1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <asm/unaligned.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "ordered-data.h" 37 #include "xattr.h" 38 #include "tree-log.h" 39 #include "volumes.h" 40 #include "compression.h" 41 #include "locking.h" 42 #include "free-space-cache.h" 43 #include "inode-map.h" 44 #include "backref.h" 45 #include "props.h" 46 #include "qgroup.h" 47 #include "dedupe.h" 48 49 struct btrfs_iget_args { 50 struct btrfs_key *location; 51 struct btrfs_root *root; 52 }; 53 54 struct btrfs_dio_data { 55 u64 reserve; 56 u64 unsubmitted_oe_range_start; 57 u64 unsubmitted_oe_range_end; 58 int overwrite; 59 }; 60 61 static const struct inode_operations btrfs_dir_inode_operations; 62 static const struct inode_operations btrfs_symlink_inode_operations; 63 static const struct inode_operations btrfs_dir_ro_inode_operations; 64 static const struct inode_operations btrfs_special_inode_operations; 65 static const struct inode_operations btrfs_file_inode_operations; 66 static const struct address_space_operations btrfs_aops; 67 static const struct address_space_operations btrfs_symlink_aops; 68 static const struct file_operations btrfs_dir_file_operations; 69 static const struct extent_io_ops btrfs_extent_io_ops; 70 71 static struct kmem_cache *btrfs_inode_cachep; 72 struct kmem_cache *btrfs_trans_handle_cachep; 73 struct kmem_cache *btrfs_path_cachep; 74 struct kmem_cache *btrfs_free_space_cachep; 75 76 #define S_SHIFT 12 77 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 85 }; 86 87 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 88 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 90 static noinline int cow_file_range(struct inode *inode, 91 struct page *locked_page, 92 u64 start, u64 end, u64 delalloc_end, 93 int *page_started, unsigned long *nr_written, 94 int unlock, struct btrfs_dedupe_hash *hash); 95 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 96 u64 orig_start, u64 block_start, 97 u64 block_len, u64 orig_block_len, 98 u64 ram_bytes, int compress_type, 99 int type); 100 101 static void __endio_write_update_ordered(struct inode *inode, 102 const u64 offset, const u64 bytes, 103 const bool uptodate); 104 105 /* 106 * Cleanup all submitted ordered extents in specified range to handle errors 107 * from the fill_dellaloc() callback. 108 * 109 * NOTE: caller must ensure that when an error happens, it can not call 110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 112 * to be released, which we want to happen only when finishing the ordered 113 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 114 * fill_delalloc() callback already does proper cleanup for the first page of 115 * the range, that is, it invokes the callback writepage_end_io_hook() for the 116 * range of the first page. 117 */ 118 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 119 const u64 offset, 120 const u64 bytes) 121 { 122 unsigned long index = offset >> PAGE_SHIFT; 123 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 124 struct page *page; 125 126 while (index <= end_index) { 127 page = find_get_page(inode->i_mapping, index); 128 index++; 129 if (!page) 130 continue; 131 ClearPagePrivate2(page); 132 put_page(page); 133 } 134 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 135 bytes - PAGE_SIZE, false); 136 } 137 138 static int btrfs_dirty_inode(struct inode *inode); 139 140 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 141 void btrfs_test_inode_set_ops(struct inode *inode) 142 { 143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 144 } 145 #endif 146 147 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 148 struct inode *inode, struct inode *dir, 149 const struct qstr *qstr) 150 { 151 int err; 152 153 err = btrfs_init_acl(trans, inode, dir); 154 if (!err) 155 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 156 return err; 157 } 158 159 /* 160 * this does all the hard work for inserting an inline extent into 161 * the btree. The caller should have done a btrfs_drop_extents so that 162 * no overlapping inline items exist in the btree 163 */ 164 static int insert_inline_extent(struct btrfs_trans_handle *trans, 165 struct btrfs_path *path, int extent_inserted, 166 struct btrfs_root *root, struct inode *inode, 167 u64 start, size_t size, size_t compressed_size, 168 int compress_type, 169 struct page **compressed_pages) 170 { 171 struct extent_buffer *leaf; 172 struct page *page = NULL; 173 char *kaddr; 174 unsigned long ptr; 175 struct btrfs_file_extent_item *ei; 176 int ret; 177 size_t cur_size = size; 178 unsigned long offset; 179 180 if (compressed_size && compressed_pages) 181 cur_size = compressed_size; 182 183 inode_add_bytes(inode, size); 184 185 if (!extent_inserted) { 186 struct btrfs_key key; 187 size_t datasize; 188 189 key.objectid = btrfs_ino(BTRFS_I(inode)); 190 key.offset = start; 191 key.type = BTRFS_EXTENT_DATA_KEY; 192 193 datasize = btrfs_file_extent_calc_inline_size(cur_size); 194 path->leave_spinning = 1; 195 ret = btrfs_insert_empty_item(trans, root, path, &key, 196 datasize); 197 if (ret) 198 goto fail; 199 } 200 leaf = path->nodes[0]; 201 ei = btrfs_item_ptr(leaf, path->slots[0], 202 struct btrfs_file_extent_item); 203 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 204 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 205 btrfs_set_file_extent_encryption(leaf, ei, 0); 206 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 207 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 208 ptr = btrfs_file_extent_inline_start(ei); 209 210 if (compress_type != BTRFS_COMPRESS_NONE) { 211 struct page *cpage; 212 int i = 0; 213 while (compressed_size > 0) { 214 cpage = compressed_pages[i]; 215 cur_size = min_t(unsigned long, compressed_size, 216 PAGE_SIZE); 217 218 kaddr = kmap_atomic(cpage); 219 write_extent_buffer(leaf, kaddr, ptr, cur_size); 220 kunmap_atomic(kaddr); 221 222 i++; 223 ptr += cur_size; 224 compressed_size -= cur_size; 225 } 226 btrfs_set_file_extent_compression(leaf, ei, 227 compress_type); 228 } else { 229 page = find_get_page(inode->i_mapping, 230 start >> PAGE_SHIFT); 231 btrfs_set_file_extent_compression(leaf, ei, 0); 232 kaddr = kmap_atomic(page); 233 offset = start & (PAGE_SIZE - 1); 234 write_extent_buffer(leaf, kaddr + offset, ptr, size); 235 kunmap_atomic(kaddr); 236 put_page(page); 237 } 238 btrfs_mark_buffer_dirty(leaf); 239 btrfs_release_path(path); 240 241 /* 242 * we're an inline extent, so nobody can 243 * extend the file past i_size without locking 244 * a page we already have locked. 245 * 246 * We must do any isize and inode updates 247 * before we unlock the pages. Otherwise we 248 * could end up racing with unlink. 249 */ 250 BTRFS_I(inode)->disk_i_size = inode->i_size; 251 ret = btrfs_update_inode(trans, root, inode); 252 253 fail: 254 return ret; 255 } 256 257 258 /* 259 * conditionally insert an inline extent into the file. This 260 * does the checks required to make sure the data is small enough 261 * to fit as an inline extent. 262 */ 263 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 264 u64 end, size_t compressed_size, 265 int compress_type, 266 struct page **compressed_pages) 267 { 268 struct btrfs_root *root = BTRFS_I(inode)->root; 269 struct btrfs_fs_info *fs_info = root->fs_info; 270 struct btrfs_trans_handle *trans; 271 u64 isize = i_size_read(inode); 272 u64 actual_end = min(end + 1, isize); 273 u64 inline_len = actual_end - start; 274 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 275 u64 data_len = inline_len; 276 int ret; 277 struct btrfs_path *path; 278 int extent_inserted = 0; 279 u32 extent_item_size; 280 281 if (compressed_size) 282 data_len = compressed_size; 283 284 if (start > 0 || 285 actual_end > fs_info->sectorsize || 286 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 287 (!compressed_size && 288 (actual_end & (fs_info->sectorsize - 1)) == 0) || 289 end + 1 < isize || 290 data_len > fs_info->max_inline) { 291 return 1; 292 } 293 294 path = btrfs_alloc_path(); 295 if (!path) 296 return -ENOMEM; 297 298 trans = btrfs_join_transaction(root); 299 if (IS_ERR(trans)) { 300 btrfs_free_path(path); 301 return PTR_ERR(trans); 302 } 303 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 304 305 if (compressed_size && compressed_pages) 306 extent_item_size = btrfs_file_extent_calc_inline_size( 307 compressed_size); 308 else 309 extent_item_size = btrfs_file_extent_calc_inline_size( 310 inline_len); 311 312 ret = __btrfs_drop_extents(trans, root, inode, path, 313 start, aligned_end, NULL, 314 1, 1, extent_item_size, &extent_inserted); 315 if (ret) { 316 btrfs_abort_transaction(trans, ret); 317 goto out; 318 } 319 320 if (isize > actual_end) 321 inline_len = min_t(u64, isize, actual_end); 322 ret = insert_inline_extent(trans, path, extent_inserted, 323 root, inode, start, 324 inline_len, compressed_size, 325 compress_type, compressed_pages); 326 if (ret && ret != -ENOSPC) { 327 btrfs_abort_transaction(trans, ret); 328 goto out; 329 } else if (ret == -ENOSPC) { 330 ret = 1; 331 goto out; 332 } 333 334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 335 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 336 out: 337 /* 338 * Don't forget to free the reserved space, as for inlined extent 339 * it won't count as data extent, free them directly here. 340 * And at reserve time, it's always aligned to page size, so 341 * just free one page here. 342 */ 343 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 344 btrfs_free_path(path); 345 btrfs_end_transaction(trans); 346 return ret; 347 } 348 349 struct async_extent { 350 u64 start; 351 u64 ram_size; 352 u64 compressed_size; 353 struct page **pages; 354 unsigned long nr_pages; 355 int compress_type; 356 struct list_head list; 357 }; 358 359 struct async_cow { 360 struct inode *inode; 361 struct btrfs_root *root; 362 struct page *locked_page; 363 u64 start; 364 u64 end; 365 unsigned int write_flags; 366 struct list_head extents; 367 struct btrfs_work work; 368 }; 369 370 static noinline int add_async_extent(struct async_cow *cow, 371 u64 start, u64 ram_size, 372 u64 compressed_size, 373 struct page **pages, 374 unsigned long nr_pages, 375 int compress_type) 376 { 377 struct async_extent *async_extent; 378 379 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 380 BUG_ON(!async_extent); /* -ENOMEM */ 381 async_extent->start = start; 382 async_extent->ram_size = ram_size; 383 async_extent->compressed_size = compressed_size; 384 async_extent->pages = pages; 385 async_extent->nr_pages = nr_pages; 386 async_extent->compress_type = compress_type; 387 list_add_tail(&async_extent->list, &cow->extents); 388 return 0; 389 } 390 391 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 392 { 393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 394 395 /* force compress */ 396 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 397 return 1; 398 /* defrag ioctl */ 399 if (BTRFS_I(inode)->defrag_compress) 400 return 1; 401 /* bad compression ratios */ 402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 403 return 0; 404 if (btrfs_test_opt(fs_info, COMPRESS) || 405 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 406 BTRFS_I(inode)->prop_compress) 407 return btrfs_compress_heuristic(inode, start, end); 408 return 0; 409 } 410 411 static inline void inode_should_defrag(struct btrfs_inode *inode, 412 u64 start, u64 end, u64 num_bytes, u64 small_write) 413 { 414 /* If this is a small write inside eof, kick off a defrag */ 415 if (num_bytes < small_write && 416 (start > 0 || end + 1 < inode->disk_i_size)) 417 btrfs_add_inode_defrag(NULL, inode); 418 } 419 420 /* 421 * we create compressed extents in two phases. The first 422 * phase compresses a range of pages that have already been 423 * locked (both pages and state bits are locked). 424 * 425 * This is done inside an ordered work queue, and the compression 426 * is spread across many cpus. The actual IO submission is step 427 * two, and the ordered work queue takes care of making sure that 428 * happens in the same order things were put onto the queue by 429 * writepages and friends. 430 * 431 * If this code finds it can't get good compression, it puts an 432 * entry onto the work queue to write the uncompressed bytes. This 433 * makes sure that both compressed inodes and uncompressed inodes 434 * are written in the same order that the flusher thread sent them 435 * down. 436 */ 437 static noinline void compress_file_range(struct inode *inode, 438 struct page *locked_page, 439 u64 start, u64 end, 440 struct async_cow *async_cow, 441 int *num_added) 442 { 443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 444 u64 blocksize = fs_info->sectorsize; 445 u64 actual_end; 446 u64 isize = i_size_read(inode); 447 int ret = 0; 448 struct page **pages = NULL; 449 unsigned long nr_pages; 450 unsigned long total_compressed = 0; 451 unsigned long total_in = 0; 452 int i; 453 int will_compress; 454 int compress_type = fs_info->compress_type; 455 int redirty = 0; 456 457 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 458 SZ_16K); 459 460 actual_end = min_t(u64, isize, end + 1); 461 again: 462 will_compress = 0; 463 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 464 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 465 nr_pages = min_t(unsigned long, nr_pages, 466 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 467 468 /* 469 * we don't want to send crud past the end of i_size through 470 * compression, that's just a waste of CPU time. So, if the 471 * end of the file is before the start of our current 472 * requested range of bytes, we bail out to the uncompressed 473 * cleanup code that can deal with all of this. 474 * 475 * It isn't really the fastest way to fix things, but this is a 476 * very uncommon corner. 477 */ 478 if (actual_end <= start) 479 goto cleanup_and_bail_uncompressed; 480 481 total_compressed = actual_end - start; 482 483 /* 484 * skip compression for a small file range(<=blocksize) that 485 * isn't an inline extent, since it doesn't save disk space at all. 486 */ 487 if (total_compressed <= blocksize && 488 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 489 goto cleanup_and_bail_uncompressed; 490 491 total_compressed = min_t(unsigned long, total_compressed, 492 BTRFS_MAX_UNCOMPRESSED); 493 total_in = 0; 494 ret = 0; 495 496 /* 497 * we do compression for mount -o compress and when the 498 * inode has not been flagged as nocompress. This flag can 499 * change at any time if we discover bad compression ratios. 500 */ 501 if (inode_need_compress(inode, start, end)) { 502 WARN_ON(pages); 503 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 504 if (!pages) { 505 /* just bail out to the uncompressed code */ 506 goto cont; 507 } 508 509 if (BTRFS_I(inode)->defrag_compress) 510 compress_type = BTRFS_I(inode)->defrag_compress; 511 else if (BTRFS_I(inode)->prop_compress) 512 compress_type = BTRFS_I(inode)->prop_compress; 513 514 /* 515 * we need to call clear_page_dirty_for_io on each 516 * page in the range. Otherwise applications with the file 517 * mmap'd can wander in and change the page contents while 518 * we are compressing them. 519 * 520 * If the compression fails for any reason, we set the pages 521 * dirty again later on. 522 * 523 * Note that the remaining part is redirtied, the start pointer 524 * has moved, the end is the original one. 525 */ 526 if (!redirty) { 527 extent_range_clear_dirty_for_io(inode, start, end); 528 redirty = 1; 529 } 530 531 /* Compression level is applied here and only here */ 532 ret = btrfs_compress_pages( 533 compress_type | (fs_info->compress_level << 4), 534 inode->i_mapping, start, 535 pages, 536 &nr_pages, 537 &total_in, 538 &total_compressed); 539 540 if (!ret) { 541 unsigned long offset = total_compressed & 542 (PAGE_SIZE - 1); 543 struct page *page = pages[nr_pages - 1]; 544 char *kaddr; 545 546 /* zero the tail end of the last page, we might be 547 * sending it down to disk 548 */ 549 if (offset) { 550 kaddr = kmap_atomic(page); 551 memset(kaddr + offset, 0, 552 PAGE_SIZE - offset); 553 kunmap_atomic(kaddr); 554 } 555 will_compress = 1; 556 } 557 } 558 cont: 559 if (start == 0) { 560 /* lets try to make an inline extent */ 561 if (ret || total_in < actual_end) { 562 /* we didn't compress the entire range, try 563 * to make an uncompressed inline extent. 564 */ 565 ret = cow_file_range_inline(inode, start, end, 0, 566 BTRFS_COMPRESS_NONE, NULL); 567 } else { 568 /* try making a compressed inline extent */ 569 ret = cow_file_range_inline(inode, start, end, 570 total_compressed, 571 compress_type, pages); 572 } 573 if (ret <= 0) { 574 unsigned long clear_flags = EXTENT_DELALLOC | 575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 576 EXTENT_DO_ACCOUNTING; 577 unsigned long page_error_op; 578 579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 580 581 /* 582 * inline extent creation worked or returned error, 583 * we don't need to create any more async work items. 584 * Unlock and free up our temp pages. 585 * 586 * We use DO_ACCOUNTING here because we need the 587 * delalloc_release_metadata to be done _after_ we drop 588 * our outstanding extent for clearing delalloc for this 589 * range. 590 */ 591 extent_clear_unlock_delalloc(inode, start, end, end, 592 NULL, clear_flags, 593 PAGE_UNLOCK | 594 PAGE_CLEAR_DIRTY | 595 PAGE_SET_WRITEBACK | 596 page_error_op | 597 PAGE_END_WRITEBACK); 598 goto free_pages_out; 599 } 600 } 601 602 if (will_compress) { 603 /* 604 * we aren't doing an inline extent round the compressed size 605 * up to a block size boundary so the allocator does sane 606 * things 607 */ 608 total_compressed = ALIGN(total_compressed, blocksize); 609 610 /* 611 * one last check to make sure the compression is really a 612 * win, compare the page count read with the blocks on disk, 613 * compression must free at least one sector size 614 */ 615 total_in = ALIGN(total_in, PAGE_SIZE); 616 if (total_compressed + blocksize <= total_in) { 617 *num_added += 1; 618 619 /* 620 * The async work queues will take care of doing actual 621 * allocation on disk for these compressed pages, and 622 * will submit them to the elevator. 623 */ 624 add_async_extent(async_cow, start, total_in, 625 total_compressed, pages, nr_pages, 626 compress_type); 627 628 if (start + total_in < end) { 629 start += total_in; 630 pages = NULL; 631 cond_resched(); 632 goto again; 633 } 634 return; 635 } 636 } 637 if (pages) { 638 /* 639 * the compression code ran but failed to make things smaller, 640 * free any pages it allocated and our page pointer array 641 */ 642 for (i = 0; i < nr_pages; i++) { 643 WARN_ON(pages[i]->mapping); 644 put_page(pages[i]); 645 } 646 kfree(pages); 647 pages = NULL; 648 total_compressed = 0; 649 nr_pages = 0; 650 651 /* flag the file so we don't compress in the future */ 652 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 653 !(BTRFS_I(inode)->prop_compress)) { 654 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 655 } 656 } 657 cleanup_and_bail_uncompressed: 658 /* 659 * No compression, but we still need to write the pages in the file 660 * we've been given so far. redirty the locked page if it corresponds 661 * to our extent and set things up for the async work queue to run 662 * cow_file_range to do the normal delalloc dance. 663 */ 664 if (page_offset(locked_page) >= start && 665 page_offset(locked_page) <= end) 666 __set_page_dirty_nobuffers(locked_page); 667 /* unlocked later on in the async handlers */ 668 669 if (redirty) 670 extent_range_redirty_for_io(inode, start, end); 671 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 672 BTRFS_COMPRESS_NONE); 673 *num_added += 1; 674 675 return; 676 677 free_pages_out: 678 for (i = 0; i < nr_pages; i++) { 679 WARN_ON(pages[i]->mapping); 680 put_page(pages[i]); 681 } 682 kfree(pages); 683 } 684 685 static void free_async_extent_pages(struct async_extent *async_extent) 686 { 687 int i; 688 689 if (!async_extent->pages) 690 return; 691 692 for (i = 0; i < async_extent->nr_pages; i++) { 693 WARN_ON(async_extent->pages[i]->mapping); 694 put_page(async_extent->pages[i]); 695 } 696 kfree(async_extent->pages); 697 async_extent->nr_pages = 0; 698 async_extent->pages = NULL; 699 } 700 701 /* 702 * phase two of compressed writeback. This is the ordered portion 703 * of the code, which only gets called in the order the work was 704 * queued. We walk all the async extents created by compress_file_range 705 * and send them down to the disk. 706 */ 707 static noinline void submit_compressed_extents(struct inode *inode, 708 struct async_cow *async_cow) 709 { 710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 711 struct async_extent *async_extent; 712 u64 alloc_hint = 0; 713 struct btrfs_key ins; 714 struct extent_map *em; 715 struct btrfs_root *root = BTRFS_I(inode)->root; 716 struct extent_io_tree *io_tree; 717 int ret = 0; 718 719 again: 720 while (!list_empty(&async_cow->extents)) { 721 async_extent = list_entry(async_cow->extents.next, 722 struct async_extent, list); 723 list_del(&async_extent->list); 724 725 io_tree = &BTRFS_I(inode)->io_tree; 726 727 retry: 728 /* did the compression code fall back to uncompressed IO? */ 729 if (!async_extent->pages) { 730 int page_started = 0; 731 unsigned long nr_written = 0; 732 733 lock_extent(io_tree, async_extent->start, 734 async_extent->start + 735 async_extent->ram_size - 1); 736 737 /* allocate blocks */ 738 ret = cow_file_range(inode, async_cow->locked_page, 739 async_extent->start, 740 async_extent->start + 741 async_extent->ram_size - 1, 742 async_extent->start + 743 async_extent->ram_size - 1, 744 &page_started, &nr_written, 0, 745 NULL); 746 747 /* JDM XXX */ 748 749 /* 750 * if page_started, cow_file_range inserted an 751 * inline extent and took care of all the unlocking 752 * and IO for us. Otherwise, we need to submit 753 * all those pages down to the drive. 754 */ 755 if (!page_started && !ret) 756 extent_write_locked_range(inode, 757 async_extent->start, 758 async_extent->start + 759 async_extent->ram_size - 1, 760 WB_SYNC_ALL); 761 else if (ret) 762 unlock_page(async_cow->locked_page); 763 kfree(async_extent); 764 cond_resched(); 765 continue; 766 } 767 768 lock_extent(io_tree, async_extent->start, 769 async_extent->start + async_extent->ram_size - 1); 770 771 ret = btrfs_reserve_extent(root, async_extent->ram_size, 772 async_extent->compressed_size, 773 async_extent->compressed_size, 774 0, alloc_hint, &ins, 1, 1); 775 if (ret) { 776 free_async_extent_pages(async_extent); 777 778 if (ret == -ENOSPC) { 779 unlock_extent(io_tree, async_extent->start, 780 async_extent->start + 781 async_extent->ram_size - 1); 782 783 /* 784 * we need to redirty the pages if we decide to 785 * fallback to uncompressed IO, otherwise we 786 * will not submit these pages down to lower 787 * layers. 788 */ 789 extent_range_redirty_for_io(inode, 790 async_extent->start, 791 async_extent->start + 792 async_extent->ram_size - 1); 793 794 goto retry; 795 } 796 goto out_free; 797 } 798 /* 799 * here we're doing allocation and writeback of the 800 * compressed pages 801 */ 802 em = create_io_em(inode, async_extent->start, 803 async_extent->ram_size, /* len */ 804 async_extent->start, /* orig_start */ 805 ins.objectid, /* block_start */ 806 ins.offset, /* block_len */ 807 ins.offset, /* orig_block_len */ 808 async_extent->ram_size, /* ram_bytes */ 809 async_extent->compress_type, 810 BTRFS_ORDERED_COMPRESSED); 811 if (IS_ERR(em)) 812 /* ret value is not necessary due to void function */ 813 goto out_free_reserve; 814 free_extent_map(em); 815 816 ret = btrfs_add_ordered_extent_compress(inode, 817 async_extent->start, 818 ins.objectid, 819 async_extent->ram_size, 820 ins.offset, 821 BTRFS_ORDERED_COMPRESSED, 822 async_extent->compress_type); 823 if (ret) { 824 btrfs_drop_extent_cache(BTRFS_I(inode), 825 async_extent->start, 826 async_extent->start + 827 async_extent->ram_size - 1, 0); 828 goto out_free_reserve; 829 } 830 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 831 832 /* 833 * clear dirty, set writeback and unlock the pages. 834 */ 835 extent_clear_unlock_delalloc(inode, async_extent->start, 836 async_extent->start + 837 async_extent->ram_size - 1, 838 async_extent->start + 839 async_extent->ram_size - 1, 840 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 841 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 842 PAGE_SET_WRITEBACK); 843 if (btrfs_submit_compressed_write(inode, 844 async_extent->start, 845 async_extent->ram_size, 846 ins.objectid, 847 ins.offset, async_extent->pages, 848 async_extent->nr_pages, 849 async_cow->write_flags)) { 850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 851 struct page *p = async_extent->pages[0]; 852 const u64 start = async_extent->start; 853 const u64 end = start + async_extent->ram_size - 1; 854 855 p->mapping = inode->i_mapping; 856 tree->ops->writepage_end_io_hook(p, start, end, 857 NULL, 0); 858 p->mapping = NULL; 859 extent_clear_unlock_delalloc(inode, start, end, end, 860 NULL, 0, 861 PAGE_END_WRITEBACK | 862 PAGE_SET_ERROR); 863 free_async_extent_pages(async_extent); 864 } 865 alloc_hint = ins.objectid + ins.offset; 866 kfree(async_extent); 867 cond_resched(); 868 } 869 return; 870 out_free_reserve: 871 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 873 out_free: 874 extent_clear_unlock_delalloc(inode, async_extent->start, 875 async_extent->start + 876 async_extent->ram_size - 1, 877 async_extent->start + 878 async_extent->ram_size - 1, 879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 880 EXTENT_DELALLOC_NEW | 881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 884 PAGE_SET_ERROR); 885 free_async_extent_pages(async_extent); 886 kfree(async_extent); 887 goto again; 888 } 889 890 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 891 u64 num_bytes) 892 { 893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 894 struct extent_map *em; 895 u64 alloc_hint = 0; 896 897 read_lock(&em_tree->lock); 898 em = search_extent_mapping(em_tree, start, num_bytes); 899 if (em) { 900 /* 901 * if block start isn't an actual block number then find the 902 * first block in this inode and use that as a hint. If that 903 * block is also bogus then just don't worry about it. 904 */ 905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 906 free_extent_map(em); 907 em = search_extent_mapping(em_tree, 0, 0); 908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 909 alloc_hint = em->block_start; 910 if (em) 911 free_extent_map(em); 912 } else { 913 alloc_hint = em->block_start; 914 free_extent_map(em); 915 } 916 } 917 read_unlock(&em_tree->lock); 918 919 return alloc_hint; 920 } 921 922 /* 923 * when extent_io.c finds a delayed allocation range in the file, 924 * the call backs end up in this code. The basic idea is to 925 * allocate extents on disk for the range, and create ordered data structs 926 * in ram to track those extents. 927 * 928 * locked_page is the page that writepage had locked already. We use 929 * it to make sure we don't do extra locks or unlocks. 930 * 931 * *page_started is set to one if we unlock locked_page and do everything 932 * required to start IO on it. It may be clean and already done with 933 * IO when we return. 934 */ 935 static noinline int cow_file_range(struct inode *inode, 936 struct page *locked_page, 937 u64 start, u64 end, u64 delalloc_end, 938 int *page_started, unsigned long *nr_written, 939 int unlock, struct btrfs_dedupe_hash *hash) 940 { 941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 942 struct btrfs_root *root = BTRFS_I(inode)->root; 943 u64 alloc_hint = 0; 944 u64 num_bytes; 945 unsigned long ram_size; 946 u64 cur_alloc_size = 0; 947 u64 blocksize = fs_info->sectorsize; 948 struct btrfs_key ins; 949 struct extent_map *em; 950 unsigned clear_bits; 951 unsigned long page_ops; 952 bool extent_reserved = false; 953 int ret = 0; 954 955 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 956 WARN_ON_ONCE(1); 957 ret = -EINVAL; 958 goto out_unlock; 959 } 960 961 num_bytes = ALIGN(end - start + 1, blocksize); 962 num_bytes = max(blocksize, num_bytes); 963 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 964 965 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 966 967 if (start == 0) { 968 /* lets try to make an inline extent */ 969 ret = cow_file_range_inline(inode, start, end, 0, 970 BTRFS_COMPRESS_NONE, NULL); 971 if (ret == 0) { 972 /* 973 * We use DO_ACCOUNTING here because we need the 974 * delalloc_release_metadata to be run _after_ we drop 975 * our outstanding extent for clearing delalloc for this 976 * range. 977 */ 978 extent_clear_unlock_delalloc(inode, start, end, 979 delalloc_end, NULL, 980 EXTENT_LOCKED | EXTENT_DELALLOC | 981 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 982 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 983 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 984 PAGE_END_WRITEBACK); 985 *nr_written = *nr_written + 986 (end - start + PAGE_SIZE) / PAGE_SIZE; 987 *page_started = 1; 988 goto out; 989 } else if (ret < 0) { 990 goto out_unlock; 991 } 992 } 993 994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 995 btrfs_drop_extent_cache(BTRFS_I(inode), start, 996 start + num_bytes - 1, 0); 997 998 while (num_bytes > 0) { 999 cur_alloc_size = num_bytes; 1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1001 fs_info->sectorsize, 0, alloc_hint, 1002 &ins, 1, 1); 1003 if (ret < 0) 1004 goto out_unlock; 1005 cur_alloc_size = ins.offset; 1006 extent_reserved = true; 1007 1008 ram_size = ins.offset; 1009 em = create_io_em(inode, start, ins.offset, /* len */ 1010 start, /* orig_start */ 1011 ins.objectid, /* block_start */ 1012 ins.offset, /* block_len */ 1013 ins.offset, /* orig_block_len */ 1014 ram_size, /* ram_bytes */ 1015 BTRFS_COMPRESS_NONE, /* compress_type */ 1016 BTRFS_ORDERED_REGULAR /* type */); 1017 if (IS_ERR(em)) { 1018 ret = PTR_ERR(em); 1019 goto out_reserve; 1020 } 1021 free_extent_map(em); 1022 1023 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1024 ram_size, cur_alloc_size, 0); 1025 if (ret) 1026 goto out_drop_extent_cache; 1027 1028 if (root->root_key.objectid == 1029 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1030 ret = btrfs_reloc_clone_csums(inode, start, 1031 cur_alloc_size); 1032 /* 1033 * Only drop cache here, and process as normal. 1034 * 1035 * We must not allow extent_clear_unlock_delalloc() 1036 * at out_unlock label to free meta of this ordered 1037 * extent, as its meta should be freed by 1038 * btrfs_finish_ordered_io(). 1039 * 1040 * So we must continue until @start is increased to 1041 * skip current ordered extent. 1042 */ 1043 if (ret) 1044 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1045 start + ram_size - 1, 0); 1046 } 1047 1048 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1049 1050 /* we're not doing compressed IO, don't unlock the first 1051 * page (which the caller expects to stay locked), don't 1052 * clear any dirty bits and don't set any writeback bits 1053 * 1054 * Do set the Private2 bit so we know this page was properly 1055 * setup for writepage 1056 */ 1057 page_ops = unlock ? PAGE_UNLOCK : 0; 1058 page_ops |= PAGE_SET_PRIVATE2; 1059 1060 extent_clear_unlock_delalloc(inode, start, 1061 start + ram_size - 1, 1062 delalloc_end, locked_page, 1063 EXTENT_LOCKED | EXTENT_DELALLOC, 1064 page_ops); 1065 if (num_bytes < cur_alloc_size) 1066 num_bytes = 0; 1067 else 1068 num_bytes -= cur_alloc_size; 1069 alloc_hint = ins.objectid + ins.offset; 1070 start += cur_alloc_size; 1071 extent_reserved = false; 1072 1073 /* 1074 * btrfs_reloc_clone_csums() error, since start is increased 1075 * extent_clear_unlock_delalloc() at out_unlock label won't 1076 * free metadata of current ordered extent, we're OK to exit. 1077 */ 1078 if (ret) 1079 goto out_unlock; 1080 } 1081 out: 1082 return ret; 1083 1084 out_drop_extent_cache: 1085 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1086 out_reserve: 1087 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1088 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1089 out_unlock: 1090 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1091 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1092 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1093 PAGE_END_WRITEBACK; 1094 /* 1095 * If we reserved an extent for our delalloc range (or a subrange) and 1096 * failed to create the respective ordered extent, then it means that 1097 * when we reserved the extent we decremented the extent's size from 1098 * the data space_info's bytes_may_use counter and incremented the 1099 * space_info's bytes_reserved counter by the same amount. We must make 1100 * sure extent_clear_unlock_delalloc() does not try to decrement again 1101 * the data space_info's bytes_may_use counter, therefore we do not pass 1102 * it the flag EXTENT_CLEAR_DATA_RESV. 1103 */ 1104 if (extent_reserved) { 1105 extent_clear_unlock_delalloc(inode, start, 1106 start + cur_alloc_size, 1107 start + cur_alloc_size, 1108 locked_page, 1109 clear_bits, 1110 page_ops); 1111 start += cur_alloc_size; 1112 if (start >= end) 1113 goto out; 1114 } 1115 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1116 locked_page, 1117 clear_bits | EXTENT_CLEAR_DATA_RESV, 1118 page_ops); 1119 goto out; 1120 } 1121 1122 /* 1123 * work queue call back to started compression on a file and pages 1124 */ 1125 static noinline void async_cow_start(struct btrfs_work *work) 1126 { 1127 struct async_cow *async_cow; 1128 int num_added = 0; 1129 async_cow = container_of(work, struct async_cow, work); 1130 1131 compress_file_range(async_cow->inode, async_cow->locked_page, 1132 async_cow->start, async_cow->end, async_cow, 1133 &num_added); 1134 if (num_added == 0) { 1135 btrfs_add_delayed_iput(async_cow->inode); 1136 async_cow->inode = NULL; 1137 } 1138 } 1139 1140 /* 1141 * work queue call back to submit previously compressed pages 1142 */ 1143 static noinline void async_cow_submit(struct btrfs_work *work) 1144 { 1145 struct btrfs_fs_info *fs_info; 1146 struct async_cow *async_cow; 1147 struct btrfs_root *root; 1148 unsigned long nr_pages; 1149 1150 async_cow = container_of(work, struct async_cow, work); 1151 1152 root = async_cow->root; 1153 fs_info = root->fs_info; 1154 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1155 PAGE_SHIFT; 1156 1157 /* atomic_sub_return implies a barrier */ 1158 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1159 5 * SZ_1M) 1160 cond_wake_up_nomb(&fs_info->async_submit_wait); 1161 1162 if (async_cow->inode) 1163 submit_compressed_extents(async_cow->inode, async_cow); 1164 } 1165 1166 static noinline void async_cow_free(struct btrfs_work *work) 1167 { 1168 struct async_cow *async_cow; 1169 async_cow = container_of(work, struct async_cow, work); 1170 if (async_cow->inode) 1171 btrfs_add_delayed_iput(async_cow->inode); 1172 kfree(async_cow); 1173 } 1174 1175 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1176 u64 start, u64 end, int *page_started, 1177 unsigned long *nr_written, 1178 unsigned int write_flags) 1179 { 1180 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1181 struct async_cow *async_cow; 1182 struct btrfs_root *root = BTRFS_I(inode)->root; 1183 unsigned long nr_pages; 1184 u64 cur_end; 1185 1186 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1187 1, 0, NULL); 1188 while (start < end) { 1189 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1190 BUG_ON(!async_cow); /* -ENOMEM */ 1191 async_cow->inode = igrab(inode); 1192 async_cow->root = root; 1193 async_cow->locked_page = locked_page; 1194 async_cow->start = start; 1195 async_cow->write_flags = write_flags; 1196 1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1199 cur_end = end; 1200 else 1201 cur_end = min(end, start + SZ_512K - 1); 1202 1203 async_cow->end = cur_end; 1204 INIT_LIST_HEAD(&async_cow->extents); 1205 1206 btrfs_init_work(&async_cow->work, 1207 btrfs_delalloc_helper, 1208 async_cow_start, async_cow_submit, 1209 async_cow_free); 1210 1211 nr_pages = (cur_end - start + PAGE_SIZE) >> 1212 PAGE_SHIFT; 1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1214 1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1216 1217 *nr_written += nr_pages; 1218 start = cur_end + 1; 1219 } 1220 *page_started = 1; 1221 return 0; 1222 } 1223 1224 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1225 u64 bytenr, u64 num_bytes) 1226 { 1227 int ret; 1228 struct btrfs_ordered_sum *sums; 1229 LIST_HEAD(list); 1230 1231 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1232 bytenr + num_bytes - 1, &list, 0); 1233 if (ret == 0 && list_empty(&list)) 1234 return 0; 1235 1236 while (!list_empty(&list)) { 1237 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1238 list_del(&sums->list); 1239 kfree(sums); 1240 } 1241 if (ret < 0) 1242 return ret; 1243 return 1; 1244 } 1245 1246 /* 1247 * when nowcow writeback call back. This checks for snapshots or COW copies 1248 * of the extents that exist in the file, and COWs the file as required. 1249 * 1250 * If no cow copies or snapshots exist, we write directly to the existing 1251 * blocks on disk 1252 */ 1253 static noinline int run_delalloc_nocow(struct inode *inode, 1254 struct page *locked_page, 1255 u64 start, u64 end, int *page_started, int force, 1256 unsigned long *nr_written) 1257 { 1258 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1259 struct btrfs_root *root = BTRFS_I(inode)->root; 1260 struct extent_buffer *leaf; 1261 struct btrfs_path *path; 1262 struct btrfs_file_extent_item *fi; 1263 struct btrfs_key found_key; 1264 struct extent_map *em; 1265 u64 cow_start; 1266 u64 cur_offset; 1267 u64 extent_end; 1268 u64 extent_offset; 1269 u64 disk_bytenr; 1270 u64 num_bytes; 1271 u64 disk_num_bytes; 1272 u64 ram_bytes; 1273 int extent_type; 1274 int ret; 1275 int type; 1276 int nocow; 1277 int check_prev = 1; 1278 bool nolock; 1279 u64 ino = btrfs_ino(BTRFS_I(inode)); 1280 1281 path = btrfs_alloc_path(); 1282 if (!path) { 1283 extent_clear_unlock_delalloc(inode, start, end, end, 1284 locked_page, 1285 EXTENT_LOCKED | EXTENT_DELALLOC | 1286 EXTENT_DO_ACCOUNTING | 1287 EXTENT_DEFRAG, PAGE_UNLOCK | 1288 PAGE_CLEAR_DIRTY | 1289 PAGE_SET_WRITEBACK | 1290 PAGE_END_WRITEBACK); 1291 return -ENOMEM; 1292 } 1293 1294 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1295 1296 cow_start = (u64)-1; 1297 cur_offset = start; 1298 while (1) { 1299 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1300 cur_offset, 0); 1301 if (ret < 0) 1302 goto error; 1303 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1304 leaf = path->nodes[0]; 1305 btrfs_item_key_to_cpu(leaf, &found_key, 1306 path->slots[0] - 1); 1307 if (found_key.objectid == ino && 1308 found_key.type == BTRFS_EXTENT_DATA_KEY) 1309 path->slots[0]--; 1310 } 1311 check_prev = 0; 1312 next_slot: 1313 leaf = path->nodes[0]; 1314 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1315 ret = btrfs_next_leaf(root, path); 1316 if (ret < 0) { 1317 if (cow_start != (u64)-1) 1318 cur_offset = cow_start; 1319 goto error; 1320 } 1321 if (ret > 0) 1322 break; 1323 leaf = path->nodes[0]; 1324 } 1325 1326 nocow = 0; 1327 disk_bytenr = 0; 1328 num_bytes = 0; 1329 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1330 1331 if (found_key.objectid > ino) 1332 break; 1333 if (WARN_ON_ONCE(found_key.objectid < ino) || 1334 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1335 path->slots[0]++; 1336 goto next_slot; 1337 } 1338 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1339 found_key.offset > end) 1340 break; 1341 1342 if (found_key.offset > cur_offset) { 1343 extent_end = found_key.offset; 1344 extent_type = 0; 1345 goto out_check; 1346 } 1347 1348 fi = btrfs_item_ptr(leaf, path->slots[0], 1349 struct btrfs_file_extent_item); 1350 extent_type = btrfs_file_extent_type(leaf, fi); 1351 1352 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1353 if (extent_type == BTRFS_FILE_EXTENT_REG || 1354 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1355 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1356 extent_offset = btrfs_file_extent_offset(leaf, fi); 1357 extent_end = found_key.offset + 1358 btrfs_file_extent_num_bytes(leaf, fi); 1359 disk_num_bytes = 1360 btrfs_file_extent_disk_num_bytes(leaf, fi); 1361 if (extent_end <= start) { 1362 path->slots[0]++; 1363 goto next_slot; 1364 } 1365 if (disk_bytenr == 0) 1366 goto out_check; 1367 if (btrfs_file_extent_compression(leaf, fi) || 1368 btrfs_file_extent_encryption(leaf, fi) || 1369 btrfs_file_extent_other_encoding(leaf, fi)) 1370 goto out_check; 1371 /* 1372 * Do the same check as in btrfs_cross_ref_exist but 1373 * without the unnecessary search. 