1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/smp_lock.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/xattr.h> 38 #include <linux/posix_acl.h> 39 #include <linux/falloc.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "compression.h" 52 #include "locking.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 static struct inode_operations btrfs_dir_inode_operations; 60 static struct inode_operations btrfs_symlink_inode_operations; 61 static struct inode_operations btrfs_dir_ro_inode_operations; 62 static struct inode_operations btrfs_special_inode_operations; 63 static struct inode_operations btrfs_file_inode_operations; 64 static struct address_space_operations btrfs_aops; 65 static struct address_space_operations btrfs_symlink_aops; 66 static struct file_operations btrfs_dir_file_operations; 67 static struct extent_io_ops btrfs_extent_io_ops; 68 69 static struct kmem_cache *btrfs_inode_cachep; 70 struct kmem_cache *btrfs_trans_handle_cachep; 71 struct kmem_cache *btrfs_transaction_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 74 #define S_SHIFT 12 75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 83 }; 84 85 static void btrfs_truncate(struct inode *inode); 86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 87 static noinline int cow_file_range(struct inode *inode, 88 struct page *locked_page, 89 u64 start, u64 end, int *page_started, 90 unsigned long *nr_written, int unlock); 91 92 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir) 93 { 94 int err; 95 96 err = btrfs_init_acl(inode, dir); 97 if (!err) 98 err = btrfs_xattr_security_init(inode, dir); 99 return err; 100 } 101 102 /* 103 * this does all the hard work for inserting an inline extent into 104 * the btree. The caller should have done a btrfs_drop_extents so that 105 * no overlapping inline items exist in the btree 106 */ 107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 108 struct btrfs_root *root, struct inode *inode, 109 u64 start, size_t size, size_t compressed_size, 110 struct page **compressed_pages) 111 { 112 struct btrfs_key key; 113 struct btrfs_path *path; 114 struct extent_buffer *leaf; 115 struct page *page = NULL; 116 char *kaddr; 117 unsigned long ptr; 118 struct btrfs_file_extent_item *ei; 119 int err = 0; 120 int ret; 121 size_t cur_size = size; 122 size_t datasize; 123 unsigned long offset; 124 int use_compress = 0; 125 126 if (compressed_size && compressed_pages) { 127 use_compress = 1; 128 cur_size = compressed_size; 129 } 130 131 path = btrfs_alloc_path(); 132 if (!path) 133 return -ENOMEM; 134 135 path->leave_spinning = 1; 136 btrfs_set_trans_block_group(trans, inode); 137 138 key.objectid = inode->i_ino; 139 key.offset = start; 140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 141 datasize = btrfs_file_extent_calc_inline_size(cur_size); 142 143 inode_add_bytes(inode, size); 144 ret = btrfs_insert_empty_item(trans, root, path, &key, 145 datasize); 146 BUG_ON(ret); 147 if (ret) { 148 err = ret; 149 goto fail; 150 } 151 leaf = path->nodes[0]; 152 ei = btrfs_item_ptr(leaf, path->slots[0], 153 struct btrfs_file_extent_item); 154 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 156 btrfs_set_file_extent_encryption(leaf, ei, 0); 157 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 158 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 159 ptr = btrfs_file_extent_inline_start(ei); 160 161 if (use_compress) { 162 struct page *cpage; 163 int i = 0; 164 while (compressed_size > 0) { 165 cpage = compressed_pages[i]; 166 cur_size = min_t(unsigned long, compressed_size, 167 PAGE_CACHE_SIZE); 168 169 kaddr = kmap_atomic(cpage, KM_USER0); 170 write_extent_buffer(leaf, kaddr, ptr, cur_size); 171 kunmap_atomic(kaddr, KM_USER0); 172 173 i++; 174 ptr += cur_size; 175 compressed_size -= cur_size; 176 } 177 btrfs_set_file_extent_compression(leaf, ei, 178 BTRFS_COMPRESS_ZLIB); 179 } else { 180 page = find_get_page(inode->i_mapping, 181 start >> PAGE_CACHE_SHIFT); 182 btrfs_set_file_extent_compression(leaf, ei, 0); 183 kaddr = kmap_atomic(page, KM_USER0); 184 offset = start & (PAGE_CACHE_SIZE - 1); 185 write_extent_buffer(leaf, kaddr + offset, ptr, size); 186 kunmap_atomic(kaddr, KM_USER0); 187 page_cache_release(page); 188 } 189 btrfs_mark_buffer_dirty(leaf); 190 btrfs_free_path(path); 191 192 BTRFS_I(inode)->disk_i_size = inode->i_size; 193 btrfs_update_inode(trans, root, inode); 194 return 0; 195 fail: 196 btrfs_free_path(path); 197 return err; 198 } 199 200 201 /* 202 * conditionally insert an inline extent into the file. This 203 * does the checks required to make sure the data is small enough 204 * to fit as an inline extent. 205 */ 206 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 207 struct btrfs_root *root, 208 struct inode *inode, u64 start, u64 end, 209 size_t compressed_size, 210 struct page **compressed_pages) 211 { 212 u64 isize = i_size_read(inode); 213 u64 actual_end = min(end + 1, isize); 214 u64 inline_len = actual_end - start; 215 u64 aligned_end = (end + root->sectorsize - 1) & 216 ~((u64)root->sectorsize - 1); 217 u64 hint_byte; 218 u64 data_len = inline_len; 219 int ret; 220 221 if (compressed_size) 222 data_len = compressed_size; 223 224 if (start > 0 || 225 actual_end >= PAGE_CACHE_SIZE || 226 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 227 (!compressed_size && 228 (actual_end & (root->sectorsize - 1)) == 0) || 229 end + 1 < isize || 230 data_len > root->fs_info->max_inline) { 231 return 1; 232 } 233 234 ret = btrfs_drop_extents(trans, root, inode, start, 235 aligned_end, aligned_end, start, &hint_byte); 236 BUG_ON(ret); 237 238 if (isize > actual_end) 239 inline_len = min_t(u64, isize, actual_end); 240 ret = insert_inline_extent(trans, root, inode, start, 241 inline_len, compressed_size, 242 compressed_pages); 243 BUG_ON(ret); 244 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 245 return 0; 246 } 247 248 struct async_extent { 249 u64 start; 250 u64 ram_size; 251 u64 compressed_size; 252 struct page **pages; 253 unsigned long nr_pages; 254 struct list_head list; 255 }; 256 257 struct async_cow { 258 struct inode *inode; 259 struct btrfs_root *root; 260 struct page *locked_page; 261 u64 start; 262 u64 end; 263 struct list_head extents; 264 struct btrfs_work work; 265 }; 266 267 static noinline int add_async_extent(struct async_cow *cow, 268 u64 start, u64 ram_size, 269 u64 compressed_size, 270 struct page **pages, 271 unsigned long nr_pages) 272 { 273 struct async_extent *async_extent; 274 275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 276 async_extent->start = start; 277 async_extent->ram_size = ram_size; 278 async_extent->compressed_size = compressed_size; 279 async_extent->pages = pages; 280 async_extent->nr_pages = nr_pages; 281 list_add_tail(&async_extent->list, &cow->extents); 282 return 0; 283 } 284 285 /* 286 * we create compressed extents in two phases. The first 287 * phase compresses a range of pages that have already been 288 * locked (both pages and state bits are locked). 289 * 290 * This is done inside an ordered work queue, and the compression 291 * is spread across many cpus. The actual IO submission is step 292 * two, and the ordered work queue takes care of making sure that 293 * happens in the same order things were put onto the queue by 294 * writepages and friends. 295 * 296 * If this code finds it can't get good compression, it puts an 297 * entry onto the work queue to write the uncompressed bytes. This 298 * makes sure that both compressed inodes and uncompressed inodes 299 * are written in the same order that pdflush sent them down. 300 */ 301 static noinline int compress_file_range(struct inode *inode, 302 struct page *locked_page, 303 u64 start, u64 end, 304 struct async_cow *async_cow, 305 int *num_added) 306 { 307 struct btrfs_root *root = BTRFS_I(inode)->root; 308 struct btrfs_trans_handle *trans; 309 u64 num_bytes; 310 u64 orig_start; 311 u64 disk_num_bytes; 312 u64 blocksize = root->sectorsize; 313 u64 actual_end; 314 u64 isize = i_size_read(inode); 315 int ret = 0; 316 struct page **pages = NULL; 317 unsigned long nr_pages; 318 unsigned long nr_pages_ret = 0; 319 unsigned long total_compressed = 0; 320 unsigned long total_in = 0; 321 unsigned long max_compressed = 128 * 1024; 322 unsigned long max_uncompressed = 128 * 1024; 323 int i; 324 int will_compress; 325 326 orig_start = start; 327 328 actual_end = min_t(u64, isize, end + 1); 329 again: 330 will_compress = 0; 331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 333 334 /* 335 * we don't want to send crud past the end of i_size through 336 * compression, that's just a waste of CPU time. So, if the 337 * end of the file is before the start of our current 338 * requested range of bytes, we bail out to the uncompressed 339 * cleanup code that can deal with all of this. 340 * 341 * It isn't really the fastest way to fix things, but this is a 342 * very uncommon corner. 343 */ 344 if (actual_end <= start) 345 goto cleanup_and_bail_uncompressed; 346 347 total_compressed = actual_end - start; 348 349 /* we want to make sure that amount of ram required to uncompress 350 * an extent is reasonable, so we limit the total size in ram 351 * of a compressed extent to 128k. This is a crucial number 352 * because it also controls how easily we can spread reads across 353 * cpus for decompression. 354 * 355 * We also want to make sure the amount of IO required to do 356 * a random read is reasonably small, so we limit the size of 357 * a compressed extent to 128k. 358 */ 359 total_compressed = min(total_compressed, max_uncompressed); 360 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 361 num_bytes = max(blocksize, num_bytes); 362 disk_num_bytes = num_bytes; 363 total_in = 0; 364 ret = 0; 365 366 /* 367 * we do compression for mount -o compress and when the 368 * inode has not been flagged as nocompress. This flag can 369 * change at any time if we discover bad compression ratios. 370 */ 371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 372 btrfs_test_opt(root, COMPRESS)) { 373 WARN_ON(pages); 374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 375 376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 377 total_compressed, pages, 378 nr_pages, &nr_pages_ret, 379 &total_in, 380 &total_compressed, 381 max_compressed); 382 383 if (!ret) { 384 unsigned long offset = total_compressed & 385 (PAGE_CACHE_SIZE - 1); 386 struct page *page = pages[nr_pages_ret - 1]; 387 char *kaddr; 388 389 /* zero the tail end of the last page, we might be 390 * sending it down to disk 391 */ 392 if (offset) { 393 kaddr = kmap_atomic(page, KM_USER0); 394 memset(kaddr + offset, 0, 395 PAGE_CACHE_SIZE - offset); 396 kunmap_atomic(kaddr, KM_USER0); 397 } 398 will_compress = 1; 399 } 400 } 401 if (start == 0) { 402 trans = btrfs_join_transaction(root, 1); 403 BUG_ON(!trans); 404 btrfs_set_trans_block_group(trans, inode); 405 406 /* lets try to make an inline extent */ 407 if (ret || total_in < (actual_end - start)) { 408 /* we didn't compress the entire range, try 409 * to make an uncompressed inline extent. 410 */ 411 ret = cow_file_range_inline(trans, root, inode, 412 start, end, 0, NULL); 413 } else { 414 /* try making a compressed inline extent */ 415 ret = cow_file_range_inline(trans, root, inode, 416 start, end, 417 total_compressed, pages); 418 } 419 btrfs_end_transaction(trans, root); 420 if (ret == 0) { 421 /* 422 * inline extent creation worked, we don't need 423 * to create any more async work items. Unlock 424 * and free up our temp pages. 425 */ 426 extent_clear_unlock_delalloc(inode, 427 &BTRFS_I(inode)->io_tree, 428 start, end, NULL, 1, 0, 429 0, 1, 1, 1); 430 ret = 0; 431 goto free_pages_out; 432 } 433 } 434 435 if (will_compress) { 436 /* 437 * we aren't doing an inline extent round the compressed size 438 * up to a block size boundary so the allocator does sane 439 * things 440 */ 441 total_compressed = (total_compressed + blocksize - 1) & 442 ~(blocksize - 1); 443 444 /* 445 * one last check to make sure the compression is really a 446 * win, compare the page count read with the blocks on disk 447 */ 448 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 449 ~(PAGE_CACHE_SIZE - 1); 450 if (total_compressed >= total_in) { 451 will_compress = 0; 452 } else { 453 disk_num_bytes = total_compressed; 454 num_bytes = total_in; 455 } 456 } 457 if (!will_compress && pages) { 458 /* 459 * the compression code ran but failed to make things smaller, 460 * free any pages it allocated and our page pointer array 461 */ 462 for (i = 0; i < nr_pages_ret; i++) { 463 WARN_ON(pages[i]->mapping); 464 page_cache_release(pages[i]); 465 } 466 kfree(pages); 467 pages = NULL; 468 total_compressed = 0; 469 nr_pages_ret = 0; 470 471 /* flag the file so we don't compress in the future */ 472 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 473 } 474 if (will_compress) { 475 *num_added += 1; 476 477 /* the async work queues will take care of doing actual 478 * allocation on disk for these compressed pages, 479 * and will submit them to the elevator. 480 */ 481 add_async_extent(async_cow, start, num_bytes, 482 total_compressed, pages, nr_pages_ret); 483 484 if (start + num_bytes < end && start + num_bytes < actual_end) { 485 start += num_bytes; 486 pages = NULL; 487 cond_resched(); 488 goto again; 489 } 490 } else { 491 cleanup_and_bail_uncompressed: 492 /* 493 * No compression, but we still need to write the pages in 494 * the file we've been given so far. redirty the locked 495 * page if it corresponds to our extent and set things up 496 * for the async work queue to run cow_file_range to do 497 * the normal delalloc dance 498 */ 499 if (page_offset(locked_page) >= start && 500 page_offset(locked_page) <= end) { 501 __set_page_dirty_nobuffers(locked_page); 502 /* unlocked later on in the async handlers */ 503 } 504 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 505 *num_added += 1; 506 } 507 508 out: 509 return 0; 510 511 free_pages_out: 512 for (i = 0; i < nr_pages_ret; i++) { 513 WARN_ON(pages[i]->mapping); 514 page_cache_release(pages[i]); 515 } 516 kfree(pages); 517 518 goto out; 519 } 520 521 /* 522 * phase two of compressed writeback. This is the ordered portion 523 * of the code, which only gets called in the order the work was 524 * queued. We walk all the async extents created by compress_file_range 525 * and send them down to the disk. 526 */ 527 static noinline int submit_compressed_extents(struct inode *inode, 528 struct async_cow *async_cow) 529 { 530 struct async_extent *async_extent; 531 u64 alloc_hint = 0; 532 struct btrfs_trans_handle *trans; 533 struct btrfs_key ins; 534 struct extent_map *em; 535 struct btrfs_root *root = BTRFS_I(inode)->root; 536 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 537 struct extent_io_tree *io_tree; 538 int ret; 539 540 if (list_empty(&async_cow->extents)) 541 return 0; 542 543 trans = btrfs_join_transaction(root, 1); 544 545 while (!list_empty(&async_cow->extents)) { 546 async_extent = list_entry(async_cow->extents.next, 547 struct async_extent, list); 548 list_del(&async_extent->list); 549 550 io_tree = &BTRFS_I(inode)->io_tree; 551 552 /* did the compression code fall back to uncompressed IO? */ 553 if (!async_extent->pages) { 554 int page_started = 0; 555 unsigned long nr_written = 0; 556 557 lock_extent(io_tree, async_extent->start, 558 async_extent->start + 559 async_extent->ram_size - 1, GFP_NOFS); 560 561 /* allocate blocks */ 562 cow_file_range(inode, async_cow->locked_page, 563 async_extent->start, 564 async_extent->start + 565 async_extent->ram_size - 1, 566 &page_started, &nr_written, 0); 567 568 /* 569 * if page_started, cow_file_range inserted an 570 * inline extent and took care of all the unlocking 571 * and IO for us. Otherwise, we need to submit 572 * all those pages down to the drive. 573 */ 574 if (!page_started) 575 extent_write_locked_range(io_tree, 576 inode, async_extent->start, 577 async_extent->start + 578 async_extent->ram_size - 1, 579 btrfs_get_extent, 580 WB_SYNC_ALL); 581 kfree(async_extent); 582 cond_resched(); 583 continue; 584 } 585 586 lock_extent(io_tree, async_extent->start, 587 async_extent->start + async_extent->ram_size - 1, 588 GFP_NOFS); 589 /* 590 * here we're doing allocation and writeback of the 591 * compressed pages 592 */ 593 btrfs_drop_extent_cache(inode, async_extent->start, 594 async_extent->start + 595 async_extent->ram_size - 1, 0); 596 597 ret = btrfs_reserve_extent(trans, root, 598 async_extent->compressed_size, 599 async_extent->compressed_size, 600 0, alloc_hint, 601 (u64)-1, &ins, 1); 602 BUG_ON(ret); 603 em = alloc_extent_map(GFP_NOFS); 604 em->start = async_extent->start; 605 em->len = async_extent->ram_size; 606 em->orig_start = em->start; 607 608 em->block_start = ins.objectid; 609 em->block_len = ins.offset; 610 em->bdev = root->fs_info->fs_devices->latest_bdev; 611 set_bit(EXTENT_FLAG_PINNED, &em->flags); 612 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 613 614 while (1) { 615 spin_lock(&em_tree->lock); 616 ret = add_extent_mapping(em_tree, em); 617 spin_unlock(&em_tree->lock); 618 if (ret != -EEXIST) { 619 free_extent_map(em); 620 break; 621 } 622 btrfs_drop_extent_cache(inode, async_extent->start, 623 async_extent->start + 624 async_extent->ram_size - 1, 0); 625 } 626 627 ret = btrfs_add_ordered_extent(inode, async_extent->start, 628 ins.objectid, 629 async_extent->ram_size, 630 ins.offset, 631 BTRFS_ORDERED_COMPRESSED); 632 BUG_ON(ret); 633 634 btrfs_end_transaction(trans, root); 635 636 /* 637 * clear dirty, set writeback and unlock the pages. 638 */ 639 extent_clear_unlock_delalloc(inode, 640 &BTRFS_I(inode)->io_tree, 641 async_extent->start, 642 async_extent->start + 643 async_extent->ram_size - 1, 644 NULL, 1, 1, 0, 1, 1, 0); 645 646 ret = btrfs_submit_compressed_write(inode, 647 async_extent->start, 648 async_extent->ram_size, 649 ins.objectid, 650 ins.offset, async_extent->pages, 651 async_extent->nr_pages); 652 653 BUG_ON(ret); 654 trans = btrfs_join_transaction(root, 1); 655 alloc_hint = ins.objectid + ins.offset; 656 kfree(async_extent); 657 cond_resched(); 658 } 659 660 btrfs_end_transaction(trans, root); 661 return 0; 662 } 663 664 /* 665 * when extent_io.c finds a delayed allocation range in the file, 666 * the call backs end up in this code. The basic idea is to 667 * allocate extents on disk for the range, and create ordered data structs 668 * in ram to track those extents. 669 * 670 * locked_page is the page that writepage had locked already. We use 671 * it to make sure we don't do extra locks or unlocks. 672 * 673 * *page_started is set to one if we unlock locked_page and do everything 674 * required to start IO on it. It may be clean and already done with 675 * IO when we return. 