xref: /linux/fs/btrfs/inode.c (revision ba7d4f36a2ec7d6f8d9e5c6cabbc57469dd4dc22)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
37 #include "xattr.h"
38 #include "tree-log.h"
39 #include "volumes.h"
40 #include "compression.h"
41 #include "locking.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
44 #include "backref.h"
45 #include "props.h"
46 #include "qgroup.h"
47 #include "dedupe.h"
48 
49 struct btrfs_iget_args {
50 	struct btrfs_key *location;
51 	struct btrfs_root *root;
52 };
53 
54 struct btrfs_dio_data {
55 	u64 reserve;
56 	u64 unsubmitted_oe_range_start;
57 	u64 unsubmitted_oe_range_end;
58 	int overwrite;
59 };
60 
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static const struct extent_io_ops btrfs_extent_io_ops;
69 
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 struct kmem_cache *btrfs_free_space_cachep;
74 
75 #define S_SHIFT 12
76 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
77 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
78 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
79 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
80 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
81 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
82 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
83 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
84 };
85 
86 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
87 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
88 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
89 static noinline int cow_file_range(struct inode *inode,
90 				   struct page *locked_page,
91 				   u64 start, u64 end, u64 delalloc_end,
92 				   int *page_started, unsigned long *nr_written,
93 				   int unlock, struct btrfs_dedupe_hash *hash);
94 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
95 				       u64 orig_start, u64 block_start,
96 				       u64 block_len, u64 orig_block_len,
97 				       u64 ram_bytes, int compress_type,
98 				       int type);
99 
100 static void __endio_write_update_ordered(struct inode *inode,
101 					 const u64 offset, const u64 bytes,
102 					 const bool uptodate);
103 
104 /*
105  * Cleanup all submitted ordered extents in specified range to handle errors
106  * from the fill_dellaloc() callback.
107  *
108  * NOTE: caller must ensure that when an error happens, it can not call
109  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
110  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
111  * to be released, which we want to happen only when finishing the ordered
112  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
113  * fill_delalloc() callback already does proper cleanup for the first page of
114  * the range, that is, it invokes the callback writepage_end_io_hook() for the
115  * range of the first page.
116  */
117 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
118 						 const u64 offset,
119 						 const u64 bytes)
120 {
121 	unsigned long index = offset >> PAGE_SHIFT;
122 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
123 	struct page *page;
124 
125 	while (index <= end_index) {
126 		page = find_get_page(inode->i_mapping, index);
127 		index++;
128 		if (!page)
129 			continue;
130 		ClearPagePrivate2(page);
131 		put_page(page);
132 	}
133 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
134 					    bytes - PAGE_SIZE, false);
135 }
136 
137 static int btrfs_dirty_inode(struct inode *inode);
138 
139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
140 void btrfs_test_inode_set_ops(struct inode *inode)
141 {
142 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
143 }
144 #endif
145 
146 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
147 				     struct inode *inode,  struct inode *dir,
148 				     const struct qstr *qstr)
149 {
150 	int err;
151 
152 	err = btrfs_init_acl(trans, inode, dir);
153 	if (!err)
154 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
155 	return err;
156 }
157 
158 /*
159  * this does all the hard work for inserting an inline extent into
160  * the btree.  The caller should have done a btrfs_drop_extents so that
161  * no overlapping inline items exist in the btree
162  */
163 static int insert_inline_extent(struct btrfs_trans_handle *trans,
164 				struct btrfs_path *path, int extent_inserted,
165 				struct btrfs_root *root, struct inode *inode,
166 				u64 start, size_t size, size_t compressed_size,
167 				int compress_type,
168 				struct page **compressed_pages)
169 {
170 	struct extent_buffer *leaf;
171 	struct page *page = NULL;
172 	char *kaddr;
173 	unsigned long ptr;
174 	struct btrfs_file_extent_item *ei;
175 	int ret;
176 	size_t cur_size = size;
177 	unsigned long offset;
178 
179 	if (compressed_size && compressed_pages)
180 		cur_size = compressed_size;
181 
182 	inode_add_bytes(inode, size);
183 
184 	if (!extent_inserted) {
185 		struct btrfs_key key;
186 		size_t datasize;
187 
188 		key.objectid = btrfs_ino(BTRFS_I(inode));
189 		key.offset = start;
190 		key.type = BTRFS_EXTENT_DATA_KEY;
191 
192 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
193 		path->leave_spinning = 1;
194 		ret = btrfs_insert_empty_item(trans, root, path, &key,
195 					      datasize);
196 		if (ret)
197 			goto fail;
198 	}
199 	leaf = path->nodes[0];
200 	ei = btrfs_item_ptr(leaf, path->slots[0],
201 			    struct btrfs_file_extent_item);
202 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
203 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
204 	btrfs_set_file_extent_encryption(leaf, ei, 0);
205 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
206 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
207 	ptr = btrfs_file_extent_inline_start(ei);
208 
209 	if (compress_type != BTRFS_COMPRESS_NONE) {
210 		struct page *cpage;
211 		int i = 0;
212 		while (compressed_size > 0) {
213 			cpage = compressed_pages[i];
214 			cur_size = min_t(unsigned long, compressed_size,
215 				       PAGE_SIZE);
216 
217 			kaddr = kmap_atomic(cpage);
218 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
219 			kunmap_atomic(kaddr);
220 
221 			i++;
222 			ptr += cur_size;
223 			compressed_size -= cur_size;
224 		}
225 		btrfs_set_file_extent_compression(leaf, ei,
226 						  compress_type);
227 	} else {
228 		page = find_get_page(inode->i_mapping,
229 				     start >> PAGE_SHIFT);
230 		btrfs_set_file_extent_compression(leaf, ei, 0);
231 		kaddr = kmap_atomic(page);
232 		offset = start & (PAGE_SIZE - 1);
233 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
234 		kunmap_atomic(kaddr);
235 		put_page(page);
236 	}
237 	btrfs_mark_buffer_dirty(leaf);
238 	btrfs_release_path(path);
239 
240 	/*
241 	 * we're an inline extent, so nobody can
242 	 * extend the file past i_size without locking
243 	 * a page we already have locked.
244 	 *
245 	 * We must do any isize and inode updates
246 	 * before we unlock the pages.  Otherwise we
247 	 * could end up racing with unlink.
248 	 */
249 	BTRFS_I(inode)->disk_i_size = inode->i_size;
250 	ret = btrfs_update_inode(trans, root, inode);
251 
252 fail:
253 	return ret;
254 }
255 
256 
257 /*
258  * conditionally insert an inline extent into the file.  This
259  * does the checks required to make sure the data is small enough
260  * to fit as an inline extent.
261  */
262 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
263 					  u64 end, size_t compressed_size,
264 					  int compress_type,
265 					  struct page **compressed_pages)
266 {
267 	struct btrfs_root *root = BTRFS_I(inode)->root;
268 	struct btrfs_fs_info *fs_info = root->fs_info;
269 	struct btrfs_trans_handle *trans;
270 	u64 isize = i_size_read(inode);
271 	u64 actual_end = min(end + 1, isize);
272 	u64 inline_len = actual_end - start;
273 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
274 	u64 data_len = inline_len;
275 	int ret;
276 	struct btrfs_path *path;
277 	int extent_inserted = 0;
278 	u32 extent_item_size;
279 
280 	if (compressed_size)
281 		data_len = compressed_size;
282 
283 	if (start > 0 ||
284 	    actual_end > fs_info->sectorsize ||
285 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
286 	    (!compressed_size &&
287 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
288 	    end + 1 < isize ||
289 	    data_len > fs_info->max_inline) {
290 		return 1;
291 	}
292 
293 	path = btrfs_alloc_path();
294 	if (!path)
295 		return -ENOMEM;
296 
297 	trans = btrfs_join_transaction(root);
298 	if (IS_ERR(trans)) {
299 		btrfs_free_path(path);
300 		return PTR_ERR(trans);
301 	}
302 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
303 
304 	if (compressed_size && compressed_pages)
305 		extent_item_size = btrfs_file_extent_calc_inline_size(
306 		   compressed_size);
307 	else
308 		extent_item_size = btrfs_file_extent_calc_inline_size(
309 		    inline_len);
310 
311 	ret = __btrfs_drop_extents(trans, root, inode, path,
312 				   start, aligned_end, NULL,
313 				   1, 1, extent_item_size, &extent_inserted);
314 	if (ret) {
315 		btrfs_abort_transaction(trans, ret);
316 		goto out;
317 	}
318 
319 	if (isize > actual_end)
320 		inline_len = min_t(u64, isize, actual_end);
321 	ret = insert_inline_extent(trans, path, extent_inserted,
322 				   root, inode, start,
323 				   inline_len, compressed_size,
324 				   compress_type, compressed_pages);
325 	if (ret && ret != -ENOSPC) {
326 		btrfs_abort_transaction(trans, ret);
327 		goto out;
328 	} else if (ret == -ENOSPC) {
329 		ret = 1;
330 		goto out;
331 	}
332 
333 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
334 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
335 out:
336 	/*
337 	 * Don't forget to free the reserved space, as for inlined extent
338 	 * it won't count as data extent, free them directly here.
339 	 * And at reserve time, it's always aligned to page size, so
340 	 * just free one page here.
341 	 */
342 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
343 	btrfs_free_path(path);
344 	btrfs_end_transaction(trans);
345 	return ret;
346 }
347 
348 struct async_extent {
349 	u64 start;
350 	u64 ram_size;
351 	u64 compressed_size;
352 	struct page **pages;
353 	unsigned long nr_pages;
354 	int compress_type;
355 	struct list_head list;
356 };
357 
358 struct async_cow {
359 	struct inode *inode;
360 	struct btrfs_root *root;
361 	struct page *locked_page;
362 	u64 start;
363 	u64 end;
364 	unsigned int write_flags;
365 	struct list_head extents;
366 	struct btrfs_work work;
367 };
368 
369 static noinline int add_async_extent(struct async_cow *cow,
370 				     u64 start, u64 ram_size,
371 				     u64 compressed_size,
372 				     struct page **pages,
373 				     unsigned long nr_pages,
374 				     int compress_type)
375 {
376 	struct async_extent *async_extent;
377 
378 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
379 	BUG_ON(!async_extent); /* -ENOMEM */
380 	async_extent->start = start;
381 	async_extent->ram_size = ram_size;
382 	async_extent->compressed_size = compressed_size;
383 	async_extent->pages = pages;
384 	async_extent->nr_pages = nr_pages;
385 	async_extent->compress_type = compress_type;
386 	list_add_tail(&async_extent->list, &cow->extents);
387 	return 0;
388 }
389 
390 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
391 {
392 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
393 
394 	/* force compress */
395 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
396 		return 1;
397 	/* defrag ioctl */
398 	if (BTRFS_I(inode)->defrag_compress)
399 		return 1;
400 	/* bad compression ratios */
401 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
402 		return 0;
403 	if (btrfs_test_opt(fs_info, COMPRESS) ||
404 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
405 	    BTRFS_I(inode)->prop_compress)
406 		return btrfs_compress_heuristic(inode, start, end);
407 	return 0;
408 }
409 
410 static inline void inode_should_defrag(struct btrfs_inode *inode,
411 		u64 start, u64 end, u64 num_bytes, u64 small_write)
412 {
413 	/* If this is a small write inside eof, kick off a defrag */
414 	if (num_bytes < small_write &&
415 	    (start > 0 || end + 1 < inode->disk_i_size))
416 		btrfs_add_inode_defrag(NULL, inode);
417 }
418 
419 /*
420  * we create compressed extents in two phases.  The first
421  * phase compresses a range of pages that have already been
422  * locked (both pages and state bits are locked).
423  *
424  * This is done inside an ordered work queue, and the compression
425  * is spread across many cpus.  The actual IO submission is step
426  * two, and the ordered work queue takes care of making sure that
427  * happens in the same order things were put onto the queue by
428  * writepages and friends.
429  *
430  * If this code finds it can't get good compression, it puts an
431  * entry onto the work queue to write the uncompressed bytes.  This
432  * makes sure that both compressed inodes and uncompressed inodes
433  * are written in the same order that the flusher thread sent them
434  * down.
435  */
436 static noinline void compress_file_range(struct inode *inode,
437 					struct page *locked_page,
438 					u64 start, u64 end,
439 					struct async_cow *async_cow,
440 					int *num_added)
441 {
442 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
443 	u64 blocksize = fs_info->sectorsize;
444 	u64 actual_end;
445 	u64 isize = i_size_read(inode);
446 	int ret = 0;
447 	struct page **pages = NULL;
448 	unsigned long nr_pages;
449 	unsigned long total_compressed = 0;
450 	unsigned long total_in = 0;
451 	int i;
452 	int will_compress;
453 	int compress_type = fs_info->compress_type;
454 	int redirty = 0;
455 
456 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
457 			SZ_16K);
458 
459 	actual_end = min_t(u64, isize, end + 1);
460 again:
461 	will_compress = 0;
462 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
463 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
464 	nr_pages = min_t(unsigned long, nr_pages,
465 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
466 
467 	/*
468 	 * we don't want to send crud past the end of i_size through
469 	 * compression, that's just a waste of CPU time.  So, if the
470 	 * end of the file is before the start of our current
471 	 * requested range of bytes, we bail out to the uncompressed
472 	 * cleanup code that can deal with all of this.
473 	 *
474 	 * It isn't really the fastest way to fix things, but this is a
475 	 * very uncommon corner.
476 	 */
477 	if (actual_end <= start)
478 		goto cleanup_and_bail_uncompressed;
479 
480 	total_compressed = actual_end - start;
481 
482 	/*
483 	 * skip compression for a small file range(<=blocksize) that
484 	 * isn't an inline extent, since it doesn't save disk space at all.
485 	 */
486 	if (total_compressed <= blocksize &&
487 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
488 		goto cleanup_and_bail_uncompressed;
489 
490 	total_compressed = min_t(unsigned long, total_compressed,
491 			BTRFS_MAX_UNCOMPRESSED);
492 	total_in = 0;
493 	ret = 0;
494 
495 	/*
496 	 * we do compression for mount -o compress and when the
497 	 * inode has not been flagged as nocompress.  This flag can
498 	 * change at any time if we discover bad compression ratios.
499 	 */
500 	if (inode_need_compress(inode, start, end)) {
501 		WARN_ON(pages);
502 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
503 		if (!pages) {
504 			/* just bail out to the uncompressed code */
505 			goto cont;
506 		}
507 
508 		if (BTRFS_I(inode)->defrag_compress)
509 			compress_type = BTRFS_I(inode)->defrag_compress;
510 		else if (BTRFS_I(inode)->prop_compress)
511 			compress_type = BTRFS_I(inode)->prop_compress;
512 
513 		/*
514 		 * we need to call clear_page_dirty_for_io on each
515 		 * page in the range.  Otherwise applications with the file
516 		 * mmap'd can wander in and change the page contents while
517 		 * we are compressing them.
518 		 *
519 		 * If the compression fails for any reason, we set the pages
520 		 * dirty again later on.
521 		 *
522 		 * Note that the remaining part is redirtied, the start pointer
523 		 * has moved, the end is the original one.
524 		 */
525 		if (!redirty) {
526 			extent_range_clear_dirty_for_io(inode, start, end);
527 			redirty = 1;
528 		}
529 
530 		/* Compression level is applied here and only here */
531 		ret = btrfs_compress_pages(
532 			compress_type | (fs_info->compress_level << 4),
533 					   inode->i_mapping, start,
534 					   pages,
535 					   &nr_pages,
536 					   &total_in,
537 					   &total_compressed);
538 
539 		if (!ret) {
540 			unsigned long offset = total_compressed &
541 				(PAGE_SIZE - 1);
542 			struct page *page = pages[nr_pages - 1];
543 			char *kaddr;
544 
545 			/* zero the tail end of the last page, we might be
546 			 * sending it down to disk
547 			 */
548 			if (offset) {
549 				kaddr = kmap_atomic(page);
550 				memset(kaddr + offset, 0,
551 				       PAGE_SIZE - offset);
552 				kunmap_atomic(kaddr);
553 			}
554 			will_compress = 1;
555 		}
556 	}
557 cont:
558 	if (start == 0) {
559 		/* lets try to make an inline extent */
560 		if (ret || total_in < actual_end) {
561 			/* we didn't compress the entire range, try
562 			 * to make an uncompressed inline extent.
563 			 */
564 			ret = cow_file_range_inline(inode, start, end, 0,
565 						    BTRFS_COMPRESS_NONE, NULL);
566 		} else {
567 			/* try making a compressed inline extent */
568 			ret = cow_file_range_inline(inode, start, end,
569 						    total_compressed,
570 						    compress_type, pages);
571 		}
572 		if (ret <= 0) {
573 			unsigned long clear_flags = EXTENT_DELALLOC |
574 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
575 				EXTENT_DO_ACCOUNTING;
576 			unsigned long page_error_op;
577 
578 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
579 
580 			/*
581 			 * inline extent creation worked or returned error,
582 			 * we don't need to create any more async work items.
583 			 * Unlock and free up our temp pages.
584 			 *
585 			 * We use DO_ACCOUNTING here because we need the
586 			 * delalloc_release_metadata to be done _after_ we drop
587 			 * our outstanding extent for clearing delalloc for this
588 			 * range.
589 			 */
590 			extent_clear_unlock_delalloc(inode, start, end, end,
591 						     NULL, clear_flags,
592 						     PAGE_UNLOCK |
593 						     PAGE_CLEAR_DIRTY |
594 						     PAGE_SET_WRITEBACK |
595 						     page_error_op |
596 						     PAGE_END_WRITEBACK);
597 			goto free_pages_out;
598 		}
599 	}
600 
601 	if (will_compress) {
602 		/*
603 		 * we aren't doing an inline extent round the compressed size
604 		 * up to a block size boundary so the allocator does sane
605 		 * things
606 		 */
607 		total_compressed = ALIGN(total_compressed, blocksize);
608 
609 		/*
610 		 * one last check to make sure the compression is really a
611 		 * win, compare the page count read with the blocks on disk,
612 		 * compression must free at least one sector size
613 		 */
614 		total_in = ALIGN(total_in, PAGE_SIZE);
615 		if (total_compressed + blocksize <= total_in) {
616 			*num_added += 1;
617 
618 			/*
619 			 * The async work queues will take care of doing actual
620 			 * allocation on disk for these compressed pages, and
621 			 * will submit them to the elevator.
622 			 */
623 			add_async_extent(async_cow, start, total_in,
624 					total_compressed, pages, nr_pages,
625 					compress_type);
626 
627 			if (start + total_in < end) {
628 				start += total_in;
629 				pages = NULL;
630 				cond_resched();
631 				goto again;
632 			}
633 			return;
634 		}
635 	}
636 	if (pages) {
637 		/*
638 		 * the compression code ran but failed to make things smaller,
639 		 * free any pages it allocated and our page pointer array
640 		 */
641 		for (i = 0; i < nr_pages; i++) {
642 			WARN_ON(pages[i]->mapping);
643 			put_page(pages[i]);
644 		}
645 		kfree(pages);
646 		pages = NULL;
647 		total_compressed = 0;
648 		nr_pages = 0;
649 
650 		/* flag the file so we don't compress in the future */
651 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
652 		    !(BTRFS_I(inode)->prop_compress)) {
653 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
654 		}
655 	}
656 cleanup_and_bail_uncompressed:
657 	/*
658 	 * No compression, but we still need to write the pages in the file
659 	 * we've been given so far.  redirty the locked page if it corresponds
660 	 * to our extent and set things up for the async work queue to run
661 	 * cow_file_range to do the normal delalloc dance.
662 	 */
663 	if (page_offset(locked_page) >= start &&
664 	    page_offset(locked_page) <= end)
665 		__set_page_dirty_nobuffers(locked_page);
666 		/* unlocked later on in the async handlers */
667 
668 	if (redirty)
669 		extent_range_redirty_for_io(inode, start, end);
670 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
671 			 BTRFS_COMPRESS_NONE);
672 	*num_added += 1;
673 
674 	return;
675 
676 free_pages_out:
677 	for (i = 0; i < nr_pages; i++) {
678 		WARN_ON(pages[i]->mapping);
679 		put_page(pages[i]);
680 	}
681 	kfree(pages);
682 }
683 
684 static void free_async_extent_pages(struct async_extent *async_extent)
685 {
686 	int i;
687 
688 	if (!async_extent->pages)
689 		return;
690 
691 	for (i = 0; i < async_extent->nr_pages; i++) {
692 		WARN_ON(async_extent->pages[i]->mapping);
693 		put_page(async_extent->pages[i]);
694 	}
695 	kfree(async_extent->pages);
696 	async_extent->nr_pages = 0;
697 	async_extent->pages = NULL;
698 }
699 
700 /*
701  * phase two of compressed writeback.  This is the ordered portion
702  * of the code, which only gets called in the order the work was
703  * queued.  We walk all the async extents created by compress_file_range
704  * and send them down to the disk.
705  */
706 static noinline void submit_compressed_extents(struct inode *inode,
707 					      struct async_cow *async_cow)
708 {
709 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
710 	struct async_extent *async_extent;
711 	u64 alloc_hint = 0;
712 	struct btrfs_key ins;
713 	struct extent_map *em;
714 	struct btrfs_root *root = BTRFS_I(inode)->root;
715 	struct extent_io_tree *io_tree;
716 	int ret = 0;
717 
718 again:
719 	while (!list_empty(&async_cow->extents)) {
720 		async_extent = list_entry(async_cow->extents.next,
721 					  struct async_extent, list);
722 		list_del(&async_extent->list);
723 
724 		io_tree = &BTRFS_I(inode)->io_tree;
725 
726 retry:
727 		/* did the compression code fall back to uncompressed IO? */
728 		if (!async_extent->pages) {
729 			int page_started = 0;
730 			unsigned long nr_written = 0;
731 
732 			lock_extent(io_tree, async_extent->start,
733 					 async_extent->start +
734 					 async_extent->ram_size - 1);
735 
736 			/* allocate blocks */
737 			ret = cow_file_range(inode, async_cow->locked_page,
738 					     async_extent->start,
739 					     async_extent->start +
740 					     async_extent->ram_size - 1,
741 					     async_extent->start +
742 					     async_extent->ram_size - 1,
743 					     &page_started, &nr_written, 0,
744 					     NULL);
745 
746 			/* JDM XXX */
747 
748 			/*
749 			 * if page_started, cow_file_range inserted an
750 			 * inline extent and took care of all the unlocking
751 			 * and IO for us.  Otherwise, we need to submit
752 			 * all those pages down to the drive.
753 			 */
754 			if (!page_started && !ret)
755 				extent_write_locked_range(inode,
756 						  async_extent->start,
757 						  async_extent->start +
758 						  async_extent->ram_size - 1,
759 						  WB_SYNC_ALL);
760 			else if (ret)
761 				unlock_page(async_cow->locked_page);
762 			kfree(async_extent);
763 			cond_resched();
764 			continue;
765 		}
766 
767 		lock_extent(io_tree, async_extent->start,
768 			    async_extent->start + async_extent->ram_size - 1);
769 
770 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
771 					   async_extent->compressed_size,
772 					   async_extent->compressed_size,
773 					   0, alloc_hint, &ins, 1, 1);
774 		if (ret) {
775 			free_async_extent_pages(async_extent);
776 
777 			if (ret == -ENOSPC) {
778 				unlock_extent(io_tree, async_extent->start,
779 					      async_extent->start +
780 					      async_extent->ram_size - 1);
781 
782 				/*
783 				 * we need to redirty the pages if we decide to
784 				 * fallback to uncompressed IO, otherwise we
785 				 * will not submit these pages down to lower
786 				 * layers.
787 				 */
788 				extent_range_redirty_for_io(inode,
789 						async_extent->start,
790 						async_extent->start +
791 						async_extent->ram_size - 1);
792 
793 				goto retry;
794 			}
795 			goto out_free;
796 		}
797 		/*
798 		 * here we're doing allocation and writeback of the
799 		 * compressed pages
800 		 */
801 		em = create_io_em(inode, async_extent->start,
802 				  async_extent->ram_size, /* len */
803 				  async_extent->start, /* orig_start */
804 				  ins.objectid, /* block_start */
805 				  ins.offset, /* block_len */
806 				  ins.offset, /* orig_block_len */
807 				  async_extent->ram_size, /* ram_bytes */
808 				  async_extent->compress_type,
809 				  BTRFS_ORDERED_COMPRESSED);
810 		if (IS_ERR(em))
811 			/* ret value is not necessary due to void function */
812 			goto out_free_reserve;
813 		free_extent_map(em);
814 
815 		ret = btrfs_add_ordered_extent_compress(inode,
816 						async_extent->start,
817 						ins.objectid,
818 						async_extent->ram_size,
819 						ins.offset,
820 						BTRFS_ORDERED_COMPRESSED,
821 						async_extent->compress_type);
822 		if (ret) {
823 			btrfs_drop_extent_cache(BTRFS_I(inode),
824 						async_extent->start,
825 						async_extent->start +
826 						async_extent->ram_size - 1, 0);
827 			goto out_free_reserve;
828 		}
829 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
830 
831 		/*
832 		 * clear dirty, set writeback and unlock the pages.
833 		 */
834 		extent_clear_unlock_delalloc(inode, async_extent->start,
835 				async_extent->start +
836 				async_extent->ram_size - 1,
837 				async_extent->start +
838 				async_extent->ram_size - 1,
839 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
840 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
841 				PAGE_SET_WRITEBACK);
842 		if (btrfs_submit_compressed_write(inode,
843 				    async_extent->start,
844 				    async_extent->ram_size,
845 				    ins.objectid,
846 				    ins.offset, async_extent->pages,
847 				    async_extent->nr_pages,
848 				    async_cow->write_flags)) {
849 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
850 			struct page *p = async_extent->pages[0];
851 			const u64 start = async_extent->start;
852 			const u64 end = start + async_extent->ram_size - 1;
853 
854 			p->mapping = inode->i_mapping;
855 			tree->ops->writepage_end_io_hook(p, start, end,
856 							 NULL, 0);
857 			p->mapping = NULL;
858 			extent_clear_unlock_delalloc(inode, start, end, end,
859 						     NULL, 0,
860 						     PAGE_END_WRITEBACK |
861 						     PAGE_SET_ERROR);
862 			free_async_extent_pages(async_extent);
863 		}
864 		alloc_hint = ins.objectid + ins.offset;
865 		kfree(async_extent);
866 		cond_resched();
867 	}
868 	return;
869 out_free_reserve:
870 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
871 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
872 out_free:
873 	extent_clear_unlock_delalloc(inode, async_extent->start,
874 				     async_extent->start +
875 				     async_extent->ram_size - 1,
876 				     async_extent->start +
877 				     async_extent->ram_size - 1,
878 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
879 				     EXTENT_DELALLOC_NEW |
880 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
881 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
882 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
883 				     PAGE_SET_ERROR);
884 	free_async_extent_pages(async_extent);
885 	kfree(async_extent);
886 	goto again;
887 }
888 
889 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
890 				      u64 num_bytes)
891 {
892 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
893 	struct extent_map *em;
894 	u64 alloc_hint = 0;
895 
896 	read_lock(&em_tree->lock);
897 	em = search_extent_mapping(em_tree, start, num_bytes);
898 	if (em) {
899 		/*
900 		 * if block start isn't an actual block number then find the
901 		 * first block in this inode and use that as a hint.  If that
902 		 * block is also bogus then just don't worry about it.
903 		 */
904 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
905 			free_extent_map(em);
906 			em = search_extent_mapping(em_tree, 0, 0);
907 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
908 				alloc_hint = em->block_start;
909 			if (em)
910 				free_extent_map(em);
911 		} else {
912 			alloc_hint = em->block_start;
913 			free_extent_map(em);
914 		}
915 	}
916 	read_unlock(&em_tree->lock);
917 
918 	return alloc_hint;
919 }
920 
921 /*
922  * when extent_io.c finds a delayed allocation range in the file,
923  * the call backs end up in this code.  The basic idea is to
924  * allocate extents on disk for the range, and create ordered data structs
925  * in ram to track those extents.
926  *
927  * locked_page is the page that writepage had locked already.  We use
928  * it to make sure we don't do extra locks or unlocks.
929  *
930  * *page_started is set to one if we unlock locked_page and do everything
931  * required to start IO on it.  It may be clean and already done with
932  * IO when we return.
933  */
934 static noinline int cow_file_range(struct inode *inode,
935 				   struct page *locked_page,
936 				   u64 start, u64 end, u64 delalloc_end,
937 				   int *page_started, unsigned long *nr_written,
938 				   int unlock, struct btrfs_dedupe_hash *hash)
939 {
940 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
941 	struct btrfs_root *root = BTRFS_I(inode)->root;
942 	u64 alloc_hint = 0;
943 	u64 num_bytes;
944 	unsigned long ram_size;
945 	u64 cur_alloc_size = 0;
946 	u64 blocksize = fs_info->sectorsize;
947 	struct btrfs_key ins;
948 	struct extent_map *em;
949 	unsigned clear_bits;
950 	unsigned long page_ops;
951 	bool extent_reserved = false;
952 	int ret = 0;
953 
954 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
955 		WARN_ON_ONCE(1);
956 		ret = -EINVAL;
957 		goto out_unlock;
958 	}
959 
960 	num_bytes = ALIGN(end - start + 1, blocksize);
961 	num_bytes = max(blocksize,  num_bytes);
962 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
963 
964 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
965 
966 	if (start == 0) {
967 		/* lets try to make an inline extent */
968 		ret = cow_file_range_inline(inode, start, end, 0,
969 					    BTRFS_COMPRESS_NONE, NULL);
970 		if (ret == 0) {
971 			/*
972 			 * We use DO_ACCOUNTING here because we need the
973 			 * delalloc_release_metadata to be run _after_ we drop
974 			 * our outstanding extent for clearing delalloc for this
975 			 * range.
976 			 */
977 			extent_clear_unlock_delalloc(inode, start, end,
978 				     delalloc_end, NULL,
979 				     EXTENT_LOCKED | EXTENT_DELALLOC |
980 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
981 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
982 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
983 				     PAGE_END_WRITEBACK);
984 			*nr_written = *nr_written +
985 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
986 			*page_started = 1;
987 			goto out;
988 		} else if (ret < 0) {
989 			goto out_unlock;
990 		}
991 	}
992 
993 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
994 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
995 			start + num_bytes - 1, 0);
996 
997 	while (num_bytes > 0) {
998 		cur_alloc_size = num_bytes;
999 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1000 					   fs_info->sectorsize, 0, alloc_hint,
1001 					   &ins, 1, 1);
1002 		if (ret < 0)
1003 			goto out_unlock;
1004 		cur_alloc_size = ins.offset;
1005 		extent_reserved = true;
1006 
1007 		ram_size = ins.offset;
1008 		em = create_io_em(inode, start, ins.offset, /* len */
1009 				  start, /* orig_start */
1010 				  ins.objectid, /* block_start */
1011 				  ins.offset, /* block_len */
1012 				  ins.offset, /* orig_block_len */
1013 				  ram_size, /* ram_bytes */
1014 				  BTRFS_COMPRESS_NONE, /* compress_type */
1015 				  BTRFS_ORDERED_REGULAR /* type */);
1016 		if (IS_ERR(em)) {
1017 			ret = PTR_ERR(em);
1018 			goto out_reserve;
1019 		}
1020 		free_extent_map(em);
1021 
1022 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1023 					       ram_size, cur_alloc_size, 0);
1024 		if (ret)
1025 			goto out_drop_extent_cache;
1026 
1027 		if (root->root_key.objectid ==
1028 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 			ret = btrfs_reloc_clone_csums(inode, start,
1030 						      cur_alloc_size);
1031 			/*
1032 			 * Only drop cache here, and process as normal.
1033 			 *
1034 			 * We must not allow extent_clear_unlock_delalloc()
1035 			 * at out_unlock label to free meta of this ordered
1036 			 * extent, as its meta should be freed by
1037 			 * btrfs_finish_ordered_io().
1038 			 *
1039 			 * So we must continue until @start is increased to
1040 			 * skip current ordered extent.
1041 			 */
1042 			if (ret)
1043 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1044 						start + ram_size - 1, 0);
1045 		}
1046 
1047 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1048 
1049 		/* we're not doing compressed IO, don't unlock the first
1050 		 * page (which the caller expects to stay locked), don't
1051 		 * clear any dirty bits and don't set any writeback bits
1052 		 *
1053 		 * Do set the Private2 bit so we know this page was properly
1054 		 * setup for writepage
1055 		 */
1056 		page_ops = unlock ? PAGE_UNLOCK : 0;
1057 		page_ops |= PAGE_SET_PRIVATE2;
1058 
1059 		extent_clear_unlock_delalloc(inode, start,
1060 					     start + ram_size - 1,
1061 					     delalloc_end, locked_page,
1062 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1063 					     page_ops);
1064 		if (num_bytes < cur_alloc_size)
1065 			num_bytes = 0;
1066 		else
1067 			num_bytes -= cur_alloc_size;
1068 		alloc_hint = ins.objectid + ins.offset;
1069 		start += cur_alloc_size;
1070 		extent_reserved = false;
1071 
1072 		/*
1073 		 * btrfs_reloc_clone_csums() error, since start is increased
1074 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1075 		 * free metadata of current ordered extent, we're OK to exit.
1076 		 */
1077 		if (ret)
1078 			goto out_unlock;
1079 	}
1080 out:
1081 	return ret;
1082 
1083 out_drop_extent_cache:
1084 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1085 out_reserve:
1086 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1087 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1088 out_unlock:
1089 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1090 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1091 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1092 		PAGE_END_WRITEBACK;
1093 	/*
1094 	 * If we reserved an extent for our delalloc range (or a subrange) and
1095 	 * failed to create the respective ordered extent, then it means that
1096 	 * when we reserved the extent we decremented the extent's size from
1097 	 * the data space_info's bytes_may_use counter and incremented the
1098 	 * space_info's bytes_reserved counter by the same amount. We must make
1099 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1100 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1101 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1102 	 */
1103 	if (extent_reserved) {
1104 		extent_clear_unlock_delalloc(inode, start,
1105 					     start + cur_alloc_size,
1106 					     start + cur_alloc_size,
1107 					     locked_page,
1108 					     clear_bits,
1109 					     page_ops);
1110 		start += cur_alloc_size;
1111 		if (start >= end)
1112 			goto out;
1113 	}
1114 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1115 				     locked_page,
1116 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1117 				     page_ops);
1118 	goto out;
1119 }
1120 
1121 /*
1122  * work queue call back to started compression on a file and pages
1123  */
1124 static noinline void async_cow_start(struct btrfs_work *work)
1125 {
1126 	struct async_cow *async_cow;
1127 	int num_added = 0;
1128 	async_cow = container_of(work, struct async_cow, work);
1129 
1130 	compress_file_range(async_cow->inode, async_cow->locked_page,
1131 			    async_cow->start, async_cow->end, async_cow,
1132 			    &num_added);
1133 	if (num_added == 0) {
1134 		btrfs_add_delayed_iput(async_cow->inode);
1135 		async_cow->inode = NULL;
1136 	}
1137 }
1138 
1139 /*
1140  * work queue call back to submit previously compressed pages
1141  */
1142 static noinline void async_cow_submit(struct btrfs_work *work)
1143 {
1144 	struct btrfs_fs_info *fs_info;
1145 	struct async_cow *async_cow;
1146 	struct btrfs_root *root;
1147 	unsigned long nr_pages;
1148 
1149 	async_cow = container_of(work, struct async_cow, work);
1150 
1151 	root = async_cow->root;
1152 	fs_info = root->fs_info;
1153 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1154 		PAGE_SHIFT;
1155 
1156 	/* atomic_sub_return implies a barrier */
1157 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1158 	    5 * SZ_1M)
1159 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1160 
1161 	if (async_cow->inode)
1162 		submit_compressed_extents(async_cow->inode, async_cow);
1163 }
1164 
1165 static noinline void async_cow_free(struct btrfs_work *work)
1166 {
1167 	struct async_cow *async_cow;
1168 	async_cow = container_of(work, struct async_cow, work);
1169 	if (async_cow->inode)
1170 		btrfs_add_delayed_iput(async_cow->inode);
1171 	kfree(async_cow);
1172 }
1173 
1174 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1175 				u64 start, u64 end, int *page_started,
1176 				unsigned long *nr_written,
1177 				unsigned int write_flags)
1178 {
1179 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1180 	struct async_cow *async_cow;
1181 	struct btrfs_root *root = BTRFS_I(inode)->root;
1182 	unsigned long nr_pages;
1183 	u64 cur_end;
1184 
1185 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1186 			 1, 0, NULL);
1187 	while (start < end) {
1188 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1189 		BUG_ON(!async_cow); /* -ENOMEM */
1190 		async_cow->inode = igrab(inode);
1191 		async_cow->root = root;
1192 		async_cow->locked_page = locked_page;
1193 		async_cow->start = start;
1194 		async_cow->write_flags = write_flags;
1195 
1196 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1197 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1198 			cur_end = end;
1199 		else
1200 			cur_end = min(end, start + SZ_512K - 1);
1201 
1202 		async_cow->end = cur_end;
1203 		INIT_LIST_HEAD(&async_cow->extents);
1204 
1205 		btrfs_init_work(&async_cow->work,
1206 				btrfs_delalloc_helper,
1207 				async_cow_start, async_cow_submit,
1208 				async_cow_free);
1209 
1210 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1211 			PAGE_SHIFT;
1212 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1213 
1214 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1215 
1216 		*nr_written += nr_pages;
1217 		start = cur_end + 1;
1218 	}
1219 	*page_started = 1;
1220 	return 0;
1221 }
1222 
1223 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1224 					u64 bytenr, u64 num_bytes)
1225 {
1226 	int ret;
1227 	struct btrfs_ordered_sum *sums;
1228 	LIST_HEAD(list);
1229 
1230 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1231 				       bytenr + num_bytes - 1, &list, 0);
1232 	if (ret == 0 && list_empty(&list))
1233 		return 0;
1234 
1235 	while (!list_empty(&list)) {
1236 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1237 		list_del(&sums->list);
1238 		kfree(sums);
1239 	}
1240 	if (ret < 0)
1241 		return ret;
1242 	return 1;
1243 }
1244 
1245 /*
1246  * when nowcow writeback call back.  This checks for snapshots or COW copies
1247  * of the extents that exist in the file, and COWs the file as required.
1248  *
1249  * If no cow copies or snapshots exist, we write directly to the existing
1250  * blocks on disk
1251  */
1252 static noinline int run_delalloc_nocow(struct inode *inode,
1253 				       struct page *locked_page,
1254 			      u64 start, u64 end, int *page_started, int force,
1255 			      unsigned long *nr_written)
1256 {
1257 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1258 	struct btrfs_root *root = BTRFS_I(inode)->root;
1259 	struct extent_buffer *leaf;
1260 	struct btrfs_path *path;
1261 	struct btrfs_file_extent_item *fi;
1262 	struct btrfs_key found_key;
1263 	struct extent_map *em;
1264 	u64 cow_start;
1265 	u64 cur_offset;
1266 	u64 extent_end;
1267 	u64 extent_offset;
1268 	u64 disk_bytenr;
1269 	u64 num_bytes;
1270 	u64 disk_num_bytes;
1271 	u64 ram_bytes;
1272 	int extent_type;
1273 	int ret;
1274 	int type;
1275 	int nocow;
1276 	int check_prev = 1;
1277 	bool nolock;
1278 	u64 ino = btrfs_ino(BTRFS_I(inode));
1279 
1280 	path = btrfs_alloc_path();
1281 	if (!path) {
1282 		extent_clear_unlock_delalloc(inode, start, end, end,
1283 					     locked_page,
1284 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1285 					     EXTENT_DO_ACCOUNTING |
1286 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1287 					     PAGE_CLEAR_DIRTY |
1288 					     PAGE_SET_WRITEBACK |
1289 					     PAGE_END_WRITEBACK);
1290 		return -ENOMEM;
1291 	}
1292 
1293 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1294 
1295 	cow_start = (u64)-1;
1296 	cur_offset = start;
1297 	while (1) {
1298 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1299 					       cur_offset, 0);
1300 		if (ret < 0)
1301 			goto error;
1302 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1303 			leaf = path->nodes[0];
1304 			btrfs_item_key_to_cpu(leaf, &found_key,
1305 					      path->slots[0] - 1);
1306 			if (found_key.objectid == ino &&
1307 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1308 				path->slots[0]--;
1309 		}
1310 		check_prev = 0;
1311 next_slot:
1312 		leaf = path->nodes[0];
1313 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1314 			ret = btrfs_next_leaf(root, path);
1315 			if (ret < 0) {
1316 				if (cow_start != (u64)-1)
1317 					cur_offset = cow_start;
1318 				goto error;
1319 			}
1320 			if (ret > 0)
1321 				break;
1322 			leaf = path->nodes[0];
1323 		}
1324 
1325 		nocow = 0;
1326 		disk_bytenr = 0;
1327 		num_bytes = 0;
1328 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1329 
1330 		if (found_key.objectid > ino)
1331 			break;
1332 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1333 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1334 			path->slots[0]++;
1335 			goto next_slot;
1336 		}
1337 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1338 		    found_key.offset > end)
1339 			break;
1340 
1341 		if (found_key.offset > cur_offset) {
1342 			extent_end = found_key.offset;
1343 			extent_type = 0;
1344 			goto out_check;
1345 		}
1346 
1347 		fi = btrfs_item_ptr(leaf, path->slots[0],
1348 				    struct btrfs_file_extent_item);
1349 		extent_type = btrfs_file_extent_type(leaf, fi);
1350 
1351 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1352 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1353 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1354 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1355 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1356 			extent_end = found_key.offset +
1357 				btrfs_file_extent_num_bytes(leaf, fi);
1358 			disk_num_bytes =
1359 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1360 			if (extent_end <= start) {
1361 				path->slots[0]++;
1362 				goto next_slot;
1363 			}
1364 			if (disk_bytenr == 0)
1365 				goto out_check;
1366 			if (btrfs_file_extent_compression(leaf, fi) ||
1367 			    btrfs_file_extent_encryption(leaf, fi) ||
1368 			    btrfs_file_extent_other_encoding(leaf, fi))
1369 				goto out_check;
1370 			/*
1371 			 * Do the same check as in btrfs_cross_ref_exist but
1372 			 * without the unnecessary search.
