1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include "compat.h" 40 #include "ctree.h" 41 #include "disk-io.h" 42 #include "transaction.h" 43 #include "btrfs_inode.h" 44 #include "ioctl.h" 45 #include "print-tree.h" 46 #include "volumes.h" 47 #include "ordered-data.h" 48 #include "xattr.h" 49 #include "tree-log.h" 50 #include "compression.h" 51 #include "locking.h" 52 53 struct btrfs_iget_args { 54 u64 ino; 55 struct btrfs_root *root; 56 }; 57 58 static struct inode_operations btrfs_dir_inode_operations; 59 static struct inode_operations btrfs_symlink_inode_operations; 60 static struct inode_operations btrfs_dir_ro_inode_operations; 61 static struct inode_operations btrfs_special_inode_operations; 62 static struct inode_operations btrfs_file_inode_operations; 63 static struct address_space_operations btrfs_aops; 64 static struct address_space_operations btrfs_symlink_aops; 65 static struct file_operations btrfs_dir_file_operations; 66 static struct extent_io_ops btrfs_extent_io_ops; 67 68 static struct kmem_cache *btrfs_inode_cachep; 69 struct kmem_cache *btrfs_trans_handle_cachep; 70 struct kmem_cache *btrfs_transaction_cachep; 71 struct kmem_cache *btrfs_path_cachep; 72 73 #define S_SHIFT 12 74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 82 }; 83 84 static void btrfs_truncate(struct inode *inode); 85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 86 static noinline int cow_file_range(struct inode *inode, 87 struct page *locked_page, 88 u64 start, u64 end, int *page_started, 89 unsigned long *nr_written, int unlock); 90 91 static int btrfs_init_inode_security(struct inode *inode, struct inode *dir) 92 { 93 int err; 94 95 err = btrfs_init_acl(inode, dir); 96 if (!err) 97 err = btrfs_xattr_security_init(inode, dir); 98 return err; 99 } 100 101 /* 102 * this does all the hard work for inserting an inline extent into 103 * the btree. The caller should have done a btrfs_drop_extents so that 104 * no overlapping inline items exist in the btree 105 */ 106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 107 struct btrfs_root *root, struct inode *inode, 108 u64 start, size_t size, size_t compressed_size, 109 struct page **compressed_pages) 110 { 111 struct btrfs_key key; 112 struct btrfs_path *path; 113 struct extent_buffer *leaf; 114 struct page *page = NULL; 115 char *kaddr; 116 unsigned long ptr; 117 struct btrfs_file_extent_item *ei; 118 int err = 0; 119 int ret; 120 size_t cur_size = size; 121 size_t datasize; 122 unsigned long offset; 123 int use_compress = 0; 124 125 if (compressed_size && compressed_pages) { 126 use_compress = 1; 127 cur_size = compressed_size; 128 } 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 path->leave_spinning = 1; 135 btrfs_set_trans_block_group(trans, inode); 136 137 key.objectid = inode->i_ino; 138 key.offset = start; 139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 140 datasize = btrfs_file_extent_calc_inline_size(cur_size); 141 142 inode_add_bytes(inode, size); 143 ret = btrfs_insert_empty_item(trans, root, path, &key, 144 datasize); 145 BUG_ON(ret); 146 if (ret) { 147 err = ret; 148 goto fail; 149 } 150 leaf = path->nodes[0]; 151 ei = btrfs_item_ptr(leaf, path->slots[0], 152 struct btrfs_file_extent_item); 153 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 155 btrfs_set_file_extent_encryption(leaf, ei, 0); 156 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 157 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 158 ptr = btrfs_file_extent_inline_start(ei); 159 160 if (use_compress) { 161 struct page *cpage; 162 int i = 0; 163 while (compressed_size > 0) { 164 cpage = compressed_pages[i]; 165 cur_size = min_t(unsigned long, compressed_size, 166 PAGE_CACHE_SIZE); 167 168 kaddr = kmap_atomic(cpage, KM_USER0); 169 write_extent_buffer(leaf, kaddr, ptr, cur_size); 170 kunmap_atomic(kaddr, KM_USER0); 171 172 i++; 173 ptr += cur_size; 174 compressed_size -= cur_size; 175 } 176 btrfs_set_file_extent_compression(leaf, ei, 177 BTRFS_COMPRESS_ZLIB); 178 } else { 179 page = find_get_page(inode->i_mapping, 180 start >> PAGE_CACHE_SHIFT); 181 btrfs_set_file_extent_compression(leaf, ei, 0); 182 kaddr = kmap_atomic(page, KM_USER0); 183 offset = start & (PAGE_CACHE_SIZE - 1); 184 write_extent_buffer(leaf, kaddr + offset, ptr, size); 185 kunmap_atomic(kaddr, KM_USER0); 186 page_cache_release(page); 187 } 188 btrfs_mark_buffer_dirty(leaf); 189 btrfs_free_path(path); 190 191 BTRFS_I(inode)->disk_i_size = inode->i_size; 192 btrfs_update_inode(trans, root, inode); 193 return 0; 194 fail: 195 btrfs_free_path(path); 196 return err; 197 } 198 199 200 /* 201 * conditionally insert an inline extent into the file. This 202 * does the checks required to make sure the data is small enough 203 * to fit as an inline extent. 204 */ 205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 206 struct btrfs_root *root, 207 struct inode *inode, u64 start, u64 end, 208 size_t compressed_size, 209 struct page **compressed_pages) 210 { 211 u64 isize = i_size_read(inode); 212 u64 actual_end = min(end + 1, isize); 213 u64 inline_len = actual_end - start; 214 u64 aligned_end = (end + root->sectorsize - 1) & 215 ~((u64)root->sectorsize - 1); 216 u64 hint_byte; 217 u64 data_len = inline_len; 218 int ret; 219 220 if (compressed_size) 221 data_len = compressed_size; 222 223 if (start > 0 || 224 actual_end >= PAGE_CACHE_SIZE || 225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 226 (!compressed_size && 227 (actual_end & (root->sectorsize - 1)) == 0) || 228 end + 1 < isize || 229 data_len > root->fs_info->max_inline) { 230 return 1; 231 } 232 233 ret = btrfs_drop_extents(trans, root, inode, start, 234 aligned_end, aligned_end, start, &hint_byte); 235 BUG_ON(ret); 236 237 if (isize > actual_end) 238 inline_len = min_t(u64, isize, actual_end); 239 ret = insert_inline_extent(trans, root, inode, start, 240 inline_len, compressed_size, 241 compressed_pages); 242 BUG_ON(ret); 243 btrfs_drop_extent_cache(inode, start, aligned_end, 0); 244 return 0; 245 } 246 247 struct async_extent { 248 u64 start; 249 u64 ram_size; 250 u64 compressed_size; 251 struct page **pages; 252 unsigned long nr_pages; 253 struct list_head list; 254 }; 255 256 struct async_cow { 257 struct inode *inode; 258 struct btrfs_root *root; 259 struct page *locked_page; 260 u64 start; 261 u64 end; 262 struct list_head extents; 263 struct btrfs_work work; 264 }; 265 266 static noinline int add_async_extent(struct async_cow *cow, 267 u64 start, u64 ram_size, 268 u64 compressed_size, 269 struct page **pages, 270 unsigned long nr_pages) 271 { 272 struct async_extent *async_extent; 273 274 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 275 async_extent->start = start; 276 async_extent->ram_size = ram_size; 277 async_extent->compressed_size = compressed_size; 278 async_extent->pages = pages; 279 async_extent->nr_pages = nr_pages; 280 list_add_tail(&async_extent->list, &cow->extents); 281 return 0; 282 } 283 284 /* 285 * we create compressed extents in two phases. The first 286 * phase compresses a range of pages that have already been 287 * locked (both pages and state bits are locked). 288 * 289 * This is done inside an ordered work queue, and the compression 290 * is spread across many cpus. The actual IO submission is step 291 * two, and the ordered work queue takes care of making sure that 292 * happens in the same order things were put onto the queue by 293 * writepages and friends. 294 * 295 * If this code finds it can't get good compression, it puts an 296 * entry onto the work queue to write the uncompressed bytes. This 297 * makes sure that both compressed inodes and uncompressed inodes 298 * are written in the same order that pdflush sent them down. 299 */ 300 static noinline int compress_file_range(struct inode *inode, 301 struct page *locked_page, 302 u64 start, u64 end, 303 struct async_cow *async_cow, 304 int *num_added) 305 { 306 struct btrfs_root *root = BTRFS_I(inode)->root; 307 struct btrfs_trans_handle *trans; 308 u64 num_bytes; 309 u64 orig_start; 310 u64 disk_num_bytes; 311 u64 blocksize = root->sectorsize; 312 u64 actual_end; 313 u64 isize = i_size_read(inode); 314 int ret = 0; 315 struct page **pages = NULL; 316 unsigned long nr_pages; 317 unsigned long nr_pages_ret = 0; 318 unsigned long total_compressed = 0; 319 unsigned long total_in = 0; 320 unsigned long max_compressed = 128 * 1024; 321 unsigned long max_uncompressed = 128 * 1024; 322 int i; 323 int will_compress; 324 325 orig_start = start; 326 327 actual_end = min_t(u64, isize, end + 1); 328 again: 329 will_compress = 0; 330 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 331 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 332 333 /* 334 * we don't want to send crud past the end of i_size through 335 * compression, that's just a waste of CPU time. So, if the 336 * end of the file is before the start of our current 337 * requested range of bytes, we bail out to the uncompressed 338 * cleanup code that can deal with all of this. 339 * 340 * It isn't really the fastest way to fix things, but this is a 341 * very uncommon corner. 342 */ 343 if (actual_end <= start) 344 goto cleanup_and_bail_uncompressed; 345 346 total_compressed = actual_end - start; 347 348 /* we want to make sure that amount of ram required to uncompress 349 * an extent is reasonable, so we limit the total size in ram 350 * of a compressed extent to 128k. This is a crucial number 351 * because it also controls how easily we can spread reads across 352 * cpus for decompression. 353 * 354 * We also want to make sure the amount of IO required to do 355 * a random read is reasonably small, so we limit the size of 356 * a compressed extent to 128k. 357 */ 358 total_compressed = min(total_compressed, max_uncompressed); 359 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 360 num_bytes = max(blocksize, num_bytes); 361 disk_num_bytes = num_bytes; 362 total_in = 0; 363 ret = 0; 364 365 /* 366 * we do compression for mount -o compress and when the 367 * inode has not been flagged as nocompress. This flag can 368 * change at any time if we discover bad compression ratios. 369 */ 370 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 371 btrfs_test_opt(root, COMPRESS)) { 372 WARN_ON(pages); 373 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 374 375 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 376 total_compressed, pages, 377 nr_pages, &nr_pages_ret, 378 &total_in, 379 &total_compressed, 380 max_compressed); 381 382 if (!ret) { 383 unsigned long offset = total_compressed & 384 (PAGE_CACHE_SIZE - 1); 385 struct page *page = pages[nr_pages_ret - 1]; 386 char *kaddr; 387 388 /* zero the tail end of the last page, we might be 389 * sending it down to disk 390 */ 391 if (offset) { 392 kaddr = kmap_atomic(page, KM_USER0); 393 memset(kaddr + offset, 0, 394 PAGE_CACHE_SIZE - offset); 395 kunmap_atomic(kaddr, KM_USER0); 396 } 397 will_compress = 1; 398 } 399 } 400 if (start == 0) { 401 trans = btrfs_join_transaction(root, 1); 402 BUG_ON(!trans); 403 btrfs_set_trans_block_group(trans, inode); 404 405 /* lets try to make an inline extent */ 406 if (ret || total_in < (actual_end - start)) { 407 /* we didn't compress the entire range, try 408 * to make an uncompressed inline extent. 409 */ 410 ret = cow_file_range_inline(trans, root, inode, 411 start, end, 0, NULL); 412 } else { 413 /* try making a compressed inline extent */ 414 ret = cow_file_range_inline(trans, root, inode, 415 start, end, 416 total_compressed, pages); 417 } 418 btrfs_end_transaction(trans, root); 419 if (ret == 0) { 420 /* 421 * inline extent creation worked, we don't need 422 * to create any more async work items. Unlock 423 * and free up our temp pages. 424 */ 425 extent_clear_unlock_delalloc(inode, 426 &BTRFS_I(inode)->io_tree, 427 start, end, NULL, 1, 0, 428 0, 1, 1, 1); 429 ret = 0; 430 goto free_pages_out; 431 } 432 } 433 434 if (will_compress) { 435 /* 436 * we aren't doing an inline extent round the compressed size 437 * up to a block size boundary so the allocator does sane 438 * things 439 */ 440 total_compressed = (total_compressed + blocksize - 1) & 441 ~(blocksize - 1); 442 443 /* 444 * one last check to make sure the compression is really a 445 * win, compare the page count read with the blocks on disk 446 */ 447 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 448 ~(PAGE_CACHE_SIZE - 1); 449 if (total_compressed >= total_in) { 450 will_compress = 0; 451 } else { 452 disk_num_bytes = total_compressed; 453 num_bytes = total_in; 454 } 455 } 456 if (!will_compress && pages) { 457 /* 458 * the compression code ran but failed to make things smaller, 459 * free any pages it allocated and our page pointer array 460 */ 461 for (i = 0; i < nr_pages_ret; i++) { 462 WARN_ON(pages[i]->mapping); 463 page_cache_release(pages[i]); 464 } 465 kfree(pages); 466 pages = NULL; 467 total_compressed = 0; 468 nr_pages_ret = 0; 469 470 /* flag the file so we don't compress in the future */ 471 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 472 } 473 if (will_compress) { 474 *num_added += 1; 475 476 /* the async work queues will take care of doing actual 477 * allocation on disk for these compressed pages, 478 * and will submit them to the elevator. 479 */ 480 add_async_extent(async_cow, start, num_bytes, 481 total_compressed, pages, nr_pages_ret); 482 483 if (start + num_bytes < end && start + num_bytes < actual_end) { 484 start += num_bytes; 485 pages = NULL; 486 cond_resched(); 487 goto again; 488 } 489 } else { 490 cleanup_and_bail_uncompressed: 491 /* 492 * No compression, but we still need to write the pages in 493 * the file we've been given so far. redirty the locked 494 * page if it corresponds to our extent and set things up 495 * for the async work queue to run cow_file_range to do 496 * the normal delalloc dance 497 */ 498 if (page_offset(locked_page) >= start && 499 page_offset(locked_page) <= end) { 500 __set_page_dirty_nobuffers(locked_page); 501 /* unlocked later on in the async handlers */ 502 } 503 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 504 *num_added += 1; 505 } 506 507 out: 508 return 0; 509 510 free_pages_out: 511 for (i = 0; i < nr_pages_ret; i++) { 512 WARN_ON(pages[i]->mapping); 513 page_cache_release(pages[i]); 514 } 515 kfree(pages); 516 517 goto out; 518 } 519 520 /* 521 * phase two of compressed writeback. This is the ordered portion 522 * of the code, which only gets called in the order the work was 523 * queued. We walk all the async extents created by compress_file_range 524 * and send them down to the disk. 525 */ 526 static noinline int submit_compressed_extents(struct inode *inode, 527 struct async_cow *async_cow) 528 { 529 struct async_extent *async_extent; 530 u64 alloc_hint = 0; 531 struct btrfs_trans_handle *trans; 532 struct btrfs_key ins; 533 struct extent_map *em; 534 struct btrfs_root *root = BTRFS_I(inode)->root; 535 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 536 struct extent_io_tree *io_tree; 537 int ret; 538 539 if (list_empty(&async_cow->extents)) 540 return 0; 541 542 trans = btrfs_join_transaction(root, 1); 543 544 while (!list_empty(&async_cow->extents)) { 545 async_extent = list_entry(async_cow->extents.next, 546 struct async_extent, list); 547 list_del(&async_extent->list); 548 549 io_tree = &BTRFS_I(inode)->io_tree; 550 551 /* did the compression code fall back to uncompressed IO? */ 552 if (!async_extent->pages) { 553 int page_started = 0; 554 unsigned long nr_written = 0; 555 556 lock_extent(io_tree, async_extent->start, 557 async_extent->start + 558 async_extent->ram_size - 1, GFP_NOFS); 559 560 /* allocate blocks */ 561 cow_file_range(inode, async_cow->locked_page, 562 async_extent->start, 563 async_extent->start + 564 async_extent->ram_size - 1, 565 &page_started, &nr_written, 0); 566 567 /* 568 * if page_started, cow_file_range inserted an 569 * inline extent and took care of all the unlocking 570 * and IO for us. Otherwise, we need to submit 571 * all those pages down to the drive. 572 */ 573 if (!page_started) 574 extent_write_locked_range(io_tree, 575 inode, async_extent->start, 576 async_extent->start + 577 async_extent->ram_size - 1, 578 btrfs_get_extent, 579 WB_SYNC_ALL); 580 kfree(async_extent); 581 cond_resched(); 582 continue; 583 } 584 585 lock_extent(io_tree, async_extent->start, 586 async_extent->start + async_extent->ram_size - 1, 587 GFP_NOFS); 588 /* 589 * here we're doing allocation and writeback of the 590 * compressed pages 591 */ 592 btrfs_drop_extent_cache(inode, async_extent->start, 593 async_extent->start + 594 async_extent->ram_size - 1, 0); 595 596 ret = btrfs_reserve_extent(trans, root, 597 async_extent->compressed_size, 598 async_extent->compressed_size, 599 0, alloc_hint, 600 (u64)-1, &ins, 1); 601 BUG_ON(ret); 602 em = alloc_extent_map(GFP_NOFS); 603 em->start = async_extent->start; 604 em->len = async_extent->ram_size; 605 em->orig_start = em->start; 606 607 em->block_start = ins.objectid; 608 em->block_len = ins.offset; 609 em->bdev = root->fs_info->fs_devices->latest_bdev; 610 set_bit(EXTENT_FLAG_PINNED, &em->flags); 611 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 612 613 while (1) { 614 spin_lock(&em_tree->lock); 615 ret = add_extent_mapping(em_tree, em); 616 spin_unlock(&em_tree->lock); 617 if (ret != -EEXIST) { 618 free_extent_map(em); 619 break; 620 } 621 btrfs_drop_extent_cache(inode, async_extent->start, 622 async_extent->start + 623 async_extent->ram_size - 1, 0); 624 } 625 626 ret = btrfs_add_ordered_extent(inode, async_extent->start, 627 ins.objectid, 628 async_extent->ram_size, 629 ins.offset, 630 BTRFS_ORDERED_COMPRESSED); 631 BUG_ON(ret); 632 633 btrfs_end_transaction(trans, root); 634 635 /* 636 * clear dirty, set writeback and unlock the pages. 637 */ 638 extent_clear_unlock_delalloc(inode, 639 &BTRFS_I(inode)->io_tree, 640 async_extent->start, 641 async_extent->start + 642 async_extent->ram_size - 1, 643 NULL, 1, 1, 0, 1, 1, 0); 644 645 ret = btrfs_submit_compressed_write(inode, 646 async_extent->start, 647 async_extent->ram_size, 648 ins.objectid, 649 ins.offset, async_extent->pages, 650 async_extent->nr_pages); 651 652 BUG_ON(ret); 653 trans = btrfs_join_transaction(root, 1); 654 alloc_hint = ins.objectid + ins.offset; 655 kfree(async_extent); 656 cond_resched(); 657 } 658 659 btrfs_end_transaction(trans, root); 660 return 0; 661 } 662 663 /* 664 * when extent_io.c finds a delayed allocation range in the file, 665 * the call backs end up in this code. The basic idea is to 666 * allocate extents on disk for the range, and create ordered data structs 667 * in ram to track those extents. 668 * 669 * locked_page is the page that writepage had locked already. We use 670 * it to make sure we don't do extra locks or unlocks. 671 * 672 * *page_started is set to one if we unlock locked_page and do everything 673 * required to start IO on it. It may be clean and already done with 674 * IO when we return. 