676 */ 677 static noinline int cow_file_range(struct inode *inode, 678 struct page *locked_page, 679 u64 start, u64 end, int *page_started, 680 unsigned long *nr_written, 681 int unlock) 682 { 683 struct btrfs_root *root = BTRFS_I(inode)->root; 684 struct btrfs_trans_handle *trans; 685 u64 alloc_hint = 0; 686 u64 num_bytes; 687 unsigned long ram_size; 688 u64 disk_num_bytes; 689 u64 cur_alloc_size; 690 u64 blocksize = root->sectorsize; 691 u64 actual_end; 692 u64 isize = i_size_read(inode); 693 struct btrfs_key ins; 694 struct extent_map *em; 695 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 696 int ret = 0; 697 698 trans = btrfs_join_transaction(root, 1); 699 BUG_ON(!trans); 700 btrfs_set_trans_block_group(trans, inode); 701 702 actual_end = min_t(u64, isize, end + 1); 703 704 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 705 num_bytes = max(blocksize, num_bytes); 706 disk_num_bytes = num_bytes; 707 ret = 0; 708 709 if (start == 0) { 710 /* lets try to make an inline extent */ 711 ret = cow_file_range_inline(trans, root, inode, 712 start, end, 0, NULL); 713 if (ret == 0) { 714 extent_clear_unlock_delalloc(inode, 715 &BTRFS_I(inode)->io_tree, 716 start, end, NULL, 1, 1, 717 1, 1, 1, 1); 718 *nr_written = *nr_written + 719 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 720 *page_started = 1; 721 ret = 0; 722 goto out; 723 } 724 } 725 726 BUG_ON(disk_num_bytes > 727 btrfs_super_total_bytes(&root->fs_info->super_copy)); 728 729 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 730 731 while (disk_num_bytes > 0) { 732 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 733 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 734 root->sectorsize, 0, alloc_hint, 735 (u64)-1, &ins, 1); 736 BUG_ON(ret); 737 738 em = alloc_extent_map(GFP_NOFS); 739 em->start = start; 740 em->orig_start = em->start; 741 742 ram_size = ins.offset; 743 em->len = ins.offset; 744 745 em->block_start = ins.objectid; 746 em->block_len = ins.offset; 747 em->bdev = root->fs_info->fs_devices->latest_bdev; 748 set_bit(EXTENT_FLAG_PINNED, &em->flags); 749 750 while (1) { 751 spin_lock(&em_tree->lock); 752 ret = add_extent_mapping(em_tree, em); 753 spin_unlock(&em_tree->lock); 754 if (ret != -EEXIST) { 755 free_extent_map(em); 756 break; 757 } 758 btrfs_drop_extent_cache(inode, start, 759 start + ram_size - 1, 0); 760 } 761 762 cur_alloc_size = ins.offset; 763 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 764 ram_size, cur_alloc_size, 0); 765 BUG_ON(ret); 766 767 if (root->root_key.objectid == 768 BTRFS_DATA_RELOC_TREE_OBJECTID) { 769 ret = btrfs_reloc_clone_csums(inode, start, 770 cur_alloc_size); 771 BUG_ON(ret); 772 } 773 774 if (disk_num_bytes < cur_alloc_size) 775 break; 776 777 /* we're not doing compressed IO, don't unlock the first 778 * page (which the caller expects to stay locked), don't 779 * clear any dirty bits and don't set any writeback bits 780 */ 781 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 782 start, start + ram_size - 1, 783 locked_page, unlock, 1, 784 1, 0, 0, 0); 785 disk_num_bytes -= cur_alloc_size; 786 num_bytes -= cur_alloc_size; 787 alloc_hint = ins.objectid + ins.offset; 788 start += cur_alloc_size; 789 } 790 out: 791 ret = 0; 792 btrfs_end_transaction(trans, root); 793 794 return ret; 795 } 796 797 /* 798 * work queue call back to started compression on a file and pages 799 */ 800 static noinline void async_cow_start(struct btrfs_work *work) 801 { 802 struct async_cow *async_cow; 803 int num_added = 0; 804 async_cow = container_of(work, struct async_cow, work); 805 806 compress_file_range(async_cow->inode, async_cow->locked_page, 807 async_cow->start, async_cow->end, async_cow, 808 &num_added); 809 if (num_added == 0) 810 async_cow->inode = NULL; 811 } 812 813 /* 814 * work queue call back to submit previously compressed pages 815 */ 816 static noinline void async_cow_submit(struct btrfs_work *work) 817 { 818 struct async_cow *async_cow; 819 struct btrfs_root *root; 820 unsigned long nr_pages; 821 822 async_cow = container_of(work, struct async_cow, work); 823 824 root = async_cow->root; 825 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 826 PAGE_CACHE_SHIFT; 827 828 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 829 830 if (atomic_read(&root->fs_info->async_delalloc_pages) < 831 5 * 1042 * 1024 && 832 waitqueue_active(&root->fs_info->async_submit_wait)) 833 wake_up(&root->fs_info->async_submit_wait); 834 835 if (async_cow->inode) 836 submit_compressed_extents(async_cow->inode, async_cow); 837 } 838 839 static noinline void async_cow_free(struct btrfs_work *work) 840 { 841 struct async_cow *async_cow; 842 async_cow = container_of(work, struct async_cow, work); 843 kfree(async_cow); 844 } 845 846 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 847 u64 start, u64 end, int *page_started, 848 unsigned long *nr_written) 849 { 850 struct async_cow *async_cow; 851 struct btrfs_root *root = BTRFS_I(inode)->root; 852 unsigned long nr_pages; 853 u64 cur_end; 854 int limit = 10 * 1024 * 1042; 855 856 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 857 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 858 while (start < end) { 859 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 860 async_cow->inode = inode; 861 async_cow->root = root; 862 async_cow->locked_page = locked_page; 863 async_cow->start = start; 864 865 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 866 cur_end = end; 867 else 868 cur_end = min(end, start + 512 * 1024 - 1); 869 870 async_cow->end = cur_end; 871 INIT_LIST_HEAD(&async_cow->extents); 872 873 async_cow->work.func = async_cow_start; 874 async_cow->work.ordered_func = async_cow_submit; 875 async_cow->work.ordered_free = async_cow_free; 876 async_cow->work.flags = 0; 877 878 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 879 PAGE_CACHE_SHIFT; 880 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 881 882 btrfs_queue_worker(&root->fs_info->delalloc_workers, 883 &async_cow->work); 884 885 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 886 wait_event(root->fs_info->async_submit_wait, 887 (atomic_read(&root->fs_info->async_delalloc_pages) < 888 limit)); 889 } 890 891 while (atomic_read(&root->fs_info->async_submit_draining) && 892 atomic_read(&root->fs_info->async_delalloc_pages)) { 893 wait_event(root->fs_info->async_submit_wait, 894 (atomic_read(&root->fs_info->async_delalloc_pages) == 895 0)); 896 } 897 898 *nr_written += nr_pages; 899 start = cur_end + 1; 900 } 901 *page_started = 1; 902 return 0; 903 } 904 905 static noinline int csum_exist_in_range(struct btrfs_root *root, 906 u64 bytenr, u64 num_bytes) 907 { 908 int ret; 909 struct btrfs_ordered_sum *sums; 910 LIST_HEAD(list); 911 912 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 913 bytenr + num_bytes - 1, &list); 914 if (ret == 0 && list_empty(&list)) 915 return 0; 916 917 while (!list_empty(&list)) { 918 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 919 list_del(&sums->list); 920 kfree(sums); 921 } 922 return 1; 923 } 924 925 /* 926 * when nowcow writeback call back. This checks for snapshots or COW copies 927 * of the extents that exist in the file, and COWs the file as required. 928 * 929 * If no cow copies or snapshots exist, we write directly to the existing 930 * blocks on disk 931 */ 932 static noinline int run_delalloc_nocow(struct inode *inode, 933 struct page *locked_page, 934 u64 start, u64 end, int *page_started, int force, 935 unsigned long *nr_written) 936 { 937 struct btrfs_root *root = BTRFS_I(inode)->root; 938 struct btrfs_trans_handle *trans; 939 struct extent_buffer *leaf; 940 struct btrfs_path *path; 941 struct btrfs_file_extent_item *fi; 942 struct btrfs_key found_key; 943 u64 cow_start; 944 u64 cur_offset; 945 u64 extent_end; 946 u64 extent_offset; 947 u64 disk_bytenr; 948 u64 num_bytes; 949 int extent_type; 950 int ret; 951 int type; 952 int nocow; 953 int check_prev = 1; 954 955 path = btrfs_alloc_path(); 956 BUG_ON(!path); 957 trans = btrfs_join_transaction(root, 1); 958 BUG_ON(!trans); 959 960 cow_start = (u64)-1; 961 cur_offset = start; 962 while (1) { 963 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 964 cur_offset, 0); 965 BUG_ON(ret < 0); 966 if (ret > 0 && path->slots[0] > 0 && check_prev) { 967 leaf = path->nodes[0]; 968 btrfs_item_key_to_cpu(leaf, &found_key, 969 path->slots[0] - 1); 970 if (found_key.objectid == inode->i_ino && 971 found_key.type == BTRFS_EXTENT_DATA_KEY) 972 path->slots[0]--; 973 } 974 check_prev = 0; 975 next_slot: 976 leaf = path->nodes[0]; 977 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 978 ret = btrfs_next_leaf(root, path); 979 if (ret < 0) 980 BUG_ON(1); 981 if (ret > 0) 982 break; 983 leaf = path->nodes[0]; 984 } 985 986 nocow = 0; 987 disk_bytenr = 0; 988 num_bytes = 0; 989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 990 991 if (found_key.objectid > inode->i_ino || 992 found_key.type > BTRFS_EXTENT_DATA_KEY || 993 found_key.offset > end) 994 break; 995 996 if (found_key.offset > cur_offset) { 997 extent_end = found_key.offset; 998 goto out_check; 999 } 1000 1001 fi = btrfs_item_ptr(leaf, path->slots[0], 1002 struct btrfs_file_extent_item); 1003 extent_type = btrfs_file_extent_type(leaf, fi); 1004 1005 if (extent_type == BTRFS_FILE_EXTENT_REG || 1006 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1007 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1008 extent_offset = btrfs_file_extent_offset(leaf, fi); 1009 extent_end = found_key.offset + 1010 btrfs_file_extent_num_bytes(leaf, fi); 1011 if (extent_end <= start) { 1012 path->slots[0]++; 1013 goto next_slot; 1014 } 1015 if (disk_bytenr == 0) 1016 goto out_check; 1017 if (btrfs_file_extent_compression(leaf, fi) || 1018 btrfs_file_extent_encryption(leaf, fi) || 1019 btrfs_file_extent_other_encoding(leaf, fi)) 1020 goto out_check; 1021 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1022 goto out_check; 1023 if (btrfs_extent_readonly(root, disk_bytenr)) 1024 goto out_check; 1025 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1026 found_key.offset - 1027 extent_offset, disk_bytenr)) 1028 goto out_check; 1029 disk_bytenr += extent_offset; 1030 disk_bytenr += cur_offset - found_key.offset; 1031 num_bytes = min(end + 1, extent_end) - cur_offset; 1032 /* 1033 * force cow if csum exists in the range. 1034 * this ensure that csum for a given extent are 1035 * either valid or do not exist. 1036 */ 1037 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1038 goto out_check; 1039 nocow = 1; 1040 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1041 extent_end = found_key.offset + 1042 btrfs_file_extent_inline_len(leaf, fi); 1043 extent_end = ALIGN(extent_end, root->sectorsize); 1044 } else { 1045 BUG_ON(1); 1046 } 1047 out_check: 1048 if (extent_end <= start) { 1049 path->slots[0]++; 1050 goto next_slot; 1051 } 1052 if (!nocow) { 1053 if (cow_start == (u64)-1) 1054 cow_start = cur_offset; 1055 cur_offset = extent_end; 1056 if (cur_offset > end) 1057 break; 1058 path->slots[0]++; 1059 goto next_slot; 1060 } 1061 1062 btrfs_release_path(root, path); 1063 if (cow_start != (u64)-1) { 1064 ret = cow_file_range(inode, locked_page, cow_start, 1065 found_key.offset - 1, page_started, 1066 nr_written, 1); 1067 BUG_ON(ret); 1068 cow_start = (u64)-1; 1069 } 1070 1071 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1072 struct extent_map *em; 1073 struct extent_map_tree *em_tree; 1074 em_tree = &BTRFS_I(inode)->extent_tree; 1075 em = alloc_extent_map(GFP_NOFS); 1076 em->start = cur_offset; 1077 em->orig_start = em->start; 1078 em->len = num_bytes; 1079 em->block_len = num_bytes; 1080 em->block_start = disk_bytenr; 1081 em->bdev = root->fs_info->fs_devices->latest_bdev; 1082 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1083 while (1) { 1084 spin_lock(&em_tree->lock); 1085 ret = add_extent_mapping(em_tree, em); 1086 spin_unlock(&em_tree->lock); 1087 if (ret != -EEXIST) { 1088 free_extent_map(em); 1089 break; 1090 } 1091 btrfs_drop_extent_cache(inode, em->start, 1092 em->start + em->len - 1, 0); 1093 } 1094 type = BTRFS_ORDERED_PREALLOC; 1095 } else { 1096 type = BTRFS_ORDERED_NOCOW; 1097 } 1098 1099 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1100 num_bytes, num_bytes, type); 1101 BUG_ON(ret); 1102 1103 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1104 cur_offset, cur_offset + num_bytes - 1, 1105 locked_page, 1, 1, 1, 0, 0, 0); 1106 cur_offset = extent_end; 1107 if (cur_offset > end) 1108 break; 1109 } 1110 btrfs_release_path(root, path); 1111 1112 if (cur_offset <= end && cow_start == (u64)-1) 1113 cow_start = cur_offset; 1114 if (cow_start != (u64)-1) { 1115 ret = cow_file_range(inode, locked_page, cow_start, end, 1116 page_started, nr_written, 1); 1117 BUG_ON(ret); 1118 } 1119 1120 ret = btrfs_end_transaction(trans, root); 1121 BUG_ON(ret); 1122 btrfs_free_path(path); 1123 return 0; 1124 } 1125 1126 /* 1127 * extent_io.c call back to do delayed allocation processing 1128 */ 1129 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1130 u64 start, u64 end, int *page_started, 1131 unsigned long *nr_written) 1132 { 1133 int ret; 1134 struct btrfs_root *root = BTRFS_I(inode)->root; 1135 1136 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1137 ret = run_delalloc_nocow(inode, locked_page, start, end, 1138 page_started, 1, nr_written); 1139 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1140 ret = run_delalloc_nocow(inode, locked_page, start, end, 1141 page_started, 0, nr_written); 1142 else if (!btrfs_test_opt(root, COMPRESS)) 1143 ret = cow_file_range(inode, locked_page, start, end, 1144 page_started, nr_written, 1); 1145 else 1146 ret = cow_file_range_async(inode, locked_page, start, end, 1147 page_started, nr_written); 1148 return ret; 1149 } 1150 1151 /* 1152 * extent_io.c set_bit_hook, used to track delayed allocation 1153 * bytes in this file, and to maintain the list of inodes that 1154 * have pending delalloc work to be done. 1155 */ 1156 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1157 unsigned long old, unsigned long bits) 1158 { 1159 /* 1160 * set_bit and clear bit hooks normally require _irqsave/restore 1161 * but in this case, we are only testeing for the DELALLOC 1162 * bit, which is only set or cleared with irqs on 1163 */ 1164 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1165 struct btrfs_root *root = BTRFS_I(inode)->root; 1166 btrfs_delalloc_reserve_space(root, inode, end - start + 1); 1167 spin_lock(&root->fs_info->delalloc_lock); 1168 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1169 root->fs_info->delalloc_bytes += end - start + 1; 1170 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1171 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1172 &root->fs_info->delalloc_inodes); 1173 } 1174 spin_unlock(&root->fs_info->delalloc_lock); 1175 } 1176 return 0; 1177 } 1178 1179 /* 1180 * extent_io.c clear_bit_hook, see set_bit_hook for why 1181 */ 1182 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1183 unsigned long old, unsigned long bits) 1184 { 1185 /* 1186 * set_bit and clear bit hooks normally require _irqsave/restore 1187 * but in this case, we are only testeing for the DELALLOC 1188 * bit, which is only set or cleared with irqs on 1189 */ 1190 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1191 struct btrfs_root *root = BTRFS_I(inode)->root; 1192 1193 spin_lock(&root->fs_info->delalloc_lock); 1194 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1195 printk(KERN_INFO "btrfs warning: delalloc account " 1196 "%llu %llu\n", 1197 (unsigned long long)end - start + 1, 1198 (unsigned long long) 1199 root->fs_info->delalloc_bytes); 1200 btrfs_delalloc_free_space(root, inode, (u64)-1); 1201 root->fs_info->delalloc_bytes = 0; 1202 BTRFS_I(inode)->delalloc_bytes = 0; 1203 } else { 1204 btrfs_delalloc_free_space(root, inode, 1205 end - start + 1); 1206 root->fs_info->delalloc_bytes -= end - start + 1; 1207 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1208 } 1209 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1210 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1211 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1212 } 1213 spin_unlock(&root->fs_info->delalloc_lock); 1214 } 1215 return 0; 1216 } 1217 1218 /* 1219 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1220 * we don't create bios that span stripes or chunks 1221 */ 1222 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1223 size_t size, struct bio *bio, 1224 unsigned long bio_flags) 1225 { 1226 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1227 struct btrfs_mapping_tree *map_tree; 1228 u64 logical = (u64)bio->bi_sector << 9; 1229 u64 length = 0; 1230 u64 map_length; 1231 int ret; 1232 1233 if (bio_flags & EXTENT_BIO_COMPRESSED) 1234 return 0; 1235 1236 length = bio->bi_size; 1237 map_tree = &root->fs_info->mapping_tree; 1238 map_length = length; 1239 ret = btrfs_map_block(map_tree, READ, logical, 1240 &map_length, NULL, 0); 1241 1242 if (map_length < length + size) 1243 return 1; 1244 return 0; 1245 } 1246 1247 /* 1248 * in order to insert checksums into the metadata in large chunks, 1249 * we wait until bio submission time. All the pages in the bio are 1250 * checksummed and sums are attached onto the ordered extent record. 1251 * 1252 * At IO completion time the cums attached on the ordered extent record 1253 * are inserted into the btree 1254 */ 1255 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1256 struct bio *bio, int mirror_num, 1257 unsigned long bio_flags) 1258 { 1259 struct btrfs_root *root = BTRFS_I(inode)->root; 1260 int ret = 0; 1261 1262 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1263 BUG_ON(ret); 1264 return 0; 1265 } 1266 1267 /* 1268 * in order to insert checksums into the metadata in large chunks, 1269 * we wait until bio submission time. All the pages in the bio are 1270 * checksummed and sums are attached onto the ordered extent record. 1271 * 1272 * At IO completion time the cums attached on the ordered extent record 1273 * are inserted into the btree 1274 */ 1275 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1276 int mirror_num, unsigned long bio_flags) 1277 { 1278 struct btrfs_root *root = BTRFS_I(inode)->root; 1279 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1280 } 1281 1282 /* 1283 * extent_io.c submission hook. This does the right thing for csum calculation 1284 * on write, or reading the csums from the tree before a read 1285 */ 1286 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1287 int mirror_num, unsigned long bio_flags) 1288 { 1289 struct btrfs_root *root = BTRFS_I(inode)->root; 1290 int ret = 0; 1291 int skip_sum; 1292 1293 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1294 1295 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1296 BUG_ON(ret); 1297 1298 if (!(rw & (1 << BIO_RW))) { 1299 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1300 return btrfs_submit_compressed_read(inode, bio, 1301 mirror_num, bio_flags); 1302 } else if (!skip_sum) 1303 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1304 goto mapit; 1305 } else if (!skip_sum) { 1306 /* csum items have already been cloned */ 1307 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1308 goto mapit; 1309 /* we're doing a write, do the async checksumming */ 1310 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1311 inode, rw, bio, mirror_num, 1312 bio_flags, __btrfs_submit_bio_start, 1313 __btrfs_submit_bio_done); 1314 } 1315 1316 mapit: 1317 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1318 } 1319 1320 /* 1321 * given a list of ordered sums record them in the inode. This happens 1322 * at IO completion time based on sums calculated at bio submission time. 1323 */ 1324 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1325 struct inode *inode, u64 file_offset, 1326 struct list_head *list) 1327 { 1328 struct btrfs_ordered_sum *sum; 1329 1330 btrfs_set_trans_block_group(trans, inode); 1331 1332 list_for_each_entry(sum, list, list) { 1333 btrfs_csum_file_blocks(trans, 1334 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1335 } 1336 return 0; 1337 } 1338 1339 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1340 { 1341 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1342 WARN_ON(1); 1343 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1344 GFP_NOFS); 1345 } 1346 1347 /* see btrfs_writepage_start_hook for details on why this is required */ 1348 struct btrfs_writepage_fixup { 1349 struct page *page; 1350 struct btrfs_work work; 1351 }; 1352 1353 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1354 { 1355 struct btrfs_writepage_fixup *fixup; 1356 struct btrfs_ordered_extent *ordered; 1357 struct page *page; 1358 struct inode *inode; 1359 u64 page_start; 1360 u64 page_end; 1361 1362 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1363 page = fixup->page; 1364 again: 1365 lock_page(page); 1366 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1367 ClearPageChecked(page); 1368 goto out_page; 1369 } 1370 1371 inode = page->mapping->host; 1372 page_start = page_offset(page); 1373 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1374 1375 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1376 1377 /* already ordered? We're done */ 1378 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1379 EXTENT_ORDERED, 0)) { 1380 goto out; 1381 } 1382 1383 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1384 if (ordered) { 1385 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1386 page_end, GFP_NOFS); 1387 unlock_page(page); 1388 btrfs_start_ordered_extent(inode, ordered, 1); 1389 goto again; 1390 } 1391 1392 btrfs_set_extent_delalloc(inode, page_start, page_end); 1393 ClearPageChecked(page); 1394 out: 1395 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1396 out_page: 1397 unlock_page(page); 1398 page_cache_release(page); 1399 } 1400 1401 /* 1402 * There are a few paths in the higher layers of the kernel that directly 1403 * set the page dirty bit without asking the filesystem if it is a 1404 * good idea. This causes problems because we want to make sure COW 1405 * properly happens and the data=ordered rules are followed. 