xref: /linux/fs/btrfs/inode.c (revision c9895ed5a84dc3cbc86a9d6d5656d8c187f53380)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 
54 struct btrfs_iget_args {
55 	u64 ino;
56 	struct btrfs_root *root;
57 };
58 
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68 
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
77 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
78 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
79 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
80 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
81 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
82 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
83 };
84 
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 				   struct page *locked_page,
89 				   u64 start, u64 end, int *page_started,
90 				   unsigned long *nr_written, int unlock);
91 
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 				     struct inode *inode,  struct inode *dir)
94 {
95 	int err;
96 
97 	err = btrfs_init_acl(trans, inode, dir);
98 	if (!err)
99 		err = btrfs_xattr_security_init(trans, inode, dir);
100 	return err;
101 }
102 
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 				struct btrfs_root *root, struct inode *inode,
110 				u64 start, size_t size, size_t compressed_size,
111 				struct page **compressed_pages)
112 {
113 	struct btrfs_key key;
114 	struct btrfs_path *path;
115 	struct extent_buffer *leaf;
116 	struct page *page = NULL;
117 	char *kaddr;
118 	unsigned long ptr;
119 	struct btrfs_file_extent_item *ei;
120 	int err = 0;
121 	int ret;
122 	size_t cur_size = size;
123 	size_t datasize;
124 	unsigned long offset;
125 	int compress_type = BTRFS_COMPRESS_NONE;
126 
127 	if (compressed_size && compressed_pages) {
128 		compress_type = root->fs_info->compress_type;
129 		cur_size = compressed_size;
130 	}
131 
132 	path = btrfs_alloc_path();
133 	if (!path)
134 		return -ENOMEM;
135 
136 	path->leave_spinning = 1;
137 	btrfs_set_trans_block_group(trans, inode);
138 
139 	key.objectid = inode->i_ino;
140 	key.offset = start;
141 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
143 
144 	inode_add_bytes(inode, size);
145 	ret = btrfs_insert_empty_item(trans, root, path, &key,
146 				      datasize);
147 	BUG_ON(ret);
148 	if (ret) {
149 		err = ret;
150 		goto fail;
151 	}
152 	leaf = path->nodes[0];
153 	ei = btrfs_item_ptr(leaf, path->slots[0],
154 			    struct btrfs_file_extent_item);
155 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 	btrfs_set_file_extent_encryption(leaf, ei, 0);
158 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 	ptr = btrfs_file_extent_inline_start(ei);
161 
162 	if (compress_type != BTRFS_COMPRESS_NONE) {
163 		struct page *cpage;
164 		int i = 0;
165 		while (compressed_size > 0) {
166 			cpage = compressed_pages[i];
167 			cur_size = min_t(unsigned long, compressed_size,
168 				       PAGE_CACHE_SIZE);
169 
170 			kaddr = kmap_atomic(cpage, KM_USER0);
171 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 			kunmap_atomic(kaddr, KM_USER0);
173 
174 			i++;
175 			ptr += cur_size;
176 			compressed_size -= cur_size;
177 		}
178 		btrfs_set_file_extent_compression(leaf, ei,
179 						  compress_type);
180 	} else {
181 		page = find_get_page(inode->i_mapping,
182 				     start >> PAGE_CACHE_SHIFT);
183 		btrfs_set_file_extent_compression(leaf, ei, 0);
184 		kaddr = kmap_atomic(page, KM_USER0);
185 		offset = start & (PAGE_CACHE_SIZE - 1);
186 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 		kunmap_atomic(kaddr, KM_USER0);
188 		page_cache_release(page);
189 	}
190 	btrfs_mark_buffer_dirty(leaf);
191 	btrfs_free_path(path);
192 
193 	/*
194 	 * we're an inline extent, so nobody can
195 	 * extend the file past i_size without locking
196 	 * a page we already have locked.
197 	 *
198 	 * We must do any isize and inode updates
199 	 * before we unlock the pages.  Otherwise we
200 	 * could end up racing with unlink.
201 	 */
202 	BTRFS_I(inode)->disk_i_size = inode->i_size;
203 	btrfs_update_inode(trans, root, inode);
204 
205 	return 0;
206 fail:
207 	btrfs_free_path(path);
208 	return err;
209 }
210 
211 
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 				 struct btrfs_root *root,
219 				 struct inode *inode, u64 start, u64 end,
220 				 size_t compressed_size,
221 				 struct page **compressed_pages)
222 {
223 	u64 isize = i_size_read(inode);
224 	u64 actual_end = min(end + 1, isize);
225 	u64 inline_len = actual_end - start;
226 	u64 aligned_end = (end + root->sectorsize - 1) &
227 			~((u64)root->sectorsize - 1);
228 	u64 hint_byte;
229 	u64 data_len = inline_len;
230 	int ret;
231 
232 	if (compressed_size)
233 		data_len = compressed_size;
234 
235 	if (start > 0 ||
236 	    actual_end >= PAGE_CACHE_SIZE ||
237 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 	    (!compressed_size &&
239 	    (actual_end & (root->sectorsize - 1)) == 0) ||
240 	    end + 1 < isize ||
241 	    data_len > root->fs_info->max_inline) {
242 		return 1;
243 	}
244 
245 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 				 &hint_byte, 1);
247 	BUG_ON(ret);
248 
249 	if (isize > actual_end)
250 		inline_len = min_t(u64, isize, actual_end);
251 	ret = insert_inline_extent(trans, root, inode, start,
252 				   inline_len, compressed_size,
253 				   compressed_pages);
254 	BUG_ON(ret);
255 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 	return 0;
258 }
259 
260 struct async_extent {
261 	u64 start;
262 	u64 ram_size;
263 	u64 compressed_size;
264 	struct page **pages;
265 	unsigned long nr_pages;
266 	int compress_type;
267 	struct list_head list;
268 };
269 
270 struct async_cow {
271 	struct inode *inode;
272 	struct btrfs_root *root;
273 	struct page *locked_page;
274 	u64 start;
275 	u64 end;
276 	struct list_head extents;
277 	struct btrfs_work work;
278 };
279 
280 static noinline int add_async_extent(struct async_cow *cow,
281 				     u64 start, u64 ram_size,
282 				     u64 compressed_size,
283 				     struct page **pages,
284 				     unsigned long nr_pages,
285 				     int compress_type)
286 {
287 	struct async_extent *async_extent;
288 
289 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290 	async_extent->start = start;
291 	async_extent->ram_size = ram_size;
292 	async_extent->compressed_size = compressed_size;
293 	async_extent->pages = pages;
294 	async_extent->nr_pages = nr_pages;
295 	async_extent->compress_type = compress_type;
296 	list_add_tail(&async_extent->list, &cow->extents);
297 	return 0;
298 }
299 
300 /*
301  * we create compressed extents in two phases.  The first
302  * phase compresses a range of pages that have already been
303  * locked (both pages and state bits are locked).
304  *
305  * This is done inside an ordered work queue, and the compression
306  * is spread across many cpus.  The actual IO submission is step
307  * two, and the ordered work queue takes care of making sure that
308  * happens in the same order things were put onto the queue by
309  * writepages and friends.
310  *
311  * If this code finds it can't get good compression, it puts an
312  * entry onto the work queue to write the uncompressed bytes.  This
313  * makes sure that both compressed inodes and uncompressed inodes
314  * are written in the same order that pdflush sent them down.
315  */
316 static noinline int compress_file_range(struct inode *inode,
317 					struct page *locked_page,
318 					u64 start, u64 end,
319 					struct async_cow *async_cow,
320 					int *num_added)
321 {
322 	struct btrfs_root *root = BTRFS_I(inode)->root;
323 	struct btrfs_trans_handle *trans;
324 	u64 num_bytes;
325 	u64 blocksize = root->sectorsize;
326 	u64 actual_end;
327 	u64 isize = i_size_read(inode);
328 	int ret = 0;
329 	struct page **pages = NULL;
330 	unsigned long nr_pages;
331 	unsigned long nr_pages_ret = 0;
332 	unsigned long total_compressed = 0;
333 	unsigned long total_in = 0;
334 	unsigned long max_compressed = 128 * 1024;
335 	unsigned long max_uncompressed = 128 * 1024;
336 	int i;
337 	int will_compress;
338 	int compress_type = root->fs_info->compress_type;
339 
340 	actual_end = min_t(u64, isize, end + 1);
341 again:
342 	will_compress = 0;
343 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345 
346 	/*
347 	 * we don't want to send crud past the end of i_size through
348 	 * compression, that's just a waste of CPU time.  So, if the
349 	 * end of the file is before the start of our current
350 	 * requested range of bytes, we bail out to the uncompressed
351 	 * cleanup code that can deal with all of this.
352 	 *
353 	 * It isn't really the fastest way to fix things, but this is a
354 	 * very uncommon corner.
355 	 */
356 	if (actual_end <= start)
357 		goto cleanup_and_bail_uncompressed;
358 
359 	total_compressed = actual_end - start;
360 
361 	/* we want to make sure that amount of ram required to uncompress
362 	 * an extent is reasonable, so we limit the total size in ram
363 	 * of a compressed extent to 128k.  This is a crucial number
364 	 * because it also controls how easily we can spread reads across
365 	 * cpus for decompression.
366 	 *
367 	 * We also want to make sure the amount of IO required to do
368 	 * a random read is reasonably small, so we limit the size of
369 	 * a compressed extent to 128k.
370 	 */
371 	total_compressed = min(total_compressed, max_uncompressed);
372 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 	num_bytes = max(blocksize,  num_bytes);
374 	total_in = 0;
375 	ret = 0;
376 
377 	/*
378 	 * we do compression for mount -o compress and when the
379 	 * inode has not been flagged as nocompress.  This flag can
380 	 * change at any time if we discover bad compression ratios.
381 	 */
382 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383 	    (btrfs_test_opt(root, COMPRESS) ||
384 	     (BTRFS_I(inode)->force_compress))) {
385 		WARN_ON(pages);
386 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387 
388 		if (BTRFS_I(inode)->force_compress)
389 			compress_type = BTRFS_I(inode)->force_compress;
390 
391 		ret = btrfs_compress_pages(compress_type,
392 					   inode->i_mapping, start,
393 					   total_compressed, pages,
394 					   nr_pages, &nr_pages_ret,
395 					   &total_in,
396 					   &total_compressed,
397 					   max_compressed);
398 
399 		if (!ret) {
400 			unsigned long offset = total_compressed &
401 				(PAGE_CACHE_SIZE - 1);
402 			struct page *page = pages[nr_pages_ret - 1];
403 			char *kaddr;
404 
405 			/* zero the tail end of the last page, we might be
406 			 * sending it down to disk
407 			 */
408 			if (offset) {
409 				kaddr = kmap_atomic(page, KM_USER0);
410 				memset(kaddr + offset, 0,
411 				       PAGE_CACHE_SIZE - offset);
412 				kunmap_atomic(kaddr, KM_USER0);
413 			}
414 			will_compress = 1;
415 		}
416 	}
417 	if (start == 0) {
418 		trans = btrfs_join_transaction(root, 1);
419 		BUG_ON(!trans);
420 		btrfs_set_trans_block_group(trans, inode);
421 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
422 
423 		/* lets try to make an inline extent */
424 		if (ret || total_in < (actual_end - start)) {
425 			/* we didn't compress the entire range, try
426 			 * to make an uncompressed inline extent.
427 			 */
428 			ret = cow_file_range_inline(trans, root, inode,
429 						    start, end, 0, NULL);
430 		} else {
431 			/* try making a compressed inline extent */
432 			ret = cow_file_range_inline(trans, root, inode,
433 						    start, end,
434 						    total_compressed, pages);
435 		}
436 		if (ret == 0) {
437 			/*
438 			 * inline extent creation worked, we don't need
439 			 * to create any more async work items.  Unlock
440 			 * and free up our temp pages.
441 			 */
442 			extent_clear_unlock_delalloc(inode,
443 			     &BTRFS_I(inode)->io_tree,
444 			     start, end, NULL,
445 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446 			     EXTENT_CLEAR_DELALLOC |
447 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
448 
449 			btrfs_end_transaction(trans, root);
450 			goto free_pages_out;
451 		}
452 		btrfs_end_transaction(trans, root);
453 	}
454 
455 	if (will_compress) {
456 		/*
457 		 * we aren't doing an inline extent round the compressed size
458 		 * up to a block size boundary so the allocator does sane
459 		 * things
460 		 */
461 		total_compressed = (total_compressed + blocksize - 1) &
462 			~(blocksize - 1);
463 
464 		/*
465 		 * one last check to make sure the compression is really a
466 		 * win, compare the page count read with the blocks on disk
467 		 */
468 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469 			~(PAGE_CACHE_SIZE - 1);
470 		if (total_compressed >= total_in) {
471 			will_compress = 0;
472 		} else {
473 			num_bytes = total_in;
474 		}
475 	}
476 	if (!will_compress && pages) {
477 		/*
478 		 * the compression code ran but failed to make things smaller,
479 		 * free any pages it allocated and our page pointer array
480 		 */
481 		for (i = 0; i < nr_pages_ret; i++) {
482 			WARN_ON(pages[i]->mapping);
483 			page_cache_release(pages[i]);
484 		}
485 		kfree(pages);
486 		pages = NULL;
487 		total_compressed = 0;
488 		nr_pages_ret = 0;
489 
490 		/* flag the file so we don't compress in the future */
491 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492 		    !(BTRFS_I(inode)->force_compress)) {
493 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
494 		}
495 	}
496 	if (will_compress) {
497 		*num_added += 1;
498 
499 		/* the async work queues will take care of doing actual
500 		 * allocation on disk for these compressed pages,
501 		 * and will submit them to the elevator.
502 		 */
503 		add_async_extent(async_cow, start, num_bytes,
504 				 total_compressed, pages, nr_pages_ret,
505 				 compress_type);
506 
507 		if (start + num_bytes < end) {
508 			start += num_bytes;
509 			pages = NULL;
510 			cond_resched();
511 			goto again;
512 		}
513 	} else {
514 cleanup_and_bail_uncompressed:
515 		/*
516 		 * No compression, but we still need to write the pages in
517 		 * the file we've been given so far.  redirty the locked
518 		 * page if it corresponds to our extent and set things up
519 		 * for the async work queue to run cow_file_range to do
520 		 * the normal delalloc dance
521 		 */
522 		if (page_offset(locked_page) >= start &&
523 		    page_offset(locked_page) <= end) {
524 			__set_page_dirty_nobuffers(locked_page);
525 			/* unlocked later on in the async handlers */
526 		}
527 		add_async_extent(async_cow, start, end - start + 1,
528 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
529 		*num_added += 1;
530 	}
531 
532 out:
533 	return 0;
534 
535 free_pages_out:
536 	for (i = 0; i < nr_pages_ret; i++) {
537 		WARN_ON(pages[i]->mapping);
538 		page_cache_release(pages[i]);
539 	}
540 	kfree(pages);
541 
542 	goto out;
543 }
544 
545 /*
546  * phase two of compressed writeback.  This is the ordered portion
547  * of the code, which only gets called in the order the work was
548  * queued.  We walk all the async extents created by compress_file_range
549  * and send them down to the disk.
550  */
551 static noinline int submit_compressed_extents(struct inode *inode,
552 					      struct async_cow *async_cow)
553 {
554 	struct async_extent *async_extent;
555 	u64 alloc_hint = 0;
556 	struct btrfs_trans_handle *trans;
557 	struct btrfs_key ins;
558 	struct extent_map *em;
559 	struct btrfs_root *root = BTRFS_I(inode)->root;
560 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561 	struct extent_io_tree *io_tree;
562 	int ret = 0;
563 
564 	if (list_empty(&async_cow->extents))
565 		return 0;
566 
567 
568 	while (!list_empty(&async_cow->extents)) {
569 		async_extent = list_entry(async_cow->extents.next,
570 					  struct async_extent, list);
571 		list_del(&async_extent->list);
572 
573 		io_tree = &BTRFS_I(inode)->io_tree;
574 
575 retry:
576 		/* did the compression code fall back to uncompressed IO? */
577 		if (!async_extent->pages) {
578 			int page_started = 0;
579 			unsigned long nr_written = 0;
580 
581 			lock_extent(io_tree, async_extent->start,
582 					 async_extent->start +
583 					 async_extent->ram_size - 1, GFP_NOFS);
584 
585 			/* allocate blocks */
586 			ret = cow_file_range(inode, async_cow->locked_page,
587 					     async_extent->start,
588 					     async_extent->start +
589 					     async_extent->ram_size - 1,
590 					     &page_started, &nr_written, 0);
591 
592 			/*
593 			 * if page_started, cow_file_range inserted an
594 			 * inline extent and took care of all the unlocking
595 			 * and IO for us.  Otherwise, we need to submit
596 			 * all those pages down to the drive.
597 			 */
598 			if (!page_started && !ret)
599 				extent_write_locked_range(io_tree,
600 						  inode, async_extent->start,
601 						  async_extent->start +
602 						  async_extent->ram_size - 1,
603 						  btrfs_get_extent,
604 						  WB_SYNC_ALL);
605 			kfree(async_extent);
606 			cond_resched();
607 			continue;
608 		}
609 
610 		lock_extent(io_tree, async_extent->start,
611 			    async_extent->start + async_extent->ram_size - 1,
612 			    GFP_NOFS);
613 
614 		trans = btrfs_join_transaction(root, 1);
615 		ret = btrfs_reserve_extent(trans, root,
616 					   async_extent->compressed_size,
617 					   async_extent->compressed_size,
618 					   0, alloc_hint,
619 					   (u64)-1, &ins, 1);
620 		btrfs_end_transaction(trans, root);
621 
622 		if (ret) {
623 			int i;
624 			for (i = 0; i < async_extent->nr_pages; i++) {
625 				WARN_ON(async_extent->pages[i]->mapping);
626 				page_cache_release(async_extent->pages[i]);
627 			}
628 			kfree(async_extent->pages);
629 			async_extent->nr_pages = 0;
630 			async_extent->pages = NULL;
631 			unlock_extent(io_tree, async_extent->start,
632 				      async_extent->start +
633 				      async_extent->ram_size - 1, GFP_NOFS);
634 			goto retry;
635 		}
636 
637 		/*
638 		 * here we're doing allocation and writeback of the
639 		 * compressed pages
640 		 */
641 		btrfs_drop_extent_cache(inode, async_extent->start,
642 					async_extent->start +
643 					async_extent->ram_size - 1, 0);
644 
645 		em = alloc_extent_map(GFP_NOFS);
646 		em->start = async_extent->start;
647 		em->len = async_extent->ram_size;
648 		em->orig_start = em->start;
649 
650 		em->block_start = ins.objectid;
651 		em->block_len = ins.offset;
652 		em->bdev = root->fs_info->fs_devices->latest_bdev;
653 		em->compress_type = async_extent->compress_type;
654 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
655 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
656 
657 		while (1) {
658 			write_lock(&em_tree->lock);
659 			ret = add_extent_mapping(em_tree, em);
660 			write_unlock(&em_tree->lock);
661 			if (ret != -EEXIST) {
662 				free_extent_map(em);
663 				break;
664 			}
665 			btrfs_drop_extent_cache(inode, async_extent->start,
666 						async_extent->start +
667 						async_extent->ram_size - 1, 0);
668 		}
669 
670 		ret = btrfs_add_ordered_extent_compress(inode,
671 						async_extent->start,
672 						ins.objectid,
673 						async_extent->ram_size,
674 						ins.offset,
675 						BTRFS_ORDERED_COMPRESSED,
676 						async_extent->compress_type);
677 		BUG_ON(ret);
678 
679 		/*
680 		 * clear dirty, set writeback and unlock the pages.
681 		 */
682 		extent_clear_unlock_delalloc(inode,
683 				&BTRFS_I(inode)->io_tree,
684 				async_extent->start,
685 				async_extent->start +
686 				async_extent->ram_size - 1,
687 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
688 				EXTENT_CLEAR_UNLOCK |
689 				EXTENT_CLEAR_DELALLOC |
690 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
691 
692 		ret = btrfs_submit_compressed_write(inode,
693 				    async_extent->start,
694 				    async_extent->ram_size,
695 				    ins.objectid,
696 				    ins.offset, async_extent->pages,
697 				    async_extent->nr_pages);
698 
699 		BUG_ON(ret);
700 		alloc_hint = ins.objectid + ins.offset;
701 		kfree(async_extent);
702 		cond_resched();
703 	}
704 
705 	return 0;
706 }
707 
708 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
709 				      u64 num_bytes)
710 {
711 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
712 	struct extent_map *em;
713 	u64 alloc_hint = 0;
714 
715 	read_lock(&em_tree->lock);
716 	em = search_extent_mapping(em_tree, start, num_bytes);
717 	if (em) {
718 		/*
719 		 * if block start isn't an actual block number then find the
720 		 * first block in this inode and use that as a hint.  If that
721 		 * block is also bogus then just don't worry about it.
722 		 */
723 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
724 			free_extent_map(em);
725 			em = search_extent_mapping(em_tree, 0, 0);
726 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
727 				alloc_hint = em->block_start;
728 			if (em)
729 				free_extent_map(em);
730 		} else {
731 			alloc_hint = em->block_start;
732 			free_extent_map(em);
733 		}
734 	}
735 	read_unlock(&em_tree->lock);
736 
737 	return alloc_hint;
738 }
739 
740 /*
741  * when extent_io.c finds a delayed allocation range in the file,
742  * the call backs end up in this code.  The basic idea is to
743  * allocate extents on disk for the range, and create ordered data structs
744  * in ram to track those extents.
745  *
746  * locked_page is the page that writepage had locked already.  We use
747  * it to make sure we don't do extra locks or unlocks.
748  *
749  * *page_started is set to one if we unlock locked_page and do everything
750  * required to start IO on it.  It may be clean and already done with
751  * IO when we return.
752  */
753 static noinline int cow_file_range(struct inode *inode,
754 				   struct page *locked_page,
755 				   u64 start, u64 end, int *page_started,
756 				   unsigned long *nr_written,
757 				   int unlock)
758 {
759 	struct btrfs_root *root = BTRFS_I(inode)->root;
760 	struct btrfs_trans_handle *trans;
761 	u64 alloc_hint = 0;
762 	u64 num_bytes;
763 	unsigned long ram_size;
764 	u64 disk_num_bytes;
765 	u64 cur_alloc_size;
766 	u64 blocksize = root->sectorsize;
767 	struct btrfs_key ins;
768 	struct extent_map *em;
769 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
770 	int ret = 0;
771 
772 	BUG_ON(root == root->fs_info->tree_root);
773 	trans = btrfs_join_transaction(root, 1);
774 	BUG_ON(!trans);
775 	btrfs_set_trans_block_group(trans, inode);
776 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
777 
778 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
779 	num_bytes = max(blocksize,  num_bytes);
780 	disk_num_bytes = num_bytes;
781 	ret = 0;
782 
783 	if (start == 0) {
784 		/* lets try to make an inline extent */
785 		ret = cow_file_range_inline(trans, root, inode,
786 					    start, end, 0, NULL);
787 		if (ret == 0) {
788 			extent_clear_unlock_delalloc(inode,
789 				     &BTRFS_I(inode)->io_tree,
790 				     start, end, NULL,
791 				     EXTENT_CLEAR_UNLOCK_PAGE |
792 				     EXTENT_CLEAR_UNLOCK |
793 				     EXTENT_CLEAR_DELALLOC |
794 				     EXTENT_CLEAR_DIRTY |
795 				     EXTENT_SET_WRITEBACK |
796 				     EXTENT_END_WRITEBACK);
797 
798 			*nr_written = *nr_written +
799 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
800 			*page_started = 1;
801 			ret = 0;
802 			goto out;
803 		}
804 	}
805 
806 	BUG_ON(disk_num_bytes >
807 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
808 
809 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
810 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
811 
812 	while (disk_num_bytes > 0) {
813 		unsigned long op;
814 
815 		cur_alloc_size = disk_num_bytes;
816 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
817 					   root->sectorsize, 0, alloc_hint,
818 					   (u64)-1, &ins, 1);
819 		BUG_ON(ret);
820 
821 		em = alloc_extent_map(GFP_NOFS);
822 		em->start = start;
823 		em->orig_start = em->start;
824 		ram_size = ins.offset;
825 		em->len = ins.offset;
826 
827 		em->block_start = ins.objectid;
828 		em->block_len = ins.offset;
829 		em->bdev = root->fs_info->fs_devices->latest_bdev;
830 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
831 
832 		while (1) {
833 			write_lock(&em_tree->lock);
834 			ret = add_extent_mapping(em_tree, em);
835 			write_unlock(&em_tree->lock);
836 			if (ret != -EEXIST) {
837 				free_extent_map(em);
838 				break;
839 			}
840 			btrfs_drop_extent_cache(inode, start,
841 						start + ram_size - 1, 0);
842 		}
843 
844 		cur_alloc_size = ins.offset;
845 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
846 					       ram_size, cur_alloc_size, 0);
847 		BUG_ON(ret);
848 
849 		if (root->root_key.objectid ==
850 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
851 			ret = btrfs_reloc_clone_csums(inode, start,
852 						      cur_alloc_size);
853 			BUG_ON(ret);
854 		}
855 
856 		if (disk_num_bytes < cur_alloc_size)
857 			break;
858 
859 		/* we're not doing compressed IO, don't unlock the first
860 		 * page (which the caller expects to stay locked), don't
861 		 * clear any dirty bits and don't set any writeback bits
862 		 *
863 		 * Do set the Private2 bit so we know this page was properly
864 		 * setup for writepage
865 		 */
866 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
867 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
868 			EXTENT_SET_PRIVATE2;
869 
870 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
871 					     start, start + ram_size - 1,
872 					     locked_page, op);
873 		disk_num_bytes -= cur_alloc_size;
874 		num_bytes -= cur_alloc_size;
875 		alloc_hint = ins.objectid + ins.offset;
876 		start += cur_alloc_size;
877 	}
878 out:
879 	ret = 0;
880 	btrfs_end_transaction(trans, root);
881 
882 	return ret;
883 }
884 
885 /*
886  * work queue call back to started compression on a file and pages
887  */
888 static noinline void async_cow_start(struct btrfs_work *work)
889 {
890 	struct async_cow *async_cow;
891 	int num_added = 0;
892 	async_cow = container_of(work, struct async_cow, work);
893 
894 	compress_file_range(async_cow->inode, async_cow->locked_page,
895 			    async_cow->start, async_cow->end, async_cow,
896 			    &num_added);
897 	if (num_added == 0)
898 		async_cow->inode = NULL;
899 }
900 
901 /*
902  * work queue call back to submit previously compressed pages
903  */
904 static noinline void async_cow_submit(struct btrfs_work *work)
905 {
906 	struct async_cow *async_cow;
907 	struct btrfs_root *root;
908 	unsigned long nr_pages;
909 
910 	async_cow = container_of(work, struct async_cow, work);
911 
912 	root = async_cow->root;
913 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
914 		PAGE_CACHE_SHIFT;
915 
916 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
917 
918 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
919 	    5 * 1042 * 1024 &&
920 	    waitqueue_active(&root->fs_info->async_submit_wait))
921 		wake_up(&root->fs_info->async_submit_wait);
922 
923 	if (async_cow->inode)
924 		submit_compressed_extents(async_cow->inode, async_cow);
925 }
926 
927 static noinline void async_cow_free(struct btrfs_work *work)
928 {
929 	struct async_cow *async_cow;
930 	async_cow = container_of(work, struct async_cow, work);
931 	kfree(async_cow);
932 }
933 
934 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
935 				u64 start, u64 end, int *page_started,
936 				unsigned long *nr_written)
937 {
938 	struct async_cow *async_cow;
939 	struct btrfs_root *root = BTRFS_I(inode)->root;
940 	unsigned long nr_pages;
941 	u64 cur_end;
942 	int limit = 10 * 1024 * 1042;
943 
944 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
945 			 1, 0, NULL, GFP_NOFS);
946 	while (start < end) {
947 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
948 		async_cow->inode = inode;
949 		async_cow->root = root;
950 		async_cow->locked_page = locked_page;
951 		async_cow->start = start;
952 
953 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
954 			cur_end = end;
955 		else
956 			cur_end = min(end, start + 512 * 1024 - 1);
957 
958 		async_cow->end = cur_end;
959 		INIT_LIST_HEAD(&async_cow->extents);
960 
961 		async_cow->work.func = async_cow_start;
962 		async_cow->work.ordered_func = async_cow_submit;
963 		async_cow->work.ordered_free = async_cow_free;
964 		async_cow->work.flags = 0;
965 
966 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
967 			PAGE_CACHE_SHIFT;
968 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
969 
970 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
971 				   &async_cow->work);
972 
973 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
974 			wait_event(root->fs_info->async_submit_wait,
975 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
976 			    limit));
977 		}
978 
979 		while (atomic_read(&root->fs_info->async_submit_draining) &&
980 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
981 			wait_event(root->fs_info->async_submit_wait,
982 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
983 			   0));
984 		}
985 
986 		*nr_written += nr_pages;
987 		start = cur_end + 1;
988 	}
989 	*page_started = 1;
990 	return 0;
991 }
992 
993 static noinline int csum_exist_in_range(struct btrfs_root *root,
994 					u64 bytenr, u64 num_bytes)
995 {
996 	int ret;
997 	struct btrfs_ordered_sum *sums;
998 	LIST_HEAD(list);
999 
1000 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1001 				       bytenr + num_bytes - 1, &list);
1002 	if (ret == 0 && list_empty(&list))
1003 		return 0;
1004 
1005 	while (!list_empty(&list)) {
1006 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1007 		list_del(&sums->list);
1008 		kfree(sums);
1009 	}
1010 	return 1;
1011 }
1012 
1013 /*
1014  * when nowcow writeback call back.  This checks for snapshots or COW copies
1015  * of the extents that exist in the file, and COWs the file as required.
