1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/fs_struct.h> 13 #include <linux/pagemap.h> 14 #include <linux/highmem.h> 15 #include <linux/time.h> 16 #include <linux/init.h> 17 #include <linux/string.h> 18 #include <linux/backing-dev.h> 19 #include <linux/writeback.h> 20 #include <linux/compat.h> 21 #include <linux/xattr.h> 22 #include <linux/posix_acl.h> 23 #include <linux/falloc.h> 24 #include <linux/slab.h> 25 #include <linux/ratelimit.h> 26 #include <linux/btrfs.h> 27 #include <linux/blkdev.h> 28 #include <linux/posix_acl_xattr.h> 29 #include <linux/uio.h> 30 #include <linux/magic.h> 31 #include <linux/iversion.h> 32 #include <linux/swap.h> 33 #include <linux/migrate.h> 34 #include <linux/sched/mm.h> 35 #include <linux/iomap.h> 36 #include <linux/unaligned.h> 37 #include <linux/fsverity.h> 38 #include "misc.h" 39 #include "ctree.h" 40 #include "disk-io.h" 41 #include "transaction.h" 42 #include "btrfs_inode.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "delalloc-space.h" 52 #include "block-group.h" 53 #include "space-info.h" 54 #include "zoned.h" 55 #include "subpage.h" 56 #include "inode-item.h" 57 #include "fs.h" 58 #include "accessors.h" 59 #include "extent-tree.h" 60 #include "root-tree.h" 61 #include "defrag.h" 62 #include "dir-item.h" 63 #include "file-item.h" 64 #include "uuid-tree.h" 65 #include "ioctl.h" 66 #include "file.h" 67 #include "acl.h" 68 #include "relocation.h" 69 #include "verity.h" 70 #include "super.h" 71 #include "orphan.h" 72 #include "backref.h" 73 #include "raid-stripe-tree.h" 74 #include "fiemap.h" 75 #include "delayed-inode.h" 76 77 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0) 78 #define COW_FILE_RANGE_NO_INLINE (1UL << 1) 79 80 struct btrfs_iget_args { 81 u64 ino; 82 struct btrfs_root *root; 83 }; 84 85 struct btrfs_rename_ctx { 86 /* Output field. Stores the index number of the old directory entry. */ 87 u64 index; 88 }; 89 90 /* 91 * Used by data_reloc_print_warning_inode() to pass needed info for filename 92 * resolution and output of error message. 93 */ 94 struct data_reloc_warn { 95 struct btrfs_path path; 96 struct btrfs_fs_info *fs_info; 97 u64 extent_item_size; 98 u64 logical; 99 int mirror_num; 100 }; 101 102 /* 103 * For the file_extent_tree, we want to hold the inode lock when we lookup and 104 * update the disk_i_size, but lockdep will complain because our io_tree we hold 105 * the tree lock and get the inode lock when setting delalloc. These two things 106 * are unrelated, so make a class for the file_extent_tree so we don't get the 107 * two locking patterns mixed up. 108 */ 109 static struct lock_class_key file_extent_tree_class; 110 111 static const struct inode_operations btrfs_dir_inode_operations; 112 static const struct inode_operations btrfs_symlink_inode_operations; 113 static const struct inode_operations btrfs_special_inode_operations; 114 static const struct inode_operations btrfs_file_inode_operations; 115 static const struct address_space_operations btrfs_aops; 116 static const struct file_operations btrfs_dir_file_operations; 117 118 static struct kmem_cache *btrfs_inode_cachep; 119 120 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 121 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 122 123 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 124 struct folio *locked_folio, u64 start, 125 u64 end, struct writeback_control *wbc, 126 bool pages_dirty); 127 128 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 129 u64 root, void *warn_ctx) 130 { 131 struct data_reloc_warn *warn = warn_ctx; 132 struct btrfs_fs_info *fs_info = warn->fs_info; 133 struct extent_buffer *eb; 134 struct btrfs_inode_item *inode_item; 135 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL; 136 struct btrfs_root *local_root; 137 struct btrfs_key key; 138 unsigned int nofs_flag; 139 u32 nlink; 140 int ret; 141 142 local_root = btrfs_get_fs_root(fs_info, root, true); 143 if (IS_ERR(local_root)) { 144 ret = PTR_ERR(local_root); 145 goto err; 146 } 147 148 /* This makes the path point to (inum INODE_ITEM ioff). */ 149 key.objectid = inum; 150 key.type = BTRFS_INODE_ITEM_KEY; 151 key.offset = 0; 152 153 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 154 if (ret) { 155 btrfs_put_root(local_root); 156 btrfs_release_path(&warn->path); 157 goto err; 158 } 159 160 eb = warn->path.nodes[0]; 161 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 162 nlink = btrfs_inode_nlink(eb, inode_item); 163 btrfs_release_path(&warn->path); 164 165 nofs_flag = memalloc_nofs_save(); 166 ipath = init_ipath(4096, local_root, &warn->path); 167 memalloc_nofs_restore(nofs_flag); 168 if (IS_ERR(ipath)) { 169 btrfs_put_root(local_root); 170 ret = PTR_ERR(ipath); 171 ipath = NULL; 172 /* 173 * -ENOMEM, not a critical error, just output an generic error 174 * without filename. 175 */ 176 btrfs_warn(fs_info, 177 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 178 warn->logical, warn->mirror_num, root, inum, offset); 179 return ret; 180 } 181 ret = paths_from_inode(inum, ipath); 182 if (ret < 0) { 183 btrfs_put_root(local_root); 184 goto err; 185 } 186 187 /* 188 * We deliberately ignore the bit ipath might have been too small to 189 * hold all of the paths here 190 */ 191 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 192 btrfs_warn(fs_info, 193 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 194 warn->logical, warn->mirror_num, root, inum, offset, 195 fs_info->sectorsize, nlink, 196 (char *)(unsigned long)ipath->fspath->val[i]); 197 } 198 199 btrfs_put_root(local_root); 200 return 0; 201 202 err: 203 btrfs_warn(fs_info, 204 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 205 warn->logical, warn->mirror_num, root, inum, offset, ret); 206 207 return ret; 208 } 209 210 /* 211 * Do extra user-friendly error output (e.g. lookup all the affected files). 212 * 213 * Return true if we succeeded doing the backref lookup. 214 * Return false if such lookup failed, and has to fallback to the old error message. 215 */ 216 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 217 const u8 *csum, const u8 *csum_expected, 218 int mirror_num) 219 { 220 struct btrfs_fs_info *fs_info = inode->root->fs_info; 221 struct btrfs_path path = { 0 }; 222 struct btrfs_key found_key = { 0 }; 223 struct extent_buffer *eb; 224 struct btrfs_extent_item *ei; 225 const u32 csum_size = fs_info->csum_size; 226 u64 logical; 227 u64 flags; 228 u32 item_size; 229 int ret; 230 231 mutex_lock(&fs_info->reloc_mutex); 232 logical = btrfs_get_reloc_bg_bytenr(fs_info); 233 mutex_unlock(&fs_info->reloc_mutex); 234 235 if (logical == U64_MAX) { 236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 237 btrfs_warn_rl(fs_info, 238 "csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 240 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 241 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 242 mirror_num); 243 return; 244 } 245 246 logical += file_off; 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 249 btrfs_root_id(inode->root), 250 btrfs_ino(inode), file_off, logical, 251 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 252 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 253 mirror_num); 254 255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 256 if (ret < 0) { 257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 258 logical, ret); 259 btrfs_release_path(&path); 260 return; 261 } 262 eb = path.nodes[0]; 263 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 264 item_size = btrfs_item_size(eb, path.slots[0]); 265 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 266 unsigned long ptr = 0; 267 u64 ref_root; 268 u8 ref_level; 269 270 while (true) { 271 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 272 item_size, &ref_root, 273 &ref_level); 274 if (ret < 0) { 275 btrfs_warn_rl(fs_info, 276 "failed to resolve tree backref for logical %llu: %d", 277 logical, ret); 278 break; 279 } 280 if (ret > 0) 281 break; 282 283 btrfs_warn_rl(fs_info, 284 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 285 logical, mirror_num, 286 (ref_level ? "node" : "leaf"), 287 ref_level, ref_root); 288 } 289 btrfs_release_path(&path); 290 } else { 291 struct btrfs_backref_walk_ctx ctx = { 0 }; 292 struct data_reloc_warn reloc_warn = { 0 }; 293 294 btrfs_release_path(&path); 295 296 ctx.bytenr = found_key.objectid; 297 ctx.extent_item_pos = logical - found_key.objectid; 298 ctx.fs_info = fs_info; 299 300 reloc_warn.logical = logical; 301 reloc_warn.extent_item_size = found_key.offset; 302 reloc_warn.mirror_num = mirror_num; 303 reloc_warn.fs_info = fs_info; 304 305 iterate_extent_inodes(&ctx, true, 306 data_reloc_print_warning_inode, &reloc_warn); 307 } 308 } 309 310 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 311 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 312 { 313 struct btrfs_root *root = inode->root; 314 const u32 csum_size = root->fs_info->csum_size; 315 316 /* For data reloc tree, it's better to do a backref lookup instead. */ 317 if (btrfs_is_data_reloc_root(root)) 318 return print_data_reloc_error(inode, logical_start, csum, 319 csum_expected, mirror_num); 320 321 /* Output without objectid, which is more meaningful */ 322 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 323 btrfs_warn_rl(root->fs_info, 324 "csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 325 btrfs_root_id(root), btrfs_ino(inode), 326 logical_start, 327 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 328 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 329 mirror_num); 330 } else { 331 btrfs_warn_rl(root->fs_info, 332 "csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 333 btrfs_root_id(root), btrfs_ino(inode), 334 logical_start, 335 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 336 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 337 mirror_num); 338 } 339 } 340 341 /* 342 * Lock inode i_rwsem based on arguments passed. 343 * 344 * ilock_flags can have the following bit set: 345 * 346 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 347 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 348 * return -EAGAIN 349 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 350 */ 351 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 352 { 353 if (ilock_flags & BTRFS_ILOCK_SHARED) { 354 if (ilock_flags & BTRFS_ILOCK_TRY) { 355 if (!inode_trylock_shared(&inode->vfs_inode)) 356 return -EAGAIN; 357 else 358 return 0; 359 } 360 inode_lock_shared(&inode->vfs_inode); 361 } else { 362 if (ilock_flags & BTRFS_ILOCK_TRY) { 363 if (!inode_trylock(&inode->vfs_inode)) 364 return -EAGAIN; 365 else 366 return 0; 367 } 368 inode_lock(&inode->vfs_inode); 369 } 370 if (ilock_flags & BTRFS_ILOCK_MMAP) 371 down_write(&inode->i_mmap_lock); 372 return 0; 373 } 374 375 /* 376 * Unlock inode i_rwsem. 377 * 378 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 379 * to decide whether the lock acquired is shared or exclusive. 380 */ 381 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 382 { 383 if (ilock_flags & BTRFS_ILOCK_MMAP) 384 up_write(&inode->i_mmap_lock); 385 if (ilock_flags & BTRFS_ILOCK_SHARED) 386 inode_unlock_shared(&inode->vfs_inode); 387 else 388 inode_unlock(&inode->vfs_inode); 389 } 390 391 /* 392 * Cleanup all submitted ordered extents in specified range to handle errors 393 * from the btrfs_run_delalloc_range() callback. 394 * 395 * NOTE: caller must ensure that when an error happens, it can not call 396 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 397 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 398 * to be released, which we want to happen only when finishing the ordered 399 * extent (btrfs_finish_ordered_io()). 400 */ 401 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 402 u64 offset, u64 bytes) 403 { 404 pgoff_t index = offset >> PAGE_SHIFT; 405 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 406 struct folio *folio; 407 408 while (index <= end_index) { 409 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 410 if (IS_ERR(folio)) { 411 index++; 412 continue; 413 } 414 415 index = folio_next_index(folio); 416 /* 417 * Here we just clear all Ordered bits for every page in the 418 * range, then btrfs_mark_ordered_io_finished() will handle 419 * the ordered extent accounting for the range. 420 */ 421 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 422 offset, bytes); 423 folio_put(folio); 424 } 425 426 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 427 } 428 429 static int btrfs_dirty_inode(struct btrfs_inode *inode); 430 431 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 432 struct btrfs_new_inode_args *args) 433 { 434 int ret; 435 436 if (args->default_acl) { 437 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 438 ACL_TYPE_DEFAULT); 439 if (ret) 440 return ret; 441 } 442 if (args->acl) { 443 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 444 if (ret) 445 return ret; 446 } 447 if (!args->default_acl && !args->acl) 448 cache_no_acl(args->inode); 449 return btrfs_xattr_security_init(trans, args->inode, args->dir, 450 &args->dentry->d_name); 451 } 452 453 /* 454 * this does all the hard work for inserting an inline extent into 455 * the btree. The caller should have done a btrfs_drop_extents so that 456 * no overlapping inline items exist in the btree 457 */ 458 static int insert_inline_extent(struct btrfs_trans_handle *trans, 459 struct btrfs_path *path, 460 struct btrfs_inode *inode, bool extent_inserted, 461 size_t size, size_t compressed_size, 462 int compress_type, 463 struct folio *compressed_folio, 464 bool update_i_size) 465 { 466 struct btrfs_root *root = inode->root; 467 struct extent_buffer *leaf; 468 const u32 sectorsize = trans->fs_info->sectorsize; 469 char *kaddr; 470 unsigned long ptr; 471 struct btrfs_file_extent_item *ei; 472 int ret; 473 size_t cur_size = size; 474 u64 i_size; 475 476 /* 477 * The decompressed size must still be no larger than a sector. Under 478 * heavy race, we can have size == 0 passed in, but that shouldn't be a 479 * big deal and we can continue the insertion. 480 */ 481 ASSERT(size <= sectorsize); 482 483 /* 484 * The compressed size also needs to be no larger than a sector. 485 * That's also why we only need one page as the parameter. 486 */ 487 if (compressed_folio) 488 ASSERT(compressed_size <= sectorsize); 489 else 490 ASSERT(compressed_size == 0); 491 492 if (compressed_size && compressed_folio) 493 cur_size = compressed_size; 494 495 if (!extent_inserted) { 496 struct btrfs_key key; 497 size_t datasize; 498 499 key.objectid = btrfs_ino(inode); 500 key.type = BTRFS_EXTENT_DATA_KEY; 501 key.offset = 0; 502 503 datasize = btrfs_file_extent_calc_inline_size(cur_size); 504 ret = btrfs_insert_empty_item(trans, root, path, &key, 505 datasize); 506 if (ret) 507 goto fail; 508 } 509 leaf = path->nodes[0]; 510 ei = btrfs_item_ptr(leaf, path->slots[0], 511 struct btrfs_file_extent_item); 512 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 513 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 514 btrfs_set_file_extent_encryption(leaf, ei, 0); 515 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 516 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 517 ptr = btrfs_file_extent_inline_start(ei); 518 519 if (compress_type != BTRFS_COMPRESS_NONE) { 520 kaddr = kmap_local_folio(compressed_folio, 0); 521 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 522 kunmap_local(kaddr); 523 524 btrfs_set_file_extent_compression(leaf, ei, 525 compress_type); 526 } else { 527 struct folio *folio; 528 529 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 530 ASSERT(!IS_ERR(folio)); 531 btrfs_set_file_extent_compression(leaf, ei, 0); 532 kaddr = kmap_local_folio(folio, 0); 533 write_extent_buffer(leaf, kaddr, ptr, size); 534 kunmap_local(kaddr); 535 folio_put(folio); 536 } 537 btrfs_release_path(path); 538 539 /* 540 * We align size to sectorsize for inline extents just for simplicity 541 * sake. 542 */ 543 ret = btrfs_inode_set_file_extent_range(inode, 0, 544 ALIGN(size, root->fs_info->sectorsize)); 545 if (ret) 546 goto fail; 547 548 /* 549 * We're an inline extent, so nobody can extend the file past i_size 550 * without locking a page we already have locked. 551 * 552 * We must do any i_size and inode updates before we unlock the pages. 553 * Otherwise we could end up racing with unlink. 554 */ 555 i_size = i_size_read(&inode->vfs_inode); 556 if (update_i_size && size > i_size) { 557 i_size_write(&inode->vfs_inode, size); 558 i_size = size; 559 } 560 inode->disk_i_size = i_size; 561 562 fail: 563 return ret; 564 } 565 566 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 567 u64 offset, u64 size, 568 size_t compressed_size) 569 { 570 struct btrfs_fs_info *fs_info = inode->root->fs_info; 571 u64 data_len = (compressed_size ?: size); 572 573 /* Inline extents must start at offset 0. */ 574 if (offset != 0) 575 return false; 576 577 /* Inline extents are limited to sectorsize. */ 578 if (size > fs_info->sectorsize) 579 return false; 580 581 /* We do not allow a non-compressed extent to be as large as block size. */ 582 if (data_len >= fs_info->sectorsize) 583 return false; 584 585 /* We cannot exceed the maximum inline data size. */ 586 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 587 return false; 588 589 /* We cannot exceed the user specified max_inline size. */ 590 if (data_len > fs_info->max_inline) 591 return false; 592 593 /* Inline extents must be the entirety of the file. */ 594 if (size < i_size_read(&inode->vfs_inode)) 595 return false; 596 597 /* Encrypted file cannot be inlined. */ 598 if (IS_ENCRYPTED(&inode->vfs_inode)) 599 return false; 600 601 return true; 602 } 603 604 /* 605 * conditionally insert an inline extent into the file. This 606 * does the checks required to make sure the data is small enough 607 * to fit as an inline extent. 608 * 609 * If being used directly, you must have already checked we're allowed to cow 610 * the range by getting true from can_cow_file_range_inline(). 611 */ 612 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 613 u64 size, size_t compressed_size, 614 int compress_type, 615 struct folio *compressed_folio, 616 bool update_i_size) 617 { 618 struct btrfs_drop_extents_args drop_args = { 0 }; 619 struct btrfs_root *root = inode->root; 620 struct btrfs_fs_info *fs_info = root->fs_info; 621 struct btrfs_trans_handle *trans; 622 u64 data_len = (compressed_size ?: size); 623 int ret; 624 struct btrfs_path *path; 625 626 path = btrfs_alloc_path(); 627 if (!path) 628 return -ENOMEM; 629 630 trans = btrfs_join_transaction(root); 631 if (IS_ERR(trans)) { 632 btrfs_free_path(path); 633 return PTR_ERR(trans); 634 } 635 trans->block_rsv = &inode->block_rsv; 636 637 drop_args.path = path; 638 drop_args.start = 0; 639 drop_args.end = fs_info->sectorsize; 640 drop_args.drop_cache = true; 641 drop_args.replace_extent = true; 642 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 643 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 644 if (unlikely(ret)) { 645 btrfs_abort_transaction(trans, ret); 646 goto out; 647 } 648 649 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 650 size, compressed_size, compress_type, 651 compressed_folio, update_i_size); 652 if (unlikely(ret && ret != -ENOSPC)) { 653 btrfs_abort_transaction(trans, ret); 654 goto out; 655 } else if (ret == -ENOSPC) { 656 ret = 1; 657 goto out; 658 } 659 660 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 661 ret = btrfs_update_inode(trans, inode); 662 if (unlikely(ret && ret != -ENOSPC)) { 663 btrfs_abort_transaction(trans, ret); 664 goto out; 665 } else if (ret == -ENOSPC) { 666 ret = 1; 667 goto out; 668 } 669 670 btrfs_set_inode_full_sync(inode); 671 out: 672 /* 673 * Don't forget to free the reserved space, as for inlined extent 674 * it won't count as data extent, free them directly here. 675 * And at reserve time, it's always aligned to page size, so 676 * just free one page here. 677 */ 678 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 679 btrfs_free_path(path); 680 btrfs_end_transaction(trans); 681 return ret; 682 } 683 684 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 685 struct folio *locked_folio, 686 u64 offset, u64 end, 687 size_t compressed_size, 688 int compress_type, 689 struct folio *compressed_folio, 690 bool update_i_size) 691 { 692 struct extent_state *cached = NULL; 693 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 694 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 695 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 696 int ret; 697 698 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 699 return 1; 700 701 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 702 ret = __cow_file_range_inline(inode, size, compressed_size, 703 compress_type, compressed_folio, 704 update_i_size); 705 if (ret > 0) { 706 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 707 return ret; 708 } 709 710 /* 711 * In the successful case (ret == 0 here), cow_file_range will return 1. 712 * 713 * Quite a bit further up the callstack in extent_writepage(), ret == 1 714 * is treated as a short circuited success and does not unlock the folio, 715 * so we must do it here. 716 * 717 * In the failure case, the locked_folio does get unlocked by 718 * btrfs_folio_end_all_writers, which asserts that it is still locked 719 * at that point, so we must *not* unlock it here. 720 * 721 * The other two callsites in compress_file_range do not have a 722 * locked_folio, so they are not relevant to this logic. 723 */ 724 if (ret == 0) 725 locked_folio = NULL; 726 727 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 728 clear_flags, PAGE_UNLOCK | 729 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 730 return ret; 731 } 732 733 struct async_extent { 734 u64 start; 735 u64 ram_size; 736 u64 compressed_size; 737 struct folio **folios; 738 unsigned long nr_folios; 739 int compress_type; 740 struct list_head list; 741 }; 742 743 struct async_chunk { 744 struct btrfs_inode *inode; 745 struct folio *locked_folio; 746 u64 start; 747 u64 end; 748 blk_opf_t write_flags; 749 struct list_head extents; 750 struct cgroup_subsys_state *blkcg_css; 751 struct btrfs_work work; 752 struct async_cow *async_cow; 753 }; 754 755 struct async_cow { 756 atomic_t num_chunks; 757 struct async_chunk chunks[]; 758 }; 759 760 static noinline int add_async_extent(struct async_chunk *cow, 761 u64 start, u64 ram_size, 762 u64 compressed_size, 763 struct folio **folios, 764 unsigned long nr_folios, 765 int compress_type) 766 { 767 struct async_extent *async_extent; 768 769 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 770 if (!async_extent) 771 return -ENOMEM; 772 async_extent->start = start; 773 async_extent->ram_size = ram_size; 774 async_extent->compressed_size = compressed_size; 775 async_extent->folios = folios; 776 async_extent->nr_folios = nr_folios; 777 async_extent->compress_type = compress_type; 778 list_add_tail(&async_extent->list, &cow->extents); 779 return 0; 780 } 781 782 /* 783 * Check if the inode needs to be submitted to compression, based on mount 784 * options, defragmentation, properties or heuristics. 785 */ 786 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 787 u64 end) 788 { 789 struct btrfs_fs_info *fs_info = inode->root->fs_info; 790 791 if (!btrfs_inode_can_compress(inode)) { 792 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 793 return 0; 794 } 795 796 /* Defrag ioctl takes precedence over mount options and properties. */ 797 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 798 return 0; 799 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 800 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 801 return 1; 802 /* force compress */ 803 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 804 return 1; 805 /* bad compression ratios */ 806 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 807 return 0; 808 if (btrfs_test_opt(fs_info, COMPRESS) || 809 inode->flags & BTRFS_INODE_COMPRESS || 810 inode->prop_compress) 811 return btrfs_compress_heuristic(inode, start, end); 812 return 0; 813 } 814 815 static inline void inode_should_defrag(struct btrfs_inode *inode, 816 u64 start, u64 end, u64 num_bytes, u32 small_write) 817 { 818 /* If this is a small write inside eof, kick off a defrag */ 819 if (num_bytes < small_write && 820 (start > 0 || end + 1 < inode->disk_i_size)) 821 btrfs_add_inode_defrag(inode, small_write); 822 } 823 824 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 825 { 826 const pgoff_t end_index = end >> PAGE_SHIFT; 827 struct folio *folio; 828 int ret = 0; 829 830 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 831 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 832 if (IS_ERR(folio)) { 833 if (!ret) 834 ret = PTR_ERR(folio); 835 continue; 836 } 837 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 838 end + 1 - start); 839 folio_put(folio); 840 } 841 return ret; 842 } 843 844 /* 845 * Work queue call back to started compression on a file and pages. 846 * 847 * This is done inside an ordered work queue, and the compression is spread 848 * across many cpus. The actual IO submission is step two, and the ordered work 849 * queue takes care of making sure that happens in the same order things were 850 * put onto the queue by writepages and friends. 851 * 852 * If this code finds it can't get good compression, it puts an entry onto the 853 * work queue to write the uncompressed bytes. This makes sure that both 854 * compressed inodes and uncompressed inodes are written in the same order that 855 * the flusher thread sent them down. 856 */ 857 static void compress_file_range(struct btrfs_work *work) 858 { 859 struct async_chunk *async_chunk = 860 container_of(work, struct async_chunk, work); 861 struct btrfs_inode *inode = async_chunk->inode; 862 struct btrfs_fs_info *fs_info = inode->root->fs_info; 863 struct address_space *mapping = inode->vfs_inode.i_mapping; 864 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 865 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 866 u64 blocksize = fs_info->sectorsize; 867 u64 start = async_chunk->start; 868 u64 end = async_chunk->end; 869 u64 actual_end; 870 u64 i_size; 871 int ret = 0; 872 struct folio **folios = NULL; 873 unsigned long nr_folios; 874 unsigned long total_compressed = 0; 875 unsigned long total_in = 0; 876 unsigned int loff; 877 int i; 878 int compress_type = fs_info->compress_type; 879 int compress_level = fs_info->compress_level; 880 881 if (unlikely(btrfs_is_shutdown(fs_info))) 882 goto cleanup_and_bail_uncompressed; 883 884 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 885 886 /* 887 * We need to call clear_page_dirty_for_io on each page in the range. 888 * Otherwise applications with the file mmap'd can wander in and change 889 * the page contents while we are compressing them. 890 */ 891 ret = extent_range_clear_dirty_for_io(inode, start, end); 892 893 /* 894 * All the folios should have been locked thus no failure. 895 * 896 * And even if some folios are missing, btrfs_compress_folios() 897 * would handle them correctly, so here just do an ASSERT() check for 898 * early logic errors. 899 */ 900 ASSERT(ret == 0); 901 902 /* 903 * We need to save i_size before now because it could change in between 904 * us evaluating the size and assigning it. This is because we lock and 905 * unlock the page in truncate and fallocate, and then modify the i_size 906 * later on. 907 * 908 * The barriers are to emulate READ_ONCE, remove that once i_size_read 909 * does that for us. 910 */ 911 barrier(); 912 i_size = i_size_read(&inode->vfs_inode); 913 barrier(); 914 actual_end = min_t(u64, i_size, end + 1); 915 again: 916 folios = NULL; 917 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1; 918 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift); 919 920 /* 921 * we don't want to send crud past the end of i_size through 922 * compression, that's just a waste of CPU time. So, if the 923 * end of the file is before the start of our current 924 * requested range of bytes, we bail out to the uncompressed 925 * cleanup code that can deal with all of this. 926 * 927 * It isn't really the fastest way to fix things, but this is a 928 * very uncommon corner. 929 */ 930 if (actual_end <= start) 931 goto cleanup_and_bail_uncompressed; 932 933 total_compressed = actual_end - start; 934 935 /* 936 * Skip compression for a small file range(<=blocksize) that 937 * isn't an inline extent, since it doesn't save disk space at all. 938 */ 939 if (total_compressed <= blocksize && 940 (start > 0 || end + 1 < inode->disk_i_size)) 941 goto cleanup_and_bail_uncompressed; 942 943 total_compressed = min_t(unsigned long, total_compressed, 944 BTRFS_MAX_UNCOMPRESSED); 945 total_in = 0; 946 ret = 0; 947 948 /* 949 * We do compression for mount -o compress and when the inode has not 950 * been flagged as NOCOMPRESS. This flag can change at any time if we 951 * discover bad compression ratios. 952 */ 953 if (!inode_need_compress(inode, start, end)) 954 goto cleanup_and_bail_uncompressed; 955 956 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 957 if (!folios) { 958 /* 959 * Memory allocation failure is not a fatal error, we can fall 960 * back to uncompressed code. 961 */ 962 goto cleanup_and_bail_uncompressed; 963 } 964 965 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 966 compress_type = inode->defrag_compress; 967 compress_level = inode->defrag_compress_level; 968 } else if (inode->prop_compress) { 969 compress_type = inode->prop_compress; 970 } 971 972 /* Compression level is applied here. */ 973 ret = btrfs_compress_folios(compress_type, compress_level, 974 inode, start, folios, &nr_folios, &total_in, 975 &total_compressed); 976 if (ret) 977 goto mark_incompressible; 978 979 /* 980 * Zero the tail end of the last folio, as we might be sending it down 981 * to disk. 982 */ 983 loff = (total_compressed & (min_folio_size - 1)); 984 if (loff) 985 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff); 986 987 /* 988 * Try to create an inline extent. 989 * 990 * If we didn't compress the entire range, try to create an uncompressed 991 * inline extent, else a compressed one. 992 * 993 * Check cow_file_range() for why we don't even try to create inline 994 * extent for the subpage case. 995 */ 996 if (total_in < actual_end) 997 ret = cow_file_range_inline(inode, NULL, start, end, 0, 998 BTRFS_COMPRESS_NONE, NULL, false); 999 else 1000 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1001 compress_type, folios[0], false); 1002 if (ret <= 0) { 1003 if (ret < 0) 1004 mapping_set_error(mapping, -EIO); 1005 goto free_pages; 1006 } 1007 1008 /* 1009 * We aren't doing an inline extent. Round the compressed size up to a 1010 * block size boundary so the allocator does sane things. 1011 */ 1012 total_compressed = ALIGN(total_compressed, blocksize); 1013 1014 /* 1015 * One last check to make sure the compression is really a win, compare 1016 * the page count read with the blocks on disk, compression must free at 1017 * least one sector. 1018 */ 1019 total_in = round_up(total_in, fs_info->sectorsize); 1020 if (total_compressed + blocksize > total_in) 1021 goto mark_incompressible; 1022 1023 /* 1024 * The async work queues will take care of doing actual allocation on 1025 * disk for these compressed pages, and will submit the bios. 1026 */ 1027 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1028 nr_folios, compress_type); 1029 BUG_ON(ret); 1030 if (start + total_in < end) { 1031 start += total_in; 1032 cond_resched(); 1033 goto again; 1034 } 1035 return; 1036 1037 mark_incompressible: 1038 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1039 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1040 cleanup_and_bail_uncompressed: 1041 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1042 BTRFS_COMPRESS_NONE); 1043 BUG_ON(ret); 1044 free_pages: 1045 if (folios) { 1046 for (i = 0; i < nr_folios; i++) { 1047 WARN_ON(folios[i]->mapping); 1048 btrfs_free_compr_folio(folios[i]); 1049 } 1050 kfree(folios); 1051 } 1052 } 1053 1054 static void free_async_extent_pages(struct async_extent *async_extent) 1055 { 1056 int i; 1057 1058 if (!async_extent->folios) 1059 return; 1060 1061 for (i = 0; i < async_extent->nr_folios; i++) { 1062 WARN_ON(async_extent->folios[i]->mapping); 1063 btrfs_free_compr_folio(async_extent->folios[i]); 1064 } 1065 kfree(async_extent->folios); 1066 async_extent->nr_folios = 0; 1067 async_extent->folios = NULL; 1068 } 1069 1070 static void submit_uncompressed_range(struct btrfs_inode *inode, 1071 struct async_extent *async_extent, 1072 struct folio *locked_folio) 1073 { 1074 u64 start = async_extent->start; 1075 u64 end = async_extent->start + async_extent->ram_size - 1; 1076 int ret; 1077 struct writeback_control wbc = { 1078 .sync_mode = WB_SYNC_ALL, 1079 .range_start = start, 1080 .range_end = end, 1081 .no_cgroup_owner = 1, 1082 }; 1083 1084 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1085 ret = run_delalloc_cow(inode, locked_folio, start, end, 1086 &wbc, false); 1087 wbc_detach_inode(&wbc); 1088 if (ret < 0) { 1089 if (locked_folio) 1090 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1091 start, async_extent->ram_size); 1092 btrfs_err_rl(inode->root->fs_info, 1093 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1094 __func__, btrfs_root_id(inode->root), 1095 btrfs_ino(inode), start, async_extent->ram_size, ret); 1096 } 1097 } 1098 1099 static void submit_one_async_extent(struct async_chunk *async_chunk, 1100 struct async_extent *async_extent, 1101 u64 *alloc_hint) 1102 { 1103 struct btrfs_inode *inode = async_chunk->inode; 1104 struct extent_io_tree *io_tree = &inode->io_tree; 1105 struct btrfs_root *root = inode->root; 1106 struct btrfs_fs_info *fs_info = root->fs_info; 1107 struct btrfs_ordered_extent *ordered; 1108 struct btrfs_file_extent file_extent; 1109 struct btrfs_key ins; 1110 struct folio *locked_folio = NULL; 1111 struct extent_state *cached = NULL; 1112 struct extent_map *em; 1113 int ret = 0; 1114 bool free_pages = false; 1115 u64 start = async_extent->start; 1116 u64 end = async_extent->start + async_extent->ram_size - 1; 1117 1118 if (async_chunk->blkcg_css) 1119 kthread_associate_blkcg(async_chunk->blkcg_css); 1120 1121 /* 1122 * If async_chunk->locked_folio is in the async_extent range, we need to 1123 * handle it. 1124 */ 1125 if (async_chunk->locked_folio) { 1126 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1127 u64 locked_folio_end = locked_folio_start + 1128 folio_size(async_chunk->locked_folio) - 1; 1129 1130 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1131 locked_folio = async_chunk->locked_folio; 1132 } 1133 1134 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1135 ASSERT(!async_extent->folios); 1136 ASSERT(async_extent->nr_folios == 0); 1137 submit_uncompressed_range(inode, async_extent, locked_folio); 1138 free_pages = true; 1139 goto done; 1140 } 1141 1142 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1143 async_extent->compressed_size, 1144 async_extent->compressed_size, 1145 0, *alloc_hint, &ins, true, true); 1146 if (ret) { 1147 /* 1148 * We can't reserve contiguous space for the compressed size. 1149 * Unlikely, but it's possible that we could have enough 1150 * non-contiguous space for the uncompressed size instead. So 1151 * fall back to uncompressed. 1152 */ 1153 submit_uncompressed_range(inode, async_extent, locked_folio); 1154 free_pages = true; 1155 goto done; 1156 } 1157 1158 btrfs_lock_extent(io_tree, start, end, &cached); 1159 1160 /* Here we're doing allocation and writeback of the compressed pages */ 1161 file_extent.disk_bytenr = ins.objectid; 1162 file_extent.disk_num_bytes = ins.offset; 1163 file_extent.ram_bytes = async_extent->ram_size; 1164 file_extent.num_bytes = async_extent->ram_size; 1165 file_extent.offset = 0; 1166 file_extent.compression = async_extent->compress_type; 1167 1168 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1169 if (IS_ERR(em)) { 1170 ret = PTR_ERR(em); 1171 goto out_free_reserve; 1172 } 1173 btrfs_free_extent_map(em); 1174 1175 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1176 1U << BTRFS_ORDERED_COMPRESSED); 1177 if (IS_ERR(ordered)) { 1178 btrfs_drop_extent_map_range(inode, start, end, false); 1179 ret = PTR_ERR(ordered); 1180 goto out_free_reserve; 1181 } 1182 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1183 1184 /* Clear dirty, set writeback and unlock the pages. */ 1185 extent_clear_unlock_delalloc(inode, start, end, 1186 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1187 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1188 btrfs_submit_compressed_write(ordered, 1189 async_extent->folios, /* compressed_folios */ 1190 async_extent->nr_folios, 1191 async_chunk->write_flags, true); 1192 *alloc_hint = ins.objectid + ins.offset; 1193 done: 1194 if (async_chunk->blkcg_css) 1195 kthread_associate_blkcg(NULL); 1196 if (free_pages) 1197 free_async_extent_pages(async_extent); 1198 kfree(async_extent); 1199 return; 1200 1201 out_free_reserve: 1202 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1203 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1204 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1205 extent_clear_unlock_delalloc(inode, start, end, 1206 NULL, &cached, 1207 EXTENT_LOCKED | EXTENT_DELALLOC | 1208 EXTENT_DELALLOC_NEW | 1209 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1210 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1211 PAGE_END_WRITEBACK); 1212 free_async_extent_pages(async_extent); 1213 if (async_chunk->blkcg_css) 1214 kthread_associate_blkcg(NULL); 1215 btrfs_debug(fs_info, 1216 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1217 btrfs_root_id(root), btrfs_ino(inode), start, 1218 async_extent->ram_size, ret); 1219 kfree(async_extent); 1220 } 1221 1222 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1223 u64 num_bytes) 1224 { 1225 struct extent_map_tree *em_tree = &inode->extent_tree; 1226 struct extent_map *em; 1227 u64 alloc_hint = 0; 1228 1229 read_lock(&em_tree->lock); 1230 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1231 if (em) { 1232 /* 1233 * if block start isn't an actual block number then find the 1234 * first block in this inode and use that as a hint. If that 1235 * block is also bogus then just don't worry about it. 1236 */ 1237 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1238 btrfs_free_extent_map(em); 1239 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1240 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1241 alloc_hint = btrfs_extent_map_block_start(em); 1242 if (em) 1243 btrfs_free_extent_map(em); 1244 } else { 1245 alloc_hint = btrfs_extent_map_block_start(em); 1246 btrfs_free_extent_map(em); 1247 } 1248 } 1249 read_unlock(&em_tree->lock); 1250 1251 return alloc_hint; 1252 } 1253 1254 /* 1255 * when extent_io.c finds a delayed allocation range in the file, 1256 * the call backs end up in this code. The basic idea is to 1257 * allocate extents on disk for the range, and create ordered data structs 1258 * in ram to track those extents. 1259 * 1260 * locked_folio is the folio that writepage had locked already. We use 1261 * it to make sure we don't do extra locks or unlocks. 1262 * 1263 * When this function fails, it unlocks all folios except @locked_folio. 1264 * 1265 * When this function successfully creates an inline extent, it returns 1 and 1266 * unlocks all folios including locked_folio and starts I/O on them. 1267 * (In reality inline extents are limited to a single block, so locked_folio is 1268 * the only folio handled anyway). 1269 * 1270 * When this function succeed and creates a normal extent, the folio locking 1271 * status depends on the passed in flags: 1272 * 1273 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked. 1274 * - Else all folios except for @locked_folio are unlocked. 1275 * 1276 * When a failure happens in the second or later iteration of the 1277 * while-loop, the ordered extents created in previous iterations are cleaned up. 1278 */ 1279 static noinline int cow_file_range(struct btrfs_inode *inode, 1280 struct folio *locked_folio, u64 start, 1281 u64 end, u64 *done_offset, 1282 unsigned long flags) 1283 { 1284 struct btrfs_root *root = inode->root; 1285 struct btrfs_fs_info *fs_info = root->fs_info; 1286 struct extent_state *cached = NULL; 1287 u64 alloc_hint = 0; 1288 u64 orig_start = start; 1289 u64 num_bytes; 1290 u64 cur_alloc_size = 0; 1291 u64 min_alloc_size; 1292 u64 blocksize = fs_info->sectorsize; 1293 struct btrfs_key ins; 1294 struct extent_map *em; 1295 unsigned clear_bits; 1296 unsigned long page_ops; 1297 int ret = 0; 1298 1299 if (unlikely(btrfs_is_shutdown(fs_info))) { 1300 ret = -EIO; 1301 goto out_unlock; 1302 } 1303 1304 if (btrfs_is_free_space_inode(inode)) { 1305 ret = -EINVAL; 1306 goto out_unlock; 1307 } 1308 1309 num_bytes = ALIGN(end - start + 1, blocksize); 1310 num_bytes = max(blocksize, num_bytes); 1311 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1312 1313 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1314 1315 if (!(flags & COW_FILE_RANGE_NO_INLINE)) { 1316 /* lets try to make an inline extent */ 1317 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1318 BTRFS_COMPRESS_NONE, NULL, false); 1319 if (ret <= 0) { 1320 /* 1321 * We succeeded, return 1 so the caller knows we're done 1322 * with this page and already handled the IO. 1323 * 1324 * If there was an error then cow_file_range_inline() has 1325 * already done the cleanup. 1326 */ 1327 if (ret == 0) 1328 ret = 1; 1329 goto done; 1330 } 1331 } 1332 1333 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1334 1335 /* 1336 * We're not doing compressed IO, don't unlock the first page (which 1337 * the caller expects to stay locked), don't clear any dirty bits and 1338 * don't set any writeback bits. 1339 * 1340 * Do set the Ordered (Private2) bit so we know this page was properly 1341 * setup for writepage. 