1406 * 1407 * In our case any range that doesn't have the ORDERED bit set 1408 * hasn't been properly setup for IO. We kick off an async process 1409 * to fix it up. The async helper will wait for ordered extents, set 1410 * the delalloc bit and make it safe to write the page. 1411 */ 1412 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1413 { 1414 struct inode *inode = page->mapping->host; 1415 struct btrfs_writepage_fixup *fixup; 1416 struct btrfs_root *root = BTRFS_I(inode)->root; 1417 int ret; 1418 1419 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1420 EXTENT_ORDERED, 0); 1421 if (ret) 1422 return 0; 1423 1424 if (PageChecked(page)) 1425 return -EAGAIN; 1426 1427 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1428 if (!fixup) 1429 return -EAGAIN; 1430 1431 SetPageChecked(page); 1432 page_cache_get(page); 1433 fixup->work.func = btrfs_writepage_fixup_worker; 1434 fixup->page = page; 1435 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1436 return -EAGAIN; 1437 } 1438 1439 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1440 struct inode *inode, u64 file_pos, 1441 u64 disk_bytenr, u64 disk_num_bytes, 1442 u64 num_bytes, u64 ram_bytes, 1443 u64 locked_end, 1444 u8 compression, u8 encryption, 1445 u16 other_encoding, int extent_type) 1446 { 1447 struct btrfs_root *root = BTRFS_I(inode)->root; 1448 struct btrfs_file_extent_item *fi; 1449 struct btrfs_path *path; 1450 struct extent_buffer *leaf; 1451 struct btrfs_key ins; 1452 u64 hint; 1453 int ret; 1454 1455 path = btrfs_alloc_path(); 1456 BUG_ON(!path); 1457 1458 path->leave_spinning = 1; 1459 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1460 file_pos + num_bytes, locked_end, 1461 file_pos, &hint); 1462 BUG_ON(ret); 1463 1464 ins.objectid = inode->i_ino; 1465 ins.offset = file_pos; 1466 ins.type = BTRFS_EXTENT_DATA_KEY; 1467 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1468 BUG_ON(ret); 1469 leaf = path->nodes[0]; 1470 fi = btrfs_item_ptr(leaf, path->slots[0], 1471 struct btrfs_file_extent_item); 1472 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1473 btrfs_set_file_extent_type(leaf, fi, extent_type); 1474 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1475 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1476 btrfs_set_file_extent_offset(leaf, fi, 0); 1477 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1478 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1479 btrfs_set_file_extent_compression(leaf, fi, compression); 1480 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1481 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1482 1483 btrfs_unlock_up_safe(path, 1); 1484 btrfs_set_lock_blocking(leaf); 1485 1486 btrfs_mark_buffer_dirty(leaf); 1487 1488 inode_add_bytes(inode, num_bytes); 1489 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1490 1491 ins.objectid = disk_bytenr; 1492 ins.offset = disk_num_bytes; 1493 ins.type = BTRFS_EXTENT_ITEM_KEY; 1494 ret = btrfs_alloc_reserved_file_extent(trans, root, 1495 root->root_key.objectid, 1496 inode->i_ino, file_pos, &ins); 1497 BUG_ON(ret); 1498 btrfs_free_path(path); 1499 1500 return 0; 1501 } 1502 1503 /* 1504 * helper function for btrfs_finish_ordered_io, this 1505 * just reads in some of the csum leaves to prime them into ram 1506 * before we start the transaction. It limits the amount of btree 1507 * reads required while inside the transaction. 1508 */ 1509 static noinline void reada_csum(struct btrfs_root *root, 1510 struct btrfs_path *path, 1511 struct btrfs_ordered_extent *ordered_extent) 1512 { 1513 struct btrfs_ordered_sum *sum; 1514 u64 bytenr; 1515 1516 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum, 1517 list); 1518 bytenr = sum->sums[0].bytenr; 1519 1520 /* 1521 * we don't care about the results, the point of this search is 1522 * just to get the btree leaves into ram 1523 */ 1524 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0); 1525 } 1526 1527 /* as ordered data IO finishes, this gets called so we can finish 1528 * an ordered extent if the range of bytes in the file it covers are 1529 * fully written. 1530 */ 1531 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1532 { 1533 struct btrfs_root *root = BTRFS_I(inode)->root; 1534 struct btrfs_trans_handle *trans; 1535 struct btrfs_ordered_extent *ordered_extent = NULL; 1536 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1537 struct btrfs_path *path; 1538 int compressed = 0; 1539 int ret; 1540 1541 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1542 if (!ret) 1543 return 0; 1544 1545 /* 1546 * before we join the transaction, try to do some of our IO. 1547 * This will limit the amount of IO that we have to do with 1548 * the transaction running. We're unlikely to need to do any 1549 * IO if the file extents are new, the disk_i_size checks 1550 * covers the most common case. 1551 */ 1552 if (start < BTRFS_I(inode)->disk_i_size) { 1553 path = btrfs_alloc_path(); 1554 if (path) { 1555 ret = btrfs_lookup_file_extent(NULL, root, path, 1556 inode->i_ino, 1557 start, 0); 1558 ordered_extent = btrfs_lookup_ordered_extent(inode, 1559 start); 1560 if (!list_empty(&ordered_extent->list)) { 1561 btrfs_release_path(root, path); 1562 reada_csum(root, path, ordered_extent); 1563 } 1564 btrfs_free_path(path); 1565 } 1566 } 1567 1568 trans = btrfs_join_transaction(root, 1); 1569 1570 if (!ordered_extent) 1571 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1572 BUG_ON(!ordered_extent); 1573 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1574 goto nocow; 1575 1576 lock_extent(io_tree, ordered_extent->file_offset, 1577 ordered_extent->file_offset + ordered_extent->len - 1, 1578 GFP_NOFS); 1579 1580 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1581 compressed = 1; 1582 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1583 BUG_ON(compressed); 1584 ret = btrfs_mark_extent_written(trans, root, inode, 1585 ordered_extent->file_offset, 1586 ordered_extent->file_offset + 1587 ordered_extent->len); 1588 BUG_ON(ret); 1589 } else { 1590 ret = insert_reserved_file_extent(trans, inode, 1591 ordered_extent->file_offset, 1592 ordered_extent->start, 1593 ordered_extent->disk_len, 1594 ordered_extent->len, 1595 ordered_extent->len, 1596 ordered_extent->file_offset + 1597 ordered_extent->len, 1598 compressed, 0, 0, 1599 BTRFS_FILE_EXTENT_REG); 1600 BUG_ON(ret); 1601 } 1602 unlock_extent(io_tree, ordered_extent->file_offset, 1603 ordered_extent->file_offset + ordered_extent->len - 1, 1604 GFP_NOFS); 1605 nocow: 1606 add_pending_csums(trans, inode, ordered_extent->file_offset, 1607 &ordered_extent->list); 1608 1609 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1610 btrfs_ordered_update_i_size(inode, ordered_extent); 1611 btrfs_update_inode(trans, root, inode); 1612 btrfs_remove_ordered_extent(inode, ordered_extent); 1613 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1614 1615 /* once for us */ 1616 btrfs_put_ordered_extent(ordered_extent); 1617 /* once for the tree */ 1618 btrfs_put_ordered_extent(ordered_extent); 1619 1620 btrfs_end_transaction(trans, root); 1621 return 0; 1622 } 1623 1624 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1625 struct extent_state *state, int uptodate) 1626 { 1627 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1628 } 1629 1630 /* 1631 * When IO fails, either with EIO or csum verification fails, we 1632 * try other mirrors that might have a good copy of the data. This 1633 * io_failure_record is used to record state as we go through all the 1634 * mirrors. If another mirror has good data, the page is set up to date 1635 * and things continue. If a good mirror can't be found, the original 1636 * bio end_io callback is called to indicate things have failed. 1637 */ 1638 struct io_failure_record { 1639 struct page *page; 1640 u64 start; 1641 u64 len; 1642 u64 logical; 1643 unsigned long bio_flags; 1644 int last_mirror; 1645 }; 1646 1647 static int btrfs_io_failed_hook(struct bio *failed_bio, 1648 struct page *page, u64 start, u64 end, 1649 struct extent_state *state) 1650 { 1651 struct io_failure_record *failrec = NULL; 1652 u64 private; 1653 struct extent_map *em; 1654 struct inode *inode = page->mapping->host; 1655 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1656 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1657 struct bio *bio; 1658 int num_copies; 1659 int ret; 1660 int rw; 1661 u64 logical; 1662 1663 ret = get_state_private(failure_tree, start, &private); 1664 if (ret) { 1665 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1666 if (!failrec) 1667 return -ENOMEM; 1668 failrec->start = start; 1669 failrec->len = end - start + 1; 1670 failrec->last_mirror = 0; 1671 failrec->bio_flags = 0; 1672 1673 spin_lock(&em_tree->lock); 1674 em = lookup_extent_mapping(em_tree, start, failrec->len); 1675 if (em->start > start || em->start + em->len < start) { 1676 free_extent_map(em); 1677 em = NULL; 1678 } 1679 spin_unlock(&em_tree->lock); 1680 1681 if (!em || IS_ERR(em)) { 1682 kfree(failrec); 1683 return -EIO; 1684 } 1685 logical = start - em->start; 1686 logical = em->block_start + logical; 1687 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1688 logical = em->block_start; 1689 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1690 } 1691 failrec->logical = logical; 1692 free_extent_map(em); 1693 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1694 EXTENT_DIRTY, GFP_NOFS); 1695 set_state_private(failure_tree, start, 1696 (u64)(unsigned long)failrec); 1697 } else { 1698 failrec = (struct io_failure_record *)(unsigned long)private; 1699 } 1700 num_copies = btrfs_num_copies( 1701 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1702 failrec->logical, failrec->len); 1703 failrec->last_mirror++; 1704 if (!state) { 1705 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1706 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1707 failrec->start, 1708 EXTENT_LOCKED); 1709 if (state && state->start != failrec->start) 1710 state = NULL; 1711 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1712 } 1713 if (!state || failrec->last_mirror > num_copies) { 1714 set_state_private(failure_tree, failrec->start, 0); 1715 clear_extent_bits(failure_tree, failrec->start, 1716 failrec->start + failrec->len - 1, 1717 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1718 kfree(failrec); 1719 return -EIO; 1720 } 1721 bio = bio_alloc(GFP_NOFS, 1); 1722 bio->bi_private = state; 1723 bio->bi_end_io = failed_bio->bi_end_io; 1724 bio->bi_sector = failrec->logical >> 9; 1725 bio->bi_bdev = failed_bio->bi_bdev; 1726 bio->bi_size = 0; 1727 1728 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1729 if (failed_bio->bi_rw & (1 << BIO_RW)) 1730 rw = WRITE; 1731 else 1732 rw = READ; 1733 1734 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1735 failrec->last_mirror, 1736 failrec->bio_flags); 1737 return 0; 1738 } 1739 1740 /* 1741 * each time an IO finishes, we do a fast check in the IO failure tree 1742 * to see if we need to process or clean up an io_failure_record 1743 */ 1744 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1745 { 1746 u64 private; 1747 u64 private_failure; 1748 struct io_failure_record *failure; 1749 int ret; 1750 1751 private = 0; 1752 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1753 (u64)-1, 1, EXTENT_DIRTY)) { 1754 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1755 start, &private_failure); 1756 if (ret == 0) { 1757 failure = (struct io_failure_record *)(unsigned long) 1758 private_failure; 1759 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1760 failure->start, 0); 1761 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1762 failure->start, 1763 failure->start + failure->len - 1, 1764 EXTENT_DIRTY | EXTENT_LOCKED, 1765 GFP_NOFS); 1766 kfree(failure); 1767 } 1768 } 1769 return 0; 1770 } 1771 1772 /* 1773 * when reads are done, we need to check csums to verify the data is correct 1774 * if there's a match, we allow the bio to finish. If not, we go through 1775 * the io_failure_record routines to find good copies 1776 */ 1777 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1778 struct extent_state *state) 1779 { 1780 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1781 struct inode *inode = page->mapping->host; 1782 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1783 char *kaddr; 1784 u64 private = ~(u32)0; 1785 int ret; 1786 struct btrfs_root *root = BTRFS_I(inode)->root; 1787 u32 csum = ~(u32)0; 1788 1789 if (PageChecked(page)) { 1790 ClearPageChecked(page); 1791 goto good; 1792 } 1793 1794 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1795 return 0; 1796 1797 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1798 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1799 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1800 GFP_NOFS); 1801 return 0; 1802 } 1803 1804 if (state && state->start == start) { 1805 private = state->private; 1806 ret = 0; 1807 } else { 1808 ret = get_state_private(io_tree, start, &private); 1809 } 1810 kaddr = kmap_atomic(page, KM_USER0); 1811 if (ret) 1812 goto zeroit; 1813 1814 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1815 btrfs_csum_final(csum, (char *)&csum); 1816 if (csum != private) 1817 goto zeroit; 1818 1819 kunmap_atomic(kaddr, KM_USER0); 1820 good: 1821 /* if the io failure tree for this inode is non-empty, 1822 * check to see if we've recovered from a failed IO 1823 */ 1824 btrfs_clean_io_failures(inode, start); 1825 return 0; 1826 1827 zeroit: 1828 if (printk_ratelimit()) { 1829 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1830 "private %llu\n", page->mapping->host->i_ino, 1831 (unsigned long long)start, csum, 1832 (unsigned long long)private); 1833 } 1834 memset(kaddr + offset, 1, end - start + 1); 1835 flush_dcache_page(page); 1836 kunmap_atomic(kaddr, KM_USER0); 1837 if (private == 0) 1838 return 0; 1839 return -EIO; 1840 } 1841 1842 /* 1843 * This creates an orphan entry for the given inode in case something goes 1844 * wrong in the middle of an unlink/truncate. 1845 */ 1846 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1847 { 1848 struct btrfs_root *root = BTRFS_I(inode)->root; 1849 int ret = 0; 1850 1851 spin_lock(&root->list_lock); 1852 1853 /* already on the orphan list, we're good */ 1854 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1855 spin_unlock(&root->list_lock); 1856 return 0; 1857 } 1858 1859 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1860 1861 spin_unlock(&root->list_lock); 1862 1863 /* 1864 * insert an orphan item to track this unlinked/truncated file 1865 */ 1866 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1867 1868 return ret; 1869 } 1870 1871 /* 1872 * We have done the truncate/delete so we can go ahead and remove the orphan 1873 * item for this particular inode. 1874 */ 1875 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1876 { 1877 struct btrfs_root *root = BTRFS_I(inode)->root; 1878 int ret = 0; 1879 1880 spin_lock(&root->list_lock); 1881 1882 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1883 spin_unlock(&root->list_lock); 1884 return 0; 1885 } 1886 1887 list_del_init(&BTRFS_I(inode)->i_orphan); 1888 if (!trans) { 1889 spin_unlock(&root->list_lock); 1890 return 0; 1891 } 1892 1893 spin_unlock(&root->list_lock); 1894 1895 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1896 1897 return ret; 1898 } 1899 1900 /* 1901 * this cleans up any orphans that may be left on the list from the last use 1902 * of this root. 1903 */ 1904 void btrfs_orphan_cleanup(struct btrfs_root *root) 1905 { 1906 struct btrfs_path *path; 1907 struct extent_buffer *leaf; 1908 struct btrfs_item *item; 1909 struct btrfs_key key, found_key; 1910 struct btrfs_trans_handle *trans; 1911 struct inode *inode; 1912 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1913 1914 path = btrfs_alloc_path(); 1915 if (!path) 1916 return; 1917 path->reada = -1; 1918 1919 key.objectid = BTRFS_ORPHAN_OBJECTID; 1920 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1921 key.offset = (u64)-1; 1922 1923 1924 while (1) { 1925 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1926 if (ret < 0) { 1927 printk(KERN_ERR "Error searching slot for orphan: %d" 1928 "\n", ret); 1929 break; 1930 } 1931 1932 /* 1933 * if ret == 0 means we found what we were searching for, which 1934 * is weird, but possible, so only screw with path if we didnt 1935 * find the key and see if we have stuff that matches 1936 */ 1937 if (ret > 0) { 1938 if (path->slots[0] == 0) 1939 break; 1940 path->slots[0]--; 1941 } 1942 1943 /* pull out the item */ 1944 leaf = path->nodes[0]; 1945 item = btrfs_item_nr(leaf, path->slots[0]); 1946 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1947 1948 /* make sure the item matches what we want */ 1949 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1950 break; 1951 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1952 break; 1953 1954 /* release the path since we're done with it */ 1955 btrfs_release_path(root, path); 1956 1957 /* 1958 * this is where we are basically btrfs_lookup, without the 1959 * crossing root thing. we store the inode number in the 1960 * offset of the orphan item. 1961 */ 1962 found_key.objectid = found_key.offset; 1963 found_key.type = BTRFS_INODE_ITEM_KEY; 1964 found_key.offset = 0; 1965 inode = btrfs_iget(root->fs_info->sb, &found_key, root); 1966 if (IS_ERR(inode)) 1967 break; 1968 1969 /* 1970 * add this inode to the orphan list so btrfs_orphan_del does 1971 * the proper thing when we hit it 1972 */ 1973 spin_lock(&root->list_lock); 1974 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1975 spin_unlock(&root->list_lock); 1976 1977 /* 1978 * if this is a bad inode, means we actually succeeded in 1979 * removing the inode, but not the orphan record, which means 1980 * we need to manually delete the orphan since iput will just 1981 * do a destroy_inode 1982 */ 1983 if (is_bad_inode(inode)) { 1984 trans = btrfs_start_transaction(root, 1); 1985 btrfs_orphan_del(trans, inode); 1986 