1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 #include "fs.h" 59 #include "accessors.h" 60 #include "extent-tree.h" 61 #include "root-tree.h" 62 #include "defrag.h" 63 #include "dir-item.h" 64 #include "file-item.h" 65 #include "uuid-tree.h" 66 #include "ioctl.h" 67 #include "file.h" 68 #include "acl.h" 69 #include "relocation.h" 70 #include "verity.h" 71 #include "super.h" 72 #include "orphan.h" 73 #include "backref.h" 74 #include "raid-stripe-tree.h" 75 76 struct btrfs_iget_args { 77 u64 ino; 78 struct btrfs_root *root; 79 }; 80 81 struct btrfs_dio_data { 82 ssize_t submitted; 83 struct extent_changeset *data_reserved; 84 struct btrfs_ordered_extent *ordered; 85 bool data_space_reserved; 86 bool nocow_done; 87 }; 88 89 struct btrfs_dio_private { 90 /* Range of I/O */ 91 u64 file_offset; 92 u32 bytes; 93 94 /* This must be last */ 95 struct btrfs_bio bbio; 96 }; 97 98 static struct bio_set btrfs_dio_bioset; 99 100 struct btrfs_rename_ctx { 101 /* Output field. Stores the index number of the old directory entry. */ 102 u64 index; 103 }; 104 105 /* 106 * Used by data_reloc_print_warning_inode() to pass needed info for filename 107 * resolution and output of error message. 108 */ 109 struct data_reloc_warn { 110 struct btrfs_path path; 111 struct btrfs_fs_info *fs_info; 112 u64 extent_item_size; 113 u64 logical; 114 int mirror_num; 115 }; 116 117 /* 118 * For the file_extent_tree, we want to hold the inode lock when we lookup and 119 * update the disk_i_size, but lockdep will complain because our io_tree we hold 120 * the tree lock and get the inode lock when setting delalloc. These two things 121 * are unrelated, so make a class for the file_extent_tree so we don't get the 122 * two locking patterns mixed up. 123 */ 124 static struct lock_class_key file_extent_tree_class; 125 126 static const struct inode_operations btrfs_dir_inode_operations; 127 static const struct inode_operations btrfs_symlink_inode_operations; 128 static const struct inode_operations btrfs_special_inode_operations; 129 static const struct inode_operations btrfs_file_inode_operations; 130 static const struct address_space_operations btrfs_aops; 131 static const struct file_operations btrfs_dir_file_operations; 132 133 static struct kmem_cache *btrfs_inode_cachep; 134 135 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 136 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 137 138 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 139 struct page *locked_page, u64 start, 140 u64 end, struct writeback_control *wbc, 141 bool pages_dirty); 142 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 143 u64 len, u64 orig_start, u64 block_start, 144 u64 block_len, u64 orig_block_len, 145 u64 ram_bytes, int compress_type, 146 int type); 147 148 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 149 u64 root, void *warn_ctx) 150 { 151 struct data_reloc_warn *warn = warn_ctx; 152 struct btrfs_fs_info *fs_info = warn->fs_info; 153 struct extent_buffer *eb; 154 struct btrfs_inode_item *inode_item; 155 struct inode_fs_paths *ipath = NULL; 156 struct btrfs_root *local_root; 157 struct btrfs_key key; 158 unsigned int nofs_flag; 159 u32 nlink; 160 int ret; 161 162 local_root = btrfs_get_fs_root(fs_info, root, true); 163 if (IS_ERR(local_root)) { 164 ret = PTR_ERR(local_root); 165 goto err; 166 } 167 168 /* This makes the path point to (inum INODE_ITEM ioff). */ 169 key.objectid = inum; 170 key.type = BTRFS_INODE_ITEM_KEY; 171 key.offset = 0; 172 173 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 174 if (ret) { 175 btrfs_put_root(local_root); 176 btrfs_release_path(&warn->path); 177 goto err; 178 } 179 180 eb = warn->path.nodes[0]; 181 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 182 nlink = btrfs_inode_nlink(eb, inode_item); 183 btrfs_release_path(&warn->path); 184 185 nofs_flag = memalloc_nofs_save(); 186 ipath = init_ipath(4096, local_root, &warn->path); 187 memalloc_nofs_restore(nofs_flag); 188 if (IS_ERR(ipath)) { 189 btrfs_put_root(local_root); 190 ret = PTR_ERR(ipath); 191 ipath = NULL; 192 /* 193 * -ENOMEM, not a critical error, just output an generic error 194 * without filename. 195 */ 196 btrfs_warn(fs_info, 197 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 198 warn->logical, warn->mirror_num, root, inum, offset); 199 return ret; 200 } 201 ret = paths_from_inode(inum, ipath); 202 if (ret < 0) 203 goto err; 204 205 /* 206 * We deliberately ignore the bit ipath might have been too small to 207 * hold all of the paths here 208 */ 209 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 210 btrfs_warn(fs_info, 211 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 212 warn->logical, warn->mirror_num, root, inum, offset, 213 fs_info->sectorsize, nlink, 214 (char *)(unsigned long)ipath->fspath->val[i]); 215 } 216 217 btrfs_put_root(local_root); 218 free_ipath(ipath); 219 return 0; 220 221 err: 222 btrfs_warn(fs_info, 223 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 224 warn->logical, warn->mirror_num, root, inum, offset, ret); 225 226 free_ipath(ipath); 227 return ret; 228 } 229 230 /* 231 * Do extra user-friendly error output (e.g. lookup all the affected files). 232 * 233 * Return true if we succeeded doing the backref lookup. 234 * Return false if such lookup failed, and has to fallback to the old error message. 235 */ 236 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 237 const u8 *csum, const u8 *csum_expected, 238 int mirror_num) 239 { 240 struct btrfs_fs_info *fs_info = inode->root->fs_info; 241 struct btrfs_path path = { 0 }; 242 struct btrfs_key found_key = { 0 }; 243 struct extent_buffer *eb; 244 struct btrfs_extent_item *ei; 245 const u32 csum_size = fs_info->csum_size; 246 u64 logical; 247 u64 flags; 248 u32 item_size; 249 int ret; 250 251 mutex_lock(&fs_info->reloc_mutex); 252 logical = btrfs_get_reloc_bg_bytenr(fs_info); 253 mutex_unlock(&fs_info->reloc_mutex); 254 255 if (logical == U64_MAX) { 256 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 257 btrfs_warn_rl(fs_info, 258 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 259 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 260 CSUM_FMT_VALUE(csum_size, csum), 261 CSUM_FMT_VALUE(csum_size, csum_expected), 262 mirror_num); 263 return; 264 } 265 266 logical += file_off; 267 btrfs_warn_rl(fs_info, 268 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 269 inode->root->root_key.objectid, 270 btrfs_ino(inode), file_off, logical, 271 CSUM_FMT_VALUE(csum_size, csum), 272 CSUM_FMT_VALUE(csum_size, csum_expected), 273 mirror_num); 274 275 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 276 if (ret < 0) { 277 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 278 logical, ret); 279 return; 280 } 281 eb = path.nodes[0]; 282 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 283 item_size = btrfs_item_size(eb, path.slots[0]); 284 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 285 unsigned long ptr = 0; 286 u64 ref_root; 287 u8 ref_level; 288 289 while (true) { 290 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 291 item_size, &ref_root, 292 &ref_level); 293 if (ret < 0) { 294 btrfs_warn_rl(fs_info, 295 "failed to resolve tree backref for logical %llu: %d", 296 logical, ret); 297 break; 298 } 299 if (ret > 0) 300 break; 301 302 btrfs_warn_rl(fs_info, 303 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 304 logical, mirror_num, 305 (ref_level ? "node" : "leaf"), 306 ref_level, ref_root); 307 } 308 btrfs_release_path(&path); 309 } else { 310 struct btrfs_backref_walk_ctx ctx = { 0 }; 311 struct data_reloc_warn reloc_warn = { 0 }; 312 313 btrfs_release_path(&path); 314 315 ctx.bytenr = found_key.objectid; 316 ctx.extent_item_pos = logical - found_key.objectid; 317 ctx.fs_info = fs_info; 318 319 reloc_warn.logical = logical; 320 reloc_warn.extent_item_size = found_key.offset; 321 reloc_warn.mirror_num = mirror_num; 322 reloc_warn.fs_info = fs_info; 323 324 iterate_extent_inodes(&ctx, true, 325 data_reloc_print_warning_inode, &reloc_warn); 326 } 327 } 328 329 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 330 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 331 { 332 struct btrfs_root *root = inode->root; 333 const u32 csum_size = root->fs_info->csum_size; 334 335 /* For data reloc tree, it's better to do a backref lookup instead. */ 336 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 337 return print_data_reloc_error(inode, logical_start, csum, 338 csum_expected, mirror_num); 339 340 /* Output without objectid, which is more meaningful */ 341 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 342 btrfs_warn_rl(root->fs_info, 343 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 344 root->root_key.objectid, btrfs_ino(inode), 345 logical_start, 346 CSUM_FMT_VALUE(csum_size, csum), 347 CSUM_FMT_VALUE(csum_size, csum_expected), 348 mirror_num); 349 } else { 350 btrfs_warn_rl(root->fs_info, 351 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 352 root->root_key.objectid, btrfs_ino(inode), 353 logical_start, 354 CSUM_FMT_VALUE(csum_size, csum), 355 CSUM_FMT_VALUE(csum_size, csum_expected), 356 mirror_num); 357 } 358 } 359 360 /* 361 * Lock inode i_rwsem based on arguments passed. 362 * 363 * ilock_flags can have the following bit set: 364 * 365 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 366 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 367 * return -EAGAIN 368 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 369 */ 370 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 371 { 372 if (ilock_flags & BTRFS_ILOCK_SHARED) { 373 if (ilock_flags & BTRFS_ILOCK_TRY) { 374 if (!inode_trylock_shared(&inode->vfs_inode)) 375 return -EAGAIN; 376 else 377 return 0; 378 } 379 inode_lock_shared(&inode->vfs_inode); 380 } else { 381 if (ilock_flags & BTRFS_ILOCK_TRY) { 382 if (!inode_trylock(&inode->vfs_inode)) 383 return -EAGAIN; 384 else 385 return 0; 386 } 387 inode_lock(&inode->vfs_inode); 388 } 389 if (ilock_flags & BTRFS_ILOCK_MMAP) 390 down_write(&inode->i_mmap_lock); 391 return 0; 392 } 393 394 /* 395 * Unock inode i_rwsem. 396 * 397 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 398 * to decide whether the lock acquired is shared or exclusive. 399 */ 400 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 401 { 402 if (ilock_flags & BTRFS_ILOCK_MMAP) 403 up_write(&inode->i_mmap_lock); 404 if (ilock_flags & BTRFS_ILOCK_SHARED) 405 inode_unlock_shared(&inode->vfs_inode); 406 else 407 inode_unlock(&inode->vfs_inode); 408 } 409 410 /* 411 * Cleanup all submitted ordered extents in specified range to handle errors 412 * from the btrfs_run_delalloc_range() callback. 413 * 414 * NOTE: caller must ensure that when an error happens, it can not call 415 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 416 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 417 * to be released, which we want to happen only when finishing the ordered 418 * extent (btrfs_finish_ordered_io()). 419 */ 420 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 421 struct page *locked_page, 422 u64 offset, u64 bytes) 423 { 424 unsigned long index = offset >> PAGE_SHIFT; 425 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 426 u64 page_start = 0, page_end = 0; 427 struct page *page; 428 429 if (locked_page) { 430 page_start = page_offset(locked_page); 431 page_end = page_start + PAGE_SIZE - 1; 432 } 433 434 while (index <= end_index) { 435 /* 436 * For locked page, we will call btrfs_mark_ordered_io_finished 437 * through btrfs_mark_ordered_io_finished() on it 438 * in run_delalloc_range() for the error handling, which will 439 * clear page Ordered and run the ordered extent accounting. 440 * 441 * Here we can't just clear the Ordered bit, or 442 * btrfs_mark_ordered_io_finished() would skip the accounting 443 * for the page range, and the ordered extent will never finish. 444 */ 445 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 446 index++; 447 continue; 448 } 449 page = find_get_page(inode->vfs_inode.i_mapping, index); 450 index++; 451 if (!page) 452 continue; 453 454 /* 455 * Here we just clear all Ordered bits for every page in the 456 * range, then btrfs_mark_ordered_io_finished() will handle 457 * the ordered extent accounting for the range. 458 */ 459 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, 460 page_folio(page), offset, bytes); 461 put_page(page); 462 } 463 464 if (locked_page) { 465 /* The locked page covers the full range, nothing needs to be done */ 466 if (bytes + offset <= page_start + PAGE_SIZE) 467 return; 468 /* 469 * In case this page belongs to the delalloc range being 470 * instantiated then skip it, since the first page of a range is 471 * going to be properly cleaned up by the caller of 472 * run_delalloc_range 473 */ 474 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 475 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 476 offset = page_offset(locked_page) + PAGE_SIZE; 477 } 478 } 479 480 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 481 } 482 483 static int btrfs_dirty_inode(struct btrfs_inode *inode); 484 485 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 486 struct btrfs_new_inode_args *args) 487 { 488 int err; 489 490 if (args->default_acl) { 491 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 492 ACL_TYPE_DEFAULT); 493 if (err) 494 return err; 495 } 496 if (args->acl) { 497 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 498 if (err) 499 return err; 500 } 501 if (!args->default_acl && !args->acl) 502 cache_no_acl(args->inode); 503 return btrfs_xattr_security_init(trans, args->inode, args->dir, 504 &args->dentry->d_name); 505 } 506 507 /* 508 * this does all the hard work for inserting an inline extent into 509 * the btree. The caller should have done a btrfs_drop_extents so that 510 * no overlapping inline items exist in the btree 511 */ 512 static int insert_inline_extent(struct btrfs_trans_handle *trans, 513 struct btrfs_path *path, 514 struct btrfs_inode *inode, bool extent_inserted, 515 size_t size, size_t compressed_size, 516 int compress_type, 517 struct page **compressed_pages, 518 bool update_i_size) 519 { 520 struct btrfs_root *root = inode->root; 521 struct extent_buffer *leaf; 522 struct page *page = NULL; 523 char *kaddr; 524 unsigned long ptr; 525 struct btrfs_file_extent_item *ei; 526 int ret; 527 size_t cur_size = size; 528 u64 i_size; 529 530 ASSERT((compressed_size > 0 && compressed_pages) || 531 (compressed_size == 0 && !compressed_pages)); 532 533 if (compressed_size && compressed_pages) 534 cur_size = compressed_size; 535 536 if (!extent_inserted) { 537 struct btrfs_key key; 538 size_t datasize; 539 540 key.objectid = btrfs_ino(inode); 541 key.offset = 0; 542 key.type = BTRFS_EXTENT_DATA_KEY; 543 544 datasize = btrfs_file_extent_calc_inline_size(cur_size); 545 ret = btrfs_insert_empty_item(trans, root, path, &key, 546 datasize); 547 if (ret) 548 goto fail; 549 } 550 leaf = path->nodes[0]; 551 ei = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_file_extent_item); 553 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 554 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 555 btrfs_set_file_extent_encryption(leaf, ei, 0); 556 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 557 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 558 ptr = btrfs_file_extent_inline_start(ei); 559 560 if (compress_type != BTRFS_COMPRESS_NONE) { 561 struct page *cpage; 562 int i = 0; 563 while (compressed_size > 0) { 564 cpage = compressed_pages[i]; 565 cur_size = min_t(unsigned long, compressed_size, 566 PAGE_SIZE); 567 568 kaddr = kmap_local_page(cpage); 569 write_extent_buffer(leaf, kaddr, ptr, cur_size); 570 kunmap_local(kaddr); 571 572 i++; 573 ptr += cur_size; 574 compressed_size -= cur_size; 575 } 576 btrfs_set_file_extent_compression(leaf, ei, 577 compress_type); 578 } else { 579 page = find_get_page(inode->vfs_inode.i_mapping, 0); 580 btrfs_set_file_extent_compression(leaf, ei, 0); 581 kaddr = kmap_local_page(page); 582 write_extent_buffer(leaf, kaddr, ptr, size); 583 kunmap_local(kaddr); 584 put_page(page); 585 } 586 btrfs_mark_buffer_dirty(trans, leaf); 587 btrfs_release_path(path); 588 589 /* 590 * We align size to sectorsize for inline extents just for simplicity 591 * sake. 592 */ 593 ret = btrfs_inode_set_file_extent_range(inode, 0, 594 ALIGN(size, root->fs_info->sectorsize)); 595 if (ret) 596 goto fail; 597 598 /* 599 * We're an inline extent, so nobody can extend the file past i_size 600 * without locking a page we already have locked. 601 * 602 * We must do any i_size and inode updates before we unlock the pages. 603 * Otherwise we could end up racing with unlink. 604 */ 605 i_size = i_size_read(&inode->vfs_inode); 606 if (update_i_size && size > i_size) { 607 i_size_write(&inode->vfs_inode, size); 608 i_size = size; 609 } 610 inode->disk_i_size = i_size; 611 612 fail: 613 return ret; 614 } 615 616 617 /* 618 * conditionally insert an inline extent into the file. This 619 * does the checks required to make sure the data is small enough 620 * to fit as an inline extent. 621 */ 622 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 623 size_t compressed_size, 624 int compress_type, 625 struct page **compressed_pages, 626 bool update_i_size) 627 { 628 struct btrfs_drop_extents_args drop_args = { 0 }; 629 struct btrfs_root *root = inode->root; 630 struct btrfs_fs_info *fs_info = root->fs_info; 631 struct btrfs_trans_handle *trans; 632 u64 data_len = (compressed_size ?: size); 633 int ret; 634 struct btrfs_path *path; 635 636 /* 637 * We can create an inline extent if it ends at or beyond the current 638 * i_size, is no larger than a sector (decompressed), and the (possibly 639 * compressed) data fits in a leaf and the configured maximum inline 640 * size. 641 */ 642 if (size < i_size_read(&inode->vfs_inode) || 643 size > fs_info->sectorsize || 644 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 645 data_len > fs_info->max_inline) 646 return 1; 647 648 path = btrfs_alloc_path(); 649 if (!path) 650 return -ENOMEM; 651 652 trans = btrfs_join_transaction(root); 653 if (IS_ERR(trans)) { 654 btrfs_free_path(path); 655 return PTR_ERR(trans); 656 } 657 trans->block_rsv = &inode->block_rsv; 658 659 drop_args.path = path; 660 drop_args.start = 0; 661 drop_args.end = fs_info->sectorsize; 662 drop_args.drop_cache = true; 663 drop_args.replace_extent = true; 664 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 665 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 666 if (ret) { 667 btrfs_abort_transaction(trans, ret); 668 goto out; 669 } 670 671 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 672 size, compressed_size, compress_type, 673 compressed_pages, update_i_size); 674 if (ret && ret != -ENOSPC) { 675 btrfs_abort_transaction(trans, ret); 676 goto out; 677 } else if (ret == -ENOSPC) { 678 ret = 1; 679 goto out; 680 } 681 682 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 683 ret = btrfs_update_inode(trans, inode); 684 if (ret && ret != -ENOSPC) { 685 btrfs_abort_transaction(trans, ret); 686 goto out; 687 } else if (ret == -ENOSPC) { 688 ret = 1; 689 goto out; 690 } 691 692 btrfs_set_inode_full_sync(inode); 693 out: 694 /* 695 * Don't forget to free the reserved space, as for inlined extent 696 * it won't count as data extent, free them directly here. 697 * And at reserve time, it's always aligned to page size, so 698 * just free one page here. 699 */ 700 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 701 btrfs_free_path(path); 702 btrfs_end_transaction(trans); 703 return ret; 704 } 705 706 struct async_extent { 707 u64 start; 708 u64 ram_size; 709 u64 compressed_size; 710 struct page **pages; 711 unsigned long nr_pages; 712 int compress_type; 713 struct list_head list; 714 }; 715 716 struct async_chunk { 717 struct btrfs_inode *inode; 718 struct page *locked_page; 719 u64 start; 720 u64 end; 721 blk_opf_t write_flags; 722 struct list_head extents; 723 struct cgroup_subsys_state *blkcg_css; 724 struct btrfs_work work; 725 struct async_cow *async_cow; 726 }; 727 728 struct async_cow { 729 atomic_t num_chunks; 730 struct async_chunk chunks[]; 731 }; 732 733 static noinline int add_async_extent(struct async_chunk *cow, 734 u64 start, u64 ram_size, 735 u64 compressed_size, 736 struct page **pages, 737 unsigned long nr_pages, 738 int compress_type) 739 { 740 struct async_extent *async_extent; 741 742 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 743 BUG_ON(!async_extent); /* -ENOMEM */ 744 async_extent->start = start; 745 async_extent->ram_size = ram_size; 746 async_extent->compressed_size = compressed_size; 747 async_extent->pages = pages; 748 async_extent->nr_pages = nr_pages; 749 async_extent->compress_type = compress_type; 750 list_add_tail(&async_extent->list, &cow->extents); 751 return 0; 752 } 753 754 /* 755 * Check if the inode needs to be submitted to compression, based on mount 756 * options, defragmentation, properties or heuristics. 757 */ 758 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 759 u64 end) 760 { 761 struct btrfs_fs_info *fs_info = inode->root->fs_info; 762 763 if (!btrfs_inode_can_compress(inode)) { 764 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 765 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 766 btrfs_ino(inode)); 767 return 0; 768 } 769 /* 770 * Special check for subpage. 771 * 772 * We lock the full page then run each delalloc range in the page, thus 773 * for the following case, we will hit some subpage specific corner case: 774 * 775 * 0 32K 64K 776 * | |///////| |///////| 777 * \- A \- B 778 * 779 * In above case, both range A and range B will try to unlock the full 780 * page [0, 64K), causing the one finished later will have page 781 * unlocked already, triggering various page lock requirement BUG_ON()s. 782 * 783 * So here we add an artificial limit that subpage compression can only 784 * if the range is fully page aligned. 785 * 786 * In theory we only need to ensure the first page is fully covered, but 787 * the tailing partial page will be locked until the full compression 788 * finishes, delaying the write of other range. 789 * 790 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 791 * first to prevent any submitted async extent to unlock the full page. 792 * By this, we can ensure for subpage case that only the last async_cow 793 * will unlock the full page. 794 */ 795 if (fs_info->sectorsize < PAGE_SIZE) { 796 if (!PAGE_ALIGNED(start) || 797 !PAGE_ALIGNED(end + 1)) 798 return 0; 799 } 800 801 /* force compress */ 802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 803 return 1; 804 /* defrag ioctl */ 805 if (inode->defrag_compress) 806 return 1; 807 /* bad compression ratios */ 808 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 809 return 0; 810 if (btrfs_test_opt(fs_info, COMPRESS) || 811 inode->flags & BTRFS_INODE_COMPRESS || 812 inode->prop_compress) 813 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 814 return 0; 815 } 816 817 static inline void inode_should_defrag(struct btrfs_inode *inode, 818 u64 start, u64 end, u64 num_bytes, u32 small_write) 819 { 820 /* If this is a small write inside eof, kick off a defrag */ 821 if (num_bytes < small_write && 822 (start > 0 || end + 1 < inode->disk_i_size)) 823 btrfs_add_inode_defrag(NULL, inode, small_write); 824 } 825 826 /* 827 * Work queue call back to started compression on a file and pages. 828 * 829 * This is done inside an ordered work queue, and the compression is spread 830 * across many cpus. The actual IO submission is step two, and the ordered work 831 * queue takes care of making sure that happens in the same order things were 832 * put onto the queue by writepages and friends. 833 * 834 * If this code finds it can't get good compression, it puts an entry onto the 835 * work queue to write the uncompressed bytes. This makes sure that both 836 * compressed inodes and uncompressed inodes are written in the same order that 837 * the flusher thread sent them down. 838 */ 839 static void compress_file_range(struct btrfs_work *work) 840 { 841 struct async_chunk *async_chunk = 842 container_of(work, struct async_chunk, work); 843 struct btrfs_inode *inode = async_chunk->inode; 844 struct btrfs_fs_info *fs_info = inode->root->fs_info; 845 struct address_space *mapping = inode->vfs_inode.i_mapping; 846 u64 blocksize = fs_info->sectorsize; 847 u64 start = async_chunk->start; 848 u64 end = async_chunk->end; 849 u64 actual_end; 850 u64 i_size; 851 int ret = 0; 852 struct page **pages; 853 unsigned long nr_pages; 854 unsigned long total_compressed = 0; 855 unsigned long total_in = 0; 856 unsigned int poff; 857 int i; 858 int compress_type = fs_info->compress_type; 859 860 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 861 862 /* 863 * We need to call clear_page_dirty_for_io on each page in the range. 864 * Otherwise applications with the file mmap'd can wander in and change 865 * the page contents while we are compressing them. 866 */ 867 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 868 869 /* 870 * We need to save i_size before now because it could change in between 871 * us evaluating the size and assigning it. This is because we lock and 872 * unlock the page in truncate and fallocate, and then modify the i_size 873 * later on. 874 * 875 * The barriers are to emulate READ_ONCE, remove that once i_size_read 876 * does that for us. 877 */ 878 barrier(); 879 i_size = i_size_read(&inode->vfs_inode); 880 barrier(); 881 actual_end = min_t(u64, i_size, end + 1); 882 again: 883 pages = NULL; 884 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 885 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 886 887 /* 888 * we don't want to send crud past the end of i_size through 889 * compression, that's just a waste of CPU time. So, if the 890 * end of the file is before the start of our current 891 * requested range of bytes, we bail out to the uncompressed 892 * cleanup code that can deal with all of this. 893 * 894 * It isn't really the fastest way to fix things, but this is a 895 * very uncommon corner. 896 */ 897 if (actual_end <= start) 898 goto cleanup_and_bail_uncompressed; 899 900 total_compressed = actual_end - start; 901 902 /* 903 * Skip compression for a small file range(<=blocksize) that 904 * isn't an inline extent, since it doesn't save disk space at all. 905 */ 906 if (total_compressed <= blocksize && 907 (start > 0 || end + 1 < inode->disk_i_size)) 908 goto cleanup_and_bail_uncompressed; 909 910 /* 911 * For subpage case, we require full page alignment for the sector 912 * aligned range. 913 * Thus we must also check against @actual_end, not just @end. 914 */ 915 if (blocksize < PAGE_SIZE) { 916 if (!PAGE_ALIGNED(start) || 917 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 918 goto cleanup_and_bail_uncompressed; 919 } 920 921 total_compressed = min_t(unsigned long, total_compressed, 922 BTRFS_MAX_UNCOMPRESSED); 923 total_in = 0; 924 ret = 0; 925 926 /* 927 * We do compression for mount -o compress and when the inode has not 928 * been flagged as NOCOMPRESS. This flag can change at any time if we 929 * discover bad compression ratios. 930 */ 931 if (!inode_need_compress(inode, start, end)) 932 goto cleanup_and_bail_uncompressed; 933 934 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 935 if (!pages) { 936 /* 937 * Memory allocation failure is not a fatal error, we can fall 938 * back to uncompressed code. 939 */ 940 goto cleanup_and_bail_uncompressed; 941 } 942 943 if (inode->defrag_compress) 944 compress_type = inode->defrag_compress; 945 else if (inode->prop_compress) 946 compress_type = inode->prop_compress; 947 948 /* Compression level is applied here. */ 949 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4), 950 mapping, start, pages, &nr_pages, &total_in, 951 &total_compressed); 952 if (ret) 953 goto mark_incompressible; 954 955 /* 956 * Zero the tail end of the last page, as we might be sending it down 957 * to disk. 958 */ 959 poff = offset_in_page(total_compressed); 960 if (poff) 961 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff); 962 963 /* 964 * Try to create an inline extent. 965 * 966 * If we didn't compress the entire range, try to create an uncompressed 967 * inline extent, else a compressed one. 968 * 969 * Check cow_file_range() for why we don't even try to create inline 970 * extent for the subpage case. 971 */ 972 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 973 if (total_in < actual_end) { 974 ret = cow_file_range_inline(inode, actual_end, 0, 975 BTRFS_COMPRESS_NONE, NULL, 976 false); 977 } else { 978 ret = cow_file_range_inline(inode, actual_end, 979 total_compressed, 980 compress_type, pages, 981 false); 982 } 983 if (ret <= 0) { 984 unsigned long clear_flags = EXTENT_DELALLOC | 985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 986 EXTENT_DO_ACCOUNTING; 987 988 if (ret < 0) 989 mapping_set_error(mapping, -EIO); 990 991 /* 992 * inline extent creation worked or returned error, 993 * we don't need to create any more async work items. 994 * Unlock and free up our temp pages. 995 * 996 * We use DO_ACCOUNTING here because we need the 997 * delalloc_release_metadata to be done _after_ we drop 998 * our outstanding extent for clearing delalloc for this 999 * range. 1000 */ 1001 extent_clear_unlock_delalloc(inode, start, end, 1002 NULL, 1003 clear_flags, 1004 PAGE_UNLOCK | 1005 PAGE_START_WRITEBACK | 1006 PAGE_END_WRITEBACK); 1007 goto free_pages; 1008 } 1009 } 1010 1011 /* 1012 * We aren't doing an inline extent. Round the compressed size up to a 1013 * block size boundary so the allocator does sane things. 1014 */ 1015 total_compressed = ALIGN(total_compressed, blocksize); 1016 1017 /* 1018 * One last check to make sure the compression is really a win, compare 1019 * the page count read with the blocks on disk, compression must free at 1020 * least one sector. 1021 */ 1022 total_in = round_up(total_in, fs_info->sectorsize); 1023 if (total_compressed + blocksize > total_in) 1024 goto mark_incompressible; 1025 1026 /* 1027 * The async work queues will take care of doing actual allocation on 1028 * disk for these compressed pages, and will submit the bios. 1029 */ 1030 add_async_extent(async_chunk, start, total_in, total_compressed, pages, 1031 nr_pages, compress_type); 1032 if (start + total_in < end) { 1033 start += total_in; 1034 cond_resched(); 1035 goto again; 1036 } 1037 return; 1038 1039 mark_incompressible: 1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1041 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1042 cleanup_and_bail_uncompressed: 1043 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1044 BTRFS_COMPRESS_NONE); 1045 free_pages: 1046 if (pages) { 1047 for (i = 0; i < nr_pages; i++) { 1048 WARN_ON(pages[i]->mapping); 1049 btrfs_free_compr_page(pages[i]); 1050 } 1051 kfree(pages); 1052 } 1053 } 1054 1055 static void free_async_extent_pages(struct async_extent *async_extent) 1056 { 1057 int i; 1058 1059 if (!async_extent->pages) 1060 return; 1061 1062 for (i = 0; i < async_extent->nr_pages; i++) { 1063 WARN_ON(async_extent->pages[i]->mapping); 1064 btrfs_free_compr_page(async_extent->pages[i]); 1065 } 1066 kfree(async_extent->pages); 1067 async_extent->nr_pages = 0; 1068 async_extent->pages = NULL; 1069 } 1070 1071 static void submit_uncompressed_range(struct btrfs_inode *inode, 1072 struct async_extent *async_extent, 1073 struct page *locked_page) 1074 { 1075 u64 start = async_extent->start; 1076 u64 end = async_extent->start + async_extent->ram_size - 1; 1077 int ret; 1078 struct writeback_control wbc = { 1079 .sync_mode = WB_SYNC_ALL, 1080 .range_start = start, 1081 .range_end = end, 1082 .no_cgroup_owner = 1, 1083 }; 1084 1085 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1086 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1087 wbc_detach_inode(&wbc); 1088 if (ret < 0) { 1089 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1090 if (locked_page) { 1091 const u64 page_start = page_offset(locked_page); 1092 1093 set_page_writeback(locked_page); 1094 end_page_writeback(locked_page); 1095 btrfs_mark_ordered_io_finished(inode, locked_page, 1096 page_start, PAGE_SIZE, 1097 !ret); 1098 mapping_set_error(locked_page->mapping, ret); 1099 unlock_page(locked_page); 1100 } 1101 } 1102 } 1103 1104 static void submit_one_async_extent(struct async_chunk *async_chunk, 1105 struct async_extent *async_extent, 1106 u64 *alloc_hint) 1107 { 1108 struct btrfs_inode *inode = async_chunk->inode; 1109 struct extent_io_tree *io_tree = &inode->io_tree; 1110 struct btrfs_root *root = inode->root; 1111 struct btrfs_fs_info *fs_info = root->fs_info; 1112 struct btrfs_ordered_extent *ordered; 1113 struct btrfs_key ins; 1114 struct page *locked_page = NULL; 1115 struct extent_map *em; 1116 int ret = 0; 1117 u64 start = async_extent->start; 1118 u64 end = async_extent->start + async_extent->ram_size - 1; 1119 1120 if (async_chunk->blkcg_css) 1121 kthread_associate_blkcg(async_chunk->blkcg_css); 1122 1123 /* 1124 * If async_chunk->locked_page is in the async_extent range, we need to 1125 * handle it. 1126 */ 1127 if (async_chunk->locked_page) { 1128 u64 locked_page_start = page_offset(async_chunk->locked_page); 1129 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1130 1131 if (!(start >= locked_page_end || end <= locked_page_start)) 1132 locked_page = async_chunk->locked_page; 1133 } 1134 lock_extent(io_tree, start, end, NULL); 1135 1136 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1137 submit_uncompressed_range(inode, async_extent, locked_page); 1138 goto done; 1139 } 1140 1141 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1142 async_extent->compressed_size, 1143 async_extent->compressed_size, 1144 0, *alloc_hint, &ins, 1, 1); 1145 if (ret) { 1146 /* 1147 * Here we used to try again by going back to non-compressed 1148 * path for ENOSPC. But we can't reserve space even for 1149 * compressed size, how could it work for uncompressed size 1150 * which requires larger size? So here we directly go error 1151 * path. 1152 */ 1153 goto out_free; 1154 } 1155 1156 /* Here we're doing allocation and writeback of the compressed pages */ 1157 em = create_io_em(inode, start, 1158 async_extent->ram_size, /* len */ 1159 start, /* orig_start */ 1160 ins.objectid, /* block_start */ 1161 ins.offset, /* block_len */ 1162 ins.offset, /* orig_block_len */ 1163 async_extent->ram_size, /* ram_bytes */ 1164 async_extent->compress_type, 1165 BTRFS_ORDERED_COMPRESSED); 1166 if (IS_ERR(em)) { 1167 ret = PTR_ERR(em); 1168 goto out_free_reserve; 1169 } 1170 free_extent_map(em); 1171 1172 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1173 async_extent->ram_size, /* num_bytes */ 1174 async_extent->ram_size, /* ram_bytes */ 1175 ins.objectid, /* disk_bytenr */ 1176 ins.offset, /* disk_num_bytes */ 1177 0, /* offset */ 1178 1 << BTRFS_ORDERED_COMPRESSED, 1179 async_extent->compress_type); 1180 if (IS_ERR(ordered)) { 1181 btrfs_drop_extent_map_range(inode, start, end, false); 1182 ret = PTR_ERR(ordered); 1183 goto out_free_reserve; 1184 } 1185 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1186 1187 /* Clear dirty, set writeback and unlock the pages. */ 1188 extent_clear_unlock_delalloc(inode, start, end, 1189 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1190 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1191 btrfs_submit_compressed_write(ordered, 1192 async_extent->pages, /* compressed_pages */ 1193 async_extent->nr_pages, 1194 async_chunk->write_flags, true); 1195 *alloc_hint = ins.objectid + ins.offset; 1196 done: 1197 if (async_chunk->blkcg_css) 1198 kthread_associate_blkcg(NULL); 1199 kfree(async_extent); 1200 return; 1201 1202 out_free_reserve: 1203 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1204 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1205 out_free: 1206 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1207 extent_clear_unlock_delalloc(inode, start, end, 1208 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1209 EXTENT_DELALLOC_NEW | 1210 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1211 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1212 PAGE_END_WRITEBACK); 1213 free_async_extent_pages(async_extent); 1214 if (async_chunk->blkcg_css) 1215 kthread_associate_blkcg(NULL); 1216 btrfs_debug(fs_info, 1217 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1218 root->root_key.objectid, btrfs_ino(inode), start, 1219 async_extent->ram_size, ret); 1220 kfree(async_extent); 1221 } 1222 1223 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1224 u64 num_bytes) 1225 { 1226 struct extent_map_tree *em_tree = &inode->extent_tree; 1227 struct extent_map *em; 1228 u64 alloc_hint = 0; 1229 1230 read_lock(&em_tree->lock); 1231 em = search_extent_mapping(em_tree, start, num_bytes); 1232 if (em) { 1233 /* 1234 * if block start isn't an actual block number then find the 1235 * first block in this inode and use that as a hint. If that 1236 * block is also bogus then just don't worry about it. 1237 */ 1238 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1239 free_extent_map(em); 1240 em = search_extent_mapping(em_tree, 0, 0); 1241 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1242 alloc_hint = em->block_start; 1243 if (em) 1244 free_extent_map(em); 1245 } else { 1246 alloc_hint = em->block_start; 1247 free_extent_map(em); 1248 } 1249 } 1250 read_unlock(&em_tree->lock); 1251 1252 return alloc_hint; 1253 } 1254 1255 /* 1256 * when extent_io.c finds a delayed allocation range in the file, 1257 * the call backs end up in this code. The basic idea is to 1258 * allocate extents on disk for the range, and create ordered data structs 1259 * in ram to track those extents. 1260 * 1261 * locked_page is the page that writepage had locked already. We use 1262 * it to make sure we don't do extra locks or unlocks. 1263 * 1264 * When this function fails, it unlocks all pages except @locked_page. 1265 * 1266 * When this function successfully creates an inline extent, it returns 1 and 1267 * unlocks all pages including locked_page and starts I/O on them. 1268 * (In reality inline extents are limited to a single page, so locked_page is 1269 * the only page handled anyway). 1270 * 1271 * When this function succeed and creates a normal extent, the page locking 1272 * status depends on the passed in flags: 1273 * 1274 * - If @keep_locked is set, all pages are kept locked. 1275 * - Else all pages except for @locked_page are unlocked. 1276 * 1277 * When a failure happens in the second or later iteration of the 1278 * while-loop, the ordered extents created in previous iterations are kept 1279 * intact. So, the caller must clean them up by calling 1280 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1281 * example. 1282 */ 1283 static noinline int cow_file_range(struct btrfs_inode *inode, 1284 struct page *locked_page, u64 start, u64 end, 1285 u64 *done_offset, 1286 bool keep_locked, bool no_inline) 1287 { 1288 struct btrfs_root *root = inode->root; 1289 struct btrfs_fs_info *fs_info = root->fs_info; 1290 u64 alloc_hint = 0; 1291 u64 orig_start = start; 1292 u64 num_bytes; 1293 unsigned long ram_size; 1294 u64 cur_alloc_size = 0; 1295 u64 min_alloc_size; 1296 u64 blocksize = fs_info->sectorsize; 1297 struct btrfs_key ins; 1298 struct extent_map *em; 1299 unsigned clear_bits; 1300 unsigned long page_ops; 1301 bool extent_reserved = false; 1302 int ret = 0; 1303 1304 if (btrfs_is_free_space_inode(inode)) { 1305 ret = -EINVAL; 1306 goto out_unlock; 1307 } 1308 1309 num_bytes = ALIGN(end - start + 1, blocksize); 1310 num_bytes = max(blocksize, num_bytes); 1311 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1312 1313 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1314 1315 /* 1316 * Due to the page size limit, for subpage we can only trigger the 1317 * writeback for the dirty sectors of page, that means data writeback 1318 * is doing more writeback than what we want. 1319 * 1320 * This is especially unexpected for some call sites like fallocate, 1321 * where we only increase i_size after everything is done. 1322 * This means we can trigger inline extent even if we didn't want to. 1323 * So here we skip inline extent creation completely. 1324 */ 1325 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) { 1326 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1327 end + 1); 1328 1329 /* lets try to make an inline extent */ 1330 ret = cow_file_range_inline(inode, actual_end, 0, 1331 BTRFS_COMPRESS_NONE, NULL, false); 1332 if (ret == 0) { 1333 /* 1334 * We use DO_ACCOUNTING here because we need the 1335 * delalloc_release_metadata to be run _after_ we drop 1336 * our outstanding extent for clearing delalloc for this 1337 * range. 1338 */ 1339 extent_clear_unlock_delalloc(inode, start, end, 1340 locked_page, 1341 EXTENT_LOCKED | EXTENT_DELALLOC | 1342 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1343 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1344 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1345 /* 1346 * locked_page is locked by the caller of 1347 * writepage_delalloc(), not locked by 1348 * __process_pages_contig(). 1349 * 1350 * We can't let __process_pages_contig() to unlock it, 1351 * as it doesn't have any subpage::writers recorded. 1352 * 1353 * Here we manually unlock the page, since the caller 1354 * can't determine if it's an inline extent or a 1355 * compressed extent. 1356 */ 1357 unlock_page(locked_page); 1358 ret = 1; 1359 goto done; 1360 } else if (ret < 0) { 1361 goto out_unlock; 1362 } 1363 } 1364 1365 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1366 1367 /* 1368 * Relocation relies on the relocated extents to have exactly the same 1369 * size as the original extents. Normally writeback for relocation data 1370 * extents follows a NOCOW path because relocation preallocates the 1371 * extents. However, due to an operation such as scrub turning a block 1372 * group to RO mode, it may fallback to COW mode, so we must make sure 1373 * an extent allocated during COW has exactly the requested size and can 1374 * not be split into smaller extents, otherwise relocation breaks and 1375 * fails during the stage where it updates the bytenr of file extent 1376 * items. 1377 */ 1378 if (btrfs_is_data_reloc_root(root)) 1379 min_alloc_size = num_bytes; 1380 else 1381 min_alloc_size = fs_info->sectorsize; 1382 1383 while (num_bytes > 0) { 1384 struct btrfs_ordered_extent *ordered; 1385 1386 cur_alloc_size = num_bytes; 1387 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1388 min_alloc_size, 0, alloc_hint, 1389 &ins, 1, 1); 1390 if (ret == -EAGAIN) { 1391 /* 1392 * btrfs_reserve_extent only returns -EAGAIN for zoned 1393 * file systems, which is an indication that there are 1394 * no active zones to allocate from at the moment. 1395 * 1396 * If this is the first loop iteration, wait for at 1397 * least one zone to finish before retrying the 1398 * allocation. Otherwise ask the caller to write out 1399 * the already allocated blocks before coming back to 1400 * us, or return -ENOSPC if it can't handle retries. 