1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include <linux/btrfs.h> 43 #include <linux/blkdev.h> 44 #include <linux/posix_acl_xattr.h> 45 #include <linux/uio.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "ordered-data.h" 52 #include "xattr.h" 53 #include "tree-log.h" 54 #include "volumes.h" 55 #include "compression.h" 56 #include "locking.h" 57 #include "free-space-cache.h" 58 #include "inode-map.h" 59 #include "backref.h" 60 #include "hash.h" 61 #include "props.h" 62 #include "qgroup.h" 63 64 struct btrfs_iget_args { 65 struct btrfs_key *location; 66 struct btrfs_root *root; 67 }; 68 69 struct btrfs_dio_data { 70 u64 outstanding_extents; 71 u64 reserve; 72 u64 unsubmitted_oe_range_start; 73 u64 unsubmitted_oe_range_end; 74 }; 75 76 static const struct inode_operations btrfs_dir_inode_operations; 77 static const struct inode_operations btrfs_symlink_inode_operations; 78 static const struct inode_operations btrfs_dir_ro_inode_operations; 79 static const struct inode_operations btrfs_special_inode_operations; 80 static const struct inode_operations btrfs_file_inode_operations; 81 static const struct address_space_operations btrfs_aops; 82 static const struct address_space_operations btrfs_symlink_aops; 83 static const struct file_operations btrfs_dir_file_operations; 84 static const struct extent_io_ops btrfs_extent_io_ops; 85 86 static struct kmem_cache *btrfs_inode_cachep; 87 struct kmem_cache *btrfs_trans_handle_cachep; 88 struct kmem_cache *btrfs_transaction_cachep; 89 struct kmem_cache *btrfs_path_cachep; 90 struct kmem_cache *btrfs_free_space_cachep; 91 92 #define S_SHIFT 12 93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 101 }; 102 103 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 104 static int btrfs_truncate(struct inode *inode); 105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 106 static noinline int cow_file_range(struct inode *inode, 107 struct page *locked_page, 108 u64 start, u64 end, int *page_started, 109 unsigned long *nr_written, int unlock); 110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 111 u64 len, u64 orig_start, 112 u64 block_start, u64 block_len, 113 u64 orig_block_len, u64 ram_bytes, 114 int type); 115 116 static int btrfs_dirty_inode(struct inode *inode); 117 118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 119 void btrfs_test_inode_set_ops(struct inode *inode) 120 { 121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 122 } 123 #endif 124 125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 126 struct inode *inode, struct inode *dir, 127 const struct qstr *qstr) 128 { 129 int err; 130 131 err = btrfs_init_acl(trans, inode, dir); 132 if (!err) 133 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 134 return err; 135 } 136 137 /* 138 * this does all the hard work for inserting an inline extent into 139 * the btree. The caller should have done a btrfs_drop_extents so that 140 * no overlapping inline items exist in the btree 141 */ 142 static int insert_inline_extent(struct btrfs_trans_handle *trans, 143 struct btrfs_path *path, int extent_inserted, 144 struct btrfs_root *root, struct inode *inode, 145 u64 start, size_t size, size_t compressed_size, 146 int compress_type, 147 struct page **compressed_pages) 148 { 149 struct extent_buffer *leaf; 150 struct page *page = NULL; 151 char *kaddr; 152 unsigned long ptr; 153 struct btrfs_file_extent_item *ei; 154 int err = 0; 155 int ret; 156 size_t cur_size = size; 157 unsigned long offset; 158 159 if (compressed_size && compressed_pages) 160 cur_size = compressed_size; 161 162 inode_add_bytes(inode, size); 163 164 if (!extent_inserted) { 165 struct btrfs_key key; 166 size_t datasize; 167 168 key.objectid = btrfs_ino(inode); 169 key.offset = start; 170 key.type = BTRFS_EXTENT_DATA_KEY; 171 172 datasize = btrfs_file_extent_calc_inline_size(cur_size); 173 path->leave_spinning = 1; 174 ret = btrfs_insert_empty_item(trans, root, path, &key, 175 datasize); 176 if (ret) { 177 err = ret; 178 goto fail; 179 } 180 } 181 leaf = path->nodes[0]; 182 ei = btrfs_item_ptr(leaf, path->slots[0], 183 struct btrfs_file_extent_item); 184 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 186 btrfs_set_file_extent_encryption(leaf, ei, 0); 187 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 188 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 189 ptr = btrfs_file_extent_inline_start(ei); 190 191 if (compress_type != BTRFS_COMPRESS_NONE) { 192 struct page *cpage; 193 int i = 0; 194 while (compressed_size > 0) { 195 cpage = compressed_pages[i]; 196 cur_size = min_t(unsigned long, compressed_size, 197 PAGE_SIZE); 198 199 kaddr = kmap_atomic(cpage); 200 write_extent_buffer(leaf, kaddr, ptr, cur_size); 201 kunmap_atomic(kaddr); 202 203 i++; 204 ptr += cur_size; 205 compressed_size -= cur_size; 206 } 207 btrfs_set_file_extent_compression(leaf, ei, 208 compress_type); 209 } else { 210 page = find_get_page(inode->i_mapping, 211 start >> PAGE_SHIFT); 212 btrfs_set_file_extent_compression(leaf, ei, 0); 213 kaddr = kmap_atomic(page); 214 offset = start & (PAGE_SIZE - 1); 215 write_extent_buffer(leaf, kaddr + offset, ptr, size); 216 kunmap_atomic(kaddr); 217 put_page(page); 218 } 219 btrfs_mark_buffer_dirty(leaf); 220 btrfs_release_path(path); 221 222 /* 223 * we're an inline extent, so nobody can 224 * extend the file past i_size without locking 225 * a page we already have locked. 226 * 227 * We must do any isize and inode updates 228 * before we unlock the pages. Otherwise we 229 * could end up racing with unlink. 230 */ 231 BTRFS_I(inode)->disk_i_size = inode->i_size; 232 ret = btrfs_update_inode(trans, root, inode); 233 234 return ret; 235 fail: 236 return err; 237 } 238 239 240 /* 241 * conditionally insert an inline extent into the file. This 242 * does the checks required to make sure the data is small enough 243 * to fit as an inline extent. 244 */ 245 static noinline int cow_file_range_inline(struct btrfs_root *root, 246 struct inode *inode, u64 start, 247 u64 end, size_t compressed_size, 248 int compress_type, 249 struct page **compressed_pages) 250 { 251 struct btrfs_trans_handle *trans; 252 u64 isize = i_size_read(inode); 253 u64 actual_end = min(end + 1, isize); 254 u64 inline_len = actual_end - start; 255 u64 aligned_end = ALIGN(end, root->sectorsize); 256 u64 data_len = inline_len; 257 int ret; 258 struct btrfs_path *path; 259 int extent_inserted = 0; 260 u32 extent_item_size; 261 262 if (compressed_size) 263 data_len = compressed_size; 264 265 if (start > 0 || 266 actual_end > root->sectorsize || 267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) || 268 (!compressed_size && 269 (actual_end & (root->sectorsize - 1)) == 0) || 270 end + 1 < isize || 271 data_len > root->fs_info->max_inline) { 272 return 1; 273 } 274 275 path = btrfs_alloc_path(); 276 if (!path) 277 return -ENOMEM; 278 279 trans = btrfs_join_transaction(root); 280 if (IS_ERR(trans)) { 281 btrfs_free_path(path); 282 return PTR_ERR(trans); 283 } 284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 285 286 if (compressed_size && compressed_pages) 287 extent_item_size = btrfs_file_extent_calc_inline_size( 288 compressed_size); 289 else 290 extent_item_size = btrfs_file_extent_calc_inline_size( 291 inline_len); 292 293 ret = __btrfs_drop_extents(trans, root, inode, path, 294 start, aligned_end, NULL, 295 1, 1, extent_item_size, &extent_inserted); 296 if (ret) { 297 btrfs_abort_transaction(trans, root, ret); 298 goto out; 299 } 300 301 if (isize > actual_end) 302 inline_len = min_t(u64, isize, actual_end); 303 ret = insert_inline_extent(trans, path, extent_inserted, 304 root, inode, start, 305 inline_len, compressed_size, 306 compress_type, compressed_pages); 307 if (ret && ret != -ENOSPC) { 308 btrfs_abort_transaction(trans, root, ret); 309 goto out; 310 } else if (ret == -ENOSPC) { 311 ret = 1; 312 goto out; 313 } 314 315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 316 btrfs_delalloc_release_metadata(inode, end + 1 - start); 317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 318 out: 319 /* 320 * Don't forget to free the reserved space, as for inlined extent 321 * it won't count as data extent, free them directly here. 322 * And at reserve time, it's always aligned to page size, so 323 * just free one page here. 324 */ 325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE); 326 btrfs_free_path(path); 327 btrfs_end_transaction(trans, root); 328 return ret; 329 } 330 331 struct async_extent { 332 u64 start; 333 u64 ram_size; 334 u64 compressed_size; 335 struct page **pages; 336 unsigned long nr_pages; 337 int compress_type; 338 struct list_head list; 339 }; 340 341 struct async_cow { 342 struct inode *inode; 343 struct btrfs_root *root; 344 struct page *locked_page; 345 u64 start; 346 u64 end; 347 struct list_head extents; 348 struct btrfs_work work; 349 }; 350 351 static noinline int add_async_extent(struct async_cow *cow, 352 u64 start, u64 ram_size, 353 u64 compressed_size, 354 struct page **pages, 355 unsigned long nr_pages, 356 int compress_type) 357 { 358 struct async_extent *async_extent; 359 360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 361 BUG_ON(!async_extent); /* -ENOMEM */ 362 async_extent->start = start; 363 async_extent->ram_size = ram_size; 364 async_extent->compressed_size = compressed_size; 365 async_extent->pages = pages; 366 async_extent->nr_pages = nr_pages; 367 async_extent->compress_type = compress_type; 368 list_add_tail(&async_extent->list, &cow->extents); 369 return 0; 370 } 371 372 static inline int inode_need_compress(struct inode *inode) 373 { 374 struct btrfs_root *root = BTRFS_I(inode)->root; 375 376 /* force compress */ 377 if (btrfs_test_opt(root, FORCE_COMPRESS)) 378 return 1; 379 /* bad compression ratios */ 380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 381 return 0; 382 if (btrfs_test_opt(root, COMPRESS) || 383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 384 BTRFS_I(inode)->force_compress) 385 return 1; 386 return 0; 387 } 388 389 /* 390 * we create compressed extents in two phases. The first 391 * phase compresses a range of pages that have already been 392 * locked (both pages and state bits are locked). 393 * 394 * This is done inside an ordered work queue, and the compression 395 * is spread across many cpus. The actual IO submission is step 396 * two, and the ordered work queue takes care of making sure that 397 * happens in the same order things were put onto the queue by 398 * writepages and friends. 399 * 400 * If this code finds it can't get good compression, it puts an 401 * entry onto the work queue to write the uncompressed bytes. This 402 * makes sure that both compressed inodes and uncompressed inodes 403 * are written in the same order that the flusher thread sent them 404 * down. 405 */ 406 static noinline void compress_file_range(struct inode *inode, 407 struct page *locked_page, 408 u64 start, u64 end, 409 struct async_cow *async_cow, 410 int *num_added) 411 { 412 struct btrfs_root *root = BTRFS_I(inode)->root; 413 u64 num_bytes; 414 u64 blocksize = root->sectorsize; 415 u64 actual_end; 416 u64 isize = i_size_read(inode); 417 int ret = 0; 418 struct page **pages = NULL; 419 unsigned long nr_pages; 420 unsigned long nr_pages_ret = 0; 421 unsigned long total_compressed = 0; 422 unsigned long total_in = 0; 423 unsigned long max_compressed = SZ_128K; 424 unsigned long max_uncompressed = SZ_128K; 425 int i; 426 int will_compress; 427 int compress_type = root->fs_info->compress_type; 428 int redirty = 0; 429 430 /* if this is a small write inside eof, kick off a defrag */ 431 if ((end - start + 1) < SZ_16K && 432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 433 btrfs_add_inode_defrag(NULL, inode); 434 435 actual_end = min_t(u64, isize, end + 1); 436 again: 437 will_compress = 0; 438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE); 440 441 /* 442 * we don't want to send crud past the end of i_size through 443 * compression, that's just a waste of CPU time. So, if the 444 * end of the file is before the start of our current 445 * requested range of bytes, we bail out to the uncompressed 446 * cleanup code that can deal with all of this. 447 * 448 * It isn't really the fastest way to fix things, but this is a 449 * very uncommon corner. 450 */ 451 if (actual_end <= start) 452 goto cleanup_and_bail_uncompressed; 453 454 total_compressed = actual_end - start; 455 456 /* 457 * skip compression for a small file range(<=blocksize) that 458 * isn't an inline extent, since it doesn't save disk space at all. 459 */ 460 if (total_compressed <= blocksize && 461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 462 goto cleanup_and_bail_uncompressed; 463 464 /* we want to make sure that amount of ram required to uncompress 465 * an extent is reasonable, so we limit the total size in ram 466 * of a compressed extent to 128k. This is a crucial number 467 * because it also controls how easily we can spread reads across 468 * cpus for decompression. 469 * 470 * We also want to make sure the amount of IO required to do 471 * a random read is reasonably small, so we limit the size of 472 * a compressed extent to 128k. 473 */ 474 total_compressed = min(total_compressed, max_uncompressed); 475 num_bytes = ALIGN(end - start + 1, blocksize); 476 num_bytes = max(blocksize, num_bytes); 477 total_in = 0; 478 ret = 0; 479 480 /* 481 * we do compression for mount -o compress and when the 482 * inode has not been flagged as nocompress. This flag can 483 * change at any time if we discover bad compression ratios. 484 */ 485 if (inode_need_compress(inode)) { 486 WARN_ON(pages); 487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 488 if (!pages) { 489 /* just bail out to the uncompressed code */ 490 goto cont; 491 } 492 493 if (BTRFS_I(inode)->force_compress) 494 compress_type = BTRFS_I(inode)->force_compress; 495 496 /* 497 * we need to call clear_page_dirty_for_io on each 498 * page in the range. Otherwise applications with the file 499 * mmap'd can wander in and change the page contents while 500 * we are compressing them. 501 * 502 * If the compression fails for any reason, we set the pages 503 * dirty again later on. 504 */ 505 extent_range_clear_dirty_for_io(inode, start, end); 506 redirty = 1; 507 ret = btrfs_compress_pages(compress_type, 508 inode->i_mapping, start, 509 total_compressed, pages, 510 nr_pages, &nr_pages_ret, 511 &total_in, 512 &total_compressed, 513 max_compressed); 514 515 if (!ret) { 516 unsigned long offset = total_compressed & 517 (PAGE_SIZE - 1); 518 struct page *page = pages[nr_pages_ret - 1]; 519 char *kaddr; 520 521 /* zero the tail end of the last page, we might be 522 * sending it down to disk 523 */ 524 if (offset) { 525 kaddr = kmap_atomic(page); 526 memset(kaddr + offset, 0, 527 PAGE_SIZE - offset); 528 kunmap_atomic(kaddr); 529 } 530 will_compress = 1; 531 } 532 } 533 cont: 534 if (start == 0) { 535 /* lets try to make an inline extent */ 536 if (ret || total_in < (actual_end - start)) { 537 /* we didn't compress the entire range, try 538 * to make an uncompressed inline extent. 539 */ 540 ret = cow_file_range_inline(root, inode, start, end, 541 0, 0, NULL); 542 } else { 543 /* try making a compressed inline extent */ 544 ret = cow_file_range_inline(root, inode, start, end, 545 total_compressed, 546 compress_type, pages); 547 } 548 if (ret <= 0) { 549 unsigned long clear_flags = EXTENT_DELALLOC | 550 EXTENT_DEFRAG; 551 unsigned long page_error_op; 552 553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0; 554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 555 556 /* 557 * inline extent creation worked or returned error, 558 * we don't need to create any more async work items. 559 * Unlock and free up our temp pages. 560 */ 561 extent_clear_unlock_delalloc(inode, start, end, NULL, 562 clear_flags, PAGE_UNLOCK | 563 PAGE_CLEAR_DIRTY | 564 PAGE_SET_WRITEBACK | 565 page_error_op | 566 PAGE_END_WRITEBACK); 567 goto free_pages_out; 568 } 569 } 570 571 if (will_compress) { 572 /* 573 * we aren't doing an inline extent round the compressed size 574 * up to a block size boundary so the allocator does sane 575 * things 576 */ 577 total_compressed = ALIGN(total_compressed, blocksize); 578 579 /* 580 * one last check to make sure the compression is really a 581 * win, compare the page count read with the blocks on disk 582 */ 583 total_in = ALIGN(total_in, PAGE_SIZE); 584 if (total_compressed >= total_in) { 585 will_compress = 0; 586 } else { 587 num_bytes = total_in; 588 } 589 } 590 if (!will_compress && pages) { 591 /* 592 * the compression code ran but failed to make things smaller, 593 * free any pages it allocated and our page pointer array 594 */ 595 for (i = 0; i < nr_pages_ret; i++) { 596 WARN_ON(pages[i]->mapping); 597 put_page(pages[i]); 598 } 599 kfree(pages); 600 pages = NULL; 601 total_compressed = 0; 602 nr_pages_ret = 0; 603 604 /* flag the file so we don't compress in the future */ 605 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 606 !(BTRFS_I(inode)->force_compress)) { 607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 608 } 609 } 610 if (will_compress) { 611 *num_added += 1; 612 613 /* the async work queues will take care of doing actual 614 * allocation on disk for these compressed pages, 615 * and will submit them to the elevator. 616 */ 617 add_async_extent(async_cow, start, num_bytes, 618 total_compressed, pages, nr_pages_ret, 619 compress_type); 620 621 if (start + num_bytes < end) { 622 start += num_bytes; 623 pages = NULL; 624 cond_resched(); 625 goto again; 626 } 627 } else { 628 cleanup_and_bail_uncompressed: 629 /* 630 * No compression, but we still need to write the pages in 631 * the file we've been given so far. redirty the locked 632 * page if it corresponds to our extent and set things up 633 * for the async work queue to run cow_file_range to do 634 * the normal delalloc dance 635 */ 636 if (page_offset(locked_page) >= start && 637 page_offset(locked_page) <= end) { 638 __set_page_dirty_nobuffers(locked_page); 639 /* unlocked later on in the async handlers */ 640 } 641 if (redirty) 642 extent_range_redirty_for_io(inode, start, end); 643 add_async_extent(async_cow, start, end - start + 1, 644 0, NULL, 0, BTRFS_COMPRESS_NONE); 645 *num_added += 1; 646 } 647 648 return; 649 650 free_pages_out: 651 for (i = 0; i < nr_pages_ret; i++) { 652 WARN_ON(pages[i]->mapping); 653 put_page(pages[i]); 654 } 655 kfree(pages); 656 } 657 658 static void free_async_extent_pages(struct async_extent *async_extent) 659 { 660 int i; 661 662 if (!async_extent->pages) 663 return; 664 665 for (i = 0; i < async_extent->nr_pages; i++) { 666 WARN_ON(async_extent->pages[i]->mapping); 667 put_page(async_extent->pages[i]); 668 } 669 kfree(async_extent->pages); 670 async_extent->nr_pages = 0; 671 async_extent->pages = NULL; 672 } 673 674 /* 675 * phase two of compressed writeback. This is the ordered portion 676 * of the code, which only gets called in the order the work was 677 * queued. We walk all the async extents created by compress_file_range 678 * and send them down to the disk. 679 */ 680 static noinline void submit_compressed_extents(struct inode *inode, 681 struct async_cow *async_cow) 682 { 683 struct async_extent *async_extent; 684 u64 alloc_hint = 0; 685 struct btrfs_key ins; 686 struct extent_map *em; 687 struct btrfs_root *root = BTRFS_I(inode)->root; 688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 689 struct extent_io_tree *io_tree; 690 int ret = 0; 691 692 again: 693 while (!list_empty(&async_cow->extents)) { 694 async_extent = list_entry(async_cow->extents.next, 695 struct async_extent, list); 696 list_del(&async_extent->list); 697 698 io_tree = &BTRFS_I(inode)->io_tree; 699 700 retry: 701 /* did the compression code fall back to uncompressed IO? */ 702 if (!async_extent->pages) { 703 int page_started = 0; 704 unsigned long nr_written = 0; 705 706 lock_extent(io_tree, async_extent->start, 707 async_extent->start + 708 async_extent->ram_size - 1); 709 710 /* allocate blocks */ 711 ret = cow_file_range(inode, async_cow->locked_page, 712 async_extent->start, 713 async_extent->start + 714 async_extent->ram_size - 1, 715 &page_started, &nr_written, 0); 716 717 /* JDM XXX */ 718 719 /* 720 * if page_started, cow_file_range inserted an 721 * inline extent and took care of all the unlocking 722 * and IO for us. Otherwise, we need to submit 723 * all those pages down to the drive. 724 */ 725 if (!page_started && !ret) 726 extent_write_locked_range(io_tree, 727 inode, async_extent->start, 728 async_extent->start + 729 async_extent->ram_size - 1, 730 btrfs_get_extent, 731 WB_SYNC_ALL); 732 else if (ret) 733 unlock_page(async_cow->locked_page); 734 kfree(async_extent); 735 cond_resched(); 736 continue; 737 } 738 739 lock_extent(io_tree, async_extent->start, 740 async_extent->start + async_extent->ram_size - 1); 741 742 ret = btrfs_reserve_extent(root, 743 async_extent->compressed_size, 744 async_extent->compressed_size, 745 0, alloc_hint, &ins, 1, 1); 746 if (ret) { 747 free_async_extent_pages(async_extent); 748 749 if (ret == -ENOSPC) { 750 unlock_extent(io_tree, async_extent->start, 751 async_extent->start + 752 async_extent->ram_size - 1); 753 754 /* 755 * we need to redirty the pages if we decide to 756 * fallback to uncompressed IO, otherwise we 757 * will not submit these pages down to lower 758 * layers. 759 */ 760 extent_range_redirty_for_io(inode, 761 async_extent->start, 762 async_extent->start + 763 async_extent->ram_size - 1); 764 765 goto retry; 766 } 767 goto out_free; 768 } 769 /* 770 * here we're doing allocation and writeback of the 771 * compressed pages 772 */ 773 btrfs_drop_extent_cache(inode, async_extent->start, 774 async_extent->start + 775 async_extent->ram_size - 1, 0); 776 777 em = alloc_extent_map(); 778 if (!em) { 779 ret = -ENOMEM; 780 goto out_free_reserve; 781 } 782 em->start = async_extent->start; 783 em->len = async_extent->ram_size; 784 em->orig_start = em->start; 785 em->mod_start = em->start; 786 em->mod_len = em->len; 787 788 em->block_start = ins.objectid; 789 em->block_len = ins.offset; 790 em->orig_block_len = ins.offset; 791 em->ram_bytes = async_extent->ram_size; 792 em->bdev = root->fs_info->fs_devices->latest_bdev; 793 em->compress_type = async_extent->compress_type; 794 set_bit(EXTENT_FLAG_PINNED, &em->flags); 795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 796 em->generation = -1; 797 798 while (1) { 799 write_lock(&em_tree->lock); 800 ret = add_extent_mapping(em_tree, em, 1); 801 write_unlock(&em_tree->lock); 802 if (ret != -EEXIST) { 803 free_extent_map(em); 804 break; 805 } 806 btrfs_drop_extent_cache(inode, async_extent->start, 807 async_extent->start + 808 async_extent->ram_size - 1, 0); 809 } 810 811 if (ret) 812 goto out_free_reserve; 813 814 ret = btrfs_add_ordered_extent_compress(inode, 815 async_extent->start, 816 ins.objectid, 817 async_extent->ram_size, 818 ins.offset, 819 BTRFS_ORDERED_COMPRESSED, 820 async_extent->compress_type); 821 if (ret) { 822 btrfs_drop_extent_cache(inode, async_extent->start, 823 async_extent->start + 824 async_extent->ram_size - 1, 0); 825 goto out_free_reserve; 826 } 827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 828 829 /* 830 * clear dirty, set writeback and unlock the pages. 831 */ 832 extent_clear_unlock_delalloc(inode, async_extent->start, 833 async_extent->start + 834 async_extent->ram_size - 1, 835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 837 PAGE_SET_WRITEBACK); 838 ret = btrfs_submit_compressed_write(inode, 839 async_extent->start, 840 async_extent->ram_size, 841 ins.objectid, 842 ins.offset, async_extent->pages, 843 async_extent->nr_pages); 844 if (ret) { 845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 846 struct page *p = async_extent->pages[0]; 847 const u64 start = async_extent->start; 848 const u64 end = start + async_extent->ram_size - 1; 849 850 p->mapping = inode->i_mapping; 851 tree->ops->writepage_end_io_hook(p, start, end, 852 NULL, 0); 853 p->mapping = NULL; 854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 855 PAGE_END_WRITEBACK | 856 PAGE_SET_ERROR); 857 free_async_extent_pages(async_extent); 858 } 859 alloc_hint = ins.objectid + ins.offset; 860 kfree(async_extent); 861 cond_resched(); 862 } 863 return; 864 out_free_reserve: 865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 867 out_free: 868 extent_clear_unlock_delalloc(inode, async_extent->start, 869 async_extent->start + 870 async_extent->ram_size - 1, 871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 875 PAGE_SET_ERROR); 876 free_async_extent_pages(async_extent); 877 kfree(async_extent); 878 goto again; 879 } 880 881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 882 u64 num_bytes) 883 { 884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 885 struct extent_map *em; 886 u64 alloc_hint = 0; 887 888 read_lock(&em_tree->lock); 889 em = search_extent_mapping(em_tree, start, num_bytes); 890 if (em) { 891 /* 892 * if block start isn't an actual block number then find the 893 * first block in this inode and use that as a hint. If that 894 * block is also bogus then just don't worry about it. 895 */ 896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 897 free_extent_map(em); 898 em = search_extent_mapping(em_tree, 0, 0); 899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 900 alloc_hint = em->block_start; 901 if (em) 902 free_extent_map(em); 903 } else { 904 alloc_hint = em->block_start; 905 free_extent_map(em); 906 } 907 } 908 read_unlock(&em_tree->lock); 909 910 return alloc_hint; 911 } 912 913 /* 914 * when extent_io.c finds a delayed allocation range in the file, 915 * the call backs end up in this code. The basic idea is to 916 * allocate extents on disk for the range, and create ordered data structs 917 * in ram to track those extents. 918 * 919 * locked_page is the page that writepage had locked already. We use 920 * it to make sure we don't do extra locks or unlocks. 921 * 922 * *page_started is set to one if we unlock locked_page and do everything 923 * required to start IO on it. It may be clean and already done with 924 * IO when we return. 925 */ 926 static noinline int cow_file_range(struct inode *inode, 927 struct page *locked_page, 928 u64 start, u64 end, int *page_started, 929 unsigned long *nr_written, 930 int unlock) 931 { 932 struct btrfs_root *root = BTRFS_I(inode)->root; 933 u64 alloc_hint = 0; 934 u64 num_bytes; 935 unsigned long ram_size; 936 u64 disk_num_bytes; 937 u64 cur_alloc_size; 938 u64 blocksize = root->sectorsize; 939 struct btrfs_key ins; 940 struct extent_map *em; 941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 942 int ret = 0; 943 944 if (btrfs_is_free_space_inode(inode)) { 945 WARN_ON_ONCE(1); 946 ret = -EINVAL; 947 goto out_unlock; 948 } 949 950 num_bytes = ALIGN(end - start + 1, blocksize); 951 num_bytes = max(blocksize, num_bytes); 952 disk_num_bytes = num_bytes; 953 954 /* if this is a small write inside eof, kick off defrag */ 955 if (num_bytes < SZ_64K && 956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 957 btrfs_add_inode_defrag(NULL, inode); 958 959 if (start == 0) { 960 /* lets try to make an inline extent */ 961 ret = cow_file_range_inline(root, inode, start, end, 0, 0, 962 NULL); 963 if (ret == 0) { 964 extent_clear_unlock_delalloc(inode, start, end, NULL, 965 EXTENT_LOCKED | EXTENT_DELALLOC | 966 EXTENT_DEFRAG, PAGE_UNLOCK | 967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 968 PAGE_END_WRITEBACK); 969 970 *nr_written = *nr_written + 971 (end - start + PAGE_SIZE) / PAGE_SIZE; 972 *page_started = 1; 973 goto out; 974 } else if (ret < 0) { 975 goto out_unlock; 976 } 977 } 978 979 BUG_ON(disk_num_bytes > 980 btrfs_super_total_bytes(root->fs_info->super_copy)); 981 982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 984 985 while (disk_num_bytes > 0) { 986 unsigned long op; 987 988 cur_alloc_size = disk_num_bytes; 989 ret = btrfs_reserve_extent(root, cur_alloc_size, 990 root->sectorsize, 0, alloc_hint, 991 &ins, 1, 1); 992 if (ret < 0) 993 goto out_unlock; 994 995 em = alloc_extent_map(); 996 if (!em) { 997 ret = -ENOMEM; 998 goto out_reserve; 999 } 1000 em->start = start; 1001 em->orig_start = em->start; 1002 ram_size = ins.offset; 1003 em->len = ins.offset; 1004 em->mod_start = em->start; 1005 em->mod_len = em->len; 1006 1007 em->block_start = ins.objectid; 1008 em->block_len = ins.offset; 1009 em->orig_block_len = ins.offset; 1010 em->ram_bytes = ram_size; 1011 em->bdev = root->fs_info->fs_devices->latest_bdev; 1012 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1013 em->generation = -1; 1014 1015 while (1) { 1016 write_lock(&em_tree->lock); 1017 ret = add_extent_mapping(em_tree, em, 1); 1018 write_unlock(&em_tree->lock); 1019 if (ret != -EEXIST) { 1020 free_extent_map(em); 1021 break; 1022 } 1023 btrfs_drop_extent_cache(inode, start, 1024 start + ram_size - 1, 0); 1025 } 1026 if (ret) 1027 goto out_reserve; 1028 1029 cur_alloc_size = ins.offset; 1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1031 ram_size, cur_alloc_size, 0); 1032 if (ret) 1033 goto out_drop_extent_cache; 1034 1035 if (root->root_key.objectid == 1036 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1037 ret = btrfs_reloc_clone_csums(inode, start, 1038 cur_alloc_size); 1039 if (ret) 1040 goto out_drop_extent_cache; 1041 } 1042 1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1044 1045 if (disk_num_bytes < cur_alloc_size) 1046 break; 1047 1048 /* we're not doing compressed IO, don't unlock the first 1049 * page (which the caller expects to stay locked), don't 1050 * clear any dirty bits and don't set any writeback bits 1051 * 1052 * Do set the Private2 bit so we know this page was properly 1053 * setup for writepage 1054 */ 1055 op = unlock ? PAGE_UNLOCK : 0; 1056 op |= PAGE_SET_PRIVATE2; 1057 1058 extent_clear_unlock_delalloc(inode, start, 1059 start + ram_size - 1, locked_page, 1060 EXTENT_LOCKED | EXTENT_DELALLOC, 1061 op); 1062 disk_num_bytes -= cur_alloc_size; 1063 num_bytes -= cur_alloc_size; 1064 alloc_hint = ins.objectid + ins.offset; 1065 start += cur_alloc_size; 1066 } 1067 out: 1068 return ret; 1069 1070 out_drop_extent_cache: 1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1072 out_reserve: 1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 1075 out_unlock: 1076 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 1078 EXTENT_DELALLOC | EXTENT_DEFRAG, 1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK); 1081 goto out; 1082 } 1083 1084 /* 1085 * work queue call back to started compression on a file and pages 1086 */ 1087 static noinline void async_cow_start(struct btrfs_work *work) 1088 { 1089 struct async_cow *async_cow; 1090 int num_added = 0; 1091 async_cow = container_of(work, struct async_cow, work); 1092 1093 compress_file_range(async_cow->inode, async_cow->locked_page, 1094 async_cow->start, async_cow->end, async_cow, 1095 &num_added); 1096 if (num_added == 0) { 1097 btrfs_add_delayed_iput(async_cow->inode); 1098 async_cow->inode = NULL; 1099 } 1100 } 1101 1102 /* 1103 * work queue call back to submit previously compressed pages 1104 */ 1105 static noinline void async_cow_submit(struct btrfs_work *work) 1106 { 1107 struct async_cow *async_cow; 1108 struct btrfs_root *root; 1109 unsigned long nr_pages; 1110 1111 async_cow = container_of(work, struct async_cow, work); 1112 1113 root = async_cow->root; 1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1115 PAGE_SHIFT; 1116 1117 /* 1118 * atomic_sub_return implies a barrier for waitqueue_active 1119 */ 1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1121 5 * SZ_1M && 1122 waitqueue_active(&root->fs_info->async_submit_wait)) 1123 wake_up(&root->fs_info->async_submit_wait); 1124 1125 if (async_cow->inode) 1126 submit_compressed_extents(async_cow->inode, async_cow); 1127 } 1128 1129 static noinline void async_cow_free(struct btrfs_work *work) 1130 { 1131 struct async_cow *async_cow; 1132 async_cow = container_of(work, struct async_cow, work); 1133 if (async_cow->inode) 1134 btrfs_add_delayed_iput(async_cow->inode); 1135 kfree(async_cow); 1136 } 1137 1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1139 u64 start, u64 end, int *page_started, 1140 unsigned long *nr_written) 1141 { 1142 struct async_cow *async_cow; 1143 struct btrfs_root *root = BTRFS_I(inode)->root; 1144 unsigned long nr_pages; 1145 u64 cur_end; 1146 int limit = 10 * SZ_1M; 1147 1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1149 1, 0, NULL, GFP_NOFS); 1150 while (start < end) { 1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1152 BUG_ON(!async_cow); /* -ENOMEM */ 1153 async_cow->inode = igrab(inode); 1154 async_cow->root = root; 1155 async_cow->locked_page = locked_page; 1156 async_cow->start = start; 1157 1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1159 !btrfs_test_opt(root, FORCE_COMPRESS)) 1160 cur_end = end; 1161 else 1162 cur_end = min(end, start + SZ_512K - 1); 1163 1164 async_cow->end = cur_end; 1165 INIT_LIST_HEAD(&async_cow->extents); 1166 1167 btrfs_init_work(&async_cow->work, 1168 btrfs_delalloc_helper, 1169 async_cow_start, async_cow_submit, 1170 async_cow_free); 1171 1172 nr_pages = (cur_end - start + PAGE_SIZE) >> 1173 PAGE_SHIFT; 1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1175 1176 btrfs_queue_work(root->fs_info->delalloc_workers, 1177 &async_cow->work); 1178 1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1180 wait_event(root->fs_info->async_submit_wait, 1181 (atomic_read(&root->fs_info->async_delalloc_pages) < 1182 limit)); 1183 } 1184 1185 while (atomic_read(&root->fs_info->async_submit_draining) && 1186 atomic_read(&root->fs_info->async_delalloc_pages)) { 1187 wait_event(root->fs_info->async_submit_wait, 1188 (atomic_read(&root->fs_info->async_delalloc_pages) == 1189 0)); 1190 } 1191 1192 *nr_written += nr_pages; 1193 start = cur_end + 1; 1194 } 1195 *page_started = 1; 1196 return 0; 1197 } 1198 1199 static noinline int csum_exist_in_range(struct btrfs_root *root, 1200 u64 bytenr, u64 num_bytes) 1201 { 1202 int ret; 1203 struct btrfs_ordered_sum *sums; 1204 LIST_HEAD(list); 1205 1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1207 bytenr + num_bytes - 1, &list, 0); 1208 if (ret == 0 && list_empty(&list)) 1209 return 0; 1210 1211 while (!list_empty(&list)) { 1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1213 list_del(&sums->list); 1214 kfree(sums); 1215 } 1216 return 1; 1217 } 1218 1219 /* 1220 * when nowcow writeback call back. This checks for snapshots or COW copies 1221 * of the extents that exist in the file, and COWs the file as required. 1222 * 1223 * If no cow copies or snapshots exist, we write directly to the existing 1224 * blocks on disk 1225 */ 1226 static noinline int run_delalloc_nocow(struct inode *inode, 1227 struct page *locked_page, 1228 u64 start, u64 end, int *page_started, int force, 1229 unsigned long *nr_written) 1230 { 1231 struct btrfs_root *root = BTRFS_I(inode)->root; 1232 struct btrfs_trans_handle *trans; 1233 struct extent_buffer *leaf; 1234 struct btrfs_path *path; 1235 struct btrfs_file_extent_item *fi; 1236 struct btrfs_key found_key; 1237 u64 cow_start; 1238 u64 cur_offset; 1239 u64 extent_end; 1240 u64 extent_offset; 1241 u64 disk_bytenr; 1242 u64 num_bytes; 1243 u64 disk_num_bytes; 1244 u64 ram_bytes; 1245 int extent_type; 1246 int ret, err; 1247 int type; 1248 int nocow; 1249 int check_prev = 1; 1250 bool nolock; 1251 u64 ino = btrfs_ino(inode); 1252 1253 path = btrfs_alloc_path(); 1254 if (!path) { 1255 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1256 EXTENT_LOCKED | EXTENT_DELALLOC | 1257 EXTENT_DO_ACCOUNTING | 1258 EXTENT_DEFRAG, PAGE_UNLOCK | 1259 PAGE_CLEAR_DIRTY | 1260 PAGE_SET_WRITEBACK | 1261 PAGE_END_WRITEBACK); 1262 return -ENOMEM; 1263 } 1264 1265 nolock = btrfs_is_free_space_inode(inode); 1266 1267 if (nolock) 1268 trans = btrfs_join_transaction_nolock(root); 1269 else 1270 trans = btrfs_join_transaction(root); 1271 1272 if (IS_ERR(trans)) { 1273 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1274 EXTENT_LOCKED | EXTENT_DELALLOC | 1275 EXTENT_DO_ACCOUNTING | 1276 EXTENT_DEFRAG, PAGE_UNLOCK | 1277 PAGE_CLEAR_DIRTY | 1278 PAGE_SET_WRITEBACK | 1279 PAGE_END_WRITEBACK); 1280 btrfs_free_path(path); 1281 return PTR_ERR(trans); 1282 } 1283 1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1285 1286 cow_start = (u64)-1; 1287 cur_offset = start; 1288 while (1) { 1289 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1290 cur_offset, 0); 1291 if (ret < 0) 1292 goto error; 1293 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1294 leaf = path->nodes[0]; 1295 btrfs_item_key_to_cpu(leaf, &found_key, 1296 path->slots[0] - 1); 1297 if (found_key.objectid == ino && 1298 found_key.type == BTRFS_EXTENT_DATA_KEY) 1299 path->slots[0]--; 1300 } 1301 check_prev = 0; 1302 next_slot: 1303 leaf = path->nodes[0]; 1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1305 ret = btrfs_next_leaf(root, path); 1306 if (ret < 0) 1307 goto error; 1308 if (ret > 0) 1309 break; 1310 leaf = path->nodes[0]; 1311 } 1312 1313 nocow = 0; 1314 disk_bytenr = 0; 1315 num_bytes = 0; 1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1317 1318 if (found_key.objectid > ino) 1319 break; 1320 if (WARN_ON_ONCE(found_key.objectid < ino) || 1321 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1322 path->slots[0]++; 1323 goto next_slot; 1324 } 1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1326 found_key.offset > end) 1327 break; 1328 1329 if (found_key.offset > cur_offset) { 1330 extent_end = found_key.offset; 1331 extent_type = 0; 1332 goto out_check; 1333 } 1334 1335 fi = btrfs_item_ptr(leaf, path->slots[0], 1336 struct btrfs_file_extent_item); 1337 extent_type = btrfs_file_extent_type(leaf, fi); 1338 1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1340 if (extent_type == BTRFS_FILE_EXTENT_REG || 1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1343 extent_offset = btrfs_file_extent_offset(leaf, fi); 1344 extent_end = found_key.offset + 1345 btrfs_file_extent_num_bytes(leaf, fi); 1346 disk_num_bytes = 1347 btrfs_file_extent_disk_num_bytes(leaf, fi); 1348 if (extent_end <= start) { 1349 path->slots[0]++; 1350 goto next_slot; 1351 } 1352 if (disk_bytenr == 0) 1353 goto out_check; 1354 if (btrfs_file_extent_compression(leaf, fi) || 1355 btrfs_file_extent_encryption(leaf, fi) || 1356 btrfs_file_extent_other_encoding(leaf, fi)) 1357 goto out_check; 1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1359 goto out_check; 1360 if (btrfs_extent_readonly(root, disk_bytenr)) 1361 goto out_check; 1362 if (btrfs_cross_ref_exist(trans, root, ino, 1363 found_key.offset - 1364 extent_offset, disk_bytenr)) 1365 goto out_check; 1366 disk_bytenr += extent_offset; 1367 disk_bytenr += cur_offset - found_key.offset; 1368 num_bytes = min(end + 1, extent_end) - cur_offset; 1369 /* 1370 * if there are pending snapshots for this root, 1371 * we fall into common COW way. 1372 */ 1373 if (!nolock) { 1374 err = btrfs_start_write_no_snapshoting(root); 1375 if (!err) 1376 goto out_check; 1377 } 1378 /* 1379 * force cow if csum exists in the range. 