1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_is_data_reloc_root(root)) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 pgoff_t index = offset >> PAGE_SHIFT; 399 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 if (IS_ERR(folio)) { 405 index++; 406 continue; 407 } 408 409 index = folio_end(folio) >> PAGE_SHIFT; 410 /* 411 * Here we just clear all Ordered bits for every page in the 412 * range, then btrfs_mark_ordered_io_finished() will handle 413 * the ordered extent accounting for the range. 414 */ 415 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 416 offset, bytes); 417 folio_put(folio); 418 } 419 420 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 421 } 422 423 static int btrfs_dirty_inode(struct btrfs_inode *inode); 424 425 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 426 struct btrfs_new_inode_args *args) 427 { 428 int ret; 429 430 if (args->default_acl) { 431 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 432 ACL_TYPE_DEFAULT); 433 if (ret) 434 return ret; 435 } 436 if (args->acl) { 437 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 438 if (ret) 439 return ret; 440 } 441 if (!args->default_acl && !args->acl) 442 cache_no_acl(args->inode); 443 return btrfs_xattr_security_init(trans, args->inode, args->dir, 444 &args->dentry->d_name); 445 } 446 447 /* 448 * this does all the hard work for inserting an inline extent into 449 * the btree. The caller should have done a btrfs_drop_extents so that 450 * no overlapping inline items exist in the btree 451 */ 452 static int insert_inline_extent(struct btrfs_trans_handle *trans, 453 struct btrfs_path *path, 454 struct btrfs_inode *inode, bool extent_inserted, 455 size_t size, size_t compressed_size, 456 int compress_type, 457 struct folio *compressed_folio, 458 bool update_i_size) 459 { 460 struct btrfs_root *root = inode->root; 461 struct extent_buffer *leaf; 462 const u32 sectorsize = trans->fs_info->sectorsize; 463 char *kaddr; 464 unsigned long ptr; 465 struct btrfs_file_extent_item *ei; 466 int ret; 467 size_t cur_size = size; 468 u64 i_size; 469 470 /* 471 * The decompressed size must still be no larger than a sector. Under 472 * heavy race, we can have size == 0 passed in, but that shouldn't be a 473 * big deal and we can continue the insertion. 474 */ 475 ASSERT(size <= sectorsize); 476 477 /* 478 * The compressed size also needs to be no larger than a sector. 479 * That's also why we only need one page as the parameter. 480 */ 481 if (compressed_folio) 482 ASSERT(compressed_size <= sectorsize); 483 else 484 ASSERT(compressed_size == 0); 485 486 if (compressed_size && compressed_folio) 487 cur_size = compressed_size; 488 489 if (!extent_inserted) { 490 struct btrfs_key key; 491 size_t datasize; 492 493 key.objectid = btrfs_ino(inode); 494 key.type = BTRFS_EXTENT_DATA_KEY; 495 key.offset = 0; 496 497 datasize = btrfs_file_extent_calc_inline_size(cur_size); 498 ret = btrfs_insert_empty_item(trans, root, path, &key, 499 datasize); 500 if (ret) 501 goto fail; 502 } 503 leaf = path->nodes[0]; 504 ei = btrfs_item_ptr(leaf, path->slots[0], 505 struct btrfs_file_extent_item); 506 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 507 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 508 btrfs_set_file_extent_encryption(leaf, ei, 0); 509 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 510 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 511 ptr = btrfs_file_extent_inline_start(ei); 512 513 if (compress_type != BTRFS_COMPRESS_NONE) { 514 kaddr = kmap_local_folio(compressed_folio, 0); 515 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 516 kunmap_local(kaddr); 517 518 btrfs_set_file_extent_compression(leaf, ei, 519 compress_type); 520 } else { 521 struct folio *folio; 522 523 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 524 ASSERT(!IS_ERR(folio)); 525 btrfs_set_file_extent_compression(leaf, ei, 0); 526 kaddr = kmap_local_folio(folio, 0); 527 write_extent_buffer(leaf, kaddr, ptr, size); 528 kunmap_local(kaddr); 529 folio_put(folio); 530 } 531 btrfs_release_path(path); 532 533 /* 534 * We align size to sectorsize for inline extents just for simplicity 535 * sake. 536 */ 537 ret = btrfs_inode_set_file_extent_range(inode, 0, 538 ALIGN(size, root->fs_info->sectorsize)); 539 if (ret) 540 goto fail; 541 542 /* 543 * We're an inline extent, so nobody can extend the file past i_size 544 * without locking a page we already have locked. 545 * 546 * We must do any i_size and inode updates before we unlock the pages. 547 * Otherwise we could end up racing with unlink. 548 */ 549 i_size = i_size_read(&inode->vfs_inode); 550 if (update_i_size && size > i_size) { 551 i_size_write(&inode->vfs_inode, size); 552 i_size = size; 553 } 554 inode->disk_i_size = i_size; 555 556 fail: 557 return ret; 558 } 559 560 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 561 u64 offset, u64 size, 562 size_t compressed_size) 563 { 564 struct btrfs_fs_info *fs_info = inode->root->fs_info; 565 u64 data_len = (compressed_size ?: size); 566 567 /* Inline extents must start at offset 0. */ 568 if (offset != 0) 569 return false; 570 571 /* Inline extents are limited to sectorsize. */ 572 if (size > fs_info->sectorsize) 573 return false; 574 575 /* We do not allow a non-compressed extent to be as large as block size. */ 576 if (data_len >= fs_info->sectorsize) 577 return false; 578 579 /* We cannot exceed the maximum inline data size. */ 580 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 581 return false; 582 583 /* We cannot exceed the user specified max_inline size. */ 584 if (data_len > fs_info->max_inline) 585 return false; 586 587 /* Inline extents must be the entirety of the file. */ 588 if (size < i_size_read(&inode->vfs_inode)) 589 return false; 590 591 return true; 592 } 593 594 /* 595 * conditionally insert an inline extent into the file. This 596 * does the checks required to make sure the data is small enough 597 * to fit as an inline extent. 598 * 599 * If being used directly, you must have already checked we're allowed to cow 600 * the range by getting true from can_cow_file_range_inline(). 601 */ 602 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 603 u64 size, size_t compressed_size, 604 int compress_type, 605 struct folio *compressed_folio, 606 bool update_i_size) 607 { 608 struct btrfs_drop_extents_args drop_args = { 0 }; 609 struct btrfs_root *root = inode->root; 610 struct btrfs_fs_info *fs_info = root->fs_info; 611 struct btrfs_trans_handle *trans; 612 u64 data_len = (compressed_size ?: size); 613 int ret; 614 struct btrfs_path *path; 615 616 path = btrfs_alloc_path(); 617 if (!path) 618 return -ENOMEM; 619 620 trans = btrfs_join_transaction(root); 621 if (IS_ERR(trans)) { 622 btrfs_free_path(path); 623 return PTR_ERR(trans); 624 } 625 trans->block_rsv = &inode->block_rsv; 626 627 drop_args.path = path; 628 drop_args.start = 0; 629 drop_args.end = fs_info->sectorsize; 630 drop_args.drop_cache = true; 631 drop_args.replace_extent = true; 632 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 633 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 634 if (ret) { 635 btrfs_abort_transaction(trans, ret); 636 goto out; 637 } 638 639 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 640 size, compressed_size, compress_type, 641 compressed_folio, update_i_size); 642 if (ret && ret != -ENOSPC) { 643 btrfs_abort_transaction(trans, ret); 644 goto out; 645 } else if (ret == -ENOSPC) { 646 ret = 1; 647 goto out; 648 } 649 650 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 651 ret = btrfs_update_inode(trans, inode); 652 if (ret && ret != -ENOSPC) { 653 btrfs_abort_transaction(trans, ret); 654 goto out; 655 } else if (ret == -ENOSPC) { 656 ret = 1; 657 goto out; 658 } 659 660 btrfs_set_inode_full_sync(inode); 661 out: 662 /* 663 * Don't forget to free the reserved space, as for inlined extent 664 * it won't count as data extent, free them directly here. 665 * And at reserve time, it's always aligned to page size, so 666 * just free one page here. 667 */ 668 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 669 btrfs_free_path(path); 670 btrfs_end_transaction(trans); 671 return ret; 672 } 673 674 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 675 struct folio *locked_folio, 676 u64 offset, u64 end, 677 size_t compressed_size, 678 int compress_type, 679 struct folio *compressed_folio, 680 bool update_i_size) 681 { 682 struct extent_state *cached = NULL; 683 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 684 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 685 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 686 int ret; 687 688 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 689 return 1; 690 691 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 692 ret = __cow_file_range_inline(inode, size, compressed_size, 693 compress_type, compressed_folio, 694 update_i_size); 695 if (ret > 0) { 696 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 697 return ret; 698 } 699 700 /* 701 * In the successful case (ret == 0 here), cow_file_range will return 1. 702 * 703 * Quite a bit further up the callstack in extent_writepage(), ret == 1 704 * is treated as a short circuited success and does not unlock the folio, 705 * so we must do it here. 706 * 707 * In the failure case, the locked_folio does get unlocked by 708 * btrfs_folio_end_all_writers, which asserts that it is still locked 709 * at that point, so we must *not* unlock it here. 710 * 711 * The other two callsites in compress_file_range do not have a 712 * locked_folio, so they are not relevant to this logic. 713 */ 714 if (ret == 0) 715 locked_folio = NULL; 716 717 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 718 clear_flags, PAGE_UNLOCK | 719 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 720 return ret; 721 } 722 723 struct async_extent { 724 u64 start; 725 u64 ram_size; 726 u64 compressed_size; 727 struct folio **folios; 728 unsigned long nr_folios; 729 int compress_type; 730 struct list_head list; 731 }; 732 733 struct async_chunk { 734 struct btrfs_inode *inode; 735 struct folio *locked_folio; 736 u64 start; 737 u64 end; 738 blk_opf_t write_flags; 739 struct list_head extents; 740 struct cgroup_subsys_state *blkcg_css; 741 struct btrfs_work work; 742 struct async_cow *async_cow; 743 }; 744 745 struct async_cow { 746 atomic_t num_chunks; 747 struct async_chunk chunks[]; 748 }; 749 750 static noinline int add_async_extent(struct async_chunk *cow, 751 u64 start, u64 ram_size, 752 u64 compressed_size, 753 struct folio **folios, 754 unsigned long nr_folios, 755 int compress_type) 756 { 757 struct async_extent *async_extent; 758 759 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 760 if (!async_extent) 761 return -ENOMEM; 762 async_extent->start = start; 763 async_extent->ram_size = ram_size; 764 async_extent->compressed_size = compressed_size; 765 async_extent->folios = folios; 766 async_extent->nr_folios = nr_folios; 767 async_extent->compress_type = compress_type; 768 list_add_tail(&async_extent->list, &cow->extents); 769 return 0; 770 } 771 772 /* 773 * Check if the inode needs to be submitted to compression, based on mount 774 * options, defragmentation, properties or heuristics. 775 */ 776 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 777 u64 end) 778 { 779 struct btrfs_fs_info *fs_info = inode->root->fs_info; 780 781 if (!btrfs_inode_can_compress(inode)) { 782 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 783 return 0; 784 } 785 786 /* Defrag ioctl takes precedence over mount options and properties. */ 787 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 788 return 0; 789 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 790 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 791 return 1; 792 /* force compress */ 793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 794 return 1; 795 /* bad compression ratios */ 796 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 797 return 0; 798 if (btrfs_test_opt(fs_info, COMPRESS) || 799 inode->flags & BTRFS_INODE_COMPRESS || 800 inode->prop_compress) 801 return btrfs_compress_heuristic(inode, start, end); 802 return 0; 803 } 804 805 static inline void inode_should_defrag(struct btrfs_inode *inode, 806 u64 start, u64 end, u64 num_bytes, u32 small_write) 807 { 808 /* If this is a small write inside eof, kick off a defrag */ 809 if (num_bytes < small_write && 810 (start > 0 || end + 1 < inode->disk_i_size)) 811 btrfs_add_inode_defrag(inode, small_write); 812 } 813 814 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 815 { 816 const pgoff_t end_index = end >> PAGE_SHIFT; 817 struct folio *folio; 818 int ret = 0; 819 820 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 821 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 822 if (IS_ERR(folio)) { 823 if (!ret) 824 ret = PTR_ERR(folio); 825 continue; 826 } 827 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 828 end + 1 - start); 829 folio_put(folio); 830 } 831 return ret; 832 } 833 834 /* 835 * Work queue call back to started compression on a file and pages. 836 * 837 * This is done inside an ordered work queue, and the compression is spread 838 * across many cpus. The actual IO submission is step two, and the ordered work 839 * queue takes care of making sure that happens in the same order things were 840 * put onto the queue by writepages and friends. 841 * 842 * If this code finds it can't get good compression, it puts an entry onto the 843 * work queue to write the uncompressed bytes. This makes sure that both 844 * compressed inodes and uncompressed inodes are written in the same order that 845 * the flusher thread sent them down. 846 */ 847 static void compress_file_range(struct btrfs_work *work) 848 { 849 struct async_chunk *async_chunk = 850 container_of(work, struct async_chunk, work); 851 struct btrfs_inode *inode = async_chunk->inode; 852 struct btrfs_fs_info *fs_info = inode->root->fs_info; 853 struct address_space *mapping = inode->vfs_inode.i_mapping; 854 u64 blocksize = fs_info->sectorsize; 855 u64 start = async_chunk->start; 856 u64 end = async_chunk->end; 857 u64 actual_end; 858 u64 i_size; 859 int ret = 0; 860 struct folio **folios; 861 unsigned long nr_folios; 862 unsigned long total_compressed = 0; 863 unsigned long total_in = 0; 864 unsigned int poff; 865 int i; 866 int compress_type = fs_info->compress_type; 867 int compress_level = fs_info->compress_level; 868 869 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 870 871 /* 872 * We need to call clear_page_dirty_for_io on each page in the range. 873 * Otherwise applications with the file mmap'd can wander in and change 874 * the page contents while we are compressing them. 875 */ 876 ret = extent_range_clear_dirty_for_io(inode, start, end); 877 878 /* 879 * All the folios should have been locked thus no failure. 880 * 881 * And even if some folios are missing, btrfs_compress_folios() 882 * would handle them correctly, so here just do an ASSERT() check for 883 * early logic errors. 884 */ 885 ASSERT(ret == 0); 886 887 /* 888 * We need to save i_size before now because it could change in between 889 * us evaluating the size and assigning it. This is because we lock and 890 * unlock the page in truncate and fallocate, and then modify the i_size 891 * later on. 892 * 893 * The barriers are to emulate READ_ONCE, remove that once i_size_read 894 * does that for us. 895 */ 896 barrier(); 897 i_size = i_size_read(&inode->vfs_inode); 898 barrier(); 899 actual_end = min_t(u64, i_size, end + 1); 900 again: 901 folios = NULL; 902 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 903 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 904 905 /* 906 * we don't want to send crud past the end of i_size through 907 * compression, that's just a waste of CPU time. So, if the 908 * end of the file is before the start of our current 909 * requested range of bytes, we bail out to the uncompressed 910 * cleanup code that can deal with all of this. 911 * 912 * It isn't really the fastest way to fix things, but this is a 913 * very uncommon corner. 914 */ 915 if (actual_end <= start) 916 goto cleanup_and_bail_uncompressed; 917 918 total_compressed = actual_end - start; 919 920 /* 921 * Skip compression for a small file range(<=blocksize) that 922 * isn't an inline extent, since it doesn't save disk space at all. 923 */ 924 if (total_compressed <= blocksize && 925 (start > 0 || end + 1 < inode->disk_i_size)) 926 goto cleanup_and_bail_uncompressed; 927 928 total_compressed = min_t(unsigned long, total_compressed, 929 BTRFS_MAX_UNCOMPRESSED); 930 total_in = 0; 931 ret = 0; 932 933 /* 934 * We do compression for mount -o compress and when the inode has not 935 * been flagged as NOCOMPRESS. This flag can change at any time if we 936 * discover bad compression ratios. 937 */ 938 if (!inode_need_compress(inode, start, end)) 939 goto cleanup_and_bail_uncompressed; 940 941 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 942 if (!folios) { 943 /* 944 * Memory allocation failure is not a fatal error, we can fall 945 * back to uncompressed code. 946 */ 947 goto cleanup_and_bail_uncompressed; 948 } 949 950 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 951 compress_type = inode->defrag_compress; 952 compress_level = inode->defrag_compress_level; 953 } else if (inode->prop_compress) { 954 compress_type = inode->prop_compress; 955 } 956 957 /* Compression level is applied here. */ 958 ret = btrfs_compress_folios(compress_type, compress_level, 959 mapping, start, folios, &nr_folios, &total_in, 960 &total_compressed); 961 if (ret) 962 goto mark_incompressible; 963 964 /* 965 * Zero the tail end of the last page, as we might be sending it down 966 * to disk. 967 */ 968 poff = offset_in_page(total_compressed); 969 if (poff) 970 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 971 972 /* 973 * Try to create an inline extent. 974 * 975 * If we didn't compress the entire range, try to create an uncompressed 976 * inline extent, else a compressed one. 977 * 978 * Check cow_file_range() for why we don't even try to create inline 979 * extent for the subpage case. 980 */ 981 if (total_in < actual_end) 982 ret = cow_file_range_inline(inode, NULL, start, end, 0, 983 BTRFS_COMPRESS_NONE, NULL, false); 984 else 985 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 986 compress_type, folios[0], false); 987 if (ret <= 0) { 988 if (ret < 0) 989 mapping_set_error(mapping, -EIO); 990 goto free_pages; 991 } 992 993 /* 994 * We aren't doing an inline extent. Round the compressed size up to a 995 * block size boundary so the allocator does sane things. 996 */ 997 total_compressed = ALIGN(total_compressed, blocksize); 998 999 /* 1000 * One last check to make sure the compression is really a win, compare 1001 * the page count read with the blocks on disk, compression must free at 1002 * least one sector. 1003 */ 1004 total_in = round_up(total_in, fs_info->sectorsize); 1005 if (total_compressed + blocksize > total_in) 1006 goto mark_incompressible; 1007 1008 /* 1009 * The async work queues will take care of doing actual allocation on 1010 * disk for these compressed pages, and will submit the bios. 1011 */ 1012 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1013 nr_folios, compress_type); 1014 BUG_ON(ret); 1015 if (start + total_in < end) { 1016 start += total_in; 1017 cond_resched(); 1018 goto again; 1019 } 1020 return; 1021 1022 mark_incompressible: 1023 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1024 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1025 cleanup_and_bail_uncompressed: 1026 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1027 BTRFS_COMPRESS_NONE); 1028 BUG_ON(ret); 1029 free_pages: 1030 if (folios) { 1031 for (i = 0; i < nr_folios; i++) { 1032 WARN_ON(folios[i]->mapping); 1033 btrfs_free_compr_folio(folios[i]); 1034 } 1035 kfree(folios); 1036 } 1037 } 1038 1039 static void free_async_extent_pages(struct async_extent *async_extent) 1040 { 1041 int i; 1042 1043 if (!async_extent->folios) 1044 return; 1045 1046 for (i = 0; i < async_extent->nr_folios; i++) { 1047 WARN_ON(async_extent->folios[i]->mapping); 1048 btrfs_free_compr_folio(async_extent->folios[i]); 1049 } 1050 kfree(async_extent->folios); 1051 async_extent->nr_folios = 0; 1052 async_extent->folios = NULL; 1053 } 1054 1055 static void submit_uncompressed_range(struct btrfs_inode *inode, 1056 struct async_extent *async_extent, 1057 struct folio *locked_folio) 1058 { 1059 u64 start = async_extent->start; 1060 u64 end = async_extent->start + async_extent->ram_size - 1; 1061 int ret; 1062 struct writeback_control wbc = { 1063 .sync_mode = WB_SYNC_ALL, 1064 .range_start = start, 1065 .range_end = end, 1066 .no_cgroup_owner = 1, 1067 }; 1068 1069 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1070 ret = run_delalloc_cow(inode, locked_folio, start, end, 1071 &wbc, false); 1072 wbc_detach_inode(&wbc); 1073 if (ret < 0) { 1074 if (locked_folio) 1075 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1076 start, async_extent->ram_size); 1077 btrfs_err_rl(inode->root->fs_info, 1078 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1079 __func__, btrfs_root_id(inode->root), 1080 btrfs_ino(inode), start, async_extent->ram_size, ret); 1081 } 1082 } 1083 1084 static void submit_one_async_extent(struct async_chunk *async_chunk, 1085 struct async_extent *async_extent, 1086 u64 *alloc_hint) 1087 { 1088 struct btrfs_inode *inode = async_chunk->inode; 1089 struct extent_io_tree *io_tree = &inode->io_tree; 1090 struct btrfs_root *root = inode->root; 1091 struct btrfs_fs_info *fs_info = root->fs_info; 1092 struct btrfs_ordered_extent *ordered; 1093 struct btrfs_file_extent file_extent; 1094 struct btrfs_key ins; 1095 struct folio *locked_folio = NULL; 1096 struct extent_state *cached = NULL; 1097 struct extent_map *em; 1098 int ret = 0; 1099 bool free_pages = false; 1100 u64 start = async_extent->start; 1101 u64 end = async_extent->start + async_extent->ram_size - 1; 1102 1103 if (async_chunk->blkcg_css) 1104 kthread_associate_blkcg(async_chunk->blkcg_css); 1105 1106 /* 1107 * If async_chunk->locked_folio is in the async_extent range, we need to 1108 * handle it. 1109 */ 1110 if (async_chunk->locked_folio) { 1111 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1112 u64 locked_folio_end = locked_folio_start + 1113 folio_size(async_chunk->locked_folio) - 1; 1114 1115 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1116 locked_folio = async_chunk->locked_folio; 1117 } 1118 1119 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1120 ASSERT(!async_extent->folios); 1121 ASSERT(async_extent->nr_folios == 0); 1122 submit_uncompressed_range(inode, async_extent, locked_folio); 1123 free_pages = true; 1124 goto done; 1125 } 1126 1127 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1128 async_extent->compressed_size, 1129 async_extent->compressed_size, 1130 0, *alloc_hint, &ins, 1, 1); 1131 if (ret) { 1132 /* 1133 * We can't reserve contiguous space for the compressed size. 1134 * Unlikely, but it's possible that we could have enough 1135 * non-contiguous space for the uncompressed size instead. So 1136 * fall back to uncompressed. 1137 */ 1138 submit_uncompressed_range(inode, async_extent, locked_folio); 1139 free_pages = true; 1140 goto done; 1141 } 1142 1143 btrfs_lock_extent(io_tree, start, end, &cached); 1144 1145 /* Here we're doing allocation and writeback of the compressed pages */ 1146 file_extent.disk_bytenr = ins.objectid; 1147 file_extent.disk_num_bytes = ins.offset; 1148 file_extent.ram_bytes = async_extent->ram_size; 1149 file_extent.num_bytes = async_extent->ram_size; 1150 file_extent.offset = 0; 1151 file_extent.compression = async_extent->compress_type; 1152 1153 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1154 if (IS_ERR(em)) { 1155 ret = PTR_ERR(em); 1156 goto out_free_reserve; 1157 } 1158 btrfs_free_extent_map(em); 1159 1160 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1161 1U << BTRFS_ORDERED_COMPRESSED); 1162 if (IS_ERR(ordered)) { 1163 btrfs_drop_extent_map_range(inode, start, end, false); 1164 ret = PTR_ERR(ordered); 1165 goto out_free_reserve; 1166 } 1167 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1168 1169 /* Clear dirty, set writeback and unlock the pages. */ 1170 extent_clear_unlock_delalloc(inode, start, end, 1171 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1172 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1173 btrfs_submit_compressed_write(ordered, 1174 async_extent->folios, /* compressed_folios */ 1175 async_extent->nr_folios, 1176 async_chunk->write_flags, true); 1177 *alloc_hint = ins.objectid + ins.offset; 1178 done: 1179 if (async_chunk->blkcg_css) 1180 kthread_associate_blkcg(NULL); 1181 if (free_pages) 1182 free_async_extent_pages(async_extent); 1183 kfree(async_extent); 1184 return; 1185 1186 out_free_reserve: 1187 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1188 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1189 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1190 extent_clear_unlock_delalloc(inode, start, end, 1191 NULL, &cached, 1192 EXTENT_LOCKED | EXTENT_DELALLOC | 1193 EXTENT_DELALLOC_NEW | 1194 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1195 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1196 PAGE_END_WRITEBACK); 1197 free_async_extent_pages(async_extent); 1198 if (async_chunk->blkcg_css) 1199 kthread_associate_blkcg(NULL); 1200 btrfs_debug(fs_info, 1201 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1202 btrfs_root_id(root), btrfs_ino(inode), start, 1203 async_extent->ram_size, ret); 1204 kfree(async_extent); 1205 } 1206 1207 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1208 u64 num_bytes) 1209 { 1210 struct extent_map_tree *em_tree = &inode->extent_tree; 1211 struct extent_map *em; 1212 u64 alloc_hint = 0; 1213 1214 read_lock(&em_tree->lock); 1215 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1216 if (em) { 1217 /* 1218 * if block start isn't an actual block number then find the 1219 * first block in this inode and use that as a hint. If that 1220 * block is also bogus then just don't worry about it. 1221 */ 1222 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1223 btrfs_free_extent_map(em); 1224 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1225 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1226 alloc_hint = btrfs_extent_map_block_start(em); 1227 if (em) 1228 btrfs_free_extent_map(em); 1229 } else { 1230 alloc_hint = btrfs_extent_map_block_start(em); 1231 btrfs_free_extent_map(em); 1232 } 1233 } 1234 read_unlock(&em_tree->lock); 1235 1236 return alloc_hint; 1237 } 1238 1239 /* 1240 * when extent_io.c finds a delayed allocation range in the file, 1241 * the call backs end up in this code. The basic idea is to 1242 * allocate extents on disk for the range, and create ordered data structs 1243 * in ram to track those extents. 1244 * 1245 * locked_folio is the folio that writepage had locked already. We use 1246 * it to make sure we don't do extra locks or unlocks. 1247 * 1248 * When this function fails, it unlocks all pages except @locked_folio. 1249 * 1250 * When this function successfully creates an inline extent, it returns 1 and 1251 * unlocks all pages including locked_folio and starts I/O on them. 1252 * (In reality inline extents are limited to a single page, so locked_folio is 1253 * the only page handled anyway). 1254 * 1255 * When this function succeed and creates a normal extent, the page locking 1256 * status depends on the passed in flags: 1257 * 1258 * - If @keep_locked is set, all pages are kept locked. 1259 * - Else all pages except for @locked_folio are unlocked. 1260 * 1261 * When a failure happens in the second or later iteration of the 1262 * while-loop, the ordered extents created in previous iterations are cleaned up. 1263 */ 1264 static noinline int cow_file_range(struct btrfs_inode *inode, 1265 struct folio *locked_folio, u64 start, 1266 u64 end, u64 *done_offset, 1267 bool keep_locked, bool no_inline) 1268 { 1269 struct btrfs_root *root = inode->root; 1270 struct btrfs_fs_info *fs_info = root->fs_info; 1271 struct extent_state *cached = NULL; 1272 u64 alloc_hint = 0; 1273 u64 orig_start = start; 1274 u64 num_bytes; 1275 u64 cur_alloc_size = 0; 1276 u64 min_alloc_size; 1277 u64 blocksize = fs_info->sectorsize; 1278 struct btrfs_key ins; 1279 struct extent_map *em; 1280 unsigned clear_bits; 1281 unsigned long page_ops; 1282 int ret = 0; 1283 1284 if (btrfs_is_free_space_inode(inode)) { 1285 ret = -EINVAL; 1286 goto out_unlock; 1287 } 1288 1289 num_bytes = ALIGN(end - start + 1, blocksize); 1290 num_bytes = max(blocksize, num_bytes); 1291 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1292 1293 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1294 1295 if (!no_inline) { 1296 /* lets try to make an inline extent */ 1297 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1298 BTRFS_COMPRESS_NONE, NULL, false); 1299 if (ret <= 0) { 1300 /* 1301 * We succeeded, return 1 so the caller knows we're done 1302 * with this page and already handled the IO. 1303 * 1304 * If there was an error then cow_file_range_inline() has 1305 * already done the cleanup. 1306 */ 1307 if (ret == 0) 1308 ret = 1; 1309 goto done; 1310 } 1311 } 1312 1313 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1314 1315 /* 1316 * We're not doing compressed IO, don't unlock the first page (which 1317 * the caller expects to stay locked), don't clear any dirty bits and 1318 * don't set any writeback bits. 1319 * 1320 * Do set the Ordered (Private2) bit so we know this page was properly 1321 * setup for writepage. 1322 */ 1323 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1324 page_ops |= PAGE_SET_ORDERED; 1325 1326 /* 1327 * Relocation relies on the relocated extents to have exactly the same 1328 * size as the original extents. Normally writeback for relocation data 1329 * extents follows a NOCOW path because relocation preallocates the 1330 * extents. However, due to an operation such as scrub turning a block 1331 * group to RO mode, it may fallback to COW mode, so we must make sure 1332 * an extent allocated during COW has exactly the requested size and can 1333 * not be split into smaller extents, otherwise relocation breaks and 1334 * fails during the stage where it updates the bytenr of file extent 1335 * items. 1336 */ 1337 if (btrfs_is_data_reloc_root(root)) 1338 min_alloc_size = num_bytes; 1339 else 1340 min_alloc_size = fs_info->sectorsize; 1341 1342 while (num_bytes > 0) { 1343 struct btrfs_ordered_extent *ordered; 1344 struct btrfs_file_extent file_extent; 1345 1346 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1347 min_alloc_size, 0, alloc_hint, 1348 &ins, 1, 1); 1349 if (ret == -EAGAIN) { 1350 /* 1351 * btrfs_reserve_extent only returns -EAGAIN for zoned 1352 * file systems, which is an indication that there are 1353 * no active zones to allocate from at the moment. 1354 * 1355 * If this is the first loop iteration, wait for at 1356 * least one zone to finish before retrying the 1357 * allocation. Otherwise ask the caller to write out 1358 * the already allocated blocks before coming back to 1359 * us, or return -ENOSPC if it can't handle retries. 1360 */ 1361 ASSERT(btrfs_is_zoned(fs_info)); 1362 if (start == orig_start) { 1363 wait_on_bit_io(&inode->root->fs_info->flags, 1364 BTRFS_FS_NEED_ZONE_FINISH, 1365 TASK_UNINTERRUPTIBLE); 1366 continue; 1367 } 1368 if (done_offset) { 1369 /* 1370 * Move @end to the end of the processed range, 1371 * and exit the loop to unlock the processed extents. 1372 */ 1373 end = start - 1; 1374 ret = 0; 1375 break; 1376 } 1377 ret = -ENOSPC; 1378 } 1379 if (ret < 0) 1380 goto out_unlock; 1381 cur_alloc_size = ins.offset; 1382 1383 file_extent.disk_bytenr = ins.objectid; 1384 file_extent.disk_num_bytes = ins.offset; 1385 file_extent.num_bytes = ins.offset; 1386 file_extent.ram_bytes = ins.offset; 1387 file_extent.offset = 0; 1388 file_extent.compression = BTRFS_COMPRESS_NONE; 1389 1390 /* 1391 * Locked range will be released either during error clean up or 1392 * after the whole range is finished. 1393 */ 1394 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1395 &cached); 1396 1397 em = btrfs_create_io_em(inode, start, &file_extent, 1398 BTRFS_ORDERED_REGULAR); 1399 if (IS_ERR(em)) { 1400 btrfs_unlock_extent(&inode->io_tree, start, 1401 start + cur_alloc_size - 1, &cached); 1402 ret = PTR_ERR(em); 1403 goto out_reserve; 1404 } 1405 btrfs_free_extent_map(em); 1406 1407 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1408 1U << BTRFS_ORDERED_REGULAR); 1409 if (IS_ERR(ordered)) { 1410 btrfs_unlock_extent(&inode->io_tree, start, 1411 start + cur_alloc_size - 1, &cached); 1412 ret = PTR_ERR(ordered); 1413 goto out_drop_extent_cache; 1414 } 1415 1416 if (btrfs_is_data_reloc_root(root)) { 1417 ret = btrfs_reloc_clone_csums(ordered); 1418 1419 /* 1420 * Only drop cache here, and process as normal. 1421 * 1422 * We must not allow extent_clear_unlock_delalloc() 1423 * at out_unlock label to free meta of this ordered 1424 * extent, as its meta should be freed by 1425 * btrfs_finish_ordered_io(). 1426 * 1427 * So we must continue until @start is increased to 1428 * skip current ordered extent. 1429 */ 1430 if (ret) 1431 btrfs_drop_extent_map_range(inode, start, 1432 start + cur_alloc_size - 1, 1433 false); 1434 } 1435 btrfs_put_ordered_extent(ordered); 1436 1437 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1438 1439 if (num_bytes < cur_alloc_size) 1440 num_bytes = 0; 1441 else 1442 num_bytes -= cur_alloc_size; 1443 alloc_hint = ins.objectid + ins.offset; 1444 start += cur_alloc_size; 1445 cur_alloc_size = 0; 1446 1447 /* 1448 * btrfs_reloc_clone_csums() error, since start is increased 1449 * extent_clear_unlock_delalloc() at out_unlock label won't 1450 * free metadata of current ordered extent, we're OK to exit. 1451 */ 1452 if (ret) 1453 goto out_unlock; 1454 } 1455 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1456 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1457 done: 1458 if (done_offset) 1459 *done_offset = end; 1460 return ret; 1461 1462 out_drop_extent_cache: 1463 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1464 out_reserve: 1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1466 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1467 out_unlock: 1468 /* 1469 * Now, we have three regions to clean up: 1470 * 1471 * |-------(1)----|---(2)---|-------------(3)----------| 1472 * `- orig_start `- start `- start + cur_alloc_size `- end 1473 * 1474 * We process each region below. 1475 */ 1476 1477 /* 1478 * For the range (1). We have already instantiated the ordered extents 1479 * for this region, thus we need to cleanup those ordered extents. 1480 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1481 * are also handled by the ordered extents cleanup. 1482 * 1483 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1484 * finish the writeback of the involved folios, which will be never submitted. 1485 */ 1486 if (orig_start < start) { 1487 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1488 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1489 1490 if (!locked_folio) 1491 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1492 1493 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1494 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1495 locked_folio, NULL, clear_bits, page_ops); 1496 } 1497 1498 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1499 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1500 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1501 1502 /* 1503 * For the range (2). If we reserved an extent for our delalloc range 1504 * (or a subrange) and failed to create the respective ordered extent, 1505 * then it means that when we reserved the extent we decremented the 1506 * extent's size from the data space_info's bytes_may_use counter and 1507 * incremented the space_info's bytes_reserved counter by the same 1508 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1509 * to decrement again the data space_info's bytes_may_use counter, 1510 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1511 */ 1512 if (cur_alloc_size) { 1513 extent_clear_unlock_delalloc(inode, start, 1514 start + cur_alloc_size - 1, 1515 locked_folio, &cached, clear_bits, 1516 page_ops); 1517 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1518 } 1519 1520 /* 1521 * For the range (3). We never touched the region. In addition to the 1522 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1523 * space_info's bytes_may_use counter, reserved in 1524 * btrfs_check_data_free_space(). 1525 */ 1526 if (start + cur_alloc_size < end) { 1527 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1528 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1529 end, locked_folio, 1530 &cached, clear_bits, page_ops); 1531 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1532 end - start - cur_alloc_size + 1, NULL); 1533 } 1534 btrfs_err_rl(fs_info, 1535 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1536 __func__, btrfs_root_id(inode->root), 1537 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1538 return ret; 1539 } 1540 1541 /* 1542 * Phase two of compressed writeback. This is the ordered portion of the code, 1543 * which only gets called in the order the work was queued. We walk all the 1544 * async extents created by compress_file_range and send them down to the disk. 1545 * 1546 * If called with @do_free == true then it'll try to finish the work and free 1547 * the work struct eventually. 1548 */ 1549 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1550 { 1551 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1552 work); 1553 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1554 struct async_extent *async_extent; 1555 unsigned long nr_pages; 1556 u64 alloc_hint = 0; 1557 1558 if (do_free) { 1559 struct async_cow *async_cow; 1560 1561 btrfs_add_delayed_iput(async_chunk->inode); 1562 if (async_chunk->blkcg_css) 1563 css_put(async_chunk->blkcg_css); 1564 1565 async_cow = async_chunk->async_cow; 1566 if (atomic_dec_and_test(&async_cow->num_chunks)) 1567 kvfree(async_cow); 1568 return; 1569 } 1570 1571 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1572 PAGE_SHIFT; 1573 1574 while (!list_empty(&async_chunk->extents)) { 1575 async_extent = list_first_entry(&async_chunk->extents, 1576 struct async_extent, list); 1577 list_del(&async_extent->list); 1578 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1579 } 1580 1581 /* atomic_sub_return implies a barrier */ 1582 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1583 5 * SZ_1M) 1584 cond_wake_up_nomb(&fs_info->async_submit_wait); 1585 } 1586 1587 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1588 struct folio *locked_folio, u64 start, 1589 u64 end, struct writeback_control *wbc) 1590 { 1591 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1592 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1593 struct async_cow *ctx; 1594 struct async_chunk *async_chunk; 1595 unsigned long nr_pages; 1596 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1597 int i; 1598 unsigned nofs_flag; 1599 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1600 1601 nofs_flag = memalloc_nofs_save(); 1602 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1603 memalloc_nofs_restore(nofs_flag); 1604 if (!ctx) 1605 return false; 1606 1607 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1608 1609 async_chunk = ctx->chunks; 1610 atomic_set(&ctx->num_chunks, num_chunks); 1611 1612 for (i = 0; i < num_chunks; i++) { 1613 u64 cur_end = min(end, start + SZ_512K - 1); 1614 1615 /* 1616 * igrab is called higher up in the call chain, take only the 1617 * lightweight reference for the callback lifetime 1618 */ 1619 ihold(&inode->vfs_inode); 1620 async_chunk[i].async_cow = ctx; 1621 async_chunk[i].inode = inode; 1622 async_chunk[i].start = start; 1623 async_chunk[i].end = cur_end; 1624 async_chunk[i].write_flags = write_flags; 1625 INIT_LIST_HEAD(&async_chunk[i].extents); 1626 1627 /* 1628 * The locked_folio comes all the way from writepage and its 1629 * the original folio we were actually given. As we spread 1630 * this large delalloc region across multiple async_chunk 1631 * structs, only the first struct needs a pointer to 1632 * locked_folio. 