btrfs_end_transaction(trans, root); 1987 iput(inode); 1988 continue; 1989 } 1990 1991 /* if we have links, this was a truncate, lets do that */ 1992 if (inode->i_nlink) { 1993 nr_truncate++; 1994 btrfs_truncate(inode); 1995 } else { 1996 nr_unlink++; 1997 } 1998 1999 /* this will do delete_inode and everything for us */ 2000 iput(inode); 2001 } 2002 2003 if (nr_unlink) 2004 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2005 if (nr_truncate) 2006 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2007 2008 btrfs_free_path(path); 2009 } 2010 2011 /* 2012 * very simple check to peek ahead in the leaf looking for xattrs. If we 2013 * don't find any xattrs, we know there can't be any acls. 2014 * 2015 * slot is the slot the inode is in, objectid is the objectid of the inode 2016 */ 2017 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2018 int slot, u64 objectid) 2019 { 2020 u32 nritems = btrfs_header_nritems(leaf); 2021 struct btrfs_key found_key; 2022 int scanned = 0; 2023 2024 slot++; 2025 while (slot < nritems) { 2026 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2027 2028 /* we found a different objectid, there must not be acls */ 2029 if (found_key.objectid != objectid) 2030 return 0; 2031 2032 /* we found an xattr, assume we've got an acl */ 2033 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2034 return 1; 2035 2036 /* 2037 * we found a key greater than an xattr key, there can't 2038 * be any acls later on 2039 */ 2040 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2041 return 0; 2042 2043 slot++; 2044 scanned++; 2045 2046 /* 2047 * it goes inode, inode backrefs, xattrs, extents, 2048 * so if there are a ton of hard links to an inode there can 2049 * be a lot of backrefs. Don't waste time searching too hard, 2050 * this is just an optimization 2051 */ 2052 if (scanned >= 8) 2053 break; 2054 } 2055 /* we hit the end of the leaf before we found an xattr or 2056 * something larger than an xattr. We have to assume the inode 2057 * has acls 2058 */ 2059 return 1; 2060 } 2061 2062 /* 2063 * read an inode from the btree into the in-memory inode 2064 */ 2065 static void btrfs_read_locked_inode(struct inode *inode) 2066 { 2067 struct btrfs_path *path; 2068 struct extent_buffer *leaf; 2069 struct btrfs_inode_item *inode_item; 2070 struct btrfs_timespec *tspec; 2071 struct btrfs_root *root = BTRFS_I(inode)->root; 2072 struct btrfs_key location; 2073 int maybe_acls; 2074 u64 alloc_group_block; 2075 u32 rdev; 2076 int ret; 2077 2078 path = btrfs_alloc_path(); 2079 BUG_ON(!path); 2080 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2081 2082 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2083 if (ret) 2084 goto make_bad; 2085 2086 leaf = path->nodes[0]; 2087 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2088 struct btrfs_inode_item); 2089 2090 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2091 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2092 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2093 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2094 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2095 2096 tspec = btrfs_inode_atime(inode_item); 2097 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2098 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2099 2100 tspec = btrfs_inode_mtime(inode_item); 2101 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2102 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2103 2104 tspec = btrfs_inode_ctime(inode_item); 2105 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2106 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2107 2108 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2109 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2110 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2111 inode->i_generation = BTRFS_I(inode)->generation; 2112 inode->i_rdev = 0; 2113 rdev = btrfs_inode_rdev(leaf, inode_item); 2114 2115 BTRFS_I(inode)->index_cnt = (u64)-1; 2116 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2117 2118 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2119 2120 /* 2121 * try to precache a NULL acl entry for files that don't have 2122 * any xattrs or acls 2123 */ 2124 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2125 if (!maybe_acls) { 2126 BTRFS_I(inode)->i_acl = NULL; 2127 BTRFS_I(inode)->i_default_acl = NULL; 2128 } 2129 2130 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2131 alloc_group_block, 0); 2132 btrfs_free_path(path); 2133 inode_item = NULL; 2134 2135 switch (inode->i_mode & S_IFMT) { 2136 case S_IFREG: 2137 inode->i_mapping->a_ops = &btrfs_aops; 2138 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2139 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2140 inode->i_fop = &btrfs_file_operations; 2141 inode->i_op = &btrfs_file_inode_operations; 2142 break; 2143 case S_IFDIR: 2144 inode->i_fop = &btrfs_dir_file_operations; 2145 if (root == root->fs_info->tree_root) 2146 inode->i_op = &btrfs_dir_ro_inode_operations; 2147 else 2148 inode->i_op = &btrfs_dir_inode_operations; 2149 break; 2150 case S_IFLNK: 2151 inode->i_op = &btrfs_symlink_inode_operations; 2152 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2153 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2154 break; 2155 default: 2156 inode->i_op = &btrfs_special_inode_operations; 2157 init_special_inode(inode, inode->i_mode, rdev); 2158 break; 2159 } 2160 2161 btrfs_update_iflags(inode); 2162 return; 2163 2164 make_bad: 2165 btrfs_free_path(path); 2166 make_bad_inode(inode); 2167 } 2168 2169 /* 2170 * given a leaf and an inode, copy the inode fields into the leaf 2171 */ 2172 static void fill_inode_item(struct btrfs_trans_handle *trans, 2173 struct extent_buffer *leaf, 2174 struct btrfs_inode_item *item, 2175 struct inode *inode) 2176 { 2177 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2178 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2179 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2180 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2181 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2182 2183 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2184 inode->i_atime.tv_sec); 2185 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2186 inode->i_atime.tv_nsec); 2187 2188 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2189 inode->i_mtime.tv_sec); 2190 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2191 inode->i_mtime.tv_nsec); 2192 2193 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2194 inode->i_ctime.tv_sec); 2195 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2196 inode->i_ctime.tv_nsec); 2197 2198 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2199 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2200 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2201 btrfs_set_inode_transid(leaf, item, trans->transid); 2202 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2203 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2204 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2205 } 2206 2207 /* 2208 * copy everything in the in-memory inode into the btree. 2209 */ 2210 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2211 struct btrfs_root *root, struct inode *inode) 2212 { 2213 struct btrfs_inode_item *inode_item; 2214 struct btrfs_path *path; 2215 struct extent_buffer *leaf; 2216 int ret; 2217 2218 path = btrfs_alloc_path(); 2219 BUG_ON(!path); 2220 path->leave_spinning = 1; 2221 ret = btrfs_lookup_inode(trans, root, path, 2222 &BTRFS_I(inode)->location, 1); 2223 if (ret) { 2224 if (ret > 0) 2225 ret = -ENOENT; 2226 goto failed; 2227 } 2228 2229 btrfs_unlock_up_safe(path, 1); 2230 leaf = path->nodes[0]; 2231 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2232 struct btrfs_inode_item); 2233 2234 fill_inode_item(trans, leaf, inode_item, inode); 2235 btrfs_mark_buffer_dirty(leaf); 2236 btrfs_set_inode_last_trans(trans, inode); 2237 ret = 0; 2238 failed: 2239 btrfs_free_path(path); 2240 return ret; 2241 } 2242 2243 2244 /* 2245 * unlink helper that gets used here in inode.c and in the tree logging 2246 * recovery code. It remove a link in a directory with a given name, and 2247 * also drops the back refs in the inode to the directory 2248 */ 2249 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2250 struct btrfs_root *root, 2251 struct inode *dir, struct inode *inode, 2252 const char *name, int name_len) 2253 { 2254 struct btrfs_path *path; 2255 int ret = 0; 2256 struct extent_buffer *leaf; 2257 struct btrfs_dir_item *di; 2258 struct btrfs_key key; 2259 u64 index; 2260 2261 path = btrfs_alloc_path(); 2262 if (!path) { 2263 ret = -ENOMEM; 2264 goto err; 2265 } 2266 2267 path->leave_spinning = 1; 2268 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2269 name, name_len, -1); 2270 if (IS_ERR(di)) { 2271 ret = PTR_ERR(di); 2272 goto err; 2273 } 2274 if (!di) { 2275 ret = -ENOENT; 2276 goto err; 2277 } 2278 leaf = path->nodes[0]; 2279 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2280 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2281 if (ret) 2282 goto err; 2283 btrfs_release_path(root, path); 2284 2285 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2286 inode->i_ino, 2287 dir->i_ino, &index); 2288 if (ret) { 2289 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2290 "inode %lu parent %lu\n", name_len, name, 2291 inode->i_ino, dir->i_ino); 2292 goto err; 2293 } 2294 2295 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2296 index, name, name_len, -1); 2297 if (IS_ERR(di)) { 2298 ret = PTR_ERR(di); 2299 goto err; 2300 } 2301 if (!di) { 2302 ret = -ENOENT; 2303 goto err; 2304 } 2305 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2306 btrfs_release_path(root, path); 2307 2308 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2309 inode, dir->i_ino); 2310 BUG_ON(ret != 0 && ret != -ENOENT); 2311 2312 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2313 dir, index); 2314 BUG_ON(ret); 2315 err: 2316 btrfs_free_path(path); 2317 if (ret) 2318 goto out; 2319 2320 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2321 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2322 btrfs_update_inode(trans, root, dir); 2323 btrfs_drop_nlink(inode); 2324 ret = btrfs_update_inode(trans, root, inode); 2325 out: 2326 return ret; 2327 } 2328 2329 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2330 { 2331 struct btrfs_root *root; 2332 struct btrfs_trans_handle *trans; 2333 struct inode *inode = dentry->d_inode; 2334 int ret; 2335 unsigned long nr = 0; 2336 2337 root = BTRFS_I(dir)->root; 2338 2339 trans = btrfs_start_transaction(root, 1); 2340 2341 btrfs_set_trans_block_group(trans, dir); 2342 2343 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2344 2345 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2346 dentry->d_name.name, dentry->d_name.len); 2347 2348 if (inode->i_nlink == 0) 2349 ret = btrfs_orphan_add(trans, inode); 2350 2351 nr = trans->blocks_used; 2352 2353 btrfs_end_transaction_throttle(trans, root); 2354 btrfs_btree_balance_dirty(root, nr); 2355 return ret; 2356 } 2357 2358 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2359 { 2360 struct inode *inode = dentry->d_inode; 2361 int err = 0; 2362 int ret; 2363 struct btrfs_root *root = BTRFS_I(dir)->root; 2364 struct btrfs_trans_handle *trans; 2365 unsigned long nr = 0; 2366 2367 /* 2368 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2369 * the root of a subvolume or snapshot 2370 */ 2371 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2372 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2373 return -ENOTEMPTY; 2374 } 2375 2376 trans = btrfs_start_transaction(root, 1); 2377 btrfs_set_trans_block_group(trans, dir); 2378 2379 err = btrfs_orphan_add(trans, inode); 2380 if (err) 2381 goto fail_trans; 2382 2383 /* now the directory is empty */ 2384 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2385 dentry->d_name.name, dentry->d_name.len); 2386 if (!err) 2387 btrfs_i_size_write(inode, 0); 2388 2389 fail_trans: 2390 nr = trans->blocks_used; 2391 ret = btrfs_end_transaction_throttle(trans, root); 2392 btrfs_btree_balance_dirty(root, nr); 2393 2394 if (ret && !err) 2395 err = ret; 2396 return err; 2397 } 2398 2399 #if 0 2400 /* 2401 * when truncating bytes in a file, it is possible to avoid reading 2402 * the leaves that contain only checksum items. This can be the 2403 * majority of the IO required to delete a large file, but it must 2404 * be done carefully. 2405 * 2406 * The keys in the level just above the leaves are checked to make sure 2407 * the lowest key in a given leaf is a csum key, and starts at an offset 2408 * after the new size. 2409 * 2410 * Then the key for the next leaf is checked to make sure it also has 2411 * a checksum item for the same file. If it does, we know our target leaf 2412 * contains only checksum items, and it can be safely freed without reading 2413 * it. 2414 * 2415 * This is just an optimization targeted at large files. It may do 2416 * nothing. It will return 0 unless things went badly. 2417 */ 2418 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2419 struct btrfs_root *root, 2420 struct btrfs_path *path, 2421 struct inode *inode, u64 new_size) 2422 { 2423 struct btrfs_key key; 2424 int ret; 2425 int nritems; 2426 struct btrfs_key found_key; 2427 struct btrfs_key other_key; 2428 struct btrfs_leaf_ref *ref; 2429 u64 leaf_gen; 2430 u64 leaf_start; 2431 2432 path->lowest_level = 1; 2433 key.objectid = inode->i_ino; 2434 key.type = BTRFS_CSUM_ITEM_KEY; 2435 key.offset = new_size; 2436 again: 2437 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2438 if (ret < 0) 2439 goto out; 2440 2441 if (path->nodes[1] == NULL) { 2442 ret = 0; 2443 goto out; 2444 } 2445 ret = 0; 2446 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2447 nritems = btrfs_header_nritems(path->nodes[1]); 2448 2449 if (!nritems) 2450 goto out; 2451 2452 if (path->slots[1] >= nritems) 2453 goto next_node; 2454 2455 /* did we find a key greater than anything we want to delete? */ 2456 if (found_key.objectid > inode->i_ino || 2457 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2458 goto out; 2459 2460 /* we check the next key in the node to make sure the leave contains 2461 * only checksum items. This comparison doesn't work if our 2462 * leaf is the last one in the node 2463 */ 2464 if (path->slots[1] + 1 >= nritems) { 2465 next_node: 2466 /* search forward from the last key in the node, this 2467 * will bring us into the next node in the tree 2468 */ 2469 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2470 2471 /* unlikely, but we inc below, so check to be safe */ 2472 if (found_key.offset == (u64)-1) 2473 goto out; 2474 2475 /* search_forward needs a path with locks held, do the 2476 * search again for the original key. It is possible 2477 * this will race with a balance and return a path that 2478 * we could modify, but this drop is just an optimization 2479 * and is allowed to miss some leaves. 2480 */ 2481 btrfs_release_path(root, path); 2482 found_key.offset++; 2483 2484 /* setup a max key for search_forward */ 2485 other_key.offset = (u64)-1; 2486 other_key.type = key.type; 2487 other_key.objectid = key.objectid; 2488 2489 path->keep_locks = 1; 2490 ret = btrfs_search_forward(root, &found_key, &other_key, 2491 path, 0, 0); 2492 path->keep_locks = 0; 2493 if (ret || found_key.objectid != key.objectid || 2494 found_key.type != key.type) { 2495 ret = 0; 2496 goto out; 2497 } 2498 2499 key.offset = found_key.offset; 2500 btrfs_release_path(root, path); 2501 cond_resched(); 2502 goto again; 2503 } 2504 2505 /* we know there's one more slot after us in the tree, 2506 * read that key so we can verify it is also a checksum item 2507 */ 2508 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2509 2510 if (found_key.objectid < inode->i_ino) 2511 goto next_key; 2512 2513 if (found_key.type != key.type || found_key.offset < new_size) 2514 goto next_key; 2515 2516 /* 2517 * if the key for the next leaf isn't a csum key from this objectid, 2518 * we can't be sure there aren't good items inside this leaf. 2519 * Bail out 2520 */ 2521 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2522 goto out; 2523 2524 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2525 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2526 /* 2527 * it is safe to delete this leaf, it contains only 2528 * csum items from this inode at an offset >= new_size 2529 */ 2530 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2531 BUG_ON(ret); 2532 2533 if (root->ref_cows && leaf_gen < trans->transid) { 2534 ref = btrfs_alloc_leaf_ref(root, 0); 2535 if (ref) { 2536 ref->root_gen = root->root_key.offset; 2537 ref->bytenr = leaf_start; 2538 ref->owner = 0; 2539 ref->generation = leaf_gen; 2540 ref->nritems = 0; 2541 2542 btrfs_sort_leaf_ref(ref); 2543 2544 ret = btrfs_add_leaf_ref(root, ref, 0); 2545 WARN_ON(ret); 2546 btrfs_free_leaf_ref(root, ref); 2547 } else { 2548 WARN_ON(1); 2549 } 2550 } 2551 next_key: 2552 btrfs_release_path(root, path); 2553 2554 if (other_key.objectid == inode->i_ino && 2555 other_key.type == key.type && other_key.offset > key.offset) { 2556 key.offset = other_key.offset; 2557 cond_resched(); 2558 goto again; 2559 } 2560 ret = 0; 2561 out: 2562 /* fixup any changes we've made to the path */ 2563 path->lowest_level = 0; 2564 path->keep_locks = 0; 2565 btrfs_release_path(root, path); 2566 return ret; 2567 } 2568 2569 #endif 2570 2571 /* 2572 * this can truncate away extent items, csum items and directory items. 