xref: /linux/fs/btrfs/inode.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
51 #include "xattr.h"
52 #include "tree-log.h"
53 #include "volumes.h"
54 #include "compression.h"
55 #include "locking.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
58 #include "backref.h"
59 
60 struct btrfs_iget_args {
61 	u64 ino;
62 	struct btrfs_root *root;
63 };
64 
65 static const struct inode_operations btrfs_dir_inode_operations;
66 static const struct inode_operations btrfs_symlink_inode_operations;
67 static const struct inode_operations btrfs_dir_ro_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct address_space_operations btrfs_symlink_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static struct extent_io_ops btrfs_extent_io_ops;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 static struct kmem_cache *btrfs_delalloc_work_cachep;
77 struct kmem_cache *btrfs_trans_handle_cachep;
78 struct kmem_cache *btrfs_transaction_cachep;
79 struct kmem_cache *btrfs_path_cachep;
80 struct kmem_cache *btrfs_free_space_cachep;
81 
82 #define S_SHIFT 12
83 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
84 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
85 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
86 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
87 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
88 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
89 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
90 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
91 };
92 
93 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
94 static int btrfs_truncate(struct inode *inode);
95 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
96 static noinline int cow_file_range(struct inode *inode,
97 				   struct page *locked_page,
98 				   u64 start, u64 end, int *page_started,
99 				   unsigned long *nr_written, int unlock);
100 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
101 					   u64 len, u64 orig_start,
102 					   u64 block_start, u64 block_len,
103 					   u64 orig_block_len, int type);
104 
105 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
106 				     struct inode *inode,  struct inode *dir,
107 				     const struct qstr *qstr)
108 {
109 	int err;
110 
111 	err = btrfs_init_acl(trans, inode, dir);
112 	if (!err)
113 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
114 	return err;
115 }
116 
117 /*
118  * this does all the hard work for inserting an inline extent into
119  * the btree.  The caller should have done a btrfs_drop_extents so that
120  * no overlapping inline items exist in the btree
121  */
122 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
123 				struct btrfs_root *root, struct inode *inode,
124 				u64 start, size_t size, size_t compressed_size,
125 				int compress_type,
126 				struct page **compressed_pages)
127 {
128 	struct btrfs_key key;
129 	struct btrfs_path *path;
130 	struct extent_buffer *leaf;
131 	struct page *page = NULL;
132 	char *kaddr;
133 	unsigned long ptr;
134 	struct btrfs_file_extent_item *ei;
135 	int err = 0;
136 	int ret;
137 	size_t cur_size = size;
138 	size_t datasize;
139 	unsigned long offset;
140 
141 	if (compressed_size && compressed_pages)
142 		cur_size = compressed_size;
143 
144 	path = btrfs_alloc_path();
145 	if (!path)
146 		return -ENOMEM;
147 
148 	path->leave_spinning = 1;
149 
150 	key.objectid = btrfs_ino(inode);
151 	key.offset = start;
152 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
153 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
154 
155 	inode_add_bytes(inode, size);
156 	ret = btrfs_insert_empty_item(trans, root, path, &key,
157 				      datasize);
158 	if (ret) {
159 		err = ret;
160 		goto fail;
161 	}
162 	leaf = path->nodes[0];
163 	ei = btrfs_item_ptr(leaf, path->slots[0],
164 			    struct btrfs_file_extent_item);
165 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
166 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
167 	btrfs_set_file_extent_encryption(leaf, ei, 0);
168 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
169 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
170 	ptr = btrfs_file_extent_inline_start(ei);
171 
172 	if (compress_type != BTRFS_COMPRESS_NONE) {
173 		struct page *cpage;
174 		int i = 0;
175 		while (compressed_size > 0) {
176 			cpage = compressed_pages[i];
177 			cur_size = min_t(unsigned long, compressed_size,
178 				       PAGE_CACHE_SIZE);
179 
180 			kaddr = kmap_atomic(cpage);
181 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
182 			kunmap_atomic(kaddr);
183 
184 			i++;
185 			ptr += cur_size;
186 			compressed_size -= cur_size;
187 		}
188 		btrfs_set_file_extent_compression(leaf, ei,
189 						  compress_type);
190 	} else {
191 		page = find_get_page(inode->i_mapping,
192 				     start >> PAGE_CACHE_SHIFT);
193 		btrfs_set_file_extent_compression(leaf, ei, 0);
194 		kaddr = kmap_atomic(page);
195 		offset = start & (PAGE_CACHE_SIZE - 1);
196 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
197 		kunmap_atomic(kaddr);
198 		page_cache_release(page);
199 	}
200 	btrfs_mark_buffer_dirty(leaf);
201 	btrfs_free_path(path);
202 
203 	/*
204 	 * we're an inline extent, so nobody can
205 	 * extend the file past i_size without locking
206 	 * a page we already have locked.
207 	 *
208 	 * We must do any isize and inode updates
209 	 * before we unlock the pages.  Otherwise we
210 	 * could end up racing with unlink.
211 	 */
212 	BTRFS_I(inode)->disk_i_size = inode->i_size;
213 	ret = btrfs_update_inode(trans, root, inode);
214 
215 	return ret;
216 fail:
217 	btrfs_free_path(path);
218 	return err;
219 }
220 
221 
222 /*
223  * conditionally insert an inline extent into the file.  This
224  * does the checks required to make sure the data is small enough
225  * to fit as an inline extent.
226  */
227 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
228 				 struct btrfs_root *root,
229 				 struct inode *inode, u64 start, u64 end,
230 				 size_t compressed_size, int compress_type,
231 				 struct page **compressed_pages)
232 {
233 	u64 isize = i_size_read(inode);
234 	u64 actual_end = min(end + 1, isize);
235 	u64 inline_len = actual_end - start;
236 	u64 aligned_end = ALIGN(end, root->sectorsize);
237 	u64 data_len = inline_len;
238 	int ret;
239 
240 	if (compressed_size)
241 		data_len = compressed_size;
242 
243 	if (start > 0 ||
244 	    actual_end >= PAGE_CACHE_SIZE ||
245 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
246 	    (!compressed_size &&
247 	    (actual_end & (root->sectorsize - 1)) == 0) ||
248 	    end + 1 < isize ||
249 	    data_len > root->fs_info->max_inline) {
250 		return 1;
251 	}
252 
253 	ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
254 	if (ret)
255 		return ret;
256 
257 	if (isize > actual_end)
258 		inline_len = min_t(u64, isize, actual_end);
259 	ret = insert_inline_extent(trans, root, inode, start,
260 				   inline_len, compressed_size,
261 				   compress_type, compressed_pages);
262 	if (ret && ret != -ENOSPC) {
263 		btrfs_abort_transaction(trans, root, ret);
264 		return ret;
265 	} else if (ret == -ENOSPC) {
266 		return 1;
267 	}
268 
269 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
270 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
271 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
272 	return 0;
273 }
274 
275 struct async_extent {
276 	u64 start;
277 	u64 ram_size;
278 	u64 compressed_size;
279 	struct page **pages;
280 	unsigned long nr_pages;
281 	int compress_type;
282 	struct list_head list;
283 };
284 
285 struct async_cow {
286 	struct inode *inode;
287 	struct btrfs_root *root;
288 	struct page *locked_page;
289 	u64 start;
290 	u64 end;
291 	struct list_head extents;
292 	struct btrfs_work work;
293 };
294 
295 static noinline int add_async_extent(struct async_cow *cow,
296 				     u64 start, u64 ram_size,
297 				     u64 compressed_size,
298 				     struct page **pages,
299 				     unsigned long nr_pages,
300 				     int compress_type)
301 {
302 	struct async_extent *async_extent;
303 
304 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
305 	BUG_ON(!async_extent); /* -ENOMEM */
306 	async_extent->start = start;
307 	async_extent->ram_size = ram_size;
308 	async_extent->compressed_size = compressed_size;
309 	async_extent->pages = pages;
310 	async_extent->nr_pages = nr_pages;
311 	async_extent->compress_type = compress_type;
312 	list_add_tail(&async_extent->list, &cow->extents);
313 	return 0;
314 }
315 
316 /*
317  * we create compressed extents in two phases.  The first
318  * phase compresses a range of pages that have already been
319  * locked (both pages and state bits are locked).
320  *
321  * This is done inside an ordered work queue, and the compression
322  * is spread across many cpus.  The actual IO submission is step
323  * two, and the ordered work queue takes care of making sure that
324  * happens in the same order things were put onto the queue by
325  * writepages and friends.
326  *
327  * If this code finds it can't get good compression, it puts an
328  * entry onto the work queue to write the uncompressed bytes.  This
329  * makes sure that both compressed inodes and uncompressed inodes
330  * are written in the same order that the flusher thread sent them
331  * down.
332  */
333 static noinline int compress_file_range(struct inode *inode,
334 					struct page *locked_page,
335 					u64 start, u64 end,
336 					struct async_cow *async_cow,
337 					int *num_added)
338 {
339 	struct btrfs_root *root = BTRFS_I(inode)->root;
340 	struct btrfs_trans_handle *trans;
341 	u64 num_bytes;
342 	u64 blocksize = root->sectorsize;
343 	u64 actual_end;
344 	u64 isize = i_size_read(inode);
345 	int ret = 0;
346 	struct page **pages = NULL;
347 	unsigned long nr_pages;
348 	unsigned long nr_pages_ret = 0;
349 	unsigned long total_compressed = 0;
350 	unsigned long total_in = 0;
351 	unsigned long max_compressed = 128 * 1024;
352 	unsigned long max_uncompressed = 128 * 1024;
353 	int i;
354 	int will_compress;
355 	int compress_type = root->fs_info->compress_type;
356 	int redirty = 0;
357 
358 	/* if this is a small write inside eof, kick off a defrag */
359 	if ((end - start + 1) < 16 * 1024 &&
360 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
361 		btrfs_add_inode_defrag(NULL, inode);
362 
363 	actual_end = min_t(u64, isize, end + 1);
364 again:
365 	will_compress = 0;
366 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
367 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
368 
369 	/*
370 	 * we don't want to send crud past the end of i_size through
371 	 * compression, that's just a waste of CPU time.  So, if the
372 	 * end of the file is before the start of our current
373 	 * requested range of bytes, we bail out to the uncompressed
374 	 * cleanup code that can deal with all of this.
375 	 *
376 	 * It isn't really the fastest way to fix things, but this is a
377 	 * very uncommon corner.
378 	 */
379 	if (actual_end <= start)
380 		goto cleanup_and_bail_uncompressed;
381 
382 	total_compressed = actual_end - start;
383 
384 	/* we want to make sure that amount of ram required to uncompress
385 	 * an extent is reasonable, so we limit the total size in ram
386 	 * of a compressed extent to 128k.  This is a crucial number
387 	 * because it also controls how easily we can spread reads across
388 	 * cpus for decompression.
389 	 *
390 	 * We also want to make sure the amount of IO required to do
391 	 * a random read is reasonably small, so we limit the size of
392 	 * a compressed extent to 128k.
393 	 */
394 	total_compressed = min(total_compressed, max_uncompressed);
395 	num_bytes = ALIGN(end - start + 1, blocksize);
396 	num_bytes = max(blocksize,  num_bytes);
397 	total_in = 0;
398 	ret = 0;
399 
400 	/*
401 	 * we do compression for mount -o compress and when the
402 	 * inode has not been flagged as nocompress.  This flag can
403 	 * change at any time if we discover bad compression ratios.
404 	 */
405 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
406 	    (btrfs_test_opt(root, COMPRESS) ||
407 	     (BTRFS_I(inode)->force_compress) ||
408 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
409 		WARN_ON(pages);
410 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
411 		if (!pages) {
412 			/* just bail out to the uncompressed code */
413 			goto cont;
414 		}
415 
416 		if (BTRFS_I(inode)->force_compress)
417 			compress_type = BTRFS_I(inode)->force_compress;
418 
419 		/*
420 		 * we need to call clear_page_dirty_for_io on each
421 		 * page in the range.  Otherwise applications with the file
422 		 * mmap'd can wander in and change the page contents while
423 		 * we are compressing them.
424 		 *
425 		 * If the compression fails for any reason, we set the pages
426 		 * dirty again later on.
427 		 */
428 		extent_range_clear_dirty_for_io(inode, start, end);
429 		redirty = 1;
430 		ret = btrfs_compress_pages(compress_type,
431 					   inode->i_mapping, start,
432 					   total_compressed, pages,
433 					   nr_pages, &nr_pages_ret,
434 					   &total_in,
435 					   &total_compressed,
436 					   max_compressed);
437 
438 		if (!ret) {
439 			unsigned long offset = total_compressed &
440 				(PAGE_CACHE_SIZE - 1);
441 			struct page *page = pages[nr_pages_ret - 1];
442 			char *kaddr;
443 
444 			/* zero the tail end of the last page, we might be
445 			 * sending it down to disk
446 			 */
447 			if (offset) {
448 				kaddr = kmap_atomic(page);
449 				memset(kaddr + offset, 0,
450 				       PAGE_CACHE_SIZE - offset);
451 				kunmap_atomic(kaddr);
452 			}
453 			will_compress = 1;
454 		}
455 	}
456 cont:
457 	if (start == 0) {
458 		trans = btrfs_join_transaction(root);
459 		if (IS_ERR(trans)) {
460 			ret = PTR_ERR(trans);
461 			trans = NULL;
462 			goto cleanup_and_out;
463 		}
464 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
465 
466 		/* lets try to make an inline extent */
467 		if (ret || total_in < (actual_end - start)) {
468 			/* we didn't compress the entire range, try
469 			 * to make an uncompressed inline extent.
470 			 */
471 			ret = cow_file_range_inline(trans, root, inode,
472 						    start, end, 0, 0, NULL);
473 		} else {
474 			/* try making a compressed inline extent */
475 			ret = cow_file_range_inline(trans, root, inode,
476 						    start, end,
477 						    total_compressed,
478 						    compress_type, pages);
479 		}
480 		if (ret <= 0) {
481 			/*
482 			 * inline extent creation worked or returned error,
483 			 * we don't need to create any more async work items.
484 			 * Unlock and free up our temp pages.
485 			 */
486 			extent_clear_unlock_delalloc(inode,
487 			     &BTRFS_I(inode)->io_tree,
488 			     start, end, NULL,
489 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
490 			     EXTENT_CLEAR_DELALLOC |
491 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
492 
493 			btrfs_end_transaction(trans, root);
494 			goto free_pages_out;
495 		}
496 		btrfs_end_transaction(trans, root);
497 	}
498 
499 	if (will_compress) {
500 		/*
501 		 * we aren't doing an inline extent round the compressed size
502 		 * up to a block size boundary so the allocator does sane
503 		 * things
504 		 */
505 		total_compressed = ALIGN(total_compressed, blocksize);
506 
507 		/*
508 		 * one last check to make sure the compression is really a
509 		 * win, compare the page count read with the blocks on disk
510 		 */
511 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
512 		if (total_compressed >= total_in) {
513 			will_compress = 0;
514 		} else {
515 			num_bytes = total_in;
516 		}
517 	}
518 	if (!will_compress && pages) {
519 		/*
520 		 * the compression code ran but failed to make things smaller,
521 		 * free any pages it allocated and our page pointer array
522 		 */
523 		for (i = 0; i < nr_pages_ret; i++) {
524 			WARN_ON(pages[i]->mapping);
525 			page_cache_release(pages[i]);
526 		}
527 		kfree(pages);
528 		pages = NULL;
529 		total_compressed = 0;
530 		nr_pages_ret = 0;
531 
532 		/* flag the file so we don't compress in the future */
533 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
534 		    !(BTRFS_I(inode)->force_compress)) {
535 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
536 		}
537 	}
538 	if (will_compress) {
539 		*num_added += 1;
540 
541 		/* the async work queues will take care of doing actual
542 		 * allocation on disk for these compressed pages,
543 		 * and will submit them to the elevator.
544 		 */
545 		add_async_extent(async_cow, start, num_bytes,
546 				 total_compressed, pages, nr_pages_ret,
547 				 compress_type);
548 
549 		if (start + num_bytes < end) {
550 			start += num_bytes;
551 			pages = NULL;
552 			cond_resched();
553 			goto again;
554 		}
555 	} else {
556 cleanup_and_bail_uncompressed:
557 		/*
558 		 * No compression, but we still need to write the pages in
559 		 * the file we've been given so far.  redirty the locked
560 		 * page if it corresponds to our extent and set things up
561 		 * for the async work queue to run cow_file_range to do
562 		 * the normal delalloc dance
563 		 */
564 		if (page_offset(locked_page) >= start &&
565 		    page_offset(locked_page) <= end) {
566 			__set_page_dirty_nobuffers(locked_page);
567 			/* unlocked later on in the async handlers */
568 		}
569 		if (redirty)
570 			extent_range_redirty_for_io(inode, start, end);
571 		add_async_extent(async_cow, start, end - start + 1,
572 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
573 		*num_added += 1;
574 	}
575 
576 out:
577 	return ret;
578 
579 free_pages_out:
580 	for (i = 0; i < nr_pages_ret; i++) {
581 		WARN_ON(pages[i]->mapping);
582 		page_cache_release(pages[i]);
583 	}
584 	kfree(pages);
585 
586 	goto out;
587 
588 cleanup_and_out:
589 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
590 				     start, end, NULL,
591 				     EXTENT_CLEAR_UNLOCK_PAGE |
592 				     EXTENT_CLEAR_DIRTY |
593 				     EXTENT_CLEAR_DELALLOC |
594 				     EXTENT_SET_WRITEBACK |
595 				     EXTENT_END_WRITEBACK);
596 	if (!trans || IS_ERR(trans))
597 		btrfs_error(root->fs_info, ret, "Failed to join transaction");
598 	else
599 		btrfs_abort_transaction(trans, root, ret);
600 	goto free_pages_out;
601 }
602 
603 /*
604  * phase two of compressed writeback.  This is the ordered portion
605  * of the code, which only gets called in the order the work was
606  * queued.  We walk all the async extents created by compress_file_range
607  * and send them down to the disk.
608  */
609 static noinline int submit_compressed_extents(struct inode *inode,
610 					      struct async_cow *async_cow)
611 {
612 	struct async_extent *async_extent;
613 	u64 alloc_hint = 0;
614 	struct btrfs_trans_handle *trans;
615 	struct btrfs_key ins;
616 	struct extent_map *em;
617 	struct btrfs_root *root = BTRFS_I(inode)->root;
618 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
619 	struct extent_io_tree *io_tree;
620 	int ret = 0;
621 
622 	if (list_empty(&async_cow->extents))
623 		return 0;
624 
625 again:
626 	while (!list_empty(&async_cow->extents)) {
627 		async_extent = list_entry(async_cow->extents.next,
628 					  struct async_extent, list);
629 		list_del(&async_extent->list);
630 
631 		io_tree = &BTRFS_I(inode)->io_tree;
632 
633 retry:
634 		/* did the compression code fall back to uncompressed IO? */
635 		if (!async_extent->pages) {
636 			int page_started = 0;
637 			unsigned long nr_written = 0;
638 
639 			lock_extent(io_tree, async_extent->start,
640 					 async_extent->start +
641 					 async_extent->ram_size - 1);
642 
643 			/* allocate blocks */
644 			ret = cow_file_range(inode, async_cow->locked_page,
645 					     async_extent->start,
646 					     async_extent->start +
647 					     async_extent->ram_size - 1,
648 					     &page_started, &nr_written, 0);
649 
650 			/* JDM XXX */
651 
652 			/*
653 			 * if page_started, cow_file_range inserted an
654 			 * inline extent and took care of all the unlocking
655 			 * and IO for us.  Otherwise, we need to submit
656 			 * all those pages down to the drive.
657 			 */
658 			if (!page_started && !ret)
659 				extent_write_locked_range(io_tree,
660 						  inode, async_extent->start,
661 						  async_extent->start +
662 						  async_extent->ram_size - 1,
663 						  btrfs_get_extent,
664 						  WB_SYNC_ALL);
665 			else if (ret)
666 				unlock_page(async_cow->locked_page);
667 			kfree(async_extent);
668 			cond_resched();
669 			continue;
670 		}
671 
672 		lock_extent(io_tree, async_extent->start,
673 			    async_extent->start + async_extent->ram_size - 1);
674 
675 		trans = btrfs_join_transaction(root);
676 		if (IS_ERR(trans)) {
677 			ret = PTR_ERR(trans);
678 		} else {
679 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
680 			ret = btrfs_reserve_extent(trans, root,
681 					   async_extent->compressed_size,
682 					   async_extent->compressed_size,
683 					   0, alloc_hint, &ins, 1);
684 			if (ret && ret != -ENOSPC)
685 				btrfs_abort_transaction(trans, root, ret);
686 			btrfs_end_transaction(trans, root);
687 		}
688 
689 		if (ret) {
690 			int i;
691 
692 			for (i = 0; i < async_extent->nr_pages; i++) {
693 				WARN_ON(async_extent->pages[i]->mapping);
694 				page_cache_release(async_extent->pages[i]);
695 			}
696 			kfree(async_extent->pages);
697 			async_extent->nr_pages = 0;
698 			async_extent->pages = NULL;
699 
700 			if (ret == -ENOSPC)
701 				goto retry;
702 			goto out_free;
703 		}
704 
705 		/*
706 		 * here we're doing allocation and writeback of the
707 		 * compressed pages
708 		 */
709 		btrfs_drop_extent_cache(inode, async_extent->start,
710 					async_extent->start +
711 					async_extent->ram_size - 1, 0);
712 
713 		em = alloc_extent_map();
714 		if (!em)
715 			goto out_free_reserve;
716 		em->start = async_extent->start;
717 		em->len = async_extent->ram_size;
718 		em->orig_start = em->start;
719 		em->mod_start = em->start;
720 		em->mod_len = em->len;
721 
722 		em->block_start = ins.objectid;
723 		em->block_len = ins.offset;
724 		em->orig_block_len = ins.offset;
725 		em->bdev = root->fs_info->fs_devices->latest_bdev;
726 		em->compress_type = async_extent->compress_type;
727 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
728 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
729 		em->generation = -1;
730 
731 		while (1) {
732 			write_lock(&em_tree->lock);
733 			ret = add_extent_mapping(em_tree, em);
734 			if (!ret)
735 				list_move(&em->list,
736 					  &em_tree->modified_extents);
737 			write_unlock(&em_tree->lock);
738 			if (ret != -EEXIST) {
739 				free_extent_map(em);
740 				break;
741 			}
742 			btrfs_drop_extent_cache(inode, async_extent->start,
743 						async_extent->start +
744 						async_extent->ram_size - 1, 0);
745 		}
746 
747 		if (ret)
748 			goto out_free_reserve;
749 
750 		ret = btrfs_add_ordered_extent_compress(inode,
751 						async_extent->start,
752 						ins.objectid,
753 						async_extent->ram_size,
754 						ins.offset,
755 						BTRFS_ORDERED_COMPRESSED,
756 						async_extent->compress_type);
757 		if (ret)
758 			goto out_free_reserve;
759 
760 		/*
761 		 * clear dirty, set writeback and unlock the pages.
762 		 */
763 		extent_clear_unlock_delalloc(inode,
764 				&BTRFS_I(inode)->io_tree,
765 				async_extent->start,
766 				async_extent->start +
767 				async_extent->ram_size - 1,
768 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
769 				EXTENT_CLEAR_UNLOCK |
770 				EXTENT_CLEAR_DELALLOC |
771 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
772 
773 		ret = btrfs_submit_compressed_write(inode,
774 				    async_extent->start,
775 				    async_extent->ram_size,
776 				    ins.objectid,
777 				    ins.offset, async_extent->pages,
778 				    async_extent->nr_pages);
779 		alloc_hint = ins.objectid + ins.offset;
780 		kfree(async_extent);
781 		if (ret)
782 			goto out;
783 		cond_resched();
784 	}
785 	ret = 0;
786 out:
787 	return ret;
788 out_free_reserve:
789 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
790 out_free:
791 	extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
792 				     async_extent->start,
793 				     async_extent->start +
794 				     async_extent->ram_size - 1,
795 				     NULL, EXTENT_CLEAR_UNLOCK_PAGE |
796 				     EXTENT_CLEAR_UNLOCK |
797 				     EXTENT_CLEAR_DELALLOC |
798 				     EXTENT_CLEAR_DIRTY |
799 				     EXTENT_SET_WRITEBACK |
800 				     EXTENT_END_WRITEBACK);
801 	kfree(async_extent);
802 	goto again;
803 }
804 
805 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
806 				      u64 num_bytes)
807 {
808 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
809 	struct extent_map *em;
810 	u64 alloc_hint = 0;
811 
812 	read_lock(&em_tree->lock);
813 	em = search_extent_mapping(em_tree, start, num_bytes);
814 	if (em) {
815 		/*
816 		 * if block start isn't an actual block number then find the
817 		 * first block in this inode and use that as a hint.  If that
818 		 * block is also bogus then just don't worry about it.
819 		 */
820 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
821 			free_extent_map(em);
822 			em = search_extent_mapping(em_tree, 0, 0);
823 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
824 				alloc_hint = em->block_start;
825 			if (em)
826 				free_extent_map(em);
827 		} else {
828 			alloc_hint = em->block_start;
829 			free_extent_map(em);
830 		}
831 	}
832 	read_unlock(&em_tree->lock);
833 
834 	return alloc_hint;
835 }
836 
837 /*
838  * when extent_io.c finds a delayed allocation range in the file,
839  * the call backs end up in this code.  The basic idea is to
840  * allocate extents on disk for the range, and create ordered data structs
841  * in ram to track those extents.
842  *
843  * locked_page is the page that writepage had locked already.  We use
844  * it to make sure we don't do extra locks or unlocks.
845  *
846  * *page_started is set to one if we unlock locked_page and do everything
847  * required to start IO on it.  It may be clean and already done with
848  * IO when we return.
849  */
850 static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
851 				     struct inode *inode,
852 				     struct btrfs_root *root,
853 				     struct page *locked_page,
854 				     u64 start, u64 end, int *page_started,
855 				     unsigned long *nr_written,
856 				     int unlock)
857 {
858 	u64 alloc_hint = 0;
859 	u64 num_bytes;
860 	unsigned long ram_size;
861 	u64 disk_num_bytes;
862 	u64 cur_alloc_size;
863 	u64 blocksize = root->sectorsize;
864 	struct btrfs_key ins;
865 	struct extent_map *em;
866 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
867 	int ret = 0;
868 
869 	BUG_ON(btrfs_is_free_space_inode(inode));
870 
871 	num_bytes = ALIGN(end - start + 1, blocksize);
872 	num_bytes = max(blocksize,  num_bytes);
873 	disk_num_bytes = num_bytes;
874 
875 	/* if this is a small write inside eof, kick off defrag */
876 	if (num_bytes < 64 * 1024 &&
877 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
878 		btrfs_add_inode_defrag(trans, inode);
879 
880 	if (start == 0) {
881 		/* lets try to make an inline extent */
882 		ret = cow_file_range_inline(trans, root, inode,
883 					    start, end, 0, 0, NULL);
884 		if (ret == 0) {
885 			extent_clear_unlock_delalloc(inode,
886 				     &BTRFS_I(inode)->io_tree,
887 				     start, end, NULL,
888 				     EXTENT_CLEAR_UNLOCK_PAGE |
889 				     EXTENT_CLEAR_UNLOCK |
890 				     EXTENT_CLEAR_DELALLOC |
891 				     EXTENT_CLEAR_DIRTY |
892 				     EXTENT_SET_WRITEBACK |
893 				     EXTENT_END_WRITEBACK);
894 
895 			*nr_written = *nr_written +
896 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
897 			*page_started = 1;
898 			goto out;
899 		} else if (ret < 0) {
900 			btrfs_abort_transaction(trans, root, ret);
901 			goto out_unlock;
902 		}
903 	}
904 
905 	BUG_ON(disk_num_bytes >
906 	       btrfs_super_total_bytes(root->fs_info->super_copy));
907 
908 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
909 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
910 
911 	while (disk_num_bytes > 0) {
912 		unsigned long op;
913 
914 		cur_alloc_size = disk_num_bytes;
915 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
916 					   root->sectorsize, 0, alloc_hint,
917 					   &ins, 1);
918 		if (ret < 0) {
919 			btrfs_abort_transaction(trans, root, ret);
920 			goto out_unlock;
921 		}
922 
923 		em = alloc_extent_map();
924 		BUG_ON(!em); /* -ENOMEM */
925 		em->start = start;
926 		em->orig_start = em->start;
927 		ram_size = ins.offset;
928 		em->len = ins.offset;
929 		em->mod_start = em->start;
930 		em->mod_len = em->len;
931 
932 		em->block_start = ins.objectid;
933 		em->block_len = ins.offset;
934 		em->orig_block_len = ins.offset;
935 		em->bdev = root->fs_info->fs_devices->latest_bdev;
936 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
937 		em->generation = -1;
938 
939 		while (1) {
940 			write_lock(&em_tree->lock);
941 			ret = add_extent_mapping(em_tree, em);
942 			if (!ret)
943 				list_move(&em->list,
944 					  &em_tree->modified_extents);
945 			write_unlock(&em_tree->lock);
946 			if (ret != -EEXIST) {
947 				free_extent_map(em);
948 				break;
949 			}
950 			btrfs_drop_extent_cache(inode, start,
951 						start + ram_size - 1, 0);
952 		}
953 
954 		cur_alloc_size = ins.offset;
955 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
956 					       ram_size, cur_alloc_size, 0);
957 		BUG_ON(ret); /* -ENOMEM */
958 
959 		if (root->root_key.objectid ==
960 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
961 			ret = btrfs_reloc_clone_csums(inode, start,
962 						      cur_alloc_size);
963 			if (ret) {
964 				btrfs_abort_transaction(trans, root, ret);
965 				goto out_unlock;
966 			}
967 		}
968 
969 		if (disk_num_bytes < cur_alloc_size)
970 			break;
971 
972 		/* we're not doing compressed IO, don't unlock the first
973 		 * page (which the caller expects to stay locked), don't
974 		 * clear any dirty bits and don't set any writeback bits
975 		 *
976 		 * Do set the Private2 bit so we know this page was properly
977 		 * setup for writepage
978 		 */
979 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
980 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
981 			EXTENT_SET_PRIVATE2;
982 
983 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
984 					     start, start + ram_size - 1,
985 					     locked_page, op);
986 		disk_num_bytes -= cur_alloc_size;
987 		num_bytes -= cur_alloc_size;
988 		alloc_hint = ins.objectid + ins.offset;
989 		start += cur_alloc_size;
990 	}
991 out:
992 	return ret;
993 
994 out_unlock:
995 	extent_clear_unlock_delalloc(inode,
996 		     &BTRFS_I(inode)->io_tree,
997 		     start, end, locked_page,
998 		     EXTENT_CLEAR_UNLOCK_PAGE |
999 		     EXTENT_CLEAR_UNLOCK |
1000 		     EXTENT_CLEAR_DELALLOC |
1001 		     EXTENT_CLEAR_DIRTY |
1002 		     EXTENT_SET_WRITEBACK |
1003 		     EXTENT_END_WRITEBACK);
1004 
1005 	goto out;
1006 }
1007 
1008 static noinline int cow_file_range(struct inode *inode,
1009 				   struct page *locked_page,
1010 				   u64 start, u64 end, int *page_started,
1011 				   unsigned long *nr_written,
1012 				   int unlock)
1013 {
1014 	struct btrfs_trans_handle *trans;
1015 	struct btrfs_root *root = BTRFS_I(inode)->root;
1016 	int ret;
1017 
1018 	trans = btrfs_join_transaction(root);
1019 	if (IS_ERR(trans)) {
1020 		extent_clear_unlock_delalloc(inode,
1021 			     &BTRFS_I(inode)->io_tree,
1022 			     start, end, locked_page,
1023 			     EXTENT_CLEAR_UNLOCK_PAGE |
1024 			     EXTENT_CLEAR_UNLOCK |
1025 			     EXTENT_CLEAR_DELALLOC |
1026 			     EXTENT_CLEAR_DIRTY |
1027 			     EXTENT_SET_WRITEBACK |
1028 			     EXTENT_END_WRITEBACK);
1029 		return PTR_ERR(trans);
1030 	}
1031 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1032 
1033 	ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1034 			       page_started, nr_written, unlock);
1035 
1036 	btrfs_end_transaction(trans, root);
1037 
1038 	return ret;
1039 }
1040 
1041 /*
1042  * work queue call back to started compression on a file and pages
1043  */
1044 static noinline void async_cow_start(struct btrfs_work *work)
1045 {
1046 	struct async_cow *async_cow;
1047 	int num_added = 0;
1048 	async_cow = container_of(work, struct async_cow, work);
1049 
1050 	compress_file_range(async_cow->inode, async_cow->locked_page,
1051 			    async_cow->start, async_cow->end, async_cow,
1052 			    &num_added);
1053 	if (num_added == 0) {
1054 		btrfs_add_delayed_iput(async_cow->inode);
1055 		async_cow->inode = NULL;
1056 	}
1057 }
1058 
1059 /*
1060  * work queue call back to submit previously compressed pages
1061  */
1062 static noinline void async_cow_submit(struct btrfs_work *work)
1063 {
1064 	struct async_cow *async_cow;
1065 	struct btrfs_root *root;
1066 	unsigned long nr_pages;
1067 
1068 	async_cow = container_of(work, struct async_cow, work);
1069 
1070 	root = async_cow->root;
1071 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1072 		PAGE_CACHE_SHIFT;
1073 
1074 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1075 	    5 * 1024 * 1024 &&
1076 	    waitqueue_active(&root->fs_info->async_submit_wait))
1077 		wake_up(&root->fs_info->async_submit_wait);
1078 
1079 	if (async_cow->inode)
1080 		submit_compressed_extents(async_cow->inode, async_cow);
1081 }
1082 
1083 static noinline void async_cow_free(struct btrfs_work *work)
1084 {
1085 	struct async_cow *async_cow;
1086 	async_cow = container_of(work, struct async_cow, work);
1087 	if (async_cow->inode)
1088 		btrfs_add_delayed_iput(async_cow->inode);
1089 	kfree(async_cow);
1090 }
1091 
1092 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1093 				u64 start, u64 end, int *page_started,
1094 				unsigned long *nr_written)
1095 {
1096 	struct async_cow *async_cow;
1097 	struct btrfs_root *root = BTRFS_I(inode)->root;
1098 	unsigned long nr_pages;
1099 	u64 cur_end;
1100 	int limit = 10 * 1024 * 1024;
1101 
1102 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1103 			 1, 0, NULL, GFP_NOFS);
1104 	while (start < end) {
1105 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1106 		BUG_ON(!async_cow); /* -ENOMEM */
1107 		async_cow->inode = igrab(inode);
1108 		async_cow->root = root;
1109 		async_cow->locked_page = locked_page;
1110 		async_cow->start = start;
1111 
1112 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1113 			cur_end = end;
1114 		else
1115 			cur_end = min(end, start + 512 * 1024 - 1);
1116 
1117 		async_cow->end = cur_end;
1118 		INIT_LIST_HEAD(&async_cow->extents);
1119 
1120 		async_cow->work.func = async_cow_start;
1121 		async_cow->work.ordered_func = async_cow_submit;
1122 		async_cow->work.ordered_free = async_cow_free;
1123 		async_cow->work.flags = 0;
1124 
1125 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1126 			PAGE_CACHE_SHIFT;
1127 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1128 
1129 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
1130 				   &async_cow->work);
1131 
1132 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1133 			wait_event(root->fs_info->async_submit_wait,
1134 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1135 			    limit));
1136 		}
1137 
1138 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1139 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1140 			wait_event(root->fs_info->async_submit_wait,
1141 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1142 			   0));
1143 		}
1144 
1145 		*nr_written += nr_pages;
1146 		start = cur_end + 1;
1147 	}
1148 	*page_started = 1;
1149 	return 0;
1150 }
1151 
1152 static noinline int csum_exist_in_range(struct btrfs_root *root,
1153 					u64 bytenr, u64 num_bytes)
1154 {
1155 	int ret;
1156 	struct btrfs_ordered_sum *sums;
1157 	LIST_HEAD(list);
1158 
1159 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1160 				       bytenr + num_bytes - 1, &list, 0);
1161 	if (ret == 0 && list_empty(&list))
1162 		return 0;
1163 
1164 	while (!list_empty(&list)) {
1165 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1166 		list_del(&sums->list);
1167 		kfree(sums);
1168 	}
1169 	return 1;
1170 }
1171 
1172 /*
1173  * when nowcow writeback call back.  This checks for snapshots or COW copies
1174  * of the extents that exist in the file, and COWs the file as required.