1373 			 */
1374 			if (btrfs_file_extent_generation(leaf, fi) <=
1375 			    btrfs_root_last_snapshot(&root->root_item))
1376 				goto out_check;
1377 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1378 				goto out_check;
1379 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1380 				goto out_check;
1381 			ret = btrfs_cross_ref_exist(root, ino,
1382 						    found_key.offset -
1383 						    extent_offset, disk_bytenr);
1384 			if (ret) {
1385 				/*
1386 				 * ret could be -EIO if the above fails to read
1387 				 * metadata.
1388 				 */
1389 				if (ret < 0) {
1390 					if (cow_start != (u64)-1)
1391 						cur_offset = cow_start;
1392 					goto error;
1393 				}
1394 
1395 				WARN_ON_ONCE(nolock);
1396 				goto out_check;
1397 			}
1398 			disk_bytenr += extent_offset;
1399 			disk_bytenr += cur_offset - found_key.offset;
1400 			num_bytes = min(end + 1, extent_end) - cur_offset;
1401 			/*
1402 			 * if there are pending snapshots for this root,
1403 			 * we fall into common COW way.
1404 			 */
1405 			if (!nolock && atomic_read(&root->snapshot_force_cow))
1406 				goto out_check;
1407 			/*
1408 			 * force cow if csum exists in the range.
1409 			 * this ensure that csum for a given extent are
1410 			 * either valid or do not exist.
1411 			 */
1412 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1413 						  num_bytes);
1414 			if (ret) {
1415 				/*
1416 				 * ret could be -EIO if the above fails to read
1417 				 * metadata.
1418 				 */
1419 				if (ret < 0) {
1420 					if (cow_start != (u64)-1)
1421 						cur_offset = cow_start;
1422 					goto error;
1423 				}
1424 				WARN_ON_ONCE(nolock);
1425 				goto out_check;
1426 			}
1427 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1428 				goto out_check;
1429 			nocow = 1;
1430 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1431 			extent_end = found_key.offset +
1432 				btrfs_file_extent_ram_bytes(leaf, fi);
1433 			extent_end = ALIGN(extent_end,
1434 					   fs_info->sectorsize);
1435 		} else {
1436 			BUG_ON(1);
1437 		}
1438 out_check:
1439 		if (extent_end <= start) {
1440 			path->slots[0]++;
1441 			if (nocow)
1442 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1443 			goto next_slot;
1444 		}
1445 		if (!nocow) {
1446 			if (cow_start == (u64)-1)
1447 				cow_start = cur_offset;
1448 			cur_offset = extent_end;
1449 			if (cur_offset > end)
1450 				break;
1451 			path->slots[0]++;
1452 			goto next_slot;
1453 		}
1454 
1455 		btrfs_release_path(path);
1456 		if (cow_start != (u64)-1) {
1457 			ret = cow_file_range(inode, locked_page,
1458 					     cow_start, found_key.offset - 1,
1459 					     end, page_started, nr_written, 1,
1460 					     NULL);
1461 			if (ret) {
1462 				if (nocow)
1463 					btrfs_dec_nocow_writers(fs_info,
1464 								disk_bytenr);
1465 				goto error;
1466 			}
1467 			cow_start = (u64)-1;
1468 		}
1469 
1470 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1471 			u64 orig_start = found_key.offset - extent_offset;
1472 
1473 			em = create_io_em(inode, cur_offset, num_bytes,
1474 					  orig_start,
1475 					  disk_bytenr, /* block_start */
1476 					  num_bytes, /* block_len */
1477 					  disk_num_bytes, /* orig_block_len */
1478 					  ram_bytes, BTRFS_COMPRESS_NONE,
1479 					  BTRFS_ORDERED_PREALLOC);
1480 			if (IS_ERR(em)) {
1481 				if (nocow)
1482 					btrfs_dec_nocow_writers(fs_info,
1483 								disk_bytenr);
1484 				ret = PTR_ERR(em);
1485 				goto error;
1486 			}
1487 			free_extent_map(em);
1488 		}
1489 
1490 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1491 			type = BTRFS_ORDERED_PREALLOC;
1492 		} else {
1493 			type = BTRFS_ORDERED_NOCOW;
1494 		}
1495 
1496 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1497 					       num_bytes, num_bytes, type);
1498 		if (nocow)
1499 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1500 		BUG_ON(ret); /* -ENOMEM */
1501 
1502 		if (root->root_key.objectid ==
1503 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 			/*
1505 			 * Error handled later, as we must prevent
1506 			 * extent_clear_unlock_delalloc() in error handler
1507 			 * from freeing metadata of created ordered extent.
1508 			 */
1509 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1510 						      num_bytes);
1511 
1512 		extent_clear_unlock_delalloc(inode, cur_offset,
1513 					     cur_offset + num_bytes - 1, end,
1514 					     locked_page, EXTENT_LOCKED |
1515 					     EXTENT_DELALLOC |
1516 					     EXTENT_CLEAR_DATA_RESV,
1517 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1518 
1519 		cur_offset = extent_end;
1520 
1521 		/*
1522 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1523 		 * handler, as metadata for created ordered extent will only
1524 		 * be freed by btrfs_finish_ordered_io().
1525 		 */
1526 		if (ret)
1527 			goto error;
1528 		if (cur_offset > end)
1529 			break;
1530 	}
1531 	btrfs_release_path(path);
1532 
1533 	if (cur_offset <= end && cow_start == (u64)-1) {
1534 		cow_start = cur_offset;
1535 		cur_offset = end;
1536 	}
1537 
1538 	if (cow_start != (u64)-1) {
1539 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1540 				     page_started, nr_written, 1, NULL);
1541 		if (ret)
1542 			goto error;
1543 	}
1544 
1545 error:
1546 	if (ret && cur_offset < end)
1547 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1548 					     locked_page, EXTENT_LOCKED |
1549 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1550 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1551 					     PAGE_CLEAR_DIRTY |
1552 					     PAGE_SET_WRITEBACK |
1553 					     PAGE_END_WRITEBACK);
1554 	btrfs_free_path(path);
1555 	return ret;
1556 }
1557 
1558 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1559 {
1560 
1561 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1562 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1563 		return 0;
1564 
1565 	/*
1566 	 * @defrag_bytes is a hint value, no spinlock held here,
1567 	 * if is not zero, it means the file is defragging.
1568 	 * Force cow if given extent needs to be defragged.
1569 	 */
1570 	if (BTRFS_I(inode)->defrag_bytes &&
1571 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1572 			   EXTENT_DEFRAG, 0, NULL))
1573 		return 1;
1574 
1575 	return 0;
1576 }
1577 
1578 /*
1579  * extent_io.c call back to do delayed allocation processing
1580  */
1581 static int run_delalloc_range(void *private_data, struct page *locked_page,
1582 			      u64 start, u64 end, int *page_started,
1583 			      unsigned long *nr_written,
1584 			      struct writeback_control *wbc)
1585 {
1586 	struct inode *inode = private_data;
1587 	int ret;
1588 	int force_cow = need_force_cow(inode, start, end);
1589 	unsigned int write_flags = wbc_to_write_flags(wbc);
1590 
1591 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1592 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1593 					 page_started, 1, nr_written);
1594 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1595 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1596 					 page_started, 0, nr_written);
1597 	} else if (!inode_need_compress(inode, start, end)) {
1598 		ret = cow_file_range(inode, locked_page, start, end, end,
1599 				      page_started, nr_written, 1, NULL);
1600 	} else {
1601 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1602 			&BTRFS_I(inode)->runtime_flags);
1603 		ret = cow_file_range_async(inode, locked_page, start, end,
1604 					   page_started, nr_written,
1605 					   write_flags);
1606 	}
1607 	if (ret)
1608 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1609 	return ret;
1610 }
1611 
1612 static void btrfs_split_extent_hook(void *private_data,
1613 				    struct extent_state *orig, u64 split)
1614 {
1615 	struct inode *inode = private_data;
1616 	u64 size;
1617 
1618 	/* not delalloc, ignore it */
1619 	if (!(orig->state & EXTENT_DELALLOC))
1620 		return;
1621 
1622 	size = orig->end - orig->start + 1;
1623 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1624 		u32 num_extents;
1625 		u64 new_size;
1626 
1627 		/*
1628 		 * See the explanation in btrfs_merge_extent_hook, the same
1629 		 * applies here, just in reverse.
1630 		 */
1631 		new_size = orig->end - split + 1;
1632 		num_extents = count_max_extents(new_size);
1633 		new_size = split - orig->start;
1634 		num_extents += count_max_extents(new_size);
1635 		if (count_max_extents(size) >= num_extents)
1636 			return;
1637 	}
1638 
1639 	spin_lock(&BTRFS_I(inode)->lock);
1640 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1641 	spin_unlock(&BTRFS_I(inode)->lock);
1642 }
1643 
1644 /*
1645  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1646  * extents so we can keep track of new extents that are just merged onto old
1647  * extents, such as when we are doing sequential writes, so we can properly
1648  * account for the metadata space we'll need.
1649  */
1650 static void btrfs_merge_extent_hook(void *private_data,
1651 				    struct extent_state *new,
1652 				    struct extent_state *other)
1653 {
1654 	struct inode *inode = private_data;
1655 	u64 new_size, old_size;
1656 	u32 num_extents;
1657 
1658 	/* not delalloc, ignore it */
1659 	if (!(other->state & EXTENT_DELALLOC))
1660 		return;
1661 
1662 	if (new->start > other->start)
1663 		new_size = new->end - other->start + 1;
1664 	else
1665 		new_size = other->end - new->start + 1;
1666 
1667 	/* we're not bigger than the max, unreserve the space and go */
1668 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1669 		spin_lock(&BTRFS_I(inode)->lock);
1670 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1671 		spin_unlock(&BTRFS_I(inode)->lock);
1672 		return;
1673 	}
1674 
1675 	/*
1676 	 * We have to add up either side to figure out how many extents were
1677 	 * accounted for before we merged into one big extent.  If the number of
1678 	 * extents we accounted for is <= the amount we need for the new range
1679 	 * then we can return, otherwise drop.  Think of it like this
1680 	 *
1681 	 * [ 4k][MAX_SIZE]
1682 	 *
1683 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1684 	 * need 2 outstanding extents, on one side we have 1 and the other side
1685 	 * we have 1 so they are == and we can return.  But in this case
1686 	 *
1687 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1688 	 *
1689 	 * Each range on their own accounts for 2 extents, but merged together
1690 	 * they are only 3 extents worth of accounting, so we need to drop in
1691 	 * this case.
1692 	 */
1693 	old_size = other->end - other->start + 1;
1694 	num_extents = count_max_extents(old_size);
1695 	old_size = new->end - new->start + 1;
1696 	num_extents += count_max_extents(old_size);
1697 	if (count_max_extents(new_size) >= num_extents)
1698 		return;
1699 
1700 	spin_lock(&BTRFS_I(inode)->lock);
1701 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1702 	spin_unlock(&BTRFS_I(inode)->lock);
1703 }
1704 
1705 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1706 				      struct inode *inode)
1707 {
1708 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1709 
1710 	spin_lock(&root->delalloc_lock);
1711 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1712 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1713 			      &root->delalloc_inodes);
1714 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 			&BTRFS_I(inode)->runtime_flags);
1716 		root->nr_delalloc_inodes++;
1717 		if (root->nr_delalloc_inodes == 1) {
1718 			spin_lock(&fs_info->delalloc_root_lock);
1719 			BUG_ON(!list_empty(&root->delalloc_root));
1720 			list_add_tail(&root->delalloc_root,
1721 				      &fs_info->delalloc_roots);
1722 			spin_unlock(&fs_info->delalloc_root_lock);
1723 		}
1724 	}
1725 	spin_unlock(&root->delalloc_lock);
1726 }
1727 
1728 
1729 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1730 				struct btrfs_inode *inode)
1731 {
1732 	struct btrfs_fs_info *fs_info = root->fs_info;
1733 
1734 	if (!list_empty(&inode->delalloc_inodes)) {
1735 		list_del_init(&inode->delalloc_inodes);
1736 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1737 			  &inode->runtime_flags);
1738 		root->nr_delalloc_inodes--;
1739 		if (!root->nr_delalloc_inodes) {
1740 			ASSERT(list_empty(&root->delalloc_inodes));
1741 			spin_lock(&fs_info->delalloc_root_lock);
1742 			BUG_ON(list_empty(&root->delalloc_root));
1743 			list_del_init(&root->delalloc_root);
1744 			spin_unlock(&fs_info->delalloc_root_lock);
1745 		}
1746 	}
1747 }
1748 
1749 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1750 				     struct btrfs_inode *inode)
1751 {
1752 	spin_lock(&root->delalloc_lock);
1753 	__btrfs_del_delalloc_inode(root, inode);
1754 	spin_unlock(&root->delalloc_lock);
1755 }
1756 
1757 /*
1758  * extent_io.c set_bit_hook, used to track delayed allocation
1759  * bytes in this file, and to maintain the list of inodes that
1760  * have pending delalloc work to be done.
1761  */
1762 static void btrfs_set_bit_hook(void *private_data,
1763 			       struct extent_state *state, unsigned *bits)
1764 {
1765 	struct inode *inode = private_data;
1766 
1767 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1768 
1769 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1770 		WARN_ON(1);
1771 	/*
1772 	 * set_bit and clear bit hooks normally require _irqsave/restore
1773 	 * but in this case, we are only testing for the DELALLOC
1774 	 * bit, which is only set or cleared with irqs on
1775 	 */
1776 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1777 		struct btrfs_root *root = BTRFS_I(inode)->root;
1778 		u64 len = state->end + 1 - state->start;
1779 		u32 num_extents = count_max_extents(len);
1780 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1781 
1782 		spin_lock(&BTRFS_I(inode)->lock);
1783 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1784 		spin_unlock(&BTRFS_I(inode)->lock);
1785 
1786 		/* For sanity tests */
1787 		if (btrfs_is_testing(fs_info))
1788 			return;
1789 
1790 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1791 					 fs_info->delalloc_batch);
1792 		spin_lock(&BTRFS_I(inode)->lock);
1793 		BTRFS_I(inode)->delalloc_bytes += len;
1794 		if (*bits & EXTENT_DEFRAG)
1795 			BTRFS_I(inode)->defrag_bytes += len;
1796 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1797 					 &BTRFS_I(inode)->runtime_flags))
1798 			btrfs_add_delalloc_inodes(root, inode);
1799 		spin_unlock(&BTRFS_I(inode)->lock);
1800 	}
1801 
1802 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1803 	    (*bits & EXTENT_DELALLOC_NEW)) {
1804 		spin_lock(&BTRFS_I(inode)->lock);
1805 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1806 			state->start;
1807 		spin_unlock(&BTRFS_I(inode)->lock);
1808 	}
1809 }
1810 
1811 /*
1812  * extent_io.c clear_bit_hook, see set_bit_hook for why
1813  */
1814 static void btrfs_clear_bit_hook(void *private_data,
1815 				 struct extent_state *state,
1816 				 unsigned *bits)
1817 {
1818 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1819 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1820 	u64 len = state->end + 1 - state->start;
1821 	u32 num_extents = count_max_extents(len);
1822 
1823 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1824 		spin_lock(&inode->lock);
1825 		inode->defrag_bytes -= len;
1826 		spin_unlock(&inode->lock);
1827 	}
1828 
1829 	/*
1830 	 * set_bit and clear bit hooks normally require _irqsave/restore
1831 	 * but in this case, we are only testing for the DELALLOC
1832 	 * bit, which is only set or cleared with irqs on
1833 	 */
1834 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1835 		struct btrfs_root *root = inode->root;
1836 		bool do_list = !btrfs_is_free_space_inode(inode);
1837 
1838 		spin_lock(&inode->lock);
1839 		btrfs_mod_outstanding_extents(inode, -num_extents);
1840 		spin_unlock(&inode->lock);
1841 
1842 		/*
1843 		 * We don't reserve metadata space for space cache inodes so we
1844 		 * don't need to call dellalloc_release_metadata if there is an
1845 		 * error.
1846 		 */
1847 		if (*bits & EXTENT_CLEAR_META_RESV &&
1848 		    root != fs_info->tree_root)
1849 			btrfs_delalloc_release_metadata(inode, len, false);
1850 
1851 		/* For sanity tests. */
1852 		if (btrfs_is_testing(fs_info))
1853 			return;
1854 
1855 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1856 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1857 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1858 			btrfs_free_reserved_data_space_noquota(
1859 					&inode->vfs_inode,
1860 					state->start, len);
1861 
1862 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1863 					 fs_info->delalloc_batch);
1864 		spin_lock(&inode->lock);
1865 		inode->delalloc_bytes -= len;
1866 		if (do_list && inode->delalloc_bytes == 0 &&
1867 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1868 					&inode->runtime_flags))
1869 			btrfs_del_delalloc_inode(root, inode);
1870 		spin_unlock(&inode->lock);
1871 	}
1872 
1873 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1874 	    (*bits & EXTENT_DELALLOC_NEW)) {
1875 		spin_lock(&inode->lock);
1876 		ASSERT(inode->new_delalloc_bytes >= len);
1877 		inode->new_delalloc_bytes -= len;
1878 		spin_unlock(&inode->lock);
1879 	}
1880 }
1881 
1882 /*
1883  * Merge bio hook, this must check the chunk tree to make sure we don't create
1884  * bios that span stripes or chunks
1885  *
1886  * return 1 if page cannot be merged to bio
1887  * return 0 if page can be merged to bio
1888  * return error otherwise
1889  */
1890 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1891 			 size_t size, struct bio *bio,
1892 			 unsigned long bio_flags)
1893 {
1894 	struct inode *inode = page->mapping->host;
1895 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1896 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1897 	u64 length = 0;
1898 	u64 map_length;
1899 	int ret;
1900 
1901 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1902 		return 0;
1903 
1904 	length = bio->bi_iter.bi_size;
1905 	map_length = length;
1906 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1907 			      NULL, 0);
1908 	if (ret < 0)
1909 		return ret;
1910 	if (map_length < length + size)
1911 		return 1;
1912 	return 0;
1913 }
1914 
1915 /*
1916  * in order to insert checksums into the metadata in large chunks,
1917  * we wait until bio submission time.   All the pages in the bio are
1918  * checksummed and sums are attached onto the ordered extent record.
1919  *
1920  * At IO completion time the cums attached on the ordered extent record
1921  * are inserted into the btree
1922  */
1923 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1924 				    u64 bio_offset)
1925 {
1926 	struct inode *inode = private_data;
1927 	blk_status_t ret = 0;
1928 
1929 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1930 	BUG_ON(ret); /* -ENOMEM */
1931 	return 0;
1932 }
1933 
1934 /*
1935  * in order to insert checksums into the metadata in large chunks,
1936  * we wait until bio submission time.   All the pages in the bio are
1937  * checksummed and sums are attached onto the ordered extent record.
1938  *
1939  * At IO completion time the cums attached on the ordered extent record
1940  * are inserted into the btree
1941  */
1942 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1943 			  int mirror_num)
1944 {
1945 	struct inode *inode = private_data;
1946 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1947 	blk_status_t ret;
1948 
1949 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1950 	if (ret) {
1951 		bio->bi_status = ret;
1952 		bio_endio(bio);
1953 	}
1954 	return ret;
1955 }
1956 
1957 /*
1958  * extent_io.c submission hook. This does the right thing for csum calculation
1959  * on write, or reading the csums from the tree before a read.
1960  *
1961  * Rules about async/sync submit,
1962  * a) read:				sync submit
1963  *
1964  * b) write without checksum:		sync submit
1965  *
1966  * c) write with checksum:
1967  *    c-1) if bio is issued by fsync:	sync submit
1968  *         (sync_writers != 0)
1969  *
1970  *    c-2) if root is reloc root:	sync submit
1971  *         (only in case of buffered IO)
1972  *
1973  *    c-3) otherwise:			async submit
1974  */
1975 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1976 				 int mirror_num, unsigned long bio_flags,
1977 				 u64 bio_offset)
1978 {
1979 	struct inode *inode = private_data;
1980 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1981 	struct btrfs_root *root = BTRFS_I(inode)->root;
1982 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1983 	blk_status_t ret = 0;
1984 	int skip_sum;
1985 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1986 
1987 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1988 
1989 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1990 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1991 
1992 	if (bio_op(bio) != REQ_OP_WRITE) {
1993 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1994 		if (ret)
1995 			goto out;
1996 
1997 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1998 			ret = btrfs_submit_compressed_read(inode, bio,
1999 							   mirror_num,
2000 							   bio_flags);
2001 			goto out;
2002 		} else if (!skip_sum) {
2003 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2004 			if (ret)
2005 				goto out;
2006 		}
2007 		goto mapit;
2008 	} else if (async && !skip_sum) {
2009 		/* csum items have already been cloned */
2010 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2011 			goto mapit;
2012 		/* we're doing a write, do the async checksumming */
2013 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2014 					  bio_offset, inode,
2015 					  btrfs_submit_bio_start);
2016 		goto out;
2017 	} else if (!skip_sum) {
2018 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2019 		if (ret)
2020 			goto out;
2021 	}
2022 
2023 mapit:
2024 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2025 
2026 out:
2027 	if (ret) {
2028 		bio->bi_status = ret;
2029 		bio_endio(bio);
2030 	}
2031 	return ret;
2032 }
2033 
2034 /*
2035  * given a list of ordered sums record them in the inode.  This happens
2036  * at IO completion time based on sums calculated at bio submission time.
2037  */
2038 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2039 			     struct inode *inode, struct list_head *list)
2040 {
2041 	struct btrfs_ordered_sum *sum;
2042 	int ret;
2043 
2044 	list_for_each_entry(sum, list, list) {
2045 		trans->adding_csums = true;
2046 		ret = btrfs_csum_file_blocks(trans,
2047 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2048 		trans->adding_csums = false;
2049 		if (ret)
2050 			return ret;
2051 	}
2052 	return 0;
2053 }
2054 
2055 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2056 			      unsigned int extra_bits,
2057 			      struct extent_state **cached_state, int dedupe)
2058 {
2059 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2060 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2061 				   extra_bits, cached_state);
2062 }
2063 
2064 /* see btrfs_writepage_start_hook for details on why this is required */
2065 struct btrfs_writepage_fixup {
2066 	struct page *page;
2067 	struct btrfs_work work;
2068 };
2069 
2070 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2071 {
2072 	struct btrfs_writepage_fixup *fixup;
2073 	struct btrfs_ordered_extent *ordered;
2074 	struct extent_state *cached_state = NULL;
2075 	struct extent_changeset *data_reserved = NULL;
2076 	struct page *page;
2077 	struct inode *inode;
2078 	u64 page_start;
2079 	u64 page_end;
2080 	int ret;
2081 
2082 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2083 	page = fixup->page;
2084 again:
2085 	lock_page(page);
2086 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2087 		ClearPageChecked(page);
2088 		goto out_page;
2089 	}
2090 
2091 	inode = page->mapping->host;
2092 	page_start = page_offset(page);
2093 	page_end = page_offset(page) + PAGE_SIZE - 1;
2094 
2095 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2096 			 &cached_state);
2097 
2098 	/* already ordered? We're done */
2099 	if (PagePrivate2(page))
2100 		goto out;
2101 
2102 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2103 					PAGE_SIZE);
2104 	if (ordered) {
2105 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2106 				     page_end, &cached_state);
2107 		unlock_page(page);
2108 		btrfs_start_ordered_extent(inode, ordered, 1);
2109 		btrfs_put_ordered_extent(ordered);
2110 		goto again;
2111 	}
2112 
2113 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2114 					   PAGE_SIZE);
2115 	if (ret) {
2116 		mapping_set_error(page->mapping, ret);
2117 		end_extent_writepage(page, ret, page_start, page_end);
2118 		ClearPageChecked(page);
2119 		goto out;
2120 	 }
2121 
2122 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2123 					&cached_state, 0);
2124 	if (ret) {
2125 		mapping_set_error(page->mapping, ret);
2126 		end_extent_writepage(page, ret, page_start, page_end);
2127 		ClearPageChecked(page);
2128 		goto out;
2129 	}
2130 
2131 	ClearPageChecked(page);
2132 	set_page_dirty(page);
2133 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2134 out:
2135 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2136 			     &cached_state);
2137 out_page:
2138 	unlock_page(page);
2139 	put_page(page);
2140 	kfree(fixup);
2141 	extent_changeset_free(data_reserved);
2142 }
2143 
2144 /*
2145  * There are a few paths in the higher layers of the kernel that directly
2146  * set the page dirty bit without asking the filesystem if it is a
2147  * good idea.  This causes problems because we want to make sure COW
2148  * properly happens and the data=ordered rules are followed.
2149  *
2150  * In our case any range that doesn't have the ORDERED bit set
2151  * hasn't been properly setup for IO.  We kick off an async process
2152  * to fix it up.  The async helper will wait for ordered extents, set
2153  * the delalloc bit and make it safe to write the page.
2154  */
2155 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2156 {
2157 	struct inode *inode = page->mapping->host;
2158 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2159 	struct btrfs_writepage_fixup *fixup;
2160 
2161 	/* this page is properly in the ordered list */
2162 	if (TestClearPagePrivate2(page))
2163 		return 0;
2164 
2165 	if (PageChecked(page))
2166 		return -EAGAIN;
2167 
2168 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2169 	if (!fixup)
2170 		return -EAGAIN;
2171 
2172 	SetPageChecked(page);
2173 	get_page(page);
2174 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2175 			btrfs_writepage_fixup_worker, NULL, NULL);
2176 	fixup->page = page;
2177 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2178 	return -EBUSY;
2179 }
2180 
2181 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2182 				       struct inode *inode, u64 file_pos,
2183 				       u64 disk_bytenr, u64 disk_num_bytes,
2184 				       u64 num_bytes, u64 ram_bytes,
2185 				       u8 compression, u8 encryption,
2186 				       u16 other_encoding, int extent_type)
2187 {
2188 	struct btrfs_root *root = BTRFS_I(inode)->root;
2189 	struct btrfs_file_extent_item *fi;
2190 	struct btrfs_path *path;
2191 	struct extent_buffer *leaf;
2192 	struct btrfs_key ins;
2193 	u64 qg_released;
2194 	int extent_inserted = 0;
2195 	int ret;
2196 
2197 	path = btrfs_alloc_path();
2198 	if (!path)
2199 		return -ENOMEM;
2200 
2201 	/*
2202 	 * we may be replacing one extent in the tree with another.
2203 	 * The new extent is pinned in the extent map, and we don't want
2204 	 * to drop it from the cache until it is completely in the btree.
2205 	 *
2206 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2207 	 * the caller is expected to unpin it and allow it to be merged
2208 	 * with the others.
2209 	 */
2210 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2211 				   file_pos + num_bytes, NULL, 0,
2212 				   1, sizeof(*fi), &extent_inserted);
2213 	if (ret)
2214 		goto out;
2215 
2216 	if (!extent_inserted) {
2217 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2218 		ins.offset = file_pos;
2219 		ins.type = BTRFS_EXTENT_DATA_KEY;
2220 
2221 		path->leave_spinning = 1;
2222 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2223 					      sizeof(*fi));
2224 		if (ret)
2225 			goto out;
2226 	}
2227 	leaf = path->nodes[0];
2228 	fi = btrfs_item_ptr(leaf, path->slots[0],
2229 			    struct btrfs_file_extent_item);
2230 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2231 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2232 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2233 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2234 	btrfs_set_file_extent_offset(leaf, fi, 0);
2235 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2236 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2237 	btrfs_set_file_extent_compression(leaf, fi, compression);
2238 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2239 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2240 
2241 	btrfs_mark_buffer_dirty(leaf);
2242 	btrfs_release_path(path);
2243 
2244 	inode_add_bytes(inode, num_bytes);
2245 
2246 	ins.objectid = disk_bytenr;
2247 	ins.offset = disk_num_bytes;
2248 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2249 
2250 	/*
2251 	 * Release the reserved range from inode dirty range map, as it is
2252 	 * already moved into delayed_ref_head
2253 	 */
2254 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2255 	if (ret < 0)
2256 		goto out;
2257 	qg_released = ret;
2258 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2259 					       btrfs_ino(BTRFS_I(inode)),
2260 					       file_pos, qg_released, &ins);
2261 out:
2262 	btrfs_free_path(path);
2263 
2264 	return ret;
2265 }
2266 
2267 /* snapshot-aware defrag */
2268 struct sa_defrag_extent_backref {
2269 	struct rb_node node;
2270 	struct old_sa_defrag_extent *old;
2271 	u64 root_id;
2272 	u64 inum;
2273 	u64 file_pos;
2274 	u64 extent_offset;
2275 	u64 num_bytes;
2276 	u64 generation;
2277 };
2278 
2279 struct old_sa_defrag_extent {
2280 	struct list_head list;
2281 	struct new_sa_defrag_extent *new;
2282 
2283 	u64 extent_offset;
2284 	u64 bytenr;
2285 	u64 offset;
2286 	u64 len;
2287 	int count;
2288 };
2289 
2290 struct new_sa_defrag_extent {
2291 	struct rb_root root;
2292 	struct list_head head;
2293 	struct btrfs_path *path;
2294 	struct inode *inode;
2295 	u64 file_pos;
2296 	u64 len;
2297 	u64 bytenr;
2298 	u64 disk_len;
2299 	u8 compress_type;
2300 };
2301 
2302 static int backref_comp(struct sa_defrag_extent_backref *b1,
2303 			struct sa_defrag_extent_backref *b2)
2304 {
2305 	if (b1->root_id < b2->root_id)
2306 		return -1;
2307 	else if (b1->root_id > b2->root_id)
2308 		return 1;
2309 
2310 	if (b1->inum < b2->inum)
2311 		return -1;
2312 	else if (b1->inum > b2->inum)
2313 		return 1;
2314 
2315 	if (b1->file_pos < b2->file_pos)
2316 		return -1;
2317 	else if (b1->file_pos > b2->file_pos)
2318 		return 1;
2319 
2320 	/*
2321 	 * [------------------------------] ===> (a range of space)
2322 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2323 	 * |<---------------------------->| ===> (fs/file tree B)
2324 	 *
2325 	 * A range of space can refer to two file extents in one tree while
2326 	 * refer to only one file extent in another tree.
2327 	 *
2328 	 * So we may process a disk offset more than one time(two extents in A)
2329 	 * and locate at the same extent(one extent in B), then insert two same
2330 	 * backrefs(both refer to the extent in B).
2331 	 */
2332 	return 0;
2333 }
2334 
2335 static void backref_insert(struct rb_root *root,
2336 			   struct sa_defrag_extent_backref *backref)
2337 {
2338 	struct rb_node **p = &root->rb_node;
2339 	struct rb_node *parent = NULL;
2340 	struct sa_defrag_extent_backref *entry;
2341 	int ret;
2342 
2343 	while (*p) {
2344 		parent = *p;
2345 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2346 
2347 		ret = backref_comp(backref, entry);
2348 		if (ret < 0)
2349 			p = &(*p)->rb_left;
2350 		else
2351 			p = &(*p)->rb_right;
2352 	}
2353 
2354 	rb_link_node(&backref->node, parent, p);
2355 	rb_insert_color(&backref->node, root);
2356 }
2357 
2358 /*
2359  * Note the backref might has changed, and in this case we just return 0.
2360  */
2361 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2362 				       void *ctx)
2363 {
2364 	struct btrfs_file_extent_item *extent;
2365 	struct old_sa_defrag_extent *old = ctx;
2366 	struct new_sa_defrag_extent *new = old->new;
2367 	struct btrfs_path *path = new->path;
2368 	struct btrfs_key key;
2369 	struct btrfs_root *root;
2370 	struct sa_defrag_extent_backref *backref;
2371 	struct extent_buffer *leaf;
2372 	struct inode *inode = new->inode;
2373 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2374 	int slot;
2375 	int ret;
2376 	u64 extent_offset;
2377 	u64 num_bytes;
2378 
2379 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2380 	    inum == btrfs_ino(BTRFS_I(inode)))
2381 		return 0;
2382 
2383 	key.objectid = root_id;
2384 	key.type = BTRFS_ROOT_ITEM_KEY;
2385 	key.offset = (u64)-1;
2386 
2387 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2388 	if (IS_ERR(root)) {
2389 		if (PTR_ERR(root) == -ENOENT)
2390 			return 0;
2391 		WARN_ON(1);
2392 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2393 			 inum, offset, root_id);
2394 		return PTR_ERR(root);
2395 	}
2396 
2397 	key.objectid = inum;
2398 	key.type = BTRFS_EXTENT_DATA_KEY;
2399 	if (offset > (u64)-1 << 32)
2400 		key.offset = 0;
2401 	else
2402 		key.offset = offset;
2403 
2404 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2405 	if (WARN_ON(ret < 0))
2406 		return ret;
2407 	ret = 0;
2408 
2409 	while (1) {
2410 		cond_resched();
2411 
2412 		leaf = path->nodes[0];
2413 		slot = path->slots[0];
2414 
2415 		if (slot >= btrfs_header_nritems(leaf)) {
2416 			ret = btrfs_next_leaf(root, path);
2417 			if (ret < 0) {
2418 				goto out;
2419 			} else if (ret > 0) {
2420 				ret = 0;
2421 				goto out;
2422 			}
2423 			continue;
2424 		}
2425 
2426 		path->slots[0]++;
2427 
2428 		btrfs_item_key_to_cpu(leaf, &key, slot);
2429 
2430 		if (key.objectid > inum)
2431 			goto out;
2432 
2433 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2434 			continue;
2435 
2436 		extent = btrfs_item_ptr(leaf, slot,
2437 					struct btrfs_file_extent_item);
2438 
2439 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2440 			continue;
2441 
2442 		/*
2443 		 * 'offset' refers to the exact key.offset,
2444 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2445 		 * (key.offset - extent_offset).
2446 		 */
2447 		if (key.offset != offset)
2448 			continue;
2449 
2450 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2451 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2452 
2453 		if (extent_offset >= old->extent_offset + old->offset +
2454 		    old->len || extent_offset + num_bytes <=
2455 		    old->extent_offset + old->offset)
2456 			continue;
2457 		break;
2458 	}
2459 
2460 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2461 	if (!backref) {
2462 		ret = -ENOENT;
2463 		goto out;
2464 	}
2465 
2466 	backref->root_id = root_id;
2467 	backref->inum = inum;
2468 	backref->file_pos = offset;
2469 	backref->num_bytes = num_bytes;
2470 	backref->extent_offset = extent_offset;
2471 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2472 	backref->old = old;
2473 	backref_insert(&new->root, backref);
2474 	old->count++;
2475 out:
2476 	btrfs_release_path(path);
2477 	WARN_ON(ret);
2478 	return ret;
2479 }
2480 
2481 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2482 				   struct new_sa_defrag_extent *new)
2483 {
2484 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2485 	struct old_sa_defrag_extent *old, *tmp;
2486 	int ret;
2487 
2488 	new->path = path;
2489 
2490 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2491 		ret = iterate_inodes_from_logical(old->bytenr +
2492 						  old->extent_offset, fs_info,
2493 						  path, record_one_backref,
2494 						  old, false);
2495 		if (ret < 0 && ret != -ENOENT)
2496 			return false;
2497 
2498 		/* no backref to be processed for this extent */
2499 		if (!old->count) {
2500 			list_del(&old->list);
2501 			kfree(old);
2502 		}
2503 	}
2504 
2505 	if (list_empty(&new->head))
2506 		return false;
2507 
2508 	return true;
2509 }
2510 
2511 static int relink_is_mergable(struct extent_buffer *leaf,
2512 			      struct btrfs_file_extent_item *fi,
2513 			      struct new_sa_defrag_extent *new)
2514 {
2515 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2516 		return 0;
2517 
2518 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2519 		return 0;
2520 
2521 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2522 		return 0;
2523 
2524 	if (btrfs_file_extent_encryption(leaf, fi) ||
2525 	    btrfs_file_extent_other_encoding(leaf, fi))
2526 		return 0;
2527 
2528 	return 1;
2529 }
2530 
2531 /*
2532  * Note the backref might has changed, and in this case we just return 0.