1374 */ 1375 if (btrfs_file_extent_generation(leaf, fi) <= 1376 btrfs_root_last_snapshot(&root->root_item)) 1377 goto out_check; 1378 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1379 goto out_check; 1380 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1381 goto out_check; 1382 ret = btrfs_cross_ref_exist(root, ino, 1383 found_key.offset - 1384 extent_offset, disk_bytenr); 1385 if (ret) { 1386 /* 1387 * ret could be -EIO if the above fails to read 1388 * metadata. 1389 */ 1390 if (ret < 0) { 1391 if (cow_start != (u64)-1) 1392 cur_offset = cow_start; 1393 goto error; 1394 } 1395 1396 WARN_ON_ONCE(nolock); 1397 goto out_check; 1398 } 1399 disk_bytenr += extent_offset; 1400 disk_bytenr += cur_offset - found_key.offset; 1401 num_bytes = min(end + 1, extent_end) - cur_offset; 1402 /* 1403 * if there are pending snapshots for this root, 1404 * we fall into common COW way. 1405 */ 1406 if (!nolock && atomic_read(&root->snapshot_force_cow)) 1407 goto out_check; 1408 /* 1409 * force cow if csum exists in the range. 1410 * this ensure that csum for a given extent are 1411 * either valid or do not exist. 1412 */ 1413 ret = csum_exist_in_range(fs_info, disk_bytenr, 1414 num_bytes); 1415 if (ret) { 1416 /* 1417 * ret could be -EIO if the above fails to read 1418 * metadata. 1419 */ 1420 if (ret < 0) { 1421 if (cow_start != (u64)-1) 1422 cur_offset = cow_start; 1423 goto error; 1424 } 1425 WARN_ON_ONCE(nolock); 1426 goto out_check; 1427 } 1428 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1429 goto out_check; 1430 nocow = 1; 1431 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1432 extent_end = found_key.offset + 1433 btrfs_file_extent_ram_bytes(leaf, fi); 1434 extent_end = ALIGN(extent_end, 1435 fs_info->sectorsize); 1436 } else { 1437 BUG_ON(1); 1438 } 1439 out_check: 1440 if (extent_end <= start) { 1441 path->slots[0]++; 1442 if (nocow) 1443 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1444 goto next_slot; 1445 } 1446 if (!nocow) { 1447 if (cow_start == (u64)-1) 1448 cow_start = cur_offset; 1449 cur_offset = extent_end; 1450 if (cur_offset > end) 1451 break; 1452 path->slots[0]++; 1453 goto next_slot; 1454 } 1455 1456 btrfs_release_path(path); 1457 if (cow_start != (u64)-1) { 1458 ret = cow_file_range(inode, locked_page, 1459 cow_start, found_key.offset - 1, 1460 end, page_started, nr_written, 1, 1461 NULL); 1462 if (ret) { 1463 if (nocow) 1464 btrfs_dec_nocow_writers(fs_info, 1465 disk_bytenr); 1466 goto error; 1467 } 1468 cow_start = (u64)-1; 1469 } 1470 1471 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1472 u64 orig_start = found_key.offset - extent_offset; 1473 1474 em = create_io_em(inode, cur_offset, num_bytes, 1475 orig_start, 1476 disk_bytenr, /* block_start */ 1477 num_bytes, /* block_len */ 1478 disk_num_bytes, /* orig_block_len */ 1479 ram_bytes, BTRFS_COMPRESS_NONE, 1480 BTRFS_ORDERED_PREALLOC); 1481 if (IS_ERR(em)) { 1482 if (nocow) 1483 btrfs_dec_nocow_writers(fs_info, 1484 disk_bytenr); 1485 ret = PTR_ERR(em); 1486 goto error; 1487 } 1488 free_extent_map(em); 1489 } 1490 1491 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1492 type = BTRFS_ORDERED_PREALLOC; 1493 } else { 1494 type = BTRFS_ORDERED_NOCOW; 1495 } 1496 1497 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1498 num_bytes, num_bytes, type); 1499 if (nocow) 1500 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1501 BUG_ON(ret); /* -ENOMEM */ 1502 1503 if (root->root_key.objectid == 1504 BTRFS_DATA_RELOC_TREE_OBJECTID) 1505 /* 1506 * Error handled later, as we must prevent 1507 * extent_clear_unlock_delalloc() in error handler 1508 * from freeing metadata of created ordered extent. 1509 */ 1510 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1511 num_bytes); 1512 1513 extent_clear_unlock_delalloc(inode, cur_offset, 1514 cur_offset + num_bytes - 1, end, 1515 locked_page, EXTENT_LOCKED | 1516 EXTENT_DELALLOC | 1517 EXTENT_CLEAR_DATA_RESV, 1518 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1519 1520 cur_offset = extent_end; 1521 1522 /* 1523 * btrfs_reloc_clone_csums() error, now we're OK to call error 1524 * handler, as metadata for created ordered extent will only 1525 * be freed by btrfs_finish_ordered_io(). 1526 */ 1527 if (ret) 1528 goto error; 1529 if (cur_offset > end) 1530 break; 1531 } 1532 btrfs_release_path(path); 1533 1534 if (cur_offset <= end && cow_start == (u64)-1) { 1535 cow_start = cur_offset; 1536 cur_offset = end; 1537 } 1538 1539 if (cow_start != (u64)-1) { 1540 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1541 page_started, nr_written, 1, NULL); 1542 if (ret) 1543 goto error; 1544 } 1545 1546 error: 1547 if (ret && cur_offset < end) 1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1549 locked_page, EXTENT_LOCKED | 1550 EXTENT_DELALLOC | EXTENT_DEFRAG | 1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1552 PAGE_CLEAR_DIRTY | 1553 PAGE_SET_WRITEBACK | 1554 PAGE_END_WRITEBACK); 1555 btrfs_free_path(path); 1556 return ret; 1557 } 1558 1559 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1560 { 1561 1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1564 return 0; 1565 1566 /* 1567 * @defrag_bytes is a hint value, no spinlock held here, 1568 * if is not zero, it means the file is defragging. 1569 * Force cow if given extent needs to be defragged. 1570 */ 1571 if (BTRFS_I(inode)->defrag_bytes && 1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1573 EXTENT_DEFRAG, 0, NULL)) 1574 return 1; 1575 1576 return 0; 1577 } 1578 1579 /* 1580 * extent_io.c call back to do delayed allocation processing 1581 */ 1582 static int run_delalloc_range(void *private_data, struct page *locked_page, 1583 u64 start, u64 end, int *page_started, 1584 unsigned long *nr_written, 1585 struct writeback_control *wbc) 1586 { 1587 struct inode *inode = private_data; 1588 int ret; 1589 int force_cow = need_force_cow(inode, start, end); 1590 unsigned int write_flags = wbc_to_write_flags(wbc); 1591 1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1593 ret = run_delalloc_nocow(inode, locked_page, start, end, 1594 page_started, 1, nr_written); 1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1596 ret = run_delalloc_nocow(inode, locked_page, start, end, 1597 page_started, 0, nr_written); 1598 } else if (!inode_need_compress(inode, start, end)) { 1599 ret = cow_file_range(inode, locked_page, start, end, end, 1600 page_started, nr_written, 1, NULL); 1601 } else { 1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1603 &BTRFS_I(inode)->runtime_flags); 1604 ret = cow_file_range_async(inode, locked_page, start, end, 1605 page_started, nr_written, 1606 write_flags); 1607 } 1608 if (ret) 1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1610 return ret; 1611 } 1612 1613 static void btrfs_split_extent_hook(void *private_data, 1614 struct extent_state *orig, u64 split) 1615 { 1616 struct inode *inode = private_data; 1617 u64 size; 1618 1619 /* not delalloc, ignore it */ 1620 if (!(orig->state & EXTENT_DELALLOC)) 1621 return; 1622 1623 size = orig->end - orig->start + 1; 1624 if (size > BTRFS_MAX_EXTENT_SIZE) { 1625 u32 num_extents; 1626 u64 new_size; 1627 1628 /* 1629 * See the explanation in btrfs_merge_extent_hook, the same 1630 * applies here, just in reverse. 1631 */ 1632 new_size = orig->end - split + 1; 1633 num_extents = count_max_extents(new_size); 1634 new_size = split - orig->start; 1635 num_extents += count_max_extents(new_size); 1636 if (count_max_extents(size) >= num_extents) 1637 return; 1638 } 1639 1640 spin_lock(&BTRFS_I(inode)->lock); 1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1642 spin_unlock(&BTRFS_I(inode)->lock); 1643 } 1644 1645 /* 1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1647 * extents so we can keep track of new extents that are just merged onto old 1648 * extents, such as when we are doing sequential writes, so we can properly 1649 * account for the metadata space we'll need. 1650 */ 1651 static void btrfs_merge_extent_hook(void *private_data, 1652 struct extent_state *new, 1653 struct extent_state *other) 1654 { 1655 struct inode *inode = private_data; 1656 u64 new_size, old_size; 1657 u32 num_extents; 1658 1659 /* not delalloc, ignore it */ 1660 if (!(other->state & EXTENT_DELALLOC)) 1661 return; 1662 1663 if (new->start > other->start) 1664 new_size = new->end - other->start + 1; 1665 else 1666 new_size = other->end - new->start + 1; 1667 1668 /* we're not bigger than the max, unreserve the space and go */ 1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1670 spin_lock(&BTRFS_I(inode)->lock); 1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1672 spin_unlock(&BTRFS_I(inode)->lock); 1673 return; 1674 } 1675 1676 /* 1677 * We have to add up either side to figure out how many extents were 1678 * accounted for before we merged into one big extent. If the number of 1679 * extents we accounted for is <= the amount we need for the new range 1680 * then we can return, otherwise drop. Think of it like this 1681 * 1682 * [ 4k][MAX_SIZE] 1683 * 1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1685 * need 2 outstanding extents, on one side we have 1 and the other side 1686 * we have 1 so they are == and we can return. But in this case 1687 * 1688 * [MAX_SIZE+4k][MAX_SIZE+4k] 1689 * 1690 * Each range on their own accounts for 2 extents, but merged together 1691 * they are only 3 extents worth of accounting, so we need to drop in 1692 * this case. 1693 */ 1694 old_size = other->end - other->start + 1; 1695 num_extents = count_max_extents(old_size); 1696 old_size = new->end - new->start + 1; 1697 num_extents += count_max_extents(old_size); 1698 if (count_max_extents(new_size) >= num_extents) 1699 return; 1700 1701 spin_lock(&BTRFS_I(inode)->lock); 1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1703 spin_unlock(&BTRFS_I(inode)->lock); 1704 } 1705 1706 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1707 struct inode *inode) 1708 { 1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1710 1711 spin_lock(&root->delalloc_lock); 1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1714 &root->delalloc_inodes); 1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1716 &BTRFS_I(inode)->runtime_flags); 1717 root->nr_delalloc_inodes++; 1718 if (root->nr_delalloc_inodes == 1) { 1719 spin_lock(&fs_info->delalloc_root_lock); 1720 BUG_ON(!list_empty(&root->delalloc_root)); 1721 list_add_tail(&root->delalloc_root, 1722 &fs_info->delalloc_roots); 1723 spin_unlock(&fs_info->delalloc_root_lock); 1724 } 1725 } 1726 spin_unlock(&root->delalloc_lock); 1727 } 1728 1729 1730 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1731 struct btrfs_inode *inode) 1732 { 1733 struct btrfs_fs_info *fs_info = root->fs_info; 1734 1735 if (!list_empty(&inode->delalloc_inodes)) { 1736 list_del_init(&inode->delalloc_inodes); 1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1738 &inode->runtime_flags); 1739 root->nr_delalloc_inodes--; 1740 if (!root->nr_delalloc_inodes) { 1741 ASSERT(list_empty(&root->delalloc_inodes)); 1742 spin_lock(&fs_info->delalloc_root_lock); 1743 BUG_ON(list_empty(&root->delalloc_root)); 1744 list_del_init(&root->delalloc_root); 1745 spin_unlock(&fs_info->delalloc_root_lock); 1746 } 1747 } 1748 } 1749 1750 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1751 struct btrfs_inode *inode) 1752 { 1753 spin_lock(&root->delalloc_lock); 1754 __btrfs_del_delalloc_inode(root, inode); 1755 spin_unlock(&root->delalloc_lock); 1756 } 1757 1758 /* 1759 * extent_io.c set_bit_hook, used to track delayed allocation 1760 * bytes in this file, and to maintain the list of inodes that 1761 * have pending delalloc work to be done. 1762 */ 1763 static void btrfs_set_bit_hook(void *private_data, 1764 struct extent_state *state, unsigned *bits) 1765 { 1766 struct inode *inode = private_data; 1767 1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1769 1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1771 WARN_ON(1); 1772 /* 1773 * set_bit and clear bit hooks normally require _irqsave/restore 1774 * but in this case, we are only testing for the DELALLOC 1775 * bit, which is only set or cleared with irqs on 1776 */ 1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1778 struct btrfs_root *root = BTRFS_I(inode)->root; 1779 u64 len = state->end + 1 - state->start; 1780 u32 num_extents = count_max_extents(len); 1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1782 1783 spin_lock(&BTRFS_I(inode)->lock); 1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1785 spin_unlock(&BTRFS_I(inode)->lock); 1786 1787 /* For sanity tests */ 1788 if (btrfs_is_testing(fs_info)) 1789 return; 1790 1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1792 fs_info->delalloc_batch); 1793 spin_lock(&BTRFS_I(inode)->lock); 1794 BTRFS_I(inode)->delalloc_bytes += len; 1795 if (*bits & EXTENT_DEFRAG) 1796 BTRFS_I(inode)->defrag_bytes += len; 1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1798 &BTRFS_I(inode)->runtime_flags)) 1799 btrfs_add_delalloc_inodes(root, inode); 1800 spin_unlock(&BTRFS_I(inode)->lock); 1801 } 1802 1803 if (!(state->state & EXTENT_DELALLOC_NEW) && 1804 (*bits & EXTENT_DELALLOC_NEW)) { 1805 spin_lock(&BTRFS_I(inode)->lock); 1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1807 state->start; 1808 spin_unlock(&BTRFS_I(inode)->lock); 1809 } 1810 } 1811 1812 /* 1813 * extent_io.c clear_bit_hook, see set_bit_hook for why 1814 */ 1815 static void btrfs_clear_bit_hook(void *private_data, 1816 struct extent_state *state, 1817 unsigned *bits) 1818 { 1819 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1821 u64 len = state->end + 1 - state->start; 1822 u32 num_extents = count_max_extents(len); 1823 1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1825 spin_lock(&inode->lock); 1826 inode->defrag_bytes -= len; 1827 spin_unlock(&inode->lock); 1828 } 1829 1830 /* 1831 * set_bit and clear bit hooks normally require _irqsave/restore 1832 * but in this case, we are only testing for the DELALLOC 1833 * bit, which is only set or cleared with irqs on 1834 */ 1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1836 struct btrfs_root *root = inode->root; 1837 bool do_list = !btrfs_is_free_space_inode(inode); 1838 1839 spin_lock(&inode->lock); 1840 btrfs_mod_outstanding_extents(inode, -num_extents); 1841 spin_unlock(&inode->lock); 1842 1843 /* 1844 * We don't reserve metadata space for space cache inodes so we 1845 * don't need to call dellalloc_release_metadata if there is an 1846 * error. 1847 */ 1848 if (*bits & EXTENT_CLEAR_META_RESV && 1849 root != fs_info->tree_root) 1850 btrfs_delalloc_release_metadata(inode, len, false); 1851 1852 /* For sanity tests. */ 1853 if (btrfs_is_testing(fs_info)) 1854 return; 1855 1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1857 do_list && !(state->state & EXTENT_NORESERVE) && 1858 (*bits & EXTENT_CLEAR_DATA_RESV)) 1859 btrfs_free_reserved_data_space_noquota( 1860 &inode->vfs_inode, 1861 state->start, len); 1862 1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1864 fs_info->delalloc_batch); 1865 spin_lock(&inode->lock); 1866 inode->delalloc_bytes -= len; 1867 if (do_list && inode->delalloc_bytes == 0 && 1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1869 &inode->runtime_flags)) 1870 btrfs_del_delalloc_inode(root, inode); 1871 spin_unlock(&inode->lock); 1872 } 1873 1874 if ((state->state & EXTENT_DELALLOC_NEW) && 1875 (*bits & EXTENT_DELALLOC_NEW)) { 1876 spin_lock(&inode->lock); 1877 ASSERT(inode->new_delalloc_bytes >= len); 1878 inode->new_delalloc_bytes -= len; 1879 spin_unlock(&inode->lock); 1880 } 1881 } 1882 1883 /* 1884 * Merge bio hook, this must check the chunk tree to make sure we don't create 1885 * bios that span stripes or chunks 1886 * 1887 * return 1 if page cannot be merged to bio 1888 * return 0 if page can be merged to bio 1889 * return error otherwise 1890 */ 1891 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1892 size_t size, struct bio *bio, 1893 unsigned long bio_flags) 1894 { 1895 struct inode *inode = page->mapping->host; 1896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1897 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1898 u64 length = 0; 1899 u64 map_length; 1900 int ret; 1901 1902 if (bio_flags & EXTENT_BIO_COMPRESSED) 1903 return 0; 1904 1905 length = bio->bi_iter.bi_size; 1906 map_length = length; 1907 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1908 NULL, 0); 1909 if (ret < 0) 1910 return ret; 1911 if (map_length < length + size) 1912 return 1; 1913 return 0; 1914 } 1915 1916 /* 1917 * in order to insert checksums into the metadata in large chunks, 1918 * we wait until bio submission time. All the pages in the bio are 1919 * checksummed and sums are attached onto the ordered extent record. 1920 * 1921 * At IO completion time the cums attached on the ordered extent record 1922 * are inserted into the btree 1923 */ 1924 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1925 u64 bio_offset) 1926 { 1927 struct inode *inode = private_data; 1928 blk_status_t ret = 0; 1929 1930 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1931 BUG_ON(ret); /* -ENOMEM */ 1932 return 0; 1933 } 1934 1935 /* 1936 * in order to insert checksums into the metadata in large chunks, 1937 * we wait until bio submission time. All the pages in the bio are 1938 * checksummed and sums are attached onto the ordered extent record. 1939 * 1940 * At IO completion time the cums attached on the ordered extent record 1941 * are inserted into the btree 1942 */ 1943 blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio, 1944 int mirror_num) 1945 { 1946 struct inode *inode = private_data; 1947 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1948 blk_status_t ret; 1949 1950 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1951 if (ret) { 1952 bio->bi_status = ret; 1953 bio_endio(bio); 1954 } 1955 return ret; 1956 } 1957 1958 /* 1959 * extent_io.c submission hook. This does the right thing for csum calculation 1960 * on write, or reading the csums from the tree before a read. 1961 * 1962 * Rules about async/sync submit, 1963 * a) read: sync submit 1964 * 1965 * b) write without checksum: sync submit 1966 * 1967 * c) write with checksum: 1968 * c-1) if bio is issued by fsync: sync submit 1969 * (sync_writers != 0) 1970 * 1971 * c-2) if root is reloc root: sync submit 1972 * (only in case of buffered IO) 1973 * 1974 * c-3) otherwise: async submit 1975 */ 1976 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1977 int mirror_num, unsigned long bio_flags, 1978 u64 bio_offset) 1979 { 1980 struct inode *inode = private_data; 1981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1982 struct btrfs_root *root = BTRFS_I(inode)->root; 1983 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 1984 blk_status_t ret = 0; 1985 int skip_sum; 1986 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1987 1988 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1989 1990 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 1991 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 1992 1993 if (bio_op(bio) != REQ_OP_WRITE) { 1994 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 1995 if (ret) 1996 goto out; 1997 1998 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1999 ret = btrfs_submit_compressed_read(inode, bio, 2000 mirror_num, 2001 bio_flags); 2002 goto out; 2003 } else if (!skip_sum) { 2004 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2005 if (ret) 2006 goto out; 2007 } 2008 goto mapit; 2009 } else if (async && !skip_sum) { 2010 /* csum items have already been cloned */ 2011 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2012 goto mapit; 2013 /* we're doing a write, do the async checksumming */ 2014 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2015 bio_offset, inode, 2016 btrfs_submit_bio_start); 2017 goto out; 2018 } else if (!skip_sum) { 2019 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2020 if (ret) 2021 goto out; 2022 } 2023 2024 mapit: 2025 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2026 2027 out: 2028 if (ret) { 2029 bio->bi_status = ret; 2030 bio_endio(bio); 2031 } 2032 return ret; 2033 } 2034 2035 /* 2036 * given a list of ordered sums record them in the inode. This happens 2037 * at IO completion time based on sums calculated at bio submission time. 2038 */ 2039 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2040 struct inode *inode, struct list_head *list) 2041 { 2042 struct btrfs_ordered_sum *sum; 2043 int ret; 2044 2045 list_for_each_entry(sum, list, list) { 2046 trans->adding_csums = true; 2047 ret = btrfs_csum_file_blocks(trans, 2048 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2049 trans->adding_csums = false; 2050 if (ret) 2051 return ret; 2052 } 2053 return 0; 2054 } 2055 2056 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2057 unsigned int extra_bits, 2058 struct extent_state **cached_state, int dedupe) 2059 { 2060 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2061 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2062 extra_bits, cached_state); 2063 } 2064 2065 /* see btrfs_writepage_start_hook for details on why this is required */ 2066 struct btrfs_writepage_fixup { 2067 struct page *page; 2068 struct btrfs_work work; 2069 }; 2070 2071 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2072 { 2073 struct btrfs_writepage_fixup *fixup; 2074 struct btrfs_ordered_extent *ordered; 2075 struct extent_state *cached_state = NULL; 2076 struct extent_changeset *data_reserved = NULL; 2077 struct page *page; 2078 struct inode *inode; 2079 u64 page_start; 2080 u64 page_end; 2081 int ret; 2082 2083 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2084 page = fixup->page; 2085 again: 2086 lock_page(page); 2087 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2088 ClearPageChecked(page); 2089 goto out_page; 2090 } 2091 2092 inode = page->mapping->host; 2093 page_start = page_offset(page); 2094 page_end = page_offset(page) + PAGE_SIZE - 1; 2095 2096 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2097 &cached_state); 2098 2099 /* already ordered? We're done */ 2100 if (PagePrivate2(page)) 2101 goto out; 2102 2103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2104 PAGE_SIZE); 2105 if (ordered) { 2106 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2107 page_end, &cached_state); 2108 unlock_page(page); 2109 btrfs_start_ordered_extent(inode, ordered, 1); 2110 btrfs_put_ordered_extent(ordered); 2111 goto again; 2112 } 2113 2114 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2115 PAGE_SIZE); 2116 if (ret) { 2117 mapping_set_error(page->mapping, ret); 2118 end_extent_writepage(page, ret, page_start, page_end); 2119 ClearPageChecked(page); 2120 goto out; 2121 } 2122 2123 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2124 &cached_state, 0); 2125 if (ret) { 2126 mapping_set_error(page->mapping, ret); 2127 end_extent_writepage(page, ret, page_start, page_end); 2128 ClearPageChecked(page); 2129 goto out; 2130 } 2131 2132 ClearPageChecked(page); 2133 set_page_dirty(page); 2134 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2135 out: 2136 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2137 &cached_state); 2138 out_page: 2139 unlock_page(page); 2140 put_page(page); 2141 kfree(fixup); 2142 extent_changeset_free(data_reserved); 2143 } 2144 2145 /* 2146 * There are a few paths in the higher layers of the kernel that directly 2147 * set the page dirty bit without asking the filesystem if it is a 2148 * good idea. This causes problems because we want to make sure COW 2149 * properly happens and the data=ordered rules are followed. 2150 * 2151 * In our case any range that doesn't have the ORDERED bit set 2152 * hasn't been properly setup for IO. We kick off an async process 2153 * to fix it up. The async helper will wait for ordered extents, set 2154 * the delalloc bit and make it safe to write the page. 2155 */ 2156 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2157 { 2158 struct inode *inode = page->mapping->host; 2159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2160 struct btrfs_writepage_fixup *fixup; 2161 2162 /* this page is properly in the ordered list */ 2163 if (TestClearPagePrivate2(page)) 2164 return 0; 2165 2166 if (PageChecked(page)) 2167 return -EAGAIN; 2168 2169 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2170 if (!fixup) 2171 return -EAGAIN; 2172 2173 SetPageChecked(page); 2174 get_page(page); 2175 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2176 btrfs_writepage_fixup_worker, NULL, NULL); 2177 fixup->page = page; 2178 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2179 return -EBUSY; 2180 } 2181 2182 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2183 struct inode *inode, u64 file_pos, 2184 u64 disk_bytenr, u64 disk_num_bytes, 2185 u64 num_bytes, u64 ram_bytes, 2186 u8 compression, u8 encryption, 2187 u16 other_encoding, int extent_type) 2188 { 2189 struct btrfs_root *root = BTRFS_I(inode)->root; 2190 struct btrfs_file_extent_item *fi; 2191 struct btrfs_path *path; 2192 struct extent_buffer *leaf; 2193 struct btrfs_key ins; 2194 u64 qg_released; 2195 int extent_inserted = 0; 2196 int ret; 2197 2198 path = btrfs_alloc_path(); 2199 if (!path) 2200 return -ENOMEM; 2201 2202 /* 2203 * we may be replacing one extent in the tree with another. 2204 * The new extent is pinned in the extent map, and we don't want 2205 * to drop it from the cache until it is completely in the btree. 2206 * 2207 * So, tell btrfs_drop_extents to leave this extent in the cache. 2208 * the caller is expected to unpin it and allow it to be merged 2209 * with the others. 2210 */ 2211 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2212 file_pos + num_bytes, NULL, 0, 2213 1, sizeof(*fi), &extent_inserted); 2214 if (ret) 2215 goto out; 2216 2217 if (!extent_inserted) { 2218 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2219 ins.offset = file_pos; 2220 ins.type = BTRFS_EXTENT_DATA_KEY; 2221 2222 path->leave_spinning = 1; 2223 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2224 sizeof(*fi)); 2225 if (ret) 2226 goto out; 2227 } 2228 leaf = path->nodes[0]; 2229 fi = btrfs_item_ptr(leaf, path->slots[0], 2230 struct btrfs_file_extent_item); 2231 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2232 btrfs_set_file_extent_type(leaf, fi, extent_type); 2233 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2234 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2235 btrfs_set_file_extent_offset(leaf, fi, 0); 2236 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2237 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2238 btrfs_set_file_extent_compression(leaf, fi, compression); 2239 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2240 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2241 2242 btrfs_mark_buffer_dirty(leaf); 2243 btrfs_release_path(path); 2244 2245 inode_add_bytes(inode, num_bytes); 2246 2247 ins.objectid = disk_bytenr; 2248 ins.offset = disk_num_bytes; 2249 ins.type = BTRFS_EXTENT_ITEM_KEY; 2250 2251 /* 2252 * Release the reserved range from inode dirty range map, as it is 2253 * already moved into delayed_ref_head 2254 */ 2255 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2256 if (ret < 0) 2257 goto out; 2258 qg_released = ret; 2259 ret = btrfs_alloc_reserved_file_extent(trans, root, 2260 btrfs_ino(BTRFS_I(inode)), 2261 file_pos, qg_released, &ins); 2262 out: 2263 btrfs_free_path(path); 2264 2265 return ret; 2266 } 2267 2268 /* snapshot-aware defrag */ 2269 struct sa_defrag_extent_backref { 2270 struct rb_node node; 2271 struct old_sa_defrag_extent *old; 2272 u64 root_id; 2273 u64 inum; 2274 u64 file_pos; 2275 u64 extent_offset; 2276 u64 num_bytes; 2277 u64 generation; 2278 }; 2279 2280 struct old_sa_defrag_extent { 2281 struct list_head list; 2282 struct new_sa_defrag_extent *new; 2283 2284 u64 extent_offset; 2285 u64 bytenr; 2286 u64 offset; 2287 u64 len; 2288 int count; 2289 }; 2290 2291 struct new_sa_defrag_extent { 2292 struct rb_root root; 2293 struct list_head head; 2294 struct btrfs_path *path; 2295 struct inode *inode; 2296 u64 file_pos; 2297 u64 len; 2298 u64 bytenr; 2299 u64 disk_len; 2300 u8 compress_type; 2301 }; 2302 2303 static int backref_comp(struct sa_defrag_extent_backref *b1, 2304 struct sa_defrag_extent_backref *b2) 2305 { 2306 if (b1->root_id < b2->root_id) 2307 return -1; 2308 else if (b1->root_id > b2->root_id) 2309 return 1; 2310 2311 if (b1->inum < b2->inum) 2312 return -1; 2313 else if (b1->inum > b2->inum) 2314 return 1; 2315 2316 if (b1->file_pos < b2->file_pos) 2317 return -1; 2318 else if (b1->file_pos > b2->file_pos) 2319 return 1; 2320 2321 /* 2322 * [------------------------------] ===> (a range of space) 2323 * |<--->| |<---->| =============> (fs/file tree A) 2324 * |<---------------------------->| ===> (fs/file tree B) 2325 * 2326 * A range of space can refer to two file extents in one tree while 2327 * refer to only one file extent in another tree. 2328 * 2329 * So we may process a disk offset more than one time(two extents in A) 2330 * and locate at the same extent(one extent in B), then insert two same 2331 * backrefs(both refer to the extent in B). 2332 */ 2333 return 0; 2334 } 2335 2336 static void backref_insert(struct rb_root *root, 2337 struct sa_defrag_extent_backref *backref) 2338 { 2339 struct rb_node **p = &root->rb_node; 2340 struct rb_node *parent = NULL; 2341 struct sa_defrag_extent_backref *entry; 2342 int ret; 2343 2344 while (*p) { 2345 parent = *p; 2346 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2347 2348 ret = backref_comp(backref, entry); 2349 if (ret < 0) 2350 p = &(*p)->rb_left; 2351 else 2352 p = &(*p)->rb_right; 2353 } 2354 2355 rb_link_node(&backref->node, parent, p); 2356 rb_insert_color(&backref->node, root); 2357 } 2358 2359 /* 2360 * Note the backref might has changed, and in this case we just return 0. 2361 */ 2362 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2363 void *ctx) 2364 { 2365 struct btrfs_file_extent_item *extent; 2366 struct old_sa_defrag_extent *old = ctx; 2367 struct new_sa_defrag_extent *new = old->new; 2368 struct btrfs_path *path = new->path; 2369 struct btrfs_key key; 2370 struct btrfs_root *root; 2371 struct sa_defrag_extent_backref *backref; 2372 struct extent_buffer *leaf; 2373 struct inode *inode = new->inode; 2374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2375 int slot; 2376 int ret; 2377 u64 extent_offset; 2378 u64 num_bytes; 2379 2380 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2381 inum == btrfs_ino(BTRFS_I(inode))) 2382 return 0; 2383 2384 key.objectid = root_id; 2385 key.type = BTRFS_ROOT_ITEM_KEY; 2386 key.offset = (u64)-1; 2387 2388 root = btrfs_read_fs_root_no_name(fs_info, &key); 2389 if (IS_ERR(root)) { 2390 if (PTR_ERR(root) == -ENOENT) 2391 return 0; 2392 WARN_ON(1); 2393 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2394 inum, offset, root_id); 2395 return PTR_ERR(root); 2396 } 2397 2398 key.objectid = inum; 2399 key.type = BTRFS_EXTENT_DATA_KEY; 2400 if (offset > (u64)-1 << 32) 2401 key.offset = 0; 2402 else 2403 key.offset = offset; 2404 2405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2406 if (WARN_ON(ret < 0)) 2407 return ret; 2408 ret = 0; 2409 2410 while (1) { 2411 cond_resched(); 2412 2413 leaf = path->nodes[0]; 2414 slot = path->slots[0]; 2415 2416 if (slot >= btrfs_header_nritems(leaf)) { 2417 ret = btrfs_next_leaf(root, path); 2418 if (ret < 0) { 2419 goto out; 2420 } else if (ret > 0) { 2421 ret = 0; 2422 goto out; 2423 } 2424 continue; 2425 } 2426 2427 path->slots[0]++; 2428 2429 btrfs_item_key_to_cpu(leaf, &key, slot); 2430 2431 if (key.objectid > inum) 2432 goto out; 2433 2434 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2435 continue; 2436 2437 extent = btrfs_item_ptr(leaf, slot, 2438 struct btrfs_file_extent_item); 2439 2440 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2441 continue; 2442 2443 /* 2444 * 'offset' refers to the exact key.offset, 2445 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2446 * (key.offset - extent_offset). 2447 */ 2448 if (key.offset != offset) 2449 continue; 2450 2451 extent_offset = btrfs_file_extent_offset(leaf, extent); 2452 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2453 2454 if (extent_offset >= old->extent_offset + old->offset + 2455 old->len || extent_offset + num_bytes <= 2456 old->extent_offset + old->offset) 2457 continue; 2458 break; 2459 } 2460 2461 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2462 if (!backref) { 2463 ret = -ENOENT; 2464 goto out; 2465 } 2466 2467 backref->root_id = root_id; 2468 backref->inum = inum; 2469 backref->file_pos = offset; 2470 backref->num_bytes = num_bytes; 2471 backref->extent_offset = extent_offset; 2472 backref->generation = btrfs_file_extent_generation(leaf, extent); 2473 backref->old = old; 2474 backref_insert(&new->root, backref); 2475 old->count++; 2476 out: 2477 btrfs_release_path(path); 2478 WARN_ON(ret); 2479 return ret; 2480 } 2481 2482 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2483 struct new_sa_defrag_extent *new) 2484 { 2485 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2486 struct old_sa_defrag_extent *old, *tmp; 2487 int ret; 2488 2489 new->path = path; 2490 2491 list_for_each_entry_safe(old, tmp, &new->head, list) { 2492 ret = iterate_inodes_from_logical(old->bytenr + 2493 old->extent_offset, fs_info, 2494 path, record_one_backref, 2495 old, false); 2496 if (ret < 0 && ret != -ENOENT) 2497 return false; 2498 2499 /* no backref to be processed for this extent */ 2500 if (!old->count) { 2501 list_del(&old->list); 2502 kfree(old); 2503 } 2504 } 2505 2506 if (list_empty(&new->head)) 2507 return false; 2508 2509 return true; 2510 } 2511 2512 static int relink_is_mergable(struct extent_buffer *leaf, 2513 struct btrfs_file_extent_item *fi, 2514 struct new_sa_defrag_extent *new) 2515 { 2516 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2517 return 0; 2518 2519 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2520 return 0; 2521 2522 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2523 return 0; 2524 2525 if (btrfs_file_extent_encryption(leaf, fi) || 2526 btrfs_file_extent_other_encoding(leaf, fi)) 2527 return 0; 2528 2529 return 1; 2530 } 2531 2532 /* 2533 * Note the backref might has changed, and in this case we just return 0. 