1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 static const struct inode_operations btrfs_dir_inode_operations; 70 static const struct inode_operations btrfs_symlink_inode_operations; 71 static const struct inode_operations btrfs_dir_ro_inode_operations; 72 static const struct inode_operations btrfs_special_inode_operations; 73 static const struct inode_operations btrfs_file_inode_operations; 74 static const struct address_space_operations btrfs_aops; 75 static const struct address_space_operations btrfs_symlink_aops; 76 static const struct file_operations btrfs_dir_file_operations; 77 static struct extent_io_ops btrfs_extent_io_ops; 78 79 static struct kmem_cache *btrfs_inode_cachep; 80 static struct kmem_cache *btrfs_delalloc_work_cachep; 81 struct kmem_cache *btrfs_trans_handle_cachep; 82 struct kmem_cache *btrfs_transaction_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 86 #define S_SHIFT 12 87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 95 }; 96 97 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 98 static int btrfs_truncate(struct inode *inode); 99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 100 static noinline int cow_file_range(struct inode *inode, 101 struct page *locked_page, 102 u64 start, u64 end, int *page_started, 103 unsigned long *nr_written, int unlock); 104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 105 u64 len, u64 orig_start, 106 u64 block_start, u64 block_len, 107 u64 orig_block_len, u64 ram_bytes, 108 int type); 109 110 static int btrfs_dirty_inode(struct inode *inode); 111 112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 113 void btrfs_test_inode_set_ops(struct inode *inode) 114 { 115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 116 } 117 #endif 118 119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 120 struct inode *inode, struct inode *dir, 121 const struct qstr *qstr) 122 { 123 int err; 124 125 err = btrfs_init_acl(trans, inode, dir); 126 if (!err) 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 128 return err; 129 } 130 131 /* 132 * this does all the hard work for inserting an inline extent into 133 * the btree. The caller should have done a btrfs_drop_extents so that 134 * no overlapping inline items exist in the btree 135 */ 136 static int insert_inline_extent(struct btrfs_trans_handle *trans, 137 struct btrfs_path *path, int extent_inserted, 138 struct btrfs_root *root, struct inode *inode, 139 u64 start, size_t size, size_t compressed_size, 140 int compress_type, 141 struct page **compressed_pages) 142 { 143 struct extent_buffer *leaf; 144 struct page *page = NULL; 145 char *kaddr; 146 unsigned long ptr; 147 struct btrfs_file_extent_item *ei; 148 int err = 0; 149 int ret; 150 size_t cur_size = size; 151 unsigned long offset; 152 153 if (compressed_size && compressed_pages) 154 cur_size = compressed_size; 155 156 inode_add_bytes(inode, size); 157 158 if (!extent_inserted) { 159 struct btrfs_key key; 160 size_t datasize; 161 162 key.objectid = btrfs_ino(inode); 163 key.offset = start; 164 key.type = BTRFS_EXTENT_DATA_KEY; 165 166 datasize = btrfs_file_extent_calc_inline_size(cur_size); 167 path->leave_spinning = 1; 168 ret = btrfs_insert_empty_item(trans, root, path, &key, 169 datasize); 170 if (ret) { 171 err = ret; 172 goto fail; 173 } 174 } 175 leaf = path->nodes[0]; 176 ei = btrfs_item_ptr(leaf, path->slots[0], 177 struct btrfs_file_extent_item); 178 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 180 btrfs_set_file_extent_encryption(leaf, ei, 0); 181 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 182 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 183 ptr = btrfs_file_extent_inline_start(ei); 184 185 if (compress_type != BTRFS_COMPRESS_NONE) { 186 struct page *cpage; 187 int i = 0; 188 while (compressed_size > 0) { 189 cpage = compressed_pages[i]; 190 cur_size = min_t(unsigned long, compressed_size, 191 PAGE_CACHE_SIZE); 192 193 kaddr = kmap_atomic(cpage); 194 write_extent_buffer(leaf, kaddr, ptr, cur_size); 195 kunmap_atomic(kaddr); 196 197 i++; 198 ptr += cur_size; 199 compressed_size -= cur_size; 200 } 201 btrfs_set_file_extent_compression(leaf, ei, 202 compress_type); 203 } else { 204 page = find_get_page(inode->i_mapping, 205 start >> PAGE_CACHE_SHIFT); 206 btrfs_set_file_extent_compression(leaf, ei, 0); 207 kaddr = kmap_atomic(page); 208 offset = start & (PAGE_CACHE_SIZE - 1); 209 write_extent_buffer(leaf, kaddr + offset, ptr, size); 210 kunmap_atomic(kaddr); 211 page_cache_release(page); 212 } 213 btrfs_mark_buffer_dirty(leaf); 214 btrfs_release_path(path); 215 216 /* 217 * we're an inline extent, so nobody can 218 * extend the file past i_size without locking 219 * a page we already have locked. 220 * 221 * We must do any isize and inode updates 222 * before we unlock the pages. Otherwise we 223 * could end up racing with unlink. 224 */ 225 BTRFS_I(inode)->disk_i_size = inode->i_size; 226 ret = btrfs_update_inode(trans, root, inode); 227 228 return ret; 229 fail: 230 return err; 231 } 232 233 234 /* 235 * conditionally insert an inline extent into the file. This 236 * does the checks required to make sure the data is small enough 237 * to fit as an inline extent. 238 */ 239 static noinline int cow_file_range_inline(struct btrfs_root *root, 240 struct inode *inode, u64 start, 241 u64 end, size_t compressed_size, 242 int compress_type, 243 struct page **compressed_pages) 244 { 245 struct btrfs_trans_handle *trans; 246 u64 isize = i_size_read(inode); 247 u64 actual_end = min(end + 1, isize); 248 u64 inline_len = actual_end - start; 249 u64 aligned_end = ALIGN(end, root->sectorsize); 250 u64 data_len = inline_len; 251 int ret; 252 struct btrfs_path *path; 253 int extent_inserted = 0; 254 u32 extent_item_size; 255 256 if (compressed_size) 257 data_len = compressed_size; 258 259 if (start > 0 || 260 actual_end > PAGE_CACHE_SIZE || 261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 262 (!compressed_size && 263 (actual_end & (root->sectorsize - 1)) == 0) || 264 end + 1 < isize || 265 data_len > root->fs_info->max_inline) { 266 return 1; 267 } 268 269 path = btrfs_alloc_path(); 270 if (!path) 271 return -ENOMEM; 272 273 trans = btrfs_join_transaction(root); 274 if (IS_ERR(trans)) { 275 btrfs_free_path(path); 276 return PTR_ERR(trans); 277 } 278 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 279 280 if (compressed_size && compressed_pages) 281 extent_item_size = btrfs_file_extent_calc_inline_size( 282 compressed_size); 283 else 284 extent_item_size = btrfs_file_extent_calc_inline_size( 285 inline_len); 286 287 ret = __btrfs_drop_extents(trans, root, inode, path, 288 start, aligned_end, NULL, 289 1, 1, extent_item_size, &extent_inserted); 290 if (ret) { 291 btrfs_abort_transaction(trans, root, ret); 292 goto out; 293 } 294 295 if (isize > actual_end) 296 inline_len = min_t(u64, isize, actual_end); 297 ret = insert_inline_extent(trans, path, extent_inserted, 298 root, inode, start, 299 inline_len, compressed_size, 300 compress_type, compressed_pages); 301 if (ret && ret != -ENOSPC) { 302 btrfs_abort_transaction(trans, root, ret); 303 goto out; 304 } else if (ret == -ENOSPC) { 305 ret = 1; 306 goto out; 307 } 308 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 310 btrfs_delalloc_release_metadata(inode, end + 1 - start); 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 312 out: 313 btrfs_free_path(path); 314 btrfs_end_transaction(trans, root); 315 return ret; 316 } 317 318 struct async_extent { 319 u64 start; 320 u64 ram_size; 321 u64 compressed_size; 322 struct page **pages; 323 unsigned long nr_pages; 324 int compress_type; 325 struct list_head list; 326 }; 327 328 struct async_cow { 329 struct inode *inode; 330 struct btrfs_root *root; 331 struct page *locked_page; 332 u64 start; 333 u64 end; 334 struct list_head extents; 335 struct btrfs_work work; 336 }; 337 338 static noinline int add_async_extent(struct async_cow *cow, 339 u64 start, u64 ram_size, 340 u64 compressed_size, 341 struct page **pages, 342 unsigned long nr_pages, 343 int compress_type) 344 { 345 struct async_extent *async_extent; 346 347 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 348 BUG_ON(!async_extent); /* -ENOMEM */ 349 async_extent->start = start; 350 async_extent->ram_size = ram_size; 351 async_extent->compressed_size = compressed_size; 352 async_extent->pages = pages; 353 async_extent->nr_pages = nr_pages; 354 async_extent->compress_type = compress_type; 355 list_add_tail(&async_extent->list, &cow->extents); 356 return 0; 357 } 358 359 static inline int inode_need_compress(struct inode *inode) 360 { 361 struct btrfs_root *root = BTRFS_I(inode)->root; 362 363 /* force compress */ 364 if (btrfs_test_opt(root, FORCE_COMPRESS)) 365 return 1; 366 /* bad compression ratios */ 367 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 368 return 0; 369 if (btrfs_test_opt(root, COMPRESS) || 370 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 371 BTRFS_I(inode)->force_compress) 372 return 1; 373 return 0; 374 } 375 376 /* 377 * we create compressed extents in two phases. The first 378 * phase compresses a range of pages that have already been 379 * locked (both pages and state bits are locked). 380 * 381 * This is done inside an ordered work queue, and the compression 382 * is spread across many cpus. The actual IO submission is step 383 * two, and the ordered work queue takes care of making sure that 384 * happens in the same order things were put onto the queue by 385 * writepages and friends. 386 * 387 * If this code finds it can't get good compression, it puts an 388 * entry onto the work queue to write the uncompressed bytes. This 389 * makes sure that both compressed inodes and uncompressed inodes 390 * are written in the same order that the flusher thread sent them 391 * down. 392 */ 393 static noinline void compress_file_range(struct inode *inode, 394 struct page *locked_page, 395 u64 start, u64 end, 396 struct async_cow *async_cow, 397 int *num_added) 398 { 399 struct btrfs_root *root = BTRFS_I(inode)->root; 400 u64 num_bytes; 401 u64 blocksize = root->sectorsize; 402 u64 actual_end; 403 u64 isize = i_size_read(inode); 404 int ret = 0; 405 struct page **pages = NULL; 406 unsigned long nr_pages; 407 unsigned long nr_pages_ret = 0; 408 unsigned long total_compressed = 0; 409 unsigned long total_in = 0; 410 unsigned long max_compressed = 128 * 1024; 411 unsigned long max_uncompressed = 128 * 1024; 412 int i; 413 int will_compress; 414 int compress_type = root->fs_info->compress_type; 415 int redirty = 0; 416 417 /* if this is a small write inside eof, kick off a defrag */ 418 if ((end - start + 1) < 16 * 1024 && 419 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 420 btrfs_add_inode_defrag(NULL, inode); 421 422 actual_end = min_t(u64, isize, end + 1); 423 again: 424 will_compress = 0; 425 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 426 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 427 428 /* 429 * we don't want to send crud past the end of i_size through 430 * compression, that's just a waste of CPU time. So, if the 431 * end of the file is before the start of our current 432 * requested range of bytes, we bail out to the uncompressed 433 * cleanup code that can deal with all of this. 434 * 435 * It isn't really the fastest way to fix things, but this is a 436 * very uncommon corner. 437 */ 438 if (actual_end <= start) 439 goto cleanup_and_bail_uncompressed; 440 441 total_compressed = actual_end - start; 442 443 /* 444 * skip compression for a small file range(<=blocksize) that 445 * isn't an inline extent, since it dosen't save disk space at all. 446 */ 447 if (total_compressed <= blocksize && 448 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 449 goto cleanup_and_bail_uncompressed; 450 451 /* we want to make sure that amount of ram required to uncompress 452 * an extent is reasonable, so we limit the total size in ram 453 * of a compressed extent to 128k. This is a crucial number 454 * because it also controls how easily we can spread reads across 455 * cpus for decompression. 456 * 457 * We also want to make sure the amount of IO required to do 458 * a random read is reasonably small, so we limit the size of 459 * a compressed extent to 128k. 460 */ 461 total_compressed = min(total_compressed, max_uncompressed); 462 num_bytes = ALIGN(end - start + 1, blocksize); 463 num_bytes = max(blocksize, num_bytes); 464 total_in = 0; 465 ret = 0; 466 467 /* 468 * we do compression for mount -o compress and when the 469 * inode has not been flagged as nocompress. This flag can 470 * change at any time if we discover bad compression ratios. 471 */ 472 if (inode_need_compress(inode)) { 473 WARN_ON(pages); 474 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 475 if (!pages) { 476 /* just bail out to the uncompressed code */ 477 goto cont; 478 } 479 480 if (BTRFS_I(inode)->force_compress) 481 compress_type = BTRFS_I(inode)->force_compress; 482 483 /* 484 * we need to call clear_page_dirty_for_io on each 485 * page in the range. Otherwise applications with the file 486 * mmap'd can wander in and change the page contents while 487 * we are compressing them. 488 * 489 * If the compression fails for any reason, we set the pages 490 * dirty again later on. 491 */ 492 extent_range_clear_dirty_for_io(inode, start, end); 493 redirty = 1; 494 ret = btrfs_compress_pages(compress_type, 495 inode->i_mapping, start, 496 total_compressed, pages, 497 nr_pages, &nr_pages_ret, 498 &total_in, 499 &total_compressed, 500 max_compressed); 501 502 if (!ret) { 503 unsigned long offset = total_compressed & 504 (PAGE_CACHE_SIZE - 1); 505 struct page *page = pages[nr_pages_ret - 1]; 506 char *kaddr; 507 508 /* zero the tail end of the last page, we might be 509 * sending it down to disk 510 */ 511 if (offset) { 512 kaddr = kmap_atomic(page); 513 memset(kaddr + offset, 0, 514 PAGE_CACHE_SIZE - offset); 515 kunmap_atomic(kaddr); 516 } 517 will_compress = 1; 518 } 519 } 520 cont: 521 if (start == 0) { 522 /* lets try to make an inline extent */ 523 if (ret || total_in < (actual_end - start)) { 524 /* we didn't compress the entire range, try 525 * to make an uncompressed inline extent. 526 */ 527 ret = cow_file_range_inline(root, inode, start, end, 528 0, 0, NULL); 529 } else { 530 /* try making a compressed inline extent */ 531 ret = cow_file_range_inline(root, inode, start, end, 532 total_compressed, 533 compress_type, pages); 534 } 535 if (ret <= 0) { 536 unsigned long clear_flags = EXTENT_DELALLOC | 537 EXTENT_DEFRAG; 538 unsigned long page_error_op; 539 540 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 541 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 542 543 /* 544 * inline extent creation worked or returned error, 545 * we don't need to create any more async work items. 546 * Unlock and free up our temp pages. 547 */ 548 extent_clear_unlock_delalloc(inode, start, end, NULL, 549 clear_flags, PAGE_UNLOCK | 550 PAGE_CLEAR_DIRTY | 551 PAGE_SET_WRITEBACK | 552 page_error_op | 553 PAGE_END_WRITEBACK); 554 goto free_pages_out; 555 } 556 } 557 558 if (will_compress) { 559 /* 560 * we aren't doing an inline extent round the compressed size 561 * up to a block size boundary so the allocator does sane 562 * things 563 */ 564 total_compressed = ALIGN(total_compressed, blocksize); 565 566 /* 567 * one last check to make sure the compression is really a 568 * win, compare the page count read with the blocks on disk 569 */ 570 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 571 if (total_compressed >= total_in) { 572 will_compress = 0; 573 } else { 574 num_bytes = total_in; 575 } 576 } 577 if (!will_compress && pages) { 578 /* 579 * the compression code ran but failed to make things smaller, 580 * free any pages it allocated and our page pointer array 581 */ 582 for (i = 0; i < nr_pages_ret; i++) { 583 WARN_ON(pages[i]->mapping); 584 page_cache_release(pages[i]); 585 } 586 kfree(pages); 587 pages = NULL; 588 total_compressed = 0; 589 nr_pages_ret = 0; 590 591 /* flag the file so we don't compress in the future */ 592 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 593 !(BTRFS_I(inode)->force_compress)) { 594 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 595 } 596 } 597 if (will_compress) { 598 *num_added += 1; 599 600 /* the async work queues will take care of doing actual 601 * allocation on disk for these compressed pages, 602 * and will submit them to the elevator. 603 */ 604 add_async_extent(async_cow, start, num_bytes, 605 total_compressed, pages, nr_pages_ret, 606 compress_type); 607 608 if (start + num_bytes < end) { 609 start += num_bytes; 610 pages = NULL; 611 cond_resched(); 612 goto again; 613 } 614 } else { 615 cleanup_and_bail_uncompressed: 616 /* 617 * No compression, but we still need to write the pages in 618 * the file we've been given so far. redirty the locked 619 * page if it corresponds to our extent and set things up 620 * for the async work queue to run cow_file_range to do 621 * the normal delalloc dance 622 */ 623 if (page_offset(locked_page) >= start && 624 page_offset(locked_page) <= end) { 625 __set_page_dirty_nobuffers(locked_page); 626 /* unlocked later on in the async handlers */ 627 } 628 if (redirty) 629 extent_range_redirty_for_io(inode, start, end); 630 add_async_extent(async_cow, start, end - start + 1, 631 0, NULL, 0, BTRFS_COMPRESS_NONE); 632 *num_added += 1; 633 } 634 635 return; 636 637 free_pages_out: 638 for (i = 0; i < nr_pages_ret; i++) { 639 WARN_ON(pages[i]->mapping); 640 page_cache_release(pages[i]); 641 } 642 kfree(pages); 643 } 644 645 static void free_async_extent_pages(struct async_extent *async_extent) 646 { 647 int i; 648 649 if (!async_extent->pages) 650 return; 651 652 for (i = 0; i < async_extent->nr_pages; i++) { 653 WARN_ON(async_extent->pages[i]->mapping); 654 page_cache_release(async_extent->pages[i]); 655 } 656 kfree(async_extent->pages); 657 async_extent->nr_pages = 0; 658 async_extent->pages = NULL; 659 } 660 661 /* 662 * phase two of compressed writeback. This is the ordered portion 663 * of the code, which only gets called in the order the work was 664 * queued. We walk all the async extents created by compress_file_range 665 * and send them down to the disk. 666 */ 667 static noinline void submit_compressed_extents(struct inode *inode, 668 struct async_cow *async_cow) 669 { 670 struct async_extent *async_extent; 671 u64 alloc_hint = 0; 672 struct btrfs_key ins; 673 struct extent_map *em; 674 struct btrfs_root *root = BTRFS_I(inode)->root; 675 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 676 struct extent_io_tree *io_tree; 677 int ret = 0; 678 679 again: 680 while (!list_empty(&async_cow->extents)) { 681 async_extent = list_entry(async_cow->extents.next, 682 struct async_extent, list); 683 list_del(&async_extent->list); 684 685 io_tree = &BTRFS_I(inode)->io_tree; 686 687 retry: 688 /* did the compression code fall back to uncompressed IO? */ 689 if (!async_extent->pages) { 690 int page_started = 0; 691 unsigned long nr_written = 0; 692 693 lock_extent(io_tree, async_extent->start, 694 async_extent->start + 695 async_extent->ram_size - 1); 696 697 /* allocate blocks */ 698 ret = cow_file_range(inode, async_cow->locked_page, 699 async_extent->start, 700 async_extent->start + 701 async_extent->ram_size - 1, 702 &page_started, &nr_written, 0); 703 704 /* JDM XXX */ 705 706 /* 707 * if page_started, cow_file_range inserted an 708 * inline extent and took care of all the unlocking 709 * and IO for us. Otherwise, we need to submit 710 * all those pages down to the drive. 711 */ 712 if (!page_started && !ret) 713 extent_write_locked_range(io_tree, 714 inode, async_extent->start, 715 async_extent->start + 716 async_extent->ram_size - 1, 717 btrfs_get_extent, 718 WB_SYNC_ALL); 719 else if (ret) 720 unlock_page(async_cow->locked_page); 721 kfree(async_extent); 722 cond_resched(); 723 continue; 724 } 725 726 lock_extent(io_tree, async_extent->start, 727 async_extent->start + async_extent->ram_size - 1); 728 729 ret = btrfs_reserve_extent(root, 730 async_extent->compressed_size, 731 async_extent->compressed_size, 732 0, alloc_hint, &ins, 1, 1); 733 if (ret) { 734 free_async_extent_pages(async_extent); 735 736 if (ret == -ENOSPC) { 737 unlock_extent(io_tree, async_extent->start, 738 async_extent->start + 739 async_extent->ram_size - 1); 740 741 /* 742 * we need to redirty the pages if we decide to 743 * fallback to uncompressed IO, otherwise we 744 * will not submit these pages down to lower 745 * layers. 746 */ 747 extent_range_redirty_for_io(inode, 748 async_extent->start, 749 async_extent->start + 750 async_extent->ram_size - 1); 751 752 goto retry; 753 } 754 goto out_free; 755 } 756 /* 757 * here we're doing allocation and writeback of the 758 * compressed pages 759 */ 760 btrfs_drop_extent_cache(inode, async_extent->start, 761 async_extent->start + 762 async_extent->ram_size - 1, 0); 763 764 em = alloc_extent_map(); 765 if (!em) { 766 ret = -ENOMEM; 767 goto out_free_reserve; 768 } 769 em->start = async_extent->start; 770 em->len = async_extent->ram_size; 771 em->orig_start = em->start; 772 em->mod_start = em->start; 773 em->mod_len = em->len; 774 775 em->block_start = ins.objectid; 776 em->block_len = ins.offset; 777 em->orig_block_len = ins.offset; 778 em->ram_bytes = async_extent->ram_size; 779 em->bdev = root->fs_info->fs_devices->latest_bdev; 780 em->compress_type = async_extent->compress_type; 781 set_bit(EXTENT_FLAG_PINNED, &em->flags); 782 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 783 em->generation = -1; 784 785 while (1) { 786 write_lock(&em_tree->lock); 787 ret = add_extent_mapping(em_tree, em, 1); 788 write_unlock(&em_tree->lock); 789 if (ret != -EEXIST) { 790 free_extent_map(em); 791 break; 792 } 793 btrfs_drop_extent_cache(inode, async_extent->start, 794 async_extent->start + 795 async_extent->ram_size - 1, 0); 796 } 797 798 if (ret) 799 goto out_free_reserve; 800 801 ret = btrfs_add_ordered_extent_compress(inode, 802 async_extent->start, 803 ins.objectid, 804 async_extent->ram_size, 805 ins.offset, 806 BTRFS_ORDERED_COMPRESSED, 807 async_extent->compress_type); 808 if (ret) { 809 btrfs_drop_extent_cache(inode, async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 0); 812 goto out_free_reserve; 813 } 814 815 /* 816 * clear dirty, set writeback and unlock the pages. 817 */ 818 extent_clear_unlock_delalloc(inode, async_extent->start, 819 async_extent->start + 820 async_extent->ram_size - 1, 821 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 822 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 823 PAGE_SET_WRITEBACK); 824 ret = btrfs_submit_compressed_write(inode, 825 async_extent->start, 826 async_extent->ram_size, 827 ins.objectid, 828 ins.offset, async_extent->pages, 829 async_extent->nr_pages); 830 if (ret) { 831 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 832 struct page *p = async_extent->pages[0]; 833 const u64 start = async_extent->start; 834 const u64 end = start + async_extent->ram_size - 1; 835 836 p->mapping = inode->i_mapping; 837 tree->ops->writepage_end_io_hook(p, start, end, 838 NULL, 0); 839 p->mapping = NULL; 840 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 841 PAGE_END_WRITEBACK | 842 PAGE_SET_ERROR); 843 free_async_extent_pages(async_extent); 844 } 845 alloc_hint = ins.objectid + ins.offset; 846 kfree(async_extent); 847 cond_resched(); 848 } 849 return; 850 out_free_reserve: 851 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 852 out_free: 853 extent_clear_unlock_delalloc(inode, async_extent->start, 854 async_extent->start + 855 async_extent->ram_size - 1, 856 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 857 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 859 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 860 PAGE_SET_ERROR); 861 free_async_extent_pages(async_extent); 862 kfree(async_extent); 863 goto again; 864 } 865 866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 867 u64 num_bytes) 868 { 869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 870 struct extent_map *em; 871 u64 alloc_hint = 0; 872 873 read_lock(&em_tree->lock); 874 em = search_extent_mapping(em_tree, start, num_bytes); 875 if (em) { 876 /* 877 * if block start isn't an actual block number then find the 878 * first block in this inode and use that as a hint. If that 879 * block is also bogus then just don't worry about it. 880 */ 881 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 882 free_extent_map(em); 883 em = search_extent_mapping(em_tree, 0, 0); 884 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 885 alloc_hint = em->block_start; 886 if (em) 887 free_extent_map(em); 888 } else { 889 alloc_hint = em->block_start; 890 free_extent_map(em); 891 } 892 } 893 read_unlock(&em_tree->lock); 894 895 return alloc_hint; 896 } 897 898 /* 899 * when extent_io.c finds a delayed allocation range in the file, 900 * the call backs end up in this code. The basic idea is to 901 * allocate extents on disk for the range, and create ordered data structs 902 * in ram to track those extents. 903 * 904 * locked_page is the page that writepage had locked already. We use 905 * it to make sure we don't do extra locks or unlocks. 906 * 907 * *page_started is set to one if we unlock locked_page and do everything 908 * required to start IO on it. It may be clean and already done with 909 * IO when we return. 910 */ 911 static noinline int cow_file_range(struct inode *inode, 912 struct page *locked_page, 913 u64 start, u64 end, int *page_started, 914 unsigned long *nr_written, 915 int unlock) 916 { 917 struct btrfs_root *root = BTRFS_I(inode)->root; 918 u64 alloc_hint = 0; 919 u64 num_bytes; 920 unsigned long ram_size; 921 u64 disk_num_bytes; 922 u64 cur_alloc_size; 923 u64 blocksize = root->sectorsize; 924 struct btrfs_key ins; 925 struct extent_map *em; 926 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 927 int ret = 0; 928 929 if (btrfs_is_free_space_inode(inode)) { 930 WARN_ON_ONCE(1); 931 ret = -EINVAL; 932 goto out_unlock; 933 } 934 935 num_bytes = ALIGN(end - start + 1, blocksize); 936 num_bytes = max(blocksize, num_bytes); 937 disk_num_bytes = num_bytes; 938 939 /* if this is a small write inside eof, kick off defrag */ 940 if (num_bytes < 64 * 1024 && 941 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 942 btrfs_add_inode_defrag(NULL, inode); 943 944 if (start == 0) { 945 /* lets try to make an inline extent */ 946 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 947 NULL); 948 if (ret == 0) { 949 extent_clear_unlock_delalloc(inode, start, end, NULL, 950 EXTENT_LOCKED | EXTENT_DELALLOC | 951 EXTENT_DEFRAG, PAGE_UNLOCK | 952 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 953 PAGE_END_WRITEBACK); 954 955 *nr_written = *nr_written + 956 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 957 *page_started = 1; 958 goto out; 959 } else if (ret < 0) { 960 goto out_unlock; 961 } 962 } 963 964 BUG_ON(disk_num_bytes > 965 btrfs_super_total_bytes(root->fs_info->super_copy)); 966 967 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 968 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 969 970 while (disk_num_bytes > 0) { 971 unsigned long op; 972 973 cur_alloc_size = disk_num_bytes; 974 ret = btrfs_reserve_extent(root, cur_alloc_size, 975 root->sectorsize, 0, alloc_hint, 976 &ins, 1, 1); 977 if (ret < 0) 978 goto out_unlock; 979 980 em = alloc_extent_map(); 981 if (!em) { 982 ret = -ENOMEM; 983 goto out_reserve; 984 } 985 em->start = start; 986 em->orig_start = em->start; 987 ram_size = ins.offset; 988 em->len = ins.offset; 989 em->mod_start = em->start; 990 em->mod_len = em->len; 991 992 em->block_start = ins.objectid; 993 em->block_len = ins.offset; 994 em->orig_block_len = ins.offset; 995 em->ram_bytes = ram_size; 996 em->bdev = root->fs_info->fs_devices->latest_bdev; 997 set_bit(EXTENT_FLAG_PINNED, &em->flags); 998 em->generation = -1; 999 1000 while (1) { 1001 write_lock(&em_tree->lock); 1002 ret = add_extent_mapping(em_tree, em, 1); 1003 write_unlock(&em_tree->lock); 1004 if (ret != -EEXIST) { 1005 free_extent_map(em); 1006 break; 1007 } 1008 btrfs_drop_extent_cache(inode, start, 1009 start + ram_size - 1, 0); 1010 } 1011 if (ret) 1012 goto out_reserve; 1013 1014 cur_alloc_size = ins.offset; 1015 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1016 ram_size, cur_alloc_size, 0); 1017 if (ret) 1018 goto out_drop_extent_cache; 1019 1020 if (root->root_key.objectid == 1021 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1022 ret = btrfs_reloc_clone_csums(inode, start, 1023 cur_alloc_size); 1024 if (ret) 1025 goto out_drop_extent_cache; 1026 } 1027 1028 if (disk_num_bytes < cur_alloc_size) 1029 break; 1030 1031 /* we're not doing compressed IO, don't unlock the first 1032 * page (which the caller expects to stay locked), don't 1033 * clear any dirty bits and don't set any writeback bits 1034 * 1035 * Do set the Private2 bit so we know this page was properly 1036 * setup for writepage 1037 */ 1038 op = unlock ? PAGE_UNLOCK : 0; 1039 op |= PAGE_SET_PRIVATE2; 1040 1041 extent_clear_unlock_delalloc(inode, start, 1042 start + ram_size - 1, locked_page, 1043 EXTENT_LOCKED | EXTENT_DELALLOC, 1044 op); 1045 disk_num_bytes -= cur_alloc_size; 1046 num_bytes -= cur_alloc_size; 1047 alloc_hint = ins.objectid + ins.offset; 1048 start += cur_alloc_size; 1049 } 1050 out: 1051 return ret; 1052 1053 out_drop_extent_cache: 1054 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1055 out_reserve: 1056 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1057 out_unlock: 1058 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1059 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1060 EXTENT_DELALLOC | EXTENT_DEFRAG, 1061 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1062 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1063 goto out; 1064 } 1065 1066 /* 1067 * work queue call back to started compression on a file and pages 1068 */ 1069 static noinline void async_cow_start(struct btrfs_work *work) 1070 { 1071 struct async_cow *async_cow; 1072 int num_added = 0; 1073 async_cow = container_of(work, struct async_cow, work); 1074 1075 compress_file_range(async_cow->inode, async_cow->locked_page, 1076 async_cow->start, async_cow->end, async_cow, 1077 &num_added); 1078 if (num_added == 0) { 1079 btrfs_add_delayed_iput(async_cow->inode); 1080 async_cow->inode = NULL; 1081 } 1082 } 1083 1084 /* 1085 * work queue call back to submit previously compressed pages 1086 */ 1087 static noinline void async_cow_submit(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 struct btrfs_root *root; 1091 unsigned long nr_pages; 1092 1093 async_cow = container_of(work, struct async_cow, work); 1094 1095 root = async_cow->root; 1096 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1097 PAGE_CACHE_SHIFT; 1098 1099 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1100 5 * 1024 * 1024 && 1101 waitqueue_active(&root->fs_info->async_submit_wait)) 1102 wake_up(&root->fs_info->async_submit_wait); 1103 1104 if (async_cow->inode) 1105 submit_compressed_extents(async_cow->inode, async_cow); 1106 } 1107 1108 static noinline void async_cow_free(struct btrfs_work *work) 1109 { 1110 struct async_cow *async_cow; 1111 async_cow = container_of(work, struct async_cow, work); 1112 if (async_cow->inode) 1113 btrfs_add_delayed_iput(async_cow->inode); 1114 kfree(async_cow); 1115 } 1116 1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1118 u64 start, u64 end, int *page_started, 1119 unsigned long *nr_written) 1120 { 1121 struct async_cow *async_cow; 1122 struct btrfs_root *root = BTRFS_I(inode)->root; 1123 unsigned long nr_pages; 1124 u64 cur_end; 1125 int limit = 10 * 1024 * 1024; 1126 1127 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1128 1, 0, NULL, GFP_NOFS); 1129 while (start < end) { 1130 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1131 BUG_ON(!async_cow); /* -ENOMEM */ 1132 async_cow->inode = igrab(inode); 1133 async_cow->root = root; 1134 async_cow->locked_page = locked_page; 1135 async_cow->start = start; 1136 1137 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1138 !btrfs_test_opt(root, FORCE_COMPRESS)) 1139 cur_end = end; 1140 else 1141 cur_end = min(end, start + 512 * 1024 - 1); 1142 1143 async_cow->end = cur_end; 1144 INIT_LIST_HEAD(&async_cow->extents); 1145 1146 btrfs_init_work(&async_cow->work, 1147 btrfs_delalloc_helper, 1148 async_cow_start, async_cow_submit, 1149 async_cow_free); 1150 1151 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1152 PAGE_CACHE_SHIFT; 1153 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1154 1155 btrfs_queue_work(root->fs_info->delalloc_workers, 1156 &async_cow->work); 1157 1158 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1159 wait_event(root->fs_info->async_submit_wait, 1160 (atomic_read(&root->fs_info->async_delalloc_pages) < 1161 limit)); 1162 } 1163 1164 while (atomic_read(&root->fs_info->async_submit_draining) && 1165 atomic_read(&root->fs_info->async_delalloc_pages)) { 1166 wait_event(root->fs_info->async_submit_wait, 1167 (atomic_read(&root->fs_info->async_delalloc_pages) == 1168 0)); 1169 } 1170 1171 *nr_written += nr_pages; 1172 start = cur_end + 1; 1173 } 1174 *page_started = 1; 1175 return 0; 1176 } 1177 1178 static noinline int csum_exist_in_range(struct btrfs_root *root, 1179 u64 bytenr, u64 num_bytes) 1180 { 1181 int ret; 1182 struct btrfs_ordered_sum *sums; 1183 LIST_HEAD(list); 1184 1185 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1186 bytenr + num_bytes - 1, &list, 0); 1187 if (ret == 0 && list_empty(&list)) 1188 return 0; 1189 1190 while (!list_empty(&list)) { 1191 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1192 list_del(&sums->list); 1193 kfree(sums); 1194 } 1195 return 1; 1196 } 1197 1198 /* 1199 * when nowcow writeback call back. This checks for snapshots or COW copies 1200 * of the extents that exist in the file, and COWs the file as required. 1201 * 1202 * If no cow copies or snapshots exist, we write directly to the existing 1203 * blocks on disk 1204 */ 1205 static noinline int run_delalloc_nocow(struct inode *inode, 1206 struct page *locked_page, 1207 u64 start, u64 end, int *page_started, int force, 1208 unsigned long *nr_written) 1209 { 1210 struct btrfs_root *root = BTRFS_I(inode)->root; 1211 struct btrfs_trans_handle *trans; 1212 struct extent_buffer *leaf; 1213 struct btrfs_path *path; 1214 struct btrfs_file_extent_item *fi; 1215 struct btrfs_key found_key; 1216 u64 cow_start; 1217 u64 cur_offset; 1218 u64 extent_end; 1219 u64 extent_offset; 1220 u64 disk_bytenr; 1221 u64 num_bytes; 1222 u64 disk_num_bytes; 1223 u64 ram_bytes; 1224 int extent_type; 1225 int ret, err; 1226 int type; 1227 int nocow; 1228 int check_prev = 1; 1229 bool nolock; 1230 u64 ino = btrfs_ino(inode); 1231 1232 path = btrfs_alloc_path(); 1233 if (!path) { 1234 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1235 EXTENT_LOCKED | EXTENT_DELALLOC | 1236 EXTENT_DO_ACCOUNTING | 1237 EXTENT_DEFRAG, PAGE_UNLOCK | 1238 PAGE_CLEAR_DIRTY | 1239 PAGE_SET_WRITEBACK | 1240 PAGE_END_WRITEBACK); 1241 return -ENOMEM; 1242 } 1243 1244 nolock = btrfs_is_free_space_inode(inode); 1245 1246 if (nolock) 1247 trans = btrfs_join_transaction_nolock(root); 1248 else 1249 trans = btrfs_join_transaction(root); 1250 1251 if (IS_ERR(trans)) { 1252 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1253 EXTENT_LOCKED | EXTENT_DELALLOC | 1254 EXTENT_DO_ACCOUNTING | 1255 EXTENT_DEFRAG, PAGE_UNLOCK | 1256 PAGE_CLEAR_DIRTY | 1257 PAGE_SET_WRITEBACK | 1258 PAGE_END_WRITEBACK); 1259 btrfs_free_path(path); 1260 return PTR_ERR(trans); 1261 } 1262 1263 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1264 1265 cow_start = (u64)-1; 1266 cur_offset = start; 1267 while (1) { 1268 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1269 cur_offset, 0); 1270 if (ret < 0) 1271 goto error; 1272 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &found_key, 1275 path->slots[0] - 1); 1276 if (found_key.objectid == ino && 1277 found_key.type == BTRFS_EXTENT_DATA_KEY) 1278 path->slots[0]--; 1279 } 1280 check_prev = 0; 1281 next_slot: 1282 leaf = path->nodes[0]; 1283 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1284 ret = btrfs_next_leaf(root, path); 1285 if (ret < 0) 1286 goto error; 1287 if (ret > 0) 1288 break; 1289 leaf = path->nodes[0]; 1290 } 1291 1292 nocow = 0; 1293 disk_bytenr = 0; 1294 num_bytes = 0; 1295 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1296 1297 if (found_key.objectid > ino || 1298 found_key.type > BTRFS_EXTENT_DATA_KEY || 1299 found_key.offset > end) 1300 break; 1301 1302 if (found_key.offset > cur_offset) { 1303 extent_end = found_key.offset; 1304 extent_type = 0; 1305 goto out_check; 1306 } 1307 1308 fi = btrfs_item_ptr(leaf, path->slots[0], 1309 struct btrfs_file_extent_item); 1310 extent_type = btrfs_file_extent_type(leaf, fi); 1311 1312 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1313 if (extent_type == BTRFS_FILE_EXTENT_REG || 1314 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1315 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1316 extent_offset = btrfs_file_extent_offset(leaf, fi); 1317 extent_end = found_key.offset + 1318 btrfs_file_extent_num_bytes(leaf, fi); 1319 disk_num_bytes = 1320 btrfs_file_extent_disk_num_bytes(leaf, fi); 1321 if (extent_end <= start) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (disk_bytenr == 0) 1326 goto out_check; 1327 if (btrfs_file_extent_compression(leaf, fi) || 1328 btrfs_file_extent_encryption(leaf, fi) || 1329 btrfs_file_extent_other_encoding(leaf, fi)) 1330 goto out_check; 1331 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1332 goto out_check; 1333 if (btrfs_extent_readonly(root, disk_bytenr)) 1334 goto out_check; 1335 if (btrfs_cross_ref_exist(trans, root, ino, 1336 found_key.offset - 1337 extent_offset, disk_bytenr)) 1338 goto out_check; 1339 disk_bytenr += extent_offset; 1340 disk_bytenr += cur_offset - found_key.offset; 1341 num_bytes = min(end + 1, extent_end) - cur_offset; 1342 /* 1343 * if there are pending snapshots for this root, 1344 * we fall into common COW way. 1345 */ 1346 if (!nolock) { 1347 err = btrfs_start_write_no_snapshoting(root); 1348 if (!err) 1349 goto out_check; 1350 } 1351 /* 1352 * force cow if csum exists in the range. 