1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include "compat.h" 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "print-tree.h" 50 #include "ordered-data.h" 51 #include "xattr.h" 52 #include "tree-log.h" 53 #include "volumes.h" 54 #include "compression.h" 55 #include "locking.h" 56 #include "free-space-cache.h" 57 #include "inode-map.h" 58 #include "backref.h" 59 60 struct btrfs_iget_args { 61 u64 ino; 62 struct btrfs_root *root; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_dir_ro_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct address_space_operations btrfs_symlink_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 static struct extent_io_ops btrfs_extent_io_ops; 74 75 static struct kmem_cache *btrfs_inode_cachep; 76 static struct kmem_cache *btrfs_delalloc_work_cachep; 77 struct kmem_cache *btrfs_trans_handle_cachep; 78 struct kmem_cache *btrfs_transaction_cachep; 79 struct kmem_cache *btrfs_path_cachep; 80 struct kmem_cache *btrfs_free_space_cachep; 81 82 #define S_SHIFT 12 83 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 84 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 85 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 86 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 87 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 88 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 89 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 90 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 91 }; 92 93 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 94 static int btrfs_truncate(struct inode *inode); 95 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 96 static noinline int cow_file_range(struct inode *inode, 97 struct page *locked_page, 98 u64 start, u64 end, int *page_started, 99 unsigned long *nr_written, int unlock); 100 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 101 u64 len, u64 orig_start, 102 u64 block_start, u64 block_len, 103 u64 orig_block_len, int type); 104 105 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 106 struct inode *inode, struct inode *dir, 107 const struct qstr *qstr) 108 { 109 int err; 110 111 err = btrfs_init_acl(trans, inode, dir); 112 if (!err) 113 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 114 return err; 115 } 116 117 /* 118 * this does all the hard work for inserting an inline extent into 119 * the btree. The caller should have done a btrfs_drop_extents so that 120 * no overlapping inline items exist in the btree 121 */ 122 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 123 struct btrfs_root *root, struct inode *inode, 124 u64 start, size_t size, size_t compressed_size, 125 int compress_type, 126 struct page **compressed_pages) 127 { 128 struct btrfs_key key; 129 struct btrfs_path *path; 130 struct extent_buffer *leaf; 131 struct page *page = NULL; 132 char *kaddr; 133 unsigned long ptr; 134 struct btrfs_file_extent_item *ei; 135 int err = 0; 136 int ret; 137 size_t cur_size = size; 138 size_t datasize; 139 unsigned long offset; 140 141 if (compressed_size && compressed_pages) 142 cur_size = compressed_size; 143 144 path = btrfs_alloc_path(); 145 if (!path) 146 return -ENOMEM; 147 148 path->leave_spinning = 1; 149 150 key.objectid = btrfs_ino(inode); 151 key.offset = start; 152 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 153 datasize = btrfs_file_extent_calc_inline_size(cur_size); 154 155 inode_add_bytes(inode, size); 156 ret = btrfs_insert_empty_item(trans, root, path, &key, 157 datasize); 158 if (ret) { 159 err = ret; 160 goto fail; 161 } 162 leaf = path->nodes[0]; 163 ei = btrfs_item_ptr(leaf, path->slots[0], 164 struct btrfs_file_extent_item); 165 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 166 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 167 btrfs_set_file_extent_encryption(leaf, ei, 0); 168 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 169 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 170 ptr = btrfs_file_extent_inline_start(ei); 171 172 if (compress_type != BTRFS_COMPRESS_NONE) { 173 struct page *cpage; 174 int i = 0; 175 while (compressed_size > 0) { 176 cpage = compressed_pages[i]; 177 cur_size = min_t(unsigned long, compressed_size, 178 PAGE_CACHE_SIZE); 179 180 kaddr = kmap_atomic(cpage); 181 write_extent_buffer(leaf, kaddr, ptr, cur_size); 182 kunmap_atomic(kaddr); 183 184 i++; 185 ptr += cur_size; 186 compressed_size -= cur_size; 187 } 188 btrfs_set_file_extent_compression(leaf, ei, 189 compress_type); 190 } else { 191 page = find_get_page(inode->i_mapping, 192 start >> PAGE_CACHE_SHIFT); 193 btrfs_set_file_extent_compression(leaf, ei, 0); 194 kaddr = kmap_atomic(page); 195 offset = start & (PAGE_CACHE_SIZE - 1); 196 write_extent_buffer(leaf, kaddr + offset, ptr, size); 197 kunmap_atomic(kaddr); 198 page_cache_release(page); 199 } 200 btrfs_mark_buffer_dirty(leaf); 201 btrfs_free_path(path); 202 203 /* 204 * we're an inline extent, so nobody can 205 * extend the file past i_size without locking 206 * a page we already have locked. 207 * 208 * We must do any isize and inode updates 209 * before we unlock the pages. Otherwise we 210 * could end up racing with unlink. 211 */ 212 BTRFS_I(inode)->disk_i_size = inode->i_size; 213 ret = btrfs_update_inode(trans, root, inode); 214 215 return ret; 216 fail: 217 btrfs_free_path(path); 218 return err; 219 } 220 221 222 /* 223 * conditionally insert an inline extent into the file. This 224 * does the checks required to make sure the data is small enough 225 * to fit as an inline extent. 226 */ 227 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 228 struct btrfs_root *root, 229 struct inode *inode, u64 start, u64 end, 230 size_t compressed_size, int compress_type, 231 struct page **compressed_pages) 232 { 233 u64 isize = i_size_read(inode); 234 u64 actual_end = min(end + 1, isize); 235 u64 inline_len = actual_end - start; 236 u64 aligned_end = ALIGN(end, root->sectorsize); 237 u64 data_len = inline_len; 238 int ret; 239 240 if (compressed_size) 241 data_len = compressed_size; 242 243 if (start > 0 || 244 actual_end >= PAGE_CACHE_SIZE || 245 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 246 (!compressed_size && 247 (actual_end & (root->sectorsize - 1)) == 0) || 248 end + 1 < isize || 249 data_len > root->fs_info->max_inline) { 250 return 1; 251 } 252 253 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 254 if (ret) 255 return ret; 256 257 if (isize > actual_end) 258 inline_len = min_t(u64, isize, actual_end); 259 ret = insert_inline_extent(trans, root, inode, start, 260 inline_len, compressed_size, 261 compress_type, compressed_pages); 262 if (ret && ret != -ENOSPC) { 263 btrfs_abort_transaction(trans, root, ret); 264 return ret; 265 } else if (ret == -ENOSPC) { 266 return 1; 267 } 268 269 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 270 btrfs_delalloc_release_metadata(inode, end + 1 - start); 271 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 272 return 0; 273 } 274 275 struct async_extent { 276 u64 start; 277 u64 ram_size; 278 u64 compressed_size; 279 struct page **pages; 280 unsigned long nr_pages; 281 int compress_type; 282 struct list_head list; 283 }; 284 285 struct async_cow { 286 struct inode *inode; 287 struct btrfs_root *root; 288 struct page *locked_page; 289 u64 start; 290 u64 end; 291 struct list_head extents; 292 struct btrfs_work work; 293 }; 294 295 static noinline int add_async_extent(struct async_cow *cow, 296 u64 start, u64 ram_size, 297 u64 compressed_size, 298 struct page **pages, 299 unsigned long nr_pages, 300 int compress_type) 301 { 302 struct async_extent *async_extent; 303 304 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 305 BUG_ON(!async_extent); /* -ENOMEM */ 306 async_extent->start = start; 307 async_extent->ram_size = ram_size; 308 async_extent->compressed_size = compressed_size; 309 async_extent->pages = pages; 310 async_extent->nr_pages = nr_pages; 311 async_extent->compress_type = compress_type; 312 list_add_tail(&async_extent->list, &cow->extents); 313 return 0; 314 } 315 316 /* 317 * we create compressed extents in two phases. The first 318 * phase compresses a range of pages that have already been 319 * locked (both pages and state bits are locked). 320 * 321 * This is done inside an ordered work queue, and the compression 322 * is spread across many cpus. The actual IO submission is step 323 * two, and the ordered work queue takes care of making sure that 324 * happens in the same order things were put onto the queue by 325 * writepages and friends. 326 * 327 * If this code finds it can't get good compression, it puts an 328 * entry onto the work queue to write the uncompressed bytes. This 329 * makes sure that both compressed inodes and uncompressed inodes 330 * are written in the same order that the flusher thread sent them 331 * down. 332 */ 333 static noinline int compress_file_range(struct inode *inode, 334 struct page *locked_page, 335 u64 start, u64 end, 336 struct async_cow *async_cow, 337 int *num_added) 338 { 339 struct btrfs_root *root = BTRFS_I(inode)->root; 340 struct btrfs_trans_handle *trans; 341 u64 num_bytes; 342 u64 blocksize = root->sectorsize; 343 u64 actual_end; 344 u64 isize = i_size_read(inode); 345 int ret = 0; 346 struct page **pages = NULL; 347 unsigned long nr_pages; 348 unsigned long nr_pages_ret = 0; 349 unsigned long total_compressed = 0; 350 unsigned long total_in = 0; 351 unsigned long max_compressed = 128 * 1024; 352 unsigned long max_uncompressed = 128 * 1024; 353 int i; 354 int will_compress; 355 int compress_type = root->fs_info->compress_type; 356 int redirty = 0; 357 358 /* if this is a small write inside eof, kick off a defrag */ 359 if ((end - start + 1) < 16 * 1024 && 360 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 361 btrfs_add_inode_defrag(NULL, inode); 362 363 actual_end = min_t(u64, isize, end + 1); 364 again: 365 will_compress = 0; 366 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 367 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 368 369 /* 370 * we don't want to send crud past the end of i_size through 371 * compression, that's just a waste of CPU time. So, if the 372 * end of the file is before the start of our current 373 * requested range of bytes, we bail out to the uncompressed 374 * cleanup code that can deal with all of this. 375 * 376 * It isn't really the fastest way to fix things, but this is a 377 * very uncommon corner. 378 */ 379 if (actual_end <= start) 380 goto cleanup_and_bail_uncompressed; 381 382 total_compressed = actual_end - start; 383 384 /* we want to make sure that amount of ram required to uncompress 385 * an extent is reasonable, so we limit the total size in ram 386 * of a compressed extent to 128k. This is a crucial number 387 * because it also controls how easily we can spread reads across 388 * cpus for decompression. 389 * 390 * We also want to make sure the amount of IO required to do 391 * a random read is reasonably small, so we limit the size of 392 * a compressed extent to 128k. 393 */ 394 total_compressed = min(total_compressed, max_uncompressed); 395 num_bytes = ALIGN(end - start + 1, blocksize); 396 num_bytes = max(blocksize, num_bytes); 397 total_in = 0; 398 ret = 0; 399 400 /* 401 * we do compression for mount -o compress and when the 402 * inode has not been flagged as nocompress. This flag can 403 * change at any time if we discover bad compression ratios. 404 */ 405 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 406 (btrfs_test_opt(root, COMPRESS) || 407 (BTRFS_I(inode)->force_compress) || 408 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 409 WARN_ON(pages); 410 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 411 if (!pages) { 412 /* just bail out to the uncompressed code */ 413 goto cont; 414 } 415 416 if (BTRFS_I(inode)->force_compress) 417 compress_type = BTRFS_I(inode)->force_compress; 418 419 /* 420 * we need to call clear_page_dirty_for_io on each 421 * page in the range. Otherwise applications with the file 422 * mmap'd can wander in and change the page contents while 423 * we are compressing them. 424 * 425 * If the compression fails for any reason, we set the pages 426 * dirty again later on. 427 */ 428 extent_range_clear_dirty_for_io(inode, start, end); 429 redirty = 1; 430 ret = btrfs_compress_pages(compress_type, 431 inode->i_mapping, start, 432 total_compressed, pages, 433 nr_pages, &nr_pages_ret, 434 &total_in, 435 &total_compressed, 436 max_compressed); 437 438 if (!ret) { 439 unsigned long offset = total_compressed & 440 (PAGE_CACHE_SIZE - 1); 441 struct page *page = pages[nr_pages_ret - 1]; 442 char *kaddr; 443 444 /* zero the tail end of the last page, we might be 445 * sending it down to disk 446 */ 447 if (offset) { 448 kaddr = kmap_atomic(page); 449 memset(kaddr + offset, 0, 450 PAGE_CACHE_SIZE - offset); 451 kunmap_atomic(kaddr); 452 } 453 will_compress = 1; 454 } 455 } 456 cont: 457 if (start == 0) { 458 trans = btrfs_join_transaction(root); 459 if (IS_ERR(trans)) { 460 ret = PTR_ERR(trans); 461 trans = NULL; 462 goto cleanup_and_out; 463 } 464 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 465 466 /* lets try to make an inline extent */ 467 if (ret || total_in < (actual_end - start)) { 468 /* we didn't compress the entire range, try 469 * to make an uncompressed inline extent. 470 */ 471 ret = cow_file_range_inline(trans, root, inode, 472 start, end, 0, 0, NULL); 473 } else { 474 /* try making a compressed inline extent */ 475 ret = cow_file_range_inline(trans, root, inode, 476 start, end, 477 total_compressed, 478 compress_type, pages); 479 } 480 if (ret <= 0) { 481 /* 482 * inline extent creation worked or returned error, 483 * we don't need to create any more async work items. 484 * Unlock and free up our temp pages. 485 */ 486 extent_clear_unlock_delalloc(inode, 487 &BTRFS_I(inode)->io_tree, 488 start, end, NULL, 489 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 490 EXTENT_CLEAR_DELALLOC | 491 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 492 493 btrfs_end_transaction(trans, root); 494 goto free_pages_out; 495 } 496 btrfs_end_transaction(trans, root); 497 } 498 499 if (will_compress) { 500 /* 501 * we aren't doing an inline extent round the compressed size 502 * up to a block size boundary so the allocator does sane 503 * things 504 */ 505 total_compressed = ALIGN(total_compressed, blocksize); 506 507 /* 508 * one last check to make sure the compression is really a 509 * win, compare the page count read with the blocks on disk 510 */ 511 total_in = ALIGN(total_in, PAGE_CACHE_SIZE); 512 if (total_compressed >= total_in) { 513 will_compress = 0; 514 } else { 515 num_bytes = total_in; 516 } 517 } 518 if (!will_compress && pages) { 519 /* 520 * the compression code ran but failed to make things smaller, 521 * free any pages it allocated and our page pointer array 522 */ 523 for (i = 0; i < nr_pages_ret; i++) { 524 WARN_ON(pages[i]->mapping); 525 page_cache_release(pages[i]); 526 } 527 kfree(pages); 528 pages = NULL; 529 total_compressed = 0; 530 nr_pages_ret = 0; 531 532 /* flag the file so we don't compress in the future */ 533 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 534 !(BTRFS_I(inode)->force_compress)) { 535 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 536 } 537 } 538 if (will_compress) { 539 *num_added += 1; 540 541 /* the async work queues will take care of doing actual 542 * allocation on disk for these compressed pages, 543 * and will submit them to the elevator. 544 */ 545 add_async_extent(async_cow, start, num_bytes, 546 total_compressed, pages, nr_pages_ret, 547 compress_type); 548 549 if (start + num_bytes < end) { 550 start += num_bytes; 551 pages = NULL; 552 cond_resched(); 553 goto again; 554 } 555 } else { 556 cleanup_and_bail_uncompressed: 557 /* 558 * No compression, but we still need to write the pages in 559 * the file we've been given so far. redirty the locked 560 * page if it corresponds to our extent and set things up 561 * for the async work queue to run cow_file_range to do 562 * the normal delalloc dance 563 */ 564 if (page_offset(locked_page) >= start && 565 page_offset(locked_page) <= end) { 566 __set_page_dirty_nobuffers(locked_page); 567 /* unlocked later on in the async handlers */ 568 } 569 if (redirty) 570 extent_range_redirty_for_io(inode, start, end); 571 add_async_extent(async_cow, start, end - start + 1, 572 0, NULL, 0, BTRFS_COMPRESS_NONE); 573 *num_added += 1; 574 } 575 576 out: 577 return ret; 578 579 free_pages_out: 580 for (i = 0; i < nr_pages_ret; i++) { 581 WARN_ON(pages[i]->mapping); 582 page_cache_release(pages[i]); 583 } 584 kfree(pages); 585 586 goto out; 587 588 cleanup_and_out: 589 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 590 start, end, NULL, 591 EXTENT_CLEAR_UNLOCK_PAGE | 592 EXTENT_CLEAR_DIRTY | 593 EXTENT_CLEAR_DELALLOC | 594 EXTENT_SET_WRITEBACK | 595 EXTENT_END_WRITEBACK); 596 if (!trans || IS_ERR(trans)) 597 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 598 else 599 btrfs_abort_transaction(trans, root, ret); 600 goto free_pages_out; 601 } 602 603 /* 604 * phase two of compressed writeback. This is the ordered portion 605 * of the code, which only gets called in the order the work was 606 * queued. We walk all the async extents created by compress_file_range 607 * and send them down to the disk. 608 */ 609 static noinline int submit_compressed_extents(struct inode *inode, 610 struct async_cow *async_cow) 611 { 612 struct async_extent *async_extent; 613 u64 alloc_hint = 0; 614 struct btrfs_trans_handle *trans; 615 struct btrfs_key ins; 616 struct extent_map *em; 617 struct btrfs_root *root = BTRFS_I(inode)->root; 618 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 619 struct extent_io_tree *io_tree; 620 int ret = 0; 621 622 if (list_empty(&async_cow->extents)) 623 return 0; 624 625 again: 626 while (!list_empty(&async_cow->extents)) { 627 async_extent = list_entry(async_cow->extents.next, 628 struct async_extent, list); 629 list_del(&async_extent->list); 630 631 io_tree = &BTRFS_I(inode)->io_tree; 632 633 retry: 634 /* did the compression code fall back to uncompressed IO? */ 635 if (!async_extent->pages) { 636 int page_started = 0; 637 unsigned long nr_written = 0; 638 639 lock_extent(io_tree, async_extent->start, 640 async_extent->start + 641 async_extent->ram_size - 1); 642 643 /* allocate blocks */ 644 ret = cow_file_range(inode, async_cow->locked_page, 645 async_extent->start, 646 async_extent->start + 647 async_extent->ram_size - 1, 648 &page_started, &nr_written, 0); 649 650 /* JDM XXX */ 651 652 /* 653 * if page_started, cow_file_range inserted an 654 * inline extent and took care of all the unlocking 655 * and IO for us. Otherwise, we need to submit 656 * all those pages down to the drive. 657 */ 658 if (!page_started && !ret) 659 extent_write_locked_range(io_tree, 660 inode, async_extent->start, 661 async_extent->start + 662 async_extent->ram_size - 1, 663 btrfs_get_extent, 664 WB_SYNC_ALL); 665 else if (ret) 666 unlock_page(async_cow->locked_page); 667 kfree(async_extent); 668 cond_resched(); 669 continue; 670 } 671 672 lock_extent(io_tree, async_extent->start, 673 async_extent->start + async_extent->ram_size - 1); 674 675 trans = btrfs_join_transaction(root); 676 if (IS_ERR(trans)) { 677 ret = PTR_ERR(trans); 678 } else { 679 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 680 ret = btrfs_reserve_extent(trans, root, 681 async_extent->compressed_size, 682 async_extent->compressed_size, 683 0, alloc_hint, &ins, 1); 684 if (ret && ret != -ENOSPC) 685 btrfs_abort_transaction(trans, root, ret); 686 btrfs_end_transaction(trans, root); 687 } 688 689 if (ret) { 690 int i; 691 692 for (i = 0; i < async_extent->nr_pages; i++) { 693 WARN_ON(async_extent->pages[i]->mapping); 694 page_cache_release(async_extent->pages[i]); 695 } 696 kfree(async_extent->pages); 697 async_extent->nr_pages = 0; 698 async_extent->pages = NULL; 699 700 if (ret == -ENOSPC) 701 goto retry; 702 goto out_free; 703 } 704 705 /* 706 * here we're doing allocation and writeback of the 707 * compressed pages 708 */ 709 btrfs_drop_extent_cache(inode, async_extent->start, 710 async_extent->start + 711 async_extent->ram_size - 1, 0); 712 713 em = alloc_extent_map(); 714 if (!em) 715 goto out_free_reserve; 716 em->start = async_extent->start; 717 em->len = async_extent->ram_size; 718 em->orig_start = em->start; 719 em->mod_start = em->start; 720 em->mod_len = em->len; 721 722 em->block_start = ins.objectid; 723 em->block_len = ins.offset; 724 em->orig_block_len = ins.offset; 725 em->bdev = root->fs_info->fs_devices->latest_bdev; 726 em->compress_type = async_extent->compress_type; 727 set_bit(EXTENT_FLAG_PINNED, &em->flags); 728 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 729 em->generation = -1; 730 731 while (1) { 732 write_lock(&em_tree->lock); 733 ret = add_extent_mapping(em_tree, em); 734 if (!ret) 735 list_move(&em->list, 736 &em_tree->modified_extents); 737 write_unlock(&em_tree->lock); 738 if (ret != -EEXIST) { 739 free_extent_map(em); 740 break; 741 } 742 btrfs_drop_extent_cache(inode, async_extent->start, 743 async_extent->start + 744 async_extent->ram_size - 1, 0); 745 } 746 747 if (ret) 748 goto out_free_reserve; 749 750 ret = btrfs_add_ordered_extent_compress(inode, 751 async_extent->start, 752 ins.objectid, 753 async_extent->ram_size, 754 ins.offset, 755 BTRFS_ORDERED_COMPRESSED, 756 async_extent->compress_type); 757 if (ret) 758 goto out_free_reserve; 759 760 /* 761 * clear dirty, set writeback and unlock the pages. 762 */ 763 extent_clear_unlock_delalloc(inode, 764 &BTRFS_I(inode)->io_tree, 765 async_extent->start, 766 async_extent->start + 767 async_extent->ram_size - 1, 768 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 769 EXTENT_CLEAR_UNLOCK | 770 EXTENT_CLEAR_DELALLOC | 771 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 772 773 ret = btrfs_submit_compressed_write(inode, 774 async_extent->start, 775 async_extent->ram_size, 776 ins.objectid, 777 ins.offset, async_extent->pages, 778 async_extent->nr_pages); 779 alloc_hint = ins.objectid + ins.offset; 780 kfree(async_extent); 781 if (ret) 782 goto out; 783 cond_resched(); 784 } 785 ret = 0; 786 out: 787 return ret; 788 out_free_reserve: 789 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 790 out_free: 791 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 792 async_extent->start, 793 async_extent->start + 794 async_extent->ram_size - 1, 795 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 796 EXTENT_CLEAR_UNLOCK | 797 EXTENT_CLEAR_DELALLOC | 798 EXTENT_CLEAR_DIRTY | 799 EXTENT_SET_WRITEBACK | 800 EXTENT_END_WRITEBACK); 801 kfree(async_extent); 802 goto again; 803 } 804 805 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 806 u64 num_bytes) 807 { 808 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 809 struct extent_map *em; 810 u64 alloc_hint = 0; 811 812 read_lock(&em_tree->lock); 813 em = search_extent_mapping(em_tree, start, num_bytes); 814 if (em) { 815 /* 816 * if block start isn't an actual block number then find the 817 * first block in this inode and use that as a hint. If that 818 * block is also bogus then just don't worry about it. 819 */ 820 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 821 free_extent_map(em); 822 em = search_extent_mapping(em_tree, 0, 0); 823 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 824 alloc_hint = em->block_start; 825 if (em) 826 free_extent_map(em); 827 } else { 828 alloc_hint = em->block_start; 829 free_extent_map(em); 830 } 831 } 832 read_unlock(&em_tree->lock); 833 834 return alloc_hint; 835 } 836 837 /* 838 * when extent_io.c finds a delayed allocation range in the file, 839 * the call backs end up in this code. The basic idea is to 840 * allocate extents on disk for the range, and create ordered data structs 841 * in ram to track those extents. 842 * 843 * locked_page is the page that writepage had locked already. We use 844 * it to make sure we don't do extra locks or unlocks. 845 * 846 * *page_started is set to one if we unlock locked_page and do everything 847 * required to start IO on it. It may be clean and already done with 848 * IO when we return. 849 */ 850 static noinline int __cow_file_range(struct btrfs_trans_handle *trans, 851 struct inode *inode, 852 struct btrfs_root *root, 853 struct page *locked_page, 854 u64 start, u64 end, int *page_started, 855 unsigned long *nr_written, 856 int unlock) 857 { 858 u64 alloc_hint = 0; 859 u64 num_bytes; 860 unsigned long ram_size; 861 u64 disk_num_bytes; 862 u64 cur_alloc_size; 863 u64 blocksize = root->sectorsize; 864 struct btrfs_key ins; 865 struct extent_map *em; 866 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 867 int ret = 0; 868 869 BUG_ON(btrfs_is_free_space_inode(inode)); 870 871 num_bytes = ALIGN(end - start + 1, blocksize); 872 num_bytes = max(blocksize, num_bytes); 873 disk_num_bytes = num_bytes; 874 875 /* if this is a small write inside eof, kick off defrag */ 876 if (num_bytes < 64 * 1024 && 877 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 878 btrfs_add_inode_defrag(trans, inode); 879 880 if (start == 0) { 881 /* lets try to make an inline extent */ 882 ret = cow_file_range_inline(trans, root, inode, 883 start, end, 0, 0, NULL); 884 if (ret == 0) { 885 extent_clear_unlock_delalloc(inode, 886 &BTRFS_I(inode)->io_tree, 887 start, end, NULL, 888 EXTENT_CLEAR_UNLOCK_PAGE | 889 EXTENT_CLEAR_UNLOCK | 890 EXTENT_CLEAR_DELALLOC | 891 EXTENT_CLEAR_DIRTY | 892 EXTENT_SET_WRITEBACK | 893 EXTENT_END_WRITEBACK); 894 895 *nr_written = *nr_written + 896 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 897 *page_started = 1; 898 goto out; 899 } else if (ret < 0) { 900 btrfs_abort_transaction(trans, root, ret); 901 goto out_unlock; 902 } 903 } 904 905 BUG_ON(disk_num_bytes > 906 btrfs_super_total_bytes(root->fs_info->super_copy)); 907 908 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 909 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 910 911 while (disk_num_bytes > 0) { 912 unsigned long op; 913 914 cur_alloc_size = disk_num_bytes; 915 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 916 root->sectorsize, 0, alloc_hint, 917 &ins, 1); 918 if (ret < 0) { 919 btrfs_abort_transaction(trans, root, ret); 920 goto out_unlock; 921 } 922 923 em = alloc_extent_map(); 924 BUG_ON(!em); /* -ENOMEM */ 925 em->start = start; 926 em->orig_start = em->start; 927 ram_size = ins.offset; 928 em->len = ins.offset; 929 em->mod_start = em->start; 930 em->mod_len = em->len; 931 932 em->block_start = ins.objectid; 933 em->block_len = ins.offset; 934 em->orig_block_len = ins.offset; 935 em->bdev = root->fs_info->fs_devices->latest_bdev; 936 set_bit(EXTENT_FLAG_PINNED, &em->flags); 937 em->generation = -1; 938 939 while (1) { 940 write_lock(&em_tree->lock); 941 ret = add_extent_mapping(em_tree, em); 942 if (!ret) 943 list_move(&em->list, 944 &em_tree->modified_extents); 945 write_unlock(&em_tree->lock); 946 if (ret != -EEXIST) { 947 free_extent_map(em); 948 break; 949 } 950 btrfs_drop_extent_cache(inode, start, 951 start + ram_size - 1, 0); 952 } 953 954 cur_alloc_size = ins.offset; 955 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 956 ram_size, cur_alloc_size, 0); 957 BUG_ON(ret); /* -ENOMEM */ 958 959 if (root->root_key.objectid == 960 BTRFS_DATA_RELOC_TREE_OBJECTID) { 961 ret = btrfs_reloc_clone_csums(inode, start, 962 cur_alloc_size); 963 if (ret) { 964 btrfs_abort_transaction(trans, root, ret); 965 goto out_unlock; 966 } 967 } 968 969 if (disk_num_bytes < cur_alloc_size) 970 break; 971 972 /* we're not doing compressed IO, don't unlock the first 973 * page (which the caller expects to stay locked), don't 974 * clear any dirty bits and don't set any writeback bits 975 * 976 * Do set the Private2 bit so we know this page was properly 977 * setup for writepage 978 */ 979 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 980 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 981 EXTENT_SET_PRIVATE2; 982 983 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 984 start, start + ram_size - 1, 985 locked_page, op); 986 disk_num_bytes -= cur_alloc_size; 987 num_bytes -= cur_alloc_size; 988 alloc_hint = ins.objectid + ins.offset; 989 start += cur_alloc_size; 990 } 991 out: 992 return ret; 993 994 out_unlock: 995 extent_clear_unlock_delalloc(inode, 996 &BTRFS_I(inode)->io_tree, 997 start, end, locked_page, 998 EXTENT_CLEAR_UNLOCK_PAGE | 999 EXTENT_CLEAR_UNLOCK | 1000 EXTENT_CLEAR_DELALLOC | 1001 EXTENT_CLEAR_DIRTY | 1002 EXTENT_SET_WRITEBACK | 1003 EXTENT_END_WRITEBACK); 1004 1005 goto out; 1006 } 1007 1008 static noinline int cow_file_range(struct inode *inode, 1009 struct page *locked_page, 1010 u64 start, u64 end, int *page_started, 1011 unsigned long *nr_written, 1012 int unlock) 1013 { 1014 struct btrfs_trans_handle *trans; 1015 struct btrfs_root *root = BTRFS_I(inode)->root; 1016 int ret; 1017 1018 trans = btrfs_join_transaction(root); 1019 if (IS_ERR(trans)) { 1020 extent_clear_unlock_delalloc(inode, 1021 &BTRFS_I(inode)->io_tree, 1022 start, end, locked_page, 1023 EXTENT_CLEAR_UNLOCK_PAGE | 1024 EXTENT_CLEAR_UNLOCK | 1025 EXTENT_CLEAR_DELALLOC | 1026 EXTENT_CLEAR_DIRTY | 1027 EXTENT_SET_WRITEBACK | 1028 EXTENT_END_WRITEBACK); 1029 return PTR_ERR(trans); 1030 } 1031 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1032 1033 ret = __cow_file_range(trans, inode, root, locked_page, start, end, 1034 page_started, nr_written, unlock); 1035 1036 btrfs_end_transaction(trans, root); 1037 1038 return ret; 1039 } 1040 1041 /* 1042 * work queue call back to started compression on a file and pages 1043 */ 1044 static noinline void async_cow_start(struct btrfs_work *work) 1045 { 1046 struct async_cow *async_cow; 1047 int num_added = 0; 1048 async_cow = container_of(work, struct async_cow, work); 1049 1050 compress_file_range(async_cow->inode, async_cow->locked_page, 1051 async_cow->start, async_cow->end, async_cow, 1052 &num_added); 1053 if (num_added == 0) { 1054 btrfs_add_delayed_iput(async_cow->inode); 1055 async_cow->inode = NULL; 1056 } 1057 } 1058 1059 /* 1060 * work queue call back to submit previously compressed pages 1061 */ 1062 static noinline void async_cow_submit(struct btrfs_work *work) 1063 { 1064 struct async_cow *async_cow; 1065 struct btrfs_root *root; 1066 unsigned long nr_pages; 1067 1068 async_cow = container_of(work, struct async_cow, work); 1069 1070 root = async_cow->root; 1071 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1072 PAGE_CACHE_SHIFT; 1073 1074 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1075 5 * 1024 * 1024 && 1076 waitqueue_active(&root->fs_info->async_submit_wait)) 1077 wake_up(&root->fs_info->async_submit_wait); 1078 1079 if (async_cow->inode) 1080 submit_compressed_extents(async_cow->inode, async_cow); 1081 } 1082 1083 static noinline void async_cow_free(struct btrfs_work *work) 1084 { 1085 struct async_cow *async_cow; 1086 async_cow = container_of(work, struct async_cow, work); 1087 if (async_cow->inode) 1088 btrfs_add_delayed_iput(async_cow->inode); 1089 kfree(async_cow); 1090 } 1091 1092 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1093 u64 start, u64 end, int *page_started, 1094 unsigned long *nr_written) 1095 { 1096 struct async_cow *async_cow; 1097 struct btrfs_root *root = BTRFS_I(inode)->root; 1098 unsigned long nr_pages; 1099 u64 cur_end; 1100 int limit = 10 * 1024 * 1024; 1101 1102 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1103 1, 0, NULL, GFP_NOFS); 1104 while (start < end) { 1105 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1106 BUG_ON(!async_cow); /* -ENOMEM */ 1107 async_cow->inode = igrab(inode); 1108 async_cow->root = root; 1109 async_cow->locked_page = locked_page; 1110 async_cow->start = start; 1111 1112 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1113 cur_end = end; 1114 else 1115 cur_end = min(end, start + 512 * 1024 - 1); 1116 1117 async_cow->end = cur_end; 1118 INIT_LIST_HEAD(&async_cow->extents); 1119 1120 async_cow->work.func = async_cow_start; 1121 async_cow->work.ordered_func = async_cow_submit; 1122 async_cow->work.ordered_free = async_cow_free; 1123 async_cow->work.flags = 0; 1124 1125 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1126 PAGE_CACHE_SHIFT; 1127 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1128 1129 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1130 &async_cow->work); 1131 1132 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1133 wait_event(root->fs_info->async_submit_wait, 1134 (atomic_read(&root->fs_info->async_delalloc_pages) < 1135 limit)); 1136 } 1137 1138 while (atomic_read(&root->fs_info->async_submit_draining) && 1139 atomic_read(&root->fs_info->async_delalloc_pages)) { 1140 wait_event(root->fs_info->async_submit_wait, 1141 (atomic_read(&root->fs_info->async_delalloc_pages) == 1142 0)); 1143 } 1144 1145 *nr_written += nr_pages; 1146 start = cur_end + 1; 1147 } 1148 *page_started = 1; 1149 return 0; 1150 } 1151 1152 static noinline int csum_exist_in_range(struct btrfs_root *root, 1153 u64 bytenr, u64 num_bytes) 1154 { 1155 int ret; 1156 struct btrfs_ordered_sum *sums; 1157 LIST_HEAD(list); 1158 1159 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1160 bytenr + num_bytes - 1, &list, 0); 1161 if (ret == 0 && list_empty(&list)) 1162 return 0; 1163 1164 while (!list_empty(&list)) { 1165 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1166 list_del(&sums->list); 1167 kfree(sums); 1168 } 1169 return 1; 1170 } 1171 1172 /* 1173 * when nowcow writeback call back. This checks for snapshots or COW copies 1174 * of the extents that exist in the file, and COWs the file as required. 