xref: /linux/fs/btrfs/inode.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 
54 struct btrfs_iget_args {
55 	u64 ino;
56 	struct btrfs_root *root;
57 };
58 
59 static struct inode_operations btrfs_dir_inode_operations;
60 static struct inode_operations btrfs_symlink_inode_operations;
61 static struct inode_operations btrfs_dir_ro_inode_operations;
62 static struct inode_operations btrfs_special_inode_operations;
63 static struct inode_operations btrfs_file_inode_operations;
64 static struct address_space_operations btrfs_aops;
65 static struct address_space_operations btrfs_symlink_aops;
66 static struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68 
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
77 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
78 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
79 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
80 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
81 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
82 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
83 };
84 
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 				   struct page *locked_page,
89 				   u64 start, u64 end, int *page_started,
90 				   unsigned long *nr_written, int unlock);
91 
92 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
93 {
94 	int err;
95 
96 	err = btrfs_init_acl(inode, dir);
97 	if (!err)
98 		err = btrfs_xattr_security_init(inode, dir);
99 	return err;
100 }
101 
102 /*
103  * this does all the hard work for inserting an inline extent into
104  * the btree.  The caller should have done a btrfs_drop_extents so that
105  * no overlapping inline items exist in the btree
106  */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108 				struct btrfs_root *root, struct inode *inode,
109 				u64 start, size_t size, size_t compressed_size,
110 				struct page **compressed_pages)
111 {
112 	struct btrfs_key key;
113 	struct btrfs_path *path;
114 	struct extent_buffer *leaf;
115 	struct page *page = NULL;
116 	char *kaddr;
117 	unsigned long ptr;
118 	struct btrfs_file_extent_item *ei;
119 	int err = 0;
120 	int ret;
121 	size_t cur_size = size;
122 	size_t datasize;
123 	unsigned long offset;
124 	int use_compress = 0;
125 
126 	if (compressed_size && compressed_pages) {
127 		use_compress = 1;
128 		cur_size = compressed_size;
129 	}
130 
131 	path = btrfs_alloc_path();
132 	if (!path)
133 		return -ENOMEM;
134 
135 	path->leave_spinning = 1;
136 	btrfs_set_trans_block_group(trans, inode);
137 
138 	key.objectid = inode->i_ino;
139 	key.offset = start;
140 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
142 
143 	inode_add_bytes(inode, size);
144 	ret = btrfs_insert_empty_item(trans, root, path, &key,
145 				      datasize);
146 	BUG_ON(ret);
147 	if (ret) {
148 		err = ret;
149 		goto fail;
150 	}
151 	leaf = path->nodes[0];
152 	ei = btrfs_item_ptr(leaf, path->slots[0],
153 			    struct btrfs_file_extent_item);
154 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 	btrfs_set_file_extent_encryption(leaf, ei, 0);
157 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 	ptr = btrfs_file_extent_inline_start(ei);
160 
161 	if (use_compress) {
162 		struct page *cpage;
163 		int i = 0;
164 		while (compressed_size > 0) {
165 			cpage = compressed_pages[i];
166 			cur_size = min_t(unsigned long, compressed_size,
167 				       PAGE_CACHE_SIZE);
168 
169 			kaddr = kmap_atomic(cpage, KM_USER0);
170 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
171 			kunmap_atomic(kaddr, KM_USER0);
172 
173 			i++;
174 			ptr += cur_size;
175 			compressed_size -= cur_size;
176 		}
177 		btrfs_set_file_extent_compression(leaf, ei,
178 						  BTRFS_COMPRESS_ZLIB);
179 	} else {
180 		page = find_get_page(inode->i_mapping,
181 				     start >> PAGE_CACHE_SHIFT);
182 		btrfs_set_file_extent_compression(leaf, ei, 0);
183 		kaddr = kmap_atomic(page, KM_USER0);
184 		offset = start & (PAGE_CACHE_SIZE - 1);
185 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 		kunmap_atomic(kaddr, KM_USER0);
187 		page_cache_release(page);
188 	}
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_free_path(path);
191 
192 	BTRFS_I(inode)->disk_i_size = inode->i_size;
193 	btrfs_update_inode(trans, root, inode);
194 	return 0;
195 fail:
196 	btrfs_free_path(path);
197 	return err;
198 }
199 
200 
201 /*
202  * conditionally insert an inline extent into the file.  This
203  * does the checks required to make sure the data is small enough
204  * to fit as an inline extent.
205  */
206 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
207 				 struct btrfs_root *root,
208 				 struct inode *inode, u64 start, u64 end,
209 				 size_t compressed_size,
210 				 struct page **compressed_pages)
211 {
212 	u64 isize = i_size_read(inode);
213 	u64 actual_end = min(end + 1, isize);
214 	u64 inline_len = actual_end - start;
215 	u64 aligned_end = (end + root->sectorsize - 1) &
216 			~((u64)root->sectorsize - 1);
217 	u64 hint_byte;
218 	u64 data_len = inline_len;
219 	int ret;
220 
221 	if (compressed_size)
222 		data_len = compressed_size;
223 
224 	if (start > 0 ||
225 	    actual_end >= PAGE_CACHE_SIZE ||
226 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
227 	    (!compressed_size &&
228 	    (actual_end & (root->sectorsize - 1)) == 0) ||
229 	    end + 1 < isize ||
230 	    data_len > root->fs_info->max_inline) {
231 		return 1;
232 	}
233 
234 	ret = btrfs_drop_extents(trans, root, inode, start,
235 				 aligned_end, aligned_end, start, &hint_byte);
236 	BUG_ON(ret);
237 
238 	if (isize > actual_end)
239 		inline_len = min_t(u64, isize, actual_end);
240 	ret = insert_inline_extent(trans, root, inode, start,
241 				   inline_len, compressed_size,
242 				   compressed_pages);
243 	BUG_ON(ret);
244 	btrfs_drop_extent_cache(inode, start, aligned_end, 0);
245 	return 0;
246 }
247 
248 struct async_extent {
249 	u64 start;
250 	u64 ram_size;
251 	u64 compressed_size;
252 	struct page **pages;
253 	unsigned long nr_pages;
254 	struct list_head list;
255 };
256 
257 struct async_cow {
258 	struct inode *inode;
259 	struct btrfs_root *root;
260 	struct page *locked_page;
261 	u64 start;
262 	u64 end;
263 	struct list_head extents;
264 	struct btrfs_work work;
265 };
266 
267 static noinline int add_async_extent(struct async_cow *cow,
268 				     u64 start, u64 ram_size,
269 				     u64 compressed_size,
270 				     struct page **pages,
271 				     unsigned long nr_pages)
272 {
273 	struct async_extent *async_extent;
274 
275 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 	async_extent->start = start;
277 	async_extent->ram_size = ram_size;
278 	async_extent->compressed_size = compressed_size;
279 	async_extent->pages = pages;
280 	async_extent->nr_pages = nr_pages;
281 	list_add_tail(&async_extent->list, &cow->extents);
282 	return 0;
283 }
284 
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302 					struct page *locked_page,
303 					u64 start, u64 end,
304 					struct async_cow *async_cow,
305 					int *num_added)
306 {
307 	struct btrfs_root *root = BTRFS_I(inode)->root;
308 	struct btrfs_trans_handle *trans;
309 	u64 num_bytes;
310 	u64 orig_start;
311 	u64 disk_num_bytes;
312 	u64 blocksize = root->sectorsize;
313 	u64 actual_end;
314 	u64 isize = i_size_read(inode);
315 	int ret = 0;
316 	struct page **pages = NULL;
317 	unsigned long nr_pages;
318 	unsigned long nr_pages_ret = 0;
319 	unsigned long total_compressed = 0;
320 	unsigned long total_in = 0;
321 	unsigned long max_compressed = 128 * 1024;
322 	unsigned long max_uncompressed = 128 * 1024;
323 	int i;
324 	int will_compress;
325 
326 	orig_start = start;
327 
328 	actual_end = min_t(u64, isize, end + 1);
329 again:
330 	will_compress = 0;
331 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333 
334 	/*
335 	 * we don't want to send crud past the end of i_size through
336 	 * compression, that's just a waste of CPU time.  So, if the
337 	 * end of the file is before the start of our current
338 	 * requested range of bytes, we bail out to the uncompressed
339 	 * cleanup code that can deal with all of this.
340 	 *
341 	 * It isn't really the fastest way to fix things, but this is a
342 	 * very uncommon corner.
343 	 */
344 	if (actual_end <= start)
345 		goto cleanup_and_bail_uncompressed;
346 
347 	total_compressed = actual_end - start;
348 
349 	/* we want to make sure that amount of ram required to uncompress
350 	 * an extent is reasonable, so we limit the total size in ram
351 	 * of a compressed extent to 128k.  This is a crucial number
352 	 * because it also controls how easily we can spread reads across
353 	 * cpus for decompression.
354 	 *
355 	 * We also want to make sure the amount of IO required to do
356 	 * a random read is reasonably small, so we limit the size of
357 	 * a compressed extent to 128k.
358 	 */
359 	total_compressed = min(total_compressed, max_uncompressed);
360 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 	num_bytes = max(blocksize,  num_bytes);
362 	disk_num_bytes = num_bytes;
363 	total_in = 0;
364 	ret = 0;
365 
366 	/*
367 	 * we do compression for mount -o compress and when the
368 	 * inode has not been flagged as nocompress.  This flag can
369 	 * change at any time if we discover bad compression ratios.
370 	 */
371 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 	    btrfs_test_opt(root, COMPRESS)) {
373 		WARN_ON(pages);
374 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375 
376 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 						total_compressed, pages,
378 						nr_pages, &nr_pages_ret,
379 						&total_in,
380 						&total_compressed,
381 						max_compressed);
382 
383 		if (!ret) {
384 			unsigned long offset = total_compressed &
385 				(PAGE_CACHE_SIZE - 1);
386 			struct page *page = pages[nr_pages_ret - 1];
387 			char *kaddr;
388 
389 			/* zero the tail end of the last page, we might be
390 			 * sending it down to disk
391 			 */
392 			if (offset) {
393 				kaddr = kmap_atomic(page, KM_USER0);
394 				memset(kaddr + offset, 0,
395 				       PAGE_CACHE_SIZE - offset);
396 				kunmap_atomic(kaddr, KM_USER0);
397 			}
398 			will_compress = 1;
399 		}
400 	}
401 	if (start == 0) {
402 		trans = btrfs_join_transaction(root, 1);
403 		BUG_ON(!trans);
404 		btrfs_set_trans_block_group(trans, inode);
405 
406 		/* lets try to make an inline extent */
407 		if (ret || total_in < (actual_end - start)) {
408 			/* we didn't compress the entire range, try
409 			 * to make an uncompressed inline extent.
410 			 */
411 			ret = cow_file_range_inline(trans, root, inode,
412 						    start, end, 0, NULL);
413 		} else {
414 			/* try making a compressed inline extent */
415 			ret = cow_file_range_inline(trans, root, inode,
416 						    start, end,
417 						    total_compressed, pages);
418 		}
419 		btrfs_end_transaction(trans, root);
420 		if (ret == 0) {
421 			/*
422 			 * inline extent creation worked, we don't need
423 			 * to create any more async work items.  Unlock
424 			 * and free up our temp pages.
425 			 */
426 			extent_clear_unlock_delalloc(inode,
427 						     &BTRFS_I(inode)->io_tree,
428 						     start, end, NULL, 1, 0,
429 						     0, 1, 1, 1);
430 			ret = 0;
431 			goto free_pages_out;
432 		}
433 	}
434 
435 	if (will_compress) {
436 		/*
437 		 * we aren't doing an inline extent round the compressed size
438 		 * up to a block size boundary so the allocator does sane
439 		 * things
440 		 */
441 		total_compressed = (total_compressed + blocksize - 1) &
442 			~(blocksize - 1);
443 
444 		/*
445 		 * one last check to make sure the compression is really a
446 		 * win, compare the page count read with the blocks on disk
447 		 */
448 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449 			~(PAGE_CACHE_SIZE - 1);
450 		if (total_compressed >= total_in) {
451 			will_compress = 0;
452 		} else {
453 			disk_num_bytes = total_compressed;
454 			num_bytes = total_in;
455 		}
456 	}
457 	if (!will_compress && pages) {
458 		/*
459 		 * the compression code ran but failed to make things smaller,
460 		 * free any pages it allocated and our page pointer array
461 		 */
462 		for (i = 0; i < nr_pages_ret; i++) {
463 			WARN_ON(pages[i]->mapping);
464 			page_cache_release(pages[i]);
465 		}
466 		kfree(pages);
467 		pages = NULL;
468 		total_compressed = 0;
469 		nr_pages_ret = 0;
470 
471 		/* flag the file so we don't compress in the future */
472 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
473 	}
474 	if (will_compress) {
475 		*num_added += 1;
476 
477 		/* the async work queues will take care of doing actual
478 		 * allocation on disk for these compressed pages,
479 		 * and will submit them to the elevator.
480 		 */
481 		add_async_extent(async_cow, start, num_bytes,
482 				 total_compressed, pages, nr_pages_ret);
483 
484 		if (start + num_bytes < end && start + num_bytes < actual_end) {
485 			start += num_bytes;
486 			pages = NULL;
487 			cond_resched();
488 			goto again;
489 		}
490 	} else {
491 cleanup_and_bail_uncompressed:
492 		/*
493 		 * No compression, but we still need to write the pages in
494 		 * the file we've been given so far.  redirty the locked
495 		 * page if it corresponds to our extent and set things up
496 		 * for the async work queue to run cow_file_range to do
497 		 * the normal delalloc dance
498 		 */
499 		if (page_offset(locked_page) >= start &&
500 		    page_offset(locked_page) <= end) {
501 			__set_page_dirty_nobuffers(locked_page);
502 			/* unlocked later on in the async handlers */
503 		}
504 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505 		*num_added += 1;
506 	}
507 
508 out:
509 	return 0;
510 
511 free_pages_out:
512 	for (i = 0; i < nr_pages_ret; i++) {
513 		WARN_ON(pages[i]->mapping);
514 		page_cache_release(pages[i]);
515 	}
516 	kfree(pages);
517 
518 	goto out;
519 }
520 
521 /*
522  * phase two of compressed writeback.  This is the ordered portion
523  * of the code, which only gets called in the order the work was
524  * queued.  We walk all the async extents created by compress_file_range
525  * and send them down to the disk.
526  */
527 static noinline int submit_compressed_extents(struct inode *inode,
528 					      struct async_cow *async_cow)
529 {
530 	struct async_extent *async_extent;
531 	u64 alloc_hint = 0;
532 	struct btrfs_trans_handle *trans;
533 	struct btrfs_key ins;
534 	struct extent_map *em;
535 	struct btrfs_root *root = BTRFS_I(inode)->root;
536 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 	struct extent_io_tree *io_tree;
538 	int ret;
539 
540 	if (list_empty(&async_cow->extents))
541 		return 0;
542 
543 	trans = btrfs_join_transaction(root, 1);
544 
545 	while (!list_empty(&async_cow->extents)) {
546 		async_extent = list_entry(async_cow->extents.next,
547 					  struct async_extent, list);
548 		list_del(&async_extent->list);
549 
550 		io_tree = &BTRFS_I(inode)->io_tree;
551 
552 		/* did the compression code fall back to uncompressed IO? */
553 		if (!async_extent->pages) {
554 			int page_started = 0;
555 			unsigned long nr_written = 0;
556 
557 			lock_extent(io_tree, async_extent->start,
558 				    async_extent->start +
559 				    async_extent->ram_size - 1, GFP_NOFS);
560 
561 			/* allocate blocks */
562 			cow_file_range(inode, async_cow->locked_page,
563 				       async_extent->start,
564 				       async_extent->start +
565 				       async_extent->ram_size - 1,
566 				       &page_started, &nr_written, 0);
567 
568 			/*
569 			 * if page_started, cow_file_range inserted an
570 			 * inline extent and took care of all the unlocking
571 			 * and IO for us.  Otherwise, we need to submit
572 			 * all those pages down to the drive.
573 			 */
574 			if (!page_started)
575 				extent_write_locked_range(io_tree,
576 						  inode, async_extent->start,
577 						  async_extent->start +
578 						  async_extent->ram_size - 1,
579 						  btrfs_get_extent,
580 						  WB_SYNC_ALL);
581 			kfree(async_extent);
582 			cond_resched();
583 			continue;
584 		}
585 
586 		lock_extent(io_tree, async_extent->start,
587 			    async_extent->start + async_extent->ram_size - 1,
588 			    GFP_NOFS);
589 		/*
590 		 * here we're doing allocation and writeback of the
591 		 * compressed pages
592 		 */
593 		btrfs_drop_extent_cache(inode, async_extent->start,
594 					async_extent->start +
595 					async_extent->ram_size - 1, 0);
596 
597 		ret = btrfs_reserve_extent(trans, root,
598 					   async_extent->compressed_size,
599 					   async_extent->compressed_size,
600 					   0, alloc_hint,
601 					   (u64)-1, &ins, 1);
602 		BUG_ON(ret);
603 		em = alloc_extent_map(GFP_NOFS);
604 		em->start = async_extent->start;
605 		em->len = async_extent->ram_size;
606 		em->orig_start = em->start;
607 
608 		em->block_start = ins.objectid;
609 		em->block_len = ins.offset;
610 		em->bdev = root->fs_info->fs_devices->latest_bdev;
611 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
612 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613 
614 		while (1) {
615 			spin_lock(&em_tree->lock);
616 			ret = add_extent_mapping(em_tree, em);
617 			spin_unlock(&em_tree->lock);
618 			if (ret != -EEXIST) {
619 				free_extent_map(em);
620 				break;
621 			}
622 			btrfs_drop_extent_cache(inode, async_extent->start,
623 						async_extent->start +
624 						async_extent->ram_size - 1, 0);
625 		}
626 
627 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
628 					       ins.objectid,
629 					       async_extent->ram_size,
630 					       ins.offset,
631 					       BTRFS_ORDERED_COMPRESSED);
632 		BUG_ON(ret);
633 
634 		btrfs_end_transaction(trans, root);
635 
636 		/*
637 		 * clear dirty, set writeback and unlock the pages.
638 		 */
639 		extent_clear_unlock_delalloc(inode,
640 					     &BTRFS_I(inode)->io_tree,
641 					     async_extent->start,
642 					     async_extent->start +
643 					     async_extent->ram_size - 1,
644 					     NULL, 1, 1, 0, 1, 1, 0);
645 
646 		ret = btrfs_submit_compressed_write(inode,
647 				    async_extent->start,
648 				    async_extent->ram_size,
649 				    ins.objectid,
650 				    ins.offset, async_extent->pages,
651 				    async_extent->nr_pages);
652 
653 		BUG_ON(ret);
654 		trans = btrfs_join_transaction(root, 1);
655 		alloc_hint = ins.objectid + ins.offset;
656 		kfree(async_extent);
657 		cond_resched();
658 	}
659 
660 	btrfs_end_transaction(trans, root);
661 	return 0;
662 }
663 
664 /*
665  * when extent_io.c finds a delayed allocation range in the file,
666  * the call backs end up in this code.  The basic idea is to
667  * allocate extents on disk for the range, and create ordered data structs
668  * in ram to track those extents.
669  *
670  * locked_page is the page that writepage had locked already.  We use
671  * it to make sure we don't do extra locks or unlocks.
672  *
673  * *page_started is set to one if we unlock locked_page and do everything
674  * required to start IO on it.  It may be clean and already done with
675  * IO when we return.
