xref: /linux/fs/btrfs/inode.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78 
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85 
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
89 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
90 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
91 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
92 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
93 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
94 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
95 };
96 
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 				   struct page *locked_page,
102 				   u64 start, u64 end, int *page_started,
103 				   unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 					   u64 len, u64 orig_start,
106 					   u64 block_start, u64 block_len,
107 					   u64 orig_block_len, u64 ram_bytes,
108 					   int type);
109 
110 static int btrfs_dirty_inode(struct inode *inode);
111 
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118 
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 				     struct inode *inode,  struct inode *dir,
121 				     const struct qstr *qstr)
122 {
123 	int err;
124 
125 	err = btrfs_init_acl(trans, inode, dir);
126 	if (!err)
127 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 	return err;
129 }
130 
131 /*
132  * this does all the hard work for inserting an inline extent into
133  * the btree.  The caller should have done a btrfs_drop_extents so that
134  * no overlapping inline items exist in the btree
135  */
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 				struct btrfs_path *path, int extent_inserted,
138 				struct btrfs_root *root, struct inode *inode,
139 				u64 start, size_t size, size_t compressed_size,
140 				int compress_type,
141 				struct page **compressed_pages)
142 {
143 	struct extent_buffer *leaf;
144 	struct page *page = NULL;
145 	char *kaddr;
146 	unsigned long ptr;
147 	struct btrfs_file_extent_item *ei;
148 	int err = 0;
149 	int ret;
150 	size_t cur_size = size;
151 	unsigned long offset;
152 
153 	if (compressed_size && compressed_pages)
154 		cur_size = compressed_size;
155 
156 	inode_add_bytes(inode, size);
157 
158 	if (!extent_inserted) {
159 		struct btrfs_key key;
160 		size_t datasize;
161 
162 		key.objectid = btrfs_ino(inode);
163 		key.offset = start;
164 		key.type = BTRFS_EXTENT_DATA_KEY;
165 
166 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 		path->leave_spinning = 1;
168 		ret = btrfs_insert_empty_item(trans, root, path, &key,
169 					      datasize);
170 		if (ret) {
171 			err = ret;
172 			goto fail;
173 		}
174 	}
175 	leaf = path->nodes[0];
176 	ei = btrfs_item_ptr(leaf, path->slots[0],
177 			    struct btrfs_file_extent_item);
178 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 	btrfs_set_file_extent_encryption(leaf, ei, 0);
181 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 	ptr = btrfs_file_extent_inline_start(ei);
184 
185 	if (compress_type != BTRFS_COMPRESS_NONE) {
186 		struct page *cpage;
187 		int i = 0;
188 		while (compressed_size > 0) {
189 			cpage = compressed_pages[i];
190 			cur_size = min_t(unsigned long, compressed_size,
191 				       PAGE_CACHE_SIZE);
192 
193 			kaddr = kmap_atomic(cpage);
194 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 			kunmap_atomic(kaddr);
196 
197 			i++;
198 			ptr += cur_size;
199 			compressed_size -= cur_size;
200 		}
201 		btrfs_set_file_extent_compression(leaf, ei,
202 						  compress_type);
203 	} else {
204 		page = find_get_page(inode->i_mapping,
205 				     start >> PAGE_CACHE_SHIFT);
206 		btrfs_set_file_extent_compression(leaf, ei, 0);
207 		kaddr = kmap_atomic(page);
208 		offset = start & (PAGE_CACHE_SIZE - 1);
209 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 		kunmap_atomic(kaddr);
211 		page_cache_release(page);
212 	}
213 	btrfs_mark_buffer_dirty(leaf);
214 	btrfs_release_path(path);
215 
216 	/*
217 	 * we're an inline extent, so nobody can
218 	 * extend the file past i_size without locking
219 	 * a page we already have locked.
220 	 *
221 	 * We must do any isize and inode updates
222 	 * before we unlock the pages.  Otherwise we
223 	 * could end up racing with unlink.
224 	 */
225 	BTRFS_I(inode)->disk_i_size = inode->i_size;
226 	ret = btrfs_update_inode(trans, root, inode);
227 
228 	return ret;
229 fail:
230 	return err;
231 }
232 
233 
234 /*
235  * conditionally insert an inline extent into the file.  This
236  * does the checks required to make sure the data is small enough
237  * to fit as an inline extent.
238  */
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 					  struct inode *inode, u64 start,
241 					  u64 end, size_t compressed_size,
242 					  int compress_type,
243 					  struct page **compressed_pages)
244 {
245 	struct btrfs_trans_handle *trans;
246 	u64 isize = i_size_read(inode);
247 	u64 actual_end = min(end + 1, isize);
248 	u64 inline_len = actual_end - start;
249 	u64 aligned_end = ALIGN(end, root->sectorsize);
250 	u64 data_len = inline_len;
251 	int ret;
252 	struct btrfs_path *path;
253 	int extent_inserted = 0;
254 	u32 extent_item_size;
255 
256 	if (compressed_size)
257 		data_len = compressed_size;
258 
259 	if (start > 0 ||
260 	    actual_end > PAGE_CACHE_SIZE ||
261 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 	    (!compressed_size &&
263 	    (actual_end & (root->sectorsize - 1)) == 0) ||
264 	    end + 1 < isize ||
265 	    data_len > root->fs_info->max_inline) {
266 		return 1;
267 	}
268 
269 	path = btrfs_alloc_path();
270 	if (!path)
271 		return -ENOMEM;
272 
273 	trans = btrfs_join_transaction(root);
274 	if (IS_ERR(trans)) {
275 		btrfs_free_path(path);
276 		return PTR_ERR(trans);
277 	}
278 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279 
280 	if (compressed_size && compressed_pages)
281 		extent_item_size = btrfs_file_extent_calc_inline_size(
282 		   compressed_size);
283 	else
284 		extent_item_size = btrfs_file_extent_calc_inline_size(
285 		    inline_len);
286 
287 	ret = __btrfs_drop_extents(trans, root, inode, path,
288 				   start, aligned_end, NULL,
289 				   1, 1, extent_item_size, &extent_inserted);
290 	if (ret) {
291 		btrfs_abort_transaction(trans, root, ret);
292 		goto out;
293 	}
294 
295 	if (isize > actual_end)
296 		inline_len = min_t(u64, isize, actual_end);
297 	ret = insert_inline_extent(trans, path, extent_inserted,
298 				   root, inode, start,
299 				   inline_len, compressed_size,
300 				   compress_type, compressed_pages);
301 	if (ret && ret != -ENOSPC) {
302 		btrfs_abort_transaction(trans, root, ret);
303 		goto out;
304 	} else if (ret == -ENOSPC) {
305 		ret = 1;
306 		goto out;
307 	}
308 
309 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 	btrfs_free_path(path);
314 	btrfs_end_transaction(trans, root);
315 	return ret;
316 }
317 
318 struct async_extent {
319 	u64 start;
320 	u64 ram_size;
321 	u64 compressed_size;
322 	struct page **pages;
323 	unsigned long nr_pages;
324 	int compress_type;
325 	struct list_head list;
326 };
327 
328 struct async_cow {
329 	struct inode *inode;
330 	struct btrfs_root *root;
331 	struct page *locked_page;
332 	u64 start;
333 	u64 end;
334 	struct list_head extents;
335 	struct btrfs_work work;
336 };
337 
338 static noinline int add_async_extent(struct async_cow *cow,
339 				     u64 start, u64 ram_size,
340 				     u64 compressed_size,
341 				     struct page **pages,
342 				     unsigned long nr_pages,
343 				     int compress_type)
344 {
345 	struct async_extent *async_extent;
346 
347 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
348 	BUG_ON(!async_extent); /* -ENOMEM */
349 	async_extent->start = start;
350 	async_extent->ram_size = ram_size;
351 	async_extent->compressed_size = compressed_size;
352 	async_extent->pages = pages;
353 	async_extent->nr_pages = nr_pages;
354 	async_extent->compress_type = compress_type;
355 	list_add_tail(&async_extent->list, &cow->extents);
356 	return 0;
357 }
358 
359 static inline int inode_need_compress(struct inode *inode)
360 {
361 	struct btrfs_root *root = BTRFS_I(inode)->root;
362 
363 	/* force compress */
364 	if (btrfs_test_opt(root, FORCE_COMPRESS))
365 		return 1;
366 	/* bad compression ratios */
367 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
368 		return 0;
369 	if (btrfs_test_opt(root, COMPRESS) ||
370 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371 	    BTRFS_I(inode)->force_compress)
372 		return 1;
373 	return 0;
374 }
375 
376 /*
377  * we create compressed extents in two phases.  The first
378  * phase compresses a range of pages that have already been
379  * locked (both pages and state bits are locked).
380  *
381  * This is done inside an ordered work queue, and the compression
382  * is spread across many cpus.  The actual IO submission is step
383  * two, and the ordered work queue takes care of making sure that
384  * happens in the same order things were put onto the queue by
385  * writepages and friends.
386  *
387  * If this code finds it can't get good compression, it puts an
388  * entry onto the work queue to write the uncompressed bytes.  This
389  * makes sure that both compressed inodes and uncompressed inodes
390  * are written in the same order that the flusher thread sent them
391  * down.
392  */
393 static noinline void compress_file_range(struct inode *inode,
394 					struct page *locked_page,
395 					u64 start, u64 end,
396 					struct async_cow *async_cow,
397 					int *num_added)
398 {
399 	struct btrfs_root *root = BTRFS_I(inode)->root;
400 	u64 num_bytes;
401 	u64 blocksize = root->sectorsize;
402 	u64 actual_end;
403 	u64 isize = i_size_read(inode);
404 	int ret = 0;
405 	struct page **pages = NULL;
406 	unsigned long nr_pages;
407 	unsigned long nr_pages_ret = 0;
408 	unsigned long total_compressed = 0;
409 	unsigned long total_in = 0;
410 	unsigned long max_compressed = 128 * 1024;
411 	unsigned long max_uncompressed = 128 * 1024;
412 	int i;
413 	int will_compress;
414 	int compress_type = root->fs_info->compress_type;
415 	int redirty = 0;
416 
417 	/* if this is a small write inside eof, kick off a defrag */
418 	if ((end - start + 1) < 16 * 1024 &&
419 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420 		btrfs_add_inode_defrag(NULL, inode);
421 
422 	actual_end = min_t(u64, isize, end + 1);
423 again:
424 	will_compress = 0;
425 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
427 
428 	/*
429 	 * we don't want to send crud past the end of i_size through
430 	 * compression, that's just a waste of CPU time.  So, if the
431 	 * end of the file is before the start of our current
432 	 * requested range of bytes, we bail out to the uncompressed
433 	 * cleanup code that can deal with all of this.
434 	 *
435 	 * It isn't really the fastest way to fix things, but this is a
436 	 * very uncommon corner.
437 	 */
438 	if (actual_end <= start)
439 		goto cleanup_and_bail_uncompressed;
440 
441 	total_compressed = actual_end - start;
442 
443 	/*
444 	 * skip compression for a small file range(<=blocksize) that
445 	 * isn't an inline extent, since it dosen't save disk space at all.
446 	 */
447 	if (total_compressed <= blocksize &&
448 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449 		goto cleanup_and_bail_uncompressed;
450 
451 	/* we want to make sure that amount of ram required to uncompress
452 	 * an extent is reasonable, so we limit the total size in ram
453 	 * of a compressed extent to 128k.  This is a crucial number
454 	 * because it also controls how easily we can spread reads across
455 	 * cpus for decompression.
456 	 *
457 	 * We also want to make sure the amount of IO required to do
458 	 * a random read is reasonably small, so we limit the size of
459 	 * a compressed extent to 128k.
460 	 */
461 	total_compressed = min(total_compressed, max_uncompressed);
462 	num_bytes = ALIGN(end - start + 1, blocksize);
463 	num_bytes = max(blocksize,  num_bytes);
464 	total_in = 0;
465 	ret = 0;
466 
467 	/*
468 	 * we do compression for mount -o compress and when the
469 	 * inode has not been flagged as nocompress.  This flag can
470 	 * change at any time if we discover bad compression ratios.
471 	 */
472 	if (inode_need_compress(inode)) {
473 		WARN_ON(pages);
474 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
475 		if (!pages) {
476 			/* just bail out to the uncompressed code */
477 			goto cont;
478 		}
479 
480 		if (BTRFS_I(inode)->force_compress)
481 			compress_type = BTRFS_I(inode)->force_compress;
482 
483 		/*
484 		 * we need to call clear_page_dirty_for_io on each
485 		 * page in the range.  Otherwise applications with the file
486 		 * mmap'd can wander in and change the page contents while
487 		 * we are compressing them.
488 		 *
489 		 * If the compression fails for any reason, we set the pages
490 		 * dirty again later on.
491 		 */
492 		extent_range_clear_dirty_for_io(inode, start, end);
493 		redirty = 1;
494 		ret = btrfs_compress_pages(compress_type,
495 					   inode->i_mapping, start,
496 					   total_compressed, pages,
497 					   nr_pages, &nr_pages_ret,
498 					   &total_in,
499 					   &total_compressed,
500 					   max_compressed);
501 
502 		if (!ret) {
503 			unsigned long offset = total_compressed &
504 				(PAGE_CACHE_SIZE - 1);
505 			struct page *page = pages[nr_pages_ret - 1];
506 			char *kaddr;
507 
508 			/* zero the tail end of the last page, we might be
509 			 * sending it down to disk
510 			 */
511 			if (offset) {
512 				kaddr = kmap_atomic(page);
513 				memset(kaddr + offset, 0,
514 				       PAGE_CACHE_SIZE - offset);
515 				kunmap_atomic(kaddr);
516 			}
517 			will_compress = 1;
518 		}
519 	}
520 cont:
521 	if (start == 0) {
522 		/* lets try to make an inline extent */
523 		if (ret || total_in < (actual_end - start)) {
524 			/* we didn't compress the entire range, try
525 			 * to make an uncompressed inline extent.
526 			 */
527 			ret = cow_file_range_inline(root, inode, start, end,
528 						    0, 0, NULL);
529 		} else {
530 			/* try making a compressed inline extent */
531 			ret = cow_file_range_inline(root, inode, start, end,
532 						    total_compressed,
533 						    compress_type, pages);
534 		}
535 		if (ret <= 0) {
536 			unsigned long clear_flags = EXTENT_DELALLOC |
537 				EXTENT_DEFRAG;
538 			unsigned long page_error_op;
539 
540 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
541 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
542 
543 			/*
544 			 * inline extent creation worked or returned error,
545 			 * we don't need to create any more async work items.
546 			 * Unlock and free up our temp pages.
547 			 */
548 			extent_clear_unlock_delalloc(inode, start, end, NULL,
549 						     clear_flags, PAGE_UNLOCK |
550 						     PAGE_CLEAR_DIRTY |
551 						     PAGE_SET_WRITEBACK |
552 						     page_error_op |
553 						     PAGE_END_WRITEBACK);
554 			goto free_pages_out;
555 		}
556 	}
557 
558 	if (will_compress) {
559 		/*
560 		 * we aren't doing an inline extent round the compressed size
561 		 * up to a block size boundary so the allocator does sane
562 		 * things
563 		 */
564 		total_compressed = ALIGN(total_compressed, blocksize);
565 
566 		/*
567 		 * one last check to make sure the compression is really a
568 		 * win, compare the page count read with the blocks on disk
569 		 */
570 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
571 		if (total_compressed >= total_in) {
572 			will_compress = 0;
573 		} else {
574 			num_bytes = total_in;
575 		}
576 	}
577 	if (!will_compress && pages) {
578 		/*
579 		 * the compression code ran but failed to make things smaller,
580 		 * free any pages it allocated and our page pointer array
581 		 */
582 		for (i = 0; i < nr_pages_ret; i++) {
583 			WARN_ON(pages[i]->mapping);
584 			page_cache_release(pages[i]);
585 		}
586 		kfree(pages);
587 		pages = NULL;
588 		total_compressed = 0;
589 		nr_pages_ret = 0;
590 
591 		/* flag the file so we don't compress in the future */
592 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593 		    !(BTRFS_I(inode)->force_compress)) {
594 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
595 		}
596 	}
597 	if (will_compress) {
598 		*num_added += 1;
599 
600 		/* the async work queues will take care of doing actual
601 		 * allocation on disk for these compressed pages,
602 		 * and will submit them to the elevator.
603 		 */
604 		add_async_extent(async_cow, start, num_bytes,
605 				 total_compressed, pages, nr_pages_ret,
606 				 compress_type);
607 
608 		if (start + num_bytes < end) {
609 			start += num_bytes;
610 			pages = NULL;
611 			cond_resched();
612 			goto again;
613 		}
614 	} else {
615 cleanup_and_bail_uncompressed:
616 		/*
617 		 * No compression, but we still need to write the pages in
618 		 * the file we've been given so far.  redirty the locked
619 		 * page if it corresponds to our extent and set things up
620 		 * for the async work queue to run cow_file_range to do
621 		 * the normal delalloc dance
622 		 */
623 		if (page_offset(locked_page) >= start &&
624 		    page_offset(locked_page) <= end) {
625 			__set_page_dirty_nobuffers(locked_page);
626 			/* unlocked later on in the async handlers */
627 		}
628 		if (redirty)
629 			extent_range_redirty_for_io(inode, start, end);
630 		add_async_extent(async_cow, start, end - start + 1,
631 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
632 		*num_added += 1;
633 	}
634 
635 	return;
636 
637 free_pages_out:
638 	for (i = 0; i < nr_pages_ret; i++) {
639 		WARN_ON(pages[i]->mapping);
640 		page_cache_release(pages[i]);
641 	}
642 	kfree(pages);
643 }
644 
645 static void free_async_extent_pages(struct async_extent *async_extent)
646 {
647 	int i;
648 
649 	if (!async_extent->pages)
650 		return;
651 
652 	for (i = 0; i < async_extent->nr_pages; i++) {
653 		WARN_ON(async_extent->pages[i]->mapping);
654 		page_cache_release(async_extent->pages[i]);
655 	}
656 	kfree(async_extent->pages);
657 	async_extent->nr_pages = 0;
658 	async_extent->pages = NULL;
659 }
660 
661 /*
662  * phase two of compressed writeback.  This is the ordered portion
663  * of the code, which only gets called in the order the work was
664  * queued.  We walk all the async extents created by compress_file_range
665  * and send them down to the disk.
666  */
667 static noinline void submit_compressed_extents(struct inode *inode,
668 					      struct async_cow *async_cow)
669 {
670 	struct async_extent *async_extent;
671 	u64 alloc_hint = 0;
672 	struct btrfs_key ins;
673 	struct extent_map *em;
674 	struct btrfs_root *root = BTRFS_I(inode)->root;
675 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676 	struct extent_io_tree *io_tree;
677 	int ret = 0;
678 
679 again:
680 	while (!list_empty(&async_cow->extents)) {
681 		async_extent = list_entry(async_cow->extents.next,
682 					  struct async_extent, list);
683 		list_del(&async_extent->list);
684 
685 		io_tree = &BTRFS_I(inode)->io_tree;
686 
687 retry:
688 		/* did the compression code fall back to uncompressed IO? */
689 		if (!async_extent->pages) {
690 			int page_started = 0;
691 			unsigned long nr_written = 0;
692 
693 			lock_extent(io_tree, async_extent->start,
694 					 async_extent->start +
695 					 async_extent->ram_size - 1);
696 
697 			/* allocate blocks */
698 			ret = cow_file_range(inode, async_cow->locked_page,
699 					     async_extent->start,
700 					     async_extent->start +
701 					     async_extent->ram_size - 1,
702 					     &page_started, &nr_written, 0);
703 
704 			/* JDM XXX */
705 
706 			/*
707 			 * if page_started, cow_file_range inserted an
708 			 * inline extent and took care of all the unlocking
709 			 * and IO for us.  Otherwise, we need to submit
710 			 * all those pages down to the drive.
711 			 */
712 			if (!page_started && !ret)
713 				extent_write_locked_range(io_tree,
714 						  inode, async_extent->start,
715 						  async_extent->start +
716 						  async_extent->ram_size - 1,
717 						  btrfs_get_extent,
718 						  WB_SYNC_ALL);
719 			else if (ret)
720 				unlock_page(async_cow->locked_page);
721 			kfree(async_extent);
722 			cond_resched();
723 			continue;
724 		}
725 
726 		lock_extent(io_tree, async_extent->start,
727 			    async_extent->start + async_extent->ram_size - 1);
728 
729 		ret = btrfs_reserve_extent(root,
730 					   async_extent->compressed_size,
731 					   async_extent->compressed_size,
732 					   0, alloc_hint, &ins, 1, 1);
733 		if (ret) {
734 			free_async_extent_pages(async_extent);
735 
736 			if (ret == -ENOSPC) {
737 				unlock_extent(io_tree, async_extent->start,
738 					      async_extent->start +
739 					      async_extent->ram_size - 1);
740 
741 				/*
742 				 * we need to redirty the pages if we decide to
743 				 * fallback to uncompressed IO, otherwise we
744 				 * will not submit these pages down to lower
745 				 * layers.
746 				 */
747 				extent_range_redirty_for_io(inode,
748 						async_extent->start,
749 						async_extent->start +
750 						async_extent->ram_size - 1);
751 
752 				goto retry;
753 			}
754 			goto out_free;
755 		}
756 		/*
757 		 * here we're doing allocation and writeback of the
758 		 * compressed pages
759 		 */
760 		btrfs_drop_extent_cache(inode, async_extent->start,
761 					async_extent->start +
762 					async_extent->ram_size - 1, 0);
763 
764 		em = alloc_extent_map();
765 		if (!em) {
766 			ret = -ENOMEM;
767 			goto out_free_reserve;
768 		}
769 		em->start = async_extent->start;
770 		em->len = async_extent->ram_size;
771 		em->orig_start = em->start;
772 		em->mod_start = em->start;
773 		em->mod_len = em->len;
774 
775 		em->block_start = ins.objectid;
776 		em->block_len = ins.offset;
777 		em->orig_block_len = ins.offset;
778 		em->ram_bytes = async_extent->ram_size;
779 		em->bdev = root->fs_info->fs_devices->latest_bdev;
780 		em->compress_type = async_extent->compress_type;
781 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
782 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
783 		em->generation = -1;
784 
785 		while (1) {
786 			write_lock(&em_tree->lock);
787 			ret = add_extent_mapping(em_tree, em, 1);
788 			write_unlock(&em_tree->lock);
789 			if (ret != -EEXIST) {
790 				free_extent_map(em);
791 				break;
792 			}
793 			btrfs_drop_extent_cache(inode, async_extent->start,
794 						async_extent->start +
795 						async_extent->ram_size - 1, 0);
796 		}
797 
798 		if (ret)
799 			goto out_free_reserve;
800 
801 		ret = btrfs_add_ordered_extent_compress(inode,
802 						async_extent->start,
803 						ins.objectid,
804 						async_extent->ram_size,
805 						ins.offset,
806 						BTRFS_ORDERED_COMPRESSED,
807 						async_extent->compress_type);
808 		if (ret) {
809 			btrfs_drop_extent_cache(inode, async_extent->start,
810 						async_extent->start +
811 						async_extent->ram_size - 1, 0);
812 			goto out_free_reserve;
813 		}
814 
815 		/*
816 		 * clear dirty, set writeback and unlock the pages.
817 		 */
818 		extent_clear_unlock_delalloc(inode, async_extent->start,
819 				async_extent->start +
820 				async_extent->ram_size - 1,
821 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
823 				PAGE_SET_WRITEBACK);
824 		ret = btrfs_submit_compressed_write(inode,
825 				    async_extent->start,
826 				    async_extent->ram_size,
827 				    ins.objectid,
828 				    ins.offset, async_extent->pages,
829 				    async_extent->nr_pages);
830 		if (ret) {
831 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832 			struct page *p = async_extent->pages[0];
833 			const u64 start = async_extent->start;
834 			const u64 end = start + async_extent->ram_size - 1;
835 
836 			p->mapping = inode->i_mapping;
837 			tree->ops->writepage_end_io_hook(p, start, end,
838 							 NULL, 0);
839 			p->mapping = NULL;
840 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841 						     PAGE_END_WRITEBACK |
842 						     PAGE_SET_ERROR);
843 			free_async_extent_pages(async_extent);
844 		}
845 		alloc_hint = ins.objectid + ins.offset;
846 		kfree(async_extent);
847 		cond_resched();
848 	}
849 	return;
850 out_free_reserve:
851 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
852 out_free:
853 	extent_clear_unlock_delalloc(inode, async_extent->start,
854 				     async_extent->start +
855 				     async_extent->ram_size - 1,
856 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860 				     PAGE_SET_ERROR);
861 	free_async_extent_pages(async_extent);
862 	kfree(async_extent);
863 	goto again;
864 }
865 
866 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867 				      u64 num_bytes)
868 {
869 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 	struct extent_map *em;
871 	u64 alloc_hint = 0;
872 
873 	read_lock(&em_tree->lock);
874 	em = search_extent_mapping(em_tree, start, num_bytes);
875 	if (em) {
876 		/*
877 		 * if block start isn't an actual block number then find the
878 		 * first block in this inode and use that as a hint.  If that
879 		 * block is also bogus then just don't worry about it.
880 		 */
881 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882 			free_extent_map(em);
883 			em = search_extent_mapping(em_tree, 0, 0);
884 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885 				alloc_hint = em->block_start;
886 			if (em)
887 				free_extent_map(em);
888 		} else {
889 			alloc_hint = em->block_start;
890 			free_extent_map(em);
891 		}
892 	}
893 	read_unlock(&em_tree->lock);
894 
895 	return alloc_hint;
896 }
897 
898 /*
899  * when extent_io.c finds a delayed allocation range in the file,
900  * the call backs end up in this code.  The basic idea is to
901  * allocate extents on disk for the range, and create ordered data structs
902  * in ram to track those extents.
903  *
904  * locked_page is the page that writepage had locked already.  We use
905  * it to make sure we don't do extra locks or unlocks.
906  *
907  * *page_started is set to one if we unlock locked_page and do everything
908  * required to start IO on it.  It may be clean and already done with
909  * IO when we return.
910  */
911 static noinline int cow_file_range(struct inode *inode,
912 				   struct page *locked_page,
913 				   u64 start, u64 end, int *page_started,
914 				   unsigned long *nr_written,
915 				   int unlock)
916 {
917 	struct btrfs_root *root = BTRFS_I(inode)->root;
918 	u64 alloc_hint = 0;
919 	u64 num_bytes;
920 	unsigned long ram_size;
921 	u64 disk_num_bytes;
922 	u64 cur_alloc_size;
923 	u64 blocksize = root->sectorsize;
924 	struct btrfs_key ins;
925 	struct extent_map *em;
926 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927 	int ret = 0;
928 
929 	if (btrfs_is_free_space_inode(inode)) {
930 		WARN_ON_ONCE(1);
931 		ret = -EINVAL;
932 		goto out_unlock;
933 	}
934 
935 	num_bytes = ALIGN(end - start + 1, blocksize);
936 	num_bytes = max(blocksize,  num_bytes);
937 	disk_num_bytes = num_bytes;
938 
939 	/* if this is a small write inside eof, kick off defrag */
940 	if (num_bytes < 64 * 1024 &&
941 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942 		btrfs_add_inode_defrag(NULL, inode);
943 
944 	if (start == 0) {
945 		/* lets try to make an inline extent */
946 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947 					    NULL);
948 		if (ret == 0) {
949 			extent_clear_unlock_delalloc(inode, start, end, NULL,
950 				     EXTENT_LOCKED | EXTENT_DELALLOC |
951 				     EXTENT_DEFRAG, PAGE_UNLOCK |
952 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953 				     PAGE_END_WRITEBACK);
954 
955 			*nr_written = *nr_written +
956 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957 			*page_started = 1;
958 			goto out;
959 		} else if (ret < 0) {
960 			goto out_unlock;
961 		}
962 	}
963 
964 	BUG_ON(disk_num_bytes >
965 	       btrfs_super_total_bytes(root->fs_info->super_copy));
966 
967 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969 
970 	while (disk_num_bytes > 0) {
971 		unsigned long op;
972 
973 		cur_alloc_size = disk_num_bytes;
974 		ret = btrfs_reserve_extent(root, cur_alloc_size,
975 					   root->sectorsize, 0, alloc_hint,
976 					   &ins, 1, 1);
977 		if (ret < 0)
978 			goto out_unlock;
979 
980 		em = alloc_extent_map();
981 		if (!em) {
982 			ret = -ENOMEM;
983 			goto out_reserve;
984 		}
985 		em->start = start;
986 		em->orig_start = em->start;
987 		ram_size = ins.offset;
988 		em->len = ins.offset;
989 		em->mod_start = em->start;
990 		em->mod_len = em->len;
991 
992 		em->block_start = ins.objectid;
993 		em->block_len = ins.offset;
994 		em->orig_block_len = ins.offset;
995 		em->ram_bytes = ram_size;
996 		em->bdev = root->fs_info->fs_devices->latest_bdev;
997 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
998 		em->generation = -1;
999 
1000 		while (1) {
1001 			write_lock(&em_tree->lock);
1002 			ret = add_extent_mapping(em_tree, em, 1);
1003 			write_unlock(&em_tree->lock);
1004 			if (ret != -EEXIST) {
1005 				free_extent_map(em);
1006 				break;
1007 			}
1008 			btrfs_drop_extent_cache(inode, start,
1009 						start + ram_size - 1, 0);
1010 		}
1011 		if (ret)
1012 			goto out_reserve;
1013 
1014 		cur_alloc_size = ins.offset;
1015 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016 					       ram_size, cur_alloc_size, 0);
1017 		if (ret)
1018 			goto out_drop_extent_cache;
1019 
1020 		if (root->root_key.objectid ==
1021 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022 			ret = btrfs_reloc_clone_csums(inode, start,
1023 						      cur_alloc_size);
1024 			if (ret)
1025 				goto out_drop_extent_cache;
1026 		}
1027 
1028 		if (disk_num_bytes < cur_alloc_size)
1029 			break;
1030 
1031 		/* we're not doing compressed IO, don't unlock the first
1032 		 * page (which the caller expects to stay locked), don't
1033 		 * clear any dirty bits and don't set any writeback bits
1034 		 *
1035 		 * Do set the Private2 bit so we know this page was properly
1036 		 * setup for writepage
1037 		 */
1038 		op = unlock ? PAGE_UNLOCK : 0;
1039 		op |= PAGE_SET_PRIVATE2;
1040 
1041 		extent_clear_unlock_delalloc(inode, start,
1042 					     start + ram_size - 1, locked_page,
1043 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1044 					     op);
1045 		disk_num_bytes -= cur_alloc_size;
1046 		num_bytes -= cur_alloc_size;
1047 		alloc_hint = ins.objectid + ins.offset;
1048 		start += cur_alloc_size;
1049 	}
1050 out:
1051 	return ret;
1052 
1053 out_drop_extent_cache:
1054 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055 out_reserve:
1056 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057 out_unlock:
1058 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1061 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063 	goto out;
1064 }
1065 
1066 /*
1067  * work queue call back to started compression on a file and pages
1068  */
1069 static noinline void async_cow_start(struct btrfs_work *work)
1070 {
1071 	struct async_cow *async_cow;
1072 	int num_added = 0;
1073 	async_cow = container_of(work, struct async_cow, work);
1074 
1075 	compress_file_range(async_cow->inode, async_cow->locked_page,
1076 			    async_cow->start, async_cow->end, async_cow,
1077 			    &num_added);
1078 	if (num_added == 0) {
1079 		btrfs_add_delayed_iput(async_cow->inode);
1080 		async_cow->inode = NULL;
1081 	}
1082 }
1083 
1084 /*
1085  * work queue call back to submit previously compressed pages
1086  */
1087 static noinline void async_cow_submit(struct btrfs_work *work)
1088 {
1089 	struct async_cow *async_cow;
1090 	struct btrfs_root *root;
1091 	unsigned long nr_pages;
1092 
1093 	async_cow = container_of(work, struct async_cow, work);
1094 
1095 	root = async_cow->root;
1096 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097 		PAGE_CACHE_SHIFT;
1098 
1099 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100 	    5 * 1024 * 1024 &&
1101 	    waitqueue_active(&root->fs_info->async_submit_wait))
1102 		wake_up(&root->fs_info->async_submit_wait);
1103 
1104 	if (async_cow->inode)
1105 		submit_compressed_extents(async_cow->inode, async_cow);
1106 }
1107 
1108 static noinline void async_cow_free(struct btrfs_work *work)
1109 {
1110 	struct async_cow *async_cow;
1111 	async_cow = container_of(work, struct async_cow, work);
1112 	if (async_cow->inode)
1113 		btrfs_add_delayed_iput(async_cow->inode);
1114 	kfree(async_cow);
1115 }
1116 
1117 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118 				u64 start, u64 end, int *page_started,
1119 				unsigned long *nr_written)
1120 {
1121 	struct async_cow *async_cow;
1122 	struct btrfs_root *root = BTRFS_I(inode)->root;
1123 	unsigned long nr_pages;
1124 	u64 cur_end;
1125 	int limit = 10 * 1024 * 1024;
1126 
1127 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128 			 1, 0, NULL, GFP_NOFS);
1129 	while (start < end) {
1130 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131 		BUG_ON(!async_cow); /* -ENOMEM */
1132 		async_cow->inode = igrab(inode);
1133 		async_cow->root = root;
1134 		async_cow->locked_page = locked_page;
1135 		async_cow->start = start;
1136 
1137 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1139 			cur_end = end;
1140 		else
1141 			cur_end = min(end, start + 512 * 1024 - 1);
1142 
1143 		async_cow->end = cur_end;
1144 		INIT_LIST_HEAD(&async_cow->extents);
1145 
1146 		btrfs_init_work(&async_cow->work,
1147 				btrfs_delalloc_helper,
1148 				async_cow_start, async_cow_submit,
1149 				async_cow_free);
1150 
1151 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152 			PAGE_CACHE_SHIFT;
1153 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154 
1155 		btrfs_queue_work(root->fs_info->delalloc_workers,
1156 				 &async_cow->work);
1157 
1158 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159 			wait_event(root->fs_info->async_submit_wait,
1160 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1161 			    limit));
1162 		}
1163 
1164 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1165 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1166 			wait_event(root->fs_info->async_submit_wait,
1167 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168 			   0));
1169 		}
1170 
1171 		*nr_written += nr_pages;
1172 		start = cur_end + 1;
1173 	}
1174 	*page_started = 1;
1175 	return 0;
1176 }
1177 
1178 static noinline int csum_exist_in_range(struct btrfs_root *root,
1179 					u64 bytenr, u64 num_bytes)
1180 {
1181 	int ret;
1182 	struct btrfs_ordered_sum *sums;
1183 	LIST_HEAD(list);
1184 
1185 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186 				       bytenr + num_bytes - 1, &list, 0);
1187 	if (ret == 0 && list_empty(&list))
1188 		return 0;
1189 
1190 	while (!list_empty(&list)) {
1191 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192 		list_del(&sums->list);
1193 		kfree(sums);
1194 	}
1195 	return 1;
1196 }
1197 
1198 /*
1199  * when nowcow writeback call back.  This checks for snapshots or COW copies
1200  * of the extents that exist in the file, and COWs the file as required.
1201  *
1202  * If no cow copies or snapshots exist, we write directly to the existing
1203  * blocks on disk
1204  */
1205 static noinline int run_delalloc_nocow(struct inode *inode,
1206 				       struct page *locked_page,
1207 			      u64 start, u64 end, int *page_started, int force,
1208 			      unsigned long *nr_written)
1209 {
1210 	struct btrfs_root *root = BTRFS_I(inode)->root;
1211 	struct btrfs_trans_handle *trans;
1212 	struct extent_buffer *leaf;
1213 	struct btrfs_path *path;
1214 	struct btrfs_file_extent_item *fi;
1215 	struct btrfs_key found_key;
1216 	u64 cow_start;
1217 	u64 cur_offset;
1218 	u64 extent_end;
1219 	u64 extent_offset;
1220 	u64 disk_bytenr;
1221 	u64 num_bytes;
1222 	u64 disk_num_bytes;
1223 	u64 ram_bytes;
1224 	int extent_type;
1225 	int ret, err;
1226 	int type;
1227 	int nocow;
1228 	int check_prev = 1;
1229 	bool nolock;
1230 	u64 ino = btrfs_ino(inode);
1231 
1232 	path = btrfs_alloc_path();
1233 	if (!path) {
1234 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1236 					     EXTENT_DO_ACCOUNTING |
1237 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1238 					     PAGE_CLEAR_DIRTY |
1239 					     PAGE_SET_WRITEBACK |
1240 					     PAGE_END_WRITEBACK);
1241 		return -ENOMEM;
1242 	}
1243 
1244 	nolock = btrfs_is_free_space_inode(inode);
1245 
1246 	if (nolock)
1247 		trans = btrfs_join_transaction_nolock(root);
1248 	else
1249 		trans = btrfs_join_transaction(root);
1250 
1251 	if (IS_ERR(trans)) {
1252 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1254 					     EXTENT_DO_ACCOUNTING |
1255 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1256 					     PAGE_CLEAR_DIRTY |
1257 					     PAGE_SET_WRITEBACK |
1258 					     PAGE_END_WRITEBACK);
1259 		btrfs_free_path(path);
1260 		return PTR_ERR(trans);
1261 	}
1262 
1263 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1264 
1265 	cow_start = (u64)-1;
1266 	cur_offset = start;
1267 	while (1) {
1268 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269 					       cur_offset, 0);
1270 		if (ret < 0)
1271 			goto error;
1272 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273 			leaf = path->nodes[0];
1274 			btrfs_item_key_to_cpu(leaf, &found_key,
1275 					      path->slots[0] - 1);
1276 			if (found_key.objectid == ino &&
1277 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1278 				path->slots[0]--;
1279 		}
1280 		check_prev = 0;
1281 next_slot:
1282 		leaf = path->nodes[0];
1283 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284 			ret = btrfs_next_leaf(root, path);
1285 			if (ret < 0)
1286 				goto error;
1287 			if (ret > 0)
1288 				break;
1289 			leaf = path->nodes[0];
1290 		}
1291 
1292 		nocow = 0;
1293 		disk_bytenr = 0;
1294 		num_bytes = 0;
1295 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296 
1297 		if (found_key.objectid > ino ||
1298 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1299 		    found_key.offset > end)
1300 			break;
1301 
1302 		if (found_key.offset > cur_offset) {
1303 			extent_end = found_key.offset;
1304 			extent_type = 0;
1305 			goto out_check;
1306 		}
1307 
1308 		fi = btrfs_item_ptr(leaf, path->slots[0],
1309 				    struct btrfs_file_extent_item);
1310 		extent_type = btrfs_file_extent_type(leaf, fi);
1311 
1312 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1313 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1314 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1315 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1316 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1317 			extent_end = found_key.offset +
1318 				btrfs_file_extent_num_bytes(leaf, fi);
1319 			disk_num_bytes =
1320 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1321 			if (extent_end <= start) {
1322 				path->slots[0]++;
1323 				goto next_slot;
1324 			}
1325 			if (disk_bytenr == 0)
1326 				goto out_check;
1327 			if (btrfs_file_extent_compression(leaf, fi) ||
1328 			    btrfs_file_extent_encryption(leaf, fi) ||
1329 			    btrfs_file_extent_other_encoding(leaf, fi))
1330 				goto out_check;
1331 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1332 				goto out_check;
1333 			if (btrfs_extent_readonly(root, disk_bytenr))
1334 				goto out_check;
1335 			if (btrfs_cross_ref_exist(trans, root, ino,
1336 						  found_key.offset -
1337 						  extent_offset, disk_bytenr))
1338 				goto out_check;
1339 			disk_bytenr += extent_offset;
1340 			disk_bytenr += cur_offset - found_key.offset;
1341 			num_bytes = min(end + 1, extent_end) - cur_offset;
1342 			/*
1343 			 * if there are pending snapshots for this root,
1344 			 * we fall into common COW way.
