xref: /linux/fs/btrfs/inode.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 
74 struct btrfs_iget_args {
75 	u64 ino;
76 	struct btrfs_root *root;
77 };
78 
79 struct btrfs_dio_data {
80 	ssize_t submitted;
81 	struct extent_changeset *data_reserved;
82 	struct btrfs_ordered_extent *ordered;
83 	bool data_space_reserved;
84 	bool nocow_done;
85 };
86 
87 struct btrfs_dio_private {
88 	/* Range of I/O */
89 	u64 file_offset;
90 	u32 bytes;
91 
92 	/* This must be last */
93 	struct btrfs_bio bbio;
94 };
95 
96 static struct bio_set btrfs_dio_bioset;
97 
98 struct btrfs_rename_ctx {
99 	/* Output field. Stores the index number of the old directory entry. */
100 	u64 index;
101 };
102 
103 /*
104  * Used by data_reloc_print_warning_inode() to pass needed info for filename
105  * resolution and output of error message.
106  */
107 struct data_reloc_warn {
108 	struct btrfs_path path;
109 	struct btrfs_fs_info *fs_info;
110 	u64 extent_item_size;
111 	u64 logical;
112 	int mirror_num;
113 };
114 
115 /*
116  * For the file_extent_tree, we want to hold the inode lock when we lookup and
117  * update the disk_i_size, but lockdep will complain because our io_tree we hold
118  * the tree lock and get the inode lock when setting delalloc. These two things
119  * are unrelated, so make a class for the file_extent_tree so we don't get the
120  * two locking patterns mixed up.
121  */
122 static struct lock_class_key file_extent_tree_class;
123 
124 static const struct inode_operations btrfs_dir_inode_operations;
125 static const struct inode_operations btrfs_symlink_inode_operations;
126 static const struct inode_operations btrfs_special_inode_operations;
127 static const struct inode_operations btrfs_file_inode_operations;
128 static const struct address_space_operations btrfs_aops;
129 static const struct file_operations btrfs_dir_file_operations;
130 
131 static struct kmem_cache *btrfs_inode_cachep;
132 
133 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
134 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
135 
136 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
137 				     struct page *locked_page, u64 start,
138 				     u64 end, struct writeback_control *wbc,
139 				     bool pages_dirty);
140 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
141 				       u64 len, u64 orig_start, u64 block_start,
142 				       u64 block_len, u64 orig_block_len,
143 				       u64 ram_bytes, int compress_type,
144 				       int type);
145 
146 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
147 					  u64 root, void *warn_ctx)
148 {
149 	struct data_reloc_warn *warn = warn_ctx;
150 	struct btrfs_fs_info *fs_info = warn->fs_info;
151 	struct extent_buffer *eb;
152 	struct btrfs_inode_item *inode_item;
153 	struct inode_fs_paths *ipath = NULL;
154 	struct btrfs_root *local_root;
155 	struct btrfs_key key;
156 	unsigned int nofs_flag;
157 	u32 nlink;
158 	int ret;
159 
160 	local_root = btrfs_get_fs_root(fs_info, root, true);
161 	if (IS_ERR(local_root)) {
162 		ret = PTR_ERR(local_root);
163 		goto err;
164 	}
165 
166 	/* This makes the path point to (inum INODE_ITEM ioff). */
167 	key.objectid = inum;
168 	key.type = BTRFS_INODE_ITEM_KEY;
169 	key.offset = 0;
170 
171 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
172 	if (ret) {
173 		btrfs_put_root(local_root);
174 		btrfs_release_path(&warn->path);
175 		goto err;
176 	}
177 
178 	eb = warn->path.nodes[0];
179 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
180 	nlink = btrfs_inode_nlink(eb, inode_item);
181 	btrfs_release_path(&warn->path);
182 
183 	nofs_flag = memalloc_nofs_save();
184 	ipath = init_ipath(4096, local_root, &warn->path);
185 	memalloc_nofs_restore(nofs_flag);
186 	if (IS_ERR(ipath)) {
187 		btrfs_put_root(local_root);
188 		ret = PTR_ERR(ipath);
189 		ipath = NULL;
190 		/*
191 		 * -ENOMEM, not a critical error, just output an generic error
192 		 * without filename.
193 		 */
194 		btrfs_warn(fs_info,
195 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
196 			   warn->logical, warn->mirror_num, root, inum, offset);
197 		return ret;
198 	}
199 	ret = paths_from_inode(inum, ipath);
200 	if (ret < 0)
201 		goto err;
202 
203 	/*
204 	 * We deliberately ignore the bit ipath might have been too small to
205 	 * hold all of the paths here
206 	 */
207 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
208 		btrfs_warn(fs_info,
209 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
210 			   warn->logical, warn->mirror_num, root, inum, offset,
211 			   fs_info->sectorsize, nlink,
212 			   (char *)(unsigned long)ipath->fspath->val[i]);
213 	}
214 
215 	btrfs_put_root(local_root);
216 	free_ipath(ipath);
217 	return 0;
218 
219 err:
220 	btrfs_warn(fs_info,
221 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
222 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
223 
224 	free_ipath(ipath);
225 	return ret;
226 }
227 
228 /*
229  * Do extra user-friendly error output (e.g. lookup all the affected files).
230  *
231  * Return true if we succeeded doing the backref lookup.
232  * Return false if such lookup failed, and has to fallback to the old error message.
233  */
234 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
235 				   const u8 *csum, const u8 *csum_expected,
236 				   int mirror_num)
237 {
238 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
239 	struct btrfs_path path = { 0 };
240 	struct btrfs_key found_key = { 0 };
241 	struct extent_buffer *eb;
242 	struct btrfs_extent_item *ei;
243 	const u32 csum_size = fs_info->csum_size;
244 	u64 logical;
245 	u64 flags;
246 	u32 item_size;
247 	int ret;
248 
249 	mutex_lock(&fs_info->reloc_mutex);
250 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
251 	mutex_unlock(&fs_info->reloc_mutex);
252 
253 	if (logical == U64_MAX) {
254 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
255 		btrfs_warn_rl(fs_info,
256 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
257 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
258 			CSUM_FMT_VALUE(csum_size, csum),
259 			CSUM_FMT_VALUE(csum_size, csum_expected),
260 			mirror_num);
261 		return;
262 	}
263 
264 	logical += file_off;
265 	btrfs_warn_rl(fs_info,
266 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
267 			inode->root->root_key.objectid,
268 			btrfs_ino(inode), file_off, logical,
269 			CSUM_FMT_VALUE(csum_size, csum),
270 			CSUM_FMT_VALUE(csum_size, csum_expected),
271 			mirror_num);
272 
273 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
274 	if (ret < 0) {
275 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
276 			     logical, ret);
277 		return;
278 	}
279 	eb = path.nodes[0];
280 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
281 	item_size = btrfs_item_size(eb, path.slots[0]);
282 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
283 		unsigned long ptr = 0;
284 		u64 ref_root;
285 		u8 ref_level;
286 
287 		while (true) {
288 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
289 						      item_size, &ref_root,
290 						      &ref_level);
291 			if (ret < 0) {
292 				btrfs_warn_rl(fs_info,
293 				"failed to resolve tree backref for logical %llu: %d",
294 					      logical, ret);
295 				break;
296 			}
297 			if (ret > 0)
298 				break;
299 
300 			btrfs_warn_rl(fs_info,
301 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
302 				logical, mirror_num,
303 				(ref_level ? "node" : "leaf"),
304 				ref_level, ref_root);
305 		}
306 		btrfs_release_path(&path);
307 	} else {
308 		struct btrfs_backref_walk_ctx ctx = { 0 };
309 		struct data_reloc_warn reloc_warn = { 0 };
310 
311 		btrfs_release_path(&path);
312 
313 		ctx.bytenr = found_key.objectid;
314 		ctx.extent_item_pos = logical - found_key.objectid;
315 		ctx.fs_info = fs_info;
316 
317 		reloc_warn.logical = logical;
318 		reloc_warn.extent_item_size = found_key.offset;
319 		reloc_warn.mirror_num = mirror_num;
320 		reloc_warn.fs_info = fs_info;
321 
322 		iterate_extent_inodes(&ctx, true,
323 				      data_reloc_print_warning_inode, &reloc_warn);
324 	}
325 }
326 
327 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
328 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
329 {
330 	struct btrfs_root *root = inode->root;
331 	const u32 csum_size = root->fs_info->csum_size;
332 
333 	/* For data reloc tree, it's better to do a backref lookup instead. */
334 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
335 		return print_data_reloc_error(inode, logical_start, csum,
336 					      csum_expected, mirror_num);
337 
338 	/* Output without objectid, which is more meaningful */
339 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	} else {
348 		btrfs_warn_rl(root->fs_info,
349 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
350 			root->root_key.objectid, btrfs_ino(inode),
351 			logical_start,
352 			CSUM_FMT_VALUE(csum_size, csum),
353 			CSUM_FMT_VALUE(csum_size, csum_expected),
354 			mirror_num);
355 	}
356 }
357 
358 /*
359  * Lock inode i_rwsem based on arguments passed.
360  *
361  * ilock_flags can have the following bit set:
362  *
363  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
364  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
365  *		     return -EAGAIN
366  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
367  */
368 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
369 {
370 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock_shared(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock_shared(&inode->vfs_inode);
378 	} else {
379 		if (ilock_flags & BTRFS_ILOCK_TRY) {
380 			if (!inode_trylock(&inode->vfs_inode))
381 				return -EAGAIN;
382 			else
383 				return 0;
384 		}
385 		inode_lock(&inode->vfs_inode);
386 	}
387 	if (ilock_flags & BTRFS_ILOCK_MMAP)
388 		down_write(&inode->i_mmap_lock);
389 	return 0;
390 }
391 
392 /*
393  * Unock inode i_rwsem.
394  *
395  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
396  * to decide whether the lock acquired is shared or exclusive.
397  */
398 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
399 {
400 	if (ilock_flags & BTRFS_ILOCK_MMAP)
401 		up_write(&inode->i_mmap_lock);
402 	if (ilock_flags & BTRFS_ILOCK_SHARED)
403 		inode_unlock_shared(&inode->vfs_inode);
404 	else
405 		inode_unlock(&inode->vfs_inode);
406 }
407 
408 /*
409  * Cleanup all submitted ordered extents in specified range to handle errors
410  * from the btrfs_run_delalloc_range() callback.
411  *
412  * NOTE: caller must ensure that when an error happens, it can not call
413  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
414  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
415  * to be released, which we want to happen only when finishing the ordered
416  * extent (btrfs_finish_ordered_io()).
417  */
418 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
419 						 struct page *locked_page,
420 						 u64 offset, u64 bytes)
421 {
422 	unsigned long index = offset >> PAGE_SHIFT;
423 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
424 	u64 page_start = 0, page_end = 0;
425 	struct page *page;
426 
427 	if (locked_page) {
428 		page_start = page_offset(locked_page);
429 		page_end = page_start + PAGE_SIZE - 1;
430 	}
431 
432 	while (index <= end_index) {
433 		/*
434 		 * For locked page, we will call btrfs_mark_ordered_io_finished
435 		 * through btrfs_mark_ordered_io_finished() on it
436 		 * in run_delalloc_range() for the error handling, which will
437 		 * clear page Ordered and run the ordered extent accounting.
438 		 *
439 		 * Here we can't just clear the Ordered bit, or
440 		 * btrfs_mark_ordered_io_finished() would skip the accounting
441 		 * for the page range, and the ordered extent will never finish.
442 		 */
443 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
444 			index++;
445 			continue;
446 		}
447 		page = find_get_page(inode->vfs_inode.i_mapping, index);
448 		index++;
449 		if (!page)
450 			continue;
451 
452 		/*
453 		 * Here we just clear all Ordered bits for every page in the
454 		 * range, then btrfs_mark_ordered_io_finished() will handle
455 		 * the ordered extent accounting for the range.
456 		 */
457 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
458 						page_folio(page), offset, bytes);
459 		put_page(page);
460 	}
461 
462 	if (locked_page) {
463 		/* The locked page covers the full range, nothing needs to be done */
464 		if (bytes + offset <= page_start + PAGE_SIZE)
465 			return;
466 		/*
467 		 * In case this page belongs to the delalloc range being
468 		 * instantiated then skip it, since the first page of a range is
469 		 * going to be properly cleaned up by the caller of
470 		 * run_delalloc_range
471 		 */
472 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
473 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
474 			offset = page_offset(locked_page) + PAGE_SIZE;
475 		}
476 	}
477 
478 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
479 }
480 
481 static int btrfs_dirty_inode(struct btrfs_inode *inode);
482 
483 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
484 				     struct btrfs_new_inode_args *args)
485 {
486 	int err;
487 
488 	if (args->default_acl) {
489 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
490 				      ACL_TYPE_DEFAULT);
491 		if (err)
492 			return err;
493 	}
494 	if (args->acl) {
495 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
496 		if (err)
497 			return err;
498 	}
499 	if (!args->default_acl && !args->acl)
500 		cache_no_acl(args->inode);
501 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
502 					 &args->dentry->d_name);
503 }
504 
505 /*
506  * this does all the hard work for inserting an inline extent into
507  * the btree.  The caller should have done a btrfs_drop_extents so that
508  * no overlapping inline items exist in the btree
509  */
510 static int insert_inline_extent(struct btrfs_trans_handle *trans,
511 				struct btrfs_path *path,
512 				struct btrfs_inode *inode, bool extent_inserted,
513 				size_t size, size_t compressed_size,
514 				int compress_type,
515 				struct page **compressed_pages,
516 				bool update_i_size)
517 {
518 	struct btrfs_root *root = inode->root;
519 	struct extent_buffer *leaf;
520 	struct page *page = NULL;
521 	char *kaddr;
522 	unsigned long ptr;
523 	struct btrfs_file_extent_item *ei;
524 	int ret;
525 	size_t cur_size = size;
526 	u64 i_size;
527 
528 	ASSERT((compressed_size > 0 && compressed_pages) ||
529 	       (compressed_size == 0 && !compressed_pages));
530 
531 	if (compressed_size && compressed_pages)
532 		cur_size = compressed_size;
533 
534 	if (!extent_inserted) {
535 		struct btrfs_key key;
536 		size_t datasize;
537 
538 		key.objectid = btrfs_ino(inode);
539 		key.offset = 0;
540 		key.type = BTRFS_EXTENT_DATA_KEY;
541 
542 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
543 		ret = btrfs_insert_empty_item(trans, root, path, &key,
544 					      datasize);
545 		if (ret)
546 			goto fail;
547 	}
548 	leaf = path->nodes[0];
549 	ei = btrfs_item_ptr(leaf, path->slots[0],
550 			    struct btrfs_file_extent_item);
551 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
552 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
553 	btrfs_set_file_extent_encryption(leaf, ei, 0);
554 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
555 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
556 	ptr = btrfs_file_extent_inline_start(ei);
557 
558 	if (compress_type != BTRFS_COMPRESS_NONE) {
559 		struct page *cpage;
560 		int i = 0;
561 		while (compressed_size > 0) {
562 			cpage = compressed_pages[i];
563 			cur_size = min_t(unsigned long, compressed_size,
564 				       PAGE_SIZE);
565 
566 			kaddr = kmap_local_page(cpage);
567 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
568 			kunmap_local(kaddr);
569 
570 			i++;
571 			ptr += cur_size;
572 			compressed_size -= cur_size;
573 		}
574 		btrfs_set_file_extent_compression(leaf, ei,
575 						  compress_type);
576 	} else {
577 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
578 		btrfs_set_file_extent_compression(leaf, ei, 0);
579 		kaddr = kmap_local_page(page);
580 		write_extent_buffer(leaf, kaddr, ptr, size);
581 		kunmap_local(kaddr);
582 		put_page(page);
583 	}
584 	btrfs_mark_buffer_dirty(trans, leaf);
585 	btrfs_release_path(path);
586 
587 	/*
588 	 * We align size to sectorsize for inline extents just for simplicity
589 	 * sake.
590 	 */
591 	ret = btrfs_inode_set_file_extent_range(inode, 0,
592 					ALIGN(size, root->fs_info->sectorsize));
593 	if (ret)
594 		goto fail;
595 
596 	/*
597 	 * We're an inline extent, so nobody can extend the file past i_size
598 	 * without locking a page we already have locked.
599 	 *
600 	 * We must do any i_size and inode updates before we unlock the pages.
601 	 * Otherwise we could end up racing with unlink.
602 	 */
603 	i_size = i_size_read(&inode->vfs_inode);
604 	if (update_i_size && size > i_size) {
605 		i_size_write(&inode->vfs_inode, size);
606 		i_size = size;
607 	}
608 	inode->disk_i_size = i_size;
609 
610 fail:
611 	return ret;
612 }
613 
614 
615 /*
616  * conditionally insert an inline extent into the file.  This
617  * does the checks required to make sure the data is small enough
618  * to fit as an inline extent.
619  */
620 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
621 					  size_t compressed_size,
622 					  int compress_type,
623 					  struct page **compressed_pages,
624 					  bool update_i_size)
625 {
626 	struct btrfs_drop_extents_args drop_args = { 0 };
627 	struct btrfs_root *root = inode->root;
628 	struct btrfs_fs_info *fs_info = root->fs_info;
629 	struct btrfs_trans_handle *trans;
630 	u64 data_len = (compressed_size ?: size);
631 	int ret;
632 	struct btrfs_path *path;
633 
634 	/*
635 	 * We can create an inline extent if it ends at or beyond the current
636 	 * i_size, is no larger than a sector (decompressed), and the (possibly
637 	 * compressed) data fits in a leaf and the configured maximum inline
638 	 * size.
639 	 */
640 	if (size < i_size_read(&inode->vfs_inode) ||
641 	    size > fs_info->sectorsize ||
642 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
643 	    data_len > fs_info->max_inline)
644 		return 1;
645 
646 	path = btrfs_alloc_path();
647 	if (!path)
648 		return -ENOMEM;
649 
650 	trans = btrfs_join_transaction(root);
651 	if (IS_ERR(trans)) {
652 		btrfs_free_path(path);
653 		return PTR_ERR(trans);
654 	}
655 	trans->block_rsv = &inode->block_rsv;
656 
657 	drop_args.path = path;
658 	drop_args.start = 0;
659 	drop_args.end = fs_info->sectorsize;
660 	drop_args.drop_cache = true;
661 	drop_args.replace_extent = true;
662 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
663 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
664 	if (ret) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	}
668 
669 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
670 				   size, compressed_size, compress_type,
671 				   compressed_pages, update_i_size);
672 	if (ret && ret != -ENOSPC) {
673 		btrfs_abort_transaction(trans, ret);
674 		goto out;
675 	} else if (ret == -ENOSPC) {
676 		ret = 1;
677 		goto out;
678 	}
679 
680 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
681 	ret = btrfs_update_inode(trans, inode);
682 	if (ret && ret != -ENOSPC) {
683 		btrfs_abort_transaction(trans, ret);
684 		goto out;
685 	} else if (ret == -ENOSPC) {
686 		ret = 1;
687 		goto out;
688 	}
689 
690 	btrfs_set_inode_full_sync(inode);
691 out:
692 	/*
693 	 * Don't forget to free the reserved space, as for inlined extent
694 	 * it won't count as data extent, free them directly here.
695 	 * And at reserve time, it's always aligned to page size, so
696 	 * just free one page here.
697 	 */
698 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
699 	btrfs_free_path(path);
700 	btrfs_end_transaction(trans);
701 	return ret;
702 }
703 
704 struct async_extent {
705 	u64 start;
706 	u64 ram_size;
707 	u64 compressed_size;
708 	struct page **pages;
709 	unsigned long nr_pages;
710 	int compress_type;
711 	struct list_head list;
712 };
713 
714 struct async_chunk {
715 	struct btrfs_inode *inode;
716 	struct page *locked_page;
717 	u64 start;
718 	u64 end;
719 	blk_opf_t write_flags;
720 	struct list_head extents;
721 	struct cgroup_subsys_state *blkcg_css;
722 	struct btrfs_work work;
723 	struct async_cow *async_cow;
724 };
725 
726 struct async_cow {
727 	atomic_t num_chunks;
728 	struct async_chunk chunks[];
729 };
730 
731 static noinline int add_async_extent(struct async_chunk *cow,
732 				     u64 start, u64 ram_size,
733 				     u64 compressed_size,
734 				     struct page **pages,
735 				     unsigned long nr_pages,
736 				     int compress_type)
737 {
738 	struct async_extent *async_extent;
739 
740 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
741 	if (!async_extent)
742 		return -ENOMEM;
743 	async_extent->start = start;
744 	async_extent->ram_size = ram_size;
745 	async_extent->compressed_size = compressed_size;
746 	async_extent->pages = pages;
747 	async_extent->nr_pages = nr_pages;
748 	async_extent->compress_type = compress_type;
749 	list_add_tail(&async_extent->list, &cow->extents);
750 	return 0;
751 }
752 
753 /*
754  * Check if the inode needs to be submitted to compression, based on mount
755  * options, defragmentation, properties or heuristics.
756  */
757 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
758 				      u64 end)
759 {
760 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
761 
762 	if (!btrfs_inode_can_compress(inode)) {
763 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
764 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
765 			btrfs_ino(inode));
766 		return 0;
767 	}
768 	/*
769 	 * Special check for subpage.
770 	 *
771 	 * We lock the full page then run each delalloc range in the page, thus
772 	 * for the following case, we will hit some subpage specific corner case:
773 	 *
774 	 * 0		32K		64K
775 	 * |	|///////|	|///////|
776 	 *		\- A		\- B
777 	 *
778 	 * In above case, both range A and range B will try to unlock the full
779 	 * page [0, 64K), causing the one finished later will have page
780 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
781 	 *
782 	 * So here we add an artificial limit that subpage compression can only
783 	 * if the range is fully page aligned.
784 	 *
785 	 * In theory we only need to ensure the first page is fully covered, but
786 	 * the tailing partial page will be locked until the full compression
787 	 * finishes, delaying the write of other range.
788 	 *
789 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
790 	 * first to prevent any submitted async extent to unlock the full page.
791 	 * By this, we can ensure for subpage case that only the last async_cow
792 	 * will unlock the full page.
793 	 */
794 	if (fs_info->sectorsize < PAGE_SIZE) {
795 		if (!PAGE_ALIGNED(start) ||
796 		    !PAGE_ALIGNED(end + 1))
797 			return 0;
798 	}
799 
800 	/* force compress */
801 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
802 		return 1;
803 	/* defrag ioctl */
804 	if (inode->defrag_compress)
805 		return 1;
806 	/* bad compression ratios */
807 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
808 		return 0;
809 	if (btrfs_test_opt(fs_info, COMPRESS) ||
810 	    inode->flags & BTRFS_INODE_COMPRESS ||
811 	    inode->prop_compress)
812 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
813 	return 0;
814 }
815 
816 static inline void inode_should_defrag(struct btrfs_inode *inode,
817 		u64 start, u64 end, u64 num_bytes, u32 small_write)
818 {
819 	/* If this is a small write inside eof, kick off a defrag */
820 	if (num_bytes < small_write &&
821 	    (start > 0 || end + 1 < inode->disk_i_size))
822 		btrfs_add_inode_defrag(NULL, inode, small_write);
823 }
824 
825 /*
826  * Work queue call back to started compression on a file and pages.
827  *
828  * This is done inside an ordered work queue, and the compression is spread
829  * across many cpus.  The actual IO submission is step two, and the ordered work
830  * queue takes care of making sure that happens in the same order things were
831  * put onto the queue by writepages and friends.
832  *
833  * If this code finds it can't get good compression, it puts an entry onto the
834  * work queue to write the uncompressed bytes.  This makes sure that both
835  * compressed inodes and uncompressed inodes are written in the same order that
836  * the flusher thread sent them down.
837  */
838 static void compress_file_range(struct btrfs_work *work)
839 {
840 	struct async_chunk *async_chunk =
841 		container_of(work, struct async_chunk, work);
842 	struct btrfs_inode *inode = async_chunk->inode;
843 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
844 	struct address_space *mapping = inode->vfs_inode.i_mapping;
845 	u64 blocksize = fs_info->sectorsize;
846 	u64 start = async_chunk->start;
847 	u64 end = async_chunk->end;
848 	u64 actual_end;
849 	u64 i_size;
850 	int ret = 0;
851 	struct page **pages;
852 	unsigned long nr_pages;
853 	unsigned long total_compressed = 0;
854 	unsigned long total_in = 0;
855 	unsigned int poff;
856 	int i;
857 	int compress_type = fs_info->compress_type;
858 
859 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
860 
861 	/*
862 	 * We need to call clear_page_dirty_for_io on each page in the range.
863 	 * Otherwise applications with the file mmap'd can wander in and change
864 	 * the page contents while we are compressing them.
865 	 */
866 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
867 
868 	/*
869 	 * We need to save i_size before now because it could change in between
870 	 * us evaluating the size and assigning it.  This is because we lock and
871 	 * unlock the page in truncate and fallocate, and then modify the i_size
872 	 * later on.
873 	 *
874 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
875 	 * does that for us.
876 	 */
877 	barrier();
878 	i_size = i_size_read(&inode->vfs_inode);
879 	barrier();
880 	actual_end = min_t(u64, i_size, end + 1);
881 again:
882 	pages = NULL;
883 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
884 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
885 
886 	/*
887 	 * we don't want to send crud past the end of i_size through
888 	 * compression, that's just a waste of CPU time.  So, if the
889 	 * end of the file is before the start of our current
890 	 * requested range of bytes, we bail out to the uncompressed
891 	 * cleanup code that can deal with all of this.
892 	 *
893 	 * It isn't really the fastest way to fix things, but this is a
894 	 * very uncommon corner.
895 	 */
896 	if (actual_end <= start)
897 		goto cleanup_and_bail_uncompressed;
898 
899 	total_compressed = actual_end - start;
900 
901 	/*
902 	 * Skip compression for a small file range(<=blocksize) that
903 	 * isn't an inline extent, since it doesn't save disk space at all.
904 	 */
905 	if (total_compressed <= blocksize &&
906 	   (start > 0 || end + 1 < inode->disk_i_size))
907 		goto cleanup_and_bail_uncompressed;
908 
909 	/*
910 	 * For subpage case, we require full page alignment for the sector
911 	 * aligned range.
912 	 * Thus we must also check against @actual_end, not just @end.
913 	 */
914 	if (blocksize < PAGE_SIZE) {
915 		if (!PAGE_ALIGNED(start) ||
916 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
917 			goto cleanup_and_bail_uncompressed;
918 	}
919 
920 	total_compressed = min_t(unsigned long, total_compressed,
921 			BTRFS_MAX_UNCOMPRESSED);
922 	total_in = 0;
923 	ret = 0;
924 
925 	/*
926 	 * We do compression for mount -o compress and when the inode has not
927 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
928 	 * discover bad compression ratios.
929 	 */
930 	if (!inode_need_compress(inode, start, end))
931 		goto cleanup_and_bail_uncompressed;
932 
933 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
934 	if (!pages) {
935 		/*
936 		 * Memory allocation failure is not a fatal error, we can fall
937 		 * back to uncompressed code.
938 		 */
939 		goto cleanup_and_bail_uncompressed;
940 	}
941 
942 	if (inode->defrag_compress)
943 		compress_type = inode->defrag_compress;
944 	else if (inode->prop_compress)
945 		compress_type = inode->prop_compress;
946 
947 	/* Compression level is applied here. */
948 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
949 				   mapping, start, pages, &nr_pages, &total_in,
950 				   &total_compressed);
951 	if (ret)
952 		goto mark_incompressible;
953 
954 	/*
955 	 * Zero the tail end of the last page, as we might be sending it down
956 	 * to disk.
957 	 */
958 	poff = offset_in_page(total_compressed);
959 	if (poff)
960 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
961 
962 	/*
963 	 * Try to create an inline extent.
964 	 *
965 	 * If we didn't compress the entire range, try to create an uncompressed
966 	 * inline extent, else a compressed one.
967 	 *
968 	 * Check cow_file_range() for why we don't even try to create inline
969 	 * extent for the subpage case.
970 	 */
971 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
972 		if (total_in < actual_end) {
973 			ret = cow_file_range_inline(inode, actual_end, 0,
974 						    BTRFS_COMPRESS_NONE, NULL,
975 						    false);
976 		} else {
977 			ret = cow_file_range_inline(inode, actual_end,
978 						    total_compressed,
979 						    compress_type, pages,
980 						    false);
981 		}
982 		if (ret <= 0) {
983 			unsigned long clear_flags = EXTENT_DELALLOC |
984 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
985 				EXTENT_DO_ACCOUNTING;
986 
987 			if (ret < 0)
988 				mapping_set_error(mapping, -EIO);
989 
990 			/*
991 			 * inline extent creation worked or returned error,
992 			 * we don't need to create any more async work items.
993 			 * Unlock and free up our temp pages.
994 			 *
995 			 * We use DO_ACCOUNTING here because we need the
996 			 * delalloc_release_metadata to be done _after_ we drop
997 			 * our outstanding extent for clearing delalloc for this
998 			 * range.
999 			 */
1000 			extent_clear_unlock_delalloc(inode, start, end,
1001 						     NULL,
1002 						     clear_flags,
1003 						     PAGE_UNLOCK |
1004 						     PAGE_START_WRITEBACK |
1005 						     PAGE_END_WRITEBACK);
1006 			goto free_pages;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * We aren't doing an inline extent. Round the compressed size up to a
1012 	 * block size boundary so the allocator does sane things.
1013 	 */
1014 	total_compressed = ALIGN(total_compressed, blocksize);
1015 
1016 	/*
1017 	 * One last check to make sure the compression is really a win, compare
1018 	 * the page count read with the blocks on disk, compression must free at
1019 	 * least one sector.
1020 	 */
1021 	total_in = round_up(total_in, fs_info->sectorsize);
1022 	if (total_compressed + blocksize > total_in)
1023 		goto mark_incompressible;
1024 
1025 	/*
1026 	 * The async work queues will take care of doing actual allocation on
1027 	 * disk for these compressed pages, and will submit the bios.
1028 	 */
1029 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1030 			       nr_pages, compress_type);
1031 	BUG_ON(ret);
1032 	if (start + total_in < end) {
1033 		start += total_in;
1034 		cond_resched();
1035 		goto again;
1036 	}
1037 	return;
1038 
1039 mark_incompressible:
1040 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1042 cleanup_and_bail_uncompressed:
1043 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1044 			       BTRFS_COMPRESS_NONE);
1045 	BUG_ON(ret);
1046 free_pages:
1047 	if (pages) {
1048 		for (i = 0; i < nr_pages; i++) {
1049 			WARN_ON(pages[i]->mapping);
1050 			btrfs_free_compr_page(pages[i]);
1051 		}
1052 		kfree(pages);
1053 	}
1054 }
1055 
1056 static void free_async_extent_pages(struct async_extent *async_extent)
1057 {
1058 	int i;
1059 
1060 	if (!async_extent->pages)
1061 		return;
1062 
1063 	for (i = 0; i < async_extent->nr_pages; i++) {
1064 		WARN_ON(async_extent->pages[i]->mapping);
1065 		btrfs_free_compr_page(async_extent->pages[i]);
1066 	}
1067 	kfree(async_extent->pages);
1068 	async_extent->nr_pages = 0;
1069 	async_extent->pages = NULL;
1070 }
1071 
1072 static void submit_uncompressed_range(struct btrfs_inode *inode,
1073 				      struct async_extent *async_extent,
1074 				      struct page *locked_page)
1075 {
1076 	u64 start = async_extent->start;
1077 	u64 end = async_extent->start + async_extent->ram_size - 1;
1078 	int ret;
1079 	struct writeback_control wbc = {
1080 		.sync_mode		= WB_SYNC_ALL,
1081 		.range_start		= start,
1082 		.range_end		= end,
1083 		.no_cgroup_owner	= 1,
1084 	};
1085 
1086 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1087 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1088 	wbc_detach_inode(&wbc);
1089 	if (ret < 0) {
1090 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1091 		if (locked_page) {
1092 			const u64 page_start = page_offset(locked_page);
1093 
1094 			set_page_writeback(locked_page);
1095 			end_page_writeback(locked_page);
1096 			btrfs_mark_ordered_io_finished(inode, locked_page,
1097 						       page_start, PAGE_SIZE,
1098 						       !ret);
1099 			mapping_set_error(locked_page->mapping, ret);
1100 			unlock_page(locked_page);
1101 		}
1102 	}
1103 }
1104 
1105 static void submit_one_async_extent(struct async_chunk *async_chunk,
1106 				    struct async_extent *async_extent,
1107 				    u64 *alloc_hint)
1108 {
1109 	struct btrfs_inode *inode = async_chunk->inode;
1110 	struct extent_io_tree *io_tree = &inode->io_tree;
1111 	struct btrfs_root *root = inode->root;
1112 	struct btrfs_fs_info *fs_info = root->fs_info;
1113 	struct btrfs_ordered_extent *ordered;
1114 	struct btrfs_key ins;
1115 	struct page *locked_page = NULL;
1116 	struct extent_map *em;
1117 	int ret = 0;
1118 	u64 start = async_extent->start;
1119 	u64 end = async_extent->start + async_extent->ram_size - 1;
1120 
1121 	if (async_chunk->blkcg_css)
1122 		kthread_associate_blkcg(async_chunk->blkcg_css);
1123 
1124 	/*
1125 	 * If async_chunk->locked_page is in the async_extent range, we need to
1126 	 * handle it.
1127 	 */
1128 	if (async_chunk->locked_page) {
1129 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1130 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1131 
1132 		if (!(start >= locked_page_end || end <= locked_page_start))
1133 			locked_page = async_chunk->locked_page;
1134 	}
1135 	lock_extent(io_tree, start, end, NULL);
1136 
1137 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1138 		submit_uncompressed_range(inode, async_extent, locked_page);
1139 		goto done;
1140 	}
1141 
1142 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1143 				   async_extent->compressed_size,
1144 				   async_extent->compressed_size,
1145 				   0, *alloc_hint, &ins, 1, 1);
1146 	if (ret) {
1147 		/*
1148 		 * Here we used to try again by going back to non-compressed
1149 		 * path for ENOSPC.  But we can't reserve space even for
1150 		 * compressed size, how could it work for uncompressed size
1151 		 * which requires larger size?  So here we directly go error
1152 		 * path.
1153 		 */
1154 		goto out_free;
1155 	}
1156 
1157 	/* Here we're doing allocation and writeback of the compressed pages */
1158 	em = create_io_em(inode, start,
1159 			  async_extent->ram_size,	/* len */
1160 			  start,			/* orig_start */
1161 			  ins.objectid,			/* block_start */
1162 			  ins.offset,			/* block_len */
1163 			  ins.offset,			/* orig_block_len */
1164 			  async_extent->ram_size,	/* ram_bytes */
1165 			  async_extent->compress_type,
1166 			  BTRFS_ORDERED_COMPRESSED);
1167 	if (IS_ERR(em)) {
1168 		ret = PTR_ERR(em);
1169 		goto out_free_reserve;
1170 	}
1171 	free_extent_map(em);
1172 
1173 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1174 				       async_extent->ram_size,	/* num_bytes */
1175 				       async_extent->ram_size,	/* ram_bytes */
1176 				       ins.objectid,		/* disk_bytenr */
1177 				       ins.offset,		/* disk_num_bytes */
1178 				       0,			/* offset */
1179 				       1 << BTRFS_ORDERED_COMPRESSED,
1180 				       async_extent->compress_type);
1181 	if (IS_ERR(ordered)) {
1182 		btrfs_drop_extent_map_range(inode, start, end, false);
1183 		ret = PTR_ERR(ordered);
1184 		goto out_free_reserve;
1185 	}
1186 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1187 
1188 	/* Clear dirty, set writeback and unlock the pages. */
1189 	extent_clear_unlock_delalloc(inode, start, end,
1190 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1191 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1192 	btrfs_submit_compressed_write(ordered,
1193 			    async_extent->pages,	/* compressed_pages */
1194 			    async_extent->nr_pages,
1195 			    async_chunk->write_flags, true);
1196 	*alloc_hint = ins.objectid + ins.offset;
1197 done:
1198 	if (async_chunk->blkcg_css)
1199 		kthread_associate_blkcg(NULL);
1200 	kfree(async_extent);
1201 	return;
1202 
1203 out_free_reserve:
1204 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1205 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1206 out_free:
1207 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1208 	extent_clear_unlock_delalloc(inode, start, end,
1209 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1210 				     EXTENT_DELALLOC_NEW |
1211 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1212 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1213 				     PAGE_END_WRITEBACK);
1214 	free_async_extent_pages(async_extent);
1215 	if (async_chunk->blkcg_css)
1216 		kthread_associate_blkcg(NULL);
1217 	btrfs_debug(fs_info,
1218 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1219 		    root->root_key.objectid, btrfs_ino(inode), start,
1220 		    async_extent->ram_size, ret);
1221 	kfree(async_extent);
1222 }
1223 
1224 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1225 				      u64 num_bytes)
1226 {
1227 	struct extent_map_tree *em_tree = &inode->extent_tree;
1228 	struct extent_map *em;
1229 	u64 alloc_hint = 0;
1230 
1231 	read_lock(&em_tree->lock);
1232 	em = search_extent_mapping(em_tree, start, num_bytes);
1233 	if (em) {
1234 		/*
1235 		 * if block start isn't an actual block number then find the
1236 		 * first block in this inode and use that as a hint.  If that
1237 		 * block is also bogus then just don't worry about it.
1238 		 */
1239 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1240 			free_extent_map(em);
1241 			em = search_extent_mapping(em_tree, 0, 0);
1242 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1243 				alloc_hint = em->block_start;
1244 			if (em)
1245 				free_extent_map(em);
1246 		} else {
1247 			alloc_hint = em->block_start;
1248 			free_extent_map(em);
1249 		}
1250 	}
1251 	read_unlock(&em_tree->lock);
1252 
1253 	return alloc_hint;
1254 }
1255 
1256 /*
1257  * when extent_io.c finds a delayed allocation range in the file,
1258  * the call backs end up in this code.  The basic idea is to
1259  * allocate extents on disk for the range, and create ordered data structs
1260  * in ram to track those extents.
1261  *
1262  * locked_page is the page that writepage had locked already.  We use
1263  * it to make sure we don't do extra locks or unlocks.
1264  *
1265  * When this function fails, it unlocks all pages except @locked_page.
1266  *
1267  * When this function successfully creates an inline extent, it returns 1 and
1268  * unlocks all pages including locked_page and starts I/O on them.
1269  * (In reality inline extents are limited to a single page, so locked_page is
1270  * the only page handled anyway).
1271  *
1272  * When this function succeed and creates a normal extent, the page locking
1273  * status depends on the passed in flags:
1274  *
1275  * - If @keep_locked is set, all pages are kept locked.
1276  * - Else all pages except for @locked_page are unlocked.
1277  *
1278  * When a failure happens in the second or later iteration of the
1279  * while-loop, the ordered extents created in previous iterations are kept
1280  * intact. So, the caller must clean them up by calling
1281  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1282  * example.
1283  */
1284 static noinline int cow_file_range(struct btrfs_inode *inode,
1285 				   struct page *locked_page, u64 start, u64 end,
1286 				   u64 *done_offset,
1287 				   bool keep_locked, bool no_inline)
1288 {
1289 	struct btrfs_root *root = inode->root;
1290 	struct btrfs_fs_info *fs_info = root->fs_info;
1291 	u64 alloc_hint = 0;
1292 	u64 orig_start = start;
1293 	u64 num_bytes;
1294 	unsigned long ram_size;
1295 	u64 cur_alloc_size = 0;
1296 	u64 min_alloc_size;
1297 	u64 blocksize = fs_info->sectorsize;
1298 	struct btrfs_key ins;
1299 	struct extent_map *em;
1300 	unsigned clear_bits;
1301 	unsigned long page_ops;
1302 	bool extent_reserved = false;
1303 	int ret = 0;
1304 
1305 	if (btrfs_is_free_space_inode(inode)) {
1306 		ret = -EINVAL;
1307 		goto out_unlock;
1308 	}
1309 
1310 	num_bytes = ALIGN(end - start + 1, blocksize);
1311 	num_bytes = max(blocksize,  num_bytes);
1312 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1313 
1314 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1315 
1316 	/*
1317 	 * Due to the page size limit, for subpage we can only trigger the
1318 	 * writeback for the dirty sectors of page, that means data writeback
1319 	 * is doing more writeback than what we want.
1320 	 *
1321 	 * This is especially unexpected for some call sites like fallocate,
1322 	 * where we only increase i_size after everything is done.
1323 	 * This means we can trigger inline extent even if we didn't want to.
1324 	 * So here we skip inline extent creation completely.
1325 	 */
1326 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1327 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1328 				       end + 1);
1329 
1330 		/* lets try to make an inline extent */
1331 		ret = cow_file_range_inline(inode, actual_end, 0,
1332 					    BTRFS_COMPRESS_NONE, NULL, false);
1333 		if (ret == 0) {
1334 			/*
1335 			 * We use DO_ACCOUNTING here because we need the
1336 			 * delalloc_release_metadata to be run _after_ we drop
1337 			 * our outstanding extent for clearing delalloc for this
1338 			 * range.
1339 			 */
1340 			extent_clear_unlock_delalloc(inode, start, end,
1341 				     locked_page,
1342 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1343 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1344 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1345 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1346 			/*
1347 			 * locked_page is locked by the caller of
1348 			 * writepage_delalloc(), not locked by
1349 			 * __process_pages_contig().
1350 			 *
1351 			 * We can't let __process_pages_contig() to unlock it,
1352 			 * as it doesn't have any subpage::writers recorded.
1353 			 *
1354 			 * Here we manually unlock the page, since the caller
1355 			 * can't determine if it's an inline extent or a
1356 			 * compressed extent.
1357 			 */
1358 			unlock_page(locked_page);
1359 			ret = 1;
1360 			goto done;
1361 		} else if (ret < 0) {
1362 			goto out_unlock;
1363 		}
1364 	}
1365 
1366 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1367 
1368 	/*
1369 	 * Relocation relies on the relocated extents to have exactly the same
1370 	 * size as the original extents. Normally writeback for relocation data
1371 	 * extents follows a NOCOW path because relocation preallocates the
1372 	 * extents. However, due to an operation such as scrub turning a block
1373 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1374 	 * an extent allocated during COW has exactly the requested size and can
1375 	 * not be split into smaller extents, otherwise relocation breaks and
1376 	 * fails during the stage where it updates the bytenr of file extent
1377 	 * items.
1378 	 */
1379 	if (btrfs_is_data_reloc_root(root))
1380 		min_alloc_size = num_bytes;
1381 	else
1382 		min_alloc_size = fs_info->sectorsize;
1383 
1384 	while (num_bytes > 0) {
1385 		struct btrfs_ordered_extent *ordered;
1386 
1387 		cur_alloc_size = num_bytes;
1388 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1389 					   min_alloc_size, 0, alloc_hint,
1390 					   &ins, 1, 1);
1391 		if (ret == -EAGAIN) {
1392 			/*
1393 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1394 			 * file systems, which is an indication that there are
1395 			 * no active zones to allocate from at the moment.
1396 			 *
1397 			 * If this is the first loop iteration, wait for at
1398 			 * least one zone to finish before retrying the
1399 			 * allocation.  Otherwise ask the caller to write out
1400 			 * the already allocated blocks before coming back to
1401 			 * us, or return -ENOSPC if it can't handle retries.