1016  *
1017  * If no cow copies or snapshots exist, we write directly to the existing
1018  * blocks on disk
1019  */
1020 static noinline int run_delalloc_nocow(struct inode *inode,
1021 				       struct page *locked_page,
1022 			      u64 start, u64 end, int *page_started, int force,
1023 			      unsigned long *nr_written)
1024 {
1025 	struct btrfs_root *root = BTRFS_I(inode)->root;
1026 	struct btrfs_trans_handle *trans;
1027 	struct extent_buffer *leaf;
1028 	struct btrfs_path *path;
1029 	struct btrfs_file_extent_item *fi;
1030 	struct btrfs_key found_key;
1031 	u64 cow_start;
1032 	u64 cur_offset;
1033 	u64 extent_end;
1034 	u64 extent_offset;
1035 	u64 disk_bytenr;
1036 	u64 num_bytes;
1037 	int extent_type;
1038 	int ret;
1039 	int type;
1040 	int nocow;
1041 	int check_prev = 1;
1042 	bool nolock = false;
1043 
1044 	path = btrfs_alloc_path();
1045 	BUG_ON(!path);
1046 	if (root == root->fs_info->tree_root) {
1047 		nolock = true;
1048 		trans = btrfs_join_transaction_nolock(root, 1);
1049 	} else {
1050 		trans = btrfs_join_transaction(root, 1);
1051 	}
1052 	BUG_ON(!trans);
1053 
1054 	cow_start = (u64)-1;
1055 	cur_offset = start;
1056 	while (1) {
1057 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1058 					       cur_offset, 0);
1059 		BUG_ON(ret < 0);
1060 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1061 			leaf = path->nodes[0];
1062 			btrfs_item_key_to_cpu(leaf, &found_key,
1063 					      path->slots[0] - 1);
1064 			if (found_key.objectid == inode->i_ino &&
1065 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1066 				path->slots[0]--;
1067 		}
1068 		check_prev = 0;
1069 next_slot:
1070 		leaf = path->nodes[0];
1071 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1072 			ret = btrfs_next_leaf(root, path);
1073 			if (ret < 0)
1074 				BUG_ON(1);
1075 			if (ret > 0)
1076 				break;
1077 			leaf = path->nodes[0];
1078 		}
1079 
1080 		nocow = 0;
1081 		disk_bytenr = 0;
1082 		num_bytes = 0;
1083 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1084 
1085 		if (found_key.objectid > inode->i_ino ||
1086 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1087 		    found_key.offset > end)
1088 			break;
1089 
1090 		if (found_key.offset > cur_offset) {
1091 			extent_end = found_key.offset;
1092 			extent_type = 0;
1093 			goto out_check;
1094 		}
1095 
1096 		fi = btrfs_item_ptr(leaf, path->slots[0],
1097 				    struct btrfs_file_extent_item);
1098 		extent_type = btrfs_file_extent_type(leaf, fi);
1099 
1100 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1101 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1102 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1103 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1104 			extent_end = found_key.offset +
1105 				btrfs_file_extent_num_bytes(leaf, fi);
1106 			if (extent_end <= start) {
1107 				path->slots[0]++;
1108 				goto next_slot;
1109 			}
1110 			if (disk_bytenr == 0)
1111 				goto out_check;
1112 			if (btrfs_file_extent_compression(leaf, fi) ||
1113 			    btrfs_file_extent_encryption(leaf, fi) ||
1114 			    btrfs_file_extent_other_encoding(leaf, fi))
1115 				goto out_check;
1116 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1117 				goto out_check;
1118 			if (btrfs_extent_readonly(root, disk_bytenr))
1119 				goto out_check;
1120 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1121 						  found_key.offset -
1122 						  extent_offset, disk_bytenr))
1123 				goto out_check;
1124 			disk_bytenr += extent_offset;
1125 			disk_bytenr += cur_offset - found_key.offset;
1126 			num_bytes = min(end + 1, extent_end) - cur_offset;
1127 			/*
1128 			 * force cow if csum exists in the range.
1129 			 * this ensure that csum for a given extent are
1130 			 * either valid or do not exist.
1131 			 */
1132 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1133 				goto out_check;
1134 			nocow = 1;
1135 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1136 			extent_end = found_key.offset +
1137 				btrfs_file_extent_inline_len(leaf, fi);
1138 			extent_end = ALIGN(extent_end, root->sectorsize);
1139 		} else {
1140 			BUG_ON(1);
1141 		}
1142 out_check:
1143 		if (extent_end <= start) {
1144 			path->slots[0]++;
1145 			goto next_slot;
1146 		}
1147 		if (!nocow) {
1148 			if (cow_start == (u64)-1)
1149 				cow_start = cur_offset;
1150 			cur_offset = extent_end;
1151 			if (cur_offset > end)
1152 				break;
1153 			path->slots[0]++;
1154 			goto next_slot;
1155 		}
1156 
1157 		btrfs_release_path(root, path);
1158 		if (cow_start != (u64)-1) {
1159 			ret = cow_file_range(inode, locked_page, cow_start,
1160 					found_key.offset - 1, page_started,
1161 					nr_written, 1);
1162 			BUG_ON(ret);
1163 			cow_start = (u64)-1;
1164 		}
1165 
1166 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1167 			struct extent_map *em;
1168 			struct extent_map_tree *em_tree;
1169 			em_tree = &BTRFS_I(inode)->extent_tree;
1170 			em = alloc_extent_map(GFP_NOFS);
1171 			em->start = cur_offset;
1172 			em->orig_start = em->start;
1173 			em->len = num_bytes;
1174 			em->block_len = num_bytes;
1175 			em->block_start = disk_bytenr;
1176 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1177 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1178 			while (1) {
1179 				write_lock(&em_tree->lock);
1180 				ret = add_extent_mapping(em_tree, em);
1181 				write_unlock(&em_tree->lock);
1182 				if (ret != -EEXIST) {
1183 					free_extent_map(em);
1184 					break;
1185 				}
1186 				btrfs_drop_extent_cache(inode, em->start,
1187 						em->start + em->len - 1, 0);
1188 			}
1189 			type = BTRFS_ORDERED_PREALLOC;
1190 		} else {
1191 			type = BTRFS_ORDERED_NOCOW;
1192 		}
1193 
1194 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1195 					       num_bytes, num_bytes, type);
1196 		BUG_ON(ret);
1197 
1198 		if (root->root_key.objectid ==
1199 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1200 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1201 						      num_bytes);
1202 			BUG_ON(ret);
1203 		}
1204 
1205 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1206 				cur_offset, cur_offset + num_bytes - 1,
1207 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1208 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1209 				EXTENT_SET_PRIVATE2);
1210 		cur_offset = extent_end;
1211 		if (cur_offset > end)
1212 			break;
1213 	}
1214 	btrfs_release_path(root, path);
1215 
1216 	if (cur_offset <= end && cow_start == (u64)-1)
1217 		cow_start = cur_offset;
1218 	if (cow_start != (u64)-1) {
1219 		ret = cow_file_range(inode, locked_page, cow_start, end,
1220 				     page_started, nr_written, 1);
1221 		BUG_ON(ret);
1222 	}
1223 
1224 	if (nolock) {
1225 		ret = btrfs_end_transaction_nolock(trans, root);
1226 		BUG_ON(ret);
1227 	} else {
1228 		ret = btrfs_end_transaction(trans, root);
1229 		BUG_ON(ret);
1230 	}
1231 	btrfs_free_path(path);
1232 	return 0;
1233 }
1234 
1235 /*
1236  * extent_io.c call back to do delayed allocation processing
1237  */
1238 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1239 			      u64 start, u64 end, int *page_started,
1240 			      unsigned long *nr_written)
1241 {
1242 	int ret;
1243 	struct btrfs_root *root = BTRFS_I(inode)->root;
1244 
1245 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1246 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1247 					 page_started, 1, nr_written);
1248 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1249 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1250 					 page_started, 0, nr_written);
1251 	else if (!btrfs_test_opt(root, COMPRESS) &&
1252 		 !(BTRFS_I(inode)->force_compress))
1253 		ret = cow_file_range(inode, locked_page, start, end,
1254 				      page_started, nr_written, 1);
1255 	else
1256 		ret = cow_file_range_async(inode, locked_page, start, end,
1257 					   page_started, nr_written);
1258 	return ret;
1259 }
1260 
1261 static int btrfs_split_extent_hook(struct inode *inode,
1262 				   struct extent_state *orig, u64 split)
1263 {
1264 	/* not delalloc, ignore it */
1265 	if (!(orig->state & EXTENT_DELALLOC))
1266 		return 0;
1267 
1268 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1269 	return 0;
1270 }
1271 
1272 /*
1273  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1274  * extents so we can keep track of new extents that are just merged onto old
1275  * extents, such as when we are doing sequential writes, so we can properly
1276  * account for the metadata space we'll need.
1277  */
1278 static int btrfs_merge_extent_hook(struct inode *inode,
1279 				   struct extent_state *new,
1280 				   struct extent_state *other)
1281 {
1282 	/* not delalloc, ignore it */
1283 	if (!(other->state & EXTENT_DELALLOC))
1284 		return 0;
1285 
1286 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1287 	return 0;
1288 }
1289 
1290 /*
1291  * extent_io.c set_bit_hook, used to track delayed allocation
1292  * bytes in this file, and to maintain the list of inodes that
1293  * have pending delalloc work to be done.
1294  */
1295 static int btrfs_set_bit_hook(struct inode *inode,
1296 			      struct extent_state *state, int *bits)
1297 {
1298 
1299 	/*
1300 	 * set_bit and clear bit hooks normally require _irqsave/restore
1301 	 * but in this case, we are only testeing for the DELALLOC
1302 	 * bit, which is only set or cleared with irqs on
1303 	 */
1304 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1305 		struct btrfs_root *root = BTRFS_I(inode)->root;
1306 		u64 len = state->end + 1 - state->start;
1307 		int do_list = (root->root_key.objectid !=
1308 			       BTRFS_ROOT_TREE_OBJECTID);
1309 
1310 		if (*bits & EXTENT_FIRST_DELALLOC)
1311 			*bits &= ~EXTENT_FIRST_DELALLOC;
1312 		else
1313 			atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1314 
1315 		spin_lock(&root->fs_info->delalloc_lock);
1316 		BTRFS_I(inode)->delalloc_bytes += len;
1317 		root->fs_info->delalloc_bytes += len;
1318 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1319 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1320 				      &root->fs_info->delalloc_inodes);
1321 		}
1322 		spin_unlock(&root->fs_info->delalloc_lock);
1323 	}
1324 	return 0;
1325 }
1326 
1327 /*
1328  * extent_io.c clear_bit_hook, see set_bit_hook for why
1329  */
1330 static int btrfs_clear_bit_hook(struct inode *inode,
1331 				struct extent_state *state, int *bits)
1332 {
1333 	/*
1334 	 * set_bit and clear bit hooks normally require _irqsave/restore
1335 	 * but in this case, we are only testeing for the DELALLOC
1336 	 * bit, which is only set or cleared with irqs on
1337 	 */
1338 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1339 		struct btrfs_root *root = BTRFS_I(inode)->root;
1340 		u64 len = state->end + 1 - state->start;
1341 		int do_list = (root->root_key.objectid !=
1342 			       BTRFS_ROOT_TREE_OBJECTID);
1343 
1344 		if (*bits & EXTENT_FIRST_DELALLOC)
1345 			*bits &= ~EXTENT_FIRST_DELALLOC;
1346 		else if (!(*bits & EXTENT_DO_ACCOUNTING))
1347 			atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1348 
1349 		if (*bits & EXTENT_DO_ACCOUNTING)
1350 			btrfs_delalloc_release_metadata(inode, len);
1351 
1352 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1353 		    && do_list)
1354 			btrfs_free_reserved_data_space(inode, len);
1355 
1356 		spin_lock(&root->fs_info->delalloc_lock);
1357 		root->fs_info->delalloc_bytes -= len;
1358 		BTRFS_I(inode)->delalloc_bytes -= len;
1359 
1360 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1361 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1362 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1363 		}
1364 		spin_unlock(&root->fs_info->delalloc_lock);
1365 	}
1366 	return 0;
1367 }
1368 
1369 /*
1370  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1371  * we don't create bios that span stripes or chunks
1372  */
1373 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1374 			 size_t size, struct bio *bio,
1375 			 unsigned long bio_flags)
1376 {
1377 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1378 	struct btrfs_mapping_tree *map_tree;
1379 	u64 logical = (u64)bio->bi_sector << 9;
1380 	u64 length = 0;
1381 	u64 map_length;
1382 	int ret;
1383 
1384 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1385 		return 0;
1386 
1387 	length = bio->bi_size;
1388 	map_tree = &root->fs_info->mapping_tree;
1389 	map_length = length;
1390 	ret = btrfs_map_block(map_tree, READ, logical,
1391 			      &map_length, NULL, 0);
1392 
1393 	if (map_length < length + size)
1394 		return 1;
1395 	return ret;
1396 }
1397 
1398 /*
1399  * in order to insert checksums into the metadata in large chunks,
1400  * we wait until bio submission time.   All the pages in the bio are
1401  * checksummed and sums are attached onto the ordered extent record.
1402  *
1403  * At IO completion time the cums attached on the ordered extent record
1404  * are inserted into the btree
1405  */
1406 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1407 				    struct bio *bio, int mirror_num,
1408 				    unsigned long bio_flags,
1409 				    u64 bio_offset)
1410 {
1411 	struct btrfs_root *root = BTRFS_I(inode)->root;
1412 	int ret = 0;
1413 
1414 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1415 	BUG_ON(ret);
1416 	return 0;
1417 }
1418 
1419 /*
1420  * in order to insert checksums into the metadata in large chunks,
1421  * we wait until bio submission time.   All the pages in the bio are
1422  * checksummed and sums are attached onto the ordered extent record.
1423  *
1424  * At IO completion time the cums attached on the ordered extent record
1425  * are inserted into the btree
1426  */
1427 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1428 			  int mirror_num, unsigned long bio_flags,
1429 			  u64 bio_offset)
1430 {
1431 	struct btrfs_root *root = BTRFS_I(inode)->root;
1432 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1433 }
1434 
1435 /*
1436  * extent_io.c submission hook. This does the right thing for csum calculation
1437  * on write, or reading the csums from the tree before a read
1438  */
1439 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1440 			  int mirror_num, unsigned long bio_flags,
1441 			  u64 bio_offset)
1442 {
1443 	struct btrfs_root *root = BTRFS_I(inode)->root;
1444 	int ret = 0;
1445 	int skip_sum;
1446 
1447 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1448 
1449 	if (root == root->fs_info->tree_root)
1450 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1451 	else
1452 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1453 	BUG_ON(ret);
1454 
1455 	if (!(rw & REQ_WRITE)) {
1456 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1457 			return btrfs_submit_compressed_read(inode, bio,
1458 						    mirror_num, bio_flags);
1459 		} else if (!skip_sum)
1460 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1461 		goto mapit;
1462 	} else if (!skip_sum) {
1463 		/* csum items have already been cloned */
1464 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1465 			goto mapit;
1466 		/* we're doing a write, do the async checksumming */
1467 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1468 				   inode, rw, bio, mirror_num,
1469 				   bio_flags, bio_offset,
1470 				   __btrfs_submit_bio_start,
1471 				   __btrfs_submit_bio_done);
1472 	}
1473 
1474 mapit:
1475 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1476 }
1477 
1478 /*
1479  * given a list of ordered sums record them in the inode.  This happens
1480  * at IO completion time based on sums calculated at bio submission time.
1481  */
1482 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1483 			     struct inode *inode, u64 file_offset,
1484 			     struct list_head *list)
1485 {
1486 	struct btrfs_ordered_sum *sum;
1487 
1488 	btrfs_set_trans_block_group(trans, inode);
1489 
1490 	list_for_each_entry(sum, list, list) {
1491 		btrfs_csum_file_blocks(trans,
1492 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1493 	}
1494 	return 0;
1495 }
1496 
1497 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1498 			      struct extent_state **cached_state)
1499 {
1500 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1501 		WARN_ON(1);
1502 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1503 				   cached_state, GFP_NOFS);
1504 }
1505 
1506 /* see btrfs_writepage_start_hook for details on why this is required */
1507 struct btrfs_writepage_fixup {
1508 	struct page *page;
1509 	struct btrfs_work work;
1510 };
1511 
1512 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1513 {
1514 	struct btrfs_writepage_fixup *fixup;
1515 	struct btrfs_ordered_extent *ordered;
1516 	struct extent_state *cached_state = NULL;
1517 	struct page *page;
1518 	struct inode *inode;
1519 	u64 page_start;
1520 	u64 page_end;
1521 
1522 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1523 	page = fixup->page;
1524 again:
1525 	lock_page(page);
1526 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1527 		ClearPageChecked(page);
1528 		goto out_page;
1529 	}
1530 
1531 	inode = page->mapping->host;
1532 	page_start = page_offset(page);
1533 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1534 
1535 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1536 			 &cached_state, GFP_NOFS);
1537 
1538 	/* already ordered? We're done */
1539 	if (PagePrivate2(page))
1540 		goto out;
1541 
1542 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1543 	if (ordered) {
1544 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1545 				     page_end, &cached_state, GFP_NOFS);
1546 		unlock_page(page);
1547 		btrfs_start_ordered_extent(inode, ordered, 1);
1548 		goto again;
1549 	}
1550 
1551 	BUG();
1552 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1553 	ClearPageChecked(page);
1554 out:
1555 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1556 			     &cached_state, GFP_NOFS);
1557 out_page:
1558 	unlock_page(page);
1559 	page_cache_release(page);
1560 }
1561 
1562 /*
1563  * There are a few paths in the higher layers of the kernel that directly
1564  * set the page dirty bit without asking the filesystem if it is a
1565  * good idea.  This causes problems because we want to make sure COW
1566  * properly happens and the data=ordered rules are followed.
1567  *
1568  * In our case any range that doesn't have the ORDERED bit set
1569  * hasn't been properly setup for IO.  We kick off an async process
1570  * to fix it up.  The async helper will wait for ordered extents, set
1571  * the delalloc bit and make it safe to write the page.
1572  */
1573 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1574 {
1575 	struct inode *inode = page->mapping->host;
1576 	struct btrfs_writepage_fixup *fixup;
1577 	struct btrfs_root *root = BTRFS_I(inode)->root;
1578 
1579 	/* this page is properly in the ordered list */
1580 	if (TestClearPagePrivate2(page))
1581 		return 0;
1582 
1583 	if (PageChecked(page))
1584 		return -EAGAIN;
1585 
1586 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1587 	if (!fixup)
1588 		return -EAGAIN;
1589 
1590 	SetPageChecked(page);
1591 	page_cache_get(page);
1592 	fixup->work.func = btrfs_writepage_fixup_worker;
1593 	fixup->page = page;
1594 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1595 	return -EAGAIN;
1596 }
1597 
1598 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1599 				       struct inode *inode, u64 file_pos,
1600 				       u64 disk_bytenr, u64 disk_num_bytes,
1601 				       u64 num_bytes, u64 ram_bytes,
1602 				       u8 compression, u8 encryption,
1603 				       u16 other_encoding, int extent_type)
1604 {
1605 	struct btrfs_root *root = BTRFS_I(inode)->root;
1606 	struct btrfs_file_extent_item *fi;
1607 	struct btrfs_path *path;
1608 	struct extent_buffer *leaf;
1609 	struct btrfs_key ins;
1610 	u64 hint;
1611 	int ret;
1612 
1613 	path = btrfs_alloc_path();
1614 	BUG_ON(!path);
1615 
1616 	path->leave_spinning = 1;
1617 
1618 	/*
1619 	 * we may be replacing one extent in the tree with another.
1620 	 * The new extent is pinned in the extent map, and we don't want
1621 	 * to drop it from the cache until it is completely in the btree.
1622 	 *
1623 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1624 	 * the caller is expected to unpin it and allow it to be merged
1625 	 * with the others.
1626 	 */
1627 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1628 				 &hint, 0);
1629 	BUG_ON(ret);
1630 
1631 	ins.objectid = inode->i_ino;
1632 	ins.offset = file_pos;
1633 	ins.type = BTRFS_EXTENT_DATA_KEY;
1634 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1635 	BUG_ON(ret);
1636 	leaf = path->nodes[0];
1637 	fi = btrfs_item_ptr(leaf, path->slots[0],
1638 			    struct btrfs_file_extent_item);
1639 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1640 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1641 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1642 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1643 	btrfs_set_file_extent_offset(leaf, fi, 0);
1644 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1645 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1646 	btrfs_set_file_extent_compression(leaf, fi, compression);
1647 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1648 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1649 
1650 	btrfs_unlock_up_safe(path, 1);
1651 	btrfs_set_lock_blocking(leaf);
1652 
1653 	btrfs_mark_buffer_dirty(leaf);
1654 
1655 	inode_add_bytes(inode, num_bytes);
1656 
1657 	ins.objectid = disk_bytenr;
1658 	ins.offset = disk_num_bytes;
1659 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1660 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1661 					root->root_key.objectid,
1662 					inode->i_ino, file_pos, &ins);
1663 	BUG_ON(ret);
1664 	btrfs_free_path(path);
1665 
1666 	return 0;
1667 }
1668 
1669 /*
1670  * helper function for btrfs_finish_ordered_io, this
1671  * just reads in some of the csum leaves to prime them into ram
1672  * before we start the transaction.  It limits the amount of btree
1673  * reads required while inside the transaction.
1674  */
1675 /* as ordered data IO finishes, this gets called so we can finish
1676  * an ordered extent if the range of bytes in the file it covers are
1677  * fully written.
1678  */
1679 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1680 {
1681 	struct btrfs_root *root = BTRFS_I(inode)->root;
1682 	struct btrfs_trans_handle *trans = NULL;
1683 	struct btrfs_ordered_extent *ordered_extent = NULL;
1684 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1685 	struct extent_state *cached_state = NULL;
1686 	int compress_type = 0;
1687 	int ret;
1688 	bool nolock = false;
1689 
1690 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1691 					     end - start + 1);
1692 	if (!ret)
1693 		return 0;
1694 	BUG_ON(!ordered_extent);
1695 
1696 	nolock = (root == root->fs_info->tree_root);
1697 
1698 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1699 		BUG_ON(!list_empty(&ordered_extent->list));
1700 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1701 		if (!ret) {
1702 			if (nolock)
1703 				trans = btrfs_join_transaction_nolock(root, 1);
1704 			else
1705 				trans = btrfs_join_transaction(root, 1);
1706 			BUG_ON(!trans);
1707 			btrfs_set_trans_block_group(trans, inode);
1708 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1709 			ret = btrfs_update_inode(trans, root, inode);
1710 			BUG_ON(ret);
1711 		}
1712 		goto out;
1713 	}
1714 
1715 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1716 			 ordered_extent->file_offset + ordered_extent->len - 1,
1717 			 0, &cached_state, GFP_NOFS);
1718 
1719 	if (nolock)
1720 		trans = btrfs_join_transaction_nolock(root, 1);
1721 	else
1722 		trans = btrfs_join_transaction(root, 1);
1723 	btrfs_set_trans_block_group(trans, inode);
1724 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1725 
1726 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1727 		compress_type = ordered_extent->compress_type;
1728 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1729 		BUG_ON(compress_type);
1730 		ret = btrfs_mark_extent_written(trans, inode,
1731 						ordered_extent->file_offset,
1732 						ordered_extent->file_offset +
1733 						ordered_extent->len);
1734 		BUG_ON(ret);
1735 	} else {
1736 		BUG_ON(root == root->fs_info->tree_root);
1737 		ret = insert_reserved_file_extent(trans, inode,
1738 						ordered_extent->file_offset,
1739 						ordered_extent->start,
1740 						ordered_extent->disk_len,
1741 						ordered_extent->len,
1742 						ordered_extent->len,
1743 						compress_type, 0, 0,
1744 						BTRFS_FILE_EXTENT_REG);
1745 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1746 				   ordered_extent->file_offset,
1747 				   ordered_extent->len);
1748 		BUG_ON(ret);
1749 	}
1750 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1751 			     ordered_extent->file_offset +
1752 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1753 
1754 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1755 			  &ordered_extent->list);
1756 
1757 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1758 	ret = btrfs_update_inode(trans, root, inode);
1759 	BUG_ON(ret);
1760 out:
1761 	if (nolock) {
1762 		if (trans)
1763 			btrfs_end_transaction_nolock(trans, root);
1764 	} else {
1765 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1766 		if (trans)
1767 			btrfs_end_transaction(trans, root);
1768 	}
1769 
1770 	/* once for us */
1771 	btrfs_put_ordered_extent(ordered_extent);
1772 	/* once for the tree */
1773 	btrfs_put_ordered_extent(ordered_extent);
1774 
1775 	return 0;
1776 }
1777 
1778 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1779 				struct extent_state *state, int uptodate)
1780 {
1781 	ClearPagePrivate2(page);
1782 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1783 }
1784 
1785 /*
1786  * When IO fails, either with EIO or csum verification fails, we
1787  * try other mirrors that might have a good copy of the data.  This
1788  * io_failure_record is used to record state as we go through all the
1789  * mirrors.  If another mirror has good data, the page is set up to date
1790  * and things continue.  If a good mirror can't be found, the original
1791  * bio end_io callback is called to indicate things have failed.
