1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <asm/unaligned.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "ordered-data.h" 37 #include "xattr.h" 38 #include "tree-log.h" 39 #include "volumes.h" 40 #include "compression.h" 41 #include "locking.h" 42 #include "free-space-cache.h" 43 #include "inode-map.h" 44 #include "backref.h" 45 #include "props.h" 46 #include "qgroup.h" 47 #include "dedupe.h" 48 49 struct btrfs_iget_args { 50 struct btrfs_key *location; 51 struct btrfs_root *root; 52 }; 53 54 struct btrfs_dio_data { 55 u64 reserve; 56 u64 unsubmitted_oe_range_start; 57 u64 unsubmitted_oe_range_end; 58 int overwrite; 59 }; 60 61 static const struct inode_operations btrfs_dir_inode_operations; 62 static const struct inode_operations btrfs_symlink_inode_operations; 63 static const struct inode_operations btrfs_dir_ro_inode_operations; 64 static const struct inode_operations btrfs_special_inode_operations; 65 static const struct inode_operations btrfs_file_inode_operations; 66 static const struct address_space_operations btrfs_aops; 67 static const struct file_operations btrfs_dir_file_operations; 68 static const struct extent_io_ops btrfs_extent_io_ops; 69 70 static struct kmem_cache *btrfs_inode_cachep; 71 struct kmem_cache *btrfs_trans_handle_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 struct kmem_cache *btrfs_free_space_cachep; 74 75 #define S_SHIFT 12 76 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 77 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 78 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 79 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 80 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 81 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 82 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 83 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 84 }; 85 86 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 87 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 88 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 89 static noinline int cow_file_range(struct inode *inode, 90 struct page *locked_page, 91 u64 start, u64 end, u64 delalloc_end, 92 int *page_started, unsigned long *nr_written, 93 int unlock, struct btrfs_dedupe_hash *hash); 94 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 95 u64 orig_start, u64 block_start, 96 u64 block_len, u64 orig_block_len, 97 u64 ram_bytes, int compress_type, 98 int type); 99 100 static void __endio_write_update_ordered(struct inode *inode, 101 const u64 offset, const u64 bytes, 102 const bool uptodate); 103 104 /* 105 * Cleanup all submitted ordered extents in specified range to handle errors 106 * from the fill_dellaloc() callback. 107 * 108 * NOTE: caller must ensure that when an error happens, it can not call 109 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 110 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 111 * to be released, which we want to happen only when finishing the ordered 112 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 113 * fill_delalloc() callback already does proper cleanup for the first page of 114 * the range, that is, it invokes the callback writepage_end_io_hook() for the 115 * range of the first page. 116 */ 117 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 118 const u64 offset, 119 const u64 bytes) 120 { 121 unsigned long index = offset >> PAGE_SHIFT; 122 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 123 struct page *page; 124 125 while (index <= end_index) { 126 page = find_get_page(inode->i_mapping, index); 127 index++; 128 if (!page) 129 continue; 130 ClearPagePrivate2(page); 131 put_page(page); 132 } 133 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 134 bytes - PAGE_SIZE, false); 135 } 136 137 static int btrfs_dirty_inode(struct inode *inode); 138 139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 140 void btrfs_test_inode_set_ops(struct inode *inode) 141 { 142 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 143 } 144 #endif 145 146 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 147 struct inode *inode, struct inode *dir, 148 const struct qstr *qstr) 149 { 150 int err; 151 152 err = btrfs_init_acl(trans, inode, dir); 153 if (!err) 154 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 155 return err; 156 } 157 158 /* 159 * this does all the hard work for inserting an inline extent into 160 * the btree. The caller should have done a btrfs_drop_extents so that 161 * no overlapping inline items exist in the btree 162 */ 163 static int insert_inline_extent(struct btrfs_trans_handle *trans, 164 struct btrfs_path *path, int extent_inserted, 165 struct btrfs_root *root, struct inode *inode, 166 u64 start, size_t size, size_t compressed_size, 167 int compress_type, 168 struct page **compressed_pages) 169 { 170 struct extent_buffer *leaf; 171 struct page *page = NULL; 172 char *kaddr; 173 unsigned long ptr; 174 struct btrfs_file_extent_item *ei; 175 int ret; 176 size_t cur_size = size; 177 unsigned long offset; 178 179 if (compressed_size && compressed_pages) 180 cur_size = compressed_size; 181 182 inode_add_bytes(inode, size); 183 184 if (!extent_inserted) { 185 struct btrfs_key key; 186 size_t datasize; 187 188 key.objectid = btrfs_ino(BTRFS_I(inode)); 189 key.offset = start; 190 key.type = BTRFS_EXTENT_DATA_KEY; 191 192 datasize = btrfs_file_extent_calc_inline_size(cur_size); 193 path->leave_spinning = 1; 194 ret = btrfs_insert_empty_item(trans, root, path, &key, 195 datasize); 196 if (ret) 197 goto fail; 198 } 199 leaf = path->nodes[0]; 200 ei = btrfs_item_ptr(leaf, path->slots[0], 201 struct btrfs_file_extent_item); 202 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 204 btrfs_set_file_extent_encryption(leaf, ei, 0); 205 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 206 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 207 ptr = btrfs_file_extent_inline_start(ei); 208 209 if (compress_type != BTRFS_COMPRESS_NONE) { 210 struct page *cpage; 211 int i = 0; 212 while (compressed_size > 0) { 213 cpage = compressed_pages[i]; 214 cur_size = min_t(unsigned long, compressed_size, 215 PAGE_SIZE); 216 217 kaddr = kmap_atomic(cpage); 218 write_extent_buffer(leaf, kaddr, ptr, cur_size); 219 kunmap_atomic(kaddr); 220 221 i++; 222 ptr += cur_size; 223 compressed_size -= cur_size; 224 } 225 btrfs_set_file_extent_compression(leaf, ei, 226 compress_type); 227 } else { 228 page = find_get_page(inode->i_mapping, 229 start >> PAGE_SHIFT); 230 btrfs_set_file_extent_compression(leaf, ei, 0); 231 kaddr = kmap_atomic(page); 232 offset = start & (PAGE_SIZE - 1); 233 write_extent_buffer(leaf, kaddr + offset, ptr, size); 234 kunmap_atomic(kaddr); 235 put_page(page); 236 } 237 btrfs_mark_buffer_dirty(leaf); 238 btrfs_release_path(path); 239 240 /* 241 * we're an inline extent, so nobody can 242 * extend the file past i_size without locking 243 * a page we already have locked. 244 * 245 * We must do any isize and inode updates 246 * before we unlock the pages. Otherwise we 247 * could end up racing with unlink. 248 */ 249 BTRFS_I(inode)->disk_i_size = inode->i_size; 250 ret = btrfs_update_inode(trans, root, inode); 251 252 fail: 253 return ret; 254 } 255 256 257 /* 258 * conditionally insert an inline extent into the file. This 259 * does the checks required to make sure the data is small enough 260 * to fit as an inline extent. 261 */ 262 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 263 u64 end, size_t compressed_size, 264 int compress_type, 265 struct page **compressed_pages) 266 { 267 struct btrfs_root *root = BTRFS_I(inode)->root; 268 struct btrfs_fs_info *fs_info = root->fs_info; 269 struct btrfs_trans_handle *trans; 270 u64 isize = i_size_read(inode); 271 u64 actual_end = min(end + 1, isize); 272 u64 inline_len = actual_end - start; 273 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 274 u64 data_len = inline_len; 275 int ret; 276 struct btrfs_path *path; 277 int extent_inserted = 0; 278 u32 extent_item_size; 279 280 if (compressed_size) 281 data_len = compressed_size; 282 283 if (start > 0 || 284 actual_end > fs_info->sectorsize || 285 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 286 (!compressed_size && 287 (actual_end & (fs_info->sectorsize - 1)) == 0) || 288 end + 1 < isize || 289 data_len > fs_info->max_inline) { 290 return 1; 291 } 292 293 path = btrfs_alloc_path(); 294 if (!path) 295 return -ENOMEM; 296 297 trans = btrfs_join_transaction(root); 298 if (IS_ERR(trans)) { 299 btrfs_free_path(path); 300 return PTR_ERR(trans); 301 } 302 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 303 304 if (compressed_size && compressed_pages) 305 extent_item_size = btrfs_file_extent_calc_inline_size( 306 compressed_size); 307 else 308 extent_item_size = btrfs_file_extent_calc_inline_size( 309 inline_len); 310 311 ret = __btrfs_drop_extents(trans, root, inode, path, 312 start, aligned_end, NULL, 313 1, 1, extent_item_size, &extent_inserted); 314 if (ret) { 315 btrfs_abort_transaction(trans, ret); 316 goto out; 317 } 318 319 if (isize > actual_end) 320 inline_len = min_t(u64, isize, actual_end); 321 ret = insert_inline_extent(trans, path, extent_inserted, 322 root, inode, start, 323 inline_len, compressed_size, 324 compress_type, compressed_pages); 325 if (ret && ret != -ENOSPC) { 326 btrfs_abort_transaction(trans, ret); 327 goto out; 328 } else if (ret == -ENOSPC) { 329 ret = 1; 330 goto out; 331 } 332 333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 334 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 335 out: 336 /* 337 * Don't forget to free the reserved space, as for inlined extent 338 * it won't count as data extent, free them directly here. 339 * And at reserve time, it's always aligned to page size, so 340 * just free one page here. 341 */ 342 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 343 btrfs_free_path(path); 344 btrfs_end_transaction(trans); 345 return ret; 346 } 347 348 struct async_extent { 349 u64 start; 350 u64 ram_size; 351 u64 compressed_size; 352 struct page **pages; 353 unsigned long nr_pages; 354 int compress_type; 355 struct list_head list; 356 }; 357 358 struct async_cow { 359 struct inode *inode; 360 struct btrfs_root *root; 361 struct page *locked_page; 362 u64 start; 363 u64 end; 364 unsigned int write_flags; 365 struct list_head extents; 366 struct btrfs_work work; 367 }; 368 369 static noinline int add_async_extent(struct async_cow *cow, 370 u64 start, u64 ram_size, 371 u64 compressed_size, 372 struct page **pages, 373 unsigned long nr_pages, 374 int compress_type) 375 { 376 struct async_extent *async_extent; 377 378 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 379 BUG_ON(!async_extent); /* -ENOMEM */ 380 async_extent->start = start; 381 async_extent->ram_size = ram_size; 382 async_extent->compressed_size = compressed_size; 383 async_extent->pages = pages; 384 async_extent->nr_pages = nr_pages; 385 async_extent->compress_type = compress_type; 386 list_add_tail(&async_extent->list, &cow->extents); 387 return 0; 388 } 389 390 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 391 { 392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 393 394 /* force compress */ 395 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 396 return 1; 397 /* defrag ioctl */ 398 if (BTRFS_I(inode)->defrag_compress) 399 return 1; 400 /* bad compression ratios */ 401 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 402 return 0; 403 if (btrfs_test_opt(fs_info, COMPRESS) || 404 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 405 BTRFS_I(inode)->prop_compress) 406 return btrfs_compress_heuristic(inode, start, end); 407 return 0; 408 } 409 410 static inline void inode_should_defrag(struct btrfs_inode *inode, 411 u64 start, u64 end, u64 num_bytes, u64 small_write) 412 { 413 /* If this is a small write inside eof, kick off a defrag */ 414 if (num_bytes < small_write && 415 (start > 0 || end + 1 < inode->disk_i_size)) 416 btrfs_add_inode_defrag(NULL, inode); 417 } 418 419 /* 420 * we create compressed extents in two phases. The first 421 * phase compresses a range of pages that have already been 422 * locked (both pages and state bits are locked). 423 * 424 * This is done inside an ordered work queue, and the compression 425 * is spread across many cpus. The actual IO submission is step 426 * two, and the ordered work queue takes care of making sure that 427 * happens in the same order things were put onto the queue by 428 * writepages and friends. 429 * 430 * If this code finds it can't get good compression, it puts an 431 * entry onto the work queue to write the uncompressed bytes. This 432 * makes sure that both compressed inodes and uncompressed inodes 433 * are written in the same order that the flusher thread sent them 434 * down. 435 */ 436 static noinline void compress_file_range(struct inode *inode, 437 struct page *locked_page, 438 u64 start, u64 end, 439 struct async_cow *async_cow, 440 int *num_added) 441 { 442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 443 u64 blocksize = fs_info->sectorsize; 444 u64 actual_end; 445 u64 isize = i_size_read(inode); 446 int ret = 0; 447 struct page **pages = NULL; 448 unsigned long nr_pages; 449 unsigned long total_compressed = 0; 450 unsigned long total_in = 0; 451 int i; 452 int will_compress; 453 int compress_type = fs_info->compress_type; 454 int redirty = 0; 455 456 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 457 SZ_16K); 458 459 actual_end = min_t(u64, isize, end + 1); 460 again: 461 will_compress = 0; 462 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 463 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 464 nr_pages = min_t(unsigned long, nr_pages, 465 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 466 467 /* 468 * we don't want to send crud past the end of i_size through 469 * compression, that's just a waste of CPU time. So, if the 470 * end of the file is before the start of our current 471 * requested range of bytes, we bail out to the uncompressed 472 * cleanup code that can deal with all of this. 473 * 474 * It isn't really the fastest way to fix things, but this is a 475 * very uncommon corner. 476 */ 477 if (actual_end <= start) 478 goto cleanup_and_bail_uncompressed; 479 480 total_compressed = actual_end - start; 481 482 /* 483 * skip compression for a small file range(<=blocksize) that 484 * isn't an inline extent, since it doesn't save disk space at all. 485 */ 486 if (total_compressed <= blocksize && 487 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 488 goto cleanup_and_bail_uncompressed; 489 490 total_compressed = min_t(unsigned long, total_compressed, 491 BTRFS_MAX_UNCOMPRESSED); 492 total_in = 0; 493 ret = 0; 494 495 /* 496 * we do compression for mount -o compress and when the 497 * inode has not been flagged as nocompress. This flag can 498 * change at any time if we discover bad compression ratios. 499 */ 500 if (inode_need_compress(inode, start, end)) { 501 WARN_ON(pages); 502 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 503 if (!pages) { 504 /* just bail out to the uncompressed code */ 505 goto cont; 506 } 507 508 if (BTRFS_I(inode)->defrag_compress) 509 compress_type = BTRFS_I(inode)->defrag_compress; 510 else if (BTRFS_I(inode)->prop_compress) 511 compress_type = BTRFS_I(inode)->prop_compress; 512 513 /* 514 * we need to call clear_page_dirty_for_io on each 515 * page in the range. Otherwise applications with the file 516 * mmap'd can wander in and change the page contents while 517 * we are compressing them. 518 * 519 * If the compression fails for any reason, we set the pages 520 * dirty again later on. 521 * 522 * Note that the remaining part is redirtied, the start pointer 523 * has moved, the end is the original one. 524 */ 525 if (!redirty) { 526 extent_range_clear_dirty_for_io(inode, start, end); 527 redirty = 1; 528 } 529 530 /* Compression level is applied here and only here */ 531 ret = btrfs_compress_pages( 532 compress_type | (fs_info->compress_level << 4), 533 inode->i_mapping, start, 534 pages, 535 &nr_pages, 536 &total_in, 537 &total_compressed); 538 539 if (!ret) { 540 unsigned long offset = total_compressed & 541 (PAGE_SIZE - 1); 542 struct page *page = pages[nr_pages - 1]; 543 char *kaddr; 544 545 /* zero the tail end of the last page, we might be 546 * sending it down to disk 547 */ 548 if (offset) { 549 kaddr = kmap_atomic(page); 550 memset(kaddr + offset, 0, 551 PAGE_SIZE - offset); 552 kunmap_atomic(kaddr); 553 } 554 will_compress = 1; 555 } 556 } 557 cont: 558 if (start == 0) { 559 /* lets try to make an inline extent */ 560 if (ret || total_in < actual_end) { 561 /* we didn't compress the entire range, try 562 * to make an uncompressed inline extent. 563 */ 564 ret = cow_file_range_inline(inode, start, end, 0, 565 BTRFS_COMPRESS_NONE, NULL); 566 } else { 567 /* try making a compressed inline extent */ 568 ret = cow_file_range_inline(inode, start, end, 569 total_compressed, 570 compress_type, pages); 571 } 572 if (ret <= 0) { 573 unsigned long clear_flags = EXTENT_DELALLOC | 574 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 575 EXTENT_DO_ACCOUNTING; 576 unsigned long page_error_op; 577 578 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 579 580 /* 581 * inline extent creation worked or returned error, 582 * we don't need to create any more async work items. 583 * Unlock and free up our temp pages. 584 * 585 * We use DO_ACCOUNTING here because we need the 586 * delalloc_release_metadata to be done _after_ we drop 587 * our outstanding extent for clearing delalloc for this 588 * range. 589 */ 590 extent_clear_unlock_delalloc(inode, start, end, end, 591 NULL, clear_flags, 592 PAGE_UNLOCK | 593 PAGE_CLEAR_DIRTY | 594 PAGE_SET_WRITEBACK | 595 page_error_op | 596 PAGE_END_WRITEBACK); 597 goto free_pages_out; 598 } 599 } 600 601 if (will_compress) { 602 /* 603 * we aren't doing an inline extent round the compressed size 604 * up to a block size boundary so the allocator does sane 605 * things 606 */ 607 total_compressed = ALIGN(total_compressed, blocksize); 608 609 /* 610 * one last check to make sure the compression is really a 611 * win, compare the page count read with the blocks on disk, 612 * compression must free at least one sector size 613 */ 614 total_in = ALIGN(total_in, PAGE_SIZE); 615 if (total_compressed + blocksize <= total_in) { 616 *num_added += 1; 617 618 /* 619 * The async work queues will take care of doing actual 620 * allocation on disk for these compressed pages, and 621 * will submit them to the elevator. 622 */ 623 add_async_extent(async_cow, start, total_in, 624 total_compressed, pages, nr_pages, 625 compress_type); 626 627 if (start + total_in < end) { 628 start += total_in; 629 pages = NULL; 630 cond_resched(); 631 goto again; 632 } 633 return; 634 } 635 } 636 if (pages) { 637 /* 638 * the compression code ran but failed to make things smaller, 639 * free any pages it allocated and our page pointer array 640 */ 641 for (i = 0; i < nr_pages; i++) { 642 WARN_ON(pages[i]->mapping); 643 put_page(pages[i]); 644 } 645 kfree(pages); 646 pages = NULL; 647 total_compressed = 0; 648 nr_pages = 0; 649 650 /* flag the file so we don't compress in the future */ 651 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 652 !(BTRFS_I(inode)->prop_compress)) { 653 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 654 } 655 } 656 cleanup_and_bail_uncompressed: 657 /* 658 * No compression, but we still need to write the pages in the file 659 * we've been given so far. redirty the locked page if it corresponds 660 * to our extent and set things up for the async work queue to run 661 * cow_file_range to do the normal delalloc dance. 662 */ 663 if (page_offset(locked_page) >= start && 664 page_offset(locked_page) <= end) 665 __set_page_dirty_nobuffers(locked_page); 666 /* unlocked later on in the async handlers */ 667 668 if (redirty) 669 extent_range_redirty_for_io(inode, start, end); 670 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 671 BTRFS_COMPRESS_NONE); 672 *num_added += 1; 673 674 return; 675 676 free_pages_out: 677 for (i = 0; i < nr_pages; i++) { 678 WARN_ON(pages[i]->mapping); 679 put_page(pages[i]); 680 } 681 kfree(pages); 682 } 683 684 static void free_async_extent_pages(struct async_extent *async_extent) 685 { 686 int i; 687 688 if (!async_extent->pages) 689 return; 690 691 for (i = 0; i < async_extent->nr_pages; i++) { 692 WARN_ON(async_extent->pages[i]->mapping); 693 put_page(async_extent->pages[i]); 694 } 695 kfree(async_extent->pages); 696 async_extent->nr_pages = 0; 697 async_extent->pages = NULL; 698 } 699 700 /* 701 * phase two of compressed writeback. This is the ordered portion 702 * of the code, which only gets called in the order the work was 703 * queued. We walk all the async extents created by compress_file_range 704 * and send them down to the disk. 705 */ 706 static noinline void submit_compressed_extents(struct inode *inode, 707 struct async_cow *async_cow) 708 { 709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 710 struct async_extent *async_extent; 711 u64 alloc_hint = 0; 712 struct btrfs_key ins; 713 struct extent_map *em; 714 struct btrfs_root *root = BTRFS_I(inode)->root; 715 struct extent_io_tree *io_tree; 716 int ret = 0; 717 718 again: 719 while (!list_empty(&async_cow->extents)) { 720 async_extent = list_entry(async_cow->extents.next, 721 struct async_extent, list); 722 list_del(&async_extent->list); 723 724 io_tree = &BTRFS_I(inode)->io_tree; 725 726 retry: 727 /* did the compression code fall back to uncompressed IO? */ 728 if (!async_extent->pages) { 729 int page_started = 0; 730 unsigned long nr_written = 0; 731 732 lock_extent(io_tree, async_extent->start, 733 async_extent->start + 734 async_extent->ram_size - 1); 735 736 /* allocate blocks */ 737 ret = cow_file_range(inode, async_cow->locked_page, 738 async_extent->start, 739 async_extent->start + 740 async_extent->ram_size - 1, 741 async_extent->start + 742 async_extent->ram_size - 1, 743 &page_started, &nr_written, 0, 744 NULL); 745 746 /* JDM XXX */ 747 748 /* 749 * if page_started, cow_file_range inserted an 750 * inline extent and took care of all the unlocking 751 * and IO for us. Otherwise, we need to submit 752 * all those pages down to the drive. 753 */ 754 if (!page_started && !ret) 755 extent_write_locked_range(inode, 756 async_extent->start, 757 async_extent->start + 758 async_extent->ram_size - 1, 759 WB_SYNC_ALL); 760 else if (ret) 761 unlock_page(async_cow->locked_page); 762 kfree(async_extent); 763 cond_resched(); 764 continue; 765 } 766 767 lock_extent(io_tree, async_extent->start, 768 async_extent->start + async_extent->ram_size - 1); 769 770 ret = btrfs_reserve_extent(root, async_extent->ram_size, 771 async_extent->compressed_size, 772 async_extent->compressed_size, 773 0, alloc_hint, &ins, 1, 1); 774 if (ret) { 775 free_async_extent_pages(async_extent); 776 777 if (ret == -ENOSPC) { 778 unlock_extent(io_tree, async_extent->start, 779 async_extent->start + 780 async_extent->ram_size - 1); 781 782 /* 783 * we need to redirty the pages if we decide to 784 * fallback to uncompressed IO, otherwise we 785 * will not submit these pages down to lower 786 * layers. 787 */ 788 extent_range_redirty_for_io(inode, 789 async_extent->start, 790 async_extent->start + 791 async_extent->ram_size - 1); 792 793 goto retry; 794 } 795 goto out_free; 796 } 797 /* 798 * here we're doing allocation and writeback of the 799 * compressed pages 800 */ 801 em = create_io_em(inode, async_extent->start, 802 async_extent->ram_size, /* len */ 803 async_extent->start, /* orig_start */ 804 ins.objectid, /* block_start */ 805 ins.offset, /* block_len */ 806 ins.offset, /* orig_block_len */ 807 async_extent->ram_size, /* ram_bytes */ 808 async_extent->compress_type, 809 BTRFS_ORDERED_COMPRESSED); 810 if (IS_ERR(em)) 811 /* ret value is not necessary due to void function */ 812 goto out_free_reserve; 813 free_extent_map(em); 814 815 ret = btrfs_add_ordered_extent_compress(inode, 816 async_extent->start, 817 ins.objectid, 818 async_extent->ram_size, 819 ins.offset, 820 BTRFS_ORDERED_COMPRESSED, 821 async_extent->compress_type); 822 if (ret) { 823 btrfs_drop_extent_cache(BTRFS_I(inode), 824 async_extent->start, 825 async_extent->start + 826 async_extent->ram_size - 1, 0); 827 goto out_free_reserve; 828 } 829 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 830 831 /* 832 * clear dirty, set writeback and unlock the pages. 833 */ 834 extent_clear_unlock_delalloc(inode, async_extent->start, 835 async_extent->start + 836 async_extent->ram_size - 1, 837 async_extent->start + 838 async_extent->ram_size - 1, 839 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 840 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 841 PAGE_SET_WRITEBACK); 842 if (btrfs_submit_compressed_write(inode, 843 async_extent->start, 844 async_extent->ram_size, 845 ins.objectid, 846 ins.offset, async_extent->pages, 847 async_extent->nr_pages, 848 async_cow->write_flags)) { 849 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 850 struct page *p = async_extent->pages[0]; 851 const u64 start = async_extent->start; 852 const u64 end = start + async_extent->ram_size - 1; 853 854 p->mapping = inode->i_mapping; 855 tree->ops->writepage_end_io_hook(p, start, end, 856 NULL, 0); 857 p->mapping = NULL; 858 extent_clear_unlock_delalloc(inode, start, end, end, 859 NULL, 0, 860 PAGE_END_WRITEBACK | 861 PAGE_SET_ERROR); 862 free_async_extent_pages(async_extent); 863 } 864 alloc_hint = ins.objectid + ins.offset; 865 kfree(async_extent); 866 cond_resched(); 867 } 868 return; 869 out_free_reserve: 870 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 871 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 872 out_free: 873 extent_clear_unlock_delalloc(inode, async_extent->start, 874 async_extent->start + 875 async_extent->ram_size - 1, 876 async_extent->start + 877 async_extent->ram_size - 1, 878 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 879 EXTENT_DELALLOC_NEW | 880 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 881 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 882 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 883 PAGE_SET_ERROR); 884 free_async_extent_pages(async_extent); 885 kfree(async_extent); 886 goto again; 887 } 888 889 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 890 u64 num_bytes) 891 { 892 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 893 struct extent_map *em; 894 u64 alloc_hint = 0; 895 896 read_lock(&em_tree->lock); 897 em = search_extent_mapping(em_tree, start, num_bytes); 898 if (em) { 899 /* 900 * if block start isn't an actual block number then find the 901 * first block in this inode and use that as a hint. If that 902 * block is also bogus then just don't worry about it. 903 */ 904 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 905 free_extent_map(em); 906 em = search_extent_mapping(em_tree, 0, 0); 907 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 908 alloc_hint = em->block_start; 909 if (em) 910 free_extent_map(em); 911 } else { 912 alloc_hint = em->block_start; 913 free_extent_map(em); 914 } 915 } 916 read_unlock(&em_tree->lock); 917 918 return alloc_hint; 919 } 920 921 /* 922 * when extent_io.c finds a delayed allocation range in the file, 923 * the call backs end up in this code. The basic idea is to 924 * allocate extents on disk for the range, and create ordered data structs 925 * in ram to track those extents. 926 * 927 * locked_page is the page that writepage had locked already. We use 928 * it to make sure we don't do extra locks or unlocks. 929 * 930 * *page_started is set to one if we unlock locked_page and do everything 931 * required to start IO on it. It may be clean and already done with 932 * IO when we return. 933 */ 934 static noinline int cow_file_range(struct inode *inode, 935 struct page *locked_page, 936 u64 start, u64 end, u64 delalloc_end, 937 int *page_started, unsigned long *nr_written, 938 int unlock, struct btrfs_dedupe_hash *hash) 939 { 940 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 941 struct btrfs_root *root = BTRFS_I(inode)->root; 942 u64 alloc_hint = 0; 943 u64 num_bytes; 944 unsigned long ram_size; 945 u64 cur_alloc_size = 0; 946 u64 blocksize = fs_info->sectorsize; 947 struct btrfs_key ins; 948 struct extent_map *em; 949 unsigned clear_bits; 950 unsigned long page_ops; 951 bool extent_reserved = false; 952 int ret = 0; 953 954 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 955 WARN_ON_ONCE(1); 956 ret = -EINVAL; 957 goto out_unlock; 958 } 959 960 num_bytes = ALIGN(end - start + 1, blocksize); 961 num_bytes = max(blocksize, num_bytes); 962 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 963 964 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 965 966 if (start == 0) { 967 /* lets try to make an inline extent */ 968 ret = cow_file_range_inline(inode, start, end, 0, 969 BTRFS_COMPRESS_NONE, NULL); 970 if (ret == 0) { 971 /* 972 * We use DO_ACCOUNTING here because we need the 973 * delalloc_release_metadata to be run _after_ we drop 974 * our outstanding extent for clearing delalloc for this 975 * range. 976 */ 977 extent_clear_unlock_delalloc(inode, start, end, 978 delalloc_end, NULL, 979 EXTENT_LOCKED | EXTENT_DELALLOC | 980 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 981 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 982 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 983 PAGE_END_WRITEBACK); 984 *nr_written = *nr_written + 985 (end - start + PAGE_SIZE) / PAGE_SIZE; 986 *page_started = 1; 987 goto out; 988 } else if (ret < 0) { 989 goto out_unlock; 990 } 991 } 992 993 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 994 btrfs_drop_extent_cache(BTRFS_I(inode), start, 995 start + num_bytes - 1, 0); 996 997 while (num_bytes > 0) { 998 cur_alloc_size = num_bytes; 999 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1000 fs_info->sectorsize, 0, alloc_hint, 1001 &ins, 1, 1); 1002 if (ret < 0) 1003 goto out_unlock; 1004 cur_alloc_size = ins.offset; 1005 extent_reserved = true; 1006 1007 ram_size = ins.offset; 1008 em = create_io_em(inode, start, ins.offset, /* len */ 1009 start, /* orig_start */ 1010 ins.objectid, /* block_start */ 1011 ins.offset, /* block_len */ 1012 ins.offset, /* orig_block_len */ 1013 ram_size, /* ram_bytes */ 1014 BTRFS_COMPRESS_NONE, /* compress_type */ 1015 BTRFS_ORDERED_REGULAR /* type */); 1016 if (IS_ERR(em)) { 1017 ret = PTR_ERR(em); 1018 goto out_reserve; 1019 } 1020 free_extent_map(em); 1021 1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1023 ram_size, cur_alloc_size, 0); 1024 if (ret) 1025 goto out_drop_extent_cache; 1026 1027 if (root->root_key.objectid == 1028 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1029 ret = btrfs_reloc_clone_csums(inode, start, 1030 cur_alloc_size); 1031 /* 1032 * Only drop cache here, and process as normal. 1033 * 1034 * We must not allow extent_clear_unlock_delalloc() 1035 * at out_unlock label to free meta of this ordered 1036 * extent, as its meta should be freed by 1037 * btrfs_finish_ordered_io(). 1038 * 1039 * So we must continue until @start is increased to 1040 * skip current ordered extent. 1041 */ 1042 if (ret) 1043 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1044 start + ram_size - 1, 0); 1045 } 1046 1047 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1048 1049 /* we're not doing compressed IO, don't unlock the first 1050 * page (which the caller expects to stay locked), don't 1051 * clear any dirty bits and don't set any writeback bits 1052 * 1053 * Do set the Private2 bit so we know this page was properly 1054 * setup for writepage 1055 */ 1056 page_ops = unlock ? PAGE_UNLOCK : 0; 1057 page_ops |= PAGE_SET_PRIVATE2; 1058 1059 extent_clear_unlock_delalloc(inode, start, 1060 start + ram_size - 1, 1061 delalloc_end, locked_page, 1062 EXTENT_LOCKED | EXTENT_DELALLOC, 1063 page_ops); 1064 if (num_bytes < cur_alloc_size) 1065 num_bytes = 0; 1066 else 1067 num_bytes -= cur_alloc_size; 1068 alloc_hint = ins.objectid + ins.offset; 1069 start += cur_alloc_size; 1070 extent_reserved = false; 1071 1072 /* 1073 * btrfs_reloc_clone_csums() error, since start is increased 1074 * extent_clear_unlock_delalloc() at out_unlock label won't 1075 * free metadata of current ordered extent, we're OK to exit. 1076 */ 1077 if (ret) 1078 goto out_unlock; 1079 } 1080 out: 1081 return ret; 1082 1083 out_drop_extent_cache: 1084 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1085 out_reserve: 1086 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1087 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1088 out_unlock: 1089 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1090 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1091 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1092 PAGE_END_WRITEBACK; 1093 /* 1094 * If we reserved an extent for our delalloc range (or a subrange) and 1095 * failed to create the respective ordered extent, then it means that 1096 * when we reserved the extent we decremented the extent's size from 1097 * the data space_info's bytes_may_use counter and incremented the 1098 * space_info's bytes_reserved counter by the same amount. We must make 1099 * sure extent_clear_unlock_delalloc() does not try to decrement again 1100 * the data space_info's bytes_may_use counter, therefore we do not pass 1101 * it the flag EXTENT_CLEAR_DATA_RESV. 1102 */ 1103 if (extent_reserved) { 1104 extent_clear_unlock_delalloc(inode, start, 1105 start + cur_alloc_size, 1106 start + cur_alloc_size, 1107 locked_page, 1108 clear_bits, 1109 page_ops); 1110 start += cur_alloc_size; 1111 if (start >= end) 1112 goto out; 1113 } 1114 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1115 locked_page, 1116 clear_bits | EXTENT_CLEAR_DATA_RESV, 1117 page_ops); 1118 goto out; 1119 } 1120 1121 /* 1122 * work queue call back to started compression on a file and pages 1123 */ 1124 static noinline void async_cow_start(struct btrfs_work *work) 1125 { 1126 struct async_cow *async_cow; 1127 int num_added = 0; 1128 async_cow = container_of(work, struct async_cow, work); 1129 1130 compress_file_range(async_cow->inode, async_cow->locked_page, 1131 async_cow->start, async_cow->end, async_cow, 1132 &num_added); 1133 if (num_added == 0) { 1134 btrfs_add_delayed_iput(async_cow->inode); 1135 async_cow->inode = NULL; 1136 } 1137 } 1138 1139 /* 1140 * work queue call back to submit previously compressed pages 1141 */ 1142 static noinline void async_cow_submit(struct btrfs_work *work) 1143 { 1144 struct btrfs_fs_info *fs_info; 1145 struct async_cow *async_cow; 1146 struct btrfs_root *root; 1147 unsigned long nr_pages; 1148 1149 async_cow = container_of(work, struct async_cow, work); 1150 1151 root = async_cow->root; 1152 fs_info = root->fs_info; 1153 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1154 PAGE_SHIFT; 1155 1156 /* atomic_sub_return implies a barrier */ 1157 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1158 5 * SZ_1M) 1159 cond_wake_up_nomb(&fs_info->async_submit_wait); 1160 1161 if (async_cow->inode) 1162 submit_compressed_extents(async_cow->inode, async_cow); 1163 } 1164 1165 static noinline void async_cow_free(struct btrfs_work *work) 1166 { 1167 struct async_cow *async_cow; 1168 async_cow = container_of(work, struct async_cow, work); 1169 if (async_cow->inode) 1170 btrfs_add_delayed_iput(async_cow->inode); 1171 kfree(async_cow); 1172 } 1173 1174 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1175 u64 start, u64 end, int *page_started, 1176 unsigned long *nr_written, 1177 unsigned int write_flags) 1178 { 1179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1180 struct async_cow *async_cow; 1181 struct btrfs_root *root = BTRFS_I(inode)->root; 1182 unsigned long nr_pages; 1183 u64 cur_end; 1184 1185 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1186 1, 0, NULL); 1187 while (start < end) { 1188 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1189 BUG_ON(!async_cow); /* -ENOMEM */ 1190 async_cow->inode = igrab(inode); 1191 async_cow->root = root; 1192 async_cow->locked_page = locked_page; 1193 async_cow->start = start; 1194 async_cow->write_flags = write_flags; 1195 1196 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1197 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1198 cur_end = end; 1199 else 1200 cur_end = min(end, start + SZ_512K - 1); 1201 1202 async_cow->end = cur_end; 1203 INIT_LIST_HEAD(&async_cow->extents); 1204 1205 btrfs_init_work(&async_cow->work, 1206 btrfs_delalloc_helper, 1207 async_cow_start, async_cow_submit, 1208 async_cow_free); 1209 1210 nr_pages = (cur_end - start + PAGE_SIZE) >> 1211 PAGE_SHIFT; 1212 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1213 1214 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1215 1216 *nr_written += nr_pages; 1217 start = cur_end + 1; 1218 } 1219 *page_started = 1; 1220 return 0; 1221 } 1222 1223 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1224 u64 bytenr, u64 num_bytes) 1225 { 1226 int ret; 1227 struct btrfs_ordered_sum *sums; 1228 LIST_HEAD(list); 1229 1230 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1231 bytenr + num_bytes - 1, &list, 0); 1232 if (ret == 0 && list_empty(&list)) 1233 return 0; 1234 1235 while (!list_empty(&list)) { 1236 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1237 list_del(&sums->list); 1238 kfree(sums); 1239 } 1240 if (ret < 0) 1241 return ret; 1242 return 1; 1243 } 1244 1245 /* 1246 * when nowcow writeback call back. This checks for snapshots or COW copies 1247 * of the extents that exist in the file, and COWs the file as required. 1248 * 1249 * If no cow copies or snapshots exist, we write directly to the existing 1250 * blocks on disk 1251 */ 1252 static noinline int run_delalloc_nocow(struct inode *inode, 1253 struct page *locked_page, 1254 u64 start, u64 end, int *page_started, int force, 1255 unsigned long *nr_written) 1256 { 1257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1258 struct btrfs_root *root = BTRFS_I(inode)->root; 1259 struct extent_buffer *leaf; 1260 struct btrfs_path *path; 1261 struct btrfs_file_extent_item *fi; 1262 struct btrfs_key found_key; 1263 struct extent_map *em; 1264 u64 cow_start; 1265 u64 cur_offset; 1266 u64 extent_end; 1267 u64 extent_offset; 1268 u64 disk_bytenr; 1269 u64 num_bytes; 1270 u64 disk_num_bytes; 1271 u64 ram_bytes; 1272 int extent_type; 1273 int ret; 1274 int type; 1275 int nocow; 1276 int check_prev = 1; 1277 bool nolock; 1278 u64 ino = btrfs_ino(BTRFS_I(inode)); 1279 1280 path = btrfs_alloc_path(); 1281 if (!path) { 1282 extent_clear_unlock_delalloc(inode, start, end, end, 1283 locked_page, 1284 EXTENT_LOCKED | EXTENT_DELALLOC | 1285 EXTENT_DO_ACCOUNTING | 1286 EXTENT_DEFRAG, PAGE_UNLOCK | 1287 PAGE_CLEAR_DIRTY | 1288 PAGE_SET_WRITEBACK | 1289 PAGE_END_WRITEBACK); 1290 return -ENOMEM; 1291 } 1292 1293 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1294 1295 cow_start = (u64)-1; 1296 cur_offset = start; 1297 while (1) { 1298 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1299 cur_offset, 0); 1300 if (ret < 0) 1301 goto error; 1302 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1303 leaf = path->nodes[0]; 1304 btrfs_item_key_to_cpu(leaf, &found_key, 1305 path->slots[0] - 1); 1306 if (found_key.objectid == ino && 1307 found_key.type == BTRFS_EXTENT_DATA_KEY) 1308 path->slots[0]--; 1309 } 1310 check_prev = 0; 1311 next_slot: 1312 leaf = path->nodes[0]; 1313 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1314 ret = btrfs_next_leaf(root, path); 1315 if (ret < 0) { 1316 if (cow_start != (u64)-1) 1317 cur_offset = cow_start; 1318 goto error; 1319 } 1320 if (ret > 0) 1321 break; 1322 leaf = path->nodes[0]; 1323 } 1324 1325 nocow = 0; 1326 disk_bytenr = 0; 1327 num_bytes = 0; 1328 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1329 1330 if (found_key.objectid > ino) 1331 break; 1332 if (WARN_ON_ONCE(found_key.objectid < ino) || 1333 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1334 path->slots[0]++; 1335 goto next_slot; 1336 } 1337 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1338 found_key.offset > end) 1339 break; 1340 1341 if (found_key.offset > cur_offset) { 1342 extent_end = found_key.offset; 1343 extent_type = 0; 1344 goto out_check; 1345 } 1346 1347 fi = btrfs_item_ptr(leaf, path->slots[0], 1348 struct btrfs_file_extent_item); 1349 extent_type = btrfs_file_extent_type(leaf, fi); 1350 1351 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1352 if (extent_type == BTRFS_FILE_EXTENT_REG || 1353 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1354 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1355 extent_offset = btrfs_file_extent_offset(leaf, fi); 1356 extent_end = found_key.offset + 1357 btrfs_file_extent_num_bytes(leaf, fi); 1358 disk_num_bytes = 1359 btrfs_file_extent_disk_num_bytes(leaf, fi); 1360 if (extent_end <= start) { 1361 path->slots[0]++; 1362 goto next_slot; 1363 } 1364 if (disk_bytenr == 0) 1365 goto out_check; 1366 if (btrfs_file_extent_compression(leaf, fi) || 1367 btrfs_file_extent_encryption(leaf, fi) || 1368 btrfs_file_extent_other_encoding(leaf, fi)) 1369 goto out_check; 1370 /* 1371 * Do the same check as in btrfs_cross_ref_exist but 1372 * without the unnecessary search. 