1402 			 */
1403 			ASSERT(btrfs_is_zoned(fs_info));
1404 			if (start == orig_start) {
1405 				wait_on_bit_io(&inode->root->fs_info->flags,
1406 					       BTRFS_FS_NEED_ZONE_FINISH,
1407 					       TASK_UNINTERRUPTIBLE);
1408 				continue;
1409 			}
1410 			if (done_offset) {
1411 				*done_offset = start - 1;
1412 				return 0;
1413 			}
1414 			ret = -ENOSPC;
1415 		}
1416 		if (ret < 0)
1417 			goto out_unlock;
1418 		cur_alloc_size = ins.offset;
1419 		extent_reserved = true;
1420 
1421 		ram_size = ins.offset;
1422 		em = create_io_em(inode, start, ins.offset, /* len */
1423 				  start, /* orig_start */
1424 				  ins.objectid, /* block_start */
1425 				  ins.offset, /* block_len */
1426 				  ins.offset, /* orig_block_len */
1427 				  ram_size, /* ram_bytes */
1428 				  BTRFS_COMPRESS_NONE, /* compress_type */
1429 				  BTRFS_ORDERED_REGULAR /* type */);
1430 		if (IS_ERR(em)) {
1431 			ret = PTR_ERR(em);
1432 			goto out_reserve;
1433 		}
1434 		free_extent_map(em);
1435 
1436 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1437 					ram_size, ins.objectid, cur_alloc_size,
1438 					0, 1 << BTRFS_ORDERED_REGULAR,
1439 					BTRFS_COMPRESS_NONE);
1440 		if (IS_ERR(ordered)) {
1441 			ret = PTR_ERR(ordered);
1442 			goto out_drop_extent_cache;
1443 		}
1444 
1445 		if (btrfs_is_data_reloc_root(root)) {
1446 			ret = btrfs_reloc_clone_csums(ordered);
1447 
1448 			/*
1449 			 * Only drop cache here, and process as normal.
1450 			 *
1451 			 * We must not allow extent_clear_unlock_delalloc()
1452 			 * at out_unlock label to free meta of this ordered
1453 			 * extent, as its meta should be freed by
1454 			 * btrfs_finish_ordered_io().
1455 			 *
1456 			 * So we must continue until @start is increased to
1457 			 * skip current ordered extent.
1458 			 */
1459 			if (ret)
1460 				btrfs_drop_extent_map_range(inode, start,
1461 							    start + ram_size - 1,
1462 							    false);
1463 		}
1464 		btrfs_put_ordered_extent(ordered);
1465 
1466 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1467 
1468 		/*
1469 		 * We're not doing compressed IO, don't unlock the first page
1470 		 * (which the caller expects to stay locked), don't clear any
1471 		 * dirty bits and don't set any writeback bits
1472 		 *
1473 		 * Do set the Ordered (Private2) bit so we know this page was
1474 		 * properly setup for writepage.
1475 		 */
1476 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1477 		page_ops |= PAGE_SET_ORDERED;
1478 
1479 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1480 					     locked_page,
1481 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1482 					     page_ops);
1483 		if (num_bytes < cur_alloc_size)
1484 			num_bytes = 0;
1485 		else
1486 			num_bytes -= cur_alloc_size;
1487 		alloc_hint = ins.objectid + ins.offset;
1488 		start += cur_alloc_size;
1489 		extent_reserved = false;
1490 
1491 		/*
1492 		 * btrfs_reloc_clone_csums() error, since start is increased
1493 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1494 		 * free metadata of current ordered extent, we're OK to exit.
1495 		 */
1496 		if (ret)
1497 			goto out_unlock;
1498 	}
1499 done:
1500 	if (done_offset)
1501 		*done_offset = end;
1502 	return ret;
1503 
1504 out_drop_extent_cache:
1505 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1506 out_reserve:
1507 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1508 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1509 out_unlock:
1510 	/*
1511 	 * Now, we have three regions to clean up:
1512 	 *
1513 	 * |-------(1)----|---(2)---|-------------(3)----------|
1514 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1515 	 *
1516 	 * We process each region below.
1517 	 */
1518 
1519 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1520 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1521 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1522 
1523 	/*
1524 	 * For the range (1). We have already instantiated the ordered extents
1525 	 * for this region. They are cleaned up by
1526 	 * btrfs_cleanup_ordered_extents() in e.g,
1527 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1528 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1529 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1530 	 * function.
1531 	 *
1532 	 * However, in case of @keep_locked, we still need to unlock the pages
1533 	 * (except @locked_page) to ensure all the pages are unlocked.
1534 	 */
1535 	if (keep_locked && orig_start < start) {
1536 		if (!locked_page)
1537 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1538 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1539 					     locked_page, 0, page_ops);
1540 	}
1541 
1542 	/*
1543 	 * For the range (2). If we reserved an extent for our delalloc range
1544 	 * (or a subrange) and failed to create the respective ordered extent,
1545 	 * then it means that when we reserved the extent we decremented the
1546 	 * extent's size from the data space_info's bytes_may_use counter and
1547 	 * incremented the space_info's bytes_reserved counter by the same
1548 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1549 	 * to decrement again the data space_info's bytes_may_use counter,
1550 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1551 	 */
1552 	if (extent_reserved) {
1553 		extent_clear_unlock_delalloc(inode, start,
1554 					     start + cur_alloc_size - 1,
1555 					     locked_page,
1556 					     clear_bits,
1557 					     page_ops);
1558 		start += cur_alloc_size;
1559 	}
1560 
1561 	/*
1562 	 * For the range (3). We never touched the region. In addition to the
1563 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1564 	 * space_info's bytes_may_use counter, reserved in
1565 	 * btrfs_check_data_free_space().
1566 	 */
1567 	if (start < end) {
1568 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1569 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1570 					     clear_bits, page_ops);
1571 	}
1572 	return ret;
1573 }
1574 
1575 /*
1576  * Phase two of compressed writeback.  This is the ordered portion of the code,
1577  * which only gets called in the order the work was queued.  We walk all the
1578  * async extents created by compress_file_range and send them down to the disk.
1579  *
1580  * If called with @do_free == true then it'll try to finish the work and free
1581  * the work struct eventually.
1582  */
1583 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1584 {
1585 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1586 						     work);
1587 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1588 	struct async_extent *async_extent;
1589 	unsigned long nr_pages;
1590 	u64 alloc_hint = 0;
1591 
1592 	if (do_free) {
1593 		struct async_chunk *async_chunk;
1594 		struct async_cow *async_cow;
1595 
1596 		async_chunk = container_of(work, struct async_chunk, work);
1597 		btrfs_add_delayed_iput(async_chunk->inode);
1598 		if (async_chunk->blkcg_css)
1599 			css_put(async_chunk->blkcg_css);
1600 
1601 		async_cow = async_chunk->async_cow;
1602 		if (atomic_dec_and_test(&async_cow->num_chunks))
1603 			kvfree(async_cow);
1604 		return;
1605 	}
1606 
1607 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1608 		PAGE_SHIFT;
1609 
1610 	while (!list_empty(&async_chunk->extents)) {
1611 		async_extent = list_entry(async_chunk->extents.next,
1612 					  struct async_extent, list);
1613 		list_del(&async_extent->list);
1614 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1615 	}
1616 
1617 	/* atomic_sub_return implies a barrier */
1618 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1619 	    5 * SZ_1M)
1620 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1621 }
1622 
1623 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1624 				    struct page *locked_page, u64 start,
1625 				    u64 end, struct writeback_control *wbc)
1626 {
1627 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1628 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1629 	struct async_cow *ctx;
1630 	struct async_chunk *async_chunk;
1631 	unsigned long nr_pages;
1632 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1633 	int i;
1634 	unsigned nofs_flag;
1635 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1636 
1637 	nofs_flag = memalloc_nofs_save();
1638 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1639 	memalloc_nofs_restore(nofs_flag);
1640 	if (!ctx)
1641 		return false;
1642 
1643 	unlock_extent(&inode->io_tree, start, end, NULL);
1644 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1645 
1646 	async_chunk = ctx->chunks;
1647 	atomic_set(&ctx->num_chunks, num_chunks);
1648 
1649 	for (i = 0; i < num_chunks; i++) {
1650 		u64 cur_end = min(end, start + SZ_512K - 1);
1651 
1652 		/*
1653 		 * igrab is called higher up in the call chain, take only the
1654 		 * lightweight reference for the callback lifetime
1655 		 */
1656 		ihold(&inode->vfs_inode);
1657 		async_chunk[i].async_cow = ctx;
1658 		async_chunk[i].inode = inode;
1659 		async_chunk[i].start = start;
1660 		async_chunk[i].end = cur_end;
1661 		async_chunk[i].write_flags = write_flags;
1662 		INIT_LIST_HEAD(&async_chunk[i].extents);
1663 
1664 		/*
1665 		 * The locked_page comes all the way from writepage and its
1666 		 * the original page we were actually given.  As we spread
1667 		 * this large delalloc region across multiple async_chunk
1668 		 * structs, only the first struct needs a pointer to locked_page
1669 		 *
1670 		 * This way we don't need racey decisions about who is supposed
1671 		 * to unlock it.
1672 		 */
1673 		if (locked_page) {
1674 			/*
1675 			 * Depending on the compressibility, the pages might or
1676 			 * might not go through async.  We want all of them to
1677 			 * be accounted against wbc once.  Let's do it here
1678 			 * before the paths diverge.  wbc accounting is used
1679 			 * only for foreign writeback detection and doesn't
1680 			 * need full accuracy.  Just account the whole thing
1681 			 * against the first page.
1682 			 */
1683 			wbc_account_cgroup_owner(wbc, locked_page,
1684 						 cur_end - start);
1685 			async_chunk[i].locked_page = locked_page;
1686 			locked_page = NULL;
1687 		} else {
1688 			async_chunk[i].locked_page = NULL;
1689 		}
1690 
1691 		if (blkcg_css != blkcg_root_css) {
1692 			css_get(blkcg_css);
1693 			async_chunk[i].blkcg_css = blkcg_css;
1694 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1695 		} else {
1696 			async_chunk[i].blkcg_css = NULL;
1697 		}
1698 
1699 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1700 				submit_compressed_extents);
1701 
1702 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1703 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1704 
1705 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1706 
1707 		start = cur_end + 1;
1708 	}
1709 	return true;
1710 }
1711 
1712 /*
1713  * Run the delalloc range from start to end, and write back any dirty pages
1714  * covered by the range.
1715  */
1716 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1717 				     struct page *locked_page, u64 start,
1718 				     u64 end, struct writeback_control *wbc,
1719 				     bool pages_dirty)
1720 {
1721 	u64 done_offset = end;
1722 	int ret;
1723 
1724 	while (start <= end) {
1725 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1726 				     true, false);
1727 		if (ret)
1728 			return ret;
1729 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1730 					  done_offset, wbc, pages_dirty);
1731 		start = done_offset + 1;
1732 	}
1733 
1734 	return 1;
1735 }
1736 
1737 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1738 					u64 bytenr, u64 num_bytes, bool nowait)
1739 {
1740 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1741 	struct btrfs_ordered_sum *sums;
1742 	int ret;
1743 	LIST_HEAD(list);
1744 
1745 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1746 				      &list, 0, nowait);
1747 	if (ret == 0 && list_empty(&list))
1748 		return 0;
1749 
1750 	while (!list_empty(&list)) {
1751 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1752 		list_del(&sums->list);
1753 		kfree(sums);
1754 	}
1755 	if (ret < 0)
1756 		return ret;
1757 	return 1;
1758 }
1759 
1760 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1761 			   const u64 start, const u64 end)
1762 {
1763 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1764 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1765 	const u64 range_bytes = end + 1 - start;
1766 	struct extent_io_tree *io_tree = &inode->io_tree;
1767 	u64 range_start = start;
1768 	u64 count;
1769 	int ret;
1770 
1771 	/*
1772 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1773 	 * made we had not enough available data space and therefore we did not
1774 	 * reserve data space for it, since we though we could do NOCOW for the
1775 	 * respective file range (either there is prealloc extent or the inode
1776 	 * has the NOCOW bit set).
1777 	 *
1778 	 * However when we need to fallback to COW mode (because for example the
1779 	 * block group for the corresponding extent was turned to RO mode by a
1780 	 * scrub or relocation) we need to do the following:
1781 	 *
1782 	 * 1) We increment the bytes_may_use counter of the data space info.
1783 	 *    If COW succeeds, it allocates a new data extent and after doing
1784 	 *    that it decrements the space info's bytes_may_use counter and
1785 	 *    increments its bytes_reserved counter by the same amount (we do
1786 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1787 	 *    bytes_may_use counter to compensate (when space is reserved at
1788 	 *    buffered write time, the bytes_may_use counter is incremented);
1789 	 *
1790 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1791 	 *    that if the COW path fails for any reason, it decrements (through
1792 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1793 	 *    data space info, which we incremented in the step above.
1794 	 *
1795 	 * If we need to fallback to cow and the inode corresponds to a free
1796 	 * space cache inode or an inode of the data relocation tree, we must
1797 	 * also increment bytes_may_use of the data space_info for the same
1798 	 * reason. Space caches and relocated data extents always get a prealloc
1799 	 * extent for them, however scrub or balance may have set the block
1800 	 * group that contains that extent to RO mode and therefore force COW
1801 	 * when starting writeback.
1802 	 */
1803 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1804 				 EXTENT_NORESERVE, 0, NULL);
1805 	if (count > 0 || is_space_ino || is_reloc_ino) {
1806 		u64 bytes = count;
1807 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1808 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1809 
1810 		if (is_space_ino || is_reloc_ino)
1811 			bytes = range_bytes;
1812 
1813 		spin_lock(&sinfo->lock);
1814 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1815 		spin_unlock(&sinfo->lock);
1816 
1817 		if (count > 0)
1818 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1819 					 NULL);
1820 	}
1821 
1822 	/*
1823 	 * Don't try to create inline extents, as a mix of inline extent that
1824 	 * is written out and unlocked directly and a normal NOCOW extent
1825 	 * doesn't work.
1826 	 */
1827 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1828 	ASSERT(ret != 1);
1829 	return ret;
1830 }
1831 
1832 struct can_nocow_file_extent_args {
1833 	/* Input fields. */
1834 
1835 	/* Start file offset of the range we want to NOCOW. */
1836 	u64 start;
1837 	/* End file offset (inclusive) of the range we want to NOCOW. */
1838 	u64 end;
1839 	bool writeback_path;
1840 	bool strict;
1841 	/*
1842 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1843 	 * anymore.
1844 	 */
1845 	bool free_path;
1846 
1847 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1848 
1849 	u64 disk_bytenr;
1850 	u64 disk_num_bytes;
1851 	u64 extent_offset;
1852 	/* Number of bytes that can be written to in NOCOW mode. */
1853 	u64 num_bytes;
1854 };
1855 
1856 /*
1857  * Check if we can NOCOW the file extent that the path points to.
1858  * This function may return with the path released, so the caller should check
1859  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1860  *
1861  * Returns: < 0 on error
1862  *            0 if we can not NOCOW
1863  *            1 if we can NOCOW
1864  */
1865 static int can_nocow_file_extent(struct btrfs_path *path,
1866 				 struct btrfs_key *key,
1867 				 struct btrfs_inode *inode,
1868 				 struct can_nocow_file_extent_args *args)
1869 {
1870 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1871 	struct extent_buffer *leaf = path->nodes[0];
1872 	struct btrfs_root *root = inode->root;
1873 	struct btrfs_file_extent_item *fi;
1874 	u64 extent_end;
1875 	u8 extent_type;
1876 	int can_nocow = 0;
1877 	int ret = 0;
1878 	bool nowait = path->nowait;
1879 
1880 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1881 	extent_type = btrfs_file_extent_type(leaf, fi);
1882 
1883 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1884 		goto out;
1885 
1886 	/* Can't access these fields unless we know it's not an inline extent. */
1887 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1888 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1889 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1890 
1891 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1892 	    extent_type == BTRFS_FILE_EXTENT_REG)
1893 		goto out;
1894 
1895 	/*
1896 	 * If the extent was created before the generation where the last snapshot
1897 	 * for its subvolume was created, then this implies the extent is shared,
1898 	 * hence we must COW.
1899 	 */
1900 	if (!args->strict &&
1901 	    btrfs_file_extent_generation(leaf, fi) <=
1902 	    btrfs_root_last_snapshot(&root->root_item))
1903 		goto out;
1904 
1905 	/* An explicit hole, must COW. */
1906 	if (args->disk_bytenr == 0)
1907 		goto out;
1908 
1909 	/* Compressed/encrypted/encoded extents must be COWed. */
1910 	if (btrfs_file_extent_compression(leaf, fi) ||
1911 	    btrfs_file_extent_encryption(leaf, fi) ||
1912 	    btrfs_file_extent_other_encoding(leaf, fi))
1913 		goto out;
1914 
1915 	extent_end = btrfs_file_extent_end(path);
1916 
1917 	/*
1918 	 * The following checks can be expensive, as they need to take other
1919 	 * locks and do btree or rbtree searches, so release the path to avoid
1920 	 * blocking other tasks for too long.
1921 	 */
1922 	btrfs_release_path(path);
1923 
1924 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1925 				    key->offset - args->extent_offset,
1926 				    args->disk_bytenr, args->strict, path);
1927 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1928 	if (ret != 0)
1929 		goto out;
1930 
1931 	if (args->free_path) {
1932 		/*
1933 		 * We don't need the path anymore, plus through the
1934 		 * csum_exist_in_range() call below we will end up allocating
1935 		 * another path. So free the path to avoid unnecessary extra
1936 		 * memory usage.
1937 		 */
1938 		btrfs_free_path(path);
1939 		path = NULL;
1940 	}
1941 
1942 	/* If there are pending snapshots for this root, we must COW. */
1943 	if (args->writeback_path && !is_freespace_inode &&
1944 	    atomic_read(&root->snapshot_force_cow))
1945 		goto out;
1946 
1947 	args->disk_bytenr += args->extent_offset;
1948 	args->disk_bytenr += args->start - key->offset;
1949 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1950 
1951 	/*
1952 	 * Force COW if csums exist in the range. This ensures that csums for a
1953 	 * given extent are either valid or do not exist.
1954 	 */
1955 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1956 				  nowait);
1957 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1958 	if (ret != 0)
1959 		goto out;
1960 
1961 	can_nocow = 1;
1962  out:
1963 	if (args->free_path && path)
1964 		btrfs_free_path(path);
1965 
1966 	return ret < 0 ? ret : can_nocow;
1967 }
1968 
1969 /*
1970  * when nowcow writeback call back.  This checks for snapshots or COW copies
1971  * of the extents that exist in the file, and COWs the file as required.
1972  *
1973  * If no cow copies or snapshots exist, we write directly to the existing
1974  * blocks on disk
1975  */
1976 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1977 				       struct page *locked_page,
1978 				       const u64 start, const u64 end)
1979 {
1980 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1981 	struct btrfs_root *root = inode->root;
1982 	struct btrfs_path *path;
1983 	u64 cow_start = (u64)-1;
1984 	u64 cur_offset = start;
1985 	int ret;
1986 	bool check_prev = true;
1987 	u64 ino = btrfs_ino(inode);
1988 	struct can_nocow_file_extent_args nocow_args = { 0 };
1989 
1990 	/*
1991 	 * Normally on a zoned device we're only doing COW writes, but in case
1992 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1993 	 * writing sequentially and can end up here as well.
1994 	 */
1995 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1996 
1997 	path = btrfs_alloc_path();
1998 	if (!path) {
1999 		ret = -ENOMEM;
2000 		goto error;
2001 	}
2002 
2003 	nocow_args.end = end;
2004 	nocow_args.writeback_path = true;
2005 
2006 	while (1) {
2007 		struct btrfs_block_group *nocow_bg = NULL;
2008 		struct btrfs_ordered_extent *ordered;
2009 		struct btrfs_key found_key;
2010 		struct btrfs_file_extent_item *fi;
2011 		struct extent_buffer *leaf;
2012 		u64 extent_end;
2013 		u64 ram_bytes;
2014 		u64 nocow_end;
2015 		int extent_type;
2016 		bool is_prealloc;
2017 
2018 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2019 					       cur_offset, 0);
2020 		if (ret < 0)
2021 			goto error;
2022 
2023 		/*
2024 		 * If there is no extent for our range when doing the initial
2025 		 * search, then go back to the previous slot as it will be the
2026 		 * one containing the search offset
2027 		 */
2028 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2029 			leaf = path->nodes[0];
2030 			btrfs_item_key_to_cpu(leaf, &found_key,
2031 					      path->slots[0] - 1);
2032 			if (found_key.objectid == ino &&
2033 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2034 				path->slots[0]--;
2035 		}
2036 		check_prev = false;
2037 next_slot:
2038 		/* Go to next leaf if we have exhausted the current one */
2039 		leaf = path->nodes[0];
2040 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2041 			ret = btrfs_next_leaf(root, path);
2042 			if (ret < 0)
2043 				goto error;
2044 			if (ret > 0)
2045 				break;
2046 			leaf = path->nodes[0];
2047 		}
2048 
2049 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2050 
2051 		/* Didn't find anything for our INO */
2052 		if (found_key.objectid > ino)
2053 			break;
2054 		/*
2055 		 * Keep searching until we find an EXTENT_ITEM or there are no
2056 		 * more extents for this inode
2057 		 */
2058 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2059 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2060 			path->slots[0]++;
2061 			goto next_slot;
2062 		}
2063 
2064 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2065 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2066 		    found_key.offset > end)
2067 			break;
2068 
2069 		/*
2070 		 * If the found extent starts after requested offset, then
2071 		 * adjust extent_end to be right before this extent begins
2072 		 */
2073 		if (found_key.offset > cur_offset) {
2074 			extent_end = found_key.offset;
2075 			extent_type = 0;
2076 			goto must_cow;
2077 		}
2078 
2079 		/*
2080 		 * Found extent which begins before our range and potentially
2081 		 * intersect it
2082 		 */
2083 		fi = btrfs_item_ptr(leaf, path->slots[0],
2084 				    struct btrfs_file_extent_item);
2085 		extent_type = btrfs_file_extent_type(leaf, fi);
2086 		/* If this is triggered then we have a memory corruption. */
2087 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2088 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2089 			ret = -EUCLEAN;
2090 			goto error;
2091 		}
2092 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2093 		extent_end = btrfs_file_extent_end(path);
2094 
2095 		/*
2096 		 * If the extent we got ends before our current offset, skip to
2097 		 * the next extent.
2098 		 */
2099 		if (extent_end <= cur_offset) {
2100 			path->slots[0]++;
2101 			goto next_slot;
2102 		}
2103 
2104 		nocow_args.start = cur_offset;
2105 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2106 		if (ret < 0)
2107 			goto error;
2108 		if (ret == 0)
2109 			goto must_cow;
2110 
2111 		ret = 0;
2112 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2113 		if (!nocow_bg) {
2114 must_cow:
2115 			/*
2116 			 * If we can't perform NOCOW writeback for the range,
2117 			 * then record the beginning of the range that needs to
2118 			 * be COWed.  It will be written out before the next
2119 			 * NOCOW range if we find one, or when exiting this
2120 			 * loop.
2121 			 */
2122 			if (cow_start == (u64)-1)
2123 				cow_start = cur_offset;
2124 			cur_offset = extent_end;
2125 			if (cur_offset > end)
2126 				break;
2127 			if (!path->nodes[0])
2128 				continue;
2129 			path->slots[0]++;
2130 			goto next_slot;
2131 		}
2132 
2133 		/*
2134 		 * COW range from cow_start to found_key.offset - 1. As the key
2135 		 * will contain the beginning of the first extent that can be
2136 		 * NOCOW, following one which needs to be COW'ed
2137 		 */
2138 		if (cow_start != (u64)-1) {
2139 			ret = fallback_to_cow(inode, locked_page,
2140 					      cow_start, found_key.offset - 1);
2141 			cow_start = (u64)-1;
2142 			if (ret) {
2143 				btrfs_dec_nocow_writers(nocow_bg);
2144 				goto error;
2145 			}
2146 		}
2147 
2148 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2149 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2150 		if (is_prealloc) {
2151 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2152 			struct extent_map *em;
2153 
2154 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2155 					  orig_start,
2156 					  nocow_args.disk_bytenr, /* block_start */
2157 					  nocow_args.num_bytes, /* block_len */
2158 					  nocow_args.disk_num_bytes, /* orig_block_len */
2159 					  ram_bytes, BTRFS_COMPRESS_NONE,
2160 					  BTRFS_ORDERED_PREALLOC);
2161 			if (IS_ERR(em)) {
2162 				btrfs_dec_nocow_writers(nocow_bg);
2163 				ret = PTR_ERR(em);
2164 				goto error;
2165 			}
2166 			free_extent_map(em);
2167 		}
2168 
2169 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2170 				nocow_args.num_bytes, nocow_args.num_bytes,
2171 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2172 				is_prealloc
2173 				? (1 << BTRFS_ORDERED_PREALLOC)
2174 				: (1 << BTRFS_ORDERED_NOCOW),
2175 				BTRFS_COMPRESS_NONE);
2176 		btrfs_dec_nocow_writers(nocow_bg);
2177 		if (IS_ERR(ordered)) {
2178 			if (is_prealloc) {
2179 				btrfs_drop_extent_map_range(inode, cur_offset,
2180 							    nocow_end, false);
2181 			}
2182 			ret = PTR_ERR(ordered);
2183 			goto error;
2184 		}
2185 
2186 		if (btrfs_is_data_reloc_root(root))
2187 			/*
2188 			 * Error handled later, as we must prevent
2189 			 * extent_clear_unlock_delalloc() in error handler
2190 			 * from freeing metadata of created ordered extent.
2191 			 */
2192 			ret = btrfs_reloc_clone_csums(ordered);
2193 		btrfs_put_ordered_extent(ordered);
2194 
2195 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2196 					     locked_page, EXTENT_LOCKED |
2197 					     EXTENT_DELALLOC |
2198 					     EXTENT_CLEAR_DATA_RESV,
2199 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2200 
2201 		cur_offset = extent_end;
2202 
2203 		/*
2204 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2205 		 * handler, as metadata for created ordered extent will only
2206 		 * be freed by btrfs_finish_ordered_io().
2207 		 */
2208 		if (ret)
2209 			goto error;
2210 		if (cur_offset > end)
2211 			break;
2212 	}
2213 	btrfs_release_path(path);
2214 
2215 	if (cur_offset <= end && cow_start == (u64)-1)
2216 		cow_start = cur_offset;
2217 
2218 	if (cow_start != (u64)-1) {
2219 		cur_offset = end;
2220 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2221 		cow_start = (u64)-1;
2222 		if (ret)
2223 			goto error;
2224 	}
2225 
2226 	btrfs_free_path(path);
2227 	return 0;
2228 
2229 error:
2230 	/*
2231 	 * If an error happened while a COW region is outstanding, cur_offset
2232 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2233 	 * as well.
2234 	 */
2235 	if (cow_start != (u64)-1)
2236 		cur_offset = cow_start;
2237 	if (cur_offset < end)
2238 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2239 					     locked_page, EXTENT_LOCKED |
2240 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2241 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2242 					     PAGE_START_WRITEBACK |
2243 					     PAGE_END_WRITEBACK);
2244 	btrfs_free_path(path);
2245 	return ret;
2246 }
2247 
2248 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2249 {
2250 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2251 		if (inode->defrag_bytes &&
2252 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2253 			return false;
2254 		return true;
2255 	}
2256 	return false;
2257 }
2258 
2259 /*
2260  * Function to process delayed allocation (create CoW) for ranges which are
2261  * being touched for the first time.
2262  */
2263 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2264 			     u64 start, u64 end, struct writeback_control *wbc)
2265 {
2266 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2267 	int ret;
2268 
2269 	/*
2270 	 * The range must cover part of the @locked_page, or a return of 1
2271 	 * can confuse the caller.
2272 	 */
2273 	ASSERT(!(end <= page_offset(locked_page) ||
2274 		 start >= page_offset(locked_page) + PAGE_SIZE));
2275 
2276 	if (should_nocow(inode, start, end)) {
2277 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2278 		goto out;
2279 	}
2280 
2281 	if (btrfs_inode_can_compress(inode) &&
2282 	    inode_need_compress(inode, start, end) &&
2283 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2284 		return 1;
2285 
2286 	if (zoned)
2287 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2288 				       true);
2289 	else
2290 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2291 				     false, false);
2292 
2293 out:
2294 	if (ret < 0)
2295 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2296 					      end - start + 1);
2297 	return ret;
2298 }
2299 
2300 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2301 				 struct extent_state *orig, u64 split)
2302 {
2303 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2304 	u64 size;
2305 
2306 	lockdep_assert_held(&inode->io_tree.lock);
2307 
2308 	/* not delalloc, ignore it */
2309 	if (!(orig->state & EXTENT_DELALLOC))
2310 		return;
2311 
2312 	size = orig->end - orig->start + 1;
2313 	if (size > fs_info->max_extent_size) {
2314 		u32 num_extents;
2315 		u64 new_size;
2316 
2317 		/*
2318 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2319 		 * applies here, just in reverse.
2320 		 */
2321 		new_size = orig->end - split + 1;
2322 		num_extents = count_max_extents(fs_info, new_size);
2323 		new_size = split - orig->start;
2324 		num_extents += count_max_extents(fs_info, new_size);
2325 		if (count_max_extents(fs_info, size) >= num_extents)
2326 			return;
2327 	}
2328 
2329 	spin_lock(&inode->lock);
2330 	btrfs_mod_outstanding_extents(inode, 1);
2331 	spin_unlock(&inode->lock);
2332 }
2333 
2334 /*
2335  * Handle merged delayed allocation extents so we can keep track of new extents
2336  * that are just merged onto old extents, such as when we are doing sequential
2337  * writes, so we can properly account for the metadata space we'll need.
2338  */
2339 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2340 				 struct extent_state *other)
2341 {
2342 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2343 	u64 new_size, old_size;
2344 	u32 num_extents;
2345 
2346 	lockdep_assert_held(&inode->io_tree.lock);
2347 
2348 	/* not delalloc, ignore it */
2349 	if (!(other->state & EXTENT_DELALLOC))
2350 		return;
2351 
2352 	if (new->start > other->start)
2353 		new_size = new->end - other->start + 1;
2354 	else
2355 		new_size = other->end - new->start + 1;
2356 
2357 	/* we're not bigger than the max, unreserve the space and go */
2358 	if (new_size <= fs_info->max_extent_size) {
2359 		spin_lock(&inode->lock);
2360 		btrfs_mod_outstanding_extents(inode, -1);
2361 		spin_unlock(&inode->lock);
2362 		return;
2363 	}
2364 
2365 	/*
2366 	 * We have to add up either side to figure out how many extents were
2367 	 * accounted for before we merged into one big extent.  If the number of
2368 	 * extents we accounted for is <= the amount we need for the new range
2369 	 * then we can return, otherwise drop.  Think of it like this
2370 	 *
2371 	 * [ 4k][MAX_SIZE]
2372 	 *
2373 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2374 	 * need 2 outstanding extents, on one side we have 1 and the other side
2375 	 * we have 1 so they are == and we can return.  But in this case
2376 	 *
2377 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2378 	 *
2379 	 * Each range on their own accounts for 2 extents, but merged together
2380 	 * they are only 3 extents worth of accounting, so we need to drop in
2381 	 * this case.
2382 	 */
2383 	old_size = other->end - other->start + 1;
2384 	num_extents = count_max_extents(fs_info, old_size);
2385 	old_size = new->end - new->start + 1;
2386 	num_extents += count_max_extents(fs_info, old_size);
2387 	if (count_max_extents(fs_info, new_size) >= num_extents)
2388 		return;
2389 
2390 	spin_lock(&inode->lock);
2391 	btrfs_mod_outstanding_extents(inode, -1);
2392 	spin_unlock(&inode->lock);
2393 }
2394 
2395 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2396 {
2397 	struct btrfs_root *root = inode->root;
2398 	struct btrfs_fs_info *fs_info = root->fs_info;
2399 
2400 	spin_lock(&root->delalloc_lock);
2401 	ASSERT(list_empty(&inode->delalloc_inodes));
2402 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2403 	root->nr_delalloc_inodes++;
2404 	if (root->nr_delalloc_inodes == 1) {
2405 		spin_lock(&fs_info->delalloc_root_lock);
2406 		ASSERT(list_empty(&root->delalloc_root));
2407 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2408 		spin_unlock(&fs_info->delalloc_root_lock);
2409 	}
2410 	spin_unlock(&root->delalloc_lock);
2411 }
2412 
2413 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2414 {
2415 	struct btrfs_root *root = inode->root;
2416 	struct btrfs_fs_info *fs_info = root->fs_info;
2417 
2418 	lockdep_assert_held(&root->delalloc_lock);
2419 
2420 	/*
2421 	 * We may be called after the inode was already deleted from the list,
2422 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2423 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2424 	 * still has ->delalloc_bytes > 0.
2425 	 */
2426 	if (!list_empty(&inode->delalloc_inodes)) {
2427 		list_del_init(&inode->delalloc_inodes);
2428 		root->nr_delalloc_inodes--;
2429 		if (!root->nr_delalloc_inodes) {
2430 			ASSERT(list_empty(&root->delalloc_inodes));
2431 			spin_lock(&fs_info->delalloc_root_lock);
2432 			ASSERT(!list_empty(&root->delalloc_root));
2433 			list_del_init(&root->delalloc_root);
2434 			spin_unlock(&fs_info->delalloc_root_lock);
2435 		}
2436 	}
2437 }
2438 
2439 /*
2440  * Properly track delayed allocation bytes in the inode and to maintain the
2441  * list of inodes that have pending delalloc work to be done.
2442  */
2443 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2444 			       u32 bits)
2445 {
2446 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2447 
2448 	lockdep_assert_held(&inode->io_tree.lock);
2449 
2450 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2451 		WARN_ON(1);
2452 	/*
2453 	 * set_bit and clear bit hooks normally require _irqsave/restore
2454 	 * but in this case, we are only testing for the DELALLOC
2455 	 * bit, which is only set or cleared with irqs on
2456 	 */
2457 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2458 		u64 len = state->end + 1 - state->start;
2459 		u64 prev_delalloc_bytes;
2460 		u32 num_extents = count_max_extents(fs_info, len);
2461 
2462 		spin_lock(&inode->lock);
2463 		btrfs_mod_outstanding_extents(inode, num_extents);
2464 		spin_unlock(&inode->lock);
2465 
2466 		/* For sanity tests */
2467 		if (btrfs_is_testing(fs_info))
2468 			return;
2469 
2470 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2471 					 fs_info->delalloc_batch);
2472 		spin_lock(&inode->lock);
2473 		prev_delalloc_bytes = inode->delalloc_bytes;
2474 		inode->delalloc_bytes += len;
2475 		if (bits & EXTENT_DEFRAG)
2476 			inode->defrag_bytes += len;
2477 		spin_unlock(&inode->lock);
2478 
2479 		/*
2480 		 * We don't need to be under the protection of the inode's lock,
2481 		 * because we are called while holding the inode's io_tree lock
2482 		 * and are therefore protected against concurrent calls of this
2483 		 * function and btrfs_clear_delalloc_extent().
2484 		 */
2485 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2486 			btrfs_add_delalloc_inode(inode);
2487 	}
2488 
2489 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2490 	    (bits & EXTENT_DELALLOC_NEW)) {
2491 		spin_lock(&inode->lock);
2492 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2493 		spin_unlock(&inode->lock);
2494 	}
2495 }
2496 
2497 /*
2498  * Once a range is no longer delalloc this function ensures that proper
2499  * accounting happens.
2500  */
2501 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2502 				 struct extent_state *state, u32 bits)
2503 {
2504 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2505 	u64 len = state->end + 1 - state->start;
2506 	u32 num_extents = count_max_extents(fs_info, len);
2507 
2508 	lockdep_assert_held(&inode->io_tree.lock);
2509 
2510 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2511 		spin_lock(&inode->lock);
2512 		inode->defrag_bytes -= len;
2513 		spin_unlock(&inode->lock);
2514 	}
2515 
2516 	/*
2517 	 * set_bit and clear bit hooks normally require _irqsave/restore
2518 	 * but in this case, we are only testing for the DELALLOC
2519 	 * bit, which is only set or cleared with irqs on
2520 	 */
2521 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2522 		struct btrfs_root *root = inode->root;
2523 		u64 new_delalloc_bytes;
2524 
2525 		spin_lock(&inode->lock);
2526 		btrfs_mod_outstanding_extents(inode, -num_extents);
2527 		spin_unlock(&inode->lock);
2528 
2529 		/*
2530 		 * We don't reserve metadata space for space cache inodes so we
2531 		 * don't need to call delalloc_release_metadata if there is an
2532 		 * error.
2533 		 */
2534 		if (bits & EXTENT_CLEAR_META_RESV &&
2535 		    root != fs_info->tree_root)
2536 			btrfs_delalloc_release_metadata(inode, len, false);
2537 
2538 		/* For sanity tests. */
2539 		if (btrfs_is_testing(fs_info))
2540 			return;
2541 
2542 		if (!btrfs_is_data_reloc_root(root) &&
2543 		    !btrfs_is_free_space_inode(inode) &&
2544 		    !(state->state & EXTENT_NORESERVE) &&
2545 		    (bits & EXTENT_CLEAR_DATA_RESV))
2546 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2547 
2548 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2549 					 fs_info->delalloc_batch);
2550 		spin_lock(&inode->lock);
2551 		inode->delalloc_bytes -= len;
2552 		new_delalloc_bytes = inode->delalloc_bytes;
2553 		spin_unlock(&inode->lock);
2554 
2555 		/*
2556 		 * We don't need to be under the protection of the inode's lock,
2557 		 * because we are called while holding the inode's io_tree lock
2558 		 * and are therefore protected against concurrent calls of this
2559 		 * function and btrfs_set_delalloc_extent().
2560 		 */
2561 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2562 			spin_lock(&root->delalloc_lock);
2563 			btrfs_del_delalloc_inode(inode);
2564 			spin_unlock(&root->delalloc_lock);
2565 		}
2566 	}
2567 
2568 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2569 	    (bits & EXTENT_DELALLOC_NEW)) {
2570 		spin_lock(&inode->lock);
2571 		ASSERT(inode->new_delalloc_bytes >= len);
2572 		inode->new_delalloc_bytes -= len;
2573 		if (bits & EXTENT_ADD_INODE_BYTES)
2574 			inode_add_bytes(&inode->vfs_inode, len);
2575 		spin_unlock(&inode->lock);
2576 	}
2577 }
2578 
2579 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2580 					struct btrfs_ordered_extent *ordered)
2581 {
2582 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2583 	u64 len = bbio->bio.bi_iter.bi_size;
2584 	struct btrfs_ordered_extent *new;
2585 	int ret;
2586 
2587 	/* Must always be called for the beginning of an ordered extent. */
2588 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2589 		return -EINVAL;
2590 
2591 	/* No need to split if the ordered extent covers the entire bio. */
2592 	if (ordered->disk_num_bytes == len) {
2593 		refcount_inc(&ordered->refs);
2594 		bbio->ordered = ordered;
2595 		return 0;
2596 	}
2597 
2598 	/*
2599 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2600 	 * a pre-existing one.
2601 	 */
2602 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2603 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2604 				       ordered->num_bytes, len,
2605 				       ordered->disk_bytenr);
2606 		if (ret)
2607 			return ret;
2608 	}
2609 
2610 	new = btrfs_split_ordered_extent(ordered, len);
2611 	if (IS_ERR(new))
2612 		return PTR_ERR(new);
2613 	bbio->ordered = new;
2614 	return 0;
2615 }
2616 
2617 /*
2618  * given a list of ordered sums record them in the inode.  This happens
2619  * at IO completion time based on sums calculated at bio submission time.
2620  */
2621 static int add_pending_csums(struct btrfs_trans_handle *trans,
2622 			     struct list_head *list)
2623 {
2624 	struct btrfs_ordered_sum *sum;
2625 	struct btrfs_root *csum_root = NULL;
2626 	int ret;
2627 
2628 	list_for_each_entry(sum, list, list) {
2629 		trans->adding_csums = true;
2630 		if (!csum_root)
2631 			csum_root = btrfs_csum_root(trans->fs_info,
2632 						    sum->logical);
2633 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2634 		trans->adding_csums = false;
2635 		if (ret)
2636 			return ret;
2637 	}
2638 	return 0;
2639 }
2640 
2641 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2642 					 const u64 start,
2643 					 const u64 len,
2644 					 struct extent_state **cached_state)
2645 {
2646 	u64 search_start = start;
2647 	const u64 end = start + len - 1;
2648 
2649 	while (search_start < end) {
2650 		const u64 search_len = end - search_start + 1;
2651 		struct extent_map *em;
2652 		u64 em_len;
2653 		int ret = 0;
2654 
2655 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2656 		if (IS_ERR(em))
2657 			return PTR_ERR(em);
2658 
2659 		if (em->block_start != EXTENT_MAP_HOLE)
2660 			goto next;
2661 
2662 		em_len = em->len;
2663 		if (em->start < search_start)
2664 			em_len -= search_start - em->start;
2665 		if (em_len > search_len)
2666 			em_len = search_len;
2667 
2668 		ret = set_extent_bit(&inode->io_tree, search_start,
2669 				     search_start + em_len - 1,
2670 				     EXTENT_DELALLOC_NEW, cached_state);
2671 next:
2672 		search_start = extent_map_end(em);
2673 		free_extent_map(em);
2674 		if (ret)
2675 			return ret;
2676 	}
2677 	return 0;
2678 }
2679 
2680 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2681 			      unsigned int extra_bits,
2682 			      struct extent_state **cached_state)
2683 {
2684 	WARN_ON(PAGE_ALIGNED(end));
2685 
2686 	if (start >= i_size_read(&inode->vfs_inode) &&
2687 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2688 		/*
2689 		 * There can't be any extents following eof in this case so just
2690 		 * set the delalloc new bit for the range directly.
2691 		 */
2692 		extra_bits |= EXTENT_DELALLOC_NEW;
2693 	} else {
2694 		int ret;
2695 
2696 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2697 						    end + 1 - start,
2698 						    cached_state);
2699 		if (ret)
2700 			return ret;
2701 	}
2702 
2703 	return set_extent_bit(&inode->io_tree, start, end,
2704 			      EXTENT_DELALLOC | extra_bits, cached_state);
2705 }
2706 
2707 /* see btrfs_writepage_start_hook for details on why this is required */
2708 struct btrfs_writepage_fixup {
2709 	struct page *page;
2710 	struct btrfs_inode *inode;
2711 	struct btrfs_work work;
2712 };
2713 
2714 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2715 {
2716 	struct btrfs_writepage_fixup *fixup =
2717 		container_of(work, struct btrfs_writepage_fixup, work);
2718 	struct btrfs_ordered_extent *ordered;
2719 	struct extent_state *cached_state = NULL;
2720 	struct extent_changeset *data_reserved = NULL;
2721 	struct page *page = fixup->page;
2722 	struct btrfs_inode *inode = fixup->inode;
2723 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2724 	u64 page_start = page_offset(page);
2725 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2726 	int ret = 0;
2727 	bool free_delalloc_space = true;
2728 
2729 	/*
2730 	 * This is similar to page_mkwrite, we need to reserve the space before
2731 	 * we take the page lock.
2732 	 */
2733 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2734 					   PAGE_SIZE);
2735 again:
2736 	lock_page(page);
2737 
2738 	/*
2739 	 * Before we queued this fixup, we took a reference on the page.
2740 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2741 	 * address space.
2742 	 */
2743 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2744 		/*
2745 		 * Unfortunately this is a little tricky, either
2746 		 *
2747 		 * 1) We got here and our page had already been dealt with and
2748 		 *    we reserved our space, thus ret == 0, so we need to just
2749 		 *    drop our space reservation and bail.  This can happen the
2750 		 *    first time we come into the fixup worker, or could happen
2751 		 *    while waiting for the ordered extent.
2752 		 * 2) Our page was already dealt with, but we happened to get an
2753 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2754 		 *    this case we obviously don't have anything to release, but
2755 		 *    because the page was already dealt with we don't want to
2756 		 *    mark the page with an error, so make sure we're resetting
2757 		 *    ret to 0.  This is why we have this check _before_ the ret
2758 		 *    check, because we do not want to have a surprise ENOSPC
2759 		 *    when the page was already properly dealt with.
2760 		 */
2761 		if (!ret) {
2762 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2763 			btrfs_delalloc_release_space(inode, data_reserved,
2764 						     page_start, PAGE_SIZE,
2765 						     true);
2766 		}
2767 		ret = 0;
2768 		goto out_page;
2769 	}
2770 
2771 	/*
2772 	 * We can't mess with the page state unless it is locked, so now that
2773 	 * it is locked bail if we failed to make our space reservation.