1401 */ 1402 ASSERT(btrfs_is_zoned(fs_info)); 1403 if (start == orig_start) { 1404 wait_on_bit_io(&inode->root->fs_info->flags, 1405 BTRFS_FS_NEED_ZONE_FINISH, 1406 TASK_UNINTERRUPTIBLE); 1407 continue; 1408 } 1409 if (done_offset) { 1410 *done_offset = start - 1; 1411 return 0; 1412 } 1413 ret = -ENOSPC; 1414 } 1415 if (ret < 0) 1416 goto out_unlock; 1417 cur_alloc_size = ins.offset; 1418 extent_reserved = true; 1419 1420 ram_size = ins.offset; 1421 em = create_io_em(inode, start, ins.offset, /* len */ 1422 start, /* orig_start */ 1423 ins.objectid, /* block_start */ 1424 ins.offset, /* block_len */ 1425 ins.offset, /* orig_block_len */ 1426 ram_size, /* ram_bytes */ 1427 BTRFS_COMPRESS_NONE, /* compress_type */ 1428 BTRFS_ORDERED_REGULAR /* type */); 1429 if (IS_ERR(em)) { 1430 ret = PTR_ERR(em); 1431 goto out_reserve; 1432 } 1433 free_extent_map(em); 1434 1435 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1436 ram_size, ins.objectid, cur_alloc_size, 1437 0, 1 << BTRFS_ORDERED_REGULAR, 1438 BTRFS_COMPRESS_NONE); 1439 if (IS_ERR(ordered)) { 1440 ret = PTR_ERR(ordered); 1441 goto out_drop_extent_cache; 1442 } 1443 1444 if (btrfs_is_data_reloc_root(root)) { 1445 ret = btrfs_reloc_clone_csums(ordered); 1446 1447 /* 1448 * Only drop cache here, and process as normal. 1449 * 1450 * We must not allow extent_clear_unlock_delalloc() 1451 * at out_unlock label to free meta of this ordered 1452 * extent, as its meta should be freed by 1453 * btrfs_finish_ordered_io(). 1454 * 1455 * So we must continue until @start is increased to 1456 * skip current ordered extent. 1457 */ 1458 if (ret) 1459 btrfs_drop_extent_map_range(inode, start, 1460 start + ram_size - 1, 1461 false); 1462 } 1463 btrfs_put_ordered_extent(ordered); 1464 1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1466 1467 /* 1468 * We're not doing compressed IO, don't unlock the first page 1469 * (which the caller expects to stay locked), don't clear any 1470 * dirty bits and don't set any writeback bits 1471 * 1472 * Do set the Ordered (Private2) bit so we know this page was 1473 * properly setup for writepage. 1474 */ 1475 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1476 page_ops |= PAGE_SET_ORDERED; 1477 1478 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1479 locked_page, 1480 EXTENT_LOCKED | EXTENT_DELALLOC, 1481 page_ops); 1482 if (num_bytes < cur_alloc_size) 1483 num_bytes = 0; 1484 else 1485 num_bytes -= cur_alloc_size; 1486 alloc_hint = ins.objectid + ins.offset; 1487 start += cur_alloc_size; 1488 extent_reserved = false; 1489 1490 /* 1491 * btrfs_reloc_clone_csums() error, since start is increased 1492 * extent_clear_unlock_delalloc() at out_unlock label won't 1493 * free metadata of current ordered extent, we're OK to exit. 1494 */ 1495 if (ret) 1496 goto out_unlock; 1497 } 1498 done: 1499 if (done_offset) 1500 *done_offset = end; 1501 return ret; 1502 1503 out_drop_extent_cache: 1504 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1505 out_reserve: 1506 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1508 out_unlock: 1509 /* 1510 * Now, we have three regions to clean up: 1511 * 1512 * |-------(1)----|---(2)---|-------------(3)----------| 1513 * `- orig_start `- start `- start + cur_alloc_size `- end 1514 * 1515 * We process each region below. 1516 */ 1517 1518 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1519 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1520 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1521 1522 /* 1523 * For the range (1). We have already instantiated the ordered extents 1524 * for this region. They are cleaned up by 1525 * btrfs_cleanup_ordered_extents() in e.g, 1526 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1527 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1528 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1529 * function. 1530 * 1531 * However, in case of @keep_locked, we still need to unlock the pages 1532 * (except @locked_page) to ensure all the pages are unlocked. 1533 */ 1534 if (keep_locked && orig_start < start) { 1535 if (!locked_page) 1536 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1537 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1538 locked_page, 0, page_ops); 1539 } 1540 1541 /* 1542 * For the range (2). If we reserved an extent for our delalloc range 1543 * (or a subrange) and failed to create the respective ordered extent, 1544 * then it means that when we reserved the extent we decremented the 1545 * extent's size from the data space_info's bytes_may_use counter and 1546 * incremented the space_info's bytes_reserved counter by the same 1547 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1548 * to decrement again the data space_info's bytes_may_use counter, 1549 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1550 */ 1551 if (extent_reserved) { 1552 extent_clear_unlock_delalloc(inode, start, 1553 start + cur_alloc_size - 1, 1554 locked_page, 1555 clear_bits, 1556 page_ops); 1557 start += cur_alloc_size; 1558 } 1559 1560 /* 1561 * For the range (3). We never touched the region. In addition to the 1562 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1563 * space_info's bytes_may_use counter, reserved in 1564 * btrfs_check_data_free_space(). 1565 */ 1566 if (start < end) { 1567 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1568 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1569 clear_bits, page_ops); 1570 } 1571 return ret; 1572 } 1573 1574 /* 1575 * Phase two of compressed writeback. This is the ordered portion of the code, 1576 * which only gets called in the order the work was queued. We walk all the 1577 * async extents created by compress_file_range and send them down to the disk. 1578 * 1579 * If called with @do_free == true then it'll try to finish the work and free 1580 * the work struct eventually. 1581 */ 1582 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1583 { 1584 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1585 work); 1586 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1587 struct async_extent *async_extent; 1588 unsigned long nr_pages; 1589 u64 alloc_hint = 0; 1590 1591 if (do_free) { 1592 struct async_chunk *async_chunk; 1593 struct async_cow *async_cow; 1594 1595 async_chunk = container_of(work, struct async_chunk, work); 1596 btrfs_add_delayed_iput(async_chunk->inode); 1597 if (async_chunk->blkcg_css) 1598 css_put(async_chunk->blkcg_css); 1599 1600 async_cow = async_chunk->async_cow; 1601 if (atomic_dec_and_test(&async_cow->num_chunks)) 1602 kvfree(async_cow); 1603 return; 1604 } 1605 1606 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1607 PAGE_SHIFT; 1608 1609 while (!list_empty(&async_chunk->extents)) { 1610 async_extent = list_entry(async_chunk->extents.next, 1611 struct async_extent, list); 1612 list_del(&async_extent->list); 1613 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1614 } 1615 1616 /* atomic_sub_return implies a barrier */ 1617 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1618 5 * SZ_1M) 1619 cond_wake_up_nomb(&fs_info->async_submit_wait); 1620 } 1621 1622 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1623 struct page *locked_page, u64 start, 1624 u64 end, struct writeback_control *wbc) 1625 { 1626 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1627 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1628 struct async_cow *ctx; 1629 struct async_chunk *async_chunk; 1630 unsigned long nr_pages; 1631 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1632 int i; 1633 unsigned nofs_flag; 1634 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1635 1636 nofs_flag = memalloc_nofs_save(); 1637 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1638 memalloc_nofs_restore(nofs_flag); 1639 if (!ctx) 1640 return false; 1641 1642 unlock_extent(&inode->io_tree, start, end, NULL); 1643 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1644 1645 async_chunk = ctx->chunks; 1646 atomic_set(&ctx->num_chunks, num_chunks); 1647 1648 for (i = 0; i < num_chunks; i++) { 1649 u64 cur_end = min(end, start + SZ_512K - 1); 1650 1651 /* 1652 * igrab is called higher up in the call chain, take only the 1653 * lightweight reference for the callback lifetime 1654 */ 1655 ihold(&inode->vfs_inode); 1656 async_chunk[i].async_cow = ctx; 1657 async_chunk[i].inode = inode; 1658 async_chunk[i].start = start; 1659 async_chunk[i].end = cur_end; 1660 async_chunk[i].write_flags = write_flags; 1661 INIT_LIST_HEAD(&async_chunk[i].extents); 1662 1663 /* 1664 * The locked_page comes all the way from writepage and its 1665 * the original page we were actually given. As we spread 1666 * this large delalloc region across multiple async_chunk 1667 * structs, only the first struct needs a pointer to locked_page 1668 * 1669 * This way we don't need racey decisions about who is supposed 1670 * to unlock it. 1671 */ 1672 if (locked_page) { 1673 /* 1674 * Depending on the compressibility, the pages might or 1675 * might not go through async. We want all of them to 1676 * be accounted against wbc once. Let's do it here 1677 * before the paths diverge. wbc accounting is used 1678 * only for foreign writeback detection and doesn't 1679 * need full accuracy. Just account the whole thing 1680 * against the first page. 1681 */ 1682 wbc_account_cgroup_owner(wbc, locked_page, 1683 cur_end - start); 1684 async_chunk[i].locked_page = locked_page; 1685 locked_page = NULL; 1686 } else { 1687 async_chunk[i].locked_page = NULL; 1688 } 1689 1690 if (blkcg_css != blkcg_root_css) { 1691 css_get(blkcg_css); 1692 async_chunk[i].blkcg_css = blkcg_css; 1693 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1694 } else { 1695 async_chunk[i].blkcg_css = NULL; 1696 } 1697 1698 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1699 submit_compressed_extents); 1700 1701 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1702 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1703 1704 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1705 1706 start = cur_end + 1; 1707 } 1708 return true; 1709 } 1710 1711 /* 1712 * Run the delalloc range from start to end, and write back any dirty pages 1713 * covered by the range. 1714 */ 1715 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1716 struct page *locked_page, u64 start, 1717 u64 end, struct writeback_control *wbc, 1718 bool pages_dirty) 1719 { 1720 u64 done_offset = end; 1721 int ret; 1722 1723 while (start <= end) { 1724 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1725 true, false); 1726 if (ret) 1727 return ret; 1728 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1729 done_offset, wbc, pages_dirty); 1730 start = done_offset + 1; 1731 } 1732 1733 return 1; 1734 } 1735 1736 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1737 u64 bytenr, u64 num_bytes, bool nowait) 1738 { 1739 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1740 struct btrfs_ordered_sum *sums; 1741 int ret; 1742 LIST_HEAD(list); 1743 1744 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1745 &list, 0, nowait); 1746 if (ret == 0 && list_empty(&list)) 1747 return 0; 1748 1749 while (!list_empty(&list)) { 1750 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1751 list_del(&sums->list); 1752 kfree(sums); 1753 } 1754 if (ret < 0) 1755 return ret; 1756 return 1; 1757 } 1758 1759 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1760 const u64 start, const u64 end) 1761 { 1762 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1763 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1764 const u64 range_bytes = end + 1 - start; 1765 struct extent_io_tree *io_tree = &inode->io_tree; 1766 u64 range_start = start; 1767 u64 count; 1768 int ret; 1769 1770 /* 1771 * If EXTENT_NORESERVE is set it means that when the buffered write was 1772 * made we had not enough available data space and therefore we did not 1773 * reserve data space for it, since we though we could do NOCOW for the 1774 * respective file range (either there is prealloc extent or the inode 1775 * has the NOCOW bit set). 1776 * 1777 * However when we need to fallback to COW mode (because for example the 1778 * block group for the corresponding extent was turned to RO mode by a 1779 * scrub or relocation) we need to do the following: 1780 * 1781 * 1) We increment the bytes_may_use counter of the data space info. 1782 * If COW succeeds, it allocates a new data extent and after doing 1783 * that it decrements the space info's bytes_may_use counter and 1784 * increments its bytes_reserved counter by the same amount (we do 1785 * this at btrfs_add_reserved_bytes()). So we need to increment the 1786 * bytes_may_use counter to compensate (when space is reserved at 1787 * buffered write time, the bytes_may_use counter is incremented); 1788 * 1789 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1790 * that if the COW path fails for any reason, it decrements (through 1791 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1792 * data space info, which we incremented in the step above. 1793 * 1794 * If we need to fallback to cow and the inode corresponds to a free 1795 * space cache inode or an inode of the data relocation tree, we must 1796 * also increment bytes_may_use of the data space_info for the same 1797 * reason. Space caches and relocated data extents always get a prealloc 1798 * extent for them, however scrub or balance may have set the block 1799 * group that contains that extent to RO mode and therefore force COW 1800 * when starting writeback. 1801 */ 1802 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1803 EXTENT_NORESERVE, 0, NULL); 1804 if (count > 0 || is_space_ino || is_reloc_ino) { 1805 u64 bytes = count; 1806 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1807 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1808 1809 if (is_space_ino || is_reloc_ino) 1810 bytes = range_bytes; 1811 1812 spin_lock(&sinfo->lock); 1813 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1814 spin_unlock(&sinfo->lock); 1815 1816 if (count > 0) 1817 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1818 NULL); 1819 } 1820 1821 /* 1822 * Don't try to create inline extents, as a mix of inline extent that 1823 * is written out and unlocked directly and a normal NOCOW extent 1824 * doesn't work. 1825 */ 1826 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1827 ASSERT(ret != 1); 1828 return ret; 1829 } 1830 1831 struct can_nocow_file_extent_args { 1832 /* Input fields. */ 1833 1834 /* Start file offset of the range we want to NOCOW. */ 1835 u64 start; 1836 /* End file offset (inclusive) of the range we want to NOCOW. */ 1837 u64 end; 1838 bool writeback_path; 1839 bool strict; 1840 /* 1841 * Free the path passed to can_nocow_file_extent() once it's not needed 1842 * anymore. 1843 */ 1844 bool free_path; 1845 1846 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1847 1848 u64 disk_bytenr; 1849 u64 disk_num_bytes; 1850 u64 extent_offset; 1851 /* Number of bytes that can be written to in NOCOW mode. */ 1852 u64 num_bytes; 1853 }; 1854 1855 /* 1856 * Check if we can NOCOW the file extent that the path points to. 1857 * This function may return with the path released, so the caller should check 1858 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1859 * 1860 * Returns: < 0 on error 1861 * 0 if we can not NOCOW 1862 * 1 if we can NOCOW 1863 */ 1864 static int can_nocow_file_extent(struct btrfs_path *path, 1865 struct btrfs_key *key, 1866 struct btrfs_inode *inode, 1867 struct can_nocow_file_extent_args *args) 1868 { 1869 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1870 struct extent_buffer *leaf = path->nodes[0]; 1871 struct btrfs_root *root = inode->root; 1872 struct btrfs_file_extent_item *fi; 1873 u64 extent_end; 1874 u8 extent_type; 1875 int can_nocow = 0; 1876 int ret = 0; 1877 bool nowait = path->nowait; 1878 1879 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1880 extent_type = btrfs_file_extent_type(leaf, fi); 1881 1882 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1883 goto out; 1884 1885 /* Can't access these fields unless we know it's not an inline extent. */ 1886 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1887 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1888 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1889 1890 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1891 extent_type == BTRFS_FILE_EXTENT_REG) 1892 goto out; 1893 1894 /* 1895 * If the extent was created before the generation where the last snapshot 1896 * for its subvolume was created, then this implies the extent is shared, 1897 * hence we must COW. 1898 */ 1899 if (!args->strict && 1900 btrfs_file_extent_generation(leaf, fi) <= 1901 btrfs_root_last_snapshot(&root->root_item)) 1902 goto out; 1903 1904 /* An explicit hole, must COW. */ 1905 if (args->disk_bytenr == 0) 1906 goto out; 1907 1908 /* Compressed/encrypted/encoded extents must be COWed. */ 1909 if (btrfs_file_extent_compression(leaf, fi) || 1910 btrfs_file_extent_encryption(leaf, fi) || 1911 btrfs_file_extent_other_encoding(leaf, fi)) 1912 goto out; 1913 1914 extent_end = btrfs_file_extent_end(path); 1915 1916 /* 1917 * The following checks can be expensive, as they need to take other 1918 * locks and do btree or rbtree searches, so release the path to avoid 1919 * blocking other tasks for too long. 1920 */ 1921 btrfs_release_path(path); 1922 1923 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1924 key->offset - args->extent_offset, 1925 args->disk_bytenr, args->strict, path); 1926 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1927 if (ret != 0) 1928 goto out; 1929 1930 if (args->free_path) { 1931 /* 1932 * We don't need the path anymore, plus through the 1933 * csum_exist_in_range() call below we will end up allocating 1934 * another path. So free the path to avoid unnecessary extra 1935 * memory usage. 1936 */ 1937 btrfs_free_path(path); 1938 path = NULL; 1939 } 1940 1941 /* If there are pending snapshots for this root, we must COW. */ 1942 if (args->writeback_path && !is_freespace_inode && 1943 atomic_read(&root->snapshot_force_cow)) 1944 goto out; 1945 1946 args->disk_bytenr += args->extent_offset; 1947 args->disk_bytenr += args->start - key->offset; 1948 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1949 1950 /* 1951 * Force COW if csums exist in the range. This ensures that csums for a 1952 * given extent are either valid or do not exist. 1953 */ 1954 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1955 nowait); 1956 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1957 if (ret != 0) 1958 goto out; 1959 1960 can_nocow = 1; 1961 out: 1962 if (args->free_path && path) 1963 btrfs_free_path(path); 1964 1965 return ret < 0 ? ret : can_nocow; 1966 } 1967 1968 /* 1969 * when nowcow writeback call back. This checks for snapshots or COW copies 1970 * of the extents that exist in the file, and COWs the file as required. 1971 * 1972 * If no cow copies or snapshots exist, we write directly to the existing 1973 * blocks on disk 1974 */ 1975 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1976 struct page *locked_page, 1977 const u64 start, const u64 end) 1978 { 1979 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1980 struct btrfs_root *root = inode->root; 1981 struct btrfs_path *path; 1982 u64 cow_start = (u64)-1; 1983 u64 cur_offset = start; 1984 int ret; 1985 bool check_prev = true; 1986 u64 ino = btrfs_ino(inode); 1987 struct can_nocow_file_extent_args nocow_args = { 0 }; 1988 1989 /* 1990 * Normally on a zoned device we're only doing COW writes, but in case 1991 * of relocation on a zoned filesystem serializes I/O so that we're only 1992 * writing sequentially and can end up here as well. 1993 */ 1994 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 1995 1996 path = btrfs_alloc_path(); 1997 if (!path) { 1998 ret = -ENOMEM; 1999 goto error; 2000 } 2001 2002 nocow_args.end = end; 2003 nocow_args.writeback_path = true; 2004 2005 while (1) { 2006 struct btrfs_block_group *nocow_bg = NULL; 2007 struct btrfs_ordered_extent *ordered; 2008 struct btrfs_key found_key; 2009 struct btrfs_file_extent_item *fi; 2010 struct extent_buffer *leaf; 2011 u64 extent_end; 2012 u64 ram_bytes; 2013 u64 nocow_end; 2014 int extent_type; 2015 bool is_prealloc; 2016 2017 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2018 cur_offset, 0); 2019 if (ret < 0) 2020 goto error; 2021 2022 /* 2023 * If there is no extent for our range when doing the initial 2024 * search, then go back to the previous slot as it will be the 2025 * one containing the search offset 2026 */ 2027 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2028 leaf = path->nodes[0]; 2029 btrfs_item_key_to_cpu(leaf, &found_key, 2030 path->slots[0] - 1); 2031 if (found_key.objectid == ino && 2032 found_key.type == BTRFS_EXTENT_DATA_KEY) 2033 path->slots[0]--; 2034 } 2035 check_prev = false; 2036 next_slot: 2037 /* Go to next leaf if we have exhausted the current one */ 2038 leaf = path->nodes[0]; 2039 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2040 ret = btrfs_next_leaf(root, path); 2041 if (ret < 0) 2042 goto error; 2043 if (ret > 0) 2044 break; 2045 leaf = path->nodes[0]; 2046 } 2047 2048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2049 2050 /* Didn't find anything for our INO */ 2051 if (found_key.objectid > ino) 2052 break; 2053 /* 2054 * Keep searching until we find an EXTENT_ITEM or there are no 2055 * more extents for this inode 2056 */ 2057 if (WARN_ON_ONCE(found_key.objectid < ino) || 2058 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2059 path->slots[0]++; 2060 goto next_slot; 2061 } 2062 2063 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2064 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2065 found_key.offset > end) 2066 break; 2067 2068 /* 2069 * If the found extent starts after requested offset, then 2070 * adjust extent_end to be right before this extent begins 2071 */ 2072 if (found_key.offset > cur_offset) { 2073 extent_end = found_key.offset; 2074 extent_type = 0; 2075 goto must_cow; 2076 } 2077 2078 /* 2079 * Found extent which begins before our range and potentially 2080 * intersect it 2081 */ 2082 fi = btrfs_item_ptr(leaf, path->slots[0], 2083 struct btrfs_file_extent_item); 2084 extent_type = btrfs_file_extent_type(leaf, fi); 2085 /* If this is triggered then we have a memory corruption. */ 2086 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2087 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2088 ret = -EUCLEAN; 2089 goto error; 2090 } 2091 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2092 extent_end = btrfs_file_extent_end(path); 2093 2094 /* 2095 * If the extent we got ends before our current offset, skip to 2096 * the next extent. 2097 */ 2098 if (extent_end <= cur_offset) { 2099 path->slots[0]++; 2100 goto next_slot; 2101 } 2102 2103 nocow_args.start = cur_offset; 2104 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2105 if (ret < 0) 2106 goto error; 2107 if (ret == 0) 2108 goto must_cow; 2109 2110 ret = 0; 2111 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2112 if (!nocow_bg) { 2113 must_cow: 2114 /* 2115 * If we can't perform NOCOW writeback for the range, 2116 * then record the beginning of the range that needs to 2117 * be COWed. It will be written out before the next 2118 * NOCOW range if we find one, or when exiting this 2119 * loop. 2120 */ 2121 if (cow_start == (u64)-1) 2122 cow_start = cur_offset; 2123 cur_offset = extent_end; 2124 if (cur_offset > end) 2125 break; 2126 if (!path->nodes[0]) 2127 continue; 2128 path->slots[0]++; 2129 goto next_slot; 2130 } 2131 2132 /* 2133 * COW range from cow_start to found_key.offset - 1. As the key 2134 * will contain the beginning of the first extent that can be 2135 * NOCOW, following one which needs to be COW'ed 2136 */ 2137 if (cow_start != (u64)-1) { 2138 ret = fallback_to_cow(inode, locked_page, 2139 cow_start, found_key.offset - 1); 2140 cow_start = (u64)-1; 2141 if (ret) { 2142 btrfs_dec_nocow_writers(nocow_bg); 2143 goto error; 2144 } 2145 } 2146 2147 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2148 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2149 if (is_prealloc) { 2150 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2151 struct extent_map *em; 2152 2153 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2154 orig_start, 2155 nocow_args.disk_bytenr, /* block_start */ 2156 nocow_args.num_bytes, /* block_len */ 2157 nocow_args.disk_num_bytes, /* orig_block_len */ 2158 ram_bytes, BTRFS_COMPRESS_NONE, 2159 BTRFS_ORDERED_PREALLOC); 2160 if (IS_ERR(em)) { 2161 btrfs_dec_nocow_writers(nocow_bg); 2162 ret = PTR_ERR(em); 2163 goto error; 2164 } 2165 free_extent_map(em); 2166 } 2167 2168 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2169 nocow_args.num_bytes, nocow_args.num_bytes, 2170 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2171 is_prealloc 2172 ? (1 << BTRFS_ORDERED_PREALLOC) 2173 : (1 << BTRFS_ORDERED_NOCOW), 2174 BTRFS_COMPRESS_NONE); 2175 btrfs_dec_nocow_writers(nocow_bg); 2176 if (IS_ERR(ordered)) { 2177 if (is_prealloc) { 2178 btrfs_drop_extent_map_range(inode, cur_offset, 2179 nocow_end, false); 2180 } 2181 ret = PTR_ERR(ordered); 2182 goto error; 2183 } 2184 2185 if (btrfs_is_data_reloc_root(root)) 2186 /* 2187 * Error handled later, as we must prevent 2188 * extent_clear_unlock_delalloc() in error handler 2189 * from freeing metadata of created ordered extent. 2190 */ 2191 ret = btrfs_reloc_clone_csums(ordered); 2192 btrfs_put_ordered_extent(ordered); 2193 2194 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2195 locked_page, EXTENT_LOCKED | 2196 EXTENT_DELALLOC | 2197 EXTENT_CLEAR_DATA_RESV, 2198 PAGE_UNLOCK | PAGE_SET_ORDERED); 2199 2200 cur_offset = extent_end; 2201 2202 /* 2203 * btrfs_reloc_clone_csums() error, now we're OK to call error 2204 * handler, as metadata for created ordered extent will only 2205 * be freed by btrfs_finish_ordered_io(). 2206 */ 2207 if (ret) 2208 goto error; 2209 if (cur_offset > end) 2210 break; 2211 } 2212 btrfs_release_path(path); 2213 2214 if (cur_offset <= end && cow_start == (u64)-1) 2215 cow_start = cur_offset; 2216 2217 if (cow_start != (u64)-1) { 2218 cur_offset = end; 2219 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2220 cow_start = (u64)-1; 2221 if (ret) 2222 goto error; 2223 } 2224 2225 btrfs_free_path(path); 2226 return 0; 2227 2228 error: 2229 /* 2230 * If an error happened while a COW region is outstanding, cur_offset 2231 * needs to be reset to cow_start to ensure the COW region is unlocked 2232 * as well. 2233 */ 2234 if (cow_start != (u64)-1) 2235 cur_offset = cow_start; 2236 if (cur_offset < end) 2237 extent_clear_unlock_delalloc(inode, cur_offset, end, 2238 locked_page, EXTENT_LOCKED | 2239 EXTENT_DELALLOC | EXTENT_DEFRAG | 2240 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2241 PAGE_START_WRITEBACK | 2242 PAGE_END_WRITEBACK); 2243 btrfs_free_path(path); 2244 return ret; 2245 } 2246 2247 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2248 { 2249 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2250 if (inode->defrag_bytes && 2251 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2252 return false; 2253 return true; 2254 } 2255 return false; 2256 } 2257 2258 /* 2259 * Function to process delayed allocation (create CoW) for ranges which are 2260 * being touched for the first time. 2261 */ 2262 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2263 u64 start, u64 end, struct writeback_control *wbc) 2264 { 2265 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2266 int ret; 2267 2268 /* 2269 * The range must cover part of the @locked_page, or a return of 1 2270 * can confuse the caller. 2271 */ 2272 ASSERT(!(end <= page_offset(locked_page) || 2273 start >= page_offset(locked_page) + PAGE_SIZE)); 2274 2275 if (should_nocow(inode, start, end)) { 2276 ret = run_delalloc_nocow(inode, locked_page, start, end); 2277 goto out; 2278 } 2279 2280 if (btrfs_inode_can_compress(inode) && 2281 inode_need_compress(inode, start, end) && 2282 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2283 return 1; 2284 2285 if (zoned) 2286 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2287 true); 2288 else 2289 ret = cow_file_range(inode, locked_page, start, end, NULL, 2290 false, false); 2291 2292 out: 2293 if (ret < 0) 2294 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2295 end - start + 1); 2296 return ret; 2297 } 2298 2299 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2300 struct extent_state *orig, u64 split) 2301 { 2302 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2303 u64 size; 2304 2305 /* not delalloc, ignore it */ 2306 if (!(orig->state & EXTENT_DELALLOC)) 2307 return; 2308 2309 size = orig->end - orig->start + 1; 2310 if (size > fs_info->max_extent_size) { 2311 u32 num_extents; 2312 u64 new_size; 2313 2314 /* 2315 * See the explanation in btrfs_merge_delalloc_extent, the same 2316 * applies here, just in reverse. 2317 */ 2318 new_size = orig->end - split + 1; 2319 num_extents = count_max_extents(fs_info, new_size); 2320 new_size = split - orig->start; 2321 num_extents += count_max_extents(fs_info, new_size); 2322 if (count_max_extents(fs_info, size) >= num_extents) 2323 return; 2324 } 2325 2326 spin_lock(&inode->lock); 2327 btrfs_mod_outstanding_extents(inode, 1); 2328 spin_unlock(&inode->lock); 2329 } 2330 2331 /* 2332 * Handle merged delayed allocation extents so we can keep track of new extents 2333 * that are just merged onto old extents, such as when we are doing sequential 2334 * writes, so we can properly account for the metadata space we'll need. 2335 */ 2336 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2337 struct extent_state *other) 2338 { 2339 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2340 u64 new_size, old_size; 2341 u32 num_extents; 2342 2343 /* not delalloc, ignore it */ 2344 if (!(other->state & EXTENT_DELALLOC)) 2345 return; 2346 2347 if (new->start > other->start) 2348 new_size = new->end - other->start + 1; 2349 else 2350 new_size = other->end - new->start + 1; 2351 2352 /* we're not bigger than the max, unreserve the space and go */ 2353 if (new_size <= fs_info->max_extent_size) { 2354 spin_lock(&inode->lock); 2355 btrfs_mod_outstanding_extents(inode, -1); 2356 spin_unlock(&inode->lock); 2357 return; 2358 } 2359 2360 /* 2361 * We have to add up either side to figure out how many extents were 2362 * accounted for before we merged into one big extent. If the number of 2363 * extents we accounted for is <= the amount we need for the new range 2364 * then we can return, otherwise drop. Think of it like this 2365 * 2366 * [ 4k][MAX_SIZE] 2367 * 2368 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2369 * need 2 outstanding extents, on one side we have 1 and the other side 2370 * we have 1 so they are == and we can return. But in this case 2371 * 2372 * [MAX_SIZE+4k][MAX_SIZE+4k] 2373 * 2374 * Each range on their own accounts for 2 extents, but merged together 2375 * they are only 3 extents worth of accounting, so we need to drop in 2376 * this case. 2377 */ 2378 old_size = other->end - other->start + 1; 2379 num_extents = count_max_extents(fs_info, old_size); 2380 old_size = new->end - new->start + 1; 2381 num_extents += count_max_extents(fs_info, old_size); 2382 if (count_max_extents(fs_info, new_size) >= num_extents) 2383 return; 2384 2385 spin_lock(&inode->lock); 2386 btrfs_mod_outstanding_extents(inode, -1); 2387 spin_unlock(&inode->lock); 2388 } 2389 2390 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2391 struct btrfs_inode *inode) 2392 { 2393 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2394 2395 spin_lock(&root->delalloc_lock); 2396 if (list_empty(&inode->delalloc_inodes)) { 2397 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2398 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); 2399 root->nr_delalloc_inodes++; 2400 if (root->nr_delalloc_inodes == 1) { 2401 spin_lock(&fs_info->delalloc_root_lock); 2402 BUG_ON(!list_empty(&root->delalloc_root)); 2403 list_add_tail(&root->delalloc_root, 2404 &fs_info->delalloc_roots); 2405 spin_unlock(&fs_info->delalloc_root_lock); 2406 } 2407 } 2408 spin_unlock(&root->delalloc_lock); 2409 } 2410 2411 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2412 struct btrfs_inode *inode) 2413 { 2414 struct btrfs_fs_info *fs_info = root->fs_info; 2415 2416 if (!list_empty(&inode->delalloc_inodes)) { 2417 list_del_init(&inode->delalloc_inodes); 2418 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2419 &inode->runtime_flags); 2420 root->nr_delalloc_inodes--; 2421 if (!root->nr_delalloc_inodes) { 2422 ASSERT(list_empty(&root->delalloc_inodes)); 2423 spin_lock(&fs_info->delalloc_root_lock); 2424 BUG_ON(list_empty(&root->delalloc_root)); 2425 list_del_init(&root->delalloc_root); 2426 spin_unlock(&fs_info->delalloc_root_lock); 2427 } 2428 } 2429 } 2430 2431 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2432 struct btrfs_inode *inode) 2433 { 2434 spin_lock(&root->delalloc_lock); 2435 __btrfs_del_delalloc_inode(root, inode); 2436 spin_unlock(&root->delalloc_lock); 2437 } 2438 2439 /* 2440 * Properly track delayed allocation bytes in the inode and to maintain the 2441 * list of inodes that have pending delalloc work to be done. 2442 */ 2443 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2444 u32 bits) 2445 { 2446 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2447 2448 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2449 WARN_ON(1); 2450 /* 2451 * set_bit and clear bit hooks normally require _irqsave/restore 2452 * but in this case, we are only testing for the DELALLOC 2453 * bit, which is only set or cleared with irqs on 2454 */ 2455 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2456 struct btrfs_root *root = inode->root; 2457 u64 len = state->end + 1 - state->start; 2458 u32 num_extents = count_max_extents(fs_info, len); 2459 bool do_list = !btrfs_is_free_space_inode(inode); 2460 2461 spin_lock(&inode->lock); 2462 btrfs_mod_outstanding_extents(inode, num_extents); 2463 spin_unlock(&inode->lock); 2464 2465 /* For sanity tests */ 2466 if (btrfs_is_testing(fs_info)) 2467 return; 2468 2469 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2470 fs_info->delalloc_batch); 2471 spin_lock(&inode->lock); 2472 inode->delalloc_bytes += len; 2473 if (bits & EXTENT_DEFRAG) 2474 inode->defrag_bytes += len; 2475 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2476 &inode->runtime_flags)) 2477 btrfs_add_delalloc_inodes(root, inode); 2478 spin_unlock(&inode->lock); 2479 } 2480 2481 if (!(state->state & EXTENT_DELALLOC_NEW) && 2482 (bits & EXTENT_DELALLOC_NEW)) { 2483 spin_lock(&inode->lock); 2484 inode->new_delalloc_bytes += state->end + 1 - state->start; 2485 spin_unlock(&inode->lock); 2486 } 2487 } 2488 2489 /* 2490 * Once a range is no longer delalloc this function ensures that proper 2491 * accounting happens. 2492 */ 2493 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2494 struct extent_state *state, u32 bits) 2495 { 2496 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2497 u64 len = state->end + 1 - state->start; 2498 u32 num_extents = count_max_extents(fs_info, len); 2499 2500 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2501 spin_lock(&inode->lock); 2502 inode->defrag_bytes -= len; 2503 spin_unlock(&inode->lock); 2504 } 2505 2506 /* 2507 * set_bit and clear bit hooks normally require _irqsave/restore 2508 * but in this case, we are only testing for the DELALLOC 2509 * bit, which is only set or cleared with irqs on 2510 */ 2511 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2512 struct btrfs_root *root = inode->root; 2513 bool do_list = !btrfs_is_free_space_inode(inode); 2514 2515 spin_lock(&inode->lock); 2516 btrfs_mod_outstanding_extents(inode, -num_extents); 2517 spin_unlock(&inode->lock); 2518 2519 /* 2520 * We don't reserve metadata space for space cache inodes so we 2521 * don't need to call delalloc_release_metadata if there is an 2522 * error. 2523 */ 2524 if (bits & EXTENT_CLEAR_META_RESV && 2525 root != fs_info->tree_root) 2526 btrfs_delalloc_release_metadata(inode, len, false); 2527 2528 /* For sanity tests. */ 2529 if (btrfs_is_testing(fs_info)) 2530 return; 2531 2532 if (!btrfs_is_data_reloc_root(root) && 2533 do_list && !(state->state & EXTENT_NORESERVE) && 2534 (bits & EXTENT_CLEAR_DATA_RESV)) 2535 btrfs_free_reserved_data_space_noquota(fs_info, len); 2536 2537 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2538 fs_info->delalloc_batch); 2539 spin_lock(&inode->lock); 2540 inode->delalloc_bytes -= len; 2541 if (do_list && inode->delalloc_bytes == 0 && 2542 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2543 &inode->runtime_flags)) 2544 btrfs_del_delalloc_inode(root, inode); 2545 spin_unlock(&inode->lock); 2546 } 2547 2548 if ((state->state & EXTENT_DELALLOC_NEW) && 2549 (bits & EXTENT_DELALLOC_NEW)) { 2550 spin_lock(&inode->lock); 2551 ASSERT(inode->new_delalloc_bytes >= len); 2552 inode->new_delalloc_bytes -= len; 2553 if (bits & EXTENT_ADD_INODE_BYTES) 2554 inode_add_bytes(&inode->vfs_inode, len); 2555 spin_unlock(&inode->lock); 2556 } 2557 } 2558 2559 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2560 struct btrfs_ordered_extent *ordered) 2561 { 2562 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2563 u64 len = bbio->bio.bi_iter.bi_size; 2564 struct btrfs_ordered_extent *new; 2565 int ret; 2566 2567 /* Must always be called for the beginning of an ordered extent. */ 2568 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2569 return -EINVAL; 2570 2571 /* No need to split if the ordered extent covers the entire bio. */ 2572 if (ordered->disk_num_bytes == len) { 2573 refcount_inc(&ordered->refs); 2574 bbio->ordered = ordered; 2575 return 0; 2576 } 2577 2578 /* 2579 * Don't split the extent_map for NOCOW extents, as we're writing into 2580 * a pre-existing one. 2581 */ 2582 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2583 ret = split_extent_map(bbio->inode, bbio->file_offset, 2584 ordered->num_bytes, len, 2585 ordered->disk_bytenr); 2586 if (ret) 2587 return ret; 2588 } 2589 2590 new = btrfs_split_ordered_extent(ordered, len); 2591 if (IS_ERR(new)) 2592 return PTR_ERR(new); 2593 bbio->ordered = new; 2594 return 0; 2595 } 2596 2597 /* 2598 * given a list of ordered sums record them in the inode. This happens 2599 * at IO completion time based on sums calculated at bio submission time. 2600 */ 2601 static int add_pending_csums(struct btrfs_trans_handle *trans, 2602 struct list_head *list) 2603 { 2604 struct btrfs_ordered_sum *sum; 2605 struct btrfs_root *csum_root = NULL; 2606 int ret; 2607 2608 list_for_each_entry(sum, list, list) { 2609 trans->adding_csums = true; 2610 if (!csum_root) 2611 csum_root = btrfs_csum_root(trans->fs_info, 2612 sum->logical); 2613 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2614 trans->adding_csums = false; 2615 if (ret) 2616 return ret; 2617 } 2618 return 0; 2619 } 2620 2621 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2622 const u64 start, 2623 const u64 len, 2624 struct extent_state **cached_state) 2625 { 2626 u64 search_start = start; 2627 const u64 end = start + len - 1; 2628 2629 while (search_start < end) { 2630 const u64 search_len = end - search_start + 1; 2631 struct extent_map *em; 2632 u64 em_len; 2633 int ret = 0; 2634 2635 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2636 if (IS_ERR(em)) 2637 return PTR_ERR(em); 2638 2639 if (em->block_start != EXTENT_MAP_HOLE) 2640 goto next; 2641 2642 em_len = em->len; 2643 if (em->start < search_start) 2644 em_len -= search_start - em->start; 2645 if (em_len > search_len) 2646 em_len = search_len; 2647 2648 ret = set_extent_bit(&inode->io_tree, search_start, 2649 search_start + em_len - 1, 2650 EXTENT_DELALLOC_NEW, cached_state); 2651 next: 2652 search_start = extent_map_end(em); 2653 free_extent_map(em); 2654 if (ret) 2655 return ret; 2656 } 2657 return 0; 2658 } 2659 2660 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2661 unsigned int extra_bits, 2662 struct extent_state **cached_state) 2663 { 2664 WARN_ON(PAGE_ALIGNED(end)); 2665 2666 if (start >= i_size_read(&inode->vfs_inode) && 2667 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2668 /* 2669 * There can't be any extents following eof in this case so just 2670 * set the delalloc new bit for the range directly. 2671 */ 2672 extra_bits |= EXTENT_DELALLOC_NEW; 2673 } else { 2674 int ret; 2675 2676 ret = btrfs_find_new_delalloc_bytes(inode, start, 2677 end + 1 - start, 2678 cached_state); 2679 if (ret) 2680 return ret; 2681 } 2682 2683 return set_extent_bit(&inode->io_tree, start, end, 2684 EXTENT_DELALLOC | extra_bits, cached_state); 2685 } 2686 2687 /* see btrfs_writepage_start_hook for details on why this is required */ 2688 struct btrfs_writepage_fixup { 2689 struct page *page; 2690 struct btrfs_inode *inode; 2691 struct btrfs_work work; 2692 }; 2693 2694 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2695 { 2696 struct btrfs_writepage_fixup *fixup = 2697 container_of(work, struct btrfs_writepage_fixup, work); 2698 struct btrfs_ordered_extent *ordered; 2699 struct extent_state *cached_state = NULL; 2700 struct extent_changeset *data_reserved = NULL; 2701 struct page *page = fixup->page; 2702 struct btrfs_inode *inode = fixup->inode; 2703 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2704 u64 page_start = page_offset(page); 2705 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2706 int ret = 0; 2707 bool free_delalloc_space = true; 2708 2709 /* 2710 * This is similar to page_mkwrite, we need to reserve the space before 2711 * we take the page lock. 2712 */ 2713 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2714 PAGE_SIZE); 2715 again: 2716 lock_page(page); 2717 2718 /* 2719 * Before we queued this fixup, we took a reference on the page. 2720 * page->mapping may go NULL, but it shouldn't be moved to a different 2721 * address space. 2722 */ 2723 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2724 /* 2725 * Unfortunately this is a little tricky, either 2726 * 2727 * 1) We got here and our page had already been dealt with and 2728 * we reserved our space, thus ret == 0, so we need to just 2729 * drop our space reservation and bail. This can happen the 2730 * first time we come into the fixup worker, or could happen 2731 * while waiting for the ordered extent. 2732 * 2) Our page was already dealt with, but we happened to get an 2733 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2734 * this case we obviously don't have anything to release, but 2735 * because the page was already dealt with we don't want to 2736 * mark the page with an error, so make sure we're resetting 2737 * ret to 0. This is why we have this check _before_ the ret 2738 * check, because we do not want to have a surprise ENOSPC 2739 * when the page was already properly dealt with. 2740 */ 2741 if (!ret) { 2742 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2743 btrfs_delalloc_release_space(inode, data_reserved, 2744 page_start, PAGE_SIZE, 2745 true); 2746 } 2747 ret = 0; 2748 goto out_page; 2749 } 2750 2751 /* 2752 * We can't mess with the page state unless it is locked, so now that 2753 * it is locked bail if we failed to make our space reservation. 