676  */
677 static noinline int cow_file_range(struct inode *inode,
678 				   struct page *locked_page,
679 				   u64 start, u64 end, int *page_started,
680 				   unsigned long *nr_written,
681 				   int unlock)
682 {
683 	struct btrfs_root *root = BTRFS_I(inode)->root;
684 	struct btrfs_trans_handle *trans;
685 	u64 alloc_hint = 0;
686 	u64 num_bytes;
687 	unsigned long ram_size;
688 	u64 disk_num_bytes;
689 	u64 cur_alloc_size;
690 	u64 blocksize = root->sectorsize;
691 	u64 actual_end;
692 	u64 isize = i_size_read(inode);
693 	struct btrfs_key ins;
694 	struct extent_map *em;
695 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696 	int ret = 0;
697 
698 	trans = btrfs_join_transaction(root, 1);
699 	BUG_ON(!trans);
700 	btrfs_set_trans_block_group(trans, inode);
701 
702 	actual_end = min_t(u64, isize, end + 1);
703 
704 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705 	num_bytes = max(blocksize,  num_bytes);
706 	disk_num_bytes = num_bytes;
707 	ret = 0;
708 
709 	if (start == 0) {
710 		/* lets try to make an inline extent */
711 		ret = cow_file_range_inline(trans, root, inode,
712 					    start, end, 0, NULL);
713 		if (ret == 0) {
714 			extent_clear_unlock_delalloc(inode,
715 						     &BTRFS_I(inode)->io_tree,
716 						     start, end, NULL, 1, 1,
717 						     1, 1, 1, 1);
718 			*nr_written = *nr_written +
719 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720 			*page_started = 1;
721 			ret = 0;
722 			goto out;
723 		}
724 	}
725 
726 	BUG_ON(disk_num_bytes >
727 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
728 
729 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
730 
731 	while (disk_num_bytes > 0) {
732 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
733 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
734 					   root->sectorsize, 0, alloc_hint,
735 					   (u64)-1, &ins, 1);
736 		BUG_ON(ret);
737 
738 		em = alloc_extent_map(GFP_NOFS);
739 		em->start = start;
740 		em->orig_start = em->start;
741 
742 		ram_size = ins.offset;
743 		em->len = ins.offset;
744 
745 		em->block_start = ins.objectid;
746 		em->block_len = ins.offset;
747 		em->bdev = root->fs_info->fs_devices->latest_bdev;
748 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
749 
750 		while (1) {
751 			spin_lock(&em_tree->lock);
752 			ret = add_extent_mapping(em_tree, em);
753 			spin_unlock(&em_tree->lock);
754 			if (ret != -EEXIST) {
755 				free_extent_map(em);
756 				break;
757 			}
758 			btrfs_drop_extent_cache(inode, start,
759 						start + ram_size - 1, 0);
760 		}
761 
762 		cur_alloc_size = ins.offset;
763 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
764 					       ram_size, cur_alloc_size, 0);
765 		BUG_ON(ret);
766 
767 		if (root->root_key.objectid ==
768 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
769 			ret = btrfs_reloc_clone_csums(inode, start,
770 						      cur_alloc_size);
771 			BUG_ON(ret);
772 		}
773 
774 		if (disk_num_bytes < cur_alloc_size)
775 			break;
776 
777 		/* we're not doing compressed IO, don't unlock the first
778 		 * page (which the caller expects to stay locked), don't
779 		 * clear any dirty bits and don't set any writeback bits
780 		 */
781 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
782 					     start, start + ram_size - 1,
783 					     locked_page, unlock, 1,
784 					     1, 0, 0, 0);
785 		disk_num_bytes -= cur_alloc_size;
786 		num_bytes -= cur_alloc_size;
787 		alloc_hint = ins.objectid + ins.offset;
788 		start += cur_alloc_size;
789 	}
790 out:
791 	ret = 0;
792 	btrfs_end_transaction(trans, root);
793 
794 	return ret;
795 }
796 
797 /*
798  * work queue call back to started compression on a file and pages
799  */
800 static noinline void async_cow_start(struct btrfs_work *work)
801 {
802 	struct async_cow *async_cow;
803 	int num_added = 0;
804 	async_cow = container_of(work, struct async_cow, work);
805 
806 	compress_file_range(async_cow->inode, async_cow->locked_page,
807 			    async_cow->start, async_cow->end, async_cow,
808 			    &num_added);
809 	if (num_added == 0)
810 		async_cow->inode = NULL;
811 }
812 
813 /*
814  * work queue call back to submit previously compressed pages
815  */
816 static noinline void async_cow_submit(struct btrfs_work *work)
817 {
818 	struct async_cow *async_cow;
819 	struct btrfs_root *root;
820 	unsigned long nr_pages;
821 
822 	async_cow = container_of(work, struct async_cow, work);
823 
824 	root = async_cow->root;
825 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
826 		PAGE_CACHE_SHIFT;
827 
828 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
829 
830 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
831 	    5 * 1042 * 1024 &&
832 	    waitqueue_active(&root->fs_info->async_submit_wait))
833 		wake_up(&root->fs_info->async_submit_wait);
834 
835 	if (async_cow->inode)
836 		submit_compressed_extents(async_cow->inode, async_cow);
837 }
838 
839 static noinline void async_cow_free(struct btrfs_work *work)
840 {
841 	struct async_cow *async_cow;
842 	async_cow = container_of(work, struct async_cow, work);
843 	kfree(async_cow);
844 }
845 
846 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
847 				u64 start, u64 end, int *page_started,
848 				unsigned long *nr_written)
849 {
850 	struct async_cow *async_cow;
851 	struct btrfs_root *root = BTRFS_I(inode)->root;
852 	unsigned long nr_pages;
853 	u64 cur_end;
854 	int limit = 10 * 1024 * 1042;
855 
856 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
857 			 EXTENT_DELALLOC, 1, 0, GFP_NOFS);
858 	while (start < end) {
859 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
860 		async_cow->inode = inode;
861 		async_cow->root = root;
862 		async_cow->locked_page = locked_page;
863 		async_cow->start = start;
864 
865 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
866 			cur_end = end;
867 		else
868 			cur_end = min(end, start + 512 * 1024 - 1);
869 
870 		async_cow->end = cur_end;
871 		INIT_LIST_HEAD(&async_cow->extents);
872 
873 		async_cow->work.func = async_cow_start;
874 		async_cow->work.ordered_func = async_cow_submit;
875 		async_cow->work.ordered_free = async_cow_free;
876 		async_cow->work.flags = 0;
877 
878 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
879 			PAGE_CACHE_SHIFT;
880 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
881 
882 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
883 				   &async_cow->work);
884 
885 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
886 			wait_event(root->fs_info->async_submit_wait,
887 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
888 			    limit));
889 		}
890 
891 		while (atomic_read(&root->fs_info->async_submit_draining) &&
892 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
893 			wait_event(root->fs_info->async_submit_wait,
894 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
895 			   0));
896 		}
897 
898 		*nr_written += nr_pages;
899 		start = cur_end + 1;
900 	}
901 	*page_started = 1;
902 	return 0;
903 }
904 
905 static noinline int csum_exist_in_range(struct btrfs_root *root,
906 					u64 bytenr, u64 num_bytes)
907 {
908 	int ret;
909 	struct btrfs_ordered_sum *sums;
910 	LIST_HEAD(list);
911 
912 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
913 				       bytenr + num_bytes - 1, &list);
914 	if (ret == 0 && list_empty(&list))
915 		return 0;
916 
917 	while (!list_empty(&list)) {
918 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
919 		list_del(&sums->list);
920 		kfree(sums);
921 	}
922 	return 1;
923 }
924 
925 /*
926  * when nowcow writeback call back.  This checks for snapshots or COW copies
927  * of the extents that exist in the file, and COWs the file as required.
928  *
929  * If no cow copies or snapshots exist, we write directly to the existing
930  * blocks on disk
931  */
932 static noinline int run_delalloc_nocow(struct inode *inode,
933 				       struct page *locked_page,
934 			      u64 start, u64 end, int *page_started, int force,
935 			      unsigned long *nr_written)
936 {
937 	struct btrfs_root *root = BTRFS_I(inode)->root;
938 	struct btrfs_trans_handle *trans;
939 	struct extent_buffer *leaf;
940 	struct btrfs_path *path;
941 	struct btrfs_file_extent_item *fi;
942 	struct btrfs_key found_key;
943 	u64 cow_start;
944 	u64 cur_offset;
945 	u64 extent_end;
946 	u64 extent_offset;
947 	u64 disk_bytenr;
948 	u64 num_bytes;
949 	int extent_type;
950 	int ret;
951 	int type;
952 	int nocow;
953 	int check_prev = 1;
954 
955 	path = btrfs_alloc_path();
956 	BUG_ON(!path);
957 	trans = btrfs_join_transaction(root, 1);
958 	BUG_ON(!trans);
959 
960 	cow_start = (u64)-1;
961 	cur_offset = start;
962 	while (1) {
963 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
964 					       cur_offset, 0);
965 		BUG_ON(ret < 0);
966 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
967 			leaf = path->nodes[0];
968 			btrfs_item_key_to_cpu(leaf, &found_key,
969 					      path->slots[0] - 1);
970 			if (found_key.objectid == inode->i_ino &&
971 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
972 				path->slots[0]--;
973 		}
974 		check_prev = 0;
975 next_slot:
976 		leaf = path->nodes[0];
977 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
978 			ret = btrfs_next_leaf(root, path);
979 			if (ret < 0)
980 				BUG_ON(1);
981 			if (ret > 0)
982 				break;
983 			leaf = path->nodes[0];
984 		}
985 
986 		nocow = 0;
987 		disk_bytenr = 0;
988 		num_bytes = 0;
989 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
990 
991 		if (found_key.objectid > inode->i_ino ||
992 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
993 		    found_key.offset > end)
994 			break;
995 
996 		if (found_key.offset > cur_offset) {
997 			extent_end = found_key.offset;
998 			goto out_check;
999 		}
1000 
1001 		fi = btrfs_item_ptr(leaf, path->slots[0],
1002 				    struct btrfs_file_extent_item);
1003 		extent_type = btrfs_file_extent_type(leaf, fi);
1004 
1005 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1006 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1007 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1008 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1009 			extent_end = found_key.offset +
1010 				btrfs_file_extent_num_bytes(leaf, fi);
1011 			if (extent_end <= start) {
1012 				path->slots[0]++;
1013 				goto next_slot;
1014 			}
1015 			if (disk_bytenr == 0)
1016 				goto out_check;
1017 			if (btrfs_file_extent_compression(leaf, fi) ||
1018 			    btrfs_file_extent_encryption(leaf, fi) ||
1019 			    btrfs_file_extent_other_encoding(leaf, fi))
1020 				goto out_check;
1021 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1022 				goto out_check;
1023 			if (btrfs_extent_readonly(root, disk_bytenr))
1024 				goto out_check;
1025 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1026 						  found_key.offset -
1027 						  extent_offset, disk_bytenr))
1028 				goto out_check;
1029 			disk_bytenr += extent_offset;
1030 			disk_bytenr += cur_offset - found_key.offset;
1031 			num_bytes = min(end + 1, extent_end) - cur_offset;
1032 			/*
1033 			 * force cow if csum exists in the range.
1034 			 * this ensure that csum for a given extent are
1035 			 * either valid or do not exist.
1036 			 */
1037 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1038 				goto out_check;
1039 			nocow = 1;
1040 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1041 			extent_end = found_key.offset +
1042 				btrfs_file_extent_inline_len(leaf, fi);
1043 			extent_end = ALIGN(extent_end, root->sectorsize);
1044 		} else {
1045 			BUG_ON(1);
1046 		}
1047 out_check:
1048 		if (extent_end <= start) {
1049 			path->slots[0]++;
1050 			goto next_slot;
1051 		}
1052 		if (!nocow) {
1053 			if (cow_start == (u64)-1)
1054 				cow_start = cur_offset;
1055 			cur_offset = extent_end;
1056 			if (cur_offset > end)
1057 				break;
1058 			path->slots[0]++;
1059 			goto next_slot;
1060 		}
1061 
1062 		btrfs_release_path(root, path);
1063 		if (cow_start != (u64)-1) {
1064 			ret = cow_file_range(inode, locked_page, cow_start,
1065 					found_key.offset - 1, page_started,
1066 					nr_written, 1);
1067 			BUG_ON(ret);
1068 			cow_start = (u64)-1;
1069 		}
1070 
1071 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1072 			struct extent_map *em;
1073 			struct extent_map_tree *em_tree;
1074 			em_tree = &BTRFS_I(inode)->extent_tree;
1075 			em = alloc_extent_map(GFP_NOFS);
1076 			em->start = cur_offset;
1077 			em->orig_start = em->start;
1078 			em->len = num_bytes;
1079 			em->block_len = num_bytes;
1080 			em->block_start = disk_bytenr;
1081 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1082 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1083 			while (1) {
1084 				spin_lock(&em_tree->lock);
1085 				ret = add_extent_mapping(em_tree, em);
1086 				spin_unlock(&em_tree->lock);
1087 				if (ret != -EEXIST) {
1088 					free_extent_map(em);
1089 					break;
1090 				}
1091 				btrfs_drop_extent_cache(inode, em->start,
1092 						em->start + em->len - 1, 0);
1093 			}
1094 			type = BTRFS_ORDERED_PREALLOC;
1095 		} else {
1096 			type = BTRFS_ORDERED_NOCOW;
1097 		}
1098 
1099 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1100 					       num_bytes, num_bytes, type);
1101 		BUG_ON(ret);
1102 
1103 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1104 					cur_offset, cur_offset + num_bytes - 1,
1105 					locked_page, 1, 1, 1, 0, 0, 0);
1106 		cur_offset = extent_end;
1107 		if (cur_offset > end)
1108 			break;
1109 	}
1110 	btrfs_release_path(root, path);
1111 
1112 	if (cur_offset <= end && cow_start == (u64)-1)
1113 		cow_start = cur_offset;
1114 	if (cow_start != (u64)-1) {
1115 		ret = cow_file_range(inode, locked_page, cow_start, end,
1116 				     page_started, nr_written, 1);
1117 		BUG_ON(ret);
1118 	}
1119 
1120 	ret = btrfs_end_transaction(trans, root);
1121 	BUG_ON(ret);
1122 	btrfs_free_path(path);
1123 	return 0;
1124 }
1125 
1126 /*
1127  * extent_io.c call back to do delayed allocation processing
1128  */
1129 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1130 			      u64 start, u64 end, int *page_started,
1131 			      unsigned long *nr_written)
1132 {
1133 	int ret;
1134 	struct btrfs_root *root = BTRFS_I(inode)->root;
1135 
1136 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1137 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1138 					 page_started, 1, nr_written);
1139 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1140 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1141 					 page_started, 0, nr_written);
1142 	else if (!btrfs_test_opt(root, COMPRESS))
1143 		ret = cow_file_range(inode, locked_page, start, end,
1144 				      page_started, nr_written, 1);
1145 	else
1146 		ret = cow_file_range_async(inode, locked_page, start, end,
1147 					   page_started, nr_written);
1148 	return ret;
1149 }
1150 
1151 /*
1152  * extent_io.c set_bit_hook, used to track delayed allocation
1153  * bytes in this file, and to maintain the list of inodes that
1154  * have pending delalloc work to be done.
1155  */
1156 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1157 		       unsigned long old, unsigned long bits)
1158 {
1159 	/*
1160 	 * set_bit and clear bit hooks normally require _irqsave/restore
1161 	 * but in this case, we are only testeing for the DELALLOC
1162 	 * bit, which is only set or cleared with irqs on
1163 	 */
1164 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1165 		struct btrfs_root *root = BTRFS_I(inode)->root;
1166 		btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1167 		spin_lock(&root->fs_info->delalloc_lock);
1168 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1169 		root->fs_info->delalloc_bytes += end - start + 1;
1170 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1171 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1172 				      &root->fs_info->delalloc_inodes);
1173 		}
1174 		spin_unlock(&root->fs_info->delalloc_lock);
1175 	}
1176 	return 0;
1177 }
1178 
1179 /*
1180  * extent_io.c clear_bit_hook, see set_bit_hook for why
1181  */
1182 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1183 			 unsigned long old, unsigned long bits)
1184 {
1185 	/*
1186 	 * set_bit and clear bit hooks normally require _irqsave/restore
1187 	 * but in this case, we are only testeing for the DELALLOC
1188 	 * bit, which is only set or cleared with irqs on
1189 	 */
1190 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1191 		struct btrfs_root *root = BTRFS_I(inode)->root;
1192 
1193 		spin_lock(&root->fs_info->delalloc_lock);
1194 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1195 			printk(KERN_INFO "btrfs warning: delalloc account "
1196 			       "%llu %llu\n",
1197 			       (unsigned long long)end - start + 1,
1198 			       (unsigned long long)
1199 			       root->fs_info->delalloc_bytes);
1200 			btrfs_delalloc_free_space(root, inode, (u64)-1);
1201 			root->fs_info->delalloc_bytes = 0;
1202 			BTRFS_I(inode)->delalloc_bytes = 0;
1203 		} else {
1204 			btrfs_delalloc_free_space(root, inode,
1205 						  end - start + 1);
1206 			root->fs_info->delalloc_bytes -= end - start + 1;
1207 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1208 		}
1209 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1210 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1211 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1212 		}
1213 		spin_unlock(&root->fs_info->delalloc_lock);
1214 	}
1215 	return 0;
1216 }
1217 
1218 /*
1219  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1220  * we don't create bios that span stripes or chunks
1221  */
1222 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1223 			 size_t size, struct bio *bio,
1224 			 unsigned long bio_flags)
1225 {
1226 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1227 	struct btrfs_mapping_tree *map_tree;
1228 	u64 logical = (u64)bio->bi_sector << 9;
1229 	u64 length = 0;
1230 	u64 map_length;
1231 	int ret;
1232 
1233 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1234 		return 0;
1235 
1236 	length = bio->bi_size;
1237 	map_tree = &root->fs_info->mapping_tree;
1238 	map_length = length;
1239 	ret = btrfs_map_block(map_tree, READ, logical,
1240 			      &map_length, NULL, 0);
1241 
1242 	if (map_length < length + size)
1243 		return 1;
1244 	return 0;
1245 }
1246 
1247 /*
1248  * in order to insert checksums into the metadata in large chunks,
1249  * we wait until bio submission time.   All the pages in the bio are
1250  * checksummed and sums are attached onto the ordered extent record.
1251  *
1252  * At IO completion time the cums attached on the ordered extent record
1253  * are inserted into the btree
1254  */
1255 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1256 				    struct bio *bio, int mirror_num,
1257 				    unsigned long bio_flags)
1258 {
1259 	struct btrfs_root *root = BTRFS_I(inode)->root;
1260 	int ret = 0;
1261 
1262 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1263 	BUG_ON(ret);
1264 	return 0;
1265 }
1266 
1267 /*
1268  * in order to insert checksums into the metadata in large chunks,
1269  * we wait until bio submission time.   All the pages in the bio are
1270  * checksummed and sums are attached onto the ordered extent record.
1271  *
1272  * At IO completion time the cums attached on the ordered extent record
1273  * are inserted into the btree
1274  */
1275 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1276 			  int mirror_num, unsigned long bio_flags)
1277 {
1278 	struct btrfs_root *root = BTRFS_I(inode)->root;
1279 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1280 }
1281 
1282 /*
1283  * extent_io.c submission hook. This does the right thing for csum calculation
1284  * on write, or reading the csums from the tree before a read
1285  */
1286 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1287 			  int mirror_num, unsigned long bio_flags)
1288 {
1289 	struct btrfs_root *root = BTRFS_I(inode)->root;
1290 	int ret = 0;
1291 	int skip_sum;
1292 
1293 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1294 
1295 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1296 	BUG_ON(ret);
1297 
1298 	if (!(rw & (1 << BIO_RW))) {
1299 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1300 			return btrfs_submit_compressed_read(inode, bio,
1301 						    mirror_num, bio_flags);
1302 		} else if (!skip_sum)
1303 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1304 		goto mapit;
1305 	} else if (!skip_sum) {
1306 		/* csum items have already been cloned */
1307 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1308 			goto mapit;
1309 		/* we're doing a write, do the async checksumming */
1310 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1311 				   inode, rw, bio, mirror_num,
1312 				   bio_flags, __btrfs_submit_bio_start,
1313 				   __btrfs_submit_bio_done);
1314 	}
1315 
1316 mapit:
1317 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1318 }
1319 
1320 /*
1321  * given a list of ordered sums record them in the inode.  This happens
1322  * at IO completion time based on sums calculated at bio submission time.
1323  */
1324 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1325 			     struct inode *inode, u64 file_offset,
1326 			     struct list_head *list)
1327 {
1328 	struct btrfs_ordered_sum *sum;
1329 
1330 	btrfs_set_trans_block_group(trans, inode);
1331 
1332 	list_for_each_entry(sum, list, list) {
1333 		btrfs_csum_file_blocks(trans,
1334 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1335 	}
1336 	return 0;
1337 }
1338 
1339 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1340 {
1341 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1342 		WARN_ON(1);
1343 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1344 				   GFP_NOFS);
1345 }
1346 
1347 /* see btrfs_writepage_start_hook for details on why this is required */
1348 struct btrfs_writepage_fixup {
1349 	struct page *page;
1350 	struct btrfs_work work;
1351 };
1352 
1353 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1354 {
1355 	struct btrfs_writepage_fixup *fixup;
1356 	struct btrfs_ordered_extent *ordered;
1357 	struct page *page;
1358 	struct inode *inode;
1359 	u64 page_start;
1360 	u64 page_end;
1361 
1362 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1363 	page = fixup->page;
1364 again:
1365 	lock_page(page);
1366 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1367 		ClearPageChecked(page);
1368 		goto out_page;
1369 	}
1370 
1371 	inode = page->mapping->host;
1372 	page_start = page_offset(page);
1373 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1374 
1375 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1376 
1377 	/* already ordered? We're done */
1378 	if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1379 			     EXTENT_ORDERED, 0)) {
1380 		goto out;
1381 	}
1382 
1383 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1384 	if (ordered) {
1385 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1386 			      page_end, GFP_NOFS);
1387 		unlock_page(page);
1388 		btrfs_start_ordered_extent(inode, ordered, 1);
1389 		goto again;
1390 	}
1391 
1392 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1393 	ClearPageChecked(page);
1394 out:
1395 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1396 out_page:
1397 	unlock_page(page);
1398 	page_cache_release(page);
1399 }
1400 
1401 /*
1402  * There are a few paths in the higher layers of the kernel that directly
1403  * set the page dirty bit without asking the filesystem if it is a
1404  * good idea.  This causes problems because we want to make sure COW
1405  * properly happens and the data=ordered rules are followed.