2774 	 */
2775 	if (ret)
2776 		goto out_page;
2777 
2778 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2779 
2780 	/* already ordered? We're done */
2781 	if (PageOrdered(page))
2782 		goto out_reserved;
2783 
2784 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2785 	if (ordered) {
2786 		unlock_extent(&inode->io_tree, page_start, page_end,
2787 			      &cached_state);
2788 		unlock_page(page);
2789 		btrfs_start_ordered_extent(ordered);
2790 		btrfs_put_ordered_extent(ordered);
2791 		goto again;
2792 	}
2793 
2794 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2795 					&cached_state);
2796 	if (ret)
2797 		goto out_reserved;
2798 
2799 	/*
2800 	 * Everything went as planned, we're now the owner of a dirty page with
2801 	 * delayed allocation bits set and space reserved for our COW
2802 	 * destination.
2803 	 *
2804 	 * The page was dirty when we started, nothing should have cleaned it.
2805 	 */
2806 	BUG_ON(!PageDirty(page));
2807 	free_delalloc_space = false;
2808 out_reserved:
2809 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2810 	if (free_delalloc_space)
2811 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2812 					     PAGE_SIZE, true);
2813 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2814 out_page:
2815 	if (ret) {
2816 		/*
2817 		 * We hit ENOSPC or other errors.  Update the mapping and page
2818 		 * to reflect the errors and clean the page.
2819 		 */
2820 		mapping_set_error(page->mapping, ret);
2821 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2822 					       PAGE_SIZE, !ret);
2823 		clear_page_dirty_for_io(page);
2824 	}
2825 	btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2826 	unlock_page(page);
2827 	put_page(page);
2828 	kfree(fixup);
2829 	extent_changeset_free(data_reserved);
2830 	/*
2831 	 * As a precaution, do a delayed iput in case it would be the last iput
2832 	 * that could need flushing space. Recursing back to fixup worker would
2833 	 * deadlock.
2834 	 */
2835 	btrfs_add_delayed_iput(inode);
2836 }
2837 
2838 /*
2839  * There are a few paths in the higher layers of the kernel that directly
2840  * set the page dirty bit without asking the filesystem if it is a
2841  * good idea.  This causes problems because we want to make sure COW
2842  * properly happens and the data=ordered rules are followed.
2843  *
2844  * In our case any range that doesn't have the ORDERED bit set
2845  * hasn't been properly setup for IO.  We kick off an async process
2846  * to fix it up.  The async helper will wait for ordered extents, set
2847  * the delalloc bit and make it safe to write the page.
2848  */
2849 int btrfs_writepage_cow_fixup(struct page *page)
2850 {
2851 	struct inode *inode = page->mapping->host;
2852 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2853 	struct btrfs_writepage_fixup *fixup;
2854 
2855 	/* This page has ordered extent covering it already */
2856 	if (PageOrdered(page))
2857 		return 0;
2858 
2859 	/*
2860 	 * PageChecked is set below when we create a fixup worker for this page,
2861 	 * don't try to create another one if we're already PageChecked()
2862 	 *
2863 	 * The extent_io writepage code will redirty the page if we send back
2864 	 * EAGAIN.
2865 	 */
2866 	if (PageChecked(page))
2867 		return -EAGAIN;
2868 
2869 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2870 	if (!fixup)
2871 		return -EAGAIN;
2872 
2873 	/*
2874 	 * We are already holding a reference to this inode from
2875 	 * write_cache_pages.  We need to hold it because the space reservation
2876 	 * takes place outside of the page lock, and we can't trust
2877 	 * page->mapping outside of the page lock.
2878 	 */
2879 	ihold(inode);
2880 	btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2881 	get_page(page);
2882 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2883 	fixup->page = page;
2884 	fixup->inode = BTRFS_I(inode);
2885 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2886 
2887 	return -EAGAIN;
2888 }
2889 
2890 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2891 				       struct btrfs_inode *inode, u64 file_pos,
2892 				       struct btrfs_file_extent_item *stack_fi,
2893 				       const bool update_inode_bytes,
2894 				       u64 qgroup_reserved)
2895 {
2896 	struct btrfs_root *root = inode->root;
2897 	const u64 sectorsize = root->fs_info->sectorsize;
2898 	struct btrfs_path *path;
2899 	struct extent_buffer *leaf;
2900 	struct btrfs_key ins;
2901 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2902 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2903 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2904 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2905 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2906 	struct btrfs_drop_extents_args drop_args = { 0 };
2907 	int ret;
2908 
2909 	path = btrfs_alloc_path();
2910 	if (!path)
2911 		return -ENOMEM;
2912 
2913 	/*
2914 	 * we may be replacing one extent in the tree with another.
2915 	 * The new extent is pinned in the extent map, and we don't want
2916 	 * to drop it from the cache until it is completely in the btree.
2917 	 *
2918 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2919 	 * the caller is expected to unpin it and allow it to be merged
2920 	 * with the others.
2921 	 */
2922 	drop_args.path = path;
2923 	drop_args.start = file_pos;
2924 	drop_args.end = file_pos + num_bytes;
2925 	drop_args.replace_extent = true;
2926 	drop_args.extent_item_size = sizeof(*stack_fi);
2927 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2928 	if (ret)
2929 		goto out;
2930 
2931 	if (!drop_args.extent_inserted) {
2932 		ins.objectid = btrfs_ino(inode);
2933 		ins.offset = file_pos;
2934 		ins.type = BTRFS_EXTENT_DATA_KEY;
2935 
2936 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2937 					      sizeof(*stack_fi));
2938 		if (ret)
2939 			goto out;
2940 	}
2941 	leaf = path->nodes[0];
2942 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2943 	write_extent_buffer(leaf, stack_fi,
2944 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2945 			sizeof(struct btrfs_file_extent_item));
2946 
2947 	btrfs_mark_buffer_dirty(trans, leaf);
2948 	btrfs_release_path(path);
2949 
2950 	/*
2951 	 * If we dropped an inline extent here, we know the range where it is
2952 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2953 	 * number of bytes only for that range containing the inline extent.
2954 	 * The remaining of the range will be processed when clearning the
2955 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2956 	 */
2957 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2958 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2959 
2960 		inline_size = drop_args.bytes_found - inline_size;
2961 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2962 		drop_args.bytes_found -= inline_size;
2963 		num_bytes -= sectorsize;
2964 	}
2965 
2966 	if (update_inode_bytes)
2967 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2968 
2969 	ins.objectid = disk_bytenr;
2970 	ins.offset = disk_num_bytes;
2971 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2972 
2973 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2974 	if (ret)
2975 		goto out;
2976 
2977 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2978 					       file_pos - offset,
2979 					       qgroup_reserved, &ins);
2980 out:
2981 	btrfs_free_path(path);
2982 
2983 	return ret;
2984 }
2985 
2986 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2987 					 u64 start, u64 len)
2988 {
2989 	struct btrfs_block_group *cache;
2990 
2991 	cache = btrfs_lookup_block_group(fs_info, start);
2992 	ASSERT(cache);
2993 
2994 	spin_lock(&cache->lock);
2995 	cache->delalloc_bytes -= len;
2996 	spin_unlock(&cache->lock);
2997 
2998 	btrfs_put_block_group(cache);
2999 }
3000 
3001 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3002 					     struct btrfs_ordered_extent *oe)
3003 {
3004 	struct btrfs_file_extent_item stack_fi;
3005 	bool update_inode_bytes;
3006 	u64 num_bytes = oe->num_bytes;
3007 	u64 ram_bytes = oe->ram_bytes;
3008 
3009 	memset(&stack_fi, 0, sizeof(stack_fi));
3010 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3011 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3012 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3013 						   oe->disk_num_bytes);
3014 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3015 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3016 		num_bytes = oe->truncated_len;
3017 		ram_bytes = num_bytes;
3018 	}
3019 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3020 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3021 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3022 	/* Encryption and other encoding is reserved and all 0 */
3023 
3024 	/*
3025 	 * For delalloc, when completing an ordered extent we update the inode's
3026 	 * bytes when clearing the range in the inode's io tree, so pass false
3027 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3028 	 * except if the ordered extent was truncated.
3029 	 */
3030 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3031 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3032 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3033 
3034 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3035 					   oe->file_offset, &stack_fi,
3036 					   update_inode_bytes, oe->qgroup_rsv);
3037 }
3038 
3039 /*
3040  * As ordered data IO finishes, this gets called so we can finish
3041  * an ordered extent if the range of bytes in the file it covers are
3042  * fully written.
3043  */
3044 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3045 {
3046 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3047 	struct btrfs_root *root = inode->root;
3048 	struct btrfs_fs_info *fs_info = root->fs_info;
3049 	struct btrfs_trans_handle *trans = NULL;
3050 	struct extent_io_tree *io_tree = &inode->io_tree;
3051 	struct extent_state *cached_state = NULL;
3052 	u64 start, end;
3053 	int compress_type = 0;
3054 	int ret = 0;
3055 	u64 logical_len = ordered_extent->num_bytes;
3056 	bool freespace_inode;
3057 	bool truncated = false;
3058 	bool clear_reserved_extent = true;
3059 	unsigned int clear_bits = EXTENT_DEFRAG;
3060 
3061 	start = ordered_extent->file_offset;
3062 	end = start + ordered_extent->num_bytes - 1;
3063 
3064 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3065 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3066 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3067 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3068 		clear_bits |= EXTENT_DELALLOC_NEW;
3069 
3070 	freespace_inode = btrfs_is_free_space_inode(inode);
3071 	if (!freespace_inode)
3072 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3073 
3074 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3075 		ret = -EIO;
3076 		goto out;
3077 	}
3078 
3079 	if (btrfs_is_zoned(fs_info))
3080 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3081 					ordered_extent->disk_num_bytes);
3082 
3083 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3084 		truncated = true;
3085 		logical_len = ordered_extent->truncated_len;
3086 		/* Truncated the entire extent, don't bother adding */
3087 		if (!logical_len)
3088 			goto out;
3089 	}
3090 
3091 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3092 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3093 
3094 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3095 		if (freespace_inode)
3096 			trans = btrfs_join_transaction_spacecache(root);
3097 		else
3098 			trans = btrfs_join_transaction(root);
3099 		if (IS_ERR(trans)) {
3100 			ret = PTR_ERR(trans);
3101 			trans = NULL;
3102 			goto out;
3103 		}
3104 		trans->block_rsv = &inode->block_rsv;
3105 		ret = btrfs_update_inode_fallback(trans, inode);
3106 		if (ret) /* -ENOMEM or corruption */
3107 			btrfs_abort_transaction(trans, ret);
3108 		goto out;
3109 	}
3110 
3111 	clear_bits |= EXTENT_LOCKED;
3112 	lock_extent(io_tree, start, end, &cached_state);
3113 
3114 	if (freespace_inode)
3115 		trans = btrfs_join_transaction_spacecache(root);
3116 	else
3117 		trans = btrfs_join_transaction(root);
3118 	if (IS_ERR(trans)) {
3119 		ret = PTR_ERR(trans);
3120 		trans = NULL;
3121 		goto out;
3122 	}
3123 
3124 	trans->block_rsv = &inode->block_rsv;
3125 
3126 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3127 	if (ret)
3128 		goto out;
3129 
3130 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3131 		compress_type = ordered_extent->compress_type;
3132 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3133 		BUG_ON(compress_type);
3134 		ret = btrfs_mark_extent_written(trans, inode,
3135 						ordered_extent->file_offset,
3136 						ordered_extent->file_offset +
3137 						logical_len);
3138 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3139 						  ordered_extent->disk_num_bytes);
3140 	} else {
3141 		BUG_ON(root == fs_info->tree_root);
3142 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3143 		if (!ret) {
3144 			clear_reserved_extent = false;
3145 			btrfs_release_delalloc_bytes(fs_info,
3146 						ordered_extent->disk_bytenr,
3147 						ordered_extent->disk_num_bytes);
3148 		}
3149 	}
3150 	if (ret < 0) {
3151 		btrfs_abort_transaction(trans, ret);
3152 		goto out;
3153 	}
3154 
3155 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3156 				 ordered_extent->num_bytes, trans->transid);
3157 	if (ret < 0) {
3158 		btrfs_abort_transaction(trans, ret);
3159 		goto out;
3160 	}
3161 
3162 	ret = add_pending_csums(trans, &ordered_extent->list);
3163 	if (ret) {
3164 		btrfs_abort_transaction(trans, ret);
3165 		goto out;
3166 	}
3167 
3168 	/*
3169 	 * If this is a new delalloc range, clear its new delalloc flag to
3170 	 * update the inode's number of bytes. This needs to be done first
3171 	 * before updating the inode item.
3172 	 */
3173 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3174 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3175 		clear_extent_bit(&inode->io_tree, start, end,
3176 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3177 				 &cached_state);
3178 
3179 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3180 	ret = btrfs_update_inode_fallback(trans, inode);
3181 	if (ret) { /* -ENOMEM or corruption */
3182 		btrfs_abort_transaction(trans, ret);
3183 		goto out;
3184 	}
3185 	ret = 0;
3186 out:
3187 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3188 			 &cached_state);
3189 
3190 	if (trans)
3191 		btrfs_end_transaction(trans);
3192 
3193 	if (ret || truncated) {
3194 		u64 unwritten_start = start;
3195 
3196 		/*
3197 		 * If we failed to finish this ordered extent for any reason we
3198 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3199 		 * extent, and mark the inode with the error if it wasn't
3200 		 * already set.  Any error during writeback would have already
3201 		 * set the mapping error, so we need to set it if we're the ones
3202 		 * marking this ordered extent as failed.
3203 		 */
3204 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3205 					     &ordered_extent->flags))
3206 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3207 
3208 		if (truncated)
3209 			unwritten_start += logical_len;
3210 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3211 
3212 		/*
3213 		 * Drop extent maps for the part of the extent we didn't write.
3214 		 *
3215 		 * We have an exception here for the free_space_inode, this is
3216 		 * because when we do btrfs_get_extent() on the free space inode
3217 		 * we will search the commit root.  If this is a new block group
3218 		 * we won't find anything, and we will trip over the assert in
3219 		 * writepage where we do ASSERT(em->block_start !=
3220 		 * EXTENT_MAP_HOLE).
3221 		 *
3222 		 * Theoretically we could also skip this for any NOCOW extent as
3223 		 * we don't mess with the extent map tree in the NOCOW case, but
3224 		 * for now simply skip this if we are the free space inode.
3225 		 */
3226 		if (!btrfs_is_free_space_inode(inode))
3227 			btrfs_drop_extent_map_range(inode, unwritten_start,
3228 						    end, false);
3229 
3230 		/*
3231 		 * If the ordered extent had an IOERR or something else went
3232 		 * wrong we need to return the space for this ordered extent
3233 		 * back to the allocator.  We only free the extent in the
3234 		 * truncated case if we didn't write out the extent at all.
3235 		 *
3236 		 * If we made it past insert_reserved_file_extent before we
3237 		 * errored out then we don't need to do this as the accounting
3238 		 * has already been done.
3239 		 */
3240 		if ((ret || !logical_len) &&
3241 		    clear_reserved_extent &&
3242 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3243 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3244 			/*
3245 			 * Discard the range before returning it back to the
3246 			 * free space pool
3247 			 */
3248 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3249 				btrfs_discard_extent(fs_info,
3250 						ordered_extent->disk_bytenr,
3251 						ordered_extent->disk_num_bytes,
3252 						NULL);
3253 			btrfs_free_reserved_extent(fs_info,
3254 					ordered_extent->disk_bytenr,
3255 					ordered_extent->disk_num_bytes, 1);
3256 			/*
3257 			 * Actually free the qgroup rsv which was released when
3258 			 * the ordered extent was created.
3259 			 */
3260 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3261 						  ordered_extent->qgroup_rsv,
3262 						  BTRFS_QGROUP_RSV_DATA);
3263 		}
3264 	}
3265 
3266 	/*
3267 	 * This needs to be done to make sure anybody waiting knows we are done
3268 	 * updating everything for this ordered extent.
3269 	 */
3270 	btrfs_remove_ordered_extent(inode, ordered_extent);
3271 
3272 	/* once for us */
3273 	btrfs_put_ordered_extent(ordered_extent);
3274 	/* once for the tree */
3275 	btrfs_put_ordered_extent(ordered_extent);
3276 
3277 	return ret;
3278 }
3279 
3280 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3281 {
3282 	if (btrfs_is_zoned(inode_to_fs_info(ordered->inode)) &&
3283 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3284 	    list_empty(&ordered->bioc_list))
3285 		btrfs_finish_ordered_zoned(ordered);
3286 	return btrfs_finish_one_ordered(ordered);
3287 }
3288 
3289 /*
3290  * Verify the checksum for a single sector without any extra action that depend
3291  * on the type of I/O.
3292  */
3293 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3294 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3295 {
3296 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3297 	char *kaddr;
3298 
3299 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3300 
3301 	shash->tfm = fs_info->csum_shash;
3302 
3303 	kaddr = kmap_local_page(page) + pgoff;
3304 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3305 	kunmap_local(kaddr);
3306 
3307 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3308 		return -EIO;
3309 	return 0;
3310 }
3311 
3312 /*
3313  * Verify the checksum of a single data sector.
3314  *
3315  * @bbio:	btrfs_io_bio which contains the csum
3316  * @dev:	device the sector is on
3317  * @bio_offset:	offset to the beginning of the bio (in bytes)
3318  * @bv:		bio_vec to check
3319  *
3320  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3321  * detected, report the error and fill the corrupted range with zero.
3322  *
3323  * Return %true if the sector is ok or had no checksum to start with, else %false.
3324  */
3325 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3326 			u32 bio_offset, struct bio_vec *bv)
3327 {
3328 	struct btrfs_inode *inode = bbio->inode;
3329 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3330 	u64 file_offset = bbio->file_offset + bio_offset;
3331 	u64 end = file_offset + bv->bv_len - 1;
3332 	u8 *csum_expected;
3333 	u8 csum[BTRFS_CSUM_SIZE];
3334 
3335 	ASSERT(bv->bv_len == fs_info->sectorsize);
3336 
3337 	if (!bbio->csum)
3338 		return true;
3339 
3340 	if (btrfs_is_data_reloc_root(inode->root) &&
3341 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3342 			   NULL)) {
3343 		/* Skip the range without csum for data reloc inode */
3344 		clear_extent_bits(&inode->io_tree, file_offset, end,
3345 				  EXTENT_NODATASUM);
3346 		return true;
3347 	}
3348 
3349 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3350 				fs_info->csum_size;
3351 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3352 				    csum_expected))
3353 		goto zeroit;
3354 	return true;
3355 
3356 zeroit:
3357 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3358 				    bbio->mirror_num);
3359 	if (dev)
3360 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3361 	memzero_bvec(bv);
3362 	return false;
3363 }
3364 
3365 /*
3366  * Perform a delayed iput on @inode.
3367  *
3368  * @inode: The inode we want to perform iput on
3369  *
3370  * This function uses the generic vfs_inode::i_count to track whether we should
3371  * just decrement it (in case it's > 1) or if this is the last iput then link
3372  * the inode to the delayed iput machinery. Delayed iputs are processed at
3373  * transaction commit time/superblock commit/cleaner kthread.
3374  */
3375 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3376 {
3377 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3378 	unsigned long flags;
3379 
3380 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3381 		return;
3382 
3383 	atomic_inc(&fs_info->nr_delayed_iputs);
3384 	/*
3385 	 * Need to be irq safe here because we can be called from either an irq
3386 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3387 	 * context.
3388 	 */
3389 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3390 	ASSERT(list_empty(&inode->delayed_iput));
3391 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3392 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3393 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3394 		wake_up_process(fs_info->cleaner_kthread);
3395 }
3396 
3397 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3398 				    struct btrfs_inode *inode)
3399 {
3400 	list_del_init(&inode->delayed_iput);
3401 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3402 	iput(&inode->vfs_inode);
3403 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3404 		wake_up(&fs_info->delayed_iputs_wait);
3405 	spin_lock_irq(&fs_info->delayed_iput_lock);
3406 }
3407 
3408 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3409 				   struct btrfs_inode *inode)
3410 {
3411 	if (!list_empty(&inode->delayed_iput)) {
3412 		spin_lock_irq(&fs_info->delayed_iput_lock);
3413 		if (!list_empty(&inode->delayed_iput))
3414 			run_delayed_iput_locked(fs_info, inode);
3415 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3416 	}
3417 }
3418 
3419 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3420 {
3421 	/*
3422 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3423 	 * calls btrfs_add_delayed_iput() and that needs to lock
3424 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3425 	 * prevent a deadlock.
3426 	 */
3427 	spin_lock_irq(&fs_info->delayed_iput_lock);
3428 	while (!list_empty(&fs_info->delayed_iputs)) {
3429 		struct btrfs_inode *inode;
3430 
3431 		inode = list_first_entry(&fs_info->delayed_iputs,
3432 				struct btrfs_inode, delayed_iput);
3433 		run_delayed_iput_locked(fs_info, inode);
3434 		if (need_resched()) {
3435 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3436 			cond_resched();
3437 			spin_lock_irq(&fs_info->delayed_iput_lock);
3438 		}
3439 	}
3440 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3441 }
3442 
3443 /*
3444  * Wait for flushing all delayed iputs
3445  *
3446  * @fs_info:  the filesystem
3447  *
3448  * This will wait on any delayed iputs that are currently running with KILLABLE
3449  * set.  Once they are all done running we will return, unless we are killed in
3450  * which case we return EINTR. This helps in user operations like fallocate etc
3451  * that might get blocked on the iputs.
3452  *
3453  * Return EINTR if we were killed, 0 if nothing's pending
3454  */
3455 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3456 {
3457 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3458 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3459 	if (ret)
3460 		return -EINTR;
3461 	return 0;
3462 }
3463 
3464 /*
3465  * This creates an orphan entry for the given inode in case something goes wrong
3466  * in the middle of an unlink.
3467  */
3468 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3469 		     struct btrfs_inode *inode)
3470 {
3471 	int ret;
3472 
3473 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3474 	if (ret && ret != -EEXIST) {
3475 		btrfs_abort_transaction(trans, ret);
3476 		return ret;
3477 	}
3478 
3479 	return 0;
3480 }
3481 
3482 /*
3483  * We have done the delete so we can go ahead and remove the orphan item for
3484  * this particular inode.
3485  */
3486 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3487 			    struct btrfs_inode *inode)
3488 {
3489 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3490 }
3491 
3492 /*
3493  * this cleans up any orphans that may be left on the list from the last use
3494  * of this root.
3495  */
3496 int btrfs_orphan_cleanup(struct btrfs_root *root)
3497 {
3498 	struct btrfs_fs_info *fs_info = root->fs_info;
3499 	struct btrfs_path *path;
3500 	struct extent_buffer *leaf;
3501 	struct btrfs_key key, found_key;
3502 	struct btrfs_trans_handle *trans;
3503 	struct inode *inode;
3504 	u64 last_objectid = 0;
3505 	int ret = 0, nr_unlink = 0;
3506 
3507 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3508 		return 0;
3509 
3510 	path = btrfs_alloc_path();
3511 	if (!path) {
3512 		ret = -ENOMEM;
3513 		goto out;
3514 	}
3515 	path->reada = READA_BACK;
3516 
3517 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3518 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3519 	key.offset = (u64)-1;
3520 
3521 	while (1) {
3522 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3523 		if (ret < 0)
3524 			goto out;
3525 
3526 		/*
3527 		 * if ret == 0 means we found what we were searching for, which
3528 		 * is weird, but possible, so only screw with path if we didn't
3529 		 * find the key and see if we have stuff that matches
3530 		 */
3531 		if (ret > 0) {
3532 			ret = 0;
3533 			if (path->slots[0] == 0)
3534 				break;
3535 			path->slots[0]--;
3536 		}
3537 
3538 		/* pull out the item */
3539 		leaf = path->nodes[0];
3540 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3541 
3542 		/* make sure the item matches what we want */
3543 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3544 			break;
3545 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3546 			break;
3547 
3548 		/* release the path since we're done with it */
3549 		btrfs_release_path(path);
3550 
3551 		/*
3552 		 * this is where we are basically btrfs_lookup, without the
3553 		 * crossing root thing.  we store the inode number in the
3554 		 * offset of the orphan item.
3555 		 */
3556 
3557 		if (found_key.offset == last_objectid) {
3558 			/*
3559 			 * We found the same inode as before. This means we were
3560 			 * not able to remove its items via eviction triggered
3561 			 * by an iput(). A transaction abort may have happened,
3562 			 * due to -ENOSPC for example, so try to grab the error
3563 			 * that lead to a transaction abort, if any.
3564 			 */
3565 			btrfs_err(fs_info,
3566 				  "Error removing orphan entry, stopping orphan cleanup");
3567 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3568 			goto out;
3569 		}
3570 
3571 		last_objectid = found_key.offset;
3572 
3573 		found_key.objectid = found_key.offset;
3574 		found_key.type = BTRFS_INODE_ITEM_KEY;
3575 		found_key.offset = 0;
3576 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3577 		if (IS_ERR(inode)) {
3578 			ret = PTR_ERR(inode);
3579 			inode = NULL;
3580 			if (ret != -ENOENT)
3581 				goto out;
3582 		}
3583 
3584 		if (!inode && root == fs_info->tree_root) {
3585 			struct btrfs_root *dead_root;
3586 			int is_dead_root = 0;
3587 
3588 			/*
3589 			 * This is an orphan in the tree root. Currently these
3590 			 * could come from 2 sources:
3591 			 *  a) a root (snapshot/subvolume) deletion in progress
3592 			 *  b) a free space cache inode
3593 			 * We need to distinguish those two, as the orphan item
3594 			 * for a root must not get deleted before the deletion
3595 			 * of the snapshot/subvolume's tree completes.
3596 			 *
3597 			 * btrfs_find_orphan_roots() ran before us, which has
3598 			 * found all deleted roots and loaded them into
3599 			 * fs_info->fs_roots_radix. So here we can find if an
3600 			 * orphan item corresponds to a deleted root by looking
3601 			 * up the root from that radix tree.
3602 			 */
3603 
3604 			spin_lock(&fs_info->fs_roots_radix_lock);
3605 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3606 							 (unsigned long)found_key.objectid);
3607 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3608 				is_dead_root = 1;
3609 			spin_unlock(&fs_info->fs_roots_radix_lock);
3610 
3611 			if (is_dead_root) {
3612 				/* prevent this orphan from being found again */
3613 				key.offset = found_key.objectid - 1;
3614 				continue;
3615 			}
3616 
3617 		}
3618 
3619 		/*
3620 		 * If we have an inode with links, there are a couple of
3621 		 * possibilities:
3622 		 *
3623 		 * 1. We were halfway through creating fsverity metadata for the
3624 		 * file. In that case, the orphan item represents incomplete
3625 		 * fsverity metadata which must be cleaned up with
3626 		 * btrfs_drop_verity_items and deleting the orphan item.
3627 
3628 		 * 2. Old kernels (before v3.12) used to create an
3629 		 * orphan item for truncate indicating that there were possibly
3630 		 * extent items past i_size that needed to be deleted. In v3.12,
3631 		 * truncate was changed to update i_size in sync with the extent
3632 		 * items, but the (useless) orphan item was still created. Since
3633 		 * v4.18, we don't create the orphan item for truncate at all.
3634 		 *
3635 		 * So, this item could mean that we need to do a truncate, but
3636 		 * only if this filesystem was last used on a pre-v3.12 kernel
3637 		 * and was not cleanly unmounted. The odds of that are quite
3638 		 * slim, and it's a pain to do the truncate now, so just delete
3639 		 * the orphan item.
3640 		 *
3641 		 * It's also possible that this orphan item was supposed to be
3642 		 * deleted but wasn't. The inode number may have been reused,
3643 		 * but either way, we can delete the orphan item.
3644 		 */
3645 		if (!inode || inode->i_nlink) {
3646 			if (inode) {
3647 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3648 				iput(inode);
3649 				inode = NULL;
3650 				if (ret)
3651 					goto out;
3652 			}
3653 			trans = btrfs_start_transaction(root, 1);
3654 			if (IS_ERR(trans)) {
3655 				ret = PTR_ERR(trans);
3656 				goto out;
3657 			}
3658 			btrfs_debug(fs_info, "auto deleting %Lu",
3659 				    found_key.objectid);
3660 			ret = btrfs_del_orphan_item(trans, root,
3661 						    found_key.objectid);
3662 			btrfs_end_transaction(trans);
3663 			if (ret)
3664 				goto out;
3665 			continue;
3666 		}
3667 
3668 		nr_unlink++;
3669 
3670 		/* this will do delete_inode and everything for us */
3671 		iput(inode);
3672 	}
3673 	/* release the path since we're done with it */
3674 	btrfs_release_path(path);
3675 
3676 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3677 		trans = btrfs_join_transaction(root);
3678 		if (!IS_ERR(trans))
3679 			btrfs_end_transaction(trans);
3680 	}
3681 
3682 	if (nr_unlink)
3683 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3684 
3685 out:
3686 	if (ret)
3687 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3688 	btrfs_free_path(path);
3689 	return ret;
3690 }
3691 
3692 /*
3693  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3694  * don't find any xattrs, we know there can't be any acls.
3695  *
3696  * slot is the slot the inode is in, objectid is the objectid of the inode
3697  */
3698 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3699 					  int slot, u64 objectid,
3700 					  int *first_xattr_slot)
3701 {
3702 	u32 nritems = btrfs_header_nritems(leaf);
3703 	struct btrfs_key found_key;
3704 	static u64 xattr_access = 0;
3705 	static u64 xattr_default = 0;
3706 	int scanned = 0;
3707 
3708 	if (!xattr_access) {
3709 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3710 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3711 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3712 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3713 	}
3714 
3715 	slot++;
3716 	*first_xattr_slot = -1;
3717 	while (slot < nritems) {
3718 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3719 
3720 		/* we found a different objectid, there must not be acls */
3721 		if (found_key.objectid != objectid)
3722 			return 0;
3723 
3724 		/* we found an xattr, assume we've got an acl */
3725 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3726 			if (*first_xattr_slot == -1)
3727 				*first_xattr_slot = slot;
3728 			if (found_key.offset == xattr_access ||
3729 			    found_key.offset == xattr_default)
3730 				return 1;
3731 		}
3732 
3733 		/*
3734 		 * we found a key greater than an xattr key, there can't
3735 		 * be any acls later on
3736 		 */
3737 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3738 			return 0;
3739 
3740 		slot++;
3741 		scanned++;
3742 
3743 		/*
3744 		 * it goes inode, inode backrefs, xattrs, extents,
3745 		 * so if there are a ton of hard links to an inode there can
3746 		 * be a lot of backrefs.  Don't waste time searching too hard,
3747 		 * this is just an optimization
3748 		 */
3749 		if (scanned >= 8)
3750 			break;
3751 	}
3752 	/* we hit the end of the leaf before we found an xattr or
3753 	 * something larger than an xattr.  We have to assume the inode
3754 	 * has acls
3755 	 */
3756 	if (*first_xattr_slot == -1)
3757 		*first_xattr_slot = slot;
3758 	return 1;
3759 }
3760 
3761 /*
3762  * read an inode from the btree into the in-memory inode
3763  */
3764 static int btrfs_read_locked_inode(struct inode *inode,
3765 				   struct btrfs_path *in_path)
3766 {
3767 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3768 	struct btrfs_path *path = in_path;
3769 	struct extent_buffer *leaf;
3770 	struct btrfs_inode_item *inode_item;
3771 	struct btrfs_root *root = BTRFS_I(inode)->root;
3772 	struct btrfs_key location;
3773 	unsigned long ptr;
3774 	int maybe_acls;
3775 	u32 rdev;
3776 	int ret;
3777 	bool filled = false;
3778 	int first_xattr_slot;
3779 
3780 	ret = btrfs_fill_inode(inode, &rdev);
3781 	if (!ret)
3782 		filled = true;
3783 
3784 	if (!path) {
3785 		path = btrfs_alloc_path();
3786 		if (!path)
3787 			return -ENOMEM;
3788 	}
3789 
3790 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3791 
3792 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3793 	if (ret) {
3794 		if (path != in_path)
3795 			btrfs_free_path(path);
3796 		return ret;
3797 	}
3798 
3799 	leaf = path->nodes[0];
3800 
3801 	if (filled)
3802 		goto cache_index;
3803 
3804 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3805 				    struct btrfs_inode_item);
3806 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3807 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3808 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3809 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3810 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3811 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3812 			round_up(i_size_read(inode), fs_info->sectorsize));
3813 
3814 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3815 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3816 
3817 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3818 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3819 
3820 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3821 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3822 
3823 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3824 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3825 
3826 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3827 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3828 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3829 
3830 	inode_set_iversion_queried(inode,
3831 				   btrfs_inode_sequence(leaf, inode_item));
3832 	inode->i_generation = BTRFS_I(inode)->generation;
3833 	inode->i_rdev = 0;
3834 	rdev = btrfs_inode_rdev(leaf, inode_item);
3835 
3836 	BTRFS_I(inode)->index_cnt = (u64)-1;
3837 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3838 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3839 
3840 cache_index:
3841 	/*
3842 	 * If we were modified in the current generation and evicted from memory
3843 	 * and then re-read we need to do a full sync since we don't have any
3844 	 * idea about which extents were modified before we were evicted from
3845 	 * cache.
3846 	 *
3847 	 * This is required for both inode re-read from disk and delayed inode
3848 	 * in the delayed_nodes xarray.
3849 	 */
3850 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3851 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3852 			&BTRFS_I(inode)->runtime_flags);
3853 
3854 	/*
3855 	 * We don't persist the id of the transaction where an unlink operation
3856 	 * against the inode was last made. So here we assume the inode might
3857 	 * have been evicted, and therefore the exact value of last_unlink_trans
3858 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3859 	 * between the inode and its parent if the inode is fsync'ed and the log
3860 	 * replayed. For example, in the scenario:
3861 	 *
3862 	 * touch mydir/foo
3863 	 * ln mydir/foo mydir/bar
3864 	 * sync
3865 	 * unlink mydir/bar
3866 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3867 	 * xfs_io -c fsync mydir/foo
3868 	 * <power failure>
3869 	 * mount fs, triggers fsync log replay
3870 	 *
3871 	 * We must make sure that when we fsync our inode foo we also log its
3872 	 * parent inode, otherwise after log replay the parent still has the
3873 	 * dentry with the "bar" name but our inode foo has a link count of 1
3874 	 * and doesn't have an inode ref with the name "bar" anymore.
3875 	 *
3876 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3877 	 * but it guarantees correctness at the expense of occasional full
3878 	 * transaction commits on fsync if our inode is a directory, or if our
3879 	 * inode is not a directory, logging its parent unnecessarily.
3880 	 */
3881 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3882 
3883 	/*
3884 	 * Same logic as for last_unlink_trans. We don't persist the generation
3885 	 * of the last transaction where this inode was used for a reflink
3886 	 * operation, so after eviction and reloading the inode we must be
3887 	 * pessimistic and assume the last transaction that modified the inode.
3888 	 */
3889 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3890 
3891 	path->slots[0]++;
3892 	if (inode->i_nlink != 1 ||
3893 	    path->slots[0] >= btrfs_header_nritems(leaf))
3894 		goto cache_acl;
3895 
3896 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3897 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3898 		goto cache_acl;
3899 
3900 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3901 	if (location.type == BTRFS_INODE_REF_KEY) {
3902 		struct btrfs_inode_ref *ref;
3903 
3904 		ref = (struct btrfs_inode_ref *)ptr;
3905 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3906 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3907 		struct btrfs_inode_extref *extref;
3908 
3909 		extref = (struct btrfs_inode_extref *)ptr;
3910 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3911 								     extref);
3912 	}
3913 cache_acl:
3914 	/*
3915 	 * try to precache a NULL acl entry for files that don't have
3916 	 * any xattrs or acls
3917 	 */
3918 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3919 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3920 	if (first_xattr_slot != -1) {
3921 		path->slots[0] = first_xattr_slot;
3922 		ret = btrfs_load_inode_props(inode, path);
3923 		if (ret)
3924 			btrfs_err(fs_info,
3925 				  "error loading props for ino %llu (root %llu): %d",
3926 				  btrfs_ino(BTRFS_I(inode)),
3927 				  root->root_key.objectid, ret);
3928 	}
3929 	if (path != in_path)
3930 		btrfs_free_path(path);
3931 
3932 	if (!maybe_acls)
3933 		cache_no_acl(inode);
3934 
3935 	switch (inode->i_mode & S_IFMT) {
3936 	case S_IFREG:
3937 		inode->i_mapping->a_ops = &btrfs_aops;
3938 		inode->i_fop = &btrfs_file_operations;
3939 		inode->i_op = &btrfs_file_inode_operations;
3940 		break;
3941 	case S_IFDIR:
3942 		inode->i_fop = &btrfs_dir_file_operations;
3943 		inode->i_op = &btrfs_dir_inode_operations;
3944 		break;
3945 	case S_IFLNK:
3946 		inode->i_op = &btrfs_symlink_inode_operations;
3947 		inode_nohighmem(inode);
3948 		inode->i_mapping->a_ops = &btrfs_aops;
3949 		break;
3950 	default:
3951 		inode->i_op = &btrfs_special_inode_operations;
3952 		init_special_inode(inode, inode->i_mode, rdev);
3953 		break;
3954 	}
3955 
3956 	btrfs_sync_inode_flags_to_i_flags(inode);
3957 	return 0;
3958 }
3959 
3960 /*
3961  * given a leaf and an inode, copy the inode fields into the leaf
3962  */
3963 static void fill_inode_item(struct btrfs_trans_handle *trans,
3964 			    struct extent_buffer *leaf,
3965 			    struct btrfs_inode_item *item,
3966 			    struct inode *inode)
3967 {
3968 	struct btrfs_map_token token;
3969 	u64 flags;
3970 
3971 	btrfs_init_map_token(&token, leaf);
3972 
3973 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3974 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3975 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3976 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3977 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3978 
3979 	btrfs_set_token_timespec_sec(&token, &item->atime,
3980 				     inode_get_atime_sec(inode));
3981 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3982 				      inode_get_atime_nsec(inode));
3983 
3984 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3985 				     inode_get_mtime_sec(inode));
3986 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3987 				      inode_get_mtime_nsec(inode));
3988 
3989 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3990 				     inode_get_ctime_sec(inode));
3991 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3992 				      inode_get_ctime_nsec(inode));
3993 
3994 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3995 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
3996 
3997 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3998 	btrfs_set_token_inode_generation(&token, item,
3999 					 BTRFS_I(inode)->generation);
4000 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4001 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4002 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4003 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4004 					  BTRFS_I(inode)->ro_flags);
4005 	btrfs_set_token_inode_flags(&token, item, flags);
4006 	btrfs_set_token_inode_block_group(&token, item, 0);
4007 }
4008 
4009 /*
4010  * copy everything in the in-memory inode into the btree.
4011  */
4012 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4013 					    struct btrfs_inode *inode)
4014 {
4015 	struct btrfs_inode_item *inode_item;
4016 	struct btrfs_path *path;
4017 	struct extent_buffer *leaf;
4018 	int ret;
4019 
4020 	path = btrfs_alloc_path();
4021 	if (!path)
4022 		return -ENOMEM;
4023 
4024 	ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
4025 	if (ret) {
4026 		if (ret > 0)
4027 			ret = -ENOENT;
4028 		goto failed;
4029 	}
4030 
4031 	leaf = path->nodes[0];
4032 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4033 				    struct btrfs_inode_item);
4034 
4035 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4036 	btrfs_mark_buffer_dirty(trans, leaf);
4037 	btrfs_set_inode_last_trans(trans, inode);
4038 	ret = 0;
4039 failed:
4040 	btrfs_free_path(path);
4041 	return ret;
4042 }
4043 
4044 /*
4045  * copy everything in the in-memory inode into the btree.
4046  */
4047 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4048 		       struct btrfs_inode *inode)
4049 {
4050 	struct btrfs_root *root = inode->root;
4051 	struct btrfs_fs_info *fs_info = root->fs_info;
4052 	int ret;
4053 
4054 	/*
4055 	 * If the inode is a free space inode, we can deadlock during commit
4056 	 * if we put it into the delayed code.
4057 	 *
4058 	 * The data relocation inode should also be directly updated
4059 	 * without delay
4060 	 */
4061 	if (!btrfs_is_free_space_inode(inode)
4062 	    && !btrfs_is_data_reloc_root(root)
4063 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4064 		btrfs_update_root_times(trans, root);
4065 
4066 		ret = btrfs_delayed_update_inode(trans, inode);
4067 		if (!ret)
4068 			btrfs_set_inode_last_trans(trans, inode);
4069 		return ret;
4070 	}
4071 
4072 	return btrfs_update_inode_item(trans, inode);
4073 }
4074 
4075 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4076 				struct btrfs_inode *inode)
4077 {
4078 	int ret;
4079 
4080 	ret = btrfs_update_inode(trans, inode);
4081 	if (ret == -ENOSPC)
4082 		return btrfs_update_inode_item(trans, inode);
4083 	return ret;
4084 }
4085 
4086 /*
4087  * unlink helper that gets used here in inode.c and in the tree logging
4088  * recovery code.  It remove a link in a directory with a given name, and
4089  * also drops the back refs in the inode to the directory
4090  */
4091 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4092 				struct btrfs_inode *dir,
4093 				struct btrfs_inode *inode,
4094 				const struct fscrypt_str *name,
4095 				struct btrfs_rename_ctx *rename_ctx)
4096 {
4097 	struct btrfs_root *root = dir->root;
4098 	struct btrfs_fs_info *fs_info = root->fs_info;
4099 	struct btrfs_path *path;
4100 	int ret = 0;
4101 	struct btrfs_dir_item *di;
4102 	u64 index;
4103 	u64 ino = btrfs_ino(inode);
4104 	u64 dir_ino = btrfs_ino(dir);
4105 
4106 	path = btrfs_alloc_path();
4107 	if (!path) {
4108 		ret = -ENOMEM;
4109 		goto out;
4110 	}
4111 
4112 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4113 	if (IS_ERR_OR_NULL(di)) {
4114 		ret = di ? PTR_ERR(di) : -ENOENT;
4115 		goto err;
4116 	}
4117 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4118 	if (ret)
4119 		goto err;
4120 	btrfs_release_path(path);
4121 
4122 	/*
4123 	 * If we don't have dir index, we have to get it by looking up
4124 	 * the inode ref, since we get the inode ref, remove it directly,
4125 	 * it is unnecessary to do delayed deletion.
4126 	 *
4127 	 * But if we have dir index, needn't search inode ref to get it.
4128 	 * Since the inode ref is close to the inode item, it is better
4129 	 * that we delay to delete it, and just do this deletion when
4130 	 * we update the inode item.
4131 	 */
4132 	if (inode->dir_index) {
4133 		ret = btrfs_delayed_delete_inode_ref(inode);
4134 		if (!ret) {
4135 			index = inode->dir_index;
4136 			goto skip_backref;
4137 		}
4138 	}
4139 
4140 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4141 	if (ret) {
4142 		btrfs_info(fs_info,
4143 			"failed to delete reference to %.*s, inode %llu parent %llu",
4144 			name->len, name->name, ino, dir_ino);
4145 		btrfs_abort_transaction(trans, ret);
4146 		goto err;
4147 	}
4148 skip_backref:
4149 	if (rename_ctx)
4150 		rename_ctx->index = index;
4151 
4152 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4153 	if (ret) {
4154 		btrfs_abort_transaction(trans, ret);
4155 		goto err;
4156 	}
4157 
4158 	/*
4159 	 * If we are in a rename context, we don't need to update anything in the
4160 	 * log. That will be done later during the rename by btrfs_log_new_name().
4161 	 * Besides that, doing it here would only cause extra unnecessary btree
4162 	 * operations on the log tree, increasing latency for applications.