1175 * 1176 * If no cow copies or snapshots exist, we write directly to the existing 1177 * blocks on disk 1178 */ 1179 static noinline int run_delalloc_nocow(struct inode *inode, 1180 struct page *locked_page, 1181 u64 start, u64 end, int *page_started, int force, 1182 unsigned long *nr_written) 1183 { 1184 struct btrfs_root *root = BTRFS_I(inode)->root; 1185 struct btrfs_trans_handle *trans; 1186 struct extent_buffer *leaf; 1187 struct btrfs_path *path; 1188 struct btrfs_file_extent_item *fi; 1189 struct btrfs_key found_key; 1190 u64 cow_start; 1191 u64 cur_offset; 1192 u64 extent_end; 1193 u64 extent_offset; 1194 u64 disk_bytenr; 1195 u64 num_bytes; 1196 u64 disk_num_bytes; 1197 int extent_type; 1198 int ret, err; 1199 int type; 1200 int nocow; 1201 int check_prev = 1; 1202 bool nolock; 1203 u64 ino = btrfs_ino(inode); 1204 1205 path = btrfs_alloc_path(); 1206 if (!path) { 1207 extent_clear_unlock_delalloc(inode, 1208 &BTRFS_I(inode)->io_tree, 1209 start, end, locked_page, 1210 EXTENT_CLEAR_UNLOCK_PAGE | 1211 EXTENT_CLEAR_UNLOCK | 1212 EXTENT_CLEAR_DELALLOC | 1213 EXTENT_CLEAR_DIRTY | 1214 EXTENT_SET_WRITEBACK | 1215 EXTENT_END_WRITEBACK); 1216 return -ENOMEM; 1217 } 1218 1219 nolock = btrfs_is_free_space_inode(inode); 1220 1221 if (nolock) 1222 trans = btrfs_join_transaction_nolock(root); 1223 else 1224 trans = btrfs_join_transaction(root); 1225 1226 if (IS_ERR(trans)) { 1227 extent_clear_unlock_delalloc(inode, 1228 &BTRFS_I(inode)->io_tree, 1229 start, end, locked_page, 1230 EXTENT_CLEAR_UNLOCK_PAGE | 1231 EXTENT_CLEAR_UNLOCK | 1232 EXTENT_CLEAR_DELALLOC | 1233 EXTENT_CLEAR_DIRTY | 1234 EXTENT_SET_WRITEBACK | 1235 EXTENT_END_WRITEBACK); 1236 btrfs_free_path(path); 1237 return PTR_ERR(trans); 1238 } 1239 1240 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1241 1242 cow_start = (u64)-1; 1243 cur_offset = start; 1244 while (1) { 1245 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1246 cur_offset, 0); 1247 if (ret < 0) { 1248 btrfs_abort_transaction(trans, root, ret); 1249 goto error; 1250 } 1251 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1252 leaf = path->nodes[0]; 1253 btrfs_item_key_to_cpu(leaf, &found_key, 1254 path->slots[0] - 1); 1255 if (found_key.objectid == ino && 1256 found_key.type == BTRFS_EXTENT_DATA_KEY) 1257 path->slots[0]--; 1258 } 1259 check_prev = 0; 1260 next_slot: 1261 leaf = path->nodes[0]; 1262 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1263 ret = btrfs_next_leaf(root, path); 1264 if (ret < 0) { 1265 btrfs_abort_transaction(trans, root, ret); 1266 goto error; 1267 } 1268 if (ret > 0) 1269 break; 1270 leaf = path->nodes[0]; 1271 } 1272 1273 nocow = 0; 1274 disk_bytenr = 0; 1275 num_bytes = 0; 1276 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1277 1278 if (found_key.objectid > ino || 1279 found_key.type > BTRFS_EXTENT_DATA_KEY || 1280 found_key.offset > end) 1281 break; 1282 1283 if (found_key.offset > cur_offset) { 1284 extent_end = found_key.offset; 1285 extent_type = 0; 1286 goto out_check; 1287 } 1288 1289 fi = btrfs_item_ptr(leaf, path->slots[0], 1290 struct btrfs_file_extent_item); 1291 extent_type = btrfs_file_extent_type(leaf, fi); 1292 1293 if (extent_type == BTRFS_FILE_EXTENT_REG || 1294 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1295 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1296 extent_offset = btrfs_file_extent_offset(leaf, fi); 1297 extent_end = found_key.offset + 1298 btrfs_file_extent_num_bytes(leaf, fi); 1299 disk_num_bytes = 1300 btrfs_file_extent_disk_num_bytes(leaf, fi); 1301 if (extent_end <= start) { 1302 path->slots[0]++; 1303 goto next_slot; 1304 } 1305 if (disk_bytenr == 0) 1306 goto out_check; 1307 if (btrfs_file_extent_compression(leaf, fi) || 1308 btrfs_file_extent_encryption(leaf, fi) || 1309 btrfs_file_extent_other_encoding(leaf, fi)) 1310 goto out_check; 1311 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1312 goto out_check; 1313 if (btrfs_extent_readonly(root, disk_bytenr)) 1314 goto out_check; 1315 if (btrfs_cross_ref_exist(trans, root, ino, 1316 found_key.offset - 1317 extent_offset, disk_bytenr)) 1318 goto out_check; 1319 disk_bytenr += extent_offset; 1320 disk_bytenr += cur_offset - found_key.offset; 1321 num_bytes = min(end + 1, extent_end) - cur_offset; 1322 /* 1323 * force cow if csum exists in the range. 1324 * this ensure that csum for a given extent are 1325 * either valid or do not exist. 1326 */ 1327 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1328 goto out_check; 1329 nocow = 1; 1330 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1331 extent_end = found_key.offset + 1332 btrfs_file_extent_inline_len(leaf, fi); 1333 extent_end = ALIGN(extent_end, root->sectorsize); 1334 } else { 1335 BUG_ON(1); 1336 } 1337 out_check: 1338 if (extent_end <= start) { 1339 path->slots[0]++; 1340 goto next_slot; 1341 } 1342 if (!nocow) { 1343 if (cow_start == (u64)-1) 1344 cow_start = cur_offset; 1345 cur_offset = extent_end; 1346 if (cur_offset > end) 1347 break; 1348 path->slots[0]++; 1349 goto next_slot; 1350 } 1351 1352 btrfs_release_path(path); 1353 if (cow_start != (u64)-1) { 1354 ret = __cow_file_range(trans, inode, root, locked_page, 1355 cow_start, found_key.offset - 1, 1356 page_started, nr_written, 1); 1357 if (ret) { 1358 btrfs_abort_transaction(trans, root, ret); 1359 goto error; 1360 } 1361 cow_start = (u64)-1; 1362 } 1363 1364 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1365 struct extent_map *em; 1366 struct extent_map_tree *em_tree; 1367 em_tree = &BTRFS_I(inode)->extent_tree; 1368 em = alloc_extent_map(); 1369 BUG_ON(!em); /* -ENOMEM */ 1370 em->start = cur_offset; 1371 em->orig_start = found_key.offset - extent_offset; 1372 em->len = num_bytes; 1373 em->block_len = num_bytes; 1374 em->block_start = disk_bytenr; 1375 em->orig_block_len = disk_num_bytes; 1376 em->bdev = root->fs_info->fs_devices->latest_bdev; 1377 em->mod_start = em->start; 1378 em->mod_len = em->len; 1379 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1380 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1381 em->generation = -1; 1382 while (1) { 1383 write_lock(&em_tree->lock); 1384 ret = add_extent_mapping(em_tree, em); 1385 if (!ret) 1386 list_move(&em->list, 1387 &em_tree->modified_extents); 1388 write_unlock(&em_tree->lock); 1389 if (ret != -EEXIST) { 1390 free_extent_map(em); 1391 break; 1392 } 1393 btrfs_drop_extent_cache(inode, em->start, 1394 em->start + em->len - 1, 0); 1395 } 1396 type = BTRFS_ORDERED_PREALLOC; 1397 } else { 1398 type = BTRFS_ORDERED_NOCOW; 1399 } 1400 1401 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1402 num_bytes, num_bytes, type); 1403 BUG_ON(ret); /* -ENOMEM */ 1404 1405 if (root->root_key.objectid == 1406 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1407 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1408 num_bytes); 1409 if (ret) { 1410 btrfs_abort_transaction(trans, root, ret); 1411 goto error; 1412 } 1413 } 1414 1415 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1416 cur_offset, cur_offset + num_bytes - 1, 1417 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1418 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1419 EXTENT_SET_PRIVATE2); 1420 cur_offset = extent_end; 1421 if (cur_offset > end) 1422 break; 1423 } 1424 btrfs_release_path(path); 1425 1426 if (cur_offset <= end && cow_start == (u64)-1) { 1427 cow_start = cur_offset; 1428 cur_offset = end; 1429 } 1430 1431 if (cow_start != (u64)-1) { 1432 ret = __cow_file_range(trans, inode, root, locked_page, 1433 cow_start, end, 1434 page_started, nr_written, 1); 1435 if (ret) { 1436 btrfs_abort_transaction(trans, root, ret); 1437 goto error; 1438 } 1439 } 1440 1441 error: 1442 err = btrfs_end_transaction(trans, root); 1443 if (!ret) 1444 ret = err; 1445 1446 if (ret && cur_offset < end) 1447 extent_clear_unlock_delalloc(inode, 1448 &BTRFS_I(inode)->io_tree, 1449 cur_offset, end, locked_page, 1450 EXTENT_CLEAR_UNLOCK_PAGE | 1451 EXTENT_CLEAR_UNLOCK | 1452 EXTENT_CLEAR_DELALLOC | 1453 EXTENT_CLEAR_DIRTY | 1454 EXTENT_SET_WRITEBACK | 1455 EXTENT_END_WRITEBACK); 1456 1457 btrfs_free_path(path); 1458 return ret; 1459 } 1460 1461 /* 1462 * extent_io.c call back to do delayed allocation processing 1463 */ 1464 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1465 u64 start, u64 end, int *page_started, 1466 unsigned long *nr_written) 1467 { 1468 int ret; 1469 struct btrfs_root *root = BTRFS_I(inode)->root; 1470 1471 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1472 ret = run_delalloc_nocow(inode, locked_page, start, end, 1473 page_started, 1, nr_written); 1474 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1475 ret = run_delalloc_nocow(inode, locked_page, start, end, 1476 page_started, 0, nr_written); 1477 } else if (!btrfs_test_opt(root, COMPRESS) && 1478 !(BTRFS_I(inode)->force_compress) && 1479 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1480 ret = cow_file_range(inode, locked_page, start, end, 1481 page_started, nr_written, 1); 1482 } else { 1483 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1484 &BTRFS_I(inode)->runtime_flags); 1485 ret = cow_file_range_async(inode, locked_page, start, end, 1486 page_started, nr_written); 1487 } 1488 return ret; 1489 } 1490 1491 static void btrfs_split_extent_hook(struct inode *inode, 1492 struct extent_state *orig, u64 split) 1493 { 1494 /* not delalloc, ignore it */ 1495 if (!(orig->state & EXTENT_DELALLOC)) 1496 return; 1497 1498 spin_lock(&BTRFS_I(inode)->lock); 1499 BTRFS_I(inode)->outstanding_extents++; 1500 spin_unlock(&BTRFS_I(inode)->lock); 1501 } 1502 1503 /* 1504 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1505 * extents so we can keep track of new extents that are just merged onto old 1506 * extents, such as when we are doing sequential writes, so we can properly 1507 * account for the metadata space we'll need. 1508 */ 1509 static void btrfs_merge_extent_hook(struct inode *inode, 1510 struct extent_state *new, 1511 struct extent_state *other) 1512 { 1513 /* not delalloc, ignore it */ 1514 if (!(other->state & EXTENT_DELALLOC)) 1515 return; 1516 1517 spin_lock(&BTRFS_I(inode)->lock); 1518 BTRFS_I(inode)->outstanding_extents--; 1519 spin_unlock(&BTRFS_I(inode)->lock); 1520 } 1521 1522 /* 1523 * extent_io.c set_bit_hook, used to track delayed allocation 1524 * bytes in this file, and to maintain the list of inodes that 1525 * have pending delalloc work to be done. 1526 */ 1527 static void btrfs_set_bit_hook(struct inode *inode, 1528 struct extent_state *state, int *bits) 1529 { 1530 1531 /* 1532 * set_bit and clear bit hooks normally require _irqsave/restore 1533 * but in this case, we are only testing for the DELALLOC 1534 * bit, which is only set or cleared with irqs on 1535 */ 1536 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1537 struct btrfs_root *root = BTRFS_I(inode)->root; 1538 u64 len = state->end + 1 - state->start; 1539 bool do_list = !btrfs_is_free_space_inode(inode); 1540 1541 if (*bits & EXTENT_FIRST_DELALLOC) { 1542 *bits &= ~EXTENT_FIRST_DELALLOC; 1543 } else { 1544 spin_lock(&BTRFS_I(inode)->lock); 1545 BTRFS_I(inode)->outstanding_extents++; 1546 spin_unlock(&BTRFS_I(inode)->lock); 1547 } 1548 1549 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1550 root->fs_info->delalloc_batch); 1551 spin_lock(&BTRFS_I(inode)->lock); 1552 BTRFS_I(inode)->delalloc_bytes += len; 1553 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1554 &BTRFS_I(inode)->runtime_flags)) { 1555 spin_lock(&root->fs_info->delalloc_lock); 1556 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1557 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1558 &root->fs_info->delalloc_inodes); 1559 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1560 &BTRFS_I(inode)->runtime_flags); 1561 } 1562 spin_unlock(&root->fs_info->delalloc_lock); 1563 } 1564 spin_unlock(&BTRFS_I(inode)->lock); 1565 } 1566 } 1567 1568 /* 1569 * extent_io.c clear_bit_hook, see set_bit_hook for why 1570 */ 1571 static void btrfs_clear_bit_hook(struct inode *inode, 1572 struct extent_state *state, int *bits) 1573 { 1574 /* 1575 * set_bit and clear bit hooks normally require _irqsave/restore 1576 * but in this case, we are only testing for the DELALLOC 1577 * bit, which is only set or cleared with irqs on 1578 */ 1579 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1580 struct btrfs_root *root = BTRFS_I(inode)->root; 1581 u64 len = state->end + 1 - state->start; 1582 bool do_list = !btrfs_is_free_space_inode(inode); 1583 1584 if (*bits & EXTENT_FIRST_DELALLOC) { 1585 *bits &= ~EXTENT_FIRST_DELALLOC; 1586 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1587 spin_lock(&BTRFS_I(inode)->lock); 1588 BTRFS_I(inode)->outstanding_extents--; 1589 spin_unlock(&BTRFS_I(inode)->lock); 1590 } 1591 1592 if (*bits & EXTENT_DO_ACCOUNTING) 1593 btrfs_delalloc_release_metadata(inode, len); 1594 1595 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1596 && do_list) 1597 btrfs_free_reserved_data_space(inode, len); 1598 1599 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1600 root->fs_info->delalloc_batch); 1601 spin_lock(&BTRFS_I(inode)->lock); 1602 BTRFS_I(inode)->delalloc_bytes -= len; 1603 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1604 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1605 &BTRFS_I(inode)->runtime_flags)) { 1606 spin_lock(&root->fs_info->delalloc_lock); 1607 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1608 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1609 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1610 &BTRFS_I(inode)->runtime_flags); 1611 } 1612 spin_unlock(&root->fs_info->delalloc_lock); 1613 } 1614 spin_unlock(&BTRFS_I(inode)->lock); 1615 } 1616 } 1617 1618 /* 1619 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1620 * we don't create bios that span stripes or chunks 1621 */ 1622 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1623 size_t size, struct bio *bio, 1624 unsigned long bio_flags) 1625 { 1626 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1627 u64 logical = (u64)bio->bi_sector << 9; 1628 u64 length = 0; 1629 u64 map_length; 1630 int ret; 1631 1632 if (bio_flags & EXTENT_BIO_COMPRESSED) 1633 return 0; 1634 1635 length = bio->bi_size; 1636 map_length = length; 1637 ret = btrfs_map_block(root->fs_info, rw, logical, 1638 &map_length, NULL, 0); 1639 /* Will always return 0 with map_multi == NULL */ 1640 BUG_ON(ret < 0); 1641 if (map_length < length + size) 1642 return 1; 1643 return 0; 1644 } 1645 1646 /* 1647 * in order to insert checksums into the metadata in large chunks, 1648 * we wait until bio submission time. All the pages in the bio are 1649 * checksummed and sums are attached onto the ordered extent record. 1650 * 1651 * At IO completion time the cums attached on the ordered extent record 1652 * are inserted into the btree 1653 */ 1654 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1655 struct bio *bio, int mirror_num, 1656 unsigned long bio_flags, 1657 u64 bio_offset) 1658 { 1659 struct btrfs_root *root = BTRFS_I(inode)->root; 1660 int ret = 0; 1661 1662 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1663 BUG_ON(ret); /* -ENOMEM */ 1664 return 0; 1665 } 1666 1667 /* 1668 * in order to insert checksums into the metadata in large chunks, 1669 * we wait until bio submission time. All the pages in the bio are 1670 * checksummed and sums are attached onto the ordered extent record. 1671 * 1672 * At IO completion time the cums attached on the ordered extent record 1673 * are inserted into the btree 1674 */ 1675 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1676 int mirror_num, unsigned long bio_flags, 1677 u64 bio_offset) 1678 { 1679 struct btrfs_root *root = BTRFS_I(inode)->root; 1680 int ret; 1681 1682 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1683 if (ret) 1684 bio_endio(bio, ret); 1685 return ret; 1686 } 1687 1688 /* 1689 * extent_io.c submission hook. This does the right thing for csum calculation 1690 * on write, or reading the csums from the tree before a read 1691 */ 1692 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1693 int mirror_num, unsigned long bio_flags, 1694 u64 bio_offset) 1695 { 1696 struct btrfs_root *root = BTRFS_I(inode)->root; 1697 int ret = 0; 1698 int skip_sum; 1699 int metadata = 0; 1700 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1701 1702 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1703 1704 if (btrfs_is_free_space_inode(inode)) 1705 metadata = 2; 1706 1707 if (!(rw & REQ_WRITE)) { 1708 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1709 if (ret) 1710 goto out; 1711 1712 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1713 ret = btrfs_submit_compressed_read(inode, bio, 1714 mirror_num, 1715 bio_flags); 1716 goto out; 1717 } else if (!skip_sum) { 1718 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1719 if (ret) 1720 goto out; 1721 } 1722 goto mapit; 1723 } else if (async && !skip_sum) { 1724 /* csum items have already been cloned */ 1725 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1726 goto mapit; 1727 /* we're doing a write, do the async checksumming */ 1728 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1729 inode, rw, bio, mirror_num, 1730 bio_flags, bio_offset, 1731 __btrfs_submit_bio_start, 1732 __btrfs_submit_bio_done); 1733 goto out; 1734 } else if (!skip_sum) { 1735 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1736 if (ret) 1737 goto out; 1738 } 1739 1740 mapit: 1741 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1742 1743 out: 1744 if (ret < 0) 1745 bio_endio(bio, ret); 1746 return ret; 1747 } 1748 1749 /* 1750 * given a list of ordered sums record them in the inode. This happens 1751 * at IO completion time based on sums calculated at bio submission time. 1752 */ 1753 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1754 struct inode *inode, u64 file_offset, 1755 struct list_head *list) 1756 { 1757 struct btrfs_ordered_sum *sum; 1758 1759 list_for_each_entry(sum, list, list) { 1760 trans->adding_csums = 1; 1761 btrfs_csum_file_blocks(trans, 1762 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1763 trans->adding_csums = 0; 1764 } 1765 return 0; 1766 } 1767 1768 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1769 struct extent_state **cached_state) 1770 { 1771 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1772 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1773 cached_state, GFP_NOFS); 1774 } 1775 1776 /* see btrfs_writepage_start_hook for details on why this is required */ 1777 struct btrfs_writepage_fixup { 1778 struct page *page; 1779 struct btrfs_work work; 1780 }; 1781 1782 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1783 { 1784 struct btrfs_writepage_fixup *fixup; 1785 struct btrfs_ordered_extent *ordered; 1786 struct extent_state *cached_state = NULL; 1787 struct page *page; 1788 struct inode *inode; 1789 u64 page_start; 1790 u64 page_end; 1791 int ret; 1792 1793 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1794 page = fixup->page; 1795 again: 1796 lock_page(page); 1797 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1798 ClearPageChecked(page); 1799 goto out_page; 1800 } 1801 1802 inode = page->mapping->host; 1803 page_start = page_offset(page); 1804 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1805 1806 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1807 &cached_state); 1808 1809 /* already ordered? We're done */ 1810 if (PagePrivate2(page)) 1811 goto out; 1812 1813 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1814 if (ordered) { 1815 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1816 page_end, &cached_state, GFP_NOFS); 1817 unlock_page(page); 1818 btrfs_start_ordered_extent(inode, ordered, 1); 1819 btrfs_put_ordered_extent(ordered); 1820 goto again; 1821 } 1822 1823 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1824 if (ret) { 1825 mapping_set_error(page->mapping, ret); 1826 end_extent_writepage(page, ret, page_start, page_end); 1827 ClearPageChecked(page); 1828 goto out; 1829 } 1830 1831 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1832 ClearPageChecked(page); 1833 set_page_dirty(page); 1834 out: 1835 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1836 &cached_state, GFP_NOFS); 1837 out_page: 1838 unlock_page(page); 1839 page_cache_release(page); 1840 kfree(fixup); 1841 } 1842 1843 /* 1844 * There are a few paths in the higher layers of the kernel that directly 1845 * set the page dirty bit without asking the filesystem if it is a 1846 * good idea. This causes problems because we want to make sure COW 1847 * properly happens and the data=ordered rules are followed. 1848 * 1849 * In our case any range that doesn't have the ORDERED bit set 1850 * hasn't been properly setup for IO. We kick off an async process 1851 * to fix it up. The async helper will wait for ordered extents, set 1852 * the delalloc bit and make it safe to write the page. 1853 */ 1854 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1855 { 1856 struct inode *inode = page->mapping->host; 1857 struct btrfs_writepage_fixup *fixup; 1858 struct btrfs_root *root = BTRFS_I(inode)->root; 1859 1860 /* this page is properly in the ordered list */ 1861 if (TestClearPagePrivate2(page)) 1862 return 0; 1863 1864 if (PageChecked(page)) 1865 return -EAGAIN; 1866 1867 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1868 if (!fixup) 1869 return -EAGAIN; 1870 1871 SetPageChecked(page); 1872 page_cache_get(page); 1873 fixup->work.func = btrfs_writepage_fixup_worker; 1874 fixup->page = page; 1875 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1876 return -EBUSY; 1877 } 1878 1879 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1880 struct inode *inode, u64 file_pos, 1881 u64 disk_bytenr, u64 disk_num_bytes, 1882 u64 num_bytes, u64 ram_bytes, 1883 u8 compression, u8 encryption, 1884 u16 other_encoding, int extent_type) 1885 { 1886 struct btrfs_root *root = BTRFS_I(inode)->root; 1887 struct btrfs_file_extent_item *fi; 1888 struct btrfs_path *path; 1889 struct extent_buffer *leaf; 1890 struct btrfs_key ins; 1891 int ret; 1892 1893 path = btrfs_alloc_path(); 1894 if (!path) 1895 return -ENOMEM; 1896 1897 path->leave_spinning = 1; 1898 1899 /* 1900 * we may be replacing one extent in the tree with another. 1901 * The new extent is pinned in the extent map, and we don't want 1902 * to drop it from the cache until it is completely in the btree. 1903 * 1904 * So, tell btrfs_drop_extents to leave this extent in the cache. 1905 * the caller is expected to unpin it and allow it to be merged 1906 * with the others. 1907 */ 1908 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1909 file_pos + num_bytes, 0); 1910 if (ret) 1911 goto out; 1912 1913 ins.objectid = btrfs_ino(inode); 1914 ins.offset = file_pos; 1915 ins.type = BTRFS_EXTENT_DATA_KEY; 1916 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1917 if (ret) 1918 goto out; 1919 leaf = path->nodes[0]; 1920 fi = btrfs_item_ptr(leaf, path->slots[0], 1921 struct btrfs_file_extent_item); 1922 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1923 btrfs_set_file_extent_type(leaf, fi, extent_type); 1924 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1925 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1926 btrfs_set_file_extent_offset(leaf, fi, 0); 1927 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1928 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1929 btrfs_set_file_extent_compression(leaf, fi, compression); 1930 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1931 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1932 1933 btrfs_mark_buffer_dirty(leaf); 1934 btrfs_release_path(path); 1935 1936 inode_add_bytes(inode, num_bytes); 1937 1938 ins.objectid = disk_bytenr; 1939 ins.offset = disk_num_bytes; 1940 ins.type = BTRFS_EXTENT_ITEM_KEY; 1941 ret = btrfs_alloc_reserved_file_extent(trans, root, 1942 root->root_key.objectid, 1943 btrfs_ino(inode), file_pos, &ins); 1944 out: 1945 btrfs_free_path(path); 1946 1947 return ret; 1948 } 1949 1950 /* snapshot-aware defrag */ 1951 struct sa_defrag_extent_backref { 1952 struct rb_node node; 1953 struct old_sa_defrag_extent *old; 1954 u64 root_id; 1955 u64 inum; 1956 u64 file_pos; 1957 u64 extent_offset; 1958 u64 num_bytes; 1959 u64 generation; 1960 }; 1961 1962 struct old_sa_defrag_extent { 1963 struct list_head list; 1964 struct new_sa_defrag_extent *new; 1965 1966 u64 extent_offset; 1967 u64 bytenr; 1968 u64 offset; 1969 u64 len; 1970 int count; 1971 }; 1972 1973 struct new_sa_defrag_extent { 1974 struct rb_root root; 1975 struct list_head head; 1976 struct btrfs_path *path; 1977 struct inode *inode; 1978 u64 file_pos; 1979 u64 len; 1980 u64 bytenr; 1981 u64 disk_len; 1982 u8 compress_type; 1983 }; 1984 1985 static int backref_comp(struct sa_defrag_extent_backref *b1, 1986 struct sa_defrag_extent_backref *b2) 1987 { 1988 if (b1->root_id < b2->root_id) 1989 return -1; 1990 else if (b1->root_id > b2->root_id) 1991 return 1; 1992 1993 if (b1->inum < b2->inum) 1994 return -1; 1995 else if (b1->inum > b2->inum) 1996 return 1; 1997 1998 if (b1->file_pos < b2->file_pos) 1999 return -1; 2000 else if (b1->file_pos > b2->file_pos) 2001 return 1; 2002 2003 /* 2004 * [------------------------------] ===> (a range of space) 2005 * |<--->| |<---->| =============> (fs/file tree A) 2006 * |<---------------------------->| ===> (fs/file tree B) 2007 * 2008 * A range of space can refer to two file extents in one tree while 2009 * refer to only one file extent in another tree. 2010 * 2011 * So we may process a disk offset more than one time(two extents in A) 2012 * and locate at the same extent(one extent in B), then insert two same 2013 * backrefs(both refer to the extent in B). 2014 */ 2015 return 0; 2016 } 2017 2018 static void backref_insert(struct rb_root *root, 2019 struct sa_defrag_extent_backref *backref) 2020 { 2021 struct rb_node **p = &root->rb_node; 2022 struct rb_node *parent = NULL; 2023 struct sa_defrag_extent_backref *entry; 2024 int ret; 2025 2026 while (*p) { 2027 parent = *p; 2028 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2029 2030 ret = backref_comp(backref, entry); 2031 if (ret < 0) 2032 p = &(*p)->rb_left; 2033 else 2034 p = &(*p)->rb_right; 2035 } 2036 2037 rb_link_node(&backref->node, parent, p); 2038 rb_insert_color(&backref->node, root); 2039 } 2040 2041 /* 2042 * Note the backref might has changed, and in this case we just return 0. 2043 */ 2044 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2045 void *ctx) 2046 { 2047 struct btrfs_file_extent_item *extent; 2048 struct btrfs_fs_info *fs_info; 2049 struct old_sa_defrag_extent *old = ctx; 2050 struct new_sa_defrag_extent *new = old->new; 2051 struct btrfs_path *path = new->path; 2052 struct btrfs_key key; 2053 struct btrfs_root *root; 2054 struct sa_defrag_extent_backref *backref; 2055 struct extent_buffer *leaf; 2056 struct inode *inode = new->inode; 2057 int slot; 2058 int ret; 2059 u64 extent_offset; 2060 u64 num_bytes; 2061 2062 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2063 inum == btrfs_ino(inode)) 2064 return 0; 2065 2066 key.objectid = root_id; 2067 key.type = BTRFS_ROOT_ITEM_KEY; 2068 key.offset = (u64)-1; 2069 2070 fs_info = BTRFS_I(inode)->root->fs_info; 2071 root = btrfs_read_fs_root_no_name(fs_info, &key); 2072 if (IS_ERR(root)) { 2073 if (PTR_ERR(root) == -ENOENT) 2074 return 0; 2075 WARN_ON(1); 2076 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2077 inum, offset, root_id); 2078 return PTR_ERR(root); 2079 } 2080 2081 key.objectid = inum; 2082 key.type = BTRFS_EXTENT_DATA_KEY; 2083 if (offset > (u64)-1 << 32) 2084 key.offset = 0; 2085 else 2086 key.offset = offset; 2087 2088 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2089 if (ret < 0) { 2090 WARN_ON(1); 2091 return ret; 2092 } 2093 2094 while (1) { 2095 cond_resched(); 2096 2097 leaf = path->nodes[0]; 2098 slot = path->slots[0]; 2099 2100 if (slot >= btrfs_header_nritems(leaf)) { 2101 ret = btrfs_next_leaf(root, path); 2102 if (ret < 0) { 2103 goto out; 2104 } else if (ret > 0) { 2105 ret = 0; 2106 goto out; 2107 } 2108 continue; 2109 } 2110 2111 path->slots[0]++; 2112 2113 btrfs_item_key_to_cpu(leaf, &key, slot); 2114 2115 if (key.objectid > inum) 2116 goto out; 2117 2118 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2119 continue; 2120 2121 extent = btrfs_item_ptr(leaf, slot, 2122 struct btrfs_file_extent_item); 2123 2124 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2125 continue; 2126 2127 extent_offset = btrfs_file_extent_offset(leaf, extent); 2128 if (key.offset - extent_offset != offset) 2129 continue; 2130 2131 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2132 if (extent_offset >= old->extent_offset + old->offset + 2133 old->len || extent_offset + num_bytes <= 2134 old->extent_offset + old->offset) 2135 continue; 2136 2137 break; 2138 } 2139 2140 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2141 if (!backref) { 2142 ret = -ENOENT; 2143 goto out; 2144 } 2145 2146 backref->root_id = root_id; 2147 backref->inum = inum; 2148 backref->file_pos = offset + extent_offset; 2149 backref->num_bytes = num_bytes; 2150 backref->extent_offset = extent_offset; 2151 backref->generation = btrfs_file_extent_generation(leaf, extent); 2152 backref->old = old; 2153 backref_insert(&new->root, backref); 2154 old->count++; 2155 out: 2156 btrfs_release_path(path); 2157 WARN_ON(ret); 2158 return ret; 2159 } 2160 2161 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2162 struct new_sa_defrag_extent *new) 2163 { 2164 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2165 struct old_sa_defrag_extent *old, *tmp; 2166 int ret; 2167 2168 new->path = path; 2169 2170 list_for_each_entry_safe(old, tmp, &new->head, list) { 2171 ret = iterate_inodes_from_logical(old->bytenr, fs_info, 2172 path, record_one_backref, 2173 old); 2174 BUG_ON(ret < 0 && ret != -ENOENT); 2175 2176 /* no backref to be processed for this extent */ 2177 if (!old->count) { 2178 list_del(&old->list); 2179 kfree(old); 2180 } 2181 } 2182 2183 if (list_empty(&new->head)) 2184 return false; 2185 2186 return true; 2187 } 2188 2189 static int relink_is_mergable(struct extent_buffer *leaf, 2190 struct btrfs_file_extent_item *fi, 2191 u64 disk_bytenr) 2192 { 2193 if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr) 2194 return 0; 2195 2196 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2197 return 0; 2198 2199 if (btrfs_file_extent_compression(leaf, fi) || 2200 btrfs_file_extent_encryption(leaf, fi) || 2201 btrfs_file_extent_other_encoding(leaf, fi)) 2202 return 0; 2203 2204 return 1; 2205 } 2206 2207 /* 2208 * Note the backref might has changed, and in this case we just return 0. 