1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/sched/mm.h> 32 #include <asm/unaligned.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "ordered-data.h" 39 #include "xattr.h" 40 #include "tree-log.h" 41 #include "volumes.h" 42 #include "compression.h" 43 #include "locking.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "backref.h" 47 #include "props.h" 48 #include "qgroup.h" 49 #include "dedupe.h" 50 #include "delalloc-space.h" 51 52 struct btrfs_iget_args { 53 struct btrfs_key *location; 54 struct btrfs_root *root; 55 }; 56 57 struct btrfs_dio_data { 58 u64 reserve; 59 u64 unsubmitted_oe_range_start; 60 u64 unsubmitted_oe_range_end; 61 int overwrite; 62 }; 63 64 static const struct inode_operations btrfs_dir_inode_operations; 65 static const struct inode_operations btrfs_symlink_inode_operations; 66 static const struct inode_operations btrfs_dir_ro_inode_operations; 67 static const struct inode_operations btrfs_special_inode_operations; 68 static const struct inode_operations btrfs_file_inode_operations; 69 static const struct address_space_operations btrfs_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static const struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 78 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 79 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 80 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 81 static noinline int cow_file_range(struct inode *inode, 82 struct page *locked_page, 83 u64 start, u64 end, u64 delalloc_end, 84 int *page_started, unsigned long *nr_written, 85 int unlock, struct btrfs_dedupe_hash *hash); 86 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 87 u64 orig_start, u64 block_start, 88 u64 block_len, u64 orig_block_len, 89 u64 ram_bytes, int compress_type, 90 int type); 91 92 static void __endio_write_update_ordered(struct inode *inode, 93 const u64 offset, const u64 bytes, 94 const bool uptodate); 95 96 /* 97 * Cleanup all submitted ordered extents in specified range to handle errors 98 * from the btrfs_run_delalloc_range() callback. 99 * 100 * NOTE: caller must ensure that when an error happens, it can not call 101 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 102 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 103 * to be released, which we want to happen only when finishing the ordered 104 * extent (btrfs_finish_ordered_io()). 105 */ 106 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 107 struct page *locked_page, 108 u64 offset, u64 bytes) 109 { 110 unsigned long index = offset >> PAGE_SHIFT; 111 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 112 u64 page_start = page_offset(locked_page); 113 u64 page_end = page_start + PAGE_SIZE - 1; 114 115 struct page *page; 116 117 while (index <= end_index) { 118 page = find_get_page(inode->i_mapping, index); 119 index++; 120 if (!page) 121 continue; 122 ClearPagePrivate2(page); 123 put_page(page); 124 } 125 126 /* 127 * In case this page belongs to the delalloc range being instantiated 128 * then skip it, since the first page of a range is going to be 129 * properly cleaned up by the caller of run_delalloc_range 130 */ 131 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 132 offset += PAGE_SIZE; 133 bytes -= PAGE_SIZE; 134 } 135 136 return __endio_write_update_ordered(inode, offset, bytes, false); 137 } 138 139 static int btrfs_dirty_inode(struct inode *inode); 140 141 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 142 void btrfs_test_inode_set_ops(struct inode *inode) 143 { 144 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 145 } 146 #endif 147 148 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 149 struct inode *inode, struct inode *dir, 150 const struct qstr *qstr) 151 { 152 int err; 153 154 err = btrfs_init_acl(trans, inode, dir); 155 if (!err) 156 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 157 return err; 158 } 159 160 /* 161 * this does all the hard work for inserting an inline extent into 162 * the btree. The caller should have done a btrfs_drop_extents so that 163 * no overlapping inline items exist in the btree 164 */ 165 static int insert_inline_extent(struct btrfs_trans_handle *trans, 166 struct btrfs_path *path, int extent_inserted, 167 struct btrfs_root *root, struct inode *inode, 168 u64 start, size_t size, size_t compressed_size, 169 int compress_type, 170 struct page **compressed_pages) 171 { 172 struct extent_buffer *leaf; 173 struct page *page = NULL; 174 char *kaddr; 175 unsigned long ptr; 176 struct btrfs_file_extent_item *ei; 177 int ret; 178 size_t cur_size = size; 179 unsigned long offset; 180 181 if (compressed_size && compressed_pages) 182 cur_size = compressed_size; 183 184 inode_add_bytes(inode, size); 185 186 if (!extent_inserted) { 187 struct btrfs_key key; 188 size_t datasize; 189 190 key.objectid = btrfs_ino(BTRFS_I(inode)); 191 key.offset = start; 192 key.type = BTRFS_EXTENT_DATA_KEY; 193 194 datasize = btrfs_file_extent_calc_inline_size(cur_size); 195 path->leave_spinning = 1; 196 ret = btrfs_insert_empty_item(trans, root, path, &key, 197 datasize); 198 if (ret) 199 goto fail; 200 } 201 leaf = path->nodes[0]; 202 ei = btrfs_item_ptr(leaf, path->slots[0], 203 struct btrfs_file_extent_item); 204 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 205 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 206 btrfs_set_file_extent_encryption(leaf, ei, 0); 207 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 208 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 209 ptr = btrfs_file_extent_inline_start(ei); 210 211 if (compress_type != BTRFS_COMPRESS_NONE) { 212 struct page *cpage; 213 int i = 0; 214 while (compressed_size > 0) { 215 cpage = compressed_pages[i]; 216 cur_size = min_t(unsigned long, compressed_size, 217 PAGE_SIZE); 218 219 kaddr = kmap_atomic(cpage); 220 write_extent_buffer(leaf, kaddr, ptr, cur_size); 221 kunmap_atomic(kaddr); 222 223 i++; 224 ptr += cur_size; 225 compressed_size -= cur_size; 226 } 227 btrfs_set_file_extent_compression(leaf, ei, 228 compress_type); 229 } else { 230 page = find_get_page(inode->i_mapping, 231 start >> PAGE_SHIFT); 232 btrfs_set_file_extent_compression(leaf, ei, 0); 233 kaddr = kmap_atomic(page); 234 offset = offset_in_page(start); 235 write_extent_buffer(leaf, kaddr + offset, ptr, size); 236 kunmap_atomic(kaddr); 237 put_page(page); 238 } 239 btrfs_mark_buffer_dirty(leaf); 240 btrfs_release_path(path); 241 242 /* 243 * we're an inline extent, so nobody can 244 * extend the file past i_size without locking 245 * a page we already have locked. 246 * 247 * We must do any isize and inode updates 248 * before we unlock the pages. Otherwise we 249 * could end up racing with unlink. 250 */ 251 BTRFS_I(inode)->disk_i_size = inode->i_size; 252 ret = btrfs_update_inode(trans, root, inode); 253 254 fail: 255 return ret; 256 } 257 258 259 /* 260 * conditionally insert an inline extent into the file. This 261 * does the checks required to make sure the data is small enough 262 * to fit as an inline extent. 263 */ 264 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 265 u64 end, size_t compressed_size, 266 int compress_type, 267 struct page **compressed_pages) 268 { 269 struct btrfs_root *root = BTRFS_I(inode)->root; 270 struct btrfs_fs_info *fs_info = root->fs_info; 271 struct btrfs_trans_handle *trans; 272 u64 isize = i_size_read(inode); 273 u64 actual_end = min(end + 1, isize); 274 u64 inline_len = actual_end - start; 275 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 276 u64 data_len = inline_len; 277 int ret; 278 struct btrfs_path *path; 279 int extent_inserted = 0; 280 u32 extent_item_size; 281 282 if (compressed_size) 283 data_len = compressed_size; 284 285 if (start > 0 || 286 actual_end > fs_info->sectorsize || 287 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 288 (!compressed_size && 289 (actual_end & (fs_info->sectorsize - 1)) == 0) || 290 end + 1 < isize || 291 data_len > fs_info->max_inline) { 292 return 1; 293 } 294 295 path = btrfs_alloc_path(); 296 if (!path) 297 return -ENOMEM; 298 299 trans = btrfs_join_transaction(root); 300 if (IS_ERR(trans)) { 301 btrfs_free_path(path); 302 return PTR_ERR(trans); 303 } 304 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 305 306 if (compressed_size && compressed_pages) 307 extent_item_size = btrfs_file_extent_calc_inline_size( 308 compressed_size); 309 else 310 extent_item_size = btrfs_file_extent_calc_inline_size( 311 inline_len); 312 313 ret = __btrfs_drop_extents(trans, root, inode, path, 314 start, aligned_end, NULL, 315 1, 1, extent_item_size, &extent_inserted); 316 if (ret) { 317 btrfs_abort_transaction(trans, ret); 318 goto out; 319 } 320 321 if (isize > actual_end) 322 inline_len = min_t(u64, isize, actual_end); 323 ret = insert_inline_extent(trans, path, extent_inserted, 324 root, inode, start, 325 inline_len, compressed_size, 326 compress_type, compressed_pages); 327 if (ret && ret != -ENOSPC) { 328 btrfs_abort_transaction(trans, ret); 329 goto out; 330 } else if (ret == -ENOSPC) { 331 ret = 1; 332 goto out; 333 } 334 335 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 336 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 337 out: 338 /* 339 * Don't forget to free the reserved space, as for inlined extent 340 * it won't count as data extent, free them directly here. 341 * And at reserve time, it's always aligned to page size, so 342 * just free one page here. 343 */ 344 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 345 btrfs_free_path(path); 346 btrfs_end_transaction(trans); 347 return ret; 348 } 349 350 struct async_extent { 351 u64 start; 352 u64 ram_size; 353 u64 compressed_size; 354 struct page **pages; 355 unsigned long nr_pages; 356 int compress_type; 357 struct list_head list; 358 }; 359 360 struct async_chunk { 361 struct inode *inode; 362 struct page *locked_page; 363 u64 start; 364 u64 end; 365 unsigned int write_flags; 366 struct list_head extents; 367 struct btrfs_work work; 368 atomic_t *pending; 369 }; 370 371 struct async_cow { 372 /* Number of chunks in flight; must be first in the structure */ 373 atomic_t num_chunks; 374 struct async_chunk chunks[]; 375 }; 376 377 static noinline int add_async_extent(struct async_chunk *cow, 378 u64 start, u64 ram_size, 379 u64 compressed_size, 380 struct page **pages, 381 unsigned long nr_pages, 382 int compress_type) 383 { 384 struct async_extent *async_extent; 385 386 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 387 BUG_ON(!async_extent); /* -ENOMEM */ 388 async_extent->start = start; 389 async_extent->ram_size = ram_size; 390 async_extent->compressed_size = compressed_size; 391 async_extent->pages = pages; 392 async_extent->nr_pages = nr_pages; 393 async_extent->compress_type = compress_type; 394 list_add_tail(&async_extent->list, &cow->extents); 395 return 0; 396 } 397 398 /* 399 * Check if the inode has flags compatible with compression 400 */ 401 static inline bool inode_can_compress(struct inode *inode) 402 { 403 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || 404 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 405 return false; 406 return true; 407 } 408 409 /* 410 * Check if the inode needs to be submitted to compression, based on mount 411 * options, defragmentation, properties or heuristics. 412 */ 413 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 414 { 415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 416 417 if (!inode_can_compress(inode)) { 418 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 419 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 420 btrfs_ino(BTRFS_I(inode))); 421 return 0; 422 } 423 /* force compress */ 424 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 425 return 1; 426 /* defrag ioctl */ 427 if (BTRFS_I(inode)->defrag_compress) 428 return 1; 429 /* bad compression ratios */ 430 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 431 return 0; 432 if (btrfs_test_opt(fs_info, COMPRESS) || 433 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 434 BTRFS_I(inode)->prop_compress) 435 return btrfs_compress_heuristic(inode, start, end); 436 return 0; 437 } 438 439 static inline void inode_should_defrag(struct btrfs_inode *inode, 440 u64 start, u64 end, u64 num_bytes, u64 small_write) 441 { 442 /* If this is a small write inside eof, kick off a defrag */ 443 if (num_bytes < small_write && 444 (start > 0 || end + 1 < inode->disk_i_size)) 445 btrfs_add_inode_defrag(NULL, inode); 446 } 447 448 /* 449 * we create compressed extents in two phases. The first 450 * phase compresses a range of pages that have already been 451 * locked (both pages and state bits are locked). 452 * 453 * This is done inside an ordered work queue, and the compression 454 * is spread across many cpus. The actual IO submission is step 455 * two, and the ordered work queue takes care of making sure that 456 * happens in the same order things were put onto the queue by 457 * writepages and friends. 458 * 459 * If this code finds it can't get good compression, it puts an 460 * entry onto the work queue to write the uncompressed bytes. This 461 * makes sure that both compressed inodes and uncompressed inodes 462 * are written in the same order that the flusher thread sent them 463 * down. 464 */ 465 static noinline void compress_file_range(struct async_chunk *async_chunk, 466 int *num_added) 467 { 468 struct inode *inode = async_chunk->inode; 469 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 470 u64 blocksize = fs_info->sectorsize; 471 u64 start = async_chunk->start; 472 u64 end = async_chunk->end; 473 u64 actual_end; 474 int ret = 0; 475 struct page **pages = NULL; 476 unsigned long nr_pages; 477 unsigned long total_compressed = 0; 478 unsigned long total_in = 0; 479 int i; 480 int will_compress; 481 int compress_type = fs_info->compress_type; 482 int redirty = 0; 483 484 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 485 SZ_16K); 486 487 actual_end = min_t(u64, i_size_read(inode), end + 1); 488 again: 489 will_compress = 0; 490 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 491 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 492 nr_pages = min_t(unsigned long, nr_pages, 493 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 494 495 /* 496 * we don't want to send crud past the end of i_size through 497 * compression, that's just a waste of CPU time. So, if the 498 * end of the file is before the start of our current 499 * requested range of bytes, we bail out to the uncompressed 500 * cleanup code that can deal with all of this. 501 * 502 * It isn't really the fastest way to fix things, but this is a 503 * very uncommon corner. 504 */ 505 if (actual_end <= start) 506 goto cleanup_and_bail_uncompressed; 507 508 total_compressed = actual_end - start; 509 510 /* 511 * skip compression for a small file range(<=blocksize) that 512 * isn't an inline extent, since it doesn't save disk space at all. 513 */ 514 if (total_compressed <= blocksize && 515 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 516 goto cleanup_and_bail_uncompressed; 517 518 total_compressed = min_t(unsigned long, total_compressed, 519 BTRFS_MAX_UNCOMPRESSED); 520 total_in = 0; 521 ret = 0; 522 523 /* 524 * we do compression for mount -o compress and when the 525 * inode has not been flagged as nocompress. This flag can 526 * change at any time if we discover bad compression ratios. 527 */ 528 if (inode_need_compress(inode, start, end)) { 529 WARN_ON(pages); 530 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 531 if (!pages) { 532 /* just bail out to the uncompressed code */ 533 nr_pages = 0; 534 goto cont; 535 } 536 537 if (BTRFS_I(inode)->defrag_compress) 538 compress_type = BTRFS_I(inode)->defrag_compress; 539 else if (BTRFS_I(inode)->prop_compress) 540 compress_type = BTRFS_I(inode)->prop_compress; 541 542 /* 543 * we need to call clear_page_dirty_for_io on each 544 * page in the range. Otherwise applications with the file 545 * mmap'd can wander in and change the page contents while 546 * we are compressing them. 547 * 548 * If the compression fails for any reason, we set the pages 549 * dirty again later on. 550 * 551 * Note that the remaining part is redirtied, the start pointer 552 * has moved, the end is the original one. 553 */ 554 if (!redirty) { 555 extent_range_clear_dirty_for_io(inode, start, end); 556 redirty = 1; 557 } 558 559 /* Compression level is applied here and only here */ 560 ret = btrfs_compress_pages( 561 compress_type | (fs_info->compress_level << 4), 562 inode->i_mapping, start, 563 pages, 564 &nr_pages, 565 &total_in, 566 &total_compressed); 567 568 if (!ret) { 569 unsigned long offset = offset_in_page(total_compressed); 570 struct page *page = pages[nr_pages - 1]; 571 char *kaddr; 572 573 /* zero the tail end of the last page, we might be 574 * sending it down to disk 575 */ 576 if (offset) { 577 kaddr = kmap_atomic(page); 578 memset(kaddr + offset, 0, 579 PAGE_SIZE - offset); 580 kunmap_atomic(kaddr); 581 } 582 will_compress = 1; 583 } 584 } 585 cont: 586 if (start == 0) { 587 /* lets try to make an inline extent */ 588 if (ret || total_in < actual_end) { 589 /* we didn't compress the entire range, try 590 * to make an uncompressed inline extent. 591 */ 592 ret = cow_file_range_inline(inode, start, end, 0, 593 BTRFS_COMPRESS_NONE, NULL); 594 } else { 595 /* try making a compressed inline extent */ 596 ret = cow_file_range_inline(inode, start, end, 597 total_compressed, 598 compress_type, pages); 599 } 600 if (ret <= 0) { 601 unsigned long clear_flags = EXTENT_DELALLOC | 602 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 603 EXTENT_DO_ACCOUNTING; 604 unsigned long page_error_op; 605 606 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 607 608 /* 609 * inline extent creation worked or returned error, 610 * we don't need to create any more async work items. 611 * Unlock and free up our temp pages. 612 * 613 * We use DO_ACCOUNTING here because we need the 614 * delalloc_release_metadata to be done _after_ we drop 615 * our outstanding extent for clearing delalloc for this 616 * range. 617 */ 618 extent_clear_unlock_delalloc(inode, start, end, end, 619 NULL, clear_flags, 620 PAGE_UNLOCK | 621 PAGE_CLEAR_DIRTY | 622 PAGE_SET_WRITEBACK | 623 page_error_op | 624 PAGE_END_WRITEBACK); 625 goto free_pages_out; 626 } 627 } 628 629 if (will_compress) { 630 /* 631 * we aren't doing an inline extent round the compressed size 632 * up to a block size boundary so the allocator does sane 633 * things 634 */ 635 total_compressed = ALIGN(total_compressed, blocksize); 636 637 /* 638 * one last check to make sure the compression is really a 639 * win, compare the page count read with the blocks on disk, 640 * compression must free at least one sector size 641 */ 642 total_in = ALIGN(total_in, PAGE_SIZE); 643 if (total_compressed + blocksize <= total_in) { 644 *num_added += 1; 645 646 /* 647 * The async work queues will take care of doing actual 648 * allocation on disk for these compressed pages, and 649 * will submit them to the elevator. 650 */ 651 add_async_extent(async_chunk, start, total_in, 652 total_compressed, pages, nr_pages, 653 compress_type); 654 655 if (start + total_in < end) { 656 start += total_in; 657 pages = NULL; 658 cond_resched(); 659 goto again; 660 } 661 return; 662 } 663 } 664 if (pages) { 665 /* 666 * the compression code ran but failed to make things smaller, 667 * free any pages it allocated and our page pointer array 668 */ 669 for (i = 0; i < nr_pages; i++) { 670 WARN_ON(pages[i]->mapping); 671 put_page(pages[i]); 672 } 673 kfree(pages); 674 pages = NULL; 675 total_compressed = 0; 676 nr_pages = 0; 677 678 /* flag the file so we don't compress in the future */ 679 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 680 !(BTRFS_I(inode)->prop_compress)) { 681 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 682 } 683 } 684 cleanup_and_bail_uncompressed: 685 /* 686 * No compression, but we still need to write the pages in the file 687 * we've been given so far. redirty the locked page if it corresponds 688 * to our extent and set things up for the async work queue to run 689 * cow_file_range to do the normal delalloc dance. 690 */ 691 if (page_offset(async_chunk->locked_page) >= start && 692 page_offset(async_chunk->locked_page) <= end) 693 __set_page_dirty_nobuffers(async_chunk->locked_page); 694 /* unlocked later on in the async handlers */ 695 696 if (redirty) 697 extent_range_redirty_for_io(inode, start, end); 698 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 699 BTRFS_COMPRESS_NONE); 700 *num_added += 1; 701 702 return; 703 704 free_pages_out: 705 for (i = 0; i < nr_pages; i++) { 706 WARN_ON(pages[i]->mapping); 707 put_page(pages[i]); 708 } 709 kfree(pages); 710 } 711 712 static void free_async_extent_pages(struct async_extent *async_extent) 713 { 714 int i; 715 716 if (!async_extent->pages) 717 return; 718 719 for (i = 0; i < async_extent->nr_pages; i++) { 720 WARN_ON(async_extent->pages[i]->mapping); 721 put_page(async_extent->pages[i]); 722 } 723 kfree(async_extent->pages); 724 async_extent->nr_pages = 0; 725 async_extent->pages = NULL; 726 } 727 728 /* 729 * phase two of compressed writeback. This is the ordered portion 730 * of the code, which only gets called in the order the work was 731 * queued. We walk all the async extents created by compress_file_range 732 * and send them down to the disk. 733 */ 734 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 735 { 736 struct inode *inode = async_chunk->inode; 737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 738 struct async_extent *async_extent; 739 u64 alloc_hint = 0; 740 struct btrfs_key ins; 741 struct extent_map *em; 742 struct btrfs_root *root = BTRFS_I(inode)->root; 743 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 744 int ret = 0; 745 746 again: 747 while (!list_empty(&async_chunk->extents)) { 748 async_extent = list_entry(async_chunk->extents.next, 749 struct async_extent, list); 750 list_del(&async_extent->list); 751 752 retry: 753 lock_extent(io_tree, async_extent->start, 754 async_extent->start + async_extent->ram_size - 1); 755 /* did the compression code fall back to uncompressed IO? */ 756 if (!async_extent->pages) { 757 int page_started = 0; 758 unsigned long nr_written = 0; 759 760 /* allocate blocks */ 761 ret = cow_file_range(inode, async_chunk->locked_page, 762 async_extent->start, 763 async_extent->start + 764 async_extent->ram_size - 1, 765 async_extent->start + 766 async_extent->ram_size - 1, 767 &page_started, &nr_written, 0, 768 NULL); 769 770 /* JDM XXX */ 771 772 /* 773 * if page_started, cow_file_range inserted an 774 * inline extent and took care of all the unlocking 775 * and IO for us. Otherwise, we need to submit 776 * all those pages down to the drive. 777 */ 778 if (!page_started && !ret) 779 extent_write_locked_range(inode, 780 async_extent->start, 781 async_extent->start + 782 async_extent->ram_size - 1, 783 WB_SYNC_ALL); 784 else if (ret) 785 unlock_page(async_chunk->locked_page); 786 kfree(async_extent); 787 cond_resched(); 788 continue; 789 } 790 791 ret = btrfs_reserve_extent(root, async_extent->ram_size, 792 async_extent->compressed_size, 793 async_extent->compressed_size, 794 0, alloc_hint, &ins, 1, 1); 795 if (ret) { 796 free_async_extent_pages(async_extent); 797 798 if (ret == -ENOSPC) { 799 unlock_extent(io_tree, async_extent->start, 800 async_extent->start + 801 async_extent->ram_size - 1); 802 803 /* 804 * we need to redirty the pages if we decide to 805 * fallback to uncompressed IO, otherwise we 806 * will not submit these pages down to lower 807 * layers. 808 */ 809 extent_range_redirty_for_io(inode, 810 async_extent->start, 811 async_extent->start + 812 async_extent->ram_size - 1); 813 814 goto retry; 815 } 816 goto out_free; 817 } 818 /* 819 * here we're doing allocation and writeback of the 820 * compressed pages 821 */ 822 em = create_io_em(inode, async_extent->start, 823 async_extent->ram_size, /* len */ 824 async_extent->start, /* orig_start */ 825 ins.objectid, /* block_start */ 826 ins.offset, /* block_len */ 827 ins.offset, /* orig_block_len */ 828 async_extent->ram_size, /* ram_bytes */ 829 async_extent->compress_type, 830 BTRFS_ORDERED_COMPRESSED); 831 if (IS_ERR(em)) 832 /* ret value is not necessary due to void function */ 833 goto out_free_reserve; 834 free_extent_map(em); 835 836 ret = btrfs_add_ordered_extent_compress(inode, 837 async_extent->start, 838 ins.objectid, 839 async_extent->ram_size, 840 ins.offset, 841 BTRFS_ORDERED_COMPRESSED, 842 async_extent->compress_type); 843 if (ret) { 844 btrfs_drop_extent_cache(BTRFS_I(inode), 845 async_extent->start, 846 async_extent->start + 847 async_extent->ram_size - 1, 0); 848 goto out_free_reserve; 849 } 850 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 851 852 /* 853 * clear dirty, set writeback and unlock the pages. 854 */ 855 extent_clear_unlock_delalloc(inode, async_extent->start, 856 async_extent->start + 857 async_extent->ram_size - 1, 858 async_extent->start + 859 async_extent->ram_size - 1, 860 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 861 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 862 PAGE_SET_WRITEBACK); 863 if (btrfs_submit_compressed_write(inode, 864 async_extent->start, 865 async_extent->ram_size, 866 ins.objectid, 867 ins.offset, async_extent->pages, 868 async_extent->nr_pages, 869 async_chunk->write_flags)) { 870 struct page *p = async_extent->pages[0]; 871 const u64 start = async_extent->start; 872 const u64 end = start + async_extent->ram_size - 1; 873 874 p->mapping = inode->i_mapping; 875 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 876 877 p->mapping = NULL; 878 extent_clear_unlock_delalloc(inode, start, end, end, 879 NULL, 0, 880 PAGE_END_WRITEBACK | 881 PAGE_SET_ERROR); 882 free_async_extent_pages(async_extent); 883 } 884 alloc_hint = ins.objectid + ins.offset; 885 kfree(async_extent); 886 cond_resched(); 887 } 888 return; 889 out_free_reserve: 890 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 891 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 892 out_free: 893 extent_clear_unlock_delalloc(inode, async_extent->start, 894 async_extent->start + 895 async_extent->ram_size - 1, 896 async_extent->start + 897 async_extent->ram_size - 1, 898 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 899 EXTENT_DELALLOC_NEW | 900 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 901 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 902 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 903 PAGE_SET_ERROR); 904 free_async_extent_pages(async_extent); 905 kfree(async_extent); 906 goto again; 907 } 908 909 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 910 u64 num_bytes) 911 { 912 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 913 struct extent_map *em; 914 u64 alloc_hint = 0; 915 916 read_lock(&em_tree->lock); 917 em = search_extent_mapping(em_tree, start, num_bytes); 918 if (em) { 919 /* 920 * if block start isn't an actual block number then find the 921 * first block in this inode and use that as a hint. If that 922 * block is also bogus then just don't worry about it. 923 */ 924 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 925 free_extent_map(em); 926 em = search_extent_mapping(em_tree, 0, 0); 927 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 928 alloc_hint = em->block_start; 929 if (em) 930 free_extent_map(em); 931 } else { 932 alloc_hint = em->block_start; 933 free_extent_map(em); 934 } 935 } 936 read_unlock(&em_tree->lock); 937 938 return alloc_hint; 939 } 940 941 /* 942 * when extent_io.c finds a delayed allocation range in the file, 943 * the call backs end up in this code. The basic idea is to 944 * allocate extents on disk for the range, and create ordered data structs 945 * in ram to track those extents. 946 * 947 * locked_page is the page that writepage had locked already. We use 948 * it to make sure we don't do extra locks or unlocks. 949 * 950 * *page_started is set to one if we unlock locked_page and do everything 951 * required to start IO on it. It may be clean and already done with 952 * IO when we return. 953 */ 954 static noinline int cow_file_range(struct inode *inode, 955 struct page *locked_page, 956 u64 start, u64 end, u64 delalloc_end, 957 int *page_started, unsigned long *nr_written, 958 int unlock, struct btrfs_dedupe_hash *hash) 959 { 960 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 961 struct btrfs_root *root = BTRFS_I(inode)->root; 962 u64 alloc_hint = 0; 963 u64 num_bytes; 964 unsigned long ram_size; 965 u64 cur_alloc_size = 0; 966 u64 blocksize = fs_info->sectorsize; 967 struct btrfs_key ins; 968 struct extent_map *em; 969 unsigned clear_bits; 970 unsigned long page_ops; 971 bool extent_reserved = false; 972 int ret = 0; 973 974 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 975 WARN_ON_ONCE(1); 976 ret = -EINVAL; 977 goto out_unlock; 978 } 979 980 num_bytes = ALIGN(end - start + 1, blocksize); 981 num_bytes = max(blocksize, num_bytes); 982 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 983 984 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 985 986 if (start == 0) { 987 /* lets try to make an inline extent */ 988 ret = cow_file_range_inline(inode, start, end, 0, 989 BTRFS_COMPRESS_NONE, NULL); 990 if (ret == 0) { 991 /* 992 * We use DO_ACCOUNTING here because we need the 993 * delalloc_release_metadata to be run _after_ we drop 994 * our outstanding extent for clearing delalloc for this 995 * range. 996 */ 997 extent_clear_unlock_delalloc(inode, start, end, 998 delalloc_end, NULL, 999 EXTENT_LOCKED | EXTENT_DELALLOC | 1000 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1001 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1002 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1003 PAGE_END_WRITEBACK); 1004 *nr_written = *nr_written + 1005 (end - start + PAGE_SIZE) / PAGE_SIZE; 1006 *page_started = 1; 1007 goto out; 1008 } else if (ret < 0) { 1009 goto out_unlock; 1010 } 1011 } 1012 1013 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1014 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1015 start + num_bytes - 1, 0); 1016 1017 while (num_bytes > 0) { 1018 cur_alloc_size = num_bytes; 1019 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1020 fs_info->sectorsize, 0, alloc_hint, 1021 &ins, 1, 1); 1022 if (ret < 0) 1023 goto out_unlock; 1024 cur_alloc_size = ins.offset; 1025 extent_reserved = true; 1026 1027 ram_size = ins.offset; 1028 em = create_io_em(inode, start, ins.offset, /* len */ 1029 start, /* orig_start */ 1030 ins.objectid, /* block_start */ 1031 ins.offset, /* block_len */ 1032 ins.offset, /* orig_block_len */ 1033 ram_size, /* ram_bytes */ 1034 BTRFS_COMPRESS_NONE, /* compress_type */ 1035 BTRFS_ORDERED_REGULAR /* type */); 1036 if (IS_ERR(em)) { 1037 ret = PTR_ERR(em); 1038 goto out_reserve; 1039 } 1040 free_extent_map(em); 1041 1042 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1043 ram_size, cur_alloc_size, 0); 1044 if (ret) 1045 goto out_drop_extent_cache; 1046 1047 if (root->root_key.objectid == 1048 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1049 ret = btrfs_reloc_clone_csums(inode, start, 1050 cur_alloc_size); 1051 /* 1052 * Only drop cache here, and process as normal. 1053 * 1054 * We must not allow extent_clear_unlock_delalloc() 1055 * at out_unlock label to free meta of this ordered 1056 * extent, as its meta should be freed by 1057 * btrfs_finish_ordered_io(). 1058 * 1059 * So we must continue until @start is increased to 1060 * skip current ordered extent. 1061 */ 1062 if (ret) 1063 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1064 start + ram_size - 1, 0); 1065 } 1066 1067 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1068 1069 /* we're not doing compressed IO, don't unlock the first 1070 * page (which the caller expects to stay locked), don't 1071 * clear any dirty bits and don't set any writeback bits 1072 * 1073 * Do set the Private2 bit so we know this page was properly 1074 * setup for writepage 1075 */ 1076 page_ops = unlock ? PAGE_UNLOCK : 0; 1077 page_ops |= PAGE_SET_PRIVATE2; 1078 1079 extent_clear_unlock_delalloc(inode, start, 1080 start + ram_size - 1, 1081 delalloc_end, locked_page, 1082 EXTENT_LOCKED | EXTENT_DELALLOC, 1083 page_ops); 1084 if (num_bytes < cur_alloc_size) 1085 num_bytes = 0; 1086 else 1087 num_bytes -= cur_alloc_size; 1088 alloc_hint = ins.objectid + ins.offset; 1089 start += cur_alloc_size; 1090 extent_reserved = false; 1091 1092 /* 1093 * btrfs_reloc_clone_csums() error, since start is increased 1094 * extent_clear_unlock_delalloc() at out_unlock label won't 1095 * free metadata of current ordered extent, we're OK to exit. 1096 */ 1097 if (ret) 1098 goto out_unlock; 1099 } 1100 out: 1101 return ret; 1102 1103 out_drop_extent_cache: 1104 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1105 out_reserve: 1106 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1107 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1108 out_unlock: 1109 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1110 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1111 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1112 PAGE_END_WRITEBACK; 1113 /* 1114 * If we reserved an extent for our delalloc range (or a subrange) and 1115 * failed to create the respective ordered extent, then it means that 1116 * when we reserved the extent we decremented the extent's size from 1117 * the data space_info's bytes_may_use counter and incremented the 1118 * space_info's bytes_reserved counter by the same amount. We must make 1119 * sure extent_clear_unlock_delalloc() does not try to decrement again 1120 * the data space_info's bytes_may_use counter, therefore we do not pass 1121 * it the flag EXTENT_CLEAR_DATA_RESV. 1122 */ 1123 if (extent_reserved) { 1124 extent_clear_unlock_delalloc(inode, start, 1125 start + cur_alloc_size, 1126 start + cur_alloc_size, 1127 locked_page, 1128 clear_bits, 1129 page_ops); 1130 start += cur_alloc_size; 1131 if (start >= end) 1132 goto out; 1133 } 1134 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1135 locked_page, 1136 clear_bits | EXTENT_CLEAR_DATA_RESV, 1137 page_ops); 1138 goto out; 1139 } 1140 1141 /* 1142 * work queue call back to started compression on a file and pages 1143 */ 1144 static noinline void async_cow_start(struct btrfs_work *work) 1145 { 1146 struct async_chunk *async_chunk; 1147 int num_added = 0; 1148 1149 async_chunk = container_of(work, struct async_chunk, work); 1150 1151 compress_file_range(async_chunk, &num_added); 1152 if (num_added == 0) { 1153 btrfs_add_delayed_iput(async_chunk->inode); 1154 async_chunk->inode = NULL; 1155 } 1156 } 1157 1158 /* 1159 * work queue call back to submit previously compressed pages 1160 */ 1161 static noinline void async_cow_submit(struct btrfs_work *work) 1162 { 1163 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1164 work); 1165 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1166 unsigned long nr_pages; 1167 1168 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1169 PAGE_SHIFT; 1170 1171 /* atomic_sub_return implies a barrier */ 1172 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1173 5 * SZ_1M) 1174 cond_wake_up_nomb(&fs_info->async_submit_wait); 1175 1176 /* 1177 * ->inode could be NULL if async_chunk_start has failed to compress, 1178 * in which case we don't have anything to submit, yet we need to 1179 * always adjust ->async_delalloc_pages as its paired with the init 1180 * happening in cow_file_range_async 1181 */ 1182 if (async_chunk->inode) 1183 submit_compressed_extents(async_chunk); 1184 } 1185 1186 static noinline void async_cow_free(struct btrfs_work *work) 1187 { 1188 struct async_chunk *async_chunk; 1189 1190 async_chunk = container_of(work, struct async_chunk, work); 1191 if (async_chunk->inode) 1192 btrfs_add_delayed_iput(async_chunk->inode); 1193 /* 1194 * Since the pointer to 'pending' is at the beginning of the array of 1195 * async_chunk's, freeing it ensures the whole array has been freed. 1196 */ 1197 if (atomic_dec_and_test(async_chunk->pending)) 1198 kvfree(async_chunk->pending); 1199 } 1200 1201 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1202 u64 start, u64 end, int *page_started, 1203 unsigned long *nr_written, 1204 unsigned int write_flags) 1205 { 1206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1207 struct async_cow *ctx; 1208 struct async_chunk *async_chunk; 1209 unsigned long nr_pages; 1210 u64 cur_end; 1211 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1212 int i; 1213 bool should_compress; 1214 unsigned nofs_flag; 1215 1216 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1217 1218 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1219 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1220 num_chunks = 1; 1221 should_compress = false; 1222 } else { 1223 should_compress = true; 1224 } 1225 1226 nofs_flag = memalloc_nofs_save(); 1227 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1228 memalloc_nofs_restore(nofs_flag); 1229 1230 if (!ctx) { 1231 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1232 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1233 EXTENT_DO_ACCOUNTING; 1234 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1235 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1236 PAGE_SET_ERROR; 1237 1238 extent_clear_unlock_delalloc(inode, start, end, 0, locked_page, 1239 clear_bits, page_ops); 1240 return -ENOMEM; 1241 } 1242 1243 async_chunk = ctx->chunks; 1244 atomic_set(&ctx->num_chunks, num_chunks); 1245 1246 for (i = 0; i < num_chunks; i++) { 1247 if (should_compress) 1248 cur_end = min(end, start + SZ_512K - 1); 1249 else 1250 cur_end = end; 1251 1252 /* 1253 * igrab is called higher up in the call chain, take only the 1254 * lightweight reference for the callback lifetime 1255 */ 1256 ihold(inode); 1257 async_chunk[i].pending = &ctx->num_chunks; 1258 async_chunk[i].inode = inode; 1259 async_chunk[i].start = start; 1260 async_chunk[i].end = cur_end; 1261 async_chunk[i].locked_page = locked_page; 1262 async_chunk[i].write_flags = write_flags; 1263 INIT_LIST_HEAD(&async_chunk[i].extents); 1264 1265 btrfs_init_work(&async_chunk[i].work, 1266 btrfs_delalloc_helper, 1267 async_cow_start, async_cow_submit, 1268 async_cow_free); 1269 1270 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1271 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1272 1273 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1274 1275 *nr_written += nr_pages; 1276 start = cur_end + 1; 1277 } 1278 *page_started = 1; 1279 return 0; 1280 } 1281 1282 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1283 u64 bytenr, u64 num_bytes) 1284 { 1285 int ret; 1286 struct btrfs_ordered_sum *sums; 1287 LIST_HEAD(list); 1288 1289 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1290 bytenr + num_bytes - 1, &list, 0); 1291 if (ret == 0 && list_empty(&list)) 1292 return 0; 1293 1294 while (!list_empty(&list)) { 1295 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1296 list_del(&sums->list); 1297 kfree(sums); 1298 } 1299 if (ret < 0) 1300 return ret; 1301 return 1; 1302 } 1303 1304 /* 1305 * when nowcow writeback call back. This checks for snapshots or COW copies 1306 * of the extents that exist in the file, and COWs the file as required. 1307 * 1308 * If no cow copies or snapshots exist, we write directly to the existing 1309 * blocks on disk 1310 */ 1311 static noinline int run_delalloc_nocow(struct inode *inode, 1312 struct page *locked_page, 1313 u64 start, u64 end, int *page_started, int force, 1314 unsigned long *nr_written) 1315 { 1316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1317 struct btrfs_root *root = BTRFS_I(inode)->root; 1318 struct extent_buffer *leaf; 1319 struct btrfs_path *path; 1320 struct btrfs_file_extent_item *fi; 1321 struct btrfs_key found_key; 1322 struct extent_map *em; 1323 u64 cow_start; 1324 u64 cur_offset; 1325 u64 extent_end; 1326 u64 extent_offset; 1327 u64 disk_bytenr; 1328 u64 num_bytes; 1329 u64 disk_num_bytes; 1330 u64 ram_bytes; 1331 int extent_type; 1332 int ret; 1333 int type; 1334 int nocow; 1335 int check_prev = 1; 1336 bool nolock; 1337 u64 ino = btrfs_ino(BTRFS_I(inode)); 1338 1339 path = btrfs_alloc_path(); 1340 if (!path) { 1341 extent_clear_unlock_delalloc(inode, start, end, end, 1342 locked_page, 1343 EXTENT_LOCKED | EXTENT_DELALLOC | 1344 EXTENT_DO_ACCOUNTING | 1345 EXTENT_DEFRAG, PAGE_UNLOCK | 1346 PAGE_CLEAR_DIRTY | 1347 PAGE_SET_WRITEBACK | 1348 PAGE_END_WRITEBACK); 1349 return -ENOMEM; 1350 } 1351 1352 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1353 1354 cow_start = (u64)-1; 1355 cur_offset = start; 1356 while (1) { 1357 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1358 cur_offset, 0); 1359 if (ret < 0) 1360 goto error; 1361 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1362 leaf = path->nodes[0]; 1363 btrfs_item_key_to_cpu(leaf, &found_key, 1364 path->slots[0] - 1); 1365 if (found_key.objectid == ino && 1366 found_key.type == BTRFS_EXTENT_DATA_KEY) 1367 path->slots[0]--; 1368 } 1369 check_prev = 0; 1370 next_slot: 1371 leaf = path->nodes[0]; 1372 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1373 ret = btrfs_next_leaf(root, path); 1374 if (ret < 0) { 1375 if (cow_start != (u64)-1) 1376 cur_offset = cow_start; 1377 goto error; 1378 } 1379 if (ret > 0) 1380 break; 1381 leaf = path->nodes[0]; 1382 } 1383 1384 nocow = 0; 1385 disk_bytenr = 0; 1386 num_bytes = 0; 1387 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1388 1389 if (found_key.objectid > ino) 1390 break; 1391 if (WARN_ON_ONCE(found_key.objectid < ino) || 1392 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1393 path->slots[0]++; 1394 goto next_slot; 1395 } 1396 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1397 found_key.offset > end) 1398 break; 1399 1400 if (found_key.offset > cur_offset) { 1401 extent_end = found_key.offset; 1402 extent_type = 0; 1403 goto out_check; 1404 } 1405 1406 fi = btrfs_item_ptr(leaf, path->slots[0], 1407 struct btrfs_file_extent_item); 1408 extent_type = btrfs_file_extent_type(leaf, fi); 1409 1410 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1411 if (extent_type == BTRFS_FILE_EXTENT_REG || 1412 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1413 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1414 extent_offset = btrfs_file_extent_offset(leaf, fi); 1415 extent_end = found_key.offset + 1416 btrfs_file_extent_num_bytes(leaf, fi); 1417 disk_num_bytes = 1418 btrfs_file_extent_disk_num_bytes(leaf, fi); 1419 if (extent_end <= start) { 1420 path->slots[0]++; 1421 goto next_slot; 1422 } 1423 if (disk_bytenr == 0) 1424 goto out_check; 1425 if (btrfs_file_extent_compression(leaf, fi) || 1426 btrfs_file_extent_encryption(leaf, fi) || 1427 btrfs_file_extent_other_encoding(leaf, fi)) 1428 goto out_check; 1429 /* 1430 * Do the same check as in btrfs_cross_ref_exist but 1431 * without the unnecessary search. 