1345 			 */
1346 			if (!nolock) {
1347 				err = btrfs_start_write_no_snapshoting(root);
1348 				if (!err)
1349 					goto out_check;
1350 			}
1351 			/*
1352 			 * force cow if csum exists in the range.
1353 			 * this ensure that csum for a given extent are
1354 			 * either valid or do not exist.
1355 			 */
1356 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1357 				goto out_check;
1358 			nocow = 1;
1359 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1360 			extent_end = found_key.offset +
1361 				btrfs_file_extent_inline_len(leaf,
1362 						     path->slots[0], fi);
1363 			extent_end = ALIGN(extent_end, root->sectorsize);
1364 		} else {
1365 			BUG_ON(1);
1366 		}
1367 out_check:
1368 		if (extent_end <= start) {
1369 			path->slots[0]++;
1370 			if (!nolock && nocow)
1371 				btrfs_end_write_no_snapshoting(root);
1372 			goto next_slot;
1373 		}
1374 		if (!nocow) {
1375 			if (cow_start == (u64)-1)
1376 				cow_start = cur_offset;
1377 			cur_offset = extent_end;
1378 			if (cur_offset > end)
1379 				break;
1380 			path->slots[0]++;
1381 			goto next_slot;
1382 		}
1383 
1384 		btrfs_release_path(path);
1385 		if (cow_start != (u64)-1) {
1386 			ret = cow_file_range(inode, locked_page,
1387 					     cow_start, found_key.offset - 1,
1388 					     page_started, nr_written, 1);
1389 			if (ret) {
1390 				if (!nolock && nocow)
1391 					btrfs_end_write_no_snapshoting(root);
1392 				goto error;
1393 			}
1394 			cow_start = (u64)-1;
1395 		}
1396 
1397 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1398 			struct extent_map *em;
1399 			struct extent_map_tree *em_tree;
1400 			em_tree = &BTRFS_I(inode)->extent_tree;
1401 			em = alloc_extent_map();
1402 			BUG_ON(!em); /* -ENOMEM */
1403 			em->start = cur_offset;
1404 			em->orig_start = found_key.offset - extent_offset;
1405 			em->len = num_bytes;
1406 			em->block_len = num_bytes;
1407 			em->block_start = disk_bytenr;
1408 			em->orig_block_len = disk_num_bytes;
1409 			em->ram_bytes = ram_bytes;
1410 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1411 			em->mod_start = em->start;
1412 			em->mod_len = em->len;
1413 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1414 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1415 			em->generation = -1;
1416 			while (1) {
1417 				write_lock(&em_tree->lock);
1418 				ret = add_extent_mapping(em_tree, em, 1);
1419 				write_unlock(&em_tree->lock);
1420 				if (ret != -EEXIST) {
1421 					free_extent_map(em);
1422 					break;
1423 				}
1424 				btrfs_drop_extent_cache(inode, em->start,
1425 						em->start + em->len - 1, 0);
1426 			}
1427 			type = BTRFS_ORDERED_PREALLOC;
1428 		} else {
1429 			type = BTRFS_ORDERED_NOCOW;
1430 		}
1431 
1432 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1433 					       num_bytes, num_bytes, type);
1434 		BUG_ON(ret); /* -ENOMEM */
1435 
1436 		if (root->root_key.objectid ==
1437 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1439 						      num_bytes);
1440 			if (ret) {
1441 				if (!nolock && nocow)
1442 					btrfs_end_write_no_snapshoting(root);
1443 				goto error;
1444 			}
1445 		}
1446 
1447 		extent_clear_unlock_delalloc(inode, cur_offset,
1448 					     cur_offset + num_bytes - 1,
1449 					     locked_page, EXTENT_LOCKED |
1450 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1451 					     PAGE_SET_PRIVATE2);
1452 		if (!nolock && nocow)
1453 			btrfs_end_write_no_snapshoting(root);
1454 		cur_offset = extent_end;
1455 		if (cur_offset > end)
1456 			break;
1457 	}
1458 	btrfs_release_path(path);
1459 
1460 	if (cur_offset <= end && cow_start == (u64)-1) {
1461 		cow_start = cur_offset;
1462 		cur_offset = end;
1463 	}
1464 
1465 	if (cow_start != (u64)-1) {
1466 		ret = cow_file_range(inode, locked_page, cow_start, end,
1467 				     page_started, nr_written, 1);
1468 		if (ret)
1469 			goto error;
1470 	}
1471 
1472 error:
1473 	err = btrfs_end_transaction(trans, root);
1474 	if (!ret)
1475 		ret = err;
1476 
1477 	if (ret && cur_offset < end)
1478 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1479 					     locked_page, EXTENT_LOCKED |
1480 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1481 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1482 					     PAGE_CLEAR_DIRTY |
1483 					     PAGE_SET_WRITEBACK |
1484 					     PAGE_END_WRITEBACK);
1485 	btrfs_free_path(path);
1486 	return ret;
1487 }
1488 
1489 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1490 {
1491 
1492 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1493 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1494 		return 0;
1495 
1496 	/*
1497 	 * @defrag_bytes is a hint value, no spinlock held here,
1498 	 * if is not zero, it means the file is defragging.
1499 	 * Force cow if given extent needs to be defragged.
1500 	 */
1501 	if (BTRFS_I(inode)->defrag_bytes &&
1502 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1503 			   EXTENT_DEFRAG, 0, NULL))
1504 		return 1;
1505 
1506 	return 0;
1507 }
1508 
1509 /*
1510  * extent_io.c call back to do delayed allocation processing
1511  */
1512 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1513 			      u64 start, u64 end, int *page_started,
1514 			      unsigned long *nr_written)
1515 {
1516 	int ret;
1517 	int force_cow = need_force_cow(inode, start, end);
1518 
1519 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1520 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1521 					 page_started, 1, nr_written);
1522 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1523 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1524 					 page_started, 0, nr_written);
1525 	} else if (!inode_need_compress(inode)) {
1526 		ret = cow_file_range(inode, locked_page, start, end,
1527 				      page_started, nr_written, 1);
1528 	} else {
1529 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1530 			&BTRFS_I(inode)->runtime_flags);
1531 		ret = cow_file_range_async(inode, locked_page, start, end,
1532 					   page_started, nr_written);
1533 	}
1534 	return ret;
1535 }
1536 
1537 static void btrfs_split_extent_hook(struct inode *inode,
1538 				    struct extent_state *orig, u64 split)
1539 {
1540 	u64 size;
1541 
1542 	/* not delalloc, ignore it */
1543 	if (!(orig->state & EXTENT_DELALLOC))
1544 		return;
1545 
1546 	size = orig->end - orig->start + 1;
1547 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1548 		u64 num_extents;
1549 		u64 new_size;
1550 
1551 		/*
1552 		 * See the explanation in btrfs_merge_extent_hook, the same
1553 		 * applies here, just in reverse.
1554 		 */
1555 		new_size = orig->end - split + 1;
1556 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1557 					BTRFS_MAX_EXTENT_SIZE);
1558 		new_size = split - orig->start;
1559 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1560 					BTRFS_MAX_EXTENT_SIZE);
1561 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1562 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1563 			return;
1564 	}
1565 
1566 	spin_lock(&BTRFS_I(inode)->lock);
1567 	BTRFS_I(inode)->outstanding_extents++;
1568 	spin_unlock(&BTRFS_I(inode)->lock);
1569 }
1570 
1571 /*
1572  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1573  * extents so we can keep track of new extents that are just merged onto old
1574  * extents, such as when we are doing sequential writes, so we can properly
1575  * account for the metadata space we'll need.
1576  */
1577 static void btrfs_merge_extent_hook(struct inode *inode,
1578 				    struct extent_state *new,
1579 				    struct extent_state *other)
1580 {
1581 	u64 new_size, old_size;
1582 	u64 num_extents;
1583 
1584 	/* not delalloc, ignore it */
1585 	if (!(other->state & EXTENT_DELALLOC))
1586 		return;
1587 
1588 	if (new->start > other->start)
1589 		new_size = new->end - other->start + 1;
1590 	else
1591 		new_size = other->end - new->start + 1;
1592 
1593 	/* we're not bigger than the max, unreserve the space and go */
1594 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1595 		spin_lock(&BTRFS_I(inode)->lock);
1596 		BTRFS_I(inode)->outstanding_extents--;
1597 		spin_unlock(&BTRFS_I(inode)->lock);
1598 		return;
1599 	}
1600 
1601 	/*
1602 	 * We have to add up either side to figure out how many extents were
1603 	 * accounted for before we merged into one big extent.  If the number of
1604 	 * extents we accounted for is <= the amount we need for the new range
1605 	 * then we can return, otherwise drop.  Think of it like this
1606 	 *
1607 	 * [ 4k][MAX_SIZE]
1608 	 *
1609 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1610 	 * need 2 outstanding extents, on one side we have 1 and the other side
1611 	 * we have 1 so they are == and we can return.  But in this case
1612 	 *
1613 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1614 	 *
1615 	 * Each range on their own accounts for 2 extents, but merged together
1616 	 * they are only 3 extents worth of accounting, so we need to drop in
1617 	 * this case.
1618 	 */
1619 	old_size = other->end - other->start + 1;
1620 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1621 				BTRFS_MAX_EXTENT_SIZE);
1622 	old_size = new->end - new->start + 1;
1623 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1624 				 BTRFS_MAX_EXTENT_SIZE);
1625 
1626 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1628 		return;
1629 
1630 	spin_lock(&BTRFS_I(inode)->lock);
1631 	BTRFS_I(inode)->outstanding_extents--;
1632 	spin_unlock(&BTRFS_I(inode)->lock);
1633 }
1634 
1635 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1636 				      struct inode *inode)
1637 {
1638 	spin_lock(&root->delalloc_lock);
1639 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1640 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1641 			      &root->delalloc_inodes);
1642 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1643 			&BTRFS_I(inode)->runtime_flags);
1644 		root->nr_delalloc_inodes++;
1645 		if (root->nr_delalloc_inodes == 1) {
1646 			spin_lock(&root->fs_info->delalloc_root_lock);
1647 			BUG_ON(!list_empty(&root->delalloc_root));
1648 			list_add_tail(&root->delalloc_root,
1649 				      &root->fs_info->delalloc_roots);
1650 			spin_unlock(&root->fs_info->delalloc_root_lock);
1651 		}
1652 	}
1653 	spin_unlock(&root->delalloc_lock);
1654 }
1655 
1656 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1657 				     struct inode *inode)
1658 {
1659 	spin_lock(&root->delalloc_lock);
1660 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1661 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1662 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1663 			  &BTRFS_I(inode)->runtime_flags);
1664 		root->nr_delalloc_inodes--;
1665 		if (!root->nr_delalloc_inodes) {
1666 			spin_lock(&root->fs_info->delalloc_root_lock);
1667 			BUG_ON(list_empty(&root->delalloc_root));
1668 			list_del_init(&root->delalloc_root);
1669 			spin_unlock(&root->fs_info->delalloc_root_lock);
1670 		}
1671 	}
1672 	spin_unlock(&root->delalloc_lock);
1673 }
1674 
1675 /*
1676  * extent_io.c set_bit_hook, used to track delayed allocation
1677  * bytes in this file, and to maintain the list of inodes that
1678  * have pending delalloc work to be done.
1679  */
1680 static void btrfs_set_bit_hook(struct inode *inode,
1681 			       struct extent_state *state, unsigned *bits)
1682 {
1683 
1684 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1685 		WARN_ON(1);
1686 	/*
1687 	 * set_bit and clear bit hooks normally require _irqsave/restore
1688 	 * but in this case, we are only testing for the DELALLOC
1689 	 * bit, which is only set or cleared with irqs on
1690 	 */
1691 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1692 		struct btrfs_root *root = BTRFS_I(inode)->root;
1693 		u64 len = state->end + 1 - state->start;
1694 		bool do_list = !btrfs_is_free_space_inode(inode);
1695 
1696 		if (*bits & EXTENT_FIRST_DELALLOC) {
1697 			*bits &= ~EXTENT_FIRST_DELALLOC;
1698 		} else {
1699 			spin_lock(&BTRFS_I(inode)->lock);
1700 			BTRFS_I(inode)->outstanding_extents++;
1701 			spin_unlock(&BTRFS_I(inode)->lock);
1702 		}
1703 
1704 		/* For sanity tests */
1705 		if (btrfs_test_is_dummy_root(root))
1706 			return;
1707 
1708 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1709 				     root->fs_info->delalloc_batch);
1710 		spin_lock(&BTRFS_I(inode)->lock);
1711 		BTRFS_I(inode)->delalloc_bytes += len;
1712 		if (*bits & EXTENT_DEFRAG)
1713 			BTRFS_I(inode)->defrag_bytes += len;
1714 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1715 					 &BTRFS_I(inode)->runtime_flags))
1716 			btrfs_add_delalloc_inodes(root, inode);
1717 		spin_unlock(&BTRFS_I(inode)->lock);
1718 	}
1719 }
1720 
1721 /*
1722  * extent_io.c clear_bit_hook, see set_bit_hook for why
1723  */
1724 static void btrfs_clear_bit_hook(struct inode *inode,
1725 				 struct extent_state *state,
1726 				 unsigned *bits)
1727 {
1728 	u64 len = state->end + 1 - state->start;
1729 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1730 				    BTRFS_MAX_EXTENT_SIZE);
1731 
1732 	spin_lock(&BTRFS_I(inode)->lock);
1733 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1734 		BTRFS_I(inode)->defrag_bytes -= len;
1735 	spin_unlock(&BTRFS_I(inode)->lock);
1736 
1737 	/*
1738 	 * set_bit and clear bit hooks normally require _irqsave/restore
1739 	 * but in this case, we are only testing for the DELALLOC
1740 	 * bit, which is only set or cleared with irqs on
1741 	 */
1742 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1743 		struct btrfs_root *root = BTRFS_I(inode)->root;
1744 		bool do_list = !btrfs_is_free_space_inode(inode);
1745 
1746 		if (*bits & EXTENT_FIRST_DELALLOC) {
1747 			*bits &= ~EXTENT_FIRST_DELALLOC;
1748 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1749 			spin_lock(&BTRFS_I(inode)->lock);
1750 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1751 			spin_unlock(&BTRFS_I(inode)->lock);
1752 		}
1753 
1754 		/*
1755 		 * We don't reserve metadata space for space cache inodes so we
1756 		 * don't need to call dellalloc_release_metadata if there is an
1757 		 * error.
1758 		 */
1759 		if (*bits & EXTENT_DO_ACCOUNTING &&
1760 		    root != root->fs_info->tree_root)
1761 			btrfs_delalloc_release_metadata(inode, len);
1762 
1763 		/* For sanity tests. */
1764 		if (btrfs_test_is_dummy_root(root))
1765 			return;
1766 
1767 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1768 		    && do_list && !(state->state & EXTENT_NORESERVE))
1769 			btrfs_free_reserved_data_space(inode, len);
1770 
1771 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1772 				     root->fs_info->delalloc_batch);
1773 		spin_lock(&BTRFS_I(inode)->lock);
1774 		BTRFS_I(inode)->delalloc_bytes -= len;
1775 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1776 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1777 			     &BTRFS_I(inode)->runtime_flags))
1778 			btrfs_del_delalloc_inode(root, inode);
1779 		spin_unlock(&BTRFS_I(inode)->lock);
1780 	}
1781 }
1782 
1783 /*
1784  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1785  * we don't create bios that span stripes or chunks
1786  */
1787 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1788 			 size_t size, struct bio *bio,
1789 			 unsigned long bio_flags)
1790 {
1791 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1792 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1793 	u64 length = 0;
1794 	u64 map_length;
1795 	int ret;
1796 
1797 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1798 		return 0;
1799 
1800 	length = bio->bi_iter.bi_size;
1801 	map_length = length;
1802 	ret = btrfs_map_block(root->fs_info, rw, logical,
1803 			      &map_length, NULL, 0);
1804 	/* Will always return 0 with map_multi == NULL */
1805 	BUG_ON(ret < 0);
1806 	if (map_length < length + size)
1807 		return 1;
1808 	return 0;
1809 }
1810 
1811 /*
1812  * in order to insert checksums into the metadata in large chunks,
1813  * we wait until bio submission time.   All the pages in the bio are
1814  * checksummed and sums are attached onto the ordered extent record.
1815  *
1816  * At IO completion time the cums attached on the ordered extent record
1817  * are inserted into the btree
1818  */
1819 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1820 				    struct bio *bio, int mirror_num,
1821 				    unsigned long bio_flags,
1822 				    u64 bio_offset)
1823 {
1824 	struct btrfs_root *root = BTRFS_I(inode)->root;
1825 	int ret = 0;
1826 
1827 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1828 	BUG_ON(ret); /* -ENOMEM */
1829 	return 0;
1830 }
1831 
1832 /*
1833  * in order to insert checksums into the metadata in large chunks,
1834  * we wait until bio submission time.   All the pages in the bio are
1835  * checksummed and sums are attached onto the ordered extent record.
1836  *
1837  * At IO completion time the cums attached on the ordered extent record
1838  * are inserted into the btree
1839  */
1840 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1841 			  int mirror_num, unsigned long bio_flags,
1842 			  u64 bio_offset)
1843 {
1844 	struct btrfs_root *root = BTRFS_I(inode)->root;
1845 	int ret;
1846 
1847 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1848 	if (ret) {
1849 		bio->bi_error = ret;
1850 		bio_endio(bio);
1851 	}
1852 	return ret;
1853 }
1854 
1855 /*
1856  * extent_io.c submission hook. This does the right thing for csum calculation
1857  * on write, or reading the csums from the tree before a read
1858  */
1859 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1860 			  int mirror_num, unsigned long bio_flags,
1861 			  u64 bio_offset)
1862 {
1863 	struct btrfs_root *root = BTRFS_I(inode)->root;
1864 	int ret = 0;
1865 	int skip_sum;
1866 	int metadata = 0;
1867 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1868 
1869 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1870 
1871 	if (btrfs_is_free_space_inode(inode))
1872 		metadata = 2;
1873 
1874 	if (!(rw & REQ_WRITE)) {
1875 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1876 		if (ret)
1877 			goto out;
1878 
1879 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1880 			ret = btrfs_submit_compressed_read(inode, bio,
1881 							   mirror_num,
1882 							   bio_flags);
1883 			goto out;
1884 		} else if (!skip_sum) {
1885 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1886 			if (ret)
1887 				goto out;
1888 		}
1889 		goto mapit;
1890 	} else if (async && !skip_sum) {
1891 		/* csum items have already been cloned */
1892 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1893 			goto mapit;
1894 		/* we're doing a write, do the async checksumming */
1895 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1896 				   inode, rw, bio, mirror_num,
1897 				   bio_flags, bio_offset,
1898 				   __btrfs_submit_bio_start,
1899 				   __btrfs_submit_bio_done);
1900 		goto out;
1901 	} else if (!skip_sum) {
1902 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1903 		if (ret)
1904 			goto out;
1905 	}
1906 
1907 mapit:
1908 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1909 
1910 out:
1911 	if (ret < 0) {
1912 		bio->bi_error = ret;
1913 		bio_endio(bio);
1914 	}
1915 	return ret;
1916 }
1917 
1918 /*
1919  * given a list of ordered sums record them in the inode.  This happens
1920  * at IO completion time based on sums calculated at bio submission time.
1921  */
1922 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1923 			     struct inode *inode, u64 file_offset,
1924 			     struct list_head *list)
1925 {
1926 	struct btrfs_ordered_sum *sum;
1927 
1928 	list_for_each_entry(sum, list, list) {
1929 		trans->adding_csums = 1;
1930 		btrfs_csum_file_blocks(trans,
1931 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1932 		trans->adding_csums = 0;
1933 	}
1934 	return 0;
1935 }
1936 
1937 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1938 			      struct extent_state **cached_state)
1939 {
1940 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1941 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1942 				   cached_state, GFP_NOFS);
1943 }
1944 
1945 /* see btrfs_writepage_start_hook for details on why this is required */
1946 struct btrfs_writepage_fixup {
1947 	struct page *page;
1948 	struct btrfs_work work;
1949 };
1950 
1951 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1952 {
1953 	struct btrfs_writepage_fixup *fixup;
1954 	struct btrfs_ordered_extent *ordered;
1955 	struct extent_state *cached_state = NULL;
1956 	struct page *page;
1957 	struct inode *inode;
1958 	u64 page_start;
1959 	u64 page_end;
1960 	int ret;
1961 
1962 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1963 	page = fixup->page;
1964 again:
1965 	lock_page(page);
1966 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1967 		ClearPageChecked(page);
1968 		goto out_page;
1969 	}
1970 
1971 	inode = page->mapping->host;
1972 	page_start = page_offset(page);
1973 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1974 
1975 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1976 			 &cached_state);
1977 
1978 	/* already ordered? We're done */
1979 	if (PagePrivate2(page))
1980 		goto out;
1981 
1982 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1983 	if (ordered) {
1984 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1985 				     page_end, &cached_state, GFP_NOFS);
1986 		unlock_page(page);
1987 		btrfs_start_ordered_extent(inode, ordered, 1);
1988 		btrfs_put_ordered_extent(ordered);
1989 		goto again;
1990 	}
1991 
1992 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1993 	if (ret) {
1994 		mapping_set_error(page->mapping, ret);
1995 		end_extent_writepage(page, ret, page_start, page_end);
1996 		ClearPageChecked(page);
1997 		goto out;
1998 	 }
1999 
2000 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2001 	ClearPageChecked(page);
2002 	set_page_dirty(page);
2003 out:
2004 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2005 			     &cached_state, GFP_NOFS);
2006 out_page:
2007 	unlock_page(page);
2008 	page_cache_release(page);
2009 	kfree(fixup);
2010 }
2011 
2012 /*
2013  * There are a few paths in the higher layers of the kernel that directly
2014  * set the page dirty bit without asking the filesystem if it is a
2015  * good idea.  This causes problems because we want to make sure COW
2016  * properly happens and the data=ordered rules are followed.
2017  *
2018  * In our case any range that doesn't have the ORDERED bit set
2019  * hasn't been properly setup for IO.  We kick off an async process
2020  * to fix it up.  The async helper will wait for ordered extents, set
2021  * the delalloc bit and make it safe to write the page.
2022  */
2023 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2024 {
2025 	struct inode *inode = page->mapping->host;
2026 	struct btrfs_writepage_fixup *fixup;
2027 	struct btrfs_root *root = BTRFS_I(inode)->root;
2028 
2029 	/* this page is properly in the ordered list */
2030 	if (TestClearPagePrivate2(page))
2031 		return 0;
2032 
2033 	if (PageChecked(page))
2034 		return -EAGAIN;
2035 
2036 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2037 	if (!fixup)
2038 		return -EAGAIN;
2039 
2040 	SetPageChecked(page);
2041 	page_cache_get(page);
2042 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2043 			btrfs_writepage_fixup_worker, NULL, NULL);
2044 	fixup->page = page;
2045 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2046 	return -EBUSY;
2047 }
2048 
2049 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2050 				       struct inode *inode, u64 file_pos,
2051 				       u64 disk_bytenr, u64 disk_num_bytes,
2052 				       u64 num_bytes, u64 ram_bytes,
2053 				       u8 compression, u8 encryption,
2054 				       u16 other_encoding, int extent_type)
2055 {
2056 	struct btrfs_root *root = BTRFS_I(inode)->root;
2057 	struct btrfs_file_extent_item *fi;
2058 	struct btrfs_path *path;
2059 	struct extent_buffer *leaf;
2060 	struct btrfs_key ins;
2061 	int extent_inserted = 0;
2062 	int ret;
2063 
2064 	path = btrfs_alloc_path();
2065 	if (!path)
2066 		return -ENOMEM;
2067 
2068 	/*
2069 	 * we may be replacing one extent in the tree with another.
2070 	 * The new extent is pinned in the extent map, and we don't want
2071 	 * to drop it from the cache until it is completely in the btree.
2072 	 *
2073 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2074 	 * the caller is expected to unpin it and allow it to be merged
2075 	 * with the others.
2076 	 */
2077 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2078 				   file_pos + num_bytes, NULL, 0,
2079 				   1, sizeof(*fi), &extent_inserted);
2080 	if (ret)
2081 		goto out;
2082 
2083 	if (!extent_inserted) {
2084 		ins.objectid = btrfs_ino(inode);
2085 		ins.offset = file_pos;
2086 		ins.type = BTRFS_EXTENT_DATA_KEY;
2087 
2088 		path->leave_spinning = 1;
2089 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2090 					      sizeof(*fi));
2091 		if (ret)
2092 			goto out;
2093 	}
2094 	leaf = path->nodes[0];
2095 	fi = btrfs_item_ptr(leaf, path->slots[0],
2096 			    struct btrfs_file_extent_item);
2097 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2098 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2099 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2100 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2101 	btrfs_set_file_extent_offset(leaf, fi, 0);
2102 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2103 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2104 	btrfs_set_file_extent_compression(leaf, fi, compression);
2105 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2106 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2107 
2108 	btrfs_mark_buffer_dirty(leaf);
2109 	btrfs_release_path(path);
2110 
2111 	inode_add_bytes(inode, num_bytes);
2112 
2113 	ins.objectid = disk_bytenr;
2114 	ins.offset = disk_num_bytes;
2115 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2116 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2117 					root->root_key.objectid,
2118 					btrfs_ino(inode), file_pos, &ins);
2119 out:
2120 	btrfs_free_path(path);
2121 
2122 	return ret;
2123 }
2124 
2125 /* snapshot-aware defrag */
2126 struct sa_defrag_extent_backref {
2127 	struct rb_node node;
2128 	struct old_sa_defrag_extent *old;
2129 	u64 root_id;
2130 	u64 inum;
2131 	u64 file_pos;
2132 	u64 extent_offset;
2133 	u64 num_bytes;
2134 	u64 generation;
2135 };
2136 
2137 struct old_sa_defrag_extent {
2138 	struct list_head list;
2139 	struct new_sa_defrag_extent *new;
2140 
2141 	u64 extent_offset;
2142 	u64 bytenr;
2143 	u64 offset;
2144 	u64 len;
2145 	int count;
2146 };
2147 
2148 struct new_sa_defrag_extent {
2149 	struct rb_root root;
2150 	struct list_head head;
2151 	struct btrfs_path *path;
2152 	struct inode *inode;
2153 	u64 file_pos;
2154 	u64 len;
2155 	u64 bytenr;
2156 	u64 disk_len;
2157 	u8 compress_type;
2158 };
2159 
2160 static int backref_comp(struct sa_defrag_extent_backref *b1,
2161 			struct sa_defrag_extent_backref *b2)
2162 {
2163 	if (b1->root_id < b2->root_id)
2164 		return -1;
2165 	else if (b1->root_id > b2->root_id)
2166 		return 1;
2167 
2168 	if (b1->inum < b2->inum)
2169 		return -1;
2170 	else if (b1->inum > b2->inum)
2171 		return 1;
2172 
2173 	if (b1->file_pos < b2->file_pos)
2174 		return -1;
2175 	else if (b1->file_pos > b2->file_pos)
2176 		return 1;
2177 
2178 	/*
2179 	 * [------------------------------] ===> (a range of space)
2180 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2181 	 * |<---------------------------->| ===> (fs/file tree B)
2182 	 *
2183 	 * A range of space can refer to two file extents in one tree while
2184 	 * refer to only one file extent in another tree.
2185 	 *
2186 	 * So we may process a disk offset more than one time(two extents in A)
2187 	 * and locate at the same extent(one extent in B), then insert two same
2188 	 * backrefs(both refer to the extent in B).
2189 	 */
2190 	return 0;
2191 }
2192 
2193 static void backref_insert(struct rb_root *root,
2194 			   struct sa_defrag_extent_backref *backref)
2195 {
2196 	struct rb_node **p = &root->rb_node;
2197 	struct rb_node *parent = NULL;
2198 	struct sa_defrag_extent_backref *entry;
2199 	int ret;
2200 
2201 	while (*p) {
2202 		parent = *p;
2203 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2204 
2205 		ret = backref_comp(backref, entry);
2206 		if (ret < 0)
2207 			p = &(*p)->rb_left;
2208 		else
2209 			p = &(*p)->rb_right;
2210 	}
2211 
2212 	rb_link_node(&backref->node, parent, p);
2213 	rb_insert_color(&backref->node, root);
2214 }
2215 
2216 /*
2217  * Note the backref might has changed, and in this case we just return 0.
2218  */
2219 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2220 				       void *ctx)
2221 {
2222 	struct btrfs_file_extent_item *extent;
2223 	struct btrfs_fs_info *fs_info;
2224 	struct old_sa_defrag_extent *old = ctx;
2225 	struct new_sa_defrag_extent *new = old->new;
2226 	struct btrfs_path *path = new->path;
2227 	struct btrfs_key key;
2228 	struct btrfs_root *root;
2229 	struct sa_defrag_extent_backref *backref;
2230 	struct extent_buffer *leaf;
2231 	struct inode *inode = new->inode;
2232 	int slot;
2233 	int ret;
2234 	u64 extent_offset;
2235 	u64 num_bytes;
2236 
2237 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2238 	    inum == btrfs_ino(inode))
2239 		return 0;
2240 
2241 	key.objectid = root_id;
2242 	key.type = BTRFS_ROOT_ITEM_KEY;
2243 	key.offset = (u64)-1;
2244 
2245 	fs_info = BTRFS_I(inode)->root->fs_info;
2246 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2247 	if (IS_ERR(root)) {
2248 		if (PTR_ERR(root) == -ENOENT)
2249 			return 0;
2250 		WARN_ON(1);
2251 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2252 			 inum, offset, root_id);
2253 		return PTR_ERR(root);
2254 	}
2255 
2256 	key.objectid = inum;
2257 	key.type = BTRFS_EXTENT_DATA_KEY;
2258 	if (offset > (u64)-1 << 32)
2259 		key.offset = 0;
2260 	else
2261 		key.offset = offset;
2262 
2263 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2264 	if (WARN_ON(ret < 0))
2265 		return ret;
2266 	ret = 0;
2267 
2268 	while (1) {
2269 		cond_resched();
2270 
2271 		leaf = path->nodes[0];
2272 		slot = path->slots[0];
2273 
2274 		if (slot >= btrfs_header_nritems(leaf)) {
2275 			ret = btrfs_next_leaf(root, path);
2276 			if (ret < 0) {
2277 				goto out;
2278 			} else if (ret > 0) {
2279 				ret = 0;
2280 				goto out;
2281 			}
2282 			continue;
2283 		}
2284 
2285 		path->slots[0]++;
2286 
2287 		btrfs_item_key_to_cpu(leaf, &key, slot);
2288 
2289 		if (key.objectid > inum)
2290 			goto out;
2291 
2292 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2293 			continue;
2294 
2295 		extent = btrfs_item_ptr(leaf, slot,
2296 					struct btrfs_file_extent_item);
2297 
2298 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2299 			continue;
2300 
2301 		/*
2302 		 * 'offset' refers to the exact key.offset,
2303 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2304 		 * (key.offset - extent_offset).
2305 		 */
2306 		if (key.offset != offset)
2307 			continue;
2308 
2309 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2310 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2311 
2312 		if (extent_offset >= old->extent_offset + old->offset +
2313 		    old->len || extent_offset + num_bytes <=
2314 		    old->extent_offset + old->offset)
2315 			continue;
2316 		break;
2317 	}
2318 
2319 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2320 	if (!backref) {
2321 		ret = -ENOENT;
2322 		goto out;
2323 	}
2324 
2325 	backref->root_id = root_id;
2326 	backref->inum = inum;
2327 	backref->file_pos = offset;
2328 	backref->num_bytes = num_bytes;
2329 	backref->extent_offset = extent_offset;
2330 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2331 	backref->old = old;
2332 	backref_insert(&new->root, backref);
2333 	old->count++;
2334 out:
2335 	btrfs_release_path(path);
2336 	WARN_ON(ret);
2337 	return ret;
2338 }
2339 
2340 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2341 				   struct new_sa_defrag_extent *new)
2342 {
2343 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2344 	struct old_sa_defrag_extent *old, *tmp;
2345 	int ret;
2346 
2347 	new->path = path;
2348 
2349 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2350 		ret = iterate_inodes_from_logical(old->bytenr +
2351 						  old->extent_offset, fs_info,
2352 						  path, record_one_backref,
2353 						  old);
2354 		if (ret < 0 && ret != -ENOENT)
2355 			return false;
2356 
2357 		/* no backref to be processed for this extent */
2358 		if (!old->count) {
2359 			list_del(&old->list);
2360 			kfree(old);
2361 		}
2362 	}
2363 
2364 	if (list_empty(&new->head))
2365 		return false;
2366 
2367 	return true;
2368 }
2369 
2370 static int relink_is_mergable(struct extent_buffer *leaf,
2371 			      struct btrfs_file_extent_item *fi,
2372 			      struct new_sa_defrag_extent *new)
2373 {
2374 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2375 		return 0;
2376 
2377 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2378 		return 0;
2379 
2380 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2381 		return 0;
2382 
2383 	if (btrfs_file_extent_encryption(leaf, fi) ||
2384 	    btrfs_file_extent_other_encoding(leaf, fi))
2385 		return 0;
2386 
2387 	return 1;
2388 }
2389 
2390 /*
2391  * Note the backref might has changed, and in this case we just return 0.