1175  *
1176  * If no cow copies or snapshots exist, we write directly to the existing
1177  * blocks on disk
1178  */
1179 static noinline int run_delalloc_nocow(struct inode *inode,
1180 				       struct page *locked_page,
1181 			      u64 start, u64 end, int *page_started, int force,
1182 			      unsigned long *nr_written)
1183 {
1184 	struct btrfs_root *root = BTRFS_I(inode)->root;
1185 	struct btrfs_trans_handle *trans;
1186 	struct extent_buffer *leaf;
1187 	struct btrfs_path *path;
1188 	struct btrfs_file_extent_item *fi;
1189 	struct btrfs_key found_key;
1190 	u64 cow_start;
1191 	u64 cur_offset;
1192 	u64 extent_end;
1193 	u64 extent_offset;
1194 	u64 disk_bytenr;
1195 	u64 num_bytes;
1196 	u64 disk_num_bytes;
1197 	int extent_type;
1198 	int ret, err;
1199 	int type;
1200 	int nocow;
1201 	int check_prev = 1;
1202 	bool nolock;
1203 	u64 ino = btrfs_ino(inode);
1204 
1205 	path = btrfs_alloc_path();
1206 	if (!path) {
1207 		extent_clear_unlock_delalloc(inode,
1208 			     &BTRFS_I(inode)->io_tree,
1209 			     start, end, locked_page,
1210 			     EXTENT_CLEAR_UNLOCK_PAGE |
1211 			     EXTENT_CLEAR_UNLOCK |
1212 			     EXTENT_CLEAR_DELALLOC |
1213 			     EXTENT_CLEAR_DIRTY |
1214 			     EXTENT_SET_WRITEBACK |
1215 			     EXTENT_END_WRITEBACK);
1216 		return -ENOMEM;
1217 	}
1218 
1219 	nolock = btrfs_is_free_space_inode(inode);
1220 
1221 	if (nolock)
1222 		trans = btrfs_join_transaction_nolock(root);
1223 	else
1224 		trans = btrfs_join_transaction(root);
1225 
1226 	if (IS_ERR(trans)) {
1227 		extent_clear_unlock_delalloc(inode,
1228 			     &BTRFS_I(inode)->io_tree,
1229 			     start, end, locked_page,
1230 			     EXTENT_CLEAR_UNLOCK_PAGE |
1231 			     EXTENT_CLEAR_UNLOCK |
1232 			     EXTENT_CLEAR_DELALLOC |
1233 			     EXTENT_CLEAR_DIRTY |
1234 			     EXTENT_SET_WRITEBACK |
1235 			     EXTENT_END_WRITEBACK);
1236 		btrfs_free_path(path);
1237 		return PTR_ERR(trans);
1238 	}
1239 
1240 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1241 
1242 	cow_start = (u64)-1;
1243 	cur_offset = start;
1244 	while (1) {
1245 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1246 					       cur_offset, 0);
1247 		if (ret < 0) {
1248 			btrfs_abort_transaction(trans, root, ret);
1249 			goto error;
1250 		}
1251 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1252 			leaf = path->nodes[0];
1253 			btrfs_item_key_to_cpu(leaf, &found_key,
1254 					      path->slots[0] - 1);
1255 			if (found_key.objectid == ino &&
1256 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1257 				path->slots[0]--;
1258 		}
1259 		check_prev = 0;
1260 next_slot:
1261 		leaf = path->nodes[0];
1262 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1263 			ret = btrfs_next_leaf(root, path);
1264 			if (ret < 0) {
1265 				btrfs_abort_transaction(trans, root, ret);
1266 				goto error;
1267 			}
1268 			if (ret > 0)
1269 				break;
1270 			leaf = path->nodes[0];
1271 		}
1272 
1273 		nocow = 0;
1274 		disk_bytenr = 0;
1275 		num_bytes = 0;
1276 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1277 
1278 		if (found_key.objectid > ino ||
1279 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1280 		    found_key.offset > end)
1281 			break;
1282 
1283 		if (found_key.offset > cur_offset) {
1284 			extent_end = found_key.offset;
1285 			extent_type = 0;
1286 			goto out_check;
1287 		}
1288 
1289 		fi = btrfs_item_ptr(leaf, path->slots[0],
1290 				    struct btrfs_file_extent_item);
1291 		extent_type = btrfs_file_extent_type(leaf, fi);
1292 
1293 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1294 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1295 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1296 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1297 			extent_end = found_key.offset +
1298 				btrfs_file_extent_num_bytes(leaf, fi);
1299 			disk_num_bytes =
1300 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1301 			if (extent_end <= start) {
1302 				path->slots[0]++;
1303 				goto next_slot;
1304 			}
1305 			if (disk_bytenr == 0)
1306 				goto out_check;
1307 			if (btrfs_file_extent_compression(leaf, fi) ||
1308 			    btrfs_file_extent_encryption(leaf, fi) ||
1309 			    btrfs_file_extent_other_encoding(leaf, fi))
1310 				goto out_check;
1311 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1312 				goto out_check;
1313 			if (btrfs_extent_readonly(root, disk_bytenr))
1314 				goto out_check;
1315 			if (btrfs_cross_ref_exist(trans, root, ino,
1316 						  found_key.offset -
1317 						  extent_offset, disk_bytenr))
1318 				goto out_check;
1319 			disk_bytenr += extent_offset;
1320 			disk_bytenr += cur_offset - found_key.offset;
1321 			num_bytes = min(end + 1, extent_end) - cur_offset;
1322 			/*
1323 			 * force cow if csum exists in the range.
1324 			 * this ensure that csum for a given extent are
1325 			 * either valid or do not exist.
1326 			 */
1327 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1328 				goto out_check;
1329 			nocow = 1;
1330 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1331 			extent_end = found_key.offset +
1332 				btrfs_file_extent_inline_len(leaf, fi);
1333 			extent_end = ALIGN(extent_end, root->sectorsize);
1334 		} else {
1335 			BUG_ON(1);
1336 		}
1337 out_check:
1338 		if (extent_end <= start) {
1339 			path->slots[0]++;
1340 			goto next_slot;
1341 		}
1342 		if (!nocow) {
1343 			if (cow_start == (u64)-1)
1344 				cow_start = cur_offset;
1345 			cur_offset = extent_end;
1346 			if (cur_offset > end)
1347 				break;
1348 			path->slots[0]++;
1349 			goto next_slot;
1350 		}
1351 
1352 		btrfs_release_path(path);
1353 		if (cow_start != (u64)-1) {
1354 			ret = __cow_file_range(trans, inode, root, locked_page,
1355 					       cow_start, found_key.offset - 1,
1356 					       page_started, nr_written, 1);
1357 			if (ret) {
1358 				btrfs_abort_transaction(trans, root, ret);
1359 				goto error;
1360 			}
1361 			cow_start = (u64)-1;
1362 		}
1363 
1364 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1365 			struct extent_map *em;
1366 			struct extent_map_tree *em_tree;
1367 			em_tree = &BTRFS_I(inode)->extent_tree;
1368 			em = alloc_extent_map();
1369 			BUG_ON(!em); /* -ENOMEM */
1370 			em->start = cur_offset;
1371 			em->orig_start = found_key.offset - extent_offset;
1372 			em->len = num_bytes;
1373 			em->block_len = num_bytes;
1374 			em->block_start = disk_bytenr;
1375 			em->orig_block_len = disk_num_bytes;
1376 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1377 			em->mod_start = em->start;
1378 			em->mod_len = em->len;
1379 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1380 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1381 			em->generation = -1;
1382 			while (1) {
1383 				write_lock(&em_tree->lock);
1384 				ret = add_extent_mapping(em_tree, em);
1385 				if (!ret)
1386 					list_move(&em->list,
1387 						  &em_tree->modified_extents);
1388 				write_unlock(&em_tree->lock);
1389 				if (ret != -EEXIST) {
1390 					free_extent_map(em);
1391 					break;
1392 				}
1393 				btrfs_drop_extent_cache(inode, em->start,
1394 						em->start + em->len - 1, 0);
1395 			}
1396 			type = BTRFS_ORDERED_PREALLOC;
1397 		} else {
1398 			type = BTRFS_ORDERED_NOCOW;
1399 		}
1400 
1401 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1402 					       num_bytes, num_bytes, type);
1403 		BUG_ON(ret); /* -ENOMEM */
1404 
1405 		if (root->root_key.objectid ==
1406 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1407 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1408 						      num_bytes);
1409 			if (ret) {
1410 				btrfs_abort_transaction(trans, root, ret);
1411 				goto error;
1412 			}
1413 		}
1414 
1415 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1416 				cur_offset, cur_offset + num_bytes - 1,
1417 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1418 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1419 				EXTENT_SET_PRIVATE2);
1420 		cur_offset = extent_end;
1421 		if (cur_offset > end)
1422 			break;
1423 	}
1424 	btrfs_release_path(path);
1425 
1426 	if (cur_offset <= end && cow_start == (u64)-1) {
1427 		cow_start = cur_offset;
1428 		cur_offset = end;
1429 	}
1430 
1431 	if (cow_start != (u64)-1) {
1432 		ret = __cow_file_range(trans, inode, root, locked_page,
1433 				       cow_start, end,
1434 				       page_started, nr_written, 1);
1435 		if (ret) {
1436 			btrfs_abort_transaction(trans, root, ret);
1437 			goto error;
1438 		}
1439 	}
1440 
1441 error:
1442 	err = btrfs_end_transaction(trans, root);
1443 	if (!ret)
1444 		ret = err;
1445 
1446 	if (ret && cur_offset < end)
1447 		extent_clear_unlock_delalloc(inode,
1448 			     &BTRFS_I(inode)->io_tree,
1449 			     cur_offset, end, locked_page,
1450 			     EXTENT_CLEAR_UNLOCK_PAGE |
1451 			     EXTENT_CLEAR_UNLOCK |
1452 			     EXTENT_CLEAR_DELALLOC |
1453 			     EXTENT_CLEAR_DIRTY |
1454 			     EXTENT_SET_WRITEBACK |
1455 			     EXTENT_END_WRITEBACK);
1456 
1457 	btrfs_free_path(path);
1458 	return ret;
1459 }
1460 
1461 /*
1462  * extent_io.c call back to do delayed allocation processing
1463  */
1464 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1465 			      u64 start, u64 end, int *page_started,
1466 			      unsigned long *nr_written)
1467 {
1468 	int ret;
1469 	struct btrfs_root *root = BTRFS_I(inode)->root;
1470 
1471 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1472 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1473 					 page_started, 1, nr_written);
1474 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1475 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1476 					 page_started, 0, nr_written);
1477 	} else if (!btrfs_test_opt(root, COMPRESS) &&
1478 		   !(BTRFS_I(inode)->force_compress) &&
1479 		   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1480 		ret = cow_file_range(inode, locked_page, start, end,
1481 				      page_started, nr_written, 1);
1482 	} else {
1483 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1484 			&BTRFS_I(inode)->runtime_flags);
1485 		ret = cow_file_range_async(inode, locked_page, start, end,
1486 					   page_started, nr_written);
1487 	}
1488 	return ret;
1489 }
1490 
1491 static void btrfs_split_extent_hook(struct inode *inode,
1492 				    struct extent_state *orig, u64 split)
1493 {
1494 	/* not delalloc, ignore it */
1495 	if (!(orig->state & EXTENT_DELALLOC))
1496 		return;
1497 
1498 	spin_lock(&BTRFS_I(inode)->lock);
1499 	BTRFS_I(inode)->outstanding_extents++;
1500 	spin_unlock(&BTRFS_I(inode)->lock);
1501 }
1502 
1503 /*
1504  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1505  * extents so we can keep track of new extents that are just merged onto old
1506  * extents, such as when we are doing sequential writes, so we can properly
1507  * account for the metadata space we'll need.
1508  */
1509 static void btrfs_merge_extent_hook(struct inode *inode,
1510 				    struct extent_state *new,
1511 				    struct extent_state *other)
1512 {
1513 	/* not delalloc, ignore it */
1514 	if (!(other->state & EXTENT_DELALLOC))
1515 		return;
1516 
1517 	spin_lock(&BTRFS_I(inode)->lock);
1518 	BTRFS_I(inode)->outstanding_extents--;
1519 	spin_unlock(&BTRFS_I(inode)->lock);
1520 }
1521 
1522 /*
1523  * extent_io.c set_bit_hook, used to track delayed allocation
1524  * bytes in this file, and to maintain the list of inodes that
1525  * have pending delalloc work to be done.
1526  */
1527 static void btrfs_set_bit_hook(struct inode *inode,
1528 			       struct extent_state *state, int *bits)
1529 {
1530 
1531 	/*
1532 	 * set_bit and clear bit hooks normally require _irqsave/restore
1533 	 * but in this case, we are only testing for the DELALLOC
1534 	 * bit, which is only set or cleared with irqs on
1535 	 */
1536 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1537 		struct btrfs_root *root = BTRFS_I(inode)->root;
1538 		u64 len = state->end + 1 - state->start;
1539 		bool do_list = !btrfs_is_free_space_inode(inode);
1540 
1541 		if (*bits & EXTENT_FIRST_DELALLOC) {
1542 			*bits &= ~EXTENT_FIRST_DELALLOC;
1543 		} else {
1544 			spin_lock(&BTRFS_I(inode)->lock);
1545 			BTRFS_I(inode)->outstanding_extents++;
1546 			spin_unlock(&BTRFS_I(inode)->lock);
1547 		}
1548 
1549 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1550 				     root->fs_info->delalloc_batch);
1551 		spin_lock(&BTRFS_I(inode)->lock);
1552 		BTRFS_I(inode)->delalloc_bytes += len;
1553 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1554 					 &BTRFS_I(inode)->runtime_flags)) {
1555 			spin_lock(&root->fs_info->delalloc_lock);
1556 			if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1557 				list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1558 					      &root->fs_info->delalloc_inodes);
1559 				set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1560 					&BTRFS_I(inode)->runtime_flags);
1561 			}
1562 			spin_unlock(&root->fs_info->delalloc_lock);
1563 		}
1564 		spin_unlock(&BTRFS_I(inode)->lock);
1565 	}
1566 }
1567 
1568 /*
1569  * extent_io.c clear_bit_hook, see set_bit_hook for why
1570  */
1571 static void btrfs_clear_bit_hook(struct inode *inode,
1572 				 struct extent_state *state, int *bits)
1573 {
1574 	/*
1575 	 * set_bit and clear bit hooks normally require _irqsave/restore
1576 	 * but in this case, we are only testing for the DELALLOC
1577 	 * bit, which is only set or cleared with irqs on
1578 	 */
1579 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1580 		struct btrfs_root *root = BTRFS_I(inode)->root;
1581 		u64 len = state->end + 1 - state->start;
1582 		bool do_list = !btrfs_is_free_space_inode(inode);
1583 
1584 		if (*bits & EXTENT_FIRST_DELALLOC) {
1585 			*bits &= ~EXTENT_FIRST_DELALLOC;
1586 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1587 			spin_lock(&BTRFS_I(inode)->lock);
1588 			BTRFS_I(inode)->outstanding_extents--;
1589 			spin_unlock(&BTRFS_I(inode)->lock);
1590 		}
1591 
1592 		if (*bits & EXTENT_DO_ACCOUNTING)
1593 			btrfs_delalloc_release_metadata(inode, len);
1594 
1595 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1596 		    && do_list)
1597 			btrfs_free_reserved_data_space(inode, len);
1598 
1599 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1600 				     root->fs_info->delalloc_batch);
1601 		spin_lock(&BTRFS_I(inode)->lock);
1602 		BTRFS_I(inode)->delalloc_bytes -= len;
1603 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1604 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1605 			     &BTRFS_I(inode)->runtime_flags)) {
1606 			spin_lock(&root->fs_info->delalloc_lock);
1607 			if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1608 				list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1609 				clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1610 					  &BTRFS_I(inode)->runtime_flags);
1611 			}
1612 			spin_unlock(&root->fs_info->delalloc_lock);
1613 		}
1614 		spin_unlock(&BTRFS_I(inode)->lock);
1615 	}
1616 }
1617 
1618 /*
1619  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1620  * we don't create bios that span stripes or chunks
1621  */
1622 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1623 			 size_t size, struct bio *bio,
1624 			 unsigned long bio_flags)
1625 {
1626 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1627 	u64 logical = (u64)bio->bi_sector << 9;
1628 	u64 length = 0;
1629 	u64 map_length;
1630 	int ret;
1631 
1632 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1633 		return 0;
1634 
1635 	length = bio->bi_size;
1636 	map_length = length;
1637 	ret = btrfs_map_block(root->fs_info, rw, logical,
1638 			      &map_length, NULL, 0);
1639 	/* Will always return 0 with map_multi == NULL */
1640 	BUG_ON(ret < 0);
1641 	if (map_length < length + size)
1642 		return 1;
1643 	return 0;
1644 }
1645 
1646 /*
1647  * in order to insert checksums into the metadata in large chunks,
1648  * we wait until bio submission time.   All the pages in the bio are
1649  * checksummed and sums are attached onto the ordered extent record.
1650  *
1651  * At IO completion time the cums attached on the ordered extent record
1652  * are inserted into the btree
1653  */
1654 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1655 				    struct bio *bio, int mirror_num,
1656 				    unsigned long bio_flags,
1657 				    u64 bio_offset)
1658 {
1659 	struct btrfs_root *root = BTRFS_I(inode)->root;
1660 	int ret = 0;
1661 
1662 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1663 	BUG_ON(ret); /* -ENOMEM */
1664 	return 0;
1665 }
1666 
1667 /*
1668  * in order to insert checksums into the metadata in large chunks,
1669  * we wait until bio submission time.   All the pages in the bio are
1670  * checksummed and sums are attached onto the ordered extent record.
1671  *
1672  * At IO completion time the cums attached on the ordered extent record
1673  * are inserted into the btree
1674  */
1675 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1676 			  int mirror_num, unsigned long bio_flags,
1677 			  u64 bio_offset)
1678 {
1679 	struct btrfs_root *root = BTRFS_I(inode)->root;
1680 	int ret;
1681 
1682 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1683 	if (ret)
1684 		bio_endio(bio, ret);
1685 	return ret;
1686 }
1687 
1688 /*
1689  * extent_io.c submission hook. This does the right thing for csum calculation
1690  * on write, or reading the csums from the tree before a read
1691  */
1692 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1693 			  int mirror_num, unsigned long bio_flags,
1694 			  u64 bio_offset)
1695 {
1696 	struct btrfs_root *root = BTRFS_I(inode)->root;
1697 	int ret = 0;
1698 	int skip_sum;
1699 	int metadata = 0;
1700 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1701 
1702 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1703 
1704 	if (btrfs_is_free_space_inode(inode))
1705 		metadata = 2;
1706 
1707 	if (!(rw & REQ_WRITE)) {
1708 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1709 		if (ret)
1710 			goto out;
1711 
1712 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1713 			ret = btrfs_submit_compressed_read(inode, bio,
1714 							   mirror_num,
1715 							   bio_flags);
1716 			goto out;
1717 		} else if (!skip_sum) {
1718 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1719 			if (ret)
1720 				goto out;
1721 		}
1722 		goto mapit;
1723 	} else if (async && !skip_sum) {
1724 		/* csum items have already been cloned */
1725 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1726 			goto mapit;
1727 		/* we're doing a write, do the async checksumming */
1728 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1729 				   inode, rw, bio, mirror_num,
1730 				   bio_flags, bio_offset,
1731 				   __btrfs_submit_bio_start,
1732 				   __btrfs_submit_bio_done);
1733 		goto out;
1734 	} else if (!skip_sum) {
1735 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1736 		if (ret)
1737 			goto out;
1738 	}
1739 
1740 mapit:
1741 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1742 
1743 out:
1744 	if (ret < 0)
1745 		bio_endio(bio, ret);
1746 	return ret;
1747 }
1748 
1749 /*
1750  * given a list of ordered sums record them in the inode.  This happens
1751  * at IO completion time based on sums calculated at bio submission time.
1752  */
1753 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1754 			     struct inode *inode, u64 file_offset,
1755 			     struct list_head *list)
1756 {
1757 	struct btrfs_ordered_sum *sum;
1758 
1759 	list_for_each_entry(sum, list, list) {
1760 		trans->adding_csums = 1;
1761 		btrfs_csum_file_blocks(trans,
1762 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1763 		trans->adding_csums = 0;
1764 	}
1765 	return 0;
1766 }
1767 
1768 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1769 			      struct extent_state **cached_state)
1770 {
1771 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1772 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1773 				   cached_state, GFP_NOFS);
1774 }
1775 
1776 /* see btrfs_writepage_start_hook for details on why this is required */
1777 struct btrfs_writepage_fixup {
1778 	struct page *page;
1779 	struct btrfs_work work;
1780 };
1781 
1782 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1783 {
1784 	struct btrfs_writepage_fixup *fixup;
1785 	struct btrfs_ordered_extent *ordered;
1786 	struct extent_state *cached_state = NULL;
1787 	struct page *page;
1788 	struct inode *inode;
1789 	u64 page_start;
1790 	u64 page_end;
1791 	int ret;
1792 
1793 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1794 	page = fixup->page;
1795 again:
1796 	lock_page(page);
1797 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1798 		ClearPageChecked(page);
1799 		goto out_page;
1800 	}
1801 
1802 	inode = page->mapping->host;
1803 	page_start = page_offset(page);
1804 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1805 
1806 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1807 			 &cached_state);
1808 
1809 	/* already ordered? We're done */
1810 	if (PagePrivate2(page))
1811 		goto out;
1812 
1813 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1814 	if (ordered) {
1815 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1816 				     page_end, &cached_state, GFP_NOFS);
1817 		unlock_page(page);
1818 		btrfs_start_ordered_extent(inode, ordered, 1);
1819 		btrfs_put_ordered_extent(ordered);
1820 		goto again;
1821 	}
1822 
1823 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1824 	if (ret) {
1825 		mapping_set_error(page->mapping, ret);
1826 		end_extent_writepage(page, ret, page_start, page_end);
1827 		ClearPageChecked(page);
1828 		goto out;
1829 	 }
1830 
1831 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1832 	ClearPageChecked(page);
1833 	set_page_dirty(page);
1834 out:
1835 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1836 			     &cached_state, GFP_NOFS);
1837 out_page:
1838 	unlock_page(page);
1839 	page_cache_release(page);
1840 	kfree(fixup);
1841 }
1842 
1843 /*
1844  * There are a few paths in the higher layers of the kernel that directly
1845  * set the page dirty bit without asking the filesystem if it is a
1846  * good idea.  This causes problems because we want to make sure COW
1847  * properly happens and the data=ordered rules are followed.
1848  *
1849  * In our case any range that doesn't have the ORDERED bit set
1850  * hasn't been properly setup for IO.  We kick off an async process
1851  * to fix it up.  The async helper will wait for ordered extents, set
1852  * the delalloc bit and make it safe to write the page.
1853  */
1854 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1855 {
1856 	struct inode *inode = page->mapping->host;
1857 	struct btrfs_writepage_fixup *fixup;
1858 	struct btrfs_root *root = BTRFS_I(inode)->root;
1859 
1860 	/* this page is properly in the ordered list */
1861 	if (TestClearPagePrivate2(page))
1862 		return 0;
1863 
1864 	if (PageChecked(page))
1865 		return -EAGAIN;
1866 
1867 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1868 	if (!fixup)
1869 		return -EAGAIN;
1870 
1871 	SetPageChecked(page);
1872 	page_cache_get(page);
1873 	fixup->work.func = btrfs_writepage_fixup_worker;
1874 	fixup->page = page;
1875 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1876 	return -EBUSY;
1877 }
1878 
1879 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1880 				       struct inode *inode, u64 file_pos,
1881 				       u64 disk_bytenr, u64 disk_num_bytes,
1882 				       u64 num_bytes, u64 ram_bytes,
1883 				       u8 compression, u8 encryption,
1884 				       u16 other_encoding, int extent_type)
1885 {
1886 	struct btrfs_root *root = BTRFS_I(inode)->root;
1887 	struct btrfs_file_extent_item *fi;
1888 	struct btrfs_path *path;
1889 	struct extent_buffer *leaf;
1890 	struct btrfs_key ins;
1891 	int ret;
1892 
1893 	path = btrfs_alloc_path();
1894 	if (!path)
1895 		return -ENOMEM;
1896 
1897 	path->leave_spinning = 1;
1898 
1899 	/*
1900 	 * we may be replacing one extent in the tree with another.
1901 	 * The new extent is pinned in the extent map, and we don't want
1902 	 * to drop it from the cache until it is completely in the btree.
1903 	 *
1904 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1905 	 * the caller is expected to unpin it and allow it to be merged
1906 	 * with the others.
1907 	 */
1908 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1909 				 file_pos + num_bytes, 0);
1910 	if (ret)
1911 		goto out;
1912 
1913 	ins.objectid = btrfs_ino(inode);
1914 	ins.offset = file_pos;
1915 	ins.type = BTRFS_EXTENT_DATA_KEY;
1916 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1917 	if (ret)
1918 		goto out;
1919 	leaf = path->nodes[0];
1920 	fi = btrfs_item_ptr(leaf, path->slots[0],
1921 			    struct btrfs_file_extent_item);
1922 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1923 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1924 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1925 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1926 	btrfs_set_file_extent_offset(leaf, fi, 0);
1927 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1928 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1929 	btrfs_set_file_extent_compression(leaf, fi, compression);
1930 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1931 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1932 
1933 	btrfs_mark_buffer_dirty(leaf);
1934 	btrfs_release_path(path);
1935 
1936 	inode_add_bytes(inode, num_bytes);
1937 
1938 	ins.objectid = disk_bytenr;
1939 	ins.offset = disk_num_bytes;
1940 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1941 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1942 					root->root_key.objectid,
1943 					btrfs_ino(inode), file_pos, &ins);
1944 out:
1945 	btrfs_free_path(path);
1946 
1947 	return ret;
1948 }
1949 
1950 /* snapshot-aware defrag */
1951 struct sa_defrag_extent_backref {
1952 	struct rb_node node;
1953 	struct old_sa_defrag_extent *old;
1954 	u64 root_id;
1955 	u64 inum;
1956 	u64 file_pos;
1957 	u64 extent_offset;
1958 	u64 num_bytes;
1959 	u64 generation;
1960 };
1961 
1962 struct old_sa_defrag_extent {
1963 	struct list_head list;
1964 	struct new_sa_defrag_extent *new;
1965 
1966 	u64 extent_offset;
1967 	u64 bytenr;
1968 	u64 offset;
1969 	u64 len;
1970 	int count;
1971 };
1972 
1973 struct new_sa_defrag_extent {
1974 	struct rb_root root;
1975 	struct list_head head;
1976 	struct btrfs_path *path;
1977 	struct inode *inode;
1978 	u64 file_pos;
1979 	u64 len;
1980 	u64 bytenr;
1981 	u64 disk_len;
1982 	u8 compress_type;
1983 };
1984 
1985 static int backref_comp(struct sa_defrag_extent_backref *b1,
1986 			struct sa_defrag_extent_backref *b2)
1987 {
1988 	if (b1->root_id < b2->root_id)
1989 		return -1;
1990 	else if (b1->root_id > b2->root_id)
1991 		return 1;
1992 
1993 	if (b1->inum < b2->inum)
1994 		return -1;
1995 	else if (b1->inum > b2->inum)
1996 		return 1;
1997 
1998 	if (b1->file_pos < b2->file_pos)
1999 		return -1;
2000 	else if (b1->file_pos > b2->file_pos)
2001 		return 1;
2002 
2003 	/*
2004 	 * [------------------------------] ===> (a range of space)
2005 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2006 	 * |<---------------------------->| ===> (fs/file tree B)
2007 	 *
2008 	 * A range of space can refer to two file extents in one tree while
2009 	 * refer to only one file extent in another tree.
2010 	 *
2011 	 * So we may process a disk offset more than one time(two extents in A)
2012 	 * and locate at the same extent(one extent in B), then insert two same
2013 	 * backrefs(both refer to the extent in B).
2014 	 */
2015 	return 0;
2016 }
2017 
2018 static void backref_insert(struct rb_root *root,
2019 			   struct sa_defrag_extent_backref *backref)
2020 {
2021 	struct rb_node **p = &root->rb_node;
2022 	struct rb_node *parent = NULL;
2023 	struct sa_defrag_extent_backref *entry;
2024 	int ret;
2025 
2026 	while (*p) {
2027 		parent = *p;
2028 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2029 
2030 		ret = backref_comp(backref, entry);
2031 		if (ret < 0)
2032 			p = &(*p)->rb_left;
2033 		else
2034 			p = &(*p)->rb_right;
2035 	}
2036 
2037 	rb_link_node(&backref->node, parent, p);
2038 	rb_insert_color(&backref->node, root);
2039 }
2040 
2041 /*
2042  * Note the backref might has changed, and in this case we just return 0.
2043  */
2044 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2045 				       void *ctx)
2046 {
2047 	struct btrfs_file_extent_item *extent;
2048 	struct btrfs_fs_info *fs_info;
2049 	struct old_sa_defrag_extent *old = ctx;
2050 	struct new_sa_defrag_extent *new = old->new;
2051 	struct btrfs_path *path = new->path;
2052 	struct btrfs_key key;
2053 	struct btrfs_root *root;
2054 	struct sa_defrag_extent_backref *backref;
2055 	struct extent_buffer *leaf;
2056 	struct inode *inode = new->inode;
2057 	int slot;
2058 	int ret;
2059 	u64 extent_offset;
2060 	u64 num_bytes;
2061 
2062 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2063 	    inum == btrfs_ino(inode))
2064 		return 0;
2065 
2066 	key.objectid = root_id;
2067 	key.type = BTRFS_ROOT_ITEM_KEY;
2068 	key.offset = (u64)-1;
2069 
2070 	fs_info = BTRFS_I(inode)->root->fs_info;
2071 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2072 	if (IS_ERR(root)) {
2073 		if (PTR_ERR(root) == -ENOENT)
2074 			return 0;
2075 		WARN_ON(1);
2076 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2077 			 inum, offset, root_id);
2078 		return PTR_ERR(root);
2079 	}
2080 
2081 	key.objectid = inum;
2082 	key.type = BTRFS_EXTENT_DATA_KEY;
2083 	if (offset > (u64)-1 << 32)
2084 		key.offset = 0;
2085 	else
2086 		key.offset = offset;
2087 
2088 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2089 	if (ret < 0) {
2090 		WARN_ON(1);
2091 		return ret;
2092 	}
2093 
2094 	while (1) {
2095 		cond_resched();
2096 
2097 		leaf = path->nodes[0];
2098 		slot = path->slots[0];
2099 
2100 		if (slot >= btrfs_header_nritems(leaf)) {
2101 			ret = btrfs_next_leaf(root, path);
2102 			if (ret < 0) {
2103 				goto out;
2104 			} else if (ret > 0) {
2105 				ret = 0;
2106 				goto out;
2107 			}
2108 			continue;
2109 		}
2110 
2111 		path->slots[0]++;
2112 
2113 		btrfs_item_key_to_cpu(leaf, &key, slot);
2114 
2115 		if (key.objectid > inum)
2116 			goto out;
2117 
2118 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2119 			continue;
2120 
2121 		extent = btrfs_item_ptr(leaf, slot,
2122 					struct btrfs_file_extent_item);
2123 
2124 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2125 			continue;
2126 
2127 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2128 		if (key.offset - extent_offset != offset)
2129 			continue;
2130 
2131 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2132 		if (extent_offset >= old->extent_offset + old->offset +
2133 		    old->len || extent_offset + num_bytes <=
2134 		    old->extent_offset + old->offset)
2135 			continue;
2136 
2137 		break;
2138 	}
2139 
2140 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2141 	if (!backref) {
2142 		ret = -ENOENT;
2143 		goto out;
2144 	}
2145 
2146 	backref->root_id = root_id;
2147 	backref->inum = inum;
2148 	backref->file_pos = offset + extent_offset;
2149 	backref->num_bytes = num_bytes;
2150 	backref->extent_offset = extent_offset;
2151 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2152 	backref->old = old;
2153 	backref_insert(&new->root, backref);
2154 	old->count++;
2155 out:
2156 	btrfs_release_path(path);
2157 	WARN_ON(ret);
2158 	return ret;
2159 }
2160 
2161 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2162 				   struct new_sa_defrag_extent *new)
2163 {
2164 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2165 	struct old_sa_defrag_extent *old, *tmp;
2166 	int ret;
2167 
2168 	new->path = path;
2169 
2170 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2171 		ret = iterate_inodes_from_logical(old->bytenr, fs_info,
2172 						  path, record_one_backref,
2173 						  old);
2174 		BUG_ON(ret < 0 && ret != -ENOENT);
2175 
2176 		/* no backref to be processed for this extent */
2177 		if (!old->count) {
2178 			list_del(&old->list);
2179 			kfree(old);
2180 		}
2181 	}
2182 
2183 	if (list_empty(&new->head))
2184 		return false;
2185 
2186 	return true;
2187 }
2188 
2189 static int relink_is_mergable(struct extent_buffer *leaf,
2190 			      struct btrfs_file_extent_item *fi,
2191 			      u64 disk_bytenr)
2192 {
2193 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2194 		return 0;
2195 
2196 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2197 		return 0;
2198 
2199 	if (btrfs_file_extent_compression(leaf, fi) ||
2200 	    btrfs_file_extent_encryption(leaf, fi) ||
2201 	    btrfs_file_extent_other_encoding(leaf, fi))
2202 		return 0;
2203 
2204 	return 1;
2205 }
2206 
2207 /*
2208  * Note the backref might has changed, and in this case we just return 0.