1373 */ 1374 if (btrfs_file_extent_generation(leaf, fi) <= 1375 btrfs_root_last_snapshot(&root->root_item)) 1376 goto out_check; 1377 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1378 goto out_check; 1379 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1380 goto out_check; 1381 ret = btrfs_cross_ref_exist(root, ino, 1382 found_key.offset - 1383 extent_offset, disk_bytenr); 1384 if (ret) { 1385 /* 1386 * ret could be -EIO if the above fails to read 1387 * metadata. 1388 */ 1389 if (ret < 0) { 1390 if (cow_start != (u64)-1) 1391 cur_offset = cow_start; 1392 goto error; 1393 } 1394 1395 WARN_ON_ONCE(nolock); 1396 goto out_check; 1397 } 1398 disk_bytenr += extent_offset; 1399 disk_bytenr += cur_offset - found_key.offset; 1400 num_bytes = min(end + 1, extent_end) - cur_offset; 1401 /* 1402 * if there are pending snapshots for this root, 1403 * we fall into common COW way. 1404 */ 1405 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1406 goto out_check; 1407 /* 1408 * force cow if csum exists in the range. 1409 * this ensure that csum for a given extent are 1410 * either valid or do not exist. 1411 */ 1412 ret = csum_exist_in_range(fs_info, disk_bytenr, 1413 num_bytes); 1414 if (ret) { 1415 /* 1416 * ret could be -EIO if the above fails to read 1417 * metadata. 1418 */ 1419 if (ret < 0) { 1420 if (cow_start != (u64)-1) 1421 cur_offset = cow_start; 1422 goto error; 1423 } 1424 WARN_ON_ONCE(nolock); 1425 goto out_check; 1426 } 1427 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1428 goto out_check; 1429 nocow = 1; 1430 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1431 extent_end = found_key.offset + 1432 btrfs_file_extent_ram_bytes(leaf, fi); 1433 extent_end = ALIGN(extent_end, 1434 fs_info->sectorsize); 1435 } else { 1436 BUG_ON(1); 1437 } 1438 out_check: 1439 if (extent_end <= start) { 1440 path->slots[0]++; 1441 if (nocow) 1442 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1443 goto next_slot; 1444 } 1445 if (!nocow) { 1446 if (cow_start == (u64)-1) 1447 cow_start = cur_offset; 1448 cur_offset = extent_end; 1449 if (cur_offset > end) 1450 break; 1451 path->slots[0]++; 1452 goto next_slot; 1453 } 1454 1455 btrfs_release_path(path); 1456 if (cow_start != (u64)-1) { 1457 ret = cow_file_range(inode, locked_page, 1458 cow_start, found_key.offset - 1, 1459 end, page_started, nr_written, 1, 1460 NULL); 1461 if (ret) { 1462 if (nocow) 1463 btrfs_dec_nocow_writers(fs_info, 1464 disk_bytenr); 1465 goto error; 1466 } 1467 cow_start = (u64)-1; 1468 } 1469 1470 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1471 u64 orig_start = found_key.offset - extent_offset; 1472 1473 em = create_io_em(inode, cur_offset, num_bytes, 1474 orig_start, 1475 disk_bytenr, /* block_start */ 1476 num_bytes, /* block_len */ 1477 disk_num_bytes, /* orig_block_len */ 1478 ram_bytes, BTRFS_COMPRESS_NONE, 1479 BTRFS_ORDERED_PREALLOC); 1480 if (IS_ERR(em)) { 1481 if (nocow) 1482 btrfs_dec_nocow_writers(fs_info, 1483 disk_bytenr); 1484 ret = PTR_ERR(em); 1485 goto error; 1486 } 1487 free_extent_map(em); 1488 } 1489 1490 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1491 type = BTRFS_ORDERED_PREALLOC; 1492 } else { 1493 type = BTRFS_ORDERED_NOCOW; 1494 } 1495 1496 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1497 num_bytes, num_bytes, type); 1498 if (nocow) 1499 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1500 BUG_ON(ret); /* -ENOMEM */ 1501 1502 if (root->root_key.objectid == 1503 BTRFS_DATA_RELOC_TREE_OBJECTID) 1504 /* 1505 * Error handled later, as we must prevent 1506 * extent_clear_unlock_delalloc() in error handler 1507 * from freeing metadata of created ordered extent. 1508 */ 1509 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1510 num_bytes); 1511 1512 extent_clear_unlock_delalloc(inode, cur_offset, 1513 cur_offset + num_bytes - 1, end, 1514 locked_page, EXTENT_LOCKED | 1515 EXTENT_DELALLOC | 1516 EXTENT_CLEAR_DATA_RESV, 1517 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1518 1519 cur_offset = extent_end; 1520 1521 /* 1522 * btrfs_reloc_clone_csums() error, now we're OK to call error 1523 * handler, as metadata for created ordered extent will only 1524 * be freed by btrfs_finish_ordered_io(). 1525 */ 1526 if (ret) 1527 goto error; 1528 if (cur_offset > end) 1529 break; 1530 } 1531 btrfs_release_path(path); 1532 1533 if (cur_offset <= end && cow_start == (u64)-1) { 1534 cow_start = cur_offset; 1535 cur_offset = end; 1536 } 1537 1538 if (cow_start != (u64)-1) { 1539 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1540 page_started, nr_written, 1, NULL); 1541 if (ret) 1542 goto error; 1543 } 1544 1545 error: 1546 if (ret && cur_offset < end) 1547 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1548 locked_page, EXTENT_LOCKED | 1549 EXTENT_DELALLOC | EXTENT_DEFRAG | 1550 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1551 PAGE_CLEAR_DIRTY | 1552 PAGE_SET_WRITEBACK | 1553 PAGE_END_WRITEBACK); 1554 btrfs_free_path(path); 1555 return ret; 1556 } 1557 1558 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1559 { 1560 1561 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1562 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1563 return 0; 1564 1565 /* 1566 * @defrag_bytes is a hint value, no spinlock held here, 1567 * if is not zero, it means the file is defragging. 1568 * Force cow if given extent needs to be defragged. 1569 */ 1570 if (BTRFS_I(inode)->defrag_bytes && 1571 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1572 EXTENT_DEFRAG, 0, NULL)) 1573 return 1; 1574 1575 return 0; 1576 } 1577 1578 /* 1579 * extent_io.c call back to do delayed allocation processing 1580 */ 1581 static int run_delalloc_range(void *private_data, struct page *locked_page, 1582 u64 start, u64 end, int *page_started, 1583 unsigned long *nr_written, 1584 struct writeback_control *wbc) 1585 { 1586 struct inode *inode = private_data; 1587 int ret; 1588 int force_cow = need_force_cow(inode, start, end); 1589 unsigned int write_flags = wbc_to_write_flags(wbc); 1590 1591 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1592 ret = run_delalloc_nocow(inode, locked_page, start, end, 1593 page_started, 1, nr_written); 1594 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1595 ret = run_delalloc_nocow(inode, locked_page, start, end, 1596 page_started, 0, nr_written); 1597 } else if (!inode_need_compress(inode, start, end)) { 1598 ret = cow_file_range(inode, locked_page, start, end, end, 1599 page_started, nr_written, 1, NULL); 1600 } else { 1601 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1602 &BTRFS_I(inode)->runtime_flags); 1603 ret = cow_file_range_async(inode, locked_page, start, end, 1604 page_started, nr_written, 1605 write_flags); 1606 } 1607 if (ret) 1608 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1609 return ret; 1610 } 1611 1612 static void btrfs_split_extent_hook(void *private_data, 1613 struct extent_state *orig, u64 split) 1614 { 1615 struct inode *inode = private_data; 1616 u64 size; 1617 1618 /* not delalloc, ignore it */ 1619 if (!(orig->state & EXTENT_DELALLOC)) 1620 return; 1621 1622 size = orig->end - orig->start + 1; 1623 if (size > BTRFS_MAX_EXTENT_SIZE) { 1624 u32 num_extents; 1625 u64 new_size; 1626 1627 /* 1628 * See the explanation in btrfs_merge_extent_hook, the same 1629 * applies here, just in reverse. 1630 */ 1631 new_size = orig->end - split + 1; 1632 num_extents = count_max_extents(new_size); 1633 new_size = split - orig->start; 1634 num_extents += count_max_extents(new_size); 1635 if (count_max_extents(size) >= num_extents) 1636 return; 1637 } 1638 1639 spin_lock(&BTRFS_I(inode)->lock); 1640 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1641 spin_unlock(&BTRFS_I(inode)->lock); 1642 } 1643 1644 /* 1645 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1646 * extents so we can keep track of new extents that are just merged onto old 1647 * extents, such as when we are doing sequential writes, so we can properly 1648 * account for the metadata space we'll need. 1649 */ 1650 static void btrfs_merge_extent_hook(void *private_data, 1651 struct extent_state *new, 1652 struct extent_state *other) 1653 { 1654 struct inode *inode = private_data; 1655 u64 new_size, old_size; 1656 u32 num_extents; 1657 1658 /* not delalloc, ignore it */ 1659 if (!(other->state & EXTENT_DELALLOC)) 1660 return; 1661 1662 if (new->start > other->start) 1663 new_size = new->end - other->start + 1; 1664 else 1665 new_size = other->end - new->start + 1; 1666 1667 /* we're not bigger than the max, unreserve the space and go */ 1668 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1669 spin_lock(&BTRFS_I(inode)->lock); 1670 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1671 spin_unlock(&BTRFS_I(inode)->lock); 1672 return; 1673 } 1674 1675 /* 1676 * We have to add up either side to figure out how many extents were 1677 * accounted for before we merged into one big extent. If the number of 1678 * extents we accounted for is <= the amount we need for the new range 1679 * then we can return, otherwise drop. Think of it like this 1680 * 1681 * [ 4k][MAX_SIZE] 1682 * 1683 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1684 * need 2 outstanding extents, on one side we have 1 and the other side 1685 * we have 1 so they are == and we can return. But in this case 1686 * 1687 * [MAX_SIZE+4k][MAX_SIZE+4k] 1688 * 1689 * Each range on their own accounts for 2 extents, but merged together 1690 * they are only 3 extents worth of accounting, so we need to drop in 1691 * this case. 1692 */ 1693 old_size = other->end - other->start + 1; 1694 num_extents = count_max_extents(old_size); 1695 old_size = new->end - new->start + 1; 1696 num_extents += count_max_extents(old_size); 1697 if (count_max_extents(new_size) >= num_extents) 1698 return; 1699 1700 spin_lock(&BTRFS_I(inode)->lock); 1701 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1702 spin_unlock(&BTRFS_I(inode)->lock); 1703 } 1704 1705 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1706 struct inode *inode) 1707 { 1708 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1709 1710 spin_lock(&root->delalloc_lock); 1711 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1712 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1713 &root->delalloc_inodes); 1714 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1715 &BTRFS_I(inode)->runtime_flags); 1716 root->nr_delalloc_inodes++; 1717 if (root->nr_delalloc_inodes == 1) { 1718 spin_lock(&fs_info->delalloc_root_lock); 1719 BUG_ON(!list_empty(&root->delalloc_root)); 1720 list_add_tail(&root->delalloc_root, 1721 &fs_info->delalloc_roots); 1722 spin_unlock(&fs_info->delalloc_root_lock); 1723 } 1724 } 1725 spin_unlock(&root->delalloc_lock); 1726 } 1727 1728 1729 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1730 struct btrfs_inode *inode) 1731 { 1732 struct btrfs_fs_info *fs_info = root->fs_info; 1733 1734 if (!list_empty(&inode->delalloc_inodes)) { 1735 list_del_init(&inode->delalloc_inodes); 1736 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1737 &inode->runtime_flags); 1738 root->nr_delalloc_inodes--; 1739 if (!root->nr_delalloc_inodes) { 1740 ASSERT(list_empty(&root->delalloc_inodes)); 1741 spin_lock(&fs_info->delalloc_root_lock); 1742 BUG_ON(list_empty(&root->delalloc_root)); 1743 list_del_init(&root->delalloc_root); 1744 spin_unlock(&fs_info->delalloc_root_lock); 1745 } 1746 } 1747 } 1748 1749 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1750 struct btrfs_inode *inode) 1751 { 1752 spin_lock(&root->delalloc_lock); 1753 __btrfs_del_delalloc_inode(root, inode); 1754 spin_unlock(&root->delalloc_lock); 1755 } 1756 1757 /* 1758 * extent_io.c set_bit_hook, used to track delayed allocation 1759 * bytes in this file, and to maintain the list of inodes that 1760 * have pending delalloc work to be done. 1761 */ 1762 static void btrfs_set_bit_hook(void *private_data, 1763 struct extent_state *state, unsigned *bits) 1764 { 1765 struct inode *inode = private_data; 1766 1767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1768 1769 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1770 WARN_ON(1); 1771 /* 1772 * set_bit and clear bit hooks normally require _irqsave/restore 1773 * but in this case, we are only testing for the DELALLOC 1774 * bit, which is only set or cleared with irqs on 1775 */ 1776 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1777 struct btrfs_root *root = BTRFS_I(inode)->root; 1778 u64 len = state->end + 1 - state->start; 1779 u32 num_extents = count_max_extents(len); 1780 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1781 1782 spin_lock(&BTRFS_I(inode)->lock); 1783 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1784 spin_unlock(&BTRFS_I(inode)->lock); 1785 1786 /* For sanity tests */ 1787 if (btrfs_is_testing(fs_info)) 1788 return; 1789 1790 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1791 fs_info->delalloc_batch); 1792 spin_lock(&BTRFS_I(inode)->lock); 1793 BTRFS_I(inode)->delalloc_bytes += len; 1794 if (*bits & EXTENT_DEFRAG) 1795 BTRFS_I(inode)->defrag_bytes += len; 1796 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1797 &BTRFS_I(inode)->runtime_flags)) 1798 btrfs_add_delalloc_inodes(root, inode); 1799 spin_unlock(&BTRFS_I(inode)->lock); 1800 } 1801 1802 if (!(state->state & EXTENT_DELALLOC_NEW) && 1803 (*bits & EXTENT_DELALLOC_NEW)) { 1804 spin_lock(&BTRFS_I(inode)->lock); 1805 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1806 state->start; 1807 spin_unlock(&BTRFS_I(inode)->lock); 1808 } 1809 } 1810 1811 /* 1812 * extent_io.c clear_bit_hook, see set_bit_hook for why 1813 */ 1814 static void btrfs_clear_bit_hook(void *private_data, 1815 struct extent_state *state, 1816 unsigned *bits) 1817 { 1818 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1820 u64 len = state->end + 1 - state->start; 1821 u32 num_extents = count_max_extents(len); 1822 1823 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1824 spin_lock(&inode->lock); 1825 inode->defrag_bytes -= len; 1826 spin_unlock(&inode->lock); 1827 } 1828 1829 /* 1830 * set_bit and clear bit hooks normally require _irqsave/restore 1831 * but in this case, we are only testing for the DELALLOC 1832 * bit, which is only set or cleared with irqs on 1833 */ 1834 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1835 struct btrfs_root *root = inode->root; 1836 bool do_list = !btrfs_is_free_space_inode(inode); 1837 1838 spin_lock(&inode->lock); 1839 btrfs_mod_outstanding_extents(inode, -num_extents); 1840 spin_unlock(&inode->lock); 1841 1842 /* 1843 * We don't reserve metadata space for space cache inodes so we 1844 * don't need to call dellalloc_release_metadata if there is an 1845 * error. 1846 */ 1847 if (*bits & EXTENT_CLEAR_META_RESV && 1848 root != fs_info->tree_root) 1849 btrfs_delalloc_release_metadata(inode, len, false); 1850 1851 /* For sanity tests. */ 1852 if (btrfs_is_testing(fs_info)) 1853 return; 1854 1855 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1856 do_list && !(state->state & EXTENT_NORESERVE) && 1857 (*bits & EXTENT_CLEAR_DATA_RESV)) 1858 btrfs_free_reserved_data_space_noquota( 1859 &inode->vfs_inode, 1860 state->start, len); 1861 1862 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1863 fs_info->delalloc_batch); 1864 spin_lock(&inode->lock); 1865 inode->delalloc_bytes -= len; 1866 if (do_list && inode->delalloc_bytes == 0 && 1867 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1868 &inode->runtime_flags)) 1869 btrfs_del_delalloc_inode(root, inode); 1870 spin_unlock(&inode->lock); 1871 } 1872 1873 if ((state->state & EXTENT_DELALLOC_NEW) && 1874 (*bits & EXTENT_DELALLOC_NEW)) { 1875 spin_lock(&inode->lock); 1876 ASSERT(inode->new_delalloc_bytes >= len); 1877 inode->new_delalloc_bytes -= len; 1878 spin_unlock(&inode->lock); 1879 } 1880 } 1881 1882 /* 1883 * Merge bio hook, this must check the chunk tree to make sure we don't create 1884 * bios that span stripes or chunks 1885 * 1886 * return 1 if page cannot be merged to bio 1887 * return 0 if page can be merged to bio 1888 * return error otherwise 1889 */ 1890 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1891 size_t size, struct bio *bio, 1892 unsigned long bio_flags) 1893 { 1894 struct inode *inode = page->mapping->host; 1895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1896 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1897 u64 length = 0; 1898 u64 map_length; 1899 int ret; 1900 1901 if (bio_flags & EXTENT_BIO_COMPRESSED) 1902 return 0; 1903 1904 length = bio->bi_iter.bi_size; 1905 map_length = length; 1906 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1907 NULL, 0); 1908 if (ret < 0) 1909 return ret; 1910 if (map_length < length + size) 1911 return 1; 1912 return 0; 1913 } 1914 1915 /* 1916 * in order to insert checksums into the metadata in large chunks, 1917 * we wait until bio submission time. All the pages in the bio are 1918 * checksummed and sums are attached onto the ordered extent record. 1919 * 1920 * At IO completion time the cums attached on the ordered extent record 1921 * are inserted into the btree 1922 */ 1923 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1924 u64 bio_offset) 1925 { 1926 struct inode *inode = private_data; 1927 blk_status_t ret = 0; 1928 1929 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1930 BUG_ON(ret); /* -ENOMEM */ 1931 return 0; 1932 } 1933 1934 /* 1935 * in order to insert checksums into the metadata in large chunks, 1936 * we wait until bio submission time. All the pages in the bio are 1937 * checksummed and sums are attached onto the ordered extent record. 1938 * 1939 * At IO completion time the cums attached on the ordered extent record 1940 * are inserted into the btree 1941 */ 1942 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio, 1943 int mirror_num) 1944 { 1945 struct inode *inode = private_data; 1946 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1947 blk_status_t ret; 1948 1949 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1950 if (ret) { 1951 bio->bi_status = ret; 1952 bio_endio(bio); 1953 } 1954 return ret; 1955 } 1956 1957 /* 1958 * extent_io.c submission hook. This does the right thing for csum calculation 1959 * on write, or reading the csums from the tree before a read. 1960 * 1961 * Rules about async/sync submit, 1962 * a) read: sync submit 1963 * 1964 * b) write without checksum: sync submit 1965 * 1966 * c) write with checksum: 1967 * c-1) if bio is issued by fsync: sync submit 1968 * (sync_writers != 0) 1969 * 1970 * c-2) if root is reloc root: sync submit 1971 * (only in case of buffered IO) 1972 * 1973 * c-3) otherwise: async submit 1974 */ 1975 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1976 int mirror_num, unsigned long bio_flags, 1977 u64 bio_offset) 1978 { 1979 struct inode *inode = private_data; 1980 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1981 struct btrfs_root *root = BTRFS_I(inode)->root; 1982 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1983 blk_status_t ret = 0; 1984 int skip_sum; 1985 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1986 1987 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1988 1989 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1990 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1991 1992 if (bio_op(bio) != REQ_OP_WRITE) { 1993 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1994 if (ret) 1995 goto out; 1996 1997 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1998 ret = btrfs_submit_compressed_read(inode, bio, 1999 mirror_num, 2000 bio_flags); 2001 goto out; 2002 } else if (!skip_sum) { 2003 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2004 if (ret) 2005 goto out; 2006 } 2007 goto mapit; 2008 } else if (async && !skip_sum) { 2009 /* csum items have already been cloned */ 2010 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2011 goto mapit; 2012 /* we're doing a write, do the async checksumming */ 2013 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2014 bio_offset, inode, 2015 btrfs_submit_bio_start); 2016 goto out; 2017 } else if (!skip_sum) { 2018 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2019 if (ret) 2020 goto out; 2021 } 2022 2023 mapit: 2024 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2025 2026 out: 2027 if (ret) { 2028 bio->bi_status = ret; 2029 bio_endio(bio); 2030 } 2031 return ret; 2032 } 2033 2034 /* 2035 * given a list of ordered sums record them in the inode. This happens 2036 * at IO completion time based on sums calculated at bio submission time. 2037 */ 2038 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2039 struct inode *inode, struct list_head *list) 2040 { 2041 struct btrfs_ordered_sum *sum; 2042 int ret; 2043 2044 list_for_each_entry(sum, list, list) { 2045 trans->adding_csums = true; 2046 ret = btrfs_csum_file_blocks(trans, 2047 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2048 trans->adding_csums = false; 2049 if (ret) 2050 return ret; 2051 } 2052 return 0; 2053 } 2054 2055 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2056 unsigned int extra_bits, 2057 struct extent_state **cached_state, int dedupe) 2058 { 2059 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2060 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2061 extra_bits, cached_state); 2062 } 2063 2064 /* see btrfs_writepage_start_hook for details on why this is required */ 2065 struct btrfs_writepage_fixup { 2066 struct page *page; 2067 struct btrfs_work work; 2068 }; 2069 2070 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2071 { 2072 struct btrfs_writepage_fixup *fixup; 2073 struct btrfs_ordered_extent *ordered; 2074 struct extent_state *cached_state = NULL; 2075 struct extent_changeset *data_reserved = NULL; 2076 struct page *page; 2077 struct inode *inode; 2078 u64 page_start; 2079 u64 page_end; 2080 int ret; 2081 2082 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2083 page = fixup->page; 2084 again: 2085 lock_page(page); 2086 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2087 ClearPageChecked(page); 2088 goto out_page; 2089 } 2090 2091 inode = page->mapping->host; 2092 page_start = page_offset(page); 2093 page_end = page_offset(page) + PAGE_SIZE - 1; 2094 2095 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2096 &cached_state); 2097 2098 /* already ordered? We're done */ 2099 if (PagePrivate2(page)) 2100 goto out; 2101 2102 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2103 PAGE_SIZE); 2104 if (ordered) { 2105 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2106 page_end, &cached_state); 2107 unlock_page(page); 2108 btrfs_start_ordered_extent(inode, ordered, 1); 2109 btrfs_put_ordered_extent(ordered); 2110 goto again; 2111 } 2112 2113 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2114 PAGE_SIZE); 2115 if (ret) { 2116 mapping_set_error(page->mapping, ret); 2117 end_extent_writepage(page, ret, page_start, page_end); 2118 ClearPageChecked(page); 2119 goto out; 2120 } 2121 2122 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2123 &cached_state, 0); 2124 if (ret) { 2125 mapping_set_error(page->mapping, ret); 2126 end_extent_writepage(page, ret, page_start, page_end); 2127 ClearPageChecked(page); 2128 goto out; 2129 } 2130 2131 ClearPageChecked(page); 2132 set_page_dirty(page); 2133 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2134 out: 2135 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2136 &cached_state); 2137 out_page: 2138 unlock_page(page); 2139 put_page(page); 2140 kfree(fixup); 2141 extent_changeset_free(data_reserved); 2142 } 2143 2144 /* 2145 * There are a few paths in the higher layers of the kernel that directly 2146 * set the page dirty bit without asking the filesystem if it is a 2147 * good idea. This causes problems because we want to make sure COW 2148 * properly happens and the data=ordered rules are followed. 2149 * 2150 * In our case any range that doesn't have the ORDERED bit set 2151 * hasn't been properly setup for IO. We kick off an async process 2152 * to fix it up. The async helper will wait for ordered extents, set 2153 * the delalloc bit and make it safe to write the page. 2154 */ 2155 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2156 { 2157 struct inode *inode = page->mapping->host; 2158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2159 struct btrfs_writepage_fixup *fixup; 2160 2161 /* this page is properly in the ordered list */ 2162 if (TestClearPagePrivate2(page)) 2163 return 0; 2164 2165 if (PageChecked(page)) 2166 return -EAGAIN; 2167 2168 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2169 if (!fixup) 2170 return -EAGAIN; 2171 2172 SetPageChecked(page); 2173 get_page(page); 2174 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2175 btrfs_writepage_fixup_worker, NULL, NULL); 2176 fixup->page = page; 2177 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2178 return -EBUSY; 2179 } 2180 2181 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2182 struct inode *inode, u64 file_pos, 2183 u64 disk_bytenr, u64 disk_num_bytes, 2184 u64 num_bytes, u64 ram_bytes, 2185 u8 compression, u8 encryption, 2186 u16 other_encoding, int extent_type) 2187 { 2188 struct btrfs_root *root = BTRFS_I(inode)->root; 2189 struct btrfs_file_extent_item *fi; 2190 struct btrfs_path *path; 2191 struct extent_buffer *leaf; 2192 struct btrfs_key ins; 2193 u64 qg_released; 2194 int extent_inserted = 0; 2195 int ret; 2196 2197 path = btrfs_alloc_path(); 2198 if (!path) 2199 return -ENOMEM; 2200 2201 /* 2202 * we may be replacing one extent in the tree with another. 2203 * The new extent is pinned in the extent map, and we don't want 2204 * to drop it from the cache until it is completely in the btree. 2205 * 2206 * So, tell btrfs_drop_extents to leave this extent in the cache. 2207 * the caller is expected to unpin it and allow it to be merged 2208 * with the others. 2209 */ 2210 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2211 file_pos + num_bytes, NULL, 0, 2212 1, sizeof(*fi), &extent_inserted); 2213 if (ret) 2214 goto out; 2215 2216 if (!extent_inserted) { 2217 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2218 ins.offset = file_pos; 2219 ins.type = BTRFS_EXTENT_DATA_KEY; 2220 2221 path->leave_spinning = 1; 2222 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2223 sizeof(*fi)); 2224 if (ret) 2225 goto out; 2226 } 2227 leaf = path->nodes[0]; 2228 fi = btrfs_item_ptr(leaf, path->slots[0], 2229 struct btrfs_file_extent_item); 2230 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2231 btrfs_set_file_extent_type(leaf, fi, extent_type); 2232 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2233 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2234 btrfs_set_file_extent_offset(leaf, fi, 0); 2235 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2236 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2237 btrfs_set_file_extent_compression(leaf, fi, compression); 2238 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2239 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2240 2241 btrfs_mark_buffer_dirty(leaf); 2242 btrfs_release_path(path); 2243 2244 inode_add_bytes(inode, num_bytes); 2245 2246 ins.objectid = disk_bytenr; 2247 ins.offset = disk_num_bytes; 2248 ins.type = BTRFS_EXTENT_ITEM_KEY; 2249 2250 /* 2251 * Release the reserved range from inode dirty range map, as it is 2252 * already moved into delayed_ref_head 2253 */ 2254 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2255 if (ret < 0) 2256 goto out; 2257 qg_released = ret; 2258 ret = btrfs_alloc_reserved_file_extent(trans, root, 2259 btrfs_ino(BTRFS_I(inode)), 2260 file_pos, qg_released, &ins); 2261 out: 2262 btrfs_free_path(path); 2263 2264 return ret; 2265 } 2266 2267 /* snapshot-aware defrag */ 2268 struct sa_defrag_extent_backref { 2269 struct rb_node node; 2270 struct old_sa_defrag_extent *old; 2271 u64 root_id; 2272 u64 inum; 2273 u64 file_pos; 2274 u64 extent_offset; 2275 u64 num_bytes; 2276 u64 generation; 2277 }; 2278 2279 struct old_sa_defrag_extent { 2280 struct list_head list; 2281 struct new_sa_defrag_extent *new; 2282 2283 u64 extent_offset; 2284 u64 bytenr; 2285 u64 offset; 2286 u64 len; 2287 int count; 2288 }; 2289 2290 struct new_sa_defrag_extent { 2291 struct rb_root root; 2292 struct list_head head; 2293 struct btrfs_path *path; 2294 struct inode *inode; 2295 u64 file_pos; 2296 u64 len; 2297 u64 bytenr; 2298 u64 disk_len; 2299 u8 compress_type; 2300 }; 2301 2302 static int backref_comp(struct sa_defrag_extent_backref *b1, 2303 struct sa_defrag_extent_backref *b2) 2304 { 2305 if (b1->root_id < b2->root_id) 2306 return -1; 2307 else if (b1->root_id > b2->root_id) 2308 return 1; 2309 2310 if (b1->inum < b2->inum) 2311 return -1; 2312 else if (b1->inum > b2->inum) 2313 return 1; 2314 2315 if (b1->file_pos < b2->file_pos) 2316 return -1; 2317 else if (b1->file_pos > b2->file_pos) 2318 return 1; 2319 2320 /* 2321 * [------------------------------] ===> (a range of space) 2322 * |<--->| |<---->| =============> (fs/file tree A) 2323 * |<---------------------------->| ===> (fs/file tree B) 2324 * 2325 * A range of space can refer to two file extents in one tree while 2326 * refer to only one file extent in another tree. 2327 * 2328 * So we may process a disk offset more than one time(two extents in A) 2329 * and locate at the same extent(one extent in B), then insert two same 2330 * backrefs(both refer to the extent in B). 2331 */ 2332 return 0; 2333 } 2334 2335 static void backref_insert(struct rb_root *root, 2336 struct sa_defrag_extent_backref *backref) 2337 { 2338 struct rb_node **p = &root->rb_node; 2339 struct rb_node *parent = NULL; 2340 struct sa_defrag_extent_backref *entry; 2341 int ret; 2342 2343 while (*p) { 2344 parent = *p; 2345 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2346 2347 ret = backref_comp(backref, entry); 2348 if (ret < 0) 2349 p = &(*p)->rb_left; 2350 else 2351 p = &(*p)->rb_right; 2352 } 2353 2354 rb_link_node(&backref->node, parent, p); 2355 rb_insert_color(&backref->node, root); 2356 } 2357 2358 /* 2359 * Note the backref might has changed, and in this case we just return 0. 2360 */ 2361 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2362 void *ctx) 2363 { 2364 struct btrfs_file_extent_item *extent; 2365 struct old_sa_defrag_extent *old = ctx; 2366 struct new_sa_defrag_extent *new = old->new; 2367 struct btrfs_path *path = new->path; 2368 struct btrfs_key key; 2369 struct btrfs_root *root; 2370 struct sa_defrag_extent_backref *backref; 2371 struct extent_buffer *leaf; 2372 struct inode *inode = new->inode; 2373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2374 int slot; 2375 int ret; 2376 u64 extent_offset; 2377 u64 num_bytes; 2378 2379 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2380 inum == btrfs_ino(BTRFS_I(inode))) 2381 return 0; 2382 2383 key.objectid = root_id; 2384 key.type = BTRFS_ROOT_ITEM_KEY; 2385 key.offset = (u64)-1; 2386 2387 root = btrfs_read_fs_root_no_name(fs_info, &key); 2388 if (IS_ERR(root)) { 2389 if (PTR_ERR(root) == -ENOENT) 2390 return 0; 2391 WARN_ON(1); 2392 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2393 inum, offset, root_id); 2394 return PTR_ERR(root); 2395 } 2396 2397 key.objectid = inum; 2398 key.type = BTRFS_EXTENT_DATA_KEY; 2399 if (offset > (u64)-1 << 32) 2400 key.offset = 0; 2401 else 2402 key.offset = offset; 2403 2404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2405 if (WARN_ON(ret < 0)) 2406 return ret; 2407 ret = 0; 2408 2409 while (1) { 2410 cond_resched(); 2411 2412 leaf = path->nodes[0]; 2413 slot = path->slots[0]; 2414 2415 if (slot >= btrfs_header_nritems(leaf)) { 2416 ret = btrfs_next_leaf(root, path); 2417 if (ret < 0) { 2418 goto out; 2419 } else if (ret > 0) { 2420 ret = 0; 2421 goto out; 2422 } 2423 continue; 2424 } 2425 2426 path->slots[0]++; 2427 2428 btrfs_item_key_to_cpu(leaf, &key, slot); 2429 2430 if (key.objectid > inum) 2431 goto out; 2432 2433 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2434 continue; 2435 2436 extent = btrfs_item_ptr(leaf, slot, 2437 struct btrfs_file_extent_item); 2438 2439 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2440 continue; 2441 2442 /* 2443 * 'offset' refers to the exact key.offset, 2444 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2445 * (key.offset - extent_offset). 2446 */ 2447 if (key.offset != offset) 2448 continue; 2449 2450 extent_offset = btrfs_file_extent_offset(leaf, extent); 2451 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2452 2453 if (extent_offset >= old->extent_offset + old->offset + 2454 old->len || extent_offset + num_bytes <= 2455 old->extent_offset + old->offset) 2456 continue; 2457 break; 2458 } 2459 2460 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2461 if (!backref) { 2462 ret = -ENOENT; 2463 goto out; 2464 } 2465 2466 backref->root_id = root_id; 2467 backref->inum = inum; 2468 backref->file_pos = offset; 2469 backref->num_bytes = num_bytes; 2470 backref->extent_offset = extent_offset; 2471 backref->generation = btrfs_file_extent_generation(leaf, extent); 2472 backref->old = old; 2473 backref_insert(&new->root, backref); 2474 old->count++; 2475 out: 2476 btrfs_release_path(path); 2477 WARN_ON(ret); 2478 return ret; 2479 } 2480 2481 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2482 struct new_sa_defrag_extent *new) 2483 { 2484 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2485 struct old_sa_defrag_extent *old, *tmp; 2486 int ret; 2487 2488 new->path = path; 2489 2490 list_for_each_entry_safe(old, tmp, &new->head, list) { 2491 ret = iterate_inodes_from_logical(old->bytenr + 2492 old->extent_offset, fs_info, 2493 path, record_one_backref, 2494 old, false); 2495 if (ret < 0 && ret != -ENOENT) 2496 return false; 2497 2498 /* no backref to be processed for this extent */ 2499 if (!old->count) { 2500 list_del(&old->list); 2501 kfree(old); 2502 } 2503 } 2504 2505 if (list_empty(&new->head)) 2506 return false; 2507 2508 return true; 2509 } 2510 2511 static int relink_is_mergable(struct extent_buffer *leaf, 2512 struct btrfs_file_extent_item *fi, 2513 struct new_sa_defrag_extent *new) 2514 { 2515 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2516 return 0; 2517 2518 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2519 return 0; 2520 2521 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2522 return 0; 2523 2524 if (btrfs_file_extent_encryption(leaf, fi) || 2525 btrfs_file_extent_other_encoding(leaf, fi)) 2526 return 0; 2527 2528 return 1; 2529 } 2530 2531 /* 2532 * Note the backref might has changed, and in this case we just return 0. 