2209 */ 2210 static noinline int relink_extent_backref(struct btrfs_path *path, 2211 struct sa_defrag_extent_backref *prev, 2212 struct sa_defrag_extent_backref *backref) 2213 { 2214 struct btrfs_file_extent_item *extent; 2215 struct btrfs_file_extent_item *item; 2216 struct btrfs_ordered_extent *ordered; 2217 struct btrfs_trans_handle *trans; 2218 struct btrfs_fs_info *fs_info; 2219 struct btrfs_root *root; 2220 struct btrfs_key key; 2221 struct extent_buffer *leaf; 2222 struct old_sa_defrag_extent *old = backref->old; 2223 struct new_sa_defrag_extent *new = old->new; 2224 struct inode *src_inode = new->inode; 2225 struct inode *inode; 2226 struct extent_state *cached = NULL; 2227 int ret = 0; 2228 u64 start; 2229 u64 len; 2230 u64 lock_start; 2231 u64 lock_end; 2232 bool merge = false; 2233 int index; 2234 2235 if (prev && prev->root_id == backref->root_id && 2236 prev->inum == backref->inum && 2237 prev->file_pos + prev->num_bytes == backref->file_pos) 2238 merge = true; 2239 2240 /* step 1: get root */ 2241 key.objectid = backref->root_id; 2242 key.type = BTRFS_ROOT_ITEM_KEY; 2243 key.offset = (u64)-1; 2244 2245 fs_info = BTRFS_I(src_inode)->root->fs_info; 2246 index = srcu_read_lock(&fs_info->subvol_srcu); 2247 2248 root = btrfs_read_fs_root_no_name(fs_info, &key); 2249 if (IS_ERR(root)) { 2250 srcu_read_unlock(&fs_info->subvol_srcu, index); 2251 if (PTR_ERR(root) == -ENOENT) 2252 return 0; 2253 return PTR_ERR(root); 2254 } 2255 if (btrfs_root_refs(&root->root_item) == 0) { 2256 srcu_read_unlock(&fs_info->subvol_srcu, index); 2257 /* parse ENOENT to 0 */ 2258 return 0; 2259 } 2260 2261 /* step 2: get inode */ 2262 key.objectid = backref->inum; 2263 key.type = BTRFS_INODE_ITEM_KEY; 2264 key.offset = 0; 2265 2266 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2267 if (IS_ERR(inode)) { 2268 srcu_read_unlock(&fs_info->subvol_srcu, index); 2269 return 0; 2270 } 2271 2272 srcu_read_unlock(&fs_info->subvol_srcu, index); 2273 2274 /* step 3: relink backref */ 2275 lock_start = backref->file_pos; 2276 lock_end = backref->file_pos + backref->num_bytes - 1; 2277 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2278 0, &cached); 2279 2280 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2281 if (ordered) { 2282 btrfs_put_ordered_extent(ordered); 2283 goto out_unlock; 2284 } 2285 2286 trans = btrfs_join_transaction(root); 2287 if (IS_ERR(trans)) { 2288 ret = PTR_ERR(trans); 2289 goto out_unlock; 2290 } 2291 2292 key.objectid = backref->inum; 2293 key.type = BTRFS_EXTENT_DATA_KEY; 2294 key.offset = backref->file_pos; 2295 2296 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2297 if (ret < 0) { 2298 goto out_free_path; 2299 } else if (ret > 0) { 2300 ret = 0; 2301 goto out_free_path; 2302 } 2303 2304 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2305 struct btrfs_file_extent_item); 2306 2307 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2308 backref->generation) 2309 goto out_free_path; 2310 2311 btrfs_release_path(path); 2312 2313 start = backref->file_pos; 2314 if (backref->extent_offset < old->extent_offset + old->offset) 2315 start += old->extent_offset + old->offset - 2316 backref->extent_offset; 2317 2318 len = min(backref->extent_offset + backref->num_bytes, 2319 old->extent_offset + old->offset + old->len); 2320 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2321 2322 ret = btrfs_drop_extents(trans, root, inode, start, 2323 start + len, 1); 2324 if (ret) 2325 goto out_free_path; 2326 again: 2327 key.objectid = btrfs_ino(inode); 2328 key.type = BTRFS_EXTENT_DATA_KEY; 2329 key.offset = start; 2330 2331 path->leave_spinning = 1; 2332 if (merge) { 2333 struct btrfs_file_extent_item *fi; 2334 u64 extent_len; 2335 struct btrfs_key found_key; 2336 2337 ret = btrfs_search_slot(trans, root, &key, path, 1, 1); 2338 if (ret < 0) 2339 goto out_free_path; 2340 2341 path->slots[0]--; 2342 leaf = path->nodes[0]; 2343 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2344 2345 fi = btrfs_item_ptr(leaf, path->slots[0], 2346 struct btrfs_file_extent_item); 2347 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2348 2349 if (relink_is_mergable(leaf, fi, new->bytenr) && 2350 extent_len + found_key.offset == start) { 2351 btrfs_set_file_extent_num_bytes(leaf, fi, 2352 extent_len + len); 2353 btrfs_mark_buffer_dirty(leaf); 2354 inode_add_bytes(inode, len); 2355 2356 ret = 1; 2357 goto out_free_path; 2358 } else { 2359 merge = false; 2360 btrfs_release_path(path); 2361 goto again; 2362 } 2363 } 2364 2365 ret = btrfs_insert_empty_item(trans, root, path, &key, 2366 sizeof(*extent)); 2367 if (ret) { 2368 btrfs_abort_transaction(trans, root, ret); 2369 goto out_free_path; 2370 } 2371 2372 leaf = path->nodes[0]; 2373 item = btrfs_item_ptr(leaf, path->slots[0], 2374 struct btrfs_file_extent_item); 2375 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2376 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2377 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2378 btrfs_set_file_extent_num_bytes(leaf, item, len); 2379 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2380 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2381 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2382 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2383 btrfs_set_file_extent_encryption(leaf, item, 0); 2384 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2385 2386 btrfs_mark_buffer_dirty(leaf); 2387 inode_add_bytes(inode, len); 2388 btrfs_release_path(path); 2389 2390 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2391 new->disk_len, 0, 2392 backref->root_id, backref->inum, 2393 new->file_pos, 0); /* start - extent_offset */ 2394 if (ret) { 2395 btrfs_abort_transaction(trans, root, ret); 2396 goto out_free_path; 2397 } 2398 2399 ret = 1; 2400 out_free_path: 2401 btrfs_release_path(path); 2402 path->leave_spinning = 0; 2403 btrfs_end_transaction(trans, root); 2404 out_unlock: 2405 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2406 &cached, GFP_NOFS); 2407 iput(inode); 2408 return ret; 2409 } 2410 2411 static void relink_file_extents(struct new_sa_defrag_extent *new) 2412 { 2413 struct btrfs_path *path; 2414 struct old_sa_defrag_extent *old, *tmp; 2415 struct sa_defrag_extent_backref *backref; 2416 struct sa_defrag_extent_backref *prev = NULL; 2417 struct inode *inode; 2418 struct btrfs_root *root; 2419 struct rb_node *node; 2420 int ret; 2421 2422 inode = new->inode; 2423 root = BTRFS_I(inode)->root; 2424 2425 path = btrfs_alloc_path(); 2426 if (!path) 2427 return; 2428 2429 if (!record_extent_backrefs(path, new)) { 2430 btrfs_free_path(path); 2431 goto out; 2432 } 2433 btrfs_release_path(path); 2434 2435 while (1) { 2436 node = rb_first(&new->root); 2437 if (!node) 2438 break; 2439 rb_erase(node, &new->root); 2440 2441 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2442 2443 ret = relink_extent_backref(path, prev, backref); 2444 WARN_ON(ret < 0); 2445 2446 kfree(prev); 2447 2448 if (ret == 1) 2449 prev = backref; 2450 else 2451 prev = NULL; 2452 cond_resched(); 2453 } 2454 kfree(prev); 2455 2456 btrfs_free_path(path); 2457 2458 list_for_each_entry_safe(old, tmp, &new->head, list) { 2459 list_del(&old->list); 2460 kfree(old); 2461 } 2462 out: 2463 atomic_dec(&root->fs_info->defrag_running); 2464 wake_up(&root->fs_info->transaction_wait); 2465 2466 kfree(new); 2467 } 2468 2469 static struct new_sa_defrag_extent * 2470 record_old_file_extents(struct inode *inode, 2471 struct btrfs_ordered_extent *ordered) 2472 { 2473 struct btrfs_root *root = BTRFS_I(inode)->root; 2474 struct btrfs_path *path; 2475 struct btrfs_key key; 2476 struct old_sa_defrag_extent *old, *tmp; 2477 struct new_sa_defrag_extent *new; 2478 int ret; 2479 2480 new = kmalloc(sizeof(*new), GFP_NOFS); 2481 if (!new) 2482 return NULL; 2483 2484 new->inode = inode; 2485 new->file_pos = ordered->file_offset; 2486 new->len = ordered->len; 2487 new->bytenr = ordered->start; 2488 new->disk_len = ordered->disk_len; 2489 new->compress_type = ordered->compress_type; 2490 new->root = RB_ROOT; 2491 INIT_LIST_HEAD(&new->head); 2492 2493 path = btrfs_alloc_path(); 2494 if (!path) 2495 goto out_kfree; 2496 2497 key.objectid = btrfs_ino(inode); 2498 key.type = BTRFS_EXTENT_DATA_KEY; 2499 key.offset = new->file_pos; 2500 2501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2502 if (ret < 0) 2503 goto out_free_path; 2504 if (ret > 0 && path->slots[0] > 0) 2505 path->slots[0]--; 2506 2507 /* find out all the old extents for the file range */ 2508 while (1) { 2509 struct btrfs_file_extent_item *extent; 2510 struct extent_buffer *l; 2511 int slot; 2512 u64 num_bytes; 2513 u64 offset; 2514 u64 end; 2515 u64 disk_bytenr; 2516 u64 extent_offset; 2517 2518 l = path->nodes[0]; 2519 slot = path->slots[0]; 2520 2521 if (slot >= btrfs_header_nritems(l)) { 2522 ret = btrfs_next_leaf(root, path); 2523 if (ret < 0) 2524 goto out_free_list; 2525 else if (ret > 0) 2526 break; 2527 continue; 2528 } 2529 2530 btrfs_item_key_to_cpu(l, &key, slot); 2531 2532 if (key.objectid != btrfs_ino(inode)) 2533 break; 2534 if (key.type != BTRFS_EXTENT_DATA_KEY) 2535 break; 2536 if (key.offset >= new->file_pos + new->len) 2537 break; 2538 2539 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2540 2541 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2542 if (key.offset + num_bytes < new->file_pos) 2543 goto next; 2544 2545 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2546 if (!disk_bytenr) 2547 goto next; 2548 2549 extent_offset = btrfs_file_extent_offset(l, extent); 2550 2551 old = kmalloc(sizeof(*old), GFP_NOFS); 2552 if (!old) 2553 goto out_free_list; 2554 2555 offset = max(new->file_pos, key.offset); 2556 end = min(new->file_pos + new->len, key.offset + num_bytes); 2557 2558 old->bytenr = disk_bytenr; 2559 old->extent_offset = extent_offset; 2560 old->offset = offset - key.offset; 2561 old->len = end - offset; 2562 old->new = new; 2563 old->count = 0; 2564 list_add_tail(&old->list, &new->head); 2565 next: 2566 path->slots[0]++; 2567 cond_resched(); 2568 } 2569 2570 btrfs_free_path(path); 2571 atomic_inc(&root->fs_info->defrag_running); 2572 2573 return new; 2574 2575 out_free_list: 2576 list_for_each_entry_safe(old, tmp, &new->head, list) { 2577 list_del(&old->list); 2578 kfree(old); 2579 } 2580 out_free_path: 2581 btrfs_free_path(path); 2582 out_kfree: 2583 kfree(new); 2584 return NULL; 2585 } 2586 2587 /* 2588 * helper function for btrfs_finish_ordered_io, this 2589 * just reads in some of the csum leaves to prime them into ram 2590 * before we start the transaction. It limits the amount of btree 2591 * reads required while inside the transaction. 2592 */ 2593 /* as ordered data IO finishes, this gets called so we can finish 2594 * an ordered extent if the range of bytes in the file it covers are 2595 * fully written. 2596 */ 2597 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2598 { 2599 struct inode *inode = ordered_extent->inode; 2600 struct btrfs_root *root = BTRFS_I(inode)->root; 2601 struct btrfs_trans_handle *trans = NULL; 2602 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2603 struct extent_state *cached_state = NULL; 2604 struct new_sa_defrag_extent *new = NULL; 2605 int compress_type = 0; 2606 int ret; 2607 bool nolock; 2608 2609 nolock = btrfs_is_free_space_inode(inode); 2610 2611 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2612 ret = -EIO; 2613 goto out; 2614 } 2615 2616 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2617 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2618 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2619 if (nolock) 2620 trans = btrfs_join_transaction_nolock(root); 2621 else 2622 trans = btrfs_join_transaction(root); 2623 if (IS_ERR(trans)) { 2624 ret = PTR_ERR(trans); 2625 trans = NULL; 2626 goto out; 2627 } 2628 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2629 ret = btrfs_update_inode_fallback(trans, root, inode); 2630 if (ret) /* -ENOMEM or corruption */ 2631 btrfs_abort_transaction(trans, root, ret); 2632 goto out; 2633 } 2634 2635 lock_extent_bits(io_tree, ordered_extent->file_offset, 2636 ordered_extent->file_offset + ordered_extent->len - 1, 2637 0, &cached_state); 2638 2639 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2640 ordered_extent->file_offset + ordered_extent->len - 1, 2641 EXTENT_DEFRAG, 1, cached_state); 2642 if (ret) { 2643 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2644 if (last_snapshot >= BTRFS_I(inode)->generation) 2645 /* the inode is shared */ 2646 new = record_old_file_extents(inode, ordered_extent); 2647 2648 clear_extent_bit(io_tree, ordered_extent->file_offset, 2649 ordered_extent->file_offset + ordered_extent->len - 1, 2650 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2651 } 2652 2653 if (nolock) 2654 trans = btrfs_join_transaction_nolock(root); 2655 else 2656 trans = btrfs_join_transaction(root); 2657 if (IS_ERR(trans)) { 2658 ret = PTR_ERR(trans); 2659 trans = NULL; 2660 goto out_unlock; 2661 } 2662 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2663 2664 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2665 compress_type = ordered_extent->compress_type; 2666 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2667 BUG_ON(compress_type); 2668 ret = btrfs_mark_extent_written(trans, inode, 2669 ordered_extent->file_offset, 2670 ordered_extent->file_offset + 2671 ordered_extent->len); 2672 } else { 2673 BUG_ON(root == root->fs_info->tree_root); 2674 ret = insert_reserved_file_extent(trans, inode, 2675 ordered_extent->file_offset, 2676 ordered_extent->start, 2677 ordered_extent->disk_len, 2678 ordered_extent->len, 2679 ordered_extent->len, 2680 compress_type, 0, 0, 2681 BTRFS_FILE_EXTENT_REG); 2682 } 2683 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2684 ordered_extent->file_offset, ordered_extent->len, 2685 trans->transid); 2686 if (ret < 0) { 2687 btrfs_abort_transaction(trans, root, ret); 2688 goto out_unlock; 2689 } 2690 2691 add_pending_csums(trans, inode, ordered_extent->file_offset, 2692 &ordered_extent->list); 2693 2694 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2695 ret = btrfs_update_inode_fallback(trans, root, inode); 2696 if (ret) { /* -ENOMEM or corruption */ 2697 btrfs_abort_transaction(trans, root, ret); 2698 goto out_unlock; 2699 } 2700 ret = 0; 2701 out_unlock: 2702 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2703 ordered_extent->file_offset + 2704 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2705 out: 2706 if (root != root->fs_info->tree_root) 2707 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2708 if (trans) 2709 btrfs_end_transaction(trans, root); 2710 2711 if (ret) { 2712 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2713 ordered_extent->file_offset + 2714 ordered_extent->len - 1, NULL, GFP_NOFS); 2715 2716 /* 2717 * If the ordered extent had an IOERR or something else went 2718 * wrong we need to return the space for this ordered extent 2719 * back to the allocator. 2720 */ 2721 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2722 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 2723 btrfs_free_reserved_extent(root, ordered_extent->start, 2724 ordered_extent->disk_len); 2725 } 2726 2727 2728 /* 2729 * This needs to be done to make sure anybody waiting knows we are done 2730 * updating everything for this ordered extent. 2731 */ 2732 btrfs_remove_ordered_extent(inode, ordered_extent); 2733 2734 /* for snapshot-aware defrag */ 2735 if (new) 2736 relink_file_extents(new); 2737 2738 /* once for us */ 2739 btrfs_put_ordered_extent(ordered_extent); 2740 /* once for the tree */ 2741 btrfs_put_ordered_extent(ordered_extent); 2742 2743 return ret; 2744 } 2745 2746 static void finish_ordered_fn(struct btrfs_work *work) 2747 { 2748 struct btrfs_ordered_extent *ordered_extent; 2749 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2750 btrfs_finish_ordered_io(ordered_extent); 2751 } 2752 2753 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2754 struct extent_state *state, int uptodate) 2755 { 2756 struct inode *inode = page->mapping->host; 2757 struct btrfs_root *root = BTRFS_I(inode)->root; 2758 struct btrfs_ordered_extent *ordered_extent = NULL; 2759 struct btrfs_workers *workers; 2760 2761 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2762 2763 ClearPagePrivate2(page); 2764 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2765 end - start + 1, uptodate)) 2766 return 0; 2767 2768 ordered_extent->work.func = finish_ordered_fn; 2769 ordered_extent->work.flags = 0; 2770 2771 if (btrfs_is_free_space_inode(inode)) 2772 workers = &root->fs_info->endio_freespace_worker; 2773 else 2774 workers = &root->fs_info->endio_write_workers; 2775 btrfs_queue_worker(workers, &ordered_extent->work); 2776 2777 return 0; 2778 } 2779 2780 /* 2781 * when reads are done, we need to check csums to verify the data is correct 2782 * if there's a match, we allow the bio to finish. If not, the code in 2783 * extent_io.c will try to find good copies for us. 2784 */ 2785 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2786 struct extent_state *state, int mirror) 2787 { 2788 size_t offset = start - page_offset(page); 2789 struct inode *inode = page->mapping->host; 2790 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2791 char *kaddr; 2792 u64 private = ~(u32)0; 2793 int ret; 2794 struct btrfs_root *root = BTRFS_I(inode)->root; 2795 u32 csum = ~(u32)0; 2796 2797 if (PageChecked(page)) { 2798 ClearPageChecked(page); 2799 goto good; 2800 } 2801 2802 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2803 goto good; 2804 2805 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2806 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2807 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2808 GFP_NOFS); 2809 return 0; 2810 } 2811 2812 if (state && state->start == start) { 2813 private = state->private; 2814 ret = 0; 2815 } else { 2816 ret = get_state_private(io_tree, start, &private); 2817 } 2818 kaddr = kmap_atomic(page); 2819 if (ret) 2820 goto zeroit; 2821 2822 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2823 btrfs_csum_final(csum, (char *)&csum); 2824 if (csum != private) 2825 goto zeroit; 2826 2827 kunmap_atomic(kaddr); 2828 good: 2829 return 0; 2830 2831 zeroit: 2832 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2833 "private %llu\n", 2834 (unsigned long long)btrfs_ino(page->mapping->host), 2835 (unsigned long long)start, csum, 2836 (unsigned long long)private); 2837 memset(kaddr + offset, 1, end - start + 1); 2838 flush_dcache_page(page); 2839 kunmap_atomic(kaddr); 2840 if (private == 0) 2841 return 0; 2842 return -EIO; 2843 } 2844 2845 struct delayed_iput { 2846 struct list_head list; 2847 struct inode *inode; 2848 }; 2849 2850 /* JDM: If this is fs-wide, why can't we add a pointer to 2851 * btrfs_inode instead and avoid the allocation? */ 2852 void btrfs_add_delayed_iput(struct inode *inode) 2853 { 2854 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2855 struct delayed_iput *delayed; 2856 2857 if (atomic_add_unless(&inode->i_count, -1, 1)) 2858 return; 2859 2860 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2861 delayed->inode = inode; 2862 2863 spin_lock(&fs_info->delayed_iput_lock); 2864 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2865 spin_unlock(&fs_info->delayed_iput_lock); 2866 } 2867 2868 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2869 { 2870 LIST_HEAD(list); 2871 struct btrfs_fs_info *fs_info = root->fs_info; 2872 struct delayed_iput *delayed; 2873 int empty; 2874 2875 spin_lock(&fs_info->delayed_iput_lock); 2876 empty = list_empty(&fs_info->delayed_iputs); 2877 spin_unlock(&fs_info->delayed_iput_lock); 2878 if (empty) 2879 return; 2880 2881 spin_lock(&fs_info->delayed_iput_lock); 2882 list_splice_init(&fs_info->delayed_iputs, &list); 2883 spin_unlock(&fs_info->delayed_iput_lock); 2884 2885 while (!list_empty(&list)) { 2886 delayed = list_entry(list.next, struct delayed_iput, list); 2887 list_del(&delayed->list); 2888 iput(delayed->inode); 2889 kfree(delayed); 2890 } 2891 } 2892 2893 /* 2894 * This is called in transaction commit time. If there are no orphan 2895 * files in the subvolume, it removes orphan item and frees block_rsv 2896 * structure. 2897 */ 2898 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2899 struct btrfs_root *root) 2900 { 2901 struct btrfs_block_rsv *block_rsv; 2902 int ret; 2903 2904 if (atomic_read(&root->orphan_inodes) || 2905 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2906 return; 2907 2908 spin_lock(&root->orphan_lock); 2909 if (atomic_read(&root->orphan_inodes)) { 2910 spin_unlock(&root->orphan_lock); 2911 return; 2912 } 2913 2914 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2915 spin_unlock(&root->orphan_lock); 2916 return; 2917 } 2918 2919 block_rsv = root->orphan_block_rsv; 2920 root->orphan_block_rsv = NULL; 2921 spin_unlock(&root->orphan_lock); 2922 2923 if (root->orphan_item_inserted && 2924 btrfs_root_refs(&root->root_item) > 0) { 2925 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2926 root->root_key.objectid); 2927 BUG_ON(ret); 2928 root->orphan_item_inserted = 0; 2929 } 2930 2931 if (block_rsv) { 2932 WARN_ON(block_rsv->size > 0); 2933 btrfs_free_block_rsv(root, block_rsv); 2934 } 2935 } 2936 2937 /* 2938 * This creates an orphan entry for the given inode in case something goes 2939 * wrong in the middle of an unlink/truncate. 2940 * 2941 * NOTE: caller of this function should reserve 5 units of metadata for 2942 * this function. 2943 */ 2944 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2945 { 2946 struct btrfs_root *root = BTRFS_I(inode)->root; 2947 struct btrfs_block_rsv *block_rsv = NULL; 2948 int reserve = 0; 2949 int insert = 0; 2950 int ret; 2951 2952 if (!root->orphan_block_rsv) { 2953 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2954 if (!block_rsv) 2955 return -ENOMEM; 2956 } 2957 2958 spin_lock(&root->orphan_lock); 2959 if (!root->orphan_block_rsv) { 2960 root->orphan_block_rsv = block_rsv; 2961 } else if (block_rsv) { 2962 btrfs_free_block_rsv(root, block_rsv); 2963 block_rsv = NULL; 2964 } 2965 2966 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2967 &BTRFS_I(inode)->runtime_flags)) { 2968 #if 0 2969 /* 2970 * For proper ENOSPC handling, we should do orphan 2971 * cleanup when mounting. But this introduces backward 2972 * compatibility issue. 2973 */ 2974 if (!xchg(&root->orphan_item_inserted, 1)) 2975 insert = 2; 2976 else 2977 insert = 1; 2978 #endif 2979 insert = 1; 2980 atomic_inc(&root->orphan_inodes); 2981 } 2982 2983 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2984 &BTRFS_I(inode)->runtime_flags)) 2985 reserve = 1; 2986 spin_unlock(&root->orphan_lock); 2987 2988 /* grab metadata reservation from transaction handle */ 2989 if (reserve) { 2990 ret = btrfs_orphan_reserve_metadata(trans, inode); 2991 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2992 } 2993 2994 /* insert an orphan item to track this unlinked/truncated file */ 2995 if (insert >= 1) { 2996 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2997 if (ret && ret != -EEXIST) { 2998 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2999 &BTRFS_I(inode)->runtime_flags); 3000 btrfs_abort_transaction(trans, root, ret); 3001 return ret; 3002 } 3003 ret = 0; 3004 } 3005 3006 /* insert an orphan item to track subvolume contains orphan files */ 3007 if (insert >= 2) { 3008 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3009 root->root_key.objectid); 3010 if (ret && ret != -EEXIST) { 3011 btrfs_abort_transaction(trans, root, ret); 3012 return ret; 3013 } 3014 } 3015 return 0; 3016 } 3017 3018 /* 3019 * We have done the truncate/delete so we can go ahead and remove the orphan 3020 * item for this particular inode. 3021 */ 3022 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 3023 { 3024 struct btrfs_root *root = BTRFS_I(inode)->root; 3025 int delete_item = 0; 3026 int release_rsv = 0; 3027 int ret = 0; 3028 3029 spin_lock(&root->orphan_lock); 3030 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3031 &BTRFS_I(inode)->runtime_flags)) 3032 delete_item = 1; 3033 3034 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3035 &BTRFS_I(inode)->runtime_flags)) 3036 release_rsv = 1; 3037 spin_unlock(&root->orphan_lock); 3038 3039 if (trans && delete_item) { 3040 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 3041 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3042 } 3043 3044 if (release_rsv) { 3045 btrfs_orphan_release_metadata(inode); 3046 atomic_dec(&root->orphan_inodes); 3047 } 3048 3049 return 0; 3050 } 3051 3052 /* 3053 * this cleans up any orphans that may be left on the list from the last use 3054 * of this root. 3055 */ 3056 int btrfs_orphan_cleanup(struct btrfs_root *root) 3057 { 3058 struct btrfs_path *path; 3059 struct extent_buffer *leaf; 3060 struct btrfs_key key, found_key; 3061 struct btrfs_trans_handle *trans; 3062 struct inode *inode; 3063 u64 last_objectid = 0; 3064 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3065 3066 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3067 return 0; 3068 3069 path = btrfs_alloc_path(); 3070 if (!path) { 3071 ret = -ENOMEM; 3072 goto out; 3073 } 3074 path->reada = -1; 3075 3076 key.objectid = BTRFS_ORPHAN_OBJECTID; 3077 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 3078 key.offset = (u64)-1; 3079 3080 while (1) { 3081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3082 if (ret < 0) 3083 goto out; 3084 3085 /* 3086 * if ret == 0 means we found what we were searching for, which 3087 * is weird, but possible, so only screw with path if we didn't 3088 * find the key and see if we have stuff that matches 3089 */ 3090 if (ret > 0) { 3091 ret = 0; 3092 if (path->slots[0] == 0) 3093 break; 3094 path->slots[0]--; 3095 } 3096 3097 /* pull out the item */ 3098 leaf = path->nodes[0]; 3099 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3100 3101 /* make sure the item matches what we want */ 3102 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3103 break; 3104 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 3105 break; 3106 3107 /* release the path since we're done with it */ 3108 btrfs_release_path(path); 3109 3110 /* 3111 * this is where we are basically btrfs_lookup, without the 3112 * crossing root thing. we store the inode number in the 3113 * offset of the orphan item. 3114 */ 3115 3116 if (found_key.offset == last_objectid) { 3117 printk(KERN_ERR "btrfs: Error removing orphan entry, " 3118 "stopping orphan cleanup\n"); 3119 ret = -EINVAL; 3120 goto out; 3121 } 3122 3123 last_objectid = found_key.offset; 3124 3125 found_key.objectid = found_key.offset; 3126 found_key.type = BTRFS_INODE_ITEM_KEY; 3127 found_key.offset = 0; 3128 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3129 ret = PTR_RET(inode); 3130 if (ret && ret != -ESTALE) 3131 goto out; 3132 3133 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3134 struct btrfs_root *dead_root; 3135 struct btrfs_fs_info *fs_info = root->fs_info; 3136 int is_dead_root = 0; 3137 3138 /* 3139 * this is an orphan in the tree root. Currently these 3140 * could come from 2 sources: 3141 * a) a snapshot deletion in progress 3142 * b) a free space cache inode 3143 * We need to distinguish those two, as the snapshot 3144 * orphan must not get deleted. 3145 * find_dead_roots already ran before us, so if this 3146 * is a snapshot deletion, we should find the root 3147 * in the dead_roots list 3148 */ 3149 spin_lock(&fs_info->trans_lock); 3150 list_for_each_entry(dead_root, &fs_info->dead_roots, 3151 root_list) { 3152 if (dead_root->root_key.objectid == 3153 found_key.objectid) { 3154 is_dead_root = 1; 3155 break; 3156 } 3157 } 3158 spin_unlock(&fs_info->trans_lock); 3159 if (is_dead_root) { 3160 /* prevent this orphan from being found again */ 3161 key.offset = found_key.objectid - 1; 3162 continue; 3163 } 3164 } 3165 /* 3166 * Inode is already gone but the orphan item is still there, 3167 * kill the orphan item. 3168 */ 3169 if (ret == -ESTALE) { 3170 trans = btrfs_start_transaction(root, 1); 3171 if (IS_ERR(trans)) { 3172 ret = PTR_ERR(trans); 3173 goto out; 3174 } 3175 printk(KERN_ERR "auto deleting %Lu\n", 3176 found_key.objectid); 3177 ret = btrfs_del_orphan_item(trans, root, 3178 found_key.objectid); 3179 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 3180 btrfs_end_transaction(trans, root); 3181 continue; 3182 } 3183 3184 /* 3185 * add this inode to the orphan list so btrfs_orphan_del does 3186 * the proper thing when we hit it 3187 */ 3188 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3189 &BTRFS_I(inode)->runtime_flags); 3190 atomic_inc(&root->orphan_inodes); 3191 3192 /* if we have links, this was a truncate, lets do that */ 3193 if (inode->i_nlink) { 3194 if (!S_ISREG(inode->i_mode)) { 3195 WARN_ON(1); 3196 iput(inode); 3197 continue; 3198 } 3199 nr_truncate++; 3200 3201 /* 1 for the orphan item deletion. */ 3202 trans = btrfs_start_transaction(root, 1); 3203 if (IS_ERR(trans)) { 3204 ret = PTR_ERR(trans); 3205 goto out; 3206 } 3207 ret = btrfs_orphan_add(trans, inode); 3208 btrfs_end_transaction(trans, root); 3209 if (ret) 3210 goto out; 3211 3212 ret = btrfs_truncate(inode); 3213 if (ret) 3214 btrfs_orphan_del(NULL, inode); 3215 } else { 3216 nr_unlink++; 3217 } 3218 3219 /* this will do delete_inode and everything for us */ 3220 iput(inode); 3221 if (ret) 3222 goto out; 3223 } 3224 /* release the path since we're done with it */ 3225 btrfs_release_path(path); 3226 3227 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3228 3229 if (root->orphan_block_rsv) 3230 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3231 (u64)-1); 3232 3233 if (root->orphan_block_rsv || root->orphan_item_inserted) { 3234 trans = btrfs_join_transaction(root); 3235 if (!IS_ERR(trans)) 3236 btrfs_end_transaction(trans, root); 3237 } 3238 3239 if (nr_unlink) 3240 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 3241 if (nr_truncate) 3242 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 3243 3244 out: 3245 if (ret) 3246 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 3247 btrfs_free_path(path); 3248 return ret; 3249 } 3250 3251 /* 3252 * very simple check to peek ahead in the leaf looking for xattrs. If we 3253 * don't find any xattrs, we know there can't be any acls. 3254 * 3255 * slot is the slot the inode is in, objectid is the objectid of the inode 3256 */ 3257 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3258 int slot, u64 objectid) 3259 { 3260 u32 nritems = btrfs_header_nritems(leaf); 3261 struct btrfs_key found_key; 3262 int scanned = 0; 3263 3264 slot++; 3265 while (slot < nritems) { 3266 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3267 3268 /* we found a different objectid, there must not be acls */ 3269 if (found_key.objectid != objectid) 3270 return 0; 3271 3272 /* we found an xattr, assume we've got an acl */ 3273 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 3274 return 1; 3275 3276 /* 3277 * we found a key greater than an xattr key, there can't 3278 * be any acls later on 3279 */ 3280 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3281 return 0; 3282 3283 slot++; 3284 scanned++; 3285 3286 /* 3287 * it goes inode, inode backrefs, xattrs, extents, 3288 * so if there are a ton of hard links to an inode there can 3289 * be a lot of backrefs. Don't waste time searching too hard, 3290 * this is just an optimization 3291 */ 3292 if (scanned >= 8) 3293 break; 3294 } 3295 /* we hit the end of the leaf before we found an xattr or 3296 * something larger than an xattr. We have to assume the inode 3297 * has acls 3298 */ 3299 return 1; 3300 } 3301 3302 /* 3303 * read an inode from the btree into the in-memory inode 3304 */ 3305 static void btrfs_read_locked_inode(struct inode *inode) 3306 { 3307 struct btrfs_path *path; 3308 struct extent_buffer *leaf; 3309 struct btrfs_inode_item *inode_item; 3310 struct btrfs_timespec *tspec; 3311 struct btrfs_root *root = BTRFS_I(inode)->root; 3312 struct btrfs_key location; 3313 int maybe_acls; 3314 u32 rdev; 3315 int ret; 3316 bool filled = false; 3317 3318 ret = btrfs_fill_inode(inode, &rdev); 3319 if (!ret) 3320 filled = true; 3321 3322 path = btrfs_alloc_path(); 3323 if (!path) 3324 goto make_bad; 3325 3326 path->leave_spinning = 1; 3327 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3328 3329 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3330 if (ret) 3331 goto make_bad; 3332 3333 leaf = path->nodes[0]; 3334 3335 if (filled) 3336 goto cache_acl; 3337 3338 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3339 struct btrfs_inode_item); 3340 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3341 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3342 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3343 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3344 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3345 3346 tspec = btrfs_inode_atime(inode_item); 3347 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3348 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3349 3350 tspec = btrfs_inode_mtime(inode_item); 3351 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3352 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3353 3354 tspec = btrfs_inode_ctime(inode_item); 3355 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 3356 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 3357 3358 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3359 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3360 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3361 3362 /* 3363 * If we were modified in the current generation and evicted from memory 3364 * and then re-read we need to do a full sync since we don't have any 3365 * idea about which extents were modified before we were evicted from 3366 * cache. 