1406  *
1407  * In our case any range that doesn't have the ORDERED bit set
1408  * hasn't been properly setup for IO.  We kick off an async process
1409  * to fix it up.  The async helper will wait for ordered extents, set
1410  * the delalloc bit and make it safe to write the page.
1411  */
1412 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1413 {
1414 	struct inode *inode = page->mapping->host;
1415 	struct btrfs_writepage_fixup *fixup;
1416 	struct btrfs_root *root = BTRFS_I(inode)->root;
1417 	int ret;
1418 
1419 	ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1420 			     EXTENT_ORDERED, 0);
1421 	if (ret)
1422 		return 0;
1423 
1424 	if (PageChecked(page))
1425 		return -EAGAIN;
1426 
1427 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1428 	if (!fixup)
1429 		return -EAGAIN;
1430 
1431 	SetPageChecked(page);
1432 	page_cache_get(page);
1433 	fixup->work.func = btrfs_writepage_fixup_worker;
1434 	fixup->page = page;
1435 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1436 	return -EAGAIN;
1437 }
1438 
1439 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1440 				       struct inode *inode, u64 file_pos,
1441 				       u64 disk_bytenr, u64 disk_num_bytes,
1442 				       u64 num_bytes, u64 ram_bytes,
1443 				       u64 locked_end,
1444 				       u8 compression, u8 encryption,
1445 				       u16 other_encoding, int extent_type)
1446 {
1447 	struct btrfs_root *root = BTRFS_I(inode)->root;
1448 	struct btrfs_file_extent_item *fi;
1449 	struct btrfs_path *path;
1450 	struct extent_buffer *leaf;
1451 	struct btrfs_key ins;
1452 	u64 hint;
1453 	int ret;
1454 
1455 	path = btrfs_alloc_path();
1456 	BUG_ON(!path);
1457 
1458 	path->leave_spinning = 1;
1459 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1460 				 file_pos + num_bytes, locked_end,
1461 				 file_pos, &hint);
1462 	BUG_ON(ret);
1463 
1464 	ins.objectid = inode->i_ino;
1465 	ins.offset = file_pos;
1466 	ins.type = BTRFS_EXTENT_DATA_KEY;
1467 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1468 	BUG_ON(ret);
1469 	leaf = path->nodes[0];
1470 	fi = btrfs_item_ptr(leaf, path->slots[0],
1471 			    struct btrfs_file_extent_item);
1472 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1473 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1474 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1475 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1476 	btrfs_set_file_extent_offset(leaf, fi, 0);
1477 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1478 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1479 	btrfs_set_file_extent_compression(leaf, fi, compression);
1480 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1481 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1482 
1483 	btrfs_unlock_up_safe(path, 1);
1484 	btrfs_set_lock_blocking(leaf);
1485 
1486 	btrfs_mark_buffer_dirty(leaf);
1487 
1488 	inode_add_bytes(inode, num_bytes);
1489 	btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1490 
1491 	ins.objectid = disk_bytenr;
1492 	ins.offset = disk_num_bytes;
1493 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1494 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1495 					root->root_key.objectid,
1496 					inode->i_ino, file_pos, &ins);
1497 	BUG_ON(ret);
1498 	btrfs_free_path(path);
1499 
1500 	return 0;
1501 }
1502 
1503 /*
1504  * helper function for btrfs_finish_ordered_io, this
1505  * just reads in some of the csum leaves to prime them into ram
1506  * before we start the transaction.  It limits the amount of btree
1507  * reads required while inside the transaction.
1508  */
1509 static noinline void reada_csum(struct btrfs_root *root,
1510 				struct btrfs_path *path,
1511 				struct btrfs_ordered_extent *ordered_extent)
1512 {
1513 	struct btrfs_ordered_sum *sum;
1514 	u64 bytenr;
1515 
1516 	sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1517 			 list);
1518 	bytenr = sum->sums[0].bytenr;
1519 
1520 	/*
1521 	 * we don't care about the results, the point of this search is
1522 	 * just to get the btree leaves into ram
1523 	 */
1524 	btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1525 }
1526 
1527 /* as ordered data IO finishes, this gets called so we can finish
1528  * an ordered extent if the range of bytes in the file it covers are
1529  * fully written.
1530  */
1531 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1532 {
1533 	struct btrfs_root *root = BTRFS_I(inode)->root;
1534 	struct btrfs_trans_handle *trans;
1535 	struct btrfs_ordered_extent *ordered_extent = NULL;
1536 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1537 	struct btrfs_path *path;
1538 	int compressed = 0;
1539 	int ret;
1540 
1541 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1542 	if (!ret)
1543 		return 0;
1544 
1545 	/*
1546 	 * before we join the transaction, try to do some of our IO.
1547 	 * This will limit the amount of IO that we have to do with
1548 	 * the transaction running.  We're unlikely to need to do any
1549 	 * IO if the file extents are new, the disk_i_size checks
1550 	 * covers the most common case.
1551 	 */
1552 	if (start < BTRFS_I(inode)->disk_i_size) {
1553 		path = btrfs_alloc_path();
1554 		if (path) {
1555 			ret = btrfs_lookup_file_extent(NULL, root, path,
1556 						       inode->i_ino,
1557 						       start, 0);
1558 			ordered_extent = btrfs_lookup_ordered_extent(inode,
1559 								     start);
1560 			if (!list_empty(&ordered_extent->list)) {
1561 				btrfs_release_path(root, path);
1562 				reada_csum(root, path, ordered_extent);
1563 			}
1564 			btrfs_free_path(path);
1565 		}
1566 	}
1567 
1568 	trans = btrfs_join_transaction(root, 1);
1569 
1570 	if (!ordered_extent)
1571 		ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1572 	BUG_ON(!ordered_extent);
1573 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1574 		goto nocow;
1575 
1576 	lock_extent(io_tree, ordered_extent->file_offset,
1577 		    ordered_extent->file_offset + ordered_extent->len - 1,
1578 		    GFP_NOFS);
1579 
1580 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1581 		compressed = 1;
1582 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1583 		BUG_ON(compressed);
1584 		ret = btrfs_mark_extent_written(trans, root, inode,
1585 						ordered_extent->file_offset,
1586 						ordered_extent->file_offset +
1587 						ordered_extent->len);
1588 		BUG_ON(ret);
1589 	} else {
1590 		ret = insert_reserved_file_extent(trans, inode,
1591 						ordered_extent->file_offset,
1592 						ordered_extent->start,
1593 						ordered_extent->disk_len,
1594 						ordered_extent->len,
1595 						ordered_extent->len,
1596 						ordered_extent->file_offset +
1597 						ordered_extent->len,
1598 						compressed, 0, 0,
1599 						BTRFS_FILE_EXTENT_REG);
1600 		BUG_ON(ret);
1601 	}
1602 	unlock_extent(io_tree, ordered_extent->file_offset,
1603 		    ordered_extent->file_offset + ordered_extent->len - 1,
1604 		    GFP_NOFS);
1605 nocow:
1606 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1607 			  &ordered_extent->list);
1608 
1609 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1610 	btrfs_ordered_update_i_size(inode, ordered_extent);
1611 	btrfs_update_inode(trans, root, inode);
1612 	btrfs_remove_ordered_extent(inode, ordered_extent);
1613 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1614 
1615 	/* once for us */
1616 	btrfs_put_ordered_extent(ordered_extent);
1617 	/* once for the tree */
1618 	btrfs_put_ordered_extent(ordered_extent);
1619 
1620 	btrfs_end_transaction(trans, root);
1621 	return 0;
1622 }
1623 
1624 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1625 				struct extent_state *state, int uptodate)
1626 {
1627 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1628 }
1629 
1630 /*
1631  * When IO fails, either with EIO or csum verification fails, we
1632  * try other mirrors that might have a good copy of the data.  This
1633  * io_failure_record is used to record state as we go through all the
1634  * mirrors.  If another mirror has good data, the page is set up to date
1635  * and things continue.  If a good mirror can't be found, the original
1636  * bio end_io callback is called to indicate things have failed.
1637  */
1638 struct io_failure_record {
1639 	struct page *page;
1640 	u64 start;
1641 	u64 len;
1642 	u64 logical;
1643 	unsigned long bio_flags;
1644 	int last_mirror;
1645 };
1646 
1647 static int btrfs_io_failed_hook(struct bio *failed_bio,
1648 			 struct page *page, u64 start, u64 end,
1649 			 struct extent_state *state)
1650 {
1651 	struct io_failure_record *failrec = NULL;
1652 	u64 private;
1653 	struct extent_map *em;
1654 	struct inode *inode = page->mapping->host;
1655 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1656 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1657 	struct bio *bio;
1658 	int num_copies;
1659 	int ret;
1660 	int rw;
1661 	u64 logical;
1662 
1663 	ret = get_state_private(failure_tree, start, &private);
1664 	if (ret) {
1665 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1666 		if (!failrec)
1667 			return -ENOMEM;
1668 		failrec->start = start;
1669 		failrec->len = end - start + 1;
1670 		failrec->last_mirror = 0;
1671 		failrec->bio_flags = 0;
1672 
1673 		spin_lock(&em_tree->lock);
1674 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1675 		if (em->start > start || em->start + em->len < start) {
1676 			free_extent_map(em);
1677 			em = NULL;
1678 		}
1679 		spin_unlock(&em_tree->lock);
1680 
1681 		if (!em || IS_ERR(em)) {
1682 			kfree(failrec);
1683 			return -EIO;
1684 		}
1685 		logical = start - em->start;
1686 		logical = em->block_start + logical;
1687 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1688 			logical = em->block_start;
1689 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1690 		}
1691 		failrec->logical = logical;
1692 		free_extent_map(em);
1693 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1694 				EXTENT_DIRTY, GFP_NOFS);
1695 		set_state_private(failure_tree, start,
1696 				 (u64)(unsigned long)failrec);
1697 	} else {
1698 		failrec = (struct io_failure_record *)(unsigned long)private;
1699 	}
1700 	num_copies = btrfs_num_copies(
1701 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1702 			      failrec->logical, failrec->len);
1703 	failrec->last_mirror++;
1704 	if (!state) {
1705 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1706 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1707 						    failrec->start,
1708 						    EXTENT_LOCKED);
1709 		if (state && state->start != failrec->start)
1710 			state = NULL;
1711 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1712 	}
1713 	if (!state || failrec->last_mirror > num_copies) {
1714 		set_state_private(failure_tree, failrec->start, 0);
1715 		clear_extent_bits(failure_tree, failrec->start,
1716 				  failrec->start + failrec->len - 1,
1717 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1718 		kfree(failrec);
1719 		return -EIO;
1720 	}
1721 	bio = bio_alloc(GFP_NOFS, 1);
1722 	bio->bi_private = state;
1723 	bio->bi_end_io = failed_bio->bi_end_io;
1724 	bio->bi_sector = failrec->logical >> 9;
1725 	bio->bi_bdev = failed_bio->bi_bdev;
1726 	bio->bi_size = 0;
1727 
1728 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1729 	if (failed_bio->bi_rw & (1 << BIO_RW))
1730 		rw = WRITE;
1731 	else
1732 		rw = READ;
1733 
1734 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1735 						      failrec->last_mirror,
1736 						      failrec->bio_flags);
1737 	return 0;
1738 }
1739 
1740 /*
1741  * each time an IO finishes, we do a fast check in the IO failure tree
1742  * to see if we need to process or clean up an io_failure_record
1743  */
1744 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1745 {
1746 	u64 private;
1747 	u64 private_failure;
1748 	struct io_failure_record *failure;
1749 	int ret;
1750 
1751 	private = 0;
1752 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1753 			     (u64)-1, 1, EXTENT_DIRTY)) {
1754 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1755 					start, &private_failure);
1756 		if (ret == 0) {
1757 			failure = (struct io_failure_record *)(unsigned long)
1758 				   private_failure;
1759 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1760 					  failure->start, 0);
1761 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1762 					  failure->start,
1763 					  failure->start + failure->len - 1,
1764 					  EXTENT_DIRTY | EXTENT_LOCKED,
1765 					  GFP_NOFS);
1766 			kfree(failure);
1767 		}
1768 	}
1769 	return 0;
1770 }
1771 
1772 /*
1773  * when reads are done, we need to check csums to verify the data is correct
1774  * if there's a match, we allow the bio to finish.  If not, we go through
1775  * the io_failure_record routines to find good copies
1776  */
1777 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1778 			       struct extent_state *state)
1779 {
1780 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1781 	struct inode *inode = page->mapping->host;
1782 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1783 	char *kaddr;
1784 	u64 private = ~(u32)0;
1785 	int ret;
1786 	struct btrfs_root *root = BTRFS_I(inode)->root;
1787 	u32 csum = ~(u32)0;
1788 
1789 	if (PageChecked(page)) {
1790 		ClearPageChecked(page);
1791 		goto good;
1792 	}
1793 
1794 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1795 		return 0;
1796 
1797 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1798 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1799 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1800 				  GFP_NOFS);
1801 		return 0;
1802 	}
1803 
1804 	if (state && state->start == start) {
1805 		private = state->private;
1806 		ret = 0;
1807 	} else {
1808 		ret = get_state_private(io_tree, start, &private);
1809 	}
1810 	kaddr = kmap_atomic(page, KM_USER0);
1811 	if (ret)
1812 		goto zeroit;
1813 
1814 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1815 	btrfs_csum_final(csum, (char *)&csum);
1816 	if (csum != private)
1817 		goto zeroit;
1818 
1819 	kunmap_atomic(kaddr, KM_USER0);
1820 good:
1821 	/* if the io failure tree for this inode is non-empty,
1822 	 * check to see if we've recovered from a failed IO
1823 	 */
1824 	btrfs_clean_io_failures(inode, start);
1825 	return 0;
1826 
1827 zeroit:
1828 	if (printk_ratelimit()) {
1829 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1830 		       "private %llu\n", page->mapping->host->i_ino,
1831 		       (unsigned long long)start, csum,
1832 		       (unsigned long long)private);
1833 	}
1834 	memset(kaddr + offset, 1, end - start + 1);
1835 	flush_dcache_page(page);
1836 	kunmap_atomic(kaddr, KM_USER0);
1837 	if (private == 0)
1838 		return 0;
1839 	return -EIO;
1840 }
1841 
1842 /*
1843  * This creates an orphan entry for the given inode in case something goes
1844  * wrong in the middle of an unlink/truncate.
1845  */
1846 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1847 {
1848 	struct btrfs_root *root = BTRFS_I(inode)->root;
1849 	int ret = 0;
1850 
1851 	spin_lock(&root->list_lock);
1852 
1853 	/* already on the orphan list, we're good */
1854 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1855 		spin_unlock(&root->list_lock);
1856 		return 0;
1857 	}
1858 
1859 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1860 
1861 	spin_unlock(&root->list_lock);
1862 
1863 	/*
1864 	 * insert an orphan item to track this unlinked/truncated file
1865 	 */
1866 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1867 
1868 	return ret;
1869 }
1870 
1871 /*
1872  * We have done the truncate/delete so we can go ahead and remove the orphan
1873  * item for this particular inode.
1874  */
1875 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1876 {
1877 	struct btrfs_root *root = BTRFS_I(inode)->root;
1878 	int ret = 0;
1879 
1880 	spin_lock(&root->list_lock);
1881 
1882 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1883 		spin_unlock(&root->list_lock);
1884 		return 0;
1885 	}
1886 
1887 	list_del_init(&BTRFS_I(inode)->i_orphan);
1888 	if (!trans) {
1889 		spin_unlock(&root->list_lock);
1890 		return 0;
1891 	}
1892 
1893 	spin_unlock(&root->list_lock);
1894 
1895 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1896 
1897 	return ret;
1898 }
1899 
1900 /*
1901  * this cleans up any orphans that may be left on the list from the last use
1902  * of this root.
1903  */
1904 void btrfs_orphan_cleanup(struct btrfs_root *root)
1905 {
1906 	struct btrfs_path *path;
1907 	struct extent_buffer *leaf;
1908 	struct btrfs_item *item;
1909 	struct btrfs_key key, found_key;
1910 	struct btrfs_trans_handle *trans;
1911 	struct inode *inode;
1912 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1913 
1914 	path = btrfs_alloc_path();
1915 	if (!path)
1916 		return;
1917 	path->reada = -1;
1918 
1919 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1920 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1921 	key.offset = (u64)-1;
1922 
1923 
1924 	while (1) {
1925 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1926 		if (ret < 0) {
1927 			printk(KERN_ERR "Error searching slot for orphan: %d"
1928 			       "\n", ret);
1929 			break;
1930 		}
1931 
1932 		/*
1933 		 * if ret == 0 means we found what we were searching for, which
1934 		 * is weird, but possible, so only screw with path if we didnt
1935 		 * find the key and see if we have stuff that matches
1936 		 */
1937 		if (ret > 0) {
1938 			if (path->slots[0] == 0)
1939 				break;
1940 			path->slots[0]--;
1941 		}
1942 
1943 		/* pull out the item */
1944 		leaf = path->nodes[0];
1945 		item = btrfs_item_nr(leaf, path->slots[0]);
1946 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1947 
1948 		/* make sure the item matches what we want */
1949 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1950 			break;
1951 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1952 			break;
1953 
1954 		/* release the path since we're done with it */
1955 		btrfs_release_path(root, path);
1956 
1957 		/*
1958 		 * this is where we are basically btrfs_lookup, without the
1959 		 * crossing root thing.  we store the inode number in the
1960 		 * offset of the orphan item.
1961 		 */
1962 		found_key.objectid = found_key.offset;
1963 		found_key.type = BTRFS_INODE_ITEM_KEY;
1964 		found_key.offset = 0;
1965 		inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1966 		if (IS_ERR(inode))
1967 			break;
1968 
1969 		/*
1970 		 * add this inode to the orphan list so btrfs_orphan_del does
1971 		 * the proper thing when we hit it
1972 		 */
1973 		spin_lock(&root->list_lock);
1974 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1975 		spin_unlock(&root->list_lock);
1976 
1977 		/*
1978 		 * if this is a bad inode, means we actually succeeded in
1979 		 * removing the inode, but not the orphan record, which means
1980 		 * we need to manually delete the orphan since iput will just
1981 		 * do a destroy_inode
1982 		 */
1983 		if (is_bad_inode(inode)) {
1984 			trans = btrfs_start_transaction(root, 1);
1985 			btrfs_orphan_del(trans, inode);
1986 			btrfs_end_transaction(trans, root);
1987 			iput(inode);
1988 			continue;
1989 		}
1990 
1991 		/* if we have links, this was a truncate, lets do that */
1992 		if (inode->i_nlink) {
1993 			nr_truncate++;
1994 			btrfs_truncate(inode);
1995 		} else {
1996 			nr_unlink++;
1997 		}
1998 
1999 		/* this will do delete_inode and everything for us */
2000 		iput(inode);
2001 	}
2002 
2003 	if (nr_unlink)
2004 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2005 	if (nr_truncate)
2006 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2007 
2008 	btrfs_free_path(path);
2009 }
2010 
2011 /*
2012  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2013  * don't find any xattrs, we know there can't be any acls.