1353 * this ensure that csum for a given extent are 1354 * either valid or do not exist. 1355 */ 1356 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1357 goto out_check; 1358 nocow = 1; 1359 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1360 extent_end = found_key.offset + 1361 btrfs_file_extent_inline_len(leaf, 1362 path->slots[0], fi); 1363 extent_end = ALIGN(extent_end, root->sectorsize); 1364 } else { 1365 BUG_ON(1); 1366 } 1367 out_check: 1368 if (extent_end <= start) { 1369 path->slots[0]++; 1370 if (!nolock && nocow) 1371 btrfs_end_write_no_snapshoting(root); 1372 goto next_slot; 1373 } 1374 if (!nocow) { 1375 if (cow_start == (u64)-1) 1376 cow_start = cur_offset; 1377 cur_offset = extent_end; 1378 if (cur_offset > end) 1379 break; 1380 path->slots[0]++; 1381 goto next_slot; 1382 } 1383 1384 btrfs_release_path(path); 1385 if (cow_start != (u64)-1) { 1386 ret = cow_file_range(inode, locked_page, 1387 cow_start, found_key.offset - 1, 1388 page_started, nr_written, 1); 1389 if (ret) { 1390 if (!nolock && nocow) 1391 btrfs_end_write_no_snapshoting(root); 1392 goto error; 1393 } 1394 cow_start = (u64)-1; 1395 } 1396 1397 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1398 struct extent_map *em; 1399 struct extent_map_tree *em_tree; 1400 em_tree = &BTRFS_I(inode)->extent_tree; 1401 em = alloc_extent_map(); 1402 BUG_ON(!em); /* -ENOMEM */ 1403 em->start = cur_offset; 1404 em->orig_start = found_key.offset - extent_offset; 1405 em->len = num_bytes; 1406 em->block_len = num_bytes; 1407 em->block_start = disk_bytenr; 1408 em->orig_block_len = disk_num_bytes; 1409 em->ram_bytes = ram_bytes; 1410 em->bdev = root->fs_info->fs_devices->latest_bdev; 1411 em->mod_start = em->start; 1412 em->mod_len = em->len; 1413 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1414 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1415 em->generation = -1; 1416 while (1) { 1417 write_lock(&em_tree->lock); 1418 ret = add_extent_mapping(em_tree, em, 1); 1419 write_unlock(&em_tree->lock); 1420 if (ret != -EEXIST) { 1421 free_extent_map(em); 1422 break; 1423 } 1424 btrfs_drop_extent_cache(inode, em->start, 1425 em->start + em->len - 1, 0); 1426 } 1427 type = BTRFS_ORDERED_PREALLOC; 1428 } else { 1429 type = BTRFS_ORDERED_NOCOW; 1430 } 1431 1432 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1433 num_bytes, num_bytes, type); 1434 BUG_ON(ret); /* -ENOMEM */ 1435 1436 if (root->root_key.objectid == 1437 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1438 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1439 num_bytes); 1440 if (ret) { 1441 if (!nolock && nocow) 1442 btrfs_end_write_no_snapshoting(root); 1443 goto error; 1444 } 1445 } 1446 1447 extent_clear_unlock_delalloc(inode, cur_offset, 1448 cur_offset + num_bytes - 1, 1449 locked_page, EXTENT_LOCKED | 1450 EXTENT_DELALLOC, PAGE_UNLOCK | 1451 PAGE_SET_PRIVATE2); 1452 if (!nolock && nocow) 1453 btrfs_end_write_no_snapshoting(root); 1454 cur_offset = extent_end; 1455 if (cur_offset > end) 1456 break; 1457 } 1458 btrfs_release_path(path); 1459 1460 if (cur_offset <= end && cow_start == (u64)-1) { 1461 cow_start = cur_offset; 1462 cur_offset = end; 1463 } 1464 1465 if (cow_start != (u64)-1) { 1466 ret = cow_file_range(inode, locked_page, cow_start, end, 1467 page_started, nr_written, 1); 1468 if (ret) 1469 goto error; 1470 } 1471 1472 error: 1473 err = btrfs_end_transaction(trans, root); 1474 if (!ret) 1475 ret = err; 1476 1477 if (ret && cur_offset < end) 1478 extent_clear_unlock_delalloc(inode, cur_offset, end, 1479 locked_page, EXTENT_LOCKED | 1480 EXTENT_DELALLOC | EXTENT_DEFRAG | 1481 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1482 PAGE_CLEAR_DIRTY | 1483 PAGE_SET_WRITEBACK | 1484 PAGE_END_WRITEBACK); 1485 btrfs_free_path(path); 1486 return ret; 1487 } 1488 1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1490 { 1491 1492 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1493 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1494 return 0; 1495 1496 /* 1497 * @defrag_bytes is a hint value, no spinlock held here, 1498 * if is not zero, it means the file is defragging. 1499 * Force cow if given extent needs to be defragged. 1500 */ 1501 if (BTRFS_I(inode)->defrag_bytes && 1502 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1503 EXTENT_DEFRAG, 0, NULL)) 1504 return 1; 1505 1506 return 0; 1507 } 1508 1509 /* 1510 * extent_io.c call back to do delayed allocation processing 1511 */ 1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1513 u64 start, u64 end, int *page_started, 1514 unsigned long *nr_written) 1515 { 1516 int ret; 1517 int force_cow = need_force_cow(inode, start, end); 1518 1519 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1520 ret = run_delalloc_nocow(inode, locked_page, start, end, 1521 page_started, 1, nr_written); 1522 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1523 ret = run_delalloc_nocow(inode, locked_page, start, end, 1524 page_started, 0, nr_written); 1525 } else if (!inode_need_compress(inode)) { 1526 ret = cow_file_range(inode, locked_page, start, end, 1527 page_started, nr_written, 1); 1528 } else { 1529 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1530 &BTRFS_I(inode)->runtime_flags); 1531 ret = cow_file_range_async(inode, locked_page, start, end, 1532 page_started, nr_written); 1533 } 1534 return ret; 1535 } 1536 1537 static void btrfs_split_extent_hook(struct inode *inode, 1538 struct extent_state *orig, u64 split) 1539 { 1540 u64 size; 1541 1542 /* not delalloc, ignore it */ 1543 if (!(orig->state & EXTENT_DELALLOC)) 1544 return; 1545 1546 size = orig->end - orig->start + 1; 1547 if (size > BTRFS_MAX_EXTENT_SIZE) { 1548 u64 num_extents; 1549 u64 new_size; 1550 1551 /* 1552 * See the explanation in btrfs_merge_extent_hook, the same 1553 * applies here, just in reverse. 1554 */ 1555 new_size = orig->end - split + 1; 1556 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1557 BTRFS_MAX_EXTENT_SIZE); 1558 new_size = split - orig->start; 1559 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1560 BTRFS_MAX_EXTENT_SIZE); 1561 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1562 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1563 return; 1564 } 1565 1566 spin_lock(&BTRFS_I(inode)->lock); 1567 BTRFS_I(inode)->outstanding_extents++; 1568 spin_unlock(&BTRFS_I(inode)->lock); 1569 } 1570 1571 /* 1572 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1573 * extents so we can keep track of new extents that are just merged onto old 1574 * extents, such as when we are doing sequential writes, so we can properly 1575 * account for the metadata space we'll need. 1576 */ 1577 static void btrfs_merge_extent_hook(struct inode *inode, 1578 struct extent_state *new, 1579 struct extent_state *other) 1580 { 1581 u64 new_size, old_size; 1582 u64 num_extents; 1583 1584 /* not delalloc, ignore it */ 1585 if (!(other->state & EXTENT_DELALLOC)) 1586 return; 1587 1588 if (new->start > other->start) 1589 new_size = new->end - other->start + 1; 1590 else 1591 new_size = other->end - new->start + 1; 1592 1593 /* we're not bigger than the max, unreserve the space and go */ 1594 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1595 spin_lock(&BTRFS_I(inode)->lock); 1596 BTRFS_I(inode)->outstanding_extents--; 1597 spin_unlock(&BTRFS_I(inode)->lock); 1598 return; 1599 } 1600 1601 /* 1602 * We have to add up either side to figure out how many extents were 1603 * accounted for before we merged into one big extent. If the number of 1604 * extents we accounted for is <= the amount we need for the new range 1605 * then we can return, otherwise drop. Think of it like this 1606 * 1607 * [ 4k][MAX_SIZE] 1608 * 1609 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1610 * need 2 outstanding extents, on one side we have 1 and the other side 1611 * we have 1 so they are == and we can return. But in this case 1612 * 1613 * [MAX_SIZE+4k][MAX_SIZE+4k] 1614 * 1615 * Each range on their own accounts for 2 extents, but merged together 1616 * they are only 3 extents worth of accounting, so we need to drop in 1617 * this case. 1618 */ 1619 old_size = other->end - other->start + 1; 1620 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1621 BTRFS_MAX_EXTENT_SIZE); 1622 old_size = new->end - new->start + 1; 1623 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1624 BTRFS_MAX_EXTENT_SIZE); 1625 1626 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1627 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1628 return; 1629 1630 spin_lock(&BTRFS_I(inode)->lock); 1631 BTRFS_I(inode)->outstanding_extents--; 1632 spin_unlock(&BTRFS_I(inode)->lock); 1633 } 1634 1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1636 struct inode *inode) 1637 { 1638 spin_lock(&root->delalloc_lock); 1639 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1640 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1641 &root->delalloc_inodes); 1642 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1643 &BTRFS_I(inode)->runtime_flags); 1644 root->nr_delalloc_inodes++; 1645 if (root->nr_delalloc_inodes == 1) { 1646 spin_lock(&root->fs_info->delalloc_root_lock); 1647 BUG_ON(!list_empty(&root->delalloc_root)); 1648 list_add_tail(&root->delalloc_root, 1649 &root->fs_info->delalloc_roots); 1650 spin_unlock(&root->fs_info->delalloc_root_lock); 1651 } 1652 } 1653 spin_unlock(&root->delalloc_lock); 1654 } 1655 1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1657 struct inode *inode) 1658 { 1659 spin_lock(&root->delalloc_lock); 1660 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1661 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1662 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1663 &BTRFS_I(inode)->runtime_flags); 1664 root->nr_delalloc_inodes--; 1665 if (!root->nr_delalloc_inodes) { 1666 spin_lock(&root->fs_info->delalloc_root_lock); 1667 BUG_ON(list_empty(&root->delalloc_root)); 1668 list_del_init(&root->delalloc_root); 1669 spin_unlock(&root->fs_info->delalloc_root_lock); 1670 } 1671 } 1672 spin_unlock(&root->delalloc_lock); 1673 } 1674 1675 /* 1676 * extent_io.c set_bit_hook, used to track delayed allocation 1677 * bytes in this file, and to maintain the list of inodes that 1678 * have pending delalloc work to be done. 1679 */ 1680 static void btrfs_set_bit_hook(struct inode *inode, 1681 struct extent_state *state, unsigned *bits) 1682 { 1683 1684 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1685 WARN_ON(1); 1686 /* 1687 * set_bit and clear bit hooks normally require _irqsave/restore 1688 * but in this case, we are only testing for the DELALLOC 1689 * bit, which is only set or cleared with irqs on 1690 */ 1691 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1692 struct btrfs_root *root = BTRFS_I(inode)->root; 1693 u64 len = state->end + 1 - state->start; 1694 bool do_list = !btrfs_is_free_space_inode(inode); 1695 1696 if (*bits & EXTENT_FIRST_DELALLOC) { 1697 *bits &= ~EXTENT_FIRST_DELALLOC; 1698 } else { 1699 spin_lock(&BTRFS_I(inode)->lock); 1700 BTRFS_I(inode)->outstanding_extents++; 1701 spin_unlock(&BTRFS_I(inode)->lock); 1702 } 1703 1704 /* For sanity tests */ 1705 if (btrfs_test_is_dummy_root(root)) 1706 return; 1707 1708 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1709 root->fs_info->delalloc_batch); 1710 spin_lock(&BTRFS_I(inode)->lock); 1711 BTRFS_I(inode)->delalloc_bytes += len; 1712 if (*bits & EXTENT_DEFRAG) 1713 BTRFS_I(inode)->defrag_bytes += len; 1714 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1715 &BTRFS_I(inode)->runtime_flags)) 1716 btrfs_add_delalloc_inodes(root, inode); 1717 spin_unlock(&BTRFS_I(inode)->lock); 1718 } 1719 } 1720 1721 /* 1722 * extent_io.c clear_bit_hook, see set_bit_hook for why 1723 */ 1724 static void btrfs_clear_bit_hook(struct inode *inode, 1725 struct extent_state *state, 1726 unsigned *bits) 1727 { 1728 u64 len = state->end + 1 - state->start; 1729 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1730 BTRFS_MAX_EXTENT_SIZE); 1731 1732 spin_lock(&BTRFS_I(inode)->lock); 1733 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1734 BTRFS_I(inode)->defrag_bytes -= len; 1735 spin_unlock(&BTRFS_I(inode)->lock); 1736 1737 /* 1738 * set_bit and clear bit hooks normally require _irqsave/restore 1739 * but in this case, we are only testing for the DELALLOC 1740 * bit, which is only set or cleared with irqs on 1741 */ 1742 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1743 struct btrfs_root *root = BTRFS_I(inode)->root; 1744 bool do_list = !btrfs_is_free_space_inode(inode); 1745 1746 if (*bits & EXTENT_FIRST_DELALLOC) { 1747 *bits &= ~EXTENT_FIRST_DELALLOC; 1748 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1749 spin_lock(&BTRFS_I(inode)->lock); 1750 BTRFS_I(inode)->outstanding_extents -= num_extents; 1751 spin_unlock(&BTRFS_I(inode)->lock); 1752 } 1753 1754 /* 1755 * We don't reserve metadata space for space cache inodes so we 1756 * don't need to call dellalloc_release_metadata if there is an 1757 * error. 1758 */ 1759 if (*bits & EXTENT_DO_ACCOUNTING && 1760 root != root->fs_info->tree_root) 1761 btrfs_delalloc_release_metadata(inode, len); 1762 1763 /* For sanity tests. */ 1764 if (btrfs_test_is_dummy_root(root)) 1765 return; 1766 1767 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1768 && do_list && !(state->state & EXTENT_NORESERVE)) 1769 btrfs_free_reserved_data_space(inode, len); 1770 1771 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1772 root->fs_info->delalloc_batch); 1773 spin_lock(&BTRFS_I(inode)->lock); 1774 BTRFS_I(inode)->delalloc_bytes -= len; 1775 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1776 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1777 &BTRFS_I(inode)->runtime_flags)) 1778 btrfs_del_delalloc_inode(root, inode); 1779 spin_unlock(&BTRFS_I(inode)->lock); 1780 } 1781 } 1782 1783 /* 1784 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1785 * we don't create bios that span stripes or chunks 1786 */ 1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1788 size_t size, struct bio *bio, 1789 unsigned long bio_flags) 1790 { 1791 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1792 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1793 u64 length = 0; 1794 u64 map_length; 1795 int ret; 1796 1797 if (bio_flags & EXTENT_BIO_COMPRESSED) 1798 return 0; 1799 1800 length = bio->bi_iter.bi_size; 1801 map_length = length; 1802 ret = btrfs_map_block(root->fs_info, rw, logical, 1803 &map_length, NULL, 0); 1804 /* Will always return 0 with map_multi == NULL */ 1805 BUG_ON(ret < 0); 1806 if (map_length < length + size) 1807 return 1; 1808 return 0; 1809 } 1810 1811 /* 1812 * in order to insert checksums into the metadata in large chunks, 1813 * we wait until bio submission time. All the pages in the bio are 1814 * checksummed and sums are attached onto the ordered extent record. 1815 * 1816 * At IO completion time the cums attached on the ordered extent record 1817 * are inserted into the btree 1818 */ 1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1820 struct bio *bio, int mirror_num, 1821 unsigned long bio_flags, 1822 u64 bio_offset) 1823 { 1824 struct btrfs_root *root = BTRFS_I(inode)->root; 1825 int ret = 0; 1826 1827 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1828 BUG_ON(ret); /* -ENOMEM */ 1829 return 0; 1830 } 1831 1832 /* 1833 * in order to insert checksums into the metadata in large chunks, 1834 * we wait until bio submission time. All the pages in the bio are 1835 * checksummed and sums are attached onto the ordered extent record. 1836 * 1837 * At IO completion time the cums attached on the ordered extent record 1838 * are inserted into the btree 1839 */ 1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1841 int mirror_num, unsigned long bio_flags, 1842 u64 bio_offset) 1843 { 1844 struct btrfs_root *root = BTRFS_I(inode)->root; 1845 int ret; 1846 1847 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1848 if (ret) { 1849 bio->bi_error = ret; 1850 bio_endio(bio); 1851 } 1852 return ret; 1853 } 1854 1855 /* 1856 * extent_io.c submission hook. This does the right thing for csum calculation 1857 * on write, or reading the csums from the tree before a read 1858 */ 1859 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1860 int mirror_num, unsigned long bio_flags, 1861 u64 bio_offset) 1862 { 1863 struct btrfs_root *root = BTRFS_I(inode)->root; 1864 int ret = 0; 1865 int skip_sum; 1866 int metadata = 0; 1867 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1868 1869 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1870 1871 if (btrfs_is_free_space_inode(inode)) 1872 metadata = 2; 1873 1874 if (!(rw & REQ_WRITE)) { 1875 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1876 if (ret) 1877 goto out; 1878 1879 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1880 ret = btrfs_submit_compressed_read(inode, bio, 1881 mirror_num, 1882 bio_flags); 1883 goto out; 1884 } else if (!skip_sum) { 1885 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1886 if (ret) 1887 goto out; 1888 } 1889 goto mapit; 1890 } else if (async && !skip_sum) { 1891 /* csum items have already been cloned */ 1892 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1893 goto mapit; 1894 /* we're doing a write, do the async checksumming */ 1895 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1896 inode, rw, bio, mirror_num, 1897 bio_flags, bio_offset, 1898 __btrfs_submit_bio_start, 1899 __btrfs_submit_bio_done); 1900 goto out; 1901 } else if (!skip_sum) { 1902 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1903 if (ret) 1904 goto out; 1905 } 1906 1907 mapit: 1908 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1909 1910 out: 1911 if (ret < 0) { 1912 bio->bi_error = ret; 1913 bio_endio(bio); 1914 } 1915 return ret; 1916 } 1917 1918 /* 1919 * given a list of ordered sums record them in the inode. This happens 1920 * at IO completion time based on sums calculated at bio submission time. 1921 */ 1922 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1923 struct inode *inode, u64 file_offset, 1924 struct list_head *list) 1925 { 1926 struct btrfs_ordered_sum *sum; 1927 1928 list_for_each_entry(sum, list, list) { 1929 trans->adding_csums = 1; 1930 btrfs_csum_file_blocks(trans, 1931 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1932 trans->adding_csums = 0; 1933 } 1934 return 0; 1935 } 1936 1937 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1938 struct extent_state **cached_state) 1939 { 1940 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1941 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1942 cached_state, GFP_NOFS); 1943 } 1944 1945 /* see btrfs_writepage_start_hook for details on why this is required */ 1946 struct btrfs_writepage_fixup { 1947 struct page *page; 1948 struct btrfs_work work; 1949 }; 1950 1951 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1952 { 1953 struct btrfs_writepage_fixup *fixup; 1954 struct btrfs_ordered_extent *ordered; 1955 struct extent_state *cached_state = NULL; 1956 struct page *page; 1957 struct inode *inode; 1958 u64 page_start; 1959 u64 page_end; 1960 int ret; 1961 1962 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1963 page = fixup->page; 1964 again: 1965 lock_page(page); 1966 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1967 ClearPageChecked(page); 1968 goto out_page; 1969 } 1970 1971 inode = page->mapping->host; 1972 page_start = page_offset(page); 1973 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1974 1975 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1976 &cached_state); 1977 1978 /* already ordered? We're done */ 1979 if (PagePrivate2(page)) 1980 goto out; 1981 1982 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1983 if (ordered) { 1984 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1985 page_end, &cached_state, GFP_NOFS); 1986 unlock_page(page); 1987 btrfs_start_ordered_extent(inode, ordered, 1); 1988 btrfs_put_ordered_extent(ordered); 1989 goto again; 1990 } 1991 1992 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1993 if (ret) { 1994 mapping_set_error(page->mapping, ret); 1995 end_extent_writepage(page, ret, page_start, page_end); 1996 ClearPageChecked(page); 1997 goto out; 1998 } 1999 2000 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2001 ClearPageChecked(page); 2002 set_page_dirty(page); 2003 out: 2004 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2005 &cached_state, GFP_NOFS); 2006 out_page: 2007 unlock_page(page); 2008 page_cache_release(page); 2009 kfree(fixup); 2010 } 2011 2012 /* 2013 * There are a few paths in the higher layers of the kernel that directly 2014 * set the page dirty bit without asking the filesystem if it is a 2015 * good idea. This causes problems because we want to make sure COW 2016 * properly happens and the data=ordered rules are followed. 2017 * 2018 * In our case any range that doesn't have the ORDERED bit set 2019 * hasn't been properly setup for IO. We kick off an async process 2020 * to fix it up. The async helper will wait for ordered extents, set 2021 * the delalloc bit and make it safe to write the page. 2022 */ 2023 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2024 { 2025 struct inode *inode = page->mapping->host; 2026 struct btrfs_writepage_fixup *fixup; 2027 struct btrfs_root *root = BTRFS_I(inode)->root; 2028 2029 /* this page is properly in the ordered list */ 2030 if (TestClearPagePrivate2(page)) 2031 return 0; 2032 2033 if (PageChecked(page)) 2034 return -EAGAIN; 2035 2036 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2037 if (!fixup) 2038 return -EAGAIN; 2039 2040 SetPageChecked(page); 2041 page_cache_get(page); 2042 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2043 btrfs_writepage_fixup_worker, NULL, NULL); 2044 fixup->page = page; 2045 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2046 return -EBUSY; 2047 } 2048 2049 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2050 struct inode *inode, u64 file_pos, 2051 u64 disk_bytenr, u64 disk_num_bytes, 2052 u64 num_bytes, u64 ram_bytes, 2053 u8 compression, u8 encryption, 2054 u16 other_encoding, int extent_type) 2055 { 2056 struct btrfs_root *root = BTRFS_I(inode)->root; 2057 struct btrfs_file_extent_item *fi; 2058 struct btrfs_path *path; 2059 struct extent_buffer *leaf; 2060 struct btrfs_key ins; 2061 int extent_inserted = 0; 2062 int ret; 2063 2064 path = btrfs_alloc_path(); 2065 if (!path) 2066 return -ENOMEM; 2067 2068 /* 2069 * we may be replacing one extent in the tree with another. 2070 * The new extent is pinned in the extent map, and we don't want 2071 * to drop it from the cache until it is completely in the btree. 2072 * 2073 * So, tell btrfs_drop_extents to leave this extent in the cache. 2074 * the caller is expected to unpin it and allow it to be merged 2075 * with the others. 2076 */ 2077 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2078 file_pos + num_bytes, NULL, 0, 2079 1, sizeof(*fi), &extent_inserted); 2080 if (ret) 2081 goto out; 2082 2083 if (!extent_inserted) { 2084 ins.objectid = btrfs_ino(inode); 2085 ins.offset = file_pos; 2086 ins.type = BTRFS_EXTENT_DATA_KEY; 2087 2088 path->leave_spinning = 1; 2089 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2090 sizeof(*fi)); 2091 if (ret) 2092 goto out; 2093 } 2094 leaf = path->nodes[0]; 2095 fi = btrfs_item_ptr(leaf, path->slots[0], 2096 struct btrfs_file_extent_item); 2097 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2098 btrfs_set_file_extent_type(leaf, fi, extent_type); 2099 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2100 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2101 btrfs_set_file_extent_offset(leaf, fi, 0); 2102 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2103 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2104 btrfs_set_file_extent_compression(leaf, fi, compression); 2105 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2106 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2107 2108 btrfs_mark_buffer_dirty(leaf); 2109 btrfs_release_path(path); 2110 2111 inode_add_bytes(inode, num_bytes); 2112 2113 ins.objectid = disk_bytenr; 2114 ins.offset = disk_num_bytes; 2115 ins.type = BTRFS_EXTENT_ITEM_KEY; 2116 ret = btrfs_alloc_reserved_file_extent(trans, root, 2117 root->root_key.objectid, 2118 btrfs_ino(inode), file_pos, &ins); 2119 out: 2120 btrfs_free_path(path); 2121 2122 return ret; 2123 } 2124 2125 /* snapshot-aware defrag */ 2126 struct sa_defrag_extent_backref { 2127 struct rb_node node; 2128 struct old_sa_defrag_extent *old; 2129 u64 root_id; 2130 u64 inum; 2131 u64 file_pos; 2132 u64 extent_offset; 2133 u64 num_bytes; 2134 u64 generation; 2135 }; 2136 2137 struct old_sa_defrag_extent { 2138 struct list_head list; 2139 struct new_sa_defrag_extent *new; 2140 2141 u64 extent_offset; 2142 u64 bytenr; 2143 u64 offset; 2144 u64 len; 2145 int count; 2146 }; 2147 2148 struct new_sa_defrag_extent { 2149 struct rb_root root; 2150 struct list_head head; 2151 struct btrfs_path *path; 2152 struct inode *inode; 2153 u64 file_pos; 2154 u64 len; 2155 u64 bytenr; 2156 u64 disk_len; 2157 u8 compress_type; 2158 }; 2159 2160 static int backref_comp(struct sa_defrag_extent_backref *b1, 2161 struct sa_defrag_extent_backref *b2) 2162 { 2163 if (b1->root_id < b2->root_id) 2164 return -1; 2165 else if (b1->root_id > b2->root_id) 2166 return 1; 2167 2168 if (b1->inum < b2->inum) 2169 return -1; 2170 else if (b1->inum > b2->inum) 2171 return 1; 2172 2173 if (b1->file_pos < b2->file_pos) 2174 return -1; 2175 else if (b1->file_pos > b2->file_pos) 2176 return 1; 2177 2178 /* 2179 * [------------------------------] ===> (a range of space) 2180 * |<--->| |<---->| =============> (fs/file tree A) 2181 * |<---------------------------->| ===> (fs/file tree B) 2182 * 2183 * A range of space can refer to two file extents in one tree while 2184 * refer to only one file extent in another tree. 2185 * 2186 * So we may process a disk offset more than one time(two extents in A) 2187 * and locate at the same extent(one extent in B), then insert two same 2188 * backrefs(both refer to the extent in B). 2189 */ 2190 return 0; 2191 } 2192 2193 static void backref_insert(struct rb_root *root, 2194 struct sa_defrag_extent_backref *backref) 2195 { 2196 struct rb_node **p = &root->rb_node; 2197 struct rb_node *parent = NULL; 2198 struct sa_defrag_extent_backref *entry; 2199 int ret; 2200 2201 while (*p) { 2202 parent = *p; 2203 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2204 2205 ret = backref_comp(backref, entry); 2206 if (ret < 0) 2207 p = &(*p)->rb_left; 2208 else 2209 p = &(*p)->rb_right; 2210 } 2211 2212 rb_link_node(&backref->node, parent, p); 2213 rb_insert_color(&backref->node, root); 2214 } 2215 2216 /* 2217 * Note the backref might has changed, and in this case we just return 0. 2218 */ 2219 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2220 void *ctx) 2221 { 2222 struct btrfs_file_extent_item *extent; 2223 struct btrfs_fs_info *fs_info; 2224 struct old_sa_defrag_extent *old = ctx; 2225 struct new_sa_defrag_extent *new = old->new; 2226 struct btrfs_path *path = new->path; 2227 struct btrfs_key key; 2228 struct btrfs_root *root; 2229 struct sa_defrag_extent_backref *backref; 2230 struct extent_buffer *leaf; 2231 struct inode *inode = new->inode; 2232 int slot; 2233 int ret; 2234 u64 extent_offset; 2235 u64 num_bytes; 2236 2237 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2238 inum == btrfs_ino(inode)) 2239 return 0; 2240 2241 key.objectid = root_id; 2242 key.type = BTRFS_ROOT_ITEM_KEY; 2243 key.offset = (u64)-1; 2244 2245 fs_info = BTRFS_I(inode)->root->fs_info; 2246 root = btrfs_read_fs_root_no_name(fs_info, &key); 2247 if (IS_ERR(root)) { 2248 if (PTR_ERR(root) == -ENOENT) 2249 return 0; 2250 WARN_ON(1); 2251 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2252 inum, offset, root_id); 2253 return PTR_ERR(root); 2254 } 2255 2256 key.objectid = inum; 2257 key.type = BTRFS_EXTENT_DATA_KEY; 2258 if (offset > (u64)-1 << 32) 2259 key.offset = 0; 2260 else 2261 key.offset = offset; 2262 2263 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2264 if (WARN_ON(ret < 0)) 2265 return ret; 2266 ret = 0; 2267 2268 while (1) { 2269 cond_resched(); 2270 2271 leaf = path->nodes[0]; 2272 slot = path->slots[0]; 2273 2274 if (slot >= btrfs_header_nritems(leaf)) { 2275 ret = btrfs_next_leaf(root, path); 2276 if (ret < 0) { 2277 goto out; 2278 } else if (ret > 0) { 2279 ret = 0; 2280 goto out; 2281 } 2282 continue; 2283 } 2284 2285 path->slots[0]++; 2286 2287 btrfs_item_key_to_cpu(leaf, &key, slot); 2288 2289 if (key.objectid > inum) 2290 goto out; 2291 2292 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2293 continue; 2294 2295 extent = btrfs_item_ptr(leaf, slot, 2296 struct btrfs_file_extent_item); 2297 2298 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2299 continue; 2300 2301 /* 2302 * 'offset' refers to the exact key.offset, 2303 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2304 * (key.offset - extent_offset). 2305 */ 2306 if (key.offset != offset) 2307 continue; 2308 2309 extent_offset = btrfs_file_extent_offset(leaf, extent); 2310 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2311 2312 if (extent_offset >= old->extent_offset + old->offset + 2313 old->len || extent_offset + num_bytes <= 2314 old->extent_offset + old->offset) 2315 continue; 2316 break; 2317 } 2318 2319 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2320 if (!backref) { 2321 ret = -ENOENT; 2322 goto out; 2323 } 2324 2325 backref->root_id = root_id; 2326 backref->inum = inum; 2327 backref->file_pos = offset; 2328 backref->num_bytes = num_bytes; 2329 backref->extent_offset = extent_offset; 2330 backref->generation = btrfs_file_extent_generation(leaf, extent); 2331 backref->old = old; 2332 backref_insert(&new->root, backref); 2333 old->count++; 2334 out: 2335 btrfs_release_path(path); 2336 WARN_ON(ret); 2337 return ret; 2338 } 2339 2340 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2341 struct new_sa_defrag_extent *new) 2342 { 2343 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2344 struct old_sa_defrag_extent *old, *tmp; 2345 int ret; 2346 2347 new->path = path; 2348 2349 list_for_each_entry_safe(old, tmp, &new->head, list) { 2350 ret = iterate_inodes_from_logical(old->bytenr + 2351 old->extent_offset, fs_info, 2352 path, record_one_backref, 2353 old); 2354 if (ret < 0 && ret != -ENOENT) 2355 return false; 2356 2357 /* no backref to be processed for this extent */ 2358 if (!old->count) { 2359 list_del(&old->list); 2360 kfree(old); 2361 } 2362 } 2363 2364 if (list_empty(&new->head)) 2365 return false; 2366 2367 return true; 2368 } 2369 2370 static int relink_is_mergable(struct extent_buffer *leaf, 2371 struct btrfs_file_extent_item *fi, 2372 struct new_sa_defrag_extent *new) 2373 { 2374 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2375 return 0; 2376 2377 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2378 return 0; 2379 2380 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2381 return 0; 2382 2383 if (btrfs_file_extent_encryption(leaf, fi) || 2384 btrfs_file_extent_other_encoding(leaf, fi)) 2385 return 0; 2386 2387 return 1; 2388 } 2389 2390 /* 2391 * Note the backref might has changed, and in this case we just return 0. 