2573 * It starts at a high offset and removes keys until it can't find 2574 * any higher than new_size 2575 * 2576 * csum items that cross the new i_size are truncated to the new size 2577 * as well. 2578 * 2579 * min_type is the minimum key type to truncate down to. If set to 0, this 2580 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2581 */ 2582 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2583 struct btrfs_root *root, 2584 struct inode *inode, 2585 u64 new_size, u32 min_type) 2586 { 2587 int ret; 2588 struct btrfs_path *path; 2589 struct btrfs_key key; 2590 struct btrfs_key found_key; 2591 u32 found_type = (u8)-1; 2592 struct extent_buffer *leaf; 2593 struct btrfs_file_extent_item *fi; 2594 u64 extent_start = 0; 2595 u64 extent_num_bytes = 0; 2596 u64 extent_offset = 0; 2597 u64 item_end = 0; 2598 int found_extent; 2599 int del_item; 2600 int pending_del_nr = 0; 2601 int pending_del_slot = 0; 2602 int extent_type = -1; 2603 int encoding; 2604 u64 mask = root->sectorsize - 1; 2605 2606 if (root->ref_cows) 2607 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2608 path = btrfs_alloc_path(); 2609 path->reada = -1; 2610 BUG_ON(!path); 2611 2612 /* FIXME, add redo link to tree so we don't leak on crash */ 2613 key.objectid = inode->i_ino; 2614 key.offset = (u64)-1; 2615 key.type = (u8)-1; 2616 2617 search_again: 2618 path->leave_spinning = 1; 2619 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2620 if (ret < 0) 2621 goto error; 2622 2623 if (ret > 0) { 2624 /* there are no items in the tree for us to truncate, we're 2625 * done 2626 */ 2627 if (path->slots[0] == 0) { 2628 ret = 0; 2629 goto error; 2630 } 2631 path->slots[0]--; 2632 } 2633 2634 while (1) { 2635 fi = NULL; 2636 leaf = path->nodes[0]; 2637 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2638 found_type = btrfs_key_type(&found_key); 2639 encoding = 0; 2640 2641 if (found_key.objectid != inode->i_ino) 2642 break; 2643 2644 if (found_type < min_type) 2645 break; 2646 2647 item_end = found_key.offset; 2648 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2649 fi = btrfs_item_ptr(leaf, path->slots[0], 2650 struct btrfs_file_extent_item); 2651 extent_type = btrfs_file_extent_type(leaf, fi); 2652 encoding = btrfs_file_extent_compression(leaf, fi); 2653 encoding |= btrfs_file_extent_encryption(leaf, fi); 2654 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2655 2656 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2657 item_end += 2658 btrfs_file_extent_num_bytes(leaf, fi); 2659 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2660 item_end += btrfs_file_extent_inline_len(leaf, 2661 fi); 2662 } 2663 item_end--; 2664 } 2665 if (item_end < new_size) { 2666 if (found_type == BTRFS_DIR_ITEM_KEY) 2667 found_type = BTRFS_INODE_ITEM_KEY; 2668 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2669 found_type = BTRFS_EXTENT_DATA_KEY; 2670 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2671 found_type = BTRFS_XATTR_ITEM_KEY; 2672 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2673 found_type = BTRFS_INODE_REF_KEY; 2674 else if (found_type) 2675 found_type--; 2676 else 2677 break; 2678 btrfs_set_key_type(&key, found_type); 2679 goto next; 2680 } 2681 if (found_key.offset >= new_size) 2682 del_item = 1; 2683 else 2684 del_item = 0; 2685 found_extent = 0; 2686 2687 /* FIXME, shrink the extent if the ref count is only 1 */ 2688 if (found_type != BTRFS_EXTENT_DATA_KEY) 2689 goto delete; 2690 2691 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2692 u64 num_dec; 2693 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2694 if (!del_item && !encoding) { 2695 u64 orig_num_bytes = 2696 btrfs_file_extent_num_bytes(leaf, fi); 2697 extent_num_bytes = new_size - 2698 found_key.offset + root->sectorsize - 1; 2699 extent_num_bytes = extent_num_bytes & 2700 ~((u64)root->sectorsize - 1); 2701 btrfs_set_file_extent_num_bytes(leaf, fi, 2702 extent_num_bytes); 2703 num_dec = (orig_num_bytes - 2704 extent_num_bytes); 2705 if (root->ref_cows && extent_start != 0) 2706 inode_sub_bytes(inode, num_dec); 2707 btrfs_mark_buffer_dirty(leaf); 2708 } else { 2709 extent_num_bytes = 2710 btrfs_file_extent_disk_num_bytes(leaf, 2711 fi); 2712 extent_offset = found_key.offset - 2713 btrfs_file_extent_offset(leaf, fi); 2714 2715 /* FIXME blocksize != 4096 */ 2716 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2717 if (extent_start != 0) { 2718 found_extent = 1; 2719 if (root->ref_cows) 2720 inode_sub_bytes(inode, num_dec); 2721 } 2722 } 2723 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2724 /* 2725 * we can't truncate inline items that have had 2726 * special encodings 2727 */ 2728 if (!del_item && 2729 btrfs_file_extent_compression(leaf, fi) == 0 && 2730 btrfs_file_extent_encryption(leaf, fi) == 0 && 2731 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2732 u32 size = new_size - found_key.offset; 2733 2734 if (root->ref_cows) { 2735 inode_sub_bytes(inode, item_end + 1 - 2736 new_size); 2737 } 2738 size = 2739 btrfs_file_extent_calc_inline_size(size); 2740 ret = btrfs_truncate_item(trans, root, path, 2741 size, 1); 2742 BUG_ON(ret); 2743 } else if (root->ref_cows) { 2744 inode_sub_bytes(inode, item_end + 1 - 2745 found_key.offset); 2746 } 2747 } 2748 delete: 2749 if (del_item) { 2750 if (!pending_del_nr) { 2751 /* no pending yet, add ourselves */ 2752 pending_del_slot = path->slots[0]; 2753 pending_del_nr = 1; 2754 } else if (pending_del_nr && 2755 path->slots[0] + 1 == pending_del_slot) { 2756 /* hop on the pending chunk */ 2757 pending_del_nr++; 2758 pending_del_slot = path->slots[0]; 2759 } else { 2760 BUG(); 2761 } 2762 } else { 2763 break; 2764 } 2765 if (found_extent && root->ref_cows) { 2766 btrfs_set_path_blocking(path); 2767 ret = btrfs_free_extent(trans, root, extent_start, 2768 extent_num_bytes, 0, 2769 btrfs_header_owner(leaf), 2770 inode->i_ino, extent_offset); 2771 BUG_ON(ret); 2772 } 2773 next: 2774 if (path->slots[0] == 0) { 2775 if (pending_del_nr) 2776 goto del_pending; 2777 btrfs_release_path(root, path); 2778 if (found_type == BTRFS_INODE_ITEM_KEY) 2779 break; 2780 goto search_again; 2781 } 2782 2783 path->slots[0]--; 2784 if (pending_del_nr && 2785 path->slots[0] + 1 != pending_del_slot) { 2786 struct btrfs_key debug; 2787 del_pending: 2788 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2789 pending_del_slot); 2790 ret = btrfs_del_items(trans, root, path, 2791 pending_del_slot, 2792 pending_del_nr); 2793 BUG_ON(ret); 2794 pending_del_nr = 0; 2795 btrfs_release_path(root, path); 2796 if (found_type == BTRFS_INODE_ITEM_KEY) 2797 break; 2798 goto search_again; 2799 } 2800 } 2801 ret = 0; 2802 error: 2803 if (pending_del_nr) { 2804 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2805 pending_del_nr); 2806 } 2807 btrfs_free_path(path); 2808 return ret; 2809 } 2810 2811 /* 2812 * taken from block_truncate_page, but does cow as it zeros out 2813 * any bytes left in the last page in the file. 2814 */ 2815 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2816 { 2817 struct inode *inode = mapping->host; 2818 struct btrfs_root *root = BTRFS_I(inode)->root; 2819 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2820 struct btrfs_ordered_extent *ordered; 2821 char *kaddr; 2822 u32 blocksize = root->sectorsize; 2823 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2824 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2825 struct page *page; 2826 int ret = 0; 2827 u64 page_start; 2828 u64 page_end; 2829 2830 if ((offset & (blocksize - 1)) == 0) 2831 goto out; 2832 2833 ret = -ENOMEM; 2834 again: 2835 page = grab_cache_page(mapping, index); 2836 if (!page) 2837 goto out; 2838 2839 page_start = page_offset(page); 2840 page_end = page_start + PAGE_CACHE_SIZE - 1; 2841 2842 if (!PageUptodate(page)) { 2843 ret = btrfs_readpage(NULL, page); 2844 lock_page(page); 2845 if (page->mapping != mapping) { 2846 unlock_page(page); 2847 page_cache_release(page); 2848 goto again; 2849 } 2850 if (!PageUptodate(page)) { 2851 ret = -EIO; 2852 goto out_unlock; 2853 } 2854 } 2855 wait_on_page_writeback(page); 2856 2857 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2858 set_page_extent_mapped(page); 2859 2860 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2861 if (ordered) { 2862 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2863 unlock_page(page); 2864 page_cache_release(page); 2865 btrfs_start_ordered_extent(inode, ordered, 1); 2866 btrfs_put_ordered_extent(ordered); 2867 goto again; 2868 } 2869 2870 btrfs_set_extent_delalloc(inode, page_start, page_end); 2871 ret = 0; 2872 if (offset != PAGE_CACHE_SIZE) { 2873 kaddr = kmap(page); 2874 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2875 flush_dcache_page(page); 2876 kunmap(page); 2877 } 2878 ClearPageChecked(page); 2879 set_page_dirty(page); 2880 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2881 2882 out_unlock: 2883 unlock_page(page); 2884 page_cache_release(page); 2885 out: 2886 return ret; 2887 } 2888 2889 int btrfs_cont_expand(struct inode *inode, loff_t size) 2890 { 2891 struct btrfs_trans_handle *trans; 2892 struct btrfs_root *root = BTRFS_I(inode)->root; 2893 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2894 struct extent_map *em; 2895 u64 mask = root->sectorsize - 1; 2896 u64 hole_start = (inode->i_size + mask) & ~mask; 2897 u64 block_end = (size + mask) & ~mask; 2898 u64 last_byte; 2899 u64 cur_offset; 2900 u64 hole_size; 2901 int err; 2902 2903 if (size <= hole_start) 2904 return 0; 2905 2906 err = btrfs_check_metadata_free_space(root); 2907 if (err) 2908 return err; 2909 2910 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2911 2912 while (1) { 2913 struct btrfs_ordered_extent *ordered; 2914 btrfs_wait_ordered_range(inode, hole_start, 2915 block_end - hole_start); 2916 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2917 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2918 if (!ordered) 2919 break; 2920 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2921 btrfs_put_ordered_extent(ordered); 2922 } 2923 2924 trans = btrfs_start_transaction(root, 1); 2925 btrfs_set_trans_block_group(trans, inode); 2926 2927 cur_offset = hole_start; 2928 while (1) { 2929 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2930 block_end - cur_offset, 0); 2931 BUG_ON(IS_ERR(em) || !em); 2932 last_byte = min(extent_map_end(em), block_end); 2933 last_byte = (last_byte + mask) & ~mask; 2934 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2935 u64 hint_byte = 0; 2936 hole_size = last_byte - cur_offset; 2937 err = btrfs_drop_extents(trans, root, inode, 2938 cur_offset, 2939 cur_offset + hole_size, 2940 block_end, 2941 cur_offset, &hint_byte); 2942 if (err) 2943 break; 2944 err = btrfs_insert_file_extent(trans, root, 2945 inode->i_ino, cur_offset, 0, 2946 0, hole_size, 0, hole_size, 2947 0, 0, 0); 2948 btrfs_drop_extent_cache(inode, hole_start, 2949 last_byte - 1, 0); 2950 } 2951 free_extent_map(em); 2952 cur_offset = last_byte; 2953 if (err || cur_offset >= block_end) 2954 break; 2955 } 2956 2957 btrfs_end_transaction(trans, root); 2958 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2959 return err; 2960 } 2961 2962 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2963 { 2964 struct inode *inode = dentry->d_inode; 2965 int err; 2966 2967 err = inode_change_ok(inode, attr); 2968 if (err) 2969 return err; 2970 2971 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 2972 if (attr->ia_size > inode->i_size) { 2973 err = btrfs_cont_expand(inode, attr->ia_size); 2974 if (err) 2975 return err; 2976 } else if (inode->i_size > 0 && 2977 attr->ia_size == 0) { 2978 2979 /* we're truncating a file that used to have good 2980 * data down to zero. Make sure it gets into 2981 * the ordered flush list so that any new writes 2982 * get down to disk quickly. 2983 */ 2984 BTRFS_I(inode)->ordered_data_close = 1; 2985 } 2986 } 2987 2988 err = inode_setattr(inode, attr); 2989 2990 if (!err && ((attr->ia_valid & ATTR_MODE))) 2991 err = btrfs_acl_chmod(inode); 2992 return err; 2993 } 2994 2995 void btrfs_delete_inode(struct inode *inode) 2996 { 2997 struct btrfs_trans_handle *trans; 2998 struct btrfs_root *root = BTRFS_I(inode)->root; 2999 unsigned long nr; 3000 int ret; 3001 3002 truncate_inode_pages(&inode->i_data, 0); 3003 if (is_bad_inode(inode)) { 3004 btrfs_orphan_del(NULL, inode); 3005 goto no_delete; 3006 } 3007 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3008 3009 btrfs_i_size_write(inode, 0); 3010 trans = btrfs_join_transaction(root, 1); 3011 3012 btrfs_set_trans_block_group(trans, inode); 3013 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 3014 if (ret) { 3015 btrfs_orphan_del(NULL, inode); 3016 goto no_delete_lock; 3017 } 3018 3019 btrfs_orphan_del(trans, inode); 3020 3021 nr = trans->blocks_used; 3022 clear_inode(inode); 3023 3024 btrfs_end_transaction(trans, root); 3025 btrfs_btree_balance_dirty(root, nr); 3026 return; 3027 3028 no_delete_lock: 3029 nr = trans->blocks_used; 3030 btrfs_end_transaction(trans, root); 3031 btrfs_btree_balance_dirty(root, nr); 3032 no_delete: 3033 clear_inode(inode); 3034 } 3035 3036 /* 3037 * this returns the key found in the dir entry in the location pointer. 3038 * If no dir entries were found, location->objectid is 0. 3039 */ 3040 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3041 struct btrfs_key *location) 3042 { 3043 const char *name = dentry->d_name.name; 3044 int namelen = dentry->d_name.len; 3045 struct btrfs_dir_item *di; 3046 struct btrfs_path *path; 3047 struct btrfs_root *root = BTRFS_I(dir)->root; 3048 int ret = 0; 3049 3050 path = btrfs_alloc_path(); 3051 BUG_ON(!path); 3052 3053 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3054 namelen, 0); 3055 if (IS_ERR(di)) 3056 ret = PTR_ERR(di); 3057 3058 if (!di || IS_ERR(di)) 3059 goto out_err; 3060 3061 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3062 out: 3063 btrfs_free_path(path); 3064 return ret; 3065 out_err: 3066 location->objectid = 0; 3067 goto out; 3068 } 3069 3070 /* 3071 * when we hit a tree root in a directory, the btrfs part of the inode 3072 * needs to be changed to reflect the root directory of the tree root. This 3073 * is kind of like crossing a mount point. 3074 */ 3075 static int fixup_tree_root_location(struct btrfs_root *root, 3076 struct btrfs_key *location, 3077 struct btrfs_root **sub_root, 3078 struct dentry *dentry) 3079 { 3080 struct btrfs_root_item *ri; 3081 3082 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 3083 return 0; 3084 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 3085 return 0; 3086 3087 *sub_root = btrfs_read_fs_root(root->fs_info, location, 3088 dentry->d_name.name, 3089 dentry->d_name.len); 3090 if (IS_ERR(*sub_root)) 3091 return PTR_ERR(*sub_root); 3092 3093 ri = &(*sub_root)->root_item; 3094 location->objectid = btrfs_root_dirid(ri); 3095 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3096 location->offset = 0; 3097 3098 return 0; 3099 } 3100 3101 static void inode_tree_add(struct inode *inode) 3102 { 3103 struct btrfs_root *root = BTRFS_I(inode)->root; 3104 struct btrfs_inode *entry; 3105 struct rb_node **p = &root->inode_tree.rb_node; 3106 struct rb_node *parent = NULL; 3107 3108 spin_lock(&root->inode_lock); 3109 while (*p) { 3110 parent = *p; 3111 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3112 3113 if (inode->i_ino < entry->vfs_inode.i_ino) 3114 p = &(*p)->rb_left; 3115 else if (inode->i_ino > entry->vfs_inode.i_ino) 3116 p = &(*p)->rb_right; 3117 else { 3118 WARN_ON(!(entry->vfs_inode.i_state & 3119 (I_WILL_FREE | I_FREEING | I_CLEAR))); 3120 break; 3121 } 3122 } 3123 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3124 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3125 spin_unlock(&root->inode_lock); 3126 } 3127 3128 static void inode_tree_del(struct inode *inode) 3129 { 3130 struct btrfs_root *root = BTRFS_I(inode)->root; 3131 3132 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3133 spin_lock(&root->inode_lock); 3134 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3135 spin_unlock(&root->inode_lock); 3136 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3137 } 3138 } 3139 3140 static noinline void init_btrfs_i(struct inode *inode) 3141 { 3142 struct btrfs_inode *bi = BTRFS_I(inode); 3143 3144 bi->i_acl = BTRFS_ACL_NOT_CACHED; 3145 bi->i_default_acl = BTRFS_ACL_NOT_CACHED; 3146 3147 bi->generation = 0; 3148 bi->sequence = 0; 3149 bi->last_trans = 0; 3150 bi->logged_trans = 0; 3151 bi->delalloc_bytes = 0; 3152 bi->reserved_bytes = 0; 3153 bi->disk_i_size = 0; 3154 bi->flags = 0; 3155 bi->index_cnt = (u64)-1; 3156 bi->last_unlink_trans = 0; 3157 bi->ordered_data_close = 0; 3158 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 3159 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 3160 inode->i_mapping, GFP_NOFS); 3161 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3162 inode->i_mapping, GFP_NOFS); 3163 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3164 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations); 3165 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3166 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3167 mutex_init(&BTRFS_I(inode)->extent_mutex); 3168 mutex_init(&BTRFS_I(inode)->log_mutex); 3169 } 3170 3171 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3172 { 3173 struct btrfs_iget_args *args = p; 3174 inode->i_ino = args->ino; 3175 init_btrfs_i(inode); 3176 BTRFS_I(inode)->root = args->root; 3177 btrfs_set_inode_space_info(args->root, inode); 3178 return 0; 3179 } 3180 3181 static int btrfs_find_actor(struct inode *inode, void *opaque) 3182 { 3183 struct btrfs_iget_args *args = opaque; 3184 return args->ino == inode->i_ino && 3185 args->root == BTRFS_I(inode)->root; 3186 } 3187 3188 static struct inode *btrfs_iget_locked(struct super_block *s, 3189 u64 objectid, 3190 struct btrfs_root *root) 3191 { 3192 struct inode *inode; 3193 struct btrfs_iget_args args; 3194 args.ino = objectid; 3195 args.root = root; 3196 3197 inode = iget5_locked(s, objectid, btrfs_find_actor, 3198 btrfs_init_locked_inode, 3199 (void *)&args); 3200 return inode; 3201 } 3202 3203 /* Get an inode object given its location and corresponding root. 3204 * Returns in *is_new if the inode was read from disk 3205 */ 3206 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3207 struct btrfs_root *root) 3208 { 3209 struct inode *inode; 3210 3211 inode = btrfs_iget_locked(s, location->objectid, root); 3212 if (!inode) 3213 return ERR_PTR(-ENOMEM); 3214 3215 if (inode->i_state & I_NEW) { 3216 BTRFS_I(inode)->root = root; 3217 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3218 btrfs_read_locked_inode(inode); 3219 3220 inode_tree_add(inode); 3221 unlock_new_inode(inode); 3222 } 3223 3224 return inode; 3225 } 3226 3227 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3228 { 3229 struct inode *inode; 3230 struct btrfs_inode *bi = BTRFS_I(dir); 3231 struct btrfs_root *root = bi->root; 3232 struct btrfs_root *sub_root = root; 3233 struct btrfs_key location; 3234 int ret; 3235 3236 if (dentry->d_name.len > BTRFS_NAME_LEN) 3237 return ERR_PTR(-ENAMETOOLONG); 3238 3239 ret = btrfs_inode_by_name(dir, dentry, &location); 3240 3241 if (ret < 0) 3242 return ERR_PTR(ret); 3243 3244 inode = NULL; 3245 if (location.objectid) { 3246 ret = fixup_tree_root_location(root, &location, &sub_root, 3247 dentry); 3248 if (ret < 0) 3249 return ERR_PTR(ret); 3250 if (ret > 0) 3251 return ERR_PTR(-ENOENT); 3252 inode = btrfs_iget(dir->i_sb, &location, sub_root); 3253 if (IS_ERR(inode)) 3254 return ERR_CAST(inode); 3255 } 3256 return inode; 3257 } 3258 3259 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3260 struct nameidata *nd) 3261 { 3262 struct inode *inode; 3263 3264 if (dentry->d_name.len > BTRFS_NAME_LEN) 3265 return ERR_PTR(-ENAMETOOLONG); 3266 3267 inode = btrfs_lookup_dentry(dir, dentry); 3268 if (IS_ERR(inode)) 3269 return ERR_CAST(inode); 3270 3271 return d_splice_alias(inode, dentry); 3272 } 3273 3274 static unsigned char btrfs_filetype_table[] = { 3275 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3276 }; 3277 3278 static int btrfs_real_readdir(struct file *filp, void *dirent, 3279 filldir_t filldir) 3280 { 3281 struct inode *inode = filp->f_dentry->d_inode; 3282 struct btrfs_root *root = BTRFS_I(inode)->root; 3283 struct btrfs_item *item; 3284 struct btrfs_dir_item *di; 3285 struct btrfs_key key; 3286 struct btrfs_key found_key; 3287 struct btrfs_path *path; 3288 int ret; 3289 u32 nritems; 3290 struct extent_buffer *leaf; 3291 int slot; 3292 int advance; 3293 unsigned char d_type; 3294 int over = 0; 3295 u32 di_cur; 3296 u32 di_total; 3297 u32 di_len; 3298 int key_type = BTRFS_DIR_INDEX_KEY; 3299 char tmp_name[32]; 3300 char *name_ptr; 3301 int name_len; 3302 3303 /* FIXME, use a real flag for deciding about the key type */ 3304 if (root->fs_info->tree_root == root) 3305 key_type = BTRFS_DIR_ITEM_KEY; 3306 3307 /* special case for "." */ 3308 if (filp->f_pos == 0) { 3309 over = filldir(dirent, ".", 1, 3310 1, inode->i_ino, 3311 DT_DIR); 3312 if (over) 3313 return 0; 3314 filp->f_pos = 1; 3315 } 3316 /* special case for .., just use the back ref */ 3317 if (filp->f_pos == 1) { 3318 u64 pino = parent_ino(filp->f_path.dentry); 3319 over = filldir(dirent, "..", 2, 3320 2, pino, DT_DIR); 3321 if (over) 3322 return 0; 3323 filp->f_pos = 2; 3324 } 3325 path = btrfs_alloc_path(); 3326 path->reada = 2; 3327 3328 btrfs_set_key_type(&key, key_type); 3329 key.offset = filp->f_pos; 3330 key.objectid = inode->i_ino; 3331 3332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3333 if (ret < 0) 3334 goto err; 3335 advance = 0; 3336 3337 while (1) { 3338 leaf = path->nodes[0]; 3339 nritems = btrfs_header_nritems(leaf); 3340 slot = path->slots[0]; 3341 if (advance || slot >= nritems) { 3342 if (slot >= nritems - 1) { 3343 ret = btrfs_next_leaf(root, path); 3344 if (ret) 3345 break; 3346 leaf = path->nodes[0]; 3347 nritems = btrfs_header_nritems(leaf); 3348 slot = path->slots[0]; 3349 } else { 3350 slot++; 3351 path->slots[0]++; 3352 } 3353 } 3354 3355 advance = 1; 3356 item = btrfs_item_nr(leaf, slot); 3357 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3358 3359 if (found_key.objectid != key.objectid) 3360 break; 3361 if (btrfs_key_type(&found_key) != key_type) 3362 break; 3363 if (found_key.offset < filp->f_pos) 3364 continue; 3365 3366 filp->f_pos = found_key.offset; 3367 3368 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3369 di_cur = 0; 3370 di_total = btrfs_item_size(leaf, item); 3371 3372 while (di_cur < di_total) { 3373 struct btrfs_key location; 3374 3375 name_len = btrfs_dir_name_len(leaf, di); 3376 if (name_len <= sizeof(tmp_name)) { 3377 name_ptr = tmp_name; 3378 } else { 3379 name_ptr = kmalloc(name_len, GFP_NOFS); 3380 if (!name_ptr) { 3381 ret = -ENOMEM; 3382 goto err; 3383 } 3384 } 3385 read_extent_buffer(leaf, name_ptr, 3386 (unsigned long)(di + 1), name_len); 3387 3388 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3389 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3390 3391 /* is this a reference to our own snapshot? If so 3392 * skip it 3393 */ 3394 if (location.type == BTRFS_ROOT_ITEM_KEY && 3395 location.objectid == root->root_key.objectid) { 3396 over = 0; 3397 goto skip; 3398 } 3399 over = filldir(dirent, name_ptr, name_len, 3400 found_key.offset, location.objectid, 3401 d_type); 3402 3403 skip: 3404 if (name_ptr != tmp_name) 3405 kfree(name_ptr); 3406 3407 if (over) 3408 goto nopos; 3409 di_len = btrfs_dir_name_len(leaf, di) + 3410 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3411 di_cur += di_len; 3412 di = (struct btrfs_dir_item *)((char *)di + di_len); 3413 } 3414 } 3415 3416 /* Reached end of directory/root. Bump pos past the last item. */ 3417 if (key_type == BTRFS_DIR_INDEX_KEY) 3418 filp->f_pos = INT_LIMIT(off_t); 3419 else 3420 filp->f_pos++; 3421 nopos: 3422 ret = 0; 3423 err: 3424 btrfs_free_path(path); 3425 return ret; 3426 } 3427 3428 int btrfs_write_inode(struct inode *inode, int wait) 3429 { 3430 struct btrfs_root *root = BTRFS_I(inode)->root; 3431 struct btrfs_trans_handle *trans; 3432 int ret = 0; 3433 3434 if (root->fs_info->btree_inode == inode) 3435 return 0; 3436 3437 if (wait) { 3438 trans = btrfs_join_transaction(root, 1); 3439 btrfs_set_trans_block_group(trans, inode); 3440 ret = btrfs_commit_transaction(trans, root); 3441 } 3442 return ret; 3443 } 3444 3445 /* 3446 * This is somewhat expensive, updating the tree every time the 3447 * inode changes. But, it is most likely to find the inode in cache. 