1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "inode-map.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "delalloc-space.h" 52 #include "block-group.h" 53 #include "space-info.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 struct btrfs_dio_data { 61 u64 reserve; 62 loff_t length; 63 ssize_t submitted; 64 struct extent_changeset *data_reserved; 65 }; 66 67 static const struct inode_operations btrfs_dir_inode_operations; 68 static const struct inode_operations btrfs_symlink_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct btrfs_inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 88 u64 len, u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct btrfs_inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 99 * 100 * ilock_flags can have the following bit set: 101 * 102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 104 * return -EAGAIN 105 */ 106 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 107 { 108 if (ilock_flags & BTRFS_ILOCK_SHARED) { 109 if (ilock_flags & BTRFS_ILOCK_TRY) { 110 if (!inode_trylock_shared(inode)) 111 return -EAGAIN; 112 else 113 return 0; 114 } 115 inode_lock_shared(inode); 116 } else { 117 if (ilock_flags & BTRFS_ILOCK_TRY) { 118 if (!inode_trylock(inode)) 119 return -EAGAIN; 120 else 121 return 0; 122 } 123 inode_lock(inode); 124 } 125 return 0; 126 } 127 128 /* 129 * btrfs_inode_unlock - unock inode i_rwsem 130 * 131 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 132 * to decide whether the lock acquired is shared or exclusive. 133 */ 134 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 135 { 136 if (ilock_flags & BTRFS_ILOCK_SHARED) 137 inode_unlock_shared(inode); 138 else 139 inode_unlock(inode); 140 } 141 142 /* 143 * Cleanup all submitted ordered extents in specified range to handle errors 144 * from the btrfs_run_delalloc_range() callback. 145 * 146 * NOTE: caller must ensure that when an error happens, it can not call 147 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 148 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 149 * to be released, which we want to happen only when finishing the ordered 150 * extent (btrfs_finish_ordered_io()). 151 */ 152 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 153 struct page *locked_page, 154 u64 offset, u64 bytes) 155 { 156 unsigned long index = offset >> PAGE_SHIFT; 157 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 158 u64 page_start = page_offset(locked_page); 159 u64 page_end = page_start + PAGE_SIZE - 1; 160 161 struct page *page; 162 163 while (index <= end_index) { 164 page = find_get_page(inode->vfs_inode.i_mapping, index); 165 index++; 166 if (!page) 167 continue; 168 ClearPagePrivate2(page); 169 put_page(page); 170 } 171 172 /* 173 * In case this page belongs to the delalloc range being instantiated 174 * then skip it, since the first page of a range is going to be 175 * properly cleaned up by the caller of run_delalloc_range 176 */ 177 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 178 offset += PAGE_SIZE; 179 bytes -= PAGE_SIZE; 180 } 181 182 return __endio_write_update_ordered(inode, offset, bytes, false); 183 } 184 185 static int btrfs_dirty_inode(struct inode *inode); 186 187 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 188 struct inode *inode, struct inode *dir, 189 const struct qstr *qstr) 190 { 191 int err; 192 193 err = btrfs_init_acl(trans, inode, dir); 194 if (!err) 195 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 196 return err; 197 } 198 199 /* 200 * this does all the hard work for inserting an inline extent into 201 * the btree. The caller should have done a btrfs_drop_extents so that 202 * no overlapping inline items exist in the btree 203 */ 204 static int insert_inline_extent(struct btrfs_trans_handle *trans, 205 struct btrfs_path *path, bool extent_inserted, 206 struct