2392 */ 2393 static noinline int relink_extent_backref(struct btrfs_path *path, 2394 struct sa_defrag_extent_backref *prev, 2395 struct sa_defrag_extent_backref *backref) 2396 { 2397 struct btrfs_file_extent_item *extent; 2398 struct btrfs_file_extent_item *item; 2399 struct btrfs_ordered_extent *ordered; 2400 struct btrfs_trans_handle *trans; 2401 struct btrfs_fs_info *fs_info; 2402 struct btrfs_root *root; 2403 struct btrfs_key key; 2404 struct extent_buffer *leaf; 2405 struct old_sa_defrag_extent *old = backref->old; 2406 struct new_sa_defrag_extent *new = old->new; 2407 struct inode *src_inode = new->inode; 2408 struct inode *inode; 2409 struct extent_state *cached = NULL; 2410 int ret = 0; 2411 u64 start; 2412 u64 len; 2413 u64 lock_start; 2414 u64 lock_end; 2415 bool merge = false; 2416 int index; 2417 2418 if (prev && prev->root_id == backref->root_id && 2419 prev->inum == backref->inum && 2420 prev->file_pos + prev->num_bytes == backref->file_pos) 2421 merge = true; 2422 2423 /* step 1: get root */ 2424 key.objectid = backref->root_id; 2425 key.type = BTRFS_ROOT_ITEM_KEY; 2426 key.offset = (u64)-1; 2427 2428 fs_info = BTRFS_I(src_inode)->root->fs_info; 2429 index = srcu_read_lock(&fs_info->subvol_srcu); 2430 2431 root = btrfs_read_fs_root_no_name(fs_info, &key); 2432 if (IS_ERR(root)) { 2433 srcu_read_unlock(&fs_info->subvol_srcu, index); 2434 if (PTR_ERR(root) == -ENOENT) 2435 return 0; 2436 return PTR_ERR(root); 2437 } 2438 2439 if (btrfs_root_readonly(root)) { 2440 srcu_read_unlock(&fs_info->subvol_srcu, index); 2441 return 0; 2442 } 2443 2444 /* step 2: get inode */ 2445 key.objectid = backref->inum; 2446 key.type = BTRFS_INODE_ITEM_KEY; 2447 key.offset = 0; 2448 2449 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2450 if (IS_ERR(inode)) { 2451 srcu_read_unlock(&fs_info->subvol_srcu, index); 2452 return 0; 2453 } 2454 2455 srcu_read_unlock(&fs_info->subvol_srcu, index); 2456 2457 /* step 3: relink backref */ 2458 lock_start = backref->file_pos; 2459 lock_end = backref->file_pos + backref->num_bytes - 1; 2460 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2461 0, &cached); 2462 2463 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2464 if (ordered) { 2465 btrfs_put_ordered_extent(ordered); 2466 goto out_unlock; 2467 } 2468 2469 trans = btrfs_join_transaction(root); 2470 if (IS_ERR(trans)) { 2471 ret = PTR_ERR(trans); 2472 goto out_unlock; 2473 } 2474 2475 key.objectid = backref->inum; 2476 key.type = BTRFS_EXTENT_DATA_KEY; 2477 key.offset = backref->file_pos; 2478 2479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2480 if (ret < 0) { 2481 goto out_free_path; 2482 } else if (ret > 0) { 2483 ret = 0; 2484 goto out_free_path; 2485 } 2486 2487 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2488 struct btrfs_file_extent_item); 2489 2490 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2491 backref->generation) 2492 goto out_free_path; 2493 2494 btrfs_release_path(path); 2495 2496 start = backref->file_pos; 2497 if (backref->extent_offset < old->extent_offset + old->offset) 2498 start += old->extent_offset + old->offset - 2499 backref->extent_offset; 2500 2501 len = min(backref->extent_offset + backref->num_bytes, 2502 old->extent_offset + old->offset + old->len); 2503 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2504 2505 ret = btrfs_drop_extents(trans, root, inode, start, 2506 start + len, 1); 2507 if (ret) 2508 goto out_free_path; 2509 again: 2510 key.objectid = btrfs_ino(inode); 2511 key.type = BTRFS_EXTENT_DATA_KEY; 2512 key.offset = start; 2513 2514 path->leave_spinning = 1; 2515 if (merge) { 2516 struct btrfs_file_extent_item *fi; 2517 u64 extent_len; 2518 struct btrfs_key found_key; 2519 2520 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2521 if (ret < 0) 2522 goto out_free_path; 2523 2524 path->slots[0]--; 2525 leaf = path->nodes[0]; 2526 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2527 2528 fi = btrfs_item_ptr(leaf, path->slots[0], 2529 struct btrfs_file_extent_item); 2530 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2531 2532 if (extent_len + found_key.offset == start && 2533 relink_is_mergable(leaf, fi, new)) { 2534 btrfs_set_file_extent_num_bytes(leaf, fi, 2535 extent_len + len); 2536 btrfs_mark_buffer_dirty(leaf); 2537 inode_add_bytes(inode, len); 2538 2539 ret = 1; 2540 goto out_free_path; 2541 } else { 2542 merge = false; 2543 btrfs_release_path(path); 2544 goto again; 2545 } 2546 } 2547 2548 ret = btrfs_insert_empty_item(trans, root, path, &key, 2549 sizeof(*extent)); 2550 if (ret) { 2551 btrfs_abort_transaction(trans, root, ret); 2552 goto out_free_path; 2553 } 2554 2555 leaf = path->nodes[0]; 2556 item = btrfs_item_ptr(leaf, path->slots[0], 2557 struct btrfs_file_extent_item); 2558 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2559 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2560 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2561 btrfs_set_file_extent_num_bytes(leaf, item, len); 2562 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2563 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2564 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2565 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2566 btrfs_set_file_extent_encryption(leaf, item, 0); 2567 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2568 2569 btrfs_mark_buffer_dirty(leaf); 2570 inode_add_bytes(inode, len); 2571 btrfs_release_path(path); 2572 2573 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2574 new->disk_len, 0, 2575 backref->root_id, backref->inum, 2576 new->file_pos, 0); /* start - extent_offset */ 2577 if (ret) { 2578 btrfs_abort_transaction(trans, root, ret); 2579 goto out_free_path; 2580 } 2581 2582 ret = 1; 2583 out_free_path: 2584 btrfs_release_path(path); 2585 path->leave_spinning = 0; 2586 btrfs_end_transaction(trans, root); 2587 out_unlock: 2588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2589 &cached, GFP_NOFS); 2590 iput(inode); 2591 return ret; 2592 } 2593 2594 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2595 { 2596 struct old_sa_defrag_extent *old, *tmp; 2597 2598 if (!new) 2599 return; 2600 2601 list_for_each_entry_safe(old, tmp, &new->head, list) { 2602 list_del(&old->list); 2603 kfree(old); 2604 } 2605 kfree(new); 2606 } 2607 2608 static void relink_file_extents(struct new_sa_defrag_extent *new) 2609 { 2610 struct btrfs_path *path; 2611 struct sa_defrag_extent_backref *backref; 2612 struct sa_defrag_extent_backref *prev = NULL; 2613 struct inode *inode; 2614 struct btrfs_root *root; 2615 struct rb_node *node; 2616 int ret; 2617 2618 inode = new->inode; 2619 root = BTRFS_I(inode)->root; 2620 2621 path = btrfs_alloc_path(); 2622 if (!path) 2623 return; 2624 2625 if (!record_extent_backrefs(path, new)) { 2626 btrfs_free_path(path); 2627 goto out; 2628 } 2629 btrfs_release_path(path); 2630 2631 while (1) { 2632 node = rb_first(&new->root); 2633 if (!node) 2634 break; 2635 rb_erase(node, &new->root); 2636 2637 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2638 2639 ret = relink_extent_backref(path, prev, backref); 2640 WARN_ON(ret < 0); 2641 2642 kfree(prev); 2643 2644 if (ret == 1) 2645 prev = backref; 2646 else 2647 prev = NULL; 2648 cond_resched(); 2649 } 2650 kfree(prev); 2651 2652 btrfs_free_path(path); 2653 out: 2654 free_sa_defrag_extent(new); 2655 2656 atomic_dec(&root->fs_info->defrag_running); 2657 wake_up(&root->fs_info->transaction_wait); 2658 } 2659 2660 static struct new_sa_defrag_extent * 2661 record_old_file_extents(struct inode *inode, 2662 struct btrfs_ordered_extent *ordered) 2663 { 2664 struct btrfs_root *root = BTRFS_I(inode)->root; 2665 struct btrfs_path *path; 2666 struct btrfs_key key; 2667 struct old_sa_defrag_extent *old; 2668 struct new_sa_defrag_extent *new; 2669 int ret; 2670 2671 new = kmalloc(sizeof(*new), GFP_NOFS); 2672 if (!new) 2673 return NULL; 2674 2675 new->inode = inode; 2676 new->file_pos = ordered->file_offset; 2677 new->len = ordered->len; 2678 new->bytenr = ordered->start; 2679 new->disk_len = ordered->disk_len; 2680 new->compress_type = ordered->compress_type; 2681 new->root = RB_ROOT; 2682 INIT_LIST_HEAD(&new->head); 2683 2684 path = btrfs_alloc_path(); 2685 if (!path) 2686 goto out_kfree; 2687 2688 key.objectid = btrfs_ino(inode); 2689 key.type = BTRFS_EXTENT_DATA_KEY; 2690 key.offset = new->file_pos; 2691 2692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2693 if (ret < 0) 2694 goto out_free_path; 2695 if (ret > 0 && path->slots[0] > 0) 2696 path->slots[0]--; 2697 2698 /* find out all the old extents for the file range */ 2699 while (1) { 2700 struct btrfs_file_extent_item *extent; 2701 struct extent_buffer *l; 2702 int slot; 2703 u64 num_bytes; 2704 u64 offset; 2705 u64 end; 2706 u64 disk_bytenr; 2707 u64 extent_offset; 2708 2709 l = path->nodes[0]; 2710 slot = path->slots[0]; 2711 2712 if (slot >= btrfs_header_nritems(l)) { 2713 ret = btrfs_next_leaf(root, path); 2714 if (ret < 0) 2715 goto out_free_path; 2716 else if (ret > 0) 2717 break; 2718 continue; 2719 } 2720 2721 btrfs_item_key_to_cpu(l, &key, slot); 2722 2723 if (key.objectid != btrfs_ino(inode)) 2724 break; 2725 if (key.type != BTRFS_EXTENT_DATA_KEY) 2726 break; 2727 if (key.offset >= new->file_pos + new->len) 2728 break; 2729 2730 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2731 2732 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2733 if (key.offset + num_bytes < new->file_pos) 2734 goto next; 2735 2736 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2737 if (!disk_bytenr) 2738 goto next; 2739 2740 extent_offset = btrfs_file_extent_offset(l, extent); 2741 2742 old = kmalloc(sizeof(*old), GFP_NOFS); 2743 if (!old) 2744 goto out_free_path; 2745 2746 offset = max(new->file_pos, key.offset); 2747 end = min(new->file_pos + new->len, key.offset + num_bytes); 2748 2749 old->bytenr = disk_bytenr; 2750 old->extent_offset = extent_offset; 2751 old->offset = offset - key.offset; 2752 old->len = end - offset; 2753 old->new = new; 2754 old->count = 0; 2755 list_add_tail(&old->list, &new->head); 2756 next: 2757 path->slots[0]++; 2758 cond_resched(); 2759 } 2760 2761 btrfs_free_path(path); 2762 atomic_inc(&root->fs_info->defrag_running); 2763 2764 return new; 2765 2766 out_free_path: 2767 btrfs_free_path(path); 2768 out_kfree: 2769 free_sa_defrag_extent(new); 2770 return NULL; 2771 } 2772 2773 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2774 u64 start, u64 len) 2775 { 2776 struct btrfs_block_group_cache *cache; 2777 2778 cache = btrfs_lookup_block_group(root->fs_info, start); 2779 ASSERT(cache); 2780 2781 spin_lock(&cache->lock); 2782 cache->delalloc_bytes -= len; 2783 spin_unlock(&cache->lock); 2784 2785 btrfs_put_block_group(cache); 2786 } 2787 2788 /* as ordered data IO finishes, this gets called so we can finish 2789 * an ordered extent if the range of bytes in the file it covers are 2790 * fully written. 2791 */ 2792 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2793 { 2794 struct inode *inode = ordered_extent->inode; 2795 struct btrfs_root *root = BTRFS_I(inode)->root; 2796 struct btrfs_trans_handle *trans = NULL; 2797 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2798 struct extent_state *cached_state = NULL; 2799 struct new_sa_defrag_extent *new = NULL; 2800 int compress_type = 0; 2801 int ret = 0; 2802 u64 logical_len = ordered_extent->len; 2803 bool nolock; 2804 bool truncated = false; 2805 2806 nolock = btrfs_is_free_space_inode(inode); 2807 2808 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2809 ret = -EIO; 2810 goto out; 2811 } 2812 2813 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2814 ordered_extent->file_offset + 2815 ordered_extent->len - 1); 2816 2817 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2818 truncated = true; 2819 logical_len = ordered_extent->truncated_len; 2820 /* Truncated the entire extent, don't bother adding */ 2821 if (!logical_len) 2822 goto out; 2823 } 2824 2825 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2826 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2827 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2828 if (nolock) 2829 trans = btrfs_join_transaction_nolock(root); 2830 else 2831 trans = btrfs_join_transaction(root); 2832 if (IS_ERR(trans)) { 2833 ret = PTR_ERR(trans); 2834 trans = NULL; 2835 goto out; 2836 } 2837 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2838 ret = btrfs_update_inode_fallback(trans, root, inode); 2839 if (ret) /* -ENOMEM or corruption */ 2840 btrfs_abort_transaction(trans, root, ret); 2841 goto out; 2842 } 2843 2844 lock_extent_bits(io_tree, ordered_extent->file_offset, 2845 ordered_extent->file_offset + ordered_extent->len - 1, 2846 0, &cached_state); 2847 2848 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2849 ordered_extent->file_offset + ordered_extent->len - 1, 2850 EXTENT_DEFRAG, 1, cached_state); 2851 if (ret) { 2852 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2853 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2854 /* the inode is shared */ 2855 new = record_old_file_extents(inode, ordered_extent); 2856 2857 clear_extent_bit(io_tree, ordered_extent->file_offset, 2858 ordered_extent->file_offset + ordered_extent->len - 1, 2859 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2860 } 2861 2862 if (nolock) 2863 trans = btrfs_join_transaction_nolock(root); 2864 else 2865 trans = btrfs_join_transaction(root); 2866 if (IS_ERR(trans)) { 2867 ret = PTR_ERR(trans); 2868 trans = NULL; 2869 goto out_unlock; 2870 } 2871 2872 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2873 2874 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2875 compress_type = ordered_extent->compress_type; 2876 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2877 BUG_ON(compress_type); 2878 ret = btrfs_mark_extent_written(trans, inode, 2879 ordered_extent->file_offset, 2880 ordered_extent->file_offset + 2881 logical_len); 2882 } else { 2883 BUG_ON(root == root->fs_info->tree_root); 2884 ret = insert_reserved_file_extent(trans, inode, 2885 ordered_extent->file_offset, 2886 ordered_extent->start, 2887 ordered_extent->disk_len, 2888 logical_len, logical_len, 2889 compress_type, 0, 0, 2890 BTRFS_FILE_EXTENT_REG); 2891 if (!ret) 2892 btrfs_release_delalloc_bytes(root, 2893 ordered_extent->start, 2894 ordered_extent->disk_len); 2895 } 2896 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2897 ordered_extent->file_offset, ordered_extent->len, 2898 trans->transid); 2899 if (ret < 0) { 2900 btrfs_abort_transaction(trans, root, ret); 2901 goto out_unlock; 2902 } 2903 2904 add_pending_csums(trans, inode, ordered_extent->file_offset, 2905 &ordered_extent->list); 2906 2907 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2908 ret = btrfs_update_inode_fallback(trans, root, inode); 2909 if (ret) { /* -ENOMEM or corruption */ 2910 btrfs_abort_transaction(trans, root, ret); 2911 goto out_unlock; 2912 } 2913 ret = 0; 2914 out_unlock: 2915 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2916 ordered_extent->file_offset + 2917 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2918 out: 2919 if (root != root->fs_info->tree_root) 2920 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2921 if (trans) 2922 btrfs_end_transaction(trans, root); 2923 2924 if (ret || truncated) { 2925 u64 start, end; 2926 2927 if (truncated) 2928 start = ordered_extent->file_offset + logical_len; 2929 else 2930 start = ordered_extent->file_offset; 2931 end = ordered_extent->file_offset + ordered_extent->len - 1; 2932 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2933 2934 /* Drop the cache for the part of the extent we didn't write. */ 2935 btrfs_drop_extent_cache(inode, start, end, 0); 2936 2937 /* 2938 * If the ordered extent had an IOERR or something else went 2939 * wrong we need to return the space for this ordered extent 2940 * back to the allocator. We only free the extent in the 2941 * truncated case if we didn't write out the extent at all. 2942 */ 2943 if ((ret || !logical_len) && 2944 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2945 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2946 btrfs_free_reserved_extent(root, ordered_extent->start, 2947 ordered_extent->disk_len, 1); 2948 } 2949 2950 2951 /* 2952 * This needs to be done to make sure anybody waiting knows we are done 2953 * updating everything for this ordered extent. 2954 */ 2955 btrfs_remove_ordered_extent(inode, ordered_extent); 2956 2957 /* for snapshot-aware defrag */ 2958 if (new) { 2959 if (ret) { 2960 free_sa_defrag_extent(new); 2961 atomic_dec(&root->fs_info->defrag_running); 2962 } else { 2963 relink_file_extents(new); 2964 } 2965 } 2966 2967 /* once for us */ 2968 btrfs_put_ordered_extent(ordered_extent); 2969 /* once for the tree */ 2970 btrfs_put_ordered_extent(ordered_extent); 2971 2972 return ret; 2973 } 2974 2975 static void finish_ordered_fn(struct btrfs_work *work) 2976 { 2977 struct btrfs_ordered_extent *ordered_extent; 2978 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2979 btrfs_finish_ordered_io(ordered_extent); 2980 } 2981 2982 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2983 struct extent_state *state, int uptodate) 2984 { 2985 struct inode *inode = page->mapping->host; 2986 struct btrfs_root *root = BTRFS_I(inode)->root; 2987 struct btrfs_ordered_extent *ordered_extent = NULL; 2988 struct btrfs_workqueue *wq; 2989 btrfs_work_func_t func; 2990 2991 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2992 2993 ClearPagePrivate2(page); 2994 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2995 end - start + 1, uptodate)) 2996 return 0; 2997 2998 if (btrfs_is_free_space_inode(inode)) { 2999 wq = root->fs_info->endio_freespace_worker; 3000 func = btrfs_freespace_write_helper; 3001 } else { 3002 wq = root->fs_info->endio_write_workers; 3003 func = btrfs_endio_write_helper; 3004 } 3005 3006 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3007 NULL); 3008 btrfs_queue_work(wq, &ordered_extent->work); 3009 3010 return 0; 3011 } 3012 3013 static int __readpage_endio_check(struct inode *inode, 3014 struct btrfs_io_bio *io_bio, 3015 int icsum, struct page *page, 3016 int pgoff, u64 start, size_t len) 3017 { 3018 char *kaddr; 3019 u32 csum_expected; 3020 u32 csum = ~(u32)0; 3021 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, 3022 DEFAULT_RATELIMIT_BURST); 3023 3024 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3025 3026 kaddr = kmap_atomic(page); 3027 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3028 btrfs_csum_final(csum, (char *)&csum); 3029 if (csum != csum_expected) 3030 goto zeroit; 3031 3032 kunmap_atomic(kaddr); 3033 return 0; 3034 zeroit: 3035 if (__ratelimit(&_rs)) 3036 btrfs_warn(BTRFS_I(inode)->root->fs_info, 3037 "csum failed ino %llu off %llu csum %u expected csum %u", 3038 btrfs_ino(inode), start, csum, csum_expected); 3039 memset(kaddr + pgoff, 1, len); 3040 flush_dcache_page(page); 3041 kunmap_atomic(kaddr); 3042 if (csum_expected == 0) 3043 return 0; 3044 return -EIO; 3045 } 3046 3047 /* 3048 * when reads are done, we need to check csums to verify the data is correct 3049 * if there's a match, we allow the bio to finish. If not, the code in 3050 * extent_io.c will try to find good copies for us. 3051 */ 3052 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3053 u64 phy_offset, struct page *page, 3054 u64 start, u64 end, int mirror) 3055 { 3056 size_t offset = start - page_offset(page); 3057 struct inode *inode = page->mapping->host; 3058 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3059 struct btrfs_root *root = BTRFS_I(inode)->root; 3060 3061 if (PageChecked(page)) { 3062 ClearPageChecked(page); 3063 return 0; 3064 } 3065 3066 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3067 return 0; 3068 3069 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3070 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3071 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 3072 GFP_NOFS); 3073 return 0; 3074 } 3075 3076 phy_offset >>= inode->i_sb->s_blocksize_bits; 3077 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3078 start, (size_t)(end - start + 1)); 3079 } 3080 3081 struct delayed_iput { 3082 struct list_head list; 3083 struct inode *inode; 3084 }; 3085 3086 /* JDM: If this is fs-wide, why can't we add a pointer to 3087 * btrfs_inode instead and avoid the allocation? */ 3088 void btrfs_add_delayed_iput(struct inode *inode) 3089 { 3090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3091 struct delayed_iput *delayed; 3092 3093 if (atomic_add_unless(&inode->i_count, -1, 1)) 3094 return; 3095 3096 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 3097 delayed->inode = inode; 3098 3099 spin_lock(&fs_info->delayed_iput_lock); 3100 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 3101 spin_unlock(&fs_info->delayed_iput_lock); 3102 } 3103 3104 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3105 { 3106 LIST_HEAD(list); 3107 struct btrfs_fs_info *fs_info = root->fs_info; 3108 struct delayed_iput *delayed; 3109 int empty; 3110 3111 spin_lock(&fs_info->delayed_iput_lock); 3112 empty = list_empty(&fs_info->delayed_iputs); 3113 spin_unlock(&fs_info->delayed_iput_lock); 3114 if (empty) 3115 return; 3116 3117 down_read(&fs_info->delayed_iput_sem); 3118 3119 spin_lock(&fs_info->delayed_iput_lock); 3120 list_splice_init(&fs_info->delayed_iputs, &list); 3121 spin_unlock(&fs_info->delayed_iput_lock); 3122 3123 while (!list_empty(&list)) { 3124 delayed = list_entry(list.next, struct delayed_iput, list); 3125 list_del(&delayed->list); 3126 iput(delayed->inode); 3127 kfree(delayed); 3128 } 3129 3130 up_read(&root->fs_info->delayed_iput_sem); 3131 } 3132 3133 /* 3134 * This is called in transaction commit time. If there are no orphan 3135 * files in the subvolume, it removes orphan item and frees block_rsv 3136 * structure. 3137 */ 3138 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3139 struct btrfs_root *root) 3140 { 3141 struct btrfs_block_rsv *block_rsv; 3142 int ret; 3143 3144 if (atomic_read(&root->orphan_inodes) || 3145 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3146 return; 3147 3148 spin_lock(&root->orphan_lock); 3149 if (atomic_read(&root->orphan_inodes)) { 3150 spin_unlock(&root->orphan_lock); 3151 return; 3152 } 3153 3154 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3155 spin_unlock(&root->orphan_lock); 3156 return; 3157 } 3158 3159 block_rsv = root->orphan_block_rsv; 3160 root->orphan_block_rsv = NULL; 3161 spin_unlock(&root->orphan_lock); 3162 3163 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3164 btrfs_root_refs(&root->root_item) > 0) { 3165 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3166 root->root_key.objectid); 3167 if (ret) 3168 btrfs_abort_transaction(trans, root, ret); 3169 else 3170 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3171 &root->state); 3172 } 3173 3174 if (block_rsv) { 3175 WARN_ON(block_rsv->size > 0); 3176 btrfs_free_block_rsv(root, block_rsv); 3177 } 3178 } 3179 3180 /* 3181 * This creates an orphan entry for the given inode in case something goes 3182 * wrong in the middle of an unlink/truncate. 3183 * 3184 * NOTE: caller of this function should reserve 5 units of metadata for 3185 * this function. 3186 */ 3187 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3188 { 3189 struct btrfs_root *root = BTRFS_I(inode)->root; 3190 struct btrfs_block_rsv *block_rsv = NULL; 3191 int reserve = 0; 3192 int insert = 0; 3193 int ret; 3194 3195 if (!root->orphan_block_rsv) { 3196 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3197 if (!block_rsv) 3198 return -ENOMEM; 3199 } 3200 3201 spin_lock(&root->orphan_lock); 3202 if (!root->orphan_block_rsv) { 3203 root->orphan_block_rsv = block_rsv; 3204 } else if (block_rsv) { 3205 btrfs_free_block_rsv(root, block_rsv); 3206 block_rsv = NULL; 3207 } 3208 3209 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3210 &BTRFS_I(inode)->runtime_flags)) { 3211 #if 0 3212 /* 3213 * For proper ENOSPC handling, we should do orphan 3214 * cleanup when mounting. But this introduces backward 3215 * compatibility issue. 3216 */ 3217 if (!xchg(&root->orphan_item_inserted, 1)) 3218 insert = 2; 3219 else 3220 insert = 1; 3221 #endif 3222 insert = 1; 3223 atomic_inc(&root->orphan_inodes); 3224 } 3225 3226 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3227 &BTRFS_I(inode)->runtime_flags)) 3228 reserve = 1; 3229 spin_unlock(&root->orphan_lock); 3230 3231 /* grab metadata reservation from transaction handle */ 3232 if (reserve) { 3233 ret = btrfs_orphan_reserve_metadata(trans, inode); 3234 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 3235 } 3236 3237 /* insert an orphan item to track this unlinked/truncated file */ 3238 if (insert >= 1) { 3239 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3240 if (ret) { 3241 atomic_dec(&root->orphan_inodes); 3242 if (reserve) { 3243 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3244 &BTRFS_I(inode)->runtime_flags); 3245 btrfs_orphan_release_metadata(inode); 3246 } 3247 if (ret != -EEXIST) { 3248 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3249 &BTRFS_I(inode)->runtime_flags); 3250 btrfs_abort_transaction(trans, root, ret); 3251 return ret; 3252 } 3253 } 3254 ret = 0; 3255 } 3256 3257 /* insert an orphan item to track subvolume contains orphan files */ 3258 if (insert >= 2) { 3259 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3260 root->root_key.objectid); 3261 if (ret && ret != -EEXIST) { 3262 btrfs_abort_transaction(trans, root, ret); 3263 return ret; 3264 } 3265 } 3266 return 0; 3267 } 3268 3269 /* 3270 * We have done the truncate/delete so we can go ahead and remove the orphan 3271 * item for this particular inode. 3272 */ 3273 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3274 struct inode *inode) 3275 { 3276 struct btrfs_root *root = BTRFS_I(inode)->root; 3277 int delete_item = 0; 3278 int release_rsv = 0; 3279 int ret = 0; 3280 3281 spin_lock(&root->orphan_lock); 3282 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3283 &BTRFS_I(inode)->runtime_flags)) 3284 delete_item = 1; 3285 3286 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3287 &BTRFS_I(inode)->runtime_flags)) 3288 release_rsv = 1; 3289 spin_unlock(&root->orphan_lock); 3290 3291 if (delete_item) { 3292 atomic_dec(&root->orphan_inodes); 3293 if (trans) 3294 ret = btrfs_del_orphan_item(trans, root, 3295 btrfs_ino(inode)); 3296 } 3297 3298 if (release_rsv) 3299 btrfs_orphan_release_metadata(inode); 3300 3301 return ret; 3302 } 3303 3304 /* 3305 * this cleans up any orphans that may be left on the list from the last use 3306 * of this root. 3307 */ 3308 int btrfs_orphan_cleanup(struct btrfs_root *root) 3309 { 3310 struct btrfs_path *path; 3311 struct extent_buffer *leaf; 3312 struct btrfs_key key, found_key; 3313 struct btrfs_trans_handle *trans; 3314 struct inode *inode; 3315 u64 last_objectid = 0; 3316 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3317 3318 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3319 return 0; 3320 3321 path = btrfs_alloc_path(); 3322 if (!path) { 3323 ret = -ENOMEM; 3324 goto out; 3325 } 3326 path->reada = -1; 3327 3328 key.objectid = BTRFS_ORPHAN_OBJECTID; 3329 key.type = BTRFS_ORPHAN_ITEM_KEY; 3330 key.offset = (u64)-1; 3331 3332 while (1) { 3333 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3334 if (ret < 0) 3335 goto out; 3336 3337 /* 3338 * if ret == 0 means we found what we were searching for, which 3339 * is weird, but possible, so only screw with path if we didn't 3340 * find the key and see if we have stuff that matches 3341 */ 3342 if (ret > 0) { 3343 ret = 0; 3344 if (path->slots[0] == 0) 3345 break; 3346 path->slots[0]--; 3347 } 3348 3349 /* pull out the item */ 3350 leaf = path->nodes[0]; 3351 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3352 3353 /* make sure the item matches what we want */ 3354 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3355 break; 3356 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3357 break; 3358 3359 /* release the path since we're done with it */ 3360 btrfs_release_path(path); 3361 3362 /* 3363 * this is where we are basically btrfs_lookup, without the 3364 * crossing root thing. we store the inode number in the 3365 * offset of the orphan item. 3366 */ 3367 3368 if (found_key.offset == last_objectid) { 3369 btrfs_err(root->fs_info, 3370 "Error removing orphan entry, stopping orphan cleanup"); 3371 ret = -EINVAL; 3372 goto out; 3373 } 3374 3375 last_objectid = found_key.offset; 3376 3377 found_key.objectid = found_key.offset; 3378 found_key.type = BTRFS_INODE_ITEM_KEY; 3379 found_key.offset = 0; 3380 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3381 ret = PTR_ERR_OR_ZERO(inode); 3382 if (ret && ret != -ESTALE) 3383 goto out; 3384 3385 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3386 struct btrfs_root *dead_root; 3387 struct btrfs_fs_info *fs_info = root->fs_info; 3388 int is_dead_root = 0; 3389 3390 /* 3391 * this is an orphan in the tree root. Currently these 3392 * could come from 2 sources: 3393 * a) a snapshot deletion in progress 3394 * b) a free space cache inode 3395 * We need to distinguish those two, as the snapshot 3396 * orphan must not get deleted. 3397 * find_dead_roots already ran before us, so if this 3398 * is a snapshot deletion, we should find the root 3399 * in the dead_roots list 3400 */ 3401 spin_lock(&fs_info->trans_lock); 3402 list_for_each_entry(dead_root, &fs_info->dead_roots, 3403 root_list) { 3404 if (dead_root->root_key.objectid == 3405 found_key.objectid) { 3406 is_dead_root = 1; 3407 break; 3408 } 3409 } 3410 spin_unlock(&fs_info->trans_lock); 3411 if (is_dead_root) { 3412 /* prevent this orphan from being found again */ 3413 key.offset = found_key.objectid - 1; 3414 continue; 3415 } 3416 } 3417 /* 3418 * Inode is already gone but the orphan item is still there, 3419 * kill the orphan item. 3420 */ 3421 if (ret == -ESTALE) { 3422 trans = btrfs_start_transaction(root, 1); 3423 if (IS_ERR(trans)) { 3424 ret = PTR_ERR(trans); 3425 goto out; 3426 } 3427 btrfs_debug(root->fs_info, "auto deleting %Lu", 3428 found_key.objectid); 3429 ret = btrfs_del_orphan_item(trans, root, 3430 found_key.objectid); 3431 btrfs_end_transaction(trans, root); 3432 if (ret) 3433 goto out; 3434 continue; 3435 } 3436 3437 /* 3438 * add this inode to the orphan list so btrfs_orphan_del does 3439 * the proper thing when we hit it 3440 */ 3441 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3442 &BTRFS_I(inode)->runtime_flags); 3443 atomic_inc(&root->orphan_inodes); 3444 3445 /* if we have links, this was a truncate, lets do that */ 3446 if (inode->i_nlink) { 3447 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3448 iput(inode); 3449 continue; 3450 } 3451 nr_truncate++; 3452 3453 /* 1 for the orphan item deletion. */ 3454 trans = btrfs_start_transaction(root, 1); 3455 if (IS_ERR(trans)) { 3456 iput(inode); 3457 ret = PTR_ERR(trans); 3458 goto out; 3459 } 3460 ret = btrfs_orphan_add(trans, inode); 3461 btrfs_end_transaction(trans, root); 3462 if (ret) { 3463 iput(inode); 3464 goto out; 3465 } 3466 3467 ret = btrfs_truncate(inode); 3468 if (ret) 3469 btrfs_orphan_del(NULL, inode); 3470 } else { 3471 nr_unlink++; 3472 } 3473 3474 /* this will do delete_inode and everything for us */ 3475 iput(inode); 3476 if (ret) 3477 goto out; 3478 } 3479 /* release the path since we're done with it */ 3480 btrfs_release_path(path); 3481 3482 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3483 3484 if (root->orphan_block_rsv) 3485 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3486 (u64)-1); 3487 3488 if (root->orphan_block_rsv || 3489 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3490 trans = btrfs_join_transaction(root); 3491 if (!IS_ERR(trans)) 3492 btrfs_end_transaction(trans, root); 3493 } 3494 3495 if (nr_unlink) 3496 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3497 if (nr_truncate) 3498 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3499 3500 out: 3501 if (ret) 3502 btrfs_err(root->fs_info, 3503 "could not do orphan cleanup %d", ret); 3504 btrfs_free_path(path); 3505 return ret; 3506 } 3507 3508 /* 3509 * very simple check to peek ahead in the leaf looking for xattrs. If we 3510 * don't find any xattrs, we know there can't be any acls. 3511 * 3512 * slot is the slot the inode is in, objectid is the objectid of the inode 3513 */ 3514 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3515 int slot, u64 objectid, 3516 int *first_xattr_slot) 3517 { 3518 u32 nritems = btrfs_header_nritems(leaf); 3519 struct btrfs_key found_key; 3520 static u64 xattr_access = 0; 3521 static u64 xattr_default = 0; 3522 int scanned = 0; 3523 3524 if (!xattr_access) { 3525 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS, 3526 strlen(POSIX_ACL_XATTR_ACCESS)); 3527 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT, 3528 strlen(POSIX_ACL_XATTR_DEFAULT)); 3529 } 3530 3531 slot++; 3532 *first_xattr_slot = -1; 3533 while (slot < nritems) { 3534 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3535 3536 /* we found a different objectid, there must not be acls */ 3537 if (found_key.objectid != objectid) 3538 return 0; 3539 3540 /* we found an xattr, assume we've got an acl */ 3541 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3542 if (*first_xattr_slot == -1) 3543 *first_xattr_slot = slot; 3544 if (found_key.offset == xattr_access || 3545 found_key.offset == xattr_default) 3546 return 1; 3547 } 3548 3549 /* 3550 * we found a key greater than an xattr key, there can't 3551 * be any acls later on 3552 */ 3553 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3554 return 0; 3555 3556 slot++; 3557 scanned++; 3558 3559 /* 3560 * it goes inode, inode backrefs, xattrs, extents, 3561 * so if there are a ton of hard links to an inode there can 3562 * be a lot of backrefs. Don't waste time searching too hard, 3563 * this is just an optimization 3564 */ 3565 if (scanned >= 8) 3566 break; 3567 } 3568 /* we hit the end of the leaf before we found an xattr or 3569 * something larger than an xattr. We have to assume the inode 3570 * has acls 3571 */ 3572 if (*first_xattr_slot == -1) 3573 *first_xattr_slot = slot; 3574 return 1; 3575 } 3576 3577 /* 3578 * read an inode from the btree into the in-memory inode 3579 */ 3580 static void btrfs_read_locked_inode(struct inode *inode) 3581 { 3582 struct btrfs_path *path; 3583 struct extent_buffer *leaf; 3584 struct btrfs_inode_item *inode_item; 3585 struct btrfs_root *root = BTRFS_I(inode)->root; 3586 struct btrfs_key location; 3587 unsigned long ptr; 3588 int maybe_acls; 3589 u32 rdev; 3590 int ret; 3591 bool filled = false; 3592 int first_xattr_slot; 3593 3594 ret = btrfs_fill_inode(inode, &rdev); 3595 if (!ret) 3596 filled = true; 3597 3598 path = btrfs_alloc_path(); 3599 if (!path) 3600 goto make_bad; 3601 3602 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3603 3604 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3605 if (ret) 3606 goto make_bad; 3607 3608 leaf = path->nodes[0]; 3609 3610 if (filled) 3611 goto cache_index; 3612 3613 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3614 struct btrfs_inode_item); 3615 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3616 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3617 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3618 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3619 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3620 3621 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3622 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3623 3624 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3625 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3626 3627 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3628 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3629 3630 BTRFS_I(inode)->i_otime.tv_sec = 3631 btrfs_timespec_sec(leaf, &inode_item->otime); 3632 BTRFS_I(inode)->i_otime.tv_nsec = 3633 btrfs_timespec_nsec(leaf, &inode_item->otime); 3634 3635 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3636 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3637 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3638 3639 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3640 inode->i_generation = BTRFS_I(inode)->generation; 3641 inode->i_rdev = 0; 3642 rdev = btrfs_inode_rdev(leaf, inode_item); 3643 3644 BTRFS_I(inode)->index_cnt = (u64)-1; 3645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3646 3647 cache_index: 3648 /* 3649 * If we were modified in the current generation and evicted from memory 3650 * and then re-read we need to do a full sync since we don't have any 3651 * idea about which extents were modified before we were evicted from 3652 * cache. 3653 * 3654 * This is required for both inode re-read from disk and delayed inode 3655 * in delayed_nodes_tree. 3656 */ 3657 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3659 &BTRFS_I(inode)->runtime_flags); 3660 3661 path->slots[0]++; 3662 if (inode->i_nlink != 1 || 3663 path->slots[0] >= btrfs_header_nritems(leaf)) 3664 goto cache_acl; 3665 3666 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3667 if (location.objectid != btrfs_ino(inode)) 3668 goto cache_acl; 3669 3670 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3671 if (location.type == BTRFS_INODE_REF_KEY) { 3672 struct btrfs_inode_ref *ref; 3673 3674 ref = (struct btrfs_inode_ref *)ptr; 3675 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3676 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3677 struct btrfs_inode_extref *extref; 3678 3679 extref = (struct btrfs_inode_extref *)ptr; 3680 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3681 extref); 3682 } 3683 cache_acl: 3684 /* 3685 * try to precache a NULL acl entry for files that don't have 3686 * any xattrs or acls 3687 */ 3688 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3689 btrfs_ino(inode), &first_xattr_slot); 3690 if (first_xattr_slot != -1) { 3691 path->slots[0] = first_xattr_slot; 3692 ret = btrfs_load_inode_props(inode, path); 3693 if (ret) 3694 btrfs_err(root->fs_info, 3695 "error loading props for ino %llu (root %llu): %d", 3696 btrfs_ino(inode), 3697 root->root_key.objectid, ret); 3698 } 3699 btrfs_free_path(path); 3700 3701 if (!maybe_acls) 3702 cache_no_acl(inode); 3703 3704 switch (inode->i_mode & S_IFMT) { 3705 case S_IFREG: 3706 inode->i_mapping->a_ops = &btrfs_aops; 3707 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3708 inode->i_fop = &btrfs_file_operations; 3709 inode->i_op = &btrfs_file_inode_operations; 3710 break; 3711 case S_IFDIR: 3712 inode->i_fop = &btrfs_dir_file_operations; 3713 if (root == root->fs_info->tree_root) 3714 inode->i_op = &btrfs_dir_ro_inode_operations; 3715 else 3716 inode->i_op = &btrfs_dir_inode_operations; 3717 break; 3718 case S_IFLNK: 3719 inode->i_op = &btrfs_symlink_inode_operations; 3720 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3721 break; 3722 default: 3723 inode->i_op = &btrfs_special_inode_operations; 3724 init_special_inode(inode, inode->i_mode, rdev); 3725 break; 3726 } 3727 3728 btrfs_update_iflags(inode); 3729 return; 3730 3731 make_bad: 3732 btrfs_free_path(path); 3733 make_bad_inode(inode); 3734 } 3735 3736 /* 3737 * given a leaf and an inode, copy the inode fields into the leaf 3738 */ 3739 static void fill_inode_item(struct btrfs_trans_handle *trans, 3740 struct extent_buffer *leaf, 3741 struct btrfs_inode_item *item, 3742 struct inode *inode) 3743 { 3744 struct btrfs_map_token token; 3745 3746 btrfs_init_map_token(&token); 3747 3748 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3749 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3750 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3751 &token); 3752 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3753 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3754 3755 btrfs_set_token_timespec_sec(leaf, &item->atime, 3756 inode->i_atime.tv_sec, &token); 3757 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3758 inode->i_atime.tv_nsec, &token); 3759 3760 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3761 inode->i_mtime.tv_sec, &token); 3762 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3763 inode->i_mtime.tv_nsec, &token); 3764 3765 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3766 inode->i_ctime.tv_sec, &token); 3767 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3768 inode->i_ctime.tv_nsec, &token); 3769 3770 btrfs_set_token_timespec_sec(leaf, &item->otime, 3771 BTRFS_I(inode)->i_otime.tv_sec, &token); 3772 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3773 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3774 3775 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3776 &token); 3777 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3778 &token); 3779 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3780 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3781 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3782 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3783 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3784 } 3785 3786 /* 3787 * copy everything in the in-memory inode into the btree. 