1380 * this ensure that csum for a given extent are 1381 * either valid or do not exist. 1382 */ 1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1384 goto out_check; 1385 if (!btrfs_inc_nocow_writers(root->fs_info, 1386 disk_bytenr)) 1387 goto out_check; 1388 nocow = 1; 1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1390 extent_end = found_key.offset + 1391 btrfs_file_extent_inline_len(leaf, 1392 path->slots[0], fi); 1393 extent_end = ALIGN(extent_end, root->sectorsize); 1394 } else { 1395 BUG_ON(1); 1396 } 1397 out_check: 1398 if (extent_end <= start) { 1399 path->slots[0]++; 1400 if (!nolock && nocow) 1401 btrfs_end_write_no_snapshoting(root); 1402 if (nocow) 1403 btrfs_dec_nocow_writers(root->fs_info, 1404 disk_bytenr); 1405 goto next_slot; 1406 } 1407 if (!nocow) { 1408 if (cow_start == (u64)-1) 1409 cow_start = cur_offset; 1410 cur_offset = extent_end; 1411 if (cur_offset > end) 1412 break; 1413 path->slots[0]++; 1414 goto next_slot; 1415 } 1416 1417 btrfs_release_path(path); 1418 if (cow_start != (u64)-1) { 1419 ret = cow_file_range(inode, locked_page, 1420 cow_start, found_key.offset - 1, 1421 page_started, nr_written, 1); 1422 if (ret) { 1423 if (!nolock && nocow) 1424 btrfs_end_write_no_snapshoting(root); 1425 if (nocow) 1426 btrfs_dec_nocow_writers(root->fs_info, 1427 disk_bytenr); 1428 goto error; 1429 } 1430 cow_start = (u64)-1; 1431 } 1432 1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1434 struct extent_map *em; 1435 struct extent_map_tree *em_tree; 1436 em_tree = &BTRFS_I(inode)->extent_tree; 1437 em = alloc_extent_map(); 1438 BUG_ON(!em); /* -ENOMEM */ 1439 em->start = cur_offset; 1440 em->orig_start = found_key.offset - extent_offset; 1441 em->len = num_bytes; 1442 em->block_len = num_bytes; 1443 em->block_start = disk_bytenr; 1444 em->orig_block_len = disk_num_bytes; 1445 em->ram_bytes = ram_bytes; 1446 em->bdev = root->fs_info->fs_devices->latest_bdev; 1447 em->mod_start = em->start; 1448 em->mod_len = em->len; 1449 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1450 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1451 em->generation = -1; 1452 while (1) { 1453 write_lock(&em_tree->lock); 1454 ret = add_extent_mapping(em_tree, em, 1); 1455 write_unlock(&em_tree->lock); 1456 if (ret != -EEXIST) { 1457 free_extent_map(em); 1458 break; 1459 } 1460 btrfs_drop_extent_cache(inode, em->start, 1461 em->start + em->len - 1, 0); 1462 } 1463 type = BTRFS_ORDERED_PREALLOC; 1464 } else { 1465 type = BTRFS_ORDERED_NOCOW; 1466 } 1467 1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1469 num_bytes, num_bytes, type); 1470 if (nocow) 1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr); 1472 BUG_ON(ret); /* -ENOMEM */ 1473 1474 if (root->root_key.objectid == 1475 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1476 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1477 num_bytes); 1478 if (ret) { 1479 if (!nolock && nocow) 1480 btrfs_end_write_no_snapshoting(root); 1481 goto error; 1482 } 1483 } 1484 1485 extent_clear_unlock_delalloc(inode, cur_offset, 1486 cur_offset + num_bytes - 1, 1487 locked_page, EXTENT_LOCKED | 1488 EXTENT_DELALLOC, PAGE_UNLOCK | 1489 PAGE_SET_PRIVATE2); 1490 if (!nolock && nocow) 1491 btrfs_end_write_no_snapshoting(root); 1492 cur_offset = extent_end; 1493 if (cur_offset > end) 1494 break; 1495 } 1496 btrfs_release_path(path); 1497 1498 if (cur_offset <= end && cow_start == (u64)-1) { 1499 cow_start = cur_offset; 1500 cur_offset = end; 1501 } 1502 1503 if (cow_start != (u64)-1) { 1504 ret = cow_file_range(inode, locked_page, cow_start, end, 1505 page_started, nr_written, 1); 1506 if (ret) 1507 goto error; 1508 } 1509 1510 error: 1511 err = btrfs_end_transaction(trans, root); 1512 if (!ret) 1513 ret = err; 1514 1515 if (ret && cur_offset < end) 1516 extent_clear_unlock_delalloc(inode, cur_offset, end, 1517 locked_page, EXTENT_LOCKED | 1518 EXTENT_DELALLOC | EXTENT_DEFRAG | 1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1520 PAGE_CLEAR_DIRTY | 1521 PAGE_SET_WRITEBACK | 1522 PAGE_END_WRITEBACK); 1523 btrfs_free_path(path); 1524 return ret; 1525 } 1526 1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1528 { 1529 1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1532 return 0; 1533 1534 /* 1535 * @defrag_bytes is a hint value, no spinlock held here, 1536 * if is not zero, it means the file is defragging. 1537 * Force cow if given extent needs to be defragged. 1538 */ 1539 if (BTRFS_I(inode)->defrag_bytes && 1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1541 EXTENT_DEFRAG, 0, NULL)) 1542 return 1; 1543 1544 return 0; 1545 } 1546 1547 /* 1548 * extent_io.c call back to do delayed allocation processing 1549 */ 1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1551 u64 start, u64 end, int *page_started, 1552 unsigned long *nr_written) 1553 { 1554 int ret; 1555 int force_cow = need_force_cow(inode, start, end); 1556 1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1558 ret = run_delalloc_nocow(inode, locked_page, start, end, 1559 page_started, 1, nr_written); 1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1561 ret = run_delalloc_nocow(inode, locked_page, start, end, 1562 page_started, 0, nr_written); 1563 } else if (!inode_need_compress(inode)) { 1564 ret = cow_file_range(inode, locked_page, start, end, 1565 page_started, nr_written, 1); 1566 } else { 1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1568 &BTRFS_I(inode)->runtime_flags); 1569 ret = cow_file_range_async(inode, locked_page, start, end, 1570 page_started, nr_written); 1571 } 1572 return ret; 1573 } 1574 1575 static void btrfs_split_extent_hook(struct inode *inode, 1576 struct extent_state *orig, u64 split) 1577 { 1578 u64 size; 1579 1580 /* not delalloc, ignore it */ 1581 if (!(orig->state & EXTENT_DELALLOC)) 1582 return; 1583 1584 size = orig->end - orig->start + 1; 1585 if (size > BTRFS_MAX_EXTENT_SIZE) { 1586 u64 num_extents; 1587 u64 new_size; 1588 1589 /* 1590 * See the explanation in btrfs_merge_extent_hook, the same 1591 * applies here, just in reverse. 1592 */ 1593 new_size = orig->end - split + 1; 1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1595 BTRFS_MAX_EXTENT_SIZE); 1596 new_size = split - orig->start; 1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1598 BTRFS_MAX_EXTENT_SIZE); 1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, 1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1601 return; 1602 } 1603 1604 spin_lock(&BTRFS_I(inode)->lock); 1605 BTRFS_I(inode)->outstanding_extents++; 1606 spin_unlock(&BTRFS_I(inode)->lock); 1607 } 1608 1609 /* 1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1611 * extents so we can keep track of new extents that are just merged onto old 1612 * extents, such as when we are doing sequential writes, so we can properly 1613 * account for the metadata space we'll need. 1614 */ 1615 static void btrfs_merge_extent_hook(struct inode *inode, 1616 struct extent_state *new, 1617 struct extent_state *other) 1618 { 1619 u64 new_size, old_size; 1620 u64 num_extents; 1621 1622 /* not delalloc, ignore it */ 1623 if (!(other->state & EXTENT_DELALLOC)) 1624 return; 1625 1626 if (new->start > other->start) 1627 new_size = new->end - other->start + 1; 1628 else 1629 new_size = other->end - new->start + 1; 1630 1631 /* we're not bigger than the max, unreserve the space and go */ 1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1633 spin_lock(&BTRFS_I(inode)->lock); 1634 BTRFS_I(inode)->outstanding_extents--; 1635 spin_unlock(&BTRFS_I(inode)->lock); 1636 return; 1637 } 1638 1639 /* 1640 * We have to add up either side to figure out how many extents were 1641 * accounted for before we merged into one big extent. If the number of 1642 * extents we accounted for is <= the amount we need for the new range 1643 * then we can return, otherwise drop. Think of it like this 1644 * 1645 * [ 4k][MAX_SIZE] 1646 * 1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1648 * need 2 outstanding extents, on one side we have 1 and the other side 1649 * we have 1 so they are == and we can return. But in this case 1650 * 1651 * [MAX_SIZE+4k][MAX_SIZE+4k] 1652 * 1653 * Each range on their own accounts for 2 extents, but merged together 1654 * they are only 3 extents worth of accounting, so we need to drop in 1655 * this case. 1656 */ 1657 old_size = other->end - other->start + 1; 1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1659 BTRFS_MAX_EXTENT_SIZE); 1660 old_size = new->end - new->start + 1; 1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1, 1662 BTRFS_MAX_EXTENT_SIZE); 1663 1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1, 1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents) 1666 return; 1667 1668 spin_lock(&BTRFS_I(inode)->lock); 1669 BTRFS_I(inode)->outstanding_extents--; 1670 spin_unlock(&BTRFS_I(inode)->lock); 1671 } 1672 1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1674 struct inode *inode) 1675 { 1676 spin_lock(&root->delalloc_lock); 1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1679 &root->delalloc_inodes); 1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1681 &BTRFS_I(inode)->runtime_flags); 1682 root->nr_delalloc_inodes++; 1683 if (root->nr_delalloc_inodes == 1) { 1684 spin_lock(&root->fs_info->delalloc_root_lock); 1685 BUG_ON(!list_empty(&root->delalloc_root)); 1686 list_add_tail(&root->delalloc_root, 1687 &root->fs_info->delalloc_roots); 1688 spin_unlock(&root->fs_info->delalloc_root_lock); 1689 } 1690 } 1691 spin_unlock(&root->delalloc_lock); 1692 } 1693 1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1695 struct inode *inode) 1696 { 1697 spin_lock(&root->delalloc_lock); 1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1701 &BTRFS_I(inode)->runtime_flags); 1702 root->nr_delalloc_inodes--; 1703 if (!root->nr_delalloc_inodes) { 1704 spin_lock(&root->fs_info->delalloc_root_lock); 1705 BUG_ON(list_empty(&root->delalloc_root)); 1706 list_del_init(&root->delalloc_root); 1707 spin_unlock(&root->fs_info->delalloc_root_lock); 1708 } 1709 } 1710 spin_unlock(&root->delalloc_lock); 1711 } 1712 1713 /* 1714 * extent_io.c set_bit_hook, used to track delayed allocation 1715 * bytes in this file, and to maintain the list of inodes that 1716 * have pending delalloc work to be done. 1717 */ 1718 static void btrfs_set_bit_hook(struct inode *inode, 1719 struct extent_state *state, unsigned *bits) 1720 { 1721 1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1723 WARN_ON(1); 1724 /* 1725 * set_bit and clear bit hooks normally require _irqsave/restore 1726 * but in this case, we are only testing for the DELALLOC 1727 * bit, which is only set or cleared with irqs on 1728 */ 1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1730 struct btrfs_root *root = BTRFS_I(inode)->root; 1731 u64 len = state->end + 1 - state->start; 1732 bool do_list = !btrfs_is_free_space_inode(inode); 1733 1734 if (*bits & EXTENT_FIRST_DELALLOC) { 1735 *bits &= ~EXTENT_FIRST_DELALLOC; 1736 } else { 1737 spin_lock(&BTRFS_I(inode)->lock); 1738 BTRFS_I(inode)->outstanding_extents++; 1739 spin_unlock(&BTRFS_I(inode)->lock); 1740 } 1741 1742 /* For sanity tests */ 1743 if (btrfs_test_is_dummy_root(root)) 1744 return; 1745 1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len, 1747 root->fs_info->delalloc_batch); 1748 spin_lock(&BTRFS_I(inode)->lock); 1749 BTRFS_I(inode)->delalloc_bytes += len; 1750 if (*bits & EXTENT_DEFRAG) 1751 BTRFS_I(inode)->defrag_bytes += len; 1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1753 &BTRFS_I(inode)->runtime_flags)) 1754 btrfs_add_delalloc_inodes(root, inode); 1755 spin_unlock(&BTRFS_I(inode)->lock); 1756 } 1757 } 1758 1759 /* 1760 * extent_io.c clear_bit_hook, see set_bit_hook for why 1761 */ 1762 static void btrfs_clear_bit_hook(struct inode *inode, 1763 struct extent_state *state, 1764 unsigned *bits) 1765 { 1766 u64 len = state->end + 1 - state->start; 1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1, 1768 BTRFS_MAX_EXTENT_SIZE); 1769 1770 spin_lock(&BTRFS_I(inode)->lock); 1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) 1772 BTRFS_I(inode)->defrag_bytes -= len; 1773 spin_unlock(&BTRFS_I(inode)->lock); 1774 1775 /* 1776 * set_bit and clear bit hooks normally require _irqsave/restore 1777 * but in this case, we are only testing for the DELALLOC 1778 * bit, which is only set or cleared with irqs on 1779 */ 1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1781 struct btrfs_root *root = BTRFS_I(inode)->root; 1782 bool do_list = !btrfs_is_free_space_inode(inode); 1783 1784 if (*bits & EXTENT_FIRST_DELALLOC) { 1785 *bits &= ~EXTENT_FIRST_DELALLOC; 1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1787 spin_lock(&BTRFS_I(inode)->lock); 1788 BTRFS_I(inode)->outstanding_extents -= num_extents; 1789 spin_unlock(&BTRFS_I(inode)->lock); 1790 } 1791 1792 /* 1793 * We don't reserve metadata space for space cache inodes so we 1794 * don't need to call dellalloc_release_metadata if there is an 1795 * error. 1796 */ 1797 if (*bits & EXTENT_DO_ACCOUNTING && 1798 root != root->fs_info->tree_root) 1799 btrfs_delalloc_release_metadata(inode, len); 1800 1801 /* For sanity tests. */ 1802 if (btrfs_test_is_dummy_root(root)) 1803 return; 1804 1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1806 && do_list && !(state->state & EXTENT_NORESERVE)) 1807 btrfs_free_reserved_data_space_noquota(inode, 1808 state->start, len); 1809 1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len, 1811 root->fs_info->delalloc_batch); 1812 spin_lock(&BTRFS_I(inode)->lock); 1813 BTRFS_I(inode)->delalloc_bytes -= len; 1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1816 &BTRFS_I(inode)->runtime_flags)) 1817 btrfs_del_delalloc_inode(root, inode); 1818 spin_unlock(&BTRFS_I(inode)->lock); 1819 } 1820 } 1821 1822 /* 1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1824 * we don't create bios that span stripes or chunks 1825 */ 1826 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 1827 size_t size, struct bio *bio, 1828 unsigned long bio_flags) 1829 { 1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1832 u64 length = 0; 1833 u64 map_length; 1834 int ret; 1835 1836 if (bio_flags & EXTENT_BIO_COMPRESSED) 1837 return 0; 1838 1839 length = bio->bi_iter.bi_size; 1840 map_length = length; 1841 ret = btrfs_map_block(root->fs_info, rw, logical, 1842 &map_length, NULL, 0); 1843 /* Will always return 0 with map_multi == NULL */ 1844 BUG_ON(ret < 0); 1845 if (map_length < length + size) 1846 return 1; 1847 return 0; 1848 } 1849 1850 /* 1851 * in order to insert checksums into the metadata in large chunks, 1852 * we wait until bio submission time. All the pages in the bio are 1853 * checksummed and sums are attached onto the ordered extent record. 1854 * 1855 * At IO completion time the cums attached on the ordered extent record 1856 * are inserted into the btree 1857 */ 1858 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1859 struct bio *bio, int mirror_num, 1860 unsigned long bio_flags, 1861 u64 bio_offset) 1862 { 1863 struct btrfs_root *root = BTRFS_I(inode)->root; 1864 int ret = 0; 1865 1866 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1867 BUG_ON(ret); /* -ENOMEM */ 1868 return 0; 1869 } 1870 1871 /* 1872 * in order to insert checksums into the metadata in large chunks, 1873 * we wait until bio submission time. All the pages in the bio are 1874 * checksummed and sums are attached onto the ordered extent record. 1875 * 1876 * At IO completion time the cums attached on the ordered extent record 1877 * are inserted into the btree 1878 */ 1879 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1880 int mirror_num, unsigned long bio_flags, 1881 u64 bio_offset) 1882 { 1883 struct btrfs_root *root = BTRFS_I(inode)->root; 1884 int ret; 1885 1886 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1887 if (ret) { 1888 bio->bi_error = ret; 1889 bio_endio(bio); 1890 } 1891 return ret; 1892 } 1893 1894 /* 1895 * extent_io.c submission hook. This does the right thing for csum calculation 1896 * on write, or reading the csums from the tree before a read 1897 */ 1898 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1899 int mirror_num, unsigned long bio_flags, 1900 u64 bio_offset) 1901 { 1902 struct btrfs_root *root = BTRFS_I(inode)->root; 1903 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1904 int ret = 0; 1905 int skip_sum; 1906 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1907 1908 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1909 1910 if (btrfs_is_free_space_inode(inode)) 1911 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1912 1913 if (!(rw & REQ_WRITE)) { 1914 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1915 if (ret) 1916 goto out; 1917 1918 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1919 ret = btrfs_submit_compressed_read(inode, bio, 1920 mirror_num, 1921 bio_flags); 1922 goto out; 1923 } else if (!skip_sum) { 1924 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1925 if (ret) 1926 goto out; 1927 } 1928 goto mapit; 1929 } else if (async && !skip_sum) { 1930 /* csum items have already been cloned */ 1931 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1932 goto mapit; 1933 /* we're doing a write, do the async checksumming */ 1934 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1935 inode, rw, bio, mirror_num, 1936 bio_flags, bio_offset, 1937 __btrfs_submit_bio_start, 1938 __btrfs_submit_bio_done); 1939 goto out; 1940 } else if (!skip_sum) { 1941 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1942 if (ret) 1943 goto out; 1944 } 1945 1946 mapit: 1947 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1948 1949 out: 1950 if (ret < 0) { 1951 bio->bi_error = ret; 1952 bio_endio(bio); 1953 } 1954 return ret; 1955 } 1956 1957 /* 1958 * given a list of ordered sums record them in the inode. This happens 1959 * at IO completion time based on sums calculated at bio submission time. 1960 */ 1961 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1962 struct inode *inode, u64 file_offset, 1963 struct list_head *list) 1964 { 1965 struct btrfs_ordered_sum *sum; 1966 1967 list_for_each_entry(sum, list, list) { 1968 trans->adding_csums = 1; 1969 btrfs_csum_file_blocks(trans, 1970 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1971 trans->adding_csums = 0; 1972 } 1973 return 0; 1974 } 1975 1976 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1977 struct extent_state **cached_state) 1978 { 1979 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 1980 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1981 cached_state); 1982 } 1983 1984 /* see btrfs_writepage_start_hook for details on why this is required */ 1985 struct btrfs_writepage_fixup { 1986 struct page *page; 1987 struct btrfs_work work; 1988 }; 1989 1990 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1991 { 1992 struct btrfs_writepage_fixup *fixup; 1993 struct btrfs_ordered_extent *ordered; 1994 struct extent_state *cached_state = NULL; 1995 struct page *page; 1996 struct inode *inode; 1997 u64 page_start; 1998 u64 page_end; 1999 int ret; 2000 2001 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2002 page = fixup->page; 2003 again: 2004 lock_page(page); 2005 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2006 ClearPageChecked(page); 2007 goto out_page; 2008 } 2009 2010 inode = page->mapping->host; 2011 page_start = page_offset(page); 2012 page_end = page_offset(page) + PAGE_SIZE - 1; 2013 2014 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2015 &cached_state); 2016 2017 /* already ordered? We're done */ 2018 if (PagePrivate2(page)) 2019 goto out; 2020 2021 ordered = btrfs_lookup_ordered_range(inode, page_start, 2022 PAGE_SIZE); 2023 if (ordered) { 2024 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2025 page_end, &cached_state, GFP_NOFS); 2026 unlock_page(page); 2027 btrfs_start_ordered_extent(inode, ordered, 1); 2028 btrfs_put_ordered_extent(ordered); 2029 goto again; 2030 } 2031 2032 ret = btrfs_delalloc_reserve_space(inode, page_start, 2033 PAGE_SIZE); 2034 if (ret) { 2035 mapping_set_error(page->mapping, ret); 2036 end_extent_writepage(page, ret, page_start, page_end); 2037 ClearPageChecked(page); 2038 goto out; 2039 } 2040 2041 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 2042 ClearPageChecked(page); 2043 set_page_dirty(page); 2044 out: 2045 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2046 &cached_state, GFP_NOFS); 2047 out_page: 2048 unlock_page(page); 2049 put_page(page); 2050 kfree(fixup); 2051 } 2052 2053 /* 2054 * There are a few paths in the higher layers of the kernel that directly 2055 * set the page dirty bit without asking the filesystem if it is a 2056 * good idea. This causes problems because we want to make sure COW 2057 * properly happens and the data=ordered rules are followed. 2058 * 2059 * In our case any range that doesn't have the ORDERED bit set 2060 * hasn't been properly setup for IO. We kick off an async process 2061 * to fix it up. The async helper will wait for ordered extents, set 2062 * the delalloc bit and make it safe to write the page. 2063 */ 2064 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2065 { 2066 struct inode *inode = page->mapping->host; 2067 struct btrfs_writepage_fixup *fixup; 2068 struct btrfs_root *root = BTRFS_I(inode)->root; 2069 2070 /* this page is properly in the ordered list */ 2071 if (TestClearPagePrivate2(page)) 2072 return 0; 2073 2074 if (PageChecked(page)) 2075 return -EAGAIN; 2076 2077 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2078 if (!fixup) 2079 return -EAGAIN; 2080 2081 SetPageChecked(page); 2082 get_page(page); 2083 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2084 btrfs_writepage_fixup_worker, NULL, NULL); 2085 fixup->page = page; 2086 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work); 2087 return -EBUSY; 2088 } 2089 2090 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2091 struct inode *inode, u64 file_pos, 2092 u64 disk_bytenr, u64 disk_num_bytes, 2093 u64 num_bytes, u64 ram_bytes, 2094 u8 compression, u8 encryption, 2095 u16 other_encoding, int extent_type) 2096 { 2097 struct btrfs_root *root = BTRFS_I(inode)->root; 2098 struct btrfs_file_extent_item *fi; 2099 struct btrfs_path *path; 2100 struct extent_buffer *leaf; 2101 struct btrfs_key ins; 2102 int extent_inserted = 0; 2103 int ret; 2104 2105 path = btrfs_alloc_path(); 2106 if (!path) 2107 return -ENOMEM; 2108 2109 /* 2110 * we may be replacing one extent in the tree with another. 2111 * The new extent is pinned in the extent map, and we don't want 2112 * to drop it from the cache until it is completely in the btree. 2113 * 2114 * So, tell btrfs_drop_extents to leave this extent in the cache. 2115 * the caller is expected to unpin it and allow it to be merged 2116 * with the others. 2117 */ 2118 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2119 file_pos + num_bytes, NULL, 0, 2120 1, sizeof(*fi), &extent_inserted); 2121 if (ret) 2122 goto out; 2123 2124 if (!extent_inserted) { 2125 ins.objectid = btrfs_ino(inode); 2126 ins.offset = file_pos; 2127 ins.type = BTRFS_EXTENT_DATA_KEY; 2128 2129 path->leave_spinning = 1; 2130 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2131 sizeof(*fi)); 2132 if (ret) 2133 goto out; 2134 } 2135 leaf = path->nodes[0]; 2136 fi = btrfs_item_ptr(leaf, path->slots[0], 2137 struct btrfs_file_extent_item); 2138 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2139 btrfs_set_file_extent_type(leaf, fi, extent_type); 2140 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2141 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2142 btrfs_set_file_extent_offset(leaf, fi, 0); 2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2144 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2145 btrfs_set_file_extent_compression(leaf, fi, compression); 2146 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2147 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2148 2149 btrfs_mark_buffer_dirty(leaf); 2150 btrfs_release_path(path); 2151 2152 inode_add_bytes(inode, num_bytes); 2153 2154 ins.objectid = disk_bytenr; 2155 ins.offset = disk_num_bytes; 2156 ins.type = BTRFS_EXTENT_ITEM_KEY; 2157 ret = btrfs_alloc_reserved_file_extent(trans, root, 2158 root->root_key.objectid, 2159 btrfs_ino(inode), file_pos, 2160 ram_bytes, &ins); 2161 /* 2162 * Release the reserved range from inode dirty range map, as it is 2163 * already moved into delayed_ref_head 2164 */ 2165 btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2166 out: 2167 btrfs_free_path(path); 2168 2169 return ret; 2170 } 2171 2172 /* snapshot-aware defrag */ 2173 struct sa_defrag_extent_backref { 2174 struct rb_node node; 2175 struct old_sa_defrag_extent *old; 2176 u64 root_id; 2177 u64 inum; 2178 u64 file_pos; 2179 u64 extent_offset; 2180 u64 num_bytes; 2181 u64 generation; 2182 }; 2183 2184 struct old_sa_defrag_extent { 2185 struct list_head list; 2186 struct new_sa_defrag_extent *new; 2187 2188 u64 extent_offset; 2189 u64 bytenr; 2190 u64 offset; 2191 u64 len; 2192 int count; 2193 }; 2194 2195 struct new_sa_defrag_extent { 2196 struct rb_root root; 2197 struct list_head head; 2198 struct btrfs_path *path; 2199 struct inode *inode; 2200 u64 file_pos; 2201 u64 len; 2202 u64 bytenr; 2203 u64 disk_len; 2204 u8 compress_type; 2205 }; 2206 2207 static int backref_comp(struct sa_defrag_extent_backref *b1, 2208 struct sa_defrag_extent_backref *b2) 2209 { 2210 if (b1->root_id < b2->root_id) 2211 return -1; 2212 else if (b1->root_id > b2->root_id) 2213 return 1; 2214 2215 if (b1->inum < b2->inum) 2216 return -1; 2217 else if (b1->inum > b2->inum) 2218 return 1; 2219 2220 if (b1->file_pos < b2->file_pos) 2221 return -1; 2222 else if (b1->file_pos > b2->file_pos) 2223 return 1; 2224 2225 /* 2226 * [------------------------------] ===> (a range of space) 2227 * |<--->| |<---->| =============> (fs/file tree A) 2228 * |<---------------------------->| ===> (fs/file tree B) 2229 * 2230 * A range of space can refer to two file extents in one tree while 2231 * refer to only one file extent in another tree. 2232 * 2233 * So we may process a disk offset more than one time(two extents in A) 2234 * and locate at the same extent(one extent in B), then insert two same 2235 * backrefs(both refer to the extent in B). 2236 */ 2237 return 0; 2238 } 2239 2240 static void backref_insert(struct rb_root *root, 2241 struct sa_defrag_extent_backref *backref) 2242 { 2243 struct rb_node **p = &root->rb_node; 2244 struct rb_node *parent = NULL; 2245 struct sa_defrag_extent_backref *entry; 2246 int ret; 2247 2248 while (*p) { 2249 parent = *p; 2250 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2251 2252 ret = backref_comp(backref, entry); 2253 if (ret < 0) 2254 p = &(*p)->rb_left; 2255 else 2256 p = &(*p)->rb_right; 2257 } 2258 2259 rb_link_node(&backref->node, parent, p); 2260 rb_insert_color(&backref->node, root); 2261 } 2262 2263 /* 2264 * Note the backref might has changed, and in this case we just return 0. 2265 */ 2266 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2267 void *ctx) 2268 { 2269 struct btrfs_file_extent_item *extent; 2270 struct btrfs_fs_info *fs_info; 2271 struct old_sa_defrag_extent *old = ctx; 2272 struct new_sa_defrag_extent *new = old->new; 2273 struct btrfs_path *path = new->path; 2274 struct btrfs_key key; 2275 struct btrfs_root *root; 2276 struct sa_defrag_extent_backref *backref; 2277 struct extent_buffer *leaf; 2278 struct inode *inode = new->inode; 2279 int slot; 2280 int ret; 2281 u64 extent_offset; 2282 u64 num_bytes; 2283 2284 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2285 inum == btrfs_ino(inode)) 2286 return 0; 2287 2288 key.objectid = root_id; 2289 key.type = BTRFS_ROOT_ITEM_KEY; 2290 key.offset = (u64)-1; 2291 2292 fs_info = BTRFS_I(inode)->root->fs_info; 2293 root = btrfs_read_fs_root_no_name(fs_info, &key); 2294 if (IS_ERR(root)) { 2295 if (PTR_ERR(root) == -ENOENT) 2296 return 0; 2297 WARN_ON(1); 2298 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n", 2299 inum, offset, root_id); 2300 return PTR_ERR(root); 2301 } 2302 2303 key.objectid = inum; 2304 key.type = BTRFS_EXTENT_DATA_KEY; 2305 if (offset > (u64)-1 << 32) 2306 key.offset = 0; 2307 else 2308 key.offset = offset; 2309 2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2311 if (WARN_ON(ret < 0)) 2312 return ret; 2313 ret = 0; 2314 2315 while (1) { 2316 cond_resched(); 2317 2318 leaf = path->nodes[0]; 2319 slot = path->slots[0]; 2320 2321 if (slot >= btrfs_header_nritems(leaf)) { 2322 ret = btrfs_next_leaf(root, path); 2323 if (ret < 0) { 2324 goto out; 2325 } else if (ret > 0) { 2326 ret = 0; 2327 goto out; 2328 } 2329 continue; 2330 } 2331 2332 path->slots[0]++; 2333 2334 btrfs_item_key_to_cpu(leaf, &key, slot); 2335 2336 if (key.objectid > inum) 2337 goto out; 2338 2339 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2340 continue; 2341 2342 extent = btrfs_item_ptr(leaf, slot, 2343 struct btrfs_file_extent_item); 2344 2345 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2346 continue; 2347 2348 /* 2349 * 'offset' refers to the exact key.offset, 2350 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2351 * (key.offset - extent_offset). 2352 */ 2353 if (key.offset != offset) 2354 continue; 2355 2356 extent_offset = btrfs_file_extent_offset(leaf, extent); 2357 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2358 2359 if (extent_offset >= old->extent_offset + old->offset + 2360 old->len || extent_offset + num_bytes <= 2361 old->extent_offset + old->offset) 2362 continue; 2363 break; 2364 } 2365 2366 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2367 if (!backref) { 2368 ret = -ENOENT; 2369 goto out; 2370 } 2371 2372 backref->root_id = root_id; 2373 backref->inum = inum; 2374 backref->file_pos = offset; 2375 backref->num_bytes = num_bytes; 2376 backref->extent_offset = extent_offset; 2377 backref->generation = btrfs_file_extent_generation(leaf, extent); 2378 backref->old = old; 2379 backref_insert(&new->root, backref); 2380 old->count++; 2381 out: 2382 btrfs_release_path(path); 2383 WARN_ON(ret); 2384 return ret; 2385 } 2386 2387 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2388 struct new_sa_defrag_extent *new) 2389 { 2390 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info; 2391 struct old_sa_defrag_extent *old, *tmp; 2392 int ret; 2393 2394 new->path = path; 2395 2396 list_for_each_entry_safe(old, tmp, &new->head, list) { 2397 ret = iterate_inodes_from_logical(old->bytenr + 2398 old->extent_offset, fs_info, 2399 path, record_one_backref, 2400 old); 2401 if (ret < 0 && ret != -ENOENT) 2402 return false; 2403 2404 /* no backref to be processed for this extent */ 2405 if (!old->count) { 2406 list_del(&old->list); 2407 kfree(old); 2408 } 2409 } 2410 2411 if (list_empty(&new->head)) 2412 return false; 2413 2414 return true; 2415 } 2416 2417 static int relink_is_mergable(struct extent_buffer *leaf, 2418 struct btrfs_file_extent_item *fi, 2419 struct new_sa_defrag_extent *new) 2420 { 2421 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2422 return 0; 2423 2424 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2425 return 0; 2426 2427 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2428 return 0; 2429 2430 if (btrfs_file_extent_encryption(leaf, fi) || 2431 btrfs_file_extent_other_encoding(leaf, fi)) 2432 return 0; 2433 2434 return 1; 2435 } 2436 2437 /* 2438 * Note the backref might has changed, and in this case we just return 0. 2439 */ 2440 static noinline int relink_extent_backref(struct btrfs_path *path, 2441 struct sa_defrag_extent_backref *prev, 2442 struct sa_defrag_extent_backref *backref) 2443 { 2444 struct btrfs_file_extent_item *extent; 2445 struct btrfs_file_extent_item *item; 2446 struct btrfs_ordered_extent *ordered; 2447 struct btrfs_trans_handle *trans; 2448 struct btrfs_fs_info *fs_info; 2449 struct btrfs_root *root; 2450 struct btrfs_key key; 2451 struct extent_buffer *leaf; 2452 struct old_sa_defrag_extent *old = backref->old; 2453 struct new_sa_defrag_extent *new = old->new; 2454 struct inode *src_inode = new->inode; 2455 struct inode *inode; 2456 struct extent_state *cached = NULL; 2457 int ret = 0; 2458 u64 start; 2459 u64 len; 2460 u64 lock_start; 2461 u64 lock_end; 2462 bool merge = false; 2463 int index; 2464 2465 if (prev && prev->root_id == backref->root_id && 2466 prev->inum == backref->inum && 2467 prev->file_pos + prev->num_bytes == backref->file_pos) 2468 merge = true; 2469 2470 /* step 1: get root */ 2471 key.objectid = backref->root_id; 2472 key.type = BTRFS_ROOT_ITEM_KEY; 2473 key.offset = (u64)-1; 2474 2475 fs_info = BTRFS_I(src_inode)->root->fs_info; 2476 index = srcu_read_lock(&fs_info->subvol_srcu); 2477 2478 root = btrfs_read_fs_root_no_name(fs_info, &key); 2479 if (IS_ERR(root)) { 2480 srcu_read_unlock(&fs_info->subvol_srcu, index); 2481 if (PTR_ERR(root) == -ENOENT) 2482 return 0; 2483 return PTR_ERR(root); 2484 } 2485 2486 if (btrfs_root_readonly(root)) { 2487 srcu_read_unlock(&fs_info->subvol_srcu, index); 2488 return 0; 2489 } 2490 2491 /* step 2: get inode */ 2492 key.objectid = backref->inum; 2493 key.type = BTRFS_INODE_ITEM_KEY; 2494 key.offset = 0; 2495 2496 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2497 if (IS_ERR(inode)) { 2498 srcu_read_unlock(&fs_info->subvol_srcu, index); 2499 return 0; 2500 } 2501 2502 srcu_read_unlock(&fs_info->subvol_srcu, index); 2503 2504 /* step 3: relink backref */ 2505 lock_start = backref->file_pos; 2506 lock_end = backref->file_pos + backref->num_bytes - 1; 2507 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2508 &cached); 2509 2510 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2511 if (ordered) { 2512 btrfs_put_ordered_extent(ordered); 2513 goto out_unlock; 2514 } 2515 2516 trans = btrfs_join_transaction(root); 2517 if (IS_ERR(trans)) { 2518 ret = PTR_ERR(trans); 2519 goto out_unlock; 2520 } 2521 2522 key.objectid = backref->inum; 2523 key.type = BTRFS_EXTENT_DATA_KEY; 2524 key.offset = backref->file_pos; 2525 2526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2527 if (ret < 0) { 2528 goto out_free_path; 2529 } else if (ret > 0) { 2530 ret = 0; 2531 goto out_free_path; 2532 } 2533 2534 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2535 struct btrfs_file_extent_item); 2536 2537 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2538 backref->generation) 2539 goto out_free_path; 2540 2541 btrfs_release_path(path); 2542 2543 start = backref->file_pos; 2544 if (backref->extent_offset < old->extent_offset + old->offset) 2545 start += old->extent_offset + old->offset - 2546 backref->extent_offset; 2547 2548 len = min(backref->extent_offset + backref->num_bytes, 2549 old->extent_offset + old->offset + old->len); 2550 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2551 2552 ret = btrfs_drop_extents(trans, root, inode, start, 2553 start + len, 1); 2554 if (ret) 2555 goto out_free_path; 2556 again: 2557 key.objectid = btrfs_ino(inode); 2558 key.type = BTRFS_EXTENT_DATA_KEY; 2559 key.offset = start; 2560 2561 path->leave_spinning = 1; 2562 if (merge) { 2563 struct btrfs_file_extent_item *fi; 2564 u64 extent_len; 2565 struct btrfs_key found_key; 2566 2567 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2568 if (ret < 0) 2569 goto out_free_path; 2570 2571 path->slots[0]--; 2572 leaf = path->nodes[0]; 2573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2574 2575 fi = btrfs_item_ptr(leaf, path->slots[0], 2576 struct btrfs_file_extent_item); 2577 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2578 2579 if (extent_len + found_key.offset == start && 2580 relink_is_mergable(leaf, fi, new)) { 2581 btrfs_set_file_extent_num_bytes(leaf, fi, 2582 extent_len + len); 2583 btrfs_mark_buffer_dirty(leaf); 2584 inode_add_bytes(inode, len); 2585 2586 ret = 1; 2587 goto out_free_path; 2588 } else { 2589 merge = false; 2590 btrfs_release_path(path); 2591 goto again; 2592 } 2593 } 2594 2595 ret = btrfs_insert_empty_item(trans, root, path, &key, 2596 sizeof(*extent)); 2597 if (ret) { 2598 btrfs_abort_transaction(trans, root, ret); 2599 goto out_free_path; 2600 } 2601 2602 leaf = path->nodes[0]; 2603 item = btrfs_item_ptr(leaf, path->slots[0], 2604 struct btrfs_file_extent_item); 2605 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2606 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2607 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2608 btrfs_set_file_extent_num_bytes(leaf, item, len); 2609 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2610 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2611 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2612 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2613 btrfs_set_file_extent_encryption(leaf, item, 0); 2614 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2615 2616 btrfs_mark_buffer_dirty(leaf); 2617 inode_add_bytes(inode, len); 2618 btrfs_release_path(path); 2619 2620 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2621 new->disk_len, 0, 2622 backref->root_id, backref->inum, 2623 new->file_pos); /* start - extent_offset */ 2624 if (ret) { 2625 btrfs_abort_transaction(trans, root, ret); 2626 goto out_free_path; 2627 } 2628 2629 ret = 1; 2630 out_free_path: 2631 btrfs_release_path(path); 2632 path->leave_spinning = 0; 2633 btrfs_end_transaction(trans, root); 2634 out_unlock: 2635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2636 &cached, GFP_NOFS); 2637 iput(inode); 2638 return ret; 2639 } 2640 2641 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2642 { 2643 struct old_sa_defrag_extent *old, *tmp; 2644 2645 if (!new) 2646 return; 2647 2648 list_for_each_entry_safe(old, tmp, &new->head, list) { 2649 kfree(old); 2650 } 2651 kfree(new); 2652 } 2653 2654 static void relink_file_extents(struct new_sa_defrag_extent *new) 2655 { 2656 struct btrfs_path *path; 2657 struct sa_defrag_extent_backref *backref; 2658 struct sa_defrag_extent_backref *prev = NULL; 2659 struct inode *inode; 2660 struct btrfs_root *root; 2661 struct rb_node *node; 2662 int ret; 2663 2664 inode = new->inode; 2665 root = BTRFS_I(inode)->root; 2666 2667 path = btrfs_alloc_path(); 2668 if (!path) 2669 return; 2670 2671 if (!record_extent_backrefs(path, new)) { 2672 btrfs_free_path(path); 2673 goto out; 2674 } 2675 btrfs_release_path(path); 2676 2677 while (1) { 2678 node = rb_first(&new->root); 2679 if (!node) 2680 break; 2681 rb_erase(node, &new->root); 2682 2683 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2684 2685 ret = relink_extent_backref(path, prev, backref); 2686 WARN_ON(ret < 0); 2687 2688 kfree(prev); 2689 2690 if (ret == 1) 2691 prev = backref; 2692 else 2693 prev = NULL; 2694 cond_resched(); 2695 } 2696 kfree(prev); 2697 2698 btrfs_free_path(path); 2699 out: 2700 free_sa_defrag_extent(new); 2701 2702 atomic_dec(&root->fs_info->defrag_running); 2703 wake_up(&root->fs_info->transaction_wait); 2704 } 2705 2706 static struct new_sa_defrag_extent * 2707 record_old_file_extents(struct inode *inode, 2708 struct btrfs_ordered_extent *ordered) 2709 { 2710 struct btrfs_root *root = BTRFS_I(inode)->root; 2711 struct btrfs_path *path; 2712 struct btrfs_key key; 2713 struct old_sa_defrag_extent *old; 2714 struct new_sa_defrag_extent *new; 2715 int ret; 2716 2717 new = kmalloc(sizeof(*new), GFP_NOFS); 2718 if (!new) 2719 return NULL; 2720 2721 new->inode = inode; 2722 new->file_pos = ordered->file_offset; 2723 new->len = ordered->len; 2724 new->bytenr = ordered->start; 2725 new->disk_len = ordered->disk_len; 2726 new->compress_type = ordered->compress_type; 2727 new->root = RB_ROOT; 2728 INIT_LIST_HEAD(&new->head); 2729 2730 path = btrfs_alloc_path(); 2731 if (!path) 2732 goto out_kfree; 2733 2734 key.objectid = btrfs_ino(inode); 2735 key.type = BTRFS_EXTENT_DATA_KEY; 2736 key.offset = new->file_pos; 2737 2738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2739 if (ret < 0) 2740 goto out_free_path; 2741 if (ret > 0 && path->slots[0] > 0) 2742 path->slots[0]--; 2743 2744 /* find out all the old extents for the file range */ 2745 while (1) { 2746 struct btrfs_file_extent_item *extent; 2747 struct extent_buffer *l; 2748 int slot; 2749 u64 num_bytes; 2750 u64 offset; 2751 u64 end; 2752 u64 disk_bytenr; 2753 u64 extent_offset; 2754 2755 l = path->nodes[0]; 2756 slot = path->slots[0]; 2757 2758 if (slot >= btrfs_header_nritems(l)) { 2759 ret = btrfs_next_leaf(root, path); 2760 if (ret < 0) 2761 goto out_free_path; 2762 else if (ret > 0) 2763 break; 2764 continue; 2765 } 2766 2767 btrfs_item_key_to_cpu(l, &key, slot); 2768 2769 if (key.objectid != btrfs_ino(inode)) 2770 break; 2771 if (key.type != BTRFS_EXTENT_DATA_KEY) 2772 break; 2773 if (key.offset >= new->file_pos + new->len) 2774 break; 2775 2776 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2777 2778 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2779 if (key.offset + num_bytes < new->file_pos) 2780 goto next; 2781 2782 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2783 if (!disk_bytenr) 2784 goto next; 2785 2786 extent_offset = btrfs_file_extent_offset(l, extent); 2787 2788 old = kmalloc(sizeof(*old), GFP_NOFS); 2789 if (!old) 2790 goto out_free_path; 2791 2792 offset = max(new->file_pos, key.offset); 2793 end = min(new->file_pos + new->len, key.offset + num_bytes); 2794 2795 old->bytenr = disk_bytenr; 2796 old->extent_offset = extent_offset; 2797 old->offset = offset - key.offset; 2798 old->len = end - offset; 2799 old->new = new; 2800 old->count = 0; 2801 list_add_tail(&old->list, &new->head); 2802 next: 2803 path->slots[0]++; 2804 cond_resched(); 2805 } 2806 2807 btrfs_free_path(path); 2808 atomic_inc(&root->fs_info->defrag_running); 2809 2810 return new; 2811 2812 out_free_path: 2813 btrfs_free_path(path); 2814 out_kfree: 2815 free_sa_defrag_extent(new); 2816 return NULL; 2817 } 2818 2819 static void btrfs_release_delalloc_bytes(struct btrfs_root *root, 2820 u64 start, u64 len) 2821 { 2822 struct btrfs_block_group_cache *cache; 2823 2824 cache = btrfs_lookup_block_group(root->fs_info, start); 2825 ASSERT(cache); 2826 2827 spin_lock(&cache->lock); 2828 cache->delalloc_bytes -= len; 2829 spin_unlock(&cache->lock); 2830 2831 btrfs_put_block_group(cache); 2832 } 2833 2834 /* as ordered data IO finishes, this gets called so we can finish 2835 * an ordered extent if the range of bytes in the file it covers are 2836 * fully written. 