3448 * FIXME, needs more benchmarking...there are no reasons other than performance 3449 * to keep or drop this code. 3450 */ 3451 void btrfs_dirty_inode(struct inode *inode) 3452 { 3453 struct btrfs_root *root = BTRFS_I(inode)->root; 3454 struct btrfs_trans_handle *trans; 3455 3456 trans = btrfs_join_transaction(root, 1); 3457 btrfs_set_trans_block_group(trans, inode); 3458 btrfs_update_inode(trans, root, inode); 3459 btrfs_end_transaction(trans, root); 3460 } 3461 3462 /* 3463 * find the highest existing sequence number in a directory 3464 * and then set the in-memory index_cnt variable to reflect 3465 * free sequence numbers 3466 */ 3467 static int btrfs_set_inode_index_count(struct inode *inode) 3468 { 3469 struct btrfs_root *root = BTRFS_I(inode)->root; 3470 struct btrfs_key key, found_key; 3471 struct btrfs_path *path; 3472 struct extent_buffer *leaf; 3473 int ret; 3474 3475 key.objectid = inode->i_ino; 3476 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3477 key.offset = (u64)-1; 3478 3479 path = btrfs_alloc_path(); 3480 if (!path) 3481 return -ENOMEM; 3482 3483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3484 if (ret < 0) 3485 goto out; 3486 /* FIXME: we should be able to handle this */ 3487 if (ret == 0) 3488 goto out; 3489 ret = 0; 3490 3491 /* 3492 * MAGIC NUMBER EXPLANATION: 3493 * since we search a directory based on f_pos we have to start at 2 3494 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3495 * else has to start at 2 3496 */ 3497 if (path->slots[0] == 0) { 3498 BTRFS_I(inode)->index_cnt = 2; 3499 goto out; 3500 } 3501 3502 path->slots[0]--; 3503 3504 leaf = path->nodes[0]; 3505 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3506 3507 if (found_key.objectid != inode->i_ino || 3508 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3509 BTRFS_I(inode)->index_cnt = 2; 3510 goto out; 3511 } 3512 3513 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3514 out: 3515 btrfs_free_path(path); 3516 return ret; 3517 } 3518 3519 /* 3520 * helper to find a free sequence number in a given directory. This current 3521 * code is very simple, later versions will do smarter things in the btree 3522 */ 3523 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3524 { 3525 int ret = 0; 3526 3527 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3528 ret = btrfs_set_inode_index_count(dir); 3529 if (ret) 3530 return ret; 3531 } 3532 3533 *index = BTRFS_I(dir)->index_cnt; 3534 BTRFS_I(dir)->index_cnt++; 3535 3536 return ret; 3537 } 3538 3539 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3540 struct btrfs_root *root, 3541 struct inode *dir, 3542 const char *name, int name_len, 3543 u64 ref_objectid, u64 objectid, 3544 u64 alloc_hint, int mode, u64 *index) 3545 { 3546 struct inode *inode; 3547 struct btrfs_inode_item *inode_item; 3548 struct btrfs_key *location; 3549 struct btrfs_path *path; 3550 struct btrfs_inode_ref *ref; 3551 struct btrfs_key key[2]; 3552 u32 sizes[2]; 3553 unsigned long ptr; 3554 int ret; 3555 int owner; 3556 3557 path = btrfs_alloc_path(); 3558 BUG_ON(!path); 3559 3560 inode = new_inode(root->fs_info->sb); 3561 if (!inode) 3562 return ERR_PTR(-ENOMEM); 3563 3564 if (dir) { 3565 ret = btrfs_set_inode_index(dir, index); 3566 if (ret) { 3567 iput(inode); 3568 return ERR_PTR(ret); 3569 } 3570 } 3571 /* 3572 * index_cnt is ignored for everything but a dir, 3573 * btrfs_get_inode_index_count has an explanation for the magic 3574 * number 3575 */ 3576 init_btrfs_i(inode); 3577 BTRFS_I(inode)->index_cnt = 2; 3578 BTRFS_I(inode)->root = root; 3579 BTRFS_I(inode)->generation = trans->transid; 3580 btrfs_set_inode_space_info(root, inode); 3581 3582 if (mode & S_IFDIR) 3583 owner = 0; 3584 else 3585 owner = 1; 3586 BTRFS_I(inode)->block_group = 3587 btrfs_find_block_group(root, 0, alloc_hint, owner); 3588 if ((mode & S_IFREG)) { 3589 if (btrfs_test_opt(root, NODATASUM)) 3590 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 3591 if (btrfs_test_opt(root, NODATACOW)) 3592 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 3593 } 3594 3595 key[0].objectid = objectid; 3596 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3597 key[0].offset = 0; 3598 3599 key[1].objectid = objectid; 3600 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3601 key[1].offset = ref_objectid; 3602 3603 sizes[0] = sizeof(struct btrfs_inode_item); 3604 sizes[1] = name_len + sizeof(*ref); 3605 3606 path->leave_spinning = 1; 3607 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3608 if (ret != 0) 3609 goto fail; 3610 3611 if (objectid > root->highest_inode) 3612 root->highest_inode = objectid; 3613 3614 inode->i_uid = current_fsuid(); 3615 3616 if (dir && (dir->i_mode & S_ISGID)) { 3617 inode->i_gid = dir->i_gid; 3618 if (S_ISDIR(mode)) 3619 mode |= S_ISGID; 3620 } else 3621 inode->i_gid = current_fsgid(); 3622 3623 inode->i_mode = mode; 3624 inode->i_ino = objectid; 3625 inode_set_bytes(inode, 0); 3626 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3627 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3628 struct btrfs_inode_item); 3629 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3630 3631 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3632 struct btrfs_inode_ref); 3633 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3634 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3635 ptr = (unsigned long)(ref + 1); 3636 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3637 3638 btrfs_mark_buffer_dirty(path->nodes[0]); 3639 btrfs_free_path(path); 3640 3641 location = &BTRFS_I(inode)->location; 3642 location->objectid = objectid; 3643 location->offset = 0; 3644 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3645 3646 btrfs_inherit_iflags(inode, dir); 3647 3648 insert_inode_hash(inode); 3649 inode_tree_add(inode); 3650 return inode; 3651 fail: 3652 if (dir) 3653 BTRFS_I(dir)->index_cnt--; 3654 btrfs_free_path(path); 3655 iput(inode); 3656 return ERR_PTR(ret); 3657 } 3658 3659 static inline u8 btrfs_inode_type(struct inode *inode) 3660 { 3661 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3662 } 3663 3664 /* 3665 * utility function to add 'inode' into 'parent_inode' with 3666 * a give name and a given sequence number. 3667 * if 'add_backref' is true, also insert a backref from the 3668 * inode to the parent directory. 3669 */ 3670 int btrfs_add_link(struct btrfs_trans_handle *trans, 3671 struct inode *parent_inode, struct inode *inode, 3672 const char *name, int name_len, int add_backref, u64 index) 3673 { 3674 int ret; 3675 struct btrfs_key key; 3676 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3677 3678 key.objectid = inode->i_ino; 3679 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3680 key.offset = 0; 3681 3682 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3683 parent_inode->i_ino, 3684 &key, btrfs_inode_type(inode), 3685 index); 3686 if (ret == 0) { 3687 if (add_backref) { 3688 ret = btrfs_insert_inode_ref(trans, root, 3689 name, name_len, 3690 inode->i_ino, 3691 parent_inode->i_ino, 3692 index); 3693 } 3694 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3695 name_len * 2); 3696 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3697 ret = btrfs_update_inode(trans, root, parent_inode); 3698 } 3699 return ret; 3700 } 3701 3702 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3703 struct dentry *dentry, struct inode *inode, 3704 int backref, u64 index) 3705 { 3706 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3707 inode, dentry->d_name.name, 3708 dentry->d_name.len, backref, index); 3709 if (!err) { 3710 d_instantiate(dentry, inode); 3711 return 0; 3712 } 3713 if (err > 0) 3714 err = -EEXIST; 3715 return err; 3716 } 3717 3718 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3719 int mode, dev_t rdev) 3720 { 3721 struct btrfs_trans_handle *trans; 3722 struct btrfs_root *root = BTRFS_I(dir)->root; 3723 struct inode *inode = NULL; 3724 int err; 3725 int drop_inode = 0; 3726 u64 objectid; 3727 unsigned long nr = 0; 3728 u64 index = 0; 3729 3730 if (!new_valid_dev(rdev)) 3731 return -EINVAL; 3732 3733 err = btrfs_check_metadata_free_space(root); 3734 if (err) 3735 goto fail; 3736 3737 trans = btrfs_start_transaction(root, 1); 3738 btrfs_set_trans_block_group(trans, dir); 3739 3740 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3741 if (err) { 3742 err = -ENOSPC; 3743 goto out_unlock; 3744 } 3745 3746 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3747 dentry->d_name.len, 3748 dentry->d_parent->d_inode->i_ino, objectid, 3749 BTRFS_I(dir)->block_group, mode, &index); 3750 err = PTR_ERR(inode); 3751 if (IS_ERR(inode)) 3752 goto out_unlock; 3753 3754 err = btrfs_init_inode_security(inode, dir); 3755 if (err) { 3756 drop_inode = 1; 3757 goto out_unlock; 3758 } 3759 3760 btrfs_set_trans_block_group(trans, inode); 3761 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3762 if (err) 3763 drop_inode = 1; 3764 else { 3765 inode->i_op = &btrfs_special_inode_operations; 3766 init_special_inode(inode, inode->i_mode, rdev); 3767 btrfs_update_inode(trans, root, inode); 3768 } 3769 btrfs_update_inode_block_group(trans, inode); 3770 btrfs_update_inode_block_group(trans, dir); 3771 out_unlock: 3772 nr = trans->blocks_used; 3773 btrfs_end_transaction_throttle(trans, root); 3774 fail: 3775 if (drop_inode) { 3776 inode_dec_link_count(inode); 3777 iput(inode); 3778 } 3779 btrfs_btree_balance_dirty(root, nr); 3780 return err; 3781 } 3782 3783 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3784 int mode, struct nameidata *nd) 3785 { 3786 struct btrfs_trans_handle *trans; 3787 struct btrfs_root *root = BTRFS_I(dir)->root; 3788 struct inode *inode = NULL; 3789 int err; 3790 int drop_inode = 0; 3791 unsigned long nr = 0; 3792 u64 objectid; 3793 u64 index = 0; 3794 3795 err = btrfs_check_metadata_free_space(root); 3796 if (err) 3797 goto fail; 3798 trans = btrfs_start_transaction(root, 1); 3799 btrfs_set_trans_block_group(trans, dir); 3800 3801 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3802 if (err) { 3803 err = -ENOSPC; 3804 goto out_unlock; 3805 } 3806 3807 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3808 dentry->d_name.len, 3809 dentry->d_parent->d_inode->i_ino, 3810 objectid, BTRFS_I(dir)->block_group, mode, 3811 &index); 3812 err = PTR_ERR(inode); 3813 if (IS_ERR(inode)) 3814 goto out_unlock; 3815 3816 err = btrfs_init_inode_security(inode, dir); 3817 if (err) { 3818 drop_inode = 1; 3819 goto out_unlock; 3820 } 3821 3822 btrfs_set_trans_block_group(trans, inode); 3823 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3824 if (err) 3825 drop_inode = 1; 3826 else { 3827 inode->i_mapping->a_ops = &btrfs_aops; 3828 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3829 inode->i_fop = &btrfs_file_operations; 3830 inode->i_op = &btrfs_file_inode_operations; 3831 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3832 } 3833 btrfs_update_inode_block_group(trans, inode); 3834 btrfs_update_inode_block_group(trans, dir); 3835 out_unlock: 3836 nr = trans->blocks_used; 3837 btrfs_end_transaction_throttle(trans, root); 3838 fail: 3839 if (drop_inode) { 3840 inode_dec_link_count(inode); 3841 iput(inode); 3842 } 3843 btrfs_btree_balance_dirty(root, nr); 3844 return err; 3845 } 3846 3847 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3848 struct dentry *dentry) 3849 { 3850 struct btrfs_trans_handle *trans; 3851 struct btrfs_root *root = BTRFS_I(dir)->root; 3852 struct inode *inode = old_dentry->d_inode; 3853 u64 index; 3854 unsigned long nr = 0; 3855 int err; 3856 int drop_inode = 0; 3857 3858 if (inode->i_nlink == 0) 3859 return -ENOENT; 3860 3861 btrfs_inc_nlink(inode); 3862 err = btrfs_check_metadata_free_space(root); 3863 if (err) 3864 goto fail; 3865 err = btrfs_set_inode_index(dir, &index); 3866 if (err) 3867 goto fail; 3868 3869 trans = btrfs_start_transaction(root, 1); 3870 3871 btrfs_set_trans_block_group(trans, dir); 3872 atomic_inc(&inode->i_count); 3873 3874 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3875 3876 if (err) 3877 drop_inode = 1; 3878 3879 btrfs_update_inode_block_group(trans, dir); 3880 err = btrfs_update_inode(trans, root, inode); 3881 3882 if (err) 3883 drop_inode = 1; 3884 3885 nr = trans->blocks_used; 3886 3887 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent); 3888 btrfs_end_transaction_throttle(trans, root); 3889 fail: 3890 if (drop_inode) { 3891 inode_dec_link_count(inode); 3892 iput(inode); 3893 } 3894 btrfs_btree_balance_dirty(root, nr); 3895 return err; 3896 } 3897 3898 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3899 { 3900 struct inode *inode = NULL; 3901 struct btrfs_trans_handle *trans; 3902 struct btrfs_root *root = BTRFS_I(dir)->root; 3903 int err = 0; 3904 int drop_on_err = 0; 3905 u64 objectid = 0; 3906 u64 index = 0; 3907 unsigned long nr = 1; 3908 3909 err = btrfs_check_metadata_free_space(root); 3910 if (err) 3911 goto out_unlock; 3912 3913 trans = btrfs_start_transaction(root, 1); 3914 btrfs_set_trans_block_group(trans, dir); 3915 3916 if (IS_ERR(trans)) { 3917 err = PTR_ERR(trans); 3918 goto out_unlock; 3919 } 3920 3921 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3922 if (err) { 3923 err = -ENOSPC; 3924 goto out_unlock; 3925 } 3926 3927 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3928 dentry->d_name.len, 3929 dentry->d_parent->d_inode->i_ino, objectid, 3930 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3931 &index); 3932 if (IS_ERR(inode)) { 3933 err = PTR_ERR(inode); 3934 goto out_fail; 3935 } 3936 3937 drop_on_err = 1; 3938 3939 err = btrfs_init_inode_security(inode, dir); 3940 if (err) 3941 goto out_fail; 3942 3943 inode->i_op = &btrfs_dir_inode_operations; 3944 inode->i_fop = &btrfs_dir_file_operations; 3945 btrfs_set_trans_block_group(trans, inode); 3946 3947 btrfs_i_size_write(inode, 0); 3948 err = btrfs_update_inode(trans, root, inode); 3949 if (err) 3950 goto out_fail; 3951 3952 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3953 inode, dentry->d_name.name, 3954 dentry->d_name.len, 0, index); 3955 if (err) 3956 goto out_fail; 3957 3958 d_instantiate(dentry, inode); 3959 drop_on_err = 0; 3960 btrfs_update_inode_block_group(trans, inode); 3961 btrfs_update_inode_block_group(trans, dir); 3962 3963 out_fail: 3964 nr = trans->blocks_used; 3965 btrfs_end_transaction_throttle(trans, root); 3966 3967 out_unlock: 3968 if (drop_on_err) 3969 iput(inode); 3970 btrfs_btree_balance_dirty(root, nr); 3971 return err; 3972 } 3973 3974 /* helper for btfs_get_extent. Given an existing extent in the tree, 3975 * and an extent that you want to insert, deal with overlap and insert 3976 * the new extent into the tree. 3977 */ 3978 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3979 struct extent_map *existing, 3980 struct extent_map *em, 3981 u64 map_start, u64 map_len) 3982 { 3983 u64 start_diff; 3984 3985 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3986 start_diff = map_start - em->start; 3987 em->start = map_start; 3988 em->len = map_len; 3989 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3990 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3991 em->block_start += start_diff; 3992 em->block_len -= start_diff; 3993 } 3994 return add_extent_mapping(em_tree, em); 3995 } 3996 3997 static noinline int uncompress_inline(struct btrfs_path *path, 3998 struct inode *inode, struct page *page, 3999 size_t pg_offset, u64 extent_offset, 4000 struct btrfs_file_extent_item *item) 4001 { 4002 int ret; 4003 struct extent_buffer *leaf = path->nodes[0]; 4004 char *tmp; 4005 size_t max_size; 4006 unsigned long inline_size; 4007 unsigned long ptr; 4008 4009 WARN_ON(pg_offset != 0); 4010 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4011 inline_size = btrfs_file_extent_inline_item_len(leaf, 4012 btrfs_item_nr(leaf, path->slots[0])); 4013 tmp = kmalloc(inline_size, GFP_NOFS); 4014 ptr = btrfs_file_extent_inline_start(item); 4015 4016 read_extent_buffer(leaf, tmp, ptr, inline_size); 4017 4018 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4019 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4020 inline_size, max_size); 4021 if (ret) { 4022 char *kaddr = kmap_atomic(page, KM_USER0); 4023 unsigned long copy_size = min_t(u64, 4024 PAGE_CACHE_SIZE - pg_offset, 4025 max_size - extent_offset); 4026 memset(kaddr + pg_offset, 0, copy_size); 4027 kunmap_atomic(kaddr, KM_USER0); 4028 } 4029 kfree(tmp); 4030 return 0; 4031 } 4032 4033 /* 4034 * a bit scary, this does extent mapping from logical file offset to the disk. 4035 * the ugly parts come from merging extents from the disk with the in-ram 4036 * representation. This gets more complex because of the data=ordered code, 4037 * where the in-ram extents might be locked pending data=ordered completion. 