2392  */
2393 static noinline int relink_extent_backref(struct btrfs_path *path,
2394 				 struct sa_defrag_extent_backref *prev,
2395 				 struct sa_defrag_extent_backref *backref)
2396 {
2397 	struct btrfs_file_extent_item *extent;
2398 	struct btrfs_file_extent_item *item;
2399 	struct btrfs_ordered_extent *ordered;
2400 	struct btrfs_trans_handle *trans;
2401 	struct btrfs_fs_info *fs_info;
2402 	struct btrfs_root *root;
2403 	struct btrfs_key key;
2404 	struct extent_buffer *leaf;
2405 	struct old_sa_defrag_extent *old = backref->old;
2406 	struct new_sa_defrag_extent *new = old->new;
2407 	struct inode *src_inode = new->inode;
2408 	struct inode *inode;
2409 	struct extent_state *cached = NULL;
2410 	int ret = 0;
2411 	u64 start;
2412 	u64 len;
2413 	u64 lock_start;
2414 	u64 lock_end;
2415 	bool merge = false;
2416 	int index;
2417 
2418 	if (prev && prev->root_id == backref->root_id &&
2419 	    prev->inum == backref->inum &&
2420 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2421 		merge = true;
2422 
2423 	/* step 1: get root */
2424 	key.objectid = backref->root_id;
2425 	key.type = BTRFS_ROOT_ITEM_KEY;
2426 	key.offset = (u64)-1;
2427 
2428 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2429 	index = srcu_read_lock(&fs_info->subvol_srcu);
2430 
2431 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2432 	if (IS_ERR(root)) {
2433 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2434 		if (PTR_ERR(root) == -ENOENT)
2435 			return 0;
2436 		return PTR_ERR(root);
2437 	}
2438 
2439 	if (btrfs_root_readonly(root)) {
2440 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2441 		return 0;
2442 	}
2443 
2444 	/* step 2: get inode */
2445 	key.objectid = backref->inum;
2446 	key.type = BTRFS_INODE_ITEM_KEY;
2447 	key.offset = 0;
2448 
2449 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2450 	if (IS_ERR(inode)) {
2451 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2452 		return 0;
2453 	}
2454 
2455 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2456 
2457 	/* step 3: relink backref */
2458 	lock_start = backref->file_pos;
2459 	lock_end = backref->file_pos + backref->num_bytes - 1;
2460 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2461 			 0, &cached);
2462 
2463 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2464 	if (ordered) {
2465 		btrfs_put_ordered_extent(ordered);
2466 		goto out_unlock;
2467 	}
2468 
2469 	trans = btrfs_join_transaction(root);
2470 	if (IS_ERR(trans)) {
2471 		ret = PTR_ERR(trans);
2472 		goto out_unlock;
2473 	}
2474 
2475 	key.objectid = backref->inum;
2476 	key.type = BTRFS_EXTENT_DATA_KEY;
2477 	key.offset = backref->file_pos;
2478 
2479 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2480 	if (ret < 0) {
2481 		goto out_free_path;
2482 	} else if (ret > 0) {
2483 		ret = 0;
2484 		goto out_free_path;
2485 	}
2486 
2487 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2488 				struct btrfs_file_extent_item);
2489 
2490 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2491 	    backref->generation)
2492 		goto out_free_path;
2493 
2494 	btrfs_release_path(path);
2495 
2496 	start = backref->file_pos;
2497 	if (backref->extent_offset < old->extent_offset + old->offset)
2498 		start += old->extent_offset + old->offset -
2499 			 backref->extent_offset;
2500 
2501 	len = min(backref->extent_offset + backref->num_bytes,
2502 		  old->extent_offset + old->offset + old->len);
2503 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2504 
2505 	ret = btrfs_drop_extents(trans, root, inode, start,
2506 				 start + len, 1);
2507 	if (ret)
2508 		goto out_free_path;
2509 again:
2510 	key.objectid = btrfs_ino(inode);
2511 	key.type = BTRFS_EXTENT_DATA_KEY;
2512 	key.offset = start;
2513 
2514 	path->leave_spinning = 1;
2515 	if (merge) {
2516 		struct btrfs_file_extent_item *fi;
2517 		u64 extent_len;
2518 		struct btrfs_key found_key;
2519 
2520 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2521 		if (ret < 0)
2522 			goto out_free_path;
2523 
2524 		path->slots[0]--;
2525 		leaf = path->nodes[0];
2526 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2527 
2528 		fi = btrfs_item_ptr(leaf, path->slots[0],
2529 				    struct btrfs_file_extent_item);
2530 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2531 
2532 		if (extent_len + found_key.offset == start &&
2533 		    relink_is_mergable(leaf, fi, new)) {
2534 			btrfs_set_file_extent_num_bytes(leaf, fi,
2535 							extent_len + len);
2536 			btrfs_mark_buffer_dirty(leaf);
2537 			inode_add_bytes(inode, len);
2538 
2539 			ret = 1;
2540 			goto out_free_path;
2541 		} else {
2542 			merge = false;
2543 			btrfs_release_path(path);
2544 			goto again;
2545 		}
2546 	}
2547 
2548 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2549 					sizeof(*extent));
2550 	if (ret) {
2551 		btrfs_abort_transaction(trans, root, ret);
2552 		goto out_free_path;
2553 	}
2554 
2555 	leaf = path->nodes[0];
2556 	item = btrfs_item_ptr(leaf, path->slots[0],
2557 				struct btrfs_file_extent_item);
2558 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2559 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2560 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2561 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2562 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2563 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2564 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2565 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2566 	btrfs_set_file_extent_encryption(leaf, item, 0);
2567 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2568 
2569 	btrfs_mark_buffer_dirty(leaf);
2570 	inode_add_bytes(inode, len);
2571 	btrfs_release_path(path);
2572 
2573 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2574 			new->disk_len, 0,
2575 			backref->root_id, backref->inum,
2576 			new->file_pos, 0);	/* start - extent_offset */
2577 	if (ret) {
2578 		btrfs_abort_transaction(trans, root, ret);
2579 		goto out_free_path;
2580 	}
2581 
2582 	ret = 1;
2583 out_free_path:
2584 	btrfs_release_path(path);
2585 	path->leave_spinning = 0;
2586 	btrfs_end_transaction(trans, root);
2587 out_unlock:
2588 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2589 			     &cached, GFP_NOFS);
2590 	iput(inode);
2591 	return ret;
2592 }
2593 
2594 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2595 {
2596 	struct old_sa_defrag_extent *old, *tmp;
2597 
2598 	if (!new)
2599 		return;
2600 
2601 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2602 		list_del(&old->list);
2603 		kfree(old);
2604 	}
2605 	kfree(new);
2606 }
2607 
2608 static void relink_file_extents(struct new_sa_defrag_extent *new)
2609 {
2610 	struct btrfs_path *path;
2611 	struct sa_defrag_extent_backref *backref;
2612 	struct sa_defrag_extent_backref *prev = NULL;
2613 	struct inode *inode;
2614 	struct btrfs_root *root;
2615 	struct rb_node *node;
2616 	int ret;
2617 
2618 	inode = new->inode;
2619 	root = BTRFS_I(inode)->root;
2620 
2621 	path = btrfs_alloc_path();
2622 	if (!path)
2623 		return;
2624 
2625 	if (!record_extent_backrefs(path, new)) {
2626 		btrfs_free_path(path);
2627 		goto out;
2628 	}
2629 	btrfs_release_path(path);
2630 
2631 	while (1) {
2632 		node = rb_first(&new->root);
2633 		if (!node)
2634 			break;
2635 		rb_erase(node, &new->root);
2636 
2637 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2638 
2639 		ret = relink_extent_backref(path, prev, backref);
2640 		WARN_ON(ret < 0);
2641 
2642 		kfree(prev);
2643 
2644 		if (ret == 1)
2645 			prev = backref;
2646 		else
2647 			prev = NULL;
2648 		cond_resched();
2649 	}
2650 	kfree(prev);
2651 
2652 	btrfs_free_path(path);
2653 out:
2654 	free_sa_defrag_extent(new);
2655 
2656 	atomic_dec(&root->fs_info->defrag_running);
2657 	wake_up(&root->fs_info->transaction_wait);
2658 }
2659 
2660 static struct new_sa_defrag_extent *
2661 record_old_file_extents(struct inode *inode,
2662 			struct btrfs_ordered_extent *ordered)
2663 {
2664 	struct btrfs_root *root = BTRFS_I(inode)->root;
2665 	struct btrfs_path *path;
2666 	struct btrfs_key key;
2667 	struct old_sa_defrag_extent *old;
2668 	struct new_sa_defrag_extent *new;
2669 	int ret;
2670 
2671 	new = kmalloc(sizeof(*new), GFP_NOFS);
2672 	if (!new)
2673 		return NULL;
2674 
2675 	new->inode = inode;
2676 	new->file_pos = ordered->file_offset;
2677 	new->len = ordered->len;
2678 	new->bytenr = ordered->start;
2679 	new->disk_len = ordered->disk_len;
2680 	new->compress_type = ordered->compress_type;
2681 	new->root = RB_ROOT;
2682 	INIT_LIST_HEAD(&new->head);
2683 
2684 	path = btrfs_alloc_path();
2685 	if (!path)
2686 		goto out_kfree;
2687 
2688 	key.objectid = btrfs_ino(inode);
2689 	key.type = BTRFS_EXTENT_DATA_KEY;
2690 	key.offset = new->file_pos;
2691 
2692 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2693 	if (ret < 0)
2694 		goto out_free_path;
2695 	if (ret > 0 && path->slots[0] > 0)
2696 		path->slots[0]--;
2697 
2698 	/* find out all the old extents for the file range */
2699 	while (1) {
2700 		struct btrfs_file_extent_item *extent;
2701 		struct extent_buffer *l;
2702 		int slot;
2703 		u64 num_bytes;
2704 		u64 offset;
2705 		u64 end;
2706 		u64 disk_bytenr;
2707 		u64 extent_offset;
2708 
2709 		l = path->nodes[0];
2710 		slot = path->slots[0];
2711 
2712 		if (slot >= btrfs_header_nritems(l)) {
2713 			ret = btrfs_next_leaf(root, path);
2714 			if (ret < 0)
2715 				goto out_free_path;
2716 			else if (ret > 0)
2717 				break;
2718 			continue;
2719 		}
2720 
2721 		btrfs_item_key_to_cpu(l, &key, slot);
2722 
2723 		if (key.objectid != btrfs_ino(inode))
2724 			break;
2725 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2726 			break;
2727 		if (key.offset >= new->file_pos + new->len)
2728 			break;
2729 
2730 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2731 
2732 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2733 		if (key.offset + num_bytes < new->file_pos)
2734 			goto next;
2735 
2736 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2737 		if (!disk_bytenr)
2738 			goto next;
2739 
2740 		extent_offset = btrfs_file_extent_offset(l, extent);
2741 
2742 		old = kmalloc(sizeof(*old), GFP_NOFS);
2743 		if (!old)
2744 			goto out_free_path;
2745 
2746 		offset = max(new->file_pos, key.offset);
2747 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2748 
2749 		old->bytenr = disk_bytenr;
2750 		old->extent_offset = extent_offset;
2751 		old->offset = offset - key.offset;
2752 		old->len = end - offset;
2753 		old->new = new;
2754 		old->count = 0;
2755 		list_add_tail(&old->list, &new->head);
2756 next:
2757 		path->slots[0]++;
2758 		cond_resched();
2759 	}
2760 
2761 	btrfs_free_path(path);
2762 	atomic_inc(&root->fs_info->defrag_running);
2763 
2764 	return new;
2765 
2766 out_free_path:
2767 	btrfs_free_path(path);
2768 out_kfree:
2769 	free_sa_defrag_extent(new);
2770 	return NULL;
2771 }
2772 
2773 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2774 					 u64 start, u64 len)
2775 {
2776 	struct btrfs_block_group_cache *cache;
2777 
2778 	cache = btrfs_lookup_block_group(root->fs_info, start);
2779 	ASSERT(cache);
2780 
2781 	spin_lock(&cache->lock);
2782 	cache->delalloc_bytes -= len;
2783 	spin_unlock(&cache->lock);
2784 
2785 	btrfs_put_block_group(cache);
2786 }
2787 
2788 /* as ordered data IO finishes, this gets called so we can finish
2789  * an ordered extent if the range of bytes in the file it covers are
2790  * fully written.
2791  */
2792 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2793 {
2794 	struct inode *inode = ordered_extent->inode;
2795 	struct btrfs_root *root = BTRFS_I(inode)->root;
2796 	struct btrfs_trans_handle *trans = NULL;
2797 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2798 	struct extent_state *cached_state = NULL;
2799 	struct new_sa_defrag_extent *new = NULL;
2800 	int compress_type = 0;
2801 	int ret = 0;
2802 	u64 logical_len = ordered_extent->len;
2803 	bool nolock;
2804 	bool truncated = false;
2805 
2806 	nolock = btrfs_is_free_space_inode(inode);
2807 
2808 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2809 		ret = -EIO;
2810 		goto out;
2811 	}
2812 
2813 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2814 				     ordered_extent->file_offset +
2815 				     ordered_extent->len - 1);
2816 
2817 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2818 		truncated = true;
2819 		logical_len = ordered_extent->truncated_len;
2820 		/* Truncated the entire extent, don't bother adding */
2821 		if (!logical_len)
2822 			goto out;
2823 	}
2824 
2825 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2826 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2827 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2828 		if (nolock)
2829 			trans = btrfs_join_transaction_nolock(root);
2830 		else
2831 			trans = btrfs_join_transaction(root);
2832 		if (IS_ERR(trans)) {
2833 			ret = PTR_ERR(trans);
2834 			trans = NULL;
2835 			goto out;
2836 		}
2837 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2838 		ret = btrfs_update_inode_fallback(trans, root, inode);
2839 		if (ret) /* -ENOMEM or corruption */
2840 			btrfs_abort_transaction(trans, root, ret);
2841 		goto out;
2842 	}
2843 
2844 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2845 			 ordered_extent->file_offset + ordered_extent->len - 1,
2846 			 0, &cached_state);
2847 
2848 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2849 			ordered_extent->file_offset + ordered_extent->len - 1,
2850 			EXTENT_DEFRAG, 1, cached_state);
2851 	if (ret) {
2852 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2853 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2854 			/* the inode is shared */
2855 			new = record_old_file_extents(inode, ordered_extent);
2856 
2857 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2858 			ordered_extent->file_offset + ordered_extent->len - 1,
2859 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2860 	}
2861 
2862 	if (nolock)
2863 		trans = btrfs_join_transaction_nolock(root);
2864 	else
2865 		trans = btrfs_join_transaction(root);
2866 	if (IS_ERR(trans)) {
2867 		ret = PTR_ERR(trans);
2868 		trans = NULL;
2869 		goto out_unlock;
2870 	}
2871 
2872 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2873 
2874 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2875 		compress_type = ordered_extent->compress_type;
2876 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2877 		BUG_ON(compress_type);
2878 		ret = btrfs_mark_extent_written(trans, inode,
2879 						ordered_extent->file_offset,
2880 						ordered_extent->file_offset +
2881 						logical_len);
2882 	} else {
2883 		BUG_ON(root == root->fs_info->tree_root);
2884 		ret = insert_reserved_file_extent(trans, inode,
2885 						ordered_extent->file_offset,
2886 						ordered_extent->start,
2887 						ordered_extent->disk_len,
2888 						logical_len, logical_len,
2889 						compress_type, 0, 0,
2890 						BTRFS_FILE_EXTENT_REG);
2891 		if (!ret)
2892 			btrfs_release_delalloc_bytes(root,
2893 						     ordered_extent->start,
2894 						     ordered_extent->disk_len);
2895 	}
2896 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2897 			   ordered_extent->file_offset, ordered_extent->len,
2898 			   trans->transid);
2899 	if (ret < 0) {
2900 		btrfs_abort_transaction(trans, root, ret);
2901 		goto out_unlock;
2902 	}
2903 
2904 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2905 			  &ordered_extent->list);
2906 
2907 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2908 	ret = btrfs_update_inode_fallback(trans, root, inode);
2909 	if (ret) { /* -ENOMEM or corruption */
2910 		btrfs_abort_transaction(trans, root, ret);
2911 		goto out_unlock;
2912 	}
2913 	ret = 0;
2914 out_unlock:
2915 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2916 			     ordered_extent->file_offset +
2917 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2918 out:
2919 	if (root != root->fs_info->tree_root)
2920 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2921 	if (trans)
2922 		btrfs_end_transaction(trans, root);
2923 
2924 	if (ret || truncated) {
2925 		u64 start, end;
2926 
2927 		if (truncated)
2928 			start = ordered_extent->file_offset + logical_len;
2929 		else
2930 			start = ordered_extent->file_offset;
2931 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2932 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2933 
2934 		/* Drop the cache for the part of the extent we didn't write. */
2935 		btrfs_drop_extent_cache(inode, start, end, 0);
2936 
2937 		/*
2938 		 * If the ordered extent had an IOERR or something else went
2939 		 * wrong we need to return the space for this ordered extent
2940 		 * back to the allocator.  We only free the extent in the
2941 		 * truncated case if we didn't write out the extent at all.
2942 		 */
2943 		if ((ret || !logical_len) &&
2944 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2945 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2946 			btrfs_free_reserved_extent(root, ordered_extent->start,
2947 						   ordered_extent->disk_len, 1);
2948 	}
2949 
2950 
2951 	/*
2952 	 * This needs to be done to make sure anybody waiting knows we are done
2953 	 * updating everything for this ordered extent.
2954 	 */
2955 	btrfs_remove_ordered_extent(inode, ordered_extent);
2956 
2957 	/* for snapshot-aware defrag */
2958 	if (new) {
2959 		if (ret) {
2960 			free_sa_defrag_extent(new);
2961 			atomic_dec(&root->fs_info->defrag_running);
2962 		} else {
2963 			relink_file_extents(new);
2964 		}
2965 	}
2966 
2967 	/* once for us */
2968 	btrfs_put_ordered_extent(ordered_extent);
2969 	/* once for the tree */
2970 	btrfs_put_ordered_extent(ordered_extent);
2971 
2972 	return ret;
2973 }
2974 
2975 static void finish_ordered_fn(struct btrfs_work *work)
2976 {
2977 	struct btrfs_ordered_extent *ordered_extent;
2978 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2979 	btrfs_finish_ordered_io(ordered_extent);
2980 }
2981 
2982 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2983 				struct extent_state *state, int uptodate)
2984 {
2985 	struct inode *inode = page->mapping->host;
2986 	struct btrfs_root *root = BTRFS_I(inode)->root;
2987 	struct btrfs_ordered_extent *ordered_extent = NULL;
2988 	struct btrfs_workqueue *wq;
2989 	btrfs_work_func_t func;
2990 
2991 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2992 
2993 	ClearPagePrivate2(page);
2994 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2995 					    end - start + 1, uptodate))
2996 		return 0;
2997 
2998 	if (btrfs_is_free_space_inode(inode)) {
2999 		wq = root->fs_info->endio_freespace_worker;
3000 		func = btrfs_freespace_write_helper;
3001 	} else {
3002 		wq = root->fs_info->endio_write_workers;
3003 		func = btrfs_endio_write_helper;
3004 	}
3005 
3006 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3007 			NULL);
3008 	btrfs_queue_work(wq, &ordered_extent->work);
3009 
3010 	return 0;
3011 }
3012 
3013 static int __readpage_endio_check(struct inode *inode,
3014 				  struct btrfs_io_bio *io_bio,
3015 				  int icsum, struct page *page,
3016 				  int pgoff, u64 start, size_t len)
3017 {
3018 	char *kaddr;
3019 	u32 csum_expected;
3020 	u32 csum = ~(u32)0;
3021 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3022 				      DEFAULT_RATELIMIT_BURST);
3023 
3024 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3025 
3026 	kaddr = kmap_atomic(page);
3027 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3028 	btrfs_csum_final(csum, (char *)&csum);
3029 	if (csum != csum_expected)
3030 		goto zeroit;
3031 
3032 	kunmap_atomic(kaddr);
3033 	return 0;
3034 zeroit:
3035 	if (__ratelimit(&_rs))
3036 		btrfs_warn(BTRFS_I(inode)->root->fs_info,
3037 			   "csum failed ino %llu off %llu csum %u expected csum %u",
3038 			   btrfs_ino(inode), start, csum, csum_expected);
3039 	memset(kaddr + pgoff, 1, len);
3040 	flush_dcache_page(page);
3041 	kunmap_atomic(kaddr);
3042 	if (csum_expected == 0)
3043 		return 0;
3044 	return -EIO;
3045 }
3046 
3047 /*
3048  * when reads are done, we need to check csums to verify the data is correct
3049  * if there's a match, we allow the bio to finish.  If not, the code in
3050  * extent_io.c will try to find good copies for us.
3051  */
3052 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3053 				      u64 phy_offset, struct page *page,
3054 				      u64 start, u64 end, int mirror)
3055 {
3056 	size_t offset = start - page_offset(page);
3057 	struct inode *inode = page->mapping->host;
3058 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3059 	struct btrfs_root *root = BTRFS_I(inode)->root;
3060 
3061 	if (PageChecked(page)) {
3062 		ClearPageChecked(page);
3063 		return 0;
3064 	}
3065 
3066 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3067 		return 0;
3068 
3069 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3070 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3071 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3072 				  GFP_NOFS);
3073 		return 0;
3074 	}
3075 
3076 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3077 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3078 				      start, (size_t)(end - start + 1));
3079 }
3080 
3081 struct delayed_iput {
3082 	struct list_head list;
3083 	struct inode *inode;
3084 };
3085 
3086 /* JDM: If this is fs-wide, why can't we add a pointer to
3087  * btrfs_inode instead and avoid the allocation? */
3088 void btrfs_add_delayed_iput(struct inode *inode)
3089 {
3090 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3091 	struct delayed_iput *delayed;
3092 
3093 	if (atomic_add_unless(&inode->i_count, -1, 1))
3094 		return;
3095 
3096 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3097 	delayed->inode = inode;
3098 
3099 	spin_lock(&fs_info->delayed_iput_lock);
3100 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3101 	spin_unlock(&fs_info->delayed_iput_lock);
3102 }
3103 
3104 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3105 {
3106 	LIST_HEAD(list);
3107 	struct btrfs_fs_info *fs_info = root->fs_info;
3108 	struct delayed_iput *delayed;
3109 	int empty;
3110 
3111 	spin_lock(&fs_info->delayed_iput_lock);
3112 	empty = list_empty(&fs_info->delayed_iputs);
3113 	spin_unlock(&fs_info->delayed_iput_lock);
3114 	if (empty)
3115 		return;
3116 
3117 	down_read(&fs_info->delayed_iput_sem);
3118 
3119 	spin_lock(&fs_info->delayed_iput_lock);
3120 	list_splice_init(&fs_info->delayed_iputs, &list);
3121 	spin_unlock(&fs_info->delayed_iput_lock);
3122 
3123 	while (!list_empty(&list)) {
3124 		delayed = list_entry(list.next, struct delayed_iput, list);
3125 		list_del(&delayed->list);
3126 		iput(delayed->inode);
3127 		kfree(delayed);
3128 	}
3129 
3130 	up_read(&root->fs_info->delayed_iput_sem);
3131 }
3132 
3133 /*
3134  * This is called in transaction commit time. If there are no orphan
3135  * files in the subvolume, it removes orphan item and frees block_rsv
3136  * structure.
3137  */
3138 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3139 			      struct btrfs_root *root)
3140 {
3141 	struct btrfs_block_rsv *block_rsv;
3142 	int ret;
3143 
3144 	if (atomic_read(&root->orphan_inodes) ||
3145 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3146 		return;
3147 
3148 	spin_lock(&root->orphan_lock);
3149 	if (atomic_read(&root->orphan_inodes)) {
3150 		spin_unlock(&root->orphan_lock);
3151 		return;
3152 	}
3153 
3154 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3155 		spin_unlock(&root->orphan_lock);
3156 		return;
3157 	}
3158 
3159 	block_rsv = root->orphan_block_rsv;
3160 	root->orphan_block_rsv = NULL;
3161 	spin_unlock(&root->orphan_lock);
3162 
3163 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3164 	    btrfs_root_refs(&root->root_item) > 0) {
3165 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3166 					    root->root_key.objectid);
3167 		if (ret)
3168 			btrfs_abort_transaction(trans, root, ret);
3169 		else
3170 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3171 				  &root->state);
3172 	}
3173 
3174 	if (block_rsv) {
3175 		WARN_ON(block_rsv->size > 0);
3176 		btrfs_free_block_rsv(root, block_rsv);
3177 	}
3178 }
3179 
3180 /*
3181  * This creates an orphan entry for the given inode in case something goes
3182  * wrong in the middle of an unlink/truncate.
3183  *
3184  * NOTE: caller of this function should reserve 5 units of metadata for
3185  *	 this function.
3186  */
3187 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3188 {
3189 	struct btrfs_root *root = BTRFS_I(inode)->root;
3190 	struct btrfs_block_rsv *block_rsv = NULL;
3191 	int reserve = 0;
3192 	int insert = 0;
3193 	int ret;
3194 
3195 	if (!root->orphan_block_rsv) {
3196 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3197 		if (!block_rsv)
3198 			return -ENOMEM;
3199 	}
3200 
3201 	spin_lock(&root->orphan_lock);
3202 	if (!root->orphan_block_rsv) {
3203 		root->orphan_block_rsv = block_rsv;
3204 	} else if (block_rsv) {
3205 		btrfs_free_block_rsv(root, block_rsv);
3206 		block_rsv = NULL;
3207 	}
3208 
3209 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3210 			      &BTRFS_I(inode)->runtime_flags)) {
3211 #if 0
3212 		/*
3213 		 * For proper ENOSPC handling, we should do orphan
3214 		 * cleanup when mounting. But this introduces backward
3215 		 * compatibility issue.
3216 		 */
3217 		if (!xchg(&root->orphan_item_inserted, 1))
3218 			insert = 2;
3219 		else
3220 			insert = 1;
3221 #endif
3222 		insert = 1;
3223 		atomic_inc(&root->orphan_inodes);
3224 	}
3225 
3226 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3227 			      &BTRFS_I(inode)->runtime_flags))
3228 		reserve = 1;
3229 	spin_unlock(&root->orphan_lock);
3230 
3231 	/* grab metadata reservation from transaction handle */
3232 	if (reserve) {
3233 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3234 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3235 	}
3236 
3237 	/* insert an orphan item to track this unlinked/truncated file */
3238 	if (insert >= 1) {
3239 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3240 		if (ret) {
3241 			atomic_dec(&root->orphan_inodes);
3242 			if (reserve) {
3243 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3244 					  &BTRFS_I(inode)->runtime_flags);
3245 				btrfs_orphan_release_metadata(inode);
3246 			}
3247 			if (ret != -EEXIST) {
3248 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3249 					  &BTRFS_I(inode)->runtime_flags);
3250 				btrfs_abort_transaction(trans, root, ret);
3251 				return ret;
3252 			}
3253 		}
3254 		ret = 0;
3255 	}
3256 
3257 	/* insert an orphan item to track subvolume contains orphan files */
3258 	if (insert >= 2) {
3259 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3260 					       root->root_key.objectid);
3261 		if (ret && ret != -EEXIST) {
3262 			btrfs_abort_transaction(trans, root, ret);
3263 			return ret;
3264 		}
3265 	}
3266 	return 0;
3267 }
3268 
3269 /*
3270  * We have done the truncate/delete so we can go ahead and remove the orphan
3271  * item for this particular inode.
3272  */
3273 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3274 			    struct inode *inode)
3275 {
3276 	struct btrfs_root *root = BTRFS_I(inode)->root;
3277 	int delete_item = 0;
3278 	int release_rsv = 0;
3279 	int ret = 0;
3280 
3281 	spin_lock(&root->orphan_lock);
3282 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3283 			       &BTRFS_I(inode)->runtime_flags))
3284 		delete_item = 1;
3285 
3286 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3287 			       &BTRFS_I(inode)->runtime_flags))
3288 		release_rsv = 1;
3289 	spin_unlock(&root->orphan_lock);
3290 
3291 	if (delete_item) {
3292 		atomic_dec(&root->orphan_inodes);
3293 		if (trans)
3294 			ret = btrfs_del_orphan_item(trans, root,
3295 						    btrfs_ino(inode));
3296 	}
3297 
3298 	if (release_rsv)
3299 		btrfs_orphan_release_metadata(inode);
3300 
3301 	return ret;
3302 }
3303 
3304 /*
3305  * this cleans up any orphans that may be left on the list from the last use
3306  * of this root.
3307  */
3308 int btrfs_orphan_cleanup(struct btrfs_root *root)
3309 {
3310 	struct btrfs_path *path;
3311 	struct extent_buffer *leaf;
3312 	struct btrfs_key key, found_key;
3313 	struct btrfs_trans_handle *trans;
3314 	struct inode *inode;
3315 	u64 last_objectid = 0;
3316 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3317 
3318 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3319 		return 0;
3320 
3321 	path = btrfs_alloc_path();
3322 	if (!path) {
3323 		ret = -ENOMEM;
3324 		goto out;
3325 	}
3326 	path->reada = -1;
3327 
3328 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3329 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3330 	key.offset = (u64)-1;
3331 
3332 	while (1) {
3333 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3334 		if (ret < 0)
3335 			goto out;
3336 
3337 		/*
3338 		 * if ret == 0 means we found what we were searching for, which
3339 		 * is weird, but possible, so only screw with path if we didn't
3340 		 * find the key and see if we have stuff that matches
3341 		 */
3342 		if (ret > 0) {
3343 			ret = 0;
3344 			if (path->slots[0] == 0)
3345 				break;
3346 			path->slots[0]--;
3347 		}
3348 
3349 		/* pull out the item */
3350 		leaf = path->nodes[0];
3351 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3352 
3353 		/* make sure the item matches what we want */
3354 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3355 			break;
3356 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3357 			break;
3358 
3359 		/* release the path since we're done with it */
3360 		btrfs_release_path(path);
3361 
3362 		/*
3363 		 * this is where we are basically btrfs_lookup, without the
3364 		 * crossing root thing.  we store the inode number in the
3365 		 * offset of the orphan item.
3366 		 */
3367 
3368 		if (found_key.offset == last_objectid) {
3369 			btrfs_err(root->fs_info,
3370 				"Error removing orphan entry, stopping orphan cleanup");
3371 			ret = -EINVAL;
3372 			goto out;
3373 		}
3374 
3375 		last_objectid = found_key.offset;
3376 
3377 		found_key.objectid = found_key.offset;
3378 		found_key.type = BTRFS_INODE_ITEM_KEY;
3379 		found_key.offset = 0;
3380 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3381 		ret = PTR_ERR_OR_ZERO(inode);
3382 		if (ret && ret != -ESTALE)
3383 			goto out;
3384 
3385 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3386 			struct btrfs_root *dead_root;
3387 			struct btrfs_fs_info *fs_info = root->fs_info;
3388 			int is_dead_root = 0;
3389 
3390 			/*
3391 			 * this is an orphan in the tree root. Currently these
3392 			 * could come from 2 sources:
3393 			 *  a) a snapshot deletion in progress
3394 			 *  b) a free space cache inode
3395 			 * We need to distinguish those two, as the snapshot
3396 			 * orphan must not get deleted.
3397 			 * find_dead_roots already ran before us, so if this
3398 			 * is a snapshot deletion, we should find the root
3399 			 * in the dead_roots list
3400 			 */
3401 			spin_lock(&fs_info->trans_lock);
3402 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3403 					    root_list) {
3404 				if (dead_root->root_key.objectid ==
3405 				    found_key.objectid) {
3406 					is_dead_root = 1;
3407 					break;
3408 				}
3409 			}
3410 			spin_unlock(&fs_info->trans_lock);
3411 			if (is_dead_root) {
3412 				/* prevent this orphan from being found again */
3413 				key.offset = found_key.objectid - 1;
3414 				continue;
3415 			}
3416 		}
3417 		/*
3418 		 * Inode is already gone but the orphan item is still there,
3419 		 * kill the orphan item.
3420 		 */
3421 		if (ret == -ESTALE) {
3422 			trans = btrfs_start_transaction(root, 1);
3423 			if (IS_ERR(trans)) {
3424 				ret = PTR_ERR(trans);
3425 				goto out;
3426 			}
3427 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3428 				found_key.objectid);
3429 			ret = btrfs_del_orphan_item(trans, root,
3430 						    found_key.objectid);
3431 			btrfs_end_transaction(trans, root);
3432 			if (ret)
3433 				goto out;
3434 			continue;
3435 		}
3436 
3437 		/*
3438 		 * add this inode to the orphan list so btrfs_orphan_del does
3439 		 * the proper thing when we hit it
3440 		 */
3441 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3442 			&BTRFS_I(inode)->runtime_flags);
3443 		atomic_inc(&root->orphan_inodes);
3444 
3445 		/* if we have links, this was a truncate, lets do that */
3446 		if (inode->i_nlink) {
3447 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3448 				iput(inode);
3449 				continue;
3450 			}
3451 			nr_truncate++;
3452 
3453 			/* 1 for the orphan item deletion. */
3454 			trans = btrfs_start_transaction(root, 1);
3455 			if (IS_ERR(trans)) {
3456 				iput(inode);
3457 				ret = PTR_ERR(trans);
3458 				goto out;
3459 			}
3460 			ret = btrfs_orphan_add(trans, inode);
3461 			btrfs_end_transaction(trans, root);
3462 			if (ret) {
3463 				iput(inode);
3464 				goto out;
3465 			}
3466 
3467 			ret = btrfs_truncate(inode);
3468 			if (ret)
3469 				btrfs_orphan_del(NULL, inode);
3470 		} else {
3471 			nr_unlink++;
3472 		}
3473 
3474 		/* this will do delete_inode and everything for us */
3475 		iput(inode);
3476 		if (ret)
3477 			goto out;
3478 	}
3479 	/* release the path since we're done with it */
3480 	btrfs_release_path(path);
3481 
3482 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3483 
3484 	if (root->orphan_block_rsv)
3485 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3486 					(u64)-1);
3487 
3488 	if (root->orphan_block_rsv ||
3489 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3490 		trans = btrfs_join_transaction(root);
3491 		if (!IS_ERR(trans))
3492 			btrfs_end_transaction(trans, root);
3493 	}
3494 
3495 	if (nr_unlink)
3496 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3497 	if (nr_truncate)
3498 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3499 
3500 out:
3501 	if (ret)
3502 		btrfs_err(root->fs_info,
3503 			"could not do orphan cleanup %d", ret);
3504 	btrfs_free_path(path);
3505 	return ret;
3506 }
3507 
3508 /*
3509  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3510  * don't find any xattrs, we know there can't be any acls.
3511  *
3512  * slot is the slot the inode is in, objectid is the objectid of the inode
3513  */
3514 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3515 					  int slot, u64 objectid,
3516 					  int *first_xattr_slot)
3517 {
3518 	u32 nritems = btrfs_header_nritems(leaf);
3519 	struct btrfs_key found_key;
3520 	static u64 xattr_access = 0;
3521 	static u64 xattr_default = 0;
3522 	int scanned = 0;
3523 
3524 	if (!xattr_access) {
3525 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3526 					strlen(POSIX_ACL_XATTR_ACCESS));
3527 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3528 					strlen(POSIX_ACL_XATTR_DEFAULT));
3529 	}
3530 
3531 	slot++;
3532 	*first_xattr_slot = -1;
3533 	while (slot < nritems) {
3534 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3535 
3536 		/* we found a different objectid, there must not be acls */
3537 		if (found_key.objectid != objectid)
3538 			return 0;
3539 
3540 		/* we found an xattr, assume we've got an acl */
3541 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3542 			if (*first_xattr_slot == -1)
3543 				*first_xattr_slot = slot;
3544 			if (found_key.offset == xattr_access ||
3545 			    found_key.offset == xattr_default)
3546 				return 1;
3547 		}
3548 
3549 		/*
3550 		 * we found a key greater than an xattr key, there can't
3551 		 * be any acls later on
3552 		 */
3553 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3554 			return 0;
3555 
3556 		slot++;
3557 		scanned++;
3558 
3559 		/*
3560 		 * it goes inode, inode backrefs, xattrs, extents,
3561 		 * so if there are a ton of hard links to an inode there can
3562 		 * be a lot of backrefs.  Don't waste time searching too hard,
3563 		 * this is just an optimization
3564 		 */
3565 		if (scanned >= 8)
3566 			break;
3567 	}
3568 	/* we hit the end of the leaf before we found an xattr or
3569 	 * something larger than an xattr.  We have to assume the inode
3570 	 * has acls
3571 	 */
3572 	if (*first_xattr_slot == -1)
3573 		*first_xattr_slot = slot;
3574 	return 1;
3575 }
3576 
3577 /*
3578  * read an inode from the btree into the in-memory inode
3579  */
3580 static void btrfs_read_locked_inode(struct inode *inode)
3581 {
3582 	struct btrfs_path *path;
3583 	struct extent_buffer *leaf;
3584 	struct btrfs_inode_item *inode_item;
3585 	struct btrfs_root *root = BTRFS_I(inode)->root;
3586 	struct btrfs_key location;
3587 	unsigned long ptr;
3588 	int maybe_acls;
3589 	u32 rdev;
3590 	int ret;
3591 	bool filled = false;
3592 	int first_xattr_slot;
3593 
3594 	ret = btrfs_fill_inode(inode, &rdev);
3595 	if (!ret)
3596 		filled = true;
3597 
3598 	path = btrfs_alloc_path();
3599 	if (!path)
3600 		goto make_bad;
3601 
3602 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3603 
3604 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3605 	if (ret)
3606 		goto make_bad;
3607 
3608 	leaf = path->nodes[0];
3609 
3610 	if (filled)
3611 		goto cache_index;
3612 
3613 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3614 				    struct btrfs_inode_item);
3615 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3616 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3617 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3618 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3619 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3620 
3621 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3622 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3623 
3624 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3625 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3626 
3627 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3628 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3629 
3630 	BTRFS_I(inode)->i_otime.tv_sec =
3631 		btrfs_timespec_sec(leaf, &inode_item->otime);
3632 	BTRFS_I(inode)->i_otime.tv_nsec =
3633 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3634 
3635 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3636 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3637 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3638 
3639 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3640 	inode->i_generation = BTRFS_I(inode)->generation;
3641 	inode->i_rdev = 0;
3642 	rdev = btrfs_inode_rdev(leaf, inode_item);
3643 
3644 	BTRFS_I(inode)->index_cnt = (u64)-1;
3645 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3646 
3647 cache_index:
3648 	/*
3649 	 * If we were modified in the current generation and evicted from memory
3650 	 * and then re-read we need to do a full sync since we don't have any
3651 	 * idea about which extents were modified before we were evicted from
3652 	 * cache.
3653 	 *
3654 	 * This is required for both inode re-read from disk and delayed inode
3655 	 * in delayed_nodes_tree.
3656 	 */
3657 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3658 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3659 			&BTRFS_I(inode)->runtime_flags);
3660 
3661 	/*
3662 	 * We don't persist the id of the transaction where an unlink operation
3663 	 * against the inode was last made. So here we assume the inode might
3664 	 * have been evicted, and therefore the exact value of last_unlink_trans
3665 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3666 	 * between the inode and its parent if the inode is fsync'ed and the log
3667 	 * replayed. For example, in the scenario:
3668 	 *
3669 	 * touch mydir/foo
3670 	 * ln mydir/foo mydir/bar
3671 	 * sync
3672 	 * unlink mydir/bar
3673 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3674 	 * xfs_io -c fsync mydir/foo
3675 	 * <power failure>
3676 	 * mount fs, triggers fsync log replay
3677 	 *
3678 	 * We must make sure that when we fsync our inode foo we also log its
3679 	 * parent inode, otherwise after log replay the parent still has the
3680 	 * dentry with the "bar" name but our inode foo has a link count of 1
3681 	 * and doesn't have an inode ref with the name "bar" anymore.
3682 	 *
3683 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3684 	 * but it guarantees correctness at the expense of ocassional full
3685 	 * transaction commits on fsync if our inode is a directory, or if our
3686 	 * inode is not a directory, logging its parent unnecessarily.
3687 	 */
3688 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3689 
3690 	path->slots[0]++;
3691 	if (inode->i_nlink != 1 ||
3692 	    path->slots[0] >= btrfs_header_nritems(leaf))
3693 		goto cache_acl;
3694 
3695 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3696 	if (location.objectid != btrfs_ino(inode))
3697 		goto cache_acl;
3698 
3699 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3700 	if (location.type == BTRFS_INODE_REF_KEY) {
3701 		struct btrfs_inode_ref *ref;
3702 
3703 		ref = (struct btrfs_inode_ref *)ptr;
3704 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3705 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3706 		struct btrfs_inode_extref *extref;
3707 
3708 		extref = (struct btrfs_inode_extref *)ptr;
3709 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3710 								     extref);
3711 	}
3712 cache_acl:
3713 	/*
3714 	 * try to precache a NULL acl entry for files that don't have
3715 	 * any xattrs or acls
3716 	 */
3717 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3718 					   btrfs_ino(inode), &first_xattr_slot);
3719 	if (first_xattr_slot != -1) {
3720 		path->slots[0] = first_xattr_slot;
3721 		ret = btrfs_load_inode_props(inode, path);
3722 		if (ret)
3723 			btrfs_err(root->fs_info,
3724 				  "error loading props for ino %llu (root %llu): %d",
3725 				  btrfs_ino(inode),
3726 				  root->root_key.objectid, ret);
3727 	}
3728 	btrfs_free_path(path);
3729 
3730 	if (!maybe_acls)
3731 		cache_no_acl(inode);
3732 
3733 	switch (inode->i_mode & S_IFMT) {
3734 	case S_IFREG:
3735 		inode->i_mapping->a_ops = &btrfs_aops;
3736 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3737 		inode->i_fop = &btrfs_file_operations;
3738 		inode->i_op = &btrfs_file_inode_operations;
3739 		break;
3740 	case S_IFDIR:
3741 		inode->i_fop = &btrfs_dir_file_operations;
3742 		if (root == root->fs_info->tree_root)
3743 			inode->i_op = &btrfs_dir_ro_inode_operations;
3744 		else
3745 			inode->i_op = &btrfs_dir_inode_operations;
3746 		break;
3747 	case S_IFLNK:
3748 		inode->i_op = &btrfs_symlink_inode_operations;
3749 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3750 		break;
3751 	default:
3752 		inode->i_op = &btrfs_special_inode_operations;
3753 		init_special_inode(inode, inode->i_mode, rdev);
3754 		break;
3755 	}
3756 
3757 	btrfs_update_iflags(inode);
3758 	return;
3759 
3760 make_bad:
3761 	btrfs_free_path(path);
3762 	make_bad_inode(inode);
3763 }
3764 
3765 /*
3766  * given a leaf and an inode, copy the inode fields into the leaf
3767  */
3768 static void fill_inode_item(struct btrfs_trans_handle *trans,
3769 			    struct extent_buffer *leaf,
3770 			    struct btrfs_inode_item *item,
3771 			    struct inode *inode)
3772 {
3773 	struct btrfs_map_token token;
3774 
3775 	btrfs_init_map_token(&token);
3776 
3777 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3778 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3779 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3780 				   &token);
3781 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3782 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3783 
3784 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3785 				     inode->i_atime.tv_sec, &token);
3786 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3787 				      inode->i_atime.tv_nsec, &token);
3788 
3789 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3790 				     inode->i_mtime.tv_sec, &token);
3791 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3792 				      inode->i_mtime.tv_nsec, &token);
3793 
3794 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3795 				     inode->i_ctime.tv_sec, &token);
3796 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3797 				      inode->i_ctime.tv_nsec, &token);
3798 
3799 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3800 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3801 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3802 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3803 
3804 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3805 				     &token);
3806 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3807 					 &token);
3808 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3809 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3810 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3811 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3812 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3813 }
3814 
3815 /*
3816  * copy everything in the in-memory inode into the btree.