3367 */ 3368 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3369 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3370 &BTRFS_I(inode)->runtime_flags); 3371 3372 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3373 inode->i_generation = BTRFS_I(inode)->generation; 3374 inode->i_rdev = 0; 3375 rdev = btrfs_inode_rdev(leaf, inode_item); 3376 3377 BTRFS_I(inode)->index_cnt = (u64)-1; 3378 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3379 cache_acl: 3380 /* 3381 * try to precache a NULL acl entry for files that don't have 3382 * any xattrs or acls 3383 */ 3384 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3385 btrfs_ino(inode)); 3386 if (!maybe_acls) 3387 cache_no_acl(inode); 3388 3389 btrfs_free_path(path); 3390 3391 switch (inode->i_mode & S_IFMT) { 3392 case S_IFREG: 3393 inode->i_mapping->a_ops = &btrfs_aops; 3394 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3395 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3396 inode->i_fop = &btrfs_file_operations; 3397 inode->i_op = &btrfs_file_inode_operations; 3398 break; 3399 case S_IFDIR: 3400 inode->i_fop = &btrfs_dir_file_operations; 3401 if (root == root->fs_info->tree_root) 3402 inode->i_op = &btrfs_dir_ro_inode_operations; 3403 else 3404 inode->i_op = &btrfs_dir_inode_operations; 3405 break; 3406 case S_IFLNK: 3407 inode->i_op = &btrfs_symlink_inode_operations; 3408 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3409 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 3410 break; 3411 default: 3412 inode->i_op = &btrfs_special_inode_operations; 3413 init_special_inode(inode, inode->i_mode, rdev); 3414 break; 3415 } 3416 3417 btrfs_update_iflags(inode); 3418 return; 3419 3420 make_bad: 3421 btrfs_free_path(path); 3422 make_bad_inode(inode); 3423 } 3424 3425 /* 3426 * given a leaf and an inode, copy the inode fields into the leaf 3427 */ 3428 static void fill_inode_item(struct btrfs_trans_handle *trans, 3429 struct extent_buffer *leaf, 3430 struct btrfs_inode_item *item, 3431 struct inode *inode) 3432 { 3433 struct btrfs_map_token token; 3434 3435 btrfs_init_map_token(&token); 3436 3437 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3438 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3439 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3440 &token); 3441 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3442 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3443 3444 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item), 3445 inode->i_atime.tv_sec, &token); 3446 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item), 3447 inode->i_atime.tv_nsec, &token); 3448 3449 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item), 3450 inode->i_mtime.tv_sec, &token); 3451 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item), 3452 inode->i_mtime.tv_nsec, &token); 3453 3454 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item), 3455 inode->i_ctime.tv_sec, &token); 3456 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item), 3457 inode->i_ctime.tv_nsec, &token); 3458 3459 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3460 &token); 3461 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3462 &token); 3463 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3464 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3465 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3466 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3467 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3468 } 3469 3470 /* 3471 * copy everything in the in-memory inode into the btree. 3472 */ 3473 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3474 struct btrfs_root *root, struct inode *inode) 3475 { 3476 struct btrfs_inode_item *inode_item; 3477 struct btrfs_path *path; 3478 struct extent_buffer *leaf; 3479 int ret; 3480 3481 path = btrfs_alloc_path(); 3482 if (!path) 3483 return -ENOMEM; 3484 3485 path->leave_spinning = 1; 3486 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3487 1); 3488 if (ret) { 3489 if (ret > 0) 3490 ret = -ENOENT; 3491 goto failed; 3492 } 3493 3494 btrfs_unlock_up_safe(path, 1); 3495 leaf = path->nodes[0]; 3496 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3497 struct btrfs_inode_item); 3498 3499 fill_inode_item(trans, leaf, inode_item, inode); 3500 btrfs_mark_buffer_dirty(leaf); 3501 btrfs_set_inode_last_trans(trans, inode); 3502 ret = 0; 3503 failed: 3504 btrfs_free_path(path); 3505 return ret; 3506 } 3507 3508 /* 3509 * copy everything in the in-memory inode into the btree. 3510 */ 3511 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3512 struct btrfs_root *root, struct inode *inode) 3513 { 3514 int ret; 3515 3516 /* 3517 * If the inode is a free space inode, we can deadlock during commit 3518 * if we put it into the delayed code. 3519 * 3520 * The data relocation inode should also be directly updated 3521 * without delay 3522 */ 3523 if (!btrfs_is_free_space_inode(inode) 3524 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 3525 btrfs_update_root_times(trans, root); 3526 3527 ret = btrfs_delayed_update_inode(trans, root, inode); 3528 if (!ret) 3529 btrfs_set_inode_last_trans(trans, inode); 3530 return ret; 3531 } 3532 3533 return btrfs_update_inode_item(trans, root, inode); 3534 } 3535 3536 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3537 struct btrfs_root *root, 3538 struct inode *inode) 3539 { 3540 int ret; 3541 3542 ret = btrfs_update_inode(trans, root, inode); 3543 if (ret == -ENOSPC) 3544 return btrfs_update_inode_item(trans, root, inode); 3545 return ret; 3546 } 3547 3548 /* 3549 * unlink helper that gets used here in inode.c and in the tree logging 3550 * recovery code. It remove a link in a directory with a given name, and 3551 * also drops the back refs in the inode to the directory 3552 */ 3553 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3554 struct btrfs_root *root, 3555 struct inode *dir, struct inode *inode, 3556 const char *name, int name_len) 3557 { 3558 struct btrfs_path *path; 3559 int ret = 0; 3560 struct extent_buffer *leaf; 3561 struct btrfs_dir_item *di; 3562 struct btrfs_key key; 3563 u64 index; 3564 u64 ino = btrfs_ino(inode); 3565 u64 dir_ino = btrfs_ino(dir); 3566 3567 path = btrfs_alloc_path(); 3568 if (!path) { 3569 ret = -ENOMEM; 3570 goto out; 3571 } 3572 3573 path->leave_spinning = 1; 3574 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3575 name, name_len, -1); 3576 if (IS_ERR(di)) { 3577 ret = PTR_ERR(di); 3578 goto err; 3579 } 3580 if (!di) { 3581 ret = -ENOENT; 3582 goto err; 3583 } 3584 leaf = path->nodes[0]; 3585 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3586 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3587 if (ret) 3588 goto err; 3589 btrfs_release_path(path); 3590 3591 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3592 dir_ino, &index); 3593 if (ret) { 3594 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 3595 "inode %llu parent %llu\n", name_len, name, 3596 (unsigned long long)ino, (unsigned long long)dir_ino); 3597 btrfs_abort_transaction(trans, root, ret); 3598 goto err; 3599 } 3600 3601 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3602 if (ret) { 3603 btrfs_abort_transaction(trans, root, ret); 3604 goto err; 3605 } 3606 3607 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 3608 inode, dir_ino); 3609 if (ret != 0 && ret != -ENOENT) { 3610 btrfs_abort_transaction(trans, root, ret); 3611 goto err; 3612 } 3613 3614 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 3615 dir, index); 3616 if (ret == -ENOENT) 3617 ret = 0; 3618 err: 3619 btrfs_free_path(path); 3620 if (ret) 3621 goto out; 3622 3623 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3624 inode_inc_iversion(inode); 3625 inode_inc_iversion(dir); 3626 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3627 ret = btrfs_update_inode(trans, root, dir); 3628 out: 3629 return ret; 3630 } 3631 3632 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3633 struct btrfs_root *root, 3634 struct inode *dir, struct inode *inode, 3635 const char *name, int name_len) 3636 { 3637 int ret; 3638 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3639 if (!ret) { 3640 btrfs_drop_nlink(inode); 3641 ret = btrfs_update_inode(trans, root, inode); 3642 } 3643 return ret; 3644 } 3645 3646 3647 /* helper to check if there is any shared block in the path */ 3648 static int check_path_shared(struct btrfs_root *root, 3649 struct btrfs_path *path) 3650 { 3651 struct extent_buffer *eb; 3652 int level; 3653 u64 refs = 1; 3654 3655 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 3656 int ret; 3657 3658 if (!path->nodes[level]) 3659 break; 3660 eb = path->nodes[level]; 3661 if (!btrfs_block_can_be_shared(root, eb)) 3662 continue; 3663 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 3664 &refs, NULL); 3665 if (refs > 1) 3666 return 1; 3667 } 3668 return 0; 3669 } 3670 3671 /* 3672 * helper to start transaction for unlink and rmdir. 3673 * 3674 * unlink and rmdir are special in btrfs, they do not always free space. 3675 * so in enospc case, we should make sure they will free space before 3676 * allowing them to use the global metadata reservation. 3677 */ 3678 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 3679 struct dentry *dentry) 3680 { 3681 struct btrfs_trans_handle *trans; 3682 struct btrfs_root *root = BTRFS_I(dir)->root; 3683 struct btrfs_path *path; 3684 struct btrfs_dir_item *di; 3685 struct inode *inode = dentry->d_inode; 3686 u64 index; 3687 int check_link = 1; 3688 int err = -ENOSPC; 3689 int ret; 3690 u64 ino = btrfs_ino(inode); 3691 u64 dir_ino = btrfs_ino(dir); 3692 3693 /* 3694 * 1 for the possible orphan item 3695 * 1 for the dir item 3696 * 1 for the dir index 3697 * 1 for the inode ref 3698 * 1 for the inode 3699 */ 3700 trans = btrfs_start_transaction(root, 5); 3701 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 3702 return trans; 3703 3704 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 3705 return ERR_PTR(-ENOSPC); 3706 3707 /* check if there is someone else holds reference */ 3708 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 3709 return ERR_PTR(-ENOSPC); 3710 3711 if (atomic_read(&inode->i_count) > 2) 3712 return ERR_PTR(-ENOSPC); 3713 3714 if (xchg(&root->fs_info->enospc_unlink, 1)) 3715 return ERR_PTR(-ENOSPC); 3716 3717 path = btrfs_alloc_path(); 3718 if (!path) { 3719 root->fs_info->enospc_unlink = 0; 3720 return ERR_PTR(-ENOMEM); 3721 } 3722 3723 /* 1 for the orphan item */ 3724 trans = btrfs_start_transaction(root, 1); 3725 if (IS_ERR(trans)) { 3726 btrfs_free_path(path); 3727 root->fs_info->enospc_unlink = 0; 3728 return trans; 3729 } 3730 3731 path->skip_locking = 1; 3732 path->search_commit_root = 1; 3733 3734 ret = btrfs_lookup_inode(trans, root, path, 3735 &BTRFS_I(dir)->location, 0); 3736 if (ret < 0) { 3737 err = ret; 3738 goto out; 3739 } 3740 if (ret == 0) { 3741 if (check_path_shared(root, path)) 3742 goto out; 3743 } else { 3744 check_link = 0; 3745 } 3746 btrfs_release_path(path); 3747 3748 ret = btrfs_lookup_inode(trans, root, path, 3749 &BTRFS_I(inode)->location, 0); 3750 if (ret < 0) { 3751 err = ret; 3752 goto out; 3753 } 3754 if (ret == 0) { 3755 if (check_path_shared(root, path)) 3756 goto out; 3757 } else { 3758 check_link = 0; 3759 } 3760 btrfs_release_path(path); 3761 3762 if (ret == 0 && S_ISREG(inode->i_mode)) { 3763 ret = btrfs_lookup_file_extent(trans, root, path, 3764 ino, (u64)-1, 0); 3765 if (ret < 0) { 3766 err = ret; 3767 goto out; 3768 } 3769 BUG_ON(ret == 0); /* Corruption */ 3770 if (check_path_shared(root, path)) 3771 goto out; 3772 btrfs_release_path(path); 3773 } 3774 3775 if (!check_link) { 3776 err = 0; 3777 goto out; 3778 } 3779 3780 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3781 dentry->d_name.name, dentry->d_name.len, 0); 3782 if (IS_ERR(di)) { 3783 err = PTR_ERR(di); 3784 goto out; 3785 } 3786 if (di) { 3787 if (check_path_shared(root, path)) 3788 goto out; 3789 } else { 3790 err = 0; 3791 goto out; 3792 } 3793 btrfs_release_path(path); 3794 3795 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name, 3796 dentry->d_name.len, ino, dir_ino, 0, 3797 &index); 3798 if (ret) { 3799 err = ret; 3800 goto out; 3801 } 3802 3803 if (check_path_shared(root, path)) 3804 goto out; 3805 3806 btrfs_release_path(path); 3807 3808 /* 3809 * This is a commit root search, if we can lookup inode item and other 3810 * relative items in the commit root, it means the transaction of 3811 * dir/file creation has been committed, and the dir index item that we 3812 * delay to insert has also been inserted into the commit root. So 3813 * we needn't worry about the delayed insertion of the dir index item 3814 * here. 3815 */ 3816 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 3817 dentry->d_name.name, dentry->d_name.len, 0); 3818 if (IS_ERR(di)) { 3819 err = PTR_ERR(di); 3820 goto out; 3821 } 3822 BUG_ON(ret == -ENOENT); 3823 if (check_path_shared(root, path)) 3824 goto out; 3825 3826 err = 0; 3827 out: 3828 btrfs_free_path(path); 3829 /* Migrate the orphan reservation over */ 3830 if (!err) 3831 err = btrfs_block_rsv_migrate(trans->block_rsv, 3832 &root->fs_info->global_block_rsv, 3833 trans->bytes_reserved); 3834 3835 if (err) { 3836 btrfs_end_transaction(trans, root); 3837 root->fs_info->enospc_unlink = 0; 3838 return ERR_PTR(err); 3839 } 3840 3841 trans->block_rsv = &root->fs_info->global_block_rsv; 3842 return trans; 3843 } 3844 3845 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 3846 struct btrfs_root *root) 3847 { 3848 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) { 3849 btrfs_block_rsv_release(root, trans->block_rsv, 3850 trans->bytes_reserved); 3851 trans->block_rsv = &root->fs_info->trans_block_rsv; 3852 BUG_ON(!root->fs_info->enospc_unlink); 3853 root->fs_info->enospc_unlink = 0; 3854 } 3855 btrfs_end_transaction(trans, root); 3856 } 3857 3858 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3859 { 3860 struct btrfs_root *root = BTRFS_I(dir)->root; 3861 struct btrfs_trans_handle *trans; 3862 struct inode *inode = dentry->d_inode; 3863 int ret; 3864 3865 trans = __unlink_start_trans(dir, dentry); 3866 if (IS_ERR(trans)) 3867 return PTR_ERR(trans); 3868 3869 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3870 3871 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3872 dentry->d_name.name, dentry->d_name.len); 3873 if (ret) 3874 goto out; 3875 3876 if (inode->i_nlink == 0) { 3877 ret = btrfs_orphan_add(trans, inode); 3878 if (ret) 3879 goto out; 3880 } 3881 3882 out: 3883 __unlink_end_trans(trans, root); 3884 btrfs_btree_balance_dirty(root); 3885 return ret; 3886 } 3887 3888 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3889 struct btrfs_root *root, 3890 struct inode *dir, u64 objectid, 3891 const char *name, int name_len) 3892 { 3893 struct btrfs_path *path; 3894 struct extent_buffer *leaf; 3895 struct btrfs_dir_item *di; 3896 struct btrfs_key key; 3897 u64 index; 3898 int ret; 3899 u64 dir_ino = btrfs_ino(dir); 3900 3901 path = btrfs_alloc_path(); 3902 if (!path) 3903 return -ENOMEM; 3904 3905 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3906 name, name_len, -1); 3907 if (IS_ERR_OR_NULL(di)) { 3908 if (!di) 3909 ret = -ENOENT; 3910 else 3911 ret = PTR_ERR(di); 3912 goto out; 3913 } 3914 3915 leaf = path->nodes[0]; 3916 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3917 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3918 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3919 if (ret) { 3920 btrfs_abort_transaction(trans, root, ret); 3921 goto out; 3922 } 3923 btrfs_release_path(path); 3924 3925 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3926 objectid, root->root_key.objectid, 3927 dir_ino, &index, name, name_len); 3928 if (ret < 0) { 3929 if (ret != -ENOENT) { 3930 btrfs_abort_transaction(trans, root, ret); 3931 goto out; 3932 } 3933 di = btrfs_search_dir_index_item(root, path, dir_ino, 3934 name, name_len); 3935 if (IS_ERR_OR_NULL(di)) { 3936 if (!di) 3937 ret = -ENOENT; 3938 else 3939 ret = PTR_ERR(di); 3940 btrfs_abort_transaction(trans, root, ret); 3941 goto out; 3942 } 3943 3944 leaf = path->nodes[0]; 3945 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3946 btrfs_release_path(path); 3947 index = key.offset; 3948 } 3949 btrfs_release_path(path); 3950 3951 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3952 if (ret) { 3953 btrfs_abort_transaction(trans, root, ret); 3954 goto out; 3955 } 3956 3957 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3958 inode_inc_iversion(dir); 3959 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3960 ret = btrfs_update_inode_fallback(trans, root, dir); 3961 if (ret) 3962 btrfs_abort_transaction(trans, root, ret); 3963 out: 3964 btrfs_free_path(path); 3965 return ret; 3966 } 3967 3968 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3969 { 3970 struct inode *inode = dentry->d_inode; 3971 int err = 0; 3972 struct btrfs_root *root = BTRFS_I(dir)->root; 3973 struct btrfs_trans_handle *trans; 3974 3975 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3976 return -ENOTEMPTY; 3977 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3978 return -EPERM; 3979 3980 trans = __unlink_start_trans(dir, dentry); 3981 if (IS_ERR(trans)) 3982 return PTR_ERR(trans); 3983 3984 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3985 err = btrfs_unlink_subvol(trans, root, dir, 3986 BTRFS_I(inode)->location.objectid, 3987 dentry->d_name.name, 3988 dentry->d_name.len); 3989 goto out; 3990 } 3991 3992 err = btrfs_orphan_add(trans, inode); 3993 if (err) 3994 goto out; 3995 3996 /* now the directory is empty */ 3997 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3998 dentry->d_name.name, dentry->d_name.len); 3999 if (!err) 4000 btrfs_i_size_write(inode, 0); 4001 out: 4002 __unlink_end_trans(trans, root); 4003 btrfs_btree_balance_dirty(root); 4004 4005 return err; 4006 } 4007 4008 /* 4009 * this can truncate away extent items, csum items and directory items. 4010 * It starts at a high offset and removes keys until it can't find 4011 * any higher than new_size 4012 * 4013 * csum items that cross the new i_size are truncated to the new size 4014 * as well. 4015 * 4016 * min_type is the minimum key type to truncate down to. If set to 0, this 4017 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4018 */ 4019 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4020 struct btrfs_root *root, 4021 struct inode *inode, 4022 u64 new_size, u32 min_type) 4023 { 4024 struct btrfs_path *path; 4025 struct extent_buffer *leaf; 4026 struct btrfs_file_extent_item *fi; 4027 struct btrfs_key key; 4028 struct btrfs_key found_key; 4029 u64 extent_start = 0; 4030 u64 extent_num_bytes = 0; 4031 u64 extent_offset = 0; 4032 u64 item_end = 0; 4033 u32 found_type = (u8)-1; 4034 int found_extent; 4035 int del_item; 4036 int pending_del_nr = 0; 4037 int pending_del_slot = 0; 4038 int extent_type = -1; 4039 int ret; 4040 int err = 0; 4041 u64 ino = btrfs_ino(inode); 4042 4043 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4044 4045 path = btrfs_alloc_path(); 4046 if (!path) 4047 return -ENOMEM; 4048 path->reada = -1; 4049 4050 /* 4051 * We want to drop from the next block forward in case this new size is 4052 * not block aligned since we will be keeping the last block of the 4053 * extent just the way it is. 4054 */ 4055 if (root->ref_cows || root == root->fs_info->tree_root) 4056 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4057 root->sectorsize), (u64)-1, 0); 4058 4059 /* 4060 * This function is also used to drop the items in the log tree before 4061 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4062 * it is used to drop the loged items. So we shouldn't kill the delayed 4063 * items. 4064 */ 4065 if (min_type == 0 && root == BTRFS_I(inode)->root) 4066 btrfs_kill_delayed_inode_items(inode); 4067 4068 key.objectid = ino; 4069 key.offset = (u64)-1; 4070 key.type = (u8)-1; 4071 4072 search_again: 4073 path->leave_spinning = 1; 4074 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4075 if (ret < 0) { 4076 err = ret; 4077 goto out; 4078 } 4079 4080 if (ret > 0) { 4081 /* there are no items in the tree for us to truncate, we're 4082 * done 4083 */ 4084 if (path->slots[0] == 0) 4085 goto out; 4086 path->slots[0]--; 4087 } 4088 4089 while (1) { 4090 fi = NULL; 4091 leaf = path->nodes[0]; 4092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4093 found_type = btrfs_key_type(&found_key); 4094 4095 if (found_key.objectid != ino) 4096 break; 4097 4098 if (found_type < min_type) 4099 break; 4100 4101 item_end = found_key.offset; 4102 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4103 fi = btrfs_item_ptr(leaf, path->slots[0], 4104 struct btrfs_file_extent_item); 4105 extent_type = btrfs_file_extent_type(leaf, fi); 4106 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4107 item_end += 4108 btrfs_file_extent_num_bytes(leaf, fi); 4109 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4110 item_end += btrfs_file_extent_inline_len(leaf, 4111 fi); 4112 } 4113 item_end--; 4114 } 4115 if (found_type > min_type) { 4116 del_item = 1; 4117 } else { 4118 if (item_end < new_size) 4119 break; 4120 if (found_key.offset >= new_size) 4121 del_item = 1; 4122 else 4123 del_item = 0; 4124 } 4125 found_extent = 0; 4126 /* FIXME, shrink the extent if the ref count is only 1 */ 4127 if (found_type != BTRFS_EXTENT_DATA_KEY) 4128 goto delete; 4129 4130 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4131 u64 num_dec; 4132 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4133 if (!del_item) { 4134 u64 orig_num_bytes = 4135 btrfs_file_extent_num_bytes(leaf, fi); 4136 extent_num_bytes = ALIGN(new_size - 4137 found_key.offset, 4138 root->sectorsize); 4139 btrfs_set_file_extent_num_bytes(leaf, fi, 4140 extent_num_bytes); 4141 num_dec = (orig_num_bytes - 4142 extent_num_bytes); 4143 if (root->ref_cows && extent_start != 0) 4144 inode_sub_bytes(inode, num_dec); 4145 btrfs_mark_buffer_dirty(leaf); 4146 } else { 4147 extent_num_bytes = 4148 btrfs_file_extent_disk_num_bytes(leaf, 4149 fi); 4150 extent_offset = found_key.offset - 4151 btrfs_file_extent_offset(leaf, fi); 4152 4153 /* FIXME blocksize != 4096 */ 4154 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4155 if (extent_start != 0) { 4156 found_extent = 1; 4157 if (root->ref_cows) 4158 inode_sub_bytes(inode, num_dec); 4159 } 4160 } 4161 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4162 /* 4163 * we can't truncate inline items that have had 4164 * special encodings 4165 */ 4166 if (!del_item && 4167 btrfs_file_extent_compression(leaf, fi) == 0 && 4168 btrfs_file_extent_encryption(leaf, fi) == 0 && 4169 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4170 u32 size = new_size - found_key.offset; 4171 4172 if (root->ref_cows) { 4173 inode_sub_bytes(inode, item_end + 1 - 4174 new_size); 4175 } 4176 size = 4177 btrfs_file_extent_calc_inline_size(size); 4178 btrfs_truncate_item(trans, root, path, 4179 size, 1); 4180 } else if (root->ref_cows) { 4181 inode_sub_bytes(inode, item_end + 1 - 4182 found_key.offset); 4183 } 4184 } 4185 delete: 4186 if (del_item) { 4187 if (!pending_del_nr) { 4188 /* no pending yet, add ourselves */ 4189 pending_del_slot = path->slots[0]; 4190 pending_del_nr = 1; 4191 } else if (pending_del_nr && 4192 path->slots[0] + 1 == pending_del_slot) { 4193 /* hop on the pending chunk */ 4194 pending_del_nr++; 4195 pending_del_slot = path->slots[0]; 4196 } else { 4197 BUG(); 4198 } 4199 } else { 4200 break; 4201 } 4202 if (found_extent && (root->ref_cows || 4203 root == root->fs_info->tree_root)) { 4204 btrfs_set_path_blocking(path); 4205 ret = btrfs_free_extent(trans, root, extent_start, 4206 extent_num_bytes, 0, 4207 btrfs_header_owner(leaf), 4208 ino, extent_offset, 0); 4209 BUG_ON(ret); 4210 } 4211 4212 if (found_type == BTRFS_INODE_ITEM_KEY) 4213 break; 4214 4215 if (path->slots[0] == 0 || 4216 path->slots[0] != pending_del_slot) { 4217 if (pending_del_nr) { 4218 ret = btrfs_del_items(trans, root, path, 4219 pending_del_slot, 4220 pending_del_nr); 4221 if (ret) { 4222 btrfs_abort_transaction(trans, 4223 root, ret); 4224 goto error; 4225 } 4226 pending_del_nr = 0; 4227 } 4228 btrfs_release_path(path); 4229 goto search_again; 4230 } else { 4231 path->slots[0]--; 4232 } 4233 } 4234 out: 4235 if (pending_del_nr) { 4236 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4237 pending_del_nr); 4238 if (ret) 4239 btrfs_abort_transaction(trans, root, ret); 4240 } 4241 error: 4242 btrfs_free_path(path); 4243 return err; 4244 } 4245 4246 /* 4247 * btrfs_truncate_page - read, zero a chunk and write a page 4248 * @inode - inode that we're zeroing 4249 * @from - the offset to start zeroing 4250 * @len - the length to zero, 0 to zero the entire range respective to the 4251 * offset 4252 * @front - zero up to the offset instead of from the offset on 4253 * 4254 * This will find the page for the "from" offset and cow the page and zero the 4255 * part we want to zero. This is used with truncate and hole punching. 4256 */ 4257 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 4258 int front) 4259 { 4260 struct address_space *mapping = inode->i_mapping; 4261 struct btrfs_root *root = BTRFS_I(inode)->root; 4262 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4263 struct btrfs_ordered_extent *ordered; 4264 struct extent_state *cached_state = NULL; 4265 char *kaddr; 4266 u32 blocksize = root->sectorsize; 4267 pgoff_t index = from >> PAGE_CACHE_SHIFT; 4268 unsigned offset = from & (PAGE_CACHE_SIZE-1); 4269 struct page *page; 4270 gfp_t mask = btrfs_alloc_write_mask(mapping); 4271 int ret = 0; 4272 u64 page_start; 4273 u64 page_end; 4274 4275 if ((offset & (blocksize - 1)) == 0 && 4276 (!len || ((len & (blocksize - 1)) == 0))) 4277 goto out; 4278 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 4279 if (ret) 4280 goto out; 4281 4282 again: 4283 page = find_or_create_page(mapping, index, mask); 4284 if (!page) { 4285 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4286 ret = -ENOMEM; 4287 goto out; 4288 } 4289 4290 page_start = page_offset(page); 4291 page_end = page_start + PAGE_CACHE_SIZE - 1; 4292 4293 if (!PageUptodate(page)) { 4294 ret = btrfs_readpage(NULL, page); 4295 lock_page(page); 4296 if (page->mapping != mapping) { 4297 unlock_page(page); 4298 page_cache_release(page); 4299 goto again; 4300 } 4301 if (!PageUptodate(page)) { 4302 ret = -EIO; 4303 goto out_unlock; 4304 } 4305 } 4306 wait_on_page_writeback(page); 4307 4308 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 4309 set_page_extent_mapped(page); 4310 4311 ordered = btrfs_lookup_ordered_extent(inode, page_start); 4312 if (ordered) { 4313 unlock_extent_cached(io_tree, page_start, page_end, 4314 &cached_state, GFP_NOFS); 4315 unlock_page(page); 4316 page_cache_release(page); 4317 btrfs_start_ordered_extent(inode, ordered, 1); 4318 btrfs_put_ordered_extent(ordered); 4319 goto again; 4320 } 4321 4322 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 4323 EXTENT_DIRTY | EXTENT_DELALLOC | 4324 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4325 0, 0, &cached_state, GFP_NOFS); 4326 4327 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 4328 &cached_state); 4329 if (ret) { 4330 unlock_extent_cached(io_tree, page_start, page_end, 4331 &cached_state, GFP_NOFS); 4332 goto out_unlock; 4333 } 4334 4335 if (offset != PAGE_CACHE_SIZE) { 4336 if (!len) 4337 len = PAGE_CACHE_SIZE - offset; 4338 kaddr = kmap(page); 4339 if (front) 4340 memset(kaddr, 0, offset); 4341 else 4342 memset(kaddr + offset, 0, len); 4343 flush_dcache_page(page); 4344 kunmap(page); 4345 } 4346 ClearPageChecked(page); 4347 set_page_dirty(page); 4348 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 4349 GFP_NOFS); 4350 4351 out_unlock: 4352 if (ret) 4353 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 4354 unlock_page(page); 4355 page_cache_release(page); 4356 out: 4357 return ret; 4358 } 4359 4360 /* 4361 * This function puts in dummy file extents for the area we're creating a hole 4362 * for. So if we are truncating this file to a larger size we need to insert 4363 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4364 * the range between oldsize and size 4365 */ 4366 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4367 { 4368 struct btrfs_trans_handle *trans; 4369 struct btrfs_root *root = BTRFS_I(inode)->root; 4370 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4371 struct extent_map *em = NULL; 4372 struct extent_state *cached_state = NULL; 4373 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4374 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4375 u64 block_end = ALIGN(size, root->sectorsize); 4376 u64 last_byte; 4377 u64 cur_offset; 4378 u64 hole_size; 4379 int err = 0; 4380 4381 if (size <= hole_start) 4382 return 0; 4383 4384 while (1) { 4385 struct btrfs_ordered_extent *ordered; 4386 btrfs_wait_ordered_range(inode, hole_start, 4387 block_end - hole_start); 4388 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 4389 &cached_state); 4390 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 4391 if (!ordered) 4392 break; 4393 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4394 &cached_state, GFP_NOFS); 4395 btrfs_put_ordered_extent(ordered); 4396 } 4397 4398 cur_offset = hole_start; 4399 while (1) { 4400 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4401 block_end - cur_offset, 0); 4402 if (IS_ERR(em)) { 4403 err = PTR_ERR(em); 4404 em = NULL; 4405 break; 4406 } 4407 last_byte = min(extent_map_end(em), block_end); 4408 last_byte = ALIGN(last_byte , root->sectorsize); 4409 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4410 struct extent_map *hole_em; 4411 hole_size = last_byte - cur_offset; 4412 4413 trans = btrfs_start_transaction(root, 3); 4414 if (IS_ERR(trans)) { 4415 err = PTR_ERR(trans); 4416 break; 4417 } 4418 4419 err = btrfs_drop_extents(trans, root, inode, 4420 cur_offset, 4421 cur_offset + hole_size, 1); 4422 if (err) { 4423 btrfs_abort_transaction(trans, root, err); 4424 btrfs_end_transaction(trans, root); 4425 break; 4426 } 4427 4428 err = btrfs_insert_file_extent(trans, root, 4429 btrfs_ino(inode), cur_offset, 0, 4430 0, hole_size, 0, hole_size, 4431 0, 0, 0); 4432 if (err) { 4433 btrfs_abort_transaction(trans, root, err); 4434 btrfs_end_transaction(trans, root); 4435 break; 4436 } 4437 4438 btrfs_drop_extent_cache(inode, cur_offset, 4439 cur_offset + hole_size - 1, 0); 4440 hole_em = alloc_extent_map(); 4441 if (!hole_em) { 4442 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4443 &BTRFS_I(inode)->runtime_flags); 4444 goto next; 4445 } 4446 hole_em->start = cur_offset; 4447 hole_em->len = hole_size; 4448 hole_em->orig_start = cur_offset; 4449 4450 hole_em->block_start = EXTENT_MAP_HOLE; 4451 hole_em->block_len = 0; 4452 hole_em->orig_block_len = 0; 4453 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4454 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4455 hole_em->generation = trans->transid; 4456 4457 while (1) { 4458 write_lock(&em_tree->lock); 4459 err = add_extent_mapping(em_tree, hole_em); 4460 if (!err) 4461 list_move(&hole_em->list, 4462 &em_tree->modified_extents); 4463 write_unlock(&em_tree->lock); 4464 if (err != -EEXIST) 4465 break; 4466 btrfs_drop_extent_cache(inode, cur_offset, 4467 cur_offset + 4468 hole_size - 1, 0); 4469 } 4470 free_extent_map(hole_em); 4471 next: 4472 btrfs_update_inode(trans, root, inode); 4473 btrfs_end_transaction(trans, root); 4474 } 4475 free_extent_map(em); 4476 em = NULL; 4477 cur_offset = last_byte; 4478 if (cur_offset >= block_end) 4479 break; 4480 } 4481 4482 free_extent_map(em); 4483 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4484 GFP_NOFS); 4485 return err; 4486 } 4487 4488 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4489 { 4490 struct btrfs_root *root = BTRFS_I(inode)->root; 4491 struct btrfs_trans_handle *trans; 4492 loff_t oldsize = i_size_read(inode); 4493 loff_t newsize = attr->ia_size; 4494 int mask = attr->ia_valid; 4495 int ret; 4496 4497 if (newsize == oldsize) 4498 return 0; 4499 4500 /* 4501 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4502 * special case where we need to update the times despite not having 4503 * these flags set. For all other operations the VFS set these flags 4504 * explicitly if it wants a timestamp update. 