1792  */
1793 struct io_failure_record {
1794 	struct page *page;
1795 	u64 start;
1796 	u64 len;
1797 	u64 logical;
1798 	unsigned long bio_flags;
1799 	int last_mirror;
1800 };
1801 
1802 static int btrfs_io_failed_hook(struct bio *failed_bio,
1803 			 struct page *page, u64 start, u64 end,
1804 			 struct extent_state *state)
1805 {
1806 	struct io_failure_record *failrec = NULL;
1807 	u64 private;
1808 	struct extent_map *em;
1809 	struct inode *inode = page->mapping->host;
1810 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1811 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1812 	struct bio *bio;
1813 	int num_copies;
1814 	int ret;
1815 	int rw;
1816 	u64 logical;
1817 
1818 	ret = get_state_private(failure_tree, start, &private);
1819 	if (ret) {
1820 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1821 		if (!failrec)
1822 			return -ENOMEM;
1823 		failrec->start = start;
1824 		failrec->len = end - start + 1;
1825 		failrec->last_mirror = 0;
1826 		failrec->bio_flags = 0;
1827 
1828 		read_lock(&em_tree->lock);
1829 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1830 		if (em->start > start || em->start + em->len < start) {
1831 			free_extent_map(em);
1832 			em = NULL;
1833 		}
1834 		read_unlock(&em_tree->lock);
1835 
1836 		if (!em || IS_ERR(em)) {
1837 			kfree(failrec);
1838 			return -EIO;
1839 		}
1840 		logical = start - em->start;
1841 		logical = em->block_start + logical;
1842 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1843 			logical = em->block_start;
1844 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1845 			extent_set_compress_type(&failrec->bio_flags,
1846 						 em->compress_type);
1847 		}
1848 		failrec->logical = logical;
1849 		free_extent_map(em);
1850 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1851 				EXTENT_DIRTY, GFP_NOFS);
1852 		set_state_private(failure_tree, start,
1853 				 (u64)(unsigned long)failrec);
1854 	} else {
1855 		failrec = (struct io_failure_record *)(unsigned long)private;
1856 	}
1857 	num_copies = btrfs_num_copies(
1858 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1859 			      failrec->logical, failrec->len);
1860 	failrec->last_mirror++;
1861 	if (!state) {
1862 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1863 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1864 						    failrec->start,
1865 						    EXTENT_LOCKED);
1866 		if (state && state->start != failrec->start)
1867 			state = NULL;
1868 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1869 	}
1870 	if (!state || failrec->last_mirror > num_copies) {
1871 		set_state_private(failure_tree, failrec->start, 0);
1872 		clear_extent_bits(failure_tree, failrec->start,
1873 				  failrec->start + failrec->len - 1,
1874 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1875 		kfree(failrec);
1876 		return -EIO;
1877 	}
1878 	bio = bio_alloc(GFP_NOFS, 1);
1879 	bio->bi_private = state;
1880 	bio->bi_end_io = failed_bio->bi_end_io;
1881 	bio->bi_sector = failrec->logical >> 9;
1882 	bio->bi_bdev = failed_bio->bi_bdev;
1883 	bio->bi_size = 0;
1884 
1885 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1886 	if (failed_bio->bi_rw & REQ_WRITE)
1887 		rw = WRITE;
1888 	else
1889 		rw = READ;
1890 
1891 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1892 						      failrec->last_mirror,
1893 						      failrec->bio_flags, 0);
1894 	return 0;
1895 }
1896 
1897 /*
1898  * each time an IO finishes, we do a fast check in the IO failure tree
1899  * to see if we need to process or clean up an io_failure_record
1900  */
1901 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1902 {
1903 	u64 private;
1904 	u64 private_failure;
1905 	struct io_failure_record *failure;
1906 	int ret;
1907 
1908 	private = 0;
1909 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1910 			     (u64)-1, 1, EXTENT_DIRTY)) {
1911 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1912 					start, &private_failure);
1913 		if (ret == 0) {
1914 			failure = (struct io_failure_record *)(unsigned long)
1915 				   private_failure;
1916 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1917 					  failure->start, 0);
1918 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1919 					  failure->start,
1920 					  failure->start + failure->len - 1,
1921 					  EXTENT_DIRTY | EXTENT_LOCKED,
1922 					  GFP_NOFS);
1923 			kfree(failure);
1924 		}
1925 	}
1926 	return 0;
1927 }
1928 
1929 /*
1930  * when reads are done, we need to check csums to verify the data is correct
1931  * if there's a match, we allow the bio to finish.  If not, we go through
1932  * the io_failure_record routines to find good copies
1933  */
1934 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1935 			       struct extent_state *state)
1936 {
1937 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1938 	struct inode *inode = page->mapping->host;
1939 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1940 	char *kaddr;
1941 	u64 private = ~(u32)0;
1942 	int ret;
1943 	struct btrfs_root *root = BTRFS_I(inode)->root;
1944 	u32 csum = ~(u32)0;
1945 
1946 	if (PageChecked(page)) {
1947 		ClearPageChecked(page);
1948 		goto good;
1949 	}
1950 
1951 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1952 		return 0;
1953 
1954 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1955 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1956 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1957 				  GFP_NOFS);
1958 		return 0;
1959 	}
1960 
1961 	if (state && state->start == start) {
1962 		private = state->private;
1963 		ret = 0;
1964 	} else {
1965 		ret = get_state_private(io_tree, start, &private);
1966 	}
1967 	kaddr = kmap_atomic(page, KM_USER0);
1968 	if (ret)
1969 		goto zeroit;
1970 
1971 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1972 	btrfs_csum_final(csum, (char *)&csum);
1973 	if (csum != private)
1974 		goto zeroit;
1975 
1976 	kunmap_atomic(kaddr, KM_USER0);
1977 good:
1978 	/* if the io failure tree for this inode is non-empty,
1979 	 * check to see if we've recovered from a failed IO
1980 	 */
1981 	btrfs_clean_io_failures(inode, start);
1982 	return 0;
1983 
1984 zeroit:
1985 	if (printk_ratelimit()) {
1986 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1987 		       "private %llu\n", page->mapping->host->i_ino,
1988 		       (unsigned long long)start, csum,
1989 		       (unsigned long long)private);
1990 	}
1991 	memset(kaddr + offset, 1, end - start + 1);
1992 	flush_dcache_page(page);
1993 	kunmap_atomic(kaddr, KM_USER0);
1994 	if (private == 0)
1995 		return 0;
1996 	return -EIO;
1997 }
1998 
1999 struct delayed_iput {
2000 	struct list_head list;
2001 	struct inode *inode;
2002 };
2003 
2004 void btrfs_add_delayed_iput(struct inode *inode)
2005 {
2006 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007 	struct delayed_iput *delayed;
2008 
2009 	if (atomic_add_unless(&inode->i_count, -1, 1))
2010 		return;
2011 
2012 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2013 	delayed->inode = inode;
2014 
2015 	spin_lock(&fs_info->delayed_iput_lock);
2016 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2017 	spin_unlock(&fs_info->delayed_iput_lock);
2018 }
2019 
2020 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2021 {
2022 	LIST_HEAD(list);
2023 	struct btrfs_fs_info *fs_info = root->fs_info;
2024 	struct delayed_iput *delayed;
2025 	int empty;
2026 
2027 	spin_lock(&fs_info->delayed_iput_lock);
2028 	empty = list_empty(&fs_info->delayed_iputs);
2029 	spin_unlock(&fs_info->delayed_iput_lock);
2030 	if (empty)
2031 		return;
2032 
2033 	down_read(&root->fs_info->cleanup_work_sem);
2034 	spin_lock(&fs_info->delayed_iput_lock);
2035 	list_splice_init(&fs_info->delayed_iputs, &list);
2036 	spin_unlock(&fs_info->delayed_iput_lock);
2037 
2038 	while (!list_empty(&list)) {
2039 		delayed = list_entry(list.next, struct delayed_iput, list);
2040 		list_del(&delayed->list);
2041 		iput(delayed->inode);
2042 		kfree(delayed);
2043 	}
2044 	up_read(&root->fs_info->cleanup_work_sem);
2045 }
2046 
2047 /*
2048  * calculate extra metadata reservation when snapshotting a subvolume
2049  * contains orphan files.
2050  */
2051 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2052 				struct btrfs_pending_snapshot *pending,
2053 				u64 *bytes_to_reserve)
2054 {
2055 	struct btrfs_root *root;
2056 	struct btrfs_block_rsv *block_rsv;
2057 	u64 num_bytes;
2058 	int index;
2059 
2060 	root = pending->root;
2061 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2062 		return;
2063 
2064 	block_rsv = root->orphan_block_rsv;
2065 
2066 	/* orphan block reservation for the snapshot */
2067 	num_bytes = block_rsv->size;
2068 
2069 	/*
2070 	 * after the snapshot is created, COWing tree blocks may use more
2071 	 * space than it frees. So we should make sure there is enough
2072 	 * reserved space.
2073 	 */
2074 	index = trans->transid & 0x1;
2075 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2076 		num_bytes += block_rsv->size -
2077 			     (block_rsv->reserved + block_rsv->freed[index]);
2078 	}
2079 
2080 	*bytes_to_reserve += num_bytes;
2081 }
2082 
2083 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2084 				struct btrfs_pending_snapshot *pending)
2085 {
2086 	struct btrfs_root *root = pending->root;
2087 	struct btrfs_root *snap = pending->snap;
2088 	struct btrfs_block_rsv *block_rsv;
2089 	u64 num_bytes;
2090 	int index;
2091 	int ret;
2092 
2093 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2094 		return;
2095 
2096 	/* refill source subvolume's orphan block reservation */
2097 	block_rsv = root->orphan_block_rsv;
2098 	index = trans->transid & 0x1;
2099 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2100 		num_bytes = block_rsv->size -
2101 			    (block_rsv->reserved + block_rsv->freed[index]);
2102 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2103 					      root->orphan_block_rsv,
2104 					      num_bytes);
2105 		BUG_ON(ret);
2106 	}
2107 
2108 	/* setup orphan block reservation for the snapshot */
2109 	block_rsv = btrfs_alloc_block_rsv(snap);
2110 	BUG_ON(!block_rsv);
2111 
2112 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2113 	snap->orphan_block_rsv = block_rsv;
2114 
2115 	num_bytes = root->orphan_block_rsv->size;
2116 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2117 				      block_rsv, num_bytes);
2118 	BUG_ON(ret);
2119 
2120 #if 0
2121 	/* insert orphan item for the snapshot */
2122 	WARN_ON(!root->orphan_item_inserted);
2123 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2124 				       snap->root_key.objectid);
2125 	BUG_ON(ret);
2126 	snap->orphan_item_inserted = 1;
2127 #endif
2128 }
2129 
2130 enum btrfs_orphan_cleanup_state {
2131 	ORPHAN_CLEANUP_STARTED	= 1,
2132 	ORPHAN_CLEANUP_DONE	= 2,
2133 };
2134 
2135 /*
2136  * This is called in transaction commmit time. If there are no orphan
2137  * files in the subvolume, it removes orphan item and frees block_rsv
2138  * structure.
2139  */
2140 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2141 			      struct btrfs_root *root)
2142 {
2143 	int ret;
2144 
2145 	if (!list_empty(&root->orphan_list) ||
2146 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2147 		return;
2148 
2149 	if (root->orphan_item_inserted &&
2150 	    btrfs_root_refs(&root->root_item) > 0) {
2151 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2152 					    root->root_key.objectid);
2153 		BUG_ON(ret);
2154 		root->orphan_item_inserted = 0;
2155 	}
2156 
2157 	if (root->orphan_block_rsv) {
2158 		WARN_ON(root->orphan_block_rsv->size > 0);
2159 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2160 		root->orphan_block_rsv = NULL;
2161 	}
2162 }
2163 
2164 /*
2165  * This creates an orphan entry for the given inode in case something goes
2166  * wrong in the middle of an unlink/truncate.
2167  *
2168  * NOTE: caller of this function should reserve 5 units of metadata for
2169  *	 this function.
2170  */
2171 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2172 {
2173 	struct btrfs_root *root = BTRFS_I(inode)->root;
2174 	struct btrfs_block_rsv *block_rsv = NULL;
2175 	int reserve = 0;
2176 	int insert = 0;
2177 	int ret;
2178 
2179 	if (!root->orphan_block_rsv) {
2180 		block_rsv = btrfs_alloc_block_rsv(root);
2181 		BUG_ON(!block_rsv);
2182 	}
2183 
2184 	spin_lock(&root->orphan_lock);
2185 	if (!root->orphan_block_rsv) {
2186 		root->orphan_block_rsv = block_rsv;
2187 	} else if (block_rsv) {
2188 		btrfs_free_block_rsv(root, block_rsv);
2189 		block_rsv = NULL;
2190 	}
2191 
2192 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2193 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2194 #if 0
2195 		/*
2196 		 * For proper ENOSPC handling, we should do orphan
2197 		 * cleanup when mounting. But this introduces backward
2198 		 * compatibility issue.
2199 		 */
2200 		if (!xchg(&root->orphan_item_inserted, 1))
2201 			insert = 2;
2202 		else
2203 			insert = 1;
2204 #endif
2205 		insert = 1;
2206 	} else {
2207 		WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2208 	}
2209 
2210 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2211 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2212 		reserve = 1;
2213 	}
2214 	spin_unlock(&root->orphan_lock);
2215 
2216 	if (block_rsv)
2217 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2218 
2219 	/* grab metadata reservation from transaction handle */
2220 	if (reserve) {
2221 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2222 		BUG_ON(ret);
2223 	}
2224 
2225 	/* insert an orphan item to track this unlinked/truncated file */
2226 	if (insert >= 1) {
2227 		ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2228 		BUG_ON(ret);
2229 	}
2230 
2231 	/* insert an orphan item to track subvolume contains orphan files */
2232 	if (insert >= 2) {
2233 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2234 					       root->root_key.objectid);
2235 		BUG_ON(ret);
2236 	}
2237 	return 0;
2238 }
2239 
2240 /*
2241  * We have done the truncate/delete so we can go ahead and remove the orphan
2242  * item for this particular inode.
2243  */
2244 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2245 {
2246 	struct btrfs_root *root = BTRFS_I(inode)->root;
2247 	int delete_item = 0;
2248 	int release_rsv = 0;
2249 	int ret = 0;
2250 
2251 	spin_lock(&root->orphan_lock);
2252 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2253 		list_del_init(&BTRFS_I(inode)->i_orphan);
2254 		delete_item = 1;
2255 	}
2256 
2257 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2258 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2259 		release_rsv = 1;
2260 	}
2261 	spin_unlock(&root->orphan_lock);
2262 
2263 	if (trans && delete_item) {
2264 		ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2265 		BUG_ON(ret);
2266 	}
2267 
2268 	if (release_rsv)
2269 		btrfs_orphan_release_metadata(inode);
2270 
2271 	return 0;
2272 }
2273 
2274 /*
2275  * this cleans up any orphans that may be left on the list from the last use
2276  * of this root.
2277  */
2278 void btrfs_orphan_cleanup(struct btrfs_root *root)
2279 {
2280 	struct btrfs_path *path;
2281 	struct extent_buffer *leaf;
2282 	struct btrfs_key key, found_key;
2283 	struct btrfs_trans_handle *trans;
2284 	struct inode *inode;
2285 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2286 
2287 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2288 		return;
2289 
2290 	path = btrfs_alloc_path();
2291 	BUG_ON(!path);
2292 	path->reada = -1;
2293 
2294 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2295 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2296 	key.offset = (u64)-1;
2297 
2298 	while (1) {
2299 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2300 		if (ret < 0) {
2301 			printk(KERN_ERR "Error searching slot for orphan: %d"
2302 			       "\n", ret);
2303 			break;
2304 		}
2305 
2306 		/*
2307 		 * if ret == 0 means we found what we were searching for, which
2308 		 * is weird, but possible, so only screw with path if we didnt
2309 		 * find the key and see if we have stuff that matches
2310 		 */
2311 		if (ret > 0) {
2312 			if (path->slots[0] == 0)
2313 				break;
2314 			path->slots[0]--;
2315 		}
2316 
2317 		/* pull out the item */
2318 		leaf = path->nodes[0];
2319 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2320 
2321 		/* make sure the item matches what we want */
2322 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2323 			break;
2324 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2325 			break;
2326 
2327 		/* release the path since we're done with it */
2328 		btrfs_release_path(root, path);
2329 
2330 		/*
2331 		 * this is where we are basically btrfs_lookup, without the
2332 		 * crossing root thing.  we store the inode number in the
2333 		 * offset of the orphan item.
2334 		 */
2335 		found_key.objectid = found_key.offset;
2336 		found_key.type = BTRFS_INODE_ITEM_KEY;
2337 		found_key.offset = 0;
2338 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2339 		BUG_ON(IS_ERR(inode));
2340 
2341 		/*
2342 		 * add this inode to the orphan list so btrfs_orphan_del does
2343 		 * the proper thing when we hit it
2344 		 */
2345 		spin_lock(&root->orphan_lock);
2346 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2347 		spin_unlock(&root->orphan_lock);
2348 
2349 		/*
2350 		 * if this is a bad inode, means we actually succeeded in
2351 		 * removing the inode, but not the orphan record, which means
2352 		 * we need to manually delete the orphan since iput will just
2353 		 * do a destroy_inode
2354 		 */
2355 		if (is_bad_inode(inode)) {
2356 			trans = btrfs_start_transaction(root, 0);
2357 			btrfs_orphan_del(trans, inode);
2358 			btrfs_end_transaction(trans, root);
2359 			iput(inode);
2360 			continue;
2361 		}
2362 
2363 		/* if we have links, this was a truncate, lets do that */
2364 		if (inode->i_nlink) {
2365 			nr_truncate++;
2366 			btrfs_truncate(inode);
2367 		} else {
2368 			nr_unlink++;
2369 		}
2370 
2371 		/* this will do delete_inode and everything for us */
2372 		iput(inode);
2373 	}
2374 	btrfs_free_path(path);
2375 
2376 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2377 
2378 	if (root->orphan_block_rsv)
2379 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2380 					(u64)-1);
2381 
2382 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2383 		trans = btrfs_join_transaction(root, 1);
2384 		btrfs_end_transaction(trans, root);
2385 	}
2386 
2387 	if (nr_unlink)
2388 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2389 	if (nr_truncate)
2390 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2391 }
2392 
2393 /*
2394  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2395  * don't find any xattrs, we know there can't be any acls.
2396  *
2397  * slot is the slot the inode is in, objectid is the objectid of the inode
2398  */
2399 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2400 					  int slot, u64 objectid)
2401 {
2402 	u32 nritems = btrfs_header_nritems(leaf);
2403 	struct btrfs_key found_key;
2404 	int scanned = 0;
2405 
2406 	slot++;
2407 	while (slot < nritems) {
2408 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2409 
2410 		/* we found a different objectid, there must not be acls */
2411 		if (found_key.objectid != objectid)
2412 			return 0;
2413 
2414 		/* we found an xattr, assume we've got an acl */
2415 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2416 			return 1;
2417 
2418 		/*
2419 		 * we found a key greater than an xattr key, there can't
2420 		 * be any acls later on
2421 		 */
2422 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2423 			return 0;
2424 
2425 		slot++;
2426 		scanned++;
2427 
2428 		/*
2429 		 * it goes inode, inode backrefs, xattrs, extents,
2430 		 * so if there are a ton of hard links to an inode there can
2431 		 * be a lot of backrefs.  Don't waste time searching too hard,
2432 		 * this is just an optimization
2433 		 */
2434 		if (scanned >= 8)
2435 			break;
2436 	}
2437 	/* we hit the end of the leaf before we found an xattr or
2438 	 * something larger than an xattr.  We have to assume the inode
2439 	 * has acls
2440 	 */
2441 	return 1;
2442 }
2443 
2444 /*
2445  * read an inode from the btree into the in-memory inode
2446  */
2447 static void btrfs_read_locked_inode(struct inode *inode)
2448 {
2449 	struct btrfs_path *path;
2450 	struct extent_buffer *leaf;
2451 	struct btrfs_inode_item *inode_item;
2452 	struct btrfs_timespec *tspec;
2453 	struct btrfs_root *root = BTRFS_I(inode)->root;
2454 	struct btrfs_key location;
2455 	int maybe_acls;
2456 	u64 alloc_group_block;
2457 	u32 rdev;
2458 	int ret;
2459 
2460 	path = btrfs_alloc_path();
2461 	BUG_ON(!path);
2462 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2463 
2464 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2465 	if (ret)
2466 		goto make_bad;
2467 
2468 	leaf = path->nodes[0];
2469 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2470 				    struct btrfs_inode_item);
2471 
2472 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2473 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2474 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2475 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2476 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2477 
2478 	tspec = btrfs_inode_atime(inode_item);
2479 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2480 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2481 
2482 	tspec = btrfs_inode_mtime(inode_item);
2483 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2484 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2485 
2486 	tspec = btrfs_inode_ctime(inode_item);
2487 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2488 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2489 
2490 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2491 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2492 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2493 	inode->i_generation = BTRFS_I(inode)->generation;
2494 	inode->i_rdev = 0;
2495 	rdev = btrfs_inode_rdev(leaf, inode_item);
2496 
2497 	BTRFS_I(inode)->index_cnt = (u64)-1;
2498 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2499 
2500 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2501 
2502 	/*
2503 	 * try to precache a NULL acl entry for files that don't have
2504 	 * any xattrs or acls
2505 	 */
2506 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2507 	if (!maybe_acls)
2508 		cache_no_acl(inode);
2509 
2510 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2511 						alloc_group_block, 0);
2512 	btrfs_free_path(path);
2513 	inode_item = NULL;
2514 
2515 	switch (inode->i_mode & S_IFMT) {
2516 	case S_IFREG:
2517 		inode->i_mapping->a_ops = &btrfs_aops;
2518 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2519 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2520 		inode->i_fop = &btrfs_file_operations;
2521 		inode->i_op = &btrfs_file_inode_operations;
2522 		break;
2523 	case S_IFDIR:
2524 		inode->i_fop = &btrfs_dir_file_operations;
2525 		if (root == root->fs_info->tree_root)
2526 			inode->i_op = &btrfs_dir_ro_inode_operations;
2527 		else
2528 			inode->i_op = &btrfs_dir_inode_operations;
2529 		break;
2530 	case S_IFLNK:
2531 		inode->i_op = &btrfs_symlink_inode_operations;
2532 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2533 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2534 		break;
2535 	default:
2536 		inode->i_op = &btrfs_special_inode_operations;
2537 		init_special_inode(inode, inode->i_mode, rdev);
2538 		break;
2539 	}
2540 
2541 	btrfs_update_iflags(inode);
2542 	return;
2543 
2544 make_bad:
2545 	btrfs_free_path(path);
2546 	make_bad_inode(inode);
2547 }
2548 
2549 /*
2550  * given a leaf and an inode, copy the inode fields into the leaf
2551  */
2552 static void fill_inode_item(struct btrfs_trans_handle *trans,
2553 			    struct extent_buffer *leaf,
2554 			    struct btrfs_inode_item *item,
2555 			    struct inode *inode)
2556 {
2557 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2558 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2559 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2560 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2561 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2562 
2563 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2564 			       inode->i_atime.tv_sec);
2565 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2566 				inode->i_atime.tv_nsec);
2567 
2568 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2569 			       inode->i_mtime.tv_sec);
2570 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2571 				inode->i_mtime.tv_nsec);
2572 
2573 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2574 			       inode->i_ctime.tv_sec);
2575 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2576 				inode->i_ctime.tv_nsec);
2577 
2578 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2579 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2580 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2581 	btrfs_set_inode_transid(leaf, item, trans->transid);
2582 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2583 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2584 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2585 }
2586 
2587 /*
2588  * copy everything in the in-memory inode into the btree.
2589  */
2590 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2591 				struct btrfs_root *root, struct inode *inode)
2592 {
2593 	struct btrfs_inode_item *inode_item;
2594 	struct btrfs_path *path;
2595 	struct extent_buffer *leaf;
2596 	int ret;
2597 
2598 	path = btrfs_alloc_path();
2599 	BUG_ON(!path);
2600 	path->leave_spinning = 1;
2601 	ret = btrfs_lookup_inode(trans, root, path,
2602 				 &BTRFS_I(inode)->location, 1);
2603 	if (ret) {
2604 		if (ret > 0)
2605 			ret = -ENOENT;
2606 		goto failed;
2607 	}
2608 
2609 	btrfs_unlock_up_safe(path, 1);
2610 	leaf = path->nodes[0];
2611 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2612 				  struct btrfs_inode_item);
2613 
2614 	fill_inode_item(trans, leaf, inode_item, inode);
2615 	btrfs_mark_buffer_dirty(leaf);
2616 	btrfs_set_inode_last_trans(trans, inode);
2617 	ret = 0;
2618 failed:
2619 	btrfs_free_path(path);
2620 	return ret;
2621 }
2622 
2623 
2624 /*
2625  * unlink helper that gets used here in inode.c and in the tree logging
2626  * recovery code.  It remove a link in a directory with a given name, and
2627  * also drops the back refs in the inode to the directory
2628  */
2629 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2630 		       struct btrfs_root *root,
2631 		       struct inode *dir, struct inode *inode,
2632 		       const char *name, int name_len)
2633 {
2634 	struct btrfs_path *path;
2635 	int ret = 0;
2636 	struct extent_buffer *leaf;
2637 	struct btrfs_dir_item *di;
2638 	struct btrfs_key key;
2639 	u64 index;
2640 
2641 	path = btrfs_alloc_path();
2642 	if (!path) {
2643 		ret = -ENOMEM;
2644 		goto err;
2645 	}
2646 
2647 	path->leave_spinning = 1;
2648 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2649 				    name, name_len, -1);
2650 	if (IS_ERR(di)) {
2651 		ret = PTR_ERR(di);
2652 		goto err;
2653 	}
2654 	if (!di) {
2655 		ret = -ENOENT;
2656 		goto err;
2657 	}
2658 	leaf = path->nodes[0];
2659 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2660 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2661 	if (ret)
2662 		goto err;
2663 	btrfs_release_path(root, path);
2664 
2665 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2666 				  inode->i_ino,
2667 				  dir->i_ino, &index);
2668 	if (ret) {
2669 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2670 		       "inode %lu parent %lu\n", name_len, name,
2671 		       inode->i_ino, dir->i_ino);
2672 		goto err;
2673 	}
2674 
2675 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2676 					 index, name, name_len, -1);
2677 	if (IS_ERR(di)) {
2678 		ret = PTR_ERR(di);
2679 		goto err;
2680 	}
2681 	if (!di) {
2682 		ret = -ENOENT;
2683 		goto err;
2684 	}
2685 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2686 	btrfs_release_path(root, path);
2687 
2688 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2689 					 inode, dir->i_ino);
2690 	BUG_ON(ret != 0 && ret != -ENOENT);
2691 
2692 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2693 					   dir, index);
2694 	if (ret == -ENOENT)
2695 		ret = 0;
2696 err:
2697 	btrfs_free_path(path);
2698 	if (ret)
2699 		goto out;
2700 
2701 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2702 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2703 	btrfs_update_inode(trans, root, dir);
2704 	btrfs_drop_nlink(inode);
2705 	ret = btrfs_update_inode(trans, root, inode);
2706 out:
2707 	return ret;
2708 }
2709 
2710 /* helper to check if there is any shared block in the path */
2711 static int check_path_shared(struct btrfs_root *root,
2712 			     struct btrfs_path *path)
2713 {
2714 	struct extent_buffer *eb;
2715 	int level;
2716 	u64 refs = 1;
2717 	int uninitialized_var(ret);
2718 
2719 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2720 		if (!path->nodes[level])
2721 			break;
2722 		eb = path->nodes[level];
2723 		if (!btrfs_block_can_be_shared(root, eb))
2724 			continue;
2725 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2726 					       &refs, NULL);
2727 		if (refs > 1)
2728 			return 1;
2729 	}
2730 	return ret; /* XXX callers? */
2731 }
2732 
2733 /*
2734  * helper to start transaction for unlink and rmdir.
2735  *
2736  * unlink and rmdir are special in btrfs, they do not always free space.
2737  * so in enospc case, we should make sure they will free space before
2738  * allowing them to use the global metadata reservation.