3788 */ 3789 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3790 struct btrfs_root *root, struct inode *inode) 3791 { 3792 struct btrfs_inode_item *inode_item; 3793 struct btrfs_path *path; 3794 struct extent_buffer *leaf; 3795 int ret; 3796 3797 path = btrfs_alloc_path(); 3798 if (!path) 3799 return -ENOMEM; 3800 3801 path->leave_spinning = 1; 3802 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3803 1); 3804 if (ret) { 3805 if (ret > 0) 3806 ret = -ENOENT; 3807 goto failed; 3808 } 3809 3810 leaf = path->nodes[0]; 3811 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3812 struct btrfs_inode_item); 3813 3814 fill_inode_item(trans, leaf, inode_item, inode); 3815 btrfs_mark_buffer_dirty(leaf); 3816 btrfs_set_inode_last_trans(trans, inode); 3817 ret = 0; 3818 failed: 3819 btrfs_free_path(path); 3820 return ret; 3821 } 3822 3823 /* 3824 * copy everything in the in-memory inode into the btree. 3825 */ 3826 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3827 struct btrfs_root *root, struct inode *inode) 3828 { 3829 int ret; 3830 3831 /* 3832 * If the inode is a free space inode, we can deadlock during commit 3833 * if we put it into the delayed code. 3834 * 3835 * The data relocation inode should also be directly updated 3836 * without delay 3837 */ 3838 if (!btrfs_is_free_space_inode(inode) 3839 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3840 && !root->fs_info->log_root_recovering) { 3841 btrfs_update_root_times(trans, root); 3842 3843 ret = btrfs_delayed_update_inode(trans, root, inode); 3844 if (!ret) 3845 btrfs_set_inode_last_trans(trans, inode); 3846 return ret; 3847 } 3848 3849 return btrfs_update_inode_item(trans, root, inode); 3850 } 3851 3852 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3853 struct btrfs_root *root, 3854 struct inode *inode) 3855 { 3856 int ret; 3857 3858 ret = btrfs_update_inode(trans, root, inode); 3859 if (ret == -ENOSPC) 3860 return btrfs_update_inode_item(trans, root, inode); 3861 return ret; 3862 } 3863 3864 /* 3865 * unlink helper that gets used here in inode.c and in the tree logging 3866 * recovery code. It remove a link in a directory with a given name, and 3867 * also drops the back refs in the inode to the directory 3868 */ 3869 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3870 struct btrfs_root *root, 3871 struct inode *dir, struct inode *inode, 3872 const char *name, int name_len) 3873 { 3874 struct btrfs_path *path; 3875 int ret = 0; 3876 struct extent_buffer *leaf; 3877 struct btrfs_dir_item *di; 3878 struct btrfs_key key; 3879 u64 index; 3880 u64 ino = btrfs_ino(inode); 3881 u64 dir_ino = btrfs_ino(dir); 3882 3883 path = btrfs_alloc_path(); 3884 if (!path) { 3885 ret = -ENOMEM; 3886 goto out; 3887 } 3888 3889 path->leave_spinning = 1; 3890 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3891 name, name_len, -1); 3892 if (IS_ERR(di)) { 3893 ret = PTR_ERR(di); 3894 goto err; 3895 } 3896 if (!di) { 3897 ret = -ENOENT; 3898 goto err; 3899 } 3900 leaf = path->nodes[0]; 3901 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3902 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3903 if (ret) 3904 goto err; 3905 btrfs_release_path(path); 3906 3907 /* 3908 * If we don't have dir index, we have to get it by looking up 3909 * the inode ref, since we get the inode ref, remove it directly, 3910 * it is unnecessary to do delayed deletion. 3911 * 3912 * But if we have dir index, needn't search inode ref to get it. 3913 * Since the inode ref is close to the inode item, it is better 3914 * that we delay to delete it, and just do this deletion when 3915 * we update the inode item. 3916 */ 3917 if (BTRFS_I(inode)->dir_index) { 3918 ret = btrfs_delayed_delete_inode_ref(inode); 3919 if (!ret) { 3920 index = BTRFS_I(inode)->dir_index; 3921 goto skip_backref; 3922 } 3923 } 3924 3925 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3926 dir_ino, &index); 3927 if (ret) { 3928 btrfs_info(root->fs_info, 3929 "failed to delete reference to %.*s, inode %llu parent %llu", 3930 name_len, name, ino, dir_ino); 3931 btrfs_abort_transaction(trans, root, ret); 3932 goto err; 3933 } 3934 skip_backref: 3935 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3936 if (ret) { 3937 btrfs_abort_transaction(trans, root, ret); 3938 goto err; 3939 } 3940 3941 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3942 inode, dir_ino); 3943 if (ret != 0 && ret != -ENOENT) { 3944 btrfs_abort_transaction(trans, root, ret); 3945 goto err; 3946 } 3947 3948 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3949 dir, index); 3950 if (ret == -ENOENT) 3951 ret = 0; 3952 else if (ret) 3953 btrfs_abort_transaction(trans, root, ret); 3954 err: 3955 btrfs_free_path(path); 3956 if (ret) 3957 goto out; 3958 3959 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3960 inode_inc_iversion(inode); 3961 inode_inc_iversion(dir); 3962 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3963 ret = btrfs_update_inode(trans, root, dir); 3964 out: 3965 return ret; 3966 } 3967 3968 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3969 struct btrfs_root *root, 3970 struct inode *dir, struct inode *inode, 3971 const char *name, int name_len) 3972 { 3973 int ret; 3974 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3975 if (!ret) { 3976 drop_nlink(inode); 3977 ret = btrfs_update_inode(trans, root, inode); 3978 } 3979 return ret; 3980 } 3981 3982 /* 3983 * helper to start transaction for unlink and rmdir. 3984 * 3985 * unlink and rmdir are special in btrfs, they do not always free space, so 3986 * if we cannot make our reservations the normal way try and see if there is 3987 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3988 * allow the unlink to occur. 3989 */ 3990 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3991 { 3992 struct btrfs_trans_handle *trans; 3993 struct btrfs_root *root = BTRFS_I(dir)->root; 3994 int ret; 3995 3996 /* 3997 * 1 for the possible orphan item 3998 * 1 for the dir item 3999 * 1 for the dir index 4000 * 1 for the inode ref 4001 * 1 for the inode 4002 */ 4003 trans = btrfs_start_transaction(root, 5); 4004 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 4005 return trans; 4006 4007 if (PTR_ERR(trans) == -ENOSPC) { 4008 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4009 4010 trans = btrfs_start_transaction(root, 0); 4011 if (IS_ERR(trans)) 4012 return trans; 4013 ret = btrfs_cond_migrate_bytes(root->fs_info, 4014 &root->fs_info->trans_block_rsv, 4015 num_bytes, 5); 4016 if (ret) { 4017 btrfs_end_transaction(trans, root); 4018 return ERR_PTR(ret); 4019 } 4020 trans->block_rsv = &root->fs_info->trans_block_rsv; 4021 trans->bytes_reserved = num_bytes; 4022 } 4023 return trans; 4024 } 4025 4026 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4027 { 4028 struct btrfs_root *root = BTRFS_I(dir)->root; 4029 struct btrfs_trans_handle *trans; 4030 struct inode *inode = d_inode(dentry); 4031 int ret; 4032 4033 trans = __unlink_start_trans(dir); 4034 if (IS_ERR(trans)) 4035 return PTR_ERR(trans); 4036 4037 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4038 4039 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4040 dentry->d_name.name, dentry->d_name.len); 4041 if (ret) 4042 goto out; 4043 4044 if (inode->i_nlink == 0) { 4045 ret = btrfs_orphan_add(trans, inode); 4046 if (ret) 4047 goto out; 4048 } 4049 4050 out: 4051 btrfs_end_transaction(trans, root); 4052 btrfs_btree_balance_dirty(root); 4053 return ret; 4054 } 4055 4056 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4057 struct btrfs_root *root, 4058 struct inode *dir, u64 objectid, 4059 const char *name, int name_len) 4060 { 4061 struct btrfs_path *path; 4062 struct extent_buffer *leaf; 4063 struct btrfs_dir_item *di; 4064 struct btrfs_key key; 4065 u64 index; 4066 int ret; 4067 u64 dir_ino = btrfs_ino(dir); 4068 4069 path = btrfs_alloc_path(); 4070 if (!path) 4071 return -ENOMEM; 4072 4073 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4074 name, name_len, -1); 4075 if (IS_ERR_OR_NULL(di)) { 4076 if (!di) 4077 ret = -ENOENT; 4078 else 4079 ret = PTR_ERR(di); 4080 goto out; 4081 } 4082 4083 leaf = path->nodes[0]; 4084 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4085 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4086 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4087 if (ret) { 4088 btrfs_abort_transaction(trans, root, ret); 4089 goto out; 4090 } 4091 btrfs_release_path(path); 4092 4093 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4094 objectid, root->root_key.objectid, 4095 dir_ino, &index, name, name_len); 4096 if (ret < 0) { 4097 if (ret != -ENOENT) { 4098 btrfs_abort_transaction(trans, root, ret); 4099 goto out; 4100 } 4101 di = btrfs_search_dir_index_item(root, path, dir_ino, 4102 name, name_len); 4103 if (IS_ERR_OR_NULL(di)) { 4104 if (!di) 4105 ret = -ENOENT; 4106 else 4107 ret = PTR_ERR(di); 4108 btrfs_abort_transaction(trans, root, ret); 4109 goto out; 4110 } 4111 4112 leaf = path->nodes[0]; 4113 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4114 btrfs_release_path(path); 4115 index = key.offset; 4116 } 4117 btrfs_release_path(path); 4118 4119 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4120 if (ret) { 4121 btrfs_abort_transaction(trans, root, ret); 4122 goto out; 4123 } 4124 4125 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4126 inode_inc_iversion(dir); 4127 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 4128 ret = btrfs_update_inode_fallback(trans, root, dir); 4129 if (ret) 4130 btrfs_abort_transaction(trans, root, ret); 4131 out: 4132 btrfs_free_path(path); 4133 return ret; 4134 } 4135 4136 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4137 { 4138 struct inode *inode = d_inode(dentry); 4139 int err = 0; 4140 struct btrfs_root *root = BTRFS_I(dir)->root; 4141 struct btrfs_trans_handle *trans; 4142 4143 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4144 return -ENOTEMPTY; 4145 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4146 return -EPERM; 4147 4148 trans = __unlink_start_trans(dir); 4149 if (IS_ERR(trans)) 4150 return PTR_ERR(trans); 4151 4152 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4153 err = btrfs_unlink_subvol(trans, root, dir, 4154 BTRFS_I(inode)->location.objectid, 4155 dentry->d_name.name, 4156 dentry->d_name.len); 4157 goto out; 4158 } 4159 4160 err = btrfs_orphan_add(trans, inode); 4161 if (err) 4162 goto out; 4163 4164 /* now the directory is empty */ 4165 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4166 dentry->d_name.name, dentry->d_name.len); 4167 if (!err) 4168 btrfs_i_size_write(inode, 0); 4169 out: 4170 btrfs_end_transaction(trans, root); 4171 btrfs_btree_balance_dirty(root); 4172 4173 return err; 4174 } 4175 4176 static int truncate_space_check(struct btrfs_trans_handle *trans, 4177 struct btrfs_root *root, 4178 u64 bytes_deleted) 4179 { 4180 int ret; 4181 4182 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4183 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4184 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4185 if (!ret) 4186 trans->bytes_reserved += bytes_deleted; 4187 return ret; 4188 4189 } 4190 4191 /* 4192 * this can truncate away extent items, csum items and directory items. 4193 * It starts at a high offset and removes keys until it can't find 4194 * any higher than new_size 4195 * 4196 * csum items that cross the new i_size are truncated to the new size 4197 * as well. 4198 * 4199 * min_type is the minimum key type to truncate down to. If set to 0, this 4200 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4201 */ 4202 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4203 struct btrfs_root *root, 4204 struct inode *inode, 4205 u64 new_size, u32 min_type) 4206 { 4207 struct btrfs_path *path; 4208 struct extent_buffer *leaf; 4209 struct btrfs_file_extent_item *fi; 4210 struct btrfs_key key; 4211 struct btrfs_key found_key; 4212 u64 extent_start = 0; 4213 u64 extent_num_bytes = 0; 4214 u64 extent_offset = 0; 4215 u64 item_end = 0; 4216 u64 last_size = new_size; 4217 u32 found_type = (u8)-1; 4218 int found_extent; 4219 int del_item; 4220 int pending_del_nr = 0; 4221 int pending_del_slot = 0; 4222 int extent_type = -1; 4223 int ret; 4224 int err = 0; 4225 u64 ino = btrfs_ino(inode); 4226 u64 bytes_deleted = 0; 4227 bool be_nice = 0; 4228 bool should_throttle = 0; 4229 bool should_end = 0; 4230 4231 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4232 4233 /* 4234 * for non-free space inodes and ref cows, we want to back off from 4235 * time to time 4236 */ 4237 if (!btrfs_is_free_space_inode(inode) && 4238 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4239 be_nice = 1; 4240 4241 path = btrfs_alloc_path(); 4242 if (!path) 4243 return -ENOMEM; 4244 path->reada = -1; 4245 4246 /* 4247 * We want to drop from the next block forward in case this new size is 4248 * not block aligned since we will be keeping the last block of the 4249 * extent just the way it is. 4250 */ 4251 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4252 root == root->fs_info->tree_root) 4253 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4254 root->sectorsize), (u64)-1, 0); 4255 4256 /* 4257 * This function is also used to drop the items in the log tree before 4258 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4259 * it is used to drop the loged items. So we shouldn't kill the delayed 4260 * items. 4261 */ 4262 if (min_type == 0 && root == BTRFS_I(inode)->root) 4263 btrfs_kill_delayed_inode_items(inode); 4264 4265 key.objectid = ino; 4266 key.offset = (u64)-1; 4267 key.type = (u8)-1; 4268 4269 search_again: 4270 /* 4271 * with a 16K leaf size and 128MB extents, you can actually queue 4272 * up a huge file in a single leaf. Most of the time that 4273 * bytes_deleted is > 0, it will be huge by the time we get here 4274 */ 4275 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4276 if (btrfs_should_end_transaction(trans, root)) { 4277 err = -EAGAIN; 4278 goto error; 4279 } 4280 } 4281 4282 4283 path->leave_spinning = 1; 4284 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4285 if (ret < 0) { 4286 err = ret; 4287 goto out; 4288 } 4289 4290 if (ret > 0) { 4291 /* there are no items in the tree for us to truncate, we're 4292 * done 4293 */ 4294 if (path->slots[0] == 0) 4295 goto out; 4296 path->slots[0]--; 4297 } 4298 4299 while (1) { 4300 fi = NULL; 4301 leaf = path->nodes[0]; 4302 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4303 found_type = found_key.type; 4304 4305 if (found_key.objectid != ino) 4306 break; 4307 4308 if (found_type < min_type) 4309 break; 4310 4311 item_end = found_key.offset; 4312 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4313 fi = btrfs_item_ptr(leaf, path->slots[0], 4314 struct btrfs_file_extent_item); 4315 extent_type = btrfs_file_extent_type(leaf, fi); 4316 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4317 item_end += 4318 btrfs_file_extent_num_bytes(leaf, fi); 4319 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4320 item_end += btrfs_file_extent_inline_len(leaf, 4321 path->slots[0], fi); 4322 } 4323 item_end--; 4324 } 4325 if (found_type > min_type) { 4326 del_item = 1; 4327 } else { 4328 if (item_end < new_size) 4329 break; 4330 if (found_key.offset >= new_size) 4331 del_item = 1; 4332 else 4333 del_item = 0; 4334 } 4335 found_extent = 0; 4336 /* FIXME, shrink the extent if the ref count is only 1 */ 4337 if (found_type != BTRFS_EXTENT_DATA_KEY) 4338 goto delete; 4339 4340 if (del_item) 4341 last_size = found_key.offset; 4342 else 4343 last_size = new_size; 4344 4345 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4346 u64 num_dec; 4347 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4348 if (!del_item) { 4349 u64 orig_num_bytes = 4350 btrfs_file_extent_num_bytes(leaf, fi); 4351 extent_num_bytes = ALIGN(new_size - 4352 found_key.offset, 4353 root->sectorsize); 4354 btrfs_set_file_extent_num_bytes(leaf, fi, 4355 extent_num_bytes); 4356 num_dec = (orig_num_bytes - 4357 extent_num_bytes); 4358 if (test_bit(BTRFS_ROOT_REF_COWS, 4359 &root->state) && 4360 extent_start != 0) 4361 inode_sub_bytes(inode, num_dec); 4362 btrfs_mark_buffer_dirty(leaf); 4363 } else { 4364 extent_num_bytes = 4365 btrfs_file_extent_disk_num_bytes(leaf, 4366 fi); 4367 extent_offset = found_key.offset - 4368 btrfs_file_extent_offset(leaf, fi); 4369 4370 /* FIXME blocksize != 4096 */ 4371 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4372 if (extent_start != 0) { 4373 found_extent = 1; 4374 if (test_bit(BTRFS_ROOT_REF_COWS, 4375 &root->state)) 4376 inode_sub_bytes(inode, num_dec); 4377 } 4378 } 4379 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4380 /* 4381 * we can't truncate inline items that have had 4382 * special encodings 4383 */ 4384 if (!del_item && 4385 btrfs_file_extent_compression(leaf, fi) == 0 && 4386 btrfs_file_extent_encryption(leaf, fi) == 0 && 4387 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4388 u32 size = new_size - found_key.offset; 4389 4390 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4391 inode_sub_bytes(inode, item_end + 1 - 4392 new_size); 4393 4394 /* 4395 * update the ram bytes to properly reflect 4396 * the new size of our item 4397 */ 4398 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4399 size = 4400 btrfs_file_extent_calc_inline_size(size); 4401 btrfs_truncate_item(root, path, size, 1); 4402 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4403 &root->state)) { 4404 inode_sub_bytes(inode, item_end + 1 - 4405 found_key.offset); 4406 } 4407 } 4408 delete: 4409 if (del_item) { 4410 if (!pending_del_nr) { 4411 /* no pending yet, add ourselves */ 4412 pending_del_slot = path->slots[0]; 4413 pending_del_nr = 1; 4414 } else if (pending_del_nr && 4415 path->slots[0] + 1 == pending_del_slot) { 4416 /* hop on the pending chunk */ 4417 pending_del_nr++; 4418 pending_del_slot = path->slots[0]; 4419 } else { 4420 BUG(); 4421 } 4422 } else { 4423 break; 4424 } 4425 should_throttle = 0; 4426 4427 if (found_extent && 4428 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4429 root == root->fs_info->tree_root)) { 4430 btrfs_set_path_blocking(path); 4431 bytes_deleted += extent_num_bytes; 4432 ret = btrfs_free_extent(trans, root, extent_start, 4433 extent_num_bytes, 0, 4434 btrfs_header_owner(leaf), 4435 ino, extent_offset, 0); 4436 BUG_ON(ret); 4437 if (btrfs_should_throttle_delayed_refs(trans, root)) 4438 btrfs_async_run_delayed_refs(root, 4439 trans->delayed_ref_updates * 2, 0); 4440 if (be_nice) { 4441 if (truncate_space_check(trans, root, 4442 extent_num_bytes)) { 4443 should_end = 1; 4444 } 4445 if (btrfs_should_throttle_delayed_refs(trans, 4446 root)) { 4447 should_throttle = 1; 4448 } 4449 } 4450 } 4451 4452 if (found_type == BTRFS_INODE_ITEM_KEY) 4453 break; 4454 4455 if (path->slots[0] == 0 || 4456 path->slots[0] != pending_del_slot || 4457 should_throttle || should_end) { 4458 if (pending_del_nr) { 4459 ret = btrfs_del_items(trans, root, path, 4460 pending_del_slot, 4461 pending_del_nr); 4462 if (ret) { 4463 btrfs_abort_transaction(trans, 4464 root, ret); 4465 goto error; 4466 } 4467 pending_del_nr = 0; 4468 } 4469 btrfs_release_path(path); 4470 if (should_throttle) { 4471 unsigned long updates = trans->delayed_ref_updates; 4472 if (updates) { 4473 trans->delayed_ref_updates = 0; 4474 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4475 if (ret && !err) 4476 err = ret; 4477 } 4478 } 4479 /* 4480 * if we failed to refill our space rsv, bail out 4481 * and let the transaction restart 4482 */ 4483 if (should_end) { 4484 err = -EAGAIN; 4485 goto error; 4486 } 4487 goto search_again; 4488 } else { 4489 path->slots[0]--; 4490 } 4491 } 4492 out: 4493 if (pending_del_nr) { 4494 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4495 pending_del_nr); 4496 if (ret) 4497 btrfs_abort_transaction(trans, root, ret); 4498 } 4499 error: 4500 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4501 btrfs_ordered_update_i_size(inode, last_size, NULL); 4502 4503 btrfs_free_path(path); 4504 4505 if (be_nice && bytes_deleted > 32 * 1024 * 1024) { 4506 unsigned long updates = trans->delayed_ref_updates; 4507 if (updates) { 4508 trans->delayed_ref_updates = 0; 4509 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4510 if (ret && !err) 4511 err = ret; 4512 } 4513 } 4514 return err; 4515 } 4516 4517 /* 4518 * btrfs_truncate_page - read, zero a chunk and write a page 4519 * @inode - inode that we're zeroing 4520 * @from - the offset to start zeroing 4521 * @len - the length to zero, 0 to zero the entire range respective to the 4522 * offset 4523 * @front - zero up to the offset instead of from the offset on 4524 * 4525 * This will find the page for the "from" offset and cow the page and zero the 4526 * part we want to zero. This is used with truncate and hole punching. 4527 */ 4528 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4529 int front) 4530 { 4531 struct address_space *mapping = inode->i_mapping; 4532 struct btrfs_root *root = BTRFS_I(inode)->root; 4533 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4534 struct btrfs_ordered_extent *ordered; 4535 struct extent_state *cached_state = NULL; 4536 char *kaddr; 4537 u32 blocksize = root->sectorsize; 4538 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4539 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4540 struct page *page; 4541 gfp_t mask = btrfs_alloc_write_mask(mapping); 4542 int ret = 0; 4543 u64 page_start; 4544 u64 page_end; 4545 4546 if ((offset & (blocksize - 1)) == 0 && 4547 (!len || ((len & (blocksize - 1)) == 0))) 4548 goto out; 4549 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4550 if (ret) 4551 goto out; 4552 4553 again: 4554 page = find_or_create_page(mapping, index, mask); 4555 if (!page) { 4556 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4557 ret = -ENOMEM; 4558 goto out; 4559 } 4560 4561 page_start = page_offset(page); 4562 page_end = page_start + PAGE_CACHE_SIZE - 1; 4563 4564 if (!PageUptodate(page)) { 4565 ret = btrfs_readpage(NULL, page); 4566 lock_page(page); 4567 if (page->mapping != mapping) { 4568 unlock_page(page); 4569 page_cache_release(page); 4570 goto again; 4571 } 4572 if (!PageUptodate(page)) { 4573 ret = -EIO; 4574 goto out_unlock; 4575 } 4576 } 4577 wait_on_page_writeback(page); 4578 4579 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4580 set_page_extent_mapped(page); 4581 4582 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4583 if (ordered) { 4584 unlock_extent_cached(io_tree, page_start, page_end, 4585 &cached_state, GFP_NOFS); 4586 unlock_page(page); 4587 page_cache_release(page); 4588 btrfs_start_ordered_extent(inode, ordered, 1); 4589 btrfs_put_ordered_extent(ordered); 4590 goto again; 4591 } 4592 4593 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4594 EXTENT_DIRTY | EXTENT_DELALLOC | 4595 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4596 0, 0, &cached_state, GFP_NOFS); 4597 4598 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4599 &cached_state); 4600 if (ret) { 4601 unlock_extent_cached(io_tree, page_start, page_end, 4602 &cached_state, GFP_NOFS); 4603 goto out_unlock; 4604 } 4605 4606 if (offset != PAGE_CACHE_SIZE) { 4607 if (!len) 4608 len = PAGE_CACHE_SIZE - offset; 4609 kaddr = kmap(page); 4610 if (front) 4611 memset(kaddr, 0, offset); 4612 else 4613 memset(kaddr + offset, 0, len); 4614 flush_dcache_page(page); 4615 kunmap(page); 4616 } 4617 ClearPageChecked(page); 4618 set_page_dirty(page); 4619 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4620 GFP_NOFS); 4621 4622 out_unlock: 4623 if (ret) 4624 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4625 unlock_page(page); 4626 page_cache_release(page); 4627 out: 4628 return ret; 4629 } 4630 4631 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4632 u64 offset, u64 len) 4633 { 4634 struct btrfs_trans_handle *trans; 4635 int ret; 4636 4637 /* 4638 * Still need to make sure the inode looks like it's been updated so 4639 * that any holes get logged if we fsync. 4640 */ 4641 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4642 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4643 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4644 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4645 return 0; 4646 } 4647 4648 /* 4649 * 1 - for the one we're dropping 4650 * 1 - for the one we're adding 4651 * 1 - for updating the inode. 4652 */ 4653 trans = btrfs_start_transaction(root, 3); 4654 if (IS_ERR(trans)) 4655 return PTR_ERR(trans); 4656 4657 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4658 if (ret) { 4659 btrfs_abort_transaction(trans, root, ret); 4660 btrfs_end_transaction(trans, root); 4661 return ret; 4662 } 4663 4664 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4665 0, 0, len, 0, len, 0, 0, 0); 4666 if (ret) 4667 btrfs_abort_transaction(trans, root, ret); 4668 else 4669 btrfs_update_inode(trans, root, inode); 4670 btrfs_end_transaction(trans, root); 4671 return ret; 4672 } 4673 4674 /* 4675 * This function puts in dummy file extents for the area we're creating a hole 4676 * for. So if we are truncating this file to a larger size we need to insert 4677 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4678 * the range between oldsize and size 4679 */ 4680 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4681 { 4682 struct btrfs_root *root = BTRFS_I(inode)->root; 4683 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4684 struct extent_map *em = NULL; 4685 struct extent_state *cached_state = NULL; 4686 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4687 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4688 u64 block_end = ALIGN(size, root->sectorsize); 4689 u64 last_byte; 4690 u64 cur_offset; 4691 u64 hole_size; 4692 int err = 0; 4693 4694 /* 4695 * If our size started in the middle of a page we need to zero out the 4696 * rest of the page before we expand the i_size, otherwise we could 4697 * expose stale data. 4698 */ 4699 err = btrfs_truncate_page(inode, oldsize, 0, 0); 4700 if (err) 4701 return err; 4702 4703 if (size <= hole_start) 4704 return 0; 4705 4706 while (1) { 4707 struct btrfs_ordered_extent *ordered; 4708 4709 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4710 &cached_state); 4711 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4712 block_end - hole_start); 4713 if (!ordered) 4714 break; 4715 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4716 &cached_state, GFP_NOFS); 4717 btrfs_start_ordered_extent(inode, ordered, 1); 4718 btrfs_put_ordered_extent(ordered); 4719 } 4720 4721 cur_offset = hole_start; 4722 while (1) { 4723 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4724 block_end - cur_offset, 0); 4725 if (IS_ERR(em)) { 4726 err = PTR_ERR(em); 4727 em = NULL; 4728 break; 4729 } 4730 last_byte = min(extent_map_end(em), block_end); 4731 last_byte = ALIGN(last_byte , root->sectorsize); 4732 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4733 struct extent_map *hole_em; 4734 hole_size = last_byte - cur_offset; 4735 4736 err = maybe_insert_hole(root, inode, cur_offset, 4737 hole_size); 4738 if (err) 4739 break; 4740 btrfs_drop_extent_cache(inode, cur_offset, 4741 cur_offset + hole_size - 1, 0); 4742 hole_em = alloc_extent_map(); 4743 if (!hole_em) { 4744 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4745 &BTRFS_I(inode)->runtime_flags); 4746 goto next; 4747 } 4748 hole_em->start = cur_offset; 4749 hole_em->len = hole_size; 4750 hole_em->orig_start = cur_offset; 4751 4752 hole_em->block_start = EXTENT_MAP_HOLE; 4753 hole_em->block_len = 0; 4754 hole_em->orig_block_len = 0; 4755 hole_em->ram_bytes = hole_size; 4756 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4757 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4758 hole_em->generation = root->fs_info->generation; 4759 4760 while (1) { 4761 write_lock(&em_tree->lock); 4762 err = add_extent_mapping(em_tree, hole_em, 1); 4763 write_unlock(&em_tree->lock); 4764 if (err != -EEXIST) 4765 break; 4766 btrfs_drop_extent_cache(inode, cur_offset, 4767 cur_offset + 4768 hole_size - 1, 0); 4769 } 4770 free_extent_map(hole_em); 4771 } 4772 next: 4773 free_extent_map(em); 4774 em = NULL; 4775 cur_offset = last_byte; 4776 if (cur_offset >= block_end) 4777 break; 4778 } 4779 free_extent_map(em); 4780 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4781 GFP_NOFS); 4782 return err; 4783 } 4784 4785 static int wait_snapshoting_atomic_t(atomic_t *a) 4786 { 4787 schedule(); 4788 return 0; 4789 } 4790 4791 static void wait_for_snapshot_creation(struct btrfs_root *root) 4792 { 4793 while (true) { 4794 int ret; 4795 4796 ret = btrfs_start_write_no_snapshoting(root); 4797 if (ret) 4798 break; 4799 wait_on_atomic_t(&root->will_be_snapshoted, 4800 wait_snapshoting_atomic_t, 4801 TASK_UNINTERRUPTIBLE); 4802 } 4803 } 4804 4805 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4806 { 4807 struct btrfs_root *root = BTRFS_I(inode)->root; 4808 struct btrfs_trans_handle *trans; 4809 loff_t oldsize = i_size_read(inode); 4810 loff_t newsize = attr->ia_size; 4811 int mask = attr->ia_valid; 4812 int ret; 4813 4814 /* 4815 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4816 * special case where we need to update the times despite not having 4817 * these flags set. For all other operations the VFS set these flags 4818 * explicitly if it wants a timestamp update. 4819 */ 4820 if (newsize != oldsize) { 4821 inode_inc_iversion(inode); 4822 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4823 inode->i_ctime = inode->i_mtime = 4824 current_fs_time(inode->i_sb); 4825 } 4826 4827 if (newsize > oldsize) { 4828 truncate_pagecache(inode, newsize); 4829 /* 4830 * Don't do an expanding truncate while snapshoting is ongoing. 4831 * This is to ensure the snapshot captures a fully consistent 4832 * state of this file - if the snapshot captures this expanding 4833 * truncation, it must capture all writes that happened before 4834 * this truncation. 4835 */ 4836 wait_for_snapshot_creation(root); 4837 ret = btrfs_cont_expand(inode, oldsize, newsize); 4838 if (ret) { 4839 btrfs_end_write_no_snapshoting(root); 4840 return ret; 4841 } 4842 4843 trans = btrfs_start_transaction(root, 1); 4844 if (IS_ERR(trans)) { 4845 btrfs_end_write_no_snapshoting(root); 4846 return PTR_ERR(trans); 4847 } 4848 4849 i_size_write(inode, newsize); 4850 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4851 ret = btrfs_update_inode(trans, root, inode); 4852 btrfs_end_write_no_snapshoting(root); 4853 btrfs_end_transaction(trans, root); 4854 } else { 4855 4856 /* 4857 * We're truncating a file that used to have good data down to 4858 * zero. Make sure it gets into the ordered flush list so that 4859 * any new writes get down to disk quickly. 4860 */ 4861 if (newsize == 0) 4862 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4863 &BTRFS_I(inode)->runtime_flags); 4864 4865 /* 4866 * 1 for the orphan item we're going to add 4867 * 1 for the orphan item deletion. 4868 */ 4869 trans = btrfs_start_transaction(root, 2); 4870 if (IS_ERR(trans)) 4871 return PTR_ERR(trans); 4872 4873 /* 4874 * We need to do this in case we fail at _any_ point during the 4875 * actual truncate. Once we do the truncate_setsize we could 4876 * invalidate pages which forces any outstanding ordered io to 4877 * be instantly completed which will give us extents that need 4878 * to be truncated. If we fail to get an orphan inode down we 4879 * could have left over extents that were never meant to live, 4880 * so we need to garuntee from this point on that everything 4881 * will be consistent. 4882 */ 4883 ret = btrfs_orphan_add(trans, inode); 4884 btrfs_end_transaction(trans, root); 4885 if (ret) 4886 return ret; 4887 4888 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4889 truncate_setsize(inode, newsize); 4890 4891 /* Disable nonlocked read DIO to avoid the end less truncate */ 4892 btrfs_inode_block_unlocked_dio(inode); 4893 inode_dio_wait(inode); 4894 btrfs_inode_resume_unlocked_dio(inode); 4895 4896 ret = btrfs_truncate(inode); 4897 if (ret && inode->i_nlink) { 4898 int err; 4899 4900 /* 4901 * failed to truncate, disk_i_size is only adjusted down 4902 * as we remove extents, so it should represent the true 4903 * size of the inode, so reset the in memory size and 4904 * delete our orphan entry. 4905 */ 4906 trans = btrfs_join_transaction(root); 4907 if (IS_ERR(trans)) { 4908 btrfs_orphan_del(NULL, inode); 4909 return ret; 4910 } 4911 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4912 err = btrfs_orphan_del(trans, inode); 4913 if (err) 4914 btrfs_abort_transaction(trans, root, err); 4915 btrfs_end_transaction(trans, root); 4916 } 4917 } 4918 4919 return ret; 4920 } 4921 4922 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4923 { 4924 struct inode *inode = d_inode(dentry); 4925 struct btrfs_root *root = BTRFS_I(inode)->root; 4926 int err; 4927 4928 if (btrfs_root_readonly(root)) 4929 return -EROFS; 4930 4931 err = inode_change_ok(inode, attr); 4932 if (err) 4933 return err; 4934 4935 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4936 err = btrfs_setsize(inode, attr); 4937 if (err) 4938 return err; 4939 } 4940 4941 if (attr->ia_valid) { 4942 setattr_copy(inode, attr); 4943 inode_inc_iversion(inode); 4944 err = btrfs_dirty_inode(inode); 4945 4946 if (!err && attr->ia_valid & ATTR_MODE) 4947 err = posix_acl_chmod(inode, inode->i_mode); 4948 } 4949 4950 return err; 4951 } 4952 4953 /* 4954 * While truncating the inode pages during eviction, we get the VFS calling 4955 * btrfs_invalidatepage() against each page of the inode. This is slow because 4956 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4957 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4958 * extent_state structures over and over, wasting lots of time. 4959 * 4960 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4961 * those expensive operations on a per page basis and do only the ordered io 4962 * finishing, while we release here the extent_map and extent_state structures, 4963 * without the excessive merging and splitting. 