btrfs_root *root, struct inode *inode, 207 u64 start, size_t size, size_t compressed_size, 208 int compress_type, 209 struct page **compressed_pages) 210 { 211 struct extent_buffer *leaf; 212 struct page *page = NULL; 213 char *kaddr; 214 unsigned long ptr; 215 struct btrfs_file_extent_item *ei; 216 int ret; 217 size_t cur_size = size; 218 unsigned long offset; 219 220 ASSERT((compressed_size > 0 && compressed_pages) || 221 (compressed_size == 0 && !compressed_pages)); 222 223 if (compressed_size && compressed_pages) 224 cur_size = compressed_size; 225 226 if (!extent_inserted) { 227 struct btrfs_key key; 228 size_t datasize; 229 230 key.objectid = btrfs_ino(BTRFS_I(inode)); 231 key.offset = start; 232 key.type = BTRFS_EXTENT_DATA_KEY; 233 234 datasize = btrfs_file_extent_calc_inline_size(cur_size); 235 ret = btrfs_insert_empty_item(trans, root, path, &key, 236 datasize); 237 if (ret) 238 goto fail; 239 } 240 leaf = path->nodes[0]; 241 ei = btrfs_item_ptr(leaf, path->slots[0], 242 struct btrfs_file_extent_item); 243 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 244 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 245 btrfs_set_file_extent_encryption(leaf, ei, 0); 246 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 247 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 248 ptr = btrfs_file_extent_inline_start(ei); 249 250 if (compress_type != BTRFS_COMPRESS_NONE) { 251 struct page *cpage; 252 int i = 0; 253 while (compressed_size > 0) { 254 cpage = compressed_pages[i]; 255 cur_size = min_t(unsigned long, compressed_size, 256 PAGE_SIZE); 257 258 kaddr = kmap_atomic(cpage); 259 write_extent_buffer(leaf, kaddr, ptr, cur_size); 260 kunmap_atomic(kaddr); 261 262 i++; 263 ptr += cur_size; 264 compressed_size -= cur_size; 265 } 266 btrfs_set_file_extent_compression(leaf, ei, 267 compress_type); 268 } else { 269 page = find_get_page(inode->i_mapping, 270 start >> PAGE_SHIFT); 271 btrfs_set_file_extent_compression(leaf, ei, 0); 272 kaddr = kmap_atomic(page); 273 offset = offset_in_page(start); 274 write_extent_buffer(leaf, kaddr + offset, ptr, size); 275 kunmap_atomic(kaddr); 276 put_page(page); 277 } 278 btrfs_mark_buffer_dirty(leaf); 279 btrfs_release_path(path); 280 281 /* 282 * We align size to sectorsize for inline extents just for simplicity 283 * sake. 284 */ 285 size = ALIGN(size, root->fs_info->sectorsize); 286 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 287 if (ret) 288 goto fail; 289 290 /* 291 * we're an inline extent, so nobody can 292 * extend the file past i_size without locking 293 * a page we already have locked. 294 * 295 * We must do any isize and inode updates 296 * before we unlock the pages. Otherwise we 297 * could end up racing with unlink. 298 */ 299 BTRFS_I(inode)->disk_i_size = inode->i_size; 300 fail: 301 return ret; 302 } 303 304 305 /* 306 * conditionally insert an inline extent into the file. This 307 * does the checks required to make sure the data is small enough 308 * to fit as an inline extent. 309 */ 310 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 311 u64 end, size_t compressed_size, 312 int compress_type, 313 struct page **compressed_pages) 314 { 315 struct btrfs_drop_extents_args drop_args = { 0 }; 316 struct btrfs_root *root = inode->root; 317 struct btrfs_fs_info *fs_info = root->fs_info; 318 struct btrfs_trans_handle *trans; 319 u64 isize = i_size_read(&inode->vfs_inode); 320 u64 actual_end = min(end + 1, isize); 321 u64 inline_len = actual_end - start; 322 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 323 u64 data_len = inline_len; 324 int ret; 325 struct btrfs_path *path; 326 327 if (compressed_size) 328 data_len = compressed_size; 329 330 if (start > 0 || 331 actual_end > fs_info->sectorsize || 332 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 333 (!compressed_size && 334 (actual_end & (fs_info->sectorsize - 1)) == 0) || 335 end + 1 < isize || 336 data_len > fs_info->max_inline) { 337 return 1; 338 } 339 340 path = btrfs_alloc_path(); 341 if (!path) 342 return -ENOMEM; 343 344 trans = btrfs_join_transaction(root); 345 if (IS_ERR(trans)) { 346 btrfs_free_path(path); 347 return PTR_ERR(trans); 348 } 349 trans->block_rsv = &inode->block_rsv; 350 351 drop_args.path = path; 352 drop_args.start = start; 353 drop_args.end = aligned_end; 354 drop_args.drop_cache = true; 355 drop_args.replace_extent = true; 356 357 if (compressed_size && compressed_pages) 358 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 359 compressed_size); 360 else 361 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 362 inline_len); 363 364 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 365 if (ret) { 366 btrfs_abort_transaction(trans, ret); 367 goto out; 368 } 369 370 if (isize > actual_end) 371 inline_len = min_t(u64, isize, actual_end); 372 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 373 root, &inode->vfs_inode, start, 374 inline_len, compressed_size, 375 compress_type, compressed_pages); 376 if (ret && ret != -ENOSPC) { 377 btrfs_abort_transaction(trans, ret); 378 goto out; 379 } else if (ret == -ENOSPC) { 380 ret = 1; 381 goto out; 382 } 383 384 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 385 ret = btrfs_update_inode(trans, root, inode); 386 if (ret && ret != -ENOSPC) { 387 btrfs_abort_transaction(trans, ret); 388 goto out; 389 } else if (ret == -ENOSPC) { 390 ret = 1; 391 goto out; 392 } 393 394 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 395 out: 396 /* 397 * Don't forget to free the reserved space, as for inlined extent 398 * it won't count as data extent, free them directly here. 399 * And at reserve time, it's always aligned to page size, so 400 * just free one page here. 401 */ 402 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 403 btrfs_free_path(path); 404 btrfs_end_transaction(trans); 405 return ret; 406 } 407 408 struct async_extent { 409 u64 start; 410 u64 ram_size; 411 u64 compressed_size; 412 struct page **pages; 413 unsigned long nr_pages; 414 int compress_type; 415 struct list_head list; 416 }; 417 418 struct async_chunk { 419 struct inode *inode; 420 struct page *locked_page; 421 u64 start; 422 u64 end; 423 unsigned int write_flags; 424 struct list_head extents; 425 struct cgroup_subsys_state *blkcg_css; 426 struct btrfs_work work; 427 atomic_t *pending; 428 }; 429 430 struct async_cow { 431 /* Number of chunks in flight; must be first in the structure */ 432 atomic_t num_chunks; 433 struct async_chunk chunks[]; 434 }; 435 436 static noinline int add_async_extent(struct async_chunk *cow, 437 u64 start, u64 ram_size, 438 u64 compressed_size, 439 struct page **pages, 440 unsigned long nr_pages, 441 int compress_type) 442 { 443 struct async_extent *async_extent; 444 445 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 446 BUG_ON(!async_extent); /* -ENOMEM */ 447 async_extent->start = start; 448 async_extent->ram_size = ram_size; 449 async_extent->compressed_size = compressed_size; 450 async_extent->pages = pages; 451 async_extent->nr_pages = nr_pages; 452 async_extent->compress_type = compress_type; 453 list_add_tail(&async_extent->list, &cow->extents); 454 return 0; 455 } 456 457 /* 458 * Check if the inode has flags compatible with compression 459 */ 460 static inline bool inode_can_compress(struct btrfs_inode *inode) 461 { 462 if (inode->flags & BTRFS_INODE_NODATACOW || 463 inode->flags & BTRFS_INODE_NODATASUM) 464 return false; 465 return true; 466 } 467 468 /* 469 * Check if the inode needs to be submitted to compression, based on mount 470 * options, defragmentation, properties or heuristics. 