4163 	 */
4164 	if (!rename_ctx) {
4165 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4166 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4167 	}
4168 
4169 	/*
4170 	 * If we have a pending delayed iput we could end up with the final iput
4171 	 * being run in btrfs-cleaner context.  If we have enough of these built
4172 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4173 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4174 	 * the inode we can run the delayed iput here without any issues as the
4175 	 * final iput won't be done until after we drop the ref we're currently
4176 	 * holding.
4177 	 */
4178 	btrfs_run_delayed_iput(fs_info, inode);
4179 err:
4180 	btrfs_free_path(path);
4181 	if (ret)
4182 		goto out;
4183 
4184 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4185 	inode_inc_iversion(&inode->vfs_inode);
4186 	inode_inc_iversion(&dir->vfs_inode);
4187  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4188 	ret = btrfs_update_inode(trans, dir);
4189 out:
4190 	return ret;
4191 }
4192 
4193 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4194 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4195 		       const struct fscrypt_str *name)
4196 {
4197 	int ret;
4198 
4199 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4200 	if (!ret) {
4201 		drop_nlink(&inode->vfs_inode);
4202 		ret = btrfs_update_inode(trans, inode);
4203 	}
4204 	return ret;
4205 }
4206 
4207 /*
4208  * helper to start transaction for unlink and rmdir.
4209  *
4210  * unlink and rmdir are special in btrfs, they do not always free space, so
4211  * if we cannot make our reservations the normal way try and see if there is
4212  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4213  * allow the unlink to occur.
4214  */
4215 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4216 {
4217 	struct btrfs_root *root = dir->root;
4218 
4219 	return btrfs_start_transaction_fallback_global_rsv(root,
4220 						   BTRFS_UNLINK_METADATA_UNITS);
4221 }
4222 
4223 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4224 {
4225 	struct btrfs_trans_handle *trans;
4226 	struct inode *inode = d_inode(dentry);
4227 	int ret;
4228 	struct fscrypt_name fname;
4229 
4230 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4231 	if (ret)
4232 		return ret;
4233 
4234 	/* This needs to handle no-key deletions later on */
4235 
4236 	trans = __unlink_start_trans(BTRFS_I(dir));
4237 	if (IS_ERR(trans)) {
4238 		ret = PTR_ERR(trans);
4239 		goto fscrypt_free;
4240 	}
4241 
4242 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4243 				false);
4244 
4245 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4246 				 &fname.disk_name);
4247 	if (ret)
4248 		goto end_trans;
4249 
4250 	if (inode->i_nlink == 0) {
4251 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4252 		if (ret)
4253 			goto end_trans;
4254 	}
4255 
4256 end_trans:
4257 	btrfs_end_transaction(trans);
4258 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4259 fscrypt_free:
4260 	fscrypt_free_filename(&fname);
4261 	return ret;
4262 }
4263 
4264 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4265 			       struct btrfs_inode *dir, struct dentry *dentry)
4266 {
4267 	struct btrfs_root *root = dir->root;
4268 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4269 	struct btrfs_path *path;
4270 	struct extent_buffer *leaf;
4271 	struct btrfs_dir_item *di;
4272 	struct btrfs_key key;
4273 	u64 index;
4274 	int ret;
4275 	u64 objectid;
4276 	u64 dir_ino = btrfs_ino(dir);
4277 	struct fscrypt_name fname;
4278 
4279 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4280 	if (ret)
4281 		return ret;
4282 
4283 	/* This needs to handle no-key deletions later on */
4284 
4285 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4286 		objectid = inode->root->root_key.objectid;
4287 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4288 		objectid = inode->location.objectid;
4289 	} else {
4290 		WARN_ON(1);
4291 		fscrypt_free_filename(&fname);
4292 		return -EINVAL;
4293 	}
4294 
4295 	path = btrfs_alloc_path();
4296 	if (!path) {
4297 		ret = -ENOMEM;
4298 		goto out;
4299 	}
4300 
4301 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4302 				   &fname.disk_name, -1);
4303 	if (IS_ERR_OR_NULL(di)) {
4304 		ret = di ? PTR_ERR(di) : -ENOENT;
4305 		goto out;
4306 	}
4307 
4308 	leaf = path->nodes[0];
4309 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4310 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4311 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4312 	if (ret) {
4313 		btrfs_abort_transaction(trans, ret);
4314 		goto out;
4315 	}
4316 	btrfs_release_path(path);
4317 
4318 	/*
4319 	 * This is a placeholder inode for a subvolume we didn't have a
4320 	 * reference to at the time of the snapshot creation.  In the meantime
4321 	 * we could have renamed the real subvol link into our snapshot, so
4322 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4323 	 * Instead simply lookup the dir_index_item for this entry so we can
4324 	 * remove it.  Otherwise we know we have a ref to the root and we can
4325 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4326 	 */
4327 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4328 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4329 		if (IS_ERR_OR_NULL(di)) {
4330 			if (!di)
4331 				ret = -ENOENT;
4332 			else
4333 				ret = PTR_ERR(di);
4334 			btrfs_abort_transaction(trans, ret);
4335 			goto out;
4336 		}
4337 
4338 		leaf = path->nodes[0];
4339 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4340 		index = key.offset;
4341 		btrfs_release_path(path);
4342 	} else {
4343 		ret = btrfs_del_root_ref(trans, objectid,
4344 					 root->root_key.objectid, dir_ino,
4345 					 &index, &fname.disk_name);
4346 		if (ret) {
4347 			btrfs_abort_transaction(trans, ret);
4348 			goto out;
4349 		}
4350 	}
4351 
4352 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4353 	if (ret) {
4354 		btrfs_abort_transaction(trans, ret);
4355 		goto out;
4356 	}
4357 
4358 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4359 	inode_inc_iversion(&dir->vfs_inode);
4360 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4361 	ret = btrfs_update_inode_fallback(trans, dir);
4362 	if (ret)
4363 		btrfs_abort_transaction(trans, ret);
4364 out:
4365 	btrfs_free_path(path);
4366 	fscrypt_free_filename(&fname);
4367 	return ret;
4368 }
4369 
4370 /*
4371  * Helper to check if the subvolume references other subvolumes or if it's
4372  * default.
4373  */
4374 static noinline int may_destroy_subvol(struct btrfs_root *root)
4375 {
4376 	struct btrfs_fs_info *fs_info = root->fs_info;
4377 	struct btrfs_path *path;
4378 	struct btrfs_dir_item *di;
4379 	struct btrfs_key key;
4380 	struct fscrypt_str name = FSTR_INIT("default", 7);
4381 	u64 dir_id;
4382 	int ret;
4383 
4384 	path = btrfs_alloc_path();
4385 	if (!path)
4386 		return -ENOMEM;
4387 
4388 	/* Make sure this root isn't set as the default subvol */
4389 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4390 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4391 				   dir_id, &name, 0);
4392 	if (di && !IS_ERR(di)) {
4393 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4394 		if (key.objectid == root->root_key.objectid) {
4395 			ret = -EPERM;
4396 			btrfs_err(fs_info,
4397 				  "deleting default subvolume %llu is not allowed",
4398 				  key.objectid);
4399 			goto out;
4400 		}
4401 		btrfs_release_path(path);
4402 	}
4403 
4404 	key.objectid = root->root_key.objectid;
4405 	key.type = BTRFS_ROOT_REF_KEY;
4406 	key.offset = (u64)-1;
4407 
4408 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4409 	if (ret < 0)
4410 		goto out;
4411 	if (ret == 0) {
4412 		/*
4413 		 * Key with offset -1 found, there would have to exist a root
4414 		 * with such id, but this is out of valid range.
4415 		 */
4416 		ret = -EUCLEAN;
4417 		goto out;
4418 	}
4419 
4420 	ret = 0;
4421 	if (path->slots[0] > 0) {
4422 		path->slots[0]--;
4423 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4424 		if (key.objectid == root->root_key.objectid &&
4425 		    key.type == BTRFS_ROOT_REF_KEY)
4426 			ret = -ENOTEMPTY;
4427 	}
4428 out:
4429 	btrfs_free_path(path);
4430 	return ret;
4431 }
4432 
4433 /* Delete all dentries for inodes belonging to the root */
4434 static void btrfs_prune_dentries(struct btrfs_root *root)
4435 {
4436 	struct btrfs_fs_info *fs_info = root->fs_info;
4437 	struct rb_node *node;
4438 	struct rb_node *prev;
4439 	struct btrfs_inode *entry;
4440 	struct inode *inode;
4441 	u64 objectid = 0;
4442 
4443 	if (!BTRFS_FS_ERROR(fs_info))
4444 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4445 
4446 	spin_lock(&root->inode_lock);
4447 again:
4448 	node = root->inode_tree.rb_node;
4449 	prev = NULL;
4450 	while (node) {
4451 		prev = node;
4452 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4453 
4454 		if (objectid < btrfs_ino(entry))
4455 			node = node->rb_left;
4456 		else if (objectid > btrfs_ino(entry))
4457 			node = node->rb_right;
4458 		else
4459 			break;
4460 	}
4461 	if (!node) {
4462 		while (prev) {
4463 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4464 			if (objectid <= btrfs_ino(entry)) {
4465 				node = prev;
4466 				break;
4467 			}
4468 			prev = rb_next(prev);
4469 		}
4470 	}
4471 	while (node) {
4472 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4473 		objectid = btrfs_ino(entry) + 1;
4474 		inode = igrab(&entry->vfs_inode);
4475 		if (inode) {
4476 			spin_unlock(&root->inode_lock);
4477 			if (atomic_read(&inode->i_count) > 1)
4478 				d_prune_aliases(inode);
4479 			/*
4480 			 * btrfs_drop_inode will have it removed from the inode
4481 			 * cache when its usage count hits zero.
4482 			 */
4483 			iput(inode);
4484 			cond_resched();
4485 			spin_lock(&root->inode_lock);
4486 			goto again;
4487 		}
4488 
4489 		if (cond_resched_lock(&root->inode_lock))
4490 			goto again;
4491 
4492 		node = rb_next(node);
4493 	}
4494 	spin_unlock(&root->inode_lock);
4495 }
4496 
4497 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4498 {
4499 	struct btrfs_root *root = dir->root;
4500 	struct btrfs_fs_info *fs_info = root->fs_info;
4501 	struct inode *inode = d_inode(dentry);
4502 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4503 	struct btrfs_trans_handle *trans;
4504 	struct btrfs_block_rsv block_rsv;
4505 	u64 root_flags;
4506 	int ret;
4507 
4508 	down_write(&fs_info->subvol_sem);
4509 
4510 	/*
4511 	 * Don't allow to delete a subvolume with send in progress. This is
4512 	 * inside the inode lock so the error handling that has to drop the bit
4513 	 * again is not run concurrently.
4514 	 */
4515 	spin_lock(&dest->root_item_lock);
4516 	if (dest->send_in_progress) {
4517 		spin_unlock(&dest->root_item_lock);
4518 		btrfs_warn(fs_info,
4519 			   "attempt to delete subvolume %llu during send",
4520 			   dest->root_key.objectid);
4521 		ret = -EPERM;
4522 		goto out_up_write;
4523 	}
4524 	if (atomic_read(&dest->nr_swapfiles)) {
4525 		spin_unlock(&dest->root_item_lock);
4526 		btrfs_warn(fs_info,
4527 			   "attempt to delete subvolume %llu with active swapfile",
4528 			   root->root_key.objectid);
4529 		ret = -EPERM;
4530 		goto out_up_write;
4531 	}
4532 	root_flags = btrfs_root_flags(&dest->root_item);
4533 	btrfs_set_root_flags(&dest->root_item,
4534 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4535 	spin_unlock(&dest->root_item_lock);
4536 
4537 	ret = may_destroy_subvol(dest);
4538 	if (ret)
4539 		goto out_undead;
4540 
4541 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4542 	/*
4543 	 * One for dir inode,
4544 	 * two for dir entries,
4545 	 * two for root ref/backref.
4546 	 */
4547 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4548 	if (ret)
4549 		goto out_undead;
4550 
4551 	trans = btrfs_start_transaction(root, 0);
4552 	if (IS_ERR(trans)) {
4553 		ret = PTR_ERR(trans);
4554 		goto out_release;
4555 	}
4556 	trans->block_rsv = &block_rsv;
4557 	trans->bytes_reserved = block_rsv.size;
4558 
4559 	btrfs_record_snapshot_destroy(trans, dir);
4560 
4561 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4562 	if (ret) {
4563 		btrfs_abort_transaction(trans, ret);
4564 		goto out_end_trans;
4565 	}
4566 
4567 	ret = btrfs_record_root_in_trans(trans, dest);
4568 	if (ret) {
4569 		btrfs_abort_transaction(trans, ret);
4570 		goto out_end_trans;
4571 	}
4572 
4573 	memset(&dest->root_item.drop_progress, 0,
4574 		sizeof(dest->root_item.drop_progress));
4575 	btrfs_set_root_drop_level(&dest->root_item, 0);
4576 	btrfs_set_root_refs(&dest->root_item, 0);
4577 
4578 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4579 		ret = btrfs_insert_orphan_item(trans,
4580 					fs_info->tree_root,
4581 					dest->root_key.objectid);
4582 		if (ret) {
4583 			btrfs_abort_transaction(trans, ret);
4584 			goto out_end_trans;
4585 		}
4586 	}
4587 
4588 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4589 				  BTRFS_UUID_KEY_SUBVOL,
4590 				  dest->root_key.objectid);
4591 	if (ret && ret != -ENOENT) {
4592 		btrfs_abort_transaction(trans, ret);
4593 		goto out_end_trans;
4594 	}
4595 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4596 		ret = btrfs_uuid_tree_remove(trans,
4597 					  dest->root_item.received_uuid,
4598 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4599 					  dest->root_key.objectid);
4600 		if (ret && ret != -ENOENT) {
4601 			btrfs_abort_transaction(trans, ret);
4602 			goto out_end_trans;
4603 		}
4604 	}
4605 
4606 	free_anon_bdev(dest->anon_dev);
4607 	dest->anon_dev = 0;
4608 out_end_trans:
4609 	trans->block_rsv = NULL;
4610 	trans->bytes_reserved = 0;
4611 	ret = btrfs_end_transaction(trans);
4612 	inode->i_flags |= S_DEAD;
4613 out_release:
4614 	btrfs_subvolume_release_metadata(root, &block_rsv);
4615 out_undead:
4616 	if (ret) {
4617 		spin_lock(&dest->root_item_lock);
4618 		root_flags = btrfs_root_flags(&dest->root_item);
4619 		btrfs_set_root_flags(&dest->root_item,
4620 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4621 		spin_unlock(&dest->root_item_lock);
4622 	}
4623 out_up_write:
4624 	up_write(&fs_info->subvol_sem);
4625 	if (!ret) {
4626 		d_invalidate(dentry);
4627 		btrfs_prune_dentries(dest);
4628 		ASSERT(dest->send_in_progress == 0);
4629 	}
4630 
4631 	return ret;
4632 }
4633 
4634 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4635 {
4636 	struct inode *inode = d_inode(dentry);
4637 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4638 	int err = 0;
4639 	struct btrfs_trans_handle *trans;
4640 	u64 last_unlink_trans;
4641 	struct fscrypt_name fname;
4642 
4643 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4644 		return -ENOTEMPTY;
4645 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4646 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4647 			btrfs_err(fs_info,
4648 			"extent tree v2 doesn't support snapshot deletion yet");
4649 			return -EOPNOTSUPP;
4650 		}
4651 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4652 	}
4653 
4654 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4655 	if (err)
4656 		return err;
4657 
4658 	/* This needs to handle no-key deletions later on */
4659 
4660 	trans = __unlink_start_trans(BTRFS_I(dir));
4661 	if (IS_ERR(trans)) {
4662 		err = PTR_ERR(trans);
4663 		goto out_notrans;
4664 	}
4665 
4666 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4667 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4668 		goto out;
4669 	}
4670 
4671 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4672 	if (err)
4673 		goto out;
4674 
4675 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4676 
4677 	/* now the directory is empty */
4678 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4679 				 &fname.disk_name);
4680 	if (!err) {
4681 		btrfs_i_size_write(BTRFS_I(inode), 0);
4682 		/*
4683 		 * Propagate the last_unlink_trans value of the deleted dir to
4684 		 * its parent directory. This is to prevent an unrecoverable
4685 		 * log tree in the case we do something like this:
4686 		 * 1) create dir foo
4687 		 * 2) create snapshot under dir foo
4688 		 * 3) delete the snapshot
4689 		 * 4) rmdir foo
4690 		 * 5) mkdir foo
4691 		 * 6) fsync foo or some file inside foo
4692 		 */
4693 		if (last_unlink_trans >= trans->transid)
4694 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4695 	}
4696 out:
4697 	btrfs_end_transaction(trans);
4698 out_notrans:
4699 	btrfs_btree_balance_dirty(fs_info);
4700 	fscrypt_free_filename(&fname);
4701 
4702 	return err;
4703 }
4704 
4705 /*
4706  * Read, zero a chunk and write a block.
4707  *
4708  * @inode - inode that we're zeroing
4709  * @from - the offset to start zeroing
4710  * @len - the length to zero, 0 to zero the entire range respective to the
4711  *	offset
4712  * @front - zero up to the offset instead of from the offset on
4713  *
4714  * This will find the block for the "from" offset and cow the block and zero the
4715  * part we want to zero.  This is used with truncate and hole punching.
4716  */
4717 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4718 			 int front)
4719 {
4720 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4721 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4722 	struct extent_io_tree *io_tree = &inode->io_tree;
4723 	struct btrfs_ordered_extent *ordered;
4724 	struct extent_state *cached_state = NULL;
4725 	struct extent_changeset *data_reserved = NULL;
4726 	bool only_release_metadata = false;
4727 	u32 blocksize = fs_info->sectorsize;
4728 	pgoff_t index = from >> PAGE_SHIFT;
4729 	unsigned offset = from & (blocksize - 1);
4730 	struct folio *folio;
4731 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4732 	size_t write_bytes = blocksize;
4733 	int ret = 0;
4734 	u64 block_start;
4735 	u64 block_end;
4736 
4737 	if (IS_ALIGNED(offset, blocksize) &&
4738 	    (!len || IS_ALIGNED(len, blocksize)))
4739 		goto out;
4740 
4741 	block_start = round_down(from, blocksize);
4742 	block_end = block_start + blocksize - 1;
4743 
4744 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4745 					  blocksize, false);
4746 	if (ret < 0) {
4747 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4748 			/* For nocow case, no need to reserve data space */
4749 			only_release_metadata = true;
4750 		} else {
4751 			goto out;
4752 		}
4753 	}
4754 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4755 	if (ret < 0) {
4756 		if (!only_release_metadata)
4757 			btrfs_free_reserved_data_space(inode, data_reserved,
4758 						       block_start, blocksize);
4759 		goto out;
4760 	}
4761 again:
4762 	folio = __filemap_get_folio(mapping, index,
4763 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4764 	if (IS_ERR(folio)) {
4765 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4766 					     blocksize, true);
4767 		btrfs_delalloc_release_extents(inode, blocksize);
4768 		ret = -ENOMEM;
4769 		goto out;
4770 	}
4771 
4772 	if (!folio_test_uptodate(folio)) {
4773 		ret = btrfs_read_folio(NULL, folio);
4774 		folio_lock(folio);
4775 		if (folio->mapping != mapping) {
4776 			folio_unlock(folio);
4777 			folio_put(folio);
4778 			goto again;
4779 		}
4780 		if (!folio_test_uptodate(folio)) {
4781 			ret = -EIO;
4782 			goto out_unlock;
4783 		}
4784 	}
4785 
4786 	/*
4787 	 * We unlock the page after the io is completed and then re-lock it
4788 	 * above.  release_folio() could have come in between that and cleared
4789 	 * folio private, but left the page in the mapping.  Set the page mapped
4790 	 * here to make sure it's properly set for the subpage stuff.
4791 	 */
4792 	ret = set_folio_extent_mapped(folio);
4793 	if (ret < 0)
4794 		goto out_unlock;
4795 
4796 	folio_wait_writeback(folio);
4797 
4798 	lock_extent(io_tree, block_start, block_end, &cached_state);
4799 
4800 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4801 	if (ordered) {
4802 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4803 		folio_unlock(folio);
4804 		folio_put(folio);
4805 		btrfs_start_ordered_extent(ordered);
4806 		btrfs_put_ordered_extent(ordered);
4807 		goto again;
4808 	}
4809 
4810 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4811 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4812 			 &cached_state);
4813 
4814 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4815 					&cached_state);
4816 	if (ret) {
4817 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4818 		goto out_unlock;
4819 	}
4820 
4821 	if (offset != blocksize) {
4822 		if (!len)
4823 			len = blocksize - offset;
4824 		if (front)
4825 			folio_zero_range(folio, block_start - folio_pos(folio),
4826 					 offset);
4827 		else
4828 			folio_zero_range(folio,
4829 					 (block_start - folio_pos(folio)) + offset,
4830 					 len);
4831 	}
4832 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4833 				  block_end + 1 - block_start);
4834 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4835 			      block_end + 1 - block_start);
4836 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4837 
4838 	if (only_release_metadata)
4839 		set_extent_bit(&inode->io_tree, block_start, block_end,
4840 			       EXTENT_NORESERVE, NULL);
4841 
4842 out_unlock:
4843 	if (ret) {
4844 		if (only_release_metadata)
4845 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4846 		else
4847 			btrfs_delalloc_release_space(inode, data_reserved,
4848 					block_start, blocksize, true);
4849 	}
4850 	btrfs_delalloc_release_extents(inode, blocksize);
4851 	folio_unlock(folio);
4852 	folio_put(folio);
4853 out:
4854 	if (only_release_metadata)
4855 		btrfs_check_nocow_unlock(inode);
4856 	extent_changeset_free(data_reserved);
4857 	return ret;
4858 }
4859 
4860 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4861 {
4862 	struct btrfs_root *root = inode->root;
4863 	struct btrfs_fs_info *fs_info = root->fs_info;
4864 	struct btrfs_trans_handle *trans;
4865 	struct btrfs_drop_extents_args drop_args = { 0 };
4866 	int ret;
4867 
4868 	/*
4869 	 * If NO_HOLES is enabled, we don't need to do anything.
4870 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4871 	 * or btrfs_update_inode() will be called, which guarantee that the next
4872 	 * fsync will know this inode was changed and needs to be logged.
4873 	 */
4874 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4875 		return 0;
4876 
4877 	/*
4878 	 * 1 - for the one we're dropping
4879 	 * 1 - for the one we're adding
4880 	 * 1 - for updating the inode.
4881 	 */
4882 	trans = btrfs_start_transaction(root, 3);
4883 	if (IS_ERR(trans))
4884 		return PTR_ERR(trans);
4885 
4886 	drop_args.start = offset;
4887 	drop_args.end = offset + len;
4888 	drop_args.drop_cache = true;
4889 
4890 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4891 	if (ret) {
4892 		btrfs_abort_transaction(trans, ret);
4893 		btrfs_end_transaction(trans);
4894 		return ret;
4895 	}
4896 
4897 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4898 	if (ret) {
4899 		btrfs_abort_transaction(trans, ret);
4900 	} else {
4901 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4902 		btrfs_update_inode(trans, inode);
4903 	}
4904 	btrfs_end_transaction(trans);
4905 	return ret;
4906 }
4907 
4908 /*
4909  * This function puts in dummy file extents for the area we're creating a hole
4910  * for.  So if we are truncating this file to a larger size we need to insert
4911  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4912  * the range between oldsize and size
4913  */
4914 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4915 {
4916 	struct btrfs_root *root = inode->root;
4917 	struct btrfs_fs_info *fs_info = root->fs_info;
4918 	struct extent_io_tree *io_tree = &inode->io_tree;
4919 	struct extent_map *em = NULL;
4920 	struct extent_state *cached_state = NULL;
4921 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4922 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4923 	u64 last_byte;
4924 	u64 cur_offset;
4925 	u64 hole_size;
4926 	int err = 0;
4927 
4928 	/*
4929 	 * If our size started in the middle of a block we need to zero out the
4930 	 * rest of the block before we expand the i_size, otherwise we could
4931 	 * expose stale data.
4932 	 */
4933 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4934 	if (err)
4935 		return err;
4936 
4937 	if (size <= hole_start)
4938 		return 0;
4939 
4940 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4941 					   &cached_state);
4942 	cur_offset = hole_start;
4943 	while (1) {
4944 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4945 		if (IS_ERR(em)) {
4946 			err = PTR_ERR(em);
4947 			em = NULL;
4948 			break;
4949 		}
4950 		last_byte = min(extent_map_end(em), block_end);
4951 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4952 		hole_size = last_byte - cur_offset;
4953 
4954 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4955 			struct extent_map *hole_em;
4956 
4957 			err = maybe_insert_hole(inode, cur_offset, hole_size);
4958 			if (err)
4959 				break;
4960 
4961 			err = btrfs_inode_set_file_extent_range(inode,
4962 							cur_offset, hole_size);
4963 			if (err)
4964 				break;
4965 
4966 			hole_em = alloc_extent_map();
4967 			if (!hole_em) {
4968 				btrfs_drop_extent_map_range(inode, cur_offset,
4969 						    cur_offset + hole_size - 1,
4970 						    false);
4971 				btrfs_set_inode_full_sync(inode);
4972 				goto next;
4973 			}
4974 			hole_em->start = cur_offset;
4975 			hole_em->len = hole_size;
4976 			hole_em->orig_start = cur_offset;
4977 
4978 			hole_em->block_start = EXTENT_MAP_HOLE;
4979 			hole_em->block_len = 0;
4980 			hole_em->orig_block_len = 0;
4981 			hole_em->ram_bytes = hole_size;
4982 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4983 
4984 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4985 			free_extent_map(hole_em);
4986 		} else {
4987 			err = btrfs_inode_set_file_extent_range(inode,
4988 							cur_offset, hole_size);
4989 			if (err)
4990 				break;
4991 		}
4992 next:
4993 		free_extent_map(em);
4994 		em = NULL;
4995 		cur_offset = last_byte;
4996 		if (cur_offset >= block_end)
4997 			break;
4998 	}
4999 	free_extent_map(em);
5000 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5001 	return err;
5002 }
5003 
5004 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5005 {
5006 	struct btrfs_root *root = BTRFS_I(inode)->root;
5007 	struct btrfs_trans_handle *trans;
5008 	loff_t oldsize = i_size_read(inode);
5009 	loff_t newsize = attr->ia_size;
5010 	int mask = attr->ia_valid;
5011 	int ret;
5012 
5013 	/*
5014 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5015 	 * special case where we need to update the times despite not having
5016 	 * these flags set.  For all other operations the VFS set these flags
5017 	 * explicitly if it wants a timestamp update.
5018 	 */
5019 	if (newsize != oldsize) {
5020 		inode_inc_iversion(inode);
5021 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5022 			inode_set_mtime_to_ts(inode,
5023 					      inode_set_ctime_current(inode));
5024 		}
5025 	}
5026 
5027 	if (newsize > oldsize) {
5028 		/*
5029 		 * Don't do an expanding truncate while snapshotting is ongoing.
5030 		 * This is to ensure the snapshot captures a fully consistent
5031 		 * state of this file - if the snapshot captures this expanding
5032 		 * truncation, it must capture all writes that happened before
5033 		 * this truncation.
5034 		 */
5035 		btrfs_drew_write_lock(&root->snapshot_lock);
5036 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5037 		if (ret) {
5038 			btrfs_drew_write_unlock(&root->snapshot_lock);
5039 			return ret;
5040 		}
5041 
5042 		trans = btrfs_start_transaction(root, 1);
5043 		if (IS_ERR(trans)) {
5044 			btrfs_drew_write_unlock(&root->snapshot_lock);
5045 			return PTR_ERR(trans);
5046 		}
5047 
5048 		i_size_write(inode, newsize);
5049 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5050 		pagecache_isize_extended(inode, oldsize, newsize);
5051 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5052 		btrfs_drew_write_unlock(&root->snapshot_lock);
5053 		btrfs_end_transaction(trans);
5054 	} else {
5055 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5056 
5057 		if (btrfs_is_zoned(fs_info)) {
5058 			ret = btrfs_wait_ordered_range(inode,
5059 					ALIGN(newsize, fs_info->sectorsize),
5060 					(u64)-1);
5061 			if (ret)
5062 				return ret;
5063 		}
5064 
5065 		/*
5066 		 * We're truncating a file that used to have good data down to
5067 		 * zero. Make sure any new writes to the file get on disk
5068 		 * on close.
5069 		 */
5070 		if (newsize == 0)
5071 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5072 				&BTRFS_I(inode)->runtime_flags);
5073 
5074 		truncate_setsize(inode, newsize);
5075 
5076 		inode_dio_wait(inode);
5077 
5078 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5079 		if (ret && inode->i_nlink) {
5080 			int err;
5081 
5082 			/*
5083 			 * Truncate failed, so fix up the in-memory size. We
5084 			 * adjusted disk_i_size down as we removed extents, so
5085 			 * wait for disk_i_size to be stable and then update the
5086 			 * in-memory size to match.
5087 			 */
5088 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5089 			if (err)
5090 				return err;
5091 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5092 		}
5093 	}
5094 
5095 	return ret;
5096 }
5097 
5098 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5099 			 struct iattr *attr)
5100 {
5101 	struct inode *inode = d_inode(dentry);
5102 	struct btrfs_root *root = BTRFS_I(inode)->root;
5103 	int err;
5104 
5105 	if (btrfs_root_readonly(root))
5106 		return -EROFS;
5107 
5108 	err = setattr_prepare(idmap, dentry, attr);
5109 	if (err)
5110 		return err;
5111 
5112 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5113 		err = btrfs_setsize(inode, attr);
5114 		if (err)
5115 			return err;
5116 	}
5117 
5118 	if (attr->ia_valid) {
5119 		setattr_copy(idmap, inode, attr);
5120 		inode_inc_iversion(inode);
5121 		err = btrfs_dirty_inode(BTRFS_I(inode));
5122 
5123 		if (!err && attr->ia_valid & ATTR_MODE)
5124 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5125 	}
5126 
5127 	return err;
5128 }
5129 
5130 /*
5131  * While truncating the inode pages during eviction, we get the VFS
5132  * calling btrfs_invalidate_folio() against each folio of the inode. This
5133  * is slow because the calls to btrfs_invalidate_folio() result in a
5134  * huge amount of calls to lock_extent() and clear_extent_bit(),
5135  * which keep merging and splitting extent_state structures over and over,
5136  * wasting lots of time.
5137  *
5138  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5139  * skip all those expensive operations on a per folio basis and do only
5140  * the ordered io finishing, while we release here the extent_map and
5141  * extent_state structures, without the excessive merging and splitting.
5142  */
5143 static void evict_inode_truncate_pages(struct inode *inode)
5144 {
5145 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5146 	struct rb_node *node;
5147 
5148 	ASSERT(inode->i_state & I_FREEING);
5149 	truncate_inode_pages_final(&inode->i_data);
5150 
5151 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5152 
5153 	/*
5154 	 * Keep looping until we have no more ranges in the io tree.
5155 	 * We can have ongoing bios started by readahead that have
5156 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5157 	 * still in progress (unlocked the pages in the bio but did not yet
5158 	 * unlocked the ranges in the io tree). Therefore this means some
5159 	 * ranges can still be locked and eviction started because before
5160 	 * submitting those bios, which are executed by a separate task (work
5161 	 * queue kthread), inode references (inode->i_count) were not taken
5162 	 * (which would be dropped in the end io callback of each bio).
5163 	 * Therefore here we effectively end up waiting for those bios and
5164 	 * anyone else holding locked ranges without having bumped the inode's
5165 	 * reference count - if we don't do it, when they access the inode's
5166 	 * io_tree to unlock a range it may be too late, leading to an
5167 	 * use-after-free issue.
5168 	 */
5169 	spin_lock(&io_tree->lock);
5170 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5171 		struct extent_state *state;
5172 		struct extent_state *cached_state = NULL;
5173 		u64 start;
5174 		u64 end;
5175 		unsigned state_flags;
5176 
5177 		node = rb_first(&io_tree->state);
5178 		state = rb_entry(node, struct extent_state, rb_node);
5179 		start = state->start;
5180 		end = state->end;
5181 		state_flags = state->state;
5182 		spin_unlock(&io_tree->lock);
5183 
5184 		lock_extent(io_tree, start, end, &cached_state);
5185 
5186 		/*
5187 		 * If still has DELALLOC flag, the extent didn't reach disk,
5188 		 * and its reserved space won't be freed by delayed_ref.
5189 		 * So we need to free its reserved space here.
5190 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5191 		 *
5192 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5193 		 */
5194 		if (state_flags & EXTENT_DELALLOC)
5195 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5196 					       end - start + 1, NULL);
5197 
5198 		clear_extent_bit(io_tree, start, end,
5199 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5200 				 &cached_state);
5201 
5202 		cond_resched();
5203 		spin_lock(&io_tree->lock);
5204 	}
5205 	spin_unlock(&io_tree->lock);
5206 }
5207 
5208 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5209 							struct btrfs_block_rsv *rsv)
5210 {
5211 	struct btrfs_fs_info *fs_info = root->fs_info;
5212 	struct btrfs_trans_handle *trans;
5213 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5214 	int ret;
5215 
5216 	/*
5217 	 * Eviction should be taking place at some place safe because of our
5218 	 * delayed iputs.  However the normal flushing code will run delayed
5219 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5220 	 *
5221 	 * We reserve the delayed_refs_extra here again because we can't use
5222 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5223 	 * above.  We reserve our extra bit here because we generate a ton of
5224 	 * delayed refs activity by truncating.
5225 	 *
5226 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5227 	 * if we fail to make this reservation we can re-try without the
5228 	 * delayed_refs_extra so we can make some forward progress.
5229 	 */
5230 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5231 				     BTRFS_RESERVE_FLUSH_EVICT);
5232 	if (ret) {
5233 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5234 					     BTRFS_RESERVE_FLUSH_EVICT);
5235 		if (ret) {
5236 			btrfs_warn(fs_info,
5237 				   "could not allocate space for delete; will truncate on mount");
5238 			return ERR_PTR(-ENOSPC);
5239 		}
5240 		delayed_refs_extra = 0;
5241 	}
5242 
5243 	trans = btrfs_join_transaction(root);
5244 	if (IS_ERR(trans))
5245 		return trans;
5246 
5247 	if (delayed_refs_extra) {
5248 		trans->block_rsv = &fs_info->trans_block_rsv;
5249 		trans->bytes_reserved = delayed_refs_extra;
5250 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5251 					delayed_refs_extra, true);
5252 	}
5253 	return trans;
5254 }
5255 
5256 void btrfs_evict_inode(struct inode *inode)
5257 {
5258 	struct btrfs_fs_info *fs_info;
5259 	struct btrfs_trans_handle *trans;
5260 	struct btrfs_root *root = BTRFS_I(inode)->root;
5261 	struct btrfs_block_rsv *rsv = NULL;
5262 	int ret;
5263 
5264 	trace_btrfs_inode_evict(inode);
5265 
5266 	if (!root) {
5267 		fsverity_cleanup_inode(inode);
5268 		clear_inode(inode);
5269 		return;
5270 	}
5271 
5272 	fs_info = inode_to_fs_info(inode);
5273 	evict_inode_truncate_pages(inode);
5274 
5275 	if (inode->i_nlink &&
5276 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5277 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5278 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5279 		goto out;
5280 
5281 	if (is_bad_inode(inode))
5282 		goto out;
5283 
5284 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5285 		goto out;
5286 
5287 	if (inode->i_nlink > 0) {
5288 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5289 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5290 		goto out;
5291 	}
5292 
5293 	/*
5294 	 * This makes sure the inode item in tree is uptodate and the space for
5295 	 * the inode update is released.
5296 	 */
5297 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5298 	if (ret)
5299 		goto out;
5300 
5301 	/*
5302 	 * This drops any pending insert or delete operations we have for this
5303 	 * inode.  We could have a delayed dir index deletion queued up, but
5304 	 * we're removing the inode completely so that'll be taken care of in
5305 	 * the truncate.
5306 	 */
5307 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5308 
5309 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5310 	if (!rsv)
5311 		goto out;
5312 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5313 	rsv->failfast = true;
5314 
5315 	btrfs_i_size_write(BTRFS_I(inode), 0);
5316 
5317 	while (1) {
5318 		struct btrfs_truncate_control control = {
5319 			.inode = BTRFS_I(inode),
5320 			.ino = btrfs_ino(BTRFS_I(inode)),
5321 			.new_size = 0,
5322 			.min_type = 0,
5323 		};
5324 
5325 		trans = evict_refill_and_join(root, rsv);
5326 		if (IS_ERR(trans))
5327 			goto out;
5328 
5329 		trans->block_rsv = rsv;
5330 
5331 		ret = btrfs_truncate_inode_items(trans, root, &control);
5332 		trans->block_rsv = &fs_info->trans_block_rsv;
5333 		btrfs_end_transaction(trans);
5334 		/*
5335 		 * We have not added new delayed items for our inode after we
5336 		 * have flushed its delayed items, so no need to throttle on
5337 		 * delayed items. However we have modified extent buffers.
5338 		 */
5339 		btrfs_btree_balance_dirty_nodelay(fs_info);
5340 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5341 			goto out;
5342 		else if (!ret)
5343 			break;
5344 	}
5345 
5346 	/*
5347 	 * Errors here aren't a big deal, it just means we leave orphan items in
5348 	 * the tree. They will be cleaned up on the next mount. If the inode
5349 	 * number gets reused, cleanup deletes the orphan item without doing
5350 	 * anything, and unlink reuses the existing orphan item.
5351 	 *
5352 	 * If it turns out that we are dropping too many of these, we might want
5353 	 * to add a mechanism for retrying these after a commit.
5354 	 */
5355 	trans = evict_refill_and_join(root, rsv);
5356 	if (!IS_ERR(trans)) {
5357 		trans->block_rsv = rsv;
5358 		btrfs_orphan_del(trans, BTRFS_I(inode));
5359 		trans->block_rsv = &fs_info->trans_block_rsv;
5360 		btrfs_end_transaction(trans);
5361 	}
5362 
5363 out:
5364 	btrfs_free_block_rsv(fs_info, rsv);
5365 	/*
5366 	 * If we didn't successfully delete, the orphan item will still be in
5367 	 * the tree and we'll retry on the next mount. Again, we might also want
5368 	 * to retry these periodically in the future.
5369 	 */
5370 	btrfs_remove_delayed_node(BTRFS_I(inode));
5371 	fsverity_cleanup_inode(inode);
5372 	clear_inode(inode);
5373 }
5374 
5375 /*
5376  * Return the key found in the dir entry in the location pointer, fill @type
5377  * with BTRFS_FT_*, and return 0.
5378  *
5379  * If no dir entries were found, returns -ENOENT.
5380  * If found a corrupted location in dir entry, returns -EUCLEAN.
5381  */
5382 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5383 			       struct btrfs_key *location, u8 *type)
5384 {
5385 	struct btrfs_dir_item *di;
5386 	struct btrfs_path *path;
5387 	struct btrfs_root *root = dir->root;
5388 	int ret = 0;
5389 	struct fscrypt_name fname;
5390 
5391 	path = btrfs_alloc_path();
5392 	if (!path)
5393 		return -ENOMEM;
5394 
5395 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5396 	if (ret < 0)
5397 		goto out;
5398 	/*
5399 	 * fscrypt_setup_filename() should never return a positive value, but
5400 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5401 	 */
5402 	ASSERT(ret == 0);
5403 
5404 	/* This needs to handle no-key deletions later on */
5405 
5406 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5407 				   &fname.disk_name, 0);
5408 	if (IS_ERR_OR_NULL(di)) {
5409 		ret = di ? PTR_ERR(di) : -ENOENT;
5410 		goto out;
5411 	}
5412 
5413 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5414 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5415 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5416 		ret = -EUCLEAN;
5417 		btrfs_warn(root->fs_info,
5418 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5419 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5420 			   location->objectid, location->type, location->offset);
5421 	}
5422 	if (!ret)
5423 		*type = btrfs_dir_ftype(path->nodes[0], di);
5424 out:
5425 	fscrypt_free_filename(&fname);
5426 	btrfs_free_path(path);
5427 	return ret;
5428 }
5429 
5430 /*
5431  * when we hit a tree root in a directory, the btrfs part of the inode
5432  * needs to be changed to reflect the root directory of the tree root.  This
5433  * is kind of like crossing a mount point.
5434  */
5435 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5436 				    struct btrfs_inode *dir,
5437 				    struct dentry *dentry,
5438 				    struct btrfs_key *location,
5439 				    struct btrfs_root **sub_root)
5440 {
5441 	struct btrfs_path *path;
5442 	struct btrfs_root *new_root;
5443 	struct btrfs_root_ref *ref;
5444 	struct extent_buffer *leaf;
5445 	struct btrfs_key key;
5446 	int ret;
5447 	int err = 0;
5448 	struct fscrypt_name fname;
5449 
5450 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5451 	if (ret)
5452 		return ret;
5453 
5454 	path = btrfs_alloc_path();
5455 	if (!path) {
5456 		err = -ENOMEM;
5457 		goto out;
5458 	}
5459 
5460 	err = -ENOENT;
5461 	key.objectid = dir->root->root_key.objectid;
5462 	key.type = BTRFS_ROOT_REF_KEY;
5463 	key.offset = location->objectid;
5464 
5465 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5466 	if (ret) {
5467 		if (ret < 0)
5468 			err = ret;
5469 		goto out;
5470 	}
5471 
5472 	leaf = path->nodes[0];
5473 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5474 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5475 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5476 		goto out;
5477 
5478 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5479 				   (unsigned long)(ref + 1), fname.disk_name.len);
5480 	if (ret)
5481 		goto out;
5482 
5483 	btrfs_release_path(path);
5484 
5485 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5486 	if (IS_ERR(new_root)) {
5487 		err = PTR_ERR(new_root);
5488 		goto out;
5489 	}
5490 
5491 	*sub_root = new_root;
5492 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5493 	location->type = BTRFS_INODE_ITEM_KEY;
5494 	location->offset = 0;
5495 	err = 0;
5496 out:
5497 	btrfs_free_path(path);
5498 	fscrypt_free_filename(&fname);
5499 	return err;
5500 }
5501 
5502 static void inode_tree_add(struct btrfs_inode *inode)
5503 {
5504 	struct btrfs_root *root = inode->root;
5505 	struct btrfs_inode *entry;
5506 	struct rb_node **p;
5507 	struct rb_node *parent;
5508 	struct rb_node *new = &inode->rb_node;
5509 	u64 ino = btrfs_ino(inode);
5510 
5511 	if (inode_unhashed(&inode->vfs_inode))
5512 		return;
5513 	parent = NULL;
5514 	spin_lock(&root->inode_lock);
5515 	p = &root->inode_tree.rb_node;
5516 	while (*p) {
5517 		parent = *p;
5518 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5519 
5520 		if (ino < btrfs_ino(entry))
5521 			p = &parent->rb_left;
5522 		else if (ino > btrfs_ino(entry))
5523 			p = &parent->rb_right;
5524 		else {
5525 			WARN_ON(!(entry->vfs_inode.i_state &
5526 				  (I_WILL_FREE | I_FREEING)));
5527 			rb_replace_node(parent, new, &root->inode_tree);
5528 			RB_CLEAR_NODE(parent);
5529 			spin_unlock(&root->inode_lock);
5530 			return;
5531 		}
5532 	}
5533 	rb_link_node(new, parent, p);
5534 	rb_insert_color(new, &root->inode_tree);
5535 	spin_unlock(&root->inode_lock);
5536 }
5537 
5538 static void inode_tree_del(struct btrfs_inode *inode)
5539 {
5540 	struct btrfs_root *root = inode->root;
5541 	int empty = 0;
5542 
5543 	spin_lock(&root->inode_lock);
5544 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5545 		rb_erase(&inode->rb_node, &root->inode_tree);
5546 		RB_CLEAR_NODE(&inode->rb_node);
5547 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5548 	}
5549 	spin_unlock(&root->inode_lock);
5550 
5551 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5552 		spin_lock(&root->inode_lock);
5553 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5554 		spin_unlock(&root->inode_lock);
5555 		if (empty)
5556 			btrfs_add_dead_root(root);
5557 	}
5558 }
5559 
5560 
5561 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5562 {
5563 	struct btrfs_iget_args *args = p;
5564 
5565 	inode->i_ino = args->ino;
5566 	BTRFS_I(inode)->location.objectid = args->ino;
5567 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5568 	BTRFS_I(inode)->location.offset = 0;
5569 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5570 
5571 	if (args->root && args->root == args->root->fs_info->tree_root &&
5572 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5573 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5574 			&BTRFS_I(inode)->runtime_flags);
5575 	return 0;
5576 }
5577 
5578 static int btrfs_find_actor(struct inode *inode, void *opaque)
5579 {
5580 	struct btrfs_iget_args *args = opaque;
5581 
5582 	return args->ino == BTRFS_I(inode)->location.objectid &&
5583 		args->root == BTRFS_I(inode)->root;
5584 }
5585 
5586 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5587 				       struct btrfs_root *root)
5588 {
5589 	struct inode *inode;
5590 	struct btrfs_iget_args args;
5591 	unsigned long hashval = btrfs_inode_hash(ino, root);
5592 
5593 	args.ino = ino;
5594 	args.root = root;
5595 
5596 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5597 			     btrfs_init_locked_inode,
5598 			     (void *)&args);
5599 	return inode;
5600 }
5601 
5602 /*
5603  * Get an inode object given its inode number and corresponding root.