2534 */ 2535 static noinline int relink_extent_backref(struct btrfs_path *path, 2536 struct sa_defrag_extent_backref *prev, 2537 struct sa_defrag_extent_backref *backref) 2538 { 2539 struct btrfs_file_extent_item *extent; 2540 struct btrfs_file_extent_item *item; 2541 struct btrfs_ordered_extent *ordered; 2542 struct btrfs_trans_handle *trans; 2543 struct btrfs_root *root; 2544 struct btrfs_key key; 2545 struct extent_buffer *leaf; 2546 struct old_sa_defrag_extent *old = backref->old; 2547 struct new_sa_defrag_extent *new = old->new; 2548 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2549 struct inode *inode; 2550 struct extent_state *cached = NULL; 2551 int ret = 0; 2552 u64 start; 2553 u64 len; 2554 u64 lock_start; 2555 u64 lock_end; 2556 bool merge = false; 2557 int index; 2558 2559 if (prev && prev->root_id == backref->root_id && 2560 prev->inum == backref->inum && 2561 prev->file_pos + prev->num_bytes == backref->file_pos) 2562 merge = true; 2563 2564 /* step 1: get root */ 2565 key.objectid = backref->root_id; 2566 key.type = BTRFS_ROOT_ITEM_KEY; 2567 key.offset = (u64)-1; 2568 2569 index = srcu_read_lock(&fs_info->subvol_srcu); 2570 2571 root = btrfs_read_fs_root_no_name(fs_info, &key); 2572 if (IS_ERR(root)) { 2573 srcu_read_unlock(&fs_info->subvol_srcu, index); 2574 if (PTR_ERR(root) == -ENOENT) 2575 return 0; 2576 return PTR_ERR(root); 2577 } 2578 2579 if (btrfs_root_readonly(root)) { 2580 srcu_read_unlock(&fs_info->subvol_srcu, index); 2581 return 0; 2582 } 2583 2584 /* step 2: get inode */ 2585 key.objectid = backref->inum; 2586 key.type = BTRFS_INODE_ITEM_KEY; 2587 key.offset = 0; 2588 2589 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2590 if (IS_ERR(inode)) { 2591 srcu_read_unlock(&fs_info->subvol_srcu, index); 2592 return 0; 2593 } 2594 2595 srcu_read_unlock(&fs_info->subvol_srcu, index); 2596 2597 /* step 3: relink backref */ 2598 lock_start = backref->file_pos; 2599 lock_end = backref->file_pos + backref->num_bytes - 1; 2600 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2601 &cached); 2602 2603 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2604 if (ordered) { 2605 btrfs_put_ordered_extent(ordered); 2606 goto out_unlock; 2607 } 2608 2609 trans = btrfs_join_transaction(root); 2610 if (IS_ERR(trans)) { 2611 ret = PTR_ERR(trans); 2612 goto out_unlock; 2613 } 2614 2615 key.objectid = backref->inum; 2616 key.type = BTRFS_EXTENT_DATA_KEY; 2617 key.offset = backref->file_pos; 2618 2619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2620 if (ret < 0) { 2621 goto out_free_path; 2622 } else if (ret > 0) { 2623 ret = 0; 2624 goto out_free_path; 2625 } 2626 2627 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2628 struct btrfs_file_extent_item); 2629 2630 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2631 backref->generation) 2632 goto out_free_path; 2633 2634 btrfs_release_path(path); 2635 2636 start = backref->file_pos; 2637 if (backref->extent_offset < old->extent_offset + old->offset) 2638 start += old->extent_offset + old->offset - 2639 backref->extent_offset; 2640 2641 len = min(backref->extent_offset + backref->num_bytes, 2642 old->extent_offset + old->offset + old->len); 2643 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2644 2645 ret = btrfs_drop_extents(trans, root, inode, start, 2646 start + len, 1); 2647 if (ret) 2648 goto out_free_path; 2649 again: 2650 key.objectid = btrfs_ino(BTRFS_I(inode)); 2651 key.type = BTRFS_EXTENT_DATA_KEY; 2652 key.offset = start; 2653 2654 path->leave_spinning = 1; 2655 if (merge) { 2656 struct btrfs_file_extent_item *fi; 2657 u64 extent_len; 2658 struct btrfs_key found_key; 2659 2660 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2661 if (ret < 0) 2662 goto out_free_path; 2663 2664 path->slots[0]--; 2665 leaf = path->nodes[0]; 2666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2667 2668 fi = btrfs_item_ptr(leaf, path->slots[0], 2669 struct btrfs_file_extent_item); 2670 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2671 2672 if (extent_len + found_key.offset == start && 2673 relink_is_mergable(leaf, fi, new)) { 2674 btrfs_set_file_extent_num_bytes(leaf, fi, 2675 extent_len + len); 2676 btrfs_mark_buffer_dirty(leaf); 2677 inode_add_bytes(inode, len); 2678 2679 ret = 1; 2680 goto out_free_path; 2681 } else { 2682 merge = false; 2683 btrfs_release_path(path); 2684 goto again; 2685 } 2686 } 2687 2688 ret = btrfs_insert_empty_item(trans, root, path, &key, 2689 sizeof(*extent)); 2690 if (ret) { 2691 btrfs_abort_transaction(trans, ret); 2692 goto out_free_path; 2693 } 2694 2695 leaf = path->nodes[0]; 2696 item = btrfs_item_ptr(leaf, path->slots[0], 2697 struct btrfs_file_extent_item); 2698 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2699 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2700 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2701 btrfs_set_file_extent_num_bytes(leaf, item, len); 2702 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2703 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2704 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2705 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2706 btrfs_set_file_extent_encryption(leaf, item, 0); 2707 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2708 2709 btrfs_mark_buffer_dirty(leaf); 2710 inode_add_bytes(inode, len); 2711 btrfs_release_path(path); 2712 2713 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2714 new->disk_len, 0, 2715 backref->root_id, backref->inum, 2716 new->file_pos); /* start - extent_offset */ 2717 if (ret) { 2718 btrfs_abort_transaction(trans, ret); 2719 goto out_free_path; 2720 } 2721 2722 ret = 1; 2723 out_free_path: 2724 btrfs_release_path(path); 2725 path->leave_spinning = 0; 2726 btrfs_end_transaction(trans); 2727 out_unlock: 2728 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2729 &cached); 2730 iput(inode); 2731 return ret; 2732 } 2733 2734 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2735 { 2736 struct old_sa_defrag_extent *old, *tmp; 2737 2738 if (!new) 2739 return; 2740 2741 list_for_each_entry_safe(old, tmp, &new->head, list) { 2742 kfree(old); 2743 } 2744 kfree(new); 2745 } 2746 2747 static void relink_file_extents(struct new_sa_defrag_extent *new) 2748 { 2749 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2750 struct btrfs_path *path; 2751 struct sa_defrag_extent_backref *backref; 2752 struct sa_defrag_extent_backref *prev = NULL; 2753 struct inode *inode; 2754 struct rb_node *node; 2755 int ret; 2756 2757 inode = new->inode; 2758 2759 path = btrfs_alloc_path(); 2760 if (!path) 2761 return; 2762 2763 if (!record_extent_backrefs(path, new)) { 2764 btrfs_free_path(path); 2765 goto out; 2766 } 2767 btrfs_release_path(path); 2768 2769 while (1) { 2770 node = rb_first(&new->root); 2771 if (!node) 2772 break; 2773 rb_erase(node, &new->root); 2774 2775 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2776 2777 ret = relink_extent_backref(path, prev, backref); 2778 WARN_ON(ret < 0); 2779 2780 kfree(prev); 2781 2782 if (ret == 1) 2783 prev = backref; 2784 else 2785 prev = NULL; 2786 cond_resched(); 2787 } 2788 kfree(prev); 2789 2790 btrfs_free_path(path); 2791 out: 2792 free_sa_defrag_extent(new); 2793 2794 atomic_dec(&fs_info->defrag_running); 2795 wake_up(&fs_info->transaction_wait); 2796 } 2797 2798 static struct new_sa_defrag_extent * 2799 record_old_file_extents(struct inode *inode, 2800 struct btrfs_ordered_extent *ordered) 2801 { 2802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2803 struct btrfs_root *root = BTRFS_I(inode)->root; 2804 struct btrfs_path *path; 2805 struct btrfs_key key; 2806 struct old_sa_defrag_extent *old; 2807 struct new_sa_defrag_extent *new; 2808 int ret; 2809 2810 new = kmalloc(sizeof(*new), GFP_NOFS); 2811 if (!new) 2812 return NULL; 2813 2814 new->inode = inode; 2815 new->file_pos = ordered->file_offset; 2816 new->len = ordered->len; 2817 new->bytenr = ordered->start; 2818 new->disk_len = ordered->disk_len; 2819 new->compress_type = ordered->compress_type; 2820 new->root = RB_ROOT; 2821 INIT_LIST_HEAD(&new->head); 2822 2823 path = btrfs_alloc_path(); 2824 if (!path) 2825 goto out_kfree; 2826 2827 key.objectid = btrfs_ino(BTRFS_I(inode)); 2828 key.type = BTRFS_EXTENT_DATA_KEY; 2829 key.offset = new->file_pos; 2830 2831 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2832 if (ret < 0) 2833 goto out_free_path; 2834 if (ret > 0 && path->slots[0] > 0) 2835 path->slots[0]--; 2836 2837 /* find out all the old extents for the file range */ 2838 while (1) { 2839 struct btrfs_file_extent_item *extent; 2840 struct extent_buffer *l; 2841 int slot; 2842 u64 num_bytes; 2843 u64 offset; 2844 u64 end; 2845 u64 disk_bytenr; 2846 u64 extent_offset; 2847 2848 l = path->nodes[0]; 2849 slot = path->slots[0]; 2850 2851 if (slot >= btrfs_header_nritems(l)) { 2852 ret = btrfs_next_leaf(root, path); 2853 if (ret < 0) 2854 goto out_free_path; 2855 else if (ret > 0) 2856 break; 2857 continue; 2858 } 2859 2860 btrfs_item_key_to_cpu(l, &key, slot); 2861 2862 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2863 break; 2864 if (key.type != BTRFS_EXTENT_DATA_KEY) 2865 break; 2866 if (key.offset >= new->file_pos + new->len) 2867 break; 2868 2869 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2870 2871 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2872 if (key.offset + num_bytes < new->file_pos) 2873 goto next; 2874 2875 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2876 if (!disk_bytenr) 2877 goto next; 2878 2879 extent_offset = btrfs_file_extent_offset(l, extent); 2880 2881 old = kmalloc(sizeof(*old), GFP_NOFS); 2882 if (!old) 2883 goto out_free_path; 2884 2885 offset = max(new->file_pos, key.offset); 2886 end = min(new->file_pos + new->len, key.offset + num_bytes); 2887 2888 old->bytenr = disk_bytenr; 2889 old->extent_offset = extent_offset; 2890 old->offset = offset - key.offset; 2891 old->len = end - offset; 2892 old->new = new; 2893 old->count = 0; 2894 list_add_tail(&old->list, &new->head); 2895 next: 2896 path->slots[0]++; 2897 cond_resched(); 2898 } 2899 2900 btrfs_free_path(path); 2901 atomic_inc(&fs_info->defrag_running); 2902 2903 return new; 2904 2905 out_free_path: 2906 btrfs_free_path(path); 2907 out_kfree: 2908 free_sa_defrag_extent(new); 2909 return NULL; 2910 } 2911 2912 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2913 u64 start, u64 len) 2914 { 2915 struct btrfs_block_group_cache *cache; 2916 2917 cache = btrfs_lookup_block_group(fs_info, start); 2918 ASSERT(cache); 2919 2920 spin_lock(&cache->lock); 2921 cache->delalloc_bytes -= len; 2922 spin_unlock(&cache->lock); 2923 2924 btrfs_put_block_group(cache); 2925 } 2926 2927 /* as ordered data IO finishes, this gets called so we can finish 2928 * an ordered extent if the range of bytes in the file it covers are 2929 * fully written. 2930 */ 2931 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2932 { 2933 struct inode *inode = ordered_extent->inode; 2934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2935 struct btrfs_root *root = BTRFS_I(inode)->root; 2936 struct btrfs_trans_handle *trans = NULL; 2937 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2938 struct extent_state *cached_state = NULL; 2939 struct new_sa_defrag_extent *new = NULL; 2940 int compress_type = 0; 2941 int ret = 0; 2942 u64 logical_len = ordered_extent->len; 2943 bool nolock; 2944 bool truncated = false; 2945 bool range_locked = false; 2946 bool clear_new_delalloc_bytes = false; 2947 2948 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2949 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2950 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2951 clear_new_delalloc_bytes = true; 2952 2953 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2954 2955 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2956 ret = -EIO; 2957 goto out; 2958 } 2959 2960 btrfs_free_io_failure_record(BTRFS_I(inode), 2961 ordered_extent->file_offset, 2962 ordered_extent->file_offset + 2963 ordered_extent->len - 1); 2964 2965 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2966 truncated = true; 2967 logical_len = ordered_extent->truncated_len; 2968 /* Truncated the entire extent, don't bother adding */ 2969 if (!logical_len) 2970 goto out; 2971 } 2972 2973 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2974 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2975 2976 /* 2977 * For mwrite(mmap + memset to write) case, we still reserve 2978 * space for NOCOW range. 2979 * As NOCOW won't cause a new delayed ref, just free the space 2980 */ 2981 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 2982 ordered_extent->len); 2983 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 2984 if (nolock) 2985 trans = btrfs_join_transaction_nolock(root); 2986 else 2987 trans = btrfs_join_transaction(root); 2988 if (IS_ERR(trans)) { 2989 ret = PTR_ERR(trans); 2990 trans = NULL; 2991 goto out; 2992 } 2993 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2994 ret = btrfs_update_inode_fallback(trans, root, inode); 2995 if (ret) /* -ENOMEM or corruption */ 2996 btrfs_abort_transaction(trans, ret); 2997 goto out; 2998 } 2999 3000 range_locked = true; 3001 lock_extent_bits(io_tree, ordered_extent->file_offset, 3002 ordered_extent->file_offset + ordered_extent->len - 1, 3003 &cached_state); 3004 3005 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3006 ordered_extent->file_offset + ordered_extent->len - 1, 3007 EXTENT_DEFRAG, 0, cached_state); 3008 if (ret) { 3009 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3010 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3011 /* the inode is shared */ 3012 new = record_old_file_extents(inode, ordered_extent); 3013 3014 clear_extent_bit(io_tree, ordered_extent->file_offset, 3015 ordered_extent->file_offset + ordered_extent->len - 1, 3016 EXTENT_DEFRAG, 0, 0, &cached_state); 3017 } 3018 3019 if (nolock) 3020 trans = btrfs_join_transaction_nolock(root); 3021 else 3022 trans = btrfs_join_transaction(root); 3023 if (IS_ERR(trans)) { 3024 ret = PTR_ERR(trans); 3025 trans = NULL; 3026 goto out; 3027 } 3028 3029 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3030 3031 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3032 compress_type = ordered_extent->compress_type; 3033 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3034 BUG_ON(compress_type); 3035 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3036 ordered_extent->len); 3037 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3038 ordered_extent->file_offset, 3039 ordered_extent->file_offset + 3040 logical_len); 3041 } else { 3042 BUG_ON(root == fs_info->tree_root); 3043 ret = insert_reserved_file_extent(trans, inode, 3044 ordered_extent->file_offset, 3045 ordered_extent->start, 3046 ordered_extent->disk_len, 3047 logical_len, logical_len, 3048 compress_type, 0, 0, 3049 BTRFS_FILE_EXTENT_REG); 3050 if (!ret) 3051 btrfs_release_delalloc_bytes(fs_info, 3052 ordered_extent->start, 3053 ordered_extent->disk_len); 3054 } 3055 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3056 ordered_extent->file_offset, ordered_extent->len, 3057 trans->transid); 3058 if (ret < 0) { 3059 btrfs_abort_transaction(trans, ret); 3060 goto out; 3061 } 3062 3063 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3064 if (ret) { 3065 btrfs_abort_transaction(trans, ret); 3066 goto out; 3067 } 3068 3069 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3070 ret = btrfs_update_inode_fallback(trans, root, inode); 3071 if (ret) { /* -ENOMEM or corruption */ 3072 btrfs_abort_transaction(trans, ret); 3073 goto out; 3074 } 3075 ret = 0; 3076 out: 3077 if (range_locked || clear_new_delalloc_bytes) { 3078 unsigned int clear_bits = 0; 3079 3080 if (range_locked) 3081 clear_bits |= EXTENT_LOCKED; 3082 if (clear_new_delalloc_bytes) 3083 clear_bits |= EXTENT_DELALLOC_NEW; 3084 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3085 ordered_extent->file_offset, 3086 ordered_extent->file_offset + 3087 ordered_extent->len - 1, 3088 clear_bits, 3089 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3090 0, &cached_state); 3091 } 3092 3093 if (trans) 3094 btrfs_end_transaction(trans); 3095 3096 if (ret || truncated) { 3097 u64 start, end; 3098 3099 if (truncated) 3100 start = ordered_extent->file_offset + logical_len; 3101 else 3102 start = ordered_extent->file_offset; 3103 end = ordered_extent->file_offset + ordered_extent->len - 1; 3104 clear_extent_uptodate(io_tree, start, end, NULL); 3105 3106 /* Drop the cache for the part of the extent we didn't write. */ 3107 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3108 3109 /* 3110 * If the ordered extent had an IOERR or something else went 3111 * wrong we need to return the space for this ordered extent 3112 * back to the allocator. We only free the extent in the 3113 * truncated case if we didn't write out the extent at all. 3114 */ 3115 if ((ret || !logical_len) && 3116 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3117 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3118 btrfs_free_reserved_extent(fs_info, 3119 ordered_extent->start, 3120 ordered_extent->disk_len, 1); 3121 } 3122 3123 3124 /* 3125 * This needs to be done to make sure anybody waiting knows we are done 3126 * updating everything for this ordered extent. 3127 */ 3128 btrfs_remove_ordered_extent(inode, ordered_extent); 3129 3130 /* for snapshot-aware defrag */ 3131 if (new) { 3132 if (ret) { 3133 free_sa_defrag_extent(new); 3134 atomic_dec(&fs_info->defrag_running); 3135 } else { 3136 relink_file_extents(new); 3137 } 3138 } 3139 3140 /* once for us */ 3141 btrfs_put_ordered_extent(ordered_extent); 3142 /* once for the tree */ 3143 btrfs_put_ordered_extent(ordered_extent); 3144 3145 /* Try to release some metadata so we don't get an OOM but don't wait */ 3146 btrfs_btree_balance_dirty_nodelay(fs_info); 3147 3148 return ret; 3149 } 3150 3151 static void finish_ordered_fn(struct btrfs_work *work) 3152 { 3153 struct btrfs_ordered_extent *ordered_extent; 3154 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3155 btrfs_finish_ordered_io(ordered_extent); 3156 } 3157 3158 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3159 struct extent_state *state, int uptodate) 3160 { 3161 struct inode *inode = page->mapping->host; 3162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3163 struct btrfs_ordered_extent *ordered_extent = NULL; 3164 struct btrfs_workqueue *wq; 3165 btrfs_work_func_t func; 3166 3167 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3168 3169 ClearPagePrivate2(page); 3170 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3171 end - start + 1, uptodate)) 3172 return; 3173 3174 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3175 wq = fs_info->endio_freespace_worker; 3176 func = btrfs_freespace_write_helper; 3177 } else { 3178 wq = fs_info->endio_write_workers; 3179 func = btrfs_endio_write_helper; 3180 } 3181 3182 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3183 NULL); 3184 btrfs_queue_work(wq, &ordered_extent->work); 3185 } 3186 3187 static int __readpage_endio_check(struct inode *inode, 3188 struct btrfs_io_bio *io_bio, 3189 int icsum, struct page *page, 3190 int pgoff, u64 start, size_t len) 3191 { 3192 char *kaddr; 3193 u32 csum_expected; 3194 u32 csum = ~(u32)0; 3195 3196 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3197 3198 kaddr = kmap_atomic(page); 3199 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3200 btrfs_csum_final(csum, (u8 *)&csum); 3201 if (csum != csum_expected) 3202 goto zeroit; 3203 3204 kunmap_atomic(kaddr); 3205 return 0; 3206 zeroit: 3207 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3208 io_bio->mirror_num); 3209 memset(kaddr + pgoff, 1, len); 3210 flush_dcache_page(page); 3211 kunmap_atomic(kaddr); 3212 return -EIO; 3213 } 3214 3215 /* 3216 * when reads are done, we need to check csums to verify the data is correct 3217 * if there's a match, we allow the bio to finish. If not, the code in 3218 * extent_io.c will try to find good copies for us. 3219 */ 3220 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3221 u64 phy_offset, struct page *page, 3222 u64 start, u64 end, int mirror) 3223 { 3224 size_t offset = start - page_offset(page); 3225 struct inode *inode = page->mapping->host; 3226 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3227 struct btrfs_root *root = BTRFS_I(inode)->root; 3228 3229 if (PageChecked(page)) { 3230 ClearPageChecked(page); 3231 return 0; 3232 } 3233 3234 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3235 return 0; 3236 3237 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3238 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3239 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3240 return 0; 3241 } 3242 3243 phy_offset >>= inode->i_sb->s_blocksize_bits; 3244 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3245 start, (size_t)(end - start + 1)); 3246 } 3247 3248 /* 3249 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3250 * 3251 * @inode: The inode we want to perform iput on 3252 * 3253 * This function uses the generic vfs_inode::i_count to track whether we should 3254 * just decrement it (in case it's > 1) or if this is the last iput then link 3255 * the inode to the delayed iput machinery. Delayed iputs are processed at 3256 * transaction commit time/superblock commit/cleaner kthread. 3257 */ 3258 void btrfs_add_delayed_iput(struct inode *inode) 3259 { 3260 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3261 struct btrfs_inode *binode = BTRFS_I(inode); 3262 3263 if (atomic_add_unless(&inode->i_count, -1, 1)) 3264 return; 3265 3266 spin_lock(&fs_info->delayed_iput_lock); 3267 ASSERT(list_empty(&binode->delayed_iput)); 3268 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3269 spin_unlock(&fs_info->delayed_iput_lock); 3270 } 3271 3272 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3273 { 3274 3275 spin_lock(&fs_info->delayed_iput_lock); 3276 while (!list_empty(&fs_info->delayed_iputs)) { 3277 struct btrfs_inode *inode; 3278 3279 inode = list_first_entry(&fs_info->delayed_iputs, 3280 struct btrfs_inode, delayed_iput); 3281 list_del_init(&inode->delayed_iput); 3282 spin_unlock(&fs_info->delayed_iput_lock); 3283 iput(&inode->vfs_inode); 3284 spin_lock(&fs_info->delayed_iput_lock); 3285 } 3286 spin_unlock(&fs_info->delayed_iput_lock); 3287 } 3288 3289 /* 3290 * This creates an orphan entry for the given inode in case something goes wrong 3291 * in the middle of an unlink. 3292 */ 3293 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3294 struct btrfs_inode *inode) 3295 { 3296 int ret; 3297 3298 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3299 if (ret && ret != -EEXIST) { 3300 btrfs_abort_transaction(trans, ret); 3301 return ret; 3302 } 3303 3304 return 0; 3305 } 3306 3307 /* 3308 * We have done the delete so we can go ahead and remove the orphan item for 3309 * this particular inode. 3310 */ 3311 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3312 struct btrfs_inode *inode) 3313 { 3314 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3315 } 3316 3317 /* 3318 * this cleans up any orphans that may be left on the list from the last use 3319 * of this root. 3320 */ 3321 int btrfs_orphan_cleanup(struct btrfs_root *root) 3322 { 3323 struct btrfs_fs_info *fs_info = root->fs_info; 3324 struct btrfs_path *path; 3325 struct extent_buffer *leaf; 3326 struct btrfs_key key, found_key; 3327 struct btrfs_trans_handle *trans; 3328 struct inode *inode; 3329 u64 last_objectid = 0; 3330 int ret = 0, nr_unlink = 0; 3331 3332 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3333 return 0; 3334 3335 path = btrfs_alloc_path(); 3336 if (!path) { 3337 ret = -ENOMEM; 3338 goto out; 3339 } 3340 path->reada = READA_BACK; 3341 3342 key.objectid = BTRFS_ORPHAN_OBJECTID; 3343 key.type = BTRFS_ORPHAN_ITEM_KEY; 3344 key.offset = (u64)-1; 3345 3346 while (1) { 3347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3348 if (ret < 0) 3349 goto out; 3350 3351 /* 3352 * if ret == 0 means we found what we were searching for, which 3353 * is weird, but possible, so only screw with path if we didn't 3354 * find the key and see if we have stuff that matches 3355 */ 3356 if (ret > 0) { 3357 ret = 0; 3358 if (path->slots[0] == 0) 3359 break; 3360 path->slots[0]--; 3361 } 3362 3363 /* pull out the item */ 3364 leaf = path->nodes[0]; 3365 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3366 3367 /* make sure the item matches what we want */ 3368 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3369 break; 3370 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3371 break; 3372 3373 /* release the path since we're done with it */ 3374 btrfs_release_path(path); 3375 3376 /* 3377 * this is where we are basically btrfs_lookup, without the 3378 * crossing root thing. we store the inode number in the 3379 * offset of the orphan item. 3380 */ 3381 3382 if (found_key.offset == last_objectid) { 3383 btrfs_err(fs_info, 3384 "Error removing orphan entry, stopping orphan cleanup"); 3385 ret = -EINVAL; 3386 goto out; 3387 } 3388 3389 last_objectid = found_key.offset; 3390 3391 found_key.objectid = found_key.offset; 3392 found_key.type = BTRFS_INODE_ITEM_KEY; 3393 found_key.offset = 0; 3394 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3395 ret = PTR_ERR_OR_ZERO(inode); 3396 if (ret && ret != -ENOENT) 3397 goto out; 3398 3399 if (ret == -ENOENT && root == fs_info->tree_root) { 3400 struct btrfs_root *dead_root; 3401 struct btrfs_fs_info *fs_info = root->fs_info; 3402 int is_dead_root = 0; 3403 3404 /* 3405 * this is an orphan in the tree root. Currently these 3406 * could come from 2 sources: 3407 * a) a snapshot deletion in progress 3408 * b) a free space cache inode 3409 * We need to distinguish those two, as the snapshot 3410 * orphan must not get deleted. 3411 * find_dead_roots already ran before us, so if this 3412 * is a snapshot deletion, we should find the root 3413 * in the dead_roots list 3414 */ 3415 spin_lock(&fs_info->trans_lock); 3416 list_for_each_entry(dead_root, &fs_info->dead_roots, 3417 root_list) { 3418 if (dead_root->root_key.objectid == 3419 found_key.objectid) { 3420 is_dead_root = 1; 3421 break; 3422 } 3423 } 3424 spin_unlock(&fs_info->trans_lock); 3425 if (is_dead_root) { 3426 /* prevent this orphan from being found again */ 3427 key.offset = found_key.objectid - 1; 3428 continue; 3429 } 3430 3431 } 3432 3433 /* 3434 * If we have an inode with links, there are a couple of 3435 * possibilities. Old kernels (before v3.12) used to create an 3436 * orphan item for truncate indicating that there were possibly 3437 * extent items past i_size that needed to be deleted. In v3.12, 3438 * truncate was changed to update i_size in sync with the extent 3439 * items, but the (useless) orphan item was still created. Since 3440 * v4.18, we don't create the orphan item for truncate at all. 3441 * 3442 * So, this item could mean that we need to do a truncate, but 3443 * only if this filesystem was last used on a pre-v3.12 kernel 3444 * and was not cleanly unmounted. The odds of that are quite 3445 * slim, and it's a pain to do the truncate now, so just delete 3446 * the orphan item. 3447 * 3448 * It's also possible that this orphan item was supposed to be 3449 * deleted but wasn't. The inode number may have been reused, 3450 * but either way, we can delete the orphan item. 3451 */ 3452 if (ret == -ENOENT || inode->i_nlink) { 3453 if (!ret) 3454 iput(inode); 3455 trans = btrfs_start_transaction(root, 1); 3456 if (IS_ERR(trans)) { 3457 ret = PTR_ERR(trans); 3458 goto out; 3459 } 3460 btrfs_debug(fs_info, "auto deleting %Lu", 3461 found_key.objectid); 3462 ret = btrfs_del_orphan_item(trans, root, 3463 found_key.objectid); 3464 btrfs_end_transaction(trans); 3465 if (ret) 3466 goto out; 3467 continue; 3468 } 3469 3470 nr_unlink++; 3471 3472 /* this will do delete_inode and everything for us */ 3473 iput(inode); 3474 if (ret) 3475 goto out; 3476 } 3477 /* release the path since we're done with it */ 3478 btrfs_release_path(path); 3479 3480 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3481 3482 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3483 trans = btrfs_join_transaction(root); 3484 if (!IS_ERR(trans)) 3485 btrfs_end_transaction(trans); 3486 } 3487 3488 if (nr_unlink) 3489 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3490 3491 out: 3492 if (ret) 3493 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3494 btrfs_free_path(path); 3495 return ret; 3496 } 3497 3498 /* 3499 * very simple check to peek ahead in the leaf looking for xattrs. If we 3500 * don't find any xattrs, we know there can't be any acls. 3501 * 3502 * slot is the slot the inode is in, objectid is the objectid of the inode 3503 */ 3504 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3505 int slot, u64 objectid, 3506 int *first_xattr_slot) 3507 { 3508 u32 nritems = btrfs_header_nritems(leaf); 3509 struct btrfs_key found_key; 3510 static u64 xattr_access = 0; 3511 static u64 xattr_default = 0; 3512 int scanned = 0; 3513 3514 if (!xattr_access) { 3515 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3516 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3517 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3518 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3519 } 3520 3521 slot++; 3522 *first_xattr_slot = -1; 3523 while (slot < nritems) { 3524 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3525 3526 /* we found a different objectid, there must not be acls */ 3527 if (found_key.objectid != objectid) 3528 return 0; 3529 3530 /* we found an xattr, assume we've got an acl */ 3531 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3532 if (*first_xattr_slot == -1) 3533 *first_xattr_slot = slot; 3534 if (found_key.offset == xattr_access || 3535 found_key.offset == xattr_default) 3536 return 1; 3537 } 3538 3539 /* 3540 * we found a key greater than an xattr key, there can't 3541 * be any acls later on 3542 */ 3543 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3544 return 0; 3545 3546 slot++; 3547 scanned++; 3548 3549 /* 3550 * it goes inode, inode backrefs, xattrs, extents, 3551 * so if there are a ton of hard links to an inode there can 3552 * be a lot of backrefs. Don't waste time searching too hard, 3553 * this is just an optimization 3554 */ 3555 if (scanned >= 8) 3556 break; 3557 } 3558 /* we hit the end of the leaf before we found an xattr or 3559 * something larger than an xattr. We have to assume the inode 3560 * has acls 3561 */ 3562 if (*first_xattr_slot == -1) 3563 *first_xattr_slot = slot; 3564 return 1; 3565 } 3566 3567 /* 3568 * read an inode from the btree into the in-memory inode 3569 */ 3570 static int btrfs_read_locked_inode(struct inode *inode) 3571 { 3572 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3573 struct btrfs_path *path; 3574 struct extent_buffer *leaf; 3575 struct btrfs_inode_item *inode_item; 3576 struct btrfs_root *root = BTRFS_I(inode)->root; 3577 struct btrfs_key location; 3578 unsigned long ptr; 3579 int maybe_acls; 3580 u32 rdev; 3581 int ret; 3582 bool filled = false; 3583 int first_xattr_slot; 3584 3585 ret = btrfs_fill_inode(inode, &rdev); 3586 if (!ret) 3587 filled = true; 3588 3589 path = btrfs_alloc_path(); 3590 if (!path) 3591 return -ENOMEM; 3592 3593 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3594 3595 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3596 if (ret) { 3597 btrfs_free_path(path); 3598 return ret; 3599 } 3600 3601 leaf = path->nodes[0]; 3602 3603 if (filled) 3604 goto cache_index; 3605 3606 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3607 struct btrfs_inode_item); 3608 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3609 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3610 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3611 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3612 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3613 3614 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3615 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3616 3617 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3618 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3619 3620 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3621 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3622 3623 BTRFS_I(inode)->i_otime.tv_sec = 3624 btrfs_timespec_sec(leaf, &inode_item->otime); 3625 BTRFS_I(inode)->i_otime.tv_nsec = 3626 btrfs_timespec_nsec(leaf, &inode_item->otime); 3627 3628 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3629 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3630 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3631 3632 inode_set_iversion_queried(inode, 3633 btrfs_inode_sequence(leaf, inode_item)); 3634 inode->i_generation = BTRFS_I(inode)->generation; 3635 inode->i_rdev = 0; 3636 rdev = btrfs_inode_rdev(leaf, inode_item); 3637 3638 BTRFS_I(inode)->index_cnt = (u64)-1; 3639 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3640 3641 cache_index: 3642 /* 3643 * If we were modified in the current generation and evicted from memory 3644 * and then re-read we need to do a full sync since we don't have any 3645 * idea about which extents were modified before we were evicted from 3646 * cache. 3647 * 3648 * This is required for both inode re-read from disk and delayed inode 3649 * in delayed_nodes_tree. 3650 */ 3651 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3652 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3653 &BTRFS_I(inode)->runtime_flags); 3654 3655 /* 3656 * We don't persist the id of the transaction where an unlink operation 3657 * against the inode was last made. So here we assume the inode might 3658 * have been evicted, and therefore the exact value of last_unlink_trans 3659 * lost, and set it to last_trans to avoid metadata inconsistencies 3660 * between the inode and its parent if the inode is fsync'ed and the log 3661 * replayed. For example, in the scenario: 3662 * 3663 * touch mydir/foo 3664 * ln mydir/foo mydir/bar 3665 * sync 3666 * unlink mydir/bar 3667 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3668 * xfs_io -c fsync mydir/foo 3669 * <power failure> 3670 * mount fs, triggers fsync log replay 3671 * 3672 * We must make sure that when we fsync our inode foo we also log its 3673 * parent inode, otherwise after log replay the parent still has the 3674 * dentry with the "bar" name but our inode foo has a link count of 1 3675 * and doesn't have an inode ref with the name "bar" anymore. 3676 * 3677 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3678 * but it guarantees correctness at the expense of occasional full 3679 * transaction commits on fsync if our inode is a directory, or if our 3680 * inode is not a directory, logging its parent unnecessarily. 3681 */ 3682 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3683 3684 path->slots[0]++; 3685 if (inode->i_nlink != 1 || 3686 path->slots[0] >= btrfs_header_nritems(leaf)) 3687 goto cache_acl; 3688 3689 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3690 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3691 goto cache_acl; 3692 3693 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3694 if (location.type == BTRFS_INODE_REF_KEY) { 3695 struct btrfs_inode_ref *ref; 3696 3697 ref = (struct btrfs_inode_ref *)ptr; 3698 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3699 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3700 struct btrfs_inode_extref *extref; 3701 3702 extref = (struct btrfs_inode_extref *)ptr; 3703 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3704 extref); 3705 } 3706 cache_acl: 3707 /* 3708 * try to precache a NULL acl entry for files that don't have 3709 * any xattrs or acls 3710 */ 3711 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3712 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3713 if (first_xattr_slot != -1) { 3714 path->slots[0] = first_xattr_slot; 3715 ret = btrfs_load_inode_props(inode, path); 3716 if (ret) 3717 btrfs_err(fs_info, 3718 "error loading props for ino %llu (root %llu): %d", 3719 btrfs_ino(BTRFS_I(inode)), 3720 root->root_key.objectid, ret); 3721 } 3722 btrfs_free_path(path); 3723 3724 if (!maybe_acls) 3725 cache_no_acl(inode); 3726 3727 switch (inode->i_mode & S_IFMT) { 3728 case S_IFREG: 3729 inode->i_mapping->a_ops = &btrfs_aops; 3730 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3731 inode->i_fop = &btrfs_file_operations; 3732 inode->i_op = &btrfs_file_inode_operations; 3733 break; 3734 case S_IFDIR: 3735 inode->i_fop = &btrfs_dir_file_operations; 3736 inode->i_op = &btrfs_dir_inode_operations; 3737 break; 3738 case S_IFLNK: 3739 inode->i_op = &btrfs_symlink_inode_operations; 3740 inode_nohighmem(inode); 3741 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3742 break; 3743 default: 3744 inode->i_op = &btrfs_special_inode_operations; 3745 init_special_inode(inode, inode->i_mode, rdev); 3746 break; 3747 } 3748 3749 btrfs_sync_inode_flags_to_i_flags(inode); 3750 return 0; 3751 } 3752 3753 /* 3754 * given a leaf and an inode, copy the inode fields into the leaf 3755 */ 3756 static void fill_inode_item(struct btrfs_trans_handle *trans, 3757 struct extent_buffer *leaf, 3758 struct btrfs_inode_item *item, 3759 struct inode *inode) 3760 { 3761 struct btrfs_map_token token; 3762 3763 btrfs_init_map_token(&token); 3764 3765 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3766 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3767 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3768 &token); 3769 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3770 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3771 3772 btrfs_set_token_timespec_sec(leaf, &item->atime, 3773 inode->i_atime.tv_sec, &token); 3774 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3775 inode->i_atime.tv_nsec, &token); 3776 3777 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3778 inode->i_mtime.tv_sec, &token); 3779 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3780 inode->i_mtime.tv_nsec, &token); 3781 3782 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3783 inode->i_ctime.tv_sec, &token); 3784 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3785 inode->i_ctime.tv_nsec, &token); 3786 3787 btrfs_set_token_timespec_sec(leaf, &item->otime, 3788 BTRFS_I(inode)->i_otime.tv_sec, &token); 3789 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3790 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3791 3792 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3793 &token); 3794 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3795 &token); 3796 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3797 &token); 3798 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3799 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3800 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3801 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3802 } 3803 3804 /* 3805 * copy everything in the in-memory inode into the btree. 3806 */ 3807 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3808 struct btrfs_root *root, struct inode *inode) 3809 { 3810 struct btrfs_inode_item *inode_item; 3811 struct btrfs_path *path; 3812 struct extent_buffer *leaf; 3813 int ret; 3814 3815 path = btrfs_alloc_path(); 3816 if (!path) 3817 return -ENOMEM; 3818 3819 path->leave_spinning = 1; 3820 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3821 1); 3822 if (ret) { 3823 if (ret > 0) 3824 ret = -ENOENT; 3825 goto failed; 3826 } 3827 3828 leaf = path->nodes[0]; 3829 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3830 struct btrfs_inode_item); 3831 3832 fill_inode_item(trans, leaf, inode_item, inode); 3833 btrfs_mark_buffer_dirty(leaf); 3834 btrfs_set_inode_last_trans(trans, inode); 3835 ret = 0; 3836 failed: 3837 btrfs_free_path(path); 3838 return ret; 3839 } 3840 3841 /* 3842 * copy everything in the in-memory inode into the btree. 3843 */ 3844 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3845 struct btrfs_root *root, struct inode *inode) 3846 { 3847 struct btrfs_fs_info *fs_info = root->fs_info; 3848 int ret; 3849 3850 /* 3851 * If the inode is a free space inode, we can deadlock during commit 3852 * if we put it into the delayed code. 3853 * 3854 * The data relocation inode should also be directly updated 3855 * without delay 3856 */ 3857 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3858 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3859 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3860 btrfs_update_root_times(trans, root); 3861 3862 ret = btrfs_delayed_update_inode(trans, root, inode); 3863 if (!ret) 3864 btrfs_set_inode_last_trans(trans, inode); 3865 return ret; 3866 } 3867 3868 return btrfs_update_inode_item(trans, root, inode); 3869 } 3870 3871 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3872 struct btrfs_root *root, 3873 struct inode *inode) 3874 { 3875 int ret; 3876 3877 ret = btrfs_update_inode(trans, root, inode); 3878 if (ret == -ENOSPC) 3879 return btrfs_update_inode_item(trans, root, inode); 3880 return ret; 3881 } 3882 3883 /* 3884 * unlink helper that gets used here in inode.c and in the tree logging 3885 * recovery code. It remove a link in a directory with a given name, and 3886 * also drops the back refs in the inode to the directory 3887 */ 3888 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3889 struct btrfs_root *root, 3890 struct btrfs_inode *dir, 3891 struct btrfs_inode *inode, 3892 const char *name, int name_len) 3893 { 3894 struct btrfs_fs_info *fs_info = root->fs_info; 3895 struct btrfs_path *path; 3896 int ret = 0; 3897 struct extent_buffer *leaf; 3898 struct btrfs_dir_item *di; 3899 struct btrfs_key key; 3900 u64 index; 3901 u64 ino = btrfs_ino(inode); 3902 u64 dir_ino = btrfs_ino(dir); 3903 3904 path = btrfs_alloc_path(); 3905 if (!path) { 3906 ret = -ENOMEM; 3907 goto out; 3908 } 3909 3910 path->leave_spinning = 1; 3911 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3912 name, name_len, -1); 3913 if (IS_ERR(di)) { 3914 ret = PTR_ERR(di); 3915 goto err; 3916 } 3917 if (!di) { 3918 ret = -ENOENT; 3919 goto err; 3920 } 3921 leaf = path->nodes[0]; 3922 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3923 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3924 if (ret) 3925 goto err; 3926 btrfs_release_path(path); 3927 3928 /* 3929 * If we don't have dir index, we have to get it by looking up 3930 * the inode ref, since we get the inode ref, remove it directly, 3931 * it is unnecessary to do delayed deletion. 3932 * 3933 * But if we have dir index, needn't search inode ref to get it. 3934 * Since the inode ref is close to the inode item, it is better 3935 * that we delay to delete it, and just do this deletion when 3936 * we update the inode item. 3937 */ 3938 if (inode->dir_index) { 3939 ret = btrfs_delayed_delete_inode_ref(inode); 3940 if (!ret) { 3941 index = inode->dir_index; 3942 goto skip_backref; 3943 } 3944 } 3945 3946 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3947 dir_ino, &index); 3948 if (ret) { 3949 btrfs_info(fs_info, 3950 "failed to delete reference to %.