2533 */ 2534 static noinline int relink_extent_backref(struct btrfs_path *path, 2535 struct sa_defrag_extent_backref *prev, 2536 struct sa_defrag_extent_backref *backref) 2537 { 2538 struct btrfs_file_extent_item *extent; 2539 struct btrfs_file_extent_item *item; 2540 struct btrfs_ordered_extent *ordered; 2541 struct btrfs_trans_handle *trans; 2542 struct btrfs_root *root; 2543 struct btrfs_key key; 2544 struct extent_buffer *leaf; 2545 struct old_sa_defrag_extent *old = backref->old; 2546 struct new_sa_defrag_extent *new = old->new; 2547 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2548 struct inode *inode; 2549 struct extent_state *cached = NULL; 2550 int ret = 0; 2551 u64 start; 2552 u64 len; 2553 u64 lock_start; 2554 u64 lock_end; 2555 bool merge = false; 2556 int index; 2557 2558 if (prev && prev->root_id == backref->root_id && 2559 prev->inum == backref->inum && 2560 prev->file_pos + prev->num_bytes == backref->file_pos) 2561 merge = true; 2562 2563 /* step 1: get root */ 2564 key.objectid = backref->root_id; 2565 key.type = BTRFS_ROOT_ITEM_KEY; 2566 key.offset = (u64)-1; 2567 2568 index = srcu_read_lock(&fs_info->subvol_srcu); 2569 2570 root = btrfs_read_fs_root_no_name(fs_info, &key); 2571 if (IS_ERR(root)) { 2572 srcu_read_unlock(&fs_info->subvol_srcu, index); 2573 if (PTR_ERR(root) == -ENOENT) 2574 return 0; 2575 return PTR_ERR(root); 2576 } 2577 2578 if (btrfs_root_readonly(root)) { 2579 srcu_read_unlock(&fs_info->subvol_srcu, index); 2580 return 0; 2581 } 2582 2583 /* step 2: get inode */ 2584 key.objectid = backref->inum; 2585 key.type = BTRFS_INODE_ITEM_KEY; 2586 key.offset = 0; 2587 2588 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2589 if (IS_ERR(inode)) { 2590 srcu_read_unlock(&fs_info->subvol_srcu, index); 2591 return 0; 2592 } 2593 2594 srcu_read_unlock(&fs_info->subvol_srcu, index); 2595 2596 /* step 3: relink backref */ 2597 lock_start = backref->file_pos; 2598 lock_end = backref->file_pos + backref->num_bytes - 1; 2599 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2600 &cached); 2601 2602 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2603 if (ordered) { 2604 btrfs_put_ordered_extent(ordered); 2605 goto out_unlock; 2606 } 2607 2608 trans = btrfs_join_transaction(root); 2609 if (IS_ERR(trans)) { 2610 ret = PTR_ERR(trans); 2611 goto out_unlock; 2612 } 2613 2614 key.objectid = backref->inum; 2615 key.type = BTRFS_EXTENT_DATA_KEY; 2616 key.offset = backref->file_pos; 2617 2618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2619 if (ret < 0) { 2620 goto out_free_path; 2621 } else if (ret > 0) { 2622 ret = 0; 2623 goto out_free_path; 2624 } 2625 2626 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2627 struct btrfs_file_extent_item); 2628 2629 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2630 backref->generation) 2631 goto out_free_path; 2632 2633 btrfs_release_path(path); 2634 2635 start = backref->file_pos; 2636 if (backref->extent_offset < old->extent_offset + old->offset) 2637 start += old->extent_offset + old->offset - 2638 backref->extent_offset; 2639 2640 len = min(backref->extent_offset + backref->num_bytes, 2641 old->extent_offset + old->offset + old->len); 2642 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2643 2644 ret = btrfs_drop_extents(trans, root, inode, start, 2645 start + len, 1); 2646 if (ret) 2647 goto out_free_path; 2648 again: 2649 key.objectid = btrfs_ino(BTRFS_I(inode)); 2650 key.type = BTRFS_EXTENT_DATA_KEY; 2651 key.offset = start; 2652 2653 path->leave_spinning = 1; 2654 if (merge) { 2655 struct btrfs_file_extent_item *fi; 2656 u64 extent_len; 2657 struct btrfs_key found_key; 2658 2659 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2660 if (ret < 0) 2661 goto out_free_path; 2662 2663 path->slots[0]--; 2664 leaf = path->nodes[0]; 2665 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2666 2667 fi = btrfs_item_ptr(leaf, path->slots[0], 2668 struct btrfs_file_extent_item); 2669 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2670 2671 if (extent_len + found_key.offset == start && 2672 relink_is_mergable(leaf, fi, new)) { 2673 btrfs_set_file_extent_num_bytes(leaf, fi, 2674 extent_len + len); 2675 btrfs_mark_buffer_dirty(leaf); 2676 inode_add_bytes(inode, len); 2677 2678 ret = 1; 2679 goto out_free_path; 2680 } else { 2681 merge = false; 2682 btrfs_release_path(path); 2683 goto again; 2684 } 2685 } 2686 2687 ret = btrfs_insert_empty_item(trans, root, path, &key, 2688 sizeof(*extent)); 2689 if (ret) { 2690 btrfs_abort_transaction(trans, ret); 2691 goto out_free_path; 2692 } 2693 2694 leaf = path->nodes[0]; 2695 item = btrfs_item_ptr(leaf, path->slots[0], 2696 struct btrfs_file_extent_item); 2697 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2698 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2699 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2700 btrfs_set_file_extent_num_bytes(leaf, item, len); 2701 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2702 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2703 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2704 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2705 btrfs_set_file_extent_encryption(leaf, item, 0); 2706 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2707 2708 btrfs_mark_buffer_dirty(leaf); 2709 inode_add_bytes(inode, len); 2710 btrfs_release_path(path); 2711 2712 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2713 new->disk_len, 0, 2714 backref->root_id, backref->inum, 2715 new->file_pos); /* start - extent_offset */ 2716 if (ret) { 2717 btrfs_abort_transaction(trans, ret); 2718 goto out_free_path; 2719 } 2720 2721 ret = 1; 2722 out_free_path: 2723 btrfs_release_path(path); 2724 path->leave_spinning = 0; 2725 btrfs_end_transaction(trans); 2726 out_unlock: 2727 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2728 &cached); 2729 iput(inode); 2730 return ret; 2731 } 2732 2733 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2734 { 2735 struct old_sa_defrag_extent *old, *tmp; 2736 2737 if (!new) 2738 return; 2739 2740 list_for_each_entry_safe(old, tmp, &new->head, list) { 2741 kfree(old); 2742 } 2743 kfree(new); 2744 } 2745 2746 static void relink_file_extents(struct new_sa_defrag_extent *new) 2747 { 2748 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2749 struct btrfs_path *path; 2750 struct sa_defrag_extent_backref *backref; 2751 struct sa_defrag_extent_backref *prev = NULL; 2752 struct rb_node *node; 2753 int ret; 2754 2755 path = btrfs_alloc_path(); 2756 if (!path) 2757 return; 2758 2759 if (!record_extent_backrefs(path, new)) { 2760 btrfs_free_path(path); 2761 goto out; 2762 } 2763 btrfs_release_path(path); 2764 2765 while (1) { 2766 node = rb_first(&new->root); 2767 if (!node) 2768 break; 2769 rb_erase(node, &new->root); 2770 2771 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2772 2773 ret = relink_extent_backref(path, prev, backref); 2774 WARN_ON(ret < 0); 2775 2776 kfree(prev); 2777 2778 if (ret == 1) 2779 prev = backref; 2780 else 2781 prev = NULL; 2782 cond_resched(); 2783 } 2784 kfree(prev); 2785 2786 btrfs_free_path(path); 2787 out: 2788 free_sa_defrag_extent(new); 2789 2790 atomic_dec(&fs_info->defrag_running); 2791 wake_up(&fs_info->transaction_wait); 2792 } 2793 2794 static struct new_sa_defrag_extent * 2795 record_old_file_extents(struct inode *inode, 2796 struct btrfs_ordered_extent *ordered) 2797 { 2798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2799 struct btrfs_root *root = BTRFS_I(inode)->root; 2800 struct btrfs_path *path; 2801 struct btrfs_key key; 2802 struct old_sa_defrag_extent *old; 2803 struct new_sa_defrag_extent *new; 2804 int ret; 2805 2806 new = kmalloc(sizeof(*new), GFP_NOFS); 2807 if (!new) 2808 return NULL; 2809 2810 new->inode = inode; 2811 new->file_pos = ordered->file_offset; 2812 new->len = ordered->len; 2813 new->bytenr = ordered->start; 2814 new->disk_len = ordered->disk_len; 2815 new->compress_type = ordered->compress_type; 2816 new->root = RB_ROOT; 2817 INIT_LIST_HEAD(&new->head); 2818 2819 path = btrfs_alloc_path(); 2820 if (!path) 2821 goto out_kfree; 2822 2823 key.objectid = btrfs_ino(BTRFS_I(inode)); 2824 key.type = BTRFS_EXTENT_DATA_KEY; 2825 key.offset = new->file_pos; 2826 2827 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2828 if (ret < 0) 2829 goto out_free_path; 2830 if (ret > 0 && path->slots[0] > 0) 2831 path->slots[0]--; 2832 2833 /* find out all the old extents for the file range */ 2834 while (1) { 2835 struct btrfs_file_extent_item *extent; 2836 struct extent_buffer *l; 2837 int slot; 2838 u64 num_bytes; 2839 u64 offset; 2840 u64 end; 2841 u64 disk_bytenr; 2842 u64 extent_offset; 2843 2844 l = path->nodes[0]; 2845 slot = path->slots[0]; 2846 2847 if (slot >= btrfs_header_nritems(l)) { 2848 ret = btrfs_next_leaf(root, path); 2849 if (ret < 0) 2850 goto out_free_path; 2851 else if (ret > 0) 2852 break; 2853 continue; 2854 } 2855 2856 btrfs_item_key_to_cpu(l, &key, slot); 2857 2858 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2859 break; 2860 if (key.type != BTRFS_EXTENT_DATA_KEY) 2861 break; 2862 if (key.offset >= new->file_pos + new->len) 2863 break; 2864 2865 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2866 2867 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2868 if (key.offset + num_bytes < new->file_pos) 2869 goto next; 2870 2871 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2872 if (!disk_bytenr) 2873 goto next; 2874 2875 extent_offset = btrfs_file_extent_offset(l, extent); 2876 2877 old = kmalloc(sizeof(*old), GFP_NOFS); 2878 if (!old) 2879 goto out_free_path; 2880 2881 offset = max(new->file_pos, key.offset); 2882 end = min(new->file_pos + new->len, key.offset + num_bytes); 2883 2884 old->bytenr = disk_bytenr; 2885 old->extent_offset = extent_offset; 2886 old->offset = offset - key.offset; 2887 old->len = end - offset; 2888 old->new = new; 2889 old->count = 0; 2890 list_add_tail(&old->list, &new->head); 2891 next: 2892 path->slots[0]++; 2893 cond_resched(); 2894 } 2895 2896 btrfs_free_path(path); 2897 atomic_inc(&fs_info->defrag_running); 2898 2899 return new; 2900 2901 out_free_path: 2902 btrfs_free_path(path); 2903 out_kfree: 2904 free_sa_defrag_extent(new); 2905 return NULL; 2906 } 2907 2908 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2909 u64 start, u64 len) 2910 { 2911 struct btrfs_block_group_cache *cache; 2912 2913 cache = btrfs_lookup_block_group(fs_info, start); 2914 ASSERT(cache); 2915 2916 spin_lock(&cache->lock); 2917 cache->delalloc_bytes -= len; 2918 spin_unlock(&cache->lock); 2919 2920 btrfs_put_block_group(cache); 2921 } 2922 2923 /* as ordered data IO finishes, this gets called so we can finish 2924 * an ordered extent if the range of bytes in the file it covers are 2925 * fully written. 2926 */ 2927 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2928 { 2929 struct inode *inode = ordered_extent->inode; 2930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2931 struct btrfs_root *root = BTRFS_I(inode)->root; 2932 struct btrfs_trans_handle *trans = NULL; 2933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2934 struct extent_state *cached_state = NULL; 2935 struct new_sa_defrag_extent *new = NULL; 2936 int compress_type = 0; 2937 int ret = 0; 2938 u64 logical_len = ordered_extent->len; 2939 bool nolock; 2940 bool truncated = false; 2941 bool range_locked = false; 2942 bool clear_new_delalloc_bytes = false; 2943 2944 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2945 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2946 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2947 clear_new_delalloc_bytes = true; 2948 2949 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2950 2951 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2952 ret = -EIO; 2953 goto out; 2954 } 2955 2956 btrfs_free_io_failure_record(BTRFS_I(inode), 2957 ordered_extent->file_offset, 2958 ordered_extent->file_offset + 2959 ordered_extent->len - 1); 2960 2961 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2962 truncated = true; 2963 logical_len = ordered_extent->truncated_len; 2964 /* Truncated the entire extent, don't bother adding */ 2965 if (!logical_len) 2966 goto out; 2967 } 2968 2969 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2970 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2971 2972 /* 2973 * For mwrite(mmap + memset to write) case, we still reserve 2974 * space for NOCOW range. 2975 * As NOCOW won't cause a new delayed ref, just free the space 2976 */ 2977 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2978 ordered_extent->len); 2979 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2980 if (nolock) 2981 trans = btrfs_join_transaction_nolock(root); 2982 else 2983 trans = btrfs_join_transaction(root); 2984 if (IS_ERR(trans)) { 2985 ret = PTR_ERR(trans); 2986 trans = NULL; 2987 goto out; 2988 } 2989 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2990 ret = btrfs_update_inode_fallback(trans, root, inode); 2991 if (ret) /* -ENOMEM or corruption */ 2992 btrfs_abort_transaction(trans, ret); 2993 goto out; 2994 } 2995 2996 range_locked = true; 2997 lock_extent_bits(io_tree, ordered_extent->file_offset, 2998 ordered_extent->file_offset + ordered_extent->len - 1, 2999 &cached_state); 3000 3001 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3002 ordered_extent->file_offset + ordered_extent->len - 1, 3003 EXTENT_DEFRAG, 0, cached_state); 3004 if (ret) { 3005 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3006 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3007 /* the inode is shared */ 3008 new = record_old_file_extents(inode, ordered_extent); 3009 3010 clear_extent_bit(io_tree, ordered_extent->file_offset, 3011 ordered_extent->file_offset + ordered_extent->len - 1, 3012 EXTENT_DEFRAG, 0, 0, &cached_state); 3013 } 3014 3015 if (nolock) 3016 trans = btrfs_join_transaction_nolock(root); 3017 else 3018 trans = btrfs_join_transaction(root); 3019 if (IS_ERR(trans)) { 3020 ret = PTR_ERR(trans); 3021 trans = NULL; 3022 goto out; 3023 } 3024 3025 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3026 3027 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3028 compress_type = ordered_extent->compress_type; 3029 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3030 BUG_ON(compress_type); 3031 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3032 ordered_extent->len); 3033 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3034 ordered_extent->file_offset, 3035 ordered_extent->file_offset + 3036 logical_len); 3037 } else { 3038 BUG_ON(root == fs_info->tree_root); 3039 ret = insert_reserved_file_extent(trans, inode, 3040 ordered_extent->file_offset, 3041 ordered_extent->start, 3042 ordered_extent->disk_len, 3043 logical_len, logical_len, 3044 compress_type, 0, 0, 3045 BTRFS_FILE_EXTENT_REG); 3046 if (!ret) 3047 btrfs_release_delalloc_bytes(fs_info, 3048 ordered_extent->start, 3049 ordered_extent->disk_len); 3050 } 3051 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3052 ordered_extent->file_offset, ordered_extent->len, 3053 trans->transid); 3054 if (ret < 0) { 3055 btrfs_abort_transaction(trans, ret); 3056 goto out; 3057 } 3058 3059 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3060 if (ret) { 3061 btrfs_abort_transaction(trans, ret); 3062 goto out; 3063 } 3064 3065 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3066 ret = btrfs_update_inode_fallback(trans, root, inode); 3067 if (ret) { /* -ENOMEM or corruption */ 3068 btrfs_abort_transaction(trans, ret); 3069 goto out; 3070 } 3071 ret = 0; 3072 out: 3073 if (range_locked || clear_new_delalloc_bytes) { 3074 unsigned int clear_bits = 0; 3075 3076 if (range_locked) 3077 clear_bits |= EXTENT_LOCKED; 3078 if (clear_new_delalloc_bytes) 3079 clear_bits |= EXTENT_DELALLOC_NEW; 3080 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3081 ordered_extent->file_offset, 3082 ordered_extent->file_offset + 3083 ordered_extent->len - 1, 3084 clear_bits, 3085 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3086 0, &cached_state); 3087 } 3088 3089 if (trans) 3090 btrfs_end_transaction(trans); 3091 3092 if (ret || truncated) { 3093 u64 start, end; 3094 3095 if (truncated) 3096 start = ordered_extent->file_offset + logical_len; 3097 else 3098 start = ordered_extent->file_offset; 3099 end = ordered_extent->file_offset + ordered_extent->len - 1; 3100 clear_extent_uptodate(io_tree, start, end, NULL); 3101 3102 /* Drop the cache for the part of the extent we didn't write. */ 3103 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3104 3105 /* 3106 * If the ordered extent had an IOERR or something else went 3107 * wrong we need to return the space for this ordered extent 3108 * back to the allocator. We only free the extent in the 3109 * truncated case if we didn't write out the extent at all. 3110 */ 3111 if ((ret || !logical_len) && 3112 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3113 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3114 btrfs_free_reserved_extent(fs_info, 3115 ordered_extent->start, 3116 ordered_extent->disk_len, 1); 3117 } 3118 3119 3120 /* 3121 * This needs to be done to make sure anybody waiting knows we are done 3122 * updating everything for this ordered extent. 3123 */ 3124 btrfs_remove_ordered_extent(inode, ordered_extent); 3125 3126 /* for snapshot-aware defrag */ 3127 if (new) { 3128 if (ret) { 3129 free_sa_defrag_extent(new); 3130 atomic_dec(&fs_info->defrag_running); 3131 } else { 3132 relink_file_extents(new); 3133 } 3134 } 3135 3136 /* once for us */ 3137 btrfs_put_ordered_extent(ordered_extent); 3138 /* once for the tree */ 3139 btrfs_put_ordered_extent(ordered_extent); 3140 3141 /* Try to release some metadata so we don't get an OOM but don't wait */ 3142 btrfs_btree_balance_dirty_nodelay(fs_info); 3143 3144 return ret; 3145 } 3146 3147 static void finish_ordered_fn(struct btrfs_work *work) 3148 { 3149 struct btrfs_ordered_extent *ordered_extent; 3150 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3151 btrfs_finish_ordered_io(ordered_extent); 3152 } 3153 3154 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3155 struct extent_state *state, int uptodate) 3156 { 3157 struct inode *inode = page->mapping->host; 3158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3159 struct btrfs_ordered_extent *ordered_extent = NULL; 3160 struct btrfs_workqueue *wq; 3161 btrfs_work_func_t func; 3162 3163 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3164 3165 ClearPagePrivate2(page); 3166 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3167 end - start + 1, uptodate)) 3168 return; 3169 3170 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3171 wq = fs_info->endio_freespace_worker; 3172 func = btrfs_freespace_write_helper; 3173 } else { 3174 wq = fs_info->endio_write_workers; 3175 func = btrfs_endio_write_helper; 3176 } 3177 3178 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3179 NULL); 3180 btrfs_queue_work(wq, &ordered_extent->work); 3181 } 3182 3183 static int __readpage_endio_check(struct inode *inode, 3184 struct btrfs_io_bio *io_bio, 3185 int icsum, struct page *page, 3186 int pgoff, u64 start, size_t len) 3187 { 3188 char *kaddr; 3189 u32 csum_expected; 3190 u32 csum = ~(u32)0; 3191 3192 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3193 3194 kaddr = kmap_atomic(page); 3195 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3196 btrfs_csum_final(csum, (u8 *)&csum); 3197 if (csum != csum_expected) 3198 goto zeroit; 3199 3200 kunmap_atomic(kaddr); 3201 return 0; 3202 zeroit: 3203 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3204 io_bio->mirror_num); 3205 memset(kaddr + pgoff, 1, len); 3206 flush_dcache_page(page); 3207 kunmap_atomic(kaddr); 3208 return -EIO; 3209 } 3210 3211 /* 3212 * when reads are done, we need to check csums to verify the data is correct 3213 * if there's a match, we allow the bio to finish. If not, the code in 3214 * extent_io.c will try to find good copies for us. 3215 */ 3216 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3217 u64 phy_offset, struct page *page, 3218 u64 start, u64 end, int mirror) 3219 { 3220 size_t offset = start - page_offset(page); 3221 struct inode *inode = page->mapping->host; 3222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3223 struct btrfs_root *root = BTRFS_I(inode)->root; 3224 3225 if (PageChecked(page)) { 3226 ClearPageChecked(page); 3227 return 0; 3228 } 3229 3230 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3231 return 0; 3232 3233 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3234 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3235 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3236 return 0; 3237 } 3238 3239 phy_offset >>= inode->i_sb->s_blocksize_bits; 3240 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3241 start, (size_t)(end - start + 1)); 3242 } 3243 3244 /* 3245 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3246 * 3247 * @inode: The inode we want to perform iput on 3248 * 3249 * This function uses the generic vfs_inode::i_count to track whether we should 3250 * just decrement it (in case it's > 1) or if this is the last iput then link 3251 * the inode to the delayed iput machinery. Delayed iputs are processed at 3252 * transaction commit time/superblock commit/cleaner kthread. 3253 */ 3254 void btrfs_add_delayed_iput(struct inode *inode) 3255 { 3256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3257 struct btrfs_inode *binode = BTRFS_I(inode); 3258 3259 if (atomic_add_unless(&inode->i_count, -1, 1)) 3260 return; 3261 3262 spin_lock(&fs_info->delayed_iput_lock); 3263 ASSERT(list_empty(&binode->delayed_iput)); 3264 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3265 spin_unlock(&fs_info->delayed_iput_lock); 3266 } 3267 3268 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3269 { 3270 3271 spin_lock(&fs_info->delayed_iput_lock); 3272 while (!list_empty(&fs_info->delayed_iputs)) { 3273 struct btrfs_inode *inode; 3274 3275 inode = list_first_entry(&fs_info->delayed_iputs, 3276 struct btrfs_inode, delayed_iput); 3277 list_del_init(&inode->delayed_iput); 3278 spin_unlock(&fs_info->delayed_iput_lock); 3279 iput(&inode->vfs_inode); 3280 spin_lock(&fs_info->delayed_iput_lock); 3281 } 3282 spin_unlock(&fs_info->delayed_iput_lock); 3283 } 3284 3285 /* 3286 * This creates an orphan entry for the given inode in case something goes wrong 3287 * in the middle of an unlink. 3288 */ 3289 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3290 struct btrfs_inode *inode) 3291 { 3292 int ret; 3293 3294 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3295 if (ret && ret != -EEXIST) { 3296 btrfs_abort_transaction(trans, ret); 3297 return ret; 3298 } 3299 3300 return 0; 3301 } 3302 3303 /* 3304 * We have done the delete so we can go ahead and remove the orphan item for 3305 * this particular inode. 3306 */ 3307 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3308 struct btrfs_inode *inode) 3309 { 3310 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3311 } 3312 3313 /* 3314 * this cleans up any orphans that may be left on the list from the last use 3315 * of this root. 3316 */ 3317 int btrfs_orphan_cleanup(struct btrfs_root *root) 3318 { 3319 struct btrfs_fs_info *fs_info = root->fs_info; 3320 struct btrfs_path *path; 3321 struct extent_buffer *leaf; 3322 struct btrfs_key key, found_key; 3323 struct btrfs_trans_handle *trans; 3324 struct inode *inode; 3325 u64 last_objectid = 0; 3326 int ret = 0, nr_unlink = 0; 3327 3328 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3329 return 0; 3330 3331 path = btrfs_alloc_path(); 3332 if (!path) { 3333 ret = -ENOMEM; 3334 goto out; 3335 } 3336 path->reada = READA_BACK; 3337 3338 key.objectid = BTRFS_ORPHAN_OBJECTID; 3339 key.type = BTRFS_ORPHAN_ITEM_KEY; 3340 key.offset = (u64)-1; 3341 3342 while (1) { 3343 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3344 if (ret < 0) 3345 goto out; 3346 3347 /* 3348 * if ret == 0 means we found what we were searching for, which 3349 * is weird, but possible, so only screw with path if we didn't 3350 * find the key and see if we have stuff that matches 3351 */ 3352 if (ret > 0) { 3353 ret = 0; 3354 if (path->slots[0] == 0) 3355 break; 3356 path->slots[0]--; 3357 } 3358 3359 /* pull out the item */ 3360 leaf = path->nodes[0]; 3361 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3362 3363 /* make sure the item matches what we want */ 3364 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3365 break; 3366 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3367 break; 3368 3369 /* release the path since we're done with it */ 3370 btrfs_release_path(path); 3371 3372 /* 3373 * this is where we are basically btrfs_lookup, without the 3374 * crossing root thing. we store the inode number in the 3375 * offset of the orphan item. 3376 */ 3377 3378 if (found_key.offset == last_objectid) { 3379 btrfs_err(fs_info, 3380 "Error removing orphan entry, stopping orphan cleanup"); 3381 ret = -EINVAL; 3382 goto out; 3383 } 3384 3385 last_objectid = found_key.offset; 3386 3387 found_key.objectid = found_key.offset; 3388 found_key.type = BTRFS_INODE_ITEM_KEY; 3389 found_key.offset = 0; 3390 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3391 ret = PTR_ERR_OR_ZERO(inode); 3392 if (ret && ret != -ENOENT) 3393 goto out; 3394 3395 if (ret == -ENOENT && root == fs_info->tree_root) { 3396 struct btrfs_root *dead_root; 3397 struct btrfs_fs_info *fs_info = root->fs_info; 3398 int is_dead_root = 0; 3399 3400 /* 3401 * this is an orphan in the tree root. Currently these 3402 * could come from 2 sources: 3403 * a) a snapshot deletion in progress 3404 * b) a free space cache inode 3405 * We need to distinguish those two, as the snapshot 3406 * orphan must not get deleted. 3407 * find_dead_roots already ran before us, so if this 3408 * is a snapshot deletion, we should find the root 3409 * in the dead_roots list 3410 */ 3411 spin_lock(&fs_info->trans_lock); 3412 list_for_each_entry(dead_root, &fs_info->dead_roots, 3413 root_list) { 3414 if (dead_root->root_key.objectid == 3415 found_key.objectid) { 3416 is_dead_root = 1; 3417 break; 3418 } 3419 } 3420 spin_unlock(&fs_info->trans_lock); 3421 if (is_dead_root) { 3422 /* prevent this orphan from being found again */ 3423 key.offset = found_key.objectid - 1; 3424 continue; 3425 } 3426 3427 } 3428 3429 /* 3430 * If we have an inode with links, there are a couple of 3431 * possibilities. Old kernels (before v3.12) used to create an 3432 * orphan item for truncate indicating that there were possibly 3433 * extent items past i_size that needed to be deleted. In v3.12, 3434 * truncate was changed to update i_size in sync with the extent 3435 * items, but the (useless) orphan item was still created. Since 3436 * v4.18, we don't create the orphan item for truncate at all. 3437 * 3438 * So, this item could mean that we need to do a truncate, but 3439 * only if this filesystem was last used on a pre-v3.12 kernel 3440 * and was not cleanly unmounted. The odds of that are quite 3441 * slim, and it's a pain to do the truncate now, so just delete 3442 * the orphan item. 3443 * 3444 * It's also possible that this orphan item was supposed to be 3445 * deleted but wasn't. The inode number may have been reused, 3446 * but either way, we can delete the orphan item. 3447 */ 3448 if (ret == -ENOENT || inode->i_nlink) { 3449 if (!ret) 3450 iput(inode); 3451 trans = btrfs_start_transaction(root, 1); 3452 if (IS_ERR(trans)) { 3453 ret = PTR_ERR(trans); 3454 goto out; 3455 } 3456 btrfs_debug(fs_info, "auto deleting %Lu", 3457 found_key.objectid); 3458 ret = btrfs_del_orphan_item(trans, root, 3459 found_key.objectid); 3460 btrfs_end_transaction(trans); 3461 if (ret) 3462 goto out; 3463 continue; 3464 } 3465 3466 nr_unlink++; 3467 3468 /* this will do delete_inode and everything for us */ 3469 iput(inode); 3470 } 3471 /* release the path since we're done with it */ 3472 btrfs_release_path(path); 3473 3474 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3475 3476 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3477 trans = btrfs_join_transaction(root); 3478 if (!IS_ERR(trans)) 3479 btrfs_end_transaction(trans); 3480 } 3481 3482 if (nr_unlink) 3483 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3484 3485 out: 3486 if (ret) 3487 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3488 btrfs_free_path(path); 3489 return ret; 3490 } 3491 3492 /* 3493 * very simple check to peek ahead in the leaf looking for xattrs. If we 3494 * don't find any xattrs, we know there can't be any acls. 3495 * 3496 * slot is the slot the inode is in, objectid is the objectid of the inode 3497 */ 3498 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3499 int slot, u64 objectid, 3500 int *first_xattr_slot) 3501 { 3502 u32 nritems = btrfs_header_nritems(leaf); 3503 struct btrfs_key found_key; 3504 static u64 xattr_access = 0; 3505 static u64 xattr_default = 0; 3506 int scanned = 0; 3507 3508 if (!xattr_access) { 3509 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3510 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3511 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3512 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3513 } 3514 3515 slot++; 3516 *first_xattr_slot = -1; 3517 while (slot < nritems) { 3518 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3519 3520 /* we found a different objectid, there must not be acls */ 3521 if (found_key.objectid != objectid) 3522 return 0; 3523 3524 /* we found an xattr, assume we've got an acl */ 3525 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3526 if (*first_xattr_slot == -1) 3527 *first_xattr_slot = slot; 3528 if (found_key.offset == xattr_access || 3529 found_key.offset == xattr_default) 3530 return 1; 3531 } 3532 3533 /* 3534 * we found a key greater than an xattr key, there can't 3535 * be any acls later on 3536 */ 3537 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3538 return 0; 3539 3540 slot++; 3541 scanned++; 3542 3543 /* 3544 * it goes inode, inode backrefs, xattrs, extents, 3545 * so if there are a ton of hard links to an inode there can 3546 * be a lot of backrefs. Don't waste time searching too hard, 3547 * this is just an optimization 3548 */ 3549 if (scanned >= 8) 3550 break; 3551 } 3552 /* we hit the end of the leaf before we found an xattr or 3553 * something larger than an xattr. We have to assume the inode 3554 * has acls 3555 */ 3556 if (*first_xattr_slot == -1) 3557 *first_xattr_slot = slot; 3558 return 1; 3559 } 3560 3561 /* 3562 * read an inode from the btree into the in-memory inode 3563 */ 3564 static int btrfs_read_locked_inode(struct inode *inode) 3565 { 3566 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3567 struct btrfs_path *path; 3568 struct extent_buffer *leaf; 3569 struct btrfs_inode_item *inode_item; 3570 struct btrfs_root *root = BTRFS_I(inode)->root; 3571 struct btrfs_key location; 3572 unsigned long ptr; 3573 int maybe_acls; 3574 u32 rdev; 3575 int ret; 3576 bool filled = false; 3577 int first_xattr_slot; 3578 3579 ret = btrfs_fill_inode(inode, &rdev); 3580 if (!ret) 3581 filled = true; 3582 3583 path = btrfs_alloc_path(); 3584 if (!path) 3585 return -ENOMEM; 3586 3587 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3588 3589 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3590 if (ret) { 3591 btrfs_free_path(path); 3592 return ret; 3593 } 3594 3595 leaf = path->nodes[0]; 3596 3597 if (filled) 3598 goto cache_index; 3599 3600 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3601 struct btrfs_inode_item); 3602 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3603 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3604 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3605 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3606 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3607 3608 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3609 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3610 3611 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3612 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3613 3614 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3615 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3616 3617 BTRFS_I(inode)->i_otime.tv_sec = 3618 btrfs_timespec_sec(leaf, &inode_item->otime); 3619 BTRFS_I(inode)->i_otime.tv_nsec = 3620 btrfs_timespec_nsec(leaf, &inode_item->otime); 3621 3622 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3623 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3624 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3625 3626 inode_set_iversion_queried(inode, 3627 btrfs_inode_sequence(leaf, inode_item)); 3628 inode->i_generation = BTRFS_I(inode)->generation; 3629 inode->i_rdev = 0; 3630 rdev = btrfs_inode_rdev(leaf, inode_item); 3631 3632 BTRFS_I(inode)->index_cnt = (u64)-1; 3633 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3634 3635 cache_index: 3636 /* 3637 * If we were modified in the current generation and evicted from memory 3638 * and then re-read we need to do a full sync since we don't have any 3639 * idea about which extents were modified before we were evicted from 3640 * cache. 3641 * 3642 * This is required for both inode re-read from disk and delayed inode 3643 * in delayed_nodes_tree. 3644 */ 3645 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3646 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3647 &BTRFS_I(inode)->runtime_flags); 3648 3649 /* 3650 * We don't persist the id of the transaction where an unlink operation 3651 * against the inode was last made. So here we assume the inode might 3652 * have been evicted, and therefore the exact value of last_unlink_trans 3653 * lost, and set it to last_trans to avoid metadata inconsistencies 3654 * between the inode and its parent if the inode is fsync'ed and the log 3655 * replayed. For example, in the scenario: 3656 * 3657 * touch mydir/foo 3658 * ln mydir/foo mydir/bar 3659 * sync 3660 * unlink mydir/bar 3661 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3662 * xfs_io -c fsync mydir/foo 3663 * <power failure> 3664 * mount fs, triggers fsync log replay 3665 * 3666 * We must make sure that when we fsync our inode foo we also log its 3667 * parent inode, otherwise after log replay the parent still has the 3668 * dentry with the "bar" name but our inode foo has a link count of 1 3669 * and doesn't have an inode ref with the name "bar" anymore. 3670 * 3671 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3672 * but it guarantees correctness at the expense of occasional full 3673 * transaction commits on fsync if our inode is a directory, or if our 3674 * inode is not a directory, logging its parent unnecessarily. 3675 */ 3676 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3677 3678 path->slots[0]++; 3679 if (inode->i_nlink != 1 || 3680 path->slots[0] >= btrfs_header_nritems(leaf)) 3681 goto cache_acl; 3682 3683 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3684 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3685 goto cache_acl; 3686 3687 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3688 if (location.type == BTRFS_INODE_REF_KEY) { 3689 struct btrfs_inode_ref *ref; 3690 3691 ref = (struct btrfs_inode_ref *)ptr; 3692 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3693 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3694 struct btrfs_inode_extref *extref; 3695 3696 extref = (struct btrfs_inode_extref *)ptr; 3697 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3698 extref); 3699 } 3700 cache_acl: 3701 /* 3702 * try to precache a NULL acl entry for files that don't have 3703 * any xattrs or acls 3704 */ 3705 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3706 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3707 if (first_xattr_slot != -1) { 3708 path->slots[0] = first_xattr_slot; 3709 ret = btrfs_load_inode_props(inode, path); 3710 if (ret) 3711 btrfs_err(fs_info, 3712 "error loading props for ino %llu (root %llu): %d", 3713 btrfs_ino(BTRFS_I(inode)), 3714 root->root_key.objectid, ret); 3715 } 3716 btrfs_free_path(path); 3717 3718 if (!maybe_acls) 3719 cache_no_acl(inode); 3720 3721 switch (inode->i_mode & S_IFMT) { 3722 case S_IFREG: 3723 inode->i_mapping->a_ops = &btrfs_aops; 3724 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3725 inode->i_fop = &btrfs_file_operations; 3726 inode->i_op = &btrfs_file_inode_operations; 3727 break; 3728 case S_IFDIR: 3729 inode->i_fop = &btrfs_dir_file_operations; 3730 inode->i_op = &btrfs_dir_inode_operations; 3731 break; 3732 case S_IFLNK: 3733 inode->i_op = &btrfs_symlink_inode_operations; 3734 inode_nohighmem(inode); 3735 inode->i_mapping->a_ops = &btrfs_aops; 3736 break; 3737 default: 3738 inode->i_op = &btrfs_special_inode_operations; 3739 init_special_inode(inode, inode->i_mode, rdev); 3740 break; 3741 } 3742 3743 btrfs_sync_inode_flags_to_i_flags(inode); 3744 return 0; 3745 } 3746 3747 /* 3748 * given a leaf and an inode, copy the inode fields into the leaf 3749 */ 3750 static void fill_inode_item(struct btrfs_trans_handle *trans, 3751 struct extent_buffer *leaf, 3752 struct btrfs_inode_item *item, 3753 struct inode *inode) 3754 { 3755 struct btrfs_map_token token; 3756 3757 btrfs_init_map_token(&token); 3758 3759 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3760 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3761 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3762 &token); 3763 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3764 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3765 3766 btrfs_set_token_timespec_sec(leaf, &item->atime, 3767 inode->i_atime.tv_sec, &token); 3768 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3769 inode->i_atime.tv_nsec, &token); 3770 3771 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3772 inode->i_mtime.tv_sec, &token); 3773 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3774 inode->i_mtime.tv_nsec, &token); 3775 3776 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3777 inode->i_ctime.tv_sec, &token); 3778 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3779 inode->i_ctime.tv_nsec, &token); 3780 3781 btrfs_set_token_timespec_sec(leaf, &item->otime, 3782 BTRFS_I(inode)->i_otime.tv_sec, &token); 3783 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3784 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3785 3786 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3787 &token); 3788 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3789 &token); 3790 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3791 &token); 3792 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3793 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3794 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3795 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3796 } 3797 3798 /* 3799 * copy everything in the in-memory inode into the btree. 3800 */ 3801 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3802 struct btrfs_root *root, struct inode *inode) 3803 { 3804 struct btrfs_inode_item *inode_item; 3805 struct btrfs_path *path; 3806 struct extent_buffer *leaf; 3807 int ret; 3808 3809 path = btrfs_alloc_path(); 3810 if (!path) 3811 return -ENOMEM; 3812 3813 path->leave_spinning = 1; 3814 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3815 1); 3816 if (ret) { 3817 if (ret > 0) 3818 ret = -ENOENT; 3819 goto failed; 3820 } 3821 3822 leaf = path->nodes[0]; 3823 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3824 struct btrfs_inode_item); 3825 3826 fill_inode_item(trans, leaf, inode_item, inode); 3827 btrfs_mark_buffer_dirty(leaf); 3828 btrfs_set_inode_last_trans(trans, inode); 3829 ret = 0; 3830 failed: 3831 btrfs_free_path(path); 3832 return ret; 3833 } 3834 3835 /* 3836 * copy everything in the in-memory inode into the btree. 3837 */ 3838 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3839 struct btrfs_root *root, struct inode *inode) 3840 { 3841 struct btrfs_fs_info *fs_info = root->fs_info; 3842 int ret; 3843 3844 /* 3845 * If the inode is a free space inode, we can deadlock during commit 3846 * if we put it into the delayed code. 3847 * 3848 * The data relocation inode should also be directly updated 3849 * without delay 3850 */ 3851 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3852 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3853 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3854 btrfs_update_root_times(trans, root); 3855 3856 ret = btrfs_delayed_update_inode(trans, root, inode); 3857 if (!ret) 3858 btrfs_set_inode_last_trans(trans, inode); 3859 return ret; 3860 } 3861 3862 return btrfs_update_inode_item(trans, root, inode); 3863 } 3864 3865 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3866 struct btrfs_root *root, 3867 struct inode *inode) 3868 { 3869 int ret; 3870 3871 ret = btrfs_update_inode(trans, root, inode); 3872 if (ret == -ENOSPC) 3873 return btrfs_update_inode_item(trans, root, inode); 3874 return ret; 3875 } 3876 3877 /* 3878 * unlink helper that gets used here in inode.c and in the tree logging 3879 * recovery code. It remove a link in a directory with a given name, and 3880 * also drops the back refs in the inode to the directory 3881 */ 3882 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3883 struct btrfs_root *root, 3884 struct btrfs_inode *dir, 3885 struct btrfs_inode *inode, 3886 const char *name, int name_len) 3887 { 3888 struct btrfs_fs_info *fs_info = root->fs_info; 3889 struct btrfs_path *path; 3890 int ret = 0; 3891 struct extent_buffer *leaf; 3892 struct btrfs_dir_item *di; 3893 struct btrfs_key key; 3894 u64 index; 3895 u64 ino = btrfs_ino(inode); 3896 u64 dir_ino = btrfs_ino(dir); 3897 3898 path = btrfs_alloc_path(); 3899 if (!path) { 3900 ret = -ENOMEM; 3901 goto out; 3902 } 3903 3904 path->leave_spinning = 1; 3905 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3906 name, name_len, -1); 3907 if (IS_ERR_OR_NULL(di)) { 3908 ret = di ? PTR_ERR(di) : -ENOENT; 3909 goto err; 3910 } 3911 leaf = path->nodes[0]; 3912 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3913 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3914 if (ret) 3915 goto err; 3916 btrfs_release_path(path); 3917 3918 /* 3919 * If we don't have dir index, we have to get it by looking up 3920 * the inode ref, since we get the inode ref, remove it directly, 3921 * it is unnecessary to do delayed deletion. 3922 * 3923 * But if we have dir index, needn't search inode ref to get it. 3924 * Since the inode ref is close to the inode item, it is better 3925 * that we delay to delete it, and just do this deletion when 3926 * we update the inode item. 3927 */ 3928 if (inode->dir_index) { 3929 ret = btrfs_delayed_delete_inode_ref(inode); 3930 if (!ret) { 3931 index = inode->dir_index; 3932 goto skip_backref; 3933 } 3934 } 3935 3936 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3937 dir_ino, &index); 3938 if (ret) { 3939 btrfs_info(fs_info, 3940 "failed to delete reference to %.