1342 */ 1343 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK); 1344 page_ops |= PAGE_SET_ORDERED; 1345 1346 /* 1347 * Relocation relies on the relocated extents to have exactly the same 1348 * size as the original extents. Normally writeback for relocation data 1349 * extents follows a NOCOW path because relocation preallocates the 1350 * extents. However, due to an operation such as scrub turning a block 1351 * group to RO mode, it may fallback to COW mode, so we must make sure 1352 * an extent allocated during COW has exactly the requested size and can 1353 * not be split into smaller extents, otherwise relocation breaks and 1354 * fails during the stage where it updates the bytenr of file extent 1355 * items. 1356 */ 1357 if (btrfs_is_data_reloc_root(root)) 1358 min_alloc_size = num_bytes; 1359 else 1360 min_alloc_size = fs_info->sectorsize; 1361 1362 while (num_bytes > 0) { 1363 struct btrfs_ordered_extent *ordered; 1364 struct btrfs_file_extent file_extent; 1365 1366 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1367 min_alloc_size, 0, alloc_hint, 1368 &ins, true, true); 1369 if (ret == -EAGAIN) { 1370 /* 1371 * btrfs_reserve_extent only returns -EAGAIN for zoned 1372 * file systems, which is an indication that there are 1373 * no active zones to allocate from at the moment. 1374 * 1375 * If this is the first loop iteration, wait for at 1376 * least one zone to finish before retrying the 1377 * allocation. Otherwise ask the caller to write out 1378 * the already allocated blocks before coming back to 1379 * us, or return -ENOSPC if it can't handle retries. 1380 */ 1381 ASSERT(btrfs_is_zoned(fs_info)); 1382 if (start == orig_start) { 1383 wait_on_bit_io(&inode->root->fs_info->flags, 1384 BTRFS_FS_NEED_ZONE_FINISH, 1385 TASK_UNINTERRUPTIBLE); 1386 continue; 1387 } 1388 if (done_offset) { 1389 /* 1390 * Move @end to the end of the processed range, 1391 * and exit the loop to unlock the processed extents. 1392 */ 1393 end = start - 1; 1394 ret = 0; 1395 break; 1396 } 1397 ret = -ENOSPC; 1398 } 1399 if (ret < 0) 1400 goto out_unlock; 1401 cur_alloc_size = ins.offset; 1402 1403 file_extent.disk_bytenr = ins.objectid; 1404 file_extent.disk_num_bytes = ins.offset; 1405 file_extent.num_bytes = ins.offset; 1406 file_extent.ram_bytes = ins.offset; 1407 file_extent.offset = 0; 1408 file_extent.compression = BTRFS_COMPRESS_NONE; 1409 1410 /* 1411 * Locked range will be released either during error clean up or 1412 * after the whole range is finished. 1413 */ 1414 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1415 &cached); 1416 1417 em = btrfs_create_io_em(inode, start, &file_extent, 1418 BTRFS_ORDERED_REGULAR); 1419 if (IS_ERR(em)) { 1420 btrfs_unlock_extent(&inode->io_tree, start, 1421 start + cur_alloc_size - 1, &cached); 1422 ret = PTR_ERR(em); 1423 goto out_reserve; 1424 } 1425 btrfs_free_extent_map(em); 1426 1427 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1428 1U << BTRFS_ORDERED_REGULAR); 1429 if (IS_ERR(ordered)) { 1430 btrfs_unlock_extent(&inode->io_tree, start, 1431 start + cur_alloc_size - 1, &cached); 1432 ret = PTR_ERR(ordered); 1433 goto out_drop_extent_cache; 1434 } 1435 1436 if (btrfs_is_data_reloc_root(root)) { 1437 ret = btrfs_reloc_clone_csums(ordered); 1438 1439 /* 1440 * Only drop cache here, and process as normal. 1441 * 1442 * We must not allow extent_clear_unlock_delalloc() 1443 * at out_unlock label to free meta of this ordered 1444 * extent, as its meta should be freed by 1445 * btrfs_finish_ordered_io(). 1446 * 1447 * So we must continue until @start is increased to 1448 * skip current ordered extent. 1449 */ 1450 if (ret) 1451 btrfs_drop_extent_map_range(inode, start, 1452 start + cur_alloc_size - 1, 1453 false); 1454 } 1455 btrfs_put_ordered_extent(ordered); 1456 1457 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1458 1459 if (num_bytes < cur_alloc_size) 1460 num_bytes = 0; 1461 else 1462 num_bytes -= cur_alloc_size; 1463 alloc_hint = ins.objectid + ins.offset; 1464 start += cur_alloc_size; 1465 cur_alloc_size = 0; 1466 1467 /* 1468 * btrfs_reloc_clone_csums() error, since start is increased 1469 * extent_clear_unlock_delalloc() at out_unlock label won't 1470 * free metadata of current ordered extent, we're OK to exit. 1471 */ 1472 if (ret) 1473 goto out_unlock; 1474 } 1475 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1476 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1477 done: 1478 if (done_offset) 1479 *done_offset = end; 1480 return ret; 1481 1482 out_drop_extent_cache: 1483 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1484 out_reserve: 1485 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1486 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1487 out_unlock: 1488 /* 1489 * Now, we have three regions to clean up: 1490 * 1491 * |-------(1)----|---(2)---|-------------(3)----------| 1492 * `- orig_start `- start `- start + cur_alloc_size `- end 1493 * 1494 * We process each region below. 1495 */ 1496 1497 /* 1498 * For the range (1). We have already instantiated the ordered extents 1499 * for this region, thus we need to cleanup those ordered extents. 1500 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1501 * are also handled by the ordered extents cleanup. 1502 * 1503 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1504 * finish the writeback of the involved folios, which will be never submitted. 1505 */ 1506 if (orig_start < start) { 1507 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1508 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1509 1510 if (!locked_folio) 1511 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1512 1513 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1514 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1515 locked_folio, NULL, clear_bits, page_ops); 1516 } 1517 1518 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1519 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1520 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1521 1522 /* 1523 * For the range (2). If we reserved an extent for our delalloc range 1524 * (or a subrange) and failed to create the respective ordered extent, 1525 * then it means that when we reserved the extent we decremented the 1526 * extent's size from the data space_info's bytes_may_use counter and 1527 * incremented the space_info's bytes_reserved counter by the same 1528 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1529 * to decrement again the data space_info's bytes_may_use counter, 1530 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1531 */ 1532 if (cur_alloc_size) { 1533 extent_clear_unlock_delalloc(inode, start, 1534 start + cur_alloc_size - 1, 1535 locked_folio, &cached, clear_bits, 1536 page_ops); 1537 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1538 } 1539 1540 /* 1541 * For the range (3). We never touched the region. In addition to the 1542 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1543 * space_info's bytes_may_use counter, reserved in 1544 * btrfs_check_data_free_space(). 1545 */ 1546 if (start + cur_alloc_size < end) { 1547 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1548 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1549 end, locked_folio, 1550 &cached, clear_bits, page_ops); 1551 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1552 end - start - cur_alloc_size + 1, NULL); 1553 } 1554 btrfs_err(fs_info, 1555 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d", 1556 __func__, btrfs_root_id(inode->root), 1557 btrfs_ino(inode), orig_start, end + 1 - orig_start, 1558 start, cur_alloc_size, ret); 1559 return ret; 1560 } 1561 1562 /* 1563 * Phase two of compressed writeback. This is the ordered portion of the code, 1564 * which only gets called in the order the work was queued. We walk all the 1565 * async extents created by compress_file_range and send them down to the disk. 1566 * 1567 * If called with @do_free == true then it'll try to finish the work and free 1568 * the work struct eventually. 1569 */ 1570 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1571 { 1572 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1573 work); 1574 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1575 struct async_extent *async_extent; 1576 unsigned long nr_pages; 1577 u64 alloc_hint = 0; 1578 1579 if (do_free) { 1580 struct async_cow *async_cow; 1581 1582 btrfs_add_delayed_iput(async_chunk->inode); 1583 if (async_chunk->blkcg_css) 1584 css_put(async_chunk->blkcg_css); 1585 1586 async_cow = async_chunk->async_cow; 1587 if (atomic_dec_and_test(&async_cow->num_chunks)) 1588 kvfree(async_cow); 1589 return; 1590 } 1591 1592 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1593 PAGE_SHIFT; 1594 1595 while (!list_empty(&async_chunk->extents)) { 1596 async_extent = list_first_entry(&async_chunk->extents, 1597 struct async_extent, list); 1598 list_del(&async_extent->list); 1599 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1600 } 1601 1602 /* atomic_sub_return implies a barrier */ 1603 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1604 5 * SZ_1M) 1605 cond_wake_up_nomb(&fs_info->async_submit_wait); 1606 } 1607 1608 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1609 struct folio *locked_folio, u64 start, 1610 u64 end, struct writeback_control *wbc) 1611 { 1612 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1613 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1614 struct async_cow *ctx; 1615 struct async_chunk *async_chunk; 1616 unsigned long nr_pages; 1617 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1618 int i; 1619 unsigned nofs_flag; 1620 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1621 1622 nofs_flag = memalloc_nofs_save(); 1623 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1624 memalloc_nofs_restore(nofs_flag); 1625 if (!ctx) 1626 return false; 1627 1628 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1629 1630 async_chunk = ctx->chunks; 1631 atomic_set(&ctx->num_chunks, num_chunks); 1632 1633 for (i = 0; i < num_chunks; i++) { 1634 u64 cur_end = min(end, start + SZ_512K - 1); 1635 1636 /* 1637 * igrab is called higher up in the call chain, take only the 1638 * lightweight reference for the callback lifetime 1639 */ 1640 ihold(&inode->vfs_inode); 1641 async_chunk[i].async_cow = ctx; 1642 async_chunk[i].inode = inode; 1643 async_chunk[i].start = start; 1644 async_chunk[i].end = cur_end; 1645 async_chunk[i].write_flags = write_flags; 1646 INIT_LIST_HEAD(&async_chunk[i].extents); 1647 1648 /* 1649 * The locked_folio comes all the way from writepage and its 1650 * the original folio we were actually given. As we spread 1651 * this large delalloc region across multiple async_chunk 1652 * structs, only the first struct needs a pointer to 1653 * locked_folio. 1654 * 1655 * This way we don't need racey decisions about who is supposed 1656 * to unlock it. 1657 */ 1658 if (locked_folio) { 1659 /* 1660 * Depending on the compressibility, the pages might or 1661 * might not go through async. We want all of them to 1662 * be accounted against wbc once. Let's do it here 1663 * before the paths diverge. wbc accounting is used 1664 * only for foreign writeback detection and doesn't 1665 * need full accuracy. Just account the whole thing 1666 * against the first page. 1667 */ 1668 wbc_account_cgroup_owner(wbc, locked_folio, 1669 cur_end - start); 1670 async_chunk[i].locked_folio = locked_folio; 1671 locked_folio = NULL; 1672 } else { 1673 async_chunk[i].locked_folio = NULL; 1674 } 1675 1676 if (blkcg_css != blkcg_root_css) { 1677 css_get(blkcg_css); 1678 async_chunk[i].blkcg_css = blkcg_css; 1679 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1680 } else { 1681 async_chunk[i].blkcg_css = NULL; 1682 } 1683 1684 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1685 submit_compressed_extents); 1686 1687 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1688 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1689 1690 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1691 1692 start = cur_end + 1; 1693 } 1694 return true; 1695 } 1696 1697 /* 1698 * Run the delalloc range from start to end, and write back any dirty pages 1699 * covered by the range. 1700 */ 1701 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1702 struct folio *locked_folio, u64 start, 1703 u64 end, struct writeback_control *wbc, 1704 bool pages_dirty) 1705 { 1706 u64 done_offset = end; 1707 int ret; 1708 1709 while (start <= end) { 1710 ret = cow_file_range(inode, locked_folio, start, end, 1711 &done_offset, COW_FILE_RANGE_KEEP_LOCKED); 1712 if (ret) 1713 return ret; 1714 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1715 start, done_offset, wbc, pages_dirty); 1716 start = done_offset + 1; 1717 } 1718 1719 return 1; 1720 } 1721 1722 static int fallback_to_cow(struct btrfs_inode *inode, 1723 struct folio *locked_folio, const u64 start, 1724 const u64 end) 1725 { 1726 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1727 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1728 const u64 range_bytes = end + 1 - start; 1729 struct extent_io_tree *io_tree = &inode->io_tree; 1730 struct extent_state *cached_state = NULL; 1731 u64 range_start = start; 1732 u64 count; 1733 int ret; 1734 1735 /* 1736 * If EXTENT_NORESERVE is set it means that when the buffered write was 1737 * made we had not enough available data space and therefore we did not 1738 * reserve data space for it, since we though we could do NOCOW for the 1739 * respective file range (either there is prealloc extent or the inode 1740 * has the NOCOW bit set). 1741 * 1742 * However when we need to fallback to COW mode (because for example the 1743 * block group for the corresponding extent was turned to RO mode by a 1744 * scrub or relocation) we need to do the following: 1745 * 1746 * 1) We increment the bytes_may_use counter of the data space info. 1747 * If COW succeeds, it allocates a new data extent and after doing 1748 * that it decrements the space info's bytes_may_use counter and 1749 * increments its bytes_reserved counter by the same amount (we do 1750 * this at btrfs_add_reserved_bytes()). So we need to increment the 1751 * bytes_may_use counter to compensate (when space is reserved at 1752 * buffered write time, the bytes_may_use counter is incremented); 1753 * 1754 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1755 * that if the COW path fails for any reason, it decrements (through 1756 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1757 * data space info, which we incremented in the step above. 1758 * 1759 * If we need to fallback to cow and the inode corresponds to a free 1760 * space cache inode or an inode of the data relocation tree, we must 1761 * also increment bytes_may_use of the data space_info for the same 1762 * reason. Space caches and relocated data extents always get a prealloc 1763 * extent for them, however scrub or balance may have set the block 1764 * group that contains that extent to RO mode and therefore force COW 1765 * when starting writeback. 1766 */ 1767 btrfs_lock_extent(io_tree, start, end, &cached_state); 1768 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1769 EXTENT_NORESERVE, 0, NULL); 1770 if (count > 0 || is_space_ino || is_reloc_ino) { 1771 u64 bytes = count; 1772 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1773 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1774 1775 if (is_space_ino || is_reloc_ino) 1776 bytes = range_bytes; 1777 1778 spin_lock(&sinfo->lock); 1779 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1780 spin_unlock(&sinfo->lock); 1781 1782 if (count > 0) 1783 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1784 &cached_state); 1785 } 1786 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1787 1788 /* 1789 * Don't try to create inline extents, as a mix of inline extent that 1790 * is written out and unlocked directly and a normal NOCOW extent 1791 * doesn't work. 1792 * 1793 * And here we do not unlock the folio after a successful run. 1794 * The folios will be unlocked after everything is finished, or by error handling. 1795 * 1796 * This is to ensure error handling won't need to clear dirty/ordered flags without 1797 * a locked folio, which can race with writeback. 1798 */ 1799 ret = cow_file_range(inode, locked_folio, start, end, NULL, 1800 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED); 1801 ASSERT(ret != 1); 1802 return ret; 1803 } 1804 1805 struct can_nocow_file_extent_args { 1806 /* Input fields. */ 1807 1808 /* Start file offset of the range we want to NOCOW. */ 1809 u64 start; 1810 /* End file offset (inclusive) of the range we want to NOCOW. */ 1811 u64 end; 1812 bool writeback_path; 1813 /* 1814 * Free the path passed to can_nocow_file_extent() once it's not needed 1815 * anymore. 1816 */ 1817 bool free_path; 1818 1819 /* 1820 * Output fields. Only set when can_nocow_file_extent() returns 1. 1821 * The expected file extent for the NOCOW write. 1822 */ 1823 struct btrfs_file_extent file_extent; 1824 }; 1825 1826 /* 1827 * Check if we can NOCOW the file extent that the path points to. 1828 * This function may return with the path released, so the caller should check 1829 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1830 * 1831 * Returns: < 0 on error 1832 * 0 if we can not NOCOW 1833 * 1 if we can NOCOW 1834 */ 1835 static int can_nocow_file_extent(struct btrfs_path *path, 1836 struct btrfs_key *key, 1837 struct btrfs_inode *inode, 1838 struct can_nocow_file_extent_args *args) 1839 { 1840 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1841 struct extent_buffer *leaf = path->nodes[0]; 1842 struct btrfs_root *root = inode->root; 1843 struct btrfs_file_extent_item *fi; 1844 struct btrfs_root *csum_root; 1845 u64 io_start; 1846 u64 extent_end; 1847 u8 extent_type; 1848 int can_nocow = 0; 1849 int ret = 0; 1850 bool nowait = path->nowait; 1851 1852 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1853 extent_type = btrfs_file_extent_type(leaf, fi); 1854 1855 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1856 goto out; 1857 1858 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1859 extent_type == BTRFS_FILE_EXTENT_REG) 1860 goto out; 1861 1862 /* 1863 * If the extent was created before the generation where the last snapshot 1864 * for its subvolume was created, then this implies the extent is shared, 1865 * hence we must COW. 1866 */ 1867 if (btrfs_file_extent_generation(leaf, fi) <= 1868 btrfs_root_last_snapshot(&root->root_item)) 1869 goto out; 1870 1871 /* An explicit hole, must COW. */ 1872 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1873 goto out; 1874 1875 /* Compressed/encrypted/encoded extents must be COWed. */ 1876 if (btrfs_file_extent_compression(leaf, fi) || 1877 btrfs_file_extent_encryption(leaf, fi) || 1878 btrfs_file_extent_other_encoding(leaf, fi)) 1879 goto out; 1880 1881 extent_end = btrfs_file_extent_end(path); 1882 1883 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1884 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1885 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1886 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1887 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1888 1889 /* 1890 * The following checks can be expensive, as they need to take other 1891 * locks and do btree or rbtree searches, so release the path to avoid 1892 * blocking other tasks for too long. 1893 */ 1894 btrfs_release_path(path); 1895 1896 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1897 args->file_extent.disk_bytenr, path); 1898 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1899 if (ret != 0) 1900 goto out; 1901 1902 if (args->free_path) { 1903 /* 1904 * We don't need the path anymore, plus through the 1905 * btrfs_lookup_csums_list() call below we will end up allocating 1906 * another path. So free the path to avoid unnecessary extra 1907 * memory usage. 1908 */ 1909 btrfs_free_path(path); 1910 path = NULL; 1911 } 1912 1913 /* If there are pending snapshots for this root, we must COW. */ 1914 if (args->writeback_path && !is_freespace_inode && 1915 atomic_read(&root->snapshot_force_cow)) 1916 goto out; 1917 1918 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1919 args->file_extent.offset += args->start - key->offset; 1920 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1921 1922 /* 1923 * Force COW if csums exist in the range. This ensures that csums for a 1924 * given extent are either valid or do not exist. 1925 */ 1926 1927 csum_root = btrfs_csum_root(root->fs_info, io_start); 1928 ret = btrfs_lookup_csums_list(csum_root, io_start, 1929 io_start + args->file_extent.num_bytes - 1, 1930 NULL, nowait); 1931 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1932 if (ret != 0) 1933 goto out; 1934 1935 can_nocow = 1; 1936 out: 1937 if (args->free_path && path) 1938 btrfs_free_path(path); 1939 1940 return ret < 0 ? ret : can_nocow; 1941 } 1942 1943 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1944 struct extent_state **cached, 1945 struct can_nocow_file_extent_args *nocow_args, 1946 u64 file_pos, bool is_prealloc) 1947 { 1948 struct btrfs_ordered_extent *ordered; 1949 const u64 len = nocow_args->file_extent.num_bytes; 1950 const u64 end = file_pos + len - 1; 1951 int ret = 0; 1952 1953 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1954 1955 if (is_prealloc) { 1956 struct extent_map *em; 1957 1958 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1959 BTRFS_ORDERED_PREALLOC); 1960 if (IS_ERR(em)) { 1961 ret = PTR_ERR(em); 1962 goto error; 1963 } 1964 btrfs_free_extent_map(em); 1965 } 1966 1967 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1968 is_prealloc 1969 ? (1U << BTRFS_ORDERED_PREALLOC) 1970 : (1U << BTRFS_ORDERED_NOCOW)); 1971 if (IS_ERR(ordered)) { 1972 if (is_prealloc) 1973 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1974 ret = PTR_ERR(ordered); 1975 goto error; 1976 } 1977 1978 if (btrfs_is_data_reloc_root(inode->root)) 1979 /* 1980 * Errors are handled later, as we must prevent 1981 * extent_clear_unlock_delalloc() in error handler from freeing 1982 * metadata of the created ordered extent. 1983 */ 1984 ret = btrfs_reloc_clone_csums(ordered); 1985 btrfs_put_ordered_extent(ordered); 1986 1987 if (ret < 0) 1988 goto error; 1989 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 1990 EXTENT_LOCKED | EXTENT_DELALLOC | 1991 EXTENT_CLEAR_DATA_RESV, 1992 PAGE_SET_ORDERED); 1993 return ret; 1994 1995 error: 1996 btrfs_cleanup_ordered_extents(inode, file_pos, len); 1997 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 1998 EXTENT_LOCKED | EXTENT_DELALLOC | 1999 EXTENT_CLEAR_DATA_RESV, 2000 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2001 PAGE_END_WRITEBACK); 2002 btrfs_err(inode->root->fs_info, 2003 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d", 2004 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2005 file_pos, len, ret); 2006 return ret; 2007 } 2008 2009 /* 2010 * When nocow writeback calls back. This checks for snapshots or COW copies 2011 * of the extents that exist in the file, and COWs the file as required. 2012 * 2013 * If no cow copies or snapshots exist, we write directly to the existing 2014 * blocks on disk 2015 */ 2016 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2017 struct folio *locked_folio, 2018 const u64 start, const u64 end) 2019 { 2020 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2021 struct btrfs_root *root = inode->root; 2022 struct btrfs_path *path = NULL; 2023 u64 cow_start = (u64)-1; 2024 /* 2025 * If not 0, represents the inclusive end of the last fallback_to_cow() 2026 * range. Only for error handling. 2027 * 2028 * The same for nocow_end, it's to avoid double cleaning up the range 2029 * already cleaned by nocow_one_range(). 2030 */ 2031 u64 cow_end = 0; 2032 u64 nocow_end = 0; 2033 u64 cur_offset = start; 2034 int ret; 2035 bool check_prev = true; 2036 u64 ino = btrfs_ino(inode); 2037 struct can_nocow_file_extent_args nocow_args = { 0 }; 2038 /* The range that has ordered extent(s). */ 2039 u64 oe_cleanup_start; 2040 u64 oe_cleanup_len = 0; 2041 /* The range that is untouched. */ 2042 u64 untouched_start; 2043 u64 untouched_len = 0; 2044 2045 /* 2046 * Normally on a zoned device we're only doing COW writes, but in case 2047 * of relocation on a zoned filesystem serializes I/O so that we're only 2048 * writing sequentially and can end up here as well. 2049 */ 2050 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2051 2052 if (unlikely(btrfs_is_shutdown(fs_info))) { 2053 ret = -EIO; 2054 goto error; 2055 } 2056 path = btrfs_alloc_path(); 2057 if (!path) { 2058 ret = -ENOMEM; 2059 goto error; 2060 } 2061 2062 nocow_args.end = end; 2063 nocow_args.writeback_path = true; 2064 2065 while (cur_offset <= end) { 2066 struct btrfs_block_group *nocow_bg = NULL; 2067 struct btrfs_key found_key; 2068 struct btrfs_file_extent_item *fi; 2069 struct extent_buffer *leaf; 2070 struct extent_state *cached_state = NULL; 2071 u64 extent_end; 2072 int extent_type; 2073 2074 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2075 cur_offset, 0); 2076 if (ret < 0) 2077 goto error; 2078 2079 /* 2080 * If there is no extent for our range when doing the initial 2081 * search, then go back to the previous slot as it will be the 2082 * one containing the search offset 2083 */ 2084 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2085 leaf = path->nodes[0]; 2086 btrfs_item_key_to_cpu(leaf, &found_key, 2087 path->slots[0] - 1); 2088 if (found_key.objectid == ino && 2089 found_key.type == BTRFS_EXTENT_DATA_KEY) 2090 path->slots[0]--; 2091 } 2092 check_prev = false; 2093 next_slot: 2094 /* Go to next leaf if we have exhausted the current one */ 2095 leaf = path->nodes[0]; 2096 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2097 ret = btrfs_next_leaf(root, path); 2098 if (ret < 0) 2099 goto error; 2100 if (ret > 0) 2101 break; 2102 leaf = path->nodes[0]; 2103 } 2104 2105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2106 2107 /* Didn't find anything for our INO */ 2108 if (found_key.objectid > ino) 2109 break; 2110 /* 2111 * Keep searching until we find an EXTENT_ITEM or there are no 2112 * more extents for this inode 2113 */ 2114 if (WARN_ON_ONCE(found_key.objectid < ino) || 2115 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2116 path->slots[0]++; 2117 goto next_slot; 2118 } 2119 2120 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2121 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2122 found_key.offset > end) 2123 break; 2124 2125 /* 2126 * If the found extent starts after requested offset, then 2127 * adjust cur_offset to be right before this extent begins. 2128 */ 2129 if (found_key.offset > cur_offset) { 2130 if (cow_start == (u64)-1) 2131 cow_start = cur_offset; 2132 cur_offset = found_key.offset; 2133 goto next_slot; 2134 } 2135 2136 /* 2137 * Found extent which begins before our range and potentially 2138 * intersect it 2139 */ 2140 fi = btrfs_item_ptr(leaf, path->slots[0], 2141 struct btrfs_file_extent_item); 2142 extent_type = btrfs_file_extent_type(leaf, fi); 2143 /* If this is triggered then we have a memory corruption. */ 2144 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2145 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2146 ret = -EUCLEAN; 2147 goto error; 2148 } 2149 extent_end = btrfs_file_extent_end(path); 2150 2151 /* 2152 * If the extent we got ends before our current offset, skip to 2153 * the next extent. 2154 */ 2155 if (extent_end <= cur_offset) { 2156 path->slots[0]++; 2157 goto next_slot; 2158 } 2159 2160 nocow_args.start = cur_offset; 2161 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2162 if (ret < 0) 2163 goto error; 2164 if (ret == 0) 2165 goto must_cow; 2166 2167 ret = 0; 2168 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2169 nocow_args.file_extent.disk_bytenr + 2170 nocow_args.file_extent.offset); 2171 if (!nocow_bg) { 2172 must_cow: 2173 /* 2174 * If we can't perform NOCOW writeback for the range, 2175 * then record the beginning of the range that needs to 2176 * be COWed. It will be written out before the next 2177 * NOCOW range if we find one, or when exiting this 2178 * loop. 2179 */ 2180 if (cow_start == (u64)-1) 2181 cow_start = cur_offset; 2182 cur_offset = extent_end; 2183 if (cur_offset > end) 2184 break; 2185 if (!path->nodes[0]) 2186 continue; 2187 path->slots[0]++; 2188 goto next_slot; 2189 } 2190 2191 /* 2192 * COW range from cow_start to found_key.offset - 1. As the key 2193 * will contain the beginning of the first extent that can be 2194 * NOCOW, following one which needs to be COW'ed 2195 */ 2196 if (cow_start != (u64)-1) { 2197 ret = fallback_to_cow(inode, locked_folio, cow_start, 2198 found_key.offset - 1); 2199 if (ret) { 2200 cow_end = found_key.offset - 1; 2201 btrfs_dec_nocow_writers(nocow_bg); 2202 goto error; 2203 } 2204 cow_start = (u64)-1; 2205 } 2206 2207 ret = nocow_one_range(inode, locked_folio, &cached_state, 2208 &nocow_args, cur_offset, 2209 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2210 btrfs_dec_nocow_writers(nocow_bg); 2211 if (ret < 0) { 2212 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2213 goto error; 2214 } 2215 cur_offset = extent_end; 2216 } 2217 btrfs_release_path(path); 2218 2219 if (cur_offset <= end && cow_start == (u64)-1) 2220 cow_start = cur_offset; 2221 2222 if (cow_start != (u64)-1) { 2223 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2224 if (ret) { 2225 cow_end = end; 2226 goto error; 2227 } 2228 cow_start = (u64)-1; 2229 } 2230 2231 /* 2232 * Everything is finished without an error, can unlock the folios now. 2233 * 2234 * No need to touch the io tree range nor set folio ordered flag, as 2235 * fallback_to_cow() and nocow_one_range() have already handled them. 2236 */ 2237 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK); 2238 2239 btrfs_free_path(path); 2240 return 0; 2241 2242 error: 2243 if (cow_start == (u64)-1) { 2244 /* 2245 * case a) 2246 * start cur_offset end 2247 * | OE cleanup | Untouched | 2248 * 2249 * We finished a fallback_to_cow() or nocow_one_range() call, 2250 * but failed to check the next range. 2251 * 2252 * or 2253 * start cur_offset nocow_end end 2254 * | OE cleanup | Skip | Untouched | 2255 * 2256 * nocow_one_range() failed, the range [cur_offset, nocow_end] is 2257 * already cleaned up. 2258 */ 2259 oe_cleanup_start = start; 2260 oe_cleanup_len = cur_offset - start; 2261 if (nocow_end) 2262 untouched_start = nocow_end + 1; 2263 else 2264 untouched_start = cur_offset; 2265 untouched_len = end + 1 - untouched_start; 2266 } else if (cow_start != (u64)-1 && cow_end == 0) { 2267 /* 2268 * case b) 2269 * start cow_start cur_offset end 2270 * | OE cleanup | Untouched | 2271 * 2272 * We got a range that needs COW, but before we hit the next NOCOW range, 2273 * thus [cow_start, cur_offset) doesn't yet have any OE. 2274 */ 2275 oe_cleanup_start = start; 2276 oe_cleanup_len = cow_start - start; 2277 untouched_start = cow_start; 2278 untouched_len = end + 1 - untouched_start; 2279 } else { 2280 /* 2281 * case c) 2282 * start cow_start cow_end end 2283 * | OE cleanup | Skip | Untouched | 2284 * 2285 * fallback_to_cow() failed, and fallback_to_cow() will do the 2286 * cleanup for its range, we shouldn't touch the range 2287 * [cow_start, cow_end]. 2288 */ 2289 ASSERT(cow_start != (u64)-1 && cow_end != 0); 2290 oe_cleanup_start = start; 2291 oe_cleanup_len = cow_start - start; 2292 untouched_start = cow_end + 1; 2293 untouched_len = end + 1 - untouched_start; 2294 } 2295 2296 if (oe_cleanup_len) { 2297 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1; 2298 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len); 2299 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end, 2300 locked_folio, NULL, 2301 EXTENT_LOCKED | EXTENT_DELALLOC, 2302 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2303 PAGE_END_WRITEBACK); 2304 } 2305 2306 if (untouched_len) { 2307 struct extent_state *cached = NULL; 2308 const u64 untouched_end = untouched_start + untouched_len - 1; 2309 2310 /* 2311 * We need to lock the extent here because we're clearing DELALLOC and 2312 * we're not locked at this point. 2313 */ 2314 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached); 2315 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end, 2316 locked_folio, &cached, 2317 EXTENT_LOCKED | EXTENT_DELALLOC | 2318 EXTENT_DEFRAG | 2319 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2320 PAGE_START_WRITEBACK | 2321 PAGE_END_WRITEBACK); 2322 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL); 2323 } 2324 btrfs_free_path(path); 2325 btrfs_err(fs_info, 2326 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d", 2327 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2328 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len, 2329 untouched_start, untouched_len, ret); 2330 return ret; 2331 } 2332 2333 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2334 { 2335 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2336 if (inode->defrag_bytes && 2337 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2338 return false; 2339 return true; 2340 } 2341 return false; 2342 } 2343 2344 /* 2345 * Function to process delayed allocation (create CoW) for ranges which are 2346 * being touched for the first time. 2347 */ 2348 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2349 u64 start, u64 end, struct writeback_control *wbc) 2350 { 2351 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2352 int ret; 2353 2354 /* 2355 * The range must cover part of the @locked_folio, or a return of 1 2356 * can confuse the caller. 2357 */ 2358 ASSERT(!(end <= folio_pos(locked_folio) || 2359 start >= folio_next_pos(locked_folio))); 2360 2361 if (should_nocow(inode, start, end)) { 2362 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2363 return ret; 2364 } 2365 2366 if (btrfs_inode_can_compress(inode) && 2367 inode_need_compress(inode, start, end) && 2368 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2369 return 1; 2370 2371 if (zoned) 2372 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2373 true); 2374 else 2375 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0); 2376 return ret; 2377 } 2378 2379 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2380 struct extent_state *orig, u64 split) 2381 { 2382 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2383 u64 size; 2384 2385 lockdep_assert_held(&inode->io_tree.lock); 2386 2387 /* not delalloc, ignore it */ 2388 if (!(orig->state & EXTENT_DELALLOC)) 2389 return; 2390 2391 size = orig->end - orig->start + 1; 2392 if (size > fs_info->max_extent_size) { 2393 u32 num_extents; 2394 u64 new_size; 2395 2396 /* 2397 * See the explanation in btrfs_merge_delalloc_extent, the same 2398 * applies here, just in reverse. 2399 */ 2400 new_size = orig->end - split + 1; 2401 num_extents = count_max_extents(fs_info, new_size); 2402 new_size = split - orig->start; 2403 num_extents += count_max_extents(fs_info, new_size); 2404 if (count_max_extents(fs_info, size) >= num_extents) 2405 return; 2406 } 2407 2408 spin_lock(&inode->lock); 2409 btrfs_mod_outstanding_extents(inode, 1); 2410 spin_unlock(&inode->lock); 2411 } 2412 2413 /* 2414 * Handle merged delayed allocation extents so we can keep track of new extents 2415 * that are just merged onto old extents, such as when we are doing sequential 2416 * writes, so we can properly account for the metadata space we'll need. 2417 */ 2418 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2419 struct extent_state *other) 2420 { 2421 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2422 u64 new_size, old_size; 2423 u32 num_extents; 2424 2425 lockdep_assert_held(&inode->io_tree.lock); 2426 2427 /* not delalloc, ignore it */ 2428 if (!(other->state & EXTENT_DELALLOC)) 2429 return; 2430 2431 if (new->start > other->start) 2432 new_size = new->end - other->start + 1; 2433 else 2434 new_size = other->end - new->start + 1; 2435 2436 /* we're not bigger than the max, unreserve the space and go */ 2437 if (new_size <= fs_info->max_extent_size) { 2438 spin_lock(&inode->lock); 2439 btrfs_mod_outstanding_extents(inode, -1); 2440 spin_unlock(&inode->lock); 2441 return; 2442 } 2443 2444 /* 2445 * We have to add up either side to figure out how many extents were 2446 * accounted for before we merged into one big extent. If the number of 2447 * extents we accounted for is <= the amount we need for the new range 2448 * then we can return, otherwise drop. Think of it like this 2449 * 2450 * [ 4k][MAX_SIZE] 2451 * 2452 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2453 * need 2 outstanding extents, on one side we have 1 and the other side 2454 * we have 1 so they are == and we can return. But in this case 2455 * 2456 * [MAX_SIZE+4k][MAX_SIZE+4k] 2457 * 2458 * Each range on their own accounts for 2 extents, but merged together 2459 * they are only 3 extents worth of accounting, so we need to drop in 2460 * this case. 2461 */ 2462 old_size = other->end - other->start + 1; 2463 num_extents = count_max_extents(fs_info, old_size); 2464 old_size = new->end - new->start + 1; 2465 num_extents += count_max_extents(fs_info, old_size); 2466 if (count_max_extents(fs_info, new_size) >= num_extents) 2467 return; 2468 2469 spin_lock(&inode->lock); 2470 btrfs_mod_outstanding_extents(inode, -1); 2471 spin_unlock(&inode->lock); 2472 } 2473 2474 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2475 { 2476 struct btrfs_root *root = inode->root; 2477 struct btrfs_fs_info *fs_info = root->fs_info; 2478 2479 spin_lock(&root->delalloc_lock); 2480 ASSERT(list_empty(&inode->delalloc_inodes)); 2481 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2482 root->nr_delalloc_inodes++; 2483 if (root->nr_delalloc_inodes == 1) { 2484 spin_lock(&fs_info->delalloc_root_lock); 2485 ASSERT(list_empty(&root->delalloc_root)); 2486 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2487 spin_unlock(&fs_info->delalloc_root_lock); 2488 } 2489 spin_unlock(&root->delalloc_lock); 2490 } 2491 2492 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2493 { 2494 struct btrfs_root *root = inode->root; 2495 struct btrfs_fs_info *fs_info = root->fs_info; 2496 2497 lockdep_assert_held(&root->delalloc_lock); 2498 2499 /* 2500 * We may be called after the inode was already deleted from the list, 2501 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2502 * and then later through btrfs_clear_delalloc_extent() while the inode 2503 * still has ->delalloc_bytes > 0. 2504 */ 2505 if (!list_empty(&inode->delalloc_inodes)) { 2506 list_del_init(&inode->delalloc_inodes); 2507 root->nr_delalloc_inodes--; 2508 if (!root->nr_delalloc_inodes) { 2509 ASSERT(list_empty(&root->delalloc_inodes)); 2510 spin_lock(&fs_info->delalloc_root_lock); 2511 ASSERT(!list_empty(&root->delalloc_root)); 2512 list_del_init(&root->delalloc_root); 2513 spin_unlock(&fs_info->delalloc_root_lock); 2514 } 2515 } 2516 } 2517 2518 /* 2519 * Properly track delayed allocation bytes in the inode and to maintain the 2520 * list of inodes that have pending delalloc work to be done. 2521 */ 2522 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2523 u32 bits) 2524 { 2525 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2526 2527 lockdep_assert_held(&inode->io_tree.lock); 2528 2529 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2530 WARN_ON(1); 2531 /* 2532 * set_bit and clear bit hooks normally require _irqsave/restore 2533 * but in this case, we are only testing for the DELALLOC 2534 * bit, which is only set or cleared with irqs on 2535 */ 2536 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2537 u64 len = state->end + 1 - state->start; 2538 u64 prev_delalloc_bytes; 2539 u32 num_extents = count_max_extents(fs_info, len); 2540 2541 spin_lock(&inode->lock); 2542 btrfs_mod_outstanding_extents(inode, num_extents); 2543 spin_unlock(&inode->lock); 2544 2545 /* For sanity tests */ 2546 if (btrfs_is_testing(fs_info)) 2547 return; 2548 2549 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2550 fs_info->delalloc_batch); 2551 spin_lock(&inode->lock); 2552 prev_delalloc_bytes = inode->delalloc_bytes; 2553 inode->delalloc_bytes += len; 2554 if (bits & EXTENT_DEFRAG) 2555 inode->defrag_bytes += len; 2556 spin_unlock(&inode->lock); 2557 2558 /* 2559 * We don't need to be under the protection of the inode's lock, 2560 * because we are called while holding the inode's io_tree lock 2561 * and are therefore protected against concurrent calls of this 2562 * function and btrfs_clear_delalloc_extent(). 2563 */ 2564 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2565 btrfs_add_delalloc_inode(inode); 2566 } 2567 2568 if (!(state->state & EXTENT_DELALLOC_NEW) && 2569 (bits & EXTENT_DELALLOC_NEW)) { 2570 spin_lock(&inode->lock); 2571 inode->new_delalloc_bytes += state->end + 1 - state->start; 2572 spin_unlock(&inode->lock); 2573 } 2574 } 2575 2576 /* 2577 * Once a range is no longer delalloc this function ensures that proper 2578 * accounting happens. 2579 */ 2580 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2581 struct extent_state *state, u32 bits) 2582 { 2583 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2584 u64 len = state->end + 1 - state->start; 2585 u32 num_extents = count_max_extents(fs_info, len); 2586 2587 lockdep_assert_held(&inode->io_tree.lock); 2588 2589 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2590 spin_lock(&inode->lock); 2591 inode->defrag_bytes -= len; 2592 spin_unlock(&inode->lock); 2593 } 2594 2595 /* 2596 * set_bit and clear bit hooks normally require _irqsave/restore 2597 * but in this case, we are only testing for the DELALLOC 2598 * bit, which is only set or cleared with irqs on 2599 */ 2600 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2601 struct btrfs_root *root = inode->root; 2602 u64 new_delalloc_bytes; 2603 2604 spin_lock(&inode->lock); 2605 btrfs_mod_outstanding_extents(inode, -num_extents); 2606 spin_unlock(&inode->lock); 2607 2608 /* 2609 * We don't reserve metadata space for space cache inodes so we 2610 * don't need to call delalloc_release_metadata if there is an 2611 * error. 