4505 */ 4506 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME)))) 4507 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb); 4508 4509 if (newsize > oldsize) { 4510 truncate_pagecache(inode, oldsize, newsize); 4511 ret = btrfs_cont_expand(inode, oldsize, newsize); 4512 if (ret) 4513 return ret; 4514 4515 trans = btrfs_start_transaction(root, 1); 4516 if (IS_ERR(trans)) 4517 return PTR_ERR(trans); 4518 4519 i_size_write(inode, newsize); 4520 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4521 ret = btrfs_update_inode(trans, root, inode); 4522 btrfs_end_transaction(trans, root); 4523 } else { 4524 4525 /* 4526 * We're truncating a file that used to have good data down to 4527 * zero. Make sure it gets into the ordered flush list so that 4528 * any new writes get down to disk quickly. 4529 */ 4530 if (newsize == 0) 4531 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4532 &BTRFS_I(inode)->runtime_flags); 4533 4534 /* 4535 * 1 for the orphan item we're going to add 4536 * 1 for the orphan item deletion. 4537 */ 4538 trans = btrfs_start_transaction(root, 2); 4539 if (IS_ERR(trans)) 4540 return PTR_ERR(trans); 4541 4542 /* 4543 * We need to do this in case we fail at _any_ point during the 4544 * actual truncate. Once we do the truncate_setsize we could 4545 * invalidate pages which forces any outstanding ordered io to 4546 * be instantly completed which will give us extents that need 4547 * to be truncated. If we fail to get an orphan inode down we 4548 * could have left over extents that were never meant to live, 4549 * so we need to garuntee from this point on that everything 4550 * will be consistent. 4551 */ 4552 ret = btrfs_orphan_add(trans, inode); 4553 btrfs_end_transaction(trans, root); 4554 if (ret) 4555 return ret; 4556 4557 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4558 truncate_setsize(inode, newsize); 4559 4560 /* Disable nonlocked read DIO to avoid the end less truncate */ 4561 btrfs_inode_block_unlocked_dio(inode); 4562 inode_dio_wait(inode); 4563 btrfs_inode_resume_unlocked_dio(inode); 4564 4565 ret = btrfs_truncate(inode); 4566 if (ret && inode->i_nlink) 4567 btrfs_orphan_del(NULL, inode); 4568 } 4569 4570 return ret; 4571 } 4572 4573 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4574 { 4575 struct inode *inode = dentry->d_inode; 4576 struct btrfs_root *root = BTRFS_I(inode)->root; 4577 int err; 4578 4579 if (btrfs_root_readonly(root)) 4580 return -EROFS; 4581 4582 err = inode_change_ok(inode, attr); 4583 if (err) 4584 return err; 4585 4586 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4587 err = btrfs_setsize(inode, attr); 4588 if (err) 4589 return err; 4590 } 4591 4592 if (attr->ia_valid) { 4593 setattr_copy(inode, attr); 4594 inode_inc_iversion(inode); 4595 err = btrfs_dirty_inode(inode); 4596 4597 if (!err && attr->ia_valid & ATTR_MODE) 4598 err = btrfs_acl_chmod(inode); 4599 } 4600 4601 return err; 4602 } 4603 4604 void btrfs_evict_inode(struct inode *inode) 4605 { 4606 struct btrfs_trans_handle *trans; 4607 struct btrfs_root *root = BTRFS_I(inode)->root; 4608 struct btrfs_block_rsv *rsv, *global_rsv; 4609 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 4610 int ret; 4611 4612 trace_btrfs_inode_evict(inode); 4613 4614 truncate_inode_pages(&inode->i_data, 0); 4615 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 4616 btrfs_is_free_space_inode(inode))) 4617 goto no_delete; 4618 4619 if (is_bad_inode(inode)) { 4620 btrfs_orphan_del(NULL, inode); 4621 goto no_delete; 4622 } 4623 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 4624 btrfs_wait_ordered_range(inode, 0, (u64)-1); 4625 4626 if (root->fs_info->log_root_recovering) { 4627 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 4628 &BTRFS_I(inode)->runtime_flags)); 4629 goto no_delete; 4630 } 4631 4632 if (inode->i_nlink > 0) { 4633 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 4634 goto no_delete; 4635 } 4636 4637 ret = btrfs_commit_inode_delayed_inode(inode); 4638 if (ret) { 4639 btrfs_orphan_del(NULL, inode); 4640 goto no_delete; 4641 } 4642 4643 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 4644 if (!rsv) { 4645 btrfs_orphan_del(NULL, inode); 4646 goto no_delete; 4647 } 4648 rsv->size = min_size; 4649 rsv->failfast = 1; 4650 global_rsv = &root->fs_info->global_block_rsv; 4651 4652 btrfs_i_size_write(inode, 0); 4653 4654 /* 4655 * This is a bit simpler than btrfs_truncate since we've already 4656 * reserved our space for our orphan item in the unlink, so we just 4657 * need to reserve some slack space in case we add bytes and update 4658 * inode item when doing the truncate. 4659 */ 4660 while (1) { 4661 ret = btrfs_block_rsv_refill(root, rsv, min_size, 4662 BTRFS_RESERVE_FLUSH_LIMIT); 4663 4664 /* 4665 * Try and steal from the global reserve since we will 4666 * likely not use this space anyway, we want to try as 4667 * hard as possible to get this to work. 4668 */ 4669 if (ret) 4670 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 4671 4672 if (ret) { 4673 printk(KERN_WARNING "Could not get space for a " 4674 "delete, will truncate on mount %d\n", ret); 4675 btrfs_orphan_del(NULL, inode); 4676 btrfs_free_block_rsv(root, rsv); 4677 goto no_delete; 4678 } 4679 4680 trans = btrfs_join_transaction(root); 4681 if (IS_ERR(trans)) { 4682 btrfs_orphan_del(NULL, inode); 4683 btrfs_free_block_rsv(root, rsv); 4684 goto no_delete; 4685 } 4686 4687 trans->block_rsv = rsv; 4688 4689 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 4690 if (ret != -ENOSPC) 4691 break; 4692 4693 trans->block_rsv = &root->fs_info->trans_block_rsv; 4694 btrfs_end_transaction(trans, root); 4695 trans = NULL; 4696 btrfs_btree_balance_dirty(root); 4697 } 4698 4699 btrfs_free_block_rsv(root, rsv); 4700 4701 if (ret == 0) { 4702 trans->block_rsv = root->orphan_block_rsv; 4703 ret = btrfs_orphan_del(trans, inode); 4704 BUG_ON(ret); 4705 } 4706 4707 trans->block_rsv = &root->fs_info->trans_block_rsv; 4708 if (!(root == root->fs_info->tree_root || 4709 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 4710 btrfs_return_ino(root, btrfs_ino(inode)); 4711 4712 btrfs_end_transaction(trans, root); 4713 btrfs_btree_balance_dirty(root); 4714 no_delete: 4715 clear_inode(inode); 4716 return; 4717 } 4718 4719 /* 4720 * this returns the key found in the dir entry in the location pointer. 4721 * If no dir entries were found, location->objectid is 0. 4722 */ 4723 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 4724 struct btrfs_key *location) 4725 { 4726 const char *name = dentry->d_name.name; 4727 int namelen = dentry->d_name.len; 4728 struct btrfs_dir_item *di; 4729 struct btrfs_path *path; 4730 struct btrfs_root *root = BTRFS_I(dir)->root; 4731 int ret = 0; 4732 4733 path = btrfs_alloc_path(); 4734 if (!path) 4735 return -ENOMEM; 4736 4737 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 4738 namelen, 0); 4739 if (IS_ERR(di)) 4740 ret = PTR_ERR(di); 4741 4742 if (IS_ERR_OR_NULL(di)) 4743 goto out_err; 4744 4745 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 4746 out: 4747 btrfs_free_path(path); 4748 return ret; 4749 out_err: 4750 location->objectid = 0; 4751 goto out; 4752 } 4753 4754 /* 4755 * when we hit a tree root in a directory, the btrfs part of the inode 4756 * needs to be changed to reflect the root directory of the tree root. This 4757 * is kind of like crossing a mount point. 4758 */ 4759 static int fixup_tree_root_location(struct btrfs_root *root, 4760 struct inode *dir, 4761 struct dentry *dentry, 4762 struct btrfs_key *location, 4763 struct btrfs_root **sub_root) 4764 { 4765 struct btrfs_path *path; 4766 struct btrfs_root *new_root; 4767 struct btrfs_root_ref *ref; 4768 struct extent_buffer *leaf; 4769 int ret; 4770 int err = 0; 4771 4772 path = btrfs_alloc_path(); 4773 if (!path) { 4774 err = -ENOMEM; 4775 goto out; 4776 } 4777 4778 err = -ENOENT; 4779 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 4780 BTRFS_I(dir)->root->root_key.objectid, 4781 location->objectid); 4782 if (ret) { 4783 if (ret < 0) 4784 err = ret; 4785 goto out; 4786 } 4787 4788 leaf = path->nodes[0]; 4789 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4790 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4791 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4792 goto out; 4793 4794 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4795 (unsigned long)(ref + 1), 4796 dentry->d_name.len); 4797 if (ret) 4798 goto out; 4799 4800 btrfs_release_path(path); 4801 4802 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4803 if (IS_ERR(new_root)) { 4804 err = PTR_ERR(new_root); 4805 goto out; 4806 } 4807 4808 if (btrfs_root_refs(&new_root->root_item) == 0) { 4809 err = -ENOENT; 4810 goto out; 4811 } 4812 4813 *sub_root = new_root; 4814 location->objectid = btrfs_root_dirid(&new_root->root_item); 4815 location->type = BTRFS_INODE_ITEM_KEY; 4816 location->offset = 0; 4817 err = 0; 4818 out: 4819 btrfs_free_path(path); 4820 return err; 4821 } 4822 4823 static void inode_tree_add(struct inode *inode) 4824 { 4825 struct btrfs_root *root = BTRFS_I(inode)->root; 4826 struct btrfs_inode *entry; 4827 struct rb_node **p; 4828 struct rb_node *parent; 4829 u64 ino = btrfs_ino(inode); 4830 again: 4831 p = &root->inode_tree.rb_node; 4832 parent = NULL; 4833 4834 if (inode_unhashed(inode)) 4835 return; 4836 4837 spin_lock(&root->inode_lock); 4838 while (*p) { 4839 parent = *p; 4840 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4841 4842 if (ino < btrfs_ino(&entry->vfs_inode)) 4843 p = &parent->rb_left; 4844 else if (ino > btrfs_ino(&entry->vfs_inode)) 4845 p = &parent->rb_right; 4846 else { 4847 WARN_ON(!(entry->vfs_inode.i_state & 4848 (I_WILL_FREE | I_FREEING))); 4849 rb_erase(parent, &root->inode_tree); 4850 RB_CLEAR_NODE(parent); 4851 spin_unlock(&root->inode_lock); 4852 goto again; 4853 } 4854 } 4855 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4856 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4857 spin_unlock(&root->inode_lock); 4858 } 4859 4860 static void inode_tree_del(struct inode *inode) 4861 { 4862 struct btrfs_root *root = BTRFS_I(inode)->root; 4863 int empty = 0; 4864 4865 spin_lock(&root->inode_lock); 4866 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4867 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4868 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4869 empty = RB_EMPTY_ROOT(&root->inode_tree); 4870 } 4871 spin_unlock(&root->inode_lock); 4872 4873 /* 4874 * Free space cache has inodes in the tree root, but the tree root has a 4875 * root_refs of 0, so this could end up dropping the tree root as a 4876 * snapshot, so we need the extra !root->fs_info->tree_root check to 4877 * make sure we don't drop it. 4878 */ 4879 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4880 root != root->fs_info->tree_root) { 4881 synchronize_srcu(&root->fs_info->subvol_srcu); 4882 spin_lock(&root->inode_lock); 4883 empty = RB_EMPTY_ROOT(&root->inode_tree); 4884 spin_unlock(&root->inode_lock); 4885 if (empty) 4886 btrfs_add_dead_root(root); 4887 } 4888 } 4889 4890 void btrfs_invalidate_inodes(struct btrfs_root *root) 4891 { 4892 struct rb_node *node; 4893 struct rb_node *prev; 4894 struct btrfs_inode *entry; 4895 struct inode *inode; 4896 u64 objectid = 0; 4897 4898 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4899 4900 spin_lock(&root->inode_lock); 4901 again: 4902 node = root->inode_tree.rb_node; 4903 prev = NULL; 4904 while (node) { 4905 prev = node; 4906 entry = rb_entry(node, struct btrfs_inode, rb_node); 4907 4908 if (objectid < btrfs_ino(&entry->vfs_inode)) 4909 node = node->rb_left; 4910 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4911 node = node->rb_right; 4912 else 4913 break; 4914 } 4915 if (!node) { 4916 while (prev) { 4917 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4918 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4919 node = prev; 4920 break; 4921 } 4922 prev = rb_next(prev); 4923 } 4924 } 4925 while (node) { 4926 entry = rb_entry(node, struct btrfs_inode, rb_node); 4927 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4928 inode = igrab(&entry->vfs_inode); 4929 if (inode) { 4930 spin_unlock(&root->inode_lock); 4931 if (atomic_read(&inode->i_count) > 1) 4932 d_prune_aliases(inode); 4933 /* 4934 * btrfs_drop_inode will have it removed from 4935 * the inode cache when its usage count 4936 * hits zero. 4937 */ 4938 iput(inode); 4939 cond_resched(); 4940 spin_lock(&root->inode_lock); 4941 goto again; 4942 } 4943 4944 if (cond_resched_lock(&root->inode_lock)) 4945 goto again; 4946 4947 node = rb_next(node); 4948 } 4949 spin_unlock(&root->inode_lock); 4950 } 4951 4952 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4953 { 4954 struct btrfs_iget_args *args = p; 4955 inode->i_ino = args->ino; 4956 BTRFS_I(inode)->root = args->root; 4957 return 0; 4958 } 4959 4960 static int btrfs_find_actor(struct inode *inode, void *opaque) 4961 { 4962 struct btrfs_iget_args *args = opaque; 4963 return args->ino == btrfs_ino(inode) && 4964 args->root == BTRFS_I(inode)->root; 4965 } 4966 4967 static struct inode *btrfs_iget_locked(struct super_block *s, 4968 u64 objectid, 4969 struct btrfs_root *root) 4970 { 4971 struct inode *inode; 4972 struct btrfs_iget_args args; 4973 args.ino = objectid; 4974 args.root = root; 4975 4976 inode = iget5_locked(s, objectid, btrfs_find_actor, 4977 btrfs_init_locked_inode, 4978 (void *)&args); 4979 return inode; 4980 } 4981 4982 /* Get an inode object given its location and corresponding root. 4983 * Returns in *is_new if the inode was read from disk 4984 */ 4985 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4986 struct btrfs_root *root, int *new) 4987 { 4988 struct inode *inode; 4989 4990 inode = btrfs_iget_locked(s, location->objectid, root); 4991 if (!inode) 4992 return ERR_PTR(-ENOMEM); 4993 4994 if (inode->i_state & I_NEW) { 4995 BTRFS_I(inode)->root = root; 4996 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4997 btrfs_read_locked_inode(inode); 4998 if (!is_bad_inode(inode)) { 4999 inode_tree_add(inode); 5000 unlock_new_inode(inode); 5001 if (new) 5002 *new = 1; 5003 } else { 5004 unlock_new_inode(inode); 5005 iput(inode); 5006 inode = ERR_PTR(-ESTALE); 5007 } 5008 } 5009 5010 return inode; 5011 } 5012 5013 static struct inode *new_simple_dir(struct super_block *s, 5014 struct btrfs_key *key, 5015 struct btrfs_root *root) 5016 { 5017 struct inode *inode = new_inode(s); 5018 5019 if (!inode) 5020 return ERR_PTR(-ENOMEM); 5021 5022 BTRFS_I(inode)->root = root; 5023 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5024 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5025 5026 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5027 inode->i_op = &btrfs_dir_ro_inode_operations; 5028 inode->i_fop = &simple_dir_operations; 5029 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5030 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5031 5032 return inode; 5033 } 5034 5035 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5036 { 5037 struct inode *inode; 5038 struct btrfs_root *root = BTRFS_I(dir)->root; 5039 struct btrfs_root *sub_root = root; 5040 struct btrfs_key location; 5041 int index; 5042 int ret = 0; 5043 5044 if (dentry->d_name.len > BTRFS_NAME_LEN) 5045 return ERR_PTR(-ENAMETOOLONG); 5046 5047 ret = btrfs_inode_by_name(dir, dentry, &location); 5048 if (ret < 0) 5049 return ERR_PTR(ret); 5050 5051 if (location.objectid == 0) 5052 return NULL; 5053 5054 if (location.type == BTRFS_INODE_ITEM_KEY) { 5055 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5056 return inode; 5057 } 5058 5059 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5060 5061 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5062 ret = fixup_tree_root_location(root, dir, dentry, 5063 &location, &sub_root); 5064 if (ret < 0) { 5065 if (ret != -ENOENT) 5066 inode = ERR_PTR(ret); 5067 else 5068 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5069 } else { 5070 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5071 } 5072 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5073 5074 if (!IS_ERR(inode) && root != sub_root) { 5075 down_read(&root->fs_info->cleanup_work_sem); 5076 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5077 ret = btrfs_orphan_cleanup(sub_root); 5078 up_read(&root->fs_info->cleanup_work_sem); 5079 if (ret) 5080 inode = ERR_PTR(ret); 5081 } 5082 5083 return inode; 5084 } 5085 5086 static int btrfs_dentry_delete(const struct dentry *dentry) 5087 { 5088 struct btrfs_root *root; 5089 struct inode *inode = dentry->d_inode; 5090 5091 if (!inode && !IS_ROOT(dentry)) 5092 inode = dentry->d_parent->d_inode; 5093 5094 if (inode) { 5095 root = BTRFS_I(inode)->root; 5096 if (btrfs_root_refs(&root->root_item) == 0) 5097 return 1; 5098 5099 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5100 return 1; 5101 } 5102 return 0; 5103 } 5104 5105 static void btrfs_dentry_release(struct dentry *dentry) 5106 { 5107 if (dentry->d_fsdata) 5108 kfree(dentry->d_fsdata); 5109 } 5110 5111 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5112 unsigned int flags) 5113 { 5114 struct dentry *ret; 5115 5116 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 5117 return ret; 5118 } 5119 5120 unsigned char btrfs_filetype_table[] = { 5121 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5122 }; 5123 5124 static int btrfs_real_readdir(struct file *filp, void *dirent, 5125 filldir_t filldir) 5126 { 5127 struct inode *inode = file_inode(filp); 5128 struct btrfs_root *root = BTRFS_I(inode)->root; 5129 struct btrfs_item *item; 5130 struct btrfs_dir_item *di; 5131 struct btrfs_key key; 5132 struct btrfs_key found_key; 5133 struct btrfs_path *path; 5134 struct list_head ins_list; 5135 struct list_head del_list; 5136 int ret; 5137 struct extent_buffer *leaf; 5138 int slot; 5139 unsigned char d_type; 5140 int over = 0; 5141 u32 di_cur; 5142 u32 di_total; 5143 u32 di_len; 5144 int key_type = BTRFS_DIR_INDEX_KEY; 5145 char tmp_name[32]; 5146 char *name_ptr; 5147 int name_len; 5148 int is_curr = 0; /* filp->f_pos points to the current index? */ 5149 5150 /* FIXME, use a real flag for deciding about the key type */ 5151 if (root->fs_info->tree_root == root) 5152 key_type = BTRFS_DIR_ITEM_KEY; 5153 5154 /* special case for "." */ 5155 if (filp->f_pos == 0) { 5156 over = filldir(dirent, ".", 1, 5157 filp->f_pos, btrfs_ino(inode), DT_DIR); 5158 if (over) 5159 return 0; 5160 filp->f_pos = 1; 5161 } 5162 /* special case for .., just use the back ref */ 5163 if (filp->f_pos == 1) { 5164 u64 pino = parent_ino(filp->f_path.dentry); 5165 over = filldir(dirent, "..", 2, 5166 filp->f_pos, pino, DT_DIR); 5167 if (over) 5168 return 0; 5169 filp->f_pos = 2; 5170 } 5171 path = btrfs_alloc_path(); 5172 if (!path) 5173 return -ENOMEM; 5174 5175 path->reada = 1; 5176 5177 if (key_type == BTRFS_DIR_INDEX_KEY) { 5178 INIT_LIST_HEAD(&ins_list); 5179 INIT_LIST_HEAD(&del_list); 5180 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5181 } 5182 5183 btrfs_set_key_type(&key, key_type); 5184 key.offset = filp->f_pos; 5185 key.objectid = btrfs_ino(inode); 5186 5187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5188 if (ret < 0) 5189 goto err; 5190 5191 while (1) { 5192 leaf = path->nodes[0]; 5193 slot = path->slots[0]; 5194 if (slot >= btrfs_header_nritems(leaf)) { 5195 ret = btrfs_next_leaf(root, path); 5196 if (ret < 0) 5197 goto err; 5198 else if (ret > 0) 5199 break; 5200 continue; 5201 } 5202 5203 item = btrfs_item_nr(leaf, slot); 5204 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5205 5206 if (found_key.objectid != key.objectid) 5207 break; 5208 if (btrfs_key_type(&found_key) != key_type) 5209 break; 5210 if (found_key.offset < filp->f_pos) 5211 goto next; 5212 if (key_type == BTRFS_DIR_INDEX_KEY && 5213 btrfs_should_delete_dir_index(&del_list, 5214 found_key.offset)) 5215 goto next; 5216 5217 filp->f_pos = found_key.offset; 5218 is_curr = 1; 5219 5220 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5221 di_cur = 0; 5222 di_total = btrfs_item_size(leaf, item); 5223 5224 while (di_cur < di_total) { 5225 struct btrfs_key location; 5226 5227 if (verify_dir_item(root, leaf, di)) 5228 break; 5229 5230 name_len = btrfs_dir_name_len(leaf, di); 5231 if (name_len <= sizeof(tmp_name)) { 5232 name_ptr = tmp_name; 5233 } else { 5234 name_ptr = kmalloc(name_len, GFP_NOFS); 5235 if (!name_ptr) { 5236 ret = -ENOMEM; 5237 goto err; 5238 } 5239 } 5240 read_extent_buffer(leaf, name_ptr, 5241 (unsigned long)(di + 1), name_len); 5242 5243 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5244 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5245 5246 5247 /* is this a reference to our own snapshot? If so 5248 * skip it. 5249 * 5250 * In contrast to old kernels, we insert the snapshot's 5251 * dir item and dir index after it has been created, so 5252 * we won't find a reference to our own snapshot. We 5253 * still keep the following code for backward 5254 * compatibility. 5255 */ 5256 if (location.type == BTRFS_ROOT_ITEM_KEY && 5257 location.objectid == root->root_key.objectid) { 5258 over = 0; 5259 goto skip; 5260 } 5261 over = filldir(dirent, name_ptr, name_len, 5262 found_key.offset, location.objectid, 5263 d_type); 5264 5265 skip: 5266 if (name_ptr != tmp_name) 5267 kfree(name_ptr); 5268 5269 if (over) 5270 goto nopos; 5271 di_len = btrfs_dir_name_len(leaf, di) + 5272 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5273 di_cur += di_len; 5274 di = (struct btrfs_dir_item *)((char *)di + di_len); 5275 } 5276 next: 5277 path->slots[0]++; 5278 } 5279 5280 if (key_type == BTRFS_DIR_INDEX_KEY) { 5281 if (is_curr) 5282 filp->f_pos++; 5283 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 5284 &ins_list); 5285 if (ret) 5286 goto nopos; 5287 } 5288 5289 /* Reached end of directory/root. Bump pos past the last item. */ 5290 if (key_type == BTRFS_DIR_INDEX_KEY) 5291 /* 5292 * 32-bit glibc will use getdents64, but then strtol - 5293 * so the last number we can serve is this. 5294 */ 5295 filp->f_pos = 0x7fffffff; 5296 else 5297 filp->f_pos++; 5298 nopos: 5299 ret = 0; 5300 err: 5301 if (key_type == BTRFS_DIR_INDEX_KEY) 5302 btrfs_put_delayed_items(&ins_list, &del_list); 5303 btrfs_free_path(path); 5304 return ret; 5305 } 5306 5307 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5308 { 5309 struct btrfs_root *root = BTRFS_I(inode)->root; 5310 struct btrfs_trans_handle *trans; 5311 int ret = 0; 5312 bool nolock = false; 5313 5314 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5315 return 0; 5316 5317 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5318 nolock = true; 5319 5320 if (wbc->sync_mode == WB_SYNC_ALL) { 5321 if (nolock) 5322 trans = btrfs_join_transaction_nolock(root); 5323 else 5324 trans = btrfs_join_transaction(root); 5325 if (IS_ERR(trans)) 5326 return PTR_ERR(trans); 5327 ret = btrfs_commit_transaction(trans, root); 5328 } 5329 return ret; 5330 } 5331 5332 /* 5333 * This is somewhat expensive, updating the tree every time the 5334 * inode changes. But, it is most likely to find the inode in cache. 5335 * FIXME, needs more benchmarking...there are no reasons other than performance 5336 * to keep or drop this code. 5337 */ 5338 int btrfs_dirty_inode(struct inode *inode) 5339 { 5340 struct btrfs_root *root = BTRFS_I(inode)->root; 5341 struct btrfs_trans_handle *trans; 5342 int ret; 5343 5344 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5345 return 0; 5346 5347 trans = btrfs_join_transaction(root); 5348 if (IS_ERR(trans)) 5349 return PTR_ERR(trans); 5350 5351 ret = btrfs_update_inode(trans, root, inode); 5352 if (ret && ret == -ENOSPC) { 5353 /* whoops, lets try again with the full transaction */ 5354 btrfs_end_transaction(trans, root); 5355 trans = btrfs_start_transaction(root, 1); 5356 if (IS_ERR(trans)) 5357 return PTR_ERR(trans); 5358 5359 ret = btrfs_update_inode(trans, root, inode); 5360 } 5361 btrfs_end_transaction(trans, root); 5362 if (BTRFS_I(inode)->delayed_node) 5363 btrfs_balance_delayed_items(root); 5364 5365 return ret; 5366 } 5367 5368 /* 5369 * This is a copy of file_update_time. We need this so we can return error on 5370 * ENOSPC for updating the inode in the case of file write and mmap writes. 5371 */ 5372 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5373 int flags) 5374 { 5375 struct btrfs_root *root = BTRFS_I(inode)->root; 5376 5377 if (btrfs_root_readonly(root)) 5378 return -EROFS; 5379 5380 if (flags & S_VERSION) 5381 inode_inc_iversion(inode); 5382 if (flags & S_CTIME) 5383 inode->i_ctime = *now; 5384 if (flags & S_MTIME) 5385 inode->i_mtime = *now; 5386 if (flags & S_ATIME) 5387 inode->i_atime = *now; 5388 return btrfs_dirty_inode(inode); 5389 } 5390 5391 /* 5392 * find the highest existing sequence number in a directory 5393 * and then set the in-memory index_cnt variable to reflect 5394 * free sequence numbers 5395 */ 5396 static int btrfs_set_inode_index_count(struct inode *inode) 5397 { 5398 struct btrfs_root *root = BTRFS_I(inode)->root; 5399 struct btrfs_key key, found_key; 5400 struct btrfs_path *path; 5401 struct extent_buffer *leaf; 5402 int ret; 5403 5404 key.objectid = btrfs_ino(inode); 5405 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 5406 key.offset = (u64)-1; 5407 5408 path = btrfs_alloc_path(); 5409 if (!path) 5410 return -ENOMEM; 5411 5412 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5413 if (ret < 0) 5414 goto out; 5415 /* FIXME: we should be able to handle this */ 5416 if (ret == 0) 5417 goto out; 5418 ret = 0; 5419 5420 /* 5421 * MAGIC NUMBER EXPLANATION: 5422 * since we search a directory based on f_pos we have to start at 2 5423 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5424 * else has to start at 2 5425 */ 5426 if (path->slots[0] == 0) { 5427 BTRFS_I(inode)->index_cnt = 2; 5428 goto out; 5429 } 5430 5431 path->slots[0]--; 5432 5433 leaf = path->nodes[0]; 5434 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5435 5436 if (found_key.objectid != btrfs_ino(inode) || 5437 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 5438 BTRFS_I(inode)->index_cnt = 2; 5439 goto out; 5440 } 5441 5442 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 5443 out: 5444 btrfs_free_path(path); 5445 return ret; 5446 } 5447 5448 /* 5449 * helper to find a free sequence number in a given directory. This current 5450 * code is very simple, later versions will do smarter things in the btree 5451 */ 5452 int btrfs_set_inode_index(struct inode *dir, u64 *index) 5453 { 5454 int ret = 0; 5455 5456 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 5457 ret = btrfs_inode_delayed_dir_index_count(dir); 5458 if (ret) { 5459 ret = btrfs_set_inode_index_count(dir); 5460 if (ret) 5461 return ret; 5462 } 5463 } 5464 5465 *index = BTRFS_I(dir)->index_cnt; 5466 BTRFS_I(dir)->index_cnt++; 5467 5468 return ret; 5469 } 5470 5471 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5472 struct btrfs_root *root, 5473 struct inode *dir, 5474 const char *name, int name_len, 5475 u64 ref_objectid, u64 objectid, 5476 umode_t mode, u64 *index) 5477 { 5478 struct inode *inode; 5479 struct btrfs_inode_item *inode_item; 5480 struct btrfs_key *location; 5481 struct btrfs_path *path; 5482 struct btrfs_inode_ref *ref; 5483 struct btrfs_key key[2]; 5484 u32 sizes[2]; 5485 unsigned long ptr; 5486 int ret; 5487 int owner; 5488 5489 path = btrfs_alloc_path(); 5490 if (!path) 5491 return ERR_PTR(-ENOMEM); 5492 5493 inode = new_inode(root->fs_info->sb); 5494 if (!inode) { 5495 btrfs_free_path(path); 5496 return ERR_PTR(-ENOMEM); 5497 } 5498 5499 /* 5500 * we have to initialize this early, so we can reclaim the inode 5501 * number if we fail afterwards in this function. 