*s, inode %llu parent %llu", 3941 name_len, name, ino, dir_ino); 3942 btrfs_abort_transaction(trans, ret); 3943 goto err; 3944 } 3945 skip_backref: 3946 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3947 if (ret) { 3948 btrfs_abort_transaction(trans, ret); 3949 goto err; 3950 } 3951 3952 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3953 dir_ino); 3954 if (ret != 0 && ret != -ENOENT) { 3955 btrfs_abort_transaction(trans, ret); 3956 goto err; 3957 } 3958 3959 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3960 index); 3961 if (ret == -ENOENT) 3962 ret = 0; 3963 else if (ret) 3964 btrfs_abort_transaction(trans, ret); 3965 err: 3966 btrfs_free_path(path); 3967 if (ret) 3968 goto out; 3969 3970 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3971 inode_inc_iversion(&inode->vfs_inode); 3972 inode_inc_iversion(&dir->vfs_inode); 3973 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3974 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3975 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3976 out: 3977 return ret; 3978 } 3979 3980 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3981 struct btrfs_root *root, 3982 struct btrfs_inode *dir, struct btrfs_inode *inode, 3983 const char *name, int name_len) 3984 { 3985 int ret; 3986 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3987 if (!ret) { 3988 drop_nlink(&inode->vfs_inode); 3989 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3990 } 3991 return ret; 3992 } 3993 3994 /* 3995 * helper to start transaction for unlink and rmdir. 3996 * 3997 * unlink and rmdir are special in btrfs, they do not always free space, so 3998 * if we cannot make our reservations the normal way try and see if there is 3999 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4000 * allow the unlink to occur. 4001 */ 4002 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4003 { 4004 struct btrfs_root *root = BTRFS_I(dir)->root; 4005 4006 /* 4007 * 1 for the possible orphan item 4008 * 1 for the dir item 4009 * 1 for the dir index 4010 * 1 for the inode ref 4011 * 1 for the inode 4012 */ 4013 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4014 } 4015 4016 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4017 { 4018 struct btrfs_root *root = BTRFS_I(dir)->root; 4019 struct btrfs_trans_handle *trans; 4020 struct inode *inode = d_inode(dentry); 4021 int ret; 4022 4023 trans = __unlink_start_trans(dir); 4024 if (IS_ERR(trans)) 4025 return PTR_ERR(trans); 4026 4027 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4028 0); 4029 4030 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4031 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4032 dentry->d_name.len); 4033 if (ret) 4034 goto out; 4035 4036 if (inode->i_nlink == 0) { 4037 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4038 if (ret) 4039 goto out; 4040 } 4041 4042 out: 4043 btrfs_end_transaction(trans); 4044 btrfs_btree_balance_dirty(root->fs_info); 4045 return ret; 4046 } 4047 4048 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4049 struct inode *dir, u64 objectid, 4050 const char *name, int name_len) 4051 { 4052 struct btrfs_root *root = BTRFS_I(dir)->root; 4053 struct btrfs_path *path; 4054 struct extent_buffer *leaf; 4055 struct btrfs_dir_item *di; 4056 struct btrfs_key key; 4057 u64 index; 4058 int ret; 4059 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4060 4061 path = btrfs_alloc_path(); 4062 if (!path) 4063 return -ENOMEM; 4064 4065 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4066 name, name_len, -1); 4067 if (IS_ERR_OR_NULL(di)) { 4068 ret = di ? PTR_ERR(di) : -ENOENT; 4069 goto out; 4070 } 4071 4072 leaf = path->nodes[0]; 4073 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4074 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4075 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4076 if (ret) { 4077 btrfs_abort_transaction(trans, ret); 4078 goto out; 4079 } 4080 btrfs_release_path(path); 4081 4082 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4083 dir_ino, &index, name, name_len); 4084 if (ret < 0) { 4085 if (ret != -ENOENT) { 4086 btrfs_abort_transaction(trans, ret); 4087 goto out; 4088 } 4089 di = btrfs_search_dir_index_item(root, path, dir_ino, 4090 name, name_len); 4091 if (IS_ERR_OR_NULL(di)) { 4092 if (!di) 4093 ret = -ENOENT; 4094 else 4095 ret = PTR_ERR(di); 4096 btrfs_abort_transaction(trans, ret); 4097 goto out; 4098 } 4099 4100 leaf = path->nodes[0]; 4101 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4102 index = key.offset; 4103 } 4104 btrfs_release_path(path); 4105 4106 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4107 if (ret) { 4108 btrfs_abort_transaction(trans, ret); 4109 goto out; 4110 } 4111 4112 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4113 inode_inc_iversion(dir); 4114 dir->i_mtime = dir->i_ctime = current_time(dir); 4115 ret = btrfs_update_inode_fallback(trans, root, dir); 4116 if (ret) 4117 btrfs_abort_transaction(trans, ret); 4118 out: 4119 btrfs_free_path(path); 4120 return ret; 4121 } 4122 4123 /* 4124 * Helper to check if the subvolume references other subvolumes or if it's 4125 * default. 4126 */ 4127 static noinline int may_destroy_subvol(struct btrfs_root *root) 4128 { 4129 struct btrfs_fs_info *fs_info = root->fs_info; 4130 struct btrfs_path *path; 4131 struct btrfs_dir_item *di; 4132 struct btrfs_key key; 4133 u64 dir_id; 4134 int ret; 4135 4136 path = btrfs_alloc_path(); 4137 if (!path) 4138 return -ENOMEM; 4139 4140 /* Make sure this root isn't set as the default subvol */ 4141 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4142 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4143 dir_id, "default", 7, 0); 4144 if (di && !IS_ERR(di)) { 4145 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4146 if (key.objectid == root->root_key.objectid) { 4147 ret = -EPERM; 4148 btrfs_err(fs_info, 4149 "deleting default subvolume %llu is not allowed", 4150 key.objectid); 4151 goto out; 4152 } 4153 btrfs_release_path(path); 4154 } 4155 4156 key.objectid = root->root_key.objectid; 4157 key.type = BTRFS_ROOT_REF_KEY; 4158 key.offset = (u64)-1; 4159 4160 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4161 if (ret < 0) 4162 goto out; 4163 BUG_ON(ret == 0); 4164 4165 ret = 0; 4166 if (path->slots[0] > 0) { 4167 path->slots[0]--; 4168 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4169 if (key.objectid == root->root_key.objectid && 4170 key.type == BTRFS_ROOT_REF_KEY) 4171 ret = -ENOTEMPTY; 4172 } 4173 out: 4174 btrfs_free_path(path); 4175 return ret; 4176 } 4177 4178 /* Delete all dentries for inodes belonging to the root */ 4179 static void btrfs_prune_dentries(struct btrfs_root *root) 4180 { 4181 struct btrfs_fs_info *fs_info = root->fs_info; 4182 struct rb_node *node; 4183 struct rb_node *prev; 4184 struct btrfs_inode *entry; 4185 struct inode *inode; 4186 u64 objectid = 0; 4187 4188 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4189 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4190 4191 spin_lock(&root->inode_lock); 4192 again: 4193 node = root->inode_tree.rb_node; 4194 prev = NULL; 4195 while (node) { 4196 prev = node; 4197 entry = rb_entry(node, struct btrfs_inode, rb_node); 4198 4199 if (objectid < btrfs_ino(entry)) 4200 node = node->rb_left; 4201 else if (objectid > btrfs_ino(entry)) 4202 node = node->rb_right; 4203 else 4204 break; 4205 } 4206 if (!node) { 4207 while (prev) { 4208 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4209 if (objectid <= btrfs_ino(entry)) { 4210 node = prev; 4211 break; 4212 } 4213 prev = rb_next(prev); 4214 } 4215 } 4216 while (node) { 4217 entry = rb_entry(node, struct btrfs_inode, rb_node); 4218 objectid = btrfs_ino(entry) + 1; 4219 inode = igrab(&entry->vfs_inode); 4220 if (inode) { 4221 spin_unlock(&root->inode_lock); 4222 if (atomic_read(&inode->i_count) > 1) 4223 d_prune_aliases(inode); 4224 /* 4225 * btrfs_drop_inode will have it removed from the inode 4226 * cache when its usage count hits zero. 4227 */ 4228 iput(inode); 4229 cond_resched(); 4230 spin_lock(&root->inode_lock); 4231 goto again; 4232 } 4233 4234 if (cond_resched_lock(&root->inode_lock)) 4235 goto again; 4236 4237 node = rb_next(node); 4238 } 4239 spin_unlock(&root->inode_lock); 4240 } 4241 4242 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4243 { 4244 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4245 struct btrfs_root *root = BTRFS_I(dir)->root; 4246 struct inode *inode = d_inode(dentry); 4247 struct btrfs_root *dest = BTRFS_I(inode)->root; 4248 struct btrfs_trans_handle *trans; 4249 struct btrfs_block_rsv block_rsv; 4250 u64 root_flags; 4251 int ret; 4252 int err; 4253 4254 /* 4255 * Don't allow to delete a subvolume with send in progress. This is 4256 * inside the inode lock so the error handling that has to drop the bit 4257 * again is not run concurrently. 4258 */ 4259 spin_lock(&dest->root_item_lock); 4260 if (dest->send_in_progress) { 4261 spin_unlock(&dest->root_item_lock); 4262 btrfs_warn(fs_info, 4263 "attempt to delete subvolume %llu during send", 4264 dest->root_key.objectid); 4265 return -EPERM; 4266 } 4267 root_flags = btrfs_root_flags(&dest->root_item); 4268 btrfs_set_root_flags(&dest->root_item, 4269 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4270 spin_unlock(&dest->root_item_lock); 4271 4272 down_write(&fs_info->subvol_sem); 4273 4274 err = may_destroy_subvol(dest); 4275 if (err) 4276 goto out_up_write; 4277 4278 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4279 /* 4280 * One for dir inode, 4281 * two for dir entries, 4282 * two for root ref/backref. 4283 */ 4284 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4285 if (err) 4286 goto out_up_write; 4287 4288 trans = btrfs_start_transaction(root, 0); 4289 if (IS_ERR(trans)) { 4290 err = PTR_ERR(trans); 4291 goto out_release; 4292 } 4293 trans->block_rsv = &block_rsv; 4294 trans->bytes_reserved = block_rsv.size; 4295 4296 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4297 4298 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4299 dentry->d_name.name, dentry->d_name.len); 4300 if (ret) { 4301 err = ret; 4302 btrfs_abort_transaction(trans, ret); 4303 goto out_end_trans; 4304 } 4305 4306 btrfs_record_root_in_trans(trans, dest); 4307 4308 memset(&dest->root_item.drop_progress, 0, 4309 sizeof(dest->root_item.drop_progress)); 4310 dest->root_item.drop_level = 0; 4311 btrfs_set_root_refs(&dest->root_item, 0); 4312 4313 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4314 ret = btrfs_insert_orphan_item(trans, 4315 fs_info->tree_root, 4316 dest->root_key.objectid); 4317 if (ret) { 4318 btrfs_abort_transaction(trans, ret); 4319 err = ret; 4320 goto out_end_trans; 4321 } 4322 } 4323 4324 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4325 BTRFS_UUID_KEY_SUBVOL, 4326 dest->root_key.objectid); 4327 if (ret && ret != -ENOENT) { 4328 btrfs_abort_transaction(trans, ret); 4329 err = ret; 4330 goto out_end_trans; 4331 } 4332 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4333 ret = btrfs_uuid_tree_remove(trans, 4334 dest->root_item.received_uuid, 4335 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4336 dest->root_key.objectid); 4337 if (ret && ret != -ENOENT) { 4338 btrfs_abort_transaction(trans, ret); 4339 err = ret; 4340 goto out_end_trans; 4341 } 4342 } 4343 4344 out_end_trans: 4345 trans->block_rsv = NULL; 4346 trans->bytes_reserved = 0; 4347 ret = btrfs_end_transaction(trans); 4348 if (ret && !err) 4349 err = ret; 4350 inode->i_flags |= S_DEAD; 4351 out_release: 4352 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4353 out_up_write: 4354 up_write(&fs_info->subvol_sem); 4355 if (err) { 4356 spin_lock(&dest->root_item_lock); 4357 root_flags = btrfs_root_flags(&dest->root_item); 4358 btrfs_set_root_flags(&dest->root_item, 4359 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4360 spin_unlock(&dest->root_item_lock); 4361 } else { 4362 d_invalidate(dentry); 4363 btrfs_prune_dentries(dest); 4364 ASSERT(dest->send_in_progress == 0); 4365 4366 /* the last ref */ 4367 if (dest->ino_cache_inode) { 4368 iput(dest->ino_cache_inode); 4369 dest->ino_cache_inode = NULL; 4370 } 4371 } 4372 4373 return err; 4374 } 4375 4376 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4377 { 4378 struct inode *inode = d_inode(dentry); 4379 int err = 0; 4380 struct btrfs_root *root = BTRFS_I(dir)->root; 4381 struct btrfs_trans_handle *trans; 4382 u64 last_unlink_trans; 4383 4384 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4385 return -ENOTEMPTY; 4386 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4387 return btrfs_delete_subvolume(dir, dentry); 4388 4389 trans = __unlink_start_trans(dir); 4390 if (IS_ERR(trans)) 4391 return PTR_ERR(trans); 4392 4393 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4394 err = btrfs_unlink_subvol(trans, dir, 4395 BTRFS_I(inode)->location.objectid, 4396 dentry->d_name.name, 4397 dentry->d_name.len); 4398 goto out; 4399 } 4400 4401 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4402 if (err) 4403 goto out; 4404 4405 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4406 4407 /* now the directory is empty */ 4408 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4409 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4410 dentry->d_name.len); 4411 if (!err) { 4412 btrfs_i_size_write(BTRFS_I(inode), 0); 4413 /* 4414 * Propagate the last_unlink_trans value of the deleted dir to 4415 * its parent directory. This is to prevent an unrecoverable 4416 * log tree in the case we do something like this: 4417 * 1) create dir foo 4418 * 2) create snapshot under dir foo 4419 * 3) delete the snapshot 4420 * 4) rmdir foo 4421 * 5) mkdir foo 4422 * 6) fsync foo or some file inside foo 4423 */ 4424 if (last_unlink_trans >= trans->transid) 4425 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4426 } 4427 out: 4428 btrfs_end_transaction(trans); 4429 btrfs_btree_balance_dirty(root->fs_info); 4430 4431 return err; 4432 } 4433 4434 static int truncate_space_check(struct btrfs_trans_handle *trans, 4435 struct btrfs_root *root, 4436 u64 bytes_deleted) 4437 { 4438 struct btrfs_fs_info *fs_info = root->fs_info; 4439 int ret; 4440 4441 /* 4442 * This is only used to apply pressure to the enospc system, we don't 4443 * intend to use this reservation at all. 4444 */ 4445 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4446 bytes_deleted *= fs_info->nodesize; 4447 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4448 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4449 if (!ret) { 4450 trace_btrfs_space_reservation(fs_info, "transaction", 4451 trans->transid, 4452 bytes_deleted, 1); 4453 trans->bytes_reserved += bytes_deleted; 4454 } 4455 return ret; 4456 4457 } 4458 4459 /* 4460 * Return this if we need to call truncate_block for the last bit of the 4461 * truncate. 4462 */ 4463 #define NEED_TRUNCATE_BLOCK 1 4464 4465 /* 4466 * this can truncate away extent items, csum items and directory items. 4467 * It starts at a high offset and removes keys until it can't find 4468 * any higher than new_size 4469 * 4470 * csum items that cross the new i_size are truncated to the new size 4471 * as well. 4472 * 4473 * min_type is the minimum key type to truncate down to. If set to 0, this 4474 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4475 */ 4476 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4477 struct btrfs_root *root, 4478 struct inode *inode, 4479 u64 new_size, u32 min_type) 4480 { 4481 struct btrfs_fs_info *fs_info = root->fs_info; 4482 struct btrfs_path *path; 4483 struct extent_buffer *leaf; 4484 struct btrfs_file_extent_item *fi; 4485 struct btrfs_key key; 4486 struct btrfs_key found_key; 4487 u64 extent_start = 0; 4488 u64 extent_num_bytes = 0; 4489 u64 extent_offset = 0; 4490 u64 item_end = 0; 4491 u64 last_size = new_size; 4492 u32 found_type = (u8)-1; 4493 int found_extent; 4494 int del_item; 4495 int pending_del_nr = 0; 4496 int pending_del_slot = 0; 4497 int extent_type = -1; 4498 int ret; 4499 u64 ino = btrfs_ino(BTRFS_I(inode)); 4500 u64 bytes_deleted = 0; 4501 bool be_nice = false; 4502 bool should_throttle = false; 4503 bool should_end = false; 4504 4505 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4506 4507 /* 4508 * for non-free space inodes and ref cows, we want to back off from 4509 * time to time 4510 */ 4511 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4512 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4513 be_nice = true; 4514 4515 path = btrfs_alloc_path(); 4516 if (!path) 4517 return -ENOMEM; 4518 path->reada = READA_BACK; 4519 4520 /* 4521 * We want to drop from the next block forward in case this new size is 4522 * not block aligned since we will be keeping the last block of the 4523 * extent just the way it is. 4524 */ 4525 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4526 root == fs_info->tree_root) 4527 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4528 fs_info->sectorsize), 4529 (u64)-1, 0); 4530 4531 /* 4532 * This function is also used to drop the items in the log tree before 4533 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4534 * it is used to drop the loged items. So we shouldn't kill the delayed 4535 * items. 4536 */ 4537 if (min_type == 0 && root == BTRFS_I(inode)->root) 4538 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4539 4540 key.objectid = ino; 4541 key.offset = (u64)-1; 4542 key.type = (u8)-1; 4543 4544 search_again: 4545 /* 4546 * with a 16K leaf size and 128MB extents, you can actually queue 4547 * up a huge file in a single leaf. Most of the time that 4548 * bytes_deleted is > 0, it will be huge by the time we get here 4549 */ 4550 if (be_nice && bytes_deleted > SZ_32M && 4551 btrfs_should_end_transaction(trans)) { 4552 ret = -EAGAIN; 4553 goto out; 4554 } 4555 4556 path->leave_spinning = 1; 4557 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4558 if (ret < 0) 4559 goto out; 4560 4561 if (ret > 0) { 4562 ret = 0; 4563 /* there are no items in the tree for us to truncate, we're 4564 * done 4565 */ 4566 if (path->slots[0] == 0) 4567 goto out; 4568 path->slots[0]--; 4569 } 4570 4571 while (1) { 4572 fi = NULL; 4573 leaf = path->nodes[0]; 4574 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4575 found_type = found_key.type; 4576 4577 if (found_key.objectid != ino) 4578 break; 4579 4580 if (found_type < min_type) 4581 break; 4582 4583 item_end = found_key.offset; 4584 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4585 fi = btrfs_item_ptr(leaf, path->slots[0], 4586 struct btrfs_file_extent_item); 4587 extent_type = btrfs_file_extent_type(leaf, fi); 4588 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4589 item_end += 4590 btrfs_file_extent_num_bytes(leaf, fi); 4591 4592 trace_btrfs_truncate_show_fi_regular( 4593 BTRFS_I(inode), leaf, fi, 4594 found_key.offset); 4595 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4596 item_end += btrfs_file_extent_ram_bytes(leaf, 4597 fi); 4598 4599 trace_btrfs_truncate_show_fi_inline( 4600 BTRFS_I(inode), leaf, fi, path->slots[0], 4601 found_key.offset); 4602 } 4603 item_end--; 4604 } 4605 if (found_type > min_type) { 4606 del_item = 1; 4607 } else { 4608 if (item_end < new_size) 4609 break; 4610 if (found_key.offset >= new_size) 4611 del_item = 1; 4612 else 4613 del_item = 0; 4614 } 4615 found_extent = 0; 4616 /* FIXME, shrink the extent if the ref count is only 1 */ 4617 if (found_type != BTRFS_EXTENT_DATA_KEY) 4618 goto delete; 4619 4620 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4621 u64 num_dec; 4622 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4623 if (!del_item) { 4624 u64 orig_num_bytes = 4625 btrfs_file_extent_num_bytes(leaf, fi); 4626 extent_num_bytes = ALIGN(new_size - 4627 found_key.offset, 4628 fs_info->sectorsize); 4629 btrfs_set_file_extent_num_bytes(leaf, fi, 4630 extent_num_bytes); 4631 num_dec = (orig_num_bytes - 4632 extent_num_bytes); 4633 if (test_bit(BTRFS_ROOT_REF_COWS, 4634 &root->state) && 4635 extent_start != 0) 4636 inode_sub_bytes(inode, num_dec); 4637 btrfs_mark_buffer_dirty(leaf); 4638 } else { 4639 extent_num_bytes = 4640 btrfs_file_extent_disk_num_bytes(leaf, 4641 fi); 4642 extent_offset = found_key.offset - 4643 btrfs_file_extent_offset(leaf, fi); 4644 4645 /* FIXME blocksize != 4096 */ 4646 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4647 if (extent_start != 0) { 4648 found_extent = 1; 4649 if (test_bit(BTRFS_ROOT_REF_COWS, 4650 &root->state)) 4651 inode_sub_bytes(inode, num_dec); 4652 } 4653 } 4654 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4655 /* 4656 * we can't truncate inline items that have had 4657 * special encodings 4658 */ 4659 if (!del_item && 4660 btrfs_file_extent_encryption(leaf, fi) == 0 && 4661 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4662 btrfs_file_extent_compression(leaf, fi) == 0) { 4663 u32 size = (u32)(new_size - found_key.offset); 4664 4665 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4666 size = btrfs_file_extent_calc_inline_size(size); 4667 btrfs_truncate_item(root->fs_info, path, size, 1); 4668 } else if (!del_item) { 4669 /* 4670 * We have to bail so the last_size is set to 4671 * just before this extent. 4672 */ 4673 ret = NEED_TRUNCATE_BLOCK; 4674 break; 4675 } 4676 4677 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4678 inode_sub_bytes(inode, item_end + 1 - new_size); 4679 } 4680 delete: 4681 if (del_item) 4682 last_size = found_key.offset; 4683 else 4684 last_size = new_size; 4685 if (del_item) { 4686 if (!pending_del_nr) { 4687 /* no pending yet, add ourselves */ 4688 pending_del_slot = path->slots[0]; 4689 pending_del_nr = 1; 4690 } else if (pending_del_nr && 4691 path->slots[0] + 1 == pending_del_slot) { 4692 /* hop on the pending chunk */ 4693 pending_del_nr++; 4694 pending_del_slot = path->slots[0]; 4695 } else { 4696 BUG(); 4697 } 4698 } else { 4699 break; 4700 } 4701 should_throttle = false; 4702 4703 if (found_extent && 4704 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4705 root == fs_info->tree_root)) { 4706 btrfs_set_path_blocking(path); 4707 bytes_deleted += extent_num_bytes; 4708 ret = btrfs_free_extent(trans, root, extent_start, 4709 extent_num_bytes, 0, 4710 btrfs_header_owner(leaf), 4711 ino, extent_offset); 4712 if (ret) { 4713 btrfs_abort_transaction(trans, ret); 4714 break; 4715 } 4716 if (btrfs_should_throttle_delayed_refs(trans)) 4717 btrfs_async_run_delayed_refs(fs_info, 4718 trans->delayed_ref_updates * 2, 4719 trans->transid, 0); 4720 if (be_nice) { 4721 if (truncate_space_check(trans, root, 4722 extent_num_bytes)) { 4723 should_end = true; 4724 } 4725 if (btrfs_should_throttle_delayed_refs(trans)) 4726 should_throttle = true; 4727 } 4728 } 4729 4730 if (found_type == BTRFS_INODE_ITEM_KEY) 4731 break; 4732 4733 if (path->slots[0] == 0 || 4734 path->slots[0] != pending_del_slot || 4735 should_throttle || should_end) { 4736 if (pending_del_nr) { 4737 ret = btrfs_del_items(trans, root, path, 4738 pending_del_slot, 4739 pending_del_nr); 4740 if (ret) { 4741 btrfs_abort_transaction(trans, ret); 4742 break; 4743 } 4744 pending_del_nr = 0; 4745 } 4746 btrfs_release_path(path); 4747 if (should_throttle) { 4748 unsigned long updates = trans->delayed_ref_updates; 4749 if (updates) { 4750 trans->delayed_ref_updates = 0; 4751 ret = btrfs_run_delayed_refs(trans, 4752 updates * 2); 4753 if (ret) 4754 break; 4755 } 4756 } 4757 /* 4758 * if we failed to refill our space rsv, bail out 4759 * and let the transaction restart 4760 */ 4761 if (should_end) { 4762 ret = -EAGAIN; 4763 break; 4764 } 4765 goto search_again; 4766 } else { 4767 path->slots[0]--; 4768 } 4769 } 4770 out: 4771 if (ret >= 0 && pending_del_nr) { 4772 int err; 4773 4774 err = btrfs_del_items(trans, root, path, pending_del_slot, 4775 pending_del_nr); 4776 if (err) { 4777 btrfs_abort_transaction(trans, err); 4778 ret = err; 4779 } 4780 } 4781 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4782 ASSERT(last_size >= new_size); 4783 if (!ret && last_size > new_size) 4784 last_size = new_size; 4785 btrfs_ordered_update_i_size(inode, last_size, NULL); 4786 } 4787 4788 btrfs_free_path(path); 4789 4790 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) { 4791 unsigned long updates = trans->delayed_ref_updates; 4792 int err; 4793 4794 if (updates) { 4795 trans->delayed_ref_updates = 0; 4796 err = btrfs_run_delayed_refs(trans, updates * 2); 4797 if (err) 4798 ret = err; 4799 } 4800 } 4801 return ret; 4802 } 4803 4804 /* 4805 * btrfs_truncate_block - read, zero a chunk and write a block 4806 * @inode - inode that we're zeroing 4807 * @from - the offset to start zeroing 4808 * @len - the length to zero, 0 to zero the entire range respective to the 4809 * offset 4810 * @front - zero up to the offset instead of from the offset on 4811 * 4812 * This will find the block for the "from" offset and cow the block and zero the 4813 * part we want to zero. This is used with truncate and hole punching. 4814 */ 4815 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4816 int front) 4817 { 4818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4819 struct address_space *mapping = inode->i_mapping; 4820 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4821 struct btrfs_ordered_extent *ordered; 4822 struct extent_state *cached_state = NULL; 4823 struct extent_changeset *data_reserved = NULL; 4824 char *kaddr; 4825 u32 blocksize = fs_info->sectorsize; 4826 pgoff_t index = from >> PAGE_SHIFT; 4827 unsigned offset = from & (blocksize - 1); 4828 struct page *page; 4829 gfp_t mask = btrfs_alloc_write_mask(mapping); 4830 int ret = 0; 4831 u64 block_start; 4832 u64 block_end; 4833 4834 if (IS_ALIGNED(offset, blocksize) && 4835 (!len || IS_ALIGNED(len, blocksize))) 4836 goto out; 4837 4838 block_start = round_down(from, blocksize); 4839 block_end = block_start + blocksize - 1; 4840 4841 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4842 block_start, blocksize); 4843 if (ret) 4844 goto out; 4845 4846 again: 4847 page = find_or_create_page(mapping, index, mask); 4848 if (!page) { 4849 btrfs_delalloc_release_space(inode, data_reserved, 4850 block_start, blocksize, true); 4851 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4852 ret = -ENOMEM; 4853 goto out; 4854 } 4855 4856 if (!PageUptodate(page)) { 4857 ret = btrfs_readpage(NULL, page); 4858 lock_page(page); 4859 if (page->mapping != mapping) { 4860 unlock_page(page); 4861 put_page(page); 4862 goto again; 4863 } 4864 if (!PageUptodate(page)) { 4865 ret = -EIO; 4866 goto out_unlock; 4867 } 4868 } 4869 wait_on_page_writeback(page); 4870 4871 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4872 set_page_extent_mapped(page); 4873 4874 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4875 if (ordered) { 4876 unlock_extent_cached(io_tree, block_start, block_end, 4877 &cached_state); 4878 unlock_page(page); 4879 put_page(page); 4880 btrfs_start_ordered_extent(inode, ordered, 1); 4881 btrfs_put_ordered_extent(ordered); 4882 goto again; 4883 } 4884 4885 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4886 EXTENT_DIRTY | EXTENT_DELALLOC | 4887 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4888 0, 0, &cached_state); 4889 4890 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4891 &cached_state, 0); 4892 if (ret) { 4893 unlock_extent_cached(io_tree, block_start, block_end, 4894 &cached_state); 4895 goto out_unlock; 4896 } 4897 4898 if (offset != blocksize) { 4899 if (!len) 4900 len = blocksize - offset; 4901 kaddr = kmap(page); 4902 if (front) 4903 memset(kaddr + (block_start - page_offset(page)), 4904 0, offset); 4905 else 4906 memset(kaddr + (block_start - page_offset(page)) + offset, 4907 0, len); 4908 flush_dcache_page(page); 4909 kunmap(page); 4910 } 4911 ClearPageChecked(page); 4912 set_page_dirty(page); 4913 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4914 4915 out_unlock: 4916 if (ret) 4917 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4918 blocksize, true); 4919 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4920 unlock_page(page); 4921 put_page(page); 4922 out: 4923 extent_changeset_free(data_reserved); 4924 return ret; 4925 } 4926 4927 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4928 u64 offset, u64 len) 4929 { 4930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4931 struct btrfs_trans_handle *trans; 4932 int ret; 4933 4934 /* 4935 * Still need to make sure the inode looks like it's been updated so 4936 * that any holes get logged if we fsync. 4937 */ 4938 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4939 BTRFS_I(inode)->last_trans = fs_info->generation; 4940 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4941 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4942 return 0; 4943 } 4944 4945 /* 4946 * 1 - for the one we're dropping 4947 * 1 - for the one we're adding 4948 * 1 - for updating the inode. 4949 */ 4950 trans = btrfs_start_transaction(root, 3); 4951 if (IS_ERR(trans)) 4952 return PTR_ERR(trans); 4953 4954 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4955 if (ret) { 4956 btrfs_abort_transaction(trans, ret); 4957 btrfs_end_transaction(trans); 4958 return ret; 4959 } 4960 4961 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4962 offset, 0, 0, len, 0, len, 0, 0, 0); 4963 if (ret) 4964 btrfs_abort_transaction(trans, ret); 4965 else 4966 btrfs_update_inode(trans, root, inode); 4967 btrfs_end_transaction(trans); 4968 return ret; 4969 } 4970 4971 /* 4972 * This function puts in dummy file extents for the area we're creating a hole 4973 * for. So if we are truncating this file to a larger size we need to insert 4974 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4975 * the range between oldsize and size 4976 */ 4977 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4978 { 4979 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4980 struct btrfs_root *root = BTRFS_I(inode)->root; 4981 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4982 struct extent_map *em = NULL; 4983 struct extent_state *cached_state = NULL; 4984 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4985 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4986 u64 block_end = ALIGN(size, fs_info->sectorsize); 4987 u64 last_byte; 4988 u64 cur_offset; 4989 u64 hole_size; 4990 int err = 0; 4991 4992 /* 4993 * If our size started in the middle of a block we need to zero out the 4994 * rest of the block before we expand the i_size, otherwise we could 4995 * expose stale data. 4996 */ 4997 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4998 if (err) 4999 return err; 5000 5001 if (size <= hole_start) 5002 return 0; 5003 5004 while (1) { 5005 struct btrfs_ordered_extent *ordered; 5006 5007 lock_extent_bits(io_tree, hole_start, block_end - 1, 5008 &cached_state); 5009 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 5010 block_end - hole_start); 5011 if (!ordered) 5012 break; 5013 unlock_extent_cached(io_tree, hole_start, block_end - 1, 5014 &cached_state); 5015 btrfs_start_ordered_extent(inode, ordered, 1); 5016 btrfs_put_ordered_extent(ordered); 5017 } 5018 5019 cur_offset = hole_start; 5020 while (1) { 5021 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5022 block_end - cur_offset, 0); 5023 if (IS_ERR(em)) { 5024 err = PTR_ERR(em); 5025 em = NULL; 5026 break; 5027 } 5028 last_byte = min(extent_map_end(em), block_end); 5029 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5030 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5031 struct extent_map *hole_em; 5032 hole_size = last_byte - cur_offset; 5033 5034 err = maybe_insert_hole(root, inode, cur_offset, 5035 hole_size); 5036 if (err) 5037 break; 5038 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5039 cur_offset + hole_size - 1, 0); 5040 hole_em = alloc_extent_map(); 5041 if (!hole_em) { 5042 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5043 &BTRFS_I(inode)->runtime_flags); 5044 goto next; 5045 } 5046 hole_em->start = cur_offset; 5047 hole_em->len = hole_size; 5048 hole_em->orig_start = cur_offset; 5049 5050 hole_em->block_start = EXTENT_MAP_HOLE; 5051 hole_em->block_len = 0; 5052 hole_em->orig_block_len = 0; 5053 hole_em->ram_bytes = hole_size; 5054 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5055 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5056 hole_em->generation = fs_info->generation; 5057 5058 while (1) { 5059 write_lock(&em_tree->lock); 5060 err = add_extent_mapping(em_tree, hole_em, 1); 5061 write_unlock(&em_tree->lock); 5062 if (err != -EEXIST) 5063 break; 5064 btrfs_drop_extent_cache(BTRFS_I(inode), 5065 cur_offset, 5066 cur_offset + 5067 hole_size - 1, 0); 5068 } 5069 free_extent_map(hole_em); 5070 } 5071 next: 5072 free_extent_map(em); 5073 em = NULL; 5074 cur_offset = last_byte; 5075 if (cur_offset >= block_end) 5076 break; 5077 } 5078 free_extent_map(em); 5079 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5080 return err; 5081 } 5082 5083 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5084 { 5085 struct btrfs_root *root = BTRFS_I(inode)->root; 5086 struct btrfs_trans_handle *trans; 5087 loff_t oldsize = i_size_read(inode); 5088 loff_t newsize = attr->ia_size; 5089 int mask = attr->ia_valid; 5090 int ret; 5091 5092 /* 5093 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5094 * special case where we need to update the times despite not having 5095 * these flags set. For all other operations the VFS set these flags 5096 * explicitly if it wants a timestamp update. 5097 */ 5098 if (newsize != oldsize) { 5099 inode_inc_iversion(inode); 5100 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5101 inode->i_ctime = inode->i_mtime = 5102 current_time(inode); 5103 } 5104 5105 if (newsize > oldsize) { 5106 /* 5107 * Don't do an expanding truncate while snapshotting is ongoing. 5108 * This is to ensure the snapshot captures a fully consistent 5109 * state of this file - if the snapshot captures this expanding 5110 * truncation, it must capture all writes that happened before 5111 * this truncation. 5112 */ 5113 btrfs_wait_for_snapshot_creation(root); 5114 ret = btrfs_cont_expand(inode, oldsize, newsize); 5115 if (ret) { 5116 btrfs_end_write_no_snapshotting(root); 5117 return ret; 5118 } 5119 5120 trans = btrfs_start_transaction(root, 1); 5121 if (IS_ERR(trans)) { 5122 btrfs_end_write_no_snapshotting(root); 5123 return PTR_ERR(trans); 5124 } 5125 5126 i_size_write(inode, newsize); 5127 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5128 pagecache_isize_extended(inode, oldsize, newsize); 5129 ret = btrfs_update_inode(trans, root, inode); 5130 btrfs_end_write_no_snapshotting(root); 5131 btrfs_end_transaction(trans); 5132 } else { 5133 5134 /* 5135 * We're truncating a file that used to have good data down to 5136 * zero. Make sure it gets into the ordered flush list so that 5137 * any new writes get down to disk quickly. 5138 */ 5139 if (newsize == 0) 5140 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5141 &BTRFS_I(inode)->runtime_flags); 5142 5143 truncate_setsize(inode, newsize); 5144 5145 /* Disable nonlocked read DIO to avoid the end less truncate */ 5146 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5147 inode_dio_wait(inode); 5148 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5149 5150 ret = btrfs_truncate(inode, newsize == oldsize); 5151 if (ret && inode->i_nlink) { 5152 int err; 5153 5154 /* 5155 * Truncate failed, so fix up the in-memory size. We 5156 * adjusted disk_i_size down as we removed extents, so 5157 * wait for disk_i_size to be stable and then update the 5158 * in-memory size to match. 5159 */ 5160 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5161 if (err) 5162 return err; 5163 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5164 } 5165 } 5166 5167 return ret; 5168 } 5169 5170 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5171 { 5172 struct inode *inode = d_inode(dentry); 5173 struct btrfs_root *root = BTRFS_I(inode)->root; 5174 int err; 5175 5176 if (btrfs_root_readonly(root)) 5177 return -EROFS; 5178 5179 err = setattr_prepare(dentry, attr); 5180 if (err) 5181 return err; 5182 5183 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5184 err = btrfs_setsize(inode, attr); 5185 if (err) 5186 return err; 5187 } 5188 5189 if (attr->ia_valid) { 5190 setattr_copy(inode, attr); 5191 inode_inc_iversion(inode); 5192 err = btrfs_dirty_inode(inode); 5193 5194 if (!err && attr->ia_valid & ATTR_MODE) 5195 err = posix_acl_chmod(inode, inode->i_mode); 5196 } 5197 5198 return err; 5199 } 5200 5201 /* 5202 * While truncating the inode pages during eviction, we get the VFS calling 5203 * btrfs_invalidatepage() against each page of the inode. This is slow because 5204 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5205 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5206 * extent_state structures over and over, wasting lots of time. 5207 * 5208 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5209 * those expensive operations on a per page basis and do only the ordered io 5210 * finishing, while we release here the extent_map and extent_state structures, 5211 * without the excessive merging and splitting. 5212 */ 5213 static void evict_inode_truncate_pages(struct inode *inode) 5214 { 5215 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5216 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5217 struct rb_node *node; 5218 5219 ASSERT(inode->i_state & I_FREEING); 5220 truncate_inode_pages_final(&inode->i_data); 5221 5222 write_lock(&map_tree->lock); 5223 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5224 struct extent_map *em; 5225 5226 node = rb_first_cached(&map_tree->map); 5227 em = rb_entry(node, struct extent_map, rb_node); 5228 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5229 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5230 remove_extent_mapping(map_tree, em); 5231 free_extent_map(em); 5232 if (need_resched()) { 5233 write_unlock(&map_tree->lock); 5234 cond_resched(); 5235 write_lock(&map_tree->lock); 5236 } 5237 } 5238 write_unlock(&map_tree->lock); 5239 5240 /* 5241 * Keep looping until we have no more ranges in the io tree. 5242 * We can have ongoing bios started by readpages (called from readahead) 5243 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5244 * still in progress (unlocked the pages in the bio but did not yet 5245 * unlocked the ranges in the io tree). Therefore this means some 5246 * ranges can still be locked and eviction started because before 5247 * submitting those bios, which are executed by a separate task (work 5248 * queue kthread), inode references (inode->i_count) were not taken 5249 * (which would be dropped in the end io callback of each bio). 5250 * Therefore here we effectively end up waiting for those bios and 5251 * anyone else holding locked ranges without having bumped the inode's 5252 * reference count - if we don't do it, when they access the inode's 5253 * io_tree to unlock a range it may be too late, leading to an 5254 * use-after-free issue. 