1633 * 1634 * This way we don't need racey decisions about who is supposed 1635 * to unlock it. 1636 */ 1637 if (locked_folio) { 1638 /* 1639 * Depending on the compressibility, the pages might or 1640 * might not go through async. We want all of them to 1641 * be accounted against wbc once. Let's do it here 1642 * before the paths diverge. wbc accounting is used 1643 * only for foreign writeback detection and doesn't 1644 * need full accuracy. Just account the whole thing 1645 * against the first page. 1646 */ 1647 wbc_account_cgroup_owner(wbc, locked_folio, 1648 cur_end - start); 1649 async_chunk[i].locked_folio = locked_folio; 1650 locked_folio = NULL; 1651 } else { 1652 async_chunk[i].locked_folio = NULL; 1653 } 1654 1655 if (blkcg_css != blkcg_root_css) { 1656 css_get(blkcg_css); 1657 async_chunk[i].blkcg_css = blkcg_css; 1658 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1659 } else { 1660 async_chunk[i].blkcg_css = NULL; 1661 } 1662 1663 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1664 submit_compressed_extents); 1665 1666 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1667 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1668 1669 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1670 1671 start = cur_end + 1; 1672 } 1673 return true; 1674 } 1675 1676 /* 1677 * Run the delalloc range from start to end, and write back any dirty pages 1678 * covered by the range. 1679 */ 1680 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1681 struct folio *locked_folio, u64 start, 1682 u64 end, struct writeback_control *wbc, 1683 bool pages_dirty) 1684 { 1685 u64 done_offset = end; 1686 int ret; 1687 1688 while (start <= end) { 1689 ret = cow_file_range(inode, locked_folio, start, end, 1690 &done_offset, true, false); 1691 if (ret) 1692 return ret; 1693 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1694 start, done_offset, wbc, pages_dirty); 1695 start = done_offset + 1; 1696 } 1697 1698 return 1; 1699 } 1700 1701 static int fallback_to_cow(struct btrfs_inode *inode, 1702 struct folio *locked_folio, const u64 start, 1703 const u64 end) 1704 { 1705 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1706 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1707 const u64 range_bytes = end + 1 - start; 1708 struct extent_io_tree *io_tree = &inode->io_tree; 1709 struct extent_state *cached_state = NULL; 1710 u64 range_start = start; 1711 u64 count; 1712 int ret; 1713 1714 /* 1715 * If EXTENT_NORESERVE is set it means that when the buffered write was 1716 * made we had not enough available data space and therefore we did not 1717 * reserve data space for it, since we though we could do NOCOW for the 1718 * respective file range (either there is prealloc extent or the inode 1719 * has the NOCOW bit set). 1720 * 1721 * However when we need to fallback to COW mode (because for example the 1722 * block group for the corresponding extent was turned to RO mode by a 1723 * scrub or relocation) we need to do the following: 1724 * 1725 * 1) We increment the bytes_may_use counter of the data space info. 1726 * If COW succeeds, it allocates a new data extent and after doing 1727 * that it decrements the space info's bytes_may_use counter and 1728 * increments its bytes_reserved counter by the same amount (we do 1729 * this at btrfs_add_reserved_bytes()). So we need to increment the 1730 * bytes_may_use counter to compensate (when space is reserved at 1731 * buffered write time, the bytes_may_use counter is incremented); 1732 * 1733 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1734 * that if the COW path fails for any reason, it decrements (through 1735 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1736 * data space info, which we incremented in the step above. 1737 * 1738 * If we need to fallback to cow and the inode corresponds to a free 1739 * space cache inode or an inode of the data relocation tree, we must 1740 * also increment bytes_may_use of the data space_info for the same 1741 * reason. Space caches and relocated data extents always get a prealloc 1742 * extent for them, however scrub or balance may have set the block 1743 * group that contains that extent to RO mode and therefore force COW 1744 * when starting writeback. 1745 */ 1746 btrfs_lock_extent(io_tree, start, end, &cached_state); 1747 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1748 EXTENT_NORESERVE, 0, NULL); 1749 if (count > 0 || is_space_ino || is_reloc_ino) { 1750 u64 bytes = count; 1751 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1752 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1753 1754 if (is_space_ino || is_reloc_ino) 1755 bytes = range_bytes; 1756 1757 spin_lock(&sinfo->lock); 1758 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1759 spin_unlock(&sinfo->lock); 1760 1761 if (count > 0) 1762 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1763 &cached_state); 1764 } 1765 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1766 1767 /* 1768 * Don't try to create inline extents, as a mix of inline extent that 1769 * is written out and unlocked directly and a normal NOCOW extent 1770 * doesn't work. 1771 */ 1772 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1773 true); 1774 ASSERT(ret != 1); 1775 return ret; 1776 } 1777 1778 struct can_nocow_file_extent_args { 1779 /* Input fields. */ 1780 1781 /* Start file offset of the range we want to NOCOW. */ 1782 u64 start; 1783 /* End file offset (inclusive) of the range we want to NOCOW. */ 1784 u64 end; 1785 bool writeback_path; 1786 /* 1787 * Free the path passed to can_nocow_file_extent() once it's not needed 1788 * anymore. 1789 */ 1790 bool free_path; 1791 1792 /* 1793 * Output fields. Only set when can_nocow_file_extent() returns 1. 1794 * The expected file extent for the NOCOW write. 1795 */ 1796 struct btrfs_file_extent file_extent; 1797 }; 1798 1799 /* 1800 * Check if we can NOCOW the file extent that the path points to. 1801 * This function may return with the path released, so the caller should check 1802 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1803 * 1804 * Returns: < 0 on error 1805 * 0 if we can not NOCOW 1806 * 1 if we can NOCOW 1807 */ 1808 static int can_nocow_file_extent(struct btrfs_path *path, 1809 struct btrfs_key *key, 1810 struct btrfs_inode *inode, 1811 struct can_nocow_file_extent_args *args) 1812 { 1813 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1814 struct extent_buffer *leaf = path->nodes[0]; 1815 struct btrfs_root *root = inode->root; 1816 struct btrfs_file_extent_item *fi; 1817 struct btrfs_root *csum_root; 1818 u64 io_start; 1819 u64 extent_end; 1820 u8 extent_type; 1821 int can_nocow = 0; 1822 int ret = 0; 1823 bool nowait = path->nowait; 1824 1825 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1826 extent_type = btrfs_file_extent_type(leaf, fi); 1827 1828 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1829 goto out; 1830 1831 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1832 extent_type == BTRFS_FILE_EXTENT_REG) 1833 goto out; 1834 1835 /* 1836 * If the extent was created before the generation where the last snapshot 1837 * for its subvolume was created, then this implies the extent is shared, 1838 * hence we must COW. 1839 */ 1840 if (btrfs_file_extent_generation(leaf, fi) <= 1841 btrfs_root_last_snapshot(&root->root_item)) 1842 goto out; 1843 1844 /* An explicit hole, must COW. */ 1845 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1846 goto out; 1847 1848 /* Compressed/encrypted/encoded extents must be COWed. */ 1849 if (btrfs_file_extent_compression(leaf, fi) || 1850 btrfs_file_extent_encryption(leaf, fi) || 1851 btrfs_file_extent_other_encoding(leaf, fi)) 1852 goto out; 1853 1854 extent_end = btrfs_file_extent_end(path); 1855 1856 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1857 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1858 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1859 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1860 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1861 1862 /* 1863 * The following checks can be expensive, as they need to take other 1864 * locks and do btree or rbtree searches, so release the path to avoid 1865 * blocking other tasks for too long. 1866 */ 1867 btrfs_release_path(path); 1868 1869 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1870 args->file_extent.disk_bytenr, path); 1871 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1872 if (ret != 0) 1873 goto out; 1874 1875 if (args->free_path) { 1876 /* 1877 * We don't need the path anymore, plus through the 1878 * btrfs_lookup_csums_list() call below we will end up allocating 1879 * another path. So free the path to avoid unnecessary extra 1880 * memory usage. 1881 */ 1882 btrfs_free_path(path); 1883 path = NULL; 1884 } 1885 1886 /* If there are pending snapshots for this root, we must COW. */ 1887 if (args->writeback_path && !is_freespace_inode && 1888 atomic_read(&root->snapshot_force_cow)) 1889 goto out; 1890 1891 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1892 args->file_extent.offset += args->start - key->offset; 1893 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1894 1895 /* 1896 * Force COW if csums exist in the range. This ensures that csums for a 1897 * given extent are either valid or do not exist. 1898 */ 1899 1900 csum_root = btrfs_csum_root(root->fs_info, io_start); 1901 ret = btrfs_lookup_csums_list(csum_root, io_start, 1902 io_start + args->file_extent.num_bytes - 1, 1903 NULL, nowait); 1904 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1905 if (ret != 0) 1906 goto out; 1907 1908 can_nocow = 1; 1909 out: 1910 if (args->free_path && path) 1911 btrfs_free_path(path); 1912 1913 return ret < 0 ? ret : can_nocow; 1914 } 1915 1916 /* 1917 * Cleanup the dirty folios which will never be submitted due to error. 1918 * 1919 * When running a delalloc range, we may need to split the ranges (due to 1920 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1921 * out and previously successfully executed range will never be submitted, thus 1922 * we have to cleanup those folios by clearing their dirty flag, starting and 1923 * finishing the writeback. 1924 */ 1925 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1926 struct folio *locked_folio, 1927 u64 start, u64 end, int error) 1928 { 1929 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1930 struct address_space *mapping = inode->vfs_inode.i_mapping; 1931 pgoff_t start_index = start >> PAGE_SHIFT; 1932 pgoff_t end_index = end >> PAGE_SHIFT; 1933 u32 len; 1934 1935 ASSERT(end + 1 - start < U32_MAX); 1936 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1937 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1938 len = end + 1 - start; 1939 1940 /* 1941 * Handle the locked folio first. 1942 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1943 */ 1944 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1945 1946 for (pgoff_t index = start_index; index <= end_index; index++) { 1947 struct folio *folio; 1948 1949 /* Already handled at the beginning. */ 1950 if (index == locked_folio->index) 1951 continue; 1952 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1953 /* Cache already dropped, no need to do any cleanup. */ 1954 if (IS_ERR(folio)) 1955 continue; 1956 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1957 folio_unlock(folio); 1958 folio_put(folio); 1959 } 1960 mapping_set_error(mapping, error); 1961 } 1962 1963 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1964 struct extent_state **cached, 1965 struct can_nocow_file_extent_args *nocow_args, 1966 u64 file_pos, bool is_prealloc) 1967 { 1968 struct btrfs_ordered_extent *ordered; 1969 u64 len = nocow_args->file_extent.num_bytes; 1970 u64 end = file_pos + len - 1; 1971 int ret = 0; 1972 1973 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1974 1975 if (is_prealloc) { 1976 struct extent_map *em; 1977 1978 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1979 BTRFS_ORDERED_PREALLOC); 1980 if (IS_ERR(em)) { 1981 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1982 return PTR_ERR(em); 1983 } 1984 btrfs_free_extent_map(em); 1985 } 1986 1987 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1988 is_prealloc 1989 ? (1U << BTRFS_ORDERED_PREALLOC) 1990 : (1U << BTRFS_ORDERED_NOCOW)); 1991 if (IS_ERR(ordered)) { 1992 if (is_prealloc) 1993 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1994 btrfs_unlock_extent(&inode->io_tree, file_pos, end, cached); 1995 return PTR_ERR(ordered); 1996 } 1997 1998 if (btrfs_is_data_reloc_root(inode->root)) 1999 /* 2000 * Errors are handled later, as we must prevent 2001 * extent_clear_unlock_delalloc() in error handler from freeing 2002 * metadata of the created ordered extent. 2003 */ 2004 ret = btrfs_reloc_clone_csums(ordered); 2005 btrfs_put_ordered_extent(ordered); 2006 2007 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2008 EXTENT_LOCKED | EXTENT_DELALLOC | 2009 EXTENT_CLEAR_DATA_RESV, 2010 PAGE_UNLOCK | PAGE_SET_ORDERED); 2011 /* 2012 * On error, we need to cleanup the ordered extents we created. 2013 * 2014 * We do not clear the folio Dirty flags because they are set and 2015 * cleaered by the caller. 2016 */ 2017 if (ret < 0) 2018 btrfs_cleanup_ordered_extents(inode, file_pos, len); 2019 return ret; 2020 } 2021 2022 /* 2023 * when nowcow writeback call back. This checks for snapshots or COW copies 2024 * of the extents that exist in the file, and COWs the file as required. 2025 * 2026 * If no cow copies or snapshots exist, we write directly to the existing 2027 * blocks on disk 2028 */ 2029 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2030 struct folio *locked_folio, 2031 const u64 start, const u64 end) 2032 { 2033 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2034 struct btrfs_root *root = inode->root; 2035 struct btrfs_path *path; 2036 u64 cow_start = (u64)-1; 2037 /* 2038 * If not 0, represents the inclusive end of the last fallback_to_cow() 2039 * range. Only for error handling. 2040 */ 2041 u64 cow_end = 0; 2042 u64 cur_offset = start; 2043 int ret; 2044 bool check_prev = true; 2045 u64 ino = btrfs_ino(inode); 2046 struct can_nocow_file_extent_args nocow_args = { 0 }; 2047 2048 /* 2049 * Normally on a zoned device we're only doing COW writes, but in case 2050 * of relocation on a zoned filesystem serializes I/O so that we're only 2051 * writing sequentially and can end up here as well. 2052 */ 2053 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2054 2055 path = btrfs_alloc_path(); 2056 if (!path) { 2057 ret = -ENOMEM; 2058 goto error; 2059 } 2060 2061 nocow_args.end = end; 2062 nocow_args.writeback_path = true; 2063 2064 while (cur_offset <= end) { 2065 struct btrfs_block_group *nocow_bg = NULL; 2066 struct btrfs_key found_key; 2067 struct btrfs_file_extent_item *fi; 2068 struct extent_buffer *leaf; 2069 struct extent_state *cached_state = NULL; 2070 u64 extent_end; 2071 int extent_type; 2072 2073 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2074 cur_offset, 0); 2075 if (ret < 0) 2076 goto error; 2077 2078 /* 2079 * If there is no extent for our range when doing the initial 2080 * search, then go back to the previous slot as it will be the 2081 * one containing the search offset 2082 */ 2083 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2084 leaf = path->nodes[0]; 2085 btrfs_item_key_to_cpu(leaf, &found_key, 2086 path->slots[0] - 1); 2087 if (found_key.objectid == ino && 2088 found_key.type == BTRFS_EXTENT_DATA_KEY) 2089 path->slots[0]--; 2090 } 2091 check_prev = false; 2092 next_slot: 2093 /* Go to next leaf if we have exhausted the current one */ 2094 leaf = path->nodes[0]; 2095 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2096 ret = btrfs_next_leaf(root, path); 2097 if (ret < 0) 2098 goto error; 2099 if (ret > 0) 2100 break; 2101 leaf = path->nodes[0]; 2102 } 2103 2104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2105 2106 /* Didn't find anything for our INO */ 2107 if (found_key.objectid > ino) 2108 break; 2109 /* 2110 * Keep searching until we find an EXTENT_ITEM or there are no 2111 * more extents for this inode 2112 */ 2113 if (WARN_ON_ONCE(found_key.objectid < ino) || 2114 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2115 path->slots[0]++; 2116 goto next_slot; 2117 } 2118 2119 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2120 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2121 found_key.offset > end) 2122 break; 2123 2124 /* 2125 * If the found extent starts after requested offset, then 2126 * adjust cur_offset to be right before this extent begins. 2127 */ 2128 if (found_key.offset > cur_offset) { 2129 if (cow_start == (u64)-1) 2130 cow_start = cur_offset; 2131 cur_offset = found_key.offset; 2132 goto next_slot; 2133 } 2134 2135 /* 2136 * Found extent which begins before our range and potentially 2137 * intersect it 2138 */ 2139 fi = btrfs_item_ptr(leaf, path->slots[0], 2140 struct btrfs_file_extent_item); 2141 extent_type = btrfs_file_extent_type(leaf, fi); 2142 /* If this is triggered then we have a memory corruption. */ 2143 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2144 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2145 ret = -EUCLEAN; 2146 goto error; 2147 } 2148 extent_end = btrfs_file_extent_end(path); 2149 2150 /* 2151 * If the extent we got ends before our current offset, skip to 2152 * the next extent. 2153 */ 2154 if (extent_end <= cur_offset) { 2155 path->slots[0]++; 2156 goto next_slot; 2157 } 2158 2159 nocow_args.start = cur_offset; 2160 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2161 if (ret < 0) 2162 goto error; 2163 if (ret == 0) 2164 goto must_cow; 2165 2166 ret = 0; 2167 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2168 nocow_args.file_extent.disk_bytenr + 2169 nocow_args.file_extent.offset); 2170 if (!nocow_bg) { 2171 must_cow: 2172 /* 2173 * If we can't perform NOCOW writeback for the range, 2174 * then record the beginning of the range that needs to 2175 * be COWed. It will be written out before the next 2176 * NOCOW range if we find one, or when exiting this 2177 * loop. 2178 */ 2179 if (cow_start == (u64)-1) 2180 cow_start = cur_offset; 2181 cur_offset = extent_end; 2182 if (cur_offset > end) 2183 break; 2184 if (!path->nodes[0]) 2185 continue; 2186 path->slots[0]++; 2187 goto next_slot; 2188 } 2189 2190 /* 2191 * COW range from cow_start to found_key.offset - 1. As the key 2192 * will contain the beginning of the first extent that can be 2193 * NOCOW, following one which needs to be COW'ed 2194 */ 2195 if (cow_start != (u64)-1) { 2196 ret = fallback_to_cow(inode, locked_folio, cow_start, 2197 found_key.offset - 1); 2198 if (ret) { 2199 cow_end = found_key.offset - 1; 2200 btrfs_dec_nocow_writers(nocow_bg); 2201 goto error; 2202 } 2203 cow_start = (u64)-1; 2204 } 2205 2206 ret = nocow_one_range(inode, locked_folio, &cached_state, 2207 &nocow_args, cur_offset, 2208 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2209 btrfs_dec_nocow_writers(nocow_bg); 2210 if (ret < 0) 2211 goto error; 2212 cur_offset = extent_end; 2213 } 2214 btrfs_release_path(path); 2215 2216 if (cur_offset <= end && cow_start == (u64)-1) 2217 cow_start = cur_offset; 2218 2219 if (cow_start != (u64)-1) { 2220 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2221 if (ret) { 2222 cow_end = end; 2223 goto error; 2224 } 2225 cow_start = (u64)-1; 2226 } 2227 2228 btrfs_free_path(path); 2229 return 0; 2230 2231 error: 2232 /* 2233 * There are several error cases: 2234 * 2235 * 1) Failed without falling back to COW 2236 * start cur_offset end 2237 * |/////////////| | 2238 * 2239 * In this case, cow_start should be (u64)-1. 2240 * 2241 * For range [start, cur_offset) the folios are already unlocked (except 2242 * @locked_folio), EXTENT_DELALLOC already removed. 2243 * Need to clear the dirty flags and finish the ordered extents. 2244 * 2245 * 2) Failed with error before calling fallback_to_cow() 2246 * 2247 * start cow_start end 2248 * |/////////////| | 2249 * 2250 * In this case, only @cow_start is set, @cur_offset is between 2251 * [cow_start, end) 2252 * 2253 * It's mostly the same as case 1), just replace @cur_offset with 2254 * @cow_start. 2255 * 2256 * 3) Failed with error from fallback_to_cow() 2257 * 2258 * start cow_start cow_end end 2259 * |/////////////|-----------| | 2260 * 2261 * In this case, both @cow_start and @cow_end is set. 2262 * 2263 * For range [start, cow_start) it's the same as case 1). 2264 * But for range [cow_start, cow_end), all the cleanup is handled by 2265 * cow_file_range(), we should not touch anything in that range. 2266 * 2267 * So for all above cases, if @cow_start is set, cleanup ordered extents 2268 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset). 2269 */ 2270 if (cow_start != (u64)-1) 2271 cur_offset = cow_start; 2272 2273 if (cur_offset > start) { 2274 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start); 2275 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2276 } 2277 2278 /* 2279 * If an error happened while a COW region is outstanding, cur_offset 2280 * needs to be reset to @cow_end + 1 to skip the COW range, as 2281 * cow_file_range() will do the proper cleanup at error. 2282 */ 2283 if (cow_end) 2284 cur_offset = cow_end + 1; 2285 2286 /* 2287 * We need to lock the extent here because we're clearing DELALLOC and 2288 * we're not locked at this point. 2289 */ 2290 if (cur_offset < end) { 2291 struct extent_state *cached = NULL; 2292 2293 btrfs_lock_extent(&inode->io_tree, cur_offset, end, &cached); 2294 extent_clear_unlock_delalloc(inode, cur_offset, end, 2295 locked_folio, &cached, 2296 EXTENT_LOCKED | EXTENT_DELALLOC | 2297 EXTENT_DEFRAG | 2298 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2299 PAGE_START_WRITEBACK | 2300 PAGE_END_WRITEBACK); 2301 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2302 } 2303 btrfs_free_path(path); 2304 btrfs_err_rl(fs_info, 2305 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2306 __func__, btrfs_root_id(inode->root), 2307 btrfs_ino(inode), start, end + 1 - start, ret); 2308 return ret; 2309 } 2310 2311 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2312 { 2313 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2314 if (inode->defrag_bytes && 2315 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2316 return false; 2317 return true; 2318 } 2319 return false; 2320 } 2321 2322 /* 2323 * Function to process delayed allocation (create CoW) for ranges which are 2324 * being touched for the first time. 2325 */ 2326 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2327 u64 start, u64 end, struct writeback_control *wbc) 2328 { 2329 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2330 int ret; 2331 2332 /* 2333 * The range must cover part of the @locked_folio, or a return of 1 2334 * can confuse the caller. 2335 */ 2336 ASSERT(!(end <= folio_pos(locked_folio) || start >= folio_end(locked_folio))); 2337 2338 if (should_nocow(inode, start, end)) { 2339 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2340 return ret; 2341 } 2342 2343 if (btrfs_inode_can_compress(inode) && 2344 inode_need_compress(inode, start, end) && 2345 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2346 return 1; 2347 2348 if (zoned) 2349 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2350 true); 2351 else 2352 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2353 false, false); 2354 return ret; 2355 } 2356 2357 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2358 struct extent_state *orig, u64 split) 2359 { 2360 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2361 u64 size; 2362 2363 lockdep_assert_held(&inode->io_tree.lock); 2364 2365 /* not delalloc, ignore it */ 2366 if (!(orig->state & EXTENT_DELALLOC)) 2367 return; 2368 2369 size = orig->end - orig->start + 1; 2370 if (size > fs_info->max_extent_size) { 2371 u32 num_extents; 2372 u64 new_size; 2373 2374 /* 2375 * See the explanation in btrfs_merge_delalloc_extent, the same 2376 * applies here, just in reverse. 2377 */ 2378 new_size = orig->end - split + 1; 2379 num_extents = count_max_extents(fs_info, new_size); 2380 new_size = split - orig->start; 2381 num_extents += count_max_extents(fs_info, new_size); 2382 if (count_max_extents(fs_info, size) >= num_extents) 2383 return; 2384 } 2385 2386 spin_lock(&inode->lock); 2387 btrfs_mod_outstanding_extents(inode, 1); 2388 spin_unlock(&inode->lock); 2389 } 2390 2391 /* 2392 * Handle merged delayed allocation extents so we can keep track of new extents 2393 * that are just merged onto old extents, such as when we are doing sequential 2394 * writes, so we can properly account for the metadata space we'll need. 2395 */ 2396 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2397 struct extent_state *other) 2398 { 2399 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2400 u64 new_size, old_size; 2401 u32 num_extents; 2402 2403 lockdep_assert_held(&inode->io_tree.lock); 2404 2405 /* not delalloc, ignore it */ 2406 if (!(other->state & EXTENT_DELALLOC)) 2407 return; 2408 2409 if (new->start > other->start) 2410 new_size = new->end - other->start + 1; 2411 else 2412 new_size = other->end - new->start + 1; 2413 2414 /* we're not bigger than the max, unreserve the space and go */ 2415 if (new_size <= fs_info->max_extent_size) { 2416 spin_lock(&inode->lock); 2417 btrfs_mod_outstanding_extents(inode, -1); 2418 spin_unlock(&inode->lock); 2419 return; 2420 } 2421 2422 /* 2423 * We have to add up either side to figure out how many extents were 2424 * accounted for before we merged into one big extent. If the number of 2425 * extents we accounted for is <= the amount we need for the new range 2426 * then we can return, otherwise drop. Think of it like this 2427 * 2428 * [ 4k][MAX_SIZE] 2429 * 2430 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2431 * need 2 outstanding extents, on one side we have 1 and the other side 2432 * we have 1 so they are == and we can return. But in this case 2433 * 2434 * [MAX_SIZE+4k][MAX_SIZE+4k] 2435 * 2436 * Each range on their own accounts for 2 extents, but merged together 2437 * they are only 3 extents worth of accounting, so we need to drop in 2438 * this case. 2439 */ 2440 old_size = other->end - other->start + 1; 2441 num_extents = count_max_extents(fs_info, old_size); 2442 old_size = new->end - new->start + 1; 2443 num_extents += count_max_extents(fs_info, old_size); 2444 if (count_max_extents(fs_info, new_size) >= num_extents) 2445 return; 2446 2447 spin_lock(&inode->lock); 2448 btrfs_mod_outstanding_extents(inode, -1); 2449 spin_unlock(&inode->lock); 2450 } 2451 2452 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2453 { 2454 struct btrfs_root *root = inode->root; 2455 struct btrfs_fs_info *fs_info = root->fs_info; 2456 2457 spin_lock(&root->delalloc_lock); 2458 ASSERT(list_empty(&inode->delalloc_inodes)); 2459 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2460 root->nr_delalloc_inodes++; 2461 if (root->nr_delalloc_inodes == 1) { 2462 spin_lock(&fs_info->delalloc_root_lock); 2463 ASSERT(list_empty(&root->delalloc_root)); 2464 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2465 spin_unlock(&fs_info->delalloc_root_lock); 2466 } 2467 spin_unlock(&root->delalloc_lock); 2468 } 2469 2470 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2471 { 2472 struct btrfs_root *root = inode->root; 2473 struct btrfs_fs_info *fs_info = root->fs_info; 2474 2475 lockdep_assert_held(&root->delalloc_lock); 2476 2477 /* 2478 * We may be called after the inode was already deleted from the list, 2479 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2480 * and then later through btrfs_clear_delalloc_extent() while the inode 2481 * still has ->delalloc_bytes > 0. 2482 */ 2483 if (!list_empty(&inode->delalloc_inodes)) { 2484 list_del_init(&inode->delalloc_inodes); 2485 root->nr_delalloc_inodes--; 2486 if (!root->nr_delalloc_inodes) { 2487 ASSERT(list_empty(&root->delalloc_inodes)); 2488 spin_lock(&fs_info->delalloc_root_lock); 2489 ASSERT(!list_empty(&root->delalloc_root)); 2490 list_del_init(&root->delalloc_root); 2491 spin_unlock(&fs_info->delalloc_root_lock); 2492 } 2493 } 2494 } 2495 2496 /* 2497 * Properly track delayed allocation bytes in the inode and to maintain the 2498 * list of inodes that have pending delalloc work to be done. 2499 */ 2500 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2501 u32 bits) 2502 { 2503 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2504 2505 lockdep_assert_held(&inode->io_tree.lock); 2506 2507 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2508 WARN_ON(1); 2509 /* 2510 * set_bit and clear bit hooks normally require _irqsave/restore 2511 * but in this case, we are only testing for the DELALLOC 2512 * bit, which is only set or cleared with irqs on 2513 */ 2514 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2515 u64 len = state->end + 1 - state->start; 2516 u64 prev_delalloc_bytes; 2517 u32 num_extents = count_max_extents(fs_info, len); 2518 2519 spin_lock(&inode->lock); 2520 btrfs_mod_outstanding_extents(inode, num_extents); 2521 spin_unlock(&inode->lock); 2522 2523 /* For sanity tests */ 2524 if (btrfs_is_testing(fs_info)) 2525 return; 2526 2527 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2528 fs_info->delalloc_batch); 2529 spin_lock(&inode->lock); 2530 prev_delalloc_bytes = inode->delalloc_bytes; 2531 inode->delalloc_bytes += len; 2532 if (bits & EXTENT_DEFRAG) 2533 inode->defrag_bytes += len; 2534 spin_unlock(&inode->lock); 2535 2536 /* 2537 * We don't need to be under the protection of the inode's lock, 2538 * because we are called while holding the inode's io_tree lock 2539 * and are therefore protected against concurrent calls of this 2540 * function and btrfs_clear_delalloc_extent(). 2541 */ 2542 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2543 btrfs_add_delalloc_inode(inode); 2544 } 2545 2546 if (!(state->state & EXTENT_DELALLOC_NEW) && 2547 (bits & EXTENT_DELALLOC_NEW)) { 2548 spin_lock(&inode->lock); 2549 inode->new_delalloc_bytes += state->end + 1 - state->start; 2550 spin_unlock(&inode->lock); 2551 } 2552 } 2553 2554 /* 2555 * Once a range is no longer delalloc this function ensures that proper 2556 * accounting happens. 2557 */ 2558 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2559 struct extent_state *state, u32 bits) 2560 { 2561 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2562 u64 len = state->end + 1 - state->start; 2563 u32 num_extents = count_max_extents(fs_info, len); 2564 2565 lockdep_assert_held(&inode->io_tree.lock); 2566 2567 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2568 spin_lock(&inode->lock); 2569 inode->defrag_bytes -= len; 2570 spin_unlock(&inode->lock); 2571 } 2572 2573 /* 2574 * set_bit and clear bit hooks normally require _irqsave/restore 2575 * but in this case, we are only testing for the DELALLOC 2576 * bit, which is only set or cleared with irqs on 2577 */ 2578 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2579 struct btrfs_root *root = inode->root; 2580 u64 new_delalloc_bytes; 2581 2582 spin_lock(&inode->lock); 2583 btrfs_mod_outstanding_extents(inode, -num_extents); 2584 spin_unlock(&inode->lock); 2585 2586 /* 2587 * We don't reserve metadata space for space cache inodes so we 2588 * don't need to call delalloc_release_metadata if there is an 2589 * error. 2590 */ 2591 if (bits & EXTENT_CLEAR_META_RESV && 2592 root != fs_info->tree_root) 2593 btrfs_delalloc_release_metadata(inode, len, true); 2594 2595 /* For sanity tests. */ 2596 if (btrfs_is_testing(fs_info)) 2597 return; 2598 2599 if (!btrfs_is_data_reloc_root(root) && 2600 !btrfs_is_free_space_inode(inode) && 2601 !(state->state & EXTENT_NORESERVE) && 2602 (bits & EXTENT_CLEAR_DATA_RESV)) 2603 btrfs_free_reserved_data_space_noquota(inode, len); 2604 2605 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2606 fs_info->delalloc_batch); 2607 spin_lock(&inode->lock); 2608 inode->delalloc_bytes -= len; 2609 new_delalloc_bytes = inode->delalloc_bytes; 2610 spin_unlock(&inode->lock); 2611 2612 /* 2613 * We don't need to be under the protection of the inode's lock, 2614 * because we are called while holding the inode's io_tree lock 2615 * and are therefore protected against concurrent calls of this 2616 * function and btrfs_set_delalloc_extent(). 2617 */ 2618 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2619 spin_lock(&root->delalloc_lock); 2620 btrfs_del_delalloc_inode(inode); 2621 spin_unlock(&root->delalloc_lock); 2622 } 2623 } 2624 2625 if ((state->state & EXTENT_DELALLOC_NEW) && 2626 (bits & EXTENT_DELALLOC_NEW)) { 2627 spin_lock(&inode->lock); 2628 ASSERT(inode->new_delalloc_bytes >= len); 2629 inode->new_delalloc_bytes -= len; 2630 if (bits & EXTENT_ADD_INODE_BYTES) 2631 inode_add_bytes(&inode->vfs_inode, len); 2632 spin_unlock(&inode->lock); 2633 } 2634 } 2635 2636 /* 2637 * given a list of ordered sums record them in the inode. This happens 2638 * at IO completion time based on sums calculated at bio submission time. 2639 */ 2640 static int add_pending_csums(struct btrfs_trans_handle *trans, 2641 struct list_head *list) 2642 { 2643 struct btrfs_ordered_sum *sum; 2644 struct btrfs_root *csum_root = NULL; 2645 int ret; 2646 2647 list_for_each_entry(sum, list, list) { 2648 trans->adding_csums = true; 2649 if (!csum_root) 2650 csum_root = btrfs_csum_root(trans->fs_info, 2651 sum->logical); 2652 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2653 trans->adding_csums = false; 2654 if (ret) 2655 return ret; 2656 } 2657 return 0; 2658 } 2659 2660 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2661 const u64 start, 2662 const u64 len, 2663 struct extent_state **cached_state) 2664 { 2665 u64 search_start = start; 2666 const u64 end = start + len - 1; 2667 2668 while (search_start < end) { 2669 const u64 search_len = end - search_start + 1; 2670 struct extent_map *em; 2671 u64 em_len; 2672 int ret = 0; 2673 2674 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2675 if (IS_ERR(em)) 2676 return PTR_ERR(em); 2677 2678 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2679 goto next; 2680 2681 em_len = em->len; 2682 if (em->start < search_start) 2683 em_len -= search_start - em->start; 2684 if (em_len > search_len) 2685 em_len = search_len; 2686 2687 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2688 search_start + em_len - 1, 2689 EXTENT_DELALLOC_NEW, cached_state); 2690 next: 2691 search_start = btrfs_extent_map_end(em); 2692 btrfs_free_extent_map(em); 2693 if (ret) 2694 return ret; 2695 } 2696 return 0; 2697 } 2698 2699 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2700 unsigned int extra_bits, 2701 struct extent_state **cached_state) 2702 { 2703 WARN_ON(PAGE_ALIGNED(end)); 2704 2705 if (start >= i_size_read(&inode->vfs_inode) && 2706 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2707 /* 2708 * There can't be any extents following eof in this case so just 2709 * set the delalloc new bit for the range directly. 2710 */ 2711 extra_bits |= EXTENT_DELALLOC_NEW; 2712 } else { 2713 int ret; 2714 2715 ret = btrfs_find_new_delalloc_bytes(inode, start, 2716 end + 1 - start, 2717 cached_state); 2718 if (ret) 2719 return ret; 2720 } 2721 2722 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2723 EXTENT_DELALLOC | extra_bits, cached_state); 2724 } 2725 2726 /* see btrfs_writepage_start_hook for details on why this is required */ 2727 struct btrfs_writepage_fixup { 2728 struct folio *folio; 2729 struct btrfs_inode *inode; 2730 struct btrfs_work work; 2731 }; 2732 2733 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2734 { 2735 struct btrfs_writepage_fixup *fixup = 2736 container_of(work, struct btrfs_writepage_fixup, work); 2737 struct btrfs_ordered_extent *ordered; 2738 struct extent_state *cached_state = NULL; 2739 struct extent_changeset *data_reserved = NULL; 2740 struct folio *folio = fixup->folio; 2741 struct btrfs_inode *inode = fixup->inode; 2742 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2743 u64 page_start = folio_pos(folio); 2744 u64 page_end = folio_end(folio) - 1; 2745 int ret = 0; 2746 bool free_delalloc_space = true; 2747 2748 /* 2749 * This is similar to page_mkwrite, we need to reserve the space before 2750 * we take the folio lock. 2751 */ 2752 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2753 folio_size(folio)); 2754 again: 2755 folio_lock(folio); 2756 2757 /* 2758 * Before we queued this fixup, we took a reference on the folio. 2759 * folio->mapping may go NULL, but it shouldn't be moved to a different 2760 * address space. 2761 */ 2762 if (!folio->mapping || !folio_test_dirty(folio) || 2763 !folio_test_checked(folio)) { 2764 /* 2765 * Unfortunately this is a little tricky, either 2766 * 2767 * 1) We got here and our folio had already been dealt with and 2768 * we reserved our space, thus ret == 0, so we need to just 2769 * drop our space reservation and bail. This can happen the 2770 * first time we come into the fixup worker, or could happen 2771 * while waiting for the ordered extent. 2772 * 2) Our folio was already dealt with, but we happened to get an 2773 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2774 * this case we obviously don't have anything to release, but 2775 * because the folio was already dealt with we don't want to 2776 * mark the folio with an error, so make sure we're resetting 2777 * ret to 0. This is why we have this check _before_ the ret 2778 * check, because we do not want to have a surprise ENOSPC 2779 * when the folio was already properly dealt with. 2780 */ 2781 if (!ret) { 2782 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2783 btrfs_delalloc_release_space(inode, data_reserved, 2784 page_start, folio_size(folio), 2785 true); 2786 } 2787 ret = 0; 2788 goto out_page; 2789 } 2790 2791 /* 2792 * We can't mess with the folio state unless it is locked, so now that 2793 * it is locked bail if we failed to make our space reservation. 2794 */ 2795 if (ret) 2796 goto out_page; 2797 2798 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2799 2800 /* already ordered? We're done */ 2801 if (folio_test_ordered(folio)) 2802 goto out_reserved; 2803 2804 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2805 if (ordered) { 2806 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2807 &cached_state); 2808 folio_unlock(folio); 2809 btrfs_start_ordered_extent(ordered); 2810 btrfs_put_ordered_extent(ordered); 2811 goto again; 2812 } 2813 2814 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2815 &cached_state); 2816 if (ret) 2817 goto out_reserved; 2818 2819 /* 2820 * Everything went as planned, we're now the owner of a dirty page with 2821 * delayed allocation bits set and space reserved for our COW 2822 * destination. 2823 * 2824 * The page was dirty when we started, nothing should have cleaned it. 2825 */ 2826 BUG_ON(!folio_test_dirty(folio)); 2827 free_delalloc_space = false; 2828 out_reserved: 2829 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2830 if (free_delalloc_space) 2831 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2832 PAGE_SIZE, true); 2833 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2834 out_page: 2835 if (ret) { 2836 /* 2837 * We hit ENOSPC or other errors. Update the mapping and page 2838 * to reflect the errors and clean the page. 2839 */ 2840 mapping_set_error(folio->mapping, ret); 2841 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2842 folio_size(folio), !ret); 2843 folio_clear_dirty_for_io(folio); 2844 } 2845 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2846 folio_unlock(folio); 2847 folio_put(folio); 2848 kfree(fixup); 2849 extent_changeset_free(data_reserved); 2850 /* 2851 * As a precaution, do a delayed iput in case it would be the last iput 2852 * that could need flushing space. Recursing back to fixup worker would 2853 * deadlock. 