2837 */ 2838 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2839 { 2840 struct inode *inode = ordered_extent->inode; 2841 struct btrfs_root *root = BTRFS_I(inode)->root; 2842 struct btrfs_trans_handle *trans = NULL; 2843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2844 struct extent_state *cached_state = NULL; 2845 struct new_sa_defrag_extent *new = NULL; 2846 int compress_type = 0; 2847 int ret = 0; 2848 u64 logical_len = ordered_extent->len; 2849 bool nolock; 2850 bool truncated = false; 2851 2852 nolock = btrfs_is_free_space_inode(inode); 2853 2854 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2855 ret = -EIO; 2856 goto out; 2857 } 2858 2859 btrfs_free_io_failure_record(inode, ordered_extent->file_offset, 2860 ordered_extent->file_offset + 2861 ordered_extent->len - 1); 2862 2863 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2864 truncated = true; 2865 logical_len = ordered_extent->truncated_len; 2866 /* Truncated the entire extent, don't bother adding */ 2867 if (!logical_len) 2868 goto out; 2869 } 2870 2871 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2872 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2873 2874 /* 2875 * For mwrite(mmap + memset to write) case, we still reserve 2876 * space for NOCOW range. 2877 * As NOCOW won't cause a new delayed ref, just free the space 2878 */ 2879 btrfs_qgroup_free_data(inode, ordered_extent->file_offset, 2880 ordered_extent->len); 2881 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2882 if (nolock) 2883 trans = btrfs_join_transaction_nolock(root); 2884 else 2885 trans = btrfs_join_transaction(root); 2886 if (IS_ERR(trans)) { 2887 ret = PTR_ERR(trans); 2888 trans = NULL; 2889 goto out; 2890 } 2891 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2892 ret = btrfs_update_inode_fallback(trans, root, inode); 2893 if (ret) /* -ENOMEM or corruption */ 2894 btrfs_abort_transaction(trans, root, ret); 2895 goto out; 2896 } 2897 2898 lock_extent_bits(io_tree, ordered_extent->file_offset, 2899 ordered_extent->file_offset + ordered_extent->len - 1, 2900 &cached_state); 2901 2902 ret = test_range_bit(io_tree, ordered_extent->file_offset, 2903 ordered_extent->file_offset + ordered_extent->len - 1, 2904 EXTENT_DEFRAG, 1, cached_state); 2905 if (ret) { 2906 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2907 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 2908 /* the inode is shared */ 2909 new = record_old_file_extents(inode, ordered_extent); 2910 2911 clear_extent_bit(io_tree, ordered_extent->file_offset, 2912 ordered_extent->file_offset + ordered_extent->len - 1, 2913 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS); 2914 } 2915 2916 if (nolock) 2917 trans = btrfs_join_transaction_nolock(root); 2918 else 2919 trans = btrfs_join_transaction(root); 2920 if (IS_ERR(trans)) { 2921 ret = PTR_ERR(trans); 2922 trans = NULL; 2923 goto out_unlock; 2924 } 2925 2926 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 2927 2928 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2929 compress_type = ordered_extent->compress_type; 2930 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2931 BUG_ON(compress_type); 2932 ret = btrfs_mark_extent_written(trans, inode, 2933 ordered_extent->file_offset, 2934 ordered_extent->file_offset + 2935 logical_len); 2936 } else { 2937 BUG_ON(root == root->fs_info->tree_root); 2938 ret = insert_reserved_file_extent(trans, inode, 2939 ordered_extent->file_offset, 2940 ordered_extent->start, 2941 ordered_extent->disk_len, 2942 logical_len, logical_len, 2943 compress_type, 0, 0, 2944 BTRFS_FILE_EXTENT_REG); 2945 if (!ret) 2946 btrfs_release_delalloc_bytes(root, 2947 ordered_extent->start, 2948 ordered_extent->disk_len); 2949 } 2950 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2951 ordered_extent->file_offset, ordered_extent->len, 2952 trans->transid); 2953 if (ret < 0) { 2954 btrfs_abort_transaction(trans, root, ret); 2955 goto out_unlock; 2956 } 2957 2958 add_pending_csums(trans, inode, ordered_extent->file_offset, 2959 &ordered_extent->list); 2960 2961 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2962 ret = btrfs_update_inode_fallback(trans, root, inode); 2963 if (ret) { /* -ENOMEM or corruption */ 2964 btrfs_abort_transaction(trans, root, ret); 2965 goto out_unlock; 2966 } 2967 ret = 0; 2968 out_unlock: 2969 unlock_extent_cached(io_tree, ordered_extent->file_offset, 2970 ordered_extent->file_offset + 2971 ordered_extent->len - 1, &cached_state, GFP_NOFS); 2972 out: 2973 if (root != root->fs_info->tree_root) 2974 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2975 if (trans) 2976 btrfs_end_transaction(trans, root); 2977 2978 if (ret || truncated) { 2979 u64 start, end; 2980 2981 if (truncated) 2982 start = ordered_extent->file_offset + logical_len; 2983 else 2984 start = ordered_extent->file_offset; 2985 end = ordered_extent->file_offset + ordered_extent->len - 1; 2986 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS); 2987 2988 /* Drop the cache for the part of the extent we didn't write. */ 2989 btrfs_drop_extent_cache(inode, start, end, 0); 2990 2991 /* 2992 * If the ordered extent had an IOERR or something else went 2993 * wrong we need to return the space for this ordered extent 2994 * back to the allocator. We only free the extent in the 2995 * truncated case if we didn't write out the extent at all. 2996 */ 2997 if ((ret || !logical_len) && 2998 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2999 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3000 btrfs_free_reserved_extent(root, ordered_extent->start, 3001 ordered_extent->disk_len, 1); 3002 } 3003 3004 3005 /* 3006 * This needs to be done to make sure anybody waiting knows we are done 3007 * updating everything for this ordered extent. 3008 */ 3009 btrfs_remove_ordered_extent(inode, ordered_extent); 3010 3011 /* for snapshot-aware defrag */ 3012 if (new) { 3013 if (ret) { 3014 free_sa_defrag_extent(new); 3015 atomic_dec(&root->fs_info->defrag_running); 3016 } else { 3017 relink_file_extents(new); 3018 } 3019 } 3020 3021 /* once for us */ 3022 btrfs_put_ordered_extent(ordered_extent); 3023 /* once for the tree */ 3024 btrfs_put_ordered_extent(ordered_extent); 3025 3026 return ret; 3027 } 3028 3029 static void finish_ordered_fn(struct btrfs_work *work) 3030 { 3031 struct btrfs_ordered_extent *ordered_extent; 3032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3033 btrfs_finish_ordered_io(ordered_extent); 3034 } 3035 3036 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3037 struct extent_state *state, int uptodate) 3038 { 3039 struct inode *inode = page->mapping->host; 3040 struct btrfs_root *root = BTRFS_I(inode)->root; 3041 struct btrfs_ordered_extent *ordered_extent = NULL; 3042 struct btrfs_workqueue *wq; 3043 btrfs_work_func_t func; 3044 3045 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3046 3047 ClearPagePrivate2(page); 3048 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3049 end - start + 1, uptodate)) 3050 return 0; 3051 3052 if (btrfs_is_free_space_inode(inode)) { 3053 wq = root->fs_info->endio_freespace_worker; 3054 func = btrfs_freespace_write_helper; 3055 } else { 3056 wq = root->fs_info->endio_write_workers; 3057 func = btrfs_endio_write_helper; 3058 } 3059 3060 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3061 NULL); 3062 btrfs_queue_work(wq, &ordered_extent->work); 3063 3064 return 0; 3065 } 3066 3067 static int __readpage_endio_check(struct inode *inode, 3068 struct btrfs_io_bio *io_bio, 3069 int icsum, struct page *page, 3070 int pgoff, u64 start, size_t len) 3071 { 3072 char *kaddr; 3073 u32 csum_expected; 3074 u32 csum = ~(u32)0; 3075 3076 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3077 3078 kaddr = kmap_atomic(page); 3079 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3080 btrfs_csum_final(csum, (char *)&csum); 3081 if (csum != csum_expected) 3082 goto zeroit; 3083 3084 kunmap_atomic(kaddr); 3085 return 0; 3086 zeroit: 3087 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info, 3088 "csum failed ino %llu off %llu csum %u expected csum %u", 3089 btrfs_ino(inode), start, csum, csum_expected); 3090 memset(kaddr + pgoff, 1, len); 3091 flush_dcache_page(page); 3092 kunmap_atomic(kaddr); 3093 if (csum_expected == 0) 3094 return 0; 3095 return -EIO; 3096 } 3097 3098 /* 3099 * when reads are done, we need to check csums to verify the data is correct 3100 * if there's a match, we allow the bio to finish. If not, the code in 3101 * extent_io.c will try to find good copies for us. 3102 */ 3103 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3104 u64 phy_offset, struct page *page, 3105 u64 start, u64 end, int mirror) 3106 { 3107 size_t offset = start - page_offset(page); 3108 struct inode *inode = page->mapping->host; 3109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3110 struct btrfs_root *root = BTRFS_I(inode)->root; 3111 3112 if (PageChecked(page)) { 3113 ClearPageChecked(page); 3114 return 0; 3115 } 3116 3117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3118 return 0; 3119 3120 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3121 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3122 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3123 return 0; 3124 } 3125 3126 phy_offset >>= inode->i_sb->s_blocksize_bits; 3127 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3128 start, (size_t)(end - start + 1)); 3129 } 3130 3131 void btrfs_add_delayed_iput(struct inode *inode) 3132 { 3133 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 3134 struct btrfs_inode *binode = BTRFS_I(inode); 3135 3136 if (atomic_add_unless(&inode->i_count, -1, 1)) 3137 return; 3138 3139 spin_lock(&fs_info->delayed_iput_lock); 3140 if (binode->delayed_iput_count == 0) { 3141 ASSERT(list_empty(&binode->delayed_iput)); 3142 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3143 } else { 3144 binode->delayed_iput_count++; 3145 } 3146 spin_unlock(&fs_info->delayed_iput_lock); 3147 } 3148 3149 void btrfs_run_delayed_iputs(struct btrfs_root *root) 3150 { 3151 struct btrfs_fs_info *fs_info = root->fs_info; 3152 3153 spin_lock(&fs_info->delayed_iput_lock); 3154 while (!list_empty(&fs_info->delayed_iputs)) { 3155 struct btrfs_inode *inode; 3156 3157 inode = list_first_entry(&fs_info->delayed_iputs, 3158 struct btrfs_inode, delayed_iput); 3159 if (inode->delayed_iput_count) { 3160 inode->delayed_iput_count--; 3161 list_move_tail(&inode->delayed_iput, 3162 &fs_info->delayed_iputs); 3163 } else { 3164 list_del_init(&inode->delayed_iput); 3165 } 3166 spin_unlock(&fs_info->delayed_iput_lock); 3167 iput(&inode->vfs_inode); 3168 spin_lock(&fs_info->delayed_iput_lock); 3169 } 3170 spin_unlock(&fs_info->delayed_iput_lock); 3171 } 3172 3173 /* 3174 * This is called in transaction commit time. If there are no orphan 3175 * files in the subvolume, it removes orphan item and frees block_rsv 3176 * structure. 3177 */ 3178 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3179 struct btrfs_root *root) 3180 { 3181 struct btrfs_block_rsv *block_rsv; 3182 int ret; 3183 3184 if (atomic_read(&root->orphan_inodes) || 3185 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 3186 return; 3187 3188 spin_lock(&root->orphan_lock); 3189 if (atomic_read(&root->orphan_inodes)) { 3190 spin_unlock(&root->orphan_lock); 3191 return; 3192 } 3193 3194 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 3195 spin_unlock(&root->orphan_lock); 3196 return; 3197 } 3198 3199 block_rsv = root->orphan_block_rsv; 3200 root->orphan_block_rsv = NULL; 3201 spin_unlock(&root->orphan_lock); 3202 3203 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) && 3204 btrfs_root_refs(&root->root_item) > 0) { 3205 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 3206 root->root_key.objectid); 3207 if (ret) 3208 btrfs_abort_transaction(trans, root, ret); 3209 else 3210 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 3211 &root->state); 3212 } 3213 3214 if (block_rsv) { 3215 WARN_ON(block_rsv->size > 0); 3216 btrfs_free_block_rsv(root, block_rsv); 3217 } 3218 } 3219 3220 /* 3221 * This creates an orphan entry for the given inode in case something goes 3222 * wrong in the middle of an unlink/truncate. 3223 * 3224 * NOTE: caller of this function should reserve 5 units of metadata for 3225 * this function. 3226 */ 3227 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 3228 { 3229 struct btrfs_root *root = BTRFS_I(inode)->root; 3230 struct btrfs_block_rsv *block_rsv = NULL; 3231 int reserve = 0; 3232 int insert = 0; 3233 int ret; 3234 3235 if (!root->orphan_block_rsv) { 3236 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3237 if (!block_rsv) 3238 return -ENOMEM; 3239 } 3240 3241 spin_lock(&root->orphan_lock); 3242 if (!root->orphan_block_rsv) { 3243 root->orphan_block_rsv = block_rsv; 3244 } else if (block_rsv) { 3245 btrfs_free_block_rsv(root, block_rsv); 3246 block_rsv = NULL; 3247 } 3248 3249 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3250 &BTRFS_I(inode)->runtime_flags)) { 3251 #if 0 3252 /* 3253 * For proper ENOSPC handling, we should do orphan 3254 * cleanup when mounting. But this introduces backward 3255 * compatibility issue. 3256 */ 3257 if (!xchg(&root->orphan_item_inserted, 1)) 3258 insert = 2; 3259 else 3260 insert = 1; 3261 #endif 3262 insert = 1; 3263 atomic_inc(&root->orphan_inodes); 3264 } 3265 3266 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3267 &BTRFS_I(inode)->runtime_flags)) 3268 reserve = 1; 3269 spin_unlock(&root->orphan_lock); 3270 3271 /* grab metadata reservation from transaction handle */ 3272 if (reserve) { 3273 ret = btrfs_orphan_reserve_metadata(trans, inode); 3274 ASSERT(!ret); 3275 if (ret) { 3276 atomic_dec(&root->orphan_inodes); 3277 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3278 &BTRFS_I(inode)->runtime_flags); 3279 if (insert) 3280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3281 &BTRFS_I(inode)->runtime_flags); 3282 return ret; 3283 } 3284 } 3285 3286 /* insert an orphan item to track this unlinked/truncated file */ 3287 if (insert >= 1) { 3288 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 3289 if (ret) { 3290 atomic_dec(&root->orphan_inodes); 3291 if (reserve) { 3292 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3293 &BTRFS_I(inode)->runtime_flags); 3294 btrfs_orphan_release_metadata(inode); 3295 } 3296 if (ret != -EEXIST) { 3297 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3298 &BTRFS_I(inode)->runtime_flags); 3299 btrfs_abort_transaction(trans, root, ret); 3300 return ret; 3301 } 3302 } 3303 ret = 0; 3304 } 3305 3306 /* insert an orphan item to track subvolume contains orphan files */ 3307 if (insert >= 2) { 3308 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 3309 root->root_key.objectid); 3310 if (ret && ret != -EEXIST) { 3311 btrfs_abort_transaction(trans, root, ret); 3312 return ret; 3313 } 3314 } 3315 return 0; 3316 } 3317 3318 /* 3319 * We have done the truncate/delete so we can go ahead and remove the orphan 3320 * item for this particular inode. 3321 */ 3322 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3323 struct inode *inode) 3324 { 3325 struct btrfs_root *root = BTRFS_I(inode)->root; 3326 int delete_item = 0; 3327 int release_rsv = 0; 3328 int ret = 0; 3329 3330 spin_lock(&root->orphan_lock); 3331 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3332 &BTRFS_I(inode)->runtime_flags)) 3333 delete_item = 1; 3334 3335 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 3336 &BTRFS_I(inode)->runtime_flags)) 3337 release_rsv = 1; 3338 spin_unlock(&root->orphan_lock); 3339 3340 if (delete_item) { 3341 atomic_dec(&root->orphan_inodes); 3342 if (trans) 3343 ret = btrfs_del_orphan_item(trans, root, 3344 btrfs_ino(inode)); 3345 } 3346 3347 if (release_rsv) 3348 btrfs_orphan_release_metadata(inode); 3349 3350 return ret; 3351 } 3352 3353 /* 3354 * this cleans up any orphans that may be left on the list from the last use 3355 * of this root. 3356 */ 3357 int btrfs_orphan_cleanup(struct btrfs_root *root) 3358 { 3359 struct btrfs_path *path; 3360 struct extent_buffer *leaf; 3361 struct btrfs_key key, found_key; 3362 struct btrfs_trans_handle *trans; 3363 struct inode *inode; 3364 u64 last_objectid = 0; 3365 int ret = 0, nr_unlink = 0, nr_truncate = 0; 3366 3367 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3368 return 0; 3369 3370 path = btrfs_alloc_path(); 3371 if (!path) { 3372 ret = -ENOMEM; 3373 goto out; 3374 } 3375 path->reada = READA_BACK; 3376 3377 key.objectid = BTRFS_ORPHAN_OBJECTID; 3378 key.type = BTRFS_ORPHAN_ITEM_KEY; 3379 key.offset = (u64)-1; 3380 3381 while (1) { 3382 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3383 if (ret < 0) 3384 goto out; 3385 3386 /* 3387 * if ret == 0 means we found what we were searching for, which 3388 * is weird, but possible, so only screw with path if we didn't 3389 * find the key and see if we have stuff that matches 3390 */ 3391 if (ret > 0) { 3392 ret = 0; 3393 if (path->slots[0] == 0) 3394 break; 3395 path->slots[0]--; 3396 } 3397 3398 /* pull out the item */ 3399 leaf = path->nodes[0]; 3400 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3401 3402 /* make sure the item matches what we want */ 3403 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3404 break; 3405 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3406 break; 3407 3408 /* release the path since we're done with it */ 3409 btrfs_release_path(path); 3410 3411 /* 3412 * this is where we are basically btrfs_lookup, without the 3413 * crossing root thing. we store the inode number in the 3414 * offset of the orphan item. 3415 */ 3416 3417 if (found_key.offset == last_objectid) { 3418 btrfs_err(root->fs_info, 3419 "Error removing orphan entry, stopping orphan cleanup"); 3420 ret = -EINVAL; 3421 goto out; 3422 } 3423 3424 last_objectid = found_key.offset; 3425 3426 found_key.objectid = found_key.offset; 3427 found_key.type = BTRFS_INODE_ITEM_KEY; 3428 found_key.offset = 0; 3429 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 3430 ret = PTR_ERR_OR_ZERO(inode); 3431 if (ret && ret != -ESTALE) 3432 goto out; 3433 3434 if (ret == -ESTALE && root == root->fs_info->tree_root) { 3435 struct btrfs_root *dead_root; 3436 struct btrfs_fs_info *fs_info = root->fs_info; 3437 int is_dead_root = 0; 3438 3439 /* 3440 * this is an orphan in the tree root. Currently these 3441 * could come from 2 sources: 3442 * a) a snapshot deletion in progress 3443 * b) a free space cache inode 3444 * We need to distinguish those two, as the snapshot 3445 * orphan must not get deleted. 3446 * find_dead_roots already ran before us, so if this 3447 * is a snapshot deletion, we should find the root 3448 * in the dead_roots list 3449 */ 3450 spin_lock(&fs_info->trans_lock); 3451 list_for_each_entry(dead_root, &fs_info->dead_roots, 3452 root_list) { 3453 if (dead_root->root_key.objectid == 3454 found_key.objectid) { 3455 is_dead_root = 1; 3456 break; 3457 } 3458 } 3459 spin_unlock(&fs_info->trans_lock); 3460 if (is_dead_root) { 3461 /* prevent this orphan from being found again */ 3462 key.offset = found_key.objectid - 1; 3463 continue; 3464 } 3465 } 3466 /* 3467 * Inode is already gone but the orphan item is still there, 3468 * kill the orphan item. 3469 */ 3470 if (ret == -ESTALE) { 3471 trans = btrfs_start_transaction(root, 1); 3472 if (IS_ERR(trans)) { 3473 ret = PTR_ERR(trans); 3474 goto out; 3475 } 3476 btrfs_debug(root->fs_info, "auto deleting %Lu", 3477 found_key.objectid); 3478 ret = btrfs_del_orphan_item(trans, root, 3479 found_key.objectid); 3480 btrfs_end_transaction(trans, root); 3481 if (ret) 3482 goto out; 3483 continue; 3484 } 3485 3486 /* 3487 * add this inode to the orphan list so btrfs_orphan_del does 3488 * the proper thing when we hit it 3489 */ 3490 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3491 &BTRFS_I(inode)->runtime_flags); 3492 atomic_inc(&root->orphan_inodes); 3493 3494 /* if we have links, this was a truncate, lets do that */ 3495 if (inode->i_nlink) { 3496 if (WARN_ON(!S_ISREG(inode->i_mode))) { 3497 iput(inode); 3498 continue; 3499 } 3500 nr_truncate++; 3501 3502 /* 1 for the orphan item deletion. */ 3503 trans = btrfs_start_transaction(root, 1); 3504 if (IS_ERR(trans)) { 3505 iput(inode); 3506 ret = PTR_ERR(trans); 3507 goto out; 3508 } 3509 ret = btrfs_orphan_add(trans, inode); 3510 btrfs_end_transaction(trans, root); 3511 if (ret) { 3512 iput(inode); 3513 goto out; 3514 } 3515 3516 ret = btrfs_truncate(inode); 3517 if (ret) 3518 btrfs_orphan_del(NULL, inode); 3519 } else { 3520 nr_unlink++; 3521 } 3522 3523 /* this will do delete_inode and everything for us */ 3524 iput(inode); 3525 if (ret) 3526 goto out; 3527 } 3528 /* release the path since we're done with it */ 3529 btrfs_release_path(path); 3530 3531 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3532 3533 if (root->orphan_block_rsv) 3534 btrfs_block_rsv_release(root, root->orphan_block_rsv, 3535 (u64)-1); 3536 3537 if (root->orphan_block_rsv || 3538 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3539 trans = btrfs_join_transaction(root); 3540 if (!IS_ERR(trans)) 3541 btrfs_end_transaction(trans, root); 3542 } 3543 3544 if (nr_unlink) 3545 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink); 3546 if (nr_truncate) 3547 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate); 3548 3549 out: 3550 if (ret) 3551 btrfs_err(root->fs_info, 3552 "could not do orphan cleanup %d", ret); 3553 btrfs_free_path(path); 3554 return ret; 3555 } 3556 3557 /* 3558 * very simple check to peek ahead in the leaf looking for xattrs. If we 3559 * don't find any xattrs, we know there can't be any acls. 3560 * 3561 * slot is the slot the inode is in, objectid is the objectid of the inode 3562 */ 3563 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3564 int slot, u64 objectid, 3565 int *first_xattr_slot) 3566 { 3567 u32 nritems = btrfs_header_nritems(leaf); 3568 struct btrfs_key found_key; 3569 static u64 xattr_access = 0; 3570 static u64 xattr_default = 0; 3571 int scanned = 0; 3572 3573 if (!xattr_access) { 3574 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3575 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3576 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3577 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3578 } 3579 3580 slot++; 3581 *first_xattr_slot = -1; 3582 while (slot < nritems) { 3583 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3584 3585 /* we found a different objectid, there must not be acls */ 3586 if (found_key.objectid != objectid) 3587 return 0; 3588 3589 /* we found an xattr, assume we've got an acl */ 3590 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3591 if (*first_xattr_slot == -1) 3592 *first_xattr_slot = slot; 3593 if (found_key.offset == xattr_access || 3594 found_key.offset == xattr_default) 3595 return 1; 3596 } 3597 3598 /* 3599 * we found a key greater than an xattr key, there can't 3600 * be any acls later on 3601 */ 3602 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3603 return 0; 3604 3605 slot++; 3606 scanned++; 3607 3608 /* 3609 * it goes inode, inode backrefs, xattrs, extents, 3610 * so if there are a ton of hard links to an inode there can 3611 * be a lot of backrefs. Don't waste time searching too hard, 3612 * this is just an optimization 3613 */ 3614 if (scanned >= 8) 3615 break; 3616 } 3617 /* we hit the end of the leaf before we found an xattr or 3618 * something larger than an xattr. We have to assume the inode 3619 * has acls 3620 */ 3621 if (*first_xattr_slot == -1) 3622 *first_xattr_slot = slot; 3623 return 1; 3624 } 3625 3626 /* 3627 * read an inode from the btree into the in-memory inode 3628 */ 3629 static void btrfs_read_locked_inode(struct inode *inode) 3630 { 3631 struct btrfs_path *path; 3632 struct extent_buffer *leaf; 3633 struct btrfs_inode_item *inode_item; 3634 struct btrfs_root *root = BTRFS_I(inode)->root; 3635 struct btrfs_key location; 3636 unsigned long ptr; 3637 int maybe_acls; 3638 u32 rdev; 3639 int ret; 3640 bool filled = false; 3641 int first_xattr_slot; 3642 3643 ret = btrfs_fill_inode(inode, &rdev); 3644 if (!ret) 3645 filled = true; 3646 3647 path = btrfs_alloc_path(); 3648 if (!path) 3649 goto make_bad; 3650 3651 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3652 3653 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3654 if (ret) 3655 goto make_bad; 3656 3657 leaf = path->nodes[0]; 3658 3659 if (filled) 3660 goto cache_index; 3661 3662 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3663 struct btrfs_inode_item); 3664 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3665 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3666 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3667 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3668 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3669 3670 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3671 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3672 3673 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3674 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3675 3676 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3677 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3678 3679 BTRFS_I(inode)->i_otime.tv_sec = 3680 btrfs_timespec_sec(leaf, &inode_item->otime); 3681 BTRFS_I(inode)->i_otime.tv_nsec = 3682 btrfs_timespec_nsec(leaf, &inode_item->otime); 3683 3684 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3685 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3686 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3687 3688 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 3689 inode->i_generation = BTRFS_I(inode)->generation; 3690 inode->i_rdev = 0; 3691 rdev = btrfs_inode_rdev(leaf, inode_item); 3692 3693 BTRFS_I(inode)->index_cnt = (u64)-1; 3694 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3695 3696 cache_index: 3697 /* 3698 * If we were modified in the current generation and evicted from memory 3699 * and then re-read we need to do a full sync since we don't have any 3700 * idea about which extents were modified before we were evicted from 3701 * cache. 3702 * 3703 * This is required for both inode re-read from disk and delayed inode 3704 * in delayed_nodes_tree. 3705 */ 3706 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 3707 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3708 &BTRFS_I(inode)->runtime_flags); 3709 3710 /* 3711 * We don't persist the id of the transaction where an unlink operation 3712 * against the inode was last made. So here we assume the inode might 3713 * have been evicted, and therefore the exact value of last_unlink_trans 3714 * lost, and set it to last_trans to avoid metadata inconsistencies 3715 * between the inode and its parent if the inode is fsync'ed and the log 3716 * replayed. For example, in the scenario: 3717 * 3718 * touch mydir/foo 3719 * ln mydir/foo mydir/bar 3720 * sync 3721 * unlink mydir/bar 3722 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3723 * xfs_io -c fsync mydir/foo 3724 * <power failure> 3725 * mount fs, triggers fsync log replay 3726 * 3727 * We must make sure that when we fsync our inode foo we also log its 3728 * parent inode, otherwise after log replay the parent still has the 3729 * dentry with the "bar" name but our inode foo has a link count of 1 3730 * and doesn't have an inode ref with the name "bar" anymore. 3731 * 3732 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3733 * but it guarantees correctness at the expense of occasional full 3734 * transaction commits on fsync if our inode is a directory, or if our 3735 * inode is not a directory, logging its parent unnecessarily. 3736 */ 3737 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3738 3739 path->slots[0]++; 3740 if (inode->i_nlink != 1 || 3741 path->slots[0] >= btrfs_header_nritems(leaf)) 3742 goto cache_acl; 3743 3744 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3745 if (location.objectid != btrfs_ino(inode)) 3746 goto cache_acl; 3747 3748 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3749 if (location.type == BTRFS_INODE_REF_KEY) { 3750 struct btrfs_inode_ref *ref; 3751 3752 ref = (struct btrfs_inode_ref *)ptr; 3753 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3754 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3755 struct btrfs_inode_extref *extref; 3756 3757 extref = (struct btrfs_inode_extref *)ptr; 3758 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3759 extref); 3760 } 3761 cache_acl: 3762 /* 3763 * try to precache a NULL acl entry for files that don't have 3764 * any xattrs or acls 3765 */ 3766 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3767 btrfs_ino(inode), &first_xattr_slot); 3768 if (first_xattr_slot != -1) { 3769 path->slots[0] = first_xattr_slot; 3770 ret = btrfs_load_inode_props(inode, path); 3771 if (ret) 3772 btrfs_err(root->fs_info, 3773 "error loading props for ino %llu (root %llu): %d", 3774 btrfs_ino(inode), 3775 root->root_key.objectid, ret); 3776 } 3777 btrfs_free_path(path); 3778 3779 if (!maybe_acls) 3780 cache_no_acl(inode); 3781 3782 switch (inode->i_mode & S_IFMT) { 3783 case S_IFREG: 3784 inode->i_mapping->a_ops = &btrfs_aops; 3785 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3786 inode->i_fop = &btrfs_file_operations; 3787 inode->i_op = &btrfs_file_inode_operations; 3788 break; 3789 case S_IFDIR: 3790 inode->i_fop = &btrfs_dir_file_operations; 3791 if (root == root->fs_info->tree_root) 3792 inode->i_op = &btrfs_dir_ro_inode_operations; 3793 else 3794 inode->i_op = &btrfs_dir_inode_operations; 3795 break; 3796 case S_IFLNK: 3797 inode->i_op = &btrfs_symlink_inode_operations; 3798 inode_nohighmem(inode); 3799 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3800 break; 3801 default: 3802 inode->i_op = &btrfs_special_inode_operations; 3803 init_special_inode(inode, inode->i_mode, rdev); 3804 break; 3805 } 3806 3807 btrfs_update_iflags(inode); 3808 return; 3809 3810 make_bad: 3811 btrfs_free_path(path); 3812 make_bad_inode(inode); 3813 } 3814 3815 /* 3816 * given a leaf and an inode, copy the inode fields into the leaf 3817 */ 3818 static void fill_inode_item(struct btrfs_trans_handle *trans, 3819 struct extent_buffer *leaf, 3820 struct btrfs_inode_item *item, 3821 struct inode *inode) 3822 { 3823 struct btrfs_map_token token; 3824 3825 btrfs_init_map_token(&token); 3826 3827 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3828 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3829 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3830 &token); 3831 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3832 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3833 3834 btrfs_set_token_timespec_sec(leaf, &item->atime, 3835 inode->i_atime.tv_sec, &token); 3836 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3837 inode->i_atime.tv_nsec, &token); 3838 3839 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3840 inode->i_mtime.tv_sec, &token); 3841 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3842 inode->i_mtime.tv_nsec, &token); 3843 3844 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3845 inode->i_ctime.tv_sec, &token); 3846 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3847 inode->i_ctime.tv_nsec, &token); 3848 3849 btrfs_set_token_timespec_sec(leaf, &item->otime, 3850 BTRFS_I(inode)->i_otime.tv_sec, &token); 3851 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3852 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3853 3854 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3855 &token); 3856 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3857 &token); 3858 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token); 3859 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3860 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3861 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3862 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3863 } 3864 3865 /* 3866 * copy everything in the in-memory inode into the btree. 3867 */ 3868 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3869 struct btrfs_root *root, struct inode *inode) 3870 { 3871 struct btrfs_inode_item *inode_item; 3872 struct btrfs_path *path; 3873 struct extent_buffer *leaf; 3874 int ret; 3875 3876 path = btrfs_alloc_path(); 3877 if (!path) 3878 return -ENOMEM; 3879 3880 path->leave_spinning = 1; 3881 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3882 1); 3883 if (ret) { 3884 if (ret > 0) 3885 ret = -ENOENT; 3886 goto failed; 3887 } 3888 3889 leaf = path->nodes[0]; 3890 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3891 struct btrfs_inode_item); 3892 3893 fill_inode_item(trans, leaf, inode_item, inode); 3894 btrfs_mark_buffer_dirty(leaf); 3895 btrfs_set_inode_last_trans(trans, inode); 3896 ret = 0; 3897 failed: 3898 btrfs_free_path(path); 3899 return ret; 3900 } 3901 3902 /* 3903 * copy everything in the in-memory inode into the btree. 3904 */ 3905 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3906 struct btrfs_root *root, struct inode *inode) 3907 { 3908 int ret; 3909 3910 /* 3911 * If the inode is a free space inode, we can deadlock during commit 3912 * if we put it into the delayed code. 3913 * 3914 * The data relocation inode should also be directly updated 3915 * without delay 3916 */ 3917 if (!btrfs_is_free_space_inode(inode) 3918 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3919 && !root->fs_info->log_root_recovering) { 3920 btrfs_update_root_times(trans, root); 3921 3922 ret = btrfs_delayed_update_inode(trans, root, inode); 3923 if (!ret) 3924 btrfs_set_inode_last_trans(trans, inode); 3925 return ret; 3926 } 3927 3928 return btrfs_update_inode_item(trans, root, inode); 3929 } 3930 3931 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3932 struct btrfs_root *root, 3933 struct inode *inode) 3934 { 3935 int ret; 3936 3937 ret = btrfs_update_inode(trans, root, inode); 3938 if (ret == -ENOSPC) 3939 return btrfs_update_inode_item(trans, root, inode); 3940 return ret; 3941 } 3942 3943 /* 3944 * unlink helper that gets used here in inode.c and in the tree logging 3945 * recovery code. It remove a link in a directory with a given name, and 3946 * also drops the back refs in the inode to the directory 3947 */ 3948 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3949 struct btrfs_root *root, 3950 struct inode *dir, struct inode *inode, 3951 const char *name, int name_len) 3952 { 3953 struct btrfs_path *path; 3954 int ret = 0; 3955 struct extent_buffer *leaf; 3956 struct btrfs_dir_item *di; 3957 struct btrfs_key key; 3958 u64 index; 3959 u64 ino = btrfs_ino(inode); 3960 u64 dir_ino = btrfs_ino(dir); 3961 3962 path = btrfs_alloc_path(); 3963 if (!path) { 3964 ret = -ENOMEM; 3965 goto out; 3966 } 3967 3968 path->leave_spinning = 1; 3969 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3970 name, name_len, -1); 3971 if (IS_ERR(di)) { 3972 ret = PTR_ERR(di); 3973 goto err; 3974 } 3975 if (!di) { 3976 ret = -ENOENT; 3977 goto err; 3978 } 3979 leaf = path->nodes[0]; 3980 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3981 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3982 if (ret) 3983 goto err; 3984 btrfs_release_path(path); 3985 3986 /* 3987 * If we don't have dir index, we have to get it by looking up 3988 * the inode ref, since we get the inode ref, remove it directly, 3989 * it is unnecessary to do delayed deletion. 3990 * 3991 * But if we have dir index, needn't search inode ref to get it. 3992 * Since the inode ref is close to the inode item, it is better 3993 * that we delay to delete it, and just do this deletion when 3994 * we update the inode item. 3995 */ 3996 if (BTRFS_I(inode)->dir_index) { 3997 ret = btrfs_delayed_delete_inode_ref(inode); 3998 if (!ret) { 3999 index = BTRFS_I(inode)->dir_index; 4000 goto skip_backref; 4001 } 4002 } 4003 4004 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4005 dir_ino, &index); 4006 if (ret) { 4007 btrfs_info(root->fs_info, 4008 "failed to delete reference to %.