2754 */ 2755 if (ret) 2756 goto out_page; 2757 2758 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2759 2760 /* already ordered? We're done */ 2761 if (PageOrdered(page)) 2762 goto out_reserved; 2763 2764 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2765 if (ordered) { 2766 unlock_extent(&inode->io_tree, page_start, page_end, 2767 &cached_state); 2768 unlock_page(page); 2769 btrfs_start_ordered_extent(ordered); 2770 btrfs_put_ordered_extent(ordered); 2771 goto again; 2772 } 2773 2774 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2775 &cached_state); 2776 if (ret) 2777 goto out_reserved; 2778 2779 /* 2780 * Everything went as planned, we're now the owner of a dirty page with 2781 * delayed allocation bits set and space reserved for our COW 2782 * destination. 2783 * 2784 * The page was dirty when we started, nothing should have cleaned it. 2785 */ 2786 BUG_ON(!PageDirty(page)); 2787 free_delalloc_space = false; 2788 out_reserved: 2789 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2790 if (free_delalloc_space) 2791 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2792 PAGE_SIZE, true); 2793 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2794 out_page: 2795 if (ret) { 2796 /* 2797 * We hit ENOSPC or other errors. Update the mapping and page 2798 * to reflect the errors and clean the page. 2799 */ 2800 mapping_set_error(page->mapping, ret); 2801 btrfs_mark_ordered_io_finished(inode, page, page_start, 2802 PAGE_SIZE, !ret); 2803 clear_page_dirty_for_io(page); 2804 } 2805 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE); 2806 unlock_page(page); 2807 put_page(page); 2808 kfree(fixup); 2809 extent_changeset_free(data_reserved); 2810 /* 2811 * As a precaution, do a delayed iput in case it would be the last iput 2812 * that could need flushing space. Recursing back to fixup worker would 2813 * deadlock. 2814 */ 2815 btrfs_add_delayed_iput(inode); 2816 } 2817 2818 /* 2819 * There are a few paths in the higher layers of the kernel that directly 2820 * set the page dirty bit without asking the filesystem if it is a 2821 * good idea. This causes problems because we want to make sure COW 2822 * properly happens and the data=ordered rules are followed. 2823 * 2824 * In our case any range that doesn't have the ORDERED bit set 2825 * hasn't been properly setup for IO. We kick off an async process 2826 * to fix it up. The async helper will wait for ordered extents, set 2827 * the delalloc bit and make it safe to write the page. 2828 */ 2829 int btrfs_writepage_cow_fixup(struct page *page) 2830 { 2831 struct inode *inode = page->mapping->host; 2832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2833 struct btrfs_writepage_fixup *fixup; 2834 2835 /* This page has ordered extent covering it already */ 2836 if (PageOrdered(page)) 2837 return 0; 2838 2839 /* 2840 * PageChecked is set below when we create a fixup worker for this page, 2841 * don't try to create another one if we're already PageChecked() 2842 * 2843 * The extent_io writepage code will redirty the page if we send back 2844 * EAGAIN. 2845 */ 2846 if (PageChecked(page)) 2847 return -EAGAIN; 2848 2849 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2850 if (!fixup) 2851 return -EAGAIN; 2852 2853 /* 2854 * We are already holding a reference to this inode from 2855 * write_cache_pages. We need to hold it because the space reservation 2856 * takes place outside of the page lock, and we can't trust 2857 * page->mapping outside of the page lock. 2858 */ 2859 ihold(inode); 2860 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE); 2861 get_page(page); 2862 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2863 fixup->page = page; 2864 fixup->inode = BTRFS_I(inode); 2865 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2866 2867 return -EAGAIN; 2868 } 2869 2870 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2871 struct btrfs_inode *inode, u64 file_pos, 2872 struct btrfs_file_extent_item *stack_fi, 2873 const bool update_inode_bytes, 2874 u64 qgroup_reserved) 2875 { 2876 struct btrfs_root *root = inode->root; 2877 const u64 sectorsize = root->fs_info->sectorsize; 2878 struct btrfs_path *path; 2879 struct extent_buffer *leaf; 2880 struct btrfs_key ins; 2881 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2882 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2883 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2884 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2885 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2886 struct btrfs_drop_extents_args drop_args = { 0 }; 2887 int ret; 2888 2889 path = btrfs_alloc_path(); 2890 if (!path) 2891 return -ENOMEM; 2892 2893 /* 2894 * we may be replacing one extent in the tree with another. 2895 * The new extent is pinned in the extent map, and we don't want 2896 * to drop it from the cache until it is completely in the btree. 2897 * 2898 * So, tell btrfs_drop_extents to leave this extent in the cache. 2899 * the caller is expected to unpin it and allow it to be merged 2900 * with the others. 2901 */ 2902 drop_args.path = path; 2903 drop_args.start = file_pos; 2904 drop_args.end = file_pos + num_bytes; 2905 drop_args.replace_extent = true; 2906 drop_args.extent_item_size = sizeof(*stack_fi); 2907 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2908 if (ret) 2909 goto out; 2910 2911 if (!drop_args.extent_inserted) { 2912 ins.objectid = btrfs_ino(inode); 2913 ins.offset = file_pos; 2914 ins.type = BTRFS_EXTENT_DATA_KEY; 2915 2916 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2917 sizeof(*stack_fi)); 2918 if (ret) 2919 goto out; 2920 } 2921 leaf = path->nodes[0]; 2922 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2923 write_extent_buffer(leaf, stack_fi, 2924 btrfs_item_ptr_offset(leaf, path->slots[0]), 2925 sizeof(struct btrfs_file_extent_item)); 2926 2927 btrfs_mark_buffer_dirty(trans, leaf); 2928 btrfs_release_path(path); 2929 2930 /* 2931 * If we dropped an inline extent here, we know the range where it is 2932 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2933 * number of bytes only for that range containing the inline extent. 2934 * The remaining of the range will be processed when clearning the 2935 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2936 */ 2937 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2938 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2939 2940 inline_size = drop_args.bytes_found - inline_size; 2941 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2942 drop_args.bytes_found -= inline_size; 2943 num_bytes -= sectorsize; 2944 } 2945 2946 if (update_inode_bytes) 2947 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2948 2949 ins.objectid = disk_bytenr; 2950 ins.offset = disk_num_bytes; 2951 ins.type = BTRFS_EXTENT_ITEM_KEY; 2952 2953 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2954 if (ret) 2955 goto out; 2956 2957 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2958 file_pos - offset, 2959 qgroup_reserved, &ins); 2960 out: 2961 btrfs_free_path(path); 2962 2963 return ret; 2964 } 2965 2966 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2967 u64 start, u64 len) 2968 { 2969 struct btrfs_block_group *cache; 2970 2971 cache = btrfs_lookup_block_group(fs_info, start); 2972 ASSERT(cache); 2973 2974 spin_lock(&cache->lock); 2975 cache->delalloc_bytes -= len; 2976 spin_unlock(&cache->lock); 2977 2978 btrfs_put_block_group(cache); 2979 } 2980 2981 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2982 struct btrfs_ordered_extent *oe) 2983 { 2984 struct btrfs_file_extent_item stack_fi; 2985 bool update_inode_bytes; 2986 u64 num_bytes = oe->num_bytes; 2987 u64 ram_bytes = oe->ram_bytes; 2988 2989 memset(&stack_fi, 0, sizeof(stack_fi)); 2990 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2991 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2992 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2993 oe->disk_num_bytes); 2994 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2995 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 2996 num_bytes = oe->truncated_len; 2997 ram_bytes = num_bytes; 2998 } 2999 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3000 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3001 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3002 /* Encryption and other encoding is reserved and all 0 */ 3003 3004 /* 3005 * For delalloc, when completing an ordered extent we update the inode's 3006 * bytes when clearing the range in the inode's io tree, so pass false 3007 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3008 * except if the ordered extent was truncated. 3009 */ 3010 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3011 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3012 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3013 3014 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3015 oe->file_offset, &stack_fi, 3016 update_inode_bytes, oe->qgroup_rsv); 3017 } 3018 3019 /* 3020 * As ordered data IO finishes, this gets called so we can finish 3021 * an ordered extent if the range of bytes in the file it covers are 3022 * fully written. 3023 */ 3024 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3025 { 3026 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3027 struct btrfs_root *root = inode->root; 3028 struct btrfs_fs_info *fs_info = root->fs_info; 3029 struct btrfs_trans_handle *trans = NULL; 3030 struct extent_io_tree *io_tree = &inode->io_tree; 3031 struct extent_state *cached_state = NULL; 3032 u64 start, end; 3033 int compress_type = 0; 3034 int ret = 0; 3035 u64 logical_len = ordered_extent->num_bytes; 3036 bool freespace_inode; 3037 bool truncated = false; 3038 bool clear_reserved_extent = true; 3039 unsigned int clear_bits = EXTENT_DEFRAG; 3040 3041 start = ordered_extent->file_offset; 3042 end = start + ordered_extent->num_bytes - 1; 3043 3044 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3045 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3046 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3047 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3048 clear_bits |= EXTENT_DELALLOC_NEW; 3049 3050 freespace_inode = btrfs_is_free_space_inode(inode); 3051 if (!freespace_inode) 3052 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3053 3054 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3055 ret = -EIO; 3056 goto out; 3057 } 3058 3059 if (btrfs_is_zoned(fs_info)) 3060 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3061 ordered_extent->disk_num_bytes); 3062 3063 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3064 truncated = true; 3065 logical_len = ordered_extent->truncated_len; 3066 /* Truncated the entire extent, don't bother adding */ 3067 if (!logical_len) 3068 goto out; 3069 } 3070 3071 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3072 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3073 3074 btrfs_inode_safe_disk_i_size_write(inode, 0); 3075 if (freespace_inode) 3076 trans = btrfs_join_transaction_spacecache(root); 3077 else 3078 trans = btrfs_join_transaction(root); 3079 if (IS_ERR(trans)) { 3080 ret = PTR_ERR(trans); 3081 trans = NULL; 3082 goto out; 3083 } 3084 trans->block_rsv = &inode->block_rsv; 3085 ret = btrfs_update_inode_fallback(trans, inode); 3086 if (ret) /* -ENOMEM or corruption */ 3087 btrfs_abort_transaction(trans, ret); 3088 goto out; 3089 } 3090 3091 clear_bits |= EXTENT_LOCKED; 3092 lock_extent(io_tree, start, end, &cached_state); 3093 3094 if (freespace_inode) 3095 trans = btrfs_join_transaction_spacecache(root); 3096 else 3097 trans = btrfs_join_transaction(root); 3098 if (IS_ERR(trans)) { 3099 ret = PTR_ERR(trans); 3100 trans = NULL; 3101 goto out; 3102 } 3103 3104 trans->block_rsv = &inode->block_rsv; 3105 3106 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3107 if (ret) 3108 goto out; 3109 3110 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3111 compress_type = ordered_extent->compress_type; 3112 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3113 BUG_ON(compress_type); 3114 ret = btrfs_mark_extent_written(trans, inode, 3115 ordered_extent->file_offset, 3116 ordered_extent->file_offset + 3117 logical_len); 3118 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3119 ordered_extent->disk_num_bytes); 3120 } else { 3121 BUG_ON(root == fs_info->tree_root); 3122 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3123 if (!ret) { 3124 clear_reserved_extent = false; 3125 btrfs_release_delalloc_bytes(fs_info, 3126 ordered_extent->disk_bytenr, 3127 ordered_extent->disk_num_bytes); 3128 } 3129 } 3130 unpin_extent_cache(inode, ordered_extent->file_offset, 3131 ordered_extent->num_bytes, trans->transid); 3132 if (ret < 0) { 3133 btrfs_abort_transaction(trans, ret); 3134 goto out; 3135 } 3136 3137 ret = add_pending_csums(trans, &ordered_extent->list); 3138 if (ret) { 3139 btrfs_abort_transaction(trans, ret); 3140 goto out; 3141 } 3142 3143 /* 3144 * If this is a new delalloc range, clear its new delalloc flag to 3145 * update the inode's number of bytes. This needs to be done first 3146 * before updating the inode item. 3147 */ 3148 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3149 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3150 clear_extent_bit(&inode->io_tree, start, end, 3151 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3152 &cached_state); 3153 3154 btrfs_inode_safe_disk_i_size_write(inode, 0); 3155 ret = btrfs_update_inode_fallback(trans, inode); 3156 if (ret) { /* -ENOMEM or corruption */ 3157 btrfs_abort_transaction(trans, ret); 3158 goto out; 3159 } 3160 ret = 0; 3161 out: 3162 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3163 &cached_state); 3164 3165 if (trans) 3166 btrfs_end_transaction(trans); 3167 3168 if (ret || truncated) { 3169 u64 unwritten_start = start; 3170 3171 /* 3172 * If we failed to finish this ordered extent for any reason we 3173 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3174 * extent, and mark the inode with the error if it wasn't 3175 * already set. Any error during writeback would have already 3176 * set the mapping error, so we need to set it if we're the ones 3177 * marking this ordered extent as failed. 3178 */ 3179 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3180 &ordered_extent->flags)) 3181 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3182 3183 if (truncated) 3184 unwritten_start += logical_len; 3185 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3186 3187 /* Drop extent maps for the part of the extent we didn't write. */ 3188 btrfs_drop_extent_map_range(inode, unwritten_start, end, false); 3189 3190 /* 3191 * If the ordered extent had an IOERR or something else went 3192 * wrong we need to return the space for this ordered extent 3193 * back to the allocator. We only free the extent in the 3194 * truncated case if we didn't write out the extent at all. 3195 * 3196 * If we made it past insert_reserved_file_extent before we 3197 * errored out then we don't need to do this as the accounting 3198 * has already been done. 3199 */ 3200 if ((ret || !logical_len) && 3201 clear_reserved_extent && 3202 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3203 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3204 /* 3205 * Discard the range before returning it back to the 3206 * free space pool 3207 */ 3208 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3209 btrfs_discard_extent(fs_info, 3210 ordered_extent->disk_bytenr, 3211 ordered_extent->disk_num_bytes, 3212 NULL); 3213 btrfs_free_reserved_extent(fs_info, 3214 ordered_extent->disk_bytenr, 3215 ordered_extent->disk_num_bytes, 1); 3216 /* 3217 * Actually free the qgroup rsv which was released when 3218 * the ordered extent was created. 3219 */ 3220 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, 3221 ordered_extent->qgroup_rsv, 3222 BTRFS_QGROUP_RSV_DATA); 3223 } 3224 } 3225 3226 /* 3227 * This needs to be done to make sure anybody waiting knows we are done 3228 * updating everything for this ordered extent. 3229 */ 3230 btrfs_remove_ordered_extent(inode, ordered_extent); 3231 3232 /* once for us */ 3233 btrfs_put_ordered_extent(ordered_extent); 3234 /* once for the tree */ 3235 btrfs_put_ordered_extent(ordered_extent); 3236 3237 return ret; 3238 } 3239 3240 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3241 { 3242 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) && 3243 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3244 list_empty(&ordered->bioc_list)) 3245 btrfs_finish_ordered_zoned(ordered); 3246 return btrfs_finish_one_ordered(ordered); 3247 } 3248 3249 /* 3250 * Verify the checksum for a single sector without any extra action that depend 3251 * on the type of I/O. 3252 */ 3253 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3254 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3255 { 3256 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3257 char *kaddr; 3258 3259 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3260 3261 shash->tfm = fs_info->csum_shash; 3262 3263 kaddr = kmap_local_page(page) + pgoff; 3264 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3265 kunmap_local(kaddr); 3266 3267 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3268 return -EIO; 3269 return 0; 3270 } 3271 3272 /* 3273 * Verify the checksum of a single data sector. 3274 * 3275 * @bbio: btrfs_io_bio which contains the csum 3276 * @dev: device the sector is on 3277 * @bio_offset: offset to the beginning of the bio (in bytes) 3278 * @bv: bio_vec to check 3279 * 3280 * Check if the checksum on a data block is valid. When a checksum mismatch is 3281 * detected, report the error and fill the corrupted range with zero. 3282 * 3283 * Return %true if the sector is ok or had no checksum to start with, else %false. 3284 */ 3285 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3286 u32 bio_offset, struct bio_vec *bv) 3287 { 3288 struct btrfs_inode *inode = bbio->inode; 3289 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3290 u64 file_offset = bbio->file_offset + bio_offset; 3291 u64 end = file_offset + bv->bv_len - 1; 3292 u8 *csum_expected; 3293 u8 csum[BTRFS_CSUM_SIZE]; 3294 3295 ASSERT(bv->bv_len == fs_info->sectorsize); 3296 3297 if (!bbio->csum) 3298 return true; 3299 3300 if (btrfs_is_data_reloc_root(inode->root) && 3301 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3302 NULL)) { 3303 /* Skip the range without csum for data reloc inode */ 3304 clear_extent_bits(&inode->io_tree, file_offset, end, 3305 EXTENT_NODATASUM); 3306 return true; 3307 } 3308 3309 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3310 fs_info->csum_size; 3311 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3312 csum_expected)) 3313 goto zeroit; 3314 return true; 3315 3316 zeroit: 3317 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3318 bbio->mirror_num); 3319 if (dev) 3320 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3321 memzero_bvec(bv); 3322 return false; 3323 } 3324 3325 /* 3326 * Perform a delayed iput on @inode. 3327 * 3328 * @inode: The inode we want to perform iput on 3329 * 3330 * This function uses the generic vfs_inode::i_count to track whether we should 3331 * just decrement it (in case it's > 1) or if this is the last iput then link 3332 * the inode to the delayed iput machinery. Delayed iputs are processed at 3333 * transaction commit time/superblock commit/cleaner kthread. 3334 */ 3335 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3336 { 3337 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3338 unsigned long flags; 3339 3340 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3341 return; 3342 3343 atomic_inc(&fs_info->nr_delayed_iputs); 3344 /* 3345 * Need to be irq safe here because we can be called from either an irq 3346 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3347 * context. 3348 */ 3349 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3350 ASSERT(list_empty(&inode->delayed_iput)); 3351 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3352 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3353 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3354 wake_up_process(fs_info->cleaner_kthread); 3355 } 3356 3357 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3358 struct btrfs_inode *inode) 3359 { 3360 list_del_init(&inode->delayed_iput); 3361 spin_unlock_irq(&fs_info->delayed_iput_lock); 3362 iput(&inode->vfs_inode); 3363 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3364 wake_up(&fs_info->delayed_iputs_wait); 3365 spin_lock_irq(&fs_info->delayed_iput_lock); 3366 } 3367 3368 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3369 struct btrfs_inode *inode) 3370 { 3371 if (!list_empty(&inode->delayed_iput)) { 3372 spin_lock_irq(&fs_info->delayed_iput_lock); 3373 if (!list_empty(&inode->delayed_iput)) 3374 run_delayed_iput_locked(fs_info, inode); 3375 spin_unlock_irq(&fs_info->delayed_iput_lock); 3376 } 3377 } 3378 3379 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3380 { 3381 /* 3382 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3383 * calls btrfs_add_delayed_iput() and that needs to lock 3384 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3385 * prevent a deadlock. 3386 */ 3387 spin_lock_irq(&fs_info->delayed_iput_lock); 3388 while (!list_empty(&fs_info->delayed_iputs)) { 3389 struct btrfs_inode *inode; 3390 3391 inode = list_first_entry(&fs_info->delayed_iputs, 3392 struct btrfs_inode, delayed_iput); 3393 run_delayed_iput_locked(fs_info, inode); 3394 if (need_resched()) { 3395 spin_unlock_irq(&fs_info->delayed_iput_lock); 3396 cond_resched(); 3397 spin_lock_irq(&fs_info->delayed_iput_lock); 3398 } 3399 } 3400 spin_unlock_irq(&fs_info->delayed_iput_lock); 3401 } 3402 3403 /* 3404 * Wait for flushing all delayed iputs 3405 * 3406 * @fs_info: the filesystem 3407 * 3408 * This will wait on any delayed iputs that are currently running with KILLABLE 3409 * set. Once they are all done running we will return, unless we are killed in 3410 * which case we return EINTR. This helps in user operations like fallocate etc 3411 * that might get blocked on the iputs. 3412 * 3413 * Return EINTR if we were killed, 0 if nothing's pending 3414 */ 3415 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3416 { 3417 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3418 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3419 if (ret) 3420 return -EINTR; 3421 return 0; 3422 } 3423 3424 /* 3425 * This creates an orphan entry for the given inode in case something goes wrong 3426 * in the middle of an unlink. 3427 */ 3428 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3429 struct btrfs_inode *inode) 3430 { 3431 int ret; 3432 3433 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3434 if (ret && ret != -EEXIST) { 3435 btrfs_abort_transaction(trans, ret); 3436 return ret; 3437 } 3438 3439 return 0; 3440 } 3441 3442 /* 3443 * We have done the delete so we can go ahead and remove the orphan item for 3444 * this particular inode. 3445 */ 3446 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3447 struct btrfs_inode *inode) 3448 { 3449 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3450 } 3451 3452 /* 3453 * this cleans up any orphans that may be left on the list from the last use 3454 * of this root. 3455 */ 3456 int btrfs_orphan_cleanup(struct btrfs_root *root) 3457 { 3458 struct btrfs_fs_info *fs_info = root->fs_info; 3459 struct btrfs_path *path; 3460 struct extent_buffer *leaf; 3461 struct btrfs_key key, found_key; 3462 struct btrfs_trans_handle *trans; 3463 struct inode *inode; 3464 u64 last_objectid = 0; 3465 int ret = 0, nr_unlink = 0; 3466 3467 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3468 return 0; 3469 3470 path = btrfs_alloc_path(); 3471 if (!path) { 3472 ret = -ENOMEM; 3473 goto out; 3474 } 3475 path->reada = READA_BACK; 3476 3477 key.objectid = BTRFS_ORPHAN_OBJECTID; 3478 key.type = BTRFS_ORPHAN_ITEM_KEY; 3479 key.offset = (u64)-1; 3480 3481 while (1) { 3482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3483 if (ret < 0) 3484 goto out; 3485 3486 /* 3487 * if ret == 0 means we found what we were searching for, which 3488 * is weird, but possible, so only screw with path if we didn't 3489 * find the key and see if we have stuff that matches 3490 */ 3491 if (ret > 0) { 3492 ret = 0; 3493 if (path->slots[0] == 0) 3494 break; 3495 path->slots[0]--; 3496 } 3497 3498 /* pull out the item */ 3499 leaf = path->nodes[0]; 3500 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3501 3502 /* make sure the item matches what we want */ 3503 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3504 break; 3505 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3506 break; 3507 3508 /* release the path since we're done with it */ 3509 btrfs_release_path(path); 3510 3511 /* 3512 * this is where we are basically btrfs_lookup, without the 3513 * crossing root thing. we store the inode number in the 3514 * offset of the orphan item. 3515 */ 3516 3517 if (found_key.offset == last_objectid) { 3518 /* 3519 * We found the same inode as before. This means we were 3520 * not able to remove its items via eviction triggered 3521 * by an iput(). A transaction abort may have happened, 3522 * due to -ENOSPC for example, so try to grab the error 3523 * that lead to a transaction abort, if any. 3524 */ 3525 btrfs_err(fs_info, 3526 "Error removing orphan entry, stopping orphan cleanup"); 3527 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3528 goto out; 3529 } 3530 3531 last_objectid = found_key.offset; 3532 3533 found_key.objectid = found_key.offset; 3534 found_key.type = BTRFS_INODE_ITEM_KEY; 3535 found_key.offset = 0; 3536 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3537 if (IS_ERR(inode)) { 3538 ret = PTR_ERR(inode); 3539 inode = NULL; 3540 if (ret != -ENOENT) 3541 goto out; 3542 } 3543 3544 if (!inode && root == fs_info->tree_root) { 3545 struct btrfs_root *dead_root; 3546 int is_dead_root = 0; 3547 3548 /* 3549 * This is an orphan in the tree root. Currently these 3550 * could come from 2 sources: 3551 * a) a root (snapshot/subvolume) deletion in progress 3552 * b) a free space cache inode 3553 * We need to distinguish those two, as the orphan item 3554 * for a root must not get deleted before the deletion 3555 * of the snapshot/subvolume's tree completes. 3556 * 3557 * btrfs_find_orphan_roots() ran before us, which has 3558 * found all deleted roots and loaded them into 3559 * fs_info->fs_roots_radix. So here we can find if an 3560 * orphan item corresponds to a deleted root by looking 3561 * up the root from that radix tree. 3562 */ 3563 3564 spin_lock(&fs_info->fs_roots_radix_lock); 3565 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3566 (unsigned long)found_key.objectid); 3567 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3568 is_dead_root = 1; 3569 spin_unlock(&fs_info->fs_roots_radix_lock); 3570 3571 if (is_dead_root) { 3572 /* prevent this orphan from being found again */ 3573 key.offset = found_key.objectid - 1; 3574 continue; 3575 } 3576 3577 } 3578 3579 /* 3580 * If we have an inode with links, there are a couple of 3581 * possibilities: 3582 * 3583 * 1. We were halfway through creating fsverity metadata for the 3584 * file. In that case, the orphan item represents incomplete 3585 * fsverity metadata which must be cleaned up with 3586 * btrfs_drop_verity_items and deleting the orphan item. 3587 3588 * 2. Old kernels (before v3.12) used to create an 3589 * orphan item for truncate indicating that there were possibly 3590 * extent items past i_size that needed to be deleted. In v3.12, 3591 * truncate was changed to update i_size in sync with the extent 3592 * items, but the (useless) orphan item was still created. Since 3593 * v4.18, we don't create the orphan item for truncate at all. 3594 * 3595 * So, this item could mean that we need to do a truncate, but 3596 * only if this filesystem was last used on a pre-v3.12 kernel 3597 * and was not cleanly unmounted. The odds of that are quite 3598 * slim, and it's a pain to do the truncate now, so just delete 3599 * the orphan item. 3600 * 3601 * It's also possible that this orphan item was supposed to be 3602 * deleted but wasn't. The inode number may have been reused, 3603 * but either way, we can delete the orphan item. 3604 */ 3605 if (!inode || inode->i_nlink) { 3606 if (inode) { 3607 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3608 iput(inode); 3609 inode = NULL; 3610 if (ret) 3611 goto out; 3612 } 3613 trans = btrfs_start_transaction(root, 1); 3614 if (IS_ERR(trans)) { 3615 ret = PTR_ERR(trans); 3616 goto out; 3617 } 3618 btrfs_debug(fs_info, "auto deleting %Lu", 3619 found_key.objectid); 3620 ret = btrfs_del_orphan_item(trans, root, 3621 found_key.objectid); 3622 btrfs_end_transaction(trans); 3623 if (ret) 3624 goto out; 3625 continue; 3626 } 3627 3628 nr_unlink++; 3629 3630 /* this will do delete_inode and everything for us */ 3631 iput(inode); 3632 } 3633 /* release the path since we're done with it */ 3634 btrfs_release_path(path); 3635 3636 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3637 trans = btrfs_join_transaction(root); 3638 if (!IS_ERR(trans)) 3639 btrfs_end_transaction(trans); 3640 } 3641 3642 if (nr_unlink) 3643 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3644 3645 out: 3646 if (ret) 3647 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3648 btrfs_free_path(path); 3649 return ret; 3650 } 3651 3652 /* 3653 * very simple check to peek ahead in the leaf looking for xattrs. If we 3654 * don't find any xattrs, we know there can't be any acls. 3655 * 3656 * slot is the slot the inode is in, objectid is the objectid of the inode 3657 */ 3658 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3659 int slot, u64 objectid, 3660 int *first_xattr_slot) 3661 { 3662 u32 nritems = btrfs_header_nritems(leaf); 3663 struct btrfs_key found_key; 3664 static u64 xattr_access = 0; 3665 static u64 xattr_default = 0; 3666 int scanned = 0; 3667 3668 if (!xattr_access) { 3669 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3670 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3671 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3672 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3673 } 3674 3675 slot++; 3676 *first_xattr_slot = -1; 3677 while (slot < nritems) { 3678 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3679 3680 /* we found a different objectid, there must not be acls */ 3681 if (found_key.objectid != objectid) 3682 return 0; 3683 3684 /* we found an xattr, assume we've got an acl */ 3685 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3686 if (*first_xattr_slot == -1) 3687 *first_xattr_slot = slot; 3688 if (found_key.offset == xattr_access || 3689 found_key.offset == xattr_default) 3690 return 1; 3691 } 3692 3693 /* 3694 * we found a key greater than an xattr key, there can't 3695 * be any acls later on 3696 */ 3697 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3698 return 0; 3699 3700 slot++; 3701 scanned++; 3702 3703 /* 3704 * it goes inode, inode backrefs, xattrs, extents, 3705 * so if there are a ton of hard links to an inode there can 3706 * be a lot of backrefs. Don't waste time searching too hard, 3707 * this is just an optimization 3708 */ 3709 if (scanned >= 8) 3710 break; 3711 } 3712 /* we hit the end of the leaf before we found an xattr or 3713 * something larger than an xattr. We have to assume the inode 3714 * has acls 3715 */ 3716 if (*first_xattr_slot == -1) 3717 *first_xattr_slot = slot; 3718 return 1; 3719 } 3720 3721 /* 3722 * read an inode from the btree into the in-memory inode 3723 */ 3724 static int btrfs_read_locked_inode(struct inode *inode, 3725 struct btrfs_path *in_path) 3726 { 3727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3728 struct btrfs_path *path = in_path; 3729 struct extent_buffer *leaf; 3730 struct btrfs_inode_item *inode_item; 3731 struct btrfs_root *root = BTRFS_I(inode)->root; 3732 struct btrfs_key location; 3733 unsigned long ptr; 3734 int maybe_acls; 3735 u32 rdev; 3736 int ret; 3737 bool filled = false; 3738 int first_xattr_slot; 3739 3740 ret = btrfs_fill_inode(inode, &rdev); 3741 if (!ret) 3742 filled = true; 3743 3744 if (!path) { 3745 path = btrfs_alloc_path(); 3746 if (!path) 3747 return -ENOMEM; 3748 } 3749 3750 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3751 3752 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3753 if (ret) { 3754 if (path != in_path) 3755 btrfs_free_path(path); 3756 return ret; 3757 } 3758 3759 leaf = path->nodes[0]; 3760 3761 if (filled) 3762 goto cache_index; 3763 3764 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3765 struct btrfs_inode_item); 3766 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3767 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3768 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3769 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3770 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3771 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3772 round_up(i_size_read(inode), fs_info->sectorsize)); 3773 3774 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3775 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3776 3777 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3778 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3779 3780 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3781 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3782 3783 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3784 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3785 3786 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3787 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3788 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3789 3790 inode_set_iversion_queried(inode, 3791 btrfs_inode_sequence(leaf, inode_item)); 3792 inode->i_generation = BTRFS_I(inode)->generation; 3793 inode->i_rdev = 0; 3794 rdev = btrfs_inode_rdev(leaf, inode_item); 3795 3796 BTRFS_I(inode)->index_cnt = (u64)-1; 3797 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3798 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3799 3800 cache_index: 3801 /* 3802 * If we were modified in the current generation and evicted from memory 3803 * and then re-read we need to do a full sync since we don't have any 3804 * idea about which extents were modified before we were evicted from 3805 * cache. 3806 * 3807 * This is required for both inode re-read from disk and delayed inode 3808 * in the delayed_nodes xarray. 3809 */ 3810 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3811 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3812 &BTRFS_I(inode)->runtime_flags); 3813 3814 /* 3815 * We don't persist the id of the transaction where an unlink operation 3816 * against the inode was last made. So here we assume the inode might 3817 * have been evicted, and therefore the exact value of last_unlink_trans 3818 * lost, and set it to last_trans to avoid metadata inconsistencies 3819 * between the inode and its parent if the inode is fsync'ed and the log 3820 * replayed. For example, in the scenario: 3821 * 3822 * touch mydir/foo 3823 * ln mydir/foo mydir/bar 3824 * sync 3825 * unlink mydir/bar 3826 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3827 * xfs_io -c fsync mydir/foo 3828 * <power failure> 3829 * mount fs, triggers fsync log replay 3830 * 3831 * We must make sure that when we fsync our inode foo we also log its 3832 * parent inode, otherwise after log replay the parent still has the 3833 * dentry with the "bar" name but our inode foo has a link count of 1 3834 * and doesn't have an inode ref with the name "bar" anymore. 3835 * 3836 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3837 * but it guarantees correctness at the expense of occasional full 3838 * transaction commits on fsync if our inode is a directory, or if our 3839 * inode is not a directory, logging its parent unnecessarily. 3840 */ 3841 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3842 3843 /* 3844 * Same logic as for last_unlink_trans. We don't persist the generation 3845 * of the last transaction where this inode was used for a reflink 3846 * operation, so after eviction and reloading the inode we must be 3847 * pessimistic and assume the last transaction that modified the inode. 3848 */ 3849 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3850 3851 path->slots[0]++; 3852 if (inode->i_nlink != 1 || 3853 path->slots[0] >= btrfs_header_nritems(leaf)) 3854 goto cache_acl; 3855 3856 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3857 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3858 goto cache_acl; 3859 3860 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3861 if (location.type == BTRFS_INODE_REF_KEY) { 3862 struct btrfs_inode_ref *ref; 3863 3864 ref = (struct btrfs_inode_ref *)ptr; 3865 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3866 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3867 struct btrfs_inode_extref *extref; 3868 3869 extref = (struct btrfs_inode_extref *)ptr; 3870 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3871 extref); 3872 } 3873 cache_acl: 3874 /* 3875 * try to precache a NULL acl entry for files that don't have 3876 * any xattrs or acls 3877 */ 3878 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3879 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3880 if (first_xattr_slot != -1) { 3881 path->slots[0] = first_xattr_slot; 3882 ret = btrfs_load_inode_props(inode, path); 3883 if (ret) 3884 btrfs_err(fs_info, 3885 "error loading props for ino %llu (root %llu): %d", 3886 btrfs_ino(BTRFS_I(inode)), 3887 root->root_key.objectid, ret); 3888 } 3889 if (path != in_path) 3890 btrfs_free_path(path); 3891 3892 if (!maybe_acls) 3893 cache_no_acl(inode); 3894 3895 switch (inode->i_mode & S_IFMT) { 3896 case S_IFREG: 3897 inode->i_mapping->a_ops = &btrfs_aops; 3898 inode->i_fop = &btrfs_file_operations; 3899 inode->i_op = &btrfs_file_inode_operations; 3900 break; 3901 case S_IFDIR: 3902 inode->i_fop = &btrfs_dir_file_operations; 3903 inode->i_op = &btrfs_dir_inode_operations; 3904 break; 3905 case S_IFLNK: 3906 inode->i_op = &btrfs_symlink_inode_operations; 3907 inode_nohighmem(inode); 3908 inode->i_mapping->a_ops = &btrfs_aops; 3909 break; 3910 default: 3911 inode->i_op = &btrfs_special_inode_operations; 3912 init_special_inode(inode, inode->i_mode, rdev); 3913 break; 3914 } 3915 3916 btrfs_sync_inode_flags_to_i_flags(inode); 3917 return 0; 3918 } 3919 3920 /* 3921 * given a leaf and an inode, copy the inode fields into the leaf 3922 */ 3923 static void fill_inode_item(struct btrfs_trans_handle *trans, 3924 struct extent_buffer *leaf, 3925 struct btrfs_inode_item *item, 3926 struct inode *inode) 3927 { 3928 struct btrfs_map_token token; 3929 u64 flags; 3930 3931 btrfs_init_map_token(&token, leaf); 3932 3933 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3934 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3935 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3936 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3937 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3938 3939 btrfs_set_token_timespec_sec(&token, &item->atime, 3940 inode_get_atime_sec(inode)); 3941 btrfs_set_token_timespec_nsec(&token, &item->atime, 3942 inode_get_atime_nsec(inode)); 3943 3944 btrfs_set_token_timespec_sec(&token, &item->mtime, 3945 inode_get_mtime_sec(inode)); 3946 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3947 inode_get_mtime_nsec(inode)); 3948 3949 btrfs_set_token_timespec_sec(&token, &item->ctime, 3950 inode_get_ctime_sec(inode)); 3951 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3952 inode_get_ctime_nsec(inode)); 3953 3954 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 3955 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 3956 3957 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3958 btrfs_set_token_inode_generation(&token, item, 3959 BTRFS_I(inode)->generation); 3960 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3961 btrfs_set_token_inode_transid(&token, item, trans->transid); 3962 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3963 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3964 BTRFS_I(inode)->ro_flags); 3965 btrfs_set_token_inode_flags(&token, item, flags); 3966 btrfs_set_token_inode_block_group(&token, item, 0); 3967 } 3968 3969 /* 3970 * copy everything in the in-memory inode into the btree. 3971 */ 3972 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3973 struct btrfs_inode *inode) 3974 { 3975 struct btrfs_inode_item *inode_item; 3976 struct btrfs_path *path; 3977 struct extent_buffer *leaf; 3978 int ret; 3979 3980 path = btrfs_alloc_path(); 3981 if (!path) 3982 return -ENOMEM; 3983 3984 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1); 3985 if (ret) { 3986 if (ret > 0) 3987 ret = -ENOENT; 3988 goto failed; 3989 } 3990 3991 leaf = path->nodes[0]; 3992 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3993 struct btrfs_inode_item); 3994 3995 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3996 btrfs_mark_buffer_dirty(trans, leaf); 3997 btrfs_set_inode_last_trans(trans, inode); 3998 ret = 0; 3999 failed: 4000 btrfs_free_path(path); 4001 return ret; 4002 } 4003 4004 /* 4005 * copy everything in the in-memory inode into the btree. 4006 */ 4007 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4008 struct btrfs_inode *inode) 4009 { 4010 struct btrfs_root *root = inode->root; 4011 struct btrfs_fs_info *fs_info = root->fs_info; 4012 int ret; 4013 4014 /* 4015 * If the inode is a free space inode, we can deadlock during commit 4016 * if we put it into the delayed code. 4017 * 4018 * The data relocation inode should also be directly updated 4019 * without delay 4020 */ 4021 if (!btrfs_is_free_space_inode(inode) 4022 && !btrfs_is_data_reloc_root(root) 4023 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4024 btrfs_update_root_times(trans, root); 4025 4026 ret = btrfs_delayed_update_inode(trans, inode); 4027 if (!ret) 4028 btrfs_set_inode_last_trans(trans, inode); 4029 return ret; 4030 } 4031 4032 return btrfs_update_inode_item(trans, inode); 4033 } 4034 4035 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4036 struct btrfs_inode *inode) 4037 { 4038 int ret; 4039 4040 ret = btrfs_update_inode(trans, inode); 4041 if (ret == -ENOSPC) 4042 return btrfs_update_inode_item(trans, inode); 4043 return ret; 4044 } 4045 4046 /* 4047 * unlink helper that gets used here in inode.c and in the tree logging 4048 * recovery code. It remove a link in a directory with a given name, and 4049 * also drops the back refs in the inode to the directory 4050 */ 4051 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4052 struct btrfs_inode *dir, 4053 struct btrfs_inode *inode, 4054 const struct fscrypt_str *name, 4055 struct btrfs_rename_ctx *rename_ctx) 4056 { 4057 struct btrfs_root *root = dir->root; 4058 struct btrfs_fs_info *fs_info = root->fs_info; 4059 struct btrfs_path *path; 4060 int ret = 0; 4061 struct btrfs_dir_item *di; 4062 u64 index; 4063 u64 ino = btrfs_ino(inode); 4064 u64 dir_ino = btrfs_ino(dir); 4065 4066 path = btrfs_alloc_path(); 4067 if (!path) { 4068 ret = -ENOMEM; 4069 goto out; 4070 } 4071 4072 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4073 if (IS_ERR_OR_NULL(di)) { 4074 ret = di ? PTR_ERR(di) : -ENOENT; 4075 goto err; 4076 } 4077 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4078 if (ret) 4079 goto err; 4080 btrfs_release_path(path); 4081 4082 /* 4083 * If we don't have dir index, we have to get it by looking up 4084 * the inode ref, since we get the inode ref, remove it directly, 4085 * it is unnecessary to do delayed deletion. 