471 */ 472 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 473 u64 end) 474 { 475 struct btrfs_fs_info *fs_info = inode->root->fs_info; 476 477 if (!inode_can_compress(inode)) { 478 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 479 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 480 btrfs_ino(inode)); 481 return 0; 482 } 483 /* force compress */ 484 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 485 return 1; 486 /* defrag ioctl */ 487 if (inode->defrag_compress) 488 return 1; 489 /* bad compression ratios */ 490 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 491 return 0; 492 if (btrfs_test_opt(fs_info, COMPRESS) || 493 inode->flags & BTRFS_INODE_COMPRESS || 494 inode->prop_compress) 495 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 496 return 0; 497 } 498 499 static inline void inode_should_defrag(struct btrfs_inode *inode, 500 u64 start, u64 end, u64 num_bytes, u64 small_write) 501 { 502 /* If this is a small write inside eof, kick off a defrag */ 503 if (num_bytes < small_write && 504 (start > 0 || end + 1 < inode->disk_i_size)) 505 btrfs_add_inode_defrag(NULL, inode); 506 } 507 508 /* 509 * we create compressed extents in two phases. The first 510 * phase compresses a range of pages that have already been 511 * locked (both pages and state bits are locked). 512 * 513 * This is done inside an ordered work queue, and the compression 514 * is spread across many cpus. The actual IO submission is step 515 * two, and the ordered work queue takes care of making sure that 516 * happens in the same order things were put onto the queue by 517 * writepages and friends. 518 * 519 * If this code finds it can't get good compression, it puts an 520 * entry onto the work queue to write the uncompressed bytes. This 521 * makes sure that both compressed inodes and uncompressed inodes 522 * are written in the same order that the flusher thread sent them 523 * down. 524 */ 525 static noinline int compress_file_range(struct async_chunk *async_chunk) 526 { 527 struct inode *inode = async_chunk->inode; 528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 529 u64 blocksize = fs_info->sectorsize; 530 u64 start = async_chunk->start; 531 u64 end = async_chunk->end; 532 u64 actual_end; 533 u64 i_size; 534 int ret = 0; 535 struct page **pages = NULL; 536 unsigned long nr_pages; 537 unsigned long total_compressed = 0; 538 unsigned long total_in = 0; 539 int i; 540 int will_compress; 541 int compress_type = fs_info->compress_type; 542 int compressed_extents = 0; 543 int redirty = 0; 544 545 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 546 SZ_16K); 547 548 /* 549 * We need to save i_size before now because it could change in between 550 * us evaluating the size and assigning it. This is because we lock and 551 * unlock the page in truncate and fallocate, and then modify the i_size 552 * later on. 553 * 554 * The barriers are to emulate READ_ONCE, remove that once i_size_read 555 * does that for us. 556 */ 557 barrier(); 558 i_size = i_size_read(inode); 559 barrier(); 560 actual_end = min_t(u64, i_size, end + 1); 561 again: 562 will_compress = 0; 563 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 564 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 565 nr_pages = min_t(unsigned long, nr_pages, 566 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 567 568 /* 569 * we don't want to send crud past the end of i_size through 570 * compression, that's just a waste of CPU time. So, if the 571 * end of the file is before the start of our current 572 * requested range of bytes, we bail out to the uncompressed 573 * cleanup code that can deal with all of this. 574 * 575 * It isn't really the fastest way to fix things, but this is a 576 * very uncommon corner. 