2612 */ 2613 if (bits & EXTENT_CLEAR_META_RESV && 2614 root != fs_info->tree_root) 2615 btrfs_delalloc_release_metadata(inode, len, true); 2616 2617 /* For sanity tests. */ 2618 if (btrfs_is_testing(fs_info)) 2619 return; 2620 2621 if (!btrfs_is_data_reloc_root(root) && 2622 !btrfs_is_free_space_inode(inode) && 2623 !(state->state & EXTENT_NORESERVE) && 2624 (bits & EXTENT_CLEAR_DATA_RESV)) 2625 btrfs_free_reserved_data_space_noquota(inode, len); 2626 2627 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2628 fs_info->delalloc_batch); 2629 spin_lock(&inode->lock); 2630 inode->delalloc_bytes -= len; 2631 new_delalloc_bytes = inode->delalloc_bytes; 2632 spin_unlock(&inode->lock); 2633 2634 /* 2635 * We don't need to be under the protection of the inode's lock, 2636 * because we are called while holding the inode's io_tree lock 2637 * and are therefore protected against concurrent calls of this 2638 * function and btrfs_set_delalloc_extent(). 2639 */ 2640 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2641 spin_lock(&root->delalloc_lock); 2642 btrfs_del_delalloc_inode(inode); 2643 spin_unlock(&root->delalloc_lock); 2644 } 2645 } 2646 2647 if ((state->state & EXTENT_DELALLOC_NEW) && 2648 (bits & EXTENT_DELALLOC_NEW)) { 2649 spin_lock(&inode->lock); 2650 ASSERT(inode->new_delalloc_bytes >= len); 2651 inode->new_delalloc_bytes -= len; 2652 if (bits & EXTENT_ADD_INODE_BYTES) 2653 inode_add_bytes(&inode->vfs_inode, len); 2654 spin_unlock(&inode->lock); 2655 } 2656 } 2657 2658 /* 2659 * given a list of ordered sums record them in the inode. This happens 2660 * at IO completion time based on sums calculated at bio submission time. 2661 */ 2662 static int add_pending_csums(struct btrfs_trans_handle *trans, 2663 struct list_head *list) 2664 { 2665 struct btrfs_ordered_sum *sum; 2666 struct btrfs_root *csum_root = NULL; 2667 int ret; 2668 2669 list_for_each_entry(sum, list, list) { 2670 trans->adding_csums = true; 2671 if (!csum_root) 2672 csum_root = btrfs_csum_root(trans->fs_info, 2673 sum->logical); 2674 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2675 trans->adding_csums = false; 2676 if (ret) 2677 return ret; 2678 } 2679 return 0; 2680 } 2681 2682 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2683 const u64 start, 2684 const u64 len, 2685 struct extent_state **cached_state) 2686 { 2687 u64 search_start = start; 2688 const u64 end = start + len - 1; 2689 2690 while (search_start < end) { 2691 const u64 search_len = end - search_start + 1; 2692 struct extent_map *em; 2693 u64 em_len; 2694 int ret = 0; 2695 2696 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2697 if (IS_ERR(em)) 2698 return PTR_ERR(em); 2699 2700 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2701 goto next; 2702 2703 em_len = em->len; 2704 if (em->start < search_start) 2705 em_len -= search_start - em->start; 2706 if (em_len > search_len) 2707 em_len = search_len; 2708 2709 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2710 search_start + em_len - 1, 2711 EXTENT_DELALLOC_NEW, cached_state); 2712 next: 2713 search_start = btrfs_extent_map_end(em); 2714 btrfs_free_extent_map(em); 2715 if (ret) 2716 return ret; 2717 } 2718 return 0; 2719 } 2720 2721 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2722 unsigned int extra_bits, 2723 struct extent_state **cached_state) 2724 { 2725 WARN_ON(PAGE_ALIGNED(end)); 2726 2727 if (start >= i_size_read(&inode->vfs_inode) && 2728 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2729 /* 2730 * There can't be any extents following eof in this case so just 2731 * set the delalloc new bit for the range directly. 2732 */ 2733 extra_bits |= EXTENT_DELALLOC_NEW; 2734 } else { 2735 int ret; 2736 2737 ret = btrfs_find_new_delalloc_bytes(inode, start, 2738 end + 1 - start, 2739 cached_state); 2740 if (ret) 2741 return ret; 2742 } 2743 2744 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2745 EXTENT_DELALLOC | extra_bits, cached_state); 2746 } 2747 2748 /* see btrfs_writepage_start_hook for details on why this is required */ 2749 struct btrfs_writepage_fixup { 2750 struct folio *folio; 2751 struct btrfs_inode *inode; 2752 struct btrfs_work work; 2753 }; 2754 2755 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2756 { 2757 struct btrfs_writepage_fixup *fixup = 2758 container_of(work, struct btrfs_writepage_fixup, work); 2759 struct btrfs_ordered_extent *ordered; 2760 struct extent_state *cached_state = NULL; 2761 struct extent_changeset *data_reserved = NULL; 2762 struct folio *folio = fixup->folio; 2763 struct btrfs_inode *inode = fixup->inode; 2764 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2765 u64 page_start = folio_pos(folio); 2766 u64 page_end = folio_next_pos(folio) - 1; 2767 int ret = 0; 2768 bool free_delalloc_space = true; 2769 2770 /* 2771 * This is similar to page_mkwrite, we need to reserve the space before 2772 * we take the folio lock. 2773 */ 2774 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2775 folio_size(folio)); 2776 again: 2777 folio_lock(folio); 2778 2779 /* 2780 * Before we queued this fixup, we took a reference on the folio. 2781 * folio->mapping may go NULL, but it shouldn't be moved to a different 2782 * address space. 2783 */ 2784 if (!folio->mapping || !folio_test_dirty(folio) || 2785 !folio_test_checked(folio)) { 2786 /* 2787 * Unfortunately this is a little tricky, either 2788 * 2789 * 1) We got here and our folio had already been dealt with and 2790 * we reserved our space, thus ret == 0, so we need to just 2791 * drop our space reservation and bail. This can happen the 2792 * first time we come into the fixup worker, or could happen 2793 * while waiting for the ordered extent. 2794 * 2) Our folio was already dealt with, but we happened to get an 2795 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2796 * this case we obviously don't have anything to release, but 2797 * because the folio was already dealt with we don't want to 2798 * mark the folio with an error, so make sure we're resetting 2799 * ret to 0. This is why we have this check _before_ the ret 2800 * check, because we do not want to have a surprise ENOSPC 2801 * when the folio was already properly dealt with. 2802 */ 2803 if (!ret) { 2804 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2805 btrfs_delalloc_release_space(inode, data_reserved, 2806 page_start, folio_size(folio), 2807 true); 2808 } 2809 ret = 0; 2810 goto out_page; 2811 } 2812 2813 /* 2814 * We can't mess with the folio state unless it is locked, so now that 2815 * it is locked bail if we failed to make our space reservation. 2816 */ 2817 if (ret) 2818 goto out_page; 2819 2820 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2821 2822 /* already ordered? We're done */ 2823 if (folio_test_ordered(folio)) 2824 goto out_reserved; 2825 2826 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2827 if (ordered) { 2828 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2829 &cached_state); 2830 folio_unlock(folio); 2831 btrfs_start_ordered_extent(ordered); 2832 btrfs_put_ordered_extent(ordered); 2833 goto again; 2834 } 2835 2836 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2837 &cached_state); 2838 if (ret) 2839 goto out_reserved; 2840 2841 /* 2842 * Everything went as planned, we're now the owner of a dirty page with 2843 * delayed allocation bits set and space reserved for our COW 2844 * destination. 2845 * 2846 * The page was dirty when we started, nothing should have cleaned it. 2847 */ 2848 BUG_ON(!folio_test_dirty(folio)); 2849 free_delalloc_space = false; 2850 out_reserved: 2851 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2852 if (free_delalloc_space) 2853 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2854 PAGE_SIZE, true); 2855 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2856 out_page: 2857 if (ret) { 2858 /* 2859 * We hit ENOSPC or other errors. Update the mapping and page 2860 * to reflect the errors and clean the page. 2861 */ 2862 mapping_set_error(folio->mapping, ret); 2863 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2864 folio_size(folio), !ret); 2865 folio_clear_dirty_for_io(folio); 2866 } 2867 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2868 folio_unlock(folio); 2869 folio_put(folio); 2870 kfree(fixup); 2871 extent_changeset_free(data_reserved); 2872 /* 2873 * As a precaution, do a delayed iput in case it would be the last iput 2874 * that could need flushing space. Recursing back to fixup worker would 2875 * deadlock. 2876 */ 2877 btrfs_add_delayed_iput(inode); 2878 } 2879 2880 /* 2881 * There are a few paths in the higher layers of the kernel that directly 2882 * set the folio dirty bit without asking the filesystem if it is a 2883 * good idea. This causes problems because we want to make sure COW 2884 * properly happens and the data=ordered rules are followed. 2885 * 2886 * In our case any range that doesn't have the ORDERED bit set 2887 * hasn't been properly setup for IO. We kick off an async process 2888 * to fix it up. The async helper will wait for ordered extents, set 2889 * the delalloc bit and make it safe to write the folio. 2890 */ 2891 int btrfs_writepage_cow_fixup(struct folio *folio) 2892 { 2893 struct inode *inode = folio->mapping->host; 2894 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2895 struct btrfs_writepage_fixup *fixup; 2896 2897 /* This folio has ordered extent covering it already */ 2898 if (folio_test_ordered(folio)) 2899 return 0; 2900 2901 /* 2902 * For experimental build, we error out instead of EAGAIN. 2903 * 2904 * We should not hit such out-of-band dirty folios anymore. 2905 */ 2906 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2907 DEBUG_WARN(); 2908 btrfs_err_rl(fs_info, 2909 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2910 btrfs_root_id(BTRFS_I(inode)->root), 2911 btrfs_ino(BTRFS_I(inode)), 2912 folio_pos(folio)); 2913 return -EUCLEAN; 2914 } 2915 2916 /* 2917 * folio_checked is set below when we create a fixup worker for this 2918 * folio, don't try to create another one if we're already 2919 * folio_test_checked. 2920 * 2921 * The extent_io writepage code will redirty the foio if we send back 2922 * EAGAIN. 2923 */ 2924 if (folio_test_checked(folio)) 2925 return -EAGAIN; 2926 2927 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2928 if (!fixup) 2929 return -EAGAIN; 2930 2931 /* 2932 * We are already holding a reference to this inode from 2933 * write_cache_pages. We need to hold it because the space reservation 2934 * takes place outside of the folio lock, and we can't trust 2935 * folio->mapping outside of the folio lock. 2936 */ 2937 ihold(inode); 2938 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2939 folio_get(folio); 2940 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2941 fixup->folio = folio; 2942 fixup->inode = BTRFS_I(inode); 2943 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2944 2945 return -EAGAIN; 2946 } 2947 2948 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2949 struct btrfs_inode *inode, u64 file_pos, 2950 struct btrfs_file_extent_item *stack_fi, 2951 const bool update_inode_bytes, 2952 u64 qgroup_reserved) 2953 { 2954 struct btrfs_root *root = inode->root; 2955 const u64 sectorsize = root->fs_info->sectorsize; 2956 BTRFS_PATH_AUTO_FREE(path); 2957 struct extent_buffer *leaf; 2958 struct btrfs_key ins; 2959 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2960 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2961 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2962 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2963 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2964 struct btrfs_drop_extents_args drop_args = { 0 }; 2965 int ret; 2966 2967 path = btrfs_alloc_path(); 2968 if (!path) 2969 return -ENOMEM; 2970 2971 /* 2972 * we may be replacing one extent in the tree with another. 2973 * The new extent is pinned in the extent map, and we don't want 2974 * to drop it from the cache until it is completely in the btree. 2975 * 2976 * So, tell btrfs_drop_extents to leave this extent in the cache. 2977 * the caller is expected to unpin it and allow it to be merged 2978 * with the others. 2979 */ 2980 drop_args.path = path; 2981 drop_args.start = file_pos; 2982 drop_args.end = file_pos + num_bytes; 2983 drop_args.replace_extent = true; 2984 drop_args.extent_item_size = sizeof(*stack_fi); 2985 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2986 if (ret) 2987 goto out; 2988 2989 if (!drop_args.extent_inserted) { 2990 ins.objectid = btrfs_ino(inode); 2991 ins.type = BTRFS_EXTENT_DATA_KEY; 2992 ins.offset = file_pos; 2993 2994 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2995 sizeof(*stack_fi)); 2996 if (ret) 2997 goto out; 2998 } 2999 leaf = path->nodes[0]; 3000 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3001 write_extent_buffer(leaf, stack_fi, 3002 btrfs_item_ptr_offset(leaf, path->slots[0]), 3003 sizeof(struct btrfs_file_extent_item)); 3004 3005 btrfs_release_path(path); 3006 3007 /* 3008 * If we dropped an inline extent here, we know the range where it is 3009 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3010 * number of bytes only for that range containing the inline extent. 3011 * The remaining of the range will be processed when clearing the 3012 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3013 */ 3014 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3015 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3016 3017 inline_size = drop_args.bytes_found - inline_size; 3018 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3019 drop_args.bytes_found -= inline_size; 3020 num_bytes -= sectorsize; 3021 } 3022 3023 if (update_inode_bytes) 3024 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3025 3026 ins.objectid = disk_bytenr; 3027 ins.type = BTRFS_EXTENT_ITEM_KEY; 3028 ins.offset = disk_num_bytes; 3029 3030 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3031 if (ret) 3032 goto out; 3033 3034 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3035 file_pos - offset, 3036 qgroup_reserved, &ins); 3037 out: 3038 return ret; 3039 } 3040 3041 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3042 u64 start, u64 len) 3043 { 3044 struct btrfs_block_group *cache; 3045 3046 cache = btrfs_lookup_block_group(fs_info, start); 3047 ASSERT(cache); 3048 3049 spin_lock(&cache->lock); 3050 cache->delalloc_bytes -= len; 3051 spin_unlock(&cache->lock); 3052 3053 btrfs_put_block_group(cache); 3054 } 3055 3056 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3057 struct btrfs_ordered_extent *oe) 3058 { 3059 struct btrfs_file_extent_item stack_fi; 3060 bool update_inode_bytes; 3061 u64 num_bytes = oe->num_bytes; 3062 u64 ram_bytes = oe->ram_bytes; 3063 3064 memset(&stack_fi, 0, sizeof(stack_fi)); 3065 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3066 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3067 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3068 oe->disk_num_bytes); 3069 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3070 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3071 num_bytes = oe->truncated_len; 3072 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3073 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3074 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3075 /* Encryption and other encoding is reserved and all 0 */ 3076 3077 /* 3078 * For delalloc, when completing an ordered extent we update the inode's 3079 * bytes when clearing the range in the inode's io tree, so pass false 3080 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3081 * except if the ordered extent was truncated. 3082 */ 3083 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3084 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3085 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3086 3087 return insert_reserved_file_extent(trans, oe->inode, 3088 oe->file_offset, &stack_fi, 3089 update_inode_bytes, oe->qgroup_rsv); 3090 } 3091 3092 /* 3093 * As ordered data IO finishes, this gets called so we can finish 3094 * an ordered extent if the range of bytes in the file it covers are 3095 * fully written. 3096 */ 3097 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3098 { 3099 struct btrfs_inode *inode = ordered_extent->inode; 3100 struct btrfs_root *root = inode->root; 3101 struct btrfs_fs_info *fs_info = root->fs_info; 3102 struct btrfs_trans_handle *trans = NULL; 3103 struct extent_io_tree *io_tree = &inode->io_tree; 3104 struct extent_state *cached_state = NULL; 3105 u64 start, end; 3106 int compress_type = 0; 3107 int ret = 0; 3108 u64 logical_len = ordered_extent->num_bytes; 3109 bool freespace_inode; 3110 bool truncated = false; 3111 bool clear_reserved_extent = true; 3112 unsigned int clear_bits = EXTENT_DEFRAG; 3113 3114 start = ordered_extent->file_offset; 3115 end = start + ordered_extent->num_bytes - 1; 3116 3117 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3118 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3119 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3120 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3121 clear_bits |= EXTENT_DELALLOC_NEW; 3122 3123 freespace_inode = btrfs_is_free_space_inode(inode); 3124 if (!freespace_inode) 3125 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3126 3127 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) { 3128 ret = -EIO; 3129 goto out; 3130 } 3131 3132 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3133 ordered_extent->disk_num_bytes); 3134 if (ret) 3135 goto out; 3136 3137 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3138 truncated = true; 3139 logical_len = ordered_extent->truncated_len; 3140 /* Truncated the entire extent, don't bother adding */ 3141 if (!logical_len) 3142 goto out; 3143 } 3144 3145 /* 3146 * If it's a COW write we need to lock the extent range as we will be 3147 * inserting/replacing file extent items and unpinning an extent map. 3148 * This must be taken before joining a transaction, as it's a higher 3149 * level lock (like the inode's VFS lock), otherwise we can run into an 3150 * ABBA deadlock with other tasks (transactions work like a lock, 3151 * depending on their current state). 3152 */ 3153 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3154 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3155 btrfs_lock_extent_bits(io_tree, start, end, 3156 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3157 &cached_state); 3158 } 3159 3160 if (freespace_inode) 3161 trans = btrfs_join_transaction_spacecache(root); 3162 else 3163 trans = btrfs_join_transaction(root); 3164 if (IS_ERR(trans)) { 3165 ret = PTR_ERR(trans); 3166 trans = NULL; 3167 goto out; 3168 } 3169 3170 trans->block_rsv = &inode->block_rsv; 3171 3172 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3173 if (unlikely(ret)) { 3174 btrfs_abort_transaction(trans, ret); 3175 goto out; 3176 } 3177 3178 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3179 /* Logic error */ 3180 ASSERT(list_empty(&ordered_extent->list)); 3181 if (unlikely(!list_empty(&ordered_extent->list))) { 3182 ret = -EINVAL; 3183 btrfs_abort_transaction(trans, ret); 3184 goto out; 3185 } 3186 3187 btrfs_inode_safe_disk_i_size_write(inode, 0); 3188 ret = btrfs_update_inode_fallback(trans, inode); 3189 if (unlikely(ret)) { 3190 /* -ENOMEM or corruption */ 3191 btrfs_abort_transaction(trans, ret); 3192 } 3193 goto out; 3194 } 3195 3196 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3197 compress_type = ordered_extent->compress_type; 3198 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3199 BUG_ON(compress_type); 3200 ret = btrfs_mark_extent_written(trans, inode, 3201 ordered_extent->file_offset, 3202 ordered_extent->file_offset + 3203 logical_len); 3204 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3205 ordered_extent->disk_num_bytes); 3206 } else { 3207 BUG_ON(root == fs_info->tree_root); 3208 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3209 if (!ret) { 3210 clear_reserved_extent = false; 3211 btrfs_release_delalloc_bytes(fs_info, 3212 ordered_extent->disk_bytenr, 3213 ordered_extent->disk_num_bytes); 3214 } 3215 } 3216 if (unlikely(ret < 0)) { 3217 btrfs_abort_transaction(trans, ret); 3218 goto out; 3219 } 3220 3221 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3222 ordered_extent->num_bytes, trans->transid); 3223 if (unlikely(ret < 0)) { 3224 btrfs_abort_transaction(trans, ret); 3225 goto out; 3226 } 3227 3228 ret = add_pending_csums(trans, &ordered_extent->list); 3229 if (unlikely(ret)) { 3230 btrfs_abort_transaction(trans, ret); 3231 goto out; 3232 } 3233 3234 /* 3235 * If this is a new delalloc range, clear its new delalloc flag to 3236 * update the inode's number of bytes. This needs to be done first 3237 * before updating the inode item. 3238 */ 3239 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3240 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3241 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3242 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3243 &cached_state); 3244 3245 btrfs_inode_safe_disk_i_size_write(inode, 0); 3246 ret = btrfs_update_inode_fallback(trans, inode); 3247 if (unlikely(ret)) { /* -ENOMEM or corruption */ 3248 btrfs_abort_transaction(trans, ret); 3249 goto out; 3250 } 3251 out: 3252 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3253 &cached_state); 3254 3255 if (trans) 3256 btrfs_end_transaction(trans); 3257 3258 if (ret || truncated) { 3259 /* 3260 * If we failed to finish this ordered extent for any reason we 3261 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3262 * extent, and mark the inode with the error if it wasn't 3263 * already set. Any error during writeback would have already 3264 * set the mapping error, so we need to set it if we're the ones 3265 * marking this ordered extent as failed. 3266 */ 3267 if (ret) 3268 btrfs_mark_ordered_extent_error(ordered_extent); 3269 3270 /* 3271 * Drop extent maps for the part of the extent we didn't write. 3272 * 3273 * We have an exception here for the free_space_inode, this is 3274 * because when we do btrfs_get_extent() on the free space inode 3275 * we will search the commit root. If this is a new block group 3276 * we won't find anything, and we will trip over the assert in 3277 * writepage where we do ASSERT(em->block_start != 3278 * EXTENT_MAP_HOLE). 3279 * 3280 * Theoretically we could also skip this for any NOCOW extent as 3281 * we don't mess with the extent map tree in the NOCOW case, but 3282 * for now simply skip this if we are the free space inode. 3283 */ 3284 if (!btrfs_is_free_space_inode(inode)) { 3285 u64 unwritten_start = start; 3286 3287 if (truncated) 3288 unwritten_start += logical_len; 3289 3290 btrfs_drop_extent_map_range(inode, unwritten_start, 3291 end, false); 3292 } 3293 3294 /* 3295 * If the ordered extent had an IOERR or something else went 3296 * wrong we need to return the space for this ordered extent 3297 * back to the allocator. We only free the extent in the 3298 * truncated case if we didn't write out the extent at all. 3299 * 3300 * If we made it past insert_reserved_file_extent before we 3301 * errored out then we don't need to do this as the accounting 3302 * has already been done. 3303 */ 3304 if ((ret || !logical_len) && 3305 clear_reserved_extent && 3306 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3307 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3308 /* 3309 * Discard the range before returning it back to the 3310 * free space pool 3311 */ 3312 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3313 btrfs_discard_extent(fs_info, 3314 ordered_extent->disk_bytenr, 3315 ordered_extent->disk_num_bytes, 3316 NULL); 3317 btrfs_free_reserved_extent(fs_info, 3318 ordered_extent->disk_bytenr, 3319 ordered_extent->disk_num_bytes, true); 3320 /* 3321 * Actually free the qgroup rsv which was released when 3322 * the ordered extent was created. 3323 */ 3324 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3325 ordered_extent->qgroup_rsv, 3326 BTRFS_QGROUP_RSV_DATA); 3327 } 3328 } 3329 3330 /* 3331 * This needs to be done to make sure anybody waiting knows we are done 3332 * updating everything for this ordered extent. 3333 */ 3334 btrfs_remove_ordered_extent(inode, ordered_extent); 3335 3336 /* once for us */ 3337 btrfs_put_ordered_extent(ordered_extent); 3338 /* once for the tree */ 3339 btrfs_put_ordered_extent(ordered_extent); 3340 3341 return ret; 3342 } 3343 3344 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3345 { 3346 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3347 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3348 list_empty(&ordered->bioc_list)) 3349 btrfs_finish_ordered_zoned(ordered); 3350 return btrfs_finish_one_ordered(ordered); 3351 } 3352 3353 /* 3354 * Calculate the checksum of an fs block at physical memory address @paddr, 3355 * and save the result to @dest. 3356 * 3357 * The folio containing @paddr must be large enough to contain a full fs block. 3358 */ 3359 void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info, 3360 const phys_addr_t paddr, u8 *dest) 3361 { 3362 struct folio *folio = page_folio(phys_to_page(paddr)); 3363 const u32 blocksize = fs_info->sectorsize; 3364 const u32 step = min(blocksize, PAGE_SIZE); 3365 const u32 nr_steps = blocksize / step; 3366 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 3367 3368 /* The full block must be inside the folio. */ 3369 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3370 3371 for (int i = 0; i < nr_steps; i++) { 3372 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT; 3373 3374 /* 3375 * For bs <= ps cases, we will only run the loop once, so the offset 3376 * inside the page will only added to paddrs[0]. 3377 * 3378 * For bs > ps cases, the block must be page aligned, thus offset 3379 * inside the page will always be 0. 3380 */ 3381 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr); 3382 } 3383 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest); 3384 } 3385 3386 /* 3387 * Calculate the checksum of a fs block backed by multiple noncontiguous pages 3388 * at @paddrs[] and save the result to @dest. 3389 * 3390 * The folio containing @paddr must be large enough to contain a full fs block. 3391 */ 3392 void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info, 3393 const phys_addr_t paddrs[], u8 *dest) 3394 { 3395 const u32 blocksize = fs_info->sectorsize; 3396 const u32 step = min(blocksize, PAGE_SIZE); 3397 const u32 nr_steps = blocksize / step; 3398 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3399 3400 shash->tfm = fs_info->csum_shash; 3401 crypto_shash_init(shash); 3402 for (int i = 0; i < nr_steps; i++) { 3403 const phys_addr_t paddr = paddrs[i]; 3404 void *kaddr; 3405 3406 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE); 3407 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr); 3408 crypto_shash_update(shash, kaddr, step); 3409 kunmap_local(kaddr); 3410 } 3411 crypto_shash_final(shash, dest); 3412 } 3413 3414 /* 3415 * Verify the checksum for a single sector without any extra action that depend 3416 * on the type of I/O. 3417 * 3418 * @kaddr must be a properly kmapped address. 3419 */ 3420 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum, 3421 const u8 * const csum_expected) 3422 { 3423 btrfs_calculate_block_csum_folio(fs_info, paddr, csum); 3424 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3425 return -EIO; 3426 return 0; 3427 } 3428 3429 /* 3430 * Verify the checksum of a single data sector, which can be scattered at 3431 * different noncontiguous pages. 3432 * 3433 * @bbio: btrfs_io_bio which contains the csum 3434 * @dev: device the sector is on 3435 * @bio_offset: offset to the beginning of the bio (in bytes) 3436 * @paddrs: physical addresses which back the fs block 3437 * 3438 * Check if the checksum on a data block is valid. When a checksum mismatch is 3439 * detected, report the error and fill the corrupted range with zero. 3440 * 3441 * Return %true if the sector is ok or had no checksum to start with, else %false. 3442 */ 3443 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3444 u32 bio_offset, const phys_addr_t paddrs[]) 3445 { 3446 struct btrfs_inode *inode = bbio->inode; 3447 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3448 const u32 blocksize = fs_info->sectorsize; 3449 const u32 step = min(blocksize, PAGE_SIZE); 3450 const u32 nr_steps = blocksize / step; 3451 u64 file_offset = bbio->file_offset + bio_offset; 3452 u64 end = file_offset + blocksize - 1; 3453 u8 *csum_expected; 3454 u8 csum[BTRFS_CSUM_SIZE]; 3455 3456 if (!bbio->csum) 3457 return true; 3458 3459 if (btrfs_is_data_reloc_root(inode->root) && 3460 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3461 NULL)) { 3462 /* Skip the range without csum for data reloc inode */ 3463 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3464 EXTENT_NODATASUM, NULL); 3465 return true; 3466 } 3467 3468 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3469 fs_info->csum_size; 3470 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum); 3471 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3472 goto zeroit; 3473 return true; 3474 3475 zeroit: 3476 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3477 bbio->mirror_num); 3478 if (dev) 3479 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3480 for (int i = 0; i < nr_steps; i++) 3481 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step); 3482 return false; 3483 } 3484 3485 /* 3486 * Perform a delayed iput on @inode. 3487 * 3488 * @inode: The inode we want to perform iput on 3489 * 3490 * This function uses the generic vfs_inode::i_count to track whether we should 3491 * just decrement it (in case it's > 1) or if this is the last iput then link 3492 * the inode to the delayed iput machinery. Delayed iputs are processed at 3493 * transaction commit time/superblock commit/cleaner kthread. 3494 */ 3495 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3496 { 3497 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3498 unsigned long flags; 3499 3500 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3501 return; 3502 3503 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3504 atomic_inc(&fs_info->nr_delayed_iputs); 3505 /* 3506 * Need to be irq safe here because we can be called from either an irq 3507 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3508 * context. 3509 */ 3510 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3511 ASSERT(list_empty(&inode->delayed_iput)); 3512 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3513 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3514 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3515 wake_up_process(fs_info->cleaner_kthread); 3516 } 3517 3518 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3519 struct btrfs_inode *inode) 3520 { 3521 list_del_init(&inode->delayed_iput); 3522 spin_unlock_irq(&fs_info->delayed_iput_lock); 3523 iput(&inode->vfs_inode); 3524 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3525 wake_up(&fs_info->delayed_iputs_wait); 3526 spin_lock_irq(&fs_info->delayed_iput_lock); 3527 } 3528 3529 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3530 struct btrfs_inode *inode) 3531 { 3532 if (!list_empty(&inode->delayed_iput)) { 3533 spin_lock_irq(&fs_info->delayed_iput_lock); 3534 if (!list_empty(&inode->delayed_iput)) 3535 run_delayed_iput_locked(fs_info, inode); 3536 spin_unlock_irq(&fs_info->delayed_iput_lock); 3537 } 3538 } 3539 3540 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3541 { 3542 /* 3543 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3544 * calls btrfs_add_delayed_iput() and that needs to lock 3545 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3546 * prevent a deadlock. 3547 */ 3548 spin_lock_irq(&fs_info->delayed_iput_lock); 3549 while (!list_empty(&fs_info->delayed_iputs)) { 3550 struct btrfs_inode *inode; 3551 3552 inode = list_first_entry(&fs_info->delayed_iputs, 3553 struct btrfs_inode, delayed_iput); 3554 run_delayed_iput_locked(fs_info, inode); 3555 if (need_resched()) { 3556 spin_unlock_irq(&fs_info->delayed_iput_lock); 3557 cond_resched(); 3558 spin_lock_irq(&fs_info->delayed_iput_lock); 3559 } 3560 } 3561 spin_unlock_irq(&fs_info->delayed_iput_lock); 3562 } 3563 3564 /* 3565 * Wait for flushing all delayed iputs 3566 * 3567 * @fs_info: the filesystem 3568 * 3569 * This will wait on any delayed iputs that are currently running with KILLABLE 3570 * set. Once they are all done running we will return, unless we are killed in 3571 * which case we return EINTR. This helps in user operations like fallocate etc 3572 * that might get blocked on the iputs. 3573 * 3574 * Return EINTR if we were killed, 0 if nothing's pending 3575 */ 3576 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3577 { 3578 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3579 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3580 if (ret) 3581 return -EINTR; 3582 return 0; 3583 } 3584 3585 /* 3586 * This creates an orphan entry for the given inode in case something goes wrong 3587 * in the middle of an unlink. 3588 */ 3589 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3590 struct btrfs_inode *inode) 3591 { 3592 int ret; 3593 3594 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3595 if (unlikely(ret && ret != -EEXIST)) { 3596 btrfs_abort_transaction(trans, ret); 3597 return ret; 3598 } 3599 3600 return 0; 3601 } 3602 3603 /* 3604 * We have done the delete so we can go ahead and remove the orphan item for 3605 * this particular inode. 3606 */ 3607 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3608 struct btrfs_inode *inode) 3609 { 3610 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3611 } 3612 3613 /* 3614 * this cleans up any orphans that may be left on the list from the last use 3615 * of this root. 3616 */ 3617 int btrfs_orphan_cleanup(struct btrfs_root *root) 3618 { 3619 struct btrfs_fs_info *fs_info = root->fs_info; 3620 BTRFS_PATH_AUTO_FREE(path); 3621 struct extent_buffer *leaf; 3622 struct btrfs_key key, found_key; 3623 struct btrfs_trans_handle *trans; 3624 u64 last_objectid = 0; 3625 int ret = 0, nr_unlink = 0; 3626 3627 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3628 return 0; 3629 3630 path = btrfs_alloc_path(); 3631 if (!path) { 3632 ret = -ENOMEM; 3633 goto out; 3634 } 3635 path->reada = READA_BACK; 3636 3637 key.objectid = BTRFS_ORPHAN_OBJECTID; 3638 key.type = BTRFS_ORPHAN_ITEM_KEY; 3639 key.offset = (u64)-1; 3640 3641 while (1) { 3642 struct btrfs_inode *inode; 3643 3644 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3645 if (ret < 0) 3646 goto out; 3647 3648 /* 3649 * if ret == 0 means we found what we were searching for, which 3650 * is weird, but possible, so only screw with path if we didn't 3651 * find the key and see if we have stuff that matches 3652 */ 3653 if (ret > 0) { 3654 ret = 0; 3655 if (path->slots[0] == 0) 3656 break; 3657 path->slots[0]--; 3658 } 3659 3660 /* pull out the item */ 3661 leaf = path->nodes[0]; 3662 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3663 3664 /* make sure the item matches what we want */ 3665 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3666 break; 3667 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3668 break; 3669 3670 /* release the path since we're done with it */ 3671 btrfs_release_path(path); 3672 3673 /* 3674 * this is where we are basically btrfs_lookup, without the 3675 * crossing root thing. we store the inode number in the 3676 * offset of the orphan item. 3677 */ 3678 3679 if (found_key.offset == last_objectid) { 3680 /* 3681 * We found the same inode as before. This means we were 3682 * not able to remove its items via eviction triggered 3683 * by an iput(). A transaction abort may have happened, 3684 * due to -ENOSPC for example, so try to grab the error 3685 * that lead to a transaction abort, if any. 3686 */ 3687 btrfs_err(fs_info, 3688 "Error removing orphan entry, stopping orphan cleanup"); 3689 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3690 goto out; 3691 } 3692 3693 last_objectid = found_key.offset; 3694 3695 found_key.objectid = found_key.offset; 3696 found_key.type = BTRFS_INODE_ITEM_KEY; 3697 found_key.offset = 0; 3698 inode = btrfs_iget(last_objectid, root); 3699 if (IS_ERR(inode)) { 3700 ret = PTR_ERR(inode); 3701 inode = NULL; 3702 if (ret != -ENOENT) 3703 goto out; 3704 } 3705 3706 if (!inode && root == fs_info->tree_root) { 3707 struct btrfs_root *dead_root; 3708 int is_dead_root = 0; 3709 3710 /* 3711 * This is an orphan in the tree root. Currently these 3712 * could come from 2 sources: 3713 * a) a root (snapshot/subvolume) deletion in progress 3714 * b) a free space cache inode 3715 * We need to distinguish those two, as the orphan item 3716 * for a root must not get deleted before the deletion 3717 * of the snapshot/subvolume's tree completes. 3718 * 3719 * btrfs_find_orphan_roots() ran before us, which has 3720 * found all deleted roots and loaded them into 3721 * fs_info->fs_roots_radix. So here we can find if an 3722 * orphan item corresponds to a deleted root by looking 3723 * up the root from that radix tree. 3724 */ 3725 3726 spin_lock(&fs_info->fs_roots_radix_lock); 3727 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3728 (unsigned long)found_key.objectid); 3729 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3730 is_dead_root = 1; 3731 spin_unlock(&fs_info->fs_roots_radix_lock); 3732 3733 if (is_dead_root) { 3734 /* prevent this orphan from being found again */ 3735 key.offset = found_key.objectid - 1; 3736 continue; 3737 } 3738 3739 } 3740 3741 /* 3742 * If we have an inode with links, there are a couple of 3743 * possibilities: 3744 * 3745 * 1. We were halfway through creating fsverity metadata for the 3746 * file. In that case, the orphan item represents incomplete 3747 * fsverity metadata which must be cleaned up with 3748 * btrfs_drop_verity_items and deleting the orphan item. 3749 3750 * 2. Old kernels (before v3.12) used to create an 3751 * orphan item for truncate indicating that there were possibly 3752 * extent items past i_size that needed to be deleted. In v3.12, 3753 * truncate was changed to update i_size in sync with the extent 3754 * items, but the (useless) orphan item was still created. Since 3755 * v4.18, we don't create the orphan item for truncate at all. 3756 * 3757 * So, this item could mean that we need to do a truncate, but 3758 * only if this filesystem was last used on a pre-v3.12 kernel 3759 * and was not cleanly unmounted. The odds of that are quite 3760 * slim, and it's a pain to do the truncate now, so just delete 3761 * the orphan item. 3762 * 3763 * It's also possible that this orphan item was supposed to be 3764 * deleted but wasn't. The inode number may have been reused, 3765 * but either way, we can delete the orphan item. 3766 */ 3767 if (!inode || inode->vfs_inode.i_nlink) { 3768 if (inode) { 3769 ret = btrfs_drop_verity_items(inode); 3770 iput(&inode->vfs_inode); 3771 inode = NULL; 3772 if (ret) 3773 goto out; 3774 } 3775 trans = btrfs_start_transaction(root, 1); 3776 if (IS_ERR(trans)) { 3777 ret = PTR_ERR(trans); 3778 goto out; 3779 } 3780 btrfs_debug(fs_info, "auto deleting %Lu", 3781 found_key.objectid); 3782 ret = btrfs_del_orphan_item(trans, root, 3783 found_key.objectid); 3784 btrfs_end_transaction(trans); 3785 if (ret) 3786 goto out; 3787 continue; 3788 } 3789 3790 nr_unlink++; 3791 3792 /* this will do delete_inode and everything for us */ 3793 iput(&inode->vfs_inode); 3794 } 3795 /* release the path since we're done with it */ 3796 btrfs_release_path(path); 3797 3798 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3799 trans = btrfs_join_transaction(root); 3800 if (!IS_ERR(trans)) 3801 btrfs_end_transaction(trans); 3802 } 3803 3804 if (nr_unlink) 3805 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3806 3807 out: 3808 if (ret) 3809 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3810 return ret; 3811 } 3812 3813 /* 3814 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3815 * can't be any ACLs. 3816 * 3817 * @leaf: the eb leaf where to search 3818 * @slot: the slot the inode is in 3819 * @objectid: the objectid of the inode 3820 * 3821 * Return true if there is xattr/ACL, false otherwise. 3822 */ 3823 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3824 int slot, u64 objectid, 3825 int *first_xattr_slot) 3826 { 3827 u32 nritems = btrfs_header_nritems(leaf); 3828 struct btrfs_key found_key; 3829 static u64 xattr_access = 0; 3830 static u64 xattr_default = 0; 3831 int scanned = 0; 3832 3833 if (!xattr_access) { 3834 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3835 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3836 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3837 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3838 } 3839 3840 slot++; 3841 *first_xattr_slot = -1; 3842 while (slot < nritems) { 3843 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3844 3845 /* We found a different objectid, there must be no ACLs. */ 3846 if (found_key.objectid != objectid) 3847 return false; 3848 3849 /* We found an xattr, assume we've got an ACL. */ 3850 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3851 if (*first_xattr_slot == -1) 3852 *first_xattr_slot = slot; 3853 if (found_key.offset == xattr_access || 3854 found_key.offset == xattr_default) 3855 return true; 3856 } 3857 3858 /* 3859 * We found a key greater than an xattr key, there can't be any 3860 * ACLs later on. 3861 */ 3862 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3863 return false; 3864 3865 slot++; 3866 scanned++; 3867 3868 /* 3869 * The item order goes like: 3870 * - inode 3871 * - inode backrefs 3872 * - xattrs 3873 * - extents, 3874 * 3875 * so if there are lots of hard links to an inode there can be 3876 * a lot of backrefs. Don't waste time searching too hard, 3877 * this is just an optimization. 