5255 */ 5256 spin_lock(&io_tree->lock); 5257 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5258 struct extent_state *state; 5259 struct extent_state *cached_state = NULL; 5260 u64 start; 5261 u64 end; 5262 5263 node = rb_first(&io_tree->state); 5264 state = rb_entry(node, struct extent_state, rb_node); 5265 start = state->start; 5266 end = state->end; 5267 spin_unlock(&io_tree->lock); 5268 5269 lock_extent_bits(io_tree, start, end, &cached_state); 5270 5271 /* 5272 * If still has DELALLOC flag, the extent didn't reach disk, 5273 * and its reserved space won't be freed by delayed_ref. 5274 * So we need to free its reserved space here. 5275 * (Refer to comment in btrfs_invalidatepage, case 2) 5276 * 5277 * Note, end is the bytenr of last byte, so we need + 1 here. 5278 */ 5279 if (state->state & EXTENT_DELALLOC) 5280 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5281 5282 clear_extent_bit(io_tree, start, end, 5283 EXTENT_LOCKED | EXTENT_DIRTY | 5284 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5285 EXTENT_DEFRAG, 1, 1, &cached_state); 5286 5287 cond_resched(); 5288 spin_lock(&io_tree->lock); 5289 } 5290 spin_unlock(&io_tree->lock); 5291 } 5292 5293 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5294 struct btrfs_block_rsv *rsv) 5295 { 5296 struct btrfs_fs_info *fs_info = root->fs_info; 5297 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5298 int failures = 0; 5299 5300 for (;;) { 5301 struct btrfs_trans_handle *trans; 5302 int ret; 5303 5304 ret = btrfs_block_rsv_refill(root, rsv, rsv->size, 5305 BTRFS_RESERVE_FLUSH_LIMIT); 5306 5307 if (ret && ++failures > 2) { 5308 btrfs_warn(fs_info, 5309 "could not allocate space for a delete; will truncate on mount"); 5310 return ERR_PTR(-ENOSPC); 5311 } 5312 5313 trans = btrfs_join_transaction(root); 5314 if (IS_ERR(trans) || !ret) 5315 return trans; 5316 5317 /* 5318 * Try to steal from the global reserve if there is space for 5319 * it. 5320 */ 5321 if (!btrfs_check_space_for_delayed_refs(trans) && 5322 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, false)) 5323 return trans; 5324 5325 /* If not, commit and try again. */ 5326 ret = btrfs_commit_transaction(trans); 5327 if (ret) 5328 return ERR_PTR(ret); 5329 } 5330 } 5331 5332 void btrfs_evict_inode(struct inode *inode) 5333 { 5334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5335 struct btrfs_trans_handle *trans; 5336 struct btrfs_root *root = BTRFS_I(inode)->root; 5337 struct btrfs_block_rsv *rsv; 5338 int ret; 5339 5340 trace_btrfs_inode_evict(inode); 5341 5342 if (!root) { 5343 clear_inode(inode); 5344 return; 5345 } 5346 5347 evict_inode_truncate_pages(inode); 5348 5349 if (inode->i_nlink && 5350 ((btrfs_root_refs(&root->root_item) != 0 && 5351 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5352 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5353 goto no_delete; 5354 5355 if (is_bad_inode(inode)) 5356 goto no_delete; 5357 5358 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5359 5360 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5361 goto no_delete; 5362 5363 if (inode->i_nlink > 0) { 5364 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5365 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5366 goto no_delete; 5367 } 5368 5369 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5370 if (ret) 5371 goto no_delete; 5372 5373 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5374 if (!rsv) 5375 goto no_delete; 5376 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5377 rsv->failfast = 1; 5378 5379 btrfs_i_size_write(BTRFS_I(inode), 0); 5380 5381 while (1) { 5382 trans = evict_refill_and_join(root, rsv); 5383 if (IS_ERR(trans)) 5384 goto free_rsv; 5385 5386 trans->block_rsv = rsv; 5387 5388 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5389 trans->block_rsv = &fs_info->trans_block_rsv; 5390 btrfs_end_transaction(trans); 5391 btrfs_btree_balance_dirty(fs_info); 5392 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5393 goto free_rsv; 5394 else if (!ret) 5395 break; 5396 } 5397 5398 /* 5399 * Errors here aren't a big deal, it just means we leave orphan items in 5400 * the tree. They will be cleaned up on the next mount. If the inode 5401 * number gets reused, cleanup deletes the orphan item without doing 5402 * anything, and unlink reuses the existing orphan item. 5403 * 5404 * If it turns out that we are dropping too many of these, we might want 5405 * to add a mechanism for retrying these after a commit. 5406 */ 5407 trans = evict_refill_and_join(root, rsv); 5408 if (!IS_ERR(trans)) { 5409 trans->block_rsv = rsv; 5410 btrfs_orphan_del(trans, BTRFS_I(inode)); 5411 trans->block_rsv = &fs_info->trans_block_rsv; 5412 btrfs_end_transaction(trans); 5413 } 5414 5415 if (!(root == fs_info->tree_root || 5416 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5417 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5418 5419 free_rsv: 5420 btrfs_free_block_rsv(fs_info, rsv); 5421 no_delete: 5422 /* 5423 * If we didn't successfully delete, the orphan item will still be in 5424 * the tree and we'll retry on the next mount. Again, we might also want 5425 * to retry these periodically in the future. 5426 */ 5427 btrfs_remove_delayed_node(BTRFS_I(inode)); 5428 clear_inode(inode); 5429 } 5430 5431 /* 5432 * this returns the key found in the dir entry in the location pointer. 5433 * If no dir entries were found, returns -ENOENT. 5434 * If found a corrupted location in dir entry, returns -EUCLEAN. 5435 */ 5436 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5437 struct btrfs_key *location) 5438 { 5439 const char *name = dentry->d_name.name; 5440 int namelen = dentry->d_name.len; 5441 struct btrfs_dir_item *di; 5442 struct btrfs_path *path; 5443 struct btrfs_root *root = BTRFS_I(dir)->root; 5444 int ret = 0; 5445 5446 path = btrfs_alloc_path(); 5447 if (!path) 5448 return -ENOMEM; 5449 5450 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5451 name, namelen, 0); 5452 if (IS_ERR_OR_NULL(di)) { 5453 ret = di ? PTR_ERR(di) : -ENOENT; 5454 goto out; 5455 } 5456 5457 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5458 if (location->type != BTRFS_INODE_ITEM_KEY && 5459 location->type != BTRFS_ROOT_ITEM_KEY) { 5460 ret = -EUCLEAN; 5461 btrfs_warn(root->fs_info, 5462 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5463 __func__, name, btrfs_ino(BTRFS_I(dir)), 5464 location->objectid, location->type, location->offset); 5465 } 5466 out: 5467 btrfs_free_path(path); 5468 return ret; 5469 } 5470 5471 /* 5472 * when we hit a tree root in a directory, the btrfs part of the inode 5473 * needs to be changed to reflect the root directory of the tree root. This 5474 * is kind of like crossing a mount point. 5475 */ 5476 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5477 struct inode *dir, 5478 struct dentry *dentry, 5479 struct btrfs_key *location, 5480 struct btrfs_root **sub_root) 5481 { 5482 struct btrfs_path *path; 5483 struct btrfs_root *new_root; 5484 struct btrfs_root_ref *ref; 5485 struct extent_buffer *leaf; 5486 struct btrfs_key key; 5487 int ret; 5488 int err = 0; 5489 5490 path = btrfs_alloc_path(); 5491 if (!path) { 5492 err = -ENOMEM; 5493 goto out; 5494 } 5495 5496 err = -ENOENT; 5497 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5498 key.type = BTRFS_ROOT_REF_KEY; 5499 key.offset = location->objectid; 5500 5501 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5502 if (ret) { 5503 if (ret < 0) 5504 err = ret; 5505 goto out; 5506 } 5507 5508 leaf = path->nodes[0]; 5509 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5510 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5511 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5512 goto out; 5513 5514 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5515 (unsigned long)(ref + 1), 5516 dentry->d_name.len); 5517 if (ret) 5518 goto out; 5519 5520 btrfs_release_path(path); 5521 5522 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5523 if (IS_ERR(new_root)) { 5524 err = PTR_ERR(new_root); 5525 goto out; 5526 } 5527 5528 *sub_root = new_root; 5529 location->objectid = btrfs_root_dirid(&new_root->root_item); 5530 location->type = BTRFS_INODE_ITEM_KEY; 5531 location->offset = 0; 5532 err = 0; 5533 out: 5534 btrfs_free_path(path); 5535 return err; 5536 } 5537 5538 static void inode_tree_add(struct inode *inode) 5539 { 5540 struct btrfs_root *root = BTRFS_I(inode)->root; 5541 struct btrfs_inode *entry; 5542 struct rb_node **p; 5543 struct rb_node *parent; 5544 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5545 u64 ino = btrfs_ino(BTRFS_I(inode)); 5546 5547 if (inode_unhashed(inode)) 5548 return; 5549 parent = NULL; 5550 spin_lock(&root->inode_lock); 5551 p = &root->inode_tree.rb_node; 5552 while (*p) { 5553 parent = *p; 5554 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5555 5556 if (ino < btrfs_ino(entry)) 5557 p = &parent->rb_left; 5558 else if (ino > btrfs_ino(entry)) 5559 p = &parent->rb_right; 5560 else { 5561 WARN_ON(!(entry->vfs_inode.i_state & 5562 (I_WILL_FREE | I_FREEING))); 5563 rb_replace_node(parent, new, &root->inode_tree); 5564 RB_CLEAR_NODE(parent); 5565 spin_unlock(&root->inode_lock); 5566 return; 5567 } 5568 } 5569 rb_link_node(new, parent, p); 5570 rb_insert_color(new, &root->inode_tree); 5571 spin_unlock(&root->inode_lock); 5572 } 5573 5574 static void inode_tree_del(struct inode *inode) 5575 { 5576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5577 struct btrfs_root *root = BTRFS_I(inode)->root; 5578 int empty = 0; 5579 5580 spin_lock(&root->inode_lock); 5581 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5582 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5583 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5584 empty = RB_EMPTY_ROOT(&root->inode_tree); 5585 } 5586 spin_unlock(&root->inode_lock); 5587 5588 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5589 synchronize_srcu(&fs_info->subvol_srcu); 5590 spin_lock(&root->inode_lock); 5591 empty = RB_EMPTY_ROOT(&root->inode_tree); 5592 spin_unlock(&root->inode_lock); 5593 if (empty) 5594 btrfs_add_dead_root(root); 5595 } 5596 } 5597 5598 5599 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5600 { 5601 struct btrfs_iget_args *args = p; 5602 inode->i_ino = args->location->objectid; 5603 memcpy(&BTRFS_I(inode)->location, args->location, 5604 sizeof(*args->location)); 5605 BTRFS_I(inode)->root = args->root; 5606 return 0; 5607 } 5608 5609 static int btrfs_find_actor(struct inode *inode, void *opaque) 5610 { 5611 struct btrfs_iget_args *args = opaque; 5612 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5613 args->root == BTRFS_I(inode)->root; 5614 } 5615 5616 static struct inode *btrfs_iget_locked(struct super_block *s, 5617 struct btrfs_key *location, 5618 struct btrfs_root *root) 5619 { 5620 struct inode *inode; 5621 struct btrfs_iget_args args; 5622 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5623 5624 args.location = location; 5625 args.root = root; 5626 5627 inode = iget5_locked(s, hashval, btrfs_find_actor, 5628 btrfs_init_locked_inode, 5629 (void *)&args); 5630 return inode; 5631 } 5632 5633 /* Get an inode object given its location and corresponding root. 5634 * Returns in *is_new if the inode was read from disk 5635 */ 5636 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5637 struct btrfs_root *root, int *new) 5638 { 5639 struct inode *inode; 5640 5641 inode = btrfs_iget_locked(s, location, root); 5642 if (!inode) 5643 return ERR_PTR(-ENOMEM); 5644 5645 if (inode->i_state & I_NEW) { 5646 int ret; 5647 5648 ret = btrfs_read_locked_inode(inode); 5649 if (!ret) { 5650 inode_tree_add(inode); 5651 unlock_new_inode(inode); 5652 if (new) 5653 *new = 1; 5654 } else { 5655 iget_failed(inode); 5656 /* 5657 * ret > 0 can come from btrfs_search_slot called by 5658 * btrfs_read_locked_inode, this means the inode item 5659 * was not found. 5660 */ 5661 if (ret > 0) 5662 ret = -ENOENT; 5663 inode = ERR_PTR(ret); 5664 } 5665 } 5666 5667 return inode; 5668 } 5669 5670 static struct inode *new_simple_dir(struct super_block *s, 5671 struct btrfs_key *key, 5672 struct btrfs_root *root) 5673 { 5674 struct inode *inode = new_inode(s); 5675 5676 if (!inode) 5677 return ERR_PTR(-ENOMEM); 5678 5679 BTRFS_I(inode)->root = root; 5680 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5681 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5682 5683 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5684 inode->i_op = &btrfs_dir_ro_inode_operations; 5685 inode->i_opflags &= ~IOP_XATTR; 5686 inode->i_fop = &simple_dir_operations; 5687 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5688 inode->i_mtime = current_time(inode); 5689 inode->i_atime = inode->i_mtime; 5690 inode->i_ctime = inode->i_mtime; 5691 BTRFS_I(inode)->i_otime = inode->i_mtime; 5692 5693 return inode; 5694 } 5695 5696 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5697 { 5698 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5699 struct inode *inode; 5700 struct btrfs_root *root = BTRFS_I(dir)->root; 5701 struct btrfs_root *sub_root = root; 5702 struct btrfs_key location; 5703 int index; 5704 int ret = 0; 5705 5706 if (dentry->d_name.len > BTRFS_NAME_LEN) 5707 return ERR_PTR(-ENAMETOOLONG); 5708 5709 ret = btrfs_inode_by_name(dir, dentry, &location); 5710 if (ret < 0) 5711 return ERR_PTR(ret); 5712 5713 if (location.type == BTRFS_INODE_ITEM_KEY) { 5714 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5715 return inode; 5716 } 5717 5718 index = srcu_read_lock(&fs_info->subvol_srcu); 5719 ret = fixup_tree_root_location(fs_info, dir, dentry, 5720 &location, &sub_root); 5721 if (ret < 0) { 5722 if (ret != -ENOENT) 5723 inode = ERR_PTR(ret); 5724 else 5725 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5726 } else { 5727 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5728 } 5729 srcu_read_unlock(&fs_info->subvol_srcu, index); 5730 5731 if (!IS_ERR(inode) && root != sub_root) { 5732 down_read(&fs_info->cleanup_work_sem); 5733 if (!sb_rdonly(inode->i_sb)) 5734 ret = btrfs_orphan_cleanup(sub_root); 5735 up_read(&fs_info->cleanup_work_sem); 5736 if (ret) { 5737 iput(inode); 5738 inode = ERR_PTR(ret); 5739 } 5740 } 5741 5742 return inode; 5743 } 5744 5745 static int btrfs_dentry_delete(const struct dentry *dentry) 5746 { 5747 struct btrfs_root *root; 5748 struct inode *inode = d_inode(dentry); 5749 5750 if (!inode && !IS_ROOT(dentry)) 5751 inode = d_inode(dentry->d_parent); 5752 5753 if (inode) { 5754 root = BTRFS_I(inode)->root; 5755 if (btrfs_root_refs(&root->root_item) == 0) 5756 return 1; 5757 5758 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5759 return 1; 5760 } 5761 return 0; 5762 } 5763 5764 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5765 unsigned int flags) 5766 { 5767 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5768 5769 if (inode == ERR_PTR(-ENOENT)) 5770 inode = NULL; 5771 return d_splice_alias(inode, dentry); 5772 } 5773 5774 unsigned char btrfs_filetype_table[] = { 5775 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5776 }; 5777 5778 /* 5779 * All this infrastructure exists because dir_emit can fault, and we are holding 5780 * the tree lock when doing readdir. For now just allocate a buffer and copy 5781 * our information into that, and then dir_emit from the buffer. This is 5782 * similar to what NFS does, only we don't keep the buffer around in pagecache 5783 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5784 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5785 * tree lock. 5786 */ 5787 static int btrfs_opendir(struct inode *inode, struct file *file) 5788 { 5789 struct btrfs_file_private *private; 5790 5791 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5792 if (!private) 5793 return -ENOMEM; 5794 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5795 if (!private->filldir_buf) { 5796 kfree(private); 5797 return -ENOMEM; 5798 } 5799 file->private_data = private; 5800 return 0; 5801 } 5802 5803 struct dir_entry { 5804 u64 ino; 5805 u64 offset; 5806 unsigned type; 5807 int name_len; 5808 }; 5809 5810 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5811 { 5812 while (entries--) { 5813 struct dir_entry *entry = addr; 5814 char *name = (char *)(entry + 1); 5815 5816 ctx->pos = get_unaligned(&entry->offset); 5817 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5818 get_unaligned(&entry->ino), 5819 get_unaligned(&entry->type))) 5820 return 1; 5821 addr += sizeof(struct dir_entry) + 5822 get_unaligned(&entry->name_len); 5823 ctx->pos++; 5824 } 5825 return 0; 5826 } 5827 5828 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5829 { 5830 struct inode *inode = file_inode(file); 5831 struct btrfs_root *root = BTRFS_I(inode)->root; 5832 struct btrfs_file_private *private = file->private_data; 5833 struct btrfs_dir_item *di; 5834 struct btrfs_key key; 5835 struct btrfs_key found_key; 5836 struct btrfs_path *path; 5837 void *addr; 5838 struct list_head ins_list; 5839 struct list_head del_list; 5840 int ret; 5841 struct extent_buffer *leaf; 5842 int slot; 5843 char *name_ptr; 5844 int name_len; 5845 int entries = 0; 5846 int total_len = 0; 5847 bool put = false; 5848 struct btrfs_key location; 5849 5850 if (!dir_emit_dots(file, ctx)) 5851 return 0; 5852 5853 path = btrfs_alloc_path(); 5854 if (!path) 5855 return -ENOMEM; 5856 5857 addr = private->filldir_buf; 5858 path->reada = READA_FORWARD; 5859 5860 INIT_LIST_HEAD(&ins_list); 5861 INIT_LIST_HEAD(&del_list); 5862 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5863 5864 again: 5865 key.type = BTRFS_DIR_INDEX_KEY; 5866 key.offset = ctx->pos; 5867 key.objectid = btrfs_ino(BTRFS_I(inode)); 5868 5869 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5870 if (ret < 0) 5871 goto err; 5872 5873 while (1) { 5874 struct dir_entry *entry; 5875 5876 leaf = path->nodes[0]; 5877 slot = path->slots[0]; 5878 if (slot >= btrfs_header_nritems(leaf)) { 5879 ret = btrfs_next_leaf(root, path); 5880 if (ret < 0) 5881 goto err; 5882 else if (ret > 0) 5883 break; 5884 continue; 5885 } 5886 5887 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5888 5889 if (found_key.objectid != key.objectid) 5890 break; 5891 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5892 break; 5893 if (found_key.offset < ctx->pos) 5894 goto next; 5895 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5896 goto next; 5897 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5898 name_len = btrfs_dir_name_len(leaf, di); 5899 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5900 PAGE_SIZE) { 5901 btrfs_release_path(path); 5902 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5903 if (ret) 5904 goto nopos; 5905 addr = private->filldir_buf; 5906 entries = 0; 5907 total_len = 0; 5908 goto again; 5909 } 5910 5911 entry = addr; 5912 put_unaligned(name_len, &entry->name_len); 5913 name_ptr = (char *)(entry + 1); 5914 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5915 name_len); 5916 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], 5917 &entry->type); 5918 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5919 put_unaligned(location.objectid, &entry->ino); 5920 put_unaligned(found_key.offset, &entry->offset); 5921 entries++; 5922 addr += sizeof(struct dir_entry) + name_len; 5923 total_len += sizeof(struct dir_entry) + name_len; 5924 next: 5925 path->slots[0]++; 5926 } 5927 btrfs_release_path(path); 5928 5929 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5930 if (ret) 5931 goto nopos; 5932 5933 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5934 if (ret) 5935 goto nopos; 5936 5937 /* 5938 * Stop new entries from being returned after we return the last 5939 * entry. 5940 * 5941 * New directory entries are assigned a strictly increasing 5942 * offset. This means that new entries created during readdir 5943 * are *guaranteed* to be seen in the future by that readdir. 5944 * This has broken buggy programs which operate on names as 5945 * they're returned by readdir. Until we re-use freed offsets 5946 * we have this hack to stop new entries from being returned 5947 * under the assumption that they'll never reach this huge 5948 * offset. 5949 * 5950 * This is being careful not to overflow 32bit loff_t unless the 5951 * last entry requires it because doing so has broken 32bit apps 5952 * in the past. 5953 */ 5954 if (ctx->pos >= INT_MAX) 5955 ctx->pos = LLONG_MAX; 5956 else 5957 ctx->pos = INT_MAX; 5958 nopos: 5959 ret = 0; 5960 err: 5961 if (put) 5962 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5963 btrfs_free_path(path); 5964 return ret; 5965 } 5966 5967 /* 5968 * This is somewhat expensive, updating the tree every time the 5969 * inode changes. But, it is most likely to find the inode in cache. 5970 * FIXME, needs more benchmarking...there are no reasons other than performance 5971 * to keep or drop this code. 5972 */ 5973 static int btrfs_dirty_inode(struct inode *inode) 5974 { 5975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5976 struct btrfs_root *root = BTRFS_I(inode)->root; 5977 struct btrfs_trans_handle *trans; 5978 int ret; 5979 5980 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5981 return 0; 5982 5983 trans = btrfs_join_transaction(root); 5984 if (IS_ERR(trans)) 5985 return PTR_ERR(trans); 5986 5987 ret = btrfs_update_inode(trans, root, inode); 5988 if (ret && ret == -ENOSPC) { 5989 /* whoops, lets try again with the full transaction */ 5990 btrfs_end_transaction(trans); 5991 trans = btrfs_start_transaction(root, 1); 5992 if (IS_ERR(trans)) 5993 return PTR_ERR(trans); 5994 5995 ret = btrfs_update_inode(trans, root, inode); 5996 } 5997 btrfs_end_transaction(trans); 5998 if (BTRFS_I(inode)->delayed_node) 5999 btrfs_balance_delayed_items(fs_info); 6000 6001 return ret; 6002 } 6003 6004 /* 6005 * This is a copy of file_update_time. We need this so we can return error on 6006 * ENOSPC for updating the inode in the case of file write and mmap writes. 6007 */ 6008 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6009 int flags) 6010 { 6011 struct btrfs_root *root = BTRFS_I(inode)->root; 6012 bool dirty = flags & ~S_VERSION; 6013 6014 if (btrfs_root_readonly(root)) 6015 return -EROFS; 6016 6017 if (flags & S_VERSION) 6018 dirty |= inode_maybe_inc_iversion(inode, dirty); 6019 if (flags & S_CTIME) 6020 inode->i_ctime = *now; 6021 if (flags & S_MTIME) 6022 inode->i_mtime = *now; 6023 if (flags & S_ATIME) 6024 inode->i_atime = *now; 6025 return dirty ? btrfs_dirty_inode(inode) : 0; 6026 } 6027 6028 /* 6029 * find the highest existing sequence number in a directory 6030 * and then set the in-memory index_cnt variable to reflect 6031 * free sequence numbers 6032 */ 6033 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6034 { 6035 struct btrfs_root *root = inode->root; 6036 struct btrfs_key key, found_key; 6037 struct btrfs_path *path; 6038 struct extent_buffer *leaf; 6039 int ret; 6040 6041 key.objectid = btrfs_ino(inode); 6042 key.type = BTRFS_DIR_INDEX_KEY; 6043 key.offset = (u64)-1; 6044 6045 path = btrfs_alloc_path(); 6046 if (!path) 6047 return -ENOMEM; 6048 6049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6050 if (ret < 0) 6051 goto out; 6052 /* FIXME: we should be able to handle this */ 6053 if (ret == 0) 6054 goto out; 6055 ret = 0; 6056 6057 /* 6058 * MAGIC NUMBER EXPLANATION: 6059 * since we search a directory based on f_pos we have to start at 2 6060 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6061 * else has to start at 2 6062 */ 6063 if (path->slots[0] == 0) { 6064 inode->index_cnt = 2; 6065 goto out; 6066 } 6067 6068 path->slots[0]--; 6069 6070 leaf = path->nodes[0]; 6071 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6072 6073 if (found_key.objectid != btrfs_ino(inode) || 6074 found_key.type != BTRFS_DIR_INDEX_KEY) { 6075 inode->index_cnt = 2; 6076 goto out; 6077 } 6078 6079 inode->index_cnt = found_key.offset + 1; 6080 out: 6081 btrfs_free_path(path); 6082 return ret; 6083 } 6084 6085 /* 6086 * helper to find a free sequence number in a given directory. This current 6087 * code is very simple, later versions will do smarter things in the btree 6088 */ 6089 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6090 { 6091 int ret = 0; 6092 6093 if (dir->index_cnt == (u64)-1) { 6094 ret = btrfs_inode_delayed_dir_index_count(dir); 6095 if (ret) { 6096 ret = btrfs_set_inode_index_count(dir); 6097 if (ret) 6098 return ret; 6099 } 6100 } 6101 6102 *index = dir->index_cnt; 6103 dir->index_cnt++; 6104 6105 return ret; 6106 } 6107 6108 static int btrfs_insert_inode_locked(struct inode *inode) 6109 { 6110 struct btrfs_iget_args args; 6111 args.location = &BTRFS_I(inode)->location; 6112 args.root = BTRFS_I(inode)->root; 6113 6114 return insert_inode_locked4(inode, 6115 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6116 btrfs_find_actor, &args); 6117 } 6118 6119 /* 6120 * Inherit flags from the parent inode. 6121 * 6122 * Currently only the compression flags and the cow flags are inherited. 6123 */ 6124 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6125 { 6126 unsigned int flags; 6127 6128 if (!dir) 6129 return; 6130 6131 flags = BTRFS_I(dir)->flags; 6132 6133 if (flags & BTRFS_INODE_NOCOMPRESS) { 6134 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6135 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6136 } else if (flags & BTRFS_INODE_COMPRESS) { 6137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6138 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6139 } 6140 6141 if (flags & BTRFS_INODE_NODATACOW) { 6142 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6143 if (S_ISREG(inode->i_mode)) 6144 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6145 } 6146 6147 btrfs_sync_inode_flags_to_i_flags(inode); 6148 } 6149 6150 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6151 struct btrfs_root *root, 6152 struct inode *dir, 6153 const char *name, int name_len, 6154 u64 ref_objectid, u64 objectid, 6155 umode_t mode, u64 *index) 6156 { 6157 struct btrfs_fs_info *fs_info = root->fs_info; 6158 struct inode *inode; 6159 struct btrfs_inode_item *inode_item; 6160 struct btrfs_key *location; 6161 struct btrfs_path *path; 6162 struct btrfs_inode_ref *ref; 6163 struct btrfs_key key[2]; 6164 u32 sizes[2]; 6165 int nitems = name ? 2 : 1; 6166 unsigned long ptr; 6167 int ret; 6168 6169 path = btrfs_alloc_path(); 6170 if (!path) 6171 return ERR_PTR(-ENOMEM); 6172 6173 inode = new_inode(fs_info->sb); 6174 if (!inode) { 6175 btrfs_free_path(path); 6176 return ERR_PTR(-ENOMEM); 6177 } 6178 6179 /* 6180 * O_TMPFILE, set link count to 0, so that after this point, 6181 * we fill in an inode item with the correct link count. 6182 */ 6183 if (!name) 6184 set_nlink(inode, 0); 6185 6186 /* 6187 * we have to initialize this early, so we can reclaim the inode 6188 * number if we fail afterwards in this function. 6189 */ 6190 inode->i_ino = objectid; 6191 6192 if (dir && name) { 6193 trace_btrfs_inode_request(dir); 6194 6195 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6196 if (ret) { 6197 btrfs_free_path(path); 6198 iput(inode); 6199 return ERR_PTR(ret); 6200 } 6201 } else if (dir) { 6202 *index = 0; 6203 } 6204 /* 6205 * index_cnt is ignored for everything but a dir, 6206 * btrfs_set_inode_index_count has an explanation for the magic 6207 * number 6208 */ 6209 BTRFS_I(inode)->index_cnt = 2; 6210 BTRFS_I(inode)->dir_index = *index; 6211 BTRFS_I(inode)->root = root; 6212 BTRFS_I(inode)->generation = trans->transid; 6213 inode->i_generation = BTRFS_I(inode)->generation; 6214 6215 /* 6216 * We could have gotten an inode number from somebody who was fsynced 6217 * and then removed in this same transaction, so let's just set full 6218 * sync since it will be a full sync anyway and this will blow away the 6219 * old info in the log. 6220 */ 6221 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6222 6223 key[0].objectid = objectid; 6224 key[0].type = BTRFS_INODE_ITEM_KEY; 6225 key[0].offset = 0; 6226 6227 sizes[0] = sizeof(struct btrfs_inode_item); 6228 6229 if (name) { 6230 /* 6231 * Start new inodes with an inode_ref. This is slightly more 6232 * efficient for small numbers of hard links since they will 6233 * be packed into one item. Extended refs will kick in if we 6234 * add more hard links than can fit in the ref item. 6235 */ 6236 key[1].objectid = objectid; 6237 key[1].type = BTRFS_INODE_REF_KEY; 6238 key[1].offset = ref_objectid; 6239 6240 sizes[1] = name_len + sizeof(*ref); 6241 } 6242 6243 location = &BTRFS_I(inode)->location; 6244 location->objectid = objectid; 6245 location->offset = 0; 6246 location->type = BTRFS_INODE_ITEM_KEY; 6247 6248 ret = btrfs_insert_inode_locked(inode); 6249 if (ret < 0) { 6250 iput(inode); 6251 goto fail; 6252 } 6253 6254 path->leave_spinning = 1; 6255 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6256 if (ret != 0) 6257 goto fail_unlock; 6258 6259 inode_init_owner(inode, dir, mode); 6260 inode_set_bytes(inode, 0); 6261 6262 inode->i_mtime = current_time(inode); 6263 inode->i_atime = inode->i_mtime; 6264 inode->i_ctime = inode->i_mtime; 6265 BTRFS_I(inode)->i_otime = inode->i_mtime; 6266 6267 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6268 struct btrfs_inode_item); 6269 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6270 sizeof(*inode_item)); 6271 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6272 6273 if (name) { 6274 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6275 struct btrfs_inode_ref); 6276 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6277 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6278 ptr = (unsigned long)(ref + 1); 6279 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6280 } 6281 6282 btrfs_mark_buffer_dirty(path->nodes[0]); 6283 btrfs_free_path(path); 6284 6285 btrfs_inherit_iflags(inode, dir); 6286 6287 if (S_ISREG(mode)) { 6288 if (btrfs_test_opt(fs_info, NODATASUM)) 6289 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6290 if (btrfs_test_opt(fs_info, NODATACOW)) 6291 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6292 BTRFS_INODE_NODATASUM; 6293 } 6294 6295 inode_tree_add(inode); 6296 6297 trace_btrfs_inode_new(inode); 6298 btrfs_set_inode_last_trans(trans, inode); 6299 6300 btrfs_update_root_times(trans, root); 6301 6302 ret = btrfs_inode_inherit_props(trans, inode, dir); 6303 if (ret) 6304 btrfs_err(fs_info, 6305 "error inheriting props for ino %llu (root %llu): %d", 6306 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6307 6308 return inode; 6309 6310 fail_unlock: 6311 discard_new_inode(inode); 6312 fail: 6313 if (dir && name) 6314 BTRFS_I(dir)->index_cnt--; 6315 btrfs_free_path(path); 6316 return ERR_PTR(ret); 6317 } 6318 6319 static inline u8 btrfs_inode_type(struct inode *inode) 6320 { 6321 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6322 } 6323 6324 /* 6325 * utility function to add 'inode' into 'parent_inode' with 6326 * a give name and a given sequence number. 6327 * if 'add_backref' is true, also insert a backref from the 6328 * inode to the parent directory. 6329 */ 6330 int btrfs_add_link(struct btrfs_trans_handle *trans, 6331 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6332 const char *name, int name_len, int add_backref, u64 index) 6333 { 6334 int ret = 0; 6335 struct btrfs_key key; 6336 struct btrfs_root *root = parent_inode->root; 6337 u64 ino = btrfs_ino(inode); 6338 u64 parent_ino = btrfs_ino(parent_inode); 6339 6340 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6341 memcpy(&key, &inode->root->root_key, sizeof(key)); 6342 } else { 6343 key.objectid = ino; 6344 key.type = BTRFS_INODE_ITEM_KEY; 6345 key.offset = 0; 6346 } 6347 6348 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6349 ret = btrfs_add_root_ref(trans, key.objectid, 6350 root->root_key.objectid, parent_ino, 6351 index, name, name_len); 6352 } else if (add_backref) { 6353 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6354 parent_ino, index); 6355 } 6356 6357 /* Nothing to clean up yet */ 6358 if (ret) 6359 return ret; 6360 6361 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6362 btrfs_inode_type(&inode->vfs_inode), index); 6363 if (ret == -EEXIST || ret == -EOVERFLOW) 6364 goto fail_dir_item; 6365 else if (ret) { 6366 btrfs_abort_transaction(trans, ret); 6367 return ret; 6368 } 6369 6370 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6371 name_len * 2); 6372 inode_inc_iversion(&parent_inode->vfs_inode); 6373 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6374 current_time(&parent_inode->vfs_inode); 6375 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6376 if (ret) 6377 btrfs_abort_transaction(trans, ret); 6378 return ret; 6379 6380 fail_dir_item: 6381 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6382 u64 local_index; 6383 int err; 6384 err = btrfs_del_root_ref(trans, key.objectid, 6385 root->root_key.objectid, parent_ino, 6386 &local_index, name, name_len); 6387 6388 } else if (add_backref) { 6389 u64 local_index; 6390 int err; 6391 6392 err = btrfs_del_inode_ref(trans, root, name, name_len, 6393 ino, parent_ino, &local_index); 6394 } 6395 return ret; 6396 } 6397 6398 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6399 struct btrfs_inode *dir, struct dentry *dentry, 6400 struct btrfs_inode *inode, int backref, u64 index) 6401 { 6402 int err = btrfs_add_link(trans, dir, inode, 6403 dentry->d_name.name, dentry->d_name.len, 6404 backref, index); 6405 if (err > 0) 6406 err = -EEXIST; 6407 return err; 6408 } 6409 6410 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6411 umode_t mode, dev_t rdev) 6412 { 6413 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6414 struct btrfs_trans_handle *trans; 6415 struct btrfs_root *root = BTRFS_I(dir)->root; 6416 struct inode *inode = NULL; 6417 int err; 6418 u64 objectid; 6419 u64 index = 0; 6420 6421 /* 6422 * 2 for inode item and ref 6423 * 2 for dir items 6424 * 1 for xattr if selinux is on 6425 */ 6426 trans = btrfs_start_transaction(root, 5); 6427 if (IS_ERR(trans)) 6428 return PTR_ERR(trans); 6429 6430 err = btrfs_find_free_ino(root, &objectid); 6431 if (err) 6432 goto out_unlock; 6433 6434 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6435 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6436 mode, &index); 6437 if (IS_ERR(inode)) { 6438 err = PTR_ERR(inode); 6439 inode = NULL; 6440 goto out_unlock; 6441 } 6442 6443 /* 6444 * If the active LSM wants to access the inode during 6445 * d_instantiate it needs these. Smack checks to see 6446 * if the filesystem supports xattrs by looking at the 6447 * ops vector. 6448 */ 6449 inode->i_op = &btrfs_special_inode_operations; 6450 init_special_inode(inode, inode->i_mode, rdev); 6451 6452 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6453 if (err) 6454 goto out_unlock; 6455 6456 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6457 0, index); 6458 if (err) 6459 goto out_unlock; 6460 6461 btrfs_update_inode(trans, root, inode); 6462 d_instantiate_new(dentry, inode); 6463 6464 out_unlock: 6465 btrfs_end_transaction(trans); 6466 btrfs_btree_balance_dirty(fs_info); 6467 if (err && inode) { 6468 inode_dec_link_count(inode); 6469 discard_new_inode(inode); 6470 } 6471 return err; 6472 } 6473 6474 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6475 umode_t mode, bool excl) 6476 { 6477 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6478 struct btrfs_trans_handle *trans; 6479 struct btrfs_root *root = BTRFS_I(dir)->root; 6480 struct inode *inode = NULL; 6481 int err; 6482 u64 objectid; 6483 u64 index = 0; 6484 6485 /* 6486 * 2 for inode item and ref 6487 * 2 for dir items 6488 * 1 for xattr if selinux is on 6489 */ 6490 trans = btrfs_start_transaction(root, 5); 6491 if (IS_ERR(trans)) 6492 return PTR_ERR(trans); 6493 6494 err = btrfs_find_free_ino(root, &objectid); 6495 if (err) 6496 goto out_unlock; 6497 6498 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6499 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6500 mode, &index); 6501 if (IS_ERR(inode)) { 6502 err = PTR_ERR(inode); 6503 inode = NULL; 6504 goto out_unlock; 6505 } 6506 /* 6507 * If the active LSM wants to access the inode during 6508 * d_instantiate it needs these. Smack checks to see 6509 * if the filesystem supports xattrs by looking at the 6510 * ops vector. 6511 */ 6512 inode->i_fop = &btrfs_file_operations; 6513 inode->i_op = &btrfs_file_inode_operations; 6514 inode->i_mapping->a_ops = &btrfs_aops; 6515 6516 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6517 if (err) 6518 goto out_unlock; 6519 6520 err = btrfs_update_inode(trans, root, inode); 6521 if (err) 6522 goto out_unlock; 6523 6524 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6525 0, index); 6526 if (err) 6527 goto out_unlock; 6528 6529 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6530 d_instantiate_new(dentry, inode); 6531 6532 out_unlock: 6533 btrfs_end_transaction(trans); 6534 if (err && inode) { 6535 inode_dec_link_count(inode); 6536 discard_new_inode(inode); 6537 } 6538 btrfs_btree_balance_dirty(fs_info); 6539 return err; 6540 } 6541 6542 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6543 struct dentry *dentry) 6544 { 6545 struct btrfs_trans_handle *trans = NULL; 6546 struct btrfs_root *root = BTRFS_I(dir)->root; 6547 struct inode *inode = d_inode(old_dentry); 6548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6549 u64 index; 6550 int err; 6551 int drop_inode = 0; 6552 6553 /* do not allow sys_link's with other subvols of the same device */ 6554 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6555 return -EXDEV; 6556 6557 if (inode->i_nlink >= BTRFS_LINK_MAX) 6558 return -EMLINK; 6559 6560 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6561 if (err) 6562 goto fail; 6563 6564 /* 6565 * 2 items for inode and inode ref 6566 * 2 items for dir items 6567 * 1 item for parent inode 6568 * 1 item for orphan item deletion if O_TMPFILE 6569 */ 6570 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6571 if (IS_ERR(trans)) { 6572 err = PTR_ERR(trans); 6573 trans = NULL; 6574 goto fail; 6575 } 6576 6577 /* There are several dir indexes for this inode, clear the cache. */ 6578 BTRFS_I(inode)->dir_index = 0ULL; 6579 inc_nlink(inode); 6580 inode_inc_iversion(inode); 6581 inode->i_ctime = current_time(inode); 6582 ihold(inode); 6583 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6584 6585 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6586 1, index); 6587 6588 if (err) { 6589 drop_inode = 1; 6590 } else { 6591 struct dentry *parent = dentry->d_parent; 6592 int ret; 6593 6594 err = btrfs_update_inode(trans, root, inode); 6595 if (err) 6596 goto fail; 6597 if (inode->i_nlink == 1) { 6598 /* 6599 * If new hard link count is 1, it's a file created 6600 * with open(2) O_TMPFILE flag. 6601 */ 6602 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6603 if (err) 6604 goto fail; 6605 } 6606 d_instantiate(dentry, inode); 6607 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6608 true, NULL); 6609 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6610 err = btrfs_commit_transaction(trans); 6611 trans = NULL; 6612 } 6613 } 6614 6615 fail: 6616 if (trans) 6617 btrfs_end_transaction(trans); 6618 if (drop_inode) { 6619 inode_dec_link_count(inode); 6620 iput(inode); 6621 } 6622 btrfs_btree_balance_dirty(fs_info); 6623 return err; 6624 } 6625 6626 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6627 { 6628 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6629 struct inode *inode = NULL; 6630 struct btrfs_trans_handle *trans; 6631 struct btrfs_root *root = BTRFS_I(dir)->root; 6632 int err = 0; 6633 int drop_on_err = 0; 6634 u64 objectid = 0; 6635 u64 index = 0; 6636 6637 /* 6638 * 2 items for inode and ref 6639 * 2 items for dir items 6640 * 1 for xattr if selinux is on 6641 */ 6642 trans = btrfs_start_transaction(root, 5); 6643 if (IS_ERR(trans)) 6644 return PTR_ERR(trans); 6645 6646 err = btrfs_find_free_ino(root, &objectid); 6647 if (err) 6648 goto out_fail; 6649 6650 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6651 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6652 S_IFDIR | mode, &index); 6653 if (IS_ERR(inode)) { 6654 err = PTR_ERR(inode); 6655 inode = NULL; 6656 goto out_fail; 6657 } 6658 6659 drop_on_err = 1; 6660 /* these must be set before we unlock the inode */ 6661 inode->i_op = &btrfs_dir_inode_operations; 6662 inode->i_fop = &btrfs_dir_file_operations; 6663 6664 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6665 if (err) 6666 goto out_fail; 6667 6668 btrfs_i_size_write(BTRFS_I(inode), 0); 6669 err = btrfs_update_inode(trans, root, inode); 6670 if (err) 6671 goto out_fail; 6672 6673 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6674 dentry->d_name.name, 6675 dentry->d_name.len, 0, index); 6676 if (err) 6677 goto out_fail; 6678 6679 d_instantiate_new(dentry, inode); 6680 drop_on_err = 0; 6681 6682 out_fail: 6683 btrfs_end_transaction(trans); 6684 if (err && inode) { 6685 inode_dec_link_count(inode); 6686 discard_new_inode(inode); 6687 } 6688 btrfs_btree_balance_dirty(fs_info); 6689 return err; 6690 } 6691 6692 static noinline int uncompress_inline(struct btrfs_path *path, 6693 struct page *page, 6694 size_t pg_offset, u64 extent_offset, 6695 struct btrfs_file_extent_item *item) 6696 { 6697 int ret; 6698 struct extent_buffer *leaf = path->nodes[0]; 6699 char *tmp; 6700 size_t max_size; 6701 unsigned long inline_size; 6702 unsigned long ptr; 6703 int compress_type; 6704 6705 WARN_ON(pg_offset != 0); 6706 compress_type = btrfs_file_extent_compression(leaf, item); 6707 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6708 inline_size = btrfs_file_extent_inline_item_len(leaf, 6709 btrfs_item_nr(path->slots[0])); 6710 tmp = kmalloc(inline_size, GFP_NOFS); 6711 if (!tmp) 6712 return -ENOMEM; 6713 ptr = btrfs_file_extent_inline_start(item); 6714 6715 read_extent_buffer(leaf, tmp, ptr, inline_size); 6716 6717 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6718 ret = btrfs_decompress(compress_type, tmp, page, 6719 extent_offset, inline_size, max_size); 6720 6721 /* 6722 * decompression code contains a memset to fill in any space between the end 6723 * of the uncompressed data and the end of max_size in case the decompressed 6724 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6725 * the end of an inline extent and the beginning of the next block, so we 6726 * cover that region here. 6727 */ 6728 6729 if (max_size + pg_offset < PAGE_SIZE) { 6730 char *map = kmap(page); 6731 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6732 kunmap(page); 6733 } 6734 kfree(tmp); 6735 return ret; 6736 } 6737 6738 /* 6739 * a bit scary, this does extent mapping from logical file offset to the disk. 6740 * the ugly parts come from merging extents from the disk with the in-ram 6741 * representation. This gets more complex because of the data=ordered code, 6742 * where the in-ram extents might be locked pending data=ordered completion. 