1432 */ 1433 if (!nolock && 1434 btrfs_file_extent_generation(leaf, fi) <= 1435 btrfs_root_last_snapshot(&root->root_item)) 1436 goto out_check; 1437 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1438 goto out_check; 1439 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1440 goto out_check; 1441 ret = btrfs_cross_ref_exist(root, ino, 1442 found_key.offset - 1443 extent_offset, disk_bytenr); 1444 if (ret) { 1445 /* 1446 * ret could be -EIO if the above fails to read 1447 * metadata. 1448 */ 1449 if (ret < 0) { 1450 if (cow_start != (u64)-1) 1451 cur_offset = cow_start; 1452 goto error; 1453 } 1454 1455 WARN_ON_ONCE(nolock); 1456 goto out_check; 1457 } 1458 disk_bytenr += extent_offset; 1459 disk_bytenr += cur_offset - found_key.offset; 1460 num_bytes = min(end + 1, extent_end) - cur_offset; 1461 /* 1462 * if there are pending snapshots for this root, 1463 * we fall into common COW way. 1464 */ 1465 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1466 goto out_check; 1467 /* 1468 * force cow if csum exists in the range. 1469 * this ensure that csum for a given extent are 1470 * either valid or do not exist. 1471 */ 1472 ret = csum_exist_in_range(fs_info, disk_bytenr, 1473 num_bytes); 1474 if (ret) { 1475 /* 1476 * ret could be -EIO if the above fails to read 1477 * metadata. 1478 */ 1479 if (ret < 0) { 1480 if (cow_start != (u64)-1) 1481 cur_offset = cow_start; 1482 goto error; 1483 } 1484 WARN_ON_ONCE(nolock); 1485 goto out_check; 1486 } 1487 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1488 goto out_check; 1489 nocow = 1; 1490 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1491 extent_end = found_key.offset + 1492 btrfs_file_extent_ram_bytes(leaf, fi); 1493 extent_end = ALIGN(extent_end, 1494 fs_info->sectorsize); 1495 } else { 1496 BUG(); 1497 } 1498 out_check: 1499 if (extent_end <= start) { 1500 path->slots[0]++; 1501 if (nocow) 1502 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1503 goto next_slot; 1504 } 1505 if (!nocow) { 1506 if (cow_start == (u64)-1) 1507 cow_start = cur_offset; 1508 cur_offset = extent_end; 1509 if (cur_offset > end) 1510 break; 1511 path->slots[0]++; 1512 goto next_slot; 1513 } 1514 1515 btrfs_release_path(path); 1516 if (cow_start != (u64)-1) { 1517 ret = cow_file_range(inode, locked_page, 1518 cow_start, found_key.offset - 1, 1519 end, page_started, nr_written, 1, 1520 NULL); 1521 if (ret) { 1522 if (nocow) 1523 btrfs_dec_nocow_writers(fs_info, 1524 disk_bytenr); 1525 goto error; 1526 } 1527 cow_start = (u64)-1; 1528 } 1529 1530 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1531 u64 orig_start = found_key.offset - extent_offset; 1532 1533 em = create_io_em(inode, cur_offset, num_bytes, 1534 orig_start, 1535 disk_bytenr, /* block_start */ 1536 num_bytes, /* block_len */ 1537 disk_num_bytes, /* orig_block_len */ 1538 ram_bytes, BTRFS_COMPRESS_NONE, 1539 BTRFS_ORDERED_PREALLOC); 1540 if (IS_ERR(em)) { 1541 if (nocow) 1542 btrfs_dec_nocow_writers(fs_info, 1543 disk_bytenr); 1544 ret = PTR_ERR(em); 1545 goto error; 1546 } 1547 free_extent_map(em); 1548 } 1549 1550 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1551 type = BTRFS_ORDERED_PREALLOC; 1552 } else { 1553 type = BTRFS_ORDERED_NOCOW; 1554 } 1555 1556 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1557 num_bytes, num_bytes, type); 1558 if (nocow) 1559 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1560 BUG_ON(ret); /* -ENOMEM */ 1561 1562 if (root->root_key.objectid == 1563 BTRFS_DATA_RELOC_TREE_OBJECTID) 1564 /* 1565 * Error handled later, as we must prevent 1566 * extent_clear_unlock_delalloc() in error handler 1567 * from freeing metadata of created ordered extent. 1568 */ 1569 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1570 num_bytes); 1571 1572 extent_clear_unlock_delalloc(inode, cur_offset, 1573 cur_offset + num_bytes - 1, end, 1574 locked_page, EXTENT_LOCKED | 1575 EXTENT_DELALLOC | 1576 EXTENT_CLEAR_DATA_RESV, 1577 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1578 1579 cur_offset = extent_end; 1580 1581 /* 1582 * btrfs_reloc_clone_csums() error, now we're OK to call error 1583 * handler, as metadata for created ordered extent will only 1584 * be freed by btrfs_finish_ordered_io(). 1585 */ 1586 if (ret) 1587 goto error; 1588 if (cur_offset > end) 1589 break; 1590 } 1591 btrfs_release_path(path); 1592 1593 if (cur_offset <= end && cow_start == (u64)-1) 1594 cow_start = cur_offset; 1595 1596 if (cow_start != (u64)-1) { 1597 cur_offset = end; 1598 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1599 page_started, nr_written, 1, NULL); 1600 if (ret) 1601 goto error; 1602 } 1603 1604 error: 1605 if (ret && cur_offset < end) 1606 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1607 locked_page, EXTENT_LOCKED | 1608 EXTENT_DELALLOC | EXTENT_DEFRAG | 1609 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1610 PAGE_CLEAR_DIRTY | 1611 PAGE_SET_WRITEBACK | 1612 PAGE_END_WRITEBACK); 1613 btrfs_free_path(path); 1614 return ret; 1615 } 1616 1617 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1618 { 1619 1620 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1621 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1622 return 0; 1623 1624 /* 1625 * @defrag_bytes is a hint value, no spinlock held here, 1626 * if is not zero, it means the file is defragging. 1627 * Force cow if given extent needs to be defragged. 1628 */ 1629 if (BTRFS_I(inode)->defrag_bytes && 1630 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1631 EXTENT_DEFRAG, 0, NULL)) 1632 return 1; 1633 1634 return 0; 1635 } 1636 1637 /* 1638 * Function to process delayed allocation (create CoW) for ranges which are 1639 * being touched for the first time. 1640 */ 1641 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page, 1642 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1643 struct writeback_control *wbc) 1644 { 1645 int ret; 1646 int force_cow = need_force_cow(inode, start, end); 1647 unsigned int write_flags = wbc_to_write_flags(wbc); 1648 1649 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1650 ret = run_delalloc_nocow(inode, locked_page, start, end, 1651 page_started, 1, nr_written); 1652 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1653 ret = run_delalloc_nocow(inode, locked_page, start, end, 1654 page_started, 0, nr_written); 1655 } else if (!inode_can_compress(inode) || 1656 !inode_need_compress(inode, start, end)) { 1657 ret = cow_file_range(inode, locked_page, start, end, end, 1658 page_started, nr_written, 1, NULL); 1659 } else { 1660 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1661 &BTRFS_I(inode)->runtime_flags); 1662 ret = cow_file_range_async(inode, locked_page, start, end, 1663 page_started, nr_written, 1664 write_flags); 1665 } 1666 if (ret) 1667 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1668 end - start + 1); 1669 return ret; 1670 } 1671 1672 void btrfs_split_delalloc_extent(struct inode *inode, 1673 struct extent_state *orig, u64 split) 1674 { 1675 u64 size; 1676 1677 /* not delalloc, ignore it */ 1678 if (!(orig->state & EXTENT_DELALLOC)) 1679 return; 1680 1681 size = orig->end - orig->start + 1; 1682 if (size > BTRFS_MAX_EXTENT_SIZE) { 1683 u32 num_extents; 1684 u64 new_size; 1685 1686 /* 1687 * See the explanation in btrfs_merge_delalloc_extent, the same 1688 * applies here, just in reverse. 1689 */ 1690 new_size = orig->end - split + 1; 1691 num_extents = count_max_extents(new_size); 1692 new_size = split - orig->start; 1693 num_extents += count_max_extents(new_size); 1694 if (count_max_extents(size) >= num_extents) 1695 return; 1696 } 1697 1698 spin_lock(&BTRFS_I(inode)->lock); 1699 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1700 spin_unlock(&BTRFS_I(inode)->lock); 1701 } 1702 1703 /* 1704 * Handle merged delayed allocation extents so we can keep track of new extents 1705 * that are just merged onto old extents, such as when we are doing sequential 1706 * writes, so we can properly account for the metadata space we'll need. 1707 */ 1708 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1709 struct extent_state *other) 1710 { 1711 u64 new_size, old_size; 1712 u32 num_extents; 1713 1714 /* not delalloc, ignore it */ 1715 if (!(other->state & EXTENT_DELALLOC)) 1716 return; 1717 1718 if (new->start > other->start) 1719 new_size = new->end - other->start + 1; 1720 else 1721 new_size = other->end - new->start + 1; 1722 1723 /* we're not bigger than the max, unreserve the space and go */ 1724 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1725 spin_lock(&BTRFS_I(inode)->lock); 1726 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1727 spin_unlock(&BTRFS_I(inode)->lock); 1728 return; 1729 } 1730 1731 /* 1732 * We have to add up either side to figure out how many extents were 1733 * accounted for before we merged into one big extent. If the number of 1734 * extents we accounted for is <= the amount we need for the new range 1735 * then we can return, otherwise drop. Think of it like this 1736 * 1737 * [ 4k][MAX_SIZE] 1738 * 1739 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1740 * need 2 outstanding extents, on one side we have 1 and the other side 1741 * we have 1 so they are == and we can return. But in this case 1742 * 1743 * [MAX_SIZE+4k][MAX_SIZE+4k] 1744 * 1745 * Each range on their own accounts for 2 extents, but merged together 1746 * they are only 3 extents worth of accounting, so we need to drop in 1747 * this case. 1748 */ 1749 old_size = other->end - other->start + 1; 1750 num_extents = count_max_extents(old_size); 1751 old_size = new->end - new->start + 1; 1752 num_extents += count_max_extents(old_size); 1753 if (count_max_extents(new_size) >= num_extents) 1754 return; 1755 1756 spin_lock(&BTRFS_I(inode)->lock); 1757 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1758 spin_unlock(&BTRFS_I(inode)->lock); 1759 } 1760 1761 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1762 struct inode *inode) 1763 { 1764 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1765 1766 spin_lock(&root->delalloc_lock); 1767 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1768 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1769 &root->delalloc_inodes); 1770 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1771 &BTRFS_I(inode)->runtime_flags); 1772 root->nr_delalloc_inodes++; 1773 if (root->nr_delalloc_inodes == 1) { 1774 spin_lock(&fs_info->delalloc_root_lock); 1775 BUG_ON(!list_empty(&root->delalloc_root)); 1776 list_add_tail(&root->delalloc_root, 1777 &fs_info->delalloc_roots); 1778 spin_unlock(&fs_info->delalloc_root_lock); 1779 } 1780 } 1781 spin_unlock(&root->delalloc_lock); 1782 } 1783 1784 1785 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1786 struct btrfs_inode *inode) 1787 { 1788 struct btrfs_fs_info *fs_info = root->fs_info; 1789 1790 if (!list_empty(&inode->delalloc_inodes)) { 1791 list_del_init(&inode->delalloc_inodes); 1792 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1793 &inode->runtime_flags); 1794 root->nr_delalloc_inodes--; 1795 if (!root->nr_delalloc_inodes) { 1796 ASSERT(list_empty(&root->delalloc_inodes)); 1797 spin_lock(&fs_info->delalloc_root_lock); 1798 BUG_ON(list_empty(&root->delalloc_root)); 1799 list_del_init(&root->delalloc_root); 1800 spin_unlock(&fs_info->delalloc_root_lock); 1801 } 1802 } 1803 } 1804 1805 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1806 struct btrfs_inode *inode) 1807 { 1808 spin_lock(&root->delalloc_lock); 1809 __btrfs_del_delalloc_inode(root, inode); 1810 spin_unlock(&root->delalloc_lock); 1811 } 1812 1813 /* 1814 * Properly track delayed allocation bytes in the inode and to maintain the 1815 * list of inodes that have pending delalloc work to be done. 1816 */ 1817 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1818 unsigned *bits) 1819 { 1820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1821 1822 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1823 WARN_ON(1); 1824 /* 1825 * set_bit and clear bit hooks normally require _irqsave/restore 1826 * but in this case, we are only testing for the DELALLOC 1827 * bit, which is only set or cleared with irqs on 1828 */ 1829 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1830 struct btrfs_root *root = BTRFS_I(inode)->root; 1831 u64 len = state->end + 1 - state->start; 1832 u32 num_extents = count_max_extents(len); 1833 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1834 1835 spin_lock(&BTRFS_I(inode)->lock); 1836 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1837 spin_unlock(&BTRFS_I(inode)->lock); 1838 1839 /* For sanity tests */ 1840 if (btrfs_is_testing(fs_info)) 1841 return; 1842 1843 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1844 fs_info->delalloc_batch); 1845 spin_lock(&BTRFS_I(inode)->lock); 1846 BTRFS_I(inode)->delalloc_bytes += len; 1847 if (*bits & EXTENT_DEFRAG) 1848 BTRFS_I(inode)->defrag_bytes += len; 1849 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1850 &BTRFS_I(inode)->runtime_flags)) 1851 btrfs_add_delalloc_inodes(root, inode); 1852 spin_unlock(&BTRFS_I(inode)->lock); 1853 } 1854 1855 if (!(state->state & EXTENT_DELALLOC_NEW) && 1856 (*bits & EXTENT_DELALLOC_NEW)) { 1857 spin_lock(&BTRFS_I(inode)->lock); 1858 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1859 state->start; 1860 spin_unlock(&BTRFS_I(inode)->lock); 1861 } 1862 } 1863 1864 /* 1865 * Once a range is no longer delalloc this function ensures that proper 1866 * accounting happens. 1867 */ 1868 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 1869 struct extent_state *state, unsigned *bits) 1870 { 1871 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 1872 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 1873 u64 len = state->end + 1 - state->start; 1874 u32 num_extents = count_max_extents(len); 1875 1876 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1877 spin_lock(&inode->lock); 1878 inode->defrag_bytes -= len; 1879 spin_unlock(&inode->lock); 1880 } 1881 1882 /* 1883 * set_bit and clear bit hooks normally require _irqsave/restore 1884 * but in this case, we are only testing for the DELALLOC 1885 * bit, which is only set or cleared with irqs on 1886 */ 1887 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1888 struct btrfs_root *root = inode->root; 1889 bool do_list = !btrfs_is_free_space_inode(inode); 1890 1891 spin_lock(&inode->lock); 1892 btrfs_mod_outstanding_extents(inode, -num_extents); 1893 spin_unlock(&inode->lock); 1894 1895 /* 1896 * We don't reserve metadata space for space cache inodes so we 1897 * don't need to call delalloc_release_metadata if there is an 1898 * error. 1899 */ 1900 if (*bits & EXTENT_CLEAR_META_RESV && 1901 root != fs_info->tree_root) 1902 btrfs_delalloc_release_metadata(inode, len, false); 1903 1904 /* For sanity tests. */ 1905 if (btrfs_is_testing(fs_info)) 1906 return; 1907 1908 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1909 do_list && !(state->state & EXTENT_NORESERVE) && 1910 (*bits & EXTENT_CLEAR_DATA_RESV)) 1911 btrfs_free_reserved_data_space_noquota( 1912 &inode->vfs_inode, 1913 state->start, len); 1914 1915 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1916 fs_info->delalloc_batch); 1917 spin_lock(&inode->lock); 1918 inode->delalloc_bytes -= len; 1919 if (do_list && inode->delalloc_bytes == 0 && 1920 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1921 &inode->runtime_flags)) 1922 btrfs_del_delalloc_inode(root, inode); 1923 spin_unlock(&inode->lock); 1924 } 1925 1926 if ((state->state & EXTENT_DELALLOC_NEW) && 1927 (*bits & EXTENT_DELALLOC_NEW)) { 1928 spin_lock(&inode->lock); 1929 ASSERT(inode->new_delalloc_bytes >= len); 1930 inode->new_delalloc_bytes -= len; 1931 spin_unlock(&inode->lock); 1932 } 1933 } 1934 1935 /* 1936 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 1937 * in a chunk's stripe. This function ensures that bios do not span a 1938 * stripe/chunk 1939 * 1940 * @page - The page we are about to add to the bio 1941 * @size - size we want to add to the bio 1942 * @bio - bio we want to ensure is smaller than a stripe 1943 * @bio_flags - flags of the bio 1944 * 1945 * return 1 if page cannot be added to the bio 1946 * return 0 if page can be added to the bio 1947 * return error otherwise 1948 */ 1949 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 1950 unsigned long bio_flags) 1951 { 1952 struct inode *inode = page->mapping->host; 1953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1954 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1955 u64 length = 0; 1956 u64 map_length; 1957 int ret; 1958 struct btrfs_io_geometry geom; 1959 1960 if (bio_flags & EXTENT_BIO_COMPRESSED) 1961 return 0; 1962 1963 length = bio->bi_iter.bi_size; 1964 map_length = length; 1965 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 1966 &geom); 1967 if (ret < 0) 1968 return ret; 1969 1970 if (geom.len < length + size) 1971 return 1; 1972 return 0; 1973 } 1974 1975 /* 1976 * in order to insert checksums into the metadata in large chunks, 1977 * we wait until bio submission time. All the pages in the bio are 1978 * checksummed and sums are attached onto the ordered extent record. 1979 * 1980 * At IO completion time the cums attached on the ordered extent record 1981 * are inserted into the btree 1982 */ 1983 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1984 u64 bio_offset) 1985 { 1986 struct inode *inode = private_data; 1987 blk_status_t ret = 0; 1988 1989 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1990 BUG_ON(ret); /* -ENOMEM */ 1991 return 0; 1992 } 1993 1994 /* 1995 * extent_io.c submission hook. This does the right thing for csum calculation 1996 * on write, or reading the csums from the tree before a read. 1997 * 1998 * Rules about async/sync submit, 1999 * a) read: sync submit 2000 * 2001 * b) write without checksum: sync submit 2002 * 2003 * c) write with checksum: 2004 * c-1) if bio is issued by fsync: sync submit 2005 * (sync_writers != 0) 2006 * 2007 * c-2) if root is reloc root: sync submit 2008 * (only in case of buffered IO) 2009 * 2010 * c-3) otherwise: async submit 2011 */ 2012 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio, 2013 int mirror_num, 2014 unsigned long bio_flags) 2015 2016 { 2017 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2018 struct btrfs_root *root = BTRFS_I(inode)->root; 2019 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2020 blk_status_t ret = 0; 2021 int skip_sum; 2022 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2023 2024 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2025 2026 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2027 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2028 2029 if (bio_op(bio) != REQ_OP_WRITE) { 2030 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2031 if (ret) 2032 goto out; 2033 2034 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2035 ret = btrfs_submit_compressed_read(inode, bio, 2036 mirror_num, 2037 bio_flags); 2038 goto out; 2039 } else if (!skip_sum) { 2040 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2041 if (ret) 2042 goto out; 2043 } 2044 goto mapit; 2045 } else if (async && !skip_sum) { 2046 /* csum items have already been cloned */ 2047 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2048 goto mapit; 2049 /* we're doing a write, do the async checksumming */ 2050 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2051 0, inode, btrfs_submit_bio_start); 2052 goto out; 2053 } else if (!skip_sum) { 2054 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2055 if (ret) 2056 goto out; 2057 } 2058 2059 mapit: 2060 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2061 2062 out: 2063 if (ret) { 2064 bio->bi_status = ret; 2065 bio_endio(bio); 2066 } 2067 return ret; 2068 } 2069 2070 /* 2071 * given a list of ordered sums record them in the inode. This happens 2072 * at IO completion time based on sums calculated at bio submission time. 2073 */ 2074 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2075 struct inode *inode, struct list_head *list) 2076 { 2077 struct btrfs_ordered_sum *sum; 2078 int ret; 2079 2080 list_for_each_entry(sum, list, list) { 2081 trans->adding_csums = true; 2082 ret = btrfs_csum_file_blocks(trans, 2083 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2084 trans->adding_csums = false; 2085 if (ret) 2086 return ret; 2087 } 2088 return 0; 2089 } 2090 2091 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2092 unsigned int extra_bits, 2093 struct extent_state **cached_state, int dedupe) 2094 { 2095 WARN_ON(PAGE_ALIGNED(end)); 2096 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2097 extra_bits, cached_state); 2098 } 2099 2100 /* see btrfs_writepage_start_hook for details on why this is required */ 2101 struct btrfs_writepage_fixup { 2102 struct page *page; 2103 struct btrfs_work work; 2104 }; 2105 2106 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2107 { 2108 struct btrfs_writepage_fixup *fixup; 2109 struct btrfs_ordered_extent *ordered; 2110 struct extent_state *cached_state = NULL; 2111 struct extent_changeset *data_reserved = NULL; 2112 struct page *page; 2113 struct inode *inode; 2114 u64 page_start; 2115 u64 page_end; 2116 int ret; 2117 2118 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2119 page = fixup->page; 2120 again: 2121 lock_page(page); 2122 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2123 ClearPageChecked(page); 2124 goto out_page; 2125 } 2126 2127 inode = page->mapping->host; 2128 page_start = page_offset(page); 2129 page_end = page_offset(page) + PAGE_SIZE - 1; 2130 2131 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2132 &cached_state); 2133 2134 /* already ordered? We're done */ 2135 if (PagePrivate2(page)) 2136 goto out; 2137 2138 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2139 PAGE_SIZE); 2140 if (ordered) { 2141 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2142 page_end, &cached_state); 2143 unlock_page(page); 2144 btrfs_start_ordered_extent(inode, ordered, 1); 2145 btrfs_put_ordered_extent(ordered); 2146 goto again; 2147 } 2148 2149 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2150 PAGE_SIZE); 2151 if (ret) { 2152 mapping_set_error(page->mapping, ret); 2153 end_extent_writepage(page, ret, page_start, page_end); 2154 ClearPageChecked(page); 2155 goto out; 2156 } 2157 2158 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2159 &cached_state, 0); 2160 if (ret) { 2161 mapping_set_error(page->mapping, ret); 2162 end_extent_writepage(page, ret, page_start, page_end); 2163 ClearPageChecked(page); 2164 goto out; 2165 } 2166 2167 ClearPageChecked(page); 2168 set_page_dirty(page); 2169 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2170 out: 2171 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2172 &cached_state); 2173 out_page: 2174 unlock_page(page); 2175 put_page(page); 2176 kfree(fixup); 2177 extent_changeset_free(data_reserved); 2178 } 2179 2180 /* 2181 * There are a few paths in the higher layers of the kernel that directly 2182 * set the page dirty bit without asking the filesystem if it is a 2183 * good idea. This causes problems because we want to make sure COW 2184 * properly happens and the data=ordered rules are followed. 2185 * 2186 * In our case any range that doesn't have the ORDERED bit set 2187 * hasn't been properly setup for IO. We kick off an async process 2188 * to fix it up. The async helper will wait for ordered extents, set 2189 * the delalloc bit and make it safe to write the page. 2190 */ 2191 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2192 { 2193 struct inode *inode = page->mapping->host; 2194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2195 struct btrfs_writepage_fixup *fixup; 2196 2197 /* this page is properly in the ordered list */ 2198 if (TestClearPagePrivate2(page)) 2199 return 0; 2200 2201 if (PageChecked(page)) 2202 return -EAGAIN; 2203 2204 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2205 if (!fixup) 2206 return -EAGAIN; 2207 2208 SetPageChecked(page); 2209 get_page(page); 2210 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2211 btrfs_writepage_fixup_worker, NULL, NULL); 2212 fixup->page = page; 2213 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2214 return -EBUSY; 2215 } 2216 2217 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2218 struct inode *inode, u64 file_pos, 2219 u64 disk_bytenr, u64 disk_num_bytes, 2220 u64 num_bytes, u64 ram_bytes, 2221 u8 compression, u8 encryption, 2222 u16 other_encoding, int extent_type) 2223 { 2224 struct btrfs_root *root = BTRFS_I(inode)->root; 2225 struct btrfs_file_extent_item *fi; 2226 struct btrfs_path *path; 2227 struct extent_buffer *leaf; 2228 struct btrfs_key ins; 2229 u64 qg_released; 2230 int extent_inserted = 0; 2231 int ret; 2232 2233 path = btrfs_alloc_path(); 2234 if (!path) 2235 return -ENOMEM; 2236 2237 /* 2238 * we may be replacing one extent in the tree with another. 2239 * The new extent is pinned in the extent map, and we don't want 2240 * to drop it from the cache until it is completely in the btree. 2241 * 2242 * So, tell btrfs_drop_extents to leave this extent in the cache. 2243 * the caller is expected to unpin it and allow it to be merged 2244 * with the others. 2245 */ 2246 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2247 file_pos + num_bytes, NULL, 0, 2248 1, sizeof(*fi), &extent_inserted); 2249 if (ret) 2250 goto out; 2251 2252 if (!extent_inserted) { 2253 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2254 ins.offset = file_pos; 2255 ins.type = BTRFS_EXTENT_DATA_KEY; 2256 2257 path->leave_spinning = 1; 2258 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2259 sizeof(*fi)); 2260 if (ret) 2261 goto out; 2262 } 2263 leaf = path->nodes[0]; 2264 fi = btrfs_item_ptr(leaf, path->slots[0], 2265 struct btrfs_file_extent_item); 2266 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2267 btrfs_set_file_extent_type(leaf, fi, extent_type); 2268 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2269 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2270 btrfs_set_file_extent_offset(leaf, fi, 0); 2271 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2272 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2273 btrfs_set_file_extent_compression(leaf, fi, compression); 2274 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2275 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2276 2277 btrfs_mark_buffer_dirty(leaf); 2278 btrfs_release_path(path); 2279 2280 inode_add_bytes(inode, num_bytes); 2281 2282 ins.objectid = disk_bytenr; 2283 ins.offset = disk_num_bytes; 2284 ins.type = BTRFS_EXTENT_ITEM_KEY; 2285 2286 /* 2287 * Release the reserved range from inode dirty range map, as it is 2288 * already moved into delayed_ref_head 2289 */ 2290 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2291 if (ret < 0) 2292 goto out; 2293 qg_released = ret; 2294 ret = btrfs_alloc_reserved_file_extent(trans, root, 2295 btrfs_ino(BTRFS_I(inode)), 2296 file_pos, qg_released, &ins); 2297 out: 2298 btrfs_free_path(path); 2299 2300 return ret; 2301 } 2302 2303 /* snapshot-aware defrag */ 2304 struct sa_defrag_extent_backref { 2305 struct rb_node node; 2306 struct old_sa_defrag_extent *old; 2307 u64 root_id; 2308 u64 inum; 2309 u64 file_pos; 2310 u64 extent_offset; 2311 u64 num_bytes; 2312 u64 generation; 2313 }; 2314 2315 struct old_sa_defrag_extent { 2316 struct list_head list; 2317 struct new_sa_defrag_extent *new; 2318 2319 u64 extent_offset; 2320 u64 bytenr; 2321 u64 offset; 2322 u64 len; 2323 int count; 2324 }; 2325 2326 struct new_sa_defrag_extent { 2327 struct rb_root root; 2328 struct list_head head; 2329 struct btrfs_path *path; 2330 struct inode *inode; 2331 u64 file_pos; 2332 u64 len; 2333 u64 bytenr; 2334 u64 disk_len; 2335 u8 compress_type; 2336 }; 2337 2338 static int backref_comp(struct sa_defrag_extent_backref *b1, 2339 struct sa_defrag_extent_backref *b2) 2340 { 2341 if (b1->root_id < b2->root_id) 2342 return -1; 2343 else if (b1->root_id > b2->root_id) 2344 return 1; 2345 2346 if (b1->inum < b2->inum) 2347 return -1; 2348 else if (b1->inum > b2->inum) 2349 return 1; 2350 2351 if (b1->file_pos < b2->file_pos) 2352 return -1; 2353 else if (b1->file_pos > b2->file_pos) 2354 return 1; 2355 2356 /* 2357 * [------------------------------] ===> (a range of space) 2358 * |<--->| |<---->| =============> (fs/file tree A) 2359 * |<---------------------------->| ===> (fs/file tree B) 2360 * 2361 * A range of space can refer to two file extents in one tree while 2362 * refer to only one file extent in another tree. 2363 * 2364 * So we may process a disk offset more than one time(two extents in A) 2365 * and locate at the same extent(one extent in B), then insert two same 2366 * backrefs(both refer to the extent in B). 2367 */ 2368 return 0; 2369 } 2370 2371 static void backref_insert(struct rb_root *root, 2372 struct sa_defrag_extent_backref *backref) 2373 { 2374 struct rb_node **p = &root->rb_node; 2375 struct rb_node *parent = NULL; 2376 struct sa_defrag_extent_backref *entry; 2377 int ret; 2378 2379 while (*p) { 2380 parent = *p; 2381 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2382 2383 ret = backref_comp(backref, entry); 2384 if (ret < 0) 2385 p = &(*p)->rb_left; 2386 else 2387 p = &(*p)->rb_right; 2388 } 2389 2390 rb_link_node(&backref->node, parent, p); 2391 rb_insert_color(&backref->node, root); 2392 } 2393 2394 /* 2395 * Note the backref might has changed, and in this case we just return 0. 2396 */ 2397 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2398 void *ctx) 2399 { 2400 struct btrfs_file_extent_item *extent; 2401 struct old_sa_defrag_extent *old = ctx; 2402 struct new_sa_defrag_extent *new = old->new; 2403 struct btrfs_path *path = new->path; 2404 struct btrfs_key key; 2405 struct btrfs_root *root; 2406 struct sa_defrag_extent_backref *backref; 2407 struct extent_buffer *leaf; 2408 struct inode *inode = new->inode; 2409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2410 int slot; 2411 int ret; 2412 u64 extent_offset; 2413 u64 num_bytes; 2414 2415 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2416 inum == btrfs_ino(BTRFS_I(inode))) 2417 return 0; 2418 2419 key.objectid = root_id; 2420 key.type = BTRFS_ROOT_ITEM_KEY; 2421 key.offset = (u64)-1; 2422 2423 root = btrfs_read_fs_root_no_name(fs_info, &key); 2424 if (IS_ERR(root)) { 2425 if (PTR_ERR(root) == -ENOENT) 2426 return 0; 2427 WARN_ON(1); 2428 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2429 inum, offset, root_id); 2430 return PTR_ERR(root); 2431 } 2432 2433 key.objectid = inum; 2434 key.type = BTRFS_EXTENT_DATA_KEY; 2435 if (offset > (u64)-1 << 32) 2436 key.offset = 0; 2437 else 2438 key.offset = offset; 2439 2440 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2441 if (WARN_ON(ret < 0)) 2442 return ret; 2443 ret = 0; 2444 2445 while (1) { 2446 cond_resched(); 2447 2448 leaf = path->nodes[0]; 2449 slot = path->slots[0]; 2450 2451 if (slot >= btrfs_header_nritems(leaf)) { 2452 ret = btrfs_next_leaf(root, path); 2453 if (ret < 0) { 2454 goto out; 2455 } else if (ret > 0) { 2456 ret = 0; 2457 goto out; 2458 } 2459 continue; 2460 } 2461 2462 path->slots[0]++; 2463 2464 btrfs_item_key_to_cpu(leaf, &key, slot); 2465 2466 if (key.objectid > inum) 2467 goto out; 2468 2469 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2470 continue; 2471 2472 extent = btrfs_item_ptr(leaf, slot, 2473 struct btrfs_file_extent_item); 2474 2475 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2476 continue; 2477 2478 /* 2479 * 'offset' refers to the exact key.offset, 2480 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2481 * (key.offset - extent_offset). 2482 */ 2483 if (key.offset != offset) 2484 continue; 2485 2486 extent_offset = btrfs_file_extent_offset(leaf, extent); 2487 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2488 2489 if (extent_offset >= old->extent_offset + old->offset + 2490 old->len || extent_offset + num_bytes <= 2491 old->extent_offset + old->offset) 2492 continue; 2493 break; 2494 } 2495 2496 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2497 if (!backref) { 2498 ret = -ENOENT; 2499 goto out; 2500 } 2501 2502 backref->root_id = root_id; 2503 backref->inum = inum; 2504 backref->file_pos = offset; 2505 backref->num_bytes = num_bytes; 2506 backref->extent_offset = extent_offset; 2507 backref->generation = btrfs_file_extent_generation(leaf, extent); 2508 backref->old = old; 2509 backref_insert(&new->root, backref); 2510 old->count++; 2511 out: 2512 btrfs_release_path(path); 2513 WARN_ON(ret); 2514 return ret; 2515 } 2516 2517 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2518 struct new_sa_defrag_extent *new) 2519 { 2520 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2521 struct old_sa_defrag_extent *old, *tmp; 2522 int ret; 2523 2524 new->path = path; 2525 2526 list_for_each_entry_safe(old, tmp, &new->head, list) { 2527 ret = iterate_inodes_from_logical(old->bytenr + 2528 old->extent_offset, fs_info, 2529 path, record_one_backref, 2530 old, false); 2531 if (ret < 0 && ret != -ENOENT) 2532 return false; 2533 2534 /* no backref to be processed for this extent */ 2535 if (!old->count) { 2536 list_del(&old->list); 2537 kfree(old); 2538 } 2539 } 2540 2541 if (list_empty(&new->head)) 2542 return false; 2543 2544 return true; 2545 } 2546 2547 static int relink_is_mergable(struct extent_buffer *leaf, 2548 struct btrfs_file_extent_item *fi, 2549 struct new_sa_defrag_extent *new) 2550 { 2551 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2552 return 0; 2553 2554 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2555 return 0; 2556 2557 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2558 return 0; 2559 2560 if (btrfs_file_extent_encryption(leaf, fi) || 2561 btrfs_file_extent_other_encoding(leaf, fi)) 2562 return 0; 2563 2564 return 1; 2565 } 2566 2567 /* 2568 * Note the backref might has changed, and in this case we just return 0. 2569 */ 2570 static noinline int relink_extent_backref(struct btrfs_path *path, 2571 struct sa_defrag_extent_backref *prev, 2572 struct sa_defrag_extent_backref *backref) 2573 { 2574 struct btrfs_file_extent_item *extent; 2575 struct btrfs_file_extent_item *item; 2576 struct btrfs_ordered_extent *ordered; 2577 struct btrfs_trans_handle *trans; 2578 struct btrfs_ref ref = { 0 }; 2579 struct btrfs_root *root; 2580 struct btrfs_key key; 2581 struct extent_buffer *leaf; 2582 struct old_sa_defrag_extent *old = backref->old; 2583 struct new_sa_defrag_extent *new = old->new; 2584 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2585 struct inode *inode; 2586 struct extent_state *cached = NULL; 2587 int ret = 0; 2588 u64 start; 2589 u64 len; 2590 u64 lock_start; 2591 u64 lock_end; 2592 bool merge = false; 2593 int index; 2594 2595 if (prev && prev->root_id == backref->root_id && 2596 prev->inum == backref->inum && 2597 prev->file_pos + prev->num_bytes == backref->file_pos) 2598 merge = true; 2599 2600 /* step 1: get root */ 2601 key.objectid = backref->root_id; 2602 key.type = BTRFS_ROOT_ITEM_KEY; 2603 key.offset = (u64)-1; 2604 2605 index = srcu_read_lock(&fs_info->subvol_srcu); 2606 2607 root = btrfs_read_fs_root_no_name(fs_info, &key); 2608 if (IS_ERR(root)) { 2609 srcu_read_unlock(&fs_info->subvol_srcu, index); 2610 if (PTR_ERR(root) == -ENOENT) 2611 return 0; 2612 return PTR_ERR(root); 2613 } 2614 2615 if (btrfs_root_readonly(root)) { 2616 srcu_read_unlock(&fs_info->subvol_srcu, index); 2617 return 0; 2618 } 2619 2620 /* step 2: get inode */ 2621 key.objectid = backref->inum; 2622 key.type = BTRFS_INODE_ITEM_KEY; 2623 key.offset = 0; 2624 2625 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2626 if (IS_ERR(inode)) { 2627 srcu_read_unlock(&fs_info->subvol_srcu, index); 2628 return 0; 2629 } 2630 2631 srcu_read_unlock(&fs_info->subvol_srcu, index); 2632 2633 /* step 3: relink backref */ 2634 lock_start = backref->file_pos; 2635 lock_end = backref->file_pos + backref->num_bytes - 1; 2636 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2637 &cached); 2638 2639 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2640 if (ordered) { 2641 btrfs_put_ordered_extent(ordered); 2642 goto out_unlock; 2643 } 2644 2645 trans = btrfs_join_transaction(root); 2646 if (IS_ERR(trans)) { 2647 ret = PTR_ERR(trans); 2648 goto out_unlock; 2649 } 2650 2651 key.objectid = backref->inum; 2652 key.type = BTRFS_EXTENT_DATA_KEY; 2653 key.offset = backref->file_pos; 2654 2655 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2656 if (ret < 0) { 2657 goto out_free_path; 2658 } else if (ret > 0) { 2659 ret = 0; 2660 goto out_free_path; 2661 } 2662 2663 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2664 struct btrfs_file_extent_item); 2665 2666 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2667 backref->generation) 2668 goto out_free_path; 2669 2670 btrfs_release_path(path); 2671 2672 start = backref->file_pos; 2673 if (backref->extent_offset < old->extent_offset + old->offset) 2674 start += old->extent_offset + old->offset - 2675 backref->extent_offset; 2676 2677 len = min(backref->extent_offset + backref->num_bytes, 2678 old->extent_offset + old->offset + old->len); 2679 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2680 2681 ret = btrfs_drop_extents(trans, root, inode, start, 2682 start + len, 1); 2683 if (ret) 2684 goto out_free_path; 2685 again: 2686 key.objectid = btrfs_ino(BTRFS_I(inode)); 2687 key.type = BTRFS_EXTENT_DATA_KEY; 2688 key.offset = start; 2689 2690 path->leave_spinning = 1; 2691 if (merge) { 2692 struct btrfs_file_extent_item *fi; 2693 u64 extent_len; 2694 struct btrfs_key found_key; 2695 2696 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2697 if (ret < 0) 2698 goto out_free_path; 2699 2700 path->slots[0]--; 2701 leaf = path->nodes[0]; 2702 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2703 2704 fi = btrfs_item_ptr(leaf, path->slots[0], 2705 struct btrfs_file_extent_item); 2706 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2707 2708 if (extent_len + found_key.offset == start && 2709 relink_is_mergable(leaf, fi, new)) { 2710 btrfs_set_file_extent_num_bytes(leaf, fi, 2711 extent_len + len); 2712 btrfs_mark_buffer_dirty(leaf); 2713 inode_add_bytes(inode, len); 2714 2715 ret = 1; 2716 goto out_free_path; 2717 } else { 2718 merge = false; 2719 btrfs_release_path(path); 2720 goto again; 2721 } 2722 } 2723 2724 ret = btrfs_insert_empty_item(trans, root, path, &key, 2725 sizeof(*extent)); 2726 if (ret) { 2727 btrfs_abort_transaction(trans, ret); 2728 goto out_free_path; 2729 } 2730 2731 leaf = path->nodes[0]; 2732 item = btrfs_item_ptr(leaf, path->slots[0], 2733 struct btrfs_file_extent_item); 2734 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2735 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2736 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2737 btrfs_set_file_extent_num_bytes(leaf, item, len); 2738 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2739 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2740 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2741 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2742 btrfs_set_file_extent_encryption(leaf, item, 0); 2743 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2744 2745 btrfs_mark_buffer_dirty(leaf); 2746 inode_add_bytes(inode, len); 2747 btrfs_release_path(path); 2748 2749 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr, 2750 new->disk_len, 0); 2751 btrfs_init_data_ref(&ref, backref->root_id, backref->inum, 2752 new->file_pos); /* start - extent_offset */ 2753 ret = btrfs_inc_extent_ref(trans, &ref); 2754 if (ret) { 2755 btrfs_abort_transaction(trans, ret); 2756 goto out_free_path; 2757 } 2758 2759 ret = 1; 2760 out_free_path: 2761 btrfs_release_path(path); 2762 path->leave_spinning = 0; 2763 btrfs_end_transaction(trans); 2764 out_unlock: 2765 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2766 &cached); 2767 iput(inode); 2768 return ret; 2769 } 2770 2771 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2772 { 2773 struct old_sa_defrag_extent *old, *tmp; 2774 2775 if (!new) 2776 return; 2777 2778 list_for_each_entry_safe(old, tmp, &new->head, list) { 2779 kfree(old); 2780 } 2781 kfree(new); 2782 } 2783 2784 static void relink_file_extents(struct new_sa_defrag_extent *new) 2785 { 2786 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2787 struct btrfs_path *path; 2788 struct sa_defrag_extent_backref *backref; 2789 struct sa_defrag_extent_backref *prev = NULL; 2790 struct rb_node *node; 2791 int ret; 2792 2793 path = btrfs_alloc_path(); 2794 if (!path) 2795 return; 2796 2797 if (!record_extent_backrefs(path, new)) { 2798 btrfs_free_path(path); 2799 goto out; 2800 } 2801 btrfs_release_path(path); 2802 2803 while (1) { 2804 node = rb_first(&new->root); 2805 if (!node) 2806 break; 2807 rb_erase(node, &new->root); 2808 2809 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2810 2811 ret = relink_extent_backref(path, prev, backref); 2812 WARN_ON(ret < 0); 2813 2814 kfree(prev); 2815 2816 if (ret == 1) 2817 prev = backref; 2818 else 2819 prev = NULL; 2820 cond_resched(); 2821 } 2822 kfree(prev); 2823 2824 btrfs_free_path(path); 2825 out: 2826 free_sa_defrag_extent(new); 2827 2828 atomic_dec(&fs_info->defrag_running); 2829 wake_up(&fs_info->transaction_wait); 2830 } 2831 2832 static struct new_sa_defrag_extent * 2833 record_old_file_extents(struct inode *inode, 2834 struct btrfs_ordered_extent *ordered) 2835 { 2836 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2837 struct btrfs_root *root = BTRFS_I(inode)->root; 2838 struct btrfs_path *path; 2839 struct btrfs_key key; 2840 struct old_sa_defrag_extent *old; 2841 struct new_sa_defrag_extent *new; 2842 int ret; 2843 2844 new = kmalloc(sizeof(*new), GFP_NOFS); 2845 if (!new) 2846 return NULL; 2847 2848 new->inode = inode; 2849 new->file_pos = ordered->file_offset; 2850 new->len = ordered->len; 2851 new->bytenr = ordered->start; 2852 new->disk_len = ordered->disk_len; 2853 new->compress_type = ordered->compress_type; 2854 new->root = RB_ROOT; 2855 INIT_LIST_HEAD(&new->head); 2856 2857 path = btrfs_alloc_path(); 2858 if (!path) 2859 goto out_kfree; 2860 2861 key.objectid = btrfs_ino(BTRFS_I(inode)); 2862 key.type = BTRFS_EXTENT_DATA_KEY; 2863 key.offset = new->file_pos; 2864 2865 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2866 if (ret < 0) 2867 goto out_free_path; 2868 if (ret > 0 && path->slots[0] > 0) 2869 path->slots[0]--; 2870 2871 /* find out all the old extents for the file range */ 2872 while (1) { 2873 struct btrfs_file_extent_item *extent; 2874 struct extent_buffer *l; 2875 int slot; 2876 u64 num_bytes; 2877 u64 offset; 2878 u64 end; 2879 u64 disk_bytenr; 2880 u64 extent_offset; 2881 2882 l = path->nodes[0]; 2883 slot = path->slots[0]; 2884 2885 if (slot >= btrfs_header_nritems(l)) { 2886 ret = btrfs_next_leaf(root, path); 2887 if (ret < 0) 2888 goto out_free_path; 2889 else if (ret > 0) 2890 break; 2891 continue; 2892 } 2893 2894 btrfs_item_key_to_cpu(l, &key, slot); 2895 2896 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2897 break; 2898 if (key.type != BTRFS_EXTENT_DATA_KEY) 2899 break; 2900 if (key.offset >= new->file_pos + new->len) 2901 break; 2902 2903 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2904 2905 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2906 if (key.offset + num_bytes < new->file_pos) 2907 goto next; 2908 2909 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2910 if (!disk_bytenr) 2911 goto next; 2912 2913 extent_offset = btrfs_file_extent_offset(l, extent); 2914 2915 old = kmalloc(sizeof(*old), GFP_NOFS); 2916 if (!old) 2917 goto out_free_path; 2918 2919 offset = max(new->file_pos, key.offset); 2920 end = min(new->file_pos + new->len, key.offset + num_bytes); 2921 2922 old->bytenr = disk_bytenr; 2923 old->extent_offset = extent_offset; 2924 old->offset = offset - key.offset; 2925 old->len = end - offset; 2926 old->new = new; 2927 old->count = 0; 2928 list_add_tail(&old->list, &new->head); 2929 next: 2930 path->slots[0]++; 2931 cond_resched(); 2932 } 2933 2934 btrfs_free_path(path); 2935 atomic_inc(&fs_info->defrag_running); 2936 2937 return new; 2938 2939 out_free_path: 2940 btrfs_free_path(path); 2941 out_kfree: 2942 free_sa_defrag_extent(new); 2943 return NULL; 2944 } 2945 2946 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2947 u64 start, u64 len) 2948 { 2949 struct btrfs_block_group_cache *cache; 2950 2951 cache = btrfs_lookup_block_group(fs_info, start); 2952 ASSERT(cache); 2953 2954 spin_lock(&cache->lock); 2955 cache->delalloc_bytes -= len; 2956 spin_unlock(&cache->lock); 2957 2958 btrfs_put_block_group(cache); 2959 } 2960 2961 /* as ordered data IO finishes, this gets called so we can finish 2962 * an ordered extent if the range of bytes in the file it covers are 2963 * fully written. 