3817  */
3818 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3819 				struct btrfs_root *root, struct inode *inode)
3820 {
3821 	struct btrfs_inode_item *inode_item;
3822 	struct btrfs_path *path;
3823 	struct extent_buffer *leaf;
3824 	int ret;
3825 
3826 	path = btrfs_alloc_path();
3827 	if (!path)
3828 		return -ENOMEM;
3829 
3830 	path->leave_spinning = 1;
3831 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3832 				 1);
3833 	if (ret) {
3834 		if (ret > 0)
3835 			ret = -ENOENT;
3836 		goto failed;
3837 	}
3838 
3839 	leaf = path->nodes[0];
3840 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3841 				    struct btrfs_inode_item);
3842 
3843 	fill_inode_item(trans, leaf, inode_item, inode);
3844 	btrfs_mark_buffer_dirty(leaf);
3845 	btrfs_set_inode_last_trans(trans, inode);
3846 	ret = 0;
3847 failed:
3848 	btrfs_free_path(path);
3849 	return ret;
3850 }
3851 
3852 /*
3853  * copy everything in the in-memory inode into the btree.
3854  */
3855 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3856 				struct btrfs_root *root, struct inode *inode)
3857 {
3858 	int ret;
3859 
3860 	/*
3861 	 * If the inode is a free space inode, we can deadlock during commit
3862 	 * if we put it into the delayed code.
3863 	 *
3864 	 * The data relocation inode should also be directly updated
3865 	 * without delay
3866 	 */
3867 	if (!btrfs_is_free_space_inode(inode)
3868 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3869 	    && !root->fs_info->log_root_recovering) {
3870 		btrfs_update_root_times(trans, root);
3871 
3872 		ret = btrfs_delayed_update_inode(trans, root, inode);
3873 		if (!ret)
3874 			btrfs_set_inode_last_trans(trans, inode);
3875 		return ret;
3876 	}
3877 
3878 	return btrfs_update_inode_item(trans, root, inode);
3879 }
3880 
3881 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3882 					 struct btrfs_root *root,
3883 					 struct inode *inode)
3884 {
3885 	int ret;
3886 
3887 	ret = btrfs_update_inode(trans, root, inode);
3888 	if (ret == -ENOSPC)
3889 		return btrfs_update_inode_item(trans, root, inode);
3890 	return ret;
3891 }
3892 
3893 /*
3894  * unlink helper that gets used here in inode.c and in the tree logging
3895  * recovery code.  It remove a link in a directory with a given name, and
3896  * also drops the back refs in the inode to the directory
3897  */
3898 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3899 				struct btrfs_root *root,
3900 				struct inode *dir, struct inode *inode,
3901 				const char *name, int name_len)
3902 {
3903 	struct btrfs_path *path;
3904 	int ret = 0;
3905 	struct extent_buffer *leaf;
3906 	struct btrfs_dir_item *di;
3907 	struct btrfs_key key;
3908 	u64 index;
3909 	u64 ino = btrfs_ino(inode);
3910 	u64 dir_ino = btrfs_ino(dir);
3911 
3912 	path = btrfs_alloc_path();
3913 	if (!path) {
3914 		ret = -ENOMEM;
3915 		goto out;
3916 	}
3917 
3918 	path->leave_spinning = 1;
3919 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3920 				    name, name_len, -1);
3921 	if (IS_ERR(di)) {
3922 		ret = PTR_ERR(di);
3923 		goto err;
3924 	}
3925 	if (!di) {
3926 		ret = -ENOENT;
3927 		goto err;
3928 	}
3929 	leaf = path->nodes[0];
3930 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3931 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3932 	if (ret)
3933 		goto err;
3934 	btrfs_release_path(path);
3935 
3936 	/*
3937 	 * If we don't have dir index, we have to get it by looking up
3938 	 * the inode ref, since we get the inode ref, remove it directly,
3939 	 * it is unnecessary to do delayed deletion.
3940 	 *
3941 	 * But if we have dir index, needn't search inode ref to get it.
3942 	 * Since the inode ref is close to the inode item, it is better
3943 	 * that we delay to delete it, and just do this deletion when
3944 	 * we update the inode item.
3945 	 */
3946 	if (BTRFS_I(inode)->dir_index) {
3947 		ret = btrfs_delayed_delete_inode_ref(inode);
3948 		if (!ret) {
3949 			index = BTRFS_I(inode)->dir_index;
3950 			goto skip_backref;
3951 		}
3952 	}
3953 
3954 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3955 				  dir_ino, &index);
3956 	if (ret) {
3957 		btrfs_info(root->fs_info,
3958 			"failed to delete reference to %.*s, inode %llu parent %llu",
3959 			name_len, name, ino, dir_ino);
3960 		btrfs_abort_transaction(trans, root, ret);
3961 		goto err;
3962 	}
3963 skip_backref:
3964 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3965 	if (ret) {
3966 		btrfs_abort_transaction(trans, root, ret);
3967 		goto err;
3968 	}
3969 
3970 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3971 					 inode, dir_ino);
3972 	if (ret != 0 && ret != -ENOENT) {
3973 		btrfs_abort_transaction(trans, root, ret);
3974 		goto err;
3975 	}
3976 
3977 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3978 					   dir, index);
3979 	if (ret == -ENOENT)
3980 		ret = 0;
3981 	else if (ret)
3982 		btrfs_abort_transaction(trans, root, ret);
3983 err:
3984 	btrfs_free_path(path);
3985 	if (ret)
3986 		goto out;
3987 
3988 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3989 	inode_inc_iversion(inode);
3990 	inode_inc_iversion(dir);
3991 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3992 	ret = btrfs_update_inode(trans, root, dir);
3993 out:
3994 	return ret;
3995 }
3996 
3997 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3998 		       struct btrfs_root *root,
3999 		       struct inode *dir, struct inode *inode,
4000 		       const char *name, int name_len)
4001 {
4002 	int ret;
4003 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4004 	if (!ret) {
4005 		drop_nlink(inode);
4006 		ret = btrfs_update_inode(trans, root, inode);
4007 	}
4008 	return ret;
4009 }
4010 
4011 /*
4012  * helper to start transaction for unlink and rmdir.
4013  *
4014  * unlink and rmdir are special in btrfs, they do not always free space, so
4015  * if we cannot make our reservations the normal way try and see if there is
4016  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4017  * allow the unlink to occur.
4018  */
4019 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4020 {
4021 	struct btrfs_trans_handle *trans;
4022 	struct btrfs_root *root = BTRFS_I(dir)->root;
4023 	int ret;
4024 
4025 	/*
4026 	 * 1 for the possible orphan item
4027 	 * 1 for the dir item
4028 	 * 1 for the dir index
4029 	 * 1 for the inode ref
4030 	 * 1 for the inode
4031 	 */
4032 	trans = btrfs_start_transaction(root, 5);
4033 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4034 		return trans;
4035 
4036 	if (PTR_ERR(trans) == -ENOSPC) {
4037 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4038 
4039 		trans = btrfs_start_transaction(root, 0);
4040 		if (IS_ERR(trans))
4041 			return trans;
4042 		ret = btrfs_cond_migrate_bytes(root->fs_info,
4043 					       &root->fs_info->trans_block_rsv,
4044 					       num_bytes, 5);
4045 		if (ret) {
4046 			btrfs_end_transaction(trans, root);
4047 			return ERR_PTR(ret);
4048 		}
4049 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4050 		trans->bytes_reserved = num_bytes;
4051 	}
4052 	return trans;
4053 }
4054 
4055 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4056 {
4057 	struct btrfs_root *root = BTRFS_I(dir)->root;
4058 	struct btrfs_trans_handle *trans;
4059 	struct inode *inode = d_inode(dentry);
4060 	int ret;
4061 
4062 	trans = __unlink_start_trans(dir);
4063 	if (IS_ERR(trans))
4064 		return PTR_ERR(trans);
4065 
4066 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4067 
4068 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4069 				 dentry->d_name.name, dentry->d_name.len);
4070 	if (ret)
4071 		goto out;
4072 
4073 	if (inode->i_nlink == 0) {
4074 		ret = btrfs_orphan_add(trans, inode);
4075 		if (ret)
4076 			goto out;
4077 	}
4078 
4079 out:
4080 	btrfs_end_transaction(trans, root);
4081 	btrfs_btree_balance_dirty(root);
4082 	return ret;
4083 }
4084 
4085 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4086 			struct btrfs_root *root,
4087 			struct inode *dir, u64 objectid,
4088 			const char *name, int name_len)
4089 {
4090 	struct btrfs_path *path;
4091 	struct extent_buffer *leaf;
4092 	struct btrfs_dir_item *di;
4093 	struct btrfs_key key;
4094 	u64 index;
4095 	int ret;
4096 	u64 dir_ino = btrfs_ino(dir);
4097 
4098 	path = btrfs_alloc_path();
4099 	if (!path)
4100 		return -ENOMEM;
4101 
4102 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4103 				   name, name_len, -1);
4104 	if (IS_ERR_OR_NULL(di)) {
4105 		if (!di)
4106 			ret = -ENOENT;
4107 		else
4108 			ret = PTR_ERR(di);
4109 		goto out;
4110 	}
4111 
4112 	leaf = path->nodes[0];
4113 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4114 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4115 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4116 	if (ret) {
4117 		btrfs_abort_transaction(trans, root, ret);
4118 		goto out;
4119 	}
4120 	btrfs_release_path(path);
4121 
4122 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4123 				 objectid, root->root_key.objectid,
4124 				 dir_ino, &index, name, name_len);
4125 	if (ret < 0) {
4126 		if (ret != -ENOENT) {
4127 			btrfs_abort_transaction(trans, root, ret);
4128 			goto out;
4129 		}
4130 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4131 						 name, name_len);
4132 		if (IS_ERR_OR_NULL(di)) {
4133 			if (!di)
4134 				ret = -ENOENT;
4135 			else
4136 				ret = PTR_ERR(di);
4137 			btrfs_abort_transaction(trans, root, ret);
4138 			goto out;
4139 		}
4140 
4141 		leaf = path->nodes[0];
4142 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4143 		btrfs_release_path(path);
4144 		index = key.offset;
4145 	}
4146 	btrfs_release_path(path);
4147 
4148 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4149 	if (ret) {
4150 		btrfs_abort_transaction(trans, root, ret);
4151 		goto out;
4152 	}
4153 
4154 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4155 	inode_inc_iversion(dir);
4156 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4157 	ret = btrfs_update_inode_fallback(trans, root, dir);
4158 	if (ret)
4159 		btrfs_abort_transaction(trans, root, ret);
4160 out:
4161 	btrfs_free_path(path);
4162 	return ret;
4163 }
4164 
4165 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4166 {
4167 	struct inode *inode = d_inode(dentry);
4168 	int err = 0;
4169 	struct btrfs_root *root = BTRFS_I(dir)->root;
4170 	struct btrfs_trans_handle *trans;
4171 
4172 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4173 		return -ENOTEMPTY;
4174 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4175 		return -EPERM;
4176 
4177 	trans = __unlink_start_trans(dir);
4178 	if (IS_ERR(trans))
4179 		return PTR_ERR(trans);
4180 
4181 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4182 		err = btrfs_unlink_subvol(trans, root, dir,
4183 					  BTRFS_I(inode)->location.objectid,
4184 					  dentry->d_name.name,
4185 					  dentry->d_name.len);
4186 		goto out;
4187 	}
4188 
4189 	err = btrfs_orphan_add(trans, inode);
4190 	if (err)
4191 		goto out;
4192 
4193 	/* now the directory is empty */
4194 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4195 				 dentry->d_name.name, dentry->d_name.len);
4196 	if (!err)
4197 		btrfs_i_size_write(inode, 0);
4198 out:
4199 	btrfs_end_transaction(trans, root);
4200 	btrfs_btree_balance_dirty(root);
4201 
4202 	return err;
4203 }
4204 
4205 static int truncate_space_check(struct btrfs_trans_handle *trans,
4206 				struct btrfs_root *root,
4207 				u64 bytes_deleted)
4208 {
4209 	int ret;
4210 
4211 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4212 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4213 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4214 	if (!ret)
4215 		trans->bytes_reserved += bytes_deleted;
4216 	return ret;
4217 
4218 }
4219 
4220 /*
4221  * this can truncate away extent items, csum items and directory items.
4222  * It starts at a high offset and removes keys until it can't find
4223  * any higher than new_size
4224  *
4225  * csum items that cross the new i_size are truncated to the new size
4226  * as well.
4227  *
4228  * min_type is the minimum key type to truncate down to.  If set to 0, this
4229  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4230  */
4231 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4232 			       struct btrfs_root *root,
4233 			       struct inode *inode,
4234 			       u64 new_size, u32 min_type)
4235 {
4236 	struct btrfs_path *path;
4237 	struct extent_buffer *leaf;
4238 	struct btrfs_file_extent_item *fi;
4239 	struct btrfs_key key;
4240 	struct btrfs_key found_key;
4241 	u64 extent_start = 0;
4242 	u64 extent_num_bytes = 0;
4243 	u64 extent_offset = 0;
4244 	u64 item_end = 0;
4245 	u64 last_size = new_size;
4246 	u32 found_type = (u8)-1;
4247 	int found_extent;
4248 	int del_item;
4249 	int pending_del_nr = 0;
4250 	int pending_del_slot = 0;
4251 	int extent_type = -1;
4252 	int ret;
4253 	int err = 0;
4254 	u64 ino = btrfs_ino(inode);
4255 	u64 bytes_deleted = 0;
4256 	bool be_nice = 0;
4257 	bool should_throttle = 0;
4258 	bool should_end = 0;
4259 
4260 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4261 
4262 	/*
4263 	 * for non-free space inodes and ref cows, we want to back off from
4264 	 * time to time
4265 	 */
4266 	if (!btrfs_is_free_space_inode(inode) &&
4267 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4268 		be_nice = 1;
4269 
4270 	path = btrfs_alloc_path();
4271 	if (!path)
4272 		return -ENOMEM;
4273 	path->reada = -1;
4274 
4275 	/*
4276 	 * We want to drop from the next block forward in case this new size is
4277 	 * not block aligned since we will be keeping the last block of the
4278 	 * extent just the way it is.
4279 	 */
4280 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4281 	    root == root->fs_info->tree_root)
4282 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4283 					root->sectorsize), (u64)-1, 0);
4284 
4285 	/*
4286 	 * This function is also used to drop the items in the log tree before
4287 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4288 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4289 	 * items.
4290 	 */
4291 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4292 		btrfs_kill_delayed_inode_items(inode);
4293 
4294 	key.objectid = ino;
4295 	key.offset = (u64)-1;
4296 	key.type = (u8)-1;
4297 
4298 search_again:
4299 	/*
4300 	 * with a 16K leaf size and 128MB extents, you can actually queue
4301 	 * up a huge file in a single leaf.  Most of the time that
4302 	 * bytes_deleted is > 0, it will be huge by the time we get here
4303 	 */
4304 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4305 		if (btrfs_should_end_transaction(trans, root)) {
4306 			err = -EAGAIN;
4307 			goto error;
4308 		}
4309 	}
4310 
4311 
4312 	path->leave_spinning = 1;
4313 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4314 	if (ret < 0) {
4315 		err = ret;
4316 		goto out;
4317 	}
4318 
4319 	if (ret > 0) {
4320 		/* there are no items in the tree for us to truncate, we're
4321 		 * done
4322 		 */
4323 		if (path->slots[0] == 0)
4324 			goto out;
4325 		path->slots[0]--;
4326 	}
4327 
4328 	while (1) {
4329 		fi = NULL;
4330 		leaf = path->nodes[0];
4331 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332 		found_type = found_key.type;
4333 
4334 		if (found_key.objectid != ino)
4335 			break;
4336 
4337 		if (found_type < min_type)
4338 			break;
4339 
4340 		item_end = found_key.offset;
4341 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4342 			fi = btrfs_item_ptr(leaf, path->slots[0],
4343 					    struct btrfs_file_extent_item);
4344 			extent_type = btrfs_file_extent_type(leaf, fi);
4345 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4346 				item_end +=
4347 				    btrfs_file_extent_num_bytes(leaf, fi);
4348 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4349 				item_end += btrfs_file_extent_inline_len(leaf,
4350 							 path->slots[0], fi);
4351 			}
4352 			item_end--;
4353 		}
4354 		if (found_type > min_type) {
4355 			del_item = 1;
4356 		} else {
4357 			if (item_end < new_size)
4358 				break;
4359 			if (found_key.offset >= new_size)
4360 				del_item = 1;
4361 			else
4362 				del_item = 0;
4363 		}
4364 		found_extent = 0;
4365 		/* FIXME, shrink the extent if the ref count is only 1 */
4366 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4367 			goto delete;
4368 
4369 		if (del_item)
4370 			last_size = found_key.offset;
4371 		else
4372 			last_size = new_size;
4373 
4374 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4375 			u64 num_dec;
4376 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4377 			if (!del_item) {
4378 				u64 orig_num_bytes =
4379 					btrfs_file_extent_num_bytes(leaf, fi);
4380 				extent_num_bytes = ALIGN(new_size -
4381 						found_key.offset,
4382 						root->sectorsize);
4383 				btrfs_set_file_extent_num_bytes(leaf, fi,
4384 							 extent_num_bytes);
4385 				num_dec = (orig_num_bytes -
4386 					   extent_num_bytes);
4387 				if (test_bit(BTRFS_ROOT_REF_COWS,
4388 					     &root->state) &&
4389 				    extent_start != 0)
4390 					inode_sub_bytes(inode, num_dec);
4391 				btrfs_mark_buffer_dirty(leaf);
4392 			} else {
4393 				extent_num_bytes =
4394 					btrfs_file_extent_disk_num_bytes(leaf,
4395 									 fi);
4396 				extent_offset = found_key.offset -
4397 					btrfs_file_extent_offset(leaf, fi);
4398 
4399 				/* FIXME blocksize != 4096 */
4400 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4401 				if (extent_start != 0) {
4402 					found_extent = 1;
4403 					if (test_bit(BTRFS_ROOT_REF_COWS,
4404 						     &root->state))
4405 						inode_sub_bytes(inode, num_dec);
4406 				}
4407 			}
4408 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4409 			/*
4410 			 * we can't truncate inline items that have had
4411 			 * special encodings
4412 			 */
4413 			if (!del_item &&
4414 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
4415 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4416 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4417 				u32 size = new_size - found_key.offset;
4418 
4419 				if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4420 					inode_sub_bytes(inode, item_end + 1 -
4421 							new_size);
4422 
4423 				/*
4424 				 * update the ram bytes to properly reflect
4425 				 * the new size of our item
4426 				 */
4427 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4428 				size =
4429 				    btrfs_file_extent_calc_inline_size(size);
4430 				btrfs_truncate_item(root, path, size, 1);
4431 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4432 					    &root->state)) {
4433 				inode_sub_bytes(inode, item_end + 1 -
4434 						found_key.offset);
4435 			}
4436 		}
4437 delete:
4438 		if (del_item) {
4439 			if (!pending_del_nr) {
4440 				/* no pending yet, add ourselves */
4441 				pending_del_slot = path->slots[0];
4442 				pending_del_nr = 1;
4443 			} else if (pending_del_nr &&
4444 				   path->slots[0] + 1 == pending_del_slot) {
4445 				/* hop on the pending chunk */
4446 				pending_del_nr++;
4447 				pending_del_slot = path->slots[0];
4448 			} else {
4449 				BUG();
4450 			}
4451 		} else {
4452 			break;
4453 		}
4454 		should_throttle = 0;
4455 
4456 		if (found_extent &&
4457 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4458 		     root == root->fs_info->tree_root)) {
4459 			btrfs_set_path_blocking(path);
4460 			bytes_deleted += extent_num_bytes;
4461 			ret = btrfs_free_extent(trans, root, extent_start,
4462 						extent_num_bytes, 0,
4463 						btrfs_header_owner(leaf),
4464 						ino, extent_offset, 0);
4465 			BUG_ON(ret);
4466 			if (btrfs_should_throttle_delayed_refs(trans, root))
4467 				btrfs_async_run_delayed_refs(root,
4468 					trans->delayed_ref_updates * 2, 0);
4469 			if (be_nice) {
4470 				if (truncate_space_check(trans, root,
4471 							 extent_num_bytes)) {
4472 					should_end = 1;
4473 				}
4474 				if (btrfs_should_throttle_delayed_refs(trans,
4475 								       root)) {
4476 					should_throttle = 1;
4477 				}
4478 			}
4479 		}
4480 
4481 		if (found_type == BTRFS_INODE_ITEM_KEY)
4482 			break;
4483 
4484 		if (path->slots[0] == 0 ||
4485 		    path->slots[0] != pending_del_slot ||
4486 		    should_throttle || should_end) {
4487 			if (pending_del_nr) {
4488 				ret = btrfs_del_items(trans, root, path,
4489 						pending_del_slot,
4490 						pending_del_nr);
4491 				if (ret) {
4492 					btrfs_abort_transaction(trans,
4493 								root, ret);
4494 					goto error;
4495 				}
4496 				pending_del_nr = 0;
4497 			}
4498 			btrfs_release_path(path);
4499 			if (should_throttle) {
4500 				unsigned long updates = trans->delayed_ref_updates;
4501 				if (updates) {
4502 					trans->delayed_ref_updates = 0;
4503 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4504 					if (ret && !err)
4505 						err = ret;
4506 				}
4507 			}
4508 			/*
4509 			 * if we failed to refill our space rsv, bail out
4510 			 * and let the transaction restart
4511 			 */
4512 			if (should_end) {
4513 				err = -EAGAIN;
4514 				goto error;
4515 			}
4516 			goto search_again;
4517 		} else {
4518 			path->slots[0]--;
4519 		}
4520 	}
4521 out:
4522 	if (pending_del_nr) {
4523 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4524 				      pending_del_nr);
4525 		if (ret)
4526 			btrfs_abort_transaction(trans, root, ret);
4527 	}
4528 error:
4529 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4530 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4531 
4532 	btrfs_free_path(path);
4533 
4534 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4535 		unsigned long updates = trans->delayed_ref_updates;
4536 		if (updates) {
4537 			trans->delayed_ref_updates = 0;
4538 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4539 			if (ret && !err)
4540 				err = ret;
4541 		}
4542 	}
4543 	return err;
4544 }
4545 
4546 /*
4547  * btrfs_truncate_page - read, zero a chunk and write a page
4548  * @inode - inode that we're zeroing
4549  * @from - the offset to start zeroing
4550  * @len - the length to zero, 0 to zero the entire range respective to the
4551  *	offset
4552  * @front - zero up to the offset instead of from the offset on
4553  *
4554  * This will find the page for the "from" offset and cow the page and zero the
4555  * part we want to zero.  This is used with truncate and hole punching.
4556  */
4557 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4558 			int front)
4559 {
4560 	struct address_space *mapping = inode->i_mapping;
4561 	struct btrfs_root *root = BTRFS_I(inode)->root;
4562 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4563 	struct btrfs_ordered_extent *ordered;
4564 	struct extent_state *cached_state = NULL;
4565 	char *kaddr;
4566 	u32 blocksize = root->sectorsize;
4567 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4568 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4569 	struct page *page;
4570 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4571 	int ret = 0;
4572 	u64 page_start;
4573 	u64 page_end;
4574 
4575 	if ((offset & (blocksize - 1)) == 0 &&
4576 	    (!len || ((len & (blocksize - 1)) == 0)))
4577 		goto out;
4578 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4579 	if (ret)
4580 		goto out;
4581 
4582 again:
4583 	page = find_or_create_page(mapping, index, mask);
4584 	if (!page) {
4585 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4586 		ret = -ENOMEM;
4587 		goto out;
4588 	}
4589 
4590 	page_start = page_offset(page);
4591 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4592 
4593 	if (!PageUptodate(page)) {
4594 		ret = btrfs_readpage(NULL, page);
4595 		lock_page(page);
4596 		if (page->mapping != mapping) {
4597 			unlock_page(page);
4598 			page_cache_release(page);
4599 			goto again;
4600 		}
4601 		if (!PageUptodate(page)) {
4602 			ret = -EIO;
4603 			goto out_unlock;
4604 		}
4605 	}
4606 	wait_on_page_writeback(page);
4607 
4608 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4609 	set_page_extent_mapped(page);
4610 
4611 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4612 	if (ordered) {
4613 		unlock_extent_cached(io_tree, page_start, page_end,
4614 				     &cached_state, GFP_NOFS);
4615 		unlock_page(page);
4616 		page_cache_release(page);
4617 		btrfs_start_ordered_extent(inode, ordered, 1);
4618 		btrfs_put_ordered_extent(ordered);
4619 		goto again;
4620 	}
4621 
4622 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4623 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4624 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4625 			  0, 0, &cached_state, GFP_NOFS);
4626 
4627 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4628 					&cached_state);
4629 	if (ret) {
4630 		unlock_extent_cached(io_tree, page_start, page_end,
4631 				     &cached_state, GFP_NOFS);
4632 		goto out_unlock;
4633 	}
4634 
4635 	if (offset != PAGE_CACHE_SIZE) {
4636 		if (!len)
4637 			len = PAGE_CACHE_SIZE - offset;
4638 		kaddr = kmap(page);
4639 		if (front)
4640 			memset(kaddr, 0, offset);
4641 		else
4642 			memset(kaddr + offset, 0, len);
4643 		flush_dcache_page(page);
4644 		kunmap(page);
4645 	}
4646 	ClearPageChecked(page);
4647 	set_page_dirty(page);
4648 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4649 			     GFP_NOFS);
4650 
4651 out_unlock:
4652 	if (ret)
4653 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4654 	unlock_page(page);
4655 	page_cache_release(page);
4656 out:
4657 	return ret;
4658 }
4659 
4660 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4661 			     u64 offset, u64 len)
4662 {
4663 	struct btrfs_trans_handle *trans;
4664 	int ret;
4665 
4666 	/*
4667 	 * Still need to make sure the inode looks like it's been updated so
4668 	 * that any holes get logged if we fsync.
4669 	 */
4670 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4671 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4672 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4673 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4674 		return 0;
4675 	}
4676 
4677 	/*
4678 	 * 1 - for the one we're dropping
4679 	 * 1 - for the one we're adding
4680 	 * 1 - for updating the inode.
4681 	 */
4682 	trans = btrfs_start_transaction(root, 3);
4683 	if (IS_ERR(trans))
4684 		return PTR_ERR(trans);
4685 
4686 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4687 	if (ret) {
4688 		btrfs_abort_transaction(trans, root, ret);
4689 		btrfs_end_transaction(trans, root);
4690 		return ret;
4691 	}
4692 
4693 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4694 				       0, 0, len, 0, len, 0, 0, 0);
4695 	if (ret)
4696 		btrfs_abort_transaction(trans, root, ret);
4697 	else
4698 		btrfs_update_inode(trans, root, inode);
4699 	btrfs_end_transaction(trans, root);
4700 	return ret;
4701 }
4702 
4703 /*
4704  * This function puts in dummy file extents for the area we're creating a hole
4705  * for.  So if we are truncating this file to a larger size we need to insert
4706  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4707  * the range between oldsize and size
4708  */
4709 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4710 {
4711 	struct btrfs_root *root = BTRFS_I(inode)->root;
4712 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4713 	struct extent_map *em = NULL;
4714 	struct extent_state *cached_state = NULL;
4715 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4716 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4717 	u64 block_end = ALIGN(size, root->sectorsize);
4718 	u64 last_byte;
4719 	u64 cur_offset;
4720 	u64 hole_size;
4721 	int err = 0;
4722 
4723 	/*
4724 	 * If our size started in the middle of a page we need to zero out the
4725 	 * rest of the page before we expand the i_size, otherwise we could
4726 	 * expose stale data.
4727 	 */
4728 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4729 	if (err)
4730 		return err;
4731 
4732 	if (size <= hole_start)
4733 		return 0;
4734 
4735 	while (1) {
4736 		struct btrfs_ordered_extent *ordered;
4737 
4738 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4739 				 &cached_state);
4740 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4741 						     block_end - hole_start);
4742 		if (!ordered)
4743 			break;
4744 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4745 				     &cached_state, GFP_NOFS);
4746 		btrfs_start_ordered_extent(inode, ordered, 1);
4747 		btrfs_put_ordered_extent(ordered);
4748 	}
4749 
4750 	cur_offset = hole_start;
4751 	while (1) {
4752 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4753 				block_end - cur_offset, 0);
4754 		if (IS_ERR(em)) {
4755 			err = PTR_ERR(em);
4756 			em = NULL;
4757 			break;
4758 		}
4759 		last_byte = min(extent_map_end(em), block_end);
4760 		last_byte = ALIGN(last_byte , root->sectorsize);
4761 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4762 			struct extent_map *hole_em;
4763 			hole_size = last_byte - cur_offset;
4764 
4765 			err = maybe_insert_hole(root, inode, cur_offset,
4766 						hole_size);
4767 			if (err)
4768 				break;
4769 			btrfs_drop_extent_cache(inode, cur_offset,
4770 						cur_offset + hole_size - 1, 0);
4771 			hole_em = alloc_extent_map();
4772 			if (!hole_em) {
4773 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4774 					&BTRFS_I(inode)->runtime_flags);
4775 				goto next;
4776 			}
4777 			hole_em->start = cur_offset;
4778 			hole_em->len = hole_size;
4779 			hole_em->orig_start = cur_offset;
4780 
4781 			hole_em->block_start = EXTENT_MAP_HOLE;
4782 			hole_em->block_len = 0;
4783 			hole_em->orig_block_len = 0;
4784 			hole_em->ram_bytes = hole_size;
4785 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4786 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4787 			hole_em->generation = root->fs_info->generation;
4788 
4789 			while (1) {
4790 				write_lock(&em_tree->lock);
4791 				err = add_extent_mapping(em_tree, hole_em, 1);
4792 				write_unlock(&em_tree->lock);
4793 				if (err != -EEXIST)
4794 					break;
4795 				btrfs_drop_extent_cache(inode, cur_offset,
4796 							cur_offset +
4797 							hole_size - 1, 0);
4798 			}
4799 			free_extent_map(hole_em);
4800 		}
4801 next:
4802 		free_extent_map(em);
4803 		em = NULL;
4804 		cur_offset = last_byte;
4805 		if (cur_offset >= block_end)
4806 			break;
4807 	}
4808 	free_extent_map(em);
4809 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4810 			     GFP_NOFS);
4811 	return err;
4812 }
4813 
4814 static int wait_snapshoting_atomic_t(atomic_t *a)
4815 {
4816 	schedule();
4817 	return 0;
4818 }
4819 
4820 static void wait_for_snapshot_creation(struct btrfs_root *root)
4821 {
4822 	while (true) {
4823 		int ret;
4824 
4825 		ret = btrfs_start_write_no_snapshoting(root);
4826 		if (ret)
4827 			break;
4828 		wait_on_atomic_t(&root->will_be_snapshoted,
4829 				 wait_snapshoting_atomic_t,
4830 				 TASK_UNINTERRUPTIBLE);
4831 	}
4832 }
4833 
4834 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4835 {
4836 	struct btrfs_root *root = BTRFS_I(inode)->root;
4837 	struct btrfs_trans_handle *trans;
4838 	loff_t oldsize = i_size_read(inode);
4839 	loff_t newsize = attr->ia_size;
4840 	int mask = attr->ia_valid;
4841 	int ret;
4842 
4843 	/*
4844 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4845 	 * special case where we need to update the times despite not having
4846 	 * these flags set.  For all other operations the VFS set these flags
4847 	 * explicitly if it wants a timestamp update.
4848 	 */
4849 	if (newsize != oldsize) {
4850 		inode_inc_iversion(inode);
4851 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4852 			inode->i_ctime = inode->i_mtime =
4853 				current_fs_time(inode->i_sb);
4854 	}
4855 
4856 	if (newsize > oldsize) {
4857 		truncate_pagecache(inode, newsize);
4858 		/*
4859 		 * Don't do an expanding truncate while snapshoting is ongoing.
4860 		 * This is to ensure the snapshot captures a fully consistent
4861 		 * state of this file - if the snapshot captures this expanding
4862 		 * truncation, it must capture all writes that happened before
4863 		 * this truncation.
4864 		 */
4865 		wait_for_snapshot_creation(root);
4866 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4867 		if (ret) {
4868 			btrfs_end_write_no_snapshoting(root);
4869 			return ret;
4870 		}
4871 
4872 		trans = btrfs_start_transaction(root, 1);
4873 		if (IS_ERR(trans)) {
4874 			btrfs_end_write_no_snapshoting(root);
4875 			return PTR_ERR(trans);
4876 		}
4877 
4878 		i_size_write(inode, newsize);
4879 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4880 		ret = btrfs_update_inode(trans, root, inode);
4881 		btrfs_end_write_no_snapshoting(root);
4882 		btrfs_end_transaction(trans, root);
4883 	} else {
4884 
4885 		/*
4886 		 * We're truncating a file that used to have good data down to
4887 		 * zero. Make sure it gets into the ordered flush list so that
4888 		 * any new writes get down to disk quickly.
4889 		 */
4890 		if (newsize == 0)
4891 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4892 				&BTRFS_I(inode)->runtime_flags);
4893 
4894 		/*
4895 		 * 1 for the orphan item we're going to add
4896 		 * 1 for the orphan item deletion.
4897 		 */
4898 		trans = btrfs_start_transaction(root, 2);
4899 		if (IS_ERR(trans))
4900 			return PTR_ERR(trans);
4901 
4902 		/*
4903 		 * We need to do this in case we fail at _any_ point during the
4904 		 * actual truncate.  Once we do the truncate_setsize we could
4905 		 * invalidate pages which forces any outstanding ordered io to
4906 		 * be instantly completed which will give us extents that need
4907 		 * to be truncated.  If we fail to get an orphan inode down we
4908 		 * could have left over extents that were never meant to live,
4909 		 * so we need to garuntee from this point on that everything
4910 		 * will be consistent.
4911 		 */
4912 		ret = btrfs_orphan_add(trans, inode);
4913 		btrfs_end_transaction(trans, root);
4914 		if (ret)
4915 			return ret;
4916 
4917 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4918 		truncate_setsize(inode, newsize);
4919 
4920 		/* Disable nonlocked read DIO to avoid the end less truncate */
4921 		btrfs_inode_block_unlocked_dio(inode);
4922 		inode_dio_wait(inode);
4923 		btrfs_inode_resume_unlocked_dio(inode);
4924 
4925 		ret = btrfs_truncate(inode);
4926 		if (ret && inode->i_nlink) {
4927 			int err;
4928 
4929 			/*
4930 			 * failed to truncate, disk_i_size is only adjusted down
4931 			 * as we remove extents, so it should represent the true
4932 			 * size of the inode, so reset the in memory size and
4933 			 * delete our orphan entry.
4934 			 */
4935 			trans = btrfs_join_transaction(root);
4936 			if (IS_ERR(trans)) {
4937 				btrfs_orphan_del(NULL, inode);
4938 				return ret;
4939 			}
4940 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4941 			err = btrfs_orphan_del(trans, inode);
4942 			if (err)
4943 				btrfs_abort_transaction(trans, root, err);
4944 			btrfs_end_transaction(trans, root);
4945 		}
4946 	}
4947 
4948 	return ret;
4949 }
4950 
4951 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4952 {
4953 	struct inode *inode = d_inode(dentry);
4954 	struct btrfs_root *root = BTRFS_I(inode)->root;
4955 	int err;
4956 
4957 	if (btrfs_root_readonly(root))
4958 		return -EROFS;
4959 
4960 	err = inode_change_ok(inode, attr);
4961 	if (err)
4962 		return err;
4963 
4964 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4965 		err = btrfs_setsize(inode, attr);
4966 		if (err)
4967 			return err;
4968 	}
4969 
4970 	if (attr->ia_valid) {
4971 		setattr_copy(inode, attr);
4972 		inode_inc_iversion(inode);
4973 		err = btrfs_dirty_inode(inode);
4974 
4975 		if (!err && attr->ia_valid & ATTR_MODE)
4976 			err = posix_acl_chmod(inode, inode->i_mode);
4977 	}
4978 
4979 	return err;
4980 }
4981 
4982 /*
4983  * While truncating the inode pages during eviction, we get the VFS calling
4984  * btrfs_invalidatepage() against each page of the inode. This is slow because
4985  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4986  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4987  * extent_state structures over and over, wasting lots of time.
4988  *
4989  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4990  * those expensive operations on a per page basis and do only the ordered io
4991  * finishing, while we release here the extent_map and extent_state structures,
4992  * without the excessive merging and splitting.
4993  */
4994 static void evict_inode_truncate_pages(struct inode *inode)
4995 {
4996 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4997 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4998 	struct rb_node *node;
4999 
5000 	ASSERT(inode->i_state & I_FREEING);
5001 	truncate_inode_pages_final(&inode->i_data);
5002 
5003 	write_lock(&map_tree->lock);
5004 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5005 		struct extent_map *em;
5006 
5007 		node = rb_first(&map_tree->map);
5008 		em = rb_entry(node, struct extent_map, rb_node);
5009 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5010 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5011 		remove_extent_mapping(map_tree, em);
5012 		free_extent_map(em);
5013 		if (need_resched()) {
5014 			write_unlock(&map_tree->lock);
5015 			cond_resched();
5016 			write_lock(&map_tree->lock);
5017 		}
5018 	}
5019 	write_unlock(&map_tree->lock);
5020 
5021 	/*
5022 	 * Keep looping until we have no more ranges in the io tree.
5023 	 * We can have ongoing bios started by readpages (called from readahead)
5024 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5025 	 * still in progress (unlocked the pages in the bio but did not yet
5026 	 * unlocked the ranges in the io tree). Therefore this means some
5027 	 * ranges can still be locked and eviction started because before
5028 	 * submitting those bios, which are executed by a separate task (work
5029 	 * queue kthread), inode references (inode->i_count) were not taken
5030 	 * (which would be dropped in the end io callback of each bio).
5031 	 * Therefore here we effectively end up waiting for those bios and
5032 	 * anyone else holding locked ranges without having bumped the inode's
5033 	 * reference count - if we don't do it, when they access the inode's
5034 	 * io_tree to unlock a range it may be too late, leading to an
5035 	 * use-after-free issue.