*s, inode %llu parent %llu", 4009 name_len, name, ino, dir_ino); 4010 btrfs_abort_transaction(trans, root, ret); 4011 goto err; 4012 } 4013 skip_backref: 4014 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4015 if (ret) { 4016 btrfs_abort_transaction(trans, root, ret); 4017 goto err; 4018 } 4019 4020 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 4021 inode, dir_ino); 4022 if (ret != 0 && ret != -ENOENT) { 4023 btrfs_abort_transaction(trans, root, ret); 4024 goto err; 4025 } 4026 4027 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 4028 dir, index); 4029 if (ret == -ENOENT) 4030 ret = 0; 4031 else if (ret) 4032 btrfs_abort_transaction(trans, root, ret); 4033 err: 4034 btrfs_free_path(path); 4035 if (ret) 4036 goto out; 4037 4038 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4039 inode_inc_iversion(inode); 4040 inode_inc_iversion(dir); 4041 inode->i_ctime = dir->i_mtime = 4042 dir->i_ctime = current_fs_time(inode->i_sb); 4043 ret = btrfs_update_inode(trans, root, dir); 4044 out: 4045 return ret; 4046 } 4047 4048 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4049 struct btrfs_root *root, 4050 struct inode *dir, struct inode *inode, 4051 const char *name, int name_len) 4052 { 4053 int ret; 4054 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4055 if (!ret) { 4056 drop_nlink(inode); 4057 ret = btrfs_update_inode(trans, root, inode); 4058 } 4059 return ret; 4060 } 4061 4062 /* 4063 * helper to start transaction for unlink and rmdir. 4064 * 4065 * unlink and rmdir are special in btrfs, they do not always free space, so 4066 * if we cannot make our reservations the normal way try and see if there is 4067 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4068 * allow the unlink to occur. 4069 */ 4070 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4071 { 4072 struct btrfs_root *root = BTRFS_I(dir)->root; 4073 4074 /* 4075 * 1 for the possible orphan item 4076 * 1 for the dir item 4077 * 1 for the dir index 4078 * 1 for the inode ref 4079 * 1 for the inode 4080 */ 4081 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4082 } 4083 4084 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4085 { 4086 struct btrfs_root *root = BTRFS_I(dir)->root; 4087 struct btrfs_trans_handle *trans; 4088 struct inode *inode = d_inode(dentry); 4089 int ret; 4090 4091 trans = __unlink_start_trans(dir); 4092 if (IS_ERR(trans)) 4093 return PTR_ERR(trans); 4094 4095 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0); 4096 4097 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4098 dentry->d_name.name, dentry->d_name.len); 4099 if (ret) 4100 goto out; 4101 4102 if (inode->i_nlink == 0) { 4103 ret = btrfs_orphan_add(trans, inode); 4104 if (ret) 4105 goto out; 4106 } 4107 4108 out: 4109 btrfs_end_transaction(trans, root); 4110 btrfs_btree_balance_dirty(root); 4111 return ret; 4112 } 4113 4114 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4115 struct btrfs_root *root, 4116 struct inode *dir, u64 objectid, 4117 const char *name, int name_len) 4118 { 4119 struct btrfs_path *path; 4120 struct extent_buffer *leaf; 4121 struct btrfs_dir_item *di; 4122 struct btrfs_key key; 4123 u64 index; 4124 int ret; 4125 u64 dir_ino = btrfs_ino(dir); 4126 4127 path = btrfs_alloc_path(); 4128 if (!path) 4129 return -ENOMEM; 4130 4131 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4132 name, name_len, -1); 4133 if (IS_ERR_OR_NULL(di)) { 4134 if (!di) 4135 ret = -ENOENT; 4136 else 4137 ret = PTR_ERR(di); 4138 goto out; 4139 } 4140 4141 leaf = path->nodes[0]; 4142 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4143 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4144 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4145 if (ret) { 4146 btrfs_abort_transaction(trans, root, ret); 4147 goto out; 4148 } 4149 btrfs_release_path(path); 4150 4151 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4152 objectid, root->root_key.objectid, 4153 dir_ino, &index, name, name_len); 4154 if (ret < 0) { 4155 if (ret != -ENOENT) { 4156 btrfs_abort_transaction(trans, root, ret); 4157 goto out; 4158 } 4159 di = btrfs_search_dir_index_item(root, path, dir_ino, 4160 name, name_len); 4161 if (IS_ERR_OR_NULL(di)) { 4162 if (!di) 4163 ret = -ENOENT; 4164 else 4165 ret = PTR_ERR(di); 4166 btrfs_abort_transaction(trans, root, ret); 4167 goto out; 4168 } 4169 4170 leaf = path->nodes[0]; 4171 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4172 btrfs_release_path(path); 4173 index = key.offset; 4174 } 4175 btrfs_release_path(path); 4176 4177 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 4178 if (ret) { 4179 btrfs_abort_transaction(trans, root, ret); 4180 goto out; 4181 } 4182 4183 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 4184 inode_inc_iversion(dir); 4185 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb); 4186 ret = btrfs_update_inode_fallback(trans, root, dir); 4187 if (ret) 4188 btrfs_abort_transaction(trans, root, ret); 4189 out: 4190 btrfs_free_path(path); 4191 return ret; 4192 } 4193 4194 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4195 { 4196 struct inode *inode = d_inode(dentry); 4197 int err = 0; 4198 struct btrfs_root *root = BTRFS_I(dir)->root; 4199 struct btrfs_trans_handle *trans; 4200 4201 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4202 return -ENOTEMPTY; 4203 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 4204 return -EPERM; 4205 4206 trans = __unlink_start_trans(dir); 4207 if (IS_ERR(trans)) 4208 return PTR_ERR(trans); 4209 4210 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4211 err = btrfs_unlink_subvol(trans, root, dir, 4212 BTRFS_I(inode)->location.objectid, 4213 dentry->d_name.name, 4214 dentry->d_name.len); 4215 goto out; 4216 } 4217 4218 err = btrfs_orphan_add(trans, inode); 4219 if (err) 4220 goto out; 4221 4222 /* now the directory is empty */ 4223 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry), 4224 dentry->d_name.name, dentry->d_name.len); 4225 if (!err) 4226 btrfs_i_size_write(inode, 0); 4227 out: 4228 btrfs_end_transaction(trans, root); 4229 btrfs_btree_balance_dirty(root); 4230 4231 return err; 4232 } 4233 4234 static int truncate_space_check(struct btrfs_trans_handle *trans, 4235 struct btrfs_root *root, 4236 u64 bytes_deleted) 4237 { 4238 int ret; 4239 4240 /* 4241 * This is only used to apply pressure to the enospc system, we don't 4242 * intend to use this reservation at all. 4243 */ 4244 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted); 4245 bytes_deleted *= root->nodesize; 4246 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv, 4247 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4248 if (!ret) { 4249 trace_btrfs_space_reservation(root->fs_info, "transaction", 4250 trans->transid, 4251 bytes_deleted, 1); 4252 trans->bytes_reserved += bytes_deleted; 4253 } 4254 return ret; 4255 4256 } 4257 4258 static int truncate_inline_extent(struct inode *inode, 4259 struct btrfs_path *path, 4260 struct btrfs_key *found_key, 4261 const u64 item_end, 4262 const u64 new_size) 4263 { 4264 struct extent_buffer *leaf = path->nodes[0]; 4265 int slot = path->slots[0]; 4266 struct btrfs_file_extent_item *fi; 4267 u32 size = (u32)(new_size - found_key->offset); 4268 struct btrfs_root *root = BTRFS_I(inode)->root; 4269 4270 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 4271 4272 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) { 4273 loff_t offset = new_size; 4274 loff_t page_end = ALIGN(offset, PAGE_SIZE); 4275 4276 /* 4277 * Zero out the remaining of the last page of our inline extent, 4278 * instead of directly truncating our inline extent here - that 4279 * would be much more complex (decompressing all the data, then 4280 * compressing the truncated data, which might be bigger than 4281 * the size of the inline extent, resize the extent, etc). 4282 * We release the path because to get the page we might need to 4283 * read the extent item from disk (data not in the page cache). 4284 */ 4285 btrfs_release_path(path); 4286 return btrfs_truncate_block(inode, offset, page_end - offset, 4287 0); 4288 } 4289 4290 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4291 size = btrfs_file_extent_calc_inline_size(size); 4292 btrfs_truncate_item(root, path, size, 1); 4293 4294 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4295 inode_sub_bytes(inode, item_end + 1 - new_size); 4296 4297 return 0; 4298 } 4299 4300 /* 4301 * this can truncate away extent items, csum items and directory items. 4302 * It starts at a high offset and removes keys until it can't find 4303 * any higher than new_size 4304 * 4305 * csum items that cross the new i_size are truncated to the new size 4306 * as well. 4307 * 4308 * min_type is the minimum key type to truncate down to. If set to 0, this 4309 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4310 */ 4311 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4312 struct btrfs_root *root, 4313 struct inode *inode, 4314 u64 new_size, u32 min_type) 4315 { 4316 struct btrfs_path *path; 4317 struct extent_buffer *leaf; 4318 struct btrfs_file_extent_item *fi; 4319 struct btrfs_key key; 4320 struct btrfs_key found_key; 4321 u64 extent_start = 0; 4322 u64 extent_num_bytes = 0; 4323 u64 extent_offset = 0; 4324 u64 item_end = 0; 4325 u64 last_size = new_size; 4326 u32 found_type = (u8)-1; 4327 int found_extent; 4328 int del_item; 4329 int pending_del_nr = 0; 4330 int pending_del_slot = 0; 4331 int extent_type = -1; 4332 int ret; 4333 int err = 0; 4334 u64 ino = btrfs_ino(inode); 4335 u64 bytes_deleted = 0; 4336 bool be_nice = 0; 4337 bool should_throttle = 0; 4338 bool should_end = 0; 4339 4340 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4341 4342 /* 4343 * for non-free space inodes and ref cows, we want to back off from 4344 * time to time 4345 */ 4346 if (!btrfs_is_free_space_inode(inode) && 4347 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4348 be_nice = 1; 4349 4350 path = btrfs_alloc_path(); 4351 if (!path) 4352 return -ENOMEM; 4353 path->reada = READA_BACK; 4354 4355 /* 4356 * We want to drop from the next block forward in case this new size is 4357 * not block aligned since we will be keeping the last block of the 4358 * extent just the way it is. 4359 */ 4360 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4361 root == root->fs_info->tree_root) 4362 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4363 root->sectorsize), (u64)-1, 0); 4364 4365 /* 4366 * This function is also used to drop the items in the log tree before 4367 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4368 * it is used to drop the loged items. So we shouldn't kill the delayed 4369 * items. 4370 */ 4371 if (min_type == 0 && root == BTRFS_I(inode)->root) 4372 btrfs_kill_delayed_inode_items(inode); 4373 4374 key.objectid = ino; 4375 key.offset = (u64)-1; 4376 key.type = (u8)-1; 4377 4378 search_again: 4379 /* 4380 * with a 16K leaf size and 128MB extents, you can actually queue 4381 * up a huge file in a single leaf. Most of the time that 4382 * bytes_deleted is > 0, it will be huge by the time we get here 4383 */ 4384 if (be_nice && bytes_deleted > SZ_32M) { 4385 if (btrfs_should_end_transaction(trans, root)) { 4386 err = -EAGAIN; 4387 goto error; 4388 } 4389 } 4390 4391 4392 path->leave_spinning = 1; 4393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4394 if (ret < 0) { 4395 err = ret; 4396 goto out; 4397 } 4398 4399 if (ret > 0) { 4400 /* there are no items in the tree for us to truncate, we're 4401 * done 4402 */ 4403 if (path->slots[0] == 0) 4404 goto out; 4405 path->slots[0]--; 4406 } 4407 4408 while (1) { 4409 fi = NULL; 4410 leaf = path->nodes[0]; 4411 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4412 found_type = found_key.type; 4413 4414 if (found_key.objectid != ino) 4415 break; 4416 4417 if (found_type < min_type) 4418 break; 4419 4420 item_end = found_key.offset; 4421 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4422 fi = btrfs_item_ptr(leaf, path->slots[0], 4423 struct btrfs_file_extent_item); 4424 extent_type = btrfs_file_extent_type(leaf, fi); 4425 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4426 item_end += 4427 btrfs_file_extent_num_bytes(leaf, fi); 4428 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4429 item_end += btrfs_file_extent_inline_len(leaf, 4430 path->slots[0], fi); 4431 } 4432 item_end--; 4433 } 4434 if (found_type > min_type) { 4435 del_item = 1; 4436 } else { 4437 if (item_end < new_size) 4438 break; 4439 if (found_key.offset >= new_size) 4440 del_item = 1; 4441 else 4442 del_item = 0; 4443 } 4444 found_extent = 0; 4445 /* FIXME, shrink the extent if the ref count is only 1 */ 4446 if (found_type != BTRFS_EXTENT_DATA_KEY) 4447 goto delete; 4448 4449 if (del_item) 4450 last_size = found_key.offset; 4451 else 4452 last_size = new_size; 4453 4454 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4455 u64 num_dec; 4456 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4457 if (!del_item) { 4458 u64 orig_num_bytes = 4459 btrfs_file_extent_num_bytes(leaf, fi); 4460 extent_num_bytes = ALIGN(new_size - 4461 found_key.offset, 4462 root->sectorsize); 4463 btrfs_set_file_extent_num_bytes(leaf, fi, 4464 extent_num_bytes); 4465 num_dec = (orig_num_bytes - 4466 extent_num_bytes); 4467 if (test_bit(BTRFS_ROOT_REF_COWS, 4468 &root->state) && 4469 extent_start != 0) 4470 inode_sub_bytes(inode, num_dec); 4471 btrfs_mark_buffer_dirty(leaf); 4472 } else { 4473 extent_num_bytes = 4474 btrfs_file_extent_disk_num_bytes(leaf, 4475 fi); 4476 extent_offset = found_key.offset - 4477 btrfs_file_extent_offset(leaf, fi); 4478 4479 /* FIXME blocksize != 4096 */ 4480 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4481 if (extent_start != 0) { 4482 found_extent = 1; 4483 if (test_bit(BTRFS_ROOT_REF_COWS, 4484 &root->state)) 4485 inode_sub_bytes(inode, num_dec); 4486 } 4487 } 4488 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4489 /* 4490 * we can't truncate inline items that have had 4491 * special encodings 4492 */ 4493 if (!del_item && 4494 btrfs_file_extent_encryption(leaf, fi) == 0 && 4495 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 4496 4497 /* 4498 * Need to release path in order to truncate a 4499 * compressed extent. So delete any accumulated 4500 * extent items so far. 4501 */ 4502 if (btrfs_file_extent_compression(leaf, fi) != 4503 BTRFS_COMPRESS_NONE && pending_del_nr) { 4504 err = btrfs_del_items(trans, root, path, 4505 pending_del_slot, 4506 pending_del_nr); 4507 if (err) { 4508 btrfs_abort_transaction(trans, 4509 root, 4510 err); 4511 goto error; 4512 } 4513 pending_del_nr = 0; 4514 } 4515 4516 err = truncate_inline_extent(inode, path, 4517 &found_key, 4518 item_end, 4519 new_size); 4520 if (err) { 4521 btrfs_abort_transaction(trans, 4522 root, err); 4523 goto error; 4524 } 4525 } else if (test_bit(BTRFS_ROOT_REF_COWS, 4526 &root->state)) { 4527 inode_sub_bytes(inode, item_end + 1 - new_size); 4528 } 4529 } 4530 delete: 4531 if (del_item) { 4532 if (!pending_del_nr) { 4533 /* no pending yet, add ourselves */ 4534 pending_del_slot = path->slots[0]; 4535 pending_del_nr = 1; 4536 } else if (pending_del_nr && 4537 path->slots[0] + 1 == pending_del_slot) { 4538 /* hop on the pending chunk */ 4539 pending_del_nr++; 4540 pending_del_slot = path->slots[0]; 4541 } else { 4542 BUG(); 4543 } 4544 } else { 4545 break; 4546 } 4547 should_throttle = 0; 4548 4549 if (found_extent && 4550 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4551 root == root->fs_info->tree_root)) { 4552 btrfs_set_path_blocking(path); 4553 bytes_deleted += extent_num_bytes; 4554 ret = btrfs_free_extent(trans, root, extent_start, 4555 extent_num_bytes, 0, 4556 btrfs_header_owner(leaf), 4557 ino, extent_offset); 4558 BUG_ON(ret); 4559 if (btrfs_should_throttle_delayed_refs(trans, root)) 4560 btrfs_async_run_delayed_refs(root, 4561 trans->delayed_ref_updates * 2, 0); 4562 if (be_nice) { 4563 if (truncate_space_check(trans, root, 4564 extent_num_bytes)) { 4565 should_end = 1; 4566 } 4567 if (btrfs_should_throttle_delayed_refs(trans, 4568 root)) { 4569 should_throttle = 1; 4570 } 4571 } 4572 } 4573 4574 if (found_type == BTRFS_INODE_ITEM_KEY) 4575 break; 4576 4577 if (path->slots[0] == 0 || 4578 path->slots[0] != pending_del_slot || 4579 should_throttle || should_end) { 4580 if (pending_del_nr) { 4581 ret = btrfs_del_items(trans, root, path, 4582 pending_del_slot, 4583 pending_del_nr); 4584 if (ret) { 4585 btrfs_abort_transaction(trans, 4586 root, ret); 4587 goto error; 4588 } 4589 pending_del_nr = 0; 4590 } 4591 btrfs_release_path(path); 4592 if (should_throttle) { 4593 unsigned long updates = trans->delayed_ref_updates; 4594 if (updates) { 4595 trans->delayed_ref_updates = 0; 4596 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4597 if (ret && !err) 4598 err = ret; 4599 } 4600 } 4601 /* 4602 * if we failed to refill our space rsv, bail out 4603 * and let the transaction restart 4604 */ 4605 if (should_end) { 4606 err = -EAGAIN; 4607 goto error; 4608 } 4609 goto search_again; 4610 } else { 4611 path->slots[0]--; 4612 } 4613 } 4614 out: 4615 if (pending_del_nr) { 4616 ret = btrfs_del_items(trans, root, path, pending_del_slot, 4617 pending_del_nr); 4618 if (ret) 4619 btrfs_abort_transaction(trans, root, ret); 4620 } 4621 error: 4622 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) 4623 btrfs_ordered_update_i_size(inode, last_size, NULL); 4624 4625 btrfs_free_path(path); 4626 4627 if (be_nice && bytes_deleted > SZ_32M) { 4628 unsigned long updates = trans->delayed_ref_updates; 4629 if (updates) { 4630 trans->delayed_ref_updates = 0; 4631 ret = btrfs_run_delayed_refs(trans, root, updates * 2); 4632 if (ret && !err) 4633 err = ret; 4634 } 4635 } 4636 return err; 4637 } 4638 4639 /* 4640 * btrfs_truncate_block - read, zero a chunk and write a block 4641 * @inode - inode that we're zeroing 4642 * @from - the offset to start zeroing 4643 * @len - the length to zero, 0 to zero the entire range respective to the 4644 * offset 4645 * @front - zero up to the offset instead of from the offset on 4646 * 4647 * This will find the block for the "from" offset and cow the block and zero the 4648 * part we want to zero. This is used with truncate and hole punching. 4649 */ 4650 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4651 int front) 4652 { 4653 struct address_space *mapping = inode->i_mapping; 4654 struct btrfs_root *root = BTRFS_I(inode)->root; 4655 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4656 struct btrfs_ordered_extent *ordered; 4657 struct extent_state *cached_state = NULL; 4658 char *kaddr; 4659 u32 blocksize = root->sectorsize; 4660 pgoff_t index = from >> PAGE_SHIFT; 4661 unsigned offset = from & (blocksize - 1); 4662 struct page *page; 4663 gfp_t mask = btrfs_alloc_write_mask(mapping); 4664 int ret = 0; 4665 u64 block_start; 4666 u64 block_end; 4667 4668 if ((offset & (blocksize - 1)) == 0 && 4669 (!len || ((len & (blocksize - 1)) == 0))) 4670 goto out; 4671 4672 ret = btrfs_delalloc_reserve_space(inode, 4673 round_down(from, blocksize), blocksize); 4674 if (ret) 4675 goto out; 4676 4677 again: 4678 page = find_or_create_page(mapping, index, mask); 4679 if (!page) { 4680 btrfs_delalloc_release_space(inode, 4681 round_down(from, blocksize), 4682 blocksize); 4683 ret = -ENOMEM; 4684 goto out; 4685 } 4686 4687 block_start = round_down(from, blocksize); 4688 block_end = block_start + blocksize - 1; 4689 4690 if (!PageUptodate(page)) { 4691 ret = btrfs_readpage(NULL, page); 4692 lock_page(page); 4693 if (page->mapping != mapping) { 4694 unlock_page(page); 4695 put_page(page); 4696 goto again; 4697 } 4698 if (!PageUptodate(page)) { 4699 ret = -EIO; 4700 goto out_unlock; 4701 } 4702 } 4703 wait_on_page_writeback(page); 4704 4705 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4706 set_page_extent_mapped(page); 4707 4708 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4709 if (ordered) { 4710 unlock_extent_cached(io_tree, block_start, block_end, 4711 &cached_state, GFP_NOFS); 4712 unlock_page(page); 4713 put_page(page); 4714 btrfs_start_ordered_extent(inode, ordered, 1); 4715 btrfs_put_ordered_extent(ordered); 4716 goto again; 4717 } 4718 4719 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4720 EXTENT_DIRTY | EXTENT_DELALLOC | 4721 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4722 0, 0, &cached_state, GFP_NOFS); 4723 4724 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 4725 &cached_state); 4726 if (ret) { 4727 unlock_extent_cached(io_tree, block_start, block_end, 4728 &cached_state, GFP_NOFS); 4729 goto out_unlock; 4730 } 4731 4732 if (offset != blocksize) { 4733 if (!len) 4734 len = blocksize - offset; 4735 kaddr = kmap(page); 4736 if (front) 4737 memset(kaddr + (block_start - page_offset(page)), 4738 0, offset); 4739 else 4740 memset(kaddr + (block_start - page_offset(page)) + offset, 4741 0, len); 4742 flush_dcache_page(page); 4743 kunmap(page); 4744 } 4745 ClearPageChecked(page); 4746 set_page_dirty(page); 4747 unlock_extent_cached(io_tree, block_start, block_end, &cached_state, 4748 GFP_NOFS); 4749 4750 out_unlock: 4751 if (ret) 4752 btrfs_delalloc_release_space(inode, block_start, 4753 blocksize); 4754 unlock_page(page); 4755 put_page(page); 4756 out: 4757 return ret; 4758 } 4759 4760 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4761 u64 offset, u64 len) 4762 { 4763 struct btrfs_trans_handle *trans; 4764 int ret; 4765 4766 /* 4767 * Still need to make sure the inode looks like it's been updated so 4768 * that any holes get logged if we fsync. 4769 */ 4770 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) { 4771 BTRFS_I(inode)->last_trans = root->fs_info->generation; 4772 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4773 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4774 return 0; 4775 } 4776 4777 /* 4778 * 1 - for the one we're dropping 4779 * 1 - for the one we're adding 4780 * 1 - for updating the inode. 4781 */ 4782 trans = btrfs_start_transaction(root, 3); 4783 if (IS_ERR(trans)) 4784 return PTR_ERR(trans); 4785 4786 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4787 if (ret) { 4788 btrfs_abort_transaction(trans, root, ret); 4789 btrfs_end_transaction(trans, root); 4790 return ret; 4791 } 4792 4793 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset, 4794 0, 0, len, 0, len, 0, 0, 0); 4795 if (ret) 4796 btrfs_abort_transaction(trans, root, ret); 4797 else 4798 btrfs_update_inode(trans, root, inode); 4799 btrfs_end_transaction(trans, root); 4800 return ret; 4801 } 4802 4803 /* 4804 * This function puts in dummy file extents for the area we're creating a hole 4805 * for. So if we are truncating this file to a larger size we need to insert 4806 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4807 * the range between oldsize and size 4808 */ 4809 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4810 { 4811 struct btrfs_root *root = BTRFS_I(inode)->root; 4812 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4813 struct extent_map *em = NULL; 4814 struct extent_state *cached_state = NULL; 4815 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4816 u64 hole_start = ALIGN(oldsize, root->sectorsize); 4817 u64 block_end = ALIGN(size, root->sectorsize); 4818 u64 last_byte; 4819 u64 cur_offset; 4820 u64 hole_size; 4821 int err = 0; 4822 4823 /* 4824 * If our size started in the middle of a block we need to zero out the 4825 * rest of the block before we expand the i_size, otherwise we could 4826 * expose stale data. 4827 */ 4828 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4829 if (err) 4830 return err; 4831 4832 if (size <= hole_start) 4833 return 0; 4834 4835 while (1) { 4836 struct btrfs_ordered_extent *ordered; 4837 4838 lock_extent_bits(io_tree, hole_start, block_end - 1, 4839 &cached_state); 4840 ordered = btrfs_lookup_ordered_range(inode, hole_start, 4841 block_end - hole_start); 4842 if (!ordered) 4843 break; 4844 unlock_extent_cached(io_tree, hole_start, block_end - 1, 4845 &cached_state, GFP_NOFS); 4846 btrfs_start_ordered_extent(inode, ordered, 1); 4847 btrfs_put_ordered_extent(ordered); 4848 } 4849 4850 cur_offset = hole_start; 4851 while (1) { 4852 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4853 block_end - cur_offset, 0); 4854 if (IS_ERR(em)) { 4855 err = PTR_ERR(em); 4856 em = NULL; 4857 break; 4858 } 4859 last_byte = min(extent_map_end(em), block_end); 4860 last_byte = ALIGN(last_byte , root->sectorsize); 4861 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4862 struct extent_map *hole_em; 4863 hole_size = last_byte - cur_offset; 4864 4865 err = maybe_insert_hole(root, inode, cur_offset, 4866 hole_size); 4867 if (err) 4868 break; 4869 btrfs_drop_extent_cache(inode, cur_offset, 4870 cur_offset + hole_size - 1, 0); 4871 hole_em = alloc_extent_map(); 4872 if (!hole_em) { 4873 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4874 &BTRFS_I(inode)->runtime_flags); 4875 goto next; 4876 } 4877 hole_em->start = cur_offset; 4878 hole_em->len = hole_size; 4879 hole_em->orig_start = cur_offset; 4880 4881 hole_em->block_start = EXTENT_MAP_HOLE; 4882 hole_em->block_len = 0; 4883 hole_em->orig_block_len = 0; 4884 hole_em->ram_bytes = hole_size; 4885 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 4886 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4887 hole_em->generation = root->fs_info->generation; 4888 4889 while (1) { 4890 write_lock(&em_tree->lock); 4891 err = add_extent_mapping(em_tree, hole_em, 1); 4892 write_unlock(&em_tree->lock); 4893 if (err != -EEXIST) 4894 break; 4895 btrfs_drop_extent_cache(inode, cur_offset, 4896 cur_offset + 4897 hole_size - 1, 0); 4898 } 4899 free_extent_map(hole_em); 4900 } 4901 next: 4902 free_extent_map(em); 4903 em = NULL; 4904 cur_offset = last_byte; 4905 if (cur_offset >= block_end) 4906 break; 4907 } 4908 free_extent_map(em); 4909 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 4910 GFP_NOFS); 4911 return err; 4912 } 4913 4914 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4915 { 4916 struct btrfs_root *root = BTRFS_I(inode)->root; 4917 struct btrfs_trans_handle *trans; 4918 loff_t oldsize = i_size_read(inode); 4919 loff_t newsize = attr->ia_size; 4920 int mask = attr->ia_valid; 4921 int ret; 4922 4923 /* 4924 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4925 * special case where we need to update the times despite not having 4926 * these flags set. For all other operations the VFS set these flags 4927 * explicitly if it wants a timestamp update. 4928 */ 4929 if (newsize != oldsize) { 4930 inode_inc_iversion(inode); 4931 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4932 inode->i_ctime = inode->i_mtime = 4933 current_fs_time(inode->i_sb); 4934 } 4935 4936 if (newsize > oldsize) { 4937 /* 4938 * Don't do an expanding truncate while snapshoting is ongoing. 4939 * This is to ensure the snapshot captures a fully consistent 4940 * state of this file - if the snapshot captures this expanding 4941 * truncation, it must capture all writes that happened before 4942 * this truncation. 4943 */ 4944 btrfs_wait_for_snapshot_creation(root); 4945 ret = btrfs_cont_expand(inode, oldsize, newsize); 4946 if (ret) { 4947 btrfs_end_write_no_snapshoting(root); 4948 return ret; 4949 } 4950 4951 trans = btrfs_start_transaction(root, 1); 4952 if (IS_ERR(trans)) { 4953 btrfs_end_write_no_snapshoting(root); 4954 return PTR_ERR(trans); 4955 } 4956 4957 i_size_write(inode, newsize); 4958 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 4959 pagecache_isize_extended(inode, oldsize, newsize); 4960 ret = btrfs_update_inode(trans, root, inode); 4961 btrfs_end_write_no_snapshoting(root); 4962 btrfs_end_transaction(trans, root); 4963 } else { 4964 4965 /* 4966 * We're truncating a file that used to have good data down to 4967 * zero. Make sure it gets into the ordered flush list so that 4968 * any new writes get down to disk quickly. 4969 */ 4970 if (newsize == 0) 4971 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 4972 &BTRFS_I(inode)->runtime_flags); 4973 4974 /* 4975 * 1 for the orphan item we're going to add 4976 * 1 for the orphan item deletion. 4977 */ 4978 trans = btrfs_start_transaction(root, 2); 4979 if (IS_ERR(trans)) 4980 return PTR_ERR(trans); 4981 4982 /* 4983 * We need to do this in case we fail at _any_ point during the 4984 * actual truncate. Once we do the truncate_setsize we could 4985 * invalidate pages which forces any outstanding ordered io to 4986 * be instantly completed which will give us extents that need 4987 * to be truncated. If we fail to get an orphan inode down we 4988 * could have left over extents that were never meant to live, 4989 * so we need to guarantee from this point on that everything 4990 * will be consistent. 4991 */ 4992 ret = btrfs_orphan_add(trans, inode); 4993 btrfs_end_transaction(trans, root); 4994 if (ret) 4995 return ret; 4996 4997 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 4998 truncate_setsize(inode, newsize); 4999 5000 /* Disable nonlocked read DIO to avoid the end less truncate */ 5001 btrfs_inode_block_unlocked_dio(inode); 5002 inode_dio_wait(inode); 5003 btrfs_inode_resume_unlocked_dio(inode); 5004 5005 ret = btrfs_truncate(inode); 5006 if (ret && inode->i_nlink) { 5007 int err; 5008 5009 /* 5010 * failed to truncate, disk_i_size is only adjusted down 5011 * as we remove extents, so it should represent the true 5012 * size of the inode, so reset the in memory size and 5013 * delete our orphan entry. 5014 */ 5015 trans = btrfs_join_transaction(root); 5016 if (IS_ERR(trans)) { 5017 btrfs_orphan_del(NULL, inode); 5018 return ret; 5019 } 5020 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5021 err = btrfs_orphan_del(trans, inode); 5022 if (err) 5023 btrfs_abort_transaction(trans, root, err); 5024 btrfs_end_transaction(trans, root); 5025 } 5026 } 5027 5028 return ret; 5029 } 5030 5031 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5032 { 5033 struct inode *inode = d_inode(dentry); 5034 struct btrfs_root *root = BTRFS_I(inode)->root; 5035 int err; 5036 5037 if (btrfs_root_readonly(root)) 5038 return -EROFS; 5039 5040 err = inode_change_ok(inode, attr); 5041 if (err) 5042 return err; 5043 5044 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5045 err = btrfs_setsize(inode, attr); 5046 if (err) 5047 return err; 5048 } 5049 5050 if (attr->ia_valid) { 5051 setattr_copy(inode, attr); 5052 inode_inc_iversion(inode); 5053 err = btrfs_dirty_inode(inode); 5054 5055 if (!err && attr->ia_valid & ATTR_MODE) 5056 err = posix_acl_chmod(inode, inode->i_mode); 5057 } 5058 5059 return err; 5060 } 5061 5062 /* 5063 * While truncating the inode pages during eviction, we get the VFS calling 5064 * btrfs_invalidatepage() against each page of the inode. This is slow because 5065 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5066 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5067 * extent_state structures over and over, wasting lots of time. 5068 * 5069 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5070 * those expensive operations on a per page basis and do only the ordered io 5071 * finishing, while we release here the extent_map and extent_state structures, 5072 * without the excessive merging and splitting. 5073 */ 5074 static void evict_inode_truncate_pages(struct inode *inode) 5075 { 5076 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5077 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5078 struct rb_node *node; 5079 5080 ASSERT(inode->i_state & I_FREEING); 5081 truncate_inode_pages_final(&inode->i_data); 5082 5083 write_lock(&map_tree->lock); 5084 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5085 struct extent_map *em; 5086 5087 node = rb_first(&map_tree->map); 5088 em = rb_entry(node, struct extent_map, rb_node); 5089 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5090 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5091 remove_extent_mapping(map_tree, em); 5092 free_extent_map(em); 5093 if (need_resched()) { 5094 write_unlock(&map_tree->lock); 5095 cond_resched(); 5096 write_lock(&map_tree->lock); 5097 } 5098 } 5099 write_unlock(&map_tree->lock); 5100 5101 /* 5102 * Keep looping until we have no more ranges in the io tree. 5103 * We can have ongoing bios started by readpages (called from readahead) 5104 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5105 * still in progress (unlocked the pages in the bio but did not yet 5106 * unlocked the ranges in the io tree). Therefore this means some 5107 * ranges can still be locked and eviction started because before 5108 * submitting those bios, which are executed by a separate task (work 5109 * queue kthread), inode references (inode->i_count) were not taken 5110 * (which would be dropped in the end io callback of each bio). 5111 * Therefore here we effectively end up waiting for those bios and 5112 * anyone else holding locked ranges without having bumped the inode's 5113 * reference count - if we don't do it, when they access the inode's 5114 * io_tree to unlock a range it may be too late, leading to an 5115 * use-after-free issue. 5116 */ 5117 spin_lock(&io_tree->lock); 5118 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5119 struct extent_state *state; 5120 struct extent_state *cached_state = NULL; 5121 u64 start; 5122 u64 end; 5123 5124 node = rb_first(&io_tree->state); 5125 state = rb_entry(node, struct extent_state, rb_node); 5126 start = state->start; 5127 end = state->end; 5128 spin_unlock(&io_tree->lock); 5129 5130 lock_extent_bits(io_tree, start, end, &cached_state); 5131 5132 /* 5133 * If still has DELALLOC flag, the extent didn't reach disk, 5134 * and its reserved space won't be freed by delayed_ref. 5135 * So we need to free its reserved space here. 5136 * (Refer to comment in btrfs_invalidatepage, case 2) 5137 * 5138 * Note, end is the bytenr of last byte, so we need + 1 here. 5139 */ 5140 if (state->state & EXTENT_DELALLOC) 5141 btrfs_qgroup_free_data(inode, start, end - start + 1); 5142 5143 clear_extent_bit(io_tree, start, end, 5144 EXTENT_LOCKED | EXTENT_DIRTY | 5145 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5146 EXTENT_DEFRAG, 1, 1, 5147 &cached_state, GFP_NOFS); 5148 5149 cond_resched(); 5150 spin_lock(&io_tree->lock); 5151 } 5152 spin_unlock(&io_tree->lock); 5153 } 5154 5155 void btrfs_evict_inode(struct inode *inode) 5156 { 5157 struct btrfs_trans_handle *trans; 5158 struct btrfs_root *root = BTRFS_I(inode)->root; 5159 struct btrfs_block_rsv *rsv, *global_rsv; 5160 int steal_from_global = 0; 5161 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 5162 int ret; 5163 5164 trace_btrfs_inode_evict(inode); 5165 5166 evict_inode_truncate_pages(inode); 5167 5168 if (inode->i_nlink && 5169 ((btrfs_root_refs(&root->root_item) != 0 && 5170 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5171 btrfs_is_free_space_inode(inode))) 5172 goto no_delete; 5173 5174 if (is_bad_inode(inode)) { 5175 btrfs_orphan_del(NULL, inode); 5176 goto no_delete; 5177 } 5178 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5179 if (!special_file(inode->i_mode)) 5180 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5181 5182 btrfs_free_io_failure_record(inode, 0, (u64)-1); 5183 5184 if (root->fs_info->log_root_recovering) { 5185 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 5186 &BTRFS_I(inode)->runtime_flags)); 5187 goto no_delete; 5188 } 5189 5190 if (inode->i_nlink > 0) { 5191 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5192 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5193 goto no_delete; 5194 } 5195 5196 ret = btrfs_commit_inode_delayed_inode(inode); 5197 if (ret) { 5198 btrfs_orphan_del(NULL, inode); 5199 goto no_delete; 5200 } 5201 5202 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 5203 if (!rsv) { 5204 btrfs_orphan_del(NULL, inode); 5205 goto no_delete; 5206 } 5207 rsv->size = min_size; 5208 rsv->failfast = 1; 5209 global_rsv = &root->fs_info->global_block_rsv; 5210 5211 btrfs_i_size_write(inode, 0); 5212 5213 /* 5214 * This is a bit simpler than btrfs_truncate since we've already 5215 * reserved our space for our orphan item in the unlink, so we just 5216 * need to reserve some slack space in case we add bytes and update 5217 * inode item when doing the truncate. 5218 */ 5219 while (1) { 5220 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5221 BTRFS_RESERVE_FLUSH_LIMIT); 5222 5223 /* 5224 * Try and steal from the global reserve since we will 5225 * likely not use this space anyway, we want to try as 5226 * hard as possible to get this to work. 5227 */ 5228 if (ret) 5229 steal_from_global++; 5230 else 5231 steal_from_global = 0; 5232 ret = 0; 5233 5234 /* 5235 * steal_from_global == 0: we reserved stuff, hooray! 5236 * steal_from_global == 1: we didn't reserve stuff, boo! 5237 * steal_from_global == 2: we've committed, still not a lot of 5238 * room but maybe we'll have room in the global reserve this 5239 * time. 5240 * steal_from_global == 3: abandon all hope! 5241 */ 5242 if (steal_from_global > 2) { 5243 btrfs_warn(root->fs_info, 5244 "Could not get space for a delete, will truncate on mount %d", 5245 ret); 5246 btrfs_orphan_del(NULL, inode); 5247 btrfs_free_block_rsv(root, rsv); 5248 goto no_delete; 5249 } 5250 5251 trans = btrfs_join_transaction(root); 5252 if (IS_ERR(trans)) { 5253 btrfs_orphan_del(NULL, inode); 5254 btrfs_free_block_rsv(root, rsv); 5255 goto no_delete; 5256 } 5257 5258 /* 5259 * We can't just steal from the global reserve, we need to make 5260 * sure there is room to do it, if not we need to commit and try 5261 * again. 5262 */ 5263 if (steal_from_global) { 5264 if (!btrfs_check_space_for_delayed_refs(trans, root)) 5265 ret = btrfs_block_rsv_migrate(global_rsv, rsv, 5266 min_size); 5267 else 5268 ret = -ENOSPC; 5269 } 5270 5271 /* 5272 * Couldn't steal from the global reserve, we have too much 5273 * pending stuff built up, commit the transaction and try it 5274 * again. 5275 */ 5276 if (ret) { 5277 ret = btrfs_commit_transaction(trans, root); 5278 if (ret) { 5279 btrfs_orphan_del(NULL, inode); 5280 btrfs_free_block_rsv(root, rsv); 5281 goto no_delete; 5282 } 5283 continue; 5284 } else { 5285 steal_from_global = 0; 5286 } 5287 5288 trans->block_rsv = rsv; 5289 5290 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5291 if (ret != -ENOSPC && ret != -EAGAIN) 5292 break; 5293 5294 trans->block_rsv = &root->fs_info->trans_block_rsv; 5295 btrfs_end_transaction(trans, root); 5296 trans = NULL; 5297 btrfs_btree_balance_dirty(root); 5298 } 5299 5300 btrfs_free_block_rsv(root, rsv); 5301 5302 /* 5303 * Errors here aren't a big deal, it just means we leave orphan items 5304 * in the tree. They will be cleaned up on the next mount. 5305 */ 5306 if (ret == 0) { 5307 trans->block_rsv = root->orphan_block_rsv; 5308 btrfs_orphan_del(trans, inode); 5309 } else { 5310 btrfs_orphan_del(NULL, inode); 5311 } 5312 5313 trans->block_rsv = &root->fs_info->trans_block_rsv; 5314 if (!