4086 * 4087 * But if we have dir index, needn't search inode ref to get it. 4088 * Since the inode ref is close to the inode item, it is better 4089 * that we delay to delete it, and just do this deletion when 4090 * we update the inode item. 4091 */ 4092 if (inode->dir_index) { 4093 ret = btrfs_delayed_delete_inode_ref(inode); 4094 if (!ret) { 4095 index = inode->dir_index; 4096 goto skip_backref; 4097 } 4098 } 4099 4100 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4101 if (ret) { 4102 btrfs_info(fs_info, 4103 "failed to delete reference to %.*s, inode %llu parent %llu", 4104 name->len, name->name, ino, dir_ino); 4105 btrfs_abort_transaction(trans, ret); 4106 goto err; 4107 } 4108 skip_backref: 4109 if (rename_ctx) 4110 rename_ctx->index = index; 4111 4112 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4113 if (ret) { 4114 btrfs_abort_transaction(trans, ret); 4115 goto err; 4116 } 4117 4118 /* 4119 * If we are in a rename context, we don't need to update anything in the 4120 * log. That will be done later during the rename by btrfs_log_new_name(). 4121 * Besides that, doing it here would only cause extra unnecessary btree 4122 * operations on the log tree, increasing latency for applications. 4123 */ 4124 if (!rename_ctx) { 4125 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4126 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4127 } 4128 4129 /* 4130 * If we have a pending delayed iput we could end up with the final iput 4131 * being run in btrfs-cleaner context. If we have enough of these built 4132 * up we can end up burning a lot of time in btrfs-cleaner without any 4133 * way to throttle the unlinks. Since we're currently holding a ref on 4134 * the inode we can run the delayed iput here without any issues as the 4135 * final iput won't be done until after we drop the ref we're currently 4136 * holding. 4137 */ 4138 btrfs_run_delayed_iput(fs_info, inode); 4139 err: 4140 btrfs_free_path(path); 4141 if (ret) 4142 goto out; 4143 4144 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4145 inode_inc_iversion(&inode->vfs_inode); 4146 inode_inc_iversion(&dir->vfs_inode); 4147 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4148 ret = btrfs_update_inode(trans, dir); 4149 out: 4150 return ret; 4151 } 4152 4153 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4154 struct btrfs_inode *dir, struct btrfs_inode *inode, 4155 const struct fscrypt_str *name) 4156 { 4157 int ret; 4158 4159 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4160 if (!ret) { 4161 drop_nlink(&inode->vfs_inode); 4162 ret = btrfs_update_inode(trans, inode); 4163 } 4164 return ret; 4165 } 4166 4167 /* 4168 * helper to start transaction for unlink and rmdir. 4169 * 4170 * unlink and rmdir are special in btrfs, they do not always free space, so 4171 * if we cannot make our reservations the normal way try and see if there is 4172 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4173 * allow the unlink to occur. 4174 */ 4175 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4176 { 4177 struct btrfs_root *root = dir->root; 4178 4179 return btrfs_start_transaction_fallback_global_rsv(root, 4180 BTRFS_UNLINK_METADATA_UNITS); 4181 } 4182 4183 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4184 { 4185 struct btrfs_trans_handle *trans; 4186 struct inode *inode = d_inode(dentry); 4187 int ret; 4188 struct fscrypt_name fname; 4189 4190 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4191 if (ret) 4192 return ret; 4193 4194 /* This needs to handle no-key deletions later on */ 4195 4196 trans = __unlink_start_trans(BTRFS_I(dir)); 4197 if (IS_ERR(trans)) { 4198 ret = PTR_ERR(trans); 4199 goto fscrypt_free; 4200 } 4201 4202 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4203 false); 4204 4205 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4206 &fname.disk_name); 4207 if (ret) 4208 goto end_trans; 4209 4210 if (inode->i_nlink == 0) { 4211 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4212 if (ret) 4213 goto end_trans; 4214 } 4215 4216 end_trans: 4217 btrfs_end_transaction(trans); 4218 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4219 fscrypt_free: 4220 fscrypt_free_filename(&fname); 4221 return ret; 4222 } 4223 4224 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4225 struct btrfs_inode *dir, struct dentry *dentry) 4226 { 4227 struct btrfs_root *root = dir->root; 4228 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4229 struct btrfs_path *path; 4230 struct extent_buffer *leaf; 4231 struct btrfs_dir_item *di; 4232 struct btrfs_key key; 4233 u64 index; 4234 int ret; 4235 u64 objectid; 4236 u64 dir_ino = btrfs_ino(dir); 4237 struct fscrypt_name fname; 4238 4239 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4240 if (ret) 4241 return ret; 4242 4243 /* This needs to handle no-key deletions later on */ 4244 4245 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4246 objectid = inode->root->root_key.objectid; 4247 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4248 objectid = inode->location.objectid; 4249 } else { 4250 WARN_ON(1); 4251 fscrypt_free_filename(&fname); 4252 return -EINVAL; 4253 } 4254 4255 path = btrfs_alloc_path(); 4256 if (!path) { 4257 ret = -ENOMEM; 4258 goto out; 4259 } 4260 4261 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4262 &fname.disk_name, -1); 4263 if (IS_ERR_OR_NULL(di)) { 4264 ret = di ? PTR_ERR(di) : -ENOENT; 4265 goto out; 4266 } 4267 4268 leaf = path->nodes[0]; 4269 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4270 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4271 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4272 if (ret) { 4273 btrfs_abort_transaction(trans, ret); 4274 goto out; 4275 } 4276 btrfs_release_path(path); 4277 4278 /* 4279 * This is a placeholder inode for a subvolume we didn't have a 4280 * reference to at the time of the snapshot creation. In the meantime 4281 * we could have renamed the real subvol link into our snapshot, so 4282 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4283 * Instead simply lookup the dir_index_item for this entry so we can 4284 * remove it. Otherwise we know we have a ref to the root and we can 4285 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4286 */ 4287 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4288 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4289 if (IS_ERR_OR_NULL(di)) { 4290 if (!di) 4291 ret = -ENOENT; 4292 else 4293 ret = PTR_ERR(di); 4294 btrfs_abort_transaction(trans, ret); 4295 goto out; 4296 } 4297 4298 leaf = path->nodes[0]; 4299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4300 index = key.offset; 4301 btrfs_release_path(path); 4302 } else { 4303 ret = btrfs_del_root_ref(trans, objectid, 4304 root->root_key.objectid, dir_ino, 4305 &index, &fname.disk_name); 4306 if (ret) { 4307 btrfs_abort_transaction(trans, ret); 4308 goto out; 4309 } 4310 } 4311 4312 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4313 if (ret) { 4314 btrfs_abort_transaction(trans, ret); 4315 goto out; 4316 } 4317 4318 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4319 inode_inc_iversion(&dir->vfs_inode); 4320 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4321 ret = btrfs_update_inode_fallback(trans, dir); 4322 if (ret) 4323 btrfs_abort_transaction(trans, ret); 4324 out: 4325 btrfs_free_path(path); 4326 fscrypt_free_filename(&fname); 4327 return ret; 4328 } 4329 4330 /* 4331 * Helper to check if the subvolume references other subvolumes or if it's 4332 * default. 4333 */ 4334 static noinline int may_destroy_subvol(struct btrfs_root *root) 4335 { 4336 struct btrfs_fs_info *fs_info = root->fs_info; 4337 struct btrfs_path *path; 4338 struct btrfs_dir_item *di; 4339 struct btrfs_key key; 4340 struct fscrypt_str name = FSTR_INIT("default", 7); 4341 u64 dir_id; 4342 int ret; 4343 4344 path = btrfs_alloc_path(); 4345 if (!path) 4346 return -ENOMEM; 4347 4348 /* Make sure this root isn't set as the default subvol */ 4349 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4350 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4351 dir_id, &name, 0); 4352 if (di && !IS_ERR(di)) { 4353 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4354 if (key.objectid == root->root_key.objectid) { 4355 ret = -EPERM; 4356 btrfs_err(fs_info, 4357 "deleting default subvolume %llu is not allowed", 4358 key.objectid); 4359 goto out; 4360 } 4361 btrfs_release_path(path); 4362 } 4363 4364 key.objectid = root->root_key.objectid; 4365 key.type = BTRFS_ROOT_REF_KEY; 4366 key.offset = (u64)-1; 4367 4368 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4369 if (ret < 0) 4370 goto out; 4371 BUG_ON(ret == 0); 4372 4373 ret = 0; 4374 if (path->slots[0] > 0) { 4375 path->slots[0]--; 4376 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4377 if (key.objectid == root->root_key.objectid && 4378 key.type == BTRFS_ROOT_REF_KEY) 4379 ret = -ENOTEMPTY; 4380 } 4381 out: 4382 btrfs_free_path(path); 4383 return ret; 4384 } 4385 4386 /* Delete all dentries for inodes belonging to the root */ 4387 static void btrfs_prune_dentries(struct btrfs_root *root) 4388 { 4389 struct btrfs_fs_info *fs_info = root->fs_info; 4390 struct rb_node *node; 4391 struct rb_node *prev; 4392 struct btrfs_inode *entry; 4393 struct inode *inode; 4394 u64 objectid = 0; 4395 4396 if (!BTRFS_FS_ERROR(fs_info)) 4397 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4398 4399 spin_lock(&root->inode_lock); 4400 again: 4401 node = root->inode_tree.rb_node; 4402 prev = NULL; 4403 while (node) { 4404 prev = node; 4405 entry = rb_entry(node, struct btrfs_inode, rb_node); 4406 4407 if (objectid < btrfs_ino(entry)) 4408 node = node->rb_left; 4409 else if (objectid > btrfs_ino(entry)) 4410 node = node->rb_right; 4411 else 4412 break; 4413 } 4414 if (!node) { 4415 while (prev) { 4416 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4417 if (objectid <= btrfs_ino(entry)) { 4418 node = prev; 4419 break; 4420 } 4421 prev = rb_next(prev); 4422 } 4423 } 4424 while (node) { 4425 entry = rb_entry(node, struct btrfs_inode, rb_node); 4426 objectid = btrfs_ino(entry) + 1; 4427 inode = igrab(&entry->vfs_inode); 4428 if (inode) { 4429 spin_unlock(&root->inode_lock); 4430 if (atomic_read(&inode->i_count) > 1) 4431 d_prune_aliases(inode); 4432 /* 4433 * btrfs_drop_inode will have it removed from the inode 4434 * cache when its usage count hits zero. 4435 */ 4436 iput(inode); 4437 cond_resched(); 4438 spin_lock(&root->inode_lock); 4439 goto again; 4440 } 4441 4442 if (cond_resched_lock(&root->inode_lock)) 4443 goto again; 4444 4445 node = rb_next(node); 4446 } 4447 spin_unlock(&root->inode_lock); 4448 } 4449 4450 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4451 { 4452 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4453 struct btrfs_root *root = dir->root; 4454 struct inode *inode = d_inode(dentry); 4455 struct btrfs_root *dest = BTRFS_I(inode)->root; 4456 struct btrfs_trans_handle *trans; 4457 struct btrfs_block_rsv block_rsv; 4458 u64 root_flags; 4459 int ret; 4460 4461 /* 4462 * Don't allow to delete a subvolume with send in progress. This is 4463 * inside the inode lock so the error handling that has to drop the bit 4464 * again is not run concurrently. 4465 */ 4466 spin_lock(&dest->root_item_lock); 4467 if (dest->send_in_progress) { 4468 spin_unlock(&dest->root_item_lock); 4469 btrfs_warn(fs_info, 4470 "attempt to delete subvolume %llu during send", 4471 dest->root_key.objectid); 4472 return -EPERM; 4473 } 4474 if (atomic_read(&dest->nr_swapfiles)) { 4475 spin_unlock(&dest->root_item_lock); 4476 btrfs_warn(fs_info, 4477 "attempt to delete subvolume %llu with active swapfile", 4478 root->root_key.objectid); 4479 return -EPERM; 4480 } 4481 root_flags = btrfs_root_flags(&dest->root_item); 4482 btrfs_set_root_flags(&dest->root_item, 4483 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4484 spin_unlock(&dest->root_item_lock); 4485 4486 down_write(&fs_info->subvol_sem); 4487 4488 ret = may_destroy_subvol(dest); 4489 if (ret) 4490 goto out_up_write; 4491 4492 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4493 /* 4494 * One for dir inode, 4495 * two for dir entries, 4496 * two for root ref/backref. 4497 */ 4498 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4499 if (ret) 4500 goto out_up_write; 4501 4502 trans = btrfs_start_transaction(root, 0); 4503 if (IS_ERR(trans)) { 4504 ret = PTR_ERR(trans); 4505 goto out_release; 4506 } 4507 trans->block_rsv = &block_rsv; 4508 trans->bytes_reserved = block_rsv.size; 4509 4510 btrfs_record_snapshot_destroy(trans, dir); 4511 4512 ret = btrfs_unlink_subvol(trans, dir, dentry); 4513 if (ret) { 4514 btrfs_abort_transaction(trans, ret); 4515 goto out_end_trans; 4516 } 4517 4518 ret = btrfs_record_root_in_trans(trans, dest); 4519 if (ret) { 4520 btrfs_abort_transaction(trans, ret); 4521 goto out_end_trans; 4522 } 4523 4524 memset(&dest->root_item.drop_progress, 0, 4525 sizeof(dest->root_item.drop_progress)); 4526 btrfs_set_root_drop_level(&dest->root_item, 0); 4527 btrfs_set_root_refs(&dest->root_item, 0); 4528 4529 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4530 ret = btrfs_insert_orphan_item(trans, 4531 fs_info->tree_root, 4532 dest->root_key.objectid); 4533 if (ret) { 4534 btrfs_abort_transaction(trans, ret); 4535 goto out_end_trans; 4536 } 4537 } 4538 4539 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4540 BTRFS_UUID_KEY_SUBVOL, 4541 dest->root_key.objectid); 4542 if (ret && ret != -ENOENT) { 4543 btrfs_abort_transaction(trans, ret); 4544 goto out_end_trans; 4545 } 4546 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4547 ret = btrfs_uuid_tree_remove(trans, 4548 dest->root_item.received_uuid, 4549 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4550 dest->root_key.objectid); 4551 if (ret && ret != -ENOENT) { 4552 btrfs_abort_transaction(trans, ret); 4553 goto out_end_trans; 4554 } 4555 } 4556 4557 free_anon_bdev(dest->anon_dev); 4558 dest->anon_dev = 0; 4559 out_end_trans: 4560 trans->block_rsv = NULL; 4561 trans->bytes_reserved = 0; 4562 ret = btrfs_end_transaction(trans); 4563 inode->i_flags |= S_DEAD; 4564 out_release: 4565 btrfs_subvolume_release_metadata(root, &block_rsv); 4566 out_up_write: 4567 up_write(&fs_info->subvol_sem); 4568 if (ret) { 4569 spin_lock(&dest->root_item_lock); 4570 root_flags = btrfs_root_flags(&dest->root_item); 4571 btrfs_set_root_flags(&dest->root_item, 4572 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4573 spin_unlock(&dest->root_item_lock); 4574 } else { 4575 d_invalidate(dentry); 4576 btrfs_prune_dentries(dest); 4577 ASSERT(dest->send_in_progress == 0); 4578 } 4579 4580 return ret; 4581 } 4582 4583 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4584 { 4585 struct inode *inode = d_inode(dentry); 4586 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4587 int err = 0; 4588 struct btrfs_trans_handle *trans; 4589 u64 last_unlink_trans; 4590 struct fscrypt_name fname; 4591 4592 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4593 return -ENOTEMPTY; 4594 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4595 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4596 btrfs_err(fs_info, 4597 "extent tree v2 doesn't support snapshot deletion yet"); 4598 return -EOPNOTSUPP; 4599 } 4600 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4601 } 4602 4603 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4604 if (err) 4605 return err; 4606 4607 /* This needs to handle no-key deletions later on */ 4608 4609 trans = __unlink_start_trans(BTRFS_I(dir)); 4610 if (IS_ERR(trans)) { 4611 err = PTR_ERR(trans); 4612 goto out_notrans; 4613 } 4614 4615 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4616 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4617 goto out; 4618 } 4619 4620 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4621 if (err) 4622 goto out; 4623 4624 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4625 4626 /* now the directory is empty */ 4627 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4628 &fname.disk_name); 4629 if (!err) { 4630 btrfs_i_size_write(BTRFS_I(inode), 0); 4631 /* 4632 * Propagate the last_unlink_trans value of the deleted dir to 4633 * its parent directory. This is to prevent an unrecoverable 4634 * log tree in the case we do something like this: 4635 * 1) create dir foo 4636 * 2) create snapshot under dir foo 4637 * 3) delete the snapshot 4638 * 4) rmdir foo 4639 * 5) mkdir foo 4640 * 6) fsync foo or some file inside foo 4641 */ 4642 if (last_unlink_trans >= trans->transid) 4643 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4644 } 4645 out: 4646 btrfs_end_transaction(trans); 4647 out_notrans: 4648 btrfs_btree_balance_dirty(fs_info); 4649 fscrypt_free_filename(&fname); 4650 4651 return err; 4652 } 4653 4654 /* 4655 * Read, zero a chunk and write a block. 4656 * 4657 * @inode - inode that we're zeroing 4658 * @from - the offset to start zeroing 4659 * @len - the length to zero, 0 to zero the entire range respective to the 4660 * offset 4661 * @front - zero up to the offset instead of from the offset on 4662 * 4663 * This will find the block for the "from" offset and cow the block and zero the 4664 * part we want to zero. This is used with truncate and hole punching. 4665 */ 4666 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4667 int front) 4668 { 4669 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4670 struct address_space *mapping = inode->vfs_inode.i_mapping; 4671 struct extent_io_tree *io_tree = &inode->io_tree; 4672 struct btrfs_ordered_extent *ordered; 4673 struct extent_state *cached_state = NULL; 4674 struct extent_changeset *data_reserved = NULL; 4675 bool only_release_metadata = false; 4676 u32 blocksize = fs_info->sectorsize; 4677 pgoff_t index = from >> PAGE_SHIFT; 4678 unsigned offset = from & (blocksize - 1); 4679 struct page *page; 4680 gfp_t mask = btrfs_alloc_write_mask(mapping); 4681 size_t write_bytes = blocksize; 4682 int ret = 0; 4683 u64 block_start; 4684 u64 block_end; 4685 4686 if (IS_ALIGNED(offset, blocksize) && 4687 (!len || IS_ALIGNED(len, blocksize))) 4688 goto out; 4689 4690 block_start = round_down(from, blocksize); 4691 block_end = block_start + blocksize - 1; 4692 4693 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4694 blocksize, false); 4695 if (ret < 0) { 4696 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4697 /* For nocow case, no need to reserve data space */ 4698 only_release_metadata = true; 4699 } else { 4700 goto out; 4701 } 4702 } 4703 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4704 if (ret < 0) { 4705 if (!only_release_metadata) 4706 btrfs_free_reserved_data_space(inode, data_reserved, 4707 block_start, blocksize); 4708 goto out; 4709 } 4710 again: 4711 page = find_or_create_page(mapping, index, mask); 4712 if (!page) { 4713 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4714 blocksize, true); 4715 btrfs_delalloc_release_extents(inode, blocksize); 4716 ret = -ENOMEM; 4717 goto out; 4718 } 4719 4720 if (!PageUptodate(page)) { 4721 ret = btrfs_read_folio(NULL, page_folio(page)); 4722 lock_page(page); 4723 if (page->mapping != mapping) { 4724 unlock_page(page); 4725 put_page(page); 4726 goto again; 4727 } 4728 if (!PageUptodate(page)) { 4729 ret = -EIO; 4730 goto out_unlock; 4731 } 4732 } 4733 4734 /* 4735 * We unlock the page after the io is completed and then re-lock it 4736 * above. release_folio() could have come in between that and cleared 4737 * folio private, but left the page in the mapping. Set the page mapped 4738 * here to make sure it's properly set for the subpage stuff. 4739 */ 4740 ret = set_page_extent_mapped(page); 4741 if (ret < 0) 4742 goto out_unlock; 4743 4744 wait_on_page_writeback(page); 4745 4746 lock_extent(io_tree, block_start, block_end, &cached_state); 4747 4748 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4749 if (ordered) { 4750 unlock_extent(io_tree, block_start, block_end, &cached_state); 4751 unlock_page(page); 4752 put_page(page); 4753 btrfs_start_ordered_extent(ordered); 4754 btrfs_put_ordered_extent(ordered); 4755 goto again; 4756 } 4757 4758 clear_extent_bit(&inode->io_tree, block_start, block_end, 4759 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4760 &cached_state); 4761 4762 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4763 &cached_state); 4764 if (ret) { 4765 unlock_extent(io_tree, block_start, block_end, &cached_state); 4766 goto out_unlock; 4767 } 4768 4769 if (offset != blocksize) { 4770 if (!len) 4771 len = blocksize - offset; 4772 if (front) 4773 memzero_page(page, (block_start - page_offset(page)), 4774 offset); 4775 else 4776 memzero_page(page, (block_start - page_offset(page)) + offset, 4777 len); 4778 } 4779 btrfs_folio_clear_checked(fs_info, page_folio(page), block_start, 4780 block_end + 1 - block_start); 4781 btrfs_folio_set_dirty(fs_info, page_folio(page), block_start, 4782 block_end + 1 - block_start); 4783 unlock_extent(io_tree, block_start, block_end, &cached_state); 4784 4785 if (only_release_metadata) 4786 set_extent_bit(&inode->io_tree, block_start, block_end, 4787 EXTENT_NORESERVE, NULL); 4788 4789 out_unlock: 4790 if (ret) { 4791 if (only_release_metadata) 4792 btrfs_delalloc_release_metadata(inode, blocksize, true); 4793 else 4794 btrfs_delalloc_release_space(inode, data_reserved, 4795 block_start, blocksize, true); 4796 } 4797 btrfs_delalloc_release_extents(inode, blocksize); 4798 unlock_page(page); 4799 put_page(page); 4800 out: 4801 if (only_release_metadata) 4802 btrfs_check_nocow_unlock(inode); 4803 extent_changeset_free(data_reserved); 4804 return ret; 4805 } 4806 4807 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4808 { 4809 struct btrfs_root *root = inode->root; 4810 struct btrfs_fs_info *fs_info = root->fs_info; 4811 struct btrfs_trans_handle *trans; 4812 struct btrfs_drop_extents_args drop_args = { 0 }; 4813 int ret; 4814 4815 /* 4816 * If NO_HOLES is enabled, we don't need to do anything. 4817 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4818 * or btrfs_update_inode() will be called, which guarantee that the next 4819 * fsync will know this inode was changed and needs to be logged. 4820 */ 4821 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4822 return 0; 4823 4824 /* 4825 * 1 - for the one we're dropping 4826 * 1 - for the one we're adding 4827 * 1 - for updating the inode. 4828 */ 4829 trans = btrfs_start_transaction(root, 3); 4830 if (IS_ERR(trans)) 4831 return PTR_ERR(trans); 4832 4833 drop_args.start = offset; 4834 drop_args.end = offset + len; 4835 drop_args.drop_cache = true; 4836 4837 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4838 if (ret) { 4839 btrfs_abort_transaction(trans, ret); 4840 btrfs_end_transaction(trans); 4841 return ret; 4842 } 4843 4844 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4845 if (ret) { 4846 btrfs_abort_transaction(trans, ret); 4847 } else { 4848 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4849 btrfs_update_inode(trans, inode); 4850 } 4851 btrfs_end_transaction(trans); 4852 return ret; 4853 } 4854 4855 /* 4856 * This function puts in dummy file extents for the area we're creating a hole 4857 * for. So if we are truncating this file to a larger size we need to insert 4858 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4859 * the range between oldsize and size 4860 */ 4861 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4862 { 4863 struct btrfs_root *root = inode->root; 4864 struct btrfs_fs_info *fs_info = root->fs_info; 4865 struct extent_io_tree *io_tree = &inode->io_tree; 4866 struct extent_map *em = NULL; 4867 struct extent_state *cached_state = NULL; 4868 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4869 u64 block_end = ALIGN(size, fs_info->sectorsize); 4870 u64 last_byte; 4871 u64 cur_offset; 4872 u64 hole_size; 4873 int err = 0; 4874 4875 /* 4876 * If our size started in the middle of a block we need to zero out the 4877 * rest of the block before we expand the i_size, otherwise we could 4878 * expose stale data. 4879 */ 4880 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4881 if (err) 4882 return err; 4883 4884 if (size <= hole_start) 4885 return 0; 4886 4887 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4888 &cached_state); 4889 cur_offset = hole_start; 4890 while (1) { 4891 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4892 block_end - cur_offset); 4893 if (IS_ERR(em)) { 4894 err = PTR_ERR(em); 4895 em = NULL; 4896 break; 4897 } 4898 last_byte = min(extent_map_end(em), block_end); 4899 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4900 hole_size = last_byte - cur_offset; 4901 4902 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4903 struct extent_map *hole_em; 4904 4905 err = maybe_insert_hole(inode, cur_offset, hole_size); 4906 if (err) 4907 break; 4908 4909 err = btrfs_inode_set_file_extent_range(inode, 4910 cur_offset, hole_size); 4911 if (err) 4912 break; 4913 4914 hole_em = alloc_extent_map(); 4915 if (!hole_em) { 4916 btrfs_drop_extent_map_range(inode, cur_offset, 4917 cur_offset + hole_size - 1, 4918 false); 4919 btrfs_set_inode_full_sync(inode); 4920 goto next; 4921 } 4922 hole_em->start = cur_offset; 4923 hole_em->len = hole_size; 4924 hole_em->orig_start = cur_offset; 4925 4926 hole_em->block_start = EXTENT_MAP_HOLE; 4927 hole_em->block_len = 0; 4928 hole_em->orig_block_len = 0; 4929 hole_em->ram_bytes = hole_size; 4930 hole_em->generation = btrfs_get_fs_generation(fs_info); 4931 4932 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4933 free_extent_map(hole_em); 4934 } else { 4935 err = btrfs_inode_set_file_extent_range(inode, 4936 cur_offset, hole_size); 4937 if (err) 4938 break; 4939 } 4940 next: 4941 free_extent_map(em); 4942 em = NULL; 4943 cur_offset = last_byte; 4944 if (cur_offset >= block_end) 4945 break; 4946 } 4947 free_extent_map(em); 4948 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4949 return err; 4950 } 4951 4952 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4953 { 4954 struct btrfs_root *root = BTRFS_I(inode)->root; 4955 struct btrfs_trans_handle *trans; 4956 loff_t oldsize = i_size_read(inode); 4957 loff_t newsize = attr->ia_size; 4958 int mask = attr->ia_valid; 4959 int ret; 4960 4961 /* 4962 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4963 * special case where we need to update the times despite not having 4964 * these flags set. For all other operations the VFS set these flags 4965 * explicitly if it wants a timestamp update. 4966 */ 4967 if (newsize != oldsize) { 4968 inode_inc_iversion(inode); 4969 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4970 inode_set_mtime_to_ts(inode, 4971 inode_set_ctime_current(inode)); 4972 } 4973 } 4974 4975 if (newsize > oldsize) { 4976 /* 4977 * Don't do an expanding truncate while snapshotting is ongoing. 4978 * This is to ensure the snapshot captures a fully consistent 4979 * state of this file - if the snapshot captures this expanding 4980 * truncation, it must capture all writes that happened before 4981 * this truncation. 4982 */ 4983 btrfs_drew_write_lock(&root->snapshot_lock); 4984 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 4985 if (ret) { 4986 btrfs_drew_write_unlock(&root->snapshot_lock); 4987 return ret; 4988 } 4989 4990 trans = btrfs_start_transaction(root, 1); 4991 if (IS_ERR(trans)) { 4992 btrfs_drew_write_unlock(&root->snapshot_lock); 4993 return PTR_ERR(trans); 4994 } 4995 4996 i_size_write(inode, newsize); 4997 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 4998 pagecache_isize_extended(inode, oldsize, newsize); 4999 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5000 btrfs_drew_write_unlock(&root->snapshot_lock); 5001 btrfs_end_transaction(trans); 5002 } else { 5003 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5004 5005 if (btrfs_is_zoned(fs_info)) { 5006 ret = btrfs_wait_ordered_range(inode, 5007 ALIGN(newsize, fs_info->sectorsize), 5008 (u64)-1); 5009 if (ret) 5010 return ret; 5011 } 5012 5013 /* 5014 * We're truncating a file that used to have good data down to 5015 * zero. Make sure any new writes to the file get on disk 5016 * on close. 5017 */ 5018 if (newsize == 0) 5019 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5020 &BTRFS_I(inode)->runtime_flags); 5021 5022 truncate_setsize(inode, newsize); 5023 5024 inode_dio_wait(inode); 5025 5026 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5027 if (ret && inode->i_nlink) { 5028 int err; 5029 5030 /* 5031 * Truncate failed, so fix up the in-memory size. We 5032 * adjusted disk_i_size down as we removed extents, so 5033 * wait for disk_i_size to be stable and then update the 5034 * in-memory size to match. 5035 */ 5036 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5037 if (err) 5038 return err; 5039 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5040 } 5041 } 5042 5043 return ret; 5044 } 5045 5046 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5047 struct iattr *attr) 5048 { 5049 struct inode *inode = d_inode(dentry); 5050 struct btrfs_root *root = BTRFS_I(inode)->root; 5051 int err; 5052 5053 if (btrfs_root_readonly(root)) 5054 return -EROFS; 5055 5056 err = setattr_prepare(idmap, dentry, attr); 5057 if (err) 5058 return err; 5059 5060 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5061 err = btrfs_setsize(inode, attr); 5062 if (err) 5063 return err; 5064 } 5065 5066 if (attr->ia_valid) { 5067 setattr_copy(idmap, inode, attr); 5068 inode_inc_iversion(inode); 5069 err = btrfs_dirty_inode(BTRFS_I(inode)); 5070 5071 if (!err && attr->ia_valid & ATTR_MODE) 5072 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5073 } 5074 5075 return err; 5076 } 5077 5078 /* 5079 * While truncating the inode pages during eviction, we get the VFS 5080 * calling btrfs_invalidate_folio() against each folio of the inode. This 5081 * is slow because the calls to btrfs_invalidate_folio() result in a 5082 * huge amount of calls to lock_extent() and clear_extent_bit(), 5083 * which keep merging and splitting extent_state structures over and over, 5084 * wasting lots of time. 5085 * 5086 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5087 * skip all those expensive operations on a per folio basis and do only 5088 * the ordered io finishing, while we release here the extent_map and 5089 * extent_state structures, without the excessive merging and splitting. 5090 */ 5091 static void evict_inode_truncate_pages(struct inode *inode) 5092 { 5093 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5094 struct rb_node *node; 5095 5096 ASSERT(inode->i_state & I_FREEING); 5097 truncate_inode_pages_final(&inode->i_data); 5098 5099 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5100 5101 /* 5102 * Keep looping until we have no more ranges in the io tree. 5103 * We can have ongoing bios started by readahead that have 5104 * their endio callback (extent_io.c:end_bio_extent_readpage) 5105 * still in progress (unlocked the pages in the bio but did not yet 5106 * unlocked the ranges in the io tree). Therefore this means some 5107 * ranges can still be locked and eviction started because before 5108 * submitting those bios, which are executed by a separate task (work 5109 * queue kthread), inode references (inode->i_count) were not taken 5110 * (which would be dropped in the end io callback of each bio). 5111 * Therefore here we effectively end up waiting for those bios and 5112 * anyone else holding locked ranges without having bumped the inode's 5113 * reference count - if we don't do it, when they access the inode's 5114 * io_tree to unlock a range it may be too late, leading to an 5115 * use-after-free issue. 5116 */ 5117 spin_lock(&io_tree->lock); 5118 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5119 struct extent_state *state; 5120 struct extent_state *cached_state = NULL; 5121 u64 start; 5122 u64 end; 5123 unsigned state_flags; 5124 5125 node = rb_first(&io_tree->state); 5126 state = rb_entry(node, struct extent_state, rb_node); 5127 start = state->start; 5128 end = state->end; 5129 state_flags = state->state; 5130 spin_unlock(&io_tree->lock); 5131 5132 lock_extent(io_tree, start, end, &cached_state); 5133 5134 /* 5135 * If still has DELALLOC flag, the extent didn't reach disk, 5136 * and its reserved space won't be freed by delayed_ref. 5137 * So we need to free its reserved space here. 5138 * (Refer to comment in btrfs_invalidate_folio, case 2) 5139 * 5140 * Note, end is the bytenr of last byte, so we need + 1 here. 5141 */ 5142 if (state_flags & EXTENT_DELALLOC) 5143 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5144 end - start + 1, NULL); 5145 5146 clear_extent_bit(io_tree, start, end, 5147 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5148 &cached_state); 5149 5150 cond_resched(); 5151 spin_lock(&io_tree->lock); 5152 } 5153 spin_unlock(&io_tree->lock); 5154 } 5155 5156 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5157 struct btrfs_block_rsv *rsv) 5158 { 5159 struct btrfs_fs_info *fs_info = root->fs_info; 5160 struct btrfs_trans_handle *trans; 5161 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5162 int ret; 5163 5164 /* 5165 * Eviction should be taking place at some place safe because of our 5166 * delayed iputs. However the normal flushing code will run delayed 5167 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5168 * 5169 * We reserve the delayed_refs_extra here again because we can't use 5170 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5171 * above. We reserve our extra bit here because we generate a ton of 5172 * delayed refs activity by truncating. 5173 * 5174 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5175 * if we fail to make this reservation we can re-try without the 5176 * delayed_refs_extra so we can make some forward progress. 5177 */ 5178 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5179 BTRFS_RESERVE_FLUSH_EVICT); 5180 if (ret) { 5181 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5182 BTRFS_RESERVE_FLUSH_EVICT); 5183 if (ret) { 5184 btrfs_warn(fs_info, 5185 "could not allocate space for delete; will truncate on mount"); 5186 return ERR_PTR(-ENOSPC); 5187 } 5188 delayed_refs_extra = 0; 5189 } 5190 5191 trans = btrfs_join_transaction(root); 5192 if (IS_ERR(trans)) 5193 return trans; 5194 5195 if (delayed_refs_extra) { 5196 trans->block_rsv = &fs_info->trans_block_rsv; 5197 trans->bytes_reserved = delayed_refs_extra; 5198 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5199 delayed_refs_extra, true); 5200 } 5201 return trans; 5202 } 5203 5204 void btrfs_evict_inode(struct inode *inode) 5205 { 5206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5207 struct btrfs_trans_handle *trans; 5208 struct btrfs_root *root = BTRFS_I(inode)->root; 5209 struct btrfs_block_rsv *rsv = NULL; 5210 int ret; 5211 5212 trace_btrfs_inode_evict(inode); 5213 5214 if (!root) { 5215 fsverity_cleanup_inode(inode); 5216 clear_inode(inode); 5217 return; 5218 } 5219 5220 evict_inode_truncate_pages(inode); 5221 5222 if (inode->i_nlink && 5223 ((btrfs_root_refs(&root->root_item) != 0 && 5224 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5225 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5226 goto out; 5227 5228 if (is_bad_inode(inode)) 5229 goto out; 5230 5231 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5232 goto out; 5233 5234 if (inode->i_nlink > 0) { 5235 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5236 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5237 goto out; 5238 } 5239 5240 /* 5241 * This makes sure the inode item in tree is uptodate and the space for 5242 * the inode update is released. 5243 */ 5244 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5245 if (ret) 5246 goto out; 5247 5248 /* 5249 * This drops any pending insert or delete operations we have for this 5250 * inode. We could have a delayed dir index deletion queued up, but 5251 * we're removing the inode completely so that'll be taken care of in 5252 * the truncate. 5253 */ 5254 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5255 5256 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5257 if (!rsv) 5258 goto out; 5259 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5260 rsv->failfast = true; 5261 5262 btrfs_i_size_write(BTRFS_I(inode), 0); 5263 5264 while (1) { 5265 struct btrfs_truncate_control control = { 5266 .inode = BTRFS_I(inode), 5267 .ino = btrfs_ino(BTRFS_I(inode)), 5268 .new_size = 0, 5269 .min_type = 0, 5270 }; 5271 5272 trans = evict_refill_and_join(root, rsv); 5273 if (IS_ERR(trans)) 5274 goto out; 5275 5276 trans->block_rsv = rsv; 5277 5278 ret = btrfs_truncate_inode_items(trans, root, &control); 5279 trans->block_rsv = &fs_info->trans_block_rsv; 5280 btrfs_end_transaction(trans); 5281 /* 5282 * We have not added new delayed items for our inode after we 5283 * have flushed its delayed items, so no need to throttle on 5284 * delayed items. However we have modified extent buffers. 5285 */ 5286 btrfs_btree_balance_dirty_nodelay(fs_info); 5287 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5288 goto out; 5289 else if (!ret) 5290 break; 5291 } 5292 5293 /* 5294 * Errors here aren't a big deal, it just means we leave orphan items in 5295 * the tree. They will be cleaned up on the next mount. If the inode 5296 * number gets reused, cleanup deletes the orphan item without doing 5297 * anything, and unlink reuses the existing orphan item. 5298 * 5299 * If it turns out that we are dropping too many of these, we might want 5300 * to add a mechanism for retrying these after a commit. 5301 */ 5302 trans = evict_refill_and_join(root, rsv); 5303 if (!IS_ERR(trans)) { 5304 trans->block_rsv = rsv; 5305 btrfs_orphan_del(trans, BTRFS_I(inode)); 5306 trans->block_rsv = &fs_info->trans_block_rsv; 5307 btrfs_end_transaction(trans); 5308 } 5309 5310 out: 5311 btrfs_free_block_rsv(fs_info, rsv); 5312 /* 5313 * If we didn't successfully delete, the orphan item will still be in 5314 * the tree and we'll retry on the next mount. Again, we might also want 5315 * to retry these periodically in the future. 5316 */ 5317 btrfs_remove_delayed_node(BTRFS_I(inode)); 5318 fsverity_cleanup_inode(inode); 5319 clear_inode(inode); 5320 } 5321 5322 /* 5323 * Return the key found in the dir entry in the location pointer, fill @type 5324 * with BTRFS_FT_*, and return 0. 5325 * 5326 * If no dir entries were found, returns -ENOENT. 5327 * If found a corrupted location in dir entry, returns -EUCLEAN. 5328 */ 5329 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5330 struct btrfs_key *location, u8 *type) 5331 { 5332 struct btrfs_dir_item *di; 5333 struct btrfs_path *path; 5334 struct btrfs_root *root = dir->root; 5335 int ret = 0; 5336 struct fscrypt_name fname; 5337 5338 path = btrfs_alloc_path(); 5339 if (!path) 5340 return -ENOMEM; 5341 5342 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5343 if (ret < 0) 5344 goto out; 5345 /* 5346 * fscrypt_setup_filename() should never return a positive value, but 5347 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5348 */ 5349 ASSERT(ret == 0); 5350 5351 /* This needs to handle no-key deletions later on */ 5352 5353 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5354 &fname.disk_name, 0); 5355 if (IS_ERR_OR_NULL(di)) { 5356 ret = di ? PTR_ERR(di) : -ENOENT; 5357 goto out; 5358 } 5359 5360 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5361 if (location->type != BTRFS_INODE_ITEM_KEY && 5362 location->type != BTRFS_ROOT_ITEM_KEY) { 5363 ret = -EUCLEAN; 5364 btrfs_warn(root->fs_info, 5365 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5366 __func__, fname.disk_name.name, btrfs_ino(dir), 5367 location->objectid, location->type, location->offset); 5368 } 5369 if (!ret) 5370 *type = btrfs_dir_ftype(path->nodes[0], di); 5371 out: 5372 fscrypt_free_filename(&fname); 5373 btrfs_free_path(path); 5374 return ret; 5375 } 5376 5377 /* 5378 * when we hit a tree root in a directory, the btrfs part of the inode 5379 * needs to be changed to reflect the root directory of the tree root. This 5380 * is kind of like crossing a mount point. 5381 */ 5382 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5383 struct btrfs_inode *dir, 5384 struct dentry *dentry, 5385 struct btrfs_key *location, 5386 struct btrfs_root **sub_root) 5387 { 5388 struct btrfs_path *path; 5389 struct btrfs_root *new_root; 5390 struct btrfs_root_ref *ref; 5391 struct extent_buffer *leaf; 5392 struct btrfs_key key; 5393 int ret; 5394 int err = 0; 5395 struct fscrypt_name fname; 5396 5397 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5398 if (ret) 5399 return ret; 5400 5401 path = btrfs_alloc_path(); 5402 if (!path) { 5403 err = -ENOMEM; 5404 goto out; 5405 } 5406 5407 err = -ENOENT; 5408 key.objectid = dir->root->root_key.objectid; 5409 key.type = BTRFS_ROOT_REF_KEY; 5410 key.offset = location->objectid; 5411 5412 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5413 if (ret) { 5414 if (ret < 0) 5415 err = ret; 5416 goto out; 5417 } 5418 5419 leaf = path->nodes[0]; 5420 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5421 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5422 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5423 goto out; 5424 5425 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5426 (unsigned long)(ref + 1), fname.disk_name.len); 5427 if (ret) 5428 goto out; 5429 5430 btrfs_release_path(path); 5431 5432 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5433 if (IS_ERR(new_root)) { 5434 err = PTR_ERR(new_root); 5435 goto out; 5436 } 5437 5438 *sub_root = new_root; 5439 location->objectid = btrfs_root_dirid(&new_root->root_item); 5440 location->type = BTRFS_INODE_ITEM_KEY; 5441 location->offset = 0; 5442 err = 0; 5443 out: 5444 btrfs_free_path(path); 5445 fscrypt_free_filename(&fname); 5446 return err; 5447 } 5448 5449 static void inode_tree_add(struct btrfs_inode *inode) 5450 { 5451 struct btrfs_root *root = inode->root; 5452 struct btrfs_inode *entry; 5453 struct rb_node **p; 5454 struct rb_node *parent; 5455 struct rb_node *new = &inode->rb_node; 5456 u64 ino = btrfs_ino(inode); 5457 5458 if (inode_unhashed(&inode->vfs_inode)) 5459 return; 5460 parent = NULL; 5461 spin_lock(&root->inode_lock); 5462 p = &root->inode_tree.rb_node; 5463 while (*p) { 5464 parent = *p; 5465 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5466 5467 if (ino < btrfs_ino(entry)) 5468 p = &parent->rb_left; 5469 else if (ino > btrfs_ino(entry)) 5470 p = &parent->rb_right; 5471 else { 5472 WARN_ON(!