2964 */ 2965 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2966 { 2967 struct inode *inode = ordered_extent->inode; 2968 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2969 struct btrfs_root *root = BTRFS_I(inode)->root; 2970 struct btrfs_trans_handle *trans = NULL; 2971 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2972 struct extent_state *cached_state = NULL; 2973 struct new_sa_defrag_extent *new = NULL; 2974 int compress_type = 0; 2975 int ret = 0; 2976 u64 logical_len = ordered_extent->len; 2977 bool nolock; 2978 bool truncated = false; 2979 bool range_locked = false; 2980 bool clear_new_delalloc_bytes = false; 2981 bool clear_reserved_extent = true; 2982 2983 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2984 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2985 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2986 clear_new_delalloc_bytes = true; 2987 2988 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2989 2990 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2991 ret = -EIO; 2992 goto out; 2993 } 2994 2995 btrfs_free_io_failure_record(BTRFS_I(inode), 2996 ordered_extent->file_offset, 2997 ordered_extent->file_offset + 2998 ordered_extent->len - 1); 2999 3000 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3001 truncated = true; 3002 logical_len = ordered_extent->truncated_len; 3003 /* Truncated the entire extent, don't bother adding */ 3004 if (!logical_len) 3005 goto out; 3006 } 3007 3008 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3009 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3010 3011 /* 3012 * For mwrite(mmap + memset to write) case, we still reserve 3013 * space for NOCOW range. 3014 * As NOCOW won't cause a new delayed ref, just free the space 3015 */ 3016 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3017 ordered_extent->len); 3018 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3019 if (nolock) 3020 trans = btrfs_join_transaction_nolock(root); 3021 else 3022 trans = btrfs_join_transaction(root); 3023 if (IS_ERR(trans)) { 3024 ret = PTR_ERR(trans); 3025 trans = NULL; 3026 goto out; 3027 } 3028 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3029 ret = btrfs_update_inode_fallback(trans, root, inode); 3030 if (ret) /* -ENOMEM or corruption */ 3031 btrfs_abort_transaction(trans, ret); 3032 goto out; 3033 } 3034 3035 range_locked = true; 3036 lock_extent_bits(io_tree, ordered_extent->file_offset, 3037 ordered_extent->file_offset + ordered_extent->len - 1, 3038 &cached_state); 3039 3040 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3041 ordered_extent->file_offset + ordered_extent->len - 1, 3042 EXTENT_DEFRAG, 0, cached_state); 3043 if (ret) { 3044 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3045 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3046 /* the inode is shared */ 3047 new = record_old_file_extents(inode, ordered_extent); 3048 3049 clear_extent_bit(io_tree, ordered_extent->file_offset, 3050 ordered_extent->file_offset + ordered_extent->len - 1, 3051 EXTENT_DEFRAG, 0, 0, &cached_state); 3052 } 3053 3054 if (nolock) 3055 trans = btrfs_join_transaction_nolock(root); 3056 else 3057 trans = btrfs_join_transaction(root); 3058 if (IS_ERR(trans)) { 3059 ret = PTR_ERR(trans); 3060 trans = NULL; 3061 goto out; 3062 } 3063 3064 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3065 3066 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3067 compress_type = ordered_extent->compress_type; 3068 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3069 BUG_ON(compress_type); 3070 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3071 ordered_extent->len); 3072 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3073 ordered_extent->file_offset, 3074 ordered_extent->file_offset + 3075 logical_len); 3076 } else { 3077 BUG_ON(root == fs_info->tree_root); 3078 ret = insert_reserved_file_extent(trans, inode, 3079 ordered_extent->file_offset, 3080 ordered_extent->start, 3081 ordered_extent->disk_len, 3082 logical_len, logical_len, 3083 compress_type, 0, 0, 3084 BTRFS_FILE_EXTENT_REG); 3085 if (!ret) { 3086 clear_reserved_extent = false; 3087 btrfs_release_delalloc_bytes(fs_info, 3088 ordered_extent->start, 3089 ordered_extent->disk_len); 3090 } 3091 } 3092 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3093 ordered_extent->file_offset, ordered_extent->len, 3094 trans->transid); 3095 if (ret < 0) { 3096 btrfs_abort_transaction(trans, ret); 3097 goto out; 3098 } 3099 3100 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3101 if (ret) { 3102 btrfs_abort_transaction(trans, ret); 3103 goto out; 3104 } 3105 3106 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3107 ret = btrfs_update_inode_fallback(trans, root, inode); 3108 if (ret) { /* -ENOMEM or corruption */ 3109 btrfs_abort_transaction(trans, ret); 3110 goto out; 3111 } 3112 ret = 0; 3113 out: 3114 if (range_locked || clear_new_delalloc_bytes) { 3115 unsigned int clear_bits = 0; 3116 3117 if (range_locked) 3118 clear_bits |= EXTENT_LOCKED; 3119 if (clear_new_delalloc_bytes) 3120 clear_bits |= EXTENT_DELALLOC_NEW; 3121 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3122 ordered_extent->file_offset, 3123 ordered_extent->file_offset + 3124 ordered_extent->len - 1, 3125 clear_bits, 3126 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3127 0, &cached_state); 3128 } 3129 3130 if (trans) 3131 btrfs_end_transaction(trans); 3132 3133 if (ret || truncated) { 3134 u64 start, end; 3135 3136 if (truncated) 3137 start = ordered_extent->file_offset + logical_len; 3138 else 3139 start = ordered_extent->file_offset; 3140 end = ordered_extent->file_offset + ordered_extent->len - 1; 3141 clear_extent_uptodate(io_tree, start, end, NULL); 3142 3143 /* Drop the cache for the part of the extent we didn't write. */ 3144 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3145 3146 /* 3147 * If the ordered extent had an IOERR or something else went 3148 * wrong we need to return the space for this ordered extent 3149 * back to the allocator. We only free the extent in the 3150 * truncated case if we didn't write out the extent at all. 3151 * 3152 * If we made it past insert_reserved_file_extent before we 3153 * errored out then we don't need to do this as the accounting 3154 * has already been done. 3155 */ 3156 if ((ret || !logical_len) && 3157 clear_reserved_extent && 3158 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3159 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3160 btrfs_free_reserved_extent(fs_info, 3161 ordered_extent->start, 3162 ordered_extent->disk_len, 1); 3163 } 3164 3165 3166 /* 3167 * This needs to be done to make sure anybody waiting knows we are done 3168 * updating everything for this ordered extent. 3169 */ 3170 btrfs_remove_ordered_extent(inode, ordered_extent); 3171 3172 /* for snapshot-aware defrag */ 3173 if (new) { 3174 if (ret) { 3175 free_sa_defrag_extent(new); 3176 atomic_dec(&fs_info->defrag_running); 3177 } else { 3178 relink_file_extents(new); 3179 } 3180 } 3181 3182 /* once for us */ 3183 btrfs_put_ordered_extent(ordered_extent); 3184 /* once for the tree */ 3185 btrfs_put_ordered_extent(ordered_extent); 3186 3187 return ret; 3188 } 3189 3190 static void finish_ordered_fn(struct btrfs_work *work) 3191 { 3192 struct btrfs_ordered_extent *ordered_extent; 3193 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3194 btrfs_finish_ordered_io(ordered_extent); 3195 } 3196 3197 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3198 u64 end, int uptodate) 3199 { 3200 struct inode *inode = page->mapping->host; 3201 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3202 struct btrfs_ordered_extent *ordered_extent = NULL; 3203 struct btrfs_workqueue *wq; 3204 btrfs_work_func_t func; 3205 3206 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3207 3208 ClearPagePrivate2(page); 3209 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3210 end - start + 1, uptodate)) 3211 return; 3212 3213 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3214 wq = fs_info->endio_freespace_worker; 3215 func = btrfs_freespace_write_helper; 3216 } else { 3217 wq = fs_info->endio_write_workers; 3218 func = btrfs_endio_write_helper; 3219 } 3220 3221 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3222 NULL); 3223 btrfs_queue_work(wq, &ordered_extent->work); 3224 } 3225 3226 static int __readpage_endio_check(struct inode *inode, 3227 struct btrfs_io_bio *io_bio, 3228 int icsum, struct page *page, 3229 int pgoff, u64 start, size_t len) 3230 { 3231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3232 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3233 char *kaddr; 3234 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 3235 u8 *csum_expected; 3236 u8 csum[BTRFS_CSUM_SIZE]; 3237 3238 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 3239 3240 kaddr = kmap_atomic(page); 3241 shash->tfm = fs_info->csum_shash; 3242 3243 crypto_shash_init(shash); 3244 crypto_shash_update(shash, kaddr + pgoff, len); 3245 crypto_shash_final(shash, csum); 3246 3247 if (memcmp(csum, csum_expected, csum_size)) 3248 goto zeroit; 3249 3250 kunmap_atomic(kaddr); 3251 return 0; 3252 zeroit: 3253 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3254 io_bio->mirror_num); 3255 memset(kaddr + pgoff, 1, len); 3256 flush_dcache_page(page); 3257 kunmap_atomic(kaddr); 3258 return -EIO; 3259 } 3260 3261 /* 3262 * when reads are done, we need to check csums to verify the data is correct 3263 * if there's a match, we allow the bio to finish. If not, the code in 3264 * extent_io.c will try to find good copies for us. 3265 */ 3266 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3267 u64 phy_offset, struct page *page, 3268 u64 start, u64 end, int mirror) 3269 { 3270 size_t offset = start - page_offset(page); 3271 struct inode *inode = page->mapping->host; 3272 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3273 struct btrfs_root *root = BTRFS_I(inode)->root; 3274 3275 if (PageChecked(page)) { 3276 ClearPageChecked(page); 3277 return 0; 3278 } 3279 3280 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3281 return 0; 3282 3283 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3284 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3285 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3286 return 0; 3287 } 3288 3289 phy_offset >>= inode->i_sb->s_blocksize_bits; 3290 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3291 start, (size_t)(end - start + 1)); 3292 } 3293 3294 /* 3295 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3296 * 3297 * @inode: The inode we want to perform iput on 3298 * 3299 * This function uses the generic vfs_inode::i_count to track whether we should 3300 * just decrement it (in case it's > 1) or if this is the last iput then link 3301 * the inode to the delayed iput machinery. Delayed iputs are processed at 3302 * transaction commit time/superblock commit/cleaner kthread. 3303 */ 3304 void btrfs_add_delayed_iput(struct inode *inode) 3305 { 3306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3307 struct btrfs_inode *binode = BTRFS_I(inode); 3308 3309 if (atomic_add_unless(&inode->i_count, -1, 1)) 3310 return; 3311 3312 atomic_inc(&fs_info->nr_delayed_iputs); 3313 spin_lock(&fs_info->delayed_iput_lock); 3314 ASSERT(list_empty(&binode->delayed_iput)); 3315 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3316 spin_unlock(&fs_info->delayed_iput_lock); 3317 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3318 wake_up_process(fs_info->cleaner_kthread); 3319 } 3320 3321 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3322 struct btrfs_inode *inode) 3323 { 3324 list_del_init(&inode->delayed_iput); 3325 spin_unlock(&fs_info->delayed_iput_lock); 3326 iput(&inode->vfs_inode); 3327 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3328 wake_up(&fs_info->delayed_iputs_wait); 3329 spin_lock(&fs_info->delayed_iput_lock); 3330 } 3331 3332 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3333 struct btrfs_inode *inode) 3334 { 3335 if (!list_empty(&inode->delayed_iput)) { 3336 spin_lock(&fs_info->delayed_iput_lock); 3337 if (!list_empty(&inode->delayed_iput)) 3338 run_delayed_iput_locked(fs_info, inode); 3339 spin_unlock(&fs_info->delayed_iput_lock); 3340 } 3341 } 3342 3343 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3344 { 3345 3346 spin_lock(&fs_info->delayed_iput_lock); 3347 while (!list_empty(&fs_info->delayed_iputs)) { 3348 struct btrfs_inode *inode; 3349 3350 inode = list_first_entry(&fs_info->delayed_iputs, 3351 struct btrfs_inode, delayed_iput); 3352 run_delayed_iput_locked(fs_info, inode); 3353 } 3354 spin_unlock(&fs_info->delayed_iput_lock); 3355 } 3356 3357 /** 3358 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 3359 * @fs_info - the fs_info for this fs 3360 * @return - EINTR if we were killed, 0 if nothing's pending 3361 * 3362 * This will wait on any delayed iputs that are currently running with KILLABLE 3363 * set. Once they are all done running we will return, unless we are killed in 3364 * which case we return EINTR. This helps in user operations like fallocate etc 3365 * that might get blocked on the iputs. 3366 */ 3367 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3368 { 3369 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3370 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3371 if (ret) 3372 return -EINTR; 3373 return 0; 3374 } 3375 3376 /* 3377 * This creates an orphan entry for the given inode in case something goes wrong 3378 * in the middle of an unlink. 3379 */ 3380 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3381 struct btrfs_inode *inode) 3382 { 3383 int ret; 3384 3385 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3386 if (ret && ret != -EEXIST) { 3387 btrfs_abort_transaction(trans, ret); 3388 return ret; 3389 } 3390 3391 return 0; 3392 } 3393 3394 /* 3395 * We have done the delete so we can go ahead and remove the orphan item for 3396 * this particular inode. 3397 */ 3398 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3399 struct btrfs_inode *inode) 3400 { 3401 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3402 } 3403 3404 /* 3405 * this cleans up any orphans that may be left on the list from the last use 3406 * of this root. 3407 */ 3408 int btrfs_orphan_cleanup(struct btrfs_root *root) 3409 { 3410 struct btrfs_fs_info *fs_info = root->fs_info; 3411 struct btrfs_path *path; 3412 struct extent_buffer *leaf; 3413 struct btrfs_key key, found_key; 3414 struct btrfs_trans_handle *trans; 3415 struct inode *inode; 3416 u64 last_objectid = 0; 3417 int ret = 0, nr_unlink = 0; 3418 3419 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3420 return 0; 3421 3422 path = btrfs_alloc_path(); 3423 if (!path) { 3424 ret = -ENOMEM; 3425 goto out; 3426 } 3427 path->reada = READA_BACK; 3428 3429 key.objectid = BTRFS_ORPHAN_OBJECTID; 3430 key.type = BTRFS_ORPHAN_ITEM_KEY; 3431 key.offset = (u64)-1; 3432 3433 while (1) { 3434 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3435 if (ret < 0) 3436 goto out; 3437 3438 /* 3439 * if ret == 0 means we found what we were searching for, which 3440 * is weird, but possible, so only screw with path if we didn't 3441 * find the key and see if we have stuff that matches 3442 */ 3443 if (ret > 0) { 3444 ret = 0; 3445 if (path->slots[0] == 0) 3446 break; 3447 path->slots[0]--; 3448 } 3449 3450 /* pull out the item */ 3451 leaf = path->nodes[0]; 3452 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3453 3454 /* make sure the item matches what we want */ 3455 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3456 break; 3457 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3458 break; 3459 3460 /* release the path since we're done with it */ 3461 btrfs_release_path(path); 3462 3463 /* 3464 * this is where we are basically btrfs_lookup, without the 3465 * crossing root thing. we store the inode number in the 3466 * offset of the orphan item. 3467 */ 3468 3469 if (found_key.offset == last_objectid) { 3470 btrfs_err(fs_info, 3471 "Error removing orphan entry, stopping orphan cleanup"); 3472 ret = -EINVAL; 3473 goto out; 3474 } 3475 3476 last_objectid = found_key.offset; 3477 3478 found_key.objectid = found_key.offset; 3479 found_key.type = BTRFS_INODE_ITEM_KEY; 3480 found_key.offset = 0; 3481 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3482 ret = PTR_ERR_OR_ZERO(inode); 3483 if (ret && ret != -ENOENT) 3484 goto out; 3485 3486 if (ret == -ENOENT && root == fs_info->tree_root) { 3487 struct btrfs_root *dead_root; 3488 struct btrfs_fs_info *fs_info = root->fs_info; 3489 int is_dead_root = 0; 3490 3491 /* 3492 * this is an orphan in the tree root. Currently these 3493 * could come from 2 sources: 3494 * a) a snapshot deletion in progress 3495 * b) a free space cache inode 3496 * We need to distinguish those two, as the snapshot 3497 * orphan must not get deleted. 3498 * find_dead_roots already ran before us, so if this 3499 * is a snapshot deletion, we should find the root 3500 * in the dead_roots list 3501 */ 3502 spin_lock(&fs_info->trans_lock); 3503 list_for_each_entry(dead_root, &fs_info->dead_roots, 3504 root_list) { 3505 if (dead_root->root_key.objectid == 3506 found_key.objectid) { 3507 is_dead_root = 1; 3508 break; 3509 } 3510 } 3511 spin_unlock(&fs_info->trans_lock); 3512 if (is_dead_root) { 3513 /* prevent this orphan from being found again */ 3514 key.offset = found_key.objectid - 1; 3515 continue; 3516 } 3517 3518 } 3519 3520 /* 3521 * If we have an inode with links, there are a couple of 3522 * possibilities. Old kernels (before v3.12) used to create an 3523 * orphan item for truncate indicating that there were possibly 3524 * extent items past i_size that needed to be deleted. In v3.12, 3525 * truncate was changed to update i_size in sync with the extent 3526 * items, but the (useless) orphan item was still created. Since 3527 * v4.18, we don't create the orphan item for truncate at all. 3528 * 3529 * So, this item could mean that we need to do a truncate, but 3530 * only if this filesystem was last used on a pre-v3.12 kernel 3531 * and was not cleanly unmounted. The odds of that are quite 3532 * slim, and it's a pain to do the truncate now, so just delete 3533 * the orphan item. 3534 * 3535 * It's also possible that this orphan item was supposed to be 3536 * deleted but wasn't. The inode number may have been reused, 3537 * but either way, we can delete the orphan item. 3538 */ 3539 if (ret == -ENOENT || inode->i_nlink) { 3540 if (!ret) 3541 iput(inode); 3542 trans = btrfs_start_transaction(root, 1); 3543 if (IS_ERR(trans)) { 3544 ret = PTR_ERR(trans); 3545 goto out; 3546 } 3547 btrfs_debug(fs_info, "auto deleting %Lu", 3548 found_key.objectid); 3549 ret = btrfs_del_orphan_item(trans, root, 3550 found_key.objectid); 3551 btrfs_end_transaction(trans); 3552 if (ret) 3553 goto out; 3554 continue; 3555 } 3556 3557 nr_unlink++; 3558 3559 /* this will do delete_inode and everything for us */ 3560 iput(inode); 3561 } 3562 /* release the path since we're done with it */ 3563 btrfs_release_path(path); 3564 3565 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3566 3567 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3568 trans = btrfs_join_transaction(root); 3569 if (!IS_ERR(trans)) 3570 btrfs_end_transaction(trans); 3571 } 3572 3573 if (nr_unlink) 3574 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3575 3576 out: 3577 if (ret) 3578 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3579 btrfs_free_path(path); 3580 return ret; 3581 } 3582 3583 /* 3584 * very simple check to peek ahead in the leaf looking for xattrs. If we 3585 * don't find any xattrs, we know there can't be any acls. 3586 * 3587 * slot is the slot the inode is in, objectid is the objectid of the inode 3588 */ 3589 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3590 int slot, u64 objectid, 3591 int *first_xattr_slot) 3592 { 3593 u32 nritems = btrfs_header_nritems(leaf); 3594 struct btrfs_key found_key; 3595 static u64 xattr_access = 0; 3596 static u64 xattr_default = 0; 3597 int scanned = 0; 3598 3599 if (!xattr_access) { 3600 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3601 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3602 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3603 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3604 } 3605 3606 slot++; 3607 *first_xattr_slot = -1; 3608 while (slot < nritems) { 3609 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3610 3611 /* we found a different objectid, there must not be acls */ 3612 if (found_key.objectid != objectid) 3613 return 0; 3614 3615 /* we found an xattr, assume we've got an acl */ 3616 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3617 if (*first_xattr_slot == -1) 3618 *first_xattr_slot = slot; 3619 if (found_key.offset == xattr_access || 3620 found_key.offset == xattr_default) 3621 return 1; 3622 } 3623 3624 /* 3625 * we found a key greater than an xattr key, there can't 3626 * be any acls later on 3627 */ 3628 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3629 return 0; 3630 3631 slot++; 3632 scanned++; 3633 3634 /* 3635 * it goes inode, inode backrefs, xattrs, extents, 3636 * so if there are a ton of hard links to an inode there can 3637 * be a lot of backrefs. Don't waste time searching too hard, 3638 * this is just an optimization 3639 */ 3640 if (scanned >= 8) 3641 break; 3642 } 3643 /* we hit the end of the leaf before we found an xattr or 3644 * something larger than an xattr. We have to assume the inode 3645 * has acls 3646 */ 3647 if (*first_xattr_slot == -1) 3648 *first_xattr_slot = slot; 3649 return 1; 3650 } 3651 3652 /* 3653 * read an inode from the btree into the in-memory inode 3654 */ 3655 static int btrfs_read_locked_inode(struct inode *inode, 3656 struct btrfs_path *in_path) 3657 { 3658 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3659 struct btrfs_path *path = in_path; 3660 struct extent_buffer *leaf; 3661 struct btrfs_inode_item *inode_item; 3662 struct btrfs_root *root = BTRFS_I(inode)->root; 3663 struct btrfs_key location; 3664 unsigned long ptr; 3665 int maybe_acls; 3666 u32 rdev; 3667 int ret; 3668 bool filled = false; 3669 int first_xattr_slot; 3670 3671 ret = btrfs_fill_inode(inode, &rdev); 3672 if (!ret) 3673 filled = true; 3674 3675 if (!path) { 3676 path = btrfs_alloc_path(); 3677 if (!path) 3678 return -ENOMEM; 3679 } 3680 3681 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3682 3683 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3684 if (ret) { 3685 if (path != in_path) 3686 btrfs_free_path(path); 3687 return ret; 3688 } 3689 3690 leaf = path->nodes[0]; 3691 3692 if (filled) 3693 goto cache_index; 3694 3695 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3696 struct btrfs_inode_item); 3697 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3698 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3699 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3700 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3701 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3702 3703 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3704 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3705 3706 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3707 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3708 3709 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3710 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3711 3712 BTRFS_I(inode)->i_otime.tv_sec = 3713 btrfs_timespec_sec(leaf, &inode_item->otime); 3714 BTRFS_I(inode)->i_otime.tv_nsec = 3715 btrfs_timespec_nsec(leaf, &inode_item->otime); 3716 3717 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3718 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3719 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3720 3721 inode_set_iversion_queried(inode, 3722 btrfs_inode_sequence(leaf, inode_item)); 3723 inode->i_generation = BTRFS_I(inode)->generation; 3724 inode->i_rdev = 0; 3725 rdev = btrfs_inode_rdev(leaf, inode_item); 3726 3727 BTRFS_I(inode)->index_cnt = (u64)-1; 3728 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3729 3730 cache_index: 3731 /* 3732 * If we were modified in the current generation and evicted from memory 3733 * and then re-read we need to do a full sync since we don't have any 3734 * idea about which extents were modified before we were evicted from 3735 * cache. 3736 * 3737 * This is required for both inode re-read from disk and delayed inode 3738 * in delayed_nodes_tree. 3739 */ 3740 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3741 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3742 &BTRFS_I(inode)->runtime_flags); 3743 3744 /* 3745 * We don't persist the id of the transaction where an unlink operation 3746 * against the inode was last made. So here we assume the inode might 3747 * have been evicted, and therefore the exact value of last_unlink_trans 3748 * lost, and set it to last_trans to avoid metadata inconsistencies 3749 * between the inode and its parent if the inode is fsync'ed and the log 3750 * replayed. For example, in the scenario: 3751 * 3752 * touch mydir/foo 3753 * ln mydir/foo mydir/bar 3754 * sync 3755 * unlink mydir/bar 3756 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3757 * xfs_io -c fsync mydir/foo 3758 * <power failure> 3759 * mount fs, triggers fsync log replay 3760 * 3761 * We must make sure that when we fsync our inode foo we also log its 3762 * parent inode, otherwise after log replay the parent still has the 3763 * dentry with the "bar" name but our inode foo has a link count of 1 3764 * and doesn't have an inode ref with the name "bar" anymore. 3765 * 3766 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3767 * but it guarantees correctness at the expense of occasional full 3768 * transaction commits on fsync if our inode is a directory, or if our 3769 * inode is not a directory, logging its parent unnecessarily. 3770 */ 3771 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3772 3773 path->slots[0]++; 3774 if (inode->i_nlink != 1 || 3775 path->slots[0] >= btrfs_header_nritems(leaf)) 3776 goto cache_acl; 3777 3778 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3779 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3780 goto cache_acl; 3781 3782 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3783 if (location.type == BTRFS_INODE_REF_KEY) { 3784 struct btrfs_inode_ref *ref; 3785 3786 ref = (struct btrfs_inode_ref *)ptr; 3787 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3788 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3789 struct btrfs_inode_extref *extref; 3790 3791 extref = (struct btrfs_inode_extref *)ptr; 3792 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3793 extref); 3794 } 3795 cache_acl: 3796 /* 3797 * try to precache a NULL acl entry for files that don't have 3798 * any xattrs or acls 3799 */ 3800 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3801 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3802 if (first_xattr_slot != -1) { 3803 path->slots[0] = first_xattr_slot; 3804 ret = btrfs_load_inode_props(inode, path); 3805 if (ret) 3806 btrfs_err(fs_info, 3807 "error loading props for ino %llu (root %llu): %d", 3808 btrfs_ino(BTRFS_I(inode)), 3809 root->root_key.objectid, ret); 3810 } 3811 if (path != in_path) 3812 btrfs_free_path(path); 3813 3814 if (!maybe_acls) 3815 cache_no_acl(inode); 3816 3817 switch (inode->i_mode & S_IFMT) { 3818 case S_IFREG: 3819 inode->i_mapping->a_ops = &btrfs_aops; 3820 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3821 inode->i_fop = &btrfs_file_operations; 3822 inode->i_op = &btrfs_file_inode_operations; 3823 break; 3824 case S_IFDIR: 3825 inode->i_fop = &btrfs_dir_file_operations; 3826 inode->i_op = &btrfs_dir_inode_operations; 3827 break; 3828 case S_IFLNK: 3829 inode->i_op = &btrfs_symlink_inode_operations; 3830 inode_nohighmem(inode); 3831 inode->i_mapping->a_ops = &btrfs_aops; 3832 break; 3833 default: 3834 inode->i_op = &btrfs_special_inode_operations; 3835 init_special_inode(inode, inode->i_mode, rdev); 3836 break; 3837 } 3838 3839 btrfs_sync_inode_flags_to_i_flags(inode); 3840 return 0; 3841 } 3842 3843 /* 3844 * given a leaf and an inode, copy the inode fields into the leaf 3845 */ 3846 static void fill_inode_item(struct btrfs_trans_handle *trans, 3847 struct extent_buffer *leaf, 3848 struct btrfs_inode_item *item, 3849 struct inode *inode) 3850 { 3851 struct btrfs_map_token token; 3852 3853 btrfs_init_map_token(&token); 3854 3855 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3856 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3857 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3858 &token); 3859 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3860 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3861 3862 btrfs_set_token_timespec_sec(leaf, &item->atime, 3863 inode->i_atime.tv_sec, &token); 3864 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3865 inode->i_atime.tv_nsec, &token); 3866 3867 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3868 inode->i_mtime.tv_sec, &token); 3869 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3870 inode->i_mtime.tv_nsec, &token); 3871 3872 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3873 inode->i_ctime.tv_sec, &token); 3874 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3875 inode->i_ctime.tv_nsec, &token); 3876 3877 btrfs_set_token_timespec_sec(leaf, &item->otime, 3878 BTRFS_I(inode)->i_otime.tv_sec, &token); 3879 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3880 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3881 3882 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3883 &token); 3884 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3885 &token); 3886 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3887 &token); 3888 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3889 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3890 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3891 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3892 } 3893 3894 /* 3895 * copy everything in the in-memory inode into the btree. 3896 */ 3897 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3898 struct btrfs_root *root, struct inode *inode) 3899 { 3900 struct btrfs_inode_item *inode_item; 3901 struct btrfs_path *path; 3902 struct extent_buffer *leaf; 3903 int ret; 3904 3905 path = btrfs_alloc_path(); 3906 if (!path) 3907 return -ENOMEM; 3908 3909 path->leave_spinning = 1; 3910 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3911 1); 3912 if (ret) { 3913 if (ret > 0) 3914 ret = -ENOENT; 3915 goto failed; 3916 } 3917 3918 leaf = path->nodes[0]; 3919 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3920 struct btrfs_inode_item); 3921 3922 fill_inode_item(trans, leaf, inode_item, inode); 3923 btrfs_mark_buffer_dirty(leaf); 3924 btrfs_set_inode_last_trans(trans, inode); 3925 ret = 0; 3926 failed: 3927 btrfs_free_path(path); 3928 return ret; 3929 } 3930 3931 /* 3932 * copy everything in the in-memory inode into the btree. 3933 */ 3934 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3935 struct btrfs_root *root, struct inode *inode) 3936 { 3937 struct btrfs_fs_info *fs_info = root->fs_info; 3938 int ret; 3939 3940 /* 3941 * If the inode is a free space inode, we can deadlock during commit 3942 * if we put it into the delayed code. 3943 * 3944 * The data relocation inode should also be directly updated 3945 * without delay 3946 */ 3947 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3948 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3949 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3950 btrfs_update_root_times(trans, root); 3951 3952 ret = btrfs_delayed_update_inode(trans, root, inode); 3953 if (!ret) 3954 btrfs_set_inode_last_trans(trans, inode); 3955 return ret; 3956 } 3957 3958 return btrfs_update_inode_item(trans, root, inode); 3959 } 3960 3961 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3962 struct btrfs_root *root, 3963 struct inode *inode) 3964 { 3965 int ret; 3966 3967 ret = btrfs_update_inode(trans, root, inode); 3968 if (ret == -ENOSPC) 3969 return btrfs_update_inode_item(trans, root, inode); 3970 return ret; 3971 } 3972 3973 /* 3974 * unlink helper that gets used here in inode.c and in the tree logging 3975 * recovery code. It remove a link in a directory with a given name, and 3976 * also drops the back refs in the inode to the directory 3977 */ 3978 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3979 struct btrfs_root *root, 3980 struct btrfs_inode *dir, 3981 struct btrfs_inode *inode, 3982 const char *name, int name_len) 3983 { 3984 struct btrfs_fs_info *fs_info = root->fs_info; 3985 struct btrfs_path *path; 3986 int ret = 0; 3987 struct btrfs_dir_item *di; 3988 u64 index; 3989 u64 ino = btrfs_ino(inode); 3990 u64 dir_ino = btrfs_ino(dir); 3991 3992 path = btrfs_alloc_path(); 3993 if (!path) { 3994 ret = -ENOMEM; 3995 goto out; 3996 } 3997 3998 path->leave_spinning = 1; 3999 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4000 name, name_len, -1); 4001 if (IS_ERR_OR_NULL(di)) { 4002 ret = di ? PTR_ERR(di) : -ENOENT; 4003 goto err; 4004 } 4005 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4006 if (ret) 4007 goto err; 4008 btrfs_release_path(path); 4009 4010 /* 4011 * If we don't have dir index, we have to get it by looking up 4012 * the inode ref, since we get the inode ref, remove it directly, 4013 * it is unnecessary to do delayed deletion. 4014 * 4015 * But if we have dir index, needn't search inode ref to get it. 4016 * Since the inode ref is close to the inode item, it is better 4017 * that we delay to delete it, and just do this deletion when 4018 * we update the inode item. 4019 */ 4020 if (inode->dir_index) { 4021 ret = btrfs_delayed_delete_inode_ref(inode); 4022 if (!ret) { 4023 index = inode->dir_index; 4024 goto skip_backref; 4025 } 4026 } 4027 4028 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4029 dir_ino, &index); 4030 if (ret) { 4031 btrfs_info(fs_info, 4032 "failed to delete reference to %.*s, inode %llu parent %llu", 4033 name_len, name, ino, dir_ino); 4034 btrfs_abort_transaction(trans, ret); 4035 goto err; 4036 } 4037 skip_backref: 4038 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4039 if (ret) { 4040 btrfs_abort_transaction(trans, ret); 4041 goto err; 4042 } 4043 4044 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4045 dir_ino); 4046 if (ret != 0 && ret != -ENOENT) { 4047 btrfs_abort_transaction(trans, ret); 4048 goto err; 4049 } 4050 4051 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4052 index); 4053 if (ret == -ENOENT) 4054 ret = 0; 4055 else if (ret) 4056 btrfs_abort_transaction(trans, ret); 4057 4058 /* 4059 * If we have a pending delayed iput we could end up with the final iput 4060 * being run in btrfs-cleaner context. If we have enough of these built 4061 * up we can end up burning a lot of time in btrfs-cleaner without any 4062 * way to throttle the unlinks. Since we're currently holding a ref on 4063 * the inode we can run the delayed iput here without any issues as the 4064 * final iput won't be done until after we drop the ref we're currently 4065 * holding. 4066 */ 4067 btrfs_run_delayed_iput(fs_info, inode); 4068 err: 4069 btrfs_free_path(path); 4070 if (ret) 4071 goto out; 4072 4073 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4074 inode_inc_iversion(&inode->vfs_inode); 4075 inode_inc_iversion(&dir->vfs_inode); 4076 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4077 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4078 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4079 out: 4080 return ret; 4081 } 4082 4083 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4084 struct btrfs_root *root, 4085 struct btrfs_inode *dir, struct btrfs_inode *inode, 4086 const char *name, int name_len) 4087 { 4088 int ret; 4089 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4090 if (!ret) { 4091 drop_nlink(&inode->vfs_inode); 4092 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4093 } 4094 return ret; 4095 } 4096 4097 /* 4098 * helper to start transaction for unlink and rmdir. 