6743 * 6744 * This also copies inline extents directly into the page. 6745 */ 6746 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6747 struct page *page, 6748 size_t pg_offset, u64 start, u64 len, 6749 int create) 6750 { 6751 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6752 int ret; 6753 int err = 0; 6754 u64 extent_start = 0; 6755 u64 extent_end = 0; 6756 u64 objectid = btrfs_ino(inode); 6757 u32 found_type; 6758 struct btrfs_path *path = NULL; 6759 struct btrfs_root *root = inode->root; 6760 struct btrfs_file_extent_item *item; 6761 struct extent_buffer *leaf; 6762 struct btrfs_key found_key; 6763 struct extent_map *em = NULL; 6764 struct extent_map_tree *em_tree = &inode->extent_tree; 6765 struct extent_io_tree *io_tree = &inode->io_tree; 6766 const bool new_inline = !page || create; 6767 6768 read_lock(&em_tree->lock); 6769 em = lookup_extent_mapping(em_tree, start, len); 6770 if (em) 6771 em->bdev = fs_info->fs_devices->latest_bdev; 6772 read_unlock(&em_tree->lock); 6773 6774 if (em) { 6775 if (em->start > start || em->start + em->len <= start) 6776 free_extent_map(em); 6777 else if (em->block_start == EXTENT_MAP_INLINE && page) 6778 free_extent_map(em); 6779 else 6780 goto out; 6781 } 6782 em = alloc_extent_map(); 6783 if (!em) { 6784 err = -ENOMEM; 6785 goto out; 6786 } 6787 em->bdev = fs_info->fs_devices->latest_bdev; 6788 em->start = EXTENT_MAP_HOLE; 6789 em->orig_start = EXTENT_MAP_HOLE; 6790 em->len = (u64)-1; 6791 em->block_len = (u64)-1; 6792 6793 path = btrfs_alloc_path(); 6794 if (!path) { 6795 err = -ENOMEM; 6796 goto out; 6797 } 6798 6799 /* Chances are we'll be called again, so go ahead and do readahead */ 6800 path->reada = READA_FORWARD; 6801 6802 /* 6803 * Unless we're going to uncompress the inline extent, no sleep would 6804 * happen. 6805 */ 6806 path->leave_spinning = 1; 6807 6808 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6809 if (ret < 0) { 6810 err = ret; 6811 goto out; 6812 } 6813 6814 if (ret != 0) { 6815 if (path->slots[0] == 0) 6816 goto not_found; 6817 path->slots[0]--; 6818 } 6819 6820 leaf = path->nodes[0]; 6821 item = btrfs_item_ptr(leaf, path->slots[0], 6822 struct btrfs_file_extent_item); 6823 /* are we inside the extent that was found? */ 6824 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6825 found_type = found_key.type; 6826 if (found_key.objectid != objectid || 6827 found_type != BTRFS_EXTENT_DATA_KEY) { 6828 /* 6829 * If we backup past the first extent we want to move forward 6830 * and see if there is an extent in front of us, otherwise we'll 6831 * say there is a hole for our whole search range which can 6832 * cause problems. 6833 */ 6834 extent_end = start; 6835 goto next; 6836 } 6837 6838 found_type = btrfs_file_extent_type(leaf, item); 6839 extent_start = found_key.offset; 6840 if (found_type == BTRFS_FILE_EXTENT_REG || 6841 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6842 extent_end = extent_start + 6843 btrfs_file_extent_num_bytes(leaf, item); 6844 6845 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6846 extent_start); 6847 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6848 size_t size; 6849 6850 size = btrfs_file_extent_ram_bytes(leaf, item); 6851 extent_end = ALIGN(extent_start + size, 6852 fs_info->sectorsize); 6853 6854 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6855 path->slots[0], 6856 extent_start); 6857 } 6858 next: 6859 if (start >= extent_end) { 6860 path->slots[0]++; 6861 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6862 ret = btrfs_next_leaf(root, path); 6863 if (ret < 0) { 6864 err = ret; 6865 goto out; 6866 } 6867 if (ret > 0) 6868 goto not_found; 6869 leaf = path->nodes[0]; 6870 } 6871 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6872 if (found_key.objectid != objectid || 6873 found_key.type != BTRFS_EXTENT_DATA_KEY) 6874 goto not_found; 6875 if (start + len <= found_key.offset) 6876 goto not_found; 6877 if (start > found_key.offset) 6878 goto next; 6879 em->start = start; 6880 em->orig_start = start; 6881 em->len = found_key.offset - start; 6882 goto not_found_em; 6883 } 6884 6885 btrfs_extent_item_to_extent_map(inode, path, item, 6886 new_inline, em); 6887 6888 if (found_type == BTRFS_FILE_EXTENT_REG || 6889 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6890 goto insert; 6891 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6892 unsigned long ptr; 6893 char *map; 6894 size_t size; 6895 size_t extent_offset; 6896 size_t copy_size; 6897 6898 if (new_inline) 6899 goto out; 6900 6901 size = btrfs_file_extent_ram_bytes(leaf, item); 6902 extent_offset = page_offset(page) + pg_offset - extent_start; 6903 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6904 size - extent_offset); 6905 em->start = extent_start + extent_offset; 6906 em->len = ALIGN(copy_size, fs_info->sectorsize); 6907 em->orig_block_len = em->len; 6908 em->orig_start = em->start; 6909 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6910 6911 btrfs_set_path_blocking(path); 6912 if (!PageUptodate(page)) { 6913 if (btrfs_file_extent_compression(leaf, item) != 6914 BTRFS_COMPRESS_NONE) { 6915 ret = uncompress_inline(path, page, pg_offset, 6916 extent_offset, item); 6917 if (ret) { 6918 err = ret; 6919 goto out; 6920 } 6921 } else { 6922 map = kmap(page); 6923 read_extent_buffer(leaf, map + pg_offset, ptr, 6924 copy_size); 6925 if (pg_offset + copy_size < PAGE_SIZE) { 6926 memset(map + pg_offset + copy_size, 0, 6927 PAGE_SIZE - pg_offset - 6928 copy_size); 6929 } 6930 kunmap(page); 6931 } 6932 flush_dcache_page(page); 6933 } 6934 set_extent_uptodate(io_tree, em->start, 6935 extent_map_end(em) - 1, NULL, GFP_NOFS); 6936 goto insert; 6937 } 6938 not_found: 6939 em->start = start; 6940 em->orig_start = start; 6941 em->len = len; 6942 not_found_em: 6943 em->block_start = EXTENT_MAP_HOLE; 6944 insert: 6945 btrfs_release_path(path); 6946 if (em->start > start || extent_map_end(em) <= start) { 6947 btrfs_err(fs_info, 6948 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6949 em->start, em->len, start, len); 6950 err = -EIO; 6951 goto out; 6952 } 6953 6954 err = 0; 6955 write_lock(&em_tree->lock); 6956 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6957 write_unlock(&em_tree->lock); 6958 out: 6959 btrfs_free_path(path); 6960 6961 trace_btrfs_get_extent(root, inode, em); 6962 6963 if (err) { 6964 free_extent_map(em); 6965 return ERR_PTR(err); 6966 } 6967 BUG_ON(!em); /* Error is always set */ 6968 return em; 6969 } 6970 6971 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6972 struct page *page, 6973 size_t pg_offset, u64 start, u64 len, 6974 int create) 6975 { 6976 struct extent_map *em; 6977 struct extent_map *hole_em = NULL; 6978 u64 range_start = start; 6979 u64 end; 6980 u64 found; 6981 u64 found_end; 6982 int err = 0; 6983 6984 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 6985 if (IS_ERR(em)) 6986 return em; 6987 /* 6988 * If our em maps to: 6989 * - a hole or 6990 * - a pre-alloc extent, 6991 * there might actually be delalloc bytes behind it. 6992 */ 6993 if (em->block_start != EXTENT_MAP_HOLE && 6994 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6995 return em; 6996 else 6997 hole_em = em; 6998 6999 /* check to see if we've wrapped (len == -1 or similar) */ 7000 end = start + len; 7001 if (end < start) 7002 end = (u64)-1; 7003 else 7004 end -= 1; 7005 7006 em = NULL; 7007 7008 /* ok, we didn't find anything, lets look for delalloc */ 7009 found = count_range_bits(&inode->io_tree, &range_start, 7010 end, len, EXTENT_DELALLOC, 1); 7011 found_end = range_start + found; 7012 if (found_end < range_start) 7013 found_end = (u64)-1; 7014 7015 /* 7016 * we didn't find anything useful, return 7017 * the original results from get_extent() 7018 */ 7019 if (range_start > end || found_end <= start) { 7020 em = hole_em; 7021 hole_em = NULL; 7022 goto out; 7023 } 7024 7025 /* adjust the range_start to make sure it doesn't 7026 * go backwards from the start they passed in 7027 */ 7028 range_start = max(start, range_start); 7029 found = found_end - range_start; 7030 7031 if (found > 0) { 7032 u64 hole_start = start; 7033 u64 hole_len = len; 7034 7035 em = alloc_extent_map(); 7036 if (!em) { 7037 err = -ENOMEM; 7038 goto out; 7039 } 7040 /* 7041 * when btrfs_get_extent can't find anything it 7042 * returns one huge hole 7043 * 7044 * make sure what it found really fits our range, and 7045 * adjust to make sure it is based on the start from 7046 * the caller 7047 */ 7048 if (hole_em) { 7049 u64 calc_end = extent_map_end(hole_em); 7050 7051 if (calc_end <= start || (hole_em->start > end)) { 7052 free_extent_map(hole_em); 7053 hole_em = NULL; 7054 } else { 7055 hole_start = max(hole_em->start, start); 7056 hole_len = calc_end - hole_start; 7057 } 7058 } 7059 em->bdev = NULL; 7060 if (hole_em && range_start > hole_start) { 7061 /* our hole starts before our delalloc, so we 7062 * have to return just the parts of the hole 7063 * that go until the delalloc starts 7064 */ 7065 em->len = min(hole_len, 7066 range_start - hole_start); 7067 em->start = hole_start; 7068 em->orig_start = hole_start; 7069 /* 7070 * don't adjust block start at all, 7071 * it is fixed at EXTENT_MAP_HOLE 7072 */ 7073 em->block_start = hole_em->block_start; 7074 em->block_len = hole_len; 7075 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7076 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7077 } else { 7078 em->start = range_start; 7079 em->len = found; 7080 em->orig_start = range_start; 7081 em->block_start = EXTENT_MAP_DELALLOC; 7082 em->block_len = found; 7083 } 7084 } else { 7085 return hole_em; 7086 } 7087 out: 7088 7089 free_extent_map(hole_em); 7090 if (err) { 7091 free_extent_map(em); 7092 return ERR_PTR(err); 7093 } 7094 return em; 7095 } 7096 7097 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7098 const u64 start, 7099 const u64 len, 7100 const u64 orig_start, 7101 const u64 block_start, 7102 const u64 block_len, 7103 const u64 orig_block_len, 7104 const u64 ram_bytes, 7105 const int type) 7106 { 7107 struct extent_map *em = NULL; 7108 int ret; 7109 7110 if (type != BTRFS_ORDERED_NOCOW) { 7111 em = create_io_em(inode, start, len, orig_start, 7112 block_start, block_len, orig_block_len, 7113 ram_bytes, 7114 BTRFS_COMPRESS_NONE, /* compress_type */ 7115 type); 7116 if (IS_ERR(em)) 7117 goto out; 7118 } 7119 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7120 len, block_len, type); 7121 if (ret) { 7122 if (em) { 7123 free_extent_map(em); 7124 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7125 start + len - 1, 0); 7126 } 7127 em = ERR_PTR(ret); 7128 } 7129 out: 7130 7131 return em; 7132 } 7133 7134 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7135 u64 start, u64 len) 7136 { 7137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7138 struct btrfs_root *root = BTRFS_I(inode)->root; 7139 struct extent_map *em; 7140 struct btrfs_key ins; 7141 u64 alloc_hint; 7142 int ret; 7143 7144 alloc_hint = get_extent_allocation_hint(inode, start, len); 7145 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7146 0, alloc_hint, &ins, 1, 1); 7147 if (ret) 7148 return ERR_PTR(ret); 7149 7150 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7151 ins.objectid, ins.offset, ins.offset, 7152 ins.offset, BTRFS_ORDERED_REGULAR); 7153 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7154 if (IS_ERR(em)) 7155 btrfs_free_reserved_extent(fs_info, ins.objectid, 7156 ins.offset, 1); 7157 7158 return em; 7159 } 7160 7161 /* 7162 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7163 * block must be cow'd 7164 */ 7165 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7166 u64 *orig_start, u64 *orig_block_len, 7167 u64 *ram_bytes) 7168 { 7169 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7170 struct btrfs_path *path; 7171 int ret; 7172 struct extent_buffer *leaf; 7173 struct btrfs_root *root = BTRFS_I(inode)->root; 7174 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7175 struct btrfs_file_extent_item *fi; 7176 struct btrfs_key key; 7177 u64 disk_bytenr; 7178 u64 backref_offset; 7179 u64 extent_end; 7180 u64 num_bytes; 7181 int slot; 7182 int found_type; 7183 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7184 7185 path = btrfs_alloc_path(); 7186 if (!path) 7187 return -ENOMEM; 7188 7189 ret = btrfs_lookup_file_extent(NULL, root, path, 7190 btrfs_ino(BTRFS_I(inode)), offset, 0); 7191 if (ret < 0) 7192 goto out; 7193 7194 slot = path->slots[0]; 7195 if (ret == 1) { 7196 if (slot == 0) { 7197 /* can't find the item, must cow */ 7198 ret = 0; 7199 goto out; 7200 } 7201 slot--; 7202 } 7203 ret = 0; 7204 leaf = path->nodes[0]; 7205 btrfs_item_key_to_cpu(leaf, &key, slot); 7206 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7207 key.type != BTRFS_EXTENT_DATA_KEY) { 7208 /* not our file or wrong item type, must cow */ 7209 goto out; 7210 } 7211 7212 if (key.offset > offset) { 7213 /* Wrong offset, must cow */ 7214 goto out; 7215 } 7216 7217 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7218 found_type = btrfs_file_extent_type(leaf, fi); 7219 if (found_type != BTRFS_FILE_EXTENT_REG && 7220 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7221 /* not a regular extent, must cow */ 7222 goto out; 7223 } 7224 7225 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7226 goto out; 7227 7228 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7229 if (extent_end <= offset) 7230 goto out; 7231 7232 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7233 if (disk_bytenr == 0) 7234 goto out; 7235 7236 if (btrfs_file_extent_compression(leaf, fi) || 7237 btrfs_file_extent_encryption(leaf, fi) || 7238 btrfs_file_extent_other_encoding(leaf, fi)) 7239 goto out; 7240 7241 /* 7242 * Do the same check as in btrfs_cross_ref_exist but without the 7243 * unnecessary search. 7244 */ 7245 if (btrfs_file_extent_generation(leaf, fi) <= 7246 btrfs_root_last_snapshot(&root->root_item)) 7247 goto out; 7248 7249 backref_offset = btrfs_file_extent_offset(leaf, fi); 7250 7251 if (orig_start) { 7252 *orig_start = key.offset - backref_offset; 7253 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7254 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7255 } 7256 7257 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7258 goto out; 7259 7260 num_bytes = min(offset + *len, extent_end) - offset; 7261 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7262 u64 range_end; 7263 7264 range_end = round_up(offset + num_bytes, 7265 root->fs_info->sectorsize) - 1; 7266 ret = test_range_bit(io_tree, offset, range_end, 7267 EXTENT_DELALLOC, 0, NULL); 7268 if (ret) { 7269 ret = -EAGAIN; 7270 goto out; 7271 } 7272 } 7273 7274 btrfs_release_path(path); 7275 7276 /* 7277 * look for other files referencing this extent, if we 7278 * find any we must cow 7279 */ 7280 7281 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7282 key.offset - backref_offset, disk_bytenr); 7283 if (ret) { 7284 ret = 0; 7285 goto out; 7286 } 7287 7288 /* 7289 * adjust disk_bytenr and num_bytes to cover just the bytes 7290 * in this extent we are about to write. If there 7291 * are any csums in that range we have to cow in order 7292 * to keep the csums correct 7293 */ 7294 disk_bytenr += backref_offset; 7295 disk_bytenr += offset - key.offset; 7296 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7297 goto out; 7298 /* 7299 * all of the above have passed, it is safe to overwrite this extent 7300 * without cow 7301 */ 7302 *len = num_bytes; 7303 ret = 1; 7304 out: 7305 btrfs_free_path(path); 7306 return ret; 7307 } 7308 7309 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7310 struct extent_state **cached_state, int writing) 7311 { 7312 struct btrfs_ordered_extent *ordered; 7313 int ret = 0; 7314 7315 while (1) { 7316 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7317 cached_state); 7318 /* 7319 * We're concerned with the entire range that we're going to be 7320 * doing DIO to, so we need to make sure there's no ordered 7321 * extents in this range. 7322 */ 7323 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7324 lockend - lockstart + 1); 7325 7326 /* 7327 * We need to make sure there are no buffered pages in this 7328 * range either, we could have raced between the invalidate in 7329 * generic_file_direct_write and locking the extent. The 7330 * invalidate needs to happen so that reads after a write do not 7331 * get stale data. 7332 */ 7333 if (!ordered && 7334 (!writing || !filemap_range_has_page(inode->i_mapping, 7335 lockstart, lockend))) 7336 break; 7337 7338 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7339 cached_state); 7340 7341 if (ordered) { 7342 /* 7343 * If we are doing a DIO read and the ordered extent we 7344 * found is for a buffered write, we can not wait for it 7345 * to complete and retry, because if we do so we can 7346 * deadlock with concurrent buffered writes on page 7347 * locks. This happens only if our DIO read covers more 7348 * than one extent map, if at this point has already 7349 * created an ordered extent for a previous extent map 7350 * and locked its range in the inode's io tree, and a 7351 * concurrent write against that previous extent map's 7352 * range and this range started (we unlock the ranges 7353 * in the io tree only when the bios complete and 7354 * buffered writes always lock pages before attempting 7355 * to lock range in the io tree). 7356 */ 7357 if (writing || 7358 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7359 btrfs_start_ordered_extent(inode, ordered, 1); 7360 else 7361 ret = -ENOTBLK; 7362 btrfs_put_ordered_extent(ordered); 7363 } else { 7364 /* 7365 * We could trigger writeback for this range (and wait 7366 * for it to complete) and then invalidate the pages for 7367 * this range (through invalidate_inode_pages2_range()), 7368 * but that can lead us to a deadlock with a concurrent 7369 * call to readpages() (a buffered read or a defrag call 7370 * triggered a readahead) on a page lock due to an 7371 * ordered dio extent we created before but did not have 7372 * yet a corresponding bio submitted (whence it can not 7373 * complete), which makes readpages() wait for that 7374 * ordered extent to complete while holding a lock on 7375 * that page. 7376 */ 7377 ret = -ENOTBLK; 7378 } 7379 7380 if (ret) 7381 break; 7382 7383 cond_resched(); 7384 } 7385 7386 return ret; 7387 } 7388 7389 /* The callers of this must take lock_extent() */ 7390 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7391 u64 orig_start, u64 block_start, 7392 u64 block_len, u64 orig_block_len, 7393 u64 ram_bytes, int compress_type, 7394 int type) 7395 { 7396 struct extent_map_tree *em_tree; 7397 struct extent_map *em; 7398 struct btrfs_root *root = BTRFS_I(inode)->root; 7399 int ret; 7400 7401 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7402 type == BTRFS_ORDERED_COMPRESSED || 7403 type == BTRFS_ORDERED_NOCOW || 7404 type == BTRFS_ORDERED_REGULAR); 7405 7406 em_tree = &BTRFS_I(inode)->extent_tree; 7407 em = alloc_extent_map(); 7408 if (!em) 7409 return ERR_PTR(-ENOMEM); 7410 7411 em->start = start; 7412 em->orig_start = orig_start; 7413 em->len = len; 7414 em->block_len = block_len; 7415 em->block_start = block_start; 7416 em->bdev = root->fs_info->fs_devices->latest_bdev; 7417 em->orig_block_len = orig_block_len; 7418 em->ram_bytes = ram_bytes; 7419 em->generation = -1; 7420 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7421 if (type == BTRFS_ORDERED_PREALLOC) { 7422 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7423 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7424 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7425 em->compress_type = compress_type; 7426 } 7427 7428 do { 7429 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7430 em->start + em->len - 1, 0); 7431 write_lock(&em_tree->lock); 7432 ret = add_extent_mapping(em_tree, em, 1); 7433 write_unlock(&em_tree->lock); 7434 /* 7435 * The caller has taken lock_extent(), who could race with us 7436 * to add em? 7437 */ 7438 } while (ret == -EEXIST); 7439 7440 if (ret) { 7441 free_extent_map(em); 7442 return ERR_PTR(ret); 7443 } 7444 7445 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7446 return em; 7447 } 7448 7449 7450 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7451 struct buffer_head *bh_result, 7452 struct inode *inode, 7453 u64 start, u64 len) 7454 { 7455 if (em->block_start == EXTENT_MAP_HOLE || 7456 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7457 return -ENOENT; 7458 7459 len = min(len, em->len - (start - em->start)); 7460 7461 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7462 inode->i_blkbits; 7463 bh_result->b_size = len; 7464 bh_result->b_bdev = em->bdev; 7465 set_buffer_mapped(bh_result); 7466 7467 return 0; 7468 } 7469 7470 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7471 struct buffer_head *bh_result, 7472 struct inode *inode, 7473 struct btrfs_dio_data *dio_data, 7474 u64 start, u64 len) 7475 { 7476 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7477 struct extent_map *em = *map; 7478 int ret = 0; 7479 7480 /* 7481 * We don't allocate a new extent in the following cases 7482 * 7483 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7484 * existing extent. 7485 * 2) The extent is marked as PREALLOC. We're good to go here and can 7486 * just use the extent. 7487 * 7488 */ 7489 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7490 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7491 em->block_start != EXTENT_MAP_HOLE)) { 7492 int type; 7493 u64 block_start, orig_start, orig_block_len, ram_bytes; 7494 7495 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7496 type = BTRFS_ORDERED_PREALLOC; 7497 else 7498 type = BTRFS_ORDERED_NOCOW; 7499 len = min(len, em->len - (start - em->start)); 7500 block_start = em->block_start + (start - em->start); 7501 7502 if (can_nocow_extent(inode, start, &len, &orig_start, 7503 &orig_block_len, &ram_bytes) == 1 && 7504 btrfs_inc_nocow_writers(fs_info, block_start)) { 7505 struct extent_map *em2; 7506 7507 em2 = btrfs_create_dio_extent(inode, start, len, 7508 orig_start, block_start, 7509 len, orig_block_len, 7510 ram_bytes, type); 7511 btrfs_dec_nocow_writers(fs_info, block_start); 7512 if (type == BTRFS_ORDERED_PREALLOC) { 7513 free_extent_map(em); 7514 *map = em = em2; 7515 } 7516 7517 if (em2 && IS_ERR(em2)) { 7518 ret = PTR_ERR(em2); 7519 goto out; 7520 } 7521 /* 7522 * For inode marked NODATACOW or extent marked PREALLOC, 7523 * use the existing or preallocated extent, so does not 7524 * need to adjust btrfs_space_info's bytes_may_use. 7525 */ 7526 btrfs_free_reserved_data_space_noquota(inode, start, 7527 len); 7528 goto skip_cow; 7529 } 7530 } 7531 7532 /* this will cow the extent */ 7533 len = bh_result->b_size; 7534 free_extent_map(em); 7535 *map = em = btrfs_new_extent_direct(inode, start, len); 7536 if (IS_ERR(em)) { 7537 ret = PTR_ERR(em); 7538 goto out; 7539 } 7540 7541 len = min(len, em->len - (start - em->start)); 7542 7543 skip_cow: 7544 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7545 inode->i_blkbits; 7546 bh_result->b_size = len; 7547 bh_result->b_bdev = em->bdev; 7548 set_buffer_mapped(bh_result); 7549 7550 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7551 set_buffer_new(bh_result); 7552 7553 /* 7554 * Need to update the i_size under the extent lock so buffered 7555 * readers will get the updated i_size when we unlock. 7556 */ 7557 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7558 i_size_write(inode, start + len); 7559 7560 WARN_ON(dio_data->reserve < len); 7561 dio_data->reserve -= len; 7562 dio_data->unsubmitted_oe_range_end = start + len; 7563 current->journal_info = dio_data; 7564 out: 7565 return ret; 7566 } 7567 7568 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7569 struct buffer_head *bh_result, int create) 7570 { 7571 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7572 struct extent_map *em; 7573 struct extent_state *cached_state = NULL; 7574 struct btrfs_dio_data *dio_data = NULL; 7575 u64 start = iblock << inode->i_blkbits; 7576 u64 lockstart, lockend; 7577 u64 len = bh_result->b_size; 7578 int unlock_bits = EXTENT_LOCKED; 7579 int ret = 0; 7580 7581 if (create) 7582 unlock_bits |= EXTENT_DIRTY; 7583 else 7584 len = min_t(u64, len, fs_info->sectorsize); 7585 7586 lockstart = start; 7587 lockend = start + len - 1; 7588 7589 if (current->journal_info) { 7590 /* 7591 * Need to pull our outstanding extents and set journal_info to NULL so 7592 * that anything that needs to check if there's a transaction doesn't get 7593 * confused. 7594 */ 7595 dio_data = current->journal_info; 7596 current->journal_info = NULL; 7597 } 7598 7599 /* 7600 * If this errors out it's because we couldn't invalidate pagecache for 7601 * this range and we need to fallback to buffered. 7602 */ 7603 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7604 create)) { 7605 ret = -ENOTBLK; 7606 goto err; 7607 } 7608 7609 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7610 if (IS_ERR(em)) { 7611 ret = PTR_ERR(em); 7612 goto unlock_err; 7613 } 7614 7615 /* 7616 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7617 * io. INLINE is special, and we could probably kludge it in here, but 7618 * it's still buffered so for safety lets just fall back to the generic 7619 * buffered path. 7620 * 7621 * For COMPRESSED we _have_ to read the entire extent in so we can 7622 * decompress it, so there will be buffering required no matter what we 7623 * do, so go ahead and fallback to buffered. 7624 * 7625 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7626 * to buffered IO. Don't blame me, this is the price we pay for using 7627 * the generic code. 7628 */ 7629 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7630 em->block_start == EXTENT_MAP_INLINE) { 7631 free_extent_map(em); 7632 ret = -ENOTBLK; 7633 goto unlock_err; 7634 } 7635 7636 if (create) { 7637 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7638 dio_data, start, len); 7639 if (ret < 0) 7640 goto unlock_err; 7641 7642 /* clear and unlock the entire range */ 7643 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7644 unlock_bits, 1, 0, &cached_state); 7645 } else { 7646 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7647 start, len); 7648 /* Can be negative only if we read from a hole */ 7649 if (ret < 0) { 7650 ret = 0; 7651 free_extent_map(em); 7652 goto unlock_err; 7653 } 7654 /* 7655 * We need to unlock only the end area that we aren't using. 7656 * The rest is going to be unlocked by the endio routine. 7657 */ 7658 lockstart = start + bh_result->b_size; 7659 if (lockstart < lockend) { 7660 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7661 lockend, unlock_bits, 1, 0, 7662 &cached_state); 7663 } else { 7664 free_extent_state(cached_state); 7665 } 7666 } 7667 7668 free_extent_map(em); 7669 7670 return 0; 7671 7672 unlock_err: 7673 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7674 unlock_bits, 1, 0, &cached_state); 7675 err: 7676 if (dio_data) 7677 current->journal_info = dio_data; 7678 return ret; 7679 } 7680 7681 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7682 struct bio *bio, 7683 int mirror_num) 7684 { 7685 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7686 blk_status_t ret; 7687 7688 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7689 7690 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7691 if (ret) 7692 return ret; 7693 7694 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7695 7696 return ret; 7697 } 7698 7699 static int btrfs_check_dio_repairable(struct inode *inode, 7700 struct bio *failed_bio, 7701 struct io_failure_record *failrec, 7702 int failed_mirror) 7703 { 7704 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7705 int num_copies; 7706 7707 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7708 if (num_copies == 1) { 7709 /* 7710 * we only have a single copy of the data, so don't bother with 7711 * all the retry and error correction code that follows. no 7712 * matter what the error is, it is very likely to persist. 7713 */ 7714 btrfs_debug(fs_info, 7715 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7716 num_copies, failrec->this_mirror, failed_mirror); 7717 return 0; 7718 } 7719 7720 failrec->failed_mirror = failed_mirror; 7721 failrec->this_mirror++; 7722 if (failrec->this_mirror == failed_mirror) 7723 failrec->this_mirror++; 7724 7725 if (failrec->this_mirror > num_copies) { 7726 btrfs_debug(fs_info, 7727 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7728 num_copies, failrec->this_mirror, failed_mirror); 7729 return 0; 7730 } 7731 7732 return 1; 7733 } 7734 7735 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7736 struct page *page, unsigned int pgoff, 7737 u64 start, u64 end, int failed_mirror, 7738 bio_end_io_t *repair_endio, void *repair_arg) 7739 { 7740 struct io_failure_record *failrec; 7741 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7742 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7743 struct bio *bio; 7744 int isector; 7745 unsigned int read_mode = 0; 7746 int segs; 7747 int ret; 7748 blk_status_t status; 7749 struct bio_vec bvec; 7750 7751 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7752 7753 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7754 if (ret) 7755 return errno_to_blk_status(ret); 7756 7757 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7758 failed_mirror); 7759 if (!ret) { 7760 free_io_failure(failure_tree, io_tree, failrec); 7761 return BLK_STS_IOERR; 7762 } 7763 7764 segs = bio_segments(failed_bio); 7765 bio_get_first_bvec(failed_bio, &bvec); 7766 if (segs > 1 || 7767 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7768 read_mode |= REQ_FAILFAST_DEV; 7769 7770 isector = start - btrfs_io_bio(failed_bio)->logical; 7771 isector >>= inode->i_sb->s_blocksize_bits; 7772 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7773 pgoff, isector, repair_endio, repair_arg); 7774 bio->bi_opf = REQ_OP_READ | read_mode; 7775 7776 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7777 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7778 read_mode, failrec->this_mirror, failrec->in_validation); 7779 7780 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7781 if (status) { 7782 free_io_failure(failure_tree, io_tree, failrec); 7783 bio_put(bio); 7784 } 7785 7786 return status; 7787 } 7788 7789 struct btrfs_retry_complete { 7790 struct completion done; 7791 struct inode *inode; 7792 u64 start; 7793 int uptodate; 7794 }; 7795 7796 static void btrfs_retry_endio_nocsum(struct bio *bio) 7797 { 7798 struct btrfs_retry_complete *done = bio->bi_private; 7799 struct inode *inode = done->inode; 7800 struct bio_vec *bvec; 7801 struct extent_io_tree *io_tree, *failure_tree; 7802 int i; 7803 7804 if (bio->bi_status) 7805 goto end; 7806 7807 ASSERT(bio->bi_vcnt == 1); 7808 io_tree = &BTRFS_I(inode)->io_tree; 7809 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7810 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7811 7812 done->uptodate = 1; 7813 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7814 bio_for_each_segment_all(bvec, bio, i) 7815 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7816 io_tree, done->start, bvec->bv_page, 7817 btrfs_ino(BTRFS_I(inode)), 0); 7818 end: 7819 complete(&done->done); 7820 bio_put(bio); 7821 } 7822 7823 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7824 struct btrfs_io_bio *io_bio) 7825 { 7826 struct btrfs_fs_info *fs_info; 7827 struct bio_vec bvec; 7828 struct bvec_iter iter; 7829 struct btrfs_retry_complete done; 7830 u64 start; 7831 unsigned int pgoff; 7832 u32 sectorsize; 7833 int nr_sectors; 7834 blk_status_t ret; 7835 blk_status_t err = BLK_STS_OK; 7836 7837 fs_info = BTRFS_I(inode)->root->fs_info; 7838 sectorsize = fs_info->sectorsize; 7839 7840 start = io_bio->logical; 7841 done.inode = inode; 7842 io_bio->bio.bi_iter = io_bio->iter; 7843 7844 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7845 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7846 pgoff = bvec.bv_offset; 7847 7848 next_block_or_try_again: 7849 done.uptodate = 0; 7850 done.start = start; 7851 init_completion(&done.done); 7852 7853 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7854 pgoff, start, start + sectorsize - 1, 7855 io_bio->mirror_num, 7856 btrfs_retry_endio_nocsum, &done); 7857 if (ret) { 7858 err = ret; 7859 goto next; 7860 } 7861 7862 wait_for_completion_io(&done.done); 7863 7864 if (!done.uptodate) { 7865 /* We might have another mirror, so try again */ 7866 goto next_block_or_try_again; 7867 } 7868 7869 next: 7870 start += sectorsize; 7871 7872 nr_sectors--; 7873 if (nr_sectors) { 7874 pgoff += sectorsize; 7875 ASSERT(pgoff < PAGE_SIZE); 7876 goto next_block_or_try_again; 7877 } 7878 } 7879 7880 return err; 7881 } 7882 7883 static void btrfs_retry_endio(struct bio *bio) 7884 { 7885 struct btrfs_retry_complete *done = bio->bi_private; 7886 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7887 struct extent_io_tree *io_tree, *failure_tree; 7888 struct inode *inode = done->inode; 7889 struct bio_vec *bvec; 7890 int uptodate; 7891 int ret; 7892 int i; 7893 7894 if (bio->bi_status) 7895 goto end; 7896 7897 uptodate = 1; 7898 7899 ASSERT(bio->bi_vcnt == 1); 7900 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7901 7902 io_tree = &BTRFS_I(inode)->io_tree; 7903 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7904 7905 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7906 bio_for_each_segment_all(bvec, bio, i) { 7907 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7908 bvec->bv_offset, done->start, 7909 bvec->bv_len); 7910 if (!ret) 7911 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7912 failure_tree, io_tree, done->start, 7913 bvec->bv_page, 7914 btrfs_ino(BTRFS_I(inode)), 7915 bvec->bv_offset); 7916 else 7917 uptodate = 0; 7918 } 7919 7920 done->uptodate = uptodate; 7921 end: 7922 complete(&done->done); 7923 bio_put(bio); 7924 } 7925 7926 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7927 struct btrfs_io_bio *io_bio, blk_status_t err) 7928 { 7929 struct btrfs_fs_info *fs_info; 7930 struct bio_vec bvec; 7931 struct bvec_iter iter; 7932 struct btrfs_retry_complete done; 7933 u64 start; 7934 u64 offset = 0; 7935 u32 sectorsize; 7936 int nr_sectors; 7937 unsigned int pgoff; 7938 int csum_pos; 7939 bool uptodate = (err == 0); 7940 int ret; 7941 blk_status_t status; 7942 7943 fs_info = BTRFS_I(inode)->root->fs_info; 7944 sectorsize = fs_info->sectorsize; 7945 7946 err = BLK_STS_OK; 7947 start = io_bio->logical; 7948 done.inode = inode; 7949 io_bio->bio.bi_iter = io_bio->iter; 7950 7951 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7952 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7953 7954 pgoff = bvec.bv_offset; 7955 next_block: 7956 if (uptodate) { 7957 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7958 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7959 bvec.bv_page, pgoff, start, sectorsize); 7960 if (likely(!ret)) 7961 goto next; 7962 } 7963 try_again: 7964 done.uptodate = 0; 7965 done.start = start; 7966 init_completion(&done.done); 7967 7968 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7969 pgoff, start, start + sectorsize - 1, 7970 io_bio->mirror_num, btrfs_retry_endio, 7971 &done); 7972 if (status) { 7973 err = status; 7974 goto next; 7975 } 7976 7977 wait_for_completion_io(&done.done); 7978 7979 if (!done.uptodate) { 7980 /* We might have another mirror, so try again */ 7981 goto try_again; 7982 } 7983 next: 7984 offset += sectorsize; 7985 start += sectorsize; 7986 7987 ASSERT(nr_sectors); 7988 7989 nr_sectors--; 7990 if (nr_sectors) { 7991 pgoff += sectorsize; 7992 ASSERT(pgoff < PAGE_SIZE); 7993 goto next_block; 7994 } 7995 } 7996 7997 return err; 7998 } 7999 8000 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8001 struct btrfs_io_bio *io_bio, blk_status_t err) 8002 { 8003 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8004 8005 if (skip_csum) { 8006 if (unlikely(err)) 8007 return __btrfs_correct_data_nocsum(inode, io_bio); 8008 else 8009 return BLK_STS_OK; 8010 } else { 8011 return __btrfs_subio_endio_read(inode, io_bio, err); 8012 } 8013 } 8014 8015 static void btrfs_endio_direct_read(struct bio *bio) 8016 { 8017 struct btrfs_dio_private *dip = bio->bi_private; 8018 struct inode *inode = dip->inode; 8019 struct bio *dio_bio; 8020 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8021 blk_status_t err = bio->bi_status; 8022 8023 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8024 err = btrfs_subio_endio_read(inode, io_bio, err); 8025 8026 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8027 dip->logical_offset + dip->bytes - 1); 8028 dio_bio = dip->dio_bio; 8029 8030 kfree(dip); 8031 8032 dio_bio->bi_status = err; 8033 dio_end_io(dio_bio); 8034 8035 if (io_bio->end_io) 8036 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8037 bio_put(bio); 8038 } 8039 8040 static void __endio_write_update_ordered(struct inode *inode, 8041 const u64 offset, const u64 bytes, 8042 const bool uptodate) 8043 { 8044 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8045 struct btrfs_ordered_extent *ordered = NULL; 8046 struct btrfs_workqueue *wq; 8047 btrfs_work_func_t func; 8048 u64 ordered_offset = offset; 8049 u64 ordered_bytes = bytes; 8050 u64 last_offset; 8051 8052 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8053 wq = fs_info->endio_freespace_worker; 8054 func = btrfs_freespace_write_helper; 8055 } else { 8056 wq = fs_info->endio_write_workers; 8057 func = btrfs_endio_write_helper; 8058 } 8059 8060 while (ordered_offset < offset + bytes) { 8061 last_offset = ordered_offset; 8062 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8063 &ordered_offset, 8064 ordered_bytes, 8065 uptodate)) { 8066 btrfs_init_work(&ordered->work, func, 8067 finish_ordered_fn, 8068 NULL, NULL); 8069 btrfs_queue_work(wq, &ordered->work); 8070 } 8071 /* 8072 * If btrfs_dec_test_ordered_pending does not find any ordered 8073 * extent in the range, we can exit. 8074 */ 8075 if (ordered_offset == last_offset) 8076 return; 8077 /* 8078 * Our bio might span multiple ordered extents. In this case 8079 * we keep goin until we have accounted the whole dio. 8080 */ 8081 if (ordered_offset < offset + bytes) { 8082 ordered_bytes = offset + bytes - ordered_offset; 8083 ordered = NULL; 8084 } 8085 } 8086 } 8087 8088 static void btrfs_endio_direct_write(struct bio *bio) 8089 { 8090 struct btrfs_dio_private *dip = bio->bi_private; 8091 struct bio *dio_bio = dip->dio_bio; 8092 8093 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8094 dip->bytes, !bio->bi_status); 8095 8096 kfree(dip); 8097 8098 dio_bio->bi_status = bio->bi_status; 8099 dio_end_io(dio_bio); 8100 bio_put(bio); 8101 } 8102 8103 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8104 struct bio *bio, u64 offset) 8105 { 8106 struct inode *inode = private_data; 8107 blk_status_t ret; 8108 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8109 BUG_ON(ret); /* -ENOMEM */ 8110 return 0; 8111 } 8112 8113 static void btrfs_end_dio_bio(struct bio *bio) 8114 { 8115 struct btrfs_dio_private *dip = bio->bi_private; 8116 blk_status_t err = bio->bi_status; 8117 8118 if (err) 8119 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8120 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8121 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8122 bio->bi_opf, 8123 (unsigned long long)bio->bi_iter.bi_sector, 8124 bio->bi_iter.bi_size, err); 8125 8126 if (dip->subio_endio) 8127 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8128 8129 if (err) { 8130 /* 8131 * We want to perceive the errors flag being set before 8132 * decrementing the reference count. We don't need a barrier 8133 * since atomic operations with a return value are fully 8134 * ordered as per atomic_t.txt 8135 */ 8136 dip->errors = 1; 8137 } 8138 8139 /* if there are more bios still pending for this dio, just exit */ 8140 if (!atomic_dec_and_test(&dip->pending_bios)) 8141 goto out; 8142 8143 if (dip->errors) { 8144 bio_io_error(dip->orig_bio); 8145 } else { 8146 dip->dio_bio->bi_status = BLK_STS_OK; 8147 bio_endio(dip->orig_bio); 8148 } 8149 out: 8150 bio_put(bio); 8151 } 8152 8153 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8154 struct btrfs_dio_private *dip, 8155 struct bio *bio, 8156 u64 file_offset) 8157 { 8158 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8159 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8160 blk_status_t ret; 8161 8162 /* 8163 * We load all the csum data we need when we submit 8164 * the first bio to reduce the csum tree search and 8165 * contention. 