5036 	 */
5037 	spin_lock(&io_tree->lock);
5038 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5039 		struct extent_state *state;
5040 		struct extent_state *cached_state = NULL;
5041 		u64 start;
5042 		u64 end;
5043 
5044 		node = rb_first(&io_tree->state);
5045 		state = rb_entry(node, struct extent_state, rb_node);
5046 		start = state->start;
5047 		end = state->end;
5048 		spin_unlock(&io_tree->lock);
5049 
5050 		lock_extent_bits(io_tree, start, end, 0, &cached_state);
5051 		clear_extent_bit(io_tree, start, end,
5052 				 EXTENT_LOCKED | EXTENT_DIRTY |
5053 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5054 				 EXTENT_DEFRAG, 1, 1,
5055 				 &cached_state, GFP_NOFS);
5056 
5057 		cond_resched();
5058 		spin_lock(&io_tree->lock);
5059 	}
5060 	spin_unlock(&io_tree->lock);
5061 }
5062 
5063 void btrfs_evict_inode(struct inode *inode)
5064 {
5065 	struct btrfs_trans_handle *trans;
5066 	struct btrfs_root *root = BTRFS_I(inode)->root;
5067 	struct btrfs_block_rsv *rsv, *global_rsv;
5068 	int steal_from_global = 0;
5069 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5070 	int ret;
5071 
5072 	trace_btrfs_inode_evict(inode);
5073 
5074 	evict_inode_truncate_pages(inode);
5075 
5076 	if (inode->i_nlink &&
5077 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5078 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5079 	     btrfs_is_free_space_inode(inode)))
5080 		goto no_delete;
5081 
5082 	if (is_bad_inode(inode)) {
5083 		btrfs_orphan_del(NULL, inode);
5084 		goto no_delete;
5085 	}
5086 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5087 	if (!special_file(inode->i_mode))
5088 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5089 
5090 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5091 
5092 	if (root->fs_info->log_root_recovering) {
5093 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5094 				 &BTRFS_I(inode)->runtime_flags));
5095 		goto no_delete;
5096 	}
5097 
5098 	if (inode->i_nlink > 0) {
5099 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5100 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5101 		goto no_delete;
5102 	}
5103 
5104 	ret = btrfs_commit_inode_delayed_inode(inode);
5105 	if (ret) {
5106 		btrfs_orphan_del(NULL, inode);
5107 		goto no_delete;
5108 	}
5109 
5110 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5111 	if (!rsv) {
5112 		btrfs_orphan_del(NULL, inode);
5113 		goto no_delete;
5114 	}
5115 	rsv->size = min_size;
5116 	rsv->failfast = 1;
5117 	global_rsv = &root->fs_info->global_block_rsv;
5118 
5119 	btrfs_i_size_write(inode, 0);
5120 
5121 	/*
5122 	 * This is a bit simpler than btrfs_truncate since we've already
5123 	 * reserved our space for our orphan item in the unlink, so we just
5124 	 * need to reserve some slack space in case we add bytes and update
5125 	 * inode item when doing the truncate.
5126 	 */
5127 	while (1) {
5128 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5129 					     BTRFS_RESERVE_FLUSH_LIMIT);
5130 
5131 		/*
5132 		 * Try and steal from the global reserve since we will
5133 		 * likely not use this space anyway, we want to try as
5134 		 * hard as possible to get this to work.
5135 		 */
5136 		if (ret)
5137 			steal_from_global++;
5138 		else
5139 			steal_from_global = 0;
5140 		ret = 0;
5141 
5142 		/*
5143 		 * steal_from_global == 0: we reserved stuff, hooray!
5144 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5145 		 * steal_from_global == 2: we've committed, still not a lot of
5146 		 * room but maybe we'll have room in the global reserve this
5147 		 * time.
5148 		 * steal_from_global == 3: abandon all hope!
5149 		 */
5150 		if (steal_from_global > 2) {
5151 			btrfs_warn(root->fs_info,
5152 				"Could not get space for a delete, will truncate on mount %d",
5153 				ret);
5154 			btrfs_orphan_del(NULL, inode);
5155 			btrfs_free_block_rsv(root, rsv);
5156 			goto no_delete;
5157 		}
5158 
5159 		trans = btrfs_join_transaction(root);
5160 		if (IS_ERR(trans)) {
5161 			btrfs_orphan_del(NULL, inode);
5162 			btrfs_free_block_rsv(root, rsv);
5163 			goto no_delete;
5164 		}
5165 
5166 		/*
5167 		 * We can't just steal from the global reserve, we need tomake
5168 		 * sure there is room to do it, if not we need to commit and try
5169 		 * again.
5170 		 */
5171 		if (steal_from_global) {
5172 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5173 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5174 							      min_size);
5175 			else
5176 				ret = -ENOSPC;
5177 		}
5178 
5179 		/*
5180 		 * Couldn't steal from the global reserve, we have too much
5181 		 * pending stuff built up, commit the transaction and try it
5182 		 * again.
5183 		 */
5184 		if (ret) {
5185 			ret = btrfs_commit_transaction(trans, root);
5186 			if (ret) {
5187 				btrfs_orphan_del(NULL, inode);
5188 				btrfs_free_block_rsv(root, rsv);
5189 				goto no_delete;
5190 			}
5191 			continue;
5192 		} else {
5193 			steal_from_global = 0;
5194 		}
5195 
5196 		trans->block_rsv = rsv;
5197 
5198 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5199 		if (ret != -ENOSPC && ret != -EAGAIN)
5200 			break;
5201 
5202 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5203 		btrfs_end_transaction(trans, root);
5204 		trans = NULL;
5205 		btrfs_btree_balance_dirty(root);
5206 	}
5207 
5208 	btrfs_free_block_rsv(root, rsv);
5209 
5210 	/*
5211 	 * Errors here aren't a big deal, it just means we leave orphan items
5212 	 * in the tree.  They will be cleaned up on the next mount.
5213 	 */
5214 	if (ret == 0) {
5215 		trans->block_rsv = root->orphan_block_rsv;
5216 		btrfs_orphan_del(trans, inode);
5217 	} else {
5218 		btrfs_orphan_del(NULL, inode);
5219 	}
5220 
5221 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5222 	if (!(root == root->fs_info->tree_root ||
5223 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5224 		btrfs_return_ino(root, btrfs_ino(inode));
5225 
5226 	btrfs_end_transaction(trans, root);
5227 	btrfs_btree_balance_dirty(root);
5228 no_delete:
5229 	btrfs_remove_delayed_node(inode);
5230 	clear_inode(inode);
5231 	return;
5232 }
5233 
5234 /*
5235  * this returns the key found in the dir entry in the location pointer.
5236  * If no dir entries were found, location->objectid is 0.
5237  */
5238 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5239 			       struct btrfs_key *location)
5240 {
5241 	const char *name = dentry->d_name.name;
5242 	int namelen = dentry->d_name.len;
5243 	struct btrfs_dir_item *di;
5244 	struct btrfs_path *path;
5245 	struct btrfs_root *root = BTRFS_I(dir)->root;
5246 	int ret = 0;
5247 
5248 	path = btrfs_alloc_path();
5249 	if (!path)
5250 		return -ENOMEM;
5251 
5252 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5253 				    namelen, 0);
5254 	if (IS_ERR(di))
5255 		ret = PTR_ERR(di);
5256 
5257 	if (IS_ERR_OR_NULL(di))
5258 		goto out_err;
5259 
5260 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5261 out:
5262 	btrfs_free_path(path);
5263 	return ret;
5264 out_err:
5265 	location->objectid = 0;
5266 	goto out;
5267 }
5268 
5269 /*
5270  * when we hit a tree root in a directory, the btrfs part of the inode
5271  * needs to be changed to reflect the root directory of the tree root.  This
5272  * is kind of like crossing a mount point.
5273  */
5274 static int fixup_tree_root_location(struct btrfs_root *root,
5275 				    struct inode *dir,
5276 				    struct dentry *dentry,
5277 				    struct btrfs_key *location,
5278 				    struct btrfs_root **sub_root)
5279 {
5280 	struct btrfs_path *path;
5281 	struct btrfs_root *new_root;
5282 	struct btrfs_root_ref *ref;
5283 	struct extent_buffer *leaf;
5284 	struct btrfs_key key;
5285 	int ret;
5286 	int err = 0;
5287 
5288 	path = btrfs_alloc_path();
5289 	if (!path) {
5290 		err = -ENOMEM;
5291 		goto out;
5292 	}
5293 
5294 	err = -ENOENT;
5295 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5296 	key.type = BTRFS_ROOT_REF_KEY;
5297 	key.offset = location->objectid;
5298 
5299 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5300 				0, 0);
5301 	if (ret) {
5302 		if (ret < 0)
5303 			err = ret;
5304 		goto out;
5305 	}
5306 
5307 	leaf = path->nodes[0];
5308 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5309 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5310 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5311 		goto out;
5312 
5313 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5314 				   (unsigned long)(ref + 1),
5315 				   dentry->d_name.len);
5316 	if (ret)
5317 		goto out;
5318 
5319 	btrfs_release_path(path);
5320 
5321 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5322 	if (IS_ERR(new_root)) {
5323 		err = PTR_ERR(new_root);
5324 		goto out;
5325 	}
5326 
5327 	*sub_root = new_root;
5328 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5329 	location->type = BTRFS_INODE_ITEM_KEY;
5330 	location->offset = 0;
5331 	err = 0;
5332 out:
5333 	btrfs_free_path(path);
5334 	return err;
5335 }
5336 
5337 static void inode_tree_add(struct inode *inode)
5338 {
5339 	struct btrfs_root *root = BTRFS_I(inode)->root;
5340 	struct btrfs_inode *entry;
5341 	struct rb_node **p;
5342 	struct rb_node *parent;
5343 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5344 	u64 ino = btrfs_ino(inode);
5345 
5346 	if (inode_unhashed(inode))
5347 		return;
5348 	parent = NULL;
5349 	spin_lock(&root->inode_lock);
5350 	p = &root->inode_tree.rb_node;
5351 	while (*p) {
5352 		parent = *p;
5353 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5354 
5355 		if (ino < btrfs_ino(&entry->vfs_inode))
5356 			p = &parent->rb_left;
5357 		else if (ino > btrfs_ino(&entry->vfs_inode))
5358 			p = &parent->rb_right;
5359 		else {
5360 			WARN_ON(!(entry->vfs_inode.i_state &
5361 				  (I_WILL_FREE | I_FREEING)));
5362 			rb_replace_node(parent, new, &root->inode_tree);
5363 			RB_CLEAR_NODE(parent);
5364 			spin_unlock(&root->inode_lock);
5365 			return;
5366 		}
5367 	}
5368 	rb_link_node(new, parent, p);
5369 	rb_insert_color(new, &root->inode_tree);
5370 	spin_unlock(&root->inode_lock);
5371 }
5372 
5373 static void inode_tree_del(struct inode *inode)
5374 {
5375 	struct btrfs_root *root = BTRFS_I(inode)->root;
5376 	int empty = 0;
5377 
5378 	spin_lock(&root->inode_lock);
5379 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5380 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5381 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5382 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5383 	}
5384 	spin_unlock(&root->inode_lock);
5385 
5386 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5387 		synchronize_srcu(&root->fs_info->subvol_srcu);
5388 		spin_lock(&root->inode_lock);
5389 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5390 		spin_unlock(&root->inode_lock);
5391 		if (empty)
5392 			btrfs_add_dead_root(root);
5393 	}
5394 }
5395 
5396 void btrfs_invalidate_inodes(struct btrfs_root *root)
5397 {
5398 	struct rb_node *node;
5399 	struct rb_node *prev;
5400 	struct btrfs_inode *entry;
5401 	struct inode *inode;
5402 	u64 objectid = 0;
5403 
5404 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5405 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5406 
5407 	spin_lock(&root->inode_lock);
5408 again:
5409 	node = root->inode_tree.rb_node;
5410 	prev = NULL;
5411 	while (node) {
5412 		prev = node;
5413 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5414 
5415 		if (objectid < btrfs_ino(&entry->vfs_inode))
5416 			node = node->rb_left;
5417 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5418 			node = node->rb_right;
5419 		else
5420 			break;
5421 	}
5422 	if (!node) {
5423 		while (prev) {
5424 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5425 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5426 				node = prev;
5427 				break;
5428 			}
5429 			prev = rb_next(prev);
5430 		}
5431 	}
5432 	while (node) {
5433 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5434 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5435 		inode = igrab(&entry->vfs_inode);
5436 		if (inode) {
5437 			spin_unlock(&root->inode_lock);
5438 			if (atomic_read(&inode->i_count) > 1)
5439 				d_prune_aliases(inode);
5440 			/*
5441 			 * btrfs_drop_inode will have it removed from
5442 			 * the inode cache when its usage count
5443 			 * hits zero.
5444 			 */
5445 			iput(inode);
5446 			cond_resched();
5447 			spin_lock(&root->inode_lock);
5448 			goto again;
5449 		}
5450 
5451 		if (cond_resched_lock(&root->inode_lock))
5452 			goto again;
5453 
5454 		node = rb_next(node);
5455 	}
5456 	spin_unlock(&root->inode_lock);
5457 }
5458 
5459 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5460 {
5461 	struct btrfs_iget_args *args = p;
5462 	inode->i_ino = args->location->objectid;
5463 	memcpy(&BTRFS_I(inode)->location, args->location,
5464 	       sizeof(*args->location));
5465 	BTRFS_I(inode)->root = args->root;
5466 	return 0;
5467 }
5468 
5469 static int btrfs_find_actor(struct inode *inode, void *opaque)
5470 {
5471 	struct btrfs_iget_args *args = opaque;
5472 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5473 		args->root == BTRFS_I(inode)->root;
5474 }
5475 
5476 static struct inode *btrfs_iget_locked(struct super_block *s,
5477 				       struct btrfs_key *location,
5478 				       struct btrfs_root *root)
5479 {
5480 	struct inode *inode;
5481 	struct btrfs_iget_args args;
5482 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5483 
5484 	args.location = location;
5485 	args.root = root;
5486 
5487 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5488 			     btrfs_init_locked_inode,
5489 			     (void *)&args);
5490 	return inode;
5491 }
5492 
5493 /* Get an inode object given its location and corresponding root.
5494  * Returns in *is_new if the inode was read from disk
5495  */
5496 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5497 			 struct btrfs_root *root, int *new)
5498 {
5499 	struct inode *inode;
5500 
5501 	inode = btrfs_iget_locked(s, location, root);
5502 	if (!inode)
5503 		return ERR_PTR(-ENOMEM);
5504 
5505 	if (inode->i_state & I_NEW) {
5506 		btrfs_read_locked_inode(inode);
5507 		if (!is_bad_inode(inode)) {
5508 			inode_tree_add(inode);
5509 			unlock_new_inode(inode);
5510 			if (new)
5511 				*new = 1;
5512 		} else {
5513 			unlock_new_inode(inode);
5514 			iput(inode);
5515 			inode = ERR_PTR(-ESTALE);
5516 		}
5517 	}
5518 
5519 	return inode;
5520 }
5521 
5522 static struct inode *new_simple_dir(struct super_block *s,
5523 				    struct btrfs_key *key,
5524 				    struct btrfs_root *root)
5525 {
5526 	struct inode *inode = new_inode(s);
5527 
5528 	if (!inode)
5529 		return ERR_PTR(-ENOMEM);
5530 
5531 	BTRFS_I(inode)->root = root;
5532 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5533 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5534 
5535 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5536 	inode->i_op = &btrfs_dir_ro_inode_operations;
5537 	inode->i_fop = &simple_dir_operations;
5538 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5539 	inode->i_mtime = CURRENT_TIME;
5540 	inode->i_atime = inode->i_mtime;
5541 	inode->i_ctime = inode->i_mtime;
5542 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5543 
5544 	return inode;
5545 }
5546 
5547 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5548 {
5549 	struct inode *inode;
5550 	struct btrfs_root *root = BTRFS_I(dir)->root;
5551 	struct btrfs_root *sub_root = root;
5552 	struct btrfs_key location;
5553 	int index;
5554 	int ret = 0;
5555 
5556 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5557 		return ERR_PTR(-ENAMETOOLONG);
5558 
5559 	ret = btrfs_inode_by_name(dir, dentry, &location);
5560 	if (ret < 0)
5561 		return ERR_PTR(ret);
5562 
5563 	if (location.objectid == 0)
5564 		return ERR_PTR(-ENOENT);
5565 
5566 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5567 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5568 		return inode;
5569 	}
5570 
5571 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5572 
5573 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5574 	ret = fixup_tree_root_location(root, dir, dentry,
5575 				       &location, &sub_root);
5576 	if (ret < 0) {
5577 		if (ret != -ENOENT)
5578 			inode = ERR_PTR(ret);
5579 		else
5580 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5581 	} else {
5582 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5583 	}
5584 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5585 
5586 	if (!IS_ERR(inode) && root != sub_root) {
5587 		down_read(&root->fs_info->cleanup_work_sem);
5588 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5589 			ret = btrfs_orphan_cleanup(sub_root);
5590 		up_read(&root->fs_info->cleanup_work_sem);
5591 		if (ret) {
5592 			iput(inode);
5593 			inode = ERR_PTR(ret);
5594 		}
5595 	}
5596 
5597 	return inode;
5598 }
5599 
5600 static int btrfs_dentry_delete(const struct dentry *dentry)
5601 {
5602 	struct btrfs_root *root;
5603 	struct inode *inode = d_inode(dentry);
5604 
5605 	if (!inode && !IS_ROOT(dentry))
5606 		inode = d_inode(dentry->d_parent);
5607 
5608 	if (inode) {
5609 		root = BTRFS_I(inode)->root;
5610 		if (btrfs_root_refs(&root->root_item) == 0)
5611 			return 1;
5612 
5613 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5614 			return 1;
5615 	}
5616 	return 0;
5617 }
5618 
5619 static void btrfs_dentry_release(struct dentry *dentry)
5620 {
5621 	kfree(dentry->d_fsdata);
5622 }
5623 
5624 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5625 				   unsigned int flags)
5626 {
5627 	struct inode *inode;
5628 
5629 	inode = btrfs_lookup_dentry(dir, dentry);
5630 	if (IS_ERR(inode)) {
5631 		if (PTR_ERR(inode) == -ENOENT)
5632 			inode = NULL;
5633 		else
5634 			return ERR_CAST(inode);
5635 	}
5636 
5637 	return d_splice_alias(inode, dentry);
5638 }
5639 
5640 unsigned char btrfs_filetype_table[] = {
5641 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5642 };
5643 
5644 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5645 {
5646 	struct inode *inode = file_inode(file);
5647 	struct btrfs_root *root = BTRFS_I(inode)->root;
5648 	struct btrfs_item *item;
5649 	struct btrfs_dir_item *di;
5650 	struct btrfs_key key;
5651 	struct btrfs_key found_key;
5652 	struct btrfs_path *path;
5653 	struct list_head ins_list;
5654 	struct list_head del_list;
5655 	int ret;
5656 	struct extent_buffer *leaf;
5657 	int slot;
5658 	unsigned char d_type;
5659 	int over = 0;
5660 	u32 di_cur;
5661 	u32 di_total;
5662 	u32 di_len;
5663 	int key_type = BTRFS_DIR_INDEX_KEY;
5664 	char tmp_name[32];
5665 	char *name_ptr;
5666 	int name_len;
5667 	int is_curr = 0;	/* ctx->pos points to the current index? */
5668 
5669 	/* FIXME, use a real flag for deciding about the key type */
5670 	if (root->fs_info->tree_root == root)
5671 		key_type = BTRFS_DIR_ITEM_KEY;
5672 
5673 	if (!dir_emit_dots(file, ctx))
5674 		return 0;
5675 
5676 	path = btrfs_alloc_path();
5677 	if (!path)
5678 		return -ENOMEM;
5679 
5680 	path->reada = 1;
5681 
5682 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5683 		INIT_LIST_HEAD(&ins_list);
5684 		INIT_LIST_HEAD(&del_list);
5685 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5686 	}
5687 
5688 	key.type = key_type;
5689 	key.offset = ctx->pos;
5690 	key.objectid = btrfs_ino(inode);
5691 
5692 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5693 	if (ret < 0)
5694 		goto err;
5695 
5696 	while (1) {
5697 		leaf = path->nodes[0];
5698 		slot = path->slots[0];
5699 		if (slot >= btrfs_header_nritems(leaf)) {
5700 			ret = btrfs_next_leaf(root, path);
5701 			if (ret < 0)
5702 				goto err;
5703 			else if (ret > 0)
5704 				break;
5705 			continue;
5706 		}
5707 
5708 		item = btrfs_item_nr(slot);
5709 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5710 
5711 		if (found_key.objectid != key.objectid)
5712 			break;
5713 		if (found_key.type != key_type)
5714 			break;
5715 		if (found_key.offset < ctx->pos)
5716 			goto next;
5717 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5718 		    btrfs_should_delete_dir_index(&del_list,
5719 						  found_key.offset))
5720 			goto next;
5721 
5722 		ctx->pos = found_key.offset;
5723 		is_curr = 1;
5724 
5725 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5726 		di_cur = 0;
5727 		di_total = btrfs_item_size(leaf, item);
5728 
5729 		while (di_cur < di_total) {
5730 			struct btrfs_key location;
5731 
5732 			if (verify_dir_item(root, leaf, di))
5733 				break;
5734 
5735 			name_len = btrfs_dir_name_len(leaf, di);
5736 			if (name_len <= sizeof(tmp_name)) {
5737 				name_ptr = tmp_name;
5738 			} else {
5739 				name_ptr = kmalloc(name_len, GFP_NOFS);
5740 				if (!name_ptr) {
5741 					ret = -ENOMEM;
5742 					goto err;
5743 				}
5744 			}
5745 			read_extent_buffer(leaf, name_ptr,
5746 					   (unsigned long)(di + 1), name_len);
5747 
5748 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5749 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5750 
5751 
5752 			/* is this a reference to our own snapshot? If so
5753 			 * skip it.
5754 			 *
5755 			 * In contrast to old kernels, we insert the snapshot's
5756 			 * dir item and dir index after it has been created, so
5757 			 * we won't find a reference to our own snapshot. We
5758 			 * still keep the following code for backward
5759 			 * compatibility.
5760 			 */
5761 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5762 			    location.objectid == root->root_key.objectid) {
5763 				over = 0;
5764 				goto skip;
5765 			}
5766 			over = !dir_emit(ctx, name_ptr, name_len,
5767 				       location.objectid, d_type);
5768 
5769 skip:
5770 			if (name_ptr != tmp_name)
5771 				kfree(name_ptr);
5772 
5773 			if (over)
5774 				goto nopos;
5775 			di_len = btrfs_dir_name_len(leaf, di) +
5776 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5777 			di_cur += di_len;
5778 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5779 		}
5780 next:
5781 		path->slots[0]++;
5782 	}
5783 
5784 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5785 		if (is_curr)
5786 			ctx->pos++;
5787 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5788 		if (ret)
5789 			goto nopos;
5790 	}
5791 
5792 	/* Reached end of directory/root. Bump pos past the last item. */
5793 	ctx->pos++;
5794 
5795 	/*
5796 	 * Stop new entries from being returned after we return the last
5797 	 * entry.
5798 	 *
5799 	 * New directory entries are assigned a strictly increasing
5800 	 * offset.  This means that new entries created during readdir
5801 	 * are *guaranteed* to be seen in the future by that readdir.
5802 	 * This has broken buggy programs which operate on names as
5803 	 * they're returned by readdir.  Until we re-use freed offsets
5804 	 * we have this hack to stop new entries from being returned
5805 	 * under the assumption that they'll never reach this huge
5806 	 * offset.
5807 	 *
5808 	 * This is being careful not to overflow 32bit loff_t unless the
5809 	 * last entry requires it because doing so has broken 32bit apps
5810 	 * in the past.
5811 	 */
5812 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5813 		if (ctx->pos >= INT_MAX)
5814 			ctx->pos = LLONG_MAX;
5815 		else
5816 			ctx->pos = INT_MAX;
5817 	}
5818 nopos:
5819 	ret = 0;
5820 err:
5821 	if (key_type == BTRFS_DIR_INDEX_KEY)
5822 		btrfs_put_delayed_items(&ins_list, &del_list);
5823 	btrfs_free_path(path);
5824 	return ret;
5825 }
5826 
5827 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5828 {
5829 	struct btrfs_root *root = BTRFS_I(inode)->root;
5830 	struct btrfs_trans_handle *trans;
5831 	int ret = 0;
5832 	bool nolock = false;
5833 
5834 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5835 		return 0;
5836 
5837 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5838 		nolock = true;
5839 
5840 	if (wbc->sync_mode == WB_SYNC_ALL) {
5841 		if (nolock)
5842 			trans = btrfs_join_transaction_nolock(root);
5843 		else
5844 			trans = btrfs_join_transaction(root);
5845 		if (IS_ERR(trans))
5846 			return PTR_ERR(trans);
5847 		ret = btrfs_commit_transaction(trans, root);
5848 	}
5849 	return ret;
5850 }
5851 
5852 /*
5853  * This is somewhat expensive, updating the tree every time the
5854  * inode changes.  But, it is most likely to find the inode in cache.
5855  * FIXME, needs more benchmarking...there are no reasons other than performance
5856  * to keep or drop this code.
5857  */
5858 static int btrfs_dirty_inode(struct inode *inode)
5859 {
5860 	struct btrfs_root *root = BTRFS_I(inode)->root;
5861 	struct btrfs_trans_handle *trans;
5862 	int ret;
5863 
5864 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5865 		return 0;
5866 
5867 	trans = btrfs_join_transaction(root);
5868 	if (IS_ERR(trans))
5869 		return PTR_ERR(trans);
5870 
5871 	ret = btrfs_update_inode(trans, root, inode);
5872 	if (ret && ret == -ENOSPC) {
5873 		/* whoops, lets try again with the full transaction */
5874 		btrfs_end_transaction(trans, root);
5875 		trans = btrfs_start_transaction(root, 1);
5876 		if (IS_ERR(trans))
5877 			return PTR_ERR(trans);
5878 
5879 		ret = btrfs_update_inode(trans, root, inode);
5880 	}
5881 	btrfs_end_transaction(trans, root);
5882 	if (BTRFS_I(inode)->delayed_node)
5883 		btrfs_balance_delayed_items(root);
5884 
5885 	return ret;
5886 }
5887 
5888 /*
5889  * This is a copy of file_update_time.  We need this so we can return error on
5890  * ENOSPC for updating the inode in the case of file write and mmap writes.
5891  */
5892 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5893 			     int flags)
5894 {
5895 	struct btrfs_root *root = BTRFS_I(inode)->root;
5896 
5897 	if (btrfs_root_readonly(root))
5898 		return -EROFS;
5899 
5900 	if (flags & S_VERSION)
5901 		inode_inc_iversion(inode);
5902 	if (flags & S_CTIME)
5903 		inode->i_ctime = *now;
5904 	if (flags & S_MTIME)
5905 		inode->i_mtime = *now;
5906 	if (flags & S_ATIME)
5907 		inode->i_atime = *now;
5908 	return btrfs_dirty_inode(inode);
5909 }
5910 
5911 /*
5912  * find the highest existing sequence number in a directory
5913  * and then set the in-memory index_cnt variable to reflect
5914  * free sequence numbers
5915  */
5916 static int btrfs_set_inode_index_count(struct inode *inode)
5917 {
5918 	struct btrfs_root *root = BTRFS_I(inode)->root;
5919 	struct btrfs_key key, found_key;
5920 	struct btrfs_path *path;
5921 	struct extent_buffer *leaf;
5922 	int ret;
5923 
5924 	key.objectid = btrfs_ino(inode);
5925 	key.type = BTRFS_DIR_INDEX_KEY;
5926 	key.offset = (u64)-1;
5927 
5928 	path = btrfs_alloc_path();
5929 	if (!path)
5930 		return -ENOMEM;
5931 
5932 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5933 	if (ret < 0)
5934 		goto out;
5935 	/* FIXME: we should be able to handle this */
5936 	if (ret == 0)
5937 		goto out;
5938 	ret = 0;
5939 
5940 	/*
5941 	 * MAGIC NUMBER EXPLANATION:
5942 	 * since we search a directory based on f_pos we have to start at 2
5943 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5944 	 * else has to start at 2
5945 	 */
5946 	if (path->slots[0] == 0) {
5947 		BTRFS_I(inode)->index_cnt = 2;
5948 		goto out;
5949 	}
5950 
5951 	path->slots[0]--;
5952 
5953 	leaf = path->nodes[0];
5954 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5955 
5956 	if (found_key.objectid != btrfs_ino(inode) ||
5957 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5958 		BTRFS_I(inode)->index_cnt = 2;
5959 		goto out;
5960 	}
5961 
5962 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5963 out:
5964 	btrfs_free_path(path);
5965 	return ret;
5966 }
5967 
5968 /*
5969  * helper to find a free sequence number in a given directory.  This current
5970  * code is very simple, later versions will do smarter things in the btree
5971  */
5972 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5973 {
5974 	int ret = 0;
5975 
5976 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5977 		ret = btrfs_inode_delayed_dir_index_count(dir);
5978 		if (ret) {
5979 			ret = btrfs_set_inode_index_count(dir);
5980 			if (ret)
5981 				return ret;
5982 		}
5983 	}
5984 
5985 	*index = BTRFS_I(dir)->index_cnt;
5986 	BTRFS_I(dir)->index_cnt++;
5987 
5988 	return ret;
5989 }
5990 
5991 static int btrfs_insert_inode_locked(struct inode *inode)
5992 {
5993 	struct btrfs_iget_args args;
5994 	args.location = &BTRFS_I(inode)->location;
5995 	args.root = BTRFS_I(inode)->root;
5996 
5997 	return insert_inode_locked4(inode,
5998 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5999 		   btrfs_find_actor, &args);
6000 }
6001 
6002 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6003 				     struct btrfs_root *root,
6004 				     struct inode *dir,
6005 				     const char *name, int name_len,
6006 				     u64 ref_objectid, u64 objectid,
6007 				     umode_t mode, u64 *index)
6008 {
6009 	struct inode *inode;
6010 	struct btrfs_inode_item *inode_item;
6011 	struct btrfs_key *location;
6012 	struct btrfs_path *path;
6013 	struct btrfs_inode_ref *ref;
6014 	struct btrfs_key key[2];
6015 	u32 sizes[2];
6016 	int nitems = name ? 2 : 1;
6017 	unsigned long ptr;
6018 	int ret;
6019 
6020 	path = btrfs_alloc_path();
6021 	if (!path)
6022 		return ERR_PTR(-ENOMEM);
6023 
6024 	inode = new_inode(root->fs_info->sb);
6025 	if (!inode) {
6026 		btrfs_free_path(path);
6027 		return ERR_PTR(-ENOMEM);
6028 	}
6029 
6030 	/*
6031 	 * O_TMPFILE, set link count to 0, so that after this point,
6032 	 * we fill in an inode item with the correct link count.
6033 	 */
6034 	if (!name)
6035 		set_nlink(inode, 0);
6036 
6037 	/*
6038 	 * we have to initialize this early, so we can reclaim the inode
6039 	 * number if we fail afterwards in this function.
6040 	 */
6041 	inode->i_ino = objectid;
6042 
6043 	if (dir && name) {
6044 		trace_btrfs_inode_request(dir);
6045 
6046 		ret = btrfs_set_inode_index(dir, index);
6047 		if (ret) {
6048 			btrfs_free_path(path);
6049 			iput(inode);
6050 			return ERR_PTR(ret);
6051 		}
6052 	} else if (dir) {
6053 		*index = 0;
6054 	}
6055 	/*
6056 	 * index_cnt is ignored for everything but a dir,
6057 	 * btrfs_get_inode_index_count has an explanation for the magic
6058 	 * number
6059 	 */
6060 	BTRFS_I(inode)->index_cnt = 2;
6061 	BTRFS_I(inode)->dir_index = *index;
6062 	BTRFS_I(inode)->root = root;
6063 	BTRFS_I(inode)->generation = trans->transid;
6064 	inode->i_generation = BTRFS_I(inode)->generation;
6065 
6066 	/*
6067 	 * We could have gotten an inode number from somebody who was fsynced
6068 	 * and then removed in this same transaction, so let's just set full
6069 	 * sync since it will be a full sync anyway and this will blow away the
6070 	 * old info in the log.
6071 	 */
6072 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6073 
6074 	key[0].objectid = objectid;
6075 	key[0].type = BTRFS_INODE_ITEM_KEY;
6076 	key[0].offset = 0;
6077 
6078 	sizes[0] = sizeof(struct btrfs_inode_item);
6079 
6080 	if (name) {
6081 		/*
6082 		 * Start new inodes with an inode_ref. This is slightly more
6083 		 * efficient for small numbers of hard links since they will
6084 		 * be packed into one item. Extended refs will kick in if we
6085 		 * add more hard links than can fit in the ref item.
6086 		 */
6087 		key[1].objectid = objectid;
6088 		key[1].type = BTRFS_INODE_REF_KEY;
6089 		key[1].offset = ref_objectid;
6090 
6091 		sizes[1] = name_len + sizeof(*ref);
6092 	}
6093 
6094 	location = &BTRFS_I(inode)->location;
6095 	location->objectid = objectid;
6096 	location->offset = 0;
6097 	location->type = BTRFS_INODE_ITEM_KEY;
6098 
6099 	ret = btrfs_insert_inode_locked(inode);
6100 	if (ret < 0)
6101 		goto fail;
6102 
6103 	path->leave_spinning = 1;
6104 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6105 	if (ret != 0)
6106 		goto fail_unlock;
6107 
6108 	inode_init_owner(inode, dir, mode);
6109 	inode_set_bytes(inode, 0);
6110 
6111 	inode->i_mtime = CURRENT_TIME;
6112 	inode->i_atime = inode->i_mtime;
6113 	inode->i_ctime = inode->i_mtime;
6114 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6115 
6116 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6117 				  struct btrfs_inode_item);
6118 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6119 			     sizeof(*inode_item));
6120 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6121 
6122 	if (name) {
6123 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6124 				     struct btrfs_inode_ref);
6125 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6126 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6127 		ptr = (unsigned long)(ref + 1);
6128 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6129 	}
6130 
6131 	btrfs_mark_buffer_dirty(path->nodes[0]);
6132 	btrfs_free_path(path);
6133 
6134 	btrfs_inherit_iflags(inode, dir);
6135 
6136 	if (S_ISREG(mode)) {
6137 		if (btrfs_test_opt(root, NODATASUM))
6138 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6139 		if (btrfs_test_opt(root, NODATACOW))
6140 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6141 				BTRFS_INODE_NODATASUM;
6142 	}
6143 
6144 	inode_tree_add(inode);
6145 
6146 	trace_btrfs_inode_new(inode);
6147 	btrfs_set_inode_last_trans(trans, inode);
6148 
6149 	btrfs_update_root_times(trans, root);
6150 
6151 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6152 	if (ret)
6153 		btrfs_err(root->fs_info,
6154 			  "error inheriting props for ino %llu (root %llu): %d",
6155 			  btrfs_ino(inode), root->root_key.objectid, ret);
6156 
6157 	return inode;
6158 
6159 fail_unlock:
6160 	unlock_new_inode(inode);
6161 fail:
6162 	if (dir && name)
6163 		BTRFS_I(dir)->index_cnt--;
6164 	btrfs_free_path(path);
6165 	iput(inode);
6166 	return ERR_PTR(ret);
6167 }
6168 
6169 static inline u8 btrfs_inode_type(struct inode *inode)
6170 {
6171 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6172 }
6173 
6174 /*
6175  * utility function to add 'inode' into 'parent_inode' with
6176  * a give name and a given sequence number.
6177  * if 'add_backref' is true, also insert a backref from the
6178  * inode to the parent directory.
6179  */
6180 int btrfs_add_link(struct btrfs_trans_handle *trans,
6181 		   struct inode *parent_inode, struct inode *inode,
6182 		   const char *name, int name_len, int add_backref, u64 index)
6183 {
6184 	int ret = 0;
6185 	struct btrfs_key key;
6186 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6187 	u64 ino = btrfs_ino(inode);
6188 	u64 parent_ino = btrfs_ino(parent_inode);
6189 
6190 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6191 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6192 	} else {
6193 		key.objectid = ino;
6194 		key.type = BTRFS_INODE_ITEM_KEY;
6195 		key.offset = 0;
6196 	}
6197 
6198 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6199 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6200 					 key.objectid, root->root_key.objectid,
6201 					 parent_ino, index, name, name_len);
6202 	} else if (add_backref) {
6203 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6204 					     parent_ino, index);
6205 	}
6206 
6207 	/* Nothing to clean up yet */
6208 	if (ret)
6209 		return ret;
6210 
6211 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6212 				    parent_inode, &key,
6213 				    btrfs_inode_type(inode), index);
6214 	if (ret == -EEXIST || ret == -EOVERFLOW)
6215 		goto fail_dir_item;
6216 	else if (ret) {
6217 		btrfs_abort_transaction(trans, root, ret);
6218 		return ret;
6219 	}
6220 
6221 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6222 			   name_len * 2);
6223 	inode_inc_iversion(parent_inode);
6224 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6225 	ret = btrfs_update_inode(trans, root, parent_inode);
6226 	if (ret)
6227 		btrfs_abort_transaction(trans, root, ret);
6228 	return ret;
6229 
6230 fail_dir_item:
6231 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6232 		u64 local_index;
6233 		int err;
6234 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6235 				 key.objectid, root->root_key.objectid,
6236 				 parent_ino, &local_index, name, name_len);
6237 
6238 	} else if (add_backref) {
6239 		u64 local_index;
6240 		int err;
6241 
6242 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6243 					  ino, parent_ino, &local_index);
6244 	}
6245 	return ret;
6246 }
6247 
6248 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6249 			    struct inode *dir, struct dentry *dentry,
6250 			    struct inode *inode, int backref, u64 index)
6251 {
6252 	int err = btrfs_add_link(trans, dir, inode,
6253 				 dentry->d_name.name, dentry->d_name.len,
6254 				 backref, index);
6255 	if (err > 0)
6256 		err = -EEXIST;
6257 	return err;
6258 }
6259 
6260 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6261 			umode_t mode, dev_t rdev)
6262 {
6263 	struct btrfs_trans_handle *trans;
6264 	struct btrfs_root *root = BTRFS_I(dir)->root;
6265 	struct inode *inode = NULL;
6266 	int err;
6267 	int drop_inode = 0;
6268 	u64 objectid;
6269 	u64 index = 0;
6270 
6271 	if (!new_valid_dev(rdev))
6272 		return -EINVAL;
6273 
6274 	/*
6275 	 * 2 for inode item and ref
6276 	 * 2 for dir items
6277 	 * 1 for xattr if selinux is on
6278 	 */
6279 	trans = btrfs_start_transaction(root, 5);
6280 	if (IS_ERR(trans))
6281 		return PTR_ERR(trans);
6282 
6283 	err = btrfs_find_free_ino(root, &objectid);
6284 	if (err)
6285 		goto out_unlock;
6286 
6287 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6288 				dentry->d_name.len, btrfs_ino(dir), objectid,
6289 				mode, &index);
6290 	if (IS_ERR(inode)) {
6291 		err = PTR_ERR(inode);
6292 		goto out_unlock;
6293 	}
6294 
6295 	/*
6296 	* If the active LSM wants to access the inode during
6297 	* d_instantiate it needs these. Smack checks to see
6298 	* if the filesystem supports xattrs by looking at the
6299 	* ops vector.