4099 * 4100 * unlink and rmdir are special in btrfs, they do not always free space, so 4101 * if we cannot make our reservations the normal way try and see if there is 4102 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4103 * allow the unlink to occur. 4104 */ 4105 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4106 { 4107 struct btrfs_root *root = BTRFS_I(dir)->root; 4108 4109 /* 4110 * 1 for the possible orphan item 4111 * 1 for the dir item 4112 * 1 for the dir index 4113 * 1 for the inode ref 4114 * 1 for the inode 4115 */ 4116 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4117 } 4118 4119 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4120 { 4121 struct btrfs_root *root = BTRFS_I(dir)->root; 4122 struct btrfs_trans_handle *trans; 4123 struct inode *inode = d_inode(dentry); 4124 int ret; 4125 4126 trans = __unlink_start_trans(dir); 4127 if (IS_ERR(trans)) 4128 return PTR_ERR(trans); 4129 4130 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4131 0); 4132 4133 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4134 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4135 dentry->d_name.len); 4136 if (ret) 4137 goto out; 4138 4139 if (inode->i_nlink == 0) { 4140 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4141 if (ret) 4142 goto out; 4143 } 4144 4145 out: 4146 btrfs_end_transaction(trans); 4147 btrfs_btree_balance_dirty(root->fs_info); 4148 return ret; 4149 } 4150 4151 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4152 struct inode *dir, u64 objectid, 4153 const char *name, int name_len) 4154 { 4155 struct btrfs_root *root = BTRFS_I(dir)->root; 4156 struct btrfs_path *path; 4157 struct extent_buffer *leaf; 4158 struct btrfs_dir_item *di; 4159 struct btrfs_key key; 4160 u64 index; 4161 int ret; 4162 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4163 4164 path = btrfs_alloc_path(); 4165 if (!path) 4166 return -ENOMEM; 4167 4168 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4169 name, name_len, -1); 4170 if (IS_ERR_OR_NULL(di)) { 4171 ret = di ? PTR_ERR(di) : -ENOENT; 4172 goto out; 4173 } 4174 4175 leaf = path->nodes[0]; 4176 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4177 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4178 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4179 if (ret) { 4180 btrfs_abort_transaction(trans, ret); 4181 goto out; 4182 } 4183 btrfs_release_path(path); 4184 4185 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4186 dir_ino, &index, name, name_len); 4187 if (ret < 0) { 4188 if (ret != -ENOENT) { 4189 btrfs_abort_transaction(trans, ret); 4190 goto out; 4191 } 4192 di = btrfs_search_dir_index_item(root, path, dir_ino, 4193 name, name_len); 4194 if (IS_ERR_OR_NULL(di)) { 4195 if (!di) 4196 ret = -ENOENT; 4197 else 4198 ret = PTR_ERR(di); 4199 btrfs_abort_transaction(trans, ret); 4200 goto out; 4201 } 4202 4203 leaf = path->nodes[0]; 4204 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4205 index = key.offset; 4206 } 4207 btrfs_release_path(path); 4208 4209 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4210 if (ret) { 4211 btrfs_abort_transaction(trans, ret); 4212 goto out; 4213 } 4214 4215 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4216 inode_inc_iversion(dir); 4217 dir->i_mtime = dir->i_ctime = current_time(dir); 4218 ret = btrfs_update_inode_fallback(trans, root, dir); 4219 if (ret) 4220 btrfs_abort_transaction(trans, ret); 4221 out: 4222 btrfs_free_path(path); 4223 return ret; 4224 } 4225 4226 /* 4227 * Helper to check if the subvolume references other subvolumes or if it's 4228 * default. 4229 */ 4230 static noinline int may_destroy_subvol(struct btrfs_root *root) 4231 { 4232 struct btrfs_fs_info *fs_info = root->fs_info; 4233 struct btrfs_path *path; 4234 struct btrfs_dir_item *di; 4235 struct btrfs_key key; 4236 u64 dir_id; 4237 int ret; 4238 4239 path = btrfs_alloc_path(); 4240 if (!path) 4241 return -ENOMEM; 4242 4243 /* Make sure this root isn't set as the default subvol */ 4244 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4245 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4246 dir_id, "default", 7, 0); 4247 if (di && !IS_ERR(di)) { 4248 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4249 if (key.objectid == root->root_key.objectid) { 4250 ret = -EPERM; 4251 btrfs_err(fs_info, 4252 "deleting default subvolume %llu is not allowed", 4253 key.objectid); 4254 goto out; 4255 } 4256 btrfs_release_path(path); 4257 } 4258 4259 key.objectid = root->root_key.objectid; 4260 key.type = BTRFS_ROOT_REF_KEY; 4261 key.offset = (u64)-1; 4262 4263 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4264 if (ret < 0) 4265 goto out; 4266 BUG_ON(ret == 0); 4267 4268 ret = 0; 4269 if (path->slots[0] > 0) { 4270 path->slots[0]--; 4271 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4272 if (key.objectid == root->root_key.objectid && 4273 key.type == BTRFS_ROOT_REF_KEY) 4274 ret = -ENOTEMPTY; 4275 } 4276 out: 4277 btrfs_free_path(path); 4278 return ret; 4279 } 4280 4281 /* Delete all dentries for inodes belonging to the root */ 4282 static void btrfs_prune_dentries(struct btrfs_root *root) 4283 { 4284 struct btrfs_fs_info *fs_info = root->fs_info; 4285 struct rb_node *node; 4286 struct rb_node *prev; 4287 struct btrfs_inode *entry; 4288 struct inode *inode; 4289 u64 objectid = 0; 4290 4291 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4292 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4293 4294 spin_lock(&root->inode_lock); 4295 again: 4296 node = root->inode_tree.rb_node; 4297 prev = NULL; 4298 while (node) { 4299 prev = node; 4300 entry = rb_entry(node, struct btrfs_inode, rb_node); 4301 4302 if (objectid < btrfs_ino(entry)) 4303 node = node->rb_left; 4304 else if (objectid > btrfs_ino(entry)) 4305 node = node->rb_right; 4306 else 4307 break; 4308 } 4309 if (!node) { 4310 while (prev) { 4311 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4312 if (objectid <= btrfs_ino(entry)) { 4313 node = prev; 4314 break; 4315 } 4316 prev = rb_next(prev); 4317 } 4318 } 4319 while (node) { 4320 entry = rb_entry(node, struct btrfs_inode, rb_node); 4321 objectid = btrfs_ino(entry) + 1; 4322 inode = igrab(&entry->vfs_inode); 4323 if (inode) { 4324 spin_unlock(&root->inode_lock); 4325 if (atomic_read(&inode->i_count) > 1) 4326 d_prune_aliases(inode); 4327 /* 4328 * btrfs_drop_inode will have it removed from the inode 4329 * cache when its usage count hits zero. 4330 */ 4331 iput(inode); 4332 cond_resched(); 4333 spin_lock(&root->inode_lock); 4334 goto again; 4335 } 4336 4337 if (cond_resched_lock(&root->inode_lock)) 4338 goto again; 4339 4340 node = rb_next(node); 4341 } 4342 spin_unlock(&root->inode_lock); 4343 } 4344 4345 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4346 { 4347 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4348 struct btrfs_root *root = BTRFS_I(dir)->root; 4349 struct inode *inode = d_inode(dentry); 4350 struct btrfs_root *dest = BTRFS_I(inode)->root; 4351 struct btrfs_trans_handle *trans; 4352 struct btrfs_block_rsv block_rsv; 4353 u64 root_flags; 4354 int ret; 4355 int err; 4356 4357 /* 4358 * Don't allow to delete a subvolume with send in progress. This is 4359 * inside the inode lock so the error handling that has to drop the bit 4360 * again is not run concurrently. 4361 */ 4362 spin_lock(&dest->root_item_lock); 4363 if (dest->send_in_progress) { 4364 spin_unlock(&dest->root_item_lock); 4365 btrfs_warn(fs_info, 4366 "attempt to delete subvolume %llu during send", 4367 dest->root_key.objectid); 4368 return -EPERM; 4369 } 4370 root_flags = btrfs_root_flags(&dest->root_item); 4371 btrfs_set_root_flags(&dest->root_item, 4372 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4373 spin_unlock(&dest->root_item_lock); 4374 4375 down_write(&fs_info->subvol_sem); 4376 4377 err = may_destroy_subvol(dest); 4378 if (err) 4379 goto out_up_write; 4380 4381 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4382 /* 4383 * One for dir inode, 4384 * two for dir entries, 4385 * two for root ref/backref. 4386 */ 4387 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4388 if (err) 4389 goto out_up_write; 4390 4391 trans = btrfs_start_transaction(root, 0); 4392 if (IS_ERR(trans)) { 4393 err = PTR_ERR(trans); 4394 goto out_release; 4395 } 4396 trans->block_rsv = &block_rsv; 4397 trans->bytes_reserved = block_rsv.size; 4398 4399 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4400 4401 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4402 dentry->d_name.name, dentry->d_name.len); 4403 if (ret) { 4404 err = ret; 4405 btrfs_abort_transaction(trans, ret); 4406 goto out_end_trans; 4407 } 4408 4409 btrfs_record_root_in_trans(trans, dest); 4410 4411 memset(&dest->root_item.drop_progress, 0, 4412 sizeof(dest->root_item.drop_progress)); 4413 dest->root_item.drop_level = 0; 4414 btrfs_set_root_refs(&dest->root_item, 0); 4415 4416 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4417 ret = btrfs_insert_orphan_item(trans, 4418 fs_info->tree_root, 4419 dest->root_key.objectid); 4420 if (ret) { 4421 btrfs_abort_transaction(trans, ret); 4422 err = ret; 4423 goto out_end_trans; 4424 } 4425 } 4426 4427 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4428 BTRFS_UUID_KEY_SUBVOL, 4429 dest->root_key.objectid); 4430 if (ret && ret != -ENOENT) { 4431 btrfs_abort_transaction(trans, ret); 4432 err = ret; 4433 goto out_end_trans; 4434 } 4435 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4436 ret = btrfs_uuid_tree_remove(trans, 4437 dest->root_item.received_uuid, 4438 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4439 dest->root_key.objectid); 4440 if (ret && ret != -ENOENT) { 4441 btrfs_abort_transaction(trans, ret); 4442 err = ret; 4443 goto out_end_trans; 4444 } 4445 } 4446 4447 out_end_trans: 4448 trans->block_rsv = NULL; 4449 trans->bytes_reserved = 0; 4450 ret = btrfs_end_transaction(trans); 4451 if (ret && !err) 4452 err = ret; 4453 inode->i_flags |= S_DEAD; 4454 out_release: 4455 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4456 out_up_write: 4457 up_write(&fs_info->subvol_sem); 4458 if (err) { 4459 spin_lock(&dest->root_item_lock); 4460 root_flags = btrfs_root_flags(&dest->root_item); 4461 btrfs_set_root_flags(&dest->root_item, 4462 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4463 spin_unlock(&dest->root_item_lock); 4464 } else { 4465 d_invalidate(dentry); 4466 btrfs_prune_dentries(dest); 4467 ASSERT(dest->send_in_progress == 0); 4468 4469 /* the last ref */ 4470 if (dest->ino_cache_inode) { 4471 iput(dest->ino_cache_inode); 4472 dest->ino_cache_inode = NULL; 4473 } 4474 } 4475 4476 return err; 4477 } 4478 4479 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4480 { 4481 struct inode *inode = d_inode(dentry); 4482 int err = 0; 4483 struct btrfs_root *root = BTRFS_I(dir)->root; 4484 struct btrfs_trans_handle *trans; 4485 u64 last_unlink_trans; 4486 4487 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4488 return -ENOTEMPTY; 4489 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4490 return btrfs_delete_subvolume(dir, dentry); 4491 4492 trans = __unlink_start_trans(dir); 4493 if (IS_ERR(trans)) 4494 return PTR_ERR(trans); 4495 4496 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4497 err = btrfs_unlink_subvol(trans, dir, 4498 BTRFS_I(inode)->location.objectid, 4499 dentry->d_name.name, 4500 dentry->d_name.len); 4501 goto out; 4502 } 4503 4504 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4505 if (err) 4506 goto out; 4507 4508 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4509 4510 /* now the directory is empty */ 4511 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4512 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4513 dentry->d_name.len); 4514 if (!err) { 4515 btrfs_i_size_write(BTRFS_I(inode), 0); 4516 /* 4517 * Propagate the last_unlink_trans value of the deleted dir to 4518 * its parent directory. This is to prevent an unrecoverable 4519 * log tree in the case we do something like this: 4520 * 1) create dir foo 4521 * 2) create snapshot under dir foo 4522 * 3) delete the snapshot 4523 * 4) rmdir foo 4524 * 5) mkdir foo 4525 * 6) fsync foo or some file inside foo 4526 */ 4527 if (last_unlink_trans >= trans->transid) 4528 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4529 } 4530 out: 4531 btrfs_end_transaction(trans); 4532 btrfs_btree_balance_dirty(root->fs_info); 4533 4534 return err; 4535 } 4536 4537 /* 4538 * Return this if we need to call truncate_block for the last bit of the 4539 * truncate. 4540 */ 4541 #define NEED_TRUNCATE_BLOCK 1 4542 4543 /* 4544 * this can truncate away extent items, csum items and directory items. 4545 * It starts at a high offset and removes keys until it can't find 4546 * any higher than new_size 4547 * 4548 * csum items that cross the new i_size are truncated to the new size 4549 * as well. 4550 * 4551 * min_type is the minimum key type to truncate down to. If set to 0, this 4552 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4553 */ 4554 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4555 struct btrfs_root *root, 4556 struct inode *inode, 4557 u64 new_size, u32 min_type) 4558 { 4559 struct btrfs_fs_info *fs_info = root->fs_info; 4560 struct btrfs_path *path; 4561 struct extent_buffer *leaf; 4562 struct btrfs_file_extent_item *fi; 4563 struct btrfs_key key; 4564 struct btrfs_key found_key; 4565 u64 extent_start = 0; 4566 u64 extent_num_bytes = 0; 4567 u64 extent_offset = 0; 4568 u64 item_end = 0; 4569 u64 last_size = new_size; 4570 u32 found_type = (u8)-1; 4571 int found_extent; 4572 int del_item; 4573 int pending_del_nr = 0; 4574 int pending_del_slot = 0; 4575 int extent_type = -1; 4576 int ret; 4577 u64 ino = btrfs_ino(BTRFS_I(inode)); 4578 u64 bytes_deleted = 0; 4579 bool be_nice = false; 4580 bool should_throttle = false; 4581 4582 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4583 4584 /* 4585 * for non-free space inodes and ref cows, we want to back off from 4586 * time to time 4587 */ 4588 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4589 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4590 be_nice = true; 4591 4592 path = btrfs_alloc_path(); 4593 if (!path) 4594 return -ENOMEM; 4595 path->reada = READA_BACK; 4596 4597 /* 4598 * We want to drop from the next block forward in case this new size is 4599 * not block aligned since we will be keeping the last block of the 4600 * extent just the way it is. 4601 */ 4602 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4603 root == fs_info->tree_root) 4604 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4605 fs_info->sectorsize), 4606 (u64)-1, 0); 4607 4608 /* 4609 * This function is also used to drop the items in the log tree before 4610 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4611 * it is used to drop the logged items. So we shouldn't kill the delayed 4612 * items. 4613 */ 4614 if (min_type == 0 && root == BTRFS_I(inode)->root) 4615 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4616 4617 key.objectid = ino; 4618 key.offset = (u64)-1; 4619 key.type = (u8)-1; 4620 4621 search_again: 4622 /* 4623 * with a 16K leaf size and 128MB extents, you can actually queue 4624 * up a huge file in a single leaf. Most of the time that 4625 * bytes_deleted is > 0, it will be huge by the time we get here 4626 */ 4627 if (be_nice && bytes_deleted > SZ_32M && 4628 btrfs_should_end_transaction(trans)) { 4629 ret = -EAGAIN; 4630 goto out; 4631 } 4632 4633 path->leave_spinning = 1; 4634 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4635 if (ret < 0) 4636 goto out; 4637 4638 if (ret > 0) { 4639 ret = 0; 4640 /* there are no items in the tree for us to truncate, we're 4641 * done 4642 */ 4643 if (path->slots[0] == 0) 4644 goto out; 4645 path->slots[0]--; 4646 } 4647 4648 while (1) { 4649 fi = NULL; 4650 leaf = path->nodes[0]; 4651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4652 found_type = found_key.type; 4653 4654 if (found_key.objectid != ino) 4655 break; 4656 4657 if (found_type < min_type) 4658 break; 4659 4660 item_end = found_key.offset; 4661 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4662 fi = btrfs_item_ptr(leaf, path->slots[0], 4663 struct btrfs_file_extent_item); 4664 extent_type = btrfs_file_extent_type(leaf, fi); 4665 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4666 item_end += 4667 btrfs_file_extent_num_bytes(leaf, fi); 4668 4669 trace_btrfs_truncate_show_fi_regular( 4670 BTRFS_I(inode), leaf, fi, 4671 found_key.offset); 4672 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4673 item_end += btrfs_file_extent_ram_bytes(leaf, 4674 fi); 4675 4676 trace_btrfs_truncate_show_fi_inline( 4677 BTRFS_I(inode), leaf, fi, path->slots[0], 4678 found_key.offset); 4679 } 4680 item_end--; 4681 } 4682 if (found_type > min_type) { 4683 del_item = 1; 4684 } else { 4685 if (item_end < new_size) 4686 break; 4687 if (found_key.offset >= new_size) 4688 del_item = 1; 4689 else 4690 del_item = 0; 4691 } 4692 found_extent = 0; 4693 /* FIXME, shrink the extent if the ref count is only 1 */ 4694 if (found_type != BTRFS_EXTENT_DATA_KEY) 4695 goto delete; 4696 4697 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4698 u64 num_dec; 4699 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4700 if (!del_item) { 4701 u64 orig_num_bytes = 4702 btrfs_file_extent_num_bytes(leaf, fi); 4703 extent_num_bytes = ALIGN(new_size - 4704 found_key.offset, 4705 fs_info->sectorsize); 4706 btrfs_set_file_extent_num_bytes(leaf, fi, 4707 extent_num_bytes); 4708 num_dec = (orig_num_bytes - 4709 extent_num_bytes); 4710 if (test_bit(BTRFS_ROOT_REF_COWS, 4711 &root->state) && 4712 extent_start != 0) 4713 inode_sub_bytes(inode, num_dec); 4714 btrfs_mark_buffer_dirty(leaf); 4715 } else { 4716 extent_num_bytes = 4717 btrfs_file_extent_disk_num_bytes(leaf, 4718 fi); 4719 extent_offset = found_key.offset - 4720 btrfs_file_extent_offset(leaf, fi); 4721 4722 /* FIXME blocksize != 4096 */ 4723 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4724 if (extent_start != 0) { 4725 found_extent = 1; 4726 if (test_bit(BTRFS_ROOT_REF_COWS, 4727 &root->state)) 4728 inode_sub_bytes(inode, num_dec); 4729 } 4730 } 4731 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4732 /* 4733 * we can't truncate inline items that have had 4734 * special encodings 4735 */ 4736 if (!del_item && 4737 btrfs_file_extent_encryption(leaf, fi) == 0 && 4738 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4739 btrfs_file_extent_compression(leaf, fi) == 0) { 4740 u32 size = (u32)(new_size - found_key.offset); 4741 4742 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4743 size = btrfs_file_extent_calc_inline_size(size); 4744 btrfs_truncate_item(path, size, 1); 4745 } else if (!del_item) { 4746 /* 4747 * We have to bail so the last_size is set to 4748 * just before this extent. 4749 */ 4750 ret = NEED_TRUNCATE_BLOCK; 4751 break; 4752 } 4753 4754 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4755 inode_sub_bytes(inode, item_end + 1 - new_size); 4756 } 4757 delete: 4758 if (del_item) 4759 last_size = found_key.offset; 4760 else 4761 last_size = new_size; 4762 if (del_item) { 4763 if (!pending_del_nr) { 4764 /* no pending yet, add ourselves */ 4765 pending_del_slot = path->slots[0]; 4766 pending_del_nr = 1; 4767 } else if (pending_del_nr && 4768 path->slots[0] + 1 == pending_del_slot) { 4769 /* hop on the pending chunk */ 4770 pending_del_nr++; 4771 pending_del_slot = path->slots[0]; 4772 } else { 4773 BUG(); 4774 } 4775 } else { 4776 break; 4777 } 4778 should_throttle = false; 4779 4780 if (found_extent && 4781 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4782 root == fs_info->tree_root)) { 4783 struct btrfs_ref ref = { 0 }; 4784 4785 btrfs_set_path_blocking(path); 4786 bytes_deleted += extent_num_bytes; 4787 4788 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4789 extent_start, extent_num_bytes, 0); 4790 ref.real_root = root->root_key.objectid; 4791 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4792 ino, extent_offset); 4793 ret = btrfs_free_extent(trans, &ref); 4794 if (ret) { 4795 btrfs_abort_transaction(trans, ret); 4796 break; 4797 } 4798 if (be_nice) { 4799 if (btrfs_should_throttle_delayed_refs(trans)) 4800 should_throttle = true; 4801 } 4802 } 4803 4804 if (found_type == BTRFS_INODE_ITEM_KEY) 4805 break; 4806 4807 if (path->slots[0] == 0 || 4808 path->slots[0] != pending_del_slot || 4809 should_throttle) { 4810 if (pending_del_nr) { 4811 ret = btrfs_del_items(trans, root, path, 4812 pending_del_slot, 4813 pending_del_nr); 4814 if (ret) { 4815 btrfs_abort_transaction(trans, ret); 4816 break; 4817 } 4818 pending_del_nr = 0; 4819 } 4820 btrfs_release_path(path); 4821 4822 /* 4823 * We can generate a lot of delayed refs, so we need to 4824 * throttle every once and a while and make sure we're 4825 * adding enough space to keep up with the work we are 4826 * generating. Since we hold a transaction here we 4827 * can't flush, and we don't want to FLUSH_LIMIT because 4828 * we could have generated too many delayed refs to 4829 * actually allocate, so just bail if we're short and 4830 * let the normal reservation dance happen higher up. 4831 */ 4832 if (should_throttle) { 4833 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4834 BTRFS_RESERVE_NO_FLUSH); 4835 if (ret) { 4836 ret = -EAGAIN; 4837 break; 4838 } 4839 } 4840 goto search_again; 4841 } else { 4842 path->slots[0]--; 4843 } 4844 } 4845 out: 4846 if (ret >= 0 && pending_del_nr) { 4847 int err; 4848 4849 err = btrfs_del_items(trans, root, path, pending_del_slot, 4850 pending_del_nr); 4851 if (err) { 4852 btrfs_abort_transaction(trans, err); 4853 ret = err; 4854 } 4855 } 4856 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4857 ASSERT(last_size >= new_size); 4858 if (!ret && last_size > new_size) 4859 last_size = new_size; 4860 btrfs_ordered_update_i_size(inode, last_size, NULL); 4861 } 4862 4863 btrfs_free_path(path); 4864 return ret; 4865 } 4866 4867 /* 4868 * btrfs_truncate_block - read, zero a chunk and write a block 4869 * @inode - inode that we're zeroing 4870 * @from - the offset to start zeroing 4871 * @len - the length to zero, 0 to zero the entire range respective to the 4872 * offset 4873 * @front - zero up to the offset instead of from the offset on 4874 * 4875 * This will find the block for the "from" offset and cow the block and zero the 4876 * part we want to zero. This is used with truncate and hole punching. 4877 */ 4878 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4879 int front) 4880 { 4881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4882 struct address_space *mapping = inode->i_mapping; 4883 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4884 struct btrfs_ordered_extent *ordered; 4885 struct extent_state *cached_state = NULL; 4886 struct extent_changeset *data_reserved = NULL; 4887 char *kaddr; 4888 u32 blocksize = fs_info->sectorsize; 4889 pgoff_t index = from >> PAGE_SHIFT; 4890 unsigned offset = from & (blocksize - 1); 4891 struct page *page; 4892 gfp_t mask = btrfs_alloc_write_mask(mapping); 4893 int ret = 0; 4894 u64 block_start; 4895 u64 block_end; 4896 4897 if (IS_ALIGNED(offset, blocksize) && 4898 (!len || IS_ALIGNED(len, blocksize))) 4899 goto out; 4900 4901 block_start = round_down(from, blocksize); 4902 block_end = block_start + blocksize - 1; 4903 4904 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4905 block_start, blocksize); 4906 if (ret) 4907 goto out; 4908 4909 again: 4910 page = find_or_create_page(mapping, index, mask); 4911 if (!page) { 4912 btrfs_delalloc_release_space(inode, data_reserved, 4913 block_start, blocksize, true); 4914 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4915 ret = -ENOMEM; 4916 goto out; 4917 } 4918 4919 if (!PageUptodate(page)) { 4920 ret = btrfs_readpage(NULL, page); 4921 lock_page(page); 4922 if (page->mapping != mapping) { 4923 unlock_page(page); 4924 put_page(page); 4925 goto again; 4926 } 4927 if (!PageUptodate(page)) { 4928 ret = -EIO; 4929 goto out_unlock; 4930 } 4931 } 4932 wait_on_page_writeback(page); 4933 4934 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4935 set_page_extent_mapped(page); 4936 4937 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4938 if (ordered) { 4939 unlock_extent_cached(io_tree, block_start, block_end, 4940 &cached_state); 4941 unlock_page(page); 4942 put_page(page); 4943 btrfs_start_ordered_extent(inode, ordered, 1); 4944 btrfs_put_ordered_extent(ordered); 4945 goto again; 4946 } 4947 4948 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4949 EXTENT_DIRTY | EXTENT_DELALLOC | 4950 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4951 0, 0, &cached_state); 4952 4953 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4954 &cached_state, 0); 4955 if (ret) { 4956 unlock_extent_cached(io_tree, block_start, block_end, 4957 &cached_state); 4958 goto out_unlock; 4959 } 4960 4961 if (offset != blocksize) { 4962 if (!len) 4963 len = blocksize - offset; 4964 kaddr = kmap(page); 4965 if (front) 4966 memset(kaddr + (block_start - page_offset(page)), 4967 0, offset); 4968 else 4969 memset(kaddr + (block_start - page_offset(page)) + offset, 4970 0, len); 4971 flush_dcache_page(page); 4972 kunmap(page); 4973 } 4974 ClearPageChecked(page); 4975 set_page_dirty(page); 4976 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4977 4978 out_unlock: 4979 if (ret) 4980 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4981 blocksize, true); 4982 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4983 unlock_page(page); 4984 put_page(page); 4985 out: 4986 extent_changeset_free(data_reserved); 4987 return ret; 4988 } 4989 4990 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4991 u64 offset, u64 len) 4992 { 4993 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4994 struct btrfs_trans_handle *trans; 4995 int ret; 4996 4997 /* 4998 * Still need to make sure the inode looks like it's been updated so 4999 * that any holes get logged if we fsync. 5000 */ 5001 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 5002 BTRFS_I(inode)->last_trans = fs_info->generation; 5003 BTRFS_I(inode)->last_sub_trans = root->log_transid; 5004 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 5005 return 0; 5006 } 5007 5008 /* 5009 * 1 - for the one we're dropping 5010 * 1 - for the one we're adding 5011 * 1 - for updating the inode. 5012 */ 5013 trans = btrfs_start_transaction(root, 3); 5014 if (IS_ERR(trans)) 5015 return PTR_ERR(trans); 5016 5017 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 5018 if (ret) { 5019 btrfs_abort_transaction(trans, ret); 5020 btrfs_end_transaction(trans); 5021 return ret; 5022 } 5023 5024 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 5025 offset, 0, 0, len, 0, len, 0, 0, 0); 5026 if (ret) 5027 btrfs_abort_transaction(trans, ret); 5028 else 5029 btrfs_update_inode(trans, root, inode); 5030 btrfs_end_transaction(trans); 5031 return ret; 5032 } 5033 5034 /* 5035 * This function puts in dummy file extents for the area we're creating a hole 5036 * for. So if we are truncating this file to a larger size we need to insert 5037 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5038 * the range between oldsize and size 5039 */ 5040 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 5041 { 5042 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5043 struct btrfs_root *root = BTRFS_I(inode)->root; 5044 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5045 struct extent_map *em = NULL; 5046 struct extent_state *cached_state = NULL; 5047 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5048 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5049 u64 block_end = ALIGN(size, fs_info->sectorsize); 5050 u64 last_byte; 5051 u64 cur_offset; 5052 u64 hole_size; 5053 int err = 0; 5054 5055 /* 5056 * If our size started in the middle of a block we need to zero out the 5057 * rest of the block before we expand the i_size, otherwise we could 5058 * expose stale data. 5059 */ 5060 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5061 if (err) 5062 return err; 5063 5064 if (size <= hole_start) 5065 return 0; 5066 5067 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start, 5068 block_end - 1, &cached_state); 5069 cur_offset = hole_start; 5070 while (1) { 5071 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5072 block_end - cur_offset, 0); 5073 if (IS_ERR(em)) { 5074 err = PTR_ERR(em); 5075 em = NULL; 5076 break; 5077 } 5078 last_byte = min(extent_map_end(em), block_end); 5079 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5080 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5081 struct extent_map *hole_em; 5082 hole_size = last_byte - cur_offset; 5083 5084 err = maybe_insert_hole(root, inode, cur_offset, 5085 hole_size); 5086 if (err) 5087 break; 5088 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5089 cur_offset + hole_size - 1, 0); 5090 hole_em = alloc_extent_map(); 5091 if (!hole_em) { 5092 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5093 &BTRFS_I(inode)->runtime_flags); 5094 goto next; 5095 } 5096 hole_em->start = cur_offset; 5097 hole_em->len = hole_size; 5098 hole_em->orig_start = cur_offset; 5099 5100 hole_em->block_start = EXTENT_MAP_HOLE; 5101 hole_em->block_len = 0; 5102 hole_em->orig_block_len = 0; 5103 hole_em->ram_bytes = hole_size; 5104 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5105 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5106 hole_em->generation = fs_info->generation; 5107 5108 while (1) { 5109 write_lock(&em_tree->lock); 5110 err = add_extent_mapping(em_tree, hole_em, 1); 5111 write_unlock(&em_tree->lock); 5112 if (err != -EEXIST) 5113 break; 5114 btrfs_drop_extent_cache(BTRFS_I(inode), 5115 cur_offset, 5116 cur_offset + 5117 hole_size - 1, 0); 5118 } 5119 free_extent_map(hole_em); 5120 } 5121 next: 5122 free_extent_map(em); 5123 em = NULL; 5124 cur_offset = last_byte; 5125 if (cur_offset >= block_end) 5126 break; 5127 } 5128 free_extent_map(em); 5129 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5130 return err; 5131 } 5132 5133 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5134 { 5135 struct btrfs_root *root = BTRFS_I(inode)->root; 5136 struct btrfs_trans_handle *trans; 5137 loff_t oldsize = i_size_read(inode); 5138 loff_t newsize = attr->ia_size; 5139 int mask = attr->ia_valid; 5140 int ret; 5141 5142 /* 5143 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5144 * special case where we need to update the times despite not having 5145 * these flags set. For all other operations the VFS set these flags 5146 * explicitly if it wants a timestamp update. 5147 */ 5148 if (newsize != oldsize) { 5149 inode_inc_iversion(inode); 5150 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5151 inode->i_ctime = inode->i_mtime = 5152 current_time(inode); 5153 } 5154 5155 if (newsize > oldsize) { 5156 /* 5157 * Don't do an expanding truncate while snapshotting is ongoing. 5158 * This is to ensure the snapshot captures a fully consistent 5159 * state of this file - if the snapshot captures this expanding 5160 * truncation, it must capture all writes that happened before 5161 * this truncation. 5162 */ 5163 btrfs_wait_for_snapshot_creation(root); 5164 ret = btrfs_cont_expand(inode, oldsize, newsize); 5165 if (ret) { 5166 btrfs_end_write_no_snapshotting(root); 5167 return ret; 5168 } 5169 5170 trans = btrfs_start_transaction(root, 1); 5171 if (IS_ERR(trans)) { 5172 btrfs_end_write_no_snapshotting(root); 5173 return PTR_ERR(trans); 5174 } 5175 5176 i_size_write(inode, newsize); 5177 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5178 pagecache_isize_extended(inode, oldsize, newsize); 5179 ret = btrfs_update_inode(trans, root, inode); 5180 btrfs_end_write_no_snapshotting(root); 5181 btrfs_end_transaction(trans); 5182 } else { 5183 5184 /* 5185 * We're truncating a file that used to have good data down to 5186 * zero. Make sure it gets into the ordered flush list so that 5187 * any new writes get down to disk quickly. 5188 */ 5189 if (newsize == 0) 5190 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5191 &BTRFS_I(inode)->runtime_flags); 5192 5193 truncate_setsize(inode, newsize); 5194 5195 /* Disable nonlocked read DIO to avoid the endless truncate */ 5196 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5197 inode_dio_wait(inode); 5198 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5199 5200 ret = btrfs_truncate(inode, newsize == oldsize); 5201 if (ret && inode->i_nlink) { 5202 int err; 5203 5204 /* 5205 * Truncate failed, so fix up the in-memory size. We 5206 * adjusted disk_i_size down as we removed extents, so 5207 * wait for disk_i_size to be stable and then update the 5208 * in-memory size to match. 5209 */ 5210 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5211 if (err) 5212 return err; 5213 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5214 } 5215 } 5216 5217 return ret; 5218 } 5219 5220 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5221 { 5222 struct inode *inode = d_inode(dentry); 5223 struct btrfs_root *root = BTRFS_I(inode)->root; 5224 int err; 5225 5226 if (btrfs_root_readonly(root)) 5227 return -EROFS; 5228 5229 err = setattr_prepare(dentry, attr); 5230 if (err) 5231 return err; 5232 5233 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5234 err = btrfs_setsize(inode, attr); 5235 if (err) 5236 return err; 5237 } 5238 5239 if (attr->ia_valid) { 5240 setattr_copy(inode, attr); 5241 inode_inc_iversion(inode); 5242 err = btrfs_dirty_inode(inode); 5243 5244 if (!err && attr->ia_valid & ATTR_MODE) 5245 err = posix_acl_chmod(inode, inode->i_mode); 5246 } 5247 5248 return err; 5249 } 5250 5251 /* 5252 * While truncating the inode pages during eviction, we get the VFS calling 5253 * btrfs_invalidatepage() against each page of the inode. This is slow because 5254 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5255 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5256 * extent_state structures over and over, wasting lots of time. 5257 * 5258 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5259 * those expensive operations on a per page basis and do only the ordered io 5260 * finishing, while we release here the extent_map and extent_state structures, 5261 * without the excessive merging and splitting. 5262 */ 5263 static void evict_inode_truncate_pages(struct inode *inode) 5264 { 5265 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5266 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5267 struct rb_node *node; 5268 5269 ASSERT(inode->i_state & I_FREEING); 5270 truncate_inode_pages_final(&inode->i_data); 5271 5272 write_lock(&map_tree->lock); 5273 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5274 struct extent_map *em; 5275 5276 node = rb_first_cached(&map_tree->map); 5277 em = rb_entry(node, struct extent_map, rb_node); 5278 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5279 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5280 remove_extent_mapping(map_tree, em); 5281 free_extent_map(em); 5282 if (need_resched()) { 5283 write_unlock(&map_tree->lock); 5284 cond_resched(); 5285 write_lock(&map_tree->lock); 5286 } 5287 } 5288 write_unlock(&map_tree->lock); 5289 5290 /* 5291 * Keep looping until we have no more ranges in the io tree. 5292 * We can have ongoing bios started by readpages (called from readahead) 5293 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5294 * still in progress (unlocked the pages in the bio but did not yet 5295 * unlocked the ranges in the io tree). Therefore this means some 5296 * ranges can still be locked and eviction started because before 5297 * submitting those bios, which are executed by a separate task (work 5298 * queue kthread), inode references (inode->i_count) were not taken 5299 * (which would be dropped in the end io callback of each bio). 5300 * Therefore here we effectively end up waiting for those bios and 5301 * anyone else holding locked ranges without having bumped the inode's 5302 * reference count - if we don't do it, when they access the inode's 5303 * io_tree to unlock a range it may be too late, leading to an 5304 * use-after-free issue. 5305 */ 5306 spin_lock(&io_tree->lock); 5307 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5308 struct extent_state *state; 5309 struct extent_state *cached_state = NULL; 5310 u64 start; 5311 u64 end; 5312 unsigned state_flags; 5313 5314 node = rb_first(&io_tree->state); 5315 state = rb_entry(node, struct extent_state, rb_node); 5316 start = state->start; 5317 end = state->end; 5318 state_flags = state->state; 5319 spin_unlock(&io_tree->lock); 5320 5321 lock_extent_bits(io_tree, start, end, &cached_state); 5322 5323 /* 5324 * If still has DELALLOC flag, the extent didn't reach disk, 5325 * and its reserved space won't be freed by delayed_ref. 5326 * So we need to free its reserved space here. 5327 * (Refer to comment in btrfs_invalidatepage, case 2) 5328 * 5329 * Note, end is the bytenr of last byte, so we need + 1 here. 5330 */ 5331 if (state_flags & EXTENT_DELALLOC) 5332 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5333 5334 clear_extent_bit(io_tree, start, end, 5335 EXTENT_LOCKED | EXTENT_DIRTY | 5336 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5337 EXTENT_DEFRAG, 1, 1, &cached_state); 5338 5339 cond_resched(); 5340 spin_lock(&io_tree->lock); 5341 } 5342 spin_unlock(&io_tree->lock); 5343 } 5344 5345 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5346 struct btrfs_block_rsv *rsv) 5347 { 5348 struct btrfs_fs_info *fs_info = root->fs_info; 5349 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5350 u64 delayed_refs_extra = btrfs_calc_trans_metadata_size(fs_info, 1); 5351 int failures = 0; 5352 5353 for (;;) { 5354 struct btrfs_trans_handle *trans; 5355 int ret; 5356 5357 ret = btrfs_block_rsv_refill(root, rsv, 5358 rsv->size + delayed_refs_extra, 5359 BTRFS_RESERVE_FLUSH_LIMIT); 5360 5361 if (ret && ++failures > 2) { 5362 btrfs_warn(fs_info, 5363 "could not allocate space for a delete; will truncate on mount"); 5364 return ERR_PTR(-ENOSPC); 5365 } 5366 5367 /* 5368 * Evict can generate a large amount of delayed refs without 5369 * having a way to add space back since we exhaust our temporary 5370 * block rsv. We aren't allowed to do FLUSH_ALL in this case 5371 * because we could deadlock with so many things in the flushing 5372 * code, so we have to try and hold some extra space to 5373 * compensate for our delayed ref generation. If we can't get 5374 * that space then we need see if we can steal our minimum from 5375 * the global reserve. We will be ratelimited by the amount of 5376 * space we have for the delayed refs rsv, so we'll end up 5377 * committing and trying again. 5378 */ 5379 trans = btrfs_join_transaction(root); 5380 if (IS_ERR(trans) || !ret) { 5381 if (!IS_ERR(trans)) { 5382 trans->block_rsv = &fs_info->trans_block_rsv; 5383 trans->bytes_reserved = delayed_refs_extra; 5384 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5385 delayed_refs_extra, 1); 5386 } 5387 return trans; 5388 } 5389 5390 /* 5391 * Try to steal from the global reserve if there is space for 5392 * it. 5393 */ 5394 if (!btrfs_check_space_for_delayed_refs(fs_info) && 5395 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) 5396 return trans; 5397 5398 /* If not, commit and try again. */ 5399 ret = btrfs_commit_transaction(trans); 5400 if (ret) 5401 return ERR_PTR(ret); 5402 } 5403 } 5404 5405 void btrfs_evict_inode(struct inode *inode) 5406 { 5407 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5408 struct btrfs_trans_handle *trans; 5409 struct btrfs_root *root = BTRFS_I(inode)->root; 5410 struct btrfs_block_rsv *rsv; 5411 int ret; 5412 5413 trace_btrfs_inode_evict(inode); 5414 5415 if (!root) { 5416 clear_inode(inode); 5417 return; 5418 } 5419 5420 evict_inode_truncate_pages(inode); 5421 5422 if (inode->i_nlink && 5423 ((btrfs_root_refs(&root->root_item) != 0 && 5424 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5425 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5426 goto no_delete; 5427 5428 if (is_bad_inode(inode)) 5429 goto no_delete; 5430 5431 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5432 5433 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5434 goto no_delete; 5435 5436 if (inode->i_nlink > 0) { 5437 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5438 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5439 goto no_delete; 5440 } 5441 5442 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5443 if (ret) 5444 goto no_delete; 5445 5446 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5447 if (!rsv) 5448 goto no_delete; 5449 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5450 rsv->failfast = 1; 5451 5452 btrfs_i_size_write(BTRFS_I(inode), 0); 5453 5454 while (1) { 5455 trans = evict_refill_and_join(root, rsv); 5456 if (IS_ERR(trans)) 5457 goto free_rsv; 5458 5459 trans->block_rsv = rsv; 5460 5461 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5462 trans->block_rsv = &fs_info->trans_block_rsv; 5463 btrfs_end_transaction(trans); 5464 btrfs_btree_balance_dirty(fs_info); 5465 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5466 goto free_rsv; 5467 else if (!ret) 5468 break; 5469 } 5470 5471 /* 5472 * Errors here aren't a big deal, it just means we leave orphan items in 5473 * the tree. They will be cleaned up on the next mount. If the inode 5474 * number gets reused, cleanup deletes the orphan item without doing 5475 * anything, and unlink reuses the existing orphan item. 5476 * 5477 * If it turns out that we are dropping too many of these, we might want 5478 * to add a mechanism for retrying these after a commit. 