5604  * Path can be preallocated to prevent recursing back to iget through
5605  * allocator. NULL is also valid but may require an additional allocation
5606  * later.
5607  */
5608 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5609 			      struct btrfs_root *root, struct btrfs_path *path)
5610 {
5611 	struct inode *inode;
5612 
5613 	inode = btrfs_iget_locked(s, ino, root);
5614 	if (!inode)
5615 		return ERR_PTR(-ENOMEM);
5616 
5617 	if (inode->i_state & I_NEW) {
5618 		int ret;
5619 
5620 		ret = btrfs_read_locked_inode(inode, path);
5621 		if (!ret) {
5622 			inode_tree_add(BTRFS_I(inode));
5623 			unlock_new_inode(inode);
5624 		} else {
5625 			iget_failed(inode);
5626 			/*
5627 			 * ret > 0 can come from btrfs_search_slot called by
5628 			 * btrfs_read_locked_inode, this means the inode item
5629 			 * was not found.
5630 			 */
5631 			if (ret > 0)
5632 				ret = -ENOENT;
5633 			inode = ERR_PTR(ret);
5634 		}
5635 	}
5636 
5637 	return inode;
5638 }
5639 
5640 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5641 {
5642 	return btrfs_iget_path(s, ino, root, NULL);
5643 }
5644 
5645 static struct inode *new_simple_dir(struct inode *dir,
5646 				    struct btrfs_key *key,
5647 				    struct btrfs_root *root)
5648 {
5649 	struct timespec64 ts;
5650 	struct inode *inode = new_inode(dir->i_sb);
5651 
5652 	if (!inode)
5653 		return ERR_PTR(-ENOMEM);
5654 
5655 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5656 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5657 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5658 
5659 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5660 	/*
5661 	 * We only need lookup, the rest is read-only and there's no inode
5662 	 * associated with the dentry
5663 	 */
5664 	inode->i_op = &simple_dir_inode_operations;
5665 	inode->i_opflags &= ~IOP_XATTR;
5666 	inode->i_fop = &simple_dir_operations;
5667 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5668 
5669 	ts = inode_set_ctime_current(inode);
5670 	inode_set_mtime_to_ts(inode, ts);
5671 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5672 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5673 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5674 
5675 	inode->i_uid = dir->i_uid;
5676 	inode->i_gid = dir->i_gid;
5677 
5678 	return inode;
5679 }
5680 
5681 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5682 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5683 static_assert(BTRFS_FT_DIR == FT_DIR);
5684 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5685 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5686 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5687 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5688 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5689 
5690 static inline u8 btrfs_inode_type(struct inode *inode)
5691 {
5692 	return fs_umode_to_ftype(inode->i_mode);
5693 }
5694 
5695 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5696 {
5697 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5698 	struct inode *inode;
5699 	struct btrfs_root *root = BTRFS_I(dir)->root;
5700 	struct btrfs_root *sub_root = root;
5701 	struct btrfs_key location;
5702 	u8 di_type = 0;
5703 	int ret = 0;
5704 
5705 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5706 		return ERR_PTR(-ENAMETOOLONG);
5707 
5708 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5709 	if (ret < 0)
5710 		return ERR_PTR(ret);
5711 
5712 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5713 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5714 		if (IS_ERR(inode))
5715 			return inode;
5716 
5717 		/* Do extra check against inode mode with di_type */
5718 		if (btrfs_inode_type(inode) != di_type) {
5719 			btrfs_crit(fs_info,
5720 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5721 				  inode->i_mode, btrfs_inode_type(inode),
5722 				  di_type);
5723 			iput(inode);
5724 			return ERR_PTR(-EUCLEAN);
5725 		}
5726 		return inode;
5727 	}
5728 
5729 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5730 				       &location, &sub_root);
5731 	if (ret < 0) {
5732 		if (ret != -ENOENT)
5733 			inode = ERR_PTR(ret);
5734 		else
5735 			inode = new_simple_dir(dir, &location, root);
5736 	} else {
5737 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5738 		btrfs_put_root(sub_root);
5739 
5740 		if (IS_ERR(inode))
5741 			return inode;
5742 
5743 		down_read(&fs_info->cleanup_work_sem);
5744 		if (!sb_rdonly(inode->i_sb))
5745 			ret = btrfs_orphan_cleanup(sub_root);
5746 		up_read(&fs_info->cleanup_work_sem);
5747 		if (ret) {
5748 			iput(inode);
5749 			inode = ERR_PTR(ret);
5750 		}
5751 	}
5752 
5753 	return inode;
5754 }
5755 
5756 static int btrfs_dentry_delete(const struct dentry *dentry)
5757 {
5758 	struct btrfs_root *root;
5759 	struct inode *inode = d_inode(dentry);
5760 
5761 	if (!inode && !IS_ROOT(dentry))
5762 		inode = d_inode(dentry->d_parent);
5763 
5764 	if (inode) {
5765 		root = BTRFS_I(inode)->root;
5766 		if (btrfs_root_refs(&root->root_item) == 0)
5767 			return 1;
5768 
5769 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5770 			return 1;
5771 	}
5772 	return 0;
5773 }
5774 
5775 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5776 				   unsigned int flags)
5777 {
5778 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5779 
5780 	if (inode == ERR_PTR(-ENOENT))
5781 		inode = NULL;
5782 	return d_splice_alias(inode, dentry);
5783 }
5784 
5785 /*
5786  * Find the highest existing sequence number in a directory and then set the
5787  * in-memory index_cnt variable to the first free sequence number.
5788  */
5789 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5790 {
5791 	struct btrfs_root *root = inode->root;
5792 	struct btrfs_key key, found_key;
5793 	struct btrfs_path *path;
5794 	struct extent_buffer *leaf;
5795 	int ret;
5796 
5797 	key.objectid = btrfs_ino(inode);
5798 	key.type = BTRFS_DIR_INDEX_KEY;
5799 	key.offset = (u64)-1;
5800 
5801 	path = btrfs_alloc_path();
5802 	if (!path)
5803 		return -ENOMEM;
5804 
5805 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5806 	if (ret < 0)
5807 		goto out;
5808 	/* FIXME: we should be able to handle this */
5809 	if (ret == 0)
5810 		goto out;
5811 	ret = 0;
5812 
5813 	if (path->slots[0] == 0) {
5814 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5815 		goto out;
5816 	}
5817 
5818 	path->slots[0]--;
5819 
5820 	leaf = path->nodes[0];
5821 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5822 
5823 	if (found_key.objectid != btrfs_ino(inode) ||
5824 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5825 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5826 		goto out;
5827 	}
5828 
5829 	inode->index_cnt = found_key.offset + 1;
5830 out:
5831 	btrfs_free_path(path);
5832 	return ret;
5833 }
5834 
5835 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5836 {
5837 	int ret = 0;
5838 
5839 	btrfs_inode_lock(dir, 0);
5840 	if (dir->index_cnt == (u64)-1) {
5841 		ret = btrfs_inode_delayed_dir_index_count(dir);
5842 		if (ret) {
5843 			ret = btrfs_set_inode_index_count(dir);
5844 			if (ret)
5845 				goto out;
5846 		}
5847 	}
5848 
5849 	/* index_cnt is the index number of next new entry, so decrement it. */
5850 	*index = dir->index_cnt - 1;
5851 out:
5852 	btrfs_inode_unlock(dir, 0);
5853 
5854 	return ret;
5855 }
5856 
5857 /*
5858  * All this infrastructure exists because dir_emit can fault, and we are holding
5859  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5860  * our information into that, and then dir_emit from the buffer.  This is
5861  * similar to what NFS does, only we don't keep the buffer around in pagecache
5862  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5863  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5864  * tree lock.
5865  */
5866 static int btrfs_opendir(struct inode *inode, struct file *file)
5867 {
5868 	struct btrfs_file_private *private;
5869 	u64 last_index;
5870 	int ret;
5871 
5872 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5873 	if (ret)
5874 		return ret;
5875 
5876 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5877 	if (!private)
5878 		return -ENOMEM;
5879 	private->last_index = last_index;
5880 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5881 	if (!private->filldir_buf) {
5882 		kfree(private);
5883 		return -ENOMEM;
5884 	}
5885 	file->private_data = private;
5886 	return 0;
5887 }
5888 
5889 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5890 {
5891 	struct btrfs_file_private *private = file->private_data;
5892 	int ret;
5893 
5894 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5895 				       &private->last_index);
5896 	if (ret)
5897 		return ret;
5898 
5899 	return generic_file_llseek(file, offset, whence);
5900 }
5901 
5902 struct dir_entry {
5903 	u64 ino;
5904 	u64 offset;
5905 	unsigned type;
5906 	int name_len;
5907 };
5908 
5909 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5910 {
5911 	while (entries--) {
5912 		struct dir_entry *entry = addr;
5913 		char *name = (char *)(entry + 1);
5914 
5915 		ctx->pos = get_unaligned(&entry->offset);
5916 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5917 					 get_unaligned(&entry->ino),
5918 					 get_unaligned(&entry->type)))
5919 			return 1;
5920 		addr += sizeof(struct dir_entry) +
5921 			get_unaligned(&entry->name_len);
5922 		ctx->pos++;
5923 	}
5924 	return 0;
5925 }
5926 
5927 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5928 {
5929 	struct inode *inode = file_inode(file);
5930 	struct btrfs_root *root = BTRFS_I(inode)->root;
5931 	struct btrfs_file_private *private = file->private_data;
5932 	struct btrfs_dir_item *di;
5933 	struct btrfs_key key;
5934 	struct btrfs_key found_key;
5935 	struct btrfs_path *path;
5936 	void *addr;
5937 	LIST_HEAD(ins_list);
5938 	LIST_HEAD(del_list);
5939 	int ret;
5940 	char *name_ptr;
5941 	int name_len;
5942 	int entries = 0;
5943 	int total_len = 0;
5944 	bool put = false;
5945 	struct btrfs_key location;
5946 
5947 	if (!dir_emit_dots(file, ctx))
5948 		return 0;
5949 
5950 	path = btrfs_alloc_path();
5951 	if (!path)
5952 		return -ENOMEM;
5953 
5954 	addr = private->filldir_buf;
5955 	path->reada = READA_FORWARD;
5956 
5957 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5958 					      &ins_list, &del_list);
5959 
5960 again:
5961 	key.type = BTRFS_DIR_INDEX_KEY;
5962 	key.offset = ctx->pos;
5963 	key.objectid = btrfs_ino(BTRFS_I(inode));
5964 
5965 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5966 		struct dir_entry *entry;
5967 		struct extent_buffer *leaf = path->nodes[0];
5968 		u8 ftype;
5969 
5970 		if (found_key.objectid != key.objectid)
5971 			break;
5972 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5973 			break;
5974 		if (found_key.offset < ctx->pos)
5975 			continue;
5976 		if (found_key.offset > private->last_index)
5977 			break;
5978 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5979 			continue;
5980 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5981 		name_len = btrfs_dir_name_len(leaf, di);
5982 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5983 		    PAGE_SIZE) {
5984 			btrfs_release_path(path);
5985 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5986 			if (ret)
5987 				goto nopos;
5988 			addr = private->filldir_buf;
5989 			entries = 0;
5990 			total_len = 0;
5991 			goto again;
5992 		}
5993 
5994 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5995 		entry = addr;
5996 		name_ptr = (char *)(entry + 1);
5997 		read_extent_buffer(leaf, name_ptr,
5998 				   (unsigned long)(di + 1), name_len);
5999 		put_unaligned(name_len, &entry->name_len);
6000 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6001 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6002 		put_unaligned(location.objectid, &entry->ino);
6003 		put_unaligned(found_key.offset, &entry->offset);
6004 		entries++;
6005 		addr += sizeof(struct dir_entry) + name_len;
6006 		total_len += sizeof(struct dir_entry) + name_len;
6007 	}
6008 	/* Catch error encountered during iteration */
6009 	if (ret < 0)
6010 		goto err;
6011 
6012 	btrfs_release_path(path);
6013 
6014 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6015 	if (ret)
6016 		goto nopos;
6017 
6018 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6019 	if (ret)
6020 		goto nopos;
6021 
6022 	/*
6023 	 * Stop new entries from being returned after we return the last
6024 	 * entry.
6025 	 *
6026 	 * New directory entries are assigned a strictly increasing
6027 	 * offset.  This means that new entries created during readdir
6028 	 * are *guaranteed* to be seen in the future by that readdir.
6029 	 * This has broken buggy programs which operate on names as
6030 	 * they're returned by readdir.  Until we re-use freed offsets
6031 	 * we have this hack to stop new entries from being returned
6032 	 * under the assumption that they'll never reach this huge
6033 	 * offset.
6034 	 *
6035 	 * This is being careful not to overflow 32bit loff_t unless the
6036 	 * last entry requires it because doing so has broken 32bit apps
6037 	 * in the past.
6038 	 */
6039 	if (ctx->pos >= INT_MAX)
6040 		ctx->pos = LLONG_MAX;
6041 	else
6042 		ctx->pos = INT_MAX;
6043 nopos:
6044 	ret = 0;
6045 err:
6046 	if (put)
6047 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6048 	btrfs_free_path(path);
6049 	return ret;
6050 }
6051 
6052 /*
6053  * This is somewhat expensive, updating the tree every time the
6054  * inode changes.  But, it is most likely to find the inode in cache.
6055  * FIXME, needs more benchmarking...there are no reasons other than performance
6056  * to keep or drop this code.
6057  */
6058 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6059 {
6060 	struct btrfs_root *root = inode->root;
6061 	struct btrfs_fs_info *fs_info = root->fs_info;
6062 	struct btrfs_trans_handle *trans;
6063 	int ret;
6064 
6065 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6066 		return 0;
6067 
6068 	trans = btrfs_join_transaction(root);
6069 	if (IS_ERR(trans))
6070 		return PTR_ERR(trans);
6071 
6072 	ret = btrfs_update_inode(trans, inode);
6073 	if (ret == -ENOSPC || ret == -EDQUOT) {
6074 		/* whoops, lets try again with the full transaction */
6075 		btrfs_end_transaction(trans);
6076 		trans = btrfs_start_transaction(root, 1);
6077 		if (IS_ERR(trans))
6078 			return PTR_ERR(trans);
6079 
6080 		ret = btrfs_update_inode(trans, inode);
6081 	}
6082 	btrfs_end_transaction(trans);
6083 	if (inode->delayed_node)
6084 		btrfs_balance_delayed_items(fs_info);
6085 
6086 	return ret;
6087 }
6088 
6089 /*
6090  * This is a copy of file_update_time.  We need this so we can return error on
6091  * ENOSPC for updating the inode in the case of file write and mmap writes.
6092  */
6093 static int btrfs_update_time(struct inode *inode, int flags)
6094 {
6095 	struct btrfs_root *root = BTRFS_I(inode)->root;
6096 	bool dirty;
6097 
6098 	if (btrfs_root_readonly(root))
6099 		return -EROFS;
6100 
6101 	dirty = inode_update_timestamps(inode, flags);
6102 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6103 }
6104 
6105 /*
6106  * helper to find a free sequence number in a given directory.  This current
6107  * code is very simple, later versions will do smarter things in the btree
6108  */
6109 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6110 {
6111 	int ret = 0;
6112 
6113 	if (dir->index_cnt == (u64)-1) {
6114 		ret = btrfs_inode_delayed_dir_index_count(dir);
6115 		if (ret) {
6116 			ret = btrfs_set_inode_index_count(dir);
6117 			if (ret)
6118 				return ret;
6119 		}
6120 	}
6121 
6122 	*index = dir->index_cnt;
6123 	dir->index_cnt++;
6124 
6125 	return ret;
6126 }
6127 
6128 static int btrfs_insert_inode_locked(struct inode *inode)
6129 {
6130 	struct btrfs_iget_args args;
6131 
6132 	args.ino = BTRFS_I(inode)->location.objectid;
6133 	args.root = BTRFS_I(inode)->root;
6134 
6135 	return insert_inode_locked4(inode,
6136 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6137 		   btrfs_find_actor, &args);
6138 }
6139 
6140 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6141 			    unsigned int *trans_num_items)
6142 {
6143 	struct inode *dir = args->dir;
6144 	struct inode *inode = args->inode;
6145 	int ret;
6146 
6147 	if (!args->orphan) {
6148 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6149 					     &args->fname);
6150 		if (ret)
6151 			return ret;
6152 	}
6153 
6154 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6155 	if (ret) {
6156 		fscrypt_free_filename(&args->fname);
6157 		return ret;
6158 	}
6159 
6160 	/* 1 to add inode item */
6161 	*trans_num_items = 1;
6162 	/* 1 to add compression property */
6163 	if (BTRFS_I(dir)->prop_compress)
6164 		(*trans_num_items)++;
6165 	/* 1 to add default ACL xattr */
6166 	if (args->default_acl)
6167 		(*trans_num_items)++;
6168 	/* 1 to add access ACL xattr */
6169 	if (args->acl)
6170 		(*trans_num_items)++;
6171 #ifdef CONFIG_SECURITY
6172 	/* 1 to add LSM xattr */
6173 	if (dir->i_security)
6174 		(*trans_num_items)++;
6175 #endif
6176 	if (args->orphan) {
6177 		/* 1 to add orphan item */
6178 		(*trans_num_items)++;
6179 	} else {
6180 		/*
6181 		 * 1 to add dir item
6182 		 * 1 to add dir index
6183 		 * 1 to update parent inode item
6184 		 *
6185 		 * No need for 1 unit for the inode ref item because it is
6186 		 * inserted in a batch together with the inode item at
6187 		 * btrfs_create_new_inode().
6188 		 */
6189 		*trans_num_items += 3;
6190 	}
6191 	return 0;
6192 }
6193 
6194 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6195 {
6196 	posix_acl_release(args->acl);
6197 	posix_acl_release(args->default_acl);
6198 	fscrypt_free_filename(&args->fname);
6199 }
6200 
6201 /*
6202  * Inherit flags from the parent inode.
6203  *
6204  * Currently only the compression flags and the cow flags are inherited.
6205  */
6206 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6207 {
6208 	unsigned int flags;
6209 
6210 	flags = dir->flags;
6211 
6212 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6213 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6214 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6215 	} else if (flags & BTRFS_INODE_COMPRESS) {
6216 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6217 		inode->flags |= BTRFS_INODE_COMPRESS;
6218 	}
6219 
6220 	if (flags & BTRFS_INODE_NODATACOW) {
6221 		inode->flags |= BTRFS_INODE_NODATACOW;
6222 		if (S_ISREG(inode->vfs_inode.i_mode))
6223 			inode->flags |= BTRFS_INODE_NODATASUM;
6224 	}
6225 
6226 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6227 }
6228 
6229 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6230 			   struct btrfs_new_inode_args *args)
6231 {
6232 	struct timespec64 ts;
6233 	struct inode *dir = args->dir;
6234 	struct inode *inode = args->inode;
6235 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6236 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6237 	struct btrfs_root *root;
6238 	struct btrfs_inode_item *inode_item;
6239 	struct btrfs_key *location;
6240 	struct btrfs_path *path;
6241 	u64 objectid;
6242 	struct btrfs_inode_ref *ref;
6243 	struct btrfs_key key[2];
6244 	u32 sizes[2];
6245 	struct btrfs_item_batch batch;
6246 	unsigned long ptr;
6247 	int ret;
6248 
6249 	path = btrfs_alloc_path();
6250 	if (!path)
6251 		return -ENOMEM;
6252 
6253 	if (!args->subvol)
6254 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6255 	root = BTRFS_I(inode)->root;
6256 
6257 	ret = btrfs_get_free_objectid(root, &objectid);
6258 	if (ret)
6259 		goto out;
6260 	inode->i_ino = objectid;
6261 
6262 	if (args->orphan) {
6263 		/*
6264 		 * O_TMPFILE, set link count to 0, so that after this point, we
6265 		 * fill in an inode item with the correct link count.
6266 		 */
6267 		set_nlink(inode, 0);
6268 	} else {
6269 		trace_btrfs_inode_request(dir);
6270 
6271 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6272 		if (ret)
6273 			goto out;
6274 	}
6275 	/* index_cnt is ignored for everything but a dir. */
6276 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6277 	BTRFS_I(inode)->generation = trans->transid;
6278 	inode->i_generation = BTRFS_I(inode)->generation;
6279 
6280 	/*
6281 	 * We don't have any capability xattrs set here yet, shortcut any
6282 	 * queries for the xattrs here.  If we add them later via the inode
6283 	 * security init path or any other path this flag will be cleared.
6284 	 */
6285 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6286 
6287 	/*
6288 	 * Subvolumes don't inherit flags from their parent directory.
6289 	 * Originally this was probably by accident, but we probably can't
6290 	 * change it now without compatibility issues.
6291 	 */
6292 	if (!args->subvol)
6293 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6294 
6295 	if (S_ISREG(inode->i_mode)) {
6296 		if (btrfs_test_opt(fs_info, NODATASUM))
6297 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6298 		if (btrfs_test_opt(fs_info, NODATACOW))
6299 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6300 				BTRFS_INODE_NODATASUM;
6301 	}
6302 
6303 	location = &BTRFS_I(inode)->location;
6304 	location->objectid = objectid;
6305 	location->offset = 0;
6306 	location->type = BTRFS_INODE_ITEM_KEY;
6307 
6308 	ret = btrfs_insert_inode_locked(inode);
6309 	if (ret < 0) {
6310 		if (!args->orphan)
6311 			BTRFS_I(dir)->index_cnt--;
6312 		goto out;
6313 	}
6314 
6315 	/*
6316 	 * We could have gotten an inode number from somebody who was fsynced
6317 	 * and then removed in this same transaction, so let's just set full
6318 	 * sync since it will be a full sync anyway and this will blow away the
6319 	 * old info in the log.
6320 	 */
6321 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6322 
6323 	key[0].objectid = objectid;
6324 	key[0].type = BTRFS_INODE_ITEM_KEY;
6325 	key[0].offset = 0;
6326 
6327 	sizes[0] = sizeof(struct btrfs_inode_item);
6328 
6329 	if (!args->orphan) {
6330 		/*
6331 		 * Start new inodes with an inode_ref. This is slightly more
6332 		 * efficient for small numbers of hard links since they will
6333 		 * be packed into one item. Extended refs will kick in if we
6334 		 * add more hard links than can fit in the ref item.
6335 		 */
6336 		key[1].objectid = objectid;
6337 		key[1].type = BTRFS_INODE_REF_KEY;
6338 		if (args->subvol) {
6339 			key[1].offset = objectid;
6340 			sizes[1] = 2 + sizeof(*ref);
6341 		} else {
6342 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6343 			sizes[1] = name->len + sizeof(*ref);
6344 		}
6345 	}
6346 
6347 	batch.keys = &key[0];
6348 	batch.data_sizes = &sizes[0];
6349 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6350 	batch.nr = args->orphan ? 1 : 2;
6351 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6352 	if (ret != 0) {
6353 		btrfs_abort_transaction(trans, ret);
6354 		goto discard;
6355 	}
6356 
6357 	ts = simple_inode_init_ts(inode);
6358 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6359 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6360 
6361 	/*
6362 	 * We're going to fill the inode item now, so at this point the inode
6363 	 * must be fully initialized.
6364 	 */
6365 
6366 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6367 				  struct btrfs_inode_item);
6368 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6369 			     sizeof(*inode_item));
6370 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6371 
6372 	if (!args->orphan) {
6373 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6374 				     struct btrfs_inode_ref);
6375 		ptr = (unsigned long)(ref + 1);
6376 		if (args->subvol) {
6377 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6378 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6379 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6380 		} else {
6381 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6382 						     name->len);
6383 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6384 						  BTRFS_I(inode)->dir_index);
6385 			write_extent_buffer(path->nodes[0], name->name, ptr,
6386 					    name->len);
6387 		}
6388 	}
6389 
6390 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6391 	/*
6392 	 * We don't need the path anymore, plus inheriting properties, adding
6393 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6394 	 * allocating yet another path. So just free our path.
6395 	 */
6396 	btrfs_free_path(path);
6397 	path = NULL;
6398 
6399 	if (args->subvol) {
6400 		struct inode *parent;
6401 
6402 		/*
6403 		 * Subvolumes inherit properties from their parent subvolume,
6404 		 * not the directory they were created in.
6405 		 */
6406 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6407 				    BTRFS_I(dir)->root);
6408 		if (IS_ERR(parent)) {
6409 			ret = PTR_ERR(parent);
6410 		} else {
6411 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6412 			iput(parent);
6413 		}
6414 	} else {
6415 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6416 	}
6417 	if (ret) {
6418 		btrfs_err(fs_info,
6419 			  "error inheriting props for ino %llu (root %llu): %d",
6420 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6421 			  ret);
6422 	}
6423 
6424 	/*
6425 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6426 	 * probably a bug.
6427 	 */
6428 	if (!args->subvol) {
6429 		ret = btrfs_init_inode_security(trans, args);
6430 		if (ret) {
6431 			btrfs_abort_transaction(trans, ret);
6432 			goto discard;
6433 		}
6434 	}
6435 
6436 	inode_tree_add(BTRFS_I(inode));
6437 
6438 	trace_btrfs_inode_new(inode);
6439 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6440 
6441 	btrfs_update_root_times(trans, root);
6442 
6443 	if (args->orphan) {
6444 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6445 	} else {
6446 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6447 				     0, BTRFS_I(inode)->dir_index);
6448 	}
6449 	if (ret) {
6450 		btrfs_abort_transaction(trans, ret);
6451 		goto discard;
6452 	}
6453 
6454 	return 0;
6455 
6456 discard:
6457 	/*
6458 	 * discard_new_inode() calls iput(), but the caller owns the reference
6459 	 * to the inode.
6460 	 */
6461 	ihold(inode);
6462 	discard_new_inode(inode);
6463 out:
6464 	btrfs_free_path(path);
6465 	return ret;
6466 }
6467 
6468 /*
6469  * utility function to add 'inode' into 'parent_inode' with
6470  * a give name and a given sequence number.
6471  * if 'add_backref' is true, also insert a backref from the
6472  * inode to the parent directory.
6473  */
6474 int btrfs_add_link(struct btrfs_trans_handle *trans,
6475 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6476 		   const struct fscrypt_str *name, int add_backref, u64 index)
6477 {
6478 	int ret = 0;
6479 	struct btrfs_key key;
6480 	struct btrfs_root *root = parent_inode->root;
6481 	u64 ino = btrfs_ino(inode);
6482 	u64 parent_ino = btrfs_ino(parent_inode);
6483 
6484 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6485 		memcpy(&key, &inode->root->root_key, sizeof(key));
6486 	} else {
6487 		key.objectid = ino;
6488 		key.type = BTRFS_INODE_ITEM_KEY;
6489 		key.offset = 0;
6490 	}
6491 
6492 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6493 		ret = btrfs_add_root_ref(trans, key.objectid,
6494 					 root->root_key.objectid, parent_ino,
6495 					 index, name);
6496 	} else if (add_backref) {
6497 		ret = btrfs_insert_inode_ref(trans, root, name,
6498 					     ino, parent_ino, index);
6499 	}
6500 
6501 	/* Nothing to clean up yet */
6502 	if (ret)
6503 		return ret;
6504 
6505 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6506 				    btrfs_inode_type(&inode->vfs_inode), index);
6507 	if (ret == -EEXIST || ret == -EOVERFLOW)
6508 		goto fail_dir_item;
6509 	else if (ret) {
6510 		btrfs_abort_transaction(trans, ret);
6511 		return ret;
6512 	}
6513 
6514 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6515 			   name->len * 2);
6516 	inode_inc_iversion(&parent_inode->vfs_inode);
6517 	/*
6518 	 * If we are replaying a log tree, we do not want to update the mtime
6519 	 * and ctime of the parent directory with the current time, since the
6520 	 * log replay procedure is responsible for setting them to their correct
6521 	 * values (the ones it had when the fsync was done).
6522 	 */
6523 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6524 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6525 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6526 
6527 	ret = btrfs_update_inode(trans, parent_inode);
6528 	if (ret)
6529 		btrfs_abort_transaction(trans, ret);
6530 	return ret;
6531 
6532 fail_dir_item:
6533 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6534 		u64 local_index;
6535 		int err;
6536 		err = btrfs_del_root_ref(trans, key.objectid,
6537 					 root->root_key.objectid, parent_ino,
6538 					 &local_index, name);
6539 		if (err)
6540 			btrfs_abort_transaction(trans, err);
6541 	} else if (add_backref) {
6542 		u64 local_index;
6543 		int err;
6544 
6545 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6546 					  &local_index);
6547 		if (err)
6548 			btrfs_abort_transaction(trans, err);
6549 	}
6550 
6551 	/* Return the original error code */
6552 	return ret;
6553 }
6554 
6555 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6556 			       struct inode *inode)
6557 {
6558 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6559 	struct btrfs_root *root = BTRFS_I(dir)->root;
6560 	struct btrfs_new_inode_args new_inode_args = {
6561 		.dir = dir,
6562 		.dentry = dentry,
6563 		.inode = inode,
6564 	};
6565 	unsigned int trans_num_items;
6566 	struct btrfs_trans_handle *trans;
6567 	int err;
6568 
6569 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6570 	if (err)
6571 		goto out_inode;
6572 
6573 	trans = btrfs_start_transaction(root, trans_num_items);
6574 	if (IS_ERR(trans)) {
6575 		err = PTR_ERR(trans);
6576 		goto out_new_inode_args;
6577 	}
6578 
6579 	err = btrfs_create_new_inode(trans, &new_inode_args);
6580 	if (!err)
6581 		d_instantiate_new(dentry, inode);
6582 
6583 	btrfs_end_transaction(trans);
6584 	btrfs_btree_balance_dirty(fs_info);
6585 out_new_inode_args:
6586 	btrfs_new_inode_args_destroy(&new_inode_args);
6587 out_inode:
6588 	if (err)
6589 		iput(inode);
6590 	return err;
6591 }
6592 
6593 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6594 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6595 {
6596 	struct inode *inode;
6597 
6598 	inode = new_inode(dir->i_sb);
6599 	if (!inode)
6600 		return -ENOMEM;
6601 	inode_init_owner(idmap, inode, dir, mode);
6602 	inode->i_op = &btrfs_special_inode_operations;
6603 	init_special_inode(inode, inode->i_mode, rdev);
6604 	return btrfs_create_common(dir, dentry, inode);
6605 }
6606 
6607 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6608 			struct dentry *dentry, umode_t mode, bool excl)
6609 {
6610 	struct inode *inode;
6611 
6612 	inode = new_inode(dir->i_sb);
6613 	if (!inode)
6614 		return -ENOMEM;
6615 	inode_init_owner(idmap, inode, dir, mode);
6616 	inode->i_fop = &btrfs_file_operations;
6617 	inode->i_op = &btrfs_file_inode_operations;
6618 	inode->i_mapping->a_ops = &btrfs_aops;
6619 	return btrfs_create_common(dir, dentry, inode);
6620 }
6621 
6622 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6623 		      struct dentry *dentry)
6624 {
6625 	struct btrfs_trans_handle *trans = NULL;
6626 	struct btrfs_root *root = BTRFS_I(dir)->root;
6627 	struct inode *inode = d_inode(old_dentry);
6628 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6629 	struct fscrypt_name fname;
6630 	u64 index;
6631 	int err;
6632 	int drop_inode = 0;
6633 
6634 	/* do not allow sys_link's with other subvols of the same device */
6635 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6636 		return -EXDEV;
6637 
6638 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6639 		return -EMLINK;
6640 
6641 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6642 	if (err)
6643 		goto fail;
6644 
6645 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6646 	if (err)
6647 		goto fail;
6648 
6649 	/*
6650 	 * 2 items for inode and inode ref
6651 	 * 2 items for dir items
6652 	 * 1 item for parent inode
6653 	 * 1 item for orphan item deletion if O_TMPFILE
6654 	 */
6655 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6656 	if (IS_ERR(trans)) {
6657 		err = PTR_ERR(trans);
6658 		trans = NULL;
6659 		goto fail;
6660 	}
6661 
6662 	/* There are several dir indexes for this inode, clear the cache. */
6663 	BTRFS_I(inode)->dir_index = 0ULL;
6664 	inc_nlink(inode);
6665 	inode_inc_iversion(inode);
6666 	inode_set_ctime_current(inode);
6667 	ihold(inode);
6668 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6669 
6670 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6671 			     &fname.disk_name, 1, index);
6672 
6673 	if (err) {
6674 		drop_inode = 1;
6675 	} else {
6676 		struct dentry *parent = dentry->d_parent;
6677 
6678 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6679 		if (err)
6680 			goto fail;
6681 		if (inode->i_nlink == 1) {
6682 			/*
6683 			 * If new hard link count is 1, it's a file created
6684 			 * with open(2) O_TMPFILE flag.
6685 			 */
6686 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6687 			if (err)
6688 				goto fail;
6689 		}
6690 		d_instantiate(dentry, inode);
6691 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6692 	}
6693 
6694 fail:
6695 	fscrypt_free_filename(&fname);
6696 	if (trans)
6697 		btrfs_end_transaction(trans);
6698 	if (drop_inode) {
6699 		inode_dec_link_count(inode);
6700 		iput(inode);
6701 	}
6702 	btrfs_btree_balance_dirty(fs_info);
6703 	return err;
6704 }
6705 
6706 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6707 		       struct dentry *dentry, umode_t mode)
6708 {
6709 	struct inode *inode;
6710 
6711 	inode = new_inode(dir->i_sb);
6712 	if (!inode)
6713 		return -ENOMEM;
6714 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6715 	inode->i_op = &btrfs_dir_inode_operations;
6716 	inode->i_fop = &btrfs_dir_file_operations;
6717 	return btrfs_create_common(dir, dentry, inode);
6718 }
6719 
6720 static noinline int uncompress_inline(struct btrfs_path *path,
6721 				      struct page *page,
6722 				      struct btrfs_file_extent_item *item)
6723 {
6724 	int ret;
6725 	struct extent_buffer *leaf = path->nodes[0];
6726 	char *tmp;
6727 	size_t max_size;
6728 	unsigned long inline_size;
6729 	unsigned long ptr;
6730 	int compress_type;
6731 
6732 	compress_type = btrfs_file_extent_compression(leaf, item);
6733 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6734 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6735 	tmp = kmalloc(inline_size, GFP_NOFS);
6736 	if (!tmp)
6737 		return -ENOMEM;
6738 	ptr = btrfs_file_extent_inline_start(item);
6739 
6740 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6741 
6742 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6743 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6744 
6745 	/*
6746 	 * decompression code contains a memset to fill in any space between the end
6747 	 * of the uncompressed data and the end of max_size in case the decompressed
6748 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6749 	 * the end of an inline extent and the beginning of the next block, so we
6750 	 * cover that region here.
6751 	 */
6752 
6753 	if (max_size < PAGE_SIZE)
6754 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6755 	kfree(tmp);
6756 	return ret;
6757 }
6758 
6759 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6760 			      struct page *page)
6761 {
6762 	struct btrfs_file_extent_item *fi;
6763 	void *kaddr;
6764 	size_t copy_size;
6765 
6766 	if (!page || PageUptodate(page))
6767 		return 0;
6768 
6769 	ASSERT(page_offset(page) == 0);
6770 
6771 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6772 			    struct btrfs_file_extent_item);
6773 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6774 		return uncompress_inline(path, page, fi);
6775 
6776 	copy_size = min_t(u64, PAGE_SIZE,
6777 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6778 	kaddr = kmap_local_page(page);
6779 	read_extent_buffer(path->nodes[0], kaddr,
6780 			   btrfs_file_extent_inline_start(fi), copy_size);
6781 	kunmap_local(kaddr);
6782 	if (copy_size < PAGE_SIZE)
6783 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6784 	return 0;
6785 }
6786 
6787 /*
6788  * Lookup the first extent overlapping a range in a file.
6789  *
6790  * @inode:	file to search in
6791  * @page:	page to read extent data into if the extent is inline
6792  * @start:	file offset
6793  * @len:	length of range starting at @start
6794  *
6795  * Return the first &struct extent_map which overlaps the given range, reading
6796  * it from the B-tree and caching it if necessary. Note that there may be more
6797  * extents which overlap the given range after the returned extent_map.
6798  *
6799  * If @page is not NULL and the extent is inline, this also reads the extent
6800  * data directly into the page and marks the extent up to date in the io_tree.
6801  *
6802  * Return: ERR_PTR on error, non-NULL extent_map on success.
6803  */
6804 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6805 				    struct page *page, u64 start, u64 len)
6806 {
6807 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6808 	int ret = 0;
6809 	u64 extent_start = 0;
6810 	u64 extent_end = 0;
6811 	u64 objectid = btrfs_ino(inode);
6812 	int extent_type = -1;
6813 	struct btrfs_path *path = NULL;
6814 	struct btrfs_root *root = inode->root;
6815 	struct btrfs_file_extent_item *item;
6816 	struct extent_buffer *leaf;
6817 	struct btrfs_key found_key;
6818 	struct extent_map *em = NULL;
6819 	struct extent_map_tree *em_tree = &inode->extent_tree;
6820 
6821 	read_lock(&em_tree->lock);
6822 	em = lookup_extent_mapping(em_tree, start, len);
6823 	read_unlock(&em_tree->lock);
6824 
6825 	if (em) {
6826 		if (em->start > start || em->start + em->len <= start)
6827 			free_extent_map(em);
6828 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6829 			free_extent_map(em);
6830 		else
6831 			goto out;
6832 	}
6833 	em = alloc_extent_map();
6834 	if (!em) {
6835 		ret = -ENOMEM;
6836 		goto out;
6837 	}
6838 	em->start = EXTENT_MAP_HOLE;
6839 	em->orig_start = EXTENT_MAP_HOLE;
6840 	em->len = (u64)-1;
6841 	em->block_len = (u64)-1;
6842 
6843 	path = btrfs_alloc_path();
6844 	if (!path) {
6845 		ret = -ENOMEM;
6846 		goto out;
6847 	}
6848 
6849 	/* Chances are we'll be called again, so go ahead and do readahead */
6850 	path->reada = READA_FORWARD;
6851 
6852 	/*
6853 	 * The same explanation in load_free_space_cache applies here as well,
6854 	 * we only read when we're loading the free space cache, and at that
6855 	 * point the commit_root has everything we need.
6856 	 */
6857 	if (btrfs_is_free_space_inode(inode)) {
6858 		path->search_commit_root = 1;
6859 		path->skip_locking = 1;
6860 	}
6861 
6862 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6863 	if (ret < 0) {
6864 		goto out;
6865 	} else if (ret > 0) {
6866 		if (path->slots[0] == 0)
6867 			goto not_found;
6868 		path->slots[0]--;
6869 		ret = 0;
6870 	}
6871 
6872 	leaf = path->nodes[0];
6873 	item = btrfs_item_ptr(leaf, path->slots[0],
6874 			      struct btrfs_file_extent_item);
6875 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6876 	if (found_key.objectid != objectid ||
6877 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6878 		/*
6879 		 * If we backup past the first extent we want to move forward
6880 		 * and see if there is an extent in front of us, otherwise we'll
6881 		 * say there is a hole for our whole search range which can
6882 		 * cause problems.
6883 		 */
6884 		extent_end = start;
6885 		goto next;
6886 	}
6887 
6888 	extent_type = btrfs_file_extent_type(leaf, item);
6889 	extent_start = found_key.offset;
6890 	extent_end = btrfs_file_extent_end(path);
6891 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6892 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6893 		/* Only regular file could have regular/prealloc extent */
6894 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6895 			ret = -EUCLEAN;
6896 			btrfs_crit(fs_info,
6897 		"regular/prealloc extent found for non-regular inode %llu",
6898 				   btrfs_ino(inode));
6899 			goto out;
6900 		}
6901 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6902 						       extent_start);
6903 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6904 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6905 						      path->slots[0],
6906 						      extent_start);
6907 	}
6908 next:
6909 	if (start >= extent_end) {
6910 		path->slots[0]++;
6911 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6912 			ret = btrfs_next_leaf(root, path);
6913 			if (ret < 0)
6914 				goto out;
6915 			else if (ret > 0)
6916 				goto not_found;
6917 
6918 			leaf = path->nodes[0];
6919 		}
6920 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6921 		if (found_key.objectid != objectid ||
6922 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6923 			goto not_found;
6924 		if (start + len <= found_key.offset)
6925 			goto not_found;
6926 		if (start > found_key.offset)
6927 			goto next;
6928 
6929 		/* New extent overlaps with existing one */
6930 		em->start = start;
6931 		em->orig_start = start;
6932 		em->len = found_key.offset - start;
6933 		em->block_start = EXTENT_MAP_HOLE;
6934 		goto insert;
6935 	}
6936 
6937 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6938 
6939 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6940 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6941 		goto insert;
6942 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6943 		/*
6944 		 * Inline extent can only exist at file offset 0. This is
6945 		 * ensured by tree-checker and inline extent creation path.
6946 		 * Thus all members representing file offsets should be zero.
6947 		 */
6948 		ASSERT(extent_start == 0);
6949 		ASSERT(em->start == 0);
6950 
6951 		/*
6952 		 * btrfs_extent_item_to_extent_map() should have properly
6953 		 * initialized em members already.
6954 		 *
6955 		 * Other members are not utilized for inline extents.