2533  */
2534 static noinline int relink_extent_backref(struct btrfs_path *path,
2535 				 struct sa_defrag_extent_backref *prev,
2536 				 struct sa_defrag_extent_backref *backref)
2537 {
2538 	struct btrfs_file_extent_item *extent;
2539 	struct btrfs_file_extent_item *item;
2540 	struct btrfs_ordered_extent *ordered;
2541 	struct btrfs_trans_handle *trans;
2542 	struct btrfs_root *root;
2543 	struct btrfs_key key;
2544 	struct extent_buffer *leaf;
2545 	struct old_sa_defrag_extent *old = backref->old;
2546 	struct new_sa_defrag_extent *new = old->new;
2547 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2548 	struct inode *inode;
2549 	struct extent_state *cached = NULL;
2550 	int ret = 0;
2551 	u64 start;
2552 	u64 len;
2553 	u64 lock_start;
2554 	u64 lock_end;
2555 	bool merge = false;
2556 	int index;
2557 
2558 	if (prev && prev->root_id == backref->root_id &&
2559 	    prev->inum == backref->inum &&
2560 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2561 		merge = true;
2562 
2563 	/* step 1: get root */
2564 	key.objectid = backref->root_id;
2565 	key.type = BTRFS_ROOT_ITEM_KEY;
2566 	key.offset = (u64)-1;
2567 
2568 	index = srcu_read_lock(&fs_info->subvol_srcu);
2569 
2570 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2571 	if (IS_ERR(root)) {
2572 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2573 		if (PTR_ERR(root) == -ENOENT)
2574 			return 0;
2575 		return PTR_ERR(root);
2576 	}
2577 
2578 	if (btrfs_root_readonly(root)) {
2579 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2580 		return 0;
2581 	}
2582 
2583 	/* step 2: get inode */
2584 	key.objectid = backref->inum;
2585 	key.type = BTRFS_INODE_ITEM_KEY;
2586 	key.offset = 0;
2587 
2588 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2589 	if (IS_ERR(inode)) {
2590 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2591 		return 0;
2592 	}
2593 
2594 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2595 
2596 	/* step 3: relink backref */
2597 	lock_start = backref->file_pos;
2598 	lock_end = backref->file_pos + backref->num_bytes - 1;
2599 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2600 			 &cached);
2601 
2602 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2603 	if (ordered) {
2604 		btrfs_put_ordered_extent(ordered);
2605 		goto out_unlock;
2606 	}
2607 
2608 	trans = btrfs_join_transaction(root);
2609 	if (IS_ERR(trans)) {
2610 		ret = PTR_ERR(trans);
2611 		goto out_unlock;
2612 	}
2613 
2614 	key.objectid = backref->inum;
2615 	key.type = BTRFS_EXTENT_DATA_KEY;
2616 	key.offset = backref->file_pos;
2617 
2618 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2619 	if (ret < 0) {
2620 		goto out_free_path;
2621 	} else if (ret > 0) {
2622 		ret = 0;
2623 		goto out_free_path;
2624 	}
2625 
2626 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2627 				struct btrfs_file_extent_item);
2628 
2629 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2630 	    backref->generation)
2631 		goto out_free_path;
2632 
2633 	btrfs_release_path(path);
2634 
2635 	start = backref->file_pos;
2636 	if (backref->extent_offset < old->extent_offset + old->offset)
2637 		start += old->extent_offset + old->offset -
2638 			 backref->extent_offset;
2639 
2640 	len = min(backref->extent_offset + backref->num_bytes,
2641 		  old->extent_offset + old->offset + old->len);
2642 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2643 
2644 	ret = btrfs_drop_extents(trans, root, inode, start,
2645 				 start + len, 1);
2646 	if (ret)
2647 		goto out_free_path;
2648 again:
2649 	key.objectid = btrfs_ino(BTRFS_I(inode));
2650 	key.type = BTRFS_EXTENT_DATA_KEY;
2651 	key.offset = start;
2652 
2653 	path->leave_spinning = 1;
2654 	if (merge) {
2655 		struct btrfs_file_extent_item *fi;
2656 		u64 extent_len;
2657 		struct btrfs_key found_key;
2658 
2659 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2660 		if (ret < 0)
2661 			goto out_free_path;
2662 
2663 		path->slots[0]--;
2664 		leaf = path->nodes[0];
2665 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2666 
2667 		fi = btrfs_item_ptr(leaf, path->slots[0],
2668 				    struct btrfs_file_extent_item);
2669 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2670 
2671 		if (extent_len + found_key.offset == start &&
2672 		    relink_is_mergable(leaf, fi, new)) {
2673 			btrfs_set_file_extent_num_bytes(leaf, fi,
2674 							extent_len + len);
2675 			btrfs_mark_buffer_dirty(leaf);
2676 			inode_add_bytes(inode, len);
2677 
2678 			ret = 1;
2679 			goto out_free_path;
2680 		} else {
2681 			merge = false;
2682 			btrfs_release_path(path);
2683 			goto again;
2684 		}
2685 	}
2686 
2687 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2688 					sizeof(*extent));
2689 	if (ret) {
2690 		btrfs_abort_transaction(trans, ret);
2691 		goto out_free_path;
2692 	}
2693 
2694 	leaf = path->nodes[0];
2695 	item = btrfs_item_ptr(leaf, path->slots[0],
2696 				struct btrfs_file_extent_item);
2697 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2698 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2699 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2700 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2701 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2702 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2703 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2704 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2705 	btrfs_set_file_extent_encryption(leaf, item, 0);
2706 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2707 
2708 	btrfs_mark_buffer_dirty(leaf);
2709 	inode_add_bytes(inode, len);
2710 	btrfs_release_path(path);
2711 
2712 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2713 			new->disk_len, 0,
2714 			backref->root_id, backref->inum,
2715 			new->file_pos);	/* start - extent_offset */
2716 	if (ret) {
2717 		btrfs_abort_transaction(trans, ret);
2718 		goto out_free_path;
2719 	}
2720 
2721 	ret = 1;
2722 out_free_path:
2723 	btrfs_release_path(path);
2724 	path->leave_spinning = 0;
2725 	btrfs_end_transaction(trans);
2726 out_unlock:
2727 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2728 			     &cached);
2729 	iput(inode);
2730 	return ret;
2731 }
2732 
2733 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2734 {
2735 	struct old_sa_defrag_extent *old, *tmp;
2736 
2737 	if (!new)
2738 		return;
2739 
2740 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2741 		kfree(old);
2742 	}
2743 	kfree(new);
2744 }
2745 
2746 static void relink_file_extents(struct new_sa_defrag_extent *new)
2747 {
2748 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2749 	struct btrfs_path *path;
2750 	struct sa_defrag_extent_backref *backref;
2751 	struct sa_defrag_extent_backref *prev = NULL;
2752 	struct rb_node *node;
2753 	int ret;
2754 
2755 	path = btrfs_alloc_path();
2756 	if (!path)
2757 		return;
2758 
2759 	if (!record_extent_backrefs(path, new)) {
2760 		btrfs_free_path(path);
2761 		goto out;
2762 	}
2763 	btrfs_release_path(path);
2764 
2765 	while (1) {
2766 		node = rb_first(&new->root);
2767 		if (!node)
2768 			break;
2769 		rb_erase(node, &new->root);
2770 
2771 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2772 
2773 		ret = relink_extent_backref(path, prev, backref);
2774 		WARN_ON(ret < 0);
2775 
2776 		kfree(prev);
2777 
2778 		if (ret == 1)
2779 			prev = backref;
2780 		else
2781 			prev = NULL;
2782 		cond_resched();
2783 	}
2784 	kfree(prev);
2785 
2786 	btrfs_free_path(path);
2787 out:
2788 	free_sa_defrag_extent(new);
2789 
2790 	atomic_dec(&fs_info->defrag_running);
2791 	wake_up(&fs_info->transaction_wait);
2792 }
2793 
2794 static struct new_sa_defrag_extent *
2795 record_old_file_extents(struct inode *inode,
2796 			struct btrfs_ordered_extent *ordered)
2797 {
2798 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2799 	struct btrfs_root *root = BTRFS_I(inode)->root;
2800 	struct btrfs_path *path;
2801 	struct btrfs_key key;
2802 	struct old_sa_defrag_extent *old;
2803 	struct new_sa_defrag_extent *new;
2804 	int ret;
2805 
2806 	new = kmalloc(sizeof(*new), GFP_NOFS);
2807 	if (!new)
2808 		return NULL;
2809 
2810 	new->inode = inode;
2811 	new->file_pos = ordered->file_offset;
2812 	new->len = ordered->len;
2813 	new->bytenr = ordered->start;
2814 	new->disk_len = ordered->disk_len;
2815 	new->compress_type = ordered->compress_type;
2816 	new->root = RB_ROOT;
2817 	INIT_LIST_HEAD(&new->head);
2818 
2819 	path = btrfs_alloc_path();
2820 	if (!path)
2821 		goto out_kfree;
2822 
2823 	key.objectid = btrfs_ino(BTRFS_I(inode));
2824 	key.type = BTRFS_EXTENT_DATA_KEY;
2825 	key.offset = new->file_pos;
2826 
2827 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2828 	if (ret < 0)
2829 		goto out_free_path;
2830 	if (ret > 0 && path->slots[0] > 0)
2831 		path->slots[0]--;
2832 
2833 	/* find out all the old extents for the file range */
2834 	while (1) {
2835 		struct btrfs_file_extent_item *extent;
2836 		struct extent_buffer *l;
2837 		int slot;
2838 		u64 num_bytes;
2839 		u64 offset;
2840 		u64 end;
2841 		u64 disk_bytenr;
2842 		u64 extent_offset;
2843 
2844 		l = path->nodes[0];
2845 		slot = path->slots[0];
2846 
2847 		if (slot >= btrfs_header_nritems(l)) {
2848 			ret = btrfs_next_leaf(root, path);
2849 			if (ret < 0)
2850 				goto out_free_path;
2851 			else if (ret > 0)
2852 				break;
2853 			continue;
2854 		}
2855 
2856 		btrfs_item_key_to_cpu(l, &key, slot);
2857 
2858 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2859 			break;
2860 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2861 			break;
2862 		if (key.offset >= new->file_pos + new->len)
2863 			break;
2864 
2865 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2866 
2867 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2868 		if (key.offset + num_bytes < new->file_pos)
2869 			goto next;
2870 
2871 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2872 		if (!disk_bytenr)
2873 			goto next;
2874 
2875 		extent_offset = btrfs_file_extent_offset(l, extent);
2876 
2877 		old = kmalloc(sizeof(*old), GFP_NOFS);
2878 		if (!old)
2879 			goto out_free_path;
2880 
2881 		offset = max(new->file_pos, key.offset);
2882 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2883 
2884 		old->bytenr = disk_bytenr;
2885 		old->extent_offset = extent_offset;
2886 		old->offset = offset - key.offset;
2887 		old->len = end - offset;
2888 		old->new = new;
2889 		old->count = 0;
2890 		list_add_tail(&old->list, &new->head);
2891 next:
2892 		path->slots[0]++;
2893 		cond_resched();
2894 	}
2895 
2896 	btrfs_free_path(path);
2897 	atomic_inc(&fs_info->defrag_running);
2898 
2899 	return new;
2900 
2901 out_free_path:
2902 	btrfs_free_path(path);
2903 out_kfree:
2904 	free_sa_defrag_extent(new);
2905 	return NULL;
2906 }
2907 
2908 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2909 					 u64 start, u64 len)
2910 {
2911 	struct btrfs_block_group_cache *cache;
2912 
2913 	cache = btrfs_lookup_block_group(fs_info, start);
2914 	ASSERT(cache);
2915 
2916 	spin_lock(&cache->lock);
2917 	cache->delalloc_bytes -= len;
2918 	spin_unlock(&cache->lock);
2919 
2920 	btrfs_put_block_group(cache);
2921 }
2922 
2923 /* as ordered data IO finishes, this gets called so we can finish
2924  * an ordered extent if the range of bytes in the file it covers are
2925  * fully written.
2926  */
2927 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2928 {
2929 	struct inode *inode = ordered_extent->inode;
2930 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2931 	struct btrfs_root *root = BTRFS_I(inode)->root;
2932 	struct btrfs_trans_handle *trans = NULL;
2933 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2934 	struct extent_state *cached_state = NULL;
2935 	struct new_sa_defrag_extent *new = NULL;
2936 	int compress_type = 0;
2937 	int ret = 0;
2938 	u64 logical_len = ordered_extent->len;
2939 	bool nolock;
2940 	bool truncated = false;
2941 	bool range_locked = false;
2942 	bool clear_new_delalloc_bytes = false;
2943 
2944 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2945 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2946 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2947 		clear_new_delalloc_bytes = true;
2948 
2949 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2950 
2951 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2952 		ret = -EIO;
2953 		goto out;
2954 	}
2955 
2956 	btrfs_free_io_failure_record(BTRFS_I(inode),
2957 			ordered_extent->file_offset,
2958 			ordered_extent->file_offset +
2959 			ordered_extent->len - 1);
2960 
2961 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2962 		truncated = true;
2963 		logical_len = ordered_extent->truncated_len;
2964 		/* Truncated the entire extent, don't bother adding */
2965 		if (!logical_len)
2966 			goto out;
2967 	}
2968 
2969 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2970 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2971 
2972 		/*
2973 		 * For mwrite(mmap + memset to write) case, we still reserve
2974 		 * space for NOCOW range.
2975 		 * As NOCOW won't cause a new delayed ref, just free the space
2976 		 */
2977 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2978 				       ordered_extent->len);
2979 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2980 		if (nolock)
2981 			trans = btrfs_join_transaction_nolock(root);
2982 		else
2983 			trans = btrfs_join_transaction(root);
2984 		if (IS_ERR(trans)) {
2985 			ret = PTR_ERR(trans);
2986 			trans = NULL;
2987 			goto out;
2988 		}
2989 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2990 		ret = btrfs_update_inode_fallback(trans, root, inode);
2991 		if (ret) /* -ENOMEM or corruption */
2992 			btrfs_abort_transaction(trans, ret);
2993 		goto out;
2994 	}
2995 
2996 	range_locked = true;
2997 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2998 			 ordered_extent->file_offset + ordered_extent->len - 1,
2999 			 &cached_state);
3000 
3001 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3002 			ordered_extent->file_offset + ordered_extent->len - 1,
3003 			EXTENT_DEFRAG, 0, cached_state);
3004 	if (ret) {
3005 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3006 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3007 			/* the inode is shared */
3008 			new = record_old_file_extents(inode, ordered_extent);
3009 
3010 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3011 			ordered_extent->file_offset + ordered_extent->len - 1,
3012 			EXTENT_DEFRAG, 0, 0, &cached_state);
3013 	}
3014 
3015 	if (nolock)
3016 		trans = btrfs_join_transaction_nolock(root);
3017 	else
3018 		trans = btrfs_join_transaction(root);
3019 	if (IS_ERR(trans)) {
3020 		ret = PTR_ERR(trans);
3021 		trans = NULL;
3022 		goto out;
3023 	}
3024 
3025 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3026 
3027 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3028 		compress_type = ordered_extent->compress_type;
3029 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3030 		BUG_ON(compress_type);
3031 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3032 				       ordered_extent->len);
3033 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3034 						ordered_extent->file_offset,
3035 						ordered_extent->file_offset +
3036 						logical_len);
3037 	} else {
3038 		BUG_ON(root == fs_info->tree_root);
3039 		ret = insert_reserved_file_extent(trans, inode,
3040 						ordered_extent->file_offset,
3041 						ordered_extent->start,
3042 						ordered_extent->disk_len,
3043 						logical_len, logical_len,
3044 						compress_type, 0, 0,
3045 						BTRFS_FILE_EXTENT_REG);
3046 		if (!ret)
3047 			btrfs_release_delalloc_bytes(fs_info,
3048 						     ordered_extent->start,
3049 						     ordered_extent->disk_len);
3050 	}
3051 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3052 			   ordered_extent->file_offset, ordered_extent->len,
3053 			   trans->transid);
3054 	if (ret < 0) {
3055 		btrfs_abort_transaction(trans, ret);
3056 		goto out;
3057 	}
3058 
3059 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3060 	if (ret) {
3061 		btrfs_abort_transaction(trans, ret);
3062 		goto out;
3063 	}
3064 
3065 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3066 	ret = btrfs_update_inode_fallback(trans, root, inode);
3067 	if (ret) { /* -ENOMEM or corruption */
3068 		btrfs_abort_transaction(trans, ret);
3069 		goto out;
3070 	}
3071 	ret = 0;
3072 out:
3073 	if (range_locked || clear_new_delalloc_bytes) {
3074 		unsigned int clear_bits = 0;
3075 
3076 		if (range_locked)
3077 			clear_bits |= EXTENT_LOCKED;
3078 		if (clear_new_delalloc_bytes)
3079 			clear_bits |= EXTENT_DELALLOC_NEW;
3080 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3081 				 ordered_extent->file_offset,
3082 				 ordered_extent->file_offset +
3083 				 ordered_extent->len - 1,
3084 				 clear_bits,
3085 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3086 				 0, &cached_state);
3087 	}
3088 
3089 	if (trans)
3090 		btrfs_end_transaction(trans);
3091 
3092 	if (ret || truncated) {
3093 		u64 start, end;
3094 
3095 		if (truncated)
3096 			start = ordered_extent->file_offset + logical_len;
3097 		else
3098 			start = ordered_extent->file_offset;
3099 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3100 		clear_extent_uptodate(io_tree, start, end, NULL);
3101 
3102 		/* Drop the cache for the part of the extent we didn't write. */
3103 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3104 
3105 		/*
3106 		 * If the ordered extent had an IOERR or something else went
3107 		 * wrong we need to return the space for this ordered extent
3108 		 * back to the allocator.  We only free the extent in the
3109 		 * truncated case if we didn't write out the extent at all.
3110 		 */
3111 		if ((ret || !logical_len) &&
3112 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3113 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3114 			btrfs_free_reserved_extent(fs_info,
3115 						   ordered_extent->start,
3116 						   ordered_extent->disk_len, 1);
3117 	}
3118 
3119 
3120 	/*
3121 	 * This needs to be done to make sure anybody waiting knows we are done
3122 	 * updating everything for this ordered extent.
3123 	 */
3124 	btrfs_remove_ordered_extent(inode, ordered_extent);
3125 
3126 	/* for snapshot-aware defrag */
3127 	if (new) {
3128 		if (ret) {
3129 			free_sa_defrag_extent(new);
3130 			atomic_dec(&fs_info->defrag_running);
3131 		} else {
3132 			relink_file_extents(new);
3133 		}
3134 	}
3135 
3136 	/* once for us */
3137 	btrfs_put_ordered_extent(ordered_extent);
3138 	/* once for the tree */
3139 	btrfs_put_ordered_extent(ordered_extent);
3140 
3141 	/* Try to release some metadata so we don't get an OOM but don't wait */
3142 	btrfs_btree_balance_dirty_nodelay(fs_info);
3143 
3144 	return ret;
3145 }
3146 
3147 static void finish_ordered_fn(struct btrfs_work *work)
3148 {
3149 	struct btrfs_ordered_extent *ordered_extent;
3150 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3151 	btrfs_finish_ordered_io(ordered_extent);
3152 }
3153 
3154 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3155 				struct extent_state *state, int uptodate)
3156 {
3157 	struct inode *inode = page->mapping->host;
3158 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3159 	struct btrfs_ordered_extent *ordered_extent = NULL;
3160 	struct btrfs_workqueue *wq;
3161 	btrfs_work_func_t func;
3162 
3163 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3164 
3165 	ClearPagePrivate2(page);
3166 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3167 					    end - start + 1, uptodate))
3168 		return;
3169 
3170 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3171 		wq = fs_info->endio_freespace_worker;
3172 		func = btrfs_freespace_write_helper;
3173 	} else {
3174 		wq = fs_info->endio_write_workers;
3175 		func = btrfs_endio_write_helper;
3176 	}
3177 
3178 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3179 			NULL);
3180 	btrfs_queue_work(wq, &ordered_extent->work);
3181 }
3182 
3183 static int __readpage_endio_check(struct inode *inode,
3184 				  struct btrfs_io_bio *io_bio,
3185 				  int icsum, struct page *page,
3186 				  int pgoff, u64 start, size_t len)
3187 {
3188 	char *kaddr;
3189 	u32 csum_expected;
3190 	u32 csum = ~(u32)0;
3191 
3192 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3193 
3194 	kaddr = kmap_atomic(page);
3195 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3196 	btrfs_csum_final(csum, (u8 *)&csum);
3197 	if (csum != csum_expected)
3198 		goto zeroit;
3199 
3200 	kunmap_atomic(kaddr);
3201 	return 0;
3202 zeroit:
3203 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3204 				    io_bio->mirror_num);
3205 	memset(kaddr + pgoff, 1, len);
3206 	flush_dcache_page(page);
3207 	kunmap_atomic(kaddr);
3208 	return -EIO;
3209 }
3210 
3211 /*
3212  * when reads are done, we need to check csums to verify the data is correct
3213  * if there's a match, we allow the bio to finish.  If not, the code in
3214  * extent_io.c will try to find good copies for us.
3215  */
3216 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3217 				      u64 phy_offset, struct page *page,
3218 				      u64 start, u64 end, int mirror)
3219 {
3220 	size_t offset = start - page_offset(page);
3221 	struct inode *inode = page->mapping->host;
3222 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3223 	struct btrfs_root *root = BTRFS_I(inode)->root;
3224 
3225 	if (PageChecked(page)) {
3226 		ClearPageChecked(page);
3227 		return 0;
3228 	}
3229 
3230 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3231 		return 0;
3232 
3233 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3234 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3235 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3236 		return 0;
3237 	}
3238 
3239 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3240 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3241 				      start, (size_t)(end - start + 1));
3242 }
3243 
3244 /*
3245  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3246  *
3247  * @inode: The inode we want to perform iput on
3248  *
3249  * This function uses the generic vfs_inode::i_count to track whether we should
3250  * just decrement it (in case it's > 1) or if this is the last iput then link
3251  * the inode to the delayed iput machinery. Delayed iputs are processed at
3252  * transaction commit time/superblock commit/cleaner kthread.
3253  */
3254 void btrfs_add_delayed_iput(struct inode *inode)
3255 {
3256 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3257 	struct btrfs_inode *binode = BTRFS_I(inode);
3258 
3259 	if (atomic_add_unless(&inode->i_count, -1, 1))
3260 		return;
3261 
3262 	spin_lock(&fs_info->delayed_iput_lock);
3263 	ASSERT(list_empty(&binode->delayed_iput));
3264 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3265 	spin_unlock(&fs_info->delayed_iput_lock);
3266 }
3267 
3268 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3269 {
3270 
3271 	spin_lock(&fs_info->delayed_iput_lock);
3272 	while (!list_empty(&fs_info->delayed_iputs)) {
3273 		struct btrfs_inode *inode;
3274 
3275 		inode = list_first_entry(&fs_info->delayed_iputs,
3276 				struct btrfs_inode, delayed_iput);
3277 		list_del_init(&inode->delayed_iput);
3278 		spin_unlock(&fs_info->delayed_iput_lock);
3279 		iput(&inode->vfs_inode);
3280 		spin_lock(&fs_info->delayed_iput_lock);
3281 	}
3282 	spin_unlock(&fs_info->delayed_iput_lock);
3283 }
3284 
3285 /*
3286  * This creates an orphan entry for the given inode in case something goes wrong
3287  * in the middle of an unlink.
3288  */
3289 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3290 		     struct btrfs_inode *inode)
3291 {
3292 	int ret;
3293 
3294 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3295 	if (ret && ret != -EEXIST) {
3296 		btrfs_abort_transaction(trans, ret);
3297 		return ret;
3298 	}
3299 
3300 	return 0;
3301 }
3302 
3303 /*
3304  * We have done the delete so we can go ahead and remove the orphan item for
3305  * this particular inode.
3306  */
3307 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3308 			    struct btrfs_inode *inode)
3309 {
3310 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3311 }
3312 
3313 /*
3314  * this cleans up any orphans that may be left on the list from the last use
3315  * of this root.
3316  */
3317 int btrfs_orphan_cleanup(struct btrfs_root *root)
3318 {
3319 	struct btrfs_fs_info *fs_info = root->fs_info;
3320 	struct btrfs_path *path;
3321 	struct extent_buffer *leaf;
3322 	struct btrfs_key key, found_key;
3323 	struct btrfs_trans_handle *trans;
3324 	struct inode *inode;
3325 	u64 last_objectid = 0;
3326 	int ret = 0, nr_unlink = 0;
3327 
3328 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3329 		return 0;
3330 
3331 	path = btrfs_alloc_path();
3332 	if (!path) {
3333 		ret = -ENOMEM;
3334 		goto out;
3335 	}
3336 	path->reada = READA_BACK;
3337 
3338 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3339 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3340 	key.offset = (u64)-1;
3341 
3342 	while (1) {
3343 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3344 		if (ret < 0)
3345 			goto out;
3346 
3347 		/*
3348 		 * if ret == 0 means we found what we were searching for, which
3349 		 * is weird, but possible, so only screw with path if we didn't
3350 		 * find the key and see if we have stuff that matches
3351 		 */
3352 		if (ret > 0) {
3353 			ret = 0;
3354 			if (path->slots[0] == 0)
3355 				break;
3356 			path->slots[0]--;
3357 		}
3358 
3359 		/* pull out the item */
3360 		leaf = path->nodes[0];
3361 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3362 
3363 		/* make sure the item matches what we want */
3364 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3365 			break;
3366 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3367 			break;
3368 
3369 		/* release the path since we're done with it */
3370 		btrfs_release_path(path);
3371 
3372 		/*
3373 		 * this is where we are basically btrfs_lookup, without the
3374 		 * crossing root thing.  we store the inode number in the
3375 		 * offset of the orphan item.
3376 		 */
3377 
3378 		if (found_key.offset == last_objectid) {
3379 			btrfs_err(fs_info,
3380 				  "Error removing orphan entry, stopping orphan cleanup");
3381 			ret = -EINVAL;
3382 			goto out;
3383 		}
3384 
3385 		last_objectid = found_key.offset;
3386 
3387 		found_key.objectid = found_key.offset;
3388 		found_key.type = BTRFS_INODE_ITEM_KEY;
3389 		found_key.offset = 0;
3390 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3391 		ret = PTR_ERR_OR_ZERO(inode);
3392 		if (ret && ret != -ENOENT)
3393 			goto out;
3394 
3395 		if (ret == -ENOENT && root == fs_info->tree_root) {
3396 			struct btrfs_root *dead_root;
3397 			struct btrfs_fs_info *fs_info = root->fs_info;
3398 			int is_dead_root = 0;
3399 
3400 			/*
3401 			 * this is an orphan in the tree root. Currently these
3402 			 * could come from 2 sources:
3403 			 *  a) a snapshot deletion in progress
3404 			 *  b) a free space cache inode
3405 			 * We need to distinguish those two, as the snapshot
3406 			 * orphan must not get deleted.
3407 			 * find_dead_roots already ran before us, so if this
3408 			 * is a snapshot deletion, we should find the root
3409 			 * in the dead_roots list
3410 			 */
3411 			spin_lock(&fs_info->trans_lock);
3412 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3413 					    root_list) {
3414 				if (dead_root->root_key.objectid ==
3415 				    found_key.objectid) {
3416 					is_dead_root = 1;
3417 					break;
3418 				}
3419 			}
3420 			spin_unlock(&fs_info->trans_lock);
3421 			if (is_dead_root) {
3422 				/* prevent this orphan from being found again */
3423 				key.offset = found_key.objectid - 1;
3424 				continue;
3425 			}
3426 
3427 		}
3428 
3429 		/*
3430 		 * If we have an inode with links, there are a couple of
3431 		 * possibilities. Old kernels (before v3.12) used to create an
3432 		 * orphan item for truncate indicating that there were possibly
3433 		 * extent items past i_size that needed to be deleted. In v3.12,
3434 		 * truncate was changed to update i_size in sync with the extent
3435 		 * items, but the (useless) orphan item was still created. Since
3436 		 * v4.18, we don't create the orphan item for truncate at all.
3437 		 *
3438 		 * So, this item could mean that we need to do a truncate, but
3439 		 * only if this filesystem was last used on a pre-v3.12 kernel
3440 		 * and was not cleanly unmounted. The odds of that are quite
3441 		 * slim, and it's a pain to do the truncate now, so just delete
3442 		 * the orphan item.
3443 		 *
3444 		 * It's also possible that this orphan item was supposed to be
3445 		 * deleted but wasn't. The inode number may have been reused,
3446 		 * but either way, we can delete the orphan item.
3447 		 */
3448 		if (ret == -ENOENT || inode->i_nlink) {
3449 			if (!ret)
3450 				iput(inode);
3451 			trans = btrfs_start_transaction(root, 1);
3452 			if (IS_ERR(trans)) {
3453 				ret = PTR_ERR(trans);
3454 				goto out;
3455 			}
3456 			btrfs_debug(fs_info, "auto deleting %Lu",
3457 				    found_key.objectid);
3458 			ret = btrfs_del_orphan_item(trans, root,
3459 						    found_key.objectid);
3460 			btrfs_end_transaction(trans);
3461 			if (ret)
3462 				goto out;
3463 			continue;
3464 		}
3465 
3466 		nr_unlink++;
3467 
3468 		/* this will do delete_inode and everything for us */
3469 		iput(inode);
3470 	}
3471 	/* release the path since we're done with it */
3472 	btrfs_release_path(path);
3473 
3474 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3475 
3476 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3477 		trans = btrfs_join_transaction(root);
3478 		if (!IS_ERR(trans))
3479 			btrfs_end_transaction(trans);
3480 	}
3481 
3482 	if (nr_unlink)
3483 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3484 
3485 out:
3486 	if (ret)
3487 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3488 	btrfs_free_path(path);
3489 	return ret;
3490 }
3491 
3492 /*
3493  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3494  * don't find any xattrs, we know there can't be any acls.
3495  *
3496  * slot is the slot the inode is in, objectid is the objectid of the inode
3497  */
3498 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3499 					  int slot, u64 objectid,
3500 					  int *first_xattr_slot)
3501 {
3502 	u32 nritems = btrfs_header_nritems(leaf);
3503 	struct btrfs_key found_key;
3504 	static u64 xattr_access = 0;
3505 	static u64 xattr_default = 0;
3506 	int scanned = 0;
3507 
3508 	if (!xattr_access) {
3509 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3510 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3511 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3512 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3513 	}
3514 
3515 	slot++;
3516 	*first_xattr_slot = -1;
3517 	while (slot < nritems) {
3518 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3519 
3520 		/* we found a different objectid, there must not be acls */
3521 		if (found_key.objectid != objectid)
3522 			return 0;
3523 
3524 		/* we found an xattr, assume we've got an acl */
3525 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3526 			if (*first_xattr_slot == -1)
3527 				*first_xattr_slot = slot;
3528 			if (found_key.offset == xattr_access ||
3529 			    found_key.offset == xattr_default)
3530 				return 1;
3531 		}
3532 
3533 		/*
3534 		 * we found a key greater than an xattr key, there can't
3535 		 * be any acls later on
3536 		 */
3537 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3538 			return 0;
3539 
3540 		slot++;
3541 		scanned++;
3542 
3543 		/*
3544 		 * it goes inode, inode backrefs, xattrs, extents,
3545 		 * so if there are a ton of hard links to an inode there can
3546 		 * be a lot of backrefs.  Don't waste time searching too hard,
3547 		 * this is just an optimization
3548 		 */
3549 		if (scanned >= 8)
3550 			break;
3551 	}
3552 	/* we hit the end of the leaf before we found an xattr or
3553 	 * something larger than an xattr.  We have to assume the inode
3554 	 * has acls
3555 	 */
3556 	if (*first_xattr_slot == -1)
3557 		*first_xattr_slot = slot;
3558 	return 1;
3559 }
3560 
3561 /*
3562  * read an inode from the btree into the in-memory inode
3563  */
3564 static int btrfs_read_locked_inode(struct inode *inode)
3565 {
3566 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3567 	struct btrfs_path *path;
3568 	struct extent_buffer *leaf;
3569 	struct btrfs_inode_item *inode_item;
3570 	struct btrfs_root *root = BTRFS_I(inode)->root;
3571 	struct btrfs_key location;
3572 	unsigned long ptr;
3573 	int maybe_acls;
3574 	u32 rdev;
3575 	int ret;
3576 	bool filled = false;
3577 	int first_xattr_slot;
3578 
3579 	ret = btrfs_fill_inode(inode, &rdev);
3580 	if (!ret)
3581 		filled = true;
3582 
3583 	path = btrfs_alloc_path();
3584 	if (!path)
3585 		return -ENOMEM;
3586 
3587 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3588 
3589 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3590 	if (ret) {
3591 		btrfs_free_path(path);
3592 		return ret;
3593 	}
3594 
3595 	leaf = path->nodes[0];
3596 
3597 	if (filled)
3598 		goto cache_index;
3599 
3600 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3601 				    struct btrfs_inode_item);
3602 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3603 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3604 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3605 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3606 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3607 
3608 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3609 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3610 
3611 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3612 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3613 
3614 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3615 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3616 
3617 	BTRFS_I(inode)->i_otime.tv_sec =
3618 		btrfs_timespec_sec(leaf, &inode_item->otime);
3619 	BTRFS_I(inode)->i_otime.tv_nsec =
3620 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3621 
3622 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3623 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3624 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3625 
3626 	inode_set_iversion_queried(inode,
3627 				   btrfs_inode_sequence(leaf, inode_item));
3628 	inode->i_generation = BTRFS_I(inode)->generation;
3629 	inode->i_rdev = 0;
3630 	rdev = btrfs_inode_rdev(leaf, inode_item);
3631 
3632 	BTRFS_I(inode)->index_cnt = (u64)-1;
3633 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3634 
3635 cache_index:
3636 	/*
3637 	 * If we were modified in the current generation and evicted from memory
3638 	 * and then re-read we need to do a full sync since we don't have any
3639 	 * idea about which extents were modified before we were evicted from
3640 	 * cache.
3641 	 *
3642 	 * This is required for both inode re-read from disk and delayed inode
3643 	 * in delayed_nodes_tree.
3644 	 */
3645 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3646 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3647 			&BTRFS_I(inode)->runtime_flags);
3648 
3649 	/*
3650 	 * We don't persist the id of the transaction where an unlink operation
3651 	 * against the inode was last made. So here we assume the inode might
3652 	 * have been evicted, and therefore the exact value of last_unlink_trans
3653 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3654 	 * between the inode and its parent if the inode is fsync'ed and the log
3655 	 * replayed. For example, in the scenario:
3656 	 *
3657 	 * touch mydir/foo
3658 	 * ln mydir/foo mydir/bar
3659 	 * sync
3660 	 * unlink mydir/bar
3661 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3662 	 * xfs_io -c fsync mydir/foo
3663 	 * <power failure>
3664 	 * mount fs, triggers fsync log replay
3665 	 *
3666 	 * We must make sure that when we fsync our inode foo we also log its
3667 	 * parent inode, otherwise after log replay the parent still has the
3668 	 * dentry with the "bar" name but our inode foo has a link count of 1
3669 	 * and doesn't have an inode ref with the name "bar" anymore.
3670 	 *
3671 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3672 	 * but it guarantees correctness at the expense of occasional full
3673 	 * transaction commits on fsync if our inode is a directory, or if our
3674 	 * inode is not a directory, logging its parent unnecessarily.
3675 	 */
3676 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3677 
3678 	path->slots[0]++;
3679 	if (inode->i_nlink != 1 ||
3680 	    path->slots[0] >= btrfs_header_nritems(leaf))
3681 		goto cache_acl;
3682 
3683 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3684 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3685 		goto cache_acl;
3686 
3687 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3688 	if (location.type == BTRFS_INODE_REF_KEY) {
3689 		struct btrfs_inode_ref *ref;
3690 
3691 		ref = (struct btrfs_inode_ref *)ptr;
3692 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3693 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3694 		struct btrfs_inode_extref *extref;
3695 
3696 		extref = (struct btrfs_inode_extref *)ptr;
3697 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3698 								     extref);
3699 	}
3700 cache_acl:
3701 	/*
3702 	 * try to precache a NULL acl entry for files that don't have
3703 	 * any xattrs or acls
3704 	 */
3705 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3706 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3707 	if (first_xattr_slot != -1) {
3708 		path->slots[0] = first_xattr_slot;
3709 		ret = btrfs_load_inode_props(inode, path);
3710 		if (ret)
3711 			btrfs_err(fs_info,
3712 				  "error loading props for ino %llu (root %llu): %d",
3713 				  btrfs_ino(BTRFS_I(inode)),
3714 				  root->root_key.objectid, ret);
3715 	}
3716 	btrfs_free_path(path);
3717 
3718 	if (!maybe_acls)
3719 		cache_no_acl(inode);
3720 
3721 	switch (inode->i_mode & S_IFMT) {
3722 	case S_IFREG:
3723 		inode->i_mapping->a_ops = &btrfs_aops;
3724 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3725 		inode->i_fop = &btrfs_file_operations;
3726 		inode->i_op = &btrfs_file_inode_operations;
3727 		break;
3728 	case S_IFDIR:
3729 		inode->i_fop = &btrfs_dir_file_operations;
3730 		inode->i_op = &btrfs_dir_inode_operations;
3731 		break;
3732 	case S_IFLNK:
3733 		inode->i_op = &btrfs_symlink_inode_operations;
3734 		inode_nohighmem(inode);
3735 		inode->i_mapping->a_ops = &btrfs_aops;
3736 		break;
3737 	default:
3738 		inode->i_op = &btrfs_special_inode_operations;
3739 		init_special_inode(inode, inode->i_mode, rdev);
3740 		break;
3741 	}
3742 
3743 	btrfs_sync_inode_flags_to_i_flags(inode);
3744 	return 0;
3745 }
3746 
3747 /*
3748  * given a leaf and an inode, copy the inode fields into the leaf
3749  */
3750 static void fill_inode_item(struct btrfs_trans_handle *trans,
3751 			    struct extent_buffer *leaf,
3752 			    struct btrfs_inode_item *item,
3753 			    struct inode *inode)
3754 {
3755 	struct btrfs_map_token token;
3756 
3757 	btrfs_init_map_token(&token);
3758 
3759 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3760 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3761 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3762 				   &token);
3763 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3764 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3765 
3766 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3767 				     inode->i_atime.tv_sec, &token);
3768 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3769 				      inode->i_atime.tv_nsec, &token);
3770 
3771 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3772 				     inode->i_mtime.tv_sec, &token);
3773 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3774 				      inode->i_mtime.tv_nsec, &token);
3775 
3776 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3777 				     inode->i_ctime.tv_sec, &token);
3778 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3779 				      inode->i_ctime.tv_nsec, &token);
3780 
3781 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3782 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3783 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3784 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3785 
3786 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3787 				     &token);
3788 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3789 					 &token);
3790 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3791 				       &token);
3792 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3793 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3794 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3795 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3796 }
3797 
3798 /*
3799  * copy everything in the in-memory inode into the btree.
3800  */
3801 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3802 				struct btrfs_root *root, struct inode *inode)
3803 {
3804 	struct btrfs_inode_item *inode_item;
3805 	struct btrfs_path *path;
3806 	struct extent_buffer *leaf;
3807 	int ret;
3808 
3809 	path = btrfs_alloc_path();
3810 	if (!path)
3811 		return -ENOMEM;
3812 
3813 	path->leave_spinning = 1;
3814 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3815 				 1);
3816 	if (ret) {
3817 		if (ret > 0)
3818 			ret = -ENOENT;
3819 		goto failed;
3820 	}
3821 
3822 	leaf = path->nodes[0];
3823 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3824 				    struct btrfs_inode_item);
3825 
3826 	fill_inode_item(trans, leaf, inode_item, inode);
3827 	btrfs_mark_buffer_dirty(leaf);
3828 	btrfs_set_inode_last_trans(trans, inode);
3829 	ret = 0;
3830 failed:
3831 	btrfs_free_path(path);
3832 	return ret;
3833 }
3834 
3835 /*
3836  * copy everything in the in-memory inode into the btree.
3837  */
3838 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3839 				struct btrfs_root *root, struct inode *inode)
3840 {
3841 	struct btrfs_fs_info *fs_info = root->fs_info;
3842 	int ret;
3843 
3844 	/*
3845 	 * If the inode is a free space inode, we can deadlock during commit
3846 	 * if we put it into the delayed code.
3847 	 *
3848 	 * The data relocation inode should also be directly updated
3849 	 * without delay
3850 	 */
3851 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3852 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3853 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3854 		btrfs_update_root_times(trans, root);
3855 
3856 		ret = btrfs_delayed_update_inode(trans, root, inode);
3857 		if (!ret)
3858 			btrfs_set_inode_last_trans(trans, inode);
3859 		return ret;
3860 	}
3861 
3862 	return btrfs_update_inode_item(trans, root, inode);
3863 }
3864 
3865 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3866 					 struct btrfs_root *root,
3867 					 struct inode *inode)
3868 {
3869 	int ret;
3870 
3871 	ret = btrfs_update_inode(trans, root, inode);
3872 	if (ret == -ENOSPC)
3873 		return btrfs_update_inode_item(trans, root, inode);
3874 	return ret;
3875 }
3876 
3877 /*
3878  * unlink helper that gets used here in inode.c and in the tree logging
3879  * recovery code.  It remove a link in a directory with a given name, and
3880  * also drops the back refs in the inode to the directory
3881  */
3882 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3883 				struct btrfs_root *root,
3884 				struct btrfs_inode *dir,
3885 				struct btrfs_inode *inode,
3886 				const char *name, int name_len)
3887 {
3888 	struct btrfs_fs_info *fs_info = root->fs_info;
3889 	struct btrfs_path *path;
3890 	int ret = 0;
3891 	struct extent_buffer *leaf;
3892 	struct btrfs_dir_item *di;
3893 	struct btrfs_key key;
3894 	u64 index;
3895 	u64 ino = btrfs_ino(inode);
3896 	u64 dir_ino = btrfs_ino(dir);
3897 
3898 	path = btrfs_alloc_path();
3899 	if (!path) {
3900 		ret = -ENOMEM;
3901 		goto out;
3902 	}
3903 
3904 	path->leave_spinning = 1;
3905 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3906 				    name, name_len, -1);
3907 	if (IS_ERR_OR_NULL(di)) {
3908 		ret = di ? PTR_ERR(di) : -ENOENT;
3909 		goto err;
3910 	}
3911 	leaf = path->nodes[0];
3912 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3913 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3914 	if (ret)
3915 		goto err;
3916 	btrfs_release_path(path);
3917 
3918 	/*
3919 	 * If we don't have dir index, we have to get it by looking up
3920 	 * the inode ref, since we get the inode ref, remove it directly,
3921 	 * it is unnecessary to do delayed deletion.
3922 	 *
3923 	 * But if we have dir index, needn't search inode ref to get it.
3924 	 * Since the inode ref is close to the inode item, it is better
3925 	 * that we delay to delete it, and just do this deletion when
3926 	 * we update the inode item.
3927 	 */
3928 	if (inode->dir_index) {
3929 		ret = btrfs_delayed_delete_inode_ref(inode);
3930 		if (!ret) {
3931 			index = inode->dir_index;
3932 			goto skip_backref;
3933 		}
3934 	}
3935 
3936 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3937 				  dir_ino, &index);
3938 	if (ret) {
3939 		btrfs_info(fs_info,
3940 			"failed to delete reference to %.*s, inode %llu parent %llu",
3941 			name_len, name, ino, dir_ino);
3942 		btrfs_abort_transaction(trans, ret);
3943 		goto err;
3944 	}
3945 skip_backref:
3946 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3947 	if (ret) {
3948 		btrfs_abort_transaction(trans, ret);
3949 		goto err;
3950 	}
3951 
3952 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3953 			dir_ino);
3954 	if (ret != 0 && ret != -ENOENT) {
3955 		btrfs_abort_transaction(trans, ret);
3956 		goto err;
3957 	}
3958 
3959 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3960 			index);
3961 	if (ret == -ENOENT)
3962 		ret = 0;
3963 	else if (ret)
3964 		btrfs_abort_transaction(trans, ret);
3965 err:
3966 	btrfs_free_path(path);
3967 	if (ret)
3968 		goto out;
3969 
3970 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3971 	inode_inc_iversion(&inode->vfs_inode);
3972 	inode_inc_iversion(&dir->vfs_inode);
3973 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3974 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3975 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3976 out:
3977 	return ret;
3978 }
3979 
3980 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3981 		       struct btrfs_root *root,
3982 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3983 		       const char *name, int name_len)
3984 {
3985 	int ret;
3986 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3987 	if (!ret) {
3988 		drop_nlink(&inode->vfs_inode);
3989 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3990 	}
3991 	return ret;
3992 }
3993 
3994 /*
3995  * helper to start transaction for unlink and rmdir.
3996  *
3997  * unlink and rmdir are special in btrfs, they do not always free space, so
3998  * if we cannot make our reservations the normal way try and see if there is
3999  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4000  * allow the unlink to occur.