2854 */ 2855 btrfs_add_delayed_iput(inode); 2856 } 2857 2858 /* 2859 * There are a few paths in the higher layers of the kernel that directly 2860 * set the folio dirty bit without asking the filesystem if it is a 2861 * good idea. This causes problems because we want to make sure COW 2862 * properly happens and the data=ordered rules are followed. 2863 * 2864 * In our case any range that doesn't have the ORDERED bit set 2865 * hasn't been properly setup for IO. We kick off an async process 2866 * to fix it up. The async helper will wait for ordered extents, set 2867 * the delalloc bit and make it safe to write the folio. 2868 */ 2869 int btrfs_writepage_cow_fixup(struct folio *folio) 2870 { 2871 struct inode *inode = folio->mapping->host; 2872 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2873 struct btrfs_writepage_fixup *fixup; 2874 2875 /* This folio has ordered extent covering it already */ 2876 if (folio_test_ordered(folio)) 2877 return 0; 2878 2879 /* 2880 * For experimental build, we error out instead of EAGAIN. 2881 * 2882 * We should not hit such out-of-band dirty folios anymore. 2883 */ 2884 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2885 DEBUG_WARN(); 2886 btrfs_err_rl(fs_info, 2887 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2888 btrfs_root_id(BTRFS_I(inode)->root), 2889 btrfs_ino(BTRFS_I(inode)), 2890 folio_pos(folio)); 2891 return -EUCLEAN; 2892 } 2893 2894 /* 2895 * folio_checked is set below when we create a fixup worker for this 2896 * folio, don't try to create another one if we're already 2897 * folio_test_checked. 2898 * 2899 * The extent_io writepage code will redirty the foio if we send back 2900 * EAGAIN. 2901 */ 2902 if (folio_test_checked(folio)) 2903 return -EAGAIN; 2904 2905 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2906 if (!fixup) 2907 return -EAGAIN; 2908 2909 /* 2910 * We are already holding a reference to this inode from 2911 * write_cache_pages. We need to hold it because the space reservation 2912 * takes place outside of the folio lock, and we can't trust 2913 * folio->mapping outside of the folio lock. 2914 */ 2915 ihold(inode); 2916 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2917 folio_get(folio); 2918 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2919 fixup->folio = folio; 2920 fixup->inode = BTRFS_I(inode); 2921 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2922 2923 return -EAGAIN; 2924 } 2925 2926 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2927 struct btrfs_inode *inode, u64 file_pos, 2928 struct btrfs_file_extent_item *stack_fi, 2929 const bool update_inode_bytes, 2930 u64 qgroup_reserved) 2931 { 2932 struct btrfs_root *root = inode->root; 2933 const u64 sectorsize = root->fs_info->sectorsize; 2934 BTRFS_PATH_AUTO_FREE(path); 2935 struct extent_buffer *leaf; 2936 struct btrfs_key ins; 2937 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2938 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2939 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2940 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2941 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2942 struct btrfs_drop_extents_args drop_args = { 0 }; 2943 int ret; 2944 2945 path = btrfs_alloc_path(); 2946 if (!path) 2947 return -ENOMEM; 2948 2949 /* 2950 * we may be replacing one extent in the tree with another. 2951 * The new extent is pinned in the extent map, and we don't want 2952 * to drop it from the cache until it is completely in the btree. 2953 * 2954 * So, tell btrfs_drop_extents to leave this extent in the cache. 2955 * the caller is expected to unpin it and allow it to be merged 2956 * with the others. 2957 */ 2958 drop_args.path = path; 2959 drop_args.start = file_pos; 2960 drop_args.end = file_pos + num_bytes; 2961 drop_args.replace_extent = true; 2962 drop_args.extent_item_size = sizeof(*stack_fi); 2963 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2964 if (ret) 2965 goto out; 2966 2967 if (!drop_args.extent_inserted) { 2968 ins.objectid = btrfs_ino(inode); 2969 ins.type = BTRFS_EXTENT_DATA_KEY; 2970 ins.offset = file_pos; 2971 2972 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2973 sizeof(*stack_fi)); 2974 if (ret) 2975 goto out; 2976 } 2977 leaf = path->nodes[0]; 2978 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2979 write_extent_buffer(leaf, stack_fi, 2980 btrfs_item_ptr_offset(leaf, path->slots[0]), 2981 sizeof(struct btrfs_file_extent_item)); 2982 2983 btrfs_release_path(path); 2984 2985 /* 2986 * If we dropped an inline extent here, we know the range where it is 2987 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2988 * number of bytes only for that range containing the inline extent. 2989 * The remaining of the range will be processed when clearning the 2990 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2991 */ 2992 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2993 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2994 2995 inline_size = drop_args.bytes_found - inline_size; 2996 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2997 drop_args.bytes_found -= inline_size; 2998 num_bytes -= sectorsize; 2999 } 3000 3001 if (update_inode_bytes) 3002 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3003 3004 ins.objectid = disk_bytenr; 3005 ins.type = BTRFS_EXTENT_ITEM_KEY; 3006 ins.offset = disk_num_bytes; 3007 3008 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3009 if (ret) 3010 goto out; 3011 3012 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3013 file_pos - offset, 3014 qgroup_reserved, &ins); 3015 out: 3016 return ret; 3017 } 3018 3019 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3020 u64 start, u64 len) 3021 { 3022 struct btrfs_block_group *cache; 3023 3024 cache = btrfs_lookup_block_group(fs_info, start); 3025 ASSERT(cache); 3026 3027 spin_lock(&cache->lock); 3028 cache->delalloc_bytes -= len; 3029 spin_unlock(&cache->lock); 3030 3031 btrfs_put_block_group(cache); 3032 } 3033 3034 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3035 struct btrfs_ordered_extent *oe) 3036 { 3037 struct btrfs_file_extent_item stack_fi; 3038 bool update_inode_bytes; 3039 u64 num_bytes = oe->num_bytes; 3040 u64 ram_bytes = oe->ram_bytes; 3041 3042 memset(&stack_fi, 0, sizeof(stack_fi)); 3043 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3044 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3045 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3046 oe->disk_num_bytes); 3047 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3048 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3049 num_bytes = oe->truncated_len; 3050 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3051 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3052 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3053 /* Encryption and other encoding is reserved and all 0 */ 3054 3055 /* 3056 * For delalloc, when completing an ordered extent we update the inode's 3057 * bytes when clearing the range in the inode's io tree, so pass false 3058 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3059 * except if the ordered extent was truncated. 3060 */ 3061 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3062 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3063 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3064 3065 return insert_reserved_file_extent(trans, oe->inode, 3066 oe->file_offset, &stack_fi, 3067 update_inode_bytes, oe->qgroup_rsv); 3068 } 3069 3070 /* 3071 * As ordered data IO finishes, this gets called so we can finish 3072 * an ordered extent if the range of bytes in the file it covers are 3073 * fully written. 3074 */ 3075 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3076 { 3077 struct btrfs_inode *inode = ordered_extent->inode; 3078 struct btrfs_root *root = inode->root; 3079 struct btrfs_fs_info *fs_info = root->fs_info; 3080 struct btrfs_trans_handle *trans = NULL; 3081 struct extent_io_tree *io_tree = &inode->io_tree; 3082 struct extent_state *cached_state = NULL; 3083 u64 start, end; 3084 int compress_type = 0; 3085 int ret = 0; 3086 u64 logical_len = ordered_extent->num_bytes; 3087 bool freespace_inode; 3088 bool truncated = false; 3089 bool clear_reserved_extent = true; 3090 unsigned int clear_bits = EXTENT_DEFRAG; 3091 3092 start = ordered_extent->file_offset; 3093 end = start + ordered_extent->num_bytes - 1; 3094 3095 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3096 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3097 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3098 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3099 clear_bits |= EXTENT_DELALLOC_NEW; 3100 3101 freespace_inode = btrfs_is_free_space_inode(inode); 3102 if (!freespace_inode) 3103 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3104 3105 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3106 ret = -EIO; 3107 goto out; 3108 } 3109 3110 if (btrfs_is_zoned(fs_info)) 3111 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3112 ordered_extent->disk_num_bytes); 3113 3114 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3115 truncated = true; 3116 logical_len = ordered_extent->truncated_len; 3117 /* Truncated the entire extent, don't bother adding */ 3118 if (!logical_len) 3119 goto out; 3120 } 3121 3122 /* 3123 * If it's a COW write we need to lock the extent range as we will be 3124 * inserting/replacing file extent items and unpinning an extent map. 3125 * This must be taken before joining a transaction, as it's a higher 3126 * level lock (like the inode's VFS lock), otherwise we can run into an 3127 * ABBA deadlock with other tasks (transactions work like a lock, 3128 * depending on their current state). 3129 */ 3130 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3131 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3132 btrfs_lock_extent_bits(io_tree, start, end, 3133 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3134 &cached_state); 3135 } 3136 3137 if (freespace_inode) 3138 trans = btrfs_join_transaction_spacecache(root); 3139 else 3140 trans = btrfs_join_transaction(root); 3141 if (IS_ERR(trans)) { 3142 ret = PTR_ERR(trans); 3143 trans = NULL; 3144 goto out; 3145 } 3146 3147 trans->block_rsv = &inode->block_rsv; 3148 3149 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3150 if (ret) { 3151 btrfs_abort_transaction(trans, ret); 3152 goto out; 3153 } 3154 3155 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3156 /* Logic error */ 3157 ASSERT(list_empty(&ordered_extent->list)); 3158 if (!list_empty(&ordered_extent->list)) { 3159 ret = -EINVAL; 3160 btrfs_abort_transaction(trans, ret); 3161 goto out; 3162 } 3163 3164 btrfs_inode_safe_disk_i_size_write(inode, 0); 3165 ret = btrfs_update_inode_fallback(trans, inode); 3166 if (ret) { 3167 /* -ENOMEM or corruption */ 3168 btrfs_abort_transaction(trans, ret); 3169 } 3170 goto out; 3171 } 3172 3173 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3174 compress_type = ordered_extent->compress_type; 3175 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3176 BUG_ON(compress_type); 3177 ret = btrfs_mark_extent_written(trans, inode, 3178 ordered_extent->file_offset, 3179 ordered_extent->file_offset + 3180 logical_len); 3181 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3182 ordered_extent->disk_num_bytes); 3183 } else { 3184 BUG_ON(root == fs_info->tree_root); 3185 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3186 if (!ret) { 3187 clear_reserved_extent = false; 3188 btrfs_release_delalloc_bytes(fs_info, 3189 ordered_extent->disk_bytenr, 3190 ordered_extent->disk_num_bytes); 3191 } 3192 } 3193 if (ret < 0) { 3194 btrfs_abort_transaction(trans, ret); 3195 goto out; 3196 } 3197 3198 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3199 ordered_extent->num_bytes, trans->transid); 3200 if (ret < 0) { 3201 btrfs_abort_transaction(trans, ret); 3202 goto out; 3203 } 3204 3205 ret = add_pending_csums(trans, &ordered_extent->list); 3206 if (ret) { 3207 btrfs_abort_transaction(trans, ret); 3208 goto out; 3209 } 3210 3211 /* 3212 * If this is a new delalloc range, clear its new delalloc flag to 3213 * update the inode's number of bytes. This needs to be done first 3214 * before updating the inode item. 3215 */ 3216 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3217 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3218 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3219 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3220 &cached_state); 3221 3222 btrfs_inode_safe_disk_i_size_write(inode, 0); 3223 ret = btrfs_update_inode_fallback(trans, inode); 3224 if (ret) { /* -ENOMEM or corruption */ 3225 btrfs_abort_transaction(trans, ret); 3226 goto out; 3227 } 3228 out: 3229 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3230 &cached_state); 3231 3232 if (trans) 3233 btrfs_end_transaction(trans); 3234 3235 if (ret || truncated) { 3236 /* 3237 * If we failed to finish this ordered extent for any reason we 3238 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3239 * extent, and mark the inode with the error if it wasn't 3240 * already set. Any error during writeback would have already 3241 * set the mapping error, so we need to set it if we're the ones 3242 * marking this ordered extent as failed. 3243 */ 3244 if (ret) 3245 btrfs_mark_ordered_extent_error(ordered_extent); 3246 3247 /* 3248 * Drop extent maps for the part of the extent we didn't write. 3249 * 3250 * We have an exception here for the free_space_inode, this is 3251 * because when we do btrfs_get_extent() on the free space inode 3252 * we will search the commit root. If this is a new block group 3253 * we won't find anything, and we will trip over the assert in 3254 * writepage where we do ASSERT(em->block_start != 3255 * EXTENT_MAP_HOLE). 3256 * 3257 * Theoretically we could also skip this for any NOCOW extent as 3258 * we don't mess with the extent map tree in the NOCOW case, but 3259 * for now simply skip this if we are the free space inode. 3260 */ 3261 if (!btrfs_is_free_space_inode(inode)) { 3262 u64 unwritten_start = start; 3263 3264 if (truncated) 3265 unwritten_start += logical_len; 3266 3267 btrfs_drop_extent_map_range(inode, unwritten_start, 3268 end, false); 3269 } 3270 3271 /* 3272 * If the ordered extent had an IOERR or something else went 3273 * wrong we need to return the space for this ordered extent 3274 * back to the allocator. We only free the extent in the 3275 * truncated case if we didn't write out the extent at all. 3276 * 3277 * If we made it past insert_reserved_file_extent before we 3278 * errored out then we don't need to do this as the accounting 3279 * has already been done. 3280 */ 3281 if ((ret || !logical_len) && 3282 clear_reserved_extent && 3283 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3284 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3285 /* 3286 * Discard the range before returning it back to the 3287 * free space pool 3288 */ 3289 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3290 btrfs_discard_extent(fs_info, 3291 ordered_extent->disk_bytenr, 3292 ordered_extent->disk_num_bytes, 3293 NULL); 3294 btrfs_free_reserved_extent(fs_info, 3295 ordered_extent->disk_bytenr, 3296 ordered_extent->disk_num_bytes, true); 3297 /* 3298 * Actually free the qgroup rsv which was released when 3299 * the ordered extent was created. 3300 */ 3301 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3302 ordered_extent->qgroup_rsv, 3303 BTRFS_QGROUP_RSV_DATA); 3304 } 3305 } 3306 3307 /* 3308 * This needs to be done to make sure anybody waiting knows we are done 3309 * updating everything for this ordered extent. 3310 */ 3311 btrfs_remove_ordered_extent(inode, ordered_extent); 3312 3313 /* once for us */ 3314 btrfs_put_ordered_extent(ordered_extent); 3315 /* once for the tree */ 3316 btrfs_put_ordered_extent(ordered_extent); 3317 3318 return ret; 3319 } 3320 3321 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3322 { 3323 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3324 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3325 list_empty(&ordered->bioc_list)) 3326 btrfs_finish_ordered_zoned(ordered); 3327 return btrfs_finish_one_ordered(ordered); 3328 } 3329 3330 /* 3331 * Verify the checksum for a single sector without any extra action that depend 3332 * on the type of I/O. 3333 * 3334 * @kaddr must be a properly kmapped address. 3335 */ 3336 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, void *kaddr, u8 *csum, 3337 const u8 * const csum_expected) 3338 { 3339 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3340 3341 shash->tfm = fs_info->csum_shash; 3342 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3343 3344 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3345 return -EIO; 3346 return 0; 3347 } 3348 3349 /* 3350 * Verify the checksum of a single data sector. 3351 * 3352 * @bbio: btrfs_io_bio which contains the csum 3353 * @dev: device the sector is on 3354 * @bio_offset: offset to the beginning of the bio (in bytes) 3355 * @bv: bio_vec to check 3356 * 3357 * Check if the checksum on a data block is valid. When a checksum mismatch is 3358 * detected, report the error and fill the corrupted range with zero. 3359 * 3360 * Return %true if the sector is ok or had no checksum to start with, else %false. 3361 */ 3362 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3363 u32 bio_offset, struct bio_vec *bv) 3364 { 3365 struct btrfs_inode *inode = bbio->inode; 3366 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3367 u64 file_offset = bbio->file_offset + bio_offset; 3368 u64 end = file_offset + bv->bv_len - 1; 3369 u8 *csum_expected; 3370 u8 csum[BTRFS_CSUM_SIZE]; 3371 void *kaddr; 3372 3373 ASSERT(bv->bv_len == fs_info->sectorsize); 3374 3375 if (!bbio->csum) 3376 return true; 3377 3378 if (btrfs_is_data_reloc_root(inode->root) && 3379 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3380 NULL)) { 3381 /* Skip the range without csum for data reloc inode */ 3382 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3383 EXTENT_NODATASUM, NULL); 3384 return true; 3385 } 3386 3387 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3388 fs_info->csum_size; 3389 kaddr = bvec_kmap_local(bv); 3390 if (btrfs_check_sector_csum(fs_info, kaddr, csum, csum_expected)) { 3391 kunmap_local(kaddr); 3392 goto zeroit; 3393 } 3394 kunmap_local(kaddr); 3395 return true; 3396 3397 zeroit: 3398 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3399 bbio->mirror_num); 3400 if (dev) 3401 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3402 memzero_bvec(bv); 3403 return false; 3404 } 3405 3406 /* 3407 * Perform a delayed iput on @inode. 3408 * 3409 * @inode: The inode we want to perform iput on 3410 * 3411 * This function uses the generic vfs_inode::i_count to track whether we should 3412 * just decrement it (in case it's > 1) or if this is the last iput then link 3413 * the inode to the delayed iput machinery. Delayed iputs are processed at 3414 * transaction commit time/superblock commit/cleaner kthread. 3415 */ 3416 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3417 { 3418 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3419 unsigned long flags; 3420 3421 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3422 return; 3423 3424 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3425 atomic_inc(&fs_info->nr_delayed_iputs); 3426 /* 3427 * Need to be irq safe here because we can be called from either an irq 3428 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3429 * context. 3430 */ 3431 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3432 ASSERT(list_empty(&inode->delayed_iput)); 3433 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3434 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3435 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3436 wake_up_process(fs_info->cleaner_kthread); 3437 } 3438 3439 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3440 struct btrfs_inode *inode) 3441 { 3442 list_del_init(&inode->delayed_iput); 3443 spin_unlock_irq(&fs_info->delayed_iput_lock); 3444 iput(&inode->vfs_inode); 3445 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3446 wake_up(&fs_info->delayed_iputs_wait); 3447 spin_lock_irq(&fs_info->delayed_iput_lock); 3448 } 3449 3450 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3451 struct btrfs_inode *inode) 3452 { 3453 if (!list_empty(&inode->delayed_iput)) { 3454 spin_lock_irq(&fs_info->delayed_iput_lock); 3455 if (!list_empty(&inode->delayed_iput)) 3456 run_delayed_iput_locked(fs_info, inode); 3457 spin_unlock_irq(&fs_info->delayed_iput_lock); 3458 } 3459 } 3460 3461 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3462 { 3463 /* 3464 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3465 * calls btrfs_add_delayed_iput() and that needs to lock 3466 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3467 * prevent a deadlock. 3468 */ 3469 spin_lock_irq(&fs_info->delayed_iput_lock); 3470 while (!list_empty(&fs_info->delayed_iputs)) { 3471 struct btrfs_inode *inode; 3472 3473 inode = list_first_entry(&fs_info->delayed_iputs, 3474 struct btrfs_inode, delayed_iput); 3475 run_delayed_iput_locked(fs_info, inode); 3476 if (need_resched()) { 3477 spin_unlock_irq(&fs_info->delayed_iput_lock); 3478 cond_resched(); 3479 spin_lock_irq(&fs_info->delayed_iput_lock); 3480 } 3481 } 3482 spin_unlock_irq(&fs_info->delayed_iput_lock); 3483 } 3484 3485 /* 3486 * Wait for flushing all delayed iputs 3487 * 3488 * @fs_info: the filesystem 3489 * 3490 * This will wait on any delayed iputs that are currently running with KILLABLE 3491 * set. Once they are all done running we will return, unless we are killed in 3492 * which case we return EINTR. This helps in user operations like fallocate etc 3493 * that might get blocked on the iputs. 3494 * 3495 * Return EINTR if we were killed, 0 if nothing's pending 3496 */ 3497 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3498 { 3499 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3500 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3501 if (ret) 3502 return -EINTR; 3503 return 0; 3504 } 3505 3506 /* 3507 * This creates an orphan entry for the given inode in case something goes wrong 3508 * in the middle of an unlink. 3509 */ 3510 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3511 struct btrfs_inode *inode) 3512 { 3513 int ret; 3514 3515 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3516 if (ret && ret != -EEXIST) { 3517 btrfs_abort_transaction(trans, ret); 3518 return ret; 3519 } 3520 3521 return 0; 3522 } 3523 3524 /* 3525 * We have done the delete so we can go ahead and remove the orphan item for 3526 * this particular inode. 3527 */ 3528 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3529 struct btrfs_inode *inode) 3530 { 3531 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3532 } 3533 3534 /* 3535 * this cleans up any orphans that may be left on the list from the last use 3536 * of this root. 3537 */ 3538 int btrfs_orphan_cleanup(struct btrfs_root *root) 3539 { 3540 struct btrfs_fs_info *fs_info = root->fs_info; 3541 BTRFS_PATH_AUTO_FREE(path); 3542 struct extent_buffer *leaf; 3543 struct btrfs_key key, found_key; 3544 struct btrfs_trans_handle *trans; 3545 u64 last_objectid = 0; 3546 int ret = 0, nr_unlink = 0; 3547 3548 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3549 return 0; 3550 3551 path = btrfs_alloc_path(); 3552 if (!path) { 3553 ret = -ENOMEM; 3554 goto out; 3555 } 3556 path->reada = READA_BACK; 3557 3558 key.objectid = BTRFS_ORPHAN_OBJECTID; 3559 key.type = BTRFS_ORPHAN_ITEM_KEY; 3560 key.offset = (u64)-1; 3561 3562 while (1) { 3563 struct btrfs_inode *inode; 3564 3565 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3566 if (ret < 0) 3567 goto out; 3568 3569 /* 3570 * if ret == 0 means we found what we were searching for, which 3571 * is weird, but possible, so only screw with path if we didn't 3572 * find the key and see if we have stuff that matches 3573 */ 3574 if (ret > 0) { 3575 ret = 0; 3576 if (path->slots[0] == 0) 3577 break; 3578 path->slots[0]--; 3579 } 3580 3581 /* pull out the item */ 3582 leaf = path->nodes[0]; 3583 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3584 3585 /* make sure the item matches what we want */ 3586 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3587 break; 3588 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3589 break; 3590 3591 /* release the path since we're done with it */ 3592 btrfs_release_path(path); 3593 3594 /* 3595 * this is where we are basically btrfs_lookup, without the 3596 * crossing root thing. we store the inode number in the 3597 * offset of the orphan item. 3598 */ 3599 3600 if (found_key.offset == last_objectid) { 3601 /* 3602 * We found the same inode as before. This means we were 3603 * not able to remove its items via eviction triggered 3604 * by an iput(). A transaction abort may have happened, 3605 * due to -ENOSPC for example, so try to grab the error 3606 * that lead to a transaction abort, if any. 3607 */ 3608 btrfs_err(fs_info, 3609 "Error removing orphan entry, stopping orphan cleanup"); 3610 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3611 goto out; 3612 } 3613 3614 last_objectid = found_key.offset; 3615 3616 found_key.objectid = found_key.offset; 3617 found_key.type = BTRFS_INODE_ITEM_KEY; 3618 found_key.offset = 0; 3619 inode = btrfs_iget(last_objectid, root); 3620 if (IS_ERR(inode)) { 3621 ret = PTR_ERR(inode); 3622 inode = NULL; 3623 if (ret != -ENOENT) 3624 goto out; 3625 } 3626 3627 if (!inode && root == fs_info->tree_root) { 3628 struct btrfs_root *dead_root; 3629 int is_dead_root = 0; 3630 3631 /* 3632 * This is an orphan in the tree root. Currently these 3633 * could come from 2 sources: 3634 * a) a root (snapshot/subvolume) deletion in progress 3635 * b) a free space cache inode 3636 * We need to distinguish those two, as the orphan item 3637 * for a root must not get deleted before the deletion 3638 * of the snapshot/subvolume's tree completes. 3639 * 3640 * btrfs_find_orphan_roots() ran before us, which has 3641 * found all deleted roots and loaded them into 3642 * fs_info->fs_roots_radix. So here we can find if an 3643 * orphan item corresponds to a deleted root by looking 3644 * up the root from that radix tree. 3645 */ 3646 3647 spin_lock(&fs_info->fs_roots_radix_lock); 3648 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3649 (unsigned long)found_key.objectid); 3650 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3651 is_dead_root = 1; 3652 spin_unlock(&fs_info->fs_roots_radix_lock); 3653 3654 if (is_dead_root) { 3655 /* prevent this orphan from being found again */ 3656 key.offset = found_key.objectid - 1; 3657 continue; 3658 } 3659 3660 } 3661 3662 /* 3663 * If we have an inode with links, there are a couple of 3664 * possibilities: 3665 * 3666 * 1. We were halfway through creating fsverity metadata for the 3667 * file. In that case, the orphan item represents incomplete 3668 * fsverity metadata which must be cleaned up with 3669 * btrfs_drop_verity_items and deleting the orphan item. 3670 3671 * 2. Old kernels (before v3.12) used to create an 3672 * orphan item for truncate indicating that there were possibly 3673 * extent items past i_size that needed to be deleted. In v3.12, 3674 * truncate was changed to update i_size in sync with the extent 3675 * items, but the (useless) orphan item was still created. Since 3676 * v4.18, we don't create the orphan item for truncate at all. 3677 * 3678 * So, this item could mean that we need to do a truncate, but 3679 * only if this filesystem was last used on a pre-v3.12 kernel 3680 * and was not cleanly unmounted. The odds of that are quite 3681 * slim, and it's a pain to do the truncate now, so just delete 3682 * the orphan item. 3683 * 3684 * It's also possible that this orphan item was supposed to be 3685 * deleted but wasn't. The inode number may have been reused, 3686 * but either way, we can delete the orphan item. 3687 */ 3688 if (!inode || inode->vfs_inode.i_nlink) { 3689 if (inode) { 3690 ret = btrfs_drop_verity_items(inode); 3691 iput(&inode->vfs_inode); 3692 inode = NULL; 3693 if (ret) 3694 goto out; 3695 } 3696 trans = btrfs_start_transaction(root, 1); 3697 if (IS_ERR(trans)) { 3698 ret = PTR_ERR(trans); 3699 goto out; 3700 } 3701 btrfs_debug(fs_info, "auto deleting %Lu", 3702 found_key.objectid); 3703 ret = btrfs_del_orphan_item(trans, root, 3704 found_key.objectid); 3705 btrfs_end_transaction(trans); 3706 if (ret) 3707 goto out; 3708 continue; 3709 } 3710 3711 nr_unlink++; 3712 3713 /* this will do delete_inode and everything for us */ 3714 iput(&inode->vfs_inode); 3715 } 3716 /* release the path since we're done with it */ 3717 btrfs_release_path(path); 3718 3719 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3720 trans = btrfs_join_transaction(root); 3721 if (!IS_ERR(trans)) 3722 btrfs_end_transaction(trans); 3723 } 3724 3725 if (nr_unlink) 3726 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3727 3728 out: 3729 if (ret) 3730 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3731 return ret; 3732 } 3733 3734 /* 3735 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3736 * can't be any ACLs. 3737 * 3738 * @leaf: the eb leaf where to search 3739 * @slot: the slot the inode is in 3740 * @objectid: the objectid of the inode 3741 * 3742 * Return true if there is xattr/ACL, false otherwise. 3743 */ 3744 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3745 int slot, u64 objectid, 3746 int *first_xattr_slot) 3747 { 3748 u32 nritems = btrfs_header_nritems(leaf); 3749 struct btrfs_key found_key; 3750 static u64 xattr_access = 0; 3751 static u64 xattr_default = 0; 3752 int scanned = 0; 3753 3754 if (!xattr_access) { 3755 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3756 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3757 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3758 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3759 } 3760 3761 slot++; 3762 *first_xattr_slot = -1; 3763 while (slot < nritems) { 3764 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3765 3766 /* We found a different objectid, there must be no ACLs. */ 3767 if (found_key.objectid != objectid) 3768 return false; 3769 3770 /* We found an xattr, assume we've got an ACL. */ 3771 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3772 if (*first_xattr_slot == -1) 3773 *first_xattr_slot = slot; 3774 if (found_key.offset == xattr_access || 3775 found_key.offset == xattr_default) 3776 return true; 3777 } 3778 3779 /* 3780 * We found a key greater than an xattr key, there can't be any 3781 * ACLs later on. 3782 */ 3783 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3784 return false; 3785 3786 slot++; 3787 scanned++; 3788 3789 /* 3790 * The item order goes like: 3791 * - inode 3792 * - inode backrefs 3793 * - xattrs 3794 * - extents, 3795 * 3796 * so if there are lots of hard links to an inode there can be 3797 * a lot of backrefs. Don't waste time searching too hard, 3798 * this is just an optimization. 3799 */ 3800 if (scanned >= 8) 3801 break; 3802 } 3803 /* 3804 * We hit the end of the leaf before we found an xattr or something 3805 * larger than an xattr. We have to assume the inode has ACLs. 3806 */ 3807 if (*first_xattr_slot == -1) 3808 *first_xattr_slot = slot; 3809 return true; 3810 } 3811 3812 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3813 { 3814 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3815 3816 if (WARN_ON_ONCE(inode->file_extent_tree)) 3817 return 0; 3818 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3819 return 0; 3820 if (!S_ISREG(inode->vfs_inode.i_mode)) 3821 return 0; 3822 if (btrfs_is_free_space_inode(inode)) 3823 return 0; 3824 3825 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3826 if (!inode->file_extent_tree) 3827 return -ENOMEM; 3828 3829 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3830 IO_TREE_INODE_FILE_EXTENT); 3831 /* Lockdep class is set only for the file extent tree. */ 3832 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3833 3834 return 0; 3835 } 3836 3837 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3838 { 3839 struct btrfs_root *root = inode->root; 3840 struct btrfs_inode *existing; 3841 const u64 ino = btrfs_ino(inode); 3842 int ret; 3843 3844 if (inode_unhashed(&inode->vfs_inode)) 3845 return 0; 3846 3847 if (prealloc) { 3848 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3849 if (ret) 3850 return ret; 3851 } 3852 3853 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3854 3855 if (xa_is_err(existing)) { 3856 ret = xa_err(existing); 3857 ASSERT(ret != -EINVAL); 3858 ASSERT(ret != -ENOMEM); 3859 return ret; 3860 } else if (existing) { 3861 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3862 } 3863 3864 return 0; 3865 } 3866 3867 /* 3868 * Read a locked inode from the btree into the in-memory inode and add it to 3869 * its root list/tree. 3870 * 3871 * On failure clean up the inode. 3872 */ 3873 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3874 { 3875 struct btrfs_root *root = inode->root; 3876 struct btrfs_fs_info *fs_info = root->fs_info; 3877 struct extent_buffer *leaf; 3878 struct btrfs_inode_item *inode_item; 3879 struct inode *vfs_inode = &inode->vfs_inode; 3880 struct btrfs_key location; 3881 unsigned long ptr; 3882 int maybe_acls; 3883 u32 rdev; 3884 int ret; 3885 bool filled = false; 3886 int first_xattr_slot; 3887 3888 ret = btrfs_fill_inode(inode, &rdev); 3889 if (!ret) 3890 filled = true; 3891 3892 ASSERT(path); 3893 3894 btrfs_get_inode_key(inode, &location); 3895 3896 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3897 if (ret) { 3898 /* 3899 * ret > 0 can come from btrfs_search_slot called by 3900 * btrfs_lookup_inode(), this means the inode was not found. 3901 */ 3902 if (ret > 0) 3903 ret = -ENOENT; 3904 goto out; 3905 } 3906 3907 leaf = path->nodes[0]; 3908 3909 if (filled) 3910 goto cache_index; 3911 3912 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3913 struct btrfs_inode_item); 3914 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3915 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3916 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3917 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3918 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3919 3920 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3921 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3922 3923 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3924 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3925 3926 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3927 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3928 3929 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3930 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3931 3932 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3933 inode->generation = btrfs_inode_generation(leaf, inode_item); 3934 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3935 3936 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3937 vfs_inode->i_generation = inode->generation; 3938 vfs_inode->i_rdev = 0; 3939 rdev = btrfs_inode_rdev(leaf, inode_item); 3940 3941 if (S_ISDIR(vfs_inode->i_mode)) 3942 inode->index_cnt = (u64)-1; 3943 3944 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3945 &inode->flags, &inode->ro_flags); 3946 btrfs_update_inode_mapping_flags(inode); 3947 btrfs_set_inode_mapping_order(inode); 3948 3949 cache_index: 3950 ret = btrfs_init_file_extent_tree(inode); 3951 if (ret) 3952 goto out; 3953 btrfs_inode_set_file_extent_range(inode, 0, 3954 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3955 /* 3956 * If we were modified in the current generation and evicted from memory 3957 * and then re-read we need to do a full sync since we don't have any 3958 * idea about which extents were modified before we were evicted from 3959 * cache. 3960 * 3961 * This is required for both inode re-read from disk and delayed inode 3962 * in the delayed_nodes xarray. 3963 */ 3964 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3965 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3966 3967 /* 3968 * We don't persist the id of the transaction where an unlink operation 3969 * against the inode was last made. So here we assume the inode might 3970 * have been evicted, and therefore the exact value of last_unlink_trans 3971 * lost, and set it to last_trans to avoid metadata inconsistencies 3972 * between the inode and its parent if the inode is fsync'ed and the log 3973 * replayed. For example, in the scenario: 3974 * 3975 * touch mydir/foo 3976 * ln mydir/foo mydir/bar 3977 * sync 3978 * unlink mydir/bar 3979 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3980 * xfs_io -c fsync mydir/foo 3981 * <power failure> 3982 * mount fs, triggers fsync log replay 3983 * 3984 * We must make sure that when we fsync our inode foo we also log its 3985 * parent inode, otherwise after log replay the parent still has the 3986 * dentry with the "bar" name but our inode foo has a link count of 1 3987 * and doesn't have an inode ref with the name "bar" anymore. 3988 * 3989 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3990 * but it guarantees correctness at the expense of occasional full 3991 * transaction commits on fsync if our inode is a directory, or if our 3992 * inode is not a directory, logging its parent unnecessarily. 3993 */ 3994 inode->last_unlink_trans = inode->last_trans; 3995 3996 /* 3997 * Same logic as for last_unlink_trans. We don't persist the generation 3998 * of the last transaction where this inode was used for a reflink 3999 * operation, so after eviction and reloading the inode we must be 4000 * pessimistic and assume the last transaction that modified the inode. 4001 */ 4002 inode->last_reflink_trans = inode->last_trans; 4003 4004 path->slots[0]++; 4005 if (vfs_inode->i_nlink != 1 || 4006 path->slots[0] >= btrfs_header_nritems(leaf)) 4007 goto cache_acl; 4008 4009 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4010 if (location.objectid != btrfs_ino(inode)) 4011 goto cache_acl; 4012 4013 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4014 if (location.type == BTRFS_INODE_REF_KEY) { 4015 struct btrfs_inode_ref *ref; 4016 4017 ref = (struct btrfs_inode_ref *)ptr; 4018 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4019 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4020 struct btrfs_inode_extref *extref; 4021 4022 extref = (struct btrfs_inode_extref *)ptr; 4023 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4024 } 4025 cache_acl: 4026 /* 4027 * try to precache a NULL acl entry for files that don't have 4028 * any xattrs or acls 4029 */ 4030 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4031 btrfs_ino(inode), &first_xattr_slot); 4032 if (first_xattr_slot != -1) { 4033 path->slots[0] = first_xattr_slot; 4034 ret = btrfs_load_inode_props(inode, path); 4035 if (ret) 4036 btrfs_err(fs_info, 4037 "error loading props for ino %llu (root %llu): %d", 4038 btrfs_ino(inode), btrfs_root_id(root), ret); 4039 } 4040 4041 if (!maybe_acls) 4042 cache_no_acl(vfs_inode); 4043 4044 switch (vfs_inode->i_mode & S_IFMT) { 4045 case S_IFREG: 4046 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4047 vfs_inode->i_fop = &btrfs_file_operations; 4048 vfs_inode->i_op = &btrfs_file_inode_operations; 4049 break; 4050 case S_IFDIR: 4051 vfs_inode->i_fop = &btrfs_dir_file_operations; 4052 vfs_inode->i_op = &btrfs_dir_inode_operations; 4053 break; 4054 case S_IFLNK: 4055 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4056 inode_nohighmem(vfs_inode); 4057 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4058 break; 4059 default: 4060 vfs_inode->i_op = &btrfs_special_inode_operations; 4061 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4062 break; 4063 } 4064 4065 btrfs_sync_inode_flags_to_i_flags(inode); 4066 4067 ret = btrfs_add_inode_to_root(inode, true); 4068 if (ret) 4069 goto out; 4070 4071 return 0; 4072 out: 4073 iget_failed(vfs_inode); 4074 return ret; 4075 } 4076 4077 /* 4078 * given a leaf and an inode, copy the inode fields into the leaf 4079 */ 4080 static void fill_inode_item(struct btrfs_trans_handle *trans, 4081 struct extent_buffer *leaf, 4082 struct btrfs_inode_item *item, 4083 struct inode *inode) 4084 { 4085 u64 flags; 4086 4087 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4088 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4089 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4090 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4091 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4092 4093 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4094 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4095 4096 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4097 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4098 4099 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4100 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4101 4102 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4103 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4104 4105 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4106 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4107 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4108 btrfs_set_inode_transid(leaf, item, trans->transid); 4109 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4110 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4111 BTRFS_I(inode)->ro_flags); 4112 btrfs_set_inode_flags(leaf, item, flags); 4113 btrfs_set_inode_block_group(leaf, item, 0); 4114 } 4115 4116 /* 4117 * copy everything in the in-memory inode into the btree. 