(root == root->fs_info->tree_root || 5315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5316 btrfs_return_ino(root, btrfs_ino(inode)); 5317 5318 btrfs_end_transaction(trans, root); 5319 btrfs_btree_balance_dirty(root); 5320 no_delete: 5321 btrfs_remove_delayed_node(inode); 5322 clear_inode(inode); 5323 } 5324 5325 /* 5326 * this returns the key found in the dir entry in the location pointer. 5327 * If no dir entries were found, location->objectid is 0. 5328 */ 5329 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5330 struct btrfs_key *location) 5331 { 5332 const char *name = dentry->d_name.name; 5333 int namelen = dentry->d_name.len; 5334 struct btrfs_dir_item *di; 5335 struct btrfs_path *path; 5336 struct btrfs_root *root = BTRFS_I(dir)->root; 5337 int ret = 0; 5338 5339 path = btrfs_alloc_path(); 5340 if (!path) 5341 return -ENOMEM; 5342 5343 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 5344 namelen, 0); 5345 if (IS_ERR(di)) 5346 ret = PTR_ERR(di); 5347 5348 if (IS_ERR_OR_NULL(di)) 5349 goto out_err; 5350 5351 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5352 out: 5353 btrfs_free_path(path); 5354 return ret; 5355 out_err: 5356 location->objectid = 0; 5357 goto out; 5358 } 5359 5360 /* 5361 * when we hit a tree root in a directory, the btrfs part of the inode 5362 * needs to be changed to reflect the root directory of the tree root. This 5363 * is kind of like crossing a mount point. 5364 */ 5365 static int fixup_tree_root_location(struct btrfs_root *root, 5366 struct inode *dir, 5367 struct dentry *dentry, 5368 struct btrfs_key *location, 5369 struct btrfs_root **sub_root) 5370 { 5371 struct btrfs_path *path; 5372 struct btrfs_root *new_root; 5373 struct btrfs_root_ref *ref; 5374 struct extent_buffer *leaf; 5375 struct btrfs_key key; 5376 int ret; 5377 int err = 0; 5378 5379 path = btrfs_alloc_path(); 5380 if (!path) { 5381 err = -ENOMEM; 5382 goto out; 5383 } 5384 5385 err = -ENOENT; 5386 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5387 key.type = BTRFS_ROOT_REF_KEY; 5388 key.offset = location->objectid; 5389 5390 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path, 5391 0, 0); 5392 if (ret) { 5393 if (ret < 0) 5394 err = ret; 5395 goto out; 5396 } 5397 5398 leaf = path->nodes[0]; 5399 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5400 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5401 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5402 goto out; 5403 5404 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5405 (unsigned long)(ref + 1), 5406 dentry->d_name.len); 5407 if (ret) 5408 goto out; 5409 5410 btrfs_release_path(path); 5411 5412 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 5413 if (IS_ERR(new_root)) { 5414 err = PTR_ERR(new_root); 5415 goto out; 5416 } 5417 5418 *sub_root = new_root; 5419 location->objectid = btrfs_root_dirid(&new_root->root_item); 5420 location->type = BTRFS_INODE_ITEM_KEY; 5421 location->offset = 0; 5422 err = 0; 5423 out: 5424 btrfs_free_path(path); 5425 return err; 5426 } 5427 5428 static void inode_tree_add(struct inode *inode) 5429 { 5430 struct btrfs_root *root = BTRFS_I(inode)->root; 5431 struct btrfs_inode *entry; 5432 struct rb_node **p; 5433 struct rb_node *parent; 5434 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5435 u64 ino = btrfs_ino(inode); 5436 5437 if (inode_unhashed(inode)) 5438 return; 5439 parent = NULL; 5440 spin_lock(&root->inode_lock); 5441 p = &root->inode_tree.rb_node; 5442 while (*p) { 5443 parent = *p; 5444 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5445 5446 if (ino < btrfs_ino(&entry->vfs_inode)) 5447 p = &parent->rb_left; 5448 else if (ino > btrfs_ino(&entry->vfs_inode)) 5449 p = &parent->rb_right; 5450 else { 5451 WARN_ON(!(entry->vfs_inode.i_state & 5452 (I_WILL_FREE | I_FREEING))); 5453 rb_replace_node(parent, new, &root->inode_tree); 5454 RB_CLEAR_NODE(parent); 5455 spin_unlock(&root->inode_lock); 5456 return; 5457 } 5458 } 5459 rb_link_node(new, parent, p); 5460 rb_insert_color(new, &root->inode_tree); 5461 spin_unlock(&root->inode_lock); 5462 } 5463 5464 static void inode_tree_del(struct inode *inode) 5465 { 5466 struct btrfs_root *root = BTRFS_I(inode)->root; 5467 int empty = 0; 5468 5469 spin_lock(&root->inode_lock); 5470 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5471 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5472 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5473 empty = RB_EMPTY_ROOT(&root->inode_tree); 5474 } 5475 spin_unlock(&root->inode_lock); 5476 5477 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5478 synchronize_srcu(&root->fs_info->subvol_srcu); 5479 spin_lock(&root->inode_lock); 5480 empty = RB_EMPTY_ROOT(&root->inode_tree); 5481 spin_unlock(&root->inode_lock); 5482 if (empty) 5483 btrfs_add_dead_root(root); 5484 } 5485 } 5486 5487 void btrfs_invalidate_inodes(struct btrfs_root *root) 5488 { 5489 struct rb_node *node; 5490 struct rb_node *prev; 5491 struct btrfs_inode *entry; 5492 struct inode *inode; 5493 u64 objectid = 0; 5494 5495 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 5496 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 5497 5498 spin_lock(&root->inode_lock); 5499 again: 5500 node = root->inode_tree.rb_node; 5501 prev = NULL; 5502 while (node) { 5503 prev = node; 5504 entry = rb_entry(node, struct btrfs_inode, rb_node); 5505 5506 if (objectid < btrfs_ino(&entry->vfs_inode)) 5507 node = node->rb_left; 5508 else if (objectid > btrfs_ino(&entry->vfs_inode)) 5509 node = node->rb_right; 5510 else 5511 break; 5512 } 5513 if (!node) { 5514 while (prev) { 5515 entry = rb_entry(prev, struct btrfs_inode, rb_node); 5516 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 5517 node = prev; 5518 break; 5519 } 5520 prev = rb_next(prev); 5521 } 5522 } 5523 while (node) { 5524 entry = rb_entry(node, struct btrfs_inode, rb_node); 5525 objectid = btrfs_ino(&entry->vfs_inode) + 1; 5526 inode = igrab(&entry->vfs_inode); 5527 if (inode) { 5528 spin_unlock(&root->inode_lock); 5529 if (atomic_read(&inode->i_count) > 1) 5530 d_prune_aliases(inode); 5531 /* 5532 * btrfs_drop_inode will have it removed from 5533 * the inode cache when its usage count 5534 * hits zero. 5535 */ 5536 iput(inode); 5537 cond_resched(); 5538 spin_lock(&root->inode_lock); 5539 goto again; 5540 } 5541 5542 if (cond_resched_lock(&root->inode_lock)) 5543 goto again; 5544 5545 node = rb_next(node); 5546 } 5547 spin_unlock(&root->inode_lock); 5548 } 5549 5550 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5551 { 5552 struct btrfs_iget_args *args = p; 5553 inode->i_ino = args->location->objectid; 5554 memcpy(&BTRFS_I(inode)->location, args->location, 5555 sizeof(*args->location)); 5556 BTRFS_I(inode)->root = args->root; 5557 return 0; 5558 } 5559 5560 static int btrfs_find_actor(struct inode *inode, void *opaque) 5561 { 5562 struct btrfs_iget_args *args = opaque; 5563 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5564 args->root == BTRFS_I(inode)->root; 5565 } 5566 5567 static struct inode *btrfs_iget_locked(struct super_block *s, 5568 struct btrfs_key *location, 5569 struct btrfs_root *root) 5570 { 5571 struct inode *inode; 5572 struct btrfs_iget_args args; 5573 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5574 5575 args.location = location; 5576 args.root = root; 5577 5578 inode = iget5_locked(s, hashval, btrfs_find_actor, 5579 btrfs_init_locked_inode, 5580 (void *)&args); 5581 return inode; 5582 } 5583 5584 /* Get an inode object given its location and corresponding root. 5585 * Returns in *is_new if the inode was read from disk 5586 */ 5587 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5588 struct btrfs_root *root, int *new) 5589 { 5590 struct inode *inode; 5591 5592 inode = btrfs_iget_locked(s, location, root); 5593 if (!inode) 5594 return ERR_PTR(-ENOMEM); 5595 5596 if (inode->i_state & I_NEW) { 5597 btrfs_read_locked_inode(inode); 5598 if (!is_bad_inode(inode)) { 5599 inode_tree_add(inode); 5600 unlock_new_inode(inode); 5601 if (new) 5602 *new = 1; 5603 } else { 5604 unlock_new_inode(inode); 5605 iput(inode); 5606 inode = ERR_PTR(-ESTALE); 5607 } 5608 } 5609 5610 return inode; 5611 } 5612 5613 static struct inode *new_simple_dir(struct super_block *s, 5614 struct btrfs_key *key, 5615 struct btrfs_root *root) 5616 { 5617 struct inode *inode = new_inode(s); 5618 5619 if (!inode) 5620 return ERR_PTR(-ENOMEM); 5621 5622 BTRFS_I(inode)->root = root; 5623 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5624 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5625 5626 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5627 inode->i_op = &btrfs_dir_ro_inode_operations; 5628 inode->i_fop = &simple_dir_operations; 5629 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5630 inode->i_mtime = current_fs_time(inode->i_sb); 5631 inode->i_atime = inode->i_mtime; 5632 inode->i_ctime = inode->i_mtime; 5633 BTRFS_I(inode)->i_otime = inode->i_mtime; 5634 5635 return inode; 5636 } 5637 5638 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5639 { 5640 struct inode *inode; 5641 struct btrfs_root *root = BTRFS_I(dir)->root; 5642 struct btrfs_root *sub_root = root; 5643 struct btrfs_key location; 5644 int index; 5645 int ret = 0; 5646 5647 if (dentry->d_name.len > BTRFS_NAME_LEN) 5648 return ERR_PTR(-ENAMETOOLONG); 5649 5650 ret = btrfs_inode_by_name(dir, dentry, &location); 5651 if (ret < 0) 5652 return ERR_PTR(ret); 5653 5654 if (location.objectid == 0) 5655 return ERR_PTR(-ENOENT); 5656 5657 if (location.type == BTRFS_INODE_ITEM_KEY) { 5658 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5659 return inode; 5660 } 5661 5662 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 5663 5664 index = srcu_read_lock(&root->fs_info->subvol_srcu); 5665 ret = fixup_tree_root_location(root, dir, dentry, 5666 &location, &sub_root); 5667 if (ret < 0) { 5668 if (ret != -ENOENT) 5669 inode = ERR_PTR(ret); 5670 else 5671 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5672 } else { 5673 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5674 } 5675 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 5676 5677 if (!IS_ERR(inode) && root != sub_root) { 5678 down_read(&root->fs_info->cleanup_work_sem); 5679 if (!(inode->i_sb->s_flags & MS_RDONLY)) 5680 ret = btrfs_orphan_cleanup(sub_root); 5681 up_read(&root->fs_info->cleanup_work_sem); 5682 if (ret) { 5683 iput(inode); 5684 inode = ERR_PTR(ret); 5685 } 5686 } 5687 5688 return inode; 5689 } 5690 5691 static int btrfs_dentry_delete(const struct dentry *dentry) 5692 { 5693 struct btrfs_root *root; 5694 struct inode *inode = d_inode(dentry); 5695 5696 if (!inode && !IS_ROOT(dentry)) 5697 inode = d_inode(dentry->d_parent); 5698 5699 if (inode) { 5700 root = BTRFS_I(inode)->root; 5701 if (btrfs_root_refs(&root->root_item) == 0) 5702 return 1; 5703 5704 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5705 return 1; 5706 } 5707 return 0; 5708 } 5709 5710 static void btrfs_dentry_release(struct dentry *dentry) 5711 { 5712 kfree(dentry->d_fsdata); 5713 } 5714 5715 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5716 unsigned int flags) 5717 { 5718 struct inode *inode; 5719 5720 inode = btrfs_lookup_dentry(dir, dentry); 5721 if (IS_ERR(inode)) { 5722 if (PTR_ERR(inode) == -ENOENT) 5723 inode = NULL; 5724 else 5725 return ERR_CAST(inode); 5726 } 5727 5728 return d_splice_alias(inode, dentry); 5729 } 5730 5731 unsigned char btrfs_filetype_table[] = { 5732 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5733 }; 5734 5735 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5736 { 5737 struct inode *inode = file_inode(file); 5738 struct btrfs_root *root = BTRFS_I(inode)->root; 5739 struct btrfs_item *item; 5740 struct btrfs_dir_item *di; 5741 struct btrfs_key key; 5742 struct btrfs_key found_key; 5743 struct btrfs_path *path; 5744 struct list_head ins_list; 5745 struct list_head del_list; 5746 int ret; 5747 struct extent_buffer *leaf; 5748 int slot; 5749 unsigned char d_type; 5750 int over = 0; 5751 u32 di_cur; 5752 u32 di_total; 5753 u32 di_len; 5754 int key_type = BTRFS_DIR_INDEX_KEY; 5755 char tmp_name[32]; 5756 char *name_ptr; 5757 int name_len; 5758 int is_curr = 0; /* ctx->pos points to the current index? */ 5759 bool emitted; 5760 5761 /* FIXME, use a real flag for deciding about the key type */ 5762 if (root->fs_info->tree_root == root) 5763 key_type = BTRFS_DIR_ITEM_KEY; 5764 5765 if (!dir_emit_dots(file, ctx)) 5766 return 0; 5767 5768 path = btrfs_alloc_path(); 5769 if (!path) 5770 return -ENOMEM; 5771 5772 path->reada = READA_FORWARD; 5773 5774 if (key_type == BTRFS_DIR_INDEX_KEY) { 5775 INIT_LIST_HEAD(&ins_list); 5776 INIT_LIST_HEAD(&del_list); 5777 btrfs_get_delayed_items(inode, &ins_list, &del_list); 5778 } 5779 5780 key.type = key_type; 5781 key.offset = ctx->pos; 5782 key.objectid = btrfs_ino(inode); 5783 5784 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5785 if (ret < 0) 5786 goto err; 5787 5788 emitted = false; 5789 while (1) { 5790 leaf = path->nodes[0]; 5791 slot = path->slots[0]; 5792 if (slot >= btrfs_header_nritems(leaf)) { 5793 ret = btrfs_next_leaf(root, path); 5794 if (ret < 0) 5795 goto err; 5796 else if (ret > 0) 5797 break; 5798 continue; 5799 } 5800 5801 item = btrfs_item_nr(slot); 5802 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5803 5804 if (found_key.objectid != key.objectid) 5805 break; 5806 if (found_key.type != key_type) 5807 break; 5808 if (found_key.offset < ctx->pos) 5809 goto next; 5810 if (key_type == BTRFS_DIR_INDEX_KEY && 5811 btrfs_should_delete_dir_index(&del_list, 5812 found_key.offset)) 5813 goto next; 5814 5815 ctx->pos = found_key.offset; 5816 is_curr = 1; 5817 5818 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5819 di_cur = 0; 5820 di_total = btrfs_item_size(leaf, item); 5821 5822 while (di_cur < di_total) { 5823 struct btrfs_key location; 5824 5825 if (verify_dir_item(root, leaf, di)) 5826 break; 5827 5828 name_len = btrfs_dir_name_len(leaf, di); 5829 if (name_len <= sizeof(tmp_name)) { 5830 name_ptr = tmp_name; 5831 } else { 5832 name_ptr = kmalloc(name_len, GFP_KERNEL); 5833 if (!name_ptr) { 5834 ret = -ENOMEM; 5835 goto err; 5836 } 5837 } 5838 read_extent_buffer(leaf, name_ptr, 5839 (unsigned long)(di + 1), name_len); 5840 5841 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 5842 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5843 5844 5845 /* is this a reference to our own snapshot? If so 5846 * skip it. 5847 * 5848 * In contrast to old kernels, we insert the snapshot's 5849 * dir item and dir index after it has been created, so 5850 * we won't find a reference to our own snapshot. We 5851 * still keep the following code for backward 5852 * compatibility. 5853 */ 5854 if (location.type == BTRFS_ROOT_ITEM_KEY && 5855 location.objectid == root->root_key.objectid) { 5856 over = 0; 5857 goto skip; 5858 } 5859 over = !dir_emit(ctx, name_ptr, name_len, 5860 location.objectid, d_type); 5861 5862 skip: 5863 if (name_ptr != tmp_name) 5864 kfree(name_ptr); 5865 5866 if (over) 5867 goto nopos; 5868 emitted = true; 5869 di_len = btrfs_dir_name_len(leaf, di) + 5870 btrfs_dir_data_len(leaf, di) + sizeof(*di); 5871 di_cur += di_len; 5872 di = (struct btrfs_dir_item *)((char *)di + di_len); 5873 } 5874 next: 5875 path->slots[0]++; 5876 } 5877 5878 if (key_type == BTRFS_DIR_INDEX_KEY) { 5879 if (is_curr) 5880 ctx->pos++; 5881 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted); 5882 if (ret) 5883 goto nopos; 5884 } 5885 5886 /* 5887 * If we haven't emitted any dir entry, we must not touch ctx->pos as 5888 * it was was set to the termination value in previous call. We assume 5889 * that "." and ".." were emitted if we reach this point and set the 5890 * termination value as well for an empty directory. 5891 */ 5892 if (ctx->pos > 2 && !emitted) 5893 goto nopos; 5894 5895 /* Reached end of directory/root. Bump pos past the last item. */ 5896 ctx->pos++; 5897 5898 /* 5899 * Stop new entries from being returned after we return the last 5900 * entry. 5901 * 5902 * New directory entries are assigned a strictly increasing 5903 * offset. This means that new entries created during readdir 5904 * are *guaranteed* to be seen in the future by that readdir. 5905 * This has broken buggy programs which operate on names as 5906 * they're returned by readdir. Until we re-use freed offsets 5907 * we have this hack to stop new entries from being returned 5908 * under the assumption that they'll never reach this huge 5909 * offset. 5910 * 5911 * This is being careful not to overflow 32bit loff_t unless the 5912 * last entry requires it because doing so has broken 32bit apps 5913 * in the past. 5914 */ 5915 if (key_type == BTRFS_DIR_INDEX_KEY) { 5916 if (ctx->pos >= INT_MAX) 5917 ctx->pos = LLONG_MAX; 5918 else 5919 ctx->pos = INT_MAX; 5920 } 5921 nopos: 5922 ret = 0; 5923 err: 5924 if (key_type == BTRFS_DIR_INDEX_KEY) 5925 btrfs_put_delayed_items(&ins_list, &del_list); 5926 btrfs_free_path(path); 5927 return ret; 5928 } 5929 5930 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 5931 { 5932 struct btrfs_root *root = BTRFS_I(inode)->root; 5933 struct btrfs_trans_handle *trans; 5934 int ret = 0; 5935 bool nolock = false; 5936 5937 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5938 return 0; 5939 5940 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 5941 nolock = true; 5942 5943 if (wbc->sync_mode == WB_SYNC_ALL) { 5944 if (nolock) 5945 trans = btrfs_join_transaction_nolock(root); 5946 else 5947 trans = btrfs_join_transaction(root); 5948 if (IS_ERR(trans)) 5949 return PTR_ERR(trans); 5950 ret = btrfs_commit_transaction(trans, root); 5951 } 5952 return ret; 5953 } 5954 5955 /* 5956 * This is somewhat expensive, updating the tree every time the 5957 * inode changes. But, it is most likely to find the inode in cache. 5958 * FIXME, needs more benchmarking...there are no reasons other than performance 5959 * to keep or drop this code. 5960 */ 5961 static int btrfs_dirty_inode(struct inode *inode) 5962 { 5963 struct btrfs_root *root = BTRFS_I(inode)->root; 5964 struct btrfs_trans_handle *trans; 5965 int ret; 5966 5967 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5968 return 0; 5969 5970 trans = btrfs_join_transaction(root); 5971 if (IS_ERR(trans)) 5972 return PTR_ERR(trans); 5973 5974 ret = btrfs_update_inode(trans, root, inode); 5975 if (ret && ret == -ENOSPC) { 5976 /* whoops, lets try again with the full transaction */ 5977 btrfs_end_transaction(trans, root); 5978 trans = btrfs_start_transaction(root, 1); 5979 if (IS_ERR(trans)) 5980 return PTR_ERR(trans); 5981 5982 ret = btrfs_update_inode(trans, root, inode); 5983 } 5984 btrfs_end_transaction(trans, root); 5985 if (BTRFS_I(inode)->delayed_node) 5986 btrfs_balance_delayed_items(root); 5987 5988 return ret; 5989 } 5990 5991 /* 5992 * This is a copy of file_update_time. We need this so we can return error on 5993 * ENOSPC for updating the inode in the case of file write and mmap writes. 5994 */ 5995 static int btrfs_update_time(struct inode *inode, struct timespec *now, 5996 int flags) 5997 { 5998 struct btrfs_root *root = BTRFS_I(inode)->root; 5999 6000 if (btrfs_root_readonly(root)) 6001 return -EROFS; 6002 6003 if (flags & S_VERSION) 6004 inode_inc_iversion(inode); 6005 if (flags & S_CTIME) 6006 inode->i_ctime = *now; 6007 if (flags & S_MTIME) 6008 inode->i_mtime = *now; 6009 if (flags & S_ATIME) 6010 inode->i_atime = *now; 6011 return btrfs_dirty_inode(inode); 6012 } 6013 6014 /* 6015 * find the highest existing sequence number in a directory 6016 * and then set the in-memory index_cnt variable to reflect 6017 * free sequence numbers 6018 */ 6019 static int btrfs_set_inode_index_count(struct inode *inode) 6020 { 6021 struct btrfs_root *root = BTRFS_I(inode)->root; 6022 struct btrfs_key key, found_key; 6023 struct btrfs_path *path; 6024 struct extent_buffer *leaf; 6025 int ret; 6026 6027 key.objectid = btrfs_ino(inode); 6028 key.type = BTRFS_DIR_INDEX_KEY; 6029 key.offset = (u64)-1; 6030 6031 path = btrfs_alloc_path(); 6032 if (!path) 6033 return -ENOMEM; 6034 6035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6036 if (ret < 0) 6037 goto out; 6038 /* FIXME: we should be able to handle this */ 6039 if (ret == 0) 6040 goto out; 6041 ret = 0; 6042 6043 /* 6044 * MAGIC NUMBER EXPLANATION: 6045 * since we search a directory based on f_pos we have to start at 2 6046 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6047 * else has to start at 2 6048 */ 6049 if (path->slots[0] == 0) { 6050 BTRFS_I(inode)->index_cnt = 2; 6051 goto out; 6052 } 6053 6054 path->slots[0]--; 6055 6056 leaf = path->nodes[0]; 6057 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6058 6059 if (found_key.objectid != btrfs_ino(inode) || 6060 found_key.type != BTRFS_DIR_INDEX_KEY) { 6061 BTRFS_I(inode)->index_cnt = 2; 6062 goto out; 6063 } 6064 6065 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 6066 out: 6067 btrfs_free_path(path); 6068 return ret; 6069 } 6070 6071 /* 6072 * helper to find a free sequence number in a given directory. This current 6073 * code is very simple, later versions will do smarter things in the btree 6074 */ 6075 int btrfs_set_inode_index(struct inode *dir, u64 *index) 6076 { 6077 int ret = 0; 6078 6079 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 6080 ret = btrfs_inode_delayed_dir_index_count(dir); 6081 if (ret) { 6082 ret = btrfs_set_inode_index_count(dir); 6083 if (ret) 6084 return ret; 6085 } 6086 } 6087 6088 *index = BTRFS_I(dir)->index_cnt; 6089 BTRFS_I(dir)->index_cnt++; 6090 6091 return ret; 6092 } 6093 6094 static int btrfs_insert_inode_locked(struct inode *inode) 6095 { 6096 struct btrfs_iget_args args; 6097 args.location = &BTRFS_I(inode)->location; 6098 args.root = BTRFS_I(inode)->root; 6099 6100 return insert_inode_locked4(inode, 6101 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6102 btrfs_find_actor, &args); 6103 } 6104 6105 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6106 struct btrfs_root *root, 6107 struct inode *dir, 6108 const char *name, int name_len, 6109 u64 ref_objectid, u64 objectid, 6110 umode_t mode, u64 *index) 6111 { 6112 struct inode *inode; 6113 struct btrfs_inode_item *inode_item; 6114 struct btrfs_key *location; 6115 struct btrfs_path *path; 6116 struct btrfs_inode_ref *ref; 6117 struct btrfs_key key[2]; 6118 u32 sizes[2]; 6119 int nitems = name ? 2 : 1; 6120 unsigned long ptr; 6121 int ret; 6122 6123 path = btrfs_alloc_path(); 6124 if (!path) 6125 return ERR_PTR(-ENOMEM); 6126 6127 inode = new_inode(root->fs_info->sb); 6128 if (!inode) { 6129 btrfs_free_path(path); 6130 return ERR_PTR(-ENOMEM); 6131 } 6132 6133 /* 6134 * O_TMPFILE, set link count to 0, so that after this point, 6135 * we fill in an inode item with the correct link count. 6136 */ 6137 if (!name) 6138 set_nlink(inode, 0); 6139 6140 /* 6141 * we have to initialize this early, so we can reclaim the inode 6142 * number if we fail afterwards in this function. 6143 */ 6144 inode->i_ino = objectid; 6145 6146 if (dir && name) { 6147 trace_btrfs_inode_request(dir); 6148 6149 ret = btrfs_set_inode_index(dir, index); 6150 if (ret) { 6151 btrfs_free_path(path); 6152 iput(inode); 6153 return ERR_PTR(ret); 6154 } 6155 } else if (dir) { 6156 *index = 0; 6157 } 6158 /* 6159 * index_cnt is ignored for everything but a dir, 6160 * btrfs_get_inode_index_count has an explanation for the magic 6161 * number 6162 */ 6163 BTRFS_I(inode)->index_cnt = 2; 6164 BTRFS_I(inode)->dir_index = *index; 6165 BTRFS_I(inode)->root = root; 6166 BTRFS_I(inode)->generation = trans->transid; 6167 inode->i_generation = BTRFS_I(inode)->generation; 6168 6169 /* 6170 * We could have gotten an inode number from somebody who was fsynced 6171 * and then removed in this same transaction, so let's just set full 6172 * sync since it will be a full sync anyway and this will blow away the 6173 * old info in the log. 6174 */ 6175 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6176 6177 key[0].objectid = objectid; 6178 key[0].type = BTRFS_INODE_ITEM_KEY; 6179 key[0].offset = 0; 6180 6181 sizes[0] = sizeof(struct btrfs_inode_item); 6182 6183 if (name) { 6184 /* 6185 * Start new inodes with an inode_ref. This is slightly more 6186 * efficient for small numbers of hard links since they will 6187 * be packed into one item. Extended refs will kick in if we 6188 * add more hard links than can fit in the ref item. 6189 */ 6190 key[1].objectid = objectid; 6191 key[1].type = BTRFS_INODE_REF_KEY; 6192 key[1].offset = ref_objectid; 6193 6194 sizes[1] = name_len + sizeof(*ref); 6195 } 6196 6197 location = &BTRFS_I(inode)->location; 6198 location->objectid = objectid; 6199 location->offset = 0; 6200 location->type = BTRFS_INODE_ITEM_KEY; 6201 6202 ret = btrfs_insert_inode_locked(inode); 6203 if (ret < 0) 6204 goto fail; 6205 6206 path->leave_spinning = 1; 6207 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6208 if (ret != 0) 6209 goto fail_unlock; 6210 6211 inode_init_owner(inode, dir, mode); 6212 inode_set_bytes(inode, 0); 6213 6214 inode->i_mtime = current_fs_time(inode->i_sb); 6215 inode->i_atime = inode->i_mtime; 6216 inode->i_ctime = inode->i_mtime; 6217 BTRFS_I(inode)->i_otime = inode->i_mtime; 6218 6219 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6220 struct btrfs_inode_item); 6221 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 6222 sizeof(*inode_item)); 6223 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6224 6225 if (name) { 6226 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6227 struct btrfs_inode_ref); 6228 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6229 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6230 ptr = (unsigned long)(ref + 1); 6231 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6232 } 6233 6234 btrfs_mark_buffer_dirty(path->nodes[0]); 6235 btrfs_free_path(path); 6236 6237 btrfs_inherit_iflags(inode, dir); 6238 6239 if (S_ISREG(mode)) { 6240 if (btrfs_test_opt(root, NODATASUM)) 6241 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6242 if (btrfs_test_opt(root, NODATACOW)) 6243 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6244 BTRFS_INODE_NODATASUM; 6245 } 6246 6247 inode_tree_add(inode); 6248 6249 trace_btrfs_inode_new(inode); 6250 btrfs_set_inode_last_trans(trans, inode); 6251 6252 btrfs_update_root_times(trans, root); 6253 6254 ret = btrfs_inode_inherit_props(trans, inode, dir); 6255 if (ret) 6256 btrfs_err(root->fs_info, 6257 "error inheriting props for ino %llu (root %llu): %d", 6258 btrfs_ino(inode), root->root_key.objectid, ret); 6259 6260 return inode; 6261 6262 fail_unlock: 6263 unlock_new_inode(inode); 6264 fail: 6265 if (dir && name) 6266 BTRFS_I(dir)->index_cnt--; 6267 btrfs_free_path(path); 6268 iput(inode); 6269 return ERR_PTR(ret); 6270 } 6271 6272 static inline u8 btrfs_inode_type(struct inode *inode) 6273 { 6274 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6275 } 6276 6277 /* 6278 * utility function to add 'inode' into 'parent_inode' with 6279 * a give name and a given sequence number. 6280 * if 'add_backref' is true, also insert a backref from the 6281 * inode to the parent directory. 6282 */ 6283 int btrfs_add_link(struct btrfs_trans_handle *trans, 6284 struct inode *parent_inode, struct inode *inode, 6285 const char *name, int name_len, int add_backref, u64 index) 6286 { 6287 int ret = 0; 6288 struct btrfs_key key; 6289 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 6290 u64 ino = btrfs_ino(inode); 6291 u64 parent_ino = btrfs_ino(parent_inode); 6292 6293 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6294 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 6295 } else { 6296 key.objectid = ino; 6297 key.type = BTRFS_INODE_ITEM_KEY; 6298 key.offset = 0; 6299 } 6300 6301 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6302 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 6303 key.objectid, root->root_key.objectid, 6304 parent_ino, index, name, name_len); 6305 } else if (add_backref) { 6306 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6307 parent_ino, index); 6308 } 6309 6310 /* Nothing to clean up yet */ 6311 if (ret) 6312 return ret; 6313 6314 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6315 parent_inode, &key, 6316 btrfs_inode_type(inode), index); 6317 if (ret == -EEXIST || ret == -EOVERFLOW) 6318 goto fail_dir_item; 6319 else if (ret) { 6320 btrfs_abort_transaction(trans, root, ret); 6321 return ret; 6322 } 6323 6324 btrfs_i_size_write(parent_inode, parent_inode->i_size + 6325 name_len * 2); 6326 inode_inc_iversion(parent_inode); 6327 parent_inode->i_mtime = parent_inode->i_ctime = 6328 current_fs_time(parent_inode->i_sb); 6329 ret = btrfs_update_inode(trans, root, parent_inode); 6330 if (ret) 6331 btrfs_abort_transaction(trans, root, ret); 6332 return ret; 6333 6334 fail_dir_item: 6335 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6336 u64 local_index; 6337 int err; 6338 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 6339 key.objectid, root->root_key.objectid, 6340 parent_ino, &local_index, name, name_len); 6341 6342 } else if (add_backref) { 6343 u64 local_index; 6344 int err; 6345 6346 err = btrfs_del_inode_ref(trans, root, name, name_len, 6347 ino, parent_ino, &local_index); 6348 } 6349 return ret; 6350 } 6351 6352 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6353 struct inode *dir, struct dentry *dentry, 6354 struct inode *inode, int backref, u64 index) 6355 { 6356 int err = btrfs_add_link(trans, dir, inode, 6357 dentry->d_name.name, dentry->d_name.len, 6358 backref, index); 6359 if (err > 0) 6360 err = -EEXIST; 6361 return err; 6362 } 6363 6364 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6365 umode_t mode, dev_t rdev) 6366 { 6367 struct btrfs_trans_handle *trans; 6368 struct btrfs_root *root = BTRFS_I(dir)->root; 6369 struct inode *inode = NULL; 6370 int err; 6371 int drop_inode = 0; 6372 u64 objectid; 6373 u64 index = 0; 6374 6375 /* 6376 * 2 for inode item and ref 6377 * 2 for dir items 6378 * 1 for xattr if selinux is on 6379 */ 6380 trans = btrfs_start_transaction(root, 5); 6381 if (IS_ERR(trans)) 6382 return PTR_ERR(trans); 6383 6384 err = btrfs_find_free_ino(root, &objectid); 6385 if (err) 6386 goto out_unlock; 6387 6388 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6389 dentry->d_name.len, btrfs_ino(dir), objectid, 6390 mode, &index); 6391 if (IS_ERR(inode)) { 6392 err = PTR_ERR(inode); 6393 goto out_unlock; 6394 } 6395 6396 /* 6397 * If the active LSM wants to access the inode during 6398 * d_instantiate it needs these. Smack checks to see 6399 * if the filesystem supports xattrs by looking at the 6400 * ops vector. 6401 */ 6402 inode->i_op = &btrfs_special_inode_operations; 6403 init_special_inode(inode, inode->i_mode, rdev); 6404 6405 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6406 if (err) 6407 goto out_unlock_inode; 6408 6409 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6410 if (err) { 6411 goto out_unlock_inode; 6412 } else { 6413 btrfs_update_inode(trans, root, inode); 6414 unlock_new_inode(inode); 6415 d_instantiate(dentry, inode); 6416 } 6417 6418 out_unlock: 6419 btrfs_end_transaction(trans, root); 6420 btrfs_balance_delayed_items(root); 6421 btrfs_btree_balance_dirty(root); 6422 if (drop_inode) { 6423 inode_dec_link_count(inode); 6424 iput(inode); 6425 } 6426 return err; 6427 6428 out_unlock_inode: 6429 drop_inode = 1; 6430 unlock_new_inode(inode); 6431 goto out_unlock; 6432 6433 } 6434 6435 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6436 umode_t mode, bool excl) 6437 { 6438 struct btrfs_trans_handle *trans; 6439 struct btrfs_root *root = BTRFS_I(dir)->root; 6440 struct inode *inode = NULL; 6441 int drop_inode_on_err = 0; 6442 int err; 6443 u64 objectid; 6444 u64 index = 0; 6445 6446 /* 6447 * 2 for inode item and ref 6448 * 2 for dir items 6449 * 1 for xattr if selinux is on 6450 */ 6451 trans = btrfs_start_transaction(root, 5); 6452 if (IS_ERR(trans)) 6453 return PTR_ERR(trans); 6454 6455 err = btrfs_find_free_ino(root, &objectid); 6456 if (err) 6457 goto out_unlock; 6458 6459 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6460 dentry->d_name.len, btrfs_ino(dir), objectid, 6461 mode, &index); 6462 if (IS_ERR(inode)) { 6463 err = PTR_ERR(inode); 6464 goto out_unlock; 6465 } 6466 drop_inode_on_err = 1; 6467 /* 6468 * If the active LSM wants to access the inode during 6469 * d_instantiate it needs these. Smack checks to see 6470 * if the filesystem supports xattrs by looking at the 6471 * ops vector. 6472 */ 6473 inode->i_fop = &btrfs_file_operations; 6474 inode->i_op = &btrfs_file_inode_operations; 6475 inode->i_mapping->a_ops = &btrfs_aops; 6476 6477 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6478 if (err) 6479 goto out_unlock_inode; 6480 6481 err = btrfs_update_inode(trans, root, inode); 6482 if (err) 6483 goto out_unlock_inode; 6484 6485 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6486 if (err) 6487 goto out_unlock_inode; 6488 6489 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6490 unlock_new_inode(inode); 6491 d_instantiate(dentry, inode); 6492 6493 out_unlock: 6494 btrfs_end_transaction(trans, root); 6495 if (err && drop_inode_on_err) { 6496 inode_dec_link_count(inode); 6497 iput(inode); 6498 } 6499 btrfs_balance_delayed_items(root); 6500 btrfs_btree_balance_dirty(root); 6501 return err; 6502 6503 out_unlock_inode: 6504 unlock_new_inode(inode); 6505 goto out_unlock; 6506 6507 } 6508 6509 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6510 struct dentry *dentry) 6511 { 6512 struct btrfs_trans_handle *trans = NULL; 6513 struct btrfs_root *root = BTRFS_I(dir)->root; 6514 struct inode *inode = d_inode(old_dentry); 6515 u64 index; 6516 int err; 6517 int drop_inode = 0; 6518 6519 /* do not allow sys_link's with other subvols of the same device */ 6520 if (root->objectid != BTRFS_I(inode)->root->objectid) 6521 return -EXDEV; 6522 6523 if (inode->i_nlink >= BTRFS_LINK_MAX) 6524 return -EMLINK; 6525 6526 err = btrfs_set_inode_index(dir, &index); 6527 if (err) 6528 goto fail; 6529 6530 /* 6531 * 2 items for inode and inode ref 6532 * 2 items for dir items 6533 * 1 item for parent inode 6534 */ 6535 trans = btrfs_start_transaction(root, 5); 6536 if (IS_ERR(trans)) { 6537 err = PTR_ERR(trans); 6538 trans = NULL; 6539 goto fail; 6540 } 6541 6542 /* There are several dir indexes for this inode, clear the cache. */ 6543 BTRFS_I(inode)->dir_index = 0ULL; 6544 inc_nlink(inode); 6545 inode_inc_iversion(inode); 6546 inode->i_ctime = current_fs_time(inode->i_sb); 6547 ihold(inode); 6548 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6549 6550 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 6551 6552 if (err) { 6553 drop_inode = 1; 6554 } else { 6555 struct dentry *parent = dentry->d_parent; 6556 err = btrfs_update_inode(trans, root, inode); 6557 if (err) 6558 goto fail; 6559 if (inode->i_nlink == 1) { 6560 /* 6561 * If new hard link count is 1, it's a file created 6562 * with open(2) O_TMPFILE flag. 6563 */ 6564 err = btrfs_orphan_del(trans, inode); 6565 if (err) 6566 goto fail; 6567 } 6568 d_instantiate(dentry, inode); 6569 btrfs_log_new_name(trans, inode, NULL, parent); 6570 } 6571 6572 btrfs_balance_delayed_items(root); 6573 fail: 6574 if (trans) 6575 btrfs_end_transaction(trans, root); 6576 if (drop_inode) { 6577 inode_dec_link_count(inode); 6578 iput(inode); 6579 } 6580 btrfs_btree_balance_dirty(root); 6581 return err; 6582 } 6583 6584 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6585 { 6586 struct inode *inode = NULL; 6587 struct btrfs_trans_handle *trans; 6588 struct btrfs_root *root = BTRFS_I(dir)->root; 6589 int err = 0; 6590 int drop_on_err = 0; 6591 u64 objectid = 0; 6592 u64 index = 0; 6593 6594 /* 6595 * 2 items for inode and ref 6596 * 2 items for dir items 6597 * 1 for xattr if selinux is on 6598 */ 6599 trans = btrfs_start_transaction(root, 5); 6600 if (IS_ERR(trans)) 6601 return PTR_ERR(trans); 6602 6603 err = btrfs_find_free_ino(root, &objectid); 6604 if (err) 6605 goto out_fail; 6606 6607 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6608 dentry->d_name.len, btrfs_ino(dir), objectid, 6609 S_IFDIR | mode, &index); 6610 if (IS_ERR(inode)) { 6611 err = PTR_ERR(inode); 6612 goto out_fail; 6613 } 6614 6615 drop_on_err = 1; 6616 /* these must be set before we unlock the inode */ 6617 inode->i_op = &btrfs_dir_inode_operations; 6618 inode->i_fop = &btrfs_dir_file_operations; 6619 6620 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6621 if (err) 6622 goto out_fail_inode; 6623 6624 btrfs_i_size_write(inode, 0); 6625 err = btrfs_update_inode(trans, root, inode); 6626 if (err) 6627 goto out_fail_inode; 6628 6629 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 6630 dentry->d_name.len, 0, index); 6631 if (err) 6632 goto out_fail_inode; 6633 6634 d_instantiate(dentry, inode); 6635 /* 6636 * mkdir is special. We're unlocking after we call d_instantiate 6637 * to avoid a race with nfsd calling d_instantiate. 6638 */ 6639 unlock_new_inode(inode); 6640 drop_on_err = 0; 6641 6642 out_fail: 6643 btrfs_end_transaction(trans, root); 6644 if (drop_on_err) { 6645 inode_dec_link_count(inode); 6646 iput(inode); 6647 } 6648 btrfs_balance_delayed_items(root); 6649 btrfs_btree_balance_dirty(root); 6650 return err; 6651 6652 out_fail_inode: 6653 unlock_new_inode(inode); 6654 goto out_fail; 6655 } 6656 6657 /* Find next extent map of a given extent map, caller needs to ensure locks */ 6658 static struct extent_map *next_extent_map(struct extent_map *em) 6659 { 6660 struct rb_node *next; 6661 6662 next = rb_next(&em->rb_node); 6663 if (!next) 6664 return NULL; 6665 return container_of(next, struct extent_map, rb_node); 6666 } 6667 6668 static struct extent_map *prev_extent_map(struct extent_map *em) 6669 { 6670 struct rb_node *prev; 6671 6672 prev = rb_prev(&em->rb_node); 6673 if (!prev) 6674 return NULL; 6675 return container_of(prev, struct extent_map, rb_node); 6676 } 6677 6678 /* helper for btfs_get_extent. Given an existing extent in the tree, 6679 * the existing extent is the nearest extent to map_start, 6680 * and an extent that you want to insert, deal with overlap and insert 6681 * the best fitted new extent into the tree. 6682 */ 6683 static int merge_extent_mapping(struct extent_map_tree *em_tree, 6684 struct extent_map *existing, 6685 struct extent_map *em, 6686 u64 map_start) 6687 { 6688 struct extent_map *prev; 6689 struct extent_map *next; 6690 u64 start; 6691 u64 end; 6692 u64 start_diff; 6693 6694 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 6695 6696 if (existing->start > map_start) { 6697 next = existing; 6698 prev = prev_extent_map(next); 6699 } else { 6700 prev = existing; 6701 next = next_extent_map(prev); 6702 } 6703 6704 start = prev ? extent_map_end(prev) : em->start; 6705 start = max_t(u64, start, em->start); 6706 end = next ? next->start : extent_map_end(em); 6707 end = min_t(u64, end, extent_map_end(em)); 6708 start_diff = start - em->start; 6709 em->start = start; 6710 em->len = end - start; 6711 if (em->block_start < EXTENT_MAP_LAST_BYTE && 6712 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 6713 em->block_start += start_diff; 6714 em->block_len -= start_diff; 6715 } 6716 return add_extent_mapping(em_tree, em, 0); 6717 } 6718 6719 static noinline int uncompress_inline(struct btrfs_path *path, 6720 struct page *page, 6721 size_t pg_offset, u64 extent_offset, 6722 struct btrfs_file_extent_item *item) 6723 { 6724 int ret; 6725 struct extent_buffer *leaf = path->nodes[0]; 6726 char *tmp; 6727 size_t max_size; 6728 unsigned long inline_size; 6729 unsigned long ptr; 6730 int compress_type; 6731 6732 WARN_ON(pg_offset != 0); 6733 compress_type = btrfs_file_extent_compression(leaf, item); 6734 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6735 inline_size = btrfs_file_extent_inline_item_len(leaf, 6736 btrfs_item_nr(path->slots[0])); 6737 tmp = kmalloc(inline_size, GFP_NOFS); 6738 if (!tmp) 6739 return -ENOMEM; 6740 ptr = btrfs_file_extent_inline_start(item); 6741 6742 read_extent_buffer(leaf, tmp, ptr, inline_size); 6743 6744 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6745 ret = btrfs_decompress(compress_type, tmp, page, 6746 extent_offset, inline_size, max_size); 6747 kfree(tmp); 6748 return ret; 6749 } 6750 6751 /* 6752 * a bit scary, this does extent mapping from logical file offset to the disk. 6753 * the ugly parts come from merging extents from the disk with the in-ram 6754 * representation. This gets more complex because of the data=ordered code, 6755 * where the in-ram extents might be locked pending data=ordered completion. 