6300 	*/
6301 	inode->i_op = &btrfs_special_inode_operations;
6302 	init_special_inode(inode, inode->i_mode, rdev);
6303 
6304 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6305 	if (err)
6306 		goto out_unlock_inode;
6307 
6308 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6309 	if (err) {
6310 		goto out_unlock_inode;
6311 	} else {
6312 		btrfs_update_inode(trans, root, inode);
6313 		unlock_new_inode(inode);
6314 		d_instantiate(dentry, inode);
6315 	}
6316 
6317 out_unlock:
6318 	btrfs_end_transaction(trans, root);
6319 	btrfs_balance_delayed_items(root);
6320 	btrfs_btree_balance_dirty(root);
6321 	if (drop_inode) {
6322 		inode_dec_link_count(inode);
6323 		iput(inode);
6324 	}
6325 	return err;
6326 
6327 out_unlock_inode:
6328 	drop_inode = 1;
6329 	unlock_new_inode(inode);
6330 	goto out_unlock;
6331 
6332 }
6333 
6334 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6335 			umode_t mode, bool excl)
6336 {
6337 	struct btrfs_trans_handle *trans;
6338 	struct btrfs_root *root = BTRFS_I(dir)->root;
6339 	struct inode *inode = NULL;
6340 	int drop_inode_on_err = 0;
6341 	int err;
6342 	u64 objectid;
6343 	u64 index = 0;
6344 
6345 	/*
6346 	 * 2 for inode item and ref
6347 	 * 2 for dir items
6348 	 * 1 for xattr if selinux is on
6349 	 */
6350 	trans = btrfs_start_transaction(root, 5);
6351 	if (IS_ERR(trans))
6352 		return PTR_ERR(trans);
6353 
6354 	err = btrfs_find_free_ino(root, &objectid);
6355 	if (err)
6356 		goto out_unlock;
6357 
6358 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6359 				dentry->d_name.len, btrfs_ino(dir), objectid,
6360 				mode, &index);
6361 	if (IS_ERR(inode)) {
6362 		err = PTR_ERR(inode);
6363 		goto out_unlock;
6364 	}
6365 	drop_inode_on_err = 1;
6366 	/*
6367 	* If the active LSM wants to access the inode during
6368 	* d_instantiate it needs these. Smack checks to see
6369 	* if the filesystem supports xattrs by looking at the
6370 	* ops vector.
6371 	*/
6372 	inode->i_fop = &btrfs_file_operations;
6373 	inode->i_op = &btrfs_file_inode_operations;
6374 	inode->i_mapping->a_ops = &btrfs_aops;
6375 
6376 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6377 	if (err)
6378 		goto out_unlock_inode;
6379 
6380 	err = btrfs_update_inode(trans, root, inode);
6381 	if (err)
6382 		goto out_unlock_inode;
6383 
6384 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6385 	if (err)
6386 		goto out_unlock_inode;
6387 
6388 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6389 	unlock_new_inode(inode);
6390 	d_instantiate(dentry, inode);
6391 
6392 out_unlock:
6393 	btrfs_end_transaction(trans, root);
6394 	if (err && drop_inode_on_err) {
6395 		inode_dec_link_count(inode);
6396 		iput(inode);
6397 	}
6398 	btrfs_balance_delayed_items(root);
6399 	btrfs_btree_balance_dirty(root);
6400 	return err;
6401 
6402 out_unlock_inode:
6403 	unlock_new_inode(inode);
6404 	goto out_unlock;
6405 
6406 }
6407 
6408 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6409 		      struct dentry *dentry)
6410 {
6411 	struct btrfs_trans_handle *trans;
6412 	struct btrfs_root *root = BTRFS_I(dir)->root;
6413 	struct inode *inode = d_inode(old_dentry);
6414 	u64 index;
6415 	int err;
6416 	int drop_inode = 0;
6417 
6418 	/* do not allow sys_link's with other subvols of the same device */
6419 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6420 		return -EXDEV;
6421 
6422 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6423 		return -EMLINK;
6424 
6425 	err = btrfs_set_inode_index(dir, &index);
6426 	if (err)
6427 		goto fail;
6428 
6429 	/*
6430 	 * 2 items for inode and inode ref
6431 	 * 2 items for dir items
6432 	 * 1 item for parent inode
6433 	 */
6434 	trans = btrfs_start_transaction(root, 5);
6435 	if (IS_ERR(trans)) {
6436 		err = PTR_ERR(trans);
6437 		goto fail;
6438 	}
6439 
6440 	/* There are several dir indexes for this inode, clear the cache. */
6441 	BTRFS_I(inode)->dir_index = 0ULL;
6442 	inc_nlink(inode);
6443 	inode_inc_iversion(inode);
6444 	inode->i_ctime = CURRENT_TIME;
6445 	ihold(inode);
6446 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6447 
6448 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6449 
6450 	if (err) {
6451 		drop_inode = 1;
6452 	} else {
6453 		struct dentry *parent = dentry->d_parent;
6454 		err = btrfs_update_inode(trans, root, inode);
6455 		if (err)
6456 			goto fail;
6457 		if (inode->i_nlink == 1) {
6458 			/*
6459 			 * If new hard link count is 1, it's a file created
6460 			 * with open(2) O_TMPFILE flag.
6461 			 */
6462 			err = btrfs_orphan_del(trans, inode);
6463 			if (err)
6464 				goto fail;
6465 		}
6466 		d_instantiate(dentry, inode);
6467 		btrfs_log_new_name(trans, inode, NULL, parent);
6468 	}
6469 
6470 	btrfs_end_transaction(trans, root);
6471 	btrfs_balance_delayed_items(root);
6472 fail:
6473 	if (drop_inode) {
6474 		inode_dec_link_count(inode);
6475 		iput(inode);
6476 	}
6477 	btrfs_btree_balance_dirty(root);
6478 	return err;
6479 }
6480 
6481 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6482 {
6483 	struct inode *inode = NULL;
6484 	struct btrfs_trans_handle *trans;
6485 	struct btrfs_root *root = BTRFS_I(dir)->root;
6486 	int err = 0;
6487 	int drop_on_err = 0;
6488 	u64 objectid = 0;
6489 	u64 index = 0;
6490 
6491 	/*
6492 	 * 2 items for inode and ref
6493 	 * 2 items for dir items
6494 	 * 1 for xattr if selinux is on
6495 	 */
6496 	trans = btrfs_start_transaction(root, 5);
6497 	if (IS_ERR(trans))
6498 		return PTR_ERR(trans);
6499 
6500 	err = btrfs_find_free_ino(root, &objectid);
6501 	if (err)
6502 		goto out_fail;
6503 
6504 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6505 				dentry->d_name.len, btrfs_ino(dir), objectid,
6506 				S_IFDIR | mode, &index);
6507 	if (IS_ERR(inode)) {
6508 		err = PTR_ERR(inode);
6509 		goto out_fail;
6510 	}
6511 
6512 	drop_on_err = 1;
6513 	/* these must be set before we unlock the inode */
6514 	inode->i_op = &btrfs_dir_inode_operations;
6515 	inode->i_fop = &btrfs_dir_file_operations;
6516 
6517 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6518 	if (err)
6519 		goto out_fail_inode;
6520 
6521 	btrfs_i_size_write(inode, 0);
6522 	err = btrfs_update_inode(trans, root, inode);
6523 	if (err)
6524 		goto out_fail_inode;
6525 
6526 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6527 			     dentry->d_name.len, 0, index);
6528 	if (err)
6529 		goto out_fail_inode;
6530 
6531 	d_instantiate(dentry, inode);
6532 	/*
6533 	 * mkdir is special.  We're unlocking after we call d_instantiate
6534 	 * to avoid a race with nfsd calling d_instantiate.
6535 	 */
6536 	unlock_new_inode(inode);
6537 	drop_on_err = 0;
6538 
6539 out_fail:
6540 	btrfs_end_transaction(trans, root);
6541 	if (drop_on_err) {
6542 		inode_dec_link_count(inode);
6543 		iput(inode);
6544 	}
6545 	btrfs_balance_delayed_items(root);
6546 	btrfs_btree_balance_dirty(root);
6547 	return err;
6548 
6549 out_fail_inode:
6550 	unlock_new_inode(inode);
6551 	goto out_fail;
6552 }
6553 
6554 /* Find next extent map of a given extent map, caller needs to ensure locks */
6555 static struct extent_map *next_extent_map(struct extent_map *em)
6556 {
6557 	struct rb_node *next;
6558 
6559 	next = rb_next(&em->rb_node);
6560 	if (!next)
6561 		return NULL;
6562 	return container_of(next, struct extent_map, rb_node);
6563 }
6564 
6565 static struct extent_map *prev_extent_map(struct extent_map *em)
6566 {
6567 	struct rb_node *prev;
6568 
6569 	prev = rb_prev(&em->rb_node);
6570 	if (!prev)
6571 		return NULL;
6572 	return container_of(prev, struct extent_map, rb_node);
6573 }
6574 
6575 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6576  * the existing extent is the nearest extent to map_start,
6577  * and an extent that you want to insert, deal with overlap and insert
6578  * the best fitted new extent into the tree.
6579  */
6580 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6581 				struct extent_map *existing,
6582 				struct extent_map *em,
6583 				u64 map_start)
6584 {
6585 	struct extent_map *prev;
6586 	struct extent_map *next;
6587 	u64 start;
6588 	u64 end;
6589 	u64 start_diff;
6590 
6591 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6592 
6593 	if (existing->start > map_start) {
6594 		next = existing;
6595 		prev = prev_extent_map(next);
6596 	} else {
6597 		prev = existing;
6598 		next = next_extent_map(prev);
6599 	}
6600 
6601 	start = prev ? extent_map_end(prev) : em->start;
6602 	start = max_t(u64, start, em->start);
6603 	end = next ? next->start : extent_map_end(em);
6604 	end = min_t(u64, end, extent_map_end(em));
6605 	start_diff = start - em->start;
6606 	em->start = start;
6607 	em->len = end - start;
6608 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6609 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6610 		em->block_start += start_diff;
6611 		em->block_len -= start_diff;
6612 	}
6613 	return add_extent_mapping(em_tree, em, 0);
6614 }
6615 
6616 static noinline int uncompress_inline(struct btrfs_path *path,
6617 				      struct inode *inode, struct page *page,
6618 				      size_t pg_offset, u64 extent_offset,
6619 				      struct btrfs_file_extent_item *item)
6620 {
6621 	int ret;
6622 	struct extent_buffer *leaf = path->nodes[0];
6623 	char *tmp;
6624 	size_t max_size;
6625 	unsigned long inline_size;
6626 	unsigned long ptr;
6627 	int compress_type;
6628 
6629 	WARN_ON(pg_offset != 0);
6630 	compress_type = btrfs_file_extent_compression(leaf, item);
6631 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6632 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6633 					btrfs_item_nr(path->slots[0]));
6634 	tmp = kmalloc(inline_size, GFP_NOFS);
6635 	if (!tmp)
6636 		return -ENOMEM;
6637 	ptr = btrfs_file_extent_inline_start(item);
6638 
6639 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6640 
6641 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6642 	ret = btrfs_decompress(compress_type, tmp, page,
6643 			       extent_offset, inline_size, max_size);
6644 	kfree(tmp);
6645 	return ret;
6646 }
6647 
6648 /*
6649  * a bit scary, this does extent mapping from logical file offset to the disk.
6650  * the ugly parts come from merging extents from the disk with the in-ram
6651  * representation.  This gets more complex because of the data=ordered code,
6652  * where the in-ram extents might be locked pending data=ordered completion.
6653  *
6654  * This also copies inline extents directly into the page.
6655  */
6656 
6657 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6658 				    size_t pg_offset, u64 start, u64 len,
6659 				    int create)
6660 {
6661 	int ret;
6662 	int err = 0;
6663 	u64 extent_start = 0;
6664 	u64 extent_end = 0;
6665 	u64 objectid = btrfs_ino(inode);
6666 	u32 found_type;
6667 	struct btrfs_path *path = NULL;
6668 	struct btrfs_root *root = BTRFS_I(inode)->root;
6669 	struct btrfs_file_extent_item *item;
6670 	struct extent_buffer *leaf;
6671 	struct btrfs_key found_key;
6672 	struct extent_map *em = NULL;
6673 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6674 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6675 	struct btrfs_trans_handle *trans = NULL;
6676 	const bool new_inline = !page || create;
6677 
6678 again:
6679 	read_lock(&em_tree->lock);
6680 	em = lookup_extent_mapping(em_tree, start, len);
6681 	if (em)
6682 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6683 	read_unlock(&em_tree->lock);
6684 
6685 	if (em) {
6686 		if (em->start > start || em->start + em->len <= start)
6687 			free_extent_map(em);
6688 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6689 			free_extent_map(em);
6690 		else
6691 			goto out;
6692 	}
6693 	em = alloc_extent_map();
6694 	if (!em) {
6695 		err = -ENOMEM;
6696 		goto out;
6697 	}
6698 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6699 	em->start = EXTENT_MAP_HOLE;
6700 	em->orig_start = EXTENT_MAP_HOLE;
6701 	em->len = (u64)-1;
6702 	em->block_len = (u64)-1;
6703 
6704 	if (!path) {
6705 		path = btrfs_alloc_path();
6706 		if (!path) {
6707 			err = -ENOMEM;
6708 			goto out;
6709 		}
6710 		/*
6711 		 * Chances are we'll be called again, so go ahead and do
6712 		 * readahead
6713 		 */
6714 		path->reada = 1;
6715 	}
6716 
6717 	ret = btrfs_lookup_file_extent(trans, root, path,
6718 				       objectid, start, trans != NULL);
6719 	if (ret < 0) {
6720 		err = ret;
6721 		goto out;
6722 	}
6723 
6724 	if (ret != 0) {
6725 		if (path->slots[0] == 0)
6726 			goto not_found;
6727 		path->slots[0]--;
6728 	}
6729 
6730 	leaf = path->nodes[0];
6731 	item = btrfs_item_ptr(leaf, path->slots[0],
6732 			      struct btrfs_file_extent_item);
6733 	/* are we inside the extent that was found? */
6734 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6735 	found_type = found_key.type;
6736 	if (found_key.objectid != objectid ||
6737 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6738 		/*
6739 		 * If we backup past the first extent we want to move forward
6740 		 * and see if there is an extent in front of us, otherwise we'll
6741 		 * say there is a hole for our whole search range which can
6742 		 * cause problems.
6743 		 */
6744 		extent_end = start;
6745 		goto next;
6746 	}
6747 
6748 	found_type = btrfs_file_extent_type(leaf, item);
6749 	extent_start = found_key.offset;
6750 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6751 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6752 		extent_end = extent_start +
6753 		       btrfs_file_extent_num_bytes(leaf, item);
6754 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6755 		size_t size;
6756 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6757 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6758 	}
6759 next:
6760 	if (start >= extent_end) {
6761 		path->slots[0]++;
6762 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6763 			ret = btrfs_next_leaf(root, path);
6764 			if (ret < 0) {
6765 				err = ret;
6766 				goto out;
6767 			}
6768 			if (ret > 0)
6769 				goto not_found;
6770 			leaf = path->nodes[0];
6771 		}
6772 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6773 		if (found_key.objectid != objectid ||
6774 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6775 			goto not_found;
6776 		if (start + len <= found_key.offset)
6777 			goto not_found;
6778 		if (start > found_key.offset)
6779 			goto next;
6780 		em->start = start;
6781 		em->orig_start = start;
6782 		em->len = found_key.offset - start;
6783 		goto not_found_em;
6784 	}
6785 
6786 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6787 
6788 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6789 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6790 		goto insert;
6791 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6792 		unsigned long ptr;
6793 		char *map;
6794 		size_t size;
6795 		size_t extent_offset;
6796 		size_t copy_size;
6797 
6798 		if (new_inline)
6799 			goto out;
6800 
6801 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6802 		extent_offset = page_offset(page) + pg_offset - extent_start;
6803 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6804 				size - extent_offset);
6805 		em->start = extent_start + extent_offset;
6806 		em->len = ALIGN(copy_size, root->sectorsize);
6807 		em->orig_block_len = em->len;
6808 		em->orig_start = em->start;
6809 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6810 		if (create == 0 && !PageUptodate(page)) {
6811 			if (btrfs_file_extent_compression(leaf, item) !=
6812 			    BTRFS_COMPRESS_NONE) {
6813 				ret = uncompress_inline(path, inode, page,
6814 							pg_offset,
6815 							extent_offset, item);
6816 				if (ret) {
6817 					err = ret;
6818 					goto out;
6819 				}
6820 			} else {
6821 				map = kmap(page);
6822 				read_extent_buffer(leaf, map + pg_offset, ptr,
6823 						   copy_size);
6824 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6825 					memset(map + pg_offset + copy_size, 0,
6826 					       PAGE_CACHE_SIZE - pg_offset -
6827 					       copy_size);
6828 				}
6829 				kunmap(page);
6830 			}
6831 			flush_dcache_page(page);
6832 		} else if (create && PageUptodate(page)) {
6833 			BUG();
6834 			if (!trans) {
6835 				kunmap(page);
6836 				free_extent_map(em);
6837 				em = NULL;
6838 
6839 				btrfs_release_path(path);
6840 				trans = btrfs_join_transaction(root);
6841 
6842 				if (IS_ERR(trans))
6843 					return ERR_CAST(trans);
6844 				goto again;
6845 			}
6846 			map = kmap(page);
6847 			write_extent_buffer(leaf, map + pg_offset, ptr,
6848 					    copy_size);
6849 			kunmap(page);
6850 			btrfs_mark_buffer_dirty(leaf);
6851 		}
6852 		set_extent_uptodate(io_tree, em->start,
6853 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6854 		goto insert;
6855 	}
6856 not_found:
6857 	em->start = start;
6858 	em->orig_start = start;
6859 	em->len = len;
6860 not_found_em:
6861 	em->block_start = EXTENT_MAP_HOLE;
6862 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6863 insert:
6864 	btrfs_release_path(path);
6865 	if (em->start > start || extent_map_end(em) <= start) {
6866 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6867 			em->start, em->len, start, len);
6868 		err = -EIO;
6869 		goto out;
6870 	}
6871 
6872 	err = 0;
6873 	write_lock(&em_tree->lock);
6874 	ret = add_extent_mapping(em_tree, em, 0);
6875 	/* it is possible that someone inserted the extent into the tree
6876 	 * while we had the lock dropped.  It is also possible that
6877 	 * an overlapping map exists in the tree
6878 	 */
6879 	if (ret == -EEXIST) {
6880 		struct extent_map *existing;
6881 
6882 		ret = 0;
6883 
6884 		existing = search_extent_mapping(em_tree, start, len);
6885 		/*
6886 		 * existing will always be non-NULL, since there must be
6887 		 * extent causing the -EEXIST.
6888 		 */
6889 		if (start >= extent_map_end(existing) ||
6890 		    start <= existing->start) {
6891 			/*
6892 			 * The existing extent map is the one nearest to
6893 			 * the [start, start + len) range which overlaps
6894 			 */
6895 			err = merge_extent_mapping(em_tree, existing,
6896 						   em, start);
6897 			free_extent_map(existing);
6898 			if (err) {
6899 				free_extent_map(em);
6900 				em = NULL;
6901 			}
6902 		} else {
6903 			free_extent_map(em);
6904 			em = existing;
6905 			err = 0;
6906 		}
6907 	}
6908 	write_unlock(&em_tree->lock);
6909 out:
6910 
6911 	trace_btrfs_get_extent(root, em);
6912 
6913 	btrfs_free_path(path);
6914 	if (trans) {
6915 		ret = btrfs_end_transaction(trans, root);
6916 		if (!err)
6917 			err = ret;
6918 	}
6919 	if (err) {
6920 		free_extent_map(em);
6921 		return ERR_PTR(err);
6922 	}
6923 	BUG_ON(!em); /* Error is always set */
6924 	return em;
6925 }
6926 
6927 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6928 					   size_t pg_offset, u64 start, u64 len,
6929 					   int create)
6930 {
6931 	struct extent_map *em;
6932 	struct extent_map *hole_em = NULL;
6933 	u64 range_start = start;
6934 	u64 end;
6935 	u64 found;
6936 	u64 found_end;
6937 	int err = 0;
6938 
6939 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6940 	if (IS_ERR(em))
6941 		return em;
6942 	if (em) {
6943 		/*
6944 		 * if our em maps to
6945 		 * -  a hole or
6946 		 * -  a pre-alloc extent,
6947 		 * there might actually be delalloc bytes behind it.
6948 		 */
6949 		if (em->block_start != EXTENT_MAP_HOLE &&
6950 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6951 			return em;
6952 		else
6953 			hole_em = em;
6954 	}
6955 
6956 	/* check to see if we've wrapped (len == -1 or similar) */
6957 	end = start + len;
6958 	if (end < start)
6959 		end = (u64)-1;
6960 	else
6961 		end -= 1;
6962 
6963 	em = NULL;
6964 
6965 	/* ok, we didn't find anything, lets look for delalloc */
6966 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6967 				 end, len, EXTENT_DELALLOC, 1);
6968 	found_end = range_start + found;
6969 	if (found_end < range_start)
6970 		found_end = (u64)-1;
6971 
6972 	/*
6973 	 * we didn't find anything useful, return
6974 	 * the original results from get_extent()
6975 	 */
6976 	if (range_start > end || found_end <= start) {
6977 		em = hole_em;
6978 		hole_em = NULL;
6979 		goto out;
6980 	}
6981 
6982 	/* adjust the range_start to make sure it doesn't
6983 	 * go backwards from the start they passed in
6984 	 */
6985 	range_start = max(start, range_start);
6986 	found = found_end - range_start;
6987 
6988 	if (found > 0) {
6989 		u64 hole_start = start;
6990 		u64 hole_len = len;
6991 
6992 		em = alloc_extent_map();
6993 		if (!em) {
6994 			err = -ENOMEM;
6995 			goto out;
6996 		}
6997 		/*
6998 		 * when btrfs_get_extent can't find anything it
6999 		 * returns one huge hole
7000 		 *
7001 		 * make sure what it found really fits our range, and
7002 		 * adjust to make sure it is based on the start from
7003 		 * the caller
7004 		 */
7005 		if (hole_em) {
7006 			u64 calc_end = extent_map_end(hole_em);
7007 
7008 			if (calc_end <= start || (hole_em->start > end)) {
7009 				free_extent_map(hole_em);
7010 				hole_em = NULL;
7011 			} else {
7012 				hole_start = max(hole_em->start, start);
7013 				hole_len = calc_end - hole_start;
7014 			}
7015 		}
7016 		em->bdev = NULL;
7017 		if (hole_em && range_start > hole_start) {
7018 			/* our hole starts before our delalloc, so we
7019 			 * have to return just the parts of the hole
7020 			 * that go until  the delalloc starts
7021 			 */
7022 			em->len = min(hole_len,
7023 				      range_start - hole_start);
7024 			em->start = hole_start;
7025 			em->orig_start = hole_start;
7026 			/*
7027 			 * don't adjust block start at all,
7028 			 * it is fixed at EXTENT_MAP_HOLE
7029 			 */
7030 			em->block_start = hole_em->block_start;
7031 			em->block_len = hole_len;
7032 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7033 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7034 		} else {
7035 			em->start = range_start;
7036 			em->len = found;
7037 			em->orig_start = range_start;
7038 			em->block_start = EXTENT_MAP_DELALLOC;
7039 			em->block_len = found;
7040 		}
7041 	} else if (hole_em) {
7042 		return hole_em;
7043 	}
7044 out:
7045 
7046 	free_extent_map(hole_em);
7047 	if (err) {
7048 		free_extent_map(em);
7049 		return ERR_PTR(err);
7050 	}
7051 	return em;
7052 }
7053 
7054 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7055 						  u64 start, u64 len)
7056 {
7057 	struct btrfs_root *root = BTRFS_I(inode)->root;
7058 	struct extent_map *em;
7059 	struct btrfs_key ins;
7060 	u64 alloc_hint;
7061 	int ret;
7062 
7063 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7064 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7065 				   alloc_hint, &ins, 1, 1);
7066 	if (ret)
7067 		return ERR_PTR(ret);
7068 
7069 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7070 			      ins.offset, ins.offset, ins.offset, 0);
7071 	if (IS_ERR(em)) {
7072 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7073 		return em;
7074 	}
7075 
7076 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7077 					   ins.offset, ins.offset, 0);
7078 	if (ret) {
7079 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7080 		free_extent_map(em);
7081 		return ERR_PTR(ret);
7082 	}
7083 
7084 	return em;
7085 }
7086 
7087 /*
7088  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7089  * block must be cow'd
7090  */
7091 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7092 			      u64 *orig_start, u64 *orig_block_len,
7093 			      u64 *ram_bytes)
7094 {
7095 	struct btrfs_trans_handle *trans;
7096 	struct btrfs_path *path;
7097 	int ret;
7098 	struct extent_buffer *leaf;
7099 	struct btrfs_root *root = BTRFS_I(inode)->root;
7100 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7101 	struct btrfs_file_extent_item *fi;
7102 	struct btrfs_key key;
7103 	u64 disk_bytenr;
7104 	u64 backref_offset;
7105 	u64 extent_end;
7106 	u64 num_bytes;
7107 	int slot;
7108 	int found_type;
7109 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7110 
7111 	path = btrfs_alloc_path();
7112 	if (!path)
7113 		return -ENOMEM;
7114 
7115 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7116 				       offset, 0);
7117 	if (ret < 0)
7118 		goto out;
7119 
7120 	slot = path->slots[0];
7121 	if (ret == 1) {
7122 		if (slot == 0) {
7123 			/* can't find the item, must cow */
7124 			ret = 0;
7125 			goto out;
7126 		}
7127 		slot--;
7128 	}
7129 	ret = 0;
7130 	leaf = path->nodes[0];
7131 	btrfs_item_key_to_cpu(leaf, &key, slot);
7132 	if (key.objectid != btrfs_ino(inode) ||
7133 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7134 		/* not our file or wrong item type, must cow */
7135 		goto out;
7136 	}
7137 
7138 	if (key.offset > offset) {
7139 		/* Wrong offset, must cow */
7140 		goto out;
7141 	}
7142 
7143 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7144 	found_type = btrfs_file_extent_type(leaf, fi);
7145 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7146 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7147 		/* not a regular extent, must cow */
7148 		goto out;
7149 	}
7150 
7151 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7152 		goto out;
7153 
7154 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7155 	if (extent_end <= offset)
7156 		goto out;
7157 
7158 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7159 	if (disk_bytenr == 0)
7160 		goto out;
7161 
7162 	if (btrfs_file_extent_compression(leaf, fi) ||
7163 	    btrfs_file_extent_encryption(leaf, fi) ||
7164 	    btrfs_file_extent_other_encoding(leaf, fi))
7165 		goto out;
7166 
7167 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7168 
7169 	if (orig_start) {
7170 		*orig_start = key.offset - backref_offset;
7171 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7172 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7173 	}
7174 
7175 	if (btrfs_extent_readonly(root, disk_bytenr))
7176 		goto out;
7177 
7178 	num_bytes = min(offset + *len, extent_end) - offset;
7179 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7180 		u64 range_end;
7181 
7182 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7183 		ret = test_range_bit(io_tree, offset, range_end,
7184 				     EXTENT_DELALLOC, 0, NULL);
7185 		if (ret) {
7186 			ret = -EAGAIN;
7187 			goto out;
7188 		}
7189 	}
7190 
7191 	btrfs_release_path(path);
7192 
7193 	/*
7194 	 * look for other files referencing this extent, if we
7195 	 * find any we must cow
7196 	 */
7197 	trans = btrfs_join_transaction(root);
7198 	if (IS_ERR(trans)) {
7199 		ret = 0;
7200 		goto out;
7201 	}
7202 
7203 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7204 				    key.offset - backref_offset, disk_bytenr);
7205 	btrfs_end_transaction(trans, root);
7206 	if (ret) {
7207 		ret = 0;
7208 		goto out;
7209 	}
7210 
7211 	/*
7212 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7213 	 * in this extent we are about to write.  If there
7214 	 * are any csums in that range we have to cow in order
7215 	 * to keep the csums correct
7216 	 */
7217 	disk_bytenr += backref_offset;
7218 	disk_bytenr += offset - key.offset;
7219 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7220 				goto out;
7221 	/*
7222 	 * all of the above have passed, it is safe to overwrite this extent
7223 	 * without cow
7224 	 */
7225 	*len = num_bytes;
7226 	ret = 1;
7227 out:
7228 	btrfs_free_path(path);
7229 	return ret;
7230 }
7231 
7232 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7233 {
7234 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7235 	int found = false;
7236 	void **pagep = NULL;
7237 	struct page *page = NULL;
7238 	int start_idx;
7239 	int end_idx;
7240 
7241 	start_idx = start >> PAGE_CACHE_SHIFT;
7242 
7243 	/*
7244 	 * end is the last byte in the last page.  end == start is legal
7245 	 */
7246 	end_idx = end >> PAGE_CACHE_SHIFT;
7247 
7248 	rcu_read_lock();
7249 
7250 	/* Most of the code in this while loop is lifted from
7251 	 * find_get_page.  It's been modified to begin searching from a
7252 	 * page and return just the first page found in that range.  If the
7253 	 * found idx is less than or equal to the end idx then we know that
7254 	 * a page exists.  If no pages are found or if those pages are
7255 	 * outside of the range then we're fine (yay!) */
7256 	while (page == NULL &&
7257 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7258 		page = radix_tree_deref_slot(pagep);
7259 		if (unlikely(!page))
7260 			break;
7261 
7262 		if (radix_tree_exception(page)) {
7263 			if (radix_tree_deref_retry(page)) {
7264 				page = NULL;
7265 				continue;
7266 			}
7267 			/*
7268 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7269 			 * here as an exceptional entry: so return it without
7270 			 * attempting to raise page count.
7271 			 */
7272 			page = NULL;
7273 			break; /* TODO: Is this relevant for this use case? */
7274 		}
7275 
7276 		if (!page_cache_get_speculative(page)) {
7277 			page = NULL;
7278 			continue;
7279 		}
7280 
7281 		/*
7282 		 * Has the page moved?
7283 		 * This is part of the lockless pagecache protocol. See
7284 		 * include/linux/pagemap.h for details.
7285 		 */
7286 		if (unlikely(page != *pagep)) {
7287 			page_cache_release(page);
7288 			page = NULL;
7289 		}
7290 	}
7291 
7292 	if (page) {
7293 		if (page->index <= end_idx)
7294 			found = true;
7295 		page_cache_release(page);
7296 	}
7297 
7298 	rcu_read_unlock();
7299 	return found;
7300 }
7301 
7302 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7303 			      struct extent_state **cached_state, int writing)
7304 {
7305 	struct btrfs_ordered_extent *ordered;
7306 	int ret = 0;
7307 
7308 	while (1) {
7309 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7310 				 0, cached_state);
7311 		/*
7312 		 * We're concerned with the entire range that we're going to be
7313 		 * doing DIO to, so we need to make sure theres no ordered
7314 		 * extents in this range.
7315 		 */
7316 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7317 						     lockend - lockstart + 1);
7318 
7319 		/*
7320 		 * We need to make sure there are no buffered pages in this
7321 		 * range either, we could have raced between the invalidate in
7322 		 * generic_file_direct_write and locking the extent.  The
7323 		 * invalidate needs to happen so that reads after a write do not
7324 		 * get stale data.
7325 		 */
7326 		if (!ordered &&
7327 		    (!writing ||
7328 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7329 			break;
7330 
7331 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7332 				     cached_state, GFP_NOFS);
7333 
7334 		if (ordered) {
7335 			btrfs_start_ordered_extent(inode, ordered, 1);
7336 			btrfs_put_ordered_extent(ordered);
7337 		} else {
7338 			/* Screw you mmap */
7339 			ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7340 			if (ret)
7341 				break;
7342 			ret = filemap_fdatawait_range(inode->i_mapping,
7343 						      lockstart,
7344 						      lockend);
7345 			if (ret)
7346 				break;
7347 
7348 			/*
7349 			 * If we found a page that couldn't be invalidated just
7350 			 * fall back to buffered.
7351 			 */
7352 			ret = invalidate_inode_pages2_range(inode->i_mapping,
7353 					lockstart >> PAGE_CACHE_SHIFT,
7354 					lockend >> PAGE_CACHE_SHIFT);
7355 			if (ret)
7356 				break;
7357 		}
7358 
7359 		cond_resched();
7360 	}
7361 
7362 	return ret;
7363 }
7364 
7365 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7366 					   u64 len, u64 orig_start,
7367 					   u64 block_start, u64 block_len,
7368 					   u64 orig_block_len, u64 ram_bytes,
7369 					   int type)
7370 {
7371 	struct extent_map_tree *em_tree;
7372 	struct extent_map *em;
7373 	struct btrfs_root *root = BTRFS_I(inode)->root;
7374 	int ret;
7375 
7376 	em_tree = &BTRFS_I(inode)->extent_tree;
7377 	em = alloc_extent_map();
7378 	if (!em)
7379 		return ERR_PTR(-ENOMEM);
7380 
7381 	em->start = start;
7382 	em->orig_start = orig_start;
7383 	em->mod_start = start;
7384 	em->mod_len = len;
7385 	em->len = len;
7386 	em->block_len = block_len;
7387 	em->block_start = block_start;
7388 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7389 	em->orig_block_len = orig_block_len;
7390 	em->ram_bytes = ram_bytes;
7391 	em->generation = -1;
7392 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7393 	if (type == BTRFS_ORDERED_PREALLOC)
7394 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7395 
7396 	do {
7397 		btrfs_drop_extent_cache(inode, em->start,
7398 				em->start + em->len - 1, 0);
7399 		write_lock(&em_tree->lock);
7400 		ret = add_extent_mapping(em_tree, em, 1);
7401 		write_unlock(&em_tree->lock);
7402 	} while (ret == -EEXIST);
7403 
7404 	if (ret) {
7405 		free_extent_map(em);
7406 		return ERR_PTR(ret);
7407 	}
7408 
7409 	return em;
7410 }
7411 
7412 struct btrfs_dio_data {
7413 	u64 outstanding_extents;
7414 	u64 reserve;
7415 };
7416 
7417 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7418 				   struct buffer_head *bh_result, int create)
7419 {
7420 	struct extent_map *em;
7421 	struct btrfs_root *root = BTRFS_I(inode)->root;
7422 	struct extent_state *cached_state = NULL;
7423 	struct btrfs_dio_data *dio_data = NULL;
7424 	u64 start = iblock << inode->i_blkbits;
7425 	u64 lockstart, lockend;
7426 	u64 len = bh_result->b_size;
7427 	int unlock_bits = EXTENT_LOCKED;
7428 	int ret = 0;
7429 
7430 	if (create)
7431 		unlock_bits |= EXTENT_DIRTY;
7432 	else
7433 		len = min_t(u64, len, root->sectorsize);
7434 
7435 	lockstart = start;
7436 	lockend = start + len - 1;
7437 
7438 	if (current->journal_info) {
7439 		/*
7440 		 * Need to pull our outstanding extents and set journal_info to NULL so
7441 		 * that anything that needs to check if there's a transction doesn't get
7442 		 * confused.
7443 		 */
7444 		dio_data = current->journal_info;
7445 		current->journal_info = NULL;
7446 	}
7447 
7448 	/*
7449 	 * If this errors out it's because we couldn't invalidate pagecache for
7450 	 * this range and we need to fallback to buffered.
7451 	 */
7452 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7453 		return -ENOTBLK;
7454 
7455 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7456 	if (IS_ERR(em)) {
7457 		ret = PTR_ERR(em);
7458 		goto unlock_err;
7459 	}
7460 
7461 	/*
7462 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7463 	 * io.  INLINE is special, and we could probably kludge it in here, but
7464 	 * it's still buffered so for safety lets just fall back to the generic
7465 	 * buffered path.
7466 	 *
7467 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7468 	 * decompress it, so there will be buffering required no matter what we
7469 	 * do, so go ahead and fallback to buffered.
7470 	 *
7471 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7472 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7473 	 * the generic code.
7474 	 */
7475 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7476 	    em->block_start == EXTENT_MAP_INLINE) {
7477 		free_extent_map(em);
7478 		ret = -ENOTBLK;
7479 		goto unlock_err;
7480 	}
7481 
7482 	/* Just a good old fashioned hole, return */
7483 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7484 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7485 		free_extent_map(em);
7486 		goto unlock_err;
7487 	}
7488 
7489 	/*
7490 	 * We don't allocate a new extent in the following cases
7491 	 *
7492 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7493 	 * existing extent.
7494 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7495 	 * just use the extent.
7496 	 *
7497 	 */
7498 	if (!create) {
7499 		len = min(len, em->len - (start - em->start));
7500 		lockstart = start + len;
7501 		goto unlock;
7502 	}
7503 
7504 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7505 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7506 	     em->block_start != EXTENT_MAP_HOLE)) {
7507 		int type;
7508 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7509 
7510 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7511 			type = BTRFS_ORDERED_PREALLOC;
7512 		else
7513 			type = BTRFS_ORDERED_NOCOW;
7514 		len = min(len, em->len - (start - em->start));
7515 		block_start = em->block_start + (start - em->start);
7516 
7517 		if (can_nocow_extent(inode, start, &len, &orig_start,
7518 				     &orig_block_len, &ram_bytes) == 1) {
7519 			if (type == BTRFS_ORDERED_PREALLOC) {
7520 				free_extent_map(em);
7521 				em = create_pinned_em(inode, start, len,
7522 						       orig_start,
7523 						       block_start, len,
7524 						       orig_block_len,
7525 						       ram_bytes, type);
7526 				if (IS_ERR(em)) {
7527 					ret = PTR_ERR(em);
7528 					goto unlock_err;
7529 				}
7530 			}
7531 
7532 			ret = btrfs_add_ordered_extent_dio(inode, start,
7533 					   block_start, len, len, type);
7534 			if (ret) {
7535 				free_extent_map(em);
7536 				goto unlock_err;
7537 			}
7538 			goto unlock;
7539 		}
7540 	}
7541 
7542 	/*
7543 	 * this will cow the extent, reset the len in case we changed
7544 	 * it above
7545 	 */
7546 	len = bh_result->b_size;
7547 	free_extent_map(em);
7548 	em = btrfs_new_extent_direct(inode, start, len);
7549 	if (IS_ERR(em)) {
7550 		ret = PTR_ERR(em);
7551 		goto unlock_err;
7552 	}
7553 	len = min(len, em->len - (start - em->start));
7554 unlock:
7555 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7556 		inode->i_blkbits;
7557 	bh_result->b_size = len;
7558 	bh_result->b_bdev = em->bdev;
7559 	set_buffer_mapped(bh_result);
7560 	if (create) {
7561 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7562 			set_buffer_new(bh_result);
7563 
7564 		/*
7565 		 * Need to update the i_size under the extent lock so buffered
7566 		 * readers will get the updated i_size when we unlock.
7567 		 */
7568 		if (start + len > i_size_read(inode))
7569 			i_size_write(inode, start + len);
7570 
7571 		/*
7572 		 * If we have an outstanding_extents count still set then we're
7573 		 * within our reservation, otherwise we need to adjust our inode
7574 		 * counter appropriately.