2739  */
2740 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2741 						       struct dentry *dentry)
2742 {
2743 	struct btrfs_trans_handle *trans;
2744 	struct btrfs_root *root = BTRFS_I(dir)->root;
2745 	struct btrfs_path *path;
2746 	struct btrfs_inode_ref *ref;
2747 	struct btrfs_dir_item *di;
2748 	struct inode *inode = dentry->d_inode;
2749 	u64 index;
2750 	int check_link = 1;
2751 	int err = -ENOSPC;
2752 	int ret;
2753 
2754 	trans = btrfs_start_transaction(root, 10);
2755 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2756 		return trans;
2757 
2758 	if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2759 		return ERR_PTR(-ENOSPC);
2760 
2761 	/* check if there is someone else holds reference */
2762 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2763 		return ERR_PTR(-ENOSPC);
2764 
2765 	if (atomic_read(&inode->i_count) > 2)
2766 		return ERR_PTR(-ENOSPC);
2767 
2768 	if (xchg(&root->fs_info->enospc_unlink, 1))
2769 		return ERR_PTR(-ENOSPC);
2770 
2771 	path = btrfs_alloc_path();
2772 	if (!path) {
2773 		root->fs_info->enospc_unlink = 0;
2774 		return ERR_PTR(-ENOMEM);
2775 	}
2776 
2777 	trans = btrfs_start_transaction(root, 0);
2778 	if (IS_ERR(trans)) {
2779 		btrfs_free_path(path);
2780 		root->fs_info->enospc_unlink = 0;
2781 		return trans;
2782 	}
2783 
2784 	path->skip_locking = 1;
2785 	path->search_commit_root = 1;
2786 
2787 	ret = btrfs_lookup_inode(trans, root, path,
2788 				&BTRFS_I(dir)->location, 0);
2789 	if (ret < 0) {
2790 		err = ret;
2791 		goto out;
2792 	}
2793 	if (ret == 0) {
2794 		if (check_path_shared(root, path))
2795 			goto out;
2796 	} else {
2797 		check_link = 0;
2798 	}
2799 	btrfs_release_path(root, path);
2800 
2801 	ret = btrfs_lookup_inode(trans, root, path,
2802 				&BTRFS_I(inode)->location, 0);
2803 	if (ret < 0) {
2804 		err = ret;
2805 		goto out;
2806 	}
2807 	if (ret == 0) {
2808 		if (check_path_shared(root, path))
2809 			goto out;
2810 	} else {
2811 		check_link = 0;
2812 	}
2813 	btrfs_release_path(root, path);
2814 
2815 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2816 		ret = btrfs_lookup_file_extent(trans, root, path,
2817 					       inode->i_ino, (u64)-1, 0);
2818 		if (ret < 0) {
2819 			err = ret;
2820 			goto out;
2821 		}
2822 		BUG_ON(ret == 0);
2823 		if (check_path_shared(root, path))
2824 			goto out;
2825 		btrfs_release_path(root, path);
2826 	}
2827 
2828 	if (!check_link) {
2829 		err = 0;
2830 		goto out;
2831 	}
2832 
2833 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2834 				dentry->d_name.name, dentry->d_name.len, 0);
2835 	if (IS_ERR(di)) {
2836 		err = PTR_ERR(di);
2837 		goto out;
2838 	}
2839 	if (di) {
2840 		if (check_path_shared(root, path))
2841 			goto out;
2842 	} else {
2843 		err = 0;
2844 		goto out;
2845 	}
2846 	btrfs_release_path(root, path);
2847 
2848 	ref = btrfs_lookup_inode_ref(trans, root, path,
2849 				dentry->d_name.name, dentry->d_name.len,
2850 				inode->i_ino, dir->i_ino, 0);
2851 	if (IS_ERR(ref)) {
2852 		err = PTR_ERR(ref);
2853 		goto out;
2854 	}
2855 	BUG_ON(!ref);
2856 	if (check_path_shared(root, path))
2857 		goto out;
2858 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2859 	btrfs_release_path(root, path);
2860 
2861 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2862 				dentry->d_name.name, dentry->d_name.len, 0);
2863 	if (IS_ERR(di)) {
2864 		err = PTR_ERR(di);
2865 		goto out;
2866 	}
2867 	BUG_ON(ret == -ENOENT);
2868 	if (check_path_shared(root, path))
2869 		goto out;
2870 
2871 	err = 0;
2872 out:
2873 	btrfs_free_path(path);
2874 	if (err) {
2875 		btrfs_end_transaction(trans, root);
2876 		root->fs_info->enospc_unlink = 0;
2877 		return ERR_PTR(err);
2878 	}
2879 
2880 	trans->block_rsv = &root->fs_info->global_block_rsv;
2881 	return trans;
2882 }
2883 
2884 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2885 			       struct btrfs_root *root)
2886 {
2887 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2888 		BUG_ON(!root->fs_info->enospc_unlink);
2889 		root->fs_info->enospc_unlink = 0;
2890 	}
2891 	btrfs_end_transaction_throttle(trans, root);
2892 }
2893 
2894 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2895 {
2896 	struct btrfs_root *root = BTRFS_I(dir)->root;
2897 	struct btrfs_trans_handle *trans;
2898 	struct inode *inode = dentry->d_inode;
2899 	int ret;
2900 	unsigned long nr = 0;
2901 
2902 	trans = __unlink_start_trans(dir, dentry);
2903 	if (IS_ERR(trans))
2904 		return PTR_ERR(trans);
2905 
2906 	btrfs_set_trans_block_group(trans, dir);
2907 
2908 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2909 
2910 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2911 				 dentry->d_name.name, dentry->d_name.len);
2912 	BUG_ON(ret);
2913 
2914 	if (inode->i_nlink == 0) {
2915 		ret = btrfs_orphan_add(trans, inode);
2916 		BUG_ON(ret);
2917 	}
2918 
2919 	nr = trans->blocks_used;
2920 	__unlink_end_trans(trans, root);
2921 	btrfs_btree_balance_dirty(root, nr);
2922 	return ret;
2923 }
2924 
2925 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2926 			struct btrfs_root *root,
2927 			struct inode *dir, u64 objectid,
2928 			const char *name, int name_len)
2929 {
2930 	struct btrfs_path *path;
2931 	struct extent_buffer *leaf;
2932 	struct btrfs_dir_item *di;
2933 	struct btrfs_key key;
2934 	u64 index;
2935 	int ret;
2936 
2937 	path = btrfs_alloc_path();
2938 	if (!path)
2939 		return -ENOMEM;
2940 
2941 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2942 				   name, name_len, -1);
2943 	BUG_ON(!di || IS_ERR(di));
2944 
2945 	leaf = path->nodes[0];
2946 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2947 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2948 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2949 	BUG_ON(ret);
2950 	btrfs_release_path(root, path);
2951 
2952 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2953 				 objectid, root->root_key.objectid,
2954 				 dir->i_ino, &index, name, name_len);
2955 	if (ret < 0) {
2956 		BUG_ON(ret != -ENOENT);
2957 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2958 						 name, name_len);
2959 		BUG_ON(!di || IS_ERR(di));
2960 
2961 		leaf = path->nodes[0];
2962 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2963 		btrfs_release_path(root, path);
2964 		index = key.offset;
2965 	}
2966 
2967 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2968 					 index, name, name_len, -1);
2969 	BUG_ON(!di || IS_ERR(di));
2970 
2971 	leaf = path->nodes[0];
2972 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2973 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2974 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2975 	BUG_ON(ret);
2976 	btrfs_release_path(root, path);
2977 
2978 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2979 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2980 	ret = btrfs_update_inode(trans, root, dir);
2981 	BUG_ON(ret);
2982 
2983 	btrfs_free_path(path);
2984 	return 0;
2985 }
2986 
2987 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2988 {
2989 	struct inode *inode = dentry->d_inode;
2990 	int err = 0;
2991 	struct btrfs_root *root = BTRFS_I(dir)->root;
2992 	struct btrfs_trans_handle *trans;
2993 	unsigned long nr = 0;
2994 
2995 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2996 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2997 		return -ENOTEMPTY;
2998 
2999 	trans = __unlink_start_trans(dir, dentry);
3000 	if (IS_ERR(trans))
3001 		return PTR_ERR(trans);
3002 
3003 	btrfs_set_trans_block_group(trans, dir);
3004 
3005 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3006 		err = btrfs_unlink_subvol(trans, root, dir,
3007 					  BTRFS_I(inode)->location.objectid,
3008 					  dentry->d_name.name,
3009 					  dentry->d_name.len);
3010 		goto out;
3011 	}
3012 
3013 	err = btrfs_orphan_add(trans, inode);
3014 	if (err)
3015 		goto out;
3016 
3017 	/* now the directory is empty */
3018 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3019 				 dentry->d_name.name, dentry->d_name.len);
3020 	if (!err)
3021 		btrfs_i_size_write(inode, 0);
3022 out:
3023 	nr = trans->blocks_used;
3024 	__unlink_end_trans(trans, root);
3025 	btrfs_btree_balance_dirty(root, nr);
3026 
3027 	return err;
3028 }
3029 
3030 #if 0
3031 /*
3032  * when truncating bytes in a file, it is possible to avoid reading
3033  * the leaves that contain only checksum items.  This can be the
3034  * majority of the IO required to delete a large file, but it must
3035  * be done carefully.
3036  *
3037  * The keys in the level just above the leaves are checked to make sure
3038  * the lowest key in a given leaf is a csum key, and starts at an offset
3039  * after the new  size.
3040  *
3041  * Then the key for the next leaf is checked to make sure it also has
3042  * a checksum item for the same file.  If it does, we know our target leaf
3043  * contains only checksum items, and it can be safely freed without reading
3044  * it.
3045  *
3046  * This is just an optimization targeted at large files.  It may do
3047  * nothing.  It will return 0 unless things went badly.
3048  */
3049 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3050 				     struct btrfs_root *root,
3051 				     struct btrfs_path *path,
3052 				     struct inode *inode, u64 new_size)
3053 {
3054 	struct btrfs_key key;
3055 	int ret;
3056 	int nritems;
3057 	struct btrfs_key found_key;
3058 	struct btrfs_key other_key;
3059 	struct btrfs_leaf_ref *ref;
3060 	u64 leaf_gen;
3061 	u64 leaf_start;
3062 
3063 	path->lowest_level = 1;
3064 	key.objectid = inode->i_ino;
3065 	key.type = BTRFS_CSUM_ITEM_KEY;
3066 	key.offset = new_size;
3067 again:
3068 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3069 	if (ret < 0)
3070 		goto out;
3071 
3072 	if (path->nodes[1] == NULL) {
3073 		ret = 0;
3074 		goto out;
3075 	}
3076 	ret = 0;
3077 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3078 	nritems = btrfs_header_nritems(path->nodes[1]);
3079 
3080 	if (!nritems)
3081 		goto out;
3082 
3083 	if (path->slots[1] >= nritems)
3084 		goto next_node;
3085 
3086 	/* did we find a key greater than anything we want to delete? */
3087 	if (found_key.objectid > inode->i_ino ||
3088 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
3089 		goto out;
3090 
3091 	/* we check the next key in the node to make sure the leave contains
3092 	 * only checksum items.  This comparison doesn't work if our
3093 	 * leaf is the last one in the node
3094 	 */
3095 	if (path->slots[1] + 1 >= nritems) {
3096 next_node:
3097 		/* search forward from the last key in the node, this
3098 		 * will bring us into the next node in the tree
3099 		 */
3100 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3101 
3102 		/* unlikely, but we inc below, so check to be safe */
3103 		if (found_key.offset == (u64)-1)
3104 			goto out;
3105 
3106 		/* search_forward needs a path with locks held, do the
3107 		 * search again for the original key.  It is possible
3108 		 * this will race with a balance and return a path that
3109 		 * we could modify, but this drop is just an optimization
3110 		 * and is allowed to miss some leaves.
3111 		 */
3112 		btrfs_release_path(root, path);
3113 		found_key.offset++;
3114 
3115 		/* setup a max key for search_forward */
3116 		other_key.offset = (u64)-1;
3117 		other_key.type = key.type;
3118 		other_key.objectid = key.objectid;
3119 
3120 		path->keep_locks = 1;
3121 		ret = btrfs_search_forward(root, &found_key, &other_key,
3122 					   path, 0, 0);
3123 		path->keep_locks = 0;
3124 		if (ret || found_key.objectid != key.objectid ||
3125 		    found_key.type != key.type) {
3126 			ret = 0;
3127 			goto out;
3128 		}
3129 
3130 		key.offset = found_key.offset;
3131 		btrfs_release_path(root, path);
3132 		cond_resched();
3133 		goto again;
3134 	}
3135 
3136 	/* we know there's one more slot after us in the tree,
3137 	 * read that key so we can verify it is also a checksum item
3138 	 */
3139 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3140 
3141 	if (found_key.objectid < inode->i_ino)
3142 		goto next_key;
3143 
3144 	if (found_key.type != key.type || found_key.offset < new_size)
3145 		goto next_key;
3146 
3147 	/*
3148 	 * if the key for the next leaf isn't a csum key from this objectid,
3149 	 * we can't be sure there aren't good items inside this leaf.
3150 	 * Bail out
3151 	 */
3152 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3153 		goto out;
3154 
3155 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3156 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3157 	/*
3158 	 * it is safe to delete this leaf, it contains only
3159 	 * csum items from this inode at an offset >= new_size
3160 	 */
3161 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
3162 	BUG_ON(ret);
3163 
3164 	if (root->ref_cows && leaf_gen < trans->transid) {
3165 		ref = btrfs_alloc_leaf_ref(root, 0);
3166 		if (ref) {
3167 			ref->root_gen = root->root_key.offset;
3168 			ref->bytenr = leaf_start;
3169 			ref->owner = 0;
3170 			ref->generation = leaf_gen;
3171 			ref->nritems = 0;
3172 
3173 			btrfs_sort_leaf_ref(ref);
3174 
3175 			ret = btrfs_add_leaf_ref(root, ref, 0);
3176 			WARN_ON(ret);
3177 			btrfs_free_leaf_ref(root, ref);
3178 		} else {
3179 			WARN_ON(1);
3180 		}
3181 	}
3182 next_key:
3183 	btrfs_release_path(root, path);
3184 
3185 	if (other_key.objectid == inode->i_ino &&
3186 	    other_key.type == key.type && other_key.offset > key.offset) {
3187 		key.offset = other_key.offset;
3188 		cond_resched();
3189 		goto again;
3190 	}
3191 	ret = 0;
3192 out:
3193 	/* fixup any changes we've made to the path */
3194 	path->lowest_level = 0;
3195 	path->keep_locks = 0;
3196 	btrfs_release_path(root, path);
3197 	return ret;
3198 }
3199 
3200 #endif
3201 
3202 /*
3203  * this can truncate away extent items, csum items and directory items.
3204  * It starts at a high offset and removes keys until it can't find
3205  * any higher than new_size
3206  *
3207  * csum items that cross the new i_size are truncated to the new size
3208  * as well.
3209  *
3210  * min_type is the minimum key type to truncate down to.  If set to 0, this
3211  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3212  */
3213 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3214 			       struct btrfs_root *root,
3215 			       struct inode *inode,
3216 			       u64 new_size, u32 min_type)
3217 {
3218 	struct btrfs_path *path;
3219 	struct extent_buffer *leaf;
3220 	struct btrfs_file_extent_item *fi;
3221 	struct btrfs_key key;
3222 	struct btrfs_key found_key;
3223 	u64 extent_start = 0;
3224 	u64 extent_num_bytes = 0;
3225 	u64 extent_offset = 0;
3226 	u64 item_end = 0;
3227 	u64 mask = root->sectorsize - 1;
3228 	u32 found_type = (u8)-1;
3229 	int found_extent;
3230 	int del_item;
3231 	int pending_del_nr = 0;
3232 	int pending_del_slot = 0;
3233 	int extent_type = -1;
3234 	int encoding;
3235 	int ret;
3236 	int err = 0;
3237 
3238 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3239 
3240 	if (root->ref_cows || root == root->fs_info->tree_root)
3241 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3242 
3243 	path = btrfs_alloc_path();
3244 	BUG_ON(!path);
3245 	path->reada = -1;
3246 
3247 	key.objectid = inode->i_ino;
3248 	key.offset = (u64)-1;
3249 	key.type = (u8)-1;
3250 
3251 search_again:
3252 	path->leave_spinning = 1;
3253 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3254 	if (ret < 0) {
3255 		err = ret;
3256 		goto out;
3257 	}
3258 
3259 	if (ret > 0) {
3260 		/* there are no items in the tree for us to truncate, we're
3261 		 * done
3262 		 */
3263 		if (path->slots[0] == 0)
3264 			goto out;
3265 		path->slots[0]--;
3266 	}
3267 
3268 	while (1) {
3269 		fi = NULL;
3270 		leaf = path->nodes[0];
3271 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3272 		found_type = btrfs_key_type(&found_key);
3273 		encoding = 0;
3274 
3275 		if (found_key.objectid != inode->i_ino)
3276 			break;
3277 
3278 		if (found_type < min_type)
3279 			break;
3280 
3281 		item_end = found_key.offset;
3282 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3283 			fi = btrfs_item_ptr(leaf, path->slots[0],
3284 					    struct btrfs_file_extent_item);
3285 			extent_type = btrfs_file_extent_type(leaf, fi);
3286 			encoding = btrfs_file_extent_compression(leaf, fi);
3287 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3288 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3289 
3290 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3291 				item_end +=
3292 				    btrfs_file_extent_num_bytes(leaf, fi);
3293 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3294 				item_end += btrfs_file_extent_inline_len(leaf,
3295 									 fi);
3296 			}
3297 			item_end--;
3298 		}
3299 		if (found_type > min_type) {
3300 			del_item = 1;
3301 		} else {
3302 			if (item_end < new_size)
3303 				break;
3304 			if (found_key.offset >= new_size)
3305 				del_item = 1;
3306 			else
3307 				del_item = 0;
3308 		}
3309 		found_extent = 0;
3310 		/* FIXME, shrink the extent if the ref count is only 1 */
3311 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3312 			goto delete;
3313 
3314 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3315 			u64 num_dec;
3316 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3317 			if (!del_item && !encoding) {
3318 				u64 orig_num_bytes =
3319 					btrfs_file_extent_num_bytes(leaf, fi);
3320 				extent_num_bytes = new_size -
3321 					found_key.offset + root->sectorsize - 1;
3322 				extent_num_bytes = extent_num_bytes &
3323 					~((u64)root->sectorsize - 1);
3324 				btrfs_set_file_extent_num_bytes(leaf, fi,
3325 							 extent_num_bytes);
3326 				num_dec = (orig_num_bytes -
3327 					   extent_num_bytes);
3328 				if (root->ref_cows && extent_start != 0)
3329 					inode_sub_bytes(inode, num_dec);
3330 				btrfs_mark_buffer_dirty(leaf);
3331 			} else {
3332 				extent_num_bytes =
3333 					btrfs_file_extent_disk_num_bytes(leaf,
3334 									 fi);
3335 				extent_offset = found_key.offset -
3336 					btrfs_file_extent_offset(leaf, fi);
3337 
3338 				/* FIXME blocksize != 4096 */
3339 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3340 				if (extent_start != 0) {
3341 					found_extent = 1;
3342 					if (root->ref_cows)
3343 						inode_sub_bytes(inode, num_dec);
3344 				}
3345 			}
3346 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3347 			/*
3348 			 * we can't truncate inline items that have had
3349 			 * special encodings
3350 			 */
3351 			if (!del_item &&
3352 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3353 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3354 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3355 				u32 size = new_size - found_key.offset;
3356 
3357 				if (root->ref_cows) {
3358 					inode_sub_bytes(inode, item_end + 1 -
3359 							new_size);
3360 				}
3361 				size =
3362 				    btrfs_file_extent_calc_inline_size(size);
3363 				ret = btrfs_truncate_item(trans, root, path,
3364 							  size, 1);
3365 				BUG_ON(ret);
3366 			} else if (root->ref_cows) {
3367 				inode_sub_bytes(inode, item_end + 1 -
3368 						found_key.offset);
3369 			}
3370 		}
3371 delete:
3372 		if (del_item) {
3373 			if (!pending_del_nr) {
3374 				/* no pending yet, add ourselves */
3375 				pending_del_slot = path->slots[0];
3376 				pending_del_nr = 1;
3377 			} else if (pending_del_nr &&
3378 				   path->slots[0] + 1 == pending_del_slot) {
3379 				/* hop on the pending chunk */
3380 				pending_del_nr++;
3381 				pending_del_slot = path->slots[0];
3382 			} else {
3383 				BUG();
3384 			}
3385 		} else {
3386 			break;
3387 		}
3388 		if (found_extent && (root->ref_cows ||
3389 				     root == root->fs_info->tree_root)) {
3390 			btrfs_set_path_blocking(path);
3391 			ret = btrfs_free_extent(trans, root, extent_start,
3392 						extent_num_bytes, 0,
3393 						btrfs_header_owner(leaf),
3394 						inode->i_ino, extent_offset);
3395 			BUG_ON(ret);
3396 		}
3397 
3398 		if (found_type == BTRFS_INODE_ITEM_KEY)
3399 			break;
3400 
3401 		if (path->slots[0] == 0 ||
3402 		    path->slots[0] != pending_del_slot) {
3403 			if (root->ref_cows) {
3404 				err = -EAGAIN;
3405 				goto out;
3406 			}
3407 			if (pending_del_nr) {
3408 				ret = btrfs_del_items(trans, root, path,
3409 						pending_del_slot,
3410 						pending_del_nr);
3411 				BUG_ON(ret);
3412 				pending_del_nr = 0;
3413 			}
3414 			btrfs_release_path(root, path);
3415 			goto search_again;
3416 		} else {
3417 			path->slots[0]--;
3418 		}
3419 	}
3420 out:
3421 	if (pending_del_nr) {
3422 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3423 				      pending_del_nr);
3424 		BUG_ON(ret);
3425 	}
3426 	btrfs_free_path(path);
3427 	return err;
3428 }
3429 
3430 /*
3431  * taken from block_truncate_page, but does cow as it zeros out
3432  * any bytes left in the last page in the file.
3433  */
3434 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3435 {
3436 	struct inode *inode = mapping->host;
3437 	struct btrfs_root *root = BTRFS_I(inode)->root;
3438 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3439 	struct btrfs_ordered_extent *ordered;
3440 	struct extent_state *cached_state = NULL;
3441 	char *kaddr;
3442 	u32 blocksize = root->sectorsize;
3443 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3444 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3445 	struct page *page;
3446 	int ret = 0;
3447 	u64 page_start;
3448 	u64 page_end;
3449 
3450 	if ((offset & (blocksize - 1)) == 0)
3451 		goto out;
3452 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3453 	if (ret)
3454 		goto out;
3455 
3456 	ret = -ENOMEM;
3457 again:
3458 	page = grab_cache_page(mapping, index);
3459 	if (!page) {
3460 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3461 		goto out;
3462 	}
3463 
3464 	page_start = page_offset(page);
3465 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3466 
3467 	if (!PageUptodate(page)) {
3468 		ret = btrfs_readpage(NULL, page);
3469 		lock_page(page);
3470 		if (page->mapping != mapping) {
3471 			unlock_page(page);
3472 			page_cache_release(page);
3473 			goto again;
3474 		}
3475 		if (!PageUptodate(page)) {
3476 			ret = -EIO;
3477 			goto out_unlock;
3478 		}
3479 	}
3480 	wait_on_page_writeback(page);
3481 
3482 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3483 			 GFP_NOFS);
3484 	set_page_extent_mapped(page);
3485 
3486 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3487 	if (ordered) {
3488 		unlock_extent_cached(io_tree, page_start, page_end,
3489 				     &cached_state, GFP_NOFS);
3490 		unlock_page(page);
3491 		page_cache_release(page);
3492 		btrfs_start_ordered_extent(inode, ordered, 1);
3493 		btrfs_put_ordered_extent(ordered);
3494 		goto again;
3495 	}
3496 
3497 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3498 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3499 			  0, 0, &cached_state, GFP_NOFS);
3500 
3501 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3502 					&cached_state);
3503 	if (ret) {
3504 		unlock_extent_cached(io_tree, page_start, page_end,
3505 				     &cached_state, GFP_NOFS);
3506 		goto out_unlock;
3507 	}
3508 
3509 	ret = 0;
3510 	if (offset != PAGE_CACHE_SIZE) {
3511 		kaddr = kmap(page);
3512 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3513 		flush_dcache_page(page);
3514 		kunmap(page);
3515 	}
3516 	ClearPageChecked(page);
3517 	set_page_dirty(page);
3518 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3519 			     GFP_NOFS);
3520 
3521 out_unlock:
3522 	if (ret)
3523 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3524 	unlock_page(page);
3525 	page_cache_release(page);
3526 out:
3527 	return ret;
3528 }
3529 
3530 int btrfs_cont_expand(struct inode *inode, loff_t size)
3531 {
3532 	struct btrfs_trans_handle *trans;
3533 	struct btrfs_root *root = BTRFS_I(inode)->root;
3534 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3535 	struct extent_map *em = NULL;
3536 	struct extent_state *cached_state = NULL;
3537 	u64 mask = root->sectorsize - 1;
3538 	u64 hole_start = (inode->i_size + mask) & ~mask;
3539 	u64 block_end = (size + mask) & ~mask;
3540 	u64 last_byte;
3541 	u64 cur_offset;
3542 	u64 hole_size;
3543 	int err = 0;
3544 
3545 	if (size <= hole_start)
3546 		return 0;
3547 
3548 	while (1) {
3549 		struct btrfs_ordered_extent *ordered;
3550 		btrfs_wait_ordered_range(inode, hole_start,
3551 					 block_end - hole_start);
3552 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3553 				 &cached_state, GFP_NOFS);
3554 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3555 		if (!ordered)
3556 			break;
3557 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3558 				     &cached_state, GFP_NOFS);
3559 		btrfs_put_ordered_extent(ordered);
3560 	}
3561 
3562 	cur_offset = hole_start;
3563 	while (1) {
3564 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3565 				block_end - cur_offset, 0);
3566 		BUG_ON(IS_ERR(em) || !em);
3567 		last_byte = min(extent_map_end(em), block_end);
3568 		last_byte = (last_byte + mask) & ~mask;
3569 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3570 			u64 hint_byte = 0;
3571 			hole_size = last_byte - cur_offset;
3572 
3573 			trans = btrfs_start_transaction(root, 2);
3574 			if (IS_ERR(trans)) {
3575 				err = PTR_ERR(trans);
3576 				break;
3577 			}
3578 			btrfs_set_trans_block_group(trans, inode);
3579 
3580 			err = btrfs_drop_extents(trans, inode, cur_offset,
3581 						 cur_offset + hole_size,
3582 						 &hint_byte, 1);
3583 			BUG_ON(err);
3584 
3585 			err = btrfs_insert_file_extent(trans, root,
3586 					inode->i_ino, cur_offset, 0,
3587 					0, hole_size, 0, hole_size,
3588 					0, 0, 0);
3589 			BUG_ON(err);
3590 
3591 			btrfs_drop_extent_cache(inode, hole_start,
3592 					last_byte - 1, 0);
3593 
3594 			btrfs_end_transaction(trans, root);
3595 		}
3596 		free_extent_map(em);
3597 		em = NULL;
3598 		cur_offset = last_byte;
3599 		if (cur_offset >= block_end)
3600 			break;
3601 	}
3602 
3603 	free_extent_map(em);
3604 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3605 			     GFP_NOFS);
3606 	return err;
3607 }
3608 
3609 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3610 {
3611 	struct btrfs_root *root = BTRFS_I(inode)->root;
3612 	struct btrfs_trans_handle *trans;
3613 	unsigned long nr;
3614 	int ret;
3615 
3616 	if (attr->ia_size == inode->i_size)
3617 		return 0;
3618 
3619 	if (attr->ia_size > inode->i_size) {
3620 		unsigned long limit;
3621 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3622 		if (attr->ia_size > inode->i_sb->s_maxbytes)
3623 			return -EFBIG;
3624 		if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3625 			send_sig(SIGXFSZ, current, 0);
3626 			return -EFBIG;
3627 		}
3628 	}
3629 
3630 	trans = btrfs_start_transaction(root, 5);
3631 	if (IS_ERR(trans))
3632 		return PTR_ERR(trans);
3633 
3634 	btrfs_set_trans_block_group(trans, inode);
3635 
3636 	ret = btrfs_orphan_add(trans, inode);
3637 	BUG_ON(ret);
3638 
3639 	nr = trans->blocks_used;
3640 	btrfs_end_transaction(trans, root);
3641 	btrfs_btree_balance_dirty(root, nr);
3642 
3643 	if (attr->ia_size > inode->i_size) {
3644 		ret = btrfs_cont_expand(inode, attr->ia_size);
3645 		if (ret) {
3646 			btrfs_truncate(inode);
3647 			return ret;
3648 		}
3649 
3650 		i_size_write(inode, attr->ia_size);
3651 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3652 
3653 		trans = btrfs_start_transaction(root, 0);
3654 		BUG_ON(IS_ERR(trans));
3655 		btrfs_set_trans_block_group(trans, inode);
3656 		trans->block_rsv = root->orphan_block_rsv;
3657 		BUG_ON(!trans->block_rsv);
3658 
3659 		ret = btrfs_update_inode(trans, root, inode);
3660 		BUG_ON(ret);
3661 		if (inode->i_nlink > 0) {
3662 			ret = btrfs_orphan_del(trans, inode);
3663 			BUG_ON(ret);
3664 		}
3665 		nr = trans->blocks_used;
3666 		btrfs_end_transaction(trans, root);
3667 		btrfs_btree_balance_dirty(root, nr);
3668 		return 0;
3669 	}
3670 
3671 	/*
3672 	 * We're truncating a file that used to have good data down to
3673 	 * zero. Make sure it gets into the ordered flush list so that
3674 	 * any new writes get down to disk quickly.