(entry->vfs_inode.i_state & 5473 (I_WILL_FREE | I_FREEING))); 5474 rb_replace_node(parent, new, &root->inode_tree); 5475 RB_CLEAR_NODE(parent); 5476 spin_unlock(&root->inode_lock); 5477 return; 5478 } 5479 } 5480 rb_link_node(new, parent, p); 5481 rb_insert_color(new, &root->inode_tree); 5482 spin_unlock(&root->inode_lock); 5483 } 5484 5485 static void inode_tree_del(struct btrfs_inode *inode) 5486 { 5487 struct btrfs_root *root = inode->root; 5488 int empty = 0; 5489 5490 spin_lock(&root->inode_lock); 5491 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5492 rb_erase(&inode->rb_node, &root->inode_tree); 5493 RB_CLEAR_NODE(&inode->rb_node); 5494 empty = RB_EMPTY_ROOT(&root->inode_tree); 5495 } 5496 spin_unlock(&root->inode_lock); 5497 5498 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5499 spin_lock(&root->inode_lock); 5500 empty = RB_EMPTY_ROOT(&root->inode_tree); 5501 spin_unlock(&root->inode_lock); 5502 if (empty) 5503 btrfs_add_dead_root(root); 5504 } 5505 } 5506 5507 5508 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5509 { 5510 struct btrfs_iget_args *args = p; 5511 5512 inode->i_ino = args->ino; 5513 BTRFS_I(inode)->location.objectid = args->ino; 5514 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5515 BTRFS_I(inode)->location.offset = 0; 5516 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5517 BUG_ON(args->root && !BTRFS_I(inode)->root); 5518 5519 if (args->root && args->root == args->root->fs_info->tree_root && 5520 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5521 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5522 &BTRFS_I(inode)->runtime_flags); 5523 return 0; 5524 } 5525 5526 static int btrfs_find_actor(struct inode *inode, void *opaque) 5527 { 5528 struct btrfs_iget_args *args = opaque; 5529 5530 return args->ino == BTRFS_I(inode)->location.objectid && 5531 args->root == BTRFS_I(inode)->root; 5532 } 5533 5534 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5535 struct btrfs_root *root) 5536 { 5537 struct inode *inode; 5538 struct btrfs_iget_args args; 5539 unsigned long hashval = btrfs_inode_hash(ino, root); 5540 5541 args.ino = ino; 5542 args.root = root; 5543 5544 inode = iget5_locked(s, hashval, btrfs_find_actor, 5545 btrfs_init_locked_inode, 5546 (void *)&args); 5547 return inode; 5548 } 5549 5550 /* 5551 * Get an inode object given its inode number and corresponding root. 5552 * Path can be preallocated to prevent recursing back to iget through 5553 * allocator. NULL is also valid but may require an additional allocation 5554 * later. 5555 */ 5556 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5557 struct btrfs_root *root, struct btrfs_path *path) 5558 { 5559 struct inode *inode; 5560 5561 inode = btrfs_iget_locked(s, ino, root); 5562 if (!inode) 5563 return ERR_PTR(-ENOMEM); 5564 5565 if (inode->i_state & I_NEW) { 5566 int ret; 5567 5568 ret = btrfs_read_locked_inode(inode, path); 5569 if (!ret) { 5570 inode_tree_add(BTRFS_I(inode)); 5571 unlock_new_inode(inode); 5572 } else { 5573 iget_failed(inode); 5574 /* 5575 * ret > 0 can come from btrfs_search_slot called by 5576 * btrfs_read_locked_inode, this means the inode item 5577 * was not found. 5578 */ 5579 if (ret > 0) 5580 ret = -ENOENT; 5581 inode = ERR_PTR(ret); 5582 } 5583 } 5584 5585 return inode; 5586 } 5587 5588 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5589 { 5590 return btrfs_iget_path(s, ino, root, NULL); 5591 } 5592 5593 static struct inode *new_simple_dir(struct inode *dir, 5594 struct btrfs_key *key, 5595 struct btrfs_root *root) 5596 { 5597 struct timespec64 ts; 5598 struct inode *inode = new_inode(dir->i_sb); 5599 5600 if (!inode) 5601 return ERR_PTR(-ENOMEM); 5602 5603 BTRFS_I(inode)->root = btrfs_grab_root(root); 5604 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5605 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5606 5607 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5608 /* 5609 * We only need lookup, the rest is read-only and there's no inode 5610 * associated with the dentry 5611 */ 5612 inode->i_op = &simple_dir_inode_operations; 5613 inode->i_opflags &= ~IOP_XATTR; 5614 inode->i_fop = &simple_dir_operations; 5615 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5616 5617 ts = inode_set_ctime_current(inode); 5618 inode_set_mtime_to_ts(inode, ts); 5619 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5620 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5621 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5622 5623 inode->i_uid = dir->i_uid; 5624 inode->i_gid = dir->i_gid; 5625 5626 return inode; 5627 } 5628 5629 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5630 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5631 static_assert(BTRFS_FT_DIR == FT_DIR); 5632 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5633 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5634 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5635 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5636 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5637 5638 static inline u8 btrfs_inode_type(struct inode *inode) 5639 { 5640 return fs_umode_to_ftype(inode->i_mode); 5641 } 5642 5643 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5644 { 5645 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5646 struct inode *inode; 5647 struct btrfs_root *root = BTRFS_I(dir)->root; 5648 struct btrfs_root *sub_root = root; 5649 struct btrfs_key location; 5650 u8 di_type = 0; 5651 int ret = 0; 5652 5653 if (dentry->d_name.len > BTRFS_NAME_LEN) 5654 return ERR_PTR(-ENAMETOOLONG); 5655 5656 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5657 if (ret < 0) 5658 return ERR_PTR(ret); 5659 5660 if (location.type == BTRFS_INODE_ITEM_KEY) { 5661 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5662 if (IS_ERR(inode)) 5663 return inode; 5664 5665 /* Do extra check against inode mode with di_type */ 5666 if (btrfs_inode_type(inode) != di_type) { 5667 btrfs_crit(fs_info, 5668 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5669 inode->i_mode, btrfs_inode_type(inode), 5670 di_type); 5671 iput(inode); 5672 return ERR_PTR(-EUCLEAN); 5673 } 5674 return inode; 5675 } 5676 5677 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5678 &location, &sub_root); 5679 if (ret < 0) { 5680 if (ret != -ENOENT) 5681 inode = ERR_PTR(ret); 5682 else 5683 inode = new_simple_dir(dir, &location, root); 5684 } else { 5685 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5686 btrfs_put_root(sub_root); 5687 5688 if (IS_ERR(inode)) 5689 return inode; 5690 5691 down_read(&fs_info->cleanup_work_sem); 5692 if (!sb_rdonly(inode->i_sb)) 5693 ret = btrfs_orphan_cleanup(sub_root); 5694 up_read(&fs_info->cleanup_work_sem); 5695 if (ret) { 5696 iput(inode); 5697 inode = ERR_PTR(ret); 5698 } 5699 } 5700 5701 return inode; 5702 } 5703 5704 static int btrfs_dentry_delete(const struct dentry *dentry) 5705 { 5706 struct btrfs_root *root; 5707 struct inode *inode = d_inode(dentry); 5708 5709 if (!inode && !IS_ROOT(dentry)) 5710 inode = d_inode(dentry->d_parent); 5711 5712 if (inode) { 5713 root = BTRFS_I(inode)->root; 5714 if (btrfs_root_refs(&root->root_item) == 0) 5715 return 1; 5716 5717 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5718 return 1; 5719 } 5720 return 0; 5721 } 5722 5723 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5724 unsigned int flags) 5725 { 5726 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5727 5728 if (inode == ERR_PTR(-ENOENT)) 5729 inode = NULL; 5730 return d_splice_alias(inode, dentry); 5731 } 5732 5733 /* 5734 * Find the highest existing sequence number in a directory and then set the 5735 * in-memory index_cnt variable to the first free sequence number. 5736 */ 5737 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5738 { 5739 struct btrfs_root *root = inode->root; 5740 struct btrfs_key key, found_key; 5741 struct btrfs_path *path; 5742 struct extent_buffer *leaf; 5743 int ret; 5744 5745 key.objectid = btrfs_ino(inode); 5746 key.type = BTRFS_DIR_INDEX_KEY; 5747 key.offset = (u64)-1; 5748 5749 path = btrfs_alloc_path(); 5750 if (!path) 5751 return -ENOMEM; 5752 5753 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5754 if (ret < 0) 5755 goto out; 5756 /* FIXME: we should be able to handle this */ 5757 if (ret == 0) 5758 goto out; 5759 ret = 0; 5760 5761 if (path->slots[0] == 0) { 5762 inode->index_cnt = BTRFS_DIR_START_INDEX; 5763 goto out; 5764 } 5765 5766 path->slots[0]--; 5767 5768 leaf = path->nodes[0]; 5769 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5770 5771 if (found_key.objectid != btrfs_ino(inode) || 5772 found_key.type != BTRFS_DIR_INDEX_KEY) { 5773 inode->index_cnt = BTRFS_DIR_START_INDEX; 5774 goto out; 5775 } 5776 5777 inode->index_cnt = found_key.offset + 1; 5778 out: 5779 btrfs_free_path(path); 5780 return ret; 5781 } 5782 5783 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5784 { 5785 int ret = 0; 5786 5787 btrfs_inode_lock(dir, 0); 5788 if (dir->index_cnt == (u64)-1) { 5789 ret = btrfs_inode_delayed_dir_index_count(dir); 5790 if (ret) { 5791 ret = btrfs_set_inode_index_count(dir); 5792 if (ret) 5793 goto out; 5794 } 5795 } 5796 5797 /* index_cnt is the index number of next new entry, so decrement it. */ 5798 *index = dir->index_cnt - 1; 5799 out: 5800 btrfs_inode_unlock(dir, 0); 5801 5802 return ret; 5803 } 5804 5805 /* 5806 * All this infrastructure exists because dir_emit can fault, and we are holding 5807 * the tree lock when doing readdir. For now just allocate a buffer and copy 5808 * our information into that, and then dir_emit from the buffer. This is 5809 * similar to what NFS does, only we don't keep the buffer around in pagecache 5810 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5811 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5812 * tree lock. 5813 */ 5814 static int btrfs_opendir(struct inode *inode, struct file *file) 5815 { 5816 struct btrfs_file_private *private; 5817 u64 last_index; 5818 int ret; 5819 5820 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5821 if (ret) 5822 return ret; 5823 5824 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5825 if (!private) 5826 return -ENOMEM; 5827 private->last_index = last_index; 5828 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5829 if (!private->filldir_buf) { 5830 kfree(private); 5831 return -ENOMEM; 5832 } 5833 file->private_data = private; 5834 return 0; 5835 } 5836 5837 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5838 { 5839 struct btrfs_file_private *private = file->private_data; 5840 int ret; 5841 5842 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5843 &private->last_index); 5844 if (ret) 5845 return ret; 5846 5847 return generic_file_llseek(file, offset, whence); 5848 } 5849 5850 struct dir_entry { 5851 u64 ino; 5852 u64 offset; 5853 unsigned type; 5854 int name_len; 5855 }; 5856 5857 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5858 { 5859 while (entries--) { 5860 struct dir_entry *entry = addr; 5861 char *name = (char *)(entry + 1); 5862 5863 ctx->pos = get_unaligned(&entry->offset); 5864 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5865 get_unaligned(&entry->ino), 5866 get_unaligned(&entry->type))) 5867 return 1; 5868 addr += sizeof(struct dir_entry) + 5869 get_unaligned(&entry->name_len); 5870 ctx->pos++; 5871 } 5872 return 0; 5873 } 5874 5875 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5876 { 5877 struct inode *inode = file_inode(file); 5878 struct btrfs_root *root = BTRFS_I(inode)->root; 5879 struct btrfs_file_private *private = file->private_data; 5880 struct btrfs_dir_item *di; 5881 struct btrfs_key key; 5882 struct btrfs_key found_key; 5883 struct btrfs_path *path; 5884 void *addr; 5885 LIST_HEAD(ins_list); 5886 LIST_HEAD(del_list); 5887 int ret; 5888 char *name_ptr; 5889 int name_len; 5890 int entries = 0; 5891 int total_len = 0; 5892 bool put = false; 5893 struct btrfs_key location; 5894 5895 if (!dir_emit_dots(file, ctx)) 5896 return 0; 5897 5898 path = btrfs_alloc_path(); 5899 if (!path) 5900 return -ENOMEM; 5901 5902 addr = private->filldir_buf; 5903 path->reada = READA_FORWARD; 5904 5905 put = btrfs_readdir_get_delayed_items(inode, private->last_index, 5906 &ins_list, &del_list); 5907 5908 again: 5909 key.type = BTRFS_DIR_INDEX_KEY; 5910 key.offset = ctx->pos; 5911 key.objectid = btrfs_ino(BTRFS_I(inode)); 5912 5913 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5914 struct dir_entry *entry; 5915 struct extent_buffer *leaf = path->nodes[0]; 5916 u8 ftype; 5917 5918 if (found_key.objectid != key.objectid) 5919 break; 5920 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5921 break; 5922 if (found_key.offset < ctx->pos) 5923 continue; 5924 if (found_key.offset > private->last_index) 5925 break; 5926 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5927 continue; 5928 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5929 name_len = btrfs_dir_name_len(leaf, di); 5930 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5931 PAGE_SIZE) { 5932 btrfs_release_path(path); 5933 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5934 if (ret) 5935 goto nopos; 5936 addr = private->filldir_buf; 5937 entries = 0; 5938 total_len = 0; 5939 goto again; 5940 } 5941 5942 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5943 entry = addr; 5944 name_ptr = (char *)(entry + 1); 5945 read_extent_buffer(leaf, name_ptr, 5946 (unsigned long)(di + 1), name_len); 5947 put_unaligned(name_len, &entry->name_len); 5948 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5949 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5950 put_unaligned(location.objectid, &entry->ino); 5951 put_unaligned(found_key.offset, &entry->offset); 5952 entries++; 5953 addr += sizeof(struct dir_entry) + name_len; 5954 total_len += sizeof(struct dir_entry) + name_len; 5955 } 5956 /* Catch error encountered during iteration */ 5957 if (ret < 0) 5958 goto err; 5959 5960 btrfs_release_path(path); 5961 5962 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5963 if (ret) 5964 goto nopos; 5965 5966 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5967 if (ret) 5968 goto nopos; 5969 5970 /* 5971 * Stop new entries from being returned after we return the last 5972 * entry. 5973 * 5974 * New directory entries are assigned a strictly increasing 5975 * offset. This means that new entries created during readdir 5976 * are *guaranteed* to be seen in the future by that readdir. 5977 * This has broken buggy programs which operate on names as 5978 * they're returned by readdir. Until we re-use freed offsets 5979 * we have this hack to stop new entries from being returned 5980 * under the assumption that they'll never reach this huge 5981 * offset. 5982 * 5983 * This is being careful not to overflow 32bit loff_t unless the 5984 * last entry requires it because doing so has broken 32bit apps 5985 * in the past. 5986 */ 5987 if (ctx->pos >= INT_MAX) 5988 ctx->pos = LLONG_MAX; 5989 else 5990 ctx->pos = INT_MAX; 5991 nopos: 5992 ret = 0; 5993 err: 5994 if (put) 5995 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5996 btrfs_free_path(path); 5997 return ret; 5998 } 5999 6000 /* 6001 * This is somewhat expensive, updating the tree every time the 6002 * inode changes. But, it is most likely to find the inode in cache. 6003 * FIXME, needs more benchmarking...there are no reasons other than performance 6004 * to keep or drop this code. 6005 */ 6006 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6007 { 6008 struct btrfs_root *root = inode->root; 6009 struct btrfs_fs_info *fs_info = root->fs_info; 6010 struct btrfs_trans_handle *trans; 6011 int ret; 6012 6013 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6014 return 0; 6015 6016 trans = btrfs_join_transaction(root); 6017 if (IS_ERR(trans)) 6018 return PTR_ERR(trans); 6019 6020 ret = btrfs_update_inode(trans, inode); 6021 if (ret == -ENOSPC || ret == -EDQUOT) { 6022 /* whoops, lets try again with the full transaction */ 6023 btrfs_end_transaction(trans); 6024 trans = btrfs_start_transaction(root, 1); 6025 if (IS_ERR(trans)) 6026 return PTR_ERR(trans); 6027 6028 ret = btrfs_update_inode(trans, inode); 6029 } 6030 btrfs_end_transaction(trans); 6031 if (inode->delayed_node) 6032 btrfs_balance_delayed_items(fs_info); 6033 6034 return ret; 6035 } 6036 6037 /* 6038 * This is a copy of file_update_time. We need this so we can return error on 6039 * ENOSPC for updating the inode in the case of file write and mmap writes. 6040 */ 6041 static int btrfs_update_time(struct inode *inode, int flags) 6042 { 6043 struct btrfs_root *root = BTRFS_I(inode)->root; 6044 bool dirty; 6045 6046 if (btrfs_root_readonly(root)) 6047 return -EROFS; 6048 6049 dirty = inode_update_timestamps(inode, flags); 6050 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6051 } 6052 6053 /* 6054 * helper to find a free sequence number in a given directory. This current 6055 * code is very simple, later versions will do smarter things in the btree 6056 */ 6057 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6058 { 6059 int ret = 0; 6060 6061 if (dir->index_cnt == (u64)-1) { 6062 ret = btrfs_inode_delayed_dir_index_count(dir); 6063 if (ret) { 6064 ret = btrfs_set_inode_index_count(dir); 6065 if (ret) 6066 return ret; 6067 } 6068 } 6069 6070 *index = dir->index_cnt; 6071 dir->index_cnt++; 6072 6073 return ret; 6074 } 6075 6076 static int btrfs_insert_inode_locked(struct inode *inode) 6077 { 6078 struct btrfs_iget_args args; 6079 6080 args.ino = BTRFS_I(inode)->location.objectid; 6081 args.root = BTRFS_I(inode)->root; 6082 6083 return insert_inode_locked4(inode, 6084 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6085 btrfs_find_actor, &args); 6086 } 6087 6088 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6089 unsigned int *trans_num_items) 6090 { 6091 struct inode *dir = args->dir; 6092 struct inode *inode = args->inode; 6093 int ret; 6094 6095 if (!args->orphan) { 6096 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6097 &args->fname); 6098 if (ret) 6099 return ret; 6100 } 6101 6102 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6103 if (ret) { 6104 fscrypt_free_filename(&args->fname); 6105 return ret; 6106 } 6107 6108 /* 1 to add inode item */ 6109 *trans_num_items = 1; 6110 /* 1 to add compression property */ 6111 if (BTRFS_I(dir)->prop_compress) 6112 (*trans_num_items)++; 6113 /* 1 to add default ACL xattr */ 6114 if (args->default_acl) 6115 (*trans_num_items)++; 6116 /* 1 to add access ACL xattr */ 6117 if (args->acl) 6118 (*trans_num_items)++; 6119 #ifdef CONFIG_SECURITY 6120 /* 1 to add LSM xattr */ 6121 if (dir->i_security) 6122 (*trans_num_items)++; 6123 #endif 6124 if (args->orphan) { 6125 /* 1 to add orphan item */ 6126 (*trans_num_items)++; 6127 } else { 6128 /* 6129 * 1 to add dir item 6130 * 1 to add dir index 6131 * 1 to update parent inode item 6132 * 6133 * No need for 1 unit for the inode ref item because it is 6134 * inserted in a batch together with the inode item at 6135 * btrfs_create_new_inode(). 6136 */ 6137 *trans_num_items += 3; 6138 } 6139 return 0; 6140 } 6141 6142 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6143 { 6144 posix_acl_release(args->acl); 6145 posix_acl_release(args->default_acl); 6146 fscrypt_free_filename(&args->fname); 6147 } 6148 6149 /* 6150 * Inherit flags from the parent inode. 6151 * 6152 * Currently only the compression flags and the cow flags are inherited. 6153 */ 6154 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6155 { 6156 unsigned int flags; 6157 6158 flags = dir->flags; 6159 6160 if (flags & BTRFS_INODE_NOCOMPRESS) { 6161 inode->flags &= ~BTRFS_INODE_COMPRESS; 6162 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6163 } else if (flags & BTRFS_INODE_COMPRESS) { 6164 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6165 inode->flags |= BTRFS_INODE_COMPRESS; 6166 } 6167 6168 if (flags & BTRFS_INODE_NODATACOW) { 6169 inode->flags |= BTRFS_INODE_NODATACOW; 6170 if (S_ISREG(inode->vfs_inode.i_mode)) 6171 inode->flags |= BTRFS_INODE_NODATASUM; 6172 } 6173 6174 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6175 } 6176 6177 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6178 struct btrfs_new_inode_args *args) 6179 { 6180 struct timespec64 ts; 6181 struct inode *dir = args->dir; 6182 struct inode *inode = args->inode; 6183 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6184 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6185 struct btrfs_root *root; 6186 struct btrfs_inode_item *inode_item; 6187 struct btrfs_key *location; 6188 struct btrfs_path *path; 6189 u64 objectid; 6190 struct btrfs_inode_ref *ref; 6191 struct btrfs_key key[2]; 6192 u32 sizes[2]; 6193 struct btrfs_item_batch batch; 6194 unsigned long ptr; 6195 int ret; 6196 6197 path = btrfs_alloc_path(); 6198 if (!path) 6199 return -ENOMEM; 6200 6201 if (!args->subvol) 6202 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6203 root = BTRFS_I(inode)->root; 6204 6205 ret = btrfs_get_free_objectid(root, &objectid); 6206 if (ret) 6207 goto out; 6208 inode->i_ino = objectid; 6209 6210 if (args->orphan) { 6211 /* 6212 * O_TMPFILE, set link count to 0, so that after this point, we 6213 * fill in an inode item with the correct link count. 6214 */ 6215 set_nlink(inode, 0); 6216 } else { 6217 trace_btrfs_inode_request(dir); 6218 6219 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6220 if (ret) 6221 goto out; 6222 } 6223 /* index_cnt is ignored for everything but a dir. */ 6224 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6225 BTRFS_I(inode)->generation = trans->transid; 6226 inode->i_generation = BTRFS_I(inode)->generation; 6227 6228 /* 6229 * We don't have any capability xattrs set here yet, shortcut any 6230 * queries for the xattrs here. If we add them later via the inode 6231 * security init path or any other path this flag will be cleared. 6232 */ 6233 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6234 6235 /* 6236 * Subvolumes don't inherit flags from their parent directory. 6237 * Originally this was probably by accident, but we probably can't 6238 * change it now without compatibility issues. 6239 */ 6240 if (!args->subvol) 6241 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6242 6243 if (S_ISREG(inode->i_mode)) { 6244 if (btrfs_test_opt(fs_info, NODATASUM)) 6245 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6246 if (btrfs_test_opt(fs_info, NODATACOW)) 6247 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6248 BTRFS_INODE_NODATASUM; 6249 } 6250 6251 location = &BTRFS_I(inode)->location; 6252 location->objectid = objectid; 6253 location->offset = 0; 6254 location->type = BTRFS_INODE_ITEM_KEY; 6255 6256 ret = btrfs_insert_inode_locked(inode); 6257 if (ret < 0) { 6258 if (!args->orphan) 6259 BTRFS_I(dir)->index_cnt--; 6260 goto out; 6261 } 6262 6263 /* 6264 * We could have gotten an inode number from somebody who was fsynced 6265 * and then removed in this same transaction, so let's just set full 6266 * sync since it will be a full sync anyway and this will blow away the 6267 * old info in the log. 6268 */ 6269 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6270 6271 key[0].objectid = objectid; 6272 key[0].type = BTRFS_INODE_ITEM_KEY; 6273 key[0].offset = 0; 6274 6275 sizes[0] = sizeof(struct btrfs_inode_item); 6276 6277 if (!args->orphan) { 6278 /* 6279 * Start new inodes with an inode_ref. This is slightly more 6280 * efficient for small numbers of hard links since they will 6281 * be packed into one item. Extended refs will kick in if we 6282 * add more hard links than can fit in the ref item. 6283 */ 6284 key[1].objectid = objectid; 6285 key[1].type = BTRFS_INODE_REF_KEY; 6286 if (args->subvol) { 6287 key[1].offset = objectid; 6288 sizes[1] = 2 + sizeof(*ref); 6289 } else { 6290 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6291 sizes[1] = name->len + sizeof(*ref); 6292 } 6293 } 6294 6295 batch.keys = &key[0]; 6296 batch.data_sizes = &sizes[0]; 6297 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6298 batch.nr = args->orphan ? 1 : 2; 6299 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6300 if (ret != 0) { 6301 btrfs_abort_transaction(trans, ret); 6302 goto discard; 6303 } 6304 6305 ts = simple_inode_init_ts(inode); 6306 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6307 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6308 6309 /* 6310 * We're going to fill the inode item now, so at this point the inode 6311 * must be fully initialized. 6312 */ 6313 6314 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6315 struct btrfs_inode_item); 6316 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6317 sizeof(*inode_item)); 6318 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6319 6320 if (!args->orphan) { 6321 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6322 struct btrfs_inode_ref); 6323 ptr = (unsigned long)(ref + 1); 6324 if (args->subvol) { 6325 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6326 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6327 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6328 } else { 6329 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6330 name->len); 6331 btrfs_set_inode_ref_index(path->nodes[0], ref, 6332 BTRFS_I(inode)->dir_index); 6333 write_extent_buffer(path->nodes[0], name->name, ptr, 6334 name->len); 6335 } 6336 } 6337 6338 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6339 /* 6340 * We don't need the path anymore, plus inheriting properties, adding 6341 * ACLs, security xattrs, orphan item or adding the link, will result in 6342 * allocating yet another path. So just free our path. 6343 */ 6344 btrfs_free_path(path); 6345 path = NULL; 6346 6347 if (args->subvol) { 6348 struct inode *parent; 6349 6350 /* 6351 * Subvolumes inherit properties from their parent subvolume, 6352 * not the directory they were created in. 6353 */ 6354 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6355 BTRFS_I(dir)->root); 6356 if (IS_ERR(parent)) { 6357 ret = PTR_ERR(parent); 6358 } else { 6359 ret = btrfs_inode_inherit_props(trans, inode, parent); 6360 iput(parent); 6361 } 6362 } else { 6363 ret = btrfs_inode_inherit_props(trans, inode, dir); 6364 } 6365 if (ret) { 6366 btrfs_err(fs_info, 6367 "error inheriting props for ino %llu (root %llu): %d", 6368 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6369 ret); 6370 } 6371 6372 /* 6373 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6374 * probably a bug. 6375 */ 6376 if (!args->subvol) { 6377 ret = btrfs_init_inode_security(trans, args); 6378 if (ret) { 6379 btrfs_abort_transaction(trans, ret); 6380 goto discard; 6381 } 6382 } 6383 6384 inode_tree_add(BTRFS_I(inode)); 6385 6386 trace_btrfs_inode_new(inode); 6387 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6388 6389 btrfs_update_root_times(trans, root); 6390 6391 if (args->orphan) { 6392 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6393 } else { 6394 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6395 0, BTRFS_I(inode)->dir_index); 6396 } 6397 if (ret) { 6398 btrfs_abort_transaction(trans, ret); 6399 goto discard; 6400 } 6401 6402 return 0; 6403 6404 discard: 6405 /* 6406 * discard_new_inode() calls iput(), but the caller owns the reference 6407 * to the inode. 6408 */ 6409 ihold(inode); 6410 discard_new_inode(inode); 6411 out: 6412 btrfs_free_path(path); 6413 return ret; 6414 } 6415 6416 /* 6417 * utility function to add 'inode' into 'parent_inode' with 6418 * a give name and a given sequence number. 6419 * if 'add_backref' is true, also insert a backref from the 6420 * inode to the parent directory. 6421 */ 6422 int btrfs_add_link(struct btrfs_trans_handle *trans, 6423 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6424 const struct fscrypt_str *name, int add_backref, u64 index) 6425 { 6426 int ret = 0; 6427 struct btrfs_key key; 6428 struct btrfs_root *root = parent_inode->root; 6429 u64 ino = btrfs_ino(inode); 6430 u64 parent_ino = btrfs_ino(parent_inode); 6431 6432 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6433 memcpy(&key, &inode->root->root_key, sizeof(key)); 6434 } else { 6435 key.objectid = ino; 6436 key.type = BTRFS_INODE_ITEM_KEY; 6437 key.offset = 0; 6438 } 6439 6440 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6441 ret = btrfs_add_root_ref(trans, key.objectid, 6442 root->root_key.objectid, parent_ino, 6443 index, name); 6444 } else if (add_backref) { 6445 ret = btrfs_insert_inode_ref(trans, root, name, 6446 ino, parent_ino, index); 6447 } 6448 6449 /* Nothing to clean up yet */ 6450 if (ret) 6451 return ret; 6452 6453 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6454 btrfs_inode_type(&inode->vfs_inode), index); 6455 if (ret == -EEXIST || ret == -EOVERFLOW) 6456 goto fail_dir_item; 6457 else if (ret) { 6458 btrfs_abort_transaction(trans, ret); 6459 return ret; 6460 } 6461 6462 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6463 name->len * 2); 6464 inode_inc_iversion(&parent_inode->vfs_inode); 6465 /* 6466 * If we are replaying a log tree, we do not want to update the mtime 6467 * and ctime of the parent directory with the current time, since the 6468 * log replay procedure is responsible for setting them to their correct 6469 * values (the ones it had when the fsync was done). 6470 */ 6471 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6472 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6473 inode_set_ctime_current(&parent_inode->vfs_inode)); 6474 6475 ret = btrfs_update_inode(trans, parent_inode); 6476 if (ret) 6477 btrfs_abort_transaction(trans, ret); 6478 return ret; 6479 6480 fail_dir_item: 6481 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6482 u64 local_index; 6483 int err; 6484 err = btrfs_del_root_ref(trans, key.objectid, 6485 root->root_key.objectid, parent_ino, 6486 &local_index, name); 6487 if (err) 6488 btrfs_abort_transaction(trans, err); 6489 } else if (add_backref) { 6490 u64 local_index; 6491 int err; 6492 6493 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6494 &local_index); 6495 if (err) 6496 btrfs_abort_transaction(trans, err); 6497 } 6498 6499 /* Return the original error code */ 6500 return ret; 6501 } 6502 6503 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6504 struct inode *inode) 6505 { 6506 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6507 struct btrfs_root *root = BTRFS_I(dir)->root; 6508 struct btrfs_new_inode_args new_inode_args = { 6509 .dir = dir, 6510 .dentry = dentry, 6511 .inode = inode, 6512 }; 6513 unsigned int trans_num_items; 6514 struct btrfs_trans_handle *trans; 6515 int err; 6516 6517 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6518 if (err) 6519 goto out_inode; 6520 6521 trans = btrfs_start_transaction(root, trans_num_items); 6522 if (IS_ERR(trans)) { 6523 err = PTR_ERR(trans); 6524 goto out_new_inode_args; 6525 } 6526 6527 err = btrfs_create_new_inode(trans, &new_inode_args); 6528 if (!err) 6529 d_instantiate_new(dentry, inode); 6530 6531 btrfs_end_transaction(trans); 6532 btrfs_btree_balance_dirty(fs_info); 6533 out_new_inode_args: 6534 btrfs_new_inode_args_destroy(&new_inode_args); 6535 out_inode: 6536 if (err) 6537 iput(inode); 6538 return err; 6539 } 6540 6541 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6542 struct dentry *dentry, umode_t mode, dev_t rdev) 6543 { 6544 struct inode *inode; 6545 6546 inode = new_inode(dir->i_sb); 6547 if (!inode) 6548 return -ENOMEM; 6549 inode_init_owner(idmap, inode, dir, mode); 6550 inode->i_op = &btrfs_special_inode_operations; 6551 init_special_inode(inode, inode->i_mode, rdev); 6552 return btrfs_create_common(dir, dentry, inode); 6553 } 6554 6555 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6556 struct dentry *dentry, umode_t mode, bool excl) 6557 { 6558 struct inode *inode; 6559 6560 inode = new_inode(dir->i_sb); 6561 if (!inode) 6562 return -ENOMEM; 6563 inode_init_owner(idmap, inode, dir, mode); 6564 inode->i_fop = &btrfs_file_operations; 6565 inode->i_op = &btrfs_file_inode_operations; 6566 inode->i_mapping->a_ops = &btrfs_aops; 6567 return btrfs_create_common(dir, dentry, inode); 6568 } 6569 6570 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6571 struct dentry *dentry) 6572 { 6573 struct btrfs_trans_handle *trans = NULL; 6574 struct btrfs_root *root = BTRFS_I(dir)->root; 6575 struct inode *inode = d_inode(old_dentry); 6576 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6577 struct fscrypt_name fname; 6578 u64 index; 6579 int err; 6580 int drop_inode = 0; 6581 6582 /* do not allow sys_link's with other subvols of the same device */ 6583 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6584 return -EXDEV; 6585 6586 if (inode->i_nlink >= BTRFS_LINK_MAX) 6587 return -EMLINK; 6588 6589 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6590 if (err) 6591 goto fail; 6592 6593 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6594 if (err) 6595 goto fail; 6596 6597 /* 6598 * 2 items for inode and inode ref 6599 * 2 items for dir items 6600 * 1 item for parent inode 6601 * 1 item for orphan item deletion if O_TMPFILE 6602 */ 6603 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6604 if (IS_ERR(trans)) { 6605 err = PTR_ERR(trans); 6606 trans = NULL; 6607 goto fail; 6608 } 6609 6610 /* There are several dir indexes for this inode, clear the cache. */ 6611 BTRFS_I(inode)->dir_index = 0ULL; 6612 inc_nlink(inode); 6613 inode_inc_iversion(inode); 6614 inode_set_ctime_current(inode); 6615 ihold(inode); 6616 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6617 6618 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6619 &fname.disk_name, 1, index); 6620 6621 if (err) { 6622 drop_inode = 1; 6623 } else { 6624 struct dentry *parent = dentry->d_parent; 6625 6626 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6627 if (err) 6628 goto fail; 6629 if (inode->i_nlink == 1) { 6630 /* 6631 * If new hard link count is 1, it's a file created 6632 * with open(2) O_TMPFILE flag. 6633 */ 6634 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6635 if (err) 6636 goto fail; 6637 } 6638 d_instantiate(dentry, inode); 6639 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6640 } 6641 6642 fail: 6643 fscrypt_free_filename(&fname); 6644 if (trans) 6645 btrfs_end_transaction(trans); 6646 if (drop_inode) { 6647 inode_dec_link_count(inode); 6648 iput(inode); 6649 } 6650 btrfs_btree_balance_dirty(fs_info); 6651 return err; 6652 } 6653 6654 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6655 struct dentry *dentry, umode_t mode) 6656 { 6657 struct inode *inode; 6658 6659 inode = new_inode(dir->i_sb); 6660 if (!inode) 6661 return -ENOMEM; 6662 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6663 inode->i_op = &btrfs_dir_inode_operations; 6664 inode->i_fop = &btrfs_dir_file_operations; 6665 return btrfs_create_common(dir, dentry, inode); 6666 } 6667 6668 static noinline int uncompress_inline(struct btrfs_path *path, 6669 struct page *page, 6670 struct btrfs_file_extent_item *item) 6671 { 6672 int ret; 6673 struct extent_buffer *leaf = path->nodes[0]; 6674 char *tmp; 6675 size_t max_size; 6676 unsigned long inline_size; 6677 unsigned long ptr; 6678 int compress_type; 6679 6680 compress_type = btrfs_file_extent_compression(leaf, item); 6681 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6682 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6683 tmp = kmalloc(inline_size, GFP_NOFS); 6684 if (!tmp) 6685 return -ENOMEM; 6686 ptr = btrfs_file_extent_inline_start(item); 6687 6688 read_extent_buffer(leaf, tmp, ptr, inline_size); 6689 6690 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6691 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6692 6693 /* 6694 * decompression code contains a memset to fill in any space between the end 6695 * of the uncompressed data and the end of max_size in case the decompressed 6696 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6697 * the end of an inline extent and the beginning of the next block, so we 6698 * cover that region here. 6699 */ 6700 6701 if (max_size < PAGE_SIZE) 6702 memzero_page(page, max_size, PAGE_SIZE - max_size); 6703 kfree(tmp); 6704 return ret; 6705 } 6706 6707 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6708 struct page *page) 6709 { 6710 struct btrfs_file_extent_item *fi; 6711 void *kaddr; 6712 size_t copy_size; 6713 6714 if (!page || PageUptodate(page)) 6715 return 0; 6716 6717 ASSERT(page_offset(page) == 0); 6718 6719 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6720 struct btrfs_file_extent_item); 6721 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6722 return uncompress_inline(path, page, fi); 6723 6724 copy_size = min_t(u64, PAGE_SIZE, 6725 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6726 kaddr = kmap_local_page(page); 6727 read_extent_buffer(path->nodes[0], kaddr, 6728 btrfs_file_extent_inline_start(fi), copy_size); 6729 kunmap_local(kaddr); 6730 if (copy_size < PAGE_SIZE) 6731 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6732 return 0; 6733 } 6734 6735 /* 6736 * Lookup the first extent overlapping a range in a file. 6737 * 6738 * @inode: file to search in 6739 * @page: page to read extent data into if the extent is inline 6740 * @pg_offset: offset into @page to copy to 6741 * @start: file offset 6742 * @len: length of range starting at @start 6743 * 6744 * Return the first &struct extent_map which overlaps the given range, reading 6745 * it from the B-tree and caching it if necessary. Note that there may be more 6746 * extents which overlap the given range after the returned extent_map. 6747 * 6748 * If @page is not NULL and the extent is inline, this also reads the extent 6749 * data directly into the page and marks the extent up to date in the io_tree. 6750 * 6751 * Return: ERR_PTR on error, non-NULL extent_map on success. 6752 */ 6753 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6754 struct page *page, size_t pg_offset, 6755 u64 start, u64 len) 6756 { 6757 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6758 int ret = 0; 6759 u64 extent_start = 0; 6760 u64 extent_end = 0; 6761 u64 objectid = btrfs_ino(inode); 6762 int extent_type = -1; 6763 struct btrfs_path *path = NULL; 6764 struct btrfs_root *root = inode->root; 6765 struct btrfs_file_extent_item *item; 6766 struct extent_buffer *leaf; 6767 struct btrfs_key found_key; 6768 struct extent_map *em = NULL; 6769 struct extent_map_tree *em_tree = &inode->extent_tree; 6770 6771 read_lock(&em_tree->lock); 6772 em = lookup_extent_mapping(em_tree, start, len); 6773 read_unlock(&em_tree->lock); 6774 6775 if (em) { 6776 if (em->start > start || em->start + em->len <= start) 6777 free_extent_map(em); 6778 else if (em->block_start == EXTENT_MAP_INLINE && page) 6779 free_extent_map(em); 6780 else 6781 goto out; 6782 } 6783 em = alloc_extent_map(); 6784 if (!em) { 6785 ret = -ENOMEM; 6786 goto out; 6787 } 6788 em->start = EXTENT_MAP_HOLE; 6789 em->orig_start = EXTENT_MAP_HOLE; 6790 em->len = (u64)-1; 6791 em->block_len = (u64)-1; 6792 6793 path = btrfs_alloc_path(); 6794 if (!path) { 6795 ret = -ENOMEM; 6796 goto out; 6797 } 6798 6799 /* Chances are we'll be called again, so go ahead and do readahead */ 6800 path->reada = READA_FORWARD; 6801 6802 /* 6803 * The same explanation in load_free_space_cache applies here as well, 6804 * we only read when we're loading the free space cache, and at that 6805 * point the commit_root has everything we need. 6806 */ 6807 if (btrfs_is_free_space_inode(inode)) { 6808 path->search_commit_root = 1; 6809 path->skip_locking = 1; 6810 } 6811 6812 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6813 if (ret < 0) { 6814 goto out; 6815 } else if (ret > 0) { 6816 if (path->slots[0] == 0) 6817 goto not_found; 6818 path->slots[0]--; 6819 ret = 0; 6820 } 6821 6822 leaf = path->nodes[0]; 6823 item = btrfs_item_ptr(leaf, path->slots[0], 6824 struct btrfs_file_extent_item); 6825 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6826 if (found_key.objectid != objectid || 6827 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6828 /* 6829 * If we backup past the first extent we want to move forward 6830 * and see if there is an extent in front of us, otherwise we'll 6831 * say there is a hole for our whole search range which can 6832 * cause problems. 6833 */ 6834 extent_end = start; 6835 goto next; 6836 } 6837 6838 extent_type = btrfs_file_extent_type(leaf, item); 6839 extent_start = found_key.offset; 6840 extent_end = btrfs_file_extent_end(path); 6841 if (extent_type == BTRFS_FILE_EXTENT_REG || 6842 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6843 /* Only regular file could have regular/prealloc extent */ 6844 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6845 ret = -EUCLEAN; 6846 btrfs_crit(fs_info, 6847 "regular/prealloc extent found for non-regular inode %llu", 6848 btrfs_ino(inode)); 6849 goto out; 6850 } 6851 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6852 extent_start); 6853 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6854 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6855 path->slots[0], 6856 extent_start); 6857 } 6858 next: 6859 if (start >= extent_end) { 6860 path->slots[0]++; 6861 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6862 ret = btrfs_next_leaf(root, path); 6863 if (ret < 0) 6864 goto out; 6865 else if (ret > 0) 6866 goto not_found; 6867 6868 leaf = path->nodes[0]; 6869 } 6870 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6871 if (found_key.objectid != objectid || 6872 found_key.type != BTRFS_EXTENT_DATA_KEY) 6873 goto not_found; 6874 if (start + len <= found_key.offset) 6875 goto not_found; 6876 if (start > found_key.offset) 6877 goto next; 6878 6879 /* New extent overlaps with existing one */ 6880 em->start = start; 6881 em->orig_start = start; 6882 em->len = found_key.offset - start; 6883 em->block_start = EXTENT_MAP_HOLE; 6884 goto insert; 6885 } 6886 6887 btrfs_extent_item_to_extent_map(inode, path, item, em); 6888 6889 if (extent_type == BTRFS_FILE_EXTENT_REG || 6890 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6891 goto insert; 6892 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6893 /* 6894 * Inline extent can only exist at file offset 0. This is 6895 * ensured by tree-checker and inline extent creation path. 6896 * Thus all members representing file offsets should be zero. 6897 */ 6898 ASSERT(pg_offset == 0); 6899 ASSERT(extent_start == 0); 6900 ASSERT(em->start == 0); 6901 6902 /* 6903 * btrfs_extent_item_to_extent_map() should have properly 6904 * initialized em members already. 6905 * 6906 * Other members are not utilized for inline extents. 