5502 */ 5503 inode->i_ino = objectid; 5504 5505 if (dir) { 5506 trace_btrfs_inode_request(dir); 5507 5508 ret = btrfs_set_inode_index(dir, index); 5509 if (ret) { 5510 btrfs_free_path(path); 5511 iput(inode); 5512 return ERR_PTR(ret); 5513 } 5514 } 5515 /* 5516 * index_cnt is ignored for everything but a dir, 5517 * btrfs_get_inode_index_count has an explanation for the magic 5518 * number 5519 */ 5520 BTRFS_I(inode)->index_cnt = 2; 5521 BTRFS_I(inode)->root = root; 5522 BTRFS_I(inode)->generation = trans->transid; 5523 inode->i_generation = BTRFS_I(inode)->generation; 5524 5525 /* 5526 * We could have gotten an inode number from somebody who was fsynced 5527 * and then removed in this same transaction, so let's just set full 5528 * sync since it will be a full sync anyway and this will blow away the 5529 * old info in the log. 5530 */ 5531 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5532 5533 if (S_ISDIR(mode)) 5534 owner = 0; 5535 else 5536 owner = 1; 5537 5538 key[0].objectid = objectid; 5539 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 5540 key[0].offset = 0; 5541 5542 /* 5543 * Start new inodes with an inode_ref. This is slightly more 5544 * efficient for small numbers of hard links since they will 5545 * be packed into one item. Extended refs will kick in if we 5546 * add more hard links than can fit in the ref item. 5547 */ 5548 key[1].objectid = objectid; 5549 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 5550 key[1].offset = ref_objectid; 5551 5552 sizes[0] = sizeof(struct btrfs_inode_item); 5553 sizes[1] = name_len + sizeof(*ref); 5554 5555 path->leave_spinning = 1; 5556 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 5557 if (ret != 0) 5558 goto fail; 5559 5560 inode_init_owner(inode, dir, mode); 5561 inode_set_bytes(inode, 0); 5562 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 5563 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 5564 struct btrfs_inode_item); 5565 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 5566 sizeof(*inode_item)); 5567 fill_inode_item(trans, path->nodes[0], inode_item, inode); 5568 5569 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 5570 struct btrfs_inode_ref); 5571 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 5572 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 5573 ptr = (unsigned long)(ref + 1); 5574 write_extent_buffer(path->nodes[0], name, ptr, name_len); 5575 5576 btrfs_mark_buffer_dirty(path->nodes[0]); 5577 btrfs_free_path(path); 5578 5579 location = &BTRFS_I(inode)->location; 5580 location->objectid = objectid; 5581 location->offset = 0; 5582 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 5583 5584 btrfs_inherit_iflags(inode, dir); 5585 5586 if (S_ISREG(mode)) { 5587 if (btrfs_test_opt(root, NODATASUM)) 5588 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5589 if (btrfs_test_opt(root, NODATACOW)) 5590 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 5591 BTRFS_INODE_NODATASUM; 5592 } 5593 5594 insert_inode_hash(inode); 5595 inode_tree_add(inode); 5596 5597 trace_btrfs_inode_new(inode); 5598 btrfs_set_inode_last_trans(trans, inode); 5599 5600 btrfs_update_root_times(trans, root); 5601 5602 return inode; 5603 fail: 5604 if (dir) 5605 BTRFS_I(dir)->index_cnt--; 5606 btrfs_free_path(path); 5607 iput(inode); 5608 return ERR_PTR(ret); 5609 } 5610 5611 static inline u8 btrfs_inode_type(struct inode *inode) 5612 { 5613 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 5614 } 5615 5616 /* 5617 * utility function to add 'inode' into 'parent_inode' with 5618 * a give name and a given sequence number. 5619 * if 'add_backref' is true, also insert a backref from the 5620 * inode to the parent directory. 5621 */ 5622 int btrfs_add_link(struct btrfs_trans_handle *trans, 5623 struct inode *parent_inode, struct inode *inode, 5624 const char *name, int name_len, int add_backref, u64 index) 5625 { 5626 int ret = 0; 5627 struct btrfs_key key; 5628 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 5629 u64 ino = btrfs_ino(inode); 5630 u64 parent_ino = btrfs_ino(parent_inode); 5631 5632 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5633 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 5634 } else { 5635 key.objectid = ino; 5636 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 5637 key.offset = 0; 5638 } 5639 5640 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5641 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 5642 key.objectid, root->root_key.objectid, 5643 parent_ino, index, name, name_len); 5644 } else if (add_backref) { 5645 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 5646 parent_ino, index); 5647 } 5648 5649 /* Nothing to clean up yet */ 5650 if (ret) 5651 return ret; 5652 5653 ret = btrfs_insert_dir_item(trans, root, name, name_len, 5654 parent_inode, &key, 5655 btrfs_inode_type(inode), index); 5656 if (ret == -EEXIST || ret == -EOVERFLOW) 5657 goto fail_dir_item; 5658 else if (ret) { 5659 btrfs_abort_transaction(trans, root, ret); 5660 return ret; 5661 } 5662 5663 btrfs_i_size_write(parent_inode, parent_inode->i_size + 5664 name_len * 2); 5665 inode_inc_iversion(parent_inode); 5666 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 5667 ret = btrfs_update_inode(trans, root, parent_inode); 5668 if (ret) 5669 btrfs_abort_transaction(trans, root, ret); 5670 return ret; 5671 5672 fail_dir_item: 5673 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 5674 u64 local_index; 5675 int err; 5676 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 5677 key.objectid, root->root_key.objectid, 5678 parent_ino, &local_index, name, name_len); 5679 5680 } else if (add_backref) { 5681 u64 local_index; 5682 int err; 5683 5684 err = btrfs_del_inode_ref(trans, root, name, name_len, 5685 ino, parent_ino, &local_index); 5686 } 5687 return ret; 5688 } 5689 5690 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 5691 struct inode *dir, struct dentry *dentry, 5692 struct inode *inode, int backref, u64 index) 5693 { 5694 int err = btrfs_add_link(trans, dir, inode, 5695 dentry->d_name.name, dentry->d_name.len, 5696 backref, index); 5697 if (err > 0) 5698 err = -EEXIST; 5699 return err; 5700 } 5701 5702 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 5703 umode_t mode, dev_t rdev) 5704 { 5705 struct btrfs_trans_handle *trans; 5706 struct btrfs_root *root = BTRFS_I(dir)->root; 5707 struct inode *inode = NULL; 5708 int err; 5709 int drop_inode = 0; 5710 u64 objectid; 5711 u64 index = 0; 5712 5713 if (!new_valid_dev(rdev)) 5714 return -EINVAL; 5715 5716 /* 5717 * 2 for inode item and ref 5718 * 2 for dir items 5719 * 1 for xattr if selinux is on 5720 */ 5721 trans = btrfs_start_transaction(root, 5); 5722 if (IS_ERR(trans)) 5723 return PTR_ERR(trans); 5724 5725 err = btrfs_find_free_ino(root, &objectid); 5726 if (err) 5727 goto out_unlock; 5728 5729 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5730 dentry->d_name.len, btrfs_ino(dir), objectid, 5731 mode, &index); 5732 if (IS_ERR(inode)) { 5733 err = PTR_ERR(inode); 5734 goto out_unlock; 5735 } 5736 5737 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5738 if (err) { 5739 drop_inode = 1; 5740 goto out_unlock; 5741 } 5742 5743 /* 5744 * If the active LSM wants to access the inode during 5745 * d_instantiate it needs these. Smack checks to see 5746 * if the filesystem supports xattrs by looking at the 5747 * ops vector. 5748 */ 5749 5750 inode->i_op = &btrfs_special_inode_operations; 5751 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5752 if (err) 5753 drop_inode = 1; 5754 else { 5755 init_special_inode(inode, inode->i_mode, rdev); 5756 btrfs_update_inode(trans, root, inode); 5757 d_instantiate(dentry, inode); 5758 } 5759 out_unlock: 5760 btrfs_end_transaction(trans, root); 5761 btrfs_btree_balance_dirty(root); 5762 if (drop_inode) { 5763 inode_dec_link_count(inode); 5764 iput(inode); 5765 } 5766 return err; 5767 } 5768 5769 static int btrfs_create(struct inode *dir, struct dentry *dentry, 5770 umode_t mode, bool excl) 5771 { 5772 struct btrfs_trans_handle *trans; 5773 struct btrfs_root *root = BTRFS_I(dir)->root; 5774 struct inode *inode = NULL; 5775 int drop_inode_on_err = 0; 5776 int err; 5777 u64 objectid; 5778 u64 index = 0; 5779 5780 /* 5781 * 2 for inode item and ref 5782 * 2 for dir items 5783 * 1 for xattr if selinux is on 5784 */ 5785 trans = btrfs_start_transaction(root, 5); 5786 if (IS_ERR(trans)) 5787 return PTR_ERR(trans); 5788 5789 err = btrfs_find_free_ino(root, &objectid); 5790 if (err) 5791 goto out_unlock; 5792 5793 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5794 dentry->d_name.len, btrfs_ino(dir), objectid, 5795 mode, &index); 5796 if (IS_ERR(inode)) { 5797 err = PTR_ERR(inode); 5798 goto out_unlock; 5799 } 5800 drop_inode_on_err = 1; 5801 5802 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5803 if (err) 5804 goto out_unlock; 5805 5806 err = btrfs_update_inode(trans, root, inode); 5807 if (err) 5808 goto out_unlock; 5809 5810 /* 5811 * If the active LSM wants to access the inode during 5812 * d_instantiate it needs these. Smack checks to see 5813 * if the filesystem supports xattrs by looking at the 5814 * ops vector. 5815 */ 5816 inode->i_fop = &btrfs_file_operations; 5817 inode->i_op = &btrfs_file_inode_operations; 5818 5819 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5820 if (err) 5821 goto out_unlock; 5822 5823 inode->i_mapping->a_ops = &btrfs_aops; 5824 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5825 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5826 d_instantiate(dentry, inode); 5827 5828 out_unlock: 5829 btrfs_end_transaction(trans, root); 5830 if (err && drop_inode_on_err) { 5831 inode_dec_link_count(inode); 5832 iput(inode); 5833 } 5834 btrfs_btree_balance_dirty(root); 5835 return err; 5836 } 5837 5838 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5839 struct dentry *dentry) 5840 { 5841 struct btrfs_trans_handle *trans; 5842 struct btrfs_root *root = BTRFS_I(dir)->root; 5843 struct inode *inode = old_dentry->d_inode; 5844 u64 index; 5845 int err; 5846 int drop_inode = 0; 5847 5848 /* do not allow sys_link's with other subvols of the same device */ 5849 if (root->objectid != BTRFS_I(inode)->root->objectid) 5850 return -EXDEV; 5851 5852 if (inode->i_nlink >= BTRFS_LINK_MAX) 5853 return -EMLINK; 5854 5855 err = btrfs_set_inode_index(dir, &index); 5856 if (err) 5857 goto fail; 5858 5859 /* 5860 * 2 items for inode and inode ref 5861 * 2 items for dir items 5862 * 1 item for parent inode 5863 */ 5864 trans = btrfs_start_transaction(root, 5); 5865 if (IS_ERR(trans)) { 5866 err = PTR_ERR(trans); 5867 goto fail; 5868 } 5869 5870 btrfs_inc_nlink(inode); 5871 inode_inc_iversion(inode); 5872 inode->i_ctime = CURRENT_TIME; 5873 ihold(inode); 5874 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5875 5876 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5877 5878 if (err) { 5879 drop_inode = 1; 5880 } else { 5881 struct dentry *parent = dentry->d_parent; 5882 err = btrfs_update_inode(trans, root, inode); 5883 if (err) 5884 goto fail; 5885 d_instantiate(dentry, inode); 5886 btrfs_log_new_name(trans, inode, NULL, parent); 5887 } 5888 5889 btrfs_end_transaction(trans, root); 5890 fail: 5891 if (drop_inode) { 5892 inode_dec_link_count(inode); 5893 iput(inode); 5894 } 5895 btrfs_btree_balance_dirty(root); 5896 return err; 5897 } 5898 5899 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5900 { 5901 struct inode *inode = NULL; 5902 struct btrfs_trans_handle *trans; 5903 struct btrfs_root *root = BTRFS_I(dir)->root; 5904 int err = 0; 5905 int drop_on_err = 0; 5906 u64 objectid = 0; 5907 u64 index = 0; 5908 5909 /* 5910 * 2 items for inode and ref 5911 * 2 items for dir items 5912 * 1 for xattr if selinux is on 5913 */ 5914 trans = btrfs_start_transaction(root, 5); 5915 if (IS_ERR(trans)) 5916 return PTR_ERR(trans); 5917 5918 err = btrfs_find_free_ino(root, &objectid); 5919 if (err) 5920 goto out_fail; 5921 5922 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5923 dentry->d_name.len, btrfs_ino(dir), objectid, 5924 S_IFDIR | mode, &index); 5925 if (IS_ERR(inode)) { 5926 err = PTR_ERR(inode); 5927 goto out_fail; 5928 } 5929 5930 drop_on_err = 1; 5931 5932 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5933 if (err) 5934 goto out_fail; 5935 5936 inode->i_op = &btrfs_dir_inode_operations; 5937 inode->i_fop = &btrfs_dir_file_operations; 5938 5939 btrfs_i_size_write(inode, 0); 5940 err = btrfs_update_inode(trans, root, inode); 5941 if (err) 5942 goto out_fail; 5943 5944 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5945 dentry->d_name.len, 0, index); 5946 if (err) 5947 goto out_fail; 5948 5949 d_instantiate(dentry, inode); 5950 drop_on_err = 0; 5951 5952 out_fail: 5953 btrfs_end_transaction(trans, root); 5954 if (drop_on_err) 5955 iput(inode); 5956 btrfs_btree_balance_dirty(root); 5957 return err; 5958 } 5959 5960 /* helper for btfs_get_extent. Given an existing extent in the tree, 5961 * and an extent that you want to insert, deal with overlap and insert 5962 * the new extent into the tree. 5963 */ 5964 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5965 struct extent_map *existing, 5966 struct extent_map *em, 5967 u64 map_start, u64 map_len) 5968 { 5969 u64 start_diff; 5970 5971 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5972 start_diff = map_start - em->start; 5973 em->start = map_start; 5974 em->len = map_len; 5975 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5976 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5977 em->block_start += start_diff; 5978 em->block_len -= start_diff; 5979 } 5980 return add_extent_mapping(em_tree, em); 5981 } 5982 5983 static noinline int uncompress_inline(struct btrfs_path *path, 5984 struct inode *inode, struct page *page, 5985 size_t pg_offset, u64 extent_offset, 5986 struct btrfs_file_extent_item *item) 5987 { 5988 int ret; 5989 struct extent_buffer *leaf = path->nodes[0]; 5990 char *tmp; 5991 size_t max_size; 5992 unsigned long inline_size; 5993 unsigned long ptr; 5994 int compress_type; 5995 5996 WARN_ON(pg_offset != 0); 5997 compress_type = btrfs_file_extent_compression(leaf, item); 5998 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5999 inline_size = btrfs_file_extent_inline_item_len(leaf, 6000 btrfs_item_nr(leaf, path->slots[0])); 6001 tmp = kmalloc(inline_size, GFP_NOFS); 6002 if (!tmp) 6003 return -ENOMEM; 6004 ptr = btrfs_file_extent_inline_start(item); 6005 6006 read_extent_buffer(leaf, tmp, ptr, inline_size); 6007 6008 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 6009 ret = btrfs_decompress(compress_type, tmp, page, 6010 extent_offset, inline_size, max_size); 6011 if (ret) { 6012 char *kaddr = kmap_atomic(page); 6013 unsigned long copy_size = min_t(u64, 6014 PAGE_CACHE_SIZE - pg_offset, 6015 max_size - extent_offset); 6016 memset(kaddr + pg_offset, 0, copy_size); 6017 kunmap_atomic(kaddr); 6018 } 6019 kfree(tmp); 6020 return 0; 6021 } 6022 6023 /* 6024 * a bit scary, this does extent mapping from logical file offset to the disk. 6025 * the ugly parts come from merging extents from the disk with the in-ram 6026 * representation. This gets more complex because of the data=ordered code, 6027 * where the in-ram extents might be locked pending data=ordered completion. 6028 * 6029 * This also copies inline extents directly into the page. 6030 */ 6031 6032 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6033 size_t pg_offset, u64 start, u64 len, 6034 int create) 6035 { 6036 int ret; 6037 int err = 0; 6038 u64 bytenr; 6039 u64 extent_start = 0; 6040 u64 extent_end = 0; 6041 u64 objectid = btrfs_ino(inode); 6042 u32 found_type; 6043 struct btrfs_path *path = NULL; 6044 struct btrfs_root *root = BTRFS_I(inode)->root; 6045 struct btrfs_file_extent_item *item; 6046 struct extent_buffer *leaf; 6047 struct btrfs_key found_key; 6048 struct extent_map *em = NULL; 6049 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6050 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6051 struct btrfs_trans_handle *trans = NULL; 6052 int compress_type; 6053 6054 again: 6055 read_lock(&em_tree->lock); 6056 em = lookup_extent_mapping(em_tree, start, len); 6057 if (em) 6058 em->bdev = root->fs_info->fs_devices->latest_bdev; 6059 read_unlock(&em_tree->lock); 6060 6061 if (em) { 6062 if (em->start > start || em->start + em->len <= start) 6063 free_extent_map(em); 6064 else if (em->block_start == EXTENT_MAP_INLINE && page) 6065 free_extent_map(em); 6066 else 6067 goto out; 6068 } 6069 em = alloc_extent_map(); 6070 if (!em) { 6071 err = -ENOMEM; 6072 goto out; 6073 } 6074 em->bdev = root->fs_info->fs_devices->latest_bdev; 6075 em->start = EXTENT_MAP_HOLE; 6076 em->orig_start = EXTENT_MAP_HOLE; 6077 em->len = (u64)-1; 6078 em->block_len = (u64)-1; 6079 6080 if (!path) { 6081 path = btrfs_alloc_path(); 6082 if (!path) { 6083 err = -ENOMEM; 6084 goto out; 6085 } 6086 /* 6087 * Chances are we'll be called again, so go ahead and do 6088 * readahead 6089 */ 6090 path->reada = 1; 6091 } 6092 6093 ret = btrfs_lookup_file_extent(trans, root, path, 6094 objectid, start, trans != NULL); 6095 if (ret < 0) { 6096 err = ret; 6097 goto out; 6098 } 6099 6100 if (ret != 0) { 6101 if (path->slots[0] == 0) 6102 goto not_found; 6103 path->slots[0]--; 6104 } 6105 6106 leaf = path->nodes[0]; 6107 item = btrfs_item_ptr(leaf, path->slots[0], 6108 struct btrfs_file_extent_item); 6109 /* are we inside the extent that was found? */ 6110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6111 found_type = btrfs_key_type(&found_key); 6112 if (found_key.objectid != objectid || 6113 found_type != BTRFS_EXTENT_DATA_KEY) { 6114 goto not_found; 6115 } 6116 6117 found_type = btrfs_file_extent_type(leaf, item); 6118 extent_start = found_key.offset; 6119 compress_type = btrfs_file_extent_compression(leaf, item); 6120 if (found_type == BTRFS_FILE_EXTENT_REG || 6121 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6122 extent_end = extent_start + 6123 btrfs_file_extent_num_bytes(leaf, item); 6124 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6125 size_t size; 6126 size = btrfs_file_extent_inline_len(leaf, item); 6127 extent_end = ALIGN(extent_start + size, root->sectorsize); 6128 } 6129 6130 if (start >= extent_end) { 6131 path->slots[0]++; 6132 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6133 ret = btrfs_next_leaf(root, path); 6134 if (ret < 0) { 6135 err = ret; 6136 goto out; 6137 } 6138 if (ret > 0) 6139 goto not_found; 6140 leaf = path->nodes[0]; 6141 } 6142 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6143 if (found_key.objectid != objectid || 6144 found_key.type != BTRFS_EXTENT_DATA_KEY) 6145 goto not_found; 6146 if (start + len <= found_key.offset) 6147 goto not_found; 6148 em->start = start; 6149 em->orig_start = start; 6150 em->len = found_key.offset - start; 6151 goto not_found_em; 6152 } 6153 6154 if (found_type == BTRFS_FILE_EXTENT_REG || 6155 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6156 em->start = extent_start; 6157 em->len = extent_end - extent_start; 6158 em->orig_start = extent_start - 6159 btrfs_file_extent_offset(leaf, item); 6160 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 6161 item); 6162 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 6163 if (bytenr == 0) { 6164 em->block_start = EXTENT_MAP_HOLE; 6165 goto insert; 6166 } 6167 if (compress_type != BTRFS_COMPRESS_NONE) { 6168 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6169 em->compress_type = compress_type; 6170 em->block_start = bytenr; 6171 em->block_len = em->orig_block_len; 6172 } else { 6173 bytenr += btrfs_file_extent_offset(leaf, item); 6174 em->block_start = bytenr; 6175 em->block_len = em->len; 6176 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 6177 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6178 } 6179 goto insert; 6180 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6181 unsigned long ptr; 6182 char *map; 6183 size_t size; 6184 size_t extent_offset; 6185 size_t copy_size; 6186 6187 em->block_start = EXTENT_MAP_INLINE; 6188 if (!page || create) { 6189 em->start = extent_start; 6190 em->len = extent_end - extent_start; 6191 goto out; 6192 } 6193 6194 size = btrfs_file_extent_inline_len(leaf, item); 6195 extent_offset = page_offset(page) + pg_offset - extent_start; 6196 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 6197 size - extent_offset); 6198 em->start = extent_start + extent_offset; 6199 em->len = ALIGN(copy_size, root->sectorsize); 6200 em->orig_block_len = em->len; 6201 em->orig_start = em->start; 6202 if (compress_type) { 6203 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 6204 em->compress_type = compress_type; 6205 } 6206 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6207 if (create == 0 && !PageUptodate(page)) { 6208 if (btrfs_file_extent_compression(leaf, item) != 6209 BTRFS_COMPRESS_NONE) { 6210 ret = uncompress_inline(path, inode, page, 6211 pg_offset, 6212 extent_offset, item); 6213 BUG_ON(ret); /* -ENOMEM */ 6214 } else { 6215 map = kmap(page); 6216 read_extent_buffer(leaf, map + pg_offset, ptr, 6217 copy_size); 6218 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 6219 memset(map + pg_offset + copy_size, 0, 6220 PAGE_CACHE_SIZE - pg_offset - 6221 copy_size); 6222 } 6223 kunmap(page); 6224 } 6225 flush_dcache_page(page); 6226 } else if (create && PageUptodate(page)) { 6227 BUG(); 6228 if (!trans) { 6229 kunmap(page); 6230 free_extent_map(em); 6231 em = NULL; 6232 6233 btrfs_release_path(path); 6234 trans = btrfs_join_transaction(root); 6235 6236 if (IS_ERR(trans)) 6237 return ERR_CAST(trans); 6238 goto again; 6239 } 6240 map = kmap(page); 6241 write_extent_buffer(leaf, map + pg_offset, ptr, 6242 copy_size); 6243 kunmap(page); 6244 btrfs_mark_buffer_dirty(leaf); 6245 } 6246 set_extent_uptodate(io_tree, em->start, 6247 extent_map_end(em) - 1, NULL, GFP_NOFS); 6248 goto insert; 6249 } else { 6250 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 6251 } 6252 not_found: 6253 em->start = start; 6254 em->orig_start = start; 6255 em->len = len; 6256 not_found_em: 6257 em->block_start = EXTENT_MAP_HOLE; 6258 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6259 insert: 6260 btrfs_release_path(path); 6261 if (em->start > start || extent_map_end(em) <= start) { 6262 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 6263 "[%llu %llu]\n", (unsigned long long)em->start, 6264 (unsigned long long)em->len, 6265 (unsigned long long)start, 6266 (unsigned long long)len); 6267 err = -EIO; 6268 goto out; 6269 } 6270 6271 err = 0; 6272 write_lock(&em_tree->lock); 6273 ret = add_extent_mapping(em_tree, em); 6274 /* it is possible that someone inserted the extent into the tree 6275 * while we had the lock dropped. It is also possible that 6276 * an overlapping map exists in the tree 6277 */ 6278 if (ret == -EEXIST) { 6279 struct extent_map *existing; 6280 6281 ret = 0; 6282 6283 existing = lookup_extent_mapping(em_tree, start, len); 6284 if (existing && (existing->start > start || 6285 existing->start + existing->len <= start)) { 6286 free_extent_map(existing); 6287 existing = NULL; 6288 } 6289 if (!existing) { 6290 existing = lookup_extent_mapping(em_tree, em->start, 6291 em->len); 6292 if (existing) { 6293 err = merge_extent_mapping(em_tree, existing, 6294 em, start, 6295 root->sectorsize); 6296 free_extent_map(existing); 6297 if (err) { 6298 free_extent_map(em); 6299 em = NULL; 6300 } 6301 } else { 6302 err = -EIO; 6303 free_extent_map(em); 6304 em = NULL; 6305 } 6306 } else { 6307 free_extent_map(em); 6308 em = existing; 6309 err = 0; 6310 } 6311 } 6312 write_unlock(&em_tree->lock); 6313 out: 6314 6315 if (em) 6316 trace_btrfs_get_extent(root, em); 6317 6318 if (path) 6319 btrfs_free_path(path); 6320 if (trans) { 6321 ret = btrfs_end_transaction(trans, root); 6322 if (!err) 6323 err = ret; 6324 } 6325 if (err) { 6326 free_extent_map(em); 6327 return ERR_PTR(err); 6328 } 6329 BUG_ON(!em); /* Error is always set */ 6330 return em; 6331 } 6332 6333 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 6334 size_t pg_offset, u64 start, u64 len, 6335 int create) 6336 { 6337 struct extent_map *em; 6338 struct extent_map *hole_em = NULL; 6339 u64 range_start = start; 6340 u64 end; 6341 u64 found; 6342 u64 found_end; 6343 int err = 0; 6344 6345 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6346 if (IS_ERR(em)) 6347 return em; 6348 if (em) { 6349 /* 6350 * if our em maps to 6351 * - a hole or 6352 * - a pre-alloc extent, 6353 * there might actually be delalloc bytes behind it. 6354 */ 6355 if (em->block_start != EXTENT_MAP_HOLE && 6356 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6357 return em; 6358 else 6359 hole_em = em; 6360 } 6361 6362 /* check to see if we've wrapped (len == -1 or similar) */ 6363 end = start + len; 6364 if (end < start) 6365 end = (u64)-1; 6366 else 6367 end -= 1; 6368 6369 em = NULL; 6370 6371 /* ok, we didn't find anything, lets look for delalloc */ 6372 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 6373 end, len, EXTENT_DELALLOC, 1); 6374 found_end = range_start + found; 6375 if (found_end < range_start) 6376 found_end = (u64)-1; 6377 6378 /* 6379 * we didn't find anything useful, return 6380 * the original results from get_extent() 6381 */ 6382 if (range_start > end || found_end <= start) { 6383 em = hole_em; 6384 hole_em = NULL; 6385 goto out; 6386 } 6387 6388 /* adjust the range_start to make sure it doesn't 6389 * go backwards from the start they passed in 6390 */ 6391 range_start = max(start,range_start); 6392 found = found_end - range_start; 6393 6394 if (found > 0) { 6395 u64 hole_start = start; 6396 u64 hole_len = len; 6397 6398 em = alloc_extent_map(); 6399 if (!em) { 6400 err = -ENOMEM; 6401 goto out; 6402 } 6403 /* 6404 * when btrfs_get_extent can't find anything it 6405 * returns one huge hole 6406 * 6407 * make sure what it found really fits our range, and 6408 * adjust to make sure it is based on the start from 6409 * the caller 6410 */ 6411 if (hole_em) { 6412 u64 calc_end = extent_map_end(hole_em); 6413 6414 if (calc_end <= start || (hole_em->start > end)) { 6415 free_extent_map(hole_em); 6416 hole_em = NULL; 6417 } else { 6418 hole_start = max(hole_em->start, start); 6419 hole_len = calc_end - hole_start; 6420 } 6421 } 6422 em->bdev = NULL; 6423 if (hole_em && range_start > hole_start) { 6424 /* our hole starts before our delalloc, so we 6425 * have to return just the parts of the hole 6426 * that go until the delalloc starts 6427 */ 6428 em->len = min(hole_len, 6429 range_start - hole_start); 6430 em->start = hole_start; 6431 em->orig_start = hole_start; 6432 /* 6433 * don't adjust block start at all, 6434 * it is fixed at EXTENT_MAP_HOLE 6435 */ 6436 em->block_start = hole_em->block_start; 6437 em->block_len = hole_len; 6438 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6439 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6440 } else { 6441 em->start = range_start; 6442 em->len = found; 6443 em->orig_start = range_start; 6444 em->block_start = EXTENT_MAP_DELALLOC; 6445 em->block_len = found; 6446 } 6447 } else if (hole_em) { 6448 return hole_em; 6449 } 6450 out: 6451 6452 free_extent_map(hole_em); 6453 if (err) { 6454 free_extent_map(em); 6455 return ERR_PTR(err); 6456 } 6457 return em; 6458 } 6459 6460 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 6461 u64 start, u64 len) 6462 { 6463 struct btrfs_root *root = BTRFS_I(inode)->root; 6464 struct btrfs_trans_handle *trans; 6465 struct extent_map *em; 6466 struct btrfs_key ins; 6467 u64 alloc_hint; 6468 int ret; 6469 6470 trans = btrfs_join_transaction(root); 6471 if (IS_ERR(trans)) 6472 return ERR_CAST(trans); 6473 6474 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 6475 6476 alloc_hint = get_extent_allocation_hint(inode, start, len); 6477 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 6478 alloc_hint, &ins, 1); 6479 if (ret) { 6480 em = ERR_PTR(ret); 6481 goto out; 6482 } 6483 6484 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 6485 ins.offset, ins.offset, 0); 6486 if (IS_ERR(em)) 6487 goto out; 6488 6489 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 6490 ins.offset, ins.offset, 0); 6491 if (ret) { 6492 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 6493 em = ERR_PTR(ret); 6494 } 6495 out: 6496 btrfs_end_transaction(trans, root); 6497 return em; 6498 } 6499 6500 /* 6501 * returns 1 when the nocow is safe, < 1 on error, 0 if the 6502 * block must be cow'd 6503 */ 6504 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 6505 struct inode *inode, u64 offset, u64 len) 6506 { 6507 struct btrfs_path *path; 6508 int ret; 6509 struct extent_buffer *leaf; 6510 struct btrfs_root *root = BTRFS_I(inode)->root; 6511 struct btrfs_file_extent_item *fi; 6512 struct btrfs_key key; 6513 u64 disk_bytenr; 6514 u64 backref_offset; 6515 u64 extent_end; 6516 u64 num_bytes; 6517 int slot; 6518 int found_type; 6519 6520 path = btrfs_alloc_path(); 6521 if (!path) 6522 return -ENOMEM; 6523 6524 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 6525 offset, 0); 6526 if (ret < 0) 6527 goto out; 6528 6529 slot = path->slots[0]; 6530 if (ret == 1) { 6531 if (slot == 0) { 6532 /* can't find the item, must cow */ 6533 ret = 0; 6534 goto out; 6535 } 6536 slot--; 6537 } 6538 ret = 0; 6539 leaf = path->nodes[0]; 6540 btrfs_item_key_to_cpu(leaf, &key, slot); 6541 if (key.objectid != btrfs_ino(inode) || 6542 key.type != BTRFS_EXTENT_DATA_KEY) { 6543 /* not our file or wrong item type, must cow */ 6544 goto out; 6545 } 6546 6547 if (key.offset > offset) { 6548 /* Wrong offset, must cow */ 6549 goto out; 6550 } 6551 6552 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6553 found_type = btrfs_file_extent_type(leaf, fi); 6554 if (found_type != BTRFS_FILE_EXTENT_REG && 6555 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6556 /* not a regular extent, must cow */ 6557 goto out; 6558 } 6559 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 6560 backref_offset = btrfs_file_extent_offset(leaf, fi); 6561 6562 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 6563 if (extent_end < offset + len) { 6564 /* extent doesn't include our full range, must cow */ 6565 goto out; 6566 } 6567 6568 if (btrfs_extent_readonly(root, disk_bytenr)) 6569 goto out; 6570 6571 /* 6572 * look for other files referencing this extent, if we 6573 * find any we must cow 6574 */ 6575 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 6576 key.offset - backref_offset, disk_bytenr)) 6577 goto out; 6578 6579 /* 6580 * adjust disk_bytenr and num_bytes to cover just the bytes 6581 * in this extent we are about to write. If there 6582 * are any csums in that range we have to cow in order 6583 * to keep the csums correct 6584 */ 6585 disk_bytenr += backref_offset; 6586 disk_bytenr += offset - key.offset; 6587 num_bytes = min(offset + len, extent_end) - offset; 6588 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 6589 goto out; 6590 /* 6591 * all of the above have passed, it is safe to overwrite this extent 6592 * without cow 6593 */ 6594 ret = 1; 6595 out: 6596 btrfs_free_path(path); 6597 return ret; 6598 } 6599 6600 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 6601 struct extent_state **cached_state, int writing) 6602 { 6603 struct btrfs_ordered_extent *ordered; 6604 int ret = 0; 6605 6606 while (1) { 6607 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6608 0, cached_state); 6609 /* 6610 * We're concerned with the entire range that we're going to be 6611 * doing DIO to, so we need to make sure theres no ordered 6612 * extents in this range. 6613 */ 6614 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6615 lockend - lockstart + 1); 6616 6617 /* 6618 * We need to make sure there are no buffered pages in this 6619 * range either, we could have raced between the invalidate in 6620 * generic_file_direct_write and locking the extent. The 6621 * invalidate needs to happen so that reads after a write do not 6622 * get stale data. 6623 */ 6624 if (!ordered && (!writing || 6625 !test_range_bit(&BTRFS_I(inode)->io_tree, 6626 lockstart, lockend, EXTENT_UPTODATE, 0, 6627 *cached_state))) 6628 break; 6629 6630 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6631 cached_state, GFP_NOFS); 6632 6633 if (ordered) { 6634 btrfs_start_ordered_extent(inode, ordered, 1); 6635 btrfs_put_ordered_extent(ordered); 6636 } else { 6637 /* Screw you mmap */ 6638 ret = filemap_write_and_wait_range(inode->i_mapping, 6639 lockstart, 6640 lockend); 6641 if (ret) 6642 break; 6643 6644 /* 6645 * If we found a page that couldn't be invalidated just 6646 * fall back to buffered. 6647 */ 6648 ret = invalidate_inode_pages2_range(inode->i_mapping, 6649 lockstart >> PAGE_CACHE_SHIFT, 6650 lockend >> PAGE_CACHE_SHIFT); 6651 if (ret) 6652 break; 6653 } 6654 6655 cond_resched(); 6656 } 6657 6658 return ret; 6659 } 6660 6661 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 6662 u64 len, u64 orig_start, 6663 u64 block_start, u64 block_len, 6664 u64 orig_block_len, int type) 6665 { 6666 struct extent_map_tree *em_tree; 6667 struct extent_map *em; 6668 struct btrfs_root *root = BTRFS_I(inode)->root; 6669 int ret; 6670 6671 em_tree = &BTRFS_I(inode)->extent_tree; 6672 em = alloc_extent_map(); 6673 if (!em) 6674 return ERR_PTR(-ENOMEM); 6675 6676 em->start = start; 6677 em->orig_start = orig_start; 6678 em->mod_start = start; 6679 em->mod_len = len; 6680 em->len = len; 6681 em->block_len = block_len; 6682 em->block_start = block_start; 6683 em->bdev = root->fs_info->fs_devices->latest_bdev; 6684 em->orig_block_len = orig_block_len; 6685 em->generation = -1; 6686 set_bit(EXTENT_FLAG_PINNED, &em->flags); 6687 if (type == BTRFS_ORDERED_PREALLOC) 6688 set_bit(EXTENT_FLAG_FILLING, &em->flags); 6689 6690 do { 6691 btrfs_drop_extent_cache(inode, em->start, 6692 em->start + em->len - 1, 0); 6693 write_lock(&em_tree->lock); 6694 ret = add_extent_mapping(em_tree, em); 6695 if (!ret) 6696 list_move(&em->list, 6697 &em_tree->modified_extents); 6698 write_unlock(&em_tree->lock); 6699 } while (ret == -EEXIST); 6700 6701 if (ret) { 6702 free_extent_map(em); 6703 return ERR_PTR(ret); 6704 } 6705 6706 return em; 6707 } 6708 6709 6710 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 6711 struct buffer_head *bh_result, int create) 6712 { 6713 struct extent_map *em; 6714 struct btrfs_root *root = BTRFS_I(inode)->root; 6715 struct extent_state *cached_state = NULL; 6716 u64 start = iblock << inode->i_blkbits; 6717 u64 lockstart, lockend; 6718 u64 len = bh_result->b_size; 6719 struct btrfs_trans_handle *trans; 6720 int unlock_bits = EXTENT_LOCKED; 6721 int ret = 0; 6722 6723 if (create) 6724 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 6725 else 6726 len = min_t(u64, len, root->sectorsize); 6727 6728 lockstart = start; 6729 lockend = start + len - 1; 6730 6731 /* 6732 * If this errors out it's because we couldn't invalidate pagecache for 6733 * this range and we need to fallback to buffered. 