2014  *
2015  * slot is the slot the inode is in, objectid is the objectid of the inode
2016  */
2017 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2018 					  int slot, u64 objectid)
2019 {
2020 	u32 nritems = btrfs_header_nritems(leaf);
2021 	struct btrfs_key found_key;
2022 	int scanned = 0;
2023 
2024 	slot++;
2025 	while (slot < nritems) {
2026 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2027 
2028 		/* we found a different objectid, there must not be acls */
2029 		if (found_key.objectid != objectid)
2030 			return 0;
2031 
2032 		/* we found an xattr, assume we've got an acl */
2033 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2034 			return 1;
2035 
2036 		/*
2037 		 * we found a key greater than an xattr key, there can't
2038 		 * be any acls later on
2039 		 */
2040 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2041 			return 0;
2042 
2043 		slot++;
2044 		scanned++;
2045 
2046 		/*
2047 		 * it goes inode, inode backrefs, xattrs, extents,
2048 		 * so if there are a ton of hard links to an inode there can
2049 		 * be a lot of backrefs.  Don't waste time searching too hard,
2050 		 * this is just an optimization
2051 		 */
2052 		if (scanned >= 8)
2053 			break;
2054 	}
2055 	/* we hit the end of the leaf before we found an xattr or
2056 	 * something larger than an xattr.  We have to assume the inode
2057 	 * has acls
2058 	 */
2059 	return 1;
2060 }
2061 
2062 /*
2063  * read an inode from the btree into the in-memory inode
2064  */
2065 static void btrfs_read_locked_inode(struct inode *inode)
2066 {
2067 	struct btrfs_path *path;
2068 	struct extent_buffer *leaf;
2069 	struct btrfs_inode_item *inode_item;
2070 	struct btrfs_timespec *tspec;
2071 	struct btrfs_root *root = BTRFS_I(inode)->root;
2072 	struct btrfs_key location;
2073 	int maybe_acls;
2074 	u64 alloc_group_block;
2075 	u32 rdev;
2076 	int ret;
2077 
2078 	path = btrfs_alloc_path();
2079 	BUG_ON(!path);
2080 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2081 
2082 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2083 	if (ret)
2084 		goto make_bad;
2085 
2086 	leaf = path->nodes[0];
2087 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2088 				    struct btrfs_inode_item);
2089 
2090 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2091 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2092 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2093 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2094 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2095 
2096 	tspec = btrfs_inode_atime(inode_item);
2097 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2098 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2099 
2100 	tspec = btrfs_inode_mtime(inode_item);
2101 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2102 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2103 
2104 	tspec = btrfs_inode_ctime(inode_item);
2105 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2106 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2107 
2108 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2109 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2110 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2111 	inode->i_generation = BTRFS_I(inode)->generation;
2112 	inode->i_rdev = 0;
2113 	rdev = btrfs_inode_rdev(leaf, inode_item);
2114 
2115 	BTRFS_I(inode)->index_cnt = (u64)-1;
2116 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2117 
2118 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2119 
2120 	/*
2121 	 * try to precache a NULL acl entry for files that don't have
2122 	 * any xattrs or acls
2123 	 */
2124 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2125 	if (!maybe_acls) {
2126 		BTRFS_I(inode)->i_acl = NULL;
2127 		BTRFS_I(inode)->i_default_acl = NULL;
2128 	}
2129 
2130 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2131 						alloc_group_block, 0);
2132 	btrfs_free_path(path);
2133 	inode_item = NULL;
2134 
2135 	switch (inode->i_mode & S_IFMT) {
2136 	case S_IFREG:
2137 		inode->i_mapping->a_ops = &btrfs_aops;
2138 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2139 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2140 		inode->i_fop = &btrfs_file_operations;
2141 		inode->i_op = &btrfs_file_inode_operations;
2142 		break;
2143 	case S_IFDIR:
2144 		inode->i_fop = &btrfs_dir_file_operations;
2145 		if (root == root->fs_info->tree_root)
2146 			inode->i_op = &btrfs_dir_ro_inode_operations;
2147 		else
2148 			inode->i_op = &btrfs_dir_inode_operations;
2149 		break;
2150 	case S_IFLNK:
2151 		inode->i_op = &btrfs_symlink_inode_operations;
2152 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2153 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2154 		break;
2155 	default:
2156 		inode->i_op = &btrfs_special_inode_operations;
2157 		init_special_inode(inode, inode->i_mode, rdev);
2158 		break;
2159 	}
2160 
2161 	btrfs_update_iflags(inode);
2162 	return;
2163 
2164 make_bad:
2165 	btrfs_free_path(path);
2166 	make_bad_inode(inode);
2167 }
2168 
2169 /*
2170  * given a leaf and an inode, copy the inode fields into the leaf
2171  */
2172 static void fill_inode_item(struct btrfs_trans_handle *trans,
2173 			    struct extent_buffer *leaf,
2174 			    struct btrfs_inode_item *item,
2175 			    struct inode *inode)
2176 {
2177 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2178 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2179 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2180 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2181 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2182 
2183 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2184 			       inode->i_atime.tv_sec);
2185 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2186 				inode->i_atime.tv_nsec);
2187 
2188 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2189 			       inode->i_mtime.tv_sec);
2190 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2191 				inode->i_mtime.tv_nsec);
2192 
2193 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2194 			       inode->i_ctime.tv_sec);
2195 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2196 				inode->i_ctime.tv_nsec);
2197 
2198 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2199 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2200 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2201 	btrfs_set_inode_transid(leaf, item, trans->transid);
2202 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2203 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2204 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2205 }
2206 
2207 /*
2208  * copy everything in the in-memory inode into the btree.
2209  */
2210 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2211 				struct btrfs_root *root, struct inode *inode)
2212 {
2213 	struct btrfs_inode_item *inode_item;
2214 	struct btrfs_path *path;
2215 	struct extent_buffer *leaf;
2216 	int ret;
2217 
2218 	path = btrfs_alloc_path();
2219 	BUG_ON(!path);
2220 	path->leave_spinning = 1;
2221 	ret = btrfs_lookup_inode(trans, root, path,
2222 				 &BTRFS_I(inode)->location, 1);
2223 	if (ret) {
2224 		if (ret > 0)
2225 			ret = -ENOENT;
2226 		goto failed;
2227 	}
2228 
2229 	btrfs_unlock_up_safe(path, 1);
2230 	leaf = path->nodes[0];
2231 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2232 				  struct btrfs_inode_item);
2233 
2234 	fill_inode_item(trans, leaf, inode_item, inode);
2235 	btrfs_mark_buffer_dirty(leaf);
2236 	btrfs_set_inode_last_trans(trans, inode);
2237 	ret = 0;
2238 failed:
2239 	btrfs_free_path(path);
2240 	return ret;
2241 }
2242 
2243 
2244 /*
2245  * unlink helper that gets used here in inode.c and in the tree logging
2246  * recovery code.  It remove a link in a directory with a given name, and
2247  * also drops the back refs in the inode to the directory
2248  */
2249 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2250 		       struct btrfs_root *root,
2251 		       struct inode *dir, struct inode *inode,
2252 		       const char *name, int name_len)
2253 {
2254 	struct btrfs_path *path;
2255 	int ret = 0;
2256 	struct extent_buffer *leaf;
2257 	struct btrfs_dir_item *di;
2258 	struct btrfs_key key;
2259 	u64 index;
2260 
2261 	path = btrfs_alloc_path();
2262 	if (!path) {
2263 		ret = -ENOMEM;
2264 		goto err;
2265 	}
2266 
2267 	path->leave_spinning = 1;
2268 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2269 				    name, name_len, -1);
2270 	if (IS_ERR(di)) {
2271 		ret = PTR_ERR(di);
2272 		goto err;
2273 	}
2274 	if (!di) {
2275 		ret = -ENOENT;
2276 		goto err;
2277 	}
2278 	leaf = path->nodes[0];
2279 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2280 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2281 	if (ret)
2282 		goto err;
2283 	btrfs_release_path(root, path);
2284 
2285 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2286 				  inode->i_ino,
2287 				  dir->i_ino, &index);
2288 	if (ret) {
2289 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2290 		       "inode %lu parent %lu\n", name_len, name,
2291 		       inode->i_ino, dir->i_ino);
2292 		goto err;
2293 	}
2294 
2295 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2296 					 index, name, name_len, -1);
2297 	if (IS_ERR(di)) {
2298 		ret = PTR_ERR(di);
2299 		goto err;
2300 	}
2301 	if (!di) {
2302 		ret = -ENOENT;
2303 		goto err;
2304 	}
2305 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2306 	btrfs_release_path(root, path);
2307 
2308 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2309 					 inode, dir->i_ino);
2310 	BUG_ON(ret != 0 && ret != -ENOENT);
2311 
2312 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2313 					   dir, index);
2314 	BUG_ON(ret);
2315 err:
2316 	btrfs_free_path(path);
2317 	if (ret)
2318 		goto out;
2319 
2320 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2321 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2322 	btrfs_update_inode(trans, root, dir);
2323 	btrfs_drop_nlink(inode);
2324 	ret = btrfs_update_inode(trans, root, inode);
2325 out:
2326 	return ret;
2327 }
2328 
2329 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2330 {
2331 	struct btrfs_root *root;
2332 	struct btrfs_trans_handle *trans;
2333 	struct inode *inode = dentry->d_inode;
2334 	int ret;
2335 	unsigned long nr = 0;
2336 
2337 	root = BTRFS_I(dir)->root;
2338 
2339 	trans = btrfs_start_transaction(root, 1);
2340 
2341 	btrfs_set_trans_block_group(trans, dir);
2342 
2343 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2344 
2345 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2346 				 dentry->d_name.name, dentry->d_name.len);
2347 
2348 	if (inode->i_nlink == 0)
2349 		ret = btrfs_orphan_add(trans, inode);
2350 
2351 	nr = trans->blocks_used;
2352 
2353 	btrfs_end_transaction_throttle(trans, root);
2354 	btrfs_btree_balance_dirty(root, nr);
2355 	return ret;
2356 }
2357 
2358 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2359 {
2360 	struct inode *inode = dentry->d_inode;
2361 	int err = 0;
2362 	int ret;
2363 	struct btrfs_root *root = BTRFS_I(dir)->root;
2364 	struct btrfs_trans_handle *trans;
2365 	unsigned long nr = 0;
2366 
2367 	/*
2368 	 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2369 	 * the root of a subvolume or snapshot
2370 	 */
2371 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2372 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2373 		return -ENOTEMPTY;
2374 	}
2375 
2376 	trans = btrfs_start_transaction(root, 1);
2377 	btrfs_set_trans_block_group(trans, dir);
2378 
2379 	err = btrfs_orphan_add(trans, inode);
2380 	if (err)
2381 		goto fail_trans;
2382 
2383 	/* now the directory is empty */
2384 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2385 				 dentry->d_name.name, dentry->d_name.len);
2386 	if (!err)
2387 		btrfs_i_size_write(inode, 0);
2388 
2389 fail_trans:
2390 	nr = trans->blocks_used;
2391 	ret = btrfs_end_transaction_throttle(trans, root);
2392 	btrfs_btree_balance_dirty(root, nr);
2393 
2394 	if (ret && !err)
2395 		err = ret;
2396 	return err;
2397 }
2398 
2399 #if 0
2400 /*
2401  * when truncating bytes in a file, it is possible to avoid reading
2402  * the leaves that contain only checksum items.  This can be the
2403  * majority of the IO required to delete a large file, but it must
2404  * be done carefully.
2405  *
2406  * The keys in the level just above the leaves are checked to make sure
2407  * the lowest key in a given leaf is a csum key, and starts at an offset
2408  * after the new  size.
2409  *
2410  * Then the key for the next leaf is checked to make sure it also has
2411  * a checksum item for the same file.  If it does, we know our target leaf
2412  * contains only checksum items, and it can be safely freed without reading
2413  * it.
2414  *
2415  * This is just an optimization targeted at large files.  It may do
2416  * nothing.  It will return 0 unless things went badly.
2417  */
2418 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2419 				     struct btrfs_root *root,
2420 				     struct btrfs_path *path,
2421 				     struct inode *inode, u64 new_size)
2422 {
2423 	struct btrfs_key key;
2424 	int ret;
2425 	int nritems;
2426 	struct btrfs_key found_key;
2427 	struct btrfs_key other_key;
2428 	struct btrfs_leaf_ref *ref;
2429 	u64 leaf_gen;
2430 	u64 leaf_start;
2431 
2432 	path->lowest_level = 1;
2433 	key.objectid = inode->i_ino;
2434 	key.type = BTRFS_CSUM_ITEM_KEY;
2435 	key.offset = new_size;
2436 again:
2437 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2438 	if (ret < 0)
2439 		goto out;
2440 
2441 	if (path->nodes[1] == NULL) {
2442 		ret = 0;
2443 		goto out;
2444 	}
2445 	ret = 0;
2446 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2447 	nritems = btrfs_header_nritems(path->nodes[1]);
2448 
2449 	if (!nritems)
2450 		goto out;
2451 
2452 	if (path->slots[1] >= nritems)
2453 		goto next_node;
2454 
2455 	/* did we find a key greater than anything we want to delete? */
2456 	if (found_key.objectid > inode->i_ino ||
2457 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2458 		goto out;
2459 
2460 	/* we check the next key in the node to make sure the leave contains
2461 	 * only checksum items.  This comparison doesn't work if our
2462 	 * leaf is the last one in the node
2463 	 */
2464 	if (path->slots[1] + 1 >= nritems) {
2465 next_node:
2466 		/* search forward from the last key in the node, this
2467 		 * will bring us into the next node in the tree
2468 		 */
2469 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2470 
2471 		/* unlikely, but we inc below, so check to be safe */
2472 		if (found_key.offset == (u64)-1)
2473 			goto out;
2474 
2475 		/* search_forward needs a path with locks held, do the
2476 		 * search again for the original key.  It is possible
2477 		 * this will race with a balance and return a path that
2478 		 * we could modify, but this drop is just an optimization
2479 		 * and is allowed to miss some leaves.
2480 		 */
2481 		btrfs_release_path(root, path);
2482 		found_key.offset++;
2483 
2484 		/* setup a max key for search_forward */
2485 		other_key.offset = (u64)-1;
2486 		other_key.type = key.type;
2487 		other_key.objectid = key.objectid;
2488 
2489 		path->keep_locks = 1;
2490 		ret = btrfs_search_forward(root, &found_key, &other_key,
2491 					   path, 0, 0);
2492 		path->keep_locks = 0;
2493 		if (ret || found_key.objectid != key.objectid ||
2494 		    found_key.type != key.type) {
2495 			ret = 0;
2496 			goto out;
2497 		}
2498 
2499 		key.offset = found_key.offset;
2500 		btrfs_release_path(root, path);
2501 		cond_resched();
2502 		goto again;
2503 	}
2504 
2505 	/* we know there's one more slot after us in the tree,
2506 	 * read that key so we can verify it is also a checksum item
2507 	 */
2508 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2509 
2510 	if (found_key.objectid < inode->i_ino)
2511 		goto next_key;
2512 
2513 	if (found_key.type != key.type || found_key.offset < new_size)
2514 		goto next_key;
2515 
2516 	/*
2517 	 * if the key for the next leaf isn't a csum key from this objectid,
2518 	 * we can't be sure there aren't good items inside this leaf.
2519 	 * Bail out
2520 	 */
2521 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2522 		goto out;
2523 
2524 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2525 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2526 	/*
2527 	 * it is safe to delete this leaf, it contains only
2528 	 * csum items from this inode at an offset >= new_size
2529 	 */
2530 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2531 	BUG_ON(ret);
2532 
2533 	if (root->ref_cows && leaf_gen < trans->transid) {
2534 		ref = btrfs_alloc_leaf_ref(root, 0);
2535 		if (ref) {
2536 			ref->root_gen = root->root_key.offset;
2537 			ref->bytenr = leaf_start;
2538 			ref->owner = 0;
2539 			ref->generation = leaf_gen;
2540 			ref->nritems = 0;
2541 
2542 			btrfs_sort_leaf_ref(ref);
2543 
2544 			ret = btrfs_add_leaf_ref(root, ref, 0);
2545 			WARN_ON(ret);
2546 			btrfs_free_leaf_ref(root, ref);
2547 		} else {
2548 			WARN_ON(1);
2549 		}
2550 	}
2551 next_key:
2552 	btrfs_release_path(root, path);
2553 
2554 	if (other_key.objectid == inode->i_ino &&
2555 	    other_key.type == key.type && other_key.offset > key.offset) {
2556 		key.offset = other_key.offset;
2557 		cond_resched();
2558 		goto again;
2559 	}
2560 	ret = 0;
2561 out:
2562 	/* fixup any changes we've made to the path */
2563 	path->lowest_level = 0;
2564 	path->keep_locks = 0;
2565 	btrfs_release_path(root, path);
2566 	return ret;
2567 }
2568 
2569 #endif
2570 
2571 /*
2572  * this can truncate away extent items, csum items and directory items.
2573  * It starts at a high offset and removes keys until it can't find
2574  * any higher than new_size
2575  *
2576  * csum items that cross the new i_size are truncated to the new size
2577  * as well.
2578  *
2579  * min_type is the minimum key type to truncate down to.  If set to 0, this
2580  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2581  */
2582 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2583 					struct btrfs_root *root,
2584 					struct inode *inode,
2585 					u64 new_size, u32 min_type)
2586 {
2587 	int ret;
2588 	struct btrfs_path *path;
2589 	struct btrfs_key key;
2590 	struct btrfs_key found_key;
2591 	u32 found_type = (u8)-1;
2592 	struct extent_buffer *leaf;
2593 	struct btrfs_file_extent_item *fi;
2594 	u64 extent_start = 0;
2595 	u64 extent_num_bytes = 0;
2596 	u64 extent_offset = 0;
2597 	u64 item_end = 0;
2598 	int found_extent;
2599 	int del_item;
2600 	int pending_del_nr = 0;
2601 	int pending_del_slot = 0;
2602 	int extent_type = -1;
2603 	int encoding;
2604 	u64 mask = root->sectorsize - 1;
2605 
2606 	if (root->ref_cows)
2607 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2608 	path = btrfs_alloc_path();
2609 	path->reada = -1;
2610 	BUG_ON(!path);
2611 
2612 	/* FIXME, add redo link to tree so we don't leak on crash */
2613 	key.objectid = inode->i_ino;
2614 	key.offset = (u64)-1;
2615 	key.type = (u8)-1;
2616 
2617 search_again:
2618 	path->leave_spinning = 1;
2619 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2620 	if (ret < 0)
2621 		goto error;
2622 
2623 	if (ret > 0) {
2624 		/* there are no items in the tree for us to truncate, we're
2625 		 * done
2626 		 */
2627 		if (path->slots[0] == 0) {
2628 			ret = 0;
2629 			goto error;
2630 		}
2631 		path->slots[0]--;
2632 	}
2633 
2634 	while (1) {
2635 		fi = NULL;
2636 		leaf = path->nodes[0];
2637 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2638 		found_type = btrfs_key_type(&found_key);
2639 		encoding = 0;
2640 
2641 		if (found_key.objectid != inode->i_ino)
2642 			break;
2643 
2644 		if (found_type < min_type)
2645 			break;
2646 
2647 		item_end = found_key.offset;
2648 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2649 			fi = btrfs_item_ptr(leaf, path->slots[0],
2650 					    struct btrfs_file_extent_item);
2651 			extent_type = btrfs_file_extent_type(leaf, fi);
2652 			encoding = btrfs_file_extent_compression(leaf, fi);
2653 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2654 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2655 
2656 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2657 				item_end +=
2658 				    btrfs_file_extent_num_bytes(leaf, fi);
2659 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2660 				item_end += btrfs_file_extent_inline_len(leaf,
2661 									 fi);
2662 			}
2663 			item_end--;
2664 		}
2665 		if (item_end < new_size) {
2666 			if (found_type == BTRFS_DIR_ITEM_KEY)
2667 				found_type = BTRFS_INODE_ITEM_KEY;
2668 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2669 				found_type = BTRFS_EXTENT_DATA_KEY;
2670 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2671 				found_type = BTRFS_XATTR_ITEM_KEY;
2672 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2673 				found_type = BTRFS_INODE_REF_KEY;
2674 			else if (found_type)
2675 				found_type--;
2676 			else
2677 				break;
2678 			btrfs_set_key_type(&key, found_type);
2679 			goto next;
2680 		}
2681 		if (found_key.offset >= new_size)
2682 			del_item = 1;
2683 		else
2684 			del_item = 0;
2685 		found_extent = 0;
2686 
2687 		/* FIXME, shrink the extent if the ref count is only 1 */
2688 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2689 			goto delete;
2690 
2691 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2692 			u64 num_dec;
2693 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2694 			if (!del_item && !encoding) {
2695 				u64 orig_num_bytes =
2696 					btrfs_file_extent_num_bytes(leaf, fi);
2697 				extent_num_bytes = new_size -
2698 					found_key.offset + root->sectorsize - 1;
2699 				extent_num_bytes = extent_num_bytes &
2700 					~((u64)root->sectorsize - 1);
2701 				btrfs_set_file_extent_num_bytes(leaf, fi,
2702 							 extent_num_bytes);
2703 				num_dec = (orig_num_bytes -
2704 					   extent_num_bytes);
2705 				if (root->ref_cows && extent_start != 0)
2706 					inode_sub_bytes(inode, num_dec);
2707 				btrfs_mark_buffer_dirty(leaf);
2708 			} else {
2709 				extent_num_bytes =
2710 					btrfs_file_extent_disk_num_bytes(leaf,
2711 									 fi);
2712 				extent_offset = found_key.offset -
2713 					btrfs_file_extent_offset(leaf, fi);
2714 
2715 				/* FIXME blocksize != 4096 */
2716 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2717 				if (extent_start != 0) {
2718 					found_extent = 1;
2719 					if (root->ref_cows)
2720 						inode_sub_bytes(inode, num_dec);
2721 				}
2722 			}
2723 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2724 			/*
2725 			 * we can't truncate inline items that have had
2726 			 * special encodings
2727 			 */
2728 			if (!del_item &&
2729 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2730 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2731 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2732 				u32 size = new_size - found_key.offset;
2733 
2734 				if (root->ref_cows) {
2735 					inode_sub_bytes(inode, item_end + 1 -
2736 							new_size);
2737 				}
2738 				size =
2739 				    btrfs_file_extent_calc_inline_size(size);
2740 				ret = btrfs_truncate_item(trans, root, path,
2741 							  size, 1);
2742 				BUG_ON(ret);
2743 			} else if (root->ref_cows) {
2744 				inode_sub_bytes(inode, item_end + 1 -
2745 						found_key.offset);
2746 			}
2747 		}
2748 delete:
2749 		if (del_item) {
2750 			if (!pending_del_nr) {
2751 				/* no pending yet, add ourselves */
2752 				pending_del_slot = path->slots[0];
2753 				pending_del_nr = 1;
2754 			} else if (pending_del_nr &&
2755 				   path->slots[0] + 1 == pending_del_slot) {
2756 				/* hop on the pending chunk */
2757 				pending_del_nr++;
2758 				pending_del_slot = path->slots[0];
2759 			} else {
2760 				BUG();
2761 			}
2762 		} else {
2763 			break;
2764 		}
2765 		if (found_extent && root->ref_cows) {
2766 			btrfs_set_path_blocking(path);
2767 			ret = btrfs_free_extent(trans, root, extent_start,
2768 						extent_num_bytes, 0,
2769 						btrfs_header_owner(leaf),
2770 						inode->i_ino, extent_offset);
2771 			BUG_ON(ret);
2772 		}
2773 next:
2774 		if (path->slots[0] == 0) {
2775 			if (pending_del_nr)
2776 				goto del_pending;
2777 			btrfs_release_path(root, path);
2778 			if (found_type == BTRFS_INODE_ITEM_KEY)
2779 				break;
2780 			goto search_again;
2781 		}
2782 
2783 		path->slots[0]--;
2784 		if (pending_del_nr &&
2785 		    path->slots[0] + 1 != pending_del_slot) {
2786 			struct btrfs_key debug;
2787 del_pending:
2788 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2789 					      pending_del_slot);
2790 			ret = btrfs_del_items(trans, root, path,
2791 					      pending_del_slot,
2792 					      pending_del_nr);
2793 			BUG_ON(ret);
2794 			pending_del_nr = 0;
2795 			btrfs_release_path(root, path);
2796 			if (found_type == BTRFS_INODE_ITEM_KEY)
2797 				break;
2798 			goto search_again;
2799 		}
2800 	}
2801 	ret = 0;
2802 error:
2803 	if (pending_del_nr) {
2804 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2805 				      pending_del_nr);
2806 	}
2807 	btrfs_free_path(path);
2808 	return ret;
2809 }
2810 
2811 /*
2812  * taken from block_truncate_page, but does cow as it zeros out
2813  * any bytes left in the last page in the file.