2209  */
2210 static noinline int relink_extent_backref(struct btrfs_path *path,
2211 				 struct sa_defrag_extent_backref *prev,
2212 				 struct sa_defrag_extent_backref *backref)
2213 {
2214 	struct btrfs_file_extent_item *extent;
2215 	struct btrfs_file_extent_item *item;
2216 	struct btrfs_ordered_extent *ordered;
2217 	struct btrfs_trans_handle *trans;
2218 	struct btrfs_fs_info *fs_info;
2219 	struct btrfs_root *root;
2220 	struct btrfs_key key;
2221 	struct extent_buffer *leaf;
2222 	struct old_sa_defrag_extent *old = backref->old;
2223 	struct new_sa_defrag_extent *new = old->new;
2224 	struct inode *src_inode = new->inode;
2225 	struct inode *inode;
2226 	struct extent_state *cached = NULL;
2227 	int ret = 0;
2228 	u64 start;
2229 	u64 len;
2230 	u64 lock_start;
2231 	u64 lock_end;
2232 	bool merge = false;
2233 	int index;
2234 
2235 	if (prev && prev->root_id == backref->root_id &&
2236 	    prev->inum == backref->inum &&
2237 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2238 		merge = true;
2239 
2240 	/* step 1: get root */
2241 	key.objectid = backref->root_id;
2242 	key.type = BTRFS_ROOT_ITEM_KEY;
2243 	key.offset = (u64)-1;
2244 
2245 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2246 	index = srcu_read_lock(&fs_info->subvol_srcu);
2247 
2248 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2249 	if (IS_ERR(root)) {
2250 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2251 		if (PTR_ERR(root) == -ENOENT)
2252 			return 0;
2253 		return PTR_ERR(root);
2254 	}
2255 	if (btrfs_root_refs(&root->root_item) == 0) {
2256 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2257 		/* parse ENOENT to 0 */
2258 		return 0;
2259 	}
2260 
2261 	/* step 2: get inode */
2262 	key.objectid = backref->inum;
2263 	key.type = BTRFS_INODE_ITEM_KEY;
2264 	key.offset = 0;
2265 
2266 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2267 	if (IS_ERR(inode)) {
2268 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2269 		return 0;
2270 	}
2271 
2272 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2273 
2274 	/* step 3: relink backref */
2275 	lock_start = backref->file_pos;
2276 	lock_end = backref->file_pos + backref->num_bytes - 1;
2277 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2278 			 0, &cached);
2279 
2280 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2281 	if (ordered) {
2282 		btrfs_put_ordered_extent(ordered);
2283 		goto out_unlock;
2284 	}
2285 
2286 	trans = btrfs_join_transaction(root);
2287 	if (IS_ERR(trans)) {
2288 		ret = PTR_ERR(trans);
2289 		goto out_unlock;
2290 	}
2291 
2292 	key.objectid = backref->inum;
2293 	key.type = BTRFS_EXTENT_DATA_KEY;
2294 	key.offset = backref->file_pos;
2295 
2296 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2297 	if (ret < 0) {
2298 		goto out_free_path;
2299 	} else if (ret > 0) {
2300 		ret = 0;
2301 		goto out_free_path;
2302 	}
2303 
2304 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2305 				struct btrfs_file_extent_item);
2306 
2307 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2308 	    backref->generation)
2309 		goto out_free_path;
2310 
2311 	btrfs_release_path(path);
2312 
2313 	start = backref->file_pos;
2314 	if (backref->extent_offset < old->extent_offset + old->offset)
2315 		start += old->extent_offset + old->offset -
2316 			 backref->extent_offset;
2317 
2318 	len = min(backref->extent_offset + backref->num_bytes,
2319 		  old->extent_offset + old->offset + old->len);
2320 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2321 
2322 	ret = btrfs_drop_extents(trans, root, inode, start,
2323 				 start + len, 1);
2324 	if (ret)
2325 		goto out_free_path;
2326 again:
2327 	key.objectid = btrfs_ino(inode);
2328 	key.type = BTRFS_EXTENT_DATA_KEY;
2329 	key.offset = start;
2330 
2331 	path->leave_spinning = 1;
2332 	if (merge) {
2333 		struct btrfs_file_extent_item *fi;
2334 		u64 extent_len;
2335 		struct btrfs_key found_key;
2336 
2337 		ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2338 		if (ret < 0)
2339 			goto out_free_path;
2340 
2341 		path->slots[0]--;
2342 		leaf = path->nodes[0];
2343 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2344 
2345 		fi = btrfs_item_ptr(leaf, path->slots[0],
2346 				    struct btrfs_file_extent_item);
2347 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2348 
2349 		if (relink_is_mergable(leaf, fi, new->bytenr) &&
2350 		    extent_len + found_key.offset == start) {
2351 			btrfs_set_file_extent_num_bytes(leaf, fi,
2352 							extent_len + len);
2353 			btrfs_mark_buffer_dirty(leaf);
2354 			inode_add_bytes(inode, len);
2355 
2356 			ret = 1;
2357 			goto out_free_path;
2358 		} else {
2359 			merge = false;
2360 			btrfs_release_path(path);
2361 			goto again;
2362 		}
2363 	}
2364 
2365 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2366 					sizeof(*extent));
2367 	if (ret) {
2368 		btrfs_abort_transaction(trans, root, ret);
2369 		goto out_free_path;
2370 	}
2371 
2372 	leaf = path->nodes[0];
2373 	item = btrfs_item_ptr(leaf, path->slots[0],
2374 				struct btrfs_file_extent_item);
2375 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2376 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2377 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2378 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2379 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2380 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2381 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2382 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2383 	btrfs_set_file_extent_encryption(leaf, item, 0);
2384 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2385 
2386 	btrfs_mark_buffer_dirty(leaf);
2387 	inode_add_bytes(inode, len);
2388 	btrfs_release_path(path);
2389 
2390 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2391 			new->disk_len, 0,
2392 			backref->root_id, backref->inum,
2393 			new->file_pos, 0);	/* start - extent_offset */
2394 	if (ret) {
2395 		btrfs_abort_transaction(trans, root, ret);
2396 		goto out_free_path;
2397 	}
2398 
2399 	ret = 1;
2400 out_free_path:
2401 	btrfs_release_path(path);
2402 	path->leave_spinning = 0;
2403 	btrfs_end_transaction(trans, root);
2404 out_unlock:
2405 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2406 			     &cached, GFP_NOFS);
2407 	iput(inode);
2408 	return ret;
2409 }
2410 
2411 static void relink_file_extents(struct new_sa_defrag_extent *new)
2412 {
2413 	struct btrfs_path *path;
2414 	struct old_sa_defrag_extent *old, *tmp;
2415 	struct sa_defrag_extent_backref *backref;
2416 	struct sa_defrag_extent_backref *prev = NULL;
2417 	struct inode *inode;
2418 	struct btrfs_root *root;
2419 	struct rb_node *node;
2420 	int ret;
2421 
2422 	inode = new->inode;
2423 	root = BTRFS_I(inode)->root;
2424 
2425 	path = btrfs_alloc_path();
2426 	if (!path)
2427 		return;
2428 
2429 	if (!record_extent_backrefs(path, new)) {
2430 		btrfs_free_path(path);
2431 		goto out;
2432 	}
2433 	btrfs_release_path(path);
2434 
2435 	while (1) {
2436 		node = rb_first(&new->root);
2437 		if (!node)
2438 			break;
2439 		rb_erase(node, &new->root);
2440 
2441 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2442 
2443 		ret = relink_extent_backref(path, prev, backref);
2444 		WARN_ON(ret < 0);
2445 
2446 		kfree(prev);
2447 
2448 		if (ret == 1)
2449 			prev = backref;
2450 		else
2451 			prev = NULL;
2452 		cond_resched();
2453 	}
2454 	kfree(prev);
2455 
2456 	btrfs_free_path(path);
2457 
2458 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2459 		list_del(&old->list);
2460 		kfree(old);
2461 	}
2462 out:
2463 	atomic_dec(&root->fs_info->defrag_running);
2464 	wake_up(&root->fs_info->transaction_wait);
2465 
2466 	kfree(new);
2467 }
2468 
2469 static struct new_sa_defrag_extent *
2470 record_old_file_extents(struct inode *inode,
2471 			struct btrfs_ordered_extent *ordered)
2472 {
2473 	struct btrfs_root *root = BTRFS_I(inode)->root;
2474 	struct btrfs_path *path;
2475 	struct btrfs_key key;
2476 	struct old_sa_defrag_extent *old, *tmp;
2477 	struct new_sa_defrag_extent *new;
2478 	int ret;
2479 
2480 	new = kmalloc(sizeof(*new), GFP_NOFS);
2481 	if (!new)
2482 		return NULL;
2483 
2484 	new->inode = inode;
2485 	new->file_pos = ordered->file_offset;
2486 	new->len = ordered->len;
2487 	new->bytenr = ordered->start;
2488 	new->disk_len = ordered->disk_len;
2489 	new->compress_type = ordered->compress_type;
2490 	new->root = RB_ROOT;
2491 	INIT_LIST_HEAD(&new->head);
2492 
2493 	path = btrfs_alloc_path();
2494 	if (!path)
2495 		goto out_kfree;
2496 
2497 	key.objectid = btrfs_ino(inode);
2498 	key.type = BTRFS_EXTENT_DATA_KEY;
2499 	key.offset = new->file_pos;
2500 
2501 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2502 	if (ret < 0)
2503 		goto out_free_path;
2504 	if (ret > 0 && path->slots[0] > 0)
2505 		path->slots[0]--;
2506 
2507 	/* find out all the old extents for the file range */
2508 	while (1) {
2509 		struct btrfs_file_extent_item *extent;
2510 		struct extent_buffer *l;
2511 		int slot;
2512 		u64 num_bytes;
2513 		u64 offset;
2514 		u64 end;
2515 		u64 disk_bytenr;
2516 		u64 extent_offset;
2517 
2518 		l = path->nodes[0];
2519 		slot = path->slots[0];
2520 
2521 		if (slot >= btrfs_header_nritems(l)) {
2522 			ret = btrfs_next_leaf(root, path);
2523 			if (ret < 0)
2524 				goto out_free_list;
2525 			else if (ret > 0)
2526 				break;
2527 			continue;
2528 		}
2529 
2530 		btrfs_item_key_to_cpu(l, &key, slot);
2531 
2532 		if (key.objectid != btrfs_ino(inode))
2533 			break;
2534 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2535 			break;
2536 		if (key.offset >= new->file_pos + new->len)
2537 			break;
2538 
2539 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2540 
2541 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2542 		if (key.offset + num_bytes < new->file_pos)
2543 			goto next;
2544 
2545 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2546 		if (!disk_bytenr)
2547 			goto next;
2548 
2549 		extent_offset = btrfs_file_extent_offset(l, extent);
2550 
2551 		old = kmalloc(sizeof(*old), GFP_NOFS);
2552 		if (!old)
2553 			goto out_free_list;
2554 
2555 		offset = max(new->file_pos, key.offset);
2556 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2557 
2558 		old->bytenr = disk_bytenr;
2559 		old->extent_offset = extent_offset;
2560 		old->offset = offset - key.offset;
2561 		old->len = end - offset;
2562 		old->new = new;
2563 		old->count = 0;
2564 		list_add_tail(&old->list, &new->head);
2565 next:
2566 		path->slots[0]++;
2567 		cond_resched();
2568 	}
2569 
2570 	btrfs_free_path(path);
2571 	atomic_inc(&root->fs_info->defrag_running);
2572 
2573 	return new;
2574 
2575 out_free_list:
2576 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2577 		list_del(&old->list);
2578 		kfree(old);
2579 	}
2580 out_free_path:
2581 	btrfs_free_path(path);
2582 out_kfree:
2583 	kfree(new);
2584 	return NULL;
2585 }
2586 
2587 /*
2588  * helper function for btrfs_finish_ordered_io, this
2589  * just reads in some of the csum leaves to prime them into ram
2590  * before we start the transaction.  It limits the amount of btree
2591  * reads required while inside the transaction.
2592  */
2593 /* as ordered data IO finishes, this gets called so we can finish
2594  * an ordered extent if the range of bytes in the file it covers are
2595  * fully written.
2596  */
2597 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2598 {
2599 	struct inode *inode = ordered_extent->inode;
2600 	struct btrfs_root *root = BTRFS_I(inode)->root;
2601 	struct btrfs_trans_handle *trans = NULL;
2602 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2603 	struct extent_state *cached_state = NULL;
2604 	struct new_sa_defrag_extent *new = NULL;
2605 	int compress_type = 0;
2606 	int ret;
2607 	bool nolock;
2608 
2609 	nolock = btrfs_is_free_space_inode(inode);
2610 
2611 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2612 		ret = -EIO;
2613 		goto out;
2614 	}
2615 
2616 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2617 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2618 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2619 		if (nolock)
2620 			trans = btrfs_join_transaction_nolock(root);
2621 		else
2622 			trans = btrfs_join_transaction(root);
2623 		if (IS_ERR(trans)) {
2624 			ret = PTR_ERR(trans);
2625 			trans = NULL;
2626 			goto out;
2627 		}
2628 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2629 		ret = btrfs_update_inode_fallback(trans, root, inode);
2630 		if (ret) /* -ENOMEM or corruption */
2631 			btrfs_abort_transaction(trans, root, ret);
2632 		goto out;
2633 	}
2634 
2635 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2636 			 ordered_extent->file_offset + ordered_extent->len - 1,
2637 			 0, &cached_state);
2638 
2639 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2640 			ordered_extent->file_offset + ordered_extent->len - 1,
2641 			EXTENT_DEFRAG, 1, cached_state);
2642 	if (ret) {
2643 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2644 		if (last_snapshot >= BTRFS_I(inode)->generation)
2645 			/* the inode is shared */
2646 			new = record_old_file_extents(inode, ordered_extent);
2647 
2648 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2649 			ordered_extent->file_offset + ordered_extent->len - 1,
2650 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2651 	}
2652 
2653 	if (nolock)
2654 		trans = btrfs_join_transaction_nolock(root);
2655 	else
2656 		trans = btrfs_join_transaction(root);
2657 	if (IS_ERR(trans)) {
2658 		ret = PTR_ERR(trans);
2659 		trans = NULL;
2660 		goto out_unlock;
2661 	}
2662 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2663 
2664 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2665 		compress_type = ordered_extent->compress_type;
2666 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2667 		BUG_ON(compress_type);
2668 		ret = btrfs_mark_extent_written(trans, inode,
2669 						ordered_extent->file_offset,
2670 						ordered_extent->file_offset +
2671 						ordered_extent->len);
2672 	} else {
2673 		BUG_ON(root == root->fs_info->tree_root);
2674 		ret = insert_reserved_file_extent(trans, inode,
2675 						ordered_extent->file_offset,
2676 						ordered_extent->start,
2677 						ordered_extent->disk_len,
2678 						ordered_extent->len,
2679 						ordered_extent->len,
2680 						compress_type, 0, 0,
2681 						BTRFS_FILE_EXTENT_REG);
2682 	}
2683 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2684 			   ordered_extent->file_offset, ordered_extent->len,
2685 			   trans->transid);
2686 	if (ret < 0) {
2687 		btrfs_abort_transaction(trans, root, ret);
2688 		goto out_unlock;
2689 	}
2690 
2691 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2692 			  &ordered_extent->list);
2693 
2694 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2695 	ret = btrfs_update_inode_fallback(trans, root, inode);
2696 	if (ret) { /* -ENOMEM or corruption */
2697 		btrfs_abort_transaction(trans, root, ret);
2698 		goto out_unlock;
2699 	}
2700 	ret = 0;
2701 out_unlock:
2702 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2703 			     ordered_extent->file_offset +
2704 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2705 out:
2706 	if (root != root->fs_info->tree_root)
2707 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2708 	if (trans)
2709 		btrfs_end_transaction(trans, root);
2710 
2711 	if (ret) {
2712 		clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2713 				      ordered_extent->file_offset +
2714 				      ordered_extent->len - 1, NULL, GFP_NOFS);
2715 
2716 		/*
2717 		 * If the ordered extent had an IOERR or something else went
2718 		 * wrong we need to return the space for this ordered extent
2719 		 * back to the allocator.
2720 		 */
2721 		if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2722 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2723 			btrfs_free_reserved_extent(root, ordered_extent->start,
2724 						   ordered_extent->disk_len);
2725 	}
2726 
2727 
2728 	/*
2729 	 * This needs to be done to make sure anybody waiting knows we are done
2730 	 * updating everything for this ordered extent.
2731 	 */
2732 	btrfs_remove_ordered_extent(inode, ordered_extent);
2733 
2734 	/* for snapshot-aware defrag */
2735 	if (new)
2736 		relink_file_extents(new);
2737 
2738 	/* once for us */
2739 	btrfs_put_ordered_extent(ordered_extent);
2740 	/* once for the tree */
2741 	btrfs_put_ordered_extent(ordered_extent);
2742 
2743 	return ret;
2744 }
2745 
2746 static void finish_ordered_fn(struct btrfs_work *work)
2747 {
2748 	struct btrfs_ordered_extent *ordered_extent;
2749 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2750 	btrfs_finish_ordered_io(ordered_extent);
2751 }
2752 
2753 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2754 				struct extent_state *state, int uptodate)
2755 {
2756 	struct inode *inode = page->mapping->host;
2757 	struct btrfs_root *root = BTRFS_I(inode)->root;
2758 	struct btrfs_ordered_extent *ordered_extent = NULL;
2759 	struct btrfs_workers *workers;
2760 
2761 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2762 
2763 	ClearPagePrivate2(page);
2764 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2765 					    end - start + 1, uptodate))
2766 		return 0;
2767 
2768 	ordered_extent->work.func = finish_ordered_fn;
2769 	ordered_extent->work.flags = 0;
2770 
2771 	if (btrfs_is_free_space_inode(inode))
2772 		workers = &root->fs_info->endio_freespace_worker;
2773 	else
2774 		workers = &root->fs_info->endio_write_workers;
2775 	btrfs_queue_worker(workers, &ordered_extent->work);
2776 
2777 	return 0;
2778 }
2779 
2780 /*
2781  * when reads are done, we need to check csums to verify the data is correct
2782  * if there's a match, we allow the bio to finish.  If not, the code in
2783  * extent_io.c will try to find good copies for us.
2784  */
2785 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2786 			       struct extent_state *state, int mirror)
2787 {
2788 	size_t offset = start - page_offset(page);
2789 	struct inode *inode = page->mapping->host;
2790 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2791 	char *kaddr;
2792 	u64 private = ~(u32)0;
2793 	int ret;
2794 	struct btrfs_root *root = BTRFS_I(inode)->root;
2795 	u32 csum = ~(u32)0;
2796 
2797 	if (PageChecked(page)) {
2798 		ClearPageChecked(page);
2799 		goto good;
2800 	}
2801 
2802 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2803 		goto good;
2804 
2805 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2806 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2807 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2808 				  GFP_NOFS);
2809 		return 0;
2810 	}
2811 
2812 	if (state && state->start == start) {
2813 		private = state->private;
2814 		ret = 0;
2815 	} else {
2816 		ret = get_state_private(io_tree, start, &private);
2817 	}
2818 	kaddr = kmap_atomic(page);
2819 	if (ret)
2820 		goto zeroit;
2821 
2822 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2823 	btrfs_csum_final(csum, (char *)&csum);
2824 	if (csum != private)
2825 		goto zeroit;
2826 
2827 	kunmap_atomic(kaddr);
2828 good:
2829 	return 0;
2830 
2831 zeroit:
2832 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2833 		       "private %llu\n",
2834 		       (unsigned long long)btrfs_ino(page->mapping->host),
2835 		       (unsigned long long)start, csum,
2836 		       (unsigned long long)private);
2837 	memset(kaddr + offset, 1, end - start + 1);
2838 	flush_dcache_page(page);
2839 	kunmap_atomic(kaddr);
2840 	if (private == 0)
2841 		return 0;
2842 	return -EIO;
2843 }
2844 
2845 struct delayed_iput {
2846 	struct list_head list;
2847 	struct inode *inode;
2848 };
2849 
2850 /* JDM: If this is fs-wide, why can't we add a pointer to
2851  * btrfs_inode instead and avoid the allocation? */
2852 void btrfs_add_delayed_iput(struct inode *inode)
2853 {
2854 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2855 	struct delayed_iput *delayed;
2856 
2857 	if (atomic_add_unless(&inode->i_count, -1, 1))
2858 		return;
2859 
2860 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2861 	delayed->inode = inode;
2862 
2863 	spin_lock(&fs_info->delayed_iput_lock);
2864 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2865 	spin_unlock(&fs_info->delayed_iput_lock);
2866 }
2867 
2868 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2869 {
2870 	LIST_HEAD(list);
2871 	struct btrfs_fs_info *fs_info = root->fs_info;
2872 	struct delayed_iput *delayed;
2873 	int empty;
2874 
2875 	spin_lock(&fs_info->delayed_iput_lock);
2876 	empty = list_empty(&fs_info->delayed_iputs);
2877 	spin_unlock(&fs_info->delayed_iput_lock);
2878 	if (empty)
2879 		return;
2880 
2881 	spin_lock(&fs_info->delayed_iput_lock);
2882 	list_splice_init(&fs_info->delayed_iputs, &list);
2883 	spin_unlock(&fs_info->delayed_iput_lock);
2884 
2885 	while (!list_empty(&list)) {
2886 		delayed = list_entry(list.next, struct delayed_iput, list);
2887 		list_del(&delayed->list);
2888 		iput(delayed->inode);
2889 		kfree(delayed);
2890 	}
2891 }
2892 
2893 /*
2894  * This is called in transaction commit time. If there are no orphan
2895  * files in the subvolume, it removes orphan item and frees block_rsv
2896  * structure.
2897  */
2898 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2899 			      struct btrfs_root *root)
2900 {
2901 	struct btrfs_block_rsv *block_rsv;
2902 	int ret;
2903 
2904 	if (atomic_read(&root->orphan_inodes) ||
2905 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2906 		return;
2907 
2908 	spin_lock(&root->orphan_lock);
2909 	if (atomic_read(&root->orphan_inodes)) {
2910 		spin_unlock(&root->orphan_lock);
2911 		return;
2912 	}
2913 
2914 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2915 		spin_unlock(&root->orphan_lock);
2916 		return;
2917 	}
2918 
2919 	block_rsv = root->orphan_block_rsv;
2920 	root->orphan_block_rsv = NULL;
2921 	spin_unlock(&root->orphan_lock);
2922 
2923 	if (root->orphan_item_inserted &&
2924 	    btrfs_root_refs(&root->root_item) > 0) {
2925 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2926 					    root->root_key.objectid);
2927 		BUG_ON(ret);
2928 		root->orphan_item_inserted = 0;
2929 	}
2930 
2931 	if (block_rsv) {
2932 		WARN_ON(block_rsv->size > 0);
2933 		btrfs_free_block_rsv(root, block_rsv);
2934 	}
2935 }
2936 
2937 /*
2938  * This creates an orphan entry for the given inode in case something goes
2939  * wrong in the middle of an unlink/truncate.
2940  *
2941  * NOTE: caller of this function should reserve 5 units of metadata for
2942  *	 this function.
2943  */
2944 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2945 {
2946 	struct btrfs_root *root = BTRFS_I(inode)->root;
2947 	struct btrfs_block_rsv *block_rsv = NULL;
2948 	int reserve = 0;
2949 	int insert = 0;
2950 	int ret;
2951 
2952 	if (!root->orphan_block_rsv) {
2953 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2954 		if (!block_rsv)
2955 			return -ENOMEM;
2956 	}
2957 
2958 	spin_lock(&root->orphan_lock);
2959 	if (!root->orphan_block_rsv) {
2960 		root->orphan_block_rsv = block_rsv;
2961 	} else if (block_rsv) {
2962 		btrfs_free_block_rsv(root, block_rsv);
2963 		block_rsv = NULL;
2964 	}
2965 
2966 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2967 			      &BTRFS_I(inode)->runtime_flags)) {
2968 #if 0
2969 		/*
2970 		 * For proper ENOSPC handling, we should do orphan
2971 		 * cleanup when mounting. But this introduces backward
2972 		 * compatibility issue.
2973 		 */
2974 		if (!xchg(&root->orphan_item_inserted, 1))
2975 			insert = 2;
2976 		else
2977 			insert = 1;
2978 #endif
2979 		insert = 1;
2980 		atomic_inc(&root->orphan_inodes);
2981 	}
2982 
2983 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2984 			      &BTRFS_I(inode)->runtime_flags))
2985 		reserve = 1;
2986 	spin_unlock(&root->orphan_lock);
2987 
2988 	/* grab metadata reservation from transaction handle */
2989 	if (reserve) {
2990 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2991 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2992 	}
2993 
2994 	/* insert an orphan item to track this unlinked/truncated file */
2995 	if (insert >= 1) {
2996 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2997 		if (ret && ret != -EEXIST) {
2998 			clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2999 				  &BTRFS_I(inode)->runtime_flags);
3000 			btrfs_abort_transaction(trans, root, ret);
3001 			return ret;
3002 		}
3003 		ret = 0;
3004 	}
3005 
3006 	/* insert an orphan item to track subvolume contains orphan files */
3007 	if (insert >= 2) {
3008 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3009 					       root->root_key.objectid);
3010 		if (ret && ret != -EEXIST) {
3011 			btrfs_abort_transaction(trans, root, ret);
3012 			return ret;
3013 		}
3014 	}
3015 	return 0;
3016 }
3017 
3018 /*
3019  * We have done the truncate/delete so we can go ahead and remove the orphan
3020  * item for this particular inode.
3021  */
3022 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
3023 {
3024 	struct btrfs_root *root = BTRFS_I(inode)->root;
3025 	int delete_item = 0;
3026 	int release_rsv = 0;
3027 	int ret = 0;
3028 
3029 	spin_lock(&root->orphan_lock);
3030 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3031 			       &BTRFS_I(inode)->runtime_flags))
3032 		delete_item = 1;
3033 
3034 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3035 			       &BTRFS_I(inode)->runtime_flags))
3036 		release_rsv = 1;
3037 	spin_unlock(&root->orphan_lock);
3038 
3039 	if (trans && delete_item) {
3040 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3041 		BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3042 	}
3043 
3044 	if (release_rsv) {
3045 		btrfs_orphan_release_metadata(inode);
3046 		atomic_dec(&root->orphan_inodes);
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 /*
3053  * this cleans up any orphans that may be left on the list from the last use
3054  * of this root.
3055  */
3056 int btrfs_orphan_cleanup(struct btrfs_root *root)
3057 {
3058 	struct btrfs_path *path;
3059 	struct extent_buffer *leaf;
3060 	struct btrfs_key key, found_key;
3061 	struct btrfs_trans_handle *trans;
3062 	struct inode *inode;
3063 	u64 last_objectid = 0;
3064 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3065 
3066 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3067 		return 0;
3068 
3069 	path = btrfs_alloc_path();
3070 	if (!path) {
3071 		ret = -ENOMEM;
3072 		goto out;
3073 	}
3074 	path->reada = -1;
3075 
3076 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3077 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3078 	key.offset = (u64)-1;
3079 
3080 	while (1) {
3081 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3082 		if (ret < 0)
3083 			goto out;
3084 
3085 		/*
3086 		 * if ret == 0 means we found what we were searching for, which
3087 		 * is weird, but possible, so only screw with path if we didn't
3088 		 * find the key and see if we have stuff that matches
3089 		 */
3090 		if (ret > 0) {
3091 			ret = 0;
3092 			if (path->slots[0] == 0)
3093 				break;
3094 			path->slots[0]--;
3095 		}
3096 
3097 		/* pull out the item */
3098 		leaf = path->nodes[0];
3099 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3100 
3101 		/* make sure the item matches what we want */
3102 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3103 			break;
3104 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3105 			break;
3106 
3107 		/* release the path since we're done with it */
3108 		btrfs_release_path(path);
3109 
3110 		/*
3111 		 * this is where we are basically btrfs_lookup, without the
3112 		 * crossing root thing.  we store the inode number in the
3113 		 * offset of the orphan item.
3114 		 */
3115 
3116 		if (found_key.offset == last_objectid) {
3117 			printk(KERN_ERR "btrfs: Error removing orphan entry, "
3118 			       "stopping orphan cleanup\n");
3119 			ret = -EINVAL;
3120 			goto out;
3121 		}
3122 
3123 		last_objectid = found_key.offset;
3124 
3125 		found_key.objectid = found_key.offset;
3126 		found_key.type = BTRFS_INODE_ITEM_KEY;
3127 		found_key.offset = 0;
3128 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3129 		ret = PTR_RET(inode);
3130 		if (ret && ret != -ESTALE)
3131 			goto out;
3132 
3133 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3134 			struct btrfs_root *dead_root;
3135 			struct btrfs_fs_info *fs_info = root->fs_info;
3136 			int is_dead_root = 0;
3137 
3138 			/*
3139 			 * this is an orphan in the tree root. Currently these
3140 			 * could come from 2 sources:
3141 			 *  a) a snapshot deletion in progress
3142 			 *  b) a free space cache inode
3143 			 * We need to distinguish those two, as the snapshot
3144 			 * orphan must not get deleted.
3145 			 * find_dead_roots already ran before us, so if this
3146 			 * is a snapshot deletion, we should find the root
3147 			 * in the dead_roots list
3148 			 */
3149 			spin_lock(&fs_info->trans_lock);
3150 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3151 					    root_list) {
3152 				if (dead_root->root_key.objectid ==
3153 				    found_key.objectid) {
3154 					is_dead_root = 1;
3155 					break;
3156 				}
3157 			}
3158 			spin_unlock(&fs_info->trans_lock);
3159 			if (is_dead_root) {
3160 				/* prevent this orphan from being found again */
3161 				key.offset = found_key.objectid - 1;
3162 				continue;
3163 			}
3164 		}
3165 		/*
3166 		 * Inode is already gone but the orphan item is still there,
3167 		 * kill the orphan item.
3168 		 */
3169 		if (ret == -ESTALE) {
3170 			trans = btrfs_start_transaction(root, 1);
3171 			if (IS_ERR(trans)) {
3172 				ret = PTR_ERR(trans);
3173 				goto out;
3174 			}
3175 			printk(KERN_ERR "auto deleting %Lu\n",
3176 			       found_key.objectid);
3177 			ret = btrfs_del_orphan_item(trans, root,
3178 						    found_key.objectid);
3179 			BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3180 			btrfs_end_transaction(trans, root);
3181 			continue;
3182 		}
3183 
3184 		/*
3185 		 * add this inode to the orphan list so btrfs_orphan_del does
3186 		 * the proper thing when we hit it
3187 		 */
3188 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3189 			&BTRFS_I(inode)->runtime_flags);
3190 		atomic_inc(&root->orphan_inodes);
3191 
3192 		/* if we have links, this was a truncate, lets do that */
3193 		if (inode->i_nlink) {
3194 			if (!S_ISREG(inode->i_mode)) {
3195 				WARN_ON(1);
3196 				iput(inode);
3197 				continue;
3198 			}
3199 			nr_truncate++;
3200 
3201 			/* 1 for the orphan item deletion. */
3202 			trans = btrfs_start_transaction(root, 1);
3203 			if (IS_ERR(trans)) {
3204 				ret = PTR_ERR(trans);
3205 				goto out;
3206 			}
3207 			ret = btrfs_orphan_add(trans, inode);
3208 			btrfs_end_transaction(trans, root);
3209 			if (ret)
3210 				goto out;
3211 
3212 			ret = btrfs_truncate(inode);
3213 			if (ret)
3214 				btrfs_orphan_del(NULL, inode);
3215 		} else {
3216 			nr_unlink++;
3217 		}
3218 
3219 		/* this will do delete_inode and everything for us */
3220 		iput(inode);
3221 		if (ret)
3222 			goto out;
3223 	}
3224 	/* release the path since we're done with it */
3225 	btrfs_release_path(path);
3226 
3227 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3228 
3229 	if (root->orphan_block_rsv)
3230 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3231 					(u64)-1);
3232 
3233 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
3234 		trans = btrfs_join_transaction(root);
3235 		if (!IS_ERR(trans))
3236 			btrfs_end_transaction(trans, root);
3237 	}
3238 
3239 	if (nr_unlink)
3240 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
3241 	if (nr_truncate)
3242 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
3243 
3244 out:
3245 	if (ret)
3246 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
3247 	btrfs_free_path(path);
3248 	return ret;
3249 }
3250 
3251 /*
3252  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3253  * don't find any xattrs, we know there can't be any acls.
3254  *
3255  * slot is the slot the inode is in, objectid is the objectid of the inode
3256  */
3257 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3258 					  int slot, u64 objectid)
3259 {
3260 	u32 nritems = btrfs_header_nritems(leaf);
3261 	struct btrfs_key found_key;
3262 	int scanned = 0;
3263 
3264 	slot++;
3265 	while (slot < nritems) {
3266 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3267 
3268 		/* we found a different objectid, there must not be acls */
3269 		if (found_key.objectid != objectid)
3270 			return 0;
3271 
3272 		/* we found an xattr, assume we've got an acl */
3273 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
3274 			return 1;
3275 
3276 		/*
3277 		 * we found a key greater than an xattr key, there can't
3278 		 * be any acls later on
3279 		 */
3280 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3281 			return 0;
3282 
3283 		slot++;
3284 		scanned++;
3285 
3286 		/*
3287 		 * it goes inode, inode backrefs, xattrs, extents,
3288 		 * so if there are a ton of hard links to an inode there can
3289 		 * be a lot of backrefs.  Don't waste time searching too hard,
3290 		 * this is just an optimization
3291 		 */
3292 		if (scanned >= 8)
3293 			break;
3294 	}
3295 	/* we hit the end of the leaf before we found an xattr or
3296 	 * something larger than an xattr.  We have to assume the inode
3297 	 * has acls
3298 	 */
3299 	return 1;
3300 }
3301 
3302 /*
3303  * read an inode from the btree into the in-memory inode
3304  */
3305 static void btrfs_read_locked_inode(struct inode *inode)
3306 {
3307 	struct btrfs_path *path;
3308 	struct extent_buffer *leaf;
3309 	struct btrfs_inode_item *inode_item;
3310 	struct btrfs_timespec *tspec;
3311 	struct btrfs_root *root = BTRFS_I(inode)->root;
3312 	struct btrfs_key location;
3313 	int maybe_acls;
3314 	u32 rdev;
3315 	int ret;
3316 	bool filled = false;
3317 
3318 	ret = btrfs_fill_inode(inode, &rdev);
3319 	if (!ret)
3320 		filled = true;
3321 
3322 	path = btrfs_alloc_path();
3323 	if (!path)
3324 		goto make_bad;
3325 
3326 	path->leave_spinning = 1;
3327 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3328 
3329 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3330 	if (ret)
3331 		goto make_bad;
3332 
3333 	leaf = path->nodes[0];
3334 
3335 	if (filled)
3336 		goto cache_acl;
3337 
3338 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3339 				    struct btrfs_inode_item);
3340 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3341 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3342 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3343 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3344 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3345 
3346 	tspec = btrfs_inode_atime(inode_item);
3347 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3348 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3349 
3350 	tspec = btrfs_inode_mtime(inode_item);
3351 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3352 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3353 
3354 	tspec = btrfs_inode_ctime(inode_item);
3355 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3356 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3357 
3358 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3359 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3360 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3361 
3362 	/*
3363 	 * If we were modified in the current generation and evicted from memory
3364 	 * and then re-read we need to do a full sync since we don't have any
3365 	 * idea about which extents were modified before we were evicted from
3366 	 * cache.