4964 */ 4965 static void evict_inode_truncate_pages(struct inode *inode) 4966 { 4967 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4968 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4969 struct rb_node *node; 4970 4971 ASSERT(inode->i_state & I_FREEING); 4972 truncate_inode_pages_final(&inode->i_data); 4973 4974 write_lock(&map_tree->lock); 4975 while (!RB_EMPTY_ROOT(&map_tree->map)) { 4976 struct extent_map *em; 4977 4978 node = rb_first(&map_tree->map); 4979 em = rb_entry(node, struct extent_map, rb_node); 4980 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4981 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4982 remove_extent_mapping(map_tree, em); 4983 free_extent_map(em); 4984 if (need_resched()) { 4985 write_unlock(&map_tree->lock); 4986 cond_resched(); 4987 write_lock(&map_tree->lock); 4988 } 4989 } 4990 write_unlock(&map_tree->lock); 4991 4992 /* 4993 * Keep looping until we have no more ranges in the io tree. 4994 * We can have ongoing bios started by readpages (called from readahead) 4995 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 4996 * still in progress (unlocked the pages in the bio but did not yet 4997 * unlocked the ranges in the io tree). Therefore this means some 4998 * ranges can still be locked and eviction started because before 4999 * submitting those bios, which are executed by a separate task (work 5000 * queue kthread), inode references (inode->i_count) were not taken 5001 * (which would be dropped in the end io callback of each bio). 5002 * Therefore here we effectively end up waiting for those bios and 5003 * anyone else holding locked ranges without having bumped the inode's 5004 * reference count - if we don't do it, when they access the inode's 5005 * io_tree to unlock a range it may be too late, leading to an 5006 * use-after-free issue. 5007 */ 5008 spin_lock(&io_tree->lock); 5009 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5010 struct extent_state *state; 5011 struct extent_state *cached_state = NULL; 5012 u64 start; 5013 u64 end; 5014 5015 node = rb_first(&io_tree->state); 5016 state = rb_entry(node, struct extent_state, rb_node); 5017 start = state->start; 5018 end = state->end; 5019 spin_unlock(&io_tree->lock); 5020 5021 lock_extent_bits(io_tree, start, end, 0, &cached_state); 5022 clear_extent_bit(io_tree, start, end, 5023 EXTENT_LOCKED | EXTENT_DIRTY | 5024 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5025 EXTENT_DEFRAG, 1, 1, 5026 &cached_state, GFP_NOFS); 5027 5028 cond_resched(); 5029 spin_lock(&io_tree->lock); 5030 } 5031 spin_unlock(&io_tree->lock); 5032 } 5033 5034 void btrfs_evict_inode(struct inode *inode) 5035 { 5036 struct btrfs_trans_handle *trans; 5037 struct btrfs_root *root = BTRFS_I(inode)->root; 5038 struct btrfs_block_rsv *rsv, *global_rsv; 5039 int steal_from_global = 0; 5040 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5041 int ret; 5042 5043 trace_btrfs_inode_evict(inode); 5044 5045 evict_inode_truncate_pages(inode); 5046 5047 if (inode->i_nlink && 5048 ((btrfs_root_refs(&root->root_item) != 0 && 5049 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5050 btrfs_is_free_space_inode(inode))) 5051 goto no_delete; 5052 5053 if (is_bad_inode(inode)) { 5054 btrfs_orphan_del(NULL, inode); 5055 goto no_delete; 5056 } 5057 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5058 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5059 5060 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5061 5062 if (root->fs_info->log_root_recovering) { 5063 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5064 &BTRFS_I(inode)->runtime_flags)); 5065 goto no_delete; 5066 } 5067 5068 if (inode->i_nlink > 0) { 5069 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5070 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5071 goto no_delete; 5072 } 5073 5074 ret = btrfs_commit_inode_delayed_inode(inode); 5075 if (ret) { 5076 btrfs_orphan_del(NULL, inode); 5077 goto no_delete; 5078 } 5079 5080 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5081 if (!rsv) { 5082 btrfs_orphan_del(NULL, inode); 5083 goto no_delete; 5084 } 5085 rsv->size = min_size; 5086 rsv->failfast = 1; 5087 global_rsv = &root->fs_info->global_block_rsv; 5088 5089 btrfs_i_size_write(inode, 0); 5090 5091 /* 5092 * This is a bit simpler than btrfs_truncate since we've already 5093 * reserved our space for our orphan item in the unlink, so we just 5094 * need to reserve some slack space in case we add bytes and update 5095 * inode item when doing the truncate. 5096 */ 5097 while (1) { 5098 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5099 BTRFS_RESERVE_FLUSH_LIMIT); 5100 5101 /* 5102 * Try and steal from the global reserve since we will 5103 * likely not use this space anyway, we want to try as 5104 * hard as possible to get this to work. 5105 */ 5106 if (ret) 5107 steal_from_global++; 5108 else 5109 steal_from_global = 0; 5110 ret = 0; 5111 5112 /* 5113 * steal_from_global == 0: we reserved stuff, hooray! 5114 * steal_from_global == 1: we didn't reserve stuff, boo! 5115 * steal_from_global == 2: we've committed, still not a lot of 5116 * room but maybe we'll have room in the global reserve this 5117 * time. 5118 * steal_from_global == 3: abandon all hope! 5119 */ 5120 if (steal_from_global > 2) { 5121 btrfs_warn(root->fs_info, 5122 "Could not get space for a delete, will truncate on mount %d", 5123 ret); 5124 btrfs_orphan_del(NULL, inode); 5125 btrfs_free_block_rsv(root, rsv); 5126 goto no_delete; 5127 } 5128 5129 trans = btrfs_join_transaction(root); 5130 if (IS_ERR(trans)) { 5131 btrfs_orphan_del(NULL, inode); 5132 btrfs_free_block_rsv(root, rsv); 5133 goto no_delete; 5134 } 5135 5136 /* 5137 * We can't just steal from the global reserve, we need tomake 5138 * sure there is room to do it, if not we need to commit and try 5139 * again. 5140 */ 5141 if (steal_from_global) { 5142 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5143 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5144 min_size); 5145 else 5146 ret = -ENOSPC; 5147 } 5148 5149 /* 5150 * Couldn't steal from the global reserve, we have too much 5151 * pending stuff built up, commit the transaction and try it 5152 * again. 5153 */ 5154 if (ret) { 5155 ret = btrfs_commit_transaction(trans, root); 5156 if (ret) { 5157 btrfs_orphan_del(NULL, inode); 5158 btrfs_free_block_rsv(root, rsv); 5159 goto no_delete; 5160 } 5161 continue; 5162 } else { 5163 steal_from_global = 0; 5164 } 5165 5166 trans->block_rsv = rsv; 5167 5168 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5169 if (ret != -ENOSPC && ret != -EAGAIN) 5170 break; 5171 5172 trans->block_rsv = &root->fs_info->trans_block_rsv; 5173 btrfs_end_transaction(trans, root); 5174 trans = NULL; 5175 btrfs_btree_balance_dirty(root); 5176 } 5177 5178 btrfs_free_block_rsv(root, rsv); 5179 5180 /* 5181 * Errors here aren't a big deal, it just means we leave orphan items 5182 * in the tree. They will be cleaned up on the next mount. 5183 */ 5184 if (ret == 0) { 5185 trans->block_rsv = root->orphan_block_rsv; 5186 btrfs_orphan_del(trans, inode); 5187 } else { 5188 btrfs_orphan_del(NULL, inode); 5189 } 5190 5191 trans->block_rsv = &root->fs_info->trans_block_rsv; 5192 if (!(root == root->fs_info->tree_root || 5193 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5194 btrfs_return_ino(root, btrfs_ino(inode)); 5195 5196 btrfs_end_transaction(trans, root); 5197 btrfs_btree_balance_dirty(root); 5198 no_delete: 5199 btrfs_remove_delayed_node(inode); 5200 clear_inode(inode); 5201 return; 5202 } 5203 5204 /* 5205 * this returns the key found in the dir entry in the location pointer. 5206 * If no dir entries were found, location->objectid is 0. 5207 */ 5208 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5209 struct btrfs_key *location) 5210 { 5211 const char *name = dentry->d_name.name; 5212 int namelen = dentry->d_name.len; 5213 struct btrfs_dir_item *di; 5214 struct btrfs_path *path; 5215 struct btrfs_root *root = BTRFS_I(dir)->root; 5216 int ret = 0; 5217 5218 path = btrfs_alloc_path(); 5219 if (!path) 5220 return -ENOMEM; 5221 5222 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5223 namelen, 0); 5224 if (IS_ERR(di)) 5225 ret = PTR_ERR(di); 5226 5227 if (IS_ERR_OR_NULL(di)) 5228 goto out_err; 5229 5230 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5231 out: 5232 btrfs_free_path(path); 5233 return ret; 5234 out_err: 5235 location->objectid = 0; 5236 goto out; 5237 } 5238 5239 /* 5240 * when we hit a tree root in a directory, the btrfs part of the inode 5241 * needs to be changed to reflect the root directory of the tree root. This 5242 * is kind of like crossing a mount point. 5243 */ 5244 static int fixup_tree_root_location(struct btrfs_root *root, 5245 struct inode *dir, 5246 struct dentry *dentry, 5247 struct btrfs_key *location, 5248 struct btrfs_root **sub_root) 5249 { 5250 struct btrfs_path *path; 5251 struct btrfs_root *new_root; 5252 struct btrfs_root_ref *ref; 5253 struct extent_buffer *leaf; 5254 struct btrfs_key key; 5255 int ret; 5256 int err = 0; 5257 5258 path = btrfs_alloc_path(); 5259 if (!path) { 5260 err = -ENOMEM; 5261 goto out; 5262 } 5263 5264 err = -ENOENT; 5265 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5266 key.type = BTRFS_ROOT_REF_KEY; 5267 key.offset = location->objectid; 5268 5269 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5270 0, 0); 5271 if (ret) { 5272 if (ret < 0) 5273 err = ret; 5274 goto out; 5275 } 5276 5277 leaf = path->nodes[0]; 5278 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5279 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5280 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5281 goto out; 5282 5283 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5284 (unsigned long)(ref + 1), 5285 dentry->d_name.len); 5286 if (ret) 5287 goto out; 5288 5289 btrfs_release_path(path); 5290 5291 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5292 if (IS_ERR(new_root)) { 5293 err = PTR_ERR(new_root); 5294 goto out; 5295 } 5296 5297 *sub_root = new_root; 5298 location->objectid = btrfs_root_dirid(&new_root->root_item); 5299 location->type = BTRFS_INODE_ITEM_KEY; 5300 location->offset = 0; 5301 err = 0; 5302 out: 5303 btrfs_free_path(path); 5304 return err; 5305 } 5306 5307 static void inode_tree_add(struct inode *inode) 5308 { 5309 struct btrfs_root *root = BTRFS_I(inode)->root; 5310 struct btrfs_inode *entry; 5311 struct rb_node **p; 5312 struct rb_node *parent; 5313 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5314 u64 ino = btrfs_ino(inode); 5315 5316 if (inode_unhashed(inode)) 5317 return; 5318 parent = NULL; 5319 spin_lock(&root->inode_lock); 5320 p = &root->inode_tree.rb_node; 5321 while (*p) { 5322 parent = *p; 5323 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5324 5325 if (ino < btrfs_ino(&entry->vfs_inode)) 5326 p = &parent->rb_left; 5327 else if (ino > btrfs_ino(&entry->vfs_inode)) 5328 p = &parent->rb_right; 5329 else { 5330 WARN_ON(!(entry->vfs_inode.i_state & 5331 (I_WILL_FREE | I_FREEING))); 5332 rb_replace_node(parent, new, &root->inode_tree); 5333 RB_CLEAR_NODE(parent); 5334 spin_unlock(&root->inode_lock); 5335 return; 5336 } 5337 } 5338 rb_link_node(new, parent, p); 5339 rb_insert_color(new, &root->inode_tree); 5340 spin_unlock(&root->inode_lock); 5341 } 5342 5343 static void inode_tree_del(struct inode *inode) 5344 { 5345 struct btrfs_root *root = BTRFS_I(inode)->root; 5346 int empty = 0; 5347 5348 spin_lock(&root->inode_lock); 5349 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5350 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5351 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5352 empty = RB_EMPTY_ROOT(&root->inode_tree); 5353 } 5354 spin_unlock(&root->inode_lock); 5355 5356 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5357 synchronize_srcu(&root->fs_info->subvol_srcu); 5358 spin_lock(&root->inode_lock); 5359 empty = RB_EMPTY_ROOT(&root->inode_tree); 5360 spin_unlock(&root->inode_lock); 5361 if (empty) 5362 btrfs_add_dead_root(root); 5363 } 5364 } 5365 5366 void btrfs_invalidate_inodes(struct btrfs_root *root) 5367 { 5368 struct rb_node *node; 5369 struct rb_node *prev; 5370 struct btrfs_inode *entry; 5371 struct inode *inode; 5372 u64 objectid = 0; 5373 5374 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5375 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5376 5377 spin_lock(&root->inode_lock); 5378 again: 5379 node = root->inode_tree.rb_node; 5380 prev = NULL; 5381 while (node) { 5382 prev = node; 5383 entry = rb_entry(node, struct btrfs_inode, rb_node); 5384 5385 if (objectid < btrfs_ino(&entry->vfs_inode)) 5386 node = node->rb_left; 5387 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5388 node = node->rb_right; 5389 else 5390 break; 5391 } 5392 if (!node) { 5393 while (prev) { 5394 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5395 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5396 node = prev; 5397 break; 5398 } 5399 prev = rb_next(prev); 5400 } 5401 } 5402 while (node) { 5403 entry = rb_entry(node, struct btrfs_inode, rb_node); 5404 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5405 inode = igrab(&entry->vfs_inode); 5406 if (inode) { 5407 spin_unlock(&root->inode_lock); 5408 if (atomic_read(&inode->i_count) > 1) 5409 d_prune_aliases(inode); 5410 /* 5411 * btrfs_drop_inode will have it removed from 5412 * the inode cache when its usage count 5413 * hits zero. 5414 */ 5415 iput(inode); 5416 cond_resched(); 5417 spin_lock(&root->inode_lock); 5418 goto again; 5419 } 5420 5421 if (cond_resched_lock(&root->inode_lock)) 5422 goto again; 5423 5424 node = rb_next(node); 5425 } 5426 spin_unlock(&root->inode_lock); 5427 } 5428 5429 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5430 { 5431 struct btrfs_iget_args *args = p; 5432 inode->i_ino = args->location->objectid; 5433 memcpy(&BTRFS_I(inode)->location, args->location, 5434 sizeof(*args->location)); 5435 BTRFS_I(inode)->root = args->root; 5436 return 0; 5437 } 5438 5439 static int btrfs_find_actor(struct inode *inode, void *opaque) 5440 { 5441 struct btrfs_iget_args *args = opaque; 5442 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5443 args->root == BTRFS_I(inode)->root; 5444 } 5445 5446 static struct inode *btrfs_iget_locked(struct super_block *s, 5447 struct btrfs_key *location, 5448 struct btrfs_root *root) 5449 { 5450 struct inode *inode; 5451 struct btrfs_iget_args args; 5452 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5453 5454 args.location = location; 5455 args.root = root; 5456 5457 inode = iget5_locked(s, hashval, btrfs_find_actor, 5458 btrfs_init_locked_inode, 5459 (void *)&args); 5460 return inode; 5461 } 5462 5463 /* Get an inode object given its location and corresponding root. 5464 * Returns in *is_new if the inode was read from disk 5465 */ 5466 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5467 struct btrfs_root *root, int *new) 5468 { 5469 struct inode *inode; 5470 5471 inode = btrfs_iget_locked(s, location, root); 5472 if (!inode) 5473 return ERR_PTR(-ENOMEM); 5474 5475 if (inode->i_state & I_NEW) { 5476 btrfs_read_locked_inode(inode); 5477 if (!is_bad_inode(inode)) { 5478 inode_tree_add(inode); 5479 unlock_new_inode(inode); 5480 if (new) 5481 *new = 1; 5482 } else { 5483 unlock_new_inode(inode); 5484 iput(inode); 5485 inode = ERR_PTR(-ESTALE); 5486 } 5487 } 5488 5489 return inode; 5490 } 5491 5492 static struct inode *new_simple_dir(struct super_block *s, 5493 struct btrfs_key *key, 5494 struct btrfs_root *root) 5495 { 5496 struct inode *inode = new_inode(s); 5497 5498 if (!inode) 5499 return ERR_PTR(-ENOMEM); 5500 5501 BTRFS_I(inode)->root = root; 5502 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5503 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5504 5505 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5506 inode->i_op = &btrfs_dir_ro_inode_operations; 5507 inode->i_fop = &simple_dir_operations; 5508 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5509 inode->i_mtime = CURRENT_TIME; 5510 inode->i_atime = inode->i_mtime; 5511 inode->i_ctime = inode->i_mtime; 5512 BTRFS_I(inode)->i_otime = inode->i_mtime; 5513 5514 return inode; 5515 } 5516 5517 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5518 { 5519 struct inode *inode; 5520 struct btrfs_root *root = BTRFS_I(dir)->root; 5521 struct btrfs_root *sub_root = root; 5522 struct btrfs_key location; 5523 int index; 5524 int ret = 0; 5525 5526 if (dentry->d_name.len > BTRFS_NAME_LEN) 5527 return ERR_PTR(-ENAMETOOLONG); 5528 5529 ret = btrfs_inode_by_name(dir, dentry, &location); 5530 if (ret < 0) 5531 return ERR_PTR(ret); 5532 5533 if (location.objectid == 0) 5534 return ERR_PTR(-ENOENT); 5535 5536 if (location.type == BTRFS_INODE_ITEM_KEY) { 5537 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5538 return inode; 5539 } 5540 5541 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5542 5543 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5544 ret = fixup_tree_root_location(root, dir, dentry, 5545 &location, &sub_root); 5546 if (ret < 0) { 5547 if (ret != -ENOENT) 5548 inode = ERR_PTR(ret); 5549 else 5550 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5551 } else { 5552 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5553 } 5554 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5555 5556 if (!IS_ERR(inode) && root != sub_root) { 5557 down_read(&root->fs_info->cleanup_work_sem); 5558 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5559 ret = btrfs_orphan_cleanup(sub_root); 5560 up_read(&root->fs_info->cleanup_work_sem); 5561 if (ret) { 5562 iput(inode); 5563 inode = ERR_PTR(ret); 5564 } 5565 } 5566 5567 return inode; 5568 } 5569 5570 static int btrfs_dentry_delete(const struct dentry *dentry) 5571 { 5572 struct btrfs_root *root; 5573 struct inode *inode = d_inode(dentry); 5574 5575 if (!inode && !IS_ROOT(dentry)) 5576 inode = d_inode(dentry->d_parent); 5577 5578 if (inode) { 5579 root = BTRFS_I(inode)->root; 5580 if (btrfs_root_refs(&root->root_item) == 0) 5581 return 1; 5582 5583 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5584 return 1; 5585 } 5586 return 0; 5587 } 5588 5589 static void btrfs_dentry_release(struct dentry *dentry) 5590 { 5591 kfree(dentry->d_fsdata); 5592 } 5593 5594 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5595 unsigned int flags) 5596 { 5597 struct inode *inode; 5598 5599 inode = btrfs_lookup_dentry(dir, dentry); 5600 if (IS_ERR(inode)) { 5601 if (PTR_ERR(inode) == -ENOENT) 5602 inode = NULL; 5603 else 5604 return ERR_CAST(inode); 5605 } 5606 5607 return d_splice_alias(inode, dentry); 5608 } 5609 5610 unsigned char btrfs_filetype_table[] = { 5611 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5612 }; 5613 5614 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5615 { 5616 struct inode *inode = file_inode(file); 5617 struct btrfs_root *root = BTRFS_I(inode)->root; 5618 struct btrfs_item *item; 5619 struct btrfs_dir_item *di; 5620 struct btrfs_key key; 5621 struct btrfs_key found_key; 5622 struct btrfs_path *path; 5623 struct list_head ins_list; 5624 struct list_head del_list; 5625 int ret; 5626 struct extent_buffer *leaf; 5627 int slot; 5628 unsigned char d_type; 5629 int over = 0; 5630 u32 di_cur; 5631 u32 di_total; 5632 u32 di_len; 5633 int key_type = BTRFS_DIR_INDEX_KEY; 5634 char tmp_name[32]; 5635 char *name_ptr; 5636 int name_len; 5637 int is_curr = 0; /* ctx->pos points to the current index? */ 5638 5639 /* FIXME, use a real flag for deciding about the key type */ 5640 if (root->fs_info->tree_root == root) 5641 key_type = BTRFS_DIR_ITEM_KEY; 5642 5643 if (!dir_emit_dots(file, ctx)) 5644 return 0; 5645 5646 path = btrfs_alloc_path(); 5647 if (!path) 5648 return -ENOMEM; 5649 5650 path->reada = 1; 5651 5652 if (key_type == BTRFS_DIR_INDEX_KEY) { 5653 INIT_LIST_HEAD(&ins_list); 5654 INIT_LIST_HEAD(&del_list); 5655 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5656 } 5657 5658 key.type = key_type; 5659 key.offset = ctx->pos; 5660 key.objectid = btrfs_ino(inode); 5661 5662 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5663 if (ret < 0) 5664 goto err; 5665 5666 while (1) { 5667 leaf = path->nodes[0]; 5668 slot = path->slots[0]; 5669 if (slot >= btrfs_header_nritems(leaf)) { 5670 ret = btrfs_next_leaf(root, path); 5671 if (ret < 0) 5672 goto err; 5673 else if (ret > 0) 5674 break; 5675 continue; 5676 } 5677 5678 item = btrfs_item_nr(slot); 5679 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5680 5681 if (found_key.objectid != key.objectid) 5682 break; 5683 if (found_key.type != key_type) 5684 break; 5685 if (found_key.offset < ctx->pos) 5686 goto next; 5687 if (key_type == BTRFS_DIR_INDEX_KEY && 5688 btrfs_should_delete_dir_index(&del_list, 5689 found_key.offset)) 5690 goto next; 5691 5692 ctx->pos = found_key.offset; 5693 is_curr = 1; 5694 5695 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5696 di_cur = 0; 5697 di_total = btrfs_item_size(leaf, item); 5698 5699 while (di_cur < di_total) { 5700 struct btrfs_key location; 5701 5702 if (verify_dir_item(root, leaf, di)) 5703 break; 5704 5705 name_len = btrfs_dir_name_len(leaf, di); 5706 if (name_len <= sizeof(tmp_name)) { 5707 name_ptr = tmp_name; 5708 } else { 5709 name_ptr = kmalloc(name_len, GFP_NOFS); 5710 if (!name_ptr) { 5711 ret = -ENOMEM; 5712 goto err; 5713 } 5714 } 5715 read_extent_buffer(leaf, name_ptr, 5716 (unsigned long)(di + 1), name_len); 5717 5718 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5719 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5720 5721 5722 /* is this a reference to our own snapshot? If so 5723 * skip it. 5724 * 5725 * In contrast to old kernels, we insert the snapshot's 5726 * dir item and dir index after it has been created, so 5727 * we won't find a reference to our own snapshot. We 5728 * still keep the following code for backward 5729 * compatibility. 5730 */ 5731 if (location.type == BTRFS_ROOT_ITEM_KEY && 5732 location.objectid == root->root_key.objectid) { 5733 over = 0; 5734 goto skip; 5735 } 5736 over = !dir_emit(ctx, name_ptr, name_len, 5737 location.objectid, d_type); 5738 5739 skip: 5740 if (name_ptr != tmp_name) 5741 kfree(name_ptr); 5742 5743 if (over) 5744 goto nopos; 5745 di_len = btrfs_dir_name_len(leaf, di) + 5746 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5747 di_cur += di_len; 5748 di = (struct btrfs_dir_item *)((char *)di + di_len); 5749 } 5750 next: 5751 path->slots[0]++; 5752 } 5753 5754 if (key_type == BTRFS_DIR_INDEX_KEY) { 5755 if (is_curr) 5756 ctx->pos++; 5757 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5758 if (ret) 5759 goto nopos; 5760 } 5761 5762 /* Reached end of directory/root. Bump pos past the last item. */ 5763 ctx->pos++; 5764 5765 /* 5766 * Stop new entries from being returned after we return the last 5767 * entry. 5768 * 5769 * New directory entries are assigned a strictly increasing 5770 * offset. This means that new entries created during readdir 5771 * are *guaranteed* to be seen in the future by that readdir. 5772 * This has broken buggy programs which operate on names as 5773 * they're returned by readdir. Until we re-use freed offsets 5774 * we have this hack to stop new entries from being returned 5775 * under the assumption that they'll never reach this huge 5776 * offset. 5777 * 5778 * This is being careful not to overflow 32bit loff_t unless the 5779 * last entry requires it because doing so has broken 32bit apps 5780 * in the past. 5781 */ 5782 if (key_type == BTRFS_DIR_INDEX_KEY) { 5783 if (ctx->pos >= INT_MAX) 5784 ctx->pos = LLONG_MAX; 5785 else 5786 ctx->pos = INT_MAX; 5787 } 5788 nopos: 5789 ret = 0; 5790 err: 5791 if (key_type == BTRFS_DIR_INDEX_KEY) 5792 btrfs_put_delayed_items(&ins_list, &del_list); 5793 btrfs_free_path(path); 5794 return ret; 5795 } 5796 5797 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5798 { 5799 struct btrfs_root *root = BTRFS_I(inode)->root; 5800 struct btrfs_trans_handle *trans; 5801 int ret = 0; 5802 bool nolock = false; 5803 5804 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5805 return 0; 5806 5807 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5808 nolock = true; 5809 5810 if (wbc->sync_mode == WB_SYNC_ALL) { 5811 if (nolock) 5812 trans = btrfs_join_transaction_nolock(root); 5813 else 5814 trans = btrfs_join_transaction(root); 5815 if (IS_ERR(trans)) 5816 return PTR_ERR(trans); 5817 ret = btrfs_commit_transaction(trans, root); 5818 } 5819 return ret; 5820 } 5821 5822 /* 5823 * This is somewhat expensive, updating the tree every time the 5824 * inode changes. But, it is most likely to find the inode in cache. 5825 * FIXME, needs more benchmarking...there are no reasons other than performance 5826 * to keep or drop this code. 5827 */ 5828 static int btrfs_dirty_inode(struct inode *inode) 5829 { 5830 struct btrfs_root *root = BTRFS_I(inode)->root; 5831 struct btrfs_trans_handle *trans; 5832 int ret; 5833 5834 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5835 return 0; 5836 5837 trans = btrfs_join_transaction(root); 5838 if (IS_ERR(trans)) 5839 return PTR_ERR(trans); 5840 5841 ret = btrfs_update_inode(trans, root, inode); 5842 if (ret && ret == -ENOSPC) { 5843 /* whoops, lets try again with the full transaction */ 5844 btrfs_end_transaction(trans, root); 5845 trans = btrfs_start_transaction(root, 1); 5846 if (IS_ERR(trans)) 5847 return PTR_ERR(trans); 5848 5849 ret = btrfs_update_inode(trans, root, inode); 5850 } 5851 btrfs_end_transaction(trans, root); 5852 if (BTRFS_I(inode)->delayed_node) 5853 btrfs_balance_delayed_items(root); 5854 5855 return ret; 5856 } 5857 5858 /* 5859 * This is a copy of file_update_time. We need this so we can return error on 5860 * ENOSPC for updating the inode in the case of file write and mmap writes. 5861 */ 5862 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5863 int flags) 5864 { 5865 struct btrfs_root *root = BTRFS_I(inode)->root; 5866 5867 if (btrfs_root_readonly(root)) 5868 return -EROFS; 5869 5870 if (flags & S_VERSION) 5871 inode_inc_iversion(inode); 5872 if (flags & S_CTIME) 5873 inode->i_ctime = *now; 5874 if (flags & S_MTIME) 5875 inode->i_mtime = *now; 5876 if (flags & S_ATIME) 5877 inode->i_atime = *now; 5878 return btrfs_dirty_inode(inode); 5879 } 5880 5881 /* 5882 * find the highest existing sequence number in a directory 5883 * and then set the in-memory index_cnt variable to reflect 5884 * free sequence numbers 5885 */ 5886 static int btrfs_set_inode_index_count(struct inode *inode) 5887 { 5888 struct btrfs_root *root = BTRFS_I(inode)->root; 5889 struct btrfs_key key, found_key; 5890 struct btrfs_path *path; 5891 struct extent_buffer *leaf; 5892 int ret; 5893 5894 key.objectid = btrfs_ino(inode); 5895 key.type = BTRFS_DIR_INDEX_KEY; 5896 key.offset = (u64)-1; 5897 5898 path = btrfs_alloc_path(); 5899 if (!path) 5900 return -ENOMEM; 5901 5902 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5903 if (ret < 0) 5904 goto out; 5905 /* FIXME: we should be able to handle this */ 5906 if (ret == 0) 5907 goto out; 5908 ret = 0; 5909 5910 /* 5911 * MAGIC NUMBER EXPLANATION: 5912 * since we search a directory based on f_pos we have to start at 2 5913 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5914 * else has to start at 2 5915 */ 5916 if (path->slots[0] == 0) { 5917 BTRFS_I(inode)->index_cnt = 2; 5918 goto out; 5919 } 5920 5921 path->slots[0]--; 5922 5923 leaf = path->nodes[0]; 5924 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5925 5926 if (found_key.objectid != btrfs_ino(inode) || 5927 found_key.type != BTRFS_DIR_INDEX_KEY) { 5928 BTRFS_I(inode)->index_cnt = 2; 5929 goto out; 5930 } 5931 5932 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5933 out: 5934 btrfs_free_path(path); 5935 return ret; 5936 } 5937 5938 /* 5939 * helper to find a free sequence number in a given directory. This current 5940 * code is very simple, later versions will do smarter things in the btree 5941 */ 5942 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5943 { 5944 int ret = 0; 5945 5946 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5947 ret = btrfs_inode_delayed_dir_index_count(dir); 5948 if (ret) { 5949 ret = btrfs_set_inode_index_count(dir); 5950 if (ret) 5951 return ret; 5952 } 5953 } 5954 5955 *index = BTRFS_I(dir)->index_cnt; 5956 BTRFS_I(dir)->index_cnt++; 5957 5958 return ret; 5959 } 5960 5961 static int btrfs_insert_inode_locked(struct inode *inode) 5962 { 5963 struct btrfs_iget_args args; 5964 args.location = &BTRFS_I(inode)->location; 5965 args.root = BTRFS_I(inode)->root; 5966 5967 return insert_inode_locked4(inode, 5968 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5969 btrfs_find_actor, &args); 5970 } 5971 5972 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5973 struct btrfs_root *root, 5974 struct inode *dir, 5975 const char *name, int name_len, 5976 u64 ref_objectid, u64 objectid, 5977 umode_t mode, u64 *index) 5978 { 5979 struct inode *inode; 5980 struct btrfs_inode_item *inode_item; 5981 struct btrfs_key *location; 5982 struct btrfs_path *path; 5983 struct btrfs_inode_ref *ref; 5984 struct btrfs_key key[2]; 5985 u32 sizes[2]; 5986 int nitems = name ? 2 : 1; 5987 unsigned long ptr; 5988 int ret; 5989 5990 path = btrfs_alloc_path(); 5991 if (!path) 5992 return ERR_PTR(-ENOMEM); 5993 5994 inode = new_inode(root->fs_info->sb); 5995 if (!inode) { 5996 btrfs_free_path(path); 5997 return ERR_PTR(-ENOMEM); 5998 } 5999 6000 /* 6001 * O_TMPFILE, set link count to 0, so that after this point, 6002 * we fill in an inode item with the correct link count. 6003 */ 6004 if (!name) 6005 set_nlink(inode, 0); 6006 6007 /* 6008 * we have to initialize this early, so we can reclaim the inode 6009 * number if we fail afterwards in this function. 6010 */ 6011 inode->i_ino = objectid; 6012 6013 if (dir && name) { 6014 trace_btrfs_inode_request(dir); 6015 6016 ret = btrfs_set_inode_index(dir, index); 6017 if (ret) { 6018 btrfs_free_path(path); 6019 iput(inode); 6020 return ERR_PTR(ret); 6021 } 6022 } else if (dir) { 6023 *index = 0; 6024 } 6025 /* 6026 * index_cnt is ignored for everything but a dir, 6027 * btrfs_get_inode_index_count has an explanation for the magic 6028 * number 6029 */ 6030 BTRFS_I(inode)->index_cnt = 2; 6031 BTRFS_I(inode)->dir_index = *index; 6032 BTRFS_I(inode)->root = root; 6033 BTRFS_I(inode)->generation = trans->transid; 6034 inode->i_generation = BTRFS_I(inode)->generation; 6035 6036 /* 6037 * We could have gotten an inode number from somebody who was fsynced 6038 * and then removed in this same transaction, so let's just set full 6039 * sync since it will be a full sync anyway and this will blow away the 6040 * old info in the log. 6041 */ 6042 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6043 6044 key[0].objectid = objectid; 6045 key[0].type = BTRFS_INODE_ITEM_KEY; 6046 key[0].offset = 0; 6047 6048 sizes[0] = sizeof(struct btrfs_inode_item); 6049 6050 if (name) { 6051 /* 6052 * Start new inodes with an inode_ref. This is slightly more 6053 * efficient for small numbers of hard links since they will 6054 * be packed into one item. Extended refs will kick in if we 6055 * add more hard links than can fit in the ref item. 6056 */ 6057 key[1].objectid = objectid; 6058 key[1].type = BTRFS_INODE_REF_KEY; 6059 key[1].offset = ref_objectid; 6060 6061 sizes[1] = name_len + sizeof(*ref); 6062 } 6063 6064 location = &BTRFS_I(inode)->location; 6065 location->objectid = objectid; 6066 location->offset = 0; 6067 location->type = BTRFS_INODE_ITEM_KEY; 6068 6069 ret = btrfs_insert_inode_locked(inode); 6070 if (ret < 0) 6071 goto fail; 6072 6073 path->leave_spinning = 1; 6074 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6075 if (ret != 0) 6076 goto fail_unlock; 6077 6078 inode_init_owner(inode, dir, mode); 6079 inode_set_bytes(inode, 0); 6080 6081 inode->i_mtime = CURRENT_TIME; 6082 inode->i_atime = inode->i_mtime; 6083 inode->i_ctime = inode->i_mtime; 6084 BTRFS_I(inode)->i_otime = inode->i_mtime; 6085 6086 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6087 struct btrfs_inode_item); 6088 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6089 sizeof(*inode_item)); 6090 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6091 6092 if (name) { 6093 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6094 struct btrfs_inode_ref); 6095 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6096 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6097 ptr = (unsigned long)(ref + 1); 6098 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6099 } 6100 6101 btrfs_mark_buffer_dirty(path->nodes[0]); 6102 btrfs_free_path(path); 6103 6104 btrfs_inherit_iflags(inode, dir); 6105 6106 if (S_ISREG(mode)) { 6107 if (btrfs_test_opt(root, NODATASUM)) 6108 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6109 if (btrfs_test_opt(root, NODATACOW)) 6110 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6111 BTRFS_INODE_NODATASUM; 6112 } 6113 6114 inode_tree_add(inode); 6115 6116 trace_btrfs_inode_new(inode); 6117 btrfs_set_inode_last_trans(trans, inode); 6118 6119 btrfs_update_root_times(trans, root); 6120 6121 ret = btrfs_inode_inherit_props(trans, inode, dir); 6122 if (ret) 6123 btrfs_err(root->fs_info, 6124 "error inheriting props for ino %llu (root %llu): %d", 6125 btrfs_ino(inode), root->root_key.objectid, ret); 6126 6127 return inode; 6128 6129 fail_unlock: 6130 unlock_new_inode(inode); 6131 fail: 6132 if (dir && name) 6133 BTRFS_I(dir)->index_cnt--; 6134 btrfs_free_path(path); 6135 iput(inode); 6136 return ERR_PTR(ret); 6137 } 6138 6139 static inline u8 btrfs_inode_type(struct inode *inode) 6140 { 6141 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6142 } 6143 6144 /* 6145 * utility function to add 'inode' into 'parent_inode' with 6146 * a give name and a given sequence number. 6147 * if 'add_backref' is true, also insert a backref from the 6148 * inode to the parent directory. 6149 */ 6150 int btrfs_add_link(struct btrfs_trans_handle *trans, 6151 struct inode *parent_inode, struct inode *inode, 6152 const char *name, int name_len, int add_backref, u64 index) 6153 { 6154 int ret = 0; 6155 struct btrfs_key key; 6156 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6157 u64 ino = btrfs_ino(inode); 6158 u64 parent_ino = btrfs_ino(parent_inode); 6159 6160 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6161 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6162 } else { 6163 key.objectid = ino; 6164 key.type = BTRFS_INODE_ITEM_KEY; 6165 key.offset = 0; 6166 } 6167 6168 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6169 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6170 key.objectid, root->root_key.objectid, 6171 parent_ino, index, name, name_len); 6172 } else if (add_backref) { 6173 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6174 parent_ino, index); 6175 } 6176 6177 /* Nothing to clean up yet */ 6178 if (ret) 6179 return ret; 6180 6181 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6182 parent_inode, &key, 6183 btrfs_inode_type(inode), index); 6184 if (ret == -EEXIST || ret == -EOVERFLOW) 6185 goto fail_dir_item; 6186 else if (ret) { 6187 btrfs_abort_transaction(trans, root, ret); 6188 return ret; 6189 } 6190 6191 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6192 name_len * 2); 6193 inode_inc_iversion(parent_inode); 6194 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 6195 ret = btrfs_update_inode(trans, root, parent_inode); 6196 if (ret) 6197 btrfs_abort_transaction(trans, root, ret); 6198 return ret; 6199 6200 fail_dir_item: 6201 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6202 u64 local_index; 6203 int err; 6204 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6205 key.objectid, root->root_key.objectid, 6206 parent_ino, &local_index, name, name_len); 6207 6208 } else if (add_backref) { 6209 u64 local_index; 6210 int err; 6211 6212 err = btrfs_del_inode_ref(trans, root, name, name_len, 6213 ino, parent_ino, &local_index); 6214 } 6215 return ret; 6216 } 6217 6218 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6219 struct inode *dir, struct dentry *dentry, 6220 struct inode *inode, int backref, u64 index) 6221 { 6222 int err = btrfs_add_link(trans, dir, inode, 6223 dentry->d_name.name, dentry->d_name.len, 6224 backref, index); 6225 if (err > 0) 6226 err = -EEXIST; 6227 return err; 6228 } 6229 6230 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6231 umode_t mode, dev_t rdev) 6232 { 6233 struct btrfs_trans_handle *trans; 6234 struct btrfs_root *root = BTRFS_I(dir)->root; 6235 struct inode *inode = NULL; 6236 int err; 6237 int drop_inode = 0; 6238 u64 objectid; 6239 u64 index = 0; 6240 6241 if (!new_valid_dev(rdev)) 6242 return -EINVAL; 6243 6244 /* 6245 * 2 for inode item and ref 6246 * 2 for dir items 6247 * 1 for xattr if selinux is on 6248 */ 6249 trans = btrfs_start_transaction(root, 5); 6250 if (IS_ERR(trans)) 6251 return PTR_ERR(trans); 6252 6253 err = btrfs_find_free_ino(root, &objectid); 6254 if (err) 6255 goto out_unlock; 6256 6257 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6258 dentry->d_name.len, btrfs_ino(dir), objectid, 6259 mode, &index); 6260 if (IS_ERR(inode)) { 6261 err = PTR_ERR(inode); 6262 goto out_unlock; 6263 } 6264 6265 /* 6266 * If the active LSM wants to access the inode during 6267 * d_instantiate it needs these. Smack checks to see 6268 * if the filesystem supports xattrs by looking at the 6269 * ops vector. 