3878 */ 3879 if (scanned >= 8) 3880 break; 3881 } 3882 /* 3883 * We hit the end of the leaf before we found an xattr or something 3884 * larger than an xattr. We have to assume the inode has ACLs. 3885 */ 3886 if (*first_xattr_slot == -1) 3887 *first_xattr_slot = slot; 3888 return true; 3889 } 3890 3891 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3892 { 3893 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3894 3895 if (WARN_ON_ONCE(inode->file_extent_tree)) 3896 return 0; 3897 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3898 return 0; 3899 if (!S_ISREG(inode->vfs_inode.i_mode)) 3900 return 0; 3901 if (btrfs_is_free_space_inode(inode)) 3902 return 0; 3903 3904 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3905 if (!inode->file_extent_tree) 3906 return -ENOMEM; 3907 3908 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3909 IO_TREE_INODE_FILE_EXTENT); 3910 /* Lockdep class is set only for the file extent tree. */ 3911 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3912 3913 return 0; 3914 } 3915 3916 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3917 { 3918 struct btrfs_root *root = inode->root; 3919 struct btrfs_inode *existing; 3920 const u64 ino = btrfs_ino(inode); 3921 int ret; 3922 3923 if (inode_unhashed(&inode->vfs_inode)) 3924 return 0; 3925 3926 if (prealloc) { 3927 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3928 if (ret) 3929 return ret; 3930 } 3931 3932 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3933 3934 if (xa_is_err(existing)) { 3935 ret = xa_err(existing); 3936 ASSERT(ret != -EINVAL); 3937 ASSERT(ret != -ENOMEM); 3938 return ret; 3939 } else if (existing) { 3940 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING))); 3941 } 3942 3943 return 0; 3944 } 3945 3946 /* 3947 * Read a locked inode from the btree into the in-memory inode and add it to 3948 * its root list/tree. 3949 * 3950 * On failure clean up the inode. 3951 */ 3952 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3953 { 3954 struct btrfs_root *root = inode->root; 3955 struct btrfs_fs_info *fs_info = root->fs_info; 3956 struct extent_buffer *leaf; 3957 struct btrfs_inode_item *inode_item; 3958 struct inode *vfs_inode = &inode->vfs_inode; 3959 struct btrfs_key location; 3960 unsigned long ptr; 3961 int maybe_acls; 3962 u32 rdev; 3963 int ret; 3964 bool filled = false; 3965 int first_xattr_slot; 3966 3967 ret = btrfs_fill_inode(inode, &rdev); 3968 if (!ret) 3969 filled = true; 3970 3971 ASSERT(path); 3972 3973 btrfs_get_inode_key(inode, &location); 3974 3975 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3976 if (ret) { 3977 /* 3978 * ret > 0 can come from btrfs_search_slot called by 3979 * btrfs_lookup_inode(), this means the inode was not found. 3980 */ 3981 if (ret > 0) 3982 ret = -ENOENT; 3983 goto out; 3984 } 3985 3986 leaf = path->nodes[0]; 3987 3988 if (filled) 3989 goto cache_index; 3990 3991 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3992 struct btrfs_inode_item); 3993 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3994 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3995 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3996 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3997 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3998 3999 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 4000 btrfs_timespec_nsec(leaf, &inode_item->atime)); 4001 4002 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 4003 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 4004 4005 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 4006 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 4007 4008 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 4009 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 4010 4011 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 4012 inode->generation = btrfs_inode_generation(leaf, inode_item); 4013 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 4014 4015 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 4016 vfs_inode->i_generation = inode->generation; 4017 vfs_inode->i_rdev = 0; 4018 rdev = btrfs_inode_rdev(leaf, inode_item); 4019 4020 if (S_ISDIR(vfs_inode->i_mode)) 4021 inode->index_cnt = (u64)-1; 4022 4023 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 4024 &inode->flags, &inode->ro_flags); 4025 btrfs_update_inode_mapping_flags(inode); 4026 btrfs_set_inode_mapping_order(inode); 4027 4028 cache_index: 4029 ret = btrfs_init_file_extent_tree(inode); 4030 if (ret) 4031 goto out; 4032 btrfs_inode_set_file_extent_range(inode, 0, 4033 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 4034 /* 4035 * If we were modified in the current generation and evicted from memory 4036 * and then re-read we need to do a full sync since we don't have any 4037 * idea about which extents were modified before we were evicted from 4038 * cache. 4039 * 4040 * This is required for both inode re-read from disk and delayed inode 4041 * in the delayed_nodes xarray. 4042 */ 4043 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 4044 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 4045 4046 /* 4047 * We don't persist the id of the transaction where an unlink operation 4048 * against the inode was last made. So here we assume the inode might 4049 * have been evicted, and therefore the exact value of last_unlink_trans 4050 * lost, and set it to last_trans to avoid metadata inconsistencies 4051 * between the inode and its parent if the inode is fsync'ed and the log 4052 * replayed. For example, in the scenario: 4053 * 4054 * touch mydir/foo 4055 * ln mydir/foo mydir/bar 4056 * sync 4057 * unlink mydir/bar 4058 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4059 * xfs_io -c fsync mydir/foo 4060 * <power failure> 4061 * mount fs, triggers fsync log replay 4062 * 4063 * We must make sure that when we fsync our inode foo we also log its 4064 * parent inode, otherwise after log replay the parent still has the 4065 * dentry with the "bar" name but our inode foo has a link count of 1 4066 * and doesn't have an inode ref with the name "bar" anymore. 4067 * 4068 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4069 * but it guarantees correctness at the expense of occasional full 4070 * transaction commits on fsync if our inode is a directory, or if our 4071 * inode is not a directory, logging its parent unnecessarily. 4072 */ 4073 inode->last_unlink_trans = inode->last_trans; 4074 4075 /* 4076 * Same logic as for last_unlink_trans. We don't persist the generation 4077 * of the last transaction where this inode was used for a reflink 4078 * operation, so after eviction and reloading the inode we must be 4079 * pessimistic and assume the last transaction that modified the inode. 4080 */ 4081 inode->last_reflink_trans = inode->last_trans; 4082 4083 path->slots[0]++; 4084 if (vfs_inode->i_nlink != 1 || 4085 path->slots[0] >= btrfs_header_nritems(leaf)) 4086 goto cache_acl; 4087 4088 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4089 if (location.objectid != btrfs_ino(inode)) 4090 goto cache_acl; 4091 4092 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4093 if (location.type == BTRFS_INODE_REF_KEY) { 4094 struct btrfs_inode_ref *ref; 4095 4096 ref = (struct btrfs_inode_ref *)ptr; 4097 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4098 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4099 struct btrfs_inode_extref *extref; 4100 4101 extref = (struct btrfs_inode_extref *)ptr; 4102 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4103 } 4104 cache_acl: 4105 /* 4106 * try to precache a NULL acl entry for files that don't have 4107 * any xattrs or acls 4108 */ 4109 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4110 btrfs_ino(inode), &first_xattr_slot); 4111 if (first_xattr_slot != -1) { 4112 path->slots[0] = first_xattr_slot; 4113 ret = btrfs_load_inode_props(inode, path); 4114 if (ret) 4115 btrfs_err(fs_info, 4116 "error loading props for ino %llu (root %llu): %d", 4117 btrfs_ino(inode), btrfs_root_id(root), ret); 4118 } 4119 4120 if (!maybe_acls) 4121 cache_no_acl(vfs_inode); 4122 4123 switch (vfs_inode->i_mode & S_IFMT) { 4124 case S_IFREG: 4125 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4126 vfs_inode->i_fop = &btrfs_file_operations; 4127 vfs_inode->i_op = &btrfs_file_inode_operations; 4128 break; 4129 case S_IFDIR: 4130 vfs_inode->i_fop = &btrfs_dir_file_operations; 4131 vfs_inode->i_op = &btrfs_dir_inode_operations; 4132 break; 4133 case S_IFLNK: 4134 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4135 inode_nohighmem(vfs_inode); 4136 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4137 break; 4138 default: 4139 vfs_inode->i_op = &btrfs_special_inode_operations; 4140 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4141 break; 4142 } 4143 4144 btrfs_sync_inode_flags_to_i_flags(inode); 4145 4146 ret = btrfs_add_inode_to_root(inode, true); 4147 if (ret) 4148 goto out; 4149 4150 return 0; 4151 out: 4152 iget_failed(vfs_inode); 4153 return ret; 4154 } 4155 4156 /* 4157 * given a leaf and an inode, copy the inode fields into the leaf 4158 */ 4159 static void fill_inode_item(struct btrfs_trans_handle *trans, 4160 struct extent_buffer *leaf, 4161 struct btrfs_inode_item *item, 4162 struct inode *inode) 4163 { 4164 u64 flags; 4165 4166 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4167 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4168 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4169 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4170 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4171 4172 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4173 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4174 4175 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4176 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4177 4178 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4179 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4180 4181 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4182 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4183 4184 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4185 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4186 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4187 btrfs_set_inode_transid(leaf, item, trans->transid); 4188 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4189 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4190 BTRFS_I(inode)->ro_flags); 4191 btrfs_set_inode_flags(leaf, item, flags); 4192 btrfs_set_inode_block_group(leaf, item, 0); 4193 } 4194 4195 /* 4196 * copy everything in the in-memory inode into the btree. 4197 */ 4198 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4199 struct btrfs_inode *inode) 4200 { 4201 struct btrfs_inode_item *inode_item; 4202 BTRFS_PATH_AUTO_FREE(path); 4203 struct extent_buffer *leaf; 4204 struct btrfs_key key; 4205 int ret; 4206 4207 path = btrfs_alloc_path(); 4208 if (!path) 4209 return -ENOMEM; 4210 4211 btrfs_get_inode_key(inode, &key); 4212 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4213 if (ret) { 4214 if (ret > 0) 4215 ret = -ENOENT; 4216 return ret; 4217 } 4218 4219 leaf = path->nodes[0]; 4220 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4221 struct btrfs_inode_item); 4222 4223 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4224 btrfs_set_inode_last_trans(trans, inode); 4225 return 0; 4226 } 4227 4228 /* 4229 * copy everything in the in-memory inode into the btree. 4230 */ 4231 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4232 struct btrfs_inode *inode) 4233 { 4234 struct btrfs_root *root = inode->root; 4235 struct btrfs_fs_info *fs_info = root->fs_info; 4236 int ret; 4237 4238 /* 4239 * If the inode is a free space inode, we can deadlock during commit 4240 * if we put it into the delayed code. 4241 * 4242 * The data relocation inode should also be directly updated 4243 * without delay 4244 */ 4245 if (!btrfs_is_free_space_inode(inode) 4246 && !btrfs_is_data_reloc_root(root) 4247 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4248 btrfs_update_root_times(trans, root); 4249 4250 ret = btrfs_delayed_update_inode(trans, inode); 4251 if (!ret) 4252 btrfs_set_inode_last_trans(trans, inode); 4253 return ret; 4254 } 4255 4256 return btrfs_update_inode_item(trans, inode); 4257 } 4258 4259 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4260 struct btrfs_inode *inode) 4261 { 4262 int ret; 4263 4264 ret = btrfs_update_inode(trans, inode); 4265 if (ret == -ENOSPC) 4266 return btrfs_update_inode_item(trans, inode); 4267 return ret; 4268 } 4269 4270 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4271 { 4272 struct timespec64 now; 4273 4274 /* 4275 * If we are replaying a log tree, we do not want to update the mtime 4276 * and ctime of the parent directory with the current time, since the 4277 * log replay procedure is responsible for setting them to their correct 4278 * values (the ones it had when the fsync was done). 4279 */ 4280 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4281 return; 4282 4283 now = inode_set_ctime_current(&dir->vfs_inode); 4284 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4285 } 4286 4287 /* 4288 * unlink helper that gets used here in inode.c and in the tree logging 4289 * recovery code. It remove a link in a directory with a given name, and 4290 * also drops the back refs in the inode to the directory 4291 */ 4292 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4293 struct btrfs_inode *dir, 4294 struct btrfs_inode *inode, 4295 const struct fscrypt_str *name, 4296 struct btrfs_rename_ctx *rename_ctx) 4297 { 4298 struct btrfs_root *root = dir->root; 4299 struct btrfs_fs_info *fs_info = root->fs_info; 4300 struct btrfs_path *path; 4301 int ret = 0; 4302 struct btrfs_dir_item *di; 4303 u64 index; 4304 u64 ino = btrfs_ino(inode); 4305 u64 dir_ino = btrfs_ino(dir); 4306 4307 path = btrfs_alloc_path(); 4308 if (!path) 4309 return -ENOMEM; 4310 4311 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4312 if (IS_ERR_OR_NULL(di)) { 4313 btrfs_free_path(path); 4314 return di ? PTR_ERR(di) : -ENOENT; 4315 } 4316 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4317 /* 4318 * Down the call chains below we'll also need to allocate a path, so no 4319 * need to hold on to this one for longer than necessary. 4320 */ 4321 btrfs_free_path(path); 4322 if (ret) 4323 return ret; 4324 4325 /* 4326 * If we don't have dir index, we have to get it by looking up 4327 * the inode ref, since we get the inode ref, remove it directly, 4328 * it is unnecessary to do delayed deletion. 4329 * 4330 * But if we have dir index, needn't search inode ref to get it. 4331 * Since the inode ref is close to the inode item, it is better 4332 * that we delay to delete it, and just do this deletion when 4333 * we update the inode item. 4334 */ 4335 if (inode->dir_index) { 4336 ret = btrfs_delayed_delete_inode_ref(inode); 4337 if (!ret) { 4338 index = inode->dir_index; 4339 goto skip_backref; 4340 } 4341 } 4342 4343 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4344 if (unlikely(ret)) { 4345 btrfs_crit(fs_info, 4346 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4347 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4348 btrfs_abort_transaction(trans, ret); 4349 return ret; 4350 } 4351 skip_backref: 4352 if (rename_ctx) 4353 rename_ctx->index = index; 4354 4355 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4356 if (unlikely(ret)) { 4357 btrfs_abort_transaction(trans, ret); 4358 return ret; 4359 } 4360 4361 /* 4362 * If we are in a rename context, we don't need to update anything in the 4363 * log. That will be done later during the rename by btrfs_log_new_name(). 4364 * Besides that, doing it here would only cause extra unnecessary btree 4365 * operations on the log tree, increasing latency for applications. 4366 */ 4367 if (!rename_ctx) { 4368 btrfs_del_inode_ref_in_log(trans, name, inode, dir); 4369 btrfs_del_dir_entries_in_log(trans, name, dir, index); 4370 } 4371 4372 /* 4373 * If we have a pending delayed iput we could end up with the final iput 4374 * being run in btrfs-cleaner context. If we have enough of these built 4375 * up we can end up burning a lot of time in btrfs-cleaner without any 4376 * way to throttle the unlinks. Since we're currently holding a ref on 4377 * the inode we can run the delayed iput here without any issues as the 4378 * final iput won't be done until after we drop the ref we're currently 4379 * holding. 4380 */ 4381 btrfs_run_delayed_iput(fs_info, inode); 4382 4383 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4384 inode_inc_iversion(&inode->vfs_inode); 4385 inode_set_ctime_current(&inode->vfs_inode); 4386 inode_inc_iversion(&dir->vfs_inode); 4387 update_time_after_link_or_unlink(dir); 4388 4389 return btrfs_update_inode(trans, dir); 4390 } 4391 4392 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4393 struct btrfs_inode *dir, struct btrfs_inode *inode, 4394 const struct fscrypt_str *name) 4395 { 4396 int ret; 4397 4398 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4399 if (!ret) { 4400 drop_nlink(&inode->vfs_inode); 4401 ret = btrfs_update_inode(trans, inode); 4402 } 4403 return ret; 4404 } 4405 4406 /* 4407 * helper to start transaction for unlink and rmdir. 4408 * 4409 * unlink and rmdir are special in btrfs, they do not always free space, so 4410 * if we cannot make our reservations the normal way try and see if there is 4411 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4412 * allow the unlink to occur. 4413 */ 4414 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4415 { 4416 struct btrfs_root *root = dir->root; 4417 4418 return btrfs_start_transaction_fallback_global_rsv(root, 4419 BTRFS_UNLINK_METADATA_UNITS); 4420 } 4421 4422 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4423 { 4424 struct btrfs_trans_handle *trans; 4425 struct inode *inode = d_inode(dentry); 4426 int ret; 4427 struct fscrypt_name fname; 4428 4429 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4430 if (ret) 4431 return ret; 4432 4433 /* This needs to handle no-key deletions later on */ 4434 4435 trans = __unlink_start_trans(BTRFS_I(dir)); 4436 if (IS_ERR(trans)) { 4437 ret = PTR_ERR(trans); 4438 goto fscrypt_free; 4439 } 4440 4441 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4442 false); 4443 4444 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4445 &fname.disk_name); 4446 if (ret) 4447 goto end_trans; 4448 4449 if (inode->i_nlink == 0) { 4450 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4451 if (ret) 4452 goto end_trans; 4453 } 4454 4455 end_trans: 4456 btrfs_end_transaction(trans); 4457 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4458 fscrypt_free: 4459 fscrypt_free_filename(&fname); 4460 return ret; 4461 } 4462 4463 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4464 struct btrfs_inode *dir, struct dentry *dentry) 4465 { 4466 struct btrfs_root *root = dir->root; 4467 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4468 BTRFS_PATH_AUTO_FREE(path); 4469 struct extent_buffer *leaf; 4470 struct btrfs_dir_item *di; 4471 struct btrfs_key key; 4472 u64 index; 4473 int ret; 4474 u64 objectid; 4475 u64 dir_ino = btrfs_ino(dir); 4476 struct fscrypt_name fname; 4477 4478 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4479 if (ret) 4480 return ret; 4481 4482 /* This needs to handle no-key deletions later on */ 4483 4484 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4485 objectid = btrfs_root_id(inode->root); 4486 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4487 objectid = inode->ref_root_id; 4488 } else { 4489 WARN_ON(1); 4490 fscrypt_free_filename(&fname); 4491 return -EINVAL; 4492 } 4493 4494 path = btrfs_alloc_path(); 4495 if (!path) { 4496 ret = -ENOMEM; 4497 goto out; 4498 } 4499 4500 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4501 &fname.disk_name, -1); 4502 if (IS_ERR_OR_NULL(di)) { 4503 ret = di ? PTR_ERR(di) : -ENOENT; 4504 goto out; 4505 } 4506 4507 leaf = path->nodes[0]; 4508 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4509 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4510 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4511 if (unlikely(ret)) { 4512 btrfs_abort_transaction(trans, ret); 4513 goto out; 4514 } 4515 btrfs_release_path(path); 4516 4517 /* 4518 * This is a placeholder inode for a subvolume we didn't have a 4519 * reference to at the time of the snapshot creation. In the meantime 4520 * we could have renamed the real subvol link into our snapshot, so 4521 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4522 * Instead simply lookup the dir_index_item for this entry so we can 4523 * remove it. Otherwise we know we have a ref to the root and we can 4524 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4525 */ 4526 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4527 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4528 if (IS_ERR(di)) { 4529 ret = PTR_ERR(di); 4530 btrfs_abort_transaction(trans, ret); 4531 goto out; 4532 } 4533 4534 leaf = path->nodes[0]; 4535 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4536 index = key.offset; 4537 btrfs_release_path(path); 4538 } else { 4539 ret = btrfs_del_root_ref(trans, objectid, 4540 btrfs_root_id(root), dir_ino, 4541 &index, &fname.disk_name); 4542 if (unlikely(ret)) { 4543 btrfs_abort_transaction(trans, ret); 4544 goto out; 4545 } 4546 } 4547 4548 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4549 if (unlikely(ret)) { 4550 btrfs_abort_transaction(trans, ret); 4551 goto out; 4552 } 4553 4554 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4555 inode_inc_iversion(&dir->vfs_inode); 4556 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4557 ret = btrfs_update_inode_fallback(trans, dir); 4558 if (ret) 4559 btrfs_abort_transaction(trans, ret); 4560 out: 4561 fscrypt_free_filename(&fname); 4562 return ret; 4563 } 4564 4565 /* 4566 * Helper to check if the subvolume references other subvolumes or if it's 4567 * default. 4568 */ 4569 static noinline int may_destroy_subvol(struct btrfs_root *root) 4570 { 4571 struct btrfs_fs_info *fs_info = root->fs_info; 4572 BTRFS_PATH_AUTO_FREE(path); 4573 struct btrfs_dir_item *di; 4574 struct btrfs_key key; 4575 struct fscrypt_str name = FSTR_INIT("default", 7); 4576 u64 dir_id; 4577 int ret; 4578 4579 path = btrfs_alloc_path(); 4580 if (!path) 4581 return -ENOMEM; 4582 4583 /* Make sure this root isn't set as the default subvol */ 4584 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4585 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4586 dir_id, &name, 0); 4587 if (di && !IS_ERR(di)) { 4588 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4589 if (key.objectid == btrfs_root_id(root)) { 4590 ret = -EPERM; 4591 btrfs_err(fs_info, 4592 "deleting default subvolume %llu is not allowed", 4593 key.objectid); 4594 return ret; 4595 } 4596 btrfs_release_path(path); 4597 } 4598 4599 key.objectid = btrfs_root_id(root); 4600 key.type = BTRFS_ROOT_REF_KEY; 4601 key.offset = (u64)-1; 4602 4603 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4604 if (ret < 0) 4605 return ret; 4606 if (unlikely(ret == 0)) { 4607 /* 4608 * Key with offset -1 found, there would have to exist a root 4609 * with such id, but this is out of valid range. 4610 */ 4611 return -EUCLEAN; 4612 } 4613 4614 ret = 0; 4615 if (path->slots[0] > 0) { 4616 path->slots[0]--; 4617 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4618 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4619 ret = -ENOTEMPTY; 4620 } 4621 4622 return ret; 4623 } 4624 4625 /* Delete all dentries for inodes belonging to the root */ 4626 static void btrfs_prune_dentries(struct btrfs_root *root) 4627 { 4628 struct btrfs_fs_info *fs_info = root->fs_info; 4629 struct btrfs_inode *inode; 4630 u64 min_ino = 0; 4631 4632 if (!BTRFS_FS_ERROR(fs_info)) 4633 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4634 4635 inode = btrfs_find_first_inode(root, min_ino); 4636 while (inode) { 4637 if (icount_read(&inode->vfs_inode) > 1) 4638 d_prune_aliases(&inode->vfs_inode); 4639 4640 min_ino = btrfs_ino(inode) + 1; 4641 /* 4642 * btrfs_drop_inode() will have it removed from the inode 4643 * cache when its usage count hits zero. 4644 */ 4645 iput(&inode->vfs_inode); 4646 cond_resched(); 4647 inode = btrfs_find_first_inode(root, min_ino); 4648 } 4649 } 4650 4651 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4652 { 4653 struct btrfs_root *root = dir->root; 4654 struct btrfs_fs_info *fs_info = root->fs_info; 4655 struct inode *inode = d_inode(dentry); 4656 struct btrfs_root *dest = BTRFS_I(inode)->root; 4657 struct btrfs_trans_handle *trans; 4658 struct btrfs_block_rsv block_rsv; 4659 u64 root_flags; 4660 u64 qgroup_reserved = 0; 4661 int ret; 4662 4663 down_write(&fs_info->subvol_sem); 4664 4665 /* 4666 * Don't allow to delete a subvolume with send in progress. This is 4667 * inside the inode lock so the error handling that has to drop the bit 4668 * again is not run concurrently. 4669 */ 4670 spin_lock(&dest->root_item_lock); 4671 if (dest->send_in_progress) { 4672 spin_unlock(&dest->root_item_lock); 4673 btrfs_warn(fs_info, 4674 "attempt to delete subvolume %llu during send", 4675 btrfs_root_id(dest)); 4676 ret = -EPERM; 4677 goto out_up_write; 4678 } 4679 if (atomic_read(&dest->nr_swapfiles)) { 4680 spin_unlock(&dest->root_item_lock); 4681 btrfs_warn(fs_info, 4682 "attempt to delete subvolume %llu with active swapfile", 4683 btrfs_root_id(root)); 4684 ret = -EPERM; 4685 goto out_up_write; 4686 } 4687 root_flags = btrfs_root_flags(&dest->root_item); 4688 btrfs_set_root_flags(&dest->root_item, 4689 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4690 spin_unlock(&dest->root_item_lock); 4691 4692 ret = may_destroy_subvol(dest); 4693 if (ret) 4694 goto out_undead; 4695 4696 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4697 /* 4698 * One for dir inode, 4699 * two for dir entries, 4700 * two for root ref/backref. 4701 */ 4702 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4703 if (ret) 4704 goto out_undead; 4705 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4706 4707 trans = btrfs_start_transaction(root, 0); 4708 if (IS_ERR(trans)) { 4709 ret = PTR_ERR(trans); 4710 goto out_release; 4711 } 4712 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4713 qgroup_reserved = 0; 4714 trans->block_rsv = &block_rsv; 4715 trans->bytes_reserved = block_rsv.size; 4716 4717 btrfs_record_snapshot_destroy(trans, dir); 4718 4719 ret = btrfs_unlink_subvol(trans, dir, dentry); 4720 if (unlikely(ret)) { 4721 btrfs_abort_transaction(trans, ret); 4722 goto out_end_trans; 4723 } 4724 4725 ret = btrfs_record_root_in_trans(trans, dest); 4726 if (unlikely(ret)) { 4727 btrfs_abort_transaction(trans, ret); 4728 goto out_end_trans; 4729 } 4730 4731 memset(&dest->root_item.drop_progress, 0, 4732 sizeof(dest->root_item.drop_progress)); 4733 btrfs_set_root_drop_level(&dest->root_item, 0); 4734 btrfs_set_root_refs(&dest->root_item, 0); 4735 4736 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4737 ret = btrfs_insert_orphan_item(trans, 4738 fs_info->tree_root, 4739 btrfs_root_id(dest)); 4740 if (unlikely(ret)) { 4741 btrfs_abort_transaction(trans, ret); 4742 goto out_end_trans; 4743 } 4744 } 4745 4746 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4747 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4748 if (unlikely(ret && ret != -ENOENT)) { 4749 btrfs_abort_transaction(trans, ret); 4750 goto out_end_trans; 4751 } 4752 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4753 ret = btrfs_uuid_tree_remove(trans, 4754 dest->root_item.received_uuid, 4755 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4756 btrfs_root_id(dest)); 4757 if (unlikely(ret && ret != -ENOENT)) { 4758 btrfs_abort_transaction(trans, ret); 4759 goto out_end_trans; 4760 } 4761 } 4762 4763 free_anon_bdev(dest->anon_dev); 4764 dest->anon_dev = 0; 4765 out_end_trans: 4766 trans->block_rsv = NULL; 4767 trans->bytes_reserved = 0; 4768 ret = btrfs_end_transaction(trans); 4769 inode->i_flags |= S_DEAD; 4770 out_release: 4771 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4772 if (qgroup_reserved) 4773 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4774 out_undead: 4775 if (ret) { 4776 spin_lock(&dest->root_item_lock); 4777 root_flags = btrfs_root_flags(&dest->root_item); 4778 btrfs_set_root_flags(&dest->root_item, 4779 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4780 spin_unlock(&dest->root_item_lock); 4781 } 4782 out_up_write: 4783 up_write(&fs_info->subvol_sem); 4784 if (!ret) { 4785 d_invalidate(dentry); 4786 btrfs_prune_dentries(dest); 4787 ASSERT(dest->send_in_progress == 0); 4788 } 4789 4790 return ret; 4791 } 4792 4793 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4794 { 4795 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4796 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4797 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4798 int ret = 0; 4799 struct btrfs_trans_handle *trans; 4800 struct fscrypt_name fname; 4801 4802 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4803 return -ENOTEMPTY; 4804 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4805 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4806 btrfs_err(fs_info, 4807 "extent tree v2 doesn't support snapshot deletion yet"); 4808 return -EOPNOTSUPP; 4809 } 4810 return btrfs_delete_subvolume(dir, dentry); 4811 } 4812 4813 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4814 if (ret) 4815 return ret; 4816 4817 /* This needs to handle no-key deletions later on */ 4818 4819 trans = __unlink_start_trans(dir); 4820 if (IS_ERR(trans)) { 4821 ret = PTR_ERR(trans); 4822 goto out_notrans; 4823 } 4824 4825 /* 4826 * Propagate the last_unlink_trans value of the deleted dir to its 4827 * parent directory. This is to prevent an unrecoverable log tree in the 4828 * case we do something like this: 4829 * 1) create dir foo 4830 * 2) create snapshot under dir foo 4831 * 3) delete the snapshot 4832 * 4) rmdir foo 4833 * 5) mkdir foo 4834 * 6) fsync foo or some file inside foo 4835 * 4836 * This is because we can't unlink other roots when replaying the dir 4837 * deletes for directory foo. 4838 */ 4839 if (inode->last_unlink_trans >= trans->transid) 4840 btrfs_record_snapshot_destroy(trans, dir); 4841 4842 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4843 ret = btrfs_unlink_subvol(trans, dir, dentry); 4844 goto out; 4845 } 4846 4847 ret = btrfs_orphan_add(trans, inode); 4848 if (ret) 4849 goto out; 4850 4851 /* now the directory is empty */ 4852 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4853 if (!ret) 4854 btrfs_i_size_write(inode, 0); 4855 out: 4856 btrfs_end_transaction(trans); 4857 out_notrans: 4858 btrfs_btree_balance_dirty(fs_info); 4859 fscrypt_free_filename(&fname); 4860 4861 return ret; 4862 } 4863 4864 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4865 { 4866 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4867 blockstart, blocksize); 4868 4869 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4870 return true; 4871 return false; 4872 } 4873 4874 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4875 { 4876 const pgoff_t index = (start >> PAGE_SHIFT); 4877 struct address_space *mapping = inode->vfs_inode.i_mapping; 4878 struct folio *folio; 4879 u64 zero_start; 4880 u64 zero_end; 4881 int ret = 0; 4882 4883 again: 4884 folio = filemap_lock_folio(mapping, index); 4885 /* No folio present. */ 4886 if (IS_ERR(folio)) 4887 return 0; 4888 4889 if (!folio_test_uptodate(folio)) { 4890 ret = btrfs_read_folio(NULL, folio); 4891 folio_lock(folio); 4892 if (folio->mapping != mapping) { 4893 folio_unlock(folio); 4894 folio_put(folio); 4895 goto again; 4896 } 4897 if (unlikely(!folio_test_uptodate(folio))) { 4898 ret = -EIO; 4899 goto out_unlock; 4900 } 4901 } 4902 folio_wait_writeback(folio); 4903 4904 /* 4905 * We do not need to lock extents nor wait for OE, as it's already 4906 * beyond EOF. 4907 */ 4908 4909 zero_start = max_t(u64, folio_pos(folio), start); 4910 zero_end = folio_next_pos(folio); 4911 folio_zero_range(folio, zero_start - folio_pos(folio), 4912 zero_end - zero_start); 4913 4914 out_unlock: 4915 folio_unlock(folio); 4916 folio_put(folio); 4917 return ret; 4918 } 4919 4920 /* 4921 * Handle the truncation of a fs block. 4922 * 4923 * @inode - inode that we're zeroing 4924 * @offset - the file offset of the block to truncate 4925 * The value must be inside [@start, @end], and the function will do 4926 * extra checks if the block that covers @offset needs to be zeroed. 4927 * @start - the start file offset of the range we want to zero 4928 * @end - the end (inclusive) file offset of the range we want to zero. 4929 * 4930 * If the range is not block aligned, read out the folio that covers @offset, 4931 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4932 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4933 * for writeback. 4934 * 4935 * This is utilized by hole punch, zero range, file expansion. 4936 */ 4937 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4938 { 4939 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4940 struct address_space *mapping = inode->vfs_inode.i_mapping; 4941 struct extent_io_tree *io_tree = &inode->io_tree; 4942 struct btrfs_ordered_extent *ordered; 4943 struct extent_state *cached_state = NULL; 4944 struct extent_changeset *data_reserved = NULL; 4945 bool only_release_metadata = false; 4946 u32 blocksize = fs_info->sectorsize; 4947 pgoff_t index = (offset >> PAGE_SHIFT); 4948 struct folio *folio; 4949 gfp_t mask = btrfs_alloc_write_mask(mapping); 4950 int ret = 0; 4951 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4952 blocksize); 4953 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4954 blocksize); 4955 bool need_truncate_head = false; 4956 bool need_truncate_tail = false; 4957 u64 zero_start; 4958 u64 zero_end; 4959 u64 block_start; 4960 u64 block_end; 4961 4962 /* @offset should be inside the range. */ 4963 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4964 offset, start, end); 4965 4966 /* The range is aligned at both ends. */ 4967 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4968 /* 4969 * For block size < page size case, we may have polluted blocks 4970 * beyond EOF. So we also need to zero them out. 4971 */ 4972 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4973 ret = truncate_block_zero_beyond_eof(inode, start); 4974 goto out; 4975 } 4976 4977 /* 4978 * @offset may not be inside the head nor tail block. In that case we 4979 * don't need to do anything. 4980 */ 4981 if (!in_head_block && !in_tail_block) 4982 goto out; 4983 4984 /* 4985 * Skip the truncation if the range in the target block is already aligned. 4986 * The seemingly complex check will also handle the same block case. 4987 */ 4988 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4989 need_truncate_head = true; 4990 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4991 need_truncate_tail = true; 4992 if (!need_truncate_head && !need_truncate_tail) 4993 goto out; 4994 4995 block_start = round_down(offset, blocksize); 4996 block_end = block_start + blocksize - 1; 4997 4998 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4999 blocksize, false); 5000 if (ret < 0) { 5001 size_t write_bytes = blocksize; 5002 5003 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 5004 /* For nocow case, no need to reserve data space. */ 5005 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 5006 write_bytes, blocksize); 5007 only_release_metadata = true; 5008 } else { 5009 goto out; 5010 } 5011 } 5012 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 5013 if (ret < 0) { 5014 if (!only_release_metadata) 5015 btrfs_free_reserved_data_space(inode, data_reserved, 5016 block_start, blocksize); 5017 goto out; 5018 } 5019 again: 5020 folio = __filemap_get_folio(mapping, index, 5021 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 5022 if (IS_ERR(folio)) { 5023 if (only_release_metadata) 5024 btrfs_delalloc_release_metadata(inode, blocksize, true); 5025 else 5026 btrfs_delalloc_release_space(inode, data_reserved, 5027 block_start, blocksize, true); 5028 btrfs_delalloc_release_extents(inode, blocksize); 5029 ret = PTR_ERR(folio); 5030 goto out; 5031 } 5032 5033 if (!folio_test_uptodate(folio)) { 5034 ret = btrfs_read_folio(NULL, folio); 5035 folio_lock(folio); 5036 if (folio->mapping != mapping) { 5037 folio_unlock(folio); 5038 folio_put(folio); 5039 goto again; 5040 } 5041 if (unlikely(!folio_test_uptodate(folio))) { 5042 ret = -EIO; 5043 goto out_unlock; 5044 } 5045 } 5046 5047 /* 5048 * We unlock the page after the io is completed and then re-lock it 5049 * above. release_folio() could have come in between that and cleared 5050 * folio private, but left the page in the mapping. Set the page mapped 5051 * here to make sure it's properly set for the subpage stuff. 5052 */ 5053 ret = set_folio_extent_mapped(folio); 5054 if (ret < 0) 5055 goto out_unlock; 5056 5057 folio_wait_writeback(folio); 5058 5059 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 5060 5061 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5062 if (ordered) { 5063 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5064 folio_unlock(folio); 5065 folio_put(folio); 5066 btrfs_start_ordered_extent(ordered); 5067 btrfs_put_ordered_extent(ordered); 5068 goto again; 5069 } 5070 5071 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 5072 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5073 &cached_state); 5074 5075 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5076 &cached_state); 5077 if (ret) { 5078 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5079 goto out_unlock; 5080 } 5081 5082 if (end == (u64)-1) { 5083 /* 5084 * We're truncating beyond EOF, the remaining blocks normally are 5085 * already holes thus no need to zero again, but it's possible for 5086 * fs block size < page size cases to have memory mapped writes 5087 * to pollute ranges beyond EOF. 5088 * 5089 * In that case although such polluted blocks beyond EOF will 5090 * not reach disk, it still affects our page caches. 5091 */ 5092 zero_start = max_t(u64, folio_pos(folio), start); 5093 zero_end = min_t(u64, folio_next_pos(folio) - 1, end); 5094 } else { 5095 zero_start = max_t(u64, block_start, start); 5096 zero_end = min_t(u64, block_end, end); 5097 } 5098 folio_zero_range(folio, zero_start - folio_pos(folio), 5099 zero_end - zero_start + 1); 5100 5101 btrfs_folio_clear_checked(fs_info, folio, block_start, 5102 block_end + 1 - block_start); 5103 btrfs_folio_set_dirty(fs_info, folio, block_start, 5104 block_end + 1 - block_start); 5105 5106 if (only_release_metadata) 5107 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5108 EXTENT_NORESERVE, &cached_state); 5109 5110 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5111 5112 out_unlock: 5113 if (ret) { 5114 if (only_release_metadata) 5115 btrfs_delalloc_release_metadata(inode, blocksize, true); 5116 else 5117 btrfs_delalloc_release_space(inode, data_reserved, 5118 block_start, blocksize, true); 5119 } 5120 btrfs_delalloc_release_extents(inode, blocksize); 5121 folio_unlock(folio); 5122 folio_put(folio); 5123 out: 5124 if (only_release_metadata) 5125 btrfs_check_nocow_unlock(inode); 5126 extent_changeset_free(data_reserved); 5127 return ret; 5128 } 5129 5130 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5131 { 5132 struct btrfs_root *root = inode->root; 5133 struct btrfs_fs_info *fs_info = root->fs_info; 5134 struct btrfs_trans_handle *trans; 5135 struct btrfs_drop_extents_args drop_args = { 0 }; 5136 int ret; 5137 5138 /* 5139 * If NO_HOLES is enabled, we don't need to do anything. 5140 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5141 * or btrfs_update_inode() will be called, which guarantee that the next 5142 * fsync will know this inode was changed and needs to be logged. 5143 */ 5144 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5145 return 0; 5146 5147 /* 5148 * 1 - for the one we're dropping 5149 * 1 - for the one we're adding 5150 * 1 - for updating the inode. 