675 */ 676 static noinline int cow_file_range(struct inode *inode, 677 struct page *locked_page, 678 u64 start, u64 end, int *page_started, 679 unsigned long *nr_written, 680 int unlock) 681 { 682 struct btrfs_root *root = BTRFS_I(inode)->root; 683 struct btrfs_trans_handle *trans; 684 u64 alloc_hint = 0; 685 u64 num_bytes; 686 unsigned long ram_size; 687 u64 disk_num_bytes; 688 u64 cur_alloc_size; 689 u64 blocksize = root->sectorsize; 690 u64 actual_end; 691 u64 isize = i_size_read(inode); 692 struct btrfs_key ins; 693 struct extent_map *em; 694 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 695 int ret = 0; 696 697 trans = btrfs_join_transaction(root, 1); 698 BUG_ON(!trans); 699 btrfs_set_trans_block_group(trans, inode); 700 701 actual_end = min_t(u64, isize, end + 1); 702 703 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 704 num_bytes = max(blocksize, num_bytes); 705 disk_num_bytes = num_bytes; 706 ret = 0; 707 708 if (start == 0) { 709 /* lets try to make an inline extent */ 710 ret = cow_file_range_inline(trans, root, inode, 711 start, end, 0, NULL); 712 if (ret == 0) { 713 extent_clear_unlock_delalloc(inode, 714 &BTRFS_I(inode)->io_tree, 715 start, end, NULL, 1, 1, 716 1, 1, 1, 1); 717 *nr_written = *nr_written + 718 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 719 *page_started = 1; 720 ret = 0; 721 goto out; 722 } 723 } 724 725 BUG_ON(disk_num_bytes > 726 btrfs_super_total_bytes(&root->fs_info->super_copy)); 727 728 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 729 730 while (disk_num_bytes > 0) { 731 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 732 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 733 root->sectorsize, 0, alloc_hint, 734 (u64)-1, &ins, 1); 735 BUG_ON(ret); 736 737 em = alloc_extent_map(GFP_NOFS); 738 em->start = start; 739 em->orig_start = em->start; 740 741 ram_size = ins.offset; 742 em->len = ins.offset; 743 744 em->block_start = ins.objectid; 745 em->block_len = ins.offset; 746 em->bdev = root->fs_info->fs_devices->latest_bdev; 747 set_bit(EXTENT_FLAG_PINNED, &em->flags); 748 749 while (1) { 750 spin_lock(&em_tree->lock); 751 ret = add_extent_mapping(em_tree, em); 752 spin_unlock(&em_tree->lock); 753 if (ret != -EEXIST) { 754 free_extent_map(em); 755 break; 756 } 757 btrfs_drop_extent_cache(inode, start, 758 start + ram_size - 1, 0); 759 } 760 761 cur_alloc_size = ins.offset; 762 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 763 ram_size, cur_alloc_size, 0); 764 BUG_ON(ret); 765 766 if (root->root_key.objectid == 767 BTRFS_DATA_RELOC_TREE_OBJECTID) { 768 ret = btrfs_reloc_clone_csums(inode, start, 769 cur_alloc_size); 770 BUG_ON(ret); 771 } 772 773 if (disk_num_bytes < cur_alloc_size) 774 break; 775 776 /* we're not doing compressed IO, don't unlock the first 777 * page (which the caller expects to stay locked), don't 778 * clear any dirty bits and don't set any writeback bits 779 */ 780 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 781 start, start + ram_size - 1, 782 locked_page, unlock, 1, 783 1, 0, 0, 0); 784 disk_num_bytes -= cur_alloc_size; 785 num_bytes -= cur_alloc_size; 786 alloc_hint = ins.objectid + ins.offset; 787 start += cur_alloc_size; 788 } 789 out: 790 ret = 0; 791 btrfs_end_transaction(trans, root); 792 793 return ret; 794 } 795 796 /* 797 * work queue call back to started compression on a file and pages 798 */ 799 static noinline void async_cow_start(struct btrfs_work *work) 800 { 801 struct async_cow *async_cow; 802 int num_added = 0; 803 async_cow = container_of(work, struct async_cow, work); 804 805 compress_file_range(async_cow->inode, async_cow->locked_page, 806 async_cow->start, async_cow->end, async_cow, 807 &num_added); 808 if (num_added == 0) 809 async_cow->inode = NULL; 810 } 811 812 /* 813 * work queue call back to submit previously compressed pages 814 */ 815 static noinline void async_cow_submit(struct btrfs_work *work) 816 { 817 struct async_cow *async_cow; 818 struct btrfs_root *root; 819 unsigned long nr_pages; 820 821 async_cow = container_of(work, struct async_cow, work); 822 823 root = async_cow->root; 824 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 825 PAGE_CACHE_SHIFT; 826 827 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 828 829 if (atomic_read(&root->fs_info->async_delalloc_pages) < 830 5 * 1042 * 1024 && 831 waitqueue_active(&root->fs_info->async_submit_wait)) 832 wake_up(&root->fs_info->async_submit_wait); 833 834 if (async_cow->inode) 835 submit_compressed_extents(async_cow->inode, async_cow); 836 } 837 838 static noinline void async_cow_free(struct btrfs_work *work) 839 { 840 struct async_cow *async_cow; 841 async_cow = container_of(work, struct async_cow, work); 842 kfree(async_cow); 843 } 844 845 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 846 u64 start, u64 end, int *page_started, 847 unsigned long *nr_written) 848 { 849 struct async_cow *async_cow; 850 struct btrfs_root *root = BTRFS_I(inode)->root; 851 unsigned long nr_pages; 852 u64 cur_end; 853 int limit = 10 * 1024 * 1042; 854 855 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED | 856 EXTENT_DELALLOC, 1, 0, GFP_NOFS); 857 while (start < end) { 858 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 859 async_cow->inode = inode; 860 async_cow->root = root; 861 async_cow->locked_page = locked_page; 862 async_cow->start = start; 863 864 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 865 cur_end = end; 866 else 867 cur_end = min(end, start + 512 * 1024 - 1); 868 869 async_cow->end = cur_end; 870 INIT_LIST_HEAD(&async_cow->extents); 871 872 async_cow->work.func = async_cow_start; 873 async_cow->work.ordered_func = async_cow_submit; 874 async_cow->work.ordered_free = async_cow_free; 875 async_cow->work.flags = 0; 876 877 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 878 PAGE_CACHE_SHIFT; 879 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 880 881 btrfs_queue_worker(&root->fs_info->delalloc_workers, 882 &async_cow->work); 883 884 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 885 wait_event(root->fs_info->async_submit_wait, 886 (atomic_read(&root->fs_info->async_delalloc_pages) < 887 limit)); 888 } 889 890 while (atomic_read(&root->fs_info->async_submit_draining) && 891 atomic_read(&root->fs_info->async_delalloc_pages)) { 892 wait_event(root->fs_info->async_submit_wait, 893 (atomic_read(&root->fs_info->async_delalloc_pages) == 894 0)); 895 } 896 897 *nr_written += nr_pages; 898 start = cur_end + 1; 899 } 900 *page_started = 1; 901 return 0; 902 } 903 904 static noinline int csum_exist_in_range(struct btrfs_root *root, 905 u64 bytenr, u64 num_bytes) 906 { 907 int ret; 908 struct btrfs_ordered_sum *sums; 909 LIST_HEAD(list); 910 911 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 912 bytenr + num_bytes - 1, &list); 913 if (ret == 0 && list_empty(&list)) 914 return 0; 915 916 while (!list_empty(&list)) { 917 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 918 list_del(&sums->list); 919 kfree(sums); 920 } 921 return 1; 922 } 923 924 /* 925 * when nowcow writeback call back. This checks for snapshots or COW copies 926 * of the extents that exist in the file, and COWs the file as required. 927 * 928 * If no cow copies or snapshots exist, we write directly to the existing 929 * blocks on disk 930 */ 931 static noinline int run_delalloc_nocow(struct inode *inode, 932 struct page *locked_page, 933 u64 start, u64 end, int *page_started, int force, 934 unsigned long *nr_written) 935 { 936 struct btrfs_root *root = BTRFS_I(inode)->root; 937 struct btrfs_trans_handle *trans; 938 struct extent_buffer *leaf; 939 struct btrfs_path *path; 940 struct btrfs_file_extent_item *fi; 941 struct btrfs_key found_key; 942 u64 cow_start; 943 u64 cur_offset; 944 u64 extent_end; 945 u64 extent_offset; 946 u64 disk_bytenr; 947 u64 num_bytes; 948 int extent_type; 949 int ret; 950 int type; 951 int nocow; 952 int check_prev = 1; 953 954 path = btrfs_alloc_path(); 955 BUG_ON(!path); 956 trans = btrfs_join_transaction(root, 1); 957 BUG_ON(!trans); 958 959 cow_start = (u64)-1; 960 cur_offset = start; 961 while (1) { 962 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 963 cur_offset, 0); 964 BUG_ON(ret < 0); 965 if (ret > 0 && path->slots[0] > 0 && check_prev) { 966 leaf = path->nodes[0]; 967 btrfs_item_key_to_cpu(leaf, &found_key, 968 path->slots[0] - 1); 969 if (found_key.objectid == inode->i_ino && 970 found_key.type == BTRFS_EXTENT_DATA_KEY) 971 path->slots[0]--; 972 } 973 check_prev = 0; 974 next_slot: 975 leaf = path->nodes[0]; 976 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 977 ret = btrfs_next_leaf(root, path); 978 if (ret < 0) 979 BUG_ON(1); 980 if (ret > 0) 981 break; 982 leaf = path->nodes[0]; 983 } 984 985 nocow = 0; 986 disk_bytenr = 0; 987 num_bytes = 0; 988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 989 990 if (found_key.objectid > inode->i_ino || 991 found_key.type > BTRFS_EXTENT_DATA_KEY || 992 found_key.offset > end) 993 break; 994 995 if (found_key.offset > cur_offset) { 996 extent_end = found_key.offset; 997 goto out_check; 998 } 999 1000 fi = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_file_extent_item); 1002 extent_type = btrfs_file_extent_type(leaf, fi); 1003 1004 if (extent_type == BTRFS_FILE_EXTENT_REG || 1005 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1006 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1007 extent_offset = btrfs_file_extent_offset(leaf, fi); 1008 extent_end = found_key.offset + 1009 btrfs_file_extent_num_bytes(leaf, fi); 1010 if (extent_end <= start) { 1011 path->slots[0]++; 1012 goto next_slot; 1013 } 1014 if (disk_bytenr == 0) 1015 goto out_check; 1016 if (btrfs_file_extent_compression(leaf, fi) || 1017 btrfs_file_extent_encryption(leaf, fi) || 1018 btrfs_file_extent_other_encoding(leaf, fi)) 1019 goto out_check; 1020 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1021 goto out_check; 1022 if (btrfs_extent_readonly(root, disk_bytenr)) 1023 goto out_check; 1024 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1025 found_key.offset - 1026 extent_offset, disk_bytenr)) 1027 goto out_check; 1028 disk_bytenr += extent_offset; 1029 disk_bytenr += cur_offset - found_key.offset; 1030 num_bytes = min(end + 1, extent_end) - cur_offset; 1031 /* 1032 * force cow if csum exists in the range. 1033 * this ensure that csum for a given extent are 1034 * either valid or do not exist. 1035 */ 1036 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1037 goto out_check; 1038 nocow = 1; 1039 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1040 extent_end = found_key.offset + 1041 btrfs_file_extent_inline_len(leaf, fi); 1042 extent_end = ALIGN(extent_end, root->sectorsize); 1043 } else { 1044 BUG_ON(1); 1045 } 1046 out_check: 1047 if (extent_end <= start) { 1048 path->slots[0]++; 1049 goto next_slot; 1050 } 1051 if (!nocow) { 1052 if (cow_start == (u64)-1) 1053 cow_start = cur_offset; 1054 cur_offset = extent_end; 1055 if (cur_offset > end) 1056 break; 1057 path->slots[0]++; 1058 goto next_slot; 1059 } 1060 1061 btrfs_release_path(root, path); 1062 if (cow_start != (u64)-1) { 1063 ret = cow_file_range(inode, locked_page, cow_start, 1064 found_key.offset - 1, page_started, 1065 nr_written, 1); 1066 BUG_ON(ret); 1067 cow_start = (u64)-1; 1068 } 1069 1070 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1071 struct extent_map *em; 1072 struct extent_map_tree *em_tree; 1073 em_tree = &BTRFS_I(inode)->extent_tree; 1074 em = alloc_extent_map(GFP_NOFS); 1075 em->start = cur_offset; 1076 em->orig_start = em->start; 1077 em->len = num_bytes; 1078 em->block_len = num_bytes; 1079 em->block_start = disk_bytenr; 1080 em->bdev = root->fs_info->fs_devices->latest_bdev; 1081 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1082 while (1) { 1083 spin_lock(&em_tree->lock); 1084 ret = add_extent_mapping(em_tree, em); 1085 spin_unlock(&em_tree->lock); 1086 if (ret != -EEXIST) { 1087 free_extent_map(em); 1088 break; 1089 } 1090 btrfs_drop_extent_cache(inode, em->start, 1091 em->start + em->len - 1, 0); 1092 } 1093 type = BTRFS_ORDERED_PREALLOC; 1094 } else { 1095 type = BTRFS_ORDERED_NOCOW; 1096 } 1097 1098 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1099 num_bytes, num_bytes, type); 1100 BUG_ON(ret); 1101 1102 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1103 cur_offset, cur_offset + num_bytes - 1, 1104 locked_page, 1, 1, 1, 0, 0, 0); 1105 cur_offset = extent_end; 1106 if (cur_offset > end) 1107 break; 1108 } 1109 btrfs_release_path(root, path); 1110 1111 if (cur_offset <= end && cow_start == (u64)-1) 1112 cow_start = cur_offset; 1113 if (cow_start != (u64)-1) { 1114 ret = cow_file_range(inode, locked_page, cow_start, end, 1115 page_started, nr_written, 1); 1116 BUG_ON(ret); 1117 } 1118 1119 ret = btrfs_end_transaction(trans, root); 1120 BUG_ON(ret); 1121 btrfs_free_path(path); 1122 return 0; 1123 } 1124 1125 /* 1126 * extent_io.c call back to do delayed allocation processing 1127 */ 1128 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1129 u64 start, u64 end, int *page_started, 1130 unsigned long *nr_written) 1131 { 1132 int ret; 1133 struct btrfs_root *root = BTRFS_I(inode)->root; 1134 1135 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1136 ret = run_delalloc_nocow(inode, locked_page, start, end, 1137 page_started, 1, nr_written); 1138 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1139 ret = run_delalloc_nocow(inode, locked_page, start, end, 1140 page_started, 0, nr_written); 1141 else if (!btrfs_test_opt(root, COMPRESS)) 1142 ret = cow_file_range(inode, locked_page, start, end, 1143 page_started, nr_written, 1); 1144 else 1145 ret = cow_file_range_async(inode, locked_page, start, end, 1146 page_started, nr_written); 1147 return ret; 1148 } 1149 1150 /* 1151 * extent_io.c set_bit_hook, used to track delayed allocation 1152 * bytes in this file, and to maintain the list of inodes that 1153 * have pending delalloc work to be done. 1154 */ 1155 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1156 unsigned long old, unsigned long bits) 1157 { 1158 /* 1159 * set_bit and clear bit hooks normally require _irqsave/restore 1160 * but in this case, we are only testeing for the DELALLOC 1161 * bit, which is only set or cleared with irqs on 1162 */ 1163 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1164 struct btrfs_root *root = BTRFS_I(inode)->root; 1165 btrfs_delalloc_reserve_space(root, inode, end - start + 1); 1166 spin_lock(&root->fs_info->delalloc_lock); 1167 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1168 root->fs_info->delalloc_bytes += end - start + 1; 1169 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1170 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1171 &root->fs_info->delalloc_inodes); 1172 } 1173 spin_unlock(&root->fs_info->delalloc_lock); 1174 } 1175 return 0; 1176 } 1177 1178 /* 1179 * extent_io.c clear_bit_hook, see set_bit_hook for why 1180 */ 1181 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end, 1182 unsigned long old, unsigned long bits) 1183 { 1184 /* 1185 * set_bit and clear bit hooks normally require _irqsave/restore 1186 * but in this case, we are only testeing for the DELALLOC 1187 * bit, which is only set or cleared with irqs on 1188 */ 1189 if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1190 struct btrfs_root *root = BTRFS_I(inode)->root; 1191 1192 spin_lock(&root->fs_info->delalloc_lock); 1193 if (end - start + 1 > root->fs_info->delalloc_bytes) { 1194 printk(KERN_INFO "btrfs warning: delalloc account " 1195 "%llu %llu\n", 1196 (unsigned long long)end - start + 1, 1197 (unsigned long long) 1198 root->fs_info->delalloc_bytes); 1199 btrfs_delalloc_free_space(root, inode, (u64)-1); 1200 root->fs_info->delalloc_bytes = 0; 1201 BTRFS_I(inode)->delalloc_bytes = 0; 1202 } else { 1203 btrfs_delalloc_free_space(root, inode, 1204 end - start + 1); 1205 root->fs_info->delalloc_bytes -= end - start + 1; 1206 BTRFS_I(inode)->delalloc_bytes -= end - start + 1; 1207 } 1208 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1209 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1210 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1211 } 1212 spin_unlock(&root->fs_info->delalloc_lock); 1213 } 1214 return 0; 1215 } 1216 1217 /* 1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1219 * we don't create bios that span stripes or chunks 1220 */ 1221 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1222 size_t size, struct bio *bio, 1223 unsigned long bio_flags) 1224 { 1225 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1226 struct btrfs_mapping_tree *map_tree; 1227 u64 logical = (u64)bio->bi_sector << 9; 1228 u64 length = 0; 1229 u64 map_length; 1230 int ret; 1231 1232 if (bio_flags & EXTENT_BIO_COMPRESSED) 1233 return 0; 1234 1235 length = bio->bi_size; 1236 map_tree = &root->fs_info->mapping_tree; 1237 map_length = length; 1238 ret = btrfs_map_block(map_tree, READ, logical, 1239 &map_length, NULL, 0); 1240 1241 if (map_length < length + size) 1242 return 1; 1243 return 0; 1244 } 1245 1246 /* 1247 * in order to insert checksums into the metadata in large chunks, 1248 * we wait until bio submission time. All the pages in the bio are 1249 * checksummed and sums are attached onto the ordered extent record. 1250 * 1251 * At IO completion time the cums attached on the ordered extent record 1252 * are inserted into the btree 1253 */ 1254 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1255 struct bio *bio, int mirror_num, 1256 unsigned long bio_flags) 1257 { 1258 struct btrfs_root *root = BTRFS_I(inode)->root; 1259 int ret = 0; 1260 1261 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1262 BUG_ON(ret); 1263 return 0; 1264 } 1265 1266 /* 1267 * in order to insert checksums into the metadata in large chunks, 1268 * we wait until bio submission time. All the pages in the bio are 1269 * checksummed and sums are attached onto the ordered extent record. 1270 * 1271 * At IO completion time the cums attached on the ordered extent record 1272 * are inserted into the btree 1273 */ 1274 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1275 int mirror_num, unsigned long bio_flags) 1276 { 1277 struct btrfs_root *root = BTRFS_I(inode)->root; 1278 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1279 } 1280 1281 /* 1282 * extent_io.c submission hook. This does the right thing for csum calculation 1283 * on write, or reading the csums from the tree before a read 1284 */ 1285 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1286 int mirror_num, unsigned long bio_flags) 1287 { 1288 struct btrfs_root *root = BTRFS_I(inode)->root; 1289 int ret = 0; 1290 int skip_sum; 1291 1292 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1293 1294 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1295 BUG_ON(ret); 1296 1297 if (!