4118 */ 4119 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4120 struct btrfs_inode *inode) 4121 { 4122 struct btrfs_inode_item *inode_item; 4123 BTRFS_PATH_AUTO_FREE(path); 4124 struct extent_buffer *leaf; 4125 struct btrfs_key key; 4126 int ret; 4127 4128 path = btrfs_alloc_path(); 4129 if (!path) 4130 return -ENOMEM; 4131 4132 btrfs_get_inode_key(inode, &key); 4133 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4134 if (ret) { 4135 if (ret > 0) 4136 ret = -ENOENT; 4137 return ret; 4138 } 4139 4140 leaf = path->nodes[0]; 4141 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4142 struct btrfs_inode_item); 4143 4144 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4145 btrfs_set_inode_last_trans(trans, inode); 4146 return 0; 4147 } 4148 4149 /* 4150 * copy everything in the in-memory inode into the btree. 4151 */ 4152 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4153 struct btrfs_inode *inode) 4154 { 4155 struct btrfs_root *root = inode->root; 4156 struct btrfs_fs_info *fs_info = root->fs_info; 4157 int ret; 4158 4159 /* 4160 * If the inode is a free space inode, we can deadlock during commit 4161 * if we put it into the delayed code. 4162 * 4163 * The data relocation inode should also be directly updated 4164 * without delay 4165 */ 4166 if (!btrfs_is_free_space_inode(inode) 4167 && !btrfs_is_data_reloc_root(root) 4168 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4169 btrfs_update_root_times(trans, root); 4170 4171 ret = btrfs_delayed_update_inode(trans, inode); 4172 if (!ret) 4173 btrfs_set_inode_last_trans(trans, inode); 4174 return ret; 4175 } 4176 4177 return btrfs_update_inode_item(trans, inode); 4178 } 4179 4180 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4181 struct btrfs_inode *inode) 4182 { 4183 int ret; 4184 4185 ret = btrfs_update_inode(trans, inode); 4186 if (ret == -ENOSPC) 4187 return btrfs_update_inode_item(trans, inode); 4188 return ret; 4189 } 4190 4191 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4192 { 4193 struct timespec64 now; 4194 4195 /* 4196 * If we are replaying a log tree, we do not want to update the mtime 4197 * and ctime of the parent directory with the current time, since the 4198 * log replay procedure is responsible for setting them to their correct 4199 * values (the ones it had when the fsync was done). 4200 */ 4201 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4202 return; 4203 4204 now = inode_set_ctime_current(&dir->vfs_inode); 4205 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4206 } 4207 4208 /* 4209 * unlink helper that gets used here in inode.c and in the tree logging 4210 * recovery code. It remove a link in a directory with a given name, and 4211 * also drops the back refs in the inode to the directory 4212 */ 4213 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4214 struct btrfs_inode *dir, 4215 struct btrfs_inode *inode, 4216 const struct fscrypt_str *name, 4217 struct btrfs_rename_ctx *rename_ctx) 4218 { 4219 struct btrfs_root *root = dir->root; 4220 struct btrfs_fs_info *fs_info = root->fs_info; 4221 struct btrfs_path *path; 4222 int ret = 0; 4223 struct btrfs_dir_item *di; 4224 u64 index; 4225 u64 ino = btrfs_ino(inode); 4226 u64 dir_ino = btrfs_ino(dir); 4227 4228 path = btrfs_alloc_path(); 4229 if (!path) 4230 return -ENOMEM; 4231 4232 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4233 if (IS_ERR_OR_NULL(di)) { 4234 btrfs_free_path(path); 4235 return di ? PTR_ERR(di) : -ENOENT; 4236 } 4237 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4238 /* 4239 * Down the call chains below we'll also need to allocate a path, so no 4240 * need to hold on to this one for longer than necessary. 4241 */ 4242 btrfs_free_path(path); 4243 if (ret) 4244 return ret; 4245 4246 /* 4247 * If we don't have dir index, we have to get it by looking up 4248 * the inode ref, since we get the inode ref, remove it directly, 4249 * it is unnecessary to do delayed deletion. 4250 * 4251 * But if we have dir index, needn't search inode ref to get it. 4252 * Since the inode ref is close to the inode item, it is better 4253 * that we delay to delete it, and just do this deletion when 4254 * we update the inode item. 4255 */ 4256 if (inode->dir_index) { 4257 ret = btrfs_delayed_delete_inode_ref(inode); 4258 if (!ret) { 4259 index = inode->dir_index; 4260 goto skip_backref; 4261 } 4262 } 4263 4264 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4265 if (ret) { 4266 btrfs_crit(fs_info, 4267 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4268 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4269 btrfs_abort_transaction(trans, ret); 4270 return ret; 4271 } 4272 skip_backref: 4273 if (rename_ctx) 4274 rename_ctx->index = index; 4275 4276 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4277 if (ret) { 4278 btrfs_abort_transaction(trans, ret); 4279 return ret; 4280 } 4281 4282 /* 4283 * If we are in a rename context, we don't need to update anything in the 4284 * log. That will be done later during the rename by btrfs_log_new_name(). 4285 * Besides that, doing it here would only cause extra unnecessary btree 4286 * operations on the log tree, increasing latency for applications. 4287 */ 4288 if (!rename_ctx) { 4289 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4290 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4291 } 4292 4293 /* 4294 * If we have a pending delayed iput we could end up with the final iput 4295 * being run in btrfs-cleaner context. If we have enough of these built 4296 * up we can end up burning a lot of time in btrfs-cleaner without any 4297 * way to throttle the unlinks. Since we're currently holding a ref on 4298 * the inode we can run the delayed iput here without any issues as the 4299 * final iput won't be done until after we drop the ref we're currently 4300 * holding. 4301 */ 4302 btrfs_run_delayed_iput(fs_info, inode); 4303 4304 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4305 inode_inc_iversion(&inode->vfs_inode); 4306 inode_set_ctime_current(&inode->vfs_inode); 4307 inode_inc_iversion(&dir->vfs_inode); 4308 update_time_after_link_or_unlink(dir); 4309 4310 return btrfs_update_inode(trans, dir); 4311 } 4312 4313 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4314 struct btrfs_inode *dir, struct btrfs_inode *inode, 4315 const struct fscrypt_str *name) 4316 { 4317 int ret; 4318 4319 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4320 if (!ret) { 4321 drop_nlink(&inode->vfs_inode); 4322 ret = btrfs_update_inode(trans, inode); 4323 } 4324 return ret; 4325 } 4326 4327 /* 4328 * helper to start transaction for unlink and rmdir. 4329 * 4330 * unlink and rmdir are special in btrfs, they do not always free space, so 4331 * if we cannot make our reservations the normal way try and see if there is 4332 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4333 * allow the unlink to occur. 4334 */ 4335 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4336 { 4337 struct btrfs_root *root = dir->root; 4338 4339 return btrfs_start_transaction_fallback_global_rsv(root, 4340 BTRFS_UNLINK_METADATA_UNITS); 4341 } 4342 4343 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4344 { 4345 struct btrfs_trans_handle *trans; 4346 struct inode *inode = d_inode(dentry); 4347 int ret; 4348 struct fscrypt_name fname; 4349 4350 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4351 if (ret) 4352 return ret; 4353 4354 /* This needs to handle no-key deletions later on */ 4355 4356 trans = __unlink_start_trans(BTRFS_I(dir)); 4357 if (IS_ERR(trans)) { 4358 ret = PTR_ERR(trans); 4359 goto fscrypt_free; 4360 } 4361 4362 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4363 false); 4364 4365 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4366 &fname.disk_name); 4367 if (ret) 4368 goto end_trans; 4369 4370 if (inode->i_nlink == 0) { 4371 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4372 if (ret) 4373 goto end_trans; 4374 } 4375 4376 end_trans: 4377 btrfs_end_transaction(trans); 4378 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4379 fscrypt_free: 4380 fscrypt_free_filename(&fname); 4381 return ret; 4382 } 4383 4384 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4385 struct btrfs_inode *dir, struct dentry *dentry) 4386 { 4387 struct btrfs_root *root = dir->root; 4388 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4389 struct btrfs_path *path; 4390 struct extent_buffer *leaf; 4391 struct btrfs_dir_item *di; 4392 struct btrfs_key key; 4393 u64 index; 4394 int ret; 4395 u64 objectid; 4396 u64 dir_ino = btrfs_ino(dir); 4397 struct fscrypt_name fname; 4398 4399 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4400 if (ret) 4401 return ret; 4402 4403 /* This needs to handle no-key deletions later on */ 4404 4405 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4406 objectid = btrfs_root_id(inode->root); 4407 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4408 objectid = inode->ref_root_id; 4409 } else { 4410 WARN_ON(1); 4411 fscrypt_free_filename(&fname); 4412 return -EINVAL; 4413 } 4414 4415 path = btrfs_alloc_path(); 4416 if (!path) { 4417 ret = -ENOMEM; 4418 goto out; 4419 } 4420 4421 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4422 &fname.disk_name, -1); 4423 if (IS_ERR_OR_NULL(di)) { 4424 ret = di ? PTR_ERR(di) : -ENOENT; 4425 goto out; 4426 } 4427 4428 leaf = path->nodes[0]; 4429 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4430 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4431 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4432 if (ret) { 4433 btrfs_abort_transaction(trans, ret); 4434 goto out; 4435 } 4436 btrfs_release_path(path); 4437 4438 /* 4439 * This is a placeholder inode for a subvolume we didn't have a 4440 * reference to at the time of the snapshot creation. In the meantime 4441 * we could have renamed the real subvol link into our snapshot, so 4442 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4443 * Instead simply lookup the dir_index_item for this entry so we can 4444 * remove it. Otherwise we know we have a ref to the root and we can 4445 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4446 */ 4447 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4448 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4449 if (IS_ERR(di)) { 4450 ret = PTR_ERR(di); 4451 btrfs_abort_transaction(trans, ret); 4452 goto out; 4453 } 4454 4455 leaf = path->nodes[0]; 4456 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4457 index = key.offset; 4458 btrfs_release_path(path); 4459 } else { 4460 ret = btrfs_del_root_ref(trans, objectid, 4461 btrfs_root_id(root), dir_ino, 4462 &index, &fname.disk_name); 4463 if (ret) { 4464 btrfs_abort_transaction(trans, ret); 4465 goto out; 4466 } 4467 } 4468 4469 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4470 if (ret) { 4471 btrfs_abort_transaction(trans, ret); 4472 goto out; 4473 } 4474 4475 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4476 inode_inc_iversion(&dir->vfs_inode); 4477 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4478 ret = btrfs_update_inode_fallback(trans, dir); 4479 if (ret) 4480 btrfs_abort_transaction(trans, ret); 4481 out: 4482 btrfs_free_path(path); 4483 fscrypt_free_filename(&fname); 4484 return ret; 4485 } 4486 4487 /* 4488 * Helper to check if the subvolume references other subvolumes or if it's 4489 * default. 4490 */ 4491 static noinline int may_destroy_subvol(struct btrfs_root *root) 4492 { 4493 struct btrfs_fs_info *fs_info = root->fs_info; 4494 BTRFS_PATH_AUTO_FREE(path); 4495 struct btrfs_dir_item *di; 4496 struct btrfs_key key; 4497 struct fscrypt_str name = FSTR_INIT("default", 7); 4498 u64 dir_id; 4499 int ret; 4500 4501 path = btrfs_alloc_path(); 4502 if (!path) 4503 return -ENOMEM; 4504 4505 /* Make sure this root isn't set as the default subvol */ 4506 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4507 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4508 dir_id, &name, 0); 4509 if (di && !IS_ERR(di)) { 4510 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4511 if (key.objectid == btrfs_root_id(root)) { 4512 ret = -EPERM; 4513 btrfs_err(fs_info, 4514 "deleting default subvolume %llu is not allowed", 4515 key.objectid); 4516 return ret; 4517 } 4518 btrfs_release_path(path); 4519 } 4520 4521 key.objectid = btrfs_root_id(root); 4522 key.type = BTRFS_ROOT_REF_KEY; 4523 key.offset = (u64)-1; 4524 4525 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4526 if (ret < 0) 4527 return ret; 4528 if (ret == 0) { 4529 /* 4530 * Key with offset -1 found, there would have to exist a root 4531 * with such id, but this is out of valid range. 4532 */ 4533 return -EUCLEAN; 4534 } 4535 4536 ret = 0; 4537 if (path->slots[0] > 0) { 4538 path->slots[0]--; 4539 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4540 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4541 ret = -ENOTEMPTY; 4542 } 4543 4544 return ret; 4545 } 4546 4547 /* Delete all dentries for inodes belonging to the root */ 4548 static void btrfs_prune_dentries(struct btrfs_root *root) 4549 { 4550 struct btrfs_fs_info *fs_info = root->fs_info; 4551 struct btrfs_inode *inode; 4552 u64 min_ino = 0; 4553 4554 if (!BTRFS_FS_ERROR(fs_info)) 4555 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4556 4557 inode = btrfs_find_first_inode(root, min_ino); 4558 while (inode) { 4559 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4560 d_prune_aliases(&inode->vfs_inode); 4561 4562 min_ino = btrfs_ino(inode) + 1; 4563 /* 4564 * btrfs_drop_inode() will have it removed from the inode 4565 * cache when its usage count hits zero. 4566 */ 4567 iput(&inode->vfs_inode); 4568 cond_resched(); 4569 inode = btrfs_find_first_inode(root, min_ino); 4570 } 4571 } 4572 4573 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4574 { 4575 struct btrfs_root *root = dir->root; 4576 struct btrfs_fs_info *fs_info = root->fs_info; 4577 struct inode *inode = d_inode(dentry); 4578 struct btrfs_root *dest = BTRFS_I(inode)->root; 4579 struct btrfs_trans_handle *trans; 4580 struct btrfs_block_rsv block_rsv; 4581 u64 root_flags; 4582 u64 qgroup_reserved = 0; 4583 int ret; 4584 4585 down_write(&fs_info->subvol_sem); 4586 4587 /* 4588 * Don't allow to delete a subvolume with send in progress. This is 4589 * inside the inode lock so the error handling that has to drop the bit 4590 * again is not run concurrently. 4591 */ 4592 spin_lock(&dest->root_item_lock); 4593 if (dest->send_in_progress) { 4594 spin_unlock(&dest->root_item_lock); 4595 btrfs_warn(fs_info, 4596 "attempt to delete subvolume %llu during send", 4597 btrfs_root_id(dest)); 4598 ret = -EPERM; 4599 goto out_up_write; 4600 } 4601 if (atomic_read(&dest->nr_swapfiles)) { 4602 spin_unlock(&dest->root_item_lock); 4603 btrfs_warn(fs_info, 4604 "attempt to delete subvolume %llu with active swapfile", 4605 btrfs_root_id(root)); 4606 ret = -EPERM; 4607 goto out_up_write; 4608 } 4609 root_flags = btrfs_root_flags(&dest->root_item); 4610 btrfs_set_root_flags(&dest->root_item, 4611 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4612 spin_unlock(&dest->root_item_lock); 4613 4614 ret = may_destroy_subvol(dest); 4615 if (ret) 4616 goto out_undead; 4617 4618 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4619 /* 4620 * One for dir inode, 4621 * two for dir entries, 4622 * two for root ref/backref. 4623 */ 4624 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4625 if (ret) 4626 goto out_undead; 4627 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4628 4629 trans = btrfs_start_transaction(root, 0); 4630 if (IS_ERR(trans)) { 4631 ret = PTR_ERR(trans); 4632 goto out_release; 4633 } 4634 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4635 qgroup_reserved = 0; 4636 trans->block_rsv = &block_rsv; 4637 trans->bytes_reserved = block_rsv.size; 4638 4639 btrfs_record_snapshot_destroy(trans, dir); 4640 4641 ret = btrfs_unlink_subvol(trans, dir, dentry); 4642 if (ret) { 4643 btrfs_abort_transaction(trans, ret); 4644 goto out_end_trans; 4645 } 4646 4647 ret = btrfs_record_root_in_trans(trans, dest); 4648 if (ret) { 4649 btrfs_abort_transaction(trans, ret); 4650 goto out_end_trans; 4651 } 4652 4653 memset(&dest->root_item.drop_progress, 0, 4654 sizeof(dest->root_item.drop_progress)); 4655 btrfs_set_root_drop_level(&dest->root_item, 0); 4656 btrfs_set_root_refs(&dest->root_item, 0); 4657 4658 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4659 ret = btrfs_insert_orphan_item(trans, 4660 fs_info->tree_root, 4661 btrfs_root_id(dest)); 4662 if (ret) { 4663 btrfs_abort_transaction(trans, ret); 4664 goto out_end_trans; 4665 } 4666 } 4667 4668 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4669 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4670 if (ret && ret != -ENOENT) { 4671 btrfs_abort_transaction(trans, ret); 4672 goto out_end_trans; 4673 } 4674 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4675 ret = btrfs_uuid_tree_remove(trans, 4676 dest->root_item.received_uuid, 4677 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4678 btrfs_root_id(dest)); 4679 if (ret && ret != -ENOENT) { 4680 btrfs_abort_transaction(trans, ret); 4681 goto out_end_trans; 4682 } 4683 } 4684 4685 free_anon_bdev(dest->anon_dev); 4686 dest->anon_dev = 0; 4687 out_end_trans: 4688 trans->block_rsv = NULL; 4689 trans->bytes_reserved = 0; 4690 ret = btrfs_end_transaction(trans); 4691 inode->i_flags |= S_DEAD; 4692 out_release: 4693 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4694 if (qgroup_reserved) 4695 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4696 out_undead: 4697 if (ret) { 4698 spin_lock(&dest->root_item_lock); 4699 root_flags = btrfs_root_flags(&dest->root_item); 4700 btrfs_set_root_flags(&dest->root_item, 4701 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4702 spin_unlock(&dest->root_item_lock); 4703 } 4704 out_up_write: 4705 up_write(&fs_info->subvol_sem); 4706 if (!ret) { 4707 d_invalidate(dentry); 4708 btrfs_prune_dentries(dest); 4709 ASSERT(dest->send_in_progress == 0); 4710 } 4711 4712 return ret; 4713 } 4714 4715 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4716 { 4717 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4718 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4719 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4720 int ret = 0; 4721 struct btrfs_trans_handle *trans; 4722 struct fscrypt_name fname; 4723 4724 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4725 return -ENOTEMPTY; 4726 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4727 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4728 btrfs_err(fs_info, 4729 "extent tree v2 doesn't support snapshot deletion yet"); 4730 return -EOPNOTSUPP; 4731 } 4732 return btrfs_delete_subvolume(dir, dentry); 4733 } 4734 4735 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4736 if (ret) 4737 return ret; 4738 4739 /* This needs to handle no-key deletions later on */ 4740 4741 trans = __unlink_start_trans(dir); 4742 if (IS_ERR(trans)) { 4743 ret = PTR_ERR(trans); 4744 goto out_notrans; 4745 } 4746 4747 /* 4748 * Propagate the last_unlink_trans value of the deleted dir to its 4749 * parent directory. This is to prevent an unrecoverable log tree in the 4750 * case we do something like this: 4751 * 1) create dir foo 4752 * 2) create snapshot under dir foo 4753 * 3) delete the snapshot 4754 * 4) rmdir foo 4755 * 5) mkdir foo 4756 * 6) fsync foo or some file inside foo 4757 * 4758 * This is because we can't unlink other roots when replaying the dir 4759 * deletes for directory foo. 4760 */ 4761 if (inode->last_unlink_trans >= trans->transid) 4762 btrfs_record_snapshot_destroy(trans, dir); 4763 4764 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4765 ret = btrfs_unlink_subvol(trans, dir, dentry); 4766 goto out; 4767 } 4768 4769 ret = btrfs_orphan_add(trans, inode); 4770 if (ret) 4771 goto out; 4772 4773 /* now the directory is empty */ 4774 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4775 if (!ret) 4776 btrfs_i_size_write(inode, 0); 4777 out: 4778 btrfs_end_transaction(trans); 4779 out_notrans: 4780 btrfs_btree_balance_dirty(fs_info); 4781 fscrypt_free_filename(&fname); 4782 4783 return ret; 4784 } 4785 4786 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4787 { 4788 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4789 blockstart, blocksize); 4790 4791 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4792 return true; 4793 return false; 4794 } 4795 4796 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4797 { 4798 const pgoff_t index = (start >> PAGE_SHIFT); 4799 struct address_space *mapping = inode->vfs_inode.i_mapping; 4800 struct folio *folio; 4801 u64 zero_start; 4802 u64 zero_end; 4803 int ret = 0; 4804 4805 again: 4806 folio = filemap_lock_folio(mapping, index); 4807 /* No folio present. */ 4808 if (IS_ERR(folio)) 4809 return 0; 4810 4811 if (!folio_test_uptodate(folio)) { 4812 ret = btrfs_read_folio(NULL, folio); 4813 folio_lock(folio); 4814 if (folio->mapping != mapping) { 4815 folio_unlock(folio); 4816 folio_put(folio); 4817 goto again; 4818 } 4819 if (!folio_test_uptodate(folio)) { 4820 ret = -EIO; 4821 goto out_unlock; 4822 } 4823 } 4824 folio_wait_writeback(folio); 4825 4826 /* 4827 * We do not need to lock extents nor wait for OE, as it's already 4828 * beyond EOF. 4829 */ 4830 4831 zero_start = max_t(u64, folio_pos(folio), start); 4832 zero_end = folio_end(folio); 4833 folio_zero_range(folio, zero_start - folio_pos(folio), 4834 zero_end - zero_start); 4835 4836 out_unlock: 4837 folio_unlock(folio); 4838 folio_put(folio); 4839 return ret; 4840 } 4841 4842 /* 4843 * Handle the truncation of a fs block. 4844 * 4845 * @inode - inode that we're zeroing 4846 * @offset - the file offset of the block to truncate 4847 * The value must be inside [@start, @end], and the function will do 4848 * extra checks if the block that covers @offset needs to be zeroed. 4849 * @start - the start file offset of the range we want to zero 4850 * @end - the end (inclusive) file offset of the range we want to zero. 4851 * 4852 * If the range is not block aligned, read out the folio that covers @offset, 4853 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4854 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4855 * for writeback. 4856 * 4857 * This is utilized by hole punch, zero range, file expansion. 4858 */ 4859 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4860 { 4861 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4862 struct address_space *mapping = inode->vfs_inode.i_mapping; 4863 struct extent_io_tree *io_tree = &inode->io_tree; 4864 struct btrfs_ordered_extent *ordered; 4865 struct extent_state *cached_state = NULL; 4866 struct extent_changeset *data_reserved = NULL; 4867 bool only_release_metadata = false; 4868 u32 blocksize = fs_info->sectorsize; 4869 pgoff_t index = (offset >> PAGE_SHIFT); 4870 struct folio *folio; 4871 gfp_t mask = btrfs_alloc_write_mask(mapping); 4872 int ret = 0; 4873 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4874 blocksize); 4875 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4876 blocksize); 4877 bool need_truncate_head = false; 4878 bool need_truncate_tail = false; 4879 u64 zero_start; 4880 u64 zero_end; 4881 u64 block_start; 4882 u64 block_end; 4883 4884 /* @offset should be inside the range. */ 4885 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4886 offset, start, end); 4887 4888 /* The range is aligned at both ends. */ 4889 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4890 /* 4891 * For block size < page size case, we may have polluted blocks 4892 * beyond EOF. So we also need to zero them out. 4893 */ 4894 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4895 ret = truncate_block_zero_beyond_eof(inode, start); 4896 goto out; 4897 } 4898 4899 /* 4900 * @offset may not be inside the head nor tail block. In that case we 4901 * don't need to do anything. 4902 */ 4903 if (!in_head_block && !in_tail_block) 4904 goto out; 4905 4906 /* 4907 * Skip the truncatioin if the range in the target block is already aligned. 4908 * The seemingly complex check will also handle the same block case. 4909 */ 4910 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4911 need_truncate_head = true; 4912 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4913 need_truncate_tail = true; 4914 if (!need_truncate_head && !need_truncate_tail) 4915 goto out; 4916 4917 block_start = round_down(offset, blocksize); 4918 block_end = block_start + blocksize - 1; 4919 4920 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4921 blocksize, false); 4922 if (ret < 0) { 4923 size_t write_bytes = blocksize; 4924 4925 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4926 /* For nocow case, no need to reserve data space. */ 4927 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 4928 write_bytes, blocksize); 4929 only_release_metadata = true; 4930 } else { 4931 goto out; 4932 } 4933 } 4934 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4935 if (ret < 0) { 4936 if (!only_release_metadata) 4937 btrfs_free_reserved_data_space(inode, data_reserved, 4938 block_start, blocksize); 4939 goto out; 4940 } 4941 again: 4942 folio = __filemap_get_folio(mapping, index, 4943 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4944 if (IS_ERR(folio)) { 4945 if (only_release_metadata) 4946 btrfs_delalloc_release_metadata(inode, blocksize, true); 4947 else 4948 btrfs_delalloc_release_space(inode, data_reserved, 4949 block_start, blocksize, true); 4950 btrfs_delalloc_release_extents(inode, blocksize); 4951 ret = PTR_ERR(folio); 4952 goto out; 4953 } 4954 4955 if (!folio_test_uptodate(folio)) { 4956 ret = btrfs_read_folio(NULL, folio); 4957 folio_lock(folio); 4958 if (folio->mapping != mapping) { 4959 folio_unlock(folio); 4960 folio_put(folio); 4961 goto again; 4962 } 4963 if (!folio_test_uptodate(folio)) { 4964 ret = -EIO; 4965 goto out_unlock; 4966 } 4967 } 4968 4969 /* 4970 * We unlock the page after the io is completed and then re-lock it 4971 * above. release_folio() could have come in between that and cleared 4972 * folio private, but left the page in the mapping. Set the page mapped 4973 * here to make sure it's properly set for the subpage stuff. 4974 */ 4975 ret = set_folio_extent_mapped(folio); 4976 if (ret < 0) 4977 goto out_unlock; 4978 4979 folio_wait_writeback(folio); 4980 4981 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 4982 4983 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4984 if (ordered) { 4985 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 4986 folio_unlock(folio); 4987 folio_put(folio); 4988 btrfs_start_ordered_extent(ordered); 4989 btrfs_put_ordered_extent(ordered); 4990 goto again; 4991 } 4992 4993 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 4994 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4995 &cached_state); 4996 4997 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4998 &cached_state); 4999 if (ret) { 5000 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5001 goto out_unlock; 5002 } 5003 5004 if (end == (u64)-1) { 5005 /* 5006 * We're truncating beyond EOF, the remaining blocks normally are 5007 * already holes thus no need to zero again, but it's possible for 5008 * fs block size < page size cases to have memory mapped writes 5009 * to pollute ranges beyond EOF. 5010 * 5011 * In that case although such polluted blocks beyond EOF will 5012 * not reach disk, it still affects our page caches. 5013 */ 5014 zero_start = max_t(u64, folio_pos(folio), start); 5015 zero_end = min_t(u64, folio_end(folio) - 1, end); 5016 } else { 5017 zero_start = max_t(u64, block_start, start); 5018 zero_end = min_t(u64, block_end, end); 5019 } 5020 folio_zero_range(folio, zero_start - folio_pos(folio), 5021 zero_end - zero_start + 1); 5022 5023 btrfs_folio_clear_checked(fs_info, folio, block_start, 5024 block_end + 1 - block_start); 5025 btrfs_folio_set_dirty(fs_info, folio, block_start, 5026 block_end + 1 - block_start); 5027 5028 if (only_release_metadata) 5029 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5030 EXTENT_NORESERVE, &cached_state); 5031 5032 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5033 5034 out_unlock: 5035 if (ret) { 5036 if (only_release_metadata) 5037 btrfs_delalloc_release_metadata(inode, blocksize, true); 5038 else 5039 btrfs_delalloc_release_space(inode, data_reserved, 5040 block_start, blocksize, true); 5041 } 5042 btrfs_delalloc_release_extents(inode, blocksize); 5043 folio_unlock(folio); 5044 folio_put(folio); 5045 out: 5046 if (only_release_metadata) 5047 btrfs_check_nocow_unlock(inode); 5048 extent_changeset_free(data_reserved); 5049 return ret; 5050 } 5051 5052 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5053 { 5054 struct btrfs_root *root = inode->root; 5055 struct btrfs_fs_info *fs_info = root->fs_info; 5056 struct btrfs_trans_handle *trans; 5057 struct btrfs_drop_extents_args drop_args = { 0 }; 5058 int ret; 5059 5060 /* 5061 * If NO_HOLES is enabled, we don't need to do anything. 5062 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5063 * or btrfs_update_inode() will be called, which guarantee that the next 5064 * fsync will know this inode was changed and needs to be logged. 5065 */ 5066 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5067 return 0; 5068 5069 /* 5070 * 1 - for the one we're dropping 5071 * 1 - for the one we're adding 5072 * 1 - for updating the inode. 5073 */ 5074 trans = btrfs_start_transaction(root, 3); 5075 if (IS_ERR(trans)) 5076 return PTR_ERR(trans); 5077 5078 drop_args.start = offset; 5079 drop_args.end = offset + len; 5080 drop_args.drop_cache = true; 5081 5082 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5083 if (ret) { 5084 btrfs_abort_transaction(trans, ret); 5085 btrfs_end_transaction(trans); 5086 return ret; 5087 } 5088 5089 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5090 if (ret) { 5091 btrfs_abort_transaction(trans, ret); 5092 } else { 5093 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5094 btrfs_update_inode(trans, inode); 5095 } 5096 btrfs_end_transaction(trans); 5097 return ret; 5098 } 5099 5100 /* 5101 * This function puts in dummy file extents for the area we're creating a hole 5102 * for. So if we are truncating this file to a larger size we need to insert 5103 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5104 * the range between oldsize and size 5105 */ 5106 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5107 { 5108 struct btrfs_root *root = inode->root; 5109 struct btrfs_fs_info *fs_info = root->fs_info; 5110 struct extent_io_tree *io_tree = &inode->io_tree; 5111 struct extent_map *em = NULL; 5112 struct extent_state *cached_state = NULL; 5113 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5114 u64 block_end = ALIGN(size, fs_info->sectorsize); 5115 u64 last_byte; 5116 u64 cur_offset; 5117 u64 hole_size; 5118 int ret = 0; 5119 5120 /* 5121 * If our size started in the middle of a block we need to zero out the 5122 * rest of the block before we expand the i_size, otherwise we could 5123 * expose stale data. 5124 */ 5125 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5126 if (ret) 5127 return ret; 5128 5129 if (size <= hole_start) 5130 return 0; 5131 5132 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5133 &cached_state); 5134 cur_offset = hole_start; 5135 while (1) { 5136 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5137 if (IS_ERR(em)) { 5138 ret = PTR_ERR(em); 5139 em = NULL; 5140 break; 5141 } 5142 last_byte = min(btrfs_extent_map_end(em), block_end); 5143 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5144 hole_size = last_byte - cur_offset; 5145 5146 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5147 struct extent_map *hole_em; 5148 5149 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5150 if (ret) 5151 break; 5152 5153 ret = btrfs_inode_set_file_extent_range(inode, 5154 cur_offset, hole_size); 5155 if (ret) 5156 break; 5157 5158 hole_em = btrfs_alloc_extent_map(); 5159 if (!hole_em) { 5160 btrfs_drop_extent_map_range(inode, cur_offset, 5161 cur_offset + hole_size - 1, 5162 false); 5163 btrfs_set_inode_full_sync(inode); 5164 goto next; 5165 } 5166 hole_em->start = cur_offset; 5167 hole_em->len = hole_size; 5168 5169 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5170 hole_em->disk_num_bytes = 0; 5171 hole_em->ram_bytes = hole_size; 5172 hole_em->generation = btrfs_get_fs_generation(fs_info); 5173 5174 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5175 btrfs_free_extent_map(hole_em); 5176 } else { 5177 ret = btrfs_inode_set_file_extent_range(inode, 5178 cur_offset, hole_size); 5179 if (ret) 5180 break; 5181 } 5182 next: 5183 btrfs_free_extent_map(em); 5184 em = NULL; 5185 cur_offset = last_byte; 5186 if (cur_offset >= block_end) 5187 break; 5188 } 5189 btrfs_free_extent_map(em); 5190 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5191 return ret; 5192 } 5193 5194 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5195 { 5196 struct btrfs_root *root = BTRFS_I(inode)->root; 5197 struct btrfs_trans_handle *trans; 5198 loff_t oldsize = i_size_read(inode); 5199 loff_t newsize = attr->ia_size; 5200 int mask = attr->ia_valid; 5201 int ret; 5202 5203 /* 5204 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5205 * special case where we need to update the times despite not having 5206 * these flags set. For all other operations the VFS set these flags 5207 * explicitly if it wants a timestamp update. 5208 */ 5209 if (newsize != oldsize) { 5210 inode_inc_iversion(inode); 5211 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5212 inode_set_mtime_to_ts(inode, 5213 inode_set_ctime_current(inode)); 5214 } 5215 } 5216 5217 if (newsize > oldsize) { 5218 /* 5219 * Don't do an expanding truncate while snapshotting is ongoing. 5220 * This is to ensure the snapshot captures a fully consistent 5221 * state of this file - if the snapshot captures this expanding 5222 * truncation, it must capture all writes that happened before 5223 * this truncation. 5224 */ 5225 btrfs_drew_write_lock(&root->snapshot_lock); 5226 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5227 if (ret) { 5228 btrfs_drew_write_unlock(&root->snapshot_lock); 5229 return ret; 5230 } 5231 5232 trans = btrfs_start_transaction(root, 1); 5233 if (IS_ERR(trans)) { 5234 btrfs_drew_write_unlock(&root->snapshot_lock); 5235 return PTR_ERR(trans); 5236 } 5237 5238 i_size_write(inode, newsize); 5239 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5240 pagecache_isize_extended(inode, oldsize, newsize); 5241 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5242 btrfs_drew_write_unlock(&root->snapshot_lock); 5243 btrfs_end_transaction(trans); 5244 } else { 5245 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5246 5247 if (btrfs_is_zoned(fs_info)) { 5248 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5249 ALIGN(newsize, fs_info->sectorsize), 5250 (u64)-1); 5251 if (ret) 5252 return ret; 5253 } 5254 5255 /* 5256 * We're truncating a file that used to have good data down to 5257 * zero. Make sure any new writes to the file get on disk 5258 * on close. 5259 */ 5260 if (newsize == 0) 5261 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5262 &BTRFS_I(inode)->runtime_flags); 5263 5264 truncate_setsize(inode, newsize); 5265 5266 inode_dio_wait(inode); 5267 5268 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5269 if (ret && inode->i_nlink) { 5270 int ret2; 5271 5272 /* 5273 * Truncate failed, so fix up the in-memory size. We 5274 * adjusted disk_i_size down as we removed extents, so 5275 * wait for disk_i_size to be stable and then update the 5276 * in-memory size to match. 5277 */ 5278 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5279 if (ret2) 5280 return ret2; 5281 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5282 } 5283 } 5284 5285 return ret; 5286 } 5287 5288 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5289 struct iattr *attr) 5290 { 5291 struct inode *inode = d_inode(dentry); 5292 struct btrfs_root *root = BTRFS_I(inode)->root; 5293 int ret; 5294 5295 if (btrfs_root_readonly(root)) 5296 return -EROFS; 5297 5298 ret = setattr_prepare(idmap, dentry, attr); 5299 if (ret) 5300 return ret; 5301 5302 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5303 ret = btrfs_setsize(inode, attr); 5304 if (ret) 5305 return ret; 5306 } 5307 5308 if (attr->ia_valid) { 5309 setattr_copy(idmap, inode, attr); 5310 inode_inc_iversion(inode); 5311 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5312 5313 if (!ret && attr->ia_valid & ATTR_MODE) 5314 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5315 } 5316 5317 return ret; 5318 } 5319 5320 /* 5321 * While truncating the inode pages during eviction, we get the VFS 5322 * calling btrfs_invalidate_folio() against each folio of the inode. This 5323 * is slow because the calls to btrfs_invalidate_folio() result in a 5324 * huge amount of calls to lock_extent() and clear_extent_bit(), 5325 * which keep merging and splitting extent_state structures over and over, 5326 * wasting lots of time. 5327 * 5328 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5329 * skip all those expensive operations on a per folio basis and do only 5330 * the ordered io finishing, while we release here the extent_map and 5331 * extent_state structures, without the excessive merging and splitting. 5332 */ 5333 static void evict_inode_truncate_pages(struct inode *inode) 5334 { 5335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5336 struct rb_node *node; 5337 5338 ASSERT(inode->i_state & I_FREEING); 5339 truncate_inode_pages_final(&inode->i_data); 5340 5341 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5342 5343 /* 5344 * Keep looping until we have no more ranges in the io tree. 5345 * We can have ongoing bios started by readahead that have 5346 * their endio callback (extent_io.c:end_bio_extent_readpage) 5347 * still in progress (unlocked the pages in the bio but did not yet 5348 * unlocked the ranges in the io tree). Therefore this means some 5349 * ranges can still be locked and eviction started because before 5350 * submitting those bios, which are executed by a separate task (work 5351 * queue kthread), inode references (inode->i_count) were not taken 5352 * (which would be dropped in the end io callback of each bio). 