3367 	 */
3368 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3369 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3370 			&BTRFS_I(inode)->runtime_flags);
3371 
3372 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3373 	inode->i_generation = BTRFS_I(inode)->generation;
3374 	inode->i_rdev = 0;
3375 	rdev = btrfs_inode_rdev(leaf, inode_item);
3376 
3377 	BTRFS_I(inode)->index_cnt = (u64)-1;
3378 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3379 cache_acl:
3380 	/*
3381 	 * try to precache a NULL acl entry for files that don't have
3382 	 * any xattrs or acls
3383 	 */
3384 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3385 					   btrfs_ino(inode));
3386 	if (!maybe_acls)
3387 		cache_no_acl(inode);
3388 
3389 	btrfs_free_path(path);
3390 
3391 	switch (inode->i_mode & S_IFMT) {
3392 	case S_IFREG:
3393 		inode->i_mapping->a_ops = &btrfs_aops;
3394 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3395 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3396 		inode->i_fop = &btrfs_file_operations;
3397 		inode->i_op = &btrfs_file_inode_operations;
3398 		break;
3399 	case S_IFDIR:
3400 		inode->i_fop = &btrfs_dir_file_operations;
3401 		if (root == root->fs_info->tree_root)
3402 			inode->i_op = &btrfs_dir_ro_inode_operations;
3403 		else
3404 			inode->i_op = &btrfs_dir_inode_operations;
3405 		break;
3406 	case S_IFLNK:
3407 		inode->i_op = &btrfs_symlink_inode_operations;
3408 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3409 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3410 		break;
3411 	default:
3412 		inode->i_op = &btrfs_special_inode_operations;
3413 		init_special_inode(inode, inode->i_mode, rdev);
3414 		break;
3415 	}
3416 
3417 	btrfs_update_iflags(inode);
3418 	return;
3419 
3420 make_bad:
3421 	btrfs_free_path(path);
3422 	make_bad_inode(inode);
3423 }
3424 
3425 /*
3426  * given a leaf and an inode, copy the inode fields into the leaf
3427  */
3428 static void fill_inode_item(struct btrfs_trans_handle *trans,
3429 			    struct extent_buffer *leaf,
3430 			    struct btrfs_inode_item *item,
3431 			    struct inode *inode)
3432 {
3433 	struct btrfs_map_token token;
3434 
3435 	btrfs_init_map_token(&token);
3436 
3437 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3438 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3439 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3440 				   &token);
3441 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3442 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3443 
3444 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3445 				     inode->i_atime.tv_sec, &token);
3446 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3447 				      inode->i_atime.tv_nsec, &token);
3448 
3449 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3450 				     inode->i_mtime.tv_sec, &token);
3451 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3452 				      inode->i_mtime.tv_nsec, &token);
3453 
3454 	btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3455 				     inode->i_ctime.tv_sec, &token);
3456 	btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3457 				      inode->i_ctime.tv_nsec, &token);
3458 
3459 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3460 				     &token);
3461 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3462 					 &token);
3463 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3464 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3465 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3466 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3467 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3468 }
3469 
3470 /*
3471  * copy everything in the in-memory inode into the btree.
3472  */
3473 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3474 				struct btrfs_root *root, struct inode *inode)
3475 {
3476 	struct btrfs_inode_item *inode_item;
3477 	struct btrfs_path *path;
3478 	struct extent_buffer *leaf;
3479 	int ret;
3480 
3481 	path = btrfs_alloc_path();
3482 	if (!path)
3483 		return -ENOMEM;
3484 
3485 	path->leave_spinning = 1;
3486 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3487 				 1);
3488 	if (ret) {
3489 		if (ret > 0)
3490 			ret = -ENOENT;
3491 		goto failed;
3492 	}
3493 
3494 	btrfs_unlock_up_safe(path, 1);
3495 	leaf = path->nodes[0];
3496 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3497 				    struct btrfs_inode_item);
3498 
3499 	fill_inode_item(trans, leaf, inode_item, inode);
3500 	btrfs_mark_buffer_dirty(leaf);
3501 	btrfs_set_inode_last_trans(trans, inode);
3502 	ret = 0;
3503 failed:
3504 	btrfs_free_path(path);
3505 	return ret;
3506 }
3507 
3508 /*
3509  * copy everything in the in-memory inode into the btree.
3510  */
3511 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3512 				struct btrfs_root *root, struct inode *inode)
3513 {
3514 	int ret;
3515 
3516 	/*
3517 	 * If the inode is a free space inode, we can deadlock during commit
3518 	 * if we put it into the delayed code.
3519 	 *
3520 	 * The data relocation inode should also be directly updated
3521 	 * without delay
3522 	 */
3523 	if (!btrfs_is_free_space_inode(inode)
3524 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3525 		btrfs_update_root_times(trans, root);
3526 
3527 		ret = btrfs_delayed_update_inode(trans, root, inode);
3528 		if (!ret)
3529 			btrfs_set_inode_last_trans(trans, inode);
3530 		return ret;
3531 	}
3532 
3533 	return btrfs_update_inode_item(trans, root, inode);
3534 }
3535 
3536 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3537 					 struct btrfs_root *root,
3538 					 struct inode *inode)
3539 {
3540 	int ret;
3541 
3542 	ret = btrfs_update_inode(trans, root, inode);
3543 	if (ret == -ENOSPC)
3544 		return btrfs_update_inode_item(trans, root, inode);
3545 	return ret;
3546 }
3547 
3548 /*
3549  * unlink helper that gets used here in inode.c and in the tree logging
3550  * recovery code.  It remove a link in a directory with a given name, and
3551  * also drops the back refs in the inode to the directory
3552  */
3553 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3554 				struct btrfs_root *root,
3555 				struct inode *dir, struct inode *inode,
3556 				const char *name, int name_len)
3557 {
3558 	struct btrfs_path *path;
3559 	int ret = 0;
3560 	struct extent_buffer *leaf;
3561 	struct btrfs_dir_item *di;
3562 	struct btrfs_key key;
3563 	u64 index;
3564 	u64 ino = btrfs_ino(inode);
3565 	u64 dir_ino = btrfs_ino(dir);
3566 
3567 	path = btrfs_alloc_path();
3568 	if (!path) {
3569 		ret = -ENOMEM;
3570 		goto out;
3571 	}
3572 
3573 	path->leave_spinning = 1;
3574 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3575 				    name, name_len, -1);
3576 	if (IS_ERR(di)) {
3577 		ret = PTR_ERR(di);
3578 		goto err;
3579 	}
3580 	if (!di) {
3581 		ret = -ENOENT;
3582 		goto err;
3583 	}
3584 	leaf = path->nodes[0];
3585 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3586 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3587 	if (ret)
3588 		goto err;
3589 	btrfs_release_path(path);
3590 
3591 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3592 				  dir_ino, &index);
3593 	if (ret) {
3594 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
3595 		       "inode %llu parent %llu\n", name_len, name,
3596 		       (unsigned long long)ino, (unsigned long long)dir_ino);
3597 		btrfs_abort_transaction(trans, root, ret);
3598 		goto err;
3599 	}
3600 
3601 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3602 	if (ret) {
3603 		btrfs_abort_transaction(trans, root, ret);
3604 		goto err;
3605 	}
3606 
3607 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3608 					 inode, dir_ino);
3609 	if (ret != 0 && ret != -ENOENT) {
3610 		btrfs_abort_transaction(trans, root, ret);
3611 		goto err;
3612 	}
3613 
3614 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3615 					   dir, index);
3616 	if (ret == -ENOENT)
3617 		ret = 0;
3618 err:
3619 	btrfs_free_path(path);
3620 	if (ret)
3621 		goto out;
3622 
3623 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3624 	inode_inc_iversion(inode);
3625 	inode_inc_iversion(dir);
3626 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3627 	ret = btrfs_update_inode(trans, root, dir);
3628 out:
3629 	return ret;
3630 }
3631 
3632 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3633 		       struct btrfs_root *root,
3634 		       struct inode *dir, struct inode *inode,
3635 		       const char *name, int name_len)
3636 {
3637 	int ret;
3638 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3639 	if (!ret) {
3640 		btrfs_drop_nlink(inode);
3641 		ret = btrfs_update_inode(trans, root, inode);
3642 	}
3643 	return ret;
3644 }
3645 
3646 
3647 /* helper to check if there is any shared block in the path */
3648 static int check_path_shared(struct btrfs_root *root,
3649 			     struct btrfs_path *path)
3650 {
3651 	struct extent_buffer *eb;
3652 	int level;
3653 	u64 refs = 1;
3654 
3655 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
3656 		int ret;
3657 
3658 		if (!path->nodes[level])
3659 			break;
3660 		eb = path->nodes[level];
3661 		if (!btrfs_block_can_be_shared(root, eb))
3662 			continue;
3663 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
3664 					       &refs, NULL);
3665 		if (refs > 1)
3666 			return 1;
3667 	}
3668 	return 0;
3669 }
3670 
3671 /*
3672  * helper to start transaction for unlink and rmdir.
3673  *
3674  * unlink and rmdir are special in btrfs, they do not always free space.
3675  * so in enospc case, we should make sure they will free space before
3676  * allowing them to use the global metadata reservation.
3677  */
3678 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
3679 						       struct dentry *dentry)
3680 {
3681 	struct btrfs_trans_handle *trans;
3682 	struct btrfs_root *root = BTRFS_I(dir)->root;
3683 	struct btrfs_path *path;
3684 	struct btrfs_dir_item *di;
3685 	struct inode *inode = dentry->d_inode;
3686 	u64 index;
3687 	int check_link = 1;
3688 	int err = -ENOSPC;
3689 	int ret;
3690 	u64 ino = btrfs_ino(inode);
3691 	u64 dir_ino = btrfs_ino(dir);
3692 
3693 	/*
3694 	 * 1 for the possible orphan item
3695 	 * 1 for the dir item
3696 	 * 1 for the dir index
3697 	 * 1 for the inode ref
3698 	 * 1 for the inode
3699 	 */
3700 	trans = btrfs_start_transaction(root, 5);
3701 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3702 		return trans;
3703 
3704 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
3705 		return ERR_PTR(-ENOSPC);
3706 
3707 	/* check if there is someone else holds reference */
3708 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
3709 		return ERR_PTR(-ENOSPC);
3710 
3711 	if (atomic_read(&inode->i_count) > 2)
3712 		return ERR_PTR(-ENOSPC);
3713 
3714 	if (xchg(&root->fs_info->enospc_unlink, 1))
3715 		return ERR_PTR(-ENOSPC);
3716 
3717 	path = btrfs_alloc_path();
3718 	if (!path) {
3719 		root->fs_info->enospc_unlink = 0;
3720 		return ERR_PTR(-ENOMEM);
3721 	}
3722 
3723 	/* 1 for the orphan item */
3724 	trans = btrfs_start_transaction(root, 1);
3725 	if (IS_ERR(trans)) {
3726 		btrfs_free_path(path);
3727 		root->fs_info->enospc_unlink = 0;
3728 		return trans;
3729 	}
3730 
3731 	path->skip_locking = 1;
3732 	path->search_commit_root = 1;
3733 
3734 	ret = btrfs_lookup_inode(trans, root, path,
3735 				&BTRFS_I(dir)->location, 0);
3736 	if (ret < 0) {
3737 		err = ret;
3738 		goto out;
3739 	}
3740 	if (ret == 0) {
3741 		if (check_path_shared(root, path))
3742 			goto out;
3743 	} else {
3744 		check_link = 0;
3745 	}
3746 	btrfs_release_path(path);
3747 
3748 	ret = btrfs_lookup_inode(trans, root, path,
3749 				&BTRFS_I(inode)->location, 0);
3750 	if (ret < 0) {
3751 		err = ret;
3752 		goto out;
3753 	}
3754 	if (ret == 0) {
3755 		if (check_path_shared(root, path))
3756 			goto out;
3757 	} else {
3758 		check_link = 0;
3759 	}
3760 	btrfs_release_path(path);
3761 
3762 	if (ret == 0 && S_ISREG(inode->i_mode)) {
3763 		ret = btrfs_lookup_file_extent(trans, root, path,
3764 					       ino, (u64)-1, 0);
3765 		if (ret < 0) {
3766 			err = ret;
3767 			goto out;
3768 		}
3769 		BUG_ON(ret == 0); /* Corruption */
3770 		if (check_path_shared(root, path))
3771 			goto out;
3772 		btrfs_release_path(path);
3773 	}
3774 
3775 	if (!check_link) {
3776 		err = 0;
3777 		goto out;
3778 	}
3779 
3780 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3781 				dentry->d_name.name, dentry->d_name.len, 0);
3782 	if (IS_ERR(di)) {
3783 		err = PTR_ERR(di);
3784 		goto out;
3785 	}
3786 	if (di) {
3787 		if (check_path_shared(root, path))
3788 			goto out;
3789 	} else {
3790 		err = 0;
3791 		goto out;
3792 	}
3793 	btrfs_release_path(path);
3794 
3795 	ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3796 					dentry->d_name.len, ino, dir_ino, 0,
3797 					&index);
3798 	if (ret) {
3799 		err = ret;
3800 		goto out;
3801 	}
3802 
3803 	if (check_path_shared(root, path))
3804 		goto out;
3805 
3806 	btrfs_release_path(path);
3807 
3808 	/*
3809 	 * This is a commit root search, if we can lookup inode item and other
3810 	 * relative items in the commit root, it means the transaction of
3811 	 * dir/file creation has been committed, and the dir index item that we
3812 	 * delay to insert has also been inserted into the commit root. So
3813 	 * we needn't worry about the delayed insertion of the dir index item
3814 	 * here.
3815 	 */
3816 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3817 				dentry->d_name.name, dentry->d_name.len, 0);
3818 	if (IS_ERR(di)) {
3819 		err = PTR_ERR(di);
3820 		goto out;
3821 	}
3822 	BUG_ON(ret == -ENOENT);
3823 	if (check_path_shared(root, path))
3824 		goto out;
3825 
3826 	err = 0;
3827 out:
3828 	btrfs_free_path(path);
3829 	/* Migrate the orphan reservation over */
3830 	if (!err)
3831 		err = btrfs_block_rsv_migrate(trans->block_rsv,
3832 				&root->fs_info->global_block_rsv,
3833 				trans->bytes_reserved);
3834 
3835 	if (err) {
3836 		btrfs_end_transaction(trans, root);
3837 		root->fs_info->enospc_unlink = 0;
3838 		return ERR_PTR(err);
3839 	}
3840 
3841 	trans->block_rsv = &root->fs_info->global_block_rsv;
3842 	return trans;
3843 }
3844 
3845 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3846 			       struct btrfs_root *root)
3847 {
3848 	if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3849 		btrfs_block_rsv_release(root, trans->block_rsv,
3850 					trans->bytes_reserved);
3851 		trans->block_rsv = &root->fs_info->trans_block_rsv;
3852 		BUG_ON(!root->fs_info->enospc_unlink);
3853 		root->fs_info->enospc_unlink = 0;
3854 	}
3855 	btrfs_end_transaction(trans, root);
3856 }
3857 
3858 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3859 {
3860 	struct btrfs_root *root = BTRFS_I(dir)->root;
3861 	struct btrfs_trans_handle *trans;
3862 	struct inode *inode = dentry->d_inode;
3863 	int ret;
3864 
3865 	trans = __unlink_start_trans(dir, dentry);
3866 	if (IS_ERR(trans))
3867 		return PTR_ERR(trans);
3868 
3869 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3870 
3871 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3872 				 dentry->d_name.name, dentry->d_name.len);
3873 	if (ret)
3874 		goto out;
3875 
3876 	if (inode->i_nlink == 0) {
3877 		ret = btrfs_orphan_add(trans, inode);
3878 		if (ret)
3879 			goto out;
3880 	}
3881 
3882 out:
3883 	__unlink_end_trans(trans, root);
3884 	btrfs_btree_balance_dirty(root);
3885 	return ret;
3886 }
3887 
3888 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3889 			struct btrfs_root *root,
3890 			struct inode *dir, u64 objectid,
3891 			const char *name, int name_len)
3892 {
3893 	struct btrfs_path *path;
3894 	struct extent_buffer *leaf;
3895 	struct btrfs_dir_item *di;
3896 	struct btrfs_key key;
3897 	u64 index;
3898 	int ret;
3899 	u64 dir_ino = btrfs_ino(dir);
3900 
3901 	path = btrfs_alloc_path();
3902 	if (!path)
3903 		return -ENOMEM;
3904 
3905 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3906 				   name, name_len, -1);
3907 	if (IS_ERR_OR_NULL(di)) {
3908 		if (!di)
3909 			ret = -ENOENT;
3910 		else
3911 			ret = PTR_ERR(di);
3912 		goto out;
3913 	}
3914 
3915 	leaf = path->nodes[0];
3916 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3917 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3918 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3919 	if (ret) {
3920 		btrfs_abort_transaction(trans, root, ret);
3921 		goto out;
3922 	}
3923 	btrfs_release_path(path);
3924 
3925 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3926 				 objectid, root->root_key.objectid,
3927 				 dir_ino, &index, name, name_len);
3928 	if (ret < 0) {
3929 		if (ret != -ENOENT) {
3930 			btrfs_abort_transaction(trans, root, ret);
3931 			goto out;
3932 		}
3933 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3934 						 name, name_len);
3935 		if (IS_ERR_OR_NULL(di)) {
3936 			if (!di)
3937 				ret = -ENOENT;
3938 			else
3939 				ret = PTR_ERR(di);
3940 			btrfs_abort_transaction(trans, root, ret);
3941 			goto out;
3942 		}
3943 
3944 		leaf = path->nodes[0];
3945 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3946 		btrfs_release_path(path);
3947 		index = key.offset;
3948 	}
3949 	btrfs_release_path(path);
3950 
3951 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3952 	if (ret) {
3953 		btrfs_abort_transaction(trans, root, ret);
3954 		goto out;
3955 	}
3956 
3957 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3958 	inode_inc_iversion(dir);
3959 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3960 	ret = btrfs_update_inode_fallback(trans, root, dir);
3961 	if (ret)
3962 		btrfs_abort_transaction(trans, root, ret);
3963 out:
3964 	btrfs_free_path(path);
3965 	return ret;
3966 }
3967 
3968 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3969 {
3970 	struct inode *inode = dentry->d_inode;
3971 	int err = 0;
3972 	struct btrfs_root *root = BTRFS_I(dir)->root;
3973 	struct btrfs_trans_handle *trans;
3974 
3975 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3976 		return -ENOTEMPTY;
3977 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3978 		return -EPERM;
3979 
3980 	trans = __unlink_start_trans(dir, dentry);
3981 	if (IS_ERR(trans))
3982 		return PTR_ERR(trans);
3983 
3984 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3985 		err = btrfs_unlink_subvol(trans, root, dir,
3986 					  BTRFS_I(inode)->location.objectid,
3987 					  dentry->d_name.name,
3988 					  dentry->d_name.len);
3989 		goto out;
3990 	}
3991 
3992 	err = btrfs_orphan_add(trans, inode);
3993 	if (err)
3994 		goto out;
3995 
3996 	/* now the directory is empty */
3997 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3998 				 dentry->d_name.name, dentry->d_name.len);
3999 	if (!err)
4000 		btrfs_i_size_write(inode, 0);
4001 out:
4002 	__unlink_end_trans(trans, root);
4003 	btrfs_btree_balance_dirty(root);
4004 
4005 	return err;
4006 }
4007 
4008 /*
4009  * this can truncate away extent items, csum items and directory items.
4010  * It starts at a high offset and removes keys until it can't find
4011  * any higher than new_size
4012  *
4013  * csum items that cross the new i_size are truncated to the new size
4014  * as well.
4015  *
4016  * min_type is the minimum key type to truncate down to.  If set to 0, this
4017  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4018  */
4019 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4020 			       struct btrfs_root *root,
4021 			       struct inode *inode,
4022 			       u64 new_size, u32 min_type)
4023 {
4024 	struct btrfs_path *path;
4025 	struct extent_buffer *leaf;
4026 	struct btrfs_file_extent_item *fi;
4027 	struct btrfs_key key;
4028 	struct btrfs_key found_key;
4029 	u64 extent_start = 0;
4030 	u64 extent_num_bytes = 0;
4031 	u64 extent_offset = 0;
4032 	u64 item_end = 0;
4033 	u32 found_type = (u8)-1;
4034 	int found_extent;
4035 	int del_item;
4036 	int pending_del_nr = 0;
4037 	int pending_del_slot = 0;
4038 	int extent_type = -1;
4039 	int ret;
4040 	int err = 0;
4041 	u64 ino = btrfs_ino(inode);
4042 
4043 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4044 
4045 	path = btrfs_alloc_path();
4046 	if (!path)
4047 		return -ENOMEM;
4048 	path->reada = -1;
4049 
4050 	/*
4051 	 * We want to drop from the next block forward in case this new size is
4052 	 * not block aligned since we will be keeping the last block of the
4053 	 * extent just the way it is.
4054 	 */
4055 	if (root->ref_cows || root == root->fs_info->tree_root)
4056 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4057 					root->sectorsize), (u64)-1, 0);
4058 
4059 	/*
4060 	 * This function is also used to drop the items in the log tree before
4061 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4062 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4063 	 * items.
4064 	 */
4065 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4066 		btrfs_kill_delayed_inode_items(inode);
4067 
4068 	key.objectid = ino;
4069 	key.offset = (u64)-1;
4070 	key.type = (u8)-1;
4071 
4072 search_again:
4073 	path->leave_spinning = 1;
4074 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4075 	if (ret < 0) {
4076 		err = ret;
4077 		goto out;
4078 	}
4079 
4080 	if (ret > 0) {
4081 		/* there are no items in the tree for us to truncate, we're
4082 		 * done
4083 		 */
4084 		if (path->slots[0] == 0)
4085 			goto out;
4086 		path->slots[0]--;
4087 	}
4088 
4089 	while (1) {
4090 		fi = NULL;
4091 		leaf = path->nodes[0];
4092 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4093 		found_type = btrfs_key_type(&found_key);
4094 
4095 		if (found_key.objectid != ino)
4096 			break;
4097 
4098 		if (found_type < min_type)
4099 			break;
4100 
4101 		item_end = found_key.offset;
4102 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4103 			fi = btrfs_item_ptr(leaf, path->slots[0],
4104 					    struct btrfs_file_extent_item);
4105 			extent_type = btrfs_file_extent_type(leaf, fi);
4106 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4107 				item_end +=
4108 				    btrfs_file_extent_num_bytes(leaf, fi);
4109 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4110 				item_end += btrfs_file_extent_inline_len(leaf,
4111 									 fi);
4112 			}
4113 			item_end--;
4114 		}
4115 		if (found_type > min_type) {
4116 			del_item = 1;
4117 		} else {
4118 			if (item_end < new_size)
4119 				break;
4120 			if (found_key.offset >= new_size)
4121 				del_item = 1;
4122 			else
4123 				del_item = 0;
4124 		}
4125 		found_extent = 0;
4126 		/* FIXME, shrink the extent if the ref count is only 1 */
4127 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4128 			goto delete;
4129 
4130 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4131 			u64 num_dec;
4132 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4133 			if (!del_item) {
4134 				u64 orig_num_bytes =
4135 					btrfs_file_extent_num_bytes(leaf, fi);
4136 				extent_num_bytes = ALIGN(new_size -
4137 						found_key.offset,
4138 						root->sectorsize);
4139 				btrfs_set_file_extent_num_bytes(leaf, fi,
4140 							 extent_num_bytes);
4141 				num_dec = (orig_num_bytes -
4142 					   extent_num_bytes);
4143 				if (root->ref_cows && extent_start != 0)
4144 					inode_sub_bytes(inode, num_dec);
4145 				btrfs_mark_buffer_dirty(leaf);
4146 			} else {
4147 				extent_num_bytes =
4148 					btrfs_file_extent_disk_num_bytes(leaf,
4149 									 fi);
4150 				extent_offset = found_key.offset -
4151 					btrfs_file_extent_offset(leaf, fi);
4152 
4153 				/* FIXME blocksize != 4096 */
4154 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4155 				if (extent_start != 0) {
4156 					found_extent = 1;
4157 					if (root->ref_cows)
4158 						inode_sub_bytes(inode, num_dec);
4159 				}
4160 			}
4161 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4162 			/*
4163 			 * we can't truncate inline items that have had
4164 			 * special encodings
4165 			 */
4166 			if (!del_item &&
4167 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4168 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4169 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4170 				u32 size = new_size - found_key.offset;
4171 
4172 				if (root->ref_cows) {
4173 					inode_sub_bytes(inode, item_end + 1 -
4174 							new_size);
4175 				}
4176 				size =
4177 				    btrfs_file_extent_calc_inline_size(size);
4178 				btrfs_truncate_item(trans, root, path,
4179 						    size, 1);
4180 			} else if (root->ref_cows) {
4181 				inode_sub_bytes(inode, item_end + 1 -
4182 						found_key.offset);
4183 			}
4184 		}
4185 delete:
4186 		if (del_item) {
4187 			if (!pending_del_nr) {
4188 				/* no pending yet, add ourselves */
4189 				pending_del_slot = path->slots[0];
4190 				pending_del_nr = 1;
4191 			} else if (pending_del_nr &&
4192 				   path->slots[0] + 1 == pending_del_slot) {
4193 				/* hop on the pending chunk */
4194 				pending_del_nr++;
4195 				pending_del_slot = path->slots[0];
4196 			} else {
4197 				BUG();
4198 			}
4199 		} else {
4200 			break;
4201 		}
4202 		if (found_extent && (root->ref_cows ||
4203 				     root == root->fs_info->tree_root)) {
4204 			btrfs_set_path_blocking(path);
4205 			ret = btrfs_free_extent(trans, root, extent_start,
4206 						extent_num_bytes, 0,
4207 						btrfs_header_owner(leaf),
4208 						ino, extent_offset, 0);
4209 			BUG_ON(ret);
4210 		}
4211 
4212 		if (found_type == BTRFS_INODE_ITEM_KEY)
4213 			break;
4214 
4215 		if (path->slots[0] == 0 ||
4216 		    path->slots[0] != pending_del_slot) {
4217 			if (pending_del_nr) {
4218 				ret = btrfs_del_items(trans, root, path,
4219 						pending_del_slot,
4220 						pending_del_nr);
4221 				if (ret) {
4222 					btrfs_abort_transaction(trans,
4223 								root, ret);
4224 					goto error;
4225 				}
4226 				pending_del_nr = 0;
4227 			}
4228 			btrfs_release_path(path);
4229 			goto search_again;
4230 		} else {
4231 			path->slots[0]--;
4232 		}
4233 	}
4234 out:
4235 	if (pending_del_nr) {
4236 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4237 				      pending_del_nr);
4238 		if (ret)
4239 			btrfs_abort_transaction(trans, root, ret);
4240 	}
4241 error:
4242 	btrfs_free_path(path);
4243 	return err;
4244 }
4245 
4246 /*
4247  * btrfs_truncate_page - read, zero a chunk and write a page
4248  * @inode - inode that we're zeroing
4249  * @from - the offset to start zeroing
4250  * @len - the length to zero, 0 to zero the entire range respective to the
4251  *	offset
4252  * @front - zero up to the offset instead of from the offset on
4253  *
4254  * This will find the page for the "from" offset and cow the page and zero the
4255  * part we want to zero.  This is used with truncate and hole punching.
4256  */
4257 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4258 			int front)
4259 {
4260 	struct address_space *mapping = inode->i_mapping;
4261 	struct btrfs_root *root = BTRFS_I(inode)->root;
4262 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4263 	struct btrfs_ordered_extent *ordered;
4264 	struct extent_state *cached_state = NULL;
4265 	char *kaddr;
4266 	u32 blocksize = root->sectorsize;
4267 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4268 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4269 	struct page *page;
4270 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4271 	int ret = 0;
4272 	u64 page_start;
4273 	u64 page_end;
4274 
4275 	if ((offset & (blocksize - 1)) == 0 &&
4276 	    (!len || ((len & (blocksize - 1)) == 0)))
4277 		goto out;
4278 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4279 	if (ret)
4280 		goto out;
4281 
4282 again:
4283 	page = find_or_create_page(mapping, index, mask);
4284 	if (!page) {
4285 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4286 		ret = -ENOMEM;
4287 		goto out;
4288 	}
4289 
4290 	page_start = page_offset(page);
4291 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4292 
4293 	if (!PageUptodate(page)) {
4294 		ret = btrfs_readpage(NULL, page);
4295 		lock_page(page);
4296 		if (page->mapping != mapping) {
4297 			unlock_page(page);
4298 			page_cache_release(page);
4299 			goto again;
4300 		}
4301 		if (!PageUptodate(page)) {
4302 			ret = -EIO;
4303 			goto out_unlock;
4304 		}
4305 	}
4306 	wait_on_page_writeback(page);
4307 
4308 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4309 	set_page_extent_mapped(page);
4310 
4311 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4312 	if (ordered) {
4313 		unlock_extent_cached(io_tree, page_start, page_end,
4314 				     &cached_state, GFP_NOFS);
4315 		unlock_page(page);
4316 		page_cache_release(page);
4317 		btrfs_start_ordered_extent(inode, ordered, 1);
4318 		btrfs_put_ordered_extent(ordered);
4319 		goto again;
4320 	}
4321 
4322 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4323 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4324 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4325 			  0, 0, &cached_state, GFP_NOFS);
4326 
4327 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4328 					&cached_state);
4329 	if (ret) {
4330 		unlock_extent_cached(io_tree, page_start, page_end,
4331 				     &cached_state, GFP_NOFS);
4332 		goto out_unlock;
4333 	}
4334 
4335 	if (offset != PAGE_CACHE_SIZE) {
4336 		if (!len)
4337 			len = PAGE_CACHE_SIZE - offset;
4338 		kaddr = kmap(page);
4339 		if (front)
4340 			memset(kaddr, 0, offset);
4341 		else
4342 			memset(kaddr + offset, 0, len);
4343 		flush_dcache_page(page);
4344 		kunmap(page);
4345 	}
4346 	ClearPageChecked(page);
4347 	set_page_dirty(page);
4348 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4349 			     GFP_NOFS);
4350 
4351 out_unlock:
4352 	if (ret)
4353 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4354 	unlock_page(page);
4355 	page_cache_release(page);
4356 out:
4357 	return ret;
4358 }
4359 
4360 /*
4361  * This function puts in dummy file extents for the area we're creating a hole
4362  * for.  So if we are truncating this file to a larger size we need to insert
4363  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4364  * the range between oldsize and size
4365  */
4366 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4367 {
4368 	struct btrfs_trans_handle *trans;
4369 	struct btrfs_root *root = BTRFS_I(inode)->root;
4370 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4371 	struct extent_map *em = NULL;
4372 	struct extent_state *cached_state = NULL;
4373 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4374 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4375 	u64 block_end = ALIGN(size, root->sectorsize);
4376 	u64 last_byte;
4377 	u64 cur_offset;
4378 	u64 hole_size;
4379 	int err = 0;
4380 
4381 	if (size <= hole_start)
4382 		return 0;
4383 
4384 	while (1) {
4385 		struct btrfs_ordered_extent *ordered;
4386 		btrfs_wait_ordered_range(inode, hole_start,
4387 					 block_end - hole_start);
4388 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4389 				 &cached_state);
4390 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4391 		if (!ordered)
4392 			break;
4393 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4394 				     &cached_state, GFP_NOFS);
4395 		btrfs_put_ordered_extent(ordered);
4396 	}
4397 
4398 	cur_offset = hole_start;
4399 	while (1) {
4400 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4401 				block_end - cur_offset, 0);
4402 		if (IS_ERR(em)) {
4403 			err = PTR_ERR(em);
4404 			em = NULL;
4405 			break;
4406 		}
4407 		last_byte = min(extent_map_end(em), block_end);
4408 		last_byte = ALIGN(last_byte , root->sectorsize);
4409 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4410 			struct extent_map *hole_em;
4411 			hole_size = last_byte - cur_offset;
4412 
4413 			trans = btrfs_start_transaction(root, 3);
4414 			if (IS_ERR(trans)) {
4415 				err = PTR_ERR(trans);
4416 				break;
4417 			}
4418 
4419 			err = btrfs_drop_extents(trans, root, inode,
4420 						 cur_offset,
4421 						 cur_offset + hole_size, 1);
4422 			if (err) {
4423 				btrfs_abort_transaction(trans, root, err);
4424 				btrfs_end_transaction(trans, root);
4425 				break;
4426 			}
4427 
4428 			err = btrfs_insert_file_extent(trans, root,
4429 					btrfs_ino(inode), cur_offset, 0,
4430 					0, hole_size, 0, hole_size,
4431 					0, 0, 0);
4432 			if (err) {
4433 				btrfs_abort_transaction(trans, root, err);
4434 				btrfs_end_transaction(trans, root);
4435 				break;
4436 			}
4437 
4438 			btrfs_drop_extent_cache(inode, cur_offset,
4439 						cur_offset + hole_size - 1, 0);
4440 			hole_em = alloc_extent_map();
4441 			if (!hole_em) {
4442 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4443 					&BTRFS_I(inode)->runtime_flags);
4444 				goto next;
4445 			}
4446 			hole_em->start = cur_offset;
4447 			hole_em->len = hole_size;
4448 			hole_em->orig_start = cur_offset;
4449 
4450 			hole_em->block_start = EXTENT_MAP_HOLE;
4451 			hole_em->block_len = 0;
4452 			hole_em->orig_block_len = 0;
4453 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4454 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4455 			hole_em->generation = trans->transid;
4456 
4457 			while (1) {
4458 				write_lock(&em_tree->lock);
4459 				err = add_extent_mapping(em_tree, hole_em);
4460 				if (!err)
4461 					list_move(&hole_em->list,
4462 						  &em_tree->modified_extents);
4463 				write_unlock(&em_tree->lock);
4464 				if (err != -EEXIST)
4465 					break;
4466 				btrfs_drop_extent_cache(inode, cur_offset,
4467 							cur_offset +
4468 							hole_size - 1, 0);
4469 			}
4470 			free_extent_map(hole_em);
4471 next:
4472 			btrfs_update_inode(trans, root, inode);
4473 			btrfs_end_transaction(trans, root);
4474 		}
4475 		free_extent_map(em);
4476 		em = NULL;
4477 		cur_offset = last_byte;
4478 		if (cur_offset >= block_end)
4479 			break;
4480 	}
4481 
4482 	free_extent_map(em);
4483 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4484 			     GFP_NOFS);
4485 	return err;
4486 }
4487 
4488 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4489 {
4490 	struct btrfs_root *root = BTRFS_I(inode)->root;
4491 	struct btrfs_trans_handle *trans;
4492 	loff_t oldsize = i_size_read(inode);
4493 	loff_t newsize = attr->ia_size;
4494 	int mask = attr->ia_valid;
4495 	int ret;
4496 
4497 	if (newsize == oldsize)
4498 		return 0;
4499 
4500 	/*
4501 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4502 	 * special case where we need to update the times despite not having
4503 	 * these flags set.  For all other operations the VFS set these flags
4504 	 * explicitly if it wants a timestamp update.
