item_lock); 10260 if (btrfs_root_dead(root)) { 10261 spin_unlock(&root->root_item_lock); 10262 10263 btrfs_drew_write_unlock(&root->snapshot_lock); 10264 btrfs_exclop_finish(fs_info); 10265 btrfs_warn(fs_info, 10266 "cannot activate swapfile because subvolume %llu is being deleted", 10267 btrfs_root_id(root)); 10268 ret = -EPERM; 10269 goto out_unlock_mmap; 10270 } 10271 atomic_inc(&root->nr_swapfiles); 10272 spin_unlock(&root->root_item_lock); 10273 10274 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10275 10276 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10277 while (prev_extent_end < isize) { 10278 struct btrfs_key key; 10279 struct extent_buffer *leaf; 10280 struct btrfs_file_extent_item *ei; 10281 struct btrfs_block_group *bg; 10282 u64 logical_block_start; 10283 u64 physical_block_start; 10284 u64 extent_gen; 10285 u64 disk_bytenr; 10286 u64 len; 10287 10288 key.objectid = btrfs_ino(BTRFS_I(inode)); 10289 key.type = BTRFS_EXTENT_DATA_KEY; 10290 key.offset = prev_extent_end; 10291 10292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10293 if (ret < 0) 10294 goto out; 10295 10296 /* 10297 * If key not found it means we have an implicit hole (NO_HOLES 10298 * is enabled). 10299 */ 10300 if (ret > 0) { 10301 btrfs_warn(fs_info, "swapfile must not have holes"); 10302 ret = -EINVAL; 10303 goto out; 10304 } 10305 10306 leaf = path->nodes[0]; 10307 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10308 10309 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10310 /* 10311 * It's unlikely we'll ever actually find ourselves 10312 * here, as a file small enough to fit inline won't be 10313 * big enough to store more than the swap header, but in 10314 * case something changes in the future, let's catch it 10315 * here rather than later. 10316 */ 10317 btrfs_warn(fs_info, "swapfile must not be inline"); 10318 ret = -EINVAL; 10319 goto out; 10320 } 10321 10322 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10323 btrfs_warn(fs_info, "swapfile must not be compressed"); 10324 ret = -EINVAL; 10325 goto out; 10326 } 10327 10328 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10329 if (disk_bytenr == 0) { 10330 btrfs_warn(fs_info, "swapfile must not have holes"); 10331 ret = -EINVAL; 10332 goto out; 10333 } 10334 10335 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10336 extent_gen = btrfs_file_extent_generation(leaf, ei); 10337 prev_extent_end = btrfs_file_extent_end(path); 10338 10339 if (prev_extent_end > isize) 10340 len = isize - key.offset; 10341 else 10342 len = btrfs_file_extent_num_bytes(leaf, ei); 10343 10344 backref_ctx->curr_leaf_bytenr = leaf->start; 10345 10346 /* 10347 * Don't need the path anymore, release to avoid deadlocks when 10348 * calling btrfs_is_data_extent_shared() because when joining a 10349 * transaction it can block waiting for the current one's commit 10350 * which in turn may be trying to lock the same leaf to flush 10351 * delayed items for example. 10352 */ 10353 btrfs_release_path(path); 10354 10355 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10356 extent_gen, backref_ctx); 10357 if (ret < 0) { 10358 goto out; 10359 } else if (ret > 0) { 10360 btrfs_warn(fs_info, 10361 "swapfile must not be copy-on-write"); 10362 ret = -EINVAL; 10363 goto out; 10364 } 10365 10366 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10367 if (IS_ERR(map)) { 10368 ret = PTR_ERR(map); 10369 goto out; 10370 } 10371 10372 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10373 btrfs_warn(fs_info, 10374 "swapfile must have single data profile"); 10375 ret = -EINVAL; 10376 goto out; 10377 } 10378 10379 if (device == NULL) { 10380 device = map->stripes[0].dev; 10381 ret = btrfs_add_swapfile_pin(inode, device, false); 10382 if (ret == 1) 10383 ret = 0; 10384 else if (ret) 10385 goto out; 10386 } else if (device != map->stripes[0].dev) { 10387 btrfs_warn(fs_info, "swapfile must be on one device"); 10388 ret = -EINVAL; 10389 goto out; 10390 } 10391 10392 physical_block_start = (map->stripes[0].physical + 10393 (logical_block_start - map->start)); 10394 btrfs_free_chunk_map(map); 10395 map = NULL; 10396 10397 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10398 if (!bg) { 10399 btrfs_warn(fs_info, 10400 "could not find block group containing swapfile"); 10401 ret = -EINVAL; 10402 goto out; 10403 } 10404 10405 if (!btrfs_inc_block_group_swap_extents(bg)) { 10406 btrfs_warn(fs_info, 10407 "block group for swapfile at %llu is read-only%s", 10408 bg->start, 10409 atomic_read(&fs_info->scrubs_running) ? 