5151 */ 5152 trans = btrfs_start_transaction(root, 3); 5153 if (IS_ERR(trans)) 5154 return PTR_ERR(trans); 5155 5156 drop_args.start = offset; 5157 drop_args.end = offset + len; 5158 drop_args.drop_cache = true; 5159 5160 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5161 if (unlikely(ret)) { 5162 btrfs_abort_transaction(trans, ret); 5163 btrfs_end_transaction(trans); 5164 return ret; 5165 } 5166 5167 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5168 if (ret) { 5169 btrfs_abort_transaction(trans, ret); 5170 } else { 5171 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5172 btrfs_update_inode(trans, inode); 5173 } 5174 btrfs_end_transaction(trans); 5175 return ret; 5176 } 5177 5178 /* 5179 * This function puts in dummy file extents for the area we're creating a hole 5180 * for. So if we are truncating this file to a larger size we need to insert 5181 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5182 * the range between oldsize and size 5183 */ 5184 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5185 { 5186 struct btrfs_root *root = inode->root; 5187 struct btrfs_fs_info *fs_info = root->fs_info; 5188 struct extent_io_tree *io_tree = &inode->io_tree; 5189 struct extent_map *em = NULL; 5190 struct extent_state *cached_state = NULL; 5191 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5192 u64 block_end = ALIGN(size, fs_info->sectorsize); 5193 u64 last_byte; 5194 u64 cur_offset; 5195 u64 hole_size; 5196 int ret = 0; 5197 5198 /* 5199 * If our size started in the middle of a block we need to zero out the 5200 * rest of the block before we expand the i_size, otherwise we could 5201 * expose stale data. 5202 */ 5203 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5204 if (ret) 5205 return ret; 5206 5207 if (size <= hole_start) 5208 return 0; 5209 5210 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5211 &cached_state); 5212 cur_offset = hole_start; 5213 while (1) { 5214 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5215 if (IS_ERR(em)) { 5216 ret = PTR_ERR(em); 5217 em = NULL; 5218 break; 5219 } 5220 last_byte = min(btrfs_extent_map_end(em), block_end); 5221 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5222 hole_size = last_byte - cur_offset; 5223 5224 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5225 struct extent_map *hole_em; 5226 5227 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5228 if (ret) 5229 break; 5230 5231 ret = btrfs_inode_set_file_extent_range(inode, 5232 cur_offset, hole_size); 5233 if (ret) 5234 break; 5235 5236 hole_em = btrfs_alloc_extent_map(); 5237 if (!hole_em) { 5238 btrfs_drop_extent_map_range(inode, cur_offset, 5239 cur_offset + hole_size - 1, 5240 false); 5241 btrfs_set_inode_full_sync(inode); 5242 goto next; 5243 } 5244 hole_em->start = cur_offset; 5245 hole_em->len = hole_size; 5246 5247 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5248 hole_em->disk_num_bytes = 0; 5249 hole_em->ram_bytes = hole_size; 5250 hole_em->generation = btrfs_get_fs_generation(fs_info); 5251 5252 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5253 btrfs_free_extent_map(hole_em); 5254 } else { 5255 ret = btrfs_inode_set_file_extent_range(inode, 5256 cur_offset, hole_size); 5257 if (ret) 5258 break; 5259 } 5260 next: 5261 btrfs_free_extent_map(em); 5262 em = NULL; 5263 cur_offset = last_byte; 5264 if (cur_offset >= block_end) 5265 break; 5266 } 5267 btrfs_free_extent_map(em); 5268 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5269 return ret; 5270 } 5271 5272 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5273 { 5274 struct btrfs_root *root = BTRFS_I(inode)->root; 5275 struct btrfs_trans_handle *trans; 5276 loff_t oldsize = i_size_read(inode); 5277 loff_t newsize = attr->ia_size; 5278 int mask = attr->ia_valid; 5279 int ret; 5280 5281 /* 5282 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5283 * special case where we need to update the times despite not having 5284 * these flags set. For all other operations the VFS set these flags 5285 * explicitly if it wants a timestamp update. 5286 */ 5287 if (newsize != oldsize) { 5288 inode_inc_iversion(inode); 5289 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5290 inode_set_mtime_to_ts(inode, 5291 inode_set_ctime_current(inode)); 5292 } 5293 } 5294 5295 if (newsize > oldsize) { 5296 /* 5297 * Don't do an expanding truncate while snapshotting is ongoing. 5298 * This is to ensure the snapshot captures a fully consistent 5299 * state of this file - if the snapshot captures this expanding 5300 * truncation, it must capture all writes that happened before 5301 * this truncation. 5302 */ 5303 btrfs_drew_write_lock(&root->snapshot_lock); 5304 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5305 if (ret) { 5306 btrfs_drew_write_unlock(&root->snapshot_lock); 5307 return ret; 5308 } 5309 5310 trans = btrfs_start_transaction(root, 1); 5311 if (IS_ERR(trans)) { 5312 btrfs_drew_write_unlock(&root->snapshot_lock); 5313 return PTR_ERR(trans); 5314 } 5315 5316 i_size_write(inode, newsize); 5317 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5318 pagecache_isize_extended(inode, oldsize, newsize); 5319 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5320 btrfs_drew_write_unlock(&root->snapshot_lock); 5321 btrfs_end_transaction(trans); 5322 } else { 5323 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5324 5325 if (btrfs_is_zoned(fs_info)) { 5326 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5327 ALIGN(newsize, fs_info->sectorsize), 5328 (u64)-1); 5329 if (ret) 5330 return ret; 5331 } 5332 5333 /* 5334 * We're truncating a file that used to have good data down to 5335 * zero. Make sure any new writes to the file get on disk 5336 * on close. 5337 */ 5338 if (newsize == 0) 5339 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5340 &BTRFS_I(inode)->runtime_flags); 5341 5342 truncate_setsize(inode, newsize); 5343 5344 inode_dio_wait(inode); 5345 5346 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5347 if (ret && inode->i_nlink) { 5348 int ret2; 5349 5350 /* 5351 * Truncate failed, so fix up the in-memory size. We 5352 * adjusted disk_i_size down as we removed extents, so 5353 * wait for disk_i_size to be stable and then update the 5354 * in-memory size to match. 5355 */ 5356 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5357 if (ret2) 5358 return ret2; 5359 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5360 } 5361 } 5362 5363 return ret; 5364 } 5365 5366 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5367 struct iattr *attr) 5368 { 5369 struct inode *inode = d_inode(dentry); 5370 struct btrfs_root *root = BTRFS_I(inode)->root; 5371 int ret; 5372 5373 if (btrfs_root_readonly(root)) 5374 return -EROFS; 5375 5376 ret = setattr_prepare(idmap, dentry, attr); 5377 if (ret) 5378 return ret; 5379 5380 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5381 ret = btrfs_setsize(inode, attr); 5382 if (ret) 5383 return ret; 5384 } 5385 5386 if (attr->ia_valid) { 5387 setattr_copy(idmap, inode, attr); 5388 inode_inc_iversion(inode); 5389 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5390 5391 if (!ret && attr->ia_valid & ATTR_MODE) 5392 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5393 } 5394 5395 return ret; 5396 } 5397 5398 /* 5399 * While truncating the inode pages during eviction, we get the VFS 5400 * calling btrfs_invalidate_folio() against each folio of the inode. This 5401 * is slow because the calls to btrfs_invalidate_folio() result in a 5402 * huge amount of calls to lock_extent() and clear_extent_bit(), 5403 * which keep merging and splitting extent_state structures over and over, 5404 * wasting lots of time. 5405 * 5406 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5407 * skip all those expensive operations on a per folio basis and do only 5408 * the ordered io finishing, while we release here the extent_map and 5409 * extent_state structures, without the excessive merging and splitting. 5410 */ 5411 static void evict_inode_truncate_pages(struct inode *inode) 5412 { 5413 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5414 struct rb_node *node; 5415 5416 ASSERT(inode_state_read_once(inode) & I_FREEING); 5417 truncate_inode_pages_final(&inode->i_data); 5418 5419 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5420 5421 /* 5422 * Keep looping until we have no more ranges in the io tree. 5423 * We can have ongoing bios started by readahead that have 5424 * their endio callback (extent_io.c:end_bio_extent_readpage) 5425 * still in progress (unlocked the pages in the bio but did not yet 5426 * unlocked the ranges in the io tree). Therefore this means some 5427 * ranges can still be locked and eviction started because before 5428 * submitting those bios, which are executed by a separate task (work 5429 * queue kthread), inode references (inode->i_count) were not taken 5430 * (which would be dropped in the end io callback of each bio). 5431 * Therefore here we effectively end up waiting for those bios and 5432 * anyone else holding locked ranges without having bumped the inode's 5433 * reference count - if we don't do it, when they access the inode's 5434 * io_tree to unlock a range it may be too late, leading to an 5435 * use-after-free issue. 5436 */ 5437 spin_lock(&io_tree->lock); 5438 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5439 struct extent_state *state; 5440 struct extent_state *cached_state = NULL; 5441 u64 start; 5442 u64 end; 5443 unsigned state_flags; 5444 5445 node = rb_first(&io_tree->state); 5446 state = rb_entry(node, struct extent_state, rb_node); 5447 start = state->start; 5448 end = state->end; 5449 state_flags = state->state; 5450 spin_unlock(&io_tree->lock); 5451 5452 btrfs_lock_extent(io_tree, start, end, &cached_state); 5453 5454 /* 5455 * If still has DELALLOC flag, the extent didn't reach disk, 5456 * and its reserved space won't be freed by delayed_ref. 5457 * So we need to free its reserved space here. 5458 * (Refer to comment in btrfs_invalidate_folio, case 2) 5459 * 5460 * Note, end is the bytenr of last byte, so we need + 1 here. 5461 */ 5462 if (state_flags & EXTENT_DELALLOC) 5463 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5464 end - start + 1, NULL); 5465 5466 btrfs_clear_extent_bit(io_tree, start, end, 5467 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5468 &cached_state); 5469 5470 cond_resched(); 5471 spin_lock(&io_tree->lock); 5472 } 5473 spin_unlock(&io_tree->lock); 5474 } 5475 5476 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5477 struct btrfs_block_rsv *rsv) 5478 { 5479 struct btrfs_fs_info *fs_info = root->fs_info; 5480 struct btrfs_trans_handle *trans; 5481 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5482 int ret; 5483 5484 /* 5485 * Eviction should be taking place at some place safe because of our 5486 * delayed iputs. However the normal flushing code will run delayed 5487 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5488 * 5489 * We reserve the delayed_refs_extra here again because we can't use 5490 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5491 * above. We reserve our extra bit here because we generate a ton of 5492 * delayed refs activity by truncating. 5493 * 5494 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5495 * if we fail to make this reservation we can re-try without the 5496 * delayed_refs_extra so we can make some forward progress. 5497 */ 5498 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5499 BTRFS_RESERVE_FLUSH_EVICT); 5500 if (ret) { 5501 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5502 BTRFS_RESERVE_FLUSH_EVICT); 5503 if (ret) { 5504 btrfs_warn(fs_info, 5505 "could not allocate space for delete; will truncate on mount"); 5506 return ERR_PTR(-ENOSPC); 5507 } 5508 delayed_refs_extra = 0; 5509 } 5510 5511 trans = btrfs_join_transaction(root); 5512 if (IS_ERR(trans)) 5513 return trans; 5514 5515 if (delayed_refs_extra) { 5516 trans->block_rsv = &fs_info->trans_block_rsv; 5517 trans->bytes_reserved = delayed_refs_extra; 5518 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5519 delayed_refs_extra, true); 5520 } 5521 return trans; 5522 } 5523 5524 void btrfs_evict_inode(struct inode *inode) 5525 { 5526 struct btrfs_fs_info *fs_info; 5527 struct btrfs_trans_handle *trans; 5528 struct btrfs_root *root = BTRFS_I(inode)->root; 5529 struct btrfs_block_rsv rsv; 5530 int ret; 5531 5532 trace_btrfs_inode_evict(inode); 5533 5534 if (!root) { 5535 fsverity_cleanup_inode(inode); 5536 clear_inode(inode); 5537 return; 5538 } 5539 5540 fs_info = inode_to_fs_info(inode); 5541 evict_inode_truncate_pages(inode); 5542 5543 if (inode->i_nlink && 5544 ((btrfs_root_refs(&root->root_item) != 0 && 5545 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5546 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5547 goto out; 5548 5549 if (is_bad_inode(inode)) 5550 goto out; 5551 5552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5553 goto out; 5554 5555 if (inode->i_nlink > 0) { 5556 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5557 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5558 goto out; 5559 } 5560 5561 /* 5562 * This makes sure the inode item in tree is uptodate and the space for 5563 * the inode update is released. 5564 */ 5565 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5566 if (ret) 5567 goto out; 5568 5569 /* 5570 * This drops any pending insert or delete operations we have for this 5571 * inode. We could have a delayed dir index deletion queued up, but 5572 * we're removing the inode completely so that'll be taken care of in 5573 * the truncate. 5574 */ 5575 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5576 5577 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5578 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5579 rsv.failfast = true; 5580 5581 btrfs_i_size_write(BTRFS_I(inode), 0); 5582 5583 while (1) { 5584 struct btrfs_truncate_control control = { 5585 .inode = BTRFS_I(inode), 5586 .ino = btrfs_ino(BTRFS_I(inode)), 5587 .new_size = 0, 5588 .min_type = 0, 5589 }; 5590 5591 trans = evict_refill_and_join(root, &rsv); 5592 if (IS_ERR(trans)) 5593 goto out_release; 5594 5595 trans->block_rsv = &rsv; 5596 5597 ret = btrfs_truncate_inode_items(trans, root, &control); 5598 trans->block_rsv = &fs_info->trans_block_rsv; 5599 btrfs_end_transaction(trans); 5600 /* 5601 * We have not added new delayed items for our inode after we 5602 * have flushed its delayed items, so no need to throttle on 5603 * delayed items. However we have modified extent buffers. 5604 */ 5605 btrfs_btree_balance_dirty_nodelay(fs_info); 5606 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5607 goto out_release; 5608 else if (!ret) 5609 break; 5610 } 5611 5612 /* 5613 * Errors here aren't a big deal, it just means we leave orphan items in 5614 * the tree. They will be cleaned up on the next mount. If the inode 5615 * number gets reused, cleanup deletes the orphan item without doing 5616 * anything, and unlink reuses the existing orphan item. 5617 * 5618 * If it turns out that we are dropping too many of these, we might want 5619 * to add a mechanism for retrying these after a commit. 5620 */ 5621 trans = evict_refill_and_join(root, &rsv); 5622 if (!IS_ERR(trans)) { 5623 trans->block_rsv = &rsv; 5624 btrfs_orphan_del(trans, BTRFS_I(inode)); 5625 trans->block_rsv = &fs_info->trans_block_rsv; 5626 btrfs_end_transaction(trans); 5627 } 5628 5629 out_release: 5630 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5631 out: 5632 /* 5633 * If we didn't successfully delete, the orphan item will still be in 5634 * the tree and we'll retry on the next mount. Again, we might also want 5635 * to retry these periodically in the future. 5636 */ 5637 btrfs_remove_delayed_node(BTRFS_I(inode)); 5638 fsverity_cleanup_inode(inode); 5639 clear_inode(inode); 5640 } 5641 5642 /* 5643 * Return the key found in the dir entry in the location pointer, fill @type 5644 * with BTRFS_FT_*, and return 0. 5645 * 5646 * If no dir entries were found, returns -ENOENT. 5647 * If found a corrupted location in dir entry, returns -EUCLEAN. 5648 */ 5649 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5650 struct btrfs_key *location, u8 *type) 5651 { 5652 struct btrfs_dir_item *di; 5653 BTRFS_PATH_AUTO_FREE(path); 5654 struct btrfs_root *root = dir->root; 5655 int ret = 0; 5656 struct fscrypt_name fname; 5657 5658 path = btrfs_alloc_path(); 5659 if (!path) 5660 return -ENOMEM; 5661 5662 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5663 if (ret < 0) 5664 return ret; 5665 /* 5666 * fscrypt_setup_filename() should never return a positive value, but 5667 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5668 */ 5669 ASSERT(ret == 0); 5670 5671 /* This needs to handle no-key deletions later on */ 5672 5673 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5674 &fname.disk_name, 0); 5675 if (IS_ERR_OR_NULL(di)) { 5676 ret = di ? PTR_ERR(di) : -ENOENT; 5677 goto out; 5678 } 5679 5680 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5681 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY && 5682 location->type != BTRFS_ROOT_ITEM_KEY)) { 5683 ret = -EUCLEAN; 5684 btrfs_warn(root->fs_info, 5685 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")", 5686 __func__, fname.disk_name.name, btrfs_ino(dir), 5687 BTRFS_KEY_FMT_VALUE(location)); 5688 } 5689 if (!ret) 5690 *type = btrfs_dir_ftype(path->nodes[0], di); 5691 out: 5692 fscrypt_free_filename(&fname); 5693 return ret; 5694 } 5695 5696 /* 5697 * when we hit a tree root in a directory, the btrfs part of the inode 5698 * needs to be changed to reflect the root directory of the tree root. This 5699 * is kind of like crossing a mount point. 5700 */ 5701 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5702 struct btrfs_inode *dir, 5703 struct dentry *dentry, 5704 struct btrfs_key *location, 5705 struct btrfs_root **sub_root) 5706 { 5707 BTRFS_PATH_AUTO_FREE(path); 5708 struct btrfs_root *new_root; 5709 struct btrfs_root_ref *ref; 5710 struct extent_buffer *leaf; 5711 struct btrfs_key key; 5712 int ret; 5713 int err = 0; 5714 struct fscrypt_name fname; 5715 5716 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5717 if (ret) 5718 return ret; 5719 5720 path = btrfs_alloc_path(); 5721 if (!path) { 5722 err = -ENOMEM; 5723 goto out; 5724 } 5725 5726 err = -ENOENT; 5727 key.objectid = btrfs_root_id(dir->root); 5728 key.type = BTRFS_ROOT_REF_KEY; 5729 key.offset = location->objectid; 5730 5731 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5732 if (ret) { 5733 if (ret < 0) 5734 err = ret; 5735 goto out; 5736 } 5737 5738 leaf = path->nodes[0]; 5739 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5740 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5741 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5742 goto out; 5743 5744 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5745 (unsigned long)(ref + 1), fname.disk_name.len); 5746 if (ret) 5747 goto out; 5748 5749 btrfs_release_path(path); 5750 5751 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5752 if (IS_ERR(new_root)) { 5753 err = PTR_ERR(new_root); 5754 goto out; 5755 } 5756 5757 *sub_root = new_root; 5758 location->objectid = btrfs_root_dirid(&new_root->root_item); 5759 location->type = BTRFS_INODE_ITEM_KEY; 5760 location->offset = 0; 5761 err = 0; 5762 out: 5763 fscrypt_free_filename(&fname); 5764 return err; 5765 } 5766 5767 5768 5769 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5770 { 5771 struct btrfs_root *root = inode->root; 5772 struct btrfs_inode *entry; 5773 bool empty = false; 5774 5775 xa_lock(&root->inodes); 5776 /* 5777 * This btrfs_inode is being freed and has already been unhashed at this 5778 * point. It's possible that another btrfs_inode has already been 5779 * allocated for the same inode and inserted itself into the root, so 5780 * don't delete it in that case. 5781 * 5782 * Note that this shouldn't need to allocate memory, so the gfp flags 5783 * don't really matter. 5784 */ 5785 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL, 5786 GFP_ATOMIC); 5787 if (entry == inode) 5788 empty = xa_empty(&root->inodes); 5789 xa_unlock(&root->inodes); 5790 5791 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5792 xa_lock(&root->inodes); 5793 empty = xa_empty(&root->inodes); 5794 xa_unlock(&root->inodes); 5795 if (empty) 5796 btrfs_add_dead_root(root); 5797 } 5798 } 5799 5800 5801 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5802 { 5803 struct btrfs_iget_args *args = p; 5804 5805 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5806 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5807 5808 if (args->root && args->root == args->root->fs_info->tree_root && 5809 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5810 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5811 &BTRFS_I(inode)->runtime_flags); 5812 return 0; 5813 } 5814 5815 static int btrfs_find_actor(struct inode *inode, void *opaque) 5816 { 5817 struct btrfs_iget_args *args = opaque; 5818 5819 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5820 args->root == BTRFS_I(inode)->root; 5821 } 5822 5823 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5824 { 5825 struct inode *inode; 5826 struct btrfs_iget_args args; 5827 unsigned long hashval = btrfs_inode_hash(ino, root); 5828 5829 args.ino = ino; 5830 args.root = root; 5831 5832 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5833 btrfs_init_locked_inode, 5834 (void *)&args); 5835 if (!inode) 5836 return NULL; 5837 return BTRFS_I(inode); 5838 } 5839 5840 /* 5841 * Get an inode object given its inode number and corresponding root. Path is 5842 * preallocated to prevent recursing back to iget through allocator. 5843 */ 5844 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5845 struct btrfs_path *path) 5846 { 5847 struct btrfs_inode *inode; 5848 int ret; 5849 5850 inode = btrfs_iget_locked(ino, root); 5851 if (!inode) 5852 return ERR_PTR(-ENOMEM); 5853 5854 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5855 return inode; 5856 5857 ret = btrfs_read_locked_inode(inode, path); 5858 if (ret) 5859 return ERR_PTR(ret); 5860 5861 unlock_new_inode(&inode->vfs_inode); 5862 return inode; 5863 } 5864 5865 /* 5866 * Get an inode object given its inode number and corresponding root. 5867 */ 5868 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5869 { 5870 struct btrfs_inode *inode; 5871 struct btrfs_path *path; 5872 int ret; 5873 5874 inode = btrfs_iget_locked(ino, root); 5875 if (!inode) 5876 return ERR_PTR(-ENOMEM); 5877 5878 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5879 return inode; 5880 5881 path = btrfs_alloc_path(); 5882 if (!path) { 5883 iget_failed(&inode->vfs_inode); 5884 return ERR_PTR(-ENOMEM); 5885 } 5886 5887 ret = btrfs_read_locked_inode(inode, path); 5888 btrfs_free_path(path); 5889 if (ret) 5890 return ERR_PTR(ret); 5891 5892 if (S_ISDIR(inode->vfs_inode.i_mode)) 5893 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC; 5894 unlock_new_inode(&inode->vfs_inode); 5895 return inode; 5896 } 5897 5898 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5899 struct btrfs_key *key, 5900 struct btrfs_root *root) 5901 { 5902 struct timespec64 ts; 5903 struct inode *vfs_inode; 5904 struct btrfs_inode *inode; 5905 5906 vfs_inode = new_inode(dir->i_sb); 5907 if (!vfs_inode) 5908 return ERR_PTR(-ENOMEM); 5909 5910 inode = BTRFS_I(vfs_inode); 5911 inode->root = btrfs_grab_root(root); 5912 inode->ref_root_id = key->objectid; 5913 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5914 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5915 5916 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5917 /* 5918 * We only need lookup, the rest is read-only and there's no inode 5919 * associated with the dentry 5920 */ 5921 vfs_inode->i_op = &simple_dir_inode_operations; 5922 vfs_inode->i_opflags &= ~IOP_XATTR; 5923 vfs_inode->i_fop = &simple_dir_operations; 5924 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5925 5926 ts = inode_set_ctime_current(vfs_inode); 5927 inode_set_mtime_to_ts(vfs_inode, ts); 5928 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5929 inode->i_otime_sec = ts.tv_sec; 5930 inode->i_otime_nsec = ts.tv_nsec; 5931 5932 vfs_inode->i_uid = dir->i_uid; 5933 vfs_inode->i_gid = dir->i_gid; 5934 5935 return inode; 5936 } 5937 5938 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5939 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5940 static_assert(BTRFS_FT_DIR == FT_DIR); 5941 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5942 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5943 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5944 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5945 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5946 5947 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5948 { 5949 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5950 } 5951 5952 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5953 { 5954 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5955 struct btrfs_inode *inode; 5956 struct btrfs_root *root = BTRFS_I(dir)->root; 5957 struct btrfs_root *sub_root = root; 5958 struct btrfs_key location = { 0 }; 5959 u8 di_type = 0; 5960 int ret = 0; 5961 5962 if (dentry->d_name.len > BTRFS_NAME_LEN) 5963 return ERR_PTR(-ENAMETOOLONG); 5964 5965 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5966 if (ret < 0) 5967 return ERR_PTR(ret); 5968 5969 if (location.type == BTRFS_INODE_ITEM_KEY) { 5970 inode = btrfs_iget(location.objectid, root); 5971 if (IS_ERR(inode)) 5972 return ERR_CAST(inode); 5973 5974 /* Do extra check against inode mode with di_type */ 5975 if (unlikely(btrfs_inode_type(inode) != di_type)) { 5976 btrfs_crit(fs_info, 5977 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5978 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5979 di_type); 5980 iput(&inode->vfs_inode); 5981 return ERR_PTR(-EUCLEAN); 5982 } 5983 return &inode->vfs_inode; 5984 } 5985 5986 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5987 &location, &sub_root); 5988 if (ret < 0) { 5989 if (ret != -ENOENT) 5990 inode = ERR_PTR(ret); 5991 else 5992 inode = new_simple_dir(dir, &location, root); 5993 } else { 5994 inode = btrfs_iget(location.objectid, sub_root); 5995 btrfs_put_root(sub_root); 5996 5997 if (IS_ERR(inode)) 5998 return ERR_CAST(inode); 5999 6000 down_read(&fs_info->cleanup_work_sem); 6001 if (!sb_rdonly(inode->vfs_inode.i_sb)) 6002 ret = btrfs_orphan_cleanup(sub_root); 6003 up_read(&fs_info->cleanup_work_sem); 6004 if (ret) { 6005 iput(&inode->vfs_inode); 6006 inode = ERR_PTR(ret); 6007 } 6008 } 6009 6010 if (IS_ERR(inode)) 6011 return ERR_CAST(inode); 6012 6013 return &inode->vfs_inode; 6014 } 6015 6016 static int btrfs_dentry_delete(const struct dentry *dentry) 6017 { 6018 struct btrfs_root *root; 6019 struct inode *inode = d_inode(dentry); 6020 6021 if (!inode && !IS_ROOT(dentry)) 6022 inode = d_inode(dentry->d_parent); 6023 6024 if (inode) { 6025 root = BTRFS_I(inode)->root; 6026 if (btrfs_root_refs(&root->root_item) == 0) 6027 return 1; 6028 6029 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6030 return 1; 6031 } 6032 return 0; 6033 } 6034 6035 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 6036 unsigned int flags) 6037 { 6038 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 6039 6040 if (inode == ERR_PTR(-ENOENT)) 6041 inode = NULL; 6042 return d_splice_alias(inode, dentry); 6043 } 6044 6045 /* 6046 * Find the highest existing sequence number in a directory and then set the 6047 * in-memory index_cnt variable to the first free sequence number. 6048 */ 6049 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6050 { 6051 struct btrfs_root *root = inode->root; 6052 struct btrfs_key key, found_key; 6053 BTRFS_PATH_AUTO_FREE(path); 6054 struct extent_buffer *leaf; 6055 int ret; 6056 6057 key.objectid = btrfs_ino(inode); 6058 key.type = BTRFS_DIR_INDEX_KEY; 6059 key.offset = (u64)-1; 6060 6061 path = btrfs_alloc_path(); 6062 if (!path) 6063 return -ENOMEM; 6064 6065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6066 if (ret < 0) 6067 return ret; 6068 /* FIXME: we should be able to handle this */ 6069 if (ret == 0) 6070 return ret; 6071 6072 if (path->slots[0] == 0) { 6073 inode->index_cnt = BTRFS_DIR_START_INDEX; 6074 return 0; 6075 } 6076 6077 path->slots[0]--; 6078 6079 leaf = path->nodes[0]; 6080 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6081 6082 if (found_key.objectid != btrfs_ino(inode) || 6083 found_key.type != BTRFS_DIR_INDEX_KEY) { 6084 inode->index_cnt = BTRFS_DIR_START_INDEX; 6085 return 0; 6086 } 6087 6088 inode->index_cnt = found_key.offset + 1; 6089 6090 return 0; 6091 } 6092 6093 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6094 { 6095 int ret = 0; 6096 6097 btrfs_inode_lock(dir, 0); 6098 if (dir->index_cnt == (u64)-1) { 6099 ret = btrfs_inode_delayed_dir_index_count(dir); 6100 if (ret) { 6101 ret = btrfs_set_inode_index_count(dir); 6102 if (ret) 6103 goto out; 6104 } 6105 } 6106 6107 /* index_cnt is the index number of next new entry, so decrement it. */ 6108 *index = dir->index_cnt - 1; 6109 out: 6110 btrfs_inode_unlock(dir, 0); 6111 6112 return ret; 6113 } 6114 6115 /* 6116 * All this infrastructure exists because dir_emit can fault, and we are holding 6117 * the tree lock when doing readdir. For now just allocate a buffer and copy 6118 * our information into that, and then dir_emit from the buffer. This is 6119 * similar to what NFS does, only we don't keep the buffer around in pagecache 6120 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6121 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6122 * tree lock. 6123 */ 6124 static int btrfs_opendir(struct inode *inode, struct file *file) 6125 { 6126 struct btrfs_file_private *private; 6127 u64 last_index; 6128 int ret; 6129 6130 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6131 if (ret) 6132 return ret; 6133 6134 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6135 if (!private) 6136 return -ENOMEM; 6137 private->last_index = last_index; 6138 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6139 if (!private->filldir_buf) { 6140 kfree(private); 6141 return -ENOMEM; 6142 } 6143 file->private_data = private; 6144 return 0; 6145 } 6146 6147 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6148 { 6149 struct btrfs_file_private *private = file->private_data; 6150 int ret; 6151 6152 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6153 &private->last_index); 6154 if (ret) 6155 return ret; 6156 6157 return generic_file_llseek(file, offset, whence); 6158 } 6159 6160 struct dir_entry { 6161 u64 ino; 6162 u64 offset; 6163 unsigned type; 6164 int name_len; 6165 }; 6166 6167 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6168 { 6169 while (entries--) { 6170 struct dir_entry *entry = addr; 6171 char *name = (char *)(entry + 1); 6172 6173 ctx->pos = get_unaligned(&entry->offset); 6174 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6175 get_unaligned(&entry->ino), 6176 get_unaligned(&entry->type))) 6177 return 1; 6178 addr += sizeof(struct dir_entry) + 6179 get_unaligned(&entry->name_len); 6180 ctx->pos++; 6181 } 6182 return 0; 6183 } 6184 6185 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6186 { 6187 struct inode *inode = file_inode(file); 6188 struct btrfs_root *root = BTRFS_I(inode)->root; 6189 struct btrfs_file_private *private = file->private_data; 6190 struct btrfs_dir_item *di; 6191 struct btrfs_key key; 6192 struct btrfs_key found_key; 6193 BTRFS_PATH_AUTO_FREE(path); 6194 void *addr; 6195 LIST_HEAD(ins_list); 6196 LIST_HEAD(del_list); 6197 int ret; 6198 char *name_ptr; 6199 int name_len; 6200 int entries = 0; 6201 int total_len = 0; 6202 bool put = false; 6203 struct btrfs_key location; 6204 6205 if (!dir_emit_dots(file, ctx)) 6206 return 0; 6207 6208 path = btrfs_alloc_path(); 6209 if (!path) 6210 return -ENOMEM; 6211 6212 addr = private->filldir_buf; 6213 path->reada = READA_FORWARD; 6214 6215 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6216 &ins_list, &del_list); 6217 6218 again: 6219 key.type = BTRFS_DIR_INDEX_KEY; 6220 key.offset = ctx->pos; 6221 key.objectid = btrfs_ino(BTRFS_I(inode)); 6222 6223 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6224 struct dir_entry *entry; 6225 struct extent_buffer *leaf = path->nodes[0]; 6226 u8 ftype; 6227 6228 if (found_key.objectid != key.objectid) 6229 break; 6230 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6231 break; 6232 if (found_key.offset < ctx->pos) 6233 continue; 6234 if (found_key.offset > private->last_index) 6235 break; 6236 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6237 continue; 6238 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6239 name_len = btrfs_dir_name_len(leaf, di); 6240 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6241 PAGE_SIZE) { 6242 btrfs_release_path(path); 6243 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6244 if (ret) 6245 goto nopos; 6246 addr = private->filldir_buf; 6247 entries = 0; 6248 total_len = 0; 6249 goto again; 6250 } 6251 6252 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6253 entry = addr; 6254 name_ptr = (char *)(entry + 1); 6255 read_extent_buffer(leaf, name_ptr, 6256 (unsigned long)(di + 1), name_len); 6257 put_unaligned(name_len, &entry->name_len); 6258 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6259 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6260 put_unaligned(location.objectid, &entry->ino); 6261 put_unaligned(found_key.offset, &entry->offset); 6262 entries++; 6263 addr += sizeof(struct dir_entry) + name_len; 6264 total_len += sizeof(struct dir_entry) + name_len; 6265 } 6266 /* Catch error encountered during iteration */ 6267 if (ret < 0) 6268 goto err; 6269 6270 btrfs_release_path(path); 6271 6272 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6273 if (ret) 6274 goto nopos; 6275 6276 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6277 goto nopos; 6278 6279 /* 6280 * Stop new entries from being returned after we return the last 6281 * entry. 6282 * 6283 * New directory entries are assigned a strictly increasing 6284 * offset. This means that new entries created during readdir 6285 * are *guaranteed* to be seen in the future by that readdir. 6286 * This has broken buggy programs which operate on names as 6287 * they're returned by readdir. Until we reuse freed offsets 6288 * we have this hack to stop new entries from being returned 6289 * under the assumption that they'll never reach this huge 6290 * offset. 6291 * 6292 * This is being careful not to overflow 32bit loff_t unless the 6293 * last entry requires it because doing so has broken 32bit apps 6294 * in the past. 6295 */ 6296 if (ctx->pos >= INT_MAX) 6297 ctx->pos = LLONG_MAX; 6298 else 6299 ctx->pos = INT_MAX; 6300 nopos: 6301 ret = 0; 6302 err: 6303 if (put) 6304 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6305 return ret; 6306 } 6307 6308 /* 6309 * This is somewhat expensive, updating the tree every time the 6310 * inode changes. But, it is most likely to find the inode in cache. 6311 * FIXME, needs more benchmarking...there are no reasons other than performance 6312 * to keep or drop this code. 6313 */ 6314 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6315 { 6316 struct btrfs_root *root = inode->root; 6317 struct btrfs_fs_info *fs_info = root->fs_info; 6318 struct btrfs_trans_handle *trans; 6319 int ret; 6320 6321 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6322 return 0; 6323 6324 trans = btrfs_join_transaction(root); 6325 if (IS_ERR(trans)) 6326 return PTR_ERR(trans); 6327 6328 ret = btrfs_update_inode(trans, inode); 6329 if (ret == -ENOSPC || ret == -EDQUOT) { 6330 /* whoops, lets try again with the full transaction */ 6331 btrfs_end_transaction(trans); 6332 trans = btrfs_start_transaction(root, 1); 6333 if (IS_ERR(trans)) 6334 return PTR_ERR(trans); 6335 6336 ret = btrfs_update_inode(trans, inode); 6337 } 6338 btrfs_end_transaction(trans); 6339 if (inode->delayed_node) 6340 btrfs_balance_delayed_items(fs_info); 6341 6342 return ret; 6343 } 6344 6345 /* 6346 * We need our own ->update_time so that we can return error on ENOSPC for 6347 * updating the inode in the case of file write and mmap writes. 6348 */ 6349 static int btrfs_update_time(struct inode *inode, int flags) 6350 { 6351 struct btrfs_root *root = BTRFS_I(inode)->root; 6352 bool dirty; 6353 6354 if (btrfs_root_readonly(root)) 6355 return -EROFS; 6356 6357 dirty = inode_update_timestamps(inode, flags); 6358 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6359 } 6360 6361 /* 6362 * helper to find a free sequence number in a given directory. This current 6363 * code is very simple, later versions will do smarter things in the btree 6364 */ 6365 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6366 { 6367 int ret = 0; 6368 6369 if (dir->index_cnt == (u64)-1) { 6370 ret = btrfs_inode_delayed_dir_index_count(dir); 6371 if (ret) { 6372 ret = btrfs_set_inode_index_count(dir); 6373 if (ret) 6374 return ret; 6375 } 6376 } 6377 6378 *index = dir->index_cnt; 6379 dir->index_cnt++; 6380 6381 return ret; 6382 } 6383 6384 static int btrfs_insert_inode_locked(struct inode *inode) 6385 { 6386 struct btrfs_iget_args args; 6387 6388 args.ino = btrfs_ino(BTRFS_I(inode)); 6389 args.root = BTRFS_I(inode)->root; 6390 6391 return insert_inode_locked4(inode, 6392 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6393 btrfs_find_actor, &args); 6394 } 6395 6396 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6397 unsigned int *trans_num_items) 6398 { 6399 struct inode *dir = args->dir; 6400 struct inode *inode = args->inode; 6401 int ret; 6402 6403 if (!args->orphan) { 6404 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6405 &args->fname); 6406 if (ret) 6407 return ret; 6408 } 6409 6410 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6411 if (ret) { 6412 fscrypt_free_filename(&args->fname); 6413 return ret; 6414 } 6415 6416 /* 1 to add inode item */ 6417 *trans_num_items = 1; 6418 /* 1 to add compression property */ 6419 if (BTRFS_I(dir)->prop_compress) 6420 (*trans_num_items)++; 6421 /* 1 to add default ACL xattr */ 6422 if (args->default_acl) 6423 (*trans_num_items)++; 6424 /* 1 to add access ACL xattr */ 6425 if (args->acl) 6426 (*trans_num_items)++; 6427 #ifdef CONFIG_SECURITY 6428 /* 1 to add LSM xattr */ 6429 if (dir->i_security) 6430 (*trans_num_items)++; 6431 #endif 6432 if (args->orphan) { 6433 /* 1 to add orphan item */ 6434 (*trans_num_items)++; 6435 } else { 6436 /* 6437 * 1 to add dir item 6438 * 1 to add dir index 6439 * 1 to update parent inode item 6440 * 6441 * No need for 1 unit for the inode ref item because it is 6442 * inserted in a batch together with the inode item at 6443 * btrfs_create_new_inode(). 6444 */ 6445 *trans_num_items += 3; 6446 } 6447 return 0; 6448 } 6449 6450 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6451 { 6452 posix_acl_release(args->acl); 6453 posix_acl_release(args->default_acl); 6454 fscrypt_free_filename(&args->fname); 6455 } 6456 6457 /* 6458 * Inherit flags from the parent inode. 6459 * 6460 * Currently only the compression flags and the cow flags are inherited. 6461 */ 6462 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6463 { 6464 unsigned int flags; 6465 6466 flags = dir->flags; 6467 6468 if (flags & BTRFS_INODE_NOCOMPRESS) { 6469 inode->flags &= ~BTRFS_INODE_COMPRESS; 6470 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6471 } else if (flags & BTRFS_INODE_COMPRESS) { 6472 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6473 inode->flags |= BTRFS_INODE_COMPRESS; 6474 } 6475 6476 if (flags & BTRFS_INODE_NODATACOW) { 6477 inode->flags |= BTRFS_INODE_NODATACOW; 6478 if (S_ISREG(inode->vfs_inode.i_mode)) 6479 inode->flags |= BTRFS_INODE_NODATASUM; 6480 } 6481 6482 btrfs_sync_inode_flags_to_i_flags(inode); 6483 } 6484 6485 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6486 struct btrfs_new_inode_args *args) 6487 { 6488 struct timespec64 ts; 6489 struct inode *dir = args->dir; 6490 struct inode *inode = args->inode; 6491 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6492 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6493 struct btrfs_root *root; 6494 struct btrfs_inode_item *inode_item; 6495 struct btrfs_path *path; 6496 u64 objectid; 6497 struct btrfs_inode_ref *ref; 6498 struct btrfs_key key[2]; 6499 u32 sizes[2]; 6500 struct btrfs_item_batch batch; 6501 unsigned long ptr; 6502 int ret; 6503 bool xa_reserved = false; 6504 6505 path = btrfs_alloc_path(); 6506 if (!path) 6507 return -ENOMEM; 6508 6509 if (!args->subvol) 6510 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6511 root = BTRFS_I(inode)->root; 6512 6513 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6514 if (ret) 6515 goto out; 6516 6517 ret = btrfs_get_free_objectid(root, &objectid); 6518 if (ret) 6519 goto out; 6520 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6521 6522 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6523 if (ret) 6524 goto out; 6525 xa_reserved = true; 6526 6527 if (args->orphan) { 6528 /* 6529 * O_TMPFILE, set link count to 0, so that after this point, we 6530 * fill in an inode item with the correct link count. 6531 */ 6532 set_nlink(inode, 0); 6533 } else { 6534 trace_btrfs_inode_request(dir); 6535 6536 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6537 if (ret) 6538 goto out; 6539 } 6540 6541 if (S_ISDIR(inode->i_mode)) 6542 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6543 6544 BTRFS_I(inode)->generation = trans->transid; 6545 inode->i_generation = BTRFS_I(inode)->generation; 6546 6547 /* 6548 * We don't have any capability xattrs set here yet, shortcut any 6549 * queries for the xattrs here. If we add them later via the inode 6550 * security init path or any other path this flag will be cleared. 6551 */ 6552 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6553 6554 /* 6555 * Subvolumes don't inherit flags from their parent directory. 6556 * Originally this was probably by accident, but we probably can't 6557 * change it now without compatibility issues. 6558 */ 6559 if (!args->subvol) 6560 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6561 6562 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6563 if (S_ISREG(inode->i_mode)) { 6564 if (btrfs_test_opt(fs_info, NODATASUM)) 6565 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6566 if (btrfs_test_opt(fs_info, NODATACOW)) 6567 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6568 BTRFS_INODE_NODATASUM; 6569 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6570 } 6571 6572 ret = btrfs_insert_inode_locked(inode); 6573 if (ret < 0) { 6574 if (!args->orphan) 6575 BTRFS_I(dir)->index_cnt--; 6576 goto out; 6577 } 6578 6579 /* 6580 * We could have gotten an inode number from somebody who was fsynced 6581 * and then removed in this same transaction, so let's just set full 6582 * sync since it will be a full sync anyway and this will blow away the 6583 * old info in the log. 6584 */ 6585 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6586 6587 key[0].objectid = objectid; 6588 key[0].type = BTRFS_INODE_ITEM_KEY; 6589 key[0].offset = 0; 6590 6591 sizes[0] = sizeof(struct btrfs_inode_item); 6592 6593 if (!args->orphan) { 6594 /* 6595 * Start new inodes with an inode_ref. This is slightly more 6596 * efficient for small numbers of hard links since they will 6597 * be packed into one item. Extended refs will kick in if we 6598 * add more hard links than can fit in the ref item. 6599 */ 6600 key[1].objectid = objectid; 6601 key[1].type = BTRFS_INODE_REF_KEY; 6602 if (args->subvol) { 6603 key[1].offset = objectid; 6604 sizes[1] = 2 + sizeof(*ref); 6605 } else { 6606 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6607 sizes[1] = name->len + sizeof(*ref); 6608 } 6609 } 6610 6611 batch.keys = &key[0]; 6612 batch.data_sizes = &sizes[0]; 6613 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6614 batch.nr = args->orphan ? 