*s, inode %llu parent %llu", 3951 name_len, name, ino, dir_ino); 3952 btrfs_abort_transaction(trans, ret); 3953 goto err; 3954 } 3955 skip_backref: 3956 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3957 if (ret) { 3958 btrfs_abort_transaction(trans, ret); 3959 goto err; 3960 } 3961 3962 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3963 dir_ino); 3964 if (ret != 0 && ret != -ENOENT) { 3965 btrfs_abort_transaction(trans, ret); 3966 goto err; 3967 } 3968 3969 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3970 index); 3971 if (ret == -ENOENT) 3972 ret = 0; 3973 else if (ret) 3974 btrfs_abort_transaction(trans, ret); 3975 err: 3976 btrfs_free_path(path); 3977 if (ret) 3978 goto out; 3979 3980 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3981 inode_inc_iversion(&inode->vfs_inode); 3982 inode_inc_iversion(&dir->vfs_inode); 3983 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3984 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3985 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3986 out: 3987 return ret; 3988 } 3989 3990 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3991 struct btrfs_root *root, 3992 struct btrfs_inode *dir, struct btrfs_inode *inode, 3993 const char *name, int name_len) 3994 { 3995 int ret; 3996 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3997 if (!ret) { 3998 drop_nlink(&inode->vfs_inode); 3999 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4000 } 4001 return ret; 4002 } 4003 4004 /* 4005 * helper to start transaction for unlink and rmdir. 4006 * 4007 * unlink and rmdir are special in btrfs, they do not always free space, so 4008 * if we cannot make our reservations the normal way try and see if there is 4009 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4010 * allow the unlink to occur. 4011 */ 4012 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4013 { 4014 struct btrfs_root *root = BTRFS_I(dir)->root; 4015 4016 /* 4017 * 1 for the possible orphan item 4018 * 1 for the dir item 4019 * 1 for the dir index 4020 * 1 for the inode ref 4021 * 1 for the inode 4022 */ 4023 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4024 } 4025 4026 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4027 { 4028 struct btrfs_root *root = BTRFS_I(dir)->root; 4029 struct btrfs_trans_handle *trans; 4030 struct inode *inode = d_inode(dentry); 4031 int ret; 4032 4033 trans = __unlink_start_trans(dir); 4034 if (IS_ERR(trans)) 4035 return PTR_ERR(trans); 4036 4037 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4038 0); 4039 4040 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4041 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4042 dentry->d_name.len); 4043 if (ret) 4044 goto out; 4045 4046 if (inode->i_nlink == 0) { 4047 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4048 if (ret) 4049 goto out; 4050 } 4051 4052 out: 4053 btrfs_end_transaction(trans); 4054 btrfs_btree_balance_dirty(root->fs_info); 4055 return ret; 4056 } 4057 4058 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4059 struct inode *dir, u64 objectid, 4060 const char *name, int name_len) 4061 { 4062 struct btrfs_root *root = BTRFS_I(dir)->root; 4063 struct btrfs_path *path; 4064 struct extent_buffer *leaf; 4065 struct btrfs_dir_item *di; 4066 struct btrfs_key key; 4067 u64 index; 4068 int ret; 4069 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4070 4071 path = btrfs_alloc_path(); 4072 if (!path) 4073 return -ENOMEM; 4074 4075 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4076 name, name_len, -1); 4077 if (IS_ERR_OR_NULL(di)) { 4078 if (!di) 4079 ret = -ENOENT; 4080 else 4081 ret = PTR_ERR(di); 4082 goto out; 4083 } 4084 4085 leaf = path->nodes[0]; 4086 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4087 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4088 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4089 if (ret) { 4090 btrfs_abort_transaction(trans, ret); 4091 goto out; 4092 } 4093 btrfs_release_path(path); 4094 4095 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid, 4096 dir_ino, &index, name, name_len); 4097 if (ret < 0) { 4098 if (ret != -ENOENT) { 4099 btrfs_abort_transaction(trans, ret); 4100 goto out; 4101 } 4102 di = btrfs_search_dir_index_item(root, path, dir_ino, 4103 name, name_len); 4104 if (IS_ERR_OR_NULL(di)) { 4105 if (!di) 4106 ret = -ENOENT; 4107 else 4108 ret = PTR_ERR(di); 4109 btrfs_abort_transaction(trans, ret); 4110 goto out; 4111 } 4112 4113 leaf = path->nodes[0]; 4114 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4115 index = key.offset; 4116 } 4117 btrfs_release_path(path); 4118 4119 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4120 if (ret) { 4121 btrfs_abort_transaction(trans, ret); 4122 goto out; 4123 } 4124 4125 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4126 inode_inc_iversion(dir); 4127 dir->i_mtime = dir->i_ctime = current_time(dir); 4128 ret = btrfs_update_inode_fallback(trans, root, dir); 4129 if (ret) 4130 btrfs_abort_transaction(trans, ret); 4131 out: 4132 btrfs_free_path(path); 4133 return ret; 4134 } 4135 4136 /* 4137 * Helper to check if the subvolume references other subvolumes or if it's 4138 * default. 4139 */ 4140 static noinline int may_destroy_subvol(struct btrfs_root *root) 4141 { 4142 struct btrfs_fs_info *fs_info = root->fs_info; 4143 struct btrfs_path *path; 4144 struct btrfs_dir_item *di; 4145 struct btrfs_key key; 4146 u64 dir_id; 4147 int ret; 4148 4149 path = btrfs_alloc_path(); 4150 if (!path) 4151 return -ENOMEM; 4152 4153 /* Make sure this root isn't set as the default subvol */ 4154 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4155 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4156 dir_id, "default", 7, 0); 4157 if (di && !IS_ERR(di)) { 4158 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4159 if (key.objectid == root->root_key.objectid) { 4160 ret = -EPERM; 4161 btrfs_err(fs_info, 4162 "deleting default subvolume %llu is not allowed", 4163 key.objectid); 4164 goto out; 4165 } 4166 btrfs_release_path(path); 4167 } 4168 4169 key.objectid = root->root_key.objectid; 4170 key.type = BTRFS_ROOT_REF_KEY; 4171 key.offset = (u64)-1; 4172 4173 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4174 if (ret < 0) 4175 goto out; 4176 BUG_ON(ret == 0); 4177 4178 ret = 0; 4179 if (path->slots[0] > 0) { 4180 path->slots[0]--; 4181 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4182 if (key.objectid == root->root_key.objectid && 4183 key.type == BTRFS_ROOT_REF_KEY) 4184 ret = -ENOTEMPTY; 4185 } 4186 out: 4187 btrfs_free_path(path); 4188 return ret; 4189 } 4190 4191 /* Delete all dentries for inodes belonging to the root */ 4192 static void btrfs_prune_dentries(struct btrfs_root *root) 4193 { 4194 struct btrfs_fs_info *fs_info = root->fs_info; 4195 struct rb_node *node; 4196 struct rb_node *prev; 4197 struct btrfs_inode *entry; 4198 struct inode *inode; 4199 u64 objectid = 0; 4200 4201 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4202 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4203 4204 spin_lock(&root->inode_lock); 4205 again: 4206 node = root->inode_tree.rb_node; 4207 prev = NULL; 4208 while (node) { 4209 prev = node; 4210 entry = rb_entry(node, struct btrfs_inode, rb_node); 4211 4212 if (objectid < btrfs_ino(entry)) 4213 node = node->rb_left; 4214 else if (objectid > btrfs_ino(entry)) 4215 node = node->rb_right; 4216 else 4217 break; 4218 } 4219 if (!node) { 4220 while (prev) { 4221 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4222 if (objectid <= btrfs_ino(entry)) { 4223 node = prev; 4224 break; 4225 } 4226 prev = rb_next(prev); 4227 } 4228 } 4229 while (node) { 4230 entry = rb_entry(node, struct btrfs_inode, rb_node); 4231 objectid = btrfs_ino(entry) + 1; 4232 inode = igrab(&entry->vfs_inode); 4233 if (inode) { 4234 spin_unlock(&root->inode_lock); 4235 if (atomic_read(&inode->i_count) > 1) 4236 d_prune_aliases(inode); 4237 /* 4238 * btrfs_drop_inode will have it removed from the inode 4239 * cache when its usage count hits zero. 4240 */ 4241 iput(inode); 4242 cond_resched(); 4243 spin_lock(&root->inode_lock); 4244 goto again; 4245 } 4246 4247 if (cond_resched_lock(&root->inode_lock)) 4248 goto again; 4249 4250 node = rb_next(node); 4251 } 4252 spin_unlock(&root->inode_lock); 4253 } 4254 4255 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4256 { 4257 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4258 struct btrfs_root *root = BTRFS_I(dir)->root; 4259 struct inode *inode = d_inode(dentry); 4260 struct btrfs_root *dest = BTRFS_I(inode)->root; 4261 struct btrfs_trans_handle *trans; 4262 struct btrfs_block_rsv block_rsv; 4263 u64 root_flags; 4264 int ret; 4265 int err; 4266 4267 /* 4268 * Don't allow to delete a subvolume with send in progress. This is 4269 * inside the inode lock so the error handling that has to drop the bit 4270 * again is not run concurrently. 4271 */ 4272 spin_lock(&dest->root_item_lock); 4273 root_flags = btrfs_root_flags(&dest->root_item); 4274 if (dest->send_in_progress == 0) { 4275 btrfs_set_root_flags(&dest->root_item, 4276 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4277 spin_unlock(&dest->root_item_lock); 4278 } else { 4279 spin_unlock(&dest->root_item_lock); 4280 btrfs_warn(fs_info, 4281 "attempt to delete subvolume %llu during send", 4282 dest->root_key.objectid); 4283 return -EPERM; 4284 } 4285 4286 down_write(&fs_info->subvol_sem); 4287 4288 err = may_destroy_subvol(dest); 4289 if (err) 4290 goto out_up_write; 4291 4292 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4293 /* 4294 * One for dir inode, 4295 * two for dir entries, 4296 * two for root ref/backref. 4297 */ 4298 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4299 if (err) 4300 goto out_up_write; 4301 4302 trans = btrfs_start_transaction(root, 0); 4303 if (IS_ERR(trans)) { 4304 err = PTR_ERR(trans); 4305 goto out_release; 4306 } 4307 trans->block_rsv = &block_rsv; 4308 trans->bytes_reserved = block_rsv.size; 4309 4310 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4311 4312 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid, 4313 dentry->d_name.name, dentry->d_name.len); 4314 if (ret) { 4315 err = ret; 4316 btrfs_abort_transaction(trans, ret); 4317 goto out_end_trans; 4318 } 4319 4320 btrfs_record_root_in_trans(trans, dest); 4321 4322 memset(&dest->root_item.drop_progress, 0, 4323 sizeof(dest->root_item.drop_progress)); 4324 dest->root_item.drop_level = 0; 4325 btrfs_set_root_refs(&dest->root_item, 0); 4326 4327 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4328 ret = btrfs_insert_orphan_item(trans, 4329 fs_info->tree_root, 4330 dest->root_key.objectid); 4331 if (ret) { 4332 btrfs_abort_transaction(trans, ret); 4333 err = ret; 4334 goto out_end_trans; 4335 } 4336 } 4337 4338 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4339 BTRFS_UUID_KEY_SUBVOL, 4340 dest->root_key.objectid); 4341 if (ret && ret != -ENOENT) { 4342 btrfs_abort_transaction(trans, ret); 4343 err = ret; 4344 goto out_end_trans; 4345 } 4346 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4347 ret = btrfs_uuid_tree_remove(trans, 4348 dest->root_item.received_uuid, 4349 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4350 dest->root_key.objectid); 4351 if (ret && ret != -ENOENT) { 4352 btrfs_abort_transaction(trans, ret); 4353 err = ret; 4354 goto out_end_trans; 4355 } 4356 } 4357 4358 out_end_trans: 4359 trans->block_rsv = NULL; 4360 trans->bytes_reserved = 0; 4361 ret = btrfs_end_transaction(trans); 4362 if (ret && !err) 4363 err = ret; 4364 inode->i_flags |= S_DEAD; 4365 out_release: 4366 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4367 out_up_write: 4368 up_write(&fs_info->subvol_sem); 4369 if (err) { 4370 spin_lock(&dest->root_item_lock); 4371 root_flags = btrfs_root_flags(&dest->root_item); 4372 btrfs_set_root_flags(&dest->root_item, 4373 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4374 spin_unlock(&dest->root_item_lock); 4375 } else { 4376 d_invalidate(dentry); 4377 btrfs_prune_dentries(dest); 4378 ASSERT(dest->send_in_progress == 0); 4379 4380 /* the last ref */ 4381 if (dest->ino_cache_inode) { 4382 iput(dest->ino_cache_inode); 4383 dest->ino_cache_inode = NULL; 4384 } 4385 } 4386 4387 return err; 4388 } 4389 4390 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4391 { 4392 struct inode *inode = d_inode(dentry); 4393 int err = 0; 4394 struct btrfs_root *root = BTRFS_I(dir)->root; 4395 struct btrfs_trans_handle *trans; 4396 u64 last_unlink_trans; 4397 4398 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4399 return -ENOTEMPTY; 4400 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4401 return btrfs_delete_subvolume(dir, dentry); 4402 4403 trans = __unlink_start_trans(dir); 4404 if (IS_ERR(trans)) 4405 return PTR_ERR(trans); 4406 4407 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4408 err = btrfs_unlink_subvol(trans, dir, 4409 BTRFS_I(inode)->location.objectid, 4410 dentry->d_name.name, 4411 dentry->d_name.len); 4412 goto out; 4413 } 4414 4415 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4416 if (err) 4417 goto out; 4418 4419 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4420 4421 /* now the directory is empty */ 4422 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4423 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4424 dentry->d_name.len); 4425 if (!err) { 4426 btrfs_i_size_write(BTRFS_I(inode), 0); 4427 /* 4428 * Propagate the last_unlink_trans value of the deleted dir to 4429 * its parent directory. This is to prevent an unrecoverable 4430 * log tree in the case we do something like this: 4431 * 1) create dir foo 4432 * 2) create snapshot under dir foo 4433 * 3) delete the snapshot 4434 * 4) rmdir foo 4435 * 5) mkdir foo 4436 * 6) fsync foo or some file inside foo 4437 */ 4438 if (last_unlink_trans >= trans->transid) 4439 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4440 } 4441 out: 4442 btrfs_end_transaction(trans); 4443 btrfs_btree_balance_dirty(root->fs_info); 4444 4445 return err; 4446 } 4447 4448 static int truncate_space_check(struct btrfs_trans_handle *trans, 4449 struct btrfs_root *root, 4450 u64 bytes_deleted) 4451 { 4452 struct btrfs_fs_info *fs_info = root->fs_info; 4453 int ret; 4454 4455 /* 4456 * This is only used to apply pressure to the enospc system, we don't 4457 * intend to use this reservation at all. 4458 */ 4459 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4460 bytes_deleted *= fs_info->nodesize; 4461 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4462 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4463 if (!ret) { 4464 trace_btrfs_space_reservation(fs_info, "transaction", 4465 trans->transid, 4466 bytes_deleted, 1); 4467 trans->bytes_reserved += bytes_deleted; 4468 } 4469 return ret; 4470 4471 } 4472 4473 /* 4474 * Return this if we need to call truncate_block for the last bit of the 4475 * truncate. 4476 */ 4477 #define NEED_TRUNCATE_BLOCK 1 4478 4479 /* 4480 * this can truncate away extent items, csum items and directory items. 4481 * It starts at a high offset and removes keys until it can't find 4482 * any higher than new_size 4483 * 4484 * csum items that cross the new i_size are truncated to the new size 4485 * as well. 4486 * 4487 * min_type is the minimum key type to truncate down to. If set to 0, this 4488 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4489 */ 4490 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4491 struct btrfs_root *root, 4492 struct inode *inode, 4493 u64 new_size, u32 min_type) 4494 { 4495 struct btrfs_fs_info *fs_info = root->fs_info; 4496 struct btrfs_path *path; 4497 struct extent_buffer *leaf; 4498 struct btrfs_file_extent_item *fi; 4499 struct btrfs_key key; 4500 struct btrfs_key found_key; 4501 u64 extent_start = 0; 4502 u64 extent_num_bytes = 0; 4503 u64 extent_offset = 0; 4504 u64 item_end = 0; 4505 u64 last_size = new_size; 4506 u32 found_type = (u8)-1; 4507 int found_extent; 4508 int del_item; 4509 int pending_del_nr = 0; 4510 int pending_del_slot = 0; 4511 int extent_type = -1; 4512 int ret; 4513 u64 ino = btrfs_ino(BTRFS_I(inode)); 4514 u64 bytes_deleted = 0; 4515 bool be_nice = false; 4516 bool should_throttle = false; 4517 bool should_end = false; 4518 4519 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4520 4521 /* 4522 * for non-free space inodes and ref cows, we want to back off from 4523 * time to time 4524 */ 4525 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4526 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4527 be_nice = true; 4528 4529 path = btrfs_alloc_path(); 4530 if (!path) 4531 return -ENOMEM; 4532 path->reada = READA_BACK; 4533 4534 /* 4535 * We want to drop from the next block forward in case this new size is 4536 * not block aligned since we will be keeping the last block of the 4537 * extent just the way it is. 4538 */ 4539 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4540 root == fs_info->tree_root) 4541 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4542 fs_info->sectorsize), 4543 (u64)-1, 0); 4544 4545 /* 4546 * This function is also used to drop the items in the log tree before 4547 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4548 * it is used to drop the loged items. So we shouldn't kill the delayed 4549 * items. 4550 */ 4551 if (min_type == 0 && root == BTRFS_I(inode)->root) 4552 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4553 4554 key.objectid = ino; 4555 key.offset = (u64)-1; 4556 key.type = (u8)-1; 4557 4558 search_again: 4559 /* 4560 * with a 16K leaf size and 128MB extents, you can actually queue 4561 * up a huge file in a single leaf. Most of the time that 4562 * bytes_deleted is > 0, it will be huge by the time we get here 4563 */ 4564 if (be_nice && bytes_deleted > SZ_32M && 4565 btrfs_should_end_transaction(trans)) { 4566 ret = -EAGAIN; 4567 goto out; 4568 } 4569 4570 path->leave_spinning = 1; 4571 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4572 if (ret < 0) 4573 goto out; 4574 4575 if (ret > 0) { 4576 ret = 0; 4577 /* there are no items in the tree for us to truncate, we're 4578 * done 4579 */ 4580 if (path->slots[0] == 0) 4581 goto out; 4582 path->slots[0]--; 4583 } 4584 4585 while (1) { 4586 fi = NULL; 4587 leaf = path->nodes[0]; 4588 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4589 found_type = found_key.type; 4590 4591 if (found_key.objectid != ino) 4592 break; 4593 4594 if (found_type < min_type) 4595 break; 4596 4597 item_end = found_key.offset; 4598 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4599 fi = btrfs_item_ptr(leaf, path->slots[0], 4600 struct btrfs_file_extent_item); 4601 extent_type = btrfs_file_extent_type(leaf, fi); 4602 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4603 item_end += 4604 btrfs_file_extent_num_bytes(leaf, fi); 4605 4606 trace_btrfs_truncate_show_fi_regular( 4607 BTRFS_I(inode), leaf, fi, 4608 found_key.offset); 4609 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4610 item_end += btrfs_file_extent_ram_bytes(leaf, 4611 fi); 4612 4613 trace_btrfs_truncate_show_fi_inline( 4614 BTRFS_I(inode), leaf, fi, path->slots[0], 4615 found_key.offset); 4616 } 4617 item_end--; 4618 } 4619 if (found_type > min_type) { 4620 del_item = 1; 4621 } else { 4622 if (item_end < new_size) 4623 break; 4624 if (found_key.offset >= new_size) 4625 del_item = 1; 4626 else 4627 del_item = 0; 4628 } 4629 found_extent = 0; 4630 /* FIXME, shrink the extent if the ref count is only 1 */ 4631 if (found_type != BTRFS_EXTENT_DATA_KEY) 4632 goto delete; 4633 4634 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4635 u64 num_dec; 4636 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4637 if (!del_item) { 4638 u64 orig_num_bytes = 4639 btrfs_file_extent_num_bytes(leaf, fi); 4640 extent_num_bytes = ALIGN(new_size - 4641 found_key.offset, 4642 fs_info->sectorsize); 4643 btrfs_set_file_extent_num_bytes(leaf, fi, 4644 extent_num_bytes); 4645 num_dec = (orig_num_bytes - 4646 extent_num_bytes); 4647 if (test_bit(BTRFS_ROOT_REF_COWS, 4648 &root->state) && 4649 extent_start != 0) 4650 inode_sub_bytes(inode, num_dec); 4651 btrfs_mark_buffer_dirty(leaf); 4652 } else { 4653 extent_num_bytes = 4654 btrfs_file_extent_disk_num_bytes(leaf, 4655 fi); 4656 extent_offset = found_key.offset - 4657 btrfs_file_extent_offset(leaf, fi); 4658 4659 /* FIXME blocksize != 4096 */ 4660 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4661 if (extent_start != 0) { 4662 found_extent = 1; 4663 if (test_bit(BTRFS_ROOT_REF_COWS, 4664 &root->state)) 4665 inode_sub_bytes(inode, num_dec); 4666 } 4667 } 4668 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4669 /* 4670 * we can't truncate inline items that have had 4671 * special encodings 4672 */ 4673 if (!del_item && 4674 btrfs_file_extent_encryption(leaf, fi) == 0 && 4675 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4676 btrfs_file_extent_compression(leaf, fi) == 0) { 4677 u32 size = (u32)(new_size - found_key.offset); 4678 4679 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4680 size = btrfs_file_extent_calc_inline_size(size); 4681 btrfs_truncate_item(root->fs_info, path, size, 1); 4682 } else if (!del_item) { 4683 /* 4684 * We have to bail so the last_size is set to 4685 * just before this extent. 4686 */ 4687 ret = NEED_TRUNCATE_BLOCK; 4688 break; 4689 } 4690 4691 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4692 inode_sub_bytes(inode, item_end + 1 - new_size); 4693 } 4694 delete: 4695 if (del_item) 4696 last_size = found_key.offset; 4697 else 4698 last_size = new_size; 4699 if (del_item) { 4700 if (!pending_del_nr) { 4701 /* no pending yet, add ourselves */ 4702 pending_del_slot = path->slots[0]; 4703 pending_del_nr = 1; 4704 } else if (pending_del_nr && 4705 path->slots[0] + 1 == pending_del_slot) { 4706 /* hop on the pending chunk */ 4707 pending_del_nr++; 4708 pending_del_slot = path->slots[0]; 4709 } else { 4710 BUG(); 4711 } 4712 } else { 4713 break; 4714 } 4715 should_throttle = false; 4716 4717 if (found_extent && 4718 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4719 root == fs_info->tree_root)) { 4720 btrfs_set_path_blocking(path); 4721 bytes_deleted += extent_num_bytes; 4722 ret = btrfs_free_extent(trans, root, extent_start, 4723 extent_num_bytes, 0, 4724 btrfs_header_owner(leaf), 4725 ino, extent_offset); 4726 if (ret) { 4727 btrfs_abort_transaction(trans, ret); 4728 break; 4729 } 4730 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4731 btrfs_async_run_delayed_refs(fs_info, 4732 trans->delayed_ref_updates * 2, 4733 trans->transid, 0); 4734 if (be_nice) { 4735 if (truncate_space_check(trans, root, 4736 extent_num_bytes)) { 4737 should_end = true; 4738 } 4739 if (btrfs_should_throttle_delayed_refs(trans, 4740 fs_info)) 4741 should_throttle = true; 4742 } 4743 } 4744 4745 if (found_type == BTRFS_INODE_ITEM_KEY) 4746 break; 4747 4748 if (path->slots[0] == 0 || 4749 path->slots[0] != pending_del_slot || 4750 should_throttle || should_end) { 4751 if (pending_del_nr) { 4752 ret = btrfs_del_items(trans, root, path, 4753 pending_del_slot, 4754 pending_del_nr); 4755 if (ret) { 4756 btrfs_abort_transaction(trans, ret); 4757 break; 4758 } 4759 pending_del_nr = 0; 4760 } 4761 btrfs_release_path(path); 4762 if (should_throttle) { 4763 unsigned long updates = trans->delayed_ref_updates; 4764 if (updates) { 4765 trans->delayed_ref_updates = 0; 4766 ret = btrfs_run_delayed_refs(trans, 4767 updates * 2); 4768 if (ret) 4769 break; 4770 } 4771 } 4772 /* 4773 * if we failed to refill our space rsv, bail out 4774 * and let the transaction restart 4775 */ 4776 if (should_end) { 4777 ret = -EAGAIN; 4778 break; 4779 } 4780 goto search_again; 4781 } else { 4782 path->slots[0]--; 4783 } 4784 } 4785 out: 4786 if (ret >= 0 && pending_del_nr) { 4787 int err; 4788 4789 err = btrfs_del_items(trans, root, path, pending_del_slot, 4790 pending_del_nr); 4791 if (err) { 4792 btrfs_abort_transaction(trans, err); 4793 ret = err; 4794 } 4795 } 4796 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4797 ASSERT(last_size >= new_size); 4798 if (!ret && last_size > new_size) 4799 last_size = new_size; 4800 btrfs_ordered_update_i_size(inode, last_size, NULL); 4801 } 4802 4803 btrfs_free_path(path); 4804 4805 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) { 4806 unsigned long updates = trans->delayed_ref_updates; 4807 int err; 4808 4809 if (updates) { 4810 trans->delayed_ref_updates = 0; 4811 err = btrfs_run_delayed_refs(trans, updates * 2); 4812 if (err) 4813 ret = err; 4814 } 4815 } 4816 return ret; 4817 } 4818 4819 /* 4820 * btrfs_truncate_block - read, zero a chunk and write a block 4821 * @inode - inode that we're zeroing 4822 * @from - the offset to start zeroing 4823 * @len - the length to zero, 0 to zero the entire range respective to the 4824 * offset 4825 * @front - zero up to the offset instead of from the offset on 4826 * 4827 * This will find the block for the "from" offset and cow the block and zero the 4828 * part we want to zero. This is used with truncate and hole punching. 4829 */ 4830 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4831 int front) 4832 { 4833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4834 struct address_space *mapping = inode->i_mapping; 4835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4836 struct btrfs_ordered_extent *ordered; 4837 struct extent_state *cached_state = NULL; 4838 struct extent_changeset *data_reserved = NULL; 4839 char *kaddr; 4840 u32 blocksize = fs_info->sectorsize; 4841 pgoff_t index = from >> PAGE_SHIFT; 4842 unsigned offset = from & (blocksize - 1); 4843 struct page *page; 4844 gfp_t mask = btrfs_alloc_write_mask(mapping); 4845 int ret = 0; 4846 u64 block_start; 4847 u64 block_end; 4848 4849 if (IS_ALIGNED(offset, blocksize) && 4850 (!len || IS_ALIGNED(len, blocksize))) 4851 goto out; 4852 4853 block_start = round_down(from, blocksize); 4854 block_end = block_start + blocksize - 1; 4855 4856 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4857 block_start, blocksize); 4858 if (ret) 4859 goto out; 4860 4861 again: 4862 page = find_or_create_page(mapping, index, mask); 4863 if (!page) { 4864 btrfs_delalloc_release_space(inode, data_reserved, 4865 block_start, blocksize, true); 4866 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4867 ret = -ENOMEM; 4868 goto out; 4869 } 4870 4871 if (!PageUptodate(page)) { 4872 ret = btrfs_readpage(NULL, page); 4873 lock_page(page); 4874 if (page->mapping != mapping) { 4875 unlock_page(page); 4876 put_page(page); 4877 goto again; 4878 } 4879 if (!PageUptodate(page)) { 4880 ret = -EIO; 4881 goto out_unlock; 4882 } 4883 } 4884 wait_on_page_writeback(page); 4885 4886 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4887 set_page_extent_mapped(page); 4888 4889 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4890 if (ordered) { 4891 unlock_extent_cached(io_tree, block_start, block_end, 4892 &cached_state); 4893 unlock_page(page); 4894 put_page(page); 4895 btrfs_start_ordered_extent(inode, ordered, 1); 4896 btrfs_put_ordered_extent(ordered); 4897 goto again; 4898 } 4899 4900 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4901 EXTENT_DIRTY | EXTENT_DELALLOC | 4902 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4903 0, 0, &cached_state); 4904 4905 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4906 &cached_state, 0); 4907 if (ret) { 4908 unlock_extent_cached(io_tree, block_start, block_end, 4909 &cached_state); 4910 goto out_unlock; 4911 } 4912 4913 if (offset != blocksize) { 4914 if (!len) 4915 len = blocksize - offset; 4916 kaddr = kmap(page); 4917 if (front) 4918 memset(kaddr + (block_start - page_offset(page)), 4919 0, offset); 4920 else 4921 memset(kaddr + (block_start - page_offset(page)) + offset, 4922 0, len); 4923 flush_dcache_page(page); 4924 kunmap(page); 4925 } 4926 ClearPageChecked(page); 4927 set_page_dirty(page); 4928 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4929 4930 out_unlock: 4931 if (ret) 4932 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4933 blocksize, true); 4934 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4935 unlock_page(page); 4936 put_page(page); 4937 out: 4938 extent_changeset_free(data_reserved); 4939 return ret; 4940 } 4941 4942 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4943 u64 offset, u64 len) 4944 { 4945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4946 struct btrfs_trans_handle *trans; 4947 int ret; 4948 4949 /* 4950 * Still need to make sure the inode looks like it's been updated so 4951 * that any holes get logged if we fsync. 4952 */ 4953 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4954 BTRFS_I(inode)->last_trans = fs_info->generation; 4955 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4956 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4957 return 0; 4958 } 4959 4960 /* 4961 * 1 - for the one we're dropping 4962 * 1 - for the one we're adding 4963 * 1 - for updating the inode. 4964 */ 4965 trans = btrfs_start_transaction(root, 3); 4966 if (IS_ERR(trans)) 4967 return PTR_ERR(trans); 4968 4969 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4970 if (ret) { 4971 btrfs_abort_transaction(trans, ret); 4972 btrfs_end_transaction(trans); 4973 return ret; 4974 } 4975 4976 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4977 offset, 0, 0, len, 0, len, 0, 0, 0); 4978 if (ret) 4979 btrfs_abort_transaction(trans, ret); 4980 else 4981 btrfs_update_inode(trans, root, inode); 4982 btrfs_end_transaction(trans); 4983 return ret; 4984 } 4985 4986 /* 4987 * This function puts in dummy file extents for the area we're creating a hole 4988 * for. So if we are truncating this file to a larger size we need to insert 4989 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4990 * the range between oldsize and size 4991 */ 4992 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4993 { 4994 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4995 struct btrfs_root *root = BTRFS_I(inode)->root; 4996 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4997 struct extent_map *em = NULL; 4998 struct extent_state *cached_state = NULL; 4999 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5000 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5001 u64 block_end = ALIGN(size, fs_info->sectorsize); 5002 u64 last_byte; 5003 u64 cur_offset; 5004 u64 hole_size; 5005 int err = 0; 5006 5007 /* 5008 * If our size started in the middle of a block we need to zero out the 5009 * rest of the block before we expand the i_size, otherwise we could 5010 * expose stale data. 5011 */ 5012 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5013 if (err) 5014 return err; 5015 5016 if (size <= hole_start) 5017 return 0; 5018 5019 while (1) { 5020 struct btrfs_ordered_extent *ordered; 5021 5022 lock_extent_bits(io_tree, hole_start, block_end - 1, 5023 &cached_state); 5024 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 5025 block_end - hole_start); 5026 if (!ordered) 5027 break; 5028 unlock_extent_cached(io_tree, hole_start, block_end - 1, 5029 &cached_state); 5030 btrfs_start_ordered_extent(inode, ordered, 1); 5031 btrfs_put_ordered_extent(ordered); 5032 } 5033 5034 cur_offset = hole_start; 5035 while (1) { 5036 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5037 block_end - cur_offset, 0); 5038 if (IS_ERR(em)) { 5039 err = PTR_ERR(em); 5040 em = NULL; 5041 break; 5042 } 5043 last_byte = min(extent_map_end(em), block_end); 5044 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5045 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5046 struct extent_map *hole_em; 5047 hole_size = last_byte - cur_offset; 5048 5049 err = maybe_insert_hole(root, inode, cur_offset, 5050 hole_size); 5051 if (err) 5052 break; 5053 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5054 cur_offset + hole_size - 1, 0); 5055 hole_em = alloc_extent_map(); 5056 if (!hole_em) { 5057 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5058 &BTRFS_I(inode)->runtime_flags); 5059 goto next; 5060 } 5061 hole_em->start = cur_offset; 5062 hole_em->len = hole_size; 5063 hole_em->orig_start = cur_offset; 5064 5065 hole_em->block_start = EXTENT_MAP_HOLE; 5066 hole_em->block_len = 0; 5067 hole_em->orig_block_len = 0; 5068 hole_em->ram_bytes = hole_size; 5069 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5070 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5071 hole_em->generation = fs_info->generation; 5072 5073 while (1) { 5074 write_lock(&em_tree->lock); 5075 err = add_extent_mapping(em_tree, hole_em, 1); 5076 write_unlock(&em_tree->lock); 5077 if (err != -EEXIST) 5078 break; 5079 btrfs_drop_extent_cache(BTRFS_I(inode), 5080 cur_offset, 5081 cur_offset + 5082 hole_size - 1, 0); 5083 } 5084 free_extent_map(hole_em); 5085 } 5086 next: 5087 free_extent_map(em); 5088 em = NULL; 5089 cur_offset = last_byte; 5090 if (cur_offset >= block_end) 5091 break; 5092 } 5093 free_extent_map(em); 5094 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5095 return err; 5096 } 5097 5098 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5099 { 5100 struct btrfs_root *root = BTRFS_I(inode)->root; 5101 struct btrfs_trans_handle *trans; 5102 loff_t oldsize = i_size_read(inode); 5103 loff_t newsize = attr->ia_size; 5104 int mask = attr->ia_valid; 5105 int ret; 5106 5107 /* 5108 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5109 * special case where we need to update the times despite not having 5110 * these flags set. For all other operations the VFS set these flags 5111 * explicitly if it wants a timestamp update. 5112 */ 5113 if (newsize != oldsize) { 5114 inode_inc_iversion(inode); 5115 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5116 inode->i_ctime = inode->i_mtime = 5117 current_time(inode); 5118 } 5119 5120 if (newsize > oldsize) { 5121 /* 5122 * Don't do an expanding truncate while snapshotting is ongoing. 5123 * This is to ensure the snapshot captures a fully consistent 5124 * state of this file - if the snapshot captures this expanding 5125 * truncation, it must capture all writes that happened before 5126 * this truncation. 5127 */ 5128 btrfs_wait_for_snapshot_creation(root); 5129 ret = btrfs_cont_expand(inode, oldsize, newsize); 5130 if (ret) { 5131 btrfs_end_write_no_snapshotting(root); 5132 return ret; 5133 } 5134 5135 trans = btrfs_start_transaction(root, 1); 5136 if (IS_ERR(trans)) { 5137 btrfs_end_write_no_snapshotting(root); 5138 return PTR_ERR(trans); 5139 } 5140 5141 i_size_write(inode, newsize); 5142 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5143 pagecache_isize_extended(inode, oldsize, newsize); 5144 ret = btrfs_update_inode(trans, root, inode); 5145 btrfs_end_write_no_snapshotting(root); 5146 btrfs_end_transaction(trans); 5147 } else { 5148 5149 /* 5150 * We're truncating a file that used to have good data down to 5151 * zero. Make sure it gets into the ordered flush list so that 5152 * any new writes get down to disk quickly. 5153 */ 5154 if (newsize == 0) 5155 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5156 &BTRFS_I(inode)->runtime_flags); 5157 5158 truncate_setsize(inode, newsize); 5159 5160 /* Disable nonlocked read DIO to avoid the end less truncate */ 5161 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5162 inode_dio_wait(inode); 5163 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5164 5165 ret = btrfs_truncate(inode, newsize == oldsize); 5166 if (ret && inode->i_nlink) { 5167 int err; 5168 5169 /* 5170 * Truncate failed, so fix up the in-memory size. We 5171 * adjusted disk_i_size down as we removed extents, so 5172 * wait for disk_i_size to be stable and then update the 5173 * in-memory size to match. 5174 */ 5175 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5176 if (err) 5177 return err; 5178 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5179 } 5180 } 5181 5182 return ret; 5183 } 5184 5185 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5186 { 5187 struct inode *inode = d_inode(dentry); 5188 struct btrfs_root *root = BTRFS_I(inode)->root; 5189 int err; 5190 5191 if (btrfs_root_readonly(root)) 5192 return -EROFS; 5193 5194 err = setattr_prepare(dentry, attr); 5195 if (err) 5196 return err; 5197 5198 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5199 err = btrfs_setsize(inode, attr); 5200 if (err) 5201 return err; 5202 } 5203 5204 if (attr->ia_valid) { 5205 setattr_copy(inode, attr); 5206 inode_inc_iversion(inode); 5207 err = btrfs_dirty_inode(inode); 5208 5209 if (!err && attr->ia_valid & ATTR_MODE) 5210 err = posix_acl_chmod(inode, inode->i_mode); 5211 } 5212 5213 return err; 5214 } 5215 5216 /* 5217 * While truncating the inode pages during eviction, we get the VFS calling 5218 * btrfs_invalidatepage() against each page of the inode. This is slow because 5219 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5220 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5221 * extent_state structures over and over, wasting lots of time. 5222 * 5223 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5224 * those expensive operations on a per page basis and do only the ordered io 5225 * finishing, while we release here the extent_map and extent_state structures, 5226 * without the excessive merging and splitting. 5227 */ 5228 static void evict_inode_truncate_pages(struct inode *inode) 5229 { 5230 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5231 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5232 struct rb_node *node; 5233 5234 ASSERT(inode->i_state & I_FREEING); 5235 truncate_inode_pages_final(&inode->i_data); 5236 5237 write_lock(&map_tree->lock); 5238 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5239 struct extent_map *em; 5240 5241 node = rb_first(&map_tree->map); 5242 em = rb_entry(node, struct extent_map, rb_node); 5243 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5244 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5245 remove_extent_mapping(map_tree, em); 5246 free_extent_map(em); 5247 if (need_resched()) { 5248 write_unlock(&map_tree->lock); 5249 cond_resched(); 5250 write_lock(&map_tree->lock); 5251 } 5252 } 5253 write_unlock(&map_tree->lock); 5254 5255 /* 5256 * Keep looping until we have no more ranges in the io tree. 5257 * We can have ongoing bios started by readpages (called from readahead) 5258 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5259 * still in progress (unlocked the pages in the bio but did not yet 5260 * unlocked the ranges in the io tree). Therefore this means some 5261 * ranges can still be locked and eviction started because before 5262 * submitting those bios, which are executed by a separate task (work 5263 * queue kthread), inode references (inode->i_count) were not taken 5264 * (which would be dropped in the end io callback of each bio). 5265 * Therefore here we effectively end up waiting for those bios and 5266 * anyone else holding locked ranges without having bumped the inode's 5267 * reference count - if we don't do it, when they access the inode's 5268 * io_tree to unlock a range it may be too late, leading to an 5269 * use-after-free issue. 