3675 	 */
3676 	if (attr->ia_size == 0)
3677 		BTRFS_I(inode)->ordered_data_close = 1;
3678 
3679 	/* we don't support swapfiles, so vmtruncate shouldn't fail */
3680 	ret = vmtruncate(inode, attr->ia_size);
3681 	BUG_ON(ret);
3682 
3683 	return 0;
3684 }
3685 
3686 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3687 {
3688 	struct inode *inode = dentry->d_inode;
3689 	struct btrfs_root *root = BTRFS_I(inode)->root;
3690 	int err;
3691 
3692 	if (btrfs_root_readonly(root))
3693 		return -EROFS;
3694 
3695 	err = inode_change_ok(inode, attr);
3696 	if (err)
3697 		return err;
3698 
3699 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3700 		err = btrfs_setattr_size(inode, attr);
3701 		if (err)
3702 			return err;
3703 	}
3704 
3705 	if (attr->ia_valid) {
3706 		setattr_copy(inode, attr);
3707 		mark_inode_dirty(inode);
3708 
3709 		if (attr->ia_valid & ATTR_MODE)
3710 			err = btrfs_acl_chmod(inode);
3711 	}
3712 
3713 	return err;
3714 }
3715 
3716 void btrfs_evict_inode(struct inode *inode)
3717 {
3718 	struct btrfs_trans_handle *trans;
3719 	struct btrfs_root *root = BTRFS_I(inode)->root;
3720 	unsigned long nr;
3721 	int ret;
3722 
3723 	truncate_inode_pages(&inode->i_data, 0);
3724 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3725 			       root == root->fs_info->tree_root))
3726 		goto no_delete;
3727 
3728 	if (is_bad_inode(inode)) {
3729 		btrfs_orphan_del(NULL, inode);
3730 		goto no_delete;
3731 	}
3732 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3733 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3734 
3735 	if (root->fs_info->log_root_recovering) {
3736 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3737 		goto no_delete;
3738 	}
3739 
3740 	if (inode->i_nlink > 0) {
3741 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3742 		goto no_delete;
3743 	}
3744 
3745 	btrfs_i_size_write(inode, 0);
3746 
3747 	while (1) {
3748 		trans = btrfs_start_transaction(root, 0);
3749 		BUG_ON(IS_ERR(trans));
3750 		btrfs_set_trans_block_group(trans, inode);
3751 		trans->block_rsv = root->orphan_block_rsv;
3752 
3753 		ret = btrfs_block_rsv_check(trans, root,
3754 					    root->orphan_block_rsv, 0, 5);
3755 		if (ret) {
3756 			BUG_ON(ret != -EAGAIN);
3757 			ret = btrfs_commit_transaction(trans, root);
3758 			BUG_ON(ret);
3759 			continue;
3760 		}
3761 
3762 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3763 		if (ret != -EAGAIN)
3764 			break;
3765 
3766 		nr = trans->blocks_used;
3767 		btrfs_end_transaction(trans, root);
3768 		trans = NULL;
3769 		btrfs_btree_balance_dirty(root, nr);
3770 
3771 	}
3772 
3773 	if (ret == 0) {
3774 		ret = btrfs_orphan_del(trans, inode);
3775 		BUG_ON(ret);
3776 	}
3777 
3778 	nr = trans->blocks_used;
3779 	btrfs_end_transaction(trans, root);
3780 	btrfs_btree_balance_dirty(root, nr);
3781 no_delete:
3782 	end_writeback(inode);
3783 	return;
3784 }
3785 
3786 /*
3787  * this returns the key found in the dir entry in the location pointer.
3788  * If no dir entries were found, location->objectid is 0.
3789  */
3790 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3791 			       struct btrfs_key *location)
3792 {
3793 	const char *name = dentry->d_name.name;
3794 	int namelen = dentry->d_name.len;
3795 	struct btrfs_dir_item *di;
3796 	struct btrfs_path *path;
3797 	struct btrfs_root *root = BTRFS_I(dir)->root;
3798 	int ret = 0;
3799 
3800 	path = btrfs_alloc_path();
3801 	BUG_ON(!path);
3802 
3803 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3804 				    namelen, 0);
3805 	if (IS_ERR(di))
3806 		ret = PTR_ERR(di);
3807 
3808 	if (!di || IS_ERR(di))
3809 		goto out_err;
3810 
3811 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3812 out:
3813 	btrfs_free_path(path);
3814 	return ret;
3815 out_err:
3816 	location->objectid = 0;
3817 	goto out;
3818 }
3819 
3820 /*
3821  * when we hit a tree root in a directory, the btrfs part of the inode
3822  * needs to be changed to reflect the root directory of the tree root.  This
3823  * is kind of like crossing a mount point.
3824  */
3825 static int fixup_tree_root_location(struct btrfs_root *root,
3826 				    struct inode *dir,
3827 				    struct dentry *dentry,
3828 				    struct btrfs_key *location,
3829 				    struct btrfs_root **sub_root)
3830 {
3831 	struct btrfs_path *path;
3832 	struct btrfs_root *new_root;
3833 	struct btrfs_root_ref *ref;
3834 	struct extent_buffer *leaf;
3835 	int ret;
3836 	int err = 0;
3837 
3838 	path = btrfs_alloc_path();
3839 	if (!path) {
3840 		err = -ENOMEM;
3841 		goto out;
3842 	}
3843 
3844 	err = -ENOENT;
3845 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3846 				  BTRFS_I(dir)->root->root_key.objectid,
3847 				  location->objectid);
3848 	if (ret) {
3849 		if (ret < 0)
3850 			err = ret;
3851 		goto out;
3852 	}
3853 
3854 	leaf = path->nodes[0];
3855 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3856 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3857 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3858 		goto out;
3859 
3860 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3861 				   (unsigned long)(ref + 1),
3862 				   dentry->d_name.len);
3863 	if (ret)
3864 		goto out;
3865 
3866 	btrfs_release_path(root->fs_info->tree_root, path);
3867 
3868 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3869 	if (IS_ERR(new_root)) {
3870 		err = PTR_ERR(new_root);
3871 		goto out;
3872 	}
3873 
3874 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3875 		err = -ENOENT;
3876 		goto out;
3877 	}
3878 
3879 	*sub_root = new_root;
3880 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3881 	location->type = BTRFS_INODE_ITEM_KEY;
3882 	location->offset = 0;
3883 	err = 0;
3884 out:
3885 	btrfs_free_path(path);
3886 	return err;
3887 }
3888 
3889 static void inode_tree_add(struct inode *inode)
3890 {
3891 	struct btrfs_root *root = BTRFS_I(inode)->root;
3892 	struct btrfs_inode *entry;
3893 	struct rb_node **p;
3894 	struct rb_node *parent;
3895 again:
3896 	p = &root->inode_tree.rb_node;
3897 	parent = NULL;
3898 
3899 	if (inode_unhashed(inode))
3900 		return;
3901 
3902 	spin_lock(&root->inode_lock);
3903 	while (*p) {
3904 		parent = *p;
3905 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3906 
3907 		if (inode->i_ino < entry->vfs_inode.i_ino)
3908 			p = &parent->rb_left;
3909 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3910 			p = &parent->rb_right;
3911 		else {
3912 			WARN_ON(!(entry->vfs_inode.i_state &
3913 				  (I_WILL_FREE | I_FREEING)));
3914 			rb_erase(parent, &root->inode_tree);
3915 			RB_CLEAR_NODE(parent);
3916 			spin_unlock(&root->inode_lock);
3917 			goto again;
3918 		}
3919 	}
3920 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3921 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3922 	spin_unlock(&root->inode_lock);
3923 }
3924 
3925 static void inode_tree_del(struct inode *inode)
3926 {
3927 	struct btrfs_root *root = BTRFS_I(inode)->root;
3928 	int empty = 0;
3929 
3930 	spin_lock(&root->inode_lock);
3931 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3932 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3933 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3934 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3935 	}
3936 	spin_unlock(&root->inode_lock);
3937 
3938 	/*
3939 	 * Free space cache has inodes in the tree root, but the tree root has a
3940 	 * root_refs of 0, so this could end up dropping the tree root as a
3941 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3942 	 * make sure we don't drop it.
3943 	 */
3944 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3945 	    root != root->fs_info->tree_root) {
3946 		synchronize_srcu(&root->fs_info->subvol_srcu);
3947 		spin_lock(&root->inode_lock);
3948 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3949 		spin_unlock(&root->inode_lock);
3950 		if (empty)
3951 			btrfs_add_dead_root(root);
3952 	}
3953 }
3954 
3955 int btrfs_invalidate_inodes(struct btrfs_root *root)
3956 {
3957 	struct rb_node *node;
3958 	struct rb_node *prev;
3959 	struct btrfs_inode *entry;
3960 	struct inode *inode;
3961 	u64 objectid = 0;
3962 
3963 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3964 
3965 	spin_lock(&root->inode_lock);
3966 again:
3967 	node = root->inode_tree.rb_node;
3968 	prev = NULL;
3969 	while (node) {
3970 		prev = node;
3971 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3972 
3973 		if (objectid < entry->vfs_inode.i_ino)
3974 			node = node->rb_left;
3975 		else if (objectid > entry->vfs_inode.i_ino)
3976 			node = node->rb_right;
3977 		else
3978 			break;
3979 	}
3980 	if (!node) {
3981 		while (prev) {
3982 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3983 			if (objectid <= entry->vfs_inode.i_ino) {
3984 				node = prev;
3985 				break;
3986 			}
3987 			prev = rb_next(prev);
3988 		}
3989 	}
3990 	while (node) {
3991 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3992 		objectid = entry->vfs_inode.i_ino + 1;
3993 		inode = igrab(&entry->vfs_inode);
3994 		if (inode) {
3995 			spin_unlock(&root->inode_lock);
3996 			if (atomic_read(&inode->i_count) > 1)
3997 				d_prune_aliases(inode);
3998 			/*
3999 			 * btrfs_drop_inode will have it removed from
4000 			 * the inode cache when its usage count
4001 			 * hits zero.
4002 			 */
4003 			iput(inode);
4004 			cond_resched();
4005 			spin_lock(&root->inode_lock);
4006 			goto again;
4007 		}
4008 
4009 		if (cond_resched_lock(&root->inode_lock))
4010 			goto again;
4011 
4012 		node = rb_next(node);
4013 	}
4014 	spin_unlock(&root->inode_lock);
4015 	return 0;
4016 }
4017 
4018 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4019 {
4020 	struct btrfs_iget_args *args = p;
4021 	inode->i_ino = args->ino;
4022 	BTRFS_I(inode)->root = args->root;
4023 	btrfs_set_inode_space_info(args->root, inode);
4024 	return 0;
4025 }
4026 
4027 static int btrfs_find_actor(struct inode *inode, void *opaque)
4028 {
4029 	struct btrfs_iget_args *args = opaque;
4030 	return args->ino == inode->i_ino &&
4031 		args->root == BTRFS_I(inode)->root;
4032 }
4033 
4034 static struct inode *btrfs_iget_locked(struct super_block *s,
4035 				       u64 objectid,
4036 				       struct btrfs_root *root)
4037 {
4038 	struct inode *inode;
4039 	struct btrfs_iget_args args;
4040 	args.ino = objectid;
4041 	args.root = root;
4042 
4043 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4044 			     btrfs_init_locked_inode,
4045 			     (void *)&args);
4046 	return inode;
4047 }
4048 
4049 /* Get an inode object given its location and corresponding root.
4050  * Returns in *is_new if the inode was read from disk
4051  */
4052 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4053 			 struct btrfs_root *root, int *new)
4054 {
4055 	struct inode *inode;
4056 
4057 	inode = btrfs_iget_locked(s, location->objectid, root);
4058 	if (!inode)
4059 		return ERR_PTR(-ENOMEM);
4060 
4061 	if (inode->i_state & I_NEW) {
4062 		BTRFS_I(inode)->root = root;
4063 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4064 		btrfs_read_locked_inode(inode);
4065 
4066 		inode_tree_add(inode);
4067 		unlock_new_inode(inode);
4068 		if (new)
4069 			*new = 1;
4070 	}
4071 
4072 	return inode;
4073 }
4074 
4075 static struct inode *new_simple_dir(struct super_block *s,
4076 				    struct btrfs_key *key,
4077 				    struct btrfs_root *root)
4078 {
4079 	struct inode *inode = new_inode(s);
4080 
4081 	if (!inode)
4082 		return ERR_PTR(-ENOMEM);
4083 
4084 	BTRFS_I(inode)->root = root;
4085 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4086 	BTRFS_I(inode)->dummy_inode = 1;
4087 
4088 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4089 	inode->i_op = &simple_dir_inode_operations;
4090 	inode->i_fop = &simple_dir_operations;
4091 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4092 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4093 
4094 	return inode;
4095 }
4096 
4097 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4098 {
4099 	struct inode *inode;
4100 	struct btrfs_root *root = BTRFS_I(dir)->root;
4101 	struct btrfs_root *sub_root = root;
4102 	struct btrfs_key location;
4103 	int index;
4104 	int ret;
4105 
4106 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4107 		return ERR_PTR(-ENAMETOOLONG);
4108 
4109 	ret = btrfs_inode_by_name(dir, dentry, &location);
4110 
4111 	if (ret < 0)
4112 		return ERR_PTR(ret);
4113 
4114 	if (location.objectid == 0)
4115 		return NULL;
4116 
4117 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4118 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4119 		return inode;
4120 	}
4121 
4122 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4123 
4124 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4125 	ret = fixup_tree_root_location(root, dir, dentry,
4126 				       &location, &sub_root);
4127 	if (ret < 0) {
4128 		if (ret != -ENOENT)
4129 			inode = ERR_PTR(ret);
4130 		else
4131 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4132 	} else {
4133 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4134 	}
4135 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4136 
4137 	if (root != sub_root) {
4138 		down_read(&root->fs_info->cleanup_work_sem);
4139 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4140 			btrfs_orphan_cleanup(sub_root);
4141 		up_read(&root->fs_info->cleanup_work_sem);
4142 	}
4143 
4144 	return inode;
4145 }
4146 
4147 static int btrfs_dentry_delete(const struct dentry *dentry)
4148 {
4149 	struct btrfs_root *root;
4150 
4151 	if (!dentry->d_inode && !IS_ROOT(dentry))
4152 		dentry = dentry->d_parent;
4153 
4154 	if (dentry->d_inode) {
4155 		root = BTRFS_I(dentry->d_inode)->root;
4156 		if (btrfs_root_refs(&root->root_item) == 0)
4157 			return 1;
4158 	}
4159 	return 0;
4160 }
4161 
4162 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4163 				   struct nameidata *nd)
4164 {
4165 	struct inode *inode;
4166 
4167 	inode = btrfs_lookup_dentry(dir, dentry);
4168 	if (IS_ERR(inode))
4169 		return ERR_CAST(inode);
4170 
4171 	return d_splice_alias(inode, dentry);
4172 }
4173 
4174 static unsigned char btrfs_filetype_table[] = {
4175 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4176 };
4177 
4178 static int btrfs_real_readdir(struct file *filp, void *dirent,
4179 			      filldir_t filldir)
4180 {
4181 	struct inode *inode = filp->f_dentry->d_inode;
4182 	struct btrfs_root *root = BTRFS_I(inode)->root;
4183 	struct btrfs_item *item;
4184 	struct btrfs_dir_item *di;
4185 	struct btrfs_key key;
4186 	struct btrfs_key found_key;
4187 	struct btrfs_path *path;
4188 	int ret;
4189 	u32 nritems;
4190 	struct extent_buffer *leaf;
4191 	int slot;
4192 	int advance;
4193 	unsigned char d_type;
4194 	int over = 0;
4195 	u32 di_cur;
4196 	u32 di_total;
4197 	u32 di_len;
4198 	int key_type = BTRFS_DIR_INDEX_KEY;
4199 	char tmp_name[32];
4200 	char *name_ptr;
4201 	int name_len;
4202 
4203 	/* FIXME, use a real flag for deciding about the key type */
4204 	if (root->fs_info->tree_root == root)
4205 		key_type = BTRFS_DIR_ITEM_KEY;
4206 
4207 	/* special case for "." */
4208 	if (filp->f_pos == 0) {
4209 		over = filldir(dirent, ".", 1,
4210 			       1, inode->i_ino,
4211 			       DT_DIR);
4212 		if (over)
4213 			return 0;
4214 		filp->f_pos = 1;
4215 	}
4216 	/* special case for .., just use the back ref */
4217 	if (filp->f_pos == 1) {
4218 		u64 pino = parent_ino(filp->f_path.dentry);
4219 		over = filldir(dirent, "..", 2,
4220 			       2, pino, DT_DIR);
4221 		if (over)
4222 			return 0;
4223 		filp->f_pos = 2;
4224 	}
4225 	path = btrfs_alloc_path();
4226 	path->reada = 2;
4227 
4228 	btrfs_set_key_type(&key, key_type);
4229 	key.offset = filp->f_pos;
4230 	key.objectid = inode->i_ino;
4231 
4232 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4233 	if (ret < 0)
4234 		goto err;
4235 	advance = 0;
4236 
4237 	while (1) {
4238 		leaf = path->nodes[0];
4239 		nritems = btrfs_header_nritems(leaf);
4240 		slot = path->slots[0];
4241 		if (advance || slot >= nritems) {
4242 			if (slot >= nritems - 1) {
4243 				ret = btrfs_next_leaf(root, path);
4244 				if (ret)
4245 					break;
4246 				leaf = path->nodes[0];
4247 				nritems = btrfs_header_nritems(leaf);
4248 				slot = path->slots[0];
4249 			} else {
4250 				slot++;
4251 				path->slots[0]++;
4252 			}
4253 		}
4254 
4255 		advance = 1;
4256 		item = btrfs_item_nr(leaf, slot);
4257 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4258 
4259 		if (found_key.objectid != key.objectid)
4260 			break;
4261 		if (btrfs_key_type(&found_key) != key_type)
4262 			break;
4263 		if (found_key.offset < filp->f_pos)
4264 			continue;
4265 
4266 		filp->f_pos = found_key.offset;
4267 
4268 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4269 		di_cur = 0;
4270 		di_total = btrfs_item_size(leaf, item);
4271 
4272 		while (di_cur < di_total) {
4273 			struct btrfs_key location;
4274 
4275 			name_len = btrfs_dir_name_len(leaf, di);
4276 			if (name_len <= sizeof(tmp_name)) {
4277 				name_ptr = tmp_name;
4278 			} else {
4279 				name_ptr = kmalloc(name_len, GFP_NOFS);
4280 				if (!name_ptr) {
4281 					ret = -ENOMEM;
4282 					goto err;
4283 				}
4284 			}
4285 			read_extent_buffer(leaf, name_ptr,
4286 					   (unsigned long)(di + 1), name_len);
4287 
4288 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4289 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4290 
4291 			/* is this a reference to our own snapshot? If so
4292 			 * skip it
4293 			 */
4294 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4295 			    location.objectid == root->root_key.objectid) {
4296 				over = 0;
4297 				goto skip;
4298 			}
4299 			over = filldir(dirent, name_ptr, name_len,
4300 				       found_key.offset, location.objectid,
4301 				       d_type);
4302 
4303 skip:
4304 			if (name_ptr != tmp_name)
4305 				kfree(name_ptr);
4306 
4307 			if (over)
4308 				goto nopos;
4309 			di_len = btrfs_dir_name_len(leaf, di) +
4310 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4311 			di_cur += di_len;
4312 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4313 		}
4314 	}
4315 
4316 	/* Reached end of directory/root. Bump pos past the last item. */
4317 	if (key_type == BTRFS_DIR_INDEX_KEY)
4318 		/*
4319 		 * 32-bit glibc will use getdents64, but then strtol -
4320 		 * so the last number we can serve is this.
4321 		 */
4322 		filp->f_pos = 0x7fffffff;
4323 	else
4324 		filp->f_pos++;
4325 nopos:
4326 	ret = 0;
4327 err:
4328 	btrfs_free_path(path);
4329 	return ret;
4330 }
4331 
4332 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4333 {
4334 	struct btrfs_root *root = BTRFS_I(inode)->root;
4335 	struct btrfs_trans_handle *trans;
4336 	int ret = 0;
4337 	bool nolock = false;
4338 
4339 	if (BTRFS_I(inode)->dummy_inode)
4340 		return 0;
4341 
4342 	smp_mb();
4343 	nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4344 
4345 	if (wbc->sync_mode == WB_SYNC_ALL) {
4346 		if (nolock)
4347 			trans = btrfs_join_transaction_nolock(root, 1);
4348 		else
4349 			trans = btrfs_join_transaction(root, 1);
4350 		btrfs_set_trans_block_group(trans, inode);
4351 		if (nolock)
4352 			ret = btrfs_end_transaction_nolock(trans, root);
4353 		else
4354 			ret = btrfs_commit_transaction(trans, root);
4355 	}
4356 	return ret;
4357 }
4358 
4359 /*
4360  * This is somewhat expensive, updating the tree every time the
4361  * inode changes.  But, it is most likely to find the inode in cache.
4362  * FIXME, needs more benchmarking...there are no reasons other than performance
4363  * to keep or drop this code.
4364  */
4365 void btrfs_dirty_inode(struct inode *inode)
4366 {
4367 	struct btrfs_root *root = BTRFS_I(inode)->root;
4368 	struct btrfs_trans_handle *trans;
4369 	int ret;
4370 
4371 	if (BTRFS_I(inode)->dummy_inode)
4372 		return;
4373 
4374 	trans = btrfs_join_transaction(root, 1);
4375 	btrfs_set_trans_block_group(trans, inode);
4376 
4377 	ret = btrfs_update_inode(trans, root, inode);
4378 	if (ret && ret == -ENOSPC) {
4379 		/* whoops, lets try again with the full transaction */
4380 		btrfs_end_transaction(trans, root);
4381 		trans = btrfs_start_transaction(root, 1);
4382 		if (IS_ERR(trans)) {
4383 			if (printk_ratelimit()) {
4384 				printk(KERN_ERR "btrfs: fail to "
4385 				       "dirty  inode %lu error %ld\n",
4386 				       inode->i_ino, PTR_ERR(trans));
4387 			}
4388 			return;
4389 		}
4390 		btrfs_set_trans_block_group(trans, inode);
4391 
4392 		ret = btrfs_update_inode(trans, root, inode);
4393 		if (ret) {
4394 			if (printk_ratelimit()) {
4395 				printk(KERN_ERR "btrfs: fail to "
4396 				       "dirty  inode %lu error %d\n",
4397 				       inode->i_ino, ret);
4398 			}
4399 		}
4400 	}
4401 	btrfs_end_transaction(trans, root);
4402 }
4403 
4404 /*
4405  * find the highest existing sequence number in a directory
4406  * and then set the in-memory index_cnt variable to reflect
4407  * free sequence numbers
4408  */
4409 static int btrfs_set_inode_index_count(struct inode *inode)
4410 {
4411 	struct btrfs_root *root = BTRFS_I(inode)->root;
4412 	struct btrfs_key key, found_key;
4413 	struct btrfs_path *path;
4414 	struct extent_buffer *leaf;
4415 	int ret;
4416 
4417 	key.objectid = inode->i_ino;
4418 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4419 	key.offset = (u64)-1;
4420 
4421 	path = btrfs_alloc_path();
4422 	if (!path)
4423 		return -ENOMEM;
4424 
4425 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4426 	if (ret < 0)
4427 		goto out;
4428 	/* FIXME: we should be able to handle this */
4429 	if (ret == 0)
4430 		goto out;
4431 	ret = 0;
4432 
4433 	/*
4434 	 * MAGIC NUMBER EXPLANATION:
4435 	 * since we search a directory based on f_pos we have to start at 2
4436 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4437 	 * else has to start at 2
4438 	 */
4439 	if (path->slots[0] == 0) {
4440 		BTRFS_I(inode)->index_cnt = 2;
4441 		goto out;
4442 	}
4443 
4444 	path->slots[0]--;
4445 
4446 	leaf = path->nodes[0];
4447 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4448 
4449 	if (found_key.objectid != inode->i_ino ||
4450 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4451 		BTRFS_I(inode)->index_cnt = 2;
4452 		goto out;
4453 	}
4454 
4455 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4456 out:
4457 	btrfs_free_path(path);
4458 	return ret;
4459 }
4460 
4461 /*
4462  * helper to find a free sequence number in a given directory.  This current
4463  * code is very simple, later versions will do smarter things in the btree
4464  */
4465 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4466 {
4467 	int ret = 0;
4468 
4469 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4470 		ret = btrfs_set_inode_index_count(dir);
4471 		if (ret)
4472 			return ret;
4473 	}
4474 
4475 	*index = BTRFS_I(dir)->index_cnt;
4476 	BTRFS_I(dir)->index_cnt++;
4477 
4478 	return ret;
4479 }
4480 
4481 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4482 				     struct btrfs_root *root,
4483 				     struct inode *dir,
4484 				     const char *name, int name_len,
4485 				     u64 ref_objectid, u64 objectid,
4486 				     u64 alloc_hint, int mode, u64 *index)
4487 {
4488 	struct inode *inode;
4489 	struct btrfs_inode_item *inode_item;
4490 	struct btrfs_key *location;
4491 	struct btrfs_path *path;
4492 	struct btrfs_inode_ref *ref;
4493 	struct btrfs_key key[2];
4494 	u32 sizes[2];
4495 	unsigned long ptr;
4496 	int ret;
4497 	int owner;
4498 
4499 	path = btrfs_alloc_path();
4500 	BUG_ON(!path);
4501 
4502 	inode = new_inode(root->fs_info->sb);
4503 	if (!inode)
4504 		return ERR_PTR(-ENOMEM);
4505 
4506 	if (dir) {
4507 		ret = btrfs_set_inode_index(dir, index);
4508 		if (ret) {
4509 			iput(inode);
4510 			return ERR_PTR(ret);
4511 		}
4512 	}
4513 	/*
4514 	 * index_cnt is ignored for everything but a dir,
4515 	 * btrfs_get_inode_index_count has an explanation for the magic
4516 	 * number
4517 	 */
4518 	BTRFS_I(inode)->index_cnt = 2;
4519 	BTRFS_I(inode)->root = root;
4520 	BTRFS_I(inode)->generation = trans->transid;
4521 	inode->i_generation = BTRFS_I(inode)->generation;
4522 	btrfs_set_inode_space_info(root, inode);
4523 
4524 	if (mode & S_IFDIR)
4525 		owner = 0;
4526 	else
4527 		owner = 1;
4528 	BTRFS_I(inode)->block_group =
4529 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4530 
4531 	key[0].objectid = objectid;
4532 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4533 	key[0].offset = 0;
4534 
4535 	key[1].objectid = objectid;
4536 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4537 	key[1].offset = ref_objectid;
4538 
4539 	sizes[0] = sizeof(struct btrfs_inode_item);
4540 	sizes[1] = name_len + sizeof(*ref);
4541 
4542 	path->leave_spinning = 1;
4543 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4544 	if (ret != 0)
4545 		goto fail;
4546 
4547 	inode_init_owner(inode, dir, mode);
4548 	inode->i_ino = objectid;
4549 	inode_set_bytes(inode, 0);
4550 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4551 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4552 				  struct btrfs_inode_item);
4553 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4554 
4555 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4556 			     struct btrfs_inode_ref);
4557 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4558 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4559 	ptr = (unsigned long)(ref + 1);
4560 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4561 
4562 	btrfs_mark_buffer_dirty(path->nodes[0]);
4563 	btrfs_free_path(path);
4564 
4565 	location = &BTRFS_I(inode)->location;
4566 	location->objectid = objectid;
4567 	location->offset = 0;
4568 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4569 
4570 	btrfs_inherit_iflags(inode, dir);
4571 
4572 	if ((mode & S_IFREG)) {
4573 		if (btrfs_test_opt(root, NODATASUM))
4574 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4575 		if (btrfs_test_opt(root, NODATACOW))
4576 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4577 	}
4578 
4579 	insert_inode_hash(inode);
4580 	inode_tree_add(inode);
4581 	return inode;
4582 fail:
4583 	if (dir)
4584 		BTRFS_I(dir)->index_cnt--;
4585 	btrfs_free_path(path);
4586 	iput(inode);
4587 	return ERR_PTR(ret);
4588 }
4589 
4590 static inline u8 btrfs_inode_type(struct inode *inode)
4591 {
4592 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4593 }
4594 
4595 /*
4596  * utility function to add 'inode' into 'parent_inode' with
4597  * a give name and a given sequence number.
4598  * if 'add_backref' is true, also insert a backref from the
4599  * inode to the parent directory.