(rw & (1 << BIO_RW))) { 1298 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1299 return btrfs_submit_compressed_read(inode, bio, 1300 mirror_num, bio_flags); 1301 } else if (!skip_sum) 1302 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1303 goto mapit; 1304 } else if (!skip_sum) { 1305 /* csum items have already been cloned */ 1306 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1307 goto mapit; 1308 /* we're doing a write, do the async checksumming */ 1309 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1310 inode, rw, bio, mirror_num, 1311 bio_flags, __btrfs_submit_bio_start, 1312 __btrfs_submit_bio_done); 1313 } 1314 1315 mapit: 1316 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1317 } 1318 1319 /* 1320 * given a list of ordered sums record them in the inode. This happens 1321 * at IO completion time based on sums calculated at bio submission time. 1322 */ 1323 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1324 struct inode *inode, u64 file_offset, 1325 struct list_head *list) 1326 { 1327 struct btrfs_ordered_sum *sum; 1328 1329 btrfs_set_trans_block_group(trans, inode); 1330 1331 list_for_each_entry(sum, list, list) { 1332 btrfs_csum_file_blocks(trans, 1333 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1334 } 1335 return 0; 1336 } 1337 1338 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1339 { 1340 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1341 WARN_ON(1); 1342 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1343 GFP_NOFS); 1344 } 1345 1346 /* see btrfs_writepage_start_hook for details on why this is required */ 1347 struct btrfs_writepage_fixup { 1348 struct page *page; 1349 struct btrfs_work work; 1350 }; 1351 1352 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1353 { 1354 struct btrfs_writepage_fixup *fixup; 1355 struct btrfs_ordered_extent *ordered; 1356 struct page *page; 1357 struct inode *inode; 1358 u64 page_start; 1359 u64 page_end; 1360 1361 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1362 page = fixup->page; 1363 again: 1364 lock_page(page); 1365 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1366 ClearPageChecked(page); 1367 goto out_page; 1368 } 1369 1370 inode = page->mapping->host; 1371 page_start = page_offset(page); 1372 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1373 1374 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1375 1376 /* already ordered? We're done */ 1377 if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 1378 EXTENT_ORDERED, 0)) { 1379 goto out; 1380 } 1381 1382 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1383 if (ordered) { 1384 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1385 page_end, GFP_NOFS); 1386 unlock_page(page); 1387 btrfs_start_ordered_extent(inode, ordered, 1); 1388 goto again; 1389 } 1390 1391 btrfs_set_extent_delalloc(inode, page_start, page_end); 1392 ClearPageChecked(page); 1393 out: 1394 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1395 out_page: 1396 unlock_page(page); 1397 page_cache_release(page); 1398 } 1399 1400 /* 1401 * There are a few paths in the higher layers of the kernel that directly 1402 * set the page dirty bit without asking the filesystem if it is a 1403 * good idea. This causes problems because we want to make sure COW 1404 * properly happens and the data=ordered rules are followed. 1405 * 1406 * In our case any range that doesn't have the ORDERED bit set 1407 * hasn't been properly setup for IO. We kick off an async process 1408 * to fix it up. The async helper will wait for ordered extents, set 1409 * the delalloc bit and make it safe to write the page. 1410 */ 1411 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1412 { 1413 struct inode *inode = page->mapping->host; 1414 struct btrfs_writepage_fixup *fixup; 1415 struct btrfs_root *root = BTRFS_I(inode)->root; 1416 int ret; 1417 1418 ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1419 EXTENT_ORDERED, 0); 1420 if (ret) 1421 return 0; 1422 1423 if (PageChecked(page)) 1424 return -EAGAIN; 1425 1426 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1427 if (!fixup) 1428 return -EAGAIN; 1429 1430 SetPageChecked(page); 1431 page_cache_get(page); 1432 fixup->work.func = btrfs_writepage_fixup_worker; 1433 fixup->page = page; 1434 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1435 return -EAGAIN; 1436 } 1437 1438 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1439 struct inode *inode, u64 file_pos, 1440 u64 disk_bytenr, u64 disk_num_bytes, 1441 u64 num_bytes, u64 ram_bytes, 1442 u64 locked_end, 1443 u8 compression, u8 encryption, 1444 u16 other_encoding, int extent_type) 1445 { 1446 struct btrfs_root *root = BTRFS_I(inode)->root; 1447 struct btrfs_file_extent_item *fi; 1448 struct btrfs_path *path; 1449 struct extent_buffer *leaf; 1450 struct btrfs_key ins; 1451 u64 hint; 1452 int ret; 1453 1454 path = btrfs_alloc_path(); 1455 BUG_ON(!path); 1456 1457 path->leave_spinning = 1; 1458 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1459 file_pos + num_bytes, locked_end, 1460 file_pos, &hint); 1461 BUG_ON(ret); 1462 1463 ins.objectid = inode->i_ino; 1464 ins.offset = file_pos; 1465 ins.type = BTRFS_EXTENT_DATA_KEY; 1466 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1467 BUG_ON(ret); 1468 leaf = path->nodes[0]; 1469 fi = btrfs_item_ptr(leaf, path->slots[0], 1470 struct btrfs_file_extent_item); 1471 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1472 btrfs_set_file_extent_type(leaf, fi, extent_type); 1473 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1474 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1475 btrfs_set_file_extent_offset(leaf, fi, 0); 1476 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1477 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1478 btrfs_set_file_extent_compression(leaf, fi, compression); 1479 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1480 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1481 1482 btrfs_unlock_up_safe(path, 1); 1483 btrfs_set_lock_blocking(leaf); 1484 1485 btrfs_mark_buffer_dirty(leaf); 1486 1487 inode_add_bytes(inode, num_bytes); 1488 btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0); 1489 1490 ins.objectid = disk_bytenr; 1491 ins.offset = disk_num_bytes; 1492 ins.type = BTRFS_EXTENT_ITEM_KEY; 1493 ret = btrfs_alloc_reserved_file_extent(trans, root, 1494 root->root_key.objectid, 1495 inode->i_ino, file_pos, &ins); 1496 BUG_ON(ret); 1497 btrfs_free_path(path); 1498 1499 return 0; 1500 } 1501 1502 /* 1503 * helper function for btrfs_finish_ordered_io, this 1504 * just reads in some of the csum leaves to prime them into ram 1505 * before we start the transaction. It limits the amount of btree 1506 * reads required while inside the transaction. 1507 */ 1508 static noinline void reada_csum(struct btrfs_root *root, 1509 struct btrfs_path *path, 1510 struct btrfs_ordered_extent *ordered_extent) 1511 { 1512 struct btrfs_ordered_sum *sum; 1513 u64 bytenr; 1514 1515 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum, 1516 list); 1517 bytenr = sum->sums[0].bytenr; 1518 1519 /* 1520 * we don't care about the results, the point of this search is 1521 * just to get the btree leaves into ram 1522 */ 1523 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0); 1524 } 1525 1526 /* as ordered data IO finishes, this gets called so we can finish 1527 * an ordered extent if the range of bytes in the file it covers are 1528 * fully written. 1529 */ 1530 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1531 { 1532 struct btrfs_root *root = BTRFS_I(inode)->root; 1533 struct btrfs_trans_handle *trans; 1534 struct btrfs_ordered_extent *ordered_extent = NULL; 1535 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1536 struct btrfs_path *path; 1537 int compressed = 0; 1538 int ret; 1539 1540 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1541 if (!ret) 1542 return 0; 1543 1544 /* 1545 * before we join the transaction, try to do some of our IO. 1546 * This will limit the amount of IO that we have to do with 1547 * the transaction running. We're unlikely to need to do any 1548 * IO if the file extents are new, the disk_i_size checks 1549 * covers the most common case. 1550 */ 1551 if (start < BTRFS_I(inode)->disk_i_size) { 1552 path = btrfs_alloc_path(); 1553 if (path) { 1554 ret = btrfs_lookup_file_extent(NULL, root, path, 1555 inode->i_ino, 1556 start, 0); 1557 ordered_extent = btrfs_lookup_ordered_extent(inode, 1558 start); 1559 if (!list_empty(&ordered_extent->list)) { 1560 btrfs_release_path(root, path); 1561 reada_csum(root, path, ordered_extent); 1562 } 1563 btrfs_free_path(path); 1564 } 1565 } 1566 1567 trans = btrfs_join_transaction(root, 1); 1568 1569 if (!ordered_extent) 1570 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1571 BUG_ON(!ordered_extent); 1572 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) 1573 goto nocow; 1574 1575 lock_extent(io_tree, ordered_extent->file_offset, 1576 ordered_extent->file_offset + ordered_extent->len - 1, 1577 GFP_NOFS); 1578 1579 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1580 compressed = 1; 1581 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1582 BUG_ON(compressed); 1583 ret = btrfs_mark_extent_written(trans, root, inode, 1584 ordered_extent->file_offset, 1585 ordered_extent->file_offset + 1586 ordered_extent->len); 1587 BUG_ON(ret); 1588 } else { 1589 ret = insert_reserved_file_extent(trans, inode, 1590 ordered_extent->file_offset, 1591 ordered_extent->start, 1592 ordered_extent->disk_len, 1593 ordered_extent->len, 1594 ordered_extent->len, 1595 ordered_extent->file_offset + 1596 ordered_extent->len, 1597 compressed, 0, 0, 1598 BTRFS_FILE_EXTENT_REG); 1599 BUG_ON(ret); 1600 } 1601 unlock_extent(io_tree, ordered_extent->file_offset, 1602 ordered_extent->file_offset + ordered_extent->len - 1, 1603 GFP_NOFS); 1604 nocow: 1605 add_pending_csums(trans, inode, ordered_extent->file_offset, 1606 &ordered_extent->list); 1607 1608 mutex_lock(&BTRFS_I(inode)->extent_mutex); 1609 btrfs_ordered_update_i_size(inode, ordered_extent); 1610 btrfs_update_inode(trans, root, inode); 1611 btrfs_remove_ordered_extent(inode, ordered_extent); 1612 mutex_unlock(&BTRFS_I(inode)->extent_mutex); 1613 1614 /* once for us */ 1615 btrfs_put_ordered_extent(ordered_extent); 1616 /* once for the tree */ 1617 btrfs_put_ordered_extent(ordered_extent); 1618 1619 btrfs_end_transaction(trans, root); 1620 return 0; 1621 } 1622 1623 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1624 struct extent_state *state, int uptodate) 1625 { 1626 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1627 } 1628 1629 /* 1630 * When IO fails, either with EIO or csum verification fails, we 1631 * try other mirrors that might have a good copy of the data. This 1632 * io_failure_record is used to record state as we go through all the 1633 * mirrors. If another mirror has good data, the page is set up to date 1634 * and things continue. If a good mirror can't be found, the original 1635 * bio end_io callback is called to indicate things have failed. 1636 */ 1637 struct io_failure_record { 1638 struct page *page; 1639 u64 start; 1640 u64 len; 1641 u64 logical; 1642 unsigned long bio_flags; 1643 int last_mirror; 1644 }; 1645 1646 static int btrfs_io_failed_hook(struct bio *failed_bio, 1647 struct page *page, u64 start, u64 end, 1648 struct extent_state *state) 1649 { 1650 struct io_failure_record *failrec = NULL; 1651 u64 private; 1652 struct extent_map *em; 1653 struct inode *inode = page->mapping->host; 1654 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1655 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1656 struct bio *bio; 1657 int num_copies; 1658 int ret; 1659 int rw; 1660 u64 logical; 1661 1662 ret = get_state_private(failure_tree, start, &private); 1663 if (ret) { 1664 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1665 if (!failrec) 1666 return -ENOMEM; 1667 failrec->start = start; 1668 failrec->len = end - start + 1; 1669 failrec->last_mirror = 0; 1670 failrec->bio_flags = 0; 1671 1672 spin_lock(&em_tree->lock); 1673 em = lookup_extent_mapping(em_tree, start, failrec->len); 1674 if (em->start > start || em->start + em->len < start) { 1675 free_extent_map(em); 1676 em = NULL; 1677 } 1678 spin_unlock(&em_tree->lock); 1679 1680 if (!em || IS_ERR(em)) { 1681 kfree(failrec); 1682 return -EIO; 1683 } 1684 logical = start - em->start; 1685 logical = em->block_start + logical; 1686 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1687 logical = em->block_start; 1688 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1689 } 1690 failrec->logical = logical; 1691 free_extent_map(em); 1692 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1693 EXTENT_DIRTY, GFP_NOFS); 1694 set_state_private(failure_tree, start, 1695 (u64)(unsigned long)failrec); 1696 } else { 1697 failrec = (struct io_failure_record *)(unsigned long)private; 1698 } 1699 num_copies = btrfs_num_copies( 1700 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1701 failrec->logical, failrec->len); 1702 failrec->last_mirror++; 1703 if (!state) { 1704 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1705 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1706 failrec->start, 1707 EXTENT_LOCKED); 1708 if (state && state->start != failrec->start) 1709 state = NULL; 1710 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1711 } 1712 if (!state || failrec->last_mirror > num_copies) { 1713 set_state_private(failure_tree, failrec->start, 0); 1714 clear_extent_bits(failure_tree, failrec->start, 1715 failrec->start + failrec->len - 1, 1716 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1717 kfree(failrec); 1718 return -EIO; 1719 } 1720 bio = bio_alloc(GFP_NOFS, 1); 1721 bio->bi_private = state; 1722 bio->bi_end_io = failed_bio->bi_end_io; 1723 bio->bi_sector = failrec->logical >> 9; 1724 bio->bi_bdev = failed_bio->bi_bdev; 1725 bio->bi_size = 0; 1726 1727 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1728 if (failed_bio->bi_rw & (1 << BIO_RW)) 1729 rw = WRITE; 1730 else 1731 rw = READ; 1732 1733 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1734 failrec->last_mirror, 1735 failrec->bio_flags); 1736 return 0; 1737 } 1738 1739 /* 1740 * each time an IO finishes, we do a fast check in the IO failure tree 1741 * to see if we need to process or clean up an io_failure_record 1742 */ 1743 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1744 { 1745 u64 private; 1746 u64 private_failure; 1747 struct io_failure_record *failure; 1748 int ret; 1749 1750 private = 0; 1751 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1752 (u64)-1, 1, EXTENT_DIRTY)) { 1753 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1754 start, &private_failure); 1755 if (ret == 0) { 1756 failure = (struct io_failure_record *)(unsigned long) 1757 private_failure; 1758 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1759 failure->start, 0); 1760 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1761 failure->start, 1762 failure->start + failure->len - 1, 1763 EXTENT_DIRTY | EXTENT_LOCKED, 1764 GFP_NOFS); 1765 kfree(failure); 1766 } 1767 } 1768 return 0; 1769 } 1770 1771 /* 1772 * when reads are done, we need to check csums to verify the data is correct 1773 * if there's a match, we allow the bio to finish. If not, we go through 1774 * the io_failure_record routines to find good copies 1775 */ 1776 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1777 struct extent_state *state) 1778 { 1779 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1780 struct inode *inode = page->mapping->host; 1781 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1782 char *kaddr; 1783 u64 private = ~(u32)0; 1784 int ret; 1785 struct btrfs_root *root = BTRFS_I(inode)->root; 1786 u32 csum = ~(u32)0; 1787 1788 if (PageChecked(page)) { 1789 ClearPageChecked(page); 1790 goto good; 1791 } 1792 1793 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1794 return 0; 1795 1796 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1797 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) { 1798 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1799 GFP_NOFS); 1800 return 0; 1801 } 1802 1803 if (state && state->start == start) { 1804 private = state->private; 1805 ret = 0; 1806 } else { 1807 ret = get_state_private(io_tree, start, &private); 1808 } 1809 kaddr = kmap_atomic(page, KM_USER0); 1810 if (ret) 1811 goto zeroit; 1812 1813 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1814 btrfs_csum_final(csum, (char *)&csum); 1815 if (csum != private) 1816 goto zeroit; 1817 1818 kunmap_atomic(kaddr, KM_USER0); 1819 good: 1820 /* if the io failure tree for this inode is non-empty, 1821 * check to see if we've recovered from a failed IO 1822 */ 1823 btrfs_clean_io_failures(inode, start); 1824 return 0; 1825 1826 zeroit: 1827 if (printk_ratelimit()) { 1828 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1829 "private %llu\n", page->mapping->host->i_ino, 1830 (unsigned long long)start, csum, 1831 (unsigned long long)private); 1832 } 1833 memset(kaddr + offset, 1, end - start + 1); 1834 flush_dcache_page(page); 1835 kunmap_atomic(kaddr, KM_USER0); 1836 if (private == 0) 1837 return 0; 1838 return -EIO; 1839 } 1840 1841 /* 1842 * This creates an orphan entry for the given inode in case something goes 1843 * wrong in the middle of an unlink/truncate. 1844 */ 1845 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1846 { 1847 struct btrfs_root *root = BTRFS_I(inode)->root; 1848 int ret = 0; 1849 1850 spin_lock(&root->list_lock); 1851 1852 /* already on the orphan list, we're good */ 1853 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 1854 spin_unlock(&root->list_lock); 1855 return 0; 1856 } 1857 1858 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1859 1860 spin_unlock(&root->list_lock); 1861 1862 /* 1863 * insert an orphan item to track this unlinked/truncated file 1864 */ 1865 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 1866 1867 return ret; 1868 } 1869 1870 /* 1871 * We have done the truncate/delete so we can go ahead and remove the orphan 1872 * item for this particular inode. 1873 */ 1874 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 1875 { 1876 struct btrfs_root *root = BTRFS_I(inode)->root; 1877 int ret = 0; 1878 1879 spin_lock(&root->list_lock); 1880 1881 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 1882 spin_unlock(&root->list_lock); 1883 return 0; 1884 } 1885 1886 list_del_init(&BTRFS_I(inode)->i_orphan); 1887 if (!trans) { 1888 spin_unlock(&root->list_lock); 1889 return 0; 1890 } 1891 1892 spin_unlock(&root->list_lock); 1893 1894 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 1895 1896 return ret; 1897 } 1898 1899 /* 1900 * this cleans up any orphans that may be left on the list from the last use 1901 * of this root. 1902 */ 1903 void btrfs_orphan_cleanup(struct btrfs_root *root) 1904 { 1905 struct btrfs_path *path; 1906 struct extent_buffer *leaf; 1907 struct btrfs_item *item; 1908 struct btrfs_key key, found_key; 1909 struct btrfs_trans_handle *trans; 1910 struct inode *inode; 1911 int ret = 0, nr_unlink = 0, nr_truncate = 0; 1912 1913 path = btrfs_alloc_path(); 1914 if (!path) 1915 return; 1916 path->reada = -1; 1917 1918 key.objectid = BTRFS_ORPHAN_OBJECTID; 1919 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 1920 key.offset = (u64)-1; 1921 1922 1923 while (1) { 1924 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1925 if (ret < 0) { 1926 printk(KERN_ERR "Error searching slot for orphan: %d" 1927 "\n", ret); 1928 break; 1929 } 1930 1931 /* 1932 * if ret == 0 means we found what we were searching for, which 1933 * is weird, but possible, so only screw with path if we didnt 1934 * find the key and see if we have stuff that matches 1935 */ 1936 if (ret > 0) { 1937 if (path->slots[0] == 0) 1938 break; 1939 path->slots[0]--; 1940 } 1941 1942 /* pull out the item */ 1943 leaf = path->nodes[0]; 1944 item = btrfs_item_nr(leaf, path->slots[0]); 1945 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1946 1947 /* make sure the item matches what we want */ 1948 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 1949 break; 1950 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 1951 break; 1952 1953 /* release the path since we're done with it */ 1954 btrfs_release_path(root, path); 1955 1956 /* 1957 * this is where we are basically btrfs_lookup, without the 1958 * crossing root thing. we store the inode number in the 1959 * offset of the orphan item. 1960 */ 1961 found_key.objectid = found_key.offset; 1962 found_key.type = BTRFS_INODE_ITEM_KEY; 1963 found_key.offset = 0; 1964 inode = btrfs_iget(root->fs_info->sb, &found_key, root); 1965 if (IS_ERR(inode)) 1966 break; 1967 1968 /* 1969 * add this inode to the orphan list so btrfs_orphan_del does 1970 * the proper thing when we hit it 1971 */ 1972 spin_lock(&root->list_lock); 1973 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 1974 spin_unlock(&root->list_lock); 1975 1976 /* 1977 * if this is a bad inode, means we actually succeeded in 1978 * removing the inode, but not the orphan record, which means 1979 * we need to manually delete the orphan since iput will just 1980 * do a destroy_inode 1981 */ 1982 if (is_bad_inode(inode)) { 1983 trans = btrfs_start_transaction(root, 1); 1984 btrfs_orphan_del(trans, inode); 1985 btrfs_end_transaction(trans, root); 1986 iput(inode); 1987 continue; 1988 } 1989 1990 /* if we have links, this was a truncate, lets do that */ 1991 if (inode->i_nlink) { 1992 nr_truncate++; 1993 btrfs_truncate(inode); 1994 } else { 1995 nr_unlink++; 1996 } 1997 1998 /* this will do delete_inode and everything for us */ 1999 iput(inode); 2000 } 2001 2002 if (nr_unlink) 2003 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2004 if (nr_truncate) 2005 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2006 2007 btrfs_free_path(path); 2008 } 2009 2010 /* 2011 * very simple check to peek ahead in the leaf looking for xattrs. If we 2012 * don't find any xattrs, we know there can't be any acls. 2013 * 2014 * slot is the slot the inode is in, objectid is the objectid of the inode 2015 */ 2016 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2017 int slot, u64 objectid) 2018 { 2019 u32 nritems = btrfs_header_nritems(leaf); 2020 struct btrfs_key found_key; 2021 int scanned = 0; 2022 2023 slot++; 2024 while (slot < nritems) { 2025 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2026 2027 /* we found a different objectid, there must not be acls */ 2028 if (found_key.objectid != objectid) 2029 return 0; 2030 2031 /* we found an xattr, assume we've got an acl */ 2032 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2033 return 1; 2034 2035 /* 2036 * we found a key greater than an xattr key, there can't 2037 * be any acls later on 2038 */ 2039 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2040 return 0; 2041 2042 slot++; 2043 scanned++; 2044 2045 /* 2046 * it goes inode, inode backrefs, xattrs, extents, 2047 * so if there are a ton of hard links to an inode there can 2048 * be a lot of backrefs. Don't waste time searching too hard, 2049 * this is just an optimization 2050 */ 2051 if (scanned >= 8) 2052 break; 2053 } 2054 /* we hit the end of the leaf before we found an xattr or 2055 * something larger than an xattr. We have to assume the inode 2056 * has acls 2057 */ 2058 return 1; 2059 } 2060 2061 /* 2062 * read an inode from the btree into the in-memory inode 2063 */ 2064 static void btrfs_read_locked_inode(struct inode *inode) 2065 { 2066 struct btrfs_path *path; 2067 struct extent_buffer *leaf; 2068 struct btrfs_inode_item *inode_item; 2069 struct btrfs_timespec *tspec; 2070 struct btrfs_root *root = BTRFS_I(inode)->root; 2071 struct btrfs_key location; 2072 int maybe_acls; 2073 u64 alloc_group_block; 2074 u32 rdev; 2075 int ret; 2076 2077 path = btrfs_alloc_path(); 2078 BUG_ON(!path); 2079 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2080 2081 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2082 if (ret) 2083 goto make_bad; 2084 2085 leaf = path->nodes[0]; 2086 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2087 struct btrfs_inode_item); 2088 2089 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2090 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2091 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2092 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2093 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2094 2095 tspec = btrfs_inode_atime(inode_item); 2096 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2097 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2098 2099 tspec = btrfs_inode_mtime(inode_item); 2100 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2101 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2102 2103 tspec = btrfs_inode_ctime(inode_item); 2104 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2105 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2106 2107 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2108 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2109 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2110 inode->i_generation = BTRFS_I(inode)->generation; 2111 inode->i_rdev = 0; 2112 rdev = btrfs_inode_rdev(leaf, inode_item); 2113 2114 BTRFS_I(inode)->index_cnt = (u64)-1; 2115 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2116 2117 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2118 2119 /* 2120 * try to precache a NULL acl entry for files that don't have 2121 * any xattrs or acls 2122 */ 2123 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2124 if (!maybe_acls) 2125 cache_no_acl(inode); 2126 2127 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2128 alloc_group_block, 0); 2129 btrfs_free_path(path); 2130 inode_item = NULL; 2131 2132 switch (inode->i_mode & S_IFMT) { 2133 case S_IFREG: 2134 inode->i_mapping->a_ops = &btrfs_aops; 2135 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2136 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2137 inode->i_fop = &btrfs_file_operations; 2138 inode->i_op = &btrfs_file_inode_operations; 2139 break; 2140 case S_IFDIR: 2141 inode->i_fop = &btrfs_dir_file_operations; 2142 if (root == root->fs_info->tree_root) 2143 inode->i_op = &btrfs_dir_ro_inode_operations; 2144 else 2145 inode->i_op = &btrfs_dir_inode_operations; 2146 break; 2147 case S_IFLNK: 2148 inode->i_op = &btrfs_symlink_inode_operations; 2149 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2150 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2151 break; 2152 default: 2153 inode->i_op = &btrfs_special_inode_operations; 2154 init_special_inode(inode, inode->i_mode, rdev); 2155 break; 2156 } 2157 2158 btrfs_update_iflags(inode); 2159 return; 2160 2161 make_bad: 2162 btrfs_free_path(path); 2163 make_bad_inode(inode); 2164 } 2165 2166 /* 2167 * given a leaf and an inode, copy the inode fields into the leaf 2168 */ 2169 static void fill_inode_item(struct btrfs_trans_handle *trans, 2170 struct extent_buffer *leaf, 2171 struct btrfs_inode_item *item, 2172 struct inode *inode) 2173 { 2174 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2175 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2176 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2177 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2178 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2179 2180 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2181 inode->i_atime.tv_sec); 2182 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2183 inode->i_atime.tv_nsec); 2184 2185 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2186 inode->i_mtime.tv_sec); 2187 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2188 inode->i_mtime.tv_nsec); 2189 2190 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2191 inode->i_ctime.tv_sec); 2192 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2193 inode->i_ctime.tv_nsec); 2194 2195 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2196 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2197 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2198 btrfs_set_inode_transid(leaf, item, trans->transid); 2199 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2200 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2201 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2202 } 2203 2204 /* 2205 * copy everything in the in-memory inode into the btree. 2206 */ 2207 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2208 struct btrfs_root *root, struct inode *inode) 2209 { 2210 struct btrfs_inode_item *inode_item; 2211 struct btrfs_path *path; 2212 struct extent_buffer *leaf; 2213 int ret; 2214 2215 path = btrfs_alloc_path(); 2216 BUG_ON(!path); 2217 path->leave_spinning = 1; 2218 ret = btrfs_lookup_inode(trans, root, path, 2219 &BTRFS_I(inode)->location, 1); 2220 if (ret) { 2221 if (ret > 0) 2222 ret = -ENOENT; 2223 goto failed; 2224 } 2225 2226 btrfs_unlock_up_safe(path, 1); 2227 leaf = path->nodes[0]; 2228 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2229 struct btrfs_inode_item); 2230 2231 fill_inode_item(trans, leaf, inode_item, inode); 2232 btrfs_mark_buffer_dirty(leaf); 2233 btrfs_set_inode_last_trans(trans, inode); 2234 ret = 0; 2235 failed: 2236 btrfs_free_path(path); 2237 return ret; 2238 } 2239 2240 2241 /* 2242 * unlink helper that gets used here in inode.c and in the tree logging 2243 * recovery code. It remove a link in a directory with a given name, and 2244 * also drops the back refs in the inode to the directory 2245 */ 2246 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2247 struct btrfs_root *root, 2248 struct inode *dir, struct inode *inode, 2249 const char *name, int name_len) 2250 { 2251 struct btrfs_path *path; 2252 int ret = 0; 2253 struct extent_buffer *leaf; 2254 struct btrfs_dir_item *di; 2255 struct btrfs_key key; 2256 u64 index; 2257 2258 path = btrfs_alloc_path(); 2259 if (!path) { 2260 ret = -ENOMEM; 2261 goto err; 2262 } 2263 2264 path->leave_spinning = 1; 2265 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2266 name, name_len, -1); 2267 if (IS_ERR(di)) { 2268 ret = PTR_ERR(di); 2269 goto err; 2270 } 2271 if (!di) { 2272 ret = -ENOENT; 2273 goto err; 2274 } 2275 leaf = path->nodes[0]; 2276 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2277 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2278 if (ret) 2279 goto err; 2280 btrfs_release_path(root, path); 2281 2282 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2283 inode->i_ino, 2284 dir->i_ino, &index); 2285 if (ret) { 2286 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2287 "inode %lu parent %lu\n", name_len, name, 2288 inode->i_ino, dir->i_ino); 2289 goto err; 2290 } 2291 2292 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2293 index, name, name_len, -1); 2294 if (IS_ERR(di)) { 2295 ret = PTR_ERR(di); 2296 goto err; 2297 } 2298 if (!di) { 2299 ret = -ENOENT; 2300 goto err; 2301 } 2302 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2303 btrfs_release_path(root, path); 2304 2305 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2306 inode, dir->i_ino); 2307 BUG_ON(ret != 0 && ret != -ENOENT); 2308 2309 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2310 dir, index); 2311 BUG_ON(ret); 2312 err: 2313 btrfs_free_path(path); 2314 if (ret) 2315 goto out; 2316 2317 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2318 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2319 btrfs_update_inode(trans, root, dir); 2320 btrfs_drop_nlink(inode); 2321 ret = btrfs_update_inode(trans, root, inode); 2322 out: 2323 return ret; 2324 } 2325 2326 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2327 { 2328 struct btrfs_root *root; 2329 struct btrfs_trans_handle *trans; 2330 struct inode *inode = dentry->d_inode; 2331 int ret; 2332 unsigned long nr = 0; 2333 2334 root = BTRFS_I(dir)->root; 2335 2336 trans = btrfs_start_transaction(root, 1); 2337 2338 btrfs_set_trans_block_group(trans, dir); 2339 2340 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2341 2342 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2343 dentry->d_name.name, dentry->d_name.len); 2344 2345 if (inode->i_nlink == 0) 2346 ret = btrfs_orphan_add(trans, inode); 2347 2348 nr = trans->blocks_used; 2349 2350 btrfs_end_transaction_throttle(trans, root); 2351 btrfs_btree_balance_dirty(root, nr); 2352 return ret; 2353 } 2354 2355 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2356 { 2357 struct inode *inode = dentry->d_inode; 2358 int err = 0; 2359 int ret; 2360 struct btrfs_root *root = BTRFS_I(dir)->root; 2361 struct btrfs_trans_handle *trans; 2362 unsigned long nr = 0; 2363 2364 /* 2365 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir 2366 * the root of a subvolume or snapshot 2367 */ 2368 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2369 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) { 2370 return -ENOTEMPTY; 2371 } 2372 2373 trans = btrfs_start_transaction(root, 1); 2374 btrfs_set_trans_block_group(trans, dir); 2375 2376 err = btrfs_orphan_add(trans, inode); 2377 if (err) 2378 goto fail_trans; 2379 2380 /* now the directory is empty */ 2381 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2382 dentry->d_name.name, dentry->d_name.len); 2383 if (!err) 2384 btrfs_i_size_write(inode, 0); 2385 2386 fail_trans: 2387 nr = trans->blocks_used; 2388 ret = btrfs_end_transaction_throttle(trans, root); 2389 btrfs_btree_balance_dirty(root, nr); 2390 2391 if (ret && !err) 2392 err = ret; 2393 return err; 2394 } 2395 2396 #if 0 2397 /* 2398 * when truncating bytes in a file, it is possible to avoid reading 2399 * the leaves that contain only checksum items. This can be the 2400 * majority of the IO required to delete a large file, but it must 2401 * be done carefully. 2402 * 2403 * The keys in the level just above the leaves are checked to make sure 2404 * the lowest key in a given leaf is a csum key, and starts at an offset 2405 * after the new size. 2406 * 2407 * Then the key for the next leaf is checked to make sure it also has 2408 * a checksum item for the same file. If it does, we know our target leaf 2409 * contains only checksum items, and it can be safely freed without reading 2410 * it. 2411 * 2412 * This is just an optimization targeted at large files. It may do 2413 * nothing. It will return 0 unless things went badly. 2414 */ 2415 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2416 struct btrfs_root *root, 2417 struct btrfs_path *path, 2418 struct inode *inode, u64 new_size) 2419 { 2420 struct btrfs_key key; 2421 int ret; 2422 int nritems; 2423 struct btrfs_key found_key; 2424 struct btrfs_key other_key; 2425 struct btrfs_leaf_ref *ref; 2426 u64 leaf_gen; 2427 u64 leaf_start; 2428 2429 path->lowest_level = 1; 2430 key.objectid = inode->i_ino; 2431 key.type = BTRFS_CSUM_ITEM_KEY; 2432 key.offset = new_size; 2433 again: 2434 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2435 if (ret < 0) 2436 goto out; 2437 2438 if (path->nodes[1] == NULL) { 2439 ret = 0; 2440 goto out; 2441 } 2442 ret = 0; 2443 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2444 nritems = btrfs_header_nritems(path->nodes[1]); 2445 2446 if (!nritems) 2447 goto out; 2448 2449 if (path->slots[1] >= nritems) 2450 goto next_node; 2451 2452 /* did we find a key greater than anything we want to delete? */ 2453 if (found_key.objectid > inode->i_ino || 2454 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2455 goto out; 2456 2457 /* we check the next key in the node to make sure the leave contains 2458 * only checksum items. This comparison doesn't work if our 2459 * leaf is the last one in the node 2460 */ 2461 if (path->slots[1] + 1 >= nritems) { 2462 next_node: 2463 /* search forward from the last key in the node, this 2464 * will bring us into the next node in the tree 2465 */ 2466 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2467 2468 /* unlikely, but we inc below, so check to be safe */ 2469 if (found_key.offset == (u64)-1) 2470 goto out; 2471 2472 /* search_forward needs a path with locks held, do the 2473 * search again for the original key. It is possible 2474 * this will race with a balance and return a path that 2475 * we could modify, but this drop is just an optimization 2476 * and is allowed to miss some leaves. 2477 */ 2478 btrfs_release_path(root, path); 2479 found_key.offset++; 2480 2481 /* setup a max key for search_forward */ 2482 other_key.offset = (u64)-1; 2483 other_key.type = key.type; 2484 other_key.objectid = key.objectid; 2485 2486 path->keep_locks = 1; 2487 ret = btrfs_search_forward(root, &found_key, &other_key, 2488 path, 0, 0); 2489 path->keep_locks = 0; 2490 if (ret || found_key.objectid != key.objectid || 2491 found_key.type != key.type) { 2492 ret = 0; 2493 goto out; 2494 } 2495 2496 key.offset = found_key.offset; 2497 btrfs_release_path(root, path); 2498 cond_resched(); 2499 goto again; 2500 } 2501 2502 /* we know there's one more slot after us in the tree, 2503 * read that key so we can verify it is also a checksum item 2504 */ 2505 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2506 2507 if (found_key.objectid < inode->i_ino) 2508 goto next_key; 2509 2510 if (found_key.type != key.type || found_key.offset < new_size) 2511 goto next_key; 2512 2513 /* 2514 * if the key for the next leaf isn't a csum key from this objectid, 2515 * we can't be sure there aren't good items inside this leaf. 2516 * Bail out 2517 */ 2518 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2519 goto out; 2520 2521 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2522 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2523 /* 2524 * it is safe to delete this leaf, it contains only 2525 * csum items from this inode at an offset >= new_size 2526 */ 2527 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2528 BUG_ON(ret); 2529 2530 if (root->ref_cows && leaf_gen < trans->transid) { 2531 ref = btrfs_alloc_leaf_ref(root, 0); 2532 if (ref) { 2533 ref->root_gen = root->root_key.offset; 2534 ref->bytenr = leaf_start; 2535 ref->owner = 0; 2536 ref->generation = leaf_gen; 2537 ref->nritems = 0; 2538 2539 btrfs_sort_leaf_ref(ref); 2540 2541 ret = btrfs_add_leaf_ref(root, ref, 0); 2542 WARN_ON(ret); 2543 btrfs_free_leaf_ref(root, ref); 2544 } else { 2545 WARN_ON(1); 2546 } 2547 } 2548 next_key: 2549 btrfs_release_path(root, path); 2550 2551 if (other_key.objectid == inode->i_ino && 2552 other_key.type == key.type && other_key.offset > key.offset) { 2553 key.offset = other_key.offset; 2554 cond_resched(); 2555 goto again; 2556 } 2557 ret = 0; 2558 out: 2559 /* fixup any changes we've made to the path */ 2560 path->lowest_level = 0; 2561 path->keep_locks = 0; 2562 btrfs_release_path(root, path); 2563 return ret; 2564 } 2565 2566 #endif 2567 2568 /* 2569 * this can truncate away extent items, csum items and directory items. 