5270 */ 5271 spin_lock(&io_tree->lock); 5272 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5273 struct extent_state *state; 5274 struct extent_state *cached_state = NULL; 5275 u64 start; 5276 u64 end; 5277 5278 node = rb_first(&io_tree->state); 5279 state = rb_entry(node, struct extent_state, rb_node); 5280 start = state->start; 5281 end = state->end; 5282 spin_unlock(&io_tree->lock); 5283 5284 lock_extent_bits(io_tree, start, end, &cached_state); 5285 5286 /* 5287 * If still has DELALLOC flag, the extent didn't reach disk, 5288 * and its reserved space won't be freed by delayed_ref. 5289 * So we need to free its reserved space here. 5290 * (Refer to comment in btrfs_invalidatepage, case 2) 5291 * 5292 * Note, end is the bytenr of last byte, so we need + 1 here. 5293 */ 5294 if (state->state & EXTENT_DELALLOC) 5295 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5296 5297 clear_extent_bit(io_tree, start, end, 5298 EXTENT_LOCKED | EXTENT_DIRTY | 5299 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5300 EXTENT_DEFRAG, 1, 1, &cached_state); 5301 5302 cond_resched(); 5303 spin_lock(&io_tree->lock); 5304 } 5305 spin_unlock(&io_tree->lock); 5306 } 5307 5308 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5309 struct btrfs_block_rsv *rsv, 5310 u64 min_size) 5311 { 5312 struct btrfs_fs_info *fs_info = root->fs_info; 5313 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5314 int failures = 0; 5315 5316 for (;;) { 5317 struct btrfs_trans_handle *trans; 5318 int ret; 5319 5320 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5321 BTRFS_RESERVE_FLUSH_LIMIT); 5322 5323 if (ret && ++failures > 2) { 5324 btrfs_warn(fs_info, 5325 "could not allocate space for a delete; will truncate on mount"); 5326 return ERR_PTR(-ENOSPC); 5327 } 5328 5329 trans = btrfs_join_transaction(root); 5330 if (IS_ERR(trans) || !ret) 5331 return trans; 5332 5333 /* 5334 * Try to steal from the global reserve if there is space for 5335 * it. 5336 */ 5337 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) && 5338 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0)) 5339 return trans; 5340 5341 /* If not, commit and try again. */ 5342 ret = btrfs_commit_transaction(trans); 5343 if (ret) 5344 return ERR_PTR(ret); 5345 } 5346 } 5347 5348 void btrfs_evict_inode(struct inode *inode) 5349 { 5350 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5351 struct btrfs_trans_handle *trans; 5352 struct btrfs_root *root = BTRFS_I(inode)->root; 5353 struct btrfs_block_rsv *rsv; 5354 u64 min_size; 5355 int ret; 5356 5357 trace_btrfs_inode_evict(inode); 5358 5359 if (!root) { 5360 clear_inode(inode); 5361 return; 5362 } 5363 5364 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5365 5366 evict_inode_truncate_pages(inode); 5367 5368 if (inode->i_nlink && 5369 ((btrfs_root_refs(&root->root_item) != 0 && 5370 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5371 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5372 goto no_delete; 5373 5374 if (is_bad_inode(inode)) 5375 goto no_delete; 5376 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5377 if (!special_file(inode->i_mode)) 5378 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5379 5380 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5381 5382 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5383 goto no_delete; 5384 5385 if (inode->i_nlink > 0) { 5386 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5387 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5388 goto no_delete; 5389 } 5390 5391 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5392 if (ret) 5393 goto no_delete; 5394 5395 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5396 if (!rsv) 5397 goto no_delete; 5398 rsv->size = min_size; 5399 rsv->failfast = 1; 5400 5401 btrfs_i_size_write(BTRFS_I(inode), 0); 5402 5403 while (1) { 5404 trans = evict_refill_and_join(root, rsv, min_size); 5405 if (IS_ERR(trans)) 5406 goto free_rsv; 5407 5408 trans->block_rsv = rsv; 5409 5410 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5411 trans->block_rsv = &fs_info->trans_block_rsv; 5412 btrfs_end_transaction(trans); 5413 btrfs_btree_balance_dirty(fs_info); 5414 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5415 goto free_rsv; 5416 else if (!ret) 5417 break; 5418 } 5419 5420 /* 5421 * Errors here aren't a big deal, it just means we leave orphan items in 5422 * the tree. They will be cleaned up on the next mount. If the inode 5423 * number gets reused, cleanup deletes the orphan item without doing 5424 * anything, and unlink reuses the existing orphan item. 5425 * 5426 * If it turns out that we are dropping too many of these, we might want 5427 * to add a mechanism for retrying these after a commit. 5428 */ 5429 trans = evict_refill_and_join(root, rsv, min_size); 5430 if (!IS_ERR(trans)) { 5431 trans->block_rsv = rsv; 5432 btrfs_orphan_del(trans, BTRFS_I(inode)); 5433 trans->block_rsv = &fs_info->trans_block_rsv; 5434 btrfs_end_transaction(trans); 5435 } 5436 5437 if (!(root == fs_info->tree_root || 5438 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5439 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5440 5441 free_rsv: 5442 btrfs_free_block_rsv(fs_info, rsv); 5443 no_delete: 5444 /* 5445 * If we didn't successfully delete, the orphan item will still be in 5446 * the tree and we'll retry on the next mount. Again, we might also want 5447 * to retry these periodically in the future. 5448 */ 5449 btrfs_remove_delayed_node(BTRFS_I(inode)); 5450 clear_inode(inode); 5451 } 5452 5453 /* 5454 * this returns the key found in the dir entry in the location pointer. 5455 * If no dir entries were found, returns -ENOENT. 5456 * If found a corrupted location in dir entry, returns -EUCLEAN. 5457 */ 5458 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5459 struct btrfs_key *location) 5460 { 5461 const char *name = dentry->d_name.name; 5462 int namelen = dentry->d_name.len; 5463 struct btrfs_dir_item *di; 5464 struct btrfs_path *path; 5465 struct btrfs_root *root = BTRFS_I(dir)->root; 5466 int ret = 0; 5467 5468 path = btrfs_alloc_path(); 5469 if (!path) 5470 return -ENOMEM; 5471 5472 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5473 name, namelen, 0); 5474 if (!di) { 5475 ret = -ENOENT; 5476 goto out; 5477 } 5478 if (IS_ERR(di)) { 5479 ret = PTR_ERR(di); 5480 goto out; 5481 } 5482 5483 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5484 if (location->type != BTRFS_INODE_ITEM_KEY && 5485 location->type != BTRFS_ROOT_ITEM_KEY) { 5486 ret = -EUCLEAN; 5487 btrfs_warn(root->fs_info, 5488 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5489 __func__, name, btrfs_ino(BTRFS_I(dir)), 5490 location->objectid, location->type, location->offset); 5491 } 5492 out: 5493 btrfs_free_path(path); 5494 return ret; 5495 } 5496 5497 /* 5498 * when we hit a tree root in a directory, the btrfs part of the inode 5499 * needs to be changed to reflect the root directory of the tree root. This 5500 * is kind of like crossing a mount point. 5501 */ 5502 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5503 struct inode *dir, 5504 struct dentry *dentry, 5505 struct btrfs_key *location, 5506 struct btrfs_root **sub_root) 5507 { 5508 struct btrfs_path *path; 5509 struct btrfs_root *new_root; 5510 struct btrfs_root_ref *ref; 5511 struct extent_buffer *leaf; 5512 struct btrfs_key key; 5513 int ret; 5514 int err = 0; 5515 5516 path = btrfs_alloc_path(); 5517 if (!path) { 5518 err = -ENOMEM; 5519 goto out; 5520 } 5521 5522 err = -ENOENT; 5523 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5524 key.type = BTRFS_ROOT_REF_KEY; 5525 key.offset = location->objectid; 5526 5527 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5528 if (ret) { 5529 if (ret < 0) 5530 err = ret; 5531 goto out; 5532 } 5533 5534 leaf = path->nodes[0]; 5535 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5536 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5537 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5538 goto out; 5539 5540 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5541 (unsigned long)(ref + 1), 5542 dentry->d_name.len); 5543 if (ret) 5544 goto out; 5545 5546 btrfs_release_path(path); 5547 5548 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5549 if (IS_ERR(new_root)) { 5550 err = PTR_ERR(new_root); 5551 goto out; 5552 } 5553 5554 *sub_root = new_root; 5555 location->objectid = btrfs_root_dirid(&new_root->root_item); 5556 location->type = BTRFS_INODE_ITEM_KEY; 5557 location->offset = 0; 5558 err = 0; 5559 out: 5560 btrfs_free_path(path); 5561 return err; 5562 } 5563 5564 static void inode_tree_add(struct inode *inode) 5565 { 5566 struct btrfs_root *root = BTRFS_I(inode)->root; 5567 struct btrfs_inode *entry; 5568 struct rb_node **p; 5569 struct rb_node *parent; 5570 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5571 u64 ino = btrfs_ino(BTRFS_I(inode)); 5572 5573 if (inode_unhashed(inode)) 5574 return; 5575 parent = NULL; 5576 spin_lock(&root->inode_lock); 5577 p = &root->inode_tree.rb_node; 5578 while (*p) { 5579 parent = *p; 5580 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5581 5582 if (ino < btrfs_ino(entry)) 5583 p = &parent->rb_left; 5584 else if (ino > btrfs_ino(entry)) 5585 p = &parent->rb_right; 5586 else { 5587 WARN_ON(!(entry->vfs_inode.i_state & 5588 (I_WILL_FREE | I_FREEING))); 5589 rb_replace_node(parent, new, &root->inode_tree); 5590 RB_CLEAR_NODE(parent); 5591 spin_unlock(&root->inode_lock); 5592 return; 5593 } 5594 } 5595 rb_link_node(new, parent, p); 5596 rb_insert_color(new, &root->inode_tree); 5597 spin_unlock(&root->inode_lock); 5598 } 5599 5600 static void inode_tree_del(struct inode *inode) 5601 { 5602 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5603 struct btrfs_root *root = BTRFS_I(inode)->root; 5604 int empty = 0; 5605 5606 spin_lock(&root->inode_lock); 5607 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5608 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5609 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5610 empty = RB_EMPTY_ROOT(&root->inode_tree); 5611 } 5612 spin_unlock(&root->inode_lock); 5613 5614 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5615 synchronize_srcu(&fs_info->subvol_srcu); 5616 spin_lock(&root->inode_lock); 5617 empty = RB_EMPTY_ROOT(&root->inode_tree); 5618 spin_unlock(&root->inode_lock); 5619 if (empty) 5620 btrfs_add_dead_root(root); 5621 } 5622 } 5623 5624 5625 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5626 { 5627 struct btrfs_iget_args *args = p; 5628 inode->i_ino = args->location->objectid; 5629 memcpy(&BTRFS_I(inode)->location, args->location, 5630 sizeof(*args->location)); 5631 BTRFS_I(inode)->root = args->root; 5632 return 0; 5633 } 5634 5635 static int btrfs_find_actor(struct inode *inode, void *opaque) 5636 { 5637 struct btrfs_iget_args *args = opaque; 5638 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5639 args->root == BTRFS_I(inode)->root; 5640 } 5641 5642 static struct inode *btrfs_iget_locked(struct super_block *s, 5643 struct btrfs_key *location, 5644 struct btrfs_root *root) 5645 { 5646 struct inode *inode; 5647 struct btrfs_iget_args args; 5648 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5649 5650 args.location = location; 5651 args.root = root; 5652 5653 inode = iget5_locked(s, hashval, btrfs_find_actor, 5654 btrfs_init_locked_inode, 5655 (void *)&args); 5656 return inode; 5657 } 5658 5659 /* Get an inode object given its location and corresponding root. 5660 * Returns in *is_new if the inode was read from disk 5661 */ 5662 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5663 struct btrfs_root *root, int *new) 5664 { 5665 struct inode *inode; 5666 5667 inode = btrfs_iget_locked(s, location, root); 5668 if (!inode) 5669 return ERR_PTR(-ENOMEM); 5670 5671 if (inode->i_state & I_NEW) { 5672 int ret; 5673 5674 ret = btrfs_read_locked_inode(inode); 5675 if (!ret) { 5676 inode_tree_add(inode); 5677 unlock_new_inode(inode); 5678 if (new) 5679 *new = 1; 5680 } else { 5681 iget_failed(inode); 5682 /* 5683 * ret > 0 can come from btrfs_search_slot called by 5684 * btrfs_read_locked_inode, this means the inode item 5685 * was not found. 5686 */ 5687 if (ret > 0) 5688 ret = -ENOENT; 5689 inode = ERR_PTR(ret); 5690 } 5691 } 5692 5693 return inode; 5694 } 5695 5696 static struct inode *new_simple_dir(struct super_block *s, 5697 struct btrfs_key *key, 5698 struct btrfs_root *root) 5699 { 5700 struct inode *inode = new_inode(s); 5701 5702 if (!inode) 5703 return ERR_PTR(-ENOMEM); 5704 5705 BTRFS_I(inode)->root = root; 5706 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5707 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5708 5709 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5710 inode->i_op = &btrfs_dir_ro_inode_operations; 5711 inode->i_opflags &= ~IOP_XATTR; 5712 inode->i_fop = &simple_dir_operations; 5713 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5714 inode->i_mtime = current_time(inode); 5715 inode->i_atime = inode->i_mtime; 5716 inode->i_ctime = inode->i_mtime; 5717 BTRFS_I(inode)->i_otime = inode->i_mtime; 5718 5719 return inode; 5720 } 5721 5722 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5723 { 5724 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5725 struct inode *inode; 5726 struct btrfs_root *root = BTRFS_I(dir)->root; 5727 struct btrfs_root *sub_root = root; 5728 struct btrfs_key location; 5729 int index; 5730 int ret = 0; 5731 5732 if (dentry->d_name.len > BTRFS_NAME_LEN) 5733 return ERR_PTR(-ENAMETOOLONG); 5734 5735 ret = btrfs_inode_by_name(dir, dentry, &location); 5736 if (ret < 0) 5737 return ERR_PTR(ret); 5738 5739 if (location.type == BTRFS_INODE_ITEM_KEY) { 5740 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5741 return inode; 5742 } 5743 5744 index = srcu_read_lock(&fs_info->subvol_srcu); 5745 ret = fixup_tree_root_location(fs_info, dir, dentry, 5746 &location, &sub_root); 5747 if (ret < 0) { 5748 if (ret != -ENOENT) 5749 inode = ERR_PTR(ret); 5750 else 5751 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5752 } else { 5753 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5754 } 5755 srcu_read_unlock(&fs_info->subvol_srcu, index); 5756 5757 if (!IS_ERR(inode) && root != sub_root) { 5758 down_read(&fs_info->cleanup_work_sem); 5759 if (!sb_rdonly(inode->i_sb)) 5760 ret = btrfs_orphan_cleanup(sub_root); 5761 up_read(&fs_info->cleanup_work_sem); 5762 if (ret) { 5763 iput(inode); 5764 inode = ERR_PTR(ret); 5765 } 5766 } 5767 5768 return inode; 5769 } 5770 5771 static int btrfs_dentry_delete(const struct dentry *dentry) 5772 { 5773 struct btrfs_root *root; 5774 struct inode *inode = d_inode(dentry); 5775 5776 if (!inode && !IS_ROOT(dentry)) 5777 inode = d_inode(dentry->d_parent); 5778 5779 if (inode) { 5780 root = BTRFS_I(inode)->root; 5781 if (btrfs_root_refs(&root->root_item) == 0) 5782 return 1; 5783 5784 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5785 return 1; 5786 } 5787 return 0; 5788 } 5789 5790 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5791 unsigned int flags) 5792 { 5793 struct inode *inode; 5794 5795 inode = btrfs_lookup_dentry(dir, dentry); 5796 if (IS_ERR(inode)) { 5797 if (PTR_ERR(inode) == -ENOENT) 5798 inode = NULL; 5799 else 5800 return ERR_CAST(inode); 5801 } 5802 5803 return d_splice_alias(inode, dentry); 5804 } 5805 5806 unsigned char btrfs_filetype_table[] = { 5807 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5808 }; 5809 5810 /* 5811 * All this infrastructure exists because dir_emit can fault, and we are holding 5812 * the tree lock when doing readdir. For now just allocate a buffer and copy 5813 * our information into that, and then dir_emit from the buffer. This is 5814 * similar to what NFS does, only we don't keep the buffer around in pagecache 5815 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5816 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5817 * tree lock. 5818 */ 5819 static int btrfs_opendir(struct inode *inode, struct file *file) 5820 { 5821 struct btrfs_file_private *private; 5822 5823 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5824 if (!private) 5825 return -ENOMEM; 5826 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5827 if (!private->filldir_buf) { 5828 kfree(private); 5829 return -ENOMEM; 5830 } 5831 file->private_data = private; 5832 return 0; 5833 } 5834 5835 struct dir_entry { 5836 u64 ino; 5837 u64 offset; 5838 unsigned type; 5839 int name_len; 5840 }; 5841 5842 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5843 { 5844 while (entries--) { 5845 struct dir_entry *entry = addr; 5846 char *name = (char *)(entry + 1); 5847 5848 ctx->pos = get_unaligned(&entry->offset); 5849 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5850 get_unaligned(&entry->ino), 5851 get_unaligned(&entry->type))) 5852 return 1; 5853 addr += sizeof(struct dir_entry) + 5854 get_unaligned(&entry->name_len); 5855 ctx->pos++; 5856 } 5857 return 0; 5858 } 5859 5860 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5861 { 5862 struct inode *inode = file_inode(file); 5863 struct btrfs_root *root = BTRFS_I(inode)->root; 5864 struct btrfs_file_private *private = file->private_data; 5865 struct btrfs_dir_item *di; 5866 struct btrfs_key key; 5867 struct btrfs_key found_key; 5868 struct btrfs_path *path; 5869 void *addr; 5870 struct list_head ins_list; 5871 struct list_head del_list; 5872 int ret; 5873 struct extent_buffer *leaf; 5874 int slot; 5875 char *name_ptr; 5876 int name_len; 5877 int entries = 0; 5878 int total_len = 0; 5879 bool put = false; 5880 struct btrfs_key location; 5881 5882 if (!dir_emit_dots(file, ctx)) 5883 return 0; 5884 5885 path = btrfs_alloc_path(); 5886 if (!path) 5887 return -ENOMEM; 5888 5889 addr = private->filldir_buf; 5890 path->reada = READA_FORWARD; 5891 5892 INIT_LIST_HEAD(&ins_list); 5893 INIT_LIST_HEAD(&del_list); 5894 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5895 5896 again: 5897 key.type = BTRFS_DIR_INDEX_KEY; 5898 key.offset = ctx->pos; 5899 key.objectid = btrfs_ino(BTRFS_I(inode)); 5900 5901 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5902 if (ret < 0) 5903 goto err; 5904 5905 while (1) { 5906 struct dir_entry *entry; 5907 5908 leaf = path->nodes[0]; 5909 slot = path->slots[0]; 5910 if (slot >= btrfs_header_nritems(leaf)) { 5911 ret = btrfs_next_leaf(root, path); 5912 if (ret < 0) 5913 goto err; 5914 else if (ret > 0) 5915 break; 5916 continue; 5917 } 5918 5919 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5920 5921 if (found_key.objectid != key.objectid) 5922 break; 5923 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5924 break; 5925 if (found_key.offset < ctx->pos) 5926 goto next; 5927 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5928 goto next; 5929 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5930 name_len = btrfs_dir_name_len(leaf, di); 5931 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5932 PAGE_SIZE) { 5933 btrfs_release_path(path); 5934 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5935 if (ret) 5936 goto nopos; 5937 addr = private->filldir_buf; 5938 entries = 0; 5939 total_len = 0; 5940 goto again; 5941 } 5942 5943 entry = addr; 5944 put_unaligned(name_len, &entry->name_len); 5945 name_ptr = (char *)(entry + 1); 5946 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5947 name_len); 5948 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], 5949 &entry->type); 5950 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5951 put_unaligned(location.objectid, &entry->ino); 5952 put_unaligned(found_key.offset, &entry->offset); 5953 entries++; 5954 addr += sizeof(struct dir_entry) + name_len; 5955 total_len += sizeof(struct dir_entry) + name_len; 5956 next: 5957 path->slots[0]++; 5958 } 5959 btrfs_release_path(path); 5960 5961 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5962 if (ret) 5963 goto nopos; 5964 5965 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5966 if (ret) 5967 goto nopos; 5968 5969 /* 5970 * Stop new entries from being returned after we return the last 5971 * entry. 5972 * 5973 * New directory entries are assigned a strictly increasing 5974 * offset. This means that new entries created during readdir 5975 * are *guaranteed* to be seen in the future by that readdir. 5976 * This has broken buggy programs which operate on names as 5977 * they're returned by readdir. Until we re-use freed offsets 5978 * we have this hack to stop new entries from being returned 5979 * under the assumption that they'll never reach this huge 5980 * offset. 5981 * 5982 * This is being careful not to overflow 32bit loff_t unless the 5983 * last entry requires it because doing so has broken 32bit apps 5984 * in the past. 5985 */ 5986 if (ctx->pos >= INT_MAX) 5987 ctx->pos = LLONG_MAX; 5988 else 5989 ctx->pos = INT_MAX; 5990 nopos: 5991 ret = 0; 5992 err: 5993 if (put) 5994 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5995 btrfs_free_path(path); 5996 return ret; 5997 } 5998 5999 /* 6000 * This is somewhat expensive, updating the tree every time the 6001 * inode changes. But, it is most likely to find the inode in cache. 6002 * FIXME, needs more benchmarking...there are no reasons other than performance 6003 * to keep or drop this code. 6004 */ 6005 static int btrfs_dirty_inode(struct inode *inode) 6006 { 6007 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6008 struct btrfs_root *root = BTRFS_I(inode)->root; 6009 struct btrfs_trans_handle *trans; 6010 int ret; 6011 6012 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6013 return 0; 6014 6015 trans = btrfs_join_transaction(root); 6016 if (IS_ERR(trans)) 6017 return PTR_ERR(trans); 6018 6019 ret = btrfs_update_inode(trans, root, inode); 6020 if (ret && ret == -ENOSPC) { 6021 /* whoops, lets try again with the full transaction */ 6022 btrfs_end_transaction(trans); 6023 trans = btrfs_start_transaction(root, 1); 6024 if (IS_ERR(trans)) 6025 return PTR_ERR(trans); 6026 6027 ret = btrfs_update_inode(trans, root, inode); 6028 } 6029 btrfs_end_transaction(trans); 6030 if (BTRFS_I(inode)->delayed_node) 6031 btrfs_balance_delayed_items(fs_info); 6032 6033 return ret; 6034 } 6035 6036 /* 6037 * This is a copy of file_update_time. We need this so we can return error on 6038 * ENOSPC for updating the inode in the case of file write and mmap writes. 6039 */ 6040 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6041 int flags) 6042 { 6043 struct btrfs_root *root = BTRFS_I(inode)->root; 6044 bool dirty = flags & ~S_VERSION; 6045 6046 if (btrfs_root_readonly(root)) 6047 return -EROFS; 6048 6049 if (flags & S_VERSION) 6050 dirty |= inode_maybe_inc_iversion(inode, dirty); 6051 if (flags & S_CTIME) 6052 inode->i_ctime = *now; 6053 if (flags & S_MTIME) 6054 inode->i_mtime = *now; 6055 if (flags & S_ATIME) 6056 inode->i_atime = *now; 6057 return dirty ? btrfs_dirty_inode(inode) : 0; 6058 } 6059 6060 /* 6061 * find the highest existing sequence number in a directory 6062 * and then set the in-memory index_cnt variable to reflect 6063 * free sequence numbers 6064 */ 6065 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6066 { 6067 struct btrfs_root *root = inode->root; 6068 struct btrfs_key key, found_key; 6069 struct btrfs_path *path; 6070 struct extent_buffer *leaf; 6071 int ret; 6072 6073 key.objectid = btrfs_ino(inode); 6074 key.type = BTRFS_DIR_INDEX_KEY; 6075 key.offset = (u64)-1; 6076 6077 path = btrfs_alloc_path(); 6078 if (!path) 6079 return -ENOMEM; 6080 6081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6082 if (ret < 0) 6083 goto out; 6084 /* FIXME: we should be able to handle this */ 6085 if (ret == 0) 6086 goto out; 6087 ret = 0; 6088 6089 /* 6090 * MAGIC NUMBER EXPLANATION: 6091 * since we search a directory based on f_pos we have to start at 2 6092 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6093 * else has to start at 2 6094 */ 6095 if (path->slots[0] == 0) { 6096 inode->index_cnt = 2; 6097 goto out; 6098 } 6099 6100 path->slots[0]--; 6101 6102 leaf = path->nodes[0]; 6103 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6104 6105 if (found_key.objectid != btrfs_ino(inode) || 6106 found_key.type != BTRFS_DIR_INDEX_KEY) { 6107 inode->index_cnt = 2; 6108 goto out; 6109 } 6110 6111 inode->index_cnt = found_key.offset + 1; 6112 out: 6113 btrfs_free_path(path); 6114 return ret; 6115 } 6116 6117 /* 6118 * helper to find a free sequence number in a given directory. This current 6119 * code is very simple, later versions will do smarter things in the btree 6120 */ 6121 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6122 { 6123 int ret = 0; 6124 6125 if (dir->index_cnt == (u64)-1) { 6126 ret = btrfs_inode_delayed_dir_index_count(dir); 6127 if (ret) { 6128 ret = btrfs_set_inode_index_count(dir); 6129 if (ret) 6130 return ret; 6131 } 6132 } 6133 6134 *index = dir->index_cnt; 6135 dir->index_cnt++; 6136 6137 return ret; 6138 } 6139 6140 static int btrfs_insert_inode_locked(struct inode *inode) 6141 { 6142 struct btrfs_iget_args args; 6143 args.location = &BTRFS_I(inode)->location; 6144 args.root = BTRFS_I(inode)->root; 6145 6146 return insert_inode_locked4(inode, 6147 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6148 btrfs_find_actor, &args); 6149 } 6150 6151 /* 6152 * Inherit flags from the parent inode. 6153 * 6154 * Currently only the compression flags and the cow flags are inherited. 6155 */ 6156 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6157 { 6158 unsigned int flags; 6159 6160 if (!dir) 6161 return; 6162 6163 flags = BTRFS_I(dir)->flags; 6164 6165 if (flags & BTRFS_INODE_NOCOMPRESS) { 6166 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6167 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6168 } else if (flags & BTRFS_INODE_COMPRESS) { 6169 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6170 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6171 } 6172 6173 if (flags & BTRFS_INODE_NODATACOW) { 6174 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6175 if (S_ISREG(inode->i_mode)) 6176 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6177 } 6178 6179 btrfs_sync_inode_flags_to_i_flags(inode); 6180 } 6181 6182 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6183 struct btrfs_root *root, 6184 struct inode *dir, 6185 const char *name, int name_len, 6186 u64 ref_objectid, u64 objectid, 6187 umode_t mode, u64 *index) 6188 { 6189 struct btrfs_fs_info *fs_info = root->fs_info; 6190 struct inode *inode; 6191 struct btrfs_inode_item *inode_item; 6192 struct btrfs_key *location; 6193 struct btrfs_path *path; 6194 struct btrfs_inode_ref *ref; 6195 struct btrfs_key key[2]; 6196 u32 sizes[2]; 6197 int nitems = name ? 2 : 1; 6198 unsigned long ptr; 6199 int ret; 6200 6201 path = btrfs_alloc_path(); 6202 if (!path) 6203 return ERR_PTR(-ENOMEM); 6204 6205 inode = new_inode(fs_info->sb); 6206 if (!inode) { 6207 btrfs_free_path(path); 6208 return ERR_PTR(-ENOMEM); 6209 } 6210 6211 /* 6212 * O_TMPFILE, set link count to 0, so that after this point, 6213 * we fill in an inode item with the correct link count. 6214 */ 6215 if (!name) 6216 set_nlink(inode, 0); 6217 6218 /* 6219 * we have to initialize this early, so we can reclaim the inode 6220 * number if we fail afterwards in this function. 6221 */ 6222 inode->i_ino = objectid; 6223 6224 if (dir && name) { 6225 trace_btrfs_inode_request(dir); 6226 6227 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6228 if (ret) { 6229 btrfs_free_path(path); 6230 iput(inode); 6231 return ERR_PTR(ret); 6232 } 6233 } else if (dir) { 6234 *index = 0; 6235 } 6236 /* 6237 * index_cnt is ignored for everything but a dir, 6238 * btrfs_set_inode_index_count has an explanation for the magic 6239 * number 6240 */ 6241 BTRFS_I(inode)->index_cnt = 2; 6242 BTRFS_I(inode)->dir_index = *index; 6243 BTRFS_I(inode)->root = root; 6244 BTRFS_I(inode)->generation = trans->transid; 6245 inode->i_generation = BTRFS_I(inode)->generation; 6246 6247 /* 6248 * We could have gotten an inode number from somebody who was fsynced 6249 * and then removed in this same transaction, so let's just set full 6250 * sync since it will be a full sync anyway and this will blow away the 6251 * old info in the log. 6252 */ 6253 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6254 6255 key[0].objectid = objectid; 6256 key[0].type = BTRFS_INODE_ITEM_KEY; 6257 key[0].offset = 0; 6258 6259 sizes[0] = sizeof(struct btrfs_inode_item); 6260 6261 if (name) { 6262 /* 6263 * Start new inodes with an inode_ref. This is slightly more 6264 * efficient for small numbers of hard links since they will 6265 * be packed into one item. Extended refs will kick in if we 6266 * add more hard links than can fit in the ref item. 6267 */ 6268 key[1].objectid = objectid; 6269 key[1].type = BTRFS_INODE_REF_KEY; 6270 key[1].offset = ref_objectid; 6271 6272 sizes[1] = name_len + sizeof(*ref); 6273 } 6274 6275 location = &BTRFS_I(inode)->location; 6276 location->objectid = objectid; 6277 location->offset = 0; 6278 location->type = BTRFS_INODE_ITEM_KEY; 6279 6280 ret = btrfs_insert_inode_locked(inode); 6281 if (ret < 0) { 6282 iput(inode); 6283 goto fail; 6284 } 6285 6286 path->leave_spinning = 1; 6287 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6288 if (ret != 0) 6289 goto fail_unlock; 6290 6291 inode_init_owner(inode, dir, mode); 6292 inode_set_bytes(inode, 0); 6293 6294 inode->i_mtime = current_time(inode); 6295 inode->i_atime = inode->i_mtime; 6296 inode->i_ctime = inode->i_mtime; 6297 BTRFS_I(inode)->i_otime = inode->i_mtime; 6298 6299 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6300 struct btrfs_inode_item); 6301 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6302 sizeof(*inode_item)); 6303 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6304 6305 if (name) { 6306 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6307 struct btrfs_inode_ref); 6308 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6309 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6310 ptr = (unsigned long)(ref + 1); 6311 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6312 } 6313 6314 btrfs_mark_buffer_dirty(path->nodes[0]); 6315 btrfs_free_path(path); 6316 6317 btrfs_inherit_iflags(inode, dir); 6318 6319 if (S_ISREG(mode)) { 6320 if (btrfs_test_opt(fs_info, NODATASUM)) 6321 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6322 if (btrfs_test_opt(fs_info, NODATACOW)) 6323 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6324 BTRFS_INODE_NODATASUM; 6325 } 6326 6327 inode_tree_add(inode); 6328 6329 trace_btrfs_inode_new(inode); 6330 btrfs_set_inode_last_trans(trans, inode); 6331 6332 btrfs_update_root_times(trans, root); 6333 6334 ret = btrfs_inode_inherit_props(trans, inode, dir); 6335 if (ret) 6336 btrfs_err(fs_info, 6337 "error inheriting props for ino %llu (root %llu): %d", 6338 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6339 6340 return inode; 6341 6342 fail_unlock: 6343 discard_new_inode(inode); 6344 fail: 6345 if (dir && name) 6346 BTRFS_I(dir)->index_cnt--; 6347 btrfs_free_path(path); 6348 return ERR_PTR(ret); 6349 } 6350 6351 static inline u8 btrfs_inode_type(struct inode *inode) 6352 { 6353 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6354 } 6355 6356 /* 6357 * utility function to add 'inode' into 'parent_inode' with 6358 * a give name and a given sequence number. 6359 * if 'add_backref' is true, also insert a backref from the 6360 * inode to the parent directory. 6361 */ 6362 int btrfs_add_link(struct btrfs_trans_handle *trans, 6363 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6364 const char *name, int name_len, int add_backref, u64 index) 6365 { 6366 int ret = 0; 6367 struct btrfs_key key; 6368 struct btrfs_root *root = parent_inode->root; 6369 u64 ino = btrfs_ino(inode); 6370 u64 parent_ino = btrfs_ino(parent_inode); 6371 6372 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6373 memcpy(&key, &inode->root->root_key, sizeof(key)); 6374 } else { 6375 key.objectid = ino; 6376 key.type = BTRFS_INODE_ITEM_KEY; 6377 key.offset = 0; 6378 } 6379 6380 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6381 ret = btrfs_add_root_ref(trans, key.objectid, 6382 root->root_key.objectid, parent_ino, 6383 index, name, name_len); 6384 } else if (add_backref) { 6385 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6386 parent_ino, index); 6387 } 6388 6389 /* Nothing to clean up yet */ 6390 if (ret) 6391 return ret; 6392 6393 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6394 parent_inode, &key, 6395 btrfs_inode_type(&inode->vfs_inode), index); 6396 if (ret == -EEXIST || ret == -EOVERFLOW) 6397 goto fail_dir_item; 6398 else if (ret) { 6399 btrfs_abort_transaction(trans, ret); 6400 return ret; 6401 } 6402 6403 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6404 name_len * 2); 6405 inode_inc_iversion(&parent_inode->vfs_inode); 6406 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6407 current_time(&parent_inode->vfs_inode); 6408 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6409 if (ret) 6410 btrfs_abort_transaction(trans, ret); 6411 return ret; 6412 6413 fail_dir_item: 6414 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6415 u64 local_index; 6416 int err; 6417 err = btrfs_del_root_ref(trans, key.objectid, 6418 root->root_key.objectid, parent_ino, 6419 &local_index, name, name_len); 6420 6421 } else if (add_backref) { 6422 u64 local_index; 6423 int err; 6424 6425 err = btrfs_del_inode_ref(trans, root, name, name_len, 6426 ino, parent_ino, &local_index); 6427 } 6428 return ret; 6429 } 6430 6431 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6432 struct btrfs_inode *dir, struct dentry *dentry, 6433 struct btrfs_inode *inode, int backref, u64 index) 6434 { 6435 int err = btrfs_add_link(trans, dir, inode, 6436 dentry->d_name.name, dentry->d_name.len, 6437 backref, index); 6438 if (err > 0) 6439 err = -EEXIST; 6440 return err; 6441 } 6442 6443 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6444 umode_t mode, dev_t rdev) 6445 { 6446 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6447 struct btrfs_trans_handle *trans; 6448 struct btrfs_root *root = BTRFS_I(dir)->root; 6449 struct inode *inode = NULL; 6450 int err; 6451 u64 objectid; 6452 u64 index = 0; 6453 6454 /* 6455 * 2 for inode item and ref 6456 * 2 for dir items 6457 * 1 for xattr if selinux is on 6458 */ 6459 trans = btrfs_start_transaction(root, 5); 6460 if (IS_ERR(trans)) 6461 return PTR_ERR(trans); 6462 6463 err = btrfs_find_free_ino(root, &objectid); 6464 if (err) 6465 goto out_unlock; 6466 6467 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6468 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6469 mode, &index); 6470 if (IS_ERR(inode)) { 6471 err = PTR_ERR(inode); 6472 inode = NULL; 6473 goto out_unlock; 6474 } 6475 6476 /* 6477 * If the active LSM wants to access the inode during 6478 * d_instantiate it needs these. Smack checks to see 6479 * if the filesystem supports xattrs by looking at the 6480 * ops vector. 6481 */ 6482 inode->i_op = &btrfs_special_inode_operations; 6483 init_special_inode(inode, inode->i_mode, rdev); 6484 6485 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6486 if (err) 6487 goto out_unlock; 6488 6489 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6490 0, index); 6491 if (err) 6492 goto out_unlock; 6493 6494 btrfs_update_inode(trans, root, inode); 6495 d_instantiate_new(dentry, inode); 6496 6497 out_unlock: 6498 btrfs_end_transaction(trans); 6499 btrfs_btree_balance_dirty(fs_info); 6500 if (err && inode) { 6501 inode_dec_link_count(inode); 6502 discard_new_inode(inode); 6503 } 6504 return err; 6505 } 6506 6507 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6508 umode_t mode, bool excl) 6509 { 6510 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6511 struct btrfs_trans_handle *trans; 6512 struct btrfs_root *root = BTRFS_I(dir)->root; 6513 struct inode *inode = NULL; 6514 int err; 6515 u64 objectid; 6516 u64 index = 0; 6517 6518 /* 6519 * 2 for inode item and ref 6520 * 2 for dir items 6521 * 1 for xattr if selinux is on 6522 */ 6523 trans = btrfs_start_transaction(root, 5); 6524 if (IS_ERR(trans)) 6525 return PTR_ERR(trans); 6526 6527 err = btrfs_find_free_ino(root, &objectid); 6528 if (err) 6529 goto out_unlock; 6530 6531 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6532 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6533 mode, &index); 6534 if (IS_ERR(inode)) { 6535 err = PTR_ERR(inode); 6536 inode = NULL; 6537 goto out_unlock; 6538 } 6539 /* 6540 * If the active LSM wants to access the inode during 6541 * d_instantiate it needs these. Smack checks to see 6542 * if the filesystem supports xattrs by looking at the 6543 * ops vector. 6544 */ 6545 inode->i_fop = &btrfs_file_operations; 6546 inode->i_op = &btrfs_file_inode_operations; 6547 inode->i_mapping->a_ops = &btrfs_aops; 6548 6549 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6550 if (err) 6551 goto out_unlock; 6552 6553 err = btrfs_update_inode(trans, root, inode); 6554 if (err) 6555 goto out_unlock; 6556 6557 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6558 0, index); 6559 if (err) 6560 goto out_unlock; 6561 6562 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6563 d_instantiate_new(dentry, inode); 6564 6565 out_unlock: 6566 btrfs_end_transaction(trans); 6567 if (err && inode) { 6568 inode_dec_link_count(inode); 6569 discard_new_inode(inode); 6570 } 6571 btrfs_btree_balance_dirty(fs_info); 6572 return err; 6573 } 6574 6575 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6576 struct dentry *dentry) 6577 { 6578 struct btrfs_trans_handle *trans = NULL; 6579 struct btrfs_root *root = BTRFS_I(dir)->root; 6580 struct inode *inode = d_inode(old_dentry); 6581 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6582 u64 index; 6583 int err; 6584 int drop_inode = 0; 6585 6586 /* do not allow sys_link's with other subvols of the same device */ 6587 if (root->objectid != BTRFS_I(inode)->root->objectid) 6588 return -EXDEV; 6589 6590 if (inode->i_nlink >= BTRFS_LINK_MAX) 6591 return -EMLINK; 6592 6593 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6594 if (err) 6595 goto fail; 6596 6597 /* 6598 * 2 items for inode and inode ref 6599 * 2 items for dir items 6600 * 1 item for parent inode 6601 * 1 item for orphan item deletion if O_TMPFILE 6602 */ 6603 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6604 if (IS_ERR(trans)) { 6605 err = PTR_ERR(trans); 6606 trans = NULL; 6607 goto fail; 6608 } 6609 6610 /* There are several dir indexes for this inode, clear the cache. */ 6611 BTRFS_I(inode)->dir_index = 0ULL; 6612 inc_nlink(inode); 6613 inode_inc_iversion(inode); 6614 inode->i_ctime = current_time(inode); 6615 ihold(inode); 6616 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6617 6618 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6619 1, index); 6620 6621 if (err) { 6622 drop_inode = 1; 6623 } else { 6624 struct dentry *parent = dentry->d_parent; 6625 int ret; 6626 6627 err = btrfs_update_inode(trans, root, inode); 6628 if (err) 6629 goto fail; 6630 if (inode->i_nlink == 1) { 6631 /* 6632 * If new hard link count is 1, it's a file created 6633 * with open(2) O_TMPFILE flag. 6634 */ 6635 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6636 if (err) 6637 goto fail; 6638 } 6639 d_instantiate(dentry, inode); 6640 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, 6641 true, NULL); 6642 if (ret == BTRFS_NEED_TRANS_COMMIT) { 6643 err = btrfs_commit_transaction(trans); 6644 trans = NULL; 6645 } 6646 } 6647 6648 fail: 6649 if (trans) 6650 btrfs_end_transaction(trans); 6651 if (drop_inode) { 6652 inode_dec_link_count(inode); 6653 iput(inode); 6654 } 6655 btrfs_btree_balance_dirty(fs_info); 6656 return err; 6657 } 6658 6659 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6660 { 6661 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6662 struct inode *inode = NULL; 6663 struct btrfs_trans_handle *trans; 6664 struct btrfs_root *root = BTRFS_I(dir)->root; 6665 int err = 0; 6666 int drop_on_err = 0; 6667 u64 objectid = 0; 6668 u64 index = 0; 6669 6670 /* 6671 * 2 items for inode and ref 6672 * 2 items for dir items 6673 * 1 for xattr if selinux is on 6674 */ 6675 trans = btrfs_start_transaction(root, 5); 6676 if (IS_ERR(trans)) 6677 return PTR_ERR(trans); 6678 6679 err = btrfs_find_free_ino(root, &objectid); 6680 if (err) 6681 goto out_fail; 6682 6683 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6684 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6685 S_IFDIR | mode, &index); 6686 if (IS_ERR(inode)) { 6687 err = PTR_ERR(inode); 6688 inode = NULL; 6689 goto out_fail; 6690 } 6691 6692 drop_on_err = 1; 6693 /* these must be set before we unlock the inode */ 6694 inode->i_op = &btrfs_dir_inode_operations; 6695 inode->i_fop = &btrfs_dir_file_operations; 6696 6697 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6698 if (err) 6699 goto out_fail; 6700 6701 btrfs_i_size_write(BTRFS_I(inode), 0); 6702 err = btrfs_update_inode(trans, root, inode); 6703 if (err) 6704 goto out_fail; 6705 6706 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6707 dentry->d_name.name, 6708 dentry->d_name.len, 0, index); 6709 if (err) 6710 goto out_fail; 6711 6712 d_instantiate_new(dentry, inode); 6713 drop_on_err = 0; 6714 6715 out_fail: 6716 btrfs_end_transaction(trans); 6717 if (err && inode) { 6718 inode_dec_link_count(inode); 6719 discard_new_inode(inode); 6720 } 6721 btrfs_btree_balance_dirty(fs_info); 6722 return err; 6723 } 6724 6725 static noinline int uncompress_inline(struct btrfs_path *path, 6726 struct page *page, 6727 size_t pg_offset, u64 extent_offset, 6728 struct btrfs_file_extent_item *item) 6729 { 6730 int ret; 6731 struct extent_buffer *leaf = path->nodes[0]; 6732 char *tmp; 6733 size_t max_size; 6734 unsigned long inline_size; 6735 unsigned long ptr; 6736 int compress_type; 6737 6738 WARN_ON(pg_offset != 0); 6739 compress_type = btrfs_file_extent_compression(leaf, item); 6740 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6741 inline_size = btrfs_file_extent_inline_item_len(leaf, 6742 btrfs_item_nr(path->slots[0])); 6743 tmp = kmalloc(inline_size, GFP_NOFS); 6744 if (!tmp) 6745 return -ENOMEM; 6746 ptr = btrfs_file_extent_inline_start(item); 6747 6748 read_extent_buffer(leaf, tmp, ptr, inline_size); 6749 6750 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6751 ret = btrfs_decompress(compress_type, tmp, page, 6752 extent_offset, inline_size, max_size); 6753 6754 /* 6755 * decompression code contains a memset to fill in any space between the end 6756 * of the uncompressed data and the end of max_size in case the decompressed 6757 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6758 * the end of an inline extent and the beginning of the next block, so we 6759 * cover that region here. 6760 */ 6761 6762 if (max_size + pg_offset < PAGE_SIZE) { 6763 char *map = kmap(page); 6764 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6765 kunmap(page); 6766 } 6767 kfree(tmp); 6768 return ret; 6769 } 6770 6771 /* 6772 * a bit scary, this does extent mapping from logical file offset to the disk. 6773 * the ugly parts come from merging extents from the disk with the in-ram 6774 * representation. This gets more complex because of the data=ordered code, 6775 * where the in-ram extents might be locked pending data=ordered completion. 