5353 * Therefore here we effectively end up waiting for those bios and 5354 * anyone else holding locked ranges without having bumped the inode's 5355 * reference count - if we don't do it, when they access the inode's 5356 * io_tree to unlock a range it may be too late, leading to an 5357 * use-after-free issue. 5358 */ 5359 spin_lock(&io_tree->lock); 5360 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5361 struct extent_state *state; 5362 struct extent_state *cached_state = NULL; 5363 u64 start; 5364 u64 end; 5365 unsigned state_flags; 5366 5367 node = rb_first(&io_tree->state); 5368 state = rb_entry(node, struct extent_state, rb_node); 5369 start = state->start; 5370 end = state->end; 5371 state_flags = state->state; 5372 spin_unlock(&io_tree->lock); 5373 5374 btrfs_lock_extent(io_tree, start, end, &cached_state); 5375 5376 /* 5377 * If still has DELALLOC flag, the extent didn't reach disk, 5378 * and its reserved space won't be freed by delayed_ref. 5379 * So we need to free its reserved space here. 5380 * (Refer to comment in btrfs_invalidate_folio, case 2) 5381 * 5382 * Note, end is the bytenr of last byte, so we need + 1 here. 5383 */ 5384 if (state_flags & EXTENT_DELALLOC) 5385 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5386 end - start + 1, NULL); 5387 5388 btrfs_clear_extent_bit(io_tree, start, end, 5389 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5390 &cached_state); 5391 5392 cond_resched(); 5393 spin_lock(&io_tree->lock); 5394 } 5395 spin_unlock(&io_tree->lock); 5396 } 5397 5398 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5399 struct btrfs_block_rsv *rsv) 5400 { 5401 struct btrfs_fs_info *fs_info = root->fs_info; 5402 struct btrfs_trans_handle *trans; 5403 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5404 int ret; 5405 5406 /* 5407 * Eviction should be taking place at some place safe because of our 5408 * delayed iputs. However the normal flushing code will run delayed 5409 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5410 * 5411 * We reserve the delayed_refs_extra here again because we can't use 5412 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5413 * above. We reserve our extra bit here because we generate a ton of 5414 * delayed refs activity by truncating. 5415 * 5416 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5417 * if we fail to make this reservation we can re-try without the 5418 * delayed_refs_extra so we can make some forward progress. 5419 */ 5420 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5421 BTRFS_RESERVE_FLUSH_EVICT); 5422 if (ret) { 5423 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5424 BTRFS_RESERVE_FLUSH_EVICT); 5425 if (ret) { 5426 btrfs_warn(fs_info, 5427 "could not allocate space for delete; will truncate on mount"); 5428 return ERR_PTR(-ENOSPC); 5429 } 5430 delayed_refs_extra = 0; 5431 } 5432 5433 trans = btrfs_join_transaction(root); 5434 if (IS_ERR(trans)) 5435 return trans; 5436 5437 if (delayed_refs_extra) { 5438 trans->block_rsv = &fs_info->trans_block_rsv; 5439 trans->bytes_reserved = delayed_refs_extra; 5440 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5441 delayed_refs_extra, true); 5442 } 5443 return trans; 5444 } 5445 5446 void btrfs_evict_inode(struct inode *inode) 5447 { 5448 struct btrfs_fs_info *fs_info; 5449 struct btrfs_trans_handle *trans; 5450 struct btrfs_root *root = BTRFS_I(inode)->root; 5451 struct btrfs_block_rsv rsv; 5452 int ret; 5453 5454 trace_btrfs_inode_evict(inode); 5455 5456 if (!root) { 5457 fsverity_cleanup_inode(inode); 5458 clear_inode(inode); 5459 return; 5460 } 5461 5462 fs_info = inode_to_fs_info(inode); 5463 evict_inode_truncate_pages(inode); 5464 5465 if (inode->i_nlink && 5466 ((btrfs_root_refs(&root->root_item) != 0 && 5467 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5468 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5469 goto out; 5470 5471 if (is_bad_inode(inode)) 5472 goto out; 5473 5474 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5475 goto out; 5476 5477 if (inode->i_nlink > 0) { 5478 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5479 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5480 goto out; 5481 } 5482 5483 /* 5484 * This makes sure the inode item in tree is uptodate and the space for 5485 * the inode update is released. 5486 */ 5487 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5488 if (ret) 5489 goto out; 5490 5491 /* 5492 * This drops any pending insert or delete operations we have for this 5493 * inode. We could have a delayed dir index deletion queued up, but 5494 * we're removing the inode completely so that'll be taken care of in 5495 * the truncate. 5496 */ 5497 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5498 5499 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5500 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5501 rsv.failfast = true; 5502 5503 btrfs_i_size_write(BTRFS_I(inode), 0); 5504 5505 while (1) { 5506 struct btrfs_truncate_control control = { 5507 .inode = BTRFS_I(inode), 5508 .ino = btrfs_ino(BTRFS_I(inode)), 5509 .new_size = 0, 5510 .min_type = 0, 5511 }; 5512 5513 trans = evict_refill_and_join(root, &rsv); 5514 if (IS_ERR(trans)) 5515 goto out_release; 5516 5517 trans->block_rsv = &rsv; 5518 5519 ret = btrfs_truncate_inode_items(trans, root, &control); 5520 trans->block_rsv = &fs_info->trans_block_rsv; 5521 btrfs_end_transaction(trans); 5522 /* 5523 * We have not added new delayed items for our inode after we 5524 * have flushed its delayed items, so no need to throttle on 5525 * delayed items. However we have modified extent buffers. 5526 */ 5527 btrfs_btree_balance_dirty_nodelay(fs_info); 5528 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5529 goto out_release; 5530 else if (!ret) 5531 break; 5532 } 5533 5534 /* 5535 * Errors here aren't a big deal, it just means we leave orphan items in 5536 * the tree. They will be cleaned up on the next mount. If the inode 5537 * number gets reused, cleanup deletes the orphan item without doing 5538 * anything, and unlink reuses the existing orphan item. 5539 * 5540 * If it turns out that we are dropping too many of these, we might want 5541 * to add a mechanism for retrying these after a commit. 5542 */ 5543 trans = evict_refill_and_join(root, &rsv); 5544 if (!IS_ERR(trans)) { 5545 trans->block_rsv = &rsv; 5546 btrfs_orphan_del(trans, BTRFS_I(inode)); 5547 trans->block_rsv = &fs_info->trans_block_rsv; 5548 btrfs_end_transaction(trans); 5549 } 5550 5551 out_release: 5552 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5553 out: 5554 /* 5555 * If we didn't successfully delete, the orphan item will still be in 5556 * the tree and we'll retry on the next mount. Again, we might also want 5557 * to retry these periodically in the future. 5558 */ 5559 btrfs_remove_delayed_node(BTRFS_I(inode)); 5560 fsverity_cleanup_inode(inode); 5561 clear_inode(inode); 5562 } 5563 5564 /* 5565 * Return the key found in the dir entry in the location pointer, fill @type 5566 * with BTRFS_FT_*, and return 0. 5567 * 5568 * If no dir entries were found, returns -ENOENT. 5569 * If found a corrupted location in dir entry, returns -EUCLEAN. 5570 */ 5571 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5572 struct btrfs_key *location, u8 *type) 5573 { 5574 struct btrfs_dir_item *di; 5575 BTRFS_PATH_AUTO_FREE(path); 5576 struct btrfs_root *root = dir->root; 5577 int ret = 0; 5578 struct fscrypt_name fname; 5579 5580 path = btrfs_alloc_path(); 5581 if (!path) 5582 return -ENOMEM; 5583 5584 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5585 if (ret < 0) 5586 return ret; 5587 /* 5588 * fscrypt_setup_filename() should never return a positive value, but 5589 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5590 */ 5591 ASSERT(ret == 0); 5592 5593 /* This needs to handle no-key deletions later on */ 5594 5595 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5596 &fname.disk_name, 0); 5597 if (IS_ERR_OR_NULL(di)) { 5598 ret = di ? PTR_ERR(di) : -ENOENT; 5599 goto out; 5600 } 5601 5602 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5603 if (location->type != BTRFS_INODE_ITEM_KEY && 5604 location->type != BTRFS_ROOT_ITEM_KEY) { 5605 ret = -EUCLEAN; 5606 btrfs_warn(root->fs_info, 5607 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5608 __func__, fname.disk_name.name, btrfs_ino(dir), 5609 location->objectid, location->type, location->offset); 5610 } 5611 if (!ret) 5612 *type = btrfs_dir_ftype(path->nodes[0], di); 5613 out: 5614 fscrypt_free_filename(&fname); 5615 return ret; 5616 } 5617 5618 /* 5619 * when we hit a tree root in a directory, the btrfs part of the inode 5620 * needs to be changed to reflect the root directory of the tree root. This 5621 * is kind of like crossing a mount point. 5622 */ 5623 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5624 struct btrfs_inode *dir, 5625 struct dentry *dentry, 5626 struct btrfs_key *location, 5627 struct btrfs_root **sub_root) 5628 { 5629 BTRFS_PATH_AUTO_FREE(path); 5630 struct btrfs_root *new_root; 5631 struct btrfs_root_ref *ref; 5632 struct extent_buffer *leaf; 5633 struct btrfs_key key; 5634 int ret; 5635 int err = 0; 5636 struct fscrypt_name fname; 5637 5638 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5639 if (ret) 5640 return ret; 5641 5642 path = btrfs_alloc_path(); 5643 if (!path) { 5644 err = -ENOMEM; 5645 goto out; 5646 } 5647 5648 err = -ENOENT; 5649 key.objectid = btrfs_root_id(dir->root); 5650 key.type = BTRFS_ROOT_REF_KEY; 5651 key.offset = location->objectid; 5652 5653 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5654 if (ret) { 5655 if (ret < 0) 5656 err = ret; 5657 goto out; 5658 } 5659 5660 leaf = path->nodes[0]; 5661 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5662 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5663 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5664 goto out; 5665 5666 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5667 (unsigned long)(ref + 1), fname.disk_name.len); 5668 if (ret) 5669 goto out; 5670 5671 btrfs_release_path(path); 5672 5673 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5674 if (IS_ERR(new_root)) { 5675 err = PTR_ERR(new_root); 5676 goto out; 5677 } 5678 5679 *sub_root = new_root; 5680 location->objectid = btrfs_root_dirid(&new_root->root_item); 5681 location->type = BTRFS_INODE_ITEM_KEY; 5682 location->offset = 0; 5683 err = 0; 5684 out: 5685 fscrypt_free_filename(&fname); 5686 return err; 5687 } 5688 5689 5690 5691 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5692 { 5693 struct btrfs_root *root = inode->root; 5694 struct btrfs_inode *entry; 5695 bool empty = false; 5696 5697 xa_lock(&root->inodes); 5698 /* 5699 * This btrfs_inode is being freed and has already been unhashed at this 5700 * point. It's possible that another btrfs_inode has already been 5701 * allocated for the same inode and inserted itself into the root, so 5702 * don't delete it in that case. 5703 * 5704 * Note that this shouldn't need to allocate memory, so the gfp flags 5705 * don't really matter. 5706 */ 5707 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL, 5708 GFP_ATOMIC); 5709 if (entry == inode) 5710 empty = xa_empty(&root->inodes); 5711 xa_unlock(&root->inodes); 5712 5713 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5714 xa_lock(&root->inodes); 5715 empty = xa_empty(&root->inodes); 5716 xa_unlock(&root->inodes); 5717 if (empty) 5718 btrfs_add_dead_root(root); 5719 } 5720 } 5721 5722 5723 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5724 { 5725 struct btrfs_iget_args *args = p; 5726 5727 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5728 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5729 5730 if (args->root && args->root == args->root->fs_info->tree_root && 5731 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5732 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5733 &BTRFS_I(inode)->runtime_flags); 5734 return 0; 5735 } 5736 5737 static int btrfs_find_actor(struct inode *inode, void *opaque) 5738 { 5739 struct btrfs_iget_args *args = opaque; 5740 5741 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5742 args->root == BTRFS_I(inode)->root; 5743 } 5744 5745 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5746 { 5747 struct inode *inode; 5748 struct btrfs_iget_args args; 5749 unsigned long hashval = btrfs_inode_hash(ino, root); 5750 5751 args.ino = ino; 5752 args.root = root; 5753 5754 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5755 btrfs_init_locked_inode, 5756 (void *)&args); 5757 if (!inode) 5758 return NULL; 5759 return BTRFS_I(inode); 5760 } 5761 5762 /* 5763 * Get an inode object given its inode number and corresponding root. Path is 5764 * preallocated to prevent recursing back to iget through allocator. 5765 */ 5766 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5767 struct btrfs_path *path) 5768 { 5769 struct btrfs_inode *inode; 5770 int ret; 5771 5772 inode = btrfs_iget_locked(ino, root); 5773 if (!inode) 5774 return ERR_PTR(-ENOMEM); 5775 5776 if (!(inode->vfs_inode.i_state & I_NEW)) 5777 return inode; 5778 5779 ret = btrfs_read_locked_inode(inode, path); 5780 if (ret) 5781 return ERR_PTR(ret); 5782 5783 unlock_new_inode(&inode->vfs_inode); 5784 return inode; 5785 } 5786 5787 /* 5788 * Get an inode object given its inode number and corresponding root. 5789 */ 5790 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5791 { 5792 struct btrfs_inode *inode; 5793 struct btrfs_path *path; 5794 int ret; 5795 5796 inode = btrfs_iget_locked(ino, root); 5797 if (!inode) 5798 return ERR_PTR(-ENOMEM); 5799 5800 if (!(inode->vfs_inode.i_state & I_NEW)) 5801 return inode; 5802 5803 path = btrfs_alloc_path(); 5804 if (!path) { 5805 iget_failed(&inode->vfs_inode); 5806 return ERR_PTR(-ENOMEM); 5807 } 5808 5809 ret = btrfs_read_locked_inode(inode, path); 5810 btrfs_free_path(path); 5811 if (ret) 5812 return ERR_PTR(ret); 5813 5814 unlock_new_inode(&inode->vfs_inode); 5815 return inode; 5816 } 5817 5818 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5819 struct btrfs_key *key, 5820 struct btrfs_root *root) 5821 { 5822 struct timespec64 ts; 5823 struct inode *vfs_inode; 5824 struct btrfs_inode *inode; 5825 5826 vfs_inode = new_inode(dir->i_sb); 5827 if (!vfs_inode) 5828 return ERR_PTR(-ENOMEM); 5829 5830 inode = BTRFS_I(vfs_inode); 5831 inode->root = btrfs_grab_root(root); 5832 inode->ref_root_id = key->objectid; 5833 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5834 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5835 5836 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5837 /* 5838 * We only need lookup, the rest is read-only and there's no inode 5839 * associated with the dentry 5840 */ 5841 vfs_inode->i_op = &simple_dir_inode_operations; 5842 vfs_inode->i_opflags &= ~IOP_XATTR; 5843 vfs_inode->i_fop = &simple_dir_operations; 5844 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5845 5846 ts = inode_set_ctime_current(vfs_inode); 5847 inode_set_mtime_to_ts(vfs_inode, ts); 5848 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5849 inode->i_otime_sec = ts.tv_sec; 5850 inode->i_otime_nsec = ts.tv_nsec; 5851 5852 vfs_inode->i_uid = dir->i_uid; 5853 vfs_inode->i_gid = dir->i_gid; 5854 5855 return inode; 5856 } 5857 5858 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5859 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5860 static_assert(BTRFS_FT_DIR == FT_DIR); 5861 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5862 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5863 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5864 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5865 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5866 5867 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5868 { 5869 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5870 } 5871 5872 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5873 { 5874 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5875 struct btrfs_inode *inode; 5876 struct btrfs_root *root = BTRFS_I(dir)->root; 5877 struct btrfs_root *sub_root = root; 5878 struct btrfs_key location = { 0 }; 5879 u8 di_type = 0; 5880 int ret = 0; 5881 5882 if (dentry->d_name.len > BTRFS_NAME_LEN) 5883 return ERR_PTR(-ENAMETOOLONG); 5884 5885 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5886 if (ret < 0) 5887 return ERR_PTR(ret); 5888 5889 if (location.type == BTRFS_INODE_ITEM_KEY) { 5890 inode = btrfs_iget(location.objectid, root); 5891 if (IS_ERR(inode)) 5892 return ERR_CAST(inode); 5893 5894 /* Do extra check against inode mode with di_type */ 5895 if (btrfs_inode_type(inode) != di_type) { 5896 btrfs_crit(fs_info, 5897 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5898 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5899 di_type); 5900 iput(&inode->vfs_inode); 5901 return ERR_PTR(-EUCLEAN); 5902 } 5903 return &inode->vfs_inode; 5904 } 5905 5906 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5907 &location, &sub_root); 5908 if (ret < 0) { 5909 if (ret != -ENOENT) 5910 inode = ERR_PTR(ret); 5911 else 5912 inode = new_simple_dir(dir, &location, root); 5913 } else { 5914 inode = btrfs_iget(location.objectid, sub_root); 5915 btrfs_put_root(sub_root); 5916 5917 if (IS_ERR(inode)) 5918 return ERR_CAST(inode); 5919 5920 down_read(&fs_info->cleanup_work_sem); 5921 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5922 ret = btrfs_orphan_cleanup(sub_root); 5923 up_read(&fs_info->cleanup_work_sem); 5924 if (ret) { 5925 iput(&inode->vfs_inode); 5926 inode = ERR_PTR(ret); 5927 } 5928 } 5929 5930 if (IS_ERR(inode)) 5931 return ERR_CAST(inode); 5932 5933 return &inode->vfs_inode; 5934 } 5935 5936 static int btrfs_dentry_delete(const struct dentry *dentry) 5937 { 5938 struct btrfs_root *root; 5939 struct inode *inode = d_inode(dentry); 5940 5941 if (!inode && !IS_ROOT(dentry)) 5942 inode = d_inode(dentry->d_parent); 5943 5944 if (inode) { 5945 root = BTRFS_I(inode)->root; 5946 if (btrfs_root_refs(&root->root_item) == 0) 5947 return 1; 5948 5949 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5950 return 1; 5951 } 5952 return 0; 5953 } 5954 5955 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5956 unsigned int flags) 5957 { 5958 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5959 5960 if (inode == ERR_PTR(-ENOENT)) 5961 inode = NULL; 5962 return d_splice_alias(inode, dentry); 5963 } 5964 5965 /* 5966 * Find the highest existing sequence number in a directory and then set the 5967 * in-memory index_cnt variable to the first free sequence number. 5968 */ 5969 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5970 { 5971 struct btrfs_root *root = inode->root; 5972 struct btrfs_key key, found_key; 5973 BTRFS_PATH_AUTO_FREE(path); 5974 struct extent_buffer *leaf; 5975 int ret; 5976 5977 key.objectid = btrfs_ino(inode); 5978 key.type = BTRFS_DIR_INDEX_KEY; 5979 key.offset = (u64)-1; 5980 5981 path = btrfs_alloc_path(); 5982 if (!path) 5983 return -ENOMEM; 5984 5985 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5986 if (ret < 0) 5987 return ret; 5988 /* FIXME: we should be able to handle this */ 5989 if (ret == 0) 5990 return ret; 5991 5992 if (path->slots[0] == 0) { 5993 inode->index_cnt = BTRFS_DIR_START_INDEX; 5994 return 0; 5995 } 5996 5997 path->slots[0]--; 5998 5999 leaf = path->nodes[0]; 6000 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6001 6002 if (found_key.objectid != btrfs_ino(inode) || 6003 found_key.type != BTRFS_DIR_INDEX_KEY) { 6004 inode->index_cnt = BTRFS_DIR_START_INDEX; 6005 return 0; 6006 } 6007 6008 inode->index_cnt = found_key.offset + 1; 6009 6010 return 0; 6011 } 6012 6013 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6014 { 6015 int ret = 0; 6016 6017 btrfs_inode_lock(dir, 0); 6018 if (dir->index_cnt == (u64)-1) { 6019 ret = btrfs_inode_delayed_dir_index_count(dir); 6020 if (ret) { 6021 ret = btrfs_set_inode_index_count(dir); 6022 if (ret) 6023 goto out; 6024 } 6025 } 6026 6027 /* index_cnt is the index number of next new entry, so decrement it. */ 6028 *index = dir->index_cnt - 1; 6029 out: 6030 btrfs_inode_unlock(dir, 0); 6031 6032 return ret; 6033 } 6034 6035 /* 6036 * All this infrastructure exists because dir_emit can fault, and we are holding 6037 * the tree lock when doing readdir. For now just allocate a buffer and copy 6038 * our information into that, and then dir_emit from the buffer. This is 6039 * similar to what NFS does, only we don't keep the buffer around in pagecache 6040 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6041 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6042 * tree lock. 6043 */ 6044 static int btrfs_opendir(struct inode *inode, struct file *file) 6045 { 6046 struct btrfs_file_private *private; 6047 u64 last_index; 6048 int ret; 6049 6050 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6051 if (ret) 6052 return ret; 6053 6054 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6055 if (!private) 6056 return -ENOMEM; 6057 private->last_index = last_index; 6058 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6059 if (!private->filldir_buf) { 6060 kfree(private); 6061 return -ENOMEM; 6062 } 6063 file->private_data = private; 6064 return 0; 6065 } 6066 6067 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6068 { 6069 struct btrfs_file_private *private = file->private_data; 6070 int ret; 6071 6072 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6073 &private->last_index); 6074 if (ret) 6075 return ret; 6076 6077 return generic_file_llseek(file, offset, whence); 6078 } 6079 6080 struct dir_entry { 6081 u64 ino; 6082 u64 offset; 6083 unsigned type; 6084 int name_len; 6085 }; 6086 6087 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6088 { 6089 while (entries--) { 6090 struct dir_entry *entry = addr; 6091 char *name = (char *)(entry + 1); 6092 6093 ctx->pos = get_unaligned(&entry->offset); 6094 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6095 get_unaligned(&entry->ino), 6096 get_unaligned(&entry->type))) 6097 return 1; 6098 addr += sizeof(struct dir_entry) + 6099 get_unaligned(&entry->name_len); 6100 ctx->pos++; 6101 } 6102 return 0; 6103 } 6104 6105 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6106 { 6107 struct inode *inode = file_inode(file); 6108 struct btrfs_root *root = BTRFS_I(inode)->root; 6109 struct btrfs_file_private *private = file->private_data; 6110 struct btrfs_dir_item *di; 6111 struct btrfs_key key; 6112 struct btrfs_key found_key; 6113 BTRFS_PATH_AUTO_FREE(path); 6114 void *addr; 6115 LIST_HEAD(ins_list); 6116 LIST_HEAD(del_list); 6117 int ret; 6118 char *name_ptr; 6119 int name_len; 6120 int entries = 0; 6121 int total_len = 0; 6122 bool put = false; 6123 struct btrfs_key location; 6124 6125 if (!dir_emit_dots(file, ctx)) 6126 return 0; 6127 6128 path = btrfs_alloc_path(); 6129 if (!path) 6130 return -ENOMEM; 6131 6132 addr = private->filldir_buf; 6133 path->reada = READA_FORWARD; 6134 6135 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6136 &ins_list, &del_list); 6137 6138 again: 6139 key.type = BTRFS_DIR_INDEX_KEY; 6140 key.offset = ctx->pos; 6141 key.objectid = btrfs_ino(BTRFS_I(inode)); 6142 6143 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6144 struct dir_entry *entry; 6145 struct extent_buffer *leaf = path->nodes[0]; 6146 u8 ftype; 6147 6148 if (found_key.objectid != key.objectid) 6149 break; 6150 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6151 break; 6152 if (found_key.offset < ctx->pos) 6153 continue; 6154 if (found_key.offset > private->last_index) 6155 break; 6156 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6157 continue; 6158 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6159 name_len = btrfs_dir_name_len(leaf, di); 6160 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6161 PAGE_SIZE) { 6162 btrfs_release_path(path); 6163 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6164 if (ret) 6165 goto nopos; 6166 addr = private->filldir_buf; 6167 entries = 0; 6168 total_len = 0; 6169 goto again; 6170 } 6171 6172 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6173 entry = addr; 6174 name_ptr = (char *)(entry + 1); 6175 read_extent_buffer(leaf, name_ptr, 6176 (unsigned long)(di + 1), name_len); 6177 put_unaligned(name_len, &entry->name_len); 6178 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6179 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6180 put_unaligned(location.objectid, &entry->ino); 6181 put_unaligned(found_key.offset, &entry->offset); 6182 entries++; 6183 addr += sizeof(struct dir_entry) + name_len; 6184 total_len += sizeof(struct dir_entry) + name_len; 6185 } 6186 /* Catch error encountered during iteration */ 6187 if (ret < 0) 6188 goto err; 6189 6190 btrfs_release_path(path); 6191 6192 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6193 if (ret) 6194 goto nopos; 6195 6196 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6197 goto nopos; 6198 6199 /* 6200 * Stop new entries from being returned after we return the last 6201 * entry. 6202 * 6203 * New directory entries are assigned a strictly increasing 6204 * offset. This means that new entries created during readdir 6205 * are *guaranteed* to be seen in the future by that readdir. 6206 * This has broken buggy programs which operate on names as 6207 * they're returned by readdir. Until we reuse freed offsets 6208 * we have this hack to stop new entries from being returned 6209 * under the assumption that they'll never reach this huge 6210 * offset. 6211 * 6212 * This is being careful not to overflow 32bit loff_t unless the 6213 * last entry requires it because doing so has broken 32bit apps 6214 * in the past. 6215 */ 6216 if (ctx->pos >= INT_MAX) 6217 ctx->pos = LLONG_MAX; 6218 else 6219 ctx->pos = INT_MAX; 6220 nopos: 6221 ret = 0; 6222 err: 6223 if (put) 6224 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6225 return ret; 6226 } 6227 6228 /* 6229 * This is somewhat expensive, updating the tree every time the 6230 * inode changes. But, it is most likely to find the inode in cache. 6231 * FIXME, needs more benchmarking...there are no reasons other than performance 6232 * to keep or drop this code. 6233 */ 6234 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6235 { 6236 struct btrfs_root *root = inode->root; 6237 struct btrfs_fs_info *fs_info = root->fs_info; 6238 struct btrfs_trans_handle *trans; 6239 int ret; 6240 6241 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6242 return 0; 6243 6244 trans = btrfs_join_transaction(root); 6245 if (IS_ERR(trans)) 6246 return PTR_ERR(trans); 6247 6248 ret = btrfs_update_inode(trans, inode); 6249 if (ret == -ENOSPC || ret == -EDQUOT) { 6250 /* whoops, lets try again with the full transaction */ 6251 btrfs_end_transaction(trans); 6252 trans = btrfs_start_transaction(root, 1); 6253 if (IS_ERR(trans)) 6254 return PTR_ERR(trans); 6255 6256 ret = btrfs_update_inode(trans, inode); 6257 } 6258 btrfs_end_transaction(trans); 6259 if (inode->delayed_node) 6260 btrfs_balance_delayed_items(fs_info); 6261 6262 return ret; 6263 } 6264 6265 /* 6266 * This is a copy of file_update_time. We need this so we can return error on 6267 * ENOSPC for updating the inode in the case of file write and mmap writes. 6268 */ 6269 static int btrfs_update_time(struct inode *inode, int flags) 6270 { 6271 struct btrfs_root *root = BTRFS_I(inode)->root; 6272 bool dirty; 6273 6274 if (btrfs_root_readonly(root)) 6275 return -EROFS; 6276 6277 dirty = inode_update_timestamps(inode, flags); 6278 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6279 } 6280 6281 /* 6282 * helper to find a free sequence number in a given directory. This current 6283 * code is very simple, later versions will do smarter things in the btree 6284 */ 6285 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6286 { 6287 int ret = 0; 6288 6289 if (dir->index_cnt == (u64)-1) { 6290 ret = btrfs_inode_delayed_dir_index_count(dir); 6291 if (ret) { 6292 ret = btrfs_set_inode_index_count(dir); 6293 if (ret) 6294 return ret; 6295 } 6296 } 6297 6298 *index = dir->index_cnt; 6299 dir->index_cnt++; 6300 6301 return ret; 6302 } 6303 6304 static int btrfs_insert_inode_locked(struct inode *inode) 6305 { 6306 struct btrfs_iget_args args; 6307 6308 args.ino = btrfs_ino(BTRFS_I(inode)); 6309 args.root = BTRFS_I(inode)->root; 6310 6311 return insert_inode_locked4(inode, 6312 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6313 btrfs_find_actor, &args); 6314 } 6315 6316 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6317 unsigned int *trans_num_items) 6318 { 6319 struct inode *dir = args->dir; 6320 struct inode *inode = args->inode; 6321 int ret; 6322 6323 if (!args->orphan) { 6324 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6325 &args->fname); 6326 if (ret) 6327 return ret; 6328 } 6329 6330 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6331 if (ret) { 6332 fscrypt_free_filename(&args->fname); 6333 return ret; 6334 } 6335 6336 /* 1 to add inode item */ 6337 *trans_num_items = 1; 6338 /* 1 to add compression property */ 6339 if (BTRFS_I(dir)->prop_compress) 6340 (*trans_num_items)++; 6341 /* 1 to add default ACL xattr */ 6342 if (args->default_acl) 6343 (*trans_num_items)++; 6344 /* 1 to add access ACL xattr */ 6345 if (args->acl) 6346 (*trans_num_items)++; 6347 #ifdef CONFIG_SECURITY 6348 /* 1 to add LSM xattr */ 6349 if (dir->i_security) 6350 (*trans_num_items)++; 6351 #endif 6352 if (args->orphan) { 6353 /* 1 to add orphan item */ 6354 (*trans_num_items)++; 6355 } else { 6356 /* 6357 * 1 to add dir item 6358 * 1 to add dir index 6359 * 1 to update parent inode item 6360 * 6361 * No need for 1 unit for the inode ref item because it is 6362 * inserted in a batch together with the inode item at 6363 * btrfs_create_new_inode(). 6364 */ 6365 *trans_num_items += 3; 6366 } 6367 return 0; 6368 } 6369 6370 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6371 { 6372 posix_acl_release(args->acl); 6373 posix_acl_release(args->default_acl); 6374 fscrypt_free_filename(&args->fname); 6375 } 6376 6377 /* 6378 * Inherit flags from the parent inode. 6379 * 6380 * Currently only the compression flags and the cow flags are inherited. 6381 */ 6382 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6383 { 6384 unsigned int flags; 6385 6386 flags = dir->flags; 6387 6388 if (flags & BTRFS_INODE_NOCOMPRESS) { 6389 inode->flags &= ~BTRFS_INODE_COMPRESS; 6390 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6391 } else if (flags & BTRFS_INODE_COMPRESS) { 6392 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6393 inode->flags |= BTRFS_INODE_COMPRESS; 6394 } 6395 6396 if (flags & BTRFS_INODE_NODATACOW) { 6397 inode->flags |= BTRFS_INODE_NODATACOW; 6398 if (S_ISREG(inode->vfs_inode.i_mode)) 6399 inode->flags |= BTRFS_INODE_NODATASUM; 6400 } 6401 6402 btrfs_sync_inode_flags_to_i_flags(inode); 6403 } 6404 6405 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6406 struct btrfs_new_inode_args *args) 6407 { 6408 struct timespec64 ts; 6409 struct inode *dir = args->dir; 6410 struct inode *inode = args->inode; 6411 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6412 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6413 struct btrfs_root *root; 6414 struct btrfs_inode_item *inode_item; 6415 struct btrfs_path *path; 6416 u64 objectid; 6417 struct btrfs_inode_ref *ref; 6418 struct btrfs_key key[2]; 6419 u32 sizes[2]; 6420 struct btrfs_item_batch batch; 6421 unsigned long ptr; 6422 int ret; 6423 bool xa_reserved = false; 6424 6425 path = btrfs_alloc_path(); 6426 if (!path) 6427 return -ENOMEM; 6428 6429 if (!args->subvol) 6430 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6431 root = BTRFS_I(inode)->root; 6432 6433 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6434 if (ret) 6435 goto out; 6436 6437 ret = btrfs_get_free_objectid(root, &objectid); 6438 if (ret) 6439 goto out; 6440 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6441 6442 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6443 if (ret) 6444 goto out; 6445 xa_reserved = true; 6446 6447 if (args->orphan) { 6448 /* 6449 * O_TMPFILE, set link count to 0, so that after this point, we 6450 * fill in an inode item with the correct link count. 6451 */ 6452 set_nlink(inode, 0); 6453 } else { 6454 trace_btrfs_inode_request(dir); 6455 6456 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6457 if (ret) 6458 goto out; 6459 } 6460 6461 if (S_ISDIR(inode->i_mode)) 6462 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6463 6464 BTRFS_I(inode)->generation = trans->transid; 6465 inode->i_generation = BTRFS_I(inode)->generation; 6466 6467 /* 6468 * We don't have any capability xattrs set here yet, shortcut any 6469 * queries for the xattrs here. If we add them later via the inode 6470 * security init path or any other path this flag will be cleared. 6471 */ 6472 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6473 6474 /* 6475 * Subvolumes don't inherit flags from their parent directory. 6476 * Originally this was probably by accident, but we probably can't 6477 * change it now without compatibility issues. 6478 */ 6479 if (!args->subvol) 6480 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6481 6482 if (S_ISREG(inode->i_mode)) { 6483 if (btrfs_test_opt(fs_info, NODATASUM)) 6484 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6485 if (btrfs_test_opt(fs_info, NODATACOW)) 6486 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6487 BTRFS_INODE_NODATASUM; 6488 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6489 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6490 } 6491 6492 ret = btrfs_insert_inode_locked(inode); 6493 if (ret < 0) { 6494 if (!args->orphan) 6495 BTRFS_I(dir)->index_cnt--; 6496 goto out; 6497 } 6498 6499 /* 6500 * We could have gotten an inode number from somebody who was fsynced 6501 * and then removed in this same transaction, so let's just set full 6502 * sync since it will be a full sync anyway and this will blow away the 6503 * old info in the log. 6504 */ 6505 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6506 6507 key[0].objectid = objectid; 6508 key[0].type = BTRFS_INODE_ITEM_KEY; 6509 key[0].offset = 0; 6510 6511 sizes[0] = sizeof(struct btrfs_inode_item); 6512 6513 if (!args->orphan) { 6514 /* 6515 * Start new inodes with an inode_ref. This is slightly more 6516 * efficient for small numbers of hard links since they will 6517 * be packed into one item. Extended refs will kick in if we 6518 * add more hard links than can fit in the ref item. 6519 */ 6520 key[1].objectid = objectid; 6521 key[1].type = BTRFS_INODE_REF_KEY; 6522 if (args->subvol) { 6523 key[1].offset = objectid; 6524 sizes[1] = 2 + sizeof(*ref); 6525 } else { 6526 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6527 sizes[1] = name->len + sizeof(*ref); 6528 } 6529 } 6530 6531 batch.keys = &key[0]; 6532 batch.data_sizes = &sizes[0]; 6533 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6534 batch.nr = args->orphan ? 1 : 2; 6535 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6536 if (ret != 0) { 6537 btrfs_abort_transaction(trans, ret); 6538 goto discard; 6539 } 6540 6541 ts = simple_inode_init_ts(inode); 6542 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6543 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6544 6545 /* 6546 * We're going to fill the inode item now, so at this point the inode 6547 * must be fully initialized. 6548 */ 6549 6550 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6551 struct btrfs_inode_item); 6552 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6553 sizeof(*inode_item)); 6554 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6555 6556 if (!args->orphan) { 6557 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6558 struct btrfs_inode_ref); 6559 ptr = (unsigned long)(ref + 1); 6560 if (args->subvol) { 6561 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6562 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6563 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6564 } else { 6565 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6566 name->len); 6567 btrfs_set_inode_ref_index(path->nodes[0], ref, 6568 BTRFS_I(inode)->dir_index); 6569 write_extent_buffer(path->nodes[0], name->name, ptr, 6570 name->len); 6571 } 6572 } 6573 6574 /* 6575 * We don't need the path anymore, plus inheriting properties, adding 6576 * ACLs, security xattrs, orphan item or adding the link, will result in 6577 * allocating yet another path. So just free our path. 6578 */ 6579 btrfs_free_path(path); 6580 path = NULL; 6581 6582 if (args->subvol) { 6583 struct btrfs_inode *parent; 6584 6585 /* 6586 * Subvolumes inherit properties from their parent subvolume, 6587 * not the directory they were created in. 6588 */ 6589 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6590 if (IS_ERR(parent)) { 6591 ret = PTR_ERR(parent); 6592 } else { 6593 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6594 parent); 6595 iput(&parent->vfs_inode); 6596 } 6597 } else { 6598 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6599 BTRFS_I(dir)); 6600 } 6601 if (ret) { 6602 btrfs_err(fs_info, 6603 "error inheriting props for ino %llu (root %llu): %d", 6604 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6605 } 6606 6607 /* 6608 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6609 * probably a bug. 6610 */ 6611 if (!args->subvol) { 6612 ret = btrfs_init_inode_security(trans, args); 6613 if (ret) { 6614 btrfs_abort_transaction(trans, ret); 6615 goto discard; 6616 } 6617 } 6618 6619 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6620 if (WARN_ON(ret)) { 6621 /* Shouldn't happen, we used xa_reserve() before. */ 6622 btrfs_abort_transaction(trans, ret); 6623 goto discard; 6624 } 6625 6626 trace_btrfs_inode_new(inode); 6627 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6628 6629 btrfs_update_root_times(trans, root); 6630 6631 if (args->orphan) { 6632 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6633 if (ret) { 6634 btrfs_abort_transaction(trans, ret); 6635 goto discard; 6636 } 6637 } else { 6638 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6639 0, BTRFS_I(inode)->dir_index); 6640 if (ret) { 6641 btrfs_abort_transaction(trans, ret); 6642 goto discard; 6643 } 6644 } 6645 6646 return 0; 6647 6648 discard: 6649 /* 6650 * discard_new_inode() calls iput(), but the caller owns the reference 6651 * to the inode. 6652 */ 6653 ihold(inode); 6654 discard_new_inode(inode); 6655 out: 6656 if (xa_reserved) 6657 xa_release(&root->inodes, objectid); 6658 6659 btrfs_free_path(path); 6660 return ret; 6661 } 6662 6663 /* 6664 * utility function to add 'inode' into 'parent_inode' with 6665 * a give name and a given sequence number. 6666 * if 'add_backref' is true, also insert a backref from the 6667 * inode to the parent directory. 