1 : 2; 6615 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6616 if (unlikely(ret != 0)) { 6617 btrfs_abort_transaction(trans, ret); 6618 goto discard; 6619 } 6620 6621 ts = simple_inode_init_ts(inode); 6622 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6623 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6624 6625 /* 6626 * We're going to fill the inode item now, so at this point the inode 6627 * must be fully initialized. 6628 */ 6629 6630 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6631 struct btrfs_inode_item); 6632 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6633 sizeof(*inode_item)); 6634 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6635 6636 if (!args->orphan) { 6637 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6638 struct btrfs_inode_ref); 6639 ptr = (unsigned long)(ref + 1); 6640 if (args->subvol) { 6641 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6642 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6643 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6644 } else { 6645 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6646 name->len); 6647 btrfs_set_inode_ref_index(path->nodes[0], ref, 6648 BTRFS_I(inode)->dir_index); 6649 write_extent_buffer(path->nodes[0], name->name, ptr, 6650 name->len); 6651 } 6652 } 6653 6654 /* 6655 * We don't need the path anymore, plus inheriting properties, adding 6656 * ACLs, security xattrs, orphan item or adding the link, will result in 6657 * allocating yet another path. So just free our path. 6658 */ 6659 btrfs_free_path(path); 6660 path = NULL; 6661 6662 if (args->subvol) { 6663 struct btrfs_inode *parent; 6664 6665 /* 6666 * Subvolumes inherit properties from their parent subvolume, 6667 * not the directory they were created in. 6668 */ 6669 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6670 if (IS_ERR(parent)) { 6671 ret = PTR_ERR(parent); 6672 } else { 6673 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6674 parent); 6675 iput(&parent->vfs_inode); 6676 } 6677 } else { 6678 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6679 BTRFS_I(dir)); 6680 } 6681 if (ret) { 6682 btrfs_err(fs_info, 6683 "error inheriting props for ino %llu (root %llu): %d", 6684 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6685 } 6686 6687 /* 6688 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6689 * probably a bug. 6690 */ 6691 if (!args->subvol) { 6692 ret = btrfs_init_inode_security(trans, args); 6693 if (unlikely(ret)) { 6694 btrfs_abort_transaction(trans, ret); 6695 goto discard; 6696 } 6697 } 6698 6699 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6700 if (WARN_ON(ret)) { 6701 /* Shouldn't happen, we used xa_reserve() before. */ 6702 btrfs_abort_transaction(trans, ret); 6703 goto discard; 6704 } 6705 6706 trace_btrfs_inode_new(inode); 6707 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6708 6709 btrfs_update_root_times(trans, root); 6710 6711 if (args->orphan) { 6712 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6713 if (unlikely(ret)) { 6714 btrfs_abort_transaction(trans, ret); 6715 goto discard; 6716 } 6717 } else { 6718 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6719 0, BTRFS_I(inode)->dir_index); 6720 if (unlikely(ret)) { 6721 btrfs_abort_transaction(trans, ret); 6722 goto discard; 6723 } 6724 } 6725 6726 return 0; 6727 6728 discard: 6729 /* 6730 * discard_new_inode() calls iput(), but the caller owns the reference 6731 * to the inode. 6732 */ 6733 ihold(inode); 6734 discard_new_inode(inode); 6735 out: 6736 if (xa_reserved) 6737 xa_release(&root->inodes, objectid); 6738 6739 btrfs_free_path(path); 6740 return ret; 6741 } 6742 6743 /* 6744 * utility function to add 'inode' into 'parent_inode' with 6745 * a give name and a given sequence number. 6746 * if 'add_backref' is true, also insert a backref from the 6747 * inode to the parent directory. 6748 */ 6749 int btrfs_add_link(struct btrfs_trans_handle *trans, 6750 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6751 const struct fscrypt_str *name, bool add_backref, u64 index) 6752 { 6753 int ret = 0; 6754 struct btrfs_key key; 6755 struct btrfs_root *root = parent_inode->root; 6756 u64 ino = btrfs_ino(inode); 6757 u64 parent_ino = btrfs_ino(parent_inode); 6758 6759 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6760 memcpy(&key, &inode->root->root_key, sizeof(key)); 6761 } else { 6762 key.objectid = ino; 6763 key.type = BTRFS_INODE_ITEM_KEY; 6764 key.offset = 0; 6765 } 6766 6767 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6768 ret = btrfs_add_root_ref(trans, key.objectid, 6769 btrfs_root_id(root), parent_ino, 6770 index, name); 6771 } else if (add_backref) { 6772 ret = btrfs_insert_inode_ref(trans, root, name, 6773 ino, parent_ino, index); 6774 } 6775 6776 /* Nothing to clean up yet */ 6777 if (ret) 6778 return ret; 6779 6780 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6781 btrfs_inode_type(inode), index); 6782 if (ret == -EEXIST || ret == -EOVERFLOW) 6783 goto fail_dir_item; 6784 else if (unlikely(ret)) { 6785 btrfs_abort_transaction(trans, ret); 6786 return ret; 6787 } 6788 6789 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6790 name->len * 2); 6791 inode_inc_iversion(&parent_inode->vfs_inode); 6792 update_time_after_link_or_unlink(parent_inode); 6793 6794 ret = btrfs_update_inode(trans, parent_inode); 6795 if (ret) 6796 btrfs_abort_transaction(trans, ret); 6797 return ret; 6798 6799 fail_dir_item: 6800 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6801 u64 local_index; 6802 int ret2; 6803 6804 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6805 parent_ino, &local_index, name); 6806 if (ret2) 6807 btrfs_abort_transaction(trans, ret2); 6808 } else if (add_backref) { 6809 int ret2; 6810 6811 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6812 if (ret2) 6813 btrfs_abort_transaction(trans, ret2); 6814 } 6815 6816 /* Return the original error code */ 6817 return ret; 6818 } 6819 6820 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6821 struct inode *inode) 6822 { 6823 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6824 struct btrfs_root *root = BTRFS_I(dir)->root; 6825 struct btrfs_new_inode_args new_inode_args = { 6826 .dir = dir, 6827 .dentry = dentry, 6828 .inode = inode, 6829 }; 6830 unsigned int trans_num_items; 6831 struct btrfs_trans_handle *trans; 6832 int ret; 6833 6834 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6835 if (ret) 6836 goto out_inode; 6837 6838 trans = btrfs_start_transaction(root, trans_num_items); 6839 if (IS_ERR(trans)) { 6840 ret = PTR_ERR(trans); 6841 goto out_new_inode_args; 6842 } 6843 6844 ret = btrfs_create_new_inode(trans, &new_inode_args); 6845 if (!ret) { 6846 if (S_ISDIR(inode->i_mode)) 6847 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC; 6848 d_instantiate_new(dentry, inode); 6849 } 6850 6851 btrfs_end_transaction(trans); 6852 btrfs_btree_balance_dirty(fs_info); 6853 out_new_inode_args: 6854 btrfs_new_inode_args_destroy(&new_inode_args); 6855 out_inode: 6856 if (ret) 6857 iput(inode); 6858 return ret; 6859 } 6860 6861 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6862 struct dentry *dentry, umode_t mode, dev_t rdev) 6863 { 6864 struct inode *inode; 6865 6866 inode = new_inode(dir->i_sb); 6867 if (!inode) 6868 return -ENOMEM; 6869 inode_init_owner(idmap, inode, dir, mode); 6870 inode->i_op = &btrfs_special_inode_operations; 6871 init_special_inode(inode, inode->i_mode, rdev); 6872 return btrfs_create_common(dir, dentry, inode); 6873 } 6874 6875 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6876 struct dentry *dentry, umode_t mode, bool excl) 6877 { 6878 struct inode *inode; 6879 6880 inode = new_inode(dir->i_sb); 6881 if (!inode) 6882 return -ENOMEM; 6883 inode_init_owner(idmap, inode, dir, mode); 6884 inode->i_fop = &btrfs_file_operations; 6885 inode->i_op = &btrfs_file_inode_operations; 6886 inode->i_mapping->a_ops = &btrfs_aops; 6887 return btrfs_create_common(dir, dentry, inode); 6888 } 6889 6890 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6891 struct dentry *dentry) 6892 { 6893 struct btrfs_trans_handle *trans = NULL; 6894 struct btrfs_root *root = BTRFS_I(dir)->root; 6895 struct inode *inode = d_inode(old_dentry); 6896 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6897 struct fscrypt_name fname; 6898 u64 index; 6899 int ret; 6900 6901 /* do not allow sys_link's with other subvols of the same device */ 6902 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6903 return -EXDEV; 6904 6905 if (inode->i_nlink >= BTRFS_LINK_MAX) 6906 return -EMLINK; 6907 6908 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6909 if (ret) 6910 goto fail; 6911 6912 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6913 if (ret) 6914 goto fail; 6915 6916 /* 6917 * 2 items for inode and inode ref 6918 * 2 items for dir items 6919 * 1 item for parent inode 6920 * 1 item for orphan item deletion if O_TMPFILE 6921 */ 6922 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6923 if (IS_ERR(trans)) { 6924 ret = PTR_ERR(trans); 6925 trans = NULL; 6926 goto fail; 6927 } 6928 6929 /* There are several dir indexes for this inode, clear the cache. */ 6930 BTRFS_I(inode)->dir_index = 0ULL; 6931 inode_inc_iversion(inode); 6932 inode_set_ctime_current(inode); 6933 6934 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6935 &fname.disk_name, 1, index); 6936 if (ret) 6937 goto fail; 6938 6939 /* Link added now we update the inode item with the new link count. */ 6940 inc_nlink(inode); 6941 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6942 if (unlikely(ret)) { 6943 btrfs_abort_transaction(trans, ret); 6944 goto fail; 6945 } 6946 6947 if (inode->i_nlink == 1) { 6948 /* 6949 * If the new hard link count is 1, it's a file created with the 6950 * open(2) O_TMPFILE flag. 6951 */ 6952 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6953 if (unlikely(ret)) { 6954 btrfs_abort_transaction(trans, ret); 6955 goto fail; 6956 } 6957 } 6958 6959 /* Grab reference for the new dentry passed to d_instantiate(). */ 6960 ihold(inode); 6961 d_instantiate(dentry, inode); 6962 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent); 6963 6964 fail: 6965 fscrypt_free_filename(&fname); 6966 if (trans) 6967 btrfs_end_transaction(trans); 6968 btrfs_btree_balance_dirty(fs_info); 6969 return ret; 6970 } 6971 6972 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6973 struct dentry *dentry, umode_t mode) 6974 { 6975 struct inode *inode; 6976 6977 inode = new_inode(dir->i_sb); 6978 if (!inode) 6979 return ERR_PTR(-ENOMEM); 6980 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6981 inode->i_op = &btrfs_dir_inode_operations; 6982 inode->i_fop = &btrfs_dir_file_operations; 6983 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6984 } 6985 6986 static noinline int uncompress_inline(struct btrfs_path *path, 6987 struct folio *folio, 6988 struct btrfs_file_extent_item *item) 6989 { 6990 int ret; 6991 struct extent_buffer *leaf = path->nodes[0]; 6992 const u32 blocksize = leaf->fs_info->sectorsize; 6993 char *tmp; 6994 size_t max_size; 6995 unsigned long inline_size; 6996 unsigned long ptr; 6997 int compress_type; 6998 6999 compress_type = btrfs_file_extent_compression(leaf, item); 7000 max_size = btrfs_file_extent_ram_bytes(leaf, item); 7001 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 7002 tmp = kmalloc(inline_size, GFP_NOFS); 7003 if (!tmp) 7004 return -ENOMEM; 7005 ptr = btrfs_file_extent_inline_start(item); 7006 7007 read_extent_buffer(leaf, tmp, ptr, inline_size); 7008 7009 max_size = min_t(unsigned long, blocksize, max_size); 7010 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 7011 max_size); 7012 7013 /* 7014 * decompression code contains a memset to fill in any space between the end 7015 * of the uncompressed data and the end of max_size in case the decompressed 7016 * data ends up shorter than ram_bytes. That doesn't cover the hole between 7017 * the end of an inline extent and the beginning of the next block, so we 7018 * cover that region here. 7019 */ 7020 7021 if (max_size < blocksize) 7022 folio_zero_range(folio, max_size, blocksize - max_size); 7023 kfree(tmp); 7024 return ret; 7025 } 7026 7027 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 7028 { 7029 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 7030 struct btrfs_file_extent_item *fi; 7031 void *kaddr; 7032 size_t copy_size; 7033 7034 if (!folio || folio_test_uptodate(folio)) 7035 return 0; 7036 7037 ASSERT(folio_pos(folio) == 0); 7038 7039 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 7040 struct btrfs_file_extent_item); 7041 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 7042 return uncompress_inline(path, folio, fi); 7043 7044 copy_size = min_t(u64, blocksize, 7045 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 7046 kaddr = kmap_local_folio(folio, 0); 7047 read_extent_buffer(path->nodes[0], kaddr, 7048 btrfs_file_extent_inline_start(fi), copy_size); 7049 kunmap_local(kaddr); 7050 if (copy_size < blocksize) 7051 folio_zero_range(folio, copy_size, blocksize - copy_size); 7052 return 0; 7053 } 7054 7055 /* 7056 * Lookup the first extent overlapping a range in a file. 7057 * 7058 * @inode: file to search in 7059 * @page: page to read extent data into if the extent is inline 7060 * @start: file offset 7061 * @len: length of range starting at @start 7062 * 7063 * Return the first &struct extent_map which overlaps the given range, reading 7064 * it from the B-tree and caching it if necessary. Note that there may be more 7065 * extents which overlap the given range after the returned extent_map. 7066 * 7067 * If @page is not NULL and the extent is inline, this also reads the extent 7068 * data directly into the page and marks the extent up to date in the io_tree. 7069 * 7070 * Return: ERR_PTR on error, non-NULL extent_map on success. 7071 */ 7072 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 7073 struct folio *folio, u64 start, u64 len) 7074 { 7075 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7076 int ret = 0; 7077 u64 extent_start = 0; 7078 u64 extent_end = 0; 7079 u64 objectid = btrfs_ino(inode); 7080 int extent_type = -1; 7081 struct btrfs_path *path = NULL; 7082 struct btrfs_root *root = inode->root; 7083 struct btrfs_file_extent_item *item; 7084 struct extent_buffer *leaf; 7085 struct btrfs_key found_key; 7086 struct extent_map *em = NULL; 7087 struct extent_map_tree *em_tree = &inode->extent_tree; 7088 7089 read_lock(&em_tree->lock); 7090 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7091 read_unlock(&em_tree->lock); 7092 7093 if (em) { 7094 if (em->start > start || em->start + em->len <= start) 7095 btrfs_free_extent_map(em); 7096 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7097 btrfs_free_extent_map(em); 7098 else 7099 goto out; 7100 } 7101 em = btrfs_alloc_extent_map(); 7102 if (!em) { 7103 ret = -ENOMEM; 7104 goto out; 7105 } 7106 em->start = EXTENT_MAP_HOLE; 7107 em->disk_bytenr = EXTENT_MAP_HOLE; 7108 em->len = (u64)-1; 7109 7110 path = btrfs_alloc_path(); 7111 if (!path) { 7112 ret = -ENOMEM; 7113 goto out; 7114 } 7115 7116 /* Chances are we'll be called again, so go ahead and do readahead */ 7117 path->reada = READA_FORWARD; 7118 7119 /* 7120 * The same explanation in load_free_space_cache applies here as well, 7121 * we only read when we're loading the free space cache, and at that 7122 * point the commit_root has everything we need. 7123 */ 7124 if (btrfs_is_free_space_inode(inode)) { 7125 path->search_commit_root = true; 7126 path->skip_locking = true; 7127 } 7128 7129 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7130 if (ret < 0) { 7131 goto out; 7132 } else if (ret > 0) { 7133 if (path->slots[0] == 0) 7134 goto not_found; 7135 path->slots[0]--; 7136 ret = 0; 7137 } 7138 7139 leaf = path->nodes[0]; 7140 item = btrfs_item_ptr(leaf, path->slots[0], 7141 struct btrfs_file_extent_item); 7142 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7143 if (found_key.objectid != objectid || 7144 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7145 /* 7146 * If we backup past the first extent we want to move forward 7147 * and see if there is an extent in front of us, otherwise we'll 7148 * say there is a hole for our whole search range which can 7149 * cause problems. 7150 */ 7151 extent_end = start; 7152 goto next; 7153 } 7154 7155 extent_type = btrfs_file_extent_type(leaf, item); 7156 extent_start = found_key.offset; 7157 extent_end = btrfs_file_extent_end(path); 7158 if (extent_type == BTRFS_FILE_EXTENT_REG || 7159 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7160 /* Only regular file could have regular/prealloc extent */ 7161 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) { 7162 ret = -EUCLEAN; 7163 btrfs_crit(fs_info, 7164 "regular/prealloc extent found for non-regular inode %llu", 7165 btrfs_ino(inode)); 7166 goto out; 7167 } 7168 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7169 extent_start); 7170 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7171 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7172 path->slots[0], 7173 extent_start); 7174 } 7175 next: 7176 if (start >= extent_end) { 7177 path->slots[0]++; 7178 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7179 ret = btrfs_next_leaf(root, path); 7180 if (ret < 0) 7181 goto out; 7182 else if (ret > 0) 7183 goto not_found; 7184 7185 leaf = path->nodes[0]; 7186 } 7187 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7188 if (found_key.objectid != objectid || 7189 found_key.type != BTRFS_EXTENT_DATA_KEY) 7190 goto not_found; 7191 if (start + len <= found_key.offset) 7192 goto not_found; 7193 if (start > found_key.offset) 7194 goto next; 7195 7196 /* New extent overlaps with existing one */ 7197 em->start = start; 7198 em->len = found_key.offset - start; 7199 em->disk_bytenr = EXTENT_MAP_HOLE; 7200 goto insert; 7201 } 7202 7203 btrfs_extent_item_to_extent_map(inode, path, item, em); 7204 7205 if (extent_type == BTRFS_FILE_EXTENT_REG || 7206 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7207 goto insert; 7208 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7209 /* 7210 * Inline extent can only exist at file offset 0. This is 7211 * ensured by tree-checker and inline extent creation path. 7212 * Thus all members representing file offsets should be zero. 7213 */ 7214 ASSERT(extent_start == 0); 7215 ASSERT(em->start == 0); 7216 7217 /* 7218 * btrfs_extent_item_to_extent_map() should have properly 7219 * initialized em members already. 7220 * 7221 * Other members are not utilized for inline extents. 7222 */ 7223 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7224 ASSERT(em->len == fs_info->sectorsize); 7225 7226 ret = read_inline_extent(path, folio); 7227 if (ret < 0) 7228 goto out; 7229 goto insert; 7230 } 7231 not_found: 7232 em->start = start; 7233 em->len = len; 7234 em->disk_bytenr = EXTENT_MAP_HOLE; 7235 insert: 7236 ret = 0; 7237 btrfs_release_path(path); 7238 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) { 7239 btrfs_err(fs_info, 7240 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7241 em->start, em->len, start, len); 7242 ret = -EIO; 7243 goto out; 7244 } 7245 7246 write_lock(&em_tree->lock); 7247 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7248 write_unlock(&em_tree->lock); 7249 out: 7250 btrfs_free_path(path); 7251 7252 trace_btrfs_get_extent(root, inode, em); 7253 7254 if (ret) { 7255 btrfs_free_extent_map(em); 7256 return ERR_PTR(ret); 7257 } 7258 return em; 7259 } 7260 7261 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7262 { 7263 struct btrfs_block_group *block_group; 7264 bool readonly = false; 7265 7266 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7267 if (!block_group || block_group->ro) 7268 readonly = true; 7269 if (block_group) 7270 btrfs_put_block_group(block_group); 7271 return readonly; 7272 } 7273 7274 /* 7275 * Check if we can do nocow write into the range [@offset, @offset + @len) 7276 * 7277 * @offset: File offset 7278 * @len: The length to write, will be updated to the nocow writeable 7279 * range 7280 * @orig_start: (optional) Return the original file offset of the file extent 7281 * @orig_len: (optional) Return the original on-disk length of the file extent 7282 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7283 * 7284 * Return: 7285 * >0 and update @len if we can do nocow write 7286 * 0 if we can't do nocow write 7287 * <0 if error happened 7288 * 7289 * NOTE: This only checks the file extents, caller is responsible to wait for 7290 * any ordered extents. 7291 */ 7292 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7293 struct btrfs_file_extent *file_extent, 7294 bool nowait) 7295 { 7296 struct btrfs_root *root = inode->root; 7297 struct btrfs_fs_info *fs_info = root->fs_info; 7298 struct can_nocow_file_extent_args nocow_args = { 0 }; 7299 BTRFS_PATH_AUTO_FREE(path); 7300 int ret; 7301 struct extent_buffer *leaf; 7302 struct extent_io_tree *io_tree = &inode->io_tree; 7303 struct btrfs_file_extent_item *fi; 7304 struct btrfs_key key; 7305 int found_type; 7306 7307 path = btrfs_alloc_path(); 7308 if (!path) 7309 return -ENOMEM; 7310 path->nowait = nowait; 7311 7312 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7313 offset, 0); 7314 if (ret < 0) 7315 return ret; 7316 7317 if (ret == 1) { 7318 if (path->slots[0] == 0) { 7319 /* Can't find the item, must COW. */ 7320 return 0; 7321 } 7322 path->slots[0]--; 7323 } 7324 ret = 0; 7325 leaf = path->nodes[0]; 7326 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7327 if (key.objectid != btrfs_ino(inode) || 7328 key.type != BTRFS_EXTENT_DATA_KEY) { 7329 /* Not our file or wrong item type, must COW. */ 7330 return 0; 7331 } 7332 7333 if (key.offset > offset) { 7334 /* Wrong offset, must COW. */ 7335 return 0; 7336 } 7337 7338 if (btrfs_file_extent_end(path) <= offset) 7339 return 0; 7340 7341 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7342 found_type = btrfs_file_extent_type(leaf, fi); 7343 7344 nocow_args.start = offset; 7345 nocow_args.end = offset + *len - 1; 7346 nocow_args.free_path = true; 7347 7348 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7349 /* can_nocow_file_extent() has freed the path. */ 7350 path = NULL; 7351 7352 if (ret != 1) { 7353 /* Treat errors as not being able to NOCOW. */ 7354 return 0; 7355 } 7356 7357 if (btrfs_extent_readonly(fs_info, 7358 nocow_args.file_extent.disk_bytenr + 7359 nocow_args.file_extent.offset)) 7360 return 0; 7361 7362 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7363 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7364 u64 range_end; 7365 7366 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7367 root->fs_info->sectorsize) - 1; 7368 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7369 EXTENT_DELALLOC); 7370 if (ret) 7371 return -EAGAIN; 7372 } 7373 7374 if (file_extent) 7375 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7376 7377 *len = nocow_args.file_extent.num_bytes; 7378 7379 return 1; 7380 } 7381 7382 /* The callers of this must take lock_extent() */ 7383 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7384 const struct btrfs_file_extent *file_extent, 7385 int type) 7386 { 7387 struct extent_map *em; 7388 int ret; 7389 7390 /* 7391 * Note the missing NOCOW type. 7392 * 7393 * For pure NOCOW writes, we should not create an io extent map, but 7394 * just reusing the existing one. 7395 * Only PREALLOC writes (NOCOW write into preallocated range) can 7396 * create an io extent map. 7397 */ 7398 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7399 type == BTRFS_ORDERED_COMPRESSED || 7400 type == BTRFS_ORDERED_REGULAR); 7401 7402 switch (type) { 7403 case BTRFS_ORDERED_PREALLOC: 7404 /* We're only referring part of a larger preallocated extent. */ 7405 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7406 break; 7407 case BTRFS_ORDERED_REGULAR: 7408 /* COW results a new extent matching our file extent size. */ 7409 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7410 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7411 7412 /* Since it's a new extent, we should not have any offset. */ 7413 ASSERT(file_extent->offset == 0); 7414 break; 7415 case BTRFS_ORDERED_COMPRESSED: 7416 /* Must be compressed. */ 7417 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7418 7419 /* 7420 * Encoded write can make us to refer to part of the 7421 * uncompressed extent. 7422 */ 7423 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7424 break; 7425 } 7426 7427 em = btrfs_alloc_extent_map(); 7428 if (!em) 7429 return ERR_PTR(-ENOMEM); 7430 7431 em->start = start; 7432 em->len = file_extent->num_bytes; 7433 em->disk_bytenr = file_extent->disk_bytenr; 7434 em->disk_num_bytes = file_extent->disk_num_bytes; 7435 em->ram_bytes = file_extent->ram_bytes; 7436 em->generation = -1; 7437 em->offset = file_extent->offset; 7438 em->flags |= EXTENT_FLAG_PINNED; 7439 if (type == BTRFS_ORDERED_COMPRESSED) 7440 btrfs_extent_map_set_compression(em, file_extent->compression); 7441 7442 ret = btrfs_replace_extent_map_range(inode, em, true); 7443 if (ret) { 7444 btrfs_free_extent_map(em); 7445 return ERR_PTR(ret); 7446 } 7447 7448 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7449 return em; 7450 } 7451 7452 /* 7453 * For release_folio() and invalidate_folio() we have a race window where 7454 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7455 * If we continue to release/invalidate the page, we could cause use-after-free 7456 * for subpage spinlock. So this function is to spin and wait for subpage 7457 * spinlock. 7458 */ 7459 static void wait_subpage_spinlock(struct folio *folio) 7460 { 7461 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7462 struct btrfs_folio_state *bfs; 7463 7464 if (!btrfs_is_subpage(fs_info, folio)) 7465 return; 7466 7467 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7468 bfs = folio_get_private(folio); 7469 7470 /* 7471 * This may look insane as we just acquire the spinlock and release it, 7472 * without doing anything. But we just want to make sure no one is 7473 * still holding the subpage spinlock. 7474 * And since the page is not dirty nor writeback, and we have page 7475 * locked, the only possible way to hold a spinlock is from the endio 7476 * function to clear page writeback. 7477 * 7478 * Here we just acquire the spinlock so that all existing callers 7479 * should exit and we're safe to release/invalidate the page. 7480 */ 7481 spin_lock_irq(&bfs->lock); 7482 spin_unlock_irq(&bfs->lock); 7483 } 7484 7485 static int btrfs_launder_folio(struct folio *folio) 7486 { 7487 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7488 folio_size(folio), NULL); 7489 } 7490 7491 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7492 { 7493 if (try_release_extent_mapping(folio, gfp_flags)) { 7494 wait_subpage_spinlock(folio); 7495 clear_folio_extent_mapped(folio); 7496 return true; 7497 } 7498 return false; 7499 } 7500 7501 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7502 { 7503 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7504 return false; 7505 return __btrfs_release_folio(folio, gfp_flags); 7506 } 7507 7508 #ifdef CONFIG_MIGRATION 7509 static int btrfs_migrate_folio(struct address_space *mapping, 7510 struct folio *dst, struct folio *src, 7511 enum migrate_mode mode) 7512 { 7513 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7514 7515 if (ret) 7516 return ret; 7517 7518 if (folio_test_ordered(src)) { 7519 folio_clear_ordered(src); 7520 folio_set_ordered(dst); 7521 } 7522 7523 return 0; 7524 } 7525 #else 7526 #define btrfs_migrate_folio NULL 7527 #endif 7528 7529 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7530 size_t length) 7531 { 7532 struct btrfs_inode *inode = folio_to_inode(folio); 7533 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7534 struct extent_io_tree *tree = &inode->io_tree; 7535 struct extent_state *cached_state = NULL; 7536 u64 page_start = folio_pos(folio); 7537 u64 page_end = page_start + folio_size(folio) - 1; 7538 u64 cur; 7539 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING; 7540 7541 /* 7542 * We have folio locked so no new ordered extent can be created on this 7543 * page, nor bio can be submitted for this folio. 7544 * 7545 * But already submitted bio can still be finished on this folio. 7546 * Furthermore, endio function won't skip folio which has Ordered 7547 * already cleared, so it's possible for endio and 7548 * invalidate_folio to do the same ordered extent accounting twice 7549 * on one folio. 7550 * 7551 * So here we wait for any submitted bios to finish, so that we won't 7552 * do double ordered extent accounting on the same folio. 7553 */ 7554 folio_wait_writeback(folio); 7555 wait_subpage_spinlock(folio); 7556 7557 /* 7558 * For subpage case, we have call sites like 7559 * btrfs_punch_hole_lock_range() which passes range not aligned to 7560 * sectorsize. 7561 * If the range doesn't cover the full folio, we don't need to and 7562 * shouldn't clear page extent mapped, as folio->private can still 7563 * record subpage dirty bits for other part of the range. 7564 * 7565 * For cases that invalidate the full folio even the range doesn't 7566 * cover the full folio, like invalidating the last folio, we're 7567 * still safe to wait for ordered extent to finish. 7568 */ 7569 if (!(offset == 0 && length == folio_size(folio))) { 7570 btrfs_release_folio(folio, GFP_NOFS); 7571 return; 7572 } 7573 7574 if (!inode_evicting) 7575 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7576 7577 cur = page_start; 7578 while (cur < page_end) { 7579 struct btrfs_ordered_extent *ordered; 7580 u64 range_end; 7581 u32 range_len; 7582 u32 extra_flags = 0; 7583 7584 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7585 page_end + 1 - cur); 7586 if (!ordered) { 7587 range_end = page_end; 7588 /* 7589 * No ordered extent covering this range, we are safe 7590 * to delete all extent states in the range. 7591 */ 7592 extra_flags = EXTENT_CLEAR_ALL_BITS; 7593 goto next; 7594 } 7595 if (ordered->file_offset > cur) { 7596 /* 7597 * There is a range between [cur, oe->file_offset) not 7598 * covered by any ordered extent. 7599 * We are safe to delete all extent states, and handle 7600 * the ordered extent in the next iteration. 7601 */ 7602 range_end = ordered->file_offset - 1; 7603 extra_flags = EXTENT_CLEAR_ALL_BITS; 7604 goto next; 7605 } 7606 7607 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7608 page_end); 7609 ASSERT(range_end + 1 - cur < U32_MAX); 7610 range_len = range_end + 1 - cur; 7611 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7612 /* 7613 * If Ordered is cleared, it means endio has 7614 * already been executed for the range. 7615 * We can't delete the extent states as 7616 * btrfs_finish_ordered_io() may still use some of them. 7617 */ 7618 goto next; 7619 } 7620 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7621 7622 /* 7623 * IO on this page will never be started, so we need to account 7624 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7625 * here, must leave that up for the ordered extent completion. 7626 * 7627 * This will also unlock the range for incoming 7628 * btrfs_finish_ordered_io(). 7629 */ 7630 if (!inode_evicting) 7631 btrfs_clear_extent_bit(tree, cur, range_end, 7632 EXTENT_DELALLOC | 7633 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7634 EXTENT_DEFRAG, &cached_state); 7635 7636 spin_lock(&inode->ordered_tree_lock); 7637 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7638 ordered->truncated_len = min(ordered->truncated_len, 7639 cur - ordered->file_offset); 7640 spin_unlock(&inode->ordered_tree_lock); 7641 7642 /* 7643 * If the ordered extent has finished, we're safe to delete all 7644 * the extent states of the range, otherwise 7645 * btrfs_finish_ordered_io() will get executed by endio for 7646 * other pages, so we can't delete extent states. 7647 */ 7648 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7649 cur, range_end + 1 - cur)) { 7650 btrfs_finish_ordered_io(ordered); 7651 /* 7652 * The ordered extent has finished, now we're again 7653 * safe to delete all extent states of the range. 7654 */ 7655 extra_flags = EXTENT_CLEAR_ALL_BITS; 7656 } 7657 next: 7658 if (ordered) 7659 btrfs_put_ordered_extent(ordered); 7660 /* 7661 * Qgroup reserved space handler 7662 * Sector(s) here will be either: 7663 * 7664 * 1) Already written to disk or bio already finished 7665 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7666 * Qgroup will be handled by its qgroup_record then. 7667 * btrfs_qgroup_free_data() call will do nothing here. 7668 * 7669 * 2) Not written to disk yet 7670 * Then btrfs_qgroup_free_data() call will clear the 7671 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7672 * reserved data space. 7673 * Since the IO will never happen for this page. 7674 */ 7675 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7676 if (!inode_evicting) 7677 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7678 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7679 EXTENT_DEFRAG | extra_flags, 7680 &cached_state); 7681 cur = range_end + 1; 7682 } 7683 /* 7684 * We have iterated through all ordered extents of the page, the page 7685 * should not have Ordered anymore, or the above iteration 7686 * did something wrong. 7687 */ 7688 ASSERT(!folio_test_ordered(folio)); 7689 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7690 if (!inode_evicting) 7691 __btrfs_release_folio(folio, GFP_NOFS); 7692 clear_folio_extent_mapped(folio); 7693 } 7694 7695 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7696 { 7697 struct btrfs_truncate_control control = { 7698 .inode = inode, 7699 .ino = btrfs_ino(inode), 7700 .min_type = BTRFS_EXTENT_DATA_KEY, 7701 .clear_extent_range = true, 7702 .new_size = inode->vfs_inode.i_size, 7703 }; 7704 struct btrfs_root *root = inode->root; 7705 struct btrfs_fs_info *fs_info = root->fs_info; 7706 struct btrfs_block_rsv rsv; 7707 int ret; 7708 struct btrfs_trans_handle *trans; 7709 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7710 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize); 7711 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 7712 7713 /* Our inode is locked and the i_size can't be changed concurrently. */ 7714 btrfs_assert_inode_locked(inode); 7715 7716 if (!skip_writeback) { 7717 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1); 7718 if (ret) 7719 return ret; 7720 } 7721 7722 /* 7723 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7724 * things going on here: 7725 * 7726 * 1) We need to reserve space to update our inode. 7727 * 7728 * 2) We need to have something to cache all the space that is going to 7729 * be free'd up by the truncate operation, but also have some slack 7730 * space reserved in case it uses space during the truncate (thank you 7731 * very much snapshotting). 7732 * 7733 * And we need these to be separate. The fact is we can use a lot of 7734 * space doing the truncate, and we have no earthly idea how much space 7735 * we will use, so we need the truncate reservation to be separate so it 7736 * doesn't end up using space reserved for updating the inode. We also 7737 * need to be able to stop the transaction and start a new one, which 7738 * means we need to be able to update the inode several times, and we 7739 * have no idea of knowing how many times that will be, so we can't just 7740 * reserve 1 item for the entirety of the operation, so that has to be 7741 * done separately as well. 7742 * 7743 * So that leaves us with 7744 * 7745 * 1) rsv - for the truncate reservation, which we will steal from the 7746 * transaction reservation. 7747 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7748 * updating the inode. 7749 */ 7750 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7751 rsv.size = min_size; 7752 rsv.failfast = true; 7753 7754 /* 7755 * 1 for the truncate slack space 7756 * 1 for updating the inode. 7757 */ 7758 trans = btrfs_start_transaction(root, 2); 7759 if (IS_ERR(trans)) { 7760 ret = PTR_ERR(trans); 7761 goto out; 7762 } 7763 7764 /* Migrate the slack space for the truncate to our reserve */ 7765 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7766 min_size, false); 7767 /* 7768 * We have reserved 2 metadata units when we started the transaction and 7769 * min_size matches 1 unit, so this should never fail, but if it does, 7770 * it's not critical we just fail truncation. 7771 */ 7772 if (WARN_ON(ret)) { 7773 btrfs_end_transaction(trans); 7774 goto out; 7775 } 7776 7777 trans->block_rsv = &rsv; 7778 7779 while (1) { 7780 struct extent_state *cached_state = NULL; 7781 7782 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7783 /* 7784 * We want to drop from the next block forward in case this new 7785 * size is not block aligned since we will be keeping the last 7786 * block of the extent just the way it is. 7787 */ 7788 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false); 7789 7790 ret = btrfs_truncate_inode_items(trans, root, &control); 7791 7792 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7793 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7794 7795 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7796 7797 trans->block_rsv = &fs_info->trans_block_rsv; 7798 if (ret != -ENOSPC && ret != -EAGAIN) 7799 break; 7800 7801 ret = btrfs_update_inode(trans, inode); 7802 if (ret) 7803 break; 7804 7805 btrfs_end_transaction(trans); 7806 btrfs_btree_balance_dirty(fs_info); 7807 7808 trans = btrfs_start_transaction(root, 2); 7809 if (IS_ERR(trans)) { 7810 ret = PTR_ERR(trans); 7811 trans = NULL; 7812 break; 7813 } 7814 7815 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7816 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7817 &rsv, min_size, false); 7818 /* 7819 * We have reserved 2 metadata units when we started the 7820 * transaction and min_size matches 1 unit, so this should never 7821 * fail, but if it does, it's not critical we just fail truncation. 7822 */ 7823 if (WARN_ON(ret)) 7824 break; 7825 7826 trans->block_rsv = &rsv; 7827 } 7828 7829 /* 7830 * We can't call btrfs_truncate_block inside a trans handle as we could 7831 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7832 * know we've truncated everything except the last little bit, and can 7833 * do btrfs_truncate_block and then update the disk_i_size. 7834 */ 7835 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7836 btrfs_end_transaction(trans); 7837 btrfs_btree_balance_dirty(fs_info); 7838 7839 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7840 inode->vfs_inode.i_size, (u64)-1); 7841 if (ret) 7842 goto out; 7843 trans = btrfs_start_transaction(root, 1); 7844 if (IS_ERR(trans)) { 7845 ret = PTR_ERR(trans); 7846 goto out; 7847 } 7848 btrfs_inode_safe_disk_i_size_write(inode, 0); 7849 } 7850 7851 if (trans) { 7852 int ret2; 7853 7854 trans->block_rsv = &fs_info->trans_block_rsv; 7855 ret2 = btrfs_update_inode(trans, inode); 7856 if (ret2 && !ret) 7857 ret = ret2; 7858 7859 ret2 = btrfs_end_transaction(trans); 7860 if (ret2 && !ret) 7861 ret = ret2; 7862 btrfs_btree_balance_dirty(fs_info); 7863 } 7864 out: 7865 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7866 /* 7867 * So if we truncate and then write and fsync we normally would just 7868 * write the extents that changed, which is a problem if we need to 7869 * first truncate that entire inode. So set this flag so we write out 7870 * all of the extents in the inode to the sync log so we're completely 7871 * safe. 7872 * 7873 * If no extents were dropped or trimmed we don't need to force the next 7874 * fsync to truncate all the inode's items from the log and re-log them 7875 * all. This means the truncate operation did not change the file size, 7876 * or changed it to a smaller size but there was only an implicit hole 7877 * between the old i_size and the new i_size, and there were no prealloc 7878 * extents beyond i_size to drop. 7879 */ 7880 if (control.extents_found > 0) 7881 btrfs_set_inode_full_sync(inode); 7882 7883 return ret; 7884 } 7885 7886 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7887 struct inode *dir) 7888 { 7889 struct inode *inode; 7890 7891 inode = new_inode(dir->i_sb); 7892 if (inode) { 7893 /* 7894 * Subvolumes don't inherit the sgid bit or the parent's gid if 7895 * the parent's sgid bit is set. This is probably a bug. 7896 */ 7897 inode_init_owner(idmap, inode, NULL, 7898 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7899 inode->i_op = &btrfs_dir_inode_operations; 7900 inode->i_fop = &btrfs_dir_file_operations; 7901 } 7902 return inode; 7903 } 7904 7905 struct inode *btrfs_alloc_inode(struct super_block *sb) 7906 { 7907 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7908 struct btrfs_inode *ei; 7909 struct inode *inode; 7910 7911 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7912 if (!ei) 7913 return NULL; 7914 7915 ei->root = NULL; 7916 ei->generation = 0; 7917 ei->last_trans = 0; 7918 ei->last_sub_trans = 0; 7919 ei->logged_trans = 0; 7920 ei->delalloc_bytes = 0; 7921 /* new_delalloc_bytes and last_dir_index_offset are in a union. */ 7922 ei->new_delalloc_bytes = 0; 7923 ei->defrag_bytes = 0; 7924 ei->disk_i_size = 0; 7925 ei->flags = 0; 7926 ei->ro_flags = 0; 7927 /* 7928 * ->index_cnt will be properly initialized later when creating a new 7929 * inode (btrfs_create_new_inode()) or when reading an existing inode 7930 * from disk (btrfs_read_locked_inode()). 