4001  */
4002 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4003 {
4004 	struct btrfs_root *root = BTRFS_I(dir)->root;
4005 
4006 	/*
4007 	 * 1 for the possible orphan item
4008 	 * 1 for the dir item
4009 	 * 1 for the dir index
4010 	 * 1 for the inode ref
4011 	 * 1 for the inode
4012 	 */
4013 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4014 }
4015 
4016 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4017 {
4018 	struct btrfs_root *root = BTRFS_I(dir)->root;
4019 	struct btrfs_trans_handle *trans;
4020 	struct inode *inode = d_inode(dentry);
4021 	int ret;
4022 
4023 	trans = __unlink_start_trans(dir);
4024 	if (IS_ERR(trans))
4025 		return PTR_ERR(trans);
4026 
4027 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4028 			0);
4029 
4030 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4031 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4032 			dentry->d_name.len);
4033 	if (ret)
4034 		goto out;
4035 
4036 	if (inode->i_nlink == 0) {
4037 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4038 		if (ret)
4039 			goto out;
4040 	}
4041 
4042 out:
4043 	btrfs_end_transaction(trans);
4044 	btrfs_btree_balance_dirty(root->fs_info);
4045 	return ret;
4046 }
4047 
4048 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4049 			       struct inode *dir, u64 objectid,
4050 			       const char *name, int name_len)
4051 {
4052 	struct btrfs_root *root = BTRFS_I(dir)->root;
4053 	struct btrfs_path *path;
4054 	struct extent_buffer *leaf;
4055 	struct btrfs_dir_item *di;
4056 	struct btrfs_key key;
4057 	u64 index;
4058 	int ret;
4059 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4060 
4061 	path = btrfs_alloc_path();
4062 	if (!path)
4063 		return -ENOMEM;
4064 
4065 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4066 				   name, name_len, -1);
4067 	if (IS_ERR_OR_NULL(di)) {
4068 		ret = di ? PTR_ERR(di) : -ENOENT;
4069 		goto out;
4070 	}
4071 
4072 	leaf = path->nodes[0];
4073 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4074 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4075 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4076 	if (ret) {
4077 		btrfs_abort_transaction(trans, ret);
4078 		goto out;
4079 	}
4080 	btrfs_release_path(path);
4081 
4082 	ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4083 				 dir_ino, &index, name, name_len);
4084 	if (ret < 0) {
4085 		if (ret != -ENOENT) {
4086 			btrfs_abort_transaction(trans, ret);
4087 			goto out;
4088 		}
4089 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4090 						 name, name_len);
4091 		if (IS_ERR_OR_NULL(di)) {
4092 			if (!di)
4093 				ret = -ENOENT;
4094 			else
4095 				ret = PTR_ERR(di);
4096 			btrfs_abort_transaction(trans, ret);
4097 			goto out;
4098 		}
4099 
4100 		leaf = path->nodes[0];
4101 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4102 		index = key.offset;
4103 	}
4104 	btrfs_release_path(path);
4105 
4106 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4107 	if (ret) {
4108 		btrfs_abort_transaction(trans, ret);
4109 		goto out;
4110 	}
4111 
4112 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4113 	inode_inc_iversion(dir);
4114 	dir->i_mtime = dir->i_ctime = current_time(dir);
4115 	ret = btrfs_update_inode_fallback(trans, root, dir);
4116 	if (ret)
4117 		btrfs_abort_transaction(trans, ret);
4118 out:
4119 	btrfs_free_path(path);
4120 	return ret;
4121 }
4122 
4123 /*
4124  * Helper to check if the subvolume references other subvolumes or if it's
4125  * default.
4126  */
4127 static noinline int may_destroy_subvol(struct btrfs_root *root)
4128 {
4129 	struct btrfs_fs_info *fs_info = root->fs_info;
4130 	struct btrfs_path *path;
4131 	struct btrfs_dir_item *di;
4132 	struct btrfs_key key;
4133 	u64 dir_id;
4134 	int ret;
4135 
4136 	path = btrfs_alloc_path();
4137 	if (!path)
4138 		return -ENOMEM;
4139 
4140 	/* Make sure this root isn't set as the default subvol */
4141 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4142 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4143 				   dir_id, "default", 7, 0);
4144 	if (di && !IS_ERR(di)) {
4145 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4146 		if (key.objectid == root->root_key.objectid) {
4147 			ret = -EPERM;
4148 			btrfs_err(fs_info,
4149 				  "deleting default subvolume %llu is not allowed",
4150 				  key.objectid);
4151 			goto out;
4152 		}
4153 		btrfs_release_path(path);
4154 	}
4155 
4156 	key.objectid = root->root_key.objectid;
4157 	key.type = BTRFS_ROOT_REF_KEY;
4158 	key.offset = (u64)-1;
4159 
4160 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4161 	if (ret < 0)
4162 		goto out;
4163 	BUG_ON(ret == 0);
4164 
4165 	ret = 0;
4166 	if (path->slots[0] > 0) {
4167 		path->slots[0]--;
4168 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4169 		if (key.objectid == root->root_key.objectid &&
4170 		    key.type == BTRFS_ROOT_REF_KEY)
4171 			ret = -ENOTEMPTY;
4172 	}
4173 out:
4174 	btrfs_free_path(path);
4175 	return ret;
4176 }
4177 
4178 /* Delete all dentries for inodes belonging to the root */
4179 static void btrfs_prune_dentries(struct btrfs_root *root)
4180 {
4181 	struct btrfs_fs_info *fs_info = root->fs_info;
4182 	struct rb_node *node;
4183 	struct rb_node *prev;
4184 	struct btrfs_inode *entry;
4185 	struct inode *inode;
4186 	u64 objectid = 0;
4187 
4188 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4189 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4190 
4191 	spin_lock(&root->inode_lock);
4192 again:
4193 	node = root->inode_tree.rb_node;
4194 	prev = NULL;
4195 	while (node) {
4196 		prev = node;
4197 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4198 
4199 		if (objectid < btrfs_ino(entry))
4200 			node = node->rb_left;
4201 		else if (objectid > btrfs_ino(entry))
4202 			node = node->rb_right;
4203 		else
4204 			break;
4205 	}
4206 	if (!node) {
4207 		while (prev) {
4208 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4209 			if (objectid <= btrfs_ino(entry)) {
4210 				node = prev;
4211 				break;
4212 			}
4213 			prev = rb_next(prev);
4214 		}
4215 	}
4216 	while (node) {
4217 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4218 		objectid = btrfs_ino(entry) + 1;
4219 		inode = igrab(&entry->vfs_inode);
4220 		if (inode) {
4221 			spin_unlock(&root->inode_lock);
4222 			if (atomic_read(&inode->i_count) > 1)
4223 				d_prune_aliases(inode);
4224 			/*
4225 			 * btrfs_drop_inode will have it removed from the inode
4226 			 * cache when its usage count hits zero.
4227 			 */
4228 			iput(inode);
4229 			cond_resched();
4230 			spin_lock(&root->inode_lock);
4231 			goto again;
4232 		}
4233 
4234 		if (cond_resched_lock(&root->inode_lock))
4235 			goto again;
4236 
4237 		node = rb_next(node);
4238 	}
4239 	spin_unlock(&root->inode_lock);
4240 }
4241 
4242 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4243 {
4244 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4245 	struct btrfs_root *root = BTRFS_I(dir)->root;
4246 	struct inode *inode = d_inode(dentry);
4247 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4248 	struct btrfs_trans_handle *trans;
4249 	struct btrfs_block_rsv block_rsv;
4250 	u64 root_flags;
4251 	int ret;
4252 	int err;
4253 
4254 	/*
4255 	 * Don't allow to delete a subvolume with send in progress. This is
4256 	 * inside the inode lock so the error handling that has to drop the bit
4257 	 * again is not run concurrently.
4258 	 */
4259 	spin_lock(&dest->root_item_lock);
4260 	if (dest->send_in_progress) {
4261 		spin_unlock(&dest->root_item_lock);
4262 		btrfs_warn(fs_info,
4263 			   "attempt to delete subvolume %llu during send",
4264 			   dest->root_key.objectid);
4265 		return -EPERM;
4266 	}
4267 	root_flags = btrfs_root_flags(&dest->root_item);
4268 	btrfs_set_root_flags(&dest->root_item,
4269 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4270 	spin_unlock(&dest->root_item_lock);
4271 
4272 	down_write(&fs_info->subvol_sem);
4273 
4274 	err = may_destroy_subvol(dest);
4275 	if (err)
4276 		goto out_up_write;
4277 
4278 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4279 	/*
4280 	 * One for dir inode,
4281 	 * two for dir entries,
4282 	 * two for root ref/backref.
4283 	 */
4284 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4285 	if (err)
4286 		goto out_up_write;
4287 
4288 	trans = btrfs_start_transaction(root, 0);
4289 	if (IS_ERR(trans)) {
4290 		err = PTR_ERR(trans);
4291 		goto out_release;
4292 	}
4293 	trans->block_rsv = &block_rsv;
4294 	trans->bytes_reserved = block_rsv.size;
4295 
4296 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4297 
4298 	ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4299 				  dentry->d_name.name, dentry->d_name.len);
4300 	if (ret) {
4301 		err = ret;
4302 		btrfs_abort_transaction(trans, ret);
4303 		goto out_end_trans;
4304 	}
4305 
4306 	btrfs_record_root_in_trans(trans, dest);
4307 
4308 	memset(&dest->root_item.drop_progress, 0,
4309 		sizeof(dest->root_item.drop_progress));
4310 	dest->root_item.drop_level = 0;
4311 	btrfs_set_root_refs(&dest->root_item, 0);
4312 
4313 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4314 		ret = btrfs_insert_orphan_item(trans,
4315 					fs_info->tree_root,
4316 					dest->root_key.objectid);
4317 		if (ret) {
4318 			btrfs_abort_transaction(trans, ret);
4319 			err = ret;
4320 			goto out_end_trans;
4321 		}
4322 	}
4323 
4324 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4325 				  BTRFS_UUID_KEY_SUBVOL,
4326 				  dest->root_key.objectid);
4327 	if (ret && ret != -ENOENT) {
4328 		btrfs_abort_transaction(trans, ret);
4329 		err = ret;
4330 		goto out_end_trans;
4331 	}
4332 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4333 		ret = btrfs_uuid_tree_remove(trans,
4334 					  dest->root_item.received_uuid,
4335 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4336 					  dest->root_key.objectid);
4337 		if (ret && ret != -ENOENT) {
4338 			btrfs_abort_transaction(trans, ret);
4339 			err = ret;
4340 			goto out_end_trans;
4341 		}
4342 	}
4343 
4344 out_end_trans:
4345 	trans->block_rsv = NULL;
4346 	trans->bytes_reserved = 0;
4347 	ret = btrfs_end_transaction(trans);
4348 	if (ret && !err)
4349 		err = ret;
4350 	inode->i_flags |= S_DEAD;
4351 out_release:
4352 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4353 out_up_write:
4354 	up_write(&fs_info->subvol_sem);
4355 	if (err) {
4356 		spin_lock(&dest->root_item_lock);
4357 		root_flags = btrfs_root_flags(&dest->root_item);
4358 		btrfs_set_root_flags(&dest->root_item,
4359 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4360 		spin_unlock(&dest->root_item_lock);
4361 	} else {
4362 		d_invalidate(dentry);
4363 		btrfs_prune_dentries(dest);
4364 		ASSERT(dest->send_in_progress == 0);
4365 
4366 		/* the last ref */
4367 		if (dest->ino_cache_inode) {
4368 			iput(dest->ino_cache_inode);
4369 			dest->ino_cache_inode = NULL;
4370 		}
4371 	}
4372 
4373 	return err;
4374 }
4375 
4376 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4377 {
4378 	struct inode *inode = d_inode(dentry);
4379 	int err = 0;
4380 	struct btrfs_root *root = BTRFS_I(dir)->root;
4381 	struct btrfs_trans_handle *trans;
4382 	u64 last_unlink_trans;
4383 
4384 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4385 		return -ENOTEMPTY;
4386 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4387 		return btrfs_delete_subvolume(dir, dentry);
4388 
4389 	trans = __unlink_start_trans(dir);
4390 	if (IS_ERR(trans))
4391 		return PTR_ERR(trans);
4392 
4393 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4394 		err = btrfs_unlink_subvol(trans, dir,
4395 					  BTRFS_I(inode)->location.objectid,
4396 					  dentry->d_name.name,
4397 					  dentry->d_name.len);
4398 		goto out;
4399 	}
4400 
4401 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4402 	if (err)
4403 		goto out;
4404 
4405 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4406 
4407 	/* now the directory is empty */
4408 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4409 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4410 			dentry->d_name.len);
4411 	if (!err) {
4412 		btrfs_i_size_write(BTRFS_I(inode), 0);
4413 		/*
4414 		 * Propagate the last_unlink_trans value of the deleted dir to
4415 		 * its parent directory. This is to prevent an unrecoverable
4416 		 * log tree in the case we do something like this:
4417 		 * 1) create dir foo
4418 		 * 2) create snapshot under dir foo
4419 		 * 3) delete the snapshot
4420 		 * 4) rmdir foo
4421 		 * 5) mkdir foo
4422 		 * 6) fsync foo or some file inside foo
4423 		 */
4424 		if (last_unlink_trans >= trans->transid)
4425 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4426 	}
4427 out:
4428 	btrfs_end_transaction(trans);
4429 	btrfs_btree_balance_dirty(root->fs_info);
4430 
4431 	return err;
4432 }
4433 
4434 static int truncate_space_check(struct btrfs_trans_handle *trans,
4435 				struct btrfs_root *root,
4436 				u64 bytes_deleted)
4437 {
4438 	struct btrfs_fs_info *fs_info = root->fs_info;
4439 	int ret;
4440 
4441 	/*
4442 	 * This is only used to apply pressure to the enospc system, we don't
4443 	 * intend to use this reservation at all.
4444 	 */
4445 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4446 	bytes_deleted *= fs_info->nodesize;
4447 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4448 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4449 	if (!ret) {
4450 		trace_btrfs_space_reservation(fs_info, "transaction",
4451 					      trans->transid,
4452 					      bytes_deleted, 1);
4453 		trans->bytes_reserved += bytes_deleted;
4454 	}
4455 	return ret;
4456 
4457 }
4458 
4459 /*
4460  * Return this if we need to call truncate_block for the last bit of the
4461  * truncate.
4462  */
4463 #define NEED_TRUNCATE_BLOCK 1
4464 
4465 /*
4466  * this can truncate away extent items, csum items and directory items.
4467  * It starts at a high offset and removes keys until it can't find
4468  * any higher than new_size
4469  *
4470  * csum items that cross the new i_size are truncated to the new size
4471  * as well.
4472  *
4473  * min_type is the minimum key type to truncate down to.  If set to 0, this
4474  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4475  */
4476 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4477 			       struct btrfs_root *root,
4478 			       struct inode *inode,
4479 			       u64 new_size, u32 min_type)
4480 {
4481 	struct btrfs_fs_info *fs_info = root->fs_info;
4482 	struct btrfs_path *path;
4483 	struct extent_buffer *leaf;
4484 	struct btrfs_file_extent_item *fi;
4485 	struct btrfs_key key;
4486 	struct btrfs_key found_key;
4487 	u64 extent_start = 0;
4488 	u64 extent_num_bytes = 0;
4489 	u64 extent_offset = 0;
4490 	u64 item_end = 0;
4491 	u64 last_size = new_size;
4492 	u32 found_type = (u8)-1;
4493 	int found_extent;
4494 	int del_item;
4495 	int pending_del_nr = 0;
4496 	int pending_del_slot = 0;
4497 	int extent_type = -1;
4498 	int ret;
4499 	u64 ino = btrfs_ino(BTRFS_I(inode));
4500 	u64 bytes_deleted = 0;
4501 	bool be_nice = false;
4502 	bool should_throttle = false;
4503 	bool should_end = false;
4504 
4505 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4506 
4507 	/*
4508 	 * for non-free space inodes and ref cows, we want to back off from
4509 	 * time to time
4510 	 */
4511 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4512 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4513 		be_nice = true;
4514 
4515 	path = btrfs_alloc_path();
4516 	if (!path)
4517 		return -ENOMEM;
4518 	path->reada = READA_BACK;
4519 
4520 	/*
4521 	 * We want to drop from the next block forward in case this new size is
4522 	 * not block aligned since we will be keeping the last block of the
4523 	 * extent just the way it is.
4524 	 */
4525 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4526 	    root == fs_info->tree_root)
4527 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4528 					fs_info->sectorsize),
4529 					(u64)-1, 0);
4530 
4531 	/*
4532 	 * This function is also used to drop the items in the log tree before
4533 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4534 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4535 	 * items.
4536 	 */
4537 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4538 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4539 
4540 	key.objectid = ino;
4541 	key.offset = (u64)-1;
4542 	key.type = (u8)-1;
4543 
4544 search_again:
4545 	/*
4546 	 * with a 16K leaf size and 128MB extents, you can actually queue
4547 	 * up a huge file in a single leaf.  Most of the time that
4548 	 * bytes_deleted is > 0, it will be huge by the time we get here
4549 	 */
4550 	if (be_nice && bytes_deleted > SZ_32M &&
4551 	    btrfs_should_end_transaction(trans)) {
4552 		ret = -EAGAIN;
4553 		goto out;
4554 	}
4555 
4556 	path->leave_spinning = 1;
4557 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4558 	if (ret < 0)
4559 		goto out;
4560 
4561 	if (ret > 0) {
4562 		ret = 0;
4563 		/* there are no items in the tree for us to truncate, we're
4564 		 * done
4565 		 */
4566 		if (path->slots[0] == 0)
4567 			goto out;
4568 		path->slots[0]--;
4569 	}
4570 
4571 	while (1) {
4572 		fi = NULL;
4573 		leaf = path->nodes[0];
4574 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4575 		found_type = found_key.type;
4576 
4577 		if (found_key.objectid != ino)
4578 			break;
4579 
4580 		if (found_type < min_type)
4581 			break;
4582 
4583 		item_end = found_key.offset;
4584 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4585 			fi = btrfs_item_ptr(leaf, path->slots[0],
4586 					    struct btrfs_file_extent_item);
4587 			extent_type = btrfs_file_extent_type(leaf, fi);
4588 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4589 				item_end +=
4590 				    btrfs_file_extent_num_bytes(leaf, fi);
4591 
4592 				trace_btrfs_truncate_show_fi_regular(
4593 					BTRFS_I(inode), leaf, fi,
4594 					found_key.offset);
4595 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4596 				item_end += btrfs_file_extent_ram_bytes(leaf,
4597 									fi);
4598 
4599 				trace_btrfs_truncate_show_fi_inline(
4600 					BTRFS_I(inode), leaf, fi, path->slots[0],
4601 					found_key.offset);
4602 			}
4603 			item_end--;
4604 		}
4605 		if (found_type > min_type) {
4606 			del_item = 1;
4607 		} else {
4608 			if (item_end < new_size)
4609 				break;
4610 			if (found_key.offset >= new_size)
4611 				del_item = 1;
4612 			else
4613 				del_item = 0;
4614 		}
4615 		found_extent = 0;
4616 		/* FIXME, shrink the extent if the ref count is only 1 */
4617 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4618 			goto delete;
4619 
4620 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4621 			u64 num_dec;
4622 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4623 			if (!del_item) {
4624 				u64 orig_num_bytes =
4625 					btrfs_file_extent_num_bytes(leaf, fi);
4626 				extent_num_bytes = ALIGN(new_size -
4627 						found_key.offset,
4628 						fs_info->sectorsize);
4629 				btrfs_set_file_extent_num_bytes(leaf, fi,
4630 							 extent_num_bytes);
4631 				num_dec = (orig_num_bytes -
4632 					   extent_num_bytes);
4633 				if (test_bit(BTRFS_ROOT_REF_COWS,
4634 					     &root->state) &&
4635 				    extent_start != 0)
4636 					inode_sub_bytes(inode, num_dec);
4637 				btrfs_mark_buffer_dirty(leaf);
4638 			} else {
4639 				extent_num_bytes =
4640 					btrfs_file_extent_disk_num_bytes(leaf,
4641 									 fi);
4642 				extent_offset = found_key.offset -
4643 					btrfs_file_extent_offset(leaf, fi);
4644 
4645 				/* FIXME blocksize != 4096 */
4646 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4647 				if (extent_start != 0) {
4648 					found_extent = 1;
4649 					if (test_bit(BTRFS_ROOT_REF_COWS,
4650 						     &root->state))
4651 						inode_sub_bytes(inode, num_dec);
4652 				}
4653 			}
4654 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4655 			/*
4656 			 * we can't truncate inline items that have had
4657 			 * special encodings
4658 			 */
4659 			if (!del_item &&
4660 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4661 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4662 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4663 				u32 size = (u32)(new_size - found_key.offset);
4664 
4665 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4666 				size = btrfs_file_extent_calc_inline_size(size);
4667 				btrfs_truncate_item(root->fs_info, path, size, 1);
4668 			} else if (!del_item) {
4669 				/*
4670 				 * We have to bail so the last_size is set to
4671 				 * just before this extent.
4672 				 */
4673 				ret = NEED_TRUNCATE_BLOCK;
4674 				break;
4675 			}
4676 
4677 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4678 				inode_sub_bytes(inode, item_end + 1 - new_size);
4679 		}
4680 delete:
4681 		if (del_item)
4682 			last_size = found_key.offset;
4683 		else
4684 			last_size = new_size;
4685 		if (del_item) {
4686 			if (!pending_del_nr) {
4687 				/* no pending yet, add ourselves */
4688 				pending_del_slot = path->slots[0];
4689 				pending_del_nr = 1;
4690 			} else if (pending_del_nr &&
4691 				   path->slots[0] + 1 == pending_del_slot) {
4692 				/* hop on the pending chunk */
4693 				pending_del_nr++;
4694 				pending_del_slot = path->slots[0];
4695 			} else {
4696 				BUG();
4697 			}
4698 		} else {
4699 			break;
4700 		}
4701 		should_throttle = false;
4702 
4703 		if (found_extent &&
4704 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4705 		     root == fs_info->tree_root)) {
4706 			btrfs_set_path_blocking(path);
4707 			bytes_deleted += extent_num_bytes;
4708 			ret = btrfs_free_extent(trans, root, extent_start,
4709 						extent_num_bytes, 0,
4710 						btrfs_header_owner(leaf),
4711 						ino, extent_offset);
4712 			if (ret) {
4713 				btrfs_abort_transaction(trans, ret);
4714 				break;
4715 			}
4716 			if (btrfs_should_throttle_delayed_refs(trans))
4717 				btrfs_async_run_delayed_refs(fs_info,
4718 					trans->delayed_ref_updates * 2,
4719 					trans->transid, 0);
4720 			if (be_nice) {
4721 				if (truncate_space_check(trans, root,
4722 							 extent_num_bytes)) {
4723 					should_end = true;
4724 				}
4725 				if (btrfs_should_throttle_delayed_refs(trans))
4726 					should_throttle = true;
4727 			}
4728 		}
4729 
4730 		if (found_type == BTRFS_INODE_ITEM_KEY)
4731 			break;
4732 
4733 		if (path->slots[0] == 0 ||
4734 		    path->slots[0] != pending_del_slot ||
4735 		    should_throttle || should_end) {
4736 			if (pending_del_nr) {
4737 				ret = btrfs_del_items(trans, root, path,
4738 						pending_del_slot,
4739 						pending_del_nr);
4740 				if (ret) {
4741 					btrfs_abort_transaction(trans, ret);
4742 					break;
4743 				}
4744 				pending_del_nr = 0;
4745 			}
4746 			btrfs_release_path(path);
4747 			if (should_throttle) {
4748 				unsigned long updates = trans->delayed_ref_updates;
4749 				if (updates) {
4750 					trans->delayed_ref_updates = 0;
4751 					ret = btrfs_run_delayed_refs(trans,
4752 								   updates * 2);
4753 					if (ret)
4754 						break;
4755 				}
4756 			}
4757 			/*
4758 			 * if we failed to refill our space rsv, bail out
4759 			 * and let the transaction restart
4760 			 */
4761 			if (should_end) {
4762 				ret = -EAGAIN;
4763 				break;
4764 			}
4765 			goto search_again;
4766 		} else {
4767 			path->slots[0]--;
4768 		}
4769 	}
4770 out:
4771 	if (ret >= 0 && pending_del_nr) {
4772 		int err;
4773 
4774 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4775 				      pending_del_nr);
4776 		if (err) {
4777 			btrfs_abort_transaction(trans, err);
4778 			ret = err;
4779 		}
4780 	}
4781 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4782 		ASSERT(last_size >= new_size);
4783 		if (!ret && last_size > new_size)
4784 			last_size = new_size;
4785 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4786 	}
4787 
4788 	btrfs_free_path(path);
4789 
4790 	if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4791 		unsigned long updates = trans->delayed_ref_updates;
4792 		int err;
4793 
4794 		if (updates) {
4795 			trans->delayed_ref_updates = 0;
4796 			err = btrfs_run_delayed_refs(trans, updates * 2);
4797 			if (err)
4798 				ret = err;
4799 		}
4800 	}
4801 	return ret;
4802 }
4803 
4804 /*
4805  * btrfs_truncate_block - read, zero a chunk and write a block
4806  * @inode - inode that we're zeroing
4807  * @from - the offset to start zeroing
4808  * @len - the length to zero, 0 to zero the entire range respective to the
4809  *	offset
4810  * @front - zero up to the offset instead of from the offset on
4811  *
4812  * This will find the block for the "from" offset and cow the block and zero the
4813  * part we want to zero.  This is used with truncate and hole punching.
4814  */
4815 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4816 			int front)
4817 {
4818 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4819 	struct address_space *mapping = inode->i_mapping;
4820 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4821 	struct btrfs_ordered_extent *ordered;
4822 	struct extent_state *cached_state = NULL;
4823 	struct extent_changeset *data_reserved = NULL;
4824 	char *kaddr;
4825 	u32 blocksize = fs_info->sectorsize;
4826 	pgoff_t index = from >> PAGE_SHIFT;
4827 	unsigned offset = from & (blocksize - 1);
4828 	struct page *page;
4829 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4830 	int ret = 0;
4831 	u64 block_start;
4832 	u64 block_end;
4833 
4834 	if (IS_ALIGNED(offset, blocksize) &&
4835 	    (!len || IS_ALIGNED(len, blocksize)))
4836 		goto out;
4837 
4838 	block_start = round_down(from, blocksize);
4839 	block_end = block_start + blocksize - 1;
4840 
4841 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4842 					   block_start, blocksize);
4843 	if (ret)
4844 		goto out;
4845 
4846 again:
4847 	page = find_or_create_page(mapping, index, mask);
4848 	if (!page) {
4849 		btrfs_delalloc_release_space(inode, data_reserved,
4850 					     block_start, blocksize, true);
4851 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4852 		ret = -ENOMEM;
4853 		goto out;
4854 	}
4855 
4856 	if (!PageUptodate(page)) {
4857 		ret = btrfs_readpage(NULL, page);
4858 		lock_page(page);
4859 		if (page->mapping != mapping) {
4860 			unlock_page(page);
4861 			put_page(page);
4862 			goto again;
4863 		}
4864 		if (!PageUptodate(page)) {
4865 			ret = -EIO;
4866 			goto out_unlock;
4867 		}
4868 	}
4869 	wait_on_page_writeback(page);
4870 
4871 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4872 	set_page_extent_mapped(page);
4873 
4874 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4875 	if (ordered) {
4876 		unlock_extent_cached(io_tree, block_start, block_end,
4877 				     &cached_state);
4878 		unlock_page(page);
4879 		put_page(page);
4880 		btrfs_start_ordered_extent(inode, ordered, 1);
4881 		btrfs_put_ordered_extent(ordered);
4882 		goto again;
4883 	}
4884 
4885 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4886 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4887 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4888 			  0, 0, &cached_state);
4889 
4890 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4891 					&cached_state, 0);
4892 	if (ret) {
4893 		unlock_extent_cached(io_tree, block_start, block_end,
4894 				     &cached_state);
4895 		goto out_unlock;
4896 	}
4897 
4898 	if (offset != blocksize) {
4899 		if (!len)
4900 			len = blocksize - offset;
4901 		kaddr = kmap(page);
4902 		if (front)
4903 			memset(kaddr + (block_start - page_offset(page)),
4904 				0, offset);
4905 		else
4906 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4907 				0, len);
4908 		flush_dcache_page(page);
4909 		kunmap(page);
4910 	}
4911 	ClearPageChecked(page);
4912 	set_page_dirty(page);
4913 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4914 
4915 out_unlock:
4916 	if (ret)
4917 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4918 					     blocksize, true);
4919 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4920 	unlock_page(page);
4921 	put_page(page);
4922 out:
4923 	extent_changeset_free(data_reserved);
4924 	return ret;
4925 }
4926 
4927 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4928 			     u64 offset, u64 len)
4929 {
4930 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4931 	struct btrfs_trans_handle *trans;
4932 	int ret;
4933 
4934 	/*
4935 	 * Still need to make sure the inode looks like it's been updated so
4936 	 * that any holes get logged if we fsync.
4937 	 */
4938 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4939 		BTRFS_I(inode)->last_trans = fs_info->generation;
4940 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4941 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4942 		return 0;
4943 	}
4944 
4945 	/*
4946 	 * 1 - for the one we're dropping
4947 	 * 1 - for the one we're adding
4948 	 * 1 - for updating the inode.
4949 	 */
4950 	trans = btrfs_start_transaction(root, 3);
4951 	if (IS_ERR(trans))
4952 		return PTR_ERR(trans);
4953 
4954 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4955 	if (ret) {
4956 		btrfs_abort_transaction(trans, ret);
4957 		btrfs_end_transaction(trans);
4958 		return ret;
4959 	}
4960 
4961 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4962 			offset, 0, 0, len, 0, len, 0, 0, 0);
4963 	if (ret)
4964 		btrfs_abort_transaction(trans, ret);
4965 	else
4966 		btrfs_update_inode(trans, root, inode);
4967 	btrfs_end_transaction(trans);
4968 	return ret;
4969 }
4970 
4971 /*
4972  * This function puts in dummy file extents for the area we're creating a hole
4973  * for.  So if we are truncating this file to a larger size we need to insert
4974  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4975  * the range between oldsize and size
4976  */
4977 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4978 {
4979 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4980 	struct btrfs_root *root = BTRFS_I(inode)->root;
4981 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4982 	struct extent_map *em = NULL;
4983 	struct extent_state *cached_state = NULL;
4984 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4985 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4986 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4987 	u64 last_byte;
4988 	u64 cur_offset;
4989 	u64 hole_size;
4990 	int err = 0;
4991 
4992 	/*
4993 	 * If our size started in the middle of a block we need to zero out the
4994 	 * rest of the block before we expand the i_size, otherwise we could
4995 	 * expose stale data.
4996 	 */
4997 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4998 	if (err)
4999 		return err;
5000 
5001 	if (size <= hole_start)
5002 		return 0;
5003 
5004 	while (1) {
5005 		struct btrfs_ordered_extent *ordered;
5006 
5007 		lock_extent_bits(io_tree, hole_start, block_end - 1,
5008 				 &cached_state);
5009 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5010 						     block_end - hole_start);
5011 		if (!ordered)
5012 			break;
5013 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
5014 				     &cached_state);
5015 		btrfs_start_ordered_extent(inode, ordered, 1);
5016 		btrfs_put_ordered_extent(ordered);
5017 	}
5018 
5019 	cur_offset = hole_start;
5020 	while (1) {
5021 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5022 				block_end - cur_offset, 0);
5023 		if (IS_ERR(em)) {
5024 			err = PTR_ERR(em);
5025 			em = NULL;
5026 			break;
5027 		}
5028 		last_byte = min(extent_map_end(em), block_end);
5029 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5030 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5031 			struct extent_map *hole_em;
5032 			hole_size = last_byte - cur_offset;
5033 
5034 			err = maybe_insert_hole(root, inode, cur_offset,
5035 						hole_size);
5036 			if (err)
5037 				break;
5038 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5039 						cur_offset + hole_size - 1, 0);
5040 			hole_em = alloc_extent_map();
5041 			if (!hole_em) {
5042 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5043 					&BTRFS_I(inode)->runtime_flags);
5044 				goto next;
5045 			}
5046 			hole_em->start = cur_offset;
5047 			hole_em->len = hole_size;
5048 			hole_em->orig_start = cur_offset;
5049 
5050 			hole_em->block_start = EXTENT_MAP_HOLE;
5051 			hole_em->block_len = 0;
5052 			hole_em->orig_block_len = 0;
5053 			hole_em->ram_bytes = hole_size;
5054 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5055 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5056 			hole_em->generation = fs_info->generation;
5057 
5058 			while (1) {
5059 				write_lock(&em_tree->lock);
5060 				err = add_extent_mapping(em_tree, hole_em, 1);
5061 				write_unlock(&em_tree->lock);
5062 				if (err != -EEXIST)
5063 					break;
5064 				btrfs_drop_extent_cache(BTRFS_I(inode),
5065 							cur_offset,
5066 							cur_offset +
5067 							hole_size - 1, 0);
5068 			}
5069 			free_extent_map(hole_em);
5070 		}
5071 next:
5072 		free_extent_map(em);
5073 		em = NULL;
5074 		cur_offset = last_byte;
5075 		if (cur_offset >= block_end)
5076 			break;
5077 	}
5078 	free_extent_map(em);
5079 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5080 	return err;
5081 }
5082 
5083 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5084 {
5085 	struct btrfs_root *root = BTRFS_I(inode)->root;
5086 	struct btrfs_trans_handle *trans;
5087 	loff_t oldsize = i_size_read(inode);
5088 	loff_t newsize = attr->ia_size;
5089 	int mask = attr->ia_valid;
5090 	int ret;
5091 
5092 	/*
5093 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5094 	 * special case where we need to update the times despite not having
5095 	 * these flags set.  For all other operations the VFS set these flags
5096 	 * explicitly if it wants a timestamp update.
5097 	 */
5098 	if (newsize != oldsize) {
5099 		inode_inc_iversion(inode);
5100 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5101 			inode->i_ctime = inode->i_mtime =
5102 				current_time(inode);
5103 	}
5104 
5105 	if (newsize > oldsize) {
5106 		/*
5107 		 * Don't do an expanding truncate while snapshotting is ongoing.
5108 		 * This is to ensure the snapshot captures a fully consistent
5109 		 * state of this file - if the snapshot captures this expanding
5110 		 * truncation, it must capture all writes that happened before
5111 		 * this truncation.
5112 		 */
5113 		btrfs_wait_for_snapshot_creation(root);
5114 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5115 		if (ret) {
5116 			btrfs_end_write_no_snapshotting(root);
5117 			return ret;
5118 		}
5119 
5120 		trans = btrfs_start_transaction(root, 1);
5121 		if (IS_ERR(trans)) {
5122 			btrfs_end_write_no_snapshotting(root);
5123 			return PTR_ERR(trans);
5124 		}
5125 
5126 		i_size_write(inode, newsize);
5127 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5128 		pagecache_isize_extended(inode, oldsize, newsize);
5129 		ret = btrfs_update_inode(trans, root, inode);
5130 		btrfs_end_write_no_snapshotting(root);
5131 		btrfs_end_transaction(trans);
5132 	} else {
5133 
5134 		/*
5135 		 * We're truncating a file that used to have good data down to
5136 		 * zero. Make sure it gets into the ordered flush list so that
5137 		 * any new writes get down to disk quickly.
5138 		 */
5139 		if (newsize == 0)
5140 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5141 				&BTRFS_I(inode)->runtime_flags);
5142 
5143 		truncate_setsize(inode, newsize);
5144 
5145 		/* Disable nonlocked read DIO to avoid the end less truncate */
5146 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5147 		inode_dio_wait(inode);
5148 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5149 
5150 		ret = btrfs_truncate(inode, newsize == oldsize);
5151 		if (ret && inode->i_nlink) {
5152 			int err;
5153 
5154 			/*
5155 			 * Truncate failed, so fix up the in-memory size. We
5156 			 * adjusted disk_i_size down as we removed extents, so
5157 			 * wait for disk_i_size to be stable and then update the
5158 			 * in-memory size to match.
5159 			 */
5160 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5161 			if (err)
5162 				return err;
5163 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5164 		}
5165 	}
5166 
5167 	return ret;
5168 }
5169 
5170 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5171 {
5172 	struct inode *inode = d_inode(dentry);
5173 	struct btrfs_root *root = BTRFS_I(inode)->root;
5174 	int err;
5175 
5176 	if (btrfs_root_readonly(root))
5177 		return -EROFS;
5178 
5179 	err = setattr_prepare(dentry, attr);
5180 	if (err)
5181 		return err;
5182 
5183 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5184 		err = btrfs_setsize(inode, attr);
5185 		if (err)
5186 			return err;
5187 	}
5188 
5189 	if (attr->ia_valid) {
5190 		setattr_copy(inode, attr);
5191 		inode_inc_iversion(inode);
5192 		err = btrfs_dirty_inode(inode);
5193 
5194 		if (!err && attr->ia_valid & ATTR_MODE)
5195 			err = posix_acl_chmod(inode, inode->i_mode);
5196 	}
5197 
5198 	return err;
5199 }
5200 
5201 /*
5202  * While truncating the inode pages during eviction, we get the VFS calling
5203  * btrfs_invalidatepage() against each page of the inode. This is slow because
5204  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5205  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5206  * extent_state structures over and over, wasting lots of time.
5207  *
5208  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5209  * those expensive operations on a per page basis and do only the ordered io
5210  * finishing, while we release here the extent_map and extent_state structures,
5211  * without the excessive merging and splitting.
5212  */
5213 static void evict_inode_truncate_pages(struct inode *inode)
5214 {
5215 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5216 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5217 	struct rb_node *node;
5218 
5219 	ASSERT(inode->i_state & I_FREEING);
5220 	truncate_inode_pages_final(&inode->i_data);
5221 
5222 	write_lock(&map_tree->lock);
5223 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5224 		struct extent_map *em;
5225 
5226 		node = rb_first_cached(&map_tree->map);
5227 		em = rb_entry(node, struct extent_map, rb_node);
5228 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5229 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5230 		remove_extent_mapping(map_tree, em);
5231 		free_extent_map(em);
5232 		if (need_resched()) {
5233 			write_unlock(&map_tree->lock);
5234 			cond_resched();
5235 			write_lock(&map_tree->lock);
5236 		}
5237 	}
5238 	write_unlock(&map_tree->lock);
5239 
5240 	/*
5241 	 * Keep looping until we have no more ranges in the io tree.
5242 	 * We can have ongoing bios started by readpages (called from readahead)
5243 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5244 	 * still in progress (unlocked the pages in the bio but did not yet
5245 	 * unlocked the ranges in the io tree). Therefore this means some
5246 	 * ranges can still be locked and eviction started because before
5247 	 * submitting those bios, which are executed by a separate task (work
5248 	 * queue kthread), inode references (inode->i_count) were not taken
5249 	 * (which would be dropped in the end io callback of each bio).
5250 	 * Therefore here we effectively end up waiting for those bios and
5251 	 * anyone else holding locked ranges without having bumped the inode's
5252 	 * reference count - if we don't do it, when they access the inode's
5253 	 * io_tree to unlock a range it may be too late, leading to an
5254 	 * use-after-free issue.
5255 	 */
5256 	spin_lock(&io_tree->lock);
5257 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5258 		struct extent_state *state;
5259 		struct extent_state *cached_state = NULL;
5260 		u64 start;
5261 		u64 end;
5262 
5263 		node = rb_first(&io_tree->state);
5264 		state = rb_entry(node, struct extent_state, rb_node);
5265 		start = state->start;
5266 		end = state->end;
5267 		spin_unlock(&io_tree->lock);
5268 
5269 		lock_extent_bits(io_tree, start, end, &cached_state);
5270 
5271 		/*
5272 		 * If still has DELALLOC flag, the extent didn't reach disk,
5273 		 * and its reserved space won't be freed by delayed_ref.
5274 		 * So we need to free its reserved space here.
5275 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5276 		 *
5277 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5278 		 */
5279 		if (state->state & EXTENT_DELALLOC)
5280 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5281 
5282 		clear_extent_bit(io_tree, start, end,
5283 				 EXTENT_LOCKED | EXTENT_DIRTY |
5284 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5285 				 EXTENT_DEFRAG, 1, 1, &cached_state);
5286 
5287 		cond_resched();
5288 		spin_lock(&io_tree->lock);
5289 	}
5290 	spin_unlock(&io_tree->lock);
5291 }
5292 
5293 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5294 							struct btrfs_block_rsv *rsv)
5295 {
5296 	struct btrfs_fs_info *fs_info = root->fs_info;
5297 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5298 	int failures = 0;
5299 
5300 	for (;;) {
5301 		struct btrfs_trans_handle *trans;
5302 		int ret;
5303 
5304 		ret = btrfs_block_rsv_refill(root, rsv, rsv->size,
5305 					     BTRFS_RESERVE_FLUSH_LIMIT);
5306 
5307 		if (ret && ++failures > 2) {
5308 			btrfs_warn(fs_info,
5309 				   "could not allocate space for a delete; will truncate on mount");
5310 			return ERR_PTR(-ENOSPC);
5311 		}
5312 
5313 		trans = btrfs_join_transaction(root);
5314 		if (IS_ERR(trans) || !ret)
5315 			return trans;
5316 
5317 		/*
5318 		 * Try to steal from the global reserve if there is space for
5319 		 * it.