10410 " (scrub running)" : ""); 10411 btrfs_put_block_group(bg); 10412 ret = -EINVAL; 10413 goto out; 10414 } 10415 10416 ret = btrfs_add_swapfile_pin(inode, bg, true); 10417 if (ret) { 10418 btrfs_put_block_group(bg); 10419 if (ret == 1) 10420 ret = 0; 10421 else 10422 goto out; 10423 } 10424 10425 if (bsi.block_len && 10426 bsi.block_start + bsi.block_len == physical_block_start) { 10427 bsi.block_len += len; 10428 } else { 10429 if (bsi.block_len) { 10430 ret = btrfs_add_swap_extent(sis, &bsi); 10431 if (ret) 10432 goto out; 10433 } 10434 bsi.start = key.offset; 10435 bsi.block_start = physical_block_start; 10436 bsi.block_len = len; 10437 } 10438 10439 if (fatal_signal_pending(current)) { 10440 ret = -EINTR; 10441 goto out; 10442 } 10443 10444 cond_resched(); 10445 } 10446 10447 if (bsi.block_len) 10448 ret = btrfs_add_swap_extent(sis, &bsi); 10449 10450 out: 10451 if (!IS_ERR_OR_NULL(map)) 10452 btrfs_free_chunk_map(map); 10453 10454 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10455 10456 if (ret) 10457 btrfs_swap_deactivate(file); 10458 10459 btrfs_drew_write_unlock(&root->snapshot_lock); 10460 10461 btrfs_exclop_finish(fs_info); 10462 10463 out_unlock_mmap: 10464 up_write(&BTRFS_I(inode)->i_mmap_lock); 10465 btrfs_free_backref_share_ctx(backref_ctx); 10466 btrfs_free_path(path); 10467 if (ret) 10468 return ret; 10469 10470 if (device) 10471 sis->bdev = device->bdev; 10472 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10473 sis->max = bsi.nr_pages; 10474 sis->pages = bsi.nr_pages - 1; 10475 return bsi.nr_extents; 10476 } 10477 #else 10478 static void btrfs_swap_deactivate(struct file *file) 10479 { 10480 } 10481 10482 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10483 sector_t *span) 10484 { 10485 return -EOPNOTSUPP; 10486 } 10487 #endif 10488 10489 /* 10490 * Update the number of bytes used in the VFS' inode. When we replace extents in 10491 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10492 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10493 * always get a correct value. 10494 */ 10495 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10496 const u64 add_bytes, 10497 const u64 del_bytes) 10498 { 10499 if (add_bytes == del_bytes) 10500 return; 10501 10502 spin_lock(&inode->lock); 10503 if (del_bytes > 0) 10504 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10505 if (add_bytes > 0) 10506 inode_add_bytes(&inode->vfs_inode, add_bytes); 10507 spin_unlock(&inode->lock); 10508 } 10509 10510 /* 10511 * Verify that there are no ordered extents for a given file range. 10512 * 10513 * @inode: The target inode. 10514 * @start: Start offset of the file range, should be sector size aligned. 10515 * @end: End offset (inclusive) of the file range, its value +1 should be 10516 * sector size aligned. 10517 * 10518 * This should typically be used for cases where we locked an inode's VFS lock in 10519 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10520 * we have flushed all delalloc in the range, we have waited for all ordered 10521 * extents in the range to complete and finally we have locked the file range in 10522 * the inode's io_tree. 10523 */ 10524 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10525 { 10526 struct btrfs_root *root = inode->root; 10527 struct btrfs_ordered_extent *ordered; 10528 10529 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10530 return; 10531 10532 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10533 if (ordered) { 10534 btrfs_err(root->fs_info, 10535 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10536 start, end, btrfs_ino(inode), btrfs_root_id(root), 10537 ordered->file_offset, 10538 ordered->file_offset + ordered->num_bytes - 1); 10539 btrfs_put_ordered_extent(ordered); 10540 } 10541 10542 ASSERT(ordered == NULL); 10543 } 10544 10545 /* 10546 * Find the first inode with a minimum number. 