4505 	 */
4506 	if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4507 		inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4508 
4509 	if (newsize > oldsize) {
4510 		truncate_pagecache(inode, oldsize, newsize);
4511 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4512 		if (ret)
4513 			return ret;
4514 
4515 		trans = btrfs_start_transaction(root, 1);
4516 		if (IS_ERR(trans))
4517 			return PTR_ERR(trans);
4518 
4519 		i_size_write(inode, newsize);
4520 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4521 		ret = btrfs_update_inode(trans, root, inode);
4522 		btrfs_end_transaction(trans, root);
4523 	} else {
4524 
4525 		/*
4526 		 * We're truncating a file that used to have good data down to
4527 		 * zero. Make sure it gets into the ordered flush list so that
4528 		 * any new writes get down to disk quickly.
4529 		 */
4530 		if (newsize == 0)
4531 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4532 				&BTRFS_I(inode)->runtime_flags);
4533 
4534 		/*
4535 		 * 1 for the orphan item we're going to add
4536 		 * 1 for the orphan item deletion.
4537 		 */
4538 		trans = btrfs_start_transaction(root, 2);
4539 		if (IS_ERR(trans))
4540 			return PTR_ERR(trans);
4541 
4542 		/*
4543 		 * We need to do this in case we fail at _any_ point during the
4544 		 * actual truncate.  Once we do the truncate_setsize we could
4545 		 * invalidate pages which forces any outstanding ordered io to
4546 		 * be instantly completed which will give us extents that need
4547 		 * to be truncated.  If we fail to get an orphan inode down we
4548 		 * could have left over extents that were never meant to live,
4549 		 * so we need to garuntee from this point on that everything
4550 		 * will be consistent.
4551 		 */
4552 		ret = btrfs_orphan_add(trans, inode);
4553 		btrfs_end_transaction(trans, root);
4554 		if (ret)
4555 			return ret;
4556 
4557 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4558 		truncate_setsize(inode, newsize);
4559 
4560 		/* Disable nonlocked read DIO to avoid the end less truncate */
4561 		btrfs_inode_block_unlocked_dio(inode);
4562 		inode_dio_wait(inode);
4563 		btrfs_inode_resume_unlocked_dio(inode);
4564 
4565 		ret = btrfs_truncate(inode);
4566 		if (ret && inode->i_nlink)
4567 			btrfs_orphan_del(NULL, inode);
4568 	}
4569 
4570 	return ret;
4571 }
4572 
4573 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4574 {
4575 	struct inode *inode = dentry->d_inode;
4576 	struct btrfs_root *root = BTRFS_I(inode)->root;
4577 	int err;
4578 
4579 	if (btrfs_root_readonly(root))
4580 		return -EROFS;
4581 
4582 	err = inode_change_ok(inode, attr);
4583 	if (err)
4584 		return err;
4585 
4586 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4587 		err = btrfs_setsize(inode, attr);
4588 		if (err)
4589 			return err;
4590 	}
4591 
4592 	if (attr->ia_valid) {
4593 		setattr_copy(inode, attr);
4594 		inode_inc_iversion(inode);
4595 		err = btrfs_dirty_inode(inode);
4596 
4597 		if (!err && attr->ia_valid & ATTR_MODE)
4598 			err = btrfs_acl_chmod(inode);
4599 	}
4600 
4601 	return err;
4602 }
4603 
4604 void btrfs_evict_inode(struct inode *inode)
4605 {
4606 	struct btrfs_trans_handle *trans;
4607 	struct btrfs_root *root = BTRFS_I(inode)->root;
4608 	struct btrfs_block_rsv *rsv, *global_rsv;
4609 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4610 	int ret;
4611 
4612 	trace_btrfs_inode_evict(inode);
4613 
4614 	truncate_inode_pages(&inode->i_data, 0);
4615 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4616 			       btrfs_is_free_space_inode(inode)))
4617 		goto no_delete;
4618 
4619 	if (is_bad_inode(inode)) {
4620 		btrfs_orphan_del(NULL, inode);
4621 		goto no_delete;
4622 	}
4623 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4624 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
4625 
4626 	if (root->fs_info->log_root_recovering) {
4627 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4628 				 &BTRFS_I(inode)->runtime_flags));
4629 		goto no_delete;
4630 	}
4631 
4632 	if (inode->i_nlink > 0) {
4633 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4634 		goto no_delete;
4635 	}
4636 
4637 	ret = btrfs_commit_inode_delayed_inode(inode);
4638 	if (ret) {
4639 		btrfs_orphan_del(NULL, inode);
4640 		goto no_delete;
4641 	}
4642 
4643 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4644 	if (!rsv) {
4645 		btrfs_orphan_del(NULL, inode);
4646 		goto no_delete;
4647 	}
4648 	rsv->size = min_size;
4649 	rsv->failfast = 1;
4650 	global_rsv = &root->fs_info->global_block_rsv;
4651 
4652 	btrfs_i_size_write(inode, 0);
4653 
4654 	/*
4655 	 * This is a bit simpler than btrfs_truncate since we've already
4656 	 * reserved our space for our orphan item in the unlink, so we just
4657 	 * need to reserve some slack space in case we add bytes and update
4658 	 * inode item when doing the truncate.
4659 	 */
4660 	while (1) {
4661 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
4662 					     BTRFS_RESERVE_FLUSH_LIMIT);
4663 
4664 		/*
4665 		 * Try and steal from the global reserve since we will
4666 		 * likely not use this space anyway, we want to try as
4667 		 * hard as possible to get this to work.
4668 		 */
4669 		if (ret)
4670 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4671 
4672 		if (ret) {
4673 			printk(KERN_WARNING "Could not get space for a "
4674 			       "delete, will truncate on mount %d\n", ret);
4675 			btrfs_orphan_del(NULL, inode);
4676 			btrfs_free_block_rsv(root, rsv);
4677 			goto no_delete;
4678 		}
4679 
4680 		trans = btrfs_join_transaction(root);
4681 		if (IS_ERR(trans)) {
4682 			btrfs_orphan_del(NULL, inode);
4683 			btrfs_free_block_rsv(root, rsv);
4684 			goto no_delete;
4685 		}
4686 
4687 		trans->block_rsv = rsv;
4688 
4689 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4690 		if (ret != -ENOSPC)
4691 			break;
4692 
4693 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4694 		btrfs_end_transaction(trans, root);
4695 		trans = NULL;
4696 		btrfs_btree_balance_dirty(root);
4697 	}
4698 
4699 	btrfs_free_block_rsv(root, rsv);
4700 
4701 	if (ret == 0) {
4702 		trans->block_rsv = root->orphan_block_rsv;
4703 		ret = btrfs_orphan_del(trans, inode);
4704 		BUG_ON(ret);
4705 	}
4706 
4707 	trans->block_rsv = &root->fs_info->trans_block_rsv;
4708 	if (!(root == root->fs_info->tree_root ||
4709 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4710 		btrfs_return_ino(root, btrfs_ino(inode));
4711 
4712 	btrfs_end_transaction(trans, root);
4713 	btrfs_btree_balance_dirty(root);
4714 no_delete:
4715 	clear_inode(inode);
4716 	return;
4717 }
4718 
4719 /*
4720  * this returns the key found in the dir entry in the location pointer.
4721  * If no dir entries were found, location->objectid is 0.
4722  */
4723 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4724 			       struct btrfs_key *location)
4725 {
4726 	const char *name = dentry->d_name.name;
4727 	int namelen = dentry->d_name.len;
4728 	struct btrfs_dir_item *di;
4729 	struct btrfs_path *path;
4730 	struct btrfs_root *root = BTRFS_I(dir)->root;
4731 	int ret = 0;
4732 
4733 	path = btrfs_alloc_path();
4734 	if (!path)
4735 		return -ENOMEM;
4736 
4737 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4738 				    namelen, 0);
4739 	if (IS_ERR(di))
4740 		ret = PTR_ERR(di);
4741 
4742 	if (IS_ERR_OR_NULL(di))
4743 		goto out_err;
4744 
4745 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4746 out:
4747 	btrfs_free_path(path);
4748 	return ret;
4749 out_err:
4750 	location->objectid = 0;
4751 	goto out;
4752 }
4753 
4754 /*
4755  * when we hit a tree root in a directory, the btrfs part of the inode
4756  * needs to be changed to reflect the root directory of the tree root.  This
4757  * is kind of like crossing a mount point.
4758  */
4759 static int fixup_tree_root_location(struct btrfs_root *root,
4760 				    struct inode *dir,
4761 				    struct dentry *dentry,
4762 				    struct btrfs_key *location,
4763 				    struct btrfs_root **sub_root)
4764 {
4765 	struct btrfs_path *path;
4766 	struct btrfs_root *new_root;
4767 	struct btrfs_root_ref *ref;
4768 	struct extent_buffer *leaf;
4769 	int ret;
4770 	int err = 0;
4771 
4772 	path = btrfs_alloc_path();
4773 	if (!path) {
4774 		err = -ENOMEM;
4775 		goto out;
4776 	}
4777 
4778 	err = -ENOENT;
4779 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4780 				  BTRFS_I(dir)->root->root_key.objectid,
4781 				  location->objectid);
4782 	if (ret) {
4783 		if (ret < 0)
4784 			err = ret;
4785 		goto out;
4786 	}
4787 
4788 	leaf = path->nodes[0];
4789 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4790 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4791 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4792 		goto out;
4793 
4794 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4795 				   (unsigned long)(ref + 1),
4796 				   dentry->d_name.len);
4797 	if (ret)
4798 		goto out;
4799 
4800 	btrfs_release_path(path);
4801 
4802 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4803 	if (IS_ERR(new_root)) {
4804 		err = PTR_ERR(new_root);
4805 		goto out;
4806 	}
4807 
4808 	if (btrfs_root_refs(&new_root->root_item) == 0) {
4809 		err = -ENOENT;
4810 		goto out;
4811 	}
4812 
4813 	*sub_root = new_root;
4814 	location->objectid = btrfs_root_dirid(&new_root->root_item);
4815 	location->type = BTRFS_INODE_ITEM_KEY;
4816 	location->offset = 0;
4817 	err = 0;
4818 out:
4819 	btrfs_free_path(path);
4820 	return err;
4821 }
4822 
4823 static void inode_tree_add(struct inode *inode)
4824 {
4825 	struct btrfs_root *root = BTRFS_I(inode)->root;
4826 	struct btrfs_inode *entry;
4827 	struct rb_node **p;
4828 	struct rb_node *parent;
4829 	u64 ino = btrfs_ino(inode);
4830 again:
4831 	p = &root->inode_tree.rb_node;
4832 	parent = NULL;
4833 
4834 	if (inode_unhashed(inode))
4835 		return;
4836 
4837 	spin_lock(&root->inode_lock);
4838 	while (*p) {
4839 		parent = *p;
4840 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
4841 
4842 		if (ino < btrfs_ino(&entry->vfs_inode))
4843 			p = &parent->rb_left;
4844 		else if (ino > btrfs_ino(&entry->vfs_inode))
4845 			p = &parent->rb_right;
4846 		else {
4847 			WARN_ON(!(entry->vfs_inode.i_state &
4848 				  (I_WILL_FREE | I_FREEING)));
4849 			rb_erase(parent, &root->inode_tree);
4850 			RB_CLEAR_NODE(parent);
4851 			spin_unlock(&root->inode_lock);
4852 			goto again;
4853 		}
4854 	}
4855 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4856 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4857 	spin_unlock(&root->inode_lock);
4858 }
4859 
4860 static void inode_tree_del(struct inode *inode)
4861 {
4862 	struct btrfs_root *root = BTRFS_I(inode)->root;
4863 	int empty = 0;
4864 
4865 	spin_lock(&root->inode_lock);
4866 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4867 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4868 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4869 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4870 	}
4871 	spin_unlock(&root->inode_lock);
4872 
4873 	/*
4874 	 * Free space cache has inodes in the tree root, but the tree root has a
4875 	 * root_refs of 0, so this could end up dropping the tree root as a
4876 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
4877 	 * make sure we don't drop it.
4878 	 */
4879 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4880 	    root != root->fs_info->tree_root) {
4881 		synchronize_srcu(&root->fs_info->subvol_srcu);
4882 		spin_lock(&root->inode_lock);
4883 		empty = RB_EMPTY_ROOT(&root->inode_tree);
4884 		spin_unlock(&root->inode_lock);
4885 		if (empty)
4886 			btrfs_add_dead_root(root);
4887 	}
4888 }
4889 
4890 void btrfs_invalidate_inodes(struct btrfs_root *root)
4891 {
4892 	struct rb_node *node;
4893 	struct rb_node *prev;
4894 	struct btrfs_inode *entry;
4895 	struct inode *inode;
4896 	u64 objectid = 0;
4897 
4898 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4899 
4900 	spin_lock(&root->inode_lock);
4901 again:
4902 	node = root->inode_tree.rb_node;
4903 	prev = NULL;
4904 	while (node) {
4905 		prev = node;
4906 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4907 
4908 		if (objectid < btrfs_ino(&entry->vfs_inode))
4909 			node = node->rb_left;
4910 		else if (objectid > btrfs_ino(&entry->vfs_inode))
4911 			node = node->rb_right;
4912 		else
4913 			break;
4914 	}
4915 	if (!node) {
4916 		while (prev) {
4917 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4918 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4919 				node = prev;
4920 				break;
4921 			}
4922 			prev = rb_next(prev);
4923 		}
4924 	}
4925 	while (node) {
4926 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4927 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
4928 		inode = igrab(&entry->vfs_inode);
4929 		if (inode) {
4930 			spin_unlock(&root->inode_lock);
4931 			if (atomic_read(&inode->i_count) > 1)
4932 				d_prune_aliases(inode);
4933 			/*
4934 			 * btrfs_drop_inode will have it removed from
4935 			 * the inode cache when its usage count
4936 			 * hits zero.
4937 			 */
4938 			iput(inode);
4939 			cond_resched();
4940 			spin_lock(&root->inode_lock);
4941 			goto again;
4942 		}
4943 
4944 		if (cond_resched_lock(&root->inode_lock))
4945 			goto again;
4946 
4947 		node = rb_next(node);
4948 	}
4949 	spin_unlock(&root->inode_lock);
4950 }
4951 
4952 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4953 {
4954 	struct btrfs_iget_args *args = p;
4955 	inode->i_ino = args->ino;
4956 	BTRFS_I(inode)->root = args->root;
4957 	return 0;
4958 }
4959 
4960 static int btrfs_find_actor(struct inode *inode, void *opaque)
4961 {
4962 	struct btrfs_iget_args *args = opaque;
4963 	return args->ino == btrfs_ino(inode) &&
4964 		args->root == BTRFS_I(inode)->root;
4965 }
4966 
4967 static struct inode *btrfs_iget_locked(struct super_block *s,
4968 				       u64 objectid,
4969 				       struct btrfs_root *root)
4970 {
4971 	struct inode *inode;
4972 	struct btrfs_iget_args args;
4973 	args.ino = objectid;
4974 	args.root = root;
4975 
4976 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4977 			     btrfs_init_locked_inode,
4978 			     (void *)&args);
4979 	return inode;
4980 }
4981 
4982 /* Get an inode object given its location and corresponding root.
4983  * Returns in *is_new if the inode was read from disk
4984  */
4985 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4986 			 struct btrfs_root *root, int *new)
4987 {
4988 	struct inode *inode;
4989 
4990 	inode = btrfs_iget_locked(s, location->objectid, root);
4991 	if (!inode)
4992 		return ERR_PTR(-ENOMEM);
4993 
4994 	if (inode->i_state & I_NEW) {
4995 		BTRFS_I(inode)->root = root;
4996 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4997 		btrfs_read_locked_inode(inode);
4998 		if (!is_bad_inode(inode)) {
4999 			inode_tree_add(inode);
5000 			unlock_new_inode(inode);
5001 			if (new)
5002 				*new = 1;
5003 		} else {
5004 			unlock_new_inode(inode);
5005 			iput(inode);
5006 			inode = ERR_PTR(-ESTALE);
5007 		}
5008 	}
5009 
5010 	return inode;
5011 }
5012 
5013 static struct inode *new_simple_dir(struct super_block *s,
5014 				    struct btrfs_key *key,
5015 				    struct btrfs_root *root)
5016 {
5017 	struct inode *inode = new_inode(s);
5018 
5019 	if (!inode)
5020 		return ERR_PTR(-ENOMEM);
5021 
5022 	BTRFS_I(inode)->root = root;
5023 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5024 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5025 
5026 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5027 	inode->i_op = &btrfs_dir_ro_inode_operations;
5028 	inode->i_fop = &simple_dir_operations;
5029 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5030 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5031 
5032 	return inode;
5033 }
5034 
5035 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5036 {
5037 	struct inode *inode;
5038 	struct btrfs_root *root = BTRFS_I(dir)->root;
5039 	struct btrfs_root *sub_root = root;
5040 	struct btrfs_key location;
5041 	int index;
5042 	int ret = 0;
5043 
5044 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5045 		return ERR_PTR(-ENAMETOOLONG);
5046 
5047 	ret = btrfs_inode_by_name(dir, dentry, &location);
5048 	if (ret < 0)
5049 		return ERR_PTR(ret);
5050 
5051 	if (location.objectid == 0)
5052 		return NULL;
5053 
5054 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5055 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5056 		return inode;
5057 	}
5058 
5059 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5060 
5061 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5062 	ret = fixup_tree_root_location(root, dir, dentry,
5063 				       &location, &sub_root);
5064 	if (ret < 0) {
5065 		if (ret != -ENOENT)
5066 			inode = ERR_PTR(ret);
5067 		else
5068 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5069 	} else {
5070 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5071 	}
5072 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5073 
5074 	if (!IS_ERR(inode) && root != sub_root) {
5075 		down_read(&root->fs_info->cleanup_work_sem);
5076 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5077 			ret = btrfs_orphan_cleanup(sub_root);
5078 		up_read(&root->fs_info->cleanup_work_sem);
5079 		if (ret)
5080 			inode = ERR_PTR(ret);
5081 	}
5082 
5083 	return inode;
5084 }
5085 
5086 static int btrfs_dentry_delete(const struct dentry *dentry)
5087 {
5088 	struct btrfs_root *root;
5089 	struct inode *inode = dentry->d_inode;
5090 
5091 	if (!inode && !IS_ROOT(dentry))
5092 		inode = dentry->d_parent->d_inode;
5093 
5094 	if (inode) {
5095 		root = BTRFS_I(inode)->root;
5096 		if (btrfs_root_refs(&root->root_item) == 0)
5097 			return 1;
5098 
5099 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5100 			return 1;
5101 	}
5102 	return 0;
5103 }
5104 
5105 static void btrfs_dentry_release(struct dentry *dentry)
5106 {
5107 	if (dentry->d_fsdata)
5108 		kfree(dentry->d_fsdata);
5109 }
5110 
5111 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5112 				   unsigned int flags)
5113 {
5114 	struct dentry *ret;
5115 
5116 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
5117 	return ret;
5118 }
5119 
5120 unsigned char btrfs_filetype_table[] = {
5121 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5122 };
5123 
5124 static int btrfs_real_readdir(struct file *filp, void *dirent,
5125 			      filldir_t filldir)
5126 {
5127 	struct inode *inode = file_inode(filp);
5128 	struct btrfs_root *root = BTRFS_I(inode)->root;
5129 	struct btrfs_item *item;
5130 	struct btrfs_dir_item *di;
5131 	struct btrfs_key key;
5132 	struct btrfs_key found_key;
5133 	struct btrfs_path *path;
5134 	struct list_head ins_list;
5135 	struct list_head del_list;
5136 	int ret;
5137 	struct extent_buffer *leaf;
5138 	int slot;
5139 	unsigned char d_type;
5140 	int over = 0;
5141 	u32 di_cur;
5142 	u32 di_total;
5143 	u32 di_len;
5144 	int key_type = BTRFS_DIR_INDEX_KEY;
5145 	char tmp_name[32];
5146 	char *name_ptr;
5147 	int name_len;
5148 	int is_curr = 0;	/* filp->f_pos points to the current index? */
5149 
5150 	/* FIXME, use a real flag for deciding about the key type */
5151 	if (root->fs_info->tree_root == root)
5152 		key_type = BTRFS_DIR_ITEM_KEY;
5153 
5154 	/* special case for "." */
5155 	if (filp->f_pos == 0) {
5156 		over = filldir(dirent, ".", 1,
5157 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
5158 		if (over)
5159 			return 0;
5160 		filp->f_pos = 1;
5161 	}
5162 	/* special case for .., just use the back ref */
5163 	if (filp->f_pos == 1) {
5164 		u64 pino = parent_ino(filp->f_path.dentry);
5165 		over = filldir(dirent, "..", 2,
5166 			       filp->f_pos, pino, DT_DIR);
5167 		if (over)
5168 			return 0;
5169 		filp->f_pos = 2;
5170 	}
5171 	path = btrfs_alloc_path();
5172 	if (!path)
5173 		return -ENOMEM;
5174 
5175 	path->reada = 1;
5176 
5177 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5178 		INIT_LIST_HEAD(&ins_list);
5179 		INIT_LIST_HEAD(&del_list);
5180 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5181 	}
5182 
5183 	btrfs_set_key_type(&key, key_type);
5184 	key.offset = filp->f_pos;
5185 	key.objectid = btrfs_ino(inode);
5186 
5187 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5188 	if (ret < 0)
5189 		goto err;
5190 
5191 	while (1) {
5192 		leaf = path->nodes[0];
5193 		slot = path->slots[0];
5194 		if (slot >= btrfs_header_nritems(leaf)) {
5195 			ret = btrfs_next_leaf(root, path);
5196 			if (ret < 0)
5197 				goto err;
5198 			else if (ret > 0)
5199 				break;
5200 			continue;
5201 		}
5202 
5203 		item = btrfs_item_nr(leaf, slot);
5204 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5205 
5206 		if (found_key.objectid != key.objectid)
5207 			break;
5208 		if (btrfs_key_type(&found_key) != key_type)
5209 			break;
5210 		if (found_key.offset < filp->f_pos)
5211 			goto next;
5212 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5213 		    btrfs_should_delete_dir_index(&del_list,
5214 						  found_key.offset))
5215 			goto next;
5216 
5217 		filp->f_pos = found_key.offset;
5218 		is_curr = 1;
5219 
5220 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5221 		di_cur = 0;
5222 		di_total = btrfs_item_size(leaf, item);
5223 
5224 		while (di_cur < di_total) {
5225 			struct btrfs_key location;
5226 
5227 			if (verify_dir_item(root, leaf, di))
5228 				break;
5229 
5230 			name_len = btrfs_dir_name_len(leaf, di);
5231 			if (name_len <= sizeof(tmp_name)) {
5232 				name_ptr = tmp_name;
5233 			} else {
5234 				name_ptr = kmalloc(name_len, GFP_NOFS);
5235 				if (!name_ptr) {
5236 					ret = -ENOMEM;
5237 					goto err;
5238 				}
5239 			}
5240 			read_extent_buffer(leaf, name_ptr,
5241 					   (unsigned long)(di + 1), name_len);
5242 
5243 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5244 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5245 
5246 
5247 			/* is this a reference to our own snapshot? If so
5248 			 * skip it.
5249 			 *
5250 			 * In contrast to old kernels, we insert the snapshot's
5251 			 * dir item and dir index after it has been created, so
5252 			 * we won't find a reference to our own snapshot. We
5253 			 * still keep the following code for backward
5254 			 * compatibility.
5255 			 */
5256 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5257 			    location.objectid == root->root_key.objectid) {
5258 				over = 0;
5259 				goto skip;
5260 			}
5261 			over = filldir(dirent, name_ptr, name_len,
5262 				       found_key.offset, location.objectid,
5263 				       d_type);
5264 
5265 skip:
5266 			if (name_ptr != tmp_name)
5267 				kfree(name_ptr);
5268 
5269 			if (over)
5270 				goto nopos;
5271 			di_len = btrfs_dir_name_len(leaf, di) +
5272 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5273 			di_cur += di_len;
5274 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5275 		}
5276 next:
5277 		path->slots[0]++;
5278 	}
5279 
5280 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5281 		if (is_curr)
5282 			filp->f_pos++;
5283 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
5284 						      &ins_list);
5285 		if (ret)
5286 			goto nopos;
5287 	}
5288 
5289 	/* Reached end of directory/root. Bump pos past the last item. */
5290 	if (key_type == BTRFS_DIR_INDEX_KEY)
5291 		/*
5292 		 * 32-bit glibc will use getdents64, but then strtol -
5293 		 * so the last number we can serve is this.
5294 		 */
5295 		filp->f_pos = 0x7fffffff;
5296 	else
5297 		filp->f_pos++;
5298 nopos:
5299 	ret = 0;
5300 err:
5301 	if (key_type == BTRFS_DIR_INDEX_KEY)
5302 		btrfs_put_delayed_items(&ins_list, &del_list);
5303 	btrfs_free_path(path);
5304 	return ret;
5305 }
5306 
5307 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5308 {
5309 	struct btrfs_root *root = BTRFS_I(inode)->root;
5310 	struct btrfs_trans_handle *trans;
5311 	int ret = 0;
5312 	bool nolock = false;
5313 
5314 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5315 		return 0;
5316 
5317 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5318 		nolock = true;
5319 
5320 	if (wbc->sync_mode == WB_SYNC_ALL) {
5321 		if (nolock)
5322 			trans = btrfs_join_transaction_nolock(root);
5323 		else
5324 			trans = btrfs_join_transaction(root);
5325 		if (IS_ERR(trans))
5326 			return PTR_ERR(trans);
5327 		ret = btrfs_commit_transaction(trans, root);
5328 	}
5329 	return ret;
5330 }
5331 
5332 /*
5333  * This is somewhat expensive, updating the tree every time the
5334  * inode changes.  But, it is most likely to find the inode in cache.
5335  * FIXME, needs more benchmarking...there are no reasons other than performance
5336  * to keep or drop this code.
5337  */
5338 int btrfs_dirty_inode(struct inode *inode)
5339 {
5340 	struct btrfs_root *root = BTRFS_I(inode)->root;
5341 	struct btrfs_trans_handle *trans;
5342 	int ret;
5343 
5344 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5345 		return 0;
5346 
5347 	trans = btrfs_join_transaction(root);
5348 	if (IS_ERR(trans))
5349 		return PTR_ERR(trans);
5350 
5351 	ret = btrfs_update_inode(trans, root, inode);
5352 	if (ret && ret == -ENOSPC) {
5353 		/* whoops, lets try again with the full transaction */
5354 		btrfs_end_transaction(trans, root);
5355 		trans = btrfs_start_transaction(root, 1);
5356 		if (IS_ERR(trans))
5357 			return PTR_ERR(trans);
5358 
5359 		ret = btrfs_update_inode(trans, root, inode);
5360 	}
5361 	btrfs_end_transaction(trans, root);
5362 	if (BTRFS_I(inode)->delayed_node)
5363 		btrfs_balance_delayed_items(root);
5364 
5365 	return ret;
5366 }
5367 
5368 /*
5369  * This is a copy of file_update_time.  We need this so we can return error on
5370  * ENOSPC for updating the inode in the case of file write and mmap writes.
5371  */
5372 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5373 			     int flags)
5374 {
5375 	struct btrfs_root *root = BTRFS_I(inode)->root;
5376 
5377 	if (btrfs_root_readonly(root))
5378 		return -EROFS;
5379 
5380 	if (flags & S_VERSION)
5381 		inode_inc_iversion(inode);
5382 	if (flags & S_CTIME)
5383 		inode->i_ctime = *now;
5384 	if (flags & S_MTIME)
5385 		inode->i_mtime = *now;
5386 	if (flags & S_ATIME)
5387 		inode->i_atime = *now;
5388 	return btrfs_dirty_inode(inode);
5389 }
5390 
5391 /*
5392  * find the highest existing sequence number in a directory
5393  * and then set the in-memory index_cnt variable to reflect
5394  * free sequence numbers
5395  */
5396 static int btrfs_set_inode_index_count(struct inode *inode)
5397 {
5398 	struct btrfs_root *root = BTRFS_I(inode)->root;
5399 	struct btrfs_key key, found_key;
5400 	struct btrfs_path *path;
5401 	struct extent_buffer *leaf;
5402 	int ret;
5403 
5404 	key.objectid = btrfs_ino(inode);
5405 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5406 	key.offset = (u64)-1;
5407 
5408 	path = btrfs_alloc_path();
5409 	if (!path)
5410 		return -ENOMEM;
5411 
5412 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5413 	if (ret < 0)
5414 		goto out;
5415 	/* FIXME: we should be able to handle this */
5416 	if (ret == 0)
5417 		goto out;
5418 	ret = 0;
5419 
5420 	/*
5421 	 * MAGIC NUMBER EXPLANATION:
5422 	 * since we search a directory based on f_pos we have to start at 2
5423 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5424 	 * else has to start at 2
5425 	 */
5426 	if (path->slots[0] == 0) {
5427 		BTRFS_I(inode)->index_cnt = 2;
5428 		goto out;
5429 	}
5430 
5431 	path->slots[0]--;
5432 
5433 	leaf = path->nodes[0];
5434 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5435 
5436 	if (found_key.objectid != btrfs_ino(inode) ||
5437 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5438 		BTRFS_I(inode)->index_cnt = 2;
5439 		goto out;
5440 	}
5441 
5442 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5443 out:
5444 	btrfs_free_path(path);
5445 	return ret;
5446 }
5447 
5448 /*
5449  * helper to find a free sequence number in a given directory.  This current
5450  * code is very simple, later versions will do smarter things in the btree
5451  */
5452 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5453 {
5454 	int ret = 0;
5455 
5456 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5457 		ret = btrfs_inode_delayed_dir_index_count(dir);
5458 		if (ret) {
5459 			ret = btrfs_set_inode_index_count(dir);
5460 			if (ret)
5461 				return ret;
5462 		}
5463 	}
5464 
5465 	*index = BTRFS_I(dir)->index_cnt;
5466 	BTRFS_I(dir)->index_cnt++;
5467 
5468 	return ret;
5469 }
5470 
5471 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5472 				     struct btrfs_root *root,
5473 				     struct inode *dir,
5474 				     const char *name, int name_len,
5475 				     u64 ref_objectid, u64 objectid,
5476 				     umode_t mode, u64 *index)
5477 {
5478 	struct inode *inode;
5479 	struct btrfs_inode_item *inode_item;
5480 	struct btrfs_key *location;
5481 	struct btrfs_path *path;
5482 	struct btrfs_inode_ref *ref;
5483 	struct btrfs_key key[2];
5484 	u32 sizes[2];
5485 	unsigned long ptr;
5486 	int ret;
5487 	int owner;
5488 
5489 	path = btrfs_alloc_path();
5490 	if (!path)
5491 		return ERR_PTR(-ENOMEM);
5492 
5493 	inode = new_inode(root->fs_info->sb);
5494 	if (!inode) {
5495 		btrfs_free_path(path);
5496 		return ERR_PTR(-ENOMEM);
5497 	}
5498 
5499 	/*
5500 	 * we have to initialize this early, so we can reclaim the inode
5501 	 * number if we fail afterwards in this function.
5502 	 */
5503 	inode->i_ino = objectid;
5504 
5505 	if (dir) {
5506 		trace_btrfs_inode_request(dir);
5507 
5508 		ret = btrfs_set_inode_index(dir, index);
5509 		if (ret) {
5510 			btrfs_free_path(path);
5511 			iput(inode);
5512 			return ERR_PTR(ret);
5513 		}
5514 	}
5515 	/*
5516 	 * index_cnt is ignored for everything but a dir,
5517 	 * btrfs_get_inode_index_count has an explanation for the magic
5518 	 * number
5519 	 */
5520 	BTRFS_I(inode)->index_cnt = 2;
5521 	BTRFS_I(inode)->root = root;
5522 	BTRFS_I(inode)->generation = trans->transid;
5523 	inode->i_generation = BTRFS_I(inode)->generation;
5524 
5525 	/*
5526 	 * We could have gotten an inode number from somebody who was fsynced
5527 	 * and then removed in this same transaction, so let's just set full
5528 	 * sync since it will be a full sync anyway and this will blow away the
5529 	 * old info in the log.
5530 	 */
5531 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5532 
5533 	if (S_ISDIR(mode))
5534 		owner = 0;
5535 	else
5536 		owner = 1;
5537 
5538 	key[0].objectid = objectid;
5539 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5540 	key[0].offset = 0;
5541 
5542 	/*
5543 	 * Start new inodes with an inode_ref. This is slightly more
5544 	 * efficient for small numbers of hard links since they will
5545 	 * be packed into one item. Extended refs will kick in if we
5546 	 * add more hard links than can fit in the ref item.
5547 	 */
5548 	key[1].objectid = objectid;
5549 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5550 	key[1].offset = ref_objectid;
5551 
5552 	sizes[0] = sizeof(struct btrfs_inode_item);
5553 	sizes[1] = name_len + sizeof(*ref);
5554 
5555 	path->leave_spinning = 1;
5556 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5557 	if (ret != 0)
5558 		goto fail;
5559 
5560 	inode_init_owner(inode, dir, mode);
5561 	inode_set_bytes(inode, 0);
5562 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5563 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5564 				  struct btrfs_inode_item);
5565 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5566 			     sizeof(*inode_item));
5567 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
5568 
5569 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5570 			     struct btrfs_inode_ref);
5571 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5572 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5573 	ptr = (unsigned long)(ref + 1);
5574 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
5575 
5576 	btrfs_mark_buffer_dirty(path->nodes[0]);
5577 	btrfs_free_path(path);
5578 
5579 	location = &BTRFS_I(inode)->location;
5580 	location->objectid = objectid;
5581 	location->offset = 0;
5582 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5583 
5584 	btrfs_inherit_iflags(inode, dir);
5585 
5586 	if (S_ISREG(mode)) {
5587 		if (btrfs_test_opt(root, NODATASUM))
5588 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5589 		if (btrfs_test_opt(root, NODATACOW))
5590 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5591 				BTRFS_INODE_NODATASUM;
5592 	}
5593 
5594 	insert_inode_hash(inode);
5595 	inode_tree_add(inode);
5596 
5597 	trace_btrfs_inode_new(inode);
5598 	btrfs_set_inode_last_trans(trans, inode);
5599 
5600 	btrfs_update_root_times(trans, root);
5601 
5602 	return inode;
5603 fail:
5604 	if (dir)
5605 		BTRFS_I(dir)->index_cnt--;
5606 	btrfs_free_path(path);
5607 	iput(inode);
5608 	return ERR_PTR(ret);
5609 }
5610 
5611 static inline u8 btrfs_inode_type(struct inode *inode)
5612 {
5613 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5614 }
5615 
5616 /*
5617  * utility function to add 'inode' into 'parent_inode' with
5618  * a give name and a given sequence number.