5479 */ 5480 trans = evict_refill_and_join(root, rsv); 5481 if (!IS_ERR(trans)) { 5482 trans->block_rsv = rsv; 5483 btrfs_orphan_del(trans, BTRFS_I(inode)); 5484 trans->block_rsv = &fs_info->trans_block_rsv; 5485 btrfs_end_transaction(trans); 5486 } 5487 5488 if (!(root == fs_info->tree_root || 5489 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5490 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5491 5492 free_rsv: 5493 btrfs_free_block_rsv(fs_info, rsv); 5494 no_delete: 5495 /* 5496 * If we didn't successfully delete, the orphan item will still be in 5497 * the tree and we'll retry on the next mount. Again, we might also want 5498 * to retry these periodically in the future. 5499 */ 5500 btrfs_remove_delayed_node(BTRFS_I(inode)); 5501 clear_inode(inode); 5502 } 5503 5504 /* 5505 * Return the key found in the dir entry in the location pointer, fill @type 5506 * with BTRFS_FT_*, and return 0. 5507 * 5508 * If no dir entries were found, returns -ENOENT. 5509 * If found a corrupted location in dir entry, returns -EUCLEAN. 5510 */ 5511 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5512 struct btrfs_key *location, u8 *type) 5513 { 5514 const char *name = dentry->d_name.name; 5515 int namelen = dentry->d_name.len; 5516 struct btrfs_dir_item *di; 5517 struct btrfs_path *path; 5518 struct btrfs_root *root = BTRFS_I(dir)->root; 5519 int ret = 0; 5520 5521 path = btrfs_alloc_path(); 5522 if (!path) 5523 return -ENOMEM; 5524 5525 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5526 name, namelen, 0); 5527 if (IS_ERR_OR_NULL(di)) { 5528 ret = di ? PTR_ERR(di) : -ENOENT; 5529 goto out; 5530 } 5531 5532 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5533 if (location->type != BTRFS_INODE_ITEM_KEY && 5534 location->type != BTRFS_ROOT_ITEM_KEY) { 5535 ret = -EUCLEAN; 5536 btrfs_warn(root->fs_info, 5537 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5538 __func__, name, btrfs_ino(BTRFS_I(dir)), 5539 location->objectid, location->type, location->offset); 5540 } 5541 if (!ret) 5542 *type = btrfs_dir_type(path->nodes[0], di); 5543 out: 5544 btrfs_free_path(path); 5545 return ret; 5546 } 5547 5548 /* 5549 * when we hit a tree root in a directory, the btrfs part of the inode 5550 * needs to be changed to reflect the root directory of the tree root. This 5551 * is kind of like crossing a mount point. 5552 */ 5553 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5554 struct inode *dir, 5555 struct dentry *dentry, 5556 struct btrfs_key *location, 5557 struct btrfs_root **sub_root) 5558 { 5559 struct btrfs_path *path; 5560 struct btrfs_root *new_root; 5561 struct btrfs_root_ref *ref; 5562 struct extent_buffer *leaf; 5563 struct btrfs_key key; 5564 int ret; 5565 int err = 0; 5566 5567 path = btrfs_alloc_path(); 5568 if (!path) { 5569 err = -ENOMEM; 5570 goto out; 5571 } 5572 5573 err = -ENOENT; 5574 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5575 key.type = BTRFS_ROOT_REF_KEY; 5576 key.offset = location->objectid; 5577 5578 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5579 if (ret) { 5580 if (ret < 0) 5581 err = ret; 5582 goto out; 5583 } 5584 5585 leaf = path->nodes[0]; 5586 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5587 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5588 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5589 goto out; 5590 5591 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5592 (unsigned long)(ref + 1), 5593 dentry->d_name.len); 5594 if (ret) 5595 goto out; 5596 5597 btrfs_release_path(path); 5598 5599 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5600 if (IS_ERR(new_root)) { 5601 err = PTR_ERR(new_root); 5602 goto out; 5603 } 5604 5605 *sub_root = new_root; 5606 location->objectid = btrfs_root_dirid(&new_root->root_item); 5607 location->type = BTRFS_INODE_ITEM_KEY; 5608 location->offset = 0; 5609 err = 0; 5610 out: 5611 btrfs_free_path(path); 5612 return err; 5613 } 5614 5615 static void inode_tree_add(struct inode *inode) 5616 { 5617 struct btrfs_root *root = BTRFS_I(inode)->root; 5618 struct btrfs_inode *entry; 5619 struct rb_node **p; 5620 struct rb_node *parent; 5621 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5622 u64 ino = btrfs_ino(BTRFS_I(inode)); 5623 5624 if (inode_unhashed(inode)) 5625 return; 5626 parent = NULL; 5627 spin_lock(&root->inode_lock); 5628 p = &root->inode_tree.rb_node; 5629 while (*p) { 5630 parent = *p; 5631 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5632 5633 if (ino < btrfs_ino(entry)) 5634 p = &parent->rb_left; 5635 else if (ino > btrfs_ino(entry)) 5636 p = &parent->rb_right; 5637 else { 5638 WARN_ON(!(entry->vfs_inode.i_state & 5639 (I_WILL_FREE | I_FREEING))); 5640 rb_replace_node(parent, new, &root->inode_tree); 5641 RB_CLEAR_NODE(parent); 5642 spin_unlock(&root->inode_lock); 5643 return; 5644 } 5645 } 5646 rb_link_node(new, parent, p); 5647 rb_insert_color(new, &root->inode_tree); 5648 spin_unlock(&root->inode_lock); 5649 } 5650 5651 static void inode_tree_del(struct inode *inode) 5652 { 5653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5654 struct btrfs_root *root = BTRFS_I(inode)->root; 5655 int empty = 0; 5656 5657 spin_lock(&root->inode_lock); 5658 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5659 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5660 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5661 empty = RB_EMPTY_ROOT(&root->inode_tree); 5662 } 5663 spin_unlock(&root->inode_lock); 5664 5665 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5666 synchronize_srcu(&fs_info->subvol_srcu); 5667 spin_lock(&root->inode_lock); 5668 empty = RB_EMPTY_ROOT(&root->inode_tree); 5669 spin_unlock(&root->inode_lock); 5670 if (empty) 5671 btrfs_add_dead_root(root); 5672 } 5673 } 5674 5675 5676 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5677 { 5678 struct btrfs_iget_args *args = p; 5679 inode->i_ino = args->location->objectid; 5680 memcpy(&BTRFS_I(inode)->location, args->location, 5681 sizeof(*args->location)); 5682 BTRFS_I(inode)->root = args->root; 5683 return 0; 5684 } 5685 5686 static int btrfs_find_actor(struct inode *inode, void *opaque) 5687 { 5688 struct btrfs_iget_args *args = opaque; 5689 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5690 args->root == BTRFS_I(inode)->root; 5691 } 5692 5693 static struct inode *btrfs_iget_locked(struct super_block *s, 5694 struct btrfs_key *location, 5695 struct btrfs_root *root) 5696 { 5697 struct inode *inode; 5698 struct btrfs_iget_args args; 5699 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5700 5701 args.location = location; 5702 args.root = root; 5703 5704 inode = iget5_locked(s, hashval, btrfs_find_actor, 5705 btrfs_init_locked_inode, 5706 (void *)&args); 5707 return inode; 5708 } 5709 5710 /* Get an inode object given its location and corresponding root. 5711 * Returns in *is_new if the inode was read from disk 5712 */ 5713 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, 5714 struct btrfs_root *root, int *new, 5715 struct btrfs_path *path) 5716 { 5717 struct inode *inode; 5718 5719 inode = btrfs_iget_locked(s, location, root); 5720 if (!inode) 5721 return ERR_PTR(-ENOMEM); 5722 5723 if (inode->i_state & I_NEW) { 5724 int ret; 5725 5726 ret = btrfs_read_locked_inode(inode, path); 5727 if (!ret) { 5728 inode_tree_add(inode); 5729 unlock_new_inode(inode); 5730 if (new) 5731 *new = 1; 5732 } else { 5733 iget_failed(inode); 5734 /* 5735 * ret > 0 can come from btrfs_search_slot called by 5736 * btrfs_read_locked_inode, this means the inode item 5737 * was not found. 5738 */ 5739 if (ret > 0) 5740 ret = -ENOENT; 5741 inode = ERR_PTR(ret); 5742 } 5743 } 5744 5745 return inode; 5746 } 5747 5748 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5749 struct btrfs_root *root, int *new) 5750 { 5751 return btrfs_iget_path(s, location, root, new, NULL); 5752 } 5753 5754 static struct inode *new_simple_dir(struct super_block *s, 5755 struct btrfs_key *key, 5756 struct btrfs_root *root) 5757 { 5758 struct inode *inode = new_inode(s); 5759 5760 if (!inode) 5761 return ERR_PTR(-ENOMEM); 5762 5763 BTRFS_I(inode)->root = root; 5764 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5765 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5766 5767 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5768 inode->i_op = &btrfs_dir_ro_inode_operations; 5769 inode->i_opflags &= ~IOP_XATTR; 5770 inode->i_fop = &simple_dir_operations; 5771 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5772 inode->i_mtime = current_time(inode); 5773 inode->i_atime = inode->i_mtime; 5774 inode->i_ctime = inode->i_mtime; 5775 BTRFS_I(inode)->i_otime = inode->i_mtime; 5776 5777 return inode; 5778 } 5779 5780 static inline u8 btrfs_inode_type(struct inode *inode) 5781 { 5782 /* 5783 * Compile-time asserts that generic FT_* types still match 5784 * BTRFS_FT_* types 5785 */ 5786 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5787 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5788 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5789 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5790 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5791 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5792 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5793 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5794 5795 return fs_umode_to_ftype(inode->i_mode); 5796 } 5797 5798 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5799 { 5800 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5801 struct inode *inode; 5802 struct btrfs_root *root = BTRFS_I(dir)->root; 5803 struct btrfs_root *sub_root = root; 5804 struct btrfs_key location; 5805 u8 di_type = 0; 5806 int index; 5807 int ret = 0; 5808 5809 if (dentry->d_name.len > BTRFS_NAME_LEN) 5810 return ERR_PTR(-ENAMETOOLONG); 5811 5812 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5813 if (ret < 0) 5814 return ERR_PTR(ret); 5815 5816 if (location.type == BTRFS_INODE_ITEM_KEY) { 5817 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5818 if (IS_ERR(inode)) 5819 return inode; 5820 5821 /* Do extra check against inode mode with di_type */ 5822 if (btrfs_inode_type(inode) != di_type) { 5823 btrfs_crit(fs_info, 5824 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5825 inode->i_mode, btrfs_inode_type(inode), 5826 di_type); 5827 iput(inode); 5828 return ERR_PTR(-EUCLEAN); 5829 } 5830 return inode; 5831 } 5832 5833 index = srcu_read_lock(&fs_info->subvol_srcu); 5834 ret = fixup_tree_root_location(fs_info, dir, dentry, 5835 &location, &sub_root); 5836 if (ret < 0) { 5837 if (ret != -ENOENT) 5838 inode = ERR_PTR(ret); 5839 else 5840 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5841 } else { 5842 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5843 } 5844 srcu_read_unlock(&fs_info->subvol_srcu, index); 5845 5846 if (!IS_ERR(inode) && root != sub_root) { 5847 down_read(&fs_info->cleanup_work_sem); 5848 if (!sb_rdonly(inode->i_sb)) 5849 ret = btrfs_orphan_cleanup(sub_root); 5850 up_read(&fs_info->cleanup_work_sem); 5851 if (ret) { 5852 iput(inode); 5853 inode = ERR_PTR(ret); 5854 } 5855 } 5856 5857 return inode; 5858 } 5859 5860 static int btrfs_dentry_delete(const struct dentry *dentry) 5861 { 5862 struct btrfs_root *root; 5863 struct inode *inode = d_inode(dentry); 5864 5865 if (!inode && !IS_ROOT(dentry)) 5866 inode = d_inode(dentry->d_parent); 5867 5868 if (inode) { 5869 root = BTRFS_I(inode)->root; 5870 if (btrfs_root_refs(&root->root_item) == 0) 5871 return 1; 5872 5873 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5874 return 1; 5875 } 5876 return 0; 5877 } 5878 5879 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5880 unsigned int flags) 5881 { 5882 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5883 5884 if (inode == ERR_PTR(-ENOENT)) 5885 inode = NULL; 5886 return d_splice_alias(inode, dentry); 5887 } 5888 5889 /* 5890 * All this infrastructure exists because dir_emit can fault, and we are holding 5891 * the tree lock when doing readdir. For now just allocate a buffer and copy 5892 * our information into that, and then dir_emit from the buffer. This is 5893 * similar to what NFS does, only we don't keep the buffer around in pagecache 5894 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5895 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5896 * tree lock. 5897 */ 5898 static int btrfs_opendir(struct inode *inode, struct file *file) 5899 { 5900 struct btrfs_file_private *private; 5901 5902 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5903 if (!private) 5904 return -ENOMEM; 5905 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5906 if (!private->filldir_buf) { 5907 kfree(private); 5908 return -ENOMEM; 5909 } 5910 file->private_data = private; 5911 return 0; 5912 } 5913 5914 struct dir_entry { 5915 u64 ino; 5916 u64 offset; 5917 unsigned type; 5918 int name_len; 5919 }; 5920 5921 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5922 { 5923 while (entries--) { 5924 struct dir_entry *entry = addr; 5925 char *name = (char *)(entry + 1); 5926 5927 ctx->pos = get_unaligned(&entry->offset); 5928 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5929 get_unaligned(&entry->ino), 5930 get_unaligned(&entry->type))) 5931 return 1; 5932 addr += sizeof(struct dir_entry) + 5933 get_unaligned(&entry->name_len); 5934 ctx->pos++; 5935 } 5936 return 0; 5937 } 5938 5939 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5940 { 5941 struct inode *inode = file_inode(file); 5942 struct btrfs_root *root = BTRFS_I(inode)->root; 5943 struct btrfs_file_private *private = file->private_data; 5944 struct btrfs_dir_item *di; 5945 struct btrfs_key key; 5946 struct btrfs_key found_key; 5947 struct btrfs_path *path; 5948 void *addr; 5949 struct list_head ins_list; 5950 struct list_head del_list; 5951 int ret; 5952 struct extent_buffer *leaf; 5953 int slot; 5954 char *name_ptr; 5955 int name_len; 5956 int entries = 0; 5957 int total_len = 0; 5958 bool put = false; 5959 struct btrfs_key location; 5960 5961 if (!dir_emit_dots(file, ctx)) 5962 return 0; 5963 5964 path = btrfs_alloc_path(); 5965 if (!path) 5966 return -ENOMEM; 5967 5968 addr = private->filldir_buf; 5969 path->reada = READA_FORWARD; 5970 5971 INIT_LIST_HEAD(&ins_list); 5972 INIT_LIST_HEAD(&del_list); 5973 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5974 5975 again: 5976 key.type = BTRFS_DIR_INDEX_KEY; 5977 key.offset = ctx->pos; 5978 key.objectid = btrfs_ino(BTRFS_I(inode)); 5979 5980 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5981 if (ret < 0) 5982 goto err; 5983 5984 while (1) { 5985 struct dir_entry *entry; 5986 5987 leaf = path->nodes[0]; 5988 slot = path->slots[0]; 5989 if (slot >= btrfs_header_nritems(leaf)) { 5990 ret = btrfs_next_leaf(root, path); 5991 if (ret < 0) 5992 goto err; 5993 else if (ret > 0) 5994 break; 5995 continue; 5996 } 5997 5998 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5999 6000 if (found_key.objectid != key.objectid) 6001 break; 6002 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6003 break; 6004 if (found_key.offset < ctx->pos) 6005 goto next; 6006 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6007 goto next; 6008 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 6009 name_len = btrfs_dir_name_len(leaf, di); 6010 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6011 PAGE_SIZE) { 6012 btrfs_release_path(path); 6013 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6014 if (ret) 6015 goto nopos; 6016 addr = private->filldir_buf; 6017 entries = 0; 6018 total_len = 0; 6019 goto again; 6020 } 6021 6022 entry = addr; 6023 put_unaligned(name_len, &entry->name_len); 6024 name_ptr = (char *)(entry + 1); 6025 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6026 name_len); 6027 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6028 &entry->type); 6029 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6030 put_unaligned(location.objectid, &entry->ino); 6031 put_unaligned(found_key.offset, &entry->offset); 6032 entries++; 6033 addr += sizeof(struct dir_entry) + name_len; 6034 total_len += sizeof(struct dir_entry) + name_len; 6035 next: 6036 path->slots[0]++; 6037 } 6038 btrfs_release_path(path); 6039 6040 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6041 if (ret) 6042 goto nopos; 6043 6044 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6045 if (ret) 6046 goto nopos; 6047 6048 /* 6049 * Stop new entries from being returned after we return the last 6050 * entry. 6051 * 6052 * New directory entries are assigned a strictly increasing 6053 * offset. This means that new entries created during readdir 6054 * are *guaranteed* to be seen in the future by that readdir. 6055 * This has broken buggy programs which operate on names as 6056 * they're returned by readdir. Until we re-use freed offsets 6057 * we have this hack to stop new entries from being returned 6058 * under the assumption that they'll never reach this huge 6059 * offset. 6060 * 6061 * This is being careful not to overflow 32bit loff_t unless the 6062 * last entry requires it because doing so has broken 32bit apps 6063 * in the past. 6064 */ 6065 if (ctx->pos >= INT_MAX) 6066 ctx->pos = LLONG_MAX; 6067 else 6068 ctx->pos = INT_MAX; 6069 nopos: 6070 ret = 0; 6071 err: 6072 if (put) 6073 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6074 btrfs_free_path(path); 6075 return ret; 6076 } 6077 6078 /* 6079 * This is somewhat expensive, updating the tree every time the 6080 * inode changes. But, it is most likely to find the inode in cache. 6081 * FIXME, needs more benchmarking...there are no reasons other than performance 6082 * to keep or drop this code. 6083 */ 6084 static int btrfs_dirty_inode(struct inode *inode) 6085 { 6086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6087 struct btrfs_root *root = BTRFS_I(inode)->root; 6088 struct btrfs_trans_handle *trans; 6089 int ret; 6090 6091 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6092 return 0; 6093 6094 trans = btrfs_join_transaction(root); 6095 if (IS_ERR(trans)) 6096 return PTR_ERR(trans); 6097 6098 ret = btrfs_update_inode(trans, root, inode); 6099 if (ret && ret == -ENOSPC) { 6100 /* whoops, lets try again with the full transaction */ 6101 btrfs_end_transaction(trans); 6102 trans = btrfs_start_transaction(root, 1); 6103 if (IS_ERR(trans)) 6104 return PTR_ERR(trans); 6105 6106 ret = btrfs_update_inode(trans, root, inode); 6107 } 6108 btrfs_end_transaction(trans); 6109 if (BTRFS_I(inode)->delayed_node) 6110 btrfs_balance_delayed_items(fs_info); 6111 6112 return ret; 6113 } 6114 6115 /* 6116 * This is a copy of file_update_time. We need this so we can return error on 6117 * ENOSPC for updating the inode in the case of file write and mmap writes. 6118 */ 6119 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6120 int flags) 6121 { 6122 struct btrfs_root *root = BTRFS_I(inode)->root; 6123 bool dirty = flags & ~S_VERSION; 6124 6125 if (btrfs_root_readonly(root)) 6126 return -EROFS; 6127 6128 if (flags & S_VERSION) 6129 dirty |= inode_maybe_inc_iversion(inode, dirty); 6130 if (flags & S_CTIME) 6131 inode->i_ctime = *now; 6132 if (flags & S_MTIME) 6133 inode->i_mtime = *now; 6134 if (flags & S_ATIME) 6135 inode->i_atime = *now; 6136 return dirty ? btrfs_dirty_inode(inode) : 0; 6137 } 6138 6139 /* 6140 * find the highest existing sequence number in a directory 6141 * and then set the in-memory index_cnt variable to reflect 6142 * free sequence numbers 6143 */ 6144 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6145 { 6146 struct btrfs_root *root = inode->root; 6147 struct btrfs_key key, found_key; 6148 struct btrfs_path *path; 6149 struct extent_buffer *leaf; 6150 int ret; 6151 6152 key.objectid = btrfs_ino(inode); 6153 key.type = BTRFS_DIR_INDEX_KEY; 6154 key.offset = (u64)-1; 6155 6156 path = btrfs_alloc_path(); 6157 if (!path) 6158 return -ENOMEM; 6159 6160 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6161 if (ret < 0) 6162 goto out; 6163 /* FIXME: we should be able to handle this */ 6164 if (ret == 0) 6165 goto out; 6166 ret = 0; 6167 6168 /* 6169 * MAGIC NUMBER EXPLANATION: 6170 * since we search a directory based on f_pos we have to start at 2 6171 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6172 * else has to start at 2 6173 */ 6174 if (path->slots[0] == 0) { 6175 inode->index_cnt = 2; 6176 goto out; 6177 } 6178 6179 path->slots[0]--; 6180 6181 leaf = path->nodes[0]; 6182 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6183 6184 if (found_key.objectid != btrfs_ino(inode) || 6185 found_key.type != BTRFS_DIR_INDEX_KEY) { 6186 inode->index_cnt = 2; 6187 goto out; 6188 } 6189 6190 inode->index_cnt = found_key.offset + 1; 6191 out: 6192 btrfs_free_path(path); 6193 return ret; 6194 } 6195 6196 /* 6197 * helper to find a free sequence number in a given directory. This current 6198 * code is very simple, later versions will do smarter things in the btree 6199 */ 6200 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6201 { 6202 int ret = 0; 6203 6204 if (dir->index_cnt == (u64)-1) { 6205 ret = btrfs_inode_delayed_dir_index_count(dir); 6206 if (ret) { 6207 ret = btrfs_set_inode_index_count(dir); 6208 if (ret) 6209 return ret; 6210 } 6211 } 6212 6213 *index = dir->index_cnt; 6214 dir->index_cnt++; 6215 6216 return ret; 6217 } 6218 6219 static int btrfs_insert_inode_locked(struct inode *inode) 6220 { 6221 struct btrfs_iget_args args; 6222 args.location = &BTRFS_I(inode)->location; 6223 args.root = BTRFS_I(inode)->root; 6224 6225 return insert_inode_locked4(inode, 6226 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6227 btrfs_find_actor, &args); 6228 } 6229 6230 /* 6231 * Inherit flags from the parent inode. 6232 * 6233 * Currently only the compression flags and the cow flags are inherited. 6234 */ 6235 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6236 { 6237 unsigned int flags; 6238 6239 if (!dir) 6240 return; 6241 6242 flags = BTRFS_I(dir)->flags; 6243 6244 if (flags & BTRFS_INODE_NOCOMPRESS) { 6245 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6246 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6247 } else if (flags & BTRFS_INODE_COMPRESS) { 6248 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6249 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6250 } 6251 6252 if (flags & BTRFS_INODE_NODATACOW) { 6253 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6254 if (S_ISREG(inode->i_mode)) 6255 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6256 } 6257 6258 btrfs_sync_inode_flags_to_i_flags(inode); 6259 } 6260 6261 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6262 struct btrfs_root *root, 6263 struct inode *dir, 6264 const char *name, int name_len, 6265 u64 ref_objectid, u64 objectid, 6266 umode_t mode, u64 *index) 6267 { 6268 struct btrfs_fs_info *fs_info = root->fs_info; 6269 struct inode *inode; 6270 struct btrfs_inode_item *inode_item; 6271 struct btrfs_key *location; 6272 struct btrfs_path *path; 6273 struct btrfs_inode_ref *ref; 6274 struct btrfs_key key[2]; 6275 u32 sizes[2]; 6276 int nitems = name ? 2 : 1; 6277 unsigned long ptr; 6278 int ret; 6279 6280 path = btrfs_alloc_path(); 6281 if (!path) 6282 return ERR_PTR(-ENOMEM); 6283 6284 inode = new_inode(fs_info->sb); 6285 if (!inode) { 6286 btrfs_free_path(path); 6287 return ERR_PTR(-ENOMEM); 6288 } 6289 6290 /* 6291 * O_TMPFILE, set link count to 0, so that after this point, 6292 * we fill in an inode item with the correct link count. 6293 */ 6294 if (!name) 6295 set_nlink(inode, 0); 6296 6297 /* 6298 * we have to initialize this early, so we can reclaim the inode 6299 * number if we fail afterwards in this function. 6300 */ 6301 inode->i_ino = objectid; 6302 6303 if (dir && name) { 6304 trace_btrfs_inode_request(dir); 6305 6306 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6307 if (ret) { 6308 btrfs_free_path(path); 6309 iput(inode); 6310 return ERR_PTR(ret); 6311 } 6312 } else if (dir) { 6313 *index = 0; 6314 } 6315 /* 6316 * index_cnt is ignored for everything but a dir, 6317 * btrfs_set_inode_index_count has an explanation for the magic 6318 * number 6319 */ 6320 BTRFS_I(inode)->index_cnt = 2; 6321 BTRFS_I(inode)->dir_index = *index; 6322 BTRFS_I(inode)->root = root; 6323 BTRFS_I(inode)->generation = trans->transid; 6324 inode->i_generation = BTRFS_I(inode)->generation; 6325 6326 /* 6327 * We could have gotten an inode number from somebody who was fsynced 6328 * and then removed in this same transaction, so let's just set full 6329 * sync since it will be a full sync anyway and this will blow away the 6330 * old info in the log. 6331 */ 6332 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6333 6334 key[0].objectid = objectid; 6335 key[0].type = BTRFS_INODE_ITEM_KEY; 6336 key[0].offset = 0; 6337 6338 sizes[0] = sizeof(struct btrfs_inode_item); 6339 6340 if (name) { 6341 /* 6342 * Start new inodes with an inode_ref. This is slightly more 6343 * efficient for small numbers of hard links since they will 6344 * be packed into one item. Extended refs will kick in if we 6345 * add more hard links than can fit in the ref item. 6346 */ 6347 key[1].objectid = objectid; 6348 key[1].type = BTRFS_INODE_REF_KEY; 6349 key[1].offset = ref_objectid; 6350 6351 sizes[1] = name_len + sizeof(*ref); 6352 } 6353 6354 location = &BTRFS_I(inode)->location; 6355 location->objectid = objectid; 6356 location->offset = 0; 6357 location->type = BTRFS_INODE_ITEM_KEY; 6358 6359 ret = btrfs_insert_inode_locked(inode); 6360 if (ret < 0) { 6361 iput(inode); 6362 goto fail; 6363 } 6364 6365 path->leave_spinning = 1; 6366 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6367 if (ret != 0) 6368 goto fail_unlock; 6369 6370 inode_init_owner(inode, dir, mode); 6371 inode_set_bytes(inode, 0); 6372 6373 inode->i_mtime = current_time(inode); 6374 inode->i_atime = inode->i_mtime; 6375 inode->i_ctime = inode->i_mtime; 6376 BTRFS_I(inode)->i_otime = inode->i_mtime; 6377 6378 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6379 struct btrfs_inode_item); 6380 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6381 sizeof(*inode_item)); 6382 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6383 6384 if (name) { 6385 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6386 struct btrfs_inode_ref); 6387 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6388 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6389 ptr = (unsigned long)(ref + 1); 6390 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6391 } 6392 6393 btrfs_mark_buffer_dirty(path->nodes[0]); 6394 btrfs_free_path(path); 6395 6396 btrfs_inherit_iflags(inode, dir); 6397 6398 if (S_ISREG(mode)) { 6399 if (btrfs_test_opt(fs_info, NODATASUM)) 6400 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6401 if (btrfs_test_opt(fs_info, NODATACOW)) 6402 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6403 BTRFS_INODE_NODATASUM; 6404 } 6405 6406 inode_tree_add(inode); 6407 6408 trace_btrfs_inode_new(inode); 6409 btrfs_set_inode_last_trans(trans, inode); 6410 6411 btrfs_update_root_times(trans, root); 6412 6413 ret = btrfs_inode_inherit_props(trans, inode, dir); 6414 if (ret) 6415 btrfs_err(fs_info, 6416 "error inheriting props for ino %llu (root %llu): %d", 6417 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6418 6419 return inode; 6420 6421 fail_unlock: 6422 discard_new_inode(inode); 6423 fail: 6424 if (dir && name) 6425 BTRFS_I(dir)->index_cnt--; 6426 btrfs_free_path(path); 6427 return ERR_PTR(ret); 6428 } 6429 6430 /* 6431 * utility function to add 'inode' into 'parent_inode' with 6432 * a give name and a given sequence number. 6433 * if 'add_backref' is true, also insert a backref from the 6434 * inode to the parent directory. 6435 */ 6436 int btrfs_add_link(struct btrfs_trans_handle *trans, 6437 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6438 const char *name, int name_len, int add_backref, u64 index) 6439 { 6440 int ret = 0; 6441 struct btrfs_key key; 6442 struct btrfs_root *root = parent_inode->root; 6443 u64 ino = btrfs_ino(inode); 6444 u64 parent_ino = btrfs_ino(parent_inode); 6445 6446 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6447 memcpy(&key, &inode->root->root_key, sizeof(key)); 6448 } else { 6449 key.objectid = ino; 6450 key.type = BTRFS_INODE_ITEM_KEY; 6451 key.offset = 0; 6452 } 6453 6454 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6455 ret = btrfs_add_root_ref(trans, key.objectid, 6456 root->root_key.objectid, parent_ino, 6457 index, name, name_len); 6458 } else if (add_backref) { 6459 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6460 parent_ino, index); 6461 } 6462 6463 /* Nothing to clean up yet */ 6464 if (ret) 6465 return ret; 6466 6467 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6468 btrfs_inode_type(&inode->vfs_inode), index); 6469 if (ret == -EEXIST || ret == -EOVERFLOW) 6470 goto fail_dir_item; 6471 else if (ret) { 6472 btrfs_abort_transaction(trans, ret); 6473 return ret; 6474 } 6475 6476 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6477 name_len * 2); 6478 inode_inc_iversion(&parent_inode->vfs_inode); 6479 /* 6480 * If we are replaying a log tree, we do not want to update the mtime 6481 * and ctime of the parent directory with the current time, since the 6482 * log replay procedure is responsible for setting them to their correct 6483 * values (the ones it had when the fsync was done). 6484 */ 6485 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6486 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6487 6488 parent_inode->vfs_inode.i_mtime = now; 6489 parent_inode->vfs_inode.i_ctime = now; 6490 } 6491 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6492 if (ret) 6493 btrfs_abort_transaction(trans, ret); 6494 return ret; 6495 6496 fail_dir_item: 6497 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6498 u64 local_index; 6499 int err; 6500 err = btrfs_del_root_ref(trans, key.objectid, 6501 root->root_key.objectid, parent_ino, 6502 &local_index, name, name_len); 6503 if (err) 6504 btrfs_abort_transaction(trans, err); 6505 } else if (add_backref) { 6506 u64 local_index; 6507 int err; 6508 6509 err = btrfs_del_inode_ref(trans, root, name, name_len, 6510 ino, parent_ino, &local_index); 6511 if (err) 6512 btrfs_abort_transaction(trans, err); 6513 } 6514 6515 /* Return the original error code */ 6516 return ret; 6517 } 6518 6519 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6520 struct btrfs_inode *dir, struct dentry *dentry, 6521 struct btrfs_inode *inode, int backref, u64 index) 6522 { 6523 int err = btrfs_add_link(trans, dir, inode, 6524 dentry->d_name.name, dentry->d_name.len, 6525 backref, index); 6526 if (err > 0) 6527 err = -EEXIST; 6528 return err; 6529 } 6530 6531 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6532 umode_t mode, dev_t rdev) 6533 { 6534 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6535 struct btrfs_trans_handle *trans; 6536 struct btrfs_root *root = BTRFS_I(dir)->root; 6537 struct inode *inode = NULL; 6538 int err; 6539 u64 objectid; 6540 u64 index = 0; 6541 6542 /* 6543 * 2 for inode item and ref 6544 * 2 for dir items 6545 * 1 for xattr if selinux is on 6546 */ 6547 trans = btrfs_start_transaction(root, 5); 6548 if (IS_ERR(trans)) 6549 return PTR_ERR(trans); 6550 6551 err = btrfs_find_free_ino(root, &objectid); 6552 if (err) 6553 goto out_unlock; 6554 6555 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6556 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6557 mode, &index); 6558 if (IS_ERR(inode)) { 6559 err = PTR_ERR(inode); 6560 inode = NULL; 6561 goto out_unlock; 6562 } 6563 6564 /* 6565 * If the active LSM wants to access the inode during 6566 * d_instantiate it needs these. Smack checks to see 6567 * if the filesystem supports xattrs by looking at the 6568 * ops vector. 6569 */ 6570 inode->i_op = &btrfs_special_inode_operations; 6571 init_special_inode(inode, inode->i_mode, rdev); 6572 6573 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6574 if (err) 6575 goto out_unlock; 6576 6577 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6578 0, index); 6579 if (err) 6580 goto out_unlock; 6581 6582 btrfs_update_inode(trans, root, inode); 6583 d_instantiate_new(dentry, inode); 6584 6585 out_unlock: 6586 btrfs_end_transaction(trans); 6587 btrfs_btree_balance_dirty(fs_info); 6588 if (err && inode) { 6589 inode_dec_link_count(inode); 6590 discard_new_inode(inode); 6591 } 6592 return err; 6593 } 6594 6595 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6596 umode_t mode, bool excl) 6597 { 6598 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6599 struct btrfs_trans_handle *trans; 6600 struct btrfs_root *root = BTRFS_I(dir)->root; 6601 struct inode *inode = NULL; 6602 int err; 6603 u64 objectid; 6604 u64 index = 0; 6605 6606 /* 6607 * 2 for inode item and ref 6608 * 2 for dir items 6609 * 1 for xattr if selinux is on 6610 */ 6611 trans = btrfs_start_transaction(root, 5); 6612 if (IS_ERR(trans)) 6613 return PTR_ERR(trans); 6614 6615 err = btrfs_find_free_ino(root, &objectid); 6616 if (err) 6617 goto out_unlock; 6618 6619 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6620 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6621 mode, &index); 6622 if (IS_ERR(inode)) { 6623 err = PTR_ERR(inode); 6624 inode = NULL; 6625 goto out_unlock; 6626 } 6627 /* 6628 * If the active LSM wants to access the inode during 6629 * d_instantiate it needs these. Smack checks to see 6630 * if the filesystem supports xattrs by looking at the 6631 * ops vector. 6632 */ 6633 inode->i_fop = &btrfs_file_operations; 6634 inode->i_op = &btrfs_file_inode_operations; 6635 inode->i_mapping->a_ops = &btrfs_aops; 6636 6637 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6638 if (err) 6639 goto out_unlock; 6640 6641 err = btrfs_update_inode(trans, root, inode); 6642 if (err) 6643 goto out_unlock; 6644 6645 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6646 0, index); 6647 if (err) 6648 goto out_unlock; 6649 6650 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6651 d_instantiate_new(dentry, inode); 6652 6653 out_unlock: 6654 btrfs_end_transaction(trans); 6655 if (err && inode) { 6656 inode_dec_link_count(inode); 6657 discard_new_inode(inode); 6658 } 6659 btrfs_btree_balance_dirty(fs_info); 6660 return err; 6661 } 6662 6663 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6664 struct dentry *dentry) 6665 { 6666 struct btrfs_trans_handle *trans = NULL; 6667 struct btrfs_root *root = BTRFS_I(dir)->root; 6668 struct inode *inode = d_inode(old_dentry); 6669 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6670 u64 index; 6671 int err; 6672 int drop_inode = 0; 6673 6674 /* do not allow sys_link's with other subvols of the same device */ 6675 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6676 return -EXDEV; 6677 6678 if (inode->i_nlink >= BTRFS_LINK_MAX) 6679 return -EMLINK; 6680 6681 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6682 if (err) 6683 goto fail; 6684 6685 /* 6686 * 2 items for inode and inode ref 6687 * 2 items for dir items 6688 * 1 item for parent inode 6689 * 1 item for orphan item deletion if O_TMPFILE 6690 */ 6691 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6692 if (IS_ERR(trans)) { 6693 err = PTR_ERR(trans); 6694 trans = NULL; 6695 goto fail; 6696 } 6697 6698 /* There are several dir indexes for this inode, clear the cache. */ 6699 BTRFS_I(inode)->dir_index = 0ULL; 6700 inc_nlink(inode); 6701 inode_inc_iversion(inode); 6702 inode->i_ctime = current_time(inode); 6703 ihold(inode); 6704 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6705 6706 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6707 1, index); 6708 6709 if (err) { 6710 drop_inode = 1; 6711 } else { 6712 struct dentry *parent = dentry->d_parent; 6713 int ret; 6714 6715 err = btrfs_update_inode(trans, root, inode); 6716 if (err) 6717 goto fail; 6718 if (inode->i_nlink == 1) { 6719 /* 6720 * If new hard link count is 1, it's a file created 6721 * with open(2) O_TMPFILE flag. 6722 */ 6723 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6724 if (err) 6725 goto fail; 6726 } 6727 d_instantiate(dentry, inode); 6728 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6729 true, NULL); 6730 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6731 err = btrfs_commit_transaction(trans); 6732 trans = NULL; 6733 } 6734 } 6735 6736 fail: 6737 if (trans) 6738 btrfs_end_transaction(trans); 6739 if (drop_inode) { 6740 inode_dec_link_count(inode); 6741 iput(inode); 6742 } 6743 btrfs_btree_balance_dirty(fs_info); 6744 return err; 6745 } 6746 6747 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6748 { 6749 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6750 struct inode *inode = NULL; 6751 struct btrfs_trans_handle *trans; 6752 struct btrfs_root *root = BTRFS_I(dir)->root; 6753 int err = 0; 6754 u64 objectid = 0; 6755 u64 index = 0; 6756 6757 /* 6758 * 2 items for inode and ref 6759 * 2 items for dir items 6760 * 1 for xattr if selinux is on 6761 */ 6762 trans = btrfs_start_transaction(root, 5); 6763 if (IS_ERR(trans)) 6764 return PTR_ERR(trans); 6765 6766 err = btrfs_find_free_ino(root, &objectid); 6767 if (err) 6768 goto out_fail; 6769 6770 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6771 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6772 S_IFDIR | mode, &index); 6773 if (IS_ERR(inode)) { 6774 err = PTR_ERR(inode); 6775 inode = NULL; 6776 goto out_fail; 6777 } 6778 6779 /* these must be set before we unlock the inode */ 6780 inode->i_op = &btrfs_dir_inode_operations; 6781 inode->i_fop = &btrfs_dir_file_operations; 6782 6783 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6784 if (err) 6785 goto out_fail; 6786 6787 btrfs_i_size_write(BTRFS_I(inode), 0); 6788 err = btrfs_update_inode(trans, root, inode); 6789 if (err) 6790 goto out_fail; 6791 6792 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6793 dentry->d_name.name, 6794 dentry->d_name.len, 0, index); 6795 if (err) 6796 goto out_fail; 6797 6798 d_instantiate_new(dentry, inode); 6799 6800 out_fail: 6801 btrfs_end_transaction(trans); 6802 if (err && inode) { 6803 inode_dec_link_count(inode); 6804 discard_new_inode(inode); 6805 } 6806 btrfs_btree_balance_dirty(fs_info); 6807 return err; 6808 } 6809 6810 static noinline int uncompress_inline(struct btrfs_path *path, 6811 struct page *page, 6812 size_t pg_offset, u64 extent_offset, 6813 struct btrfs_file_extent_item *item) 6814 { 6815 int ret; 6816 struct extent_buffer *leaf = path->nodes[0]; 6817 char *tmp; 6818 size_t max_size; 6819 unsigned long inline_size; 6820 unsigned long ptr; 6821 int compress_type; 6822 6823 WARN_ON(pg_offset != 0); 6824 compress_type = btrfs_file_extent_compression(leaf, item); 6825 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6826 inline_size = btrfs_file_extent_inline_item_len(leaf, 6827 btrfs_item_nr(path->slots[0])); 6828 tmp = kmalloc(inline_size, GFP_NOFS); 6829 if (!tmp) 6830 return -ENOMEM; 6831 ptr = btrfs_file_extent_inline_start(item); 6832 6833 read_extent_buffer(leaf, tmp, ptr, inline_size); 6834 6835 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6836 ret = btrfs_decompress(compress_type, tmp, page, 6837 extent_offset, inline_size, max_size); 6838 6839 /* 6840 * decompression code contains a memset to fill in any space between the end 6841 * of the uncompressed data and the end of max_size in case the decompressed 6842 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6843 * the end of an inline extent and the beginning of the next block, so we 6844 * cover that region here. 6845 */ 6846 6847 if (max_size + pg_offset < PAGE_SIZE) { 6848 char *map = kmap(page); 6849 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6850 kunmap(page); 6851 } 6852 kfree(tmp); 6853 return ret; 6854 } 6855 6856 /* 6857 * a bit scary, this does extent mapping from logical file offset to the disk. 6858 * the ugly parts come from merging extents from the disk with the in-ram 6859 * representation. This gets more complex because of the data=ordered code, 6860 * where the in-ram extents might be locked pending data=ordered completion. 6861 * 6862 * This also copies inline extents directly into the page. 6863 */ 6864 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6865 struct page *page, 6866 size_t pg_offset, u64 start, u64 len, 6867 int create) 6868 { 6869 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6870 int ret; 6871 int err = 0; 6872 u64 extent_start = 0; 6873 u64 extent_end = 0; 6874 u64 objectid = btrfs_ino(inode); 6875 int extent_type = -1; 6876 struct btrfs_path *path = NULL; 6877 struct btrfs_root *root = inode->root; 6878 struct btrfs_file_extent_item *item; 6879 struct extent_buffer *leaf; 6880 struct btrfs_key found_key; 6881 struct extent_map *em = NULL; 6882 struct extent_map_tree *em_tree = &inode->extent_tree; 6883 struct extent_io_tree *io_tree = &inode->io_tree; 6884 const bool new_inline = !page || create; 6885 6886 read_lock(&em_tree->lock); 6887 em = lookup_extent_mapping(em_tree, start, len); 6888 if (em) 6889 em->bdev = fs_info->fs_devices->latest_bdev; 6890 read_unlock(&em_tree->lock); 6891 6892 if (em) { 6893 if (em->start > start || em->start + em->len <= start) 6894 free_extent_map(em); 6895 else if (em->block_start == EXTENT_MAP_INLINE && page) 6896 free_extent_map(em); 6897 else 6898 goto out; 6899 } 6900 em = alloc_extent_map(); 6901 if (!em) { 6902 err = -ENOMEM; 6903 goto out; 6904 } 6905 em->bdev = fs_info->fs_devices->latest_bdev; 6906 em->start = EXTENT_MAP_HOLE; 6907 em->orig_start = EXTENT_MAP_HOLE; 6908 em->len = (u64)-1; 6909 em->block_len = (u64)-1; 6910 6911 path = btrfs_alloc_path(); 6912 if (!path) { 6913 err = -ENOMEM; 6914 goto out; 6915 } 6916 6917 /* Chances are we'll be called again, so go ahead and do readahead */ 6918 path->reada = READA_FORWARD; 6919 6920 /* 6921 * Unless we're going to uncompress the inline extent, no sleep would 6922 * happen. 