6270 */ 6271 inode->i_op = &btrfs_special_inode_operations; 6272 init_special_inode(inode, inode->i_mode, rdev); 6273 6274 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6275 if (err) 6276 goto out_unlock_inode; 6277 6278 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6279 if (err) { 6280 goto out_unlock_inode; 6281 } else { 6282 btrfs_update_inode(trans, root, inode); 6283 unlock_new_inode(inode); 6284 d_instantiate(dentry, inode); 6285 } 6286 6287 out_unlock: 6288 btrfs_end_transaction(trans, root); 6289 btrfs_balance_delayed_items(root); 6290 btrfs_btree_balance_dirty(root); 6291 if (drop_inode) { 6292 inode_dec_link_count(inode); 6293 iput(inode); 6294 } 6295 return err; 6296 6297 out_unlock_inode: 6298 drop_inode = 1; 6299 unlock_new_inode(inode); 6300 goto out_unlock; 6301 6302 } 6303 6304 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6305 umode_t mode, bool excl) 6306 { 6307 struct btrfs_trans_handle *trans; 6308 struct btrfs_root *root = BTRFS_I(dir)->root; 6309 struct inode *inode = NULL; 6310 int drop_inode_on_err = 0; 6311 int err; 6312 u64 objectid; 6313 u64 index = 0; 6314 6315 /* 6316 * 2 for inode item and ref 6317 * 2 for dir items 6318 * 1 for xattr if selinux is on 6319 */ 6320 trans = btrfs_start_transaction(root, 5); 6321 if (IS_ERR(trans)) 6322 return PTR_ERR(trans); 6323 6324 err = btrfs_find_free_ino(root, &objectid); 6325 if (err) 6326 goto out_unlock; 6327 6328 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6329 dentry->d_name.len, btrfs_ino(dir), objectid, 6330 mode, &index); 6331 if (IS_ERR(inode)) { 6332 err = PTR_ERR(inode); 6333 goto out_unlock; 6334 } 6335 drop_inode_on_err = 1; 6336 /* 6337 * If the active LSM wants to access the inode during 6338 * d_instantiate it needs these. Smack checks to see 6339 * if the filesystem supports xattrs by looking at the 6340 * ops vector. 6341 */ 6342 inode->i_fop = &btrfs_file_operations; 6343 inode->i_op = &btrfs_file_inode_operations; 6344 inode->i_mapping->a_ops = &btrfs_aops; 6345 6346 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6347 if (err) 6348 goto out_unlock_inode; 6349 6350 err = btrfs_update_inode(trans, root, inode); 6351 if (err) 6352 goto out_unlock_inode; 6353 6354 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6355 if (err) 6356 goto out_unlock_inode; 6357 6358 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6359 unlock_new_inode(inode); 6360 d_instantiate(dentry, inode); 6361 6362 out_unlock: 6363 btrfs_end_transaction(trans, root); 6364 if (err && drop_inode_on_err) { 6365 inode_dec_link_count(inode); 6366 iput(inode); 6367 } 6368 btrfs_balance_delayed_items(root); 6369 btrfs_btree_balance_dirty(root); 6370 return err; 6371 6372 out_unlock_inode: 6373 unlock_new_inode(inode); 6374 goto out_unlock; 6375 6376 } 6377 6378 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6379 struct dentry *dentry) 6380 { 6381 struct btrfs_trans_handle *trans; 6382 struct btrfs_root *root = BTRFS_I(dir)->root; 6383 struct inode *inode = d_inode(old_dentry); 6384 u64 index; 6385 int err; 6386 int drop_inode = 0; 6387 6388 /* do not allow sys_link's with other subvols of the same device */ 6389 if (root->objectid != BTRFS_I(inode)->root->objectid) 6390 return -EXDEV; 6391 6392 if (inode->i_nlink >= BTRFS_LINK_MAX) 6393 return -EMLINK; 6394 6395 err = btrfs_set_inode_index(dir, &index); 6396 if (err) 6397 goto fail; 6398 6399 /* 6400 * 2 items for inode and inode ref 6401 * 2 items for dir items 6402 * 1 item for parent inode 6403 */ 6404 trans = btrfs_start_transaction(root, 5); 6405 if (IS_ERR(trans)) { 6406 err = PTR_ERR(trans); 6407 goto fail; 6408 } 6409 6410 /* There are several dir indexes for this inode, clear the cache. */ 6411 BTRFS_I(inode)->dir_index = 0ULL; 6412 inc_nlink(inode); 6413 inode_inc_iversion(inode); 6414 inode->i_ctime = CURRENT_TIME; 6415 ihold(inode); 6416 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6417 6418 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6419 6420 if (err) { 6421 drop_inode = 1; 6422 } else { 6423 struct dentry *parent = dentry->d_parent; 6424 err = btrfs_update_inode(trans, root, inode); 6425 if (err) 6426 goto fail; 6427 if (inode->i_nlink == 1) { 6428 /* 6429 * If new hard link count is 1, it's a file created 6430 * with open(2) O_TMPFILE flag. 6431 */ 6432 err = btrfs_orphan_del(trans, inode); 6433 if (err) 6434 goto fail; 6435 } 6436 d_instantiate(dentry, inode); 6437 btrfs_log_new_name(trans, inode, NULL, parent); 6438 } 6439 6440 btrfs_end_transaction(trans, root); 6441 btrfs_balance_delayed_items(root); 6442 fail: 6443 if (drop_inode) { 6444 inode_dec_link_count(inode); 6445 iput(inode); 6446 } 6447 btrfs_btree_balance_dirty(root); 6448 return err; 6449 } 6450 6451 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6452 { 6453 struct inode *inode = NULL; 6454 struct btrfs_trans_handle *trans; 6455 struct btrfs_root *root = BTRFS_I(dir)->root; 6456 int err = 0; 6457 int drop_on_err = 0; 6458 u64 objectid = 0; 6459 u64 index = 0; 6460 6461 /* 6462 * 2 items for inode and ref 6463 * 2 items for dir items 6464 * 1 for xattr if selinux is on 6465 */ 6466 trans = btrfs_start_transaction(root, 5); 6467 if (IS_ERR(trans)) 6468 return PTR_ERR(trans); 6469 6470 err = btrfs_find_free_ino(root, &objectid); 6471 if (err) 6472 goto out_fail; 6473 6474 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6475 dentry->d_name.len, btrfs_ino(dir), objectid, 6476 S_IFDIR | mode, &index); 6477 if (IS_ERR(inode)) { 6478 err = PTR_ERR(inode); 6479 goto out_fail; 6480 } 6481 6482 drop_on_err = 1; 6483 /* these must be set before we unlock the inode */ 6484 inode->i_op = &btrfs_dir_inode_operations; 6485 inode->i_fop = &btrfs_dir_file_operations; 6486 6487 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6488 if (err) 6489 goto out_fail_inode; 6490 6491 btrfs_i_size_write(inode, 0); 6492 err = btrfs_update_inode(trans, root, inode); 6493 if (err) 6494 goto out_fail_inode; 6495 6496 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6497 dentry->d_name.len, 0, index); 6498 if (err) 6499 goto out_fail_inode; 6500 6501 d_instantiate(dentry, inode); 6502 /* 6503 * mkdir is special. We're unlocking after we call d_instantiate 6504 * to avoid a race with nfsd calling d_instantiate. 6505 */ 6506 unlock_new_inode(inode); 6507 drop_on_err = 0; 6508 6509 out_fail: 6510 btrfs_end_transaction(trans, root); 6511 if (drop_on_err) { 6512 inode_dec_link_count(inode); 6513 iput(inode); 6514 } 6515 btrfs_balance_delayed_items(root); 6516 btrfs_btree_balance_dirty(root); 6517 return err; 6518 6519 out_fail_inode: 6520 unlock_new_inode(inode); 6521 goto out_fail; 6522 } 6523 6524 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6525 static struct extent_map *next_extent_map(struct extent_map *em) 6526 { 6527 struct rb_node *next; 6528 6529 next = rb_next(&em->rb_node); 6530 if (!next) 6531 return NULL; 6532 return container_of(next, struct extent_map, rb_node); 6533 } 6534 6535 static struct extent_map *prev_extent_map(struct extent_map *em) 6536 { 6537 struct rb_node *prev; 6538 6539 prev = rb_prev(&em->rb_node); 6540 if (!prev) 6541 return NULL; 6542 return container_of(prev, struct extent_map, rb_node); 6543 } 6544 6545 /* helper for btfs_get_extent. Given an existing extent in the tree, 6546 * the existing extent is the nearest extent to map_start, 6547 * and an extent that you want to insert, deal with overlap and insert 6548 * the best fitted new extent into the tree. 6549 */ 6550 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6551 struct extent_map *existing, 6552 struct extent_map *em, 6553 u64 map_start) 6554 { 6555 struct extent_map *prev; 6556 struct extent_map *next; 6557 u64 start; 6558 u64 end; 6559 u64 start_diff; 6560 6561 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6562 6563 if (existing->start > map_start) { 6564 next = existing; 6565 prev = prev_extent_map(next); 6566 } else { 6567 prev = existing; 6568 next = next_extent_map(prev); 6569 } 6570 6571 start = prev ? extent_map_end(prev) : em->start; 6572 start = max_t(u64, start, em->start); 6573 end = next ? next->start : extent_map_end(em); 6574 end = min_t(u64, end, extent_map_end(em)); 6575 start_diff = start - em->start; 6576 em->start = start; 6577 em->len = end - start; 6578 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6579 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6580 em->block_start += start_diff; 6581 em->block_len -= start_diff; 6582 } 6583 return add_extent_mapping(em_tree, em, 0); 6584 } 6585 6586 static noinline int uncompress_inline(struct btrfs_path *path, 6587 struct inode *inode, struct page *page, 6588 size_t pg_offset, u64 extent_offset, 6589 struct btrfs_file_extent_item *item) 6590 { 6591 int ret; 6592 struct extent_buffer *leaf = path->nodes[0]; 6593 char *tmp; 6594 size_t max_size; 6595 unsigned long inline_size; 6596 unsigned long ptr; 6597 int compress_type; 6598 6599 WARN_ON(pg_offset != 0); 6600 compress_type = btrfs_file_extent_compression(leaf, item); 6601 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6602 inline_size = btrfs_file_extent_inline_item_len(leaf, 6603 btrfs_item_nr(path->slots[0])); 6604 tmp = kmalloc(inline_size, GFP_NOFS); 6605 if (!tmp) 6606 return -ENOMEM; 6607 ptr = btrfs_file_extent_inline_start(item); 6608 6609 read_extent_buffer(leaf, tmp, ptr, inline_size); 6610 6611 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6612 ret = btrfs_decompress(compress_type, tmp, page, 6613 extent_offset, inline_size, max_size); 6614 kfree(tmp); 6615 return ret; 6616 } 6617 6618 /* 6619 * a bit scary, this does extent mapping from logical file offset to the disk. 6620 * the ugly parts come from merging extents from the disk with the in-ram 6621 * representation. This gets more complex because of the data=ordered code, 6622 * where the in-ram extents might be locked pending data=ordered completion. 6623 * 6624 * This also copies inline extents directly into the page. 6625 */ 6626 6627 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6628 size_t pg_offset, u64 start, u64 len, 6629 int create) 6630 { 6631 int ret; 6632 int err = 0; 6633 u64 extent_start = 0; 6634 u64 extent_end = 0; 6635 u64 objectid = btrfs_ino(inode); 6636 u32 found_type; 6637 struct btrfs_path *path = NULL; 6638 struct btrfs_root *root = BTRFS_I(inode)->root; 6639 struct btrfs_file_extent_item *item; 6640 struct extent_buffer *leaf; 6641 struct btrfs_key found_key; 6642 struct extent_map *em = NULL; 6643 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6644 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6645 struct btrfs_trans_handle *trans = NULL; 6646 const bool new_inline = !page || create; 6647 6648 again: 6649 read_lock(&em_tree->lock); 6650 em = lookup_extent_mapping(em_tree, start, len); 6651 if (em) 6652 em->bdev = root->fs_info->fs_devices->latest_bdev; 6653 read_unlock(&em_tree->lock); 6654 6655 if (em) { 6656 if (em->start > start || em->start + em->len <= start) 6657 free_extent_map(em); 6658 else if (em->block_start == EXTENT_MAP_INLINE && page) 6659 free_extent_map(em); 6660 else 6661 goto out; 6662 } 6663 em = alloc_extent_map(); 6664 if (!em) { 6665 err = -ENOMEM; 6666 goto out; 6667 } 6668 em->bdev = root->fs_info->fs_devices->latest_bdev; 6669 em->start = EXTENT_MAP_HOLE; 6670 em->orig_start = EXTENT_MAP_HOLE; 6671 em->len = (u64)-1; 6672 em->block_len = (u64)-1; 6673 6674 if (!path) { 6675 path = btrfs_alloc_path(); 6676 if (!path) { 6677 err = -ENOMEM; 6678 goto out; 6679 } 6680 /* 6681 * Chances are we'll be called again, so go ahead and do 6682 * readahead 6683 */ 6684 path->reada = 1; 6685 } 6686 6687 ret = btrfs_lookup_file_extent(trans, root, path, 6688 objectid, start, trans != NULL); 6689 if (ret < 0) { 6690 err = ret; 6691 goto out; 6692 } 6693 6694 if (ret != 0) { 6695 if (path->slots[0] == 0) 6696 goto not_found; 6697 path->slots[0]--; 6698 } 6699 6700 leaf = path->nodes[0]; 6701 item = btrfs_item_ptr(leaf, path->slots[0], 6702 struct btrfs_file_extent_item); 6703 /* are we inside the extent that was found? */ 6704 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6705 found_type = found_key.type; 6706 if (found_key.objectid != objectid || 6707 found_type != BTRFS_EXTENT_DATA_KEY) { 6708 /* 6709 * If we backup past the first extent we want to move forward 6710 * and see if there is an extent in front of us, otherwise we'll 6711 * say there is a hole for our whole search range which can 6712 * cause problems. 6713 */ 6714 extent_end = start; 6715 goto next; 6716 } 6717 6718 found_type = btrfs_file_extent_type(leaf, item); 6719 extent_start = found_key.offset; 6720 if (found_type == BTRFS_FILE_EXTENT_REG || 6721 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6722 extent_end = extent_start + 6723 btrfs_file_extent_num_bytes(leaf, item); 6724 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6725 size_t size; 6726 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6727 extent_end = ALIGN(extent_start + size, root->sectorsize); 6728 } 6729 next: 6730 if (start >= extent_end) { 6731 path->slots[0]++; 6732 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6733 ret = btrfs_next_leaf(root, path); 6734 if (ret < 0) { 6735 err = ret; 6736 goto out; 6737 } 6738 if (ret > 0) 6739 goto not_found; 6740 leaf = path->nodes[0]; 6741 } 6742 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6743 if (found_key.objectid != objectid || 6744 found_key.type != BTRFS_EXTENT_DATA_KEY) 6745 goto not_found; 6746 if (start + len <= found_key.offset) 6747 goto not_found; 6748 if (start > found_key.offset) 6749 goto next; 6750 em->start = start; 6751 em->orig_start = start; 6752 em->len = found_key.offset - start; 6753 goto not_found_em; 6754 } 6755 6756 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6757 6758 if (found_type == BTRFS_FILE_EXTENT_REG || 6759 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6760 goto insert; 6761 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6762 unsigned long ptr; 6763 char *map; 6764 size_t size; 6765 size_t extent_offset; 6766 size_t copy_size; 6767 6768 if (new_inline) 6769 goto out; 6770 6771 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6772 extent_offset = page_offset(page) + pg_offset - extent_start; 6773 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6774 size - extent_offset); 6775 em->start = extent_start + extent_offset; 6776 em->len = ALIGN(copy_size, root->sectorsize); 6777 em->orig_block_len = em->len; 6778 em->orig_start = em->start; 6779 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6780 if (create == 0 && !PageUptodate(page)) { 6781 if (btrfs_file_extent_compression(leaf, item) != 6782 BTRFS_COMPRESS_NONE) { 6783 ret = uncompress_inline(path, inode, page, 6784 pg_offset, 6785 extent_offset, item); 6786 if (ret) { 6787 err = ret; 6788 goto out; 6789 } 6790 } else { 6791 map = kmap(page); 6792 read_extent_buffer(leaf, map + pg_offset, ptr, 6793 copy_size); 6794 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6795 memset(map + pg_offset + copy_size, 0, 6796 PAGE_CACHE_SIZE - pg_offset - 6797 copy_size); 6798 } 6799 kunmap(page); 6800 } 6801 flush_dcache_page(page); 6802 } else if (create && PageUptodate(page)) { 6803 BUG(); 6804 if (!trans) { 6805 kunmap(page); 6806 free_extent_map(em); 6807 em = NULL; 6808 6809 btrfs_release_path(path); 6810 trans = btrfs_join_transaction(root); 6811 6812 if (IS_ERR(trans)) 6813 return ERR_CAST(trans); 6814 goto again; 6815 } 6816 map = kmap(page); 6817 write_extent_buffer(leaf, map + pg_offset, ptr, 6818 copy_size); 6819 kunmap(page); 6820 btrfs_mark_buffer_dirty(leaf); 6821 } 6822 set_extent_uptodate(io_tree, em->start, 6823 extent_map_end(em) - 1, NULL, GFP_NOFS); 6824 goto insert; 6825 } 6826 not_found: 6827 em->start = start; 6828 em->orig_start = start; 6829 em->len = len; 6830 not_found_em: 6831 em->block_start = EXTENT_MAP_HOLE; 6832 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6833 insert: 6834 btrfs_release_path(path); 6835 if (em->start > start || extent_map_end(em) <= start) { 6836 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6837 em->start, em->len, start, len); 6838 err = -EIO; 6839 goto out; 6840 } 6841 6842 err = 0; 6843 write_lock(&em_tree->lock); 6844 ret = add_extent_mapping(em_tree, em, 0); 6845 /* it is possible that someone inserted the extent into the tree 6846 * while we had the lock dropped. It is also possible that 6847 * an overlapping map exists in the tree 6848 */ 6849 if (ret == -EEXIST) { 6850 struct extent_map *existing; 6851 6852 ret = 0; 6853 6854 existing = search_extent_mapping(em_tree, start, len); 6855 /* 6856 * existing will always be non-NULL, since there must be 6857 * extent causing the -EEXIST. 6858 */ 6859 if (start >= extent_map_end(existing) || 6860 start <= existing->start) { 6861 /* 6862 * The existing extent map is the one nearest to 6863 * the [start, start + len) range which overlaps 6864 */ 6865 err = merge_extent_mapping(em_tree, existing, 6866 em, start); 6867 free_extent_map(existing); 6868 if (err) { 6869 free_extent_map(em); 6870 em = NULL; 6871 } 6872 } else { 6873 free_extent_map(em); 6874 em = existing; 6875 err = 0; 6876 } 6877 } 6878 write_unlock(&em_tree->lock); 6879 out: 6880 6881 trace_btrfs_get_extent(root, em); 6882 6883 if (path) 6884 btrfs_free_path(path); 6885 if (trans) { 6886 ret = btrfs_end_transaction(trans, root); 6887 if (!err) 6888 err = ret; 6889 } 6890 if (err) { 6891 free_extent_map(em); 6892 return ERR_PTR(err); 6893 } 6894 BUG_ON(!em); /* Error is always set */ 6895 return em; 6896 } 6897 6898 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6899 size_t pg_offset, u64 start, u64 len, 6900 int create) 6901 { 6902 struct extent_map *em; 6903 struct extent_map *hole_em = NULL; 6904 u64 range_start = start; 6905 u64 end; 6906 u64 found; 6907 u64 found_end; 6908 int err = 0; 6909 6910 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6911 if (IS_ERR(em)) 6912 return em; 6913 if (em) { 6914 /* 6915 * if our em maps to 6916 * - a hole or 6917 * - a pre-alloc extent, 6918 * there might actually be delalloc bytes behind it. 6919 */ 6920 if (em->block_start != EXTENT_MAP_HOLE && 6921 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6922 return em; 6923 else 6924 hole_em = em; 6925 } 6926 6927 /* check to see if we've wrapped (len == -1 or similar) */ 6928 end = start + len; 6929 if (end < start) 6930 end = (u64)-1; 6931 else 6932 end -= 1; 6933 6934 em = NULL; 6935 6936 /* ok, we didn't find anything, lets look for delalloc */ 6937 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6938 end, len, EXTENT_DELALLOC, 1); 6939 found_end = range_start + found; 6940 if (found_end < range_start) 6941 found_end = (u64)-1; 6942 6943 /* 6944 * we didn't find anything useful, return 6945 * the original results from get_extent() 6946 */ 6947 if (range_start > end || found_end <= start) { 6948 em = hole_em; 6949 hole_em = NULL; 6950 goto out; 6951 } 6952 6953 /* adjust the range_start to make sure it doesn't 6954 * go backwards from the start they passed in 6955 */ 6956 range_start = max(start, range_start); 6957 found = found_end - range_start; 6958 6959 if (found > 0) { 6960 u64 hole_start = start; 6961 u64 hole_len = len; 6962 6963 em = alloc_extent_map(); 6964 if (!em) { 6965 err = -ENOMEM; 6966 goto out; 6967 } 6968 /* 6969 * when btrfs_get_extent can't find anything it 6970 * returns one huge hole 6971 * 6972 * make sure what it found really fits our range, and 6973 * adjust to make sure it is based on the start from 6974 * the caller 6975 */ 6976 if (hole_em) { 6977 u64 calc_end = extent_map_end(hole_em); 6978 6979 if (calc_end <= start || (hole_em->start > end)) { 6980 free_extent_map(hole_em); 6981 hole_em = NULL; 6982 } else { 6983 hole_start = max(hole_em->start, start); 6984 hole_len = calc_end - hole_start; 6985 } 6986 } 6987 em->bdev = NULL; 6988 if (hole_em && range_start > hole_start) { 6989 /* our hole starts before our delalloc, so we 6990 * have to return just the parts of the hole 6991 * that go until the delalloc starts 6992 */ 6993 em->len = min(hole_len, 6994 range_start - hole_start); 6995 em->start = hole_start; 6996 em->orig_start = hole_start; 6997 /* 6998 * don't adjust block start at all, 6999 * it is fixed at EXTENT_MAP_HOLE 7000 */ 7001 em->block_start = hole_em->block_start; 7002 em->block_len = hole_len; 7003 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7004 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7005 } else { 7006 em->start = range_start; 7007 em->len = found; 7008 em->orig_start = range_start; 7009 em->block_start = EXTENT_MAP_DELALLOC; 7010 em->block_len = found; 7011 } 7012 } else if (hole_em) { 7013 return hole_em; 7014 } 7015 out: 7016 7017 free_extent_map(hole_em); 7018 if (err) { 7019 free_extent_map(em); 7020 return ERR_PTR(err); 7021 } 7022 return em; 7023 } 7024 7025 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7026 u64 start, u64 len) 7027 { 7028 struct btrfs_root *root = BTRFS_I(inode)->root; 7029 struct extent_map *em; 7030 struct btrfs_key ins; 7031 u64 alloc_hint; 7032 int ret; 7033 7034 alloc_hint = get_extent_allocation_hint(inode, start, len); 7035 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7036 alloc_hint, &ins, 1, 1); 7037 if (ret) 7038 return ERR_PTR(ret); 7039 7040 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 7041 ins.offset, ins.offset, ins.offset, 0); 7042 if (IS_ERR(em)) { 7043 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7044 return em; 7045 } 7046 7047 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 7048 ins.offset, ins.offset, 0); 7049 if (ret) { 7050 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7051 free_extent_map(em); 7052 return ERR_PTR(ret); 7053 } 7054 7055 return em; 7056 } 7057 7058 /* 7059 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7060 * block must be cow'd 7061 */ 7062 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7063 u64 *orig_start, u64 *orig_block_len, 7064 u64 *ram_bytes) 7065 { 7066 struct btrfs_trans_handle *trans; 7067 struct btrfs_path *path; 7068 int ret; 7069 struct extent_buffer *leaf; 7070 struct btrfs_root *root = BTRFS_I(inode)->root; 7071 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7072 struct btrfs_file_extent_item *fi; 7073 struct btrfs_key key; 7074 u64 disk_bytenr; 7075 u64 backref_offset; 7076 u64 extent_end; 7077 u64 num_bytes; 7078 int slot; 7079 int found_type; 7080 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7081 7082 path = btrfs_alloc_path(); 7083 if (!path) 7084 return -ENOMEM; 7085 7086 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7087 offset, 0); 7088 if (ret < 0) 7089 goto out; 7090 7091 slot = path->slots[0]; 7092 if (ret == 1) { 7093 if (slot == 0) { 7094 /* can't find the item, must cow */ 7095 ret = 0; 7096 goto out; 7097 } 7098 slot--; 7099 } 7100 ret = 0; 7101 leaf = path->nodes[0]; 7102 btrfs_item_key_to_cpu(leaf, &key, slot); 7103 if (key.objectid != btrfs_ino(inode) || 7104 key.type != BTRFS_EXTENT_DATA_KEY) { 7105 /* not our file or wrong item type, must cow */ 7106 goto out; 7107 } 7108 7109 if (key.offset > offset) { 7110 /* Wrong offset, must cow */ 7111 goto out; 7112 } 7113 7114 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7115 found_type = btrfs_file_extent_type(leaf, fi); 7116 if (found_type != BTRFS_FILE_EXTENT_REG && 7117 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7118 /* not a regular extent, must cow */ 7119 goto out; 7120 } 7121 7122 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7123 goto out; 7124 7125 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7126 if (extent_end <= offset) 7127 goto out; 7128 7129 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7130 if (disk_bytenr == 0) 7131 goto out; 7132 7133 if (btrfs_file_extent_compression(leaf, fi) || 7134 btrfs_file_extent_encryption(leaf, fi) || 7135 btrfs_file_extent_other_encoding(leaf, fi)) 7136 goto out; 7137 7138 backref_offset = btrfs_file_extent_offset(leaf, fi); 7139 7140 if (orig_start) { 7141 *orig_start = key.offset - backref_offset; 7142 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7143 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7144 } 7145 7146 if (btrfs_extent_readonly(root, disk_bytenr)) 7147 goto out; 7148 7149 num_bytes = min(offset + *len, extent_end) - offset; 7150 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7151 u64 range_end; 7152 7153 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7154 ret = test_range_bit(io_tree, offset, range_end, 7155 EXTENT_DELALLOC, 0, NULL); 7156 if (ret) { 7157 ret = -EAGAIN; 7158 goto out; 7159 } 7160 } 7161 7162 btrfs_release_path(path); 7163 7164 /* 7165 * look for other files referencing this extent, if we 7166 * find any we must cow 7167 */ 7168 trans = btrfs_join_transaction(root); 7169 if (IS_ERR(trans)) { 7170 ret = 0; 7171 goto out; 7172 } 7173 7174 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7175 key.offset - backref_offset, disk_bytenr); 7176 btrfs_end_transaction(trans, root); 7177 if (ret) { 7178 ret = 0; 7179 goto out; 7180 } 7181 7182 /* 7183 * adjust disk_bytenr and num_bytes to cover just the bytes 7184 * in this extent we are about to write. If there 7185 * are any csums in that range we have to cow in order 7186 * to keep the csums correct 7187 */ 7188 disk_bytenr += backref_offset; 7189 disk_bytenr += offset - key.offset; 7190 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7191 goto out; 7192 /* 7193 * all of the above have passed, it is safe to overwrite this extent 7194 * without cow 7195 */ 7196 *len = num_bytes; 7197 ret = 1; 7198 out: 7199 btrfs_free_path(path); 7200 return ret; 7201 } 7202 7203 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7204 { 7205 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7206 int found = false; 7207 void **pagep = NULL; 7208 struct page *page = NULL; 7209 int start_idx; 7210 int end_idx; 7211 7212 start_idx = start >> PAGE_CACHE_SHIFT; 7213 7214 /* 7215 * end is the last byte in the last page. end == start is legal 7216 */ 7217 end_idx = end >> PAGE_CACHE_SHIFT; 7218 7219 rcu_read_lock(); 7220 7221 /* Most of the code in this while loop is lifted from 7222 * find_get_page. It's been modified to begin searching from a 7223 * page and return just the first page found in that range. If the 7224 * found idx is less than or equal to the end idx then we know that 7225 * a page exists. If no pages are found or if those pages are 7226 * outside of the range then we're fine (yay!) */ 7227 while (page == NULL && 7228 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7229 page = radix_tree_deref_slot(pagep); 7230 if (unlikely(!page)) 7231 break; 7232 7233 if (radix_tree_exception(page)) { 7234 if (radix_tree_deref_retry(page)) { 7235 page = NULL; 7236 continue; 7237 } 7238 /* 7239 * Otherwise, shmem/tmpfs must be storing a swap entry 7240 * here as an exceptional entry: so return it without 7241 * attempting to raise page count. 7242 */ 7243 page = NULL; 7244 break; /* TODO: Is this relevant for this use case? */ 7245 } 7246 7247 if (!page_cache_get_speculative(page)) { 7248 page = NULL; 7249 continue; 7250 } 7251 7252 /* 7253 * Has the page moved? 7254 * This is part of the lockless pagecache protocol. See 7255 * include/linux/pagemap.h for details. 7256 */ 7257 if (unlikely(page != *pagep)) { 7258 page_cache_release(page); 7259 page = NULL; 7260 } 7261 } 7262 7263 if (page) { 7264 if (page->index <= end_idx) 7265 found = true; 7266 page_cache_release(page); 7267 } 7268 7269 rcu_read_unlock(); 7270 return found; 7271 } 7272 7273 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7274 struct extent_state **cached_state, int writing) 7275 { 7276 struct btrfs_ordered_extent *ordered; 7277 int ret = 0; 7278 7279 while (1) { 7280 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7281 0, cached_state); 7282 /* 7283 * We're concerned with the entire range that we're going to be 7284 * doing DIO to, so we need to make sure theres no ordered 7285 * extents in this range. 7286 */ 7287 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7288 lockend - lockstart + 1); 7289 7290 /* 7291 * We need to make sure there are no buffered pages in this 7292 * range either, we could have raced between the invalidate in 7293 * generic_file_direct_write and locking the extent. The 7294 * invalidate needs to happen so that reads after a write do not 7295 * get stale data. 7296 */ 7297 if (!ordered && 7298 (!writing || 7299 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7300 break; 7301 7302 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7303 cached_state, GFP_NOFS); 7304 7305 if (ordered) { 7306 btrfs_start_ordered_extent(inode, ordered, 1); 7307 btrfs_put_ordered_extent(ordered); 7308 } else { 7309 /* Screw you mmap */ 7310 ret = btrfs_fdatawrite_range(inode, lockstart, lockend); 7311 if (ret) 7312 break; 7313 ret = filemap_fdatawait_range(inode->i_mapping, 7314 lockstart, 7315 lockend); 7316 if (ret) 7317 break; 7318 7319 /* 7320 * If we found a page that couldn't be invalidated just 7321 * fall back to buffered. 7322 */ 7323 ret = invalidate_inode_pages2_range(inode->i_mapping, 7324 lockstart >> PAGE_CACHE_SHIFT, 7325 lockend >> PAGE_CACHE_SHIFT); 7326 if (ret) 7327 break; 7328 } 7329 7330 cond_resched(); 7331 } 7332 7333 return ret; 7334 } 7335 7336 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7337 u64 len, u64 orig_start, 7338 u64 block_start, u64 block_len, 7339 u64 orig_block_len, u64 ram_bytes, 7340 int type) 7341 { 7342 struct extent_map_tree *em_tree; 7343 struct extent_map *em; 7344 struct btrfs_root *root = BTRFS_I(inode)->root; 7345 int ret; 7346 7347 em_tree = &BTRFS_I(inode)->extent_tree; 7348 em = alloc_extent_map(); 7349 if (!em) 7350 return ERR_PTR(-ENOMEM); 7351 7352 em->start = start; 7353 em->orig_start = orig_start; 7354 em->mod_start = start; 7355 em->mod_len = len; 7356 em->len = len; 7357 em->block_len = block_len; 7358 em->block_start = block_start; 7359 em->bdev = root->fs_info->fs_devices->latest_bdev; 7360 em->orig_block_len = orig_block_len; 7361 em->ram_bytes = ram_bytes; 7362 em->generation = -1; 7363 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7364 if (type == BTRFS_ORDERED_PREALLOC) 7365 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7366 7367 do { 7368 btrfs_drop_extent_cache(inode, em->start, 7369 em->start + em->len - 1, 0); 7370 write_lock(&em_tree->lock); 7371 ret = add_extent_mapping(em_tree, em, 1); 7372 write_unlock(&em_tree->lock); 7373 } while (ret == -EEXIST); 7374 7375 if (ret) { 7376 free_extent_map(em); 7377 return ERR_PTR(ret); 7378 } 7379 7380 return em; 7381 } 7382 7383 7384 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7385 struct buffer_head *bh_result, int create) 7386 { 7387 struct extent_map *em; 7388 struct btrfs_root *root = BTRFS_I(inode)->root; 7389 struct extent_state *cached_state = NULL; 7390 u64 start = iblock << inode->i_blkbits; 7391 u64 lockstart, lockend; 7392 u64 len = bh_result->b_size; 7393 u64 *outstanding_extents = NULL; 7394 int unlock_bits = EXTENT_LOCKED; 7395 int ret = 0; 7396 7397 if (create) 7398 unlock_bits |= EXTENT_DIRTY; 7399 else 7400 len = min_t(u64, len, root->sectorsize); 7401 7402 lockstart = start; 7403 lockend = start + len - 1; 7404 7405 if (current->journal_info) { 7406 /* 7407 * Need to pull our outstanding extents and set journal_info to NULL so 7408 * that anything that needs to check if there's a transction doesn't get 7409 * confused. 7410 */ 7411 outstanding_extents = current->journal_info; 7412 current->journal_info = NULL; 7413 } 7414 7415 /* 7416 * If this errors out it's because we couldn't invalidate pagecache for 7417 * this range and we need to fallback to buffered. 7418 */ 7419 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 7420 return -ENOTBLK; 7421 7422 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7423 if (IS_ERR(em)) { 7424 ret = PTR_ERR(em); 7425 goto unlock_err; 7426 } 7427 7428 /* 7429 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7430 * io. INLINE is special, and we could probably kludge it in here, but 7431 * it's still buffered so for safety lets just fall back to the generic 7432 * buffered path. 7433 * 7434 * For COMPRESSED we _have_ to read the entire extent in so we can 7435 * decompress it, so there will be buffering required no matter what we 7436 * do, so go ahead and fallback to buffered. 7437 * 7438 * We return -ENOTBLK because thats what makes DIO go ahead and go back 7439 * to buffered IO. Don't blame me, this is the price we pay for using 7440 * the generic code. 7441 */ 7442 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7443 em->block_start == EXTENT_MAP_INLINE) { 7444 free_extent_map(em); 7445 ret = -ENOTBLK; 7446 goto unlock_err; 7447 } 7448 7449 /* Just a good old fashioned hole, return */ 7450 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7451 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7452 free_extent_map(em); 7453 goto unlock_err; 7454 } 7455 7456 /* 7457 * We don't allocate a new extent in the following cases 7458 * 7459 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7460 * existing extent. 7461 * 2) The extent is marked as PREALLOC. We're good to go here and can 7462 * just use the extent. 7463 * 7464 */ 7465 if (!create) { 7466 len = min(len, em->len - (start - em->start)); 7467 lockstart = start + len; 7468 goto unlock; 7469 } 7470 7471 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7472 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7473 em->block_start != EXTENT_MAP_HOLE)) { 7474 int type; 7475 u64 block_start, orig_start, orig_block_len, ram_bytes; 7476 7477 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7478 type = BTRFS_ORDERED_PREALLOC; 7479 else 7480 type = BTRFS_ORDERED_NOCOW; 7481 len = min(len, em->len - (start - em->start)); 7482 block_start = em->block_start + (start - em->start); 7483 7484 if (can_nocow_extent(inode, start, &len, &orig_start, 7485 &orig_block_len, &ram_bytes) == 1) { 7486 if (type == BTRFS_ORDERED_PREALLOC) { 7487 free_extent_map(em); 7488 em = create_pinned_em(inode, start, len, 7489 orig_start, 7490 block_start, len, 7491 orig_block_len, 7492 ram_bytes, type); 7493 if (IS_ERR(em)) { 7494 ret = PTR_ERR(em); 7495 goto unlock_err; 7496 } 7497 } 7498 7499 ret = btrfs_add_ordered_extent_dio(inode, start, 7500 block_start, len, len, type); 7501 if (ret) { 7502 free_extent_map(em); 7503 goto unlock_err; 7504 } 7505 goto unlock; 7506 } 7507 } 7508 7509 /* 7510 * this will cow the extent, reset the len in case we changed 7511 * it above 7512 */ 7513 len = bh_result->b_size; 7514 free_extent_map(em); 7515 em = btrfs_new_extent_direct(inode, start, len); 7516 if (IS_ERR(em)) { 7517 ret = PTR_ERR(em); 7518 goto unlock_err; 7519 } 7520 len = min(len, em->len - (start - em->start)); 7521 unlock: 7522 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7523 inode->i_blkbits; 7524 bh_result->b_size = len; 7525 bh_result->b_bdev = em->bdev; 7526 set_buffer_mapped(bh_result); 7527 if (create) { 7528 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7529 set_buffer_new(bh_result); 7530 7531 /* 7532 * Need to update the i_size under the extent lock so buffered 7533 * readers will get the updated i_size when we unlock. 