2570 * It starts at a high offset and removes keys until it can't find 2571 * any higher than new_size 2572 * 2573 * csum items that cross the new i_size are truncated to the new size 2574 * as well. 2575 * 2576 * min_type is the minimum key type to truncate down to. If set to 0, this 2577 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2578 */ 2579 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2580 struct btrfs_root *root, 2581 struct inode *inode, 2582 u64 new_size, u32 min_type) 2583 { 2584 int ret; 2585 struct btrfs_path *path; 2586 struct btrfs_key key; 2587 struct btrfs_key found_key; 2588 u32 found_type = (u8)-1; 2589 struct extent_buffer *leaf; 2590 struct btrfs_file_extent_item *fi; 2591 u64 extent_start = 0; 2592 u64 extent_num_bytes = 0; 2593 u64 extent_offset = 0; 2594 u64 item_end = 0; 2595 int found_extent; 2596 int del_item; 2597 int pending_del_nr = 0; 2598 int pending_del_slot = 0; 2599 int extent_type = -1; 2600 int encoding; 2601 u64 mask = root->sectorsize - 1; 2602 2603 if (root->ref_cows) 2604 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2605 path = btrfs_alloc_path(); 2606 path->reada = -1; 2607 BUG_ON(!path); 2608 2609 /* FIXME, add redo link to tree so we don't leak on crash */ 2610 key.objectid = inode->i_ino; 2611 key.offset = (u64)-1; 2612 key.type = (u8)-1; 2613 2614 search_again: 2615 path->leave_spinning = 1; 2616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2617 if (ret < 0) 2618 goto error; 2619 2620 if (ret > 0) { 2621 /* there are no items in the tree for us to truncate, we're 2622 * done 2623 */ 2624 if (path->slots[0] == 0) { 2625 ret = 0; 2626 goto error; 2627 } 2628 path->slots[0]--; 2629 } 2630 2631 while (1) { 2632 fi = NULL; 2633 leaf = path->nodes[0]; 2634 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2635 found_type = btrfs_key_type(&found_key); 2636 encoding = 0; 2637 2638 if (found_key.objectid != inode->i_ino) 2639 break; 2640 2641 if (found_type < min_type) 2642 break; 2643 2644 item_end = found_key.offset; 2645 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2646 fi = btrfs_item_ptr(leaf, path->slots[0], 2647 struct btrfs_file_extent_item); 2648 extent_type = btrfs_file_extent_type(leaf, fi); 2649 encoding = btrfs_file_extent_compression(leaf, fi); 2650 encoding |= btrfs_file_extent_encryption(leaf, fi); 2651 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2652 2653 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2654 item_end += 2655 btrfs_file_extent_num_bytes(leaf, fi); 2656 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2657 item_end += btrfs_file_extent_inline_len(leaf, 2658 fi); 2659 } 2660 item_end--; 2661 } 2662 if (item_end < new_size) { 2663 if (found_type == BTRFS_DIR_ITEM_KEY) 2664 found_type = BTRFS_INODE_ITEM_KEY; 2665 else if (found_type == BTRFS_EXTENT_ITEM_KEY) 2666 found_type = BTRFS_EXTENT_DATA_KEY; 2667 else if (found_type == BTRFS_EXTENT_DATA_KEY) 2668 found_type = BTRFS_XATTR_ITEM_KEY; 2669 else if (found_type == BTRFS_XATTR_ITEM_KEY) 2670 found_type = BTRFS_INODE_REF_KEY; 2671 else if (found_type) 2672 found_type--; 2673 else 2674 break; 2675 btrfs_set_key_type(&key, found_type); 2676 goto next; 2677 } 2678 if (found_key.offset >= new_size) 2679 del_item = 1; 2680 else 2681 del_item = 0; 2682 found_extent = 0; 2683 2684 /* FIXME, shrink the extent if the ref count is only 1 */ 2685 if (found_type != BTRFS_EXTENT_DATA_KEY) 2686 goto delete; 2687 2688 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2689 u64 num_dec; 2690 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 2691 if (!del_item && !encoding) { 2692 u64 orig_num_bytes = 2693 btrfs_file_extent_num_bytes(leaf, fi); 2694 extent_num_bytes = new_size - 2695 found_key.offset + root->sectorsize - 1; 2696 extent_num_bytes = extent_num_bytes & 2697 ~((u64)root->sectorsize - 1); 2698 btrfs_set_file_extent_num_bytes(leaf, fi, 2699 extent_num_bytes); 2700 num_dec = (orig_num_bytes - 2701 extent_num_bytes); 2702 if (root->ref_cows && extent_start != 0) 2703 inode_sub_bytes(inode, num_dec); 2704 btrfs_mark_buffer_dirty(leaf); 2705 } else { 2706 extent_num_bytes = 2707 btrfs_file_extent_disk_num_bytes(leaf, 2708 fi); 2709 extent_offset = found_key.offset - 2710 btrfs_file_extent_offset(leaf, fi); 2711 2712 /* FIXME blocksize != 4096 */ 2713 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 2714 if (extent_start != 0) { 2715 found_extent = 1; 2716 if (root->ref_cows) 2717 inode_sub_bytes(inode, num_dec); 2718 } 2719 } 2720 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2721 /* 2722 * we can't truncate inline items that have had 2723 * special encodings 2724 */ 2725 if (!del_item && 2726 btrfs_file_extent_compression(leaf, fi) == 0 && 2727 btrfs_file_extent_encryption(leaf, fi) == 0 && 2728 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 2729 u32 size = new_size - found_key.offset; 2730 2731 if (root->ref_cows) { 2732 inode_sub_bytes(inode, item_end + 1 - 2733 new_size); 2734 } 2735 size = 2736 btrfs_file_extent_calc_inline_size(size); 2737 ret = btrfs_truncate_item(trans, root, path, 2738 size, 1); 2739 BUG_ON(ret); 2740 } else if (root->ref_cows) { 2741 inode_sub_bytes(inode, item_end + 1 - 2742 found_key.offset); 2743 } 2744 } 2745 delete: 2746 if (del_item) { 2747 if (!pending_del_nr) { 2748 /* no pending yet, add ourselves */ 2749 pending_del_slot = path->slots[0]; 2750 pending_del_nr = 1; 2751 } else if (pending_del_nr && 2752 path->slots[0] + 1 == pending_del_slot) { 2753 /* hop on the pending chunk */ 2754 pending_del_nr++; 2755 pending_del_slot = path->slots[0]; 2756 } else { 2757 BUG(); 2758 } 2759 } else { 2760 break; 2761 } 2762 if (found_extent && root->ref_cows) { 2763 btrfs_set_path_blocking(path); 2764 ret = btrfs_free_extent(trans, root, extent_start, 2765 extent_num_bytes, 0, 2766 btrfs_header_owner(leaf), 2767 inode->i_ino, extent_offset); 2768 BUG_ON(ret); 2769 } 2770 next: 2771 if (path->slots[0] == 0) { 2772 if (pending_del_nr) 2773 goto del_pending; 2774 btrfs_release_path(root, path); 2775 if (found_type == BTRFS_INODE_ITEM_KEY) 2776 break; 2777 goto search_again; 2778 } 2779 2780 path->slots[0]--; 2781 if (pending_del_nr && 2782 path->slots[0] + 1 != pending_del_slot) { 2783 struct btrfs_key debug; 2784 del_pending: 2785 btrfs_item_key_to_cpu(path->nodes[0], &debug, 2786 pending_del_slot); 2787 ret = btrfs_del_items(trans, root, path, 2788 pending_del_slot, 2789 pending_del_nr); 2790 BUG_ON(ret); 2791 pending_del_nr = 0; 2792 btrfs_release_path(root, path); 2793 if (found_type == BTRFS_INODE_ITEM_KEY) 2794 break; 2795 goto search_again; 2796 } 2797 } 2798 ret = 0; 2799 error: 2800 if (pending_del_nr) { 2801 ret = btrfs_del_items(trans, root, path, pending_del_slot, 2802 pending_del_nr); 2803 } 2804 btrfs_free_path(path); 2805 return ret; 2806 } 2807 2808 /* 2809 * taken from block_truncate_page, but does cow as it zeros out 2810 * any bytes left in the last page in the file. 2811 */ 2812 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 2813 { 2814 struct inode *inode = mapping->host; 2815 struct btrfs_root *root = BTRFS_I(inode)->root; 2816 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2817 struct btrfs_ordered_extent *ordered; 2818 char *kaddr; 2819 u32 blocksize = root->sectorsize; 2820 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2821 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2822 struct page *page; 2823 int ret = 0; 2824 u64 page_start; 2825 u64 page_end; 2826 2827 if ((offset & (blocksize - 1)) == 0) 2828 goto out; 2829 2830 ret = -ENOMEM; 2831 again: 2832 page = grab_cache_page(mapping, index); 2833 if (!page) 2834 goto out; 2835 2836 page_start = page_offset(page); 2837 page_end = page_start + PAGE_CACHE_SIZE - 1; 2838 2839 if (!PageUptodate(page)) { 2840 ret = btrfs_readpage(NULL, page); 2841 lock_page(page); 2842 if (page->mapping != mapping) { 2843 unlock_page(page); 2844 page_cache_release(page); 2845 goto again; 2846 } 2847 if (!PageUptodate(page)) { 2848 ret = -EIO; 2849 goto out_unlock; 2850 } 2851 } 2852 wait_on_page_writeback(page); 2853 2854 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 2855 set_page_extent_mapped(page); 2856 2857 ordered = btrfs_lookup_ordered_extent(inode, page_start); 2858 if (ordered) { 2859 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2860 unlock_page(page); 2861 page_cache_release(page); 2862 btrfs_start_ordered_extent(inode, ordered, 1); 2863 btrfs_put_ordered_extent(ordered); 2864 goto again; 2865 } 2866 2867 btrfs_set_extent_delalloc(inode, page_start, page_end); 2868 ret = 0; 2869 if (offset != PAGE_CACHE_SIZE) { 2870 kaddr = kmap(page); 2871 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 2872 flush_dcache_page(page); 2873 kunmap(page); 2874 } 2875 ClearPageChecked(page); 2876 set_page_dirty(page); 2877 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 2878 2879 out_unlock: 2880 unlock_page(page); 2881 page_cache_release(page); 2882 out: 2883 return ret; 2884 } 2885 2886 int btrfs_cont_expand(struct inode *inode, loff_t size) 2887 { 2888 struct btrfs_trans_handle *trans; 2889 struct btrfs_root *root = BTRFS_I(inode)->root; 2890 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2891 struct extent_map *em; 2892 u64 mask = root->sectorsize - 1; 2893 u64 hole_start = (inode->i_size + mask) & ~mask; 2894 u64 block_end = (size + mask) & ~mask; 2895 u64 last_byte; 2896 u64 cur_offset; 2897 u64 hole_size; 2898 int err; 2899 2900 if (size <= hole_start) 2901 return 0; 2902 2903 err = btrfs_check_metadata_free_space(root); 2904 if (err) 2905 return err; 2906 2907 btrfs_truncate_page(inode->i_mapping, inode->i_size); 2908 2909 while (1) { 2910 struct btrfs_ordered_extent *ordered; 2911 btrfs_wait_ordered_range(inode, hole_start, 2912 block_end - hole_start); 2913 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2914 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 2915 if (!ordered) 2916 break; 2917 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2918 btrfs_put_ordered_extent(ordered); 2919 } 2920 2921 trans = btrfs_start_transaction(root, 1); 2922 btrfs_set_trans_block_group(trans, inode); 2923 2924 cur_offset = hole_start; 2925 while (1) { 2926 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 2927 block_end - cur_offset, 0); 2928 BUG_ON(IS_ERR(em) || !em); 2929 last_byte = min(extent_map_end(em), block_end); 2930 last_byte = (last_byte + mask) & ~mask; 2931 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) { 2932 u64 hint_byte = 0; 2933 hole_size = last_byte - cur_offset; 2934 err = btrfs_drop_extents(trans, root, inode, 2935 cur_offset, 2936 cur_offset + hole_size, 2937 block_end, 2938 cur_offset, &hint_byte); 2939 if (err) 2940 break; 2941 err = btrfs_insert_file_extent(trans, root, 2942 inode->i_ino, cur_offset, 0, 2943 0, hole_size, 0, hole_size, 2944 0, 0, 0); 2945 btrfs_drop_extent_cache(inode, hole_start, 2946 last_byte - 1, 0); 2947 } 2948 free_extent_map(em); 2949 cur_offset = last_byte; 2950 if (err || cur_offset >= block_end) 2951 break; 2952 } 2953 2954 btrfs_end_transaction(trans, root); 2955 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 2956 return err; 2957 } 2958 2959 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 2960 { 2961 struct inode *inode = dentry->d_inode; 2962 int err; 2963 2964 err = inode_change_ok(inode, attr); 2965 if (err) 2966 return err; 2967 2968 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 2969 if (attr->ia_size > inode->i_size) { 2970 err = btrfs_cont_expand(inode, attr->ia_size); 2971 if (err) 2972 return err; 2973 } else if (inode->i_size > 0 && 2974 attr->ia_size == 0) { 2975 2976 /* we're truncating a file that used to have good 2977 * data down to zero. Make sure it gets into 2978 * the ordered flush list so that any new writes 2979 * get down to disk quickly. 2980 */ 2981 BTRFS_I(inode)->ordered_data_close = 1; 2982 } 2983 } 2984 2985 err = inode_setattr(inode, attr); 2986 2987 if (!err && ((attr->ia_valid & ATTR_MODE))) 2988 err = btrfs_acl_chmod(inode); 2989 return err; 2990 } 2991 2992 void btrfs_delete_inode(struct inode *inode) 2993 { 2994 struct btrfs_trans_handle *trans; 2995 struct btrfs_root *root = BTRFS_I(inode)->root; 2996 unsigned long nr; 2997 int ret; 2998 2999 truncate_inode_pages(&inode->i_data, 0); 3000 if (is_bad_inode(inode)) { 3001 btrfs_orphan_del(NULL, inode); 3002 goto no_delete; 3003 } 3004 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3005 3006 btrfs_i_size_write(inode, 0); 3007 trans = btrfs_join_transaction(root, 1); 3008 3009 btrfs_set_trans_block_group(trans, inode); 3010 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0); 3011 if (ret) { 3012 btrfs_orphan_del(NULL, inode); 3013 goto no_delete_lock; 3014 } 3015 3016 btrfs_orphan_del(trans, inode); 3017 3018 nr = trans->blocks_used; 3019 clear_inode(inode); 3020 3021 btrfs_end_transaction(trans, root); 3022 btrfs_btree_balance_dirty(root, nr); 3023 return; 3024 3025 no_delete_lock: 3026 nr = trans->blocks_used; 3027 btrfs_end_transaction(trans, root); 3028 btrfs_btree_balance_dirty(root, nr); 3029 no_delete: 3030 clear_inode(inode); 3031 } 3032 3033 /* 3034 * this returns the key found in the dir entry in the location pointer. 3035 * If no dir entries were found, location->objectid is 0. 3036 */ 3037 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3038 struct btrfs_key *location) 3039 { 3040 const char *name = dentry->d_name.name; 3041 int namelen = dentry->d_name.len; 3042 struct btrfs_dir_item *di; 3043 struct btrfs_path *path; 3044 struct btrfs_root *root = BTRFS_I(dir)->root; 3045 int ret = 0; 3046 3047 path = btrfs_alloc_path(); 3048 BUG_ON(!path); 3049 3050 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3051 namelen, 0); 3052 if (IS_ERR(di)) 3053 ret = PTR_ERR(di); 3054 3055 if (!di || IS_ERR(di)) 3056 goto out_err; 3057 3058 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3059 out: 3060 btrfs_free_path(path); 3061 return ret; 3062 out_err: 3063 location->objectid = 0; 3064 goto out; 3065 } 3066 3067 /* 3068 * when we hit a tree root in a directory, the btrfs part of the inode 3069 * needs to be changed to reflect the root directory of the tree root. This 3070 * is kind of like crossing a mount point. 3071 */ 3072 static int fixup_tree_root_location(struct btrfs_root *root, 3073 struct btrfs_key *location, 3074 struct btrfs_root **sub_root, 3075 struct dentry *dentry) 3076 { 3077 struct btrfs_root_item *ri; 3078 3079 if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY) 3080 return 0; 3081 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 3082 return 0; 3083 3084 *sub_root = btrfs_read_fs_root(root->fs_info, location, 3085 dentry->d_name.name, 3086 dentry->d_name.len); 3087 if (IS_ERR(*sub_root)) 3088 return PTR_ERR(*sub_root); 3089 3090 ri = &(*sub_root)->root_item; 3091 location->objectid = btrfs_root_dirid(ri); 3092 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3093 location->offset = 0; 3094 3095 return 0; 3096 } 3097 3098 static void inode_tree_add(struct inode *inode) 3099 { 3100 struct btrfs_root *root = BTRFS_I(inode)->root; 3101 struct btrfs_inode *entry; 3102 struct rb_node **p = &root->inode_tree.rb_node; 3103 struct rb_node *parent = NULL; 3104 3105 spin_lock(&root->inode_lock); 3106 while (*p) { 3107 parent = *p; 3108 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3109 3110 if (inode->i_ino < entry->vfs_inode.i_ino) 3111 p = &(*p)->rb_left; 3112 else if (inode->i_ino > entry->vfs_inode.i_ino) 3113 p = &(*p)->rb_right; 3114 else { 3115 WARN_ON(!(entry->vfs_inode.i_state & 3116 (I_WILL_FREE | I_FREEING | I_CLEAR))); 3117 break; 3118 } 3119 } 3120 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3121 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3122 spin_unlock(&root->inode_lock); 3123 } 3124 3125 static void inode_tree_del(struct inode *inode) 3126 { 3127 struct btrfs_root *root = BTRFS_I(inode)->root; 3128 3129 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3130 spin_lock(&root->inode_lock); 3131 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3132 spin_unlock(&root->inode_lock); 3133 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3134 } 3135 } 3136 3137 static noinline void init_btrfs_i(struct inode *inode) 3138 { 3139 struct btrfs_inode *bi = BTRFS_I(inode); 3140 3141 bi->generation = 0; 3142 bi->sequence = 0; 3143 bi->last_trans = 0; 3144 bi->logged_trans = 0; 3145 bi->delalloc_bytes = 0; 3146 bi->reserved_bytes = 0; 3147 bi->disk_i_size = 0; 3148 bi->flags = 0; 3149 bi->index_cnt = (u64)-1; 3150 bi->last_unlink_trans = 0; 3151 bi->ordered_data_close = 0; 3152 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 3153 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 3154 inode->i_mapping, GFP_NOFS); 3155 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3156 inode->i_mapping, GFP_NOFS); 3157 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3158 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations); 3159 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3160 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3161 mutex_init(&BTRFS_I(inode)->extent_mutex); 3162 mutex_init(&BTRFS_I(inode)->log_mutex); 3163 } 3164 3165 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3166 { 3167 struct btrfs_iget_args *args = p; 3168 inode->i_ino = args->ino; 3169 init_btrfs_i(inode); 3170 BTRFS_I(inode)->root = args->root; 3171 btrfs_set_inode_space_info(args->root, inode); 3172 return 0; 3173 } 3174 3175 static int btrfs_find_actor(struct inode *inode, void *opaque) 3176 { 3177 struct btrfs_iget_args *args = opaque; 3178 return args->ino == inode->i_ino && 3179 args->root == BTRFS_I(inode)->root; 3180 } 3181 3182 static struct inode *btrfs_iget_locked(struct super_block *s, 3183 u64 objectid, 3184 struct btrfs_root *root) 3185 { 3186 struct inode *inode; 3187 struct btrfs_iget_args args; 3188 args.ino = objectid; 3189 args.root = root; 3190 3191 inode = iget5_locked(s, objectid, btrfs_find_actor, 3192 btrfs_init_locked_inode, 3193 (void *)&args); 3194 return inode; 3195 } 3196 3197 /* Get an inode object given its location and corresponding root. 3198 * Returns in *is_new if the inode was read from disk 3199 */ 3200 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3201 struct btrfs_root *root) 3202 { 3203 struct inode *inode; 3204 3205 inode = btrfs_iget_locked(s, location->objectid, root); 3206 if (!inode) 3207 return ERR_PTR(-ENOMEM); 3208 3209 if (inode->i_state & I_NEW) { 3210 BTRFS_I(inode)->root = root; 3211 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3212 btrfs_read_locked_inode(inode); 3213 3214 inode_tree_add(inode); 3215 unlock_new_inode(inode); 3216 } 3217 3218 return inode; 3219 } 3220 3221 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3222 { 3223 struct inode *inode; 3224 struct btrfs_inode *bi = BTRFS_I(dir); 3225 struct btrfs_root *root = bi->root; 3226 struct btrfs_root *sub_root = root; 3227 struct btrfs_key location; 3228 int ret; 3229 3230 if (dentry->d_name.len > BTRFS_NAME_LEN) 3231 return ERR_PTR(-ENAMETOOLONG); 3232 3233 ret = btrfs_inode_by_name(dir, dentry, &location); 3234 3235 if (ret < 0) 3236 return ERR_PTR(ret); 3237 3238 inode = NULL; 3239 if (location.objectid) { 3240 ret = fixup_tree_root_location(root, &location, &sub_root, 3241 dentry); 3242 if (ret < 0) 3243 return ERR_PTR(ret); 3244 if (ret > 0) 3245 return ERR_PTR(-ENOENT); 3246 inode = btrfs_iget(dir->i_sb, &location, sub_root); 3247 if (IS_ERR(inode)) 3248 return ERR_CAST(inode); 3249 } 3250 return inode; 3251 } 3252 3253 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3254 struct nameidata *nd) 3255 { 3256 struct inode *inode; 3257 3258 if (dentry->d_name.len > BTRFS_NAME_LEN) 3259 return ERR_PTR(-ENAMETOOLONG); 3260 3261 inode = btrfs_lookup_dentry(dir, dentry); 3262 if (IS_ERR(inode)) 3263 return ERR_CAST(inode); 3264 3265 return d_splice_alias(inode, dentry); 3266 } 3267 3268 static unsigned char btrfs_filetype_table[] = { 3269 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3270 }; 3271 3272 static int btrfs_real_readdir(struct file *filp, void *dirent, 3273 filldir_t filldir) 3274 { 3275 struct inode *inode = filp->f_dentry->d_inode; 3276 struct btrfs_root *root = BTRFS_I(inode)->root; 3277 struct btrfs_item *item; 3278 struct btrfs_dir_item *di; 3279 struct btrfs_key key; 3280 struct btrfs_key found_key; 3281 struct btrfs_path *path; 3282 int ret; 3283 u32 nritems; 3284 struct extent_buffer *leaf; 3285 int slot; 3286 int advance; 3287 unsigned char d_type; 3288 int over = 0; 3289 u32 di_cur; 3290 u32 di_total; 3291 u32 di_len; 3292 int key_type = BTRFS_DIR_INDEX_KEY; 3293 char tmp_name[32]; 3294 char *name_ptr; 3295 int name_len; 3296 3297 /* FIXME, use a real flag for deciding about the key type */ 3298 if (root->fs_info->tree_root == root) 3299 key_type = BTRFS_DIR_ITEM_KEY; 3300 3301 /* special case for "." */ 3302 if (filp->f_pos == 0) { 3303 over = filldir(dirent, ".", 1, 3304 1, inode->i_ino, 3305 DT_DIR); 3306 if (over) 3307 return 0; 3308 filp->f_pos = 1; 3309 } 3310 /* special case for .., just use the back ref */ 3311 if (filp->f_pos == 1) { 3312 u64 pino = parent_ino(filp->f_path.dentry); 3313 over = filldir(dirent, "..", 2, 3314 2, pino, DT_DIR); 3315 if (over) 3316 return 0; 3317 filp->f_pos = 2; 3318 } 3319 path = btrfs_alloc_path(); 3320 path->reada = 2; 3321 3322 btrfs_set_key_type(&key, key_type); 3323 key.offset = filp->f_pos; 3324 key.objectid = inode->i_ino; 3325 3326 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3327 if (ret < 0) 3328 goto err; 3329 advance = 0; 3330 3331 while (1) { 3332 leaf = path->nodes[0]; 3333 nritems = btrfs_header_nritems(leaf); 3334 slot = path->slots[0]; 3335 if (advance || slot >= nritems) { 3336 if (slot >= nritems - 1) { 3337 ret = btrfs_next_leaf(root, path); 3338 if (ret) 3339 break; 3340 leaf = path->nodes[0]; 3341 nritems = btrfs_header_nritems(leaf); 3342 slot = path->slots[0]; 3343 } else { 3344 slot++; 3345 path->slots[0]++; 3346 } 3347 } 3348 3349 advance = 1; 3350 item = btrfs_item_nr(leaf, slot); 3351 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3352 3353 if (found_key.objectid != key.objectid) 3354 break; 3355 if (btrfs_key_type(&found_key) != key_type) 3356 break; 3357 if (found_key.offset < filp->f_pos) 3358 continue; 3359 3360 filp->f_pos = found_key.offset; 3361 3362 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3363 di_cur = 0; 3364 di_total = btrfs_item_size(leaf, item); 3365 3366 while (di_cur < di_total) { 3367 struct btrfs_key location; 3368 3369 name_len = btrfs_dir_name_len(leaf, di); 3370 if (name_len <= sizeof(tmp_name)) { 3371 name_ptr = tmp_name; 3372 } else { 3373 name_ptr = kmalloc(name_len, GFP_NOFS); 3374 if (!name_ptr) { 3375 ret = -ENOMEM; 3376 goto err; 3377 } 3378 } 3379 read_extent_buffer(leaf, name_ptr, 3380 (unsigned long)(di + 1), name_len); 3381 3382 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3383 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3384 3385 /* is this a reference to our own snapshot? If so 3386 * skip it 3387 */ 3388 if (location.type == BTRFS_ROOT_ITEM_KEY && 3389 location.objectid == root->root_key.objectid) { 3390 over = 0; 3391 goto skip; 3392 } 3393 over = filldir(dirent, name_ptr, name_len, 3394 found_key.offset, location.objectid, 3395 d_type); 3396 3397 skip: 3398 if (name_ptr != tmp_name) 3399 kfree(name_ptr); 3400 3401 if (over) 3402 goto nopos; 3403 di_len = btrfs_dir_name_len(leaf, di) + 3404 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3405 di_cur += di_len; 3406 di = (struct btrfs_dir_item *)((char *)di + di_len); 3407 } 3408 } 3409 3410 /* Reached end of directory/root. Bump pos past the last item. */ 3411 if (key_type == BTRFS_DIR_INDEX_KEY) 3412 filp->f_pos = INT_LIMIT(off_t); 3413 else 3414 filp->f_pos++; 3415 nopos: 3416 ret = 0; 3417 err: 3418 btrfs_free_path(path); 3419 return ret; 3420 } 3421 3422 int btrfs_write_inode(struct inode *inode, int wait) 3423 { 3424 struct btrfs_root *root = BTRFS_I(inode)->root; 3425 struct btrfs_trans_handle *trans; 3426 int ret = 0; 3427 3428 if (root->fs_info->btree_inode == inode) 3429 return 0; 3430 3431 if (wait) { 3432 trans = btrfs_join_transaction(root, 1); 3433 btrfs_set_trans_block_group(trans, inode); 3434 ret = btrfs_commit_transaction(trans, root); 3435 } 3436 return ret; 3437 } 3438 3439 /* 3440 * This is somewhat expensive, updating the tree every time the 3441 * inode changes. But, it is most likely to find the inode in cache. 