8166 */ 8167 if (dip->logical_offset == file_offset) { 8168 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8169 file_offset); 8170 if (ret) 8171 return ret; 8172 } 8173 8174 if (bio == dip->orig_bio) 8175 return 0; 8176 8177 file_offset -= dip->logical_offset; 8178 file_offset >>= inode->i_sb->s_blocksize_bits; 8179 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8180 8181 return 0; 8182 } 8183 8184 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8185 struct inode *inode, u64 file_offset, int async_submit) 8186 { 8187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8188 struct btrfs_dio_private *dip = bio->bi_private; 8189 bool write = bio_op(bio) == REQ_OP_WRITE; 8190 blk_status_t ret; 8191 8192 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8193 if (async_submit) 8194 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8195 8196 if (!write) { 8197 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8198 if (ret) 8199 goto err; 8200 } 8201 8202 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8203 goto map; 8204 8205 if (write && async_submit) { 8206 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8207 file_offset, inode, 8208 btrfs_submit_bio_start_direct_io); 8209 goto err; 8210 } else if (write) { 8211 /* 8212 * If we aren't doing async submit, calculate the csum of the 8213 * bio now. 8214 */ 8215 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8216 if (ret) 8217 goto err; 8218 } else { 8219 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8220 file_offset); 8221 if (ret) 8222 goto err; 8223 } 8224 map: 8225 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8226 err: 8227 return ret; 8228 } 8229 8230 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8231 { 8232 struct inode *inode = dip->inode; 8233 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8234 struct bio *bio; 8235 struct bio *orig_bio = dip->orig_bio; 8236 u64 start_sector = orig_bio->bi_iter.bi_sector; 8237 u64 file_offset = dip->logical_offset; 8238 u64 map_length; 8239 int async_submit = 0; 8240 u64 submit_len; 8241 int clone_offset = 0; 8242 int clone_len; 8243 int ret; 8244 blk_status_t status; 8245 8246 map_length = orig_bio->bi_iter.bi_size; 8247 submit_len = map_length; 8248 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8249 &map_length, NULL, 0); 8250 if (ret) 8251 return -EIO; 8252 8253 if (map_length >= submit_len) { 8254 bio = orig_bio; 8255 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8256 goto submit; 8257 } 8258 8259 /* async crcs make it difficult to collect full stripe writes. */ 8260 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8261 async_submit = 0; 8262 else 8263 async_submit = 1; 8264 8265 /* bio split */ 8266 ASSERT(map_length <= INT_MAX); 8267 atomic_inc(&dip->pending_bios); 8268 do { 8269 clone_len = min_t(int, submit_len, map_length); 8270 8271 /* 8272 * This will never fail as it's passing GPF_NOFS and 8273 * the allocation is backed by btrfs_bioset. 8274 */ 8275 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8276 clone_len); 8277 bio->bi_private = dip; 8278 bio->bi_end_io = btrfs_end_dio_bio; 8279 btrfs_io_bio(bio)->logical = file_offset; 8280 8281 ASSERT(submit_len >= clone_len); 8282 submit_len -= clone_len; 8283 if (submit_len == 0) 8284 break; 8285 8286 /* 8287 * Increase the count before we submit the bio so we know 8288 * the end IO handler won't happen before we increase the 8289 * count. Otherwise, the dip might get freed before we're 8290 * done setting it up. 8291 */ 8292 atomic_inc(&dip->pending_bios); 8293 8294 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8295 async_submit); 8296 if (status) { 8297 bio_put(bio); 8298 atomic_dec(&dip->pending_bios); 8299 goto out_err; 8300 } 8301 8302 clone_offset += clone_len; 8303 start_sector += clone_len >> 9; 8304 file_offset += clone_len; 8305 8306 map_length = submit_len; 8307 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8308 start_sector << 9, &map_length, NULL, 0); 8309 if (ret) 8310 goto out_err; 8311 } while (submit_len > 0); 8312 8313 submit: 8314 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8315 if (!status) 8316 return 0; 8317 8318 bio_put(bio); 8319 out_err: 8320 dip->errors = 1; 8321 /* 8322 * Before atomic variable goto zero, we must make sure dip->errors is 8323 * perceived to be set. This ordering is ensured by the fact that an 8324 * atomic operations with a return value are fully ordered as per 8325 * atomic_t.txt 8326 */ 8327 if (atomic_dec_and_test(&dip->pending_bios)) 8328 bio_io_error(dip->orig_bio); 8329 8330 /* bio_end_io() will handle error, so we needn't return it */ 8331 return 0; 8332 } 8333 8334 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8335 loff_t file_offset) 8336 { 8337 struct btrfs_dio_private *dip = NULL; 8338 struct bio *bio = NULL; 8339 struct btrfs_io_bio *io_bio; 8340 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8341 int ret = 0; 8342 8343 bio = btrfs_bio_clone(dio_bio); 8344 8345 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8346 if (!dip) { 8347 ret = -ENOMEM; 8348 goto free_ordered; 8349 } 8350 8351 dip->private = dio_bio->bi_private; 8352 dip->inode = inode; 8353 dip->logical_offset = file_offset; 8354 dip->bytes = dio_bio->bi_iter.bi_size; 8355 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8356 bio->bi_private = dip; 8357 dip->orig_bio = bio; 8358 dip->dio_bio = dio_bio; 8359 atomic_set(&dip->pending_bios, 0); 8360 io_bio = btrfs_io_bio(bio); 8361 io_bio->logical = file_offset; 8362 8363 if (write) { 8364 bio->bi_end_io = btrfs_endio_direct_write; 8365 } else { 8366 bio->bi_end_io = btrfs_endio_direct_read; 8367 dip->subio_endio = btrfs_subio_endio_read; 8368 } 8369 8370 /* 8371 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8372 * even if we fail to submit a bio, because in such case we do the 8373 * corresponding error handling below and it must not be done a second 8374 * time by btrfs_direct_IO(). 8375 */ 8376 if (write) { 8377 struct btrfs_dio_data *dio_data = current->journal_info; 8378 8379 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8380 dip->bytes; 8381 dio_data->unsubmitted_oe_range_start = 8382 dio_data->unsubmitted_oe_range_end; 8383 } 8384 8385 ret = btrfs_submit_direct_hook(dip); 8386 if (!ret) 8387 return; 8388 8389 if (io_bio->end_io) 8390 io_bio->end_io(io_bio, ret); 8391 8392 free_ordered: 8393 /* 8394 * If we arrived here it means either we failed to submit the dip 8395 * or we either failed to clone the dio_bio or failed to allocate the 8396 * dip. If we cloned the dio_bio and allocated the dip, we can just 8397 * call bio_endio against our io_bio so that we get proper resource 8398 * cleanup if we fail to submit the dip, otherwise, we must do the 8399 * same as btrfs_endio_direct_[write|read] because we can't call these 8400 * callbacks - they require an allocated dip and a clone of dio_bio. 8401 */ 8402 if (bio && dip) { 8403 bio_io_error(bio); 8404 /* 8405 * The end io callbacks free our dip, do the final put on bio 8406 * and all the cleanup and final put for dio_bio (through 8407 * dio_end_io()). 8408 */ 8409 dip = NULL; 8410 bio = NULL; 8411 } else { 8412 if (write) 8413 __endio_write_update_ordered(inode, 8414 file_offset, 8415 dio_bio->bi_iter.bi_size, 8416 false); 8417 else 8418 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8419 file_offset + dio_bio->bi_iter.bi_size - 1); 8420 8421 dio_bio->bi_status = BLK_STS_IOERR; 8422 /* 8423 * Releases and cleans up our dio_bio, no need to bio_put() 8424 * nor bio_endio()/bio_io_error() against dio_bio. 8425 */ 8426 dio_end_io(dio_bio); 8427 } 8428 if (bio) 8429 bio_put(bio); 8430 kfree(dip); 8431 } 8432 8433 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8434 const struct iov_iter *iter, loff_t offset) 8435 { 8436 int seg; 8437 int i; 8438 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8439 ssize_t retval = -EINVAL; 8440 8441 if (offset & blocksize_mask) 8442 goto out; 8443 8444 if (iov_iter_alignment(iter) & blocksize_mask) 8445 goto out; 8446 8447 /* If this is a write we don't need to check anymore */ 8448 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8449 return 0; 8450 /* 8451 * Check to make sure we don't have duplicate iov_base's in this 8452 * iovec, if so return EINVAL, otherwise we'll get csum errors 8453 * when reading back. 8454 */ 8455 for (seg = 0; seg < iter->nr_segs; seg++) { 8456 for (i = seg + 1; i < iter->nr_segs; i++) { 8457 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8458 goto out; 8459 } 8460 } 8461 retval = 0; 8462 out: 8463 return retval; 8464 } 8465 8466 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8467 { 8468 struct file *file = iocb->ki_filp; 8469 struct inode *inode = file->f_mapping->host; 8470 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8471 struct btrfs_dio_data dio_data = { 0 }; 8472 struct extent_changeset *data_reserved = NULL; 8473 loff_t offset = iocb->ki_pos; 8474 size_t count = 0; 8475 int flags = 0; 8476 bool wakeup = true; 8477 bool relock = false; 8478 ssize_t ret; 8479 8480 if (check_direct_IO(fs_info, iter, offset)) 8481 return 0; 8482 8483 inode_dio_begin(inode); 8484 8485 /* 8486 * The generic stuff only does filemap_write_and_wait_range, which 8487 * isn't enough if we've written compressed pages to this area, so 8488 * we need to flush the dirty pages again to make absolutely sure 8489 * that any outstanding dirty pages are on disk. 8490 */ 8491 count = iov_iter_count(iter); 8492 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8493 &BTRFS_I(inode)->runtime_flags)) 8494 filemap_fdatawrite_range(inode->i_mapping, offset, 8495 offset + count - 1); 8496 8497 if (iov_iter_rw(iter) == WRITE) { 8498 /* 8499 * If the write DIO is beyond the EOF, we need update 8500 * the isize, but it is protected by i_mutex. So we can 8501 * not unlock the i_mutex at this case. 8502 */ 8503 if (offset + count <= inode->i_size) { 8504 dio_data.overwrite = 1; 8505 inode_unlock(inode); 8506 relock = true; 8507 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8508 ret = -EAGAIN; 8509 goto out; 8510 } 8511 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8512 offset, count); 8513 if (ret) 8514 goto out; 8515 8516 /* 8517 * We need to know how many extents we reserved so that we can 8518 * do the accounting properly if we go over the number we 8519 * originally calculated. Abuse current->journal_info for this. 8520 */ 8521 dio_data.reserve = round_up(count, 8522 fs_info->sectorsize); 8523 dio_data.unsubmitted_oe_range_start = (u64)offset; 8524 dio_data.unsubmitted_oe_range_end = (u64)offset; 8525 current->journal_info = &dio_data; 8526 down_read(&BTRFS_I(inode)->dio_sem); 8527 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8528 &BTRFS_I(inode)->runtime_flags)) { 8529 inode_dio_end(inode); 8530 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8531 wakeup = false; 8532 } 8533 8534 ret = __blockdev_direct_IO(iocb, inode, 8535 fs_info->fs_devices->latest_bdev, 8536 iter, btrfs_get_blocks_direct, NULL, 8537 btrfs_submit_direct, flags); 8538 if (iov_iter_rw(iter) == WRITE) { 8539 up_read(&BTRFS_I(inode)->dio_sem); 8540 current->journal_info = NULL; 8541 if (ret < 0 && ret != -EIOCBQUEUED) { 8542 if (dio_data.reserve) 8543 btrfs_delalloc_release_space(inode, data_reserved, 8544 offset, dio_data.reserve, true); 8545 /* 8546 * On error we might have left some ordered extents 8547 * without submitting corresponding bios for them, so 8548 * cleanup them up to avoid other tasks getting them 8549 * and waiting for them to complete forever. 8550 */ 8551 if (dio_data.unsubmitted_oe_range_start < 8552 dio_data.unsubmitted_oe_range_end) 8553 __endio_write_update_ordered(inode, 8554 dio_data.unsubmitted_oe_range_start, 8555 dio_data.unsubmitted_oe_range_end - 8556 dio_data.unsubmitted_oe_range_start, 8557 false); 8558 } else if (ret >= 0 && (size_t)ret < count) 8559 btrfs_delalloc_release_space(inode, data_reserved, 8560 offset, count - (size_t)ret, true); 8561 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8562 } 8563 out: 8564 if (wakeup) 8565 inode_dio_end(inode); 8566 if (relock) 8567 inode_lock(inode); 8568 8569 extent_changeset_free(data_reserved); 8570 return ret; 8571 } 8572 8573 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8574 8575 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8576 __u64 start, __u64 len) 8577 { 8578 int ret; 8579 8580 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8581 if (ret) 8582 return ret; 8583 8584 return extent_fiemap(inode, fieinfo, start, len); 8585 } 8586 8587 int btrfs_readpage(struct file *file, struct page *page) 8588 { 8589 struct extent_io_tree *tree; 8590 tree = &BTRFS_I(page->mapping->host)->io_tree; 8591 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8592 } 8593 8594 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8595 { 8596 struct inode *inode = page->mapping->host; 8597 int ret; 8598 8599 if (current->flags & PF_MEMALLOC) { 8600 redirty_page_for_writepage(wbc, page); 8601 unlock_page(page); 8602 return 0; 8603 } 8604 8605 /* 8606 * If we are under memory pressure we will call this directly from the 8607 * VM, we need to make sure we have the inode referenced for the ordered 8608 * extent. If not just return like we didn't do anything. 8609 */ 8610 if (!igrab(inode)) { 8611 redirty_page_for_writepage(wbc, page); 8612 return AOP_WRITEPAGE_ACTIVATE; 8613 } 8614 ret = extent_write_full_page(page, wbc); 8615 btrfs_add_delayed_iput(inode); 8616 return ret; 8617 } 8618 8619 static int btrfs_writepages(struct address_space *mapping, 8620 struct writeback_control *wbc) 8621 { 8622 return extent_writepages(mapping, wbc); 8623 } 8624 8625 static int 8626 btrfs_readpages(struct file *file, struct address_space *mapping, 8627 struct list_head *pages, unsigned nr_pages) 8628 { 8629 return extent_readpages(mapping, pages, nr_pages); 8630 } 8631 8632 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8633 { 8634 int ret = try_release_extent_mapping(page, gfp_flags); 8635 if (ret == 1) { 8636 ClearPagePrivate(page); 8637 set_page_private(page, 0); 8638 put_page(page); 8639 } 8640 return ret; 8641 } 8642 8643 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8644 { 8645 if (PageWriteback(page) || PageDirty(page)) 8646 return 0; 8647 return __btrfs_releasepage(page, gfp_flags); 8648 } 8649 8650 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8651 unsigned int length) 8652 { 8653 struct inode *inode = page->mapping->host; 8654 struct extent_io_tree *tree; 8655 struct btrfs_ordered_extent *ordered; 8656 struct extent_state *cached_state = NULL; 8657 u64 page_start = page_offset(page); 8658 u64 page_end = page_start + PAGE_SIZE - 1; 8659 u64 start; 8660 u64 end; 8661 int inode_evicting = inode->i_state & I_FREEING; 8662 8663 /* 8664 * we have the page locked, so new writeback can't start, 8665 * and the dirty bit won't be cleared while we are here. 8666 * 8667 * Wait for IO on this page so that we can safely clear 8668 * the PagePrivate2 bit and do ordered accounting 8669 */ 8670 wait_on_page_writeback(page); 8671 8672 tree = &BTRFS_I(inode)->io_tree; 8673 if (offset) { 8674 btrfs_releasepage(page, GFP_NOFS); 8675 return; 8676 } 8677 8678 if (!inode_evicting) 8679 lock_extent_bits(tree, page_start, page_end, &cached_state); 8680 again: 8681 start = page_start; 8682 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8683 page_end - start + 1); 8684 if (ordered) { 8685 end = min(page_end, ordered->file_offset + ordered->len - 1); 8686 /* 8687 * IO on this page will never be started, so we need 8688 * to account for any ordered extents now 8689 */ 8690 if (!inode_evicting) 8691 clear_extent_bit(tree, start, end, 8692 EXTENT_DIRTY | EXTENT_DELALLOC | 8693 EXTENT_DELALLOC_NEW | 8694 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8695 EXTENT_DEFRAG, 1, 0, &cached_state); 8696 /* 8697 * whoever cleared the private bit is responsible 8698 * for the finish_ordered_io 8699 */ 8700 if (TestClearPagePrivate2(page)) { 8701 struct btrfs_ordered_inode_tree *tree; 8702 u64 new_len; 8703 8704 tree = &BTRFS_I(inode)->ordered_tree; 8705 8706 spin_lock_irq(&tree->lock); 8707 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8708 new_len = start - ordered->file_offset; 8709 if (new_len < ordered->truncated_len) 8710 ordered->truncated_len = new_len; 8711 spin_unlock_irq(&tree->lock); 8712 8713 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8714 start, 8715 end - start + 1, 1)) 8716 btrfs_finish_ordered_io(ordered); 8717 } 8718 btrfs_put_ordered_extent(ordered); 8719 if (!inode_evicting) { 8720 cached_state = NULL; 8721 lock_extent_bits(tree, start, end, 8722 &cached_state); 8723 } 8724 8725 start = end + 1; 8726 if (start < page_end) 8727 goto again; 8728 } 8729 8730 /* 8731 * Qgroup reserved space handler 8732 * Page here will be either 8733 * 1) Already written to disk 8734 * In this case, its reserved space is released from data rsv map 8735 * and will be freed by delayed_ref handler finally. 8736 * So even we call qgroup_free_data(), it won't decrease reserved 8737 * space. 8738 * 2) Not written to disk 8739 * This means the reserved space should be freed here. However, 8740 * if a truncate invalidates the page (by clearing PageDirty) 8741 * and the page is accounted for while allocating extent 8742 * in btrfs_check_data_free_space() we let delayed_ref to 8743 * free the entire extent. 8744 */ 8745 if (PageDirty(page)) 8746 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8747 if (!inode_evicting) { 8748 clear_extent_bit(tree, page_start, page_end, 8749 EXTENT_LOCKED | EXTENT_DIRTY | 8750 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8751 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8752 &cached_state); 8753 8754 __btrfs_releasepage(page, GFP_NOFS); 8755 } 8756 8757 ClearPageChecked(page); 8758 if (PagePrivate(page)) { 8759 ClearPagePrivate(page); 8760 set_page_private(page, 0); 8761 put_page(page); 8762 } 8763 } 8764 8765 /* 8766 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8767 * called from a page fault handler when a page is first dirtied. Hence we must 8768 * be careful to check for EOF conditions here. We set the page up correctly 8769 * for a written page which means we get ENOSPC checking when writing into 8770 * holes and correct delalloc and unwritten extent mapping on filesystems that 8771 * support these features. 8772 * 8773 * We are not allowed to take the i_mutex here so we have to play games to 8774 * protect against truncate races as the page could now be beyond EOF. Because 8775 * truncate_setsize() writes the inode size before removing pages, once we have 8776 * the page lock we can determine safely if the page is beyond EOF. If it is not 8777 * beyond EOF, then the page is guaranteed safe against truncation until we 8778 * unlock the page. 8779 */ 8780 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8781 { 8782 struct page *page = vmf->page; 8783 struct inode *inode = file_inode(vmf->vma->vm_file); 8784 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8785 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8786 struct btrfs_ordered_extent *ordered; 8787 struct extent_state *cached_state = NULL; 8788 struct extent_changeset *data_reserved = NULL; 8789 char *kaddr; 8790 unsigned long zero_start; 8791 loff_t size; 8792 vm_fault_t ret; 8793 int ret2; 8794 int reserved = 0; 8795 u64 reserved_space; 8796 u64 page_start; 8797 u64 page_end; 8798 u64 end; 8799 8800 reserved_space = PAGE_SIZE; 8801 8802 sb_start_pagefault(inode->i_sb); 8803 page_start = page_offset(page); 8804 page_end = page_start + PAGE_SIZE - 1; 8805 end = page_end; 8806 8807 /* 8808 * Reserving delalloc space after obtaining the page lock can lead to 8809 * deadlock. For example, if a dirty page is locked by this function 8810 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8811 * dirty page write out, then the btrfs_writepage() function could 8812 * end up waiting indefinitely to get a lock on the page currently 8813 * being processed by btrfs_page_mkwrite() function. 8814 */ 8815 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8816 reserved_space); 8817 if (!ret2) { 8818 ret2 = file_update_time(vmf->vma->vm_file); 8819 reserved = 1; 8820 } 8821 if (ret2) { 8822 ret = vmf_error(ret2); 8823 if (reserved) 8824 goto out; 8825 goto out_noreserve; 8826 } 8827 8828 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8829 again: 8830 lock_page(page); 8831 size = i_size_read(inode); 8832 8833 if ((page->mapping != inode->i_mapping) || 8834 (page_start >= size)) { 8835 /* page got truncated out from underneath us */ 8836 goto out_unlock; 8837 } 8838 wait_on_page_writeback(page); 8839 8840 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8841 set_page_extent_mapped(page); 8842 8843 /* 8844 * we can't set the delalloc bits if there are pending ordered 8845 * extents. Drop our locks and wait for them to finish 8846 */ 8847 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8848 PAGE_SIZE); 8849 if (ordered) { 8850 unlock_extent_cached(io_tree, page_start, page_end, 8851 &cached_state); 8852 unlock_page(page); 8853 btrfs_start_ordered_extent(inode, ordered, 1); 8854 btrfs_put_ordered_extent(ordered); 8855 goto again; 8856 } 8857 8858 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8859 reserved_space = round_up(size - page_start, 8860 fs_info->sectorsize); 8861 if (reserved_space < PAGE_SIZE) { 8862 end = page_start + reserved_space - 1; 8863 btrfs_delalloc_release_space(inode, data_reserved, 8864 page_start, PAGE_SIZE - reserved_space, 8865 true); 8866 } 8867 } 8868 8869 /* 8870 * page_mkwrite gets called when the page is firstly dirtied after it's 8871 * faulted in, but write(2) could also dirty a page and set delalloc 8872 * bits, thus in this case for space account reason, we still need to 8873 * clear any delalloc bits within this page range since we have to 8874 * reserve data&meta space before lock_page() (see above comments). 8875 */ 8876 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8877 EXTENT_DIRTY | EXTENT_DELALLOC | 8878 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8879 0, 0, &cached_state); 8880 8881 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8882 &cached_state, 0); 8883 if (ret2) { 8884 unlock_extent_cached(io_tree, page_start, page_end, 8885 &cached_state); 8886 ret = VM_FAULT_SIGBUS; 8887 goto out_unlock; 8888 } 8889 ret2 = 0; 8890 8891 /* page is wholly or partially inside EOF */ 8892 if (page_start + PAGE_SIZE > size) 8893 zero_start = size & ~PAGE_MASK; 8894 else 8895 zero_start = PAGE_SIZE; 8896 8897 if (zero_start != PAGE_SIZE) { 8898 kaddr = kmap(page); 8899 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8900 flush_dcache_page(page); 8901 kunmap(page); 8902 } 8903 ClearPageChecked(page); 8904 set_page_dirty(page); 8905 SetPageUptodate(page); 8906 8907 BTRFS_I(inode)->last_trans = fs_info->generation; 8908 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8909 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8910 8911 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8912 8913 if (!ret2) { 8914 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 8915 sb_end_pagefault(inode->i_sb); 8916 extent_changeset_free(data_reserved); 8917 return VM_FAULT_LOCKED; 8918 } 8919 8920 out_unlock: 8921 unlock_page(page); 8922 out: 8923 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 8924 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8925 reserved_space, (ret != 0)); 8926 out_noreserve: 8927 sb_end_pagefault(inode->i_sb); 8928 extent_changeset_free(data_reserved); 8929 return ret; 8930 } 8931 8932 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8933 { 8934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8935 struct btrfs_root *root = BTRFS_I(inode)->root; 8936 struct btrfs_block_rsv *rsv; 8937 int ret; 8938 struct btrfs_trans_handle *trans; 8939 u64 mask = fs_info->sectorsize - 1; 8940 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 8941 8942 if (!skip_writeback) { 8943 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8944 (u64)-1); 8945 if (ret) 8946 return ret; 8947 } 8948 8949 /* 8950 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8951 * things going on here: 8952 * 8953 * 1) We need to reserve space to update our inode. 8954 * 8955 * 2) We need to have something to cache all the space that is going to 8956 * be free'd up by the truncate operation, but also have some slack 8957 * space reserved in case it uses space during the truncate (thank you 8958 * very much snapshotting). 8959 * 8960 * And we need these to be separate. The fact is we can use a lot of 8961 * space doing the truncate, and we have no earthly idea how much space 8962 * we will use, so we need the truncate reservation to be separate so it 8963 * doesn't end up using space reserved for updating the inode. We also 8964 * need to be able to stop the transaction and start a new one, which 8965 * means we need to be able to update the inode several times, and we 8966 * have no idea of knowing how many times that will be, so we can't just 8967 * reserve 1 item for the entirety of the operation, so that has to be 8968 * done separately as well. 8969 * 8970 * So that leaves us with 8971 * 8972 * 1) rsv - for the truncate reservation, which we will steal from the 8973 * transaction reservation. 8974 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8975 * updating the inode. 8976 */ 8977 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8978 if (!rsv) 8979 return -ENOMEM; 8980 rsv->size = min_size; 8981 rsv->failfast = 1; 8982 8983 /* 8984 * 1 for the truncate slack space 8985 * 1 for updating the inode. 8986 */ 8987 trans = btrfs_start_transaction(root, 2); 8988 if (IS_ERR(trans)) { 8989 ret = PTR_ERR(trans); 8990 goto out; 8991 } 8992 8993 /* Migrate the slack space for the truncate to our reserve */ 8994 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8995 min_size, false); 8996 BUG_ON(ret); 8997 8998 /* 8999 * So if we truncate and then write and fsync we normally would just 9000 * write the extents that changed, which is a problem if we need to 9001 * first truncate that entire inode. So set this flag so we write out 9002 * all of the extents in the inode to the sync log so we're completely 9003 * safe. 9004 */ 9005 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9006 trans->block_rsv = rsv; 9007 9008 while (1) { 9009 ret = btrfs_truncate_inode_items(trans, root, inode, 9010 inode->i_size, 9011 BTRFS_EXTENT_DATA_KEY); 9012 trans->block_rsv = &fs_info->trans_block_rsv; 9013 if (ret != -ENOSPC && ret != -EAGAIN) 9014 break; 9015 9016 ret = btrfs_update_inode(trans, root, inode); 9017 if (ret) 9018 break; 9019 9020 btrfs_end_transaction(trans); 9021 btrfs_btree_balance_dirty(fs_info); 9022 9023 trans = btrfs_start_transaction(root, 2); 9024 if (IS_ERR(trans)) { 9025 ret = PTR_ERR(trans); 9026 trans = NULL; 9027 break; 9028 } 9029 9030 btrfs_block_rsv_release(fs_info, rsv, -1); 9031 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9032 rsv, min_size, false); 9033 BUG_ON(ret); /* shouldn't happen */ 9034 trans->block_rsv = rsv; 9035 } 9036 9037 /* 9038 * We can't call btrfs_truncate_block inside a trans handle as we could 9039 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9040 * we've truncated everything except the last little bit, and can do 9041 * btrfs_truncate_block and then update the disk_i_size. 9042 */ 9043 if (ret == NEED_TRUNCATE_BLOCK) { 9044 btrfs_end_transaction(trans); 9045 btrfs_btree_balance_dirty(fs_info); 9046 9047 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9048 if (ret) 9049 goto out; 9050 trans = btrfs_start_transaction(root, 1); 9051 if (IS_ERR(trans)) { 9052 ret = PTR_ERR(trans); 9053 goto out; 9054 } 9055 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9056 } 9057 9058 if (trans) { 9059 int ret2; 9060 9061 trans->block_rsv = &fs_info->trans_block_rsv; 9062 ret2 = btrfs_update_inode(trans, root, inode); 9063 if (ret2 && !ret) 9064 ret = ret2; 9065 9066 ret2 = btrfs_end_transaction(trans); 9067 if (ret2 && !ret) 9068 ret = ret2; 9069 btrfs_btree_balance_dirty(fs_info); 9070 } 9071 out: 9072 btrfs_free_block_rsv(fs_info, rsv); 9073 9074 return ret; 9075 } 9076 9077 /* 9078 * create a new subvolume directory/inode (helper for the ioctl). 9079 */ 9080 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9081 struct btrfs_root *new_root, 9082 struct btrfs_root *parent_root, 9083 u64 new_dirid) 9084 { 9085 struct inode *inode; 9086 int err; 9087 u64 index = 0; 9088 9089 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9090 new_dirid, new_dirid, 9091 S_IFDIR | (~current_umask() & S_IRWXUGO), 9092 &index); 9093 if (IS_ERR(inode)) 9094 return PTR_ERR(inode); 9095 inode->i_op = &btrfs_dir_inode_operations; 9096 inode->i_fop = &btrfs_dir_file_operations; 9097 9098 set_nlink(inode, 1); 9099 btrfs_i_size_write(BTRFS_I(inode), 0); 9100 unlock_new_inode(inode); 9101 9102 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9103 if (err) 9104 btrfs_err(new_root->fs_info, 9105 "error inheriting subvolume %llu properties: %d", 9106 new_root->root_key.objectid, err); 9107 9108 err = btrfs_update_inode(trans, new_root, inode); 9109 9110 iput(inode); 9111 return err; 9112 } 9113 9114 struct inode *btrfs_alloc_inode(struct super_block *sb) 9115 { 9116 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9117 struct btrfs_inode *ei; 9118 struct inode *inode; 9119 9120 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9121 if (!ei) 9122 return NULL; 9123 9124 ei->root = NULL; 9125 ei->generation = 0; 9126 ei->last_trans = 0; 9127 ei->last_sub_trans = 0; 9128 ei->logged_trans = 0; 9129 ei->delalloc_bytes = 0; 9130 ei->new_delalloc_bytes = 0; 9131 ei->defrag_bytes = 0; 9132 ei->disk_i_size = 0; 9133 ei->flags = 0; 9134 ei->csum_bytes = 0; 9135 ei->index_cnt = (u64)-1; 9136 ei->dir_index = 0; 9137 ei->last_unlink_trans = 0; 9138 ei->last_log_commit = 0; 9139 9140 spin_lock_init(&ei->lock); 9141 ei->outstanding_extents = 0; 9142 if (sb->s_magic != BTRFS_TEST_MAGIC) 9143 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9144 BTRFS_BLOCK_RSV_DELALLOC); 9145 ei->runtime_flags = 0; 9146 ei->prop_compress = BTRFS_COMPRESS_NONE; 9147 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9148 9149 ei->delayed_node = NULL; 9150 9151 ei->i_otime.tv_sec = 0; 9152 ei->i_otime.tv_nsec = 0; 9153 9154 inode = &ei->vfs_inode; 9155 extent_map_tree_init(&ei->extent_tree); 9156 extent_io_tree_init(&ei->io_tree, inode); 9157 extent_io_tree_init(&ei->io_failure_tree, inode); 9158 ei->io_tree.track_uptodate = 1; 9159 ei->io_failure_tree.track_uptodate = 1; 9160 atomic_set(&ei->sync_writers, 0); 9161 mutex_init(&ei->log_mutex); 9162 mutex_init(&ei->delalloc_mutex); 9163 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9164 INIT_LIST_HEAD(&ei->delalloc_inodes); 9165 INIT_LIST_HEAD(&ei->delayed_iput); 9166 RB_CLEAR_NODE(&ei->rb_node); 9167 init_rwsem(&ei->dio_sem); 9168 9169 return inode; 9170 } 9171 9172 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9173 void btrfs_test_destroy_inode(struct inode *inode) 9174 { 9175 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9176 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9177 } 9178 #endif 9179 9180 static void btrfs_i_callback(struct rcu_head *head) 9181 { 9182 struct inode *inode = container_of(head, struct inode, i_rcu); 9183 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9184 } 9185 9186 void btrfs_destroy_inode(struct inode *inode) 9187 { 9188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9189 struct btrfs_ordered_extent *ordered; 9190 struct btrfs_root *root = BTRFS_I(inode)->root; 9191 9192 WARN_ON(!hlist_empty(&inode->i_dentry)); 9193 WARN_ON(inode->i_data.nrpages); 9194 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9195 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9196 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9197 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9198 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9199 WARN_ON(BTRFS_I(inode)->csum_bytes); 9200 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9201 9202 /* 9203 * This can happen where we create an inode, but somebody else also 9204 * created the same inode and we need to destroy the one we already 9205 * created. 9206 */ 9207 if (!root) 9208 goto free; 9209 9210 while (1) { 9211 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9212 if (!ordered) 9213 break; 9214 else { 9215 btrfs_err(fs_info, 9216 "found ordered extent %llu %llu on inode cleanup", 9217 ordered->file_offset, ordered->len); 9218 btrfs_remove_ordered_extent(inode, ordered); 9219 btrfs_put_ordered_extent(ordered); 9220 btrfs_put_ordered_extent(ordered); 9221 } 9222 } 9223 btrfs_qgroup_check_reserved_leak(inode); 9224 inode_tree_del(inode); 9225 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9226 free: 9227 call_rcu(&inode->i_rcu, btrfs_i_callback); 9228 } 9229 9230 int btrfs_drop_inode(struct inode *inode) 9231 { 9232 struct btrfs_root *root = BTRFS_I(inode)->root; 9233 9234 if (root == NULL) 9235 return 1; 9236 9237 /* the snap/subvol tree is on deleting */ 9238 if (btrfs_root_refs(&root->root_item) == 0) 9239 return 1; 9240 else 9241 return generic_drop_inode(inode); 9242 } 9243 9244 static void init_once(void *foo) 9245 { 9246 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9247 9248 inode_init_once(&ei->vfs_inode); 9249 } 9250 9251 void __cold btrfs_destroy_cachep(void) 9252 { 9253 /* 9254 * Make sure all delayed rcu free inodes are flushed before we 9255 * destroy cache. 