5619  * if 'add_backref' is true, also insert a backref from the
5620  * inode to the parent directory.
5621  */
5622 int btrfs_add_link(struct btrfs_trans_handle *trans,
5623 		   struct inode *parent_inode, struct inode *inode,
5624 		   const char *name, int name_len, int add_backref, u64 index)
5625 {
5626 	int ret = 0;
5627 	struct btrfs_key key;
5628 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5629 	u64 ino = btrfs_ino(inode);
5630 	u64 parent_ino = btrfs_ino(parent_inode);
5631 
5632 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5633 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5634 	} else {
5635 		key.objectid = ino;
5636 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5637 		key.offset = 0;
5638 	}
5639 
5640 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5641 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5642 					 key.objectid, root->root_key.objectid,
5643 					 parent_ino, index, name, name_len);
5644 	} else if (add_backref) {
5645 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5646 					     parent_ino, index);
5647 	}
5648 
5649 	/* Nothing to clean up yet */
5650 	if (ret)
5651 		return ret;
5652 
5653 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
5654 				    parent_inode, &key,
5655 				    btrfs_inode_type(inode), index);
5656 	if (ret == -EEXIST || ret == -EOVERFLOW)
5657 		goto fail_dir_item;
5658 	else if (ret) {
5659 		btrfs_abort_transaction(trans, root, ret);
5660 		return ret;
5661 	}
5662 
5663 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
5664 			   name_len * 2);
5665 	inode_inc_iversion(parent_inode);
5666 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5667 	ret = btrfs_update_inode(trans, root, parent_inode);
5668 	if (ret)
5669 		btrfs_abort_transaction(trans, root, ret);
5670 	return ret;
5671 
5672 fail_dir_item:
5673 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5674 		u64 local_index;
5675 		int err;
5676 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5677 				 key.objectid, root->root_key.objectid,
5678 				 parent_ino, &local_index, name, name_len);
5679 
5680 	} else if (add_backref) {
5681 		u64 local_index;
5682 		int err;
5683 
5684 		err = btrfs_del_inode_ref(trans, root, name, name_len,
5685 					  ino, parent_ino, &local_index);
5686 	}
5687 	return ret;
5688 }
5689 
5690 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5691 			    struct inode *dir, struct dentry *dentry,
5692 			    struct inode *inode, int backref, u64 index)
5693 {
5694 	int err = btrfs_add_link(trans, dir, inode,
5695 				 dentry->d_name.name, dentry->d_name.len,
5696 				 backref, index);
5697 	if (err > 0)
5698 		err = -EEXIST;
5699 	return err;
5700 }
5701 
5702 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5703 			umode_t mode, dev_t rdev)
5704 {
5705 	struct btrfs_trans_handle *trans;
5706 	struct btrfs_root *root = BTRFS_I(dir)->root;
5707 	struct inode *inode = NULL;
5708 	int err;
5709 	int drop_inode = 0;
5710 	u64 objectid;
5711 	u64 index = 0;
5712 
5713 	if (!new_valid_dev(rdev))
5714 		return -EINVAL;
5715 
5716 	/*
5717 	 * 2 for inode item and ref
5718 	 * 2 for dir items
5719 	 * 1 for xattr if selinux is on
5720 	 */
5721 	trans = btrfs_start_transaction(root, 5);
5722 	if (IS_ERR(trans))
5723 		return PTR_ERR(trans);
5724 
5725 	err = btrfs_find_free_ino(root, &objectid);
5726 	if (err)
5727 		goto out_unlock;
5728 
5729 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5730 				dentry->d_name.len, btrfs_ino(dir), objectid,
5731 				mode, &index);
5732 	if (IS_ERR(inode)) {
5733 		err = PTR_ERR(inode);
5734 		goto out_unlock;
5735 	}
5736 
5737 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5738 	if (err) {
5739 		drop_inode = 1;
5740 		goto out_unlock;
5741 	}
5742 
5743 	/*
5744 	* If the active LSM wants to access the inode during
5745 	* d_instantiate it needs these. Smack checks to see
5746 	* if the filesystem supports xattrs by looking at the
5747 	* ops vector.
5748 	*/
5749 
5750 	inode->i_op = &btrfs_special_inode_operations;
5751 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5752 	if (err)
5753 		drop_inode = 1;
5754 	else {
5755 		init_special_inode(inode, inode->i_mode, rdev);
5756 		btrfs_update_inode(trans, root, inode);
5757 		d_instantiate(dentry, inode);
5758 	}
5759 out_unlock:
5760 	btrfs_end_transaction(trans, root);
5761 	btrfs_btree_balance_dirty(root);
5762 	if (drop_inode) {
5763 		inode_dec_link_count(inode);
5764 		iput(inode);
5765 	}
5766 	return err;
5767 }
5768 
5769 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5770 			umode_t mode, bool excl)
5771 {
5772 	struct btrfs_trans_handle *trans;
5773 	struct btrfs_root *root = BTRFS_I(dir)->root;
5774 	struct inode *inode = NULL;
5775 	int drop_inode_on_err = 0;
5776 	int err;
5777 	u64 objectid;
5778 	u64 index = 0;
5779 
5780 	/*
5781 	 * 2 for inode item and ref
5782 	 * 2 for dir items
5783 	 * 1 for xattr if selinux is on
5784 	 */
5785 	trans = btrfs_start_transaction(root, 5);
5786 	if (IS_ERR(trans))
5787 		return PTR_ERR(trans);
5788 
5789 	err = btrfs_find_free_ino(root, &objectid);
5790 	if (err)
5791 		goto out_unlock;
5792 
5793 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5794 				dentry->d_name.len, btrfs_ino(dir), objectid,
5795 				mode, &index);
5796 	if (IS_ERR(inode)) {
5797 		err = PTR_ERR(inode);
5798 		goto out_unlock;
5799 	}
5800 	drop_inode_on_err = 1;
5801 
5802 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5803 	if (err)
5804 		goto out_unlock;
5805 
5806 	err = btrfs_update_inode(trans, root, inode);
5807 	if (err)
5808 		goto out_unlock;
5809 
5810 	/*
5811 	* If the active LSM wants to access the inode during
5812 	* d_instantiate it needs these. Smack checks to see
5813 	* if the filesystem supports xattrs by looking at the
5814 	* ops vector.
5815 	*/
5816 	inode->i_fop = &btrfs_file_operations;
5817 	inode->i_op = &btrfs_file_inode_operations;
5818 
5819 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5820 	if (err)
5821 		goto out_unlock;
5822 
5823 	inode->i_mapping->a_ops = &btrfs_aops;
5824 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5825 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5826 	d_instantiate(dentry, inode);
5827 
5828 out_unlock:
5829 	btrfs_end_transaction(trans, root);
5830 	if (err && drop_inode_on_err) {
5831 		inode_dec_link_count(inode);
5832 		iput(inode);
5833 	}
5834 	btrfs_btree_balance_dirty(root);
5835 	return err;
5836 }
5837 
5838 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5839 		      struct dentry *dentry)
5840 {
5841 	struct btrfs_trans_handle *trans;
5842 	struct btrfs_root *root = BTRFS_I(dir)->root;
5843 	struct inode *inode = old_dentry->d_inode;
5844 	u64 index;
5845 	int err;
5846 	int drop_inode = 0;
5847 
5848 	/* do not allow sys_link's with other subvols of the same device */
5849 	if (root->objectid != BTRFS_I(inode)->root->objectid)
5850 		return -EXDEV;
5851 
5852 	if (inode->i_nlink >= BTRFS_LINK_MAX)
5853 		return -EMLINK;
5854 
5855 	err = btrfs_set_inode_index(dir, &index);
5856 	if (err)
5857 		goto fail;
5858 
5859 	/*
5860 	 * 2 items for inode and inode ref
5861 	 * 2 items for dir items
5862 	 * 1 item for parent inode
5863 	 */
5864 	trans = btrfs_start_transaction(root, 5);
5865 	if (IS_ERR(trans)) {
5866 		err = PTR_ERR(trans);
5867 		goto fail;
5868 	}
5869 
5870 	btrfs_inc_nlink(inode);
5871 	inode_inc_iversion(inode);
5872 	inode->i_ctime = CURRENT_TIME;
5873 	ihold(inode);
5874 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5875 
5876 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5877 
5878 	if (err) {
5879 		drop_inode = 1;
5880 	} else {
5881 		struct dentry *parent = dentry->d_parent;
5882 		err = btrfs_update_inode(trans, root, inode);
5883 		if (err)
5884 			goto fail;
5885 		d_instantiate(dentry, inode);
5886 		btrfs_log_new_name(trans, inode, NULL, parent);
5887 	}
5888 
5889 	btrfs_end_transaction(trans, root);
5890 fail:
5891 	if (drop_inode) {
5892 		inode_dec_link_count(inode);
5893 		iput(inode);
5894 	}
5895 	btrfs_btree_balance_dirty(root);
5896 	return err;
5897 }
5898 
5899 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5900 {
5901 	struct inode *inode = NULL;
5902 	struct btrfs_trans_handle *trans;
5903 	struct btrfs_root *root = BTRFS_I(dir)->root;
5904 	int err = 0;
5905 	int drop_on_err = 0;
5906 	u64 objectid = 0;
5907 	u64 index = 0;
5908 
5909 	/*
5910 	 * 2 items for inode and ref
5911 	 * 2 items for dir items
5912 	 * 1 for xattr if selinux is on
5913 	 */
5914 	trans = btrfs_start_transaction(root, 5);
5915 	if (IS_ERR(trans))
5916 		return PTR_ERR(trans);
5917 
5918 	err = btrfs_find_free_ino(root, &objectid);
5919 	if (err)
5920 		goto out_fail;
5921 
5922 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5923 				dentry->d_name.len, btrfs_ino(dir), objectid,
5924 				S_IFDIR | mode, &index);
5925 	if (IS_ERR(inode)) {
5926 		err = PTR_ERR(inode);
5927 		goto out_fail;
5928 	}
5929 
5930 	drop_on_err = 1;
5931 
5932 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5933 	if (err)
5934 		goto out_fail;
5935 
5936 	inode->i_op = &btrfs_dir_inode_operations;
5937 	inode->i_fop = &btrfs_dir_file_operations;
5938 
5939 	btrfs_i_size_write(inode, 0);
5940 	err = btrfs_update_inode(trans, root, inode);
5941 	if (err)
5942 		goto out_fail;
5943 
5944 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5945 			     dentry->d_name.len, 0, index);
5946 	if (err)
5947 		goto out_fail;
5948 
5949 	d_instantiate(dentry, inode);
5950 	drop_on_err = 0;
5951 
5952 out_fail:
5953 	btrfs_end_transaction(trans, root);
5954 	if (drop_on_err)
5955 		iput(inode);
5956 	btrfs_btree_balance_dirty(root);
5957 	return err;
5958 }
5959 
5960 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5961  * and an extent that you want to insert, deal with overlap and insert
5962  * the new extent into the tree.
5963  */
5964 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5965 				struct extent_map *existing,
5966 				struct extent_map *em,
5967 				u64 map_start, u64 map_len)
5968 {
5969 	u64 start_diff;
5970 
5971 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5972 	start_diff = map_start - em->start;
5973 	em->start = map_start;
5974 	em->len = map_len;
5975 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5976 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5977 		em->block_start += start_diff;
5978 		em->block_len -= start_diff;
5979 	}
5980 	return add_extent_mapping(em_tree, em);
5981 }
5982 
5983 static noinline int uncompress_inline(struct btrfs_path *path,
5984 				      struct inode *inode, struct page *page,
5985 				      size_t pg_offset, u64 extent_offset,
5986 				      struct btrfs_file_extent_item *item)
5987 {
5988 	int ret;
5989 	struct extent_buffer *leaf = path->nodes[0];
5990 	char *tmp;
5991 	size_t max_size;
5992 	unsigned long inline_size;
5993 	unsigned long ptr;
5994 	int compress_type;
5995 
5996 	WARN_ON(pg_offset != 0);
5997 	compress_type = btrfs_file_extent_compression(leaf, item);
5998 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
5999 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6000 					btrfs_item_nr(leaf, path->slots[0]));
6001 	tmp = kmalloc(inline_size, GFP_NOFS);
6002 	if (!tmp)
6003 		return -ENOMEM;
6004 	ptr = btrfs_file_extent_inline_start(item);
6005 
6006 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6007 
6008 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6009 	ret = btrfs_decompress(compress_type, tmp, page,
6010 			       extent_offset, inline_size, max_size);
6011 	if (ret) {
6012 		char *kaddr = kmap_atomic(page);
6013 		unsigned long copy_size = min_t(u64,
6014 				  PAGE_CACHE_SIZE - pg_offset,
6015 				  max_size - extent_offset);
6016 		memset(kaddr + pg_offset, 0, copy_size);
6017 		kunmap_atomic(kaddr);
6018 	}
6019 	kfree(tmp);
6020 	return 0;
6021 }
6022 
6023 /*
6024  * a bit scary, this does extent mapping from logical file offset to the disk.
6025  * the ugly parts come from merging extents from the disk with the in-ram
6026  * representation.  This gets more complex because of the data=ordered code,
6027  * where the in-ram extents might be locked pending data=ordered completion.
6028  *
6029  * This also copies inline extents directly into the page.
6030  */
6031 
6032 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6033 				    size_t pg_offset, u64 start, u64 len,
6034 				    int create)
6035 {
6036 	int ret;
6037 	int err = 0;
6038 	u64 bytenr;
6039 	u64 extent_start = 0;
6040 	u64 extent_end = 0;
6041 	u64 objectid = btrfs_ino(inode);
6042 	u32 found_type;
6043 	struct btrfs_path *path = NULL;
6044 	struct btrfs_root *root = BTRFS_I(inode)->root;
6045 	struct btrfs_file_extent_item *item;
6046 	struct extent_buffer *leaf;
6047 	struct btrfs_key found_key;
6048 	struct extent_map *em = NULL;
6049 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6050 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6051 	struct btrfs_trans_handle *trans = NULL;
6052 	int compress_type;
6053 
6054 again:
6055 	read_lock(&em_tree->lock);
6056 	em = lookup_extent_mapping(em_tree, start, len);
6057 	if (em)
6058 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6059 	read_unlock(&em_tree->lock);
6060 
6061 	if (em) {
6062 		if (em->start > start || em->start + em->len <= start)
6063 			free_extent_map(em);
6064 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6065 			free_extent_map(em);
6066 		else
6067 			goto out;
6068 	}
6069 	em = alloc_extent_map();
6070 	if (!em) {
6071 		err = -ENOMEM;
6072 		goto out;
6073 	}
6074 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6075 	em->start = EXTENT_MAP_HOLE;
6076 	em->orig_start = EXTENT_MAP_HOLE;
6077 	em->len = (u64)-1;
6078 	em->block_len = (u64)-1;
6079 
6080 	if (!path) {
6081 		path = btrfs_alloc_path();
6082 		if (!path) {
6083 			err = -ENOMEM;
6084 			goto out;
6085 		}
6086 		/*
6087 		 * Chances are we'll be called again, so go ahead and do
6088 		 * readahead
6089 		 */
6090 		path->reada = 1;
6091 	}
6092 
6093 	ret = btrfs_lookup_file_extent(trans, root, path,
6094 				       objectid, start, trans != NULL);
6095 	if (ret < 0) {
6096 		err = ret;
6097 		goto out;
6098 	}
6099 
6100 	if (ret != 0) {
6101 		if (path->slots[0] == 0)
6102 			goto not_found;
6103 		path->slots[0]--;
6104 	}
6105 
6106 	leaf = path->nodes[0];
6107 	item = btrfs_item_ptr(leaf, path->slots[0],
6108 			      struct btrfs_file_extent_item);
6109 	/* are we inside the extent that was found? */
6110 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6111 	found_type = btrfs_key_type(&found_key);
6112 	if (found_key.objectid != objectid ||
6113 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6114 		goto not_found;
6115 	}
6116 
6117 	found_type = btrfs_file_extent_type(leaf, item);
6118 	extent_start = found_key.offset;
6119 	compress_type = btrfs_file_extent_compression(leaf, item);
6120 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6121 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6122 		extent_end = extent_start +
6123 		       btrfs_file_extent_num_bytes(leaf, item);
6124 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6125 		size_t size;
6126 		size = btrfs_file_extent_inline_len(leaf, item);
6127 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6128 	}
6129 
6130 	if (start >= extent_end) {
6131 		path->slots[0]++;
6132 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6133 			ret = btrfs_next_leaf(root, path);
6134 			if (ret < 0) {
6135 				err = ret;
6136 				goto out;
6137 			}
6138 			if (ret > 0)
6139 				goto not_found;
6140 			leaf = path->nodes[0];
6141 		}
6142 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6143 		if (found_key.objectid != objectid ||
6144 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6145 			goto not_found;
6146 		if (start + len <= found_key.offset)
6147 			goto not_found;
6148 		em->start = start;
6149 		em->orig_start = start;
6150 		em->len = found_key.offset - start;
6151 		goto not_found_em;
6152 	}
6153 
6154 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6155 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6156 		em->start = extent_start;
6157 		em->len = extent_end - extent_start;
6158 		em->orig_start = extent_start -
6159 				 btrfs_file_extent_offset(leaf, item);
6160 		em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6161 								      item);
6162 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6163 		if (bytenr == 0) {
6164 			em->block_start = EXTENT_MAP_HOLE;
6165 			goto insert;
6166 		}
6167 		if (compress_type != BTRFS_COMPRESS_NONE) {
6168 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6169 			em->compress_type = compress_type;
6170 			em->block_start = bytenr;
6171 			em->block_len = em->orig_block_len;
6172 		} else {
6173 			bytenr += btrfs_file_extent_offset(leaf, item);
6174 			em->block_start = bytenr;
6175 			em->block_len = em->len;
6176 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6177 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6178 		}
6179 		goto insert;
6180 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6181 		unsigned long ptr;
6182 		char *map;
6183 		size_t size;
6184 		size_t extent_offset;
6185 		size_t copy_size;
6186 
6187 		em->block_start = EXTENT_MAP_INLINE;
6188 		if (!page || create) {
6189 			em->start = extent_start;
6190 			em->len = extent_end - extent_start;
6191 			goto out;
6192 		}
6193 
6194 		size = btrfs_file_extent_inline_len(leaf, item);
6195 		extent_offset = page_offset(page) + pg_offset - extent_start;
6196 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6197 				size - extent_offset);
6198 		em->start = extent_start + extent_offset;
6199 		em->len = ALIGN(copy_size, root->sectorsize);
6200 		em->orig_block_len = em->len;
6201 		em->orig_start = em->start;
6202 		if (compress_type) {
6203 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6204 			em->compress_type = compress_type;
6205 		}
6206 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6207 		if (create == 0 && !PageUptodate(page)) {
6208 			if (btrfs_file_extent_compression(leaf, item) !=
6209 			    BTRFS_COMPRESS_NONE) {
6210 				ret = uncompress_inline(path, inode, page,
6211 							pg_offset,
6212 							extent_offset, item);
6213 				BUG_ON(ret); /* -ENOMEM */
6214 			} else {
6215 				map = kmap(page);
6216 				read_extent_buffer(leaf, map + pg_offset, ptr,
6217 						   copy_size);
6218 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6219 					memset(map + pg_offset + copy_size, 0,
6220 					       PAGE_CACHE_SIZE - pg_offset -
6221 					       copy_size);
6222 				}
6223 				kunmap(page);
6224 			}
6225 			flush_dcache_page(page);
6226 		} else if (create && PageUptodate(page)) {
6227 			BUG();
6228 			if (!trans) {
6229 				kunmap(page);
6230 				free_extent_map(em);
6231 				em = NULL;
6232 
6233 				btrfs_release_path(path);
6234 				trans = btrfs_join_transaction(root);
6235 
6236 				if (IS_ERR(trans))
6237 					return ERR_CAST(trans);
6238 				goto again;
6239 			}
6240 			map = kmap(page);
6241 			write_extent_buffer(leaf, map + pg_offset, ptr,
6242 					    copy_size);
6243 			kunmap(page);
6244 			btrfs_mark_buffer_dirty(leaf);
6245 		}
6246 		set_extent_uptodate(io_tree, em->start,
6247 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6248 		goto insert;
6249 	} else {
6250 		WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6251 	}
6252 not_found:
6253 	em->start = start;
6254 	em->orig_start = start;
6255 	em->len = len;
6256 not_found_em:
6257 	em->block_start = EXTENT_MAP_HOLE;
6258 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6259 insert:
6260 	btrfs_release_path(path);
6261 	if (em->start > start || extent_map_end(em) <= start) {
6262 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
6263 		       "[%llu %llu]\n", (unsigned long long)em->start,
6264 		       (unsigned long long)em->len,
6265 		       (unsigned long long)start,
6266 		       (unsigned long long)len);
6267 		err = -EIO;
6268 		goto out;
6269 	}
6270 
6271 	err = 0;
6272 	write_lock(&em_tree->lock);
6273 	ret = add_extent_mapping(em_tree, em);
6274 	/* it is possible that someone inserted the extent into the tree
6275 	 * while we had the lock dropped.  It is also possible that
6276 	 * an overlapping map exists in the tree
6277 	 */
6278 	if (ret == -EEXIST) {
6279 		struct extent_map *existing;
6280 
6281 		ret = 0;
6282 
6283 		existing = lookup_extent_mapping(em_tree, start, len);
6284 		if (existing && (existing->start > start ||
6285 		    existing->start + existing->len <= start)) {
6286 			free_extent_map(existing);
6287 			existing = NULL;
6288 		}
6289 		if (!existing) {
6290 			existing = lookup_extent_mapping(em_tree, em->start,
6291 							 em->len);
6292 			if (existing) {
6293 				err = merge_extent_mapping(em_tree, existing,
6294 							   em, start,
6295 							   root->sectorsize);
6296 				free_extent_map(existing);
6297 				if (err) {
6298 					free_extent_map(em);
6299 					em = NULL;
6300 				}
6301 			} else {
6302 				err = -EIO;
6303 				free_extent_map(em);
6304 				em = NULL;
6305 			}
6306 		} else {
6307 			free_extent_map(em);
6308 			em = existing;
6309 			err = 0;
6310 		}
6311 	}
6312 	write_unlock(&em_tree->lock);
6313 out:
6314 
6315 	if (em)
6316 		trace_btrfs_get_extent(root, em);
6317 
6318 	if (path)
6319 		btrfs_free_path(path);
6320 	if (trans) {
6321 		ret = btrfs_end_transaction(trans, root);
6322 		if (!err)
6323 			err = ret;
6324 	}
6325 	if (err) {
6326 		free_extent_map(em);
6327 		return ERR_PTR(err);
6328 	}
6329 	BUG_ON(!em); /* Error is always set */
6330 	return em;
6331 }
6332 
6333 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6334 					   size_t pg_offset, u64 start, u64 len,
6335 					   int create)
6336 {
6337 	struct extent_map *em;
6338 	struct extent_map *hole_em = NULL;
6339 	u64 range_start = start;
6340 	u64 end;
6341 	u64 found;
6342 	u64 found_end;
6343 	int err = 0;
6344 
6345 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6346 	if (IS_ERR(em))
6347 		return em;
6348 	if (em) {
6349 		/*
6350 		 * if our em maps to
6351 		 * -  a hole or
6352 		 * -  a pre-alloc extent,
6353 		 * there might actually be delalloc bytes behind it.
6354 		 */
6355 		if (em->block_start != EXTENT_MAP_HOLE &&
6356 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6357 			return em;
6358 		else
6359 			hole_em = em;
6360 	}
6361 
6362 	/* check to see if we've wrapped (len == -1 or similar) */
6363 	end = start + len;
6364 	if (end < start)
6365 		end = (u64)-1;
6366 	else
6367 		end -= 1;
6368 
6369 	em = NULL;
6370 
6371 	/* ok, we didn't find anything, lets look for delalloc */
6372 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6373 				 end, len, EXTENT_DELALLOC, 1);
6374 	found_end = range_start + found;
6375 	if (found_end < range_start)
6376 		found_end = (u64)-1;
6377 
6378 	/*
6379 	 * we didn't find anything useful, return
6380 	 * the original results from get_extent()
6381 	 */
6382 	if (range_start > end || found_end <= start) {
6383 		em = hole_em;
6384 		hole_em = NULL;
6385 		goto out;
6386 	}
6387 
6388 	/* adjust the range_start to make sure it doesn't
6389 	 * go backwards from the start they passed in
6390 	 */
6391 	range_start = max(start,range_start);
6392 	found = found_end - range_start;
6393 
6394 	if (found > 0) {
6395 		u64 hole_start = start;
6396 		u64 hole_len = len;
6397 
6398 		em = alloc_extent_map();
6399 		if (!em) {
6400 			err = -ENOMEM;
6401 			goto out;
6402 		}
6403 		/*
6404 		 * when btrfs_get_extent can't find anything it
6405 		 * returns one huge hole
6406 		 *
6407 		 * make sure what it found really fits our range, and
6408 		 * adjust to make sure it is based on the start from
6409 		 * the caller
6410 		 */
6411 		if (hole_em) {
6412 			u64 calc_end = extent_map_end(hole_em);
6413 
6414 			if (calc_end <= start || (hole_em->start > end)) {
6415 				free_extent_map(hole_em);
6416 				hole_em = NULL;
6417 			} else {
6418 				hole_start = max(hole_em->start, start);
6419 				hole_len = calc_end - hole_start;
6420 			}
6421 		}
6422 		em->bdev = NULL;
6423 		if (hole_em && range_start > hole_start) {
6424 			/* our hole starts before our delalloc, so we
6425 			 * have to return just the parts of the hole
6426 			 * that go until  the delalloc starts
6427 			 */
6428 			em->len = min(hole_len,
6429 				      range_start - hole_start);
6430 			em->start = hole_start;
6431 			em->orig_start = hole_start;
6432 			/*
6433 			 * don't adjust block start at all,
6434 			 * it is fixed at EXTENT_MAP_HOLE
6435 			 */
6436 			em->block_start = hole_em->block_start;
6437 			em->block_len = hole_len;
6438 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6439 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6440 		} else {
6441 			em->start = range_start;
6442 			em->len = found;
6443 			em->orig_start = range_start;
6444 			em->block_start = EXTENT_MAP_DELALLOC;
6445 			em->block_len = found;
6446 		}
6447 	} else if (hole_em) {
6448 		return hole_em;
6449 	}
6450 out:
6451 
6452 	free_extent_map(hole_em);
6453 	if (err) {
6454 		free_extent_map(em);
6455 		return ERR_PTR(err);
6456 	}
6457 	return em;
6458 }
6459 
6460 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6461 						  u64 start, u64 len)
6462 {
6463 	struct btrfs_root *root = BTRFS_I(inode)->root;
6464 	struct btrfs_trans_handle *trans;
6465 	struct extent_map *em;
6466 	struct btrfs_key ins;
6467 	u64 alloc_hint;
6468 	int ret;
6469 
6470 	trans = btrfs_join_transaction(root);
6471 	if (IS_ERR(trans))
6472 		return ERR_CAST(trans);
6473 
6474 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6475 
6476 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6477 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
6478 				   alloc_hint, &ins, 1);
6479 	if (ret) {
6480 		em = ERR_PTR(ret);
6481 		goto out;
6482 	}
6483 
6484 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6485 			      ins.offset, ins.offset, 0);
6486 	if (IS_ERR(em))
6487 		goto out;
6488 
6489 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6490 					   ins.offset, ins.offset, 0);
6491 	if (ret) {
6492 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6493 		em = ERR_PTR(ret);
6494 	}
6495 out:
6496 	btrfs_end_transaction(trans, root);
6497 	return em;
6498 }
6499 
6500 /*
6501  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6502  * block must be cow'd
6503  */
6504 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
6505 				      struct inode *inode, u64 offset, u64 len)
6506 {
6507 	struct btrfs_path *path;
6508 	int ret;
6509 	struct extent_buffer *leaf;
6510 	struct btrfs_root *root = BTRFS_I(inode)->root;
6511 	struct btrfs_file_extent_item *fi;
6512 	struct btrfs_key key;
6513 	u64 disk_bytenr;
6514 	u64 backref_offset;
6515 	u64 extent_end;
6516 	u64 num_bytes;
6517 	int slot;
6518 	int found_type;
6519 
6520 	path = btrfs_alloc_path();
6521 	if (!path)
6522 		return -ENOMEM;
6523 
6524 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
6525 				       offset, 0);
6526 	if (ret < 0)
6527 		goto out;
6528 
6529 	slot = path->slots[0];
6530 	if (ret == 1) {
6531 		if (slot == 0) {
6532 			/* can't find the item, must cow */
6533 			ret = 0;
6534 			goto out;
6535 		}
6536 		slot--;
6537 	}
6538 	ret = 0;
6539 	leaf = path->nodes[0];
6540 	btrfs_item_key_to_cpu(leaf, &key, slot);
6541 	if (key.objectid != btrfs_ino(inode) ||
6542 	    key.type != BTRFS_EXTENT_DATA_KEY) {
6543 		/* not our file or wrong item type, must cow */
6544 		goto out;
6545 	}
6546 
6547 	if (key.offset > offset) {
6548 		/* Wrong offset, must cow */
6549 		goto out;
6550 	}
6551 
6552 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6553 	found_type = btrfs_file_extent_type(leaf, fi);
6554 	if (found_type != BTRFS_FILE_EXTENT_REG &&
6555 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6556 		/* not a regular extent, must cow */
6557 		goto out;
6558 	}
6559 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6560 	backref_offset = btrfs_file_extent_offset(leaf, fi);
6561 
6562 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6563 	if (extent_end < offset + len) {
6564 		/* extent doesn't include our full range, must cow */
6565 		goto out;
6566 	}
6567 
6568 	if (btrfs_extent_readonly(root, disk_bytenr))
6569 		goto out;
6570 
6571 	/*
6572 	 * look for other files referencing this extent, if we
6573 	 * find any we must cow
6574 	 */
6575 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6576 				  key.offset - backref_offset, disk_bytenr))
6577 		goto out;
6578 
6579 	/*
6580 	 * adjust disk_bytenr and num_bytes to cover just the bytes
6581 	 * in this extent we are about to write.  If there
6582 	 * are any csums in that range we have to cow in order
6583 	 * to keep the csums correct
6584 	 */
6585 	disk_bytenr += backref_offset;
6586 	disk_bytenr += offset - key.offset;
6587 	num_bytes = min(offset + len, extent_end) - offset;
6588 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6589 				goto out;
6590 	/*
6591 	 * all of the above have passed, it is safe to overwrite this extent
6592 	 * without cow
6593 	 */
6594 	ret = 1;
6595 out:
6596 	btrfs_free_path(path);
6597 	return ret;
6598 }
6599 
6600 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6601 			      struct extent_state **cached_state, int writing)
6602 {
6603 	struct btrfs_ordered_extent *ordered;
6604 	int ret = 0;
6605 
6606 	while (1) {
6607 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6608 				 0, cached_state);
6609 		/*
6610 		 * We're concerned with the entire range that we're going to be
6611 		 * doing DIO to, so we need to make sure theres no ordered
6612 		 * extents in this range.
6613 		 */
6614 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6615 						     lockend - lockstart + 1);
6616 
6617 		/*
6618 		 * We need to make sure there are no buffered pages in this
6619 		 * range either, we could have raced between the invalidate in
6620 		 * generic_file_direct_write and locking the extent.  The
6621 		 * invalidate needs to happen so that reads after a write do not
6622 		 * get stale data.
6623 		 */
6624 		if (!ordered && (!writing ||
6625 		    !test_range_bit(&BTRFS_I(inode)->io_tree,
6626 				    lockstart, lockend, EXTENT_UPTODATE, 0,
6627 				    *cached_state)))
6628 			break;
6629 
6630 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6631 				     cached_state, GFP_NOFS);
6632 
6633 		if (ordered) {
6634 			btrfs_start_ordered_extent(inode, ordered, 1);
6635 			btrfs_put_ordered_extent(ordered);
6636 		} else {
6637 			/* Screw you mmap */
6638 			ret = filemap_write_and_wait_range(inode->i_mapping,
6639 							   lockstart,
6640 							   lockend);
6641 			if (ret)
6642 				break;
6643 
6644 			/*
6645 			 * If we found a page that couldn't be invalidated just
6646 			 * fall back to buffered.
6647 			 */
6648 			ret = invalidate_inode_pages2_range(inode->i_mapping,
6649 					lockstart >> PAGE_CACHE_SHIFT,
6650 					lockend >> PAGE_CACHE_SHIFT);
6651 			if (ret)
6652 				break;
6653 		}
6654 
6655 		cond_resched();
6656 	}
6657 
6658 	return ret;
6659 }
6660 
6661 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6662 					   u64 len, u64 orig_start,
6663 					   u64 block_start, u64 block_len,
6664 					   u64 orig_block_len, int type)
6665 {
6666 	struct extent_map_tree *em_tree;
6667 	struct extent_map *em;
6668 	struct btrfs_root *root = BTRFS_I(inode)->root;
6669 	int ret;
6670 
6671 	em_tree = &BTRFS_I(inode)->extent_tree;
6672 	em = alloc_extent_map();
6673 	if (!em)
6674 		return ERR_PTR(-ENOMEM);
6675 
6676 	em->start = start;
6677 	em->orig_start = orig_start;
6678 	em->mod_start = start;
6679 	em->mod_len = len;
6680 	em->len = len;
6681 	em->block_len = block_len;
6682 	em->block_start = block_start;
6683 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6684 	em->orig_block_len = orig_block_len;
6685 	em->generation = -1;
6686 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
6687 	if (type == BTRFS_ORDERED_PREALLOC)
6688 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
6689 
6690 	do {
6691 		btrfs_drop_extent_cache(inode, em->start,
6692 				em->start + em->len - 1, 0);
6693 		write_lock(&em_tree->lock);
6694 		ret = add_extent_mapping(em_tree, em);
6695 		if (!ret)
6696 			list_move(&em->list,
6697 				  &em_tree->modified_extents);
6698 		write_unlock(&em_tree->lock);
6699 	} while (ret == -EEXIST);
6700 
6701 	if (ret) {
6702 		free_extent_map(em);
6703 		return ERR_PTR(ret);
6704 	}
6705 
6706 	return em;
6707 }
6708 
6709 
6710 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6711 				   struct buffer_head *bh_result, int create)
6712 {
6713 	struct extent_map *em;
6714 	struct btrfs_root *root = BTRFS_I(inode)->root;
6715 	struct extent_state *cached_state = NULL;
6716 	u64 start = iblock << inode->i_blkbits;
6717 	u64 lockstart, lockend;
6718 	u64 len = bh_result->b_size;
6719 	struct btrfs_trans_handle *trans;
6720 	int unlock_bits = EXTENT_LOCKED;
6721 	int ret = 0;
6722 
6723 	if (create)
6724 		unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6725 	else
6726 		len = min_t(u64, len, root->sectorsize);
6727 
6728 	lockstart = start;
6729 	lockend = start + len - 1;
6730 
6731 	/*
6732 	 * If this errors out it's because we couldn't invalidate pagecache for
6733 	 * this range and we need to fallback to buffered.