7575 		 */
7576 		if (dio_data->outstanding_extents) {
7577 			(dio_data->outstanding_extents)--;
7578 		} else {
7579 			spin_lock(&BTRFS_I(inode)->lock);
7580 			BTRFS_I(inode)->outstanding_extents++;
7581 			spin_unlock(&BTRFS_I(inode)->lock);
7582 		}
7583 
7584 		btrfs_free_reserved_data_space(inode, len);
7585 		WARN_ON(dio_data->reserve < len);
7586 		dio_data->reserve -= len;
7587 		current->journal_info = dio_data;
7588 	}
7589 
7590 	/*
7591 	 * In the case of write we need to clear and unlock the entire range,
7592 	 * in the case of read we need to unlock only the end area that we
7593 	 * aren't using if there is any left over space.
7594 	 */
7595 	if (lockstart < lockend) {
7596 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7597 				 lockend, unlock_bits, 1, 0,
7598 				 &cached_state, GFP_NOFS);
7599 	} else {
7600 		free_extent_state(cached_state);
7601 	}
7602 
7603 	free_extent_map(em);
7604 
7605 	return 0;
7606 
7607 unlock_err:
7608 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7609 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7610 	if (dio_data)
7611 		current->journal_info = dio_data;
7612 	return ret;
7613 }
7614 
7615 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7616 					int rw, int mirror_num)
7617 {
7618 	struct btrfs_root *root = BTRFS_I(inode)->root;
7619 	int ret;
7620 
7621 	BUG_ON(rw & REQ_WRITE);
7622 
7623 	bio_get(bio);
7624 
7625 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7626 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7627 	if (ret)
7628 		goto err;
7629 
7630 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7631 err:
7632 	bio_put(bio);
7633 	return ret;
7634 }
7635 
7636 static int btrfs_check_dio_repairable(struct inode *inode,
7637 				      struct bio *failed_bio,
7638 				      struct io_failure_record *failrec,
7639 				      int failed_mirror)
7640 {
7641 	int num_copies;
7642 
7643 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7644 				      failrec->logical, failrec->len);
7645 	if (num_copies == 1) {
7646 		/*
7647 		 * we only have a single copy of the data, so don't bother with
7648 		 * all the retry and error correction code that follows. no
7649 		 * matter what the error is, it is very likely to persist.
7650 		 */
7651 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7652 			 num_copies, failrec->this_mirror, failed_mirror);
7653 		return 0;
7654 	}
7655 
7656 	failrec->failed_mirror = failed_mirror;
7657 	failrec->this_mirror++;
7658 	if (failrec->this_mirror == failed_mirror)
7659 		failrec->this_mirror++;
7660 
7661 	if (failrec->this_mirror > num_copies) {
7662 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7663 			 num_copies, failrec->this_mirror, failed_mirror);
7664 		return 0;
7665 	}
7666 
7667 	return 1;
7668 }
7669 
7670 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7671 			  struct page *page, u64 start, u64 end,
7672 			  int failed_mirror, bio_end_io_t *repair_endio,
7673 			  void *repair_arg)
7674 {
7675 	struct io_failure_record *failrec;
7676 	struct bio *bio;
7677 	int isector;
7678 	int read_mode;
7679 	int ret;
7680 
7681 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7682 
7683 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7684 	if (ret)
7685 		return ret;
7686 
7687 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7688 					 failed_mirror);
7689 	if (!ret) {
7690 		free_io_failure(inode, failrec);
7691 		return -EIO;
7692 	}
7693 
7694 	if (failed_bio->bi_vcnt > 1)
7695 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7696 	else
7697 		read_mode = READ_SYNC;
7698 
7699 	isector = start - btrfs_io_bio(failed_bio)->logical;
7700 	isector >>= inode->i_sb->s_blocksize_bits;
7701 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7702 				      0, isector, repair_endio, repair_arg);
7703 	if (!bio) {
7704 		free_io_failure(inode, failrec);
7705 		return -EIO;
7706 	}
7707 
7708 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7709 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7710 		    read_mode, failrec->this_mirror, failrec->in_validation);
7711 
7712 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7713 				    failrec->this_mirror);
7714 	if (ret) {
7715 		free_io_failure(inode, failrec);
7716 		bio_put(bio);
7717 	}
7718 
7719 	return ret;
7720 }
7721 
7722 struct btrfs_retry_complete {
7723 	struct completion done;
7724 	struct inode *inode;
7725 	u64 start;
7726 	int uptodate;
7727 };
7728 
7729 static void btrfs_retry_endio_nocsum(struct bio *bio)
7730 {
7731 	struct btrfs_retry_complete *done = bio->bi_private;
7732 	struct bio_vec *bvec;
7733 	int i;
7734 
7735 	if (bio->bi_error)
7736 		goto end;
7737 
7738 	done->uptodate = 1;
7739 	bio_for_each_segment_all(bvec, bio, i)
7740 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7741 end:
7742 	complete(&done->done);
7743 	bio_put(bio);
7744 }
7745 
7746 static int __btrfs_correct_data_nocsum(struct inode *inode,
7747 				       struct btrfs_io_bio *io_bio)
7748 {
7749 	struct bio_vec *bvec;
7750 	struct btrfs_retry_complete done;
7751 	u64 start;
7752 	int i;
7753 	int ret;
7754 
7755 	start = io_bio->logical;
7756 	done.inode = inode;
7757 
7758 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7759 try_again:
7760 		done.uptodate = 0;
7761 		done.start = start;
7762 		init_completion(&done.done);
7763 
7764 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7765 				     start + bvec->bv_len - 1,
7766 				     io_bio->mirror_num,
7767 				     btrfs_retry_endio_nocsum, &done);
7768 		if (ret)
7769 			return ret;
7770 
7771 		wait_for_completion(&done.done);
7772 
7773 		if (!done.uptodate) {
7774 			/* We might have another mirror, so try again */
7775 			goto try_again;
7776 		}
7777 
7778 		start += bvec->bv_len;
7779 	}
7780 
7781 	return 0;
7782 }
7783 
7784 static void btrfs_retry_endio(struct bio *bio)
7785 {
7786 	struct btrfs_retry_complete *done = bio->bi_private;
7787 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7788 	struct bio_vec *bvec;
7789 	int uptodate;
7790 	int ret;
7791 	int i;
7792 
7793 	if (bio->bi_error)
7794 		goto end;
7795 
7796 	uptodate = 1;
7797 	bio_for_each_segment_all(bvec, bio, i) {
7798 		ret = __readpage_endio_check(done->inode, io_bio, i,
7799 					     bvec->bv_page, 0,
7800 					     done->start, bvec->bv_len);
7801 		if (!ret)
7802 			clean_io_failure(done->inode, done->start,
7803 					 bvec->bv_page, 0);
7804 		else
7805 			uptodate = 0;
7806 	}
7807 
7808 	done->uptodate = uptodate;
7809 end:
7810 	complete(&done->done);
7811 	bio_put(bio);
7812 }
7813 
7814 static int __btrfs_subio_endio_read(struct inode *inode,
7815 				    struct btrfs_io_bio *io_bio, int err)
7816 {
7817 	struct bio_vec *bvec;
7818 	struct btrfs_retry_complete done;
7819 	u64 start;
7820 	u64 offset = 0;
7821 	int i;
7822 	int ret;
7823 
7824 	err = 0;
7825 	start = io_bio->logical;
7826 	done.inode = inode;
7827 
7828 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7829 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7830 					     0, start, bvec->bv_len);
7831 		if (likely(!ret))
7832 			goto next;
7833 try_again:
7834 		done.uptodate = 0;
7835 		done.start = start;
7836 		init_completion(&done.done);
7837 
7838 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7839 				     start + bvec->bv_len - 1,
7840 				     io_bio->mirror_num,
7841 				     btrfs_retry_endio, &done);
7842 		if (ret) {
7843 			err = ret;
7844 			goto next;
7845 		}
7846 
7847 		wait_for_completion(&done.done);
7848 
7849 		if (!done.uptodate) {
7850 			/* We might have another mirror, so try again */
7851 			goto try_again;
7852 		}
7853 next:
7854 		offset += bvec->bv_len;
7855 		start += bvec->bv_len;
7856 	}
7857 
7858 	return err;
7859 }
7860 
7861 static int btrfs_subio_endio_read(struct inode *inode,
7862 				  struct btrfs_io_bio *io_bio, int err)
7863 {
7864 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7865 
7866 	if (skip_csum) {
7867 		if (unlikely(err))
7868 			return __btrfs_correct_data_nocsum(inode, io_bio);
7869 		else
7870 			return 0;
7871 	} else {
7872 		return __btrfs_subio_endio_read(inode, io_bio, err);
7873 	}
7874 }
7875 
7876 static void btrfs_endio_direct_read(struct bio *bio)
7877 {
7878 	struct btrfs_dio_private *dip = bio->bi_private;
7879 	struct inode *inode = dip->inode;
7880 	struct bio *dio_bio;
7881 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7882 	int err = bio->bi_error;
7883 
7884 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7885 		err = btrfs_subio_endio_read(inode, io_bio, err);
7886 
7887 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7888 		      dip->logical_offset + dip->bytes - 1);
7889 	dio_bio = dip->dio_bio;
7890 
7891 	kfree(dip);
7892 
7893 	dio_end_io(dio_bio, bio->bi_error);
7894 
7895 	if (io_bio->end_io)
7896 		io_bio->end_io(io_bio, err);
7897 	bio_put(bio);
7898 }
7899 
7900 static void btrfs_endio_direct_write(struct bio *bio)
7901 {
7902 	struct btrfs_dio_private *dip = bio->bi_private;
7903 	struct inode *inode = dip->inode;
7904 	struct btrfs_root *root = BTRFS_I(inode)->root;
7905 	struct btrfs_ordered_extent *ordered = NULL;
7906 	u64 ordered_offset = dip->logical_offset;
7907 	u64 ordered_bytes = dip->bytes;
7908 	struct bio *dio_bio;
7909 	int ret;
7910 
7911 again:
7912 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7913 						   &ordered_offset,
7914 						   ordered_bytes,
7915 						   !bio->bi_error);
7916 	if (!ret)
7917 		goto out_test;
7918 
7919 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7920 			finish_ordered_fn, NULL, NULL);
7921 	btrfs_queue_work(root->fs_info->endio_write_workers,
7922 			 &ordered->work);
7923 out_test:
7924 	/*
7925 	 * our bio might span multiple ordered extents.  If we haven't
7926 	 * completed the accounting for the whole dio, go back and try again
7927 	 */
7928 	if (ordered_offset < dip->logical_offset + dip->bytes) {
7929 		ordered_bytes = dip->logical_offset + dip->bytes -
7930 			ordered_offset;
7931 		ordered = NULL;
7932 		goto again;
7933 	}
7934 	dio_bio = dip->dio_bio;
7935 
7936 	kfree(dip);
7937 
7938 	dio_end_io(dio_bio, bio->bi_error);
7939 	bio_put(bio);
7940 }
7941 
7942 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7943 				    struct bio *bio, int mirror_num,
7944 				    unsigned long bio_flags, u64 offset)
7945 {
7946 	int ret;
7947 	struct btrfs_root *root = BTRFS_I(inode)->root;
7948 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7949 	BUG_ON(ret); /* -ENOMEM */
7950 	return 0;
7951 }
7952 
7953 static void btrfs_end_dio_bio(struct bio *bio)
7954 {
7955 	struct btrfs_dio_private *dip = bio->bi_private;
7956 	int err = bio->bi_error;
7957 
7958 	if (err)
7959 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7960 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7961 			   btrfs_ino(dip->inode), bio->bi_rw,
7962 			   (unsigned long long)bio->bi_iter.bi_sector,
7963 			   bio->bi_iter.bi_size, err);
7964 
7965 	if (dip->subio_endio)
7966 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7967 
7968 	if (err) {
7969 		dip->errors = 1;
7970 
7971 		/*
7972 		 * before atomic variable goto zero, we must make sure
7973 		 * dip->errors is perceived to be set.
7974 		 */
7975 		smp_mb__before_atomic();
7976 	}
7977 
7978 	/* if there are more bios still pending for this dio, just exit */
7979 	if (!atomic_dec_and_test(&dip->pending_bios))
7980 		goto out;
7981 
7982 	if (dip->errors) {
7983 		bio_io_error(dip->orig_bio);
7984 	} else {
7985 		dip->dio_bio->bi_error = 0;
7986 		bio_endio(dip->orig_bio);
7987 	}
7988 out:
7989 	bio_put(bio);
7990 }
7991 
7992 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7993 				       u64 first_sector, gfp_t gfp_flags)
7994 {
7995 	struct bio *bio;
7996 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
7997 	if (bio)
7998 		bio_associate_current(bio);
7999 	return bio;
8000 }
8001 
8002 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8003 						 struct inode *inode,
8004 						 struct btrfs_dio_private *dip,
8005 						 struct bio *bio,
8006 						 u64 file_offset)
8007 {
8008 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8009 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8010 	int ret;
8011 
8012 	/*
8013 	 * We load all the csum data we need when we submit
8014 	 * the first bio to reduce the csum tree search and
8015 	 * contention.
8016 	 */
8017 	if (dip->logical_offset == file_offset) {
8018 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8019 						file_offset);
8020 		if (ret)
8021 			return ret;
8022 	}
8023 
8024 	if (bio == dip->orig_bio)
8025 		return 0;
8026 
8027 	file_offset -= dip->logical_offset;
8028 	file_offset >>= inode->i_sb->s_blocksize_bits;
8029 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8030 
8031 	return 0;
8032 }
8033 
8034 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8035 					 int rw, u64 file_offset, int skip_sum,
8036 					 int async_submit)
8037 {
8038 	struct btrfs_dio_private *dip = bio->bi_private;
8039 	int write = rw & REQ_WRITE;
8040 	struct btrfs_root *root = BTRFS_I(inode)->root;
8041 	int ret;
8042 
8043 	if (async_submit)
8044 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8045 
8046 	bio_get(bio);
8047 
8048 	if (!write) {
8049 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8050 				BTRFS_WQ_ENDIO_DATA);
8051 		if (ret)
8052 			goto err;
8053 	}
8054 
8055 	if (skip_sum)
8056 		goto map;
8057 
8058 	if (write && async_submit) {
8059 		ret = btrfs_wq_submit_bio(root->fs_info,
8060 				   inode, rw, bio, 0, 0,
8061 				   file_offset,
8062 				   __btrfs_submit_bio_start_direct_io,
8063 				   __btrfs_submit_bio_done);
8064 		goto err;
8065 	} else if (write) {
8066 		/*
8067 		 * If we aren't doing async submit, calculate the csum of the
8068 		 * bio now.
8069 		 */
8070 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8071 		if (ret)
8072 			goto err;
8073 	} else {
8074 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8075 						     file_offset);
8076 		if (ret)
8077 			goto err;
8078 	}
8079 map:
8080 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8081 err:
8082 	bio_put(bio);
8083 	return ret;
8084 }
8085 
8086 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8087 				    int skip_sum)
8088 {
8089 	struct inode *inode = dip->inode;
8090 	struct btrfs_root *root = BTRFS_I(inode)->root;
8091 	struct bio *bio;
8092 	struct bio *orig_bio = dip->orig_bio;
8093 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8094 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8095 	u64 file_offset = dip->logical_offset;
8096 	u64 submit_len = 0;
8097 	u64 map_length;
8098 	int nr_pages = 0;
8099 	int ret;
8100 	int async_submit = 0;
8101 
8102 	map_length = orig_bio->bi_iter.bi_size;
8103 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8104 			      &map_length, NULL, 0);
8105 	if (ret)
8106 		return -EIO;
8107 
8108 	if (map_length >= orig_bio->bi_iter.bi_size) {
8109 		bio = orig_bio;
8110 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8111 		goto submit;
8112 	}
8113 
8114 	/* async crcs make it difficult to collect full stripe writes. */
8115 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8116 		async_submit = 0;
8117 	else
8118 		async_submit = 1;
8119 
8120 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8121 	if (!bio)
8122 		return -ENOMEM;
8123 
8124 	bio->bi_private = dip;
8125 	bio->bi_end_io = btrfs_end_dio_bio;
8126 	btrfs_io_bio(bio)->logical = file_offset;
8127 	atomic_inc(&dip->pending_bios);
8128 
8129 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8130 		if (map_length < submit_len + bvec->bv_len ||
8131 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8132 				 bvec->bv_offset) < bvec->bv_len) {
8133 			/*
8134 			 * inc the count before we submit the bio so
8135 			 * we know the end IO handler won't happen before
8136 			 * we inc the count. Otherwise, the dip might get freed
8137 			 * before we're done setting it up
8138 			 */
8139 			atomic_inc(&dip->pending_bios);
8140 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8141 						     file_offset, skip_sum,
8142 						     async_submit);
8143 			if (ret) {
8144 				bio_put(bio);
8145 				atomic_dec(&dip->pending_bios);
8146 				goto out_err;
8147 			}
8148 
8149 			start_sector += submit_len >> 9;
8150 			file_offset += submit_len;
8151 
8152 			submit_len = 0;
8153 			nr_pages = 0;
8154 
8155 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8156 						  start_sector, GFP_NOFS);
8157 			if (!bio)
8158 				goto out_err;
8159 			bio->bi_private = dip;
8160 			bio->bi_end_io = btrfs_end_dio_bio;
8161 			btrfs_io_bio(bio)->logical = file_offset;
8162 
8163 			map_length = orig_bio->bi_iter.bi_size;
8164 			ret = btrfs_map_block(root->fs_info, rw,
8165 					      start_sector << 9,
8166 					      &map_length, NULL, 0);
8167 			if (ret) {
8168 				bio_put(bio);
8169 				goto out_err;
8170 			}
8171 		} else {
8172 			submit_len += bvec->bv_len;
8173 			nr_pages++;
8174 			bvec++;
8175 		}
8176 	}
8177 
8178 submit:
8179 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8180 				     async_submit);
8181 	if (!ret)
8182 		return 0;
8183 
8184 	bio_put(bio);
8185 out_err:
8186 	dip->errors = 1;
8187 	/*
8188 	 * before atomic variable goto zero, we must
8189 	 * make sure dip->errors is perceived to be set.
8190 	 */
8191 	smp_mb__before_atomic();
8192 	if (atomic_dec_and_test(&dip->pending_bios))
8193 		bio_io_error(dip->orig_bio);
8194 
8195 	/* bio_end_io() will handle error, so we needn't return it */
8196 	return 0;
8197 }
8198 
8199 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8200 				struct inode *inode, loff_t file_offset)
8201 {
8202 	struct btrfs_dio_private *dip = NULL;
8203 	struct bio *io_bio = NULL;
8204 	struct btrfs_io_bio *btrfs_bio;
8205 	int skip_sum;
8206 	int write = rw & REQ_WRITE;
8207 	int ret = 0;
8208 
8209 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8210 
8211 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8212 	if (!io_bio) {
8213 		ret = -ENOMEM;
8214 		goto free_ordered;
8215 	}
8216 
8217 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8218 	if (!dip) {
8219 		ret = -ENOMEM;
8220 		goto free_ordered;
8221 	}
8222 
8223 	dip->private = dio_bio->bi_private;
8224 	dip->inode = inode;
8225 	dip->logical_offset = file_offset;
8226 	dip->bytes = dio_bio->bi_iter.bi_size;
8227 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8228 	io_bio->bi_private = dip;
8229 	dip->orig_bio = io_bio;
8230 	dip->dio_bio = dio_bio;
8231 	atomic_set(&dip->pending_bios, 0);
8232 	btrfs_bio = btrfs_io_bio(io_bio);
8233 	btrfs_bio->logical = file_offset;
8234 
8235 	if (write) {
8236 		io_bio->bi_end_io = btrfs_endio_direct_write;
8237 	} else {
8238 		io_bio->bi_end_io = btrfs_endio_direct_read;
8239 		dip->subio_endio = btrfs_subio_endio_read;
8240 	}
8241 
8242 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8243 	if (!ret)
8244 		return;
8245 
8246 	if (btrfs_bio->end_io)
8247 		btrfs_bio->end_io(btrfs_bio, ret);
8248 
8249 free_ordered:
8250 	/*
8251 	 * If we arrived here it means either we failed to submit the dip
8252 	 * or we either failed to clone the dio_bio or failed to allocate the
8253 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8254 	 * call bio_endio against our io_bio so that we get proper resource
8255 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8256 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8257 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8258 	 */
8259 	if (io_bio && dip) {
8260 		io_bio->bi_error = -EIO;
8261 		bio_endio(io_bio);
8262 		/*
8263 		 * The end io callbacks free our dip, do the final put on io_bio
8264 		 * and all the cleanup and final put for dio_bio (through
8265 		 * dio_end_io()).
8266 		 */
8267 		dip = NULL;
8268 		io_bio = NULL;
8269 	} else {
8270 		if (write) {
8271 			struct btrfs_ordered_extent *ordered;
8272 
8273 			ordered = btrfs_lookup_ordered_extent(inode,
8274 							      file_offset);
8275 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8276 			/*
8277 			 * Decrements our ref on the ordered extent and removes
8278 			 * the ordered extent from the inode's ordered tree,
8279 			 * doing all the proper resource cleanup such as for the
8280 			 * reserved space and waking up any waiters for this
8281 			 * ordered extent (through btrfs_remove_ordered_extent).
8282 			 */
8283 			btrfs_finish_ordered_io(ordered);
8284 		} else {
8285 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8286 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8287 		}
8288 		dio_bio->bi_error = -EIO;
8289 		/*
8290 		 * Releases and cleans up our dio_bio, no need to bio_put()
8291 		 * nor bio_endio()/bio_io_error() against dio_bio.
8292 		 */
8293 		dio_end_io(dio_bio, ret);
8294 	}
8295 	if (io_bio)
8296 		bio_put(io_bio);
8297 	kfree(dip);
8298 }
8299 
8300 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8301 			const struct iov_iter *iter, loff_t offset)
8302 {
8303 	int seg;
8304 	int i;
8305 	unsigned blocksize_mask = root->sectorsize - 1;
8306 	ssize_t retval = -EINVAL;
8307 
8308 	if (offset & blocksize_mask)
8309 		goto out;
8310 
8311 	if (iov_iter_alignment(iter) & blocksize_mask)
8312 		goto out;
8313 
8314 	/* If this is a write we don't need to check anymore */
8315 	if (iov_iter_rw(iter) == WRITE)
8316 		return 0;
8317 	/*
8318 	 * Check to make sure we don't have duplicate iov_base's in this
8319 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8320 	 * when reading back.
8321 	 */
8322 	for (seg = 0; seg < iter->nr_segs; seg++) {
8323 		for (i = seg + 1; i < iter->nr_segs; i++) {
8324 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8325 				goto out;
8326 		}
8327 	}
8328 	retval = 0;
8329 out:
8330 	return retval;
8331 }
8332 
8333 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8334 			       loff_t offset)
8335 {
8336 	struct file *file = iocb->ki_filp;
8337 	struct inode *inode = file->f_mapping->host;
8338 	struct btrfs_root *root = BTRFS_I(inode)->root;
8339 	struct btrfs_dio_data dio_data = { 0 };
8340 	size_t count = 0;
8341 	int flags = 0;
8342 	bool wakeup = true;
8343 	bool relock = false;
8344 	ssize_t ret;
8345 
8346 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8347 		return 0;
8348 
8349 	inode_dio_begin(inode);
8350 	smp_mb__after_atomic();
8351 
8352 	/*
8353 	 * The generic stuff only does filemap_write_and_wait_range, which
8354 	 * isn't enough if we've written compressed pages to this area, so
8355 	 * we need to flush the dirty pages again to make absolutely sure
8356 	 * that any outstanding dirty pages are on disk.
8357 	 */
8358 	count = iov_iter_count(iter);
8359 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8360 		     &BTRFS_I(inode)->runtime_flags))
8361 		filemap_fdatawrite_range(inode->i_mapping, offset,
8362 					 offset + count - 1);
8363 
8364 	if (iov_iter_rw(iter) == WRITE) {
8365 		/*
8366 		 * If the write DIO is beyond the EOF, we need update
8367 		 * the isize, but it is protected by i_mutex. So we can
8368 		 * not unlock the i_mutex at this case.
8369 		 */
8370 		if (offset + count <= inode->i_size) {
8371 			mutex_unlock(&inode->i_mutex);
8372 			relock = true;
8373 		}
8374 		ret = btrfs_delalloc_reserve_space(inode, count);
8375 		if (ret)
8376 			goto out;
8377 		dio_data.outstanding_extents = div64_u64(count +
8378 						BTRFS_MAX_EXTENT_SIZE - 1,
8379 						BTRFS_MAX_EXTENT_SIZE);
8380 
8381 		/*
8382 		 * We need to know how many extents we reserved so that we can
8383 		 * do the accounting properly if we go over the number we
8384 		 * originally calculated.  Abuse current->journal_info for this.
8385 		 */
8386 		dio_data.reserve = round_up(count, root->sectorsize);
8387 		current->journal_info = &dio_data;
8388 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8389 				     &BTRFS_I(inode)->runtime_flags)) {
8390 		inode_dio_end(inode);
8391 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8392 		wakeup = false;
8393 	}
8394 
8395 	ret = __blockdev_direct_IO(iocb, inode,
8396 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8397 				   iter, offset, btrfs_get_blocks_direct, NULL,
8398 				   btrfs_submit_direct, flags);
8399 	if (iov_iter_rw(iter) == WRITE) {
8400 		current->journal_info = NULL;
8401 		if (ret < 0 && ret != -EIOCBQUEUED) {
8402 			if (dio_data.reserve)
8403 				btrfs_delalloc_release_space(inode,
8404 							dio_data.reserve);
8405 		} else if (ret >= 0 && (size_t)ret < count)
8406 			btrfs_delalloc_release_space(inode,
8407 						     count - (size_t)ret);
8408 	}
8409 out:
8410 	if (wakeup)
8411 		inode_dio_end(inode);
8412 	if (relock)
8413 		mutex_lock(&inode->i_mutex);
8414 
8415 	return ret;
8416 }
8417 
8418 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8419 
8420 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8421 		__u64 start, __u64 len)
8422 {
8423 	int	ret;
8424 
8425 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8426 	if (ret)
8427 		return ret;
8428 
8429 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8430 }
8431 
8432 int btrfs_readpage(struct file *file, struct page *page)
8433 {
8434 	struct extent_io_tree *tree;
8435 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8436 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8437 }
8438 
8439 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8440 {
8441 	struct extent_io_tree *tree;
8442 
8443 
8444 	if (current->flags & PF_MEMALLOC) {
8445 		redirty_page_for_writepage(wbc, page);
8446 		unlock_page(page);
8447 		return 0;
8448 	}
8449 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8450 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8451 }
8452 
8453 static int btrfs_writepages(struct address_space *mapping,
8454 			    struct writeback_control *wbc)
8455 {
8456 	struct extent_io_tree *tree;
8457 
8458 	tree = &BTRFS_I(mapping->host)->io_tree;
8459 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8460 }
8461 
8462 static int
8463 btrfs_readpages(struct file *file, struct address_space *mapping,
8464 		struct list_head *pages, unsigned nr_pages)
8465 {
8466 	struct extent_io_tree *tree;
8467 	tree = &BTRFS_I(mapping->host)->io_tree;
8468 	return extent_readpages(tree, mapping, pages, nr_pages,
8469 				btrfs_get_extent);
8470 }
8471 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8472 {
8473 	struct extent_io_tree *tree;
8474 	struct extent_map_tree *map;
8475 	int ret;
8476 
8477 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8478 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8479 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8480 	if (ret == 1) {
8481 		ClearPagePrivate(page);
8482 		set_page_private(page, 0);
8483 		page_cache_release(page);
8484 	}
8485 	return ret;
8486 }
8487 
8488 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8489 {
8490 	if (PageWriteback(page) || PageDirty(page))
8491 		return 0;
8492 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8493 }
8494 
8495 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8496 				 unsigned int length)
8497 {
8498 	struct inode *inode = page->mapping->host;
8499 	struct extent_io_tree *tree;
8500 	struct btrfs_ordered_extent *ordered;
8501 	struct extent_state *cached_state = NULL;
8502 	u64 page_start = page_offset(page);
8503 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8504 	int inode_evicting = inode->i_state & I_FREEING;
8505 
8506 	/*
8507 	 * we have the page locked, so new writeback can't start,
8508 	 * and the dirty bit won't be cleared while we are here.
8509 	 *
8510 	 * Wait for IO on this page so that we can safely clear
8511 	 * the PagePrivate2 bit and do ordered accounting
8512 	 */
8513 	wait_on_page_writeback(page);
8514 
8515 	tree = &BTRFS_I(inode)->io_tree;
8516 	if (offset) {
8517 		btrfs_releasepage(page, GFP_NOFS);
8518 		return;
8519 	}
8520 
8521 	if (!inode_evicting)
8522 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8523 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8524 	if (ordered) {
8525 		/*
8526 		 * IO on this page will never be started, so we need
8527 		 * to account for any ordered extents now
8528 		 */
8529 		if (!inode_evicting)
8530 			clear_extent_bit(tree, page_start, page_end,
8531 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8532 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8533 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8534 					 GFP_NOFS);
8535 		/*
8536 		 * whoever cleared the private bit is responsible
8537 		 * for the finish_ordered_io
8538 		 */
8539 		if (TestClearPagePrivate2(page)) {
8540 			struct btrfs_ordered_inode_tree *tree;
8541 			u64 new_len;
8542 
8543 			tree = &BTRFS_I(inode)->ordered_tree;
8544 
8545 			spin_lock_irq(&tree->lock);
8546 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8547 			new_len = page_start - ordered->file_offset;
8548 			if (new_len < ordered->truncated_len)
8549 				ordered->truncated_len = new_len;
8550 			spin_unlock_irq(&tree->lock);
8551 
8552 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8553 							   page_start,
8554 							   PAGE_CACHE_SIZE, 1))
8555 				btrfs_finish_ordered_io(ordered);
8556 		}
8557 		btrfs_put_ordered_extent(ordered);
8558 		if (!inode_evicting) {
8559 			cached_state = NULL;
8560 			lock_extent_bits(tree, page_start, page_end, 0,
8561 					 &cached_state);
8562 		}
8563 	}
8564 
8565 	if (!inode_evicting) {
8566 		clear_extent_bit(tree, page_start, page_end,
8567 				 EXTENT_LOCKED | EXTENT_DIRTY |
8568 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8569 				 EXTENT_DEFRAG, 1, 1,
8570 				 &cached_state, GFP_NOFS);
8571 
8572 		__btrfs_releasepage(page, GFP_NOFS);
8573 	}
8574 
8575 	ClearPageChecked(page);
8576 	if (PagePrivate(page)) {
8577 		ClearPagePrivate(page);
8578 		set_page_private(page, 0);
8579 		page_cache_release(page);
8580 	}
8581 }
8582 
8583 /*
8584  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8585  * called from a page fault handler when a page is first dirtied. Hence we must
8586  * be careful to check for EOF conditions here. We set the page up correctly
8587  * for a written page which means we get ENOSPC checking when writing into
8588  * holes and correct delalloc and unwritten extent mapping on filesystems that
8589  * support these features.
8590  *
8591  * We are not allowed to take the i_mutex here so we have to play games to
8592  * protect against truncate races as the page could now be beyond EOF.  Because
8593  * vmtruncate() writes the inode size before removing pages, once we have the
8594  * page lock we can determine safely if the page is beyond EOF. If it is not
8595  * beyond EOF, then the page is guaranteed safe against truncation until we
8596  * unlock the page.
8597  */
8598 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8599 {
8600 	struct page *page = vmf->page;
8601 	struct inode *inode = file_inode(vma->vm_file);
8602 	struct btrfs_root *root = BTRFS_I(inode)->root;
8603 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8604 	struct btrfs_ordered_extent *ordered;
8605 	struct extent_state *cached_state = NULL;
8606 	char *kaddr;
8607 	unsigned long zero_start;
8608 	loff_t size;
8609 	int ret;
8610 	int reserved = 0;
8611 	u64 page_start;
8612 	u64 page_end;
8613 
8614 	sb_start_pagefault(inode->i_sb);
8615 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8616 	if (!ret) {
8617 		ret = file_update_time(vma->vm_file);
8618 		reserved = 1;
8619 	}
8620 	if (ret) {
8621 		if (ret == -ENOMEM)
8622 			ret = VM_FAULT_OOM;
8623 		else /* -ENOSPC, -EIO, etc */
8624 			ret = VM_FAULT_SIGBUS;
8625 		if (reserved)
8626 			goto out;
8627 		goto out_noreserve;
8628 	}
8629 
8630 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8631 again:
8632 	lock_page(page);
8633 	size = i_size_read(inode);
8634 	page_start = page_offset(page);
8635 	page_end = page_start + PAGE_CACHE_SIZE - 1;
8636 
8637 	if ((page->mapping != inode->i_mapping) ||
8638 	    (page_start >= size)) {
8639 		/* page got truncated out from underneath us */
8640 		goto out_unlock;
8641 	}
8642 	wait_on_page_writeback(page);
8643 
8644 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8645 	set_page_extent_mapped(page);
8646 
8647 	/*
8648 	 * we can't set the delalloc bits if there are pending ordered
8649 	 * extents.  Drop our locks and wait for them to finish
8650 	 */
8651 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8652 	if (ordered) {
8653 		unlock_extent_cached(io_tree, page_start, page_end,
8654 				     &cached_state, GFP_NOFS);
8655 		unlock_page(page);
8656 		btrfs_start_ordered_extent(inode, ordered, 1);
8657 		btrfs_put_ordered_extent(ordered);
8658 		goto again;
8659 	}
8660 
8661 	/*
8662 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8663 	 * if it was already dirty, so for space accounting reasons we need to
8664 	 * clear any delalloc bits for the range we are fixing to save.  There
8665 	 * is probably a better way to do this, but for now keep consistent with
8666 	 * prepare_pages in the normal write path.
8667 	 */
8668 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8669 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8670 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8671 			  0, 0, &cached_state, GFP_NOFS);
8672 
8673 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8674 					&cached_state);
8675 	if (ret) {
8676 		unlock_extent_cached(io_tree, page_start, page_end,
8677 				     &cached_state, GFP_NOFS);
8678 		ret = VM_FAULT_SIGBUS;
8679 		goto out_unlock;
8680 	}
8681 	ret = 0;
8682 
8683 	/* page is wholly or partially inside EOF */
8684 	if (page_start + PAGE_CACHE_SIZE > size)
8685 		zero_start = size & ~PAGE_CACHE_MASK;
8686 	else
8687 		zero_start = PAGE_CACHE_SIZE;
8688 
8689 	if (zero_start != PAGE_CACHE_SIZE) {
8690 		kaddr = kmap(page);
8691 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8692 		flush_dcache_page(page);
8693 		kunmap(page);
8694 	}
8695 	ClearPageChecked(page);
8696 	set_page_dirty(page);
8697 	SetPageUptodate(page);
8698 
8699 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8700 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8701 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8702 
8703 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8704 
8705 out_unlock:
8706 	if (!ret) {
8707 		sb_end_pagefault(inode->i_sb);
8708 		return VM_FAULT_LOCKED;
8709 	}
8710 	unlock_page(page);
8711 out:
8712 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8713 out_noreserve:
8714 	sb_end_pagefault(inode->i_sb);
8715 	return ret;
8716 }
8717 
8718 static int btrfs_truncate(struct inode *inode)
8719 {
8720 	struct btrfs_root *root = BTRFS_I(inode)->root;
8721 	struct btrfs_block_rsv *rsv;
8722 	int ret = 0;
8723 	int err = 0;
8724 	struct btrfs_trans_handle *trans;
8725 	u64 mask = root->sectorsize - 1;
8726 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8727 
8728 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8729 				       (u64)-1);
8730 	if (ret)
8731 		return ret;
8732 
8733 	/*
8734 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8735 	 * 3 things going on here
8736 	 *
8737 	 * 1) We need to reserve space for our orphan item and the space to
8738 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8739 	 * orphan item because we didn't reserve space to remove it.
8740 	 *
8741 	 * 2) We need to reserve space to update our inode.
8742 	 *
8743 	 * 3) We need to have something to cache all the space that is going to
8744 	 * be free'd up by the truncate operation, but also have some slack
8745 	 * space reserved in case it uses space during the truncate (thank you
8746 	 * very much snapshotting).
8747 	 *
8748 	 * And we need these to all be seperate.  The fact is we can use alot of
8749 	 * space doing the truncate, and we have no earthly idea how much space
8750 	 * we will use, so we need the truncate reservation to be seperate so it
8751 	 * doesn't end up using space reserved for updating the inode or
8752 	 * removing the orphan item.  We also need to be able to stop the
8753 	 * transaction and start a new one, which means we need to be able to
8754 	 * update the inode several times, and we have no idea of knowing how
8755 	 * many times that will be, so we can't just reserve 1 item for the
8756 	 * entirety of the opration, so that has to be done seperately as well.
8757 	 * Then there is the orphan item, which does indeed need to be held on
8758 	 * to for the whole operation, and we need nobody to touch this reserved
8759 	 * space except the orphan code.
8760 	 *
8761 	 * So that leaves us with
8762 	 *
8763 	 * 1) root->orphan_block_rsv - for the orphan deletion.
8764 	 * 2) rsv - for the truncate reservation, which we will steal from the
8765 	 * transaction reservation.
8766 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8767 	 * updating the inode.
8768 	 */
8769 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8770 	if (!rsv)
8771 		return -ENOMEM;
8772 	rsv->size = min_size;
8773 	rsv->failfast = 1;
8774 
8775 	/*
8776 	 * 1 for the truncate slack space
8777 	 * 1 for updating the inode.
8778 	 */
8779 	trans = btrfs_start_transaction(root, 2);
8780 	if (IS_ERR(trans)) {
8781 		err = PTR_ERR(trans);
8782 		goto out;
8783 	}
8784 
8785 	/* Migrate the slack space for the truncate to our reserve */
8786 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8787 				      min_size);
8788 	BUG_ON(ret);
8789 
8790 	/*
8791 	 * So if we truncate and then write and fsync we normally would just
8792 	 * write the extents that changed, which is a problem if we need to
8793 	 * first truncate that entire inode.  So set this flag so we write out
8794 	 * all of the extents in the inode to the sync log so we're completely
8795 	 * safe.