6668 */ 6669 int btrfs_add_link(struct btrfs_trans_handle *trans, 6670 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6671 const struct fscrypt_str *name, int add_backref, u64 index) 6672 { 6673 int ret = 0; 6674 struct btrfs_key key; 6675 struct btrfs_root *root = parent_inode->root; 6676 u64 ino = btrfs_ino(inode); 6677 u64 parent_ino = btrfs_ino(parent_inode); 6678 6679 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6680 memcpy(&key, &inode->root->root_key, sizeof(key)); 6681 } else { 6682 key.objectid = ino; 6683 key.type = BTRFS_INODE_ITEM_KEY; 6684 key.offset = 0; 6685 } 6686 6687 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6688 ret = btrfs_add_root_ref(trans, key.objectid, 6689 btrfs_root_id(root), parent_ino, 6690 index, name); 6691 } else if (add_backref) { 6692 ret = btrfs_insert_inode_ref(trans, root, name, 6693 ino, parent_ino, index); 6694 } 6695 6696 /* Nothing to clean up yet */ 6697 if (ret) 6698 return ret; 6699 6700 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6701 btrfs_inode_type(inode), index); 6702 if (ret == -EEXIST || ret == -EOVERFLOW) 6703 goto fail_dir_item; 6704 else if (ret) { 6705 btrfs_abort_transaction(trans, ret); 6706 return ret; 6707 } 6708 6709 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6710 name->len * 2); 6711 inode_inc_iversion(&parent_inode->vfs_inode); 6712 update_time_after_link_or_unlink(parent_inode); 6713 6714 ret = btrfs_update_inode(trans, parent_inode); 6715 if (ret) 6716 btrfs_abort_transaction(trans, ret); 6717 return ret; 6718 6719 fail_dir_item: 6720 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6721 u64 local_index; 6722 int ret2; 6723 6724 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6725 parent_ino, &local_index, name); 6726 if (ret2) 6727 btrfs_abort_transaction(trans, ret2); 6728 } else if (add_backref) { 6729 int ret2; 6730 6731 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6732 if (ret2) 6733 btrfs_abort_transaction(trans, ret2); 6734 } 6735 6736 /* Return the original error code */ 6737 return ret; 6738 } 6739 6740 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6741 struct inode *inode) 6742 { 6743 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6744 struct btrfs_root *root = BTRFS_I(dir)->root; 6745 struct btrfs_new_inode_args new_inode_args = { 6746 .dir = dir, 6747 .dentry = dentry, 6748 .inode = inode, 6749 }; 6750 unsigned int trans_num_items; 6751 struct btrfs_trans_handle *trans; 6752 int ret; 6753 6754 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6755 if (ret) 6756 goto out_inode; 6757 6758 trans = btrfs_start_transaction(root, trans_num_items); 6759 if (IS_ERR(trans)) { 6760 ret = PTR_ERR(trans); 6761 goto out_new_inode_args; 6762 } 6763 6764 ret = btrfs_create_new_inode(trans, &new_inode_args); 6765 if (!ret) 6766 d_instantiate_new(dentry, inode); 6767 6768 btrfs_end_transaction(trans); 6769 btrfs_btree_balance_dirty(fs_info); 6770 out_new_inode_args: 6771 btrfs_new_inode_args_destroy(&new_inode_args); 6772 out_inode: 6773 if (ret) 6774 iput(inode); 6775 return ret; 6776 } 6777 6778 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6779 struct dentry *dentry, umode_t mode, dev_t rdev) 6780 { 6781 struct inode *inode; 6782 6783 inode = new_inode(dir->i_sb); 6784 if (!inode) 6785 return -ENOMEM; 6786 inode_init_owner(idmap, inode, dir, mode); 6787 inode->i_op = &btrfs_special_inode_operations; 6788 init_special_inode(inode, inode->i_mode, rdev); 6789 return btrfs_create_common(dir, dentry, inode); 6790 } 6791 6792 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6793 struct dentry *dentry, umode_t mode, bool excl) 6794 { 6795 struct inode *inode; 6796 6797 inode = new_inode(dir->i_sb); 6798 if (!inode) 6799 return -ENOMEM; 6800 inode_init_owner(idmap, inode, dir, mode); 6801 inode->i_fop = &btrfs_file_operations; 6802 inode->i_op = &btrfs_file_inode_operations; 6803 inode->i_mapping->a_ops = &btrfs_aops; 6804 return btrfs_create_common(dir, dentry, inode); 6805 } 6806 6807 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6808 struct dentry *dentry) 6809 { 6810 struct btrfs_trans_handle *trans = NULL; 6811 struct btrfs_root *root = BTRFS_I(dir)->root; 6812 struct inode *inode = d_inode(old_dentry); 6813 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6814 struct fscrypt_name fname; 6815 u64 index; 6816 int ret; 6817 6818 /* do not allow sys_link's with other subvols of the same device */ 6819 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6820 return -EXDEV; 6821 6822 if (inode->i_nlink >= BTRFS_LINK_MAX) 6823 return -EMLINK; 6824 6825 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6826 if (ret) 6827 goto fail; 6828 6829 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6830 if (ret) 6831 goto fail; 6832 6833 /* 6834 * 2 items for inode and inode ref 6835 * 2 items for dir items 6836 * 1 item for parent inode 6837 * 1 item for orphan item deletion if O_TMPFILE 6838 */ 6839 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6840 if (IS_ERR(trans)) { 6841 ret = PTR_ERR(trans); 6842 trans = NULL; 6843 goto fail; 6844 } 6845 6846 /* There are several dir indexes for this inode, clear the cache. */ 6847 BTRFS_I(inode)->dir_index = 0ULL; 6848 inode_inc_iversion(inode); 6849 inode_set_ctime_current(inode); 6850 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6851 6852 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6853 &fname.disk_name, 1, index); 6854 if (ret) 6855 goto fail; 6856 6857 /* Link added now we update the inode item with the new link count. */ 6858 inc_nlink(inode); 6859 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6860 if (ret) { 6861 btrfs_abort_transaction(trans, ret); 6862 goto fail; 6863 } 6864 6865 if (inode->i_nlink == 1) { 6866 /* 6867 * If the new hard link count is 1, it's a file created with the 6868 * open(2) O_TMPFILE flag. 6869 */ 6870 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6871 if (ret) { 6872 btrfs_abort_transaction(trans, ret); 6873 goto fail; 6874 } 6875 } 6876 6877 /* Grab reference for the new dentry passed to d_instantiate(). */ 6878 ihold(inode); 6879 d_instantiate(dentry, inode); 6880 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent); 6881 6882 fail: 6883 fscrypt_free_filename(&fname); 6884 if (trans) 6885 btrfs_end_transaction(trans); 6886 btrfs_btree_balance_dirty(fs_info); 6887 return ret; 6888 } 6889 6890 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6891 struct dentry *dentry, umode_t mode) 6892 { 6893 struct inode *inode; 6894 6895 inode = new_inode(dir->i_sb); 6896 if (!inode) 6897 return ERR_PTR(-ENOMEM); 6898 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6899 inode->i_op = &btrfs_dir_inode_operations; 6900 inode->i_fop = &btrfs_dir_file_operations; 6901 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6902 } 6903 6904 static noinline int uncompress_inline(struct btrfs_path *path, 6905 struct folio *folio, 6906 struct btrfs_file_extent_item *item) 6907 { 6908 int ret; 6909 struct extent_buffer *leaf = path->nodes[0]; 6910 const u32 blocksize = leaf->fs_info->sectorsize; 6911 char *tmp; 6912 size_t max_size; 6913 unsigned long inline_size; 6914 unsigned long ptr; 6915 int compress_type; 6916 6917 compress_type = btrfs_file_extent_compression(leaf, item); 6918 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6919 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6920 tmp = kmalloc(inline_size, GFP_NOFS); 6921 if (!tmp) 6922 return -ENOMEM; 6923 ptr = btrfs_file_extent_inline_start(item); 6924 6925 read_extent_buffer(leaf, tmp, ptr, inline_size); 6926 6927 max_size = min_t(unsigned long, blocksize, max_size); 6928 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6929 max_size); 6930 6931 /* 6932 * decompression code contains a memset to fill in any space between the end 6933 * of the uncompressed data and the end of max_size in case the decompressed 6934 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6935 * the end of an inline extent and the beginning of the next block, so we 6936 * cover that region here. 6937 */ 6938 6939 if (max_size < blocksize) 6940 folio_zero_range(folio, max_size, blocksize - max_size); 6941 kfree(tmp); 6942 return ret; 6943 } 6944 6945 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6946 { 6947 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6948 struct btrfs_file_extent_item *fi; 6949 void *kaddr; 6950 size_t copy_size; 6951 6952 if (!folio || folio_test_uptodate(folio)) 6953 return 0; 6954 6955 ASSERT(folio_pos(folio) == 0); 6956 6957 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6958 struct btrfs_file_extent_item); 6959 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6960 return uncompress_inline(path, folio, fi); 6961 6962 copy_size = min_t(u64, blocksize, 6963 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6964 kaddr = kmap_local_folio(folio, 0); 6965 read_extent_buffer(path->nodes[0], kaddr, 6966 btrfs_file_extent_inline_start(fi), copy_size); 6967 kunmap_local(kaddr); 6968 if (copy_size < blocksize) 6969 folio_zero_range(folio, copy_size, blocksize - copy_size); 6970 return 0; 6971 } 6972 6973 /* 6974 * Lookup the first extent overlapping a range in a file. 6975 * 6976 * @inode: file to search in 6977 * @page: page to read extent data into if the extent is inline 6978 * @start: file offset 6979 * @len: length of range starting at @start 6980 * 6981 * Return the first &struct extent_map which overlaps the given range, reading 6982 * it from the B-tree and caching it if necessary. Note that there may be more 6983 * extents which overlap the given range after the returned extent_map. 6984 * 6985 * If @page is not NULL and the extent is inline, this also reads the extent 6986 * data directly into the page and marks the extent up to date in the io_tree. 6987 * 6988 * Return: ERR_PTR on error, non-NULL extent_map on success. 6989 */ 6990 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6991 struct folio *folio, u64 start, u64 len) 6992 { 6993 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6994 int ret = 0; 6995 u64 extent_start = 0; 6996 u64 extent_end = 0; 6997 u64 objectid = btrfs_ino(inode); 6998 int extent_type = -1; 6999 struct btrfs_path *path = NULL; 7000 struct btrfs_root *root = inode->root; 7001 struct btrfs_file_extent_item *item; 7002 struct extent_buffer *leaf; 7003 struct btrfs_key found_key; 7004 struct extent_map *em = NULL; 7005 struct extent_map_tree *em_tree = &inode->extent_tree; 7006 7007 read_lock(&em_tree->lock); 7008 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7009 read_unlock(&em_tree->lock); 7010 7011 if (em) { 7012 if (em->start > start || em->start + em->len <= start) 7013 btrfs_free_extent_map(em); 7014 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7015 btrfs_free_extent_map(em); 7016 else 7017 goto out; 7018 } 7019 em = btrfs_alloc_extent_map(); 7020 if (!em) { 7021 ret = -ENOMEM; 7022 goto out; 7023 } 7024 em->start = EXTENT_MAP_HOLE; 7025 em->disk_bytenr = EXTENT_MAP_HOLE; 7026 em->len = (u64)-1; 7027 7028 path = btrfs_alloc_path(); 7029 if (!path) { 7030 ret = -ENOMEM; 7031 goto out; 7032 } 7033 7034 /* Chances are we'll be called again, so go ahead and do readahead */ 7035 path->reada = READA_FORWARD; 7036 7037 /* 7038 * The same explanation in load_free_space_cache applies here as well, 7039 * we only read when we're loading the free space cache, and at that 7040 * point the commit_root has everything we need. 7041 */ 7042 if (btrfs_is_free_space_inode(inode)) { 7043 path->search_commit_root = 1; 7044 path->skip_locking = 1; 7045 } 7046 7047 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7048 if (ret < 0) { 7049 goto out; 7050 } else if (ret > 0) { 7051 if (path->slots[0] == 0) 7052 goto not_found; 7053 path->slots[0]--; 7054 ret = 0; 7055 } 7056 7057 leaf = path->nodes[0]; 7058 item = btrfs_item_ptr(leaf, path->slots[0], 7059 struct btrfs_file_extent_item); 7060 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7061 if (found_key.objectid != objectid || 7062 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7063 /* 7064 * If we backup past the first extent we want to move forward 7065 * and see if there is an extent in front of us, otherwise we'll 7066 * say there is a hole for our whole search range which can 7067 * cause problems. 7068 */ 7069 extent_end = start; 7070 goto next; 7071 } 7072 7073 extent_type = btrfs_file_extent_type(leaf, item); 7074 extent_start = found_key.offset; 7075 extent_end = btrfs_file_extent_end(path); 7076 if (extent_type == BTRFS_FILE_EXTENT_REG || 7077 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7078 /* Only regular file could have regular/prealloc extent */ 7079 if (!S_ISREG(inode->vfs_inode.i_mode)) { 7080 ret = -EUCLEAN; 7081 btrfs_crit(fs_info, 7082 "regular/prealloc extent found for non-regular inode %llu", 7083 btrfs_ino(inode)); 7084 goto out; 7085 } 7086 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7087 extent_start); 7088 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7089 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7090 path->slots[0], 7091 extent_start); 7092 } 7093 next: 7094 if (start >= extent_end) { 7095 path->slots[0]++; 7096 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7097 ret = btrfs_next_leaf(root, path); 7098 if (ret < 0) 7099 goto out; 7100 else if (ret > 0) 7101 goto not_found; 7102 7103 leaf = path->nodes[0]; 7104 } 7105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7106 if (found_key.objectid != objectid || 7107 found_key.type != BTRFS_EXTENT_DATA_KEY) 7108 goto not_found; 7109 if (start + len <= found_key.offset) 7110 goto not_found; 7111 if (start > found_key.offset) 7112 goto next; 7113 7114 /* New extent overlaps with existing one */ 7115 em->start = start; 7116 em->len = found_key.offset - start; 7117 em->disk_bytenr = EXTENT_MAP_HOLE; 7118 goto insert; 7119 } 7120 7121 btrfs_extent_item_to_extent_map(inode, path, item, em); 7122 7123 if (extent_type == BTRFS_FILE_EXTENT_REG || 7124 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7125 goto insert; 7126 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7127 /* 7128 * Inline extent can only exist at file offset 0. This is 7129 * ensured by tree-checker and inline extent creation path. 7130 * Thus all members representing file offsets should be zero. 7131 */ 7132 ASSERT(extent_start == 0); 7133 ASSERT(em->start == 0); 7134 7135 /* 7136 * btrfs_extent_item_to_extent_map() should have properly 7137 * initialized em members already. 7138 * 7139 * Other members are not utilized for inline extents. 7140 */ 7141 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7142 ASSERT(em->len == fs_info->sectorsize); 7143 7144 ret = read_inline_extent(path, folio); 7145 if (ret < 0) 7146 goto out; 7147 goto insert; 7148 } 7149 not_found: 7150 em->start = start; 7151 em->len = len; 7152 em->disk_bytenr = EXTENT_MAP_HOLE; 7153 insert: 7154 ret = 0; 7155 btrfs_release_path(path); 7156 if (em->start > start || btrfs_extent_map_end(em) <= start) { 7157 btrfs_err(fs_info, 7158 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7159 em->start, em->len, start, len); 7160 ret = -EIO; 7161 goto out; 7162 } 7163 7164 write_lock(&em_tree->lock); 7165 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7166 write_unlock(&em_tree->lock); 7167 out: 7168 btrfs_free_path(path); 7169 7170 trace_btrfs_get_extent(root, inode, em); 7171 7172 if (ret) { 7173 btrfs_free_extent_map(em); 7174 return ERR_PTR(ret); 7175 } 7176 return em; 7177 } 7178 7179 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7180 { 7181 struct btrfs_block_group *block_group; 7182 bool readonly = false; 7183 7184 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7185 if (!block_group || block_group->ro) 7186 readonly = true; 7187 if (block_group) 7188 btrfs_put_block_group(block_group); 7189 return readonly; 7190 } 7191 7192 /* 7193 * Check if we can do nocow write into the range [@offset, @offset + @len) 7194 * 7195 * @offset: File offset 7196 * @len: The length to write, will be updated to the nocow writeable 7197 * range 7198 * @orig_start: (optional) Return the original file offset of the file extent 7199 * @orig_len: (optional) Return the original on-disk length of the file extent 7200 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7201 * 7202 * Return: 7203 * >0 and update @len if we can do nocow write 7204 * 0 if we can't do nocow write 7205 * <0 if error happened 7206 * 7207 * NOTE: This only checks the file extents, caller is responsible to wait for 7208 * any ordered extents. 7209 */ 7210 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7211 struct btrfs_file_extent *file_extent, 7212 bool nowait) 7213 { 7214 struct btrfs_root *root = inode->root; 7215 struct btrfs_fs_info *fs_info = root->fs_info; 7216 struct can_nocow_file_extent_args nocow_args = { 0 }; 7217 BTRFS_PATH_AUTO_FREE(path); 7218 int ret; 7219 struct extent_buffer *leaf; 7220 struct extent_io_tree *io_tree = &inode->io_tree; 7221 struct btrfs_file_extent_item *fi; 7222 struct btrfs_key key; 7223 int found_type; 7224 7225 path = btrfs_alloc_path(); 7226 if (!path) 7227 return -ENOMEM; 7228 path->nowait = nowait; 7229 7230 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7231 offset, 0); 7232 if (ret < 0) 7233 return ret; 7234 7235 if (ret == 1) { 7236 if (path->slots[0] == 0) { 7237 /* Can't find the item, must COW. */ 7238 return 0; 7239 } 7240 path->slots[0]--; 7241 } 7242 ret = 0; 7243 leaf = path->nodes[0]; 7244 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7245 if (key.objectid != btrfs_ino(inode) || 7246 key.type != BTRFS_EXTENT_DATA_KEY) { 7247 /* Not our file or wrong item type, must COW. */ 7248 return 0; 7249 } 7250 7251 if (key.offset > offset) { 7252 /* Wrong offset, must COW. */ 7253 return 0; 7254 } 7255 7256 if (btrfs_file_extent_end(path) <= offset) 7257 return 0; 7258 7259 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7260 found_type = btrfs_file_extent_type(leaf, fi); 7261 7262 nocow_args.start = offset; 7263 nocow_args.end = offset + *len - 1; 7264 nocow_args.free_path = true; 7265 7266 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7267 /* can_nocow_file_extent() has freed the path. */ 7268 path = NULL; 7269 7270 if (ret != 1) { 7271 /* Treat errors as not being able to NOCOW. */ 7272 return 0; 7273 } 7274 7275 if (btrfs_extent_readonly(fs_info, 7276 nocow_args.file_extent.disk_bytenr + 7277 nocow_args.file_extent.offset)) 7278 return 0; 7279 7280 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7281 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7282 u64 range_end; 7283 7284 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7285 root->fs_info->sectorsize) - 1; 7286 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7287 EXTENT_DELALLOC); 7288 if (ret) 7289 return -EAGAIN; 7290 } 7291 7292 if (file_extent) 7293 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7294 7295 *len = nocow_args.file_extent.num_bytes; 7296 7297 return 1; 7298 } 7299 7300 /* The callers of this must take lock_extent() */ 7301 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7302 const struct btrfs_file_extent *file_extent, 7303 int type) 7304 { 7305 struct extent_map *em; 7306 int ret; 7307 7308 /* 7309 * Note the missing NOCOW type. 7310 * 7311 * For pure NOCOW writes, we should not create an io extent map, but 7312 * just reusing the existing one. 7313 * Only PREALLOC writes (NOCOW write into preallocated range) can 7314 * create an io extent map. 7315 */ 7316 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7317 type == BTRFS_ORDERED_COMPRESSED || 7318 type == BTRFS_ORDERED_REGULAR); 7319 7320 switch (type) { 7321 case BTRFS_ORDERED_PREALLOC: 7322 /* We're only referring part of a larger preallocated extent. */ 7323 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7324 break; 7325 case BTRFS_ORDERED_REGULAR: 7326 /* COW results a new extent matching our file extent size. */ 7327 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7328 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7329 7330 /* Since it's a new extent, we should not have any offset. */ 7331 ASSERT(file_extent->offset == 0); 7332 break; 7333 case BTRFS_ORDERED_COMPRESSED: 7334 /* Must be compressed. */ 7335 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7336 7337 /* 7338 * Encoded write can make us to refer to part of the 7339 * uncompressed extent. 7340 */ 7341 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7342 break; 7343 } 7344 7345 em = btrfs_alloc_extent_map(); 7346 if (!em) 7347 return ERR_PTR(-ENOMEM); 7348 7349 em->start = start; 7350 em->len = file_extent->num_bytes; 7351 em->disk_bytenr = file_extent->disk_bytenr; 7352 em->disk_num_bytes = file_extent->disk_num_bytes; 7353 em->ram_bytes = file_extent->ram_bytes; 7354 em->generation = -1; 7355 em->offset = file_extent->offset; 7356 em->flags |= EXTENT_FLAG_PINNED; 7357 if (type == BTRFS_ORDERED_COMPRESSED) 7358 btrfs_extent_map_set_compression(em, file_extent->compression); 7359 7360 ret = btrfs_replace_extent_map_range(inode, em, true); 7361 if (ret) { 7362 btrfs_free_extent_map(em); 7363 return ERR_PTR(ret); 7364 } 7365 7366 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7367 return em; 7368 } 7369 7370 /* 7371 * For release_folio() and invalidate_folio() we have a race window where 7372 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7373 * If we continue to release/invalidate the page, we could cause use-after-free 7374 * for subpage spinlock. So this function is to spin and wait for subpage 7375 * spinlock. 7376 */ 7377 static void wait_subpage_spinlock(struct folio *folio) 7378 { 7379 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7380 struct btrfs_folio_state *bfs; 7381 7382 if (!btrfs_is_subpage(fs_info, folio)) 7383 return; 7384 7385 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7386 bfs = folio_get_private(folio); 7387 7388 /* 7389 * This may look insane as we just acquire the spinlock and release it, 7390 * without doing anything. But we just want to make sure no one is 7391 * still holding the subpage spinlock. 7392 * And since the page is not dirty nor writeback, and we have page 7393 * locked, the only possible way to hold a spinlock is from the endio 7394 * function to clear page writeback. 7395 * 7396 * Here we just acquire the spinlock so that all existing callers 7397 * should exit and we're safe to release/invalidate the page. 7398 */ 7399 spin_lock_irq(&bfs->lock); 7400 spin_unlock_irq(&bfs->lock); 7401 } 7402 7403 static int btrfs_launder_folio(struct folio *folio) 7404 { 7405 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7406 folio_size(folio), NULL); 7407 } 7408 7409 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7410 { 7411 if (try_release_extent_mapping(folio, gfp_flags)) { 7412 wait_subpage_spinlock(folio); 7413 clear_folio_extent_mapped(folio); 7414 return true; 7415 } 7416 return false; 7417 } 7418 7419 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7420 { 7421 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7422 return false; 7423 return __btrfs_release_folio(folio, gfp_flags); 7424 } 7425 7426 #ifdef CONFIG_MIGRATION 7427 static int btrfs_migrate_folio(struct address_space *mapping, 7428 struct folio *dst, struct folio *src, 7429 enum migrate_mode mode) 7430 { 7431 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7432 7433 if (ret != MIGRATEPAGE_SUCCESS) 7434 return ret; 7435 7436 if (folio_test_ordered(src)) { 7437 folio_clear_ordered(src); 7438 folio_set_ordered(dst); 7439 } 7440 7441 return MIGRATEPAGE_SUCCESS; 7442 } 7443 #else 7444 #define btrfs_migrate_folio NULL 7445 #endif 7446 7447 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7448 size_t length) 7449 { 7450 struct btrfs_inode *inode = folio_to_inode(folio); 7451 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7452 struct extent_io_tree *tree = &inode->io_tree; 7453 struct extent_state *cached_state = NULL; 7454 u64 page_start = folio_pos(folio); 7455 u64 page_end = page_start + folio_size(folio) - 1; 7456 u64 cur; 7457 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7458 7459 /* 7460 * We have folio locked so no new ordered extent can be created on this 7461 * page, nor bio can be submitted for this folio. 7462 * 7463 * But already submitted bio can still be finished on this folio. 7464 * Furthermore, endio function won't skip folio which has Ordered 7465 * already cleared, so it's possible for endio and 7466 * invalidate_folio to do the same ordered extent accounting twice 7467 * on one folio. 7468 * 7469 * So here we wait for any submitted bios to finish, so that we won't 7470 * do double ordered extent accounting on the same folio. 7471 */ 7472 folio_wait_writeback(folio); 7473 wait_subpage_spinlock(folio); 7474 7475 /* 7476 * For subpage case, we have call sites like 7477 * btrfs_punch_hole_lock_range() which passes range not aligned to 7478 * sectorsize. 7479 * If the range doesn't cover the full folio, we don't need to and 7480 * shouldn't clear page extent mapped, as folio->private can still 7481 * record subpage dirty bits for other part of the range. 7482 * 7483 * For cases that invalidate the full folio even the range doesn't 7484 * cover the full folio, like invalidating the last folio, we're 7485 * still safe to wait for ordered extent to finish. 7486 */ 7487 if (!(offset == 0 && length == folio_size(folio))) { 7488 btrfs_release_folio(folio, GFP_NOFS); 7489 return; 7490 } 7491 7492 if (!inode_evicting) 7493 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7494 7495 cur = page_start; 7496 while (cur < page_end) { 7497 struct btrfs_ordered_extent *ordered; 7498 u64 range_end; 7499 u32 range_len; 7500 u32 extra_flags = 0; 7501 7502 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7503 page_end + 1 - cur); 7504 if (!ordered) { 7505 range_end = page_end; 7506 /* 7507 * No ordered extent covering this range, we are safe 7508 * to delete all extent states in the range. 7509 */ 7510 extra_flags = EXTENT_CLEAR_ALL_BITS; 7511 goto next; 7512 } 7513 if (ordered->file_offset > cur) { 7514 /* 7515 * There is a range between [cur, oe->file_offset) not 7516 * covered by any ordered extent. 7517 * We are safe to delete all extent states, and handle 7518 * the ordered extent in the next iteration. 7519 */ 7520 range_end = ordered->file_offset - 1; 7521 extra_flags = EXTENT_CLEAR_ALL_BITS; 7522 goto next; 7523 } 7524 7525 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7526 page_end); 7527 ASSERT(range_end + 1 - cur < U32_MAX); 7528 range_len = range_end + 1 - cur; 7529 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7530 /* 7531 * If Ordered is cleared, it means endio has 7532 * already been executed for the range. 7533 * We can't delete the extent states as 7534 * btrfs_finish_ordered_io() may still use some of them. 7535 */ 7536 goto next; 7537 } 7538 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7539 7540 /* 7541 * IO on this page will never be started, so we need to account 7542 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7543 * here, must leave that up for the ordered extent completion. 7544 * 7545 * This will also unlock the range for incoming 7546 * btrfs_finish_ordered_io(). 7547 */ 7548 if (!inode_evicting) 7549 btrfs_clear_extent_bit(tree, cur, range_end, 7550 EXTENT_DELALLOC | 7551 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7552 EXTENT_DEFRAG, &cached_state); 7553 7554 spin_lock_irq(&inode->ordered_tree_lock); 7555 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7556 ordered->truncated_len = min(ordered->truncated_len, 7557 cur - ordered->file_offset); 7558 spin_unlock_irq(&inode->ordered_tree_lock); 7559 7560 /* 7561 * If the ordered extent has finished, we're safe to delete all 7562 * the extent states of the range, otherwise 7563 * btrfs_finish_ordered_io() will get executed by endio for 7564 * other pages, so we can't delete extent states. 7565 */ 7566 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7567 cur, range_end + 1 - cur)) { 7568 btrfs_finish_ordered_io(ordered); 7569 /* 7570 * The ordered extent has finished, now we're again 7571 * safe to delete all extent states of the range. 7572 */ 7573 extra_flags = EXTENT_CLEAR_ALL_BITS; 7574 } 7575 next: 7576 if (ordered) 7577 btrfs_put_ordered_extent(ordered); 7578 /* 7579 * Qgroup reserved space handler 7580 * Sector(s) here will be either: 7581 * 7582 * 1) Already written to disk or bio already finished 7583 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7584 * Qgroup will be handled by its qgroup_record then. 7585 * btrfs_qgroup_free_data() call will do nothing here. 7586 * 7587 * 2) Not written to disk yet 7588 * Then btrfs_qgroup_free_data() call will clear the 7589 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7590 * reserved data space. 7591 * Since the IO will never happen for this page. 7592 */ 7593 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7594 if (!inode_evicting) 7595 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7596 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7597 EXTENT_DEFRAG | extra_flags, 7598 &cached_state); 7599 cur = range_end + 1; 7600 } 7601 /* 7602 * We have iterated through all ordered extents of the page, the page 7603 * should not have Ordered anymore, or the above iteration 7604 * did something wrong. 7605 */ 7606 ASSERT(!folio_test_ordered(folio)); 7607 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7608 if (!inode_evicting) 7609 __btrfs_release_folio(folio, GFP_NOFS); 7610 clear_folio_extent_mapped(folio); 7611 } 7612 7613 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7614 { 7615 struct btrfs_truncate_control control = { 7616 .inode = inode, 7617 .ino = btrfs_ino(inode), 7618 .min_type = BTRFS_EXTENT_DATA_KEY, 7619 .clear_extent_range = true, 7620 }; 7621 struct btrfs_root *root = inode->root; 7622 struct btrfs_fs_info *fs_info = root->fs_info; 7623 struct btrfs_block_rsv rsv; 7624 int ret; 7625 struct btrfs_trans_handle *trans; 7626 u64 mask = fs_info->sectorsize - 1; 7627 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7628 7629 if (!skip_writeback) { 7630 ret = btrfs_wait_ordered_range(inode, 7631 inode->vfs_inode.i_size & (~mask), 7632 (u64)-1); 7633 if (ret) 7634 return ret; 7635 } 7636 7637 /* 7638 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7639 * things going on here: 7640 * 7641 * 1) We need to reserve space to update our inode. 7642 * 7643 * 2) We need to have something to cache all the space that is going to 7644 * be free'd up by the truncate operation, but also have some slack 7645 * space reserved in case it uses space during the truncate (thank you 7646 * very much snapshotting). 7647 * 7648 * And we need these to be separate. The fact is we can use a lot of 7649 * space doing the truncate, and we have no earthly idea how much space 7650 * we will use, so we need the truncate reservation to be separate so it 7651 * doesn't end up using space reserved for updating the inode. We also 7652 * need to be able to stop the transaction and start a new one, which 7653 * means we need to be able to update the inode several times, and we 7654 * have no idea of knowing how many times that will be, so we can't just 7655 * reserve 1 item for the entirety of the operation, so that has to be 7656 * done separately as well. 7657 * 7658 * So that leaves us with 7659 * 7660 * 1) rsv - for the truncate reservation, which we will steal from the 7661 * transaction reservation. 7662 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7663 * updating the inode. 7664 */ 7665 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7666 rsv.size = min_size; 7667 rsv.failfast = true; 7668 7669 /* 7670 * 1 for the truncate slack space 7671 * 1 for updating the inode. 7672 */ 7673 trans = btrfs_start_transaction(root, 2); 7674 if (IS_ERR(trans)) { 7675 ret = PTR_ERR(trans); 7676 goto out; 7677 } 7678 7679 /* Migrate the slack space for the truncate to our reserve */ 7680 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7681 min_size, false); 7682 /* 7683 * We have reserved 2 metadata units when we started the transaction and 7684 * min_size matches 1 unit, so this should never fail, but if it does, 7685 * it's not critical we just fail truncation. 7686 */ 7687 if (WARN_ON(ret)) { 7688 btrfs_end_transaction(trans); 7689 goto out; 7690 } 7691 7692 trans->block_rsv = &rsv; 7693 7694 while (1) { 7695 struct extent_state *cached_state = NULL; 7696 const u64 new_size = inode->vfs_inode.i_size; 7697 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7698 7699 control.new_size = new_size; 7700 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7701 /* 7702 * We want to drop from the next block forward in case this new 7703 * size is not block aligned since we will be keeping the last 7704 * block of the extent just the way it is. 7705 */ 7706 btrfs_drop_extent_map_range(inode, 7707 ALIGN(new_size, fs_info->sectorsize), 7708 (u64)-1, false); 7709 7710 ret = btrfs_truncate_inode_items(trans, root, &control); 7711 7712 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7713 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7714 7715 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7716 7717 trans->block_rsv = &fs_info->trans_block_rsv; 7718 if (ret != -ENOSPC && ret != -EAGAIN) 7719 break; 7720 7721 ret = btrfs_update_inode(trans, inode); 7722 if (ret) 7723 break; 7724 7725 btrfs_end_transaction(trans); 7726 btrfs_btree_balance_dirty(fs_info); 7727 7728 trans = btrfs_start_transaction(root, 2); 7729 if (IS_ERR(trans)) { 7730 ret = PTR_ERR(trans); 7731 trans = NULL; 7732 break; 7733 } 7734 7735 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7736 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7737 &rsv, min_size, false); 7738 /* 7739 * We have reserved 2 metadata units when we started the 7740 * transaction and min_size matches 1 unit, so this should never 7741 * fail, but if it does, it's not critical we just fail truncation. 7742 */ 7743 if (WARN_ON(ret)) 7744 break; 7745 7746 trans->block_rsv = &rsv; 7747 } 7748 7749 /* 7750 * We can't call btrfs_truncate_block inside a trans handle as we could 7751 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7752 * know we've truncated everything except the last little bit, and can 7753 * do btrfs_truncate_block and then update the disk_i_size. 7754 */ 7755 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7756 btrfs_end_transaction(trans); 7757 btrfs_btree_balance_dirty(fs_info); 7758 7759 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7760 inode->vfs_inode.i_size, (u64)-1); 7761 if (ret) 7762 goto out; 7763 trans = btrfs_start_transaction(root, 1); 7764 if (IS_ERR(trans)) { 7765 ret = PTR_ERR(trans); 7766 goto out; 7767 } 7768 btrfs_inode_safe_disk_i_size_write(inode, 0); 7769 } 7770 7771 if (trans) { 7772 int ret2; 7773 7774 trans->block_rsv = &fs_info->trans_block_rsv; 7775 ret2 = btrfs_update_inode(trans, inode); 7776 if (ret2 && !ret) 7777 ret = ret2; 7778 7779 ret2 = btrfs_end_transaction(trans); 7780 if (ret2 && !ret) 7781 ret = ret2; 7782 btrfs_btree_balance_dirty(fs_info); 7783 } 7784 out: 7785 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7786 /* 7787 * So if we truncate and then write and fsync we normally would just 7788 * write the extents that changed, which is a problem if we need to 7789 * first truncate that entire inode. So set this flag so we write out 7790 * all of the extents in the inode to the sync log so we're completely 7791 * safe. 7792 * 7793 * If no extents were dropped or trimmed we don't need to force the next 7794 * fsync to truncate all the inode's items from the log and re-log them 7795 * all. This means the truncate operation did not change the file size, 7796 * or changed it to a smaller size but there was only an implicit hole 7797 * between the old i_size and the new i_size, and there were no prealloc 7798 * extents beyond i_size to drop. 7799 */ 7800 if (control.extents_found > 0) 7801 btrfs_set_inode_full_sync(inode); 7802 7803 return ret; 7804 } 7805 7806 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7807 struct inode *dir) 7808 { 7809 struct inode *inode; 7810 7811 inode = new_inode(dir->i_sb); 7812 if (inode) { 7813 /* 7814 * Subvolumes don't inherit the sgid bit or the parent's gid if 7815 * the parent's sgid bit is set. This is probably a bug. 7816 */ 7817 inode_init_owner(idmap, inode, NULL, 7818 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7819 inode->i_op = &btrfs_dir_inode_operations; 7820 inode->i_fop = &btrfs_dir_file_operations; 7821 } 7822 return inode; 7823 } 7824 7825 struct inode *btrfs_alloc_inode(struct super_block *sb) 7826 { 7827 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7828 struct btrfs_inode *ei; 7829 struct inode *inode; 7830 7831 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7832 if (!ei) 7833 return NULL; 7834 7835 ei->root = NULL; 7836 ei->generation = 0; 7837 ei->last_trans = 0; 7838 ei->last_sub_trans = 0; 7839 ei->logged_trans = 0; 7840 ei->delalloc_bytes = 0; 7841 /* new_delalloc_bytes and last_dir_index_offset are in a union. */ 7842 ei->new_delalloc_bytes = 0; 7843 ei->defrag_bytes = 0; 7844 ei->disk_i_size = 0; 7845 ei->flags = 0; 7846 ei->ro_flags = 0; 7847 /* 7848 * ->index_cnt will be properly initialized later when creating a new 7849 * inode (btrfs_create_new_inode()) or when reading an existing inode 7850 * from disk (btrfs_read_locked_inode()). 7851 */ 7852 ei->csum_bytes = 0; 7853 ei->dir_index = 0; 7854 ei->last_unlink_trans = 0; 7855 ei->last_reflink_trans = 0; 7856 ei->last_log_commit = 0; 7857 7858 spin_lock_init(&ei->lock); 7859 ei->outstanding_extents = 0; 7860 if (sb->s_magic != BTRFS_TEST_MAGIC) 7861 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7862 BTRFS_BLOCK_RSV_DELALLOC); 7863 ei->runtime_flags = 0; 7864 ei->prop_compress = BTRFS_COMPRESS_NONE; 7865 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7866 7867 ei->delayed_node = NULL; 7868 7869 ei->i_otime_sec = 0; 7870 ei->i_otime_nsec = 0; 7871 7872 inode = &ei->vfs_inode; 7873 btrfs_extent_map_tree_init(&ei->extent_tree); 7874 7875 /* This io tree sets the valid inode. */ 7876 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7877 ei->io_tree.inode = ei; 7878 7879 ei->file_extent_tree = NULL; 7880 7881 mutex_init(&ei->log_mutex); 7882 spin_lock_init(&ei->ordered_tree_lock); 7883 ei->ordered_tree = RB_ROOT; 7884 ei->ordered_tree_last = NULL; 7885 INIT_LIST_HEAD(&ei->delalloc_inodes); 7886 INIT_LIST_HEAD(&ei->delayed_iput); 7887 init_rwsem(&ei->i_mmap_lock); 7888 7889 return inode; 7890 } 7891 7892 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7893 void btrfs_test_destroy_inode(struct inode *inode) 7894 { 7895 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7896 kfree(BTRFS_I(inode)->file_extent_tree); 7897 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7898 } 7899 #endif 7900 7901 void btrfs_free_inode(struct inode *inode) 7902 { 7903 kfree(BTRFS_I(inode)->file_extent_tree); 7904 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7905 } 7906 7907 void btrfs_destroy_inode(struct inode *vfs_inode) 7908 { 7909 struct btrfs_ordered_extent *ordered; 7910 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7911 struct btrfs_root *root = inode->root; 7912 bool freespace_inode; 7913 7914 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7915 WARN_ON(vfs_inode->i_data.nrpages); 7916 WARN_ON(inode->block_rsv.reserved); 7917 WARN_ON(inode->block_rsv.size); 7918 WARN_ON(inode->outstanding_extents); 7919 if (!S_ISDIR(vfs_inode->i_mode)) { 7920 WARN_ON(inode->delalloc_bytes); 7921 WARN_ON(inode->new_delalloc_bytes); 7922 WARN_ON(inode->csum_bytes); 7923 } 7924 if (!root || !btrfs_is_data_reloc_root(root)) 7925 WARN_ON(inode->defrag_bytes); 7926 7927 /* 7928 * This can happen where we create an inode, but somebody else also 7929 * created the same inode and we need to destroy the one we already 7930 * created. 7931 */ 7932 if (!root) 7933 return; 7934 7935 /* 7936 * If this is a free space inode do not take the ordered extents lockdep 7937 * map. 7938 */ 7939 freespace_inode = btrfs_is_free_space_inode(inode); 7940 7941 while (1) { 7942 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7943 if (!ordered) 7944 break; 7945 else { 7946 btrfs_err(root->fs_info, 7947 "found ordered extent %llu %llu on inode cleanup", 7948 ordered->file_offset, ordered->num_bytes); 7949 7950 if (!freespace_inode) 7951 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7952 7953 btrfs_remove_ordered_extent(inode, ordered); 7954 btrfs_put_ordered_extent(ordered); 7955 btrfs_put_ordered_extent(ordered); 7956 } 7957 } 7958 btrfs_qgroup_check_reserved_leak(inode); 7959 btrfs_del_inode_from_root(inode); 7960 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7961 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7962 btrfs_put_root(inode->root); 7963 } 7964 7965 int btrfs_drop_inode(struct inode *inode) 7966 { 7967 struct btrfs_root *root = BTRFS_I(inode)->root; 7968 7969 if (root == NULL) 7970 return 1; 7971 7972 /* the snap/subvol tree is on deleting */ 7973 if (btrfs_root_refs(&root->root_item) == 0) 7974 return 1; 7975 else 7976 return generic_drop_inode(inode); 7977 } 7978 7979 static void init_once(void *foo) 7980 { 7981 struct btrfs_inode *ei = foo; 7982 7983 inode_init_once(&ei->vfs_inode); 7984 } 7985 7986 void __cold btrfs_destroy_cachep(void) 7987 { 7988 /* 7989 * Make sure all delayed rcu free inodes are flushed before we 7990 * destroy cache. 