4038 * 4039 * This also copies inline extents directly into the page. 4040 */ 4041 4042 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4043 size_t pg_offset, u64 start, u64 len, 4044 int create) 4045 { 4046 int ret; 4047 int err = 0; 4048 u64 bytenr; 4049 u64 extent_start = 0; 4050 u64 extent_end = 0; 4051 u64 objectid = inode->i_ino; 4052 u32 found_type; 4053 struct btrfs_path *path = NULL; 4054 struct btrfs_root *root = BTRFS_I(inode)->root; 4055 struct btrfs_file_extent_item *item; 4056 struct extent_buffer *leaf; 4057 struct btrfs_key found_key; 4058 struct extent_map *em = NULL; 4059 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4060 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4061 struct btrfs_trans_handle *trans = NULL; 4062 int compressed; 4063 4064 again: 4065 spin_lock(&em_tree->lock); 4066 em = lookup_extent_mapping(em_tree, start, len); 4067 if (em) 4068 em->bdev = root->fs_info->fs_devices->latest_bdev; 4069 spin_unlock(&em_tree->lock); 4070 4071 if (em) { 4072 if (em->start > start || em->start + em->len <= start) 4073 free_extent_map(em); 4074 else if (em->block_start == EXTENT_MAP_INLINE && page) 4075 free_extent_map(em); 4076 else 4077 goto out; 4078 } 4079 em = alloc_extent_map(GFP_NOFS); 4080 if (!em) { 4081 err = -ENOMEM; 4082 goto out; 4083 } 4084 em->bdev = root->fs_info->fs_devices->latest_bdev; 4085 em->start = EXTENT_MAP_HOLE; 4086 em->orig_start = EXTENT_MAP_HOLE; 4087 em->len = (u64)-1; 4088 em->block_len = (u64)-1; 4089 4090 if (!path) { 4091 path = btrfs_alloc_path(); 4092 BUG_ON(!path); 4093 } 4094 4095 ret = btrfs_lookup_file_extent(trans, root, path, 4096 objectid, start, trans != NULL); 4097 if (ret < 0) { 4098 err = ret; 4099 goto out; 4100 } 4101 4102 if (ret != 0) { 4103 if (path->slots[0] == 0) 4104 goto not_found; 4105 path->slots[0]--; 4106 } 4107 4108 leaf = path->nodes[0]; 4109 item = btrfs_item_ptr(leaf, path->slots[0], 4110 struct btrfs_file_extent_item); 4111 /* are we inside the extent that was found? */ 4112 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4113 found_type = btrfs_key_type(&found_key); 4114 if (found_key.objectid != objectid || 4115 found_type != BTRFS_EXTENT_DATA_KEY) { 4116 goto not_found; 4117 } 4118 4119 found_type = btrfs_file_extent_type(leaf, item); 4120 extent_start = found_key.offset; 4121 compressed = btrfs_file_extent_compression(leaf, item); 4122 if (found_type == BTRFS_FILE_EXTENT_REG || 4123 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4124 extent_end = extent_start + 4125 btrfs_file_extent_num_bytes(leaf, item); 4126 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4127 size_t size; 4128 size = btrfs_file_extent_inline_len(leaf, item); 4129 extent_end = (extent_start + size + root->sectorsize - 1) & 4130 ~((u64)root->sectorsize - 1); 4131 } 4132 4133 if (start >= extent_end) { 4134 path->slots[0]++; 4135 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4136 ret = btrfs_next_leaf(root, path); 4137 if (ret < 0) { 4138 err = ret; 4139 goto out; 4140 } 4141 if (ret > 0) 4142 goto not_found; 4143 leaf = path->nodes[0]; 4144 } 4145 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4146 if (found_key.objectid != objectid || 4147 found_key.type != BTRFS_EXTENT_DATA_KEY) 4148 goto not_found; 4149 if (start + len <= found_key.offset) 4150 goto not_found; 4151 em->start = start; 4152 em->len = found_key.offset - start; 4153 goto not_found_em; 4154 } 4155 4156 if (found_type == BTRFS_FILE_EXTENT_REG || 4157 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4158 em->start = extent_start; 4159 em->len = extent_end - extent_start; 4160 em->orig_start = extent_start - 4161 btrfs_file_extent_offset(leaf, item); 4162 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4163 if (bytenr == 0) { 4164 em->block_start = EXTENT_MAP_HOLE; 4165 goto insert; 4166 } 4167 if (compressed) { 4168 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4169 em->block_start = bytenr; 4170 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4171 item); 4172 } else { 4173 bytenr += btrfs_file_extent_offset(leaf, item); 4174 em->block_start = bytenr; 4175 em->block_len = em->len; 4176 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4177 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4178 } 4179 goto insert; 4180 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4181 unsigned long ptr; 4182 char *map; 4183 size_t size; 4184 size_t extent_offset; 4185 size_t copy_size; 4186 4187 em->block_start = EXTENT_MAP_INLINE; 4188 if (!page || create) { 4189 em->start = extent_start; 4190 em->len = extent_end - extent_start; 4191 goto out; 4192 } 4193 4194 size = btrfs_file_extent_inline_len(leaf, item); 4195 extent_offset = page_offset(page) + pg_offset - extent_start; 4196 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4197 size - extent_offset); 4198 em->start = extent_start + extent_offset; 4199 em->len = (copy_size + root->sectorsize - 1) & 4200 ~((u64)root->sectorsize - 1); 4201 em->orig_start = EXTENT_MAP_INLINE; 4202 if (compressed) 4203 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4204 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4205 if (create == 0 && !PageUptodate(page)) { 4206 if (btrfs_file_extent_compression(leaf, item) == 4207 BTRFS_COMPRESS_ZLIB) { 4208 ret = uncompress_inline(path, inode, page, 4209 pg_offset, 4210 extent_offset, item); 4211 BUG_ON(ret); 4212 } else { 4213 map = kmap(page); 4214 read_extent_buffer(leaf, map + pg_offset, ptr, 4215 copy_size); 4216 kunmap(page); 4217 } 4218 flush_dcache_page(page); 4219 } else if (create && PageUptodate(page)) { 4220 if (!trans) { 4221 kunmap(page); 4222 free_extent_map(em); 4223 em = NULL; 4224 btrfs_release_path(root, path); 4225 trans = btrfs_join_transaction(root, 1); 4226 goto again; 4227 } 4228 map = kmap(page); 4229 write_extent_buffer(leaf, map + pg_offset, ptr, 4230 copy_size); 4231 kunmap(page); 4232 btrfs_mark_buffer_dirty(leaf); 4233 } 4234 set_extent_uptodate(io_tree, em->start, 4235 extent_map_end(em) - 1, GFP_NOFS); 4236 goto insert; 4237 } else { 4238 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4239 WARN_ON(1); 4240 } 4241 not_found: 4242 em->start = start; 4243 em->len = len; 4244 not_found_em: 4245 em->block_start = EXTENT_MAP_HOLE; 4246 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4247 insert: 4248 btrfs_release_path(root, path); 4249 if (em->start > start || extent_map_end(em) <= start) { 4250 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4251 "[%llu %llu]\n", (unsigned long long)em->start, 4252 (unsigned long long)em->len, 4253 (unsigned long long)start, 4254 (unsigned long long)len); 4255 err = -EIO; 4256 goto out; 4257 } 4258 4259 err = 0; 4260 spin_lock(&em_tree->lock); 4261 ret = add_extent_mapping(em_tree, em); 4262 /* it is possible that someone inserted the extent into the tree 4263 * while we had the lock dropped. It is also possible that 4264 * an overlapping map exists in the tree 4265 */ 4266 if (ret == -EEXIST) { 4267 struct extent_map *existing; 4268 4269 ret = 0; 4270 4271 existing = lookup_extent_mapping(em_tree, start, len); 4272 if (existing && (existing->start > start || 4273 existing->start + existing->len <= start)) { 4274 free_extent_map(existing); 4275 existing = NULL; 4276 } 4277 if (!existing) { 4278 existing = lookup_extent_mapping(em_tree, em->start, 4279 em->len); 4280 if (existing) { 4281 err = merge_extent_mapping(em_tree, existing, 4282 em, start, 4283 root->sectorsize); 4284 free_extent_map(existing); 4285 if (err) { 4286 free_extent_map(em); 4287 em = NULL; 4288 } 4289 } else { 4290 err = -EIO; 4291 free_extent_map(em); 4292 em = NULL; 4293 } 4294 } else { 4295 free_extent_map(em); 4296 em = existing; 4297 err = 0; 4298 } 4299 } 4300 spin_unlock(&em_tree->lock); 4301 out: 4302 if (path) 4303 btrfs_free_path(path); 4304 if (trans) { 4305 ret = btrfs_end_transaction(trans, root); 4306 if (!err) 4307 err = ret; 4308 } 4309 if (err) { 4310 free_extent_map(em); 4311 return ERR_PTR(err); 4312 } 4313 return em; 4314 } 4315 4316 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4317 const struct iovec *iov, loff_t offset, 4318 unsigned long nr_segs) 4319 { 4320 return -EINVAL; 4321 } 4322 4323 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4324 __u64 start, __u64 len) 4325 { 4326 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4327 } 4328 4329 int btrfs_readpage(struct file *file, struct page *page) 4330 { 4331 struct extent_io_tree *tree; 4332 tree = &BTRFS_I(page->mapping->host)->io_tree; 4333 return extent_read_full_page(tree, page, btrfs_get_extent); 4334 } 4335 4336 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4337 { 4338 struct extent_io_tree *tree; 4339 4340 4341 if (current->flags & PF_MEMALLOC) { 4342 redirty_page_for_writepage(wbc, page); 4343 unlock_page(page); 4344 return 0; 4345 } 4346 tree = &BTRFS_I(page->mapping->host)->io_tree; 4347 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4348 } 4349 4350 int btrfs_writepages(struct address_space *mapping, 4351 struct writeback_control *wbc) 4352 { 4353 struct extent_io_tree *tree; 4354 4355 tree = &BTRFS_I(mapping->host)->io_tree; 4356 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4357 } 4358 4359 static int 4360 btrfs_readpages(struct file *file, struct address_space *mapping, 4361 struct list_head *pages, unsigned nr_pages) 4362 { 4363 struct extent_io_tree *tree; 4364 tree = &BTRFS_I(mapping->host)->io_tree; 4365 return extent_readpages(tree, mapping, pages, nr_pages, 4366 btrfs_get_extent); 4367 } 4368 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4369 { 4370 struct extent_io_tree *tree; 4371 struct extent_map_tree *map; 4372 int ret; 4373 4374 tree = &BTRFS_I(page->mapping->host)->io_tree; 4375 map = &BTRFS_I(page->mapping->host)->extent_tree; 4376 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4377 if (ret == 1) { 4378 ClearPagePrivate(page); 4379 set_page_private(page, 0); 4380 page_cache_release(page); 4381 } 4382 return ret; 4383 } 4384 4385 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4386 { 4387 if (PageWriteback(page) || PageDirty(page)) 4388 return 0; 4389 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 4390 } 4391 4392 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4393 { 4394 struct extent_io_tree *tree; 4395 struct btrfs_ordered_extent *ordered; 4396 u64 page_start = page_offset(page); 4397 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4398 4399 wait_on_page_writeback(page); 4400 tree = &BTRFS_I(page->mapping->host)->io_tree; 4401 if (offset) { 4402 btrfs_releasepage(page, GFP_NOFS); 4403 return; 4404 } 4405 4406 lock_extent(tree, page_start, page_end, GFP_NOFS); 4407 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4408 page_offset(page)); 4409 if (ordered) { 4410 /* 4411 * IO on this page will never be started, so we need 4412 * to account for any ordered extents now 4413 */ 4414 clear_extent_bit(tree, page_start, page_end, 4415 EXTENT_DIRTY | EXTENT_DELALLOC | 4416 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4417 btrfs_finish_ordered_io(page->mapping->host, 4418 page_start, page_end); 4419 btrfs_put_ordered_extent(ordered); 4420 lock_extent(tree, page_start, page_end, GFP_NOFS); 4421 } 4422 clear_extent_bit(tree, page_start, page_end, 4423 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4424 EXTENT_ORDERED, 4425 1, 1, GFP_NOFS); 4426 __btrfs_releasepage(page, GFP_NOFS); 4427 4428 ClearPageChecked(page); 4429 if (PagePrivate(page)) { 4430 ClearPagePrivate(page); 4431 set_page_private(page, 0); 4432 page_cache_release(page); 4433 } 4434 } 4435 4436 /* 4437 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4438 * called from a page fault handler when a page is first dirtied. Hence we must 4439 * be careful to check for EOF conditions here. We set the page up correctly 4440 * for a written page which means we get ENOSPC checking when writing into 4441 * holes and correct delalloc and unwritten extent mapping on filesystems that 4442 * support these features. 4443 * 4444 * We are not allowed to take the i_mutex here so we have to play games to 4445 * protect against truncate races as the page could now be beyond EOF. Because 4446 * vmtruncate() writes the inode size before removing pages, once we have the 4447 * page lock we can determine safely if the page is beyond EOF. If it is not 4448 * beyond EOF, then the page is guaranteed safe against truncation until we 4449 * unlock the page. 4450 */ 4451 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4452 { 4453 struct page *page = vmf->page; 4454 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4455 struct btrfs_root *root = BTRFS_I(inode)->root; 4456 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4457 struct btrfs_ordered_extent *ordered; 4458 char *kaddr; 4459 unsigned long zero_start; 4460 loff_t size; 4461 int ret; 4462 u64 page_start; 4463 u64 page_end; 4464 4465 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 4466 if (ret) { 4467 if (ret == -ENOMEM) 4468 ret = VM_FAULT_OOM; 4469 else /* -ENOSPC, -EIO, etc */ 4470 ret = VM_FAULT_SIGBUS; 4471 goto out; 4472 } 4473 4474 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 4475 again: 4476 lock_page(page); 4477 size = i_size_read(inode); 4478 page_start = page_offset(page); 4479 page_end = page_start + PAGE_CACHE_SIZE - 1; 4480 4481 if ((page->mapping != inode->i_mapping) || 4482 (page_start >= size)) { 4483 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 4484 /* page got truncated out from underneath us */ 4485 goto out_unlock; 4486 } 4487 wait_on_page_writeback(page); 4488 4489 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4490 set_page_extent_mapped(page); 4491 4492 /* 4493 * we can't set the delalloc bits if there are pending ordered 4494 * extents. Drop our locks and wait for them to finish 4495 */ 4496 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4497 if (ordered) { 4498 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4499 unlock_page(page); 4500 btrfs_start_ordered_extent(inode, ordered, 1); 4501 btrfs_put_ordered_extent(ordered); 4502 goto again; 4503 } 4504 4505 btrfs_set_extent_delalloc(inode, page_start, page_end); 4506 ret = 0; 4507 4508 /* page is wholly or partially inside EOF */ 4509 if (page_start + PAGE_CACHE_SIZE > size) 4510 zero_start = size & ~PAGE_CACHE_MASK; 4511 else 4512 zero_start = PAGE_CACHE_SIZE; 4513 4514 if (zero_start != PAGE_CACHE_SIZE) { 4515 kaddr = kmap(page); 4516 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4517 flush_dcache_page(page); 4518 kunmap(page); 4519 } 4520 ClearPageChecked(page); 4521 set_page_dirty(page); 4522 4523 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 4524 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4525 4526 out_unlock: 4527 unlock_page(page); 4528 out: 4529 return ret; 4530 } 4531 4532 static void btrfs_truncate(struct inode *inode) 4533 { 4534 struct btrfs_root *root = BTRFS_I(inode)->root; 4535 int ret; 4536 struct btrfs_trans_handle *trans; 4537 unsigned long nr; 4538 u64 mask = root->sectorsize - 1; 4539 4540 if (!S_ISREG(inode->i_mode)) 4541 return; 4542 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4543 return; 4544 4545 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4546 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4547 4548 trans = btrfs_start_transaction(root, 1); 4549 4550 /* 4551 * setattr is responsible for setting the ordered_data_close flag, 4552 * but that is only tested during the last file release. That 4553 * could happen well after the next commit, leaving a great big 4554 * window where new writes may get lost if someone chooses to write 4555 * to this file after truncating to zero 4556 * 4557 * The inode doesn't have any dirty data here, and so if we commit 4558 * this is a noop. If someone immediately starts writing to the inode 4559 * it is very likely we'll catch some of their writes in this 4560 * transaction, and the commit will find this file on the ordered 4561 * data list with good things to send down. 4562 * 4563 * This is a best effort solution, there is still a window where 4564 * using truncate to replace the contents of the file will 4565 * end up with a zero length file after a crash. 4566 */ 4567 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 4568 btrfs_add_ordered_operation(trans, root, inode); 4569 4570 btrfs_set_trans_block_group(trans, inode); 4571 btrfs_i_size_write(inode, inode->i_size); 4572 4573 ret = btrfs_orphan_add(trans, inode); 4574 if (ret) 4575 goto out; 4576 /* FIXME, add redo link to tree so we don't leak on crash */ 4577 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4578 BTRFS_EXTENT_DATA_KEY); 4579 btrfs_update_inode(trans, root, inode); 4580 4581 ret = btrfs_orphan_del(trans, inode); 4582 BUG_ON(ret); 4583 4584 out: 4585 nr = trans->blocks_used; 4586 ret = btrfs_end_transaction_throttle(trans, root); 4587 BUG_ON(ret); 4588 btrfs_btree_balance_dirty(root, nr); 4589 } 4590 4591 /* 4592 * create a new subvolume directory/inode (helper for the ioctl). 4593 */ 4594 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4595 struct btrfs_root *new_root, struct dentry *dentry, 4596 u64 new_dirid, u64 alloc_hint) 4597 { 4598 struct inode *inode; 4599 int error; 4600 u64 index = 0; 4601 4602 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4603 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4604 if (IS_ERR(inode)) 4605 return PTR_ERR(inode); 4606 inode->i_op = &btrfs_dir_inode_operations; 4607 inode->i_fop = &btrfs_dir_file_operations; 4608 4609 inode->i_nlink = 1; 4610 btrfs_i_size_write(inode, 0); 4611 4612 error = btrfs_update_inode(trans, new_root, inode); 4613 if (error) 4614 return error; 4615 4616 d_instantiate(dentry, inode); 4617 return 0; 4618 } 4619 4620 /* helper function for file defrag and space balancing. This 4621 * forces readahead on a given range of bytes in an inode 4622 */ 4623 unsigned long btrfs_force_ra(struct address_space *mapping, 4624 struct file_ra_state *ra, struct file *file, 4625 pgoff_t offset, pgoff_t last_index) 4626 { 4627 pgoff_t req_size = last_index - offset + 1; 4628 4629 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4630 return offset + req_size; 4631 } 4632 4633 struct inode *btrfs_alloc_inode(struct super_block *sb) 4634 { 4635 struct btrfs_inode *ei; 4636 4637 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4638 if (!ei) 4639 return NULL; 4640 ei->last_trans = 0; 4641 ei->logged_trans = 0; 4642 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4643 ei->i_acl = BTRFS_ACL_NOT_CACHED; 4644 ei->i_default_acl = BTRFS_ACL_NOT_CACHED; 4645 INIT_LIST_HEAD(&ei->i_orphan); 4646 INIT_LIST_HEAD(&ei->ordered_operations); 4647 return &ei->vfs_inode; 4648 } 4649 4650 void btrfs_destroy_inode(struct inode *inode) 4651 { 4652 struct btrfs_ordered_extent *ordered; 4653 struct btrfs_root *root = BTRFS_I(inode)->root; 4654 4655 WARN_ON(!list_empty(&inode->i_dentry)); 4656 WARN_ON(inode->i_data.nrpages); 4657 4658 if (BTRFS_I(inode)->i_acl && 4659 BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED) 4660 posix_acl_release(BTRFS_I(inode)->i_acl); 4661 if (BTRFS_I(inode)->i_default_acl && 4662 BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED) 4663 posix_acl_release(BTRFS_I(inode)->i_default_acl); 4664 4665 /* 4666 * Make sure we're properly removed from the ordered operation 4667 * lists. 