8796 	 */
8797 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8798 	trans->block_rsv = rsv;
8799 
8800 	while (1) {
8801 		ret = btrfs_truncate_inode_items(trans, root, inode,
8802 						 inode->i_size,
8803 						 BTRFS_EXTENT_DATA_KEY);
8804 		if (ret != -ENOSPC && ret != -EAGAIN) {
8805 			err = ret;
8806 			break;
8807 		}
8808 
8809 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8810 		ret = btrfs_update_inode(trans, root, inode);
8811 		if (ret) {
8812 			err = ret;
8813 			break;
8814 		}
8815 
8816 		btrfs_end_transaction(trans, root);
8817 		btrfs_btree_balance_dirty(root);
8818 
8819 		trans = btrfs_start_transaction(root, 2);
8820 		if (IS_ERR(trans)) {
8821 			ret = err = PTR_ERR(trans);
8822 			trans = NULL;
8823 			break;
8824 		}
8825 
8826 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8827 					      rsv, min_size);
8828 		BUG_ON(ret);	/* shouldn't happen */
8829 		trans->block_rsv = rsv;
8830 	}
8831 
8832 	if (ret == 0 && inode->i_nlink > 0) {
8833 		trans->block_rsv = root->orphan_block_rsv;
8834 		ret = btrfs_orphan_del(trans, inode);
8835 		if (ret)
8836 			err = ret;
8837 	}
8838 
8839 	if (trans) {
8840 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8841 		ret = btrfs_update_inode(trans, root, inode);
8842 		if (ret && !err)
8843 			err = ret;
8844 
8845 		ret = btrfs_end_transaction(trans, root);
8846 		btrfs_btree_balance_dirty(root);
8847 	}
8848 
8849 out:
8850 	btrfs_free_block_rsv(root, rsv);
8851 
8852 	if (ret && !err)
8853 		err = ret;
8854 
8855 	return err;
8856 }
8857 
8858 /*
8859  * create a new subvolume directory/inode (helper for the ioctl).
8860  */
8861 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8862 			     struct btrfs_root *new_root,
8863 			     struct btrfs_root *parent_root,
8864 			     u64 new_dirid)
8865 {
8866 	struct inode *inode;
8867 	int err;
8868 	u64 index = 0;
8869 
8870 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8871 				new_dirid, new_dirid,
8872 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8873 				&index);
8874 	if (IS_ERR(inode))
8875 		return PTR_ERR(inode);
8876 	inode->i_op = &btrfs_dir_inode_operations;
8877 	inode->i_fop = &btrfs_dir_file_operations;
8878 
8879 	set_nlink(inode, 1);
8880 	btrfs_i_size_write(inode, 0);
8881 	unlock_new_inode(inode);
8882 
8883 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8884 	if (err)
8885 		btrfs_err(new_root->fs_info,
8886 			  "error inheriting subvolume %llu properties: %d",
8887 			  new_root->root_key.objectid, err);
8888 
8889 	err = btrfs_update_inode(trans, new_root, inode);
8890 
8891 	iput(inode);
8892 	return err;
8893 }
8894 
8895 struct inode *btrfs_alloc_inode(struct super_block *sb)
8896 {
8897 	struct btrfs_inode *ei;
8898 	struct inode *inode;
8899 
8900 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8901 	if (!ei)
8902 		return NULL;
8903 
8904 	ei->root = NULL;
8905 	ei->generation = 0;
8906 	ei->last_trans = 0;
8907 	ei->last_sub_trans = 0;
8908 	ei->logged_trans = 0;
8909 	ei->delalloc_bytes = 0;
8910 	ei->defrag_bytes = 0;
8911 	ei->disk_i_size = 0;
8912 	ei->flags = 0;
8913 	ei->csum_bytes = 0;
8914 	ei->index_cnt = (u64)-1;
8915 	ei->dir_index = 0;
8916 	ei->last_unlink_trans = 0;
8917 	ei->last_log_commit = 0;
8918 
8919 	spin_lock_init(&ei->lock);
8920 	ei->outstanding_extents = 0;
8921 	ei->reserved_extents = 0;
8922 
8923 	ei->runtime_flags = 0;
8924 	ei->force_compress = BTRFS_COMPRESS_NONE;
8925 
8926 	ei->delayed_node = NULL;
8927 
8928 	ei->i_otime.tv_sec = 0;
8929 	ei->i_otime.tv_nsec = 0;
8930 
8931 	inode = &ei->vfs_inode;
8932 	extent_map_tree_init(&ei->extent_tree);
8933 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
8934 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8935 	ei->io_tree.track_uptodate = 1;
8936 	ei->io_failure_tree.track_uptodate = 1;
8937 	atomic_set(&ei->sync_writers, 0);
8938 	mutex_init(&ei->log_mutex);
8939 	mutex_init(&ei->delalloc_mutex);
8940 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8941 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8942 	RB_CLEAR_NODE(&ei->rb_node);
8943 
8944 	return inode;
8945 }
8946 
8947 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8948 void btrfs_test_destroy_inode(struct inode *inode)
8949 {
8950 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8951 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8952 }
8953 #endif
8954 
8955 static void btrfs_i_callback(struct rcu_head *head)
8956 {
8957 	struct inode *inode = container_of(head, struct inode, i_rcu);
8958 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8959 }
8960 
8961 void btrfs_destroy_inode(struct inode *inode)
8962 {
8963 	struct btrfs_ordered_extent *ordered;
8964 	struct btrfs_root *root = BTRFS_I(inode)->root;
8965 
8966 	WARN_ON(!hlist_empty(&inode->i_dentry));
8967 	WARN_ON(inode->i_data.nrpages);
8968 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8969 	WARN_ON(BTRFS_I(inode)->reserved_extents);
8970 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8971 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8972 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
8973 
8974 	/*
8975 	 * This can happen where we create an inode, but somebody else also
8976 	 * created the same inode and we need to destroy the one we already
8977 	 * created.
8978 	 */
8979 	if (!root)
8980 		goto free;
8981 
8982 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8983 		     &BTRFS_I(inode)->runtime_flags)) {
8984 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8985 			btrfs_ino(inode));
8986 		atomic_dec(&root->orphan_inodes);
8987 	}
8988 
8989 	while (1) {
8990 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8991 		if (!ordered)
8992 			break;
8993 		else {
8994 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8995 				ordered->file_offset, ordered->len);
8996 			btrfs_remove_ordered_extent(inode, ordered);
8997 			btrfs_put_ordered_extent(ordered);
8998 			btrfs_put_ordered_extent(ordered);
8999 		}
9000 	}
9001 	inode_tree_del(inode);
9002 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9003 free:
9004 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9005 }
9006 
9007 int btrfs_drop_inode(struct inode *inode)
9008 {
9009 	struct btrfs_root *root = BTRFS_I(inode)->root;
9010 
9011 	if (root == NULL)
9012 		return 1;
9013 
9014 	/* the snap/subvol tree is on deleting */
9015 	if (btrfs_root_refs(&root->root_item) == 0)
9016 		return 1;
9017 	else
9018 		return generic_drop_inode(inode);
9019 }
9020 
9021 static void init_once(void *foo)
9022 {
9023 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9024 
9025 	inode_init_once(&ei->vfs_inode);
9026 }
9027 
9028 void btrfs_destroy_cachep(void)
9029 {
9030 	/*
9031 	 * Make sure all delayed rcu free inodes are flushed before we
9032 	 * destroy cache.
9033 	 */
9034 	rcu_barrier();
9035 	if (btrfs_inode_cachep)
9036 		kmem_cache_destroy(btrfs_inode_cachep);
9037 	if (btrfs_trans_handle_cachep)
9038 		kmem_cache_destroy(btrfs_trans_handle_cachep);
9039 	if (btrfs_transaction_cachep)
9040 		kmem_cache_destroy(btrfs_transaction_cachep);
9041 	if (btrfs_path_cachep)
9042 		kmem_cache_destroy(btrfs_path_cachep);
9043 	if (btrfs_free_space_cachep)
9044 		kmem_cache_destroy(btrfs_free_space_cachep);
9045 	if (btrfs_delalloc_work_cachep)
9046 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
9047 }
9048 
9049 int btrfs_init_cachep(void)
9050 {
9051 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9052 			sizeof(struct btrfs_inode), 0,
9053 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9054 	if (!btrfs_inode_cachep)
9055 		goto fail;
9056 
9057 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9058 			sizeof(struct btrfs_trans_handle), 0,
9059 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9060 	if (!btrfs_trans_handle_cachep)
9061 		goto fail;
9062 
9063 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9064 			sizeof(struct btrfs_transaction), 0,
9065 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9066 	if (!btrfs_transaction_cachep)
9067 		goto fail;
9068 
9069 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9070 			sizeof(struct btrfs_path), 0,
9071 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9072 	if (!btrfs_path_cachep)
9073 		goto fail;
9074 
9075 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9076 			sizeof(struct btrfs_free_space), 0,
9077 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9078 	if (!btrfs_free_space_cachep)
9079 		goto fail;
9080 
9081 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9082 			sizeof(struct btrfs_delalloc_work), 0,
9083 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9084 			NULL);
9085 	if (!btrfs_delalloc_work_cachep)
9086 		goto fail;
9087 
9088 	return 0;
9089 fail:
9090 	btrfs_destroy_cachep();
9091 	return -ENOMEM;
9092 }
9093 
9094 static int btrfs_getattr(struct vfsmount *mnt,
9095 			 struct dentry *dentry, struct kstat *stat)
9096 {
9097 	u64 delalloc_bytes;
9098 	struct inode *inode = d_inode(dentry);
9099 	u32 blocksize = inode->i_sb->s_blocksize;
9100 
9101 	generic_fillattr(inode, stat);
9102 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9103 	stat->blksize = PAGE_CACHE_SIZE;
9104 
9105 	spin_lock(&BTRFS_I(inode)->lock);
9106 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9107 	spin_unlock(&BTRFS_I(inode)->lock);
9108 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9109 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9110 	return 0;
9111 }
9112 
9113 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9114 			   struct inode *new_dir, struct dentry *new_dentry)
9115 {
9116 	struct btrfs_trans_handle *trans;
9117 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9118 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9119 	struct inode *new_inode = d_inode(new_dentry);
9120 	struct inode *old_inode = d_inode(old_dentry);
9121 	struct timespec ctime = CURRENT_TIME;
9122 	u64 index = 0;
9123 	u64 root_objectid;
9124 	int ret;
9125 	u64 old_ino = btrfs_ino(old_inode);
9126 
9127 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9128 		return -EPERM;
9129 
9130 	/* we only allow rename subvolume link between subvolumes */
9131 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9132 		return -EXDEV;
9133 
9134 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9135 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9136 		return -ENOTEMPTY;
9137 
9138 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9139 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9140 		return -ENOTEMPTY;
9141 
9142 
9143 	/* check for collisions, even if the  name isn't there */
9144 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9145 			     new_dentry->d_name.name,
9146 			     new_dentry->d_name.len);
9147 
9148 	if (ret) {
9149 		if (ret == -EEXIST) {
9150 			/* we shouldn't get
9151 			 * eexist without a new_inode */
9152 			if (WARN_ON(!new_inode)) {
9153 				return ret;
9154 			}
9155 		} else {
9156 			/* maybe -EOVERFLOW */
9157 			return ret;
9158 		}
9159 	}
9160 	ret = 0;
9161 
9162 	/*
9163 	 * we're using rename to replace one file with another.  Start IO on it
9164 	 * now so  we don't add too much work to the end of the transaction
9165 	 */
9166 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9167 		filemap_flush(old_inode->i_mapping);
9168 
9169 	/* close the racy window with snapshot create/destroy ioctl */
9170 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9171 		down_read(&root->fs_info->subvol_sem);
9172 	/*
9173 	 * We want to reserve the absolute worst case amount of items.  So if
9174 	 * both inodes are subvols and we need to unlink them then that would
9175 	 * require 4 item modifications, but if they are both normal inodes it
9176 	 * would require 5 item modifications, so we'll assume their normal
9177 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9178 	 * should cover the worst case number of items we'll modify.
9179 	 */
9180 	trans = btrfs_start_transaction(root, 11);
9181 	if (IS_ERR(trans)) {
9182                 ret = PTR_ERR(trans);
9183                 goto out_notrans;
9184         }
9185 
9186 	if (dest != root)
9187 		btrfs_record_root_in_trans(trans, dest);
9188 
9189 	ret = btrfs_set_inode_index(new_dir, &index);
9190 	if (ret)
9191 		goto out_fail;
9192 
9193 	BTRFS_I(old_inode)->dir_index = 0ULL;
9194 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9195 		/* force full log commit if subvolume involved. */
9196 		btrfs_set_log_full_commit(root->fs_info, trans);
9197 	} else {
9198 		ret = btrfs_insert_inode_ref(trans, dest,
9199 					     new_dentry->d_name.name,
9200 					     new_dentry->d_name.len,
9201 					     old_ino,
9202 					     btrfs_ino(new_dir), index);
9203 		if (ret)
9204 			goto out_fail;
9205 		/*
9206 		 * this is an ugly little race, but the rename is required
9207 		 * to make sure that if we crash, the inode is either at the
9208 		 * old name or the new one.  pinning the log transaction lets
9209 		 * us make sure we don't allow a log commit to come in after
9210 		 * we unlink the name but before we add the new name back in.
9211 		 */
9212 		btrfs_pin_log_trans(root);
9213 	}
9214 
9215 	inode_inc_iversion(old_dir);
9216 	inode_inc_iversion(new_dir);
9217 	inode_inc_iversion(old_inode);
9218 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9219 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9220 	old_inode->i_ctime = ctime;
9221 
9222 	if (old_dentry->d_parent != new_dentry->d_parent)
9223 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9224 
9225 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9226 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9227 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9228 					old_dentry->d_name.name,
9229 					old_dentry->d_name.len);
9230 	} else {
9231 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9232 					d_inode(old_dentry),
9233 					old_dentry->d_name.name,
9234 					old_dentry->d_name.len);
9235 		if (!ret)
9236 			ret = btrfs_update_inode(trans, root, old_inode);
9237 	}
9238 	if (ret) {
9239 		btrfs_abort_transaction(trans, root, ret);
9240 		goto out_fail;
9241 	}
9242 
9243 	if (new_inode) {
9244 		inode_inc_iversion(new_inode);
9245 		new_inode->i_ctime = CURRENT_TIME;
9246 		if (unlikely(btrfs_ino(new_inode) ==
9247 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9248 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9249 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9250 						root_objectid,
9251 						new_dentry->d_name.name,
9252 						new_dentry->d_name.len);
9253 			BUG_ON(new_inode->i_nlink == 0);
9254 		} else {
9255 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9256 						 d_inode(new_dentry),
9257 						 new_dentry->d_name.name,
9258 						 new_dentry->d_name.len);
9259 		}
9260 		if (!ret && new_inode->i_nlink == 0)
9261 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9262 		if (ret) {
9263 			btrfs_abort_transaction(trans, root, ret);
9264 			goto out_fail;
9265 		}
9266 	}
9267 
9268 	ret = btrfs_add_link(trans, new_dir, old_inode,
9269 			     new_dentry->d_name.name,
9270 			     new_dentry->d_name.len, 0, index);
9271 	if (ret) {
9272 		btrfs_abort_transaction(trans, root, ret);
9273 		goto out_fail;
9274 	}
9275 
9276 	if (old_inode->i_nlink == 1)
9277 		BTRFS_I(old_inode)->dir_index = index;
9278 
9279 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9280 		struct dentry *parent = new_dentry->d_parent;
9281 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9282 		btrfs_end_log_trans(root);
9283 	}
9284 out_fail:
9285 	btrfs_end_transaction(trans, root);
9286 out_notrans:
9287 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9288 		up_read(&root->fs_info->subvol_sem);
9289 
9290 	return ret;
9291 }
9292 
9293 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9294 			 struct inode *new_dir, struct dentry *new_dentry,
9295 			 unsigned int flags)
9296 {
9297 	if (flags & ~RENAME_NOREPLACE)
9298 		return -EINVAL;
9299 
9300 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9301 }
9302 
9303 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9304 {
9305 	struct btrfs_delalloc_work *delalloc_work;
9306 	struct inode *inode;
9307 
9308 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9309 				     work);
9310 	inode = delalloc_work->inode;
9311 	if (delalloc_work->wait) {
9312 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
9313 	} else {
9314 		filemap_flush(inode->i_mapping);
9315 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9316 			     &BTRFS_I(inode)->runtime_flags))
9317 			filemap_flush(inode->i_mapping);
9318 	}
9319 
9320 	if (delalloc_work->delay_iput)
9321 		btrfs_add_delayed_iput(inode);
9322 	else
9323 		iput(inode);
9324 	complete(&delalloc_work->completion);
9325 }
9326 
9327 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9328 						    int wait, int delay_iput)
9329 {
9330 	struct btrfs_delalloc_work *work;
9331 
9332 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9333 	if (!work)
9334 		return NULL;
9335 
9336 	init_completion(&work->completion);
9337 	INIT_LIST_HEAD(&work->list);
9338 	work->inode = inode;
9339 	work->wait = wait;
9340 	work->delay_iput = delay_iput;
9341 	WARN_ON_ONCE(!inode);
9342 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9343 			btrfs_run_delalloc_work, NULL, NULL);
9344 
9345 	return work;
9346 }
9347 
9348 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9349 {
9350 	wait_for_completion(&work->completion);
9351 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
9352 }
9353 
9354 /*
9355  * some fairly slow code that needs optimization. This walks the list
9356  * of all the inodes with pending delalloc and forces them to disk.
9357  */
9358 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9359 				   int nr)
9360 {
9361 	struct btrfs_inode *binode;
9362 	struct inode *inode;
9363 	struct btrfs_delalloc_work *work, *next;
9364 	struct list_head works;
9365 	struct list_head splice;
9366 	int ret = 0;
9367 
9368 	INIT_LIST_HEAD(&works);
9369 	INIT_LIST_HEAD(&splice);
9370 
9371 	mutex_lock(&root->delalloc_mutex);
9372 	spin_lock(&root->delalloc_lock);
9373 	list_splice_init(&root->delalloc_inodes, &splice);
9374 	while (!list_empty(&splice)) {
9375 		binode = list_entry(splice.next, struct btrfs_inode,
9376 				    delalloc_inodes);
9377 
9378 		list_move_tail(&binode->delalloc_inodes,
9379 			       &root->delalloc_inodes);
9380 		inode = igrab(&binode->vfs_inode);
9381 		if (!inode) {
9382 			cond_resched_lock(&root->delalloc_lock);
9383 			continue;
9384 		}
9385 		spin_unlock(&root->delalloc_lock);
9386 
9387 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9388 		if (!work) {
9389 			if (delay_iput)
9390 				btrfs_add_delayed_iput(inode);
9391 			else
9392 				iput(inode);
9393 			ret = -ENOMEM;
9394 			goto out;
9395 		}
9396 		list_add_tail(&work->list, &works);
9397 		btrfs_queue_work(root->fs_info->flush_workers,
9398 				 &work->work);
9399 		ret++;
9400 		if (nr != -1 && ret >= nr)
9401 			goto out;
9402 		cond_resched();
9403 		spin_lock(&root->delalloc_lock);
9404 	}
9405 	spin_unlock(&root->delalloc_lock);
9406 
9407 out:
9408 	list_for_each_entry_safe(work, next, &works, list) {
9409 		list_del_init(&work->list);
9410 		btrfs_wait_and_free_delalloc_work(work);
9411 	}
9412 
9413 	if (!list_empty_careful(&splice)) {
9414 		spin_lock(&root->delalloc_lock);
9415 		list_splice_tail(&splice, &root->delalloc_inodes);
9416 		spin_unlock(&root->delalloc_lock);
9417 	}
9418 	mutex_unlock(&root->delalloc_mutex);
9419 	return ret;
9420 }
9421 
9422 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9423 {
9424 	int ret;
9425 
9426 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9427 		return -EROFS;
9428 
9429 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9430 	if (ret > 0)
9431 		ret = 0;
9432 	/*
9433 	 * the filemap_flush will queue IO into the worker threads, but
9434 	 * we have to make sure the IO is actually started and that
9435 	 * ordered extents get created before we return
9436 	 */
9437 	atomic_inc(&root->fs_info->async_submit_draining);
9438 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9439 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9440 		wait_event(root->fs_info->async_submit_wait,
9441 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9442 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9443 	}
9444 	atomic_dec(&root->fs_info->async_submit_draining);
9445 	return ret;
9446 }
9447 
9448 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9449 			       int nr)
9450 {
9451 	struct btrfs_root *root;
9452 	struct list_head splice;
9453 	int ret;
9454 
9455 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9456 		return -EROFS;
9457 
9458 	INIT_LIST_HEAD(&splice);
9459 
9460 	mutex_lock(&fs_info->delalloc_root_mutex);
9461 	spin_lock(&fs_info->delalloc_root_lock);
9462 	list_splice_init(&fs_info->delalloc_roots, &splice);
9463 	while (!list_empty(&splice) && nr) {
9464 		root = list_first_entry(&splice, struct btrfs_root,
9465 					delalloc_root);
9466 		root = btrfs_grab_fs_root(root);
9467 		BUG_ON(!root);
9468 		list_move_tail(&root->delalloc_root,
9469 			       &fs_info->delalloc_roots);
9470 		spin_unlock(&fs_info->delalloc_root_lock);
9471 
9472 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9473 		btrfs_put_fs_root(root);
9474 		if (ret < 0)
9475 			goto out;
9476 
9477 		if (nr != -1) {
9478 			nr -= ret;
9479 			WARN_ON(nr < 0);
9480 		}
9481 		spin_lock(&fs_info->delalloc_root_lock);
9482 	}
9483 	spin_unlock(&fs_info->delalloc_root_lock);
9484 
9485 	ret = 0;
9486 	atomic_inc(&fs_info->async_submit_draining);
9487 	while (atomic_read(&fs_info->nr_async_submits) ||
9488 	      atomic_read(&fs_info->async_delalloc_pages)) {
9489 		wait_event(fs_info->async_submit_wait,
9490 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9491 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9492 	}
9493 	atomic_dec(&fs_info->async_submit_draining);
9494 out:
9495 	if (!list_empty_careful(&splice)) {
9496 		spin_lock(&fs_info->delalloc_root_lock);
9497 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9498 		spin_unlock(&fs_info->delalloc_root_lock);
9499 	}
9500 	mutex_unlock(&fs_info->delalloc_root_mutex);
9501 	return ret;
9502 }
9503 
9504 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9505 			 const char *symname)
9506 {
9507 	struct btrfs_trans_handle *trans;
9508 	struct btrfs_root *root = BTRFS_I(dir)->root;
9509 	struct btrfs_path *path;
9510 	struct btrfs_key key;
9511 	struct inode *inode = NULL;
9512 	int err;
9513 	int drop_inode = 0;
9514 	u64 objectid;
9515 	u64 index = 0;
9516 	int name_len;
9517 	int datasize;
9518 	unsigned long ptr;
9519 	struct btrfs_file_extent_item *ei;
9520 	struct extent_buffer *leaf;
9521 
9522 	name_len = strlen(symname);
9523 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9524 		return -ENAMETOOLONG;
9525 
9526 	/*
9527 	 * 2 items for inode item and ref
9528 	 * 2 items for dir items
9529 	 * 1 item for xattr if selinux is on
9530 	 */
9531 	trans = btrfs_start_transaction(root, 5);
9532 	if (IS_ERR(trans))
9533 		return PTR_ERR(trans);
9534 
9535 	err = btrfs_find_free_ino(root, &objectid);
9536 	if (err)
9537 		goto out_unlock;
9538 
9539 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9540 				dentry->d_name.len, btrfs_ino(dir), objectid,
9541 				S_IFLNK|S_IRWXUGO, &index);
9542 	if (IS_ERR(inode)) {
9543 		err = PTR_ERR(inode);
9544 		goto out_unlock;
9545 	}
9546 
9547 	/*
9548 	* If the active LSM wants to access the inode during
9549 	* d_instantiate it needs these. Smack checks to see
9550 	* if the filesystem supports xattrs by looking at the
9551 	* ops vector.
9552 	*/
9553 	inode->i_fop = &btrfs_file_operations;
9554 	inode->i_op = &btrfs_file_inode_operations;
9555 	inode->i_mapping->a_ops = &btrfs_aops;
9556 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9557 
9558 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9559 	if (err)
9560 		goto out_unlock_inode;
9561 
9562 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9563 	if (err)
9564 		goto out_unlock_inode;
9565 
9566 	path = btrfs_alloc_path();
9567 	if (!path) {
9568 		err = -ENOMEM;
9569 		goto out_unlock_inode;
9570 	}
9571 	key.objectid = btrfs_ino(inode);
9572 	key.offset = 0;
9573 	key.type = BTRFS_EXTENT_DATA_KEY;
9574 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9575 	err = btrfs_insert_empty_item(trans, root, path, &key,
9576 				      datasize);
9577 	if (err) {
9578 		btrfs_free_path(path);
9579 		goto out_unlock_inode;
9580 	}
9581 	leaf = path->nodes[0];
9582 	ei = btrfs_item_ptr(leaf, path->slots[0],
9583 			    struct btrfs_file_extent_item);
9584 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9585 	btrfs_set_file_extent_type(leaf, ei,
9586 				   BTRFS_FILE_EXTENT_INLINE);
9587 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9588 	btrfs_set_file_extent_compression(leaf, ei, 0);
9589 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9590 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9591 
9592 	ptr = btrfs_file_extent_inline_start(ei);
9593 	write_extent_buffer(leaf, symname, ptr, name_len);
9594 	btrfs_mark_buffer_dirty(leaf);
9595 	btrfs_free_path(path);
9596 
9597 	inode->i_op = &btrfs_symlink_inode_operations;
9598 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9599 	inode_set_bytes(inode, name_len);
9600 	btrfs_i_size_write(inode, name_len);
9601 	err = btrfs_update_inode(trans, root, inode);
9602 	if (err) {
9603 		drop_inode = 1;
9604 		goto out_unlock_inode;
9605 	}
9606 
9607 	unlock_new_inode(inode);
9608 	d_instantiate(dentry, inode);
9609 
9610 out_unlock:
9611 	btrfs_end_transaction(trans, root);
9612 	if (drop_inode) {
9613 		inode_dec_link_count(inode);
9614 		iput(inode);
9615 	}
9616 	btrfs_btree_balance_dirty(root);
9617 	return err;
9618 
9619 out_unlock_inode:
9620 	drop_inode = 1;
9621 	unlock_new_inode(inode);
9622 	goto out_unlock;
9623 }
9624 
9625 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9626 				       u64 start, u64 num_bytes, u64 min_size,
9627 				       loff_t actual_len, u64 *alloc_hint,
9628 				       struct btrfs_trans_handle *trans)
9629 {
9630 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9631 	struct extent_map *em;
9632 	struct btrfs_root *root = BTRFS_I(inode)->root;
9633 	struct btrfs_key ins;
9634 	u64 cur_offset = start;
9635 	u64 i_size;
9636 	u64 cur_bytes;
9637 	int ret = 0;
9638 	bool own_trans = true;
9639 
9640 	if (trans)
9641 		own_trans = false;
9642 	while (num_bytes > 0) {
9643 		if (own_trans) {
9644 			trans = btrfs_start_transaction(root, 3);
9645 			if (IS_ERR(trans)) {
9646 				ret = PTR_ERR(trans);
9647 				break;
9648 			}
9649 		}
9650 
9651 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9652 		cur_bytes = max(cur_bytes, min_size);
9653 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9654 					   *alloc_hint, &ins, 1, 0);
9655 		if (ret) {
9656 			if (own_trans)
9657 				btrfs_end_transaction(trans, root);
9658 			break;
9659 		}
9660 
9661 		ret = insert_reserved_file_extent(trans, inode,
9662 						  cur_offset, ins.objectid,
9663 						  ins.offset, ins.offset,
9664 						  ins.offset, 0, 0, 0,
9665 						  BTRFS_FILE_EXTENT_PREALLOC);
9666 		if (ret) {
9667 			btrfs_free_reserved_extent(root, ins.objectid,
9668 						   ins.offset, 0);
9669 			btrfs_abort_transaction(trans, root, ret);
9670 			if (own_trans)
9671 				btrfs_end_transaction(trans, root);
9672 			break;
9673 		}
9674 
9675 		btrfs_drop_extent_cache(inode, cur_offset,
9676 					cur_offset + ins.offset -1, 0);
9677 
9678 		em = alloc_extent_map();
9679 		if (!em) {
9680 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9681 				&BTRFS_I(inode)->runtime_flags);
9682 			goto next;
9683 		}
9684 
9685 		em->start = cur_offset;
9686 		em->orig_start = cur_offset;
9687 		em->len = ins.offset;
9688 		em->block_start = ins.objectid;
9689 		em->block_len = ins.offset;
9690 		em->orig_block_len = ins.offset;
9691 		em->ram_bytes = ins.offset;
9692 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9693 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9694 		em->generation = trans->transid;
9695 
9696 		while (1) {
9697 			write_lock(&em_tree->lock);
9698 			ret = add_extent_mapping(em_tree, em, 1);
9699 			write_unlock(&em_tree->lock);
9700 			if (ret != -EEXIST)
9701 				break;
9702 			btrfs_drop_extent_cache(inode, cur_offset,
9703 						cur_offset + ins.offset - 1,
9704 						0);
9705 		}
9706 		free_extent_map(em);
9707 next:
9708 		num_bytes -= ins.offset;
9709 		cur_offset += ins.offset;
9710 		*alloc_hint = ins.objectid + ins.offset;
9711 
9712 		inode_inc_iversion(inode);
9713 		inode->i_ctime = CURRENT_TIME;
9714 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9715 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9716 		    (actual_len > inode->i_size) &&
9717 		    (cur_offset > inode->i_size)) {
9718 			if (cur_offset > actual_len)
9719 				i_size = actual_len;
9720 			else
9721 				i_size = cur_offset;
9722 			i_size_write(inode, i_size);
9723 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9724 		}
9725 
9726 		ret = btrfs_update_inode(trans, root, inode);
9727 
9728 		if (ret) {
9729 			btrfs_abort_transaction(trans, root, ret);
9730 			if (own_trans)
9731 				btrfs_end_transaction(trans, root);
9732 			break;
9733 		}
9734 
9735 		if (own_trans)
9736 			btrfs_end_transaction(trans, root);
9737 	}
9738 	return ret;
9739 }
9740 
9741 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9742 			      u64 start, u64 num_bytes, u64 min_size,
9743 			      loff_t actual_len, u64 *alloc_hint)
9744 {
9745 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9746 					   min_size, actual_len, alloc_hint,
9747 					   NULL);
9748 }
9749 
9750 int btrfs_prealloc_file_range_trans(struct inode *inode,
9751 				    struct btrfs_trans_handle *trans, int mode,
9752 				    u64 start, u64 num_bytes, u64 min_size,
9753 				    loff_t actual_len, u64 *alloc_hint)
9754 {
9755 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9756 					   min_size, actual_len, alloc_hint, trans);
9757 }
9758 
9759 static int btrfs_set_page_dirty(struct page *page)
9760 {
9761 	return __set_page_dirty_nobuffers(page);
9762 }
9763 
9764 static int btrfs_permission(struct inode *inode, int mask)
9765 {
9766 	struct btrfs_root *root = BTRFS_I(inode)->root;
9767 	umode_t mode = inode->i_mode;
9768 
9769 	if (mask & MAY_WRITE &&
9770 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9771 		if (btrfs_root_readonly(root))
9772 			return -EROFS;
9773 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9774 			return -EACCES;
9775 	}
9776 	return generic_permission(inode, mask);
9777 }
9778 
9779 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9780 {
9781 	struct btrfs_trans_handle *trans;
9782 	struct btrfs_root *root = BTRFS_I(dir)->root;
9783 	struct inode *inode = NULL;
9784 	u64 objectid;
9785 	u64 index;
9786 	int ret = 0;
9787 
9788 	/*
9789 	 * 5 units required for adding orphan entry
9790 	 */
9791 	trans = btrfs_start_transaction(root, 5);
9792 	if (IS_ERR(trans))
9793 		return PTR_ERR(trans);
9794 
9795 	ret = btrfs_find_free_ino(root, &objectid);
9796 	if (ret)
9797 		goto out;
9798 
9799 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9800 				btrfs_ino(dir), objectid, mode, &index);
9801 	if (IS_ERR(inode)) {
9802 		ret = PTR_ERR(inode);
9803 		inode = NULL;
9804 		goto out;
9805 	}
9806 
9807 	inode->i_fop = &btrfs_file_operations;
9808 	inode->i_op = &btrfs_file_inode_operations;
9809 
9810 	inode->i_mapping->a_ops = &btrfs_aops;
9811 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9812 
9813 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9814 	if (ret)
9815 		goto out_inode;
9816 
9817 	ret = btrfs_update_inode(trans, root, inode);
9818 	if (ret)
9819 		goto out_inode;
9820 	ret = btrfs_orphan_add(trans, inode);
9821 	if (ret)
9822 		goto out_inode;
9823 
9824 	/*
9825 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9826 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9827 	 * through:
9828 	 *
9829 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9830 	 */
9831 	set_nlink(inode, 1);
9832 	unlock_new_inode(inode);
9833 	d_tmpfile(dentry, inode);
9834 	mark_inode_dirty(inode);
9835 
9836 out:
9837 	btrfs_end_transaction(trans, root);
9838 	if (ret)
9839 		iput(inode);
9840 	btrfs_balance_delayed_items(root);
9841 	btrfs_btree_balance_dirty(root);
9842 	return ret;
9843 
9844 out_inode:
9845 	unlock_new_inode(inode);
9846 	goto out;
9847 
9848 }
9849 
9850 /* Inspired by filemap_check_errors() */
9851 int btrfs_inode_check_errors(struct inode *inode)
9852 {
9853 	int ret = 0;
9854 
9855 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9856 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9857 		ret = -ENOSPC;
9858 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9859 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9860 		ret = -EIO;
9861 
9862 	return ret;
9863 }
9864 
9865 static const struct inode_operations btrfs_dir_inode_operations = {
9866 	.getattr	= btrfs_getattr,
9867 	.lookup		= btrfs_lookup,
9868 	.create		= btrfs_create,
9869 	.unlink		= btrfs_unlink,
9870 	.link		= btrfs_link,
9871 	.mkdir		= btrfs_mkdir,
9872 	.rmdir		= btrfs_rmdir,
9873 	.rename2	= btrfs_rename2,
9874 	.symlink	= btrfs_symlink,
9875 	.setattr	= btrfs_setattr,
9876 	.mknod		= btrfs_mknod,
9877 	.setxattr	= btrfs_setxattr,
9878 	.getxattr	= btrfs_getxattr,
9879 	.listxattr	= btrfs_listxattr,
9880 	.removexattr	= btrfs_removexattr,
9881 	.permission	= btrfs_permission,
9882 	.get_acl	= btrfs_get_acl,
9883 	.set_acl	= btrfs_set_acl,
9884 	.update_time	= btrfs_update_time,
9885 	.tmpfile        = btrfs_tmpfile,
9886 };
9887 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9888 	.lookup		= btrfs_lookup,
9889 	.permission	= btrfs_permission,
9890 	.get_acl	= btrfs_get_acl,
9891 	.set_acl	= btrfs_set_acl,
9892 	.update_time	= btrfs_update_time,
9893 };
9894 
9895 static const struct file_operations btrfs_dir_file_operations = {
9896 	.llseek		= generic_file_llseek,
9897 	.read		= generic_read_dir,
9898 	.iterate	= btrfs_real_readdir,
9899 	.unlocked_ioctl	= btrfs_ioctl,
9900 #ifdef CONFIG_COMPAT
9901 	.compat_ioctl	= btrfs_ioctl,
9902 #endif
9903 	.release        = btrfs_release_file,
9904 	.fsync		= btrfs_sync_file,
9905 };
9906 
9907 static struct extent_io_ops btrfs_extent_io_ops = {
9908 	.fill_delalloc = run_delalloc_range,
9909 	.submit_bio_hook = btrfs_submit_bio_hook,
9910 	.merge_bio_hook = btrfs_merge_bio_hook,
9911 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
9912 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
9913 	.writepage_start_hook = btrfs_writepage_start_hook,
9914 	.set_bit_hook = btrfs_set_bit_hook,
9915 	.clear_bit_hook = btrfs_clear_bit_hook,
9916 	.merge_extent_hook = btrfs_merge_extent_hook,
9917 	.split_extent_hook = btrfs_split_extent_hook,
9918 };
9919 
9920 /*
9921  * btrfs doesn't support the bmap operation because swapfiles
9922  * use bmap to make a mapping of extents in the file.  They assume
9923  * these extents won't change over the life of the file and they
9924  * use the bmap result to do IO directly to the drive.
9925  *
9926  * the btrfs bmap call would return logical addresses that aren't
9927  * suitable for IO and they also will change frequently as COW
9928  * operations happen.  So, swapfile + btrfs == corruption.
9929  *
9930  * For now we're avoiding this by dropping bmap.
9931  */
9932 static const struct address_space_operations btrfs_aops = {
9933 	.readpage	= btrfs_readpage,
9934 	.writepage	= btrfs_writepage,
9935 	.writepages	= btrfs_writepages,
9936 	.readpages	= btrfs_readpages,
9937 	.direct_IO	= btrfs_direct_IO,
9938 	.invalidatepage = btrfs_invalidatepage,
9939 	.releasepage	= btrfs_releasepage,
9940 	.set_page_dirty	= btrfs_set_page_dirty,
9941 	.error_remove_page = generic_error_remove_page,
9942 };
9943 
9944 static const struct address_space_operations btrfs_symlink_aops = {
9945 	.readpage	= btrfs_readpage,
9946 	.writepage	= btrfs_writepage,
9947 	.invalidatepage = btrfs_invalidatepage,
9948 	.releasepage	= btrfs_releasepage,
9949 };
9950 
9951 static const struct inode_operations btrfs_file_inode_operations = {
9952 	.getattr	= btrfs_getattr,
9953 	.setattr	= btrfs_setattr,
9954 	.setxattr	= btrfs_setxattr,
9955 	.getxattr	= btrfs_getxattr,
9956 	.listxattr      = btrfs_listxattr,
9957 	.removexattr	= btrfs_removexattr,
9958 	.permission	= btrfs_permission,
9959 	.fiemap		= btrfs_fiemap,
9960 	.get_acl	= btrfs_get_acl,
9961 	.set_acl	= btrfs_set_acl,
9962 	.update_time	= btrfs_update_time,
9963 };
9964 static const struct inode_operations btrfs_special_inode_operations = {
9965 	.getattr	= btrfs_getattr,
9966 	.setattr	= btrfs_setattr,
9967 	.permission	= btrfs_permission,
9968 	.setxattr	= btrfs_setxattr,
9969 	.getxattr	= btrfs_getxattr,
9970 	.listxattr	= btrfs_listxattr,
9971 	.removexattr	= btrfs_removexattr,
9972 	.get_acl	= btrfs_get_acl,
9973 	.set_acl	= btrfs_set_acl,
9974 	.update_time	= btrfs_update_time,
9975 };
9976 static const struct inode_operations btrfs_symlink_inode_operations = {
9977 	.readlink	= generic_readlink,
9978 	.follow_link	= page_follow_link_light,
9979 	.put_link	= page_put_link,
9980 	.getattr	= btrfs_getattr,
9981 	.setattr	= btrfs_setattr,
9982 	.permission	= btrfs_permission,
9983 	.setxattr	= btrfs_setxattr,
9984 	.getxattr	= btrfs_getxattr,
9985 	.listxattr	= btrfs_listxattr,
9986 	.removexattr	= btrfs_removexattr,
9987 	.update_time	= btrfs_update_time,
9988 };
9989 
9990 const struct dentry_operations btrfs_dentry_operations = {
9991 	.d_delete	= btrfs_dentry_delete,
9992 	.d_release	= btrfs_dentry_release,
9993 };
9994