6776 * 6777 * This also copies inline extents directly into the page. 6778 */ 6779 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6780 struct page *page, 6781 size_t pg_offset, u64 start, u64 len, 6782 int create) 6783 { 6784 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6785 int ret; 6786 int err = 0; 6787 u64 extent_start = 0; 6788 u64 extent_end = 0; 6789 u64 objectid = btrfs_ino(inode); 6790 u32 found_type; 6791 struct btrfs_path *path = NULL; 6792 struct btrfs_root *root = inode->root; 6793 struct btrfs_file_extent_item *item; 6794 struct extent_buffer *leaf; 6795 struct btrfs_key found_key; 6796 struct extent_map *em = NULL; 6797 struct extent_map_tree *em_tree = &inode->extent_tree; 6798 struct extent_io_tree *io_tree = &inode->io_tree; 6799 const bool new_inline = !page || create; 6800 6801 read_lock(&em_tree->lock); 6802 em = lookup_extent_mapping(em_tree, start, len); 6803 if (em) 6804 em->bdev = fs_info->fs_devices->latest_bdev; 6805 read_unlock(&em_tree->lock); 6806 6807 if (em) { 6808 if (em->start > start || em->start + em->len <= start) 6809 free_extent_map(em); 6810 else if (em->block_start == EXTENT_MAP_INLINE && page) 6811 free_extent_map(em); 6812 else 6813 goto out; 6814 } 6815 em = alloc_extent_map(); 6816 if (!em) { 6817 err = -ENOMEM; 6818 goto out; 6819 } 6820 em->bdev = fs_info->fs_devices->latest_bdev; 6821 em->start = EXTENT_MAP_HOLE; 6822 em->orig_start = EXTENT_MAP_HOLE; 6823 em->len = (u64)-1; 6824 em->block_len = (u64)-1; 6825 6826 if (!path) { 6827 path = btrfs_alloc_path(); 6828 if (!path) { 6829 err = -ENOMEM; 6830 goto out; 6831 } 6832 /* 6833 * Chances are we'll be called again, so go ahead and do 6834 * readahead 6835 */ 6836 path->reada = READA_FORWARD; 6837 } 6838 6839 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6840 if (ret < 0) { 6841 err = ret; 6842 goto out; 6843 } 6844 6845 if (ret != 0) { 6846 if (path->slots[0] == 0) 6847 goto not_found; 6848 path->slots[0]--; 6849 } 6850 6851 leaf = path->nodes[0]; 6852 item = btrfs_item_ptr(leaf, path->slots[0], 6853 struct btrfs_file_extent_item); 6854 /* are we inside the extent that was found? */ 6855 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6856 found_type = found_key.type; 6857 if (found_key.objectid != objectid || 6858 found_type != BTRFS_EXTENT_DATA_KEY) { 6859 /* 6860 * If we backup past the first extent we want to move forward 6861 * and see if there is an extent in front of us, otherwise we'll 6862 * say there is a hole for our whole search range which can 6863 * cause problems. 6864 */ 6865 extent_end = start; 6866 goto next; 6867 } 6868 6869 found_type = btrfs_file_extent_type(leaf, item); 6870 extent_start = found_key.offset; 6871 if (found_type == BTRFS_FILE_EXTENT_REG || 6872 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6873 extent_end = extent_start + 6874 btrfs_file_extent_num_bytes(leaf, item); 6875 6876 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6877 extent_start); 6878 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6879 size_t size; 6880 6881 size = btrfs_file_extent_ram_bytes(leaf, item); 6882 extent_end = ALIGN(extent_start + size, 6883 fs_info->sectorsize); 6884 6885 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6886 path->slots[0], 6887 extent_start); 6888 } 6889 next: 6890 if (start >= extent_end) { 6891 path->slots[0]++; 6892 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6893 ret = btrfs_next_leaf(root, path); 6894 if (ret < 0) { 6895 err = ret; 6896 goto out; 6897 } 6898 if (ret > 0) 6899 goto not_found; 6900 leaf = path->nodes[0]; 6901 } 6902 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6903 if (found_key.objectid != objectid || 6904 found_key.type != BTRFS_EXTENT_DATA_KEY) 6905 goto not_found; 6906 if (start + len <= found_key.offset) 6907 goto not_found; 6908 if (start > found_key.offset) 6909 goto next; 6910 em->start = start; 6911 em->orig_start = start; 6912 em->len = found_key.offset - start; 6913 goto not_found_em; 6914 } 6915 6916 btrfs_extent_item_to_extent_map(inode, path, item, 6917 new_inline, em); 6918 6919 if (found_type == BTRFS_FILE_EXTENT_REG || 6920 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6921 goto insert; 6922 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6923 unsigned long ptr; 6924 char *map; 6925 size_t size; 6926 size_t extent_offset; 6927 size_t copy_size; 6928 6929 if (new_inline) 6930 goto out; 6931 6932 size = btrfs_file_extent_ram_bytes(leaf, item); 6933 extent_offset = page_offset(page) + pg_offset - extent_start; 6934 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6935 size - extent_offset); 6936 em->start = extent_start + extent_offset; 6937 em->len = ALIGN(copy_size, fs_info->sectorsize); 6938 em->orig_block_len = em->len; 6939 em->orig_start = em->start; 6940 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6941 if (!PageUptodate(page)) { 6942 if (btrfs_file_extent_compression(leaf, item) != 6943 BTRFS_COMPRESS_NONE) { 6944 ret = uncompress_inline(path, page, pg_offset, 6945 extent_offset, item); 6946 if (ret) { 6947 err = ret; 6948 goto out; 6949 } 6950 } else { 6951 map = kmap(page); 6952 read_extent_buffer(leaf, map + pg_offset, ptr, 6953 copy_size); 6954 if (pg_offset + copy_size < PAGE_SIZE) { 6955 memset(map + pg_offset + copy_size, 0, 6956 PAGE_SIZE - pg_offset - 6957 copy_size); 6958 } 6959 kunmap(page); 6960 } 6961 flush_dcache_page(page); 6962 } 6963 set_extent_uptodate(io_tree, em->start, 6964 extent_map_end(em) - 1, NULL, GFP_NOFS); 6965 goto insert; 6966 } 6967 not_found: 6968 em->start = start; 6969 em->orig_start = start; 6970 em->len = len; 6971 not_found_em: 6972 em->block_start = EXTENT_MAP_HOLE; 6973 insert: 6974 btrfs_release_path(path); 6975 if (em->start > start || extent_map_end(em) <= start) { 6976 btrfs_err(fs_info, 6977 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6978 em->start, em->len, start, len); 6979 err = -EIO; 6980 goto out; 6981 } 6982 6983 err = 0; 6984 write_lock(&em_tree->lock); 6985 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6986 write_unlock(&em_tree->lock); 6987 out: 6988 6989 trace_btrfs_get_extent(root, inode, em); 6990 6991 btrfs_free_path(path); 6992 if (err) { 6993 free_extent_map(em); 6994 return ERR_PTR(err); 6995 } 6996 BUG_ON(!em); /* Error is always set */ 6997 return em; 6998 } 6999 7000 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7001 struct page *page, 7002 size_t pg_offset, u64 start, u64 len, 7003 int create) 7004 { 7005 struct extent_map *em; 7006 struct extent_map *hole_em = NULL; 7007 u64 range_start = start; 7008 u64 end; 7009 u64 found; 7010 u64 found_end; 7011 int err = 0; 7012 7013 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7014 if (IS_ERR(em)) 7015 return em; 7016 /* 7017 * If our em maps to: 7018 * - a hole or 7019 * - a pre-alloc extent, 7020 * there might actually be delalloc bytes behind it. 7021 */ 7022 if (em->block_start != EXTENT_MAP_HOLE && 7023 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7024 return em; 7025 else 7026 hole_em = em; 7027 7028 /* check to see if we've wrapped (len == -1 or similar) */ 7029 end = start + len; 7030 if (end < start) 7031 end = (u64)-1; 7032 else 7033 end -= 1; 7034 7035 em = NULL; 7036 7037 /* ok, we didn't find anything, lets look for delalloc */ 7038 found = count_range_bits(&inode->io_tree, &range_start, 7039 end, len, EXTENT_DELALLOC, 1); 7040 found_end = range_start + found; 7041 if (found_end < range_start) 7042 found_end = (u64)-1; 7043 7044 /* 7045 * we didn't find anything useful, return 7046 * the original results from get_extent() 7047 */ 7048 if (range_start > end || found_end <= start) { 7049 em = hole_em; 7050 hole_em = NULL; 7051 goto out; 7052 } 7053 7054 /* adjust the range_start to make sure it doesn't 7055 * go backwards from the start they passed in 7056 */ 7057 range_start = max(start, range_start); 7058 found = found_end - range_start; 7059 7060 if (found > 0) { 7061 u64 hole_start = start; 7062 u64 hole_len = len; 7063 7064 em = alloc_extent_map(); 7065 if (!em) { 7066 err = -ENOMEM; 7067 goto out; 7068 } 7069 /* 7070 * when btrfs_get_extent can't find anything it 7071 * returns one huge hole 7072 * 7073 * make sure what it found really fits our range, and 7074 * adjust to make sure it is based on the start from 7075 * the caller 7076 */ 7077 if (hole_em) { 7078 u64 calc_end = extent_map_end(hole_em); 7079 7080 if (calc_end <= start || (hole_em->start > end)) { 7081 free_extent_map(hole_em); 7082 hole_em = NULL; 7083 } else { 7084 hole_start = max(hole_em->start, start); 7085 hole_len = calc_end - hole_start; 7086 } 7087 } 7088 em->bdev = NULL; 7089 if (hole_em && range_start > hole_start) { 7090 /* our hole starts before our delalloc, so we 7091 * have to return just the parts of the hole 7092 * that go until the delalloc starts 7093 */ 7094 em->len = min(hole_len, 7095 range_start - hole_start); 7096 em->start = hole_start; 7097 em->orig_start = hole_start; 7098 /* 7099 * don't adjust block start at all, 7100 * it is fixed at EXTENT_MAP_HOLE 7101 */ 7102 em->block_start = hole_em->block_start; 7103 em->block_len = hole_len; 7104 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7105 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7106 } else { 7107 em->start = range_start; 7108 em->len = found; 7109 em->orig_start = range_start; 7110 em->block_start = EXTENT_MAP_DELALLOC; 7111 em->block_len = found; 7112 } 7113 } else { 7114 return hole_em; 7115 } 7116 out: 7117 7118 free_extent_map(hole_em); 7119 if (err) { 7120 free_extent_map(em); 7121 return ERR_PTR(err); 7122 } 7123 return em; 7124 } 7125 7126 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7127 const u64 start, 7128 const u64 len, 7129 const u64 orig_start, 7130 const u64 block_start, 7131 const u64 block_len, 7132 const u64 orig_block_len, 7133 const u64 ram_bytes, 7134 const int type) 7135 { 7136 struct extent_map *em = NULL; 7137 int ret; 7138 7139 if (type != BTRFS_ORDERED_NOCOW) { 7140 em = create_io_em(inode, start, len, orig_start, 7141 block_start, block_len, orig_block_len, 7142 ram_bytes, 7143 BTRFS_COMPRESS_NONE, /* compress_type */ 7144 type); 7145 if (IS_ERR(em)) 7146 goto out; 7147 } 7148 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7149 len, block_len, type); 7150 if (ret) { 7151 if (em) { 7152 free_extent_map(em); 7153 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7154 start + len - 1, 0); 7155 } 7156 em = ERR_PTR(ret); 7157 } 7158 out: 7159 7160 return em; 7161 } 7162 7163 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7164 u64 start, u64 len) 7165 { 7166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7167 struct btrfs_root *root = BTRFS_I(inode)->root; 7168 struct extent_map *em; 7169 struct btrfs_key ins; 7170 u64 alloc_hint; 7171 int ret; 7172 7173 alloc_hint = get_extent_allocation_hint(inode, start, len); 7174 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7175 0, alloc_hint, &ins, 1, 1); 7176 if (ret) 7177 return ERR_PTR(ret); 7178 7179 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7180 ins.objectid, ins.offset, ins.offset, 7181 ins.offset, BTRFS_ORDERED_REGULAR); 7182 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7183 if (IS_ERR(em)) 7184 btrfs_free_reserved_extent(fs_info, ins.objectid, 7185 ins.offset, 1); 7186 7187 return em; 7188 } 7189 7190 /* 7191 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7192 * block must be cow'd 7193 */ 7194 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7195 u64 *orig_start, u64 *orig_block_len, 7196 u64 *ram_bytes) 7197 { 7198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7199 struct btrfs_path *path; 7200 int ret; 7201 struct extent_buffer *leaf; 7202 struct btrfs_root *root = BTRFS_I(inode)->root; 7203 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7204 struct btrfs_file_extent_item *fi; 7205 struct btrfs_key key; 7206 u64 disk_bytenr; 7207 u64 backref_offset; 7208 u64 extent_end; 7209 u64 num_bytes; 7210 int slot; 7211 int found_type; 7212 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7213 7214 path = btrfs_alloc_path(); 7215 if (!path) 7216 return -ENOMEM; 7217 7218 ret = btrfs_lookup_file_extent(NULL, root, path, 7219 btrfs_ino(BTRFS_I(inode)), offset, 0); 7220 if (ret < 0) 7221 goto out; 7222 7223 slot = path->slots[0]; 7224 if (ret == 1) { 7225 if (slot == 0) { 7226 /* can't find the item, must cow */ 7227 ret = 0; 7228 goto out; 7229 } 7230 slot--; 7231 } 7232 ret = 0; 7233 leaf = path->nodes[0]; 7234 btrfs_item_key_to_cpu(leaf, &key, slot); 7235 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7236 key.type != BTRFS_EXTENT_DATA_KEY) { 7237 /* not our file or wrong item type, must cow */ 7238 goto out; 7239 } 7240 7241 if (key.offset > offset) { 7242 /* Wrong offset, must cow */ 7243 goto out; 7244 } 7245 7246 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7247 found_type = btrfs_file_extent_type(leaf, fi); 7248 if (found_type != BTRFS_FILE_EXTENT_REG && 7249 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7250 /* not a regular extent, must cow */ 7251 goto out; 7252 } 7253 7254 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7255 goto out; 7256 7257 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7258 if (extent_end <= offset) 7259 goto out; 7260 7261 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7262 if (disk_bytenr == 0) 7263 goto out; 7264 7265 if (btrfs_file_extent_compression(leaf, fi) || 7266 btrfs_file_extent_encryption(leaf, fi) || 7267 btrfs_file_extent_other_encoding(leaf, fi)) 7268 goto out; 7269 7270 /* 7271 * Do the same check as in btrfs_cross_ref_exist but without the 7272 * unnecessary search. 7273 */ 7274 if (btrfs_file_extent_generation(leaf, fi) <= 7275 btrfs_root_last_snapshot(&root->root_item)) 7276 goto out; 7277 7278 backref_offset = btrfs_file_extent_offset(leaf, fi); 7279 7280 if (orig_start) { 7281 *orig_start = key.offset - backref_offset; 7282 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7283 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7284 } 7285 7286 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7287 goto out; 7288 7289 num_bytes = min(offset + *len, extent_end) - offset; 7290 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7291 u64 range_end; 7292 7293 range_end = round_up(offset + num_bytes, 7294 root->fs_info->sectorsize) - 1; 7295 ret = test_range_bit(io_tree, offset, range_end, 7296 EXTENT_DELALLOC, 0, NULL); 7297 if (ret) { 7298 ret = -EAGAIN; 7299 goto out; 7300 } 7301 } 7302 7303 btrfs_release_path(path); 7304 7305 /* 7306 * look for other files referencing this extent, if we 7307 * find any we must cow 7308 */ 7309 7310 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7311 key.offset - backref_offset, disk_bytenr); 7312 if (ret) { 7313 ret = 0; 7314 goto out; 7315 } 7316 7317 /* 7318 * adjust disk_bytenr and num_bytes to cover just the bytes 7319 * in this extent we are about to write. If there 7320 * are any csums in that range we have to cow in order 7321 * to keep the csums correct 7322 */ 7323 disk_bytenr += backref_offset; 7324 disk_bytenr += offset - key.offset; 7325 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7326 goto out; 7327 /* 7328 * all of the above have passed, it is safe to overwrite this extent 7329 * without cow 7330 */ 7331 *len = num_bytes; 7332 ret = 1; 7333 out: 7334 btrfs_free_path(path); 7335 return ret; 7336 } 7337 7338 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7339 struct extent_state **cached_state, int writing) 7340 { 7341 struct btrfs_ordered_extent *ordered; 7342 int ret = 0; 7343 7344 while (1) { 7345 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7346 cached_state); 7347 /* 7348 * We're concerned with the entire range that we're going to be 7349 * doing DIO to, so we need to make sure there's no ordered 7350 * extents in this range. 7351 */ 7352 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7353 lockend - lockstart + 1); 7354 7355 /* 7356 * We need to make sure there are no buffered pages in this 7357 * range either, we could have raced between the invalidate in 7358 * generic_file_direct_write and locking the extent. The 7359 * invalidate needs to happen so that reads after a write do not 7360 * get stale data. 7361 */ 7362 if (!ordered && 7363 (!writing || !filemap_range_has_page(inode->i_mapping, 7364 lockstart, lockend))) 7365 break; 7366 7367 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7368 cached_state); 7369 7370 if (ordered) { 7371 /* 7372 * If we are doing a DIO read and the ordered extent we 7373 * found is for a buffered write, we can not wait for it 7374 * to complete and retry, because if we do so we can 7375 * deadlock with concurrent buffered writes on page 7376 * locks. This happens only if our DIO read covers more 7377 * than one extent map, if at this point has already 7378 * created an ordered extent for a previous extent map 7379 * and locked its range in the inode's io tree, and a 7380 * concurrent write against that previous extent map's 7381 * range and this range started (we unlock the ranges 7382 * in the io tree only when the bios complete and 7383 * buffered writes always lock pages before attempting 7384 * to lock range in the io tree). 7385 */ 7386 if (writing || 7387 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7388 btrfs_start_ordered_extent(inode, ordered, 1); 7389 else 7390 ret = -ENOTBLK; 7391 btrfs_put_ordered_extent(ordered); 7392 } else { 7393 /* 7394 * We could trigger writeback for this range (and wait 7395 * for it to complete) and then invalidate the pages for 7396 * this range (through invalidate_inode_pages2_range()), 7397 * but that can lead us to a deadlock with a concurrent 7398 * call to readpages() (a buffered read or a defrag call 7399 * triggered a readahead) on a page lock due to an 7400 * ordered dio extent we created before but did not have 7401 * yet a corresponding bio submitted (whence it can not 7402 * complete), which makes readpages() wait for that 7403 * ordered extent to complete while holding a lock on 7404 * that page. 7405 */ 7406 ret = -ENOTBLK; 7407 } 7408 7409 if (ret) 7410 break; 7411 7412 cond_resched(); 7413 } 7414 7415 return ret; 7416 } 7417 7418 /* The callers of this must take lock_extent() */ 7419 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7420 u64 orig_start, u64 block_start, 7421 u64 block_len, u64 orig_block_len, 7422 u64 ram_bytes, int compress_type, 7423 int type) 7424 { 7425 struct extent_map_tree *em_tree; 7426 struct extent_map *em; 7427 struct btrfs_root *root = BTRFS_I(inode)->root; 7428 int ret; 7429 7430 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7431 type == BTRFS_ORDERED_COMPRESSED || 7432 type == BTRFS_ORDERED_NOCOW || 7433 type == BTRFS_ORDERED_REGULAR); 7434 7435 em_tree = &BTRFS_I(inode)->extent_tree; 7436 em = alloc_extent_map(); 7437 if (!em) 7438 return ERR_PTR(-ENOMEM); 7439 7440 em->start = start; 7441 em->orig_start = orig_start; 7442 em->len = len; 7443 em->block_len = block_len; 7444 em->block_start = block_start; 7445 em->bdev = root->fs_info->fs_devices->latest_bdev; 7446 em->orig_block_len = orig_block_len; 7447 em->ram_bytes = ram_bytes; 7448 em->generation = -1; 7449 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7450 if (type == BTRFS_ORDERED_PREALLOC) { 7451 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7452 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7453 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7454 em->compress_type = compress_type; 7455 } 7456 7457 do { 7458 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7459 em->start + em->len - 1, 0); 7460 write_lock(&em_tree->lock); 7461 ret = add_extent_mapping(em_tree, em, 1); 7462 write_unlock(&em_tree->lock); 7463 /* 7464 * The caller has taken lock_extent(), who could race with us 7465 * to add em? 7466 */ 7467 } while (ret == -EEXIST); 7468 7469 if (ret) { 7470 free_extent_map(em); 7471 return ERR_PTR(ret); 7472 } 7473 7474 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7475 return em; 7476 } 7477 7478 7479 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7480 struct buffer_head *bh_result, 7481 struct inode *inode, 7482 u64 start, u64 len) 7483 { 7484 if (em->block_start == EXTENT_MAP_HOLE || 7485 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7486 return -ENOENT; 7487 7488 len = min(len, em->len - (start - em->start)); 7489 7490 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7491 inode->i_blkbits; 7492 bh_result->b_size = len; 7493 bh_result->b_bdev = em->bdev; 7494 set_buffer_mapped(bh_result); 7495 7496 return 0; 7497 } 7498 7499 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7500 struct buffer_head *bh_result, 7501 struct inode *inode, 7502 struct btrfs_dio_data *dio_data, 7503 u64 start, u64 len) 7504 { 7505 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7506 struct extent_map *em = *map; 7507 int ret = 0; 7508 7509 /* 7510 * We don't allocate a new extent in the following cases 7511 * 7512 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7513 * existing extent. 7514 * 2) The extent is marked as PREALLOC. We're good to go here and can 7515 * just use the extent. 7516 * 7517 */ 7518 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7519 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7520 em->block_start != EXTENT_MAP_HOLE)) { 7521 int type; 7522 u64 block_start, orig_start, orig_block_len, ram_bytes; 7523 7524 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7525 type = BTRFS_ORDERED_PREALLOC; 7526 else 7527 type = BTRFS_ORDERED_NOCOW; 7528 len = min(len, em->len - (start - em->start)); 7529 block_start = em->block_start + (start - em->start); 7530 7531 if (can_nocow_extent(inode, start, &len, &orig_start, 7532 &orig_block_len, &ram_bytes) == 1 && 7533 btrfs_inc_nocow_writers(fs_info, block_start)) { 7534 struct extent_map *em2; 7535 7536 em2 = btrfs_create_dio_extent(inode, start, len, 7537 orig_start, block_start, 7538 len, orig_block_len, 7539 ram_bytes, type); 7540 btrfs_dec_nocow_writers(fs_info, block_start); 7541 if (type == BTRFS_ORDERED_PREALLOC) { 7542 free_extent_map(em); 7543 *map = em = em2; 7544 } 7545 7546 if (em2 && IS_ERR(em2)) { 7547 ret = PTR_ERR(em2); 7548 goto out; 7549 } 7550 /* 7551 * For inode marked NODATACOW or extent marked PREALLOC, 7552 * use the existing or preallocated extent, so does not 7553 * need to adjust btrfs_space_info's bytes_may_use. 7554 */ 7555 btrfs_free_reserved_data_space_noquota(inode, start, 7556 len); 7557 goto skip_cow; 7558 } 7559 } 7560 7561 /* this will cow the extent */ 7562 len = bh_result->b_size; 7563 free_extent_map(em); 7564 *map = em = btrfs_new_extent_direct(inode, start, len); 7565 if (IS_ERR(em)) { 7566 ret = PTR_ERR(em); 7567 goto out; 7568 } 7569 7570 len = min(len, em->len - (start - em->start)); 7571 7572 skip_cow: 7573 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7574 inode->i_blkbits; 7575 bh_result->b_size = len; 7576 bh_result->b_bdev = em->bdev; 7577 set_buffer_mapped(bh_result); 7578 7579 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7580 set_buffer_new(bh_result); 7581 7582 /* 7583 * Need to update the i_size under the extent lock so buffered 7584 * readers will get the updated i_size when we unlock. 7585 */ 7586 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7587 i_size_write(inode, start + len); 7588 7589 WARN_ON(dio_data->reserve < len); 7590 dio_data->reserve -= len; 7591 dio_data->unsubmitted_oe_range_end = start + len; 7592 current->journal_info = dio_data; 7593 out: 7594 return ret; 7595 } 7596 7597 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7598 struct buffer_head *bh_result, int create) 7599 { 7600 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7601 struct extent_map *em; 7602 struct extent_state *cached_state = NULL; 7603 struct btrfs_dio_data *dio_data = NULL; 7604 u64 start = iblock << inode->i_blkbits; 7605 u64 lockstart, lockend; 7606 u64 len = bh_result->b_size; 7607 int unlock_bits = EXTENT_LOCKED; 7608 int ret = 0; 7609 7610 if (create) 7611 unlock_bits |= EXTENT_DIRTY; 7612 else 7613 len = min_t(u64, len, fs_info->sectorsize); 7614 7615 lockstart = start; 7616 lockend = start + len - 1; 7617 7618 if (current->journal_info) { 7619 /* 7620 * Need to pull our outstanding extents and set journal_info to NULL so 7621 * that anything that needs to check if there's a transaction doesn't get 7622 * confused. 7623 */ 7624 dio_data = current->journal_info; 7625 current->journal_info = NULL; 7626 } 7627 7628 /* 7629 * If this errors out it's because we couldn't invalidate pagecache for 7630 * this range and we need to fallback to buffered. 7631 */ 7632 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7633 create)) { 7634 ret = -ENOTBLK; 7635 goto err; 7636 } 7637 7638 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7639 if (IS_ERR(em)) { 7640 ret = PTR_ERR(em); 7641 goto unlock_err; 7642 } 7643 7644 /* 7645 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7646 * io. INLINE is special, and we could probably kludge it in here, but 7647 * it's still buffered so for safety lets just fall back to the generic 7648 * buffered path. 7649 * 7650 * For COMPRESSED we _have_ to read the entire extent in so we can 7651 * decompress it, so there will be buffering required no matter what we 7652 * do, so go ahead and fallback to buffered. 7653 * 7654 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7655 * to buffered IO. Don't blame me, this is the price we pay for using 7656 * the generic code. 7657 */ 7658 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7659 em->block_start == EXTENT_MAP_INLINE) { 7660 free_extent_map(em); 7661 ret = -ENOTBLK; 7662 goto unlock_err; 7663 } 7664 7665 if (create) { 7666 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7667 dio_data, start, len); 7668 if (ret < 0) 7669 goto unlock_err; 7670 7671 /* clear and unlock the entire range */ 7672 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7673 unlock_bits, 1, 0, &cached_state); 7674 } else { 7675 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7676 start, len); 7677 /* Can be negative only if we read from a hole */ 7678 if (ret < 0) { 7679 ret = 0; 7680 free_extent_map(em); 7681 goto unlock_err; 7682 } 7683 /* 7684 * We need to unlock only the end area that we aren't using. 7685 * The rest is going to be unlocked by the endio routine. 7686 */ 7687 lockstart = start + bh_result->b_size; 7688 if (lockstart < lockend) { 7689 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7690 lockend, unlock_bits, 1, 0, 7691 &cached_state); 7692 } else { 7693 free_extent_state(cached_state); 7694 } 7695 } 7696 7697 free_extent_map(em); 7698 7699 return 0; 7700 7701 unlock_err: 7702 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7703 unlock_bits, 1, 0, &cached_state); 7704 err: 7705 if (dio_data) 7706 current->journal_info = dio_data; 7707 return ret; 7708 } 7709 7710 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7711 struct bio *bio, 7712 int mirror_num) 7713 { 7714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7715 blk_status_t ret; 7716 7717 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7718 7719 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7720 if (ret) 7721 return ret; 7722 7723 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7724 7725 return ret; 7726 } 7727 7728 static int btrfs_check_dio_repairable(struct inode *inode, 7729 struct bio *failed_bio, 7730 struct io_failure_record *failrec, 7731 int failed_mirror) 7732 { 7733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7734 int num_copies; 7735 7736 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7737 if (num_copies == 1) { 7738 /* 7739 * we only have a single copy of the data, so don't bother with 7740 * all the retry and error correction code that follows. no 7741 * matter what the error is, it is very likely to persist. 7742 */ 7743 btrfs_debug(fs_info, 7744 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7745 num_copies, failrec->this_mirror, failed_mirror); 7746 return 0; 7747 } 7748 7749 failrec->failed_mirror = failed_mirror; 7750 failrec->this_mirror++; 7751 if (failrec->this_mirror == failed_mirror) 7752 failrec->this_mirror++; 7753 7754 if (failrec->this_mirror > num_copies) { 7755 btrfs_debug(fs_info, 7756 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7757 num_copies, failrec->this_mirror, failed_mirror); 7758 return 0; 7759 } 7760 7761 return 1; 7762 } 7763 7764 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7765 struct page *page, unsigned int pgoff, 7766 u64 start, u64 end, int failed_mirror, 7767 bio_end_io_t *repair_endio, void *repair_arg) 7768 { 7769 struct io_failure_record *failrec; 7770 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7771 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7772 struct bio *bio; 7773 int isector; 7774 unsigned int read_mode = 0; 7775 int segs; 7776 int ret; 7777 blk_status_t status; 7778 struct bio_vec bvec; 7779 7780 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7781 7782 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7783 if (ret) 7784 return errno_to_blk_status(ret); 7785 7786 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7787 failed_mirror); 7788 if (!ret) { 7789 free_io_failure(failure_tree, io_tree, failrec); 7790 return BLK_STS_IOERR; 7791 } 7792 7793 segs = bio_segments(failed_bio); 7794 bio_get_first_bvec(failed_bio, &bvec); 7795 if (segs > 1 || 7796 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7797 read_mode |= REQ_FAILFAST_DEV; 7798 7799 isector = start - btrfs_io_bio(failed_bio)->logical; 7800 isector >>= inode->i_sb->s_blocksize_bits; 7801 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7802 pgoff, isector, repair_endio, repair_arg); 7803 bio->bi_opf = REQ_OP_READ | read_mode; 7804 7805 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7806 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7807 read_mode, failrec->this_mirror, failrec->in_validation); 7808 7809 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7810 if (status) { 7811 free_io_failure(failure_tree, io_tree, failrec); 7812 bio_put(bio); 7813 } 7814 7815 return status; 7816 } 7817 7818 struct btrfs_retry_complete { 7819 struct completion done; 7820 struct inode *inode; 7821 u64 start; 7822 int uptodate; 7823 }; 7824 7825 static void btrfs_retry_endio_nocsum(struct bio *bio) 7826 { 7827 struct btrfs_retry_complete *done = bio->bi_private; 7828 struct inode *inode = done->inode; 7829 struct bio_vec *bvec; 7830 struct extent_io_tree *io_tree, *failure_tree; 7831 int i; 7832 7833 if (bio->bi_status) 7834 goto end; 7835 7836 ASSERT(bio->bi_vcnt == 1); 7837 io_tree = &BTRFS_I(inode)->io_tree; 7838 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7839 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7840 7841 done->uptodate = 1; 7842 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7843 bio_for_each_segment_all(bvec, bio, i) 7844 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7845 io_tree, done->start, bvec->bv_page, 7846 btrfs_ino(BTRFS_I(inode)), 0); 7847 end: 7848 complete(&done->done); 7849 bio_put(bio); 7850 } 7851 7852 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7853 struct btrfs_io_bio *io_bio) 7854 { 7855 struct btrfs_fs_info *fs_info; 7856 struct bio_vec bvec; 7857 struct bvec_iter iter; 7858 struct btrfs_retry_complete done; 7859 u64 start; 7860 unsigned int pgoff; 7861 u32 sectorsize; 7862 int nr_sectors; 7863 blk_status_t ret; 7864 blk_status_t err = BLK_STS_OK; 7865 7866 fs_info = BTRFS_I(inode)->root->fs_info; 7867 sectorsize = fs_info->sectorsize; 7868 7869 start = io_bio->logical; 7870 done.inode = inode; 7871 io_bio->bio.bi_iter = io_bio->iter; 7872 7873 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7874 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7875 pgoff = bvec.bv_offset; 7876 7877 next_block_or_try_again: 7878 done.uptodate = 0; 7879 done.start = start; 7880 init_completion(&done.done); 7881 7882 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7883 pgoff, start, start + sectorsize - 1, 7884 io_bio->mirror_num, 7885 btrfs_retry_endio_nocsum, &done); 7886 if (ret) { 7887 err = ret; 7888 goto next; 7889 } 7890 7891 wait_for_completion_io(&done.done); 7892 7893 if (!done.uptodate) { 7894 /* We might have another mirror, so try again */ 7895 goto next_block_or_try_again; 7896 } 7897 7898 next: 7899 start += sectorsize; 7900 7901 nr_sectors--; 7902 if (nr_sectors) { 7903 pgoff += sectorsize; 7904 ASSERT(pgoff < PAGE_SIZE); 7905 goto next_block_or_try_again; 7906 } 7907 } 7908 7909 return err; 7910 } 7911 7912 static void btrfs_retry_endio(struct bio *bio) 7913 { 7914 struct btrfs_retry_complete *done = bio->bi_private; 7915 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7916 struct extent_io_tree *io_tree, *failure_tree; 7917 struct inode *inode = done->inode; 7918 struct bio_vec *bvec; 7919 int uptodate; 7920 int ret; 7921 int i; 7922 7923 if (bio->bi_status) 7924 goto end; 7925 7926 uptodate = 1; 7927 7928 ASSERT(bio->bi_vcnt == 1); 7929 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7930 7931 io_tree = &BTRFS_I(inode)->io_tree; 7932 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7933 7934 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7935 bio_for_each_segment_all(bvec, bio, i) { 7936 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 7937 bvec->bv_offset, done->start, 7938 bvec->bv_len); 7939 if (!ret) 7940 clean_io_failure(BTRFS_I(inode)->root->fs_info, 7941 failure_tree, io_tree, done->start, 7942 bvec->bv_page, 7943 btrfs_ino(BTRFS_I(inode)), 7944 bvec->bv_offset); 7945 else 7946 uptodate = 0; 7947 } 7948 7949 done->uptodate = uptodate; 7950 end: 7951 complete(&done->done); 7952 bio_put(bio); 7953 } 7954 7955 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 7956 struct btrfs_io_bio *io_bio, blk_status_t err) 7957 { 7958 struct btrfs_fs_info *fs_info; 7959 struct bio_vec bvec; 7960 struct bvec_iter iter; 7961 struct btrfs_retry_complete done; 7962 u64 start; 7963 u64 offset = 0; 7964 u32 sectorsize; 7965 int nr_sectors; 7966 unsigned int pgoff; 7967 int csum_pos; 7968 bool uptodate = (err == 0); 7969 int ret; 7970 blk_status_t status; 7971 7972 fs_info = BTRFS_I(inode)->root->fs_info; 7973 sectorsize = fs_info->sectorsize; 7974 7975 err = BLK_STS_OK; 7976 start = io_bio->logical; 7977 done.inode = inode; 7978 io_bio->bio.bi_iter = io_bio->iter; 7979 7980 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7981 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7982 7983 pgoff = bvec.bv_offset; 7984 next_block: 7985 if (uptodate) { 7986 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 7987 ret = __readpage_endio_check(inode, io_bio, csum_pos, 7988 bvec.bv_page, pgoff, start, sectorsize); 7989 if (likely(!ret)) 7990 goto next; 7991 } 7992 try_again: 7993 done.uptodate = 0; 7994 done.start = start; 7995 init_completion(&done.done); 7996 7997 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7998 pgoff, start, start + sectorsize - 1, 7999 io_bio->mirror_num, btrfs_retry_endio, 8000 &done); 8001 if (status) { 8002 err = status; 8003 goto next; 8004 } 8005 8006 wait_for_completion_io(&done.done); 8007 8008 if (!done.uptodate) { 8009 /* We might have another mirror, so try again */ 8010 goto try_again; 8011 } 8012 next: 8013 offset += sectorsize; 8014 start += sectorsize; 8015 8016 ASSERT(nr_sectors); 8017 8018 nr_sectors--; 8019 if (nr_sectors) { 8020 pgoff += sectorsize; 8021 ASSERT(pgoff < PAGE_SIZE); 8022 goto next_block; 8023 } 8024 } 8025 8026 return err; 8027 } 8028 8029 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8030 struct btrfs_io_bio *io_bio, blk_status_t err) 8031 { 8032 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8033 8034 if (skip_csum) { 8035 if (unlikely(err)) 8036 return __btrfs_correct_data_nocsum(inode, io_bio); 8037 else 8038 return BLK_STS_OK; 8039 } else { 8040 return __btrfs_subio_endio_read(inode, io_bio, err); 8041 } 8042 } 8043 8044 static void btrfs_endio_direct_read(struct bio *bio) 8045 { 8046 struct btrfs_dio_private *dip = bio->bi_private; 8047 struct inode *inode = dip->inode; 8048 struct bio *dio_bio; 8049 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8050 blk_status_t err = bio->bi_status; 8051 8052 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8053 err = btrfs_subio_endio_read(inode, io_bio, err); 8054 8055 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8056 dip->logical_offset + dip->bytes - 1); 8057 dio_bio = dip->dio_bio; 8058 8059 kfree(dip); 8060 8061 dio_bio->bi_status = err; 8062 dio_end_io(dio_bio); 8063 8064 if (io_bio->end_io) 8065 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8066 bio_put(bio); 8067 } 8068 8069 static void __endio_write_update_ordered(struct inode *inode, 8070 const u64 offset, const u64 bytes, 8071 const bool uptodate) 8072 { 8073 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8074 struct btrfs_ordered_extent *ordered = NULL; 8075 struct btrfs_workqueue *wq; 8076 btrfs_work_func_t func; 8077 u64 ordered_offset = offset; 8078 u64 ordered_bytes = bytes; 8079 u64 last_offset; 8080 8081 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8082 wq = fs_info->endio_freespace_worker; 8083 func = btrfs_freespace_write_helper; 8084 } else { 8085 wq = fs_info->endio_write_workers; 8086 func = btrfs_endio_write_helper; 8087 } 8088 8089 while (ordered_offset < offset + bytes) { 8090 last_offset = ordered_offset; 8091 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8092 &ordered_offset, 8093 ordered_bytes, 8094 uptodate)) { 8095 btrfs_init_work(&ordered->work, func, 8096 finish_ordered_fn, 8097 NULL, NULL); 8098 btrfs_queue_work(wq, &ordered->work); 8099 } 8100 /* 8101 * If btrfs_dec_test_ordered_pending does not find any ordered 8102 * extent in the range, we can exit. 8103 */ 8104 if (ordered_offset == last_offset) 8105 return; 8106 /* 8107 * Our bio might span multiple ordered extents. In this case 8108 * we keep goin until we have accounted the whole dio. 8109 */ 8110 if (ordered_offset < offset + bytes) { 8111 ordered_bytes = offset + bytes - ordered_offset; 8112 ordered = NULL; 8113 } 8114 } 8115 } 8116 8117 static void btrfs_endio_direct_write(struct bio *bio) 8118 { 8119 struct btrfs_dio_private *dip = bio->bi_private; 8120 struct bio *dio_bio = dip->dio_bio; 8121 8122 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8123 dip->bytes, !bio->bi_status); 8124 8125 kfree(dip); 8126 8127 dio_bio->bi_status = bio->bi_status; 8128 dio_end_io(dio_bio); 8129 bio_put(bio); 8130 } 8131 8132 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8133 struct bio *bio, u64 offset) 8134 { 8135 struct inode *inode = private_data; 8136 blk_status_t ret; 8137 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8138 BUG_ON(ret); /* -ENOMEM */ 8139 return 0; 8140 } 8141 8142 static void btrfs_end_dio_bio(struct bio *bio) 8143 { 8144 struct btrfs_dio_private *dip = bio->bi_private; 8145 blk_status_t err = bio->bi_status; 8146 8147 if (err) 8148 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8149 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8150 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8151 bio->bi_opf, 8152 (unsigned long long)bio->bi_iter.bi_sector, 8153 bio->bi_iter.bi_size, err); 8154 8155 if (dip->subio_endio) 8156 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8157 8158 if (err) { 8159 /* 8160 * We want to perceive the errors flag being set before 8161 * decrementing the reference count. We don't need a barrier 8162 * since atomic operations with a return value are fully 8163 * ordered as per atomic_t.txt 8164 */ 8165 dip->errors = 1; 8166 } 8167 8168 /* if there are more bios still pending for this dio, just exit */ 8169 if (!atomic_dec_and_test(&dip->pending_bios)) 8170 goto out; 8171 8172 if (dip->errors) { 8173 bio_io_error(dip->orig_bio); 8174 } else { 8175 dip->dio_bio->bi_status = BLK_STS_OK; 8176 bio_endio(dip->orig_bio); 8177 } 8178 out: 8179 bio_put(bio); 8180 } 8181 8182 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8183 struct btrfs_dio_private *dip, 8184 struct bio *bio, 8185 u64 file_offset) 8186 { 8187 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8188 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8189 blk_status_t ret; 8190 8191 /* 8192 * We load all the csum data we need when we submit 8193 * the first bio to reduce the csum tree search and 8194 * contention. 