9256 */ 9257 rcu_barrier(); 9258 kmem_cache_destroy(btrfs_inode_cachep); 9259 kmem_cache_destroy(btrfs_trans_handle_cachep); 9260 kmem_cache_destroy(btrfs_path_cachep); 9261 kmem_cache_destroy(btrfs_free_space_cachep); 9262 } 9263 9264 int __init btrfs_init_cachep(void) 9265 { 9266 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9267 sizeof(struct btrfs_inode), 0, 9268 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9269 init_once); 9270 if (!btrfs_inode_cachep) 9271 goto fail; 9272 9273 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9274 sizeof(struct btrfs_trans_handle), 0, 9275 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9276 if (!btrfs_trans_handle_cachep) 9277 goto fail; 9278 9279 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9280 sizeof(struct btrfs_path), 0, 9281 SLAB_MEM_SPREAD, NULL); 9282 if (!btrfs_path_cachep) 9283 goto fail; 9284 9285 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9286 sizeof(struct btrfs_free_space), 0, 9287 SLAB_MEM_SPREAD, NULL); 9288 if (!btrfs_free_space_cachep) 9289 goto fail; 9290 9291 return 0; 9292 fail: 9293 btrfs_destroy_cachep(); 9294 return -ENOMEM; 9295 } 9296 9297 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9298 u32 request_mask, unsigned int flags) 9299 { 9300 u64 delalloc_bytes; 9301 struct inode *inode = d_inode(path->dentry); 9302 u32 blocksize = inode->i_sb->s_blocksize; 9303 u32 bi_flags = BTRFS_I(inode)->flags; 9304 9305 stat->result_mask |= STATX_BTIME; 9306 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9307 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9308 if (bi_flags & BTRFS_INODE_APPEND) 9309 stat->attributes |= STATX_ATTR_APPEND; 9310 if (bi_flags & BTRFS_INODE_COMPRESS) 9311 stat->attributes |= STATX_ATTR_COMPRESSED; 9312 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9313 stat->attributes |= STATX_ATTR_IMMUTABLE; 9314 if (bi_flags & BTRFS_INODE_NODUMP) 9315 stat->attributes |= STATX_ATTR_NODUMP; 9316 9317 stat->attributes_mask |= (STATX_ATTR_APPEND | 9318 STATX_ATTR_COMPRESSED | 9319 STATX_ATTR_IMMUTABLE | 9320 STATX_ATTR_NODUMP); 9321 9322 generic_fillattr(inode, stat); 9323 stat->dev = BTRFS_I(inode)->root->anon_dev; 9324 9325 spin_lock(&BTRFS_I(inode)->lock); 9326 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9327 spin_unlock(&BTRFS_I(inode)->lock); 9328 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9329 ALIGN(delalloc_bytes, blocksize)) >> 9; 9330 return 0; 9331 } 9332 9333 static int btrfs_rename_exchange(struct inode *old_dir, 9334 struct dentry *old_dentry, 9335 struct inode *new_dir, 9336 struct dentry *new_dentry) 9337 { 9338 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9339 struct btrfs_trans_handle *trans; 9340 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9341 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9342 struct inode *new_inode = new_dentry->d_inode; 9343 struct inode *old_inode = old_dentry->d_inode; 9344 struct timespec64 ctime = current_time(old_inode); 9345 struct dentry *parent; 9346 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9347 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9348 u64 old_idx = 0; 9349 u64 new_idx = 0; 9350 u64 root_objectid; 9351 int ret; 9352 bool root_log_pinned = false; 9353 bool dest_log_pinned = false; 9354 struct btrfs_log_ctx ctx_root; 9355 struct btrfs_log_ctx ctx_dest; 9356 bool sync_log_root = false; 9357 bool sync_log_dest = false; 9358 bool commit_transaction = false; 9359 9360 /* we only allow rename subvolume link between subvolumes */ 9361 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9362 return -EXDEV; 9363 9364 btrfs_init_log_ctx(&ctx_root, old_inode); 9365 btrfs_init_log_ctx(&ctx_dest, new_inode); 9366 9367 /* close the race window with snapshot create/destroy ioctl */ 9368 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9369 down_read(&fs_info->subvol_sem); 9370 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9371 down_read(&fs_info->subvol_sem); 9372 9373 /* 9374 * We want to reserve the absolute worst case amount of items. So if 9375 * both inodes are subvols and we need to unlink them then that would 9376 * require 4 item modifications, but if they are both normal inodes it 9377 * would require 5 item modifications, so we'll assume their normal 9378 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9379 * should cover the worst case number of items we'll modify. 9380 */ 9381 trans = btrfs_start_transaction(root, 12); 9382 if (IS_ERR(trans)) { 9383 ret = PTR_ERR(trans); 9384 goto out_notrans; 9385 } 9386 9387 /* 9388 * We need to find a free sequence number both in the source and 9389 * in the destination directory for the exchange. 9390 */ 9391 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9392 if (ret) 9393 goto out_fail; 9394 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9395 if (ret) 9396 goto out_fail; 9397 9398 BTRFS_I(old_inode)->dir_index = 0ULL; 9399 BTRFS_I(new_inode)->dir_index = 0ULL; 9400 9401 /* Reference for the source. */ 9402 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9403 /* force full log commit if subvolume involved. */ 9404 btrfs_set_log_full_commit(fs_info, trans); 9405 } else { 9406 btrfs_pin_log_trans(root); 9407 root_log_pinned = true; 9408 ret = btrfs_insert_inode_ref(trans, dest, 9409 new_dentry->d_name.name, 9410 new_dentry->d_name.len, 9411 old_ino, 9412 btrfs_ino(BTRFS_I(new_dir)), 9413 old_idx); 9414 if (ret) 9415 goto out_fail; 9416 } 9417 9418 /* And now for the dest. */ 9419 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9420 /* force full log commit if subvolume involved. */ 9421 btrfs_set_log_full_commit(fs_info, trans); 9422 } else { 9423 btrfs_pin_log_trans(dest); 9424 dest_log_pinned = true; 9425 ret = btrfs_insert_inode_ref(trans, root, 9426 old_dentry->d_name.name, 9427 old_dentry->d_name.len, 9428 new_ino, 9429 btrfs_ino(BTRFS_I(old_dir)), 9430 new_idx); 9431 if (ret) 9432 goto out_fail; 9433 } 9434 9435 /* Update inode version and ctime/mtime. */ 9436 inode_inc_iversion(old_dir); 9437 inode_inc_iversion(new_dir); 9438 inode_inc_iversion(old_inode); 9439 inode_inc_iversion(new_inode); 9440 old_dir->i_ctime = old_dir->i_mtime = ctime; 9441 new_dir->i_ctime = new_dir->i_mtime = ctime; 9442 old_inode->i_ctime = ctime; 9443 new_inode->i_ctime = ctime; 9444 9445 if (old_dentry->d_parent != new_dentry->d_parent) { 9446 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9447 BTRFS_I(old_inode), 1); 9448 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9449 BTRFS_I(new_inode), 1); 9450 } 9451 9452 /* src is a subvolume */ 9453 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9454 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9455 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9456 old_dentry->d_name.name, 9457 old_dentry->d_name.len); 9458 } else { /* src is an inode */ 9459 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9460 BTRFS_I(old_dentry->d_inode), 9461 old_dentry->d_name.name, 9462 old_dentry->d_name.len); 9463 if (!ret) 9464 ret = btrfs_update_inode(trans, root, old_inode); 9465 } 9466 if (ret) { 9467 btrfs_abort_transaction(trans, ret); 9468 goto out_fail; 9469 } 9470 9471 /* dest is a subvolume */ 9472 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9473 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9474 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9475 new_dentry->d_name.name, 9476 new_dentry->d_name.len); 9477 } else { /* dest is an inode */ 9478 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9479 BTRFS_I(new_dentry->d_inode), 9480 new_dentry->d_name.name, 9481 new_dentry->d_name.len); 9482 if (!ret) 9483 ret = btrfs_update_inode(trans, dest, new_inode); 9484 } 9485 if (ret) { 9486 btrfs_abort_transaction(trans, ret); 9487 goto out_fail; 9488 } 9489 9490 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9491 new_dentry->d_name.name, 9492 new_dentry->d_name.len, 0, old_idx); 9493 if (ret) { 9494 btrfs_abort_transaction(trans, ret); 9495 goto out_fail; 9496 } 9497 9498 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9499 old_dentry->d_name.name, 9500 old_dentry->d_name.len, 0, new_idx); 9501 if (ret) { 9502 btrfs_abort_transaction(trans, ret); 9503 goto out_fail; 9504 } 9505 9506 if (old_inode->i_nlink == 1) 9507 BTRFS_I(old_inode)->dir_index = old_idx; 9508 if (new_inode->i_nlink == 1) 9509 BTRFS_I(new_inode)->dir_index = new_idx; 9510 9511 if (root_log_pinned) { 9512 parent = new_dentry->d_parent; 9513 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9514 BTRFS_I(old_dir), parent, 9515 false, &ctx_root); 9516 if (ret == BTRFS_NEED_LOG_SYNC) 9517 sync_log_root = true; 9518 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9519 commit_transaction = true; 9520 ret = 0; 9521 btrfs_end_log_trans(root); 9522 root_log_pinned = false; 9523 } 9524 if (dest_log_pinned) { 9525 if (!commit_transaction) { 9526 parent = old_dentry->d_parent; 9527 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9528 BTRFS_I(new_dir), parent, 9529 false, &ctx_dest); 9530 if (ret == BTRFS_NEED_LOG_SYNC) 9531 sync_log_dest = true; 9532 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9533 commit_transaction = true; 9534 ret = 0; 9535 } 9536 btrfs_end_log_trans(dest); 9537 dest_log_pinned = false; 9538 } 9539 out_fail: 9540 /* 9541 * If we have pinned a log and an error happened, we unpin tasks 9542 * trying to sync the log and force them to fallback to a transaction 9543 * commit if the log currently contains any of the inodes involved in 9544 * this rename operation (to ensure we do not persist a log with an 9545 * inconsistent state for any of these inodes or leading to any 9546 * inconsistencies when replayed). If the transaction was aborted, the 9547 * abortion reason is propagated to userspace when attempting to commit 9548 * the transaction. If the log does not contain any of these inodes, we 9549 * allow the tasks to sync it. 9550 */ 9551 if (ret && (root_log_pinned || dest_log_pinned)) { 9552 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9553 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9554 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9555 (new_inode && 9556 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9557 btrfs_set_log_full_commit(fs_info, trans); 9558 9559 if (root_log_pinned) { 9560 btrfs_end_log_trans(root); 9561 root_log_pinned = false; 9562 } 9563 if (dest_log_pinned) { 9564 btrfs_end_log_trans(dest); 9565 dest_log_pinned = false; 9566 } 9567 } 9568 if (!ret && sync_log_root && !commit_transaction) { 9569 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9570 &ctx_root); 9571 if (ret) 9572 commit_transaction = true; 9573 } 9574 if (!ret && sync_log_dest && !commit_transaction) { 9575 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9576 &ctx_dest); 9577 if (ret) 9578 commit_transaction = true; 9579 } 9580 if (commit_transaction) { 9581 ret = btrfs_commit_transaction(trans); 9582 } else { 9583 int ret2; 9584 9585 ret2 = btrfs_end_transaction(trans); 9586 ret = ret ? ret : ret2; 9587 } 9588 out_notrans: 9589 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9590 up_read(&fs_info->subvol_sem); 9591 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9592 up_read(&fs_info->subvol_sem); 9593 9594 return ret; 9595 } 9596 9597 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9598 struct btrfs_root *root, 9599 struct inode *dir, 9600 struct dentry *dentry) 9601 { 9602 int ret; 9603 struct inode *inode; 9604 u64 objectid; 9605 u64 index; 9606 9607 ret = btrfs_find_free_ino(root, &objectid); 9608 if (ret) 9609 return ret; 9610 9611 inode = btrfs_new_inode(trans, root, dir, 9612 dentry->d_name.name, 9613 dentry->d_name.len, 9614 btrfs_ino(BTRFS_I(dir)), 9615 objectid, 9616 S_IFCHR | WHITEOUT_MODE, 9617 &index); 9618 9619 if (IS_ERR(inode)) { 9620 ret = PTR_ERR(inode); 9621 return ret; 9622 } 9623 9624 inode->i_op = &btrfs_special_inode_operations; 9625 init_special_inode(inode, inode->i_mode, 9626 WHITEOUT_DEV); 9627 9628 ret = btrfs_init_inode_security(trans, inode, dir, 9629 &dentry->d_name); 9630 if (ret) 9631 goto out; 9632 9633 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9634 BTRFS_I(inode), 0, index); 9635 if (ret) 9636 goto out; 9637 9638 ret = btrfs_update_inode(trans, root, inode); 9639 out: 9640 unlock_new_inode(inode); 9641 if (ret) 9642 inode_dec_link_count(inode); 9643 iput(inode); 9644 9645 return ret; 9646 } 9647 9648 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9649 struct inode *new_dir, struct dentry *new_dentry, 9650 unsigned int flags) 9651 { 9652 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9653 struct btrfs_trans_handle *trans; 9654 unsigned int trans_num_items; 9655 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9656 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9657 struct inode *new_inode = d_inode(new_dentry); 9658 struct inode *old_inode = d_inode(old_dentry); 9659 u64 index = 0; 9660 u64 root_objectid; 9661 int ret; 9662 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9663 bool log_pinned = false; 9664 struct btrfs_log_ctx ctx; 9665 bool sync_log = false; 9666 bool commit_transaction = false; 9667 9668 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9669 return -EPERM; 9670 9671 /* we only allow rename subvolume link between subvolumes */ 9672 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9673 return -EXDEV; 9674 9675 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9676 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9677 return -ENOTEMPTY; 9678 9679 if (S_ISDIR(old_inode->i_mode) && new_inode && 9680 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9681 return -ENOTEMPTY; 9682 9683 9684 /* check for collisions, even if the name isn't there */ 9685 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9686 new_dentry->d_name.name, 9687 new_dentry->d_name.len); 9688 9689 if (ret) { 9690 if (ret == -EEXIST) { 9691 /* we shouldn't get 9692 * eexist without a new_inode */ 9693 if (WARN_ON(!new_inode)) { 9694 return ret; 9695 } 9696 } else { 9697 /* maybe -EOVERFLOW */ 9698 return ret; 9699 } 9700 } 9701 ret = 0; 9702 9703 /* 9704 * we're using rename to replace one file with another. Start IO on it 9705 * now so we don't add too much work to the end of the transaction 9706 */ 9707 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9708 filemap_flush(old_inode->i_mapping); 9709 9710 /* close the racy window with snapshot create/destroy ioctl */ 9711 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9712 down_read(&fs_info->subvol_sem); 9713 /* 9714 * We want to reserve the absolute worst case amount of items. So if 9715 * both inodes are subvols and we need to unlink them then that would 9716 * require 4 item modifications, but if they are both normal inodes it 9717 * would require 5 item modifications, so we'll assume they are normal 9718 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9719 * should cover the worst case number of items we'll modify. 9720 * If our rename has the whiteout flag, we need more 5 units for the 9721 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9722 * when selinux is enabled). 9723 */ 9724 trans_num_items = 11; 9725 if (flags & RENAME_WHITEOUT) 9726 trans_num_items += 5; 9727 trans = btrfs_start_transaction(root, trans_num_items); 9728 if (IS_ERR(trans)) { 9729 ret = PTR_ERR(trans); 9730 goto out_notrans; 9731 } 9732 9733 if (dest != root) 9734 btrfs_record_root_in_trans(trans, dest); 9735 9736 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9737 if (ret) 9738 goto out_fail; 9739 9740 BTRFS_I(old_inode)->dir_index = 0ULL; 9741 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9742 /* force full log commit if subvolume involved. */ 9743 btrfs_set_log_full_commit(fs_info, trans); 9744 } else { 9745 btrfs_pin_log_trans(root); 9746 log_pinned = true; 9747 ret = btrfs_insert_inode_ref(trans, dest, 9748 new_dentry->d_name.name, 9749 new_dentry->d_name.len, 9750 old_ino, 9751 btrfs_ino(BTRFS_I(new_dir)), index); 9752 if (ret) 9753 goto out_fail; 9754 } 9755 9756 inode_inc_iversion(old_dir); 9757 inode_inc_iversion(new_dir); 9758 inode_inc_iversion(old_inode); 9759 old_dir->i_ctime = old_dir->i_mtime = 9760 new_dir->i_ctime = new_dir->i_mtime = 9761 old_inode->i_ctime = current_time(old_dir); 9762 9763 if (old_dentry->d_parent != new_dentry->d_parent) 9764 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9765 BTRFS_I(old_inode), 1); 9766 9767 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9768 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9769 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9770 old_dentry->d_name.name, 9771 old_dentry->d_name.len); 9772 } else { 9773 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9774 BTRFS_I(d_inode(old_dentry)), 9775 old_dentry->d_name.name, 9776 old_dentry->d_name.len); 9777 if (!ret) 9778 ret = btrfs_update_inode(trans, root, old_inode); 9779 } 9780 if (ret) { 9781 btrfs_abort_transaction(trans, ret); 9782 goto out_fail; 9783 } 9784 9785 if (new_inode) { 9786 inode_inc_iversion(new_inode); 9787 new_inode->i_ctime = current_time(new_inode); 9788 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9789 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9790 root_objectid = BTRFS_I(new_inode)->location.objectid; 9791 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9792 new_dentry->d_name.name, 9793 new_dentry->d_name.len); 9794 BUG_ON(new_inode->i_nlink == 0); 9795 } else { 9796 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9797 BTRFS_I(d_inode(new_dentry)), 9798 new_dentry->d_name.name, 9799 new_dentry->d_name.len); 9800 } 9801 if (!ret && new_inode->i_nlink == 0) 9802 ret = btrfs_orphan_add(trans, 9803 BTRFS_I(d_inode(new_dentry))); 9804 if (ret) { 9805 btrfs_abort_transaction(trans, ret); 9806 goto out_fail; 9807 } 9808 } 9809 9810 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9811 new_dentry->d_name.name, 9812 new_dentry->d_name.len, 0, index); 9813 if (ret) { 9814 btrfs_abort_transaction(trans, ret); 9815 goto out_fail; 9816 } 9817 9818 if (old_inode->i_nlink == 1) 9819 BTRFS_I(old_inode)->dir_index = index; 9820 9821 if (log_pinned) { 9822 struct dentry *parent = new_dentry->d_parent; 9823 9824 btrfs_init_log_ctx(&ctx, old_inode); 9825 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9826 BTRFS_I(old_dir), parent, 9827 false, &ctx); 9828 if (ret == BTRFS_NEED_LOG_SYNC) 9829 sync_log = true; 9830 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9831 commit_transaction = true; 9832 ret = 0; 9833 btrfs_end_log_trans(root); 9834 log_pinned = false; 9835 } 9836 9837 if (flags & RENAME_WHITEOUT) { 9838 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9839 old_dentry); 9840 9841 if (ret) { 9842 btrfs_abort_transaction(trans, ret); 9843 goto out_fail; 9844 } 9845 } 9846 out_fail: 9847 /* 9848 * If we have pinned the log and an error happened, we unpin tasks 9849 * trying to sync the log and force them to fallback to a transaction 9850 * commit if the log currently contains any of the inodes involved in 9851 * this rename operation (to ensure we do not persist a log with an 9852 * inconsistent state for any of these inodes or leading to any 9853 * inconsistencies when replayed). If the transaction was aborted, the 9854 * abortion reason is propagated to userspace when attempting to commit 9855 * the transaction. If the log does not contain any of these inodes, we 9856 * allow the tasks to sync it. 9857 */ 9858 if (ret && log_pinned) { 9859 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9860 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9861 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9862 (new_inode && 9863 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9864 btrfs_set_log_full_commit(fs_info, trans); 9865 9866 btrfs_end_log_trans(root); 9867 log_pinned = false; 9868 } 9869 if (!ret && sync_log) { 9870 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9871 if (ret) 9872 commit_transaction = true; 9873 } 9874 if (commit_transaction) { 9875 ret = btrfs_commit_transaction(trans); 9876 } else { 9877 int ret2; 9878 9879 ret2 = btrfs_end_transaction(trans); 9880 ret = ret ? ret : ret2; 9881 } 9882 out_notrans: 9883 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9884 up_read(&fs_info->subvol_sem); 9885 9886 return ret; 9887 } 9888 9889 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9890 struct inode *new_dir, struct dentry *new_dentry, 9891 unsigned int flags) 9892 { 9893 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9894 return -EINVAL; 9895 9896 if (flags & RENAME_EXCHANGE) 9897 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9898 new_dentry); 9899 9900 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9901 } 9902 9903 struct btrfs_delalloc_work { 9904 struct inode *inode; 9905 struct completion completion; 9906 struct list_head list; 9907 struct btrfs_work work; 9908 }; 9909 9910 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9911 { 9912 struct btrfs_delalloc_work *delalloc_work; 9913 struct inode *inode; 9914 9915 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9916 work); 9917 inode = delalloc_work->inode; 9918 filemap_flush(inode->i_mapping); 9919 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9920 &BTRFS_I(inode)->runtime_flags)) 9921 filemap_flush(inode->i_mapping); 9922 9923 iput(inode); 9924 complete(&delalloc_work->completion); 9925 } 9926 9927 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9928 { 9929 struct btrfs_delalloc_work *work; 9930 9931 work = kmalloc(sizeof(*work), GFP_NOFS); 9932 if (!work) 9933 return NULL; 9934 9935 init_completion(&work->completion); 9936 INIT_LIST_HEAD(&work->list); 9937 work->inode = inode; 9938 WARN_ON_ONCE(!inode); 9939 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9940 btrfs_run_delalloc_work, NULL, NULL); 9941 9942 return work; 9943 } 9944 9945 /* 9946 * some fairly slow code that needs optimization. This walks the list 9947 * of all the inodes with pending delalloc and forces them to disk. 9948 */ 9949 static int start_delalloc_inodes(struct btrfs_root *root, int nr) 9950 { 9951 struct btrfs_inode *binode; 9952 struct inode *inode; 9953 struct btrfs_delalloc_work *work, *next; 9954 struct list_head works; 9955 struct list_head splice; 9956 int ret = 0; 9957 9958 INIT_LIST_HEAD(&works); 9959 INIT_LIST_HEAD(&splice); 9960 9961 mutex_lock(&root->delalloc_mutex); 9962 spin_lock(&root->delalloc_lock); 9963 list_splice_init(&root->delalloc_inodes, &splice); 9964 while (!list_empty(&splice)) { 9965 binode = list_entry(splice.next, struct btrfs_inode, 9966 delalloc_inodes); 9967 9968 list_move_tail(&binode->delalloc_inodes, 9969 &root->delalloc_inodes); 9970 inode = igrab(&binode->vfs_inode); 9971 if (!inode) { 9972 cond_resched_lock(&root->delalloc_lock); 9973 continue; 9974 } 9975 spin_unlock(&root->delalloc_lock); 9976 9977 work = btrfs_alloc_delalloc_work(inode); 9978 if (!work) { 9979 iput(inode); 9980 ret = -ENOMEM; 9981 goto out; 9982 } 9983 list_add_tail(&work->list, &works); 9984 btrfs_queue_work(root->fs_info->flush_workers, 9985 &work->work); 9986 ret++; 9987 if (nr != -1 && ret >= nr) 9988 goto out; 9989 cond_resched(); 9990 spin_lock(&root->delalloc_lock); 9991 } 9992 spin_unlock(&root->delalloc_lock); 9993 9994 out: 9995 list_for_each_entry_safe(work, next, &works, list) { 9996 list_del_init(&work->list); 9997 wait_for_completion(&work->completion); 9998 kfree(work); 9999 } 10000 10001 if (!list_empty(&splice)) { 10002 spin_lock(&root->delalloc_lock); 10003 list_splice_tail(&splice, &root->delalloc_inodes); 10004 spin_unlock(&root->delalloc_lock); 10005 } 10006 mutex_unlock(&root->delalloc_mutex); 10007 return ret; 10008 } 10009 10010 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 10011 { 10012 struct btrfs_fs_info *fs_info = root->fs_info; 10013 int ret; 10014 10015 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10016 return -EROFS; 10017 10018 ret = start_delalloc_inodes(root, -1); 10019 if (ret > 0) 10020 ret = 0; 10021 return ret; 10022 } 10023 10024 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10025 { 10026 struct btrfs_root *root; 10027 struct list_head splice; 10028 int ret; 10029 10030 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10031 return -EROFS; 10032 10033 INIT_LIST_HEAD(&splice); 10034 10035 mutex_lock(&fs_info->delalloc_root_mutex); 10036 spin_lock(&fs_info->delalloc_root_lock); 10037 list_splice_init(&fs_info->delalloc_roots, &splice); 10038 while (!list_empty(&splice) && nr) { 10039 root = list_first_entry(&splice, struct btrfs_root, 10040 delalloc_root); 10041 root = btrfs_grab_fs_root(root); 10042 BUG_ON(!root); 10043 list_move_tail(&root->delalloc_root, 10044 &fs_info->delalloc_roots); 10045 spin_unlock(&fs_info->delalloc_root_lock); 10046 10047 ret = start_delalloc_inodes(root, nr); 10048 btrfs_put_fs_root(root); 10049 if (ret < 0) 10050 goto out; 10051 10052 if (nr != -1) { 10053 nr -= ret; 10054 WARN_ON(nr < 0); 10055 } 10056 spin_lock(&fs_info->delalloc_root_lock); 10057 } 10058 spin_unlock(&fs_info->delalloc_root_lock); 10059 10060 ret = 0; 10061 out: 10062 if (!list_empty(&splice)) { 10063 spin_lock(&fs_info->delalloc_root_lock); 10064 list_splice_tail(&splice, &fs_info->delalloc_roots); 10065 spin_unlock(&fs_info->delalloc_root_lock); 10066 } 10067 mutex_unlock(&fs_info->delalloc_root_mutex); 10068 return ret; 10069 } 10070 10071 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10072 const char *symname) 10073 { 10074 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10075 struct btrfs_trans_handle *trans; 10076 struct btrfs_root *root = BTRFS_I(dir)->root; 10077 struct btrfs_path *path; 10078 struct btrfs_key key; 10079 struct inode *inode = NULL; 10080 int err; 10081 u64 objectid; 10082 u64 index = 0; 10083 int name_len; 10084 int datasize; 10085 unsigned long ptr; 10086 struct btrfs_file_extent_item *ei; 10087 struct extent_buffer *leaf; 10088 10089 name_len = strlen(symname); 10090 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10091 return -ENAMETOOLONG; 10092 10093 /* 10094 * 2 items for inode item and ref 10095 * 2 items for dir items 10096 * 1 item for updating parent inode item 10097 * 1 item for the inline extent item 10098 * 1 item for xattr if selinux is on 10099 */ 10100 trans = btrfs_start_transaction(root, 7); 10101 if (IS_ERR(trans)) 10102 return PTR_ERR(trans); 10103 10104 err = btrfs_find_free_ino(root, &objectid); 10105 if (err) 10106 goto out_unlock; 10107 10108 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10109 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10110 objectid, S_IFLNK|S_IRWXUGO, &index); 10111 if (IS_ERR(inode)) { 10112 err = PTR_ERR(inode); 10113 inode = NULL; 10114 goto out_unlock; 10115 } 10116 10117 /* 10118 * If the active LSM wants to access the inode during 10119 * d_instantiate it needs these. Smack checks to see 10120 * if the filesystem supports xattrs by looking at the 10121 * ops vector. 10122 */ 10123 inode->i_fop = &btrfs_file_operations; 10124 inode->i_op = &btrfs_file_inode_operations; 10125 inode->i_mapping->a_ops = &btrfs_aops; 10126 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10127 10128 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10129 if (err) 10130 goto out_unlock; 10131 10132 path = btrfs_alloc_path(); 10133 if (!path) { 10134 err = -ENOMEM; 10135 goto out_unlock; 10136 } 10137 key.objectid = btrfs_ino(BTRFS_I(inode)); 10138 key.offset = 0; 10139 key.type = BTRFS_EXTENT_DATA_KEY; 10140 datasize = btrfs_file_extent_calc_inline_size(name_len); 10141 err = btrfs_insert_empty_item(trans, root, path, &key, 10142 datasize); 10143 if (err) { 10144 btrfs_free_path(path); 10145 goto out_unlock; 10146 } 10147 leaf = path->nodes[0]; 10148 ei = btrfs_item_ptr(leaf, path->slots[0], 10149 struct btrfs_file_extent_item); 10150 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10151 btrfs_set_file_extent_type(leaf, ei, 10152 BTRFS_FILE_EXTENT_INLINE); 10153 btrfs_set_file_extent_encryption(leaf, ei, 0); 10154 btrfs_set_file_extent_compression(leaf, ei, 0); 10155 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10156 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10157 10158 ptr = btrfs_file_extent_inline_start(ei); 10159 write_extent_buffer(leaf, symname, ptr, name_len); 10160 btrfs_mark_buffer_dirty(leaf); 10161 btrfs_free_path(path); 10162 10163 inode->i_op = &btrfs_symlink_inode_operations; 10164 inode_nohighmem(inode); 10165 inode->i_mapping->a_ops = &btrfs_aops; 10166 inode_set_bytes(inode, name_len); 10167 btrfs_i_size_write(BTRFS_I(inode), name_len); 10168 err = btrfs_update_inode(trans, root, inode); 10169 /* 10170 * Last step, add directory indexes for our symlink inode. This is the 10171 * last step to avoid extra cleanup of these indexes if an error happens 10172 * elsewhere above. 10173 */ 10174 if (!err) 10175 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10176 BTRFS_I(inode), 0, index); 10177 if (err) 10178 goto out_unlock; 10179 10180 d_instantiate_new(dentry, inode); 10181 10182 out_unlock: 10183 btrfs_end_transaction(trans); 10184 if (err && inode) { 10185 inode_dec_link_count(inode); 10186 discard_new_inode(inode); 10187 } 10188 btrfs_btree_balance_dirty(fs_info); 10189 return err; 10190 } 10191 10192 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10193 u64 start, u64 num_bytes, u64 min_size, 10194 loff_t actual_len, u64 *alloc_hint, 10195 struct btrfs_trans_handle *trans) 10196 { 10197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10198 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10199 struct extent_map *em; 10200 struct btrfs_root *root = BTRFS_I(inode)->root; 10201 struct btrfs_key ins; 10202 u64 cur_offset = start; 10203 u64 i_size; 10204 u64 cur_bytes; 10205 u64 last_alloc = (u64)-1; 10206 int ret = 0; 10207 bool own_trans = true; 10208 u64 end = start + num_bytes - 1; 10209 10210 if (trans) 10211 own_trans = false; 10212 while (num_bytes > 0) { 10213 if (own_trans) { 10214 trans = btrfs_start_transaction(root, 3); 10215 if (IS_ERR(trans)) { 10216 ret = PTR_ERR(trans); 10217 break; 10218 } 10219 } 10220 10221 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10222 cur_bytes = max(cur_bytes, min_size); 10223 /* 10224 * If we are severely fragmented we could end up with really 10225 * small allocations, so if the allocator is returning small 10226 * chunks lets make its job easier by only searching for those 10227 * sized chunks. 10228 */ 10229 cur_bytes = min(cur_bytes, last_alloc); 10230 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10231 min_size, 0, *alloc_hint, &ins, 1, 0); 10232 if (ret) { 10233 if (own_trans) 10234 btrfs_end_transaction(trans); 10235 break; 10236 } 10237 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10238 10239 last_alloc = ins.offset; 10240 ret = insert_reserved_file_extent(trans, inode, 10241 cur_offset, ins.objectid, 10242 ins.offset, ins.offset, 10243 ins.offset, 0, 0, 0, 10244 BTRFS_FILE_EXTENT_PREALLOC); 10245 if (ret) { 10246 btrfs_free_reserved_extent(fs_info, ins.objectid, 10247 ins.offset, 0); 10248 btrfs_abort_transaction(trans, ret); 10249 if (own_trans) 10250 btrfs_end_transaction(trans); 10251 break; 10252 } 10253 10254 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10255 cur_offset + ins.offset -1, 0); 10256 10257 em = alloc_extent_map(); 10258 if (!em) { 10259 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10260 &BTRFS_I(inode)->runtime_flags); 10261 goto next; 10262 } 10263 10264 em->start = cur_offset; 10265 em->orig_start = cur_offset; 10266 em->len = ins.offset; 10267 em->block_start = ins.objectid; 10268 em->block_len = ins.offset; 10269 em->orig_block_len = ins.offset; 10270 em->ram_bytes = ins.offset; 10271 em->bdev = fs_info->fs_devices->latest_bdev; 10272 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10273 em->generation = trans->transid; 10274 10275 while (1) { 10276 write_lock(&em_tree->lock); 10277 ret = add_extent_mapping(em_tree, em, 1); 10278 write_unlock(&em_tree->lock); 10279 if (ret != -EEXIST) 10280 break; 10281 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10282 cur_offset + ins.offset - 1, 10283 0); 10284 } 10285 free_extent_map(em); 10286 next: 10287 num_bytes -= ins.offset; 10288 cur_offset += ins.offset; 10289 *alloc_hint = ins.objectid + ins.offset; 10290 10291 inode_inc_iversion(inode); 10292 inode->i_ctime = current_time(inode); 10293 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10294 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10295 (actual_len > inode->i_size) && 10296 (cur_offset > inode->i_size)) { 10297 if (cur_offset > actual_len) 10298 i_size = actual_len; 10299 else 10300 i_size = cur_offset; 10301 i_size_write(inode, i_size); 10302 btrfs_ordered_update_i_size(inode, i_size, NULL); 10303 } 10304 10305 ret = btrfs_update_inode(trans, root, inode); 10306 10307 if (ret) { 10308 btrfs_abort_transaction(trans, ret); 10309 if (own_trans) 10310 btrfs_end_transaction(trans); 10311 break; 10312 } 10313 10314 if (own_trans) 10315 btrfs_end_transaction(trans); 10316 } 10317 if (cur_offset < end) 10318 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10319 end - cur_offset + 1); 10320 return ret; 10321 } 10322 10323 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10324 u64 start, u64 num_bytes, u64 min_size, 10325 loff_t actual_len, u64 *alloc_hint) 10326 { 10327 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10328 min_size, actual_len, alloc_hint, 10329 NULL); 10330 } 10331 10332 int btrfs_prealloc_file_range_trans(struct inode *inode, 10333 struct btrfs_trans_handle *trans, int mode, 10334 u64 start, u64 num_bytes, u64 min_size, 10335 loff_t actual_len, u64 *alloc_hint) 10336 { 10337 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10338 min_size, actual_len, alloc_hint, trans); 10339 } 10340 10341 static int btrfs_set_page_dirty(struct page *page) 10342 { 10343 return __set_page_dirty_nobuffers(page); 10344 } 10345 10346 static int btrfs_permission(struct inode *inode, int mask) 10347 { 10348 struct btrfs_root *root = BTRFS_I(inode)->root; 10349 umode_t mode = inode->i_mode; 10350 10351 if (mask & MAY_WRITE && 10352 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10353 if (btrfs_root_readonly(root)) 10354 return -EROFS; 10355 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10356 return -EACCES; 10357 } 10358 return generic_permission(inode, mask); 10359 } 10360 10361 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10362 { 10363 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10364 struct btrfs_trans_handle *trans; 10365 struct btrfs_root *root = BTRFS_I(dir)->root; 10366 struct inode *inode = NULL; 10367 u64 objectid; 10368 u64 index; 10369 int ret = 0; 10370 10371 /* 10372 * 5 units required for adding orphan entry 10373 */ 10374 trans = btrfs_start_transaction(root, 5); 10375 if (IS_ERR(trans)) 10376 return PTR_ERR(trans); 10377 10378 ret = btrfs_find_free_ino(root, &objectid); 10379 if (ret) 10380 goto out; 10381 10382 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10383 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10384 if (IS_ERR(inode)) { 10385 ret = PTR_ERR(inode); 10386 inode = NULL; 10387 goto out; 10388 } 10389 10390 inode->i_fop = &btrfs_file_operations; 10391 inode->i_op = &btrfs_file_inode_operations; 10392 10393 inode->i_mapping->a_ops = &btrfs_aops; 10394 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10395 10396 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10397 if (ret) 10398 goto out; 10399 10400 ret = btrfs_update_inode(trans, root, inode); 10401 if (ret) 10402 goto out; 10403 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10404 if (ret) 10405 goto out; 10406 10407 /* 10408 * We set number of links to 0 in btrfs_new_inode(), and here we set 10409 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10410 * through: 10411 * 10412 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10413 */ 10414 set_nlink(inode, 1); 10415 d_tmpfile(dentry, inode); 10416 unlock_new_inode(inode); 10417 mark_inode_dirty(inode); 10418 out: 10419 btrfs_end_transaction(trans); 10420 if (ret && inode) 10421 discard_new_inode(inode); 10422 btrfs_btree_balance_dirty(fs_info); 10423 return ret; 10424 } 10425 10426 __attribute__((const)) 10427 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10428 { 10429 return -EAGAIN; 10430 } 10431 10432 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10433 u64 start, u64 end) 10434 { 10435 struct inode *inode = private_data; 10436 u64 isize; 10437 10438 isize = i_size_read(inode); 10439 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10440 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10441 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10442 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10443 } 10444 } 10445 10446 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10447 { 10448 struct inode *inode = tree->private_data; 10449 unsigned long index = start >> PAGE_SHIFT; 10450 unsigned long end_index = end >> PAGE_SHIFT; 10451 struct page *page; 10452 10453 while (index <= end_index) { 10454 page = find_get_page(inode->i_mapping, index); 10455 ASSERT(page); /* Pages should be in the extent_io_tree */ 10456 set_page_writeback(page); 10457 put_page(page); 10458 index++; 10459 } 10460 } 10461 10462 static const struct inode_operations btrfs_dir_inode_operations = { 10463 .getattr = btrfs_getattr, 10464 .lookup = btrfs_lookup, 10465 .create = btrfs_create, 10466 .unlink = btrfs_unlink, 10467 .link = btrfs_link, 10468 .mkdir = btrfs_mkdir, 10469 .rmdir = btrfs_rmdir, 10470 .rename = btrfs_rename2, 10471 .symlink = btrfs_symlink, 10472 .setattr = btrfs_setattr, 10473 .mknod = btrfs_mknod, 10474 .listxattr = btrfs_listxattr, 10475 .permission = btrfs_permission, 10476 .get_acl = btrfs_get_acl, 10477 .set_acl = btrfs_set_acl, 10478 .update_time = btrfs_update_time, 10479 .tmpfile = btrfs_tmpfile, 10480 }; 10481 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10482 .lookup = btrfs_lookup, 10483 .permission = btrfs_permission, 10484 .update_time = btrfs_update_time, 10485 }; 10486 10487 static const struct file_operations btrfs_dir_file_operations = { 10488 .llseek = generic_file_llseek, 10489 .read = generic_read_dir, 10490 .iterate_shared = btrfs_real_readdir, 10491 .open = btrfs_opendir, 10492 .unlocked_ioctl = btrfs_ioctl, 10493 #ifdef CONFIG_COMPAT 10494 .compat_ioctl = btrfs_compat_ioctl, 10495 #endif 10496 .release = btrfs_release_file, 10497 .fsync = btrfs_sync_file, 10498 }; 10499 10500 static const struct extent_io_ops btrfs_extent_io_ops = { 10501 /* mandatory callbacks */ 10502 .submit_bio_hook = btrfs_submit_bio_hook, 10503 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10504 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10505 10506 /* optional callbacks */ 10507 .fill_delalloc = run_delalloc_range, 10508 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10509 .writepage_start_hook = btrfs_writepage_start_hook, 10510 .set_bit_hook = btrfs_set_bit_hook, 10511 .clear_bit_hook = btrfs_clear_bit_hook, 10512 .merge_extent_hook = btrfs_merge_extent_hook, 10513 .split_extent_hook = btrfs_split_extent_hook, 10514 .check_extent_io_range = btrfs_check_extent_io_range, 10515 }; 10516 10517 /* 10518 * btrfs doesn't support the bmap operation because swapfiles 10519 * use bmap to make a mapping of extents in the file. They assume 10520 * these extents won't change over the life of the file and they 10521 * use the bmap result to do IO directly to the drive. 10522 * 10523 * the btrfs bmap call would return logical addresses that aren't 10524 * suitable for IO and they also will change frequently as COW 10525 * operations happen. So, swapfile + btrfs == corruption. 10526 * 10527 * For now we're avoiding this by dropping bmap. 10528 */ 10529 static const struct address_space_operations btrfs_aops = { 10530 .readpage = btrfs_readpage, 10531 .writepage = btrfs_writepage, 10532 .writepages = btrfs_writepages, 10533 .readpages = btrfs_readpages, 10534 .direct_IO = btrfs_direct_IO, 10535 .invalidatepage = btrfs_invalidatepage, 10536 .releasepage = btrfs_releasepage, 10537 .set_page_dirty = btrfs_set_page_dirty, 10538 .error_remove_page = generic_error_remove_page, 10539 }; 10540 10541 static const struct inode_operations btrfs_file_inode_operations = { 10542 .getattr = btrfs_getattr, 10543 .setattr = btrfs_setattr, 10544 .listxattr = btrfs_listxattr, 10545 .permission = btrfs_permission, 10546 .fiemap = btrfs_fiemap, 10547 .get_acl = btrfs_get_acl, 10548 .set_acl = btrfs_set_acl, 10549 .update_time = btrfs_update_time, 10550 }; 10551 static const struct inode_operations btrfs_special_inode_operations = { 10552 .getattr = btrfs_getattr, 10553 .setattr = btrfs_setattr, 10554 .permission = btrfs_permission, 10555 .listxattr = btrfs_listxattr, 10556 .get_acl = btrfs_get_acl, 10557 .set_acl = btrfs_set_acl, 10558 .update_time = btrfs_update_time, 10559 }; 10560 static const struct inode_operations btrfs_symlink_inode_operations = { 10561 .get_link = page_get_link, 10562 .getattr = btrfs_getattr, 10563 .setattr = btrfs_setattr, 10564 .permission = btrfs_permission, 10565 .listxattr = btrfs_listxattr, 10566 .update_time = btrfs_update_time, 10567 }; 10568 10569 const struct dentry_operations btrfs_dentry_operations = { 10570 .d_delete = btrfs_dentry_delete, 10571 }; 10572