6923 */ 6924 path->leave_spinning = 1; 6925 6926 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6927 if (ret < 0) { 6928 err = ret; 6929 goto out; 6930 } else if (ret > 0) { 6931 if (path->slots[0] == 0) 6932 goto not_found; 6933 path->slots[0]--; 6934 } 6935 6936 leaf = path->nodes[0]; 6937 item = btrfs_item_ptr(leaf, path->slots[0], 6938 struct btrfs_file_extent_item); 6939 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6940 if (found_key.objectid != objectid || 6941 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6942 /* 6943 * If we backup past the first extent we want to move forward 6944 * and see if there is an extent in front of us, otherwise we'll 6945 * say there is a hole for our whole search range which can 6946 * cause problems. 6947 */ 6948 extent_end = start; 6949 goto next; 6950 } 6951 6952 extent_type = btrfs_file_extent_type(leaf, item); 6953 extent_start = found_key.offset; 6954 if (extent_type == BTRFS_FILE_EXTENT_REG || 6955 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6956 /* Only regular file could have regular/prealloc extent */ 6957 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6958 ret = -EUCLEAN; 6959 btrfs_crit(fs_info, 6960 "regular/prealloc extent found for non-regular inode %llu", 6961 btrfs_ino(inode)); 6962 goto out; 6963 } 6964 extent_end = extent_start + 6965 btrfs_file_extent_num_bytes(leaf, item); 6966 6967 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6968 extent_start); 6969 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6970 size_t size; 6971 6972 size = btrfs_file_extent_ram_bytes(leaf, item); 6973 extent_end = ALIGN(extent_start + size, 6974 fs_info->sectorsize); 6975 6976 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6977 path->slots[0], 6978 extent_start); 6979 } 6980 next: 6981 if (start >= extent_end) { 6982 path->slots[0]++; 6983 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6984 ret = btrfs_next_leaf(root, path); 6985 if (ret < 0) { 6986 err = ret; 6987 goto out; 6988 } else if (ret > 0) { 6989 goto not_found; 6990 } 6991 leaf = path->nodes[0]; 6992 } 6993 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6994 if (found_key.objectid != objectid || 6995 found_key.type != BTRFS_EXTENT_DATA_KEY) 6996 goto not_found; 6997 if (start + len <= found_key.offset) 6998 goto not_found; 6999 if (start > found_key.offset) 7000 goto next; 7001 7002 /* New extent overlaps with existing one */ 7003 em->start = start; 7004 em->orig_start = start; 7005 em->len = found_key.offset - start; 7006 em->block_start = EXTENT_MAP_HOLE; 7007 goto insert; 7008 } 7009 7010 btrfs_extent_item_to_extent_map(inode, path, item, 7011 new_inline, em); 7012 7013 if (extent_type == BTRFS_FILE_EXTENT_REG || 7014 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7015 goto insert; 7016 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7017 unsigned long ptr; 7018 char *map; 7019 size_t size; 7020 size_t extent_offset; 7021 size_t copy_size; 7022 7023 if (new_inline) 7024 goto out; 7025 7026 size = btrfs_file_extent_ram_bytes(leaf, item); 7027 extent_offset = page_offset(page) + pg_offset - extent_start; 7028 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7029 size - extent_offset); 7030 em->start = extent_start + extent_offset; 7031 em->len = ALIGN(copy_size, fs_info->sectorsize); 7032 em->orig_block_len = em->len; 7033 em->orig_start = em->start; 7034 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7035 7036 btrfs_set_path_blocking(path); 7037 if (!PageUptodate(page)) { 7038 if (btrfs_file_extent_compression(leaf, item) != 7039 BTRFS_COMPRESS_NONE) { 7040 ret = uncompress_inline(path, page, pg_offset, 7041 extent_offset, item); 7042 if (ret) { 7043 err = ret; 7044 goto out; 7045 } 7046 } else { 7047 map = kmap(page); 7048 read_extent_buffer(leaf, map + pg_offset, ptr, 7049 copy_size); 7050 if (pg_offset + copy_size < PAGE_SIZE) { 7051 memset(map + pg_offset + copy_size, 0, 7052 PAGE_SIZE - pg_offset - 7053 copy_size); 7054 } 7055 kunmap(page); 7056 } 7057 flush_dcache_page(page); 7058 } 7059 set_extent_uptodate(io_tree, em->start, 7060 extent_map_end(em) - 1, NULL, GFP_NOFS); 7061 goto insert; 7062 } 7063 not_found: 7064 em->start = start; 7065 em->orig_start = start; 7066 em->len = len; 7067 em->block_start = EXTENT_MAP_HOLE; 7068 insert: 7069 btrfs_release_path(path); 7070 if (em->start > start || extent_map_end(em) <= start) { 7071 btrfs_err(fs_info, 7072 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7073 em->start, em->len, start, len); 7074 err = -EIO; 7075 goto out; 7076 } 7077 7078 err = 0; 7079 write_lock(&em_tree->lock); 7080 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7081 write_unlock(&em_tree->lock); 7082 out: 7083 btrfs_free_path(path); 7084 7085 trace_btrfs_get_extent(root, inode, em); 7086 7087 if (err) { 7088 free_extent_map(em); 7089 return ERR_PTR(err); 7090 } 7091 BUG_ON(!em); /* Error is always set */ 7092 return em; 7093 } 7094 7095 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7096 u64 start, u64 len) 7097 { 7098 struct extent_map *em; 7099 struct extent_map *hole_em = NULL; 7100 u64 delalloc_start = start; 7101 u64 end; 7102 u64 delalloc_len; 7103 u64 delalloc_end; 7104 int err = 0; 7105 7106 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 7107 if (IS_ERR(em)) 7108 return em; 7109 /* 7110 * If our em maps to: 7111 * - a hole or 7112 * - a pre-alloc extent, 7113 * there might actually be delalloc bytes behind it. 7114 */ 7115 if (em->block_start != EXTENT_MAP_HOLE && 7116 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7117 return em; 7118 else 7119 hole_em = em; 7120 7121 /* check to see if we've wrapped (len == -1 or similar) */ 7122 end = start + len; 7123 if (end < start) 7124 end = (u64)-1; 7125 else 7126 end -= 1; 7127 7128 em = NULL; 7129 7130 /* ok, we didn't find anything, lets look for delalloc */ 7131 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7132 end, len, EXTENT_DELALLOC, 1); 7133 delalloc_end = delalloc_start + delalloc_len; 7134 if (delalloc_end < delalloc_start) 7135 delalloc_end = (u64)-1; 7136 7137 /* 7138 * We didn't find anything useful, return the original results from 7139 * get_extent() 7140 */ 7141 if (delalloc_start > end || delalloc_end <= start) { 7142 em = hole_em; 7143 hole_em = NULL; 7144 goto out; 7145 } 7146 7147 /* 7148 * Adjust the delalloc_start to make sure it doesn't go backwards from 7149 * the start they passed in 7150 */ 7151 delalloc_start = max(start, delalloc_start); 7152 delalloc_len = delalloc_end - delalloc_start; 7153 7154 if (delalloc_len > 0) { 7155 u64 hole_start; 7156 u64 hole_len; 7157 const u64 hole_end = extent_map_end(hole_em); 7158 7159 em = alloc_extent_map(); 7160 if (!em) { 7161 err = -ENOMEM; 7162 goto out; 7163 } 7164 em->bdev = NULL; 7165 7166 ASSERT(hole_em); 7167 /* 7168 * When btrfs_get_extent can't find anything it returns one 7169 * huge hole 7170 * 7171 * Make sure what it found really fits our range, and adjust to 7172 * make sure it is based on the start from the caller 7173 */ 7174 if (hole_end <= start || hole_em->start > end) { 7175 free_extent_map(hole_em); 7176 hole_em = NULL; 7177 } else { 7178 hole_start = max(hole_em->start, start); 7179 hole_len = hole_end - hole_start; 7180 } 7181 7182 if (hole_em && delalloc_start > hole_start) { 7183 /* 7184 * Our hole starts before our delalloc, so we have to 7185 * return just the parts of the hole that go until the 7186 * delalloc starts 7187 */ 7188 em->len = min(hole_len, delalloc_start - hole_start); 7189 em->start = hole_start; 7190 em->orig_start = hole_start; 7191 /* 7192 * Don't adjust block start at all, it is fixed at 7193 * EXTENT_MAP_HOLE 7194 */ 7195 em->block_start = hole_em->block_start; 7196 em->block_len = hole_len; 7197 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7198 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7199 } else { 7200 /* 7201 * Hole is out of passed range or it starts after 7202 * delalloc range 7203 */ 7204 em->start = delalloc_start; 7205 em->len = delalloc_len; 7206 em->orig_start = delalloc_start; 7207 em->block_start = EXTENT_MAP_DELALLOC; 7208 em->block_len = delalloc_len; 7209 } 7210 } else { 7211 return hole_em; 7212 } 7213 out: 7214 7215 free_extent_map(hole_em); 7216 if (err) { 7217 free_extent_map(em); 7218 return ERR_PTR(err); 7219 } 7220 return em; 7221 } 7222 7223 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7224 const u64 start, 7225 const u64 len, 7226 const u64 orig_start, 7227 const u64 block_start, 7228 const u64 block_len, 7229 const u64 orig_block_len, 7230 const u64 ram_bytes, 7231 const int type) 7232 { 7233 struct extent_map *em = NULL; 7234 int ret; 7235 7236 if (type != BTRFS_ORDERED_NOCOW) { 7237 em = create_io_em(inode, start, len, orig_start, 7238 block_start, block_len, orig_block_len, 7239 ram_bytes, 7240 BTRFS_COMPRESS_NONE, /* compress_type */ 7241 type); 7242 if (IS_ERR(em)) 7243 goto out; 7244 } 7245 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7246 len, block_len, type); 7247 if (ret) { 7248 if (em) { 7249 free_extent_map(em); 7250 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7251 start + len - 1, 0); 7252 } 7253 em = ERR_PTR(ret); 7254 } 7255 out: 7256 7257 return em; 7258 } 7259 7260 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7261 u64 start, u64 len) 7262 { 7263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7264 struct btrfs_root *root = BTRFS_I(inode)->root; 7265 struct extent_map *em; 7266 struct btrfs_key ins; 7267 u64 alloc_hint; 7268 int ret; 7269 7270 alloc_hint = get_extent_allocation_hint(inode, start, len); 7271 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7272 0, alloc_hint, &ins, 1, 1); 7273 if (ret) 7274 return ERR_PTR(ret); 7275 7276 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7277 ins.objectid, ins.offset, ins.offset, 7278 ins.offset, BTRFS_ORDERED_REGULAR); 7279 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7280 if (IS_ERR(em)) 7281 btrfs_free_reserved_extent(fs_info, ins.objectid, 7282 ins.offset, 1); 7283 7284 return em; 7285 } 7286 7287 /* 7288 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7289 * block must be cow'd 7290 */ 7291 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7292 u64 *orig_start, u64 *orig_block_len, 7293 u64 *ram_bytes) 7294 { 7295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7296 struct btrfs_path *path; 7297 int ret; 7298 struct extent_buffer *leaf; 7299 struct btrfs_root *root = BTRFS_I(inode)->root; 7300 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7301 struct btrfs_file_extent_item *fi; 7302 struct btrfs_key key; 7303 u64 disk_bytenr; 7304 u64 backref_offset; 7305 u64 extent_end; 7306 u64 num_bytes; 7307 int slot; 7308 int found_type; 7309 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7310 7311 path = btrfs_alloc_path(); 7312 if (!path) 7313 return -ENOMEM; 7314 7315 ret = btrfs_lookup_file_extent(NULL, root, path, 7316 btrfs_ino(BTRFS_I(inode)), offset, 0); 7317 if (ret < 0) 7318 goto out; 7319 7320 slot = path->slots[0]; 7321 if (ret == 1) { 7322 if (slot == 0) { 7323 /* can't find the item, must cow */ 7324 ret = 0; 7325 goto out; 7326 } 7327 slot--; 7328 } 7329 ret = 0; 7330 leaf = path->nodes[0]; 7331 btrfs_item_key_to_cpu(leaf, &key, slot); 7332 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7333 key.type != BTRFS_EXTENT_DATA_KEY) { 7334 /* not our file or wrong item type, must cow */ 7335 goto out; 7336 } 7337 7338 if (key.offset > offset) { 7339 /* Wrong offset, must cow */ 7340 goto out; 7341 } 7342 7343 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7344 found_type = btrfs_file_extent_type(leaf, fi); 7345 if (found_type != BTRFS_FILE_EXTENT_REG && 7346 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7347 /* not a regular extent, must cow */ 7348 goto out; 7349 } 7350 7351 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7352 goto out; 7353 7354 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7355 if (extent_end <= offset) 7356 goto out; 7357 7358 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7359 if (disk_bytenr == 0) 7360 goto out; 7361 7362 if (btrfs_file_extent_compression(leaf, fi) || 7363 btrfs_file_extent_encryption(leaf, fi) || 7364 btrfs_file_extent_other_encoding(leaf, fi)) 7365 goto out; 7366 7367 /* 7368 * Do the same check as in btrfs_cross_ref_exist but without the 7369 * unnecessary search. 7370 */ 7371 if (btrfs_file_extent_generation(leaf, fi) <= 7372 btrfs_root_last_snapshot(&root->root_item)) 7373 goto out; 7374 7375 backref_offset = btrfs_file_extent_offset(leaf, fi); 7376 7377 if (orig_start) { 7378 *orig_start = key.offset - backref_offset; 7379 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7380 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7381 } 7382 7383 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7384 goto out; 7385 7386 num_bytes = min(offset + *len, extent_end) - offset; 7387 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7388 u64 range_end; 7389 7390 range_end = round_up(offset + num_bytes, 7391 root->fs_info->sectorsize) - 1; 7392 ret = test_range_bit(io_tree, offset, range_end, 7393 EXTENT_DELALLOC, 0, NULL); 7394 if (ret) { 7395 ret = -EAGAIN; 7396 goto out; 7397 } 7398 } 7399 7400 btrfs_release_path(path); 7401 7402 /* 7403 * look for other files referencing this extent, if we 7404 * find any we must cow 7405 */ 7406 7407 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7408 key.offset - backref_offset, disk_bytenr); 7409 if (ret) { 7410 ret = 0; 7411 goto out; 7412 } 7413 7414 /* 7415 * adjust disk_bytenr and num_bytes to cover just the bytes 7416 * in this extent we are about to write. If there 7417 * are any csums in that range we have to cow in order 7418 * to keep the csums correct 7419 */ 7420 disk_bytenr += backref_offset; 7421 disk_bytenr += offset - key.offset; 7422 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7423 goto out; 7424 /* 7425 * all of the above have passed, it is safe to overwrite this extent 7426 * without cow 7427 */ 7428 *len = num_bytes; 7429 ret = 1; 7430 out: 7431 btrfs_free_path(path); 7432 return ret; 7433 } 7434 7435 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7436 struct extent_state **cached_state, int writing) 7437 { 7438 struct btrfs_ordered_extent *ordered; 7439 int ret = 0; 7440 7441 while (1) { 7442 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7443 cached_state); 7444 /* 7445 * We're concerned with the entire range that we're going to be 7446 * doing DIO to, so we need to make sure there's no ordered 7447 * extents in this range. 7448 */ 7449 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7450 lockend - lockstart + 1); 7451 7452 /* 7453 * We need to make sure there are no buffered pages in this 7454 * range either, we could have raced between the invalidate in 7455 * generic_file_direct_write and locking the extent. The 7456 * invalidate needs to happen so that reads after a write do not 7457 * get stale data. 7458 */ 7459 if (!ordered && 7460 (!writing || !filemap_range_has_page(inode->i_mapping, 7461 lockstart, lockend))) 7462 break; 7463 7464 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7465 cached_state); 7466 7467 if (ordered) { 7468 /* 7469 * If we are doing a DIO read and the ordered extent we 7470 * found is for a buffered write, we can not wait for it 7471 * to complete and retry, because if we do so we can 7472 * deadlock with concurrent buffered writes on page 7473 * locks. This happens only if our DIO read covers more 7474 * than one extent map, if at this point has already 7475 * created an ordered extent for a previous extent map 7476 * and locked its range in the inode's io tree, and a 7477 * concurrent write against that previous extent map's 7478 * range and this range started (we unlock the ranges 7479 * in the io tree only when the bios complete and 7480 * buffered writes always lock pages before attempting 7481 * to lock range in the io tree). 7482 */ 7483 if (writing || 7484 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7485 btrfs_start_ordered_extent(inode, ordered, 1); 7486 else 7487 ret = -ENOTBLK; 7488 btrfs_put_ordered_extent(ordered); 7489 } else { 7490 /* 7491 * We could trigger writeback for this range (and wait 7492 * for it to complete) and then invalidate the pages for 7493 * this range (through invalidate_inode_pages2_range()), 7494 * but that can lead us to a deadlock with a concurrent 7495 * call to readpages() (a buffered read or a defrag call 7496 * triggered a readahead) on a page lock due to an 7497 * ordered dio extent we created before but did not have 7498 * yet a corresponding bio submitted (whence it can not 7499 * complete), which makes readpages() wait for that 7500 * ordered extent to complete while holding a lock on 7501 * that page. 7502 */ 7503 ret = -ENOTBLK; 7504 } 7505 7506 if (ret) 7507 break; 7508 7509 cond_resched(); 7510 } 7511 7512 return ret; 7513 } 7514 7515 /* The callers of this must take lock_extent() */ 7516 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7517 u64 orig_start, u64 block_start, 7518 u64 block_len, u64 orig_block_len, 7519 u64 ram_bytes, int compress_type, 7520 int type) 7521 { 7522 struct extent_map_tree *em_tree; 7523 struct extent_map *em; 7524 struct btrfs_root *root = BTRFS_I(inode)->root; 7525 int ret; 7526 7527 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7528 type == BTRFS_ORDERED_COMPRESSED || 7529 type == BTRFS_ORDERED_NOCOW || 7530 type == BTRFS_ORDERED_REGULAR); 7531 7532 em_tree = &BTRFS_I(inode)->extent_tree; 7533 em = alloc_extent_map(); 7534 if (!em) 7535 return ERR_PTR(-ENOMEM); 7536 7537 em->start = start; 7538 em->orig_start = orig_start; 7539 em->len = len; 7540 em->block_len = block_len; 7541 em->block_start = block_start; 7542 em->bdev = root->fs_info->fs_devices->latest_bdev; 7543 em->orig_block_len = orig_block_len; 7544 em->ram_bytes = ram_bytes; 7545 em->generation = -1; 7546 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7547 if (type == BTRFS_ORDERED_PREALLOC) { 7548 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7549 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7550 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7551 em->compress_type = compress_type; 7552 } 7553 7554 do { 7555 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7556 em->start + em->len - 1, 0); 7557 write_lock(&em_tree->lock); 7558 ret = add_extent_mapping(em_tree, em, 1); 7559 write_unlock(&em_tree->lock); 7560 /* 7561 * The caller has taken lock_extent(), who could race with us 7562 * to add em? 7563 */ 7564 } while (ret == -EEXIST); 7565 7566 if (ret) { 7567 free_extent_map(em); 7568 return ERR_PTR(ret); 7569 } 7570 7571 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7572 return em; 7573 } 7574 7575 7576 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7577 struct buffer_head *bh_result, 7578 struct inode *inode, 7579 u64 start, u64 len) 7580 { 7581 if (em->block_start == EXTENT_MAP_HOLE || 7582 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7583 return -ENOENT; 7584 7585 len = min(len, em->len - (start - em->start)); 7586 7587 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7588 inode->i_blkbits; 7589 bh_result->b_size = len; 7590 bh_result->b_bdev = em->bdev; 7591 set_buffer_mapped(bh_result); 7592 7593 return 0; 7594 } 7595 7596 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7597 struct buffer_head *bh_result, 7598 struct inode *inode, 7599 struct btrfs_dio_data *dio_data, 7600 u64 start, u64 len) 7601 { 7602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7603 struct extent_map *em = *map; 7604 int ret = 0; 7605 7606 /* 7607 * We don't allocate a new extent in the following cases 7608 * 7609 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7610 * existing extent. 7611 * 2) The extent is marked as PREALLOC. We're good to go here and can 7612 * just use the extent. 7613 * 7614 */ 7615 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7616 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7617 em->block_start != EXTENT_MAP_HOLE)) { 7618 int type; 7619 u64 block_start, orig_start, orig_block_len, ram_bytes; 7620 7621 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7622 type = BTRFS_ORDERED_PREALLOC; 7623 else 7624 type = BTRFS_ORDERED_NOCOW; 7625 len = min(len, em->len - (start - em->start)); 7626 block_start = em->block_start + (start - em->start); 7627 7628 if (can_nocow_extent(inode, start, &len, &orig_start, 7629 &orig_block_len, &ram_bytes) == 1 && 7630 btrfs_inc_nocow_writers(fs_info, block_start)) { 7631 struct extent_map *em2; 7632 7633 em2 = btrfs_create_dio_extent(inode, start, len, 7634 orig_start, block_start, 7635 len, orig_block_len, 7636 ram_bytes, type); 7637 btrfs_dec_nocow_writers(fs_info, block_start); 7638 if (type == BTRFS_ORDERED_PREALLOC) { 7639 free_extent_map(em); 7640 *map = em = em2; 7641 } 7642 7643 if (em2 && IS_ERR(em2)) { 7644 ret = PTR_ERR(em2); 7645 goto out; 7646 } 7647 /* 7648 * For inode marked NODATACOW or extent marked PREALLOC, 7649 * use the existing or preallocated extent, so does not 7650 * need to adjust btrfs_space_info's bytes_may_use. 7651 */ 7652 btrfs_free_reserved_data_space_noquota(inode, start, 7653 len); 7654 goto skip_cow; 7655 } 7656 } 7657 7658 /* this will cow the extent */ 7659 len = bh_result->b_size; 7660 free_extent_map(em); 7661 *map = em = btrfs_new_extent_direct(inode, start, len); 7662 if (IS_ERR(em)) { 7663 ret = PTR_ERR(em); 7664 goto out; 7665 } 7666 7667 len = min(len, em->len - (start - em->start)); 7668 7669 skip_cow: 7670 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7671 inode->i_blkbits; 7672 bh_result->b_size = len; 7673 bh_result->b_bdev = em->bdev; 7674 set_buffer_mapped(bh_result); 7675 7676 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7677 set_buffer_new(bh_result); 7678 7679 /* 7680 * Need to update the i_size under the extent lock so buffered 7681 * readers will get the updated i_size when we unlock. 7682 */ 7683 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7684 i_size_write(inode, start + len); 7685 7686 WARN_ON(dio_data->reserve < len); 7687 dio_data->reserve -= len; 7688 dio_data->unsubmitted_oe_range_end = start + len; 7689 current->journal_info = dio_data; 7690 out: 7691 return ret; 7692 } 7693 7694 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7695 struct buffer_head *bh_result, int create) 7696 { 7697 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7698 struct extent_map *em; 7699 struct extent_state *cached_state = NULL; 7700 struct btrfs_dio_data *dio_data = NULL; 7701 u64 start = iblock << inode->i_blkbits; 7702 u64 lockstart, lockend; 7703 u64 len = bh_result->b_size; 7704 int unlock_bits = EXTENT_LOCKED; 7705 int ret = 0; 7706 7707 if (create) 7708 unlock_bits |= EXTENT_DIRTY; 7709 else 7710 len = min_t(u64, len, fs_info->sectorsize); 7711 7712 lockstart = start; 7713 lockend = start + len - 1; 7714 7715 if (current->journal_info) { 7716 /* 7717 * Need to pull our outstanding extents and set journal_info to NULL so 7718 * that anything that needs to check if there's a transaction doesn't get 7719 * confused. 7720 */ 7721 dio_data = current->journal_info; 7722 current->journal_info = NULL; 7723 } 7724 7725 /* 7726 * If this errors out it's because we couldn't invalidate pagecache for 7727 * this range and we need to fallback to buffered. 7728 */ 7729 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7730 create)) { 7731 ret = -ENOTBLK; 7732 goto err; 7733 } 7734 7735 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7736 if (IS_ERR(em)) { 7737 ret = PTR_ERR(em); 7738 goto unlock_err; 7739 } 7740 7741 /* 7742 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7743 * io. INLINE is special, and we could probably kludge it in here, but 7744 * it's still buffered so for safety lets just fall back to the generic 7745 * buffered path. 7746 * 7747 * For COMPRESSED we _have_ to read the entire extent in so we can 7748 * decompress it, so there will be buffering required no matter what we 7749 * do, so go ahead and fallback to buffered. 7750 * 7751 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7752 * to buffered IO. Don't blame me, this is the price we pay for using 7753 * the generic code. 7754 */ 7755 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7756 em->block_start == EXTENT_MAP_INLINE) { 7757 free_extent_map(em); 7758 ret = -ENOTBLK; 7759 goto unlock_err; 7760 } 7761 7762 if (create) { 7763 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7764 dio_data, start, len); 7765 if (ret < 0) 7766 goto unlock_err; 7767 7768 /* clear and unlock the entire range */ 7769 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7770 unlock_bits, 1, 0, &cached_state); 7771 } else { 7772 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7773 start, len); 7774 /* Can be negative only if we read from a hole */ 7775 if (ret < 0) { 7776 ret = 0; 7777 free_extent_map(em); 7778 goto unlock_err; 7779 } 7780 /* 7781 * We need to unlock only the end area that we aren't using. 7782 * The rest is going to be unlocked by the endio routine. 7783 */ 7784 lockstart = start + bh_result->b_size; 7785 if (lockstart < lockend) { 7786 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7787 lockend, unlock_bits, 1, 0, 7788 &cached_state); 7789 } else { 7790 free_extent_state(cached_state); 7791 } 7792 } 7793 7794 free_extent_map(em); 7795 7796 return 0; 7797 7798 unlock_err: 7799 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7800 unlock_bits, 1, 0, &cached_state); 7801 err: 7802 if (dio_data) 7803 current->journal_info = dio_data; 7804 return ret; 7805 } 7806 7807 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7808 struct bio *bio, 7809 int mirror_num) 7810 { 7811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7812 blk_status_t ret; 7813 7814 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7815 7816 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7817 if (ret) 7818 return ret; 7819 7820 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7821 7822 return ret; 7823 } 7824 7825 static int btrfs_check_dio_repairable(struct inode *inode, 7826 struct bio *failed_bio, 7827 struct io_failure_record *failrec, 7828 int failed_mirror) 7829 { 7830 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7831 int num_copies; 7832 7833 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7834 if (num_copies == 1) { 7835 /* 7836 * we only have a single copy of the data, so don't bother with 7837 * all the retry and error correction code that follows. no 7838 * matter what the error is, it is very likely to persist. 7839 */ 7840 btrfs_debug(fs_info, 7841 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7842 num_copies, failrec->this_mirror, failed_mirror); 7843 return 0; 7844 } 7845 7846 failrec->failed_mirror = failed_mirror; 7847 failrec->this_mirror++; 7848 if (failrec->this_mirror == failed_mirror) 7849 failrec->this_mirror++; 7850 7851 if (failrec->this_mirror > num_copies) { 7852 btrfs_debug(fs_info, 7853 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7854 num_copies, failrec->this_mirror, failed_mirror); 7855 return 0; 7856 } 7857 7858 return 1; 7859 } 7860 7861 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7862 struct page *page, unsigned int pgoff, 7863 u64 start, u64 end, int failed_mirror, 7864 bio_end_io_t *repair_endio, void *repair_arg) 7865 { 7866 struct io_failure_record *failrec; 7867 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7868 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7869 struct bio *bio; 7870 int isector; 7871 unsigned int read_mode = 0; 7872 int segs; 7873 int ret; 7874 blk_status_t status; 7875 struct bio_vec bvec; 7876 7877 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7878 7879 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7880 if (ret) 7881 return errno_to_blk_status(ret); 7882 7883 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7884 failed_mirror); 7885 if (!ret) { 7886 free_io_failure(failure_tree, io_tree, failrec); 7887 return BLK_STS_IOERR; 7888 } 7889 7890 segs = bio_segments(failed_bio); 7891 bio_get_first_bvec(failed_bio, &bvec); 7892 if (segs > 1 || 7893 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7894 read_mode |= REQ_FAILFAST_DEV; 7895 7896 isector = start - btrfs_io_bio(failed_bio)->logical; 7897 isector >>= inode->i_sb->s_blocksize_bits; 7898 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7899 pgoff, isector, repair_endio, repair_arg); 7900 bio->bi_opf = REQ_OP_READ | read_mode; 7901 7902 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7903 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7904 read_mode, failrec->this_mirror, failrec->in_validation); 7905 7906 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7907 if (status) { 7908 free_io_failure(failure_tree, io_tree, failrec); 7909 bio_put(bio); 7910 } 7911 7912 return status; 7913 } 7914 7915 struct btrfs_retry_complete { 7916 struct completion done; 7917 struct inode *inode; 7918 u64 start; 7919 int uptodate; 7920 }; 7921 7922 static void btrfs_retry_endio_nocsum(struct bio *bio) 7923 { 7924 struct btrfs_retry_complete *done = bio->bi_private; 7925 struct inode *inode = done->inode; 7926 struct bio_vec *bvec; 7927 struct extent_io_tree *io_tree, *failure_tree; 7928 struct bvec_iter_all iter_all; 7929 7930 if (bio->bi_status) 7931 goto end; 7932 7933 ASSERT(bio->bi_vcnt == 1); 7934 io_tree = &BTRFS_I(inode)->io_tree; 7935 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7936 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7937 7938 done->uptodate = 1; 7939 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7940 bio_for_each_segment_all(bvec, bio, iter_all) 7941 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7942 io_tree, done->start, bvec->bv_page, 7943 btrfs_ino(BTRFS_I(inode)), 0); 7944 end: 7945 complete(&done->done); 7946 bio_put(bio); 7947 } 7948 7949 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7950 struct btrfs_io_bio *io_bio) 7951 { 7952 struct btrfs_fs_info *fs_info; 7953 struct bio_vec bvec; 7954 struct bvec_iter iter; 7955 struct btrfs_retry_complete done; 7956 u64 start; 7957 unsigned int pgoff; 7958 u32 sectorsize; 7959 int nr_sectors; 7960 blk_status_t ret; 7961 blk_status_t err = BLK_STS_OK; 7962 7963 fs_info = BTRFS_I(inode)->root->fs_info; 7964 sectorsize = fs_info->sectorsize; 7965 7966 start = io_bio->logical; 7967 done.inode = inode; 7968 io_bio->bio.bi_iter = io_bio->iter; 7969 7970 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7971 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7972 pgoff = bvec.bv_offset; 7973 7974 next_block_or_try_again: 7975 done.uptodate = 0; 7976 done.start = start; 7977 init_completion(&done.done); 7978 7979 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7980 pgoff, start, start + sectorsize - 1, 7981 io_bio->mirror_num, 7982 btrfs_retry_endio_nocsum, &done); 7983 if (ret) { 7984 err = ret; 7985 goto next; 7986 } 7987 7988 wait_for_completion_io(&done.done); 7989 7990 if (!done.uptodate) { 7991 /* We might have another mirror, so try again */ 7992 goto next_block_or_try_again; 7993 } 7994 7995 next: 7996 start += sectorsize; 7997 7998 nr_sectors--; 7999 if (nr_sectors) { 8000 pgoff += sectorsize; 8001 ASSERT(pgoff < PAGE_SIZE); 8002 goto next_block_or_try_again; 8003 } 8004 } 8005 8006 return err; 8007 } 8008 8009 static void btrfs_retry_endio(struct bio *bio) 8010 { 8011 struct btrfs_retry_complete *done = bio->bi_private; 8012 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8013 struct extent_io_tree *io_tree, *failure_tree; 8014 struct inode *inode = done->inode; 8015 struct bio_vec *bvec; 8016 int uptodate; 8017 int ret; 8018 int i = 0; 8019 struct bvec_iter_all iter_all; 8020 8021 if (bio->bi_status) 8022 goto end; 8023 8024 uptodate = 1; 8025 8026 ASSERT(bio->bi_vcnt == 1); 8027 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 8028 8029 io_tree = &BTRFS_I(inode)->io_tree; 8030 failure_tree = &BTRFS_I(inode)->io_failure_tree; 8031 8032 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8033 bio_for_each_segment_all(bvec, bio, iter_all) { 8034 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8035 bvec->bv_offset, done->start, 8036 bvec->bv_len); 8037 if (!ret) 8038 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8039 failure_tree, io_tree, done->start, 8040 bvec->bv_page, 8041 btrfs_ino(BTRFS_I(inode)), 8042 bvec->bv_offset); 8043 else 8044 uptodate = 0; 8045 i++; 8046 } 8047 8048 done->uptodate = uptodate; 8049 end: 8050 complete(&done->done); 8051 bio_put(bio); 8052 } 8053 8054 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8055 struct btrfs_io_bio *io_bio, blk_status_t err) 8056 { 8057 struct btrfs_fs_info *fs_info; 8058 struct bio_vec bvec; 8059 struct bvec_iter iter; 8060 struct btrfs_retry_complete done; 8061 u64 start; 8062 u64 offset = 0; 8063 u32 sectorsize; 8064 int nr_sectors; 8065 unsigned int pgoff; 8066 int csum_pos; 8067 bool uptodate = (err == 0); 8068 int ret; 8069 blk_status_t status; 8070 8071 fs_info = BTRFS_I(inode)->root->fs_info; 8072 sectorsize = fs_info->sectorsize; 8073 8074 err = BLK_STS_OK; 8075 start = io_bio->logical; 8076 done.inode = inode; 8077 io_bio->bio.bi_iter = io_bio->iter; 8078 8079 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8080 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8081 8082 pgoff = bvec.bv_offset; 8083 next_block: 8084 if (uptodate) { 8085 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8086 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8087 bvec.bv_page, pgoff, start, sectorsize); 8088 if (likely(!ret)) 8089 goto next; 8090 } 8091 try_again: 8092 done.uptodate = 0; 8093 done.start = start; 8094 init_completion(&done.done); 8095 8096 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8097 pgoff, start, start + sectorsize - 1, 8098 io_bio->mirror_num, btrfs_retry_endio, 8099 &done); 8100 if (status) { 8101 err = status; 8102 goto next; 8103 } 8104 8105 wait_for_completion_io(&done.done); 8106 8107 if (!done.uptodate) { 8108 /* We might have another mirror, so try again */ 8109 goto try_again; 8110 } 8111 next: 8112 offset += sectorsize; 8113 start += sectorsize; 8114 8115 ASSERT(nr_sectors); 8116 8117 nr_sectors--; 8118 if (nr_sectors) { 8119 pgoff += sectorsize; 8120 ASSERT(pgoff < PAGE_SIZE); 8121 goto next_block; 8122 } 8123 } 8124 8125 return err; 8126 } 8127 8128 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8129 struct btrfs_io_bio *io_bio, blk_status_t err) 8130 { 8131 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8132 8133 if (skip_csum) { 8134 if (unlikely(err)) 8135 return __btrfs_correct_data_nocsum(inode, io_bio); 8136 else 8137 return BLK_STS_OK; 8138 } else { 8139 return __btrfs_subio_endio_read(inode, io_bio, err); 8140 } 8141 } 8142 8143 static void btrfs_endio_direct_read(struct bio *bio) 8144 { 8145 struct btrfs_dio_private *dip = bio->bi_private; 8146 struct inode *inode = dip->inode; 8147 struct bio *dio_bio; 8148 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8149 blk_status_t err = bio->bi_status; 8150 8151 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8152 err = btrfs_subio_endio_read(inode, io_bio, err); 8153 8154 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8155 dip->logical_offset + dip->bytes - 1); 8156 dio_bio = dip->dio_bio; 8157 8158 kfree(dip); 8159 8160 dio_bio->bi_status = err; 8161 dio_end_io(dio_bio); 8162 btrfs_io_bio_free_csum(io_bio); 8163 bio_put(bio); 8164 } 8165 8166 static void __endio_write_update_ordered(struct inode *inode, 8167 const u64 offset, const u64 bytes, 8168 const bool uptodate) 8169 { 8170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8171 struct btrfs_ordered_extent *ordered = NULL; 8172 struct btrfs_workqueue *wq; 8173 btrfs_work_func_t func; 8174 u64 ordered_offset = offset; 8175 u64 ordered_bytes = bytes; 8176 u64 last_offset; 8177 8178 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8179 wq = fs_info->endio_freespace_worker; 8180 func = btrfs_freespace_write_helper; 8181 } else { 8182 wq = fs_info->endio_write_workers; 8183 func = btrfs_endio_write_helper; 8184 } 8185 8186 while (ordered_offset < offset + bytes) { 8187 last_offset = ordered_offset; 8188 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8189 &ordered_offset, 8190 ordered_bytes, 8191 uptodate)) { 8192 btrfs_init_work(&ordered->work, func, 8193 finish_ordered_fn, 8194 NULL, NULL); 8195 btrfs_queue_work(wq, &ordered->work); 8196 } 8197 /* 8198 * If btrfs_dec_test_ordered_pending does not find any ordered 8199 * extent in the range, we can exit. 8200 */ 8201 if (ordered_offset == last_offset) 8202 return; 8203 /* 8204 * Our bio might span multiple ordered extents. In this case 8205 * we keep going until we have accounted the whole dio. 8206 */ 8207 if (ordered_offset < offset + bytes) { 8208 ordered_bytes = offset + bytes - ordered_offset; 8209 ordered = NULL; 8210 } 8211 } 8212 } 8213 8214 static void btrfs_endio_direct_write(struct bio *bio) 8215 { 8216 struct btrfs_dio_private *dip = bio->bi_private; 8217 struct bio *dio_bio = dip->dio_bio; 8218 8219 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8220 dip->bytes, !bio->bi_status); 8221 8222 kfree(dip); 8223 8224 dio_bio->bi_status = bio->bi_status; 8225 dio_end_io(dio_bio); 8226 bio_put(bio); 8227 } 8228 8229 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8230 struct bio *bio, u64 offset) 8231 { 8232 struct inode *inode = private_data; 8233 blk_status_t ret; 8234 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8235 BUG_ON(ret); /* -ENOMEM */ 8236 return 0; 8237 } 8238 8239 static void btrfs_end_dio_bio(struct bio *bio) 8240 { 8241 struct btrfs_dio_private *dip = bio->bi_private; 8242 blk_status_t err = bio->bi_status; 8243 8244 if (err) 8245 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8246 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8247 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8248 bio->bi_opf, 8249 (unsigned long long)bio->bi_iter.bi_sector, 8250 bio->bi_iter.bi_size, err); 8251 8252 if (dip->subio_endio) 8253 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8254 8255 if (err) { 8256 /* 8257 * We want to perceive the errors flag being set before 8258 * decrementing the reference count. We don't need a barrier 8259 * since atomic operations with a return value are fully 8260 * ordered as per atomic_t.txt 8261 */ 8262 dip->errors = 1; 8263 } 8264 8265 /* if there are more bios still pending for this dio, just exit */ 8266 if (!atomic_dec_and_test(&dip->pending_bios)) 8267 goto out; 8268 8269 if (dip->errors) { 8270 bio_io_error(dip->orig_bio); 8271 } else { 8272 dip->dio_bio->bi_status = BLK_STS_OK; 8273 bio_endio(dip->orig_bio); 8274 } 8275 out: 8276 bio_put(bio); 8277 } 8278 8279 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8280 struct btrfs_dio_private *dip, 8281 struct bio *bio, 8282 u64 file_offset) 8283 { 8284 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8285 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8286 blk_status_t ret; 8287 8288 /* 8289 * We load all the csum data we need when we submit 8290 * the first bio to reduce the csum tree search and 8291 * contention. 