6756 * 6757 * This also copies inline extents directly into the page. 6758 */ 6759 6760 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 6761 size_t pg_offset, u64 start, u64 len, 6762 int create) 6763 { 6764 int ret; 6765 int err = 0; 6766 u64 extent_start = 0; 6767 u64 extent_end = 0; 6768 u64 objectid = btrfs_ino(inode); 6769 u32 found_type; 6770 struct btrfs_path *path = NULL; 6771 struct btrfs_root *root = BTRFS_I(inode)->root; 6772 struct btrfs_file_extent_item *item; 6773 struct extent_buffer *leaf; 6774 struct btrfs_key found_key; 6775 struct extent_map *em = NULL; 6776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 6777 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6778 struct btrfs_trans_handle *trans = NULL; 6779 const bool new_inline = !page || create; 6780 6781 again: 6782 read_lock(&em_tree->lock); 6783 em = lookup_extent_mapping(em_tree, start, len); 6784 if (em) 6785 em->bdev = root->fs_info->fs_devices->latest_bdev; 6786 read_unlock(&em_tree->lock); 6787 6788 if (em) { 6789 if (em->start > start || em->start + em->len <= start) 6790 free_extent_map(em); 6791 else if (em->block_start == EXTENT_MAP_INLINE && page) 6792 free_extent_map(em); 6793 else 6794 goto out; 6795 } 6796 em = alloc_extent_map(); 6797 if (!em) { 6798 err = -ENOMEM; 6799 goto out; 6800 } 6801 em->bdev = root->fs_info->fs_devices->latest_bdev; 6802 em->start = EXTENT_MAP_HOLE; 6803 em->orig_start = EXTENT_MAP_HOLE; 6804 em->len = (u64)-1; 6805 em->block_len = (u64)-1; 6806 6807 if (!path) { 6808 path = btrfs_alloc_path(); 6809 if (!path) { 6810 err = -ENOMEM; 6811 goto out; 6812 } 6813 /* 6814 * Chances are we'll be called again, so go ahead and do 6815 * readahead 6816 */ 6817 path->reada = READA_FORWARD; 6818 } 6819 6820 ret = btrfs_lookup_file_extent(trans, root, path, 6821 objectid, start, trans != NULL); 6822 if (ret < 0) { 6823 err = ret; 6824 goto out; 6825 } 6826 6827 if (ret != 0) { 6828 if (path->slots[0] == 0) 6829 goto not_found; 6830 path->slots[0]--; 6831 } 6832 6833 leaf = path->nodes[0]; 6834 item = btrfs_item_ptr(leaf, path->slots[0], 6835 struct btrfs_file_extent_item); 6836 /* are we inside the extent that was found? */ 6837 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6838 found_type = found_key.type; 6839 if (found_key.objectid != objectid || 6840 found_type != BTRFS_EXTENT_DATA_KEY) { 6841 /* 6842 * If we backup past the first extent we want to move forward 6843 * and see if there is an extent in front of us, otherwise we'll 6844 * say there is a hole for our whole search range which can 6845 * cause problems. 6846 */ 6847 extent_end = start; 6848 goto next; 6849 } 6850 6851 found_type = btrfs_file_extent_type(leaf, item); 6852 extent_start = found_key.offset; 6853 if (found_type == BTRFS_FILE_EXTENT_REG || 6854 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6855 extent_end = extent_start + 6856 btrfs_file_extent_num_bytes(leaf, item); 6857 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6858 size_t size; 6859 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6860 extent_end = ALIGN(extent_start + size, root->sectorsize); 6861 } 6862 next: 6863 if (start >= extent_end) { 6864 path->slots[0]++; 6865 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6866 ret = btrfs_next_leaf(root, path); 6867 if (ret < 0) { 6868 err = ret; 6869 goto out; 6870 } 6871 if (ret > 0) 6872 goto not_found; 6873 leaf = path->nodes[0]; 6874 } 6875 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6876 if (found_key.objectid != objectid || 6877 found_key.type != BTRFS_EXTENT_DATA_KEY) 6878 goto not_found; 6879 if (start + len <= found_key.offset) 6880 goto not_found; 6881 if (start > found_key.offset) 6882 goto next; 6883 em->start = start; 6884 em->orig_start = start; 6885 em->len = found_key.offset - start; 6886 goto not_found_em; 6887 } 6888 6889 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em); 6890 6891 if (found_type == BTRFS_FILE_EXTENT_REG || 6892 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6893 goto insert; 6894 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6895 unsigned long ptr; 6896 char *map; 6897 size_t size; 6898 size_t extent_offset; 6899 size_t copy_size; 6900 6901 if (new_inline) 6902 goto out; 6903 6904 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6905 extent_offset = page_offset(page) + pg_offset - extent_start; 6906 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6907 size - extent_offset); 6908 em->start = extent_start + extent_offset; 6909 em->len = ALIGN(copy_size, root->sectorsize); 6910 em->orig_block_len = em->len; 6911 em->orig_start = em->start; 6912 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6913 if (create == 0 && !PageUptodate(page)) { 6914 if (btrfs_file_extent_compression(leaf, item) != 6915 BTRFS_COMPRESS_NONE) { 6916 ret = uncompress_inline(path, page, pg_offset, 6917 extent_offset, item); 6918 if (ret) { 6919 err = ret; 6920 goto out; 6921 } 6922 } else { 6923 map = kmap(page); 6924 read_extent_buffer(leaf, map + pg_offset, ptr, 6925 copy_size); 6926 if (pg_offset + copy_size < PAGE_SIZE) { 6927 memset(map + pg_offset + copy_size, 0, 6928 PAGE_SIZE - pg_offset - 6929 copy_size); 6930 } 6931 kunmap(page); 6932 } 6933 flush_dcache_page(page); 6934 } else if (create && PageUptodate(page)) { 6935 BUG(); 6936 if (!trans) { 6937 kunmap(page); 6938 free_extent_map(em); 6939 em = NULL; 6940 6941 btrfs_release_path(path); 6942 trans = btrfs_join_transaction(root); 6943 6944 if (IS_ERR(trans)) 6945 return ERR_CAST(trans); 6946 goto again; 6947 } 6948 map = kmap(page); 6949 write_extent_buffer(leaf, map + pg_offset, ptr, 6950 copy_size); 6951 kunmap(page); 6952 btrfs_mark_buffer_dirty(leaf); 6953 } 6954 set_extent_uptodate(io_tree, em->start, 6955 extent_map_end(em) - 1, NULL, GFP_NOFS); 6956 goto insert; 6957 } 6958 not_found: 6959 em->start = start; 6960 em->orig_start = start; 6961 em->len = len; 6962 not_found_em: 6963 em->block_start = EXTENT_MAP_HOLE; 6964 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 6965 insert: 6966 btrfs_release_path(path); 6967 if (em->start > start || extent_map_end(em) <= start) { 6968 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]", 6969 em->start, em->len, start, len); 6970 err = -EIO; 6971 goto out; 6972 } 6973 6974 err = 0; 6975 write_lock(&em_tree->lock); 6976 ret = add_extent_mapping(em_tree, em, 0); 6977 /* it is possible that someone inserted the extent into the tree 6978 * while we had the lock dropped. It is also possible that 6979 * an overlapping map exists in the tree 6980 */ 6981 if (ret == -EEXIST) { 6982 struct extent_map *existing; 6983 6984 ret = 0; 6985 6986 existing = search_extent_mapping(em_tree, start, len); 6987 /* 6988 * existing will always be non-NULL, since there must be 6989 * extent causing the -EEXIST. 6990 */ 6991 if (existing->start == em->start && 6992 extent_map_end(existing) == extent_map_end(em) && 6993 em->block_start == existing->block_start) { 6994 /* 6995 * these two extents are the same, it happens 6996 * with inlines especially 6997 */ 6998 free_extent_map(em); 6999 em = existing; 7000 err = 0; 7001 7002 } else if (start >= extent_map_end(existing) || 7003 start <= existing->start) { 7004 /* 7005 * The existing extent map is the one nearest to 7006 * the [start, start + len) range which overlaps 7007 */ 7008 err = merge_extent_mapping(em_tree, existing, 7009 em, start); 7010 free_extent_map(existing); 7011 if (err) { 7012 free_extent_map(em); 7013 em = NULL; 7014 } 7015 } else { 7016 free_extent_map(em); 7017 em = existing; 7018 err = 0; 7019 } 7020 } 7021 write_unlock(&em_tree->lock); 7022 out: 7023 7024 trace_btrfs_get_extent(root, em); 7025 7026 btrfs_free_path(path); 7027 if (trans) { 7028 ret = btrfs_end_transaction(trans, root); 7029 if (!err) 7030 err = ret; 7031 } 7032 if (err) { 7033 free_extent_map(em); 7034 return ERR_PTR(err); 7035 } 7036 BUG_ON(!em); /* Error is always set */ 7037 return em; 7038 } 7039 7040 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 7041 size_t pg_offset, u64 start, u64 len, 7042 int create) 7043 { 7044 struct extent_map *em; 7045 struct extent_map *hole_em = NULL; 7046 u64 range_start = start; 7047 u64 end; 7048 u64 found; 7049 u64 found_end; 7050 int err = 0; 7051 7052 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7053 if (IS_ERR(em)) 7054 return em; 7055 if (em) { 7056 /* 7057 * if our em maps to 7058 * - a hole or 7059 * - a pre-alloc extent, 7060 * there might actually be delalloc bytes behind it. 7061 */ 7062 if (em->block_start != EXTENT_MAP_HOLE && 7063 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7064 return em; 7065 else 7066 hole_em = em; 7067 } 7068 7069 /* check to see if we've wrapped (len == -1 or similar) */ 7070 end = start + len; 7071 if (end < start) 7072 end = (u64)-1; 7073 else 7074 end -= 1; 7075 7076 em = NULL; 7077 7078 /* ok, we didn't find anything, lets look for delalloc */ 7079 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 7080 end, len, EXTENT_DELALLOC, 1); 7081 found_end = range_start + found; 7082 if (found_end < range_start) 7083 found_end = (u64)-1; 7084 7085 /* 7086 * we didn't find anything useful, return 7087 * the original results from get_extent() 7088 */ 7089 if (range_start > end || found_end <= start) { 7090 em = hole_em; 7091 hole_em = NULL; 7092 goto out; 7093 } 7094 7095 /* adjust the range_start to make sure it doesn't 7096 * go backwards from the start they passed in 7097 */ 7098 range_start = max(start, range_start); 7099 found = found_end - range_start; 7100 7101 if (found > 0) { 7102 u64 hole_start = start; 7103 u64 hole_len = len; 7104 7105 em = alloc_extent_map(); 7106 if (!em) { 7107 err = -ENOMEM; 7108 goto out; 7109 } 7110 /* 7111 * when btrfs_get_extent can't find anything it 7112 * returns one huge hole 7113 * 7114 * make sure what it found really fits our range, and 7115 * adjust to make sure it is based on the start from 7116 * the caller 7117 */ 7118 if (hole_em) { 7119 u64 calc_end = extent_map_end(hole_em); 7120 7121 if (calc_end <= start || (hole_em->start > end)) { 7122 free_extent_map(hole_em); 7123 hole_em = NULL; 7124 } else { 7125 hole_start = max(hole_em->start, start); 7126 hole_len = calc_end - hole_start; 7127 } 7128 } 7129 em->bdev = NULL; 7130 if (hole_em && range_start > hole_start) { 7131 /* our hole starts before our delalloc, so we 7132 * have to return just the parts of the hole 7133 * that go until the delalloc starts 7134 */ 7135 em->len = min(hole_len, 7136 range_start - hole_start); 7137 em->start = hole_start; 7138 em->orig_start = hole_start; 7139 /* 7140 * don't adjust block start at all, 7141 * it is fixed at EXTENT_MAP_HOLE 7142 */ 7143 em->block_start = hole_em->block_start; 7144 em->block_len = hole_len; 7145 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7146 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7147 } else { 7148 em->start = range_start; 7149 em->len = found; 7150 em->orig_start = range_start; 7151 em->block_start = EXTENT_MAP_DELALLOC; 7152 em->block_len = found; 7153 } 7154 } else if (hole_em) { 7155 return hole_em; 7156 } 7157 out: 7158 7159 free_extent_map(hole_em); 7160 if (err) { 7161 free_extent_map(em); 7162 return ERR_PTR(err); 7163 } 7164 return em; 7165 } 7166 7167 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7168 const u64 start, 7169 const u64 len, 7170 const u64 orig_start, 7171 const u64 block_start, 7172 const u64 block_len, 7173 const u64 orig_block_len, 7174 const u64 ram_bytes, 7175 const int type) 7176 { 7177 struct extent_map *em = NULL; 7178 int ret; 7179 7180 down_read(&BTRFS_I(inode)->dio_sem); 7181 if (type != BTRFS_ORDERED_NOCOW) { 7182 em = create_pinned_em(inode, start, len, orig_start, 7183 block_start, block_len, orig_block_len, 7184 ram_bytes, type); 7185 if (IS_ERR(em)) 7186 goto out; 7187 } 7188 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7189 len, block_len, type); 7190 if (ret) { 7191 if (em) { 7192 free_extent_map(em); 7193 btrfs_drop_extent_cache(inode, start, 7194 start + len - 1, 0); 7195 } 7196 em = ERR_PTR(ret); 7197 } 7198 out: 7199 up_read(&BTRFS_I(inode)->dio_sem); 7200 7201 return em; 7202 } 7203 7204 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7205 u64 start, u64 len) 7206 { 7207 struct btrfs_root *root = BTRFS_I(inode)->root; 7208 struct extent_map *em; 7209 struct btrfs_key ins; 7210 u64 alloc_hint; 7211 int ret; 7212 7213 alloc_hint = get_extent_allocation_hint(inode, start, len); 7214 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0, 7215 alloc_hint, &ins, 1, 1); 7216 if (ret) 7217 return ERR_PTR(ret); 7218 7219 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7220 ins.objectid, ins.offset, ins.offset, 7221 ins.offset, 0); 7222 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 7223 if (IS_ERR(em)) 7224 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1); 7225 7226 return em; 7227 } 7228 7229 /* 7230 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7231 * block must be cow'd 7232 */ 7233 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7234 u64 *orig_start, u64 *orig_block_len, 7235 u64 *ram_bytes) 7236 { 7237 struct btrfs_trans_handle *trans; 7238 struct btrfs_path *path; 7239 int ret; 7240 struct extent_buffer *leaf; 7241 struct btrfs_root *root = BTRFS_I(inode)->root; 7242 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7243 struct btrfs_file_extent_item *fi; 7244 struct btrfs_key key; 7245 u64 disk_bytenr; 7246 u64 backref_offset; 7247 u64 extent_end; 7248 u64 num_bytes; 7249 int slot; 7250 int found_type; 7251 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7252 7253 path = btrfs_alloc_path(); 7254 if (!path) 7255 return -ENOMEM; 7256 7257 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7258 offset, 0); 7259 if (ret < 0) 7260 goto out; 7261 7262 slot = path->slots[0]; 7263 if (ret == 1) { 7264 if (slot == 0) { 7265 /* can't find the item, must cow */ 7266 ret = 0; 7267 goto out; 7268 } 7269 slot--; 7270 } 7271 ret = 0; 7272 leaf = path->nodes[0]; 7273 btrfs_item_key_to_cpu(leaf, &key, slot); 7274 if (key.objectid != btrfs_ino(inode) || 7275 key.type != BTRFS_EXTENT_DATA_KEY) { 7276 /* not our file or wrong item type, must cow */ 7277 goto out; 7278 } 7279 7280 if (key.offset > offset) { 7281 /* Wrong offset, must cow */ 7282 goto out; 7283 } 7284 7285 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7286 found_type = btrfs_file_extent_type(leaf, fi); 7287 if (found_type != BTRFS_FILE_EXTENT_REG && 7288 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7289 /* not a regular extent, must cow */ 7290 goto out; 7291 } 7292 7293 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7294 goto out; 7295 7296 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7297 if (extent_end <= offset) 7298 goto out; 7299 7300 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7301 if (disk_bytenr == 0) 7302 goto out; 7303 7304 if (btrfs_file_extent_compression(leaf, fi) || 7305 btrfs_file_extent_encryption(leaf, fi) || 7306 btrfs_file_extent_other_encoding(leaf, fi)) 7307 goto out; 7308 7309 backref_offset = btrfs_file_extent_offset(leaf, fi); 7310 7311 if (orig_start) { 7312 *orig_start = key.offset - backref_offset; 7313 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7314 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7315 } 7316 7317 if (btrfs_extent_readonly(root, disk_bytenr)) 7318 goto out; 7319 7320 num_bytes = min(offset + *len, extent_end) - offset; 7321 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7322 u64 range_end; 7323 7324 range_end = round_up(offset + num_bytes, root->sectorsize) - 1; 7325 ret = test_range_bit(io_tree, offset, range_end, 7326 EXTENT_DELALLOC, 0, NULL); 7327 if (ret) { 7328 ret = -EAGAIN; 7329 goto out; 7330 } 7331 } 7332 7333 btrfs_release_path(path); 7334 7335 /* 7336 * look for other files referencing this extent, if we 7337 * find any we must cow 7338 */ 7339 trans = btrfs_join_transaction(root); 7340 if (IS_ERR(trans)) { 7341 ret = 0; 7342 goto out; 7343 } 7344 7345 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 7346 key.offset - backref_offset, disk_bytenr); 7347 btrfs_end_transaction(trans, root); 7348 if (ret) { 7349 ret = 0; 7350 goto out; 7351 } 7352 7353 /* 7354 * adjust disk_bytenr and num_bytes to cover just the bytes 7355 * in this extent we are about to write. If there 7356 * are any csums in that range we have to cow in order 7357 * to keep the csums correct 7358 */ 7359 disk_bytenr += backref_offset; 7360 disk_bytenr += offset - key.offset; 7361 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 7362 goto out; 7363 /* 7364 * all of the above have passed, it is safe to overwrite this extent 7365 * without cow 7366 */ 7367 *len = num_bytes; 7368 ret = 1; 7369 out: 7370 btrfs_free_path(path); 7371 return ret; 7372 } 7373 7374 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end) 7375 { 7376 struct radix_tree_root *root = &inode->i_mapping->page_tree; 7377 int found = false; 7378 void **pagep = NULL; 7379 struct page *page = NULL; 7380 int start_idx; 7381 int end_idx; 7382 7383 start_idx = start >> PAGE_SHIFT; 7384 7385 /* 7386 * end is the last byte in the last page. end == start is legal 7387 */ 7388 end_idx = end >> PAGE_SHIFT; 7389 7390 rcu_read_lock(); 7391 7392 /* Most of the code in this while loop is lifted from 7393 * find_get_page. It's been modified to begin searching from a 7394 * page and return just the first page found in that range. If the 7395 * found idx is less than or equal to the end idx then we know that 7396 * a page exists. If no pages are found or if those pages are 7397 * outside of the range then we're fine (yay!) */ 7398 while (page == NULL && 7399 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) { 7400 page = radix_tree_deref_slot(pagep); 7401 if (unlikely(!page)) 7402 break; 7403 7404 if (radix_tree_exception(page)) { 7405 if (radix_tree_deref_retry(page)) { 7406 page = NULL; 7407 continue; 7408 } 7409 /* 7410 * Otherwise, shmem/tmpfs must be storing a swap entry 7411 * here as an exceptional entry: so return it without 7412 * attempting to raise page count. 7413 */ 7414 page = NULL; 7415 break; /* TODO: Is this relevant for this use case? */ 7416 } 7417 7418 if (!page_cache_get_speculative(page)) { 7419 page = NULL; 7420 continue; 7421 } 7422 7423 /* 7424 * Has the page moved? 7425 * This is part of the lockless pagecache protocol. See 7426 * include/linux/pagemap.h for details. 7427 */ 7428 if (unlikely(page != *pagep)) { 7429 put_page(page); 7430 page = NULL; 7431 } 7432 } 7433 7434 if (page) { 7435 if (page->index <= end_idx) 7436 found = true; 7437 put_page(page); 7438 } 7439 7440 rcu_read_unlock(); 7441 return found; 7442 } 7443 7444 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7445 struct extent_state **cached_state, int writing) 7446 { 7447 struct btrfs_ordered_extent *ordered; 7448 int ret = 0; 7449 7450 while (1) { 7451 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7452 cached_state); 7453 /* 7454 * We're concerned with the entire range that we're going to be 7455 * doing DIO to, so we need to make sure there's no ordered 7456 * extents in this range. 7457 */ 7458 ordered = btrfs_lookup_ordered_range(inode, lockstart, 7459 lockend - lockstart + 1); 7460 7461 /* 7462 * We need to make sure there are no buffered pages in this 7463 * range either, we could have raced between the invalidate in 7464 * generic_file_direct_write and locking the extent. The 7465 * invalidate needs to happen so that reads after a write do not 7466 * get stale data. 7467 */ 7468 if (!ordered && 7469 (!writing || 7470 !btrfs_page_exists_in_range(inode, lockstart, lockend))) 7471 break; 7472 7473 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7474 cached_state, GFP_NOFS); 7475 7476 if (ordered) { 7477 /* 7478 * If we are doing a DIO read and the ordered extent we 7479 * found is for a buffered write, we can not wait for it 7480 * to complete and retry, because if we do so we can 7481 * deadlock with concurrent buffered writes on page 7482 * locks. This happens only if our DIO read covers more 7483 * than one extent map, if at this point has already 7484 * created an ordered extent for a previous extent map 7485 * and locked its range in the inode's io tree, and a 7486 * concurrent write against that previous extent map's 7487 * range and this range started (we unlock the ranges 7488 * in the io tree only when the bios complete and 7489 * buffered writes always lock pages before attempting 7490 * to lock range in the io tree). 7491 */ 7492 if (writing || 7493 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7494 btrfs_start_ordered_extent(inode, ordered, 1); 7495 else 7496 ret = -ENOTBLK; 7497 btrfs_put_ordered_extent(ordered); 7498 } else { 7499 /* 7500 * We could trigger writeback for this range (and wait 7501 * for it to complete) and then invalidate the pages for 7502 * this range (through invalidate_inode_pages2_range()), 7503 * but that can lead us to a deadlock with a concurrent 7504 * call to readpages() (a buffered read or a defrag call 7505 * triggered a readahead) on a page lock due to an 7506 * ordered dio extent we created before but did not have 7507 * yet a corresponding bio submitted (whence it can not 7508 * complete), which makes readpages() wait for that 7509 * ordered extent to complete while holding a lock on 7510 * that page. 7511 */ 7512 ret = -ENOTBLK; 7513 } 7514 7515 if (ret) 7516 break; 7517 7518 cond_resched(); 7519 } 7520 7521 return ret; 7522 } 7523 7524 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 7525 u64 len, u64 orig_start, 7526 u64 block_start, u64 block_len, 7527 u64 orig_block_len, u64 ram_bytes, 7528 int type) 7529 { 7530 struct extent_map_tree *em_tree; 7531 struct extent_map *em; 7532 struct btrfs_root *root = BTRFS_I(inode)->root; 7533 int ret; 7534 7535 em_tree = &BTRFS_I(inode)->extent_tree; 7536 em = alloc_extent_map(); 7537 if (!em) 7538 return ERR_PTR(-ENOMEM); 7539 7540 em->start = start; 7541 em->orig_start = orig_start; 7542 em->mod_start = start; 7543 em->mod_len = len; 7544 em->len = len; 7545 em->block_len = block_len; 7546 em->block_start = block_start; 7547 em->bdev = root->fs_info->fs_devices->latest_bdev; 7548 em->orig_block_len = orig_block_len; 7549 em->ram_bytes = ram_bytes; 7550 em->generation = -1; 7551 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7552 if (type == BTRFS_ORDERED_PREALLOC) 7553 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7554 7555 do { 7556 btrfs_drop_extent_cache(inode, em->start, 7557 em->start + em->len - 1, 0); 7558 write_lock(&em_tree->lock); 7559 ret = add_extent_mapping(em_tree, em, 1); 7560 write_unlock(&em_tree->lock); 7561 } while (ret == -EEXIST); 7562 7563 if (ret) { 7564 free_extent_map(em); 7565 return ERR_PTR(ret); 7566 } 7567 7568 return em; 7569 } 7570 7571 static void adjust_dio_outstanding_extents(struct inode *inode, 7572 struct btrfs_dio_data *dio_data, 7573 const u64 len) 7574 { 7575 unsigned num_extents; 7576 7577 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1, 7578 BTRFS_MAX_EXTENT_SIZE); 7579 /* 7580 * If we have an outstanding_extents count still set then we're 7581 * within our reservation, otherwise we need to adjust our inode 7582 * counter appropriately. 7583 */ 7584 if (dio_data->outstanding_extents) { 7585 dio_data->outstanding_extents -= num_extents; 7586 } else { 7587 spin_lock(&BTRFS_I(inode)->lock); 7588 BTRFS_I(inode)->outstanding_extents += num_extents; 7589 spin_unlock(&BTRFS_I(inode)->lock); 7590 } 7591 } 7592 7593 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7594 struct buffer_head *bh_result, int create) 7595 { 7596 struct extent_map *em; 7597 struct btrfs_root *root = BTRFS_I(inode)->root; 7598 struct extent_state *cached_state = NULL; 7599 struct btrfs_dio_data *dio_data = NULL; 7600 u64 start = iblock << inode->i_blkbits; 7601 u64 lockstart, lockend; 7602 u64 len = bh_result->b_size; 7603 int unlock_bits = EXTENT_LOCKED; 7604 int ret = 0; 7605 7606 if (create) 7607 unlock_bits |= EXTENT_DIRTY; 7608 else 7609 len = min_t(u64, len, root->sectorsize); 7610 7611 lockstart = start; 7612 lockend = start + len - 1; 7613 7614 if (current->journal_info) { 7615 /* 7616 * Need to pull our outstanding extents and set journal_info to NULL so 7617 * that anything that needs to check if there's a transaction doesn't get 7618 * confused. 7619 */ 7620 dio_data = current->journal_info; 7621 current->journal_info = NULL; 7622 } 7623 7624 /* 7625 * If this errors out it's because we couldn't invalidate pagecache for 7626 * this range and we need to fallback to buffered. 7627 */ 7628 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7629 create)) { 7630 ret = -ENOTBLK; 7631 goto err; 7632 } 7633 7634 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7635 if (IS_ERR(em)) { 7636 ret = PTR_ERR(em); 7637 goto unlock_err; 7638 } 7639 7640 /* 7641 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7642 * io. INLINE is special, and we could probably kludge it in here, but 7643 * it's still buffered so for safety lets just fall back to the generic 7644 * buffered path. 7645 * 7646 * For COMPRESSED we _have_ to read the entire extent in so we can 7647 * decompress it, so there will be buffering required no matter what we 7648 * do, so go ahead and fallback to buffered. 7649 * 7650 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7651 * to buffered IO. Don't blame me, this is the price we pay for using 7652 * the generic code. 7653 */ 7654 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7655 em->block_start == EXTENT_MAP_INLINE) { 7656 free_extent_map(em); 7657 ret = -ENOTBLK; 7658 goto unlock_err; 7659 } 7660 7661 /* Just a good old fashioned hole, return */ 7662 if (!create && (em->block_start == EXTENT_MAP_HOLE || 7663 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7664 free_extent_map(em); 7665 goto unlock_err; 7666 } 7667 7668 /* 7669 * We don't allocate a new extent in the following cases 7670 * 7671 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7672 * existing extent. 7673 * 2) The extent is marked as PREALLOC. We're good to go here and can 7674 * just use the extent. 7675 * 7676 */ 7677 if (!create) { 7678 len = min(len, em->len - (start - em->start)); 7679 lockstart = start + len; 7680 goto unlock; 7681 } 7682 7683 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7684 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7685 em->block_start != EXTENT_MAP_HOLE)) { 7686 int type; 7687 u64 block_start, orig_start, orig_block_len, ram_bytes; 7688 7689 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7690 type = BTRFS_ORDERED_PREALLOC; 7691 else 7692 type = BTRFS_ORDERED_NOCOW; 7693 len = min(len, em->len - (start - em->start)); 7694 block_start = em->block_start + (start - em->start); 7695 7696 if (can_nocow_extent(inode, start, &len, &orig_start, 7697 &orig_block_len, &ram_bytes) == 1 && 7698 btrfs_inc_nocow_writers(root->fs_info, block_start)) { 7699 struct extent_map *em2; 7700 7701 em2 = btrfs_create_dio_extent(inode, start, len, 7702 orig_start, block_start, 7703 len, orig_block_len, 7704 ram_bytes, type); 7705 btrfs_dec_nocow_writers(root->fs_info, block_start); 7706 if (type == BTRFS_ORDERED_PREALLOC) { 7707 free_extent_map(em); 7708 em = em2; 7709 } 7710 if (em2 && IS_ERR(em2)) { 7711 ret = PTR_ERR(em2); 7712 goto unlock_err; 7713 } 7714 goto unlock; 7715 } 7716 } 7717 7718 /* 7719 * this will cow the extent, reset the len in case we changed 7720 * it above 7721 */ 7722 len = bh_result->b_size; 7723 free_extent_map(em); 7724 em = btrfs_new_extent_direct(inode, start, len); 7725 if (IS_ERR(em)) { 7726 ret = PTR_ERR(em); 7727 goto unlock_err; 7728 } 7729 len = min(len, em->len - (start - em->start)); 7730 unlock: 7731 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7732 inode->i_blkbits; 7733 bh_result->b_size = len; 7734 bh_result->b_bdev = em->bdev; 7735 set_buffer_mapped(bh_result); 7736 if (create) { 7737 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7738 set_buffer_new(bh_result); 7739 7740 /* 7741 * Need to update the i_size under the extent lock so buffered 7742 * readers will get the updated i_size when we unlock. 7743 */ 7744 if (start + len > i_size_read(inode)) 7745 i_size_write(inode, start + len); 7746 7747 adjust_dio_outstanding_extents(inode, dio_data, len); 7748 btrfs_free_reserved_data_space(inode, start, len); 7749 WARN_ON(dio_data->reserve < len); 7750 dio_data->reserve -= len; 7751 dio_data->unsubmitted_oe_range_end = start + len; 7752 current->journal_info = dio_data; 7753 } 7754 7755 /* 7756 * In the case of write we need to clear and unlock the entire range, 7757 * in the case of read we need to unlock only the end area that we 7758 * aren't using if there is any left over space. 7759 */ 7760 if (lockstart < lockend) { 7761 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7762 lockend, unlock_bits, 1, 0, 7763 &cached_state, GFP_NOFS); 7764 } else { 7765 free_extent_state(cached_state); 7766 } 7767 7768 free_extent_map(em); 7769 7770 return 0; 7771 7772 unlock_err: 7773 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7774 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 7775 err: 7776 if (dio_data) 7777 current->journal_info = dio_data; 7778 /* 7779 * Compensate the delalloc release we do in btrfs_direct_IO() when we 7780 * write less data then expected, so that we don't underflow our inode's 7781 * outstanding extents counter. 7782 */ 7783 if (create && dio_data) 7784 adjust_dio_outstanding_extents(inode, dio_data, len); 7785 7786 return ret; 7787 } 7788 7789 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7790 int rw, int mirror_num) 7791 { 7792 struct btrfs_root *root = BTRFS_I(inode)->root; 7793 int ret; 7794 7795 BUG_ON(rw & REQ_WRITE); 7796 7797 bio_get(bio); 7798 7799 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 7800 BTRFS_WQ_ENDIO_DIO_REPAIR); 7801 if (ret) 7802 goto err; 7803 7804 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 7805 err: 7806 bio_put(bio); 7807 return ret; 7808 } 7809 7810 static int btrfs_check_dio_repairable(struct inode *inode, 7811 struct bio *failed_bio, 7812 struct io_failure_record *failrec, 7813 int failed_mirror) 7814 { 7815 int num_copies; 7816 7817 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 7818 failrec->logical, failrec->len); 7819 if (num_copies == 1) { 7820 /* 7821 * we only have a single copy of the data, so don't bother with 7822 * all the retry and error correction code that follows. no 7823 * matter what the error is, it is very likely to persist. 7824 */ 7825 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 7826 num_copies, failrec->this_mirror, failed_mirror); 7827 return 0; 7828 } 7829 7830 failrec->failed_mirror = failed_mirror; 7831 failrec->this_mirror++; 7832 if (failrec->this_mirror == failed_mirror) 7833 failrec->this_mirror++; 7834 7835 if (failrec->this_mirror > num_copies) { 7836 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 7837 num_copies, failrec->this_mirror, failed_mirror); 7838 return 0; 7839 } 7840 7841 return 1; 7842 } 7843 7844 static int dio_read_error(struct inode *inode, struct bio *failed_bio, 7845 struct page *page, unsigned int pgoff, 7846 u64 start, u64 end, int failed_mirror, 7847 bio_end_io_t *repair_endio, void *repair_arg) 7848 { 7849 struct io_failure_record *failrec; 7850 struct bio *bio; 7851 int isector; 7852 int read_mode; 7853 int ret; 7854 7855 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 7856 7857 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7858 if (ret) 7859 return ret; 7860 7861 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7862 failed_mirror); 7863 if (!ret) { 7864 free_io_failure(inode, failrec); 7865 return -EIO; 7866 } 7867 7868 if ((failed_bio->bi_vcnt > 1) 7869 || (failed_bio->bi_io_vec->bv_len 7870 > BTRFS_I(inode)->root->sectorsize)) 7871 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 7872 else 7873 read_mode = READ_SYNC; 7874 7875 isector = start - btrfs_io_bio(failed_bio)->logical; 7876 isector >>= inode->i_sb->s_blocksize_bits; 7877 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7878 pgoff, isector, repair_endio, repair_arg); 7879 if (!bio) { 7880 free_io_failure(inode, failrec); 7881 return -EIO; 7882 } 7883 7884 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7885 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n", 7886 read_mode, failrec->this_mirror, failrec->in_validation); 7887 7888 ret = submit_dio_repair_bio(inode, bio, read_mode, 7889 failrec->this_mirror); 7890 if (ret) { 7891 free_io_failure(inode, failrec); 7892 bio_put(bio); 7893 } 7894 7895 return ret; 7896 } 7897 7898 struct btrfs_retry_complete { 7899 struct completion done; 7900 struct inode *inode; 7901 u64 start; 7902 int uptodate; 7903 }; 7904 7905 static void btrfs_retry_endio_nocsum(struct bio *bio) 7906 { 7907 struct btrfs_retry_complete *done = bio->bi_private; 7908 struct inode *inode; 7909 struct bio_vec *bvec; 7910 int i; 7911 7912 if (bio->bi_error) 7913 goto end; 7914 7915 ASSERT(bio->bi_vcnt == 1); 7916 inode = bio->bi_io_vec->bv_page->mapping->host; 7917 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 7918 7919 done->uptodate = 1; 7920 bio_for_each_segment_all(bvec, bio, i) 7921 clean_io_failure(done->inode, done->start, bvec->bv_page, 0); 7922 end: 7923 complete(&done->done); 7924 bio_put(bio); 7925 } 7926 7927 static int __btrfs_correct_data_nocsum(struct inode *inode, 7928 struct btrfs_io_bio *io_bio) 7929 { 7930 struct btrfs_fs_info *fs_info; 7931 struct bio_vec *bvec; 7932 struct btrfs_retry_complete done; 7933 u64 start; 7934 unsigned int pgoff; 7935 u32 sectorsize; 7936 int nr_sectors; 7937 int i; 7938 int ret; 7939 7940 fs_info = BTRFS_I(inode)->root->fs_info; 7941 sectorsize = BTRFS_I(inode)->root->sectorsize; 7942 7943 start = io_bio->logical; 7944 done.inode = inode; 7945 7946 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 7947 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 7948 pgoff = bvec->bv_offset; 7949 7950 next_block_or_try_again: 7951 done.uptodate = 0; 7952 done.start = start; 7953 init_completion(&done.done); 7954 7955 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 7956 pgoff, start, start + sectorsize - 1, 7957 io_bio->mirror_num, 7958 btrfs_retry_endio_nocsum, &done); 7959 if (ret) 7960 return ret; 7961 7962 wait_for_completion(&done.done); 7963 7964 if (!done.uptodate) { 7965 /* We might have another mirror, so try again */ 7966 goto next_block_or_try_again; 7967 } 7968 7969 start += sectorsize; 7970 7971 if (nr_sectors--) { 7972 pgoff += sectorsize; 7973 goto next_block_or_try_again; 7974 } 7975 } 7976 7977 return 0; 7978 } 7979 7980 static void btrfs_retry_endio(struct bio *bio) 7981 { 7982 struct btrfs_retry_complete *done = bio->bi_private; 7983 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7984 struct inode *inode; 7985 struct bio_vec *bvec; 7986 u64 start; 7987 int uptodate; 7988 int ret; 7989 int i; 7990 7991 if (bio->bi_error) 7992 goto end; 7993 7994 uptodate = 1; 7995 7996 start = done->start; 7997 7998 ASSERT(bio->bi_vcnt == 1); 7999 inode = bio->bi_io_vec->bv_page->mapping->host; 8000 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize); 8001 8002 bio_for_each_segment_all(bvec, bio, i) { 8003 ret = __readpage_endio_check(done->inode, io_bio, i, 8004 bvec->bv_page, bvec->bv_offset, 8005 done->start, bvec->bv_len); 8006 if (!ret) 8007 clean_io_failure(done->inode, done->start, 8008 bvec->bv_page, bvec->bv_offset); 8009 else 8010 uptodate = 0; 8011 } 8012 8013 done->uptodate = uptodate; 8014 end: 8015 complete(&done->done); 8016 bio_put(bio); 8017 } 8018 8019 static int __btrfs_subio_endio_read(struct inode *inode, 8020 struct btrfs_io_bio *io_bio, int err) 8021 { 8022 struct btrfs_fs_info *fs_info; 8023 struct bio_vec *bvec; 8024 struct btrfs_retry_complete done; 8025 u64 start; 8026 u64 offset = 0; 8027 u32 sectorsize; 8028 int nr_sectors; 8029 unsigned int pgoff; 8030 int csum_pos; 8031 int i; 8032 int ret; 8033 8034 fs_info = BTRFS_I(inode)->root->fs_info; 8035 sectorsize = BTRFS_I(inode)->root->sectorsize; 8036 8037 err = 0; 8038 start = io_bio->logical; 8039 done.inode = inode; 8040 8041 bio_for_each_segment_all(bvec, &io_bio->bio, i) { 8042 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 8043 8044 pgoff = bvec->bv_offset; 8045 next_block: 8046 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8047 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8048 bvec->bv_page, pgoff, start, 8049 sectorsize); 8050 if (likely(!ret)) 8051 goto next; 8052 try_again: 8053 done.uptodate = 0; 8054 done.start = start; 8055 init_completion(&done.done); 8056 8057 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, 8058 pgoff, start, start + sectorsize - 1, 8059 io_bio->mirror_num, 8060 btrfs_retry_endio, &done); 8061 if (ret) { 8062 err = ret; 8063 goto next; 8064 } 8065 8066 wait_for_completion(&done.done); 8067 8068 if (!done.uptodate) { 8069 /* We might have another mirror, so try again */ 8070 goto try_again; 8071 } 8072 next: 8073 offset += sectorsize; 8074 start += sectorsize; 8075 8076 ASSERT(nr_sectors); 8077 8078 if (--nr_sectors) { 8079 pgoff += sectorsize; 8080 goto next_block; 8081 } 8082 } 8083 8084 return err; 8085 } 8086 8087 static int btrfs_subio_endio_read(struct inode *inode, 8088 struct btrfs_io_bio *io_bio, int err) 8089 { 8090 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8091 8092 if (skip_csum) { 8093 if (unlikely(err)) 8094 return __btrfs_correct_data_nocsum(inode, io_bio); 8095 else 8096 return 0; 8097 } else { 8098 return __btrfs_subio_endio_read(inode, io_bio, err); 8099 } 8100 } 8101 8102 static void btrfs_endio_direct_read(struct bio *bio) 8103 { 8104 struct btrfs_dio_private *dip = bio->bi_private; 8105 struct inode *inode = dip->inode; 8106 struct bio *dio_bio; 8107 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8108 int err = bio->bi_error; 8109 8110 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8111 err = btrfs_subio_endio_read(inode, io_bio, err); 8112 8113 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8114 dip->logical_offset + dip->bytes - 1); 8115 dio_bio = dip->dio_bio; 8116 8117 kfree(dip); 8118 8119 dio_bio->bi_error = bio->bi_error; 8120 dio_end_io(dio_bio, bio->bi_error); 8121 8122 if (io_bio->end_io) 8123 io_bio->end_io(io_bio, err); 8124 bio_put(bio); 8125 } 8126 8127 static void btrfs_endio_direct_write_update_ordered(struct inode *inode, 8128 const u64 offset, 8129 const u64 bytes, 8130 const int uptodate) 8131 { 8132 struct btrfs_root *root = BTRFS_I(inode)->root; 8133 struct btrfs_ordered_extent *ordered = NULL; 8134 u64 ordered_offset = offset; 8135 u64 ordered_bytes = bytes; 8136 int ret; 8137 8138 again: 8139 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 8140 &ordered_offset, 8141 ordered_bytes, 8142 uptodate); 8143 if (!ret) 8144 goto out_test; 8145 8146 btrfs_init_work(&ordered->work, btrfs_endio_write_helper, 8147 finish_ordered_fn, NULL, NULL); 8148 btrfs_queue_work(root->fs_info->endio_write_workers, 8149 &ordered->work); 8150 out_test: 8151 /* 8152 * our bio might span multiple ordered extents. If we haven't 8153 * completed the accounting for the whole dio, go back and try again 8154 */ 8155 if (ordered_offset < offset + bytes) { 8156 ordered_bytes = offset + bytes - ordered_offset; 8157 ordered = NULL; 8158 goto again; 8159 } 8160 } 8161 8162 static void btrfs_endio_direct_write(struct bio *bio) 8163 { 8164 struct btrfs_dio_private *dip = bio->bi_private; 8165 struct bio *dio_bio = dip->dio_bio; 8166 8167 btrfs_endio_direct_write_update_ordered(dip->inode, 8168 dip->logical_offset, 8169 dip->bytes, 8170 !bio->bi_error); 8171 8172 kfree(dip); 8173 8174 dio_bio->bi_error = bio->bi_error; 8175 dio_end_io(dio_bio, bio->bi_error); 8176 bio_put(bio); 8177 } 8178 8179 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 8180 struct bio *bio, int mirror_num, 8181 unsigned long bio_flags, u64 offset) 8182 { 8183 int ret; 8184 struct btrfs_root *root = BTRFS_I(inode)->root; 8185 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 8186 BUG_ON(ret); /* -ENOMEM */ 8187 return 0; 8188 } 8189 8190 static void btrfs_end_dio_bio(struct bio *bio) 8191 { 8192 struct btrfs_dio_private *dip = bio->bi_private; 8193 int err = bio->bi_error; 8194 8195 if (err) 8196 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8197 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d", 8198 btrfs_ino(dip->inode), bio->bi_rw, 8199 (unsigned long long)bio->bi_iter.bi_sector, 8200 bio->bi_iter.bi_size, err); 8201 8202 if (dip->subio_endio) 8203 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8204 8205 if (err) { 8206 dip->errors = 1; 8207 8208 /* 8209 * before atomic variable goto zero, we must make sure 8210 * dip->errors is perceived to be set. 8211 */ 8212 smp_mb__before_atomic(); 8213 } 8214 8215 /* if there are more bios still pending for this dio, just exit */ 8216 if (!atomic_dec_and_test(&dip->pending_bios)) 8217 goto out; 8218 8219 if (dip->errors) { 8220 bio_io_error(dip->orig_bio); 8221 } else { 8222 dip->dio_bio->bi_error = 0; 8223 bio_endio(dip->orig_bio); 8224 } 8225 out: 8226 bio_put(bio); 8227 } 8228 8229 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 8230 u64 first_sector, gfp_t gfp_flags) 8231 { 8232 struct bio *bio; 8233 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags); 8234 if (bio) 8235 bio_associate_current(bio); 8236 return bio; 8237 } 8238 8239 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root, 8240 struct inode *inode, 8241 struct btrfs_dio_private *dip, 8242 struct bio *bio, 8243 u64 file_offset) 8244 { 8245 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8246 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8247 int ret; 8248 8249 /* 8250 * We load all the csum data we need when we submit 8251 * the first bio to reduce the csum tree search and 8252 * contention. 