7534 */ 7535 if (start + len > i_size_read(inode)) 7536 i_size_write(inode, start + len); 7537 7538 /* 7539 * If we have an outstanding_extents count still set then we're 7540 * within our reservation, otherwise we need to adjust our inode 7541 * counter appropriately. 7542 */ 7543 if (*outstanding_extents) { 7544 (*outstanding_extents)--; 7545 } else { 7546 spin_lock(&BTRFS_I(inode)->lock); 7547 BTRFS_I(inode)->outstanding_extents++; 7548 spin_unlock(&BTRFS_I(inode)->lock); 7549 } 7550 7551 current->journal_info = outstanding_extents; 7552 btrfs_free_reserved_data_space(inode, len); 7553 set_bit(BTRFS_INODE_DIO_READY, &BTRFS_I(inode)->runtime_flags); 7554 } 7555 7556 /* 7557 * In the case of write we need to clear and unlock the entire range, 7558 * in the case of read we need to unlock only the end area that we 7559 * aren't using if there is any left over space. 7560 */ 7561 if (lockstart < lockend) { 7562 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7563 lockend, unlock_bits, 1, 0, 7564 &cached_state, GFP_NOFS); 7565 } else { 7566 free_extent_state(cached_state); 7567 } 7568 7569 free_extent_map(em); 7570 7571 return 0; 7572 7573 unlock_err: 7574 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7575 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7576 if (outstanding_extents) 7577 current->journal_info = outstanding_extents; 7578 return ret; 7579 } 7580 7581 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7582 int rw, int mirror_num) 7583 { 7584 struct btrfs_root *root = BTRFS_I(inode)->root; 7585 int ret; 7586 7587 BUG_ON(rw & REQ_WRITE); 7588 7589 bio_get(bio); 7590 7591 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7592 BTRFS_WQ_ENDIO_DIO_REPAIR); 7593 if (ret) 7594 goto err; 7595 7596 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7597 err: 7598 bio_put(bio); 7599 return ret; 7600 } 7601 7602 static int btrfs_check_dio_repairable(struct inode *inode, 7603 struct bio *failed_bio, 7604 struct io_failure_record *failrec, 7605 int failed_mirror) 7606 { 7607 int num_copies; 7608 7609 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7610 failrec->logical, failrec->len); 7611 if (num_copies == 1) { 7612 /* 7613 * we only have a single copy of the data, so don't bother with 7614 * all the retry and error correction code that follows. no 7615 * matter what the error is, it is very likely to persist. 7616 */ 7617 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7618 num_copies, failrec->this_mirror, failed_mirror); 7619 return 0; 7620 } 7621 7622 failrec->failed_mirror = failed_mirror; 7623 failrec->this_mirror++; 7624 if (failrec->this_mirror == failed_mirror) 7625 failrec->this_mirror++; 7626 7627 if (failrec->this_mirror > num_copies) { 7628 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7629 num_copies, failrec->this_mirror, failed_mirror); 7630 return 0; 7631 } 7632 7633 return 1; 7634 } 7635 7636 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7637 struct page *page, u64 start, u64 end, 7638 int failed_mirror, bio_end_io_t *repair_endio, 7639 void *repair_arg) 7640 { 7641 struct io_failure_record *failrec; 7642 struct bio *bio; 7643 int isector; 7644 int read_mode; 7645 int ret; 7646 7647 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7648 7649 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7650 if (ret) 7651 return ret; 7652 7653 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7654 failed_mirror); 7655 if (!ret) { 7656 free_io_failure(inode, failrec); 7657 return -EIO; 7658 } 7659 7660 if (failed_bio->bi_vcnt > 1) 7661 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7662 else 7663 read_mode = READ_SYNC; 7664 7665 isector = start - btrfs_io_bio(failed_bio)->logical; 7666 isector >>= inode->i_sb->s_blocksize_bits; 7667 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7668 0, isector, repair_endio, repair_arg); 7669 if (!bio) { 7670 free_io_failure(inode, failrec); 7671 return -EIO; 7672 } 7673 7674 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7675 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7676 read_mode, failrec->this_mirror, failrec->in_validation); 7677 7678 ret = submit_dio_repair_bio(inode, bio, read_mode, 7679 failrec->this_mirror); 7680 if (ret) { 7681 free_io_failure(inode, failrec); 7682 bio_put(bio); 7683 } 7684 7685 return ret; 7686 } 7687 7688 struct btrfs_retry_complete { 7689 struct completion done; 7690 struct inode *inode; 7691 u64 start; 7692 int uptodate; 7693 }; 7694 7695 static void btrfs_retry_endio_nocsum(struct bio *bio) 7696 { 7697 struct btrfs_retry_complete *done = bio->bi_private; 7698 struct bio_vec *bvec; 7699 int i; 7700 7701 if (bio->bi_error) 7702 goto end; 7703 7704 done->uptodate = 1; 7705 bio_for_each_segment_all(bvec, bio, i) 7706 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7707 end: 7708 complete(&done->done); 7709 bio_put(bio); 7710 } 7711 7712 static int __btrfs_correct_data_nocsum(struct inode *inode, 7713 struct btrfs_io_bio *io_bio) 7714 { 7715 struct bio_vec *bvec; 7716 struct btrfs_retry_complete done; 7717 u64 start; 7718 int i; 7719 int ret; 7720 7721 start = io_bio->logical; 7722 done.inode = inode; 7723 7724 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7725 try_again: 7726 done.uptodate = 0; 7727 done.start = start; 7728 init_completion(&done.done); 7729 7730 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7731 start + bvec->bv_len - 1, 7732 io_bio->mirror_num, 7733 btrfs_retry_endio_nocsum, &done); 7734 if (ret) 7735 return ret; 7736 7737 wait_for_completion(&done.done); 7738 7739 if (!done.uptodate) { 7740 /* We might have another mirror, so try again */ 7741 goto try_again; 7742 } 7743 7744 start += bvec->bv_len; 7745 } 7746 7747 return 0; 7748 } 7749 7750 static void btrfs_retry_endio(struct bio *bio) 7751 { 7752 struct btrfs_retry_complete *done = bio->bi_private; 7753 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7754 struct bio_vec *bvec; 7755 int uptodate; 7756 int ret; 7757 int i; 7758 7759 if (bio->bi_error) 7760 goto end; 7761 7762 uptodate = 1; 7763 bio_for_each_segment_all(bvec, bio, i) { 7764 ret = __readpage_endio_check(done->inode, io_bio, i, 7765 bvec->bv_page, 0, 7766 done->start, bvec->bv_len); 7767 if (!ret) 7768 clean_io_failure(done->inode, done->start, 7769 bvec->bv_page, 0); 7770 else 7771 uptodate = 0; 7772 } 7773 7774 done->uptodate = uptodate; 7775 end: 7776 complete(&done->done); 7777 bio_put(bio); 7778 } 7779 7780 static int __btrfs_subio_endio_read(struct inode *inode, 7781 struct btrfs_io_bio *io_bio, int err) 7782 { 7783 struct bio_vec *bvec; 7784 struct btrfs_retry_complete done; 7785 u64 start; 7786 u64 offset = 0; 7787 int i; 7788 int ret; 7789 7790 err = 0; 7791 start = io_bio->logical; 7792 done.inode = inode; 7793 7794 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7795 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7796 0, start, bvec->bv_len); 7797 if (likely(!ret)) 7798 goto next; 7799 try_again: 7800 done.uptodate = 0; 7801 done.start = start; 7802 init_completion(&done.done); 7803 7804 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start, 7805 start + bvec->bv_len - 1, 7806 io_bio->mirror_num, 7807 btrfs_retry_endio, &done); 7808 if (ret) { 7809 err = ret; 7810 goto next; 7811 } 7812 7813 wait_for_completion(&done.done); 7814 7815 if (!done.uptodate) { 7816 /* We might have another mirror, so try again */ 7817 goto try_again; 7818 } 7819 next: 7820 offset += bvec->bv_len; 7821 start += bvec->bv_len; 7822 } 7823 7824 return err; 7825 } 7826 7827 static int btrfs_subio_endio_read(struct inode *inode, 7828 struct btrfs_io_bio *io_bio, int err) 7829 { 7830 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7831 7832 if (skip_csum) { 7833 if (unlikely(err)) 7834 return __btrfs_correct_data_nocsum(inode, io_bio); 7835 else 7836 return 0; 7837 } else { 7838 return __btrfs_subio_endio_read(inode, io_bio, err); 7839 } 7840 } 7841 7842 static void btrfs_endio_direct_read(struct bio *bio) 7843 { 7844 struct btrfs_dio_private *dip = bio->bi_private; 7845 struct inode *inode = dip->inode; 7846 struct bio *dio_bio; 7847 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7848 int err = bio->bi_error; 7849 7850 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 7851 err = btrfs_subio_endio_read(inode, io_bio, err); 7852 7853 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 7854 dip->logical_offset + dip->bytes - 1); 7855 dio_bio = dip->dio_bio; 7856 7857 kfree(dip); 7858 7859 dio_end_io(dio_bio, bio->bi_error); 7860 7861 if (io_bio->end_io) 7862 io_bio->end_io(io_bio, err); 7863 bio_put(bio); 7864 } 7865 7866 static void btrfs_endio_direct_write(struct bio *bio) 7867 { 7868 struct btrfs_dio_private *dip = bio->bi_private; 7869 struct inode *inode = dip->inode; 7870 struct btrfs_root *root = BTRFS_I(inode)->root; 7871 struct btrfs_ordered_extent *ordered = NULL; 7872 u64 ordered_offset = dip->logical_offset; 7873 u64 ordered_bytes = dip->bytes; 7874 struct bio *dio_bio; 7875 int ret; 7876 7877 again: 7878 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 7879 &ordered_offset, 7880 ordered_bytes, 7881 !bio->bi_error); 7882 if (!ret) 7883 goto out_test; 7884 7885 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 7886 finish_ordered_fn, NULL, NULL); 7887 btrfs_queue_work(root->fs_info->endio_write_workers, 7888 &ordered->work); 7889 out_test: 7890 /* 7891 * our bio might span multiple ordered extents. If we haven't 7892 * completed the accounting for the whole dio, go back and try again 7893 */ 7894 if (ordered_offset < dip->logical_offset + dip->bytes) { 7895 ordered_bytes = dip->logical_offset + dip->bytes - 7896 ordered_offset; 7897 ordered = NULL; 7898 goto again; 7899 } 7900 dio_bio = dip->dio_bio; 7901 7902 kfree(dip); 7903 7904 dio_end_io(dio_bio, bio->bi_error); 7905 bio_put(bio); 7906 } 7907 7908 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7909 struct bio *bio, int mirror_num, 7910 unsigned long bio_flags, u64 offset) 7911 { 7912 int ret; 7913 struct btrfs_root *root = BTRFS_I(inode)->root; 7914 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7915 BUG_ON(ret); /* -ENOMEM */ 7916 return 0; 7917 } 7918 7919 static void btrfs_end_dio_bio(struct bio *bio) 7920 { 7921 struct btrfs_dio_private *dip = bio->bi_private; 7922 int err = bio->bi_error; 7923 7924 if (err) 7925 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7926 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 7927 btrfs_ino(dip->inode), bio->bi_rw, 7928 (unsigned long long)bio->bi_iter.bi_sector, 7929 bio->bi_iter.bi_size, err); 7930 7931 if (dip->subio_endio) 7932 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 7933 7934 if (err) { 7935 dip->errors = 1; 7936 7937 /* 7938 * before atomic variable goto zero, we must make sure 7939 * dip->errors is perceived to be set. 7940 */ 7941 smp_mb__before_atomic(); 7942 } 7943 7944 /* if there are more bios still pending for this dio, just exit */ 7945 if (!atomic_dec_and_test(&dip->pending_bios)) 7946 goto out; 7947 7948 if (dip->errors) { 7949 bio_io_error(dip->orig_bio); 7950 } else { 7951 dip->dio_bio->bi_error = 0; 7952 bio_endio(dip->orig_bio); 7953 } 7954 out: 7955 bio_put(bio); 7956 } 7957 7958 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7959 u64 first_sector, gfp_t gfp_flags) 7960 { 7961 return btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 7962 } 7963 7964 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 7965 struct inode *inode, 7966 struct btrfs_dio_private *dip, 7967 struct bio *bio, 7968 u64 file_offset) 7969 { 7970 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7971 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 7972 int ret; 7973 7974 /* 7975 * We load all the csum data we need when we submit 7976 * the first bio to reduce the csum tree search and 7977 * contention. 7978 */ 7979 if (dip->logical_offset == file_offset) { 7980 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 7981 file_offset); 7982 if (ret) 7983 return ret; 7984 } 7985 7986 if (bio == dip->orig_bio) 7987 return 0; 7988 7989 file_offset -= dip->logical_offset; 7990 file_offset >>= inode->i_sb->s_blocksize_bits; 7991 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 7992 7993 return 0; 7994 } 7995 7996 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7997 int rw, u64 file_offset, int skip_sum, 7998 int async_submit) 7999 { 8000 struct btrfs_dio_private *dip = bio->bi_private; 8001 int write = rw & REQ_WRITE; 8002 struct btrfs_root *root = BTRFS_I(inode)->root; 8003 int ret; 8004 8005 if (async_submit) 8006 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8007 8008 bio_get(bio); 8009 8010 if (!write) { 8011 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8012 BTRFS_WQ_ENDIO_DATA); 8013 if (ret) 8014 goto err; 8015 } 8016 8017 if (skip_sum) 8018 goto map; 8019 8020 if (write && async_submit) { 8021 ret = btrfs_wq_submit_bio(root->fs_info, 8022 inode, rw, bio, 0, 0, 8023 file_offset, 8024 __btrfs_submit_bio_start_direct_io, 8025 __btrfs_submit_bio_done); 8026 goto err; 8027 } else if (write) { 8028 /* 8029 * If we aren't doing async submit, calculate the csum of the 8030 * bio now. 8031 */ 8032 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8033 if (ret) 8034 goto err; 8035 } else { 8036 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8037 file_offset); 8038 if (ret) 8039 goto err; 8040 } 8041 map: 8042 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8043 err: 8044 bio_put(bio); 8045 return ret; 8046 } 8047 8048 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8049 int skip_sum) 8050 { 8051 struct inode *inode = dip->inode; 8052 struct btrfs_root *root = BTRFS_I(inode)->root; 8053 struct bio *bio; 8054 struct bio *orig_bio = dip->orig_bio; 8055 struct bio_vec *bvec = orig_bio->bi_io_vec; 8056 u64 start_sector = orig_bio->bi_iter.bi_sector; 8057 u64 file_offset = dip->logical_offset; 8058 u64 submit_len = 0; 8059 u64 map_length; 8060 int nr_pages = 0; 8061 int ret; 8062 int async_submit = 0; 8063 8064 map_length = orig_bio->bi_iter.bi_size; 8065 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8066 &map_length, NULL, 0); 8067 if (ret) 8068 return -EIO; 8069 8070 if (map_length >= orig_bio->bi_iter.bi_size) { 8071 bio = orig_bio; 8072 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8073 goto submit; 8074 } 8075 8076 /* async crcs make it difficult to collect full stripe writes. */ 8077 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8078 async_submit = 0; 8079 else 8080 async_submit = 1; 8081 8082 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8083 if (!bio) 8084 return -ENOMEM; 8085 8086 bio->bi_private = dip; 8087 bio->bi_end_io = btrfs_end_dio_bio; 8088 btrfs_io_bio(bio)->logical = file_offset; 8089 atomic_inc(&dip->pending_bios); 8090 8091 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8092 if (map_length < submit_len + bvec->bv_len || 8093 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 8094 bvec->bv_offset) < bvec->bv_len) { 8095 /* 8096 * inc the count before we submit the bio so 8097 * we know the end IO handler won't happen before 8098 * we inc the count. Otherwise, the dip might get freed 8099 * before we're done setting it up 8100 */ 8101 atomic_inc(&dip->pending_bios); 8102 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8103 file_offset, skip_sum, 8104 async_submit); 8105 if (ret) { 8106 bio_put(bio); 8107 atomic_dec(&dip->pending_bios); 8108 goto out_err; 8109 } 8110 8111 start_sector += submit_len >> 9; 8112 file_offset += submit_len; 8113 8114 submit_len = 0; 8115 nr_pages = 0; 8116 8117 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8118 start_sector, GFP_NOFS); 8119 if (!bio) 8120 goto out_err; 8121 bio->bi_private = dip; 8122 bio->bi_end_io = btrfs_end_dio_bio; 8123 btrfs_io_bio(bio)->logical = file_offset; 8124 8125 map_length = orig_bio->bi_iter.bi_size; 8126 ret = btrfs_map_block(root->fs_info, rw, 8127 start_sector << 9, 8128 &map_length, NULL, 0); 8129 if (ret) { 8130 bio_put(bio); 8131 goto out_err; 8132 } 8133 } else { 8134 submit_len += bvec->bv_len; 8135 nr_pages++; 8136 bvec++; 8137 } 8138 } 8139 8140 submit: 8141 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8142 async_submit); 8143 if (!ret) 8144 return 0; 8145 8146 bio_put(bio); 8147 out_err: 8148 dip->errors = 1; 8149 /* 8150 * before atomic variable goto zero, we must 8151 * make sure dip->errors is perceived to be set. 8152 */ 8153 smp_mb__before_atomic(); 8154 if (atomic_dec_and_test(&dip->pending_bios)) 8155 bio_io_error(dip->orig_bio); 8156 8157 /* bio_end_io() will handle error, so we needn't return it */ 8158 return 0; 8159 } 8160 8161 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8162 struct inode *inode, loff_t file_offset) 8163 { 8164 struct btrfs_dio_private *dip = NULL; 8165 struct bio *io_bio = NULL; 8166 struct btrfs_io_bio *btrfs_bio; 8167 int skip_sum; 8168 int write = rw & REQ_WRITE; 8169 int ret = 0; 8170 8171 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8172 8173 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8174 if (!io_bio) { 8175 ret = -ENOMEM; 8176 goto free_ordered; 8177 } 8178 8179 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8180 if (!dip) { 8181 ret = -ENOMEM; 8182 goto free_ordered; 8183 } 8184 8185 dip->private = dio_bio->bi_private; 8186 dip->inode = inode; 8187 dip->logical_offset = file_offset; 8188 dip->bytes = dio_bio->bi_iter.bi_size; 8189 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8190 io_bio->bi_private = dip; 8191 dip->orig_bio = io_bio; 8192 dip->dio_bio = dio_bio; 8193 atomic_set(&dip->pending_bios, 0); 8194 btrfs_bio = btrfs_io_bio(io_bio); 8195 btrfs_bio->logical = file_offset; 8196 8197 if (write) { 8198 io_bio->bi_end_io = btrfs_endio_direct_write; 8199 } else { 8200 io_bio->bi_end_io = btrfs_endio_direct_read; 8201 dip->subio_endio = btrfs_subio_endio_read; 8202 } 8203 8204 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8205 if (!ret) 8206 return; 8207 8208 if (btrfs_bio->end_io) 8209 btrfs_bio->end_io(btrfs_bio, ret); 8210 8211 free_ordered: 8212 /* 8213 * If we arrived here it means either we failed to submit the dip 8214 * or we either failed to clone the dio_bio or failed to allocate the 8215 * dip. If we cloned the dio_bio and allocated the dip, we can just 8216 * call bio_endio against our io_bio so that we get proper resource 8217 * cleanup if we fail to submit the dip, otherwise, we must do the 8218 * same as btrfs_endio_direct_[write|read] because we can't call these 8219 * callbacks - they require an allocated dip and a clone of dio_bio. 8220 */ 8221 if (io_bio && dip) { 8222 io_bio->bi_error = -EIO; 8223 bio_endio(io_bio); 8224 /* 8225 * The end io callbacks free our dip, do the final put on io_bio 8226 * and all the cleanup and final put for dio_bio (through 8227 * dio_end_io()). 8228 */ 8229 dip = NULL; 8230 io_bio = NULL; 8231 } else { 8232 if (write) { 8233 struct btrfs_ordered_extent *ordered; 8234 8235 ordered = btrfs_lookup_ordered_extent(inode, 8236 file_offset); 8237 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 8238 /* 8239 * Decrements our ref on the ordered extent and removes 8240 * the ordered extent from the inode's ordered tree, 8241 * doing all the proper resource cleanup such as for the 8242 * reserved space and waking up any waiters for this 8243 * ordered extent (through btrfs_remove_ordered_extent). 8244 */ 8245 btrfs_finish_ordered_io(ordered); 8246 } else { 8247 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8248 file_offset + dio_bio->bi_iter.bi_size - 1); 8249 } 8250 dio_bio->bi_error = -EIO; 8251 /* 8252 * Releases and cleans up our dio_bio, no need to bio_put() 8253 * nor bio_endio()/bio_io_error() against dio_bio. 8254 */ 8255 dio_end_io(dio_bio, ret); 8256 } 8257 if (io_bio) 8258 bio_put(io_bio); 8259 kfree(dip); 8260 } 8261 8262 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8263 const struct iov_iter *iter, loff_t offset) 8264 { 8265 int seg; 8266 int i; 8267 unsigned blocksize_mask = root->sectorsize - 1; 8268 ssize_t retval = -EINVAL; 8269 8270 if (offset & blocksize_mask) 8271 goto out; 8272 8273 if (iov_iter_alignment(iter) & blocksize_mask) 8274 goto out; 8275 8276 /* If this is a write we don't need to check anymore */ 8277 if (iov_iter_rw(iter) == WRITE) 8278 return 0; 8279 /* 8280 * Check to make sure we don't have duplicate iov_base's in this 8281 * iovec, if so return EINVAL, otherwise we'll get csum errors 8282 * when reading back. 8283 */ 8284 for (seg = 0; seg < iter->nr_segs; seg++) { 8285 for (i = seg + 1; i < iter->nr_segs; i++) { 8286 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8287 goto out; 8288 } 8289 } 8290 retval = 0; 8291 out: 8292 return retval; 8293 } 8294 8295 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 8296 loff_t offset) 8297 { 8298 struct file *file = iocb->ki_filp; 8299 struct inode *inode = file->f_mapping->host; 8300 u64 outstanding_extents = 0; 8301 size_t count = 0; 8302 int flags = 0; 8303 bool wakeup = true; 8304 bool relock = false; 8305 ssize_t ret; 8306 8307 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8308 return 0; 8309 8310 inode_dio_begin(inode); 8311 smp_mb__after_atomic(); 8312 8313 /* 8314 * The generic stuff only does filemap_write_and_wait_range, which 8315 * isn't enough if we've written compressed pages to this area, so 8316 * we need to flush the dirty pages again to make absolutely sure 8317 * that any outstanding dirty pages are on disk. 8318 */ 8319 count = iov_iter_count(iter); 8320 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8321 &BTRFS_I(inode)->runtime_flags)) 8322 filemap_fdatawrite_range(inode->i_mapping, offset, 8323 offset + count - 1); 8324 8325 if (iov_iter_rw(iter) == WRITE) { 8326 /* 8327 * If the write DIO is beyond the EOF, we need update 8328 * the isize, but it is protected by i_mutex. So we can 8329 * not unlock the i_mutex at this case. 8330 */ 8331 if (offset + count <= inode->i_size) { 8332 mutex_unlock(&inode->i_mutex); 8333 relock = true; 8334 } 8335 ret = btrfs_delalloc_reserve_space(inode, count); 8336 if (ret) 8337 goto out; 8338 outstanding_extents = div64_u64(count + 8339 BTRFS_MAX_EXTENT_SIZE - 1, 8340 BTRFS_MAX_EXTENT_SIZE); 8341 8342 /* 8343 * We need to know how many extents we reserved so that we can 8344 * do the accounting properly if we go over the number we 8345 * originally calculated. Abuse current->journal_info for this. 8346 */ 8347 current->journal_info = &outstanding_extents; 8348 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8349 &BTRFS_I(inode)->runtime_flags)) { 8350 inode_dio_end(inode); 8351 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8352 wakeup = false; 8353 } 8354 8355 ret = __blockdev_direct_IO(iocb, inode, 8356 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8357 iter, offset, btrfs_get_blocks_direct, NULL, 8358 btrfs_submit_direct, flags); 8359 if (iov_iter_rw(iter) == WRITE) { 8360 current->journal_info = NULL; 8361 if (ret < 0 && ret != -EIOCBQUEUED) { 8362 /* 8363 * If the error comes from submitting stage, 8364 * btrfs_get_blocsk_direct() has free'd data space, 8365 * and metadata space will be handled by 8366 * finish_ordered_fn, don't do that again to make 8367 * sure bytes_may_use is correct. 8368 */ 8369 if (!test_and_clear_bit(BTRFS_INODE_DIO_READY, 8370 &BTRFS_I(inode)->runtime_flags)) 8371 btrfs_delalloc_release_space(inode, count); 8372 } else if (ret >= 0 && (size_t)ret < count) 8373 btrfs_delalloc_release_space(inode, 8374 count - (size_t)ret); 8375 } 8376 out: 8377 if (wakeup) 8378 inode_dio_end(inode); 8379 if (relock) 8380 mutex_lock(&inode->i_mutex); 8381 8382 return ret; 8383 } 8384 8385 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8386 8387 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8388 __u64 start, __u64 len) 8389 { 8390 int ret; 8391 8392 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8393 if (ret) 8394 return ret; 8395 8396 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8397 } 8398 8399 int btrfs_readpage(struct file *file, struct page *page) 8400 { 8401 struct extent_io_tree *tree; 8402 tree = &BTRFS_I(page->mapping->host)->io_tree; 8403 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8404 } 8405 8406 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8407 { 8408 struct extent_io_tree *tree; 8409 8410 8411 if (current->flags & PF_MEMALLOC) { 8412 redirty_page_for_writepage(wbc, page); 8413 unlock_page(page); 8414 return 0; 8415 } 8416 tree = &BTRFS_I(page->mapping->host)->io_tree; 8417 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8418 } 8419 8420 static int btrfs_writepages(struct address_space *mapping, 8421 struct writeback_control *wbc) 8422 { 8423 struct extent_io_tree *tree; 8424 8425 tree = &BTRFS_I(mapping->host)->io_tree; 8426 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8427 } 8428 8429 static int 8430 btrfs_readpages(struct file *file, struct address_space *mapping, 8431 struct list_head *pages, unsigned nr_pages) 8432 { 8433 struct extent_io_tree *tree; 8434 tree = &BTRFS_I(mapping->host)->io_tree; 8435 return extent_readpages(tree, mapping, pages, nr_pages, 8436 btrfs_get_extent); 8437 } 8438 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8439 { 8440 struct extent_io_tree *tree; 8441 struct extent_map_tree *map; 8442 int ret; 8443 8444 tree = &BTRFS_I(page->mapping->host)->io_tree; 8445 map = &BTRFS_I(page->mapping->host)->extent_tree; 8446 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8447 if (ret == 1) { 8448 ClearPagePrivate(page); 8449 set_page_private(page, 0); 8450 page_cache_release(page); 8451 } 8452 return ret; 8453 } 8454 8455 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8456 { 8457 if (PageWriteback(page) || PageDirty(page)) 8458 return 0; 8459 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8460 } 8461 8462 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8463 unsigned int length) 8464 { 8465 struct inode *inode = page->mapping->host; 8466 struct extent_io_tree *tree; 8467 struct btrfs_ordered_extent *ordered; 8468 struct extent_state *cached_state = NULL; 8469 u64 page_start = page_offset(page); 8470 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 8471 int inode_evicting = inode->i_state & I_FREEING; 8472 8473 /* 8474 * we have the page locked, so new writeback can't start, 8475 * and the dirty bit won't be cleared while we are here. 8476 * 8477 * Wait for IO on this page so that we can safely clear 8478 * the PagePrivate2 bit and do ordered accounting 8479 */ 8480 wait_on_page_writeback(page); 8481 8482 tree = &BTRFS_I(inode)->io_tree; 8483 if (offset) { 8484 btrfs_releasepage(page, GFP_NOFS); 8485 return; 8486 } 8487 8488 if (!inode_evicting) 8489 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 8490 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8491 if (ordered) { 8492 /* 8493 * IO on this page will never be started, so we need 8494 * to account for any ordered extents now 8495 */ 8496 if (!inode_evicting) 8497 clear_extent_bit(tree, page_start, page_end, 8498 EXTENT_DIRTY | EXTENT_DELALLOC | 8499 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8500 EXTENT_DEFRAG, 1, 0, &cached_state, 8501 GFP_NOFS); 8502 /* 8503 * whoever cleared the private bit is responsible 8504 * for the finish_ordered_io 8505 */ 8506 if (TestClearPagePrivate2(page)) { 8507 struct btrfs_ordered_inode_tree *tree; 8508 u64 new_len; 8509 8510 tree = &BTRFS_I(inode)->ordered_tree; 8511 8512 spin_lock_irq(&tree->lock); 8513 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8514 new_len = page_start - ordered->file_offset; 8515 if (new_len < ordered->truncated_len) 8516 ordered->truncated_len = new_len; 8517 spin_unlock_irq(&tree->lock); 8518 8519 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8520 page_start, 8521 PAGE_CACHE_SIZE, 1)) 8522 btrfs_finish_ordered_io(ordered); 8523 } 8524 btrfs_put_ordered_extent(ordered); 8525 if (!inode_evicting) { 8526 cached_state = NULL; 8527 lock_extent_bits(tree, page_start, page_end, 0, 8528 &cached_state); 8529 } 8530 } 8531 8532 if (!inode_evicting) { 8533 clear_extent_bit(tree, page_start, page_end, 8534 EXTENT_LOCKED | EXTENT_DIRTY | 8535 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8536 EXTENT_DEFRAG, 1, 1, 8537 &cached_state, GFP_NOFS); 8538 8539 __btrfs_releasepage(page, GFP_NOFS); 8540 } 8541 8542 ClearPageChecked(page); 8543 if (PagePrivate(page)) { 8544 ClearPagePrivate(page); 8545 set_page_private(page, 0); 8546 page_cache_release(page); 8547 } 8548 } 8549 8550 /* 8551 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8552 * called from a page fault handler when a page is first dirtied. Hence we must 8553 * be careful to check for EOF conditions here. We set the page up correctly 8554 * for a written page which means we get ENOSPC checking when writing into 8555 * holes and correct delalloc and unwritten extent mapping on filesystems that 8556 * support these features. 8557 * 8558 * We are not allowed to take the i_mutex here so we have to play games to 8559 * protect against truncate races as the page could now be beyond EOF. Because 8560 * vmtruncate() writes the inode size before removing pages, once we have the 8561 * page lock we can determine safely if the page is beyond EOF. If it is not 8562 * beyond EOF, then the page is guaranteed safe against truncation until we 8563 * unlock the page. 8564 */ 8565 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8566 { 8567 struct page *page = vmf->page; 8568 struct inode *inode = file_inode(vma->vm_file); 8569 struct btrfs_root *root = BTRFS_I(inode)->root; 8570 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8571 struct btrfs_ordered_extent *ordered; 8572 struct extent_state *cached_state = NULL; 8573 char *kaddr; 8574 unsigned long zero_start; 8575 loff_t size; 8576 int ret; 8577 int reserved = 0; 8578 u64 page_start; 8579 u64 page_end; 8580 8581 sb_start_pagefault(inode->i_sb); 8582 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 8583 if (!ret) { 8584 ret = file_update_time(vma->vm_file); 8585 reserved = 1; 8586 } 8587 if (ret) { 8588 if (ret == -ENOMEM) 8589 ret = VM_FAULT_OOM; 8590 else /* -ENOSPC, -EIO, etc */ 8591 ret = VM_FAULT_SIGBUS; 8592 if (reserved) 8593 goto out; 8594 goto out_noreserve; 8595 } 8596 8597 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8598 again: 8599 lock_page(page); 8600 size = i_size_read(inode); 8601 page_start = page_offset(page); 8602 page_end = page_start + PAGE_CACHE_SIZE - 1; 8603 8604 if ((page->mapping != inode->i_mapping) || 8605 (page_start >= size)) { 8606 /* page got truncated out from underneath us */ 8607 goto out_unlock; 8608 } 8609 wait_on_page_writeback(page); 8610 8611 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 8612 set_page_extent_mapped(page); 8613 8614 /* 8615 * we can't set the delalloc bits if there are pending ordered 8616 * extents. Drop our locks and wait for them to finish 8617 */ 8618 ordered = btrfs_lookup_ordered_extent(inode, page_start); 8619 if (ordered) { 8620 unlock_extent_cached(io_tree, page_start, page_end, 8621 &cached_state, GFP_NOFS); 8622 unlock_page(page); 8623 btrfs_start_ordered_extent(inode, ordered, 1); 8624 btrfs_put_ordered_extent(ordered); 8625 goto again; 8626 } 8627 8628 /* 8629 * XXX - page_mkwrite gets called every time the page is dirtied, even 8630 * if it was already dirty, so for space accounting reasons we need to 8631 * clear any delalloc bits for the range we are fixing to save. There 8632 * is probably a better way to do this, but for now keep consistent with 8633 * prepare_pages in the normal write path. 8634 */ 8635 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 8636 EXTENT_DIRTY | EXTENT_DELALLOC | 8637 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8638 0, 0, &cached_state, GFP_NOFS); 8639 8640 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 8641 &cached_state); 8642 if (ret) { 8643 unlock_extent_cached(io_tree, page_start, page_end, 8644 &cached_state, GFP_NOFS); 8645 ret = VM_FAULT_SIGBUS; 8646 goto out_unlock; 8647 } 8648 ret = 0; 8649 8650 /* page is wholly or partially inside EOF */ 8651 if (page_start + PAGE_CACHE_SIZE > size) 8652 zero_start = size & ~PAGE_CACHE_MASK; 8653 else 8654 zero_start = PAGE_CACHE_SIZE; 8655 8656 if (zero_start != PAGE_CACHE_SIZE) { 8657 kaddr = kmap(page); 8658 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 8659 flush_dcache_page(page); 8660 kunmap(page); 8661 } 8662 ClearPageChecked(page); 8663 set_page_dirty(page); 8664 SetPageUptodate(page); 8665 8666 BTRFS_I(inode)->last_trans = root->fs_info->generation; 8667 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8668 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8669 8670 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 8671 8672 out_unlock: 8673 if (!ret) { 8674 sb_end_pagefault(inode->i_sb); 8675 return VM_FAULT_LOCKED; 8676 } 8677 unlock_page(page); 8678 out: 8679 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 8680 out_noreserve: 8681 sb_end_pagefault(inode->i_sb); 8682 return ret; 8683 } 8684 8685 static int btrfs_truncate(struct inode *inode) 8686 { 8687 struct btrfs_root *root = BTRFS_I(inode)->root; 8688 struct btrfs_block_rsv *rsv; 8689 int ret = 0; 8690 int err = 0; 8691 struct btrfs_trans_handle *trans; 8692 u64 mask = root->sectorsize - 1; 8693 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 8694 8695 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8696 (u64)-1); 8697 if (ret) 8698 return ret; 8699 8700 /* 8701 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 8702 * 3 things going on here 8703 * 8704 * 1) We need to reserve space for our orphan item and the space to 8705 * delete our orphan item. Lord knows we don't want to have a dangling 8706 * orphan item because we didn't reserve space to remove it. 8707 * 8708 * 2) We need to reserve space to update our inode. 8709 * 8710 * 3) We need to have something to cache all the space that is going to 8711 * be free'd up by the truncate operation, but also have some slack 8712 * space reserved in case it uses space during the truncate (thank you 8713 * very much snapshotting). 8714 * 8715 * And we need these to all be seperate. The fact is we can use alot of 8716 * space doing the truncate, and we have no earthly idea how much space 8717 * we will use, so we need the truncate reservation to be seperate so it 8718 * doesn't end up using space reserved for updating the inode or 8719 * removing the orphan item. We also need to be able to stop the 8720 * transaction and start a new one, which means we need to be able to 8721 * update the inode several times, and we have no idea of knowing how 8722 * many times that will be, so we can't just reserve 1 item for the 8723 * entirety of the opration, so that has to be done seperately as well. 8724 * Then there is the orphan item, which does indeed need to be held on 8725 * to for the whole operation, and we need nobody to touch this reserved 8726 * space except the orphan code. 8727 * 8728 * So that leaves us with 8729 * 8730 * 1) root->orphan_block_rsv - for the orphan deletion. 8731 * 2) rsv - for the truncate reservation, which we will steal from the 8732 * transaction reservation. 8733 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 8734 * updating the inode. 8735 */ 8736 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 8737 if (!rsv) 8738 return -ENOMEM; 8739 rsv->size = min_size; 8740 rsv->failfast = 1; 8741 8742 /* 8743 * 1 for the truncate slack space 8744 * 1 for updating the inode. 