577 */ 578 if (actual_end <= start) 579 goto cleanup_and_bail_uncompressed; 580 581 total_compressed = actual_end - start; 582 583 /* 584 * skip compression for a small file range(<=blocksize) that 585 * isn't an inline extent, since it doesn't save disk space at all. 586 */ 587 if (total_compressed <= blocksize && 588 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 589 goto cleanup_and_bail_uncompressed; 590 591 total_compressed = min_t(unsigned long, total_compressed, 592 BTRFS_MAX_UNCOMPRESSED); 593 total_in = 0; 594 ret = 0; 595 596 /* 597 * we do compression for mount -o compress and when the 598 * inode has not been flagged as nocompress. This flag can 599 * change at any time if we discover bad compression ratios. 600 */ 601 if (inode_need_compress(BTRFS_I(inode), start, end)) { 602 WARN_ON(pages); 603 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 604 if (!pages) { 605 /* just bail out to the uncompressed code */ 606 nr_pages = 0; 607 goto cont; 608 } 609 610 if (BTRFS_I(inode)->defrag_compress) 611 compress_type = BTRFS_I(inode)->defrag_compress; 612 else if (BTRFS_I(inode)->prop_compress) 613 compress_type = BTRFS_I(inode)->prop_compress; 614 615 /* 616 * we need to call clear_page_dirty_for_io on each 617 * page in the range. Otherwise applications with the file 618 * mmap'd can wander in and change the page contents while 619 * we are compressing them. 620 * 621 * If the compression fails for any reason, we set the pages 622 * dirty again later on. 623 * 624 * Note that the remaining part is redirtied, the start pointer 625 * has moved, the end is the original one. 626 */ 627 if (!redirty) { 628 extent_range_clear_dirty_for_io(inode, start, end); 629 redirty = 1; 630 } 631 632 /* Compression level is applied here and only here */ 633 ret = btrfs_compress_pages( 634 compress_type | (fs_info->compress_level << 4), 635 inode->i_mapping, start, 636 pages, 637 &nr_pages, 638 &total_in, 639 &total_compressed); 640 641 if (!ret) { 642 unsigned long offset = offset_in_page(total_compressed); 643 struct page *page = pages[nr_pages - 1]; 644 char *kaddr; 645 646 /* zero the tail end of the last page, we might be 647 * sending it down to disk 648 */ 649 if (offset) { 650 kaddr = kmap_atomic(page); 651 memset(kaddr + offset, 0, 652 PAGE_SIZE - offset); 653 kunmap_atomic(kaddr); 654 } 655 will_compress = 1; 656 } 657 } 658 cont: 659 if (start == 0) { 660 /* lets try to make an inline extent */ 661 if (ret || total_in < actual_end) { 662 /* we didn't compress the entire range, try 663 * to make an uncompressed inline extent. 664 */ 665 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 666 0, BTRFS_COMPRESS_NONE, 667 NULL); 668 } else { 669 /* try making a compressed inline extent */ 670 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 671 total_compressed, 672 compress_type, pages); 673 } 674 if (ret <= 0) { 675 unsigned long clear_flags = EXTENT_DELALLOC | 676 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 677 EXTENT_DO_ACCOUNTING; 678 unsigned long page_error_op; 679 680 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 681 682 /* 683 * inline extent creation worked or returned error, 684 * we don't need to create any more async work items. 685 * Unlock and free up our temp pages. 686 * 687 * We use DO_ACCOUNTING here because we need the 688 * delalloc_release_metadata to be done _after_ we drop 689 * our outstanding extent for clearing delalloc for this 690 * range. 691 */ 692 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 693 NULL, 694 clear_flags, 695 PAGE_UNLOCK | 696 PAGE_CLEAR_DIRTY | 697 PAGE_SET_WRITEBACK | 698 page_error_op | 699 PAGE_END_WRITEBACK); 700 701 /* 702 * Ensure we only free the compressed pages if we have 703 * them allocated, as we can still reach here with 704 * inode_need_compress() == false. 