7991 */ 7992 rcu_barrier(); 7993 kmem_cache_destroy(btrfs_inode_cachep); 7994 } 7995 7996 int __init btrfs_init_cachep(void) 7997 { 7998 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7999 sizeof(struct btrfs_inode), 0, 8000 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8001 init_once); 8002 if (!btrfs_inode_cachep) 8003 return -ENOMEM; 8004 8005 return 0; 8006 } 8007 8008 static int btrfs_getattr(struct mnt_idmap *idmap, 8009 const struct path *path, struct kstat *stat, 8010 u32 request_mask, unsigned int flags) 8011 { 8012 u64 delalloc_bytes; 8013 u64 inode_bytes; 8014 struct inode *inode = d_inode(path->dentry); 8015 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8016 u32 bi_flags = BTRFS_I(inode)->flags; 8017 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8018 8019 stat->result_mask |= STATX_BTIME; 8020 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8021 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8022 if (bi_flags & BTRFS_INODE_APPEND) 8023 stat->attributes |= STATX_ATTR_APPEND; 8024 if (bi_flags & BTRFS_INODE_COMPRESS) 8025 stat->attributes |= STATX_ATTR_COMPRESSED; 8026 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8027 stat->attributes |= STATX_ATTR_IMMUTABLE; 8028 if (bi_flags & BTRFS_INODE_NODUMP) 8029 stat->attributes |= STATX_ATTR_NODUMP; 8030 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8031 stat->attributes |= STATX_ATTR_VERITY; 8032 8033 stat->attributes_mask |= (STATX_ATTR_APPEND | 8034 STATX_ATTR_COMPRESSED | 8035 STATX_ATTR_IMMUTABLE | 8036 STATX_ATTR_NODUMP); 8037 8038 generic_fillattr(idmap, request_mask, inode, stat); 8039 stat->dev = BTRFS_I(inode)->root->anon_dev; 8040 8041 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8042 stat->result_mask |= STATX_SUBVOL; 8043 8044 spin_lock(&BTRFS_I(inode)->lock); 8045 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8046 inode_bytes = inode_get_bytes(inode); 8047 spin_unlock(&BTRFS_I(inode)->lock); 8048 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8049 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8050 return 0; 8051 } 8052 8053 static int btrfs_rename_exchange(struct inode *old_dir, 8054 struct dentry *old_dentry, 8055 struct inode *new_dir, 8056 struct dentry *new_dentry) 8057 { 8058 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8059 struct btrfs_trans_handle *trans; 8060 unsigned int trans_num_items; 8061 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8062 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8063 struct inode *new_inode = new_dentry->d_inode; 8064 struct inode *old_inode = old_dentry->d_inode; 8065 struct btrfs_rename_ctx old_rename_ctx; 8066 struct btrfs_rename_ctx new_rename_ctx; 8067 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8068 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8069 u64 old_idx = 0; 8070 u64 new_idx = 0; 8071 int ret; 8072 int ret2; 8073 bool need_abort = false; 8074 bool logs_pinned = false; 8075 struct fscrypt_name old_fname, new_fname; 8076 struct fscrypt_str *old_name, *new_name; 8077 8078 /* 8079 * For non-subvolumes allow exchange only within one subvolume, in the 8080 * same inode namespace. Two subvolumes (represented as directory) can 8081 * be exchanged as they're a logical link and have a fixed inode number. 8082 */ 8083 if (root != dest && 8084 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8085 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8086 return -EXDEV; 8087 8088 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8089 if (ret) 8090 return ret; 8091 8092 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8093 if (ret) { 8094 fscrypt_free_filename(&old_fname); 8095 return ret; 8096 } 8097 8098 old_name = &old_fname.disk_name; 8099 new_name = &new_fname.disk_name; 8100 8101 /* close the race window with snapshot create/destroy ioctl */ 8102 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8103 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8104 down_read(&fs_info->subvol_sem); 8105 8106 /* 8107 * For each inode: 8108 * 1 to remove old dir item 8109 * 1 to remove old dir index 8110 * 1 to add new dir item 8111 * 1 to add new dir index 8112 * 1 to update parent inode 8113 * 8114 * If the parents are the same, we only need to account for one 8115 */ 8116 trans_num_items = (old_dir == new_dir ? 9 : 10); 8117 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8118 /* 8119 * 1 to remove old root ref 8120 * 1 to remove old root backref 8121 * 1 to add new root ref 8122 * 1 to add new root backref 8123 */ 8124 trans_num_items += 4; 8125 } else { 8126 /* 8127 * 1 to update inode item 8128 * 1 to remove old inode ref 8129 * 1 to add new inode ref 8130 */ 8131 trans_num_items += 3; 8132 } 8133 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8134 trans_num_items += 4; 8135 else 8136 trans_num_items += 3; 8137 trans = btrfs_start_transaction(root, trans_num_items); 8138 if (IS_ERR(trans)) { 8139 ret = PTR_ERR(trans); 8140 goto out_notrans; 8141 } 8142 8143 if (dest != root) { 8144 ret = btrfs_record_root_in_trans(trans, dest); 8145 if (ret) 8146 goto out_fail; 8147 } 8148 8149 /* 8150 * We need to find a free sequence number both in the source and 8151 * in the destination directory for the exchange. 8152 */ 8153 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8154 if (ret) 8155 goto out_fail; 8156 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8157 if (ret) 8158 goto out_fail; 8159 8160 BTRFS_I(old_inode)->dir_index = 0ULL; 8161 BTRFS_I(new_inode)->dir_index = 0ULL; 8162 8163 /* Reference for the source. */ 8164 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8165 /* force full log commit if subvolume involved. */ 8166 btrfs_set_log_full_commit(trans); 8167 } else { 8168 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8169 btrfs_ino(BTRFS_I(new_dir)), 8170 old_idx); 8171 if (ret) 8172 goto out_fail; 8173 need_abort = true; 8174 } 8175 8176 /* And now for the dest. */ 8177 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8178 /* force full log commit if subvolume involved. */ 8179 btrfs_set_log_full_commit(trans); 8180 } else { 8181 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8182 btrfs_ino(BTRFS_I(old_dir)), 8183 new_idx); 8184 if (ret) { 8185 if (need_abort) 8186 btrfs_abort_transaction(trans, ret); 8187 goto out_fail; 8188 } 8189 } 8190 8191 /* Update inode version and ctime/mtime. */ 8192 inode_inc_iversion(old_dir); 8193 inode_inc_iversion(new_dir); 8194 inode_inc_iversion(old_inode); 8195 inode_inc_iversion(new_inode); 8196 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8197 8198 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8199 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8200 /* 8201 * If we are renaming in the same directory (and it's not for 8202 * root entries) pin the log early to prevent any concurrent 8203 * task from logging the directory after we removed the old 8204 * entries and before we add the new entries, otherwise that 8205 * task can sync a log without any entry for the inodes we are 8206 * renaming and therefore replaying that log, if a power failure 8207 * happens after syncing the log, would result in deleting the 8208 * inodes. 8209 * 8210 * If the rename affects two different directories, we want to 8211 * make sure the that there's no log commit that contains 8212 * updates for only one of the directories but not for the 8213 * other. 8214 * 8215 * If we are renaming an entry for a root, we don't care about 8216 * log updates since we called btrfs_set_log_full_commit(). 8217 */ 8218 btrfs_pin_log_trans(root); 8219 btrfs_pin_log_trans(dest); 8220 logs_pinned = true; 8221 } 8222 8223 if (old_dentry->d_parent != new_dentry->d_parent) { 8224 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8225 BTRFS_I(old_inode), true); 8226 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8227 BTRFS_I(new_inode), true); 8228 } 8229 8230 /* src is a subvolume */ 8231 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8232 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8233 if (ret) { 8234 btrfs_abort_transaction(trans, ret); 8235 goto out_fail; 8236 } 8237 } else { /* src is an inode */ 8238 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8239 BTRFS_I(old_dentry->d_inode), 8240 old_name, &old_rename_ctx); 8241 if (ret) { 8242 btrfs_abort_transaction(trans, ret); 8243 goto out_fail; 8244 } 8245 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8246 if (ret) { 8247 btrfs_abort_transaction(trans, ret); 8248 goto out_fail; 8249 } 8250 } 8251 8252 /* dest is a subvolume */ 8253 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8254 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8255 if (ret) { 8256 btrfs_abort_transaction(trans, ret); 8257 goto out_fail; 8258 } 8259 } else { /* dest is an inode */ 8260 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8261 BTRFS_I(new_dentry->d_inode), 8262 new_name, &new_rename_ctx); 8263 if (ret) { 8264 btrfs_abort_transaction(trans, ret); 8265 goto out_fail; 8266 } 8267 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8268 if (ret) { 8269 btrfs_abort_transaction(trans, ret); 8270 goto out_fail; 8271 } 8272 } 8273 8274 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8275 new_name, 0, old_idx); 8276 if (ret) { 8277 btrfs_abort_transaction(trans, ret); 8278 goto out_fail; 8279 } 8280 8281 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8282 old_name, 0, new_idx); 8283 if (ret) { 8284 btrfs_abort_transaction(trans, ret); 8285 goto out_fail; 8286 } 8287 8288 if (old_inode->i_nlink == 1) 8289 BTRFS_I(old_inode)->dir_index = old_idx; 8290 if (new_inode->i_nlink == 1) 8291 BTRFS_I(new_inode)->dir_index = new_idx; 8292 8293 /* 8294 * Do the log updates for all inodes. 8295 * 8296 * If either entry is for a root we don't need to update the logs since 8297 * we've called btrfs_set_log_full_commit() before. 8298 */ 8299 if (logs_pinned) { 8300 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8301 old_rename_ctx.index, new_dentry->d_parent); 8302 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8303 new_rename_ctx.index, old_dentry->d_parent); 8304 } 8305 8306 out_fail: 8307 if (logs_pinned) { 8308 btrfs_end_log_trans(root); 8309 btrfs_end_log_trans(dest); 8310 } 8311 ret2 = btrfs_end_transaction(trans); 8312 ret = ret ? ret : ret2; 8313 out_notrans: 8314 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8315 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8316 up_read(&fs_info->subvol_sem); 8317 8318 fscrypt_free_filename(&new_fname); 8319 fscrypt_free_filename(&old_fname); 8320 return ret; 8321 } 8322 8323 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8324 struct inode *dir) 8325 { 8326 struct inode *inode; 8327 8328 inode = new_inode(dir->i_sb); 8329 if (inode) { 8330 inode_init_owner(idmap, inode, dir, 8331 S_IFCHR | WHITEOUT_MODE); 8332 inode->i_op = &btrfs_special_inode_operations; 8333 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8334 } 8335 return inode; 8336 } 8337 8338 static int btrfs_rename(struct mnt_idmap *idmap, 8339 struct inode *old_dir, struct dentry *old_dentry, 8340 struct inode *new_dir, struct dentry *new_dentry, 8341 unsigned int flags) 8342 { 8343 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8344 struct btrfs_new_inode_args whiteout_args = { 8345 .dir = old_dir, 8346 .dentry = old_dentry, 8347 }; 8348 struct btrfs_trans_handle *trans; 8349 unsigned int trans_num_items; 8350 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8351 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8352 struct inode *new_inode = d_inode(new_dentry); 8353 struct inode *old_inode = d_inode(old_dentry); 8354 struct btrfs_rename_ctx rename_ctx; 8355 u64 index = 0; 8356 int ret; 8357 int ret2; 8358 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8359 struct fscrypt_name old_fname, new_fname; 8360 bool logs_pinned = false; 8361 8362 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8363 return -EPERM; 8364 8365 /* we only allow rename subvolume link between subvolumes */ 8366 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8367 return -EXDEV; 8368 8369 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8370 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8371 return -ENOTEMPTY; 8372 8373 if (S_ISDIR(old_inode->i_mode) && new_inode && 8374 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8375 return -ENOTEMPTY; 8376 8377 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8378 if (ret) 8379 return ret; 8380 8381 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8382 if (ret) { 8383 fscrypt_free_filename(&old_fname); 8384 return ret; 8385 } 8386 8387 /* check for collisions, even if the name isn't there */ 8388 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8389 if (ret) { 8390 if (ret == -EEXIST) { 8391 /* we shouldn't get 8392 * eexist without a new_inode */ 8393 if (WARN_ON(!new_inode)) { 8394 goto out_fscrypt_names; 8395 } 8396 } else { 8397 /* maybe -EOVERFLOW */ 8398 goto out_fscrypt_names; 8399 } 8400 } 8401 ret = 0; 8402 8403 /* 8404 * we're using rename to replace one file with another. Start IO on it 8405 * now so we don't add too much work to the end of the transaction 8406 */ 8407 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8408 filemap_flush(old_inode->i_mapping); 8409 8410 if (flags & RENAME_WHITEOUT) { 8411 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8412 if (!whiteout_args.inode) { 8413 ret = -ENOMEM; 8414 goto out_fscrypt_names; 8415 } 8416 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8417 if (ret) 8418 goto out_whiteout_inode; 8419 } else { 8420 /* 1 to update the old parent inode. */ 8421 trans_num_items = 1; 8422 } 8423 8424 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8425 /* Close the race window with snapshot create/destroy ioctl */ 8426 down_read(&fs_info->subvol_sem); 8427 /* 8428 * 1 to remove old root ref 8429 * 1 to remove old root backref 8430 * 1 to add new root ref 8431 * 1 to add new root backref 8432 */ 8433 trans_num_items += 4; 8434 } else { 8435 /* 8436 * 1 to update inode 8437 * 1 to remove old inode ref 8438 * 1 to add new inode ref 8439 */ 8440 trans_num_items += 3; 8441 } 8442 /* 8443 * 1 to remove old dir item 8444 * 1 to remove old dir index 8445 * 1 to add new dir item 8446 * 1 to add new dir index 8447 */ 8448 trans_num_items += 4; 8449 /* 1 to update new parent inode if it's not the same as the old parent */ 8450 if (new_dir != old_dir) 8451 trans_num_items++; 8452 if (new_inode) { 8453 /* 8454 * 1 to update inode 8455 * 1 to remove inode ref 8456 * 1 to remove dir item 8457 * 1 to remove dir index 8458 * 1 to possibly add orphan item 8459 */ 8460 trans_num_items += 5; 8461 } 8462 trans = btrfs_start_transaction(root, trans_num_items); 8463 if (IS_ERR(trans)) { 8464 ret = PTR_ERR(trans); 8465 goto out_notrans; 8466 } 8467 8468 if (dest != root) { 8469 ret = btrfs_record_root_in_trans(trans, dest); 8470 if (ret) 8471 goto out_fail; 8472 } 8473 8474 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8475 if (ret) 8476 goto out_fail; 8477 8478 BTRFS_I(old_inode)->dir_index = 0ULL; 8479 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8480 /* force full log commit if subvolume involved. */ 8481 btrfs_set_log_full_commit(trans); 8482 } else { 8483 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8484 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8485 index); 8486 if (ret) 8487 goto out_fail; 8488 } 8489 8490 inode_inc_iversion(old_dir); 8491 inode_inc_iversion(new_dir); 8492 inode_inc_iversion(old_inode); 8493 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8494 8495 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8496 /* 8497 * If we are renaming in the same directory (and it's not a 8498 * root entry) pin the log to prevent any concurrent task from 8499 * logging the directory after we removed the old entry and 8500 * before we add the new entry, otherwise that task can sync 8501 * a log without any entry for the inode we are renaming and 8502 * therefore replaying that log, if a power failure happens 8503 * after syncing the log, would result in deleting the inode. 8504 * 8505 * If the rename affects two different directories, we want to 8506 * make sure the that there's no log commit that contains 8507 * updates for only one of the directories but not for the 8508 * other. 8509 * 8510 * If we are renaming an entry for a root, we don't care about 8511 * log updates since we called btrfs_set_log_full_commit(). 8512 */ 8513 btrfs_pin_log_trans(root); 8514 btrfs_pin_log_trans(dest); 8515 logs_pinned = true; 8516 } 8517 8518 if (old_dentry->d_parent != new_dentry->d_parent) 8519 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8520 BTRFS_I(old_inode), true); 8521 8522 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8523 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8524 if (ret) { 8525 btrfs_abort_transaction(trans, ret); 8526 goto out_fail; 8527 } 8528 } else { 8529 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8530 BTRFS_I(d_inode(old_dentry)), 8531 &old_fname.disk_name, &rename_ctx); 8532 if (ret) { 8533 btrfs_abort_transaction(trans, ret); 8534 goto out_fail; 8535 } 8536 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8537 if (ret) { 8538 btrfs_abort_transaction(trans, ret); 8539 goto out_fail; 8540 } 8541 } 8542 8543 if (new_inode) { 8544 inode_inc_iversion(new_inode); 8545 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8546 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8547 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8548 if (ret) { 8549 btrfs_abort_transaction(trans, ret); 8550 goto out_fail; 8551 } 8552 BUG_ON(new_inode->i_nlink == 0); 8553 } else { 8554 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8555 BTRFS_I(d_inode(new_dentry)), 8556 &new_fname.disk_name); 8557 if (ret) { 8558 btrfs_abort_transaction(trans, ret); 8559 goto out_fail; 8560 } 8561 } 8562 if (new_inode->i_nlink == 0) { 8563 ret = btrfs_orphan_add(trans, 8564 BTRFS_I(d_inode(new_dentry))); 8565 if (ret) { 8566 btrfs_abort_transaction(trans, ret); 8567 goto out_fail; 8568 } 8569 } 8570 } 8571 8572 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8573 &new_fname.disk_name, 0, index); 8574 if (ret) { 8575 btrfs_abort_transaction(trans, ret); 8576 goto out_fail; 8577 } 8578 8579 if (old_inode->i_nlink == 1) 8580 BTRFS_I(old_inode)->dir_index = index; 8581 8582 if (logs_pinned) 8583 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8584 rename_ctx.index, new_dentry->d_parent); 8585 8586 if (flags & RENAME_WHITEOUT) { 8587 ret = btrfs_create_new_inode(trans, &whiteout_args); 8588 if (ret) { 8589 btrfs_abort_transaction(trans, ret); 8590 goto out_fail; 8591 } else { 8592 unlock_new_inode(whiteout_args.inode); 8593 iput(whiteout_args.inode); 8594 whiteout_args.inode = NULL; 8595 } 8596 } 8597 out_fail: 8598 if (logs_pinned) { 8599 btrfs_end_log_trans(root); 8600 btrfs_end_log_trans(dest); 8601 } 8602 ret2 = btrfs_end_transaction(trans); 8603 ret = ret ? ret : ret2; 8604 out_notrans: 8605 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8606 up_read(&fs_info->subvol_sem); 8607 if (flags & RENAME_WHITEOUT) 8608 btrfs_new_inode_args_destroy(&whiteout_args); 8609 out_whiteout_inode: 8610 if (flags & RENAME_WHITEOUT) 8611 iput(whiteout_args.inode); 8612 out_fscrypt_names: 8613 fscrypt_free_filename(&old_fname); 8614 fscrypt_free_filename(&new_fname); 8615 return ret; 8616 } 8617 8618 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8619 struct dentry *old_dentry, struct inode *new_dir, 8620 struct dentry *new_dentry, unsigned int flags) 8621 { 8622 int ret; 8623 8624 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8625 return -EINVAL; 8626 8627 if (flags & RENAME_EXCHANGE) 8628 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8629 new_dentry); 8630 else 8631 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8632 new_dentry, flags); 8633 8634 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8635 8636 return ret; 8637 } 8638 8639 struct btrfs_delalloc_work { 8640 struct inode *inode; 8641 struct completion completion; 8642 struct list_head list; 8643 struct btrfs_work work; 8644 }; 8645 8646 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8647 { 8648 struct btrfs_delalloc_work *delalloc_work; 8649 struct inode *inode; 8650 8651 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8652 work); 8653 inode = delalloc_work->inode; 8654 filemap_flush(inode->i_mapping); 8655 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8656 &BTRFS_I(inode)->runtime_flags)) 8657 filemap_flush(inode->i_mapping); 8658 8659 iput(inode); 8660 complete(&delalloc_work->completion); 8661 } 8662 8663 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8664 { 8665 struct btrfs_delalloc_work *work; 8666 8667 work = kmalloc(sizeof(*work), GFP_NOFS); 8668 if (!work) 8669 return NULL; 8670 8671 init_completion(&work->completion); 8672 INIT_LIST_HEAD(&work->list); 8673 work->inode = inode; 8674 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8675 8676 return work; 8677 } 8678 8679 /* 8680 * some fairly slow code that needs optimization. This walks the list 8681 * of all the inodes with pending delalloc and forces them to disk. 8682 */ 8683 static int start_delalloc_inodes(struct btrfs_root *root, 8684 struct writeback_control *wbc, bool snapshot, 8685 bool in_reclaim_context) 8686 { 8687 struct btrfs_delalloc_work *work, *next; 8688 LIST_HEAD(works); 8689 LIST_HEAD(splice); 8690 int ret = 0; 8691 bool full_flush = wbc->nr_to_write == LONG_MAX; 8692 8693 mutex_lock(&root->delalloc_mutex); 8694 spin_lock(&root->delalloc_lock); 8695 list_splice_init(&root->delalloc_inodes, &splice); 8696 while (!list_empty(&splice)) { 8697 struct btrfs_inode *inode; 8698 struct inode *tmp_inode; 8699 8700 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8701 8702 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8703 8704 if (in_reclaim_context && 8705 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8706 continue; 8707 8708 tmp_inode = igrab(&inode->vfs_inode); 8709 if (!tmp_inode) { 8710 cond_resched_lock(&root->delalloc_lock); 8711 continue; 8712 } 8713 spin_unlock(&root->delalloc_lock); 8714 8715 if (snapshot) 8716 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8717 if (full_flush) { 8718 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8719 if (!work) { 8720 iput(&inode->vfs_inode); 8721 ret = -ENOMEM; 8722 goto out; 8723 } 8724 list_add_tail(&work->list, &works); 8725 btrfs_queue_work(root->fs_info->flush_workers, 8726 &work->work); 8727 } else { 8728 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8729 btrfs_add_delayed_iput(inode); 8730 if (ret || wbc->nr_to_write <= 0) 8731 goto out; 8732 } 8733 cond_resched(); 8734 spin_lock(&root->delalloc_lock); 8735 } 8736 spin_unlock(&root->delalloc_lock); 8737 8738 out: 8739 list_for_each_entry_safe(work, next, &works, list) { 8740 list_del_init(&work->list); 8741 wait_for_completion(&work->completion); 8742 kfree(work); 8743 } 8744 8745 if (!list_empty(&splice)) { 8746 spin_lock(&root->delalloc_lock); 8747 list_splice_tail(&splice, &root->delalloc_inodes); 8748 spin_unlock(&root->delalloc_lock); 8749 } 8750 mutex_unlock(&root->delalloc_mutex); 8751 return ret; 8752 } 8753 8754 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8755 { 8756 struct writeback_control wbc = { 8757 .nr_to_write = LONG_MAX, 8758 .sync_mode = WB_SYNC_NONE, 8759 .range_start = 0, 8760 .range_end = LLONG_MAX, 8761 }; 8762 struct btrfs_fs_info *fs_info = root->fs_info; 8763 8764 if (BTRFS_FS_ERROR(fs_info)) 8765 return -EROFS; 8766 8767 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8768 } 8769 8770 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8771 bool in_reclaim_context) 8772 { 8773 struct writeback_control wbc = { 8774 .nr_to_write = nr, 8775 .sync_mode = WB_SYNC_NONE, 8776 .range_start = 0, 8777 .range_end = LLONG_MAX, 8778 }; 8779 struct btrfs_root *root; 8780 LIST_HEAD(splice); 8781 int ret; 8782 8783 if (BTRFS_FS_ERROR(fs_info)) 8784 return -EROFS; 8785 8786 mutex_lock(&fs_info->delalloc_root_mutex); 8787 spin_lock(&fs_info->delalloc_root_lock); 8788 list_splice_init(&fs_info->delalloc_roots, &splice); 8789 while (!list_empty(&splice)) { 8790 /* 8791 * Reset nr_to_write here so we know that we're doing a full 8792 * flush. 8793 */ 8794 if (nr == LONG_MAX) 8795 wbc.nr_to_write = LONG_MAX; 8796 8797 root = list_first_entry(&splice, struct btrfs_root, 8798 delalloc_root); 8799 root = btrfs_grab_root(root); 8800 BUG_ON(!root); 8801 list_move_tail(&root->delalloc_root, 8802 &fs_info->delalloc_roots); 8803 spin_unlock(&fs_info->delalloc_root_lock); 8804 8805 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8806 btrfs_put_root(root); 8807 if (ret < 0 || wbc.nr_to_write <= 0) 8808 goto out; 8809 spin_lock(&fs_info->delalloc_root_lock); 8810 } 8811 spin_unlock(&fs_info->delalloc_root_lock); 8812 8813 ret = 0; 8814 out: 8815 if (!list_empty(&splice)) { 8816 spin_lock(&fs_info->delalloc_root_lock); 8817 list_splice_tail(&splice, &fs_info->delalloc_roots); 8818 spin_unlock(&fs_info->delalloc_root_lock); 8819 } 8820 mutex_unlock(&fs_info->delalloc_root_mutex); 8821 return ret; 8822 } 8823 8824 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8825 struct dentry *dentry, const char *symname) 8826 { 8827 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8828 struct btrfs_trans_handle *trans; 8829 struct btrfs_root *root = BTRFS_I(dir)->root; 8830 struct btrfs_path *path; 8831 struct btrfs_key key; 8832 struct inode *inode; 8833 struct btrfs_new_inode_args new_inode_args = { 8834 .dir = dir, 8835 .dentry = dentry, 8836 }; 8837 unsigned int trans_num_items; 8838 int ret; 8839 int name_len; 8840 int datasize; 8841 unsigned long ptr; 8842 struct btrfs_file_extent_item *ei; 8843 struct extent_buffer *leaf; 8844 8845 name_len = strlen(symname); 8846 /* 8847 * Symlinks utilize uncompressed inline extent data, which should not 8848 * reach block size. 8849 */ 8850 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8851 name_len >= fs_info->sectorsize) 8852 return -ENAMETOOLONG; 8853 8854 inode = new_inode(dir->i_sb); 8855 if (!inode) 8856 return -ENOMEM; 8857 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8858 inode->i_op = &btrfs_symlink_inode_operations; 8859 inode_nohighmem(inode); 8860 inode->i_mapping->a_ops = &btrfs_aops; 8861 btrfs_i_size_write(BTRFS_I(inode), name_len); 8862 inode_set_bytes(inode, name_len); 8863 8864 new_inode_args.inode = inode; 8865 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8866 if (ret) 8867 goto out_inode; 8868 /* 1 additional item for the inline extent */ 8869 trans_num_items++; 8870 8871 trans = btrfs_start_transaction(root, trans_num_items); 8872 if (IS_ERR(trans)) { 8873 ret = PTR_ERR(trans); 8874 goto out_new_inode_args; 8875 } 8876 8877 ret = btrfs_create_new_inode(trans, &new_inode_args); 8878 if (ret) 8879 goto out; 8880 8881 path = btrfs_alloc_path(); 8882 if (!path) { 8883 ret = -ENOMEM; 8884 btrfs_abort_transaction(trans, ret); 8885 discard_new_inode(inode); 8886 inode = NULL; 8887 goto out; 8888 } 8889 key.objectid = btrfs_ino(BTRFS_I(inode)); 8890 key.type = BTRFS_EXTENT_DATA_KEY; 8891 key.offset = 0; 8892 datasize = btrfs_file_extent_calc_inline_size(name_len); 8893 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8894 if (ret) { 8895 btrfs_abort_transaction(trans, ret); 8896 btrfs_free_path(path); 8897 discard_new_inode(inode); 8898 inode = NULL; 8899 goto out; 8900 } 8901 leaf = path->nodes[0]; 8902 ei = btrfs_item_ptr(leaf, path->slots[0], 8903 struct btrfs_file_extent_item); 8904 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8905 btrfs_set_file_extent_type(leaf, ei, 8906 BTRFS_FILE_EXTENT_INLINE); 8907 btrfs_set_file_extent_encryption(leaf, ei, 0); 8908 btrfs_set_file_extent_compression(leaf, ei, 0); 8909 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8910 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8911 8912 ptr = btrfs_file_extent_inline_start(ei); 8913 write_extent_buffer(leaf, symname, ptr, name_len); 8914 btrfs_free_path(path); 8915 8916 d_instantiate_new(dentry, inode); 8917 ret = 0; 8918 out: 8919 btrfs_end_transaction(trans); 8920 btrfs_btree_balance_dirty(fs_info); 8921 out_new_inode_args: 8922 btrfs_new_inode_args_destroy(&new_inode_args); 8923 out_inode: 8924 if (ret) 8925 iput(inode); 8926 return ret; 8927 } 8928 8929 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8930 struct btrfs_trans_handle *trans_in, 8931 struct btrfs_inode *inode, 8932 struct btrfs_key *ins, 8933 u64 file_offset) 8934 { 8935 struct btrfs_file_extent_item stack_fi; 8936 struct btrfs_replace_extent_info extent_info; 8937 struct btrfs_trans_handle *trans = trans_in; 8938 struct btrfs_path *path; 8939 u64 start = ins->objectid; 8940 u64 len = ins->offset; 8941 u64 qgroup_released = 0; 8942 int ret; 8943 8944 memset(&stack_fi, 0, sizeof(stack_fi)); 8945 8946 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8947 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8948 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8949 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8950 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8951 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8952 /* Encryption and other encoding is reserved and all 0 */ 8953 8954 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8955 if (ret < 0) 8956 return ERR_PTR(ret); 8957 8958 if (trans) { 8959 ret = insert_reserved_file_extent(trans, inode, 8960 file_offset, &stack_fi, 8961 true, qgroup_released); 8962 if (ret) 8963 goto free_qgroup; 8964 return trans; 8965 } 8966 8967 extent_info.disk_offset = start; 8968 extent_info.disk_len = len; 8969 extent_info.data_offset = 0; 8970 extent_info.data_len = len; 8971 extent_info.file_offset = file_offset; 8972 extent_info.extent_buf = (char *)&stack_fi; 8973 extent_info.is_new_extent = true; 8974 extent_info.update_times = true; 8975 extent_info.qgroup_reserved = qgroup_released; 8976 extent_info.insertions = 0; 8977 8978 path = btrfs_alloc_path(); 8979 if (!path) { 8980 ret = -ENOMEM; 8981 goto free_qgroup; 8982 } 8983 8984 ret = btrfs_replace_file_extents(inode, path, file_offset, 8985 file_offset + len - 1, &extent_info, 8986 &trans); 8987 btrfs_free_path(path); 8988 if (ret) 8989 goto free_qgroup; 8990 return trans; 8991 8992 free_qgroup: 8993 /* 8994 * We have released qgroup data range at the beginning of the function, 8995 * and normally qgroup_released bytes will be freed when committing 8996 * transaction. 8997 * But if we error out early, we have to free what we have released 8998 * or we leak qgroup data reservation. 8999 */ 9000 btrfs_qgroup_free_refroot(inode->root->fs_info, 9001 btrfs_root_id(inode->root), qgroup_released, 9002 BTRFS_QGROUP_RSV_DATA); 9003 return ERR_PTR(ret); 9004 } 9005 9006 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9007 u64 start, u64 num_bytes, u64 min_size, 9008 loff_t actual_len, u64 *alloc_hint, 9009 struct btrfs_trans_handle *trans) 9010 { 9011 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9012 struct extent_map *em; 9013 struct btrfs_root *root = BTRFS_I(inode)->root; 9014 struct btrfs_key ins; 9015 u64 cur_offset = start; 9016 u64 clear_offset = start; 9017 u64 i_size; 9018 u64 cur_bytes; 9019 u64 last_alloc = (u64)-1; 9020 int ret = 0; 9021 bool own_trans = true; 9022 u64 end = start + num_bytes - 1; 9023 9024 if (trans) 9025 own_trans = false; 9026 while (num_bytes > 0) { 9027 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9028 cur_bytes = max(cur_bytes, min_size); 9029 /* 9030 * If we are severely fragmented we could end up with really 9031 * small allocations, so if the allocator is returning small 9032 * chunks lets make its job easier by only searching for those 9033 * sized chunks. 9034 */ 9035 cur_bytes = min(cur_bytes, last_alloc); 9036 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9037 min_size, 0, *alloc_hint, &ins, 1, 0); 9038 if (ret) 9039 break; 9040 9041 /* 9042 * We've reserved this space, and thus converted it from 9043 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9044 * from here on out we will only need to clear our reservation 9045 * for the remaining unreserved area, so advance our 9046 * clear_offset by our extent size. 9047 */ 9048 clear_offset += ins.offset; 9049 9050 last_alloc = ins.offset; 9051 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9052 &ins, cur_offset); 9053 /* 9054 * Now that we inserted the prealloc extent we can finally 9055 * decrement the number of reservations in the block group. 9056 * If we did it before, we could race with relocation and have 9057 * relocation miss the reserved extent, making it fail later. 9058 */ 9059 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9060 if (IS_ERR(trans)) { 9061 ret = PTR_ERR(trans); 9062 btrfs_free_reserved_extent(fs_info, ins.objectid, 9063 ins.offset, false); 9064 break; 9065 } 9066 9067 em = btrfs_alloc_extent_map(); 9068 if (!em) { 9069 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9070 cur_offset + ins.offset - 1, false); 9071 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9072 goto next; 9073 } 9074 9075 em->start = cur_offset; 9076 em->len = ins.offset; 9077 em->disk_bytenr = ins.objectid; 9078 em->offset = 0; 9079 em->disk_num_bytes = ins.offset; 9080 em->ram_bytes = ins.offset; 9081 em->flags |= EXTENT_FLAG_PREALLOC; 9082 em->generation = trans->transid; 9083 9084 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9085 btrfs_free_extent_map(em); 9086 next: 9087 num_bytes -= ins.offset; 9088 cur_offset += ins.offset; 9089 *alloc_hint = ins.objectid + ins.offset; 9090 9091 inode_inc_iversion(inode); 9092 inode_set_ctime_current(inode); 9093 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9094 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9095 (actual_len > inode->i_size) && 9096 (cur_offset > inode->i_size)) { 9097 if (cur_offset > actual_len) 9098 i_size = actual_len; 9099 else 9100 i_size = cur_offset; 9101 i_size_write(inode, i_size); 9102 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9103 } 9104 9105 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9106 9107 if (ret) { 9108 btrfs_abort_transaction(trans, ret); 9109 if (own_trans) 9110 btrfs_end_transaction(trans); 9111 break; 9112 } 9113 9114 if (own_trans) { 9115 btrfs_end_transaction(trans); 9116 trans = NULL; 9117 } 9118 } 9119 if (clear_offset < end) 9120 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9121 end - clear_offset + 1); 9122 return ret; 9123 } 9124 9125 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9126 u64 start, u64 num_bytes, u64 min_size, 9127 loff_t actual_len, u64 *alloc_hint) 9128 { 9129 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9130 min_size, actual_len, alloc_hint, 9131 NULL); 9132 } 9133 9134 int btrfs_prealloc_file_range_trans(struct inode *inode, 9135 struct btrfs_trans_handle *trans, int mode, 9136 u64 start, u64 num_bytes, u64 min_size, 9137 loff_t actual_len, u64 *alloc_hint) 9138 { 9139 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9140 min_size, actual_len, alloc_hint, trans); 9141 } 9142 9143 static int btrfs_permission(struct mnt_idmap *idmap, 9144 struct inode *inode, int mask) 9145 { 9146 struct btrfs_root *root = BTRFS_I(inode)->root; 9147 umode_t mode = inode->i_mode; 9148 9149 if (mask & MAY_WRITE && 9150 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9151 if (btrfs_root_readonly(root)) 9152 return -EROFS; 9153 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9154 return -EACCES; 9155 } 9156 return generic_permission(idmap, inode, mask); 9157 } 9158 9159 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9160 struct file *file, umode_t mode) 9161 { 9162 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9163 struct btrfs_trans_handle *trans; 9164 struct btrfs_root *root = BTRFS_I(dir)->root; 9165 struct inode *inode; 9166 struct btrfs_new_inode_args new_inode_args = { 9167 .dir = dir, 9168 .dentry = file->f_path.dentry, 9169 .orphan = true, 9170 }; 9171 unsigned int trans_num_items; 9172 int ret; 9173 9174 inode = new_inode(dir->i_sb); 9175 if (!inode) 9176 return -ENOMEM; 9177 inode_init_owner(idmap, inode, dir, mode); 9178 inode->i_fop = &btrfs_file_operations; 9179 inode->i_op = &btrfs_file_inode_operations; 9180 inode->i_mapping->a_ops = &btrfs_aops; 9181 9182 new_inode_args.inode = inode; 9183 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9184 if (ret) 9185 goto out_inode; 9186 9187 trans = btrfs_start_transaction(root, trans_num_items); 9188 if (IS_ERR(trans)) { 9189 ret = PTR_ERR(trans); 9190 goto out_new_inode_args; 9191 } 9192 9193 ret = btrfs_create_new_inode(trans, &new_inode_args); 9194 9195 /* 9196 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9197 * set it to 1 because d_tmpfile() will issue a warning if the count is 9198 * 0, through: 9199 * 9200 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9201 */ 9202 set_nlink(inode, 1); 9203 9204 if (!ret) { 9205 d_tmpfile(file, inode); 9206 unlock_new_inode(inode); 9207 mark_inode_dirty(inode); 9208 } 9209 9210 btrfs_end_transaction(trans); 9211 btrfs_btree_balance_dirty(fs_info); 9212 out_new_inode_args: 9213 btrfs_new_inode_args_destroy(&new_inode_args); 9214 out_inode: 9215 if (ret) 9216 iput(inode); 9217 return finish_open_simple(file, ret); 9218 } 9219 9220 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9221 int compress_type) 9222 { 9223 switch (compress_type) { 9224 case BTRFS_COMPRESS_NONE: 9225 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9226 case BTRFS_COMPRESS_ZLIB: 9227 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9228 case BTRFS_COMPRESS_LZO: 9229 /* 9230 * The LZO format depends on the sector size. 64K is the maximum 9231 * sector size that we support. 9232 */ 9233 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9234 return -EINVAL; 9235 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9236 (fs_info->sectorsize_bits - 12); 9237 case BTRFS_COMPRESS_ZSTD: 9238 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9239 default: 9240 return -EUCLEAN; 9241 } 9242 } 9243 9244 static ssize_t btrfs_encoded_read_inline( 9245 struct kiocb *iocb, 9246 struct iov_iter *iter, u64 start, 9247 u64 lockend, 9248 struct extent_state **cached_state, 9249 u64 extent_start, size_t count, 9250 struct btrfs_ioctl_encoded_io_args *encoded, 9251 bool *unlocked) 9252 { 9253 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9254 struct btrfs_root *root = inode->root; 9255 struct btrfs_fs_info *fs_info = root->fs_info; 9256 struct extent_io_tree *io_tree = &inode->io_tree; 9257 BTRFS_PATH_AUTO_FREE(path); 9258 struct extent_buffer *leaf; 9259 struct btrfs_file_extent_item *item; 9260 u64 ram_bytes; 9261 unsigned long ptr; 9262 void *tmp; 9263 ssize_t ret; 9264 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9265 9266 path = btrfs_alloc_path(); 9267 if (!path) 9268 return -ENOMEM; 9269 9270 path->nowait = nowait; 9271 9272 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9273 extent_start, 0); 9274 if (ret) { 9275 if (ret > 0) { 9276 /* The extent item disappeared? */ 9277 return -EIO; 9278 } 9279 return ret; 9280 } 9281 leaf = path->nodes[0]; 9282 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9283 9284 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9285 ptr = btrfs_file_extent_inline_start(item); 9286 9287 encoded->len = min_t(u64, extent_start + ram_bytes, 9288 inode->vfs_inode.i_size) - iocb->ki_pos; 9289 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9290 btrfs_file_extent_compression(leaf, item)); 9291 if (ret < 0) 9292 return ret; 9293 encoded->compression = ret; 9294 if (encoded->compression) { 9295 size_t inline_size; 9296 9297 inline_size = btrfs_file_extent_inline_item_len(leaf, 9298 path->slots[0]); 9299 if (inline_size > count) 9300 return -ENOBUFS; 9301 9302 count = inline_size; 9303 encoded->unencoded_len = ram_bytes; 9304 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9305 } else { 9306 count = min_t(u64, count, encoded->len); 9307 encoded->len = count; 9308 encoded->unencoded_len = count; 9309 ptr += iocb->ki_pos - extent_start; 9310 } 9311 9312 tmp = kmalloc(count, GFP_NOFS); 9313 if (!tmp) 9314 return -ENOMEM; 9315 9316 read_extent_buffer(leaf, tmp, ptr, count); 9317 btrfs_release_path(path); 9318 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9319 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9320 *unlocked = true; 9321 9322 ret = copy_to_iter(tmp, count, iter); 9323 if (ret != count) 9324 ret = -EFAULT; 9325 kfree(tmp); 9326 9327 return ret; 9328 } 9329 9330 struct btrfs_encoded_read_private { 9331 struct completion *sync_reads; 9332 void *uring_ctx; 9333 refcount_t pending_refs; 9334 blk_status_t status; 9335 }; 9336 9337 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9338 { 9339 struct btrfs_encoded_read_private *priv = bbio->private; 9340 9341 if (bbio->bio.bi_status) { 9342 /* 9343 * The memory barrier implied by the refcount_dec_and_test() here 9344 * pairs with the memory barrier implied by the refcount_dec_and_test() 9345 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9346 * this write is observed before the load of status in 9347 * btrfs_encoded_read_regular_fill_pages(). 