10547 * 10548 * @root: The root to search for. 10549 * @min_ino: The minimum inode number. 10550 * 10551 * Find the first inode in the @root with a number >= @min_ino and return it. 10552 * Returns NULL if no such inode found. 10553 */ 10554 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10555 { 10556 struct btrfs_inode *inode; 10557 unsigned long from = min_ino; 10558 10559 xa_lock(&root->inodes); 10560 while (true) { 10561 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10562 if (!inode) 10563 break; 10564 if (igrab(&inode->vfs_inode)) 10565 break; 10566 10567 from = btrfs_ino(inode) + 1; 10568 cond_resched_lock(&root->inodes.xa_lock); 10569 } 10570 xa_unlock(&root->inodes); 10571 10572 return inode; 10573 } 10574 10575 static const struct inode_operations btrfs_dir_inode_operations = { 10576 .getattr = btrfs_getattr, 10577 .lookup = btrfs_lookup, 10578 .create = btrfs_create, 10579 .unlink = btrfs_unlink, 10580 .link = btrfs_link, 10581 .mkdir = btrfs_mkdir, 10582 .rmdir = btrfs_rmdir, 10583 .rename = btrfs_rename2, 10584 .symlink = btrfs_symlink, 10585 .setattr = btrfs_setattr, 10586 .mknod = btrfs_mknod, 10587 .listxattr = btrfs_listxattr, 10588 .permission = btrfs_permission, 10589 .get_inode_acl = btrfs_get_acl, 10590 .set_acl = btrfs_set_acl, 10591 .update_time = btrfs_update_time, 10592 .tmpfile = btrfs_tmpfile, 10593 .fileattr_get = btrfs_fileattr_get, 10594 .fileattr_set = btrfs_fileattr_set, 10595 }; 10596 10597 static const struct file_operations btrfs_dir_file_operations = { 10598 .llseek = btrfs_dir_llseek, 10599 .read = generic_read_dir, 10600 .iterate_shared = btrfs_real_readdir, 10601 .open = btrfs_opendir, 10602 .unlocked_ioctl = btrfs_ioctl, 10603 #ifdef CONFIG_COMPAT 10604 .compat_ioctl = btrfs_compat_ioctl, 10605 #endif 10606 .release = btrfs_release_file, 10607 .fsync = btrfs_sync_file, 10608 }; 10609 10610 /* 10611 * btrfs doesn't support the bmap operation because swapfiles 10612 * use bmap to make a mapping of extents in the file. They assume 10613 * these extents won't change over the life of the file and they 10614 * use the bmap result to do IO directly to the drive. 10615 * 10616 * the btrfs bmap call would return logical addresses that aren't 10617 * suitable for IO and they also will change frequently as COW 10618 * operations happen. So, swapfile + btrfs == corruption. 10619 * 10620 * For now we're avoiding this by dropping bmap. 10621 */ 10622 static const struct address_space_operations btrfs_aops = { 10623 .read_folio = btrfs_read_folio, 10624 .writepages = btrfs_writepages, 10625 .readahead = btrfs_readahead, 10626 .invalidate_folio = btrfs_invalidate_folio, 10627 .launder_folio = btrfs_launder_folio, 10628 .release_folio = btrfs_release_folio, 10629 .migrate_folio = btrfs_migrate_folio, 10630 .dirty_folio = filemap_dirty_folio, 10631 .error_remove_folio = generic_error_remove_folio, 10632 .swap_activate = btrfs_swap_activate, 10633 .swap_deactivate = btrfs_swap_deactivate, 10634 }; 10635 10636 static const struct inode_operations btrfs_file_inode_operations = { 10637 .getattr = btrfs_getattr, 10638 .setattr = btrfs_setattr, 10639 .listxattr = btrfs_listxattr, 10640 .permission = btrfs_permission, 10641 .fiemap = btrfs_fiemap, 10642 .get_inode_acl = btrfs_get_acl, 10643 .set_acl = btrfs_set_acl, 10644 .update_time = btrfs_update_time, 10645 .fileattr_get = btrfs_fileattr_get, 10646 .fileattr_set = btrfs_fileattr_set, 10647 }; 10648 static const struct inode_operations btrfs_special_inode_operations = { 10649 .getattr = btrfs_getattr, 10650 .setattr = btrfs_setattr, 10651 .permission = btrfs_permission, 10652 .listxattr = btrfs_listxattr, 10653 .get_inode_acl = btrfs_get_acl, 10654 .set_acl = btrfs_set_acl, 10655 .update_time = btrfs_update_time, 10656 }; 10657 static const struct inode_operations btrfs_symlink_inode_operations = { 10658 .get_link = page_get_link, 10659 .getattr = btrfs_getattr, 10660 .setattr = btrfs_setattr, 10661 .permission = btrfs_permission, 10662 .listxattr = btrfs_listxattr, 10663 .update_time = btrfs_update_time, 10664 }; 10665 10666 const struct dentry_operations btrfs_dentry_operations = { 10667 .d_delete = btrfs_dentry_delete, 10668 }; 10669