6734 	 */
6735 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6736 		return -ENOTBLK;
6737 
6738 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6739 	if (IS_ERR(em)) {
6740 		ret = PTR_ERR(em);
6741 		goto unlock_err;
6742 	}
6743 
6744 	/*
6745 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6746 	 * io.  INLINE is special, and we could probably kludge it in here, but
6747 	 * it's still buffered so for safety lets just fall back to the generic
6748 	 * buffered path.
6749 	 *
6750 	 * For COMPRESSED we _have_ to read the entire extent in so we can
6751 	 * decompress it, so there will be buffering required no matter what we
6752 	 * do, so go ahead and fallback to buffered.
6753 	 *
6754 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6755 	 * to buffered IO.  Don't blame me, this is the price we pay for using
6756 	 * the generic code.
6757 	 */
6758 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6759 	    em->block_start == EXTENT_MAP_INLINE) {
6760 		free_extent_map(em);
6761 		ret = -ENOTBLK;
6762 		goto unlock_err;
6763 	}
6764 
6765 	/* Just a good old fashioned hole, return */
6766 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6767 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6768 		free_extent_map(em);
6769 		goto unlock_err;
6770 	}
6771 
6772 	/*
6773 	 * We don't allocate a new extent in the following cases
6774 	 *
6775 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6776 	 * existing extent.
6777 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
6778 	 * just use the extent.
6779 	 *
6780 	 */
6781 	if (!create) {
6782 		len = min(len, em->len - (start - em->start));
6783 		lockstart = start + len;
6784 		goto unlock;
6785 	}
6786 
6787 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6788 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6789 	     em->block_start != EXTENT_MAP_HOLE)) {
6790 		int type;
6791 		int ret;
6792 		u64 block_start;
6793 
6794 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6795 			type = BTRFS_ORDERED_PREALLOC;
6796 		else
6797 			type = BTRFS_ORDERED_NOCOW;
6798 		len = min(len, em->len - (start - em->start));
6799 		block_start = em->block_start + (start - em->start);
6800 
6801 		/*
6802 		 * we're not going to log anything, but we do need
6803 		 * to make sure the current transaction stays open
6804 		 * while we look for nocow cross refs
6805 		 */
6806 		trans = btrfs_join_transaction(root);
6807 		if (IS_ERR(trans))
6808 			goto must_cow;
6809 
6810 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
6811 			u64 orig_start = em->orig_start;
6812 			u64 orig_block_len = em->orig_block_len;
6813 
6814 			if (type == BTRFS_ORDERED_PREALLOC) {
6815 				free_extent_map(em);
6816 				em = create_pinned_em(inode, start, len,
6817 						       orig_start,
6818 						       block_start, len,
6819 						       orig_block_len, type);
6820 				if (IS_ERR(em)) {
6821 					btrfs_end_transaction(trans, root);
6822 					goto unlock_err;
6823 				}
6824 			}
6825 
6826 			ret = btrfs_add_ordered_extent_dio(inode, start,
6827 					   block_start, len, len, type);
6828 			btrfs_end_transaction(trans, root);
6829 			if (ret) {
6830 				free_extent_map(em);
6831 				goto unlock_err;
6832 			}
6833 			goto unlock;
6834 		}
6835 		btrfs_end_transaction(trans, root);
6836 	}
6837 must_cow:
6838 	/*
6839 	 * this will cow the extent, reset the len in case we changed
6840 	 * it above
6841 	 */
6842 	len = bh_result->b_size;
6843 	free_extent_map(em);
6844 	em = btrfs_new_extent_direct(inode, start, len);
6845 	if (IS_ERR(em)) {
6846 		ret = PTR_ERR(em);
6847 		goto unlock_err;
6848 	}
6849 	len = min(len, em->len - (start - em->start));
6850 unlock:
6851 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6852 		inode->i_blkbits;
6853 	bh_result->b_size = len;
6854 	bh_result->b_bdev = em->bdev;
6855 	set_buffer_mapped(bh_result);
6856 	if (create) {
6857 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6858 			set_buffer_new(bh_result);
6859 
6860 		/*
6861 		 * Need to update the i_size under the extent lock so buffered
6862 		 * readers will get the updated i_size when we unlock.
6863 		 */
6864 		if (start + len > i_size_read(inode))
6865 			i_size_write(inode, start + len);
6866 
6867 		spin_lock(&BTRFS_I(inode)->lock);
6868 		BTRFS_I(inode)->outstanding_extents++;
6869 		spin_unlock(&BTRFS_I(inode)->lock);
6870 
6871 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6872 				     lockstart + len - 1, EXTENT_DELALLOC, NULL,
6873 				     &cached_state, GFP_NOFS);
6874 		BUG_ON(ret);
6875 	}
6876 
6877 	/*
6878 	 * In the case of write we need to clear and unlock the entire range,
6879 	 * in the case of read we need to unlock only the end area that we
6880 	 * aren't using if there is any left over space.
6881 	 */
6882 	if (lockstart < lockend) {
6883 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6884 				 lockend, unlock_bits, 1, 0,
6885 				 &cached_state, GFP_NOFS);
6886 	} else {
6887 		free_extent_state(cached_state);
6888 	}
6889 
6890 	free_extent_map(em);
6891 
6892 	return 0;
6893 
6894 unlock_err:
6895 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6896 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6897 	return ret;
6898 }
6899 
6900 struct btrfs_dio_private {
6901 	struct inode *inode;
6902 	u64 logical_offset;
6903 	u64 disk_bytenr;
6904 	u64 bytes;
6905 	void *private;
6906 
6907 	/* number of bios pending for this dio */
6908 	atomic_t pending_bios;
6909 
6910 	/* IO errors */
6911 	int errors;
6912 
6913 	struct bio *orig_bio;
6914 };
6915 
6916 static void btrfs_endio_direct_read(struct bio *bio, int err)
6917 {
6918 	struct btrfs_dio_private *dip = bio->bi_private;
6919 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6920 	struct bio_vec *bvec = bio->bi_io_vec;
6921 	struct inode *inode = dip->inode;
6922 	struct btrfs_root *root = BTRFS_I(inode)->root;
6923 	u64 start;
6924 
6925 	start = dip->logical_offset;
6926 	do {
6927 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6928 			struct page *page = bvec->bv_page;
6929 			char *kaddr;
6930 			u32 csum = ~(u32)0;
6931 			u64 private = ~(u32)0;
6932 			unsigned long flags;
6933 
6934 			if (get_state_private(&BTRFS_I(inode)->io_tree,
6935 					      start, &private))
6936 				goto failed;
6937 			local_irq_save(flags);
6938 			kaddr = kmap_atomic(page);
6939 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
6940 					       csum, bvec->bv_len);
6941 			btrfs_csum_final(csum, (char *)&csum);
6942 			kunmap_atomic(kaddr);
6943 			local_irq_restore(flags);
6944 
6945 			flush_dcache_page(bvec->bv_page);
6946 			if (csum != private) {
6947 failed:
6948 				printk(KERN_ERR "btrfs csum failed ino %llu off"
6949 				      " %llu csum %u private %u\n",
6950 				      (unsigned long long)btrfs_ino(inode),
6951 				      (unsigned long long)start,
6952 				      csum, (unsigned)private);
6953 				err = -EIO;
6954 			}
6955 		}
6956 
6957 		start += bvec->bv_len;
6958 		bvec++;
6959 	} while (bvec <= bvec_end);
6960 
6961 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6962 		      dip->logical_offset + dip->bytes - 1);
6963 	bio->bi_private = dip->private;
6964 
6965 	kfree(dip);
6966 
6967 	/* If we had a csum failure make sure to clear the uptodate flag */
6968 	if (err)
6969 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
6970 	dio_end_io(bio, err);
6971 }
6972 
6973 static void btrfs_endio_direct_write(struct bio *bio, int err)
6974 {
6975 	struct btrfs_dio_private *dip = bio->bi_private;
6976 	struct inode *inode = dip->inode;
6977 	struct btrfs_root *root = BTRFS_I(inode)->root;
6978 	struct btrfs_ordered_extent *ordered = NULL;
6979 	u64 ordered_offset = dip->logical_offset;
6980 	u64 ordered_bytes = dip->bytes;
6981 	int ret;
6982 
6983 	if (err)
6984 		goto out_done;
6985 again:
6986 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6987 						   &ordered_offset,
6988 						   ordered_bytes, !err);
6989 	if (!ret)
6990 		goto out_test;
6991 
6992 	ordered->work.func = finish_ordered_fn;
6993 	ordered->work.flags = 0;
6994 	btrfs_queue_worker(&root->fs_info->endio_write_workers,
6995 			   &ordered->work);
6996 out_test:
6997 	/*
6998 	 * our bio might span multiple ordered extents.  If we haven't
6999 	 * completed the accounting for the whole dio, go back and try again
7000 	 */
7001 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7002 		ordered_bytes = dip->logical_offset + dip->bytes -
7003 			ordered_offset;
7004 		ordered = NULL;
7005 		goto again;
7006 	}
7007 out_done:
7008 	bio->bi_private = dip->private;
7009 
7010 	kfree(dip);
7011 
7012 	/* If we had an error make sure to clear the uptodate flag */
7013 	if (err)
7014 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
7015 	dio_end_io(bio, err);
7016 }
7017 
7018 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7019 				    struct bio *bio, int mirror_num,
7020 				    unsigned long bio_flags, u64 offset)
7021 {
7022 	int ret;
7023 	struct btrfs_root *root = BTRFS_I(inode)->root;
7024 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7025 	BUG_ON(ret); /* -ENOMEM */
7026 	return 0;
7027 }
7028 
7029 static void btrfs_end_dio_bio(struct bio *bio, int err)
7030 {
7031 	struct btrfs_dio_private *dip = bio->bi_private;
7032 
7033 	if (err) {
7034 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
7035 		      "sector %#Lx len %u err no %d\n",
7036 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
7037 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
7038 		dip->errors = 1;
7039 
7040 		/*
7041 		 * before atomic variable goto zero, we must make sure
7042 		 * dip->errors is perceived to be set.
7043 		 */
7044 		smp_mb__before_atomic_dec();
7045 	}
7046 
7047 	/* if there are more bios still pending for this dio, just exit */
7048 	if (!atomic_dec_and_test(&dip->pending_bios))
7049 		goto out;
7050 
7051 	if (dip->errors)
7052 		bio_io_error(dip->orig_bio);
7053 	else {
7054 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
7055 		bio_endio(dip->orig_bio, 0);
7056 	}
7057 out:
7058 	bio_put(bio);
7059 }
7060 
7061 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7062 				       u64 first_sector, gfp_t gfp_flags)
7063 {
7064 	int nr_vecs = bio_get_nr_vecs(bdev);
7065 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7066 }
7067 
7068 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7069 					 int rw, u64 file_offset, int skip_sum,
7070 					 int async_submit)
7071 {
7072 	int write = rw & REQ_WRITE;
7073 	struct btrfs_root *root = BTRFS_I(inode)->root;
7074 	int ret;
7075 
7076 	if (async_submit)
7077 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7078 
7079 	bio_get(bio);
7080 
7081 	if (!write) {
7082 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7083 		if (ret)
7084 			goto err;
7085 	}
7086 
7087 	if (skip_sum)
7088 		goto map;
7089 
7090 	if (write && async_submit) {
7091 		ret = btrfs_wq_submit_bio(root->fs_info,
7092 				   inode, rw, bio, 0, 0,
7093 				   file_offset,
7094 				   __btrfs_submit_bio_start_direct_io,
7095 				   __btrfs_submit_bio_done);
7096 		goto err;
7097 	} else if (write) {
7098 		/*
7099 		 * If we aren't doing async submit, calculate the csum of the
7100 		 * bio now.
7101 		 */
7102 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7103 		if (ret)
7104 			goto err;
7105 	} else if (!skip_sum) {
7106 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
7107 		if (ret)
7108 			goto err;
7109 	}
7110 
7111 map:
7112 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7113 err:
7114 	bio_put(bio);
7115 	return ret;
7116 }
7117 
7118 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7119 				    int skip_sum)
7120 {
7121 	struct inode *inode = dip->inode;
7122 	struct btrfs_root *root = BTRFS_I(inode)->root;
7123 	struct bio *bio;
7124 	struct bio *orig_bio = dip->orig_bio;
7125 	struct bio_vec *bvec = orig_bio->bi_io_vec;
7126 	u64 start_sector = orig_bio->bi_sector;
7127 	u64 file_offset = dip->logical_offset;
7128 	u64 submit_len = 0;
7129 	u64 map_length;
7130 	int nr_pages = 0;
7131 	int ret = 0;
7132 	int async_submit = 0;
7133 
7134 	map_length = orig_bio->bi_size;
7135 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7136 			      &map_length, NULL, 0);
7137 	if (ret) {
7138 		bio_put(orig_bio);
7139 		return -EIO;
7140 	}
7141 	if (map_length >= orig_bio->bi_size) {
7142 		bio = orig_bio;
7143 		goto submit;
7144 	}
7145 
7146 	/* async crcs make it difficult to collect full stripe writes. */
7147 	if (btrfs_get_alloc_profile(root, 1) &
7148 	    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7149 		async_submit = 0;
7150 	else
7151 		async_submit = 1;
7152 
7153 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7154 	if (!bio)
7155 		return -ENOMEM;
7156 	bio->bi_private = dip;
7157 	bio->bi_end_io = btrfs_end_dio_bio;
7158 	atomic_inc(&dip->pending_bios);
7159 
7160 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7161 		if (unlikely(map_length < submit_len + bvec->bv_len ||
7162 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7163 				 bvec->bv_offset) < bvec->bv_len)) {
7164 			/*
7165 			 * inc the count before we submit the bio so
7166 			 * we know the end IO handler won't happen before
7167 			 * we inc the count. Otherwise, the dip might get freed
7168 			 * before we're done setting it up
7169 			 */
7170 			atomic_inc(&dip->pending_bios);
7171 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
7172 						     file_offset, skip_sum,
7173 						     async_submit);
7174 			if (ret) {
7175 				bio_put(bio);
7176 				atomic_dec(&dip->pending_bios);
7177 				goto out_err;
7178 			}
7179 
7180 			start_sector += submit_len >> 9;
7181 			file_offset += submit_len;
7182 
7183 			submit_len = 0;
7184 			nr_pages = 0;
7185 
7186 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7187 						  start_sector, GFP_NOFS);
7188 			if (!bio)
7189 				goto out_err;
7190 			bio->bi_private = dip;
7191 			bio->bi_end_io = btrfs_end_dio_bio;
7192 
7193 			map_length = orig_bio->bi_size;
7194 			ret = btrfs_map_block(root->fs_info, rw,
7195 					      start_sector << 9,
7196 					      &map_length, NULL, 0);
7197 			if (ret) {
7198 				bio_put(bio);
7199 				goto out_err;
7200 			}
7201 		} else {
7202 			submit_len += bvec->bv_len;
7203 			nr_pages ++;
7204 			bvec++;
7205 		}
7206 	}
7207 
7208 submit:
7209 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7210 				     async_submit);
7211 	if (!ret)
7212 		return 0;
7213 
7214 	bio_put(bio);
7215 out_err:
7216 	dip->errors = 1;
7217 	/*
7218 	 * before atomic variable goto zero, we must
7219 	 * make sure dip->errors is perceived to be set.
7220 	 */
7221 	smp_mb__before_atomic_dec();
7222 	if (atomic_dec_and_test(&dip->pending_bios))
7223 		bio_io_error(dip->orig_bio);
7224 
7225 	/* bio_end_io() will handle error, so we needn't return it */
7226 	return 0;
7227 }
7228 
7229 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
7230 				loff_t file_offset)
7231 {
7232 	struct btrfs_root *root = BTRFS_I(inode)->root;
7233 	struct btrfs_dio_private *dip;
7234 	struct bio_vec *bvec = bio->bi_io_vec;
7235 	int skip_sum;
7236 	int write = rw & REQ_WRITE;
7237 	int ret = 0;
7238 
7239 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7240 
7241 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
7242 	if (!dip) {
7243 		ret = -ENOMEM;
7244 		goto free_ordered;
7245 	}
7246 
7247 	dip->private = bio->bi_private;
7248 	dip->inode = inode;
7249 	dip->logical_offset = file_offset;
7250 
7251 	dip->bytes = 0;
7252 	do {
7253 		dip->bytes += bvec->bv_len;
7254 		bvec++;
7255 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
7256 
7257 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
7258 	bio->bi_private = dip;
7259 	dip->errors = 0;
7260 	dip->orig_bio = bio;
7261 	atomic_set(&dip->pending_bios, 0);
7262 
7263 	if (write)
7264 		bio->bi_end_io = btrfs_endio_direct_write;
7265 	else
7266 		bio->bi_end_io = btrfs_endio_direct_read;
7267 
7268 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7269 	if (!ret)
7270 		return;
7271 free_ordered:
7272 	/*
7273 	 * If this is a write, we need to clean up the reserved space and kill
7274 	 * the ordered extent.
7275 	 */
7276 	if (write) {
7277 		struct btrfs_ordered_extent *ordered;
7278 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7279 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7280 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7281 			btrfs_free_reserved_extent(root, ordered->start,
7282 						   ordered->disk_len);
7283 		btrfs_put_ordered_extent(ordered);
7284 		btrfs_put_ordered_extent(ordered);
7285 	}
7286 	bio_endio(bio, ret);
7287 }
7288 
7289 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7290 			const struct iovec *iov, loff_t offset,
7291 			unsigned long nr_segs)
7292 {
7293 	int seg;
7294 	int i;
7295 	size_t size;
7296 	unsigned long addr;
7297 	unsigned blocksize_mask = root->sectorsize - 1;
7298 	ssize_t retval = -EINVAL;
7299 	loff_t end = offset;
7300 
7301 	if (offset & blocksize_mask)
7302 		goto out;
7303 
7304 	/* Check the memory alignment.  Blocks cannot straddle pages */
7305 	for (seg = 0; seg < nr_segs; seg++) {
7306 		addr = (unsigned long)iov[seg].iov_base;
7307 		size = iov[seg].iov_len;
7308 		end += size;
7309 		if ((addr & blocksize_mask) || (size & blocksize_mask))
7310 			goto out;
7311 
7312 		/* If this is a write we don't need to check anymore */
7313 		if (rw & WRITE)
7314 			continue;
7315 
7316 		/*
7317 		 * Check to make sure we don't have duplicate iov_base's in this
7318 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
7319 		 * when reading back.
7320 		 */
7321 		for (i = seg + 1; i < nr_segs; i++) {
7322 			if (iov[seg].iov_base == iov[i].iov_base)
7323 				goto out;
7324 		}
7325 	}
7326 	retval = 0;
7327 out:
7328 	return retval;
7329 }
7330 
7331 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7332 			const struct iovec *iov, loff_t offset,
7333 			unsigned long nr_segs)
7334 {
7335 	struct file *file = iocb->ki_filp;
7336 	struct inode *inode = file->f_mapping->host;
7337 	size_t count = 0;
7338 	int flags = 0;
7339 	bool wakeup = true;
7340 	bool relock = false;
7341 	ssize_t ret;
7342 
7343 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7344 			    offset, nr_segs))
7345 		return 0;
7346 
7347 	atomic_inc(&inode->i_dio_count);
7348 	smp_mb__after_atomic_inc();
7349 
7350 	if (rw & WRITE) {
7351 		count = iov_length(iov, nr_segs);
7352 		/*
7353 		 * If the write DIO is beyond the EOF, we need update
7354 		 * the isize, but it is protected by i_mutex. So we can
7355 		 * not unlock the i_mutex at this case.
7356 		 */
7357 		if (offset + count <= inode->i_size) {
7358 			mutex_unlock(&inode->i_mutex);
7359 			relock = true;
7360 		}
7361 		ret = btrfs_delalloc_reserve_space(inode, count);
7362 		if (ret)
7363 			goto out;
7364 	} else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7365 				     &BTRFS_I(inode)->runtime_flags))) {
7366 		inode_dio_done(inode);
7367 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7368 		wakeup = false;
7369 	}
7370 
7371 	ret = __blockdev_direct_IO(rw, iocb, inode,
7372 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7373 			iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7374 			btrfs_submit_direct, flags);
7375 	if (rw & WRITE) {
7376 		if (ret < 0 && ret != -EIOCBQUEUED)
7377 			btrfs_delalloc_release_space(inode, count);
7378 		else if (ret >= 0 && (size_t)ret < count)
7379 			btrfs_delalloc_release_space(inode,
7380 						     count - (size_t)ret);
7381 		else
7382 			btrfs_delalloc_release_metadata(inode, 0);
7383 	}
7384 out:
7385 	if (wakeup)
7386 		inode_dio_done(inode);
7387 	if (relock)
7388 		mutex_lock(&inode->i_mutex);
7389 
7390 	return ret;
7391 }
7392 
7393 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
7394 
7395 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7396 		__u64 start, __u64 len)
7397 {
7398 	int	ret;
7399 
7400 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7401 	if (ret)
7402 		return ret;
7403 
7404 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7405 }
7406 
7407 int btrfs_readpage(struct file *file, struct page *page)
7408 {
7409 	struct extent_io_tree *tree;
7410 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7411 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7412 }
7413 
7414 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7415 {
7416 	struct extent_io_tree *tree;
7417 
7418 
7419 	if (current->flags & PF_MEMALLOC) {
7420 		redirty_page_for_writepage(wbc, page);
7421 		unlock_page(page);
7422 		return 0;
7423 	}
7424 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7425 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7426 }
7427 
7428 int btrfs_writepages(struct address_space *mapping,
7429 		     struct writeback_control *wbc)
7430 {
7431 	struct extent_io_tree *tree;
7432 
7433 	tree = &BTRFS_I(mapping->host)->io_tree;
7434 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7435 }
7436 
7437 static int
7438 btrfs_readpages(struct file *file, struct address_space *mapping,
7439 		struct list_head *pages, unsigned nr_pages)
7440 {
7441 	struct extent_io_tree *tree;
7442 	tree = &BTRFS_I(mapping->host)->io_tree;
7443 	return extent_readpages(tree, mapping, pages, nr_pages,
7444 				btrfs_get_extent);
7445 }
7446 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7447 {
7448 	struct extent_io_tree *tree;
7449 	struct extent_map_tree *map;
7450 	int ret;
7451 
7452 	tree = &BTRFS_I(page->mapping->host)->io_tree;
7453 	map = &BTRFS_I(page->mapping->host)->extent_tree;
7454 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7455 	if (ret == 1) {
7456 		ClearPagePrivate(page);
7457 		set_page_private(page, 0);
7458 		page_cache_release(page);
7459 	}
7460 	return ret;
7461 }
7462 
7463 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7464 {
7465 	if (PageWriteback(page) || PageDirty(page))
7466 		return 0;
7467 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7468 }
7469 
7470 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
7471 {
7472 	struct inode *inode = page->mapping->host;
7473 	struct extent_io_tree *tree;
7474 	struct btrfs_ordered_extent *ordered;
7475 	struct extent_state *cached_state = NULL;
7476 	u64 page_start = page_offset(page);
7477 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7478 
7479 	/*
7480 	 * we have the page locked, so new writeback can't start,
7481 	 * and the dirty bit won't be cleared while we are here.
7482 	 *
7483 	 * Wait for IO on this page so that we can safely clear
7484 	 * the PagePrivate2 bit and do ordered accounting
7485 	 */
7486 	wait_on_page_writeback(page);
7487 
7488 	tree = &BTRFS_I(inode)->io_tree;
7489 	if (offset) {
7490 		btrfs_releasepage(page, GFP_NOFS);
7491 		return;
7492 	}
7493 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7494 	ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7495 	if (ordered) {
7496 		/*
7497 		 * IO on this page will never be started, so we need
7498 		 * to account for any ordered extents now
7499 		 */
7500 		clear_extent_bit(tree, page_start, page_end,
7501 				 EXTENT_DIRTY | EXTENT_DELALLOC |
7502 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7503 				 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7504 		/*
7505 		 * whoever cleared the private bit is responsible
7506 		 * for the finish_ordered_io
7507 		 */
7508 		if (TestClearPagePrivate2(page) &&
7509 		    btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7510 						   PAGE_CACHE_SIZE, 1)) {
7511 			btrfs_finish_ordered_io(ordered);
7512 		}
7513 		btrfs_put_ordered_extent(ordered);
7514 		cached_state = NULL;
7515 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7516 	}
7517 	clear_extent_bit(tree, page_start, page_end,
7518 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7519 		 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7520 		 &cached_state, GFP_NOFS);
7521 	__btrfs_releasepage(page, GFP_NOFS);
7522 
7523 	ClearPageChecked(page);
7524 	if (PagePrivate(page)) {
7525 		ClearPagePrivate(page);
7526 		set_page_private(page, 0);
7527 		page_cache_release(page);
7528 	}
7529 }
7530 
7531 /*
7532  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7533  * called from a page fault handler when a page is first dirtied. Hence we must
7534  * be careful to check for EOF conditions here. We set the page up correctly
7535  * for a written page which means we get ENOSPC checking when writing into
7536  * holes and correct delalloc and unwritten extent mapping on filesystems that
7537  * support these features.
7538  *
7539  * We are not allowed to take the i_mutex here so we have to play games to
7540  * protect against truncate races as the page could now be beyond EOF.  Because
7541  * vmtruncate() writes the inode size before removing pages, once we have the
7542  * page lock we can determine safely if the page is beyond EOF. If it is not
7543  * beyond EOF, then the page is guaranteed safe against truncation until we
7544  * unlock the page.
7545  */
7546 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7547 {
7548 	struct page *page = vmf->page;
7549 	struct inode *inode = file_inode(vma->vm_file);
7550 	struct btrfs_root *root = BTRFS_I(inode)->root;
7551 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7552 	struct btrfs_ordered_extent *ordered;
7553 	struct extent_state *cached_state = NULL;
7554 	char *kaddr;
7555 	unsigned long zero_start;
7556 	loff_t size;
7557 	int ret;
7558 	int reserved = 0;
7559 	u64 page_start;
7560 	u64 page_end;
7561 
7562 	sb_start_pagefault(inode->i_sb);
7563 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7564 	if (!ret) {
7565 		ret = file_update_time(vma->vm_file);
7566 		reserved = 1;
7567 	}
7568 	if (ret) {
7569 		if (ret == -ENOMEM)
7570 			ret = VM_FAULT_OOM;
7571 		else /* -ENOSPC, -EIO, etc */
7572 			ret = VM_FAULT_SIGBUS;
7573 		if (reserved)
7574 			goto out;
7575 		goto out_noreserve;
7576 	}
7577 
7578 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7579 again:
7580 	lock_page(page);
7581 	size = i_size_read(inode);
7582 	page_start = page_offset(page);
7583 	page_end = page_start + PAGE_CACHE_SIZE - 1;
7584 
7585 	if ((page->mapping != inode->i_mapping) ||
7586 	    (page_start >= size)) {
7587 		/* page got truncated out from underneath us */
7588 		goto out_unlock;
7589 	}
7590 	wait_on_page_writeback(page);
7591 
7592 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7593 	set_page_extent_mapped(page);
7594 
7595 	/*
7596 	 * we can't set the delalloc bits if there are pending ordered
7597 	 * extents.  Drop our locks and wait for them to finish
7598 	 */
7599 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
7600 	if (ordered) {
7601 		unlock_extent_cached(io_tree, page_start, page_end,
7602 				     &cached_state, GFP_NOFS);
7603 		unlock_page(page);
7604 		btrfs_start_ordered_extent(inode, ordered, 1);
7605 		btrfs_put_ordered_extent(ordered);
7606 		goto again;
7607 	}
7608 
7609 	/*
7610 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
7611 	 * if it was already dirty, so for space accounting reasons we need to
7612 	 * clear any delalloc bits for the range we are fixing to save.  There
7613 	 * is probably a better way to do this, but for now keep consistent with
7614 	 * prepare_pages in the normal write path.
7615 	 */
7616 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7617 			  EXTENT_DIRTY | EXTENT_DELALLOC |
7618 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7619 			  0, 0, &cached_state, GFP_NOFS);
7620 
7621 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7622 					&cached_state);
7623 	if (ret) {
7624 		unlock_extent_cached(io_tree, page_start, page_end,
7625 				     &cached_state, GFP_NOFS);
7626 		ret = VM_FAULT_SIGBUS;
7627 		goto out_unlock;
7628 	}
7629 	ret = 0;
7630 
7631 	/* page is wholly or partially inside EOF */
7632 	if (page_start + PAGE_CACHE_SIZE > size)
7633 		zero_start = size & ~PAGE_CACHE_MASK;
7634 	else
7635 		zero_start = PAGE_CACHE_SIZE;
7636 
7637 	if (zero_start != PAGE_CACHE_SIZE) {
7638 		kaddr = kmap(page);
7639 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7640 		flush_dcache_page(page);
7641 		kunmap(page);
7642 	}
7643 	ClearPageChecked(page);
7644 	set_page_dirty(page);
7645 	SetPageUptodate(page);
7646 
7647 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
7648 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7649 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7650 
7651 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7652 
7653 out_unlock:
7654 	if (!ret) {
7655 		sb_end_pagefault(inode->i_sb);
7656 		return VM_FAULT_LOCKED;
7657 	}
7658 	unlock_page(page);
7659 out:
7660 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7661 out_noreserve:
7662 	sb_end_pagefault(inode->i_sb);
7663 	return ret;
7664 }
7665 
7666 static int btrfs_truncate(struct inode *inode)
7667 {
7668 	struct btrfs_root *root = BTRFS_I(inode)->root;
7669 	struct btrfs_block_rsv *rsv;
7670 	int ret;
7671 	int err = 0;
7672 	struct btrfs_trans_handle *trans;
7673 	u64 mask = root->sectorsize - 1;
7674 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7675 
7676 	ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
7677 	if (ret)
7678 		return ret;
7679 
7680 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7681 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7682 
7683 	/*
7684 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7685 	 * 3 things going on here
7686 	 *
7687 	 * 1) We need to reserve space for our orphan item and the space to
7688 	 * delete our orphan item.  Lord knows we don't want to have a dangling
7689 	 * orphan item because we didn't reserve space to remove it.
7690 	 *
7691 	 * 2) We need to reserve space to update our inode.
7692 	 *
7693 	 * 3) We need to have something to cache all the space that is going to
7694 	 * be free'd up by the truncate operation, but also have some slack
7695 	 * space reserved in case it uses space during the truncate (thank you
7696 	 * very much snapshotting).
7697 	 *
7698 	 * And we need these to all be seperate.  The fact is we can use alot of
7699 	 * space doing the truncate, and we have no earthly idea how much space
7700 	 * we will use, so we need the truncate reservation to be seperate so it
7701 	 * doesn't end up using space reserved for updating the inode or
7702 	 * removing the orphan item.  We also need to be able to stop the
7703 	 * transaction and start a new one, which means we need to be able to
7704 	 * update the inode several times, and we have no idea of knowing how
7705 	 * many times that will be, so we can't just reserve 1 item for the
7706 	 * entirety of the opration, so that has to be done seperately as well.
7707 	 * Then there is the orphan item, which does indeed need to be held on
7708 	 * to for the whole operation, and we need nobody to touch this reserved
7709 	 * space except the orphan code.
7710 	 *
7711 	 * So that leaves us with
7712 	 *
7713 	 * 1) root->orphan_block_rsv - for the orphan deletion.
7714 	 * 2) rsv - for the truncate reservation, which we will steal from the
7715 	 * transaction reservation.
7716 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7717 	 * updating the inode.
7718 	 */
7719 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7720 	if (!rsv)
7721 		return -ENOMEM;
7722 	rsv->size = min_size;
7723 	rsv->failfast = 1;
7724 
7725 	/*
7726 	 * 1 for the truncate slack space
7727 	 * 1 for updating the inode.
7728 	 */
7729 	trans = btrfs_start_transaction(root, 2);
7730 	if (IS_ERR(trans)) {
7731 		err = PTR_ERR(trans);
7732 		goto out;
7733 	}
7734 
7735 	/* Migrate the slack space for the truncate to our reserve */
7736 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7737 				      min_size);
7738 	BUG_ON(ret);
7739 
7740 	/*
7741 	 * setattr is responsible for setting the ordered_data_close flag,
7742 	 * but that is only tested during the last file release.  That
7743 	 * could happen well after the next commit, leaving a great big
7744 	 * window where new writes may get lost if someone chooses to write
7745 	 * to this file after truncating to zero
7746 	 *
7747 	 * The inode doesn't have any dirty data here, and so if we commit
7748 	 * this is a noop.  If someone immediately starts writing to the inode
7749 	 * it is very likely we'll catch some of their writes in this
7750 	 * transaction, and the commit will find this file on the ordered
7751 	 * data list with good things to send down.
7752 	 *
7753 	 * This is a best effort solution, there is still a window where
7754 	 * using truncate to replace the contents of the file will
7755 	 * end up with a zero length file after a crash.
7756 	 */
7757 	if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7758 					   &BTRFS_I(inode)->runtime_flags))
7759 		btrfs_add_ordered_operation(trans, root, inode);
7760 
7761 	/*
7762 	 * So if we truncate and then write and fsync we normally would just
7763 	 * write the extents that changed, which is a problem if we need to
7764 	 * first truncate that entire inode.  So set this flag so we write out
7765 	 * all of the extents in the inode to the sync log so we're completely
7766 	 * safe.