5320 		 */
5321 		if (!btrfs_check_space_for_delayed_refs(trans) &&
5322 		    !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, false))
5323 			return trans;
5324 
5325 		/* If not, commit and try again. */
5326 		ret = btrfs_commit_transaction(trans);
5327 		if (ret)
5328 			return ERR_PTR(ret);
5329 	}
5330 }
5331 
5332 void btrfs_evict_inode(struct inode *inode)
5333 {
5334 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5335 	struct btrfs_trans_handle *trans;
5336 	struct btrfs_root *root = BTRFS_I(inode)->root;
5337 	struct btrfs_block_rsv *rsv;
5338 	int ret;
5339 
5340 	trace_btrfs_inode_evict(inode);
5341 
5342 	if (!root) {
5343 		clear_inode(inode);
5344 		return;
5345 	}
5346 
5347 	evict_inode_truncate_pages(inode);
5348 
5349 	if (inode->i_nlink &&
5350 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5351 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5352 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5353 		goto no_delete;
5354 
5355 	if (is_bad_inode(inode))
5356 		goto no_delete;
5357 
5358 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5359 
5360 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5361 		goto no_delete;
5362 
5363 	if (inode->i_nlink > 0) {
5364 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5365 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5366 		goto no_delete;
5367 	}
5368 
5369 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5370 	if (ret)
5371 		goto no_delete;
5372 
5373 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5374 	if (!rsv)
5375 		goto no_delete;
5376 	rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5377 	rsv->failfast = 1;
5378 
5379 	btrfs_i_size_write(BTRFS_I(inode), 0);
5380 
5381 	while (1) {
5382 		trans = evict_refill_and_join(root, rsv);
5383 		if (IS_ERR(trans))
5384 			goto free_rsv;
5385 
5386 		trans->block_rsv = rsv;
5387 
5388 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5389 		trans->block_rsv = &fs_info->trans_block_rsv;
5390 		btrfs_end_transaction(trans);
5391 		btrfs_btree_balance_dirty(fs_info);
5392 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5393 			goto free_rsv;
5394 		else if (!ret)
5395 			break;
5396 	}
5397 
5398 	/*
5399 	 * Errors here aren't a big deal, it just means we leave orphan items in
5400 	 * the tree. They will be cleaned up on the next mount. If the inode
5401 	 * number gets reused, cleanup deletes the orphan item without doing
5402 	 * anything, and unlink reuses the existing orphan item.
5403 	 *
5404 	 * If it turns out that we are dropping too many of these, we might want
5405 	 * to add a mechanism for retrying these after a commit.
5406 	 */
5407 	trans = evict_refill_and_join(root, rsv);
5408 	if (!IS_ERR(trans)) {
5409 		trans->block_rsv = rsv;
5410 		btrfs_orphan_del(trans, BTRFS_I(inode));
5411 		trans->block_rsv = &fs_info->trans_block_rsv;
5412 		btrfs_end_transaction(trans);
5413 	}
5414 
5415 	if (!(root == fs_info->tree_root ||
5416 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5417 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5418 
5419 free_rsv:
5420 	btrfs_free_block_rsv(fs_info, rsv);
5421 no_delete:
5422 	/*
5423 	 * If we didn't successfully delete, the orphan item will still be in
5424 	 * the tree and we'll retry on the next mount. Again, we might also want
5425 	 * to retry these periodically in the future.
5426 	 */
5427 	btrfs_remove_delayed_node(BTRFS_I(inode));
5428 	clear_inode(inode);
5429 }
5430 
5431 /*
5432  * this returns the key found in the dir entry in the location pointer.
5433  * If no dir entries were found, returns -ENOENT.
5434  * If found a corrupted location in dir entry, returns -EUCLEAN.
5435  */
5436 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5437 			       struct btrfs_key *location)
5438 {
5439 	const char *name = dentry->d_name.name;
5440 	int namelen = dentry->d_name.len;
5441 	struct btrfs_dir_item *di;
5442 	struct btrfs_path *path;
5443 	struct btrfs_root *root = BTRFS_I(dir)->root;
5444 	int ret = 0;
5445 
5446 	path = btrfs_alloc_path();
5447 	if (!path)
5448 		return -ENOMEM;
5449 
5450 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5451 			name, namelen, 0);
5452 	if (IS_ERR_OR_NULL(di)) {
5453 		ret = di ? PTR_ERR(di) : -ENOENT;
5454 		goto out;
5455 	}
5456 
5457 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5458 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5459 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5460 		ret = -EUCLEAN;
5461 		btrfs_warn(root->fs_info,
5462 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5463 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5464 			   location->objectid, location->type, location->offset);
5465 	}
5466 out:
5467 	btrfs_free_path(path);
5468 	return ret;
5469 }
5470 
5471 /*
5472  * when we hit a tree root in a directory, the btrfs part of the inode
5473  * needs to be changed to reflect the root directory of the tree root.  This
5474  * is kind of like crossing a mount point.
5475  */
5476 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5477 				    struct inode *dir,
5478 				    struct dentry *dentry,
5479 				    struct btrfs_key *location,
5480 				    struct btrfs_root **sub_root)
5481 {
5482 	struct btrfs_path *path;
5483 	struct btrfs_root *new_root;
5484 	struct btrfs_root_ref *ref;
5485 	struct extent_buffer *leaf;
5486 	struct btrfs_key key;
5487 	int ret;
5488 	int err = 0;
5489 
5490 	path = btrfs_alloc_path();
5491 	if (!path) {
5492 		err = -ENOMEM;
5493 		goto out;
5494 	}
5495 
5496 	err = -ENOENT;
5497 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5498 	key.type = BTRFS_ROOT_REF_KEY;
5499 	key.offset = location->objectid;
5500 
5501 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5502 	if (ret) {
5503 		if (ret < 0)
5504 			err = ret;
5505 		goto out;
5506 	}
5507 
5508 	leaf = path->nodes[0];
5509 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5510 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5511 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5512 		goto out;
5513 
5514 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5515 				   (unsigned long)(ref + 1),
5516 				   dentry->d_name.len);
5517 	if (ret)
5518 		goto out;
5519 
5520 	btrfs_release_path(path);
5521 
5522 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5523 	if (IS_ERR(new_root)) {
5524 		err = PTR_ERR(new_root);
5525 		goto out;
5526 	}
5527 
5528 	*sub_root = new_root;
5529 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5530 	location->type = BTRFS_INODE_ITEM_KEY;
5531 	location->offset = 0;
5532 	err = 0;
5533 out:
5534 	btrfs_free_path(path);
5535 	return err;
5536 }
5537 
5538 static void inode_tree_add(struct inode *inode)
5539 {
5540 	struct btrfs_root *root = BTRFS_I(inode)->root;
5541 	struct btrfs_inode *entry;
5542 	struct rb_node **p;
5543 	struct rb_node *parent;
5544 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5545 	u64 ino = btrfs_ino(BTRFS_I(inode));
5546 
5547 	if (inode_unhashed(inode))
5548 		return;
5549 	parent = NULL;
5550 	spin_lock(&root->inode_lock);
5551 	p = &root->inode_tree.rb_node;
5552 	while (*p) {
5553 		parent = *p;
5554 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5555 
5556 		if (ino < btrfs_ino(entry))
5557 			p = &parent->rb_left;
5558 		else if (ino > btrfs_ino(entry))
5559 			p = &parent->rb_right;
5560 		else {
5561 			WARN_ON(!(entry->vfs_inode.i_state &
5562 				  (I_WILL_FREE | I_FREEING)));
5563 			rb_replace_node(parent, new, &root->inode_tree);
5564 			RB_CLEAR_NODE(parent);
5565 			spin_unlock(&root->inode_lock);
5566 			return;
5567 		}
5568 	}
5569 	rb_link_node(new, parent, p);
5570 	rb_insert_color(new, &root->inode_tree);
5571 	spin_unlock(&root->inode_lock);
5572 }
5573 
5574 static void inode_tree_del(struct inode *inode)
5575 {
5576 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5577 	struct btrfs_root *root = BTRFS_I(inode)->root;
5578 	int empty = 0;
5579 
5580 	spin_lock(&root->inode_lock);
5581 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5582 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5583 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5584 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5585 	}
5586 	spin_unlock(&root->inode_lock);
5587 
5588 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5589 		synchronize_srcu(&fs_info->subvol_srcu);
5590 		spin_lock(&root->inode_lock);
5591 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5592 		spin_unlock(&root->inode_lock);
5593 		if (empty)
5594 			btrfs_add_dead_root(root);
5595 	}
5596 }
5597 
5598 
5599 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5600 {
5601 	struct btrfs_iget_args *args = p;
5602 	inode->i_ino = args->location->objectid;
5603 	memcpy(&BTRFS_I(inode)->location, args->location,
5604 	       sizeof(*args->location));
5605 	BTRFS_I(inode)->root = args->root;
5606 	return 0;
5607 }
5608 
5609 static int btrfs_find_actor(struct inode *inode, void *opaque)
5610 {
5611 	struct btrfs_iget_args *args = opaque;
5612 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5613 		args->root == BTRFS_I(inode)->root;
5614 }
5615 
5616 static struct inode *btrfs_iget_locked(struct super_block *s,
5617 				       struct btrfs_key *location,
5618 				       struct btrfs_root *root)
5619 {
5620 	struct inode *inode;
5621 	struct btrfs_iget_args args;
5622 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5623 
5624 	args.location = location;
5625 	args.root = root;
5626 
5627 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5628 			     btrfs_init_locked_inode,
5629 			     (void *)&args);
5630 	return inode;
5631 }
5632 
5633 /* Get an inode object given its location and corresponding root.
5634  * Returns in *is_new if the inode was read from disk
5635  */
5636 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5637 			 struct btrfs_root *root, int *new)
5638 {
5639 	struct inode *inode;
5640 
5641 	inode = btrfs_iget_locked(s, location, root);
5642 	if (!inode)
5643 		return ERR_PTR(-ENOMEM);
5644 
5645 	if (inode->i_state & I_NEW) {
5646 		int ret;
5647 
5648 		ret = btrfs_read_locked_inode(inode);
5649 		if (!ret) {
5650 			inode_tree_add(inode);
5651 			unlock_new_inode(inode);
5652 			if (new)
5653 				*new = 1;
5654 		} else {
5655 			iget_failed(inode);
5656 			/*
5657 			 * ret > 0 can come from btrfs_search_slot called by
5658 			 * btrfs_read_locked_inode, this means the inode item
5659 			 * was not found.
5660 			 */
5661 			if (ret > 0)
5662 				ret = -ENOENT;
5663 			inode = ERR_PTR(ret);
5664 		}
5665 	}
5666 
5667 	return inode;
5668 }
5669 
5670 static struct inode *new_simple_dir(struct super_block *s,
5671 				    struct btrfs_key *key,
5672 				    struct btrfs_root *root)
5673 {
5674 	struct inode *inode = new_inode(s);
5675 
5676 	if (!inode)
5677 		return ERR_PTR(-ENOMEM);
5678 
5679 	BTRFS_I(inode)->root = root;
5680 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5681 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5682 
5683 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5684 	inode->i_op = &btrfs_dir_ro_inode_operations;
5685 	inode->i_opflags &= ~IOP_XATTR;
5686 	inode->i_fop = &simple_dir_operations;
5687 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5688 	inode->i_mtime = current_time(inode);
5689 	inode->i_atime = inode->i_mtime;
5690 	inode->i_ctime = inode->i_mtime;
5691 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5692 
5693 	return inode;
5694 }
5695 
5696 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5697 {
5698 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5699 	struct inode *inode;
5700 	struct btrfs_root *root = BTRFS_I(dir)->root;
5701 	struct btrfs_root *sub_root = root;
5702 	struct btrfs_key location;
5703 	int index;
5704 	int ret = 0;
5705 
5706 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5707 		return ERR_PTR(-ENAMETOOLONG);
5708 
5709 	ret = btrfs_inode_by_name(dir, dentry, &location);
5710 	if (ret < 0)
5711 		return ERR_PTR(ret);
5712 
5713 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5714 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5715 		return inode;
5716 	}
5717 
5718 	index = srcu_read_lock(&fs_info->subvol_srcu);
5719 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5720 				       &location, &sub_root);
5721 	if (ret < 0) {
5722 		if (ret != -ENOENT)
5723 			inode = ERR_PTR(ret);
5724 		else
5725 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5726 	} else {
5727 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5728 	}
5729 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5730 
5731 	if (!IS_ERR(inode) && root != sub_root) {
5732 		down_read(&fs_info->cleanup_work_sem);
5733 		if (!sb_rdonly(inode->i_sb))
5734 			ret = btrfs_orphan_cleanup(sub_root);
5735 		up_read(&fs_info->cleanup_work_sem);
5736 		if (ret) {
5737 			iput(inode);
5738 			inode = ERR_PTR(ret);
5739 		}
5740 	}
5741 
5742 	return inode;
5743 }
5744 
5745 static int btrfs_dentry_delete(const struct dentry *dentry)
5746 {
5747 	struct btrfs_root *root;
5748 	struct inode *inode = d_inode(dentry);
5749 
5750 	if (!inode && !IS_ROOT(dentry))
5751 		inode = d_inode(dentry->d_parent);
5752 
5753 	if (inode) {
5754 		root = BTRFS_I(inode)->root;
5755 		if (btrfs_root_refs(&root->root_item) == 0)
5756 			return 1;
5757 
5758 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5759 			return 1;
5760 	}
5761 	return 0;
5762 }
5763 
5764 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5765 				   unsigned int flags)
5766 {
5767 	struct inode *inode;
5768 
5769 	inode = btrfs_lookup_dentry(dir, dentry);
5770 	if (IS_ERR(inode)) {
5771 		if (PTR_ERR(inode) == -ENOENT)
5772 			inode = NULL;
5773 		else
5774 			return ERR_CAST(inode);
5775 	}
5776 
5777 	return d_splice_alias(inode, dentry);
5778 }
5779 
5780 unsigned char btrfs_filetype_table[] = {
5781 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5782 };
5783 
5784 /*
5785  * All this infrastructure exists because dir_emit can fault, and we are holding
5786  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5787  * our information into that, and then dir_emit from the buffer.  This is
5788  * similar to what NFS does, only we don't keep the buffer around in pagecache
5789  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5790  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5791  * tree lock.
5792  */
5793 static int btrfs_opendir(struct inode *inode, struct file *file)
5794 {
5795 	struct btrfs_file_private *private;
5796 
5797 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5798 	if (!private)
5799 		return -ENOMEM;
5800 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5801 	if (!private->filldir_buf) {
5802 		kfree(private);
5803 		return -ENOMEM;
5804 	}
5805 	file->private_data = private;
5806 	return 0;
5807 }
5808 
5809 struct dir_entry {
5810 	u64 ino;
5811 	u64 offset;
5812 	unsigned type;
5813 	int name_len;
5814 };
5815 
5816 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5817 {
5818 	while (entries--) {
5819 		struct dir_entry *entry = addr;
5820 		char *name = (char *)(entry + 1);
5821 
5822 		ctx->pos = get_unaligned(&entry->offset);
5823 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5824 					 get_unaligned(&entry->ino),
5825 					 get_unaligned(&entry->type)))
5826 			return 1;
5827 		addr += sizeof(struct dir_entry) +
5828 			get_unaligned(&entry->name_len);
5829 		ctx->pos++;
5830 	}
5831 	return 0;
5832 }
5833 
5834 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5835 {
5836 	struct inode *inode = file_inode(file);
5837 	struct btrfs_root *root = BTRFS_I(inode)->root;
5838 	struct btrfs_file_private *private = file->private_data;
5839 	struct btrfs_dir_item *di;
5840 	struct btrfs_key key;
5841 	struct btrfs_key found_key;
5842 	struct btrfs_path *path;
5843 	void *addr;
5844 	struct list_head ins_list;
5845 	struct list_head del_list;
5846 	int ret;
5847 	struct extent_buffer *leaf;
5848 	int slot;
5849 	char *name_ptr;
5850 	int name_len;
5851 	int entries = 0;
5852 	int total_len = 0;
5853 	bool put = false;
5854 	struct btrfs_key location;
5855 
5856 	if (!dir_emit_dots(file, ctx))
5857 		return 0;
5858 
5859 	path = btrfs_alloc_path();
5860 	if (!path)
5861 		return -ENOMEM;
5862 
5863 	addr = private->filldir_buf;
5864 	path->reada = READA_FORWARD;
5865 
5866 	INIT_LIST_HEAD(&ins_list);
5867 	INIT_LIST_HEAD(&del_list);
5868 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5869 
5870 again:
5871 	key.type = BTRFS_DIR_INDEX_KEY;
5872 	key.offset = ctx->pos;
5873 	key.objectid = btrfs_ino(BTRFS_I(inode));
5874 
5875 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5876 	if (ret < 0)
5877 		goto err;
5878 
5879 	while (1) {
5880 		struct dir_entry *entry;
5881 
5882 		leaf = path->nodes[0];
5883 		slot = path->slots[0];
5884 		if (slot >= btrfs_header_nritems(leaf)) {
5885 			ret = btrfs_next_leaf(root, path);
5886 			if (ret < 0)
5887 				goto err;
5888 			else if (ret > 0)
5889 				break;
5890 			continue;
5891 		}
5892 
5893 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5894 
5895 		if (found_key.objectid != key.objectid)
5896 			break;
5897 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5898 			break;
5899 		if (found_key.offset < ctx->pos)
5900 			goto next;
5901 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5902 			goto next;
5903 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5904 		name_len = btrfs_dir_name_len(leaf, di);
5905 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5906 		    PAGE_SIZE) {
5907 			btrfs_release_path(path);
5908 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5909 			if (ret)
5910 				goto nopos;
5911 			addr = private->filldir_buf;
5912 			entries = 0;
5913 			total_len = 0;
5914 			goto again;
5915 		}
5916 
5917 		entry = addr;
5918 		put_unaligned(name_len, &entry->name_len);
5919 		name_ptr = (char *)(entry + 1);
5920 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5921 				   name_len);
5922 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5923 				&entry->type);
5924 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5925 		put_unaligned(location.objectid, &entry->ino);
5926 		put_unaligned(found_key.offset, &entry->offset);
5927 		entries++;
5928 		addr += sizeof(struct dir_entry) + name_len;
5929 		total_len += sizeof(struct dir_entry) + name_len;
5930 next:
5931 		path->slots[0]++;
5932 	}
5933 	btrfs_release_path(path);
5934 
5935 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5936 	if (ret)
5937 		goto nopos;
5938 
5939 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5940 	if (ret)
5941 		goto nopos;
5942 
5943 	/*
5944 	 * Stop new entries from being returned after we return the last
5945 	 * entry.
5946 	 *
5947 	 * New directory entries are assigned a strictly increasing
5948 	 * offset.  This means that new entries created during readdir
5949 	 * are *guaranteed* to be seen in the future by that readdir.
5950 	 * This has broken buggy programs which operate on names as
5951 	 * they're returned by readdir.  Until we re-use freed offsets
5952 	 * we have this hack to stop new entries from being returned
5953 	 * under the assumption that they'll never reach this huge
5954 	 * offset.
5955 	 *
5956 	 * This is being careful not to overflow 32bit loff_t unless the
5957 	 * last entry requires it because doing so has broken 32bit apps
5958 	 * in the past.
5959 	 */
5960 	if (ctx->pos >= INT_MAX)
5961 		ctx->pos = LLONG_MAX;
5962 	else
5963 		ctx->pos = INT_MAX;
5964 nopos:
5965 	ret = 0;
5966 err:
5967 	if (put)
5968 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5969 	btrfs_free_path(path);
5970 	return ret;
5971 }
5972 
5973 /*
5974  * This is somewhat expensive, updating the tree every time the
5975  * inode changes.  But, it is most likely to find the inode in cache.
5976  * FIXME, needs more benchmarking...there are no reasons other than performance
5977  * to keep or drop this code.
5978  */
5979 static int btrfs_dirty_inode(struct inode *inode)
5980 {
5981 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5982 	struct btrfs_root *root = BTRFS_I(inode)->root;
5983 	struct btrfs_trans_handle *trans;
5984 	int ret;
5985 
5986 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5987 		return 0;
5988 
5989 	trans = btrfs_join_transaction(root);
5990 	if (IS_ERR(trans))
5991 		return PTR_ERR(trans);
5992 
5993 	ret = btrfs_update_inode(trans, root, inode);
5994 	if (ret && ret == -ENOSPC) {
5995 		/* whoops, lets try again with the full transaction */
5996 		btrfs_end_transaction(trans);
5997 		trans = btrfs_start_transaction(root, 1);
5998 		if (IS_ERR(trans))
5999 			return PTR_ERR(trans);
6000 
6001 		ret = btrfs_update_inode(trans, root, inode);
6002 	}
6003 	btrfs_end_transaction(trans);
6004 	if (BTRFS_I(inode)->delayed_node)
6005 		btrfs_balance_delayed_items(fs_info);
6006 
6007 	return ret;
6008 }
6009 
6010 /*
6011  * This is a copy of file_update_time.  We need this so we can return error on
6012  * ENOSPC for updating the inode in the case of file write and mmap writes.
6013  */
6014 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6015 			     int flags)
6016 {
6017 	struct btrfs_root *root = BTRFS_I(inode)->root;
6018 	bool dirty = flags & ~S_VERSION;
6019 
6020 	if (btrfs_root_readonly(root))
6021 		return -EROFS;
6022 
6023 	if (flags & S_VERSION)
6024 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6025 	if (flags & S_CTIME)
6026 		inode->i_ctime = *now;
6027 	if (flags & S_MTIME)
6028 		inode->i_mtime = *now;
6029 	if (flags & S_ATIME)
6030 		inode->i_atime = *now;
6031 	return dirty ? btrfs_dirty_inode(inode) : 0;
6032 }
6033 
6034 /*
6035  * find the highest existing sequence number in a directory
6036  * and then set the in-memory index_cnt variable to reflect
6037  * free sequence numbers
6038  */
6039 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6040 {
6041 	struct btrfs_root *root = inode->root;
6042 	struct btrfs_key key, found_key;
6043 	struct btrfs_path *path;
6044 	struct extent_buffer *leaf;
6045 	int ret;
6046 
6047 	key.objectid = btrfs_ino(inode);
6048 	key.type = BTRFS_DIR_INDEX_KEY;
6049 	key.offset = (u64)-1;
6050 
6051 	path = btrfs_alloc_path();
6052 	if (!path)
6053 		return -ENOMEM;
6054 
6055 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6056 	if (ret < 0)
6057 		goto out;
6058 	/* FIXME: we should be able to handle this */
6059 	if (ret == 0)
6060 		goto out;
6061 	ret = 0;
6062 
6063 	/*
6064 	 * MAGIC NUMBER EXPLANATION:
6065 	 * since we search a directory based on f_pos we have to start at 2
6066 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6067 	 * else has to start at 2
6068 	 */
6069 	if (path->slots[0] == 0) {
6070 		inode->index_cnt = 2;
6071 		goto out;
6072 	}
6073 
6074 	path->slots[0]--;
6075 
6076 	leaf = path->nodes[0];
6077 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6078 
6079 	if (found_key.objectid != btrfs_ino(inode) ||
6080 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6081 		inode->index_cnt = 2;
6082 		goto out;
6083 	}
6084 
6085 	inode->index_cnt = found_key.offset + 1;
6086 out:
6087 	btrfs_free_path(path);
6088 	return ret;
6089 }
6090 
6091 /*
6092  * helper to find a free sequence number in a given directory.  This current
6093  * code is very simple, later versions will do smarter things in the btree
6094  */
6095 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6096 {
6097 	int ret = 0;
6098 
6099 	if (dir->index_cnt == (u64)-1) {
6100 		ret = btrfs_inode_delayed_dir_index_count(dir);
6101 		if (ret) {
6102 			ret = btrfs_set_inode_index_count(dir);
6103 			if (ret)
6104 				return ret;
6105 		}
6106 	}
6107 
6108 	*index = dir->index_cnt;
6109 	dir->index_cnt++;
6110 
6111 	return ret;
6112 }
6113 
6114 static int btrfs_insert_inode_locked(struct inode *inode)
6115 {
6116 	struct btrfs_iget_args args;
6117 	args.location = &BTRFS_I(inode)->location;
6118 	args.root = BTRFS_I(inode)->root;
6119 
6120 	return insert_inode_locked4(inode,
6121 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6122 		   btrfs_find_actor, &args);
6123 }
6124 
6125 /*
6126  * Inherit flags from the parent inode.
6127  *
6128  * Currently only the compression flags and the cow flags are inherited.
6129  */
6130 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6131 {
6132 	unsigned int flags;
6133 
6134 	if (!dir)
6135 		return;
6136 
6137 	flags = BTRFS_I(dir)->flags;
6138 
6139 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6140 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6141 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6142 	} else if (flags & BTRFS_INODE_COMPRESS) {
6143 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6144 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6145 	}
6146 
6147 	if (flags & BTRFS_INODE_NODATACOW) {
6148 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6149 		if (S_ISREG(inode->i_mode))
6150 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6151 	}
6152 
6153 	btrfs_sync_inode_flags_to_i_flags(inode);
6154 }
6155 
6156 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6157 				     struct btrfs_root *root,
6158 				     struct inode *dir,
6159 				     const char *name, int name_len,
6160 				     u64 ref_objectid, u64 objectid,
6161 				     umode_t mode, u64 *index)
6162 {
6163 	struct btrfs_fs_info *fs_info = root->fs_info;
6164 	struct inode *inode;
6165 	struct btrfs_inode_item *inode_item;
6166 	struct btrfs_key *location;
6167 	struct btrfs_path *path;
6168 	struct btrfs_inode_ref *ref;
6169 	struct btrfs_key key[2];
6170 	u32 sizes[2];
6171 	int nitems = name ? 2 : 1;
6172 	unsigned long ptr;
6173 	int ret;
6174 
6175 	path = btrfs_alloc_path();
6176 	if (!path)
6177 		return ERR_PTR(-ENOMEM);
6178 
6179 	inode = new_inode(fs_info->sb);
6180 	if (!inode) {
6181 		btrfs_free_path(path);
6182 		return ERR_PTR(-ENOMEM);
6183 	}
6184 
6185 	/*
6186 	 * O_TMPFILE, set link count to 0, so that after this point,
6187 	 * we fill in an inode item with the correct link count.
6188 	 */
6189 	if (!name)
6190 		set_nlink(inode, 0);
6191 
6192 	/*
6193 	 * we have to initialize this early, so we can reclaim the inode
6194 	 * number if we fail afterwards in this function.
6195 	 */
6196 	inode->i_ino = objectid;
6197 
6198 	if (dir && name) {
6199 		trace_btrfs_inode_request(dir);
6200 
6201 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6202 		if (ret) {
6203 			btrfs_free_path(path);
6204 			iput(inode);
6205 			return ERR_PTR(ret);
6206 		}
6207 	} else if (dir) {
6208 		*index = 0;
6209 	}
6210 	/*
6211 	 * index_cnt is ignored for everything but a dir,
6212 	 * btrfs_set_inode_index_count has an explanation for the magic
6213 	 * number
6214 	 */
6215 	BTRFS_I(inode)->index_cnt = 2;
6216 	BTRFS_I(inode)->dir_index = *index;
6217 	BTRFS_I(inode)->root = root;
6218 	BTRFS_I(inode)->generation = trans->transid;
6219 	inode->i_generation = BTRFS_I(inode)->generation;
6220 
6221 	/*
6222 	 * We could have gotten an inode number from somebody who was fsynced
6223 	 * and then removed in this same transaction, so let's just set full
6224 	 * sync since it will be a full sync anyway and this will blow away the
6225 	 * old info in the log.
6226 	 */
6227 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6228 
6229 	key[0].objectid = objectid;
6230 	key[0].type = BTRFS_INODE_ITEM_KEY;
6231 	key[0].offset = 0;
6232 
6233 	sizes[0] = sizeof(struct btrfs_inode_item);
6234 
6235 	if (name) {
6236 		/*
6237 		 * Start new inodes with an inode_ref. This is slightly more
6238 		 * efficient for small numbers of hard links since they will
6239 		 * be packed into one item. Extended refs will kick in if we
6240 		 * add more hard links than can fit in the ref item.
6241 		 */
6242 		key[1].objectid = objectid;
6243 		key[1].type = BTRFS_INODE_REF_KEY;
6244 		key[1].offset = ref_objectid;
6245 
6246 		sizes[1] = name_len + sizeof(*ref);
6247 	}
6248 
6249 	location = &BTRFS_I(inode)->location;
6250 	location->objectid = objectid;
6251 	location->offset = 0;
6252 	location->type = BTRFS_INODE_ITEM_KEY;
6253 
6254 	ret = btrfs_insert_inode_locked(inode);
6255 	if (ret < 0) {
6256 		iput(inode);
6257 		goto fail;
6258 	}
6259 
6260 	path->leave_spinning = 1;
6261 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6262 	if (ret != 0)
6263 		goto fail_unlock;
6264 
6265 	inode_init_owner(inode, dir, mode);
6266 	inode_set_bytes(inode, 0);
6267 
6268 	inode->i_mtime = current_time(inode);
6269 	inode->i_atime = inode->i_mtime;
6270 	inode->i_ctime = inode->i_mtime;
6271 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6272 
6273 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6274 				  struct btrfs_inode_item);
6275 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6276 			     sizeof(*inode_item));
6277 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6278 
6279 	if (name) {
6280 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6281 				     struct btrfs_inode_ref);
6282 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6283 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6284 		ptr = (unsigned long)(ref + 1);
6285 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6286 	}
6287 
6288 	btrfs_mark_buffer_dirty(path->nodes[0]);
6289 	btrfs_free_path(path);
6290 
6291 	btrfs_inherit_iflags(inode, dir);
6292 
6293 	if (S_ISREG(mode)) {
6294 		if (btrfs_test_opt(fs_info, NODATASUM))
6295 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6296 		if (btrfs_test_opt(fs_info, NODATACOW))
6297 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6298 				BTRFS_INODE_NODATASUM;
6299 	}
6300 
6301 	inode_tree_add(inode);
6302 
6303 	trace_btrfs_inode_new(inode);
6304 	btrfs_set_inode_last_trans(trans, inode);
6305 
6306 	btrfs_update_root_times(trans, root);
6307 
6308 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6309 	if (ret)
6310 		btrfs_err(fs_info,
6311 			  "error inheriting props for ino %llu (root %llu): %d",
6312 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6313 
6314 	return inode;
6315 
6316 fail_unlock:
6317 	discard_new_inode(inode);
6318 fail:
6319 	if (dir && name)
6320 		BTRFS_I(dir)->index_cnt--;
6321 	btrfs_free_path(path);
6322 	return ERR_PTR(ret);
6323 }
6324 
6325 static inline u8 btrfs_inode_type(struct inode *inode)
6326 {
6327 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6328 }
6329 
6330 /*
6331  * utility function to add 'inode' into 'parent_inode' with
6332  * a give name and a given sequence number.
6333  * if 'add_backref' is true, also insert a backref from the
6334  * inode to the parent directory.
6335  */
6336 int btrfs_add_link(struct btrfs_trans_handle *trans,
6337 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6338 		   const char *name, int name_len, int add_backref, u64 index)
6339 {
6340 	int ret = 0;
6341 	struct btrfs_key key;
6342 	struct btrfs_root *root = parent_inode->root;
6343 	u64 ino = btrfs_ino(inode);
6344 	u64 parent_ino = btrfs_ino(parent_inode);
6345 
6346 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6347 		memcpy(&key, &inode->root->root_key, sizeof(key));
6348 	} else {
6349 		key.objectid = ino;
6350 		key.type = BTRFS_INODE_ITEM_KEY;
6351 		key.offset = 0;
6352 	}
6353 
6354 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6355 		ret = btrfs_add_root_ref(trans, key.objectid,
6356 					 root->root_key.objectid, parent_ino,
6357 					 index, name, name_len);
6358 	} else if (add_backref) {
6359 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6360 					     parent_ino, index);
6361 	}
6362 
6363 	/* Nothing to clean up yet */
6364 	if (ret)
6365 		return ret;
6366 
6367 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6368 				    btrfs_inode_type(&inode->vfs_inode), index);
6369 	if (ret == -EEXIST || ret == -EOVERFLOW)
6370 		goto fail_dir_item;
6371 	else if (ret) {
6372 		btrfs_abort_transaction(trans, ret);
6373 		return ret;
6374 	}
6375 
6376 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6377 			   name_len * 2);
6378 	inode_inc_iversion(&parent_inode->vfs_inode);
6379 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6380 		current_time(&parent_inode->vfs_inode);
6381 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6382 	if (ret)
6383 		btrfs_abort_transaction(trans, ret);
6384 	return ret;
6385 
6386 fail_dir_item:
6387 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6388 		u64 local_index;
6389 		int err;
6390 		err = btrfs_del_root_ref(trans, key.objectid,
6391 					 root->root_key.objectid, parent_ino,
6392 					 &local_index, name, name_len);
6393 
6394 	} else if (add_backref) {
6395 		u64 local_index;
6396 		int err;
6397 
6398 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6399 					  ino, parent_ino, &local_index);
6400 	}
6401 	return ret;
6402 }
6403 
6404 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6405 			    struct btrfs_inode *dir, struct dentry *dentry,
6406 			    struct btrfs_inode *inode, int backref, u64 index)
6407 {
6408 	int err = btrfs_add_link(trans, dir, inode,
6409 				 dentry->d_name.name, dentry->d_name.len,
6410 				 backref, index);
6411 	if (err > 0)
6412 		err = -EEXIST;
6413 	return err;
6414 }
6415 
6416 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6417 			umode_t mode, dev_t rdev)
6418 {
6419 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6420 	struct btrfs_trans_handle *trans;
6421 	struct btrfs_root *root = BTRFS_I(dir)->root;
6422 	struct inode *inode = NULL;
6423 	int err;
6424 	u64 objectid;
6425 	u64 index = 0;
6426 
6427 	/*
6428 	 * 2 for inode item and ref
6429 	 * 2 for dir items
6430 	 * 1 for xattr if selinux is on
6431 	 */
6432 	trans = btrfs_start_transaction(root, 5);
6433 	if (IS_ERR(trans))
6434 		return PTR_ERR(trans);
6435 
6436 	err = btrfs_find_free_ino(root, &objectid);
6437 	if (err)
6438 		goto out_unlock;
6439 
6440 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6441 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6442 			mode, &index);
6443 	if (IS_ERR(inode)) {
6444 		err = PTR_ERR(inode);
6445 		inode = NULL;
6446 		goto out_unlock;
6447 	}
6448 
6449 	/*
6450 	* If the active LSM wants to access the inode during
6451 	* d_instantiate it needs these. Smack checks to see
6452 	* if the filesystem supports xattrs by looking at the
6453 	* ops vector.
6454 	*/
6455 	inode->i_op = &btrfs_special_inode_operations;
6456 	init_special_inode(inode, inode->i_mode, rdev);
6457 
6458 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6459 	if (err)
6460 		goto out_unlock;
6461 
6462 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6463 			0, index);
6464 	if (err)
6465 		goto out_unlock;
6466 
6467 	btrfs_update_inode(trans, root, inode);
6468 	d_instantiate_new(dentry, inode);
6469 
6470 out_unlock:
6471 	btrfs_end_transaction(trans);
6472 	btrfs_btree_balance_dirty(fs_info);
6473 	if (err && inode) {
6474 		inode_dec_link_count(inode);
6475 		discard_new_inode(inode);
6476 	}
6477 	return err;
6478 }
6479 
6480 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6481 			umode_t mode, bool excl)
6482 {
6483 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6484 	struct btrfs_trans_handle *trans;
6485 	struct btrfs_root *root = BTRFS_I(dir)->root;
6486 	struct inode *inode = NULL;
6487 	int err;
6488 	u64 objectid;
6489 	u64 index = 0;
6490 
6491 	/*
6492 	 * 2 for inode item and ref
6493 	 * 2 for dir items
6494 	 * 1 for xattr if selinux is on
6495 	 */
6496 	trans = btrfs_start_transaction(root, 5);
6497 	if (IS_ERR(trans))
6498 		return PTR_ERR(trans);
6499 
6500 	err = btrfs_find_free_ino(root, &objectid);
6501 	if (err)
6502 		goto out_unlock;
6503 
6504 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6505 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6506 			mode, &index);
6507 	if (IS_ERR(inode)) {
6508 		err = PTR_ERR(inode);
6509 		inode = NULL;
6510 		goto out_unlock;
6511 	}
6512 	/*
6513 	* If the active LSM wants to access the inode during
6514 	* d_instantiate it needs these. Smack checks to see
6515 	* if the filesystem supports xattrs by looking at the
6516 	* ops vector.
6517 	*/
6518 	inode->i_fop = &btrfs_file_operations;
6519 	inode->i_op = &btrfs_file_inode_operations;
6520 	inode->i_mapping->a_ops = &btrfs_aops;
6521 
6522 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6523 	if (err)
6524 		goto out_unlock;
6525 
6526 	err = btrfs_update_inode(trans, root, inode);
6527 	if (err)
6528 		goto out_unlock;
6529 
6530 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6531 			0, index);
6532 	if (err)
6533 		goto out_unlock;
6534 
6535 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6536 	d_instantiate_new(dentry, inode);
6537 
6538 out_unlock:
6539 	btrfs_end_transaction(trans);
6540 	if (err && inode) {
6541 		inode_dec_link_count(inode);
6542 		discard_new_inode(inode);
6543 	}
6544 	btrfs_btree_balance_dirty(fs_info);
6545 	return err;
6546 }
6547 
6548 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6549 		      struct dentry *dentry)
6550 {
6551 	struct btrfs_trans_handle *trans = NULL;
6552 	struct btrfs_root *root = BTRFS_I(dir)->root;
6553 	struct inode *inode = d_inode(old_dentry);
6554 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6555 	u64 index;
6556 	int err;
6557 	int drop_inode = 0;
6558 
6559 	/* do not allow sys_link's with other subvols of the same device */
6560 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6561 		return -EXDEV;
6562 
6563 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6564 		return -EMLINK;
6565 
6566 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6567 	if (err)
6568 		goto fail;
6569 
6570 	/*
6571 	 * 2 items for inode and inode ref
6572 	 * 2 items for dir items
6573 	 * 1 item for parent inode
6574 	 * 1 item for orphan item deletion if O_TMPFILE
6575 	 */
6576 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6577 	if (IS_ERR(trans)) {
6578 		err = PTR_ERR(trans);
6579 		trans = NULL;
6580 		goto fail;
6581 	}
6582 
6583 	/* There are several dir indexes for this inode, clear the cache. */
6584 	BTRFS_I(inode)->dir_index = 0ULL;
6585 	inc_nlink(inode);
6586 	inode_inc_iversion(inode);
6587 	inode->i_ctime = current_time(inode);
6588 	ihold(inode);
6589 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6590 
6591 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6592 			1, index);
6593 
6594 	if (err) {
6595 		drop_inode = 1;
6596 	} else {
6597 		struct dentry *parent = dentry->d_parent;
6598 		int ret;
6599 
6600 		err = btrfs_update_inode(trans, root, inode);
6601 		if (err)
6602 			goto fail;
6603 		if (inode->i_nlink == 1) {
6604 			/*
6605 			 * If new hard link count is 1, it's a file created
6606 			 * with open(2) O_TMPFILE flag.
6607 			 */
6608 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6609 			if (err)
6610 				goto fail;
6611 		}
6612 		d_instantiate(dentry, inode);
6613 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6614 					 true, NULL);
6615 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6616 			err = btrfs_commit_transaction(trans);
6617 			trans = NULL;
6618 		}
6619 	}
6620 
6621 fail:
6622 	if (trans)
6623 		btrfs_end_transaction(trans);
6624 	if (drop_inode) {
6625 		inode_dec_link_count(inode);
6626 		iput(inode);
6627 	}
6628 	btrfs_btree_balance_dirty(fs_info);
6629 	return err;
6630 }
6631 
6632 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6633 {
6634 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6635 	struct inode *inode = NULL;
6636 	struct btrfs_trans_handle *trans;
6637 	struct btrfs_root *root = BTRFS_I(dir)->root;
6638 	int err = 0;
6639 	int drop_on_err = 0;
6640 	u64 objectid = 0;
6641 	u64 index = 0;
6642 
6643 	/*
6644 	 * 2 items for inode and ref
6645 	 * 2 items for dir items
6646 	 * 1 for xattr if selinux is on
6647 	 */
6648 	trans = btrfs_start_transaction(root, 5);
6649 	if (IS_ERR(trans))
6650 		return PTR_ERR(trans);
6651 
6652 	err = btrfs_find_free_ino(root, &objectid);
6653 	if (err)
6654 		goto out_fail;
6655 
6656 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6657 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6658 			S_IFDIR | mode, &index);
6659 	if (IS_ERR(inode)) {
6660 		err = PTR_ERR(inode);
6661 		inode = NULL;
6662 		goto out_fail;
6663 	}
6664 
6665 	drop_on_err = 1;
6666 	/* these must be set before we unlock the inode */
6667 	inode->i_op = &btrfs_dir_inode_operations;
6668 	inode->i_fop = &btrfs_dir_file_operations;
6669 
6670 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6671 	if (err)
6672 		goto out_fail;
6673 
6674 	btrfs_i_size_write(BTRFS_I(inode), 0);
6675 	err = btrfs_update_inode(trans, root, inode);
6676 	if (err)
6677 		goto out_fail;
6678 
6679 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6680 			dentry->d_name.name,
6681 			dentry->d_name.len, 0, index);
6682 	if (err)
6683 		goto out_fail;
6684 
6685 	d_instantiate_new(dentry, inode);
6686 	drop_on_err = 0;
6687 
6688 out_fail:
6689 	btrfs_end_transaction(trans);
6690 	if (err && inode) {
6691 		inode_dec_link_count(inode);
6692 		discard_new_inode(inode);
6693 	}
6694 	btrfs_btree_balance_dirty(fs_info);
6695 	return err;
6696 }
6697 
6698 static noinline int uncompress_inline(struct btrfs_path *path,
6699 				      struct page *page,
6700 				      size_t pg_offset, u64 extent_offset,
6701 				      struct btrfs_file_extent_item *item)
6702 {
6703 	int ret;
6704 	struct extent_buffer *leaf = path->nodes[0];
6705 	char *tmp;
6706 	size_t max_size;
6707 	unsigned long inline_size;
6708 	unsigned long ptr;
6709 	int compress_type;
6710 
6711 	WARN_ON(pg_offset != 0);
6712 	compress_type = btrfs_file_extent_compression(leaf, item);
6713 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6714 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6715 					btrfs_item_nr(path->slots[0]));
6716 	tmp = kmalloc(inline_size, GFP_NOFS);
6717 	if (!tmp)
6718 		return -ENOMEM;
6719 	ptr = btrfs_file_extent_inline_start(item);
6720 
6721 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6722 
6723 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6724 	ret = btrfs_decompress(compress_type, tmp, page,
6725 			       extent_offset, inline_size, max_size);
6726 
6727 	/*
6728 	 * decompression code contains a memset to fill in any space between the end
6729 	 * of the uncompressed data and the end of max_size in case the decompressed
6730 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6731 	 * the end of an inline extent and the beginning of the next block, so we
6732 	 * cover that region here.