7931 */ 7932 ei->csum_bytes = 0; 7933 ei->dir_index = 0; 7934 ei->last_unlink_trans = 0; 7935 ei->last_reflink_trans = 0; 7936 ei->last_log_commit = 0; 7937 7938 spin_lock_init(&ei->lock); 7939 ei->outstanding_extents = 0; 7940 if (sb->s_magic != BTRFS_TEST_MAGIC) 7941 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7942 BTRFS_BLOCK_RSV_DELALLOC); 7943 ei->runtime_flags = 0; 7944 ei->prop_compress = BTRFS_COMPRESS_NONE; 7945 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7946 7947 ei->delayed_node = NULL; 7948 7949 ei->i_otime_sec = 0; 7950 ei->i_otime_nsec = 0; 7951 7952 inode = &ei->vfs_inode; 7953 btrfs_extent_map_tree_init(&ei->extent_tree); 7954 7955 /* This io tree sets the valid inode. */ 7956 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7957 ei->io_tree.inode = ei; 7958 7959 ei->file_extent_tree = NULL; 7960 7961 mutex_init(&ei->log_mutex); 7962 spin_lock_init(&ei->ordered_tree_lock); 7963 ei->ordered_tree = RB_ROOT; 7964 ei->ordered_tree_last = NULL; 7965 INIT_LIST_HEAD(&ei->delalloc_inodes); 7966 INIT_LIST_HEAD(&ei->delayed_iput); 7967 init_rwsem(&ei->i_mmap_lock); 7968 7969 return inode; 7970 } 7971 7972 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7973 void btrfs_test_destroy_inode(struct inode *inode) 7974 { 7975 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7976 kfree(BTRFS_I(inode)->file_extent_tree); 7977 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7978 } 7979 #endif 7980 7981 void btrfs_free_inode(struct inode *inode) 7982 { 7983 kfree(BTRFS_I(inode)->file_extent_tree); 7984 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7985 } 7986 7987 void btrfs_destroy_inode(struct inode *vfs_inode) 7988 { 7989 struct btrfs_ordered_extent *ordered; 7990 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7991 struct btrfs_root *root = inode->root; 7992 bool freespace_inode; 7993 7994 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7995 WARN_ON(vfs_inode->i_data.nrpages); 7996 WARN_ON(inode->block_rsv.reserved); 7997 WARN_ON(inode->block_rsv.size); 7998 WARN_ON(inode->outstanding_extents); 7999 if (!S_ISDIR(vfs_inode->i_mode)) { 8000 WARN_ON(inode->delalloc_bytes); 8001 WARN_ON(inode->new_delalloc_bytes); 8002 WARN_ON(inode->csum_bytes); 8003 } 8004 if (!root || !btrfs_is_data_reloc_root(root)) 8005 WARN_ON(inode->defrag_bytes); 8006 8007 /* 8008 * This can happen where we create an inode, but somebody else also 8009 * created the same inode and we need to destroy the one we already 8010 * created. 8011 */ 8012 if (!root) 8013 return; 8014 8015 /* 8016 * If this is a free space inode do not take the ordered extents lockdep 8017 * map. 8018 */ 8019 freespace_inode = btrfs_is_free_space_inode(inode); 8020 8021 while (1) { 8022 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8023 if (!ordered) 8024 break; 8025 else { 8026 btrfs_err(root->fs_info, 8027 "found ordered extent %llu %llu on inode cleanup", 8028 ordered->file_offset, ordered->num_bytes); 8029 8030 if (!freespace_inode) 8031 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8032 8033 btrfs_remove_ordered_extent(inode, ordered); 8034 btrfs_put_ordered_extent(ordered); 8035 btrfs_put_ordered_extent(ordered); 8036 } 8037 } 8038 btrfs_qgroup_check_reserved_leak(inode); 8039 btrfs_del_inode_from_root(inode); 8040 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8041 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8042 btrfs_put_root(inode->root); 8043 } 8044 8045 int btrfs_drop_inode(struct inode *inode) 8046 { 8047 struct btrfs_root *root = BTRFS_I(inode)->root; 8048 8049 if (root == NULL) 8050 return 1; 8051 8052 /* the snap/subvol tree is on deleting */ 8053 if (btrfs_root_refs(&root->root_item) == 0) 8054 return 1; 8055 else 8056 return inode_generic_drop(inode); 8057 } 8058 8059 static void init_once(void *foo) 8060 { 8061 struct btrfs_inode *ei = foo; 8062 8063 inode_init_once(&ei->vfs_inode); 8064 #ifdef CONFIG_FS_VERITY 8065 ei->i_verity_info = NULL; 8066 #endif 8067 } 8068 8069 void __cold btrfs_destroy_cachep(void) 8070 { 8071 /* 8072 * Make sure all delayed rcu free inodes are flushed before we 8073 * destroy cache. 8074 */ 8075 rcu_barrier(); 8076 kmem_cache_destroy(btrfs_inode_cachep); 8077 } 8078 8079 int __init btrfs_init_cachep(void) 8080 { 8081 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8082 sizeof(struct btrfs_inode), 0, 8083 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8084 init_once); 8085 if (!btrfs_inode_cachep) 8086 return -ENOMEM; 8087 8088 return 0; 8089 } 8090 8091 static int btrfs_getattr(struct mnt_idmap *idmap, 8092 const struct path *path, struct kstat *stat, 8093 u32 request_mask, unsigned int flags) 8094 { 8095 u64 delalloc_bytes; 8096 u64 inode_bytes; 8097 struct inode *inode = d_inode(path->dentry); 8098 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8099 u32 bi_flags = BTRFS_I(inode)->flags; 8100 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8101 8102 stat->result_mask |= STATX_BTIME; 8103 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8104 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8105 if (bi_flags & BTRFS_INODE_APPEND) 8106 stat->attributes |= STATX_ATTR_APPEND; 8107 if (bi_flags & BTRFS_INODE_COMPRESS) 8108 stat->attributes |= STATX_ATTR_COMPRESSED; 8109 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8110 stat->attributes |= STATX_ATTR_IMMUTABLE; 8111 if (bi_flags & BTRFS_INODE_NODUMP) 8112 stat->attributes |= STATX_ATTR_NODUMP; 8113 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8114 stat->attributes |= STATX_ATTR_VERITY; 8115 8116 stat->attributes_mask |= (STATX_ATTR_APPEND | 8117 STATX_ATTR_COMPRESSED | 8118 STATX_ATTR_IMMUTABLE | 8119 STATX_ATTR_NODUMP); 8120 8121 generic_fillattr(idmap, request_mask, inode, stat); 8122 stat->dev = BTRFS_I(inode)->root->anon_dev; 8123 8124 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8125 stat->result_mask |= STATX_SUBVOL; 8126 8127 spin_lock(&BTRFS_I(inode)->lock); 8128 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8129 inode_bytes = inode_get_bytes(inode); 8130 spin_unlock(&BTRFS_I(inode)->lock); 8131 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8132 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8133 return 0; 8134 } 8135 8136 static int btrfs_rename_exchange(struct inode *old_dir, 8137 struct dentry *old_dentry, 8138 struct inode *new_dir, 8139 struct dentry *new_dentry) 8140 { 8141 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8142 struct btrfs_trans_handle *trans; 8143 unsigned int trans_num_items; 8144 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8145 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8146 struct inode *new_inode = new_dentry->d_inode; 8147 struct inode *old_inode = old_dentry->d_inode; 8148 struct btrfs_rename_ctx old_rename_ctx; 8149 struct btrfs_rename_ctx new_rename_ctx; 8150 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8151 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8152 u64 old_idx = 0; 8153 u64 new_idx = 0; 8154 int ret; 8155 int ret2; 8156 bool need_abort = false; 8157 bool logs_pinned = false; 8158 struct fscrypt_name old_fname, new_fname; 8159 struct fscrypt_str *old_name, *new_name; 8160 8161 /* 8162 * For non-subvolumes allow exchange only within one subvolume, in the 8163 * same inode namespace. Two subvolumes (represented as directory) can 8164 * be exchanged as they're a logical link and have a fixed inode number. 8165 */ 8166 if (root != dest && 8167 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8168 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8169 return -EXDEV; 8170 8171 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8172 if (ret) 8173 return ret; 8174 8175 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8176 if (ret) { 8177 fscrypt_free_filename(&old_fname); 8178 return ret; 8179 } 8180 8181 old_name = &old_fname.disk_name; 8182 new_name = &new_fname.disk_name; 8183 8184 /* close the race window with snapshot create/destroy ioctl */ 8185 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8186 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8187 down_read(&fs_info->subvol_sem); 8188 8189 /* 8190 * For each inode: 8191 * 1 to remove old dir item 8192 * 1 to remove old dir index 8193 * 1 to add new dir item 8194 * 1 to add new dir index 8195 * 1 to update parent inode 8196 * 8197 * If the parents are the same, we only need to account for one 8198 */ 8199 trans_num_items = (old_dir == new_dir ? 9 : 10); 8200 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8201 /* 8202 * 1 to remove old root ref 8203 * 1 to remove old root backref 8204 * 1 to add new root ref 8205 * 1 to add new root backref 8206 */ 8207 trans_num_items += 4; 8208 } else { 8209 /* 8210 * 1 to update inode item 8211 * 1 to remove old inode ref 8212 * 1 to add new inode ref 8213 */ 8214 trans_num_items += 3; 8215 } 8216 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8217 trans_num_items += 4; 8218 else 8219 trans_num_items += 3; 8220 trans = btrfs_start_transaction(root, trans_num_items); 8221 if (IS_ERR(trans)) { 8222 ret = PTR_ERR(trans); 8223 goto out_notrans; 8224 } 8225 8226 if (dest != root) { 8227 ret = btrfs_record_root_in_trans(trans, dest); 8228 if (ret) 8229 goto out_fail; 8230 } 8231 8232 /* 8233 * We need to find a free sequence number both in the source and 8234 * in the destination directory for the exchange. 8235 */ 8236 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8237 if (ret) 8238 goto out_fail; 8239 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8240 if (ret) 8241 goto out_fail; 8242 8243 BTRFS_I(old_inode)->dir_index = 0ULL; 8244 BTRFS_I(new_inode)->dir_index = 0ULL; 8245 8246 /* Reference for the source. */ 8247 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8248 /* force full log commit if subvolume involved. */ 8249 btrfs_set_log_full_commit(trans); 8250 } else { 8251 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8252 btrfs_ino(BTRFS_I(new_dir)), 8253 old_idx); 8254 if (ret) 8255 goto out_fail; 8256 need_abort = true; 8257 } 8258 8259 /* And now for the dest. */ 8260 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8261 /* force full log commit if subvolume involved. */ 8262 btrfs_set_log_full_commit(trans); 8263 } else { 8264 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8265 btrfs_ino(BTRFS_I(old_dir)), 8266 new_idx); 8267 if (ret) { 8268 if (unlikely(need_abort)) 8269 btrfs_abort_transaction(trans, ret); 8270 goto out_fail; 8271 } 8272 } 8273 8274 /* Update inode version and ctime/mtime. */ 8275 inode_inc_iversion(old_dir); 8276 inode_inc_iversion(new_dir); 8277 inode_inc_iversion(old_inode); 8278 inode_inc_iversion(new_inode); 8279 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8280 8281 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8282 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8283 /* 8284 * If we are renaming in the same directory (and it's not for 8285 * root entries) pin the log early to prevent any concurrent 8286 * task from logging the directory after we removed the old 8287 * entries and before we add the new entries, otherwise that 8288 * task can sync a log without any entry for the inodes we are 8289 * renaming and therefore replaying that log, if a power failure 8290 * happens after syncing the log, would result in deleting the 8291 * inodes. 8292 * 8293 * If the rename affects two different directories, we want to 8294 * make sure the that there's no log commit that contains 8295 * updates for only one of the directories but not for the 8296 * other. 8297 * 8298 * If we are renaming an entry for a root, we don't care about 8299 * log updates since we called btrfs_set_log_full_commit(). 8300 */ 8301 btrfs_pin_log_trans(root); 8302 btrfs_pin_log_trans(dest); 8303 logs_pinned = true; 8304 } 8305 8306 if (old_dentry->d_parent != new_dentry->d_parent) { 8307 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8308 BTRFS_I(old_inode), true); 8309 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8310 BTRFS_I(new_inode), true); 8311 } 8312 8313 /* src is a subvolume */ 8314 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8315 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8316 if (unlikely(ret)) { 8317 btrfs_abort_transaction(trans, ret); 8318 goto out_fail; 8319 } 8320 } else { /* src is an inode */ 8321 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8322 BTRFS_I(old_dentry->d_inode), 8323 old_name, &old_rename_ctx); 8324 if (unlikely(ret)) { 8325 btrfs_abort_transaction(trans, ret); 8326 goto out_fail; 8327 } 8328 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8329 if (unlikely(ret)) { 8330 btrfs_abort_transaction(trans, ret); 8331 goto out_fail; 8332 } 8333 } 8334 8335 /* dest is a subvolume */ 8336 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8337 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8338 if (unlikely(ret)) { 8339 btrfs_abort_transaction(trans, ret); 8340 goto out_fail; 8341 } 8342 } else { /* dest is an inode */ 8343 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8344 BTRFS_I(new_dentry->d_inode), 8345 new_name, &new_rename_ctx); 8346 if (unlikely(ret)) { 8347 btrfs_abort_transaction(trans, ret); 8348 goto out_fail; 8349 } 8350 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8351 if (unlikely(ret)) { 8352 btrfs_abort_transaction(trans, ret); 8353 goto out_fail; 8354 } 8355 } 8356 8357 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8358 new_name, 0, old_idx); 8359 if (unlikely(ret)) { 8360 btrfs_abort_transaction(trans, ret); 8361 goto out_fail; 8362 } 8363 8364 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8365 old_name, 0, new_idx); 8366 if (unlikely(ret)) { 8367 btrfs_abort_transaction(trans, ret); 8368 goto out_fail; 8369 } 8370 8371 if (old_inode->i_nlink == 1) 8372 BTRFS_I(old_inode)->dir_index = old_idx; 8373 if (new_inode->i_nlink == 1) 8374 BTRFS_I(new_inode)->dir_index = new_idx; 8375 8376 /* 8377 * Do the log updates for all inodes. 8378 * 8379 * If either entry is for a root we don't need to update the logs since 8380 * we've called btrfs_set_log_full_commit() before. 8381 */ 8382 if (logs_pinned) { 8383 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8384 old_rename_ctx.index, new_dentry->d_parent); 8385 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8386 new_rename_ctx.index, old_dentry->d_parent); 8387 } 8388 8389 out_fail: 8390 if (logs_pinned) { 8391 btrfs_end_log_trans(root); 8392 btrfs_end_log_trans(dest); 8393 } 8394 ret2 = btrfs_end_transaction(trans); 8395 ret = ret ? ret : ret2; 8396 out_notrans: 8397 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8398 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8399 up_read(&fs_info->subvol_sem); 8400 8401 fscrypt_free_filename(&new_fname); 8402 fscrypt_free_filename(&old_fname); 8403 return ret; 8404 } 8405 8406 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8407 struct inode *dir) 8408 { 8409 struct inode *inode; 8410 8411 inode = new_inode(dir->i_sb); 8412 if (inode) { 8413 inode_init_owner(idmap, inode, dir, 8414 S_IFCHR | WHITEOUT_MODE); 8415 inode->i_op = &btrfs_special_inode_operations; 8416 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8417 } 8418 return inode; 8419 } 8420 8421 static int btrfs_rename(struct mnt_idmap *idmap, 8422 struct inode *old_dir, struct dentry *old_dentry, 8423 struct inode *new_dir, struct dentry *new_dentry, 8424 unsigned int flags) 8425 { 8426 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8427 struct btrfs_new_inode_args whiteout_args = { 8428 .dir = old_dir, 8429 .dentry = old_dentry, 8430 }; 8431 struct btrfs_trans_handle *trans; 8432 unsigned int trans_num_items; 8433 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8434 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8435 struct inode *new_inode = d_inode(new_dentry); 8436 struct inode *old_inode = d_inode(old_dentry); 8437 struct btrfs_rename_ctx rename_ctx; 8438 u64 index = 0; 8439 int ret; 8440 int ret2; 8441 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8442 struct fscrypt_name old_fname, new_fname; 8443 bool logs_pinned = false; 8444 8445 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8446 return -EPERM; 8447 8448 /* we only allow rename subvolume link between subvolumes */ 8449 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8450 return -EXDEV; 8451 8452 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8453 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8454 return -ENOTEMPTY; 8455 8456 if (S_ISDIR(old_inode->i_mode) && new_inode && 8457 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8458 return -ENOTEMPTY; 8459 8460 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8461 if (ret) 8462 return ret; 8463 8464 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8465 if (ret) { 8466 fscrypt_free_filename(&old_fname); 8467 return ret; 8468 } 8469 8470 /* check for collisions, even if the name isn't there */ 8471 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8472 if (ret) { 8473 if (ret == -EEXIST) { 8474 /* we shouldn't get 8475 * eexist without a new_inode */ 8476 if (WARN_ON(!new_inode)) { 8477 goto out_fscrypt_names; 8478 } 8479 } else { 8480 /* maybe -EOVERFLOW */ 8481 goto out_fscrypt_names; 8482 } 8483 } 8484 ret = 0; 8485 8486 /* 8487 * we're using rename to replace one file with another. Start IO on it 8488 * now so we don't add too much work to the end of the transaction 8489 */ 8490 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8491 filemap_flush(old_inode->i_mapping); 8492 8493 if (flags & RENAME_WHITEOUT) { 8494 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8495 if (!whiteout_args.inode) { 8496 ret = -ENOMEM; 8497 goto out_fscrypt_names; 8498 } 8499 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8500 if (ret) 8501 goto out_whiteout_inode; 8502 } else { 8503 /* 1 to update the old parent inode. */ 8504 trans_num_items = 1; 8505 } 8506 8507 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8508 /* Close the race window with snapshot create/destroy ioctl */ 8509 down_read(&fs_info->subvol_sem); 8510 /* 8511 * 1 to remove old root ref 8512 * 1 to remove old root backref 8513 * 1 to add new root ref 8514 * 1 to add new root backref 8515 */ 8516 trans_num_items += 4; 8517 } else { 8518 /* 8519 * 1 to update inode 8520 * 1 to remove old inode ref 8521 * 1 to add new inode ref 8522 */ 8523 trans_num_items += 3; 8524 } 8525 /* 8526 * 1 to remove old dir item 8527 * 1 to remove old dir index 8528 * 1 to add new dir item 8529 * 1 to add new dir index 8530 */ 8531 trans_num_items += 4; 8532 /* 1 to update new parent inode if it's not the same as the old parent */ 8533 if (new_dir != old_dir) 8534 trans_num_items++; 8535 if (new_inode) { 8536 /* 8537 * 1 to update inode 8538 * 1 to remove inode ref 8539 * 1 to remove dir item 8540 * 1 to remove dir index 8541 * 1 to possibly add orphan item 8542 */ 8543 trans_num_items += 5; 8544 } 8545 trans = btrfs_start_transaction(root, trans_num_items); 8546 if (IS_ERR(trans)) { 8547 ret = PTR_ERR(trans); 8548 goto out_notrans; 8549 } 8550 8551 if (dest != root) { 8552 ret = btrfs_record_root_in_trans(trans, dest); 8553 if (ret) 8554 goto out_fail; 8555 } 8556 8557 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8558 if (ret) 8559 goto out_fail; 8560 8561 BTRFS_I(old_inode)->dir_index = 0ULL; 8562 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8563 /* force full log commit if subvolume involved. */ 8564 btrfs_set_log_full_commit(trans); 8565 } else { 8566 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8567 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8568 index); 8569 if (ret) 8570 goto out_fail; 8571 } 8572 8573 inode_inc_iversion(old_dir); 8574 inode_inc_iversion(new_dir); 8575 inode_inc_iversion(old_inode); 8576 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8577 8578 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8579 /* 8580 * If we are renaming in the same directory (and it's not a 8581 * root entry) pin the log to prevent any concurrent task from 8582 * logging the directory after we removed the old entry and 8583 * before we add the new entry, otherwise that task can sync 8584 * a log without any entry for the inode we are renaming and 8585 * therefore replaying that log, if a power failure happens 8586 * after syncing the log, would result in deleting the inode. 8587 * 8588 * If the rename affects two different directories, we want to 8589 * make sure the that there's no log commit that contains 8590 * updates for only one of the directories but not for the 8591 * other. 8592 * 8593 * If we are renaming an entry for a root, we don't care about 8594 * log updates since we called btrfs_set_log_full_commit(). 8595 */ 8596 btrfs_pin_log_trans(root); 8597 btrfs_pin_log_trans(dest); 8598 logs_pinned = true; 8599 } 8600 8601 if (old_dentry->d_parent != new_dentry->d_parent) 8602 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8603 BTRFS_I(old_inode), true); 8604 8605 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8606 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8607 if (unlikely(ret)) { 8608 btrfs_abort_transaction(trans, ret); 8609 goto out_fail; 8610 } 8611 } else { 8612 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8613 BTRFS_I(d_inode(old_dentry)), 8614 &old_fname.disk_name, &rename_ctx); 8615 if (unlikely(ret)) { 8616 btrfs_abort_transaction(trans, ret); 8617 goto out_fail; 8618 } 8619 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8620 if (unlikely(ret)) { 8621 btrfs_abort_transaction(trans, ret); 8622 goto out_fail; 8623 } 8624 } 8625 8626 if (new_inode) { 8627 inode_inc_iversion(new_inode); 8628 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8629 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8630 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8631 if (unlikely(ret)) { 8632 btrfs_abort_transaction(trans, ret); 8633 goto out_fail; 8634 } 8635 BUG_ON(new_inode->i_nlink == 0); 8636 } else { 8637 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8638 BTRFS_I(d_inode(new_dentry)), 8639 &new_fname.disk_name); 8640 if (unlikely(ret)) { 8641 btrfs_abort_transaction(trans, ret); 8642 goto out_fail; 8643 } 8644 } 8645 if (new_inode->i_nlink == 0) { 8646 ret = btrfs_orphan_add(trans, 8647 BTRFS_I(d_inode(new_dentry))); 8648 if (unlikely(ret)) { 8649 btrfs_abort_transaction(trans, ret); 8650 goto out_fail; 8651 } 8652 } 8653 } 8654 8655 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8656 &new_fname.disk_name, 0, index); 8657 if (unlikely(ret)) { 8658 btrfs_abort_transaction(trans, ret); 8659 goto out_fail; 8660 } 8661 8662 if (old_inode->i_nlink == 1) 8663 BTRFS_I(old_inode)->dir_index = index; 8664 8665 if (logs_pinned) 8666 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8667 rename_ctx.index, new_dentry->d_parent); 8668 8669 if (flags & RENAME_WHITEOUT) { 8670 ret = btrfs_create_new_inode(trans, &whiteout_args); 8671 if (unlikely(ret)) { 8672 btrfs_abort_transaction(trans, ret); 8673 goto out_fail; 8674 } else { 8675 unlock_new_inode(whiteout_args.inode); 8676 iput(whiteout_args.inode); 8677 whiteout_args.inode = NULL; 8678 } 8679 } 8680 out_fail: 8681 if (logs_pinned) { 8682 btrfs_end_log_trans(root); 8683 btrfs_end_log_trans(dest); 8684 } 8685 ret2 = btrfs_end_transaction(trans); 8686 ret = ret ? ret : ret2; 8687 out_notrans: 8688 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8689 up_read(&fs_info->subvol_sem); 8690 if (flags & RENAME_WHITEOUT) 8691 btrfs_new_inode_args_destroy(&whiteout_args); 8692 out_whiteout_inode: 8693 if (flags & RENAME_WHITEOUT) 8694 iput(whiteout_args.inode); 8695 out_fscrypt_names: 8696 fscrypt_free_filename(&old_fname); 8697 fscrypt_free_filename(&new_fname); 8698 return ret; 8699 } 8700 8701 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8702 struct dentry *old_dentry, struct inode *new_dir, 8703 struct dentry *new_dentry, unsigned int flags) 8704 { 8705 int ret; 8706 8707 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8708 return -EINVAL; 8709 8710 if (flags & RENAME_EXCHANGE) 8711 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8712 new_dentry); 8713 else 8714 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8715 new_dentry, flags); 8716 8717 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8718 8719 return ret; 8720 } 8721 8722 struct btrfs_delalloc_work { 8723 struct inode *inode; 8724 struct completion completion; 8725 struct list_head list; 8726 struct btrfs_work work; 8727 }; 8728 8729 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8730 { 8731 struct btrfs_delalloc_work *delalloc_work; 8732 struct inode *inode; 8733 8734 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8735 work); 8736 inode = delalloc_work->inode; 8737 filemap_flush(inode->i_mapping); 8738 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8739 &BTRFS_I(inode)->runtime_flags)) 8740 filemap_flush(inode->i_mapping); 8741 8742 iput(inode); 8743 complete(&delalloc_work->completion); 8744 } 8745 8746 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8747 { 8748 struct btrfs_delalloc_work *work; 8749 8750 work = kmalloc(sizeof(*work), GFP_NOFS); 8751 if (!work) 8752 return NULL; 8753 8754 init_completion(&work->completion); 8755 INIT_LIST_HEAD(&work->list); 8756 work->inode = inode; 8757 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8758 8759 return work; 8760 } 8761 8762 /* 8763 * some fairly slow code that needs optimization. This walks the list 8764 * of all the inodes with pending delalloc and forces them to disk. 8765 */ 8766 static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write, 8767 bool snapshot, bool in_reclaim_context) 8768 { 8769 struct btrfs_delalloc_work *work, *next; 8770 LIST_HEAD(works); 8771 LIST_HEAD(splice); 8772 int ret = 0; 8773 8774 mutex_lock(&root->delalloc_mutex); 8775 spin_lock(&root->delalloc_lock); 8776 list_splice_init(&root->delalloc_inodes, &splice); 8777 while (!list_empty(&splice)) { 8778 struct btrfs_inode *inode; 8779 struct inode *tmp_inode; 8780 8781 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8782 8783 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8784 8785 if (in_reclaim_context && 8786 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8787 continue; 8788 8789 tmp_inode = igrab(&inode->vfs_inode); 8790 if (!tmp_inode) { 8791 cond_resched_lock(&root->delalloc_lock); 8792 continue; 8793 } 8794 spin_unlock(&root->delalloc_lock); 8795 8796 if (snapshot) 8797 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8798 if (nr_to_write == NULL) { 8799 work = btrfs_alloc_delalloc_work(tmp_inode); 8800 if (!work) { 8801 iput(tmp_inode); 8802 ret = -ENOMEM; 8803 goto out; 8804 } 8805 list_add_tail(&work->list, &works); 8806 btrfs_queue_work(root->fs_info->flush_workers, 8807 &work->work); 8808 } else { 8809 ret = filemap_flush_nr(tmp_inode->i_mapping, 8810 nr_to_write); 8811 btrfs_add_delayed_iput(inode); 8812 8813 if (ret || *nr_to_write <= 0) 8814 goto out; 8815 } 8816 cond_resched(); 8817 spin_lock(&root->delalloc_lock); 8818 } 8819 spin_unlock(&root->delalloc_lock); 8820 8821 out: 8822 list_for_each_entry_safe(work, next, &works, list) { 8823 list_del_init(&work->list); 8824 wait_for_completion(&work->completion); 8825 kfree(work); 8826 } 8827 8828 if (!list_empty(&splice)) { 8829 spin_lock(&root->delalloc_lock); 8830 list_splice_tail(&splice, &root->delalloc_inodes); 8831 spin_unlock(&root->delalloc_lock); 8832 } 8833 mutex_unlock(&root->delalloc_mutex); 8834 return ret; 8835 } 8836 8837 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8838 { 8839 struct btrfs_fs_info *fs_info = root->fs_info; 8840 8841 if (BTRFS_FS_ERROR(fs_info)) 8842 return -EROFS; 8843 return start_delalloc_inodes(root, NULL, true, in_reclaim_context); 8844 } 8845 8846 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8847 bool in_reclaim_context) 8848 { 8849 long *nr_to_write = nr == LONG_MAX ? NULL : &nr; 8850 struct btrfs_root *root; 8851 LIST_HEAD(splice); 8852 int ret; 8853 8854 if (BTRFS_FS_ERROR(fs_info)) 8855 return -EROFS; 8856 8857 mutex_lock(&fs_info->delalloc_root_mutex); 8858 spin_lock(&fs_info->delalloc_root_lock); 8859 list_splice_init(&fs_info->delalloc_roots, &splice); 8860 while (!list_empty(&splice)) { 8861 root = list_first_entry(&splice, struct btrfs_root, 8862 delalloc_root); 8863 root = btrfs_grab_root(root); 8864 BUG_ON(!root); 8865 list_move_tail(&root->delalloc_root, 8866 &fs_info->delalloc_roots); 8867 spin_unlock(&fs_info->delalloc_root_lock); 8868 8869 ret = start_delalloc_inodes(root, nr_to_write, false, 8870 in_reclaim_context); 8871 btrfs_put_root(root); 8872 if (ret < 0 || nr <= 0) 8873 goto out; 8874 spin_lock(&fs_info->delalloc_root_lock); 8875 } 8876 spin_unlock(&fs_info->delalloc_root_lock); 8877 8878 ret = 0; 8879 out: 8880 if (!list_empty(&splice)) { 8881 spin_lock(&fs_info->delalloc_root_lock); 8882 list_splice_tail(&splice, &fs_info->delalloc_roots); 8883 spin_unlock(&fs_info->delalloc_root_lock); 8884 } 8885 mutex_unlock(&fs_info->delalloc_root_mutex); 8886 return ret; 8887 } 8888 8889 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8890 struct dentry *dentry, const char *symname) 8891 { 8892 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8893 struct btrfs_trans_handle *trans; 8894 struct btrfs_root *root = BTRFS_I(dir)->root; 8895 struct btrfs_path *path; 8896 struct btrfs_key key; 8897 struct inode *inode; 8898 struct btrfs_new_inode_args new_inode_args = { 8899 .dir = dir, 8900 .dentry = dentry, 8901 }; 8902 unsigned int trans_num_items; 8903 int ret; 8904 int name_len; 8905 int datasize; 8906 unsigned long ptr; 8907 struct btrfs_file_extent_item *ei; 8908 struct extent_buffer *leaf; 8909 8910 name_len = strlen(symname); 8911 /* 8912 * Symlinks utilize uncompressed inline extent data, which should not 8913 * reach block size. 8914 */ 8915 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8916 name_len >= fs_info->sectorsize) 8917 return -ENAMETOOLONG; 8918 8919 inode = new_inode(dir->i_sb); 8920 if (!inode) 8921 return -ENOMEM; 8922 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8923 inode->i_op = &btrfs_symlink_inode_operations; 8924 inode_nohighmem(inode); 8925 inode->i_mapping->a_ops = &btrfs_aops; 8926 btrfs_i_size_write(BTRFS_I(inode), name_len); 8927 inode_set_bytes(inode, name_len); 8928 8929 new_inode_args.inode = inode; 8930 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8931 if (ret) 8932 goto out_inode; 8933 /* 1 additional item for the inline extent */ 8934 trans_num_items++; 8935 8936 trans = btrfs_start_transaction(root, trans_num_items); 8937 if (IS_ERR(trans)) { 8938 ret = PTR_ERR(trans); 8939 goto out_new_inode_args; 8940 } 8941 8942 ret = btrfs_create_new_inode(trans, &new_inode_args); 8943 if (ret) 8944 goto out; 8945 8946 path = btrfs_alloc_path(); 8947 if (unlikely(!path)) { 8948 ret = -ENOMEM; 8949 btrfs_abort_transaction(trans, ret); 8950 discard_new_inode(inode); 8951 inode = NULL; 8952 goto out; 8953 } 8954 key.objectid = btrfs_ino(BTRFS_I(inode)); 8955 key.type = BTRFS_EXTENT_DATA_KEY; 8956 key.offset = 0; 8957 datasize = btrfs_file_extent_calc_inline_size(name_len); 8958 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8959 if (unlikely(ret)) { 8960 btrfs_abort_transaction(trans, ret); 8961 btrfs_free_path(path); 8962 discard_new_inode(inode); 8963 inode = NULL; 8964 goto out; 8965 } 8966 leaf = path->nodes[0]; 8967 ei = btrfs_item_ptr(leaf, path->slots[0], 8968 struct btrfs_file_extent_item); 8969 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8970 btrfs_set_file_extent_type(leaf, ei, 8971 BTRFS_FILE_EXTENT_INLINE); 8972 btrfs_set_file_extent_encryption(leaf, ei, 0); 8973 btrfs_set_file_extent_compression(leaf, ei, 0); 8974 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8975 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8976 8977 ptr = btrfs_file_extent_inline_start(ei); 8978 write_extent_buffer(leaf, symname, ptr, name_len); 8979 btrfs_free_path(path); 8980 8981 d_instantiate_new(dentry, inode); 8982 ret = 0; 8983 out: 8984 btrfs_end_transaction(trans); 8985 btrfs_btree_balance_dirty(fs_info); 8986 out_new_inode_args: 8987 btrfs_new_inode_args_destroy(&new_inode_args); 8988 out_inode: 8989 if (ret) 8990 iput(inode); 8991 return ret; 8992 } 8993 8994 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8995 struct btrfs_trans_handle *trans_in, 8996 struct btrfs_inode *inode, 8997 struct btrfs_key *ins, 8998 u64 file_offset) 8999 { 9000 struct btrfs_file_extent_item stack_fi; 9001 struct btrfs_replace_extent_info extent_info; 9002 struct btrfs_trans_handle *trans = trans_in; 9003 struct btrfs_path *path; 9004 u64 start = ins->objectid; 9005 u64 len = ins->offset; 9006 u64 qgroup_released = 0; 9007 int ret; 9008 9009 memset(&stack_fi, 0, sizeof(stack_fi)); 9010 9011 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9012 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9013 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9014 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9015 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9016 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9017 /* Encryption and other encoding is reserved and all 0 */ 9018 9019 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9020 if (ret < 0) 9021 return ERR_PTR(ret); 9022 9023 if (trans) { 9024 ret = insert_reserved_file_extent(trans, inode, 9025 file_offset, &stack_fi, 9026 true, qgroup_released); 9027 if (ret) 9028 goto free_qgroup; 9029 return trans; 9030 } 9031 9032 extent_info.disk_offset = start; 9033 extent_info.disk_len = len; 9034 extent_info.data_offset = 0; 9035 extent_info.data_len = len; 9036 extent_info.file_offset = file_offset; 9037 extent_info.extent_buf = (char *)&stack_fi; 9038 extent_info.is_new_extent = true; 9039 extent_info.update_times = true; 9040 extent_info.qgroup_reserved = qgroup_released; 9041 extent_info.insertions = 0; 9042 9043 path = btrfs_alloc_path(); 9044 if (!path) { 9045 ret = -ENOMEM; 9046 goto free_qgroup; 9047 } 9048 9049 ret = btrfs_replace_file_extents(inode, path, file_offset, 9050 file_offset + len - 1, &extent_info, 9051 &trans); 9052 btrfs_free_path(path); 9053 if (ret) 9054 goto free_qgroup; 9055 return trans; 9056 9057 free_qgroup: 9058 /* 9059 * We have released qgroup data range at the beginning of the function, 9060 * and normally qgroup_released bytes will be freed when committing 9061 * transaction. 9062 * But if we error out early, we have to free what we have released 9063 * or we leak qgroup data reservation. 9064 */ 9065 btrfs_qgroup_free_refroot(inode->root->fs_info, 9066 btrfs_root_id(inode->root), qgroup_released, 9067 BTRFS_QGROUP_RSV_DATA); 9068 return ERR_PTR(ret); 9069 } 9070 9071 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9072 u64 start, u64 num_bytes, u64 min_size, 9073 loff_t actual_len, u64 *alloc_hint, 9074 struct btrfs_trans_handle *trans) 9075 { 9076 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9077 struct extent_map *em; 9078 struct btrfs_root *root = BTRFS_I(inode)->root; 9079 struct btrfs_key ins; 9080 u64 cur_offset = start; 9081 u64 clear_offset = start; 9082 u64 i_size; 9083 u64 cur_bytes; 9084 u64 last_alloc = (u64)-1; 9085 int ret = 0; 9086 bool own_trans = true; 9087 u64 end = start + num_bytes - 1; 9088 9089 if (trans) 9090 own_trans = false; 9091 while (num_bytes > 0) { 9092 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9093 cur_bytes = max(cur_bytes, min_size); 9094 /* 9095 * If we are severely fragmented we could end up with really 9096 * small allocations, so if the allocator is returning small 9097 * chunks lets make its job easier by only searching for those 9098 * sized chunks. 9099 */ 9100 cur_bytes = min(cur_bytes, last_alloc); 9101 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9102 min_size, 0, *alloc_hint, &ins, true, false); 9103 if (ret) 9104 break; 9105 9106 /* 9107 * We've reserved this space, and thus converted it from 9108 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9109 * from here on out we will only need to clear our reservation 9110 * for the remaining unreserved area, so advance our 9111 * clear_offset by our extent size. 9112 */ 9113 clear_offset += ins.offset; 9114 9115 last_alloc = ins.offset; 9116 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9117 &ins, cur_offset); 9118 /* 9119 * Now that we inserted the prealloc extent we can finally 9120 * decrement the number of reservations in the block group. 9121 * If we did it before, we could race with relocation and have 9122 * relocation miss the reserved extent, making it fail later. 9123 */ 9124 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9125 if (IS_ERR(trans)) { 9126 ret = PTR_ERR(trans); 9127 btrfs_free_reserved_extent(fs_info, ins.objectid, 9128 ins.offset, false); 9129 break; 9130 } 9131 9132 em = btrfs_alloc_extent_map(); 9133 if (!em) { 9134 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9135 cur_offset + ins.offset - 1, false); 9136 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9137 goto next; 9138 } 9139 9140 em->start = cur_offset; 9141 em->len = ins.offset; 9142 em->disk_bytenr = ins.objectid; 9143 em->offset = 0; 9144 em->disk_num_bytes = ins.offset; 9145 em->ram_bytes = ins.offset; 9146 em->flags |= EXTENT_FLAG_PREALLOC; 9147 em->generation = trans->transid; 9148 9149 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9150 btrfs_free_extent_map(em); 9151 next: 9152 num_bytes -= ins.offset; 9153 cur_offset += ins.offset; 9154 *alloc_hint = ins.objectid + ins.offset; 9155 9156 inode_inc_iversion(inode); 9157 inode_set_ctime_current(inode); 9158 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9159 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9160 (actual_len > inode->i_size) && 9161 (cur_offset > inode->i_size)) { 9162 if (cur_offset > actual_len) 9163 i_size = actual_len; 9164 else 9165 i_size = cur_offset; 9166 i_size_write(inode, i_size); 9167 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9168 } 9169 9170 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9171 9172 if (unlikely(ret)) { 9173 btrfs_abort_transaction(trans, ret); 9174 if (own_trans) 9175 btrfs_end_transaction(trans); 9176 break; 9177 } 9178 9179 if (own_trans) { 9180 btrfs_end_transaction(trans); 9181 trans = NULL; 9182 } 9183 } 9184 if (clear_offset < end) 9185 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9186 end - clear_offset + 1); 9187 return ret; 9188 } 9189 9190 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9191 u64 start, u64 num_bytes, u64 min_size, 9192 loff_t actual_len, u64 *alloc_hint) 9193 { 9194 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9195 min_size, actual_len, alloc_hint, 9196 NULL); 9197 } 9198 9199 int btrfs_prealloc_file_range_trans(struct inode *inode, 9200 struct btrfs_trans_handle *trans, int mode, 9201 u64 start, u64 num_bytes, u64 min_size, 9202 loff_t actual_len, u64 *alloc_hint) 9203 { 9204 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9205 min_size, actual_len, alloc_hint, trans); 9206 } 9207 9208 /* 9209 * NOTE: in case you are adding MAY_EXEC check for directories: 9210 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to 9211 * elide calls here. 9212 */ 9213 static int btrfs_permission(struct mnt_idmap *idmap, 9214 struct inode *inode, int mask) 9215 { 9216 struct btrfs_root *root = BTRFS_I(inode)->root; 9217 umode_t mode = inode->i_mode; 9218 9219 if (mask & MAY_WRITE && 9220 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9221 if (btrfs_root_readonly(root)) 9222 return -EROFS; 9223 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9224 return -EACCES; 9225 } 9226 return generic_permission(idmap, inode, mask); 9227 } 9228 9229 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9230 struct file *file, umode_t mode) 9231 { 9232 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9233 struct btrfs_trans_handle *trans; 9234 struct btrfs_root *root = BTRFS_I(dir)->root; 9235 struct inode *inode; 9236 struct btrfs_new_inode_args new_inode_args = { 9237 .dir = dir, 9238 .dentry = file->f_path.dentry, 9239 .orphan = true, 9240 }; 9241 unsigned int trans_num_items; 9242 int ret; 9243 9244 inode = new_inode(dir->i_sb); 9245 if (!inode) 9246 return -ENOMEM; 9247 inode_init_owner(idmap, inode, dir, mode); 9248 inode->i_fop = &btrfs_file_operations; 9249 inode->i_op = &btrfs_file_inode_operations; 9250 inode->i_mapping->a_ops = &btrfs_aops; 9251 9252 new_inode_args.inode = inode; 9253 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9254 if (ret) 9255 goto out_inode; 9256 9257 trans = btrfs_start_transaction(root, trans_num_items); 9258 if (IS_ERR(trans)) { 9259 ret = PTR_ERR(trans); 9260 goto out_new_inode_args; 9261 } 9262 9263 ret = btrfs_create_new_inode(trans, &new_inode_args); 9264 9265 /* 9266 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9267 * set it to 1 because d_tmpfile() will issue a warning if the count is 9268 * 0, through: 9269 * 9270 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9271 */ 9272 set_nlink(inode, 1); 9273 9274 if (!ret) { 9275 d_tmpfile(file, inode); 9276 unlock_new_inode(inode); 9277 mark_inode_dirty(inode); 9278 } 9279 9280 btrfs_end_transaction(trans); 9281 btrfs_btree_balance_dirty(fs_info); 9282 out_new_inode_args: 9283 btrfs_new_inode_args_destroy(&new_inode_args); 9284 out_inode: 9285 if (ret) 9286 iput(inode); 9287 return finish_open_simple(file, ret); 9288 } 9289 9290 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9291 int compress_type) 9292 { 9293 switch (compress_type) { 9294 case BTRFS_COMPRESS_NONE: 9295 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9296 case BTRFS_COMPRESS_ZLIB: 9297 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9298 case BTRFS_COMPRESS_LZO: 9299 /* 9300 * The LZO format depends on the sector size. 64K is the maximum 9301 * sector size that we support. 