6734 */ 6735 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 6736 return -ENOTBLK; 6737 6738 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 6739 if (IS_ERR(em)) { 6740 ret = PTR_ERR(em); 6741 goto unlock_err; 6742 } 6743 6744 /* 6745 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 6746 * io. INLINE is special, and we could probably kludge it in here, but 6747 * it's still buffered so for safety lets just fall back to the generic 6748 * buffered path. 6749 * 6750 * For COMPRESSED we _have_ to read the entire extent in so we can 6751 * decompress it, so there will be buffering required no matter what we 6752 * do, so go ahead and fallback to buffered. 6753 * 6754 * We return -ENOTBLK because thats what makes DIO go ahead and go back 6755 * to buffered IO. Don't blame me, this is the price we pay for using 6756 * the generic code. 6757 */ 6758 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 6759 em->block_start == EXTENT_MAP_INLINE) { 6760 free_extent_map(em); 6761 ret = -ENOTBLK; 6762 goto unlock_err; 6763 } 6764 6765 /* Just a good old fashioned hole, return */ 6766 if (!create && (em->block_start == EXTENT_MAP_HOLE || 6767 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6768 free_extent_map(em); 6769 goto unlock_err; 6770 } 6771 6772 /* 6773 * We don't allocate a new extent in the following cases 6774 * 6775 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6776 * existing extent. 6777 * 2) The extent is marked as PREALLOC. We're good to go here and can 6778 * just use the extent. 6779 * 6780 */ 6781 if (!create) { 6782 len = min(len, em->len - (start - em->start)); 6783 lockstart = start + len; 6784 goto unlock; 6785 } 6786 6787 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6788 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6789 em->block_start != EXTENT_MAP_HOLE)) { 6790 int type; 6791 int ret; 6792 u64 block_start; 6793 6794 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6795 type = BTRFS_ORDERED_PREALLOC; 6796 else 6797 type = BTRFS_ORDERED_NOCOW; 6798 len = min(len, em->len - (start - em->start)); 6799 block_start = em->block_start + (start - em->start); 6800 6801 /* 6802 * we're not going to log anything, but we do need 6803 * to make sure the current transaction stays open 6804 * while we look for nocow cross refs 6805 */ 6806 trans = btrfs_join_transaction(root); 6807 if (IS_ERR(trans)) 6808 goto must_cow; 6809 6810 if (can_nocow_odirect(trans, inode, start, len) == 1) { 6811 u64 orig_start = em->orig_start; 6812 u64 orig_block_len = em->orig_block_len; 6813 6814 if (type == BTRFS_ORDERED_PREALLOC) { 6815 free_extent_map(em); 6816 em = create_pinned_em(inode, start, len, 6817 orig_start, 6818 block_start, len, 6819 orig_block_len, type); 6820 if (IS_ERR(em)) { 6821 btrfs_end_transaction(trans, root); 6822 goto unlock_err; 6823 } 6824 } 6825 6826 ret = btrfs_add_ordered_extent_dio(inode, start, 6827 block_start, len, len, type); 6828 btrfs_end_transaction(trans, root); 6829 if (ret) { 6830 free_extent_map(em); 6831 goto unlock_err; 6832 } 6833 goto unlock; 6834 } 6835 btrfs_end_transaction(trans, root); 6836 } 6837 must_cow: 6838 /* 6839 * this will cow the extent, reset the len in case we changed 6840 * it above 6841 */ 6842 len = bh_result->b_size; 6843 free_extent_map(em); 6844 em = btrfs_new_extent_direct(inode, start, len); 6845 if (IS_ERR(em)) { 6846 ret = PTR_ERR(em); 6847 goto unlock_err; 6848 } 6849 len = min(len, em->len - (start - em->start)); 6850 unlock: 6851 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6852 inode->i_blkbits; 6853 bh_result->b_size = len; 6854 bh_result->b_bdev = em->bdev; 6855 set_buffer_mapped(bh_result); 6856 if (create) { 6857 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6858 set_buffer_new(bh_result); 6859 6860 /* 6861 * Need to update the i_size under the extent lock so buffered 6862 * readers will get the updated i_size when we unlock. 6863 */ 6864 if (start + len > i_size_read(inode)) 6865 i_size_write(inode, start + len); 6866 6867 spin_lock(&BTRFS_I(inode)->lock); 6868 BTRFS_I(inode)->outstanding_extents++; 6869 spin_unlock(&BTRFS_I(inode)->lock); 6870 6871 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6872 lockstart + len - 1, EXTENT_DELALLOC, NULL, 6873 &cached_state, GFP_NOFS); 6874 BUG_ON(ret); 6875 } 6876 6877 /* 6878 * In the case of write we need to clear and unlock the entire range, 6879 * in the case of read we need to unlock only the end area that we 6880 * aren't using if there is any left over space. 6881 */ 6882 if (lockstart < lockend) { 6883 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6884 lockend, unlock_bits, 1, 0, 6885 &cached_state, GFP_NOFS); 6886 } else { 6887 free_extent_state(cached_state); 6888 } 6889 6890 free_extent_map(em); 6891 6892 return 0; 6893 6894 unlock_err: 6895 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6896 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6897 return ret; 6898 } 6899 6900 struct btrfs_dio_private { 6901 struct inode *inode; 6902 u64 logical_offset; 6903 u64 disk_bytenr; 6904 u64 bytes; 6905 void *private; 6906 6907 /* number of bios pending for this dio */ 6908 atomic_t pending_bios; 6909 6910 /* IO errors */ 6911 int errors; 6912 6913 struct bio *orig_bio; 6914 }; 6915 6916 static void btrfs_endio_direct_read(struct bio *bio, int err) 6917 { 6918 struct btrfs_dio_private *dip = bio->bi_private; 6919 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6920 struct bio_vec *bvec = bio->bi_io_vec; 6921 struct inode *inode = dip->inode; 6922 struct btrfs_root *root = BTRFS_I(inode)->root; 6923 u64 start; 6924 6925 start = dip->logical_offset; 6926 do { 6927 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6928 struct page *page = bvec->bv_page; 6929 char *kaddr; 6930 u32 csum = ~(u32)0; 6931 u64 private = ~(u32)0; 6932 unsigned long flags; 6933 6934 if (get_state_private(&BTRFS_I(inode)->io_tree, 6935 start, &private)) 6936 goto failed; 6937 local_irq_save(flags); 6938 kaddr = kmap_atomic(page); 6939 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 6940 csum, bvec->bv_len); 6941 btrfs_csum_final(csum, (char *)&csum); 6942 kunmap_atomic(kaddr); 6943 local_irq_restore(flags); 6944 6945 flush_dcache_page(bvec->bv_page); 6946 if (csum != private) { 6947 failed: 6948 printk(KERN_ERR "btrfs csum failed ino %llu off" 6949 " %llu csum %u private %u\n", 6950 (unsigned long long)btrfs_ino(inode), 6951 (unsigned long long)start, 6952 csum, (unsigned)private); 6953 err = -EIO; 6954 } 6955 } 6956 6957 start += bvec->bv_len; 6958 bvec++; 6959 } while (bvec <= bvec_end); 6960 6961 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6962 dip->logical_offset + dip->bytes - 1); 6963 bio->bi_private = dip->private; 6964 6965 kfree(dip); 6966 6967 /* If we had a csum failure make sure to clear the uptodate flag */ 6968 if (err) 6969 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6970 dio_end_io(bio, err); 6971 } 6972 6973 static void btrfs_endio_direct_write(struct bio *bio, int err) 6974 { 6975 struct btrfs_dio_private *dip = bio->bi_private; 6976 struct inode *inode = dip->inode; 6977 struct btrfs_root *root = BTRFS_I(inode)->root; 6978 struct btrfs_ordered_extent *ordered = NULL; 6979 u64 ordered_offset = dip->logical_offset; 6980 u64 ordered_bytes = dip->bytes; 6981 int ret; 6982 6983 if (err) 6984 goto out_done; 6985 again: 6986 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6987 &ordered_offset, 6988 ordered_bytes, !err); 6989 if (!ret) 6990 goto out_test; 6991 6992 ordered->work.func = finish_ordered_fn; 6993 ordered->work.flags = 0; 6994 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6995 &ordered->work); 6996 out_test: 6997 /* 6998 * our bio might span multiple ordered extents. If we haven't 6999 * completed the accounting for the whole dio, go back and try again 7000 */ 7001 if (ordered_offset < dip->logical_offset + dip->bytes) { 7002 ordered_bytes = dip->logical_offset + dip->bytes - 7003 ordered_offset; 7004 ordered = NULL; 7005 goto again; 7006 } 7007 out_done: 7008 bio->bi_private = dip->private; 7009 7010 kfree(dip); 7011 7012 /* If we had an error make sure to clear the uptodate flag */ 7013 if (err) 7014 clear_bit(BIO_UPTODATE, &bio->bi_flags); 7015 dio_end_io(bio, err); 7016 } 7017 7018 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 7019 struct bio *bio, int mirror_num, 7020 unsigned long bio_flags, u64 offset) 7021 { 7022 int ret; 7023 struct btrfs_root *root = BTRFS_I(inode)->root; 7024 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 7025 BUG_ON(ret); /* -ENOMEM */ 7026 return 0; 7027 } 7028 7029 static void btrfs_end_dio_bio(struct bio *bio, int err) 7030 { 7031 struct btrfs_dio_private *dip = bio->bi_private; 7032 7033 if (err) { 7034 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 7035 "sector %#Lx len %u err no %d\n", 7036 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 7037 (unsigned long long)bio->bi_sector, bio->bi_size, err); 7038 dip->errors = 1; 7039 7040 /* 7041 * before atomic variable goto zero, we must make sure 7042 * dip->errors is perceived to be set. 7043 */ 7044 smp_mb__before_atomic_dec(); 7045 } 7046 7047 /* if there are more bios still pending for this dio, just exit */ 7048 if (!atomic_dec_and_test(&dip->pending_bios)) 7049 goto out; 7050 7051 if (dip->errors) 7052 bio_io_error(dip->orig_bio); 7053 else { 7054 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 7055 bio_endio(dip->orig_bio, 0); 7056 } 7057 out: 7058 bio_put(bio); 7059 } 7060 7061 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 7062 u64 first_sector, gfp_t gfp_flags) 7063 { 7064 int nr_vecs = bio_get_nr_vecs(bdev); 7065 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 7066 } 7067 7068 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 7069 int rw, u64 file_offset, int skip_sum, 7070 int async_submit) 7071 { 7072 int write = rw & REQ_WRITE; 7073 struct btrfs_root *root = BTRFS_I(inode)->root; 7074 int ret; 7075 7076 if (async_submit) 7077 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7078 7079 bio_get(bio); 7080 7081 if (!write) { 7082 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 7083 if (ret) 7084 goto err; 7085 } 7086 7087 if (skip_sum) 7088 goto map; 7089 7090 if (write && async_submit) { 7091 ret = btrfs_wq_submit_bio(root->fs_info, 7092 inode, rw, bio, 0, 0, 7093 file_offset, 7094 __btrfs_submit_bio_start_direct_io, 7095 __btrfs_submit_bio_done); 7096 goto err; 7097 } else if (write) { 7098 /* 7099 * If we aren't doing async submit, calculate the csum of the 7100 * bio now. 7101 */ 7102 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 7103 if (ret) 7104 goto err; 7105 } else if (!skip_sum) { 7106 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset); 7107 if (ret) 7108 goto err; 7109 } 7110 7111 map: 7112 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 7113 err: 7114 bio_put(bio); 7115 return ret; 7116 } 7117 7118 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 7119 int skip_sum) 7120 { 7121 struct inode *inode = dip->inode; 7122 struct btrfs_root *root = BTRFS_I(inode)->root; 7123 struct bio *bio; 7124 struct bio *orig_bio = dip->orig_bio; 7125 struct bio_vec *bvec = orig_bio->bi_io_vec; 7126 u64 start_sector = orig_bio->bi_sector; 7127 u64 file_offset = dip->logical_offset; 7128 u64 submit_len = 0; 7129 u64 map_length; 7130 int nr_pages = 0; 7131 int ret = 0; 7132 int async_submit = 0; 7133 7134 map_length = orig_bio->bi_size; 7135 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 7136 &map_length, NULL, 0); 7137 if (ret) { 7138 bio_put(orig_bio); 7139 return -EIO; 7140 } 7141 if (map_length >= orig_bio->bi_size) { 7142 bio = orig_bio; 7143 goto submit; 7144 } 7145 7146 /* async crcs make it difficult to collect full stripe writes. */ 7147 if (btrfs_get_alloc_profile(root, 1) & 7148 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) 7149 async_submit = 0; 7150 else 7151 async_submit = 1; 7152 7153 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 7154 if (!bio) 7155 return -ENOMEM; 7156 bio->bi_private = dip; 7157 bio->bi_end_io = btrfs_end_dio_bio; 7158 atomic_inc(&dip->pending_bios); 7159 7160 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 7161 if (unlikely(map_length < submit_len + bvec->bv_len || 7162 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 7163 bvec->bv_offset) < bvec->bv_len)) { 7164 /* 7165 * inc the count before we submit the bio so 7166 * we know the end IO handler won't happen before 7167 * we inc the count. Otherwise, the dip might get freed 7168 * before we're done setting it up 7169 */ 7170 atomic_inc(&dip->pending_bios); 7171 ret = __btrfs_submit_dio_bio(bio, inode, rw, 7172 file_offset, skip_sum, 7173 async_submit); 7174 if (ret) { 7175 bio_put(bio); 7176 atomic_dec(&dip->pending_bios); 7177 goto out_err; 7178 } 7179 7180 start_sector += submit_len >> 9; 7181 file_offset += submit_len; 7182 7183 submit_len = 0; 7184 nr_pages = 0; 7185 7186 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 7187 start_sector, GFP_NOFS); 7188 if (!bio) 7189 goto out_err; 7190 bio->bi_private = dip; 7191 bio->bi_end_io = btrfs_end_dio_bio; 7192 7193 map_length = orig_bio->bi_size; 7194 ret = btrfs_map_block(root->fs_info, rw, 7195 start_sector << 9, 7196 &map_length, NULL, 0); 7197 if (ret) { 7198 bio_put(bio); 7199 goto out_err; 7200 } 7201 } else { 7202 submit_len += bvec->bv_len; 7203 nr_pages ++; 7204 bvec++; 7205 } 7206 } 7207 7208 submit: 7209 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 7210 async_submit); 7211 if (!ret) 7212 return 0; 7213 7214 bio_put(bio); 7215 out_err: 7216 dip->errors = 1; 7217 /* 7218 * before atomic variable goto zero, we must 7219 * make sure dip->errors is perceived to be set. 7220 */ 7221 smp_mb__before_atomic_dec(); 7222 if (atomic_dec_and_test(&dip->pending_bios)) 7223 bio_io_error(dip->orig_bio); 7224 7225 /* bio_end_io() will handle error, so we needn't return it */ 7226 return 0; 7227 } 7228 7229 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 7230 loff_t file_offset) 7231 { 7232 struct btrfs_root *root = BTRFS_I(inode)->root; 7233 struct btrfs_dio_private *dip; 7234 struct bio_vec *bvec = bio->bi_io_vec; 7235 int skip_sum; 7236 int write = rw & REQ_WRITE; 7237 int ret = 0; 7238 7239 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 7240 7241 dip = kmalloc(sizeof(*dip), GFP_NOFS); 7242 if (!dip) { 7243 ret = -ENOMEM; 7244 goto free_ordered; 7245 } 7246 7247 dip->private = bio->bi_private; 7248 dip->inode = inode; 7249 dip->logical_offset = file_offset; 7250 7251 dip->bytes = 0; 7252 do { 7253 dip->bytes += bvec->bv_len; 7254 bvec++; 7255 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 7256 7257 dip->disk_bytenr = (u64)bio->bi_sector << 9; 7258 bio->bi_private = dip; 7259 dip->errors = 0; 7260 dip->orig_bio = bio; 7261 atomic_set(&dip->pending_bios, 0); 7262 7263 if (write) 7264 bio->bi_end_io = btrfs_endio_direct_write; 7265 else 7266 bio->bi_end_io = btrfs_endio_direct_read; 7267 7268 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 7269 if (!ret) 7270 return; 7271 free_ordered: 7272 /* 7273 * If this is a write, we need to clean up the reserved space and kill 7274 * the ordered extent. 7275 */ 7276 if (write) { 7277 struct btrfs_ordered_extent *ordered; 7278 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 7279 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 7280 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 7281 btrfs_free_reserved_extent(root, ordered->start, 7282 ordered->disk_len); 7283 btrfs_put_ordered_extent(ordered); 7284 btrfs_put_ordered_extent(ordered); 7285 } 7286 bio_endio(bio, ret); 7287 } 7288 7289 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 7290 const struct iovec *iov, loff_t offset, 7291 unsigned long nr_segs) 7292 { 7293 int seg; 7294 int i; 7295 size_t size; 7296 unsigned long addr; 7297 unsigned blocksize_mask = root->sectorsize - 1; 7298 ssize_t retval = -EINVAL; 7299 loff_t end = offset; 7300 7301 if (offset & blocksize_mask) 7302 goto out; 7303 7304 /* Check the memory alignment. Blocks cannot straddle pages */ 7305 for (seg = 0; seg < nr_segs; seg++) { 7306 addr = (unsigned long)iov[seg].iov_base; 7307 size = iov[seg].iov_len; 7308 end += size; 7309 if ((addr & blocksize_mask) || (size & blocksize_mask)) 7310 goto out; 7311 7312 /* If this is a write we don't need to check anymore */ 7313 if (rw & WRITE) 7314 continue; 7315 7316 /* 7317 * Check to make sure we don't have duplicate iov_base's in this 7318 * iovec, if so return EINVAL, otherwise we'll get csum errors 7319 * when reading back. 7320 */ 7321 for (i = seg + 1; i < nr_segs; i++) { 7322 if (iov[seg].iov_base == iov[i].iov_base) 7323 goto out; 7324 } 7325 } 7326 retval = 0; 7327 out: 7328 return retval; 7329 } 7330 7331 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 7332 const struct iovec *iov, loff_t offset, 7333 unsigned long nr_segs) 7334 { 7335 struct file *file = iocb->ki_filp; 7336 struct inode *inode = file->f_mapping->host; 7337 size_t count = 0; 7338 int flags = 0; 7339 bool wakeup = true; 7340 bool relock = false; 7341 ssize_t ret; 7342 7343 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 7344 offset, nr_segs)) 7345 return 0; 7346 7347 atomic_inc(&inode->i_dio_count); 7348 smp_mb__after_atomic_inc(); 7349 7350 if (rw & WRITE) { 7351 count = iov_length(iov, nr_segs); 7352 /* 7353 * If the write DIO is beyond the EOF, we need update 7354 * the isize, but it is protected by i_mutex. So we can 7355 * not unlock the i_mutex at this case. 7356 */ 7357 if (offset + count <= inode->i_size) { 7358 mutex_unlock(&inode->i_mutex); 7359 relock = true; 7360 } 7361 ret = btrfs_delalloc_reserve_space(inode, count); 7362 if (ret) 7363 goto out; 7364 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 7365 &BTRFS_I(inode)->runtime_flags))) { 7366 inode_dio_done(inode); 7367 flags = DIO_LOCKING | DIO_SKIP_HOLES; 7368 wakeup = false; 7369 } 7370 7371 ret = __blockdev_direct_IO(rw, iocb, inode, 7372 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 7373 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 7374 btrfs_submit_direct, flags); 7375 if (rw & WRITE) { 7376 if (ret < 0 && ret != -EIOCBQUEUED) 7377 btrfs_delalloc_release_space(inode, count); 7378 else if (ret >= 0 && (size_t)ret < count) 7379 btrfs_delalloc_release_space(inode, 7380 count - (size_t)ret); 7381 else 7382 btrfs_delalloc_release_metadata(inode, 0); 7383 } 7384 out: 7385 if (wakeup) 7386 inode_dio_done(inode); 7387 if (relock) 7388 mutex_lock(&inode->i_mutex); 7389 7390 return ret; 7391 } 7392 7393 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 7394 7395 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7396 __u64 start, __u64 len) 7397 { 7398 int ret; 7399 7400 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 7401 if (ret) 7402 return ret; 7403 7404 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 7405 } 7406 7407 int btrfs_readpage(struct file *file, struct page *page) 7408 { 7409 struct extent_io_tree *tree; 7410 tree = &BTRFS_I(page->mapping->host)->io_tree; 7411 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 7412 } 7413 7414 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 7415 { 7416 struct extent_io_tree *tree; 7417 7418 7419 if (current->flags & PF_MEMALLOC) { 7420 redirty_page_for_writepage(wbc, page); 7421 unlock_page(page); 7422 return 0; 7423 } 7424 tree = &BTRFS_I(page->mapping->host)->io_tree; 7425 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 7426 } 7427 7428 int btrfs_writepages(struct address_space *mapping, 7429 struct writeback_control *wbc) 7430 { 7431 struct extent_io_tree *tree; 7432 7433 tree = &BTRFS_I(mapping->host)->io_tree; 7434 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 7435 } 7436 7437 static int 7438 btrfs_readpages(struct file *file, struct address_space *mapping, 7439 struct list_head *pages, unsigned nr_pages) 7440 { 7441 struct extent_io_tree *tree; 7442 tree = &BTRFS_I(mapping->host)->io_tree; 7443 return extent_readpages(tree, mapping, pages, nr_pages, 7444 btrfs_get_extent); 7445 } 7446 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7447 { 7448 struct extent_io_tree *tree; 7449 struct extent_map_tree *map; 7450 int ret; 7451 7452 tree = &BTRFS_I(page->mapping->host)->io_tree; 7453 map = &BTRFS_I(page->mapping->host)->extent_tree; 7454 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 7455 if (ret == 1) { 7456 ClearPagePrivate(page); 7457 set_page_private(page, 0); 7458 page_cache_release(page); 7459 } 7460 return ret; 7461 } 7462 7463 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 7464 { 7465 if (PageWriteback(page) || PageDirty(page)) 7466 return 0; 7467 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 7468 } 7469 7470 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 7471 { 7472 struct inode *inode = page->mapping->host; 7473 struct extent_io_tree *tree; 7474 struct btrfs_ordered_extent *ordered; 7475 struct extent_state *cached_state = NULL; 7476 u64 page_start = page_offset(page); 7477 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 7478 7479 /* 7480 * we have the page locked, so new writeback can't start, 7481 * and the dirty bit won't be cleared while we are here. 7482 * 7483 * Wait for IO on this page so that we can safely clear 7484 * the PagePrivate2 bit and do ordered accounting 7485 */ 7486 wait_on_page_writeback(page); 7487 7488 tree = &BTRFS_I(inode)->io_tree; 7489 if (offset) { 7490 btrfs_releasepage(page, GFP_NOFS); 7491 return; 7492 } 7493 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7494 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 7495 if (ordered) { 7496 /* 7497 * IO on this page will never be started, so we need 7498 * to account for any ordered extents now 7499 */ 7500 clear_extent_bit(tree, page_start, page_end, 7501 EXTENT_DIRTY | EXTENT_DELALLOC | 7502 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7503 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 7504 /* 7505 * whoever cleared the private bit is responsible 7506 * for the finish_ordered_io 7507 */ 7508 if (TestClearPagePrivate2(page) && 7509 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 7510 PAGE_CACHE_SIZE, 1)) { 7511 btrfs_finish_ordered_io(ordered); 7512 } 7513 btrfs_put_ordered_extent(ordered); 7514 cached_state = NULL; 7515 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 7516 } 7517 clear_extent_bit(tree, page_start, page_end, 7518 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 7519 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 7520 &cached_state, GFP_NOFS); 7521 __btrfs_releasepage(page, GFP_NOFS); 7522 7523 ClearPageChecked(page); 7524 if (PagePrivate(page)) { 7525 ClearPagePrivate(page); 7526 set_page_private(page, 0); 7527 page_cache_release(page); 7528 } 7529 } 7530 7531 /* 7532 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 7533 * called from a page fault handler when a page is first dirtied. Hence we must 7534 * be careful to check for EOF conditions here. We set the page up correctly 7535 * for a written page which means we get ENOSPC checking when writing into 7536 * holes and correct delalloc and unwritten extent mapping on filesystems that 7537 * support these features. 7538 * 7539 * We are not allowed to take the i_mutex here so we have to play games to 7540 * protect against truncate races as the page could now be beyond EOF. Because 7541 * vmtruncate() writes the inode size before removing pages, once we have the 7542 * page lock we can determine safely if the page is beyond EOF. If it is not 7543 * beyond EOF, then the page is guaranteed safe against truncation until we 7544 * unlock the page. 7545 */ 7546 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 7547 { 7548 struct page *page = vmf->page; 7549 struct inode *inode = file_inode(vma->vm_file); 7550 struct btrfs_root *root = BTRFS_I(inode)->root; 7551 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7552 struct btrfs_ordered_extent *ordered; 7553 struct extent_state *cached_state = NULL; 7554 char *kaddr; 7555 unsigned long zero_start; 7556 loff_t size; 7557 int ret; 7558 int reserved = 0; 7559 u64 page_start; 7560 u64 page_end; 7561 7562 sb_start_pagefault(inode->i_sb); 7563 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 7564 if (!ret) { 7565 ret = file_update_time(vma->vm_file); 7566 reserved = 1; 7567 } 7568 if (ret) { 7569 if (ret == -ENOMEM) 7570 ret = VM_FAULT_OOM; 7571 else /* -ENOSPC, -EIO, etc */ 7572 ret = VM_FAULT_SIGBUS; 7573 if (reserved) 7574 goto out; 7575 goto out_noreserve; 7576 } 7577 7578 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 7579 again: 7580 lock_page(page); 7581 size = i_size_read(inode); 7582 page_start = page_offset(page); 7583 page_end = page_start + PAGE_CACHE_SIZE - 1; 7584 7585 if ((page->mapping != inode->i_mapping) || 7586 (page_start >= size)) { 7587 /* page got truncated out from underneath us */ 7588 goto out_unlock; 7589 } 7590 wait_on_page_writeback(page); 7591 7592 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 7593 set_page_extent_mapped(page); 7594 7595 /* 7596 * we can't set the delalloc bits if there are pending ordered 7597 * extents. Drop our locks and wait for them to finish 7598 */ 7599 ordered = btrfs_lookup_ordered_extent(inode, page_start); 7600 if (ordered) { 7601 unlock_extent_cached(io_tree, page_start, page_end, 7602 &cached_state, GFP_NOFS); 7603 unlock_page(page); 7604 btrfs_start_ordered_extent(inode, ordered, 1); 7605 btrfs_put_ordered_extent(ordered); 7606 goto again; 7607 } 7608 7609 /* 7610 * XXX - page_mkwrite gets called every time the page is dirtied, even 7611 * if it was already dirty, so for space accounting reasons we need to 7612 * clear any delalloc bits for the range we are fixing to save. There 7613 * is probably a better way to do this, but for now keep consistent with 7614 * prepare_pages in the normal write path. 7615 */ 7616 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 7617 EXTENT_DIRTY | EXTENT_DELALLOC | 7618 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 7619 0, 0, &cached_state, GFP_NOFS); 7620 7621 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 7622 &cached_state); 7623 if (ret) { 7624 unlock_extent_cached(io_tree, page_start, page_end, 7625 &cached_state, GFP_NOFS); 7626 ret = VM_FAULT_SIGBUS; 7627 goto out_unlock; 7628 } 7629 ret = 0; 7630 7631 /* page is wholly or partially inside EOF */ 7632 if (page_start + PAGE_CACHE_SIZE > size) 7633 zero_start = size & ~PAGE_CACHE_MASK; 7634 else 7635 zero_start = PAGE_CACHE_SIZE; 7636 7637 if (zero_start != PAGE_CACHE_SIZE) { 7638 kaddr = kmap(page); 7639 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 7640 flush_dcache_page(page); 7641 kunmap(page); 7642 } 7643 ClearPageChecked(page); 7644 set_page_dirty(page); 7645 SetPageUptodate(page); 7646 7647 BTRFS_I(inode)->last_trans = root->fs_info->generation; 7648 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 7649 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 7650 7651 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 7652 7653 out_unlock: 7654 if (!ret) { 7655 sb_end_pagefault(inode->i_sb); 7656 return VM_FAULT_LOCKED; 7657 } 7658 unlock_page(page); 7659 out: 7660 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 7661 out_noreserve: 7662 sb_end_pagefault(inode->i_sb); 7663 return ret; 7664 } 7665 7666 static int btrfs_truncate(struct inode *inode) 7667 { 7668 struct btrfs_root *root = BTRFS_I(inode)->root; 7669 struct btrfs_block_rsv *rsv; 7670 int ret; 7671 int err = 0; 7672 struct btrfs_trans_handle *trans; 7673 u64 mask = root->sectorsize - 1; 7674 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 7675 7676 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 7677 if (ret) 7678 return ret; 7679 7680 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 7681 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 7682 7683 /* 7684 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 7685 * 3 things going on here 7686 * 7687 * 1) We need to reserve space for our orphan item and the space to 7688 * delete our orphan item. Lord knows we don't want to have a dangling 7689 * orphan item because we didn't reserve space to remove it. 7690 * 7691 * 2) We need to reserve space to update our inode. 7692 * 7693 * 3) We need to have something to cache all the space that is going to 7694 * be free'd up by the truncate operation, but also have some slack 7695 * space reserved in case it uses space during the truncate (thank you 7696 * very much snapshotting). 7697 * 7698 * And we need these to all be seperate. The fact is we can use alot of 7699 * space doing the truncate, and we have no earthly idea how much space 7700 * we will use, so we need the truncate reservation to be seperate so it 7701 * doesn't end up using space reserved for updating the inode or 7702 * removing the orphan item. We also need to be able to stop the 7703 * transaction and start a new one, which means we need to be able to 7704 * update the inode several times, and we have no idea of knowing how 7705 * many times that will be, so we can't just reserve 1 item for the 7706 * entirety of the opration, so that has to be done seperately as well. 7707 * Then there is the orphan item, which does indeed need to be held on 7708 * to for the whole operation, and we need nobody to touch this reserved 7709 * space except the orphan code. 7710 * 7711 * So that leaves us with 7712 * 7713 * 1) root->orphan_block_rsv - for the orphan deletion. 7714 * 2) rsv - for the truncate reservation, which we will steal from the 7715 * transaction reservation. 7716 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 7717 * updating the inode. 7718 */ 7719 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 7720 if (!rsv) 7721 return -ENOMEM; 7722 rsv->size = min_size; 7723 rsv->failfast = 1; 7724 7725 /* 7726 * 1 for the truncate slack space 7727 * 1 for updating the inode. 7728 */ 7729 trans = btrfs_start_transaction(root, 2); 7730 if (IS_ERR(trans)) { 7731 err = PTR_ERR(trans); 7732 goto out; 7733 } 7734 7735 /* Migrate the slack space for the truncate to our reserve */ 7736 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 7737 min_size); 7738 BUG_ON(ret); 7739 7740 /* 7741 * setattr is responsible for setting the ordered_data_close flag, 7742 * but that is only tested during the last file release. That 7743 * could happen well after the next commit, leaving a great big 7744 * window where new writes may get lost if someone chooses to write 7745 * to this file after truncating to zero 7746 * 7747 * The inode doesn't have any dirty data here, and so if we commit 7748 * this is a noop. If someone immediately starts writing to the inode 7749 * it is very likely we'll catch some of their writes in this 7750 * transaction, and the commit will find this file on the ordered 7751 * data list with good things to send down. 7752 * 7753 * This is a best effort solution, there is still a window where 7754 * using truncate to replace the contents of the file will 7755 * end up with a zero length file after a crash. 