705 */ 706 if (pages) { 707 for (i = 0; i < nr_pages; i++) { 708 WARN_ON(pages[i]->mapping); 709 put_page(pages[i]); 710 } 711 kfree(pages); 712 } 713 return 0; 714 } 715 } 716 717 if (will_compress) { 718 /* 719 * we aren't doing an inline extent round the compressed size 720 * up to a block size boundary so the allocator does sane 721 * things 722 */ 723 total_compressed = ALIGN(total_compressed, blocksize); 724 725 /* 726 * one last check to make sure the compression is really a 727 * win, compare the page count read with the blocks on disk, 728 * compression must free at least one sector size 729 */ 730 total_in = ALIGN(total_in, PAGE_SIZE); 731 if (total_compressed + blocksize <= total_in) { 732 compressed_extents++; 733 734 /* 735 * The async work queues will take care of doing actual 736 * allocation on disk for these compressed pages, and 737 * will submit them to the elevator. 738 */ 739 add_async_extent(async_chunk, start, total_in, 740 total_compressed, pages, nr_pages, 741 compress_type); 742 743 if (start + total_in < end) { 744 start += total_in; 745 pages = NULL; 746 cond_resched(); 747 goto again; 748 } 749 return compressed_extents; 750 } 751 } 752 if (pages) { 753 /* 754 * the compression code ran but failed to make things smaller, 755 * free any pages it allocated and our page pointer array 756 */ 757 for (i = 0; i < nr_pages; i++) { 758 WARN_ON(pages[i]->mapping); 759 put_page(pages[i]); 760 } 761 kfree(pages); 762 pages = NULL; 763 total_compressed = 0; 764 nr_pages = 0; 765 766 /* flag the file so we don't compress in the future */ 767 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 768 !(BTRFS_I(inode)->prop_compress)) { 769 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 770 } 771 } 772 cleanup_and_bail_uncompressed: 773 /* 774 * No compression, but we still need to write the pages in the file 775 * we've been given so far. redirty the locked page if it corresponds 776 * to our extent and set things up for the async work queue to run 777 * cow_file_range to do the normal delalloc dance. 778 */ 779 if (async_chunk->locked_page && 780 (page_offset(async_chunk->locked_page) >= start && 781 page_offset(async_chunk->locked_page)) <= end) { 782 __set_page_dirty_nobuffers(async_chunk->locked_page); 783 /* unlocked later on in the async handlers */ 784 } 785 786 if (redirty) 787 extent_range_redirty_for_io(inode, start, end); 788 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 789 BTRFS_COMPRESS_NONE); 790 compressed_extents++; 791 792 return compressed_extents; 793 } 794 795 static void free_async_extent_pages(struct async_extent *async_extent) 796 { 797 int i; 798 799 if (!async_extent->pages) 800 return; 801 802 for (i = 0; i < async_extent->nr_pages; i++) { 803 WARN_ON(async_extent->pages[i]->mapping); 804 put_page(async_extent->pages[i]); 805 } 806 kfree(async_extent->pages); 807 async_extent->nr_pages = 0; 808 async_extent->pages = NULL; 809 } 810 811 /* 812 * phase two of compressed writeback. This is the ordered portion 813 * of the code, which only gets called in the order the work was 814 * queued. We walk all the async extents created by compress_file_range 815 * and send them down to the disk. 816 */ 817 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 818 { 819 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 820 struct btrfs_fs_info *fs_info = inode->root->fs_info; 821 struct async_extent *async_extent; 822 u64 alloc_hint = 0; 823 struct btrfs_key ins; 824 struct extent_map *em; 825 struct btrfs_root *root = inode->root; 826 struct extent_io_tree *io_tree = &inode->io_tree; 827 int ret = 0; 828 829 again: 830 while (!list_empty(&async_chunk->extents)) { 831 async_extent = list_entry(async_chunk->extents.next, 832 struct async_extent, list); 833 list_del(&async_extent->list); 834 835 retry: 836 lock_extent(io_tree, async_extent->start, 837 async_extent->start + async_extent->ram_size - 1); 838 /* did the compression code fall back to uncompressed IO? */ 839 if (!async_extent->pages) { 840 int page_started = 0; 841 unsigned long nr_written = 0; 842 843 /* allocate blocks */ 844 ret = cow_file_range(inode, async_chunk->locked_page, 845 async_extent->start, 846 async_extent->start + 847 async_extent->ram_size - 1, 848 &page_started, &nr_written, 0); 849 850 /* JDM XXX */ 851 852 /* 853 * if page_started, cow_file_range inserted an 854 * inline extent and took care of all the unlocking 855 * and IO for us. Otherwise, we need to submit 856 * all those pages down to the drive. 