8253 */ 8254 if (dip->logical_offset == file_offset) { 8255 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio, 8256 file_offset); 8257 if (ret) 8258 return ret; 8259 } 8260 8261 if (bio == dip->orig_bio) 8262 return 0; 8263 8264 file_offset -= dip->logical_offset; 8265 file_offset >>= inode->i_sb->s_blocksize_bits; 8266 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8267 8268 return 0; 8269 } 8270 8271 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 8272 int rw, u64 file_offset, int skip_sum, 8273 int async_submit) 8274 { 8275 struct btrfs_dio_private *dip = bio->bi_private; 8276 int write = rw & REQ_WRITE; 8277 struct btrfs_root *root = BTRFS_I(inode)->root; 8278 int ret; 8279 8280 if (async_submit) 8281 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8282 8283 bio_get(bio); 8284 8285 if (!write) { 8286 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 8287 BTRFS_WQ_ENDIO_DATA); 8288 if (ret) 8289 goto err; 8290 } 8291 8292 if (skip_sum) 8293 goto map; 8294 8295 if (write && async_submit) { 8296 ret = btrfs_wq_submit_bio(root->fs_info, 8297 inode, rw, bio, 0, 0, 8298 file_offset, 8299 __btrfs_submit_bio_start_direct_io, 8300 __btrfs_submit_bio_done); 8301 goto err; 8302 } else if (write) { 8303 /* 8304 * If we aren't doing async submit, calculate the csum of the 8305 * bio now. 8306 */ 8307 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 8308 if (ret) 8309 goto err; 8310 } else { 8311 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio, 8312 file_offset); 8313 if (ret) 8314 goto err; 8315 } 8316 map: 8317 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 8318 err: 8319 bio_put(bio); 8320 return ret; 8321 } 8322 8323 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 8324 int skip_sum) 8325 { 8326 struct inode *inode = dip->inode; 8327 struct btrfs_root *root = BTRFS_I(inode)->root; 8328 struct bio *bio; 8329 struct bio *orig_bio = dip->orig_bio; 8330 struct bio_vec *bvec = orig_bio->bi_io_vec; 8331 u64 start_sector = orig_bio->bi_iter.bi_sector; 8332 u64 file_offset = dip->logical_offset; 8333 u64 submit_len = 0; 8334 u64 map_length; 8335 u32 blocksize = root->sectorsize; 8336 int async_submit = 0; 8337 int nr_sectors; 8338 int ret; 8339 int i; 8340 8341 map_length = orig_bio->bi_iter.bi_size; 8342 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9, 8343 &map_length, NULL, 0); 8344 if (ret) 8345 return -EIO; 8346 8347 if (map_length >= orig_bio->bi_iter.bi_size) { 8348 bio = orig_bio; 8349 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8350 goto submit; 8351 } 8352 8353 /* async crcs make it difficult to collect full stripe writes. */ 8354 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8355 async_submit = 0; 8356 else 8357 async_submit = 1; 8358 8359 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 8360 if (!bio) 8361 return -ENOMEM; 8362 8363 bio->bi_private = dip; 8364 bio->bi_end_io = btrfs_end_dio_bio; 8365 btrfs_io_bio(bio)->logical = file_offset; 8366 atomic_inc(&dip->pending_bios); 8367 8368 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 8369 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len); 8370 i = 0; 8371 next_block: 8372 if (unlikely(map_length < submit_len + blocksize || 8373 bio_add_page(bio, bvec->bv_page, blocksize, 8374 bvec->bv_offset + (i * blocksize)) < blocksize)) { 8375 /* 8376 * inc the count before we submit the bio so 8377 * we know the end IO handler won't happen before 8378 * we inc the count. Otherwise, the dip might get freed 8379 * before we're done setting it up 8380 */ 8381 atomic_inc(&dip->pending_bios); 8382 ret = __btrfs_submit_dio_bio(bio, inode, rw, 8383 file_offset, skip_sum, 8384 async_submit); 8385 if (ret) { 8386 bio_put(bio); 8387 atomic_dec(&dip->pending_bios); 8388 goto out_err; 8389 } 8390 8391 start_sector += submit_len >> 9; 8392 file_offset += submit_len; 8393 8394 submit_len = 0; 8395 8396 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 8397 start_sector, GFP_NOFS); 8398 if (!bio) 8399 goto out_err; 8400 bio->bi_private = dip; 8401 bio->bi_end_io = btrfs_end_dio_bio; 8402 btrfs_io_bio(bio)->logical = file_offset; 8403 8404 map_length = orig_bio->bi_iter.bi_size; 8405 ret = btrfs_map_block(root->fs_info, rw, 8406 start_sector << 9, 8407 &map_length, NULL, 0); 8408 if (ret) { 8409 bio_put(bio); 8410 goto out_err; 8411 } 8412 8413 goto next_block; 8414 } else { 8415 submit_len += blocksize; 8416 if (--nr_sectors) { 8417 i++; 8418 goto next_block; 8419 } 8420 bvec++; 8421 } 8422 } 8423 8424 submit: 8425 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 8426 async_submit); 8427 if (!ret) 8428 return 0; 8429 8430 bio_put(bio); 8431 out_err: 8432 dip->errors = 1; 8433 /* 8434 * before atomic variable goto zero, we must 8435 * make sure dip->errors is perceived to be set. 8436 */ 8437 smp_mb__before_atomic(); 8438 if (atomic_dec_and_test(&dip->pending_bios)) 8439 bio_io_error(dip->orig_bio); 8440 8441 /* bio_end_io() will handle error, so we needn't return it */ 8442 return 0; 8443 } 8444 8445 static void btrfs_submit_direct(int rw, struct bio *dio_bio, 8446 struct inode *inode, loff_t file_offset) 8447 { 8448 struct btrfs_dio_private *dip = NULL; 8449 struct bio *io_bio = NULL; 8450 struct btrfs_io_bio *btrfs_bio; 8451 int skip_sum; 8452 int write = rw & REQ_WRITE; 8453 int ret = 0; 8454 8455 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8456 8457 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS); 8458 if (!io_bio) { 8459 ret = -ENOMEM; 8460 goto free_ordered; 8461 } 8462 8463 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8464 if (!dip) { 8465 ret = -ENOMEM; 8466 goto free_ordered; 8467 } 8468 8469 dip->private = dio_bio->bi_private; 8470 dip->inode = inode; 8471 dip->logical_offset = file_offset; 8472 dip->bytes = dio_bio->bi_iter.bi_size; 8473 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8474 io_bio->bi_private = dip; 8475 dip->orig_bio = io_bio; 8476 dip->dio_bio = dio_bio; 8477 atomic_set(&dip->pending_bios, 0); 8478 btrfs_bio = btrfs_io_bio(io_bio); 8479 btrfs_bio->logical = file_offset; 8480 8481 if (write) { 8482 io_bio->bi_end_io = btrfs_endio_direct_write; 8483 } else { 8484 io_bio->bi_end_io = btrfs_endio_direct_read; 8485 dip->subio_endio = btrfs_subio_endio_read; 8486 } 8487 8488 /* 8489 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8490 * even if we fail to submit a bio, because in such case we do the 8491 * corresponding error handling below and it must not be done a second 8492 * time by btrfs_direct_IO(). 8493 */ 8494 if (write) { 8495 struct btrfs_dio_data *dio_data = current->journal_info; 8496 8497 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8498 dip->bytes; 8499 dio_data->unsubmitted_oe_range_start = 8500 dio_data->unsubmitted_oe_range_end; 8501 } 8502 8503 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 8504 if (!ret) 8505 return; 8506 8507 if (btrfs_bio->end_io) 8508 btrfs_bio->end_io(btrfs_bio, ret); 8509 8510 free_ordered: 8511 /* 8512 * If we arrived here it means either we failed to submit the dip 8513 * or we either failed to clone the dio_bio or failed to allocate the 8514 * dip. If we cloned the dio_bio and allocated the dip, we can just 8515 * call bio_endio against our io_bio so that we get proper resource 8516 * cleanup if we fail to submit the dip, otherwise, we must do the 8517 * same as btrfs_endio_direct_[write|read] because we can't call these 8518 * callbacks - they require an allocated dip and a clone of dio_bio. 8519 */ 8520 if (io_bio && dip) { 8521 io_bio->bi_error = -EIO; 8522 bio_endio(io_bio); 8523 /* 8524 * The end io callbacks free our dip, do the final put on io_bio 8525 * and all the cleanup and final put for dio_bio (through 8526 * dio_end_io()). 8527 */ 8528 dip = NULL; 8529 io_bio = NULL; 8530 } else { 8531 if (write) 8532 btrfs_endio_direct_write_update_ordered(inode, 8533 file_offset, 8534 dio_bio->bi_iter.bi_size, 8535 0); 8536 else 8537 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8538 file_offset + dio_bio->bi_iter.bi_size - 1); 8539 8540 dio_bio->bi_error = -EIO; 8541 /* 8542 * Releases and cleans up our dio_bio, no need to bio_put() 8543 * nor bio_endio()/bio_io_error() against dio_bio. 8544 */ 8545 dio_end_io(dio_bio, ret); 8546 } 8547 if (io_bio) 8548 bio_put(io_bio); 8549 kfree(dip); 8550 } 8551 8552 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb, 8553 const struct iov_iter *iter, loff_t offset) 8554 { 8555 int seg; 8556 int i; 8557 unsigned blocksize_mask = root->sectorsize - 1; 8558 ssize_t retval = -EINVAL; 8559 8560 if (offset & blocksize_mask) 8561 goto out; 8562 8563 if (iov_iter_alignment(iter) & blocksize_mask) 8564 goto out; 8565 8566 /* If this is a write we don't need to check anymore */ 8567 if (iov_iter_rw(iter) == WRITE) 8568 return 0; 8569 /* 8570 * Check to make sure we don't have duplicate iov_base's in this 8571 * iovec, if so return EINVAL, otherwise we'll get csum errors 8572 * when reading back. 8573 */ 8574 for (seg = 0; seg < iter->nr_segs; seg++) { 8575 for (i = seg + 1; i < iter->nr_segs; i++) { 8576 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8577 goto out; 8578 } 8579 } 8580 retval = 0; 8581 out: 8582 return retval; 8583 } 8584 8585 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8586 { 8587 struct file *file = iocb->ki_filp; 8588 struct inode *inode = file->f_mapping->host; 8589 struct btrfs_root *root = BTRFS_I(inode)->root; 8590 struct btrfs_dio_data dio_data = { 0 }; 8591 loff_t offset = iocb->ki_pos; 8592 size_t count = 0; 8593 int flags = 0; 8594 bool wakeup = true; 8595 bool relock = false; 8596 ssize_t ret; 8597 8598 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset)) 8599 return 0; 8600 8601 inode_dio_begin(inode); 8602 smp_mb__after_atomic(); 8603 8604 /* 8605 * The generic stuff only does filemap_write_and_wait_range, which 8606 * isn't enough if we've written compressed pages to this area, so 8607 * we need to flush the dirty pages again to make absolutely sure 8608 * that any outstanding dirty pages are on disk. 8609 */ 8610 count = iov_iter_count(iter); 8611 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8612 &BTRFS_I(inode)->runtime_flags)) 8613 filemap_fdatawrite_range(inode->i_mapping, offset, 8614 offset + count - 1); 8615 8616 if (iov_iter_rw(iter) == WRITE) { 8617 /* 8618 * If the write DIO is beyond the EOF, we need update 8619 * the isize, but it is protected by i_mutex. So we can 8620 * not unlock the i_mutex at this case. 8621 */ 8622 if (offset + count <= inode->i_size) { 8623 inode_unlock(inode); 8624 relock = true; 8625 } 8626 ret = btrfs_delalloc_reserve_space(inode, offset, count); 8627 if (ret) 8628 goto out; 8629 dio_data.outstanding_extents = div64_u64(count + 8630 BTRFS_MAX_EXTENT_SIZE - 1, 8631 BTRFS_MAX_EXTENT_SIZE); 8632 8633 /* 8634 * We need to know how many extents we reserved so that we can 8635 * do the accounting properly if we go over the number we 8636 * originally calculated. Abuse current->journal_info for this. 8637 */ 8638 dio_data.reserve = round_up(count, root->sectorsize); 8639 dio_data.unsubmitted_oe_range_start = (u64)offset; 8640 dio_data.unsubmitted_oe_range_end = (u64)offset; 8641 current->journal_info = &dio_data; 8642 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8643 &BTRFS_I(inode)->runtime_flags)) { 8644 inode_dio_end(inode); 8645 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8646 wakeup = false; 8647 } 8648 8649 ret = __blockdev_direct_IO(iocb, inode, 8650 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 8651 iter, btrfs_get_blocks_direct, NULL, 8652 btrfs_submit_direct, flags); 8653 if (iov_iter_rw(iter) == WRITE) { 8654 current->journal_info = NULL; 8655 if (ret < 0 && ret != -EIOCBQUEUED) { 8656 if (dio_data.reserve) 8657 btrfs_delalloc_release_space(inode, offset, 8658 dio_data.reserve); 8659 /* 8660 * On error we might have left some ordered extents 8661 * without submitting corresponding bios for them, so 8662 * cleanup them up to avoid other tasks getting them 8663 * and waiting for them to complete forever. 8664 */ 8665 if (dio_data.unsubmitted_oe_range_start < 8666 dio_data.unsubmitted_oe_range_end) 8667 btrfs_endio_direct_write_update_ordered(inode, 8668 dio_data.unsubmitted_oe_range_start, 8669 dio_data.unsubmitted_oe_range_end - 8670 dio_data.unsubmitted_oe_range_start, 8671 0); 8672 } else if (ret >= 0 && (size_t)ret < count) 8673 btrfs_delalloc_release_space(inode, offset, 8674 count - (size_t)ret); 8675 } 8676 out: 8677 if (wakeup) 8678 inode_dio_end(inode); 8679 if (relock) 8680 inode_lock(inode); 8681 8682 return ret; 8683 } 8684 8685 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8686 8687 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8688 __u64 start, __u64 len) 8689 { 8690 int ret; 8691 8692 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8693 if (ret) 8694 return ret; 8695 8696 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 8697 } 8698 8699 int btrfs_readpage(struct file *file, struct page *page) 8700 { 8701 struct extent_io_tree *tree; 8702 tree = &BTRFS_I(page->mapping->host)->io_tree; 8703 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8704 } 8705 8706 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8707 { 8708 struct extent_io_tree *tree; 8709 struct inode *inode = page->mapping->host; 8710 int ret; 8711 8712 if (current->flags & PF_MEMALLOC) { 8713 redirty_page_for_writepage(wbc, page); 8714 unlock_page(page); 8715 return 0; 8716 } 8717 8718 /* 8719 * If we are under memory pressure we will call this directly from the 8720 * VM, we need to make sure we have the inode referenced for the ordered 8721 * extent. If not just return like we didn't do anything. 8722 */ 8723 if (!igrab(inode)) { 8724 redirty_page_for_writepage(wbc, page); 8725 return AOP_WRITEPAGE_ACTIVATE; 8726 } 8727 tree = &BTRFS_I(page->mapping->host)->io_tree; 8728 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc); 8729 btrfs_add_delayed_iput(inode); 8730 return ret; 8731 } 8732 8733 static int btrfs_writepages(struct address_space *mapping, 8734 struct writeback_control *wbc) 8735 { 8736 struct extent_io_tree *tree; 8737 8738 tree = &BTRFS_I(mapping->host)->io_tree; 8739 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 8740 } 8741 8742 static int 8743 btrfs_readpages(struct file *file, struct address_space *mapping, 8744 struct list_head *pages, unsigned nr_pages) 8745 { 8746 struct extent_io_tree *tree; 8747 tree = &BTRFS_I(mapping->host)->io_tree; 8748 return extent_readpages(tree, mapping, pages, nr_pages, 8749 btrfs_get_extent); 8750 } 8751 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8752 { 8753 struct extent_io_tree *tree; 8754 struct extent_map_tree *map; 8755 int ret; 8756 8757 tree = &BTRFS_I(page->mapping->host)->io_tree; 8758 map = &BTRFS_I(page->mapping->host)->extent_tree; 8759 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 8760 if (ret == 1) { 8761 ClearPagePrivate(page); 8762 set_page_private(page, 0); 8763 put_page(page); 8764 } 8765 return ret; 8766 } 8767 8768 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8769 { 8770 if (PageWriteback(page) || PageDirty(page)) 8771 return 0; 8772 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 8773 } 8774 8775 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8776 unsigned int length) 8777 { 8778 struct inode *inode = page->mapping->host; 8779 struct extent_io_tree *tree; 8780 struct btrfs_ordered_extent *ordered; 8781 struct extent_state *cached_state = NULL; 8782 u64 page_start = page_offset(page); 8783 u64 page_end = page_start + PAGE_SIZE - 1; 8784 u64 start; 8785 u64 end; 8786 int inode_evicting = inode->i_state & I_FREEING; 8787 8788 /* 8789 * we have the page locked, so new writeback can't start, 8790 * and the dirty bit won't be cleared while we are here. 8791 * 8792 * Wait for IO on this page so that we can safely clear 8793 * the PagePrivate2 bit and do ordered accounting 8794 */ 8795 wait_on_page_writeback(page); 8796 8797 tree = &BTRFS_I(inode)->io_tree; 8798 if (offset) { 8799 btrfs_releasepage(page, GFP_NOFS); 8800 return; 8801 } 8802 8803 if (!inode_evicting) 8804 lock_extent_bits(tree, page_start, page_end, &cached_state); 8805 again: 8806 start = page_start; 8807 ordered = btrfs_lookup_ordered_range(inode, start, 8808 page_end - start + 1); 8809 if (ordered) { 8810 end = min(page_end, ordered->file_offset + ordered->len - 1); 8811 /* 8812 * IO on this page will never be started, so we need 8813 * to account for any ordered extents now 8814 */ 8815 if (!inode_evicting) 8816 clear_extent_bit(tree, start, end, 8817 EXTENT_DIRTY | EXTENT_DELALLOC | 8818 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8819 EXTENT_DEFRAG, 1, 0, &cached_state, 8820 GFP_NOFS); 8821 /* 8822 * whoever cleared the private bit is responsible 8823 * for the finish_ordered_io 8824 */ 8825 if (TestClearPagePrivate2(page)) { 8826 struct btrfs_ordered_inode_tree *tree; 8827 u64 new_len; 8828 8829 tree = &BTRFS_I(inode)->ordered_tree; 8830 8831 spin_lock_irq(&tree->lock); 8832 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8833 new_len = start - ordered->file_offset; 8834 if (new_len < ordered->truncated_len) 8835 ordered->truncated_len = new_len; 8836 spin_unlock_irq(&tree->lock); 8837 8838 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8839 start, 8840 end - start + 1, 1)) 8841 btrfs_finish_ordered_io(ordered); 8842 } 8843 btrfs_put_ordered_extent(ordered); 8844 if (!inode_evicting) { 8845 cached_state = NULL; 8846 lock_extent_bits(tree, start, end, 8847 &cached_state); 8848 } 8849 8850 start = end + 1; 8851 if (start < page_end) 8852 goto again; 8853 } 8854 8855 /* 8856 * Qgroup reserved space handler 8857 * Page here will be either 8858 * 1) Already written to disk 8859 * In this case, its reserved space is released from data rsv map 8860 * and will be freed by delayed_ref handler finally. 8861 * So even we call qgroup_free_data(), it won't decrease reserved 8862 * space. 8863 * 2) Not written to disk 8864 * This means the reserved space should be freed here. 8865 */ 8866 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE); 8867 if (!inode_evicting) { 8868 clear_extent_bit(tree, page_start, page_end, 8869 EXTENT_LOCKED | EXTENT_DIRTY | 8870 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8871 EXTENT_DEFRAG, 1, 1, 8872 &cached_state, GFP_NOFS); 8873 8874 __btrfs_releasepage(page, GFP_NOFS); 8875 } 8876 8877 ClearPageChecked(page); 8878 if (PagePrivate(page)) { 8879 ClearPagePrivate(page); 8880 set_page_private(page, 0); 8881 put_page(page); 8882 } 8883 } 8884 8885 /* 8886 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8887 * called from a page fault handler when a page is first dirtied. Hence we must 8888 * be careful to check for EOF conditions here. We set the page up correctly 8889 * for a written page which means we get ENOSPC checking when writing into 8890 * holes and correct delalloc and unwritten extent mapping on filesystems that 8891 * support these features. 8892 * 8893 * We are not allowed to take the i_mutex here so we have to play games to 8894 * protect against truncate races as the page could now be beyond EOF. Because 8895 * vmtruncate() writes the inode size before removing pages, once we have the 8896 * page lock we can determine safely if the page is beyond EOF. If it is not 8897 * beyond EOF, then the page is guaranteed safe against truncation until we 8898 * unlock the page. 8899 */ 8900 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 8901 { 8902 struct page *page = vmf->page; 8903 struct inode *inode = file_inode(vma->vm_file); 8904 struct btrfs_root *root = BTRFS_I(inode)->root; 8905 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8906 struct btrfs_ordered_extent *ordered; 8907 struct extent_state *cached_state = NULL; 8908 char *kaddr; 8909 unsigned long zero_start; 8910 loff_t size; 8911 int ret; 8912 int reserved = 0; 8913 u64 reserved_space; 8914 u64 page_start; 8915 u64 page_end; 8916 u64 end; 8917 8918 reserved_space = PAGE_SIZE; 8919 8920 sb_start_pagefault(inode->i_sb); 8921 page_start = page_offset(page); 8922 page_end = page_start + PAGE_SIZE - 1; 8923 end = page_end; 8924 8925 /* 8926 * Reserving delalloc space after obtaining the page lock can lead to 8927 * deadlock. For example, if a dirty page is locked by this function 8928 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8929 * dirty page write out, then the btrfs_writepage() function could 8930 * end up waiting indefinitely to get a lock on the page currently 8931 * being processed by btrfs_page_mkwrite() function. 8932 */ 8933 ret = btrfs_delalloc_reserve_space(inode, page_start, 8934 reserved_space); 8935 if (!ret) { 8936 ret = file_update_time(vma->vm_file); 8937 reserved = 1; 8938 } 8939 if (ret) { 8940 if (ret == -ENOMEM) 8941 ret = VM_FAULT_OOM; 8942 else /* -ENOSPC, -EIO, etc */ 8943 ret = VM_FAULT_SIGBUS; 8944 if (reserved) 8945 goto out; 8946 goto out_noreserve; 8947 } 8948 8949 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8950 again: 8951 lock_page(page); 8952 size = i_size_read(inode); 8953 8954 if ((page->mapping != inode->i_mapping) || 8955 (page_start >= size)) { 8956 /* page got truncated out from underneath us */ 8957 goto out_unlock; 8958 } 8959 wait_on_page_writeback(page); 8960 8961 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8962 set_page_extent_mapped(page); 8963 8964 /* 8965 * we can't set the delalloc bits if there are pending ordered 8966 * extents. Drop our locks and wait for them to finish 8967 */ 8968 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end); 8969 if (ordered) { 8970 unlock_extent_cached(io_tree, page_start, page_end, 8971 &cached_state, GFP_NOFS); 8972 unlock_page(page); 8973 btrfs_start_ordered_extent(inode, ordered, 1); 8974 btrfs_put_ordered_extent(ordered); 8975 goto again; 8976 } 8977 8978 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8979 reserved_space = round_up(size - page_start, root->sectorsize); 8980 if (reserved_space < PAGE_SIZE) { 8981 end = page_start + reserved_space - 1; 8982 spin_lock(&BTRFS_I(inode)->lock); 8983 BTRFS_I(inode)->outstanding_extents++; 8984 spin_unlock(&BTRFS_I(inode)->lock); 8985 btrfs_delalloc_release_space(inode, page_start, 8986 PAGE_SIZE - reserved_space); 8987 } 8988 } 8989 8990 /* 8991 * XXX - page_mkwrite gets called every time the page is dirtied, even 8992 * if it was already dirty, so for space accounting reasons we need to 8993 * clear any delalloc bits for the range we are fixing to save. There 8994 * is probably a better way to do this, but for now keep consistent with 8995 * prepare_pages in the normal write path. 8996 */ 8997 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8998 EXTENT_DIRTY | EXTENT_DELALLOC | 8999 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9000 0, 0, &cached_state, GFP_NOFS); 9001 9002 ret = btrfs_set_extent_delalloc(inode, page_start, end, 9003 &cached_state); 9004 if (ret) { 9005 unlock_extent_cached(io_tree, page_start, page_end, 9006 &cached_state, GFP_NOFS); 9007 ret = VM_FAULT_SIGBUS; 9008 goto out_unlock; 9009 } 9010 ret = 0; 9011 9012 /* page is wholly or partially inside EOF */ 9013 if (page_start + PAGE_SIZE > size) 9014 zero_start = size & ~PAGE_MASK; 9015 else 9016 zero_start = PAGE_SIZE; 9017 9018 if (zero_start != PAGE_SIZE) { 9019 kaddr = kmap(page); 9020 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9021 flush_dcache_page(page); 9022 kunmap(page); 9023 } 9024 ClearPageChecked(page); 9025 set_page_dirty(page); 9026 SetPageUptodate(page); 9027 9028 BTRFS_I(inode)->last_trans = root->fs_info->generation; 9029 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9030 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9031 9032 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 9033 9034 out_unlock: 9035 if (!ret) { 9036 sb_end_pagefault(inode->i_sb); 9037 return VM_FAULT_LOCKED; 9038 } 9039 unlock_page(page); 9040 out: 9041 btrfs_delalloc_release_space(inode, page_start, reserved_space); 9042 out_noreserve: 9043 sb_end_pagefault(inode->i_sb); 9044 return ret; 9045 } 9046 9047 static int btrfs_truncate(struct inode *inode) 9048 { 9049 struct btrfs_root *root = BTRFS_I(inode)->root; 9050 struct btrfs_block_rsv *rsv; 9051 int ret = 0; 9052 int err = 0; 9053 struct btrfs_trans_handle *trans; 9054 u64 mask = root->sectorsize - 1; 9055 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 9056 9057 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9058 (u64)-1); 9059 if (ret) 9060 return ret; 9061 9062 /* 9063 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have 9064 * 3 things going on here 9065 * 9066 * 1) We need to reserve space for our orphan item and the space to 9067 * delete our orphan item. Lord knows we don't want to have a dangling 9068 * orphan item because we didn't reserve space to remove it. 9069 * 9070 * 2) We need to reserve space to update our inode. 9071 * 9072 * 3) We need to have something to cache all the space that is going to 9073 * be free'd up by the truncate operation, but also have some slack 9074 * space reserved in case it uses space during the truncate (thank you 9075 * very much snapshotting). 9076 * 9077 * And we need these to all be separate. The fact is we can use a lot of 9078 * space doing the truncate, and we have no earthly idea how much space 9079 * we will use, so we need the truncate reservation to be separate so it 9080 * doesn't end up using space reserved for updating the inode or 9081 * removing the orphan item. We also need to be able to stop the 9082 * transaction and start a new one, which means we need to be able to 9083 * update the inode several times, and we have no idea of knowing how 9084 * many times that will be, so we can't just reserve 1 item for the 9085 * entirety of the operation, so that has to be done separately as well. 9086 * Then there is the orphan item, which does indeed need to be held on 9087 * to for the whole operation, and we need nobody to touch this reserved 9088 * space except the orphan code. 9089 * 9090 * So that leaves us with 9091 * 9092 * 1) root->orphan_block_rsv - for the orphan deletion. 9093 * 2) rsv - for the truncate reservation, which we will steal from the 9094 * transaction reservation. 9095 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 9096 * updating the inode. 9097 */ 9098 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 9099 if (!rsv) 9100 return -ENOMEM; 9101 rsv->size = min_size; 9102 rsv->failfast = 1; 9103 9104 /* 9105 * 1 for the truncate slack space 9106 * 1 for updating the inode. 9107 */ 9108 trans = btrfs_start_transaction(root, 2); 9109 if (IS_ERR(trans)) { 9110 err = PTR_ERR(trans); 9111 goto out; 9112 } 9113 9114 /* Migrate the slack space for the truncate to our reserve */ 9115 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 9116 min_size); 9117 BUG_ON(ret); 9118 9119 /* 9120 * So if we truncate and then write and fsync we normally would just 9121 * write the extents that changed, which is a problem if we need to 9122 * first truncate that entire inode. So set this flag so we write out 9123 * all of the extents in the inode to the sync log so we're completely 9124 * safe. 9125 */ 9126 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9127 trans->block_rsv = rsv; 9128 9129 while (1) { 9130 ret = btrfs_truncate_inode_items(trans, root, inode, 9131 inode->i_size, 9132 BTRFS_EXTENT_DATA_KEY); 9133 if (ret != -ENOSPC && ret != -EAGAIN) { 9134 err = ret; 9135 break; 9136 } 9137 9138 trans->block_rsv = &root->fs_info->trans_block_rsv; 9139 ret = btrfs_update_inode(trans, root, inode); 9140 if (ret) { 9141 err = ret; 9142 break; 9143 } 9144 9145 btrfs_end_transaction(trans, root); 9146 btrfs_btree_balance_dirty(root); 9147 9148 trans = btrfs_start_transaction(root, 2); 9149 if (IS_ERR(trans)) { 9150 ret = err = PTR_ERR(trans); 9151 trans = NULL; 9152 break; 9153 } 9154 9155 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 9156 rsv, min_size); 9157 BUG_ON(ret); /* shouldn't happen */ 9158 trans->block_rsv = rsv; 9159 } 9160 9161 if (ret == 0 && inode->i_nlink > 0) { 9162 trans->block_rsv = root->orphan_block_rsv; 9163 ret = btrfs_orphan_del(trans, inode); 9164 if (ret) 9165 err = ret; 9166 } 9167 9168 if (trans) { 9169 trans->block_rsv = &root->fs_info->trans_block_rsv; 9170 ret = btrfs_update_inode(trans, root, inode); 9171 if (ret && !err) 9172 err = ret; 9173 9174 ret = btrfs_end_transaction(trans, root); 9175 btrfs_btree_balance_dirty(root); 9176 } 9177 9178 out: 9179 btrfs_free_block_rsv(root, rsv); 9180 9181 if (ret && !err) 9182 err = ret; 9183 9184 return err; 9185 } 9186 9187 /* 9188 * create a new subvolume directory/inode (helper for the ioctl). 9189 */ 9190 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9191 struct btrfs_root *new_root, 9192 struct btrfs_root *parent_root, 9193 u64 new_dirid) 9194 { 9195 struct inode *inode; 9196 int err; 9197 u64 index = 0; 9198 9199 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9200 new_dirid, new_dirid, 9201 S_IFDIR | (~current_umask() & S_IRWXUGO), 9202 &index); 9203 if (IS_ERR(inode)) 9204 return PTR_ERR(inode); 9205 inode->i_op = &btrfs_dir_inode_operations; 9206 inode->i_fop = &btrfs_dir_file_operations; 9207 9208 set_nlink(inode, 1); 9209 btrfs_i_size_write(inode, 0); 9210 unlock_new_inode(inode); 9211 9212 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9213 if (err) 9214 btrfs_err(new_root->fs_info, 9215 "error inheriting subvolume %llu properties: %d", 9216 new_root->root_key.objectid, err); 9217 9218 err = btrfs_update_inode(trans, new_root, inode); 9219 9220 iput(inode); 9221 return err; 9222 } 9223 9224 struct inode *btrfs_alloc_inode(struct super_block *sb) 9225 { 9226 struct btrfs_inode *ei; 9227 struct inode *inode; 9228 9229 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 9230 if (!ei) 9231 return NULL; 9232 9233 ei->root = NULL; 9234 ei->generation = 0; 9235 ei->last_trans = 0; 9236 ei->last_sub_trans = 0; 9237 ei->logged_trans = 0; 9238 ei->delalloc_bytes = 0; 9239 ei->defrag_bytes = 0; 9240 ei->disk_i_size = 0; 9241 ei->flags = 0; 9242 ei->csum_bytes = 0; 9243 ei->index_cnt = (u64)-1; 9244 ei->dir_index = 0; 9245 ei->last_unlink_trans = 0; 9246 ei->last_log_commit = 0; 9247 ei->delayed_iput_count = 0; 9248 9249 spin_lock_init(&ei->lock); 9250 ei->outstanding_extents = 0; 9251 ei->reserved_extents = 0; 9252 9253 ei->runtime_flags = 0; 9254 ei->force_compress = BTRFS_COMPRESS_NONE; 9255 9256 ei->delayed_node = NULL; 9257 9258 ei->i_otime.tv_sec = 0; 9259 ei->i_otime.tv_nsec = 0; 9260 9261 inode = &ei->vfs_inode; 9262 extent_map_tree_init(&ei->extent_tree); 9263 extent_io_tree_init(&ei->io_tree, &inode->i_data); 9264 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 9265 ei->io_tree.track_uptodate = 1; 9266 ei->io_failure_tree.track_uptodate = 1; 9267 atomic_set(&ei->sync_writers, 0); 9268 mutex_init(&ei->log_mutex); 9269 mutex_init(&ei->delalloc_mutex); 9270 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9271 INIT_LIST_HEAD(&ei->delalloc_inodes); 9272 INIT_LIST_HEAD(&ei->delayed_iput); 9273 RB_CLEAR_NODE(&ei->rb_node); 9274 init_rwsem(&ei->dio_sem); 9275 9276 return inode; 9277 } 9278 9279 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9280 void btrfs_test_destroy_inode(struct inode *inode) 9281 { 9282 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9283 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9284 } 9285 #endif 9286 9287 static void btrfs_i_callback(struct rcu_head *head) 9288 { 9289 struct inode *inode = container_of(head, struct inode, i_rcu); 9290 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9291 } 9292 9293 void btrfs_destroy_inode(struct inode *inode) 9294 { 9295 struct btrfs_ordered_extent *ordered; 9296 struct btrfs_root *root = BTRFS_I(inode)->root; 9297 9298 WARN_ON(!hlist_empty(&inode->i_dentry)); 9299 WARN_ON(inode->i_data.nrpages); 9300 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9301 WARN_ON(BTRFS_I(inode)->reserved_extents); 9302 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9303 WARN_ON(BTRFS_I(inode)->csum_bytes); 9304 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9305 9306 /* 9307 * This can happen where we create an inode, but somebody else also 9308 * created the same inode and we need to destroy the one we already 9309 * created. 9310 */ 9311 if (!root) 9312 goto free; 9313 9314 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 9315 &BTRFS_I(inode)->runtime_flags)) { 9316 btrfs_info(root->fs_info, "inode %llu still on the orphan list", 9317 btrfs_ino(inode)); 9318 atomic_dec(&root->orphan_inodes); 9319 } 9320 9321 while (1) { 9322 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9323 if (!ordered) 9324 break; 9325 else { 9326 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup", 9327 ordered->file_offset, ordered->len); 9328 btrfs_remove_ordered_extent(inode, ordered); 9329 btrfs_put_ordered_extent(ordered); 9330 btrfs_put_ordered_extent(ordered); 9331 } 9332 } 9333 btrfs_qgroup_check_reserved_leak(inode); 9334 inode_tree_del(inode); 9335 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 9336 free: 9337 call_rcu(&inode->i_rcu, btrfs_i_callback); 9338 } 9339 9340 int btrfs_drop_inode(struct inode *inode) 9341 { 9342 struct btrfs_root *root = BTRFS_I(inode)->root; 9343 9344 if (root == NULL) 9345 return 1; 9346 9347 /* the snap/subvol tree is on deleting */ 9348 if (btrfs_root_refs(&root->root_item) == 0) 9349 return 1; 9350 else 9351 return generic_drop_inode(inode); 9352 } 9353 9354 static void init_once(void *foo) 9355 { 9356 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9357 9358 inode_init_once(&ei->vfs_inode); 9359 } 9360 9361 void btrfs_destroy_cachep(void) 9362 { 9363 /* 9364 * Make sure all delayed rcu free inodes are flushed before we 9365 * destroy cache. 