3442 * FIXME, needs more benchmarking...there are no reasons other than performance 3443 * to keep or drop this code. 3444 */ 3445 void btrfs_dirty_inode(struct inode *inode) 3446 { 3447 struct btrfs_root *root = BTRFS_I(inode)->root; 3448 struct btrfs_trans_handle *trans; 3449 3450 trans = btrfs_join_transaction(root, 1); 3451 btrfs_set_trans_block_group(trans, inode); 3452 btrfs_update_inode(trans, root, inode); 3453 btrfs_end_transaction(trans, root); 3454 } 3455 3456 /* 3457 * find the highest existing sequence number in a directory 3458 * and then set the in-memory index_cnt variable to reflect 3459 * free sequence numbers 3460 */ 3461 static int btrfs_set_inode_index_count(struct inode *inode) 3462 { 3463 struct btrfs_root *root = BTRFS_I(inode)->root; 3464 struct btrfs_key key, found_key; 3465 struct btrfs_path *path; 3466 struct extent_buffer *leaf; 3467 int ret; 3468 3469 key.objectid = inode->i_ino; 3470 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 3471 key.offset = (u64)-1; 3472 3473 path = btrfs_alloc_path(); 3474 if (!path) 3475 return -ENOMEM; 3476 3477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3478 if (ret < 0) 3479 goto out; 3480 /* FIXME: we should be able to handle this */ 3481 if (ret == 0) 3482 goto out; 3483 ret = 0; 3484 3485 /* 3486 * MAGIC NUMBER EXPLANATION: 3487 * since we search a directory based on f_pos we have to start at 2 3488 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 3489 * else has to start at 2 3490 */ 3491 if (path->slots[0] == 0) { 3492 BTRFS_I(inode)->index_cnt = 2; 3493 goto out; 3494 } 3495 3496 path->slots[0]--; 3497 3498 leaf = path->nodes[0]; 3499 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3500 3501 if (found_key.objectid != inode->i_ino || 3502 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 3503 BTRFS_I(inode)->index_cnt = 2; 3504 goto out; 3505 } 3506 3507 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 3508 out: 3509 btrfs_free_path(path); 3510 return ret; 3511 } 3512 3513 /* 3514 * helper to find a free sequence number in a given directory. This current 3515 * code is very simple, later versions will do smarter things in the btree 3516 */ 3517 int btrfs_set_inode_index(struct inode *dir, u64 *index) 3518 { 3519 int ret = 0; 3520 3521 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 3522 ret = btrfs_set_inode_index_count(dir); 3523 if (ret) 3524 return ret; 3525 } 3526 3527 *index = BTRFS_I(dir)->index_cnt; 3528 BTRFS_I(dir)->index_cnt++; 3529 3530 return ret; 3531 } 3532 3533 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 3534 struct btrfs_root *root, 3535 struct inode *dir, 3536 const char *name, int name_len, 3537 u64 ref_objectid, u64 objectid, 3538 u64 alloc_hint, int mode, u64 *index) 3539 { 3540 struct inode *inode; 3541 struct btrfs_inode_item *inode_item; 3542 struct btrfs_key *location; 3543 struct btrfs_path *path; 3544 struct btrfs_inode_ref *ref; 3545 struct btrfs_key key[2]; 3546 u32 sizes[2]; 3547 unsigned long ptr; 3548 int ret; 3549 int owner; 3550 3551 path = btrfs_alloc_path(); 3552 BUG_ON(!path); 3553 3554 inode = new_inode(root->fs_info->sb); 3555 if (!inode) 3556 return ERR_PTR(-ENOMEM); 3557 3558 if (dir) { 3559 ret = btrfs_set_inode_index(dir, index); 3560 if (ret) { 3561 iput(inode); 3562 return ERR_PTR(ret); 3563 } 3564 } 3565 /* 3566 * index_cnt is ignored for everything but a dir, 3567 * btrfs_get_inode_index_count has an explanation for the magic 3568 * number 3569 */ 3570 init_btrfs_i(inode); 3571 BTRFS_I(inode)->index_cnt = 2; 3572 BTRFS_I(inode)->root = root; 3573 BTRFS_I(inode)->generation = trans->transid; 3574 btrfs_set_inode_space_info(root, inode); 3575 3576 if (mode & S_IFDIR) 3577 owner = 0; 3578 else 3579 owner = 1; 3580 BTRFS_I(inode)->block_group = 3581 btrfs_find_block_group(root, 0, alloc_hint, owner); 3582 3583 key[0].objectid = objectid; 3584 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 3585 key[0].offset = 0; 3586 3587 key[1].objectid = objectid; 3588 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 3589 key[1].offset = ref_objectid; 3590 3591 sizes[0] = sizeof(struct btrfs_inode_item); 3592 sizes[1] = name_len + sizeof(*ref); 3593 3594 path->leave_spinning = 1; 3595 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 3596 if (ret != 0) 3597 goto fail; 3598 3599 if (objectid > root->highest_inode) 3600 root->highest_inode = objectid; 3601 3602 inode->i_uid = current_fsuid(); 3603 3604 if (dir && (dir->i_mode & S_ISGID)) { 3605 inode->i_gid = dir->i_gid; 3606 if (S_ISDIR(mode)) 3607 mode |= S_ISGID; 3608 } else 3609 inode->i_gid = current_fsgid(); 3610 3611 inode->i_mode = mode; 3612 inode->i_ino = objectid; 3613 inode_set_bytes(inode, 0); 3614 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3615 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 3616 struct btrfs_inode_item); 3617 fill_inode_item(trans, path->nodes[0], inode_item, inode); 3618 3619 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 3620 struct btrfs_inode_ref); 3621 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 3622 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 3623 ptr = (unsigned long)(ref + 1); 3624 write_extent_buffer(path->nodes[0], name, ptr, name_len); 3625 3626 btrfs_mark_buffer_dirty(path->nodes[0]); 3627 btrfs_free_path(path); 3628 3629 location = &BTRFS_I(inode)->location; 3630 location->objectid = objectid; 3631 location->offset = 0; 3632 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 3633 3634 btrfs_inherit_iflags(inode, dir); 3635 3636 if ((mode & S_IFREG)) { 3637 if (btrfs_test_opt(root, NODATASUM)) 3638 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 3639 if (btrfs_test_opt(root, NODATACOW)) 3640 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 3641 } 3642 3643 insert_inode_hash(inode); 3644 inode_tree_add(inode); 3645 return inode; 3646 fail: 3647 if (dir) 3648 BTRFS_I(dir)->index_cnt--; 3649 btrfs_free_path(path); 3650 iput(inode); 3651 return ERR_PTR(ret); 3652 } 3653 3654 static inline u8 btrfs_inode_type(struct inode *inode) 3655 { 3656 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 3657 } 3658 3659 /* 3660 * utility function to add 'inode' into 'parent_inode' with 3661 * a give name and a given sequence number. 3662 * if 'add_backref' is true, also insert a backref from the 3663 * inode to the parent directory. 3664 */ 3665 int btrfs_add_link(struct btrfs_trans_handle *trans, 3666 struct inode *parent_inode, struct inode *inode, 3667 const char *name, int name_len, int add_backref, u64 index) 3668 { 3669 int ret; 3670 struct btrfs_key key; 3671 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 3672 3673 key.objectid = inode->i_ino; 3674 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 3675 key.offset = 0; 3676 3677 ret = btrfs_insert_dir_item(trans, root, name, name_len, 3678 parent_inode->i_ino, 3679 &key, btrfs_inode_type(inode), 3680 index); 3681 if (ret == 0) { 3682 if (add_backref) { 3683 ret = btrfs_insert_inode_ref(trans, root, 3684 name, name_len, 3685 inode->i_ino, 3686 parent_inode->i_ino, 3687 index); 3688 } 3689 btrfs_i_size_write(parent_inode, parent_inode->i_size + 3690 name_len * 2); 3691 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 3692 ret = btrfs_update_inode(trans, root, parent_inode); 3693 } 3694 return ret; 3695 } 3696 3697 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 3698 struct dentry *dentry, struct inode *inode, 3699 int backref, u64 index) 3700 { 3701 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3702 inode, dentry->d_name.name, 3703 dentry->d_name.len, backref, index); 3704 if (!err) { 3705 d_instantiate(dentry, inode); 3706 return 0; 3707 } 3708 if (err > 0) 3709 err = -EEXIST; 3710 return err; 3711 } 3712 3713 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 3714 int mode, dev_t rdev) 3715 { 3716 struct btrfs_trans_handle *trans; 3717 struct btrfs_root *root = BTRFS_I(dir)->root; 3718 struct inode *inode = NULL; 3719 int err; 3720 int drop_inode = 0; 3721 u64 objectid; 3722 unsigned long nr = 0; 3723 u64 index = 0; 3724 3725 if (!new_valid_dev(rdev)) 3726 return -EINVAL; 3727 3728 err = btrfs_check_metadata_free_space(root); 3729 if (err) 3730 goto fail; 3731 3732 trans = btrfs_start_transaction(root, 1); 3733 btrfs_set_trans_block_group(trans, dir); 3734 3735 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3736 if (err) { 3737 err = -ENOSPC; 3738 goto out_unlock; 3739 } 3740 3741 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3742 dentry->d_name.len, 3743 dentry->d_parent->d_inode->i_ino, objectid, 3744 BTRFS_I(dir)->block_group, mode, &index); 3745 err = PTR_ERR(inode); 3746 if (IS_ERR(inode)) 3747 goto out_unlock; 3748 3749 err = btrfs_init_inode_security(inode, dir); 3750 if (err) { 3751 drop_inode = 1; 3752 goto out_unlock; 3753 } 3754 3755 btrfs_set_trans_block_group(trans, inode); 3756 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3757 if (err) 3758 drop_inode = 1; 3759 else { 3760 inode->i_op = &btrfs_special_inode_operations; 3761 init_special_inode(inode, inode->i_mode, rdev); 3762 btrfs_update_inode(trans, root, inode); 3763 } 3764 btrfs_update_inode_block_group(trans, inode); 3765 btrfs_update_inode_block_group(trans, dir); 3766 out_unlock: 3767 nr = trans->blocks_used; 3768 btrfs_end_transaction_throttle(trans, root); 3769 fail: 3770 if (drop_inode) { 3771 inode_dec_link_count(inode); 3772 iput(inode); 3773 } 3774 btrfs_btree_balance_dirty(root, nr); 3775 return err; 3776 } 3777 3778 static int btrfs_create(struct inode *dir, struct dentry *dentry, 3779 int mode, struct nameidata *nd) 3780 { 3781 struct btrfs_trans_handle *trans; 3782 struct btrfs_root *root = BTRFS_I(dir)->root; 3783 struct inode *inode = NULL; 3784 int err; 3785 int drop_inode = 0; 3786 unsigned long nr = 0; 3787 u64 objectid; 3788 u64 index = 0; 3789 3790 err = btrfs_check_metadata_free_space(root); 3791 if (err) 3792 goto fail; 3793 trans = btrfs_start_transaction(root, 1); 3794 btrfs_set_trans_block_group(trans, dir); 3795 3796 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3797 if (err) { 3798 err = -ENOSPC; 3799 goto out_unlock; 3800 } 3801 3802 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3803 dentry->d_name.len, 3804 dentry->d_parent->d_inode->i_ino, 3805 objectid, BTRFS_I(dir)->block_group, mode, 3806 &index); 3807 err = PTR_ERR(inode); 3808 if (IS_ERR(inode)) 3809 goto out_unlock; 3810 3811 err = btrfs_init_inode_security(inode, dir); 3812 if (err) { 3813 drop_inode = 1; 3814 goto out_unlock; 3815 } 3816 3817 btrfs_set_trans_block_group(trans, inode); 3818 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 3819 if (err) 3820 drop_inode = 1; 3821 else { 3822 inode->i_mapping->a_ops = &btrfs_aops; 3823 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3824 inode->i_fop = &btrfs_file_operations; 3825 inode->i_op = &btrfs_file_inode_operations; 3826 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3827 } 3828 btrfs_update_inode_block_group(trans, inode); 3829 btrfs_update_inode_block_group(trans, dir); 3830 out_unlock: 3831 nr = trans->blocks_used; 3832 btrfs_end_transaction_throttle(trans, root); 3833 fail: 3834 if (drop_inode) { 3835 inode_dec_link_count(inode); 3836 iput(inode); 3837 } 3838 btrfs_btree_balance_dirty(root, nr); 3839 return err; 3840 } 3841 3842 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 3843 struct dentry *dentry) 3844 { 3845 struct btrfs_trans_handle *trans; 3846 struct btrfs_root *root = BTRFS_I(dir)->root; 3847 struct inode *inode = old_dentry->d_inode; 3848 u64 index; 3849 unsigned long nr = 0; 3850 int err; 3851 int drop_inode = 0; 3852 3853 if (inode->i_nlink == 0) 3854 return -ENOENT; 3855 3856 btrfs_inc_nlink(inode); 3857 err = btrfs_check_metadata_free_space(root); 3858 if (err) 3859 goto fail; 3860 err = btrfs_set_inode_index(dir, &index); 3861 if (err) 3862 goto fail; 3863 3864 trans = btrfs_start_transaction(root, 1); 3865 3866 btrfs_set_trans_block_group(trans, dir); 3867 atomic_inc(&inode->i_count); 3868 3869 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 3870 3871 if (err) 3872 drop_inode = 1; 3873 3874 btrfs_update_inode_block_group(trans, dir); 3875 err = btrfs_update_inode(trans, root, inode); 3876 3877 if (err) 3878 drop_inode = 1; 3879 3880 nr = trans->blocks_used; 3881 3882 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent); 3883 btrfs_end_transaction_throttle(trans, root); 3884 fail: 3885 if (drop_inode) { 3886 inode_dec_link_count(inode); 3887 iput(inode); 3888 } 3889 btrfs_btree_balance_dirty(root, nr); 3890 return err; 3891 } 3892 3893 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 3894 { 3895 struct inode *inode = NULL; 3896 struct btrfs_trans_handle *trans; 3897 struct btrfs_root *root = BTRFS_I(dir)->root; 3898 int err = 0; 3899 int drop_on_err = 0; 3900 u64 objectid = 0; 3901 u64 index = 0; 3902 unsigned long nr = 1; 3903 3904 err = btrfs_check_metadata_free_space(root); 3905 if (err) 3906 goto out_unlock; 3907 3908 trans = btrfs_start_transaction(root, 1); 3909 btrfs_set_trans_block_group(trans, dir); 3910 3911 if (IS_ERR(trans)) { 3912 err = PTR_ERR(trans); 3913 goto out_unlock; 3914 } 3915 3916 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 3917 if (err) { 3918 err = -ENOSPC; 3919 goto out_unlock; 3920 } 3921 3922 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 3923 dentry->d_name.len, 3924 dentry->d_parent->d_inode->i_ino, objectid, 3925 BTRFS_I(dir)->block_group, S_IFDIR | mode, 3926 &index); 3927 if (IS_ERR(inode)) { 3928 err = PTR_ERR(inode); 3929 goto out_fail; 3930 } 3931 3932 drop_on_err = 1; 3933 3934 err = btrfs_init_inode_security(inode, dir); 3935 if (err) 3936 goto out_fail; 3937 3938 inode->i_op = &btrfs_dir_inode_operations; 3939 inode->i_fop = &btrfs_dir_file_operations; 3940 btrfs_set_trans_block_group(trans, inode); 3941 3942 btrfs_i_size_write(inode, 0); 3943 err = btrfs_update_inode(trans, root, inode); 3944 if (err) 3945 goto out_fail; 3946 3947 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 3948 inode, dentry->d_name.name, 3949 dentry->d_name.len, 0, index); 3950 if (err) 3951 goto out_fail; 3952 3953 d_instantiate(dentry, inode); 3954 drop_on_err = 0; 3955 btrfs_update_inode_block_group(trans, inode); 3956 btrfs_update_inode_block_group(trans, dir); 3957 3958 out_fail: 3959 nr = trans->blocks_used; 3960 btrfs_end_transaction_throttle(trans, root); 3961 3962 out_unlock: 3963 if (drop_on_err) 3964 iput(inode); 3965 btrfs_btree_balance_dirty(root, nr); 3966 return err; 3967 } 3968 3969 /* helper for btfs_get_extent. Given an existing extent in the tree, 3970 * and an extent that you want to insert, deal with overlap and insert 3971 * the new extent into the tree. 3972 */ 3973 static int merge_extent_mapping(struct extent_map_tree *em_tree, 3974 struct extent_map *existing, 3975 struct extent_map *em, 3976 u64 map_start, u64 map_len) 3977 { 3978 u64 start_diff; 3979 3980 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 3981 start_diff = map_start - em->start; 3982 em->start = map_start; 3983 em->len = map_len; 3984 if (em->block_start < EXTENT_MAP_LAST_BYTE && 3985 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 3986 em->block_start += start_diff; 3987 em->block_len -= start_diff; 3988 } 3989 return add_extent_mapping(em_tree, em); 3990 } 3991 3992 static noinline int uncompress_inline(struct btrfs_path *path, 3993 struct inode *inode, struct page *page, 3994 size_t pg_offset, u64 extent_offset, 3995 struct btrfs_file_extent_item *item) 3996 { 3997 int ret; 3998 struct extent_buffer *leaf = path->nodes[0]; 3999 char *tmp; 4000 size_t max_size; 4001 unsigned long inline_size; 4002 unsigned long ptr; 4003 4004 WARN_ON(pg_offset != 0); 4005 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4006 inline_size = btrfs_file_extent_inline_item_len(leaf, 4007 btrfs_item_nr(leaf, path->slots[0])); 4008 tmp = kmalloc(inline_size, GFP_NOFS); 4009 ptr = btrfs_file_extent_inline_start(item); 4010 4011 read_extent_buffer(leaf, tmp, ptr, inline_size); 4012 4013 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4014 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4015 inline_size, max_size); 4016 if (ret) { 4017 char *kaddr = kmap_atomic(page, KM_USER0); 4018 unsigned long copy_size = min_t(u64, 4019 PAGE_CACHE_SIZE - pg_offset, 4020 max_size - extent_offset); 4021 memset(kaddr + pg_offset, 0, copy_size); 4022 kunmap_atomic(kaddr, KM_USER0); 4023 } 4024 kfree(tmp); 4025 return 0; 4026 } 4027 4028 /* 4029 * a bit scary, this does extent mapping from logical file offset to the disk. 4030 * the ugly parts come from merging extents from the disk with the in-ram 4031 * representation. This gets more complex because of the data=ordered code, 4032 * where the in-ram extents might be locked pending data=ordered completion. 