6907 */ 6908 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6909 ASSERT(em->len == fs_info->sectorsize); 6910 6911 ret = read_inline_extent(inode, path, page); 6912 if (ret < 0) 6913 goto out; 6914 goto insert; 6915 } 6916 not_found: 6917 em->start = start; 6918 em->orig_start = start; 6919 em->len = len; 6920 em->block_start = EXTENT_MAP_HOLE; 6921 insert: 6922 ret = 0; 6923 btrfs_release_path(path); 6924 if (em->start > start || extent_map_end(em) <= start) { 6925 btrfs_err(fs_info, 6926 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6927 em->start, em->len, start, len); 6928 ret = -EIO; 6929 goto out; 6930 } 6931 6932 write_lock(&em_tree->lock); 6933 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6934 write_unlock(&em_tree->lock); 6935 out: 6936 btrfs_free_path(path); 6937 6938 trace_btrfs_get_extent(root, inode, em); 6939 6940 if (ret) { 6941 free_extent_map(em); 6942 return ERR_PTR(ret); 6943 } 6944 return em; 6945 } 6946 6947 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6948 struct btrfs_dio_data *dio_data, 6949 const u64 start, 6950 const u64 len, 6951 const u64 orig_start, 6952 const u64 block_start, 6953 const u64 block_len, 6954 const u64 orig_block_len, 6955 const u64 ram_bytes, 6956 const int type) 6957 { 6958 struct extent_map *em = NULL; 6959 struct btrfs_ordered_extent *ordered; 6960 6961 if (type != BTRFS_ORDERED_NOCOW) { 6962 em = create_io_em(inode, start, len, orig_start, block_start, 6963 block_len, orig_block_len, ram_bytes, 6964 BTRFS_COMPRESS_NONE, /* compress_type */ 6965 type); 6966 if (IS_ERR(em)) 6967 goto out; 6968 } 6969 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 6970 block_start, block_len, 0, 6971 (1 << type) | 6972 (1 << BTRFS_ORDERED_DIRECT), 6973 BTRFS_COMPRESS_NONE); 6974 if (IS_ERR(ordered)) { 6975 if (em) { 6976 free_extent_map(em); 6977 btrfs_drop_extent_map_range(inode, start, 6978 start + len - 1, false); 6979 } 6980 em = ERR_CAST(ordered); 6981 } else { 6982 ASSERT(!dio_data->ordered); 6983 dio_data->ordered = ordered; 6984 } 6985 out: 6986 6987 return em; 6988 } 6989 6990 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6991 struct btrfs_dio_data *dio_data, 6992 u64 start, u64 len) 6993 { 6994 struct btrfs_root *root = inode->root; 6995 struct btrfs_fs_info *fs_info = root->fs_info; 6996 struct extent_map *em; 6997 struct btrfs_key ins; 6998 u64 alloc_hint; 6999 int ret; 7000 7001 alloc_hint = get_extent_allocation_hint(inode, start, len); 7002 again: 7003 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7004 0, alloc_hint, &ins, 1, 1); 7005 if (ret == -EAGAIN) { 7006 ASSERT(btrfs_is_zoned(fs_info)); 7007 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 7008 TASK_UNINTERRUPTIBLE); 7009 goto again; 7010 } 7011 if (ret) 7012 return ERR_PTR(ret); 7013 7014 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 7015 ins.objectid, ins.offset, ins.offset, 7016 ins.offset, BTRFS_ORDERED_REGULAR); 7017 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7018 if (IS_ERR(em)) 7019 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7020 1); 7021 7022 return em; 7023 } 7024 7025 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7026 { 7027 struct btrfs_block_group *block_group; 7028 bool readonly = false; 7029 7030 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7031 if (!block_group || block_group->ro) 7032 readonly = true; 7033 if (block_group) 7034 btrfs_put_block_group(block_group); 7035 return readonly; 7036 } 7037 7038 /* 7039 * Check if we can do nocow write into the range [@offset, @offset + @len) 7040 * 7041 * @offset: File offset 7042 * @len: The length to write, will be updated to the nocow writeable 7043 * range 7044 * @orig_start: (optional) Return the original file offset of the file extent 7045 * @orig_len: (optional) Return the original on-disk length of the file extent 7046 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7047 * @strict: if true, omit optimizations that might force us into unnecessary 7048 * cow. e.g., don't trust generation number. 7049 * 7050 * Return: 7051 * >0 and update @len if we can do nocow write 7052 * 0 if we can't do nocow write 7053 * <0 if error happened 7054 * 7055 * NOTE: This only checks the file extents, caller is responsible to wait for 7056 * any ordered extents. 7057 */ 7058 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7059 u64 *orig_start, u64 *orig_block_len, 7060 u64 *ram_bytes, bool nowait, bool strict) 7061 { 7062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7063 struct can_nocow_file_extent_args nocow_args = { 0 }; 7064 struct btrfs_path *path; 7065 int ret; 7066 struct extent_buffer *leaf; 7067 struct btrfs_root *root = BTRFS_I(inode)->root; 7068 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7069 struct btrfs_file_extent_item *fi; 7070 struct btrfs_key key; 7071 int found_type; 7072 7073 path = btrfs_alloc_path(); 7074 if (!path) 7075 return -ENOMEM; 7076 path->nowait = nowait; 7077 7078 ret = btrfs_lookup_file_extent(NULL, root, path, 7079 btrfs_ino(BTRFS_I(inode)), offset, 0); 7080 if (ret < 0) 7081 goto out; 7082 7083 if (ret == 1) { 7084 if (path->slots[0] == 0) { 7085 /* can't find the item, must cow */ 7086 ret = 0; 7087 goto out; 7088 } 7089 path->slots[0]--; 7090 } 7091 ret = 0; 7092 leaf = path->nodes[0]; 7093 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7094 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7095 key.type != BTRFS_EXTENT_DATA_KEY) { 7096 /* not our file or wrong item type, must cow */ 7097 goto out; 7098 } 7099 7100 if (key.offset > offset) { 7101 /* Wrong offset, must cow */ 7102 goto out; 7103 } 7104 7105 if (btrfs_file_extent_end(path) <= offset) 7106 goto out; 7107 7108 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7109 found_type = btrfs_file_extent_type(leaf, fi); 7110 if (ram_bytes) 7111 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7112 7113 nocow_args.start = offset; 7114 nocow_args.end = offset + *len - 1; 7115 nocow_args.strict = strict; 7116 nocow_args.free_path = true; 7117 7118 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7119 /* can_nocow_file_extent() has freed the path. */ 7120 path = NULL; 7121 7122 if (ret != 1) { 7123 /* Treat errors as not being able to NOCOW. */ 7124 ret = 0; 7125 goto out; 7126 } 7127 7128 ret = 0; 7129 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7130 goto out; 7131 7132 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7133 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7134 u64 range_end; 7135 7136 range_end = round_up(offset + nocow_args.num_bytes, 7137 root->fs_info->sectorsize) - 1; 7138 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7139 if (ret) { 7140 ret = -EAGAIN; 7141 goto out; 7142 } 7143 } 7144 7145 if (orig_start) 7146 *orig_start = key.offset - nocow_args.extent_offset; 7147 if (orig_block_len) 7148 *orig_block_len = nocow_args.disk_num_bytes; 7149 7150 *len = nocow_args.num_bytes; 7151 ret = 1; 7152 out: 7153 btrfs_free_path(path); 7154 return ret; 7155 } 7156 7157 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7158 struct extent_state **cached_state, 7159 unsigned int iomap_flags) 7160 { 7161 const bool writing = (iomap_flags & IOMAP_WRITE); 7162 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7163 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7164 struct btrfs_ordered_extent *ordered; 7165 int ret = 0; 7166 7167 while (1) { 7168 if (nowait) { 7169 if (!try_lock_extent(io_tree, lockstart, lockend, 7170 cached_state)) 7171 return -EAGAIN; 7172 } else { 7173 lock_extent(io_tree, lockstart, lockend, cached_state); 7174 } 7175 /* 7176 * We're concerned with the entire range that we're going to be 7177 * doing DIO to, so we need to make sure there's no ordered 7178 * extents in this range. 7179 */ 7180 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7181 lockend - lockstart + 1); 7182 7183 /* 7184 * We need to make sure there are no buffered pages in this 7185 * range either, we could have raced between the invalidate in 7186 * generic_file_direct_write and locking the extent. The 7187 * invalidate needs to happen so that reads after a write do not 7188 * get stale data. 7189 */ 7190 if (!ordered && 7191 (!writing || !filemap_range_has_page(inode->i_mapping, 7192 lockstart, lockend))) 7193 break; 7194 7195 unlock_extent(io_tree, lockstart, lockend, cached_state); 7196 7197 if (ordered) { 7198 if (nowait) { 7199 btrfs_put_ordered_extent(ordered); 7200 ret = -EAGAIN; 7201 break; 7202 } 7203 /* 7204 * If we are doing a DIO read and the ordered extent we 7205 * found is for a buffered write, we can not wait for it 7206 * to complete and retry, because if we do so we can 7207 * deadlock with concurrent buffered writes on page 7208 * locks. This happens only if our DIO read covers more 7209 * than one extent map, if at this point has already 7210 * created an ordered extent for a previous extent map 7211 * and locked its range in the inode's io tree, and a 7212 * concurrent write against that previous extent map's 7213 * range and this range started (we unlock the ranges 7214 * in the io tree only when the bios complete and 7215 * buffered writes always lock pages before attempting 7216 * to lock range in the io tree). 7217 */ 7218 if (writing || 7219 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7220 btrfs_start_ordered_extent(ordered); 7221 else 7222 ret = nowait ? -EAGAIN : -ENOTBLK; 7223 btrfs_put_ordered_extent(ordered); 7224 } else { 7225 /* 7226 * We could trigger writeback for this range (and wait 7227 * for it to complete) and then invalidate the pages for 7228 * this range (through invalidate_inode_pages2_range()), 7229 * but that can lead us to a deadlock with a concurrent 7230 * call to readahead (a buffered read or a defrag call 7231 * triggered a readahead) on a page lock due to an 7232 * ordered dio extent we created before but did not have 7233 * yet a corresponding bio submitted (whence it can not 7234 * complete), which makes readahead wait for that 7235 * ordered extent to complete while holding a lock on 7236 * that page. 7237 */ 7238 ret = nowait ? -EAGAIN : -ENOTBLK; 7239 } 7240 7241 if (ret) 7242 break; 7243 7244 cond_resched(); 7245 } 7246 7247 return ret; 7248 } 7249 7250 /* The callers of this must take lock_extent() */ 7251 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7252 u64 len, u64 orig_start, u64 block_start, 7253 u64 block_len, u64 orig_block_len, 7254 u64 ram_bytes, int compress_type, 7255 int type) 7256 { 7257 struct extent_map *em; 7258 int ret; 7259 7260 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7261 type == BTRFS_ORDERED_COMPRESSED || 7262 type == BTRFS_ORDERED_NOCOW || 7263 type == BTRFS_ORDERED_REGULAR); 7264 7265 em = alloc_extent_map(); 7266 if (!em) 7267 return ERR_PTR(-ENOMEM); 7268 7269 em->start = start; 7270 em->orig_start = orig_start; 7271 em->len = len; 7272 em->block_len = block_len; 7273 em->block_start = block_start; 7274 em->orig_block_len = orig_block_len; 7275 em->ram_bytes = ram_bytes; 7276 em->generation = -1; 7277 em->flags |= EXTENT_FLAG_PINNED; 7278 if (type == BTRFS_ORDERED_PREALLOC) 7279 em->flags |= EXTENT_FLAG_FILLING; 7280 else if (type == BTRFS_ORDERED_COMPRESSED) 7281 extent_map_set_compression(em, compress_type); 7282 7283 ret = btrfs_replace_extent_map_range(inode, em, true); 7284 if (ret) { 7285 free_extent_map(em); 7286 return ERR_PTR(ret); 7287 } 7288 7289 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7290 return em; 7291 } 7292 7293 7294 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7295 struct inode *inode, 7296 struct btrfs_dio_data *dio_data, 7297 u64 start, u64 *lenp, 7298 unsigned int iomap_flags) 7299 { 7300 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7301 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7302 struct extent_map *em = *map; 7303 int type; 7304 u64 block_start, orig_start, orig_block_len, ram_bytes; 7305 struct btrfs_block_group *bg; 7306 bool can_nocow = false; 7307 bool space_reserved = false; 7308 u64 len = *lenp; 7309 u64 prev_len; 7310 int ret = 0; 7311 7312 /* 7313 * We don't allocate a new extent in the following cases 7314 * 7315 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7316 * existing extent. 7317 * 2) The extent is marked as PREALLOC. We're good to go here and can 7318 * just use the extent. 7319 * 7320 */ 7321 if ((em->flags & EXTENT_FLAG_PREALLOC) || 7322 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7323 em->block_start != EXTENT_MAP_HOLE)) { 7324 if (em->flags & EXTENT_FLAG_PREALLOC) 7325 type = BTRFS_ORDERED_PREALLOC; 7326 else 7327 type = BTRFS_ORDERED_NOCOW; 7328 len = min(len, em->len - (start - em->start)); 7329 block_start = em->block_start + (start - em->start); 7330 7331 if (can_nocow_extent(inode, start, &len, &orig_start, 7332 &orig_block_len, &ram_bytes, false, false) == 1) { 7333 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7334 if (bg) 7335 can_nocow = true; 7336 } 7337 } 7338 7339 prev_len = len; 7340 if (can_nocow) { 7341 struct extent_map *em2; 7342 7343 /* We can NOCOW, so only need to reserve metadata space. */ 7344 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7345 nowait); 7346 if (ret < 0) { 7347 /* Our caller expects us to free the input extent map. */ 7348 free_extent_map(em); 7349 *map = NULL; 7350 btrfs_dec_nocow_writers(bg); 7351 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7352 ret = -EAGAIN; 7353 goto out; 7354 } 7355 space_reserved = true; 7356 7357 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7358 orig_start, block_start, 7359 len, orig_block_len, 7360 ram_bytes, type); 7361 btrfs_dec_nocow_writers(bg); 7362 if (type == BTRFS_ORDERED_PREALLOC) { 7363 free_extent_map(em); 7364 *map = em2; 7365 em = em2; 7366 } 7367 7368 if (IS_ERR(em2)) { 7369 ret = PTR_ERR(em2); 7370 goto out; 7371 } 7372 7373 dio_data->nocow_done = true; 7374 } else { 7375 /* Our caller expects us to free the input extent map. */ 7376 free_extent_map(em); 7377 *map = NULL; 7378 7379 if (nowait) { 7380 ret = -EAGAIN; 7381 goto out; 7382 } 7383 7384 /* 7385 * If we could not allocate data space before locking the file 7386 * range and we can't do a NOCOW write, then we have to fail. 7387 */ 7388 if (!dio_data->data_space_reserved) { 7389 ret = -ENOSPC; 7390 goto out; 7391 } 7392 7393 /* 7394 * We have to COW and we have already reserved data space before, 7395 * so now we reserve only metadata. 7396 */ 7397 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7398 false); 7399 if (ret < 0) 7400 goto out; 7401 space_reserved = true; 7402 7403 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7404 if (IS_ERR(em)) { 7405 ret = PTR_ERR(em); 7406 goto out; 7407 } 7408 *map = em; 7409 len = min(len, em->len - (start - em->start)); 7410 if (len < prev_len) 7411 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7412 prev_len - len, true); 7413 } 7414 7415 /* 7416 * We have created our ordered extent, so we can now release our reservation 7417 * for an outstanding extent. 7418 */ 7419 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7420 7421 /* 7422 * Need to update the i_size under the extent lock so buffered 7423 * readers will get the updated i_size when we unlock. 7424 */ 7425 if (start + len > i_size_read(inode)) 7426 i_size_write(inode, start + len); 7427 out: 7428 if (ret && space_reserved) { 7429 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7430 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7431 } 7432 *lenp = len; 7433 return ret; 7434 } 7435 7436 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7437 loff_t length, unsigned int flags, struct iomap *iomap, 7438 struct iomap *srcmap) 7439 { 7440 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7442 struct extent_map *em; 7443 struct extent_state *cached_state = NULL; 7444 struct btrfs_dio_data *dio_data = iter->private; 7445 u64 lockstart, lockend; 7446 const bool write = !!(flags & IOMAP_WRITE); 7447 int ret = 0; 7448 u64 len = length; 7449 const u64 data_alloc_len = length; 7450 bool unlock_extents = false; 7451 7452 /* 7453 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7454 * we're NOWAIT we may submit a bio for a partial range and return 7455 * EIOCBQUEUED, which would result in an errant short read. 7456 * 7457 * The best way to handle this would be to allow for partial completions 7458 * of iocb's, so we could submit the partial bio, return and fault in 7459 * the rest of the pages, and then submit the io for the rest of the 7460 * range. However we don't have that currently, so simply return 7461 * -EAGAIN at this point so that the normal path is used. 7462 */ 7463 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7464 return -EAGAIN; 7465 7466 /* 7467 * Cap the size of reads to that usually seen in buffered I/O as we need 7468 * to allocate a contiguous array for the checksums. 7469 */ 7470 if (!write) 7471 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7472 7473 lockstart = start; 7474 lockend = start + len - 1; 7475 7476 /* 7477 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7478 * enough if we've written compressed pages to this area, so we need to 7479 * flush the dirty pages again to make absolutely sure that any 7480 * outstanding dirty pages are on disk - the first flush only starts 7481 * compression on the data, while keeping the pages locked, so by the 7482 * time the second flush returns we know bios for the compressed pages 7483 * were submitted and finished, and the pages no longer under writeback. 7484 * 7485 * If we have a NOWAIT request and we have any pages in the range that 7486 * are locked, likely due to compression still in progress, we don't want 7487 * to block on page locks. We also don't want to block on pages marked as 7488 * dirty or under writeback (same as for the non-compression case). 7489 * iomap_dio_rw() did the same check, but after that and before we got 7490 * here, mmap'ed writes may have happened or buffered reads started 7491 * (readpage() and readahead(), which lock pages), as we haven't locked 7492 * the file range yet. 7493 */ 7494 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7495 &BTRFS_I(inode)->runtime_flags)) { 7496 if (flags & IOMAP_NOWAIT) { 7497 if (filemap_range_needs_writeback(inode->i_mapping, 7498 lockstart, lockend)) 7499 return -EAGAIN; 7500 } else { 7501 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7502 start + length - 1); 7503 if (ret) 7504 return ret; 7505 } 7506 } 7507 7508 memset(dio_data, 0, sizeof(*dio_data)); 7509 7510 /* 7511 * We always try to allocate data space and must do it before locking 7512 * the file range, to avoid deadlocks with concurrent writes to the same 7513 * range if the range has several extents and the writes don't expand the 7514 * current i_size (the inode lock is taken in shared mode). If we fail to 7515 * allocate data space here we continue and later, after locking the 7516 * file range, we fail with ENOSPC only if we figure out we can not do a 7517 * NOCOW write. 7518 */ 7519 if (write && !(flags & IOMAP_NOWAIT)) { 7520 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7521 &dio_data->data_reserved, 7522 start, data_alloc_len, false); 7523 if (!ret) 7524 dio_data->data_space_reserved = true; 7525 else if (ret && !(BTRFS_I(inode)->flags & 7526 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7527 goto err; 7528 } 7529 7530 /* 7531 * If this errors out it's because we couldn't invalidate pagecache for 7532 * this range and we need to fallback to buffered IO, or we are doing a 7533 * NOWAIT read/write and we need to block. 7534 */ 7535 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7536 if (ret < 0) 7537 goto err; 7538 7539 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7540 if (IS_ERR(em)) { 7541 ret = PTR_ERR(em); 7542 goto unlock_err; 7543 } 7544 7545 /* 7546 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7547 * io. INLINE is special, and we could probably kludge it in here, but 7548 * it's still buffered so for safety lets just fall back to the generic 7549 * buffered path. 7550 * 7551 * For COMPRESSED we _have_ to read the entire extent in so we can 7552 * decompress it, so there will be buffering required no matter what we 7553 * do, so go ahead and fallback to buffered. 7554 * 7555 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7556 * to buffered IO. Don't blame me, this is the price we pay for using 7557 * the generic code. 7558 */ 7559 if (extent_map_is_compressed(em) || 7560 em->block_start == EXTENT_MAP_INLINE) { 7561 free_extent_map(em); 7562 /* 7563 * If we are in a NOWAIT context, return -EAGAIN in order to 7564 * fallback to buffered IO. This is not only because we can 7565 * block with buffered IO (no support for NOWAIT semantics at 7566 * the moment) but also to avoid returning short reads to user 7567 * space - this happens if we were able to read some data from 7568 * previous non-compressed extents and then when we fallback to 7569 * buffered IO, at btrfs_file_read_iter() by calling 7570 * filemap_read(), we fail to fault in pages for the read buffer, 7571 * in which case filemap_read() returns a short read (the number 7572 * of bytes previously read is > 0, so it does not return -EFAULT). 7573 */ 7574 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7575 goto unlock_err; 7576 } 7577 7578 len = min(len, em->len - (start - em->start)); 7579 7580 /* 7581 * If we have a NOWAIT request and the range contains multiple extents 7582 * (or a mix of extents and holes), then we return -EAGAIN to make the 7583 * caller fallback to a context where it can do a blocking (without 7584 * NOWAIT) request. This way we avoid doing partial IO and returning 7585 * success to the caller, which is not optimal for writes and for reads 7586 * it can result in unexpected behaviour for an application. 7587 * 7588 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7589 * iomap_dio_rw(), we can end up returning less data then what the caller 7590 * asked for, resulting in an unexpected, and incorrect, short read. 7591 * That is, the caller asked to read N bytes and we return less than that, 7592 * which is wrong unless we are crossing EOF. This happens if we get a 7593 * page fault error when trying to fault in pages for the buffer that is 7594 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7595 * have previously submitted bios for other extents in the range, in 7596 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7597 * those bios have completed by the time we get the page fault error, 7598 * which we return back to our caller - we should only return EIOCBQUEUED 7599 * after we have submitted bios for all the extents in the range. 7600 */ 7601 if ((flags & IOMAP_NOWAIT) && len < length) { 7602 free_extent_map(em); 7603 ret = -EAGAIN; 7604 goto unlock_err; 7605 } 7606 7607 if (write) { 7608 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7609 start, &len, flags); 7610 if (ret < 0) 7611 goto unlock_err; 7612 unlock_extents = true; 7613 /* Recalc len in case the new em is smaller than requested */ 7614 len = min(len, em->len - (start - em->start)); 7615 if (dio_data->data_space_reserved) { 7616 u64 release_offset; 7617 u64 release_len = 0; 7618 7619 if (dio_data->nocow_done) { 7620 release_offset = start; 7621 release_len = data_alloc_len; 7622 } else if (len < data_alloc_len) { 7623 release_offset = start + len; 7624 release_len = data_alloc_len - len; 7625 } 7626 7627 if (release_len > 0) 7628 btrfs_free_reserved_data_space(BTRFS_I(inode), 7629 dio_data->data_reserved, 7630 release_offset, 7631 release_len); 7632 } 7633 } else { 7634 /* 7635 * We need to unlock only the end area that we aren't using. 7636 * The rest is going to be unlocked by the endio routine. 7637 */ 7638 lockstart = start + len; 7639 if (lockstart < lockend) 7640 unlock_extents = true; 7641 } 7642 7643 if (unlock_extents) 7644 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7645 &cached_state); 7646 else 7647 free_extent_state(cached_state); 7648 7649 /* 7650 * Translate extent map information to iomap. 7651 * We trim the extents (and move the addr) even though iomap code does 7652 * that, since we have locked only the parts we are performing I/O in. 7653 */ 7654 if ((em->block_start == EXTENT_MAP_HOLE) || 7655 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) { 7656 iomap->addr = IOMAP_NULL_ADDR; 7657 iomap->type = IOMAP_HOLE; 7658 } else { 7659 iomap->addr = em->block_start + (start - em->start); 7660 iomap->type = IOMAP_MAPPED; 7661 } 7662 iomap->offset = start; 7663 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7664 iomap->length = len; 7665 free_extent_map(em); 7666 7667 return 0; 7668 7669 unlock_err: 7670 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7671 &cached_state); 7672 err: 7673 if (dio_data->data_space_reserved) { 7674 btrfs_free_reserved_data_space(BTRFS_I(inode), 7675 dio_data->data_reserved, 7676 start, data_alloc_len); 7677 extent_changeset_free(dio_data->data_reserved); 7678 } 7679 7680 return ret; 7681 } 7682 7683 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7684 ssize_t written, unsigned int flags, struct iomap *iomap) 7685 { 7686 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7687 struct btrfs_dio_data *dio_data = iter->private; 7688 size_t submitted = dio_data->submitted; 7689 const bool write = !!(flags & IOMAP_WRITE); 7690 int ret = 0; 7691 7692 if (!write && (iomap->type == IOMAP_HOLE)) { 7693 /* If reading from a hole, unlock and return */ 7694 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7695 NULL); 7696 return 0; 7697 } 7698 7699 if (submitted < length) { 7700 pos += submitted; 7701 length -= submitted; 7702 if (write) 7703 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7704 pos, length, false); 7705 else 7706 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7707 pos + length - 1, NULL); 7708 ret = -ENOTBLK; 7709 } 7710 if (write) { 7711 btrfs_put_ordered_extent(dio_data->ordered); 7712 dio_data->ordered = NULL; 7713 } 7714 7715 if (write) 7716 extent_changeset_free(dio_data->data_reserved); 7717 return ret; 7718 } 7719 7720 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7721 { 7722 struct btrfs_dio_private *dip = 7723 container_of(bbio, struct btrfs_dio_private, bbio); 7724 struct btrfs_inode *inode = bbio->inode; 7725 struct bio *bio = &bbio->bio; 7726 7727 if (bio->bi_status) { 7728 btrfs_warn(inode->root->fs_info, 7729 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7730 btrfs_ino(inode), bio->bi_opf, 7731 dip->file_offset, dip->bytes, bio->bi_status); 7732 } 7733 7734 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7735 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7736 dip->file_offset, dip->bytes, 7737 !bio->bi_status); 7738 } else { 7739 unlock_extent(&inode->io_tree, dip->file_offset, 7740 dip->file_offset + dip->bytes - 1, NULL); 7741 } 7742 7743 bbio->bio.bi_private = bbio->private; 7744 iomap_dio_bio_end_io(bio); 7745 } 7746 7747 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7748 loff_t file_offset) 7749 { 7750 struct btrfs_bio *bbio = btrfs_bio(bio); 7751 struct btrfs_dio_private *dip = 7752 container_of(bbio, struct btrfs_dio_private, bbio); 7753 struct btrfs_dio_data *dio_data = iter->private; 7754 7755 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7756 btrfs_dio_end_io, bio->bi_private); 7757 bbio->inode = BTRFS_I(iter->inode); 7758 bbio->file_offset = file_offset; 7759 7760 dip->file_offset = file_offset; 7761 dip->bytes = bio->bi_iter.bi_size; 7762 7763 dio_data->submitted += bio->bi_iter.bi_size; 7764 7765 /* 7766 * Check if we are doing a partial write. If we are, we need to split 7767 * the ordered extent to match the submitted bio. Hang on to the 7768 * remaining unfinishable ordered_extent in dio_data so that it can be 7769 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7770 * remaining pages is blocked on the outstanding ordered extent. 7771 */ 7772 if (iter->flags & IOMAP_WRITE) { 7773 int ret; 7774 7775 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7776 if (ret) { 7777 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7778 file_offset, dip->bytes, 7779 !ret); 7780 bio->bi_status = errno_to_blk_status(ret); 7781 iomap_dio_bio_end_io(bio); 7782 return; 7783 } 7784 } 7785 7786 btrfs_submit_bio(bbio, 0); 7787 } 7788 7789 static const struct iomap_ops btrfs_dio_iomap_ops = { 7790 .iomap_begin = btrfs_dio_iomap_begin, 7791 .iomap_end = btrfs_dio_iomap_end, 7792 }; 7793 7794 static const struct iomap_dio_ops btrfs_dio_ops = { 7795 .submit_io = btrfs_dio_submit_io, 7796 .bio_set = &btrfs_dio_bioset, 7797 }; 7798 7799 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7800 { 7801 struct btrfs_dio_data data = { 0 }; 7802 7803 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7804 IOMAP_DIO_PARTIAL, &data, done_before); 7805 } 7806 7807 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7808 size_t done_before) 7809 { 7810 struct btrfs_dio_data data = { 0 }; 7811 7812 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7813 IOMAP_DIO_PARTIAL, &data, done_before); 7814 } 7815 7816 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7817 u64 start, u64 len) 7818 { 7819 int ret; 7820 7821 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7822 if (ret) 7823 return ret; 7824 7825 /* 7826 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7827 * file range (0 to LLONG_MAX), but that is not enough if we have 7828 * compression enabled. The first filemap_fdatawrite_range() only kicks 7829 * in the compression of data (in an async thread) and will return 7830 * before the compression is done and writeback is started. A second 7831 * filemap_fdatawrite_range() is needed to wait for the compression to 7832 * complete and writeback to start. We also need to wait for ordered 7833 * extents to complete, because our fiemap implementation uses mainly 7834 * file extent items to list the extents, searching for extent maps 7835 * only for file ranges with holes or prealloc extents to figure out 7836 * if we have delalloc in those ranges. 7837 */ 7838 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7839 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7840 if (ret) 7841 return ret; 7842 } 7843 7844 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 7845 } 7846 7847 static int btrfs_writepages(struct address_space *mapping, 7848 struct writeback_control *wbc) 7849 { 7850 return extent_writepages(mapping, wbc); 7851 } 7852 7853 static void btrfs_readahead(struct readahead_control *rac) 7854 { 7855 extent_readahead(rac); 7856 } 7857 7858 /* 7859 * For release_folio() and invalidate_folio() we have a race window where 7860 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7861 * If we continue to release/invalidate the page, we could cause use-after-free 7862 * for subpage spinlock. So this function is to spin and wait for subpage 7863 * spinlock. 7864 */ 7865 static void wait_subpage_spinlock(struct page *page) 7866 { 7867 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7868 struct folio *folio = page_folio(page); 7869 struct btrfs_subpage *subpage; 7870 7871 if (!btrfs_is_subpage(fs_info, page->mapping)) 7872 return; 7873 7874 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7875 subpage = folio_get_private(folio); 7876 7877 /* 7878 * This may look insane as we just acquire the spinlock and release it, 7879 * without doing anything. But we just want to make sure no one is 7880 * still holding the subpage spinlock. 7881 * And since the page is not dirty nor writeback, and we have page 7882 * locked, the only possible way to hold a spinlock is from the endio 7883 * function to clear page writeback. 7884 * 7885 * Here we just acquire the spinlock so that all existing callers 7886 * should exit and we're safe to release/invalidate the page. 7887 */ 7888 spin_lock_irq(&subpage->lock); 7889 spin_unlock_irq(&subpage->lock); 7890 } 7891 7892 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7893 { 7894 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7895 7896 if (ret == 1) { 7897 wait_subpage_spinlock(&folio->page); 7898 clear_page_extent_mapped(&folio->page); 7899 } 7900 return ret; 7901 } 7902 7903 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7904 { 7905 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7906 return false; 7907 return __btrfs_release_folio(folio, gfp_flags); 7908 } 7909 7910 #ifdef CONFIG_MIGRATION 7911 static int btrfs_migrate_folio(struct address_space *mapping, 7912 struct folio *dst, struct folio *src, 7913 enum migrate_mode mode) 7914 { 7915 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7916 7917 if (ret != MIGRATEPAGE_SUCCESS) 7918 return ret; 7919 7920 if (folio_test_ordered(src)) { 7921 folio_clear_ordered(src); 7922 folio_set_ordered(dst); 7923 } 7924 7925 return MIGRATEPAGE_SUCCESS; 7926 } 7927 #else 7928 #define btrfs_migrate_folio NULL 7929 #endif 7930 7931 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7932 size_t length) 7933 { 7934 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 7935 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7936 struct extent_io_tree *tree = &inode->io_tree; 7937 struct extent_state *cached_state = NULL; 7938 u64 page_start = folio_pos(folio); 7939 u64 page_end = page_start + folio_size(folio) - 1; 7940 u64 cur; 7941 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7942 7943 /* 7944 * We have folio locked so no new ordered extent can be created on this 7945 * page, nor bio can be submitted for this folio. 7946 * 7947 * But already submitted bio can still be finished on this folio. 7948 * Furthermore, endio function won't skip folio which has Ordered 7949 * (Private2) already cleared, so it's possible for endio and 7950 * invalidate_folio to do the same ordered extent accounting twice 7951 * on one folio. 7952 * 7953 * So here we wait for any submitted bios to finish, so that we won't 7954 * do double ordered extent accounting on the same folio. 7955 */ 7956 folio_wait_writeback(folio); 7957 wait_subpage_spinlock(&folio->page); 7958 7959 /* 7960 * For subpage case, we have call sites like 7961 * btrfs_punch_hole_lock_range() which passes range not aligned to 7962 * sectorsize. 7963 * If the range doesn't cover the full folio, we don't need to and 7964 * shouldn't clear page extent mapped, as folio->private can still 7965 * record subpage dirty bits for other part of the range. 7966 * 7967 * For cases that invalidate the full folio even the range doesn't 7968 * cover the full folio, like invalidating the last folio, we're 7969 * still safe to wait for ordered extent to finish. 7970 */ 7971 if (!(offset == 0 && length == folio_size(folio))) { 7972 btrfs_release_folio(folio, GFP_NOFS); 7973 return; 7974 } 7975 7976 if (!inode_evicting) 7977 lock_extent(tree, page_start, page_end, &cached_state); 7978 7979 cur = page_start; 7980 while (cur < page_end) { 7981 struct btrfs_ordered_extent *ordered; 7982 u64 range_end; 7983 u32 range_len; 7984 u32 extra_flags = 0; 7985 7986 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7987 page_end + 1 - cur); 7988 if (!ordered) { 7989 range_end = page_end; 7990 /* 7991 * No ordered extent covering this range, we are safe 7992 * to delete all extent states in the range. 7993 */ 7994 extra_flags = EXTENT_CLEAR_ALL_BITS; 7995 goto next; 7996 } 7997 if (ordered->file_offset > cur) { 7998 /* 7999 * There is a range between [cur, oe->file_offset) not 8000 * covered by any ordered extent. 8001 * We are safe to delete all extent states, and handle 8002 * the ordered extent in the next iteration. 8003 */ 8004 range_end = ordered->file_offset - 1; 8005 extra_flags = EXTENT_CLEAR_ALL_BITS; 8006 goto next; 8007 } 8008 8009 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8010 page_end); 8011 ASSERT(range_end + 1 - cur < U32_MAX); 8012 range_len = range_end + 1 - cur; 8013 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 8014 /* 8015 * If Ordered (Private2) is cleared, it means endio has 8016 * already been executed for the range. 8017 * We can't delete the extent states as 8018 * btrfs_finish_ordered_io() may still use some of them. 8019 */ 8020 goto next; 8021 } 8022 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 8023 8024 /* 8025 * IO on this page will never be started, so we need to account 8026 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8027 * here, must leave that up for the ordered extent completion. 8028 * 8029 * This will also unlock the range for incoming 8030 * btrfs_finish_ordered_io(). 8031 */ 8032 if (!inode_evicting) 8033 clear_extent_bit(tree, cur, range_end, 8034 EXTENT_DELALLOC | 8035 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8036 EXTENT_DEFRAG, &cached_state); 8037 8038 spin_lock_irq(&inode->ordered_tree_lock); 8039 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8040 ordered->truncated_len = min(ordered->truncated_len, 8041 cur - ordered->file_offset); 8042 spin_unlock_irq(&inode->ordered_tree_lock); 8043 8044 /* 8045 * If the ordered extent has finished, we're safe to delete all 8046 * the extent states of the range, otherwise 8047 * btrfs_finish_ordered_io() will get executed by endio for 8048 * other pages, so we can't delete extent states. 8049 */ 8050 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8051 cur, range_end + 1 - cur)) { 8052 btrfs_finish_ordered_io(ordered); 8053 /* 8054 * The ordered extent has finished, now we're again 8055 * safe to delete all extent states of the range. 8056 */ 8057 extra_flags = EXTENT_CLEAR_ALL_BITS; 8058 } 8059 next: 8060 if (ordered) 8061 btrfs_put_ordered_extent(ordered); 8062 /* 8063 * Qgroup reserved space handler 8064 * Sector(s) here will be either: 8065 * 8066 * 1) Already written to disk or bio already finished 8067 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8068 * Qgroup will be handled by its qgroup_record then. 8069 * btrfs_qgroup_free_data() call will do nothing here. 8070 * 8071 * 2) Not written to disk yet 8072 * Then btrfs_qgroup_free_data() call will clear the 8073 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8074 * reserved data space. 8075 * Since the IO will never happen for this page. 8076 */ 8077 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 8078 if (!inode_evicting) { 8079 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8080 EXTENT_DELALLOC | EXTENT_UPTODATE | 8081 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8082 extra_flags, &cached_state); 8083 } 8084 cur = range_end + 1; 8085 } 8086 /* 8087 * We have iterated through all ordered extents of the page, the page 8088 * should not have Ordered (Private2) anymore, or the above iteration 8089 * did something wrong. 8090 */ 8091 ASSERT(!folio_test_ordered(folio)); 8092 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 8093 if (!inode_evicting) 8094 __btrfs_release_folio(folio, GFP_NOFS); 8095 clear_page_extent_mapped(&folio->page); 8096 } 8097 8098 /* 8099 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8100 * called from a page fault handler when a page is first dirtied. Hence we must 8101 * be careful to check for EOF conditions here. We set the page up correctly 8102 * for a written page which means we get ENOSPC checking when writing into 8103 * holes and correct delalloc and unwritten extent mapping on filesystems that 8104 * support these features. 8105 * 8106 * We are not allowed to take the i_mutex here so we have to play games to 8107 * protect against truncate races as the page could now be beyond EOF. Because 8108 * truncate_setsize() writes the inode size before removing pages, once we have 8109 * the page lock we can determine safely if the page is beyond EOF. If it is not 8110 * beyond EOF, then the page is guaranteed safe against truncation until we 8111 * unlock the page. 8112 */ 8113 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8114 { 8115 struct page *page = vmf->page; 8116 struct folio *folio = page_folio(page); 8117 struct inode *inode = file_inode(vmf->vma->vm_file); 8118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8119 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8120 struct btrfs_ordered_extent *ordered; 8121 struct extent_state *cached_state = NULL; 8122 struct extent_changeset *data_reserved = NULL; 8123 unsigned long zero_start; 8124 loff_t size; 8125 vm_fault_t ret; 8126 int ret2; 8127 int reserved = 0; 8128 u64 reserved_space; 8129 u64 page_start; 8130 u64 page_end; 8131 u64 end; 8132 8133 ASSERT(folio_order(folio) == 0); 8134 8135 reserved_space = PAGE_SIZE; 8136 8137 sb_start_pagefault(inode->i_sb); 8138 page_start = page_offset(page); 8139 page_end = page_start + PAGE_SIZE - 1; 8140 end = page_end; 8141 8142 /* 8143 * Reserving delalloc space after obtaining the page lock can lead to 8144 * deadlock. For example, if a dirty page is locked by this function 8145 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8146 * dirty page write out, then the btrfs_writepages() function could 8147 * end up waiting indefinitely to get a lock on the page currently 8148 * being processed by btrfs_page_mkwrite() function. 8149 */ 8150 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8151 page_start, reserved_space); 8152 if (!ret2) { 8153 ret2 = file_update_time(vmf->vma->vm_file); 8154 reserved = 1; 8155 } 8156 if (ret2) { 8157 ret = vmf_error(ret2); 8158 if (reserved) 8159 goto out; 8160 goto out_noreserve; 8161 } 8162 8163 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8164 again: 8165 down_read(&BTRFS_I(inode)->i_mmap_lock); 8166 lock_page(page); 8167 size = i_size_read(inode); 8168 8169 if ((page->mapping != inode->i_mapping) || 8170 (page_start >= size)) { 8171 /* page got truncated out from underneath us */ 8172 goto out_unlock; 8173 } 8174 wait_on_page_writeback(page); 8175 8176 lock_extent(io_tree, page_start, page_end, &cached_state); 8177 ret2 = set_page_extent_mapped(page); 8178 if (ret2 < 0) { 8179 ret = vmf_error(ret2); 8180 unlock_extent(io_tree, page_start, page_end, &cached_state); 8181 goto out_unlock; 8182 } 8183 8184 /* 8185 * we can't set the delalloc bits if there are pending ordered 8186 * extents. Drop our locks and wait for them to finish 8187 */ 8188 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8189 PAGE_SIZE); 8190 if (ordered) { 8191 unlock_extent(io_tree, page_start, page_end, &cached_state); 8192 unlock_page(page); 8193 up_read(&BTRFS_I(inode)->i_mmap_lock); 8194 btrfs_start_ordered_extent(ordered); 8195 btrfs_put_ordered_extent(ordered); 8196 goto again; 8197 } 8198 8199 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8200 reserved_space = round_up(size - page_start, 8201 fs_info->sectorsize); 8202 if (reserved_space < PAGE_SIZE) { 8203 end = page_start + reserved_space - 1; 8204 btrfs_delalloc_release_space(BTRFS_I(inode), 8205 data_reserved, page_start, 8206 PAGE_SIZE - reserved_space, true); 8207 } 8208 } 8209 8210 /* 8211 * page_mkwrite gets called when the page is firstly dirtied after it's 8212 * faulted in, but write(2) could also dirty a page and set delalloc 8213 * bits, thus in this case for space account reason, we still need to 8214 * clear any delalloc bits within this page range since we have to 8215 * reserve data&meta space before lock_page() (see above comments). 