8195 */ 8196 if (dip->logical_offset == file_offset) { 8197 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8198 file_offset); 8199 if (ret) 8200 return ret; 8201 } 8202 8203 if (bio == dip->orig_bio) 8204 return 0; 8205 8206 file_offset -= dip->logical_offset; 8207 file_offset >>= inode->i_sb->s_blocksize_bits; 8208 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8209 8210 return 0; 8211 } 8212 8213 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8214 struct inode *inode, u64 file_offset, int async_submit) 8215 { 8216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8217 struct btrfs_dio_private *dip = bio->bi_private; 8218 bool write = bio_op(bio) == REQ_OP_WRITE; 8219 blk_status_t ret; 8220 8221 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8222 if (async_submit) 8223 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8224 8225 if (!write) { 8226 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8227 if (ret) 8228 goto err; 8229 } 8230 8231 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8232 goto map; 8233 8234 if (write && async_submit) { 8235 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8236 file_offset, inode, 8237 btrfs_submit_bio_start_direct_io); 8238 goto err; 8239 } else if (write) { 8240 /* 8241 * If we aren't doing async submit, calculate the csum of the 8242 * bio now. 8243 */ 8244 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8245 if (ret) 8246 goto err; 8247 } else { 8248 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8249 file_offset); 8250 if (ret) 8251 goto err; 8252 } 8253 map: 8254 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8255 err: 8256 return ret; 8257 } 8258 8259 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8260 { 8261 struct inode *inode = dip->inode; 8262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8263 struct bio *bio; 8264 struct bio *orig_bio = dip->orig_bio; 8265 u64 start_sector = orig_bio->bi_iter.bi_sector; 8266 u64 file_offset = dip->logical_offset; 8267 u64 map_length; 8268 int async_submit = 0; 8269 u64 submit_len; 8270 int clone_offset = 0; 8271 int clone_len; 8272 int ret; 8273 blk_status_t status; 8274 8275 map_length = orig_bio->bi_iter.bi_size; 8276 submit_len = map_length; 8277 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8278 &map_length, NULL, 0); 8279 if (ret) 8280 return -EIO; 8281 8282 if (map_length >= submit_len) { 8283 bio = orig_bio; 8284 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8285 goto submit; 8286 } 8287 8288 /* async crcs make it difficult to collect full stripe writes. */ 8289 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8290 async_submit = 0; 8291 else 8292 async_submit = 1; 8293 8294 /* bio split */ 8295 ASSERT(map_length <= INT_MAX); 8296 atomic_inc(&dip->pending_bios); 8297 do { 8298 clone_len = min_t(int, submit_len, map_length); 8299 8300 /* 8301 * This will never fail as it's passing GPF_NOFS and 8302 * the allocation is backed by btrfs_bioset. 8303 */ 8304 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8305 clone_len); 8306 bio->bi_private = dip; 8307 bio->bi_end_io = btrfs_end_dio_bio; 8308 btrfs_io_bio(bio)->logical = file_offset; 8309 8310 ASSERT(submit_len >= clone_len); 8311 submit_len -= clone_len; 8312 if (submit_len == 0) 8313 break; 8314 8315 /* 8316 * Increase the count before we submit the bio so we know 8317 * the end IO handler won't happen before we increase the 8318 * count. Otherwise, the dip might get freed before we're 8319 * done setting it up. 8320 */ 8321 atomic_inc(&dip->pending_bios); 8322 8323 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8324 async_submit); 8325 if (status) { 8326 bio_put(bio); 8327 atomic_dec(&dip->pending_bios); 8328 goto out_err; 8329 } 8330 8331 clone_offset += clone_len; 8332 start_sector += clone_len >> 9; 8333 file_offset += clone_len; 8334 8335 map_length = submit_len; 8336 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8337 start_sector << 9, &map_length, NULL, 0); 8338 if (ret) 8339 goto out_err; 8340 } while (submit_len > 0); 8341 8342 submit: 8343 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8344 if (!status) 8345 return 0; 8346 8347 bio_put(bio); 8348 out_err: 8349 dip->errors = 1; 8350 /* 8351 * Before atomic variable goto zero, we must make sure dip->errors is 8352 * perceived to be set. This ordering is ensured by the fact that an 8353 * atomic operations with a return value are fully ordered as per 8354 * atomic_t.txt 8355 */ 8356 if (atomic_dec_and_test(&dip->pending_bios)) 8357 bio_io_error(dip->orig_bio); 8358 8359 /* bio_end_io() will handle error, so we needn't return it */ 8360 return 0; 8361 } 8362 8363 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8364 loff_t file_offset) 8365 { 8366 struct btrfs_dio_private *dip = NULL; 8367 struct bio *bio = NULL; 8368 struct btrfs_io_bio *io_bio; 8369 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8370 int ret = 0; 8371 8372 bio = btrfs_bio_clone(dio_bio); 8373 8374 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8375 if (!dip) { 8376 ret = -ENOMEM; 8377 goto free_ordered; 8378 } 8379 8380 dip->private = dio_bio->bi_private; 8381 dip->inode = inode; 8382 dip->logical_offset = file_offset; 8383 dip->bytes = dio_bio->bi_iter.bi_size; 8384 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8385 bio->bi_private = dip; 8386 dip->orig_bio = bio; 8387 dip->dio_bio = dio_bio; 8388 atomic_set(&dip->pending_bios, 0); 8389 io_bio = btrfs_io_bio(bio); 8390 io_bio->logical = file_offset; 8391 8392 if (write) { 8393 bio->bi_end_io = btrfs_endio_direct_write; 8394 } else { 8395 bio->bi_end_io = btrfs_endio_direct_read; 8396 dip->subio_endio = btrfs_subio_endio_read; 8397 } 8398 8399 /* 8400 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8401 * even if we fail to submit a bio, because in such case we do the 8402 * corresponding error handling below and it must not be done a second 8403 * time by btrfs_direct_IO(). 8404 */ 8405 if (write) { 8406 struct btrfs_dio_data *dio_data = current->journal_info; 8407 8408 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8409 dip->bytes; 8410 dio_data->unsubmitted_oe_range_start = 8411 dio_data->unsubmitted_oe_range_end; 8412 } 8413 8414 ret = btrfs_submit_direct_hook(dip); 8415 if (!ret) 8416 return; 8417 8418 if (io_bio->end_io) 8419 io_bio->end_io(io_bio, ret); 8420 8421 free_ordered: 8422 /* 8423 * If we arrived here it means either we failed to submit the dip 8424 * or we either failed to clone the dio_bio or failed to allocate the 8425 * dip. If we cloned the dio_bio and allocated the dip, we can just 8426 * call bio_endio against our io_bio so that we get proper resource 8427 * cleanup if we fail to submit the dip, otherwise, we must do the 8428 * same as btrfs_endio_direct_[write|read] because we can't call these 8429 * callbacks - they require an allocated dip and a clone of dio_bio. 8430 */ 8431 if (bio && dip) { 8432 bio_io_error(bio); 8433 /* 8434 * The end io callbacks free our dip, do the final put on bio 8435 * and all the cleanup and final put for dio_bio (through 8436 * dio_end_io()). 8437 */ 8438 dip = NULL; 8439 bio = NULL; 8440 } else { 8441 if (write) 8442 __endio_write_update_ordered(inode, 8443 file_offset, 8444 dio_bio->bi_iter.bi_size, 8445 false); 8446 else 8447 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8448 file_offset + dio_bio->bi_iter.bi_size - 1); 8449 8450 dio_bio->bi_status = BLK_STS_IOERR; 8451 /* 8452 * Releases and cleans up our dio_bio, no need to bio_put() 8453 * nor bio_endio()/bio_io_error() against dio_bio. 8454 */ 8455 dio_end_io(dio_bio); 8456 } 8457 if (bio) 8458 bio_put(bio); 8459 kfree(dip); 8460 } 8461 8462 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8463 const struct iov_iter *iter, loff_t offset) 8464 { 8465 int seg; 8466 int i; 8467 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8468 ssize_t retval = -EINVAL; 8469 8470 if (offset & blocksize_mask) 8471 goto out; 8472 8473 if (iov_iter_alignment(iter) & blocksize_mask) 8474 goto out; 8475 8476 /* If this is a write we don't need to check anymore */ 8477 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8478 return 0; 8479 /* 8480 * Check to make sure we don't have duplicate iov_base's in this 8481 * iovec, if so return EINVAL, otherwise we'll get csum errors 8482 * when reading back. 8483 */ 8484 for (seg = 0; seg < iter->nr_segs; seg++) { 8485 for (i = seg + 1; i < iter->nr_segs; i++) { 8486 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8487 goto out; 8488 } 8489 } 8490 retval = 0; 8491 out: 8492 return retval; 8493 } 8494 8495 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8496 { 8497 struct file *file = iocb->ki_filp; 8498 struct inode *inode = file->f_mapping->host; 8499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8500 struct btrfs_dio_data dio_data = { 0 }; 8501 struct extent_changeset *data_reserved = NULL; 8502 loff_t offset = iocb->ki_pos; 8503 size_t count = 0; 8504 int flags = 0; 8505 bool wakeup = true; 8506 bool relock = false; 8507 ssize_t ret; 8508 8509 if (check_direct_IO(fs_info, iter, offset)) 8510 return 0; 8511 8512 inode_dio_begin(inode); 8513 8514 /* 8515 * The generic stuff only does filemap_write_and_wait_range, which 8516 * isn't enough if we've written compressed pages to this area, so 8517 * we need to flush the dirty pages again to make absolutely sure 8518 * that any outstanding dirty pages are on disk. 8519 */ 8520 count = iov_iter_count(iter); 8521 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8522 &BTRFS_I(inode)->runtime_flags)) 8523 filemap_fdatawrite_range(inode->i_mapping, offset, 8524 offset + count - 1); 8525 8526 if (iov_iter_rw(iter) == WRITE) { 8527 /* 8528 * If the write DIO is beyond the EOF, we need update 8529 * the isize, but it is protected by i_mutex. So we can 8530 * not unlock the i_mutex at this case. 8531 */ 8532 if (offset + count <= inode->i_size) { 8533 dio_data.overwrite = 1; 8534 inode_unlock(inode); 8535 relock = true; 8536 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8537 ret = -EAGAIN; 8538 goto out; 8539 } 8540 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8541 offset, count); 8542 if (ret) 8543 goto out; 8544 8545 /* 8546 * We need to know how many extents we reserved so that we can 8547 * do the accounting properly if we go over the number we 8548 * originally calculated. Abuse current->journal_info for this. 8549 */ 8550 dio_data.reserve = round_up(count, 8551 fs_info->sectorsize); 8552 dio_data.unsubmitted_oe_range_start = (u64)offset; 8553 dio_data.unsubmitted_oe_range_end = (u64)offset; 8554 current->journal_info = &dio_data; 8555 down_read(&BTRFS_I(inode)->dio_sem); 8556 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8557 &BTRFS_I(inode)->runtime_flags)) { 8558 inode_dio_end(inode); 8559 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8560 wakeup = false; 8561 } 8562 8563 ret = __blockdev_direct_IO(iocb, inode, 8564 fs_info->fs_devices->latest_bdev, 8565 iter, btrfs_get_blocks_direct, NULL, 8566 btrfs_submit_direct, flags); 8567 if (iov_iter_rw(iter) == WRITE) { 8568 up_read(&BTRFS_I(inode)->dio_sem); 8569 current->journal_info = NULL; 8570 if (ret < 0 && ret != -EIOCBQUEUED) { 8571 if (dio_data.reserve) 8572 btrfs_delalloc_release_space(inode, data_reserved, 8573 offset, dio_data.reserve, true); 8574 /* 8575 * On error we might have left some ordered extents 8576 * without submitting corresponding bios for them, so 8577 * cleanup them up to avoid other tasks getting them 8578 * and waiting for them to complete forever. 8579 */ 8580 if (dio_data.unsubmitted_oe_range_start < 8581 dio_data.unsubmitted_oe_range_end) 8582 __endio_write_update_ordered(inode, 8583 dio_data.unsubmitted_oe_range_start, 8584 dio_data.unsubmitted_oe_range_end - 8585 dio_data.unsubmitted_oe_range_start, 8586 false); 8587 } else if (ret >= 0 && (size_t)ret < count) 8588 btrfs_delalloc_release_space(inode, data_reserved, 8589 offset, count - (size_t)ret, true); 8590 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8591 } 8592 out: 8593 if (wakeup) 8594 inode_dio_end(inode); 8595 if (relock) 8596 inode_lock(inode); 8597 8598 extent_changeset_free(data_reserved); 8599 return ret; 8600 } 8601 8602 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8603 8604 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8605 __u64 start, __u64 len) 8606 { 8607 int ret; 8608 8609 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8610 if (ret) 8611 return ret; 8612 8613 return extent_fiemap(inode, fieinfo, start, len); 8614 } 8615 8616 int btrfs_readpage(struct file *file, struct page *page) 8617 { 8618 struct extent_io_tree *tree; 8619 tree = &BTRFS_I(page->mapping->host)->io_tree; 8620 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8621 } 8622 8623 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8624 { 8625 struct inode *inode = page->mapping->host; 8626 int ret; 8627 8628 if (current->flags & PF_MEMALLOC) { 8629 redirty_page_for_writepage(wbc, page); 8630 unlock_page(page); 8631 return 0; 8632 } 8633 8634 /* 8635 * If we are under memory pressure we will call this directly from the 8636 * VM, we need to make sure we have the inode referenced for the ordered 8637 * extent. If not just return like we didn't do anything. 8638 */ 8639 if (!igrab(inode)) { 8640 redirty_page_for_writepage(wbc, page); 8641 return AOP_WRITEPAGE_ACTIVATE; 8642 } 8643 ret = extent_write_full_page(page, wbc); 8644 btrfs_add_delayed_iput(inode); 8645 return ret; 8646 } 8647 8648 static int btrfs_writepages(struct address_space *mapping, 8649 struct writeback_control *wbc) 8650 { 8651 return extent_writepages(mapping, wbc); 8652 } 8653 8654 static int 8655 btrfs_readpages(struct file *file, struct address_space *mapping, 8656 struct list_head *pages, unsigned nr_pages) 8657 { 8658 return extent_readpages(mapping, pages, nr_pages); 8659 } 8660 8661 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8662 { 8663 int ret = try_release_extent_mapping(page, gfp_flags); 8664 if (ret == 1) { 8665 ClearPagePrivate(page); 8666 set_page_private(page, 0); 8667 put_page(page); 8668 } 8669 return ret; 8670 } 8671 8672 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8673 { 8674 if (PageWriteback(page) || PageDirty(page)) 8675 return 0; 8676 return __btrfs_releasepage(page, gfp_flags); 8677 } 8678 8679 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8680 unsigned int length) 8681 { 8682 struct inode *inode = page->mapping->host; 8683 struct extent_io_tree *tree; 8684 struct btrfs_ordered_extent *ordered; 8685 struct extent_state *cached_state = NULL; 8686 u64 page_start = page_offset(page); 8687 u64 page_end = page_start + PAGE_SIZE - 1; 8688 u64 start; 8689 u64 end; 8690 int inode_evicting = inode->i_state & I_FREEING; 8691 8692 /* 8693 * we have the page locked, so new writeback can't start, 8694 * and the dirty bit won't be cleared while we are here. 8695 * 8696 * Wait for IO on this page so that we can safely clear 8697 * the PagePrivate2 bit and do ordered accounting 8698 */ 8699 wait_on_page_writeback(page); 8700 8701 tree = &BTRFS_I(inode)->io_tree; 8702 if (offset) { 8703 btrfs_releasepage(page, GFP_NOFS); 8704 return; 8705 } 8706 8707 if (!inode_evicting) 8708 lock_extent_bits(tree, page_start, page_end, &cached_state); 8709 again: 8710 start = page_start; 8711 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8712 page_end - start + 1); 8713 if (ordered) { 8714 end = min(page_end, ordered->file_offset + ordered->len - 1); 8715 /* 8716 * IO on this page will never be started, so we need 8717 * to account for any ordered extents now 8718 */ 8719 if (!inode_evicting) 8720 clear_extent_bit(tree, start, end, 8721 EXTENT_DIRTY | EXTENT_DELALLOC | 8722 EXTENT_DELALLOC_NEW | 8723 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8724 EXTENT_DEFRAG, 1, 0, &cached_state); 8725 /* 8726 * whoever cleared the private bit is responsible 8727 * for the finish_ordered_io 8728 */ 8729 if (TestClearPagePrivate2(page)) { 8730 struct btrfs_ordered_inode_tree *tree; 8731 u64 new_len; 8732 8733 tree = &BTRFS_I(inode)->ordered_tree; 8734 8735 spin_lock_irq(&tree->lock); 8736 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8737 new_len = start - ordered->file_offset; 8738 if (new_len < ordered->truncated_len) 8739 ordered->truncated_len = new_len; 8740 spin_unlock_irq(&tree->lock); 8741 8742 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8743 start, 8744 end - start + 1, 1)) 8745 btrfs_finish_ordered_io(ordered); 8746 } 8747 btrfs_put_ordered_extent(ordered); 8748 if (!inode_evicting) { 8749 cached_state = NULL; 8750 lock_extent_bits(tree, start, end, 8751 &cached_state); 8752 } 8753 8754 start = end + 1; 8755 if (start < page_end) 8756 goto again; 8757 } 8758 8759 /* 8760 * Qgroup reserved space handler 8761 * Page here will be either 8762 * 1) Already written to disk 8763 * In this case, its reserved space is released from data rsv map 8764 * and will be freed by delayed_ref handler finally. 8765 * So even we call qgroup_free_data(), it won't decrease reserved 8766 * space. 8767 * 2) Not written to disk 8768 * This means the reserved space should be freed here. However, 8769 * if a truncate invalidates the page (by clearing PageDirty) 8770 * and the page is accounted for while allocating extent 8771 * in btrfs_check_data_free_space() we let delayed_ref to 8772 * free the entire extent. 8773 */ 8774 if (PageDirty(page)) 8775 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8776 if (!inode_evicting) { 8777 clear_extent_bit(tree, page_start, page_end, 8778 EXTENT_LOCKED | EXTENT_DIRTY | 8779 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8780 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8781 &cached_state); 8782 8783 __btrfs_releasepage(page, GFP_NOFS); 8784 } 8785 8786 ClearPageChecked(page); 8787 if (PagePrivate(page)) { 8788 ClearPagePrivate(page); 8789 set_page_private(page, 0); 8790 put_page(page); 8791 } 8792 } 8793 8794 /* 8795 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8796 * called from a page fault handler when a page is first dirtied. Hence we must 8797 * be careful to check for EOF conditions here. We set the page up correctly 8798 * for a written page which means we get ENOSPC checking when writing into 8799 * holes and correct delalloc and unwritten extent mapping on filesystems that 8800 * support these features. 8801 * 8802 * We are not allowed to take the i_mutex here so we have to play games to 8803 * protect against truncate races as the page could now be beyond EOF. Because 8804 * truncate_setsize() writes the inode size before removing pages, once we have 8805 * the page lock we can determine safely if the page is beyond EOF. If it is not 8806 * beyond EOF, then the page is guaranteed safe against truncation until we 8807 * unlock the page. 8808 */ 8809 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8810 { 8811 struct page *page = vmf->page; 8812 struct inode *inode = file_inode(vmf->vma->vm_file); 8813 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8814 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8815 struct btrfs_ordered_extent *ordered; 8816 struct extent_state *cached_state = NULL; 8817 struct extent_changeset *data_reserved = NULL; 8818 char *kaddr; 8819 unsigned long zero_start; 8820 loff_t size; 8821 vm_fault_t ret; 8822 int ret2; 8823 int reserved = 0; 8824 u64 reserved_space; 8825 u64 page_start; 8826 u64 page_end; 8827 u64 end; 8828 8829 reserved_space = PAGE_SIZE; 8830 8831 sb_start_pagefault(inode->i_sb); 8832 page_start = page_offset(page); 8833 page_end = page_start + PAGE_SIZE - 1; 8834 end = page_end; 8835 8836 /* 8837 * Reserving delalloc space after obtaining the page lock can lead to 8838 * deadlock. For example, if a dirty page is locked by this function 8839 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8840 * dirty page write out, then the btrfs_writepage() function could 8841 * end up waiting indefinitely to get a lock on the page currently 8842 * being processed by btrfs_page_mkwrite() function. 8843 */ 8844 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8845 reserved_space); 8846 if (!ret2) { 8847 ret2 = file_update_time(vmf->vma->vm_file); 8848 reserved = 1; 8849 } 8850 if (ret2) { 8851 ret = vmf_error(ret2); 8852 if (reserved) 8853 goto out; 8854 goto out_noreserve; 8855 } 8856 8857 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8858 again: 8859 lock_page(page); 8860 size = i_size_read(inode); 8861 8862 if ((page->mapping != inode->i_mapping) || 8863 (page_start >= size)) { 8864 /* page got truncated out from underneath us */ 8865 goto out_unlock; 8866 } 8867 wait_on_page_writeback(page); 8868 8869 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8870 set_page_extent_mapped(page); 8871 8872 /* 8873 * we can't set the delalloc bits if there are pending ordered 8874 * extents. Drop our locks and wait for them to finish 8875 */ 8876 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8877 PAGE_SIZE); 8878 if (ordered) { 8879 unlock_extent_cached(io_tree, page_start, page_end, 8880 &cached_state); 8881 unlock_page(page); 8882 btrfs_start_ordered_extent(inode, ordered, 1); 8883 btrfs_put_ordered_extent(ordered); 8884 goto again; 8885 } 8886 8887 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8888 reserved_space = round_up(size - page_start, 8889 fs_info->sectorsize); 8890 if (reserved_space < PAGE_SIZE) { 8891 end = page_start + reserved_space - 1; 8892 btrfs_delalloc_release_space(inode, data_reserved, 8893 page_start, PAGE_SIZE - reserved_space, 8894 true); 8895 } 8896 } 8897 8898 /* 8899 * page_mkwrite gets called when the page is firstly dirtied after it's 8900 * faulted in, but write(2) could also dirty a page and set delalloc 8901 * bits, thus in this case for space account reason, we still need to 8902 * clear any delalloc bits within this page range since we have to 8903 * reserve data&meta space before lock_page() (see above comments). 8904 */ 8905 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8906 EXTENT_DIRTY | EXTENT_DELALLOC | 8907 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8908 0, 0, &cached_state); 8909 8910 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8911 &cached_state, 0); 8912 if (ret2) { 8913 unlock_extent_cached(io_tree, page_start, page_end, 8914 &cached_state); 8915 ret = VM_FAULT_SIGBUS; 8916 goto out_unlock; 8917 } 8918 ret2 = 0; 8919 8920 /* page is wholly or partially inside EOF */ 8921 if (page_start + PAGE_SIZE > size) 8922 zero_start = size & ~PAGE_MASK; 8923 else 8924 zero_start = PAGE_SIZE; 8925 8926 if (zero_start != PAGE_SIZE) { 8927 kaddr = kmap(page); 8928 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8929 flush_dcache_page(page); 8930 kunmap(page); 8931 } 8932 ClearPageChecked(page); 8933 set_page_dirty(page); 8934 SetPageUptodate(page); 8935 8936 BTRFS_I(inode)->last_trans = fs_info->generation; 8937 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8938 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8939 8940 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8941 8942 if (!ret2) { 8943 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 8944 sb_end_pagefault(inode->i_sb); 8945 extent_changeset_free(data_reserved); 8946 return VM_FAULT_LOCKED; 8947 } 8948 8949 out_unlock: 8950 unlock_page(page); 8951 out: 8952 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 8953 btrfs_delalloc_release_space(inode, data_reserved, page_start, 8954 reserved_space, (ret != 0)); 8955 out_noreserve: 8956 sb_end_pagefault(inode->i_sb); 8957 extent_changeset_free(data_reserved); 8958 return ret; 8959 } 8960 8961 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8962 { 8963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8964 struct btrfs_root *root = BTRFS_I(inode)->root; 8965 struct btrfs_block_rsv *rsv; 8966 int ret; 8967 struct btrfs_trans_handle *trans; 8968 u64 mask = fs_info->sectorsize - 1; 8969 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 8970 8971 if (!skip_writeback) { 8972 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8973 (u64)-1); 8974 if (ret) 8975 return ret; 8976 } 8977 8978 /* 8979 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8980 * things going on here: 8981 * 8982 * 1) We need to reserve space to update our inode. 8983 * 8984 * 2) We need to have something to cache all the space that is going to 8985 * be free'd up by the truncate operation, but also have some slack 8986 * space reserved in case it uses space during the truncate (thank you 8987 * very much snapshotting). 8988 * 8989 * And we need these to be separate. The fact is we can use a lot of 8990 * space doing the truncate, and we have no earthly idea how much space 8991 * we will use, so we need the truncate reservation to be separate so it 8992 * doesn't end up using space reserved for updating the inode. We also 8993 * need to be able to stop the transaction and start a new one, which 8994 * means we need to be able to update the inode several times, and we 8995 * have no idea of knowing how many times that will be, so we can't just 8996 * reserve 1 item for the entirety of the operation, so that has to be 8997 * done separately as well. 8998 * 8999 * So that leaves us with 9000 * 9001 * 1) rsv - for the truncate reservation, which we will steal from the 9002 * transaction reservation. 9003 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9004 * updating the inode. 9005 */ 9006 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9007 if (!rsv) 9008 return -ENOMEM; 9009 rsv->size = min_size; 9010 rsv->failfast = 1; 9011 9012 /* 9013 * 1 for the truncate slack space 9014 * 1 for updating the inode. 9015 */ 9016 trans = btrfs_start_transaction(root, 2); 9017 if (IS_ERR(trans)) { 9018 ret = PTR_ERR(trans); 9019 goto out; 9020 } 9021 9022 /* Migrate the slack space for the truncate to our reserve */ 9023 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9024 min_size, 0); 9025 BUG_ON(ret); 9026 9027 /* 9028 * So if we truncate and then write and fsync we normally would just 9029 * write the extents that changed, which is a problem if we need to 9030 * first truncate that entire inode. So set this flag so we write out 9031 * all of the extents in the inode to the sync log so we're completely 9032 * safe. 9033 */ 9034 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9035 trans->block_rsv = rsv; 9036 9037 while (1) { 9038 ret = btrfs_truncate_inode_items(trans, root, inode, 9039 inode->i_size, 9040 BTRFS_EXTENT_DATA_KEY); 9041 trans->block_rsv = &fs_info->trans_block_rsv; 9042 if (ret != -ENOSPC && ret != -EAGAIN) 9043 break; 9044 9045 ret = btrfs_update_inode(trans, root, inode); 9046 if (ret) 9047 break; 9048 9049 btrfs_end_transaction(trans); 9050 btrfs_btree_balance_dirty(fs_info); 9051 9052 trans = btrfs_start_transaction(root, 2); 9053 if (IS_ERR(trans)) { 9054 ret = PTR_ERR(trans); 9055 trans = NULL; 9056 break; 9057 } 9058 9059 btrfs_block_rsv_release(fs_info, rsv, -1); 9060 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9061 rsv, min_size, 0); 9062 BUG_ON(ret); /* shouldn't happen */ 9063 trans->block_rsv = rsv; 9064 } 9065 9066 /* 9067 * We can't call btrfs_truncate_block inside a trans handle as we could 9068 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9069 * we've truncated everything except the last little bit, and can do 9070 * btrfs_truncate_block and then update the disk_i_size. 9071 */ 9072 if (ret == NEED_TRUNCATE_BLOCK) { 9073 btrfs_end_transaction(trans); 9074 btrfs_btree_balance_dirty(fs_info); 9075 9076 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9077 if (ret) 9078 goto out; 9079 trans = btrfs_start_transaction(root, 1); 9080 if (IS_ERR(trans)) { 9081 ret = PTR_ERR(trans); 9082 goto out; 9083 } 9084 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9085 } 9086 9087 if (trans) { 9088 int ret2; 9089 9090 trans->block_rsv = &fs_info->trans_block_rsv; 9091 ret2 = btrfs_update_inode(trans, root, inode); 9092 if (ret2 && !ret) 9093 ret = ret2; 9094 9095 ret2 = btrfs_end_transaction(trans); 9096 if (ret2 && !ret) 9097 ret = ret2; 9098 btrfs_btree_balance_dirty(fs_info); 9099 } 9100 out: 9101 btrfs_free_block_rsv(fs_info, rsv); 9102 9103 return ret; 9104 } 9105 9106 /* 9107 * create a new subvolume directory/inode (helper for the ioctl). 9108 */ 9109 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9110 struct btrfs_root *new_root, 9111 struct btrfs_root *parent_root, 9112 u64 new_dirid) 9113 { 9114 struct inode *inode; 9115 int err; 9116 u64 index = 0; 9117 9118 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9119 new_dirid, new_dirid, 9120 S_IFDIR | (~current_umask() & S_IRWXUGO), 9121 &index); 9122 if (IS_ERR(inode)) 9123 return PTR_ERR(inode); 9124 inode->i_op = &btrfs_dir_inode_operations; 9125 inode->i_fop = &btrfs_dir_file_operations; 9126 9127 set_nlink(inode, 1); 9128 btrfs_i_size_write(BTRFS_I(inode), 0); 9129 unlock_new_inode(inode); 9130 9131 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9132 if (err) 9133 btrfs_err(new_root->fs_info, 9134 "error inheriting subvolume %llu properties: %d", 9135 new_root->root_key.objectid, err); 9136 9137 err = btrfs_update_inode(trans, new_root, inode); 9138 9139 iput(inode); 9140 return err; 9141 } 9142 9143 struct inode *btrfs_alloc_inode(struct super_block *sb) 9144 { 9145 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9146 struct btrfs_inode *ei; 9147 struct inode *inode; 9148 9149 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9150 if (!ei) 9151 return NULL; 9152 9153 ei->root = NULL; 9154 ei->generation = 0; 9155 ei->last_trans = 0; 9156 ei->last_sub_trans = 0; 9157 ei->logged_trans = 0; 9158 ei->delalloc_bytes = 0; 9159 ei->new_delalloc_bytes = 0; 9160 ei->defrag_bytes = 0; 9161 ei->disk_i_size = 0; 9162 ei->flags = 0; 9163 ei->csum_bytes = 0; 9164 ei->index_cnt = (u64)-1; 9165 ei->dir_index = 0; 9166 ei->last_unlink_trans = 0; 9167 ei->last_log_commit = 0; 9168 9169 spin_lock_init(&ei->lock); 9170 ei->outstanding_extents = 0; 9171 if (sb->s_magic != BTRFS_TEST_MAGIC) 9172 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9173 BTRFS_BLOCK_RSV_DELALLOC); 9174 ei->runtime_flags = 0; 9175 ei->prop_compress = BTRFS_COMPRESS_NONE; 9176 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9177 9178 ei->delayed_node = NULL; 9179 9180 ei->i_otime.tv_sec = 0; 9181 ei->i_otime.tv_nsec = 0; 9182 9183 inode = &ei->vfs_inode; 9184 extent_map_tree_init(&ei->extent_tree); 9185 extent_io_tree_init(&ei->io_tree, inode); 9186 extent_io_tree_init(&ei->io_failure_tree, inode); 9187 ei->io_tree.track_uptodate = 1; 9188 ei->io_failure_tree.track_uptodate = 1; 9189 atomic_set(&ei->sync_writers, 0); 9190 mutex_init(&ei->log_mutex); 9191 mutex_init(&ei->delalloc_mutex); 9192 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9193 INIT_LIST_HEAD(&ei->delalloc_inodes); 9194 INIT_LIST_HEAD(&ei->delayed_iput); 9195 RB_CLEAR_NODE(&ei->rb_node); 9196 init_rwsem(&ei->dio_sem); 9197 9198 return inode; 9199 } 9200 9201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9202 void btrfs_test_destroy_inode(struct inode *inode) 9203 { 9204 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9205 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9206 } 9207 #endif 9208 9209 static void btrfs_i_callback(struct rcu_head *head) 9210 { 9211 struct inode *inode = container_of(head, struct inode, i_rcu); 9212 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9213 } 9214 9215 void btrfs_destroy_inode(struct inode *inode) 9216 { 9217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9218 struct btrfs_ordered_extent *ordered; 9219 struct btrfs_root *root = BTRFS_I(inode)->root; 9220 9221 WARN_ON(!hlist_empty(&inode->i_dentry)); 9222 WARN_ON(inode->i_data.nrpages); 9223 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9224 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9225 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9226 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9227 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9228 WARN_ON(BTRFS_I(inode)->csum_bytes); 9229 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9230 9231 /* 9232 * This can happen where we create an inode, but somebody else also 9233 * created the same inode and we need to destroy the one we already 9234 * created. 9235 */ 9236 if (!root) 9237 goto free; 9238 9239 while (1) { 9240 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9241 if (!ordered) 9242 break; 9243 else { 9244 btrfs_err(fs_info, 9245 "found ordered extent %llu %llu on inode cleanup", 9246 ordered->file_offset, ordered->len); 9247 btrfs_remove_ordered_extent(inode, ordered); 9248 btrfs_put_ordered_extent(ordered); 9249 btrfs_put_ordered_extent(ordered); 9250 } 9251 } 9252 btrfs_qgroup_check_reserved_leak(inode); 9253 inode_tree_del(inode); 9254 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9255 free: 9256 call_rcu(&inode->i_rcu, btrfs_i_callback); 9257 } 9258 9259 int btrfs_drop_inode(struct inode *inode) 9260 { 9261 struct btrfs_root *root = BTRFS_I(inode)->root; 9262 9263 if (root == NULL) 9264 return 1; 9265 9266 /* the snap/subvol tree is on deleting */ 9267 if (btrfs_root_refs(&root->root_item) == 0) 9268 return 1; 9269 else 9270 return generic_drop_inode(inode); 9271 } 9272 9273 static void init_once(void *foo) 9274 { 9275 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9276 9277 inode_init_once(&ei->vfs_inode); 9278 } 9279 9280 void __cold btrfs_destroy_cachep(void) 9281 { 9282 /* 9283 * Make sure all delayed rcu free inodes are flushed before we 9284 * destroy cache. 