8745 */ 8746 trans = btrfs_start_transaction(root, 2); 8747 if (IS_ERR(trans)) { 8748 err = PTR_ERR(trans); 8749 goto out; 8750 } 8751 8752 /* Migrate the slack space for the truncate to our reserve */ 8753 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 8754 min_size); 8755 BUG_ON(ret); 8756 8757 /* 8758 * So if we truncate and then write and fsync we normally would just 8759 * write the extents that changed, which is a problem if we need to 8760 * first truncate that entire inode. So set this flag so we write out 8761 * all of the extents in the inode to the sync log so we're completely 8762 * safe. 8763 */ 8764 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8765 trans->block_rsv = rsv; 8766 8767 while (1) { 8768 ret = btrfs_truncate_inode_items(trans, root, inode, 8769 inode->i_size, 8770 BTRFS_EXTENT_DATA_KEY); 8771 if (ret != -ENOSPC && ret != -EAGAIN) { 8772 err = ret; 8773 break; 8774 } 8775 8776 trans->block_rsv = &root->fs_info->trans_block_rsv; 8777 ret = btrfs_update_inode(trans, root, inode); 8778 if (ret) { 8779 err = ret; 8780 break; 8781 } 8782 8783 btrfs_end_transaction(trans, root); 8784 btrfs_btree_balance_dirty(root); 8785 8786 trans = btrfs_start_transaction(root, 2); 8787 if (IS_ERR(trans)) { 8788 ret = err = PTR_ERR(trans); 8789 trans = NULL; 8790 break; 8791 } 8792 8793 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 8794 rsv, min_size); 8795 BUG_ON(ret); /* shouldn't happen */ 8796 trans->block_rsv = rsv; 8797 } 8798 8799 if (ret == 0 && inode->i_nlink > 0) { 8800 trans->block_rsv = root->orphan_block_rsv; 8801 ret = btrfs_orphan_del(trans, inode); 8802 if (ret) 8803 err = ret; 8804 } 8805 8806 if (trans) { 8807 trans->block_rsv = &root->fs_info->trans_block_rsv; 8808 ret = btrfs_update_inode(trans, root, inode); 8809 if (ret && !err) 8810 err = ret; 8811 8812 ret = btrfs_end_transaction(trans, root); 8813 btrfs_btree_balance_dirty(root); 8814 } 8815 8816 out: 8817 btrfs_free_block_rsv(root, rsv); 8818 8819 if (ret && !err) 8820 err = ret; 8821 8822 return err; 8823 } 8824 8825 /* 8826 * create a new subvolume directory/inode (helper for the ioctl). 8827 */ 8828 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8829 struct btrfs_root *new_root, 8830 struct btrfs_root *parent_root, 8831 u64 new_dirid) 8832 { 8833 struct inode *inode; 8834 int err; 8835 u64 index = 0; 8836 8837 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8838 new_dirid, new_dirid, 8839 S_IFDIR | (~current_umask() & S_IRWXUGO), 8840 &index); 8841 if (IS_ERR(inode)) 8842 return PTR_ERR(inode); 8843 inode->i_op = &btrfs_dir_inode_operations; 8844 inode->i_fop = &btrfs_dir_file_operations; 8845 8846 set_nlink(inode, 1); 8847 btrfs_i_size_write(inode, 0); 8848 unlock_new_inode(inode); 8849 8850 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8851 if (err) 8852 btrfs_err(new_root->fs_info, 8853 "error inheriting subvolume %llu properties: %d", 8854 new_root->root_key.objectid, err); 8855 8856 err = btrfs_update_inode(trans, new_root, inode); 8857 8858 iput(inode); 8859 return err; 8860 } 8861 8862 struct inode *btrfs_alloc_inode(struct super_block *sb) 8863 { 8864 struct btrfs_inode *ei; 8865 struct inode *inode; 8866 8867 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 8868 if (!ei) 8869 return NULL; 8870 8871 ei->root = NULL; 8872 ei->generation = 0; 8873 ei->last_trans = 0; 8874 ei->last_sub_trans = 0; 8875 ei->logged_trans = 0; 8876 ei->delalloc_bytes = 0; 8877 ei->defrag_bytes = 0; 8878 ei->disk_i_size = 0; 8879 ei->flags = 0; 8880 ei->csum_bytes = 0; 8881 ei->index_cnt = (u64)-1; 8882 ei->dir_index = 0; 8883 ei->last_unlink_trans = 0; 8884 ei->last_log_commit = 0; 8885 8886 spin_lock_init(&ei->lock); 8887 ei->outstanding_extents = 0; 8888 ei->reserved_extents = 0; 8889 8890 ei->runtime_flags = 0; 8891 ei->force_compress = BTRFS_COMPRESS_NONE; 8892 8893 ei->delayed_node = NULL; 8894 8895 ei->i_otime.tv_sec = 0; 8896 ei->i_otime.tv_nsec = 0; 8897 8898 inode = &ei->vfs_inode; 8899 extent_map_tree_init(&ei->extent_tree); 8900 extent_io_tree_init(&ei->io_tree, &inode->i_data); 8901 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 8902 ei->io_tree.track_uptodate = 1; 8903 ei->io_failure_tree.track_uptodate = 1; 8904 atomic_set(&ei->sync_writers, 0); 8905 mutex_init(&ei->log_mutex); 8906 mutex_init(&ei->delalloc_mutex); 8907 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8908 INIT_LIST_HEAD(&ei->delalloc_inodes); 8909 RB_CLEAR_NODE(&ei->rb_node); 8910 8911 return inode; 8912 } 8913 8914 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8915 void btrfs_test_destroy_inode(struct inode *inode) 8916 { 8917 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8918 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8919 } 8920 #endif 8921 8922 static void btrfs_i_callback(struct rcu_head *head) 8923 { 8924 struct inode *inode = container_of(head, struct inode, i_rcu); 8925 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8926 } 8927 8928 void btrfs_destroy_inode(struct inode *inode) 8929 { 8930 struct btrfs_ordered_extent *ordered; 8931 struct btrfs_root *root = BTRFS_I(inode)->root; 8932 8933 WARN_ON(!hlist_empty(&inode->i_dentry)); 8934 WARN_ON(inode->i_data.nrpages); 8935 WARN_ON(BTRFS_I(inode)->outstanding_extents); 8936 WARN_ON(BTRFS_I(inode)->reserved_extents); 8937 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 8938 WARN_ON(BTRFS_I(inode)->csum_bytes); 8939 WARN_ON(BTRFS_I(inode)->defrag_bytes); 8940 8941 /* 8942 * This can happen where we create an inode, but somebody else also 8943 * created the same inode and we need to destroy the one we already 8944 * created. 8945 */ 8946 if (!root) 8947 goto free; 8948 8949 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 8950 &BTRFS_I(inode)->runtime_flags)) { 8951 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 8952 btrfs_ino(inode)); 8953 atomic_dec(&root->orphan_inodes); 8954 } 8955 8956 while (1) { 8957 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8958 if (!ordered) 8959 break; 8960 else { 8961 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 8962 ordered->file_offset, ordered->len); 8963 btrfs_remove_ordered_extent(inode, ordered); 8964 btrfs_put_ordered_extent(ordered); 8965 btrfs_put_ordered_extent(ordered); 8966 } 8967 } 8968 inode_tree_del(inode); 8969 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8970 free: 8971 call_rcu(&inode->i_rcu, btrfs_i_callback); 8972 } 8973 8974 int btrfs_drop_inode(struct inode *inode) 8975 { 8976 struct btrfs_root *root = BTRFS_I(inode)->root; 8977 8978 if (root == NULL) 8979 return 1; 8980 8981 /* the snap/subvol tree is on deleting */ 8982 if (btrfs_root_refs(&root->root_item) == 0) 8983 return 1; 8984 else 8985 return generic_drop_inode(inode); 8986 } 8987 8988 static void init_once(void *foo) 8989 { 8990 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8991 8992 inode_init_once(&ei->vfs_inode); 8993 } 8994 8995 void btrfs_destroy_cachep(void) 8996 { 8997 /* 8998 * Make sure all delayed rcu free inodes are flushed before we 8999 * destroy cache. 9000 */ 9001 rcu_barrier(); 9002 if (btrfs_inode_cachep) 9003 kmem_cache_destroy(btrfs_inode_cachep); 9004 if (btrfs_trans_handle_cachep) 9005 kmem_cache_destroy(btrfs_trans_handle_cachep); 9006 if (btrfs_transaction_cachep) 9007 kmem_cache_destroy(btrfs_transaction_cachep); 9008 if (btrfs_path_cachep) 9009 kmem_cache_destroy(btrfs_path_cachep); 9010 if (btrfs_free_space_cachep) 9011 kmem_cache_destroy(btrfs_free_space_cachep); 9012 if (btrfs_delalloc_work_cachep) 9013 kmem_cache_destroy(btrfs_delalloc_work_cachep); 9014 } 9015 9016 int btrfs_init_cachep(void) 9017 { 9018 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9019 sizeof(struct btrfs_inode), 0, 9020 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 9021 if (!btrfs_inode_cachep) 9022 goto fail; 9023 9024 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9025 sizeof(struct btrfs_trans_handle), 0, 9026 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9027 if (!btrfs_trans_handle_cachep) 9028 goto fail; 9029 9030 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9031 sizeof(struct btrfs_transaction), 0, 9032 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9033 if (!btrfs_transaction_cachep) 9034 goto fail; 9035 9036 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9037 sizeof(struct btrfs_path), 0, 9038 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9039 if (!btrfs_path_cachep) 9040 goto fail; 9041 9042 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9043 sizeof(struct btrfs_free_space), 0, 9044 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9045 if (!btrfs_free_space_cachep) 9046 goto fail; 9047 9048 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 9049 sizeof(struct btrfs_delalloc_work), 0, 9050 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 9051 NULL); 9052 if (!btrfs_delalloc_work_cachep) 9053 goto fail; 9054 9055 return 0; 9056 fail: 9057 btrfs_destroy_cachep(); 9058 return -ENOMEM; 9059 } 9060 9061 static int btrfs_getattr(struct vfsmount *mnt, 9062 struct dentry *dentry, struct kstat *stat) 9063 { 9064 u64 delalloc_bytes; 9065 struct inode *inode = d_inode(dentry); 9066 u32 blocksize = inode->i_sb->s_blocksize; 9067 9068 generic_fillattr(inode, stat); 9069 stat->dev = BTRFS_I(inode)->root->anon_dev; 9070 stat->blksize = PAGE_CACHE_SIZE; 9071 9072 spin_lock(&BTRFS_I(inode)->lock); 9073 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9074 spin_unlock(&BTRFS_I(inode)->lock); 9075 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9076 ALIGN(delalloc_bytes, blocksize)) >> 9; 9077 return 0; 9078 } 9079 9080 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9081 struct inode *new_dir, struct dentry *new_dentry) 9082 { 9083 struct btrfs_trans_handle *trans; 9084 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9085 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9086 struct inode *new_inode = d_inode(new_dentry); 9087 struct inode *old_inode = d_inode(old_dentry); 9088 struct timespec ctime = CURRENT_TIME; 9089 u64 index = 0; 9090 u64 root_objectid; 9091 int ret; 9092 u64 old_ino = btrfs_ino(old_inode); 9093 9094 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9095 return -EPERM; 9096 9097 /* we only allow rename subvolume link between subvolumes */ 9098 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9099 return -EXDEV; 9100 9101 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9102 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9103 return -ENOTEMPTY; 9104 9105 if (S_ISDIR(old_inode->i_mode) && new_inode && 9106 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9107 return -ENOTEMPTY; 9108 9109 9110 /* check for collisions, even if the name isn't there */ 9111 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9112 new_dentry->d_name.name, 9113 new_dentry->d_name.len); 9114 9115 if (ret) { 9116 if (ret == -EEXIST) { 9117 /* we shouldn't get 9118 * eexist without a new_inode */ 9119 if (WARN_ON(!new_inode)) { 9120 return ret; 9121 } 9122 } else { 9123 /* maybe -EOVERFLOW */ 9124 return ret; 9125 } 9126 } 9127 ret = 0; 9128 9129 /* 9130 * we're using rename to replace one file with another. Start IO on it 9131 * now so we don't add too much work to the end of the transaction 9132 */ 9133 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9134 filemap_flush(old_inode->i_mapping); 9135 9136 /* close the racy window with snapshot create/destroy ioctl */ 9137 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9138 down_read(&root->fs_info->subvol_sem); 9139 /* 9140 * We want to reserve the absolute worst case amount of items. So if 9141 * both inodes are subvols and we need to unlink them then that would 9142 * require 4 item modifications, but if they are both normal inodes it 9143 * would require 5 item modifications, so we'll assume their normal 9144 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9145 * should cover the worst case number of items we'll modify. 9146 */ 9147 trans = btrfs_start_transaction(root, 11); 9148 if (IS_ERR(trans)) { 9149 ret = PTR_ERR(trans); 9150 goto out_notrans; 9151 } 9152 9153 if (dest != root) 9154 btrfs_record_root_in_trans(trans, dest); 9155 9156 ret = btrfs_set_inode_index(new_dir, &index); 9157 if (ret) 9158 goto out_fail; 9159 9160 BTRFS_I(old_inode)->dir_index = 0ULL; 9161 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9162 /* force full log commit if subvolume involved. */ 9163 btrfs_set_log_full_commit(root->fs_info, trans); 9164 } else { 9165 ret = btrfs_insert_inode_ref(trans, dest, 9166 new_dentry->d_name.name, 9167 new_dentry->d_name.len, 9168 old_ino, 9169 btrfs_ino(new_dir), index); 9170 if (ret) 9171 goto out_fail; 9172 /* 9173 * this is an ugly little race, but the rename is required 9174 * to make sure that if we crash, the inode is either at the 9175 * old name or the new one. pinning the log transaction lets 9176 * us make sure we don't allow a log commit to come in after 9177 * we unlink the name but before we add the new name back in. 9178 */ 9179 btrfs_pin_log_trans(root); 9180 } 9181 9182 inode_inc_iversion(old_dir); 9183 inode_inc_iversion(new_dir); 9184 inode_inc_iversion(old_inode); 9185 old_dir->i_ctime = old_dir->i_mtime = ctime; 9186 new_dir->i_ctime = new_dir->i_mtime = ctime; 9187 old_inode->i_ctime = ctime; 9188 9189 if (old_dentry->d_parent != new_dentry->d_parent) 9190 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9191 9192 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9193 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9194 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9195 old_dentry->d_name.name, 9196 old_dentry->d_name.len); 9197 } else { 9198 ret = __btrfs_unlink_inode(trans, root, old_dir, 9199 d_inode(old_dentry), 9200 old_dentry->d_name.name, 9201 old_dentry->d_name.len); 9202 if (!ret) 9203 ret = btrfs_update_inode(trans, root, old_inode); 9204 } 9205 if (ret) { 9206 btrfs_abort_transaction(trans, root, ret); 9207 goto out_fail; 9208 } 9209 9210 if (new_inode) { 9211 inode_inc_iversion(new_inode); 9212 new_inode->i_ctime = CURRENT_TIME; 9213 if (unlikely(btrfs_ino(new_inode) == 9214 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9215 root_objectid = BTRFS_I(new_inode)->location.objectid; 9216 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9217 root_objectid, 9218 new_dentry->d_name.name, 9219 new_dentry->d_name.len); 9220 BUG_ON(new_inode->i_nlink == 0); 9221 } else { 9222 ret = btrfs_unlink_inode(trans, dest, new_dir, 9223 d_inode(new_dentry), 9224 new_dentry->d_name.name, 9225 new_dentry->d_name.len); 9226 } 9227 if (!ret && new_inode->i_nlink == 0) 9228 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9229 if (ret) { 9230 btrfs_abort_transaction(trans, root, ret); 9231 goto out_fail; 9232 } 9233 } 9234 9235 ret = btrfs_add_link(trans, new_dir, old_inode, 9236 new_dentry->d_name.name, 9237 new_dentry->d_name.len, 0, index); 9238 if (ret) { 9239 btrfs_abort_transaction(trans, root, ret); 9240 goto out_fail; 9241 } 9242 9243 if (old_inode->i_nlink == 1) 9244 BTRFS_I(old_inode)->dir_index = index; 9245 9246 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 9247 struct dentry *parent = new_dentry->d_parent; 9248 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9249 btrfs_end_log_trans(root); 9250 } 9251 out_fail: 9252 btrfs_end_transaction(trans, root); 9253 out_notrans: 9254 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9255 up_read(&root->fs_info->subvol_sem); 9256 9257 return ret; 9258 } 9259 9260 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9261 struct inode *new_dir, struct dentry *new_dentry, 9262 unsigned int flags) 9263 { 9264 if (flags & ~RENAME_NOREPLACE) 9265 return -EINVAL; 9266 9267 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry); 9268 } 9269 9270 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9271 { 9272 struct btrfs_delalloc_work *delalloc_work; 9273 struct inode *inode; 9274 9275 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9276 work); 9277 inode = delalloc_work->inode; 9278 if (delalloc_work->wait) { 9279 btrfs_wait_ordered_range(inode, 0, (u64)-1); 9280 } else { 9281 filemap_flush(inode->i_mapping); 9282 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9283 &BTRFS_I(inode)->runtime_flags)) 9284 filemap_flush(inode->i_mapping); 9285 } 9286 9287 if (delalloc_work->delay_iput) 9288 btrfs_add_delayed_iput(inode); 9289 else 9290 iput(inode); 9291 complete(&delalloc_work->completion); 9292 } 9293 9294 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9295 int wait, int delay_iput) 9296 { 9297 struct btrfs_delalloc_work *work; 9298 9299 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 9300 if (!work) 9301 return NULL; 9302 9303 init_completion(&work->completion); 9304 INIT_LIST_HEAD(&work->list); 9305 work->inode = inode; 9306 work->wait = wait; 9307 work->delay_iput = delay_iput; 9308 WARN_ON_ONCE(!inode); 9309 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9310 btrfs_run_delalloc_work, NULL, NULL); 9311 9312 return work; 9313 } 9314 9315 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9316 { 9317 wait_for_completion(&work->completion); 9318 kmem_cache_free(btrfs_delalloc_work_cachep, work); 9319 } 9320 9321 /* 9322 * some fairly slow code that needs optimization. This walks the list 9323 * of all the inodes with pending delalloc and forces them to disk. 9324 */ 9325 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9326 int nr) 9327 { 9328 struct btrfs_inode *binode; 9329 struct inode *inode; 9330 struct btrfs_delalloc_work *work, *next; 9331 struct list_head works; 9332 struct list_head splice; 9333 int ret = 0; 9334 9335 INIT_LIST_HEAD(&works); 9336 INIT_LIST_HEAD(&splice); 9337 9338 mutex_lock(&root->delalloc_mutex); 9339 spin_lock(&root->delalloc_lock); 9340 list_splice_init(&root->delalloc_inodes, &splice); 9341 while (!list_empty(&splice)) { 9342 binode = list_entry(splice.next, struct btrfs_inode, 9343 delalloc_inodes); 9344 9345 list_move_tail(&binode->delalloc_inodes, 9346 &root->delalloc_inodes); 9347 inode = igrab(&binode->vfs_inode); 9348 if (!inode) { 9349 cond_resched_lock(&root->delalloc_lock); 9350 continue; 9351 } 9352 spin_unlock(&root->delalloc_lock); 9353 9354 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 9355 if (!work) { 9356 if (delay_iput) 9357 btrfs_add_delayed_iput(inode); 9358 else 9359 iput(inode); 9360 ret = -ENOMEM; 9361 goto out; 9362 } 9363 list_add_tail(&work->list, &works); 9364 btrfs_queue_work(root->fs_info->flush_workers, 9365 &work->work); 9366 ret++; 9367 if (nr != -1 && ret >= nr) 9368 goto out; 9369 cond_resched(); 9370 spin_lock(&root->delalloc_lock); 9371 } 9372 spin_unlock(&root->delalloc_lock); 9373 9374 out: 9375 list_for_each_entry_safe(work, next, &works, list) { 9376 list_del_init(&work->list); 9377 btrfs_wait_and_free_delalloc_work(work); 9378 } 9379 9380 if (!list_empty_careful(&splice)) { 9381 spin_lock(&root->delalloc_lock); 9382 list_splice_tail(&splice, &root->delalloc_inodes); 9383 spin_unlock(&root->delalloc_lock); 9384 } 9385 mutex_unlock(&root->delalloc_mutex); 9386 return ret; 9387 } 9388 9389 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 9390 { 9391 int ret; 9392 9393 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 9394 return -EROFS; 9395 9396 ret = __start_delalloc_inodes(root, delay_iput, -1); 9397 if (ret > 0) 9398 ret = 0; 9399 /* 9400 * the filemap_flush will queue IO into the worker threads, but 9401 * we have to make sure the IO is actually started and that 9402 * ordered extents get created before we return 9403 */ 9404 atomic_inc(&root->fs_info->async_submit_draining); 9405 while (atomic_read(&root->fs_info->nr_async_submits) || 9406 atomic_read(&root->fs_info->async_delalloc_pages)) { 9407 wait_event(root->fs_info->async_submit_wait, 9408 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 9409 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 9410 } 9411 atomic_dec(&root->fs_info->async_submit_draining); 9412 return ret; 9413 } 9414 9415 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 9416 int nr) 9417 { 9418 struct btrfs_root *root; 9419 struct list_head splice; 9420 int ret; 9421 9422 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9423 return -EROFS; 9424 9425 INIT_LIST_HEAD(&splice); 9426 9427 mutex_lock(&fs_info->delalloc_root_mutex); 9428 spin_lock(&fs_info->delalloc_root_lock); 9429 list_splice_init(&fs_info->delalloc_roots, &splice); 9430 while (!list_empty(&splice) && nr) { 9431 root = list_first_entry(&splice, struct btrfs_root, 9432 delalloc_root); 9433 root = btrfs_grab_fs_root(root); 9434 BUG_ON(!root); 9435 list_move_tail(&root->delalloc_root, 9436 &fs_info->delalloc_roots); 9437 spin_unlock(&fs_info->delalloc_root_lock); 9438 9439 ret = __start_delalloc_inodes(root, delay_iput, nr); 9440 btrfs_put_fs_root(root); 9441 if (ret < 0) 9442 goto out; 9443 9444 if (nr != -1) { 9445 nr -= ret; 9446 WARN_ON(nr < 0); 9447 } 9448 spin_lock(&fs_info->delalloc_root_lock); 9449 } 9450 spin_unlock(&fs_info->delalloc_root_lock); 9451 9452 ret = 0; 9453 atomic_inc(&fs_info->async_submit_draining); 9454 while (atomic_read(&fs_info->nr_async_submits) || 9455 atomic_read(&fs_info->async_delalloc_pages)) { 9456 wait_event(fs_info->async_submit_wait, 9457 (atomic_read(&fs_info->nr_async_submits) == 0 && 9458 atomic_read(&fs_info->async_delalloc_pages) == 0)); 9459 } 9460 atomic_dec(&fs_info->async_submit_draining); 9461 out: 9462 if (!list_empty_careful(&splice)) { 9463 spin_lock(&fs_info->delalloc_root_lock); 9464 list_splice_tail(&splice, &fs_info->delalloc_roots); 9465 spin_unlock(&fs_info->delalloc_root_lock); 9466 } 9467 mutex_unlock(&fs_info->delalloc_root_mutex); 9468 return ret; 9469 } 9470 9471 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9472 const char *symname) 9473 { 9474 struct btrfs_trans_handle *trans; 9475 struct btrfs_root *root = BTRFS_I(dir)->root; 9476 struct btrfs_path *path; 9477 struct btrfs_key key; 9478 struct inode *inode = NULL; 9479 int err; 9480 int drop_inode = 0; 9481 u64 objectid; 9482 u64 index = 0; 9483 int name_len; 9484 int datasize; 9485 unsigned long ptr; 9486 struct btrfs_file_extent_item *ei; 9487 struct extent_buffer *leaf; 9488 9489 name_len = strlen(symname); 9490 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 9491 return -ENAMETOOLONG; 9492 9493 /* 9494 * 2 items for inode item and ref 9495 * 2 items for dir items 9496 * 1 item for xattr if selinux is on 9497 */ 9498 trans = btrfs_start_transaction(root, 5); 9499 if (IS_ERR(trans)) 9500 return PTR_ERR(trans); 9501 9502 err = btrfs_find_free_ino(root, &objectid); 9503 if (err) 9504 goto out_unlock; 9505 9506 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9507 dentry->d_name.len, btrfs_ino(dir), objectid, 9508 S_IFLNK|S_IRWXUGO, &index); 9509 if (IS_ERR(inode)) { 9510 err = PTR_ERR(inode); 9511 goto out_unlock; 9512 } 9513 9514 /* 9515 * If the active LSM wants to access the inode during 9516 * d_instantiate it needs these. Smack checks to see 9517 * if the filesystem supports xattrs by looking at the 9518 * ops vector. 9519 */ 9520 inode->i_fop = &btrfs_file_operations; 9521 inode->i_op = &btrfs_file_inode_operations; 9522 inode->i_mapping->a_ops = &btrfs_aops; 9523 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9524 9525 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9526 if (err) 9527 goto out_unlock_inode; 9528 9529 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 9530 if (err) 9531 goto out_unlock_inode; 9532 9533 path = btrfs_alloc_path(); 9534 if (!path) { 9535 err = -ENOMEM; 9536 goto out_unlock_inode; 9537 } 9538 key.objectid = btrfs_ino(inode); 9539 key.offset = 0; 9540 key.type = BTRFS_EXTENT_DATA_KEY; 9541 datasize = btrfs_file_extent_calc_inline_size(name_len); 9542 err = btrfs_insert_empty_item(trans, root, path, &key, 9543 datasize); 9544 if (err) { 9545 btrfs_free_path(path); 9546 goto out_unlock_inode; 9547 } 9548 leaf = path->nodes[0]; 9549 ei = btrfs_item_ptr(leaf, path->slots[0], 9550 struct btrfs_file_extent_item); 9551 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9552 btrfs_set_file_extent_type(leaf, ei, 9553 BTRFS_FILE_EXTENT_INLINE); 9554 btrfs_set_file_extent_encryption(leaf, ei, 0); 9555 btrfs_set_file_extent_compression(leaf, ei, 0); 9556 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9557 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9558 9559 ptr = btrfs_file_extent_inline_start(ei); 9560 write_extent_buffer(leaf, symname, ptr, name_len); 9561 btrfs_mark_buffer_dirty(leaf); 9562 btrfs_free_path(path); 9563 9564 inode->i_op = &btrfs_symlink_inode_operations; 9565 inode->i_mapping->a_ops = &btrfs_symlink_aops; 9566 inode_set_bytes(inode, name_len); 9567 btrfs_i_size_write(inode, name_len); 9568 err = btrfs_update_inode(trans, root, inode); 9569 if (err) { 9570 drop_inode = 1; 9571 goto out_unlock_inode; 9572 } 9573 9574 unlock_new_inode(inode); 9575 d_instantiate(dentry, inode); 9576 9577 out_unlock: 9578 btrfs_end_transaction(trans, root); 9579 if (drop_inode) { 9580 inode_dec_link_count(inode); 9581 iput(inode); 9582 } 9583 btrfs_btree_balance_dirty(root); 9584 return err; 9585 9586 out_unlock_inode: 9587 drop_inode = 1; 9588 unlock_new_inode(inode); 9589 goto out_unlock; 9590 } 9591 9592 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9593 u64 start, u64 num_bytes, u64 min_size, 9594 loff_t actual_len, u64 *alloc_hint, 9595 struct btrfs_trans_handle *trans) 9596 { 9597 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9598 struct extent_map *em; 9599 struct btrfs_root *root = BTRFS_I(inode)->root; 9600 struct btrfs_key ins; 9601 u64 cur_offset = start; 9602 u64 i_size; 9603 u64 cur_bytes; 9604 int ret = 0; 9605 bool own_trans = true; 9606 9607 if (trans) 9608 own_trans = false; 9609 while (num_bytes > 0) { 9610 if (own_trans) { 9611 trans = btrfs_start_transaction(root, 3); 9612 if (IS_ERR(trans)) { 9613 ret = PTR_ERR(trans); 9614 break; 9615 } 9616 } 9617 9618 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 9619 cur_bytes = max(cur_bytes, min_size); 9620 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 9621 *alloc_hint, &ins, 1, 0); 9622 if (ret) { 9623 if (own_trans) 9624 btrfs_end_transaction(trans, root); 9625 break; 9626 } 9627 9628 ret = insert_reserved_file_extent(trans, inode, 9629 cur_offset, ins.objectid, 9630 ins.offset, ins.offset, 9631 ins.offset, 0, 0, 0, 9632 BTRFS_FILE_EXTENT_PREALLOC); 9633 if (ret) { 9634 btrfs_free_reserved_extent(root, ins.objectid, 9635 ins.offset, 0); 9636 btrfs_abort_transaction(trans, root, ret); 9637 if (own_trans) 9638 btrfs_end_transaction(trans, root); 9639 break; 9640 } 9641 9642 btrfs_drop_extent_cache(inode, cur_offset, 9643 cur_offset + ins.offset -1, 0); 9644 9645 em = alloc_extent_map(); 9646 if (!em) { 9647 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9648 &BTRFS_I(inode)->runtime_flags); 9649 goto next; 9650 } 9651 9652 em->start = cur_offset; 9653 em->orig_start = cur_offset; 9654 em->len = ins.offset; 9655 em->block_start = ins.objectid; 9656 em->block_len = ins.offset; 9657 em->orig_block_len = ins.offset; 9658 em->ram_bytes = ins.offset; 9659 em->bdev = root->fs_info->fs_devices->latest_bdev; 9660 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9661 em->generation = trans->transid; 9662 9663 while (1) { 9664 write_lock(&em_tree->lock); 9665 ret = add_extent_mapping(em_tree, em, 1); 9666 write_unlock(&em_tree->lock); 9667 if (ret != -EEXIST) 9668 break; 9669 btrfs_drop_extent_cache(inode, cur_offset, 9670 cur_offset + ins.offset - 1, 9671 0); 9672 } 9673 free_extent_map(em); 9674 next: 9675 num_bytes -= ins.offset; 9676 cur_offset += ins.offset; 9677 *alloc_hint = ins.objectid + ins.offset; 9678 9679 inode_inc_iversion(inode); 9680 inode->i_ctime = CURRENT_TIME; 9681 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9682 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9683 (actual_len > inode->i_size) && 9684 (cur_offset > inode->i_size)) { 9685 if (cur_offset > actual_len) 9686 i_size = actual_len; 9687 else 9688 i_size = cur_offset; 9689 i_size_write(inode, i_size); 9690 btrfs_ordered_update_i_size(inode, i_size, NULL); 9691 } 9692 9693 ret = btrfs_update_inode(trans, root, inode); 9694 9695 if (ret) { 9696 btrfs_abort_transaction(trans, root, ret); 9697 if (own_trans) 9698 btrfs_end_transaction(trans, root); 9699 break; 9700 } 9701 9702 if (own_trans) 9703 btrfs_end_transaction(trans, root); 9704 } 9705 return ret; 9706 } 9707 9708 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9709 u64 start, u64 num_bytes, u64 min_size, 9710 loff_t actual_len, u64 *alloc_hint) 9711 { 9712 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9713 min_size, actual_len, alloc_hint, 9714 NULL); 9715 } 9716 9717 int btrfs_prealloc_file_range_trans(struct inode *inode, 9718 struct btrfs_trans_handle *trans, int mode, 9719 u64 start, u64 num_bytes, u64 min_size, 9720 loff_t actual_len, u64 *alloc_hint) 9721 { 9722 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9723 min_size, actual_len, alloc_hint, trans); 9724 } 9725 9726 static int btrfs_set_page_dirty(struct page *page) 9727 { 9728 return __set_page_dirty_nobuffers(page); 9729 } 9730 9731 static int btrfs_permission(struct inode *inode, int mask) 9732 { 9733 struct btrfs_root *root = BTRFS_I(inode)->root; 9734 umode_t mode = inode->i_mode; 9735 9736 if (mask & MAY_WRITE && 9737 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9738 if (btrfs_root_readonly(root)) 9739 return -EROFS; 9740 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9741 return -EACCES; 9742 } 9743 return generic_permission(inode, mask); 9744 } 9745 9746 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9747 { 9748 struct btrfs_trans_handle *trans; 9749 struct btrfs_root *root = BTRFS_I(dir)->root; 9750 struct inode *inode = NULL; 9751 u64 objectid; 9752 u64 index; 9753 int ret = 0; 9754 9755 /* 9756 * 5 units required for adding orphan entry 9757 */ 9758 trans = btrfs_start_transaction(root, 5); 9759 if (IS_ERR(trans)) 9760 return PTR_ERR(trans); 9761 9762 ret = btrfs_find_free_ino(root, &objectid); 9763 if (ret) 9764 goto out; 9765 9766 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9767 btrfs_ino(dir), objectid, mode, &index); 9768 if (IS_ERR(inode)) { 9769 ret = PTR_ERR(inode); 9770 inode = NULL; 9771 goto out; 9772 } 9773 9774 inode->i_fop = &btrfs_file_operations; 9775 inode->i_op = &btrfs_file_inode_operations; 9776 9777 inode->i_mapping->a_ops = &btrfs_aops; 9778 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 9779 9780 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9781 if (ret) 9782 goto out_inode; 9783 9784 ret = btrfs_update_inode(trans, root, inode); 9785 if (ret) 9786 goto out_inode; 9787 ret = btrfs_orphan_add(trans, inode); 9788 if (ret) 9789 goto out_inode; 9790 9791 /* 9792 * We set number of links to 0 in btrfs_new_inode(), and here we set 9793 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9794 * through: 9795 * 9796 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9797 */ 9798 set_nlink(inode, 1); 9799 unlock_new_inode(inode); 9800 d_tmpfile(dentry, inode); 9801 mark_inode_dirty(inode); 9802 9803 out: 9804 btrfs_end_transaction(trans, root); 9805 if (ret) 9806 iput(inode); 9807 btrfs_balance_delayed_items(root); 9808 btrfs_btree_balance_dirty(root); 9809 return ret; 9810 9811 out_inode: 9812 unlock_new_inode(inode); 9813 goto out; 9814 9815 } 9816 9817 /* Inspired by filemap_check_errors() */ 9818 int btrfs_inode_check_errors(struct inode *inode) 9819 { 9820 int ret = 0; 9821 9822 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 9823 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 9824 ret = -ENOSPC; 9825 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 9826 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 9827 ret = -EIO; 9828 9829 return ret; 9830 } 9831 9832 static const struct inode_operations btrfs_dir_inode_operations = { 9833 .getattr = btrfs_getattr, 9834 .lookup = btrfs_lookup, 9835 .create = btrfs_create, 9836 .unlink = btrfs_unlink, 9837 .link = btrfs_link, 9838 .mkdir = btrfs_mkdir, 9839 .rmdir = btrfs_rmdir, 9840 .rename2 = btrfs_rename2, 9841 .symlink = btrfs_symlink, 9842 .setattr = btrfs_setattr, 9843 .mknod = btrfs_mknod, 9844 .setxattr = btrfs_setxattr, 9845 .getxattr = btrfs_getxattr, 9846 .listxattr = btrfs_listxattr, 9847 .removexattr = btrfs_removexattr, 9848 .permission = btrfs_permission, 9849 .get_acl = btrfs_get_acl, 9850 .set_acl = btrfs_set_acl, 9851 .update_time = btrfs_update_time, 9852 .tmpfile = btrfs_tmpfile, 9853 }; 9854 static const struct inode_operations btrfs_dir_ro_inode_operations = { 9855 .lookup = btrfs_lookup, 9856 .permission = btrfs_permission, 9857 .get_acl = btrfs_get_acl, 9858 .set_acl = btrfs_set_acl, 9859 .update_time = btrfs_update_time, 9860 }; 9861 9862 static const struct file_operations btrfs_dir_file_operations = { 9863 .llseek = generic_file_llseek, 9864 .read = generic_read_dir, 9865 .iterate = btrfs_real_readdir, 9866 .unlocked_ioctl = btrfs_ioctl, 9867 #ifdef CONFIG_COMPAT 9868 .compat_ioctl = btrfs_ioctl, 9869 #endif 9870 .release = btrfs_release_file, 9871 .fsync = btrfs_sync_file, 9872 }; 9873 9874 static struct extent_io_ops btrfs_extent_io_ops = { 9875 .fill_delalloc = run_delalloc_range, 9876 .submit_bio_hook = btrfs_submit_bio_hook, 9877 .merge_bio_hook = btrfs_merge_bio_hook, 9878 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 9879 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 9880 .writepage_start_hook = btrfs_writepage_start_hook, 9881 .set_bit_hook = btrfs_set_bit_hook, 9882 .clear_bit_hook = btrfs_clear_bit_hook, 9883 .merge_extent_hook = btrfs_merge_extent_hook, 9884 .split_extent_hook = btrfs_split_extent_hook, 9885 }; 9886 9887 /* 9888 * btrfs doesn't support the bmap operation because swapfiles 9889 * use bmap to make a mapping of extents in the file. They assume 9890 * these extents won't change over the life of the file and they 9891 * use the bmap result to do IO directly to the drive. 9892 * 9893 * the btrfs bmap call would return logical addresses that aren't 9894 * suitable for IO and they also will change frequently as COW 9895 * operations happen. So, swapfile + btrfs == corruption. 9896 * 9897 * For now we're avoiding this by dropping bmap. 9898 */ 9899 static const struct address_space_operations btrfs_aops = { 9900 .readpage = btrfs_readpage, 9901 .writepage = btrfs_writepage, 9902 .writepages = btrfs_writepages, 9903 .readpages = btrfs_readpages, 9904 .direct_IO = btrfs_direct_IO, 9905 .invalidatepage = btrfs_invalidatepage, 9906 .releasepage = btrfs_releasepage, 9907 .set_page_dirty = btrfs_set_page_dirty, 9908 .error_remove_page = generic_error_remove_page, 9909 }; 9910 9911 static const struct address_space_operations btrfs_symlink_aops = { 9912 .readpage = btrfs_readpage, 9913 .writepage = btrfs_writepage, 9914 .invalidatepage = btrfs_invalidatepage, 9915 .releasepage = btrfs_releasepage, 9916 }; 9917 9918 static const struct inode_operations btrfs_file_inode_operations = { 9919 .getattr = btrfs_getattr, 9920 .setattr = btrfs_setattr, 9921 .setxattr = btrfs_setxattr, 9922 .getxattr = btrfs_getxattr, 9923 .listxattr = btrfs_listxattr, 9924 .removexattr = btrfs_removexattr, 9925 .permission = btrfs_permission, 9926 .fiemap = btrfs_fiemap, 9927 .get_acl = btrfs_get_acl, 9928 .set_acl = btrfs_set_acl, 9929 .update_time = btrfs_update_time, 9930 }; 9931 static const struct inode_operations btrfs_special_inode_operations = { 9932 .getattr = btrfs_getattr, 9933 .setattr = btrfs_setattr, 9934 .permission = btrfs_permission, 9935 .setxattr = btrfs_setxattr, 9936 .getxattr = btrfs_getxattr, 9937 .listxattr = btrfs_listxattr, 9938 .removexattr = btrfs_removexattr, 9939 .get_acl = btrfs_get_acl, 9940 .set_acl = btrfs_set_acl, 9941 .update_time = btrfs_update_time, 9942 }; 9943 static const struct inode_operations btrfs_symlink_inode_operations = { 9944 .readlink = generic_readlink, 9945 .follow_link = page_follow_link_light, 9946 .put_link = page_put_link, 9947 .getattr = btrfs_getattr, 9948 .setattr = btrfs_setattr, 9949 .permission = btrfs_permission, 9950 .setxattr = btrfs_setxattr, 9951 .getxattr = btrfs_getxattr, 9952 .listxattr = btrfs_listxattr, 9953 .removexattr = btrfs_removexattr, 9954 .update_time = btrfs_update_time, 9955 }; 9956 9957 const struct dentry_operations btrfs_dentry_operations = { 9958 .d_delete = btrfs_dentry_delete, 9959 .d_release = btrfs_dentry_release, 9960 }; 9961