8216 */ 8217 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8218 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8219 EXTENT_DEFRAG, &cached_state); 8220 8221 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8222 &cached_state); 8223 if (ret2) { 8224 unlock_extent(io_tree, page_start, page_end, &cached_state); 8225 ret = VM_FAULT_SIGBUS; 8226 goto out_unlock; 8227 } 8228 8229 /* page is wholly or partially inside EOF */ 8230 if (page_start + PAGE_SIZE > size) 8231 zero_start = offset_in_page(size); 8232 else 8233 zero_start = PAGE_SIZE; 8234 8235 if (zero_start != PAGE_SIZE) 8236 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8237 8238 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 8239 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 8240 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 8241 8242 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8243 8244 unlock_extent(io_tree, page_start, page_end, &cached_state); 8245 up_read(&BTRFS_I(inode)->i_mmap_lock); 8246 8247 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8248 sb_end_pagefault(inode->i_sb); 8249 extent_changeset_free(data_reserved); 8250 return VM_FAULT_LOCKED; 8251 8252 out_unlock: 8253 unlock_page(page); 8254 up_read(&BTRFS_I(inode)->i_mmap_lock); 8255 out: 8256 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8257 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8258 reserved_space, (ret != 0)); 8259 out_noreserve: 8260 sb_end_pagefault(inode->i_sb); 8261 extent_changeset_free(data_reserved); 8262 return ret; 8263 } 8264 8265 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8266 { 8267 struct btrfs_truncate_control control = { 8268 .inode = inode, 8269 .ino = btrfs_ino(inode), 8270 .min_type = BTRFS_EXTENT_DATA_KEY, 8271 .clear_extent_range = true, 8272 }; 8273 struct btrfs_root *root = inode->root; 8274 struct btrfs_fs_info *fs_info = root->fs_info; 8275 struct btrfs_block_rsv *rsv; 8276 int ret; 8277 struct btrfs_trans_handle *trans; 8278 u64 mask = fs_info->sectorsize - 1; 8279 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8280 8281 if (!skip_writeback) { 8282 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8283 inode->vfs_inode.i_size & (~mask), 8284 (u64)-1); 8285 if (ret) 8286 return ret; 8287 } 8288 8289 /* 8290 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8291 * things going on here: 8292 * 8293 * 1) We need to reserve space to update our inode. 8294 * 8295 * 2) We need to have something to cache all the space that is going to 8296 * be free'd up by the truncate operation, but also have some slack 8297 * space reserved in case it uses space during the truncate (thank you 8298 * very much snapshotting). 8299 * 8300 * And we need these to be separate. The fact is we can use a lot of 8301 * space doing the truncate, and we have no earthly idea how much space 8302 * we will use, so we need the truncate reservation to be separate so it 8303 * doesn't end up using space reserved for updating the inode. We also 8304 * need to be able to stop the transaction and start a new one, which 8305 * means we need to be able to update the inode several times, and we 8306 * have no idea of knowing how many times that will be, so we can't just 8307 * reserve 1 item for the entirety of the operation, so that has to be 8308 * done separately as well. 8309 * 8310 * So that leaves us with 8311 * 8312 * 1) rsv - for the truncate reservation, which we will steal from the 8313 * transaction reservation. 8314 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8315 * updating the inode. 8316 */ 8317 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8318 if (!rsv) 8319 return -ENOMEM; 8320 rsv->size = min_size; 8321 rsv->failfast = true; 8322 8323 /* 8324 * 1 for the truncate slack space 8325 * 1 for updating the inode. 8326 */ 8327 trans = btrfs_start_transaction(root, 2); 8328 if (IS_ERR(trans)) { 8329 ret = PTR_ERR(trans); 8330 goto out; 8331 } 8332 8333 /* Migrate the slack space for the truncate to our reserve */ 8334 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8335 min_size, false); 8336 /* 8337 * We have reserved 2 metadata units when we started the transaction and 8338 * min_size matches 1 unit, so this should never fail, but if it does, 8339 * it's not critical we just fail truncation. 8340 */ 8341 if (WARN_ON(ret)) { 8342 btrfs_end_transaction(trans); 8343 goto out; 8344 } 8345 8346 trans->block_rsv = rsv; 8347 8348 while (1) { 8349 struct extent_state *cached_state = NULL; 8350 const u64 new_size = inode->vfs_inode.i_size; 8351 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8352 8353 control.new_size = new_size; 8354 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8355 /* 8356 * We want to drop from the next block forward in case this new 8357 * size is not block aligned since we will be keeping the last 8358 * block of the extent just the way it is. 8359 */ 8360 btrfs_drop_extent_map_range(inode, 8361 ALIGN(new_size, fs_info->sectorsize), 8362 (u64)-1, false); 8363 8364 ret = btrfs_truncate_inode_items(trans, root, &control); 8365 8366 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8367 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8368 8369 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8370 8371 trans->block_rsv = &fs_info->trans_block_rsv; 8372 if (ret != -ENOSPC && ret != -EAGAIN) 8373 break; 8374 8375 ret = btrfs_update_inode(trans, inode); 8376 if (ret) 8377 break; 8378 8379 btrfs_end_transaction(trans); 8380 btrfs_btree_balance_dirty(fs_info); 8381 8382 trans = btrfs_start_transaction(root, 2); 8383 if (IS_ERR(trans)) { 8384 ret = PTR_ERR(trans); 8385 trans = NULL; 8386 break; 8387 } 8388 8389 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8390 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8391 rsv, min_size, false); 8392 /* 8393 * We have reserved 2 metadata units when we started the 8394 * transaction and min_size matches 1 unit, so this should never 8395 * fail, but if it does, it's not critical we just fail truncation. 8396 */ 8397 if (WARN_ON(ret)) 8398 break; 8399 8400 trans->block_rsv = rsv; 8401 } 8402 8403 /* 8404 * We can't call btrfs_truncate_block inside a trans handle as we could 8405 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8406 * know we've truncated everything except the last little bit, and can 8407 * do btrfs_truncate_block and then update the disk_i_size. 8408 */ 8409 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8410 btrfs_end_transaction(trans); 8411 btrfs_btree_balance_dirty(fs_info); 8412 8413 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8414 if (ret) 8415 goto out; 8416 trans = btrfs_start_transaction(root, 1); 8417 if (IS_ERR(trans)) { 8418 ret = PTR_ERR(trans); 8419 goto out; 8420 } 8421 btrfs_inode_safe_disk_i_size_write(inode, 0); 8422 } 8423 8424 if (trans) { 8425 int ret2; 8426 8427 trans->block_rsv = &fs_info->trans_block_rsv; 8428 ret2 = btrfs_update_inode(trans, inode); 8429 if (ret2 && !ret) 8430 ret = ret2; 8431 8432 ret2 = btrfs_end_transaction(trans); 8433 if (ret2 && !ret) 8434 ret = ret2; 8435 btrfs_btree_balance_dirty(fs_info); 8436 } 8437 out: 8438 btrfs_free_block_rsv(fs_info, rsv); 8439 /* 8440 * So if we truncate and then write and fsync we normally would just 8441 * write the extents that changed, which is a problem if we need to 8442 * first truncate that entire inode. So set this flag so we write out 8443 * all of the extents in the inode to the sync log so we're completely 8444 * safe. 8445 * 8446 * If no extents were dropped or trimmed we don't need to force the next 8447 * fsync to truncate all the inode's items from the log and re-log them 8448 * all. This means the truncate operation did not change the file size, 8449 * or changed it to a smaller size but there was only an implicit hole 8450 * between the old i_size and the new i_size, and there were no prealloc 8451 * extents beyond i_size to drop. 8452 */ 8453 if (control.extents_found > 0) 8454 btrfs_set_inode_full_sync(inode); 8455 8456 return ret; 8457 } 8458 8459 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8460 struct inode *dir) 8461 { 8462 struct inode *inode; 8463 8464 inode = new_inode(dir->i_sb); 8465 if (inode) { 8466 /* 8467 * Subvolumes don't inherit the sgid bit or the parent's gid if 8468 * the parent's sgid bit is set. This is probably a bug. 8469 */ 8470 inode_init_owner(idmap, inode, NULL, 8471 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8472 inode->i_op = &btrfs_dir_inode_operations; 8473 inode->i_fop = &btrfs_dir_file_operations; 8474 } 8475 return inode; 8476 } 8477 8478 struct inode *btrfs_alloc_inode(struct super_block *sb) 8479 { 8480 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8481 struct btrfs_inode *ei; 8482 struct inode *inode; 8483 struct extent_io_tree *file_extent_tree = NULL; 8484 8485 /* Self tests may pass a NULL fs_info. */ 8486 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) { 8487 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 8488 if (!file_extent_tree) 8489 return NULL; 8490 } 8491 8492 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8493 if (!ei) { 8494 kfree(file_extent_tree); 8495 return NULL; 8496 } 8497 8498 ei->root = NULL; 8499 ei->generation = 0; 8500 ei->last_trans = 0; 8501 ei->last_sub_trans = 0; 8502 ei->logged_trans = 0; 8503 ei->delalloc_bytes = 0; 8504 ei->new_delalloc_bytes = 0; 8505 ei->defrag_bytes = 0; 8506 ei->disk_i_size = 0; 8507 ei->flags = 0; 8508 ei->ro_flags = 0; 8509 ei->csum_bytes = 0; 8510 ei->index_cnt = (u64)-1; 8511 ei->dir_index = 0; 8512 ei->last_unlink_trans = 0; 8513 ei->last_reflink_trans = 0; 8514 ei->last_log_commit = 0; 8515 8516 spin_lock_init(&ei->lock); 8517 ei->outstanding_extents = 0; 8518 if (sb->s_magic != BTRFS_TEST_MAGIC) 8519 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8520 BTRFS_BLOCK_RSV_DELALLOC); 8521 ei->runtime_flags = 0; 8522 ei->prop_compress = BTRFS_COMPRESS_NONE; 8523 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8524 8525 ei->delayed_node = NULL; 8526 8527 ei->i_otime_sec = 0; 8528 ei->i_otime_nsec = 0; 8529 8530 inode = &ei->vfs_inode; 8531 extent_map_tree_init(&ei->extent_tree); 8532 8533 /* This io tree sets the valid inode. */ 8534 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8535 ei->io_tree.inode = ei; 8536 8537 ei->file_extent_tree = file_extent_tree; 8538 if (file_extent_tree) { 8539 extent_io_tree_init(fs_info, ei->file_extent_tree, 8540 IO_TREE_INODE_FILE_EXTENT); 8541 /* Lockdep class is set only for the file extent tree. */ 8542 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class); 8543 } 8544 mutex_init(&ei->log_mutex); 8545 spin_lock_init(&ei->ordered_tree_lock); 8546 ei->ordered_tree = RB_ROOT; 8547 ei->ordered_tree_last = NULL; 8548 INIT_LIST_HEAD(&ei->delalloc_inodes); 8549 INIT_LIST_HEAD(&ei->delayed_iput); 8550 RB_CLEAR_NODE(&ei->rb_node); 8551 init_rwsem(&ei->i_mmap_lock); 8552 8553 return inode; 8554 } 8555 8556 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8557 void btrfs_test_destroy_inode(struct inode *inode) 8558 { 8559 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8560 kfree(BTRFS_I(inode)->file_extent_tree); 8561 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8562 } 8563 #endif 8564 8565 void btrfs_free_inode(struct inode *inode) 8566 { 8567 kfree(BTRFS_I(inode)->file_extent_tree); 8568 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8569 } 8570 8571 void btrfs_destroy_inode(struct inode *vfs_inode) 8572 { 8573 struct btrfs_ordered_extent *ordered; 8574 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8575 struct btrfs_root *root = inode->root; 8576 bool freespace_inode; 8577 8578 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8579 WARN_ON(vfs_inode->i_data.nrpages); 8580 WARN_ON(inode->block_rsv.reserved); 8581 WARN_ON(inode->block_rsv.size); 8582 WARN_ON(inode->outstanding_extents); 8583 if (!S_ISDIR(vfs_inode->i_mode)) { 8584 WARN_ON(inode->delalloc_bytes); 8585 WARN_ON(inode->new_delalloc_bytes); 8586 } 8587 WARN_ON(inode->csum_bytes); 8588 WARN_ON(inode->defrag_bytes); 8589 8590 /* 8591 * This can happen where we create an inode, but somebody else also 8592 * created the same inode and we need to destroy the one we already 8593 * created. 8594 */ 8595 if (!root) 8596 return; 8597 8598 /* 8599 * If this is a free space inode do not take the ordered extents lockdep 8600 * map. 8601 */ 8602 freespace_inode = btrfs_is_free_space_inode(inode); 8603 8604 while (1) { 8605 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8606 if (!ordered) 8607 break; 8608 else { 8609 btrfs_err(root->fs_info, 8610 "found ordered extent %llu %llu on inode cleanup", 8611 ordered->file_offset, ordered->num_bytes); 8612 8613 if (!freespace_inode) 8614 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8615 8616 btrfs_remove_ordered_extent(inode, ordered); 8617 btrfs_put_ordered_extent(ordered); 8618 btrfs_put_ordered_extent(ordered); 8619 } 8620 } 8621 btrfs_qgroup_check_reserved_leak(inode); 8622 inode_tree_del(inode); 8623 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8624 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8625 btrfs_put_root(inode->root); 8626 } 8627 8628 int btrfs_drop_inode(struct inode *inode) 8629 { 8630 struct btrfs_root *root = BTRFS_I(inode)->root; 8631 8632 if (root == NULL) 8633 return 1; 8634 8635 /* the snap/subvol tree is on deleting */ 8636 if (btrfs_root_refs(&root->root_item) == 0) 8637 return 1; 8638 else 8639 return generic_drop_inode(inode); 8640 } 8641 8642 static void init_once(void *foo) 8643 { 8644 struct btrfs_inode *ei = foo; 8645 8646 inode_init_once(&ei->vfs_inode); 8647 } 8648 8649 void __cold btrfs_destroy_cachep(void) 8650 { 8651 /* 8652 * Make sure all delayed rcu free inodes are flushed before we 8653 * destroy cache. 8654 */ 8655 rcu_barrier(); 8656 bioset_exit(&btrfs_dio_bioset); 8657 kmem_cache_destroy(btrfs_inode_cachep); 8658 } 8659 8660 int __init btrfs_init_cachep(void) 8661 { 8662 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8663 sizeof(struct btrfs_inode), 0, 8664 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8665 init_once); 8666 if (!btrfs_inode_cachep) 8667 goto fail; 8668 8669 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8670 offsetof(struct btrfs_dio_private, bbio.bio), 8671 BIOSET_NEED_BVECS)) 8672 goto fail; 8673 8674 return 0; 8675 fail: 8676 btrfs_destroy_cachep(); 8677 return -ENOMEM; 8678 } 8679 8680 static int btrfs_getattr(struct mnt_idmap *idmap, 8681 const struct path *path, struct kstat *stat, 8682 u32 request_mask, unsigned int flags) 8683 { 8684 u64 delalloc_bytes; 8685 u64 inode_bytes; 8686 struct inode *inode = d_inode(path->dentry); 8687 u32 blocksize = inode->i_sb->s_blocksize; 8688 u32 bi_flags = BTRFS_I(inode)->flags; 8689 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8690 8691 stat->result_mask |= STATX_BTIME; 8692 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8693 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8694 if (bi_flags & BTRFS_INODE_APPEND) 8695 stat->attributes |= STATX_ATTR_APPEND; 8696 if (bi_flags & BTRFS_INODE_COMPRESS) 8697 stat->attributes |= STATX_ATTR_COMPRESSED; 8698 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8699 stat->attributes |= STATX_ATTR_IMMUTABLE; 8700 if (bi_flags & BTRFS_INODE_NODUMP) 8701 stat->attributes |= STATX_ATTR_NODUMP; 8702 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8703 stat->attributes |= STATX_ATTR_VERITY; 8704 8705 stat->attributes_mask |= (STATX_ATTR_APPEND | 8706 STATX_ATTR_COMPRESSED | 8707 STATX_ATTR_IMMUTABLE | 8708 STATX_ATTR_NODUMP); 8709 8710 generic_fillattr(idmap, request_mask, inode, stat); 8711 stat->dev = BTRFS_I(inode)->root->anon_dev; 8712 8713 spin_lock(&BTRFS_I(inode)->lock); 8714 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8715 inode_bytes = inode_get_bytes(inode); 8716 spin_unlock(&BTRFS_I(inode)->lock); 8717 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8718 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8719 return 0; 8720 } 8721 8722 static int btrfs_rename_exchange(struct inode *old_dir, 8723 struct dentry *old_dentry, 8724 struct inode *new_dir, 8725 struct dentry *new_dentry) 8726 { 8727 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8728 struct btrfs_trans_handle *trans; 8729 unsigned int trans_num_items; 8730 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8731 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8732 struct inode *new_inode = new_dentry->d_inode; 8733 struct inode *old_inode = old_dentry->d_inode; 8734 struct btrfs_rename_ctx old_rename_ctx; 8735 struct btrfs_rename_ctx new_rename_ctx; 8736 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8737 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8738 u64 old_idx = 0; 8739 u64 new_idx = 0; 8740 int ret; 8741 int ret2; 8742 bool need_abort = false; 8743 struct fscrypt_name old_fname, new_fname; 8744 struct fscrypt_str *old_name, *new_name; 8745 8746 /* 8747 * For non-subvolumes allow exchange only within one subvolume, in the 8748 * same inode namespace. Two subvolumes (represented as directory) can 8749 * be exchanged as they're a logical link and have a fixed inode number. 8750 */ 8751 if (root != dest && 8752 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8753 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8754 return -EXDEV; 8755 8756 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8757 if (ret) 8758 return ret; 8759 8760 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8761 if (ret) { 8762 fscrypt_free_filename(&old_fname); 8763 return ret; 8764 } 8765 8766 old_name = &old_fname.disk_name; 8767 new_name = &new_fname.disk_name; 8768 8769 /* close the race window with snapshot create/destroy ioctl */ 8770 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8771 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8772 down_read(&fs_info->subvol_sem); 8773 8774 /* 8775 * For each inode: 8776 * 1 to remove old dir item 8777 * 1 to remove old dir index 8778 * 1 to add new dir item 8779 * 1 to add new dir index 8780 * 1 to update parent inode 8781 * 8782 * If the parents are the same, we only need to account for one 8783 */ 8784 trans_num_items = (old_dir == new_dir ? 9 : 10); 8785 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8786 /* 8787 * 1 to remove old root ref 8788 * 1 to remove old root backref 8789 * 1 to add new root ref 8790 * 1 to add new root backref 8791 */ 8792 trans_num_items += 4; 8793 } else { 8794 /* 8795 * 1 to update inode item 8796 * 1 to remove old inode ref 8797 * 1 to add new inode ref 8798 */ 8799 trans_num_items += 3; 8800 } 8801 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8802 trans_num_items += 4; 8803 else 8804 trans_num_items += 3; 8805 trans = btrfs_start_transaction(root, trans_num_items); 8806 if (IS_ERR(trans)) { 8807 ret = PTR_ERR(trans); 8808 goto out_notrans; 8809 } 8810 8811 if (dest != root) { 8812 ret = btrfs_record_root_in_trans(trans, dest); 8813 if (ret) 8814 goto out_fail; 8815 } 8816 8817 /* 8818 * We need to find a free sequence number both in the source and 8819 * in the destination directory for the exchange. 8820 */ 8821 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8822 if (ret) 8823 goto out_fail; 8824 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8825 if (ret) 8826 goto out_fail; 8827 8828 BTRFS_I(old_inode)->dir_index = 0ULL; 8829 BTRFS_I(new_inode)->dir_index = 0ULL; 8830 8831 /* Reference for the source. */ 8832 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8833 /* force full log commit if subvolume involved. */ 8834 btrfs_set_log_full_commit(trans); 8835 } else { 8836 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8837 btrfs_ino(BTRFS_I(new_dir)), 8838 old_idx); 8839 if (ret) 8840 goto out_fail; 8841 need_abort = true; 8842 } 8843 8844 /* And now for the dest. */ 8845 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8846 /* force full log commit if subvolume involved. */ 8847 btrfs_set_log_full_commit(trans); 8848 } else { 8849 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8850 btrfs_ino(BTRFS_I(old_dir)), 8851 new_idx); 8852 if (ret) { 8853 if (need_abort) 8854 btrfs_abort_transaction(trans, ret); 8855 goto out_fail; 8856 } 8857 } 8858 8859 /* Update inode version and ctime/mtime. */ 8860 inode_inc_iversion(old_dir); 8861 inode_inc_iversion(new_dir); 8862 inode_inc_iversion(old_inode); 8863 inode_inc_iversion(new_inode); 8864 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8865 8866 if (old_dentry->d_parent != new_dentry->d_parent) { 8867 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8868 BTRFS_I(old_inode), true); 8869 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8870 BTRFS_I(new_inode), true); 8871 } 8872 8873 /* src is a subvolume */ 8874 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8875 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8876 } else { /* src is an inode */ 8877 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8878 BTRFS_I(old_dentry->d_inode), 8879 old_name, &old_rename_ctx); 8880 if (!ret) 8881 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8882 } 8883 if (ret) { 8884 btrfs_abort_transaction(trans, ret); 8885 goto out_fail; 8886 } 8887 8888 /* dest is a subvolume */ 8889 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8890 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8891 } else { /* dest is an inode */ 8892 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8893 BTRFS_I(new_dentry->d_inode), 8894 new_name, &new_rename_ctx); 8895 if (!ret) 8896 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8897 } 8898 if (ret) { 8899 btrfs_abort_transaction(trans, ret); 8900 goto out_fail; 8901 } 8902 8903 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8904 new_name, 0, old_idx); 8905 if (ret) { 8906 btrfs_abort_transaction(trans, ret); 8907 goto out_fail; 8908 } 8909 8910 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8911 old_name, 0, new_idx); 8912 if (ret) { 8913 btrfs_abort_transaction(trans, ret); 8914 goto out_fail; 8915 } 8916 8917 if (old_inode->i_nlink == 1) 8918 BTRFS_I(old_inode)->dir_index = old_idx; 8919 if (new_inode->i_nlink == 1) 8920 BTRFS_I(new_inode)->dir_index = new_idx; 8921 8922 /* 8923 * Now pin the logs of the roots. We do it to ensure that no other task 8924 * can sync the logs while we are in progress with the rename, because 8925 * that could result in an inconsistency in case any of the inodes that 8926 * are part of this rename operation were logged before. 8927 */ 8928 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8929 btrfs_pin_log_trans(root); 8930 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8931 btrfs_pin_log_trans(dest); 8932 8933 /* Do the log updates for all inodes. */ 8934 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8935 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8936 old_rename_ctx.index, new_dentry->d_parent); 8937 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8938 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8939 new_rename_ctx.index, old_dentry->d_parent); 8940 8941 /* Now unpin the logs. */ 8942 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8943 btrfs_end_log_trans(root); 8944 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8945 btrfs_end_log_trans(dest); 8946 out_fail: 8947 ret2 = btrfs_end_transaction(trans); 8948 ret = ret ? ret : ret2; 8949 out_notrans: 8950 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8951 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8952 up_read(&fs_info->subvol_sem); 8953 8954 fscrypt_free_filename(&new_fname); 8955 fscrypt_free_filename(&old_fname); 8956 return ret; 8957 } 8958 8959 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8960 struct inode *dir) 8961 { 8962 struct inode *inode; 8963 8964 inode = new_inode(dir->i_sb); 8965 if (inode) { 8966 inode_init_owner(idmap, inode, dir, 8967 S_IFCHR | WHITEOUT_MODE); 8968 inode->i_op = &btrfs_special_inode_operations; 8969 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8970 } 8971 return inode; 8972 } 8973 8974 static int btrfs_rename(struct mnt_idmap *idmap, 8975 struct inode *old_dir, struct dentry *old_dentry, 8976 struct inode *new_dir, struct dentry *new_dentry, 8977 unsigned int flags) 8978 { 8979 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8980 struct btrfs_new_inode_args whiteout_args = { 8981 .dir = old_dir, 8982 .dentry = old_dentry, 8983 }; 8984 struct btrfs_trans_handle *trans; 8985 unsigned int trans_num_items; 8986 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8987 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8988 struct inode *new_inode = d_inode(new_dentry); 8989 struct inode *old_inode = d_inode(old_dentry); 8990 struct btrfs_rename_ctx rename_ctx; 8991 u64 index = 0; 8992 int ret; 8993 int ret2; 8994 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8995 struct fscrypt_name old_fname, new_fname; 8996 8997 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8998 return -EPERM; 8999 9000 /* we only allow rename subvolume link between subvolumes */ 9001 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9002 return -EXDEV; 9003 9004 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9005 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9006 return -ENOTEMPTY; 9007 9008 if (S_ISDIR(old_inode->i_mode) && new_inode && 9009 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9010 return -ENOTEMPTY; 9011 9012 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 9013 if (ret) 9014 return ret; 9015 9016 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 9017 if (ret) { 9018 fscrypt_free_filename(&old_fname); 9019 return ret; 9020 } 9021 9022 /* check for collisions, even if the name isn't there */ 9023 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 9024 if (ret) { 9025 if (ret == -EEXIST) { 9026 /* we shouldn't get 9027 * eexist without a new_inode */ 9028 if (WARN_ON(!new_inode)) { 9029 goto out_fscrypt_names; 9030 } 9031 } else { 9032 /* maybe -EOVERFLOW */ 9033 goto out_fscrypt_names; 9034 } 9035 } 9036 ret = 0; 9037 9038 /* 9039 * we're using rename to replace one file with another. Start IO on it 9040 * now so we don't add too much work to the end of the transaction 9041 */ 9042 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9043 filemap_flush(old_inode->i_mapping); 9044 9045 if (flags & RENAME_WHITEOUT) { 9046 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 9047 if (!whiteout_args.inode) { 9048 ret = -ENOMEM; 9049 goto out_fscrypt_names; 9050 } 9051 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9052 if (ret) 9053 goto out_whiteout_inode; 9054 } else { 9055 /* 1 to update the old parent inode. */ 9056 trans_num_items = 1; 9057 } 9058 9059 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9060 /* Close the race window with snapshot create/destroy ioctl */ 9061 down_read(&fs_info->subvol_sem); 9062 /* 9063 * 1 to remove old root ref 9064 * 1 to remove old root backref 9065 * 1 to add new root ref 9066 * 1 to add new root backref 9067 */ 9068 trans_num_items += 4; 9069 } else { 9070 /* 9071 * 1 to update inode 9072 * 1 to remove old inode ref 9073 * 1 to add new inode ref 9074 */ 9075 trans_num_items += 3; 9076 } 9077 /* 9078 * 1 to remove old dir item 9079 * 1 to remove old dir index 9080 * 1 to add new dir item 9081 * 1 to add new dir index 9082 */ 9083 trans_num_items += 4; 9084 /* 1 to update new parent inode if it's not the same as the old parent */ 9085 if (new_dir != old_dir) 9086 trans_num_items++; 9087 if (new_inode) { 9088 /* 9089 * 1 to update inode 9090 * 1 to remove inode ref 9091 * 1 to remove dir item 9092 * 1 to remove dir index 9093 * 1 to possibly add orphan item 9094 */ 9095 trans_num_items += 5; 9096 } 9097 trans = btrfs_start_transaction(root, trans_num_items); 9098 if (IS_ERR(trans)) { 9099 ret = PTR_ERR(trans); 9100 goto out_notrans; 9101 } 9102 9103 if (dest != root) { 9104 ret = btrfs_record_root_in_trans(trans, dest); 9105 if (ret) 9106 goto out_fail; 9107 } 9108 9109 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9110 if (ret) 9111 goto out_fail; 9112 9113 BTRFS_I(old_inode)->dir_index = 0ULL; 9114 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9115 /* force full log commit if subvolume involved. */ 9116 btrfs_set_log_full_commit(trans); 9117 } else { 9118 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9119 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9120 index); 9121 if (ret) 9122 goto out_fail; 9123 } 9124 9125 inode_inc_iversion(old_dir); 9126 inode_inc_iversion(new_dir); 9127 inode_inc_iversion(old_inode); 9128 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 9129 9130 if (old_dentry->d_parent != new_dentry->d_parent) 9131 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9132 BTRFS_I(old_inode), true); 9133 9134 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9135 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9136 } else { 9137 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9138 BTRFS_I(d_inode(old_dentry)), 9139 &old_fname.disk_name, &rename_ctx); 9140 if (!ret) 9141 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 9142 } 9143 if (ret) { 9144 btrfs_abort_transaction(trans, ret); 9145 goto out_fail; 9146 } 9147 9148 if (new_inode) { 9149 inode_inc_iversion(new_inode); 9150 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9151 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9152 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9153 BUG_ON(new_inode->i_nlink == 0); 9154 } else { 9155 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9156 BTRFS_I(d_inode(new_dentry)), 9157 &new_fname.disk_name); 9158 } 9159 if (!ret && new_inode->i_nlink == 0) 9160 ret = btrfs_orphan_add(trans, 9161 BTRFS_I(d_inode(new_dentry))); 9162 if (ret) { 9163 btrfs_abort_transaction(trans, ret); 9164 goto out_fail; 9165 } 9166 } 9167 9168 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9169 &new_fname.disk_name, 0, index); 9170 if (ret) { 9171 btrfs_abort_transaction(trans, ret); 9172 goto out_fail; 9173 } 9174 9175 if (old_inode->i_nlink == 1) 9176 BTRFS_I(old_inode)->dir_index = index; 9177 9178 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9179 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9180 rename_ctx.index, new_dentry->d_parent); 9181 9182 if (flags & RENAME_WHITEOUT) { 9183 ret = btrfs_create_new_inode(trans, &whiteout_args); 9184 if (ret) { 9185 btrfs_abort_transaction(trans, ret); 9186 goto out_fail; 9187 } else { 9188 unlock_new_inode(whiteout_args.inode); 9189 iput(whiteout_args.inode); 9190 whiteout_args.inode = NULL; 9191 } 9192 } 9193 out_fail: 9194 ret2 = btrfs_end_transaction(trans); 9195 ret = ret ? ret : ret2; 9196 out_notrans: 9197 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9198 up_read(&fs_info->subvol_sem); 9199 if (flags & RENAME_WHITEOUT) 9200 btrfs_new_inode_args_destroy(&whiteout_args); 9201 out_whiteout_inode: 9202 if (flags & RENAME_WHITEOUT) 9203 iput(whiteout_args.inode); 9204 out_fscrypt_names: 9205 fscrypt_free_filename(&old_fname); 9206 fscrypt_free_filename(&new_fname); 9207 return ret; 9208 } 9209 9210 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9211 struct dentry *old_dentry, struct inode *new_dir, 9212 struct dentry *new_dentry, unsigned int flags) 9213 { 9214 int ret; 9215 9216 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9217 return -EINVAL; 9218 9219 if (flags & RENAME_EXCHANGE) 9220 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9221 new_dentry); 9222 else 9223 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9224 new_dentry, flags); 9225 9226 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9227 9228 return ret; 9229 } 9230 9231 struct btrfs_delalloc_work { 9232 struct inode *inode; 9233 struct completion completion; 9234 struct list_head list; 9235 struct btrfs_work work; 9236 }; 9237 9238 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9239 { 9240 struct btrfs_delalloc_work *delalloc_work; 9241 struct inode *inode; 9242 9243 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9244 work); 9245 inode = delalloc_work->inode; 9246 filemap_flush(inode->i_mapping); 9247 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9248 &BTRFS_I(inode)->runtime_flags)) 9249 filemap_flush(inode->i_mapping); 9250 9251 iput(inode); 9252 complete(&delalloc_work->completion); 9253 } 9254 9255 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9256 { 9257 struct btrfs_delalloc_work *work; 9258 9259 work = kmalloc(sizeof(*work), GFP_NOFS); 9260 if (!work) 9261 return NULL; 9262 9263 init_completion(&work->completion); 9264 INIT_LIST_HEAD(&work->list); 9265 work->inode = inode; 9266 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 9267 9268 return work; 9269 } 9270 9271 /* 9272 * some fairly slow code that needs optimization. This walks the list 9273 * of all the inodes with pending delalloc and forces them to disk. 9274 */ 9275 static int start_delalloc_inodes(struct btrfs_root *root, 9276 struct writeback_control *wbc, bool snapshot, 9277 bool in_reclaim_context) 9278 { 9279 struct btrfs_inode *binode; 9280 struct inode *inode; 9281 struct btrfs_delalloc_work *work, *next; 9282 LIST_HEAD(works); 9283 LIST_HEAD(splice); 9284 int ret = 0; 9285 bool full_flush = wbc->nr_to_write == LONG_MAX; 9286 9287 mutex_lock(&root->delalloc_mutex); 9288 spin_lock(&root->delalloc_lock); 9289 list_splice_init(&root->delalloc_inodes, &splice); 9290 while (!list_empty(&splice)) { 9291 binode = list_entry(splice.next, struct btrfs_inode, 9292 delalloc_inodes); 9293 9294 list_move_tail(&binode->delalloc_inodes, 9295 &root->delalloc_inodes); 9296 9297 if (in_reclaim_context && 9298 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9299 continue; 9300 9301 inode = igrab(&binode->vfs_inode); 9302 if (!inode) { 9303 cond_resched_lock(&root->delalloc_lock); 9304 continue; 9305 } 9306 spin_unlock(&root->delalloc_lock); 9307 9308 if (snapshot) 9309 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9310 &binode->runtime_flags); 9311 if (full_flush) { 9312 work = btrfs_alloc_delalloc_work(inode); 9313 if (!work) { 9314 iput(inode); 9315 ret = -ENOMEM; 9316 goto out; 9317 } 9318 list_add_tail(&work->list, &works); 9319 btrfs_queue_work(root->fs_info->flush_workers, 9320 &work->work); 9321 } else { 9322 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9323 btrfs_add_delayed_iput(BTRFS_I(inode)); 9324 if (ret || wbc->nr_to_write <= 0) 9325 goto out; 9326 } 9327 cond_resched(); 9328 spin_lock(&root->delalloc_lock); 9329 } 9330 spin_unlock(&root->delalloc_lock); 9331 9332 out: 9333 list_for_each_entry_safe(work, next, &works, list) { 9334 list_del_init(&work->list); 9335 wait_for_completion(&work->completion); 9336 kfree(work); 9337 } 9338 9339 if (!list_empty(&splice)) { 9340 spin_lock(&root->delalloc_lock); 9341 list_splice_tail(&splice, &root->delalloc_inodes); 9342 spin_unlock(&root->delalloc_lock); 9343 } 9344 mutex_unlock(&root->delalloc_mutex); 9345 return ret; 9346 } 9347 9348 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9349 { 9350 struct writeback_control wbc = { 9351 .nr_to_write = LONG_MAX, 9352 .sync_mode = WB_SYNC_NONE, 9353 .range_start = 0, 9354 .range_end = LLONG_MAX, 9355 }; 9356 struct btrfs_fs_info *fs_info = root->fs_info; 9357 9358 if (BTRFS_FS_ERROR(fs_info)) 9359 return -EROFS; 9360 9361 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9362 } 9363 9364 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9365 bool in_reclaim_context) 9366 { 9367 struct writeback_control wbc = { 9368 .nr_to_write = nr, 9369 .sync_mode = WB_SYNC_NONE, 9370 .range_start = 0, 9371 .range_end = LLONG_MAX, 9372 }; 9373 struct btrfs_root *root; 9374 LIST_HEAD(splice); 9375 int ret; 9376 9377 if (BTRFS_FS_ERROR(fs_info)) 9378 return -EROFS; 9379 9380 mutex_lock(&fs_info->delalloc_root_mutex); 9381 spin_lock(&fs_info->delalloc_root_lock); 9382 list_splice_init(&fs_info->delalloc_roots, &splice); 9383 while (!list_empty(&splice)) { 9384 /* 9385 * Reset nr_to_write here so we know that we're doing a full 9386 * flush. 9387 */ 9388 if (nr == LONG_MAX) 9389 wbc.nr_to_write = LONG_MAX; 9390 9391 root = list_first_entry(&splice, struct btrfs_root, 9392 delalloc_root); 9393 root = btrfs_grab_root(root); 9394 BUG_ON(!root); 9395 list_move_tail(&root->delalloc_root, 9396 &fs_info->delalloc_roots); 9397 spin_unlock(&fs_info->delalloc_root_lock); 9398 9399 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9400 btrfs_put_root(root); 9401 if (ret < 0 || wbc.nr_to_write <= 0) 9402 goto out; 9403 spin_lock(&fs_info->delalloc_root_lock); 9404 } 9405 spin_unlock(&fs_info->delalloc_root_lock); 9406 9407 ret = 0; 9408 out: 9409 if (!list_empty(&splice)) { 9410 spin_lock(&fs_info->delalloc_root_lock); 9411 list_splice_tail(&splice, &fs_info->delalloc_roots); 9412 spin_unlock(&fs_info->delalloc_root_lock); 9413 } 9414 mutex_unlock(&fs_info->delalloc_root_mutex); 9415 return ret; 9416 } 9417 9418 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9419 struct dentry *dentry, const char *symname) 9420 { 9421 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9422 struct btrfs_trans_handle *trans; 9423 struct btrfs_root *root = BTRFS_I(dir)->root; 9424 struct btrfs_path *path; 9425 struct btrfs_key key; 9426 struct inode *inode; 9427 struct btrfs_new_inode_args new_inode_args = { 9428 .dir = dir, 9429 .dentry = dentry, 9430 }; 9431 unsigned int trans_num_items; 9432 int err; 9433 int name_len; 9434 int datasize; 9435 unsigned long ptr; 9436 struct btrfs_file_extent_item *ei; 9437 struct extent_buffer *leaf; 9438 9439 name_len = strlen(symname); 9440 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9441 return -ENAMETOOLONG; 9442 9443 inode = new_inode(dir->i_sb); 9444 if (!inode) 9445 return -ENOMEM; 9446 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9447 inode->i_op = &btrfs_symlink_inode_operations; 9448 inode_nohighmem(inode); 9449 inode->i_mapping->a_ops = &btrfs_aops; 9450 btrfs_i_size_write(BTRFS_I(inode), name_len); 9451 inode_set_bytes(inode, name_len); 9452 9453 new_inode_args.inode = inode; 9454 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9455 if (err) 9456 goto out_inode; 9457 /* 1 additional item for the inline extent */ 9458 trans_num_items++; 9459 9460 trans = btrfs_start_transaction(root, trans_num_items); 9461 if (IS_ERR(trans)) { 9462 err = PTR_ERR(trans); 9463 goto out_new_inode_args; 9464 } 9465 9466 err = btrfs_create_new_inode(trans, &new_inode_args); 9467 if (err) 9468 goto out; 9469 9470 path = btrfs_alloc_path(); 9471 if (!path) { 9472 err = -ENOMEM; 9473 btrfs_abort_transaction(trans, err); 9474 discard_new_inode(inode); 9475 inode = NULL; 9476 goto out; 9477 } 9478 key.objectid = btrfs_ino(BTRFS_I(inode)); 9479 key.offset = 0; 9480 key.type = BTRFS_EXTENT_DATA_KEY; 9481 datasize = btrfs_file_extent_calc_inline_size(name_len); 9482 err = btrfs_insert_empty_item(trans, root, path, &key, 9483 datasize); 9484 if (err) { 9485 btrfs_abort_transaction(trans, err); 9486 btrfs_free_path(path); 9487 discard_new_inode(inode); 9488 inode = NULL; 9489 goto out; 9490 } 9491 leaf = path->nodes[0]; 9492 ei = btrfs_item_ptr(leaf, path->slots[0], 9493 struct btrfs_file_extent_item); 9494 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9495 btrfs_set_file_extent_type(leaf, ei, 9496 BTRFS_FILE_EXTENT_INLINE); 9497 btrfs_set_file_extent_encryption(leaf, ei, 0); 9498 btrfs_set_file_extent_compression(leaf, ei, 0); 9499 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9500 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9501 9502 ptr = btrfs_file_extent_inline_start(ei); 9503 write_extent_buffer(leaf, symname, ptr, name_len); 9504 btrfs_mark_buffer_dirty(trans, leaf); 9505 btrfs_free_path(path); 9506 9507 d_instantiate_new(dentry, inode); 9508 err = 0; 9509 out: 9510 btrfs_end_transaction(trans); 9511 btrfs_btree_balance_dirty(fs_info); 9512 out_new_inode_args: 9513 btrfs_new_inode_args_destroy(&new_inode_args); 9514 out_inode: 9515 if (err) 9516 iput(inode); 9517 return err; 9518 } 9519 9520 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9521 struct btrfs_trans_handle *trans_in, 9522 struct btrfs_inode *inode, 9523 struct btrfs_key *ins, 9524 u64 file_offset) 9525 { 9526 struct btrfs_file_extent_item stack_fi; 9527 struct btrfs_replace_extent_info extent_info; 9528 struct btrfs_trans_handle *trans = trans_in; 9529 struct btrfs_path *path; 9530 u64 start = ins->objectid; 9531 u64 len = ins->offset; 9532 u64 qgroup_released = 0; 9533 int ret; 9534 9535 memset(&stack_fi, 0, sizeof(stack_fi)); 9536 9537 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9538 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9539 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9540 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9541 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9542 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9543 /* Encryption and other encoding is reserved and all 0 */ 9544 9545 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9546 if (ret < 0) 9547 return ERR_PTR(ret); 9548 9549 if (trans) { 9550 ret = insert_reserved_file_extent(trans, inode, 9551 file_offset, &stack_fi, 9552 true, qgroup_released); 9553 if (ret) 9554 goto free_qgroup; 9555 return trans; 9556 } 9557 9558 extent_info.disk_offset = start; 9559 extent_info.disk_len = len; 9560 extent_info.data_offset = 0; 9561 extent_info.data_len = len; 9562 extent_info.file_offset = file_offset; 9563 extent_info.extent_buf = (char *)&stack_fi; 9564 extent_info.is_new_extent = true; 9565 extent_info.update_times = true; 9566 extent_info.qgroup_reserved = qgroup_released; 9567 extent_info.insertions = 0; 9568 9569 path = btrfs_alloc_path(); 9570 if (!path) { 9571 ret = -ENOMEM; 9572 goto free_qgroup; 9573 } 9574 9575 ret = btrfs_replace_file_extents(inode, path, file_offset, 9576 file_offset + len - 1, &extent_info, 9577 &trans); 9578 btrfs_free_path(path); 9579 if (ret) 9580 goto free_qgroup; 9581 return trans; 9582 9583 free_qgroup: 9584 /* 9585 * We have released qgroup data range at the beginning of the function, 9586 * and normally qgroup_released bytes will be freed when committing 9587 * transaction. 9588 * But if we error out early, we have to free what we have released 9589 * or we leak qgroup data reservation. 9590 */ 9591 btrfs_qgroup_free_refroot(inode->root->fs_info, 9592 inode->root->root_key.objectid, qgroup_released, 9593 BTRFS_QGROUP_RSV_DATA); 9594 return ERR_PTR(ret); 9595 } 9596 9597 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9598 u64 start, u64 num_bytes, u64 min_size, 9599 loff_t actual_len, u64 *alloc_hint, 9600 struct btrfs_trans_handle *trans) 9601 { 9602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9603 struct extent_map *em; 9604 struct btrfs_root *root = BTRFS_I(inode)->root; 9605 struct btrfs_key ins; 9606 u64 cur_offset = start; 9607 u64 clear_offset = start; 9608 u64 i_size; 9609 u64 cur_bytes; 9610 u64 last_alloc = (u64)-1; 9611 int ret = 0; 9612 bool own_trans = true; 9613 u64 end = start + num_bytes - 1; 9614 9615 if (trans) 9616 own_trans = false; 9617 while (num_bytes > 0) { 9618 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9619 cur_bytes = max(cur_bytes, min_size); 9620 /* 9621 * If we are severely fragmented we could end up with really 9622 * small allocations, so if the allocator is returning small 9623 * chunks lets make its job easier by only searching for those 9624 * sized chunks. 9625 */ 9626 cur_bytes = min(cur_bytes, last_alloc); 9627 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9628 min_size, 0, *alloc_hint, &ins, 1, 0); 9629 if (ret) 9630 break; 9631 9632 /* 9633 * We've reserved this space, and thus converted it from 9634 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9635 * from here on out we will only need to clear our reservation 9636 * for the remaining unreserved area, so advance our 9637 * clear_offset by our extent size. 9638 */ 9639 clear_offset += ins.offset; 9640 9641 last_alloc = ins.offset; 9642 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9643 &ins, cur_offset); 9644 /* 9645 * Now that we inserted the prealloc extent we can finally 9646 * decrement the number of reservations in the block group. 9647 * If we did it before, we could race with relocation and have 9648 * relocation miss the reserved extent, making it fail later. 