7756 */ 7757 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 7758 &BTRFS_I(inode)->runtime_flags)) 7759 btrfs_add_ordered_operation(trans, root, inode); 7760 7761 /* 7762 * So if we truncate and then write and fsync we normally would just 7763 * write the extents that changed, which is a problem if we need to 7764 * first truncate that entire inode. So set this flag so we write out 7765 * all of the extents in the inode to the sync log so we're completely 7766 * safe. 7767 */ 7768 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 7769 trans->block_rsv = rsv; 7770 7771 while (1) { 7772 ret = btrfs_truncate_inode_items(trans, root, inode, 7773 inode->i_size, 7774 BTRFS_EXTENT_DATA_KEY); 7775 if (ret != -ENOSPC) { 7776 err = ret; 7777 break; 7778 } 7779 7780 trans->block_rsv = &root->fs_info->trans_block_rsv; 7781 ret = btrfs_update_inode(trans, root, inode); 7782 if (ret) { 7783 err = ret; 7784 break; 7785 } 7786 7787 btrfs_end_transaction(trans, root); 7788 btrfs_btree_balance_dirty(root); 7789 7790 trans = btrfs_start_transaction(root, 2); 7791 if (IS_ERR(trans)) { 7792 ret = err = PTR_ERR(trans); 7793 trans = NULL; 7794 break; 7795 } 7796 7797 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 7798 rsv, min_size); 7799 BUG_ON(ret); /* shouldn't happen */ 7800 trans->block_rsv = rsv; 7801 } 7802 7803 if (ret == 0 && inode->i_nlink > 0) { 7804 trans->block_rsv = root->orphan_block_rsv; 7805 ret = btrfs_orphan_del(trans, inode); 7806 if (ret) 7807 err = ret; 7808 } 7809 7810 if (trans) { 7811 trans->block_rsv = &root->fs_info->trans_block_rsv; 7812 ret = btrfs_update_inode(trans, root, inode); 7813 if (ret && !err) 7814 err = ret; 7815 7816 ret = btrfs_end_transaction(trans, root); 7817 btrfs_btree_balance_dirty(root); 7818 } 7819 7820 out: 7821 btrfs_free_block_rsv(root, rsv); 7822 7823 if (ret && !err) 7824 err = ret; 7825 7826 return err; 7827 } 7828 7829 /* 7830 * create a new subvolume directory/inode (helper for the ioctl). 7831 */ 7832 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7833 struct btrfs_root *new_root, u64 new_dirid) 7834 { 7835 struct inode *inode; 7836 int err; 7837 u64 index = 0; 7838 7839 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7840 new_dirid, new_dirid, 7841 S_IFDIR | (~current_umask() & S_IRWXUGO), 7842 &index); 7843 if (IS_ERR(inode)) 7844 return PTR_ERR(inode); 7845 inode->i_op = &btrfs_dir_inode_operations; 7846 inode->i_fop = &btrfs_dir_file_operations; 7847 7848 set_nlink(inode, 1); 7849 btrfs_i_size_write(inode, 0); 7850 7851 err = btrfs_update_inode(trans, new_root, inode); 7852 7853 iput(inode); 7854 return err; 7855 } 7856 7857 struct inode *btrfs_alloc_inode(struct super_block *sb) 7858 { 7859 struct btrfs_inode *ei; 7860 struct inode *inode; 7861 7862 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7863 if (!ei) 7864 return NULL; 7865 7866 ei->root = NULL; 7867 ei->generation = 0; 7868 ei->last_trans = 0; 7869 ei->last_sub_trans = 0; 7870 ei->logged_trans = 0; 7871 ei->delalloc_bytes = 0; 7872 ei->disk_i_size = 0; 7873 ei->flags = 0; 7874 ei->csum_bytes = 0; 7875 ei->index_cnt = (u64)-1; 7876 ei->last_unlink_trans = 0; 7877 ei->last_log_commit = 0; 7878 7879 spin_lock_init(&ei->lock); 7880 ei->outstanding_extents = 0; 7881 ei->reserved_extents = 0; 7882 7883 ei->runtime_flags = 0; 7884 ei->force_compress = BTRFS_COMPRESS_NONE; 7885 7886 ei->delayed_node = NULL; 7887 7888 inode = &ei->vfs_inode; 7889 extent_map_tree_init(&ei->extent_tree); 7890 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7891 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7892 ei->io_tree.track_uptodate = 1; 7893 ei->io_failure_tree.track_uptodate = 1; 7894 atomic_set(&ei->sync_writers, 0); 7895 mutex_init(&ei->log_mutex); 7896 mutex_init(&ei->delalloc_mutex); 7897 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7898 INIT_LIST_HEAD(&ei->delalloc_inodes); 7899 INIT_LIST_HEAD(&ei->ordered_operations); 7900 RB_CLEAR_NODE(&ei->rb_node); 7901 7902 return inode; 7903 } 7904 7905 static void btrfs_i_callback(struct rcu_head *head) 7906 { 7907 struct inode *inode = container_of(head, struct inode, i_rcu); 7908 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7909 } 7910 7911 void btrfs_destroy_inode(struct inode *inode) 7912 { 7913 struct btrfs_ordered_extent *ordered; 7914 struct btrfs_root *root = BTRFS_I(inode)->root; 7915 7916 WARN_ON(!hlist_empty(&inode->i_dentry)); 7917 WARN_ON(inode->i_data.nrpages); 7918 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7919 WARN_ON(BTRFS_I(inode)->reserved_extents); 7920 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7921 WARN_ON(BTRFS_I(inode)->csum_bytes); 7922 7923 /* 7924 * This can happen where we create an inode, but somebody else also 7925 * created the same inode and we need to destroy the one we already 7926 * created. 7927 */ 7928 if (!root) 7929 goto free; 7930 7931 /* 7932 * Make sure we're properly removed from the ordered operation 7933 * lists. 7934 */ 7935 smp_mb(); 7936 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7937 spin_lock(&root->fs_info->ordered_extent_lock); 7938 list_del_init(&BTRFS_I(inode)->ordered_operations); 7939 spin_unlock(&root->fs_info->ordered_extent_lock); 7940 } 7941 7942 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7943 &BTRFS_I(inode)->runtime_flags)) { 7944 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 7945 (unsigned long long)btrfs_ino(inode)); 7946 atomic_dec(&root->orphan_inodes); 7947 } 7948 7949 while (1) { 7950 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7951 if (!ordered) 7952 break; 7953 else { 7954 printk(KERN_ERR "btrfs found ordered " 7955 "extent %llu %llu on inode cleanup\n", 7956 (unsigned long long)ordered->file_offset, 7957 (unsigned long long)ordered->len); 7958 btrfs_remove_ordered_extent(inode, ordered); 7959 btrfs_put_ordered_extent(ordered); 7960 btrfs_put_ordered_extent(ordered); 7961 } 7962 } 7963 inode_tree_del(inode); 7964 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7965 free: 7966 btrfs_remove_delayed_node(inode); 7967 call_rcu(&inode->i_rcu, btrfs_i_callback); 7968 } 7969 7970 int btrfs_drop_inode(struct inode *inode) 7971 { 7972 struct btrfs_root *root = BTRFS_I(inode)->root; 7973 7974 /* the snap/subvol tree is on deleting */ 7975 if (btrfs_root_refs(&root->root_item) == 0 && 7976 root != root->fs_info->tree_root) 7977 return 1; 7978 else 7979 return generic_drop_inode(inode); 7980 } 7981 7982 static void init_once(void *foo) 7983 { 7984 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7985 7986 inode_init_once(&ei->vfs_inode); 7987 } 7988 7989 void btrfs_destroy_cachep(void) 7990 { 7991 /* 7992 * Make sure all delayed rcu free inodes are flushed before we 7993 * destroy cache. 7994 */ 7995 rcu_barrier(); 7996 if (btrfs_inode_cachep) 7997 kmem_cache_destroy(btrfs_inode_cachep); 7998 if (btrfs_trans_handle_cachep) 7999 kmem_cache_destroy(btrfs_trans_handle_cachep); 8000 if (btrfs_transaction_cachep) 8001 kmem_cache_destroy(btrfs_transaction_cachep); 8002 if (btrfs_path_cachep) 8003 kmem_cache_destroy(btrfs_path_cachep); 8004 if (btrfs_free_space_cachep) 8005 kmem_cache_destroy(btrfs_free_space_cachep); 8006 if (btrfs_delalloc_work_cachep) 8007 kmem_cache_destroy(btrfs_delalloc_work_cachep); 8008 } 8009 8010 int btrfs_init_cachep(void) 8011 { 8012 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8013 sizeof(struct btrfs_inode), 0, 8014 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 8015 if (!btrfs_inode_cachep) 8016 goto fail; 8017 8018 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8019 sizeof(struct btrfs_trans_handle), 0, 8020 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8021 if (!btrfs_trans_handle_cachep) 8022 goto fail; 8023 8024 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 8025 sizeof(struct btrfs_transaction), 0, 8026 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8027 if (!btrfs_transaction_cachep) 8028 goto fail; 8029 8030 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8031 sizeof(struct btrfs_path), 0, 8032 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8033 if (!btrfs_path_cachep) 8034 goto fail; 8035 8036 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8037 sizeof(struct btrfs_free_space), 0, 8038 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 8039 if (!btrfs_free_space_cachep) 8040 goto fail; 8041 8042 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 8043 sizeof(struct btrfs_delalloc_work), 0, 8044 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 8045 NULL); 8046 if (!btrfs_delalloc_work_cachep) 8047 goto fail; 8048 8049 return 0; 8050 fail: 8051 btrfs_destroy_cachep(); 8052 return -ENOMEM; 8053 } 8054 8055 static int btrfs_getattr(struct vfsmount *mnt, 8056 struct dentry *dentry, struct kstat *stat) 8057 { 8058 u64 delalloc_bytes; 8059 struct inode *inode = dentry->d_inode; 8060 u32 blocksize = inode->i_sb->s_blocksize; 8061 8062 generic_fillattr(inode, stat); 8063 stat->dev = BTRFS_I(inode)->root->anon_dev; 8064 stat->blksize = PAGE_CACHE_SIZE; 8065 8066 spin_lock(&BTRFS_I(inode)->lock); 8067 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 8068 spin_unlock(&BTRFS_I(inode)->lock); 8069 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8070 ALIGN(delalloc_bytes, blocksize)) >> 9; 8071 return 0; 8072 } 8073 8074 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 8075 struct inode *new_dir, struct dentry *new_dentry) 8076 { 8077 struct btrfs_trans_handle *trans; 8078 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8079 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8080 struct inode *new_inode = new_dentry->d_inode; 8081 struct inode *old_inode = old_dentry->d_inode; 8082 struct timespec ctime = CURRENT_TIME; 8083 u64 index = 0; 8084 u64 root_objectid; 8085 int ret; 8086 u64 old_ino = btrfs_ino(old_inode); 8087 8088 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8089 return -EPERM; 8090 8091 /* we only allow rename subvolume link between subvolumes */ 8092 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8093 return -EXDEV; 8094 8095 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8096 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 8097 return -ENOTEMPTY; 8098 8099 if (S_ISDIR(old_inode->i_mode) && new_inode && 8100 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8101 return -ENOTEMPTY; 8102 8103 8104 /* check for collisions, even if the name isn't there */ 8105 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 8106 new_dentry->d_name.name, 8107 new_dentry->d_name.len); 8108 8109 if (ret) { 8110 if (ret == -EEXIST) { 8111 /* we shouldn't get 8112 * eexist without a new_inode */ 8113 if (!new_inode) { 8114 WARN_ON(1); 8115 return ret; 8116 } 8117 } else { 8118 /* maybe -EOVERFLOW */ 8119 return ret; 8120 } 8121 } 8122 ret = 0; 8123 8124 /* 8125 * we're using rename to replace one file with another. 8126 * and the replacement file is large. Start IO on it now so 8127 * we don't add too much work to the end of the transaction 8128 */ 8129 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 8130 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 8131 filemap_flush(old_inode->i_mapping); 8132 8133 /* close the racy window with snapshot create/destroy ioctl */ 8134 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8135 down_read(&root->fs_info->subvol_sem); 8136 /* 8137 * We want to reserve the absolute worst case amount of items. So if 8138 * both inodes are subvols and we need to unlink them then that would 8139 * require 4 item modifications, but if they are both normal inodes it 8140 * would require 5 item modifications, so we'll assume their normal 8141 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 8142 * should cover the worst case number of items we'll modify. 8143 */ 8144 trans = btrfs_start_transaction(root, 11); 8145 if (IS_ERR(trans)) { 8146 ret = PTR_ERR(trans); 8147 goto out_notrans; 8148 } 8149 8150 if (dest != root) 8151 btrfs_record_root_in_trans(trans, dest); 8152 8153 ret = btrfs_set_inode_index(new_dir, &index); 8154 if (ret) 8155 goto out_fail; 8156 8157 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8158 /* force full log commit if subvolume involved. */ 8159 root->fs_info->last_trans_log_full_commit = trans->transid; 8160 } else { 8161 ret = btrfs_insert_inode_ref(trans, dest, 8162 new_dentry->d_name.name, 8163 new_dentry->d_name.len, 8164 old_ino, 8165 btrfs_ino(new_dir), index); 8166 if (ret) 8167 goto out_fail; 8168 /* 8169 * this is an ugly little race, but the rename is required 8170 * to make sure that if we crash, the inode is either at the 8171 * old name or the new one. pinning the log transaction lets 8172 * us make sure we don't allow a log commit to come in after 8173 * we unlink the name but before we add the new name back in. 8174 */ 8175 btrfs_pin_log_trans(root); 8176 } 8177 /* 8178 * make sure the inode gets flushed if it is replacing 8179 * something. 8180 */ 8181 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 8182 btrfs_add_ordered_operation(trans, root, old_inode); 8183 8184 inode_inc_iversion(old_dir); 8185 inode_inc_iversion(new_dir); 8186 inode_inc_iversion(old_inode); 8187 old_dir->i_ctime = old_dir->i_mtime = ctime; 8188 new_dir->i_ctime = new_dir->i_mtime = ctime; 8189 old_inode->i_ctime = ctime; 8190 8191 if (old_dentry->d_parent != new_dentry->d_parent) 8192 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 8193 8194 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8195 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 8196 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 8197 old_dentry->d_name.name, 8198 old_dentry->d_name.len); 8199 } else { 8200 ret = __btrfs_unlink_inode(trans, root, old_dir, 8201 old_dentry->d_inode, 8202 old_dentry->d_name.name, 8203 old_dentry->d_name.len); 8204 if (!ret) 8205 ret = btrfs_update_inode(trans, root, old_inode); 8206 } 8207 if (ret) { 8208 btrfs_abort_transaction(trans, root, ret); 8209 goto out_fail; 8210 } 8211 8212 if (new_inode) { 8213 inode_inc_iversion(new_inode); 8214 new_inode->i_ctime = CURRENT_TIME; 8215 if (unlikely(btrfs_ino(new_inode) == 8216 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8217 root_objectid = BTRFS_I(new_inode)->location.objectid; 8218 ret = btrfs_unlink_subvol(trans, dest, new_dir, 8219 root_objectid, 8220 new_dentry->d_name.name, 8221 new_dentry->d_name.len); 8222 BUG_ON(new_inode->i_nlink == 0); 8223 } else { 8224 ret = btrfs_unlink_inode(trans, dest, new_dir, 8225 new_dentry->d_inode, 8226 new_dentry->d_name.name, 8227 new_dentry->d_name.len); 8228 } 8229 if (!ret && new_inode->i_nlink == 0) { 8230 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 8231 BUG_ON(ret); 8232 } 8233 if (ret) { 8234 btrfs_abort_transaction(trans, root, ret); 8235 goto out_fail; 8236 } 8237 } 8238 8239 ret = btrfs_add_link(trans, new_dir, old_inode, 8240 new_dentry->d_name.name, 8241 new_dentry->d_name.len, 0, index); 8242 if (ret) { 8243 btrfs_abort_transaction(trans, root, ret); 8244 goto out_fail; 8245 } 8246 8247 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8248 struct dentry *parent = new_dentry->d_parent; 8249 btrfs_log_new_name(trans, old_inode, old_dir, parent); 8250 btrfs_end_log_trans(root); 8251 } 8252 out_fail: 8253 btrfs_end_transaction(trans, root); 8254 out_notrans: 8255 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8256 up_read(&root->fs_info->subvol_sem); 8257 8258 return ret; 8259 } 8260 8261 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8262 { 8263 struct btrfs_delalloc_work *delalloc_work; 8264 8265 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8266 work); 8267 if (delalloc_work->wait) 8268 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 8269 else 8270 filemap_flush(delalloc_work->inode->i_mapping); 8271 8272 if (delalloc_work->delay_iput) 8273 btrfs_add_delayed_iput(delalloc_work->inode); 8274 else 8275 iput(delalloc_work->inode); 8276 complete(&delalloc_work->completion); 8277 } 8278 8279 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 8280 int wait, int delay_iput) 8281 { 8282 struct btrfs_delalloc_work *work; 8283 8284 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 8285 if (!work) 8286 return NULL; 8287 8288 init_completion(&work->completion); 8289 INIT_LIST_HEAD(&work->list); 8290 work->inode = inode; 8291 work->wait = wait; 8292 work->delay_iput = delay_iput; 8293 work->work.func = btrfs_run_delalloc_work; 8294 8295 return work; 8296 } 8297 8298 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 8299 { 8300 wait_for_completion(&work->completion); 8301 kmem_cache_free(btrfs_delalloc_work_cachep, work); 8302 } 8303 8304 /* 8305 * some fairly slow code that needs optimization. This walks the list 8306 * of all the inodes with pending delalloc and forces them to disk. 8307 */ 8308 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 8309 { 8310 struct btrfs_inode *binode; 8311 struct inode *inode; 8312 struct btrfs_delalloc_work *work, *next; 8313 struct list_head works; 8314 struct list_head splice; 8315 int ret = 0; 8316 8317 if (root->fs_info->sb->s_flags & MS_RDONLY) 8318 return -EROFS; 8319 8320 INIT_LIST_HEAD(&works); 8321 INIT_LIST_HEAD(&splice); 8322 8323 spin_lock(&root->fs_info->delalloc_lock); 8324 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 8325 while (!list_empty(&splice)) { 8326 binode = list_entry(splice.next, struct btrfs_inode, 8327 delalloc_inodes); 8328 8329 list_del_init(&binode->delalloc_inodes); 8330 8331 inode = igrab(&binode->vfs_inode); 8332 if (!inode) { 8333 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 8334 &binode->runtime_flags); 8335 continue; 8336 } 8337 8338 list_add_tail(&binode->delalloc_inodes, 8339 &root->fs_info->delalloc_inodes); 8340 spin_unlock(&root->fs_info->delalloc_lock); 8341 8342 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 8343 if (unlikely(!work)) { 8344 ret = -ENOMEM; 8345 goto out; 8346 } 8347 list_add_tail(&work->list, &works); 8348 btrfs_queue_worker(&root->fs_info->flush_workers, 8349 &work->work); 8350 8351 cond_resched(); 8352 spin_lock(&root->fs_info->delalloc_lock); 8353 } 8354 spin_unlock(&root->fs_info->delalloc_lock); 8355 8356 list_for_each_entry_safe(work, next, &works, list) { 8357 list_del_init(&work->list); 8358 btrfs_wait_and_free_delalloc_work(work); 8359 } 8360 8361 /* the filemap_flush will queue IO into the worker threads, but 8362 * we have to make sure the IO is actually started and that 8363 * ordered extents get created before we return 8364 */ 8365 atomic_inc(&root->fs_info->async_submit_draining); 8366 while (atomic_read(&root->fs_info->nr_async_submits) || 8367 atomic_read(&root->fs_info->async_delalloc_pages)) { 8368 wait_event(root->fs_info->async_submit_wait, 8369 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 8370 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 8371 } 8372 atomic_dec(&root->fs_info->async_submit_draining); 8373 return 0; 8374 out: 8375 list_for_each_entry_safe(work, next, &works, list) { 8376 list_del_init(&work->list); 8377 btrfs_wait_and_free_delalloc_work(work); 8378 } 8379 8380 if (!list_empty_careful(&splice)) { 8381 spin_lock(&root->fs_info->delalloc_lock); 8382 list_splice_tail(&splice, &root->fs_info->delalloc_inodes); 8383 spin_unlock(&root->fs_info->delalloc_lock); 8384 } 8385 return ret; 8386 } 8387 8388 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 8389 const char *symname) 8390 { 8391 struct btrfs_trans_handle *trans; 8392 struct btrfs_root *root = BTRFS_I(dir)->root; 8393 struct btrfs_path *path; 8394 struct btrfs_key key; 8395 struct inode *inode = NULL; 8396 int err; 8397 int drop_inode = 0; 8398 u64 objectid; 8399 u64 index = 0 ; 8400 int name_len; 8401 int datasize; 8402 unsigned long ptr; 8403 struct btrfs_file_extent_item *ei; 8404 struct extent_buffer *leaf; 8405 8406 name_len = strlen(symname) + 1; 8407 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 8408 return -ENAMETOOLONG; 8409 8410 /* 8411 * 2 items for inode item and ref 8412 * 2 items for dir items 8413 * 1 item for xattr if selinux is on 8414 */ 8415 trans = btrfs_start_transaction(root, 5); 8416 if (IS_ERR(trans)) 8417 return PTR_ERR(trans); 8418 8419 err = btrfs_find_free_ino(root, &objectid); 8420 if (err) 8421 goto out_unlock; 8422 8423 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 8424 dentry->d_name.len, btrfs_ino(dir), objectid, 8425 S_IFLNK|S_IRWXUGO, &index); 8426 if (IS_ERR(inode)) { 8427 err = PTR_ERR(inode); 8428 goto out_unlock; 8429 } 8430 8431 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 8432 if (err) { 8433 drop_inode = 1; 8434 goto out_unlock; 8435 } 8436 8437 /* 8438 * If the active LSM wants to access the inode during 8439 * d_instantiate it needs these. Smack checks to see 8440 * if the filesystem supports xattrs by looking at the 8441 * ops vector. 8442 */ 8443 inode->i_fop = &btrfs_file_operations; 8444 inode->i_op = &btrfs_file_inode_operations; 8445 8446 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 8447 if (err) 8448 drop_inode = 1; 8449 else { 8450 inode->i_mapping->a_ops = &btrfs_aops; 8451 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8452 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 8453 } 8454 if (drop_inode) 8455 goto out_unlock; 8456 8457 path = btrfs_alloc_path(); 8458 if (!path) { 8459 err = -ENOMEM; 8460 drop_inode = 1; 8461 goto out_unlock; 8462 } 8463 key.objectid = btrfs_ino(inode); 8464 key.offset = 0; 8465 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 8466 datasize = btrfs_file_extent_calc_inline_size(name_len); 8467 err = btrfs_insert_empty_item(trans, root, path, &key, 8468 datasize); 8469 if (err) { 8470 drop_inode = 1; 8471 btrfs_free_path(path); 8472 goto out_unlock; 8473 } 8474 leaf = path->nodes[0]; 8475 ei = btrfs_item_ptr(leaf, path->slots[0], 8476 struct btrfs_file_extent_item); 8477 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8478 btrfs_set_file_extent_type(leaf, ei, 8479 BTRFS_FILE_EXTENT_INLINE); 8480 btrfs_set_file_extent_encryption(leaf, ei, 0); 8481 btrfs_set_file_extent_compression(leaf, ei, 0); 8482 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8483 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8484 8485 ptr = btrfs_file_extent_inline_start(ei); 8486 write_extent_buffer(leaf, symname, ptr, name_len); 8487 btrfs_mark_buffer_dirty(leaf); 8488 btrfs_free_path(path); 8489 8490 inode->i_op = &btrfs_symlink_inode_operations; 8491 inode->i_mapping->a_ops = &btrfs_symlink_aops; 8492 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 8493 inode_set_bytes(inode, name_len); 8494 btrfs_i_size_write(inode, name_len - 1); 8495 err = btrfs_update_inode(trans, root, inode); 8496 if (err) 8497 drop_inode = 1; 8498 8499 out_unlock: 8500 if (!err) 8501 d_instantiate(dentry, inode); 8502 btrfs_end_transaction(trans, root); 8503 if (drop_inode) { 8504 inode_dec_link_count(inode); 8505 iput(inode); 8506 } 8507 btrfs_btree_balance_dirty(root); 8508 return err; 8509 } 8510 8511 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8512 u64 start, u64 num_bytes, u64 min_size, 8513 loff_t actual_len, u64 *alloc_hint, 8514 struct btrfs_trans_handle *trans) 8515 { 8516 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 8517 struct extent_map *em; 8518 struct btrfs_root *root = BTRFS_I(inode)->root; 8519 struct btrfs_key ins; 8520 u64 cur_offset = start; 8521 u64 i_size; 8522 u64 cur_bytes; 8523 int ret = 0; 8524 bool own_trans = true; 8525 8526 if (trans) 8527 own_trans = false; 8528 while (num_bytes > 0) { 8529 if (own_trans) { 8530 trans = btrfs_start_transaction(root, 3); 8531 if (IS_ERR(trans)) { 8532 ret = PTR_ERR(trans); 8533 break; 8534 } 8535 } 8536 8537 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024); 8538 cur_bytes = max(cur_bytes, min_size); 8539 ret = btrfs_reserve_extent(trans, root, cur_bytes, 8540 min_size, 0, *alloc_hint, &ins, 1); 8541 if (ret) { 8542 if (own_trans) 8543 btrfs_end_transaction(trans, root); 8544 break; 8545 } 8546 8547 ret = insert_reserved_file_extent(trans, inode, 8548 cur_offset, ins.objectid, 8549 ins.offset, ins.offset, 8550 ins.offset, 0, 0, 0, 8551 BTRFS_FILE_EXTENT_PREALLOC); 8552 if (ret) { 8553 btrfs_abort_transaction(trans, root, ret); 8554 if (own_trans) 8555 btrfs_end_transaction(trans, root); 8556 break; 8557 } 8558 btrfs_drop_extent_cache(inode, cur_offset, 8559 cur_offset + ins.offset -1, 0); 8560 8561 em = alloc_extent_map(); 8562 if (!em) { 8563 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 8564 &BTRFS_I(inode)->runtime_flags); 8565 goto next; 8566 } 8567 8568 em->start = cur_offset; 8569 em->orig_start = cur_offset; 8570 em->len = ins.offset; 8571 em->block_start = ins.objectid; 8572 em->block_len = ins.offset; 8573 em->orig_block_len = ins.offset; 8574 em->bdev = root->fs_info->fs_devices->latest_bdev; 8575 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 8576 em->generation = trans->transid; 8577 8578 while (1) { 8579 write_lock(&em_tree->lock); 8580 ret = add_extent_mapping(em_tree, em); 8581 if (!ret) 8582 list_move(&em->list, 8583 &em_tree->modified_extents); 8584 write_unlock(&em_tree->lock); 8585 if (ret != -EEXIST) 8586 break; 8587 btrfs_drop_extent_cache(inode, cur_offset, 8588 cur_offset + ins.offset - 1, 8589 0); 8590 } 8591 free_extent_map(em); 8592 next: 8593 num_bytes -= ins.offset; 8594 cur_offset += ins.offset; 8595 *alloc_hint = ins.objectid + ins.offset; 8596 8597 inode_inc_iversion(inode); 8598 inode->i_ctime = CURRENT_TIME; 8599 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8600 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8601 (actual_len > inode->i_size) && 8602 (cur_offset > inode->i_size)) { 8603 if (cur_offset > actual_len) 8604 i_size = actual_len; 8605 else 8606 i_size = cur_offset; 8607 i_size_write(inode, i_size); 8608 btrfs_ordered_update_i_size(inode, i_size, NULL); 8609 } 8610 8611 ret = btrfs_update_inode(trans, root, inode); 8612 8613 if (ret) { 8614 btrfs_abort_transaction(trans, root, ret); 8615 if (own_trans) 8616 btrfs_end_transaction(trans, root); 8617 break; 8618 } 8619 8620 if (own_trans) 8621 btrfs_end_transaction(trans, root); 8622 } 8623 return ret; 8624 } 8625 8626 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8627 u64 start, u64 num_bytes, u64 min_size, 8628 loff_t actual_len, u64 *alloc_hint) 8629 { 8630 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8631 min_size, actual_len, alloc_hint, 8632 NULL); 8633 } 8634 8635 int btrfs_prealloc_file_range_trans(struct inode *inode, 8636 struct btrfs_trans_handle *trans, int mode, 8637 u64 start, u64 num_bytes, u64 min_size, 8638 loff_t actual_len, u64 *alloc_hint) 8639 { 8640 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8641 min_size, actual_len, alloc_hint, trans); 8642 } 8643 8644 static int btrfs_set_page_dirty(struct page *page) 8645 { 8646 return __set_page_dirty_nobuffers(page); 8647 } 8648 8649 static int btrfs_permission(struct inode *inode, int mask) 8650 { 8651 struct btrfs_root *root = BTRFS_I(inode)->root; 8652 umode_t mode = inode->i_mode; 8653 8654 if (mask & MAY_WRITE && 8655 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8656 if (btrfs_root_readonly(root)) 8657 return -EROFS; 8658 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8659 return -EACCES; 8660 } 8661 return generic_permission(inode, mask); 8662 } 8663 8664 static const struct inode_operations btrfs_dir_inode_operations = { 8665 .getattr = btrfs_getattr, 8666 .lookup = btrfs_lookup, 8667 .create = btrfs_create, 8668 .unlink = btrfs_unlink, 8669 .link = btrfs_link, 8670 .mkdir = btrfs_mkdir, 8671 .rmdir = btrfs_rmdir, 8672 .rename = btrfs_rename, 8673 .symlink = btrfs_symlink, 8674 .setattr = btrfs_setattr, 8675 .mknod = btrfs_mknod, 8676 .setxattr = btrfs_setxattr, 8677 .getxattr = btrfs_getxattr, 8678 .listxattr = btrfs_listxattr, 8679 .removexattr = btrfs_removexattr, 8680 .permission = btrfs_permission, 8681 .get_acl = btrfs_get_acl, 8682 }; 8683 static const struct inode_operations btrfs_dir_ro_inode_operations = { 8684 .lookup = btrfs_lookup, 8685 .permission = btrfs_permission, 8686 .get_acl = btrfs_get_acl, 8687 }; 8688 8689 static const struct file_operations btrfs_dir_file_operations = { 8690 .llseek = generic_file_llseek, 8691 .read = generic_read_dir, 8692 .readdir = btrfs_real_readdir, 8693 .unlocked_ioctl = btrfs_ioctl, 8694 #ifdef CONFIG_COMPAT 8695 .compat_ioctl = btrfs_ioctl, 8696 #endif 8697 .release = btrfs_release_file, 8698 .fsync = btrfs_sync_file, 8699 }; 8700 8701 static struct extent_io_ops btrfs_extent_io_ops = { 8702 .fill_delalloc = run_delalloc_range, 8703 .submit_bio_hook = btrfs_submit_bio_hook, 8704 .merge_bio_hook = btrfs_merge_bio_hook, 8705 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 8706 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 8707 .writepage_start_hook = btrfs_writepage_start_hook, 8708 .set_bit_hook = btrfs_set_bit_hook, 8709 .clear_bit_hook = btrfs_clear_bit_hook, 8710 .merge_extent_hook = btrfs_merge_extent_hook, 8711 .split_extent_hook = btrfs_split_extent_hook, 8712 }; 8713 8714 /* 8715 * btrfs doesn't support the bmap operation because swapfiles 8716 * use bmap to make a mapping of extents in the file. They assume 8717 * these extents won't change over the life of the file and they 8718 * use the bmap result to do IO directly to the drive. 8719 * 8720 * the btrfs bmap call would return logical addresses that aren't 8721 * suitable for IO and they also will change frequently as COW 8722 * operations happen. So, swapfile + btrfs == corruption. 8723 * 8724 * For now we're avoiding this by dropping bmap. 8725 */ 8726 static const struct address_space_operations btrfs_aops = { 8727 .readpage = btrfs_readpage, 8728 .writepage = btrfs_writepage, 8729 .writepages = btrfs_writepages, 8730 .readpages = btrfs_readpages, 8731 .direct_IO = btrfs_direct_IO, 8732 .invalidatepage = btrfs_invalidatepage, 8733 .releasepage = btrfs_releasepage, 8734 .set_page_dirty = btrfs_set_page_dirty, 8735 .error_remove_page = generic_error_remove_page, 8736 }; 8737 8738 static const struct address_space_operations btrfs_symlink_aops = { 8739 .readpage = btrfs_readpage, 8740 .writepage = btrfs_writepage, 8741 .invalidatepage = btrfs_invalidatepage, 8742 .releasepage = btrfs_releasepage, 8743 }; 8744 8745 static const struct inode_operations btrfs_file_inode_operations = { 8746 .getattr = btrfs_getattr, 8747 .setattr = btrfs_setattr, 8748 .setxattr = btrfs_setxattr, 8749 .getxattr = btrfs_getxattr, 8750 .listxattr = btrfs_listxattr, 8751 .removexattr = btrfs_removexattr, 8752 .permission = btrfs_permission, 8753 .fiemap = btrfs_fiemap, 8754 .get_acl = btrfs_get_acl, 8755 .update_time = btrfs_update_time, 8756 }; 8757 static const struct inode_operations btrfs_special_inode_operations = { 8758 .getattr = btrfs_getattr, 8759 .setattr = btrfs_setattr, 8760 .permission = btrfs_permission, 8761 .setxattr = btrfs_setxattr, 8762 .getxattr = btrfs_getxattr, 8763 .listxattr = btrfs_listxattr, 8764 .removexattr = btrfs_removexattr, 8765 .get_acl = btrfs_get_acl, 8766 .update_time = btrfs_update_time, 8767 }; 8768 static const struct inode_operations btrfs_symlink_inode_operations = { 8769 .readlink = generic_readlink, 8770 .follow_link = page_follow_link_light, 8771 .put_link = page_put_link, 8772 .getattr = btrfs_getattr, 8773 .setattr = btrfs_setattr, 8774 .permission = btrfs_permission, 8775 .setxattr = btrfs_setxattr, 8776 .getxattr = btrfs_getxattr, 8777 .listxattr = btrfs_listxattr, 8778 .removexattr = btrfs_removexattr, 8779 .get_acl = btrfs_get_acl, 8780 .update_time = btrfs_update_time, 8781 }; 8782 8783 const struct dentry_operations btrfs_dentry_operations = { 8784 .d_delete = btrfs_dentry_delete, 8785 .d_release = btrfs_dentry_release, 8786 }; 8787