8292 */ 8293 if (dip->logical_offset == file_offset) { 8294 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8295 file_offset); 8296 if (ret) 8297 return ret; 8298 } 8299 8300 if (bio == dip->orig_bio) 8301 return 0; 8302 8303 file_offset -= dip->logical_offset; 8304 file_offset >>= inode->i_sb->s_blocksize_bits; 8305 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8306 8307 return 0; 8308 } 8309 8310 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8311 struct inode *inode, u64 file_offset, int async_submit) 8312 { 8313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8314 struct btrfs_dio_private *dip = bio->bi_private; 8315 bool write = bio_op(bio) == REQ_OP_WRITE; 8316 blk_status_t ret; 8317 8318 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8319 if (async_submit) 8320 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8321 8322 if (!write) { 8323 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8324 if (ret) 8325 goto err; 8326 } 8327 8328 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8329 goto map; 8330 8331 if (write && async_submit) { 8332 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8333 file_offset, inode, 8334 btrfs_submit_bio_start_direct_io); 8335 goto err; 8336 } else if (write) { 8337 /* 8338 * If we aren't doing async submit, calculate the csum of the 8339 * bio now. 8340 */ 8341 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8342 if (ret) 8343 goto err; 8344 } else { 8345 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8346 file_offset); 8347 if (ret) 8348 goto err; 8349 } 8350 map: 8351 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8352 err: 8353 return ret; 8354 } 8355 8356 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8357 { 8358 struct inode *inode = dip->inode; 8359 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8360 struct bio *bio; 8361 struct bio *orig_bio = dip->orig_bio; 8362 u64 start_sector = orig_bio->bi_iter.bi_sector; 8363 u64 file_offset = dip->logical_offset; 8364 int async_submit = 0; 8365 u64 submit_len; 8366 int clone_offset = 0; 8367 int clone_len; 8368 int ret; 8369 blk_status_t status; 8370 struct btrfs_io_geometry geom; 8371 8372 submit_len = orig_bio->bi_iter.bi_size; 8373 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8374 start_sector << 9, submit_len, &geom); 8375 if (ret) 8376 return -EIO; 8377 8378 if (geom.len >= submit_len) { 8379 bio = orig_bio; 8380 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8381 goto submit; 8382 } 8383 8384 /* async crcs make it difficult to collect full stripe writes. */ 8385 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8386 async_submit = 0; 8387 else 8388 async_submit = 1; 8389 8390 /* bio split */ 8391 ASSERT(geom.len <= INT_MAX); 8392 atomic_inc(&dip->pending_bios); 8393 do { 8394 clone_len = min_t(int, submit_len, geom.len); 8395 8396 /* 8397 * This will never fail as it's passing GPF_NOFS and 8398 * the allocation is backed by btrfs_bioset. 8399 */ 8400 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8401 clone_len); 8402 bio->bi_private = dip; 8403 bio->bi_end_io = btrfs_end_dio_bio; 8404 btrfs_io_bio(bio)->logical = file_offset; 8405 8406 ASSERT(submit_len >= clone_len); 8407 submit_len -= clone_len; 8408 if (submit_len == 0) 8409 break; 8410 8411 /* 8412 * Increase the count before we submit the bio so we know 8413 * the end IO handler won't happen before we increase the 8414 * count. Otherwise, the dip might get freed before we're 8415 * done setting it up. 8416 */ 8417 atomic_inc(&dip->pending_bios); 8418 8419 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8420 async_submit); 8421 if (status) { 8422 bio_put(bio); 8423 atomic_dec(&dip->pending_bios); 8424 goto out_err; 8425 } 8426 8427 clone_offset += clone_len; 8428 start_sector += clone_len >> 9; 8429 file_offset += clone_len; 8430 8431 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio), 8432 start_sector << 9, submit_len, &geom); 8433 if (ret) 8434 goto out_err; 8435 } while (submit_len > 0); 8436 8437 submit: 8438 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8439 if (!status) 8440 return 0; 8441 8442 bio_put(bio); 8443 out_err: 8444 dip->errors = 1; 8445 /* 8446 * Before atomic variable goto zero, we must make sure dip->errors is 8447 * perceived to be set. This ordering is ensured by the fact that an 8448 * atomic operations with a return value are fully ordered as per 8449 * atomic_t.txt 8450 */ 8451 if (atomic_dec_and_test(&dip->pending_bios)) 8452 bio_io_error(dip->orig_bio); 8453 8454 /* bio_end_io() will handle error, so we needn't return it */ 8455 return 0; 8456 } 8457 8458 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8459 loff_t file_offset) 8460 { 8461 struct btrfs_dio_private *dip = NULL; 8462 struct bio *bio = NULL; 8463 struct btrfs_io_bio *io_bio; 8464 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8465 int ret = 0; 8466 8467 bio = btrfs_bio_clone(dio_bio); 8468 8469 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8470 if (!dip) { 8471 ret = -ENOMEM; 8472 goto free_ordered; 8473 } 8474 8475 dip->private = dio_bio->bi_private; 8476 dip->inode = inode; 8477 dip->logical_offset = file_offset; 8478 dip->bytes = dio_bio->bi_iter.bi_size; 8479 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8480 bio->bi_private = dip; 8481 dip->orig_bio = bio; 8482 dip->dio_bio = dio_bio; 8483 atomic_set(&dip->pending_bios, 0); 8484 io_bio = btrfs_io_bio(bio); 8485 io_bio->logical = file_offset; 8486 8487 if (write) { 8488 bio->bi_end_io = btrfs_endio_direct_write; 8489 } else { 8490 bio->bi_end_io = btrfs_endio_direct_read; 8491 dip->subio_endio = btrfs_subio_endio_read; 8492 } 8493 8494 /* 8495 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8496 * even if we fail to submit a bio, because in such case we do the 8497 * corresponding error handling below and it must not be done a second 8498 * time by btrfs_direct_IO(). 8499 */ 8500 if (write) { 8501 struct btrfs_dio_data *dio_data = current->journal_info; 8502 8503 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8504 dip->bytes; 8505 dio_data->unsubmitted_oe_range_start = 8506 dio_data->unsubmitted_oe_range_end; 8507 } 8508 8509 ret = btrfs_submit_direct_hook(dip); 8510 if (!ret) 8511 return; 8512 8513 btrfs_io_bio_free_csum(io_bio); 8514 8515 free_ordered: 8516 /* 8517 * If we arrived here it means either we failed to submit the dip 8518 * or we either failed to clone the dio_bio or failed to allocate the 8519 * dip. If we cloned the dio_bio and allocated the dip, we can just 8520 * call bio_endio against our io_bio so that we get proper resource 8521 * cleanup if we fail to submit the dip, otherwise, we must do the 8522 * same as btrfs_endio_direct_[write|read] because we can't call these 8523 * callbacks - they require an allocated dip and a clone of dio_bio. 8524 */ 8525 if (bio && dip) { 8526 bio_io_error(bio); 8527 /* 8528 * The end io callbacks free our dip, do the final put on bio 8529 * and all the cleanup and final put for dio_bio (through 8530 * dio_end_io()). 8531 */ 8532 dip = NULL; 8533 bio = NULL; 8534 } else { 8535 if (write) 8536 __endio_write_update_ordered(inode, 8537 file_offset, 8538 dio_bio->bi_iter.bi_size, 8539 false); 8540 else 8541 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8542 file_offset + dio_bio->bi_iter.bi_size - 1); 8543 8544 dio_bio->bi_status = BLK_STS_IOERR; 8545 /* 8546 * Releases and cleans up our dio_bio, no need to bio_put() 8547 * nor bio_endio()/bio_io_error() against dio_bio. 8548 */ 8549 dio_end_io(dio_bio); 8550 } 8551 if (bio) 8552 bio_put(bio); 8553 kfree(dip); 8554 } 8555 8556 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8557 const struct iov_iter *iter, loff_t offset) 8558 { 8559 int seg; 8560 int i; 8561 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8562 ssize_t retval = -EINVAL; 8563 8564 if (offset & blocksize_mask) 8565 goto out; 8566 8567 if (iov_iter_alignment(iter) & blocksize_mask) 8568 goto out; 8569 8570 /* If this is a write we don't need to check anymore */ 8571 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8572 return 0; 8573 /* 8574 * Check to make sure we don't have duplicate iov_base's in this 8575 * iovec, if so return EINVAL, otherwise we'll get csum errors 8576 * when reading back. 8577 */ 8578 for (seg = 0; seg < iter->nr_segs; seg++) { 8579 for (i = seg + 1; i < iter->nr_segs; i++) { 8580 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8581 goto out; 8582 } 8583 } 8584 retval = 0; 8585 out: 8586 return retval; 8587 } 8588 8589 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8590 { 8591 struct file *file = iocb->ki_filp; 8592 struct inode *inode = file->f_mapping->host; 8593 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8594 struct btrfs_dio_data dio_data = { 0 }; 8595 struct extent_changeset *data_reserved = NULL; 8596 loff_t offset = iocb->ki_pos; 8597 size_t count = 0; 8598 int flags = 0; 8599 bool wakeup = true; 8600 bool relock = false; 8601 ssize_t ret; 8602 8603 if (check_direct_IO(fs_info, iter, offset)) 8604 return 0; 8605 8606 inode_dio_begin(inode); 8607 8608 /* 8609 * The generic stuff only does filemap_write_and_wait_range, which 8610 * isn't enough if we've written compressed pages to this area, so 8611 * we need to flush the dirty pages again to make absolutely sure 8612 * that any outstanding dirty pages are on disk. 8613 */ 8614 count = iov_iter_count(iter); 8615 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8616 &BTRFS_I(inode)->runtime_flags)) 8617 filemap_fdatawrite_range(inode->i_mapping, offset, 8618 offset + count - 1); 8619 8620 if (iov_iter_rw(iter) == WRITE) { 8621 /* 8622 * If the write DIO is beyond the EOF, we need update 8623 * the isize, but it is protected by i_mutex. So we can 8624 * not unlock the i_mutex at this case. 8625 */ 8626 if (offset + count <= inode->i_size) { 8627 dio_data.overwrite = 1; 8628 inode_unlock(inode); 8629 relock = true; 8630 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8631 ret = -EAGAIN; 8632 goto out; 8633 } 8634 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8635 offset, count); 8636 if (ret) 8637 goto out; 8638 8639 /* 8640 * We need to know how many extents we reserved so that we can 8641 * do the accounting properly if we go over the number we 8642 * originally calculated. Abuse current->journal_info for this. 8643 */ 8644 dio_data.reserve = round_up(count, 8645 fs_info->sectorsize); 8646 dio_data.unsubmitted_oe_range_start = (u64)offset; 8647 dio_data.unsubmitted_oe_range_end = (u64)offset; 8648 current->journal_info = &dio_data; 8649 down_read(&BTRFS_I(inode)->dio_sem); 8650 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8651 &BTRFS_I(inode)->runtime_flags)) { 8652 inode_dio_end(inode); 8653 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8654 wakeup = false; 8655 } 8656 8657 ret = __blockdev_direct_IO(iocb, inode, 8658 fs_info->fs_devices->latest_bdev, 8659 iter, btrfs_get_blocks_direct, NULL, 8660 btrfs_submit_direct, flags); 8661 if (iov_iter_rw(iter) == WRITE) { 8662 up_read(&BTRFS_I(inode)->dio_sem); 8663 current->journal_info = NULL; 8664 if (ret < 0 && ret != -EIOCBQUEUED) { 8665 if (dio_data.reserve) 8666 btrfs_delalloc_release_space(inode, data_reserved, 8667 offset, dio_data.reserve, true); 8668 /* 8669 * On error we might have left some ordered extents 8670 * without submitting corresponding bios for them, so 8671 * cleanup them up to avoid other tasks getting them 8672 * and waiting for them to complete forever. 8673 */ 8674 if (dio_data.unsubmitted_oe_range_start < 8675 dio_data.unsubmitted_oe_range_end) 8676 __endio_write_update_ordered(inode, 8677 dio_data.unsubmitted_oe_range_start, 8678 dio_data.unsubmitted_oe_range_end - 8679 dio_data.unsubmitted_oe_range_start, 8680 false); 8681 } else if (ret >= 0 && (size_t)ret < count) 8682 btrfs_delalloc_release_space(inode, data_reserved, 8683 offset, count - (size_t)ret, true); 8684 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8685 } 8686 out: 8687 if (wakeup) 8688 inode_dio_end(inode); 8689 if (relock) 8690 inode_lock(inode); 8691 8692 extent_changeset_free(data_reserved); 8693 return ret; 8694 } 8695 8696 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8697 8698 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8699 __u64 start, __u64 len) 8700 { 8701 int ret; 8702 8703 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8704 if (ret) 8705 return ret; 8706 8707 return extent_fiemap(inode, fieinfo, start, len); 8708 } 8709 8710 int btrfs_readpage(struct file *file, struct page *page) 8711 { 8712 struct extent_io_tree *tree; 8713 tree = &BTRFS_I(page->mapping->host)->io_tree; 8714 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8715 } 8716 8717 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8718 { 8719 struct inode *inode = page->mapping->host; 8720 int ret; 8721 8722 if (current->flags & PF_MEMALLOC) { 8723 redirty_page_for_writepage(wbc, page); 8724 unlock_page(page); 8725 return 0; 8726 } 8727 8728 /* 8729 * If we are under memory pressure we will call this directly from the 8730 * VM, we need to make sure we have the inode referenced for the ordered 8731 * extent. If not just return like we didn't do anything. 8732 */ 8733 if (!igrab(inode)) { 8734 redirty_page_for_writepage(wbc, page); 8735 return AOP_WRITEPAGE_ACTIVATE; 8736 } 8737 ret = extent_write_full_page(page, wbc); 8738 btrfs_add_delayed_iput(inode); 8739 return ret; 8740 } 8741 8742 static int btrfs_writepages(struct address_space *mapping, 8743 struct writeback_control *wbc) 8744 { 8745 return extent_writepages(mapping, wbc); 8746 } 8747 8748 static int 8749 btrfs_readpages(struct file *file, struct address_space *mapping, 8750 struct list_head *pages, unsigned nr_pages) 8751 { 8752 return extent_readpages(mapping, pages, nr_pages); 8753 } 8754 8755 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8756 { 8757 int ret = try_release_extent_mapping(page, gfp_flags); 8758 if (ret == 1) { 8759 ClearPagePrivate(page); 8760 set_page_private(page, 0); 8761 put_page(page); 8762 } 8763 return ret; 8764 } 8765 8766 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8767 { 8768 if (PageWriteback(page) || PageDirty(page)) 8769 return 0; 8770 return __btrfs_releasepage(page, gfp_flags); 8771 } 8772 8773 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8774 unsigned int length) 8775 { 8776 struct inode *inode = page->mapping->host; 8777 struct extent_io_tree *tree; 8778 struct btrfs_ordered_extent *ordered; 8779 struct extent_state *cached_state = NULL; 8780 u64 page_start = page_offset(page); 8781 u64 page_end = page_start + PAGE_SIZE - 1; 8782 u64 start; 8783 u64 end; 8784 int inode_evicting = inode->i_state & I_FREEING; 8785 8786 /* 8787 * we have the page locked, so new writeback can't start, 8788 * and the dirty bit won't be cleared while we are here. 8789 * 8790 * Wait for IO on this page so that we can safely clear 8791 * the PagePrivate2 bit and do ordered accounting 8792 */ 8793 wait_on_page_writeback(page); 8794 8795 tree = &BTRFS_I(inode)->io_tree; 8796 if (offset) { 8797 btrfs_releasepage(page, GFP_NOFS); 8798 return; 8799 } 8800 8801 if (!inode_evicting) 8802 lock_extent_bits(tree, page_start, page_end, &cached_state); 8803 again: 8804 start = page_start; 8805 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8806 page_end - start + 1); 8807 if (ordered) { 8808 end = min(page_end, ordered->file_offset + ordered->len - 1); 8809 /* 8810 * IO on this page will never be started, so we need 8811 * to account for any ordered extents now 8812 */ 8813 if (!inode_evicting) 8814 clear_extent_bit(tree, start, end, 8815 EXTENT_DIRTY | EXTENT_DELALLOC | 8816 EXTENT_DELALLOC_NEW | 8817 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8818 EXTENT_DEFRAG, 1, 0, &cached_state); 8819 /* 8820 * whoever cleared the private bit is responsible 8821 * for the finish_ordered_io 8822 */ 8823 if (TestClearPagePrivate2(page)) { 8824 struct btrfs_ordered_inode_tree *tree; 8825 u64 new_len; 8826 8827 tree = &BTRFS_I(inode)->ordered_tree; 8828 8829 spin_lock_irq(&tree->lock); 8830 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8831 new_len = start - ordered->file_offset; 8832 if (new_len < ordered->truncated_len) 8833 ordered->truncated_len = new_len; 8834 spin_unlock_irq(&tree->lock); 8835 8836 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8837 start, 8838 end - start + 1, 1)) 8839 btrfs_finish_ordered_io(ordered); 8840 } 8841 btrfs_put_ordered_extent(ordered); 8842 if (!inode_evicting) { 8843 cached_state = NULL; 8844 lock_extent_bits(tree, start, end, 8845 &cached_state); 8846 } 8847 8848 start = end + 1; 8849 if (start < page_end) 8850 goto again; 8851 } 8852 8853 /* 8854 * Qgroup reserved space handler 8855 * Page here will be either 8856 * 1) Already written to disk 8857 * In this case, its reserved space is released from data rsv map 8858 * and will be freed by delayed_ref handler finally. 8859 * So even we call qgroup_free_data(), it won't decrease reserved 8860 * space. 8861 * 2) Not written to disk 8862 * This means the reserved space should be freed here. However, 8863 * if a truncate invalidates the page (by clearing PageDirty) 8864 * and the page is accounted for while allocating extent 8865 * in btrfs_check_data_free_space() we let delayed_ref to 8866 * free the entire extent. 8867 */ 8868 if (PageDirty(page)) 8869 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8870 if (!inode_evicting) { 8871 clear_extent_bit(tree, page_start, page_end, 8872 EXTENT_LOCKED | EXTENT_DIRTY | 8873 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8874 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8875 &cached_state); 8876 8877 __btrfs_releasepage(page, GFP_NOFS); 8878 } 8879 8880 ClearPageChecked(page); 8881 if (PagePrivate(page)) { 8882 ClearPagePrivate(page); 8883 set_page_private(page, 0); 8884 put_page(page); 8885 } 8886 } 8887 8888 /* 8889 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8890 * called from a page fault handler when a page is first dirtied. Hence we must 8891 * be careful to check for EOF conditions here. We set the page up correctly 8892 * for a written page which means we get ENOSPC checking when writing into 8893 * holes and correct delalloc and unwritten extent mapping on filesystems that 8894 * support these features. 8895 * 8896 * We are not allowed to take the i_mutex here so we have to play games to 8897 * protect against truncate races as the page could now be beyond EOF. Because 8898 * truncate_setsize() writes the inode size before removing pages, once we have 8899 * the page lock we can determine safely if the page is beyond EOF. If it is not 8900 * beyond EOF, then the page is guaranteed safe against truncation until we 8901 * unlock the page. 8902 */ 8903 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8904 { 8905 struct page *page = vmf->page; 8906 struct inode *inode = file_inode(vmf->vma->vm_file); 8907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8909 struct btrfs_ordered_extent *ordered; 8910 struct extent_state *cached_state = NULL; 8911 struct extent_changeset *data_reserved = NULL; 8912 char *kaddr; 8913 unsigned long zero_start; 8914 loff_t size; 8915 vm_fault_t ret; 8916 int ret2; 8917 int reserved = 0; 8918 u64 reserved_space; 8919 u64 page_start; 8920 u64 page_end; 8921 u64 end; 8922 8923 reserved_space = PAGE_SIZE; 8924 8925 sb_start_pagefault(inode->i_sb); 8926 page_start = page_offset(page); 8927 page_end = page_start + PAGE_SIZE - 1; 8928 end = page_end; 8929 8930 /* 8931 * Reserving delalloc space after obtaining the page lock can lead to 8932 * deadlock. For example, if a dirty page is locked by this function 8933 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8934 * dirty page write out, then the btrfs_writepage() function could 8935 * end up waiting indefinitely to get a lock on the page currently 8936 * being processed by btrfs_page_mkwrite() function. 8937 */ 8938 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8939 reserved_space); 8940 if (!ret2) { 8941 ret2 = file_update_time(vmf->vma->vm_file); 8942 reserved = 1; 8943 } 8944 if (ret2) { 8945 ret = vmf_error(ret2); 8946 if (reserved) 8947 goto out; 8948 goto out_noreserve; 8949 } 8950 8951 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8952 again: 8953 lock_page(page); 8954 size = i_size_read(inode); 8955 8956 if ((page->mapping != inode->i_mapping) || 8957 (page_start >= size)) { 8958 /* page got truncated out from underneath us */ 8959 goto out_unlock; 8960 } 8961 wait_on_page_writeback(page); 8962 8963 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8964 set_page_extent_mapped(page); 8965 8966 /* 8967 * we can't set the delalloc bits if there are pending ordered 8968 * extents. Drop our locks and wait for them to finish 8969 */ 8970 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8971 PAGE_SIZE); 8972 if (ordered) { 8973 unlock_extent_cached(io_tree, page_start, page_end, 8974 &cached_state); 8975 unlock_page(page); 8976 btrfs_start_ordered_extent(inode, ordered, 1); 8977 btrfs_put_ordered_extent(ordered); 8978 goto again; 8979 } 8980 8981 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8982 reserved_space = round_up(size - page_start, 8983 fs_info->sectorsize); 8984 if (reserved_space < PAGE_SIZE) { 8985 end = page_start + reserved_space - 1; 8986 btrfs_delalloc_release_space(inode, data_reserved, 8987 page_start, PAGE_SIZE - reserved_space, 8988 true); 8989 } 8990 } 8991 8992 /* 8993 * page_mkwrite gets called when the page is firstly dirtied after it's 8994 * faulted in, but write(2) could also dirty a page and set delalloc 8995 * bits, thus in this case for space account reason, we still need to 8996 * clear any delalloc bits within this page range since we have to 8997 * reserve data&meta space before lock_page() (see above comments). 8998 */ 8999 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 9000 EXTENT_DIRTY | EXTENT_DELALLOC | 9001 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 9002 0, 0, &cached_state); 9003 9004 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 9005 &cached_state, 0); 9006 if (ret2) { 9007 unlock_extent_cached(io_tree, page_start, page_end, 9008 &cached_state); 9009 ret = VM_FAULT_SIGBUS; 9010 goto out_unlock; 9011 } 9012 ret2 = 0; 9013 9014 /* page is wholly or partially inside EOF */ 9015 if (page_start + PAGE_SIZE > size) 9016 zero_start = offset_in_page(size); 9017 else 9018 zero_start = PAGE_SIZE; 9019 9020 if (zero_start != PAGE_SIZE) { 9021 kaddr = kmap(page); 9022 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 9023 flush_dcache_page(page); 9024 kunmap(page); 9025 } 9026 ClearPageChecked(page); 9027 set_page_dirty(page); 9028 SetPageUptodate(page); 9029 9030 BTRFS_I(inode)->last_trans = fs_info->generation; 9031 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9032 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9033 9034 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9035 9036 if (!ret2) { 9037 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 9038 sb_end_pagefault(inode->i_sb); 9039 extent_changeset_free(data_reserved); 9040 return VM_FAULT_LOCKED; 9041 } 9042 9043 out_unlock: 9044 unlock_page(page); 9045 out: 9046 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 9047 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9048 reserved_space, (ret != 0)); 9049 out_noreserve: 9050 sb_end_pagefault(inode->i_sb); 9051 extent_changeset_free(data_reserved); 9052 return ret; 9053 } 9054 9055 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 9056 { 9057 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9058 struct btrfs_root *root = BTRFS_I(inode)->root; 9059 struct btrfs_block_rsv *rsv; 9060 int ret; 9061 struct btrfs_trans_handle *trans; 9062 u64 mask = fs_info->sectorsize - 1; 9063 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9064 9065 if (!skip_writeback) { 9066 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9067 (u64)-1); 9068 if (ret) 9069 return ret; 9070 } 9071 9072 /* 9073 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 9074 * things going on here: 9075 * 9076 * 1) We need to reserve space to update our inode. 9077 * 9078 * 2) We need to have something to cache all the space that is going to 9079 * be free'd up by the truncate operation, but also have some slack 9080 * space reserved in case it uses space during the truncate (thank you 9081 * very much snapshotting). 9082 * 9083 * And we need these to be separate. The fact is we can use a lot of 9084 * space doing the truncate, and we have no earthly idea how much space 9085 * we will use, so we need the truncate reservation to be separate so it 9086 * doesn't end up using space reserved for updating the inode. We also 9087 * need to be able to stop the transaction and start a new one, which 9088 * means we need to be able to update the inode several times, and we 9089 * have no idea of knowing how many times that will be, so we can't just 9090 * reserve 1 item for the entirety of the operation, so that has to be 9091 * done separately as well. 9092 * 9093 * So that leaves us with 9094 * 9095 * 1) rsv - for the truncate reservation, which we will steal from the 9096 * transaction reservation. 9097 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9098 * updating the inode. 9099 */ 9100 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9101 if (!rsv) 9102 return -ENOMEM; 9103 rsv->size = min_size; 9104 rsv->failfast = 1; 9105 9106 /* 9107 * 1 for the truncate slack space 9108 * 1 for updating the inode. 9109 */ 9110 trans = btrfs_start_transaction(root, 2); 9111 if (IS_ERR(trans)) { 9112 ret = PTR_ERR(trans); 9113 goto out; 9114 } 9115 9116 /* Migrate the slack space for the truncate to our reserve */ 9117 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9118 min_size, false); 9119 BUG_ON(ret); 9120 9121 /* 9122 * So if we truncate and then write and fsync we normally would just 9123 * write the extents that changed, which is a problem if we need to 9124 * first truncate that entire inode. So set this flag so we write out 9125 * all of the extents in the inode to the sync log so we're completely 9126 * safe. 9127 */ 9128 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9129 trans->block_rsv = rsv; 9130 9131 while (1) { 9132 ret = btrfs_truncate_inode_items(trans, root, inode, 9133 inode->i_size, 9134 BTRFS_EXTENT_DATA_KEY); 9135 trans->block_rsv = &fs_info->trans_block_rsv; 9136 if (ret != -ENOSPC && ret != -EAGAIN) 9137 break; 9138 9139 ret = btrfs_update_inode(trans, root, inode); 9140 if (ret) 9141 break; 9142 9143 btrfs_end_transaction(trans); 9144 btrfs_btree_balance_dirty(fs_info); 9145 9146 trans = btrfs_start_transaction(root, 2); 9147 if (IS_ERR(trans)) { 9148 ret = PTR_ERR(trans); 9149 trans = NULL; 9150 break; 9151 } 9152 9153 btrfs_block_rsv_release(fs_info, rsv, -1); 9154 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9155 rsv, min_size, false); 9156 BUG_ON(ret); /* shouldn't happen */ 9157 trans->block_rsv = rsv; 9158 } 9159 9160 /* 9161 * We can't call btrfs_truncate_block inside a trans handle as we could 9162 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9163 * we've truncated everything except the last little bit, and can do 9164 * btrfs_truncate_block and then update the disk_i_size. 9165 */ 9166 if (ret == NEED_TRUNCATE_BLOCK) { 9167 btrfs_end_transaction(trans); 9168 btrfs_btree_balance_dirty(fs_info); 9169 9170 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9171 if (ret) 9172 goto out; 9173 trans = btrfs_start_transaction(root, 1); 9174 if (IS_ERR(trans)) { 9175 ret = PTR_ERR(trans); 9176 goto out; 9177 } 9178 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9179 } 9180 9181 if (trans) { 9182 int ret2; 9183 9184 trans->block_rsv = &fs_info->trans_block_rsv; 9185 ret2 = btrfs_update_inode(trans, root, inode); 9186 if (ret2 && !ret) 9187 ret = ret2; 9188 9189 ret2 = btrfs_end_transaction(trans); 9190 if (ret2 && !ret) 9191 ret = ret2; 9192 btrfs_btree_balance_dirty(fs_info); 9193 } 9194 out: 9195 btrfs_free_block_rsv(fs_info, rsv); 9196 9197 return ret; 9198 } 9199 9200 /* 9201 * create a new subvolume directory/inode (helper for the ioctl). 9202 */ 9203 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9204 struct btrfs_root *new_root, 9205 struct btrfs_root *parent_root, 9206 u64 new_dirid) 9207 { 9208 struct inode *inode; 9209 int err; 9210 u64 index = 0; 9211 9212 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9213 new_dirid, new_dirid, 9214 S_IFDIR | (~current_umask() & S_IRWXUGO), 9215 &index); 9216 if (IS_ERR(inode)) 9217 return PTR_ERR(inode); 9218 inode->i_op = &btrfs_dir_inode_operations; 9219 inode->i_fop = &btrfs_dir_file_operations; 9220 9221 set_nlink(inode, 1); 9222 btrfs_i_size_write(BTRFS_I(inode), 0); 9223 unlock_new_inode(inode); 9224 9225 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9226 if (err) 9227 btrfs_err(new_root->fs_info, 9228 "error inheriting subvolume %llu properties: %d", 9229 new_root->root_key.objectid, err); 9230 9231 err = btrfs_update_inode(trans, new_root, inode); 9232 9233 iput(inode); 9234 return err; 9235 } 9236 9237 struct inode *btrfs_alloc_inode(struct super_block *sb) 9238 { 9239 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9240 struct btrfs_inode *ei; 9241 struct inode *inode; 9242 9243 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9244 if (!ei) 9245 return NULL; 9246 9247 ei->root = NULL; 9248 ei->generation = 0; 9249 ei->last_trans = 0; 9250 ei->last_sub_trans = 0; 9251 ei->logged_trans = 0; 9252 ei->delalloc_bytes = 0; 9253 ei->new_delalloc_bytes = 0; 9254 ei->defrag_bytes = 0; 9255 ei->disk_i_size = 0; 9256 ei->flags = 0; 9257 ei->csum_bytes = 0; 9258 ei->index_cnt = (u64)-1; 9259 ei->dir_index = 0; 9260 ei->last_unlink_trans = 0; 9261 ei->last_log_commit = 0; 9262 9263 spin_lock_init(&ei->lock); 9264 ei->outstanding_extents = 0; 9265 if (sb->s_magic != BTRFS_TEST_MAGIC) 9266 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9267 BTRFS_BLOCK_RSV_DELALLOC); 9268 ei->runtime_flags = 0; 9269 ei->prop_compress = BTRFS_COMPRESS_NONE; 9270 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9271 9272 ei->delayed_node = NULL; 9273 9274 ei->i_otime.tv_sec = 0; 9275 ei->i_otime.tv_nsec = 0; 9276 9277 inode = &ei->vfs_inode; 9278 extent_map_tree_init(&ei->extent_tree); 9279 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 9280 extent_io_tree_init(fs_info, &ei->io_failure_tree, 9281 IO_TREE_INODE_IO_FAILURE, inode); 9282 ei->io_tree.track_uptodate = true; 9283 ei->io_failure_tree.track_uptodate = true; 9284 atomic_set(&ei->sync_writers, 0); 9285 mutex_init(&ei->log_mutex); 9286 mutex_init(&ei->delalloc_mutex); 9287 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9288 INIT_LIST_HEAD(&ei->delalloc_inodes); 9289 INIT_LIST_HEAD(&ei->delayed_iput); 9290 RB_CLEAR_NODE(&ei->rb_node); 9291 init_rwsem(&ei->dio_sem); 9292 9293 return inode; 9294 } 9295 9296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9297 void btrfs_test_destroy_inode(struct inode *inode) 9298 { 9299 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9300 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9301 } 9302 #endif 9303 9304 void btrfs_free_inode(struct inode *inode) 9305 { 9306 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9307 } 9308 9309 void btrfs_destroy_inode(struct inode *inode) 9310 { 9311 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9312 struct btrfs_ordered_extent *ordered; 9313 struct btrfs_root *root = BTRFS_I(inode)->root; 9314 9315 WARN_ON(!hlist_empty(&inode->i_dentry)); 9316 WARN_ON(inode->i_data.nrpages); 9317 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9318 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9319 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9320 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9321 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9322 WARN_ON(BTRFS_I(inode)->csum_bytes); 9323 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9324 9325 /* 9326 * This can happen where we create an inode, but somebody else also 9327 * created the same inode and we need to destroy the one we already 9328 * created. 9329 */ 9330 if (!root) 9331 return; 9332 9333 while (1) { 9334 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9335 if (!ordered) 9336 break; 9337 else { 9338 btrfs_err(fs_info, 9339 "found ordered extent %llu %llu on inode cleanup", 9340 ordered->file_offset, ordered->len); 9341 btrfs_remove_ordered_extent(inode, ordered); 9342 btrfs_put_ordered_extent(ordered); 9343 btrfs_put_ordered_extent(ordered); 9344 } 9345 } 9346 btrfs_qgroup_check_reserved_leak(inode); 9347 inode_tree_del(inode); 9348 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9349 } 9350 9351 int btrfs_drop_inode(struct inode *inode) 9352 { 9353 struct btrfs_root *root = BTRFS_I(inode)->root; 9354 9355 if (root == NULL) 9356 return 1; 9357 9358 /* the snap/subvol tree is on deleting */ 9359 if (btrfs_root_refs(&root->root_item) == 0) 9360 return 1; 9361 else 9362 return generic_drop_inode(inode); 9363 } 9364 9365 static void init_once(void *foo) 9366 { 9367 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9368 9369 inode_init_once(&ei->vfs_inode); 9370 } 9371 9372 void __cold btrfs_destroy_cachep(void) 9373 { 9374 /* 9375 * Make sure all delayed rcu free inodes are flushed before we 9376 * destroy cache. 9377 */ 9378 rcu_barrier(); 9379 kmem_cache_destroy(btrfs_inode_cachep); 9380 kmem_cache_destroy(btrfs_trans_handle_cachep); 9381 kmem_cache_destroy(btrfs_path_cachep); 9382 kmem_cache_destroy(btrfs_free_space_cachep); 9383 } 9384 9385 int __init btrfs_init_cachep(void) 9386 { 9387 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9388 sizeof(struct btrfs_inode), 0, 9389 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9390 init_once); 9391 if (!btrfs_inode_cachep) 9392 goto fail; 9393 9394 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9395 sizeof(struct btrfs_trans_handle), 0, 9396 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9397 if (!btrfs_trans_handle_cachep) 9398 goto fail; 9399 9400 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9401 sizeof(struct btrfs_path), 0, 9402 SLAB_MEM_SPREAD, NULL); 9403 if (!btrfs_path_cachep) 9404 goto fail; 9405 9406 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9407 sizeof(struct btrfs_free_space), 0, 9408 SLAB_MEM_SPREAD, NULL); 9409 if (!btrfs_free_space_cachep) 9410 goto fail; 9411 9412 return 0; 9413 fail: 9414 btrfs_destroy_cachep(); 9415 return -ENOMEM; 9416 } 9417 9418 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9419 u32 request_mask, unsigned int flags) 9420 { 9421 u64 delalloc_bytes; 9422 struct inode *inode = d_inode(path->dentry); 9423 u32 blocksize = inode->i_sb->s_blocksize; 9424 u32 bi_flags = BTRFS_I(inode)->flags; 9425 9426 stat->result_mask |= STATX_BTIME; 9427 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9428 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9429 if (bi_flags & BTRFS_INODE_APPEND) 9430 stat->attributes |= STATX_ATTR_APPEND; 9431 if (bi_flags & BTRFS_INODE_COMPRESS) 9432 stat->attributes |= STATX_ATTR_COMPRESSED; 9433 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9434 stat->attributes |= STATX_ATTR_IMMUTABLE; 9435 if (bi_flags & BTRFS_INODE_NODUMP) 9436 stat->attributes |= STATX_ATTR_NODUMP; 9437 9438 stat->attributes_mask |= (STATX_ATTR_APPEND | 9439 STATX_ATTR_COMPRESSED | 9440 STATX_ATTR_IMMUTABLE | 9441 STATX_ATTR_NODUMP); 9442 9443 generic_fillattr(inode, stat); 9444 stat->dev = BTRFS_I(inode)->root->anon_dev; 9445 9446 spin_lock(&BTRFS_I(inode)->lock); 9447 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9448 spin_unlock(&BTRFS_I(inode)->lock); 9449 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9450 ALIGN(delalloc_bytes, blocksize)) >> 9; 9451 return 0; 9452 } 9453 9454 static int btrfs_rename_exchange(struct inode *old_dir, 9455 struct dentry *old_dentry, 9456 struct inode *new_dir, 9457 struct dentry *new_dentry) 9458 { 9459 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9460 struct btrfs_trans_handle *trans; 9461 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9462 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9463 struct inode *new_inode = new_dentry->d_inode; 9464 struct inode *old_inode = old_dentry->d_inode; 9465 struct timespec64 ctime = current_time(old_inode); 9466 struct dentry *parent; 9467 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9468 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9469 u64 old_idx = 0; 9470 u64 new_idx = 0; 9471 u64 root_objectid; 9472 int ret; 9473 bool root_log_pinned = false; 9474 bool dest_log_pinned = false; 9475 struct btrfs_log_ctx ctx_root; 9476 struct btrfs_log_ctx ctx_dest; 9477 bool sync_log_root = false; 9478 bool sync_log_dest = false; 9479 bool commit_transaction = false; 9480 9481 /* we only allow rename subvolume link between subvolumes */ 9482 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9483 return -EXDEV; 9484 9485 btrfs_init_log_ctx(&ctx_root, old_inode); 9486 btrfs_init_log_ctx(&ctx_dest, new_inode); 9487 9488 /* close the race window with snapshot create/destroy ioctl */ 9489 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9490 down_read(&fs_info->subvol_sem); 9491 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9492 down_read(&fs_info->subvol_sem); 9493 9494 /* 9495 * We want to reserve the absolute worst case amount of items. So if 9496 * both inodes are subvols and we need to unlink them then that would 9497 * require 4 item modifications, but if they are both normal inodes it 9498 * would require 5 item modifications, so we'll assume their normal 9499 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9500 * should cover the worst case number of items we'll modify. 9501 */ 9502 trans = btrfs_start_transaction(root, 12); 9503 if (IS_ERR(trans)) { 9504 ret = PTR_ERR(trans); 9505 goto out_notrans; 9506 } 9507 9508 /* 9509 * We need to find a free sequence number both in the source and 9510 * in the destination directory for the exchange. 