6956 		 */
6957 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6958 		ASSERT(em->len == fs_info->sectorsize);
6959 
6960 		ret = read_inline_extent(inode, path, page);
6961 		if (ret < 0)
6962 			goto out;
6963 		goto insert;
6964 	}
6965 not_found:
6966 	em->start = start;
6967 	em->orig_start = start;
6968 	em->len = len;
6969 	em->block_start = EXTENT_MAP_HOLE;
6970 insert:
6971 	ret = 0;
6972 	btrfs_release_path(path);
6973 	if (em->start > start || extent_map_end(em) <= start) {
6974 		btrfs_err(fs_info,
6975 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6976 			  em->start, em->len, start, len);
6977 		ret = -EIO;
6978 		goto out;
6979 	}
6980 
6981 	write_lock(&em_tree->lock);
6982 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6983 	write_unlock(&em_tree->lock);
6984 out:
6985 	btrfs_free_path(path);
6986 
6987 	trace_btrfs_get_extent(root, inode, em);
6988 
6989 	if (ret) {
6990 		free_extent_map(em);
6991 		return ERR_PTR(ret);
6992 	}
6993 	return em;
6994 }
6995 
6996 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6997 						  struct btrfs_dio_data *dio_data,
6998 						  const u64 start,
6999 						  const u64 len,
7000 						  const u64 orig_start,
7001 						  const u64 block_start,
7002 						  const u64 block_len,
7003 						  const u64 orig_block_len,
7004 						  const u64 ram_bytes,
7005 						  const int type)
7006 {
7007 	struct extent_map *em = NULL;
7008 	struct btrfs_ordered_extent *ordered;
7009 
7010 	if (type != BTRFS_ORDERED_NOCOW) {
7011 		em = create_io_em(inode, start, len, orig_start, block_start,
7012 				  block_len, orig_block_len, ram_bytes,
7013 				  BTRFS_COMPRESS_NONE, /* compress_type */
7014 				  type);
7015 		if (IS_ERR(em))
7016 			goto out;
7017 	}
7018 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
7019 					     block_start, block_len, 0,
7020 					     (1 << type) |
7021 					     (1 << BTRFS_ORDERED_DIRECT),
7022 					     BTRFS_COMPRESS_NONE);
7023 	if (IS_ERR(ordered)) {
7024 		if (em) {
7025 			free_extent_map(em);
7026 			btrfs_drop_extent_map_range(inode, start,
7027 						    start + len - 1, false);
7028 		}
7029 		em = ERR_CAST(ordered);
7030 	} else {
7031 		ASSERT(!dio_data->ordered);
7032 		dio_data->ordered = ordered;
7033 	}
7034  out:
7035 
7036 	return em;
7037 }
7038 
7039 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7040 						  struct btrfs_dio_data *dio_data,
7041 						  u64 start, u64 len)
7042 {
7043 	struct btrfs_root *root = inode->root;
7044 	struct btrfs_fs_info *fs_info = root->fs_info;
7045 	struct extent_map *em;
7046 	struct btrfs_key ins;
7047 	u64 alloc_hint;
7048 	int ret;
7049 
7050 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7051 again:
7052 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7053 				   0, alloc_hint, &ins, 1, 1);
7054 	if (ret == -EAGAIN) {
7055 		ASSERT(btrfs_is_zoned(fs_info));
7056 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7057 			       TASK_UNINTERRUPTIBLE);
7058 		goto again;
7059 	}
7060 	if (ret)
7061 		return ERR_PTR(ret);
7062 
7063 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7064 				     ins.objectid, ins.offset, ins.offset,
7065 				     ins.offset, BTRFS_ORDERED_REGULAR);
7066 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7067 	if (IS_ERR(em))
7068 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7069 					   1);
7070 
7071 	return em;
7072 }
7073 
7074 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7075 {
7076 	struct btrfs_block_group *block_group;
7077 	bool readonly = false;
7078 
7079 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7080 	if (!block_group || block_group->ro)
7081 		readonly = true;
7082 	if (block_group)
7083 		btrfs_put_block_group(block_group);
7084 	return readonly;
7085 }
7086 
7087 /*
7088  * Check if we can do nocow write into the range [@offset, @offset + @len)
7089  *
7090  * @offset:	File offset
7091  * @len:	The length to write, will be updated to the nocow writeable
7092  *		range
7093  * @orig_start:	(optional) Return the original file offset of the file extent
7094  * @orig_len:	(optional) Return the original on-disk length of the file extent
7095  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7096  * @strict:	if true, omit optimizations that might force us into unnecessary
7097  *		cow. e.g., don't trust generation number.
7098  *
7099  * Return:
7100  * >0	and update @len if we can do nocow write
7101  *  0	if we can't do nocow write
7102  * <0	if error happened
7103  *
7104  * NOTE: This only checks the file extents, caller is responsible to wait for
7105  *	 any ordered extents.
7106  */
7107 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7108 			      u64 *orig_start, u64 *orig_block_len,
7109 			      u64 *ram_bytes, bool nowait, bool strict)
7110 {
7111 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7112 	struct can_nocow_file_extent_args nocow_args = { 0 };
7113 	struct btrfs_path *path;
7114 	int ret;
7115 	struct extent_buffer *leaf;
7116 	struct btrfs_root *root = BTRFS_I(inode)->root;
7117 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7118 	struct btrfs_file_extent_item *fi;
7119 	struct btrfs_key key;
7120 	int found_type;
7121 
7122 	path = btrfs_alloc_path();
7123 	if (!path)
7124 		return -ENOMEM;
7125 	path->nowait = nowait;
7126 
7127 	ret = btrfs_lookup_file_extent(NULL, root, path,
7128 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7129 	if (ret < 0)
7130 		goto out;
7131 
7132 	if (ret == 1) {
7133 		if (path->slots[0] == 0) {
7134 			/* can't find the item, must cow */
7135 			ret = 0;
7136 			goto out;
7137 		}
7138 		path->slots[0]--;
7139 	}
7140 	ret = 0;
7141 	leaf = path->nodes[0];
7142 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7143 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7144 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7145 		/* not our file or wrong item type, must cow */
7146 		goto out;
7147 	}
7148 
7149 	if (key.offset > offset) {
7150 		/* Wrong offset, must cow */
7151 		goto out;
7152 	}
7153 
7154 	if (btrfs_file_extent_end(path) <= offset)
7155 		goto out;
7156 
7157 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7158 	found_type = btrfs_file_extent_type(leaf, fi);
7159 	if (ram_bytes)
7160 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7161 
7162 	nocow_args.start = offset;
7163 	nocow_args.end = offset + *len - 1;
7164 	nocow_args.strict = strict;
7165 	nocow_args.free_path = true;
7166 
7167 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7168 	/* can_nocow_file_extent() has freed the path. */
7169 	path = NULL;
7170 
7171 	if (ret != 1) {
7172 		/* Treat errors as not being able to NOCOW. */
7173 		ret = 0;
7174 		goto out;
7175 	}
7176 
7177 	ret = 0;
7178 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7179 		goto out;
7180 
7181 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7182 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7183 		u64 range_end;
7184 
7185 		range_end = round_up(offset + nocow_args.num_bytes,
7186 				     root->fs_info->sectorsize) - 1;
7187 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7188 		if (ret) {
7189 			ret = -EAGAIN;
7190 			goto out;
7191 		}
7192 	}
7193 
7194 	if (orig_start)
7195 		*orig_start = key.offset - nocow_args.extent_offset;
7196 	if (orig_block_len)
7197 		*orig_block_len = nocow_args.disk_num_bytes;
7198 
7199 	*len = nocow_args.num_bytes;
7200 	ret = 1;
7201 out:
7202 	btrfs_free_path(path);
7203 	return ret;
7204 }
7205 
7206 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7207 			      struct extent_state **cached_state,
7208 			      unsigned int iomap_flags)
7209 {
7210 	const bool writing = (iomap_flags & IOMAP_WRITE);
7211 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7212 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7213 	struct btrfs_ordered_extent *ordered;
7214 	int ret = 0;
7215 
7216 	while (1) {
7217 		if (nowait) {
7218 			if (!try_lock_extent(io_tree, lockstart, lockend,
7219 					     cached_state))
7220 				return -EAGAIN;
7221 		} else {
7222 			lock_extent(io_tree, lockstart, lockend, cached_state);
7223 		}
7224 		/*
7225 		 * We're concerned with the entire range that we're going to be
7226 		 * doing DIO to, so we need to make sure there's no ordered
7227 		 * extents in this range.
7228 		 */
7229 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7230 						     lockend - lockstart + 1);
7231 
7232 		/*
7233 		 * We need to make sure there are no buffered pages in this
7234 		 * range either, we could have raced between the invalidate in
7235 		 * generic_file_direct_write and locking the extent.  The
7236 		 * invalidate needs to happen so that reads after a write do not
7237 		 * get stale data.
7238 		 */
7239 		if (!ordered &&
7240 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7241 							 lockstart, lockend)))
7242 			break;
7243 
7244 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7245 
7246 		if (ordered) {
7247 			if (nowait) {
7248 				btrfs_put_ordered_extent(ordered);
7249 				ret = -EAGAIN;
7250 				break;
7251 			}
7252 			/*
7253 			 * If we are doing a DIO read and the ordered extent we
7254 			 * found is for a buffered write, we can not wait for it
7255 			 * to complete and retry, because if we do so we can
7256 			 * deadlock with concurrent buffered writes on page
7257 			 * locks. This happens only if our DIO read covers more
7258 			 * than one extent map, if at this point has already
7259 			 * created an ordered extent for a previous extent map
7260 			 * and locked its range in the inode's io tree, and a
7261 			 * concurrent write against that previous extent map's
7262 			 * range and this range started (we unlock the ranges
7263 			 * in the io tree only when the bios complete and
7264 			 * buffered writes always lock pages before attempting
7265 			 * to lock range in the io tree).
7266 			 */
7267 			if (writing ||
7268 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7269 				btrfs_start_ordered_extent(ordered);
7270 			else
7271 				ret = nowait ? -EAGAIN : -ENOTBLK;
7272 			btrfs_put_ordered_extent(ordered);
7273 		} else {
7274 			/*
7275 			 * We could trigger writeback for this range (and wait
7276 			 * for it to complete) and then invalidate the pages for
7277 			 * this range (through invalidate_inode_pages2_range()),
7278 			 * but that can lead us to a deadlock with a concurrent
7279 			 * call to readahead (a buffered read or a defrag call
7280 			 * triggered a readahead) on a page lock due to an
7281 			 * ordered dio extent we created before but did not have
7282 			 * yet a corresponding bio submitted (whence it can not
7283 			 * complete), which makes readahead wait for that
7284 			 * ordered extent to complete while holding a lock on
7285 			 * that page.
7286 			 */
7287 			ret = nowait ? -EAGAIN : -ENOTBLK;
7288 		}
7289 
7290 		if (ret)
7291 			break;
7292 
7293 		cond_resched();
7294 	}
7295 
7296 	return ret;
7297 }
7298 
7299 /* The callers of this must take lock_extent() */
7300 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7301 				       u64 len, u64 orig_start, u64 block_start,
7302 				       u64 block_len, u64 orig_block_len,
7303 				       u64 ram_bytes, int compress_type,
7304 				       int type)
7305 {
7306 	struct extent_map *em;
7307 	int ret;
7308 
7309 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7310 	       type == BTRFS_ORDERED_COMPRESSED ||
7311 	       type == BTRFS_ORDERED_NOCOW ||
7312 	       type == BTRFS_ORDERED_REGULAR);
7313 
7314 	em = alloc_extent_map();
7315 	if (!em)
7316 		return ERR_PTR(-ENOMEM);
7317 
7318 	em->start = start;
7319 	em->orig_start = orig_start;
7320 	em->len = len;
7321 	em->block_len = block_len;
7322 	em->block_start = block_start;
7323 	em->orig_block_len = orig_block_len;
7324 	em->ram_bytes = ram_bytes;
7325 	em->generation = -1;
7326 	em->flags |= EXTENT_FLAG_PINNED;
7327 	if (type == BTRFS_ORDERED_PREALLOC)
7328 		em->flags |= EXTENT_FLAG_FILLING;
7329 	else if (type == BTRFS_ORDERED_COMPRESSED)
7330 		extent_map_set_compression(em, compress_type);
7331 
7332 	ret = btrfs_replace_extent_map_range(inode, em, true);
7333 	if (ret) {
7334 		free_extent_map(em);
7335 		return ERR_PTR(ret);
7336 	}
7337 
7338 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7339 	return em;
7340 }
7341 
7342 
7343 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7344 					 struct inode *inode,
7345 					 struct btrfs_dio_data *dio_data,
7346 					 u64 start, u64 *lenp,
7347 					 unsigned int iomap_flags)
7348 {
7349 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7350 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7351 	struct extent_map *em = *map;
7352 	int type;
7353 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7354 	struct btrfs_block_group *bg;
7355 	bool can_nocow = false;
7356 	bool space_reserved = false;
7357 	u64 len = *lenp;
7358 	u64 prev_len;
7359 	int ret = 0;
7360 
7361 	/*
7362 	 * We don't allocate a new extent in the following cases
7363 	 *
7364 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7365 	 * existing extent.
7366 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7367 	 * just use the extent.
7368 	 *
7369 	 */
7370 	if ((em->flags & EXTENT_FLAG_PREALLOC) ||
7371 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7372 	     em->block_start != EXTENT_MAP_HOLE)) {
7373 		if (em->flags & EXTENT_FLAG_PREALLOC)
7374 			type = BTRFS_ORDERED_PREALLOC;
7375 		else
7376 			type = BTRFS_ORDERED_NOCOW;
7377 		len = min(len, em->len - (start - em->start));
7378 		block_start = em->block_start + (start - em->start);
7379 
7380 		if (can_nocow_extent(inode, start, &len, &orig_start,
7381 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7382 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7383 			if (bg)
7384 				can_nocow = true;
7385 		}
7386 	}
7387 
7388 	prev_len = len;
7389 	if (can_nocow) {
7390 		struct extent_map *em2;
7391 
7392 		/* We can NOCOW, so only need to reserve metadata space. */
7393 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7394 						      nowait);
7395 		if (ret < 0) {
7396 			/* Our caller expects us to free the input extent map. */
7397 			free_extent_map(em);
7398 			*map = NULL;
7399 			btrfs_dec_nocow_writers(bg);
7400 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7401 				ret = -EAGAIN;
7402 			goto out;
7403 		}
7404 		space_reserved = true;
7405 
7406 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7407 					      orig_start, block_start,
7408 					      len, orig_block_len,
7409 					      ram_bytes, type);
7410 		btrfs_dec_nocow_writers(bg);
7411 		if (type == BTRFS_ORDERED_PREALLOC) {
7412 			free_extent_map(em);
7413 			*map = em2;
7414 			em = em2;
7415 		}
7416 
7417 		if (IS_ERR(em2)) {
7418 			ret = PTR_ERR(em2);
7419 			goto out;
7420 		}
7421 
7422 		dio_data->nocow_done = true;
7423 	} else {
7424 		/* Our caller expects us to free the input extent map. */
7425 		free_extent_map(em);
7426 		*map = NULL;
7427 
7428 		if (nowait) {
7429 			ret = -EAGAIN;
7430 			goto out;
7431 		}
7432 
7433 		/*
7434 		 * If we could not allocate data space before locking the file
7435 		 * range and we can't do a NOCOW write, then we have to fail.
7436 		 */
7437 		if (!dio_data->data_space_reserved) {
7438 			ret = -ENOSPC;
7439 			goto out;
7440 		}
7441 
7442 		/*
7443 		 * We have to COW and we have already reserved data space before,
7444 		 * so now we reserve only metadata.
7445 		 */
7446 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7447 						      false);
7448 		if (ret < 0)
7449 			goto out;
7450 		space_reserved = true;
7451 
7452 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7453 		if (IS_ERR(em)) {
7454 			ret = PTR_ERR(em);
7455 			goto out;
7456 		}
7457 		*map = em;
7458 		len = min(len, em->len - (start - em->start));
7459 		if (len < prev_len)
7460 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7461 							prev_len - len, true);
7462 	}
7463 
7464 	/*
7465 	 * We have created our ordered extent, so we can now release our reservation
7466 	 * for an outstanding extent.
7467 	 */
7468 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7469 
7470 	/*
7471 	 * Need to update the i_size under the extent lock so buffered
7472 	 * readers will get the updated i_size when we unlock.
7473 	 */
7474 	if (start + len > i_size_read(inode))
7475 		i_size_write(inode, start + len);
7476 out:
7477 	if (ret && space_reserved) {
7478 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7479 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7480 	}
7481 	*lenp = len;
7482 	return ret;
7483 }
7484 
7485 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7486 		loff_t length, unsigned int flags, struct iomap *iomap,
7487 		struct iomap *srcmap)
7488 {
7489 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7490 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7491 	struct extent_map *em;
7492 	struct extent_state *cached_state = NULL;
7493 	struct btrfs_dio_data *dio_data = iter->private;
7494 	u64 lockstart, lockend;
7495 	const bool write = !!(flags & IOMAP_WRITE);
7496 	int ret = 0;
7497 	u64 len = length;
7498 	const u64 data_alloc_len = length;
7499 	bool unlock_extents = false;
7500 
7501 	/*
7502 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7503 	 * we're NOWAIT we may submit a bio for a partial range and return
7504 	 * EIOCBQUEUED, which would result in an errant short read.
7505 	 *
7506 	 * The best way to handle this would be to allow for partial completions
7507 	 * of iocb's, so we could submit the partial bio, return and fault in
7508 	 * the rest of the pages, and then submit the io for the rest of the
7509 	 * range.  However we don't have that currently, so simply return
7510 	 * -EAGAIN at this point so that the normal path is used.
7511 	 */
7512 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7513 		return -EAGAIN;
7514 
7515 	/*
7516 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7517 	 * to allocate a contiguous array for the checksums.
7518 	 */
7519 	if (!write)
7520 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7521 
7522 	lockstart = start;
7523 	lockend = start + len - 1;
7524 
7525 	/*
7526 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7527 	 * enough if we've written compressed pages to this area, so we need to
7528 	 * flush the dirty pages again to make absolutely sure that any
7529 	 * outstanding dirty pages are on disk - the first flush only starts
7530 	 * compression on the data, while keeping the pages locked, so by the
7531 	 * time the second flush returns we know bios for the compressed pages
7532 	 * were submitted and finished, and the pages no longer under writeback.
7533 	 *
7534 	 * If we have a NOWAIT request and we have any pages in the range that
7535 	 * are locked, likely due to compression still in progress, we don't want
7536 	 * to block on page locks. We also don't want to block on pages marked as
7537 	 * dirty or under writeback (same as for the non-compression case).
7538 	 * iomap_dio_rw() did the same check, but after that and before we got
7539 	 * here, mmap'ed writes may have happened or buffered reads started
7540 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7541 	 * the file range yet.
7542 	 */
7543 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7544 		     &BTRFS_I(inode)->runtime_flags)) {
7545 		if (flags & IOMAP_NOWAIT) {
7546 			if (filemap_range_needs_writeback(inode->i_mapping,
7547 							  lockstart, lockend))
7548 				return -EAGAIN;
7549 		} else {
7550 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7551 						       start + length - 1);
7552 			if (ret)
7553 				return ret;
7554 		}
7555 	}
7556 
7557 	memset(dio_data, 0, sizeof(*dio_data));
7558 
7559 	/*
7560 	 * We always try to allocate data space and must do it before locking
7561 	 * the file range, to avoid deadlocks with concurrent writes to the same
7562 	 * range if the range has several extents and the writes don't expand the
7563 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7564 	 * allocate data space here we continue and later, after locking the
7565 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7566 	 * NOCOW write.
7567 	 */
7568 	if (write && !(flags & IOMAP_NOWAIT)) {
7569 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7570 						  &dio_data->data_reserved,
7571 						  start, data_alloc_len, false);
7572 		if (!ret)
7573 			dio_data->data_space_reserved = true;
7574 		else if (ret && !(BTRFS_I(inode)->flags &
7575 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7576 			goto err;
7577 	}
7578 
7579 	/*
7580 	 * If this errors out it's because we couldn't invalidate pagecache for
7581 	 * this range and we need to fallback to buffered IO, or we are doing a
7582 	 * NOWAIT read/write and we need to block.
7583 	 */
7584 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7585 	if (ret < 0)
7586 		goto err;
7587 
7588 	em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
7589 	if (IS_ERR(em)) {
7590 		ret = PTR_ERR(em);
7591 		goto unlock_err;
7592 	}
7593 
7594 	/*
7595 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7596 	 * io.  INLINE is special, and we could probably kludge it in here, but
7597 	 * it's still buffered so for safety lets just fall back to the generic
7598 	 * buffered path.
7599 	 *
7600 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7601 	 * decompress it, so there will be buffering required no matter what we
7602 	 * do, so go ahead and fallback to buffered.
7603 	 *
7604 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7605 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7606 	 * the generic code.
7607 	 */
7608 	if (extent_map_is_compressed(em) ||
7609 	    em->block_start == EXTENT_MAP_INLINE) {
7610 		free_extent_map(em);
7611 		/*
7612 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7613 		 * fallback to buffered IO. This is not only because we can
7614 		 * block with buffered IO (no support for NOWAIT semantics at
7615 		 * the moment) but also to avoid returning short reads to user
7616 		 * space - this happens if we were able to read some data from
7617 		 * previous non-compressed extents and then when we fallback to
7618 		 * buffered IO, at btrfs_file_read_iter() by calling
7619 		 * filemap_read(), we fail to fault in pages for the read buffer,
7620 		 * in which case filemap_read() returns a short read (the number
7621 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7622 		 */
7623 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7624 		goto unlock_err;
7625 	}
7626 
7627 	len = min(len, em->len - (start - em->start));
7628 
7629 	/*
7630 	 * If we have a NOWAIT request and the range contains multiple extents
7631 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7632 	 * caller fallback to a context where it can do a blocking (without
7633 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7634 	 * success to the caller, which is not optimal for writes and for reads
7635 	 * it can result in unexpected behaviour for an application.
7636 	 *
7637 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7638 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7639 	 * asked for, resulting in an unexpected, and incorrect, short read.
7640 	 * That is, the caller asked to read N bytes and we return less than that,
7641 	 * which is wrong unless we are crossing EOF. This happens if we get a
7642 	 * page fault error when trying to fault in pages for the buffer that is
7643 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7644 	 * have previously submitted bios for other extents in the range, in
7645 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7646 	 * those bios have completed by the time we get the page fault error,
7647 	 * which we return back to our caller - we should only return EIOCBQUEUED
7648 	 * after we have submitted bios for all the extents in the range.
7649 	 */
7650 	if ((flags & IOMAP_NOWAIT) && len < length) {
7651 		free_extent_map(em);
7652 		ret = -EAGAIN;
7653 		goto unlock_err;
7654 	}
7655 
7656 	if (write) {
7657 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7658 						    start, &len, flags);
7659 		if (ret < 0)
7660 			goto unlock_err;
7661 		unlock_extents = true;
7662 		/* Recalc len in case the new em is smaller than requested */
7663 		len = min(len, em->len - (start - em->start));
7664 		if (dio_data->data_space_reserved) {
7665 			u64 release_offset;
7666 			u64 release_len = 0;
7667 
7668 			if (dio_data->nocow_done) {
7669 				release_offset = start;
7670 				release_len = data_alloc_len;
7671 			} else if (len < data_alloc_len) {
7672 				release_offset = start + len;
7673 				release_len = data_alloc_len - len;
7674 			}
7675 
7676 			if (release_len > 0)
7677 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7678 							       dio_data->data_reserved,
7679 							       release_offset,
7680 							       release_len);
7681 		}
7682 	} else {
7683 		/*
7684 		 * We need to unlock only the end area that we aren't using.
7685 		 * The rest is going to be unlocked by the endio routine.
7686 		 */
7687 		lockstart = start + len;
7688 		if (lockstart < lockend)
7689 			unlock_extents = true;
7690 	}
7691 
7692 	if (unlock_extents)
7693 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7694 			      &cached_state);
7695 	else
7696 		free_extent_state(cached_state);
7697 
7698 	/*
7699 	 * Translate extent map information to iomap.
7700 	 * We trim the extents (and move the addr) even though iomap code does
7701 	 * that, since we have locked only the parts we are performing I/O in.
7702 	 */
7703 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7704 	    ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
7705 		iomap->addr = IOMAP_NULL_ADDR;
7706 		iomap->type = IOMAP_HOLE;
7707 	} else {
7708 		iomap->addr = em->block_start + (start - em->start);
7709 		iomap->type = IOMAP_MAPPED;
7710 	}
7711 	iomap->offset = start;
7712 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7713 	iomap->length = len;
7714 	free_extent_map(em);
7715 
7716 	return 0;
7717 
7718 unlock_err:
7719 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7720 		      &cached_state);
7721 err:
7722 	if (dio_data->data_space_reserved) {
7723 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7724 					       dio_data->data_reserved,
7725 					       start, data_alloc_len);
7726 		extent_changeset_free(dio_data->data_reserved);
7727 	}
7728 
7729 	return ret;
7730 }
7731 
7732 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7733 		ssize_t written, unsigned int flags, struct iomap *iomap)
7734 {
7735 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7736 	struct btrfs_dio_data *dio_data = iter->private;
7737 	size_t submitted = dio_data->submitted;
7738 	const bool write = !!(flags & IOMAP_WRITE);
7739 	int ret = 0;
7740 
7741 	if (!write && (iomap->type == IOMAP_HOLE)) {
7742 		/* If reading from a hole, unlock and return */
7743 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7744 			      NULL);
7745 		return 0;
7746 	}
7747 
7748 	if (submitted < length) {
7749 		pos += submitted;
7750 		length -= submitted;
7751 		if (write)
7752 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7753 						    pos, length, false);
7754 		else
7755 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7756 				      pos + length - 1, NULL);
7757 		ret = -ENOTBLK;
7758 	}
7759 	if (write) {
7760 		btrfs_put_ordered_extent(dio_data->ordered);
7761 		dio_data->ordered = NULL;
7762 	}
7763 
7764 	if (write)
7765 		extent_changeset_free(dio_data->data_reserved);
7766 	return ret;
7767 }
7768 
7769 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7770 {
7771 	struct btrfs_dio_private *dip =
7772 		container_of(bbio, struct btrfs_dio_private, bbio);
7773 	struct btrfs_inode *inode = bbio->inode;
7774 	struct bio *bio = &bbio->bio;
7775 
7776 	if (bio->bi_status) {
7777 		btrfs_warn(inode->root->fs_info,
7778 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7779 			   btrfs_ino(inode), bio->bi_opf,
7780 			   dip->file_offset, dip->bytes, bio->bi_status);
7781 	}
7782 
7783 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7784 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7785 					    dip->file_offset, dip->bytes,
7786 					    !bio->bi_status);
7787 	} else {
7788 		unlock_extent(&inode->io_tree, dip->file_offset,
7789 			      dip->file_offset + dip->bytes - 1, NULL);
7790 	}
7791 
7792 	bbio->bio.bi_private = bbio->private;
7793 	iomap_dio_bio_end_io(bio);
7794 }
7795 
7796 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7797 				loff_t file_offset)
7798 {
7799 	struct btrfs_bio *bbio = btrfs_bio(bio);
7800 	struct btrfs_dio_private *dip =
7801 		container_of(bbio, struct btrfs_dio_private, bbio);
7802 	struct btrfs_dio_data *dio_data = iter->private;
7803 
7804 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7805 		       btrfs_dio_end_io, bio->bi_private);
7806 	bbio->inode = BTRFS_I(iter->inode);
7807 	bbio->file_offset = file_offset;
7808 
7809 	dip->file_offset = file_offset;
7810 	dip->bytes = bio->bi_iter.bi_size;
7811 
7812 	dio_data->submitted += bio->bi_iter.bi_size;
7813 
7814 	/*
7815 	 * Check if we are doing a partial write.  If we are, we need to split
7816 	 * the ordered extent to match the submitted bio.  Hang on to the
7817 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7818 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7819 	 * remaining pages is blocked on the outstanding ordered extent.
7820 	 */
7821 	if (iter->flags & IOMAP_WRITE) {
7822 		int ret;
7823 
7824 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7825 		if (ret) {
7826 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7827 						    file_offset, dip->bytes,
7828 						    !ret);
7829 			bio->bi_status = errno_to_blk_status(ret);
7830 			iomap_dio_bio_end_io(bio);
7831 			return;
7832 		}
7833 	}
7834 
7835 	btrfs_submit_bio(bbio, 0);
7836 }
7837 
7838 static const struct iomap_ops btrfs_dio_iomap_ops = {
7839 	.iomap_begin            = btrfs_dio_iomap_begin,
7840 	.iomap_end              = btrfs_dio_iomap_end,
7841 };
7842 
7843 static const struct iomap_dio_ops btrfs_dio_ops = {
7844 	.submit_io		= btrfs_dio_submit_io,
7845 	.bio_set		= &btrfs_dio_bioset,
7846 };
7847 
7848 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7849 {
7850 	struct btrfs_dio_data data = { 0 };
7851 
7852 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7853 			    IOMAP_DIO_PARTIAL, &data, done_before);
7854 }
7855 
7856 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7857 				  size_t done_before)
7858 {
7859 	struct btrfs_dio_data data = { 0 };
7860 
7861 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7862 			    IOMAP_DIO_PARTIAL, &data, done_before);
7863 }
7864 
7865 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7866 			u64 start, u64 len)
7867 {
7868 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7869 	int	ret;
7870 
7871 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7872 	if (ret)
7873 		return ret;
7874 
7875 	/*
7876 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7877 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7878 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7879 	 * in the compression of data (in an async thread) and will return
7880 	 * before the compression is done and writeback is started. A second
7881 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7882 	 * complete and writeback to start. We also need to wait for ordered
7883 	 * extents to complete, because our fiemap implementation uses mainly
7884 	 * file extent items to list the extents, searching for extent maps
7885 	 * only for file ranges with holes or prealloc extents to figure out
7886 	 * if we have delalloc in those ranges.
7887 	 */
7888 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7889 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7890 		if (ret)
7891 			return ret;
7892 	}
7893 
7894 	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7895 
7896 	/*
7897 	 * We did an initial flush to avoid holding the inode's lock while
7898 	 * triggering writeback and waiting for the completion of IO and ordered
7899 	 * extents. Now after we locked the inode we do it again, because it's
7900 	 * possible a new write may have happened in between those two steps.
7901 	 */
7902 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7903 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7904 		if (ret) {
7905 			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7906 			return ret;
7907 		}
7908 	}
7909 
7910 	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7911 	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7912 
7913 	return ret;
7914 }
7915 
7916 static int btrfs_writepages(struct address_space *mapping,
7917 			    struct writeback_control *wbc)
7918 {
7919 	return extent_writepages(mapping, wbc);
7920 }
7921 
7922 static void btrfs_readahead(struct readahead_control *rac)
7923 {
7924 	extent_readahead(rac);
7925 }
7926 
7927 /*
7928  * For release_folio() and invalidate_folio() we have a race window where
7929  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7930  * If we continue to release/invalidate the page, we could cause use-after-free
7931  * for subpage spinlock.  So this function is to spin and wait for subpage
7932  * spinlock.
7933  */
7934 static void wait_subpage_spinlock(struct page *page)
7935 {
7936 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
7937 	struct folio *folio = page_folio(page);
7938 	struct btrfs_subpage *subpage;
7939 
7940 	if (!btrfs_is_subpage(fs_info, page->mapping))
7941 		return;
7942 
7943 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7944 	subpage = folio_get_private(folio);
7945 
7946 	/*
7947 	 * This may look insane as we just acquire the spinlock and release it,
7948 	 * without doing anything.  But we just want to make sure no one is
7949 	 * still holding the subpage spinlock.
7950 	 * And since the page is not dirty nor writeback, and we have page
7951 	 * locked, the only possible way to hold a spinlock is from the endio
7952 	 * function to clear page writeback.
7953 	 *
7954 	 * Here we just acquire the spinlock so that all existing callers
7955 	 * should exit and we're safe to release/invalidate the page.
7956 	 */
7957 	spin_lock_irq(&subpage->lock);
7958 	spin_unlock_irq(&subpage->lock);
7959 }
7960 
7961 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7962 {
7963 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7964 
7965 	if (ret == 1) {
7966 		wait_subpage_spinlock(&folio->page);
7967 		clear_page_extent_mapped(&folio->page);
7968 	}
7969 	return ret;
7970 }
7971 
7972 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7973 {
7974 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7975 		return false;
7976 	return __btrfs_release_folio(folio, gfp_flags);
7977 }
7978 
7979 #ifdef CONFIG_MIGRATION
7980 static int btrfs_migrate_folio(struct address_space *mapping,
7981 			     struct folio *dst, struct folio *src,
7982 			     enum migrate_mode mode)
7983 {
7984 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7985 
7986 	if (ret != MIGRATEPAGE_SUCCESS)
7987 		return ret;
7988 
7989 	if (folio_test_ordered(src)) {
7990 		folio_clear_ordered(src);
7991 		folio_set_ordered(dst);
7992 	}
7993 
7994 	return MIGRATEPAGE_SUCCESS;
7995 }
7996 #else
7997 #define btrfs_migrate_folio NULL
7998 #endif
7999 
8000 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8001 				 size_t length)
8002 {
8003 	struct btrfs_inode *inode = folio_to_inode(folio);
8004 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8005 	struct extent_io_tree *tree = &inode->io_tree;
8006 	struct extent_state *cached_state = NULL;
8007 	u64 page_start = folio_pos(folio);
8008 	u64 page_end = page_start + folio_size(folio) - 1;
8009 	u64 cur;
8010 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8011 
8012 	/*
8013 	 * We have folio locked so no new ordered extent can be created on this
8014 	 * page, nor bio can be submitted for this folio.
8015 	 *
8016 	 * But already submitted bio can still be finished on this folio.
8017 	 * Furthermore, endio function won't skip folio which has Ordered
8018 	 * (Private2) already cleared, so it's possible for endio and
8019 	 * invalidate_folio to do the same ordered extent accounting twice
8020 	 * on one folio.
8021 	 *
8022 	 * So here we wait for any submitted bios to finish, so that we won't
8023 	 * do double ordered extent accounting on the same folio.
8024 	 */
8025 	folio_wait_writeback(folio);
8026 	wait_subpage_spinlock(&folio->page);
8027 
8028 	/*
8029 	 * For subpage case, we have call sites like
8030 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8031 	 * sectorsize.
8032 	 * If the range doesn't cover the full folio, we don't need to and
8033 	 * shouldn't clear page extent mapped, as folio->private can still
8034 	 * record subpage dirty bits for other part of the range.
8035 	 *
8036 	 * For cases that invalidate the full folio even the range doesn't
8037 	 * cover the full folio, like invalidating the last folio, we're
8038 	 * still safe to wait for ordered extent to finish.
8039 	 */
8040 	if (!(offset == 0 && length == folio_size(folio))) {
8041 		btrfs_release_folio(folio, GFP_NOFS);
8042 		return;
8043 	}
8044 
8045 	if (!inode_evicting)
8046 		lock_extent(tree, page_start, page_end, &cached_state);
8047 
8048 	cur = page_start;
8049 	while (cur < page_end) {
8050 		struct btrfs_ordered_extent *ordered;
8051 		u64 range_end;
8052 		u32 range_len;
8053 		u32 extra_flags = 0;
8054 
8055 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8056 							   page_end + 1 - cur);
8057 		if (!ordered) {
8058 			range_end = page_end;
8059 			/*
8060 			 * No ordered extent covering this range, we are safe
8061 			 * to delete all extent states in the range.
8062 			 */
8063 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8064 			goto next;
8065 		}
8066 		if (ordered->file_offset > cur) {
8067 			/*
8068 			 * There is a range between [cur, oe->file_offset) not
8069 			 * covered by any ordered extent.
8070 			 * We are safe to delete all extent states, and handle
8071 			 * the ordered extent in the next iteration.
8072 			 */
8073 			range_end = ordered->file_offset - 1;
8074 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8075 			goto next;
8076 		}
8077 
8078 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8079 				page_end);
8080 		ASSERT(range_end + 1 - cur < U32_MAX);
8081 		range_len = range_end + 1 - cur;
8082 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
8083 			/*
8084 			 * If Ordered (Private2) is cleared, it means endio has
8085 			 * already been executed for the range.
8086 			 * We can't delete the extent states as
8087 			 * btrfs_finish_ordered_io() may still use some of them.
8088 			 */
8089 			goto next;
8090 		}
8091 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
8092 
8093 		/*
8094 		 * IO on this page will never be started, so we need to account
8095 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8096 		 * here, must leave that up for the ordered extent completion.
8097 		 *
8098 		 * This will also unlock the range for incoming
8099 		 * btrfs_finish_ordered_io().
8100 		 */
8101 		if (!inode_evicting)
8102 			clear_extent_bit(tree, cur, range_end,
8103 					 EXTENT_DELALLOC |
8104 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8105 					 EXTENT_DEFRAG, &cached_state);
8106 
8107 		spin_lock_irq(&inode->ordered_tree_lock);
8108 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8109 		ordered->truncated_len = min(ordered->truncated_len,
8110 					     cur - ordered->file_offset);
8111 		spin_unlock_irq(&inode->ordered_tree_lock);
8112 
8113 		/*
8114 		 * If the ordered extent has finished, we're safe to delete all
8115 		 * the extent states of the range, otherwise
8116 		 * btrfs_finish_ordered_io() will get executed by endio for
8117 		 * other pages, so we can't delete extent states.
8118 		 */
8119 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8120 						   cur, range_end + 1 - cur)) {
8121 			btrfs_finish_ordered_io(ordered);
8122 			/*
8123 			 * The ordered extent has finished, now we're again
8124 			 * safe to delete all extent states of the range.
8125 			 */
8126 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8127 		}
8128 next:
8129 		if (ordered)
8130 			btrfs_put_ordered_extent(ordered);
8131 		/*
8132 		 * Qgroup reserved space handler
8133 		 * Sector(s) here will be either:
8134 		 *
8135 		 * 1) Already written to disk or bio already finished
8136 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8137 		 *    Qgroup will be handled by its qgroup_record then.
8138 		 *    btrfs_qgroup_free_data() call will do nothing here.
8139 		 *
8140 		 * 2) Not written to disk yet
8141 		 *    Then btrfs_qgroup_free_data() call will clear the
8142 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8143 		 *    reserved data space.
8144 		 *    Since the IO will never happen for this page.
8145 		 */
8146 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8147 		if (!inode_evicting) {
8148 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8149 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8150 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8151 				 extra_flags, &cached_state);
8152 		}
8153 		cur = range_end + 1;
8154 	}
8155 	/*
8156 	 * We have iterated through all ordered extents of the page, the page
8157 	 * should not have Ordered (Private2) anymore, or the above iteration
8158 	 * did something wrong.
8159 	 */
8160 	ASSERT(!folio_test_ordered(folio));
8161 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
8162 	if (!inode_evicting)
8163 		__btrfs_release_folio(folio, GFP_NOFS);
8164 	clear_page_extent_mapped(&folio->page);
8165 }
8166 
8167 /*
8168  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8169  * called from a page fault handler when a page is first dirtied. Hence we must
8170  * be careful to check for EOF conditions here. We set the page up correctly
8171  * for a written page which means we get ENOSPC checking when writing into
8172  * holes and correct delalloc and unwritten extent mapping on filesystems that
8173  * support these features.
8174  *
8175  * We are not allowed to take the i_mutex here so we have to play games to
8176  * protect against truncate races as the page could now be beyond EOF.  Because
8177  * truncate_setsize() writes the inode size before removing pages, once we have
8178  * the page lock we can determine safely if the page is beyond EOF. If it is not
8179  * beyond EOF, then the page is guaranteed safe against truncation until we
8180  * unlock the page.
8181  */
8182 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8183 {
8184 	struct page *page = vmf->page;
8185 	struct folio *folio = page_folio(page);
8186 	struct inode *inode = file_inode(vmf->vma->vm_file);
8187 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8188 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8189 	struct btrfs_ordered_extent *ordered;
8190 	struct extent_state *cached_state = NULL;
8191 	struct extent_changeset *data_reserved = NULL;
8192 	unsigned long zero_start;
8193 	loff_t size;
8194 	vm_fault_t ret;
8195 	int ret2;
8196 	int reserved = 0;
8197 	u64 reserved_space;
8198 	u64 page_start;
8199 	u64 page_end;
8200 	u64 end;
8201 
8202 	ASSERT(folio_order(folio) == 0);
8203 
8204 	reserved_space = PAGE_SIZE;
8205 
8206 	sb_start_pagefault(inode->i_sb);
8207 	page_start = page_offset(page);
8208 	page_end = page_start + PAGE_SIZE - 1;
8209 	end = page_end;
8210 
8211 	/*
8212 	 * Reserving delalloc space after obtaining the page lock can lead to
8213 	 * deadlock. For example, if a dirty page is locked by this function
8214 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8215 	 * dirty page write out, then the btrfs_writepages() function could
8216 	 * end up waiting indefinitely to get a lock on the page currently
8217 	 * being processed by btrfs_page_mkwrite() function.
8218 	 */
8219 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8220 					    page_start, reserved_space);
8221 	if (!ret2) {
8222 		ret2 = file_update_time(vmf->vma->vm_file);
8223 		reserved = 1;
8224 	}
8225 	if (ret2) {
8226 		ret = vmf_error(ret2);
8227 		if (reserved)
8228 			goto out;
8229 		goto out_noreserve;
8230 	}
8231 
8232 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8233 again:
8234 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8235 	lock_page(page);
8236 	size = i_size_read(inode);
8237 
8238 	if ((page->mapping != inode->i_mapping) ||
8239 	    (page_start >= size)) {
8240 		/* page got truncated out from underneath us */
8241 		goto out_unlock;
8242 	}
8243 	wait_on_page_writeback(page);
8244 
8245 	lock_extent(io_tree, page_start, page_end, &cached_state);
8246 	ret2 = set_page_extent_mapped(page);
8247 	if (ret2 < 0) {
8248 		ret = vmf_error(ret2);
8249 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8250 		goto out_unlock;
8251 	}
8252 
8253 	/*
8254 	 * we can't set the delalloc bits if there are pending ordered
8255 	 * extents.  Drop our locks and wait for them to finish
8256 	 */
8257 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8258 			PAGE_SIZE);
8259 	if (ordered) {
8260 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8261 		unlock_page(page);
8262 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8263 		btrfs_start_ordered_extent(ordered);
8264 		btrfs_put_ordered_extent(ordered);
8265 		goto again;
8266 	}
8267 
8268 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8269 		reserved_space = round_up(size - page_start,
8270 					  fs_info->sectorsize);
8271 		if (reserved_space < PAGE_SIZE) {
8272 			end = page_start + reserved_space - 1;
8273 			btrfs_delalloc_release_space(BTRFS_I(inode),
8274 					data_reserved, page_start,
8275 					PAGE_SIZE - reserved_space, true);
8276 		}
8277 	}
8278 
8279 	/*
8280 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8281 	 * faulted in, but write(2) could also dirty a page and set delalloc
8282 	 * bits, thus in this case for space account reason, we still need to
8283 	 * clear any delalloc bits within this page range since we have to
8284 	 * reserve data&meta space before lock_page() (see above comments).
8285 	 */
8286 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8287 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8288 			  EXTENT_DEFRAG, &cached_state);
8289 
8290 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8291 					&cached_state);
8292 	if (ret2) {
8293 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8294 		ret = VM_FAULT_SIGBUS;
8295 		goto out_unlock;
8296 	}
8297 
8298 	/* page is wholly or partially inside EOF */
8299 	if (page_start + PAGE_SIZE > size)
8300 		zero_start = offset_in_page(size);
8301 	else
8302 		zero_start = PAGE_SIZE;
8303 
8304 	if (zero_start != PAGE_SIZE)
8305 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8306 
8307 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
8308 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
8309 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
8310 
8311 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8312 
8313 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8314 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8315 
8316 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8317 	sb_end_pagefault(inode->i_sb);
8318 	extent_changeset_free(data_reserved);
8319 	return VM_FAULT_LOCKED;
8320 
8321 out_unlock:
8322 	unlock_page(page);
8323 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8324 out:
8325 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8326 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8327 				     reserved_space, (ret != 0));
8328 out_noreserve:
8329 	sb_end_pagefault(inode->i_sb);
8330 	extent_changeset_free(data_reserved);
8331 	return ret;
8332 }
8333 
8334 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8335 {
8336 	struct btrfs_truncate_control control = {
8337 		.inode = inode,
8338 		.ino = btrfs_ino(inode),
8339 		.min_type = BTRFS_EXTENT_DATA_KEY,
8340 		.clear_extent_range = true,
8341 	};
8342 	struct btrfs_root *root = inode->root;
8343 	struct btrfs_fs_info *fs_info = root->fs_info;
8344 	struct btrfs_block_rsv *rsv;
8345 	int ret;
8346 	struct btrfs_trans_handle *trans;
8347 	u64 mask = fs_info->sectorsize - 1;
8348 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8349 
8350 	if (!skip_writeback) {
8351 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8352 					       inode->vfs_inode.i_size & (~mask),
8353 					       (u64)-1);
8354 		if (ret)
8355 			return ret;
8356 	}
8357 
8358 	/*
8359 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8360 	 * things going on here:
8361 	 *
8362 	 * 1) We need to reserve space to update our inode.
8363 	 *
8364 	 * 2) We need to have something to cache all the space that is going to
8365 	 * be free'd up by the truncate operation, but also have some slack
8366 	 * space reserved in case it uses space during the truncate (thank you
8367 	 * very much snapshotting).