9285 */ 9286 rcu_barrier(); 9287 kmem_cache_destroy(btrfs_inode_cachep); 9288 kmem_cache_destroy(btrfs_trans_handle_cachep); 9289 kmem_cache_destroy(btrfs_path_cachep); 9290 kmem_cache_destroy(btrfs_free_space_cachep); 9291 } 9292 9293 int __init btrfs_init_cachep(void) 9294 { 9295 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9296 sizeof(struct btrfs_inode), 0, 9297 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9298 init_once); 9299 if (!btrfs_inode_cachep) 9300 goto fail; 9301 9302 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9303 sizeof(struct btrfs_trans_handle), 0, 9304 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9305 if (!btrfs_trans_handle_cachep) 9306 goto fail; 9307 9308 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9309 sizeof(struct btrfs_path), 0, 9310 SLAB_MEM_SPREAD, NULL); 9311 if (!btrfs_path_cachep) 9312 goto fail; 9313 9314 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9315 sizeof(struct btrfs_free_space), 0, 9316 SLAB_MEM_SPREAD, NULL); 9317 if (!btrfs_free_space_cachep) 9318 goto fail; 9319 9320 return 0; 9321 fail: 9322 btrfs_destroy_cachep(); 9323 return -ENOMEM; 9324 } 9325 9326 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9327 u32 request_mask, unsigned int flags) 9328 { 9329 u64 delalloc_bytes; 9330 struct inode *inode = d_inode(path->dentry); 9331 u32 blocksize = inode->i_sb->s_blocksize; 9332 u32 bi_flags = BTRFS_I(inode)->flags; 9333 9334 stat->result_mask |= STATX_BTIME; 9335 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9336 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9337 if (bi_flags & BTRFS_INODE_APPEND) 9338 stat->attributes |= STATX_ATTR_APPEND; 9339 if (bi_flags & BTRFS_INODE_COMPRESS) 9340 stat->attributes |= STATX_ATTR_COMPRESSED; 9341 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9342 stat->attributes |= STATX_ATTR_IMMUTABLE; 9343 if (bi_flags & BTRFS_INODE_NODUMP) 9344 stat->attributes |= STATX_ATTR_NODUMP; 9345 9346 stat->attributes_mask |= (STATX_ATTR_APPEND | 9347 STATX_ATTR_COMPRESSED | 9348 STATX_ATTR_IMMUTABLE | 9349 STATX_ATTR_NODUMP); 9350 9351 generic_fillattr(inode, stat); 9352 stat->dev = BTRFS_I(inode)->root->anon_dev; 9353 9354 spin_lock(&BTRFS_I(inode)->lock); 9355 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9356 spin_unlock(&BTRFS_I(inode)->lock); 9357 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9358 ALIGN(delalloc_bytes, blocksize)) >> 9; 9359 return 0; 9360 } 9361 9362 static int btrfs_rename_exchange(struct inode *old_dir, 9363 struct dentry *old_dentry, 9364 struct inode *new_dir, 9365 struct dentry *new_dentry) 9366 { 9367 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9368 struct btrfs_trans_handle *trans; 9369 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9370 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9371 struct inode *new_inode = new_dentry->d_inode; 9372 struct inode *old_inode = old_dentry->d_inode; 9373 struct timespec64 ctime = current_time(old_inode); 9374 struct dentry *parent; 9375 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9376 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9377 u64 old_idx = 0; 9378 u64 new_idx = 0; 9379 u64 root_objectid; 9380 int ret; 9381 bool root_log_pinned = false; 9382 bool dest_log_pinned = false; 9383 struct btrfs_log_ctx ctx_root; 9384 struct btrfs_log_ctx ctx_dest; 9385 bool sync_log_root = false; 9386 bool sync_log_dest = false; 9387 bool commit_transaction = false; 9388 9389 /* we only allow rename subvolume link between subvolumes */ 9390 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9391 return -EXDEV; 9392 9393 btrfs_init_log_ctx(&ctx_root, old_inode); 9394 btrfs_init_log_ctx(&ctx_dest, new_inode); 9395 9396 /* close the race window with snapshot create/destroy ioctl */ 9397 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9398 down_read(&fs_info->subvol_sem); 9399 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9400 down_read(&fs_info->subvol_sem); 9401 9402 /* 9403 * We want to reserve the absolute worst case amount of items. So if 9404 * both inodes are subvols and we need to unlink them then that would 9405 * require 4 item modifications, but if they are both normal inodes it 9406 * would require 5 item modifications, so we'll assume their normal 9407 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9408 * should cover the worst case number of items we'll modify. 9409 */ 9410 trans = btrfs_start_transaction(root, 12); 9411 if (IS_ERR(trans)) { 9412 ret = PTR_ERR(trans); 9413 goto out_notrans; 9414 } 9415 9416 /* 9417 * We need to find a free sequence number both in the source and 9418 * in the destination directory for the exchange. 9419 */ 9420 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9421 if (ret) 9422 goto out_fail; 9423 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9424 if (ret) 9425 goto out_fail; 9426 9427 BTRFS_I(old_inode)->dir_index = 0ULL; 9428 BTRFS_I(new_inode)->dir_index = 0ULL; 9429 9430 /* Reference for the source. */ 9431 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9432 /* force full log commit if subvolume involved. */ 9433 btrfs_set_log_full_commit(fs_info, trans); 9434 } else { 9435 btrfs_pin_log_trans(root); 9436 root_log_pinned = true; 9437 ret = btrfs_insert_inode_ref(trans, dest, 9438 new_dentry->d_name.name, 9439 new_dentry->d_name.len, 9440 old_ino, 9441 btrfs_ino(BTRFS_I(new_dir)), 9442 old_idx); 9443 if (ret) 9444 goto out_fail; 9445 } 9446 9447 /* And now for the dest. */ 9448 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9449 /* force full log commit if subvolume involved. */ 9450 btrfs_set_log_full_commit(fs_info, trans); 9451 } else { 9452 btrfs_pin_log_trans(dest); 9453 dest_log_pinned = true; 9454 ret = btrfs_insert_inode_ref(trans, root, 9455 old_dentry->d_name.name, 9456 old_dentry->d_name.len, 9457 new_ino, 9458 btrfs_ino(BTRFS_I(old_dir)), 9459 new_idx); 9460 if (ret) 9461 goto out_fail; 9462 } 9463 9464 /* Update inode version and ctime/mtime. */ 9465 inode_inc_iversion(old_dir); 9466 inode_inc_iversion(new_dir); 9467 inode_inc_iversion(old_inode); 9468 inode_inc_iversion(new_inode); 9469 old_dir->i_ctime = old_dir->i_mtime = ctime; 9470 new_dir->i_ctime = new_dir->i_mtime = ctime; 9471 old_inode->i_ctime = ctime; 9472 new_inode->i_ctime = ctime; 9473 9474 if (old_dentry->d_parent != new_dentry->d_parent) { 9475 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9476 BTRFS_I(old_inode), 1); 9477 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9478 BTRFS_I(new_inode), 1); 9479 } 9480 9481 /* src is a subvolume */ 9482 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9483 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9484 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9485 old_dentry->d_name.name, 9486 old_dentry->d_name.len); 9487 } else { /* src is an inode */ 9488 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9489 BTRFS_I(old_dentry->d_inode), 9490 old_dentry->d_name.name, 9491 old_dentry->d_name.len); 9492 if (!ret) 9493 ret = btrfs_update_inode(trans, root, old_inode); 9494 } 9495 if (ret) { 9496 btrfs_abort_transaction(trans, ret); 9497 goto out_fail; 9498 } 9499 9500 /* dest is a subvolume */ 9501 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9502 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9503 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9504 new_dentry->d_name.name, 9505 new_dentry->d_name.len); 9506 } else { /* dest is an inode */ 9507 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9508 BTRFS_I(new_dentry->d_inode), 9509 new_dentry->d_name.name, 9510 new_dentry->d_name.len); 9511 if (!ret) 9512 ret = btrfs_update_inode(trans, dest, new_inode); 9513 } 9514 if (ret) { 9515 btrfs_abort_transaction(trans, ret); 9516 goto out_fail; 9517 } 9518 9519 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9520 new_dentry->d_name.name, 9521 new_dentry->d_name.len, 0, old_idx); 9522 if (ret) { 9523 btrfs_abort_transaction(trans, ret); 9524 goto out_fail; 9525 } 9526 9527 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9528 old_dentry->d_name.name, 9529 old_dentry->d_name.len, 0, new_idx); 9530 if (ret) { 9531 btrfs_abort_transaction(trans, ret); 9532 goto out_fail; 9533 } 9534 9535 if (old_inode->i_nlink == 1) 9536 BTRFS_I(old_inode)->dir_index = old_idx; 9537 if (new_inode->i_nlink == 1) 9538 BTRFS_I(new_inode)->dir_index = new_idx; 9539 9540 if (root_log_pinned) { 9541 parent = new_dentry->d_parent; 9542 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9543 BTRFS_I(old_dir), parent, 9544 false, &ctx_root); 9545 if (ret == BTRFS_NEED_LOG_SYNC) 9546 sync_log_root = true; 9547 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9548 commit_transaction = true; 9549 ret = 0; 9550 btrfs_end_log_trans(root); 9551 root_log_pinned = false; 9552 } 9553 if (dest_log_pinned) { 9554 if (!commit_transaction) { 9555 parent = old_dentry->d_parent; 9556 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), 9557 BTRFS_I(new_dir), parent, 9558 false, &ctx_dest); 9559 if (ret == BTRFS_NEED_LOG_SYNC) 9560 sync_log_dest = true; 9561 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9562 commit_transaction = true; 9563 ret = 0; 9564 } 9565 btrfs_end_log_trans(dest); 9566 dest_log_pinned = false; 9567 } 9568 out_fail: 9569 /* 9570 * If we have pinned a log and an error happened, we unpin tasks 9571 * trying to sync the log and force them to fallback to a transaction 9572 * commit if the log currently contains any of the inodes involved in 9573 * this rename operation (to ensure we do not persist a log with an 9574 * inconsistent state for any of these inodes or leading to any 9575 * inconsistencies when replayed). If the transaction was aborted, the 9576 * abortion reason is propagated to userspace when attempting to commit 9577 * the transaction. If the log does not contain any of these inodes, we 9578 * allow the tasks to sync it. 9579 */ 9580 if (ret && (root_log_pinned || dest_log_pinned)) { 9581 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9582 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9583 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9584 (new_inode && 9585 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9586 btrfs_set_log_full_commit(fs_info, trans); 9587 9588 if (root_log_pinned) { 9589 btrfs_end_log_trans(root); 9590 root_log_pinned = false; 9591 } 9592 if (dest_log_pinned) { 9593 btrfs_end_log_trans(dest); 9594 dest_log_pinned = false; 9595 } 9596 } 9597 if (!ret && sync_log_root && !commit_transaction) { 9598 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, 9599 &ctx_root); 9600 if (ret) 9601 commit_transaction = true; 9602 } 9603 if (!ret && sync_log_dest && !commit_transaction) { 9604 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, 9605 &ctx_dest); 9606 if (ret) 9607 commit_transaction = true; 9608 } 9609 if (commit_transaction) { 9610 ret = btrfs_commit_transaction(trans); 9611 } else { 9612 int ret2; 9613 9614 ret2 = btrfs_end_transaction(trans); 9615 ret = ret ? ret : ret2; 9616 } 9617 out_notrans: 9618 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9619 up_read(&fs_info->subvol_sem); 9620 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9621 up_read(&fs_info->subvol_sem); 9622 9623 return ret; 9624 } 9625 9626 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9627 struct btrfs_root *root, 9628 struct inode *dir, 9629 struct dentry *dentry) 9630 { 9631 int ret; 9632 struct inode *inode; 9633 u64 objectid; 9634 u64 index; 9635 9636 ret = btrfs_find_free_ino(root, &objectid); 9637 if (ret) 9638 return ret; 9639 9640 inode = btrfs_new_inode(trans, root, dir, 9641 dentry->d_name.name, 9642 dentry->d_name.len, 9643 btrfs_ino(BTRFS_I(dir)), 9644 objectid, 9645 S_IFCHR | WHITEOUT_MODE, 9646 &index); 9647 9648 if (IS_ERR(inode)) { 9649 ret = PTR_ERR(inode); 9650 return ret; 9651 } 9652 9653 inode->i_op = &btrfs_special_inode_operations; 9654 init_special_inode(inode, inode->i_mode, 9655 WHITEOUT_DEV); 9656 9657 ret = btrfs_init_inode_security(trans, inode, dir, 9658 &dentry->d_name); 9659 if (ret) 9660 goto out; 9661 9662 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9663 BTRFS_I(inode), 0, index); 9664 if (ret) 9665 goto out; 9666 9667 ret = btrfs_update_inode(trans, root, inode); 9668 out: 9669 unlock_new_inode(inode); 9670 if (ret) 9671 inode_dec_link_count(inode); 9672 iput(inode); 9673 9674 return ret; 9675 } 9676 9677 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9678 struct inode *new_dir, struct dentry *new_dentry, 9679 unsigned int flags) 9680 { 9681 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9682 struct btrfs_trans_handle *trans; 9683 unsigned int trans_num_items; 9684 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9685 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9686 struct inode *new_inode = d_inode(new_dentry); 9687 struct inode *old_inode = d_inode(old_dentry); 9688 u64 index = 0; 9689 u64 root_objectid; 9690 int ret; 9691 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9692 bool log_pinned = false; 9693 struct btrfs_log_ctx ctx; 9694 bool sync_log = false; 9695 bool commit_transaction = false; 9696 9697 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9698 return -EPERM; 9699 9700 /* we only allow rename subvolume link between subvolumes */ 9701 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9702 return -EXDEV; 9703 9704 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9705 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9706 return -ENOTEMPTY; 9707 9708 if (S_ISDIR(old_inode->i_mode) && new_inode && 9709 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9710 return -ENOTEMPTY; 9711 9712 9713 /* check for collisions, even if the name isn't there */ 9714 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9715 new_dentry->d_name.name, 9716 new_dentry->d_name.len); 9717 9718 if (ret) { 9719 if (ret == -EEXIST) { 9720 /* we shouldn't get 9721 * eexist without a new_inode */ 9722 if (WARN_ON(!new_inode)) { 9723 return ret; 9724 } 9725 } else { 9726 /* maybe -EOVERFLOW */ 9727 return ret; 9728 } 9729 } 9730 ret = 0; 9731 9732 /* 9733 * we're using rename to replace one file with another. Start IO on it 9734 * now so we don't add too much work to the end of the transaction 9735 */ 9736 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9737 filemap_flush(old_inode->i_mapping); 9738 9739 /* close the racy window with snapshot create/destroy ioctl */ 9740 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9741 down_read(&fs_info->subvol_sem); 9742 /* 9743 * We want to reserve the absolute worst case amount of items. So if 9744 * both inodes are subvols and we need to unlink them then that would 9745 * require 4 item modifications, but if they are both normal inodes it 9746 * would require 5 item modifications, so we'll assume they are normal 9747 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9748 * should cover the worst case number of items we'll modify. 9749 * If our rename has the whiteout flag, we need more 5 units for the 9750 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9751 * when selinux is enabled). 9752 */ 9753 trans_num_items = 11; 9754 if (flags & RENAME_WHITEOUT) 9755 trans_num_items += 5; 9756 trans = btrfs_start_transaction(root, trans_num_items); 9757 if (IS_ERR(trans)) { 9758 ret = PTR_ERR(trans); 9759 goto out_notrans; 9760 } 9761 9762 if (dest != root) 9763 btrfs_record_root_in_trans(trans, dest); 9764 9765 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9766 if (ret) 9767 goto out_fail; 9768 9769 BTRFS_I(old_inode)->dir_index = 0ULL; 9770 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9771 /* force full log commit if subvolume involved. */ 9772 btrfs_set_log_full_commit(fs_info, trans); 9773 } else { 9774 btrfs_pin_log_trans(root); 9775 log_pinned = true; 9776 ret = btrfs_insert_inode_ref(trans, dest, 9777 new_dentry->d_name.name, 9778 new_dentry->d_name.len, 9779 old_ino, 9780 btrfs_ino(BTRFS_I(new_dir)), index); 9781 if (ret) 9782 goto out_fail; 9783 } 9784 9785 inode_inc_iversion(old_dir); 9786 inode_inc_iversion(new_dir); 9787 inode_inc_iversion(old_inode); 9788 old_dir->i_ctime = old_dir->i_mtime = 9789 new_dir->i_ctime = new_dir->i_mtime = 9790 old_inode->i_ctime = current_time(old_dir); 9791 9792 if (old_dentry->d_parent != new_dentry->d_parent) 9793 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9794 BTRFS_I(old_inode), 1); 9795 9796 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9797 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9798 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid, 9799 old_dentry->d_name.name, 9800 old_dentry->d_name.len); 9801 } else { 9802 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9803 BTRFS_I(d_inode(old_dentry)), 9804 old_dentry->d_name.name, 9805 old_dentry->d_name.len); 9806 if (!ret) 9807 ret = btrfs_update_inode(trans, root, old_inode); 9808 } 9809 if (ret) { 9810 btrfs_abort_transaction(trans, ret); 9811 goto out_fail; 9812 } 9813 9814 if (new_inode) { 9815 inode_inc_iversion(new_inode); 9816 new_inode->i_ctime = current_time(new_inode); 9817 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9818 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9819 root_objectid = BTRFS_I(new_inode)->location.objectid; 9820 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid, 9821 new_dentry->d_name.name, 9822 new_dentry->d_name.len); 9823 BUG_ON(new_inode->i_nlink == 0); 9824 } else { 9825 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9826 BTRFS_I(d_inode(new_dentry)), 9827 new_dentry->d_name.name, 9828 new_dentry->d_name.len); 9829 } 9830 if (!ret && new_inode->i_nlink == 0) 9831 ret = btrfs_orphan_add(trans, 9832 BTRFS_I(d_inode(new_dentry))); 9833 if (ret) { 9834 btrfs_abort_transaction(trans, ret); 9835 goto out_fail; 9836 } 9837 } 9838 9839 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9840 new_dentry->d_name.name, 9841 new_dentry->d_name.len, 0, index); 9842 if (ret) { 9843 btrfs_abort_transaction(trans, ret); 9844 goto out_fail; 9845 } 9846 9847 if (old_inode->i_nlink == 1) 9848 BTRFS_I(old_inode)->dir_index = index; 9849 9850 if (log_pinned) { 9851 struct dentry *parent = new_dentry->d_parent; 9852 9853 btrfs_init_log_ctx(&ctx, old_inode); 9854 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), 9855 BTRFS_I(old_dir), parent, 9856 false, &ctx); 9857 if (ret == BTRFS_NEED_LOG_SYNC) 9858 sync_log = true; 9859 else if (ret == BTRFS_NEED_TRANS_COMMIT) 9860 commit_transaction = true; 9861 ret = 0; 9862 btrfs_end_log_trans(root); 9863 log_pinned = false; 9864 } 9865 9866 if (flags & RENAME_WHITEOUT) { 9867 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9868 old_dentry); 9869 9870 if (ret) { 9871 btrfs_abort_transaction(trans, ret); 9872 goto out_fail; 9873 } 9874 } 9875 out_fail: 9876 /* 9877 * If we have pinned the log and an error happened, we unpin tasks 9878 * trying to sync the log and force them to fallback to a transaction 9879 * commit if the log currently contains any of the inodes involved in 9880 * this rename operation (to ensure we do not persist a log with an 9881 * inconsistent state for any of these inodes or leading to any 9882 * inconsistencies when replayed). If the transaction was aborted, the 9883 * abortion reason is propagated to userspace when attempting to commit 9884 * the transaction. If the log does not contain any of these inodes, we 9885 * allow the tasks to sync it. 9886 */ 9887 if (ret && log_pinned) { 9888 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9889 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9890 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9891 (new_inode && 9892 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9893 btrfs_set_log_full_commit(fs_info, trans); 9894 9895 btrfs_end_log_trans(root); 9896 log_pinned = false; 9897 } 9898 if (!ret && sync_log) { 9899 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); 9900 if (ret) 9901 commit_transaction = true; 9902 } 9903 if (commit_transaction) { 9904 ret = btrfs_commit_transaction(trans); 9905 } else { 9906 int ret2; 9907 9908 ret2 = btrfs_end_transaction(trans); 9909 ret = ret ? ret : ret2; 9910 } 9911 out_notrans: 9912 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9913 up_read(&fs_info->subvol_sem); 9914 9915 return ret; 9916 } 9917 9918 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9919 struct inode *new_dir, struct dentry *new_dentry, 9920 unsigned int flags) 9921 { 9922 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9923 return -EINVAL; 9924 9925 if (flags & RENAME_EXCHANGE) 9926 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9927 new_dentry); 9928 9929 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9930 } 9931 9932 struct btrfs_delalloc_work { 9933 struct inode *inode; 9934 struct completion completion; 9935 struct list_head list; 9936 struct btrfs_work work; 9937 }; 9938 9939 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9940 { 9941 struct btrfs_delalloc_work *delalloc_work; 9942 struct inode *inode; 9943 9944 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9945 work); 9946 inode = delalloc_work->inode; 9947 filemap_flush(inode->i_mapping); 9948 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9949 &BTRFS_I(inode)->runtime_flags)) 9950 filemap_flush(inode->i_mapping); 9951 9952 iput(inode); 9953 complete(&delalloc_work->completion); 9954 } 9955 9956 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9957 { 9958 struct btrfs_delalloc_work *work; 9959 9960 work = kmalloc(sizeof(*work), GFP_NOFS); 9961 if (!work) 9962 return NULL; 9963 9964 init_completion(&work->completion); 9965 INIT_LIST_HEAD(&work->list); 9966 work->inode = inode; 9967 WARN_ON_ONCE(!inode); 9968 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9969 btrfs_run_delalloc_work, NULL, NULL); 9970 9971 return work; 9972 } 9973 9974 /* 9975 * some fairly slow code that needs optimization. This walks the list 9976 * of all the inodes with pending delalloc and forces them to disk. 9977 */ 9978 static int start_delalloc_inodes(struct btrfs_root *root, int nr) 9979 { 9980 struct btrfs_inode *binode; 9981 struct inode *inode; 9982 struct btrfs_delalloc_work *work, *next; 9983 struct list_head works; 9984 struct list_head splice; 9985 int ret = 0; 9986 9987 INIT_LIST_HEAD(&works); 9988 INIT_LIST_HEAD(&splice); 9989 9990 mutex_lock(&root->delalloc_mutex); 9991 spin_lock(&root->delalloc_lock); 9992 list_splice_init(&root->delalloc_inodes, &splice); 9993 while (!list_empty(&splice)) { 9994 binode = list_entry(splice.next, struct btrfs_inode, 9995 delalloc_inodes); 9996 9997 list_move_tail(&binode->delalloc_inodes, 9998 &root->delalloc_inodes); 9999 inode = igrab(&binode->vfs_inode); 10000 if (!inode) { 10001 cond_resched_lock(&root->delalloc_lock); 10002 continue; 10003 } 10004 spin_unlock(&root->delalloc_lock); 10005 10006 work = btrfs_alloc_delalloc_work(inode); 10007 if (!work) { 10008 iput(inode); 10009 ret = -ENOMEM; 10010 goto out; 10011 } 10012 list_add_tail(&work->list, &works); 10013 btrfs_queue_work(root->fs_info->flush_workers, 10014 &work->work); 10015 ret++; 10016 if (nr != -1 && ret >= nr) 10017 goto out; 10018 cond_resched(); 10019 spin_lock(&root->delalloc_lock); 10020 } 10021 spin_unlock(&root->delalloc_lock); 10022 10023 out: 10024 list_for_each_entry_safe(work, next, &works, list) { 10025 list_del_init(&work->list); 10026 wait_for_completion(&work->completion); 10027 kfree(work); 10028 } 10029 10030 if (!list_empty(&splice)) { 10031 spin_lock(&root->delalloc_lock); 10032 list_splice_tail(&splice, &root->delalloc_inodes); 10033 spin_unlock(&root->delalloc_lock); 10034 } 10035 mutex_unlock(&root->delalloc_mutex); 10036 return ret; 10037 } 10038 10039 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 10040 { 10041 struct btrfs_fs_info *fs_info = root->fs_info; 10042 int ret; 10043 10044 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10045 return -EROFS; 10046 10047 ret = start_delalloc_inodes(root, -1); 10048 if (ret > 0) 10049 ret = 0; 10050 return ret; 10051 } 10052 10053 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10054 { 10055 struct btrfs_root *root; 10056 struct list_head splice; 10057 int ret; 10058 10059 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10060 return -EROFS; 10061 10062 INIT_LIST_HEAD(&splice); 10063 10064 mutex_lock(&fs_info->delalloc_root_mutex); 10065 spin_lock(&fs_info->delalloc_root_lock); 10066 list_splice_init(&fs_info->delalloc_roots, &splice); 10067 while (!list_empty(&splice) && nr) { 10068 root = list_first_entry(&splice, struct btrfs_root, 10069 delalloc_root); 10070 root = btrfs_grab_fs_root(root); 10071 BUG_ON(!root); 10072 list_move_tail(&root->delalloc_root, 10073 &fs_info->delalloc_roots); 10074 spin_unlock(&fs_info->delalloc_root_lock); 10075 10076 ret = start_delalloc_inodes(root, nr); 10077 btrfs_put_fs_root(root); 10078 if (ret < 0) 10079 goto out; 10080 10081 if (nr != -1) { 10082 nr -= ret; 10083 WARN_ON(nr < 0); 10084 } 10085 spin_lock(&fs_info->delalloc_root_lock); 10086 } 10087 spin_unlock(&fs_info->delalloc_root_lock); 10088 10089 ret = 0; 10090 out: 10091 if (!list_empty(&splice)) { 10092 spin_lock(&fs_info->delalloc_root_lock); 10093 list_splice_tail(&splice, &fs_info->delalloc_roots); 10094 spin_unlock(&fs_info->delalloc_root_lock); 10095 } 10096 mutex_unlock(&fs_info->delalloc_root_mutex); 10097 return ret; 10098 } 10099 10100 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10101 const char *symname) 10102 { 10103 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10104 struct btrfs_trans_handle *trans; 10105 struct btrfs_root *root = BTRFS_I(dir)->root; 10106 struct btrfs_path *path; 10107 struct btrfs_key key; 10108 struct inode *inode = NULL; 10109 int err; 10110 u64 objectid; 10111 u64 index = 0; 10112 int name_len; 10113 int datasize; 10114 unsigned long ptr; 10115 struct btrfs_file_extent_item *ei; 10116 struct extent_buffer *leaf; 10117 10118 name_len = strlen(symname); 10119 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10120 return -ENAMETOOLONG; 10121 10122 /* 10123 * 2 items for inode item and ref 10124 * 2 items for dir items 10125 * 1 item for updating parent inode item 10126 * 1 item for the inline extent item 10127 * 1 item for xattr if selinux is on 10128 */ 10129 trans = btrfs_start_transaction(root, 7); 10130 if (IS_ERR(trans)) 10131 return PTR_ERR(trans); 10132 10133 err = btrfs_find_free_ino(root, &objectid); 10134 if (err) 10135 goto out_unlock; 10136 10137 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10138 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10139 objectid, S_IFLNK|S_IRWXUGO, &index); 10140 if (IS_ERR(inode)) { 10141 err = PTR_ERR(inode); 10142 inode = NULL; 10143 goto out_unlock; 10144 } 10145 10146 /* 10147 * If the active LSM wants to access the inode during 10148 * d_instantiate it needs these. Smack checks to see 10149 * if the filesystem supports xattrs by looking at the 10150 * ops vector. 10151 */ 10152 inode->i_fop = &btrfs_file_operations; 10153 inode->i_op = &btrfs_file_inode_operations; 10154 inode->i_mapping->a_ops = &btrfs_aops; 10155 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10156 10157 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10158 if (err) 10159 goto out_unlock; 10160 10161 path = btrfs_alloc_path(); 10162 if (!path) { 10163 err = -ENOMEM; 10164 goto out_unlock; 10165 } 10166 key.objectid = btrfs_ino(BTRFS_I(inode)); 10167 key.offset = 0; 10168 key.type = BTRFS_EXTENT_DATA_KEY; 10169 datasize = btrfs_file_extent_calc_inline_size(name_len); 10170 err = btrfs_insert_empty_item(trans, root, path, &key, 10171 datasize); 10172 if (err) { 10173 btrfs_free_path(path); 10174 goto out_unlock; 10175 } 10176 leaf = path->nodes[0]; 10177 ei = btrfs_item_ptr(leaf, path->slots[0], 10178 struct btrfs_file_extent_item); 10179 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10180 btrfs_set_file_extent_type(leaf, ei, 10181 BTRFS_FILE_EXTENT_INLINE); 10182 btrfs_set_file_extent_encryption(leaf, ei, 0); 10183 btrfs_set_file_extent_compression(leaf, ei, 0); 10184 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10185 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10186 10187 ptr = btrfs_file_extent_inline_start(ei); 10188 write_extent_buffer(leaf, symname, ptr, name_len); 10189 btrfs_mark_buffer_dirty(leaf); 10190 btrfs_free_path(path); 10191 10192 inode->i_op = &btrfs_symlink_inode_operations; 10193 inode_nohighmem(inode); 10194 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10195 inode_set_bytes(inode, name_len); 10196 btrfs_i_size_write(BTRFS_I(inode), name_len); 10197 err = btrfs_update_inode(trans, root, inode); 10198 /* 10199 * Last step, add directory indexes for our symlink inode. This is the 10200 * last step to avoid extra cleanup of these indexes if an error happens 10201 * elsewhere above. 10202 */ 10203 if (!err) 10204 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10205 BTRFS_I(inode), 0, index); 10206 if (err) 10207 goto out_unlock; 10208 10209 d_instantiate_new(dentry, inode); 10210 10211 out_unlock: 10212 btrfs_end_transaction(trans); 10213 if (err && inode) { 10214 inode_dec_link_count(inode); 10215 discard_new_inode(inode); 10216 } 10217 btrfs_btree_balance_dirty(fs_info); 10218 return err; 10219 } 10220 10221 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10222 u64 start, u64 num_bytes, u64 min_size, 10223 loff_t actual_len, u64 *alloc_hint, 10224 struct btrfs_trans_handle *trans) 10225 { 10226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10228 struct extent_map *em; 10229 struct btrfs_root *root = BTRFS_I(inode)->root; 10230 struct btrfs_key ins; 10231 u64 cur_offset = start; 10232 u64 i_size; 10233 u64 cur_bytes; 10234 u64 last_alloc = (u64)-1; 10235 int ret = 0; 10236 bool own_trans = true; 10237 u64 end = start + num_bytes - 1; 10238 10239 if (trans) 10240 own_trans = false; 10241 while (num_bytes > 0) { 10242 if (own_trans) { 10243 trans = btrfs_start_transaction(root, 3); 10244 if (IS_ERR(trans)) { 10245 ret = PTR_ERR(trans); 10246 break; 10247 } 10248 } 10249 10250 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10251 cur_bytes = max(cur_bytes, min_size); 10252 /* 10253 * If we are severely fragmented we could end up with really 10254 * small allocations, so if the allocator is returning small 10255 * chunks lets make its job easier by only searching for those 10256 * sized chunks. 10257 */ 10258 cur_bytes = min(cur_bytes, last_alloc); 10259 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10260 min_size, 0, *alloc_hint, &ins, 1, 0); 10261 if (ret) { 10262 if (own_trans) 10263 btrfs_end_transaction(trans); 10264 break; 10265 } 10266 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10267 10268 last_alloc = ins.offset; 10269 ret = insert_reserved_file_extent(trans, inode, 10270 cur_offset, ins.objectid, 10271 ins.offset, ins.offset, 10272 ins.offset, 0, 0, 0, 10273 BTRFS_FILE_EXTENT_PREALLOC); 10274 if (ret) { 10275 btrfs_free_reserved_extent(fs_info, ins.objectid, 10276 ins.offset, 0); 10277 btrfs_abort_transaction(trans, ret); 10278 if (own_trans) 10279 btrfs_end_transaction(trans); 10280 break; 10281 } 10282 10283 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10284 cur_offset + ins.offset -1, 0); 10285 10286 em = alloc_extent_map(); 10287 if (!em) { 10288 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10289 &BTRFS_I(inode)->runtime_flags); 10290 goto next; 10291 } 10292 10293 em->start = cur_offset; 10294 em->orig_start = cur_offset; 10295 em->len = ins.offset; 10296 em->block_start = ins.objectid; 10297 em->block_len = ins.offset; 10298 em->orig_block_len = ins.offset; 10299 em->ram_bytes = ins.offset; 10300 em->bdev = fs_info->fs_devices->latest_bdev; 10301 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10302 em->generation = trans->transid; 10303 10304 while (1) { 10305 write_lock(&em_tree->lock); 10306 ret = add_extent_mapping(em_tree, em, 1); 10307 write_unlock(&em_tree->lock); 10308 if (ret != -EEXIST) 10309 break; 10310 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10311 cur_offset + ins.offset - 1, 10312 0); 10313 } 10314 free_extent_map(em); 10315 next: 10316 num_bytes -= ins.offset; 10317 cur_offset += ins.offset; 10318 *alloc_hint = ins.objectid + ins.offset; 10319 10320 inode_inc_iversion(inode); 10321 inode->i_ctime = current_time(inode); 10322 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10323 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10324 (actual_len > inode->i_size) && 10325 (cur_offset > inode->i_size)) { 10326 if (cur_offset > actual_len) 10327 i_size = actual_len; 10328 else 10329 i_size = cur_offset; 10330 i_size_write(inode, i_size); 10331 btrfs_ordered_update_i_size(inode, i_size, NULL); 10332 } 10333 10334 ret = btrfs_update_inode(trans, root, inode); 10335 10336 if (ret) { 10337 btrfs_abort_transaction(trans, ret); 10338 if (own_trans) 10339 btrfs_end_transaction(trans); 10340 break; 10341 } 10342 10343 if (own_trans) 10344 btrfs_end_transaction(trans); 10345 } 10346 if (cur_offset < end) 10347 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10348 end - cur_offset + 1); 10349 return ret; 10350 } 10351 10352 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10353 u64 start, u64 num_bytes, u64 min_size, 10354 loff_t actual_len, u64 *alloc_hint) 10355 { 10356 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10357 min_size, actual_len, alloc_hint, 10358 NULL); 10359 } 10360 10361 int btrfs_prealloc_file_range_trans(struct inode *inode, 10362 struct btrfs_trans_handle *trans, int mode, 10363 u64 start, u64 num_bytes, u64 min_size, 10364 loff_t actual_len, u64 *alloc_hint) 10365 { 10366 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10367 min_size, actual_len, alloc_hint, trans); 10368 } 10369 10370 static int btrfs_set_page_dirty(struct page *page) 10371 { 10372 return __set_page_dirty_nobuffers(page); 10373 } 10374 10375 static int btrfs_permission(struct inode *inode, int mask) 10376 { 10377 struct btrfs_root *root = BTRFS_I(inode)->root; 10378 umode_t mode = inode->i_mode; 10379 10380 if (mask & MAY_WRITE && 10381 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10382 if (btrfs_root_readonly(root)) 10383 return -EROFS; 10384 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10385 return -EACCES; 10386 } 10387 return generic_permission(inode, mask); 10388 } 10389 10390 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10391 { 10392 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10393 struct btrfs_trans_handle *trans; 10394 struct btrfs_root *root = BTRFS_I(dir)->root; 10395 struct inode *inode = NULL; 10396 u64 objectid; 10397 u64 index; 10398 int ret = 0; 10399 10400 /* 10401 * 5 units required for adding orphan entry 10402 */ 10403 trans = btrfs_start_transaction(root, 5); 10404 if (IS_ERR(trans)) 10405 return PTR_ERR(trans); 10406 10407 ret = btrfs_find_free_ino(root, &objectid); 10408 if (ret) 10409 goto out; 10410 10411 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10412 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10413 if (IS_ERR(inode)) { 10414 ret = PTR_ERR(inode); 10415 inode = NULL; 10416 goto out; 10417 } 10418 10419 inode->i_fop = &btrfs_file_operations; 10420 inode->i_op = &btrfs_file_inode_operations; 10421 10422 inode->i_mapping->a_ops = &btrfs_aops; 10423 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10424 10425 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10426 if (ret) 10427 goto out; 10428 10429 ret = btrfs_update_inode(trans, root, inode); 10430 if (ret) 10431 goto out; 10432 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10433 if (ret) 10434 goto out; 10435 10436 /* 10437 * We set number of links to 0 in btrfs_new_inode(), and here we set 10438 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10439 * through: 10440 * 10441 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10442 */ 10443 set_nlink(inode, 1); 10444 d_tmpfile(dentry, inode); 10445 unlock_new_inode(inode); 10446 mark_inode_dirty(inode); 10447 out: 10448 btrfs_end_transaction(trans); 10449 if (ret && inode) 10450 discard_new_inode(inode); 10451 btrfs_btree_balance_dirty(fs_info); 10452 return ret; 10453 } 10454 10455 __attribute__((const)) 10456 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10457 { 10458 return -EAGAIN; 10459 } 10460 10461 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10462 u64 start, u64 end) 10463 { 10464 struct inode *inode = private_data; 10465 u64 isize; 10466 10467 isize = i_size_read(inode); 10468 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10469 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10470 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10471 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10472 } 10473 } 10474 10475 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10476 { 10477 struct inode *inode = tree->private_data; 10478 unsigned long index = start >> PAGE_SHIFT; 10479 unsigned long end_index = end >> PAGE_SHIFT; 10480 struct page *page; 10481 10482 while (index <= end_index) { 10483 page = find_get_page(inode->i_mapping, index); 10484 ASSERT(page); /* Pages should be in the extent_io_tree */ 10485 set_page_writeback(page); 10486 put_page(page); 10487 index++; 10488 } 10489 } 10490 10491 static const struct inode_operations btrfs_dir_inode_operations = { 10492 .getattr = btrfs_getattr, 10493 .lookup = btrfs_lookup, 10494 .create = btrfs_create, 10495 .unlink = btrfs_unlink, 10496 .link = btrfs_link, 10497 .mkdir = btrfs_mkdir, 10498 .rmdir = btrfs_rmdir, 10499 .rename = btrfs_rename2, 10500 .symlink = btrfs_symlink, 10501 .setattr = btrfs_setattr, 10502 .mknod = btrfs_mknod, 10503 .listxattr = btrfs_listxattr, 10504 .permission = btrfs_permission, 10505 .get_acl = btrfs_get_acl, 10506 .set_acl = btrfs_set_acl, 10507 .update_time = btrfs_update_time, 10508 .tmpfile = btrfs_tmpfile, 10509 }; 10510 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10511 .lookup = btrfs_lookup, 10512 .permission = btrfs_permission, 10513 .update_time = btrfs_update_time, 10514 }; 10515 10516 static const struct file_operations btrfs_dir_file_operations = { 10517 .llseek = generic_file_llseek, 10518 .read = generic_read_dir, 10519 .iterate_shared = btrfs_real_readdir, 10520 .open = btrfs_opendir, 10521 .unlocked_ioctl = btrfs_ioctl, 10522 #ifdef CONFIG_COMPAT 10523 .compat_ioctl = btrfs_compat_ioctl, 10524 #endif 10525 .release = btrfs_release_file, 10526 .fsync = btrfs_sync_file, 10527 }; 10528 10529 static const struct extent_io_ops btrfs_extent_io_ops = { 10530 /* mandatory callbacks */ 10531 .submit_bio_hook = btrfs_submit_bio_hook, 10532 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10533 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10534 10535 /* optional callbacks */ 10536 .fill_delalloc = run_delalloc_range, 10537 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10538 .writepage_start_hook = btrfs_writepage_start_hook, 10539 .set_bit_hook = btrfs_set_bit_hook, 10540 .clear_bit_hook = btrfs_clear_bit_hook, 10541 .merge_extent_hook = btrfs_merge_extent_hook, 10542 .split_extent_hook = btrfs_split_extent_hook, 10543 .check_extent_io_range = btrfs_check_extent_io_range, 10544 }; 10545 10546 /* 10547 * btrfs doesn't support the bmap operation because swapfiles 10548 * use bmap to make a mapping of extents in the file. They assume 10549 * these extents won't change over the life of the file and they 10550 * use the bmap result to do IO directly to the drive. 10551 * 10552 * the btrfs bmap call would return logical addresses that aren't 10553 * suitable for IO and they also will change frequently as COW 10554 * operations happen. So, swapfile + btrfs == corruption. 10555 * 10556 * For now we're avoiding this by dropping bmap. 10557 */ 10558 static const struct address_space_operations btrfs_aops = { 10559 .readpage = btrfs_readpage, 10560 .writepage = btrfs_writepage, 10561 .writepages = btrfs_writepages, 10562 .readpages = btrfs_readpages, 10563 .direct_IO = btrfs_direct_IO, 10564 .invalidatepage = btrfs_invalidatepage, 10565 .releasepage = btrfs_releasepage, 10566 .set_page_dirty = btrfs_set_page_dirty, 10567 .error_remove_page = generic_error_remove_page, 10568 }; 10569 10570 static const struct address_space_operations btrfs_symlink_aops = { 10571 .readpage = btrfs_readpage, 10572 .writepage = btrfs_writepage, 10573 .invalidatepage = btrfs_invalidatepage, 10574 .releasepage = btrfs_releasepage, 10575 }; 10576 10577 static const struct inode_operations btrfs_file_inode_operations = { 10578 .getattr = btrfs_getattr, 10579 .setattr = btrfs_setattr, 10580 .listxattr = btrfs_listxattr, 10581 .permission = btrfs_permission, 10582 .fiemap = btrfs_fiemap, 10583 .get_acl = btrfs_get_acl, 10584 .set_acl = btrfs_set_acl, 10585 .update_time = btrfs_update_time, 10586 }; 10587 static const struct inode_operations btrfs_special_inode_operations = { 10588 .getattr = btrfs_getattr, 10589 .setattr = btrfs_setattr, 10590 .permission = btrfs_permission, 10591 .listxattr = btrfs_listxattr, 10592 .get_acl = btrfs_get_acl, 10593 .set_acl = btrfs_set_acl, 10594 .update_time = btrfs_update_time, 10595 }; 10596 static const struct inode_operations btrfs_symlink_inode_operations = { 10597 .get_link = page_get_link, 10598 .getattr = btrfs_getattr, 10599 .setattr = btrfs_setattr, 10600 .permission = btrfs_permission, 10601 .listxattr = btrfs_listxattr, 10602 .update_time = btrfs_update_time, 10603 }; 10604 10605 const struct dentry_operations btrfs_dentry_operations = { 10606 .d_delete = btrfs_dentry_delete, 10607 }; 10608