9348 */ 9349 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9350 } 9351 if (refcount_dec_and_test(&priv->pending_refs)) { 9352 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9353 9354 if (priv->uring_ctx) { 9355 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9356 kfree(priv); 9357 } else { 9358 complete(priv->sync_reads); 9359 } 9360 } 9361 bio_put(&bbio->bio); 9362 } 9363 9364 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9365 u64 disk_bytenr, u64 disk_io_size, 9366 struct page **pages, void *uring_ctx) 9367 { 9368 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9369 struct btrfs_encoded_read_private *priv, sync_priv; 9370 struct completion sync_reads; 9371 unsigned long i = 0; 9372 struct btrfs_bio *bbio; 9373 int ret; 9374 9375 /* 9376 * Fast path for synchronous reads which completes in this call, io_uring 9377 * needs longer time span. 9378 */ 9379 if (uring_ctx) { 9380 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9381 if (!priv) 9382 return -ENOMEM; 9383 } else { 9384 priv = &sync_priv; 9385 init_completion(&sync_reads); 9386 priv->sync_reads = &sync_reads; 9387 } 9388 9389 refcount_set(&priv->pending_refs, 1); 9390 priv->status = 0; 9391 priv->uring_ctx = uring_ctx; 9392 9393 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9394 btrfs_encoded_read_endio, priv); 9395 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9396 bbio->inode = inode; 9397 9398 do { 9399 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9400 9401 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9402 refcount_inc(&priv->pending_refs); 9403 btrfs_submit_bbio(bbio, 0); 9404 9405 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9406 btrfs_encoded_read_endio, priv); 9407 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9408 bbio->inode = inode; 9409 continue; 9410 } 9411 9412 i++; 9413 disk_bytenr += bytes; 9414 disk_io_size -= bytes; 9415 } while (disk_io_size); 9416 9417 refcount_inc(&priv->pending_refs); 9418 btrfs_submit_bbio(bbio, 0); 9419 9420 if (uring_ctx) { 9421 if (refcount_dec_and_test(&priv->pending_refs)) { 9422 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9423 btrfs_uring_read_extent_endio(uring_ctx, ret); 9424 kfree(priv); 9425 return ret; 9426 } 9427 9428 return -EIOCBQUEUED; 9429 } else { 9430 if (!refcount_dec_and_test(&priv->pending_refs)) 9431 wait_for_completion_io(&sync_reads); 9432 /* See btrfs_encoded_read_endio() for ordering. */ 9433 return blk_status_to_errno(READ_ONCE(priv->status)); 9434 } 9435 } 9436 9437 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9438 u64 start, u64 lockend, 9439 struct extent_state **cached_state, 9440 u64 disk_bytenr, u64 disk_io_size, 9441 size_t count, bool compressed, bool *unlocked) 9442 { 9443 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9444 struct extent_io_tree *io_tree = &inode->io_tree; 9445 struct page **pages; 9446 unsigned long nr_pages, i; 9447 u64 cur; 9448 size_t page_offset; 9449 ssize_t ret; 9450 9451 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9452 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9453 if (!pages) 9454 return -ENOMEM; 9455 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9456 if (ret) { 9457 ret = -ENOMEM; 9458 goto out; 9459 } 9460 9461 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9462 disk_io_size, pages, NULL); 9463 if (ret) 9464 goto out; 9465 9466 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9467 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9468 *unlocked = true; 9469 9470 if (compressed) { 9471 i = 0; 9472 page_offset = 0; 9473 } else { 9474 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9475 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9476 } 9477 cur = 0; 9478 while (cur < count) { 9479 size_t bytes = min_t(size_t, count - cur, 9480 PAGE_SIZE - page_offset); 9481 9482 if (copy_page_to_iter(pages[i], page_offset, bytes, 9483 iter) != bytes) { 9484 ret = -EFAULT; 9485 goto out; 9486 } 9487 i++; 9488 cur += bytes; 9489 page_offset = 0; 9490 } 9491 ret = count; 9492 out: 9493 for (i = 0; i < nr_pages; i++) { 9494 if (pages[i]) 9495 __free_page(pages[i]); 9496 } 9497 kfree(pages); 9498 return ret; 9499 } 9500 9501 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9502 struct btrfs_ioctl_encoded_io_args *encoded, 9503 struct extent_state **cached_state, 9504 u64 *disk_bytenr, u64 *disk_io_size) 9505 { 9506 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9507 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9508 struct extent_io_tree *io_tree = &inode->io_tree; 9509 ssize_t ret; 9510 size_t count = iov_iter_count(iter); 9511 u64 start, lockend; 9512 struct extent_map *em; 9513 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9514 bool unlocked = false; 9515 9516 file_accessed(iocb->ki_filp); 9517 9518 ret = btrfs_inode_lock(inode, 9519 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9520 if (ret) 9521 return ret; 9522 9523 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9524 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9525 return 0; 9526 } 9527 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9528 /* 9529 * We don't know how long the extent containing iocb->ki_pos is, but if 9530 * it's compressed we know that it won't be longer than this. 9531 */ 9532 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9533 9534 if (nowait) { 9535 struct btrfs_ordered_extent *ordered; 9536 9537 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9538 start, lockend)) { 9539 ret = -EAGAIN; 9540 goto out_unlock_inode; 9541 } 9542 9543 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9544 ret = -EAGAIN; 9545 goto out_unlock_inode; 9546 } 9547 9548 ordered = btrfs_lookup_ordered_range(inode, start, 9549 lockend - start + 1); 9550 if (ordered) { 9551 btrfs_put_ordered_extent(ordered); 9552 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9553 ret = -EAGAIN; 9554 goto out_unlock_inode; 9555 } 9556 } else { 9557 for (;;) { 9558 struct btrfs_ordered_extent *ordered; 9559 9560 ret = btrfs_wait_ordered_range(inode, start, 9561 lockend - start + 1); 9562 if (ret) 9563 goto out_unlock_inode; 9564 9565 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9566 ordered = btrfs_lookup_ordered_range(inode, start, 9567 lockend - start + 1); 9568 if (!ordered) 9569 break; 9570 btrfs_put_ordered_extent(ordered); 9571 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9572 cond_resched(); 9573 } 9574 } 9575 9576 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9577 if (IS_ERR(em)) { 9578 ret = PTR_ERR(em); 9579 goto out_unlock_extent; 9580 } 9581 9582 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9583 u64 extent_start = em->start; 9584 9585 /* 9586 * For inline extents we get everything we need out of the 9587 * extent item. 9588 */ 9589 btrfs_free_extent_map(em); 9590 em = NULL; 9591 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9592 cached_state, extent_start, 9593 count, encoded, &unlocked); 9594 goto out_unlock_extent; 9595 } 9596 9597 /* 9598 * We only want to return up to EOF even if the extent extends beyond 9599 * that. 9600 */ 9601 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9602 inode->vfs_inode.i_size) - iocb->ki_pos; 9603 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9604 (em->flags & EXTENT_FLAG_PREALLOC)) { 9605 *disk_bytenr = EXTENT_MAP_HOLE; 9606 count = min_t(u64, count, encoded->len); 9607 encoded->len = count; 9608 encoded->unencoded_len = count; 9609 } else if (btrfs_extent_map_is_compressed(em)) { 9610 *disk_bytenr = em->disk_bytenr; 9611 /* 9612 * Bail if the buffer isn't large enough to return the whole 9613 * compressed extent. 9614 */ 9615 if (em->disk_num_bytes > count) { 9616 ret = -ENOBUFS; 9617 goto out_em; 9618 } 9619 *disk_io_size = em->disk_num_bytes; 9620 count = em->disk_num_bytes; 9621 encoded->unencoded_len = em->ram_bytes; 9622 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9623 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9624 btrfs_extent_map_compression(em)); 9625 if (ret < 0) 9626 goto out_em; 9627 encoded->compression = ret; 9628 } else { 9629 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9630 if (encoded->len > count) 9631 encoded->len = count; 9632 /* 9633 * Don't read beyond what we locked. This also limits the page 9634 * allocations that we'll do. 9635 */ 9636 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9637 count = start + *disk_io_size - iocb->ki_pos; 9638 encoded->len = count; 9639 encoded->unencoded_len = count; 9640 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9641 } 9642 btrfs_free_extent_map(em); 9643 em = NULL; 9644 9645 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9646 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9647 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9648 unlocked = true; 9649 ret = iov_iter_zero(count, iter); 9650 if (ret != count) 9651 ret = -EFAULT; 9652 } else { 9653 ret = -EIOCBQUEUED; 9654 goto out_unlock_extent; 9655 } 9656 9657 out_em: 9658 btrfs_free_extent_map(em); 9659 out_unlock_extent: 9660 /* Leave inode and extent locked if we need to do a read. */ 9661 if (!unlocked && ret != -EIOCBQUEUED) 9662 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9663 out_unlock_inode: 9664 if (!unlocked && ret != -EIOCBQUEUED) 9665 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9666 return ret; 9667 } 9668 9669 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9670 const struct btrfs_ioctl_encoded_io_args *encoded) 9671 { 9672 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9673 struct btrfs_root *root = inode->root; 9674 struct btrfs_fs_info *fs_info = root->fs_info; 9675 struct extent_io_tree *io_tree = &inode->io_tree; 9676 struct extent_changeset *data_reserved = NULL; 9677 struct extent_state *cached_state = NULL; 9678 struct btrfs_ordered_extent *ordered; 9679 struct btrfs_file_extent file_extent; 9680 int compression; 9681 size_t orig_count; 9682 u64 start, end; 9683 u64 num_bytes, ram_bytes, disk_num_bytes; 9684 unsigned long nr_folios, i; 9685 struct folio **folios; 9686 struct btrfs_key ins; 9687 bool extent_reserved = false; 9688 struct extent_map *em; 9689 ssize_t ret; 9690 9691 switch (encoded->compression) { 9692 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9693 compression = BTRFS_COMPRESS_ZLIB; 9694 break; 9695 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9696 compression = BTRFS_COMPRESS_ZSTD; 9697 break; 9698 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9699 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9700 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9701 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9702 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9703 /* The sector size must match for LZO. */ 9704 if (encoded->compression - 9705 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9706 fs_info->sectorsize_bits) 9707 return -EINVAL; 9708 compression = BTRFS_COMPRESS_LZO; 9709 break; 9710 default: 9711 return -EINVAL; 9712 } 9713 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9714 return -EINVAL; 9715 9716 /* 9717 * Compressed extents should always have checksums, so error out if we 9718 * have a NOCOW file or inode was created while mounted with NODATASUM. 9719 */ 9720 if (inode->flags & BTRFS_INODE_NODATASUM) 9721 return -EINVAL; 9722 9723 orig_count = iov_iter_count(from); 9724 9725 /* The extent size must be sane. */ 9726 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9727 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9728 return -EINVAL; 9729 9730 /* 9731 * The compressed data must be smaller than the decompressed data. 9732 * 9733 * It's of course possible for data to compress to larger or the same 9734 * size, but the buffered I/O path falls back to no compression for such 9735 * data, and we don't want to break any assumptions by creating these 9736 * extents. 9737 * 9738 * Note that this is less strict than the current check we have that the 9739 * compressed data must be at least one sector smaller than the 9740 * decompressed data. We only want to enforce the weaker requirement 9741 * from old kernels that it is at least one byte smaller. 9742 */ 9743 if (orig_count >= encoded->unencoded_len) 9744 return -EINVAL; 9745 9746 /* The extent must start on a sector boundary. */ 9747 start = iocb->ki_pos; 9748 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9749 return -EINVAL; 9750 9751 /* 9752 * The extent must end on a sector boundary. However, we allow a write 9753 * which ends at or extends i_size to have an unaligned length; we round 9754 * up the extent size and set i_size to the unaligned end. 9755 */ 9756 if (start + encoded->len < inode->vfs_inode.i_size && 9757 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9758 return -EINVAL; 9759 9760 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9761 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9762 return -EINVAL; 9763 9764 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9765 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9766 end = start + num_bytes - 1; 9767 9768 /* 9769 * If the extent cannot be inline, the compressed data on disk must be 9770 * sector-aligned. For convenience, we extend it with zeroes if it 9771 * isn't. 9772 */ 9773 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9774 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9775 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9776 if (!folios) 9777 return -ENOMEM; 9778 for (i = 0; i < nr_folios; i++) { 9779 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9780 char *kaddr; 9781 9782 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9783 if (!folios[i]) { 9784 ret = -ENOMEM; 9785 goto out_folios; 9786 } 9787 kaddr = kmap_local_folio(folios[i], 0); 9788 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9789 kunmap_local(kaddr); 9790 ret = -EFAULT; 9791 goto out_folios; 9792 } 9793 if (bytes < PAGE_SIZE) 9794 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9795 kunmap_local(kaddr); 9796 } 9797 9798 for (;;) { 9799 struct btrfs_ordered_extent *ordered; 9800 9801 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9802 if (ret) 9803 goto out_folios; 9804 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9805 start >> PAGE_SHIFT, 9806 end >> PAGE_SHIFT); 9807 if (ret) 9808 goto out_folios; 9809 btrfs_lock_extent(io_tree, start, end, &cached_state); 9810 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9811 if (!ordered && 9812 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9813 break; 9814 if (ordered) 9815 btrfs_put_ordered_extent(ordered); 9816 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9817 cond_resched(); 9818 } 9819 9820 /* 9821 * We don't use the higher-level delalloc space functions because our 9822 * num_bytes and disk_num_bytes are different. 9823 */ 9824 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9825 if (ret) 9826 goto out_unlock; 9827 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9828 if (ret) 9829 goto out_free_data_space; 9830 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9831 false); 9832 if (ret) 9833 goto out_qgroup_free_data; 9834 9835 /* Try an inline extent first. */ 9836 if (encoded->unencoded_len == encoded->len && 9837 encoded->unencoded_offset == 0 && 9838 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9839 ret = __cow_file_range_inline(inode, encoded->len, 9840 orig_count, compression, folios[0], 9841 true); 9842 if (ret <= 0) { 9843 if (ret == 0) 9844 ret = orig_count; 9845 goto out_delalloc_release; 9846 } 9847 } 9848 9849 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9850 disk_num_bytes, 0, 0, &ins, 1, 1); 9851 if (ret) 9852 goto out_delalloc_release; 9853 extent_reserved = true; 9854 9855 file_extent.disk_bytenr = ins.objectid; 9856 file_extent.disk_num_bytes = ins.offset; 9857 file_extent.num_bytes = num_bytes; 9858 file_extent.ram_bytes = ram_bytes; 9859 file_extent.offset = encoded->unencoded_offset; 9860 file_extent.compression = compression; 9861 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9862 if (IS_ERR(em)) { 9863 ret = PTR_ERR(em); 9864 goto out_free_reserved; 9865 } 9866 btrfs_free_extent_map(em); 9867 9868 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9869 (1U << BTRFS_ORDERED_ENCODED) | 9870 (1U << BTRFS_ORDERED_COMPRESSED)); 9871 if (IS_ERR(ordered)) { 9872 btrfs_drop_extent_map_range(inode, start, end, false); 9873 ret = PTR_ERR(ordered); 9874 goto out_free_reserved; 9875 } 9876 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9877 9878 if (start + encoded->len > inode->vfs_inode.i_size) 9879 i_size_write(&inode->vfs_inode, start + encoded->len); 9880 9881 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9882 9883 btrfs_delalloc_release_extents(inode, num_bytes); 9884 9885 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9886 ret = orig_count; 9887 goto out; 9888 9889 out_free_reserved: 9890 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9891 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9892 out_delalloc_release: 9893 btrfs_delalloc_release_extents(inode, num_bytes); 9894 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9895 out_qgroup_free_data: 9896 if (ret < 0) 9897 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9898 out_free_data_space: 9899 /* 9900 * If btrfs_reserve_extent() succeeded, then we already decremented 9901 * bytes_may_use. 9902 */ 9903 if (!extent_reserved) 9904 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9905 out_unlock: 9906 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9907 out_folios: 9908 for (i = 0; i < nr_folios; i++) { 9909 if (folios[i]) 9910 folio_put(folios[i]); 9911 } 9912 kvfree(folios); 9913 out: 9914 if (ret >= 0) 9915 iocb->ki_pos += encoded->len; 9916 return ret; 9917 } 9918 9919 #ifdef CONFIG_SWAP 9920 /* 9921 * Add an entry indicating a block group or device which is pinned by a 9922 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9923 * negative errno on failure. 9924 */ 9925 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9926 bool is_block_group) 9927 { 9928 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9929 struct btrfs_swapfile_pin *sp, *entry; 9930 struct rb_node **p; 9931 struct rb_node *parent = NULL; 9932 9933 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9934 if (!sp) 9935 return -ENOMEM; 9936 sp->ptr = ptr; 9937 sp->inode = inode; 9938 sp->is_block_group = is_block_group; 9939 sp->bg_extent_count = 1; 9940 9941 spin_lock(&fs_info->swapfile_pins_lock); 9942 p = &fs_info->swapfile_pins.rb_node; 9943 while (*p) { 9944 parent = *p; 9945 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9946 if (sp->ptr < entry->ptr || 9947 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9948 p = &(*p)->rb_left; 9949 } else if (sp->ptr > entry->ptr || 9950 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9951 p = &(*p)->rb_right; 9952 } else { 9953 if (is_block_group) 9954 entry->bg_extent_count++; 9955 spin_unlock(&fs_info->swapfile_pins_lock); 9956 kfree(sp); 9957 return 1; 9958 } 9959 } 9960 rb_link_node(&sp->node, parent, p); 9961 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9962 spin_unlock(&fs_info->swapfile_pins_lock); 9963 return 0; 9964 } 9965 9966 /* Free all of the entries pinned by this swapfile. */ 9967 static void btrfs_free_swapfile_pins(struct inode *inode) 9968 { 9969 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9970 struct btrfs_swapfile_pin *sp; 9971 struct rb_node *node, *next; 9972 9973 spin_lock(&fs_info->swapfile_pins_lock); 9974 node = rb_first(&fs_info->swapfile_pins); 9975 while (node) { 9976 next = rb_next(node); 9977 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9978 if (sp->inode == inode) { 9979 rb_erase(&sp->node, &fs_info->swapfile_pins); 9980 if (sp->is_block_group) { 9981 btrfs_dec_block_group_swap_extents(sp->ptr, 9982 sp->bg_extent_count); 9983 btrfs_put_block_group(sp->ptr); 9984 } 9985 kfree(sp); 9986 } 9987 node = next; 9988 } 9989 spin_unlock(&fs_info->swapfile_pins_lock); 9990 } 9991 9992 struct btrfs_swap_info { 9993 u64 start; 9994 u64 block_start; 9995 u64 block_len; 9996 u64 lowest_ppage; 9997 u64 highest_ppage; 9998 unsigned long nr_pages; 9999 int nr_extents; 10000 }; 10001 10002 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10003 struct btrfs_swap_info *bsi) 10004 { 10005 unsigned long nr_pages; 10006 unsigned long max_pages; 10007 u64 first_ppage, first_ppage_reported, next_ppage; 10008 int ret; 10009 10010 /* 10011 * Our swapfile may have had its size extended after the swap header was 10012 * written. In that case activating the swapfile should not go beyond 10013 * the max size set in the swap header. 10014 */ 10015 if (bsi->nr_pages >= sis->max) 10016 return 0; 10017 10018 max_pages = sis->max - bsi->nr_pages; 10019 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10020 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10021 10022 if (first_ppage >= next_ppage) 10023 return 0; 10024 nr_pages = next_ppage - first_ppage; 10025 nr_pages = min(nr_pages, max_pages); 10026 10027 first_ppage_reported = first_ppage; 10028 if (bsi->start == 0) 10029 first_ppage_reported++; 10030 if (bsi->lowest_ppage > first_ppage_reported) 10031 bsi->lowest_ppage = first_ppage_reported; 10032 if (bsi->highest_ppage < (next_ppage - 1)) 10033 bsi->highest_ppage = next_ppage - 1; 10034 10035 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10036 if (ret < 0) 10037 return ret; 10038 bsi->nr_extents += ret; 10039 bsi->nr_pages += nr_pages; 10040 return 0; 10041 } 10042 10043 static void btrfs_swap_deactivate(struct file *file) 10044 { 10045 struct inode *inode = file_inode(file); 10046 10047 btrfs_free_swapfile_pins(inode); 10048 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10049 } 10050 10051 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10052 sector_t *span) 10053 { 10054 struct inode *inode = file_inode(file); 10055 struct btrfs_root *root = BTRFS_I(inode)->root; 10056 struct btrfs_fs_info *fs_info = root->fs_info; 10057 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10058 struct extent_state *cached_state = NULL; 10059 struct btrfs_chunk_map *map = NULL; 10060 struct btrfs_device *device = NULL; 10061 struct btrfs_swap_info bsi = { 10062 .lowest_ppage = (sector_t)-1ULL, 10063 }; 10064 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10065 struct btrfs_path *path = NULL; 10066 int ret = 0; 10067 u64 isize; 10068 u64 prev_extent_end = 0; 10069 10070 /* 10071 * Acquire the inode's mmap lock to prevent races with memory mapped 10072 * writes, as they could happen after we flush delalloc below and before 10073 * we lock the extent range further below. The inode was already locked 10074 * up in the call chain. 10075 */ 10076 btrfs_assert_inode_locked(BTRFS_I(inode)); 10077 down_write(&BTRFS_I(inode)->i_mmap_lock); 10078 10079 /* 10080 * If the swap file was just created, make sure delalloc is done. If the 10081 * file changes again after this, the user is doing something stupid and 10082 * we don't really care. 10083 */ 10084 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10085 if (ret) 10086 goto out_unlock_mmap; 10087 10088 /* 10089 * The inode is locked, so these flags won't change after we check them. 10090 */ 10091 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10092 btrfs_warn(fs_info, "swapfile must not be compressed"); 10093 ret = -EINVAL; 10094 goto out_unlock_mmap; 10095 } 10096 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10097 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10098 ret = -EINVAL; 10099 goto out_unlock_mmap; 10100 } 10101 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10102 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10103 ret = -EINVAL; 10104 goto out_unlock_mmap; 10105 } 10106 10107 path = btrfs_alloc_path(); 10108 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10109 if (!path || !backref_ctx) { 10110 ret = -ENOMEM; 10111 goto out_unlock_mmap; 10112 } 10113 10114 /* 10115 * Balance or device remove/replace/resize can move stuff around from 10116 * under us. The exclop protection makes sure they aren't running/won't 10117 * run concurrently while we are mapping the swap extents, and 10118 * fs_info->swapfile_pins prevents them from running while the swap 10119 * file is active and moving the extents. Note that this also prevents 10120 * a concurrent device add which isn't actually necessary, but it's not 10121 * really worth the trouble to allow it. 10122 */ 10123 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10124 btrfs_warn(fs_info, 10125 "cannot activate swapfile while exclusive operation is running"); 10126 ret = -EBUSY; 10127 goto out_unlock_mmap; 10128 } 10129 10130 /* 10131 * Prevent snapshot creation while we are activating the swap file. 10132 * We do not want to race with snapshot creation. If snapshot creation 10133 * already started before we bumped nr_swapfiles from 0 to 1 and 10134 * completes before the first write into the swap file after it is 10135 * activated, than that write would fallback to COW. 10136 */ 10137 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10138 btrfs_exclop_finish(fs_info); 10139 btrfs_warn(fs_info, 10140 "cannot activate swapfile because snapshot creation is in progress"); 10141 ret = -EINVAL; 10142 goto out_unlock_mmap; 10143 } 10144 /* 10145 * Snapshots can create extents which require COW even if NODATACOW is 10146 * set. We use this counter to prevent snapshots. We must increment it 10147 * before walking the extents because we don't want a concurrent 10148 * snapshot to run after we've already checked the extents. 10149 * 10150 * It is possible that subvolume is marked for deletion but still not 10151 * removed yet. To prevent this race, we check the root status before 10152 * activating the swapfile. 10153 */ 10154 spin_lock(&root->root_item_lock); 10155 if (btrfs_root_dead(root)) { 10156 spin_unlock(&root->root_item_lock); 10157 10158 btrfs_drew_write_unlock(&root->snapshot_lock); 10159 btrfs_exclop_finish(fs_info); 10160 btrfs_warn(fs_info, 10161 "cannot activate swapfile because subvolume %llu is being deleted", 10162 btrfs_root_id(root)); 10163 ret = -EPERM; 10164 goto out_unlock_mmap; 10165 } 10166 atomic_inc(&root->nr_swapfiles); 10167 spin_unlock(&root->root_item_lock); 10168 10169 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10170 10171 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10172 while (prev_extent_end < isize) { 10173 struct btrfs_key key; 10174 struct extent_buffer *leaf; 10175 struct btrfs_file_extent_item *ei; 10176 struct btrfs_block_group *bg; 10177 u64 logical_block_start; 10178 u64 physical_block_start; 10179 u64 extent_gen; 10180 u64 disk_bytenr; 10181 u64 len; 10182 10183 key.objectid = btrfs_ino(BTRFS_I(inode)); 10184 key.type = BTRFS_EXTENT_DATA_KEY; 10185 key.offset = prev_extent_end; 10186 10187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10188 if (ret < 0) 10189 goto out; 10190 10191 /* 10192 * If key not found it means we have an implicit hole (NO_HOLES 10193 * is enabled). 10194 */ 10195 if (ret > 0) { 10196 btrfs_warn(fs_info, "swapfile must not have holes"); 10197 ret = -EINVAL; 10198 goto out; 10199 } 10200 10201 leaf = path->nodes[0]; 10202 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10203 10204 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10205 /* 10206 * It's unlikely we'll ever actually find ourselves 10207 * here, as a file small enough to fit inline won't be 10208 * big enough to store more than the swap header, but in 10209 * case something changes in the future, let's catch it 10210 * here rather than later. 10211 */ 10212 btrfs_warn(fs_info, "swapfile must not be inline"); 10213 ret = -EINVAL; 10214 goto out; 10215 } 10216 10217 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10218 btrfs_warn(fs_info, "swapfile must not be compressed"); 10219 ret = -EINVAL; 10220 goto out; 10221 } 10222 10223 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10224 if (disk_bytenr == 0) { 10225 btrfs_warn(fs_info, "swapfile must not have holes"); 10226 ret = -EINVAL; 10227 goto out; 10228 } 10229 10230 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10231 extent_gen = btrfs_file_extent_generation(leaf, ei); 10232 prev_extent_end = btrfs_file_extent_end(path); 10233 10234 if (prev_extent_end > isize) 10235 len = isize - key.offset; 10236 else 10237 len = btrfs_file_extent_num_bytes(leaf, ei); 10238 10239 backref_ctx->curr_leaf_bytenr = leaf->start; 10240 10241 /* 10242 * Don't need the path anymore, release to avoid deadlocks when 10243 * calling btrfs_is_data_extent_shared() because when joining a 10244 * transaction it can block waiting for the current one's commit 10245 * which in turn may be trying to lock the same leaf to flush 10246 * delayed items for example. 10247 */ 10248 btrfs_release_path(path); 10249 10250 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10251 extent_gen, backref_ctx); 10252 if (ret < 0) { 10253 goto out; 10254 } else if (ret > 0) { 10255 btrfs_warn(fs_info, 10256 "swapfile must not be copy-on-write"); 10257 ret = -EINVAL; 10258 goto out; 10259 } 10260 10261 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10262 if (IS_ERR(map)) { 10263 ret = PTR_ERR(map); 10264 goto out; 10265 } 10266 10267 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10268 btrfs_warn(fs_info, 10269 "swapfile must have single data profile"); 10270 ret = -EINVAL; 10271 goto out; 10272 } 10273 10274 if (device == NULL) { 10275 device = map->stripes[0].dev; 10276 ret = btrfs_add_swapfile_pin(inode, device, false); 10277 if (ret == 1) 10278 ret = 0; 10279 else if (ret) 10280 goto out; 10281 } else if (device != map->stripes[0].dev) { 10282 btrfs_warn(fs_info, "swapfile must be on one device"); 10283 ret = -EINVAL; 10284 goto out; 10285 } 10286 10287 physical_block_start = (map->stripes[0].physical + 10288 (logical_block_start - map->start)); 10289 btrfs_free_chunk_map(map); 10290 map = NULL; 10291 10292 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10293 if (!bg) { 10294 btrfs_warn(fs_info, 10295 "could not find block group containing swapfile"); 10296 ret = -EINVAL; 10297 goto out; 10298 } 10299 10300 if (!btrfs_inc_block_group_swap_extents(bg)) { 10301 btrfs_warn(fs_info, 10302 "block group for swapfile at %llu is read-only%s", 10303 bg->start, 10304 atomic_read(&fs_info->scrubs_running) ? 10305 " (scrub running)" : ""); 10306 btrfs_put_block_group(bg); 10307 ret = -EINVAL; 10308 goto out; 10309 } 10310 10311 ret = btrfs_add_swapfile_pin(inode, bg, true); 10312 if (ret) { 10313 btrfs_put_block_group(bg); 10314 if (ret == 1) 10315 ret = 0; 10316 else 10317 goto out; 10318 } 10319 10320 if (bsi.block_len && 10321 bsi.block_start + bsi.block_len == physical_block_start) { 10322 bsi.block_len += len; 10323 } else { 10324 if (bsi.block_len) { 10325 ret = btrfs_add_swap_extent(sis, &bsi); 10326 if (ret) 10327 goto out; 10328 } 10329 bsi.start = key.offset; 10330 bsi.block_start = physical_block_start; 10331 bsi.block_len = len; 10332 } 10333 10334 if (fatal_signal_pending(current)) { 10335 ret = -EINTR; 10336 goto out; 10337 } 10338 10339 cond_resched(); 10340 } 10341 10342 if (bsi.block_len) 10343 ret = btrfs_add_swap_extent(sis, &bsi); 10344 10345 out: 10346 if (!IS_ERR_OR_NULL(map)) 10347 btrfs_free_chunk_map(map); 10348 10349 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10350 10351 if (ret) 10352 btrfs_swap_deactivate(file); 10353 10354 btrfs_drew_write_unlock(&root->snapshot_lock); 10355 10356 btrfs_exclop_finish(fs_info); 10357 10358 out_unlock_mmap: 10359 up_write(&BTRFS_I(inode)->i_mmap_lock); 10360 btrfs_free_backref_share_ctx(backref_ctx); 10361 btrfs_free_path(path); 10362 if (ret) 10363 return ret; 10364 10365 if (device) 10366 sis->bdev = device->bdev; 10367 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10368 sis->max = bsi.nr_pages; 10369 sis->pages = bsi.nr_pages - 1; 10370 return bsi.nr_extents; 10371 } 10372 #else 10373 static void btrfs_swap_deactivate(struct file *file) 10374 { 10375 } 10376 10377 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10378 sector_t *span) 10379 { 10380 return -EOPNOTSUPP; 10381 } 10382 #endif 10383 10384 /* 10385 * Update the number of bytes used in the VFS' inode. When we replace extents in 10386 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10387 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10388 * always get a correct value. 10389 */ 10390 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10391 const u64 add_bytes, 10392 const u64 del_bytes) 10393 { 10394 if (add_bytes == del_bytes) 10395 return; 10396 10397 spin_lock(&inode->lock); 10398 if (del_bytes > 0) 10399 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10400 if (add_bytes > 0) 10401 inode_add_bytes(&inode->vfs_inode, add_bytes); 10402 spin_unlock(&inode->lock); 10403 } 10404 10405 /* 10406 * Verify that there are no ordered extents for a given file range. 10407 * 10408 * @inode: The target inode. 10409 * @start: Start offset of the file range, should be sector size aligned. 10410 * @end: End offset (inclusive) of the file range, its value +1 should be 10411 * sector size aligned. 10412 * 10413 * This should typically be used for cases where we locked an inode's VFS lock in 10414 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10415 * we have flushed all delalloc in the range, we have waited for all ordered 10416 * extents in the range to complete and finally we have locked the file range in 10417 * the inode's io_tree. 10418 */ 10419 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10420 { 10421 struct btrfs_root *root = inode->root; 10422 struct btrfs_ordered_extent *ordered; 10423 10424 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10425 return; 10426 10427 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10428 if (ordered) { 10429 btrfs_err(root->fs_info, 10430 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10431 start, end, btrfs_ino(inode), btrfs_root_id(root), 10432 ordered->file_offset, 10433 ordered->file_offset + ordered->num_bytes - 1); 10434 btrfs_put_ordered_extent(ordered); 10435 } 10436 10437 ASSERT(ordered == NULL); 10438 } 10439 10440 /* 10441 * Find the first inode with a minimum number. 10442 * 10443 * @root: The root to search for. 10444 * @min_ino: The minimum inode number. 10445 * 10446 * Find the first inode in the @root with a number >= @min_ino and return it. 10447 * Returns NULL if no such inode found. 10448 */ 10449 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10450 { 10451 struct btrfs_inode *inode; 10452 unsigned long from = min_ino; 10453 10454 xa_lock(&root->inodes); 10455 while (true) { 10456 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10457 if (!inode) 10458 break; 10459 if (igrab(&inode->vfs_inode)) 10460 break; 10461 10462 from = btrfs_ino(inode) + 1; 10463 cond_resched_lock(&root->inodes.xa_lock); 10464 } 10465 xa_unlock(&root->inodes); 10466 10467 return inode; 10468 } 10469 10470 static const struct inode_operations btrfs_dir_inode_operations = { 10471 .getattr = btrfs_getattr, 10472 .lookup = btrfs_lookup, 10473 .create = btrfs_create, 10474 .unlink = btrfs_unlink, 10475 .link = btrfs_link, 10476 .mkdir = btrfs_mkdir, 10477 .rmdir = btrfs_rmdir, 10478 .rename = btrfs_rename2, 10479 .symlink = btrfs_symlink, 10480 .setattr = btrfs_setattr, 10481 .mknod = btrfs_mknod, 10482 .listxattr = btrfs_listxattr, 10483 .permission = btrfs_permission, 10484 .get_inode_acl = btrfs_get_acl, 10485 .set_acl = btrfs_set_acl, 10486 .update_time = btrfs_update_time, 10487 .tmpfile = btrfs_tmpfile, 10488 .fileattr_get = btrfs_fileattr_get, 10489 .fileattr_set = btrfs_fileattr_set, 10490 }; 10491 10492 static const struct file_operations btrfs_dir_file_operations = { 10493 .llseek = btrfs_dir_llseek, 10494 .read = generic_read_dir, 10495 .iterate_shared = btrfs_real_readdir, 10496 .open = btrfs_opendir, 10497 .unlocked_ioctl = btrfs_ioctl, 10498 #ifdef CONFIG_COMPAT 10499 .compat_ioctl = btrfs_compat_ioctl, 10500 #endif 10501 .release = btrfs_release_file, 10502 .fsync = btrfs_sync_file, 10503 }; 10504 10505 /* 10506 * btrfs doesn't support the bmap operation because swapfiles 10507 * use bmap to make a mapping of extents in the file. They assume 10508 * these extents won't change over the life of the file and they 10509 * use the bmap result to do IO directly to the drive. 10510 * 10511 * the btrfs bmap call would return logical addresses that aren't 10512 * suitable for IO and they also will change frequently as COW 10513 * operations happen. So, swapfile + btrfs == corruption. 10514 * 10515 * For now we're avoiding this by dropping bmap. 10516 */ 10517 static const struct address_space_operations btrfs_aops = { 10518 .read_folio = btrfs_read_folio, 10519 .writepages = btrfs_writepages, 10520 .readahead = btrfs_readahead, 10521 .invalidate_folio = btrfs_invalidate_folio, 10522 .launder_folio = btrfs_launder_folio, 10523 .release_folio = btrfs_release_folio, 10524 .migrate_folio = btrfs_migrate_folio, 10525 .dirty_folio = filemap_dirty_folio, 10526 .error_remove_folio = generic_error_remove_folio, 10527 .swap_activate = btrfs_swap_activate, 10528 .swap_deactivate = btrfs_swap_deactivate, 10529 }; 10530 10531 static const struct inode_operations btrfs_file_inode_operations = { 10532 .getattr = btrfs_getattr, 10533 .setattr = btrfs_setattr, 10534 .listxattr = btrfs_listxattr, 10535 .permission = btrfs_permission, 10536 .fiemap = btrfs_fiemap, 10537 .get_inode_acl = btrfs_get_acl, 10538 .set_acl = btrfs_set_acl, 10539 .update_time = btrfs_update_time, 10540 .fileattr_get = btrfs_fileattr_get, 10541 .fileattr_set = btrfs_fileattr_set, 10542 }; 10543 static const struct inode_operations btrfs_special_inode_operations = { 10544 .getattr = btrfs_getattr, 10545 .setattr = btrfs_setattr, 10546 .permission = btrfs_permission, 10547 .listxattr = btrfs_listxattr, 10548 .get_inode_acl = btrfs_get_acl, 10549 .set_acl = btrfs_set_acl, 10550 .update_time = btrfs_update_time, 10551 }; 10552 static const struct inode_operations btrfs_symlink_inode_operations = { 10553 .get_link = page_get_link, 10554 .getattr = btrfs_getattr, 10555 .setattr = btrfs_setattr, 10556 .permission = btrfs_permission, 10557 .listxattr = btrfs_listxattr, 10558 .update_time = btrfs_update_time, 10559 }; 10560 10561 const struct dentry_operations btrfs_dentry_operations = { 10562 .d_delete = btrfs_dentry_delete, 10563 }; 10564