2814  */
2815 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2816 {
2817 	struct inode *inode = mapping->host;
2818 	struct btrfs_root *root = BTRFS_I(inode)->root;
2819 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2820 	struct btrfs_ordered_extent *ordered;
2821 	char *kaddr;
2822 	u32 blocksize = root->sectorsize;
2823 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2824 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2825 	struct page *page;
2826 	int ret = 0;
2827 	u64 page_start;
2828 	u64 page_end;
2829 
2830 	if ((offset & (blocksize - 1)) == 0)
2831 		goto out;
2832 
2833 	ret = -ENOMEM;
2834 again:
2835 	page = grab_cache_page(mapping, index);
2836 	if (!page)
2837 		goto out;
2838 
2839 	page_start = page_offset(page);
2840 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2841 
2842 	if (!PageUptodate(page)) {
2843 		ret = btrfs_readpage(NULL, page);
2844 		lock_page(page);
2845 		if (page->mapping != mapping) {
2846 			unlock_page(page);
2847 			page_cache_release(page);
2848 			goto again;
2849 		}
2850 		if (!PageUptodate(page)) {
2851 			ret = -EIO;
2852 			goto out_unlock;
2853 		}
2854 	}
2855 	wait_on_page_writeback(page);
2856 
2857 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2858 	set_page_extent_mapped(page);
2859 
2860 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2861 	if (ordered) {
2862 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2863 		unlock_page(page);
2864 		page_cache_release(page);
2865 		btrfs_start_ordered_extent(inode, ordered, 1);
2866 		btrfs_put_ordered_extent(ordered);
2867 		goto again;
2868 	}
2869 
2870 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2871 	ret = 0;
2872 	if (offset != PAGE_CACHE_SIZE) {
2873 		kaddr = kmap(page);
2874 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2875 		flush_dcache_page(page);
2876 		kunmap(page);
2877 	}
2878 	ClearPageChecked(page);
2879 	set_page_dirty(page);
2880 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2881 
2882 out_unlock:
2883 	unlock_page(page);
2884 	page_cache_release(page);
2885 out:
2886 	return ret;
2887 }
2888 
2889 int btrfs_cont_expand(struct inode *inode, loff_t size)
2890 {
2891 	struct btrfs_trans_handle *trans;
2892 	struct btrfs_root *root = BTRFS_I(inode)->root;
2893 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2894 	struct extent_map *em;
2895 	u64 mask = root->sectorsize - 1;
2896 	u64 hole_start = (inode->i_size + mask) & ~mask;
2897 	u64 block_end = (size + mask) & ~mask;
2898 	u64 last_byte;
2899 	u64 cur_offset;
2900 	u64 hole_size;
2901 	int err;
2902 
2903 	if (size <= hole_start)
2904 		return 0;
2905 
2906 	err = btrfs_check_metadata_free_space(root);
2907 	if (err)
2908 		return err;
2909 
2910 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2911 
2912 	while (1) {
2913 		struct btrfs_ordered_extent *ordered;
2914 		btrfs_wait_ordered_range(inode, hole_start,
2915 					 block_end - hole_start);
2916 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2917 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2918 		if (!ordered)
2919 			break;
2920 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2921 		btrfs_put_ordered_extent(ordered);
2922 	}
2923 
2924 	trans = btrfs_start_transaction(root, 1);
2925 	btrfs_set_trans_block_group(trans, inode);
2926 
2927 	cur_offset = hole_start;
2928 	while (1) {
2929 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2930 				block_end - cur_offset, 0);
2931 		BUG_ON(IS_ERR(em) || !em);
2932 		last_byte = min(extent_map_end(em), block_end);
2933 		last_byte = (last_byte + mask) & ~mask;
2934 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2935 			u64 hint_byte = 0;
2936 			hole_size = last_byte - cur_offset;
2937 			err = btrfs_drop_extents(trans, root, inode,
2938 						 cur_offset,
2939 						 cur_offset + hole_size,
2940 						 block_end,
2941 						 cur_offset, &hint_byte);
2942 			if (err)
2943 				break;
2944 			err = btrfs_insert_file_extent(trans, root,
2945 					inode->i_ino, cur_offset, 0,
2946 					0, hole_size, 0, hole_size,
2947 					0, 0, 0);
2948 			btrfs_drop_extent_cache(inode, hole_start,
2949 					last_byte - 1, 0);
2950 		}
2951 		free_extent_map(em);
2952 		cur_offset = last_byte;
2953 		if (err || cur_offset >= block_end)
2954 			break;
2955 	}
2956 
2957 	btrfs_end_transaction(trans, root);
2958 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2959 	return err;
2960 }
2961 
2962 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2963 {
2964 	struct inode *inode = dentry->d_inode;
2965 	int err;
2966 
2967 	err = inode_change_ok(inode, attr);
2968 	if (err)
2969 		return err;
2970 
2971 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
2972 		if (attr->ia_size > inode->i_size) {
2973 			err = btrfs_cont_expand(inode, attr->ia_size);
2974 			if (err)
2975 				return err;
2976 		} else if (inode->i_size > 0 &&
2977 			   attr->ia_size == 0) {
2978 
2979 			/* we're truncating a file that used to have good
2980 			 * data down to zero.  Make sure it gets into
2981 			 * the ordered flush list so that any new writes
2982 			 * get down to disk quickly.
2983 			 */
2984 			BTRFS_I(inode)->ordered_data_close = 1;
2985 		}
2986 	}
2987 
2988 	err = inode_setattr(inode, attr);
2989 
2990 	if (!err && ((attr->ia_valid & ATTR_MODE)))
2991 		err = btrfs_acl_chmod(inode);
2992 	return err;
2993 }
2994 
2995 void btrfs_delete_inode(struct inode *inode)
2996 {
2997 	struct btrfs_trans_handle *trans;
2998 	struct btrfs_root *root = BTRFS_I(inode)->root;
2999 	unsigned long nr;
3000 	int ret;
3001 
3002 	truncate_inode_pages(&inode->i_data, 0);
3003 	if (is_bad_inode(inode)) {
3004 		btrfs_orphan_del(NULL, inode);
3005 		goto no_delete;
3006 	}
3007 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3008 
3009 	btrfs_i_size_write(inode, 0);
3010 	trans = btrfs_join_transaction(root, 1);
3011 
3012 	btrfs_set_trans_block_group(trans, inode);
3013 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3014 	if (ret) {
3015 		btrfs_orphan_del(NULL, inode);
3016 		goto no_delete_lock;
3017 	}
3018 
3019 	btrfs_orphan_del(trans, inode);
3020 
3021 	nr = trans->blocks_used;
3022 	clear_inode(inode);
3023 
3024 	btrfs_end_transaction(trans, root);
3025 	btrfs_btree_balance_dirty(root, nr);
3026 	return;
3027 
3028 no_delete_lock:
3029 	nr = trans->blocks_used;
3030 	btrfs_end_transaction(trans, root);
3031 	btrfs_btree_balance_dirty(root, nr);
3032 no_delete:
3033 	clear_inode(inode);
3034 }
3035 
3036 /*
3037  * this returns the key found in the dir entry in the location pointer.
3038  * If no dir entries were found, location->objectid is 0.
3039  */
3040 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3041 			       struct btrfs_key *location)
3042 {
3043 	const char *name = dentry->d_name.name;
3044 	int namelen = dentry->d_name.len;
3045 	struct btrfs_dir_item *di;
3046 	struct btrfs_path *path;
3047 	struct btrfs_root *root = BTRFS_I(dir)->root;
3048 	int ret = 0;
3049 
3050 	path = btrfs_alloc_path();
3051 	BUG_ON(!path);
3052 
3053 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3054 				    namelen, 0);
3055 	if (IS_ERR(di))
3056 		ret = PTR_ERR(di);
3057 
3058 	if (!di || IS_ERR(di))
3059 		goto out_err;
3060 
3061 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3062 out:
3063 	btrfs_free_path(path);
3064 	return ret;
3065 out_err:
3066 	location->objectid = 0;
3067 	goto out;
3068 }
3069 
3070 /*
3071  * when we hit a tree root in a directory, the btrfs part of the inode
3072  * needs to be changed to reflect the root directory of the tree root.  This
3073  * is kind of like crossing a mount point.
3074  */
3075 static int fixup_tree_root_location(struct btrfs_root *root,
3076 			     struct btrfs_key *location,
3077 			     struct btrfs_root **sub_root,
3078 			     struct dentry *dentry)
3079 {
3080 	struct btrfs_root_item *ri;
3081 
3082 	if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
3083 		return 0;
3084 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
3085 		return 0;
3086 
3087 	*sub_root = btrfs_read_fs_root(root->fs_info, location,
3088 					dentry->d_name.name,
3089 					dentry->d_name.len);
3090 	if (IS_ERR(*sub_root))
3091 		return PTR_ERR(*sub_root);
3092 
3093 	ri = &(*sub_root)->root_item;
3094 	location->objectid = btrfs_root_dirid(ri);
3095 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3096 	location->offset = 0;
3097 
3098 	return 0;
3099 }
3100 
3101 static void inode_tree_add(struct inode *inode)
3102 {
3103 	struct btrfs_root *root = BTRFS_I(inode)->root;
3104 	struct btrfs_inode *entry;
3105 	struct rb_node **p = &root->inode_tree.rb_node;
3106 	struct rb_node *parent = NULL;
3107 
3108 	spin_lock(&root->inode_lock);
3109 	while (*p) {
3110 		parent = *p;
3111 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3112 
3113 		if (inode->i_ino < entry->vfs_inode.i_ino)
3114 			p = &(*p)->rb_left;
3115 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3116 			p = &(*p)->rb_right;
3117 		else {
3118 			WARN_ON(!(entry->vfs_inode.i_state &
3119 				  (I_WILL_FREE | I_FREEING | I_CLEAR)));
3120 			break;
3121 		}
3122 	}
3123 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3124 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3125 	spin_unlock(&root->inode_lock);
3126 }
3127 
3128 static void inode_tree_del(struct inode *inode)
3129 {
3130 	struct btrfs_root *root = BTRFS_I(inode)->root;
3131 
3132 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3133 		spin_lock(&root->inode_lock);
3134 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3135 		spin_unlock(&root->inode_lock);
3136 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3137 	}
3138 }
3139 
3140 static noinline void init_btrfs_i(struct inode *inode)
3141 {
3142 	struct btrfs_inode *bi = BTRFS_I(inode);
3143 
3144 	bi->i_acl = BTRFS_ACL_NOT_CACHED;
3145 	bi->i_default_acl = BTRFS_ACL_NOT_CACHED;
3146 
3147 	bi->generation = 0;
3148 	bi->sequence = 0;
3149 	bi->last_trans = 0;
3150 	bi->logged_trans = 0;
3151 	bi->delalloc_bytes = 0;
3152 	bi->reserved_bytes = 0;
3153 	bi->disk_i_size = 0;
3154 	bi->flags = 0;
3155 	bi->index_cnt = (u64)-1;
3156 	bi->last_unlink_trans = 0;
3157 	bi->ordered_data_close = 0;
3158 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3159 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3160 			     inode->i_mapping, GFP_NOFS);
3161 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3162 			     inode->i_mapping, GFP_NOFS);
3163 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3164 	INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3165 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3166 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3167 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3168 	mutex_init(&BTRFS_I(inode)->log_mutex);
3169 }
3170 
3171 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3172 {
3173 	struct btrfs_iget_args *args = p;
3174 	inode->i_ino = args->ino;
3175 	init_btrfs_i(inode);
3176 	BTRFS_I(inode)->root = args->root;
3177 	btrfs_set_inode_space_info(args->root, inode);
3178 	return 0;
3179 }
3180 
3181 static int btrfs_find_actor(struct inode *inode, void *opaque)
3182 {
3183 	struct btrfs_iget_args *args = opaque;
3184 	return args->ino == inode->i_ino &&
3185 		args->root == BTRFS_I(inode)->root;
3186 }
3187 
3188 static struct inode *btrfs_iget_locked(struct super_block *s,
3189 				       u64 objectid,
3190 				       struct btrfs_root *root)
3191 {
3192 	struct inode *inode;
3193 	struct btrfs_iget_args args;
3194 	args.ino = objectid;
3195 	args.root = root;
3196 
3197 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3198 			     btrfs_init_locked_inode,
3199 			     (void *)&args);
3200 	return inode;
3201 }
3202 
3203 /* Get an inode object given its location and corresponding root.
3204  * Returns in *is_new if the inode was read from disk
3205  */
3206 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3207 			 struct btrfs_root *root)
3208 {
3209 	struct inode *inode;
3210 
3211 	inode = btrfs_iget_locked(s, location->objectid, root);
3212 	if (!inode)
3213 		return ERR_PTR(-ENOMEM);
3214 
3215 	if (inode->i_state & I_NEW) {
3216 		BTRFS_I(inode)->root = root;
3217 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3218 		btrfs_read_locked_inode(inode);
3219 
3220 		inode_tree_add(inode);
3221 		unlock_new_inode(inode);
3222 	}
3223 
3224 	return inode;
3225 }
3226 
3227 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3228 {
3229 	struct inode *inode;
3230 	struct btrfs_inode *bi = BTRFS_I(dir);
3231 	struct btrfs_root *root = bi->root;
3232 	struct btrfs_root *sub_root = root;
3233 	struct btrfs_key location;
3234 	int ret;
3235 
3236 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3237 		return ERR_PTR(-ENAMETOOLONG);
3238 
3239 	ret = btrfs_inode_by_name(dir, dentry, &location);
3240 
3241 	if (ret < 0)
3242 		return ERR_PTR(ret);
3243 
3244 	inode = NULL;
3245 	if (location.objectid) {
3246 		ret = fixup_tree_root_location(root, &location, &sub_root,
3247 						dentry);
3248 		if (ret < 0)
3249 			return ERR_PTR(ret);
3250 		if (ret > 0)
3251 			return ERR_PTR(-ENOENT);
3252 		inode = btrfs_iget(dir->i_sb, &location, sub_root);
3253 		if (IS_ERR(inode))
3254 			return ERR_CAST(inode);
3255 	}
3256 	return inode;
3257 }
3258 
3259 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3260 				   struct nameidata *nd)
3261 {
3262 	struct inode *inode;
3263 
3264 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3265 		return ERR_PTR(-ENAMETOOLONG);
3266 
3267 	inode = btrfs_lookup_dentry(dir, dentry);
3268 	if (IS_ERR(inode))
3269 		return ERR_CAST(inode);
3270 
3271 	return d_splice_alias(inode, dentry);
3272 }
3273 
3274 static unsigned char btrfs_filetype_table[] = {
3275 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3276 };
3277 
3278 static int btrfs_real_readdir(struct file *filp, void *dirent,
3279 			      filldir_t filldir)
3280 {
3281 	struct inode *inode = filp->f_dentry->d_inode;
3282 	struct btrfs_root *root = BTRFS_I(inode)->root;
3283 	struct btrfs_item *item;
3284 	struct btrfs_dir_item *di;
3285 	struct btrfs_key key;
3286 	struct btrfs_key found_key;
3287 	struct btrfs_path *path;
3288 	int ret;
3289 	u32 nritems;
3290 	struct extent_buffer *leaf;
3291 	int slot;
3292 	int advance;
3293 	unsigned char d_type;
3294 	int over = 0;
3295 	u32 di_cur;
3296 	u32 di_total;
3297 	u32 di_len;
3298 	int key_type = BTRFS_DIR_INDEX_KEY;
3299 	char tmp_name[32];
3300 	char *name_ptr;
3301 	int name_len;
3302 
3303 	/* FIXME, use a real flag for deciding about the key type */
3304 	if (root->fs_info->tree_root == root)
3305 		key_type = BTRFS_DIR_ITEM_KEY;
3306 
3307 	/* special case for "." */
3308 	if (filp->f_pos == 0) {
3309 		over = filldir(dirent, ".", 1,
3310 			       1, inode->i_ino,
3311 			       DT_DIR);
3312 		if (over)
3313 			return 0;
3314 		filp->f_pos = 1;
3315 	}
3316 	/* special case for .., just use the back ref */
3317 	if (filp->f_pos == 1) {
3318 		u64 pino = parent_ino(filp->f_path.dentry);
3319 		over = filldir(dirent, "..", 2,
3320 			       2, pino, DT_DIR);
3321 		if (over)
3322 			return 0;
3323 		filp->f_pos = 2;
3324 	}
3325 	path = btrfs_alloc_path();
3326 	path->reada = 2;
3327 
3328 	btrfs_set_key_type(&key, key_type);
3329 	key.offset = filp->f_pos;
3330 	key.objectid = inode->i_ino;
3331 
3332 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3333 	if (ret < 0)
3334 		goto err;
3335 	advance = 0;
3336 
3337 	while (1) {
3338 		leaf = path->nodes[0];
3339 		nritems = btrfs_header_nritems(leaf);
3340 		slot = path->slots[0];
3341 		if (advance || slot >= nritems) {
3342 			if (slot >= nritems - 1) {
3343 				ret = btrfs_next_leaf(root, path);
3344 				if (ret)
3345 					break;
3346 				leaf = path->nodes[0];
3347 				nritems = btrfs_header_nritems(leaf);
3348 				slot = path->slots[0];
3349 			} else {
3350 				slot++;
3351 				path->slots[0]++;
3352 			}
3353 		}
3354 
3355 		advance = 1;
3356 		item = btrfs_item_nr(leaf, slot);
3357 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3358 
3359 		if (found_key.objectid != key.objectid)
3360 			break;
3361 		if (btrfs_key_type(&found_key) != key_type)
3362 			break;
3363 		if (found_key.offset < filp->f_pos)
3364 			continue;
3365 
3366 		filp->f_pos = found_key.offset;
3367 
3368 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3369 		di_cur = 0;
3370 		di_total = btrfs_item_size(leaf, item);
3371 
3372 		while (di_cur < di_total) {
3373 			struct btrfs_key location;
3374 
3375 			name_len = btrfs_dir_name_len(leaf, di);
3376 			if (name_len <= sizeof(tmp_name)) {
3377 				name_ptr = tmp_name;
3378 			} else {
3379 				name_ptr = kmalloc(name_len, GFP_NOFS);
3380 				if (!name_ptr) {
3381 					ret = -ENOMEM;
3382 					goto err;
3383 				}
3384 			}
3385 			read_extent_buffer(leaf, name_ptr,
3386 					   (unsigned long)(di + 1), name_len);
3387 
3388 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3389 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3390 
3391 			/* is this a reference to our own snapshot? If so
3392 			 * skip it
3393 			 */
3394 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3395 			    location.objectid == root->root_key.objectid) {
3396 				over = 0;
3397 				goto skip;
3398 			}
3399 			over = filldir(dirent, name_ptr, name_len,
3400 				       found_key.offset, location.objectid,
3401 				       d_type);
3402 
3403 skip:
3404 			if (name_ptr != tmp_name)
3405 				kfree(name_ptr);
3406 
3407 			if (over)
3408 				goto nopos;
3409 			di_len = btrfs_dir_name_len(leaf, di) +
3410 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3411 			di_cur += di_len;
3412 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3413 		}
3414 	}
3415 
3416 	/* Reached end of directory/root. Bump pos past the last item. */
3417 	if (key_type == BTRFS_DIR_INDEX_KEY)
3418 		filp->f_pos = INT_LIMIT(off_t);
3419 	else
3420 		filp->f_pos++;
3421 nopos:
3422 	ret = 0;
3423 err:
3424 	btrfs_free_path(path);
3425 	return ret;
3426 }
3427 
3428 int btrfs_write_inode(struct inode *inode, int wait)
3429 {
3430 	struct btrfs_root *root = BTRFS_I(inode)->root;
3431 	struct btrfs_trans_handle *trans;
3432 	int ret = 0;
3433 
3434 	if (root->fs_info->btree_inode == inode)
3435 		return 0;
3436 
3437 	if (wait) {
3438 		trans = btrfs_join_transaction(root, 1);
3439 		btrfs_set_trans_block_group(trans, inode);
3440 		ret = btrfs_commit_transaction(trans, root);
3441 	}
3442 	return ret;
3443 }
3444 
3445 /*
3446  * This is somewhat expensive, updating the tree every time the
3447  * inode changes.  But, it is most likely to find the inode in cache.