4600  */
4601 int btrfs_add_link(struct btrfs_trans_handle *trans,
4602 		   struct inode *parent_inode, struct inode *inode,
4603 		   const char *name, int name_len, int add_backref, u64 index)
4604 {
4605 	int ret = 0;
4606 	struct btrfs_key key;
4607 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4608 
4609 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4610 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4611 	} else {
4612 		key.objectid = inode->i_ino;
4613 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4614 		key.offset = 0;
4615 	}
4616 
4617 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4618 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4619 					 key.objectid, root->root_key.objectid,
4620 					 parent_inode->i_ino,
4621 					 index, name, name_len);
4622 	} else if (add_backref) {
4623 		ret = btrfs_insert_inode_ref(trans, root,
4624 					     name, name_len, inode->i_ino,
4625 					     parent_inode->i_ino, index);
4626 	}
4627 
4628 	if (ret == 0) {
4629 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4630 					    parent_inode->i_ino, &key,
4631 					    btrfs_inode_type(inode), index);
4632 		BUG_ON(ret);
4633 
4634 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4635 				   name_len * 2);
4636 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4637 		ret = btrfs_update_inode(trans, root, parent_inode);
4638 	}
4639 	return ret;
4640 }
4641 
4642 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4643 			    struct inode *dir, struct dentry *dentry,
4644 			    struct inode *inode, int backref, u64 index)
4645 {
4646 	int err = btrfs_add_link(trans, dir, inode,
4647 				 dentry->d_name.name, dentry->d_name.len,
4648 				 backref, index);
4649 	if (!err) {
4650 		d_instantiate(dentry, inode);
4651 		return 0;
4652 	}
4653 	if (err > 0)
4654 		err = -EEXIST;
4655 	return err;
4656 }
4657 
4658 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4659 			int mode, dev_t rdev)
4660 {
4661 	struct btrfs_trans_handle *trans;
4662 	struct btrfs_root *root = BTRFS_I(dir)->root;
4663 	struct inode *inode = NULL;
4664 	int err;
4665 	int drop_inode = 0;
4666 	u64 objectid;
4667 	unsigned long nr = 0;
4668 	u64 index = 0;
4669 
4670 	if (!new_valid_dev(rdev))
4671 		return -EINVAL;
4672 
4673 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4674 	if (err)
4675 		return err;
4676 
4677 	/*
4678 	 * 2 for inode item and ref
4679 	 * 2 for dir items
4680 	 * 1 for xattr if selinux is on
4681 	 */
4682 	trans = btrfs_start_transaction(root, 5);
4683 	if (IS_ERR(trans))
4684 		return PTR_ERR(trans);
4685 
4686 	btrfs_set_trans_block_group(trans, dir);
4687 
4688 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4689 				dentry->d_name.len, dir->i_ino, objectid,
4690 				BTRFS_I(dir)->block_group, mode, &index);
4691 	err = PTR_ERR(inode);
4692 	if (IS_ERR(inode))
4693 		goto out_unlock;
4694 
4695 	err = btrfs_init_inode_security(trans, inode, dir);
4696 	if (err) {
4697 		drop_inode = 1;
4698 		goto out_unlock;
4699 	}
4700 
4701 	btrfs_set_trans_block_group(trans, inode);
4702 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4703 	if (err)
4704 		drop_inode = 1;
4705 	else {
4706 		inode->i_op = &btrfs_special_inode_operations;
4707 		init_special_inode(inode, inode->i_mode, rdev);
4708 		btrfs_update_inode(trans, root, inode);
4709 	}
4710 	btrfs_update_inode_block_group(trans, inode);
4711 	btrfs_update_inode_block_group(trans, dir);
4712 out_unlock:
4713 	nr = trans->blocks_used;
4714 	btrfs_end_transaction_throttle(trans, root);
4715 	btrfs_btree_balance_dirty(root, nr);
4716 	if (drop_inode) {
4717 		inode_dec_link_count(inode);
4718 		iput(inode);
4719 	}
4720 	return err;
4721 }
4722 
4723 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4724 			int mode, struct nameidata *nd)
4725 {
4726 	struct btrfs_trans_handle *trans;
4727 	struct btrfs_root *root = BTRFS_I(dir)->root;
4728 	struct inode *inode = NULL;
4729 	int drop_inode = 0;
4730 	int err;
4731 	unsigned long nr = 0;
4732 	u64 objectid;
4733 	u64 index = 0;
4734 
4735 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4736 	if (err)
4737 		return err;
4738 	/*
4739 	 * 2 for inode item and ref
4740 	 * 2 for dir items
4741 	 * 1 for xattr if selinux is on
4742 	 */
4743 	trans = btrfs_start_transaction(root, 5);
4744 	if (IS_ERR(trans))
4745 		return PTR_ERR(trans);
4746 
4747 	btrfs_set_trans_block_group(trans, dir);
4748 
4749 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4750 				dentry->d_name.len, dir->i_ino, objectid,
4751 				BTRFS_I(dir)->block_group, mode, &index);
4752 	err = PTR_ERR(inode);
4753 	if (IS_ERR(inode))
4754 		goto out_unlock;
4755 
4756 	err = btrfs_init_inode_security(trans, inode, dir);
4757 	if (err) {
4758 		drop_inode = 1;
4759 		goto out_unlock;
4760 	}
4761 
4762 	btrfs_set_trans_block_group(trans, inode);
4763 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4764 	if (err)
4765 		drop_inode = 1;
4766 	else {
4767 		inode->i_mapping->a_ops = &btrfs_aops;
4768 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4769 		inode->i_fop = &btrfs_file_operations;
4770 		inode->i_op = &btrfs_file_inode_operations;
4771 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4772 	}
4773 	btrfs_update_inode_block_group(trans, inode);
4774 	btrfs_update_inode_block_group(trans, dir);
4775 out_unlock:
4776 	nr = trans->blocks_used;
4777 	btrfs_end_transaction_throttle(trans, root);
4778 	if (drop_inode) {
4779 		inode_dec_link_count(inode);
4780 		iput(inode);
4781 	}
4782 	btrfs_btree_balance_dirty(root, nr);
4783 	return err;
4784 }
4785 
4786 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4787 		      struct dentry *dentry)
4788 {
4789 	struct btrfs_trans_handle *trans;
4790 	struct btrfs_root *root = BTRFS_I(dir)->root;
4791 	struct inode *inode = old_dentry->d_inode;
4792 	u64 index;
4793 	unsigned long nr = 0;
4794 	int err;
4795 	int drop_inode = 0;
4796 
4797 	if (inode->i_nlink == 0)
4798 		return -ENOENT;
4799 
4800 	/* do not allow sys_link's with other subvols of the same device */
4801 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4802 		return -EPERM;
4803 
4804 	btrfs_inc_nlink(inode);
4805 	inode->i_ctime = CURRENT_TIME;
4806 
4807 	err = btrfs_set_inode_index(dir, &index);
4808 	if (err)
4809 		goto fail;
4810 
4811 	/*
4812 	 * 1 item for inode ref
4813 	 * 2 items for dir items
4814 	 */
4815 	trans = btrfs_start_transaction(root, 3);
4816 	if (IS_ERR(trans)) {
4817 		err = PTR_ERR(trans);
4818 		goto fail;
4819 	}
4820 
4821 	btrfs_set_trans_block_group(trans, dir);
4822 	ihold(inode);
4823 
4824 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4825 
4826 	if (err) {
4827 		drop_inode = 1;
4828 	} else {
4829 		struct dentry *parent = dget_parent(dentry);
4830 		btrfs_update_inode_block_group(trans, dir);
4831 		err = btrfs_update_inode(trans, root, inode);
4832 		BUG_ON(err);
4833 		btrfs_log_new_name(trans, inode, NULL, parent);
4834 		dput(parent);
4835 	}
4836 
4837 	nr = trans->blocks_used;
4838 	btrfs_end_transaction_throttle(trans, root);
4839 fail:
4840 	if (drop_inode) {
4841 		inode_dec_link_count(inode);
4842 		iput(inode);
4843 	}
4844 	btrfs_btree_balance_dirty(root, nr);
4845 	return err;
4846 }
4847 
4848 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4849 {
4850 	struct inode *inode = NULL;
4851 	struct btrfs_trans_handle *trans;
4852 	struct btrfs_root *root = BTRFS_I(dir)->root;
4853 	int err = 0;
4854 	int drop_on_err = 0;
4855 	u64 objectid = 0;
4856 	u64 index = 0;
4857 	unsigned long nr = 1;
4858 
4859 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4860 	if (err)
4861 		return err;
4862 
4863 	/*
4864 	 * 2 items for inode and ref
4865 	 * 2 items for dir items
4866 	 * 1 for xattr if selinux is on
4867 	 */
4868 	trans = btrfs_start_transaction(root, 5);
4869 	if (IS_ERR(trans))
4870 		return PTR_ERR(trans);
4871 	btrfs_set_trans_block_group(trans, dir);
4872 
4873 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4874 				dentry->d_name.len, dir->i_ino, objectid,
4875 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4876 				&index);
4877 	if (IS_ERR(inode)) {
4878 		err = PTR_ERR(inode);
4879 		goto out_fail;
4880 	}
4881 
4882 	drop_on_err = 1;
4883 
4884 	err = btrfs_init_inode_security(trans, inode, dir);
4885 	if (err)
4886 		goto out_fail;
4887 
4888 	inode->i_op = &btrfs_dir_inode_operations;
4889 	inode->i_fop = &btrfs_dir_file_operations;
4890 	btrfs_set_trans_block_group(trans, inode);
4891 
4892 	btrfs_i_size_write(inode, 0);
4893 	err = btrfs_update_inode(trans, root, inode);
4894 	if (err)
4895 		goto out_fail;
4896 
4897 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4898 			     dentry->d_name.len, 0, index);
4899 	if (err)
4900 		goto out_fail;
4901 
4902 	d_instantiate(dentry, inode);
4903 	drop_on_err = 0;
4904 	btrfs_update_inode_block_group(trans, inode);
4905 	btrfs_update_inode_block_group(trans, dir);
4906 
4907 out_fail:
4908 	nr = trans->blocks_used;
4909 	btrfs_end_transaction_throttle(trans, root);
4910 	if (drop_on_err)
4911 		iput(inode);
4912 	btrfs_btree_balance_dirty(root, nr);
4913 	return err;
4914 }
4915 
4916 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4917  * and an extent that you want to insert, deal with overlap and insert
4918  * the new extent into the tree.
4919  */
4920 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4921 				struct extent_map *existing,
4922 				struct extent_map *em,
4923 				u64 map_start, u64 map_len)
4924 {
4925 	u64 start_diff;
4926 
4927 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4928 	start_diff = map_start - em->start;
4929 	em->start = map_start;
4930 	em->len = map_len;
4931 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4932 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4933 		em->block_start += start_diff;
4934 		em->block_len -= start_diff;
4935 	}
4936 	return add_extent_mapping(em_tree, em);
4937 }
4938 
4939 static noinline int uncompress_inline(struct btrfs_path *path,
4940 				      struct inode *inode, struct page *page,
4941 				      size_t pg_offset, u64 extent_offset,
4942 				      struct btrfs_file_extent_item *item)
4943 {
4944 	int ret;
4945 	struct extent_buffer *leaf = path->nodes[0];
4946 	char *tmp;
4947 	size_t max_size;
4948 	unsigned long inline_size;
4949 	unsigned long ptr;
4950 	int compress_type;
4951 
4952 	WARN_ON(pg_offset != 0);
4953 	compress_type = btrfs_file_extent_compression(leaf, item);
4954 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4955 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4956 					btrfs_item_nr(leaf, path->slots[0]));
4957 	tmp = kmalloc(inline_size, GFP_NOFS);
4958 	ptr = btrfs_file_extent_inline_start(item);
4959 
4960 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4961 
4962 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4963 	ret = btrfs_decompress(compress_type, tmp, page,
4964 			       extent_offset, inline_size, max_size);
4965 	if (ret) {
4966 		char *kaddr = kmap_atomic(page, KM_USER0);
4967 		unsigned long copy_size = min_t(u64,
4968 				  PAGE_CACHE_SIZE - pg_offset,
4969 				  max_size - extent_offset);
4970 		memset(kaddr + pg_offset, 0, copy_size);
4971 		kunmap_atomic(kaddr, KM_USER0);
4972 	}
4973 	kfree(tmp);
4974 	return 0;
4975 }
4976 
4977 /*
4978  * a bit scary, this does extent mapping from logical file offset to the disk.
4979  * the ugly parts come from merging extents from the disk with the in-ram
4980  * representation.  This gets more complex because of the data=ordered code,
4981  * where the in-ram extents might be locked pending data=ordered completion.
4982  *
4983  * This also copies inline extents directly into the page.
4984  */
4985 
4986 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4987 				    size_t pg_offset, u64 start, u64 len,
4988 				    int create)
4989 {
4990 	int ret;
4991 	int err = 0;
4992 	u64 bytenr;
4993 	u64 extent_start = 0;
4994 	u64 extent_end = 0;
4995 	u64 objectid = inode->i_ino;
4996 	u32 found_type;
4997 	struct btrfs_path *path = NULL;
4998 	struct btrfs_root *root = BTRFS_I(inode)->root;
4999 	struct btrfs_file_extent_item *item;
5000 	struct extent_buffer *leaf;
5001 	struct btrfs_key found_key;
5002 	struct extent_map *em = NULL;
5003 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5004 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5005 	struct btrfs_trans_handle *trans = NULL;
5006 	int compress_type;
5007 
5008 again:
5009 	read_lock(&em_tree->lock);
5010 	em = lookup_extent_mapping(em_tree, start, len);
5011 	if (em)
5012 		em->bdev = root->fs_info->fs_devices->latest_bdev;
5013 	read_unlock(&em_tree->lock);
5014 
5015 	if (em) {
5016 		if (em->start > start || em->start + em->len <= start)
5017 			free_extent_map(em);
5018 		else if (em->block_start == EXTENT_MAP_INLINE && page)
5019 			free_extent_map(em);
5020 		else
5021 			goto out;
5022 	}
5023 	em = alloc_extent_map(GFP_NOFS);
5024 	if (!em) {
5025 		err = -ENOMEM;
5026 		goto out;
5027 	}
5028 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5029 	em->start = EXTENT_MAP_HOLE;
5030 	em->orig_start = EXTENT_MAP_HOLE;
5031 	em->len = (u64)-1;
5032 	em->block_len = (u64)-1;
5033 
5034 	if (!path) {
5035 		path = btrfs_alloc_path();
5036 		BUG_ON(!path);
5037 	}
5038 
5039 	ret = btrfs_lookup_file_extent(trans, root, path,
5040 				       objectid, start, trans != NULL);
5041 	if (ret < 0) {
5042 		err = ret;
5043 		goto out;
5044 	}
5045 
5046 	if (ret != 0) {
5047 		if (path->slots[0] == 0)
5048 			goto not_found;
5049 		path->slots[0]--;
5050 	}
5051 
5052 	leaf = path->nodes[0];
5053 	item = btrfs_item_ptr(leaf, path->slots[0],
5054 			      struct btrfs_file_extent_item);
5055 	/* are we inside the extent that was found? */
5056 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5057 	found_type = btrfs_key_type(&found_key);
5058 	if (found_key.objectid != objectid ||
5059 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5060 		goto not_found;
5061 	}
5062 
5063 	found_type = btrfs_file_extent_type(leaf, item);
5064 	extent_start = found_key.offset;
5065 	compress_type = btrfs_file_extent_compression(leaf, item);
5066 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5067 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5068 		extent_end = extent_start +
5069 		       btrfs_file_extent_num_bytes(leaf, item);
5070 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5071 		size_t size;
5072 		size = btrfs_file_extent_inline_len(leaf, item);
5073 		extent_end = (extent_start + size + root->sectorsize - 1) &
5074 			~((u64)root->sectorsize - 1);
5075 	}
5076 
5077 	if (start >= extent_end) {
5078 		path->slots[0]++;
5079 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5080 			ret = btrfs_next_leaf(root, path);
5081 			if (ret < 0) {
5082 				err = ret;
5083 				goto out;
5084 			}
5085 			if (ret > 0)
5086 				goto not_found;
5087 			leaf = path->nodes[0];
5088 		}
5089 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5090 		if (found_key.objectid != objectid ||
5091 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5092 			goto not_found;
5093 		if (start + len <= found_key.offset)
5094 			goto not_found;
5095 		em->start = start;
5096 		em->len = found_key.offset - start;
5097 		goto not_found_em;
5098 	}
5099 
5100 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5101 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5102 		em->start = extent_start;
5103 		em->len = extent_end - extent_start;
5104 		em->orig_start = extent_start -
5105 				 btrfs_file_extent_offset(leaf, item);
5106 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5107 		if (bytenr == 0) {
5108 			em->block_start = EXTENT_MAP_HOLE;
5109 			goto insert;
5110 		}
5111 		if (compress_type != BTRFS_COMPRESS_NONE) {
5112 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5113 			em->compress_type = compress_type;
5114 			em->block_start = bytenr;
5115 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5116 									 item);
5117 		} else {
5118 			bytenr += btrfs_file_extent_offset(leaf, item);
5119 			em->block_start = bytenr;
5120 			em->block_len = em->len;
5121 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5122 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5123 		}
5124 		goto insert;
5125 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5126 		unsigned long ptr;
5127 		char *map;
5128 		size_t size;
5129 		size_t extent_offset;
5130 		size_t copy_size;
5131 
5132 		em->block_start = EXTENT_MAP_INLINE;
5133 		if (!page || create) {
5134 			em->start = extent_start;
5135 			em->len = extent_end - extent_start;
5136 			goto out;
5137 		}
5138 
5139 		size = btrfs_file_extent_inline_len(leaf, item);
5140 		extent_offset = page_offset(page) + pg_offset - extent_start;
5141 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5142 				size - extent_offset);
5143 		em->start = extent_start + extent_offset;
5144 		em->len = (copy_size + root->sectorsize - 1) &
5145 			~((u64)root->sectorsize - 1);
5146 		em->orig_start = EXTENT_MAP_INLINE;
5147 		if (compress_type) {
5148 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5149 			em->compress_type = compress_type;
5150 		}
5151 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5152 		if (create == 0 && !PageUptodate(page)) {
5153 			if (btrfs_file_extent_compression(leaf, item) !=
5154 			    BTRFS_COMPRESS_NONE) {
5155 				ret = uncompress_inline(path, inode, page,
5156 							pg_offset,
5157 							extent_offset, item);
5158 				BUG_ON(ret);
5159 			} else {
5160 				map = kmap(page);
5161 				read_extent_buffer(leaf, map + pg_offset, ptr,
5162 						   copy_size);
5163 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5164 					memset(map + pg_offset + copy_size, 0,
5165 					       PAGE_CACHE_SIZE - pg_offset -
5166 					       copy_size);
5167 				}
5168 				kunmap(page);
5169 			}
5170 			flush_dcache_page(page);
5171 		} else if (create && PageUptodate(page)) {
5172 			WARN_ON(1);
5173 			if (!trans) {
5174 				kunmap(page);
5175 				free_extent_map(em);
5176 				em = NULL;
5177 				btrfs_release_path(root, path);
5178 				trans = btrfs_join_transaction(root, 1);
5179 				goto again;
5180 			}
5181 			map = kmap(page);
5182 			write_extent_buffer(leaf, map + pg_offset, ptr,
5183 					    copy_size);
5184 			kunmap(page);
5185 			btrfs_mark_buffer_dirty(leaf);
5186 		}
5187 		set_extent_uptodate(io_tree, em->start,
5188 				    extent_map_end(em) - 1, GFP_NOFS);
5189 		goto insert;
5190 	} else {
5191 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5192 		WARN_ON(1);
5193 	}
5194 not_found:
5195 	em->start = start;
5196 	em->len = len;
5197 not_found_em:
5198 	em->block_start = EXTENT_MAP_HOLE;
5199 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5200 insert:
5201 	btrfs_release_path(root, path);
5202 	if (em->start > start || extent_map_end(em) <= start) {
5203 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5204 		       "[%llu %llu]\n", (unsigned long long)em->start,
5205 		       (unsigned long long)em->len,
5206 		       (unsigned long long)start,
5207 		       (unsigned long long)len);
5208 		err = -EIO;
5209 		goto out;
5210 	}
5211 
5212 	err = 0;
5213 	write_lock(&em_tree->lock);
5214 	ret = add_extent_mapping(em_tree, em);
5215 	/* it is possible that someone inserted the extent into the tree
5216 	 * while we had the lock dropped.  It is also possible that
5217 	 * an overlapping map exists in the tree
5218 	 */
5219 	if (ret == -EEXIST) {
5220 		struct extent_map *existing;
5221 
5222 		ret = 0;
5223 
5224 		existing = lookup_extent_mapping(em_tree, start, len);
5225 		if (existing && (existing->start > start ||
5226 		    existing->start + existing->len <= start)) {
5227 			free_extent_map(existing);
5228 			existing = NULL;
5229 		}
5230 		if (!existing) {
5231 			existing = lookup_extent_mapping(em_tree, em->start,
5232 							 em->len);
5233 			if (existing) {
5234 				err = merge_extent_mapping(em_tree, existing,
5235 							   em, start,
5236 							   root->sectorsize);
5237 				free_extent_map(existing);
5238 				if (err) {
5239 					free_extent_map(em);
5240 					em = NULL;
5241 				}
5242 			} else {
5243 				err = -EIO;
5244 				free_extent_map(em);
5245 				em = NULL;
5246 			}
5247 		} else {
5248 			free_extent_map(em);
5249 			em = existing;
5250 			err = 0;
5251 		}
5252 	}
5253 	write_unlock(&em_tree->lock);
5254 out:
5255 	if (path)
5256 		btrfs_free_path(path);
5257 	if (trans) {
5258 		ret = btrfs_end_transaction(trans, root);
5259 		if (!err)
5260 			err = ret;
5261 	}
5262 	if (err) {
5263 		free_extent_map(em);
5264 		return ERR_PTR(err);
5265 	}
5266 	return em;
5267 }
5268 
5269 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5270 						  u64 start, u64 len)
5271 {
5272 	struct btrfs_root *root = BTRFS_I(inode)->root;
5273 	struct btrfs_trans_handle *trans;
5274 	struct extent_map *em;
5275 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5276 	struct btrfs_key ins;
5277 	u64 alloc_hint;
5278 	int ret;
5279 
5280 	btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5281 
5282 	trans = btrfs_join_transaction(root, 0);
5283 	if (!trans)
5284 		return ERR_PTR(-ENOMEM);
5285 
5286 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5287 
5288 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5289 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5290 				   alloc_hint, (u64)-1, &ins, 1);
5291 	if (ret) {
5292 		em = ERR_PTR(ret);
5293 		goto out;
5294 	}
5295 
5296 	em = alloc_extent_map(GFP_NOFS);
5297 	if (!em) {
5298 		em = ERR_PTR(-ENOMEM);
5299 		goto out;
5300 	}
5301 
5302 	em->start = start;
5303 	em->orig_start = em->start;
5304 	em->len = ins.offset;
5305 
5306 	em->block_start = ins.objectid;
5307 	em->block_len = ins.offset;
5308 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5309 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5310 
5311 	while (1) {
5312 		write_lock(&em_tree->lock);
5313 		ret = add_extent_mapping(em_tree, em);
5314 		write_unlock(&em_tree->lock);
5315 		if (ret != -EEXIST)
5316 			break;
5317 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5318 	}
5319 
5320 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5321 					   ins.offset, ins.offset, 0);
5322 	if (ret) {
5323 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5324 		em = ERR_PTR(ret);
5325 	}
5326 out:
5327 	btrfs_end_transaction(trans, root);
5328 	return em;
5329 }
5330 
5331 /*
5332  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5333  * block must be cow'd
5334  */
5335 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5336 				      struct inode *inode, u64 offset, u64 len)
5337 {
5338 	struct btrfs_path *path;
5339 	int ret;
5340 	struct extent_buffer *leaf;
5341 	struct btrfs_root *root = BTRFS_I(inode)->root;
5342 	struct btrfs_file_extent_item *fi;
5343 	struct btrfs_key key;
5344 	u64 disk_bytenr;
5345 	u64 backref_offset;
5346 	u64 extent_end;
5347 	u64 num_bytes;
5348 	int slot;
5349 	int found_type;
5350 
5351 	path = btrfs_alloc_path();
5352 	if (!path)
5353 		return -ENOMEM;
5354 
5355 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5356 				       offset, 0);
5357 	if (ret < 0)
5358 		goto out;
5359 
5360 	slot = path->slots[0];
5361 	if (ret == 1) {
5362 		if (slot == 0) {
5363 			/* can't find the item, must cow */
5364 			ret = 0;
5365 			goto out;
5366 		}
5367 		slot--;
5368 	}
5369 	ret = 0;
5370 	leaf = path->nodes[0];
5371 	btrfs_item_key_to_cpu(leaf, &key, slot);
5372 	if (key.objectid != inode->i_ino ||
5373 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5374 		/* not our file or wrong item type, must cow */
5375 		goto out;
5376 	}
5377 
5378 	if (key.offset > offset) {
5379 		/* Wrong offset, must cow */
5380 		goto out;
5381 	}
5382 
5383 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5384 	found_type = btrfs_file_extent_type(leaf, fi);
5385 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5386 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5387 		/* not a regular extent, must cow */
5388 		goto out;
5389 	}
5390 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5391 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5392 
5393 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5394 	if (extent_end < offset + len) {
5395 		/* extent doesn't include our full range, must cow */
5396 		goto out;
5397 	}
5398 
5399 	if (btrfs_extent_readonly(root, disk_bytenr))
5400 		goto out;
5401 
5402 	/*
5403 	 * look for other files referencing this extent, if we
5404 	 * find any we must cow
5405 	 */
5406 	if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5407 				  key.offset - backref_offset, disk_bytenr))
5408 		goto out;
5409 
5410 	/*
5411 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5412 	 * in this extent we are about to write.  If there
5413 	 * are any csums in that range we have to cow in order
5414 	 * to keep the csums correct
5415 	 */
5416 	disk_bytenr += backref_offset;
5417 	disk_bytenr += offset - key.offset;
5418 	num_bytes = min(offset + len, extent_end) - offset;
5419 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5420 				goto out;
5421 	/*
5422 	 * all of the above have passed, it is safe to overwrite this extent
5423 	 * without cow
5424 	 */
5425 	ret = 1;
5426 out:
5427 	btrfs_free_path(path);
5428 	return ret;
5429 }
5430 
5431 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5432 				   struct buffer_head *bh_result, int create)
5433 {
5434 	struct extent_map *em;
5435 	struct btrfs_root *root = BTRFS_I(inode)->root;
5436 	u64 start = iblock << inode->i_blkbits;
5437 	u64 len = bh_result->b_size;
5438 	struct btrfs_trans_handle *trans;
5439 
5440 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5441 	if (IS_ERR(em))
5442 		return PTR_ERR(em);
5443 
5444 	/*
5445 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5446 	 * io.  INLINE is special, and we could probably kludge it in here, but
5447 	 * it's still buffered so for safety lets just fall back to the generic
5448 	 * buffered path.
5449 	 *
5450 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5451 	 * decompress it, so there will be buffering required no matter what we
5452 	 * do, so go ahead and fallback to buffered.
5453 	 *
5454 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5455 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5456 	 * the generic code.
5457 	 */
5458 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5459 	    em->block_start == EXTENT_MAP_INLINE) {
5460 		free_extent_map(em);
5461 		return -ENOTBLK;
5462 	}
5463 
5464 	/* Just a good old fashioned hole, return */
5465 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5466 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5467 		free_extent_map(em);
5468 		/* DIO will do one hole at a time, so just unlock a sector */
5469 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5470 			      start + root->sectorsize - 1, GFP_NOFS);
5471 		return 0;
5472 	}
5473 
5474 	/*
5475 	 * We don't allocate a new extent in the following cases
5476 	 *
5477 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5478 	 * existing extent.
5479 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5480 	 * just use the extent.