9302 */ 9303 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9304 return -EINVAL; 9305 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9306 (fs_info->sectorsize_bits - 12); 9307 case BTRFS_COMPRESS_ZSTD: 9308 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9309 default: 9310 return -EUCLEAN; 9311 } 9312 } 9313 9314 static ssize_t btrfs_encoded_read_inline( 9315 struct kiocb *iocb, 9316 struct iov_iter *iter, u64 start, 9317 u64 lockend, 9318 struct extent_state **cached_state, 9319 u64 extent_start, size_t count, 9320 struct btrfs_ioctl_encoded_io_args *encoded, 9321 bool *unlocked) 9322 { 9323 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9324 struct btrfs_root *root = inode->root; 9325 struct btrfs_fs_info *fs_info = root->fs_info; 9326 struct extent_io_tree *io_tree = &inode->io_tree; 9327 BTRFS_PATH_AUTO_FREE(path); 9328 struct extent_buffer *leaf; 9329 struct btrfs_file_extent_item *item; 9330 u64 ram_bytes; 9331 unsigned long ptr; 9332 void *tmp; 9333 ssize_t ret; 9334 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9335 9336 path = btrfs_alloc_path(); 9337 if (!path) 9338 return -ENOMEM; 9339 9340 path->nowait = nowait; 9341 9342 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9343 extent_start, 0); 9344 if (ret) { 9345 if (unlikely(ret > 0)) { 9346 /* The extent item disappeared? */ 9347 return -EIO; 9348 } 9349 return ret; 9350 } 9351 leaf = path->nodes[0]; 9352 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9353 9354 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9355 ptr = btrfs_file_extent_inline_start(item); 9356 9357 encoded->len = min_t(u64, extent_start + ram_bytes, 9358 inode->vfs_inode.i_size) - iocb->ki_pos; 9359 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9360 btrfs_file_extent_compression(leaf, item)); 9361 if (ret < 0) 9362 return ret; 9363 encoded->compression = ret; 9364 if (encoded->compression) { 9365 size_t inline_size; 9366 9367 inline_size = btrfs_file_extent_inline_item_len(leaf, 9368 path->slots[0]); 9369 if (inline_size > count) 9370 return -ENOBUFS; 9371 9372 count = inline_size; 9373 encoded->unencoded_len = ram_bytes; 9374 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9375 } else { 9376 count = min_t(u64, count, encoded->len); 9377 encoded->len = count; 9378 encoded->unencoded_len = count; 9379 ptr += iocb->ki_pos - extent_start; 9380 } 9381 9382 tmp = kmalloc(count, GFP_NOFS); 9383 if (!tmp) 9384 return -ENOMEM; 9385 9386 read_extent_buffer(leaf, tmp, ptr, count); 9387 btrfs_release_path(path); 9388 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9389 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9390 *unlocked = true; 9391 9392 ret = copy_to_iter(tmp, count, iter); 9393 if (ret != count) 9394 ret = -EFAULT; 9395 kfree(tmp); 9396 9397 return ret; 9398 } 9399 9400 struct btrfs_encoded_read_private { 9401 struct completion *sync_reads; 9402 void *uring_ctx; 9403 refcount_t pending_refs; 9404 blk_status_t status; 9405 }; 9406 9407 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9408 { 9409 struct btrfs_encoded_read_private *priv = bbio->private; 9410 9411 if (bbio->bio.bi_status) { 9412 /* 9413 * The memory barrier implied by the refcount_dec_and_test() here 9414 * pairs with the memory barrier implied by the refcount_dec_and_test() 9415 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9416 * this write is observed before the load of status in 9417 * btrfs_encoded_read_regular_fill_pages(). 9418 */ 9419 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9420 } 9421 if (refcount_dec_and_test(&priv->pending_refs)) { 9422 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9423 9424 if (priv->uring_ctx) { 9425 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9426 kfree(priv); 9427 } else { 9428 complete(priv->sync_reads); 9429 } 9430 } 9431 bio_put(&bbio->bio); 9432 } 9433 9434 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9435 u64 disk_bytenr, u64 disk_io_size, 9436 struct page **pages, void *uring_ctx) 9437 { 9438 struct btrfs_encoded_read_private *priv, sync_priv; 9439 struct completion sync_reads; 9440 unsigned long i = 0; 9441 struct btrfs_bio *bbio; 9442 int ret; 9443 9444 /* 9445 * Fast path for synchronous reads which completes in this call, io_uring 9446 * needs longer time span. 9447 */ 9448 if (uring_ctx) { 9449 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9450 if (!priv) 9451 return -ENOMEM; 9452 } else { 9453 priv = &sync_priv; 9454 init_completion(&sync_reads); 9455 priv->sync_reads = &sync_reads; 9456 } 9457 9458 refcount_set(&priv->pending_refs, 1); 9459 priv->status = 0; 9460 priv->uring_ctx = uring_ctx; 9461 9462 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9463 btrfs_encoded_read_endio, priv); 9464 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9465 9466 do { 9467 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9468 9469 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9470 refcount_inc(&priv->pending_refs); 9471 btrfs_submit_bbio(bbio, 0); 9472 9473 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9474 btrfs_encoded_read_endio, priv); 9475 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9476 continue; 9477 } 9478 9479 i++; 9480 disk_bytenr += bytes; 9481 disk_io_size -= bytes; 9482 } while (disk_io_size); 9483 9484 refcount_inc(&priv->pending_refs); 9485 btrfs_submit_bbio(bbio, 0); 9486 9487 if (uring_ctx) { 9488 if (refcount_dec_and_test(&priv->pending_refs)) { 9489 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9490 btrfs_uring_read_extent_endio(uring_ctx, ret); 9491 kfree(priv); 9492 return ret; 9493 } 9494 9495 return -EIOCBQUEUED; 9496 } else { 9497 if (!refcount_dec_and_test(&priv->pending_refs)) 9498 wait_for_completion_io(&sync_reads); 9499 /* See btrfs_encoded_read_endio() for ordering. */ 9500 return blk_status_to_errno(READ_ONCE(priv->status)); 9501 } 9502 } 9503 9504 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9505 u64 start, u64 lockend, 9506 struct extent_state **cached_state, 9507 u64 disk_bytenr, u64 disk_io_size, 9508 size_t count, bool compressed, bool *unlocked) 9509 { 9510 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9511 struct extent_io_tree *io_tree = &inode->io_tree; 9512 struct page **pages; 9513 unsigned long nr_pages, i; 9514 u64 cur; 9515 size_t page_offset; 9516 ssize_t ret; 9517 9518 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9519 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9520 if (!pages) 9521 return -ENOMEM; 9522 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9523 if (ret) { 9524 ret = -ENOMEM; 9525 goto out; 9526 } 9527 9528 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9529 disk_io_size, pages, NULL); 9530 if (ret) 9531 goto out; 9532 9533 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9534 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9535 *unlocked = true; 9536 9537 if (compressed) { 9538 i = 0; 9539 page_offset = 0; 9540 } else { 9541 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9542 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9543 } 9544 cur = 0; 9545 while (cur < count) { 9546 size_t bytes = min_t(size_t, count - cur, 9547 PAGE_SIZE - page_offset); 9548 9549 if (copy_page_to_iter(pages[i], page_offset, bytes, 9550 iter) != bytes) { 9551 ret = -EFAULT; 9552 goto out; 9553 } 9554 i++; 9555 cur += bytes; 9556 page_offset = 0; 9557 } 9558 ret = count; 9559 out: 9560 for (i = 0; i < nr_pages; i++) { 9561 if (pages[i]) 9562 __free_page(pages[i]); 9563 } 9564 kfree(pages); 9565 return ret; 9566 } 9567 9568 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9569 struct btrfs_ioctl_encoded_io_args *encoded, 9570 struct extent_state **cached_state, 9571 u64 *disk_bytenr, u64 *disk_io_size) 9572 { 9573 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9574 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9575 struct extent_io_tree *io_tree = &inode->io_tree; 9576 ssize_t ret; 9577 size_t count = iov_iter_count(iter); 9578 u64 start, lockend; 9579 struct extent_map *em; 9580 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9581 bool unlocked = false; 9582 9583 file_accessed(iocb->ki_filp); 9584 9585 ret = btrfs_inode_lock(inode, 9586 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9587 if (ret) 9588 return ret; 9589 9590 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9591 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9592 return 0; 9593 } 9594 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9595 /* 9596 * We don't know how long the extent containing iocb->ki_pos is, but if 9597 * it's compressed we know that it won't be longer than this. 9598 */ 9599 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9600 9601 if (nowait) { 9602 struct btrfs_ordered_extent *ordered; 9603 9604 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9605 start, lockend)) { 9606 ret = -EAGAIN; 9607 goto out_unlock_inode; 9608 } 9609 9610 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9611 ret = -EAGAIN; 9612 goto out_unlock_inode; 9613 } 9614 9615 ordered = btrfs_lookup_ordered_range(inode, start, 9616 lockend - start + 1); 9617 if (ordered) { 9618 btrfs_put_ordered_extent(ordered); 9619 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9620 ret = -EAGAIN; 9621 goto out_unlock_inode; 9622 } 9623 } else { 9624 for (;;) { 9625 struct btrfs_ordered_extent *ordered; 9626 9627 ret = btrfs_wait_ordered_range(inode, start, 9628 lockend - start + 1); 9629 if (ret) 9630 goto out_unlock_inode; 9631 9632 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9633 ordered = btrfs_lookup_ordered_range(inode, start, 9634 lockend - start + 1); 9635 if (!ordered) 9636 break; 9637 btrfs_put_ordered_extent(ordered); 9638 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9639 cond_resched(); 9640 } 9641 } 9642 9643 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9644 if (IS_ERR(em)) { 9645 ret = PTR_ERR(em); 9646 goto out_unlock_extent; 9647 } 9648 9649 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9650 u64 extent_start = em->start; 9651 9652 /* 9653 * For inline extents we get everything we need out of the 9654 * extent item. 9655 */ 9656 btrfs_free_extent_map(em); 9657 em = NULL; 9658 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9659 cached_state, extent_start, 9660 count, encoded, &unlocked); 9661 goto out_unlock_extent; 9662 } 9663 9664 /* 9665 * We only want to return up to EOF even if the extent extends beyond 9666 * that. 9667 */ 9668 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9669 inode->vfs_inode.i_size) - iocb->ki_pos; 9670 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9671 (em->flags & EXTENT_FLAG_PREALLOC)) { 9672 *disk_bytenr = EXTENT_MAP_HOLE; 9673 count = min_t(u64, count, encoded->len); 9674 encoded->len = count; 9675 encoded->unencoded_len = count; 9676 } else if (btrfs_extent_map_is_compressed(em)) { 9677 *disk_bytenr = em->disk_bytenr; 9678 /* 9679 * Bail if the buffer isn't large enough to return the whole 9680 * compressed extent. 9681 */ 9682 if (em->disk_num_bytes > count) { 9683 ret = -ENOBUFS; 9684 goto out_em; 9685 } 9686 *disk_io_size = em->disk_num_bytes; 9687 count = em->disk_num_bytes; 9688 encoded->unencoded_len = em->ram_bytes; 9689 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9690 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9691 btrfs_extent_map_compression(em)); 9692 if (ret < 0) 9693 goto out_em; 9694 encoded->compression = ret; 9695 } else { 9696 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9697 if (encoded->len > count) 9698 encoded->len = count; 9699 /* 9700 * Don't read beyond what we locked. This also limits the page 9701 * allocations that we'll do. 9702 */ 9703 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9704 count = start + *disk_io_size - iocb->ki_pos; 9705 encoded->len = count; 9706 encoded->unencoded_len = count; 9707 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9708 } 9709 btrfs_free_extent_map(em); 9710 em = NULL; 9711 9712 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9713 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9714 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9715 unlocked = true; 9716 ret = iov_iter_zero(count, iter); 9717 if (ret != count) 9718 ret = -EFAULT; 9719 } else { 9720 ret = -EIOCBQUEUED; 9721 goto out_unlock_extent; 9722 } 9723 9724 out_em: 9725 btrfs_free_extent_map(em); 9726 out_unlock_extent: 9727 /* Leave inode and extent locked if we need to do a read. */ 9728 if (!unlocked && ret != -EIOCBQUEUED) 9729 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9730 out_unlock_inode: 9731 if (!unlocked && ret != -EIOCBQUEUED) 9732 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9733 return ret; 9734 } 9735 9736 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9737 const struct btrfs_ioctl_encoded_io_args *encoded) 9738 { 9739 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9740 struct btrfs_root *root = inode->root; 9741 struct btrfs_fs_info *fs_info = root->fs_info; 9742 struct extent_io_tree *io_tree = &inode->io_tree; 9743 struct extent_changeset *data_reserved = NULL; 9744 struct extent_state *cached_state = NULL; 9745 struct btrfs_ordered_extent *ordered; 9746 struct btrfs_file_extent file_extent; 9747 int compression; 9748 size_t orig_count; 9749 u64 start, end; 9750 u64 num_bytes, ram_bytes, disk_num_bytes; 9751 unsigned long nr_folios, i; 9752 struct folio **folios; 9753 struct btrfs_key ins; 9754 bool extent_reserved = false; 9755 struct extent_map *em; 9756 ssize_t ret; 9757 9758 switch (encoded->compression) { 9759 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9760 compression = BTRFS_COMPRESS_ZLIB; 9761 break; 9762 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9763 compression = BTRFS_COMPRESS_ZSTD; 9764 break; 9765 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9766 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9767 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9768 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9769 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9770 /* The sector size must match for LZO. */ 9771 if (encoded->compression - 9772 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9773 fs_info->sectorsize_bits) 9774 return -EINVAL; 9775 compression = BTRFS_COMPRESS_LZO; 9776 break; 9777 default: 9778 return -EINVAL; 9779 } 9780 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9781 return -EINVAL; 9782 9783 /* 9784 * Compressed extents should always have checksums, so error out if we 9785 * have a NOCOW file or inode was created while mounted with NODATASUM. 9786 */ 9787 if (inode->flags & BTRFS_INODE_NODATASUM) 9788 return -EINVAL; 9789 9790 orig_count = iov_iter_count(from); 9791 9792 /* The extent size must be sane. */ 9793 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9794 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9795 return -EINVAL; 9796 9797 /* 9798 * The compressed data must be smaller than the decompressed data. 9799 * 9800 * It's of course possible for data to compress to larger or the same 9801 * size, but the buffered I/O path falls back to no compression for such 9802 * data, and we don't want to break any assumptions by creating these 9803 * extents. 9804 * 9805 * Note that this is less strict than the current check we have that the 9806 * compressed data must be at least one sector smaller than the 9807 * decompressed data. We only want to enforce the weaker requirement 9808 * from old kernels that it is at least one byte smaller. 9809 */ 9810 if (orig_count >= encoded->unencoded_len) 9811 return -EINVAL; 9812 9813 /* The extent must start on a sector boundary. */ 9814 start = iocb->ki_pos; 9815 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9816 return -EINVAL; 9817 9818 /* 9819 * The extent must end on a sector boundary. However, we allow a write 9820 * which ends at or extends i_size to have an unaligned length; we round 9821 * up the extent size and set i_size to the unaligned end. 9822 */ 9823 if (start + encoded->len < inode->vfs_inode.i_size && 9824 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9825 return -EINVAL; 9826 9827 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9828 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9829 return -EINVAL; 9830 9831 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9832 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9833 end = start + num_bytes - 1; 9834 9835 /* 9836 * If the extent cannot be inline, the compressed data on disk must be 9837 * sector-aligned. For convenience, we extend it with zeroes if it 9838 * isn't. 9839 */ 9840 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9841 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9842 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9843 if (!folios) 9844 return -ENOMEM; 9845 for (i = 0; i < nr_folios; i++) { 9846 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9847 char *kaddr; 9848 9849 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9850 if (!folios[i]) { 9851 ret = -ENOMEM; 9852 goto out_folios; 9853 } 9854 kaddr = kmap_local_folio(folios[i], 0); 9855 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9856 kunmap_local(kaddr); 9857 ret = -EFAULT; 9858 goto out_folios; 9859 } 9860 if (bytes < PAGE_SIZE) 9861 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9862 kunmap_local(kaddr); 9863 } 9864 9865 for (;;) { 9866 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9867 if (ret) 9868 goto out_folios; 9869 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9870 start >> PAGE_SHIFT, 9871 end >> PAGE_SHIFT); 9872 if (ret) 9873 goto out_folios; 9874 btrfs_lock_extent(io_tree, start, end, &cached_state); 9875 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9876 if (!ordered && 9877 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9878 break; 9879 if (ordered) 9880 btrfs_put_ordered_extent(ordered); 9881 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9882 cond_resched(); 9883 } 9884 9885 /* 9886 * We don't use the higher-level delalloc space functions because our 9887 * num_bytes and disk_num_bytes are different. 9888 */ 9889 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9890 if (ret) 9891 goto out_unlock; 9892 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9893 if (ret) 9894 goto out_free_data_space; 9895 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9896 false); 9897 if (ret) 9898 goto out_qgroup_free_data; 9899 9900 /* Try an inline extent first. */ 9901 if (encoded->unencoded_len == encoded->len && 9902 encoded->unencoded_offset == 0 && 9903 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9904 ret = __cow_file_range_inline(inode, encoded->len, 9905 orig_count, compression, folios[0], 9906 true); 9907 if (ret <= 0) { 9908 if (ret == 0) 9909 ret = orig_count; 9910 goto out_delalloc_release; 9911 } 9912 } 9913 9914 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9915 disk_num_bytes, 0, 0, &ins, true, true); 9916 if (ret) 9917 goto out_delalloc_release; 9918 extent_reserved = true; 9919 9920 file_extent.disk_bytenr = ins.objectid; 9921 file_extent.disk_num_bytes = ins.offset; 9922 file_extent.num_bytes = num_bytes; 9923 file_extent.ram_bytes = ram_bytes; 9924 file_extent.offset = encoded->unencoded_offset; 9925 file_extent.compression = compression; 9926 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9927 if (IS_ERR(em)) { 9928 ret = PTR_ERR(em); 9929 goto out_free_reserved; 9930 } 9931 btrfs_free_extent_map(em); 9932 9933 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9934 (1U << BTRFS_ORDERED_ENCODED) | 9935 (1U << BTRFS_ORDERED_COMPRESSED)); 9936 if (IS_ERR(ordered)) { 9937 btrfs_drop_extent_map_range(inode, start, end, false); 9938 ret = PTR_ERR(ordered); 9939 goto out_free_reserved; 9940 } 9941 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9942 9943 if (start + encoded->len > inode->vfs_inode.i_size) 9944 i_size_write(&inode->vfs_inode, start + encoded->len); 9945 9946 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9947 9948 btrfs_delalloc_release_extents(inode, num_bytes); 9949 9950 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9951 ret = orig_count; 9952 goto out; 9953 9954 out_free_reserved: 9955 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9956 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9957 out_delalloc_release: 9958 btrfs_delalloc_release_extents(inode, num_bytes); 9959 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9960 out_qgroup_free_data: 9961 if (ret < 0) 9962 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9963 out_free_data_space: 9964 /* 9965 * If btrfs_reserve_extent() succeeded, then we already decremented 9966 * bytes_may_use. 9967 */ 9968 if (!extent_reserved) 9969 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9970 out_unlock: 9971 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9972 out_folios: 9973 for (i = 0; i < nr_folios; i++) { 9974 if (folios[i]) 9975 folio_put(folios[i]); 9976 } 9977 kvfree(folios); 9978 out: 9979 if (ret >= 0) 9980 iocb->ki_pos += encoded->len; 9981 return ret; 9982 } 9983 9984 #ifdef CONFIG_SWAP 9985 /* 9986 * Add an entry indicating a block group or device which is pinned by a 9987 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9988 * negative errno on failure. 9989 */ 9990 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9991 bool is_block_group) 9992 { 9993 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9994 struct btrfs_swapfile_pin *sp, *entry; 9995 struct rb_node **p; 9996 struct rb_node *parent = NULL; 9997 9998 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9999 if (!sp) 10000 return -ENOMEM; 10001 sp->ptr = ptr; 10002 sp->inode = inode; 10003 sp->is_block_group = is_block_group; 10004 sp->bg_extent_count = 1; 10005 10006 spin_lock(&fs_info->swapfile_pins_lock); 10007 p = &fs_info->swapfile_pins.rb_node; 10008 while (*p) { 10009 parent = *p; 10010 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10011 if (sp->ptr < entry->ptr || 10012 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10013 p = &(*p)->rb_left; 10014 } else if (sp->ptr > entry->ptr || 10015 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10016 p = &(*p)->rb_right; 10017 } else { 10018 if (is_block_group) 10019 entry->bg_extent_count++; 10020 spin_unlock(&fs_info->swapfile_pins_lock); 10021 kfree(sp); 10022 return 1; 10023 } 10024 } 10025 rb_link_node(&sp->node, parent, p); 10026 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10027 spin_unlock(&fs_info->swapfile_pins_lock); 10028 return 0; 10029 } 10030 10031 /* Free all of the entries pinned by this swapfile. */ 10032 static void btrfs_free_swapfile_pins(struct inode *inode) 10033 { 10034 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10035 struct btrfs_swapfile_pin *sp; 10036 struct rb_node *node, *next; 10037 10038 spin_lock(&fs_info->swapfile_pins_lock); 10039 node = rb_first(&fs_info->swapfile_pins); 10040 while (node) { 10041 next = rb_next(node); 10042 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10043 if (sp->inode == inode) { 10044 rb_erase(&sp->node, &fs_info->swapfile_pins); 10045 if (sp->is_block_group) { 10046 btrfs_dec_block_group_swap_extents(sp->ptr, 10047 sp->bg_extent_count); 10048 btrfs_put_block_group(sp->ptr); 10049 } 10050 kfree(sp); 10051 } 10052 node = next; 10053 } 10054 spin_unlock(&fs_info->swapfile_pins_lock); 10055 } 10056 10057 struct btrfs_swap_info { 10058 u64 start; 10059 u64 block_start; 10060 u64 block_len; 10061 u64 lowest_ppage; 10062 u64 highest_ppage; 10063 unsigned long nr_pages; 10064 int nr_extents; 10065 }; 10066 10067 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10068 struct btrfs_swap_info *bsi) 10069 { 10070 unsigned long nr_pages; 10071 unsigned long max_pages; 10072 u64 first_ppage, first_ppage_reported, next_ppage; 10073 int ret; 10074 10075 /* 10076 * Our swapfile may have had its size extended after the swap header was 10077 * written. In that case activating the swapfile should not go beyond 10078 * the max size set in the swap header. 10079 */ 10080 if (bsi->nr_pages >= sis->max) 10081 return 0; 10082 10083 max_pages = sis->max - bsi->nr_pages; 10084 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10085 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10086 10087 if (first_ppage >= next_ppage) 10088 return 0; 10089 nr_pages = next_ppage - first_ppage; 10090 nr_pages = min(nr_pages, max_pages); 10091 10092 first_ppage_reported = first_ppage; 10093 if (bsi->start == 0) 10094 first_ppage_reported++; 10095 if (bsi->lowest_ppage > first_ppage_reported) 10096 bsi->lowest_ppage = first_ppage_reported; 10097 if (bsi->highest_ppage < (next_ppage - 1)) 10098 bsi->highest_ppage = next_ppage - 1; 10099 10100 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10101 if (ret < 0) 10102 return ret; 10103 bsi->nr_extents += ret; 10104 bsi->nr_pages += nr_pages; 10105 return 0; 10106 } 10107 10108 static void btrfs_swap_deactivate(struct file *file) 10109 { 10110 struct inode *inode = file_inode(file); 10111 10112 btrfs_free_swapfile_pins(inode); 10113 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10114 } 10115 10116 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10117 sector_t *span) 10118 { 10119 struct inode *inode = file_inode(file); 10120 struct btrfs_root *root = BTRFS_I(inode)->root; 10121 struct btrfs_fs_info *fs_info = root->fs_info; 10122 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10123 struct extent_state *cached_state = NULL; 10124 struct btrfs_chunk_map *map = NULL; 10125 struct btrfs_device *device = NULL; 10126 struct btrfs_swap_info bsi = { 10127 .lowest_ppage = (sector_t)-1ULL, 10128 }; 10129 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10130 struct btrfs_path *path = NULL; 10131 int ret = 0; 10132 u64 isize; 10133 u64 prev_extent_end = 0; 10134 10135 /* 10136 * Acquire the inode's mmap lock to prevent races with memory mapped 10137 * writes, as they could happen after we flush delalloc below and before 10138 * we lock the extent range further below. The inode was already locked 10139 * up in the call chain. 10140 */ 10141 btrfs_assert_inode_locked(BTRFS_I(inode)); 10142 down_write(&BTRFS_I(inode)->i_mmap_lock); 10143 10144 /* 10145 * If the swap file was just created, make sure delalloc is done. If the 10146 * file changes again after this, the user is doing something stupid and 10147 * we don't really care. 10148 */ 10149 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10150 if (ret) 10151 goto out_unlock_mmap; 10152 10153 /* 10154 * The inode is locked, so these flags won't change after we check them. 10155 */ 10156 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10157 btrfs_warn(fs_info, "swapfile must not be compressed"); 10158 ret = -EINVAL; 10159 goto out_unlock_mmap; 10160 } 10161 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10162 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10163 ret = -EINVAL; 10164 goto out_unlock_mmap; 10165 } 10166 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10167 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10168 ret = -EINVAL; 10169 goto out_unlock_mmap; 10170 } 10171 10172 path = btrfs_alloc_path(); 10173 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10174 if (!path || !backref_ctx) { 10175 ret = -ENOMEM; 10176 goto out_unlock_mmap; 10177 } 10178 10179 /* 10180 * Balance or device remove/replace/resize can move stuff around from 10181 * under us. The exclop protection makes sure they aren't running/won't 10182 * run concurrently while we are mapping the swap extents, and 10183 * fs_info->swapfile_pins prevents them from running while the swap 10184 * file is active and moving the extents. Note that this also prevents 10185 * a concurrent device add which isn't actually necessary, but it's not 10186 * really worth the trouble to allow it. 10187 */ 10188 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10189 btrfs_warn(fs_info, 10190 "cannot activate swapfile while exclusive operation is running"); 10191 ret = -EBUSY; 10192 goto out_unlock_mmap; 10193 } 10194 10195 /* 10196 * Prevent snapshot creation while we are activating the swap file. 10197 * We do not want to race with snapshot creation. If snapshot creation 10198 * already started before we bumped nr_swapfiles from 0 to 1 and 10199 * completes before the first write into the swap file after it is 10200 * activated, than that write would fallback to COW. 10201 */ 10202 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10203 btrfs_exclop_finish(fs_info); 10204 btrfs_warn(fs_info, 10205 "cannot activate swapfile because snapshot creation is in progress"); 10206 ret = -EINVAL; 10207 goto out_unlock_mmap; 10208 } 10209 /* 10210 * Snapshots can create extents which require COW even if NODATACOW is 10211 * set. We use this counter to prevent snapshots. We must increment it 10212 * before walking the extents because we don't want a concurrent 10213 * snapshot to run after we've already checked the extents. 10214 * 10215 * It is possible that subvolume is marked for deletion but still not 10216 * removed yet. To prevent this race, we check the root status before 10217 * activating the swapfile. 10218 */ 10219 spin_lock(&root->root_item_lock); 10220 if (btrfs_root_dead(root)) { 10221 spin_unlock(&root->root_item_lock); 10222 10223 btrfs_drew_write_unlock(&root->snapshot_lock); 10224 btrfs_exclop_finish(fs_info); 10225 btrfs_warn(fs_info, 10226 "cannot activate swapfile because subvolume %llu is being deleted", 10227 btrfs_root_id(root)); 10228 ret = -EPERM; 10229 goto out_unlock_mmap; 10230 } 10231 atomic_inc(&root->nr_swapfiles); 10232 spin_unlock(&root->root_item_lock); 10233 10234 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10235 10236 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10237 while (prev_extent_end < isize) { 10238 struct btrfs_key key; 10239 struct extent_buffer *leaf; 10240 struct btrfs_file_extent_item *ei; 10241 struct btrfs_block_group *bg; 10242 u64 logical_block_start; 10243 u64 physical_block_start; 10244 u64 extent_gen; 10245 u64 disk_bytenr; 10246 u64 len; 10247 10248 key.objectid = btrfs_ino(BTRFS_I(inode)); 10249 key.type = BTRFS_EXTENT_DATA_KEY; 10250 key.offset = prev_extent_end; 10251 10252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10253 if (ret < 0) 10254 goto out; 10255 10256 /* 10257 * If key not found it means we have an implicit hole (NO_HOLES 10258 * is enabled). 10259 */ 10260 if (ret > 0) { 10261 btrfs_warn(fs_info, "swapfile must not have holes"); 10262 ret = -EINVAL; 10263 goto out; 10264 } 10265 10266 leaf = path->nodes[0]; 10267 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10268 10269 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10270 /* 10271 * It's unlikely we'll ever actually find ourselves 10272 * here, as a file small enough to fit inline won't be 10273 * big enough to store more than the swap header, but in 10274 * case something changes in the future, let's catch it 10275 * here rather than later. 10276 */ 10277 btrfs_warn(fs_info, "swapfile must not be inline"); 10278 ret = -EINVAL; 10279 goto out; 10280 } 10281 10282 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10283 btrfs_warn(fs_info, "swapfile must not be compressed"); 10284 ret = -EINVAL; 10285 goto out; 10286 } 10287 10288 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10289 if (disk_bytenr == 0) { 10290 btrfs_warn(fs_info, "swapfile must not have holes"); 10291 ret = -EINVAL; 10292 goto out; 10293 } 10294 10295 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10296 extent_gen = btrfs_file_extent_generation(leaf, ei); 10297 prev_extent_end = btrfs_file_extent_end(path); 10298 10299 if (prev_extent_end > isize) 10300 len = isize - key.offset; 10301 else 10302 len = btrfs_file_extent_num_bytes(leaf, ei); 10303 10304 backref_ctx->curr_leaf_bytenr = leaf->start; 10305 10306 /* 10307 * Don't need the path anymore, release to avoid deadlocks when 10308 * calling btrfs_is_data_extent_shared() because when joining a 10309 * transaction it can block waiting for the current one's commit 10310 * which in turn may be trying to lock the same leaf to flush 10311 * delayed items for example. 10312 */ 10313 btrfs_release_path(path); 10314 10315 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10316 extent_gen, backref_ctx); 10317 if (ret < 0) { 10318 goto out; 10319 } else if (ret > 0) { 10320 btrfs_warn(fs_info, 10321 "swapfile must not be copy-on-write"); 10322 ret = -EINVAL; 10323 goto out; 10324 } 10325 10326 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10327 if (IS_ERR(map)) { 10328 ret = PTR_ERR(map); 10329 goto out; 10330 } 10331 10332 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10333 btrfs_warn(fs_info, 10334 "swapfile must have single data profile"); 10335 ret = -EINVAL; 10336 goto out; 10337 } 10338 10339 if (device == NULL) { 10340 device = map->stripes[0].dev; 10341 ret = btrfs_add_swapfile_pin(inode, device, false); 10342 if (ret == 1) 10343 ret = 0; 10344 else if (ret) 10345 goto out; 10346 } else if (device != map->stripes[0].dev) { 10347 btrfs_warn(fs_info, "swapfile must be on one device"); 10348 ret = -EINVAL; 10349 goto out; 10350 } 10351 10352 physical_block_start = (map->stripes[0].physical + 10353 (logical_block_start - map->start)); 10354 btrfs_free_chunk_map(map); 10355 map = NULL; 10356 10357 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10358 if (!bg) { 10359 btrfs_warn(fs_info, 10360 "could not find block group containing swapfile"); 10361 ret = -EINVAL; 10362 goto out; 10363 } 10364 10365 if (!btrfs_inc_block_group_swap_extents(bg)) { 10366 btrfs_warn(fs_info, 10367 "block group for swapfile at %llu is read-only%s", 10368 bg->start, 10369 atomic_read(&fs_info->scrubs_running) ? 10370 " (scrub running)" : ""); 10371 btrfs_put_block_group(bg); 10372 ret = -EINVAL; 10373 goto out; 10374 } 10375 10376 ret = btrfs_add_swapfile_pin(inode, bg, true); 10377 if (ret) { 10378 btrfs_put_block_group(bg); 10379 if (ret == 1) 10380 ret = 0; 10381 else 10382 goto out; 10383 } 10384 10385 if (bsi.block_len && 10386 bsi.block_start + bsi.block_len == physical_block_start) { 10387 bsi.block_len += len; 10388 } else { 10389 if (bsi.block_len) { 10390 ret = btrfs_add_swap_extent(sis, &bsi); 10391 if (ret) 10392 goto out; 10393 } 10394 bsi.start = key.offset; 10395 bsi.block_start = physical_block_start; 10396 bsi.block_len = len; 10397 } 10398 10399 if (fatal_signal_pending(current)) { 10400 ret = -EINTR; 10401 goto out; 10402 } 10403 10404 cond_resched(); 10405 } 10406 10407 if (bsi.block_len) 10408 ret = btrfs_add_swap_extent(sis, &bsi); 10409 10410 out: 10411 if (!IS_ERR_OR_NULL(map)) 10412 btrfs_free_chunk_map(map); 10413 10414 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10415 10416 if (ret) 10417 btrfs_swap_deactivate(file); 10418 10419 btrfs_drew_write_unlock(&root->snapshot_lock); 10420 10421 btrfs_exclop_finish(fs_info); 10422 10423 out_unlock_mmap: 10424 up_write(&BTRFS_I(inode)->i_mmap_lock); 10425 btrfs_free_backref_share_ctx(backref_ctx); 10426 btrfs_free_path(path); 10427 if (ret) 10428 return ret; 10429 10430 if (device) 10431 sis->bdev = device->bdev; 10432 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10433 sis->max = bsi.nr_pages; 10434 sis->pages = bsi.nr_pages - 1; 10435 return bsi.nr_extents; 10436 } 10437 #else 10438 static void btrfs_swap_deactivate(struct file *file) 10439 { 10440 } 10441 10442 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10443 sector_t *span) 10444 { 10445 return -EOPNOTSUPP; 10446 } 10447 #endif 10448 10449 /* 10450 * Update the number of bytes used in the VFS' inode. When we replace extents in 10451 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10452 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10453 * always get a correct value. 10454 */ 10455 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10456 const u64 add_bytes, 10457 const u64 del_bytes) 10458 { 10459 if (add_bytes == del_bytes) 10460 return; 10461 10462 spin_lock(&inode->lock); 10463 if (del_bytes > 0) 10464 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10465 if (add_bytes > 0) 10466 inode_add_bytes(&inode->vfs_inode, add_bytes); 10467 spin_unlock(&inode->lock); 10468 } 10469 10470 /* 10471 * Verify that there are no ordered extents for a given file range. 10472 * 10473 * @inode: The target inode. 10474 * @start: Start offset of the file range, should be sector size aligned. 10475 * @end: End offset (inclusive) of the file range, its value +1 should be 10476 * sector size aligned. 10477 * 10478 * This should typically be used for cases where we locked an inode's VFS lock in 10479 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10480 * we have flushed all delalloc in the range, we have waited for all ordered 10481 * extents in the range to complete and finally we have locked the file range in 10482 * the inode's io_tree. 10483 */ 10484 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10485 { 10486 struct btrfs_root *root = inode->root; 10487 struct btrfs_ordered_extent *ordered; 10488 10489 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10490 return; 10491 10492 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10493 if (ordered) { 10494 btrfs_err(root->fs_info, 10495 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10496 start, end, btrfs_ino(inode), btrfs_root_id(root), 10497 ordered->file_offset, 10498 ordered->file_offset + ordered->num_bytes - 1); 10499 btrfs_put_ordered_extent(ordered); 10500 } 10501 10502 ASSERT(ordered == NULL); 10503 } 10504 10505 /* 10506 * Find the first inode with a minimum number. 10507 * 10508 * @root: The root to search for. 10509 * @min_ino: The minimum inode number. 10510 * 10511 * Find the first inode in the @root with a number >= @min_ino and return it. 10512 * Returns NULL if no such inode found. 10513 */ 10514 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10515 { 10516 struct btrfs_inode *inode; 10517 unsigned long from = min_ino; 10518 10519 xa_lock(&root->inodes); 10520 while (true) { 10521 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10522 if (!inode) 10523 break; 10524 if (igrab(&inode->vfs_inode)) 10525 break; 10526 10527 from = btrfs_ino(inode) + 1; 10528 cond_resched_lock(&root->inodes.xa_lock); 10529 } 10530 xa_unlock(&root->inodes); 10531 10532 return inode; 10533 } 10534 10535 static const struct inode_operations btrfs_dir_inode_operations = { 10536 .getattr = btrfs_getattr, 10537 .lookup = btrfs_lookup, 10538 .create = btrfs_create, 10539 .unlink = btrfs_unlink, 10540 .link = btrfs_link, 10541 .mkdir = btrfs_mkdir, 10542 .rmdir = btrfs_rmdir, 10543 .rename = btrfs_rename2, 10544 .symlink = btrfs_symlink, 10545 .setattr = btrfs_setattr, 10546 .mknod = btrfs_mknod, 10547 .listxattr = btrfs_listxattr, 10548 .permission = btrfs_permission, 10549 .get_inode_acl = btrfs_get_acl, 10550 .set_acl = btrfs_set_acl, 10551 .update_time = btrfs_update_time, 10552 .tmpfile = btrfs_tmpfile, 10553 .fileattr_get = btrfs_fileattr_get, 10554 .fileattr_set = btrfs_fileattr_set, 10555 }; 10556 10557 static const struct file_operations btrfs_dir_file_operations = { 10558 .llseek = btrfs_dir_llseek, 10559 .read = generic_read_dir, 10560 .iterate_shared = btrfs_real_readdir, 10561 .open = btrfs_opendir, 10562 .unlocked_ioctl = btrfs_ioctl, 10563 #ifdef CONFIG_COMPAT 10564 .compat_ioctl = btrfs_compat_ioctl, 10565 #endif 10566 .release = btrfs_release_file, 10567 .fsync = btrfs_sync_file, 10568 }; 10569 10570 /* 10571 * btrfs doesn't support the bmap operation because swapfiles 10572 * use bmap to make a mapping of extents in the file. They assume 10573 * these extents won't change over the life of the file and they 10574 * use the bmap result to do IO directly to the drive. 10575 * 10576 * the btrfs bmap call would return logical addresses that aren't 10577 * suitable for IO and they also will change frequently as COW 10578 * operations happen. So, swapfile + btrfs == corruption. 10579 * 10580 * For now we're avoiding this by dropping bmap. 10581 */ 10582 static const struct address_space_operations btrfs_aops = { 10583 .read_folio = btrfs_read_folio, 10584 .writepages = btrfs_writepages, 10585 .readahead = btrfs_readahead, 10586 .invalidate_folio = btrfs_invalidate_folio, 10587 .launder_folio = btrfs_launder_folio, 10588 .release_folio = btrfs_release_folio, 10589 .migrate_folio = btrfs_migrate_folio, 10590 .dirty_folio = filemap_dirty_folio, 10591 .error_remove_folio = generic_error_remove_folio, 10592 .swap_activate = btrfs_swap_activate, 10593 .swap_deactivate = btrfs_swap_deactivate, 10594 }; 10595 10596 static const struct inode_operations btrfs_file_inode_operations = { 10597 .getattr = btrfs_getattr, 10598 .setattr = btrfs_setattr, 10599 .listxattr = btrfs_listxattr, 10600 .permission = btrfs_permission, 10601 .fiemap = btrfs_fiemap, 10602 .get_inode_acl = btrfs_get_acl, 10603 .set_acl = btrfs_set_acl, 10604 .update_time = btrfs_update_time, 10605 .fileattr_get = btrfs_fileattr_get, 10606 .fileattr_set = btrfs_fileattr_set, 10607 }; 10608 static const struct inode_operations btrfs_special_inode_operations = { 10609 .getattr = btrfs_getattr, 10610 .setattr = btrfs_setattr, 10611 .permission = btrfs_permission, 10612 .listxattr = btrfs_listxattr, 10613 .get_inode_acl = btrfs_get_acl, 10614 .set_acl = btrfs_set_acl, 10615 .update_time = btrfs_update_time, 10616 }; 10617 static const struct inode_operations btrfs_symlink_inode_operations = { 10618 .get_link = page_get_link, 10619 .getattr = btrfs_getattr, 10620 .setattr = btrfs_setattr, 10621 .permission = btrfs_permission, 10622 .listxattr = btrfs_listxattr, 10623 .update_time = btrfs_update_time, 10624 }; 10625 10626 const struct dentry_operations btrfs_dentry_operations = { 10627 .d_delete = btrfs_dentry_delete, 10628 }; 10629