3448  * FIXME, needs more benchmarking...there are no reasons other than performance
3449  * to keep or drop this code.
3450  */
3451 void btrfs_dirty_inode(struct inode *inode)
3452 {
3453 	struct btrfs_root *root = BTRFS_I(inode)->root;
3454 	struct btrfs_trans_handle *trans;
3455 
3456 	trans = btrfs_join_transaction(root, 1);
3457 	btrfs_set_trans_block_group(trans, inode);
3458 	btrfs_update_inode(trans, root, inode);
3459 	btrfs_end_transaction(trans, root);
3460 }
3461 
3462 /*
3463  * find the highest existing sequence number in a directory
3464  * and then set the in-memory index_cnt variable to reflect
3465  * free sequence numbers
3466  */
3467 static int btrfs_set_inode_index_count(struct inode *inode)
3468 {
3469 	struct btrfs_root *root = BTRFS_I(inode)->root;
3470 	struct btrfs_key key, found_key;
3471 	struct btrfs_path *path;
3472 	struct extent_buffer *leaf;
3473 	int ret;
3474 
3475 	key.objectid = inode->i_ino;
3476 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3477 	key.offset = (u64)-1;
3478 
3479 	path = btrfs_alloc_path();
3480 	if (!path)
3481 		return -ENOMEM;
3482 
3483 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3484 	if (ret < 0)
3485 		goto out;
3486 	/* FIXME: we should be able to handle this */
3487 	if (ret == 0)
3488 		goto out;
3489 	ret = 0;
3490 
3491 	/*
3492 	 * MAGIC NUMBER EXPLANATION:
3493 	 * since we search a directory based on f_pos we have to start at 2
3494 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3495 	 * else has to start at 2
3496 	 */
3497 	if (path->slots[0] == 0) {
3498 		BTRFS_I(inode)->index_cnt = 2;
3499 		goto out;
3500 	}
3501 
3502 	path->slots[0]--;
3503 
3504 	leaf = path->nodes[0];
3505 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3506 
3507 	if (found_key.objectid != inode->i_ino ||
3508 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3509 		BTRFS_I(inode)->index_cnt = 2;
3510 		goto out;
3511 	}
3512 
3513 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3514 out:
3515 	btrfs_free_path(path);
3516 	return ret;
3517 }
3518 
3519 /*
3520  * helper to find a free sequence number in a given directory.  This current
3521  * code is very simple, later versions will do smarter things in the btree
3522  */
3523 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3524 {
3525 	int ret = 0;
3526 
3527 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3528 		ret = btrfs_set_inode_index_count(dir);
3529 		if (ret)
3530 			return ret;
3531 	}
3532 
3533 	*index = BTRFS_I(dir)->index_cnt;
3534 	BTRFS_I(dir)->index_cnt++;
3535 
3536 	return ret;
3537 }
3538 
3539 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3540 				     struct btrfs_root *root,
3541 				     struct inode *dir,
3542 				     const char *name, int name_len,
3543 				     u64 ref_objectid, u64 objectid,
3544 				     u64 alloc_hint, int mode, u64 *index)
3545 {
3546 	struct inode *inode;
3547 	struct btrfs_inode_item *inode_item;
3548 	struct btrfs_key *location;
3549 	struct btrfs_path *path;
3550 	struct btrfs_inode_ref *ref;
3551 	struct btrfs_key key[2];
3552 	u32 sizes[2];
3553 	unsigned long ptr;
3554 	int ret;
3555 	int owner;
3556 
3557 	path = btrfs_alloc_path();
3558 	BUG_ON(!path);
3559 
3560 	inode = new_inode(root->fs_info->sb);
3561 	if (!inode)
3562 		return ERR_PTR(-ENOMEM);
3563 
3564 	if (dir) {
3565 		ret = btrfs_set_inode_index(dir, index);
3566 		if (ret) {
3567 			iput(inode);
3568 			return ERR_PTR(ret);
3569 		}
3570 	}
3571 	/*
3572 	 * index_cnt is ignored for everything but a dir,
3573 	 * btrfs_get_inode_index_count has an explanation for the magic
3574 	 * number
3575 	 */
3576 	init_btrfs_i(inode);
3577 	BTRFS_I(inode)->index_cnt = 2;
3578 	BTRFS_I(inode)->root = root;
3579 	BTRFS_I(inode)->generation = trans->transid;
3580 	btrfs_set_inode_space_info(root, inode);
3581 
3582 	if (mode & S_IFDIR)
3583 		owner = 0;
3584 	else
3585 		owner = 1;
3586 	BTRFS_I(inode)->block_group =
3587 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3588 	if ((mode & S_IFREG)) {
3589 		if (btrfs_test_opt(root, NODATASUM))
3590 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3591 		if (btrfs_test_opt(root, NODATACOW))
3592 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3593 	}
3594 
3595 	key[0].objectid = objectid;
3596 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3597 	key[0].offset = 0;
3598 
3599 	key[1].objectid = objectid;
3600 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3601 	key[1].offset = ref_objectid;
3602 
3603 	sizes[0] = sizeof(struct btrfs_inode_item);
3604 	sizes[1] = name_len + sizeof(*ref);
3605 
3606 	path->leave_spinning = 1;
3607 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3608 	if (ret != 0)
3609 		goto fail;
3610 
3611 	if (objectid > root->highest_inode)
3612 		root->highest_inode = objectid;
3613 
3614 	inode->i_uid = current_fsuid();
3615 
3616 	if (dir && (dir->i_mode & S_ISGID)) {
3617 		inode->i_gid = dir->i_gid;
3618 		if (S_ISDIR(mode))
3619 			mode |= S_ISGID;
3620 	} else
3621 		inode->i_gid = current_fsgid();
3622 
3623 	inode->i_mode = mode;
3624 	inode->i_ino = objectid;
3625 	inode_set_bytes(inode, 0);
3626 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3627 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3628 				  struct btrfs_inode_item);
3629 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3630 
3631 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3632 			     struct btrfs_inode_ref);
3633 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3634 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3635 	ptr = (unsigned long)(ref + 1);
3636 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3637 
3638 	btrfs_mark_buffer_dirty(path->nodes[0]);
3639 	btrfs_free_path(path);
3640 
3641 	location = &BTRFS_I(inode)->location;
3642 	location->objectid = objectid;
3643 	location->offset = 0;
3644 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3645 
3646 	btrfs_inherit_iflags(inode, dir);
3647 
3648 	insert_inode_hash(inode);
3649 	inode_tree_add(inode);
3650 	return inode;
3651 fail:
3652 	if (dir)
3653 		BTRFS_I(dir)->index_cnt--;
3654 	btrfs_free_path(path);
3655 	iput(inode);
3656 	return ERR_PTR(ret);
3657 }
3658 
3659 static inline u8 btrfs_inode_type(struct inode *inode)
3660 {
3661 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3662 }
3663 
3664 /*
3665  * utility function to add 'inode' into 'parent_inode' with
3666  * a give name and a given sequence number.
3667  * if 'add_backref' is true, also insert a backref from the
3668  * inode to the parent directory.
3669  */
3670 int btrfs_add_link(struct btrfs_trans_handle *trans,
3671 		   struct inode *parent_inode, struct inode *inode,
3672 		   const char *name, int name_len, int add_backref, u64 index)
3673 {
3674 	int ret;
3675 	struct btrfs_key key;
3676 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3677 
3678 	key.objectid = inode->i_ino;
3679 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3680 	key.offset = 0;
3681 
3682 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
3683 				    parent_inode->i_ino,
3684 				    &key, btrfs_inode_type(inode),
3685 				    index);
3686 	if (ret == 0) {
3687 		if (add_backref) {
3688 			ret = btrfs_insert_inode_ref(trans, root,
3689 						     name, name_len,
3690 						     inode->i_ino,
3691 						     parent_inode->i_ino,
3692 						     index);
3693 		}
3694 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3695 				   name_len * 2);
3696 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3697 		ret = btrfs_update_inode(trans, root, parent_inode);
3698 	}
3699 	return ret;
3700 }
3701 
3702 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3703 			    struct dentry *dentry, struct inode *inode,
3704 			    int backref, u64 index)
3705 {
3706 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3707 				 inode, dentry->d_name.name,
3708 				 dentry->d_name.len, backref, index);
3709 	if (!err) {
3710 		d_instantiate(dentry, inode);
3711 		return 0;
3712 	}
3713 	if (err > 0)
3714 		err = -EEXIST;
3715 	return err;
3716 }
3717 
3718 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3719 			int mode, dev_t rdev)
3720 {
3721 	struct btrfs_trans_handle *trans;
3722 	struct btrfs_root *root = BTRFS_I(dir)->root;
3723 	struct inode *inode = NULL;
3724 	int err;
3725 	int drop_inode = 0;
3726 	u64 objectid;
3727 	unsigned long nr = 0;
3728 	u64 index = 0;
3729 
3730 	if (!new_valid_dev(rdev))
3731 		return -EINVAL;
3732 
3733 	err = btrfs_check_metadata_free_space(root);
3734 	if (err)
3735 		goto fail;
3736 
3737 	trans = btrfs_start_transaction(root, 1);
3738 	btrfs_set_trans_block_group(trans, dir);
3739 
3740 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3741 	if (err) {
3742 		err = -ENOSPC;
3743 		goto out_unlock;
3744 	}
3745 
3746 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3747 				dentry->d_name.len,
3748 				dentry->d_parent->d_inode->i_ino, objectid,
3749 				BTRFS_I(dir)->block_group, mode, &index);
3750 	err = PTR_ERR(inode);
3751 	if (IS_ERR(inode))
3752 		goto out_unlock;
3753 
3754 	err = btrfs_init_inode_security(inode, dir);
3755 	if (err) {
3756 		drop_inode = 1;
3757 		goto out_unlock;
3758 	}
3759 
3760 	btrfs_set_trans_block_group(trans, inode);
3761 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3762 	if (err)
3763 		drop_inode = 1;
3764 	else {
3765 		inode->i_op = &btrfs_special_inode_operations;
3766 		init_special_inode(inode, inode->i_mode, rdev);
3767 		btrfs_update_inode(trans, root, inode);
3768 	}
3769 	btrfs_update_inode_block_group(trans, inode);
3770 	btrfs_update_inode_block_group(trans, dir);
3771 out_unlock:
3772 	nr = trans->blocks_used;
3773 	btrfs_end_transaction_throttle(trans, root);
3774 fail:
3775 	if (drop_inode) {
3776 		inode_dec_link_count(inode);
3777 		iput(inode);
3778 	}
3779 	btrfs_btree_balance_dirty(root, nr);
3780 	return err;
3781 }
3782 
3783 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3784 			int mode, struct nameidata *nd)
3785 {
3786 	struct btrfs_trans_handle *trans;
3787 	struct btrfs_root *root = BTRFS_I(dir)->root;
3788 	struct inode *inode = NULL;
3789 	int err;
3790 	int drop_inode = 0;
3791 	unsigned long nr = 0;
3792 	u64 objectid;
3793 	u64 index = 0;
3794 
3795 	err = btrfs_check_metadata_free_space(root);
3796 	if (err)
3797 		goto fail;
3798 	trans = btrfs_start_transaction(root, 1);
3799 	btrfs_set_trans_block_group(trans, dir);
3800 
3801 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3802 	if (err) {
3803 		err = -ENOSPC;
3804 		goto out_unlock;
3805 	}
3806 
3807 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3808 				dentry->d_name.len,
3809 				dentry->d_parent->d_inode->i_ino,
3810 				objectid, BTRFS_I(dir)->block_group, mode,
3811 				&index);
3812 	err = PTR_ERR(inode);
3813 	if (IS_ERR(inode))
3814 		goto out_unlock;
3815 
3816 	err = btrfs_init_inode_security(inode, dir);
3817 	if (err) {
3818 		drop_inode = 1;
3819 		goto out_unlock;
3820 	}
3821 
3822 	btrfs_set_trans_block_group(trans, inode);
3823 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3824 	if (err)
3825 		drop_inode = 1;
3826 	else {
3827 		inode->i_mapping->a_ops = &btrfs_aops;
3828 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3829 		inode->i_fop = &btrfs_file_operations;
3830 		inode->i_op = &btrfs_file_inode_operations;
3831 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3832 	}
3833 	btrfs_update_inode_block_group(trans, inode);
3834 	btrfs_update_inode_block_group(trans, dir);
3835 out_unlock:
3836 	nr = trans->blocks_used;
3837 	btrfs_end_transaction_throttle(trans, root);
3838 fail:
3839 	if (drop_inode) {
3840 		inode_dec_link_count(inode);
3841 		iput(inode);
3842 	}
3843 	btrfs_btree_balance_dirty(root, nr);
3844 	return err;
3845 }
3846 
3847 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3848 		      struct dentry *dentry)
3849 {
3850 	struct btrfs_trans_handle *trans;
3851 	struct btrfs_root *root = BTRFS_I(dir)->root;
3852 	struct inode *inode = old_dentry->d_inode;
3853 	u64 index;
3854 	unsigned long nr = 0;
3855 	int err;
3856 	int drop_inode = 0;
3857 
3858 	if (inode->i_nlink == 0)
3859 		return -ENOENT;
3860 
3861 	btrfs_inc_nlink(inode);
3862 	err = btrfs_check_metadata_free_space(root);
3863 	if (err)
3864 		goto fail;
3865 	err = btrfs_set_inode_index(dir, &index);
3866 	if (err)
3867 		goto fail;
3868 
3869 	trans = btrfs_start_transaction(root, 1);
3870 
3871 	btrfs_set_trans_block_group(trans, dir);
3872 	atomic_inc(&inode->i_count);
3873 
3874 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3875 
3876 	if (err)
3877 		drop_inode = 1;
3878 
3879 	btrfs_update_inode_block_group(trans, dir);
3880 	err = btrfs_update_inode(trans, root, inode);
3881 
3882 	if (err)
3883 		drop_inode = 1;
3884 
3885 	nr = trans->blocks_used;
3886 
3887 	btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
3888 	btrfs_end_transaction_throttle(trans, root);
3889 fail:
3890 	if (drop_inode) {
3891 		inode_dec_link_count(inode);
3892 		iput(inode);
3893 	}
3894 	btrfs_btree_balance_dirty(root, nr);
3895 	return err;
3896 }
3897 
3898 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3899 {
3900 	struct inode *inode = NULL;
3901 	struct btrfs_trans_handle *trans;
3902 	struct btrfs_root *root = BTRFS_I(dir)->root;
3903 	int err = 0;
3904 	int drop_on_err = 0;
3905 	u64 objectid = 0;
3906 	u64 index = 0;
3907 	unsigned long nr = 1;
3908 
3909 	err = btrfs_check_metadata_free_space(root);
3910 	if (err)
3911 		goto out_unlock;
3912 
3913 	trans = btrfs_start_transaction(root, 1);
3914 	btrfs_set_trans_block_group(trans, dir);
3915 
3916 	if (IS_ERR(trans)) {
3917 		err = PTR_ERR(trans);
3918 		goto out_unlock;
3919 	}
3920 
3921 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3922 	if (err) {
3923 		err = -ENOSPC;
3924 		goto out_unlock;
3925 	}
3926 
3927 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3928 				dentry->d_name.len,
3929 				dentry->d_parent->d_inode->i_ino, objectid,
3930 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
3931 				&index);
3932 	if (IS_ERR(inode)) {
3933 		err = PTR_ERR(inode);
3934 		goto out_fail;
3935 	}
3936 
3937 	drop_on_err = 1;
3938 
3939 	err = btrfs_init_inode_security(inode, dir);
3940 	if (err)
3941 		goto out_fail;
3942 
3943 	inode->i_op = &btrfs_dir_inode_operations;
3944 	inode->i_fop = &btrfs_dir_file_operations;
3945 	btrfs_set_trans_block_group(trans, inode);
3946 
3947 	btrfs_i_size_write(inode, 0);
3948 	err = btrfs_update_inode(trans, root, inode);
3949 	if (err)
3950 		goto out_fail;
3951 
3952 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3953 				 inode, dentry->d_name.name,
3954 				 dentry->d_name.len, 0, index);
3955 	if (err)
3956 		goto out_fail;
3957 
3958 	d_instantiate(dentry, inode);
3959 	drop_on_err = 0;
3960 	btrfs_update_inode_block_group(trans, inode);
3961 	btrfs_update_inode_block_group(trans, dir);
3962 
3963 out_fail:
3964 	nr = trans->blocks_used;
3965 	btrfs_end_transaction_throttle(trans, root);
3966 
3967 out_unlock:
3968 	if (drop_on_err)
3969 		iput(inode);
3970 	btrfs_btree_balance_dirty(root, nr);
3971 	return err;
3972 }
3973 
3974 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3975  * and an extent that you want to insert, deal with overlap and insert
3976  * the new extent into the tree.
3977  */
3978 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3979 				struct extent_map *existing,
3980 				struct extent_map *em,
3981 				u64 map_start, u64 map_len)
3982 {
3983 	u64 start_diff;
3984 
3985 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3986 	start_diff = map_start - em->start;
3987 	em->start = map_start;
3988 	em->len = map_len;
3989 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3990 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3991 		em->block_start += start_diff;
3992 		em->block_len -= start_diff;
3993 	}
3994 	return add_extent_mapping(em_tree, em);
3995 }
3996 
3997 static noinline int uncompress_inline(struct btrfs_path *path,
3998 				      struct inode *inode, struct page *page,
3999 				      size_t pg_offset, u64 extent_offset,
4000 				      struct btrfs_file_extent_item *item)
4001 {
4002 	int ret;
4003 	struct extent_buffer *leaf = path->nodes[0];
4004 	char *tmp;
4005 	size_t max_size;
4006 	unsigned long inline_size;
4007 	unsigned long ptr;
4008 
4009 	WARN_ON(pg_offset != 0);
4010 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4011 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4012 					btrfs_item_nr(leaf, path->slots[0]));
4013 	tmp = kmalloc(inline_size, GFP_NOFS);
4014 	ptr = btrfs_file_extent_inline_start(item);
4015 
4016 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4017 
4018 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4019 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4020 				    inline_size, max_size);
4021 	if (ret) {
4022 		char *kaddr = kmap_atomic(page, KM_USER0);
4023 		unsigned long copy_size = min_t(u64,
4024 				  PAGE_CACHE_SIZE - pg_offset,
4025 				  max_size - extent_offset);
4026 		memset(kaddr + pg_offset, 0, copy_size);
4027 		kunmap_atomic(kaddr, KM_USER0);
4028 	}
4029 	kfree(tmp);
4030 	return 0;
4031 }
4032 
4033 /*
4034  * a bit scary, this does extent mapping from logical file offset to the disk.
4035  * the ugly parts come from merging extents from the disk with the in-ram
4036  * representation.  This gets more complex because of the data=ordered code,
4037  * where the in-ram extents might be locked pending data=ordered completion.
4038  *
4039  * This also copies inline extents directly into the page.