5481 	 *
5482 	 */
5483 	if (!create) {
5484 		len = em->len - (start - em->start);
5485 		goto map;
5486 	}
5487 
5488 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5489 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5490 	     em->block_start != EXTENT_MAP_HOLE)) {
5491 		int type;
5492 		int ret;
5493 		u64 block_start;
5494 
5495 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5496 			type = BTRFS_ORDERED_PREALLOC;
5497 		else
5498 			type = BTRFS_ORDERED_NOCOW;
5499 		len = min(len, em->len - (start - em->start));
5500 		block_start = em->block_start + (start - em->start);
5501 
5502 		/*
5503 		 * we're not going to log anything, but we do need
5504 		 * to make sure the current transaction stays open
5505 		 * while we look for nocow cross refs
5506 		 */
5507 		trans = btrfs_join_transaction(root, 0);
5508 		if (!trans)
5509 			goto must_cow;
5510 
5511 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5512 			ret = btrfs_add_ordered_extent_dio(inode, start,
5513 					   block_start, len, len, type);
5514 			btrfs_end_transaction(trans, root);
5515 			if (ret) {
5516 				free_extent_map(em);
5517 				return ret;
5518 			}
5519 			goto unlock;
5520 		}
5521 		btrfs_end_transaction(trans, root);
5522 	}
5523 must_cow:
5524 	/*
5525 	 * this will cow the extent, reset the len in case we changed
5526 	 * it above
5527 	 */
5528 	len = bh_result->b_size;
5529 	free_extent_map(em);
5530 	em = btrfs_new_extent_direct(inode, start, len);
5531 	if (IS_ERR(em))
5532 		return PTR_ERR(em);
5533 	len = min(len, em->len - (start - em->start));
5534 unlock:
5535 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5536 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5537 			  0, NULL, GFP_NOFS);
5538 map:
5539 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5540 		inode->i_blkbits;
5541 	bh_result->b_size = len;
5542 	bh_result->b_bdev = em->bdev;
5543 	set_buffer_mapped(bh_result);
5544 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5545 		set_buffer_new(bh_result);
5546 
5547 	free_extent_map(em);
5548 
5549 	return 0;
5550 }
5551 
5552 struct btrfs_dio_private {
5553 	struct inode *inode;
5554 	u64 logical_offset;
5555 	u64 disk_bytenr;
5556 	u64 bytes;
5557 	u32 *csums;
5558 	void *private;
5559 
5560 	/* number of bios pending for this dio */
5561 	atomic_t pending_bios;
5562 
5563 	/* IO errors */
5564 	int errors;
5565 
5566 	struct bio *orig_bio;
5567 };
5568 
5569 static void btrfs_endio_direct_read(struct bio *bio, int err)
5570 {
5571 	struct btrfs_dio_private *dip = bio->bi_private;
5572 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5573 	struct bio_vec *bvec = bio->bi_io_vec;
5574 	struct inode *inode = dip->inode;
5575 	struct btrfs_root *root = BTRFS_I(inode)->root;
5576 	u64 start;
5577 	u32 *private = dip->csums;
5578 
5579 	start = dip->logical_offset;
5580 	do {
5581 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5582 			struct page *page = bvec->bv_page;
5583 			char *kaddr;
5584 			u32 csum = ~(u32)0;
5585 			unsigned long flags;
5586 
5587 			local_irq_save(flags);
5588 			kaddr = kmap_atomic(page, KM_IRQ0);
5589 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5590 					       csum, bvec->bv_len);
5591 			btrfs_csum_final(csum, (char *)&csum);
5592 			kunmap_atomic(kaddr, KM_IRQ0);
5593 			local_irq_restore(flags);
5594 
5595 			flush_dcache_page(bvec->bv_page);
5596 			if (csum != *private) {
5597 				printk(KERN_ERR "btrfs csum failed ino %lu off"
5598 				      " %llu csum %u private %u\n",
5599 				      inode->i_ino, (unsigned long long)start,
5600 				      csum, *private);
5601 				err = -EIO;
5602 			}
5603 		}
5604 
5605 		start += bvec->bv_len;
5606 		private++;
5607 		bvec++;
5608 	} while (bvec <= bvec_end);
5609 
5610 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5611 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5612 	bio->bi_private = dip->private;
5613 
5614 	kfree(dip->csums);
5615 	kfree(dip);
5616 	dio_end_io(bio, err);
5617 }
5618 
5619 static void btrfs_endio_direct_write(struct bio *bio, int err)
5620 {
5621 	struct btrfs_dio_private *dip = bio->bi_private;
5622 	struct inode *inode = dip->inode;
5623 	struct btrfs_root *root = BTRFS_I(inode)->root;
5624 	struct btrfs_trans_handle *trans;
5625 	struct btrfs_ordered_extent *ordered = NULL;
5626 	struct extent_state *cached_state = NULL;
5627 	u64 ordered_offset = dip->logical_offset;
5628 	u64 ordered_bytes = dip->bytes;
5629 	int ret;
5630 
5631 	if (err)
5632 		goto out_done;
5633 again:
5634 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5635 						   &ordered_offset,
5636 						   ordered_bytes);
5637 	if (!ret)
5638 		goto out_test;
5639 
5640 	BUG_ON(!ordered);
5641 
5642 	trans = btrfs_join_transaction(root, 1);
5643 	if (!trans) {
5644 		err = -ENOMEM;
5645 		goto out;
5646 	}
5647 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5648 
5649 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5650 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5651 		if (!ret)
5652 			ret = btrfs_update_inode(trans, root, inode);
5653 		err = ret;
5654 		goto out;
5655 	}
5656 
5657 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5658 			 ordered->file_offset + ordered->len - 1, 0,
5659 			 &cached_state, GFP_NOFS);
5660 
5661 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5662 		ret = btrfs_mark_extent_written(trans, inode,
5663 						ordered->file_offset,
5664 						ordered->file_offset +
5665 						ordered->len);
5666 		if (ret) {
5667 			err = ret;
5668 			goto out_unlock;
5669 		}
5670 	} else {
5671 		ret = insert_reserved_file_extent(trans, inode,
5672 						  ordered->file_offset,
5673 						  ordered->start,
5674 						  ordered->disk_len,
5675 						  ordered->len,
5676 						  ordered->len,
5677 						  0, 0, 0,
5678 						  BTRFS_FILE_EXTENT_REG);
5679 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5680 				   ordered->file_offset, ordered->len);
5681 		if (ret) {
5682 			err = ret;
5683 			WARN_ON(1);
5684 			goto out_unlock;
5685 		}
5686 	}
5687 
5688 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5689 	btrfs_ordered_update_i_size(inode, 0, ordered);
5690 	btrfs_update_inode(trans, root, inode);
5691 out_unlock:
5692 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5693 			     ordered->file_offset + ordered->len - 1,
5694 			     &cached_state, GFP_NOFS);
5695 out:
5696 	btrfs_delalloc_release_metadata(inode, ordered->len);
5697 	btrfs_end_transaction(trans, root);
5698 	ordered_offset = ordered->file_offset + ordered->len;
5699 	btrfs_put_ordered_extent(ordered);
5700 	btrfs_put_ordered_extent(ordered);
5701 
5702 out_test:
5703 	/*
5704 	 * our bio might span multiple ordered extents.  If we haven't
5705 	 * completed the accounting for the whole dio, go back and try again
5706 	 */
5707 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5708 		ordered_bytes = dip->logical_offset + dip->bytes -
5709 			ordered_offset;
5710 		goto again;
5711 	}
5712 out_done:
5713 	bio->bi_private = dip->private;
5714 
5715 	kfree(dip->csums);
5716 	kfree(dip);
5717 	dio_end_io(bio, err);
5718 }
5719 
5720 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5721 				    struct bio *bio, int mirror_num,
5722 				    unsigned long bio_flags, u64 offset)
5723 {
5724 	int ret;
5725 	struct btrfs_root *root = BTRFS_I(inode)->root;
5726 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5727 	BUG_ON(ret);
5728 	return 0;
5729 }
5730 
5731 static void btrfs_end_dio_bio(struct bio *bio, int err)
5732 {
5733 	struct btrfs_dio_private *dip = bio->bi_private;
5734 
5735 	if (err) {
5736 		printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5737 		      "sector %#Lx len %u err no %d\n",
5738 		      dip->inode->i_ino, bio->bi_rw,
5739 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5740 		dip->errors = 1;
5741 
5742 		/*
5743 		 * before atomic variable goto zero, we must make sure
5744 		 * dip->errors is perceived to be set.
5745 		 */
5746 		smp_mb__before_atomic_dec();
5747 	}
5748 
5749 	/* if there are more bios still pending for this dio, just exit */
5750 	if (!atomic_dec_and_test(&dip->pending_bios))
5751 		goto out;
5752 
5753 	if (dip->errors)
5754 		bio_io_error(dip->orig_bio);
5755 	else {
5756 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5757 		bio_endio(dip->orig_bio, 0);
5758 	}
5759 out:
5760 	bio_put(bio);
5761 }
5762 
5763 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5764 				       u64 first_sector, gfp_t gfp_flags)
5765 {
5766 	int nr_vecs = bio_get_nr_vecs(bdev);
5767 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5768 }
5769 
5770 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5771 					 int rw, u64 file_offset, int skip_sum,
5772 					 u32 *csums)
5773 {
5774 	int write = rw & REQ_WRITE;
5775 	struct btrfs_root *root = BTRFS_I(inode)->root;
5776 	int ret;
5777 
5778 	bio_get(bio);
5779 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5780 	if (ret)
5781 		goto err;
5782 
5783 	if (write && !skip_sum) {
5784 		ret = btrfs_wq_submit_bio(root->fs_info,
5785 				   inode, rw, bio, 0, 0,
5786 				   file_offset,
5787 				   __btrfs_submit_bio_start_direct_io,
5788 				   __btrfs_submit_bio_done);
5789 		goto err;
5790 	} else if (!skip_sum)
5791 		btrfs_lookup_bio_sums_dio(root, inode, bio,
5792 					  file_offset, csums);
5793 
5794 	ret = btrfs_map_bio(root, rw, bio, 0, 1);
5795 err:
5796 	bio_put(bio);
5797 	return ret;
5798 }
5799 
5800 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5801 				    int skip_sum)
5802 {
5803 	struct inode *inode = dip->inode;
5804 	struct btrfs_root *root = BTRFS_I(inode)->root;
5805 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5806 	struct bio *bio;
5807 	struct bio *orig_bio = dip->orig_bio;
5808 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5809 	u64 start_sector = orig_bio->bi_sector;
5810 	u64 file_offset = dip->logical_offset;
5811 	u64 submit_len = 0;
5812 	u64 map_length;
5813 	int nr_pages = 0;
5814 	u32 *csums = dip->csums;
5815 	int ret = 0;
5816 
5817 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5818 	if (!bio)
5819 		return -ENOMEM;
5820 	bio->bi_private = dip;
5821 	bio->bi_end_io = btrfs_end_dio_bio;
5822 	atomic_inc(&dip->pending_bios);
5823 
5824 	map_length = orig_bio->bi_size;
5825 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5826 			      &map_length, NULL, 0);
5827 	if (ret) {
5828 		bio_put(bio);
5829 		return -EIO;
5830 	}
5831 
5832 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5833 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5834 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5835 				 bvec->bv_offset) < bvec->bv_len)) {
5836 			/*
5837 			 * inc the count before we submit the bio so
5838 			 * we know the end IO handler won't happen before
5839 			 * we inc the count. Otherwise, the dip might get freed
5840 			 * before we're done setting it up
5841 			 */
5842 			atomic_inc(&dip->pending_bios);
5843 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5844 						     file_offset, skip_sum,
5845 						     csums);
5846 			if (ret) {
5847 				bio_put(bio);
5848 				atomic_dec(&dip->pending_bios);
5849 				goto out_err;
5850 			}
5851 
5852 			if (!skip_sum)
5853 				csums = csums + nr_pages;
5854 			start_sector += submit_len >> 9;
5855 			file_offset += submit_len;
5856 
5857 			submit_len = 0;
5858 			nr_pages = 0;
5859 
5860 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5861 						  start_sector, GFP_NOFS);
5862 			if (!bio)
5863 				goto out_err;
5864 			bio->bi_private = dip;
5865 			bio->bi_end_io = btrfs_end_dio_bio;
5866 
5867 			map_length = orig_bio->bi_size;
5868 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5869 					      &map_length, NULL, 0);
5870 			if (ret) {
5871 				bio_put(bio);
5872 				goto out_err;
5873 			}
5874 		} else {
5875 			submit_len += bvec->bv_len;
5876 			nr_pages ++;
5877 			bvec++;
5878 		}
5879 	}
5880 
5881 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5882 				     csums);
5883 	if (!ret)
5884 		return 0;
5885 
5886 	bio_put(bio);
5887 out_err:
5888 	dip->errors = 1;
5889 	/*
5890 	 * before atomic variable goto zero, we must
5891 	 * make sure dip->errors is perceived to be set.
5892 	 */
5893 	smp_mb__before_atomic_dec();
5894 	if (atomic_dec_and_test(&dip->pending_bios))
5895 		bio_io_error(dip->orig_bio);
5896 
5897 	/* bio_end_io() will handle error, so we needn't return it */
5898 	return 0;
5899 }
5900 
5901 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5902 				loff_t file_offset)
5903 {
5904 	struct btrfs_root *root = BTRFS_I(inode)->root;
5905 	struct btrfs_dio_private *dip;
5906 	struct bio_vec *bvec = bio->bi_io_vec;
5907 	int skip_sum;
5908 	int write = rw & REQ_WRITE;
5909 	int ret = 0;
5910 
5911 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5912 
5913 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
5914 	if (!dip) {
5915 		ret = -ENOMEM;
5916 		goto free_ordered;
5917 	}
5918 	dip->csums = NULL;
5919 
5920 	if (!skip_sum) {
5921 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5922 		if (!dip->csums) {
5923 			ret = -ENOMEM;
5924 			goto free_ordered;
5925 		}
5926 	}
5927 
5928 	dip->private = bio->bi_private;
5929 	dip->inode = inode;
5930 	dip->logical_offset = file_offset;
5931 
5932 	dip->bytes = 0;
5933 	do {
5934 		dip->bytes += bvec->bv_len;
5935 		bvec++;
5936 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5937 
5938 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
5939 	bio->bi_private = dip;
5940 	dip->errors = 0;
5941 	dip->orig_bio = bio;
5942 	atomic_set(&dip->pending_bios, 0);
5943 
5944 	if (write)
5945 		bio->bi_end_io = btrfs_endio_direct_write;
5946 	else
5947 		bio->bi_end_io = btrfs_endio_direct_read;
5948 
5949 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5950 	if (!ret)
5951 		return;
5952 free_ordered:
5953 	/*
5954 	 * If this is a write, we need to clean up the reserved space and kill
5955 	 * the ordered extent.
5956 	 */
5957 	if (write) {
5958 		struct btrfs_ordered_extent *ordered;
5959 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5960 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5961 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5962 			btrfs_free_reserved_extent(root, ordered->start,
5963 						   ordered->disk_len);
5964 		btrfs_put_ordered_extent(ordered);
5965 		btrfs_put_ordered_extent(ordered);
5966 	}
5967 	bio_endio(bio, ret);
5968 }
5969 
5970 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5971 			const struct iovec *iov, loff_t offset,
5972 			unsigned long nr_segs)
5973 {
5974 	int seg;
5975 	size_t size;
5976 	unsigned long addr;
5977 	unsigned blocksize_mask = root->sectorsize - 1;
5978 	ssize_t retval = -EINVAL;
5979 	loff_t end = offset;
5980 
5981 	if (offset & blocksize_mask)
5982 		goto out;
5983 
5984 	/* Check the memory alignment.  Blocks cannot straddle pages */
5985 	for (seg = 0; seg < nr_segs; seg++) {
5986 		addr = (unsigned long)iov[seg].iov_base;
5987 		size = iov[seg].iov_len;
5988 		end += size;
5989 		if ((addr & blocksize_mask) || (size & blocksize_mask))
5990 			goto out;
5991 	}
5992 	retval = 0;
5993 out:
5994 	return retval;
5995 }
5996 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5997 			const struct iovec *iov, loff_t offset,
5998 			unsigned long nr_segs)
5999 {
6000 	struct file *file = iocb->ki_filp;
6001 	struct inode *inode = file->f_mapping->host;
6002 	struct btrfs_ordered_extent *ordered;
6003 	struct extent_state *cached_state = NULL;
6004 	u64 lockstart, lockend;
6005 	ssize_t ret;
6006 	int writing = rw & WRITE;
6007 	int write_bits = 0;
6008 	size_t count = iov_length(iov, nr_segs);
6009 
6010 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6011 			    offset, nr_segs)) {
6012 		return 0;
6013 	}
6014 
6015 	lockstart = offset;
6016 	lockend = offset + count - 1;
6017 
6018 	if (writing) {
6019 		ret = btrfs_delalloc_reserve_space(inode, count);
6020 		if (ret)
6021 			goto out;
6022 	}
6023 
6024 	while (1) {
6025 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6026 				 0, &cached_state, GFP_NOFS);
6027 		/*
6028 		 * We're concerned with the entire range that we're going to be
6029 		 * doing DIO to, so we need to make sure theres no ordered
6030 		 * extents in this range.
6031 		 */
6032 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6033 						     lockend - lockstart + 1);
6034 		if (!ordered)
6035 			break;
6036 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6037 				     &cached_state, GFP_NOFS);
6038 		btrfs_start_ordered_extent(inode, ordered, 1);
6039 		btrfs_put_ordered_extent(ordered);
6040 		cond_resched();
6041 	}
6042 
6043 	/*
6044 	 * we don't use btrfs_set_extent_delalloc because we don't want
6045 	 * the dirty or uptodate bits
6046 	 */
6047 	if (writing) {
6048 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6049 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6050 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6051 				     GFP_NOFS);
6052 		if (ret) {
6053 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6054 					 lockend, EXTENT_LOCKED | write_bits,
6055 					 1, 0, &cached_state, GFP_NOFS);
6056 			goto out;
6057 		}
6058 	}
6059 
6060 	free_extent_state(cached_state);
6061 	cached_state = NULL;
6062 
6063 	ret = __blockdev_direct_IO(rw, iocb, inode,
6064 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6065 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6066 		   btrfs_submit_direct, 0);
6067 
6068 	if (ret < 0 && ret != -EIOCBQUEUED) {
6069 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6070 			      offset + iov_length(iov, nr_segs) - 1,
6071 			      EXTENT_LOCKED | write_bits, 1, 0,
6072 			      &cached_state, GFP_NOFS);
6073 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6074 		/*
6075 		 * We're falling back to buffered, unlock the section we didn't
6076 		 * do IO on.
6077 		 */
6078 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6079 			      offset + iov_length(iov, nr_segs) - 1,
6080 			      EXTENT_LOCKED | write_bits, 1, 0,
6081 			      &cached_state, GFP_NOFS);
6082 	}
6083 out:
6084 	free_extent_state(cached_state);
6085 	return ret;
6086 }
6087 
6088 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6089 		__u64 start, __u64 len)
6090 {
6091 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6092 }
6093 
6094 int btrfs_readpage(struct file *file, struct page *page)
6095 {
6096 	struct extent_io_tree *tree;
6097 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6098 	return extent_read_full_page(tree, page, btrfs_get_extent);
6099 }
6100 
6101 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6102 {
6103 	struct extent_io_tree *tree;
6104 
6105 
6106 	if (current->flags & PF_MEMALLOC) {
6107 		redirty_page_for_writepage(wbc, page);
6108 		unlock_page(page);
6109 		return 0;
6110 	}
6111 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6112 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6113 }
6114 
6115 int btrfs_writepages(struct address_space *mapping,
6116 		     struct writeback_control *wbc)
6117 {
6118 	struct extent_io_tree *tree;
6119 
6120 	tree = &BTRFS_I(mapping->host)->io_tree;
6121 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6122 }
6123 
6124 static int
6125 btrfs_readpages(struct file *file, struct address_space *mapping,
6126 		struct list_head *pages, unsigned nr_pages)
6127 {
6128 	struct extent_io_tree *tree;
6129 	tree = &BTRFS_I(mapping->host)->io_tree;
6130 	return extent_readpages(tree, mapping, pages, nr_pages,
6131 				btrfs_get_extent);
6132 }
6133 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6134 {
6135 	struct extent_io_tree *tree;
6136 	struct extent_map_tree *map;
6137 	int ret;
6138 
6139 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6140 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6141 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6142 	if (ret == 1) {
6143 		ClearPagePrivate(page);
6144 		set_page_private(page, 0);
6145 		page_cache_release(page);
6146 	}
6147 	return ret;
6148 }
6149 
6150 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6151 {
6152 	if (PageWriteback(page) || PageDirty(page))
6153 		return 0;
6154 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6155 }
6156 
6157 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6158 {
6159 	struct extent_io_tree *tree;
6160 	struct btrfs_ordered_extent *ordered;
6161 	struct extent_state *cached_state = NULL;
6162 	u64 page_start = page_offset(page);
6163 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6164 
6165 
6166 	/*
6167 	 * we have the page locked, so new writeback can't start,
6168 	 * and the dirty bit won't be cleared while we are here.
6169 	 *
6170 	 * Wait for IO on this page so that we can safely clear
6171 	 * the PagePrivate2 bit and do ordered accounting
6172 	 */
6173 	wait_on_page_writeback(page);
6174 
6175 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6176 	if (offset) {
6177 		btrfs_releasepage(page, GFP_NOFS);
6178 		return;
6179 	}
6180 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6181 			 GFP_NOFS);
6182 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6183 					   page_offset(page));
6184 	if (ordered) {
6185 		/*
6186 		 * IO on this page will never be started, so we need
6187 		 * to account for any ordered extents now
6188 		 */
6189 		clear_extent_bit(tree, page_start, page_end,
6190 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6191 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6192 				 &cached_state, GFP_NOFS);
6193 		/*
6194 		 * whoever cleared the private bit is responsible
6195 		 * for the finish_ordered_io
6196 		 */
6197 		if (TestClearPagePrivate2(page)) {
6198 			btrfs_finish_ordered_io(page->mapping->host,
6199 						page_start, page_end);
6200 		}
6201 		btrfs_put_ordered_extent(ordered);
6202 		cached_state = NULL;
6203 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6204 				 GFP_NOFS);
6205 	}
6206 	clear_extent_bit(tree, page_start, page_end,
6207 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6208 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6209 	__btrfs_releasepage(page, GFP_NOFS);
6210 
6211 	ClearPageChecked(page);
6212 	if (PagePrivate(page)) {
6213 		ClearPagePrivate(page);
6214 		set_page_private(page, 0);
6215 		page_cache_release(page);
6216 	}
6217 }
6218 
6219 /*
6220  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6221  * called from a page fault handler when a page is first dirtied. Hence we must
6222  * be careful to check for EOF conditions here. We set the page up correctly
6223  * for a written page which means we get ENOSPC checking when writing into
6224  * holes and correct delalloc and unwritten extent mapping on filesystems that
6225  * support these features.
6226  *
6227  * We are not allowed to take the i_mutex here so we have to play games to
6228  * protect against truncate races as the page could now be beyond EOF.  Because
6229  * vmtruncate() writes the inode size before removing pages, once we have the
6230  * page lock we can determine safely if the page is beyond EOF. If it is not
6231  * beyond EOF, then the page is guaranteed safe against truncation until we
6232  * unlock the page.
6233  */
6234 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6235 {
6236 	struct page *page = vmf->page;
6237 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6238 	struct btrfs_root *root = BTRFS_I(inode)->root;
6239 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6240 	struct btrfs_ordered_extent *ordered;
6241 	struct extent_state *cached_state = NULL;
6242 	char *kaddr;
6243 	unsigned long zero_start;
6244 	loff_t size;
6245 	int ret;
6246 	u64 page_start;
6247 	u64 page_end;
6248 
6249 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6250 	if (ret) {
6251 		if (ret == -ENOMEM)
6252 			ret = VM_FAULT_OOM;
6253 		else /* -ENOSPC, -EIO, etc */
6254 			ret = VM_FAULT_SIGBUS;
6255 		goto out;
6256 	}
6257 
6258 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6259 again:
6260 	lock_page(page);
6261 	size = i_size_read(inode);
6262 	page_start = page_offset(page);
6263 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6264 
6265 	if ((page->mapping != inode->i_mapping) ||
6266 	    (page_start >= size)) {
6267 		/* page got truncated out from underneath us */
6268 		goto out_unlock;
6269 	}
6270 	wait_on_page_writeback(page);
6271 
6272 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6273 			 GFP_NOFS);
6274 	set_page_extent_mapped(page);
6275 
6276 	/*
6277 	 * we can't set the delalloc bits if there are pending ordered
6278 	 * extents.  Drop our locks and wait for them to finish
6279 	 */
6280 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6281 	if (ordered) {
6282 		unlock_extent_cached(io_tree, page_start, page_end,
6283 				     &cached_state, GFP_NOFS);
6284 		unlock_page(page);
6285 		btrfs_start_ordered_extent(inode, ordered, 1);
6286 		btrfs_put_ordered_extent(ordered);
6287 		goto again;
6288 	}
6289 
6290 	/*
6291 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6292 	 * if it was already dirty, so for space accounting reasons we need to
6293 	 * clear any delalloc bits for the range we are fixing to save.  There
6294 	 * is probably a better way to do this, but for now keep consistent with
6295 	 * prepare_pages in the normal write path.
6296 	 */
6297 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6298 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6299 			  0, 0, &cached_state, GFP_NOFS);
6300 
6301 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6302 					&cached_state);
6303 	if (ret) {
6304 		unlock_extent_cached(io_tree, page_start, page_end,
6305 				     &cached_state, GFP_NOFS);
6306 		ret = VM_FAULT_SIGBUS;
6307 		goto out_unlock;
6308 	}
6309 	ret = 0;
6310 
6311 	/* page is wholly or partially inside EOF */
6312 	if (page_start + PAGE_CACHE_SIZE > size)
6313 		zero_start = size & ~PAGE_CACHE_MASK;
6314 	else
6315 		zero_start = PAGE_CACHE_SIZE;
6316 
6317 	if (zero_start != PAGE_CACHE_SIZE) {
6318 		kaddr = kmap(page);
6319 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6320 		flush_dcache_page(page);
6321 		kunmap(page);
6322 	}
6323 	ClearPageChecked(page);
6324 	set_page_dirty(page);
6325 	SetPageUptodate(page);
6326 
6327 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6328 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6329 
6330 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6331 
6332 out_unlock:
6333 	if (!ret)
6334 		return VM_FAULT_LOCKED;
6335 	unlock_page(page);
6336 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6337 out:
6338 	return ret;
6339 }
6340 
6341 static void btrfs_truncate(struct inode *inode)
6342 {
6343 	struct btrfs_root *root = BTRFS_I(inode)->root;
6344 	int ret;
6345 	struct btrfs_trans_handle *trans;
6346 	unsigned long nr;
6347 	u64 mask = root->sectorsize - 1;
6348 
6349 	if (!S_ISREG(inode->i_mode)) {
6350 		WARN_ON(1);
6351 		return;
6352 	}
6353 
6354 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6355 	if (ret)
6356 		return;
6357 
6358 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6359 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6360 
6361 	trans = btrfs_start_transaction(root, 0);
6362 	BUG_ON(IS_ERR(trans));
6363 	btrfs_set_trans_block_group(trans, inode);
6364 	trans->block_rsv = root->orphan_block_rsv;
6365 
6366 	/*
6367 	 * setattr is responsible for setting the ordered_data_close flag,
6368 	 * but that is only tested during the last file release.  That
6369 	 * could happen well after the next commit, leaving a great big
6370 	 * window where new writes may get lost if someone chooses to write
6371 	 * to this file after truncating to zero
6372 	 *
6373 	 * The inode doesn't have any dirty data here, and so if we commit
6374 	 * this is a noop.  If someone immediately starts writing to the inode
6375 	 * it is very likely we'll catch some of their writes in this
6376 	 * transaction, and the commit will find this file on the ordered
6377 	 * data list with good things to send down.
6378 	 *
6379 	 * This is a best effort solution, there is still a window where
6380 	 * using truncate to replace the contents of the file will
6381 	 * end up with a zero length file after a crash.
6382 	 */
6383 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6384 		btrfs_add_ordered_operation(trans, root, inode);
6385 
6386 	while (1) {
6387 		if (!trans) {
6388 			trans = btrfs_start_transaction(root, 0);
6389 			BUG_ON(IS_ERR(trans));
6390 			btrfs_set_trans_block_group(trans, inode);
6391 			trans->block_rsv = root->orphan_block_rsv;
6392 		}
6393 
6394 		ret = btrfs_block_rsv_check(trans, root,
6395 					    root->orphan_block_rsv, 0, 5);
6396 		if (ret) {
6397 			BUG_ON(ret != -EAGAIN);
6398 			ret = btrfs_commit_transaction(trans, root);
6399 			BUG_ON(ret);
6400 			trans = NULL;
6401 			continue;
6402 		}
6403 
6404 		ret = btrfs_truncate_inode_items(trans, root, inode,
6405 						 inode->i_size,
6406 						 BTRFS_EXTENT_DATA_KEY);
6407 		if (ret != -EAGAIN)
6408 			break;
6409 
6410 		ret = btrfs_update_inode(trans, root, inode);
6411 		BUG_ON(ret);
6412 
6413 		nr = trans->blocks_used;
6414 		btrfs_end_transaction(trans, root);
6415 		trans = NULL;
6416 		btrfs_btree_balance_dirty(root, nr);
6417 	}
6418 
6419 	if (ret == 0 && inode->i_nlink > 0) {
6420 		ret = btrfs_orphan_del(trans, inode);
6421 		BUG_ON(ret);
6422 	}
6423 
6424 	ret = btrfs_update_inode(trans, root, inode);
6425 	BUG_ON(ret);
6426 
6427 	nr = trans->blocks_used;
6428 	ret = btrfs_end_transaction_throttle(trans, root);
6429 	BUG_ON(ret);
6430 	btrfs_btree_balance_dirty(root, nr);
6431 }
6432 
6433 /*
6434  * create a new subvolume directory/inode (helper for the ioctl).