9511 */ 9512 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9513 if (ret) 9514 goto out_fail; 9515 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9516 if (ret) 9517 goto out_fail; 9518 9519 BTRFS_I(old_inode)->dir_index = 0ULL; 9520 BTRFS_I(new_inode)->dir_index = 0ULL; 9521 9522 /* Reference for the source. */ 9523 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9524 /* force full log commit if subvolume involved. */ 9525 btrfs_set_log_full_commit(trans); 9526 } else { 9527 btrfs_pin_log_trans(root); 9528 root_log_pinned = true; 9529 ret = btrfs_insert_inode_ref(trans, dest, 9530 new_dentry->d_name.name, 9531 new_dentry->d_name.len, 9532 old_ino, 9533 btrfs_ino(BTRFS_I(new_dir)), 9534 old_idx); 9535 if (ret) 9536 goto out_fail; 9537 } 9538 9539 /* And now for the dest. */ 9540 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9541 /* force full log commit if subvolume involved. */ 9542 btrfs_set_log_full_commit(trans); 9543 } else { 9544 btrfs_pin_log_trans(dest); 9545 dest_log_pinned = true; 9546 ret = btrfs_insert_inode_ref(trans, root, 9547 old_dentry->d_name.name, 9548 old_dentry->d_name.len, 9549 new_ino, 9550 btrfs_ino(BTRFS_I(old_dir)), 9551 new_idx); 9552 if (ret) 9553 goto out_fail; 9554 } 9555 9556 /* Update inode version and ctime/mtime. */ 9557 inode_inc_iversion(old_dir); 9558 inode_inc_iversion(new_dir); 9559 inode_inc_iversion(old_inode); 9560 inode_inc_iversion(new_inode); 9561 old_dir->i_ctime = old_dir->i_mtime = ctime; 9562 new_dir->i_ctime = new_dir->i_mtime = ctime; 9563 old_inode->i_ctime = ctime; 9564 new_inode->i_ctime = ctime; 9565 9566 if (old_dentry->d_parent != new_dentry->d_parent) { 9567 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9568 BTRFS_I(old_inode), 1); 9569 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9570 BTRFS_I(new_inode), 1); 9571 } 9572 9573 /* src is a subvolume */ 9574 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9575 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9576 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9577 old_dentry->d_name.name, 9578 old_dentry->d_name.len); 9579 } else { /* src is an inode */ 9580 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9581 BTRFS_I(old_dentry->d_inode), 9582 old_dentry->d_name.name, 9583 old_dentry->d_name.len); 9584 if (!ret) 9585 ret = btrfs_update_inode(trans, root, old_inode); 9586 } 9587 if (ret) { 9588 btrfs_abort_transaction(trans, ret); 9589 goto out_fail; 9590 } 9591 9592 /* dest is a subvolume */ 9593 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9594 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9595 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9596 new_dentry->d_name.name, 9597 new_dentry->d_name.len); 9598 } else { /* dest is an inode */ 9599 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9600 BTRFS_I(new_dentry->d_inode), 9601 new_dentry->d_name.name, 9602 new_dentry->d_name.len); 9603 if (!ret) 9604 ret = btrfs_update_inode(trans, dest, new_inode); 9605 } 9606 if (ret) { 9607 btrfs_abort_transaction(trans, ret); 9608 goto out_fail; 9609 } 9610 9611 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9612 new_dentry->d_name.name, 9613 new_dentry->d_name.len, 0, old_idx); 9614 if (ret) { 9615 btrfs_abort_transaction(trans, ret); 9616 goto out_fail; 9617 } 9618 9619 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9620 old_dentry->d_name.name, 9621 old_dentry->d_name.len, 0, new_idx); 9622 if (ret) { 9623 btrfs_abort_transaction(trans, ret); 9624 goto out_fail; 9625 } 9626 9627 if (old_inode->i_nlink == 1) 9628 BTRFS_I(old_inode)->dir_index = old_idx; 9629 if (new_inode->i_nlink == 1) 9630 BTRFS_I(new_inode)->dir_index = new_idx; 9631 9632 if (root_log_pinned) { 9633 parent = new_dentry->d_parent; 9634 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9635 BTRFS_I(old_dir), parent, 9636 false, &ctx_root); 9637 if (ret == BTRFS_NEED_LOG_SYNC) 9638 sync_log_root = true; 9639 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9640 commit_transaction = true; 9641 ret = 0; 9642 btrfs_end_log_trans(root); 9643 root_log_pinned = false; 9644 } 9645 if (dest_log_pinned) { 9646 if (!commit_transaction) { 9647 parent = old_dentry->d_parent; 9648 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9649 BTRFS_I(new_dir), parent, 9650 false, &ctx_dest); 9651 if (ret == BTRFS_NEED_LOG_SYNC) 9652 sync_log_dest = true; 9653 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9654 commit_transaction = true; 9655 ret = 0; 9656 } 9657 btrfs_end_log_trans(dest); 9658 dest_log_pinned = false; 9659 } 9660 out_fail: 9661 /* 9662 * If we have pinned a log and an error happened, we unpin tasks 9663 * trying to sync the log and force them to fallback to a transaction 9664 * commit if the log currently contains any of the inodes involved in 9665 * this rename operation (to ensure we do not persist a log with an 9666 * inconsistent state for any of these inodes or leading to any 9667 * inconsistencies when replayed). If the transaction was aborted, the 9668 * abortion reason is propagated to userspace when attempting to commit 9669 * the transaction. If the log does not contain any of these inodes, we 9670 * allow the tasks to sync it. 9671 */ 9672 if (ret && (root_log_pinned || dest_log_pinned)) { 9673 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9674 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9675 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9676 (new_inode && 9677 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9678 btrfs_set_log_full_commit(trans); 9679 9680 if (root_log_pinned) { 9681 btrfs_end_log_trans(root); 9682 root_log_pinned = false; 9683 } 9684 if (dest_log_pinned) { 9685 btrfs_end_log_trans(dest); 9686 dest_log_pinned = false; 9687 } 9688 } 9689 if (!ret && sync_log_root && !commit_transaction) { 9690 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9691 &ctx_root); 9692 if (ret) 9693 commit_transaction = true; 9694 } 9695 if (!ret && sync_log_dest && !commit_transaction) { 9696 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9697 &ctx_dest); 9698 if (ret) 9699 commit_transaction = true; 9700 } 9701 if (commit_transaction) { 9702 ret = btrfs_commit_transaction(trans); 9703 } else { 9704 int ret2; 9705 9706 ret2 = btrfs_end_transaction(trans); 9707 ret = ret ? ret : ret2; 9708 } 9709 out_notrans: 9710 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9711 up_read(&fs_info->subvol_sem); 9712 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9713 up_read(&fs_info->subvol_sem); 9714 9715 return ret; 9716 } 9717 9718 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9719 struct btrfs_root *root, 9720 struct inode *dir, 9721 struct dentry *dentry) 9722 { 9723 int ret; 9724 struct inode *inode; 9725 u64 objectid; 9726 u64 index; 9727 9728 ret = btrfs_find_free_ino(root, &objectid); 9729 if (ret) 9730 return ret; 9731 9732 inode = btrfs_new_inode(trans, root, dir, 9733 dentry->d_name.name, 9734 dentry->d_name.len, 9735 btrfs_ino(BTRFS_I(dir)), 9736 objectid, 9737 S_IFCHR | WHITEOUT_MODE, 9738 &index); 9739 9740 if (IS_ERR(inode)) { 9741 ret = PTR_ERR(inode); 9742 return ret; 9743 } 9744 9745 inode->i_op = &btrfs_special_inode_operations; 9746 init_special_inode(inode, inode->i_mode, 9747 WHITEOUT_DEV); 9748 9749 ret = btrfs_init_inode_security(trans, inode, dir, 9750 &dentry->d_name); 9751 if (ret) 9752 goto out; 9753 9754 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9755 BTRFS_I(inode), 0, index); 9756 if (ret) 9757 goto out; 9758 9759 ret = btrfs_update_inode(trans, root, inode); 9760 out: 9761 unlock_new_inode(inode); 9762 if (ret) 9763 inode_dec_link_count(inode); 9764 iput(inode); 9765 9766 return ret; 9767 } 9768 9769 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9770 struct inode *new_dir, struct dentry *new_dentry, 9771 unsigned int flags) 9772 { 9773 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9774 struct btrfs_trans_handle *trans; 9775 unsigned int trans_num_items; 9776 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9777 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9778 struct inode *new_inode = d_inode(new_dentry); 9779 struct inode *old_inode = d_inode(old_dentry); 9780 u64 index = 0; 9781 u64 root_objectid; 9782 int ret; 9783 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9784 bool log_pinned = false; 9785 struct btrfs_log_ctx ctx; 9786 bool sync_log = false; 9787 bool commit_transaction = false; 9788 9789 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9790 return -EPERM; 9791 9792 /* we only allow rename subvolume link between subvolumes */ 9793 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9794 return -EXDEV; 9795 9796 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9797 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9798 return -ENOTEMPTY; 9799 9800 if (S_ISDIR(old_inode->i_mode) && new_inode && 9801 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9802 return -ENOTEMPTY; 9803 9804 9805 /* check for collisions, even if the name isn't there */ 9806 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9807 new_dentry->d_name.name, 9808 new_dentry->d_name.len); 9809 9810 if (ret) { 9811 if (ret == -EEXIST) { 9812 /* we shouldn't get 9813 * eexist without a new_inode */ 9814 if (WARN_ON(!new_inode)) { 9815 return ret; 9816 } 9817 } else { 9818 /* maybe -EOVERFLOW */ 9819 return ret; 9820 } 9821 } 9822 ret = 0; 9823 9824 /* 9825 * we're using rename to replace one file with another. Start IO on it 9826 * now so we don't add too much work to the end of the transaction 9827 */ 9828 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9829 filemap_flush(old_inode->i_mapping); 9830 9831 /* close the racy window with snapshot create/destroy ioctl */ 9832 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9833 down_read(&fs_info->subvol_sem); 9834 /* 9835 * We want to reserve the absolute worst case amount of items. So if 9836 * both inodes are subvols and we need to unlink them then that would 9837 * require 4 item modifications, but if they are both normal inodes it 9838 * would require 5 item modifications, so we'll assume they are normal 9839 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9840 * should cover the worst case number of items we'll modify. 9841 * If our rename has the whiteout flag, we need more 5 units for the 9842 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9843 * when selinux is enabled). 9844 */ 9845 trans_num_items = 11; 9846 if (flags & RENAME_WHITEOUT) 9847 trans_num_items += 5; 9848 trans = btrfs_start_transaction(root, trans_num_items); 9849 if (IS_ERR(trans)) { 9850 ret = PTR_ERR(trans); 9851 goto out_notrans; 9852 } 9853 9854 if (dest != root) 9855 btrfs_record_root_in_trans(trans, dest); 9856 9857 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9858 if (ret) 9859 goto out_fail; 9860 9861 BTRFS_I(old_inode)->dir_index = 0ULL; 9862 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9863 /* force full log commit if subvolume involved. */ 9864 btrfs_set_log_full_commit(trans); 9865 } else { 9866 btrfs_pin_log_trans(root); 9867 log_pinned = true; 9868 ret = btrfs_insert_inode_ref(trans, dest, 9869 new_dentry->d_name.name, 9870 new_dentry->d_name.len, 9871 old_ino, 9872 btrfs_ino(BTRFS_I(new_dir)), index); 9873 if (ret) 9874 goto out_fail; 9875 } 9876 9877 inode_inc_iversion(old_dir); 9878 inode_inc_iversion(new_dir); 9879 inode_inc_iversion(old_inode); 9880 old_dir->i_ctime = old_dir->i_mtime = 9881 new_dir->i_ctime = new_dir->i_mtime = 9882 old_inode->i_ctime = current_time(old_dir); 9883 9884 if (old_dentry->d_parent != new_dentry->d_parent) 9885 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9886 BTRFS_I(old_inode), 1); 9887 9888 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9889 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9890 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9891 old_dentry->d_name.name, 9892 old_dentry->d_name.len); 9893 } else { 9894 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9895 BTRFS_I(d_inode(old_dentry)), 9896 old_dentry->d_name.name, 9897 old_dentry->d_name.len); 9898 if (!ret) 9899 ret = btrfs_update_inode(trans, root, old_inode); 9900 } 9901 if (ret) { 9902 btrfs_abort_transaction(trans, ret); 9903 goto out_fail; 9904 } 9905 9906 if (new_inode) { 9907 inode_inc_iversion(new_inode); 9908 new_inode->i_ctime = current_time(new_inode); 9909 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9910 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9911 root_objectid = BTRFS_I(new_inode)->location.objectid; 9912 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9913 new_dentry->d_name.name, 9914 new_dentry->d_name.len); 9915 BUG_ON(new_inode->i_nlink == 0); 9916 } else { 9917 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9918 BTRFS_I(d_inode(new_dentry)), 9919 new_dentry->d_name.name, 9920 new_dentry->d_name.len); 9921 } 9922 if (!ret && new_inode->i_nlink == 0) 9923 ret = btrfs_orphan_add(trans, 9924 BTRFS_I(d_inode(new_dentry))); 9925 if (ret) { 9926 btrfs_abort_transaction(trans, ret); 9927 goto out_fail; 9928 } 9929 } 9930 9931 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9932 new_dentry->d_name.name, 9933 new_dentry->d_name.len, 0, index); 9934 if (ret) { 9935 btrfs_abort_transaction(trans, ret); 9936 goto out_fail; 9937 } 9938 9939 if (old_inode->i_nlink == 1) 9940 BTRFS_I(old_inode)->dir_index = index; 9941 9942 if (log_pinned) { 9943 struct dentry *parent = new_dentry->d_parent; 9944 9945 btrfs_init_log_ctx(&ctx, old_inode); 9946 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9947 BTRFS_I(old_dir), parent, 9948 false, &ctx); 9949 if (ret == BTRFS_NEED_LOG_SYNC) 9950 sync_log = true; 9951 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9952 commit_transaction = true; 9953 ret = 0; 9954 btrfs_end_log_trans(root); 9955 log_pinned = false; 9956 } 9957 9958 if (flags & RENAME_WHITEOUT) { 9959 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9960 old_dentry); 9961 9962 if (ret) { 9963 btrfs_abort_transaction(trans, ret); 9964 goto out_fail; 9965 } 9966 } 9967 out_fail: 9968 /* 9969 * If we have pinned the log and an error happened, we unpin tasks 9970 * trying to sync the log and force them to fallback to a transaction 9971 * commit if the log currently contains any of the inodes involved in 9972 * this rename operation (to ensure we do not persist a log with an 9973 * inconsistent state for any of these inodes or leading to any 9974 * inconsistencies when replayed). If the transaction was aborted, the 9975 * abortion reason is propagated to userspace when attempting to commit 9976 * the transaction. If the log does not contain any of these inodes, we 9977 * allow the tasks to sync it. 9978 */ 9979 if (ret && log_pinned) { 9980 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9981 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9982 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9983 (new_inode && 9984 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9985 btrfs_set_log_full_commit(trans); 9986 9987 btrfs_end_log_trans(root); 9988 log_pinned = false; 9989 } 9990 if (!ret && sync_log) { 9991 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9992 if (ret) 9993 commit_transaction = true; 9994 } 9995 if (commit_transaction) { 9996 ret = btrfs_commit_transaction(trans); 9997 } else { 9998 int ret2; 9999 10000 ret2 = btrfs_end_transaction(trans); 10001 ret = ret ? ret : ret2; 10002 } 10003 out_notrans: 10004 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 10005 up_read(&fs_info->subvol_sem); 10006 10007 return ret; 10008 } 10009 10010 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 10011 struct inode *new_dir, struct dentry *new_dentry, 10012 unsigned int flags) 10013 { 10014 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 10015 return -EINVAL; 10016 10017 if (flags & RENAME_EXCHANGE) 10018 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 10019 new_dentry); 10020 10021 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 10022 } 10023 10024 struct btrfs_delalloc_work { 10025 struct inode *inode; 10026 struct completion completion; 10027 struct list_head list; 10028 struct btrfs_work work; 10029 }; 10030 10031 static void btrfs_run_delalloc_work(struct btrfs_work *work) 10032 { 10033 struct btrfs_delalloc_work *delalloc_work; 10034 struct inode *inode; 10035 10036 delalloc_work = container_of(work, struct btrfs_delalloc_work, 10037 work); 10038 inode = delalloc_work->inode; 10039 filemap_flush(inode->i_mapping); 10040 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 10041 &BTRFS_I(inode)->runtime_flags)) 10042 filemap_flush(inode->i_mapping); 10043 10044 iput(inode); 10045 complete(&delalloc_work->completion); 10046 } 10047 10048 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 10049 { 10050 struct btrfs_delalloc_work *work; 10051 10052 work = kmalloc(sizeof(*work), GFP_NOFS); 10053 if (!work) 10054 return NULL; 10055 10056 init_completion(&work->completion); 10057 INIT_LIST_HEAD(&work->list); 10058 work->inode = inode; 10059 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 10060 btrfs_run_delalloc_work, NULL, NULL); 10061 10062 return work; 10063 } 10064 10065 /* 10066 * some fairly slow code that needs optimization. This walks the list 10067 * of all the inodes with pending delalloc and forces them to disk. 10068 */ 10069 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) 10070 { 10071 struct btrfs_inode *binode; 10072 struct inode *inode; 10073 struct btrfs_delalloc_work *work, *next; 10074 struct list_head works; 10075 struct list_head splice; 10076 int ret = 0; 10077 10078 INIT_LIST_HEAD(&works); 10079 INIT_LIST_HEAD(&splice); 10080 10081 mutex_lock(&root->delalloc_mutex); 10082 spin_lock(&root->delalloc_lock); 10083 list_splice_init(&root->delalloc_inodes, &splice); 10084 while (!list_empty(&splice)) { 10085 binode = list_entry(splice.next, struct btrfs_inode, 10086 delalloc_inodes); 10087 10088 list_move_tail(&binode->delalloc_inodes, 10089 &root->delalloc_inodes); 10090 inode = igrab(&binode->vfs_inode); 10091 if (!inode) { 10092 cond_resched_lock(&root->delalloc_lock); 10093 continue; 10094 } 10095 spin_unlock(&root->delalloc_lock); 10096 10097 if (snapshot) 10098 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 10099 &binode->runtime_flags); 10100 work = btrfs_alloc_delalloc_work(inode); 10101 if (!work) { 10102 iput(inode); 10103 ret = -ENOMEM; 10104 goto out; 10105 } 10106 list_add_tail(&work->list, &works); 10107 btrfs_queue_work(root->fs_info->flush_workers, 10108 &work->work); 10109 ret++; 10110 if (nr != -1 && ret >= nr) 10111 goto out; 10112 cond_resched(); 10113 spin_lock(&root->delalloc_lock); 10114 } 10115 spin_unlock(&root->delalloc_lock); 10116 10117 out: 10118 list_for_each_entry_safe(work, next, &works, list) { 10119 list_del_init(&work->list); 10120 wait_for_completion(&work->completion); 10121 kfree(work); 10122 } 10123 10124 if (!list_empty(&splice)) { 10125 spin_lock(&root->delalloc_lock); 10126 list_splice_tail(&splice, &root->delalloc_inodes); 10127 spin_unlock(&root->delalloc_lock); 10128 } 10129 mutex_unlock(&root->delalloc_mutex); 10130 return ret; 10131 } 10132 10133 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 10134 { 10135 struct btrfs_fs_info *fs_info = root->fs_info; 10136 int ret; 10137 10138 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10139 return -EROFS; 10140 10141 ret = start_delalloc_inodes(root, -1, true); 10142 if (ret > 0) 10143 ret = 0; 10144 return ret; 10145 } 10146 10147 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10148 { 10149 struct btrfs_root *root; 10150 struct list_head splice; 10151 int ret; 10152 10153 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10154 return -EROFS; 10155 10156 INIT_LIST_HEAD(&splice); 10157 10158 mutex_lock(&fs_info->delalloc_root_mutex); 10159 spin_lock(&fs_info->delalloc_root_lock); 10160 list_splice_init(&fs_info->delalloc_roots, &splice); 10161 while (!list_empty(&splice) && nr) { 10162 root = list_first_entry(&splice, struct btrfs_root, 10163 delalloc_root); 10164 root = btrfs_grab_fs_root(root); 10165 BUG_ON(!root); 10166 list_move_tail(&root->delalloc_root, 10167 &fs_info->delalloc_roots); 10168 spin_unlock(&fs_info->delalloc_root_lock); 10169 10170 ret = start_delalloc_inodes(root, nr, false); 10171 btrfs_put_fs_root(root); 10172 if (ret < 0) 10173 goto out; 10174 10175 if (nr != -1) { 10176 nr -= ret; 10177 WARN_ON(nr < 0); 10178 } 10179 spin_lock(&fs_info->delalloc_root_lock); 10180 } 10181 spin_unlock(&fs_info->delalloc_root_lock); 10182 10183 ret = 0; 10184 out: 10185 if (!list_empty(&splice)) { 10186 spin_lock(&fs_info->delalloc_root_lock); 10187 list_splice_tail(&splice, &fs_info->delalloc_roots); 10188 spin_unlock(&fs_info->delalloc_root_lock); 10189 } 10190 mutex_unlock(&fs_info->delalloc_root_mutex); 10191 return ret; 10192 } 10193 10194 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10195 const char *symname) 10196 { 10197 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10198 struct btrfs_trans_handle *trans; 10199 struct btrfs_root *root = BTRFS_I(dir)->root; 10200 struct btrfs_path *path; 10201 struct btrfs_key key; 10202 struct inode *inode = NULL; 10203 int err; 10204 u64 objectid; 10205 u64 index = 0; 10206 int name_len; 10207 int datasize; 10208 unsigned long ptr; 10209 struct btrfs_file_extent_item *ei; 10210 struct extent_buffer *leaf; 10211 10212 name_len = strlen(symname); 10213 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10214 return -ENAMETOOLONG; 10215 10216 /* 10217 * 2 items for inode item and ref 10218 * 2 items for dir items 10219 * 1 item for updating parent inode item 10220 * 1 item for the inline extent item 10221 * 1 item for xattr if selinux is on 10222 */ 10223 trans = btrfs_start_transaction(root, 7); 10224 if (IS_ERR(trans)) 10225 return PTR_ERR(trans); 10226 10227 err = btrfs_find_free_ino(root, &objectid); 10228 if (err) 10229 goto out_unlock; 10230 10231 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10232 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10233 objectid, S_IFLNK|S_IRWXUGO, &index); 10234 if (IS_ERR(inode)) { 10235 err = PTR_ERR(inode); 10236 inode = NULL; 10237 goto out_unlock; 10238 } 10239 10240 /* 10241 * If the active LSM wants to access the inode during 10242 * d_instantiate it needs these. Smack checks to see 10243 * if the filesystem supports xattrs by looking at the 10244 * ops vector. 10245 */ 10246 inode->i_fop = &btrfs_file_operations; 10247 inode->i_op = &btrfs_file_inode_operations; 10248 inode->i_mapping->a_ops = &btrfs_aops; 10249 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10250 10251 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10252 if (err) 10253 goto out_unlock; 10254 10255 path = btrfs_alloc_path(); 10256 if (!path) { 10257 err = -ENOMEM; 10258 goto out_unlock; 10259 } 10260 key.objectid = btrfs_ino(BTRFS_I(inode)); 10261 key.offset = 0; 10262 key.type = BTRFS_EXTENT_DATA_KEY; 10263 datasize = btrfs_file_extent_calc_inline_size(name_len); 10264 err = btrfs_insert_empty_item(trans, root, path, &key, 10265 datasize); 10266 if (err) { 10267 btrfs_free_path(path); 10268 goto out_unlock; 10269 } 10270 leaf = path->nodes[0]; 10271 ei = btrfs_item_ptr(leaf, path->slots[0], 10272 struct btrfs_file_extent_item); 10273 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10274 btrfs_set_file_extent_type(leaf, ei, 10275 BTRFS_FILE_EXTENT_INLINE); 10276 btrfs_set_file_extent_encryption(leaf, ei, 0); 10277 btrfs_set_file_extent_compression(leaf, ei, 0); 10278 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10279 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10280 10281 ptr = btrfs_file_extent_inline_start(ei); 10282 write_extent_buffer(leaf, symname, ptr, name_len); 10283 btrfs_mark_buffer_dirty(leaf); 10284 btrfs_free_path(path); 10285 10286 inode->i_op = &btrfs_symlink_inode_operations; 10287 inode_nohighmem(inode); 10288 inode_set_bytes(inode, name_len); 10289 btrfs_i_size_write(BTRFS_I(inode), name_len); 10290 err = btrfs_update_inode(trans, root, inode); 10291 /* 10292 * Last step, add directory indexes for our symlink inode. This is the 10293 * last step to avoid extra cleanup of these indexes if an error happens 10294 * elsewhere above. 10295 */ 10296 if (!err) 10297 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10298 BTRFS_I(inode), 0, index); 10299 if (err) 10300 goto out_unlock; 10301 10302 d_instantiate_new(dentry, inode); 10303 10304 out_unlock: 10305 btrfs_end_transaction(trans); 10306 if (err && inode) { 10307 inode_dec_link_count(inode); 10308 discard_new_inode(inode); 10309 } 10310 btrfs_btree_balance_dirty(fs_info); 10311 return err; 10312 } 10313 10314 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10315 u64 start, u64 num_bytes, u64 min_size, 10316 loff_t actual_len, u64 *alloc_hint, 10317 struct btrfs_trans_handle *trans) 10318 { 10319 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10320 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10321 struct extent_map *em; 10322 struct btrfs_root *root = BTRFS_I(inode)->root; 10323 struct btrfs_key ins; 10324 u64 cur_offset = start; 10325 u64 i_size; 10326 u64 cur_bytes; 10327 u64 last_alloc = (u64)-1; 10328 int ret = 0; 10329 bool own_trans = true; 10330 u64 end = start + num_bytes - 1; 10331 10332 if (trans) 10333 own_trans = false; 10334 while (num_bytes > 0) { 10335 if (own_trans) { 10336 trans = btrfs_start_transaction(root, 3); 10337 if (IS_ERR(trans)) { 10338 ret = PTR_ERR(trans); 10339 break; 10340 } 10341 } 10342 10343 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10344 cur_bytes = max(cur_bytes, min_size); 10345 /* 10346 * If we are severely fragmented we could end up with really 10347 * small allocations, so if the allocator is returning small 10348 * chunks lets make its job easier by only searching for those 10349 * sized chunks. 10350 */ 10351 cur_bytes = min(cur_bytes, last_alloc); 10352 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10353 min_size, 0, *alloc_hint, &ins, 1, 0); 10354 if (ret) { 10355 if (own_trans) 10356 btrfs_end_transaction(trans); 10357 break; 10358 } 10359 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10360 10361 last_alloc = ins.offset; 10362 ret = insert_reserved_file_extent(trans, inode, 10363 cur_offset, ins.objectid, 10364 ins.offset, ins.offset, 10365 ins.offset, 0, 0, 0, 10366 BTRFS_FILE_EXTENT_PREALLOC); 10367 if (ret) { 10368 btrfs_free_reserved_extent(fs_info, ins.objectid, 10369 ins.offset, 0); 10370 btrfs_abort_transaction(trans, ret); 10371 if (own_trans) 10372 btrfs_end_transaction(trans); 10373 break; 10374 } 10375 10376 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10377 cur_offset + ins.offset -1, 0); 10378 10379 em = alloc_extent_map(); 10380 if (!em) { 10381 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10382 &BTRFS_I(inode)->runtime_flags); 10383 goto next; 10384 } 10385 10386 em->start = cur_offset; 10387 em->orig_start = cur_offset; 10388 em->len = ins.offset; 10389 em->block_start = ins.objectid; 10390 em->block_len = ins.offset; 10391 em->orig_block_len = ins.offset; 10392 em->ram_bytes = ins.offset; 10393 em->bdev = fs_info->fs_devices->latest_bdev; 10394 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10395 em->generation = trans->transid; 10396 10397 while (1) { 10398 write_lock(&em_tree->lock); 10399 ret = add_extent_mapping(em_tree, em, 1); 10400 write_unlock(&em_tree->lock); 10401 if (ret != -EEXIST) 10402 break; 10403 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10404 cur_offset + ins.offset - 1, 10405 0); 10406 } 10407 free_extent_map(em); 10408 next: 10409 num_bytes -= ins.offset; 10410 cur_offset += ins.offset; 10411 *alloc_hint = ins.objectid + ins.offset; 10412 10413 inode_inc_iversion(inode); 10414 inode->i_ctime = current_time(inode); 10415 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10416 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10417 (actual_len > inode->i_size) && 10418 (cur_offset > inode->i_size)) { 10419 if (cur_offset > actual_len) 10420 i_size = actual_len; 10421 else 10422 i_size = cur_offset; 10423 i_size_write(inode, i_size); 10424 btrfs_ordered_update_i_size(inode, i_size, NULL); 10425 } 10426 10427 ret = btrfs_update_inode(trans, root, inode); 10428 10429 if (ret) { 10430 btrfs_abort_transaction(trans, ret); 10431 if (own_trans) 10432 btrfs_end_transaction(trans); 10433 break; 10434 } 10435 10436 if (own_trans) 10437 btrfs_end_transaction(trans); 10438 } 10439 if (cur_offset < end) 10440 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10441 end - cur_offset + 1); 10442 return ret; 10443 } 10444 10445 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10446 u64 start, u64 num_bytes, u64 min_size, 10447 loff_t actual_len, u64 *alloc_hint) 10448 { 10449 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10450 min_size, actual_len, alloc_hint, 10451 NULL); 10452 } 10453 10454 int btrfs_prealloc_file_range_trans(struct inode *inode, 10455 struct btrfs_trans_handle *trans, int mode, 10456 u64 start, u64 num_bytes, u64 min_size, 10457 loff_t actual_len, u64 *alloc_hint) 10458 { 10459 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10460 min_size, actual_len, alloc_hint, trans); 10461 } 10462 10463 static int btrfs_set_page_dirty(struct page *page) 10464 { 10465 return __set_page_dirty_nobuffers(page); 10466 } 10467 10468 static int btrfs_permission(struct inode *inode, int mask) 10469 { 10470 struct btrfs_root *root = BTRFS_I(inode)->root; 10471 umode_t mode = inode->i_mode; 10472 10473 if (mask & MAY_WRITE && 10474 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10475 if (btrfs_root_readonly(root)) 10476 return -EROFS; 10477 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10478 return -EACCES; 10479 } 10480 return generic_permission(inode, mask); 10481 } 10482 10483 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10484 { 10485 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10486 struct btrfs_trans_handle *trans; 10487 struct btrfs_root *root = BTRFS_I(dir)->root; 10488 struct inode *inode = NULL; 10489 u64 objectid; 10490 u64 index; 10491 int ret = 0; 10492 10493 /* 10494 * 5 units required for adding orphan entry 10495 */ 10496 trans = btrfs_start_transaction(root, 5); 10497 if (IS_ERR(trans)) 10498 return PTR_ERR(trans); 10499 10500 ret = btrfs_find_free_ino(root, &objectid); 10501 if (ret) 10502 goto out; 10503 10504 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10505 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10506 if (IS_ERR(inode)) { 10507 ret = PTR_ERR(inode); 10508 inode = NULL; 10509 goto out; 10510 } 10511 10512 inode->i_fop = &btrfs_file_operations; 10513 inode->i_op = &btrfs_file_inode_operations; 10514 10515 inode->i_mapping->a_ops = &btrfs_aops; 10516 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10517 10518 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10519 if (ret) 10520 goto out; 10521 10522 ret = btrfs_update_inode(trans, root, inode); 10523 if (ret) 10524 goto out; 10525 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10526 if (ret) 10527 goto out; 10528 10529 /* 10530 * We set number of links to 0 in btrfs_new_inode(), and here we set 10531 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10532 * through: 10533 * 10534 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10535 */ 10536 set_nlink(inode, 1); 10537 d_tmpfile(dentry, inode); 10538 unlock_new_inode(inode); 10539 mark_inode_dirty(inode); 10540 out: 10541 btrfs_end_transaction(trans); 10542 if (ret && inode) 10543 discard_new_inode(inode); 10544 btrfs_btree_balance_dirty(fs_info); 10545 return ret; 10546 } 10547 10548 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10549 { 10550 struct inode *inode = tree->private_data; 10551 unsigned long index = start >> PAGE_SHIFT; 10552 unsigned long end_index = end >> PAGE_SHIFT; 10553 struct page *page; 10554 10555 while (index <= end_index) { 10556 page = find_get_page(inode->i_mapping, index); 10557 ASSERT(page); /* Pages should be in the extent_io_tree */ 10558 set_page_writeback(page); 10559 put_page(page); 10560 index++; 10561 } 10562 } 10563 10564 #ifdef CONFIG_SWAP 10565 /* 10566 * Add an entry indicating a block group or device which is pinned by a 10567 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10568 * negative errno on failure. 10569 */ 10570 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10571 bool is_block_group) 10572 { 10573 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10574 struct btrfs_swapfile_pin *sp, *entry; 10575 struct rb_node **p; 10576 struct rb_node *parent = NULL; 10577 10578 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10579 if (!sp) 10580 return -ENOMEM; 10581 sp->ptr = ptr; 10582 sp->inode = inode; 10583 sp->is_block_group = is_block_group; 10584 10585 spin_lock(&fs_info->swapfile_pins_lock); 10586 p = &fs_info->swapfile_pins.rb_node; 10587 while (*p) { 10588 parent = *p; 10589 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10590 if (sp->ptr < entry->ptr || 10591 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10592 p = &(*p)->rb_left; 10593 } else if (sp->ptr > entry->ptr || 10594 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10595 p = &(*p)->rb_right; 10596 } else { 10597 spin_unlock(&fs_info->swapfile_pins_lock); 10598 kfree(sp); 10599 return 1; 10600 } 10601 } 10602 rb_link_node(&sp->node, parent, p); 10603 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10604 spin_unlock(&fs_info->swapfile_pins_lock); 10605 return 0; 10606 } 10607 10608 /* Free all of the entries pinned by this swapfile. */ 10609 static void btrfs_free_swapfile_pins(struct inode *inode) 10610 { 10611 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10612 struct btrfs_swapfile_pin *sp; 10613 struct rb_node *node, *next; 10614 10615 spin_lock(&fs_info->swapfile_pins_lock); 10616 node = rb_first(&fs_info->swapfile_pins); 10617 while (node) { 10618 next = rb_next(node); 10619 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10620 if (sp->inode == inode) { 10621 rb_erase(&sp->node, &fs_info->swapfile_pins); 10622 if (sp->is_block_group) 10623 btrfs_put_block_group(sp->ptr); 10624 kfree(sp); 10625 } 10626 node = next; 10627 } 10628 spin_unlock(&fs_info->swapfile_pins_lock); 10629 } 10630 10631 struct btrfs_swap_info { 10632 u64 start; 10633 u64 block_start; 10634 u64 block_len; 10635 u64 lowest_ppage; 10636 u64 highest_ppage; 10637 unsigned long nr_pages; 10638 int nr_extents; 10639 }; 10640 10641 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10642 struct btrfs_swap_info *bsi) 10643 { 10644 unsigned long nr_pages; 10645 u64 first_ppage, first_ppage_reported, next_ppage; 10646 int ret; 10647 10648 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10649 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10650 PAGE_SIZE) >> PAGE_SHIFT; 10651 10652 if (first_ppage >= next_ppage) 10653 return 0; 10654 nr_pages = next_ppage - first_ppage; 10655 10656 first_ppage_reported = first_ppage; 10657 if (bsi->start == 0) 10658 first_ppage_reported++; 10659 if (bsi->lowest_ppage > first_ppage_reported) 10660 bsi->lowest_ppage = first_ppage_reported; 10661 if (bsi->highest_ppage < (next_ppage - 1)) 10662 bsi->highest_ppage = next_ppage - 1; 10663 10664 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10665 if (ret < 0) 10666 return ret; 10667 bsi->nr_extents += ret; 10668 bsi->nr_pages += nr_pages; 10669 return 0; 10670 } 10671 10672 static void btrfs_swap_deactivate(struct file *file) 10673 { 10674 struct inode *inode = file_inode(file); 10675 10676 btrfs_free_swapfile_pins(inode); 10677 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10678 } 10679 10680 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10681 sector_t *span) 10682 { 10683 struct inode *inode = file_inode(file); 10684 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10685 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10686 struct extent_state *cached_state = NULL; 10687 struct extent_map *em = NULL; 10688 struct btrfs_device *device = NULL; 10689 struct btrfs_swap_info bsi = { 10690 .lowest_ppage = (sector_t)-1ULL, 10691 }; 10692 int ret = 0; 10693 u64 isize; 10694 u64 start; 10695 10696 /* 10697 * If the swap file was just created, make sure delalloc is done. If the 10698 * file changes again after this, the user is doing something stupid and 10699 * we don't really care. 10700 */ 10701 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10702 if (ret) 10703 return ret; 10704 10705 /* 10706 * The inode is locked, so these flags won't change after we check them. 10707 */ 10708 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10709 btrfs_warn(fs_info, "swapfile must not be compressed"); 10710 return -EINVAL; 10711 } 10712 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10713 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10714 return -EINVAL; 10715 } 10716 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10717 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10718 return -EINVAL; 10719 } 10720 10721 /* 10722 * Balance or device remove/replace/resize can move stuff around from 10723 * under us. The EXCL_OP flag makes sure they aren't running/won't run 10724 * concurrently while we are mapping the swap extents, and 10725 * fs_info->swapfile_pins prevents them from running while the swap file 10726 * is active and moving the extents. Note that this also prevents a 10727 * concurrent device add which isn't actually necessary, but it's not 10728 * really worth the trouble to allow it. 10729 */ 10730 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 10731 btrfs_warn(fs_info, 10732 "cannot activate swapfile while exclusive operation is running"); 10733 return -EBUSY; 10734 } 10735 /* 10736 * Snapshots can create extents which require COW even if NODATACOW is 10737 * set. We use this counter to prevent snapshots. We must increment it 10738 * before walking the extents because we don't want a concurrent 10739 * snapshot to run after we've already checked the extents. 10740 */ 10741 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10742 10743 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10744 10745 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10746 start = 0; 10747 while (start < isize) { 10748 u64 logical_block_start, physical_block_start; 10749 struct btrfs_block_group_cache *bg; 10750 u64 len = isize - start; 10751 10752 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 10753 if (IS_ERR(em)) { 10754 ret = PTR_ERR(em); 10755 goto out; 10756 } 10757 10758 if (em->block_start == EXTENT_MAP_HOLE) { 10759 btrfs_warn(fs_info, "swapfile must not have holes"); 10760 ret = -EINVAL; 10761 goto out; 10762 } 10763 if (em->block_start == EXTENT_MAP_INLINE) { 10764 /* 10765 * It's unlikely we'll ever actually find ourselves 10766 * here, as a file small enough to fit inline won't be 10767 * big enough to store more than the swap header, but in 10768 * case something changes in the future, let's catch it 10769 * here rather than later. 10770 */ 10771 btrfs_warn(fs_info, "swapfile must not be inline"); 10772 ret = -EINVAL; 10773 goto out; 10774 } 10775 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10776 btrfs_warn(fs_info, "swapfile must not be compressed"); 10777 ret = -EINVAL; 10778 goto out; 10779 } 10780 10781 logical_block_start = em->block_start + (start - em->start); 10782 len = min(len, em->len - (start - em->start)); 10783 free_extent_map(em); 10784 em = NULL; 10785 10786 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL); 10787 if (ret < 0) { 10788 goto out; 10789 } else if (ret) { 10790 ret = 0; 10791 } else { 10792 btrfs_warn(fs_info, 10793 "swapfile must not be copy-on-write"); 10794 ret = -EINVAL; 10795 goto out; 10796 } 10797 10798 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10799 if (IS_ERR(em)) { 10800 ret = PTR_ERR(em); 10801 goto out; 10802 } 10803 10804 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10805 btrfs_warn(fs_info, 10806 "swapfile must have single data profile"); 10807 ret = -EINVAL; 10808 goto out; 10809 } 10810 10811 if (device == NULL) { 10812 device = em->map_lookup->stripes[0].dev; 10813 ret = btrfs_add_swapfile_pin(inode, device, false); 10814 if (ret == 1) 10815 ret = 0; 10816 else if (ret) 10817 goto out; 10818 } else if (device != em->map_lookup->stripes[0].dev) { 10819 btrfs_warn(fs_info, "swapfile must be on one device"); 10820 ret = -EINVAL; 10821 goto out; 10822 } 10823 10824 physical_block_start = (em->map_lookup->stripes[0].physical + 10825 (logical_block_start - em->start)); 10826 len = min(len, em->len - (logical_block_start - em->start)); 10827 free_extent_map(em); 10828 em = NULL; 10829 10830 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10831 if (!bg) { 10832 btrfs_warn(fs_info, 10833 "could not find block group containing swapfile"); 10834 ret = -EINVAL; 10835 goto out; 10836 } 10837 10838 ret = btrfs_add_swapfile_pin(inode, bg, true); 10839 if (ret) { 10840 btrfs_put_block_group(bg); 10841 if (ret == 1) 10842 ret = 0; 10843 else 10844 goto out; 10845 } 10846 10847 if (bsi.block_len && 10848 bsi.block_start + bsi.block_len == physical_block_start) { 10849 bsi.block_len += len; 10850 } else { 10851 if (bsi.block_len) { 10852 ret = btrfs_add_swap_extent(sis, &bsi); 10853 if (ret) 10854 goto out; 10855 } 10856 bsi.start = start; 10857 bsi.block_start = physical_block_start; 10858 bsi.block_len = len; 10859 } 10860 10861 start += len; 10862 } 10863 10864 if (bsi.block_len) 10865 ret = btrfs_add_swap_extent(sis, &bsi); 10866 10867 out: 10868 if (!IS_ERR_OR_NULL(em)) 10869 free_extent_map(em); 10870 10871 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10872 10873 if (ret) 10874 btrfs_swap_deactivate(file); 10875 10876 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 10877 10878 if (ret) 10879 return ret; 10880 10881 if (device) 10882 sis->bdev = device->bdev; 10883 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10884 sis->max = bsi.nr_pages; 10885 sis->pages = bsi.nr_pages - 1; 10886 sis->highest_bit = bsi.nr_pages - 1; 10887 return bsi.nr_extents; 10888 } 10889 #else 10890 static void btrfs_swap_deactivate(struct file *file) 10891 { 10892 } 10893 10894 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10895 sector_t *span) 10896 { 10897 return -EOPNOTSUPP; 10898 } 10899 #endif 10900 10901 static const struct inode_operations btrfs_dir_inode_operations = { 10902 .getattr = btrfs_getattr, 10903 .lookup = btrfs_lookup, 10904 .create = btrfs_create, 10905 .unlink = btrfs_unlink, 10906 .link = btrfs_link, 10907 .mkdir = btrfs_mkdir, 10908 .rmdir = btrfs_rmdir, 10909 .rename = btrfs_rename2, 10910 .symlink = btrfs_symlink, 10911 .setattr = btrfs_setattr, 10912 .mknod = btrfs_mknod, 10913 .listxattr = btrfs_listxattr, 10914 .permission = btrfs_permission, 10915 .get_acl = btrfs_get_acl, 10916 .set_acl = btrfs_set_acl, 10917 .update_time = btrfs_update_time, 10918 .tmpfile = btrfs_tmpfile, 10919 }; 10920 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10921 .lookup = btrfs_lookup, 10922 .permission = btrfs_permission, 10923 .update_time = btrfs_update_time, 10924 }; 10925 10926 static const struct file_operations btrfs_dir_file_operations = { 10927 .llseek = generic_file_llseek, 10928 .read = generic_read_dir, 10929 .iterate_shared = btrfs_real_readdir, 10930 .open = btrfs_opendir, 10931 .unlocked_ioctl = btrfs_ioctl, 10932 #ifdef CONFIG_COMPAT 10933 .compat_ioctl = btrfs_compat_ioctl, 10934 #endif 10935 .release = btrfs_release_file, 10936 .fsync = btrfs_sync_file, 10937 }; 10938 10939 static const struct extent_io_ops btrfs_extent_io_ops = { 10940 /* mandatory callbacks */ 10941 .submit_bio_hook = btrfs_submit_bio_hook, 10942 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10943 }; 10944 10945 /* 10946 * btrfs doesn't support the bmap operation because swapfiles 10947 * use bmap to make a mapping of extents in the file. They assume 10948 * these extents won't change over the life of the file and they 10949 * use the bmap result to do IO directly to the drive. 10950 * 10951 * the btrfs bmap call would return logical addresses that aren't 10952 * suitable for IO and they also will change frequently as COW 10953 * operations happen. So, swapfile + btrfs == corruption. 10954 * 10955 * For now we're avoiding this by dropping bmap. 10956 */ 10957 static const struct address_space_operations btrfs_aops = { 10958 .readpage = btrfs_readpage, 10959 .writepage = btrfs_writepage, 10960 .writepages = btrfs_writepages, 10961 .readpages = btrfs_readpages, 10962 .direct_IO = btrfs_direct_IO, 10963 .invalidatepage = btrfs_invalidatepage, 10964 .releasepage = btrfs_releasepage, 10965 .set_page_dirty = btrfs_set_page_dirty, 10966 .error_remove_page = generic_error_remove_page, 10967 .swap_activate = btrfs_swap_activate, 10968 .swap_deactivate = btrfs_swap_deactivate, 10969 }; 10970 10971 static const struct inode_operations btrfs_file_inode_operations = { 10972 .getattr = btrfs_getattr, 10973 .setattr = btrfs_setattr, 10974 .listxattr = btrfs_listxattr, 10975 .permission = btrfs_permission, 10976 .fiemap = btrfs_fiemap, 10977 .get_acl = btrfs_get_acl, 10978 .set_acl = btrfs_set_acl, 10979 .update_time = btrfs_update_time, 10980 }; 10981 static const struct inode_operations btrfs_special_inode_operations = { 10982 .getattr = btrfs_getattr, 10983 .setattr = btrfs_setattr, 10984 .permission = btrfs_permission, 10985 .listxattr = btrfs_listxattr, 10986 .get_acl = btrfs_get_acl, 10987 .set_acl = btrfs_set_acl, 10988 .update_time = btrfs_update_time, 10989 }; 10990 static const struct inode_operations btrfs_symlink_inode_operations = { 10991 .get_link = page_get_link, 10992 .getattr = btrfs_getattr, 10993 .setattr = btrfs_setattr, 10994 .permission = btrfs_permission, 10995 .listxattr = btrfs_listxattr, 10996 .update_time = btrfs_update_time, 10997 }; 10998 10999 const struct dentry_operations btrfs_dentry_operations = { 11000 .d_delete = btrfs_dentry_delete, 11001 }; 11002