4040  */
4041 
4042 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4043 				    size_t pg_offset, u64 start, u64 len,
4044 				    int create)
4045 {
4046 	int ret;
4047 	int err = 0;
4048 	u64 bytenr;
4049 	u64 extent_start = 0;
4050 	u64 extent_end = 0;
4051 	u64 objectid = inode->i_ino;
4052 	u32 found_type;
4053 	struct btrfs_path *path = NULL;
4054 	struct btrfs_root *root = BTRFS_I(inode)->root;
4055 	struct btrfs_file_extent_item *item;
4056 	struct extent_buffer *leaf;
4057 	struct btrfs_key found_key;
4058 	struct extent_map *em = NULL;
4059 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4060 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4061 	struct btrfs_trans_handle *trans = NULL;
4062 	int compressed;
4063 
4064 again:
4065 	spin_lock(&em_tree->lock);
4066 	em = lookup_extent_mapping(em_tree, start, len);
4067 	if (em)
4068 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4069 	spin_unlock(&em_tree->lock);
4070 
4071 	if (em) {
4072 		if (em->start > start || em->start + em->len <= start)
4073 			free_extent_map(em);
4074 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4075 			free_extent_map(em);
4076 		else
4077 			goto out;
4078 	}
4079 	em = alloc_extent_map(GFP_NOFS);
4080 	if (!em) {
4081 		err = -ENOMEM;
4082 		goto out;
4083 	}
4084 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4085 	em->start = EXTENT_MAP_HOLE;
4086 	em->orig_start = EXTENT_MAP_HOLE;
4087 	em->len = (u64)-1;
4088 	em->block_len = (u64)-1;
4089 
4090 	if (!path) {
4091 		path = btrfs_alloc_path();
4092 		BUG_ON(!path);
4093 	}
4094 
4095 	ret = btrfs_lookup_file_extent(trans, root, path,
4096 				       objectid, start, trans != NULL);
4097 	if (ret < 0) {
4098 		err = ret;
4099 		goto out;
4100 	}
4101 
4102 	if (ret != 0) {
4103 		if (path->slots[0] == 0)
4104 			goto not_found;
4105 		path->slots[0]--;
4106 	}
4107 
4108 	leaf = path->nodes[0];
4109 	item = btrfs_item_ptr(leaf, path->slots[0],
4110 			      struct btrfs_file_extent_item);
4111 	/* are we inside the extent that was found? */
4112 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4113 	found_type = btrfs_key_type(&found_key);
4114 	if (found_key.objectid != objectid ||
4115 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4116 		goto not_found;
4117 	}
4118 
4119 	found_type = btrfs_file_extent_type(leaf, item);
4120 	extent_start = found_key.offset;
4121 	compressed = btrfs_file_extent_compression(leaf, item);
4122 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4123 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4124 		extent_end = extent_start +
4125 		       btrfs_file_extent_num_bytes(leaf, item);
4126 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4127 		size_t size;
4128 		size = btrfs_file_extent_inline_len(leaf, item);
4129 		extent_end = (extent_start + size + root->sectorsize - 1) &
4130 			~((u64)root->sectorsize - 1);
4131 	}
4132 
4133 	if (start >= extent_end) {
4134 		path->slots[0]++;
4135 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4136 			ret = btrfs_next_leaf(root, path);
4137 			if (ret < 0) {
4138 				err = ret;
4139 				goto out;
4140 			}
4141 			if (ret > 0)
4142 				goto not_found;
4143 			leaf = path->nodes[0];
4144 		}
4145 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4146 		if (found_key.objectid != objectid ||
4147 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4148 			goto not_found;
4149 		if (start + len <= found_key.offset)
4150 			goto not_found;
4151 		em->start = start;
4152 		em->len = found_key.offset - start;
4153 		goto not_found_em;
4154 	}
4155 
4156 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4157 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4158 		em->start = extent_start;
4159 		em->len = extent_end - extent_start;
4160 		em->orig_start = extent_start -
4161 				 btrfs_file_extent_offset(leaf, item);
4162 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4163 		if (bytenr == 0) {
4164 			em->block_start = EXTENT_MAP_HOLE;
4165 			goto insert;
4166 		}
4167 		if (compressed) {
4168 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4169 			em->block_start = bytenr;
4170 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4171 									 item);
4172 		} else {
4173 			bytenr += btrfs_file_extent_offset(leaf, item);
4174 			em->block_start = bytenr;
4175 			em->block_len = em->len;
4176 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4177 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4178 		}
4179 		goto insert;
4180 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4181 		unsigned long ptr;
4182 		char *map;
4183 		size_t size;
4184 		size_t extent_offset;
4185 		size_t copy_size;
4186 
4187 		em->block_start = EXTENT_MAP_INLINE;
4188 		if (!page || create) {
4189 			em->start = extent_start;
4190 			em->len = extent_end - extent_start;
4191 			goto out;
4192 		}
4193 
4194 		size = btrfs_file_extent_inline_len(leaf, item);
4195 		extent_offset = page_offset(page) + pg_offset - extent_start;
4196 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4197 				size - extent_offset);
4198 		em->start = extent_start + extent_offset;
4199 		em->len = (copy_size + root->sectorsize - 1) &
4200 			~((u64)root->sectorsize - 1);
4201 		em->orig_start = EXTENT_MAP_INLINE;
4202 		if (compressed)
4203 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4204 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4205 		if (create == 0 && !PageUptodate(page)) {
4206 			if (btrfs_file_extent_compression(leaf, item) ==
4207 			    BTRFS_COMPRESS_ZLIB) {
4208 				ret = uncompress_inline(path, inode, page,
4209 							pg_offset,
4210 							extent_offset, item);
4211 				BUG_ON(ret);
4212 			} else {
4213 				map = kmap(page);
4214 				read_extent_buffer(leaf, map + pg_offset, ptr,
4215 						   copy_size);
4216 				kunmap(page);
4217 			}
4218 			flush_dcache_page(page);
4219 		} else if (create && PageUptodate(page)) {
4220 			if (!trans) {
4221 				kunmap(page);
4222 				free_extent_map(em);
4223 				em = NULL;
4224 				btrfs_release_path(root, path);
4225 				trans = btrfs_join_transaction(root, 1);
4226 				goto again;
4227 			}
4228 			map = kmap(page);
4229 			write_extent_buffer(leaf, map + pg_offset, ptr,
4230 					    copy_size);
4231 			kunmap(page);
4232 			btrfs_mark_buffer_dirty(leaf);
4233 		}
4234 		set_extent_uptodate(io_tree, em->start,
4235 				    extent_map_end(em) - 1, GFP_NOFS);
4236 		goto insert;
4237 	} else {
4238 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4239 		WARN_ON(1);
4240 	}
4241 not_found:
4242 	em->start = start;
4243 	em->len = len;
4244 not_found_em:
4245 	em->block_start = EXTENT_MAP_HOLE;
4246 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4247 insert:
4248 	btrfs_release_path(root, path);
4249 	if (em->start > start || extent_map_end(em) <= start) {
4250 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4251 		       "[%llu %llu]\n", (unsigned long long)em->start,
4252 		       (unsigned long long)em->len,
4253 		       (unsigned long long)start,
4254 		       (unsigned long long)len);
4255 		err = -EIO;
4256 		goto out;
4257 	}
4258 
4259 	err = 0;
4260 	spin_lock(&em_tree->lock);
4261 	ret = add_extent_mapping(em_tree, em);
4262 	/* it is possible that someone inserted the extent into the tree
4263 	 * while we had the lock dropped.  It is also possible that
4264 	 * an overlapping map exists in the tree
4265 	 */
4266 	if (ret == -EEXIST) {
4267 		struct extent_map *existing;
4268 
4269 		ret = 0;
4270 
4271 		existing = lookup_extent_mapping(em_tree, start, len);
4272 		if (existing && (existing->start > start ||
4273 		    existing->start + existing->len <= start)) {
4274 			free_extent_map(existing);
4275 			existing = NULL;
4276 		}
4277 		if (!existing) {
4278 			existing = lookup_extent_mapping(em_tree, em->start,
4279 							 em->len);
4280 			if (existing) {
4281 				err = merge_extent_mapping(em_tree, existing,
4282 							   em, start,
4283 							   root->sectorsize);
4284 				free_extent_map(existing);
4285 				if (err) {
4286 					free_extent_map(em);
4287 					em = NULL;
4288 				}
4289 			} else {
4290 				err = -EIO;
4291 				free_extent_map(em);
4292 				em = NULL;
4293 			}
4294 		} else {
4295 			free_extent_map(em);
4296 			em = existing;
4297 			err = 0;
4298 		}
4299 	}
4300 	spin_unlock(&em_tree->lock);
4301 out:
4302 	if (path)
4303 		btrfs_free_path(path);
4304 	if (trans) {
4305 		ret = btrfs_end_transaction(trans, root);
4306 		if (!err)
4307 			err = ret;
4308 	}
4309 	if (err) {
4310 		free_extent_map(em);
4311 		return ERR_PTR(err);
4312 	}
4313 	return em;
4314 }
4315 
4316 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4317 			const struct iovec *iov, loff_t offset,
4318 			unsigned long nr_segs)
4319 {
4320 	return -EINVAL;
4321 }
4322 
4323 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4324 		__u64 start, __u64 len)
4325 {
4326 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4327 }
4328 
4329 int btrfs_readpage(struct file *file, struct page *page)
4330 {
4331 	struct extent_io_tree *tree;
4332 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4333 	return extent_read_full_page(tree, page, btrfs_get_extent);
4334 }
4335 
4336 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4337 {
4338 	struct extent_io_tree *tree;
4339 
4340 
4341 	if (current->flags & PF_MEMALLOC) {
4342 		redirty_page_for_writepage(wbc, page);
4343 		unlock_page(page);
4344 		return 0;
4345 	}
4346 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4347 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4348 }
4349 
4350 int btrfs_writepages(struct address_space *mapping,
4351 		     struct writeback_control *wbc)
4352 {
4353 	struct extent_io_tree *tree;
4354 
4355 	tree = &BTRFS_I(mapping->host)->io_tree;
4356 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4357 }
4358 
4359 static int
4360 btrfs_readpages(struct file *file, struct address_space *mapping,
4361 		struct list_head *pages, unsigned nr_pages)
4362 {
4363 	struct extent_io_tree *tree;
4364 	tree = &BTRFS_I(mapping->host)->io_tree;
4365 	return extent_readpages(tree, mapping, pages, nr_pages,
4366 				btrfs_get_extent);
4367 }
4368 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4369 {
4370 	struct extent_io_tree *tree;
4371 	struct extent_map_tree *map;
4372 	int ret;
4373 
4374 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4375 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4376 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4377 	if (ret == 1) {
4378 		ClearPagePrivate(page);
4379 		set_page_private(page, 0);
4380 		page_cache_release(page);
4381 	}
4382 	return ret;
4383 }
4384 
4385 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4386 {
4387 	if (PageWriteback(page) || PageDirty(page))
4388 		return 0;
4389 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4390 }
4391 
4392 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4393 {
4394 	struct extent_io_tree *tree;
4395 	struct btrfs_ordered_extent *ordered;
4396 	u64 page_start = page_offset(page);
4397 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4398 
4399 	wait_on_page_writeback(page);
4400 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4401 	if (offset) {
4402 		btrfs_releasepage(page, GFP_NOFS);
4403 		return;
4404 	}
4405 
4406 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4407 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4408 					   page_offset(page));
4409 	if (ordered) {
4410 		/*
4411 		 * IO on this page will never be started, so we need
4412 		 * to account for any ordered extents now
4413 		 */
4414 		clear_extent_bit(tree, page_start, page_end,
4415 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4416 				 EXTENT_LOCKED, 1, 0, GFP_NOFS);
4417 		btrfs_finish_ordered_io(page->mapping->host,
4418 					page_start, page_end);
4419 		btrfs_put_ordered_extent(ordered);
4420 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4421 	}
4422 	clear_extent_bit(tree, page_start, page_end,
4423 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4424 		 EXTENT_ORDERED,
4425 		 1, 1, GFP_NOFS);
4426 	__btrfs_releasepage(page, GFP_NOFS);
4427 
4428 	ClearPageChecked(page);
4429 	if (PagePrivate(page)) {
4430 		ClearPagePrivate(page);
4431 		set_page_private(page, 0);
4432 		page_cache_release(page);
4433 	}
4434 }
4435 
4436 /*
4437  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4438  * called from a page fault handler when a page is first dirtied. Hence we must
4439  * be careful to check for EOF conditions here. We set the page up correctly
4440  * for a written page which means we get ENOSPC checking when writing into
4441  * holes and correct delalloc and unwritten extent mapping on filesystems that
4442  * support these features.
4443  *
4444  * We are not allowed to take the i_mutex here so we have to play games to
4445  * protect against truncate races as the page could now be beyond EOF.  Because
4446  * vmtruncate() writes the inode size before removing pages, once we have the
4447  * page lock we can determine safely if the page is beyond EOF. If it is not
4448  * beyond EOF, then the page is guaranteed safe against truncation until we
4449  * unlock the page.
4450  */
4451 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4452 {
4453 	struct page *page = vmf->page;
4454 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4455 	struct btrfs_root *root = BTRFS_I(inode)->root;
4456 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4457 	struct btrfs_ordered_extent *ordered;
4458 	char *kaddr;
4459 	unsigned long zero_start;
4460 	loff_t size;
4461 	int ret;
4462 	u64 page_start;
4463 	u64 page_end;
4464 
4465 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4466 	if (ret) {
4467 		if (ret == -ENOMEM)
4468 			ret = VM_FAULT_OOM;
4469 		else /* -ENOSPC, -EIO, etc */
4470 			ret = VM_FAULT_SIGBUS;
4471 		goto out;
4472 	}
4473 
4474 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4475 again:
4476 	lock_page(page);
4477 	size = i_size_read(inode);
4478 	page_start = page_offset(page);
4479 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4480 
4481 	if ((page->mapping != inode->i_mapping) ||
4482 	    (page_start >= size)) {
4483 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4484 		/* page got truncated out from underneath us */
4485 		goto out_unlock;
4486 	}
4487 	wait_on_page_writeback(page);
4488 
4489 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4490 	set_page_extent_mapped(page);
4491 
4492 	/*
4493 	 * we can't set the delalloc bits if there are pending ordered
4494 	 * extents.  Drop our locks and wait for them to finish
4495 	 */
4496 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4497 	if (ordered) {
4498 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4499 		unlock_page(page);
4500 		btrfs_start_ordered_extent(inode, ordered, 1);
4501 		btrfs_put_ordered_extent(ordered);
4502 		goto again;
4503 	}
4504 
4505 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4506 	ret = 0;
4507 
4508 	/* page is wholly or partially inside EOF */
4509 	if (page_start + PAGE_CACHE_SIZE > size)
4510 		zero_start = size & ~PAGE_CACHE_MASK;
4511 	else
4512 		zero_start = PAGE_CACHE_SIZE;
4513 
4514 	if (zero_start != PAGE_CACHE_SIZE) {
4515 		kaddr = kmap(page);
4516 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4517 		flush_dcache_page(page);
4518 		kunmap(page);
4519 	}
4520 	ClearPageChecked(page);
4521 	set_page_dirty(page);
4522 
4523 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4524 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4525 
4526 out_unlock:
4527 	unlock_page(page);
4528 out:
4529 	return ret;
4530 }
4531 
4532 static void btrfs_truncate(struct inode *inode)
4533 {
4534 	struct btrfs_root *root = BTRFS_I(inode)->root;
4535 	int ret;
4536 	struct btrfs_trans_handle *trans;
4537 	unsigned long nr;
4538 	u64 mask = root->sectorsize - 1;
4539 
4540 	if (!S_ISREG(inode->i_mode))
4541 		return;
4542 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4543 		return;
4544 
4545 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4546 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4547 
4548 	trans = btrfs_start_transaction(root, 1);
4549 
4550 	/*
4551 	 * setattr is responsible for setting the ordered_data_close flag,
4552 	 * but that is only tested during the last file release.  That
4553 	 * could happen well after the next commit, leaving a great big
4554 	 * window where new writes may get lost if someone chooses to write
4555 	 * to this file after truncating to zero
4556 	 *
4557 	 * The inode doesn't have any dirty data here, and so if we commit
4558 	 * this is a noop.  If someone immediately starts writing to the inode
4559 	 * it is very likely we'll catch some of their writes in this
4560 	 * transaction, and the commit will find this file on the ordered
4561 	 * data list with good things to send down.
4562 	 *
4563 	 * This is a best effort solution, there is still a window where
4564 	 * using truncate to replace the contents of the file will
4565 	 * end up with a zero length file after a crash.
4566 	 */
4567 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4568 		btrfs_add_ordered_operation(trans, root, inode);
4569 
4570 	btrfs_set_trans_block_group(trans, inode);
4571 	btrfs_i_size_write(inode, inode->i_size);
4572 
4573 	ret = btrfs_orphan_add(trans, inode);
4574 	if (ret)
4575 		goto out;
4576 	/* FIXME, add redo link to tree so we don't leak on crash */
4577 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4578 				      BTRFS_EXTENT_DATA_KEY);
4579 	btrfs_update_inode(trans, root, inode);
4580 
4581 	ret = btrfs_orphan_del(trans, inode);
4582 	BUG_ON(ret);
4583 
4584 out:
4585 	nr = trans->blocks_used;
4586 	ret = btrfs_end_transaction_throttle(trans, root);
4587 	BUG_ON(ret);
4588 	btrfs_btree_balance_dirty(root, nr);
4589 }
4590 
4591 /*
4592  * create a new subvolume directory/inode (helper for the ioctl).
4593  */
4594 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4595 			     struct btrfs_root *new_root, struct dentry *dentry,
4596 			     u64 new_dirid, u64 alloc_hint)
4597 {
4598 	struct inode *inode;
4599 	int error;
4600 	u64 index = 0;
4601 
4602 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4603 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4604 	if (IS_ERR(inode))
4605 		return PTR_ERR(inode);
4606 	inode->i_op = &btrfs_dir_inode_operations;
4607 	inode->i_fop = &btrfs_dir_file_operations;
4608 
4609 	inode->i_nlink = 1;
4610 	btrfs_i_size_write(inode, 0);
4611 
4612 	error = btrfs_update_inode(trans, new_root, inode);
4613 	if (error)
4614 		return error;
4615 
4616 	d_instantiate(dentry, inode);
4617 	return 0;
4618 }
4619 
4620 /* helper function for file defrag and space balancing.  This
4621  * forces readahead on a given range of bytes in an inode
4622  */
4623 unsigned long btrfs_force_ra(struct address_space *mapping,
4624 			      struct file_ra_state *ra, struct file *file,
4625 			      pgoff_t offset, pgoff_t last_index)
4626 {
4627 	pgoff_t req_size = last_index - offset + 1;
4628 
4629 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4630 	return offset + req_size;
4631 }
4632 
4633 struct inode *btrfs_alloc_inode(struct super_block *sb)
4634 {
4635 	struct btrfs_inode *ei;
4636 
4637 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4638 	if (!ei)
4639 		return NULL;
4640 	ei->last_trans = 0;
4641 	ei->logged_trans = 0;
4642 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4643 	ei->i_acl = BTRFS_ACL_NOT_CACHED;
4644 	ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4645 	INIT_LIST_HEAD(&ei->i_orphan);
4646 	INIT_LIST_HEAD(&ei->ordered_operations);
4647 	return &ei->vfs_inode;
4648 }
4649 
4650 void btrfs_destroy_inode(struct inode *inode)
4651 {
4652 	struct btrfs_ordered_extent *ordered;
4653 	struct btrfs_root *root = BTRFS_I(inode)->root;
4654 
4655 	WARN_ON(!list_empty(&inode->i_dentry));
4656 	WARN_ON(inode->i_data.nrpages);
4657 
4658 	if (BTRFS_I(inode)->i_acl &&
4659 	    BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4660 		posix_acl_release(BTRFS_I(inode)->i_acl);
4661 	if (BTRFS_I(inode)->i_default_acl &&
4662 	    BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4663 		posix_acl_release(BTRFS_I(inode)->i_default_acl);
4664 
4665 	/*
4666 	 * Make sure we're properly removed from the ordered operation
4667 	 * lists.
4668 	 */
4669 	smp_mb();
4670 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4671 		spin_lock(&root->fs_info->ordered_extent_lock);
4672 		list_del_init(&BTRFS_I(inode)->ordered_operations);
4673 		spin_unlock(&root->fs_info->ordered_extent_lock);
4674 	}
4675 
4676 	spin_lock(&root->list_lock);
4677 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4678 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4679 		       " list\n", inode->i_ino);
4680 		dump_stack();
4681 	}
4682 	spin_unlock(&root->list_lock);
4683 
4684 	while (1) {
4685 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4686 		if (!ordered)
4687 			break;
4688 		else {
4689 			printk(KERN_ERR "btrfs found ordered "
4690 			       "extent %llu %llu on inode cleanup\n",
4691 			       (unsigned long long)ordered->file_offset,
4692 			       (unsigned long long)ordered->len);
4693 			btrfs_remove_ordered_extent(inode, ordered);
4694 			btrfs_put_ordered_extent(ordered);
4695 			btrfs_put_ordered_extent(ordered);
4696 		}
4697 	}
4698 	inode_tree_del(inode);
4699 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4700 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4701 }
4702 
4703 static void init_once(void *foo)
4704 {
4705 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4706 
4707 	inode_init_once(&ei->vfs_inode);
4708 }
4709 
4710 void btrfs_destroy_cachep(void)
4711 {
4712 	if (btrfs_inode_cachep)
4713 		kmem_cache_destroy(btrfs_inode_cachep);
4714 	if (btrfs_trans_handle_cachep)
4715 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4716 	if (btrfs_transaction_cachep)
4717 		kmem_cache_destroy(btrfs_transaction_cachep);
4718 	if (btrfs_path_cachep)
4719 		kmem_cache_destroy(btrfs_path_cachep);
4720 }
4721 
4722 int btrfs_init_cachep(void)
4723 {
4724 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
4725 			sizeof(struct btrfs_inode), 0,
4726 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
4727 	if (!btrfs_inode_cachep)
4728 		goto fail;
4729 
4730 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
4731 			sizeof(struct btrfs_trans_handle), 0,
4732 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4733 	if (!btrfs_trans_handle_cachep)
4734 		goto fail;
4735 
4736 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
4737 			sizeof(struct btrfs_transaction), 0,
4738 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4739 	if (!btrfs_transaction_cachep)
4740 		goto fail;
4741 
4742 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
4743 			sizeof(struct btrfs_path), 0,
4744 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
4745 	if (!btrfs_path_cachep)
4746 		goto fail;
4747 
4748 	return 0;
4749 fail:
4750 	btrfs_destroy_cachep();
4751 	return -ENOMEM;
4752 }
4753 
4754 static int btrfs_getattr(struct vfsmount *mnt,
4755 			 struct dentry *dentry, struct kstat *stat)
4756 {
4757 	struct inode *inode = dentry->d_inode;
4758 	generic_fillattr(inode, stat);
4759 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4760 	stat->blksize = PAGE_CACHE_SIZE;
4761 	stat->blocks = (inode_get_bytes(inode) +
4762 			BTRFS_I(inode)->delalloc_bytes) >> 9;
4763 	return 0;
4764 }
4765 
4766 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4767 			   struct inode *new_dir, struct dentry *new_dentry)
4768 {
4769 	struct btrfs_trans_handle *trans;
4770 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
4771 	struct inode *new_inode = new_dentry->d_inode;
4772 	struct inode *old_inode = old_dentry->d_inode;
4773 	struct timespec ctime = CURRENT_TIME;
4774 	u64 index = 0;
4775 	int ret;
4776 
4777 	/* we're not allowed to rename between subvolumes */
4778 	if (BTRFS_I(old_inode)->root->root_key.objectid !=
4779 	    BTRFS_I(new_dir)->root->root_key.objectid)
4780 		return -EXDEV;
4781 
4782 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
4783 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4784 		return -ENOTEMPTY;
4785 	}
4786 
4787 	/* to rename a snapshot or subvolume, we need to juggle the
4788 	 * backrefs.  This isn't coded yet
4789 	 */
4790 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4791 		return -EXDEV;
4792 
4793 	ret = btrfs_check_metadata_free_space(root);
4794 	if (ret)
4795 		goto out_unlock;
4796 
4797 	/*
4798 	 * we're using rename to replace one file with another.