6435  */
6436 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6437 			     struct btrfs_root *new_root,
6438 			     u64 new_dirid, u64 alloc_hint)
6439 {
6440 	struct inode *inode;
6441 	int err;
6442 	u64 index = 0;
6443 
6444 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6445 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6446 	if (IS_ERR(inode))
6447 		return PTR_ERR(inode);
6448 	inode->i_op = &btrfs_dir_inode_operations;
6449 	inode->i_fop = &btrfs_dir_file_operations;
6450 
6451 	inode->i_nlink = 1;
6452 	btrfs_i_size_write(inode, 0);
6453 
6454 	err = btrfs_update_inode(trans, new_root, inode);
6455 	BUG_ON(err);
6456 
6457 	iput(inode);
6458 	return 0;
6459 }
6460 
6461 /* helper function for file defrag and space balancing.  This
6462  * forces readahead on a given range of bytes in an inode
6463  */
6464 unsigned long btrfs_force_ra(struct address_space *mapping,
6465 			      struct file_ra_state *ra, struct file *file,
6466 			      pgoff_t offset, pgoff_t last_index)
6467 {
6468 	pgoff_t req_size = last_index - offset + 1;
6469 
6470 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6471 	return offset + req_size;
6472 }
6473 
6474 struct inode *btrfs_alloc_inode(struct super_block *sb)
6475 {
6476 	struct btrfs_inode *ei;
6477 	struct inode *inode;
6478 
6479 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6480 	if (!ei)
6481 		return NULL;
6482 
6483 	ei->root = NULL;
6484 	ei->space_info = NULL;
6485 	ei->generation = 0;
6486 	ei->sequence = 0;
6487 	ei->last_trans = 0;
6488 	ei->last_sub_trans = 0;
6489 	ei->logged_trans = 0;
6490 	ei->delalloc_bytes = 0;
6491 	ei->reserved_bytes = 0;
6492 	ei->disk_i_size = 0;
6493 	ei->flags = 0;
6494 	ei->index_cnt = (u64)-1;
6495 	ei->last_unlink_trans = 0;
6496 
6497 	spin_lock_init(&ei->accounting_lock);
6498 	atomic_set(&ei->outstanding_extents, 0);
6499 	ei->reserved_extents = 0;
6500 
6501 	ei->ordered_data_close = 0;
6502 	ei->orphan_meta_reserved = 0;
6503 	ei->dummy_inode = 0;
6504 	ei->force_compress = BTRFS_COMPRESS_NONE;
6505 
6506 	inode = &ei->vfs_inode;
6507 	extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6508 	extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6509 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6510 	mutex_init(&ei->log_mutex);
6511 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6512 	INIT_LIST_HEAD(&ei->i_orphan);
6513 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6514 	INIT_LIST_HEAD(&ei->ordered_operations);
6515 	RB_CLEAR_NODE(&ei->rb_node);
6516 
6517 	return inode;
6518 }
6519 
6520 static void btrfs_i_callback(struct rcu_head *head)
6521 {
6522 	struct inode *inode = container_of(head, struct inode, i_rcu);
6523 	INIT_LIST_HEAD(&inode->i_dentry);
6524 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6525 }
6526 
6527 void btrfs_destroy_inode(struct inode *inode)
6528 {
6529 	struct btrfs_ordered_extent *ordered;
6530 	struct btrfs_root *root = BTRFS_I(inode)->root;
6531 
6532 	WARN_ON(!list_empty(&inode->i_dentry));
6533 	WARN_ON(inode->i_data.nrpages);
6534 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6535 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6536 
6537 	/*
6538 	 * This can happen where we create an inode, but somebody else also
6539 	 * created the same inode and we need to destroy the one we already
6540 	 * created.
6541 	 */
6542 	if (!root)
6543 		goto free;
6544 
6545 	/*
6546 	 * Make sure we're properly removed from the ordered operation
6547 	 * lists.
6548 	 */
6549 	smp_mb();
6550 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6551 		spin_lock(&root->fs_info->ordered_extent_lock);
6552 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6553 		spin_unlock(&root->fs_info->ordered_extent_lock);
6554 	}
6555 
6556 	if (root == root->fs_info->tree_root) {
6557 		struct btrfs_block_group_cache *block_group;
6558 
6559 		block_group = btrfs_lookup_block_group(root->fs_info,
6560 						BTRFS_I(inode)->block_group);
6561 		if (block_group && block_group->inode == inode) {
6562 			spin_lock(&block_group->lock);
6563 			block_group->inode = NULL;
6564 			spin_unlock(&block_group->lock);
6565 			btrfs_put_block_group(block_group);
6566 		} else if (block_group) {
6567 			btrfs_put_block_group(block_group);
6568 		}
6569 	}
6570 
6571 	spin_lock(&root->orphan_lock);
6572 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6573 		printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6574 		       inode->i_ino);
6575 		list_del_init(&BTRFS_I(inode)->i_orphan);
6576 	}
6577 	spin_unlock(&root->orphan_lock);
6578 
6579 	while (1) {
6580 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6581 		if (!ordered)
6582 			break;
6583 		else {
6584 			printk(KERN_ERR "btrfs found ordered "
6585 			       "extent %llu %llu on inode cleanup\n",
6586 			       (unsigned long long)ordered->file_offset,
6587 			       (unsigned long long)ordered->len);
6588 			btrfs_remove_ordered_extent(inode, ordered);
6589 			btrfs_put_ordered_extent(ordered);
6590 			btrfs_put_ordered_extent(ordered);
6591 		}
6592 	}
6593 	inode_tree_del(inode);
6594 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6595 free:
6596 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6597 }
6598 
6599 int btrfs_drop_inode(struct inode *inode)
6600 {
6601 	struct btrfs_root *root = BTRFS_I(inode)->root;
6602 
6603 	if (btrfs_root_refs(&root->root_item) == 0 &&
6604 	    root != root->fs_info->tree_root)
6605 		return 1;
6606 	else
6607 		return generic_drop_inode(inode);
6608 }
6609 
6610 static void init_once(void *foo)
6611 {
6612 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6613 
6614 	inode_init_once(&ei->vfs_inode);
6615 }
6616 
6617 void btrfs_destroy_cachep(void)
6618 {
6619 	if (btrfs_inode_cachep)
6620 		kmem_cache_destroy(btrfs_inode_cachep);
6621 	if (btrfs_trans_handle_cachep)
6622 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6623 	if (btrfs_transaction_cachep)
6624 		kmem_cache_destroy(btrfs_transaction_cachep);
6625 	if (btrfs_path_cachep)
6626 		kmem_cache_destroy(btrfs_path_cachep);
6627 }
6628 
6629 int btrfs_init_cachep(void)
6630 {
6631 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6632 			sizeof(struct btrfs_inode), 0,
6633 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6634 	if (!btrfs_inode_cachep)
6635 		goto fail;
6636 
6637 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6638 			sizeof(struct btrfs_trans_handle), 0,
6639 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6640 	if (!btrfs_trans_handle_cachep)
6641 		goto fail;
6642 
6643 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6644 			sizeof(struct btrfs_transaction), 0,
6645 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6646 	if (!btrfs_transaction_cachep)
6647 		goto fail;
6648 
6649 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6650 			sizeof(struct btrfs_path), 0,
6651 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6652 	if (!btrfs_path_cachep)
6653 		goto fail;
6654 
6655 	return 0;
6656 fail:
6657 	btrfs_destroy_cachep();
6658 	return -ENOMEM;
6659 }
6660 
6661 static int btrfs_getattr(struct vfsmount *mnt,
6662 			 struct dentry *dentry, struct kstat *stat)
6663 {
6664 	struct inode *inode = dentry->d_inode;
6665 	generic_fillattr(inode, stat);
6666 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6667 	stat->blksize = PAGE_CACHE_SIZE;
6668 	stat->blocks = (inode_get_bytes(inode) +
6669 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6670 	return 0;
6671 }
6672 
6673 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6674 			   struct inode *new_dir, struct dentry *new_dentry)
6675 {
6676 	struct btrfs_trans_handle *trans;
6677 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6678 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6679 	struct inode *new_inode = new_dentry->d_inode;
6680 	struct inode *old_inode = old_dentry->d_inode;
6681 	struct timespec ctime = CURRENT_TIME;
6682 	u64 index = 0;
6683 	u64 root_objectid;
6684 	int ret;
6685 
6686 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6687 		return -EPERM;
6688 
6689 	/* we only allow rename subvolume link between subvolumes */
6690 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6691 		return -EXDEV;
6692 
6693 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6694 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6695 		return -ENOTEMPTY;
6696 
6697 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6698 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6699 		return -ENOTEMPTY;
6700 	/*
6701 	 * we're using rename to replace one file with another.
6702 	 * and the replacement file is large.  Start IO on it now so
6703 	 * we don't add too much work to the end of the transaction
6704 	 */
6705 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6706 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6707 		filemap_flush(old_inode->i_mapping);
6708 
6709 	/* close the racy window with snapshot create/destroy ioctl */
6710 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6711 		down_read(&root->fs_info->subvol_sem);
6712 	/*
6713 	 * We want to reserve the absolute worst case amount of items.  So if
6714 	 * both inodes are subvols and we need to unlink them then that would
6715 	 * require 4 item modifications, but if they are both normal inodes it
6716 	 * would require 5 item modifications, so we'll assume their normal
6717 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6718 	 * should cover the worst case number of items we'll modify.
6719 	 */
6720 	trans = btrfs_start_transaction(root, 20);
6721 	if (IS_ERR(trans))
6722 		return PTR_ERR(trans);
6723 
6724 	btrfs_set_trans_block_group(trans, new_dir);
6725 
6726 	if (dest != root)
6727 		btrfs_record_root_in_trans(trans, dest);
6728 
6729 	ret = btrfs_set_inode_index(new_dir, &index);
6730 	if (ret)
6731 		goto out_fail;
6732 
6733 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6734 		/* force full log commit if subvolume involved. */
6735 		root->fs_info->last_trans_log_full_commit = trans->transid;
6736 	} else {
6737 		ret = btrfs_insert_inode_ref(trans, dest,
6738 					     new_dentry->d_name.name,
6739 					     new_dentry->d_name.len,
6740 					     old_inode->i_ino,
6741 					     new_dir->i_ino, index);
6742 		if (ret)
6743 			goto out_fail;
6744 		/*
6745 		 * this is an ugly little race, but the rename is required
6746 		 * to make sure that if we crash, the inode is either at the
6747 		 * old name or the new one.  pinning the log transaction lets
6748 		 * us make sure we don't allow a log commit to come in after
6749 		 * we unlink the name but before we add the new name back in.
6750 		 */
6751 		btrfs_pin_log_trans(root);
6752 	}
6753 	/*
6754 	 * make sure the inode gets flushed if it is replacing
6755 	 * something.
6756 	 */
6757 	if (new_inode && new_inode->i_size &&
6758 	    old_inode && S_ISREG(old_inode->i_mode)) {
6759 		btrfs_add_ordered_operation(trans, root, old_inode);
6760 	}
6761 
6762 	old_dir->i_ctime = old_dir->i_mtime = ctime;
6763 	new_dir->i_ctime = new_dir->i_mtime = ctime;
6764 	old_inode->i_ctime = ctime;
6765 
6766 	if (old_dentry->d_parent != new_dentry->d_parent)
6767 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6768 
6769 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6770 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6771 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6772 					old_dentry->d_name.name,
6773 					old_dentry->d_name.len);
6774 	} else {
6775 		btrfs_inc_nlink(old_dentry->d_inode);
6776 		ret = btrfs_unlink_inode(trans, root, old_dir,
6777 					 old_dentry->d_inode,
6778 					 old_dentry->d_name.name,
6779 					 old_dentry->d_name.len);
6780 	}
6781 	BUG_ON(ret);
6782 
6783 	if (new_inode) {
6784 		new_inode->i_ctime = CURRENT_TIME;
6785 		if (unlikely(new_inode->i_ino ==
6786 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6787 			root_objectid = BTRFS_I(new_inode)->location.objectid;
6788 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
6789 						root_objectid,
6790 						new_dentry->d_name.name,
6791 						new_dentry->d_name.len);
6792 			BUG_ON(new_inode->i_nlink == 0);
6793 		} else {
6794 			ret = btrfs_unlink_inode(trans, dest, new_dir,
6795 						 new_dentry->d_inode,
6796 						 new_dentry->d_name.name,
6797 						 new_dentry->d_name.len);
6798 		}
6799 		BUG_ON(ret);
6800 		if (new_inode->i_nlink == 0) {
6801 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6802 			BUG_ON(ret);
6803 		}
6804 	}
6805 
6806 	ret = btrfs_add_link(trans, new_dir, old_inode,
6807 			     new_dentry->d_name.name,
6808 			     new_dentry->d_name.len, 0, index);
6809 	BUG_ON(ret);
6810 
6811 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6812 		struct dentry *parent = dget_parent(new_dentry);
6813 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
6814 		dput(parent);
6815 		btrfs_end_log_trans(root);
6816 	}
6817 out_fail:
6818 	btrfs_end_transaction_throttle(trans, root);
6819 
6820 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6821 		up_read(&root->fs_info->subvol_sem);
6822 
6823 	return ret;
6824 }
6825 
6826 /*
6827  * some fairly slow code that needs optimization. This walks the list
6828  * of all the inodes with pending delalloc and forces them to disk.
6829  */
6830 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6831 {
6832 	struct list_head *head = &root->fs_info->delalloc_inodes;
6833 	struct btrfs_inode *binode;
6834 	struct inode *inode;
6835 
6836 	if (root->fs_info->sb->s_flags & MS_RDONLY)
6837 		return -EROFS;
6838 
6839 	spin_lock(&root->fs_info->delalloc_lock);
6840 	while (!list_empty(head)) {
6841 		binode = list_entry(head->next, struct btrfs_inode,
6842 				    delalloc_inodes);
6843 		inode = igrab(&binode->vfs_inode);
6844 		if (!inode)
6845 			list_del_init(&binode->delalloc_inodes);
6846 		spin_unlock(&root->fs_info->delalloc_lock);
6847 		if (inode) {
6848 			filemap_flush(inode->i_mapping);
6849 			if (delay_iput)
6850 				btrfs_add_delayed_iput(inode);
6851 			else
6852 				iput(inode);
6853 		}
6854 		cond_resched();
6855 		spin_lock(&root->fs_info->delalloc_lock);
6856 	}
6857 	spin_unlock(&root->fs_info->delalloc_lock);
6858 
6859 	/* the filemap_flush will queue IO into the worker threads, but
6860 	 * we have to make sure the IO is actually started and that
6861 	 * ordered extents get created before we return
6862 	 */
6863 	atomic_inc(&root->fs_info->async_submit_draining);
6864 	while (atomic_read(&root->fs_info->nr_async_submits) ||
6865 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
6866 		wait_event(root->fs_info->async_submit_wait,
6867 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6868 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6869 	}
6870 	atomic_dec(&root->fs_info->async_submit_draining);
6871 	return 0;
6872 }
6873 
6874 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6875 				   int sync)
6876 {
6877 	struct btrfs_inode *binode;
6878 	struct inode *inode = NULL;
6879 
6880 	spin_lock(&root->fs_info->delalloc_lock);
6881 	while (!list_empty(&root->fs_info->delalloc_inodes)) {
6882 		binode = list_entry(root->fs_info->delalloc_inodes.next,
6883 				    struct btrfs_inode, delalloc_inodes);
6884 		inode = igrab(&binode->vfs_inode);
6885 		if (inode) {
6886 			list_move_tail(&binode->delalloc_inodes,
6887 				       &root->fs_info->delalloc_inodes);
6888 			break;
6889 		}
6890 
6891 		list_del_init(&binode->delalloc_inodes);
6892 		cond_resched_lock(&root->fs_info->delalloc_lock);
6893 	}
6894 	spin_unlock(&root->fs_info->delalloc_lock);
6895 
6896 	if (inode) {
6897 		if (sync) {
6898 			filemap_write_and_wait(inode->i_mapping);
6899 			/*
6900 			 * We have to do this because compression doesn't
6901 			 * actually set PG_writeback until it submits the pages
6902 			 * for IO, which happens in an async thread, so we could
6903 			 * race and not actually wait for any writeback pages
6904 			 * because they've not been submitted yet.  Technically
6905 			 * this could still be the case for the ordered stuff
6906 			 * since the async thread may not have started to do its
6907 			 * work yet.  If this becomes the case then we need to
6908 			 * figure out a way to make sure that in writepage we
6909 			 * wait for any async pages to be submitted before
6910 			 * returning so that fdatawait does what its supposed to
6911 			 * do.
6912 			 */
6913 			btrfs_wait_ordered_range(inode, 0, (u64)-1);
6914 		} else {
6915 			filemap_flush(inode->i_mapping);
6916 		}
6917 		if (delay_iput)
6918 			btrfs_add_delayed_iput(inode);
6919 		else
6920 			iput(inode);
6921 		return 1;
6922 	}
6923 	return 0;
6924 }
6925 
6926 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6927 			 const char *symname)
6928 {
6929 	struct btrfs_trans_handle *trans;
6930 	struct btrfs_root *root = BTRFS_I(dir)->root;
6931 	struct btrfs_path *path;
6932 	struct btrfs_key key;
6933 	struct inode *inode = NULL;
6934 	int err;
6935 	int drop_inode = 0;
6936 	u64 objectid;
6937 	u64 index = 0 ;
6938 	int name_len;
6939 	int datasize;
6940 	unsigned long ptr;
6941 	struct btrfs_file_extent_item *ei;
6942 	struct extent_buffer *leaf;
6943 	unsigned long nr = 0;
6944 
6945 	name_len = strlen(symname) + 1;
6946 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6947 		return -ENAMETOOLONG;
6948 
6949 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6950 	if (err)
6951 		return err;
6952 	/*
6953 	 * 2 items for inode item and ref
6954 	 * 2 items for dir items
6955 	 * 1 item for xattr if selinux is on
6956 	 */
6957 	trans = btrfs_start_transaction(root, 5);
6958 	if (IS_ERR(trans))
6959 		return PTR_ERR(trans);
6960 
6961 	btrfs_set_trans_block_group(trans, dir);
6962 
6963 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6964 				dentry->d_name.len, dir->i_ino, objectid,
6965 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6966 				&index);
6967 	err = PTR_ERR(inode);
6968 	if (IS_ERR(inode))
6969 		goto out_unlock;
6970 
6971 	err = btrfs_init_inode_security(trans, inode, dir);
6972 	if (err) {
6973 		drop_inode = 1;
6974 		goto out_unlock;
6975 	}
6976 
6977 	btrfs_set_trans_block_group(trans, inode);
6978 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6979 	if (err)
6980 		drop_inode = 1;
6981 	else {
6982 		inode->i_mapping->a_ops = &btrfs_aops;
6983 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6984 		inode->i_fop = &btrfs_file_operations;
6985 		inode->i_op = &btrfs_file_inode_operations;
6986 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6987 	}
6988 	btrfs_update_inode_block_group(trans, inode);
6989 	btrfs_update_inode_block_group(trans, dir);
6990 	if (drop_inode)
6991 		goto out_unlock;
6992 
6993 	path = btrfs_alloc_path();
6994 	BUG_ON(!path);
6995 	key.objectid = inode->i_ino;
6996 	key.offset = 0;
6997 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6998 	datasize = btrfs_file_extent_calc_inline_size(name_len);
6999 	err = btrfs_insert_empty_item(trans, root, path, &key,
7000 				      datasize);
7001 	if (err) {
7002 		drop_inode = 1;
7003 		goto out_unlock;
7004 	}
7005 	leaf = path->nodes[0];
7006 	ei = btrfs_item_ptr(leaf, path->slots[0],
7007 			    struct btrfs_file_extent_item);
7008 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7009 	btrfs_set_file_extent_type(leaf, ei,
7010 				   BTRFS_FILE_EXTENT_INLINE);
7011 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7012 	btrfs_set_file_extent_compression(leaf, ei, 0);
7013 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7014 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7015 
7016 	ptr = btrfs_file_extent_inline_start(ei);
7017 	write_extent_buffer(leaf, symname, ptr, name_len);
7018 	btrfs_mark_buffer_dirty(leaf);
7019 	btrfs_free_path(path);
7020 
7021 	inode->i_op = &btrfs_symlink_inode_operations;
7022 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7023 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7024 	inode_set_bytes(inode, name_len);
7025 	btrfs_i_size_write(inode, name_len - 1);
7026 	err = btrfs_update_inode(trans, root, inode);
7027 	if (err)
7028 		drop_inode = 1;
7029 
7030 out_unlock:
7031 	nr = trans->blocks_used;
7032 	btrfs_end_transaction_throttle(trans, root);
7033 	if (drop_inode) {
7034 		inode_dec_link_count(inode);
7035 		iput(inode);
7036 	}
7037 	btrfs_btree_balance_dirty(root, nr);
7038 	return err;
7039 }
7040 
7041 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7042 				       u64 start, u64 num_bytes, u64 min_size,
7043 				       loff_t actual_len, u64 *alloc_hint,
7044 				       struct btrfs_trans_handle *trans)
7045 {
7046 	struct btrfs_root *root = BTRFS_I(inode)->root;
7047 	struct btrfs_key ins;
7048 	u64 cur_offset = start;
7049 	u64 i_size;
7050 	int ret = 0;
7051 	bool own_trans = true;
7052 
7053 	if (trans)
7054 		own_trans = false;
7055 	while (num_bytes > 0) {
7056 		if (own_trans) {
7057 			trans = btrfs_start_transaction(root, 3);
7058 			if (IS_ERR(trans)) {
7059 				ret = PTR_ERR(trans);
7060 				break;
7061 			}
7062 		}
7063 
7064 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7065 					   0, *alloc_hint, (u64)-1, &ins, 1);
7066 		if (ret) {
7067 			if (own_trans)
7068 				btrfs_end_transaction(trans, root);
7069 			break;
7070 		}
7071 
7072 		ret = insert_reserved_file_extent(trans, inode,
7073 						  cur_offset, ins.objectid,
7074 						  ins.offset, ins.offset,
7075 						  ins.offset, 0, 0, 0,
7076 						  BTRFS_FILE_EXTENT_PREALLOC);
7077 		BUG_ON(ret);
7078 		btrfs_drop_extent_cache(inode, cur_offset,
7079 					cur_offset + ins.offset -1, 0);
7080 
7081 		num_bytes -= ins.offset;
7082 		cur_offset += ins.offset;
7083 		*alloc_hint = ins.objectid + ins.offset;
7084 
7085 		inode->i_ctime = CURRENT_TIME;
7086 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7087 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7088 		    (actual_len > inode->i_size) &&
7089 		    (cur_offset > inode->i_size)) {
7090 			if (cur_offset > actual_len)
7091 				i_size = actual_len;
7092 			else
7093 				i_size = cur_offset;
7094 			i_size_write(inode, i_size);
7095 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7096 		}
7097 
7098 		ret = btrfs_update_inode(trans, root, inode);
7099 		BUG_ON(ret);
7100 
7101 		if (own_trans)
7102 			btrfs_end_transaction(trans, root);
7103 	}
7104 	return ret;
7105 }
7106 
7107 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7108 			      u64 start, u64 num_bytes, u64 min_size,
7109 			      loff_t actual_len, u64 *alloc_hint)
7110 {
7111 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7112 					   min_size, actual_len, alloc_hint,
7113 					   NULL);
7114 }
7115 
7116 int btrfs_prealloc_file_range_trans(struct inode *inode,
7117 				    struct btrfs_trans_handle *trans, int mode,
7118 				    u64 start, u64 num_bytes, u64 min_size,
7119 				    loff_t actual_len, u64 *alloc_hint)
7120 {
7121 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7122 					   min_size, actual_len, alloc_hint, trans);
7123 }
7124 
7125 static int btrfs_set_page_dirty(struct page *page)
7126 {
7127 	return __set_page_dirty_nobuffers(page);
7128 }
7129 
7130 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7131 {
7132 	struct btrfs_root *root = BTRFS_I(inode)->root;
7133 
7134 	if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7135 		return -EROFS;
7136 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7137 		return -EACCES;
7138 	return generic_permission(inode, mask, flags, btrfs_check_acl);
7139 }
7140 
7141 static const struct inode_operations btrfs_dir_inode_operations = {
7142 	.getattr	= btrfs_getattr,
7143 	.lookup		= btrfs_lookup,
7144 	.create		= btrfs_create,
7145 	.unlink		= btrfs_unlink,
7146 	.link		= btrfs_link,
7147 	.mkdir		= btrfs_mkdir,
7148 	.rmdir		= btrfs_rmdir,
7149 	.rename		= btrfs_rename,
7150 	.symlink	= btrfs_symlink,
7151 	.setattr	= btrfs_setattr,
7152 	.mknod		= btrfs_mknod,
7153 	.setxattr	= btrfs_setxattr,
7154 	.getxattr	= btrfs_getxattr,
7155 	.listxattr	= btrfs_listxattr,
7156 	.removexattr	= btrfs_removexattr,
7157 	.permission	= btrfs_permission,
7158 };
7159 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7160 	.lookup		= btrfs_lookup,
7161 	.permission	= btrfs_permission,
7162 };
7163 
7164 static const struct file_operations btrfs_dir_file_operations = {
7165 	.llseek		= generic_file_llseek,
7166 	.read		= generic_read_dir,
7167 	.readdir	= btrfs_real_readdir,
7168 	.unlocked_ioctl	= btrfs_ioctl,
7169 #ifdef CONFIG_COMPAT
7170 	.compat_ioctl	= btrfs_ioctl,
7171 #endif
7172 	.release        = btrfs_release_file,
7173 	.fsync		= btrfs_sync_file,
7174 };
7175 
7176 static struct extent_io_ops btrfs_extent_io_ops = {
7177 	.fill_delalloc = run_delalloc_range,
7178 	.submit_bio_hook = btrfs_submit_bio_hook,
7179 	.merge_bio_hook = btrfs_merge_bio_hook,
7180 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7181 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7182 	.writepage_start_hook = btrfs_writepage_start_hook,
7183 	.readpage_io_failed_hook = btrfs_io_failed_hook,
7184 	.set_bit_hook = btrfs_set_bit_hook,
7185 	.clear_bit_hook = btrfs_clear_bit_hook,
7186 	.merge_extent_hook = btrfs_merge_extent_hook,
7187 	.split_extent_hook = btrfs_split_extent_hook,
7188 };
7189 
7190 /*
7191  * btrfs doesn't support the bmap operation because swapfiles
7192  * use bmap to make a mapping of extents in the file.  They assume
7193  * these extents won't change over the life of the file and they
7194  * use the bmap result to do IO directly to the drive.
7195  *
7196  * the btrfs bmap call would return logical addresses that aren't
7197  * suitable for IO and they also will change frequently as COW
7198  * operations happen.  So, swapfile + btrfs == corruption.
7199  *
7200  * For now we're avoiding this by dropping bmap.
7201  */
7202 static const struct address_space_operations btrfs_aops = {
7203 	.readpage	= btrfs_readpage,
7204 	.writepage	= btrfs_writepage,
7205 	.writepages	= btrfs_writepages,
7206 	.readpages	= btrfs_readpages,
7207 	.sync_page	= block_sync_page,
7208 	.direct_IO	= btrfs_direct_IO,
7209 	.invalidatepage = btrfs_invalidatepage,
7210 	.releasepage	= btrfs_releasepage,
7211 	.set_page_dirty	= btrfs_set_page_dirty,
7212 	.error_remove_page = generic_error_remove_page,
7213 };
7214 
7215 static const struct address_space_operations btrfs_symlink_aops = {
7216 	.readpage	= btrfs_readpage,
7217 	.writepage	= btrfs_writepage,
7218 	.invalidatepage = btrfs_invalidatepage,
7219 	.releasepage	= btrfs_releasepage,
7220 };
7221 
7222 static const struct inode_operations btrfs_file_inode_operations = {
7223 	.truncate	= btrfs_truncate,
7224 	.getattr	= btrfs_getattr,
7225 	.setattr	= btrfs_setattr,
7226 	.setxattr	= btrfs_setxattr,
7227 	.getxattr	= btrfs_getxattr,
7228 	.listxattr      = btrfs_listxattr,
7229 	.removexattr	= btrfs_removexattr,
7230 	.permission	= btrfs_permission,
7231 	.fiemap		= btrfs_fiemap,
7232 };
7233 static const struct inode_operations btrfs_special_inode_operations = {
7234 	.getattr	= btrfs_getattr,
7235 	.setattr	= btrfs_setattr,
7236 	.permission	= btrfs_permission,
7237 	.setxattr	= btrfs_setxattr,
7238 	.getxattr	= btrfs_getxattr,
7239 	.listxattr	= btrfs_listxattr,
7240 	.removexattr	= btrfs_removexattr,
7241 };
7242 static const struct inode_operations btrfs_symlink_inode_operations = {
7243 	.readlink	= generic_readlink,
7244 	.follow_link	= page_follow_link_light,
7245 	.put_link	= page_put_link,
7246 	.getattr	= btrfs_getattr,
7247 	.permission	= btrfs_permission,
7248 	.setxattr	= btrfs_setxattr,
7249 	.getxattr	= btrfs_getxattr,
7250 	.listxattr	= btrfs_listxattr,
7251 	.removexattr	= btrfs_removexattr,
7252 };
7253 
7254 const struct dentry_operations btrfs_dentry_operations = {
7255 	.d_delete	= btrfs_dentry_delete,
7256 };
7257