6733 	 */
6734 
6735 	if (max_size + pg_offset < PAGE_SIZE) {
6736 		char *map = kmap(page);
6737 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6738 		kunmap(page);
6739 	}
6740 	kfree(tmp);
6741 	return ret;
6742 }
6743 
6744 /*
6745  * a bit scary, this does extent mapping from logical file offset to the disk.
6746  * the ugly parts come from merging extents from the disk with the in-ram
6747  * representation.  This gets more complex because of the data=ordered code,
6748  * where the in-ram extents might be locked pending data=ordered completion.
6749  *
6750  * This also copies inline extents directly into the page.
6751  */
6752 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6753 				    struct page *page,
6754 				    size_t pg_offset, u64 start, u64 len,
6755 				    int create)
6756 {
6757 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6758 	int ret;
6759 	int err = 0;
6760 	u64 extent_start = 0;
6761 	u64 extent_end = 0;
6762 	u64 objectid = btrfs_ino(inode);
6763 	u32 found_type;
6764 	struct btrfs_path *path = NULL;
6765 	struct btrfs_root *root = inode->root;
6766 	struct btrfs_file_extent_item *item;
6767 	struct extent_buffer *leaf;
6768 	struct btrfs_key found_key;
6769 	struct extent_map *em = NULL;
6770 	struct extent_map_tree *em_tree = &inode->extent_tree;
6771 	struct extent_io_tree *io_tree = &inode->io_tree;
6772 	const bool new_inline = !page || create;
6773 
6774 	read_lock(&em_tree->lock);
6775 	em = lookup_extent_mapping(em_tree, start, len);
6776 	if (em)
6777 		em->bdev = fs_info->fs_devices->latest_bdev;
6778 	read_unlock(&em_tree->lock);
6779 
6780 	if (em) {
6781 		if (em->start > start || em->start + em->len <= start)
6782 			free_extent_map(em);
6783 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6784 			free_extent_map(em);
6785 		else
6786 			goto out;
6787 	}
6788 	em = alloc_extent_map();
6789 	if (!em) {
6790 		err = -ENOMEM;
6791 		goto out;
6792 	}
6793 	em->bdev = fs_info->fs_devices->latest_bdev;
6794 	em->start = EXTENT_MAP_HOLE;
6795 	em->orig_start = EXTENT_MAP_HOLE;
6796 	em->len = (u64)-1;
6797 	em->block_len = (u64)-1;
6798 
6799 	path = btrfs_alloc_path();
6800 	if (!path) {
6801 		err = -ENOMEM;
6802 		goto out;
6803 	}
6804 
6805 	/* Chances are we'll be called again, so go ahead and do readahead */
6806 	path->reada = READA_FORWARD;
6807 
6808 	/*
6809 	 * Unless we're going to uncompress the inline extent, no sleep would
6810 	 * happen.
6811 	 */
6812 	path->leave_spinning = 1;
6813 
6814 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6815 	if (ret < 0) {
6816 		err = ret;
6817 		goto out;
6818 	}
6819 
6820 	if (ret != 0) {
6821 		if (path->slots[0] == 0)
6822 			goto not_found;
6823 		path->slots[0]--;
6824 	}
6825 
6826 	leaf = path->nodes[0];
6827 	item = btrfs_item_ptr(leaf, path->slots[0],
6828 			      struct btrfs_file_extent_item);
6829 	/* are we inside the extent that was found? */
6830 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6831 	found_type = found_key.type;
6832 	if (found_key.objectid != objectid ||
6833 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6834 		/*
6835 		 * If we backup past the first extent we want to move forward
6836 		 * and see if there is an extent in front of us, otherwise we'll
6837 		 * say there is a hole for our whole search range which can
6838 		 * cause problems.
6839 		 */
6840 		extent_end = start;
6841 		goto next;
6842 	}
6843 
6844 	found_type = btrfs_file_extent_type(leaf, item);
6845 	extent_start = found_key.offset;
6846 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6847 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6848 		extent_end = extent_start +
6849 		       btrfs_file_extent_num_bytes(leaf, item);
6850 
6851 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6852 						       extent_start);
6853 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6854 		size_t size;
6855 
6856 		size = btrfs_file_extent_ram_bytes(leaf, item);
6857 		extent_end = ALIGN(extent_start + size,
6858 				   fs_info->sectorsize);
6859 
6860 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6861 						      path->slots[0],
6862 						      extent_start);
6863 	}
6864 next:
6865 	if (start >= extent_end) {
6866 		path->slots[0]++;
6867 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6868 			ret = btrfs_next_leaf(root, path);
6869 			if (ret < 0) {
6870 				err = ret;
6871 				goto out;
6872 			}
6873 			if (ret > 0)
6874 				goto not_found;
6875 			leaf = path->nodes[0];
6876 		}
6877 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6878 		if (found_key.objectid != objectid ||
6879 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6880 			goto not_found;
6881 		if (start + len <= found_key.offset)
6882 			goto not_found;
6883 		if (start > found_key.offset)
6884 			goto next;
6885 		em->start = start;
6886 		em->orig_start = start;
6887 		em->len = found_key.offset - start;
6888 		goto not_found_em;
6889 	}
6890 
6891 	btrfs_extent_item_to_extent_map(inode, path, item,
6892 			new_inline, em);
6893 
6894 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6895 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6896 		goto insert;
6897 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6898 		unsigned long ptr;
6899 		char *map;
6900 		size_t size;
6901 		size_t extent_offset;
6902 		size_t copy_size;
6903 
6904 		if (new_inline)
6905 			goto out;
6906 
6907 		size = btrfs_file_extent_ram_bytes(leaf, item);
6908 		extent_offset = page_offset(page) + pg_offset - extent_start;
6909 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6910 				  size - extent_offset);
6911 		em->start = extent_start + extent_offset;
6912 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6913 		em->orig_block_len = em->len;
6914 		em->orig_start = em->start;
6915 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6916 
6917 		btrfs_set_path_blocking(path);
6918 		if (!PageUptodate(page)) {
6919 			if (btrfs_file_extent_compression(leaf, item) !=
6920 			    BTRFS_COMPRESS_NONE) {
6921 				ret = uncompress_inline(path, page, pg_offset,
6922 							extent_offset, item);
6923 				if (ret) {
6924 					err = ret;
6925 					goto out;
6926 				}
6927 			} else {
6928 				map = kmap(page);
6929 				read_extent_buffer(leaf, map + pg_offset, ptr,
6930 						   copy_size);
6931 				if (pg_offset + copy_size < PAGE_SIZE) {
6932 					memset(map + pg_offset + copy_size, 0,
6933 					       PAGE_SIZE - pg_offset -
6934 					       copy_size);
6935 				}
6936 				kunmap(page);
6937 			}
6938 			flush_dcache_page(page);
6939 		}
6940 		set_extent_uptodate(io_tree, em->start,
6941 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6942 		goto insert;
6943 	}
6944 not_found:
6945 	em->start = start;
6946 	em->orig_start = start;
6947 	em->len = len;
6948 not_found_em:
6949 	em->block_start = EXTENT_MAP_HOLE;
6950 insert:
6951 	btrfs_release_path(path);
6952 	if (em->start > start || extent_map_end(em) <= start) {
6953 		btrfs_err(fs_info,
6954 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6955 			  em->start, em->len, start, len);
6956 		err = -EIO;
6957 		goto out;
6958 	}
6959 
6960 	err = 0;
6961 	write_lock(&em_tree->lock);
6962 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6963 	write_unlock(&em_tree->lock);
6964 out:
6965 	btrfs_free_path(path);
6966 
6967 	trace_btrfs_get_extent(root, inode, em);
6968 
6969 	if (err) {
6970 		free_extent_map(em);
6971 		return ERR_PTR(err);
6972 	}
6973 	BUG_ON(!em); /* Error is always set */
6974 	return em;
6975 }
6976 
6977 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6978 		struct page *page,
6979 		size_t pg_offset, u64 start, u64 len,
6980 		int create)
6981 {
6982 	struct extent_map *em;
6983 	struct extent_map *hole_em = NULL;
6984 	u64 range_start = start;
6985 	u64 end;
6986 	u64 found;
6987 	u64 found_end;
6988 	int err = 0;
6989 
6990 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6991 	if (IS_ERR(em))
6992 		return em;
6993 	/*
6994 	 * If our em maps to:
6995 	 * - a hole or
6996 	 * - a pre-alloc extent,
6997 	 * there might actually be delalloc bytes behind it.
6998 	 */
6999 	if (em->block_start != EXTENT_MAP_HOLE &&
7000 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7001 		return em;
7002 	else
7003 		hole_em = em;
7004 
7005 	/* check to see if we've wrapped (len == -1 or similar) */
7006 	end = start + len;
7007 	if (end < start)
7008 		end = (u64)-1;
7009 	else
7010 		end -= 1;
7011 
7012 	em = NULL;
7013 
7014 	/* ok, we didn't find anything, lets look for delalloc */
7015 	found = count_range_bits(&inode->io_tree, &range_start,
7016 				 end, len, EXTENT_DELALLOC, 1);
7017 	found_end = range_start + found;
7018 	if (found_end < range_start)
7019 		found_end = (u64)-1;
7020 
7021 	/*
7022 	 * we didn't find anything useful, return
7023 	 * the original results from get_extent()
7024 	 */
7025 	if (range_start > end || found_end <= start) {
7026 		em = hole_em;
7027 		hole_em = NULL;
7028 		goto out;
7029 	}
7030 
7031 	/* adjust the range_start to make sure it doesn't
7032 	 * go backwards from the start they passed in
7033 	 */
7034 	range_start = max(start, range_start);
7035 	found = found_end - range_start;
7036 
7037 	if (found > 0) {
7038 		u64 hole_start = start;
7039 		u64 hole_len = len;
7040 
7041 		em = alloc_extent_map();
7042 		if (!em) {
7043 			err = -ENOMEM;
7044 			goto out;
7045 		}
7046 		/*
7047 		 * when btrfs_get_extent can't find anything it
7048 		 * returns one huge hole
7049 		 *
7050 		 * make sure what it found really fits our range, and
7051 		 * adjust to make sure it is based on the start from
7052 		 * the caller
7053 		 */
7054 		if (hole_em) {
7055 			u64 calc_end = extent_map_end(hole_em);
7056 
7057 			if (calc_end <= start || (hole_em->start > end)) {
7058 				free_extent_map(hole_em);
7059 				hole_em = NULL;
7060 			} else {
7061 				hole_start = max(hole_em->start, start);
7062 				hole_len = calc_end - hole_start;
7063 			}
7064 		}
7065 		em->bdev = NULL;
7066 		if (hole_em && range_start > hole_start) {
7067 			/* our hole starts before our delalloc, so we
7068 			 * have to return just the parts of the hole
7069 			 * that go until  the delalloc starts
7070 			 */
7071 			em->len = min(hole_len,
7072 				      range_start - hole_start);
7073 			em->start = hole_start;
7074 			em->orig_start = hole_start;
7075 			/*
7076 			 * don't adjust block start at all,
7077 			 * it is fixed at EXTENT_MAP_HOLE
7078 			 */
7079 			em->block_start = hole_em->block_start;
7080 			em->block_len = hole_len;
7081 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7082 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7083 		} else {
7084 			em->start = range_start;
7085 			em->len = found;
7086 			em->orig_start = range_start;
7087 			em->block_start = EXTENT_MAP_DELALLOC;
7088 			em->block_len = found;
7089 		}
7090 	} else {
7091 		return hole_em;
7092 	}
7093 out:
7094 
7095 	free_extent_map(hole_em);
7096 	if (err) {
7097 		free_extent_map(em);
7098 		return ERR_PTR(err);
7099 	}
7100 	return em;
7101 }
7102 
7103 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7104 						  const u64 start,
7105 						  const u64 len,
7106 						  const u64 orig_start,
7107 						  const u64 block_start,
7108 						  const u64 block_len,
7109 						  const u64 orig_block_len,
7110 						  const u64 ram_bytes,
7111 						  const int type)
7112 {
7113 	struct extent_map *em = NULL;
7114 	int ret;
7115 
7116 	if (type != BTRFS_ORDERED_NOCOW) {
7117 		em = create_io_em(inode, start, len, orig_start,
7118 				  block_start, block_len, orig_block_len,
7119 				  ram_bytes,
7120 				  BTRFS_COMPRESS_NONE, /* compress_type */
7121 				  type);
7122 		if (IS_ERR(em))
7123 			goto out;
7124 	}
7125 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7126 					   len, block_len, type);
7127 	if (ret) {
7128 		if (em) {
7129 			free_extent_map(em);
7130 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7131 						start + len - 1, 0);
7132 		}
7133 		em = ERR_PTR(ret);
7134 	}
7135  out:
7136 
7137 	return em;
7138 }
7139 
7140 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7141 						  u64 start, u64 len)
7142 {
7143 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7144 	struct btrfs_root *root = BTRFS_I(inode)->root;
7145 	struct extent_map *em;
7146 	struct btrfs_key ins;
7147 	u64 alloc_hint;
7148 	int ret;
7149 
7150 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7151 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7152 				   0, alloc_hint, &ins, 1, 1);
7153 	if (ret)
7154 		return ERR_PTR(ret);
7155 
7156 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7157 				     ins.objectid, ins.offset, ins.offset,
7158 				     ins.offset, BTRFS_ORDERED_REGULAR);
7159 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7160 	if (IS_ERR(em))
7161 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7162 					   ins.offset, 1);
7163 
7164 	return em;
7165 }
7166 
7167 /*
7168  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7169  * block must be cow'd
7170  */
7171 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7172 			      u64 *orig_start, u64 *orig_block_len,
7173 			      u64 *ram_bytes)
7174 {
7175 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7176 	struct btrfs_path *path;
7177 	int ret;
7178 	struct extent_buffer *leaf;
7179 	struct btrfs_root *root = BTRFS_I(inode)->root;
7180 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7181 	struct btrfs_file_extent_item *fi;
7182 	struct btrfs_key key;
7183 	u64 disk_bytenr;
7184 	u64 backref_offset;
7185 	u64 extent_end;
7186 	u64 num_bytes;
7187 	int slot;
7188 	int found_type;
7189 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7190 
7191 	path = btrfs_alloc_path();
7192 	if (!path)
7193 		return -ENOMEM;
7194 
7195 	ret = btrfs_lookup_file_extent(NULL, root, path,
7196 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7197 	if (ret < 0)
7198 		goto out;
7199 
7200 	slot = path->slots[0];
7201 	if (ret == 1) {
7202 		if (slot == 0) {
7203 			/* can't find the item, must cow */
7204 			ret = 0;
7205 			goto out;
7206 		}
7207 		slot--;
7208 	}
7209 	ret = 0;
7210 	leaf = path->nodes[0];
7211 	btrfs_item_key_to_cpu(leaf, &key, slot);
7212 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7213 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7214 		/* not our file or wrong item type, must cow */
7215 		goto out;
7216 	}
7217 
7218 	if (key.offset > offset) {
7219 		/* Wrong offset, must cow */
7220 		goto out;
7221 	}
7222 
7223 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7224 	found_type = btrfs_file_extent_type(leaf, fi);
7225 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7226 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7227 		/* not a regular extent, must cow */
7228 		goto out;
7229 	}
7230 
7231 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7232 		goto out;
7233 
7234 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7235 	if (extent_end <= offset)
7236 		goto out;
7237 
7238 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7239 	if (disk_bytenr == 0)
7240 		goto out;
7241 
7242 	if (btrfs_file_extent_compression(leaf, fi) ||
7243 	    btrfs_file_extent_encryption(leaf, fi) ||
7244 	    btrfs_file_extent_other_encoding(leaf, fi))
7245 		goto out;
7246 
7247 	/*
7248 	 * Do the same check as in btrfs_cross_ref_exist but without the
7249 	 * unnecessary search.
7250 	 */
7251 	if (btrfs_file_extent_generation(leaf, fi) <=
7252 	    btrfs_root_last_snapshot(&root->root_item))
7253 		goto out;
7254 
7255 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7256 
7257 	if (orig_start) {
7258 		*orig_start = key.offset - backref_offset;
7259 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7260 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7261 	}
7262 
7263 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7264 		goto out;
7265 
7266 	num_bytes = min(offset + *len, extent_end) - offset;
7267 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7268 		u64 range_end;
7269 
7270 		range_end = round_up(offset + num_bytes,
7271 				     root->fs_info->sectorsize) - 1;
7272 		ret = test_range_bit(io_tree, offset, range_end,
7273 				     EXTENT_DELALLOC, 0, NULL);
7274 		if (ret) {
7275 			ret = -EAGAIN;
7276 			goto out;
7277 		}
7278 	}
7279 
7280 	btrfs_release_path(path);
7281 
7282 	/*
7283 	 * look for other files referencing this extent, if we
7284 	 * find any we must cow
7285 	 */
7286 
7287 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7288 				    key.offset - backref_offset, disk_bytenr);
7289 	if (ret) {
7290 		ret = 0;
7291 		goto out;
7292 	}
7293 
7294 	/*
7295 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7296 	 * in this extent we are about to write.  If there
7297 	 * are any csums in that range we have to cow in order
7298 	 * to keep the csums correct
7299 	 */
7300 	disk_bytenr += backref_offset;
7301 	disk_bytenr += offset - key.offset;
7302 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7303 		goto out;
7304 	/*
7305 	 * all of the above have passed, it is safe to overwrite this extent
7306 	 * without cow
7307 	 */
7308 	*len = num_bytes;
7309 	ret = 1;
7310 out:
7311 	btrfs_free_path(path);
7312 	return ret;
7313 }
7314 
7315 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7316 			      struct extent_state **cached_state, int writing)
7317 {
7318 	struct btrfs_ordered_extent *ordered;
7319 	int ret = 0;
7320 
7321 	while (1) {
7322 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7323 				 cached_state);
7324 		/*
7325 		 * We're concerned with the entire range that we're going to be
7326 		 * doing DIO to, so we need to make sure there's no ordered
7327 		 * extents in this range.
7328 		 */
7329 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7330 						     lockend - lockstart + 1);
7331 
7332 		/*
7333 		 * We need to make sure there are no buffered pages in this
7334 		 * range either, we could have raced between the invalidate in
7335 		 * generic_file_direct_write and locking the extent.  The
7336 		 * invalidate needs to happen so that reads after a write do not
7337 		 * get stale data.
7338 		 */
7339 		if (!ordered &&
7340 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7341 							 lockstart, lockend)))
7342 			break;
7343 
7344 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7345 				     cached_state);
7346 
7347 		if (ordered) {
7348 			/*
7349 			 * If we are doing a DIO read and the ordered extent we
7350 			 * found is for a buffered write, we can not wait for it
7351 			 * to complete and retry, because if we do so we can
7352 			 * deadlock with concurrent buffered writes on page
7353 			 * locks. This happens only if our DIO read covers more
7354 			 * than one extent map, if at this point has already
7355 			 * created an ordered extent for a previous extent map
7356 			 * and locked its range in the inode's io tree, and a
7357 			 * concurrent write against that previous extent map's
7358 			 * range and this range started (we unlock the ranges
7359 			 * in the io tree only when the bios complete and
7360 			 * buffered writes always lock pages before attempting
7361 			 * to lock range in the io tree).
7362 			 */
7363 			if (writing ||
7364 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7365 				btrfs_start_ordered_extent(inode, ordered, 1);
7366 			else
7367 				ret = -ENOTBLK;
7368 			btrfs_put_ordered_extent(ordered);
7369 		} else {
7370 			/*
7371 			 * We could trigger writeback for this range (and wait
7372 			 * for it to complete) and then invalidate the pages for
7373 			 * this range (through invalidate_inode_pages2_range()),
7374 			 * but that can lead us to a deadlock with a concurrent
7375 			 * call to readpages() (a buffered read or a defrag call
7376 			 * triggered a readahead) on a page lock due to an
7377 			 * ordered dio extent we created before but did not have
7378 			 * yet a corresponding bio submitted (whence it can not
7379 			 * complete), which makes readpages() wait for that
7380 			 * ordered extent to complete while holding a lock on
7381 			 * that page.
7382 			 */
7383 			ret = -ENOTBLK;
7384 		}
7385 
7386 		if (ret)
7387 			break;
7388 
7389 		cond_resched();
7390 	}
7391 
7392 	return ret;
7393 }
7394 
7395 /* The callers of this must take lock_extent() */
7396 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7397 				       u64 orig_start, u64 block_start,
7398 				       u64 block_len, u64 orig_block_len,
7399 				       u64 ram_bytes, int compress_type,
7400 				       int type)
7401 {
7402 	struct extent_map_tree *em_tree;
7403 	struct extent_map *em;
7404 	struct btrfs_root *root = BTRFS_I(inode)->root;
7405 	int ret;
7406 
7407 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7408 	       type == BTRFS_ORDERED_COMPRESSED ||
7409 	       type == BTRFS_ORDERED_NOCOW ||
7410 	       type == BTRFS_ORDERED_REGULAR);
7411 
7412 	em_tree = &BTRFS_I(inode)->extent_tree;
7413 	em = alloc_extent_map();
7414 	if (!em)
7415 		return ERR_PTR(-ENOMEM);
7416 
7417 	em->start = start;
7418 	em->orig_start = orig_start;
7419 	em->len = len;
7420 	em->block_len = block_len;
7421 	em->block_start = block_start;
7422 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7423 	em->orig_block_len = orig_block_len;
7424 	em->ram_bytes = ram_bytes;
7425 	em->generation = -1;
7426 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7427 	if (type == BTRFS_ORDERED_PREALLOC) {
7428 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7429 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7430 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7431 		em->compress_type = compress_type;
7432 	}
7433 
7434 	do {
7435 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7436 				em->start + em->len - 1, 0);
7437 		write_lock(&em_tree->lock);
7438 		ret = add_extent_mapping(em_tree, em, 1);
7439 		write_unlock(&em_tree->lock);
7440 		/*
7441 		 * The caller has taken lock_extent(), who could race with us
7442 		 * to add em?
7443 		 */
7444 	} while (ret == -EEXIST);
7445 
7446 	if (ret) {
7447 		free_extent_map(em);
7448 		return ERR_PTR(ret);
7449 	}
7450 
7451 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7452 	return em;
7453 }
7454 
7455 
7456 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7457 					struct buffer_head *bh_result,
7458 					struct inode *inode,
7459 					u64 start, u64 len)
7460 {
7461 	if (em->block_start == EXTENT_MAP_HOLE ||
7462 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7463 		return -ENOENT;
7464 
7465 	len = min(len, em->len - (start - em->start));
7466 
7467 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7468 		inode->i_blkbits;
7469 	bh_result->b_size = len;
7470 	bh_result->b_bdev = em->bdev;
7471 	set_buffer_mapped(bh_result);
7472 
7473 	return 0;
7474 }
7475 
7476 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7477 					 struct buffer_head *bh_result,
7478 					 struct inode *inode,
7479 					 struct btrfs_dio_data *dio_data,
7480 					 u64 start, u64 len)
7481 {
7482 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7483 	struct extent_map *em = *map;
7484 	int ret = 0;
7485 
7486 	/*
7487 	 * We don't allocate a new extent in the following cases
7488 	 *
7489 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7490 	 * existing extent.
7491 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7492 	 * just use the extent.
7493 	 *
7494 	 */
7495 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7496 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7497 	     em->block_start != EXTENT_MAP_HOLE)) {
7498 		int type;
7499 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7500 
7501 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7502 			type = BTRFS_ORDERED_PREALLOC;
7503 		else
7504 			type = BTRFS_ORDERED_NOCOW;
7505 		len = min(len, em->len - (start - em->start));
7506 		block_start = em->block_start + (start - em->start);
7507 
7508 		if (can_nocow_extent(inode, start, &len, &orig_start,
7509 				     &orig_block_len, &ram_bytes) == 1 &&
7510 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7511 			struct extent_map *em2;
7512 
7513 			em2 = btrfs_create_dio_extent(inode, start, len,
7514 						      orig_start, block_start,
7515 						      len, orig_block_len,
7516 						      ram_bytes, type);
7517 			btrfs_dec_nocow_writers(fs_info, block_start);
7518 			if (type == BTRFS_ORDERED_PREALLOC) {
7519 				free_extent_map(em);
7520 				*map = em = em2;
7521 			}
7522 
7523 			if (em2 && IS_ERR(em2)) {
7524 				ret = PTR_ERR(em2);
7525 				goto out;
7526 			}
7527 			/*
7528 			 * For inode marked NODATACOW or extent marked PREALLOC,
7529 			 * use the existing or preallocated extent, so does not
7530 			 * need to adjust btrfs_space_info's bytes_may_use.
7531 			 */
7532 			btrfs_free_reserved_data_space_noquota(inode, start,
7533 							       len);
7534 			goto skip_cow;
7535 		}
7536 	}
7537 
7538 	/* this will cow the extent */
7539 	len = bh_result->b_size;
7540 	free_extent_map(em);
7541 	*map = em = btrfs_new_extent_direct(inode, start, len);
7542 	if (IS_ERR(em)) {
7543 		ret = PTR_ERR(em);
7544 		goto out;
7545 	}
7546 
7547 	len = min(len, em->len - (start - em->start));
7548 
7549 skip_cow:
7550 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7551 		inode->i_blkbits;
7552 	bh_result->b_size = len;
7553 	bh_result->b_bdev = em->bdev;
7554 	set_buffer_mapped(bh_result);
7555 
7556 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7557 		set_buffer_new(bh_result);
7558 
7559 	/*
7560 	 * Need to update the i_size under the extent lock so buffered
7561 	 * readers will get the updated i_size when we unlock.
7562 	 */
7563 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7564 		i_size_write(inode, start + len);
7565 
7566 	WARN_ON(dio_data->reserve < len);
7567 	dio_data->reserve -= len;
7568 	dio_data->unsubmitted_oe_range_end = start + len;
7569 	current->journal_info = dio_data;
7570 out:
7571 	return ret;
7572 }
7573 
7574 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7575 				   struct buffer_head *bh_result, int create)
7576 {
7577 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7578 	struct extent_map *em;
7579 	struct extent_state *cached_state = NULL;
7580 	struct btrfs_dio_data *dio_data = NULL;
7581 	u64 start = iblock << inode->i_blkbits;
7582 	u64 lockstart, lockend;
7583 	u64 len = bh_result->b_size;
7584 	int unlock_bits = EXTENT_LOCKED;
7585 	int ret = 0;
7586 
7587 	if (create)
7588 		unlock_bits |= EXTENT_DIRTY;
7589 	else
7590 		len = min_t(u64, len, fs_info->sectorsize);
7591 
7592 	lockstart = start;
7593 	lockend = start + len - 1;
7594 
7595 	if (current->journal_info) {
7596 		/*
7597 		 * Need to pull our outstanding extents and set journal_info to NULL so
7598 		 * that anything that needs to check if there's a transaction doesn't get
7599 		 * confused.
7600 		 */
7601 		dio_data = current->journal_info;
7602 		current->journal_info = NULL;
7603 	}
7604 
7605 	/*
7606 	 * If this errors out it's because we couldn't invalidate pagecache for
7607 	 * this range and we need to fallback to buffered.
7608 	 */
7609 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7610 			       create)) {
7611 		ret = -ENOTBLK;
7612 		goto err;
7613 	}
7614 
7615 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7616 	if (IS_ERR(em)) {
7617 		ret = PTR_ERR(em);
7618 		goto unlock_err;
7619 	}
7620 
7621 	/*
7622 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7623 	 * io.  INLINE is special, and we could probably kludge it in here, but
7624 	 * it's still buffered so for safety lets just fall back to the generic
7625 	 * buffered path.
7626 	 *
7627 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7628 	 * decompress it, so there will be buffering required no matter what we
7629 	 * do, so go ahead and fallback to buffered.
7630 	 *
7631 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7632 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7633 	 * the generic code.
7634 	 */
7635 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7636 	    em->block_start == EXTENT_MAP_INLINE) {
7637 		free_extent_map(em);
7638 		ret = -ENOTBLK;
7639 		goto unlock_err;
7640 	}
7641 
7642 	if (create) {
7643 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7644 						    dio_data, start, len);
7645 		if (ret < 0)
7646 			goto unlock_err;
7647 
7648 		/* clear and unlock the entire range */
7649 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7650 				 unlock_bits, 1, 0, &cached_state);
7651 	} else {
7652 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7653 						   start, len);
7654 		/* Can be negative only if we read from a hole */
7655 		if (ret < 0) {
7656 			ret = 0;
7657 			free_extent_map(em);
7658 			goto unlock_err;
7659 		}
7660 		/*
7661 		 * We need to unlock only the end area that we aren't using.
7662 		 * The rest is going to be unlocked by the endio routine.
7663 		 */
7664 		lockstart = start + bh_result->b_size;
7665 		if (lockstart < lockend) {
7666 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7667 					 lockend, unlock_bits, 1, 0,
7668 					 &cached_state);
7669 		} else {
7670 			free_extent_state(cached_state);
7671 		}
7672 	}
7673 
7674 	free_extent_map(em);
7675 
7676 	return 0;
7677 
7678 unlock_err:
7679 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7680 			 unlock_bits, 1, 0, &cached_state);
7681 err:
7682 	if (dio_data)
7683 		current->journal_info = dio_data;
7684 	return ret;
7685 }
7686 
7687 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7688 						 struct bio *bio,
7689 						 int mirror_num)
7690 {
7691 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7692 	blk_status_t ret;
7693 
7694 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7695 
7696 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7697 	if (ret)
7698 		return ret;
7699 
7700 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7701 
7702 	return ret;
7703 }
7704 
7705 static int btrfs_check_dio_repairable(struct inode *inode,
7706 				      struct bio *failed_bio,
7707 				      struct io_failure_record *failrec,
7708 				      int failed_mirror)
7709 {
7710 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7711 	int num_copies;
7712 
7713 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7714 	if (num_copies == 1) {
7715 		/*
7716 		 * we only have a single copy of the data, so don't bother with
7717 		 * all the retry and error correction code that follows. no
7718 		 * matter what the error is, it is very likely to persist.
7719 		 */
7720 		btrfs_debug(fs_info,
7721 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7722 			num_copies, failrec->this_mirror, failed_mirror);
7723 		return 0;
7724 	}
7725 
7726 	failrec->failed_mirror = failed_mirror;
7727 	failrec->this_mirror++;
7728 	if (failrec->this_mirror == failed_mirror)
7729 		failrec->this_mirror++;
7730 
7731 	if (failrec->this_mirror > num_copies) {
7732 		btrfs_debug(fs_info,
7733 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7734 			num_copies, failrec->this_mirror, failed_mirror);
7735 		return 0;
7736 	}
7737 
7738 	return 1;
7739 }
7740 
7741 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7742 				   struct page *page, unsigned int pgoff,
7743 				   u64 start, u64 end, int failed_mirror,
7744 				   bio_end_io_t *repair_endio, void *repair_arg)
7745 {
7746 	struct io_failure_record *failrec;
7747 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7748 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7749 	struct bio *bio;
7750 	int isector;
7751 	unsigned int read_mode = 0;
7752 	int segs;
7753 	int ret;
7754 	blk_status_t status;
7755 	struct bio_vec bvec;
7756 
7757 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7758 
7759 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7760 	if (ret)
7761 		return errno_to_blk_status(ret);
7762 
7763 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7764 					 failed_mirror);
7765 	if (!ret) {
7766 		free_io_failure(failure_tree, io_tree, failrec);
7767 		return BLK_STS_IOERR;
7768 	}
7769 
7770 	segs = bio_segments(failed_bio);
7771 	bio_get_first_bvec(failed_bio, &bvec);
7772 	if (segs > 1 ||
7773 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7774 		read_mode |= REQ_FAILFAST_DEV;
7775 
7776 	isector = start - btrfs_io_bio(failed_bio)->logical;
7777 	isector >>= inode->i_sb->s_blocksize_bits;
7778 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7779 				pgoff, isector, repair_endio, repair_arg);
7780 	bio->bi_opf = REQ_OP_READ | read_mode;
7781 
7782 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7783 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7784 		    read_mode, failrec->this_mirror, failrec->in_validation);
7785 
7786 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7787 	if (status) {
7788 		free_io_failure(failure_tree, io_tree, failrec);
7789 		bio_put(bio);
7790 	}
7791 
7792 	return status;
7793 }
7794 
7795 struct btrfs_retry_complete {
7796 	struct completion done;
7797 	struct inode *inode;
7798 	u64 start;
7799 	int uptodate;
7800 };
7801 
7802 static void btrfs_retry_endio_nocsum(struct bio *bio)
7803 {
7804 	struct btrfs_retry_complete *done = bio->bi_private;
7805 	struct inode *inode = done->inode;
7806 	struct bio_vec *bvec;
7807 	struct extent_io_tree *io_tree, *failure_tree;
7808 	int i;
7809 
7810 	if (bio->bi_status)
7811 		goto end;
7812 
7813 	ASSERT(bio->bi_vcnt == 1);
7814 	io_tree = &BTRFS_I(inode)->io_tree;
7815 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7816 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7817 
7818 	done->uptodate = 1;
7819 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7820 	bio_for_each_segment_all(bvec, bio, i)
7821 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7822 				 io_tree, done->start, bvec->bv_page,
7823 				 btrfs_ino(BTRFS_I(inode)), 0);
7824 end:
7825 	complete(&done->done);
7826 	bio_put(bio);
7827 }
7828 
7829 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7830 						struct btrfs_io_bio *io_bio)
7831 {
7832 	struct btrfs_fs_info *fs_info;
7833 	struct bio_vec bvec;
7834 	struct bvec_iter iter;
7835 	struct btrfs_retry_complete done;
7836 	u64 start;
7837 	unsigned int pgoff;
7838 	u32 sectorsize;
7839 	int nr_sectors;
7840 	blk_status_t ret;
7841 	blk_status_t err = BLK_STS_OK;
7842 
7843 	fs_info = BTRFS_I(inode)->root->fs_info;
7844 	sectorsize = fs_info->sectorsize;
7845 
7846 	start = io_bio->logical;
7847 	done.inode = inode;
7848 	io_bio->bio.bi_iter = io_bio->iter;
7849 
7850 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7851 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7852 		pgoff = bvec.bv_offset;
7853 
7854 next_block_or_try_again:
7855 		done.uptodate = 0;
7856 		done.start = start;
7857 		init_completion(&done.done);
7858 
7859 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7860 				pgoff, start, start + sectorsize - 1,
7861 				io_bio->mirror_num,
7862 				btrfs_retry_endio_nocsum, &done);
7863 		if (ret) {
7864 			err = ret;
7865 			goto next;
7866 		}
7867 
7868 		wait_for_completion_io(&done.done);
7869 
7870 		if (!done.uptodate) {
7871 			/* We might have another mirror, so try again */
7872 			goto next_block_or_try_again;
7873 		}
7874 
7875 next:
7876 		start += sectorsize;
7877 
7878 		nr_sectors--;
7879 		if (nr_sectors) {
7880 			pgoff += sectorsize;
7881 			ASSERT(pgoff < PAGE_SIZE);
7882 			goto next_block_or_try_again;
7883 		}
7884 	}
7885 
7886 	return err;
7887 }
7888 
7889 static void btrfs_retry_endio(struct bio *bio)
7890 {
7891 	struct btrfs_retry_complete *done = bio->bi_private;
7892 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7893 	struct extent_io_tree *io_tree, *failure_tree;
7894 	struct inode *inode = done->inode;
7895 	struct bio_vec *bvec;
7896 	int uptodate;
7897 	int ret;
7898 	int i;
7899 
7900 	if (bio->bi_status)
7901 		goto end;
7902 
7903 	uptodate = 1;
7904 
7905 	ASSERT(bio->bi_vcnt == 1);
7906 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7907 
7908 	io_tree = &BTRFS_I(inode)->io_tree;
7909 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
7910 
7911 	ASSERT(!bio_flagged(bio, BIO_CLONED));
7912 	bio_for_each_segment_all(bvec, bio, i) {
7913 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7914 					     bvec->bv_offset, done->start,
7915 					     bvec->bv_len);
7916 		if (!ret)
7917 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
7918 					 failure_tree, io_tree, done->start,
7919 					 bvec->bv_page,
7920 					 btrfs_ino(BTRFS_I(inode)),
7921 					 bvec->bv_offset);
7922 		else
7923 			uptodate = 0;
7924 	}
7925 
7926 	done->uptodate = uptodate;
7927 end:
7928 	complete(&done->done);
7929 	bio_put(bio);
7930 }
7931 
7932 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7933 		struct btrfs_io_bio *io_bio, blk_status_t err)
7934 {
7935 	struct btrfs_fs_info *fs_info;
7936 	struct bio_vec bvec;
7937 	struct bvec_iter iter;
7938 	struct btrfs_retry_complete done;
7939 	u64 start;
7940 	u64 offset = 0;
7941 	u32 sectorsize;
7942 	int nr_sectors;
7943 	unsigned int pgoff;
7944 	int csum_pos;
7945 	bool uptodate = (err == 0);
7946 	int ret;
7947 	blk_status_t status;
7948 
7949 	fs_info = BTRFS_I(inode)->root->fs_info;
7950 	sectorsize = fs_info->sectorsize;
7951 
7952 	err = BLK_STS_OK;
7953 	start = io_bio->logical;
7954 	done.inode = inode;
7955 	io_bio->bio.bi_iter = io_bio->iter;
7956 
7957 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
7958 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7959 
7960 		pgoff = bvec.bv_offset;
7961 next_block:
7962 		if (uptodate) {
7963 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7964 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
7965 					bvec.bv_page, pgoff, start, sectorsize);
7966 			if (likely(!ret))
7967 				goto next;
7968 		}
7969 try_again:
7970 		done.uptodate = 0;
7971 		done.start = start;
7972 		init_completion(&done.done);
7973 
7974 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7975 					pgoff, start, start + sectorsize - 1,
7976 					io_bio->mirror_num, btrfs_retry_endio,
7977 					&done);
7978 		if (status) {
7979 			err = status;
7980 			goto next;
7981 		}
7982 
7983 		wait_for_completion_io(&done.done);
7984 
7985 		if (!done.uptodate) {
7986 			/* We might have another mirror, so try again */
7987 			goto try_again;
7988 		}
7989 next:
7990 		offset += sectorsize;
7991 		start += sectorsize;
7992 
7993 		ASSERT(nr_sectors);
7994 
7995 		nr_sectors--;
7996 		if (nr_sectors) {
7997 			pgoff += sectorsize;
7998 			ASSERT(pgoff < PAGE_SIZE);
7999 			goto next_block;
8000 		}
8001 	}
8002 
8003 	return err;
8004 }
8005 
8006 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8007 		struct btrfs_io_bio *io_bio, blk_status_t err)
8008 {
8009 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8010 
8011 	if (skip_csum) {
8012 		if (unlikely(err))
8013 			return __btrfs_correct_data_nocsum(inode, io_bio);
8014 		else
8015 			return BLK_STS_OK;
8016 	} else {
8017 		return __btrfs_subio_endio_read(inode, io_bio, err);
8018 	}
8019 }
8020 
8021 static void btrfs_endio_direct_read(struct bio *bio)
8022 {
8023 	struct btrfs_dio_private *dip = bio->bi_private;
8024 	struct inode *inode = dip->inode;
8025 	struct bio *dio_bio;
8026 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8027 	blk_status_t err = bio->bi_status;
8028 
8029 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8030 		err = btrfs_subio_endio_read(inode, io_bio, err);
8031 
8032 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8033 		      dip->logical_offset + dip->bytes - 1);
8034 	dio_bio = dip->dio_bio;
8035 
8036 	kfree(dip);
8037 
8038 	dio_bio->bi_status = err;
8039 	dio_end_io(dio_bio);
8040 
8041 	if (io_bio->end_io)
8042 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8043 	bio_put(bio);
8044 }
8045 
8046 static void __endio_write_update_ordered(struct inode *inode,
8047 					 const u64 offset, const u64 bytes,
8048 					 const bool uptodate)
8049 {
8050 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8051 	struct btrfs_ordered_extent *ordered = NULL;
8052 	struct btrfs_workqueue *wq;
8053 	btrfs_work_func_t func;
8054 	u64 ordered_offset = offset;
8055 	u64 ordered_bytes = bytes;
8056 	u64 last_offset;
8057 
8058 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8059 		wq = fs_info->endio_freespace_worker;
8060 		func = btrfs_freespace_write_helper;
8061 	} else {
8062 		wq = fs_info->endio_write_workers;
8063 		func = btrfs_endio_write_helper;
8064 	}
8065 
8066 	while (ordered_offset < offset + bytes) {
8067 		last_offset = ordered_offset;
8068 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8069 							   &ordered_offset,
8070 							   ordered_bytes,
8071 							   uptodate)) {
8072 			btrfs_init_work(&ordered->work, func,
8073 					finish_ordered_fn,
8074 					NULL, NULL);
8075 			btrfs_queue_work(wq, &ordered->work);
8076 		}
8077 		/*
8078 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8079 		 * extent in the range, we can exit.