4033 * 4034 * This also copies inline extents directly into the page. 4035 */ 4036 4037 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4038 size_t pg_offset, u64 start, u64 len, 4039 int create) 4040 { 4041 int ret; 4042 int err = 0; 4043 u64 bytenr; 4044 u64 extent_start = 0; 4045 u64 extent_end = 0; 4046 u64 objectid = inode->i_ino; 4047 u32 found_type; 4048 struct btrfs_path *path = NULL; 4049 struct btrfs_root *root = BTRFS_I(inode)->root; 4050 struct btrfs_file_extent_item *item; 4051 struct extent_buffer *leaf; 4052 struct btrfs_key found_key; 4053 struct extent_map *em = NULL; 4054 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4055 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4056 struct btrfs_trans_handle *trans = NULL; 4057 int compressed; 4058 4059 again: 4060 spin_lock(&em_tree->lock); 4061 em = lookup_extent_mapping(em_tree, start, len); 4062 if (em) 4063 em->bdev = root->fs_info->fs_devices->latest_bdev; 4064 spin_unlock(&em_tree->lock); 4065 4066 if (em) { 4067 if (em->start > start || em->start + em->len <= start) 4068 free_extent_map(em); 4069 else if (em->block_start == EXTENT_MAP_INLINE && page) 4070 free_extent_map(em); 4071 else 4072 goto out; 4073 } 4074 em = alloc_extent_map(GFP_NOFS); 4075 if (!em) { 4076 err = -ENOMEM; 4077 goto out; 4078 } 4079 em->bdev = root->fs_info->fs_devices->latest_bdev; 4080 em->start = EXTENT_MAP_HOLE; 4081 em->orig_start = EXTENT_MAP_HOLE; 4082 em->len = (u64)-1; 4083 em->block_len = (u64)-1; 4084 4085 if (!path) { 4086 path = btrfs_alloc_path(); 4087 BUG_ON(!path); 4088 } 4089 4090 ret = btrfs_lookup_file_extent(trans, root, path, 4091 objectid, start, trans != NULL); 4092 if (ret < 0) { 4093 err = ret; 4094 goto out; 4095 } 4096 4097 if (ret != 0) { 4098 if (path->slots[0] == 0) 4099 goto not_found; 4100 path->slots[0]--; 4101 } 4102 4103 leaf = path->nodes[0]; 4104 item = btrfs_item_ptr(leaf, path->slots[0], 4105 struct btrfs_file_extent_item); 4106 /* are we inside the extent that was found? */ 4107 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4108 found_type = btrfs_key_type(&found_key); 4109 if (found_key.objectid != objectid || 4110 found_type != BTRFS_EXTENT_DATA_KEY) { 4111 goto not_found; 4112 } 4113 4114 found_type = btrfs_file_extent_type(leaf, item); 4115 extent_start = found_key.offset; 4116 compressed = btrfs_file_extent_compression(leaf, item); 4117 if (found_type == BTRFS_FILE_EXTENT_REG || 4118 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4119 extent_end = extent_start + 4120 btrfs_file_extent_num_bytes(leaf, item); 4121 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4122 size_t size; 4123 size = btrfs_file_extent_inline_len(leaf, item); 4124 extent_end = (extent_start + size + root->sectorsize - 1) & 4125 ~((u64)root->sectorsize - 1); 4126 } 4127 4128 if (start >= extent_end) { 4129 path->slots[0]++; 4130 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4131 ret = btrfs_next_leaf(root, path); 4132 if (ret < 0) { 4133 err = ret; 4134 goto out; 4135 } 4136 if (ret > 0) 4137 goto not_found; 4138 leaf = path->nodes[0]; 4139 } 4140 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4141 if (found_key.objectid != objectid || 4142 found_key.type != BTRFS_EXTENT_DATA_KEY) 4143 goto not_found; 4144 if (start + len <= found_key.offset) 4145 goto not_found; 4146 em->start = start; 4147 em->len = found_key.offset - start; 4148 goto not_found_em; 4149 } 4150 4151 if (found_type == BTRFS_FILE_EXTENT_REG || 4152 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4153 em->start = extent_start; 4154 em->len = extent_end - extent_start; 4155 em->orig_start = extent_start - 4156 btrfs_file_extent_offset(leaf, item); 4157 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4158 if (bytenr == 0) { 4159 em->block_start = EXTENT_MAP_HOLE; 4160 goto insert; 4161 } 4162 if (compressed) { 4163 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4164 em->block_start = bytenr; 4165 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4166 item); 4167 } else { 4168 bytenr += btrfs_file_extent_offset(leaf, item); 4169 em->block_start = bytenr; 4170 em->block_len = em->len; 4171 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4172 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4173 } 4174 goto insert; 4175 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4176 unsigned long ptr; 4177 char *map; 4178 size_t size; 4179 size_t extent_offset; 4180 size_t copy_size; 4181 4182 em->block_start = EXTENT_MAP_INLINE; 4183 if (!page || create) { 4184 em->start = extent_start; 4185 em->len = extent_end - extent_start; 4186 goto out; 4187 } 4188 4189 size = btrfs_file_extent_inline_len(leaf, item); 4190 extent_offset = page_offset(page) + pg_offset - extent_start; 4191 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4192 size - extent_offset); 4193 em->start = extent_start + extent_offset; 4194 em->len = (copy_size + root->sectorsize - 1) & 4195 ~((u64)root->sectorsize - 1); 4196 em->orig_start = EXTENT_MAP_INLINE; 4197 if (compressed) 4198 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4199 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4200 if (create == 0 && !PageUptodate(page)) { 4201 if (btrfs_file_extent_compression(leaf, item) == 4202 BTRFS_COMPRESS_ZLIB) { 4203 ret = uncompress_inline(path, inode, page, 4204 pg_offset, 4205 extent_offset, item); 4206 BUG_ON(ret); 4207 } else { 4208 map = kmap(page); 4209 read_extent_buffer(leaf, map + pg_offset, ptr, 4210 copy_size); 4211 kunmap(page); 4212 } 4213 flush_dcache_page(page); 4214 } else if (create && PageUptodate(page)) { 4215 if (!trans) { 4216 kunmap(page); 4217 free_extent_map(em); 4218 em = NULL; 4219 btrfs_release_path(root, path); 4220 trans = btrfs_join_transaction(root, 1); 4221 goto again; 4222 } 4223 map = kmap(page); 4224 write_extent_buffer(leaf, map + pg_offset, ptr, 4225 copy_size); 4226 kunmap(page); 4227 btrfs_mark_buffer_dirty(leaf); 4228 } 4229 set_extent_uptodate(io_tree, em->start, 4230 extent_map_end(em) - 1, GFP_NOFS); 4231 goto insert; 4232 } else { 4233 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4234 WARN_ON(1); 4235 } 4236 not_found: 4237 em->start = start; 4238 em->len = len; 4239 not_found_em: 4240 em->block_start = EXTENT_MAP_HOLE; 4241 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4242 insert: 4243 btrfs_release_path(root, path); 4244 if (em->start > start || extent_map_end(em) <= start) { 4245 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4246 "[%llu %llu]\n", (unsigned long long)em->start, 4247 (unsigned long long)em->len, 4248 (unsigned long long)start, 4249 (unsigned long long)len); 4250 err = -EIO; 4251 goto out; 4252 } 4253 4254 err = 0; 4255 spin_lock(&em_tree->lock); 4256 ret = add_extent_mapping(em_tree, em); 4257 /* it is possible that someone inserted the extent into the tree 4258 * while we had the lock dropped. It is also possible that 4259 * an overlapping map exists in the tree 4260 */ 4261 if (ret == -EEXIST) { 4262 struct extent_map *existing; 4263 4264 ret = 0; 4265 4266 existing = lookup_extent_mapping(em_tree, start, len); 4267 if (existing && (existing->start > start || 4268 existing->start + existing->len <= start)) { 4269 free_extent_map(existing); 4270 existing = NULL; 4271 } 4272 if (!existing) { 4273 existing = lookup_extent_mapping(em_tree, em->start, 4274 em->len); 4275 if (existing) { 4276 err = merge_extent_mapping(em_tree, existing, 4277 em, start, 4278 root->sectorsize); 4279 free_extent_map(existing); 4280 if (err) { 4281 free_extent_map(em); 4282 em = NULL; 4283 } 4284 } else { 4285 err = -EIO; 4286 free_extent_map(em); 4287 em = NULL; 4288 } 4289 } else { 4290 free_extent_map(em); 4291 em = existing; 4292 err = 0; 4293 } 4294 } 4295 spin_unlock(&em_tree->lock); 4296 out: 4297 if (path) 4298 btrfs_free_path(path); 4299 if (trans) { 4300 ret = btrfs_end_transaction(trans, root); 4301 if (!err) 4302 err = ret; 4303 } 4304 if (err) { 4305 free_extent_map(em); 4306 return ERR_PTR(err); 4307 } 4308 return em; 4309 } 4310 4311 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4312 const struct iovec *iov, loff_t offset, 4313 unsigned long nr_segs) 4314 { 4315 return -EINVAL; 4316 } 4317 4318 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4319 __u64 start, __u64 len) 4320 { 4321 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4322 } 4323 4324 int btrfs_readpage(struct file *file, struct page *page) 4325 { 4326 struct extent_io_tree *tree; 4327 tree = &BTRFS_I(page->mapping->host)->io_tree; 4328 return extent_read_full_page(tree, page, btrfs_get_extent); 4329 } 4330 4331 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4332 { 4333 struct extent_io_tree *tree; 4334 4335 4336 if (current->flags & PF_MEMALLOC) { 4337 redirty_page_for_writepage(wbc, page); 4338 unlock_page(page); 4339 return 0; 4340 } 4341 tree = &BTRFS_I(page->mapping->host)->io_tree; 4342 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4343 } 4344 4345 int btrfs_writepages(struct address_space *mapping, 4346 struct writeback_control *wbc) 4347 { 4348 struct extent_io_tree *tree; 4349 4350 tree = &BTRFS_I(mapping->host)->io_tree; 4351 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4352 } 4353 4354 static int 4355 btrfs_readpages(struct file *file, struct address_space *mapping, 4356 struct list_head *pages, unsigned nr_pages) 4357 { 4358 struct extent_io_tree *tree; 4359 tree = &BTRFS_I(mapping->host)->io_tree; 4360 return extent_readpages(tree, mapping, pages, nr_pages, 4361 btrfs_get_extent); 4362 } 4363 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4364 { 4365 struct extent_io_tree *tree; 4366 struct extent_map_tree *map; 4367 int ret; 4368 4369 tree = &BTRFS_I(page->mapping->host)->io_tree; 4370 map = &BTRFS_I(page->mapping->host)->extent_tree; 4371 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 4372 if (ret == 1) { 4373 ClearPagePrivate(page); 4374 set_page_private(page, 0); 4375 page_cache_release(page); 4376 } 4377 return ret; 4378 } 4379 4380 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4381 { 4382 if (PageWriteback(page) || PageDirty(page)) 4383 return 0; 4384 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 4385 } 4386 4387 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 4388 { 4389 struct extent_io_tree *tree; 4390 struct btrfs_ordered_extent *ordered; 4391 u64 page_start = page_offset(page); 4392 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 4393 4394 wait_on_page_writeback(page); 4395 tree = &BTRFS_I(page->mapping->host)->io_tree; 4396 if (offset) { 4397 btrfs_releasepage(page, GFP_NOFS); 4398 return; 4399 } 4400 4401 lock_extent(tree, page_start, page_end, GFP_NOFS); 4402 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 4403 page_offset(page)); 4404 if (ordered) { 4405 /* 4406 * IO on this page will never be started, so we need 4407 * to account for any ordered extents now 4408 */ 4409 clear_extent_bit(tree, page_start, page_end, 4410 EXTENT_DIRTY | EXTENT_DELALLOC | 4411 EXTENT_LOCKED, 1, 0, GFP_NOFS); 4412 btrfs_finish_ordered_io(page->mapping->host, 4413 page_start, page_end); 4414 btrfs_put_ordered_extent(ordered); 4415 lock_extent(tree, page_start, page_end, GFP_NOFS); 4416 } 4417 clear_extent_bit(tree, page_start, page_end, 4418 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4419 EXTENT_ORDERED, 4420 1, 1, GFP_NOFS); 4421 __btrfs_releasepage(page, GFP_NOFS); 4422 4423 ClearPageChecked(page); 4424 if (PagePrivate(page)) { 4425 ClearPagePrivate(page); 4426 set_page_private(page, 0); 4427 page_cache_release(page); 4428 } 4429 } 4430 4431 /* 4432 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 4433 * called from a page fault handler when a page is first dirtied. Hence we must 4434 * be careful to check for EOF conditions here. We set the page up correctly 4435 * for a written page which means we get ENOSPC checking when writing into 4436 * holes and correct delalloc and unwritten extent mapping on filesystems that 4437 * support these features. 4438 * 4439 * We are not allowed to take the i_mutex here so we have to play games to 4440 * protect against truncate races as the page could now be beyond EOF. Because 4441 * vmtruncate() writes the inode size before removing pages, once we have the 4442 * page lock we can determine safely if the page is beyond EOF. If it is not 4443 * beyond EOF, then the page is guaranteed safe against truncation until we 4444 * unlock the page. 4445 */ 4446 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 4447 { 4448 struct page *page = vmf->page; 4449 struct inode *inode = fdentry(vma->vm_file)->d_inode; 4450 struct btrfs_root *root = BTRFS_I(inode)->root; 4451 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4452 struct btrfs_ordered_extent *ordered; 4453 char *kaddr; 4454 unsigned long zero_start; 4455 loff_t size; 4456 int ret; 4457 u64 page_start; 4458 u64 page_end; 4459 4460 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 4461 if (ret) { 4462 if (ret == -ENOMEM) 4463 ret = VM_FAULT_OOM; 4464 else /* -ENOSPC, -EIO, etc */ 4465 ret = VM_FAULT_SIGBUS; 4466 goto out; 4467 } 4468 4469 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 4470 again: 4471 lock_page(page); 4472 size = i_size_read(inode); 4473 page_start = page_offset(page); 4474 page_end = page_start + PAGE_CACHE_SIZE - 1; 4475 4476 if ((page->mapping != inode->i_mapping) || 4477 (page_start >= size)) { 4478 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 4479 /* page got truncated out from underneath us */ 4480 goto out_unlock; 4481 } 4482 wait_on_page_writeback(page); 4483 4484 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 4485 set_page_extent_mapped(page); 4486 4487 /* 4488 * we can't set the delalloc bits if there are pending ordered 4489 * extents. Drop our locks and wait for them to finish 4490 */ 4491 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4492 if (ordered) { 4493 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4494 unlock_page(page); 4495 btrfs_start_ordered_extent(inode, ordered, 1); 4496 btrfs_put_ordered_extent(ordered); 4497 goto again; 4498 } 4499 4500 btrfs_set_extent_delalloc(inode, page_start, page_end); 4501 ret = 0; 4502 4503 /* page is wholly or partially inside EOF */ 4504 if (page_start + PAGE_CACHE_SIZE > size) 4505 zero_start = size & ~PAGE_CACHE_MASK; 4506 else 4507 zero_start = PAGE_CACHE_SIZE; 4508 4509 if (zero_start != PAGE_CACHE_SIZE) { 4510 kaddr = kmap(page); 4511 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 4512 flush_dcache_page(page); 4513 kunmap(page); 4514 } 4515 ClearPageChecked(page); 4516 set_page_dirty(page); 4517 4518 BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; 4519 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 4520 4521 out_unlock: 4522 unlock_page(page); 4523 out: 4524 return ret; 4525 } 4526 4527 static void btrfs_truncate(struct inode *inode) 4528 { 4529 struct btrfs_root *root = BTRFS_I(inode)->root; 4530 int ret; 4531 struct btrfs_trans_handle *trans; 4532 unsigned long nr; 4533 u64 mask = root->sectorsize - 1; 4534 4535 if (!S_ISREG(inode->i_mode)) 4536 return; 4537 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 4538 return; 4539 4540 btrfs_truncate_page(inode->i_mapping, inode->i_size); 4541 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 4542 4543 trans = btrfs_start_transaction(root, 1); 4544 4545 /* 4546 * setattr is responsible for setting the ordered_data_close flag, 4547 * but that is only tested during the last file release. That 4548 * could happen well after the next commit, leaving a great big 4549 * window where new writes may get lost if someone chooses to write 4550 * to this file after truncating to zero 4551 * 4552 * The inode doesn't have any dirty data here, and so if we commit 4553 * this is a noop. If someone immediately starts writing to the inode 4554 * it is very likely we'll catch some of their writes in this 4555 * transaction, and the commit will find this file on the ordered 4556 * data list with good things to send down. 4557 * 4558 * This is a best effort solution, there is still a window where 4559 * using truncate to replace the contents of the file will 4560 * end up with a zero length file after a crash. 4561 */ 4562 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 4563 btrfs_add_ordered_operation(trans, root, inode); 4564 4565 btrfs_set_trans_block_group(trans, inode); 4566 btrfs_i_size_write(inode, inode->i_size); 4567 4568 ret = btrfs_orphan_add(trans, inode); 4569 if (ret) 4570 goto out; 4571 /* FIXME, add redo link to tree so we don't leak on crash */ 4572 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 4573 BTRFS_EXTENT_DATA_KEY); 4574 btrfs_update_inode(trans, root, inode); 4575 4576 ret = btrfs_orphan_del(trans, inode); 4577 BUG_ON(ret); 4578 4579 out: 4580 nr = trans->blocks_used; 4581 ret = btrfs_end_transaction_throttle(trans, root); 4582 BUG_ON(ret); 4583 btrfs_btree_balance_dirty(root, nr); 4584 } 4585 4586 /* 4587 * create a new subvolume directory/inode (helper for the ioctl). 4588 */ 4589 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 4590 struct btrfs_root *new_root, struct dentry *dentry, 4591 u64 new_dirid, u64 alloc_hint) 4592 { 4593 struct inode *inode; 4594 int error; 4595 u64 index = 0; 4596 4597 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 4598 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 4599 if (IS_ERR(inode)) 4600 return PTR_ERR(inode); 4601 inode->i_op = &btrfs_dir_inode_operations; 4602 inode->i_fop = &btrfs_dir_file_operations; 4603 4604 inode->i_nlink = 1; 4605 btrfs_i_size_write(inode, 0); 4606 4607 error = btrfs_update_inode(trans, new_root, inode); 4608 if (error) 4609 return error; 4610 4611 d_instantiate(dentry, inode); 4612 return 0; 4613 } 4614 4615 /* helper function for file defrag and space balancing. This 4616 * forces readahead on a given range of bytes in an inode 4617 */ 4618 unsigned long btrfs_force_ra(struct address_space *mapping, 4619 struct file_ra_state *ra, struct file *file, 4620 pgoff_t offset, pgoff_t last_index) 4621 { 4622 pgoff_t req_size = last_index - offset + 1; 4623 4624 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 4625 return offset + req_size; 4626 } 4627 4628 struct inode *btrfs_alloc_inode(struct super_block *sb) 4629 { 4630 struct btrfs_inode *ei; 4631 4632 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 4633 if (!ei) 4634 return NULL; 4635 ei->last_trans = 0; 4636 ei->logged_trans = 0; 4637 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 4638 INIT_LIST_HEAD(&ei->i_orphan); 4639 INIT_LIST_HEAD(&ei->ordered_operations); 4640 return &ei->vfs_inode; 4641 } 4642 4643 void btrfs_destroy_inode(struct inode *inode) 4644 { 4645 struct btrfs_ordered_extent *ordered; 4646 struct btrfs_root *root = BTRFS_I(inode)->root; 4647 4648 WARN_ON(!list_empty(&inode->i_dentry)); 4649 WARN_ON(inode->i_data.nrpages); 4650 4651 /* 4652 * Make sure we're properly removed from the ordered operation 4653 * lists. 