9366 */ 9367 rcu_barrier(); 9368 kmem_cache_destroy(btrfs_inode_cachep); 9369 kmem_cache_destroy(btrfs_trans_handle_cachep); 9370 kmem_cache_destroy(btrfs_transaction_cachep); 9371 kmem_cache_destroy(btrfs_path_cachep); 9372 kmem_cache_destroy(btrfs_free_space_cachep); 9373 } 9374 9375 int btrfs_init_cachep(void) 9376 { 9377 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9378 sizeof(struct btrfs_inode), 0, 9379 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9380 init_once); 9381 if (!btrfs_inode_cachep) 9382 goto fail; 9383 9384 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9385 sizeof(struct btrfs_trans_handle), 0, 9386 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9387 if (!btrfs_trans_handle_cachep) 9388 goto fail; 9389 9390 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 9391 sizeof(struct btrfs_transaction), 0, 9392 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9393 if (!btrfs_transaction_cachep) 9394 goto fail; 9395 9396 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9397 sizeof(struct btrfs_path), 0, 9398 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9399 if (!btrfs_path_cachep) 9400 goto fail; 9401 9402 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9403 sizeof(struct btrfs_free_space), 0, 9404 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 9405 if (!btrfs_free_space_cachep) 9406 goto fail; 9407 9408 return 0; 9409 fail: 9410 btrfs_destroy_cachep(); 9411 return -ENOMEM; 9412 } 9413 9414 static int btrfs_getattr(struct vfsmount *mnt, 9415 struct dentry *dentry, struct kstat *stat) 9416 { 9417 u64 delalloc_bytes; 9418 struct inode *inode = d_inode(dentry); 9419 u32 blocksize = inode->i_sb->s_blocksize; 9420 9421 generic_fillattr(inode, stat); 9422 stat->dev = BTRFS_I(inode)->root->anon_dev; 9423 9424 spin_lock(&BTRFS_I(inode)->lock); 9425 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes; 9426 spin_unlock(&BTRFS_I(inode)->lock); 9427 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9428 ALIGN(delalloc_bytes, blocksize)) >> 9; 9429 return 0; 9430 } 9431 9432 static int btrfs_rename_exchange(struct inode *old_dir, 9433 struct dentry *old_dentry, 9434 struct inode *new_dir, 9435 struct dentry *new_dentry) 9436 { 9437 struct btrfs_trans_handle *trans; 9438 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9439 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9440 struct inode *new_inode = new_dentry->d_inode; 9441 struct inode *old_inode = old_dentry->d_inode; 9442 struct timespec ctime = CURRENT_TIME; 9443 struct dentry *parent; 9444 u64 old_ino = btrfs_ino(old_inode); 9445 u64 new_ino = btrfs_ino(new_inode); 9446 u64 old_idx = 0; 9447 u64 new_idx = 0; 9448 u64 root_objectid; 9449 int ret; 9450 bool root_log_pinned = false; 9451 bool dest_log_pinned = false; 9452 9453 /* we only allow rename subvolume link between subvolumes */ 9454 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9455 return -EXDEV; 9456 9457 /* close the race window with snapshot create/destroy ioctl */ 9458 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9459 down_read(&root->fs_info->subvol_sem); 9460 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9461 down_read(&dest->fs_info->subvol_sem); 9462 9463 /* 9464 * We want to reserve the absolute worst case amount of items. So if 9465 * both inodes are subvols and we need to unlink them then that would 9466 * require 4 item modifications, but if they are both normal inodes it 9467 * would require 5 item modifications, so we'll assume their normal 9468 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9469 * should cover the worst case number of items we'll modify. 9470 */ 9471 trans = btrfs_start_transaction(root, 12); 9472 if (IS_ERR(trans)) { 9473 ret = PTR_ERR(trans); 9474 goto out_notrans; 9475 } 9476 9477 /* 9478 * We need to find a free sequence number both in the source and 9479 * in the destination directory for the exchange. 9480 */ 9481 ret = btrfs_set_inode_index(new_dir, &old_idx); 9482 if (ret) 9483 goto out_fail; 9484 ret = btrfs_set_inode_index(old_dir, &new_idx); 9485 if (ret) 9486 goto out_fail; 9487 9488 BTRFS_I(old_inode)->dir_index = 0ULL; 9489 BTRFS_I(new_inode)->dir_index = 0ULL; 9490 9491 /* Reference for the source. */ 9492 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9493 /* force full log commit if subvolume involved. */ 9494 btrfs_set_log_full_commit(root->fs_info, trans); 9495 } else { 9496 btrfs_pin_log_trans(root); 9497 root_log_pinned = true; 9498 ret = btrfs_insert_inode_ref(trans, dest, 9499 new_dentry->d_name.name, 9500 new_dentry->d_name.len, 9501 old_ino, 9502 btrfs_ino(new_dir), old_idx); 9503 if (ret) 9504 goto out_fail; 9505 } 9506 9507 /* And now for the dest. */ 9508 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9509 /* force full log commit if subvolume involved. */ 9510 btrfs_set_log_full_commit(dest->fs_info, trans); 9511 } else { 9512 btrfs_pin_log_trans(dest); 9513 dest_log_pinned = true; 9514 ret = btrfs_insert_inode_ref(trans, root, 9515 old_dentry->d_name.name, 9516 old_dentry->d_name.len, 9517 new_ino, 9518 btrfs_ino(old_dir), new_idx); 9519 if (ret) 9520 goto out_fail; 9521 } 9522 9523 /* Update inode version and ctime/mtime. */ 9524 inode_inc_iversion(old_dir); 9525 inode_inc_iversion(new_dir); 9526 inode_inc_iversion(old_inode); 9527 inode_inc_iversion(new_inode); 9528 old_dir->i_ctime = old_dir->i_mtime = ctime; 9529 new_dir->i_ctime = new_dir->i_mtime = ctime; 9530 old_inode->i_ctime = ctime; 9531 new_inode->i_ctime = ctime; 9532 9533 if (old_dentry->d_parent != new_dentry->d_parent) { 9534 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9535 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1); 9536 } 9537 9538 /* src is a subvolume */ 9539 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9540 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9541 ret = btrfs_unlink_subvol(trans, root, old_dir, 9542 root_objectid, 9543 old_dentry->d_name.name, 9544 old_dentry->d_name.len); 9545 } else { /* src is an inode */ 9546 ret = __btrfs_unlink_inode(trans, root, old_dir, 9547 old_dentry->d_inode, 9548 old_dentry->d_name.name, 9549 old_dentry->d_name.len); 9550 if (!ret) 9551 ret = btrfs_update_inode(trans, root, old_inode); 9552 } 9553 if (ret) { 9554 btrfs_abort_transaction(trans, root, ret); 9555 goto out_fail; 9556 } 9557 9558 /* dest is a subvolume */ 9559 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9560 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9561 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9562 root_objectid, 9563 new_dentry->d_name.name, 9564 new_dentry->d_name.len); 9565 } else { /* dest is an inode */ 9566 ret = __btrfs_unlink_inode(trans, dest, new_dir, 9567 new_dentry->d_inode, 9568 new_dentry->d_name.name, 9569 new_dentry->d_name.len); 9570 if (!ret) 9571 ret = btrfs_update_inode(trans, dest, new_inode); 9572 } 9573 if (ret) { 9574 btrfs_abort_transaction(trans, root, ret); 9575 goto out_fail; 9576 } 9577 9578 ret = btrfs_add_link(trans, new_dir, old_inode, 9579 new_dentry->d_name.name, 9580 new_dentry->d_name.len, 0, old_idx); 9581 if (ret) { 9582 btrfs_abort_transaction(trans, root, ret); 9583 goto out_fail; 9584 } 9585 9586 ret = btrfs_add_link(trans, old_dir, new_inode, 9587 old_dentry->d_name.name, 9588 old_dentry->d_name.len, 0, new_idx); 9589 if (ret) { 9590 btrfs_abort_transaction(trans, root, ret); 9591 goto out_fail; 9592 } 9593 9594 if (old_inode->i_nlink == 1) 9595 BTRFS_I(old_inode)->dir_index = old_idx; 9596 if (new_inode->i_nlink == 1) 9597 BTRFS_I(new_inode)->dir_index = new_idx; 9598 9599 if (root_log_pinned) { 9600 parent = new_dentry->d_parent; 9601 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9602 btrfs_end_log_trans(root); 9603 root_log_pinned = false; 9604 } 9605 if (dest_log_pinned) { 9606 parent = old_dentry->d_parent; 9607 btrfs_log_new_name(trans, new_inode, new_dir, parent); 9608 btrfs_end_log_trans(dest); 9609 dest_log_pinned = false; 9610 } 9611 out_fail: 9612 /* 9613 * If we have pinned a log and an error happened, we unpin tasks 9614 * trying to sync the log and force them to fallback to a transaction 9615 * commit if the log currently contains any of the inodes involved in 9616 * this rename operation (to ensure we do not persist a log with an 9617 * inconsistent state for any of these inodes or leading to any 9618 * inconsistencies when replayed). If the transaction was aborted, the 9619 * abortion reason is propagated to userspace when attempting to commit 9620 * the transaction. If the log does not contain any of these inodes, we 9621 * allow the tasks to sync it. 9622 */ 9623 if (ret && (root_log_pinned || dest_log_pinned)) { 9624 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9625 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9626 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9627 (new_inode && 9628 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9629 btrfs_set_log_full_commit(root->fs_info, trans); 9630 9631 if (root_log_pinned) { 9632 btrfs_end_log_trans(root); 9633 root_log_pinned = false; 9634 } 9635 if (dest_log_pinned) { 9636 btrfs_end_log_trans(dest); 9637 dest_log_pinned = false; 9638 } 9639 } 9640 ret = btrfs_end_transaction(trans, root); 9641 out_notrans: 9642 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9643 up_read(&dest->fs_info->subvol_sem); 9644 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9645 up_read(&root->fs_info->subvol_sem); 9646 9647 return ret; 9648 } 9649 9650 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9651 struct btrfs_root *root, 9652 struct inode *dir, 9653 struct dentry *dentry) 9654 { 9655 int ret; 9656 struct inode *inode; 9657 u64 objectid; 9658 u64 index; 9659 9660 ret = btrfs_find_free_ino(root, &objectid); 9661 if (ret) 9662 return ret; 9663 9664 inode = btrfs_new_inode(trans, root, dir, 9665 dentry->d_name.name, 9666 dentry->d_name.len, 9667 btrfs_ino(dir), 9668 objectid, 9669 S_IFCHR | WHITEOUT_MODE, 9670 &index); 9671 9672 if (IS_ERR(inode)) { 9673 ret = PTR_ERR(inode); 9674 return ret; 9675 } 9676 9677 inode->i_op = &btrfs_special_inode_operations; 9678 init_special_inode(inode, inode->i_mode, 9679 WHITEOUT_DEV); 9680 9681 ret = btrfs_init_inode_security(trans, inode, dir, 9682 &dentry->d_name); 9683 if (ret) 9684 goto out; 9685 9686 ret = btrfs_add_nondir(trans, dir, dentry, 9687 inode, 0, index); 9688 if (ret) 9689 goto out; 9690 9691 ret = btrfs_update_inode(trans, root, inode); 9692 out: 9693 unlock_new_inode(inode); 9694 if (ret) 9695 inode_dec_link_count(inode); 9696 iput(inode); 9697 9698 return ret; 9699 } 9700 9701 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9702 struct inode *new_dir, struct dentry *new_dentry, 9703 unsigned int flags) 9704 { 9705 struct btrfs_trans_handle *trans; 9706 unsigned int trans_num_items; 9707 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9708 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9709 struct inode *new_inode = d_inode(new_dentry); 9710 struct inode *old_inode = d_inode(old_dentry); 9711 u64 index = 0; 9712 u64 root_objectid; 9713 int ret; 9714 u64 old_ino = btrfs_ino(old_inode); 9715 bool log_pinned = false; 9716 9717 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9718 return -EPERM; 9719 9720 /* we only allow rename subvolume link between subvolumes */ 9721 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9722 return -EXDEV; 9723 9724 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9725 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 9726 return -ENOTEMPTY; 9727 9728 if (S_ISDIR(old_inode->i_mode) && new_inode && 9729 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9730 return -ENOTEMPTY; 9731 9732 9733 /* check for collisions, even if the name isn't there */ 9734 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9735 new_dentry->d_name.name, 9736 new_dentry->d_name.len); 9737 9738 if (ret) { 9739 if (ret == -EEXIST) { 9740 /* we shouldn't get 9741 * eexist without a new_inode */ 9742 if (WARN_ON(!new_inode)) { 9743 return ret; 9744 } 9745 } else { 9746 /* maybe -EOVERFLOW */ 9747 return ret; 9748 } 9749 } 9750 ret = 0; 9751 9752 /* 9753 * we're using rename to replace one file with another. Start IO on it 9754 * now so we don't add too much work to the end of the transaction 9755 */ 9756 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9757 filemap_flush(old_inode->i_mapping); 9758 9759 /* close the racy window with snapshot create/destroy ioctl */ 9760 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9761 down_read(&root->fs_info->subvol_sem); 9762 /* 9763 * We want to reserve the absolute worst case amount of items. So if 9764 * both inodes are subvols and we need to unlink them then that would 9765 * require 4 item modifications, but if they are both normal inodes it 9766 * would require 5 item modifications, so we'll assume they are normal 9767 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9768 * should cover the worst case number of items we'll modify. 9769 * If our rename has the whiteout flag, we need more 5 units for the 9770 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9771 * when selinux is enabled). 9772 */ 9773 trans_num_items = 11; 9774 if (flags & RENAME_WHITEOUT) 9775 trans_num_items += 5; 9776 trans = btrfs_start_transaction(root, trans_num_items); 9777 if (IS_ERR(trans)) { 9778 ret = PTR_ERR(trans); 9779 goto out_notrans; 9780 } 9781 9782 if (dest != root) 9783 btrfs_record_root_in_trans(trans, dest); 9784 9785 ret = btrfs_set_inode_index(new_dir, &index); 9786 if (ret) 9787 goto out_fail; 9788 9789 BTRFS_I(old_inode)->dir_index = 0ULL; 9790 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9791 /* force full log commit if subvolume involved. */ 9792 btrfs_set_log_full_commit(root->fs_info, trans); 9793 } else { 9794 btrfs_pin_log_trans(root); 9795 log_pinned = true; 9796 ret = btrfs_insert_inode_ref(trans, dest, 9797 new_dentry->d_name.name, 9798 new_dentry->d_name.len, 9799 old_ino, 9800 btrfs_ino(new_dir), index); 9801 if (ret) 9802 goto out_fail; 9803 } 9804 9805 inode_inc_iversion(old_dir); 9806 inode_inc_iversion(new_dir); 9807 inode_inc_iversion(old_inode); 9808 old_dir->i_ctime = old_dir->i_mtime = 9809 new_dir->i_ctime = new_dir->i_mtime = 9810 old_inode->i_ctime = current_fs_time(old_dir->i_sb); 9811 9812 if (old_dentry->d_parent != new_dentry->d_parent) 9813 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 9814 9815 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9816 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9817 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9818 old_dentry->d_name.name, 9819 old_dentry->d_name.len); 9820 } else { 9821 ret = __btrfs_unlink_inode(trans, root, old_dir, 9822 d_inode(old_dentry), 9823 old_dentry->d_name.name, 9824 old_dentry->d_name.len); 9825 if (!ret) 9826 ret = btrfs_update_inode(trans, root, old_inode); 9827 } 9828 if (ret) { 9829 btrfs_abort_transaction(trans, root, ret); 9830 goto out_fail; 9831 } 9832 9833 if (new_inode) { 9834 inode_inc_iversion(new_inode); 9835 new_inode->i_ctime = current_fs_time(new_inode->i_sb); 9836 if (unlikely(btrfs_ino(new_inode) == 9837 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9838 root_objectid = BTRFS_I(new_inode)->location.objectid; 9839 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9840 root_objectid, 9841 new_dentry->d_name.name, 9842 new_dentry->d_name.len); 9843 BUG_ON(new_inode->i_nlink == 0); 9844 } else { 9845 ret = btrfs_unlink_inode(trans, dest, new_dir, 9846 d_inode(new_dentry), 9847 new_dentry->d_name.name, 9848 new_dentry->d_name.len); 9849 } 9850 if (!ret && new_inode->i_nlink == 0) 9851 ret = btrfs_orphan_add(trans, d_inode(new_dentry)); 9852 if (ret) { 9853 btrfs_abort_transaction(trans, root, ret); 9854 goto out_fail; 9855 } 9856 } 9857 9858 ret = btrfs_add_link(trans, new_dir, old_inode, 9859 new_dentry->d_name.name, 9860 new_dentry->d_name.len, 0, index); 9861 if (ret) { 9862 btrfs_abort_transaction(trans, root, ret); 9863 goto out_fail; 9864 } 9865 9866 if (old_inode->i_nlink == 1) 9867 BTRFS_I(old_inode)->dir_index = index; 9868 9869 if (log_pinned) { 9870 struct dentry *parent = new_dentry->d_parent; 9871 9872 btrfs_log_new_name(trans, old_inode, old_dir, parent); 9873 btrfs_end_log_trans(root); 9874 log_pinned = false; 9875 } 9876 9877 if (flags & RENAME_WHITEOUT) { 9878 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9879 old_dentry); 9880 9881 if (ret) { 9882 btrfs_abort_transaction(trans, root, ret); 9883 goto out_fail; 9884 } 9885 } 9886 out_fail: 9887 /* 9888 * If we have pinned the log and an error happened, we unpin tasks 9889 * trying to sync the log and force them to fallback to a transaction 9890 * commit if the log currently contains any of the inodes involved in 9891 * this rename operation (to ensure we do not persist a log with an 9892 * inconsistent state for any of these inodes or leading to any 9893 * inconsistencies when replayed). If the transaction was aborted, the 9894 * abortion reason is propagated to userspace when attempting to commit 9895 * the transaction. If the log does not contain any of these inodes, we 9896 * allow the tasks to sync it. 9897 */ 9898 if (ret && log_pinned) { 9899 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) || 9900 btrfs_inode_in_log(new_dir, root->fs_info->generation) || 9901 btrfs_inode_in_log(old_inode, root->fs_info->generation) || 9902 (new_inode && 9903 btrfs_inode_in_log(new_inode, root->fs_info->generation))) 9904 btrfs_set_log_full_commit(root->fs_info, trans); 9905 9906 btrfs_end_log_trans(root); 9907 log_pinned = false; 9908 } 9909 btrfs_end_transaction(trans, root); 9910 out_notrans: 9911 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9912 up_read(&root->fs_info->subvol_sem); 9913 9914 return ret; 9915 } 9916 9917 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9918 struct inode *new_dir, struct dentry *new_dentry, 9919 unsigned int flags) 9920 { 9921 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9922 return -EINVAL; 9923 9924 if (flags & RENAME_EXCHANGE) 9925 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9926 new_dentry); 9927 9928 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9929 } 9930 9931 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9932 { 9933 struct btrfs_delalloc_work *delalloc_work; 9934 struct inode *inode; 9935 9936 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9937 work); 9938 inode = delalloc_work->inode; 9939 filemap_flush(inode->i_mapping); 9940 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9941 &BTRFS_I(inode)->runtime_flags)) 9942 filemap_flush(inode->i_mapping); 9943 9944 if (delalloc_work->delay_iput) 9945 btrfs_add_delayed_iput(inode); 9946 else 9947 iput(inode); 9948 complete(&delalloc_work->completion); 9949 } 9950 9951 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 9952 int delay_iput) 9953 { 9954 struct btrfs_delalloc_work *work; 9955 9956 work = kmalloc(sizeof(*work), GFP_NOFS); 9957 if (!work) 9958 return NULL; 9959 9960 init_completion(&work->completion); 9961 INIT_LIST_HEAD(&work->list); 9962 work->inode = inode; 9963 work->delay_iput = delay_iput; 9964 WARN_ON_ONCE(!inode); 9965 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9966 btrfs_run_delalloc_work, NULL, NULL); 9967 9968 return work; 9969 } 9970 9971 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 9972 { 9973 wait_for_completion(&work->completion); 9974 kfree(work); 9975 } 9976 9977 /* 9978 * some fairly slow code that needs optimization. This walks the list 9979 * of all the inodes with pending delalloc and forces them to disk. 9980 */ 9981 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput, 9982 int nr) 9983 { 9984 struct btrfs_inode *binode; 9985 struct inode *inode; 9986 struct btrfs_delalloc_work *work, *next; 9987 struct list_head works; 9988 struct list_head splice; 9989 int ret = 0; 9990 9991 INIT_LIST_HEAD(&works); 9992 INIT_LIST_HEAD(&splice); 9993 9994 mutex_lock(&root->delalloc_mutex); 9995 spin_lock(&root->delalloc_lock); 9996 list_splice_init(&root->delalloc_inodes, &splice); 9997 while (!list_empty(&splice)) { 9998 binode = list_entry(splice.next, struct btrfs_inode, 9999 delalloc_inodes); 10000 10001 list_move_tail(&binode->delalloc_inodes, 10002 &root->delalloc_inodes); 10003 inode = igrab(&binode->vfs_inode); 10004 if (!inode) { 10005 cond_resched_lock(&root->delalloc_lock); 10006 continue; 10007 } 10008 spin_unlock(&root->delalloc_lock); 10009 10010 work = btrfs_alloc_delalloc_work(inode, delay_iput); 10011 if (!work) { 10012 if (delay_iput) 10013 btrfs_add_delayed_iput(inode); 10014 else 10015 iput(inode); 10016 ret = -ENOMEM; 10017 goto out; 10018 } 10019 list_add_tail(&work->list, &works); 10020 btrfs_queue_work(root->fs_info->flush_workers, 10021 &work->work); 10022 ret++; 10023 if (nr != -1 && ret >= nr) 10024 goto out; 10025 cond_resched(); 10026 spin_lock(&root->delalloc_lock); 10027 } 10028 spin_unlock(&root->delalloc_lock); 10029 10030 out: 10031 list_for_each_entry_safe(work, next, &works, list) { 10032 list_del_init(&work->list); 10033 btrfs_wait_and_free_delalloc_work(work); 10034 } 10035 10036 if (!list_empty_careful(&splice)) { 10037 spin_lock(&root->delalloc_lock); 10038 list_splice_tail(&splice, &root->delalloc_inodes); 10039 spin_unlock(&root->delalloc_lock); 10040 } 10041 mutex_unlock(&root->delalloc_mutex); 10042 return ret; 10043 } 10044 10045 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 10046 { 10047 int ret; 10048 10049 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 10050 return -EROFS; 10051 10052 ret = __start_delalloc_inodes(root, delay_iput, -1); 10053 if (ret > 0) 10054 ret = 0; 10055 /* 10056 * the filemap_flush will queue IO into the worker threads, but 10057 * we have to make sure the IO is actually started and that 10058 * ordered extents get created before we return 10059 */ 10060 atomic_inc(&root->fs_info->async_submit_draining); 10061 while (atomic_read(&root->fs_info->nr_async_submits) || 10062 atomic_read(&root->fs_info->async_delalloc_pages)) { 10063 wait_event(root->fs_info->async_submit_wait, 10064 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 10065 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 10066 } 10067 atomic_dec(&root->fs_info->async_submit_draining); 10068 return ret; 10069 } 10070 10071 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 10072 int nr) 10073 { 10074 struct btrfs_root *root; 10075 struct list_head splice; 10076 int ret; 10077 10078 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10079 return -EROFS; 10080 10081 INIT_LIST_HEAD(&splice); 10082 10083 mutex_lock(&fs_info->delalloc_root_mutex); 10084 spin_lock(&fs_info->delalloc_root_lock); 10085 list_splice_init(&fs_info->delalloc_roots, &splice); 10086 while (!list_empty(&splice) && nr) { 10087 root = list_first_entry(&splice, struct btrfs_root, 10088 delalloc_root); 10089 root = btrfs_grab_fs_root(root); 10090 BUG_ON(!root); 10091 list_move_tail(&root->delalloc_root, 10092 &fs_info->delalloc_roots); 10093 spin_unlock(&fs_info->delalloc_root_lock); 10094 10095 ret = __start_delalloc_inodes(root, delay_iput, nr); 10096 btrfs_put_fs_root(root); 10097 if (ret < 0) 10098 goto out; 10099 10100 if (nr != -1) { 10101 nr -= ret; 10102 WARN_ON(nr < 0); 10103 } 10104 spin_lock(&fs_info->delalloc_root_lock); 10105 } 10106 spin_unlock(&fs_info->delalloc_root_lock); 10107 10108 ret = 0; 10109 atomic_inc(&fs_info->async_submit_draining); 10110 while (atomic_read(&fs_info->nr_async_submits) || 10111 atomic_read(&fs_info->async_delalloc_pages)) { 10112 wait_event(fs_info->async_submit_wait, 10113 (atomic_read(&fs_info->nr_async_submits) == 0 && 10114 atomic_read(&fs_info->async_delalloc_pages) == 0)); 10115 } 10116 atomic_dec(&fs_info->async_submit_draining); 10117 out: 10118 if (!list_empty_careful(&splice)) { 10119 spin_lock(&fs_info->delalloc_root_lock); 10120 list_splice_tail(&splice, &fs_info->delalloc_roots); 10121 spin_unlock(&fs_info->delalloc_root_lock); 10122 } 10123 mutex_unlock(&fs_info->delalloc_root_mutex); 10124 return ret; 10125 } 10126 10127 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10128 const char *symname) 10129 { 10130 struct btrfs_trans_handle *trans; 10131 struct btrfs_root *root = BTRFS_I(dir)->root; 10132 struct btrfs_path *path; 10133 struct btrfs_key key; 10134 struct inode *inode = NULL; 10135 int err; 10136 int drop_inode = 0; 10137 u64 objectid; 10138 u64 index = 0; 10139 int name_len; 10140 int datasize; 10141 unsigned long ptr; 10142 struct btrfs_file_extent_item *ei; 10143 struct extent_buffer *leaf; 10144 10145 name_len = strlen(symname); 10146 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 10147 return -ENAMETOOLONG; 10148 10149 /* 10150 * 2 items for inode item and ref 10151 * 2 items for dir items 10152 * 1 item for updating parent inode item 10153 * 1 item for the inline extent item 10154 * 1 item for xattr if selinux is on 10155 */ 10156 trans = btrfs_start_transaction(root, 7); 10157 if (IS_ERR(trans)) 10158 return PTR_ERR(trans); 10159 10160 err = btrfs_find_free_ino(root, &objectid); 10161 if (err) 10162 goto out_unlock; 10163 10164 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10165 dentry->d_name.len, btrfs_ino(dir), objectid, 10166 S_IFLNK|S_IRWXUGO, &index); 10167 if (IS_ERR(inode)) { 10168 err = PTR_ERR(inode); 10169 goto out_unlock; 10170 } 10171 10172 /* 10173 * If the active LSM wants to access the inode during 10174 * d_instantiate it needs these. Smack checks to see 10175 * if the filesystem supports xattrs by looking at the 10176 * ops vector. 10177 */ 10178 inode->i_fop = &btrfs_file_operations; 10179 inode->i_op = &btrfs_file_inode_operations; 10180 inode->i_mapping->a_ops = &btrfs_aops; 10181 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10182 10183 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10184 if (err) 10185 goto out_unlock_inode; 10186 10187 path = btrfs_alloc_path(); 10188 if (!path) { 10189 err = -ENOMEM; 10190 goto out_unlock_inode; 10191 } 10192 key.objectid = btrfs_ino(inode); 10193 key.offset = 0; 10194 key.type = BTRFS_EXTENT_DATA_KEY; 10195 datasize = btrfs_file_extent_calc_inline_size(name_len); 10196 err = btrfs_insert_empty_item(trans, root, path, &key, 10197 datasize); 10198 if (err) { 10199 btrfs_free_path(path); 10200 goto out_unlock_inode; 10201 } 10202 leaf = path->nodes[0]; 10203 ei = btrfs_item_ptr(leaf, path->slots[0], 10204 struct btrfs_file_extent_item); 10205 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10206 btrfs_set_file_extent_type(leaf, ei, 10207 BTRFS_FILE_EXTENT_INLINE); 10208 btrfs_set_file_extent_encryption(leaf, ei, 0); 10209 btrfs_set_file_extent_compression(leaf, ei, 0); 10210 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10211 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10212 10213 ptr = btrfs_file_extent_inline_start(ei); 10214 write_extent_buffer(leaf, symname, ptr, name_len); 10215 btrfs_mark_buffer_dirty(leaf); 10216 btrfs_free_path(path); 10217 10218 inode->i_op = &btrfs_symlink_inode_operations; 10219 inode_nohighmem(inode); 10220 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10221 inode_set_bytes(inode, name_len); 10222 btrfs_i_size_write(inode, name_len); 10223 err = btrfs_update_inode(trans, root, inode); 10224 /* 10225 * Last step, add directory indexes for our symlink inode. This is the 10226 * last step to avoid extra cleanup of these indexes if an error happens 10227 * elsewhere above. 10228 */ 10229 if (!err) 10230 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 10231 if (err) { 10232 drop_inode = 1; 10233 goto out_unlock_inode; 10234 } 10235 10236 unlock_new_inode(inode); 10237 d_instantiate(dentry, inode); 10238 10239 out_unlock: 10240 btrfs_end_transaction(trans, root); 10241 if (drop_inode) { 10242 inode_dec_link_count(inode); 10243 iput(inode); 10244 } 10245 btrfs_btree_balance_dirty(root); 10246 return err; 10247 10248 out_unlock_inode: 10249 drop_inode = 1; 10250 unlock_new_inode(inode); 10251 goto out_unlock; 10252 } 10253 10254 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10255 u64 start, u64 num_bytes, u64 min_size, 10256 loff_t actual_len, u64 *alloc_hint, 10257 struct btrfs_trans_handle *trans) 10258 { 10259 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10260 struct extent_map *em; 10261 struct btrfs_root *root = BTRFS_I(inode)->root; 10262 struct btrfs_key ins; 10263 u64 cur_offset = start; 10264 u64 i_size; 10265 u64 cur_bytes; 10266 u64 last_alloc = (u64)-1; 10267 int ret = 0; 10268 bool own_trans = true; 10269 10270 if (trans) 10271 own_trans = false; 10272 while (num_bytes > 0) { 10273 if (own_trans) { 10274 trans = btrfs_start_transaction(root, 3); 10275 if (IS_ERR(trans)) { 10276 ret = PTR_ERR(trans); 10277 break; 10278 } 10279 } 10280 10281 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10282 cur_bytes = max(cur_bytes, min_size); 10283 /* 10284 * If we are severely fragmented we could end up with really 10285 * small allocations, so if the allocator is returning small 10286 * chunks lets make its job easier by only searching for those 10287 * sized chunks. 10288 */ 10289 cur_bytes = min(cur_bytes, last_alloc); 10290 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0, 10291 *alloc_hint, &ins, 1, 0); 10292 if (ret) { 10293 if (own_trans) 10294 btrfs_end_transaction(trans, root); 10295 break; 10296 } 10297 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid); 10298 10299 last_alloc = ins.offset; 10300 ret = insert_reserved_file_extent(trans, inode, 10301 cur_offset, ins.objectid, 10302 ins.offset, ins.offset, 10303 ins.offset, 0, 0, 0, 10304 BTRFS_FILE_EXTENT_PREALLOC); 10305 if (ret) { 10306 btrfs_free_reserved_extent(root, ins.objectid, 10307 ins.offset, 0); 10308 btrfs_abort_transaction(trans, root, ret); 10309 if (own_trans) 10310 btrfs_end_transaction(trans, root); 10311 break; 10312 } 10313 10314 btrfs_drop_extent_cache(inode, cur_offset, 10315 cur_offset + ins.offset -1, 0); 10316 10317 em = alloc_extent_map(); 10318 if (!em) { 10319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10320 &BTRFS_I(inode)->runtime_flags); 10321 goto next; 10322 } 10323 10324 em->start = cur_offset; 10325 em->orig_start = cur_offset; 10326 em->len = ins.offset; 10327 em->block_start = ins.objectid; 10328 em->block_len = ins.offset; 10329 em->orig_block_len = ins.offset; 10330 em->ram_bytes = ins.offset; 10331 em->bdev = root->fs_info->fs_devices->latest_bdev; 10332 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10333 em->generation = trans->transid; 10334 10335 while (1) { 10336 write_lock(&em_tree->lock); 10337 ret = add_extent_mapping(em_tree, em, 1); 10338 write_unlock(&em_tree->lock); 10339 if (ret != -EEXIST) 10340 break; 10341 btrfs_drop_extent_cache(inode, cur_offset, 10342 cur_offset + ins.offset - 1, 10343 0); 10344 } 10345 free_extent_map(em); 10346 next: 10347 num_bytes -= ins.offset; 10348 cur_offset += ins.offset; 10349 *alloc_hint = ins.objectid + ins.offset; 10350 10351 inode_inc_iversion(inode); 10352 inode->i_ctime = current_fs_time(inode->i_sb); 10353 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10354 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10355 (actual_len > inode->i_size) && 10356 (cur_offset > inode->i_size)) { 10357 if (cur_offset > actual_len) 10358 i_size = actual_len; 10359 else 10360 i_size = cur_offset; 10361 i_size_write(inode, i_size); 10362 btrfs_ordered_update_i_size(inode, i_size, NULL); 10363 } 10364 10365 ret = btrfs_update_inode(trans, root, inode); 10366 10367 if (ret) { 10368 btrfs_abort_transaction(trans, root, ret); 10369 if (own_trans) 10370 btrfs_end_transaction(trans, root); 10371 break; 10372 } 10373 10374 if (own_trans) 10375 btrfs_end_transaction(trans, root); 10376 } 10377 return ret; 10378 } 10379 10380 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10381 u64 start, u64 num_bytes, u64 min_size, 10382 loff_t actual_len, u64 *alloc_hint) 10383 { 10384 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10385 min_size, actual_len, alloc_hint, 10386 NULL); 10387 } 10388 10389 int btrfs_prealloc_file_range_trans(struct inode *inode, 10390 struct btrfs_trans_handle *trans, int mode, 10391 u64 start, u64 num_bytes, u64 min_size, 10392 loff_t actual_len, u64 *alloc_hint) 10393 { 10394 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10395 min_size, actual_len, alloc_hint, trans); 10396 } 10397 10398 static int btrfs_set_page_dirty(struct page *page) 10399 { 10400 return __set_page_dirty_nobuffers(page); 10401 } 10402 10403 static int btrfs_permission(struct inode *inode, int mask) 10404 { 10405 struct btrfs_root *root = BTRFS_I(inode)->root; 10406 umode_t mode = inode->i_mode; 10407 10408 if (mask & MAY_WRITE && 10409 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10410 if (btrfs_root_readonly(root)) 10411 return -EROFS; 10412 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10413 return -EACCES; 10414 } 10415 return generic_permission(inode, mask); 10416 } 10417 10418 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10419 { 10420 struct btrfs_trans_handle *trans; 10421 struct btrfs_root *root = BTRFS_I(dir)->root; 10422 struct inode *inode = NULL; 10423 u64 objectid; 10424 u64 index; 10425 int ret = 0; 10426 10427 /* 10428 * 5 units required for adding orphan entry 10429 */ 10430 trans = btrfs_start_transaction(root, 5); 10431 if (IS_ERR(trans)) 10432 return PTR_ERR(trans); 10433 10434 ret = btrfs_find_free_ino(root, &objectid); 10435 if (ret) 10436 goto out; 10437 10438 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10439 btrfs_ino(dir), objectid, mode, &index); 10440 if (IS_ERR(inode)) { 10441 ret = PTR_ERR(inode); 10442 inode = NULL; 10443 goto out; 10444 } 10445 10446 inode->i_fop = &btrfs_file_operations; 10447 inode->i_op = &btrfs_file_inode_operations; 10448 10449 inode->i_mapping->a_ops = &btrfs_aops; 10450 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10451 10452 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10453 if (ret) 10454 goto out_inode; 10455 10456 ret = btrfs_update_inode(trans, root, inode); 10457 if (ret) 10458 goto out_inode; 10459 ret = btrfs_orphan_add(trans, inode); 10460 if (ret) 10461 goto out_inode; 10462 10463 /* 10464 * We set number of links to 0 in btrfs_new_inode(), and here we set 10465 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10466 * through: 10467 * 10468 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10469 */ 10470 set_nlink(inode, 1); 10471 unlock_new_inode(inode); 10472 d_tmpfile(dentry, inode); 10473 mark_inode_dirty(inode); 10474 10475 out: 10476 btrfs_end_transaction(trans, root); 10477 if (ret) 10478 iput(inode); 10479 btrfs_balance_delayed_items(root); 10480 btrfs_btree_balance_dirty(root); 10481 return ret; 10482 10483 out_inode: 10484 unlock_new_inode(inode); 10485 goto out; 10486 10487 } 10488 10489 /* Inspired by filemap_check_errors() */ 10490 int btrfs_inode_check_errors(struct inode *inode) 10491 { 10492 int ret = 0; 10493 10494 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) && 10495 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags)) 10496 ret = -ENOSPC; 10497 if (test_bit(AS_EIO, &inode->i_mapping->flags) && 10498 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags)) 10499 ret = -EIO; 10500 10501 return ret; 10502 } 10503 10504 static const struct inode_operations btrfs_dir_inode_operations = { 10505 .getattr = btrfs_getattr, 10506 .lookup = btrfs_lookup, 10507 .create = btrfs_create, 10508 .unlink = btrfs_unlink, 10509 .link = btrfs_link, 10510 .mkdir = btrfs_mkdir, 10511 .rmdir = btrfs_rmdir, 10512 .rename2 = btrfs_rename2, 10513 .symlink = btrfs_symlink, 10514 .setattr = btrfs_setattr, 10515 .mknod = btrfs_mknod, 10516 .setxattr = generic_setxattr, 10517 .getxattr = generic_getxattr, 10518 .listxattr = btrfs_listxattr, 10519 .removexattr = generic_removexattr, 10520 .permission = btrfs_permission, 10521 .get_acl = btrfs_get_acl, 10522 .set_acl = btrfs_set_acl, 10523 .update_time = btrfs_update_time, 10524 .tmpfile = btrfs_tmpfile, 10525 }; 10526 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10527 .lookup = btrfs_lookup, 10528 .permission = btrfs_permission, 10529 .get_acl = btrfs_get_acl, 10530 .set_acl = btrfs_set_acl, 10531 .update_time = btrfs_update_time, 10532 }; 10533 10534 static const struct file_operations btrfs_dir_file_operations = { 10535 .llseek = generic_file_llseek, 10536 .read = generic_read_dir, 10537 .iterate = btrfs_real_readdir, 10538 .unlocked_ioctl = btrfs_ioctl, 10539 #ifdef CONFIG_COMPAT 10540 .compat_ioctl = btrfs_compat_ioctl, 10541 #endif 10542 .release = btrfs_release_file, 10543 .fsync = btrfs_sync_file, 10544 }; 10545 10546 static const struct extent_io_ops btrfs_extent_io_ops = { 10547 .fill_delalloc = run_delalloc_range, 10548 .submit_bio_hook = btrfs_submit_bio_hook, 10549 .merge_bio_hook = btrfs_merge_bio_hook, 10550 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10551 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10552 .writepage_start_hook = btrfs_writepage_start_hook, 10553 .set_bit_hook = btrfs_set_bit_hook, 10554 .clear_bit_hook = btrfs_clear_bit_hook, 10555 .merge_extent_hook = btrfs_merge_extent_hook, 10556 .split_extent_hook = btrfs_split_extent_hook, 10557 }; 10558 10559 /* 10560 * btrfs doesn't support the bmap operation because swapfiles 10561 * use bmap to make a mapping of extents in the file. They assume 10562 * these extents won't change over the life of the file and they 10563 * use the bmap result to do IO directly to the drive. 10564 * 10565 * the btrfs bmap call would return logical addresses that aren't 10566 * suitable for IO and they also will change frequently as COW 10567 * operations happen. So, swapfile + btrfs == corruption. 10568 * 10569 * For now we're avoiding this by dropping bmap. 10570 */ 10571 static const struct address_space_operations btrfs_aops = { 10572 .readpage = btrfs_readpage, 10573 .writepage = btrfs_writepage, 10574 .writepages = btrfs_writepages, 10575 .readpages = btrfs_readpages, 10576 .direct_IO = btrfs_direct_IO, 10577 .invalidatepage = btrfs_invalidatepage, 10578 .releasepage = btrfs_releasepage, 10579 .set_page_dirty = btrfs_set_page_dirty, 10580 .error_remove_page = generic_error_remove_page, 10581 }; 10582 10583 static const struct address_space_operations btrfs_symlink_aops = { 10584 .readpage = btrfs_readpage, 10585 .writepage = btrfs_writepage, 10586 .invalidatepage = btrfs_invalidatepage, 10587 .releasepage = btrfs_releasepage, 10588 }; 10589 10590 static const struct inode_operations btrfs_file_inode_operations = { 10591 .getattr = btrfs_getattr, 10592 .setattr = btrfs_setattr, 10593 .setxattr = generic_setxattr, 10594 .getxattr = generic_getxattr, 10595 .listxattr = btrfs_listxattr, 10596 .removexattr = generic_removexattr, 10597 .permission = btrfs_permission, 10598 .fiemap = btrfs_fiemap, 10599 .get_acl = btrfs_get_acl, 10600 .set_acl = btrfs_set_acl, 10601 .update_time = btrfs_update_time, 10602 }; 10603 static const struct inode_operations btrfs_special_inode_operations = { 10604 .getattr = btrfs_getattr, 10605 .setattr = btrfs_setattr, 10606 .permission = btrfs_permission, 10607 .setxattr = generic_setxattr, 10608 .getxattr = generic_getxattr, 10609 .listxattr = btrfs_listxattr, 10610 .removexattr = generic_removexattr, 10611 .get_acl = btrfs_get_acl, 10612 .set_acl = btrfs_set_acl, 10613 .update_time = btrfs_update_time, 10614 }; 10615 static const struct inode_operations btrfs_symlink_inode_operations = { 10616 .readlink = generic_readlink, 10617 .get_link = page_get_link, 10618 .getattr = btrfs_getattr, 10619 .setattr = btrfs_setattr, 10620 .permission = btrfs_permission, 10621 .setxattr = generic_setxattr, 10622 .getxattr = generic_getxattr, 10623 .listxattr = btrfs_listxattr, 10624 .removexattr = generic_removexattr, 10625 .update_time = btrfs_update_time, 10626 }; 10627 10628 const struct dentry_operations btrfs_dentry_operations = { 10629 .d_delete = btrfs_dentry_delete, 10630 .d_release = btrfs_dentry_release, 10631 }; 10632