8368 	 *
8369 	 * And we need these to be separate.  The fact is we can use a lot of
8370 	 * space doing the truncate, and we have no earthly idea how much space
8371 	 * we will use, so we need the truncate reservation to be separate so it
8372 	 * doesn't end up using space reserved for updating the inode.  We also
8373 	 * need to be able to stop the transaction and start a new one, which
8374 	 * means we need to be able to update the inode several times, and we
8375 	 * have no idea of knowing how many times that will be, so we can't just
8376 	 * reserve 1 item for the entirety of the operation, so that has to be
8377 	 * done separately as well.
8378 	 *
8379 	 * So that leaves us with
8380 	 *
8381 	 * 1) rsv - for the truncate reservation, which we will steal from the
8382 	 * transaction reservation.
8383 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8384 	 * updating the inode.
8385 	 */
8386 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8387 	if (!rsv)
8388 		return -ENOMEM;
8389 	rsv->size = min_size;
8390 	rsv->failfast = true;
8391 
8392 	/*
8393 	 * 1 for the truncate slack space
8394 	 * 1 for updating the inode.
8395 	 */
8396 	trans = btrfs_start_transaction(root, 2);
8397 	if (IS_ERR(trans)) {
8398 		ret = PTR_ERR(trans);
8399 		goto out;
8400 	}
8401 
8402 	/* Migrate the slack space for the truncate to our reserve */
8403 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8404 				      min_size, false);
8405 	/*
8406 	 * We have reserved 2 metadata units when we started the transaction and
8407 	 * min_size matches 1 unit, so this should never fail, but if it does,
8408 	 * it's not critical we just fail truncation.
8409 	 */
8410 	if (WARN_ON(ret)) {
8411 		btrfs_end_transaction(trans);
8412 		goto out;
8413 	}
8414 
8415 	trans->block_rsv = rsv;
8416 
8417 	while (1) {
8418 		struct extent_state *cached_state = NULL;
8419 		const u64 new_size = inode->vfs_inode.i_size;
8420 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8421 
8422 		control.new_size = new_size;
8423 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8424 		/*
8425 		 * We want to drop from the next block forward in case this new
8426 		 * size is not block aligned since we will be keeping the last
8427 		 * block of the extent just the way it is.
8428 		 */
8429 		btrfs_drop_extent_map_range(inode,
8430 					    ALIGN(new_size, fs_info->sectorsize),
8431 					    (u64)-1, false);
8432 
8433 		ret = btrfs_truncate_inode_items(trans, root, &control);
8434 
8435 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8436 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8437 
8438 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8439 
8440 		trans->block_rsv = &fs_info->trans_block_rsv;
8441 		if (ret != -ENOSPC && ret != -EAGAIN)
8442 			break;
8443 
8444 		ret = btrfs_update_inode(trans, inode);
8445 		if (ret)
8446 			break;
8447 
8448 		btrfs_end_transaction(trans);
8449 		btrfs_btree_balance_dirty(fs_info);
8450 
8451 		trans = btrfs_start_transaction(root, 2);
8452 		if (IS_ERR(trans)) {
8453 			ret = PTR_ERR(trans);
8454 			trans = NULL;
8455 			break;
8456 		}
8457 
8458 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8459 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8460 					      rsv, min_size, false);
8461 		/*
8462 		 * We have reserved 2 metadata units when we started the
8463 		 * transaction and min_size matches 1 unit, so this should never
8464 		 * fail, but if it does, it's not critical we just fail truncation.
8465 		 */
8466 		if (WARN_ON(ret))
8467 			break;
8468 
8469 		trans->block_rsv = rsv;
8470 	}
8471 
8472 	/*
8473 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8474 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8475 	 * know we've truncated everything except the last little bit, and can
8476 	 * do btrfs_truncate_block and then update the disk_i_size.
8477 	 */
8478 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8479 		btrfs_end_transaction(trans);
8480 		btrfs_btree_balance_dirty(fs_info);
8481 
8482 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8483 		if (ret)
8484 			goto out;
8485 		trans = btrfs_start_transaction(root, 1);
8486 		if (IS_ERR(trans)) {
8487 			ret = PTR_ERR(trans);
8488 			goto out;
8489 		}
8490 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8491 	}
8492 
8493 	if (trans) {
8494 		int ret2;
8495 
8496 		trans->block_rsv = &fs_info->trans_block_rsv;
8497 		ret2 = btrfs_update_inode(trans, inode);
8498 		if (ret2 && !ret)
8499 			ret = ret2;
8500 
8501 		ret2 = btrfs_end_transaction(trans);
8502 		if (ret2 && !ret)
8503 			ret = ret2;
8504 		btrfs_btree_balance_dirty(fs_info);
8505 	}
8506 out:
8507 	btrfs_free_block_rsv(fs_info, rsv);
8508 	/*
8509 	 * So if we truncate and then write and fsync we normally would just
8510 	 * write the extents that changed, which is a problem if we need to
8511 	 * first truncate that entire inode.  So set this flag so we write out
8512 	 * all of the extents in the inode to the sync log so we're completely
8513 	 * safe.
8514 	 *
8515 	 * If no extents were dropped or trimmed we don't need to force the next
8516 	 * fsync to truncate all the inode's items from the log and re-log them
8517 	 * all. This means the truncate operation did not change the file size,
8518 	 * or changed it to a smaller size but there was only an implicit hole
8519 	 * between the old i_size and the new i_size, and there were no prealloc
8520 	 * extents beyond i_size to drop.
8521 	 */
8522 	if (control.extents_found > 0)
8523 		btrfs_set_inode_full_sync(inode);
8524 
8525 	return ret;
8526 }
8527 
8528 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8529 				     struct inode *dir)
8530 {
8531 	struct inode *inode;
8532 
8533 	inode = new_inode(dir->i_sb);
8534 	if (inode) {
8535 		/*
8536 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8537 		 * the parent's sgid bit is set. This is probably a bug.
8538 		 */
8539 		inode_init_owner(idmap, inode, NULL,
8540 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8541 		inode->i_op = &btrfs_dir_inode_operations;
8542 		inode->i_fop = &btrfs_dir_file_operations;
8543 	}
8544 	return inode;
8545 }
8546 
8547 struct inode *btrfs_alloc_inode(struct super_block *sb)
8548 {
8549 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8550 	struct btrfs_inode *ei;
8551 	struct inode *inode;
8552 	struct extent_io_tree *file_extent_tree = NULL;
8553 
8554 	/* Self tests may pass a NULL fs_info. */
8555 	if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8556 		file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8557 		if (!file_extent_tree)
8558 			return NULL;
8559 	}
8560 
8561 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8562 	if (!ei) {
8563 		kfree(file_extent_tree);
8564 		return NULL;
8565 	}
8566 
8567 	ei->root = NULL;
8568 	ei->generation = 0;
8569 	ei->last_trans = 0;
8570 	ei->last_sub_trans = 0;
8571 	ei->logged_trans = 0;
8572 	ei->delalloc_bytes = 0;
8573 	ei->new_delalloc_bytes = 0;
8574 	ei->defrag_bytes = 0;
8575 	ei->disk_i_size = 0;
8576 	ei->flags = 0;
8577 	ei->ro_flags = 0;
8578 	ei->csum_bytes = 0;
8579 	ei->index_cnt = (u64)-1;
8580 	ei->dir_index = 0;
8581 	ei->last_unlink_trans = 0;
8582 	ei->last_reflink_trans = 0;
8583 	ei->last_log_commit = 0;
8584 
8585 	spin_lock_init(&ei->lock);
8586 	ei->outstanding_extents = 0;
8587 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8588 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8589 					      BTRFS_BLOCK_RSV_DELALLOC);
8590 	ei->runtime_flags = 0;
8591 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8592 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8593 
8594 	ei->delayed_node = NULL;
8595 
8596 	ei->i_otime_sec = 0;
8597 	ei->i_otime_nsec = 0;
8598 
8599 	inode = &ei->vfs_inode;
8600 	extent_map_tree_init(&ei->extent_tree);
8601 
8602 	/* This io tree sets the valid inode. */
8603 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8604 	ei->io_tree.inode = ei;
8605 
8606 	ei->file_extent_tree = file_extent_tree;
8607 	if (file_extent_tree) {
8608 		extent_io_tree_init(fs_info, ei->file_extent_tree,
8609 				    IO_TREE_INODE_FILE_EXTENT);
8610 		/* Lockdep class is set only for the file extent tree. */
8611 		lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8612 	}
8613 	mutex_init(&ei->log_mutex);
8614 	spin_lock_init(&ei->ordered_tree_lock);
8615 	ei->ordered_tree = RB_ROOT;
8616 	ei->ordered_tree_last = NULL;
8617 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8618 	INIT_LIST_HEAD(&ei->delayed_iput);
8619 	RB_CLEAR_NODE(&ei->rb_node);
8620 	init_rwsem(&ei->i_mmap_lock);
8621 
8622 	return inode;
8623 }
8624 
8625 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8626 void btrfs_test_destroy_inode(struct inode *inode)
8627 {
8628 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8629 	kfree(BTRFS_I(inode)->file_extent_tree);
8630 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8631 }
8632 #endif
8633 
8634 void btrfs_free_inode(struct inode *inode)
8635 {
8636 	kfree(BTRFS_I(inode)->file_extent_tree);
8637 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8638 }
8639 
8640 void btrfs_destroy_inode(struct inode *vfs_inode)
8641 {
8642 	struct btrfs_ordered_extent *ordered;
8643 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8644 	struct btrfs_root *root = inode->root;
8645 	bool freespace_inode;
8646 
8647 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8648 	WARN_ON(vfs_inode->i_data.nrpages);
8649 	WARN_ON(inode->block_rsv.reserved);
8650 	WARN_ON(inode->block_rsv.size);
8651 	WARN_ON(inode->outstanding_extents);
8652 	if (!S_ISDIR(vfs_inode->i_mode)) {
8653 		WARN_ON(inode->delalloc_bytes);
8654 		WARN_ON(inode->new_delalloc_bytes);
8655 	}
8656 	WARN_ON(inode->csum_bytes);
8657 	WARN_ON(inode->defrag_bytes);
8658 
8659 	/*
8660 	 * This can happen where we create an inode, but somebody else also
8661 	 * created the same inode and we need to destroy the one we already
8662 	 * created.
8663 	 */
8664 	if (!root)
8665 		return;
8666 
8667 	/*
8668 	 * If this is a free space inode do not take the ordered extents lockdep
8669 	 * map.
8670 	 */
8671 	freespace_inode = btrfs_is_free_space_inode(inode);
8672 
8673 	while (1) {
8674 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8675 		if (!ordered)
8676 			break;
8677 		else {
8678 			btrfs_err(root->fs_info,
8679 				  "found ordered extent %llu %llu on inode cleanup",
8680 				  ordered->file_offset, ordered->num_bytes);
8681 
8682 			if (!freespace_inode)
8683 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8684 
8685 			btrfs_remove_ordered_extent(inode, ordered);
8686 			btrfs_put_ordered_extent(ordered);
8687 			btrfs_put_ordered_extent(ordered);
8688 		}
8689 	}
8690 	btrfs_qgroup_check_reserved_leak(inode);
8691 	inode_tree_del(inode);
8692 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8693 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8694 	btrfs_put_root(inode->root);
8695 }
8696 
8697 int btrfs_drop_inode(struct inode *inode)
8698 {
8699 	struct btrfs_root *root = BTRFS_I(inode)->root;
8700 
8701 	if (root == NULL)
8702 		return 1;
8703 
8704 	/* the snap/subvol tree is on deleting */
8705 	if (btrfs_root_refs(&root->root_item) == 0)
8706 		return 1;
8707 	else
8708 		return generic_drop_inode(inode);
8709 }
8710 
8711 static void init_once(void *foo)
8712 {
8713 	struct btrfs_inode *ei = foo;
8714 
8715 	inode_init_once(&ei->vfs_inode);
8716 }
8717 
8718 void __cold btrfs_destroy_cachep(void)
8719 {
8720 	/*
8721 	 * Make sure all delayed rcu free inodes are flushed before we
8722 	 * destroy cache.
8723 	 */
8724 	rcu_barrier();
8725 	bioset_exit(&btrfs_dio_bioset);
8726 	kmem_cache_destroy(btrfs_inode_cachep);
8727 }
8728 
8729 int __init btrfs_init_cachep(void)
8730 {
8731 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8732 			sizeof(struct btrfs_inode), 0,
8733 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8734 			init_once);
8735 	if (!btrfs_inode_cachep)
8736 		goto fail;
8737 
8738 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8739 			offsetof(struct btrfs_dio_private, bbio.bio),
8740 			BIOSET_NEED_BVECS))
8741 		goto fail;
8742 
8743 	return 0;
8744 fail:
8745 	btrfs_destroy_cachep();
8746 	return -ENOMEM;
8747 }
8748 
8749 static int btrfs_getattr(struct mnt_idmap *idmap,
8750 			 const struct path *path, struct kstat *stat,
8751 			 u32 request_mask, unsigned int flags)
8752 {
8753 	u64 delalloc_bytes;
8754 	u64 inode_bytes;
8755 	struct inode *inode = d_inode(path->dentry);
8756 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8757 	u32 bi_flags = BTRFS_I(inode)->flags;
8758 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8759 
8760 	stat->result_mask |= STATX_BTIME;
8761 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8762 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8763 	if (bi_flags & BTRFS_INODE_APPEND)
8764 		stat->attributes |= STATX_ATTR_APPEND;
8765 	if (bi_flags & BTRFS_INODE_COMPRESS)
8766 		stat->attributes |= STATX_ATTR_COMPRESSED;
8767 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8768 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8769 	if (bi_flags & BTRFS_INODE_NODUMP)
8770 		stat->attributes |= STATX_ATTR_NODUMP;
8771 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8772 		stat->attributes |= STATX_ATTR_VERITY;
8773 
8774 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8775 				  STATX_ATTR_COMPRESSED |
8776 				  STATX_ATTR_IMMUTABLE |
8777 				  STATX_ATTR_NODUMP);
8778 
8779 	generic_fillattr(idmap, request_mask, inode, stat);
8780 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8781 
8782 	spin_lock(&BTRFS_I(inode)->lock);
8783 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8784 	inode_bytes = inode_get_bytes(inode);
8785 	spin_unlock(&BTRFS_I(inode)->lock);
8786 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8787 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8788 	return 0;
8789 }
8790 
8791 static int btrfs_rename_exchange(struct inode *old_dir,
8792 			      struct dentry *old_dentry,
8793 			      struct inode *new_dir,
8794 			      struct dentry *new_dentry)
8795 {
8796 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8797 	struct btrfs_trans_handle *trans;
8798 	unsigned int trans_num_items;
8799 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8800 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8801 	struct inode *new_inode = new_dentry->d_inode;
8802 	struct inode *old_inode = old_dentry->d_inode;
8803 	struct btrfs_rename_ctx old_rename_ctx;
8804 	struct btrfs_rename_ctx new_rename_ctx;
8805 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8806 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8807 	u64 old_idx = 0;
8808 	u64 new_idx = 0;
8809 	int ret;
8810 	int ret2;
8811 	bool need_abort = false;
8812 	struct fscrypt_name old_fname, new_fname;
8813 	struct fscrypt_str *old_name, *new_name;
8814 
8815 	/*
8816 	 * For non-subvolumes allow exchange only within one subvolume, in the
8817 	 * same inode namespace. Two subvolumes (represented as directory) can
8818 	 * be exchanged as they're a logical link and have a fixed inode number.
8819 	 */
8820 	if (root != dest &&
8821 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8822 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8823 		return -EXDEV;
8824 
8825 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8826 	if (ret)
8827 		return ret;
8828 
8829 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8830 	if (ret) {
8831 		fscrypt_free_filename(&old_fname);
8832 		return ret;
8833 	}
8834 
8835 	old_name = &old_fname.disk_name;
8836 	new_name = &new_fname.disk_name;
8837 
8838 	/* close the race window with snapshot create/destroy ioctl */
8839 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8840 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8841 		down_read(&fs_info->subvol_sem);
8842 
8843 	/*
8844 	 * For each inode:
8845 	 * 1 to remove old dir item
8846 	 * 1 to remove old dir index
8847 	 * 1 to add new dir item
8848 	 * 1 to add new dir index
8849 	 * 1 to update parent inode
8850 	 *
8851 	 * If the parents are the same, we only need to account for one
8852 	 */
8853 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8854 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8855 		/*
8856 		 * 1 to remove old root ref
8857 		 * 1 to remove old root backref
8858 		 * 1 to add new root ref
8859 		 * 1 to add new root backref
8860 		 */
8861 		trans_num_items += 4;
8862 	} else {
8863 		/*
8864 		 * 1 to update inode item
8865 		 * 1 to remove old inode ref
8866 		 * 1 to add new inode ref
8867 		 */
8868 		trans_num_items += 3;
8869 	}
8870 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8871 		trans_num_items += 4;
8872 	else
8873 		trans_num_items += 3;
8874 	trans = btrfs_start_transaction(root, trans_num_items);
8875 	if (IS_ERR(trans)) {
8876 		ret = PTR_ERR(trans);
8877 		goto out_notrans;
8878 	}
8879 
8880 	if (dest != root) {
8881 		ret = btrfs_record_root_in_trans(trans, dest);
8882 		if (ret)
8883 			goto out_fail;
8884 	}
8885 
8886 	/*
8887 	 * We need to find a free sequence number both in the source and
8888 	 * in the destination directory for the exchange.
8889 	 */
8890 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8891 	if (ret)
8892 		goto out_fail;
8893 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8894 	if (ret)
8895 		goto out_fail;
8896 
8897 	BTRFS_I(old_inode)->dir_index = 0ULL;
8898 	BTRFS_I(new_inode)->dir_index = 0ULL;
8899 
8900 	/* Reference for the source. */
8901 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8902 		/* force full log commit if subvolume involved. */
8903 		btrfs_set_log_full_commit(trans);
8904 	} else {
8905 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8906 					     btrfs_ino(BTRFS_I(new_dir)),
8907 					     old_idx);
8908 		if (ret)
8909 			goto out_fail;
8910 		need_abort = true;
8911 	}
8912 
8913 	/* And now for the dest. */
8914 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8915 		/* force full log commit if subvolume involved. */
8916 		btrfs_set_log_full_commit(trans);
8917 	} else {
8918 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8919 					     btrfs_ino(BTRFS_I(old_dir)),
8920 					     new_idx);
8921 		if (ret) {
8922 			if (need_abort)
8923 				btrfs_abort_transaction(trans, ret);
8924 			goto out_fail;
8925 		}
8926 	}
8927 
8928 	/* Update inode version and ctime/mtime. */
8929 	inode_inc_iversion(old_dir);
8930 	inode_inc_iversion(new_dir);
8931 	inode_inc_iversion(old_inode);
8932 	inode_inc_iversion(new_inode);
8933 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8934 
8935 	if (old_dentry->d_parent != new_dentry->d_parent) {
8936 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8937 					BTRFS_I(old_inode), true);
8938 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8939 					BTRFS_I(new_inode), true);
8940 	}
8941 
8942 	/* src is a subvolume */
8943 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8944 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8945 	} else { /* src is an inode */
8946 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8947 					   BTRFS_I(old_dentry->d_inode),
8948 					   old_name, &old_rename_ctx);
8949 		if (!ret)
8950 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8951 	}
8952 	if (ret) {
8953 		btrfs_abort_transaction(trans, ret);
8954 		goto out_fail;
8955 	}
8956 
8957 	/* dest is a subvolume */
8958 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8959 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8960 	} else { /* dest is an inode */
8961 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8962 					   BTRFS_I(new_dentry->d_inode),
8963 					   new_name, &new_rename_ctx);
8964 		if (!ret)
8965 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8966 	}
8967 	if (ret) {
8968 		btrfs_abort_transaction(trans, ret);
8969 		goto out_fail;
8970 	}
8971 
8972 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8973 			     new_name, 0, old_idx);
8974 	if (ret) {
8975 		btrfs_abort_transaction(trans, ret);
8976 		goto out_fail;
8977 	}
8978 
8979 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8980 			     old_name, 0, new_idx);
8981 	if (ret) {
8982 		btrfs_abort_transaction(trans, ret);
8983 		goto out_fail;
8984 	}
8985 
8986 	if (old_inode->i_nlink == 1)
8987 		BTRFS_I(old_inode)->dir_index = old_idx;
8988 	if (new_inode->i_nlink == 1)
8989 		BTRFS_I(new_inode)->dir_index = new_idx;
8990 
8991 	/*
8992 	 * Now pin the logs of the roots. We do it to ensure that no other task
8993 	 * can sync the logs while we are in progress with the rename, because
8994 	 * that could result in an inconsistency in case any of the inodes that
8995 	 * are part of this rename operation were logged before.
8996 	 */
8997 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8998 		btrfs_pin_log_trans(root);
8999 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9000 		btrfs_pin_log_trans(dest);
9001 
9002 	/* Do the log updates for all inodes. */
9003 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9004 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9005 				   old_rename_ctx.index, new_dentry->d_parent);
9006 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9007 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9008 				   new_rename_ctx.index, old_dentry->d_parent);
9009 
9010 	/* Now unpin the logs. */
9011 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9012 		btrfs_end_log_trans(root);
9013 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9014 		btrfs_end_log_trans(dest);
9015 out_fail:
9016 	ret2 = btrfs_end_transaction(trans);
9017 	ret = ret ? ret : ret2;
9018 out_notrans:
9019 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9020 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9021 		up_read(&fs_info->subvol_sem);
9022 
9023 	fscrypt_free_filename(&new_fname);
9024 	fscrypt_free_filename(&old_fname);
9025 	return ret;
9026 }
9027 
9028 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
9029 					struct inode *dir)
9030 {
9031 	struct inode *inode;
9032 
9033 	inode = new_inode(dir->i_sb);
9034 	if (inode) {
9035 		inode_init_owner(idmap, inode, dir,
9036 				 S_IFCHR | WHITEOUT_MODE);
9037 		inode->i_op = &btrfs_special_inode_operations;
9038 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9039 	}
9040 	return inode;
9041 }
9042 
9043 static int btrfs_rename(struct mnt_idmap *idmap,
9044 			struct inode *old_dir, struct dentry *old_dentry,
9045 			struct inode *new_dir, struct dentry *new_dentry,
9046 			unsigned int flags)
9047 {
9048 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
9049 	struct btrfs_new_inode_args whiteout_args = {
9050 		.dir = old_dir,
9051 		.dentry = old_dentry,
9052 	};
9053 	struct btrfs_trans_handle *trans;
9054 	unsigned int trans_num_items;
9055 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9056 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9057 	struct inode *new_inode = d_inode(new_dentry);
9058 	struct inode *old_inode = d_inode(old_dentry);
9059 	struct btrfs_rename_ctx rename_ctx;
9060 	u64 index = 0;
9061 	int ret;
9062 	int ret2;
9063 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9064 	struct fscrypt_name old_fname, new_fname;
9065 
9066 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9067 		return -EPERM;
9068 
9069 	/* we only allow rename subvolume link between subvolumes */
9070 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9071 		return -EXDEV;
9072 
9073 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9074 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9075 		return -ENOTEMPTY;
9076 
9077 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9078 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9079 		return -ENOTEMPTY;
9080 
9081 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9082 	if (ret)
9083 		return ret;
9084 
9085 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9086 	if (ret) {
9087 		fscrypt_free_filename(&old_fname);
9088 		return ret;
9089 	}
9090 
9091 	/* check for collisions, even if the  name isn't there */
9092 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9093 	if (ret) {
9094 		if (ret == -EEXIST) {
9095 			/* we shouldn't get
9096 			 * eexist without a new_inode */
9097 			if (WARN_ON(!new_inode)) {
9098 				goto out_fscrypt_names;
9099 			}
9100 		} else {
9101 			/* maybe -EOVERFLOW */
9102 			goto out_fscrypt_names;
9103 		}
9104 	}
9105 	ret = 0;
9106 
9107 	/*
9108 	 * we're using rename to replace one file with another.  Start IO on it
9109 	 * now so  we don't add too much work to the end of the transaction
9110 	 */
9111 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9112 		filemap_flush(old_inode->i_mapping);
9113 
9114 	if (flags & RENAME_WHITEOUT) {
9115 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9116 		if (!whiteout_args.inode) {
9117 			ret = -ENOMEM;
9118 			goto out_fscrypt_names;
9119 		}
9120 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9121 		if (ret)
9122 			goto out_whiteout_inode;
9123 	} else {
9124 		/* 1 to update the old parent inode. */
9125 		trans_num_items = 1;
9126 	}
9127 
9128 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9129 		/* Close the race window with snapshot create/destroy ioctl */
9130 		down_read(&fs_info->subvol_sem);
9131 		/*
9132 		 * 1 to remove old root ref
9133 		 * 1 to remove old root backref
9134 		 * 1 to add new root ref
9135 		 * 1 to add new root backref
9136 		 */
9137 		trans_num_items += 4;
9138 	} else {
9139 		/*
9140 		 * 1 to update inode
9141 		 * 1 to remove old inode ref
9142 		 * 1 to add new inode ref
9143 		 */
9144 		trans_num_items += 3;
9145 	}
9146 	/*
9147 	 * 1 to remove old dir item
9148 	 * 1 to remove old dir index
9149 	 * 1 to add new dir item
9150 	 * 1 to add new dir index
9151 	 */
9152 	trans_num_items += 4;
9153 	/* 1 to update new parent inode if it's not the same as the old parent */
9154 	if (new_dir != old_dir)
9155 		trans_num_items++;
9156 	if (new_inode) {
9157 		/*
9158 		 * 1 to update inode
9159 		 * 1 to remove inode ref
9160 		 * 1 to remove dir item
9161 		 * 1 to remove dir index
9162 		 * 1 to possibly add orphan item
9163 		 */
9164 		trans_num_items += 5;
9165 	}
9166 	trans = btrfs_start_transaction(root, trans_num_items);
9167 	if (IS_ERR(trans)) {
9168 		ret = PTR_ERR(trans);
9169 		goto out_notrans;
9170 	}
9171 
9172 	if (dest != root) {
9173 		ret = btrfs_record_root_in_trans(trans, dest);
9174 		if (ret)
9175 			goto out_fail;
9176 	}
9177 
9178 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9179 	if (ret)
9180 		goto out_fail;
9181 
9182 	BTRFS_I(old_inode)->dir_index = 0ULL;
9183 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9184 		/* force full log commit if subvolume involved. */
9185 		btrfs_set_log_full_commit(trans);
9186 	} else {
9187 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9188 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9189 					     index);
9190 		if (ret)
9191 			goto out_fail;
9192 	}
9193 
9194 	inode_inc_iversion(old_dir);
9195 	inode_inc_iversion(new_dir);
9196 	inode_inc_iversion(old_inode);
9197 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9198 
9199 	if (old_dentry->d_parent != new_dentry->d_parent)
9200 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9201 					BTRFS_I(old_inode), true);
9202 
9203 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9204 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9205 	} else {
9206 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9207 					   BTRFS_I(d_inode(old_dentry)),
9208 					   &old_fname.disk_name, &rename_ctx);
9209 		if (!ret)
9210 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
9211 	}
9212 	if (ret) {
9213 		btrfs_abort_transaction(trans, ret);
9214 		goto out_fail;
9215 	}
9216 
9217 	if (new_inode) {
9218 		inode_inc_iversion(new_inode);
9219 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9220 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9221 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9222 			BUG_ON(new_inode->i_nlink == 0);
9223 		} else {
9224 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9225 						 BTRFS_I(d_inode(new_dentry)),
9226 						 &new_fname.disk_name);
9227 		}
9228 		if (!ret && new_inode->i_nlink == 0)
9229 			ret = btrfs_orphan_add(trans,
9230 					BTRFS_I(d_inode(new_dentry)));
9231 		if (ret) {
9232 			btrfs_abort_transaction(trans, ret);
9233 			goto out_fail;
9234 		}
9235 	}
9236 
9237 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9238 			     &new_fname.disk_name, 0, index);
9239 	if (ret) {
9240 		btrfs_abort_transaction(trans, ret);
9241 		goto out_fail;
9242 	}
9243 
9244 	if (old_inode->i_nlink == 1)
9245 		BTRFS_I(old_inode)->dir_index = index;
9246 
9247 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9248 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9249 				   rename_ctx.index, new_dentry->d_parent);
9250 
9251 	if (flags & RENAME_WHITEOUT) {
9252 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9253 		if (ret) {
9254 			btrfs_abort_transaction(trans, ret);
9255 			goto out_fail;
9256 		} else {
9257 			unlock_new_inode(whiteout_args.inode);
9258 			iput(whiteout_args.inode);
9259 			whiteout_args.inode = NULL;
9260 		}
9261 	}
9262 out_fail:
9263 	ret2 = btrfs_end_transaction(trans);
9264 	ret = ret ? ret : ret2;
9265 out_notrans:
9266 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9267 		up_read(&fs_info->subvol_sem);
9268 	if (flags & RENAME_WHITEOUT)
9269 		btrfs_new_inode_args_destroy(&whiteout_args);
9270 out_whiteout_inode:
9271 	if (flags & RENAME_WHITEOUT)
9272 		iput(whiteout_args.inode);
9273 out_fscrypt_names:
9274 	fscrypt_free_filename(&old_fname);
9275 	fscrypt_free_filename(&new_fname);
9276 	return ret;
9277 }
9278 
9279 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9280 			 struct dentry *old_dentry, struct inode *new_dir,
9281 			 struct dentry *new_dentry, unsigned int flags)
9282 {
9283 	int ret;
9284 
9285 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9286 		return -EINVAL;
9287 
9288 	if (flags & RENAME_EXCHANGE)
9289 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9290 					    new_dentry);
9291 	else
9292 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9293 				   new_dentry, flags);
9294 
9295 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9296 
9297 	return ret;
9298 }
9299 
9300 struct btrfs_delalloc_work {
9301 	struct inode *inode;
9302 	struct completion completion;
9303 	struct list_head list;
9304 	struct btrfs_work work;
9305 };
9306 
9307 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9308 {
9309 	struct btrfs_delalloc_work *delalloc_work;
9310 	struct inode *inode;
9311 
9312 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9313 				     work);
9314 	inode = delalloc_work->inode;
9315 	filemap_flush(inode->i_mapping);
9316 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9317 				&BTRFS_I(inode)->runtime_flags))
9318 		filemap_flush(inode->i_mapping);
9319 
9320 	iput(inode);
9321 	complete(&delalloc_work->completion);
9322 }
9323 
9324 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9325 {
9326 	struct btrfs_delalloc_work *work;
9327 
9328 	work = kmalloc(sizeof(*work), GFP_NOFS);
9329 	if (!work)
9330 		return NULL;
9331 
9332 	init_completion(&work->completion);
9333 	INIT_LIST_HEAD(&work->list);
9334 	work->inode = inode;
9335 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
9336 
9337 	return work;
9338 }
9339 
9340 /*
9341  * some fairly slow code that needs optimization. This walks the list
9342  * of all the inodes with pending delalloc and forces them to disk.
9343  */
9344 static int start_delalloc_inodes(struct btrfs_root *root,
9345 				 struct writeback_control *wbc, bool snapshot,
9346 				 bool in_reclaim_context)
9347 {
9348 	struct btrfs_inode *binode;
9349 	struct inode *inode;
9350 	struct btrfs_delalloc_work *work, *next;
9351 	LIST_HEAD(works);
9352 	LIST_HEAD(splice);
9353 	int ret = 0;
9354 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9355 
9356 	mutex_lock(&root->delalloc_mutex);
9357 	spin_lock(&root->delalloc_lock);
9358 	list_splice_init(&root->delalloc_inodes, &splice);
9359 	while (!list_empty(&splice)) {
9360 		binode = list_entry(splice.next, struct btrfs_inode,
9361 				    delalloc_inodes);
9362 
9363 		list_move_tail(&binode->delalloc_inodes,
9364 			       &root->delalloc_inodes);
9365 
9366 		if (in_reclaim_context &&
9367 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9368 			continue;
9369 
9370 		inode = igrab(&binode->vfs_inode);
9371 		if (!inode) {
9372 			cond_resched_lock(&root->delalloc_lock);
9373 			continue;
9374 		}
9375 		spin_unlock(&root->delalloc_lock);
9376 
9377 		if (snapshot)
9378 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9379 				&binode->runtime_flags);
9380 		if (full_flush) {
9381 			work = btrfs_alloc_delalloc_work(inode);
9382 			if (!work) {
9383 				iput(inode);
9384 				ret = -ENOMEM;
9385 				goto out;
9386 			}
9387 			list_add_tail(&work->list, &works);
9388 			btrfs_queue_work(root->fs_info->flush_workers,
9389 					 &work->work);
9390 		} else {
9391 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9392 			btrfs_add_delayed_iput(BTRFS_I(inode));
9393 			if (ret || wbc->nr_to_write <= 0)
9394 				goto out;
9395 		}
9396 		cond_resched();
9397 		spin_lock(&root->delalloc_lock);
9398 	}
9399 	spin_unlock(&root->delalloc_lock);
9400 
9401 out:
9402 	list_for_each_entry_safe(work, next, &works, list) {
9403 		list_del_init(&work->list);
9404 		wait_for_completion(&work->completion);
9405 		kfree(work);
9406 	}
9407 
9408 	if (!list_empty(&splice)) {
9409 		spin_lock(&root->delalloc_lock);
9410 		list_splice_tail(&splice, &root->delalloc_inodes);
9411 		spin_unlock(&root->delalloc_lock);
9412 	}
9413 	mutex_unlock(&root->delalloc_mutex);
9414 	return ret;
9415 }
9416 
9417 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9418 {
9419 	struct writeback_control wbc = {
9420 		.nr_to_write = LONG_MAX,
9421 		.sync_mode = WB_SYNC_NONE,
9422 		.range_start = 0,
9423 		.range_end = LLONG_MAX,
9424 	};
9425 	struct btrfs_fs_info *fs_info = root->fs_info;
9426 
9427 	if (BTRFS_FS_ERROR(fs_info))
9428 		return -EROFS;
9429 
9430 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9431 }
9432 
9433 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9434 			       bool in_reclaim_context)
9435 {
9436 	struct writeback_control wbc = {
9437 		.nr_to_write = nr,
9438 		.sync_mode = WB_SYNC_NONE,
9439 		.range_start = 0,
9440 		.range_end = LLONG_MAX,
9441 	};
9442 	struct btrfs_root *root;
9443 	LIST_HEAD(splice);
9444 	int ret;
9445 
9446 	if (BTRFS_FS_ERROR(fs_info))
9447 		return -EROFS;
9448 
9449 	mutex_lock(&fs_info->delalloc_root_mutex);
9450 	spin_lock(&fs_info->delalloc_root_lock);
9451 	list_splice_init(&fs_info->delalloc_roots, &splice);
9452 	while (!list_empty(&splice)) {
9453 		/*
9454 		 * Reset nr_to_write here so we know that we're doing a full
9455 		 * flush.
9456 		 */
9457 		if (nr == LONG_MAX)
9458 			wbc.nr_to_write = LONG_MAX;
9459 
9460 		root = list_first_entry(&splice, struct btrfs_root,
9461 					delalloc_root);
9462 		root = btrfs_grab_root(root);
9463 		BUG_ON(!root);
9464 		list_move_tail(&root->delalloc_root,
9465 			       &fs_info->delalloc_roots);
9466 		spin_unlock(&fs_info->delalloc_root_lock);
9467 
9468 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9469 		btrfs_put_root(root);
9470 		if (ret < 0 || wbc.nr_to_write <= 0)
9471 			goto out;
9472 		spin_lock(&fs_info->delalloc_root_lock);
9473 	}
9474 	spin_unlock(&fs_info->delalloc_root_lock);
9475 
9476 	ret = 0;
9477 out:
9478 	if (!list_empty(&splice)) {
9479 		spin_lock(&fs_info->delalloc_root_lock);
9480 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9481 		spin_unlock(&fs_info->delalloc_root_lock);
9482 	}
9483 	mutex_unlock(&fs_info->delalloc_root_mutex);
9484 	return ret;
9485 }
9486 
9487 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9488 			 struct dentry *dentry, const char *symname)
9489 {
9490 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9491 	struct btrfs_trans_handle *trans;
9492 	struct btrfs_root *root = BTRFS_I(dir)->root;
9493 	struct btrfs_path *path;
9494 	struct btrfs_key key;
9495 	struct inode *inode;
9496 	struct btrfs_new_inode_args new_inode_args = {
9497 		.dir = dir,
9498 		.dentry = dentry,
9499 	};
9500 	unsigned int trans_num_items;
9501 	int err;
9502 	int name_len;
9503 	int datasize;
9504 	unsigned long ptr;
9505 	struct btrfs_file_extent_item *ei;
9506 	struct extent_buffer *leaf;
9507 
9508 	name_len = strlen(symname);
9509 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9510 		return -ENAMETOOLONG;
9511 
9512 	inode = new_inode(dir->i_sb);
9513 	if (!inode)
9514 		return -ENOMEM;
9515 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9516 	inode->i_op = &btrfs_symlink_inode_operations;
9517 	inode_nohighmem(inode);
9518 	inode->i_mapping->a_ops = &btrfs_aops;
9519 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9520 	inode_set_bytes(inode, name_len);
9521 
9522 	new_inode_args.inode = inode;
9523 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9524 	if (err)
9525 		goto out_inode;
9526 	/* 1 additional item for the inline extent */
9527 	trans_num_items++;
9528 
9529 	trans = btrfs_start_transaction(root, trans_num_items);
9530 	if (IS_ERR(trans)) {
9531 		err = PTR_ERR(trans);
9532 		goto out_new_inode_args;
9533 	}
9534 
9535 	err = btrfs_create_new_inode(trans, &new_inode_args);
9536 	if (err)
9537 		goto out;
9538 
9539 	path = btrfs_alloc_path();
9540 	if (!path) {
9541 		err = -ENOMEM;
9542 		btrfs_abort_transaction(trans, err);
9543 		discard_new_inode(inode);
9544 		inode = NULL;
9545 		goto out;
9546 	}
9547 	key.objectid = btrfs_ino(BTRFS_I(inode));
9548 	key.offset = 0;
9549 	key.type = BTRFS_EXTENT_DATA_KEY;
9550 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9551 	err = btrfs_insert_empty_item(trans, root, path, &key,
9552 				      datasize);
9553 	if (err) {
9554 		btrfs_abort_transaction(trans, err);
9555 		btrfs_free_path(path);
9556 		discard_new_inode(inode);
9557 		inode = NULL;
9558 		goto out;
9559 	}
9560 	leaf = path->nodes[0];
9561 	ei = btrfs_item_ptr(leaf, path->slots[0],
9562 			    struct btrfs_file_extent_item);
9563 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9564 	btrfs_set_file_extent_type(leaf, ei,
9565 				   BTRFS_FILE_EXTENT_INLINE);
9566 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9567 	btrfs_set_file_extent_compression(leaf, ei, 0);
9568 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9569 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9570 
9571 	ptr = btrfs_file_extent_inline_start(ei);
9572 	write_extent_buffer(leaf, symname, ptr, name_len);
9573 	btrfs_mark_buffer_dirty(trans, leaf);
9574 	btrfs_free_path(path);
9575 
9576 	d_instantiate_new(dentry, inode);
9577 	err = 0;
9578 out:
9579 	btrfs_end_transaction(trans);
9580 	btrfs_btree_balance_dirty(fs_info);
9581 out_new_inode_args:
9582 	btrfs_new_inode_args_destroy(&new_inode_args);
9583 out_inode:
9584 	if (err)
9585 		iput(inode);
9586 	return err;
9587 }
9588 
9589 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9590 				       struct btrfs_trans_handle *trans_in,
9591 				       struct btrfs_inode *inode,
9592 				       struct btrfs_key *ins,
9593 				       u64 file_offset)
9594 {
9595 	struct btrfs_file_extent_item stack_fi;
9596 	struct btrfs_replace_extent_info extent_info;
9597 	struct btrfs_trans_handle *trans = trans_in;
9598 	struct btrfs_path *path;
9599 	u64 start = ins->objectid;
9600 	u64 len = ins->offset;
9601 	u64 qgroup_released = 0;
9602 	int ret;
9603 
9604 	memset(&stack_fi, 0, sizeof(stack_fi));
9605 
9606 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9607 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9608 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9609 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9610 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9611 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9612 	/* Encryption and other encoding is reserved and all 0 */
9613 
9614 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9615 	if (ret < 0)
9616 		return ERR_PTR(ret);
9617 
9618 	if (trans) {
9619 		ret = insert_reserved_file_extent(trans, inode,
9620 						  file_offset, &stack_fi,
9621 						  true, qgroup_released);
9622 		if (ret)
9623 			goto free_qgroup;
9624 		return trans;
9625 	}
9626 
9627 	extent_info.disk_offset = start;
9628 	extent_info.disk_len = len;
9629 	extent_info.data_offset = 0;
9630 	extent_info.data_len = len;
9631 	extent_info.file_offset = file_offset;
9632 	extent_info.extent_buf = (char *)&stack_fi;
9633 	extent_info.is_new_extent = true;
9634 	extent_info.update_times = true;
9635 	extent_info.qgroup_reserved = qgroup_released;
9636 	extent_info.insertions = 0;
9637 
9638 	path = btrfs_alloc_path();
9639 	if (!path) {
9640 		ret = -ENOMEM;
9641 		goto free_qgroup;
9642 	}
9643 
9644 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9645 				     file_offset + len - 1, &extent_info,
9646 				     &trans);
9647 	btrfs_free_path(path);
9648 	if (ret)
9649 		goto free_qgroup;
9650 	return trans;
9651 
9652 free_qgroup:
9653 	/*
9654 	 * We have released qgroup data range at the beginning of the function,
9655 	 * and normally qgroup_released bytes will be freed when committing
9656 	 * transaction.
9657 	 * But if we error out early, we have to free what we have released
9658 	 * or we leak qgroup data reservation.
9659 	 */
9660 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9661 			inode->root->root_key.objectid, qgroup_released,
9662 			BTRFS_QGROUP_RSV_DATA);
9663 	return ERR_PTR(ret);
9664 }
9665 
9666 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9667 				       u64 start, u64 num_bytes, u64 min_size,
9668 				       loff_t actual_len, u64 *alloc_hint,
9669 				       struct btrfs_trans_handle *trans)
9670 {
9671 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9672 	struct extent_map *em;
9673 	struct btrfs_root *root = BTRFS_I(inode)->root;
9674 	struct btrfs_key ins;
9675 	u64 cur_offset = start;
9676 	u64 clear_offset = start;
9677 	u64 i_size;
9678 	u64 cur_bytes;
9679 	u64 last_alloc = (u64)-1;
9680 	int ret = 0;
9681 	bool own_trans = true;
9682 	u64 end = start + num_bytes - 1;
9683 
9684 	if (trans)
9685 		own_trans = false;
9686 	while (num_bytes > 0) {
9687 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9688 		cur_bytes = max(cur_bytes, min_size);
9689 		/*
9690 		 * If we are severely fragmented we could end up with really
9691 		 * small allocations, so if the allocator is returning small
9692 		 * chunks lets make its job easier by only searching for those
9693 		 * sized chunks.
9694 		 */
9695 		cur_bytes = min(cur_bytes, last_alloc);
9696 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9697 				min_size, 0, *alloc_hint, &ins, 1, 0);
9698 		if (ret)
9699 			break;
9700 
9701 		/*
9702 		 * We've reserved this space, and thus converted it from
9703 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9704 		 * from here on out we will only need to clear our reservation
9705 		 * for the remaining unreserved area, so advance our
9706 		 * clear_offset by our extent size.
9707 		 */
9708 		clear_offset += ins.offset;
9709 
9710 		last_alloc = ins.offset;
9711 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9712 						    &ins, cur_offset);
9713 		/*
9714 		 * Now that we inserted the prealloc extent we can finally
9715 		 * decrement the number of reservations in the block group.
9716 		 * If we did it before, we could race with relocation and have
9717 		 * relocation miss the reserved extent, making it fail later.