8080 		 */
8081 		if (ordered_offset == last_offset)
8082 			return;
8083 		/*
8084 		 * Our bio might span multiple ordered extents. In this case
8085 		 * we keep goin until we have accounted the whole dio.
8086 		 */
8087 		if (ordered_offset < offset + bytes) {
8088 			ordered_bytes = offset + bytes - ordered_offset;
8089 			ordered = NULL;
8090 		}
8091 	}
8092 }
8093 
8094 static void btrfs_endio_direct_write(struct bio *bio)
8095 {
8096 	struct btrfs_dio_private *dip = bio->bi_private;
8097 	struct bio *dio_bio = dip->dio_bio;
8098 
8099 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8100 				     dip->bytes, !bio->bi_status);
8101 
8102 	kfree(dip);
8103 
8104 	dio_bio->bi_status = bio->bi_status;
8105 	dio_end_io(dio_bio);
8106 	bio_put(bio);
8107 }
8108 
8109 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8110 				    struct bio *bio, u64 offset)
8111 {
8112 	struct inode *inode = private_data;
8113 	blk_status_t ret;
8114 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8115 	BUG_ON(ret); /* -ENOMEM */
8116 	return 0;
8117 }
8118 
8119 static void btrfs_end_dio_bio(struct bio *bio)
8120 {
8121 	struct btrfs_dio_private *dip = bio->bi_private;
8122 	blk_status_t err = bio->bi_status;
8123 
8124 	if (err)
8125 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8126 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8127 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8128 			   bio->bi_opf,
8129 			   (unsigned long long)bio->bi_iter.bi_sector,
8130 			   bio->bi_iter.bi_size, err);
8131 
8132 	if (dip->subio_endio)
8133 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8134 
8135 	if (err) {
8136 		/*
8137 		 * We want to perceive the errors flag being set before
8138 		 * decrementing the reference count. We don't need a barrier
8139 		 * since atomic operations with a return value are fully
8140 		 * ordered as per atomic_t.txt
8141 		 */
8142 		dip->errors = 1;
8143 	}
8144 
8145 	/* if there are more bios still pending for this dio, just exit */
8146 	if (!atomic_dec_and_test(&dip->pending_bios))
8147 		goto out;
8148 
8149 	if (dip->errors) {
8150 		bio_io_error(dip->orig_bio);
8151 	} else {
8152 		dip->dio_bio->bi_status = BLK_STS_OK;
8153 		bio_endio(dip->orig_bio);
8154 	}
8155 out:
8156 	bio_put(bio);
8157 }
8158 
8159 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8160 						 struct btrfs_dio_private *dip,
8161 						 struct bio *bio,
8162 						 u64 file_offset)
8163 {
8164 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8165 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8166 	blk_status_t ret;
8167 
8168 	/*
8169 	 * We load all the csum data we need when we submit
8170 	 * the first bio to reduce the csum tree search and
8171 	 * contention.
8172 	 */
8173 	if (dip->logical_offset == file_offset) {
8174 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8175 						file_offset);
8176 		if (ret)
8177 			return ret;
8178 	}
8179 
8180 	if (bio == dip->orig_bio)
8181 		return 0;
8182 
8183 	file_offset -= dip->logical_offset;
8184 	file_offset >>= inode->i_sb->s_blocksize_bits;
8185 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8186 
8187 	return 0;
8188 }
8189 
8190 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8191 		struct inode *inode, u64 file_offset, int async_submit)
8192 {
8193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8194 	struct btrfs_dio_private *dip = bio->bi_private;
8195 	bool write = bio_op(bio) == REQ_OP_WRITE;
8196 	blk_status_t ret;
8197 
8198 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8199 	if (async_submit)
8200 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8201 
8202 	if (!write) {
8203 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8204 		if (ret)
8205 			goto err;
8206 	}
8207 
8208 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8209 		goto map;
8210 
8211 	if (write && async_submit) {
8212 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8213 					  file_offset, inode,
8214 					  btrfs_submit_bio_start_direct_io);
8215 		goto err;
8216 	} else if (write) {
8217 		/*
8218 		 * If we aren't doing async submit, calculate the csum of the
8219 		 * bio now.
8220 		 */
8221 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8222 		if (ret)
8223 			goto err;
8224 	} else {
8225 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8226 						     file_offset);
8227 		if (ret)
8228 			goto err;
8229 	}
8230 map:
8231 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8232 err:
8233 	return ret;
8234 }
8235 
8236 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8237 {
8238 	struct inode *inode = dip->inode;
8239 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8240 	struct bio *bio;
8241 	struct bio *orig_bio = dip->orig_bio;
8242 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8243 	u64 file_offset = dip->logical_offset;
8244 	u64 map_length;
8245 	int async_submit = 0;
8246 	u64 submit_len;
8247 	int clone_offset = 0;
8248 	int clone_len;
8249 	int ret;
8250 	blk_status_t status;
8251 
8252 	map_length = orig_bio->bi_iter.bi_size;
8253 	submit_len = map_length;
8254 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8255 			      &map_length, NULL, 0);
8256 	if (ret)
8257 		return -EIO;
8258 
8259 	if (map_length >= submit_len) {
8260 		bio = orig_bio;
8261 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8262 		goto submit;
8263 	}
8264 
8265 	/* async crcs make it difficult to collect full stripe writes. */
8266 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8267 		async_submit = 0;
8268 	else
8269 		async_submit = 1;
8270 
8271 	/* bio split */
8272 	ASSERT(map_length <= INT_MAX);
8273 	atomic_inc(&dip->pending_bios);
8274 	do {
8275 		clone_len = min_t(int, submit_len, map_length);
8276 
8277 		/*
8278 		 * This will never fail as it's passing GPF_NOFS and
8279 		 * the allocation is backed by btrfs_bioset.
8280 		 */
8281 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8282 					      clone_len);
8283 		bio->bi_private = dip;
8284 		bio->bi_end_io = btrfs_end_dio_bio;
8285 		btrfs_io_bio(bio)->logical = file_offset;
8286 
8287 		ASSERT(submit_len >= clone_len);
8288 		submit_len -= clone_len;
8289 		if (submit_len == 0)
8290 			break;
8291 
8292 		/*
8293 		 * Increase the count before we submit the bio so we know
8294 		 * the end IO handler won't happen before we increase the
8295 		 * count. Otherwise, the dip might get freed before we're
8296 		 * done setting it up.
8297 		 */
8298 		atomic_inc(&dip->pending_bios);
8299 
8300 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8301 						async_submit);
8302 		if (status) {
8303 			bio_put(bio);
8304 			atomic_dec(&dip->pending_bios);
8305 			goto out_err;
8306 		}
8307 
8308 		clone_offset += clone_len;
8309 		start_sector += clone_len >> 9;
8310 		file_offset += clone_len;
8311 
8312 		map_length = submit_len;
8313 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8314 				      start_sector << 9, &map_length, NULL, 0);
8315 		if (ret)
8316 			goto out_err;
8317 	} while (submit_len > 0);
8318 
8319 submit:
8320 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8321 	if (!status)
8322 		return 0;
8323 
8324 	bio_put(bio);
8325 out_err:
8326 	dip->errors = 1;
8327 	/*
8328 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8329 	 * perceived to be set. This ordering is ensured by the fact that an
8330 	 * atomic operations with a return value are fully ordered as per
8331 	 * atomic_t.txt
8332 	 */
8333 	if (atomic_dec_and_test(&dip->pending_bios))
8334 		bio_io_error(dip->orig_bio);
8335 
8336 	/* bio_end_io() will handle error, so we needn't return it */
8337 	return 0;
8338 }
8339 
8340 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8341 				loff_t file_offset)
8342 {
8343 	struct btrfs_dio_private *dip = NULL;
8344 	struct bio *bio = NULL;
8345 	struct btrfs_io_bio *io_bio;
8346 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8347 	int ret = 0;
8348 
8349 	bio = btrfs_bio_clone(dio_bio);
8350 
8351 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8352 	if (!dip) {
8353 		ret = -ENOMEM;
8354 		goto free_ordered;
8355 	}
8356 
8357 	dip->private = dio_bio->bi_private;
8358 	dip->inode = inode;
8359 	dip->logical_offset = file_offset;
8360 	dip->bytes = dio_bio->bi_iter.bi_size;
8361 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8362 	bio->bi_private = dip;
8363 	dip->orig_bio = bio;
8364 	dip->dio_bio = dio_bio;
8365 	atomic_set(&dip->pending_bios, 0);
8366 	io_bio = btrfs_io_bio(bio);
8367 	io_bio->logical = file_offset;
8368 
8369 	if (write) {
8370 		bio->bi_end_io = btrfs_endio_direct_write;
8371 	} else {
8372 		bio->bi_end_io = btrfs_endio_direct_read;
8373 		dip->subio_endio = btrfs_subio_endio_read;
8374 	}
8375 
8376 	/*
8377 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8378 	 * even if we fail to submit a bio, because in such case we do the
8379 	 * corresponding error handling below and it must not be done a second
8380 	 * time by btrfs_direct_IO().
8381 	 */
8382 	if (write) {
8383 		struct btrfs_dio_data *dio_data = current->journal_info;
8384 
8385 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8386 			dip->bytes;
8387 		dio_data->unsubmitted_oe_range_start =
8388 			dio_data->unsubmitted_oe_range_end;
8389 	}
8390 
8391 	ret = btrfs_submit_direct_hook(dip);
8392 	if (!ret)
8393 		return;
8394 
8395 	if (io_bio->end_io)
8396 		io_bio->end_io(io_bio, ret);
8397 
8398 free_ordered:
8399 	/*
8400 	 * If we arrived here it means either we failed to submit the dip
8401 	 * or we either failed to clone the dio_bio or failed to allocate the
8402 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8403 	 * call bio_endio against our io_bio so that we get proper resource
8404 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8405 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8406 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8407 	 */
8408 	if (bio && dip) {
8409 		bio_io_error(bio);
8410 		/*
8411 		 * The end io callbacks free our dip, do the final put on bio
8412 		 * and all the cleanup and final put for dio_bio (through
8413 		 * dio_end_io()).
8414 		 */
8415 		dip = NULL;
8416 		bio = NULL;
8417 	} else {
8418 		if (write)
8419 			__endio_write_update_ordered(inode,
8420 						file_offset,
8421 						dio_bio->bi_iter.bi_size,
8422 						false);
8423 		else
8424 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8425 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8426 
8427 		dio_bio->bi_status = BLK_STS_IOERR;
8428 		/*
8429 		 * Releases and cleans up our dio_bio, no need to bio_put()
8430 		 * nor bio_endio()/bio_io_error() against dio_bio.
8431 		 */
8432 		dio_end_io(dio_bio);
8433 	}
8434 	if (bio)
8435 		bio_put(bio);
8436 	kfree(dip);
8437 }
8438 
8439 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8440 			       const struct iov_iter *iter, loff_t offset)
8441 {
8442 	int seg;
8443 	int i;
8444 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8445 	ssize_t retval = -EINVAL;
8446 
8447 	if (offset & blocksize_mask)
8448 		goto out;
8449 
8450 	if (iov_iter_alignment(iter) & blocksize_mask)
8451 		goto out;
8452 
8453 	/* If this is a write we don't need to check anymore */
8454 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8455 		return 0;
8456 	/*
8457 	 * Check to make sure we don't have duplicate iov_base's in this
8458 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8459 	 * when reading back.
8460 	 */
8461 	for (seg = 0; seg < iter->nr_segs; seg++) {
8462 		for (i = seg + 1; i < iter->nr_segs; i++) {
8463 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8464 				goto out;
8465 		}
8466 	}
8467 	retval = 0;
8468 out:
8469 	return retval;
8470 }
8471 
8472 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8473 {
8474 	struct file *file = iocb->ki_filp;
8475 	struct inode *inode = file->f_mapping->host;
8476 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8477 	struct btrfs_dio_data dio_data = { 0 };
8478 	struct extent_changeset *data_reserved = NULL;
8479 	loff_t offset = iocb->ki_pos;
8480 	size_t count = 0;
8481 	int flags = 0;
8482 	bool wakeup = true;
8483 	bool relock = false;
8484 	ssize_t ret;
8485 
8486 	if (check_direct_IO(fs_info, iter, offset))
8487 		return 0;
8488 
8489 	inode_dio_begin(inode);
8490 
8491 	/*
8492 	 * The generic stuff only does filemap_write_and_wait_range, which
8493 	 * isn't enough if we've written compressed pages to this area, so
8494 	 * we need to flush the dirty pages again to make absolutely sure
8495 	 * that any outstanding dirty pages are on disk.
8496 	 */
8497 	count = iov_iter_count(iter);
8498 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8499 		     &BTRFS_I(inode)->runtime_flags))
8500 		filemap_fdatawrite_range(inode->i_mapping, offset,
8501 					 offset + count - 1);
8502 
8503 	if (iov_iter_rw(iter) == WRITE) {
8504 		/*
8505 		 * If the write DIO is beyond the EOF, we need update
8506 		 * the isize, but it is protected by i_mutex. So we can
8507 		 * not unlock the i_mutex at this case.
8508 		 */
8509 		if (offset + count <= inode->i_size) {
8510 			dio_data.overwrite = 1;
8511 			inode_unlock(inode);
8512 			relock = true;
8513 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8514 			ret = -EAGAIN;
8515 			goto out;
8516 		}
8517 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8518 						   offset, count);
8519 		if (ret)
8520 			goto out;
8521 
8522 		/*
8523 		 * We need to know how many extents we reserved so that we can
8524 		 * do the accounting properly if we go over the number we
8525 		 * originally calculated.  Abuse current->journal_info for this.
8526 		 */
8527 		dio_data.reserve = round_up(count,
8528 					    fs_info->sectorsize);
8529 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8530 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8531 		current->journal_info = &dio_data;
8532 		down_read(&BTRFS_I(inode)->dio_sem);
8533 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8534 				     &BTRFS_I(inode)->runtime_flags)) {
8535 		inode_dio_end(inode);
8536 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8537 		wakeup = false;
8538 	}
8539 
8540 	ret = __blockdev_direct_IO(iocb, inode,
8541 				   fs_info->fs_devices->latest_bdev,
8542 				   iter, btrfs_get_blocks_direct, NULL,
8543 				   btrfs_submit_direct, flags);
8544 	if (iov_iter_rw(iter) == WRITE) {
8545 		up_read(&BTRFS_I(inode)->dio_sem);
8546 		current->journal_info = NULL;
8547 		if (ret < 0 && ret != -EIOCBQUEUED) {
8548 			if (dio_data.reserve)
8549 				btrfs_delalloc_release_space(inode, data_reserved,
8550 					offset, dio_data.reserve, true);
8551 			/*
8552 			 * On error we might have left some ordered extents
8553 			 * without submitting corresponding bios for them, so
8554 			 * cleanup them up to avoid other tasks getting them
8555 			 * and waiting for them to complete forever.
8556 			 */
8557 			if (dio_data.unsubmitted_oe_range_start <
8558 			    dio_data.unsubmitted_oe_range_end)
8559 				__endio_write_update_ordered(inode,
8560 					dio_data.unsubmitted_oe_range_start,
8561 					dio_data.unsubmitted_oe_range_end -
8562 					dio_data.unsubmitted_oe_range_start,
8563 					false);
8564 		} else if (ret >= 0 && (size_t)ret < count)
8565 			btrfs_delalloc_release_space(inode, data_reserved,
8566 					offset, count - (size_t)ret, true);
8567 		btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8568 	}
8569 out:
8570 	if (wakeup)
8571 		inode_dio_end(inode);
8572 	if (relock)
8573 		inode_lock(inode);
8574 
8575 	extent_changeset_free(data_reserved);
8576 	return ret;
8577 }
8578 
8579 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8580 
8581 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8582 		__u64 start, __u64 len)
8583 {
8584 	int	ret;
8585 
8586 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8587 	if (ret)
8588 		return ret;
8589 
8590 	return extent_fiemap(inode, fieinfo, start, len);
8591 }
8592 
8593 int btrfs_readpage(struct file *file, struct page *page)
8594 {
8595 	struct extent_io_tree *tree;
8596 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8597 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8598 }
8599 
8600 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8601 {
8602 	struct inode *inode = page->mapping->host;
8603 	int ret;
8604 
8605 	if (current->flags & PF_MEMALLOC) {
8606 		redirty_page_for_writepage(wbc, page);
8607 		unlock_page(page);
8608 		return 0;
8609 	}
8610 
8611 	/*
8612 	 * If we are under memory pressure we will call this directly from the
8613 	 * VM, we need to make sure we have the inode referenced for the ordered
8614 	 * extent.  If not just return like we didn't do anything.
8615 	 */
8616 	if (!igrab(inode)) {
8617 		redirty_page_for_writepage(wbc, page);
8618 		return AOP_WRITEPAGE_ACTIVATE;
8619 	}
8620 	ret = extent_write_full_page(page, wbc);
8621 	btrfs_add_delayed_iput(inode);
8622 	return ret;
8623 }
8624 
8625 static int btrfs_writepages(struct address_space *mapping,
8626 			    struct writeback_control *wbc)
8627 {
8628 	return extent_writepages(mapping, wbc);
8629 }
8630 
8631 static int
8632 btrfs_readpages(struct file *file, struct address_space *mapping,
8633 		struct list_head *pages, unsigned nr_pages)
8634 {
8635 	return extent_readpages(mapping, pages, nr_pages);
8636 }
8637 
8638 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8639 {
8640 	int ret = try_release_extent_mapping(page, gfp_flags);
8641 	if (ret == 1) {
8642 		ClearPagePrivate(page);
8643 		set_page_private(page, 0);
8644 		put_page(page);
8645 	}
8646 	return ret;
8647 }
8648 
8649 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8650 {
8651 	if (PageWriteback(page) || PageDirty(page))
8652 		return 0;
8653 	return __btrfs_releasepage(page, gfp_flags);
8654 }
8655 
8656 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8657 				 unsigned int length)
8658 {
8659 	struct inode *inode = page->mapping->host;
8660 	struct extent_io_tree *tree;
8661 	struct btrfs_ordered_extent *ordered;
8662 	struct extent_state *cached_state = NULL;
8663 	u64 page_start = page_offset(page);
8664 	u64 page_end = page_start + PAGE_SIZE - 1;
8665 	u64 start;
8666 	u64 end;
8667 	int inode_evicting = inode->i_state & I_FREEING;
8668 
8669 	/*
8670 	 * we have the page locked, so new writeback can't start,
8671 	 * and the dirty bit won't be cleared while we are here.
8672 	 *
8673 	 * Wait for IO on this page so that we can safely clear
8674 	 * the PagePrivate2 bit and do ordered accounting
8675 	 */
8676 	wait_on_page_writeback(page);
8677 
8678 	tree = &BTRFS_I(inode)->io_tree;
8679 	if (offset) {
8680 		btrfs_releasepage(page, GFP_NOFS);
8681 		return;
8682 	}
8683 
8684 	if (!inode_evicting)
8685 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8686 again:
8687 	start = page_start;
8688 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8689 					page_end - start + 1);
8690 	if (ordered) {
8691 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8692 		/*
8693 		 * IO on this page will never be started, so we need
8694 		 * to account for any ordered extents now
8695 		 */
8696 		if (!inode_evicting)
8697 			clear_extent_bit(tree, start, end,
8698 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8699 					 EXTENT_DELALLOC_NEW |
8700 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8701 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8702 		/*
8703 		 * whoever cleared the private bit is responsible
8704 		 * for the finish_ordered_io
8705 		 */
8706 		if (TestClearPagePrivate2(page)) {
8707 			struct btrfs_ordered_inode_tree *tree;
8708 			u64 new_len;
8709 
8710 			tree = &BTRFS_I(inode)->ordered_tree;
8711 
8712 			spin_lock_irq(&tree->lock);
8713 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8714 			new_len = start - ordered->file_offset;
8715 			if (new_len < ordered->truncated_len)
8716 				ordered->truncated_len = new_len;
8717 			spin_unlock_irq(&tree->lock);
8718 
8719 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8720 							   start,
8721 							   end - start + 1, 1))
8722 				btrfs_finish_ordered_io(ordered);
8723 		}
8724 		btrfs_put_ordered_extent(ordered);
8725 		if (!inode_evicting) {
8726 			cached_state = NULL;
8727 			lock_extent_bits(tree, start, end,
8728 					 &cached_state);
8729 		}
8730 
8731 		start = end + 1;
8732 		if (start < page_end)
8733 			goto again;
8734 	}
8735 
8736 	/*
8737 	 * Qgroup reserved space handler
8738 	 * Page here will be either
8739 	 * 1) Already written to disk
8740 	 *    In this case, its reserved space is released from data rsv map
8741 	 *    and will be freed by delayed_ref handler finally.
8742 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8743 	 *    space.
8744 	 * 2) Not written to disk
8745 	 *    This means the reserved space should be freed here. However,
8746 	 *    if a truncate invalidates the page (by clearing PageDirty)
8747 	 *    and the page is accounted for while allocating extent
8748 	 *    in btrfs_check_data_free_space() we let delayed_ref to
8749 	 *    free the entire extent.
8750 	 */
8751 	if (PageDirty(page))
8752 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8753 	if (!inode_evicting) {
8754 		clear_extent_bit(tree, page_start, page_end,
8755 				 EXTENT_LOCKED | EXTENT_DIRTY |
8756 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8757 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8758 				 &cached_state);
8759 
8760 		__btrfs_releasepage(page, GFP_NOFS);
8761 	}
8762 
8763 	ClearPageChecked(page);
8764 	if (PagePrivate(page)) {
8765 		ClearPagePrivate(page);
8766 		set_page_private(page, 0);
8767 		put_page(page);
8768 	}
8769 }
8770 
8771 /*
8772  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8773  * called from a page fault handler when a page is first dirtied. Hence we must
8774  * be careful to check for EOF conditions here. We set the page up correctly
8775  * for a written page which means we get ENOSPC checking when writing into
8776  * holes and correct delalloc and unwritten extent mapping on filesystems that
8777  * support these features.
8778  *
8779  * We are not allowed to take the i_mutex here so we have to play games to
8780  * protect against truncate races as the page could now be beyond EOF.  Because
8781  * truncate_setsize() writes the inode size before removing pages, once we have
8782  * the page lock we can determine safely if the page is beyond EOF. If it is not
8783  * beyond EOF, then the page is guaranteed safe against truncation until we
8784  * unlock the page.
8785  */
8786 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8787 {
8788 	struct page *page = vmf->page;
8789 	struct inode *inode = file_inode(vmf->vma->vm_file);
8790 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8791 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8792 	struct btrfs_ordered_extent *ordered;
8793 	struct extent_state *cached_state = NULL;
8794 	struct extent_changeset *data_reserved = NULL;
8795 	char *kaddr;
8796 	unsigned long zero_start;
8797 	loff_t size;
8798 	vm_fault_t ret;
8799 	int ret2;
8800 	int reserved = 0;
8801 	u64 reserved_space;
8802 	u64 page_start;
8803 	u64 page_end;
8804 	u64 end;
8805 
8806 	reserved_space = PAGE_SIZE;
8807 
8808 	sb_start_pagefault(inode->i_sb);
8809 	page_start = page_offset(page);
8810 	page_end = page_start + PAGE_SIZE - 1;
8811 	end = page_end;
8812 
8813 	/*
8814 	 * Reserving delalloc space after obtaining the page lock can lead to
8815 	 * deadlock. For example, if a dirty page is locked by this function
8816 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8817 	 * dirty page write out, then the btrfs_writepage() function could
8818 	 * end up waiting indefinitely to get a lock on the page currently
8819 	 * being processed by btrfs_page_mkwrite() function.
8820 	 */
8821 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8822 					   reserved_space);
8823 	if (!ret2) {
8824 		ret2 = file_update_time(vmf->vma->vm_file);
8825 		reserved = 1;
8826 	}
8827 	if (ret2) {
8828 		ret = vmf_error(ret2);
8829 		if (reserved)
8830 			goto out;
8831 		goto out_noreserve;
8832 	}
8833 
8834 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8835 again:
8836 	lock_page(page);
8837 	size = i_size_read(inode);
8838 
8839 	if ((page->mapping != inode->i_mapping) ||
8840 	    (page_start >= size)) {
8841 		/* page got truncated out from underneath us */
8842 		goto out_unlock;
8843 	}
8844 	wait_on_page_writeback(page);
8845 
8846 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8847 	set_page_extent_mapped(page);
8848 
8849 	/*
8850 	 * we can't set the delalloc bits if there are pending ordered
8851 	 * extents.  Drop our locks and wait for them to finish
8852 	 */
8853 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8854 			PAGE_SIZE);
8855 	if (ordered) {
8856 		unlock_extent_cached(io_tree, page_start, page_end,
8857 				     &cached_state);
8858 		unlock_page(page);
8859 		btrfs_start_ordered_extent(inode, ordered, 1);
8860 		btrfs_put_ordered_extent(ordered);
8861 		goto again;
8862 	}
8863 
8864 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8865 		reserved_space = round_up(size - page_start,
8866 					  fs_info->sectorsize);
8867 		if (reserved_space < PAGE_SIZE) {
8868 			end = page_start + reserved_space - 1;
8869 			btrfs_delalloc_release_space(inode, data_reserved,
8870 					page_start, PAGE_SIZE - reserved_space,
8871 					true);
8872 		}
8873 	}
8874 
8875 	/*
8876 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8877 	 * faulted in, but write(2) could also dirty a page and set delalloc
8878 	 * bits, thus in this case for space account reason, we still need to
8879 	 * clear any delalloc bits within this page range since we have to
8880 	 * reserve data&meta space before lock_page() (see above comments).
8881 	 */
8882 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8883 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8884 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8885 			  0, 0, &cached_state);
8886 
8887 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8888 					&cached_state, 0);
8889 	if (ret2) {
8890 		unlock_extent_cached(io_tree, page_start, page_end,
8891 				     &cached_state);
8892 		ret = VM_FAULT_SIGBUS;
8893 		goto out_unlock;
8894 	}
8895 	ret2 = 0;
8896 
8897 	/* page is wholly or partially inside EOF */
8898 	if (page_start + PAGE_SIZE > size)
8899 		zero_start = size & ~PAGE_MASK;
8900 	else
8901 		zero_start = PAGE_SIZE;
8902 
8903 	if (zero_start != PAGE_SIZE) {
8904 		kaddr = kmap(page);
8905 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8906 		flush_dcache_page(page);
8907 		kunmap(page);
8908 	}
8909 	ClearPageChecked(page);
8910 	set_page_dirty(page);
8911 	SetPageUptodate(page);
8912 
8913 	BTRFS_I(inode)->last_trans = fs_info->generation;
8914 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8915 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8916 
8917 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8918 
8919 	if (!ret2) {
8920 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8921 		sb_end_pagefault(inode->i_sb);
8922 		extent_changeset_free(data_reserved);
8923 		return VM_FAULT_LOCKED;
8924 	}
8925 
8926 out_unlock:
8927 	unlock_page(page);
8928 out:
8929 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8930 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
8931 				     reserved_space, (ret != 0));
8932 out_noreserve:
8933 	sb_end_pagefault(inode->i_sb);
8934 	extent_changeset_free(data_reserved);
8935 	return ret;
8936 }
8937 
8938 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8939 {
8940 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8941 	struct btrfs_root *root = BTRFS_I(inode)->root;
8942 	struct btrfs_block_rsv *rsv;
8943 	int ret;
8944 	struct btrfs_trans_handle *trans;
8945 	u64 mask = fs_info->sectorsize - 1;
8946 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8947 
8948 	if (!skip_writeback) {
8949 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8950 					       (u64)-1);
8951 		if (ret)
8952 			return ret;
8953 	}
8954 
8955 	/*
8956 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8957 	 * things going on here:
8958 	 *
8959 	 * 1) We need to reserve space to update our inode.
8960 	 *
8961 	 * 2) We need to have something to cache all the space that is going to
8962 	 * be free'd up by the truncate operation, but also have some slack
8963 	 * space reserved in case it uses space during the truncate (thank you
8964 	 * very much snapshotting).
8965 	 *
8966 	 * And we need these to be separate.  The fact is we can use a lot of
8967 	 * space doing the truncate, and we have no earthly idea how much space
8968 	 * we will use, so we need the truncate reservation to be separate so it
8969 	 * doesn't end up using space reserved for updating the inode.  We also
8970 	 * need to be able to stop the transaction and start a new one, which
8971 	 * means we need to be able to update the inode several times, and we
8972 	 * have no idea of knowing how many times that will be, so we can't just
8973 	 * reserve 1 item for the entirety of the operation, so that has to be
8974 	 * done separately as well.
8975 	 *
8976 	 * So that leaves us with
8977 	 *
8978 	 * 1) rsv - for the truncate reservation, which we will steal from the
8979 	 * transaction reservation.
8980 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8981 	 * updating the inode.
8982 	 */
8983 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8984 	if (!rsv)
8985 		return -ENOMEM;
8986 	rsv->size = min_size;
8987 	rsv->failfast = 1;
8988 
8989 	/*
8990 	 * 1 for the truncate slack space
8991 	 * 1 for updating the inode.
8992 	 */
8993 	trans = btrfs_start_transaction(root, 2);
8994 	if (IS_ERR(trans)) {
8995 		ret = PTR_ERR(trans);
8996 		goto out;
8997 	}
8998 
8999 	/* Migrate the slack space for the truncate to our reserve */
9000 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9001 				      min_size, false);
9002 	BUG_ON(ret);
9003 
9004 	/*
9005 	 * So if we truncate and then write and fsync we normally would just
9006 	 * write the extents that changed, which is a problem if we need to
9007 	 * first truncate that entire inode.  So set this flag so we write out
9008 	 * all of the extents in the inode to the sync log so we're completely
9009 	 * safe.
9010 	 */
9011 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9012 	trans->block_rsv = rsv;
9013 
9014 	while (1) {
9015 		ret = btrfs_truncate_inode_items(trans, root, inode,
9016 						 inode->i_size,
9017 						 BTRFS_EXTENT_DATA_KEY);
9018 		trans->block_rsv = &fs_info->trans_block_rsv;
9019 		if (ret != -ENOSPC && ret != -EAGAIN)
9020 			break;
9021 
9022 		ret = btrfs_update_inode(trans, root, inode);
9023 		if (ret)
9024 			break;
9025 
9026 		btrfs_end_transaction(trans);
9027 		btrfs_btree_balance_dirty(fs_info);
9028 
9029 		trans = btrfs_start_transaction(root, 2);
9030 		if (IS_ERR(trans)) {
9031 			ret = PTR_ERR(trans);
9032 			trans = NULL;
9033 			break;
9034 		}
9035 
9036 		btrfs_block_rsv_release(fs_info, rsv, -1);
9037 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9038 					      rsv, min_size, false);
9039 		BUG_ON(ret);	/* shouldn't happen */
9040 		trans->block_rsv = rsv;
9041 	}
9042 
9043 	/*
9044 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9045 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9046 	 * we've truncated everything except the last little bit, and can do
9047 	 * btrfs_truncate_block and then update the disk_i_size.
9048 	 */
9049 	if (ret == NEED_TRUNCATE_BLOCK) {
9050 		btrfs_end_transaction(trans);
9051 		btrfs_btree_balance_dirty(fs_info);
9052 
9053 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9054 		if (ret)
9055 			goto out;
9056 		trans = btrfs_start_transaction(root, 1);
9057 		if (IS_ERR(trans)) {
9058 			ret = PTR_ERR(trans);
9059 			goto out;
9060 		}
9061 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9062 	}
9063 
9064 	if (trans) {
9065 		int ret2;
9066 
9067 		trans->block_rsv = &fs_info->trans_block_rsv;
9068 		ret2 = btrfs_update_inode(trans, root, inode);
9069 		if (ret2 && !ret)
9070 			ret = ret2;
9071 
9072 		ret2 = btrfs_end_transaction(trans);
9073 		if (ret2 && !ret)
9074 			ret = ret2;
9075 		btrfs_btree_balance_dirty(fs_info);
9076 	}
9077 out:
9078 	btrfs_free_block_rsv(fs_info, rsv);
9079 
9080 	return ret;
9081 }
9082 
9083 /*
9084  * create a new subvolume directory/inode (helper for the ioctl).
9085  */
9086 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9087 			     struct btrfs_root *new_root,
9088 			     struct btrfs_root *parent_root,
9089 			     u64 new_dirid)
9090 {
9091 	struct inode *inode;
9092 	int err;
9093 	u64 index = 0;
9094 
9095 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9096 				new_dirid, new_dirid,
9097 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9098 				&index);
9099 	if (IS_ERR(inode))
9100 		return PTR_ERR(inode);
9101 	inode->i_op = &btrfs_dir_inode_operations;
9102 	inode->i_fop = &btrfs_dir_file_operations;
9103 
9104 	set_nlink(inode, 1);
9105 	btrfs_i_size_write(BTRFS_I(inode), 0);
9106 	unlock_new_inode(inode);
9107 
9108 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9109 	if (err)
9110 		btrfs_err(new_root->fs_info,
9111 			  "error inheriting subvolume %llu properties: %d",
9112 			  new_root->root_key.objectid, err);
9113 
9114 	err = btrfs_update_inode(trans, new_root, inode);
9115 
9116 	iput(inode);
9117 	return err;
9118 }
9119 
9120 struct inode *btrfs_alloc_inode(struct super_block *sb)
9121 {
9122 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9123 	struct btrfs_inode *ei;
9124 	struct inode *inode;
9125 
9126 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9127 	if (!ei)
9128 		return NULL;
9129 
9130 	ei->root = NULL;
9131 	ei->generation = 0;
9132 	ei->last_trans = 0;
9133 	ei->last_sub_trans = 0;
9134 	ei->logged_trans = 0;
9135 	ei->delalloc_bytes = 0;
9136 	ei->new_delalloc_bytes = 0;
9137 	ei->defrag_bytes = 0;
9138 	ei->disk_i_size = 0;
9139 	ei->flags = 0;
9140 	ei->csum_bytes = 0;
9141 	ei->index_cnt = (u64)-1;
9142 	ei->dir_index = 0;
9143 	ei->last_unlink_trans = 0;
9144 	ei->last_log_commit = 0;
9145 
9146 	spin_lock_init(&ei->lock);
9147 	ei->outstanding_extents = 0;
9148 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9149 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9150 					      BTRFS_BLOCK_RSV_DELALLOC);
9151 	ei->runtime_flags = 0;
9152 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9153 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9154 
9155 	ei->delayed_node = NULL;
9156 
9157 	ei->i_otime.tv_sec = 0;
9158 	ei->i_otime.tv_nsec = 0;
9159 
9160 	inode = &ei->vfs_inode;
9161 	extent_map_tree_init(&ei->extent_tree);
9162 	extent_io_tree_init(&ei->io_tree, inode);
9163 	extent_io_tree_init(&ei->io_failure_tree, inode);
9164 	ei->io_tree.track_uptodate = 1;
9165 	ei->io_failure_tree.track_uptodate = 1;
9166 	atomic_set(&ei->sync_writers, 0);
9167 	mutex_init(&ei->log_mutex);
9168 	mutex_init(&ei->delalloc_mutex);
9169 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9170 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9171 	INIT_LIST_HEAD(&ei->delayed_iput);
9172 	RB_CLEAR_NODE(&ei->rb_node);
9173 	init_rwsem(&ei->dio_sem);
9174 
9175 	return inode;
9176 }
9177 
9178 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9179 void btrfs_test_destroy_inode(struct inode *inode)
9180 {
9181 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9182 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9183 }
9184 #endif
9185 
9186 static void btrfs_i_callback(struct rcu_head *head)
9187 {
9188 	struct inode *inode = container_of(head, struct inode, i_rcu);
9189 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9190 }
9191 
9192 void btrfs_destroy_inode(struct inode *inode)
9193 {
9194 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9195 	struct btrfs_ordered_extent *ordered;
9196 	struct btrfs_root *root = BTRFS_I(inode)->root;
9197 
9198 	WARN_ON(!hlist_empty(&inode->i_dentry));
9199 	WARN_ON(inode->i_data.nrpages);
9200 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9201 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9202 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9203 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9204 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9205 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9206 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9207 
9208 	/*
9209 	 * This can happen where we create an inode, but somebody else also
9210 	 * created the same inode and we need to destroy the one we already
9211 	 * created.
9212 	 */
9213 	if (!root)
9214 		goto free;
9215 
9216 	while (1) {
9217 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9218 		if (!ordered)
9219 			break;
9220 		else {
9221 			btrfs_err(fs_info,
9222 				  "found ordered extent %llu %llu on inode cleanup",
9223 				  ordered->file_offset, ordered->len);
9224 			btrfs_remove_ordered_extent(inode, ordered);
9225 			btrfs_put_ordered_extent(ordered);
9226 			btrfs_put_ordered_extent(ordered);
9227 		}
9228 	}
9229 	btrfs_qgroup_check_reserved_leak(inode);
9230 	inode_tree_del(inode);
9231 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9232 free:
9233 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9234 }
9235 
9236 int btrfs_drop_inode(struct inode *inode)
9237 {
9238 	struct btrfs_root *root = BTRFS_I(inode)->root;
9239 
9240 	if (root == NULL)
9241 		return 1;
9242 
9243 	/* the snap/subvol tree is on deleting */
9244 	if (btrfs_root_refs(&root->root_item) == 0)
9245 		return 1;
9246 	else
9247 		return generic_drop_inode(inode);
9248 }
9249 
9250 static void init_once(void *foo)
9251 {
9252 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9253 
9254 	inode_init_once(&ei->vfs_inode);
9255 }
9256 
9257 void __cold btrfs_destroy_cachep(void)
9258 {
9259 	/*
9260 	 * Make sure all delayed rcu free inodes are flushed before we
9261 	 * destroy cache.
9262 	 */
9263 	rcu_barrier();
9264 	kmem_cache_destroy(btrfs_inode_cachep);
9265 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9266 	kmem_cache_destroy(btrfs_path_cachep);
9267 	kmem_cache_destroy(btrfs_free_space_cachep);
9268 }
9269 
9270 int __init btrfs_init_cachep(void)
9271 {
9272 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9273 			sizeof(struct btrfs_inode), 0,
9274 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9275 			init_once);
9276 	if (!btrfs_inode_cachep)
9277 		goto fail;
9278 
9279 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9280 			sizeof(struct btrfs_trans_handle), 0,
9281 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9282 	if (!btrfs_trans_handle_cachep)
9283 		goto fail;
9284 
9285 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9286 			sizeof(struct btrfs_path), 0,
9287 			SLAB_MEM_SPREAD, NULL);
9288 	if (!btrfs_path_cachep)
9289 		goto fail;
9290 
9291 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9292 			sizeof(struct btrfs_free_space), 0,
9293 			SLAB_MEM_SPREAD, NULL);
9294 	if (!btrfs_free_space_cachep)
9295 		goto fail;
9296 
9297 	return 0;
9298 fail:
9299 	btrfs_destroy_cachep();
9300 	return -ENOMEM;
9301 }
9302 
9303 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9304 			 u32 request_mask, unsigned int flags)
9305 {
9306 	u64 delalloc_bytes;
9307 	struct inode *inode = d_inode(path->dentry);
9308 	u32 blocksize = inode->i_sb->s_blocksize;
9309 	u32 bi_flags = BTRFS_I(inode)->flags;
9310 
9311 	stat->result_mask |= STATX_BTIME;
9312 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9313 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9314 	if (bi_flags & BTRFS_INODE_APPEND)
9315 		stat->attributes |= STATX_ATTR_APPEND;
9316 	if (bi_flags & BTRFS_INODE_COMPRESS)
9317 		stat->attributes |= STATX_ATTR_COMPRESSED;
9318 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9319 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9320 	if (bi_flags & BTRFS_INODE_NODUMP)
9321 		stat->attributes |= STATX_ATTR_NODUMP;
9322 
9323 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9324 				  STATX_ATTR_COMPRESSED |
9325 				  STATX_ATTR_IMMUTABLE |
9326 				  STATX_ATTR_NODUMP);
9327 
9328 	generic_fillattr(inode, stat);
9329 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9330 
9331 	spin_lock(&BTRFS_I(inode)->lock);
9332 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9333 	spin_unlock(&BTRFS_I(inode)->lock);
9334 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9335 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9336 	return 0;
9337 }
9338 
9339 static int btrfs_rename_exchange(struct inode *old_dir,
9340 			      struct dentry *old_dentry,
9341 			      struct inode *new_dir,
9342 			      struct dentry *new_dentry)
9343 {
9344 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9345 	struct btrfs_trans_handle *trans;
9346 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9347 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9348 	struct inode *new_inode = new_dentry->d_inode;
9349 	struct inode *old_inode = old_dentry->d_inode;
9350 	struct timespec64 ctime = current_time(old_inode);
9351 	struct dentry *parent;
9352 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9353 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9354 	u64 old_idx = 0;
9355 	u64 new_idx = 0;
9356 	u64 root_objectid;
9357 	int ret;
9358 	bool root_log_pinned = false;
9359 	bool dest_log_pinned = false;
9360 	struct btrfs_log_ctx ctx_root;
9361 	struct btrfs_log_ctx ctx_dest;
9362 	bool sync_log_root = false;
9363 	bool sync_log_dest = false;
9364 	bool commit_transaction = false;
9365 
9366 	/* we only allow rename subvolume link between subvolumes */
9367 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9368 		return -EXDEV;
9369 
9370 	btrfs_init_log_ctx(&ctx_root, old_inode);
9371 	btrfs_init_log_ctx(&ctx_dest, new_inode);
9372 
9373 	/* close the race window with snapshot create/destroy ioctl */
9374 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9375 		down_read(&fs_info->subvol_sem);
9376 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9377 		down_read(&fs_info->subvol_sem);
9378 
9379 	/*
9380 	 * We want to reserve the absolute worst case amount of items.  So if
9381 	 * both inodes are subvols and we need to unlink them then that would
9382 	 * require 4 item modifications, but if they are both normal inodes it
9383 	 * would require 5 item modifications, so we'll assume their normal
9384 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9385 	 * should cover the worst case number of items we'll modify.