9649 */ 9650 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9651 if (IS_ERR(trans)) { 9652 ret = PTR_ERR(trans); 9653 btrfs_free_reserved_extent(fs_info, ins.objectid, 9654 ins.offset, 0); 9655 break; 9656 } 9657 9658 em = alloc_extent_map(); 9659 if (!em) { 9660 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9661 cur_offset + ins.offset - 1, false); 9662 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9663 goto next; 9664 } 9665 9666 em->start = cur_offset; 9667 em->orig_start = cur_offset; 9668 em->len = ins.offset; 9669 em->block_start = ins.objectid; 9670 em->block_len = ins.offset; 9671 em->orig_block_len = ins.offset; 9672 em->ram_bytes = ins.offset; 9673 em->flags |= EXTENT_FLAG_PREALLOC; 9674 em->generation = trans->transid; 9675 9676 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9677 free_extent_map(em); 9678 next: 9679 num_bytes -= ins.offset; 9680 cur_offset += ins.offset; 9681 *alloc_hint = ins.objectid + ins.offset; 9682 9683 inode_inc_iversion(inode); 9684 inode_set_ctime_current(inode); 9685 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9686 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9687 (actual_len > inode->i_size) && 9688 (cur_offset > inode->i_size)) { 9689 if (cur_offset > actual_len) 9690 i_size = actual_len; 9691 else 9692 i_size = cur_offset; 9693 i_size_write(inode, i_size); 9694 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9695 } 9696 9697 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9698 9699 if (ret) { 9700 btrfs_abort_transaction(trans, ret); 9701 if (own_trans) 9702 btrfs_end_transaction(trans); 9703 break; 9704 } 9705 9706 if (own_trans) { 9707 btrfs_end_transaction(trans); 9708 trans = NULL; 9709 } 9710 } 9711 if (clear_offset < end) 9712 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9713 end - clear_offset + 1); 9714 return ret; 9715 } 9716 9717 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9718 u64 start, u64 num_bytes, u64 min_size, 9719 loff_t actual_len, u64 *alloc_hint) 9720 { 9721 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9722 min_size, actual_len, alloc_hint, 9723 NULL); 9724 } 9725 9726 int btrfs_prealloc_file_range_trans(struct inode *inode, 9727 struct btrfs_trans_handle *trans, int mode, 9728 u64 start, u64 num_bytes, u64 min_size, 9729 loff_t actual_len, u64 *alloc_hint) 9730 { 9731 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9732 min_size, actual_len, alloc_hint, trans); 9733 } 9734 9735 static int btrfs_permission(struct mnt_idmap *idmap, 9736 struct inode *inode, int mask) 9737 { 9738 struct btrfs_root *root = BTRFS_I(inode)->root; 9739 umode_t mode = inode->i_mode; 9740 9741 if (mask & MAY_WRITE && 9742 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9743 if (btrfs_root_readonly(root)) 9744 return -EROFS; 9745 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9746 return -EACCES; 9747 } 9748 return generic_permission(idmap, inode, mask); 9749 } 9750 9751 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9752 struct file *file, umode_t mode) 9753 { 9754 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9755 struct btrfs_trans_handle *trans; 9756 struct btrfs_root *root = BTRFS_I(dir)->root; 9757 struct inode *inode; 9758 struct btrfs_new_inode_args new_inode_args = { 9759 .dir = dir, 9760 .dentry = file->f_path.dentry, 9761 .orphan = true, 9762 }; 9763 unsigned int trans_num_items; 9764 int ret; 9765 9766 inode = new_inode(dir->i_sb); 9767 if (!inode) 9768 return -ENOMEM; 9769 inode_init_owner(idmap, inode, dir, mode); 9770 inode->i_fop = &btrfs_file_operations; 9771 inode->i_op = &btrfs_file_inode_operations; 9772 inode->i_mapping->a_ops = &btrfs_aops; 9773 9774 new_inode_args.inode = inode; 9775 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9776 if (ret) 9777 goto out_inode; 9778 9779 trans = btrfs_start_transaction(root, trans_num_items); 9780 if (IS_ERR(trans)) { 9781 ret = PTR_ERR(trans); 9782 goto out_new_inode_args; 9783 } 9784 9785 ret = btrfs_create_new_inode(trans, &new_inode_args); 9786 9787 /* 9788 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9789 * set it to 1 because d_tmpfile() will issue a warning if the count is 9790 * 0, through: 9791 * 9792 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9793 */ 9794 set_nlink(inode, 1); 9795 9796 if (!ret) { 9797 d_tmpfile(file, inode); 9798 unlock_new_inode(inode); 9799 mark_inode_dirty(inode); 9800 } 9801 9802 btrfs_end_transaction(trans); 9803 btrfs_btree_balance_dirty(fs_info); 9804 out_new_inode_args: 9805 btrfs_new_inode_args_destroy(&new_inode_args); 9806 out_inode: 9807 if (ret) 9808 iput(inode); 9809 return finish_open_simple(file, ret); 9810 } 9811 9812 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9813 { 9814 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9815 unsigned long index = start >> PAGE_SHIFT; 9816 unsigned long end_index = end >> PAGE_SHIFT; 9817 struct page *page; 9818 u32 len; 9819 9820 ASSERT(end + 1 - start <= U32_MAX); 9821 len = end + 1 - start; 9822 while (index <= end_index) { 9823 page = find_get_page(inode->vfs_inode.i_mapping, index); 9824 ASSERT(page); /* Pages should be in the extent_io_tree */ 9825 9826 /* This is for data, which doesn't yet support larger folio. */ 9827 ASSERT(folio_order(page_folio(page)) == 0); 9828 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len); 9829 put_page(page); 9830 index++; 9831 } 9832 } 9833 9834 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9835 int compress_type) 9836 { 9837 switch (compress_type) { 9838 case BTRFS_COMPRESS_NONE: 9839 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9840 case BTRFS_COMPRESS_ZLIB: 9841 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9842 case BTRFS_COMPRESS_LZO: 9843 /* 9844 * The LZO format depends on the sector size. 64K is the maximum 9845 * sector size that we support. 9846 */ 9847 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9848 return -EINVAL; 9849 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9850 (fs_info->sectorsize_bits - 12); 9851 case BTRFS_COMPRESS_ZSTD: 9852 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9853 default: 9854 return -EUCLEAN; 9855 } 9856 } 9857 9858 static ssize_t btrfs_encoded_read_inline( 9859 struct kiocb *iocb, 9860 struct iov_iter *iter, u64 start, 9861 u64 lockend, 9862 struct extent_state **cached_state, 9863 u64 extent_start, size_t count, 9864 struct btrfs_ioctl_encoded_io_args *encoded, 9865 bool *unlocked) 9866 { 9867 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9868 struct btrfs_root *root = inode->root; 9869 struct btrfs_fs_info *fs_info = root->fs_info; 9870 struct extent_io_tree *io_tree = &inode->io_tree; 9871 struct btrfs_path *path; 9872 struct extent_buffer *leaf; 9873 struct btrfs_file_extent_item *item; 9874 u64 ram_bytes; 9875 unsigned long ptr; 9876 void *tmp; 9877 ssize_t ret; 9878 9879 path = btrfs_alloc_path(); 9880 if (!path) { 9881 ret = -ENOMEM; 9882 goto out; 9883 } 9884 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9885 extent_start, 0); 9886 if (ret) { 9887 if (ret > 0) { 9888 /* The extent item disappeared? */ 9889 ret = -EIO; 9890 } 9891 goto out; 9892 } 9893 leaf = path->nodes[0]; 9894 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9895 9896 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9897 ptr = btrfs_file_extent_inline_start(item); 9898 9899 encoded->len = min_t(u64, extent_start + ram_bytes, 9900 inode->vfs_inode.i_size) - iocb->ki_pos; 9901 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9902 btrfs_file_extent_compression(leaf, item)); 9903 if (ret < 0) 9904 goto out; 9905 encoded->compression = ret; 9906 if (encoded->compression) { 9907 size_t inline_size; 9908 9909 inline_size = btrfs_file_extent_inline_item_len(leaf, 9910 path->slots[0]); 9911 if (inline_size > count) { 9912 ret = -ENOBUFS; 9913 goto out; 9914 } 9915 count = inline_size; 9916 encoded->unencoded_len = ram_bytes; 9917 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9918 } else { 9919 count = min_t(u64, count, encoded->len); 9920 encoded->len = count; 9921 encoded->unencoded_len = count; 9922 ptr += iocb->ki_pos - extent_start; 9923 } 9924 9925 tmp = kmalloc(count, GFP_NOFS); 9926 if (!tmp) { 9927 ret = -ENOMEM; 9928 goto out; 9929 } 9930 read_extent_buffer(leaf, tmp, ptr, count); 9931 btrfs_release_path(path); 9932 unlock_extent(io_tree, start, lockend, cached_state); 9933 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9934 *unlocked = true; 9935 9936 ret = copy_to_iter(tmp, count, iter); 9937 if (ret != count) 9938 ret = -EFAULT; 9939 kfree(tmp); 9940 out: 9941 btrfs_free_path(path); 9942 return ret; 9943 } 9944 9945 struct btrfs_encoded_read_private { 9946 wait_queue_head_t wait; 9947 atomic_t pending; 9948 blk_status_t status; 9949 }; 9950 9951 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9952 { 9953 struct btrfs_encoded_read_private *priv = bbio->private; 9954 9955 if (bbio->bio.bi_status) { 9956 /* 9957 * The memory barrier implied by the atomic_dec_return() here 9958 * pairs with the memory barrier implied by the 9959 * atomic_dec_return() or io_wait_event() in 9960 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9961 * write is observed before the load of status in 9962 * btrfs_encoded_read_regular_fill_pages(). 9963 */ 9964 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9965 } 9966 if (!atomic_dec_return(&priv->pending)) 9967 wake_up(&priv->wait); 9968 bio_put(&bbio->bio); 9969 } 9970 9971 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9972 u64 file_offset, u64 disk_bytenr, 9973 u64 disk_io_size, struct page **pages) 9974 { 9975 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9976 struct btrfs_encoded_read_private priv = { 9977 .pending = ATOMIC_INIT(1), 9978 }; 9979 unsigned long i = 0; 9980 struct btrfs_bio *bbio; 9981 9982 init_waitqueue_head(&priv.wait); 9983 9984 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9985 btrfs_encoded_read_endio, &priv); 9986 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9987 bbio->inode = inode; 9988 9989 do { 9990 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9991 9992 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9993 atomic_inc(&priv.pending); 9994 btrfs_submit_bio(bbio, 0); 9995 9996 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9997 btrfs_encoded_read_endio, &priv); 9998 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9999 bbio->inode = inode; 10000 continue; 10001 } 10002 10003 i++; 10004 disk_bytenr += bytes; 10005 disk_io_size -= bytes; 10006 } while (disk_io_size); 10007 10008 atomic_inc(&priv.pending); 10009 btrfs_submit_bio(bbio, 0); 10010 10011 if (atomic_dec_return(&priv.pending)) 10012 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10013 /* See btrfs_encoded_read_endio() for ordering. */ 10014 return blk_status_to_errno(READ_ONCE(priv.status)); 10015 } 10016 10017 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10018 struct iov_iter *iter, 10019 u64 start, u64 lockend, 10020 struct extent_state **cached_state, 10021 u64 disk_bytenr, u64 disk_io_size, 10022 size_t count, bool compressed, 10023 bool *unlocked) 10024 { 10025 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10026 struct extent_io_tree *io_tree = &inode->io_tree; 10027 struct page **pages; 10028 unsigned long nr_pages, i; 10029 u64 cur; 10030 size_t page_offset; 10031 ssize_t ret; 10032 10033 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10034 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10035 if (!pages) 10036 return -ENOMEM; 10037 ret = btrfs_alloc_page_array(nr_pages, pages, 0); 10038 if (ret) { 10039 ret = -ENOMEM; 10040 goto out; 10041 } 10042 10043 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10044 disk_io_size, pages); 10045 if (ret) 10046 goto out; 10047 10048 unlock_extent(io_tree, start, lockend, cached_state); 10049 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10050 *unlocked = true; 10051 10052 if (compressed) { 10053 i = 0; 10054 page_offset = 0; 10055 } else { 10056 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10057 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10058 } 10059 cur = 0; 10060 while (cur < count) { 10061 size_t bytes = min_t(size_t, count - cur, 10062 PAGE_SIZE - page_offset); 10063 10064 if (copy_page_to_iter(pages[i], page_offset, bytes, 10065 iter) != bytes) { 10066 ret = -EFAULT; 10067 goto out; 10068 } 10069 i++; 10070 cur += bytes; 10071 page_offset = 0; 10072 } 10073 ret = count; 10074 out: 10075 for (i = 0; i < nr_pages; i++) { 10076 if (pages[i]) 10077 __free_page(pages[i]); 10078 } 10079 kfree(pages); 10080 return ret; 10081 } 10082 10083 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10084 struct btrfs_ioctl_encoded_io_args *encoded) 10085 { 10086 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10087 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10088 struct extent_io_tree *io_tree = &inode->io_tree; 10089 ssize_t ret; 10090 size_t count = iov_iter_count(iter); 10091 u64 start, lockend, disk_bytenr, disk_io_size; 10092 struct extent_state *cached_state = NULL; 10093 struct extent_map *em; 10094 bool unlocked = false; 10095 10096 file_accessed(iocb->ki_filp); 10097 10098 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10099 10100 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10101 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10102 return 0; 10103 } 10104 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10105 /* 10106 * We don't know how long the extent containing iocb->ki_pos is, but if 10107 * it's compressed we know that it won't be longer than this. 10108 */ 10109 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10110 10111 for (;;) { 10112 struct btrfs_ordered_extent *ordered; 10113 10114 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10115 lockend - start + 1); 10116 if (ret) 10117 goto out_unlock_inode; 10118 lock_extent(io_tree, start, lockend, &cached_state); 10119 ordered = btrfs_lookup_ordered_range(inode, start, 10120 lockend - start + 1); 10121 if (!ordered) 10122 break; 10123 btrfs_put_ordered_extent(ordered); 10124 unlock_extent(io_tree, start, lockend, &cached_state); 10125 cond_resched(); 10126 } 10127 10128 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10129 if (IS_ERR(em)) { 10130 ret = PTR_ERR(em); 10131 goto out_unlock_extent; 10132 } 10133 10134 if (em->block_start == EXTENT_MAP_INLINE) { 10135 u64 extent_start = em->start; 10136 10137 /* 10138 * For inline extents we get everything we need out of the 10139 * extent item. 10140 */ 10141 free_extent_map(em); 10142 em = NULL; 10143 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10144 &cached_state, extent_start, 10145 count, encoded, &unlocked); 10146 goto out; 10147 } 10148 10149 /* 10150 * We only want to return up to EOF even if the extent extends beyond 10151 * that. 10152 */ 10153 encoded->len = min_t(u64, extent_map_end(em), 10154 inode->vfs_inode.i_size) - iocb->ki_pos; 10155 if (em->block_start == EXTENT_MAP_HOLE || 10156 (em->flags & EXTENT_FLAG_PREALLOC)) { 10157 disk_bytenr = EXTENT_MAP_HOLE; 10158 count = min_t(u64, count, encoded->len); 10159 encoded->len = count; 10160 encoded->unencoded_len = count; 10161 } else if (extent_map_is_compressed(em)) { 10162 disk_bytenr = em->block_start; 10163 /* 10164 * Bail if the buffer isn't large enough to return the whole 10165 * compressed extent. 10166 */ 10167 if (em->block_len > count) { 10168 ret = -ENOBUFS; 10169 goto out_em; 10170 } 10171 disk_io_size = em->block_len; 10172 count = em->block_len; 10173 encoded->unencoded_len = em->ram_bytes; 10174 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10175 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10176 extent_map_compression(em)); 10177 if (ret < 0) 10178 goto out_em; 10179 encoded->compression = ret; 10180 } else { 10181 disk_bytenr = em->block_start + (start - em->start); 10182 if (encoded->len > count) 10183 encoded->len = count; 10184 /* 10185 * Don't read beyond what we locked. This also limits the page 10186 * allocations that we'll do. 10187 */ 10188 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10189 count = start + disk_io_size - iocb->ki_pos; 10190 encoded->len = count; 10191 encoded->unencoded_len = count; 10192 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10193 } 10194 free_extent_map(em); 10195 em = NULL; 10196 10197 if (disk_bytenr == EXTENT_MAP_HOLE) { 10198 unlock_extent(io_tree, start, lockend, &cached_state); 10199 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10200 unlocked = true; 10201 ret = iov_iter_zero(count, iter); 10202 if (ret != count) 10203 ret = -EFAULT; 10204 } else { 10205 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10206 &cached_state, disk_bytenr, 10207 disk_io_size, count, 10208 encoded->compression, 10209 &unlocked); 10210 } 10211 10212 out: 10213 if (ret >= 0) 10214 iocb->ki_pos += encoded->len; 10215 out_em: 10216 free_extent_map(em); 10217 out_unlock_extent: 10218 if (!unlocked) 10219 unlock_extent(io_tree, start, lockend, &cached_state); 10220 out_unlock_inode: 10221 if (!unlocked) 10222 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10223 return ret; 10224 } 10225 10226 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10227 const struct btrfs_ioctl_encoded_io_args *encoded) 10228 { 10229 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10230 struct btrfs_root *root = inode->root; 10231 struct btrfs_fs_info *fs_info = root->fs_info; 10232 struct extent_io_tree *io_tree = &inode->io_tree; 10233 struct extent_changeset *data_reserved = NULL; 10234 struct extent_state *cached_state = NULL; 10235 struct btrfs_ordered_extent *ordered; 10236 int compression; 10237 size_t orig_count; 10238 u64 start, end; 10239 u64 num_bytes, ram_bytes, disk_num_bytes; 10240 unsigned long nr_pages, i; 10241 struct page **pages; 10242 struct btrfs_key ins; 10243 bool extent_reserved = false; 10244 struct extent_map *em; 10245 ssize_t ret; 10246 10247 switch (encoded->compression) { 10248 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10249 compression = BTRFS_COMPRESS_ZLIB; 10250 break; 10251 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10252 compression = BTRFS_COMPRESS_ZSTD; 10253 break; 10254 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10255 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10256 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10257 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10258 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10259 /* The sector size must match for LZO. */ 10260 if (encoded->compression - 10261 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10262 fs_info->sectorsize_bits) 10263 return -EINVAL; 10264 compression = BTRFS_COMPRESS_LZO; 10265 break; 10266 default: 10267 return -EINVAL; 10268 } 10269 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10270 return -EINVAL; 10271 10272 orig_count = iov_iter_count(from); 10273 10274 /* The extent size must be sane. */ 10275 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10276 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10277 return -EINVAL; 10278 10279 /* 10280 * The compressed data must be smaller than the decompressed data. 10281 * 10282 * It's of course possible for data to compress to larger or the same 10283 * size, but the buffered I/O path falls back to no compression for such 10284 * data, and we don't want to break any assumptions by creating these 10285 * extents. 10286 * 10287 * Note that this is less strict than the current check we have that the 10288 * compressed data must be at least one sector smaller than the 10289 * decompressed data. We only want to enforce the weaker requirement 10290 * from old kernels that it is at least one byte smaller. 10291 */ 10292 if (orig_count >= encoded->unencoded_len) 10293 return -EINVAL; 10294 10295 /* The extent must start on a sector boundary. */ 10296 start = iocb->ki_pos; 10297 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10298 return -EINVAL; 10299 10300 /* 10301 * The extent must end on a sector boundary. However, we allow a write 10302 * which ends at or extends i_size to have an unaligned length; we round 10303 * up the extent size and set i_size to the unaligned end. 10304 */ 10305 if (start + encoded->len < inode->vfs_inode.i_size && 10306 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10307 return -EINVAL; 10308 10309 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10310 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10311 return -EINVAL; 10312 10313 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10314 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10315 end = start + num_bytes - 1; 10316 10317 /* 10318 * If the extent cannot be inline, the compressed data on disk must be 10319 * sector-aligned. For convenience, we extend it with zeroes if it 10320 * isn't. 10321 */ 10322 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10323 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10324 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10325 if (!pages) 10326 return -ENOMEM; 10327 for (i = 0; i < nr_pages; i++) { 10328 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10329 char *kaddr; 10330 10331 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10332 if (!pages[i]) { 10333 ret = -ENOMEM; 10334 goto out_pages; 10335 } 10336 kaddr = kmap_local_page(pages[i]); 10337 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10338 kunmap_local(kaddr); 10339 ret = -EFAULT; 10340 goto out_pages; 10341 } 10342 if (bytes < PAGE_SIZE) 10343 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10344 kunmap_local(kaddr); 10345 } 10346 10347 for (;;) { 10348 struct btrfs_ordered_extent *ordered; 10349 10350 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10351 if (ret) 10352 goto out_pages; 10353 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10354 start >> PAGE_SHIFT, 10355 end >> PAGE_SHIFT); 10356 if (ret) 10357 goto out_pages; 10358 lock_extent(io_tree, start, end, &cached_state); 10359 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10360 if (!ordered && 10361 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10362 break; 10363 if (ordered) 10364 btrfs_put_ordered_extent(ordered); 10365 unlock_extent(io_tree, start, end, &cached_state); 10366 cond_resched(); 10367 } 10368 10369 /* 10370 * We don't use the higher-level delalloc space functions because our 10371 * num_bytes and disk_num_bytes are different. 10372 */ 10373 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10374 if (ret) 10375 goto out_unlock; 10376 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10377 if (ret) 10378 goto out_free_data_space; 10379 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10380 false); 10381 if (ret) 10382 goto out_qgroup_free_data; 10383 10384 /* Try an inline extent first. */ 10385 if (start == 0 && encoded->unencoded_len == encoded->len && 10386 encoded->unencoded_offset == 0) { 10387 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10388 compression, pages, true); 10389 if (ret <= 0) { 10390 if (ret == 0) 10391 ret = orig_count; 10392 goto out_delalloc_release; 10393 } 10394 } 10395 10396 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10397 disk_num_bytes, 0, 0, &ins, 1, 1); 10398 if (ret) 10399 goto out_delalloc_release; 10400 extent_reserved = true; 10401 10402 em = create_io_em(inode, start, num_bytes, 10403 start - encoded->unencoded_offset, ins.objectid, 10404 ins.offset, ins.offset, ram_bytes, compression, 10405 BTRFS_ORDERED_COMPRESSED); 10406 if (IS_ERR(em)) { 10407 ret = PTR_ERR(em); 10408 goto out_free_reserved; 10409 } 10410 free_extent_map(em); 10411 10412 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10413 ins.objectid, ins.offset, 10414 encoded->unencoded_offset, 10415 (1 << BTRFS_ORDERED_ENCODED) | 10416 (1 << BTRFS_ORDERED_COMPRESSED), 10417 compression); 10418 if (IS_ERR(ordered)) { 10419 btrfs_drop_extent_map_range(inode, start, end, false); 10420 ret = PTR_ERR(ordered); 10421 goto out_free_reserved; 10422 } 10423 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10424 10425 if (start + encoded->len > inode->vfs_inode.i_size) 10426 i_size_write(&inode->vfs_inode, start + encoded->len); 10427 10428 unlock_extent(io_tree, start, end, &cached_state); 10429 10430 btrfs_delalloc_release_extents(inode, num_bytes); 10431 10432 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10433 ret = orig_count; 10434 goto out; 10435 10436 out_free_reserved: 10437 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10438 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10439 out_delalloc_release: 10440 btrfs_delalloc_release_extents(inode, num_bytes); 10441 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10442 out_qgroup_free_data: 10443 if (ret < 0) 10444 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10445 out_free_data_space: 10446 /* 10447 * If btrfs_reserve_extent() succeeded, then we already decremented 10448 * bytes_may_use. 10449 */ 10450 if (!extent_reserved) 10451 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10452 out_unlock: 10453 unlock_extent(io_tree, start, end, &cached_state); 10454 out_pages: 10455 for (i = 0; i < nr_pages; i++) { 10456 if (pages[i]) 10457 __free_page(pages[i]); 10458 } 10459 kvfree(pages); 10460 out: 10461 if (ret >= 0) 10462 iocb->ki_pos += encoded->len; 10463 return ret; 10464 } 10465 10466 #ifdef CONFIG_SWAP 10467 /* 10468 * Add an entry indicating a block group or device which is pinned by a 10469 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10470 * negative errno on failure. 10471 */ 10472 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10473 bool is_block_group) 10474 { 10475 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10476 struct btrfs_swapfile_pin *sp, *entry; 10477 struct rb_node **p; 10478 struct rb_node *parent = NULL; 10479 10480 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10481 if (!sp) 10482 return -ENOMEM; 10483 sp->ptr = ptr; 10484 sp->inode = inode; 10485 sp->is_block_group = is_block_group; 10486 sp->bg_extent_count = 1; 10487 10488 spin_lock(&fs_info->swapfile_pins_lock); 10489 p = &fs_info->swapfile_pins.rb_node; 10490 while (*p) { 10491 parent = *p; 10492 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10493 if (sp->ptr < entry->ptr || 10494 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10495 p = &(*p)->rb_left; 10496 } else if (sp->ptr > entry->ptr || 10497 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10498 p = &(*p)->rb_right; 10499 } else { 10500 if (is_block_group) 10501 entry->bg_extent_count++; 10502 spin_unlock(&fs_info->swapfile_pins_lock); 10503 kfree(sp); 10504 return 1; 10505 } 10506 } 10507 rb_link_node(&sp->node, parent, p); 10508 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10509 spin_unlock(&fs_info->swapfile_pins_lock); 10510 return 0; 10511 } 10512 10513 /* Free all of the entries pinned by this swapfile. */ 10514 static void btrfs_free_swapfile_pins(struct inode *inode) 10515 { 10516 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10517 struct btrfs_swapfile_pin *sp; 10518 struct rb_node *node, *next; 10519 10520 spin_lock(&fs_info->swapfile_pins_lock); 10521 node = rb_first(&fs_info->swapfile_pins); 10522 while (node) { 10523 next = rb_next(node); 10524 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10525 if (sp->inode == inode) { 10526 rb_erase(&sp->node, &fs_info->swapfile_pins); 10527 if (sp->is_block_group) { 10528 btrfs_dec_block_group_swap_extents(sp->ptr, 10529 sp->bg_extent_count); 10530 btrfs_put_block_group(sp->ptr); 10531 } 10532 kfree(sp); 10533 } 10534 node = next; 10535 } 10536 spin_unlock(&fs_info->swapfile_pins_lock); 10537 } 10538 10539 struct btrfs_swap_info { 10540 u64 start; 10541 u64 block_start; 10542 u64 block_len; 10543 u64 lowest_ppage; 10544 u64 highest_ppage; 10545 unsigned long nr_pages; 10546 int nr_extents; 10547 }; 10548 10549 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10550 struct btrfs_swap_info *bsi) 10551 { 10552 unsigned long nr_pages; 10553 unsigned long max_pages; 10554 u64 first_ppage, first_ppage_reported, next_ppage; 10555 int ret; 10556 10557 /* 10558 * Our swapfile may have had its size extended after the swap header was 10559 * written. In that case activating the swapfile should not go beyond 10560 * the max size set in the swap header. 10561 */ 10562 if (bsi->nr_pages >= sis->max) 10563 return 0; 10564 10565 max_pages = sis->max - bsi->nr_pages; 10566 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10567 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10568 10569 if (first_ppage >= next_ppage) 10570 return 0; 10571 nr_pages = next_ppage - first_ppage; 10572 nr_pages = min(nr_pages, max_pages); 10573 10574 first_ppage_reported = first_ppage; 10575 if (bsi->start == 0) 10576 first_ppage_reported++; 10577 if (bsi->lowest_ppage > first_ppage_reported) 10578 bsi->lowest_ppage = first_ppage_reported; 10579 if (bsi->highest_ppage < (next_ppage - 1)) 10580 bsi->highest_ppage = next_ppage - 1; 10581 10582 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10583 if (ret < 0) 10584 return ret; 10585 bsi->nr_extents += ret; 10586 bsi->nr_pages += nr_pages; 10587 return 0; 10588 } 10589 10590 static void btrfs_swap_deactivate(struct file *file) 10591 { 10592 struct inode *inode = file_inode(file); 10593 10594 btrfs_free_swapfile_pins(inode); 10595 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10596 } 10597 10598 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10599 sector_t *span) 10600 { 10601 struct inode *inode = file_inode(file); 10602 struct btrfs_root *root = BTRFS_I(inode)->root; 10603 struct btrfs_fs_info *fs_info = root->fs_info; 10604 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10605 struct extent_state *cached_state = NULL; 10606 struct extent_map *em = NULL; 10607 struct btrfs_chunk_map *map = NULL; 10608 struct btrfs_device *device = NULL; 10609 struct btrfs_swap_info bsi = { 10610 .lowest_ppage = (sector_t)-1ULL, 10611 }; 10612 int ret = 0; 10613 u64 isize; 10614 u64 start; 10615 10616 /* 10617 * If the swap file was just created, make sure delalloc is done. If the 10618 * file changes again after this, the user is doing something stupid and 10619 * we don't really care. 10620 */ 10621 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10622 if (ret) 10623 return ret; 10624 10625 /* 10626 * The inode is locked, so these flags won't change after we check them. 10627 */ 10628 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10629 btrfs_warn(fs_info, "swapfile must not be compressed"); 10630 return -EINVAL; 10631 } 10632 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10633 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10634 return -EINVAL; 10635 } 10636 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10637 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10638 return -EINVAL; 10639 } 10640 10641 /* 10642 * Balance or device remove/replace/resize can move stuff around from 10643 * under us. The exclop protection makes sure they aren't running/won't 10644 * run concurrently while we are mapping the swap extents, and 10645 * fs_info->swapfile_pins prevents them from running while the swap 10646 * file is active and moving the extents. Note that this also prevents 10647 * a concurrent device add which isn't actually necessary, but it's not 10648 * really worth the trouble to allow it. 10649 */ 10650 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10651 btrfs_warn(fs_info, 10652 "cannot activate swapfile while exclusive operation is running"); 10653 return -EBUSY; 10654 } 10655 10656 /* 10657 * Prevent snapshot creation while we are activating the swap file. 10658 * We do not want to race with snapshot creation. If snapshot creation 10659 * already started before we bumped nr_swapfiles from 0 to 1 and 10660 * completes before the first write into the swap file after it is 10661 * activated, than that write would fallback to COW. 10662 */ 10663 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10664 btrfs_exclop_finish(fs_info); 10665 btrfs_warn(fs_info, 10666 "cannot activate swapfile because snapshot creation is in progress"); 10667 return -EINVAL; 10668 } 10669 /* 10670 * Snapshots can create extents which require COW even if NODATACOW is 10671 * set. We use this counter to prevent snapshots. We must increment it 10672 * before walking the extents because we don't want a concurrent 10673 * snapshot to run after we've already checked the extents. 10674 * 10675 * It is possible that subvolume is marked for deletion but still not 10676 * removed yet. To prevent this race, we check the root status before 10677 * activating the swapfile. 10678 */ 10679 spin_lock(&root->root_item_lock); 10680 if (btrfs_root_dead(root)) { 10681 spin_unlock(&root->root_item_lock); 10682 10683 btrfs_exclop_finish(fs_info); 10684 btrfs_warn(fs_info, 10685 "cannot activate swapfile because subvolume %llu is being deleted", 10686 root->root_key.objectid); 10687 return -EPERM; 10688 } 10689 atomic_inc(&root->nr_swapfiles); 10690 spin_unlock(&root->root_item_lock); 10691 10692 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10693 10694 lock_extent(io_tree, 0, isize - 1, &cached_state); 10695 start = 0; 10696 while (start < isize) { 10697 u64 logical_block_start, physical_block_start; 10698 struct btrfs_block_group *bg; 10699 u64 len = isize - start; 10700 10701 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10702 if (IS_ERR(em)) { 10703 ret = PTR_ERR(em); 10704 goto out; 10705 } 10706 10707 if (em->block_start == EXTENT_MAP_HOLE) { 10708 btrfs_warn(fs_info, "swapfile must not have holes"); 10709 ret = -EINVAL; 10710 goto out; 10711 } 10712 if (em->block_start == EXTENT_MAP_INLINE) { 10713 /* 10714 * It's unlikely we'll ever actually find ourselves 10715 * here, as a file small enough to fit inline won't be 10716 * big enough to store more than the swap header, but in 10717 * case something changes in the future, let's catch it 10718 * here rather than later. 10719 */ 10720 btrfs_warn(fs_info, "swapfile must not be inline"); 10721 ret = -EINVAL; 10722 goto out; 10723 } 10724 if (extent_map_is_compressed(em)) { 10725 btrfs_warn(fs_info, "swapfile must not be compressed"); 10726 ret = -EINVAL; 10727 goto out; 10728 } 10729 10730 logical_block_start = em->block_start + (start - em->start); 10731 len = min(len, em->len - (start - em->start)); 10732 free_extent_map(em); 10733 em = NULL; 10734 10735 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10736 if (ret < 0) { 10737 goto out; 10738 } else if (ret) { 10739 ret = 0; 10740 } else { 10741 btrfs_warn(fs_info, 10742 "swapfile must not be copy-on-write"); 10743 ret = -EINVAL; 10744 goto out; 10745 } 10746 10747 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10748 if (IS_ERR(map)) { 10749 ret = PTR_ERR(map); 10750 goto out; 10751 } 10752 10753 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10754 btrfs_warn(fs_info, 10755 "swapfile must have single data profile"); 10756 ret = -EINVAL; 10757 goto out; 10758 } 10759 10760 if (device == NULL) { 10761 device = map->stripes[0].dev; 10762 ret = btrfs_add_swapfile_pin(inode, device, false); 10763 if (ret == 1) 10764 ret = 0; 10765 else if (ret) 10766 goto out; 10767 } else if (device != map->stripes[0].dev) { 10768 btrfs_warn(fs_info, "swapfile must be on one device"); 10769 ret = -EINVAL; 10770 goto out; 10771 } 10772 10773 physical_block_start = (map->stripes[0].physical + 10774 (logical_block_start - map->start)); 10775 len = min(len, map->chunk_len - (logical_block_start - map->start)); 10776 btrfs_free_chunk_map(map); 10777 map = NULL; 10778 10779 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10780 if (!bg) { 10781 btrfs_warn(fs_info, 10782 "could not find block group containing swapfile"); 10783 ret = -EINVAL; 10784 goto out; 10785 } 10786 10787 if (!btrfs_inc_block_group_swap_extents(bg)) { 10788 btrfs_warn(fs_info, 10789 "block group for swapfile at %llu is read-only%s", 10790 bg->start, 10791 atomic_read(&fs_info->scrubs_running) ? 10792 " (scrub running)" : ""); 10793 btrfs_put_block_group(bg); 10794 ret = -EINVAL; 10795 goto out; 10796 } 10797 10798 ret = btrfs_add_swapfile_pin(inode, bg, true); 10799 if (ret) { 10800 btrfs_put_block_group(bg); 10801 if (ret == 1) 10802 ret = 0; 10803 else 10804 goto out; 10805 } 10806 10807 if (bsi.block_len && 10808 bsi.block_start + bsi.block_len == physical_block_start) { 10809 bsi.block_len += len; 10810 } else { 10811 if (bsi.block_len) { 10812 ret = btrfs_add_swap_extent(sis, &bsi); 10813 if (ret) 10814 goto out; 10815 } 10816 bsi.start = start; 10817 bsi.block_start = physical_block_start; 10818 bsi.block_len = len; 10819 } 10820 10821 start += len; 10822 } 10823 10824 if (bsi.block_len) 10825 ret = btrfs_add_swap_extent(sis, &bsi); 10826 10827 out: 10828 if (!IS_ERR_OR_NULL(em)) 10829 free_extent_map(em); 10830 if (!IS_ERR_OR_NULL(map)) 10831 btrfs_free_chunk_map(map); 10832 10833 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10834 10835 if (ret) 10836 btrfs_swap_deactivate(file); 10837 10838 btrfs_drew_write_unlock(&root->snapshot_lock); 10839 10840 btrfs_exclop_finish(fs_info); 10841 10842 if (ret) 10843 return ret; 10844 10845 if (device) 10846 sis->bdev = device->bdev; 10847 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10848 sis->max = bsi.nr_pages; 10849 sis->pages = bsi.nr_pages - 1; 10850 sis->highest_bit = bsi.nr_pages - 1; 10851 return bsi.nr_extents; 10852 } 10853 #else 10854 static void btrfs_swap_deactivate(struct file *file) 10855 { 10856 } 10857 10858 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10859 sector_t *span) 10860 { 10861 return -EOPNOTSUPP; 10862 } 10863 #endif 10864 10865 /* 10866 * Update the number of bytes used in the VFS' inode. When we replace extents in 10867 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10868 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10869 * always get a correct value. 10870 */ 10871 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10872 const u64 add_bytes, 10873 const u64 del_bytes) 10874 { 10875 if (add_bytes == del_bytes) 10876 return; 10877 10878 spin_lock(&inode->lock); 10879 if (del_bytes > 0) 10880 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10881 if (add_bytes > 0) 10882 inode_add_bytes(&inode->vfs_inode, add_bytes); 10883 spin_unlock(&inode->lock); 10884 } 10885 10886 /* 10887 * Verify that there are no ordered extents for a given file range. 10888 * 10889 * @inode: The target inode. 10890 * @start: Start offset of the file range, should be sector size aligned. 10891 * @end: End offset (inclusive) of the file range, its value +1 should be 10892 * sector size aligned. 10893 * 10894 * This should typically be used for cases where we locked an inode's VFS lock in 10895 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10896 * we have flushed all delalloc in the range, we have waited for all ordered 10897 * extents in the range to complete and finally we have locked the file range in 10898 * the inode's io_tree. 10899 */ 10900 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10901 { 10902 struct btrfs_root *root = inode->root; 10903 struct btrfs_ordered_extent *ordered; 10904 10905 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10906 return; 10907 10908 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10909 if (ordered) { 10910 btrfs_err(root->fs_info, 10911 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10912 start, end, btrfs_ino(inode), root->root_key.objectid, 10913 ordered->file_offset, 10914 ordered->file_offset + ordered->num_bytes - 1); 10915 btrfs_put_ordered_extent(ordered); 10916 } 10917 10918 ASSERT(ordered == NULL); 10919 } 10920 10921 static const struct inode_operations btrfs_dir_inode_operations = { 10922 .getattr = btrfs_getattr, 10923 .lookup = btrfs_lookup, 10924 .create = btrfs_create, 10925 .unlink = btrfs_unlink, 10926 .link = btrfs_link, 10927 .mkdir = btrfs_mkdir, 10928 .rmdir = btrfs_rmdir, 10929 .rename = btrfs_rename2, 10930 .symlink = btrfs_symlink, 10931 .setattr = btrfs_setattr, 10932 .mknod = btrfs_mknod, 10933 .listxattr = btrfs_listxattr, 10934 .permission = btrfs_permission, 10935 .get_inode_acl = btrfs_get_acl, 10936 .set_acl = btrfs_set_acl, 10937 .update_time = btrfs_update_time, 10938 .tmpfile = btrfs_tmpfile, 10939 .fileattr_get = btrfs_fileattr_get, 10940 .fileattr_set = btrfs_fileattr_set, 10941 }; 10942 10943 static const struct file_operations btrfs_dir_file_operations = { 10944 .llseek = btrfs_dir_llseek, 10945 .read = generic_read_dir, 10946 .iterate_shared = btrfs_real_readdir, 10947 .open = btrfs_opendir, 10948 .unlocked_ioctl = btrfs_ioctl, 10949 #ifdef CONFIG_COMPAT 10950 .compat_ioctl = btrfs_compat_ioctl, 10951 #endif 10952 .release = btrfs_release_file, 10953 .fsync = btrfs_sync_file, 10954 }; 10955 10956 /* 10957 * btrfs doesn't support the bmap operation because swapfiles 10958 * use bmap to make a mapping of extents in the file. They assume 10959 * these extents won't change over the life of the file and they 10960 * use the bmap result to do IO directly to the drive. 10961 * 10962 * the btrfs bmap call would return logical addresses that aren't 10963 * suitable for IO and they also will change frequently as COW 10964 * operations happen. So, swapfile + btrfs == corruption. 10965 * 10966 * For now we're avoiding this by dropping bmap. 10967 */ 10968 static const struct address_space_operations btrfs_aops = { 10969 .read_folio = btrfs_read_folio, 10970 .writepages = btrfs_writepages, 10971 .readahead = btrfs_readahead, 10972 .invalidate_folio = btrfs_invalidate_folio, 10973 .release_folio = btrfs_release_folio, 10974 .migrate_folio = btrfs_migrate_folio, 10975 .dirty_folio = filemap_dirty_folio, 10976 .error_remove_folio = generic_error_remove_folio, 10977 .swap_activate = btrfs_swap_activate, 10978 .swap_deactivate = btrfs_swap_deactivate, 10979 }; 10980 10981 static const struct inode_operations btrfs_file_inode_operations = { 10982 .getattr = btrfs_getattr, 10983 .setattr = btrfs_setattr, 10984 .listxattr = btrfs_listxattr, 10985 .permission = btrfs_permission, 10986 .fiemap = btrfs_fiemap, 10987 .get_inode_acl = btrfs_get_acl, 10988 .set_acl = btrfs_set_acl, 10989 .update_time = btrfs_update_time, 10990 .fileattr_get = btrfs_fileattr_get, 10991 .fileattr_set = btrfs_fileattr_set, 10992 }; 10993 static const struct inode_operations btrfs_special_inode_operations = { 10994 .getattr = btrfs_getattr, 10995 .setattr = btrfs_setattr, 10996 .permission = btrfs_permission, 10997 .listxattr = btrfs_listxattr, 10998 .get_inode_acl = btrfs_get_acl, 10999 .set_acl = btrfs_set_acl, 11000 .update_time = btrfs_update_time, 11001 }; 11002 static const struct inode_operations btrfs_symlink_inode_operations = { 11003 .get_link = page_get_link, 11004 .getattr = btrfs_getattr, 11005 .setattr = btrfs_setattr, 11006 .permission = btrfs_permission, 11007 .listxattr = btrfs_listxattr, 11008 .update_time = btrfs_update_time, 11009 }; 11010 11011 const struct dentry_operations btrfs_dentry_operations = { 11012 .d_delete = btrfs_dentry_delete, 11013 }; 11014