9718 		 */
9719 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9720 		if (IS_ERR(trans)) {
9721 			ret = PTR_ERR(trans);
9722 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9723 						   ins.offset, 0);
9724 			break;
9725 		}
9726 
9727 		em = alloc_extent_map();
9728 		if (!em) {
9729 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9730 					    cur_offset + ins.offset - 1, false);
9731 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9732 			goto next;
9733 		}
9734 
9735 		em->start = cur_offset;
9736 		em->orig_start = cur_offset;
9737 		em->len = ins.offset;
9738 		em->block_start = ins.objectid;
9739 		em->block_len = ins.offset;
9740 		em->orig_block_len = ins.offset;
9741 		em->ram_bytes = ins.offset;
9742 		em->flags |= EXTENT_FLAG_PREALLOC;
9743 		em->generation = trans->transid;
9744 
9745 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9746 		free_extent_map(em);
9747 next:
9748 		num_bytes -= ins.offset;
9749 		cur_offset += ins.offset;
9750 		*alloc_hint = ins.objectid + ins.offset;
9751 
9752 		inode_inc_iversion(inode);
9753 		inode_set_ctime_current(inode);
9754 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9755 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9756 		    (actual_len > inode->i_size) &&
9757 		    (cur_offset > inode->i_size)) {
9758 			if (cur_offset > actual_len)
9759 				i_size = actual_len;
9760 			else
9761 				i_size = cur_offset;
9762 			i_size_write(inode, i_size);
9763 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9764 		}
9765 
9766 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
9767 
9768 		if (ret) {
9769 			btrfs_abort_transaction(trans, ret);
9770 			if (own_trans)
9771 				btrfs_end_transaction(trans);
9772 			break;
9773 		}
9774 
9775 		if (own_trans) {
9776 			btrfs_end_transaction(trans);
9777 			trans = NULL;
9778 		}
9779 	}
9780 	if (clear_offset < end)
9781 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9782 			end - clear_offset + 1);
9783 	return ret;
9784 }
9785 
9786 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9787 			      u64 start, u64 num_bytes, u64 min_size,
9788 			      loff_t actual_len, u64 *alloc_hint)
9789 {
9790 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9791 					   min_size, actual_len, alloc_hint,
9792 					   NULL);
9793 }
9794 
9795 int btrfs_prealloc_file_range_trans(struct inode *inode,
9796 				    struct btrfs_trans_handle *trans, int mode,
9797 				    u64 start, u64 num_bytes, u64 min_size,
9798 				    loff_t actual_len, u64 *alloc_hint)
9799 {
9800 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9801 					   min_size, actual_len, alloc_hint, trans);
9802 }
9803 
9804 static int btrfs_permission(struct mnt_idmap *idmap,
9805 			    struct inode *inode, int mask)
9806 {
9807 	struct btrfs_root *root = BTRFS_I(inode)->root;
9808 	umode_t mode = inode->i_mode;
9809 
9810 	if (mask & MAY_WRITE &&
9811 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9812 		if (btrfs_root_readonly(root))
9813 			return -EROFS;
9814 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9815 			return -EACCES;
9816 	}
9817 	return generic_permission(idmap, inode, mask);
9818 }
9819 
9820 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9821 			 struct file *file, umode_t mode)
9822 {
9823 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9824 	struct btrfs_trans_handle *trans;
9825 	struct btrfs_root *root = BTRFS_I(dir)->root;
9826 	struct inode *inode;
9827 	struct btrfs_new_inode_args new_inode_args = {
9828 		.dir = dir,
9829 		.dentry = file->f_path.dentry,
9830 		.orphan = true,
9831 	};
9832 	unsigned int trans_num_items;
9833 	int ret;
9834 
9835 	inode = new_inode(dir->i_sb);
9836 	if (!inode)
9837 		return -ENOMEM;
9838 	inode_init_owner(idmap, inode, dir, mode);
9839 	inode->i_fop = &btrfs_file_operations;
9840 	inode->i_op = &btrfs_file_inode_operations;
9841 	inode->i_mapping->a_ops = &btrfs_aops;
9842 
9843 	new_inode_args.inode = inode;
9844 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9845 	if (ret)
9846 		goto out_inode;
9847 
9848 	trans = btrfs_start_transaction(root, trans_num_items);
9849 	if (IS_ERR(trans)) {
9850 		ret = PTR_ERR(trans);
9851 		goto out_new_inode_args;
9852 	}
9853 
9854 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9855 
9856 	/*
9857 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9858 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9859 	 * 0, through:
9860 	 *
9861 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9862 	 */
9863 	set_nlink(inode, 1);
9864 
9865 	if (!ret) {
9866 		d_tmpfile(file, inode);
9867 		unlock_new_inode(inode);
9868 		mark_inode_dirty(inode);
9869 	}
9870 
9871 	btrfs_end_transaction(trans);
9872 	btrfs_btree_balance_dirty(fs_info);
9873 out_new_inode_args:
9874 	btrfs_new_inode_args_destroy(&new_inode_args);
9875 out_inode:
9876 	if (ret)
9877 		iput(inode);
9878 	return finish_open_simple(file, ret);
9879 }
9880 
9881 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9882 {
9883 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9884 	unsigned long index = start >> PAGE_SHIFT;
9885 	unsigned long end_index = end >> PAGE_SHIFT;
9886 	struct page *page;
9887 	u32 len;
9888 
9889 	ASSERT(end + 1 - start <= U32_MAX);
9890 	len = end + 1 - start;
9891 	while (index <= end_index) {
9892 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9893 		ASSERT(page); /* Pages should be in the extent_io_tree */
9894 
9895 		/* This is for data, which doesn't yet support larger folio. */
9896 		ASSERT(folio_order(page_folio(page)) == 0);
9897 		btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
9898 		put_page(page);
9899 		index++;
9900 	}
9901 }
9902 
9903 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9904 					     int compress_type)
9905 {
9906 	switch (compress_type) {
9907 	case BTRFS_COMPRESS_NONE:
9908 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9909 	case BTRFS_COMPRESS_ZLIB:
9910 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9911 	case BTRFS_COMPRESS_LZO:
9912 		/*
9913 		 * The LZO format depends on the sector size. 64K is the maximum
9914 		 * sector size that we support.
9915 		 */
9916 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9917 			return -EINVAL;
9918 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9919 		       (fs_info->sectorsize_bits - 12);
9920 	case BTRFS_COMPRESS_ZSTD:
9921 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9922 	default:
9923 		return -EUCLEAN;
9924 	}
9925 }
9926 
9927 static ssize_t btrfs_encoded_read_inline(
9928 				struct kiocb *iocb,
9929 				struct iov_iter *iter, u64 start,
9930 				u64 lockend,
9931 				struct extent_state **cached_state,
9932 				u64 extent_start, size_t count,
9933 				struct btrfs_ioctl_encoded_io_args *encoded,
9934 				bool *unlocked)
9935 {
9936 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9937 	struct btrfs_root *root = inode->root;
9938 	struct btrfs_fs_info *fs_info = root->fs_info;
9939 	struct extent_io_tree *io_tree = &inode->io_tree;
9940 	struct btrfs_path *path;
9941 	struct extent_buffer *leaf;
9942 	struct btrfs_file_extent_item *item;
9943 	u64 ram_bytes;
9944 	unsigned long ptr;
9945 	void *tmp;
9946 	ssize_t ret;
9947 
9948 	path = btrfs_alloc_path();
9949 	if (!path) {
9950 		ret = -ENOMEM;
9951 		goto out;
9952 	}
9953 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9954 				       extent_start, 0);
9955 	if (ret) {
9956 		if (ret > 0) {
9957 			/* The extent item disappeared? */
9958 			ret = -EIO;
9959 		}
9960 		goto out;
9961 	}
9962 	leaf = path->nodes[0];
9963 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9964 
9965 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9966 	ptr = btrfs_file_extent_inline_start(item);
9967 
9968 	encoded->len = min_t(u64, extent_start + ram_bytes,
9969 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9970 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9971 				 btrfs_file_extent_compression(leaf, item));
9972 	if (ret < 0)
9973 		goto out;
9974 	encoded->compression = ret;
9975 	if (encoded->compression) {
9976 		size_t inline_size;
9977 
9978 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9979 								path->slots[0]);
9980 		if (inline_size > count) {
9981 			ret = -ENOBUFS;
9982 			goto out;
9983 		}
9984 		count = inline_size;
9985 		encoded->unencoded_len = ram_bytes;
9986 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9987 	} else {
9988 		count = min_t(u64, count, encoded->len);
9989 		encoded->len = count;
9990 		encoded->unencoded_len = count;
9991 		ptr += iocb->ki_pos - extent_start;
9992 	}
9993 
9994 	tmp = kmalloc(count, GFP_NOFS);
9995 	if (!tmp) {
9996 		ret = -ENOMEM;
9997 		goto out;
9998 	}
9999 	read_extent_buffer(leaf, tmp, ptr, count);
10000 	btrfs_release_path(path);
10001 	unlock_extent(io_tree, start, lockend, cached_state);
10002 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10003 	*unlocked = true;
10004 
10005 	ret = copy_to_iter(tmp, count, iter);
10006 	if (ret != count)
10007 		ret = -EFAULT;
10008 	kfree(tmp);
10009 out:
10010 	btrfs_free_path(path);
10011 	return ret;
10012 }
10013 
10014 struct btrfs_encoded_read_private {
10015 	wait_queue_head_t wait;
10016 	atomic_t pending;
10017 	blk_status_t status;
10018 };
10019 
10020 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10021 {
10022 	struct btrfs_encoded_read_private *priv = bbio->private;
10023 
10024 	if (bbio->bio.bi_status) {
10025 		/*
10026 		 * The memory barrier implied by the atomic_dec_return() here
10027 		 * pairs with the memory barrier implied by the
10028 		 * atomic_dec_return() or io_wait_event() in
10029 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10030 		 * write is observed before the load of status in
10031 		 * btrfs_encoded_read_regular_fill_pages().
10032 		 */
10033 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
10034 	}
10035 	if (!atomic_dec_return(&priv->pending))
10036 		wake_up(&priv->wait);
10037 	bio_put(&bbio->bio);
10038 }
10039 
10040 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10041 					  u64 file_offset, u64 disk_bytenr,
10042 					  u64 disk_io_size, struct page **pages)
10043 {
10044 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10045 	struct btrfs_encoded_read_private priv = {
10046 		.pending = ATOMIC_INIT(1),
10047 	};
10048 	unsigned long i = 0;
10049 	struct btrfs_bio *bbio;
10050 
10051 	init_waitqueue_head(&priv.wait);
10052 
10053 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10054 			       btrfs_encoded_read_endio, &priv);
10055 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10056 	bbio->inode = inode;
10057 
10058 	do {
10059 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10060 
10061 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10062 			atomic_inc(&priv.pending);
10063 			btrfs_submit_bio(bbio, 0);
10064 
10065 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10066 					       btrfs_encoded_read_endio, &priv);
10067 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10068 			bbio->inode = inode;
10069 			continue;
10070 		}
10071 
10072 		i++;
10073 		disk_bytenr += bytes;
10074 		disk_io_size -= bytes;
10075 	} while (disk_io_size);
10076 
10077 	atomic_inc(&priv.pending);
10078 	btrfs_submit_bio(bbio, 0);
10079 
10080 	if (atomic_dec_return(&priv.pending))
10081 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10082 	/* See btrfs_encoded_read_endio() for ordering. */
10083 	return blk_status_to_errno(READ_ONCE(priv.status));
10084 }
10085 
10086 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10087 					  struct iov_iter *iter,
10088 					  u64 start, u64 lockend,
10089 					  struct extent_state **cached_state,
10090 					  u64 disk_bytenr, u64 disk_io_size,
10091 					  size_t count, bool compressed,
10092 					  bool *unlocked)
10093 {
10094 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10095 	struct extent_io_tree *io_tree = &inode->io_tree;
10096 	struct page **pages;
10097 	unsigned long nr_pages, i;
10098 	u64 cur;
10099 	size_t page_offset;
10100 	ssize_t ret;
10101 
10102 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10103 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10104 	if (!pages)
10105 		return -ENOMEM;
10106 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
10107 	if (ret) {
10108 		ret = -ENOMEM;
10109 		goto out;
10110 		}
10111 
10112 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10113 						    disk_io_size, pages);
10114 	if (ret)
10115 		goto out;
10116 
10117 	unlock_extent(io_tree, start, lockend, cached_state);
10118 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10119 	*unlocked = true;
10120 
10121 	if (compressed) {
10122 		i = 0;
10123 		page_offset = 0;
10124 	} else {
10125 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10126 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10127 	}
10128 	cur = 0;
10129 	while (cur < count) {
10130 		size_t bytes = min_t(size_t, count - cur,
10131 				     PAGE_SIZE - page_offset);
10132 
10133 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10134 				      iter) != bytes) {
10135 			ret = -EFAULT;
10136 			goto out;
10137 		}
10138 		i++;
10139 		cur += bytes;
10140 		page_offset = 0;
10141 	}
10142 	ret = count;
10143 out:
10144 	for (i = 0; i < nr_pages; i++) {
10145 		if (pages[i])
10146 			__free_page(pages[i]);
10147 	}
10148 	kfree(pages);
10149 	return ret;
10150 }
10151 
10152 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10153 			   struct btrfs_ioctl_encoded_io_args *encoded)
10154 {
10155 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10156 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10157 	struct extent_io_tree *io_tree = &inode->io_tree;
10158 	ssize_t ret;
10159 	size_t count = iov_iter_count(iter);
10160 	u64 start, lockend, disk_bytenr, disk_io_size;
10161 	struct extent_state *cached_state = NULL;
10162 	struct extent_map *em;
10163 	bool unlocked = false;
10164 
10165 	file_accessed(iocb->ki_filp);
10166 
10167 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10168 
10169 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10170 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10171 		return 0;
10172 	}
10173 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10174 	/*
10175 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10176 	 * it's compressed we know that it won't be longer than this.
10177 	 */
10178 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10179 
10180 	for (;;) {
10181 		struct btrfs_ordered_extent *ordered;
10182 
10183 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10184 					       lockend - start + 1);
10185 		if (ret)
10186 			goto out_unlock_inode;
10187 		lock_extent(io_tree, start, lockend, &cached_state);
10188 		ordered = btrfs_lookup_ordered_range(inode, start,
10189 						     lockend - start + 1);
10190 		if (!ordered)
10191 			break;
10192 		btrfs_put_ordered_extent(ordered);
10193 		unlock_extent(io_tree, start, lockend, &cached_state);
10194 		cond_resched();
10195 	}
10196 
10197 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
10198 	if (IS_ERR(em)) {
10199 		ret = PTR_ERR(em);
10200 		goto out_unlock_extent;
10201 	}
10202 
10203 	if (em->block_start == EXTENT_MAP_INLINE) {
10204 		u64 extent_start = em->start;
10205 
10206 		/*
10207 		 * For inline extents we get everything we need out of the
10208 		 * extent item.
10209 		 */
10210 		free_extent_map(em);
10211 		em = NULL;
10212 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10213 						&cached_state, extent_start,
10214 						count, encoded, &unlocked);
10215 		goto out;
10216 	}
10217 
10218 	/*
10219 	 * We only want to return up to EOF even if the extent extends beyond
10220 	 * that.
10221 	 */
10222 	encoded->len = min_t(u64, extent_map_end(em),
10223 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10224 	if (em->block_start == EXTENT_MAP_HOLE ||
10225 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
10226 		disk_bytenr = EXTENT_MAP_HOLE;
10227 		count = min_t(u64, count, encoded->len);
10228 		encoded->len = count;
10229 		encoded->unencoded_len = count;
10230 	} else if (extent_map_is_compressed(em)) {
10231 		disk_bytenr = em->block_start;
10232 		/*
10233 		 * Bail if the buffer isn't large enough to return the whole
10234 		 * compressed extent.
10235 		 */
10236 		if (em->block_len > count) {
10237 			ret = -ENOBUFS;
10238 			goto out_em;
10239 		}
10240 		disk_io_size = em->block_len;
10241 		count = em->block_len;
10242 		encoded->unencoded_len = em->ram_bytes;
10243 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10244 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10245 							       extent_map_compression(em));
10246 		if (ret < 0)
10247 			goto out_em;
10248 		encoded->compression = ret;
10249 	} else {
10250 		disk_bytenr = em->block_start + (start - em->start);
10251 		if (encoded->len > count)
10252 			encoded->len = count;
10253 		/*
10254 		 * Don't read beyond what we locked. This also limits the page
10255 		 * allocations that we'll do.
10256 		 */
10257 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10258 		count = start + disk_io_size - iocb->ki_pos;
10259 		encoded->len = count;
10260 		encoded->unencoded_len = count;
10261 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10262 	}
10263 	free_extent_map(em);
10264 	em = NULL;
10265 
10266 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10267 		unlock_extent(io_tree, start, lockend, &cached_state);
10268 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10269 		unlocked = true;
10270 		ret = iov_iter_zero(count, iter);
10271 		if (ret != count)
10272 			ret = -EFAULT;
10273 	} else {
10274 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10275 						 &cached_state, disk_bytenr,
10276 						 disk_io_size, count,
10277 						 encoded->compression,
10278 						 &unlocked);
10279 	}
10280 
10281 out:
10282 	if (ret >= 0)
10283 		iocb->ki_pos += encoded->len;
10284 out_em:
10285 	free_extent_map(em);
10286 out_unlock_extent:
10287 	if (!unlocked)
10288 		unlock_extent(io_tree, start, lockend, &cached_state);
10289 out_unlock_inode:
10290 	if (!unlocked)
10291 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10292 	return ret;
10293 }
10294 
10295 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10296 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10297 {
10298 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10299 	struct btrfs_root *root = inode->root;
10300 	struct btrfs_fs_info *fs_info = root->fs_info;
10301 	struct extent_io_tree *io_tree = &inode->io_tree;
10302 	struct extent_changeset *data_reserved = NULL;
10303 	struct extent_state *cached_state = NULL;
10304 	struct btrfs_ordered_extent *ordered;
10305 	int compression;
10306 	size_t orig_count;
10307 	u64 start, end;
10308 	u64 num_bytes, ram_bytes, disk_num_bytes;
10309 	unsigned long nr_pages, i;
10310 	struct page **pages;
10311 	struct btrfs_key ins;
10312 	bool extent_reserved = false;
10313 	struct extent_map *em;
10314 	ssize_t ret;
10315 
10316 	switch (encoded->compression) {
10317 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10318 		compression = BTRFS_COMPRESS_ZLIB;
10319 		break;
10320 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10321 		compression = BTRFS_COMPRESS_ZSTD;
10322 		break;
10323 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10324 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10325 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10326 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10327 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10328 		/* The sector size must match for LZO. */
10329 		if (encoded->compression -
10330 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10331 		    fs_info->sectorsize_bits)
10332 			return -EINVAL;
10333 		compression = BTRFS_COMPRESS_LZO;
10334 		break;
10335 	default:
10336 		return -EINVAL;
10337 	}
10338 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10339 		return -EINVAL;
10340 
10341 	/*
10342 	 * Compressed extents should always have checksums, so error out if we
10343 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10344 	 */
10345 	if (inode->flags & BTRFS_INODE_NODATASUM)
10346 		return -EINVAL;
10347 
10348 	orig_count = iov_iter_count(from);
10349 
10350 	/* The extent size must be sane. */
10351 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10352 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10353 		return -EINVAL;
10354 
10355 	/*
10356 	 * The compressed data must be smaller than the decompressed data.
10357 	 *
10358 	 * It's of course possible for data to compress to larger or the same
10359 	 * size, but the buffered I/O path falls back to no compression for such
10360 	 * data, and we don't want to break any assumptions by creating these
10361 	 * extents.
10362 	 *
10363 	 * Note that this is less strict than the current check we have that the
10364 	 * compressed data must be at least one sector smaller than the
10365 	 * decompressed data. We only want to enforce the weaker requirement
10366 	 * from old kernels that it is at least one byte smaller.
10367 	 */
10368 	if (orig_count >= encoded->unencoded_len)
10369 		return -EINVAL;
10370 
10371 	/* The extent must start on a sector boundary. */
10372 	start = iocb->ki_pos;
10373 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10374 		return -EINVAL;
10375 
10376 	/*
10377 	 * The extent must end on a sector boundary. However, we allow a write
10378 	 * which ends at or extends i_size to have an unaligned length; we round
10379 	 * up the extent size and set i_size to the unaligned end.
10380 	 */
10381 	if (start + encoded->len < inode->vfs_inode.i_size &&
10382 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10383 		return -EINVAL;
10384 
10385 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10386 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10387 		return -EINVAL;
10388 
10389 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10390 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10391 	end = start + num_bytes - 1;
10392 
10393 	/*
10394 	 * If the extent cannot be inline, the compressed data on disk must be
10395 	 * sector-aligned. For convenience, we extend it with zeroes if it
10396 	 * isn't.
10397 	 */
10398 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10399 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10400 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10401 	if (!pages)
10402 		return -ENOMEM;
10403 	for (i = 0; i < nr_pages; i++) {
10404 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10405 		char *kaddr;
10406 
10407 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10408 		if (!pages[i]) {
10409 			ret = -ENOMEM;
10410 			goto out_pages;
10411 		}
10412 		kaddr = kmap_local_page(pages[i]);
10413 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10414 			kunmap_local(kaddr);
10415 			ret = -EFAULT;
10416 			goto out_pages;
10417 		}
10418 		if (bytes < PAGE_SIZE)
10419 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10420 		kunmap_local(kaddr);
10421 	}
10422 
10423 	for (;;) {
10424 		struct btrfs_ordered_extent *ordered;
10425 
10426 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10427 		if (ret)
10428 			goto out_pages;
10429 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10430 						    start >> PAGE_SHIFT,
10431 						    end >> PAGE_SHIFT);
10432 		if (ret)
10433 			goto out_pages;
10434 		lock_extent(io_tree, start, end, &cached_state);
10435 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10436 		if (!ordered &&
10437 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10438 			break;
10439 		if (ordered)
10440 			btrfs_put_ordered_extent(ordered);
10441 		unlock_extent(io_tree, start, end, &cached_state);
10442 		cond_resched();
10443 	}
10444 
10445 	/*
10446 	 * We don't use the higher-level delalloc space functions because our
10447 	 * num_bytes and disk_num_bytes are different.
10448 	 */
10449 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10450 	if (ret)
10451 		goto out_unlock;
10452 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10453 	if (ret)
10454 		goto out_free_data_space;
10455 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10456 					      false);
10457 	if (ret)
10458 		goto out_qgroup_free_data;
10459 
10460 	/* Try an inline extent first. */
10461 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10462 	    encoded->unencoded_offset == 0) {
10463 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10464 					    compression, pages, true);
10465 		if (ret <= 0) {
10466 			if (ret == 0)
10467 				ret = orig_count;
10468 			goto out_delalloc_release;
10469 		}
10470 	}
10471 
10472 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10473 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10474 	if (ret)
10475 		goto out_delalloc_release;
10476 	extent_reserved = true;
10477 
10478 	em = create_io_em(inode, start, num_bytes,
10479 			  start - encoded->unencoded_offset, ins.objectid,
10480 			  ins.offset, ins.offset, ram_bytes, compression,
10481 			  BTRFS_ORDERED_COMPRESSED);
10482 	if (IS_ERR(em)) {
10483 		ret = PTR_ERR(em);
10484 		goto out_free_reserved;
10485 	}
10486 	free_extent_map(em);
10487 
10488 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10489 				       ins.objectid, ins.offset,
10490 				       encoded->unencoded_offset,
10491 				       (1 << BTRFS_ORDERED_ENCODED) |
10492 				       (1 << BTRFS_ORDERED_COMPRESSED),
10493 				       compression);
10494 	if (IS_ERR(ordered)) {
10495 		btrfs_drop_extent_map_range(inode, start, end, false);
10496 		ret = PTR_ERR(ordered);
10497 		goto out_free_reserved;
10498 	}
10499 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10500 
10501 	if (start + encoded->len > inode->vfs_inode.i_size)
10502 		i_size_write(&inode->vfs_inode, start + encoded->len);
10503 
10504 	unlock_extent(io_tree, start, end, &cached_state);
10505 
10506 	btrfs_delalloc_release_extents(inode, num_bytes);
10507 
10508 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10509 	ret = orig_count;
10510 	goto out;
10511 
10512 out_free_reserved:
10513 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10514 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10515 out_delalloc_release:
10516 	btrfs_delalloc_release_extents(inode, num_bytes);
10517 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10518 out_qgroup_free_data:
10519 	if (ret < 0)
10520 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10521 out_free_data_space:
10522 	/*
10523 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10524 	 * bytes_may_use.
10525 	 */
10526 	if (!extent_reserved)
10527 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10528 out_unlock:
10529 	unlock_extent(io_tree, start, end, &cached_state);
10530 out_pages:
10531 	for (i = 0; i < nr_pages; i++) {
10532 		if (pages[i])
10533 			__free_page(pages[i]);
10534 	}
10535 	kvfree(pages);
10536 out:
10537 	if (ret >= 0)
10538 		iocb->ki_pos += encoded->len;
10539 	return ret;
10540 }
10541 
10542 #ifdef CONFIG_SWAP
10543 /*
10544  * Add an entry indicating a block group or device which is pinned by a
10545  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10546  * negative errno on failure.
10547  */
10548 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10549 				  bool is_block_group)
10550 {
10551 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10552 	struct btrfs_swapfile_pin *sp, *entry;
10553 	struct rb_node **p;
10554 	struct rb_node *parent = NULL;
10555 
10556 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10557 	if (!sp)
10558 		return -ENOMEM;
10559 	sp->ptr = ptr;
10560 	sp->inode = inode;
10561 	sp->is_block_group = is_block_group;
10562 	sp->bg_extent_count = 1;
10563 
10564 	spin_lock(&fs_info->swapfile_pins_lock);
10565 	p = &fs_info->swapfile_pins.rb_node;
10566 	while (*p) {
10567 		parent = *p;
10568 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10569 		if (sp->ptr < entry->ptr ||
10570 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10571 			p = &(*p)->rb_left;
10572 		} else if (sp->ptr > entry->ptr ||
10573 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10574 			p = &(*p)->rb_right;
10575 		} else {
10576 			if (is_block_group)
10577 				entry->bg_extent_count++;
10578 			spin_unlock(&fs_info->swapfile_pins_lock);
10579 			kfree(sp);
10580 			return 1;
10581 		}
10582 	}
10583 	rb_link_node(&sp->node, parent, p);
10584 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10585 	spin_unlock(&fs_info->swapfile_pins_lock);
10586 	return 0;
10587 }
10588 
10589 /* Free all of the entries pinned by this swapfile. */
10590 static void btrfs_free_swapfile_pins(struct inode *inode)
10591 {
10592 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10593 	struct btrfs_swapfile_pin *sp;
10594 	struct rb_node *node, *next;
10595 
10596 	spin_lock(&fs_info->swapfile_pins_lock);
10597 	node = rb_first(&fs_info->swapfile_pins);
10598 	while (node) {
10599 		next = rb_next(node);
10600 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10601 		if (sp->inode == inode) {
10602 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10603 			if (sp->is_block_group) {
10604 				btrfs_dec_block_group_swap_extents(sp->ptr,
10605 							   sp->bg_extent_count);
10606 				btrfs_put_block_group(sp->ptr);
10607 			}
10608 			kfree(sp);
10609 		}
10610 		node = next;
10611 	}
10612 	spin_unlock(&fs_info->swapfile_pins_lock);
10613 }
10614 
10615 struct btrfs_swap_info {
10616 	u64 start;
10617 	u64 block_start;
10618 	u64 block_len;
10619 	u64 lowest_ppage;
10620 	u64 highest_ppage;
10621 	unsigned long nr_pages;
10622 	int nr_extents;
10623 };
10624 
10625 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10626 				 struct btrfs_swap_info *bsi)
10627 {
10628 	unsigned long nr_pages;
10629 	unsigned long max_pages;
10630 	u64 first_ppage, first_ppage_reported, next_ppage;
10631 	int ret;
10632 
10633 	/*
10634 	 * Our swapfile may have had its size extended after the swap header was
10635 	 * written. In that case activating the swapfile should not go beyond
10636 	 * the max size set in the swap header.
10637 	 */
10638 	if (bsi->nr_pages >= sis->max)
10639 		return 0;
10640 
10641 	max_pages = sis->max - bsi->nr_pages;
10642 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10643 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10644 
10645 	if (first_ppage >= next_ppage)
10646 		return 0;
10647 	nr_pages = next_ppage - first_ppage;
10648 	nr_pages = min(nr_pages, max_pages);
10649 
10650 	first_ppage_reported = first_ppage;
10651 	if (bsi->start == 0)
10652 		first_ppage_reported++;
10653 	if (bsi->lowest_ppage > first_ppage_reported)
10654 		bsi->lowest_ppage = first_ppage_reported;
10655 	if (bsi->highest_ppage < (next_ppage - 1))
10656 		bsi->highest_ppage = next_ppage - 1;
10657 
10658 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10659 	if (ret < 0)
10660 		return ret;
10661 	bsi->nr_extents += ret;
10662 	bsi->nr_pages += nr_pages;
10663 	return 0;
10664 }
10665 
10666 static void btrfs_swap_deactivate(struct file *file)
10667 {
10668 	struct inode *inode = file_inode(file);
10669 
10670 	btrfs_free_swapfile_pins(inode);
10671 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10672 }
10673 
10674 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10675 			       sector_t *span)
10676 {
10677 	struct inode *inode = file_inode(file);
10678 	struct btrfs_root *root = BTRFS_I(inode)->root;
10679 	struct btrfs_fs_info *fs_info = root->fs_info;
10680 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10681 	struct extent_state *cached_state = NULL;
10682 	struct extent_map *em = NULL;
10683 	struct btrfs_chunk_map *map = NULL;
10684 	struct btrfs_device *device = NULL;
10685 	struct btrfs_swap_info bsi = {
10686 		.lowest_ppage = (sector_t)-1ULL,
10687 	};
10688 	int ret = 0;
10689 	u64 isize;
10690 	u64 start;
10691 
10692 	/*
10693 	 * If the swap file was just created, make sure delalloc is done. If the
10694 	 * file changes again after this, the user is doing something stupid and
10695 	 * we don't really care.
10696 	 */
10697 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10698 	if (ret)
10699 		return ret;
10700 
10701 	/*
10702 	 * The inode is locked, so these flags won't change after we check them.
10703 	 */
10704 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10705 		btrfs_warn(fs_info, "swapfile must not be compressed");
10706 		return -EINVAL;
10707 	}
10708 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10709 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10710 		return -EINVAL;
10711 	}
10712 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10713 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10714 		return -EINVAL;
10715 	}
10716 
10717 	/*
10718 	 * Balance or device remove/replace/resize can move stuff around from
10719 	 * under us. The exclop protection makes sure they aren't running/won't
10720 	 * run concurrently while we are mapping the swap extents, and
10721 	 * fs_info->swapfile_pins prevents them from running while the swap
10722 	 * file is active and moving the extents. Note that this also prevents
10723 	 * a concurrent device add which isn't actually necessary, but it's not
10724 	 * really worth the trouble to allow it.
10725 	 */
10726 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10727 		btrfs_warn(fs_info,
10728 	   "cannot activate swapfile while exclusive operation is running");
10729 		return -EBUSY;
10730 	}
10731 
10732 	/*
10733 	 * Prevent snapshot creation while we are activating the swap file.
10734 	 * We do not want to race with snapshot creation. If snapshot creation
10735 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10736 	 * completes before the first write into the swap file after it is
10737 	 * activated, than that write would fallback to COW.
10738 	 */
10739 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10740 		btrfs_exclop_finish(fs_info);
10741 		btrfs_warn(fs_info,
10742 	   "cannot activate swapfile because snapshot creation is in progress");
10743 		return -EINVAL;
10744 	}
10745 	/*
10746 	 * Snapshots can create extents which require COW even if NODATACOW is
10747 	 * set. We use this counter to prevent snapshots. We must increment it
10748 	 * before walking the extents because we don't want a concurrent
10749 	 * snapshot to run after we've already checked the extents.
10750 	 *
10751 	 * It is possible that subvolume is marked for deletion but still not
10752 	 * removed yet. To prevent this race, we check the root status before
10753 	 * activating the swapfile.
10754 	 */
10755 	spin_lock(&root->root_item_lock);
10756 	if (btrfs_root_dead(root)) {
10757 		spin_unlock(&root->root_item_lock);
10758 
10759 		btrfs_exclop_finish(fs_info);
10760 		btrfs_warn(fs_info,
10761 		"cannot activate swapfile because subvolume %llu is being deleted",
10762 			root->root_key.objectid);
10763 		return -EPERM;
10764 	}
10765 	atomic_inc(&root->nr_swapfiles);
10766 	spin_unlock(&root->root_item_lock);
10767 
10768 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10769 
10770 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10771 	start = 0;
10772 	while (start < isize) {
10773 		u64 logical_block_start, physical_block_start;
10774 		struct btrfs_block_group *bg;
10775 		u64 len = isize - start;
10776 
10777 		em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
10778 		if (IS_ERR(em)) {
10779 			ret = PTR_ERR(em);
10780 			goto out;
10781 		}
10782 
10783 		if (em->block_start == EXTENT_MAP_HOLE) {
10784 			btrfs_warn(fs_info, "swapfile must not have holes");
10785 			ret = -EINVAL;
10786 			goto out;
10787 		}
10788 		if (em->block_start == EXTENT_MAP_INLINE) {
10789 			/*
10790 			 * It's unlikely we'll ever actually find ourselves
10791 			 * here, as a file small enough to fit inline won't be
10792 			 * big enough to store more than the swap header, but in
10793 			 * case something changes in the future, let's catch it
10794 			 * here rather than later.
10795 			 */
10796 			btrfs_warn(fs_info, "swapfile must not be inline");
10797 			ret = -EINVAL;
10798 			goto out;
10799 		}
10800 		if (extent_map_is_compressed(em)) {
10801 			btrfs_warn(fs_info, "swapfile must not be compressed");
10802 			ret = -EINVAL;
10803 			goto out;
10804 		}
10805 
10806 		logical_block_start = em->block_start + (start - em->start);
10807 		len = min(len, em->len - (start - em->start));
10808 		free_extent_map(em);
10809 		em = NULL;
10810 
10811 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10812 		if (ret < 0) {
10813 			goto out;
10814 		} else if (ret) {
10815 			ret = 0;
10816 		} else {
10817 			btrfs_warn(fs_info,
10818 				   "swapfile must not be copy-on-write");
10819 			ret = -EINVAL;
10820 			goto out;
10821 		}
10822 
10823 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10824 		if (IS_ERR(map)) {
10825 			ret = PTR_ERR(map);
10826 			goto out;
10827 		}
10828 
10829 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10830 			btrfs_warn(fs_info,
10831 				   "swapfile must have single data profile");
10832 			ret = -EINVAL;
10833 			goto out;
10834 		}
10835 
10836 		if (device == NULL) {
10837 			device = map->stripes[0].dev;
10838 			ret = btrfs_add_swapfile_pin(inode, device, false);
10839 			if (ret == 1)
10840 				ret = 0;
10841 			else if (ret)
10842 				goto out;
10843 		} else if (device != map->stripes[0].dev) {
10844 			btrfs_warn(fs_info, "swapfile must be on one device");
10845 			ret = -EINVAL;
10846 			goto out;
10847 		}
10848 
10849 		physical_block_start = (map->stripes[0].physical +
10850 					(logical_block_start - map->start));
10851 		len = min(len, map->chunk_len - (logical_block_start - map->start));
10852 		btrfs_free_chunk_map(map);
10853 		map = NULL;
10854 
10855 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10856 		if (!bg) {
10857 			btrfs_warn(fs_info,
10858 			   "could not find block group containing swapfile");
10859 			ret = -EINVAL;
10860 			goto out;
10861 		}
10862 
10863 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10864 			btrfs_warn(fs_info,
10865 			   "block group for swapfile at %llu is read-only%s",
10866 			   bg->start,
10867 			   atomic_read(&fs_info->scrubs_running) ?
10868 				       " (scrub running)" : "");
10869 			btrfs_put_block_group(bg);
10870 			ret = -EINVAL;
10871 			goto out;
10872 		}
10873 
10874 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10875 		if (ret) {
10876 			btrfs_put_block_group(bg);
10877 			if (ret == 1)
10878 				ret = 0;
10879 			else
10880 				goto out;
10881 		}
10882 
10883 		if (bsi.block_len &&
10884 		    bsi.block_start + bsi.block_len == physical_block_start) {
10885 			bsi.block_len += len;
10886 		} else {
10887 			if (bsi.block_len) {
10888 				ret = btrfs_add_swap_extent(sis, &bsi);
10889 				if (ret)
10890 					goto out;
10891 			}
10892 			bsi.start = start;
10893 			bsi.block_start = physical_block_start;
10894 			bsi.block_len = len;
10895 		}
10896 
10897 		start += len;
10898 	}
10899 
10900 	if (bsi.block_len)
10901 		ret = btrfs_add_swap_extent(sis, &bsi);
10902 
10903 out:
10904 	if (!IS_ERR_OR_NULL(em))
10905 		free_extent_map(em);
10906 	if (!IS_ERR_OR_NULL(map))
10907 		btrfs_free_chunk_map(map);
10908 
10909 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10910 
10911 	if (ret)
10912 		btrfs_swap_deactivate(file);
10913 
10914 	btrfs_drew_write_unlock(&root->snapshot_lock);
10915 
10916 	btrfs_exclop_finish(fs_info);
10917 
10918 	if (ret)
10919 		return ret;
10920 
10921 	if (device)
10922 		sis->bdev = device->bdev;
10923 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10924 	sis->max = bsi.nr_pages;
10925 	sis->pages = bsi.nr_pages - 1;
10926 	sis->highest_bit = bsi.nr_pages - 1;
10927 	return bsi.nr_extents;
10928 }
10929 #else
10930 static void btrfs_swap_deactivate(struct file *file)
10931 {
10932 }
10933 
10934 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10935 			       sector_t *span)
10936 {
10937 	return -EOPNOTSUPP;
10938 }
10939 #endif
10940 
10941 /*
10942  * Update the number of bytes used in the VFS' inode. When we replace extents in
10943  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10944  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10945  * always get a correct value.
10946  */
10947 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10948 			      const u64 add_bytes,
10949 			      const u64 del_bytes)
10950 {
10951 	if (add_bytes == del_bytes)
10952 		return;
10953 
10954 	spin_lock(&inode->lock);
10955 	if (del_bytes > 0)
10956 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10957 	if (add_bytes > 0)
10958 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10959 	spin_unlock(&inode->lock);
10960 }
10961 
10962 /*
10963  * Verify that there are no ordered extents for a given file range.
10964  *
10965  * @inode:   The target inode.
10966  * @start:   Start offset of the file range, should be sector size aligned.
10967  * @end:     End offset (inclusive) of the file range, its value +1 should be
10968  *           sector size aligned.
10969  *
10970  * This should typically be used for cases where we locked an inode's VFS lock in
10971  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10972  * we have flushed all delalloc in the range, we have waited for all ordered
10973  * extents in the range to complete and finally we have locked the file range in
10974  * the inode's io_tree.
10975  */
10976 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10977 {
10978 	struct btrfs_root *root = inode->root;
10979 	struct btrfs_ordered_extent *ordered;
10980 
10981 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10982 		return;
10983 
10984 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10985 	if (ordered) {
10986 		btrfs_err(root->fs_info,
10987 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10988 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10989 			  ordered->file_offset,
10990 			  ordered->file_offset + ordered->num_bytes - 1);
10991 		btrfs_put_ordered_extent(ordered);
10992 	}
10993 
10994 	ASSERT(ordered == NULL);
10995 }
10996 
10997 static const struct inode_operations btrfs_dir_inode_operations = {
10998 	.getattr	= btrfs_getattr,
10999 	.lookup		= btrfs_lookup,
11000 	.create		= btrfs_create,
11001 	.unlink		= btrfs_unlink,
11002 	.link		= btrfs_link,
11003 	.mkdir		= btrfs_mkdir,
11004 	.rmdir		= btrfs_rmdir,
11005 	.rename		= btrfs_rename2,
11006 	.symlink	= btrfs_symlink,
11007 	.setattr	= btrfs_setattr,
11008 	.mknod		= btrfs_mknod,
11009 	.listxattr	= btrfs_listxattr,
11010 	.permission	= btrfs_permission,
11011 	.get_inode_acl	= btrfs_get_acl,
11012 	.set_acl	= btrfs_set_acl,
11013 	.update_time	= btrfs_update_time,
11014 	.tmpfile        = btrfs_tmpfile,
11015 	.fileattr_get	= btrfs_fileattr_get,
11016 	.fileattr_set	= btrfs_fileattr_set,
11017 };
11018 
11019 static const struct file_operations btrfs_dir_file_operations = {
11020 	.llseek		= btrfs_dir_llseek,
11021 	.read		= generic_read_dir,
11022 	.iterate_shared	= btrfs_real_readdir,
11023 	.open		= btrfs_opendir,
11024 	.unlocked_ioctl	= btrfs_ioctl,
11025 #ifdef CONFIG_COMPAT
11026 	.compat_ioctl	= btrfs_compat_ioctl,
11027 #endif
11028 	.release        = btrfs_release_file,
11029 	.fsync		= btrfs_sync_file,
11030 };
11031 
11032 /*
11033  * btrfs doesn't support the bmap operation because swapfiles
11034  * use bmap to make a mapping of extents in the file.  They assume
11035  * these extents won't change over the life of the file and they
11036  * use the bmap result to do IO directly to the drive.
11037  *
11038  * the btrfs bmap call would return logical addresses that aren't
11039  * suitable for IO and they also will change frequently as COW
11040  * operations happen.  So, swapfile + btrfs == corruption.
11041  *
11042  * For now we're avoiding this by dropping bmap.
11043  */
11044 static const struct address_space_operations btrfs_aops = {
11045 	.read_folio	= btrfs_read_folio,
11046 	.writepages	= btrfs_writepages,
11047 	.readahead	= btrfs_readahead,
11048 	.invalidate_folio = btrfs_invalidate_folio,
11049 	.release_folio	= btrfs_release_folio,
11050 	.migrate_folio	= btrfs_migrate_folio,
11051 	.dirty_folio	= filemap_dirty_folio,
11052 	.error_remove_folio = generic_error_remove_folio,
11053 	.swap_activate	= btrfs_swap_activate,
11054 	.swap_deactivate = btrfs_swap_deactivate,
11055 };
11056 
11057 static const struct inode_operations btrfs_file_inode_operations = {
11058 	.getattr	= btrfs_getattr,
11059 	.setattr	= btrfs_setattr,
11060 	.listxattr      = btrfs_listxattr,
11061 	.permission	= btrfs_permission,
11062 	.fiemap		= btrfs_fiemap,
11063 	.get_inode_acl	= btrfs_get_acl,
11064 	.set_acl	= btrfs_set_acl,
11065 	.update_time	= btrfs_update_time,
11066 	.fileattr_get	= btrfs_fileattr_get,
11067 	.fileattr_set	= btrfs_fileattr_set,
11068 };
11069 static const struct inode_operations btrfs_special_inode_operations = {
11070 	.getattr	= btrfs_getattr,
11071 	.setattr	= btrfs_setattr,
11072 	.permission	= btrfs_permission,
11073 	.listxattr	= btrfs_listxattr,
11074 	.get_inode_acl	= btrfs_get_acl,
11075 	.set_acl	= btrfs_set_acl,
11076 	.update_time	= btrfs_update_time,
11077 };
11078 static const struct inode_operations btrfs_symlink_inode_operations = {
11079 	.get_link	= page_get_link,
11080 	.getattr	= btrfs_getattr,
11081 	.setattr	= btrfs_setattr,
11082 	.permission	= btrfs_permission,
11083 	.listxattr	= btrfs_listxattr,
11084 	.update_time	= btrfs_update_time,
11085 };
11086 
11087 const struct dentry_operations btrfs_dentry_operations = {
11088 	.d_delete	= btrfs_dentry_delete,
11089 };
11090