9386 	 */
9387 	trans = btrfs_start_transaction(root, 12);
9388 	if (IS_ERR(trans)) {
9389 		ret = PTR_ERR(trans);
9390 		goto out_notrans;
9391 	}
9392 
9393 	/*
9394 	 * We need to find a free sequence number both in the source and
9395 	 * in the destination directory for the exchange.
9396 	 */
9397 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9398 	if (ret)
9399 		goto out_fail;
9400 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9401 	if (ret)
9402 		goto out_fail;
9403 
9404 	BTRFS_I(old_inode)->dir_index = 0ULL;
9405 	BTRFS_I(new_inode)->dir_index = 0ULL;
9406 
9407 	/* Reference for the source. */
9408 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9409 		/* force full log commit if subvolume involved. */
9410 		btrfs_set_log_full_commit(fs_info, trans);
9411 	} else {
9412 		btrfs_pin_log_trans(root);
9413 		root_log_pinned = true;
9414 		ret = btrfs_insert_inode_ref(trans, dest,
9415 					     new_dentry->d_name.name,
9416 					     new_dentry->d_name.len,
9417 					     old_ino,
9418 					     btrfs_ino(BTRFS_I(new_dir)),
9419 					     old_idx);
9420 		if (ret)
9421 			goto out_fail;
9422 	}
9423 
9424 	/* And now for the dest. */
9425 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9426 		/* force full log commit if subvolume involved. */
9427 		btrfs_set_log_full_commit(fs_info, trans);
9428 	} else {
9429 		btrfs_pin_log_trans(dest);
9430 		dest_log_pinned = true;
9431 		ret = btrfs_insert_inode_ref(trans, root,
9432 					     old_dentry->d_name.name,
9433 					     old_dentry->d_name.len,
9434 					     new_ino,
9435 					     btrfs_ino(BTRFS_I(old_dir)),
9436 					     new_idx);
9437 		if (ret)
9438 			goto out_fail;
9439 	}
9440 
9441 	/* Update inode version and ctime/mtime. */
9442 	inode_inc_iversion(old_dir);
9443 	inode_inc_iversion(new_dir);
9444 	inode_inc_iversion(old_inode);
9445 	inode_inc_iversion(new_inode);
9446 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9447 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9448 	old_inode->i_ctime = ctime;
9449 	new_inode->i_ctime = ctime;
9450 
9451 	if (old_dentry->d_parent != new_dentry->d_parent) {
9452 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9453 				BTRFS_I(old_inode), 1);
9454 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9455 				BTRFS_I(new_inode), 1);
9456 	}
9457 
9458 	/* src is a subvolume */
9459 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9460 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9461 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9462 					  old_dentry->d_name.name,
9463 					  old_dentry->d_name.len);
9464 	} else { /* src is an inode */
9465 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9466 					   BTRFS_I(old_dentry->d_inode),
9467 					   old_dentry->d_name.name,
9468 					   old_dentry->d_name.len);
9469 		if (!ret)
9470 			ret = btrfs_update_inode(trans, root, old_inode);
9471 	}
9472 	if (ret) {
9473 		btrfs_abort_transaction(trans, ret);
9474 		goto out_fail;
9475 	}
9476 
9477 	/* dest is a subvolume */
9478 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9479 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9480 		ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9481 					  new_dentry->d_name.name,
9482 					  new_dentry->d_name.len);
9483 	} else { /* dest is an inode */
9484 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9485 					   BTRFS_I(new_dentry->d_inode),
9486 					   new_dentry->d_name.name,
9487 					   new_dentry->d_name.len);
9488 		if (!ret)
9489 			ret = btrfs_update_inode(trans, dest, new_inode);
9490 	}
9491 	if (ret) {
9492 		btrfs_abort_transaction(trans, ret);
9493 		goto out_fail;
9494 	}
9495 
9496 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9497 			     new_dentry->d_name.name,
9498 			     new_dentry->d_name.len, 0, old_idx);
9499 	if (ret) {
9500 		btrfs_abort_transaction(trans, ret);
9501 		goto out_fail;
9502 	}
9503 
9504 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9505 			     old_dentry->d_name.name,
9506 			     old_dentry->d_name.len, 0, new_idx);
9507 	if (ret) {
9508 		btrfs_abort_transaction(trans, ret);
9509 		goto out_fail;
9510 	}
9511 
9512 	if (old_inode->i_nlink == 1)
9513 		BTRFS_I(old_inode)->dir_index = old_idx;
9514 	if (new_inode->i_nlink == 1)
9515 		BTRFS_I(new_inode)->dir_index = new_idx;
9516 
9517 	if (root_log_pinned) {
9518 		parent = new_dentry->d_parent;
9519 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9520 					 BTRFS_I(old_dir), parent,
9521 					 false, &ctx_root);
9522 		if (ret == BTRFS_NEED_LOG_SYNC)
9523 			sync_log_root = true;
9524 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9525 			commit_transaction = true;
9526 		ret = 0;
9527 		btrfs_end_log_trans(root);
9528 		root_log_pinned = false;
9529 	}
9530 	if (dest_log_pinned) {
9531 		if (!commit_transaction) {
9532 			parent = old_dentry->d_parent;
9533 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9534 						 BTRFS_I(new_dir), parent,
9535 						 false, &ctx_dest);
9536 			if (ret == BTRFS_NEED_LOG_SYNC)
9537 				sync_log_dest = true;
9538 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
9539 				commit_transaction = true;
9540 			ret = 0;
9541 		}
9542 		btrfs_end_log_trans(dest);
9543 		dest_log_pinned = false;
9544 	}
9545 out_fail:
9546 	/*
9547 	 * If we have pinned a log and an error happened, we unpin tasks
9548 	 * trying to sync the log and force them to fallback to a transaction
9549 	 * commit if the log currently contains any of the inodes involved in
9550 	 * this rename operation (to ensure we do not persist a log with an
9551 	 * inconsistent state for any of these inodes or leading to any
9552 	 * inconsistencies when replayed). If the transaction was aborted, the
9553 	 * abortion reason is propagated to userspace when attempting to commit
9554 	 * the transaction. If the log does not contain any of these inodes, we
9555 	 * allow the tasks to sync it.
9556 	 */
9557 	if (ret && (root_log_pinned || dest_log_pinned)) {
9558 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9559 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9560 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9561 		    (new_inode &&
9562 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9563 			btrfs_set_log_full_commit(fs_info, trans);
9564 
9565 		if (root_log_pinned) {
9566 			btrfs_end_log_trans(root);
9567 			root_log_pinned = false;
9568 		}
9569 		if (dest_log_pinned) {
9570 			btrfs_end_log_trans(dest);
9571 			dest_log_pinned = false;
9572 		}
9573 	}
9574 	if (!ret && sync_log_root && !commit_transaction) {
9575 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9576 				     &ctx_root);
9577 		if (ret)
9578 			commit_transaction = true;
9579 	}
9580 	if (!ret && sync_log_dest && !commit_transaction) {
9581 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9582 				     &ctx_dest);
9583 		if (ret)
9584 			commit_transaction = true;
9585 	}
9586 	if (commit_transaction) {
9587 		ret = btrfs_commit_transaction(trans);
9588 	} else {
9589 		int ret2;
9590 
9591 		ret2 = btrfs_end_transaction(trans);
9592 		ret = ret ? ret : ret2;
9593 	}
9594 out_notrans:
9595 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9596 		up_read(&fs_info->subvol_sem);
9597 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9598 		up_read(&fs_info->subvol_sem);
9599 
9600 	return ret;
9601 }
9602 
9603 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9604 				     struct btrfs_root *root,
9605 				     struct inode *dir,
9606 				     struct dentry *dentry)
9607 {
9608 	int ret;
9609 	struct inode *inode;
9610 	u64 objectid;
9611 	u64 index;
9612 
9613 	ret = btrfs_find_free_ino(root, &objectid);
9614 	if (ret)
9615 		return ret;
9616 
9617 	inode = btrfs_new_inode(trans, root, dir,
9618 				dentry->d_name.name,
9619 				dentry->d_name.len,
9620 				btrfs_ino(BTRFS_I(dir)),
9621 				objectid,
9622 				S_IFCHR | WHITEOUT_MODE,
9623 				&index);
9624 
9625 	if (IS_ERR(inode)) {
9626 		ret = PTR_ERR(inode);
9627 		return ret;
9628 	}
9629 
9630 	inode->i_op = &btrfs_special_inode_operations;
9631 	init_special_inode(inode, inode->i_mode,
9632 		WHITEOUT_DEV);
9633 
9634 	ret = btrfs_init_inode_security(trans, inode, dir,
9635 				&dentry->d_name);
9636 	if (ret)
9637 		goto out;
9638 
9639 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9640 				BTRFS_I(inode), 0, index);
9641 	if (ret)
9642 		goto out;
9643 
9644 	ret = btrfs_update_inode(trans, root, inode);
9645 out:
9646 	unlock_new_inode(inode);
9647 	if (ret)
9648 		inode_dec_link_count(inode);
9649 	iput(inode);
9650 
9651 	return ret;
9652 }
9653 
9654 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9655 			   struct inode *new_dir, struct dentry *new_dentry,
9656 			   unsigned int flags)
9657 {
9658 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9659 	struct btrfs_trans_handle *trans;
9660 	unsigned int trans_num_items;
9661 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9662 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9663 	struct inode *new_inode = d_inode(new_dentry);
9664 	struct inode *old_inode = d_inode(old_dentry);
9665 	u64 index = 0;
9666 	u64 root_objectid;
9667 	int ret;
9668 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9669 	bool log_pinned = false;
9670 	struct btrfs_log_ctx ctx;
9671 	bool sync_log = false;
9672 	bool commit_transaction = false;
9673 
9674 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9675 		return -EPERM;
9676 
9677 	/* we only allow rename subvolume link between subvolumes */
9678 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9679 		return -EXDEV;
9680 
9681 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9682 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9683 		return -ENOTEMPTY;
9684 
9685 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9686 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9687 		return -ENOTEMPTY;
9688 
9689 
9690 	/* check for collisions, even if the  name isn't there */
9691 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9692 			     new_dentry->d_name.name,
9693 			     new_dentry->d_name.len);
9694 
9695 	if (ret) {
9696 		if (ret == -EEXIST) {
9697 			/* we shouldn't get
9698 			 * eexist without a new_inode */
9699 			if (WARN_ON(!new_inode)) {
9700 				return ret;
9701 			}
9702 		} else {
9703 			/* maybe -EOVERFLOW */
9704 			return ret;
9705 		}
9706 	}
9707 	ret = 0;
9708 
9709 	/*
9710 	 * we're using rename to replace one file with another.  Start IO on it
9711 	 * now so  we don't add too much work to the end of the transaction
9712 	 */
9713 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9714 		filemap_flush(old_inode->i_mapping);
9715 
9716 	/* close the racy window with snapshot create/destroy ioctl */
9717 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9718 		down_read(&fs_info->subvol_sem);
9719 	/*
9720 	 * We want to reserve the absolute worst case amount of items.  So if
9721 	 * both inodes are subvols and we need to unlink them then that would
9722 	 * require 4 item modifications, but if they are both normal inodes it
9723 	 * would require 5 item modifications, so we'll assume they are normal
9724 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9725 	 * should cover the worst case number of items we'll modify.
9726 	 * If our rename has the whiteout flag, we need more 5 units for the
9727 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9728 	 * when selinux is enabled).
9729 	 */
9730 	trans_num_items = 11;
9731 	if (flags & RENAME_WHITEOUT)
9732 		trans_num_items += 5;
9733 	trans = btrfs_start_transaction(root, trans_num_items);
9734 	if (IS_ERR(trans)) {
9735 		ret = PTR_ERR(trans);
9736 		goto out_notrans;
9737 	}
9738 
9739 	if (dest != root)
9740 		btrfs_record_root_in_trans(trans, dest);
9741 
9742 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9743 	if (ret)
9744 		goto out_fail;
9745 
9746 	BTRFS_I(old_inode)->dir_index = 0ULL;
9747 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9748 		/* force full log commit if subvolume involved. */
9749 		btrfs_set_log_full_commit(fs_info, trans);
9750 	} else {
9751 		btrfs_pin_log_trans(root);
9752 		log_pinned = true;
9753 		ret = btrfs_insert_inode_ref(trans, dest,
9754 					     new_dentry->d_name.name,
9755 					     new_dentry->d_name.len,
9756 					     old_ino,
9757 					     btrfs_ino(BTRFS_I(new_dir)), index);
9758 		if (ret)
9759 			goto out_fail;
9760 	}
9761 
9762 	inode_inc_iversion(old_dir);
9763 	inode_inc_iversion(new_dir);
9764 	inode_inc_iversion(old_inode);
9765 	old_dir->i_ctime = old_dir->i_mtime =
9766 	new_dir->i_ctime = new_dir->i_mtime =
9767 	old_inode->i_ctime = current_time(old_dir);
9768 
9769 	if (old_dentry->d_parent != new_dentry->d_parent)
9770 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9771 				BTRFS_I(old_inode), 1);
9772 
9773 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9774 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9775 		ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9776 					old_dentry->d_name.name,
9777 					old_dentry->d_name.len);
9778 	} else {
9779 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9780 					BTRFS_I(d_inode(old_dentry)),
9781 					old_dentry->d_name.name,
9782 					old_dentry->d_name.len);
9783 		if (!ret)
9784 			ret = btrfs_update_inode(trans, root, old_inode);
9785 	}
9786 	if (ret) {
9787 		btrfs_abort_transaction(trans, ret);
9788 		goto out_fail;
9789 	}
9790 
9791 	if (new_inode) {
9792 		inode_inc_iversion(new_inode);
9793 		new_inode->i_ctime = current_time(new_inode);
9794 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9795 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9796 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9797 			ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9798 						new_dentry->d_name.name,
9799 						new_dentry->d_name.len);
9800 			BUG_ON(new_inode->i_nlink == 0);
9801 		} else {
9802 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9803 						 BTRFS_I(d_inode(new_dentry)),
9804 						 new_dentry->d_name.name,
9805 						 new_dentry->d_name.len);
9806 		}
9807 		if (!ret && new_inode->i_nlink == 0)
9808 			ret = btrfs_orphan_add(trans,
9809 					BTRFS_I(d_inode(new_dentry)));
9810 		if (ret) {
9811 			btrfs_abort_transaction(trans, ret);
9812 			goto out_fail;
9813 		}
9814 	}
9815 
9816 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9817 			     new_dentry->d_name.name,
9818 			     new_dentry->d_name.len, 0, index);
9819 	if (ret) {
9820 		btrfs_abort_transaction(trans, ret);
9821 		goto out_fail;
9822 	}
9823 
9824 	if (old_inode->i_nlink == 1)
9825 		BTRFS_I(old_inode)->dir_index = index;
9826 
9827 	if (log_pinned) {
9828 		struct dentry *parent = new_dentry->d_parent;
9829 
9830 		btrfs_init_log_ctx(&ctx, old_inode);
9831 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9832 					 BTRFS_I(old_dir), parent,
9833 					 false, &ctx);
9834 		if (ret == BTRFS_NEED_LOG_SYNC)
9835 			sync_log = true;
9836 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9837 			commit_transaction = true;
9838 		ret = 0;
9839 		btrfs_end_log_trans(root);
9840 		log_pinned = false;
9841 	}
9842 
9843 	if (flags & RENAME_WHITEOUT) {
9844 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9845 						old_dentry);
9846 
9847 		if (ret) {
9848 			btrfs_abort_transaction(trans, ret);
9849 			goto out_fail;
9850 		}
9851 	}
9852 out_fail:
9853 	/*
9854 	 * If we have pinned the log and an error happened, we unpin tasks
9855 	 * trying to sync the log and force them to fallback to a transaction
9856 	 * commit if the log currently contains any of the inodes involved in
9857 	 * this rename operation (to ensure we do not persist a log with an
9858 	 * inconsistent state for any of these inodes or leading to any
9859 	 * inconsistencies when replayed). If the transaction was aborted, the
9860 	 * abortion reason is propagated to userspace when attempting to commit
9861 	 * the transaction. If the log does not contain any of these inodes, we
9862 	 * allow the tasks to sync it.
9863 	 */
9864 	if (ret && log_pinned) {
9865 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9866 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9867 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9868 		    (new_inode &&
9869 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9870 			btrfs_set_log_full_commit(fs_info, trans);
9871 
9872 		btrfs_end_log_trans(root);
9873 		log_pinned = false;
9874 	}
9875 	if (!ret && sync_log) {
9876 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9877 		if (ret)
9878 			commit_transaction = true;
9879 	}
9880 	if (commit_transaction) {
9881 		ret = btrfs_commit_transaction(trans);
9882 	} else {
9883 		int ret2;
9884 
9885 		ret2 = btrfs_end_transaction(trans);
9886 		ret = ret ? ret : ret2;
9887 	}
9888 out_notrans:
9889 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9890 		up_read(&fs_info->subvol_sem);
9891 
9892 	return ret;
9893 }
9894 
9895 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9896 			 struct inode *new_dir, struct dentry *new_dentry,
9897 			 unsigned int flags)
9898 {
9899 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9900 		return -EINVAL;
9901 
9902 	if (flags & RENAME_EXCHANGE)
9903 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9904 					  new_dentry);
9905 
9906 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9907 }
9908 
9909 struct btrfs_delalloc_work {
9910 	struct inode *inode;
9911 	struct completion completion;
9912 	struct list_head list;
9913 	struct btrfs_work work;
9914 };
9915 
9916 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9917 {
9918 	struct btrfs_delalloc_work *delalloc_work;
9919 	struct inode *inode;
9920 
9921 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9922 				     work);
9923 	inode = delalloc_work->inode;
9924 	filemap_flush(inode->i_mapping);
9925 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9926 				&BTRFS_I(inode)->runtime_flags))
9927 		filemap_flush(inode->i_mapping);
9928 
9929 	iput(inode);
9930 	complete(&delalloc_work->completion);
9931 }
9932 
9933 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9934 {
9935 	struct btrfs_delalloc_work *work;
9936 
9937 	work = kmalloc(sizeof(*work), GFP_NOFS);
9938 	if (!work)
9939 		return NULL;
9940 
9941 	init_completion(&work->completion);
9942 	INIT_LIST_HEAD(&work->list);
9943 	work->inode = inode;
9944 	WARN_ON_ONCE(!inode);
9945 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9946 			btrfs_run_delalloc_work, NULL, NULL);
9947 
9948 	return work;
9949 }
9950 
9951 /*
9952  * some fairly slow code that needs optimization. This walks the list
9953  * of all the inodes with pending delalloc and forces them to disk.
9954  */
9955 static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9956 {
9957 	struct btrfs_inode *binode;
9958 	struct inode *inode;
9959 	struct btrfs_delalloc_work *work, *next;
9960 	struct list_head works;
9961 	struct list_head splice;
9962 	int ret = 0;
9963 
9964 	INIT_LIST_HEAD(&works);
9965 	INIT_LIST_HEAD(&splice);
9966 
9967 	mutex_lock(&root->delalloc_mutex);
9968 	spin_lock(&root->delalloc_lock);
9969 	list_splice_init(&root->delalloc_inodes, &splice);
9970 	while (!list_empty(&splice)) {
9971 		binode = list_entry(splice.next, struct btrfs_inode,
9972 				    delalloc_inodes);
9973 
9974 		list_move_tail(&binode->delalloc_inodes,
9975 			       &root->delalloc_inodes);
9976 		inode = igrab(&binode->vfs_inode);
9977 		if (!inode) {
9978 			cond_resched_lock(&root->delalloc_lock);
9979 			continue;
9980 		}
9981 		spin_unlock(&root->delalloc_lock);
9982 
9983 		work = btrfs_alloc_delalloc_work(inode);
9984 		if (!work) {
9985 			iput(inode);
9986 			ret = -ENOMEM;
9987 			goto out;
9988 		}
9989 		list_add_tail(&work->list, &works);
9990 		btrfs_queue_work(root->fs_info->flush_workers,
9991 				 &work->work);
9992 		ret++;
9993 		if (nr != -1 && ret >= nr)
9994 			goto out;
9995 		cond_resched();
9996 		spin_lock(&root->delalloc_lock);
9997 	}
9998 	spin_unlock(&root->delalloc_lock);
9999 
10000 out:
10001 	list_for_each_entry_safe(work, next, &works, list) {
10002 		list_del_init(&work->list);
10003 		wait_for_completion(&work->completion);
10004 		kfree(work);
10005 	}
10006 
10007 	if (!list_empty(&splice)) {
10008 		spin_lock(&root->delalloc_lock);
10009 		list_splice_tail(&splice, &root->delalloc_inodes);
10010 		spin_unlock(&root->delalloc_lock);
10011 	}
10012 	mutex_unlock(&root->delalloc_mutex);
10013 	return ret;
10014 }
10015 
10016 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
10017 {
10018 	struct btrfs_fs_info *fs_info = root->fs_info;
10019 	int ret;
10020 
10021 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10022 		return -EROFS;
10023 
10024 	ret = start_delalloc_inodes(root, -1);
10025 	if (ret > 0)
10026 		ret = 0;
10027 	return ret;
10028 }
10029 
10030 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10031 {
10032 	struct btrfs_root *root;
10033 	struct list_head splice;
10034 	int ret;
10035 
10036 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10037 		return -EROFS;
10038 
10039 	INIT_LIST_HEAD(&splice);
10040 
10041 	mutex_lock(&fs_info->delalloc_root_mutex);
10042 	spin_lock(&fs_info->delalloc_root_lock);
10043 	list_splice_init(&fs_info->delalloc_roots, &splice);
10044 	while (!list_empty(&splice) && nr) {
10045 		root = list_first_entry(&splice, struct btrfs_root,
10046 					delalloc_root);
10047 		root = btrfs_grab_fs_root(root);
10048 		BUG_ON(!root);
10049 		list_move_tail(&root->delalloc_root,
10050 			       &fs_info->delalloc_roots);
10051 		spin_unlock(&fs_info->delalloc_root_lock);
10052 
10053 		ret = start_delalloc_inodes(root, nr);
10054 		btrfs_put_fs_root(root);
10055 		if (ret < 0)
10056 			goto out;
10057 
10058 		if (nr != -1) {
10059 			nr -= ret;
10060 			WARN_ON(nr < 0);
10061 		}
10062 		spin_lock(&fs_info->delalloc_root_lock);
10063 	}
10064 	spin_unlock(&fs_info->delalloc_root_lock);
10065 
10066 	ret = 0;
10067 out:
10068 	if (!list_empty(&splice)) {
10069 		spin_lock(&fs_info->delalloc_root_lock);
10070 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10071 		spin_unlock(&fs_info->delalloc_root_lock);
10072 	}
10073 	mutex_unlock(&fs_info->delalloc_root_mutex);
10074 	return ret;
10075 }
10076 
10077 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10078 			 const char *symname)
10079 {
10080 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10081 	struct btrfs_trans_handle *trans;
10082 	struct btrfs_root *root = BTRFS_I(dir)->root;
10083 	struct btrfs_path *path;
10084 	struct btrfs_key key;
10085 	struct inode *inode = NULL;
10086 	int err;
10087 	u64 objectid;
10088 	u64 index = 0;
10089 	int name_len;
10090 	int datasize;
10091 	unsigned long ptr;
10092 	struct btrfs_file_extent_item *ei;
10093 	struct extent_buffer *leaf;
10094 
10095 	name_len = strlen(symname);
10096 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10097 		return -ENAMETOOLONG;
10098 
10099 	/*
10100 	 * 2 items for inode item and ref
10101 	 * 2 items for dir items
10102 	 * 1 item for updating parent inode item
10103 	 * 1 item for the inline extent item
10104 	 * 1 item for xattr if selinux is on
10105 	 */
10106 	trans = btrfs_start_transaction(root, 7);
10107 	if (IS_ERR(trans))
10108 		return PTR_ERR(trans);
10109 
10110 	err = btrfs_find_free_ino(root, &objectid);
10111 	if (err)
10112 		goto out_unlock;
10113 
10114 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10115 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10116 				objectid, S_IFLNK|S_IRWXUGO, &index);
10117 	if (IS_ERR(inode)) {
10118 		err = PTR_ERR(inode);
10119 		inode = NULL;
10120 		goto out_unlock;
10121 	}
10122 
10123 	/*
10124 	* If the active LSM wants to access the inode during
10125 	* d_instantiate it needs these. Smack checks to see
10126 	* if the filesystem supports xattrs by looking at the
10127 	* ops vector.
10128 	*/
10129 	inode->i_fop = &btrfs_file_operations;
10130 	inode->i_op = &btrfs_file_inode_operations;
10131 	inode->i_mapping->a_ops = &btrfs_aops;
10132 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10133 
10134 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10135 	if (err)
10136 		goto out_unlock;
10137 
10138 	path = btrfs_alloc_path();
10139 	if (!path) {
10140 		err = -ENOMEM;
10141 		goto out_unlock;
10142 	}
10143 	key.objectid = btrfs_ino(BTRFS_I(inode));
10144 	key.offset = 0;
10145 	key.type = BTRFS_EXTENT_DATA_KEY;
10146 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10147 	err = btrfs_insert_empty_item(trans, root, path, &key,
10148 				      datasize);
10149 	if (err) {
10150 		btrfs_free_path(path);
10151 		goto out_unlock;
10152 	}
10153 	leaf = path->nodes[0];
10154 	ei = btrfs_item_ptr(leaf, path->slots[0],
10155 			    struct btrfs_file_extent_item);
10156 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10157 	btrfs_set_file_extent_type(leaf, ei,
10158 				   BTRFS_FILE_EXTENT_INLINE);
10159 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10160 	btrfs_set_file_extent_compression(leaf, ei, 0);
10161 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10162 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10163 
10164 	ptr = btrfs_file_extent_inline_start(ei);
10165 	write_extent_buffer(leaf, symname, ptr, name_len);
10166 	btrfs_mark_buffer_dirty(leaf);
10167 	btrfs_free_path(path);
10168 
10169 	inode->i_op = &btrfs_symlink_inode_operations;
10170 	inode_nohighmem(inode);
10171 	inode->i_mapping->a_ops = &btrfs_aops;
10172 	inode_set_bytes(inode, name_len);
10173 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10174 	err = btrfs_update_inode(trans, root, inode);
10175 	/*
10176 	 * Last step, add directory indexes for our symlink inode. This is the
10177 	 * last step to avoid extra cleanup of these indexes if an error happens
10178 	 * elsewhere above.
10179 	 */
10180 	if (!err)
10181 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10182 				BTRFS_I(inode), 0, index);
10183 	if (err)
10184 		goto out_unlock;
10185 
10186 	d_instantiate_new(dentry, inode);
10187 
10188 out_unlock:
10189 	btrfs_end_transaction(trans);
10190 	if (err && inode) {
10191 		inode_dec_link_count(inode);
10192 		discard_new_inode(inode);
10193 	}
10194 	btrfs_btree_balance_dirty(fs_info);
10195 	return err;
10196 }
10197 
10198 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10199 				       u64 start, u64 num_bytes, u64 min_size,
10200 				       loff_t actual_len, u64 *alloc_hint,
10201 				       struct btrfs_trans_handle *trans)
10202 {
10203 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10204 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10205 	struct extent_map *em;
10206 	struct btrfs_root *root = BTRFS_I(inode)->root;
10207 	struct btrfs_key ins;
10208 	u64 cur_offset = start;
10209 	u64 i_size;
10210 	u64 cur_bytes;
10211 	u64 last_alloc = (u64)-1;
10212 	int ret = 0;
10213 	bool own_trans = true;
10214 	u64 end = start + num_bytes - 1;
10215 
10216 	if (trans)
10217 		own_trans = false;
10218 	while (num_bytes > 0) {
10219 		if (own_trans) {
10220 			trans = btrfs_start_transaction(root, 3);
10221 			if (IS_ERR(trans)) {
10222 				ret = PTR_ERR(trans);
10223 				break;
10224 			}
10225 		}
10226 
10227 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10228 		cur_bytes = max(cur_bytes, min_size);
10229 		/*
10230 		 * If we are severely fragmented we could end up with really
10231 		 * small allocations, so if the allocator is returning small
10232 		 * chunks lets make its job easier by only searching for those
10233 		 * sized chunks.
10234 		 */
10235 		cur_bytes = min(cur_bytes, last_alloc);
10236 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10237 				min_size, 0, *alloc_hint, &ins, 1, 0);
10238 		if (ret) {
10239 			if (own_trans)
10240 				btrfs_end_transaction(trans);
10241 			break;
10242 		}
10243 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10244 
10245 		last_alloc = ins.offset;
10246 		ret = insert_reserved_file_extent(trans, inode,
10247 						  cur_offset, ins.objectid,
10248 						  ins.offset, ins.offset,
10249 						  ins.offset, 0, 0, 0,
10250 						  BTRFS_FILE_EXTENT_PREALLOC);
10251 		if (ret) {
10252 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10253 						   ins.offset, 0);
10254 			btrfs_abort_transaction(trans, ret);
10255 			if (own_trans)
10256 				btrfs_end_transaction(trans);
10257 			break;
10258 		}
10259 
10260 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10261 					cur_offset + ins.offset -1, 0);
10262 
10263 		em = alloc_extent_map();
10264 		if (!em) {
10265 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10266 				&BTRFS_I(inode)->runtime_flags);
10267 			goto next;
10268 		}
10269 
10270 		em->start = cur_offset;
10271 		em->orig_start = cur_offset;
10272 		em->len = ins.offset;
10273 		em->block_start = ins.objectid;
10274 		em->block_len = ins.offset;
10275 		em->orig_block_len = ins.offset;
10276 		em->ram_bytes = ins.offset;
10277 		em->bdev = fs_info->fs_devices->latest_bdev;
10278 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10279 		em->generation = trans->transid;
10280 
10281 		while (1) {
10282 			write_lock(&em_tree->lock);
10283 			ret = add_extent_mapping(em_tree, em, 1);
10284 			write_unlock(&em_tree->lock);
10285 			if (ret != -EEXIST)
10286 				break;
10287 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10288 						cur_offset + ins.offset - 1,
10289 						0);
10290 		}
10291 		free_extent_map(em);
10292 next:
10293 		num_bytes -= ins.offset;
10294 		cur_offset += ins.offset;
10295 		*alloc_hint = ins.objectid + ins.offset;
10296 
10297 		inode_inc_iversion(inode);
10298 		inode->i_ctime = current_time(inode);
10299 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10300 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10301 		    (actual_len > inode->i_size) &&
10302 		    (cur_offset > inode->i_size)) {
10303 			if (cur_offset > actual_len)
10304 				i_size = actual_len;
10305 			else
10306 				i_size = cur_offset;
10307 			i_size_write(inode, i_size);
10308 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10309 		}
10310 
10311 		ret = btrfs_update_inode(trans, root, inode);
10312 
10313 		if (ret) {
10314 			btrfs_abort_transaction(trans, ret);
10315 			if (own_trans)
10316 				btrfs_end_transaction(trans);
10317 			break;
10318 		}
10319 
10320 		if (own_trans)
10321 			btrfs_end_transaction(trans);
10322 	}
10323 	if (cur_offset < end)
10324 		btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10325 			end - cur_offset + 1);
10326 	return ret;
10327 }
10328 
10329 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10330 			      u64 start, u64 num_bytes, u64 min_size,
10331 			      loff_t actual_len, u64 *alloc_hint)
10332 {
10333 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10334 					   min_size, actual_len, alloc_hint,
10335 					   NULL);
10336 }
10337 
10338 int btrfs_prealloc_file_range_trans(struct inode *inode,
10339 				    struct btrfs_trans_handle *trans, int mode,
10340 				    u64 start, u64 num_bytes, u64 min_size,
10341 				    loff_t actual_len, u64 *alloc_hint)
10342 {
10343 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10344 					   min_size, actual_len, alloc_hint, trans);
10345 }
10346 
10347 static int btrfs_set_page_dirty(struct page *page)
10348 {
10349 	return __set_page_dirty_nobuffers(page);
10350 }
10351 
10352 static int btrfs_permission(struct inode *inode, int mask)
10353 {
10354 	struct btrfs_root *root = BTRFS_I(inode)->root;
10355 	umode_t mode = inode->i_mode;
10356 
10357 	if (mask & MAY_WRITE &&
10358 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10359 		if (btrfs_root_readonly(root))
10360 			return -EROFS;
10361 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10362 			return -EACCES;
10363 	}
10364 	return generic_permission(inode, mask);
10365 }
10366 
10367 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10368 {
10369 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10370 	struct btrfs_trans_handle *trans;
10371 	struct btrfs_root *root = BTRFS_I(dir)->root;
10372 	struct inode *inode = NULL;
10373 	u64 objectid;
10374 	u64 index;
10375 	int ret = 0;
10376 
10377 	/*
10378 	 * 5 units required for adding orphan entry
10379 	 */
10380 	trans = btrfs_start_transaction(root, 5);
10381 	if (IS_ERR(trans))
10382 		return PTR_ERR(trans);
10383 
10384 	ret = btrfs_find_free_ino(root, &objectid);
10385 	if (ret)
10386 		goto out;
10387 
10388 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10389 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10390 	if (IS_ERR(inode)) {
10391 		ret = PTR_ERR(inode);
10392 		inode = NULL;
10393 		goto out;
10394 	}
10395 
10396 	inode->i_fop = &btrfs_file_operations;
10397 	inode->i_op = &btrfs_file_inode_operations;
10398 
10399 	inode->i_mapping->a_ops = &btrfs_aops;
10400 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10401 
10402 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10403 	if (ret)
10404 		goto out;
10405 
10406 	ret = btrfs_update_inode(trans, root, inode);
10407 	if (ret)
10408 		goto out;
10409 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10410 	if (ret)
10411 		goto out;
10412 
10413 	/*
10414 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10415 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10416 	 * through:
10417 	 *
10418 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10419 	 */
10420 	set_nlink(inode, 1);
10421 	d_tmpfile(dentry, inode);
10422 	unlock_new_inode(inode);
10423 	mark_inode_dirty(inode);
10424 out:
10425 	btrfs_end_transaction(trans);
10426 	if (ret && inode)
10427 		discard_new_inode(inode);
10428 	btrfs_btree_balance_dirty(fs_info);
10429 	return ret;
10430 }
10431 
10432 __attribute__((const))
10433 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10434 {
10435 	return -EAGAIN;
10436 }
10437 
10438 static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10439 					u64 start, u64 end)
10440 {
10441 	struct inode *inode = private_data;
10442 	u64 isize;
10443 
10444 	isize = i_size_read(inode);
10445 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10446 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10447 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
10448 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10449 	}
10450 }
10451 
10452 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10453 {
10454 	struct inode *inode = tree->private_data;
10455 	unsigned long index = start >> PAGE_SHIFT;
10456 	unsigned long end_index = end >> PAGE_SHIFT;
10457 	struct page *page;
10458 
10459 	while (index <= end_index) {
10460 		page = find_get_page(inode->i_mapping, index);
10461 		ASSERT(page); /* Pages should be in the extent_io_tree */
10462 		set_page_writeback(page);
10463 		put_page(page);
10464 		index++;
10465 	}
10466 }
10467 
10468 static const struct inode_operations btrfs_dir_inode_operations = {
10469 	.getattr	= btrfs_getattr,
10470 	.lookup		= btrfs_lookup,
10471 	.create		= btrfs_create,
10472 	.unlink		= btrfs_unlink,
10473 	.link		= btrfs_link,
10474 	.mkdir		= btrfs_mkdir,
10475 	.rmdir		= btrfs_rmdir,
10476 	.rename		= btrfs_rename2,
10477 	.symlink	= btrfs_symlink,
10478 	.setattr	= btrfs_setattr,
10479 	.mknod		= btrfs_mknod,
10480 	.listxattr	= btrfs_listxattr,
10481 	.permission	= btrfs_permission,
10482 	.get_acl	= btrfs_get_acl,
10483 	.set_acl	= btrfs_set_acl,
10484 	.update_time	= btrfs_update_time,
10485 	.tmpfile        = btrfs_tmpfile,
10486 };
10487 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10488 	.lookup		= btrfs_lookup,
10489 	.permission	= btrfs_permission,
10490 	.update_time	= btrfs_update_time,
10491 };
10492 
10493 static const struct file_operations btrfs_dir_file_operations = {
10494 	.llseek		= generic_file_llseek,
10495 	.read		= generic_read_dir,
10496 	.iterate_shared	= btrfs_real_readdir,
10497 	.open		= btrfs_opendir,
10498 	.unlocked_ioctl	= btrfs_ioctl,
10499 #ifdef CONFIG_COMPAT
10500 	.compat_ioctl	= btrfs_compat_ioctl,
10501 #endif
10502 	.release        = btrfs_release_file,
10503 	.fsync		= btrfs_sync_file,
10504 };
10505 
10506 static const struct extent_io_ops btrfs_extent_io_ops = {
10507 	/* mandatory callbacks */
10508 	.submit_bio_hook = btrfs_submit_bio_hook,
10509 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10510 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10511 
10512 	/* optional callbacks */
10513 	.fill_delalloc = run_delalloc_range,
10514 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10515 	.writepage_start_hook = btrfs_writepage_start_hook,
10516 	.set_bit_hook = btrfs_set_bit_hook,
10517 	.clear_bit_hook = btrfs_clear_bit_hook,
10518 	.merge_extent_hook = btrfs_merge_extent_hook,
10519 	.split_extent_hook = btrfs_split_extent_hook,
10520 	.check_extent_io_range = btrfs_check_extent_io_range,
10521 };
10522 
10523 /*
10524  * btrfs doesn't support the bmap operation because swapfiles
10525  * use bmap to make a mapping of extents in the file.  They assume
10526  * these extents won't change over the life of the file and they
10527  * use the bmap result to do IO directly to the drive.
10528  *
10529  * the btrfs bmap call would return logical addresses that aren't
10530  * suitable for IO and they also will change frequently as COW
10531  * operations happen.  So, swapfile + btrfs == corruption.
10532  *
10533  * For now we're avoiding this by dropping bmap.
10534  */
10535 static const struct address_space_operations btrfs_aops = {
10536 	.readpage	= btrfs_readpage,
10537 	.writepage	= btrfs_writepage,
10538 	.writepages	= btrfs_writepages,
10539 	.readpages	= btrfs_readpages,
10540 	.direct_IO	= btrfs_direct_IO,
10541 	.invalidatepage = btrfs_invalidatepage,
10542 	.releasepage	= btrfs_releasepage,
10543 	.set_page_dirty	= btrfs_set_page_dirty,
10544 	.error_remove_page = generic_error_remove_page,
10545 };
10546 
10547 static const struct inode_operations btrfs_file_inode_operations = {
10548 	.getattr	= btrfs_getattr,
10549 	.setattr	= btrfs_setattr,
10550 	.listxattr      = btrfs_listxattr,
10551 	.permission	= btrfs_permission,
10552 	.fiemap		= btrfs_fiemap,
10553 	.get_acl	= btrfs_get_acl,
10554 	.set_acl	= btrfs_set_acl,
10555 	.update_time	= btrfs_update_time,
10556 };
10557 static const struct inode_operations btrfs_special_inode_operations = {
10558 	.getattr	= btrfs_getattr,
10559 	.setattr	= btrfs_setattr,
10560 	.permission	= btrfs_permission,
10561 	.listxattr	= btrfs_listxattr,
10562 	.get_acl	= btrfs_get_acl,
10563 	.set_acl	= btrfs_set_acl,
10564 	.update_time	= btrfs_update_time,
10565 };
10566 static const struct inode_operations btrfs_symlink_inode_operations = {
10567 	.get_link	= page_get_link,
10568 	.getattr	= btrfs_getattr,
10569 	.setattr	= btrfs_setattr,
10570 	.permission	= btrfs_permission,
10571 	.listxattr	= btrfs_listxattr,
10572 	.update_time	= btrfs_update_time,
10573 };
10574 
10575 const struct dentry_operations btrfs_dentry_operations = {
10576 	.d_delete	= btrfs_dentry_delete,
10577 };
10578