4668 */ 4669 smp_mb(); 4670 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 4671 spin_lock(&root->fs_info->ordered_extent_lock); 4672 list_del_init(&BTRFS_I(inode)->ordered_operations); 4673 spin_unlock(&root->fs_info->ordered_extent_lock); 4674 } 4675 4676 spin_lock(&root->list_lock); 4677 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4678 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4679 " list\n", inode->i_ino); 4680 dump_stack(); 4681 } 4682 spin_unlock(&root->list_lock); 4683 4684 while (1) { 4685 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4686 if (!ordered) 4687 break; 4688 else { 4689 printk(KERN_ERR "btrfs found ordered " 4690 "extent %llu %llu on inode cleanup\n", 4691 (unsigned long long)ordered->file_offset, 4692 (unsigned long long)ordered->len); 4693 btrfs_remove_ordered_extent(inode, ordered); 4694 btrfs_put_ordered_extent(ordered); 4695 btrfs_put_ordered_extent(ordered); 4696 } 4697 } 4698 inode_tree_del(inode); 4699 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4700 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4701 } 4702 4703 static void init_once(void *foo) 4704 { 4705 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4706 4707 inode_init_once(&ei->vfs_inode); 4708 } 4709 4710 void btrfs_destroy_cachep(void) 4711 { 4712 if (btrfs_inode_cachep) 4713 kmem_cache_destroy(btrfs_inode_cachep); 4714 if (btrfs_trans_handle_cachep) 4715 kmem_cache_destroy(btrfs_trans_handle_cachep); 4716 if (btrfs_transaction_cachep) 4717 kmem_cache_destroy(btrfs_transaction_cachep); 4718 if (btrfs_path_cachep) 4719 kmem_cache_destroy(btrfs_path_cachep); 4720 } 4721 4722 int btrfs_init_cachep(void) 4723 { 4724 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 4725 sizeof(struct btrfs_inode), 0, 4726 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 4727 if (!btrfs_inode_cachep) 4728 goto fail; 4729 4730 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 4731 sizeof(struct btrfs_trans_handle), 0, 4732 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4733 if (!btrfs_trans_handle_cachep) 4734 goto fail; 4735 4736 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 4737 sizeof(struct btrfs_transaction), 0, 4738 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4739 if (!btrfs_transaction_cachep) 4740 goto fail; 4741 4742 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 4743 sizeof(struct btrfs_path), 0, 4744 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4745 if (!btrfs_path_cachep) 4746 goto fail; 4747 4748 return 0; 4749 fail: 4750 btrfs_destroy_cachep(); 4751 return -ENOMEM; 4752 } 4753 4754 static int btrfs_getattr(struct vfsmount *mnt, 4755 struct dentry *dentry, struct kstat *stat) 4756 { 4757 struct inode *inode = dentry->d_inode; 4758 generic_fillattr(inode, stat); 4759 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4760 stat->blksize = PAGE_CACHE_SIZE; 4761 stat->blocks = (inode_get_bytes(inode) + 4762 BTRFS_I(inode)->delalloc_bytes) >> 9; 4763 return 0; 4764 } 4765 4766 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4767 struct inode *new_dir, struct dentry *new_dentry) 4768 { 4769 struct btrfs_trans_handle *trans; 4770 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4771 struct inode *new_inode = new_dentry->d_inode; 4772 struct inode *old_inode = old_dentry->d_inode; 4773 struct timespec ctime = CURRENT_TIME; 4774 u64 index = 0; 4775 int ret; 4776 4777 /* we're not allowed to rename between subvolumes */ 4778 if (BTRFS_I(old_inode)->root->root_key.objectid != 4779 BTRFS_I(new_dir)->root->root_key.objectid) 4780 return -EXDEV; 4781 4782 if (S_ISDIR(old_inode->i_mode) && new_inode && 4783 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4784 return -ENOTEMPTY; 4785 } 4786 4787 /* to rename a snapshot or subvolume, we need to juggle the 4788 * backrefs. This isn't coded yet 4789 */ 4790 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4791 return -EXDEV; 4792 4793 ret = btrfs_check_metadata_free_space(root); 4794 if (ret) 4795 goto out_unlock; 4796 4797 /* 4798 * we're using rename to replace one file with another. 4799 * and the replacement file is large. Start IO on it now so 4800 * we don't add too much work to the end of the transaction 4801 */ 4802 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) && 4803 new_inode->i_size && 4804 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 4805 filemap_flush(old_inode->i_mapping); 4806 4807 trans = btrfs_start_transaction(root, 1); 4808 4809 /* 4810 * make sure the inode gets flushed if it is replacing 4811 * something. 4812 */ 4813 if (new_inode && new_inode->i_size && 4814 old_inode && S_ISREG(old_inode->i_mode)) { 4815 btrfs_add_ordered_operation(trans, root, old_inode); 4816 } 4817 4818 /* 4819 * this is an ugly little race, but the rename is required to make 4820 * sure that if we crash, the inode is either at the old name 4821 * or the new one. pinning the log transaction lets us make sure 4822 * we don't allow a log commit to come in after we unlink the 4823 * name but before we add the new name back in. 4824 */ 4825 btrfs_pin_log_trans(root); 4826 4827 btrfs_set_trans_block_group(trans, new_dir); 4828 4829 btrfs_inc_nlink(old_dentry->d_inode); 4830 old_dir->i_ctime = old_dir->i_mtime = ctime; 4831 new_dir->i_ctime = new_dir->i_mtime = ctime; 4832 old_inode->i_ctime = ctime; 4833 4834 if (old_dentry->d_parent != new_dentry->d_parent) 4835 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 4836 4837 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4838 old_dentry->d_name.name, 4839 old_dentry->d_name.len); 4840 if (ret) 4841 goto out_fail; 4842 4843 if (new_inode) { 4844 new_inode->i_ctime = CURRENT_TIME; 4845 ret = btrfs_unlink_inode(trans, root, new_dir, 4846 new_dentry->d_inode, 4847 new_dentry->d_name.name, 4848 new_dentry->d_name.len); 4849 if (ret) 4850 goto out_fail; 4851 if (new_inode->i_nlink == 0) { 4852 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4853 if (ret) 4854 goto out_fail; 4855 } 4856 4857 } 4858 ret = btrfs_set_inode_index(new_dir, &index); 4859 if (ret) 4860 goto out_fail; 4861 4862 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4863 old_inode, new_dentry->d_name.name, 4864 new_dentry->d_name.len, 1, index); 4865 if (ret) 4866 goto out_fail; 4867 4868 btrfs_log_new_name(trans, old_inode, old_dir, 4869 new_dentry->d_parent); 4870 out_fail: 4871 4872 /* this btrfs_end_log_trans just allows the current 4873 * log-sub transaction to complete 4874 */ 4875 btrfs_end_log_trans(root); 4876 btrfs_end_transaction_throttle(trans, root); 4877 out_unlock: 4878 return ret; 4879 } 4880 4881 /* 4882 * some fairly slow code that needs optimization. This walks the list 4883 * of all the inodes with pending delalloc and forces them to disk. 4884 */ 4885 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4886 { 4887 struct list_head *head = &root->fs_info->delalloc_inodes; 4888 struct btrfs_inode *binode; 4889 struct inode *inode; 4890 4891 if (root->fs_info->sb->s_flags & MS_RDONLY) 4892 return -EROFS; 4893 4894 spin_lock(&root->fs_info->delalloc_lock); 4895 while (!list_empty(head)) { 4896 binode = list_entry(head->next, struct btrfs_inode, 4897 delalloc_inodes); 4898 inode = igrab(&binode->vfs_inode); 4899 if (!inode) 4900 list_del_init(&binode->delalloc_inodes); 4901 spin_unlock(&root->fs_info->delalloc_lock); 4902 if (inode) { 4903 filemap_flush(inode->i_mapping); 4904 iput(inode); 4905 } 4906 cond_resched(); 4907 spin_lock(&root->fs_info->delalloc_lock); 4908 } 4909 spin_unlock(&root->fs_info->delalloc_lock); 4910 4911 /* the filemap_flush will queue IO into the worker threads, but 4912 * we have to make sure the IO is actually started and that 4913 * ordered extents get created before we return 4914 */ 4915 atomic_inc(&root->fs_info->async_submit_draining); 4916 while (atomic_read(&root->fs_info->nr_async_submits) || 4917 atomic_read(&root->fs_info->async_delalloc_pages)) { 4918 wait_event(root->fs_info->async_submit_wait, 4919 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4920 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4921 } 4922 atomic_dec(&root->fs_info->async_submit_draining); 4923 return 0; 4924 } 4925 4926 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4927 const char *symname) 4928 { 4929 struct btrfs_trans_handle *trans; 4930 struct btrfs_root *root = BTRFS_I(dir)->root; 4931 struct btrfs_path *path; 4932 struct btrfs_key key; 4933 struct inode *inode = NULL; 4934 int err; 4935 int drop_inode = 0; 4936 u64 objectid; 4937 u64 index = 0 ; 4938 int name_len; 4939 int datasize; 4940 unsigned long ptr; 4941 struct btrfs_file_extent_item *ei; 4942 struct extent_buffer *leaf; 4943 unsigned long nr = 0; 4944 4945 name_len = strlen(symname) + 1; 4946 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4947 return -ENAMETOOLONG; 4948 4949 err = btrfs_check_metadata_free_space(root); 4950 if (err) 4951 goto out_fail; 4952 4953 trans = btrfs_start_transaction(root, 1); 4954 btrfs_set_trans_block_group(trans, dir); 4955 4956 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4957 if (err) { 4958 err = -ENOSPC; 4959 goto out_unlock; 4960 } 4961 4962 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4963 dentry->d_name.len, 4964 dentry->d_parent->d_inode->i_ino, objectid, 4965 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4966 &index); 4967 err = PTR_ERR(inode); 4968 if (IS_ERR(inode)) 4969 goto out_unlock; 4970 4971 err = btrfs_init_inode_security(inode, dir); 4972 if (err) { 4973 drop_inode = 1; 4974 goto out_unlock; 4975 } 4976 4977 btrfs_set_trans_block_group(trans, inode); 4978 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4979 if (err) 4980 drop_inode = 1; 4981 else { 4982 inode->i_mapping->a_ops = &btrfs_aops; 4983 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4984 inode->i_fop = &btrfs_file_operations; 4985 inode->i_op = &btrfs_file_inode_operations; 4986 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4987 } 4988 btrfs_update_inode_block_group(trans, inode); 4989 btrfs_update_inode_block_group(trans, dir); 4990 if (drop_inode) 4991 goto out_unlock; 4992 4993 path = btrfs_alloc_path(); 4994 BUG_ON(!path); 4995 key.objectid = inode->i_ino; 4996 key.offset = 0; 4997 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4998 datasize = btrfs_file_extent_calc_inline_size(name_len); 4999 err = btrfs_insert_empty_item(trans, root, path, &key, 5000 datasize); 5001 if (err) { 5002 drop_inode = 1; 5003 goto out_unlock; 5004 } 5005 leaf = path->nodes[0]; 5006 ei = btrfs_item_ptr(leaf, path->slots[0], 5007 struct btrfs_file_extent_item); 5008 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 5009 btrfs_set_file_extent_type(leaf, ei, 5010 BTRFS_FILE_EXTENT_INLINE); 5011 btrfs_set_file_extent_encryption(leaf, ei, 0); 5012 btrfs_set_file_extent_compression(leaf, ei, 0); 5013 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 5014 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 5015 5016 ptr = btrfs_file_extent_inline_start(ei); 5017 write_extent_buffer(leaf, symname, ptr, name_len); 5018 btrfs_mark_buffer_dirty(leaf); 5019 btrfs_free_path(path); 5020 5021 inode->i_op = &btrfs_symlink_inode_operations; 5022 inode->i_mapping->a_ops = &btrfs_symlink_aops; 5023 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5024 inode_set_bytes(inode, name_len); 5025 btrfs_i_size_write(inode, name_len - 1); 5026 err = btrfs_update_inode(trans, root, inode); 5027 if (err) 5028 drop_inode = 1; 5029 5030 out_unlock: 5031 nr = trans->blocks_used; 5032 btrfs_end_transaction_throttle(trans, root); 5033 out_fail: 5034 if (drop_inode) { 5035 inode_dec_link_count(inode); 5036 iput(inode); 5037 } 5038 btrfs_btree_balance_dirty(root, nr); 5039 return err; 5040 } 5041 5042 static int prealloc_file_range(struct btrfs_trans_handle *trans, 5043 struct inode *inode, u64 start, u64 end, 5044 u64 locked_end, u64 alloc_hint, int mode) 5045 { 5046 struct btrfs_root *root = BTRFS_I(inode)->root; 5047 struct btrfs_key ins; 5048 u64 alloc_size; 5049 u64 cur_offset = start; 5050 u64 num_bytes = end - start; 5051 int ret = 0; 5052 5053 while (num_bytes > 0) { 5054 alloc_size = min(num_bytes, root->fs_info->max_extent); 5055 ret = btrfs_reserve_extent(trans, root, alloc_size, 5056 root->sectorsize, 0, alloc_hint, 5057 (u64)-1, &ins, 1); 5058 if (ret) { 5059 WARN_ON(1); 5060 goto out; 5061 } 5062 ret = insert_reserved_file_extent(trans, inode, 5063 cur_offset, ins.objectid, 5064 ins.offset, ins.offset, 5065 ins.offset, locked_end, 5066 0, 0, 0, 5067 BTRFS_FILE_EXTENT_PREALLOC); 5068 BUG_ON(ret); 5069 num_bytes -= ins.offset; 5070 cur_offset += ins.offset; 5071 alloc_hint = ins.objectid + ins.offset; 5072 } 5073 out: 5074 if (cur_offset > start) { 5075 inode->i_ctime = CURRENT_TIME; 5076 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 5077 if (!(mode & FALLOC_FL_KEEP_SIZE) && 5078 cur_offset > i_size_read(inode)) 5079 btrfs_i_size_write(inode, cur_offset); 5080 ret = btrfs_update_inode(trans, root, inode); 5081 BUG_ON(ret); 5082 } 5083 5084 return ret; 5085 } 5086 5087 static long btrfs_fallocate(struct inode *inode, int mode, 5088 loff_t offset, loff_t len) 5089 { 5090 u64 cur_offset; 5091 u64 last_byte; 5092 u64 alloc_start; 5093 u64 alloc_end; 5094 u64 alloc_hint = 0; 5095 u64 locked_end; 5096 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 5097 struct extent_map *em; 5098 struct btrfs_trans_handle *trans; 5099 int ret; 5100 5101 alloc_start = offset & ~mask; 5102 alloc_end = (offset + len + mask) & ~mask; 5103 5104 /* 5105 * wait for ordered IO before we have any locks. We'll loop again 5106 * below with the locks held. 5107 */ 5108 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 5109 5110 mutex_lock(&inode->i_mutex); 5111 if (alloc_start > inode->i_size) { 5112 ret = btrfs_cont_expand(inode, alloc_start); 5113 if (ret) 5114 goto out; 5115 } 5116 5117 locked_end = alloc_end - 1; 5118 while (1) { 5119 struct btrfs_ordered_extent *ordered; 5120 5121 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1); 5122 if (!trans) { 5123 ret = -EIO; 5124 goto out; 5125 } 5126 5127 /* the extent lock is ordered inside the running 5128 * transaction 5129 */ 5130 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5131 GFP_NOFS); 5132 ordered = btrfs_lookup_first_ordered_extent(inode, 5133 alloc_end - 1); 5134 if (ordered && 5135 ordered->file_offset + ordered->len > alloc_start && 5136 ordered->file_offset < alloc_end) { 5137 btrfs_put_ordered_extent(ordered); 5138 unlock_extent(&BTRFS_I(inode)->io_tree, 5139 alloc_start, locked_end, GFP_NOFS); 5140 btrfs_end_transaction(trans, BTRFS_I(inode)->root); 5141 5142 /* 5143 * we can't wait on the range with the transaction 5144 * running or with the extent lock held 5145 */ 5146 btrfs_wait_ordered_range(inode, alloc_start, 5147 alloc_end - alloc_start); 5148 } else { 5149 if (ordered) 5150 btrfs_put_ordered_extent(ordered); 5151 break; 5152 } 5153 } 5154 5155 cur_offset = alloc_start; 5156 while (1) { 5157 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5158 alloc_end - cur_offset, 0); 5159 BUG_ON(IS_ERR(em) || !em); 5160 last_byte = min(extent_map_end(em), alloc_end); 5161 last_byte = (last_byte + mask) & ~mask; 5162 if (em->block_start == EXTENT_MAP_HOLE) { 5163 ret = prealloc_file_range(trans, inode, cur_offset, 5164 last_byte, locked_end + 1, 5165 alloc_hint, mode); 5166 if (ret < 0) { 5167 free_extent_map(em); 5168 break; 5169 } 5170 } 5171 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 5172 alloc_hint = em->block_start; 5173 free_extent_map(em); 5174 5175 cur_offset = last_byte; 5176 if (cur_offset >= alloc_end) { 5177 ret = 0; 5178 break; 5179 } 5180 } 5181 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5182 GFP_NOFS); 5183 5184 btrfs_end_transaction(trans, BTRFS_I(inode)->root); 5185 out: 5186 mutex_unlock(&inode->i_mutex); 5187 return ret; 5188 } 5189 5190 static int btrfs_set_page_dirty(struct page *page) 5191 { 5192 return __set_page_dirty_nobuffers(page); 5193 } 5194 5195 static int btrfs_permission(struct inode *inode, int mask) 5196 { 5197 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 5198 return -EACCES; 5199 return generic_permission(inode, mask, btrfs_check_acl); 5200 } 5201 5202 static struct inode_operations btrfs_dir_inode_operations = { 5203 .getattr = btrfs_getattr, 5204 .lookup = btrfs_lookup, 5205 .create = btrfs_create, 5206 .unlink = btrfs_unlink, 5207 .link = btrfs_link, 5208 .mkdir = btrfs_mkdir, 5209 .rmdir = btrfs_rmdir, 5210 .rename = btrfs_rename, 5211 .symlink = btrfs_symlink, 5212 .setattr = btrfs_setattr, 5213 .mknod = btrfs_mknod, 5214 .setxattr = btrfs_setxattr, 5215 .getxattr = btrfs_getxattr, 5216 .listxattr = btrfs_listxattr, 5217 .removexattr = btrfs_removexattr, 5218 .permission = btrfs_permission, 5219 }; 5220 static struct inode_operations btrfs_dir_ro_inode_operations = { 5221 .lookup = btrfs_lookup, 5222 .permission = btrfs_permission, 5223 }; 5224 static struct file_operations btrfs_dir_file_operations = { 5225 .llseek = generic_file_llseek, 5226 .read = generic_read_dir, 5227 .readdir = btrfs_real_readdir, 5228 .unlocked_ioctl = btrfs_ioctl, 5229 #ifdef CONFIG_COMPAT 5230 .compat_ioctl = btrfs_ioctl, 5231 #endif 5232 .release = btrfs_release_file, 5233 .fsync = btrfs_sync_file, 5234 }; 5235 5236 static struct extent_io_ops btrfs_extent_io_ops = { 5237 .fill_delalloc = run_delalloc_range, 5238 .submit_bio_hook = btrfs_submit_bio_hook, 5239 .merge_bio_hook = btrfs_merge_bio_hook, 5240 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 5241 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 5242 .writepage_start_hook = btrfs_writepage_start_hook, 5243 .readpage_io_failed_hook = btrfs_io_failed_hook, 5244 .set_bit_hook = btrfs_set_bit_hook, 5245 .clear_bit_hook = btrfs_clear_bit_hook, 5246 }; 5247 5248 /* 5249 * btrfs doesn't support the bmap operation because swapfiles 5250 * use bmap to make a mapping of extents in the file. They assume 5251 * these extents won't change over the life of the file and they 5252 * use the bmap result to do IO directly to the drive. 5253 * 5254 * the btrfs bmap call would return logical addresses that aren't 5255 * suitable for IO and they also will change frequently as COW 5256 * operations happen. So, swapfile + btrfs == corruption. 5257 * 5258 * For now we're avoiding this by dropping bmap. 5259 */ 5260 static struct address_space_operations btrfs_aops = { 5261 .readpage = btrfs_readpage, 5262 .writepage = btrfs_writepage, 5263 .writepages = btrfs_writepages, 5264 .readpages = btrfs_readpages, 5265 .sync_page = block_sync_page, 5266 .direct_IO = btrfs_direct_IO, 5267 .invalidatepage = btrfs_invalidatepage, 5268 .releasepage = btrfs_releasepage, 5269 .set_page_dirty = btrfs_set_page_dirty, 5270 }; 5271 5272 static struct address_space_operations btrfs_symlink_aops = { 5273 .readpage = btrfs_readpage, 5274 .writepage = btrfs_writepage, 5275 .invalidatepage = btrfs_invalidatepage, 5276 .releasepage = btrfs_releasepage, 5277 }; 5278 5279 static struct inode_operations btrfs_file_inode_operations = { 5280 .truncate = btrfs_truncate, 5281 .getattr = btrfs_getattr, 5282 .setattr = btrfs_setattr, 5283 .setxattr = btrfs_setxattr, 5284 .getxattr = btrfs_getxattr, 5285 .listxattr = btrfs_listxattr, 5286 .removexattr = btrfs_removexattr, 5287 .permission = btrfs_permission, 5288 .fallocate = btrfs_fallocate, 5289 .fiemap = btrfs_fiemap, 5290 }; 5291 static struct inode_operations btrfs_special_inode_operations = { 5292 .getattr = btrfs_getattr, 5293 .setattr = btrfs_setattr, 5294 .permission = btrfs_permission, 5295 .setxattr = btrfs_setxattr, 5296 .getxattr = btrfs_getxattr, 5297 .listxattr = btrfs_listxattr, 5298 .removexattr = btrfs_removexattr, 5299 }; 5300 static struct inode_operations btrfs_symlink_inode_operations = { 5301 .readlink = generic_readlink, 5302 .follow_link = page_follow_link_light, 5303 .put_link = page_put_link, 5304 .permission = btrfs_permission, 5305 .setxattr = btrfs_setxattr, 5306 .getxattr = btrfs_getxattr, 5307 .listxattr = btrfs_listxattr, 5308 .removexattr = btrfs_removexattr, 5309 }; 5310