7767 	 */
7768 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7769 	trans->block_rsv = rsv;
7770 
7771 	while (1) {
7772 		ret = btrfs_truncate_inode_items(trans, root, inode,
7773 						 inode->i_size,
7774 						 BTRFS_EXTENT_DATA_KEY);
7775 		if (ret != -ENOSPC) {
7776 			err = ret;
7777 			break;
7778 		}
7779 
7780 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7781 		ret = btrfs_update_inode(trans, root, inode);
7782 		if (ret) {
7783 			err = ret;
7784 			break;
7785 		}
7786 
7787 		btrfs_end_transaction(trans, root);
7788 		btrfs_btree_balance_dirty(root);
7789 
7790 		trans = btrfs_start_transaction(root, 2);
7791 		if (IS_ERR(trans)) {
7792 			ret = err = PTR_ERR(trans);
7793 			trans = NULL;
7794 			break;
7795 		}
7796 
7797 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7798 					      rsv, min_size);
7799 		BUG_ON(ret);	/* shouldn't happen */
7800 		trans->block_rsv = rsv;
7801 	}
7802 
7803 	if (ret == 0 && inode->i_nlink > 0) {
7804 		trans->block_rsv = root->orphan_block_rsv;
7805 		ret = btrfs_orphan_del(trans, inode);
7806 		if (ret)
7807 			err = ret;
7808 	}
7809 
7810 	if (trans) {
7811 		trans->block_rsv = &root->fs_info->trans_block_rsv;
7812 		ret = btrfs_update_inode(trans, root, inode);
7813 		if (ret && !err)
7814 			err = ret;
7815 
7816 		ret = btrfs_end_transaction(trans, root);
7817 		btrfs_btree_balance_dirty(root);
7818 	}
7819 
7820 out:
7821 	btrfs_free_block_rsv(root, rsv);
7822 
7823 	if (ret && !err)
7824 		err = ret;
7825 
7826 	return err;
7827 }
7828 
7829 /*
7830  * create a new subvolume directory/inode (helper for the ioctl).
7831  */
7832 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7833 			     struct btrfs_root *new_root, u64 new_dirid)
7834 {
7835 	struct inode *inode;
7836 	int err;
7837 	u64 index = 0;
7838 
7839 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7840 				new_dirid, new_dirid,
7841 				S_IFDIR | (~current_umask() & S_IRWXUGO),
7842 				&index);
7843 	if (IS_ERR(inode))
7844 		return PTR_ERR(inode);
7845 	inode->i_op = &btrfs_dir_inode_operations;
7846 	inode->i_fop = &btrfs_dir_file_operations;
7847 
7848 	set_nlink(inode, 1);
7849 	btrfs_i_size_write(inode, 0);
7850 
7851 	err = btrfs_update_inode(trans, new_root, inode);
7852 
7853 	iput(inode);
7854 	return err;
7855 }
7856 
7857 struct inode *btrfs_alloc_inode(struct super_block *sb)
7858 {
7859 	struct btrfs_inode *ei;
7860 	struct inode *inode;
7861 
7862 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7863 	if (!ei)
7864 		return NULL;
7865 
7866 	ei->root = NULL;
7867 	ei->generation = 0;
7868 	ei->last_trans = 0;
7869 	ei->last_sub_trans = 0;
7870 	ei->logged_trans = 0;
7871 	ei->delalloc_bytes = 0;
7872 	ei->disk_i_size = 0;
7873 	ei->flags = 0;
7874 	ei->csum_bytes = 0;
7875 	ei->index_cnt = (u64)-1;
7876 	ei->last_unlink_trans = 0;
7877 	ei->last_log_commit = 0;
7878 
7879 	spin_lock_init(&ei->lock);
7880 	ei->outstanding_extents = 0;
7881 	ei->reserved_extents = 0;
7882 
7883 	ei->runtime_flags = 0;
7884 	ei->force_compress = BTRFS_COMPRESS_NONE;
7885 
7886 	ei->delayed_node = NULL;
7887 
7888 	inode = &ei->vfs_inode;
7889 	extent_map_tree_init(&ei->extent_tree);
7890 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
7891 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7892 	ei->io_tree.track_uptodate = 1;
7893 	ei->io_failure_tree.track_uptodate = 1;
7894 	atomic_set(&ei->sync_writers, 0);
7895 	mutex_init(&ei->log_mutex);
7896 	mutex_init(&ei->delalloc_mutex);
7897 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7898 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7899 	INIT_LIST_HEAD(&ei->ordered_operations);
7900 	RB_CLEAR_NODE(&ei->rb_node);
7901 
7902 	return inode;
7903 }
7904 
7905 static void btrfs_i_callback(struct rcu_head *head)
7906 {
7907 	struct inode *inode = container_of(head, struct inode, i_rcu);
7908 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7909 }
7910 
7911 void btrfs_destroy_inode(struct inode *inode)
7912 {
7913 	struct btrfs_ordered_extent *ordered;
7914 	struct btrfs_root *root = BTRFS_I(inode)->root;
7915 
7916 	WARN_ON(!hlist_empty(&inode->i_dentry));
7917 	WARN_ON(inode->i_data.nrpages);
7918 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
7919 	WARN_ON(BTRFS_I(inode)->reserved_extents);
7920 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7921 	WARN_ON(BTRFS_I(inode)->csum_bytes);
7922 
7923 	/*
7924 	 * This can happen where we create an inode, but somebody else also
7925 	 * created the same inode and we need to destroy the one we already
7926 	 * created.
7927 	 */
7928 	if (!root)
7929 		goto free;
7930 
7931 	/*
7932 	 * Make sure we're properly removed from the ordered operation
7933 	 * lists.
7934 	 */
7935 	smp_mb();
7936 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7937 		spin_lock(&root->fs_info->ordered_extent_lock);
7938 		list_del_init(&BTRFS_I(inode)->ordered_operations);
7939 		spin_unlock(&root->fs_info->ordered_extent_lock);
7940 	}
7941 
7942 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7943 		     &BTRFS_I(inode)->runtime_flags)) {
7944 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7945 		       (unsigned long long)btrfs_ino(inode));
7946 		atomic_dec(&root->orphan_inodes);
7947 	}
7948 
7949 	while (1) {
7950 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7951 		if (!ordered)
7952 			break;
7953 		else {
7954 			printk(KERN_ERR "btrfs found ordered "
7955 			       "extent %llu %llu on inode cleanup\n",
7956 			       (unsigned long long)ordered->file_offset,
7957 			       (unsigned long long)ordered->len);
7958 			btrfs_remove_ordered_extent(inode, ordered);
7959 			btrfs_put_ordered_extent(ordered);
7960 			btrfs_put_ordered_extent(ordered);
7961 		}
7962 	}
7963 	inode_tree_del(inode);
7964 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7965 free:
7966 	btrfs_remove_delayed_node(inode);
7967 	call_rcu(&inode->i_rcu, btrfs_i_callback);
7968 }
7969 
7970 int btrfs_drop_inode(struct inode *inode)
7971 {
7972 	struct btrfs_root *root = BTRFS_I(inode)->root;
7973 
7974 	/* the snap/subvol tree is on deleting */
7975 	if (btrfs_root_refs(&root->root_item) == 0 &&
7976 	    root != root->fs_info->tree_root)
7977 		return 1;
7978 	else
7979 		return generic_drop_inode(inode);
7980 }
7981 
7982 static void init_once(void *foo)
7983 {
7984 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7985 
7986 	inode_init_once(&ei->vfs_inode);
7987 }
7988 
7989 void btrfs_destroy_cachep(void)
7990 {
7991 	/*
7992 	 * Make sure all delayed rcu free inodes are flushed before we
7993 	 * destroy cache.
7994 	 */
7995 	rcu_barrier();
7996 	if (btrfs_inode_cachep)
7997 		kmem_cache_destroy(btrfs_inode_cachep);
7998 	if (btrfs_trans_handle_cachep)
7999 		kmem_cache_destroy(btrfs_trans_handle_cachep);
8000 	if (btrfs_transaction_cachep)
8001 		kmem_cache_destroy(btrfs_transaction_cachep);
8002 	if (btrfs_path_cachep)
8003 		kmem_cache_destroy(btrfs_path_cachep);
8004 	if (btrfs_free_space_cachep)
8005 		kmem_cache_destroy(btrfs_free_space_cachep);
8006 	if (btrfs_delalloc_work_cachep)
8007 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
8008 }
8009 
8010 int btrfs_init_cachep(void)
8011 {
8012 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8013 			sizeof(struct btrfs_inode), 0,
8014 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8015 	if (!btrfs_inode_cachep)
8016 		goto fail;
8017 
8018 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8019 			sizeof(struct btrfs_trans_handle), 0,
8020 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8021 	if (!btrfs_trans_handle_cachep)
8022 		goto fail;
8023 
8024 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8025 			sizeof(struct btrfs_transaction), 0,
8026 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8027 	if (!btrfs_transaction_cachep)
8028 		goto fail;
8029 
8030 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8031 			sizeof(struct btrfs_path), 0,
8032 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8033 	if (!btrfs_path_cachep)
8034 		goto fail;
8035 
8036 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8037 			sizeof(struct btrfs_free_space), 0,
8038 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8039 	if (!btrfs_free_space_cachep)
8040 		goto fail;
8041 
8042 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8043 			sizeof(struct btrfs_delalloc_work), 0,
8044 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8045 			NULL);
8046 	if (!btrfs_delalloc_work_cachep)
8047 		goto fail;
8048 
8049 	return 0;
8050 fail:
8051 	btrfs_destroy_cachep();
8052 	return -ENOMEM;
8053 }
8054 
8055 static int btrfs_getattr(struct vfsmount *mnt,
8056 			 struct dentry *dentry, struct kstat *stat)
8057 {
8058 	u64 delalloc_bytes;
8059 	struct inode *inode = dentry->d_inode;
8060 	u32 blocksize = inode->i_sb->s_blocksize;
8061 
8062 	generic_fillattr(inode, stat);
8063 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8064 	stat->blksize = PAGE_CACHE_SIZE;
8065 
8066 	spin_lock(&BTRFS_I(inode)->lock);
8067 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8068 	spin_unlock(&BTRFS_I(inode)->lock);
8069 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8070 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8071 	return 0;
8072 }
8073 
8074 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8075 			   struct inode *new_dir, struct dentry *new_dentry)
8076 {
8077 	struct btrfs_trans_handle *trans;
8078 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8079 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8080 	struct inode *new_inode = new_dentry->d_inode;
8081 	struct inode *old_inode = old_dentry->d_inode;
8082 	struct timespec ctime = CURRENT_TIME;
8083 	u64 index = 0;
8084 	u64 root_objectid;
8085 	int ret;
8086 	u64 old_ino = btrfs_ino(old_inode);
8087 
8088 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8089 		return -EPERM;
8090 
8091 	/* we only allow rename subvolume link between subvolumes */
8092 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8093 		return -EXDEV;
8094 
8095 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8096 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8097 		return -ENOTEMPTY;
8098 
8099 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8100 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8101 		return -ENOTEMPTY;
8102 
8103 
8104 	/* check for collisions, even if the  name isn't there */
8105 	ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8106 			     new_dentry->d_name.name,
8107 			     new_dentry->d_name.len);
8108 
8109 	if (ret) {
8110 		if (ret == -EEXIST) {
8111 			/* we shouldn't get
8112 			 * eexist without a new_inode */
8113 			if (!new_inode) {
8114 				WARN_ON(1);
8115 				return ret;
8116 			}
8117 		} else {
8118 			/* maybe -EOVERFLOW */
8119 			return ret;
8120 		}
8121 	}
8122 	ret = 0;
8123 
8124 	/*
8125 	 * we're using rename to replace one file with another.
8126 	 * and the replacement file is large.  Start IO on it now so
8127 	 * we don't add too much work to the end of the transaction
8128 	 */
8129 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8130 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8131 		filemap_flush(old_inode->i_mapping);
8132 
8133 	/* close the racy window with snapshot create/destroy ioctl */
8134 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8135 		down_read(&root->fs_info->subvol_sem);
8136 	/*
8137 	 * We want to reserve the absolute worst case amount of items.  So if
8138 	 * both inodes are subvols and we need to unlink them then that would
8139 	 * require 4 item modifications, but if they are both normal inodes it
8140 	 * would require 5 item modifications, so we'll assume their normal
8141 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8142 	 * should cover the worst case number of items we'll modify.
8143 	 */
8144 	trans = btrfs_start_transaction(root, 11);
8145 	if (IS_ERR(trans)) {
8146                 ret = PTR_ERR(trans);
8147                 goto out_notrans;
8148         }
8149 
8150 	if (dest != root)
8151 		btrfs_record_root_in_trans(trans, dest);
8152 
8153 	ret = btrfs_set_inode_index(new_dir, &index);
8154 	if (ret)
8155 		goto out_fail;
8156 
8157 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8158 		/* force full log commit if subvolume involved. */
8159 		root->fs_info->last_trans_log_full_commit = trans->transid;
8160 	} else {
8161 		ret = btrfs_insert_inode_ref(trans, dest,
8162 					     new_dentry->d_name.name,
8163 					     new_dentry->d_name.len,
8164 					     old_ino,
8165 					     btrfs_ino(new_dir), index);
8166 		if (ret)
8167 			goto out_fail;
8168 		/*
8169 		 * this is an ugly little race, but the rename is required
8170 		 * to make sure that if we crash, the inode is either at the
8171 		 * old name or the new one.  pinning the log transaction lets
8172 		 * us make sure we don't allow a log commit to come in after
8173 		 * we unlink the name but before we add the new name back in.
8174 		 */
8175 		btrfs_pin_log_trans(root);
8176 	}
8177 	/*
8178 	 * make sure the inode gets flushed if it is replacing
8179 	 * something.
8180 	 */
8181 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8182 		btrfs_add_ordered_operation(trans, root, old_inode);
8183 
8184 	inode_inc_iversion(old_dir);
8185 	inode_inc_iversion(new_dir);
8186 	inode_inc_iversion(old_inode);
8187 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8188 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8189 	old_inode->i_ctime = ctime;
8190 
8191 	if (old_dentry->d_parent != new_dentry->d_parent)
8192 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8193 
8194 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8195 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8196 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8197 					old_dentry->d_name.name,
8198 					old_dentry->d_name.len);
8199 	} else {
8200 		ret = __btrfs_unlink_inode(trans, root, old_dir,
8201 					old_dentry->d_inode,
8202 					old_dentry->d_name.name,
8203 					old_dentry->d_name.len);
8204 		if (!ret)
8205 			ret = btrfs_update_inode(trans, root, old_inode);
8206 	}
8207 	if (ret) {
8208 		btrfs_abort_transaction(trans, root, ret);
8209 		goto out_fail;
8210 	}
8211 
8212 	if (new_inode) {
8213 		inode_inc_iversion(new_inode);
8214 		new_inode->i_ctime = CURRENT_TIME;
8215 		if (unlikely(btrfs_ino(new_inode) ==
8216 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8217 			root_objectid = BTRFS_I(new_inode)->location.objectid;
8218 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
8219 						root_objectid,
8220 						new_dentry->d_name.name,
8221 						new_dentry->d_name.len);
8222 			BUG_ON(new_inode->i_nlink == 0);
8223 		} else {
8224 			ret = btrfs_unlink_inode(trans, dest, new_dir,
8225 						 new_dentry->d_inode,
8226 						 new_dentry->d_name.name,
8227 						 new_dentry->d_name.len);
8228 		}
8229 		if (!ret && new_inode->i_nlink == 0) {
8230 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8231 			BUG_ON(ret);
8232 		}
8233 		if (ret) {
8234 			btrfs_abort_transaction(trans, root, ret);
8235 			goto out_fail;
8236 		}
8237 	}
8238 
8239 	ret = btrfs_add_link(trans, new_dir, old_inode,
8240 			     new_dentry->d_name.name,
8241 			     new_dentry->d_name.len, 0, index);
8242 	if (ret) {
8243 		btrfs_abort_transaction(trans, root, ret);
8244 		goto out_fail;
8245 	}
8246 
8247 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8248 		struct dentry *parent = new_dentry->d_parent;
8249 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
8250 		btrfs_end_log_trans(root);
8251 	}
8252 out_fail:
8253 	btrfs_end_transaction(trans, root);
8254 out_notrans:
8255 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8256 		up_read(&root->fs_info->subvol_sem);
8257 
8258 	return ret;
8259 }
8260 
8261 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8262 {
8263 	struct btrfs_delalloc_work *delalloc_work;
8264 
8265 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8266 				     work);
8267 	if (delalloc_work->wait)
8268 		btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8269 	else
8270 		filemap_flush(delalloc_work->inode->i_mapping);
8271 
8272 	if (delalloc_work->delay_iput)
8273 		btrfs_add_delayed_iput(delalloc_work->inode);
8274 	else
8275 		iput(delalloc_work->inode);
8276 	complete(&delalloc_work->completion);
8277 }
8278 
8279 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8280 						    int wait, int delay_iput)
8281 {
8282 	struct btrfs_delalloc_work *work;
8283 
8284 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8285 	if (!work)
8286 		return NULL;
8287 
8288 	init_completion(&work->completion);
8289 	INIT_LIST_HEAD(&work->list);
8290 	work->inode = inode;
8291 	work->wait = wait;
8292 	work->delay_iput = delay_iput;
8293 	work->work.func = btrfs_run_delalloc_work;
8294 
8295 	return work;
8296 }
8297 
8298 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8299 {
8300 	wait_for_completion(&work->completion);
8301 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
8302 }
8303 
8304 /*
8305  * some fairly slow code that needs optimization. This walks the list
8306  * of all the inodes with pending delalloc and forces them to disk.
8307  */
8308 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8309 {
8310 	struct btrfs_inode *binode;
8311 	struct inode *inode;
8312 	struct btrfs_delalloc_work *work, *next;
8313 	struct list_head works;
8314 	struct list_head splice;
8315 	int ret = 0;
8316 
8317 	if (root->fs_info->sb->s_flags & MS_RDONLY)
8318 		return -EROFS;
8319 
8320 	INIT_LIST_HEAD(&works);
8321 	INIT_LIST_HEAD(&splice);
8322 
8323 	spin_lock(&root->fs_info->delalloc_lock);
8324 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
8325 	while (!list_empty(&splice)) {
8326 		binode = list_entry(splice.next, struct btrfs_inode,
8327 				    delalloc_inodes);
8328 
8329 		list_del_init(&binode->delalloc_inodes);
8330 
8331 		inode = igrab(&binode->vfs_inode);
8332 		if (!inode) {
8333 			clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
8334 				  &binode->runtime_flags);
8335 			continue;
8336 		}
8337 
8338 		list_add_tail(&binode->delalloc_inodes,
8339 			      &root->fs_info->delalloc_inodes);
8340 		spin_unlock(&root->fs_info->delalloc_lock);
8341 
8342 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8343 		if (unlikely(!work)) {
8344 			ret = -ENOMEM;
8345 			goto out;
8346 		}
8347 		list_add_tail(&work->list, &works);
8348 		btrfs_queue_worker(&root->fs_info->flush_workers,
8349 				   &work->work);
8350 
8351 		cond_resched();
8352 		spin_lock(&root->fs_info->delalloc_lock);
8353 	}
8354 	spin_unlock(&root->fs_info->delalloc_lock);
8355 
8356 	list_for_each_entry_safe(work, next, &works, list) {
8357 		list_del_init(&work->list);
8358 		btrfs_wait_and_free_delalloc_work(work);
8359 	}
8360 
8361 	/* the filemap_flush will queue IO into the worker threads, but
8362 	 * we have to make sure the IO is actually started and that
8363 	 * ordered extents get created before we return
8364 	 */
8365 	atomic_inc(&root->fs_info->async_submit_draining);
8366 	while (atomic_read(&root->fs_info->nr_async_submits) ||
8367 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
8368 		wait_event(root->fs_info->async_submit_wait,
8369 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8370 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8371 	}
8372 	atomic_dec(&root->fs_info->async_submit_draining);
8373 	return 0;
8374 out:
8375 	list_for_each_entry_safe(work, next, &works, list) {
8376 		list_del_init(&work->list);
8377 		btrfs_wait_and_free_delalloc_work(work);
8378 	}
8379 
8380 	if (!list_empty_careful(&splice)) {
8381 		spin_lock(&root->fs_info->delalloc_lock);
8382 		list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
8383 		spin_unlock(&root->fs_info->delalloc_lock);
8384 	}
8385 	return ret;
8386 }
8387 
8388 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8389 			 const char *symname)
8390 {
8391 	struct btrfs_trans_handle *trans;
8392 	struct btrfs_root *root = BTRFS_I(dir)->root;
8393 	struct btrfs_path *path;
8394 	struct btrfs_key key;
8395 	struct inode *inode = NULL;
8396 	int err;
8397 	int drop_inode = 0;
8398 	u64 objectid;
8399 	u64 index = 0 ;
8400 	int name_len;
8401 	int datasize;
8402 	unsigned long ptr;
8403 	struct btrfs_file_extent_item *ei;
8404 	struct extent_buffer *leaf;
8405 
8406 	name_len = strlen(symname) + 1;
8407 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8408 		return -ENAMETOOLONG;
8409 
8410 	/*
8411 	 * 2 items for inode item and ref
8412 	 * 2 items for dir items
8413 	 * 1 item for xattr if selinux is on
8414 	 */
8415 	trans = btrfs_start_transaction(root, 5);
8416 	if (IS_ERR(trans))
8417 		return PTR_ERR(trans);
8418 
8419 	err = btrfs_find_free_ino(root, &objectid);
8420 	if (err)
8421 		goto out_unlock;
8422 
8423 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8424 				dentry->d_name.len, btrfs_ino(dir), objectid,
8425 				S_IFLNK|S_IRWXUGO, &index);
8426 	if (IS_ERR(inode)) {
8427 		err = PTR_ERR(inode);
8428 		goto out_unlock;
8429 	}
8430 
8431 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8432 	if (err) {
8433 		drop_inode = 1;
8434 		goto out_unlock;
8435 	}
8436 
8437 	/*
8438 	* If the active LSM wants to access the inode during
8439 	* d_instantiate it needs these. Smack checks to see
8440 	* if the filesystem supports xattrs by looking at the
8441 	* ops vector.
8442 	*/
8443 	inode->i_fop = &btrfs_file_operations;
8444 	inode->i_op = &btrfs_file_inode_operations;
8445 
8446 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8447 	if (err)
8448 		drop_inode = 1;
8449 	else {
8450 		inode->i_mapping->a_ops = &btrfs_aops;
8451 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8452 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8453 	}
8454 	if (drop_inode)
8455 		goto out_unlock;
8456 
8457 	path = btrfs_alloc_path();
8458 	if (!path) {
8459 		err = -ENOMEM;
8460 		drop_inode = 1;
8461 		goto out_unlock;
8462 	}
8463 	key.objectid = btrfs_ino(inode);
8464 	key.offset = 0;
8465 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8466 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8467 	err = btrfs_insert_empty_item(trans, root, path, &key,
8468 				      datasize);
8469 	if (err) {
8470 		drop_inode = 1;
8471 		btrfs_free_path(path);
8472 		goto out_unlock;
8473 	}
8474 	leaf = path->nodes[0];
8475 	ei = btrfs_item_ptr(leaf, path->slots[0],
8476 			    struct btrfs_file_extent_item);
8477 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8478 	btrfs_set_file_extent_type(leaf, ei,
8479 				   BTRFS_FILE_EXTENT_INLINE);
8480 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8481 	btrfs_set_file_extent_compression(leaf, ei, 0);
8482 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8483 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8484 
8485 	ptr = btrfs_file_extent_inline_start(ei);
8486 	write_extent_buffer(leaf, symname, ptr, name_len);
8487 	btrfs_mark_buffer_dirty(leaf);
8488 	btrfs_free_path(path);
8489 
8490 	inode->i_op = &btrfs_symlink_inode_operations;
8491 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
8492 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8493 	inode_set_bytes(inode, name_len);
8494 	btrfs_i_size_write(inode, name_len - 1);
8495 	err = btrfs_update_inode(trans, root, inode);
8496 	if (err)
8497 		drop_inode = 1;
8498 
8499 out_unlock:
8500 	if (!err)
8501 		d_instantiate(dentry, inode);
8502 	btrfs_end_transaction(trans, root);
8503 	if (drop_inode) {
8504 		inode_dec_link_count(inode);
8505 		iput(inode);
8506 	}
8507 	btrfs_btree_balance_dirty(root);
8508 	return err;
8509 }
8510 
8511 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8512 				       u64 start, u64 num_bytes, u64 min_size,
8513 				       loff_t actual_len, u64 *alloc_hint,
8514 				       struct btrfs_trans_handle *trans)
8515 {
8516 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8517 	struct extent_map *em;
8518 	struct btrfs_root *root = BTRFS_I(inode)->root;
8519 	struct btrfs_key ins;
8520 	u64 cur_offset = start;
8521 	u64 i_size;
8522 	u64 cur_bytes;
8523 	int ret = 0;
8524 	bool own_trans = true;
8525 
8526 	if (trans)
8527 		own_trans = false;
8528 	while (num_bytes > 0) {
8529 		if (own_trans) {
8530 			trans = btrfs_start_transaction(root, 3);
8531 			if (IS_ERR(trans)) {
8532 				ret = PTR_ERR(trans);
8533 				break;
8534 			}
8535 		}
8536 
8537 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8538 		cur_bytes = max(cur_bytes, min_size);
8539 		ret = btrfs_reserve_extent(trans, root, cur_bytes,
8540 					   min_size, 0, *alloc_hint, &ins, 1);
8541 		if (ret) {
8542 			if (own_trans)
8543 				btrfs_end_transaction(trans, root);
8544 			break;
8545 		}
8546 
8547 		ret = insert_reserved_file_extent(trans, inode,
8548 						  cur_offset, ins.objectid,
8549 						  ins.offset, ins.offset,
8550 						  ins.offset, 0, 0, 0,
8551 						  BTRFS_FILE_EXTENT_PREALLOC);
8552 		if (ret) {
8553 			btrfs_abort_transaction(trans, root, ret);
8554 			if (own_trans)
8555 				btrfs_end_transaction(trans, root);
8556 			break;
8557 		}
8558 		btrfs_drop_extent_cache(inode, cur_offset,
8559 					cur_offset + ins.offset -1, 0);
8560 
8561 		em = alloc_extent_map();
8562 		if (!em) {
8563 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8564 				&BTRFS_I(inode)->runtime_flags);
8565 			goto next;
8566 		}
8567 
8568 		em->start = cur_offset;
8569 		em->orig_start = cur_offset;
8570 		em->len = ins.offset;
8571 		em->block_start = ins.objectid;
8572 		em->block_len = ins.offset;
8573 		em->orig_block_len = ins.offset;
8574 		em->bdev = root->fs_info->fs_devices->latest_bdev;
8575 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8576 		em->generation = trans->transid;
8577 
8578 		while (1) {
8579 			write_lock(&em_tree->lock);
8580 			ret = add_extent_mapping(em_tree, em);
8581 			if (!ret)
8582 				list_move(&em->list,
8583 					  &em_tree->modified_extents);
8584 			write_unlock(&em_tree->lock);
8585 			if (ret != -EEXIST)
8586 				break;
8587 			btrfs_drop_extent_cache(inode, cur_offset,
8588 						cur_offset + ins.offset - 1,
8589 						0);
8590 		}
8591 		free_extent_map(em);
8592 next:
8593 		num_bytes -= ins.offset;
8594 		cur_offset += ins.offset;
8595 		*alloc_hint = ins.objectid + ins.offset;
8596 
8597 		inode_inc_iversion(inode);
8598 		inode->i_ctime = CURRENT_TIME;
8599 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8600 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8601 		    (actual_len > inode->i_size) &&
8602 		    (cur_offset > inode->i_size)) {
8603 			if (cur_offset > actual_len)
8604 				i_size = actual_len;
8605 			else
8606 				i_size = cur_offset;
8607 			i_size_write(inode, i_size);
8608 			btrfs_ordered_update_i_size(inode, i_size, NULL);
8609 		}
8610 
8611 		ret = btrfs_update_inode(trans, root, inode);
8612 
8613 		if (ret) {
8614 			btrfs_abort_transaction(trans, root, ret);
8615 			if (own_trans)
8616 				btrfs_end_transaction(trans, root);
8617 			break;
8618 		}
8619 
8620 		if (own_trans)
8621 			btrfs_end_transaction(trans, root);
8622 	}
8623 	return ret;
8624 }
8625 
8626 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8627 			      u64 start, u64 num_bytes, u64 min_size,
8628 			      loff_t actual_len, u64 *alloc_hint)
8629 {
8630 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8631 					   min_size, actual_len, alloc_hint,
8632 					   NULL);
8633 }
8634 
8635 int btrfs_prealloc_file_range_trans(struct inode *inode,
8636 				    struct btrfs_trans_handle *trans, int mode,
8637 				    u64 start, u64 num_bytes, u64 min_size,
8638 				    loff_t actual_len, u64 *alloc_hint)
8639 {
8640 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8641 					   min_size, actual_len, alloc_hint, trans);
8642 }
8643 
8644 static int btrfs_set_page_dirty(struct page *page)
8645 {
8646 	return __set_page_dirty_nobuffers(page);
8647 }
8648 
8649 static int btrfs_permission(struct inode *inode, int mask)
8650 {
8651 	struct btrfs_root *root = BTRFS_I(inode)->root;
8652 	umode_t mode = inode->i_mode;
8653 
8654 	if (mask & MAY_WRITE &&
8655 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8656 		if (btrfs_root_readonly(root))
8657 			return -EROFS;
8658 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8659 			return -EACCES;
8660 	}
8661 	return generic_permission(inode, mask);
8662 }
8663 
8664 static const struct inode_operations btrfs_dir_inode_operations = {
8665 	.getattr	= btrfs_getattr,
8666 	.lookup		= btrfs_lookup,
8667 	.create		= btrfs_create,
8668 	.unlink		= btrfs_unlink,
8669 	.link		= btrfs_link,
8670 	.mkdir		= btrfs_mkdir,
8671 	.rmdir		= btrfs_rmdir,
8672 	.rename		= btrfs_rename,
8673 	.symlink	= btrfs_symlink,
8674 	.setattr	= btrfs_setattr,
8675 	.mknod		= btrfs_mknod,
8676 	.setxattr	= btrfs_setxattr,
8677 	.getxattr	= btrfs_getxattr,
8678 	.listxattr	= btrfs_listxattr,
8679 	.removexattr	= btrfs_removexattr,
8680 	.permission	= btrfs_permission,
8681 	.get_acl	= btrfs_get_acl,
8682 };
8683 static const struct inode_operations btrfs_dir_ro_inode_operations = {
8684 	.lookup		= btrfs_lookup,
8685 	.permission	= btrfs_permission,
8686 	.get_acl	= btrfs_get_acl,
8687 };
8688 
8689 static const struct file_operations btrfs_dir_file_operations = {
8690 	.llseek		= generic_file_llseek,
8691 	.read		= generic_read_dir,
8692 	.readdir	= btrfs_real_readdir,
8693 	.unlocked_ioctl	= btrfs_ioctl,
8694 #ifdef CONFIG_COMPAT
8695 	.compat_ioctl	= btrfs_ioctl,
8696 #endif
8697 	.release        = btrfs_release_file,
8698 	.fsync		= btrfs_sync_file,
8699 };
8700 
8701 static struct extent_io_ops btrfs_extent_io_ops = {
8702 	.fill_delalloc = run_delalloc_range,
8703 	.submit_bio_hook = btrfs_submit_bio_hook,
8704 	.merge_bio_hook = btrfs_merge_bio_hook,
8705 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
8706 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
8707 	.writepage_start_hook = btrfs_writepage_start_hook,
8708 	.set_bit_hook = btrfs_set_bit_hook,
8709 	.clear_bit_hook = btrfs_clear_bit_hook,
8710 	.merge_extent_hook = btrfs_merge_extent_hook,
8711 	.split_extent_hook = btrfs_split_extent_hook,
8712 };
8713 
8714 /*
8715  * btrfs doesn't support the bmap operation because swapfiles
8716  * use bmap to make a mapping of extents in the file.  They assume
8717  * these extents won't change over the life of the file and they
8718  * use the bmap result to do IO directly to the drive.
8719  *
8720  * the btrfs bmap call would return logical addresses that aren't
8721  * suitable for IO and they also will change frequently as COW
8722  * operations happen.  So, swapfile + btrfs == corruption.
8723  *
8724  * For now we're avoiding this by dropping bmap.
8725  */
8726 static const struct address_space_operations btrfs_aops = {
8727 	.readpage	= btrfs_readpage,
8728 	.writepage	= btrfs_writepage,
8729 	.writepages	= btrfs_writepages,
8730 	.readpages	= btrfs_readpages,
8731 	.direct_IO	= btrfs_direct_IO,
8732 	.invalidatepage = btrfs_invalidatepage,
8733 	.releasepage	= btrfs_releasepage,
8734 	.set_page_dirty	= btrfs_set_page_dirty,
8735 	.error_remove_page = generic_error_remove_page,
8736 };
8737 
8738 static const struct address_space_operations btrfs_symlink_aops = {
8739 	.readpage	= btrfs_readpage,
8740 	.writepage	= btrfs_writepage,
8741 	.invalidatepage = btrfs_invalidatepage,
8742 	.releasepage	= btrfs_releasepage,
8743 };
8744 
8745 static const struct inode_operations btrfs_file_inode_operations = {
8746 	.getattr	= btrfs_getattr,
8747 	.setattr	= btrfs_setattr,
8748 	.setxattr	= btrfs_setxattr,
8749 	.getxattr	= btrfs_getxattr,
8750 	.listxattr      = btrfs_listxattr,
8751 	.removexattr	= btrfs_removexattr,
8752 	.permission	= btrfs_permission,
8753 	.fiemap		= btrfs_fiemap,
8754 	.get_acl	= btrfs_get_acl,
8755 	.update_time	= btrfs_update_time,
8756 };
8757 static const struct inode_operations btrfs_special_inode_operations = {
8758 	.getattr	= btrfs_getattr,
8759 	.setattr	= btrfs_setattr,
8760 	.permission	= btrfs_permission,
8761 	.setxattr	= btrfs_setxattr,
8762 	.getxattr	= btrfs_getxattr,
8763 	.listxattr	= btrfs_listxattr,
8764 	.removexattr	= btrfs_removexattr,
8765 	.get_acl	= btrfs_get_acl,
8766 	.update_time	= btrfs_update_time,
8767 };
8768 static const struct inode_operations btrfs_symlink_inode_operations = {
8769 	.readlink	= generic_readlink,
8770 	.follow_link	= page_follow_link_light,
8771 	.put_link	= page_put_link,
8772 	.getattr	= btrfs_getattr,
8773 	.setattr	= btrfs_setattr,
8774 	.permission	= btrfs_permission,
8775 	.setxattr	= btrfs_setxattr,
8776 	.getxattr	= btrfs_getxattr,
8777 	.listxattr	= btrfs_listxattr,
8778 	.removexattr	= btrfs_removexattr,
8779 	.get_acl	= btrfs_get_acl,
8780 	.update_time	= btrfs_update_time,
8781 };
8782 
8783 const struct dentry_operations btrfs_dentry_operations = {
8784 	.d_delete	= btrfs_dentry_delete,
8785 	.d_release	= btrfs_dentry_release,
8786 };
8787