4654 */ 4655 smp_mb(); 4656 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 4657 spin_lock(&root->fs_info->ordered_extent_lock); 4658 list_del_init(&BTRFS_I(inode)->ordered_operations); 4659 spin_unlock(&root->fs_info->ordered_extent_lock); 4660 } 4661 4662 spin_lock(&root->list_lock); 4663 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 4664 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan" 4665 " list\n", inode->i_ino); 4666 dump_stack(); 4667 } 4668 spin_unlock(&root->list_lock); 4669 4670 while (1) { 4671 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 4672 if (!ordered) 4673 break; 4674 else { 4675 printk(KERN_ERR "btrfs found ordered " 4676 "extent %llu %llu on inode cleanup\n", 4677 (unsigned long long)ordered->file_offset, 4678 (unsigned long long)ordered->len); 4679 btrfs_remove_ordered_extent(inode, ordered); 4680 btrfs_put_ordered_extent(ordered); 4681 btrfs_put_ordered_extent(ordered); 4682 } 4683 } 4684 inode_tree_del(inode); 4685 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 4686 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 4687 } 4688 4689 static void init_once(void *foo) 4690 { 4691 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 4692 4693 inode_init_once(&ei->vfs_inode); 4694 } 4695 4696 void btrfs_destroy_cachep(void) 4697 { 4698 if (btrfs_inode_cachep) 4699 kmem_cache_destroy(btrfs_inode_cachep); 4700 if (btrfs_trans_handle_cachep) 4701 kmem_cache_destroy(btrfs_trans_handle_cachep); 4702 if (btrfs_transaction_cachep) 4703 kmem_cache_destroy(btrfs_transaction_cachep); 4704 if (btrfs_path_cachep) 4705 kmem_cache_destroy(btrfs_path_cachep); 4706 } 4707 4708 int btrfs_init_cachep(void) 4709 { 4710 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 4711 sizeof(struct btrfs_inode), 0, 4712 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 4713 if (!btrfs_inode_cachep) 4714 goto fail; 4715 4716 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 4717 sizeof(struct btrfs_trans_handle), 0, 4718 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4719 if (!btrfs_trans_handle_cachep) 4720 goto fail; 4721 4722 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 4723 sizeof(struct btrfs_transaction), 0, 4724 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4725 if (!btrfs_transaction_cachep) 4726 goto fail; 4727 4728 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 4729 sizeof(struct btrfs_path), 0, 4730 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 4731 if (!btrfs_path_cachep) 4732 goto fail; 4733 4734 return 0; 4735 fail: 4736 btrfs_destroy_cachep(); 4737 return -ENOMEM; 4738 } 4739 4740 static int btrfs_getattr(struct vfsmount *mnt, 4741 struct dentry *dentry, struct kstat *stat) 4742 { 4743 struct inode *inode = dentry->d_inode; 4744 generic_fillattr(inode, stat); 4745 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 4746 stat->blksize = PAGE_CACHE_SIZE; 4747 stat->blocks = (inode_get_bytes(inode) + 4748 BTRFS_I(inode)->delalloc_bytes) >> 9; 4749 return 0; 4750 } 4751 4752 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4753 struct inode *new_dir, struct dentry *new_dentry) 4754 { 4755 struct btrfs_trans_handle *trans; 4756 struct btrfs_root *root = BTRFS_I(old_dir)->root; 4757 struct inode *new_inode = new_dentry->d_inode; 4758 struct inode *old_inode = old_dentry->d_inode; 4759 struct timespec ctime = CURRENT_TIME; 4760 u64 index = 0; 4761 int ret; 4762 4763 /* we're not allowed to rename between subvolumes */ 4764 if (BTRFS_I(old_inode)->root->root_key.objectid != 4765 BTRFS_I(new_dir)->root->root_key.objectid) 4766 return -EXDEV; 4767 4768 if (S_ISDIR(old_inode->i_mode) && new_inode && 4769 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) { 4770 return -ENOTEMPTY; 4771 } 4772 4773 /* to rename a snapshot or subvolume, we need to juggle the 4774 * backrefs. This isn't coded yet 4775 */ 4776 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 4777 return -EXDEV; 4778 4779 ret = btrfs_check_metadata_free_space(root); 4780 if (ret) 4781 goto out_unlock; 4782 4783 /* 4784 * we're using rename to replace one file with another. 4785 * and the replacement file is large. Start IO on it now so 4786 * we don't add too much work to the end of the transaction 4787 */ 4788 if (new_inode && old_inode && S_ISREG(old_inode->i_mode) && 4789 new_inode->i_size && 4790 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 4791 filemap_flush(old_inode->i_mapping); 4792 4793 trans = btrfs_start_transaction(root, 1); 4794 4795 /* 4796 * make sure the inode gets flushed if it is replacing 4797 * something. 4798 */ 4799 if (new_inode && new_inode->i_size && 4800 old_inode && S_ISREG(old_inode->i_mode)) { 4801 btrfs_add_ordered_operation(trans, root, old_inode); 4802 } 4803 4804 /* 4805 * this is an ugly little race, but the rename is required to make 4806 * sure that if we crash, the inode is either at the old name 4807 * or the new one. pinning the log transaction lets us make sure 4808 * we don't allow a log commit to come in after we unlink the 4809 * name but before we add the new name back in. 4810 */ 4811 btrfs_pin_log_trans(root); 4812 4813 btrfs_set_trans_block_group(trans, new_dir); 4814 4815 btrfs_inc_nlink(old_dentry->d_inode); 4816 old_dir->i_ctime = old_dir->i_mtime = ctime; 4817 new_dir->i_ctime = new_dir->i_mtime = ctime; 4818 old_inode->i_ctime = ctime; 4819 4820 if (old_dentry->d_parent != new_dentry->d_parent) 4821 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 4822 4823 ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode, 4824 old_dentry->d_name.name, 4825 old_dentry->d_name.len); 4826 if (ret) 4827 goto out_fail; 4828 4829 if (new_inode) { 4830 new_inode->i_ctime = CURRENT_TIME; 4831 ret = btrfs_unlink_inode(trans, root, new_dir, 4832 new_dentry->d_inode, 4833 new_dentry->d_name.name, 4834 new_dentry->d_name.len); 4835 if (ret) 4836 goto out_fail; 4837 if (new_inode->i_nlink == 0) { 4838 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 4839 if (ret) 4840 goto out_fail; 4841 } 4842 4843 } 4844 ret = btrfs_set_inode_index(new_dir, &index); 4845 if (ret) 4846 goto out_fail; 4847 4848 ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode, 4849 old_inode, new_dentry->d_name.name, 4850 new_dentry->d_name.len, 1, index); 4851 if (ret) 4852 goto out_fail; 4853 4854 btrfs_log_new_name(trans, old_inode, old_dir, 4855 new_dentry->d_parent); 4856 out_fail: 4857 4858 /* this btrfs_end_log_trans just allows the current 4859 * log-sub transaction to complete 4860 */ 4861 btrfs_end_log_trans(root); 4862 btrfs_end_transaction_throttle(trans, root); 4863 out_unlock: 4864 return ret; 4865 } 4866 4867 /* 4868 * some fairly slow code that needs optimization. This walks the list 4869 * of all the inodes with pending delalloc and forces them to disk. 4870 */ 4871 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 4872 { 4873 struct list_head *head = &root->fs_info->delalloc_inodes; 4874 struct btrfs_inode *binode; 4875 struct inode *inode; 4876 4877 if (root->fs_info->sb->s_flags & MS_RDONLY) 4878 return -EROFS; 4879 4880 spin_lock(&root->fs_info->delalloc_lock); 4881 while (!list_empty(head)) { 4882 binode = list_entry(head->next, struct btrfs_inode, 4883 delalloc_inodes); 4884 inode = igrab(&binode->vfs_inode); 4885 if (!inode) 4886 list_del_init(&binode->delalloc_inodes); 4887 spin_unlock(&root->fs_info->delalloc_lock); 4888 if (inode) { 4889 filemap_flush(inode->i_mapping); 4890 iput(inode); 4891 } 4892 cond_resched(); 4893 spin_lock(&root->fs_info->delalloc_lock); 4894 } 4895 spin_unlock(&root->fs_info->delalloc_lock); 4896 4897 /* the filemap_flush will queue IO into the worker threads, but 4898 * we have to make sure the IO is actually started and that 4899 * ordered extents get created before we return 4900 */ 4901 atomic_inc(&root->fs_info->async_submit_draining); 4902 while (atomic_read(&root->fs_info->nr_async_submits) || 4903 atomic_read(&root->fs_info->async_delalloc_pages)) { 4904 wait_event(root->fs_info->async_submit_wait, 4905 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 4906 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 4907 } 4908 atomic_dec(&root->fs_info->async_submit_draining); 4909 return 0; 4910 } 4911 4912 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 4913 const char *symname) 4914 { 4915 struct btrfs_trans_handle *trans; 4916 struct btrfs_root *root = BTRFS_I(dir)->root; 4917 struct btrfs_path *path; 4918 struct btrfs_key key; 4919 struct inode *inode = NULL; 4920 int err; 4921 int drop_inode = 0; 4922 u64 objectid; 4923 u64 index = 0 ; 4924 int name_len; 4925 int datasize; 4926 unsigned long ptr; 4927 struct btrfs_file_extent_item *ei; 4928 struct extent_buffer *leaf; 4929 unsigned long nr = 0; 4930 4931 name_len = strlen(symname) + 1; 4932 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 4933 return -ENAMETOOLONG; 4934 4935 err = btrfs_check_metadata_free_space(root); 4936 if (err) 4937 goto out_fail; 4938 4939 trans = btrfs_start_transaction(root, 1); 4940 btrfs_set_trans_block_group(trans, dir); 4941 4942 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4943 if (err) { 4944 err = -ENOSPC; 4945 goto out_unlock; 4946 } 4947 4948 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4949 dentry->d_name.len, 4950 dentry->d_parent->d_inode->i_ino, objectid, 4951 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 4952 &index); 4953 err = PTR_ERR(inode); 4954 if (IS_ERR(inode)) 4955 goto out_unlock; 4956 4957 err = btrfs_init_inode_security(inode, dir); 4958 if (err) { 4959 drop_inode = 1; 4960 goto out_unlock; 4961 } 4962 4963 btrfs_set_trans_block_group(trans, inode); 4964 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4965 if (err) 4966 drop_inode = 1; 4967 else { 4968 inode->i_mapping->a_ops = &btrfs_aops; 4969 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4970 inode->i_fop = &btrfs_file_operations; 4971 inode->i_op = &btrfs_file_inode_operations; 4972 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4973 } 4974 btrfs_update_inode_block_group(trans, inode); 4975 btrfs_update_inode_block_group(trans, dir); 4976 if (drop_inode) 4977 goto out_unlock; 4978 4979 path = btrfs_alloc_path(); 4980 BUG_ON(!path); 4981 key.objectid = inode->i_ino; 4982 key.offset = 0; 4983 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 4984 datasize = btrfs_file_extent_calc_inline_size(name_len); 4985 err = btrfs_insert_empty_item(trans, root, path, &key, 4986 datasize); 4987 if (err) { 4988 drop_inode = 1; 4989 goto out_unlock; 4990 } 4991 leaf = path->nodes[0]; 4992 ei = btrfs_item_ptr(leaf, path->slots[0], 4993 struct btrfs_file_extent_item); 4994 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 4995 btrfs_set_file_extent_type(leaf, ei, 4996 BTRFS_FILE_EXTENT_INLINE); 4997 btrfs_set_file_extent_encryption(leaf, ei, 0); 4998 btrfs_set_file_extent_compression(leaf, ei, 0); 4999 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 5000 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 5001 5002 ptr = btrfs_file_extent_inline_start(ei); 5003 write_extent_buffer(leaf, symname, ptr, name_len); 5004 btrfs_mark_buffer_dirty(leaf); 5005 btrfs_free_path(path); 5006 5007 inode->i_op = &btrfs_symlink_inode_operations; 5008 inode->i_mapping->a_ops = &btrfs_symlink_aops; 5009 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5010 inode_set_bytes(inode, name_len); 5011 btrfs_i_size_write(inode, name_len - 1); 5012 err = btrfs_update_inode(trans, root, inode); 5013 if (err) 5014 drop_inode = 1; 5015 5016 out_unlock: 5017 nr = trans->blocks_used; 5018 btrfs_end_transaction_throttle(trans, root); 5019 out_fail: 5020 if (drop_inode) { 5021 inode_dec_link_count(inode); 5022 iput(inode); 5023 } 5024 btrfs_btree_balance_dirty(root, nr); 5025 return err; 5026 } 5027 5028 static int prealloc_file_range(struct btrfs_trans_handle *trans, 5029 struct inode *inode, u64 start, u64 end, 5030 u64 locked_end, u64 alloc_hint, int mode) 5031 { 5032 struct btrfs_root *root = BTRFS_I(inode)->root; 5033 struct btrfs_key ins; 5034 u64 alloc_size; 5035 u64 cur_offset = start; 5036 u64 num_bytes = end - start; 5037 int ret = 0; 5038 5039 while (num_bytes > 0) { 5040 alloc_size = min(num_bytes, root->fs_info->max_extent); 5041 ret = btrfs_reserve_extent(trans, root, alloc_size, 5042 root->sectorsize, 0, alloc_hint, 5043 (u64)-1, &ins, 1); 5044 if (ret) { 5045 WARN_ON(1); 5046 goto out; 5047 } 5048 ret = insert_reserved_file_extent(trans, inode, 5049 cur_offset, ins.objectid, 5050 ins.offset, ins.offset, 5051 ins.offset, locked_end, 5052 0, 0, 0, 5053 BTRFS_FILE_EXTENT_PREALLOC); 5054 BUG_ON(ret); 5055 num_bytes -= ins.offset; 5056 cur_offset += ins.offset; 5057 alloc_hint = ins.objectid + ins.offset; 5058 } 5059 out: 5060 if (cur_offset > start) { 5061 inode->i_ctime = CURRENT_TIME; 5062 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 5063 if (!(mode & FALLOC_FL_KEEP_SIZE) && 5064 cur_offset > i_size_read(inode)) 5065 btrfs_i_size_write(inode, cur_offset); 5066 ret = btrfs_update_inode(trans, root, inode); 5067 BUG_ON(ret); 5068 } 5069 5070 return ret; 5071 } 5072 5073 static long btrfs_fallocate(struct inode *inode, int mode, 5074 loff_t offset, loff_t len) 5075 { 5076 u64 cur_offset; 5077 u64 last_byte; 5078 u64 alloc_start; 5079 u64 alloc_end; 5080 u64 alloc_hint = 0; 5081 u64 locked_end; 5082 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 5083 struct extent_map *em; 5084 struct btrfs_trans_handle *trans; 5085 struct btrfs_root *root; 5086 int ret; 5087 5088 alloc_start = offset & ~mask; 5089 alloc_end = (offset + len + mask) & ~mask; 5090 5091 /* 5092 * wait for ordered IO before we have any locks. We'll loop again 5093 * below with the locks held. 5094 */ 5095 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 5096 5097 mutex_lock(&inode->i_mutex); 5098 if (alloc_start > inode->i_size) { 5099 ret = btrfs_cont_expand(inode, alloc_start); 5100 if (ret) 5101 goto out; 5102 } 5103 5104 root = BTRFS_I(inode)->root; 5105 5106 ret = btrfs_check_data_free_space(root, inode, 5107 alloc_end - alloc_start); 5108 if (ret) 5109 goto out; 5110 5111 locked_end = alloc_end - 1; 5112 while (1) { 5113 struct btrfs_ordered_extent *ordered; 5114 5115 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1); 5116 if (!trans) { 5117 ret = -EIO; 5118 goto out_free; 5119 } 5120 5121 /* the extent lock is ordered inside the running 5122 * transaction 5123 */ 5124 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5125 GFP_NOFS); 5126 ordered = btrfs_lookup_first_ordered_extent(inode, 5127 alloc_end - 1); 5128 if (ordered && 5129 ordered->file_offset + ordered->len > alloc_start && 5130 ordered->file_offset < alloc_end) { 5131 btrfs_put_ordered_extent(ordered); 5132 unlock_extent(&BTRFS_I(inode)->io_tree, 5133 alloc_start, locked_end, GFP_NOFS); 5134 btrfs_end_transaction(trans, BTRFS_I(inode)->root); 5135 5136 /* 5137 * we can't wait on the range with the transaction 5138 * running or with the extent lock held 5139 */ 5140 btrfs_wait_ordered_range(inode, alloc_start, 5141 alloc_end - alloc_start); 5142 } else { 5143 if (ordered) 5144 btrfs_put_ordered_extent(ordered); 5145 break; 5146 } 5147 } 5148 5149 cur_offset = alloc_start; 5150 while (1) { 5151 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5152 alloc_end - cur_offset, 0); 5153 BUG_ON(IS_ERR(em) || !em); 5154 last_byte = min(extent_map_end(em), alloc_end); 5155 last_byte = (last_byte + mask) & ~mask; 5156 if (em->block_start == EXTENT_MAP_HOLE) { 5157 ret = prealloc_file_range(trans, inode, cur_offset, 5158 last_byte, locked_end + 1, 5159 alloc_hint, mode); 5160 if (ret < 0) { 5161 free_extent_map(em); 5162 break; 5163 } 5164 } 5165 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 5166 alloc_hint = em->block_start; 5167 free_extent_map(em); 5168 5169 cur_offset = last_byte; 5170 if (cur_offset >= alloc_end) { 5171 ret = 0; 5172 break; 5173 } 5174 } 5175 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5176 GFP_NOFS); 5177 5178 btrfs_end_transaction(trans, BTRFS_I(inode)->root); 5179 out_free: 5180 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start); 5181 out: 5182 mutex_unlock(&inode->i_mutex); 5183 return ret; 5184 } 5185 5186 static int btrfs_set_page_dirty(struct page *page) 5187 { 5188 return __set_page_dirty_nobuffers(page); 5189 } 5190 5191 static int btrfs_permission(struct inode *inode, int mask) 5192 { 5193 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 5194 return -EACCES; 5195 return generic_permission(inode, mask, btrfs_check_acl); 5196 } 5197 5198 static struct inode_operations btrfs_dir_inode_operations = { 5199 .getattr = btrfs_getattr, 5200 .lookup = btrfs_lookup, 5201 .create = btrfs_create, 5202 .unlink = btrfs_unlink, 5203 .link = btrfs_link, 5204 .mkdir = btrfs_mkdir, 5205 .rmdir = btrfs_rmdir, 5206 .rename = btrfs_rename, 5207 .symlink = btrfs_symlink, 5208 .setattr = btrfs_setattr, 5209 .mknod = btrfs_mknod, 5210 .setxattr = btrfs_setxattr, 5211 .getxattr = btrfs_getxattr, 5212 .listxattr = btrfs_listxattr, 5213 .removexattr = btrfs_removexattr, 5214 .permission = btrfs_permission, 5215 }; 5216 static struct inode_operations btrfs_dir_ro_inode_operations = { 5217 .lookup = btrfs_lookup, 5218 .permission = btrfs_permission, 5219 }; 5220 static struct file_operations btrfs_dir_file_operations = { 5221 .llseek = generic_file_llseek, 5222 .read = generic_read_dir, 5223 .readdir = btrfs_real_readdir, 5224 .unlocked_ioctl = btrfs_ioctl, 5225 #ifdef CONFIG_COMPAT 5226 .compat_ioctl = btrfs_ioctl, 5227 #endif 5228 .release = btrfs_release_file, 5229 .fsync = btrfs_sync_file, 5230 }; 5231 5232 static struct extent_io_ops btrfs_extent_io_ops = { 5233 .fill_delalloc = run_delalloc_range, 5234 .submit_bio_hook = btrfs_submit_bio_hook, 5235 .merge_bio_hook = btrfs_merge_bio_hook, 5236 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 5237 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 5238 .writepage_start_hook = btrfs_writepage_start_hook, 5239 .readpage_io_failed_hook = btrfs_io_failed_hook, 5240 .set_bit_hook = btrfs_set_bit_hook, 5241 .clear_bit_hook = btrfs_clear_bit_hook, 5242 }; 5243 5244 /* 5245 * btrfs doesn't support the bmap operation because swapfiles 5246 * use bmap to make a mapping of extents in the file. They assume 5247 * these extents won't change over the life of the file and they 5248 * use the bmap result to do IO directly to the drive. 5249 * 5250 * the btrfs bmap call would return logical addresses that aren't 5251 * suitable for IO and they also will change frequently as COW 5252 * operations happen. So, swapfile + btrfs == corruption. 5253 * 5254 * For now we're avoiding this by dropping bmap. 5255 */ 5256 static struct address_space_operations btrfs_aops = { 5257 .readpage = btrfs_readpage, 5258 .writepage = btrfs_writepage, 5259 .writepages = btrfs_writepages, 5260 .readpages = btrfs_readpages, 5261 .sync_page = block_sync_page, 5262 .direct_IO = btrfs_direct_IO, 5263 .invalidatepage = btrfs_invalidatepage, 5264 .releasepage = btrfs_releasepage, 5265 .set_page_dirty = btrfs_set_page_dirty, 5266 }; 5267 5268 static struct address_space_operations btrfs_symlink_aops = { 5269 .readpage = btrfs_readpage, 5270 .writepage = btrfs_writepage, 5271 .invalidatepage = btrfs_invalidatepage, 5272 .releasepage = btrfs_releasepage, 5273 }; 5274 5275 static struct inode_operations btrfs_file_inode_operations = { 5276 .truncate = btrfs_truncate, 5277 .getattr = btrfs_getattr, 5278 .setattr = btrfs_setattr, 5279 .setxattr = btrfs_setxattr, 5280 .getxattr = btrfs_getxattr, 5281 .listxattr = btrfs_listxattr, 5282 .removexattr = btrfs_removexattr, 5283 .permission = btrfs_permission, 5284 .fallocate = btrfs_fallocate, 5285 .fiemap = btrfs_fiemap, 5286 }; 5287 static struct inode_operations btrfs_special_inode_operations = { 5288 .getattr = btrfs_getattr, 5289 .setattr = btrfs_setattr, 5290 .permission = btrfs_permission, 5291 .setxattr = btrfs_setxattr, 5292 .getxattr = btrfs_getxattr, 5293 .listxattr = btrfs_listxattr, 5294 .removexattr = btrfs_removexattr, 5295 }; 5296 static struct inode_operations btrfs_symlink_inode_operations = { 5297 .readlink = generic_readlink, 5298 .follow_link = page_follow_link_light, 5299 .put_link = page_put_link, 5300 .permission = btrfs_permission, 5301 .setxattr = btrfs_setxattr, 5302 .getxattr = btrfs_getxattr, 5303 .listxattr = btrfs_listxattr, 5304 .removexattr = btrfs_removexattr, 5305 }; 5306