4799 	 * and the replacement file is large.  Start IO on it now so
4800 	 * we don't add too much work to the end of the transaction
4801 	 */
4802 	if (new_inode && old_inode && S_ISREG(old_inode->i_mode) &&
4803 	    new_inode->i_size &&
4804 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
4805 		filemap_flush(old_inode->i_mapping);
4806 
4807 	trans = btrfs_start_transaction(root, 1);
4808 
4809 	/*
4810 	 * make sure the inode gets flushed if it is replacing
4811 	 * something.
4812 	 */
4813 	if (new_inode && new_inode->i_size &&
4814 	    old_inode && S_ISREG(old_inode->i_mode)) {
4815 		btrfs_add_ordered_operation(trans, root, old_inode);
4816 	}
4817 
4818 	/*
4819 	 * this is an ugly little race, but the rename is required to make
4820 	 * sure that if we crash, the inode is either at the old name
4821 	 * or the new one.  pinning the log transaction lets us make sure
4822 	 * we don't allow a log commit to come in after we unlink the
4823 	 * name but before we add the new name back in.
4824 	 */
4825 	btrfs_pin_log_trans(root);
4826 
4827 	btrfs_set_trans_block_group(trans, new_dir);
4828 
4829 	btrfs_inc_nlink(old_dentry->d_inode);
4830 	old_dir->i_ctime = old_dir->i_mtime = ctime;
4831 	new_dir->i_ctime = new_dir->i_mtime = ctime;
4832 	old_inode->i_ctime = ctime;
4833 
4834 	if (old_dentry->d_parent != new_dentry->d_parent)
4835 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
4836 
4837 	ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4838 				 old_dentry->d_name.name,
4839 				 old_dentry->d_name.len);
4840 	if (ret)
4841 		goto out_fail;
4842 
4843 	if (new_inode) {
4844 		new_inode->i_ctime = CURRENT_TIME;
4845 		ret = btrfs_unlink_inode(trans, root, new_dir,
4846 					 new_dentry->d_inode,
4847 					 new_dentry->d_name.name,
4848 					 new_dentry->d_name.len);
4849 		if (ret)
4850 			goto out_fail;
4851 		if (new_inode->i_nlink == 0) {
4852 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4853 			if (ret)
4854 				goto out_fail;
4855 		}
4856 
4857 	}
4858 	ret = btrfs_set_inode_index(new_dir, &index);
4859 	if (ret)
4860 		goto out_fail;
4861 
4862 	ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4863 			     old_inode, new_dentry->d_name.name,
4864 			     new_dentry->d_name.len, 1, index);
4865 	if (ret)
4866 		goto out_fail;
4867 
4868 	btrfs_log_new_name(trans, old_inode, old_dir,
4869 				       new_dentry->d_parent);
4870 out_fail:
4871 
4872 	/* this btrfs_end_log_trans just allows the current
4873 	 * log-sub transaction to complete
4874 	 */
4875 	btrfs_end_log_trans(root);
4876 	btrfs_end_transaction_throttle(trans, root);
4877 out_unlock:
4878 	return ret;
4879 }
4880 
4881 /*
4882  * some fairly slow code that needs optimization. This walks the list
4883  * of all the inodes with pending delalloc and forces them to disk.
4884  */
4885 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4886 {
4887 	struct list_head *head = &root->fs_info->delalloc_inodes;
4888 	struct btrfs_inode *binode;
4889 	struct inode *inode;
4890 
4891 	if (root->fs_info->sb->s_flags & MS_RDONLY)
4892 		return -EROFS;
4893 
4894 	spin_lock(&root->fs_info->delalloc_lock);
4895 	while (!list_empty(head)) {
4896 		binode = list_entry(head->next, struct btrfs_inode,
4897 				    delalloc_inodes);
4898 		inode = igrab(&binode->vfs_inode);
4899 		if (!inode)
4900 			list_del_init(&binode->delalloc_inodes);
4901 		spin_unlock(&root->fs_info->delalloc_lock);
4902 		if (inode) {
4903 			filemap_flush(inode->i_mapping);
4904 			iput(inode);
4905 		}
4906 		cond_resched();
4907 		spin_lock(&root->fs_info->delalloc_lock);
4908 	}
4909 	spin_unlock(&root->fs_info->delalloc_lock);
4910 
4911 	/* the filemap_flush will queue IO into the worker threads, but
4912 	 * we have to make sure the IO is actually started and that
4913 	 * ordered extents get created before we return
4914 	 */
4915 	atomic_inc(&root->fs_info->async_submit_draining);
4916 	while (atomic_read(&root->fs_info->nr_async_submits) ||
4917 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
4918 		wait_event(root->fs_info->async_submit_wait,
4919 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4920 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4921 	}
4922 	atomic_dec(&root->fs_info->async_submit_draining);
4923 	return 0;
4924 }
4925 
4926 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4927 			 const char *symname)
4928 {
4929 	struct btrfs_trans_handle *trans;
4930 	struct btrfs_root *root = BTRFS_I(dir)->root;
4931 	struct btrfs_path *path;
4932 	struct btrfs_key key;
4933 	struct inode *inode = NULL;
4934 	int err;
4935 	int drop_inode = 0;
4936 	u64 objectid;
4937 	u64 index = 0 ;
4938 	int name_len;
4939 	int datasize;
4940 	unsigned long ptr;
4941 	struct btrfs_file_extent_item *ei;
4942 	struct extent_buffer *leaf;
4943 	unsigned long nr = 0;
4944 
4945 	name_len = strlen(symname) + 1;
4946 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4947 		return -ENAMETOOLONG;
4948 
4949 	err = btrfs_check_metadata_free_space(root);
4950 	if (err)
4951 		goto out_fail;
4952 
4953 	trans = btrfs_start_transaction(root, 1);
4954 	btrfs_set_trans_block_group(trans, dir);
4955 
4956 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4957 	if (err) {
4958 		err = -ENOSPC;
4959 		goto out_unlock;
4960 	}
4961 
4962 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4963 				dentry->d_name.len,
4964 				dentry->d_parent->d_inode->i_ino, objectid,
4965 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4966 				&index);
4967 	err = PTR_ERR(inode);
4968 	if (IS_ERR(inode))
4969 		goto out_unlock;
4970 
4971 	err = btrfs_init_inode_security(inode, dir);
4972 	if (err) {
4973 		drop_inode = 1;
4974 		goto out_unlock;
4975 	}
4976 
4977 	btrfs_set_trans_block_group(trans, inode);
4978 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4979 	if (err)
4980 		drop_inode = 1;
4981 	else {
4982 		inode->i_mapping->a_ops = &btrfs_aops;
4983 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4984 		inode->i_fop = &btrfs_file_operations;
4985 		inode->i_op = &btrfs_file_inode_operations;
4986 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4987 	}
4988 	btrfs_update_inode_block_group(trans, inode);
4989 	btrfs_update_inode_block_group(trans, dir);
4990 	if (drop_inode)
4991 		goto out_unlock;
4992 
4993 	path = btrfs_alloc_path();
4994 	BUG_ON(!path);
4995 	key.objectid = inode->i_ino;
4996 	key.offset = 0;
4997 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4998 	datasize = btrfs_file_extent_calc_inline_size(name_len);
4999 	err = btrfs_insert_empty_item(trans, root, path, &key,
5000 				      datasize);
5001 	if (err) {
5002 		drop_inode = 1;
5003 		goto out_unlock;
5004 	}
5005 	leaf = path->nodes[0];
5006 	ei = btrfs_item_ptr(leaf, path->slots[0],
5007 			    struct btrfs_file_extent_item);
5008 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5009 	btrfs_set_file_extent_type(leaf, ei,
5010 				   BTRFS_FILE_EXTENT_INLINE);
5011 	btrfs_set_file_extent_encryption(leaf, ei, 0);
5012 	btrfs_set_file_extent_compression(leaf, ei, 0);
5013 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5014 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5015 
5016 	ptr = btrfs_file_extent_inline_start(ei);
5017 	write_extent_buffer(leaf, symname, ptr, name_len);
5018 	btrfs_mark_buffer_dirty(leaf);
5019 	btrfs_free_path(path);
5020 
5021 	inode->i_op = &btrfs_symlink_inode_operations;
5022 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
5023 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5024 	inode_set_bytes(inode, name_len);
5025 	btrfs_i_size_write(inode, name_len - 1);
5026 	err = btrfs_update_inode(trans, root, inode);
5027 	if (err)
5028 		drop_inode = 1;
5029 
5030 out_unlock:
5031 	nr = trans->blocks_used;
5032 	btrfs_end_transaction_throttle(trans, root);
5033 out_fail:
5034 	if (drop_inode) {
5035 		inode_dec_link_count(inode);
5036 		iput(inode);
5037 	}
5038 	btrfs_btree_balance_dirty(root, nr);
5039 	return err;
5040 }
5041 
5042 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5043 			       struct inode *inode, u64 start, u64 end,
5044 			       u64 locked_end, u64 alloc_hint, int mode)
5045 {
5046 	struct btrfs_root *root = BTRFS_I(inode)->root;
5047 	struct btrfs_key ins;
5048 	u64 alloc_size;
5049 	u64 cur_offset = start;
5050 	u64 num_bytes = end - start;
5051 	int ret = 0;
5052 
5053 	while (num_bytes > 0) {
5054 		alloc_size = min(num_bytes, root->fs_info->max_extent);
5055 		ret = btrfs_reserve_extent(trans, root, alloc_size,
5056 					   root->sectorsize, 0, alloc_hint,
5057 					   (u64)-1, &ins, 1);
5058 		if (ret) {
5059 			WARN_ON(1);
5060 			goto out;
5061 		}
5062 		ret = insert_reserved_file_extent(trans, inode,
5063 						  cur_offset, ins.objectid,
5064 						  ins.offset, ins.offset,
5065 						  ins.offset, locked_end,
5066 						  0, 0, 0,
5067 						  BTRFS_FILE_EXTENT_PREALLOC);
5068 		BUG_ON(ret);
5069 		num_bytes -= ins.offset;
5070 		cur_offset += ins.offset;
5071 		alloc_hint = ins.objectid + ins.offset;
5072 	}
5073 out:
5074 	if (cur_offset > start) {
5075 		inode->i_ctime = CURRENT_TIME;
5076 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5077 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5078 		    cur_offset > i_size_read(inode))
5079 			btrfs_i_size_write(inode, cur_offset);
5080 		ret = btrfs_update_inode(trans, root, inode);
5081 		BUG_ON(ret);
5082 	}
5083 
5084 	return ret;
5085 }
5086 
5087 static long btrfs_fallocate(struct inode *inode, int mode,
5088 			    loff_t offset, loff_t len)
5089 {
5090 	u64 cur_offset;
5091 	u64 last_byte;
5092 	u64 alloc_start;
5093 	u64 alloc_end;
5094 	u64 alloc_hint = 0;
5095 	u64 locked_end;
5096 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5097 	struct extent_map *em;
5098 	struct btrfs_trans_handle *trans;
5099 	int ret;
5100 
5101 	alloc_start = offset & ~mask;
5102 	alloc_end =  (offset + len + mask) & ~mask;
5103 
5104 	/*
5105 	 * wait for ordered IO before we have any locks.  We'll loop again
5106 	 * below with the locks held.
5107 	 */
5108 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5109 
5110 	mutex_lock(&inode->i_mutex);
5111 	if (alloc_start > inode->i_size) {
5112 		ret = btrfs_cont_expand(inode, alloc_start);
5113 		if (ret)
5114 			goto out;
5115 	}
5116 
5117 	locked_end = alloc_end - 1;
5118 	while (1) {
5119 		struct btrfs_ordered_extent *ordered;
5120 
5121 		trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5122 		if (!trans) {
5123 			ret = -EIO;
5124 			goto out;
5125 		}
5126 
5127 		/* the extent lock is ordered inside the running
5128 		 * transaction
5129 		 */
5130 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5131 			    GFP_NOFS);
5132 		ordered = btrfs_lookup_first_ordered_extent(inode,
5133 							    alloc_end - 1);
5134 		if (ordered &&
5135 		    ordered->file_offset + ordered->len > alloc_start &&
5136 		    ordered->file_offset < alloc_end) {
5137 			btrfs_put_ordered_extent(ordered);
5138 			unlock_extent(&BTRFS_I(inode)->io_tree,
5139 				      alloc_start, locked_end, GFP_NOFS);
5140 			btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5141 
5142 			/*
5143 			 * we can't wait on the range with the transaction
5144 			 * running or with the extent lock held
5145 			 */
5146 			btrfs_wait_ordered_range(inode, alloc_start,
5147 						 alloc_end - alloc_start);
5148 		} else {
5149 			if (ordered)
5150 				btrfs_put_ordered_extent(ordered);
5151 			break;
5152 		}
5153 	}
5154 
5155 	cur_offset = alloc_start;
5156 	while (1) {
5157 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5158 				      alloc_end - cur_offset, 0);
5159 		BUG_ON(IS_ERR(em) || !em);
5160 		last_byte = min(extent_map_end(em), alloc_end);
5161 		last_byte = (last_byte + mask) & ~mask;
5162 		if (em->block_start == EXTENT_MAP_HOLE) {
5163 			ret = prealloc_file_range(trans, inode, cur_offset,
5164 					last_byte, locked_end + 1,
5165 					alloc_hint, mode);
5166 			if (ret < 0) {
5167 				free_extent_map(em);
5168 				break;
5169 			}
5170 		}
5171 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5172 			alloc_hint = em->block_start;
5173 		free_extent_map(em);
5174 
5175 		cur_offset = last_byte;
5176 		if (cur_offset >= alloc_end) {
5177 			ret = 0;
5178 			break;
5179 		}
5180 	}
5181 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5182 		      GFP_NOFS);
5183 
5184 	btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5185 out:
5186 	mutex_unlock(&inode->i_mutex);
5187 	return ret;
5188 }
5189 
5190 static int btrfs_set_page_dirty(struct page *page)
5191 {
5192 	return __set_page_dirty_nobuffers(page);
5193 }
5194 
5195 static int btrfs_permission(struct inode *inode, int mask)
5196 {
5197 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5198 		return -EACCES;
5199 	return generic_permission(inode, mask, btrfs_check_acl);
5200 }
5201 
5202 static struct inode_operations btrfs_dir_inode_operations = {
5203 	.getattr	= btrfs_getattr,
5204 	.lookup		= btrfs_lookup,
5205 	.create		= btrfs_create,
5206 	.unlink		= btrfs_unlink,
5207 	.link		= btrfs_link,
5208 	.mkdir		= btrfs_mkdir,
5209 	.rmdir		= btrfs_rmdir,
5210 	.rename		= btrfs_rename,
5211 	.symlink	= btrfs_symlink,
5212 	.setattr	= btrfs_setattr,
5213 	.mknod		= btrfs_mknod,
5214 	.setxattr	= btrfs_setxattr,
5215 	.getxattr	= btrfs_getxattr,
5216 	.listxattr	= btrfs_listxattr,
5217 	.removexattr	= btrfs_removexattr,
5218 	.permission	= btrfs_permission,
5219 };
5220 static struct inode_operations btrfs_dir_ro_inode_operations = {
5221 	.lookup		= btrfs_lookup,
5222 	.permission	= btrfs_permission,
5223 };
5224 static struct file_operations btrfs_dir_file_operations = {
5225 	.llseek		= generic_file_llseek,
5226 	.read		= generic_read_dir,
5227 	.readdir	= btrfs_real_readdir,
5228 	.unlocked_ioctl	= btrfs_ioctl,
5229 #ifdef CONFIG_COMPAT
5230 	.compat_ioctl	= btrfs_ioctl,
5231 #endif
5232 	.release        = btrfs_release_file,
5233 	.fsync		= btrfs_sync_file,
5234 };
5235 
5236 static struct extent_io_ops btrfs_extent_io_ops = {
5237 	.fill_delalloc = run_delalloc_range,
5238 	.submit_bio_hook = btrfs_submit_bio_hook,
5239 	.merge_bio_hook = btrfs_merge_bio_hook,
5240 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
5241 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
5242 	.writepage_start_hook = btrfs_writepage_start_hook,
5243 	.readpage_io_failed_hook = btrfs_io_failed_hook,
5244 	.set_bit_hook = btrfs_set_bit_hook,
5245 	.clear_bit_hook = btrfs_clear_bit_hook,
5246 };
5247 
5248 /*
5249  * btrfs doesn't support the bmap operation because swapfiles
5250  * use bmap to make a mapping of extents in the file.  They assume
5251  * these extents won't change over the life of the file and they
5252  * use the bmap result to do IO directly to the drive.
5253  *
5254  * the btrfs bmap call would return logical addresses that aren't
5255  * suitable for IO and they also will change frequently as COW
5256  * operations happen.  So, swapfile + btrfs == corruption.
5257  *
5258  * For now we're avoiding this by dropping bmap.
5259  */
5260 static struct address_space_operations btrfs_aops = {
5261 	.readpage	= btrfs_readpage,
5262 	.writepage	= btrfs_writepage,
5263 	.writepages	= btrfs_writepages,
5264 	.readpages	= btrfs_readpages,
5265 	.sync_page	= block_sync_page,
5266 	.direct_IO	= btrfs_direct_IO,
5267 	.invalidatepage = btrfs_invalidatepage,
5268 	.releasepage	= btrfs_releasepage,
5269 	.set_page_dirty	= btrfs_set_page_dirty,
5270 };
5271 
5272 static struct address_space_operations btrfs_symlink_aops = {
5273 	.readpage	= btrfs_readpage,
5274 	.writepage	= btrfs_writepage,
5275 	.invalidatepage = btrfs_invalidatepage,
5276 	.releasepage	= btrfs_releasepage,
5277 };
5278 
5279 static struct inode_operations btrfs_file_inode_operations = {
5280 	.truncate	= btrfs_truncate,
5281 	.getattr	= btrfs_getattr,
5282 	.setattr	= btrfs_setattr,
5283 	.setxattr	= btrfs_setxattr,
5284 	.getxattr	= btrfs_getxattr,
5285 	.listxattr      = btrfs_listxattr,
5286 	.removexattr	= btrfs_removexattr,
5287 	.permission	= btrfs_permission,
5288 	.fallocate	= btrfs_fallocate,
5289 	.fiemap		= btrfs_fiemap,
5290 };
5291 static struct inode_operations btrfs_special_inode_operations = {
5292 	.getattr	= btrfs_getattr,
5293 	.setattr	= btrfs_setattr,
5294 	.permission	= btrfs_permission,
5295 	.setxattr	= btrfs_setxattr,
5296 	.getxattr	= btrfs_getxattr,
5297 	.listxattr	= btrfs_listxattr,
5298 	.removexattr	= btrfs_removexattr,
5299 };
5300 static struct inode_operations btrfs_symlink_inode_operations = {
5301 	.readlink	= generic_readlink,
5302 	.follow_link	= page_follow_link_light,
5303 	.put_link	= page_put_link,
5304 	.permission	= btrfs_permission,
5305 	.setxattr	= btrfs_setxattr,
5306 	.getxattr	= btrfs_getxattr,
5307 	.listxattr	= btrfs_listxattr,
5308 	.removexattr	= btrfs_removexattr,
5309 };
5310