857 */ 858 if (!page_started && !ret) 859 extent_write_locked_range(&inode->vfs_inode, 860 async_extent->start, 861 async_extent->start + 862 async_extent->ram_size - 1, 863 WB_SYNC_ALL); 864 else if (ret && async_chunk->locked_page) 865 unlock_page(async_chunk->locked_page); 866 kfree(async_extent); 867 cond_resched(); 868 continue; 869 } 870 871 ret = btrfs_reserve_extent(root, async_extent->ram_size, 872 async_extent->compressed_size, 873 async_extent->compressed_size, 874 0, alloc_hint, &ins, 1, 1); 875 if (ret) { 876 free_async_extent_pages(async_extent); 877 878 if (ret == -ENOSPC) { 879 unlock_extent(io_tree, async_extent->start, 880 async_extent->start + 881 async_extent->ram_size - 1); 882 883 /* 884 * we need to redirty the pages if we decide to 885 * fallback to uncompressed IO, otherwise we 886 * will not submit these pages down to lower 887 * layers. 888 */ 889 extent_range_redirty_for_io(&inode->vfs_inode, 890 async_extent->start, 891 async_extent->start + 892 async_extent->ram_size - 1); 893 894 goto retry; 895 } 896 goto out_free; 897 } 898 /* 899 * here we're doing allocation and writeback of the 900 * compressed pages 901 */ 902 em = create_io_em(inode, async_extent->start, 903 async_extent->ram_size, /* len */ 904 async_extent->start, /* orig_start */ 905 ins.objectid, /* block_start */ 906 ins.offset, /* block_len */ 907 ins.offset, /* orig_block_len */ 908 async_extent->ram_size, /* ram_bytes */ 909 async_extent->compress_type, 910 BTRFS_ORDERED_COMPRESSED); 911 if (IS_ERR(em)) 912 /* ret value is not necessary due to void function */ 913 goto out_free_reserve; 914 free_extent_map(em); 915 916 ret = btrfs_add_ordered_extent_compress(inode, 917 async_extent->start, 918 ins.objectid, 919 async_extent->ram_size, 920 ins.offset, 921 BTRFS_ORDERED_COMPRESSED, 922 async_extent->compress_type); 923 if (ret) { 924 btrfs_drop_extent_cache(inode, async_extent->start, 925 async_extent->start + 926 async_extent->ram_size - 1, 0); 927 goto out_free_reserve; 928 } 929 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 930 931 /* 932 * clear dirty, set writeback and unlock the pages. 933 */ 934 extent_clear_unlock_delalloc(inode, async_extent->start, 935 async_extent->start + 936 async_extent->ram_size - 1, 937 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 938 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 939 PAGE_SET_WRITEBACK); 940 if (btrfs_submit_compressed_write(inode, async_extent->start, 941 async_extent->ram_size, 942 ins.objectid, 943 ins.offset, async_extent->pages, 944 async_extent->nr_pages, 945 async_chunk->write_flags, 946 async_chunk->blkcg_css)) { 947 struct page *p = async_extent->pages[0]; 948 const u64 start = async_extent->start; 949 const u64 end = start + async_extent->ram_size - 1; 950 951 p->mapping = inode->vfs_inode.i_mapping; 952 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 953 954 p->mapping = NULL; 955 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 956 PAGE_END_WRITEBACK | 957 PAGE_SET_ERROR); 958 free_async_extent_pages(async_extent); 959 } 960 alloc_hint = ins.objectid + ins.offset; 961 kfree(async_extent); 962 cond_resched(); 963 } 964 return; 965 out_free_reserve: 966 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 967 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 968 out_free: 969 extent_clear_unlock_delalloc(inode, async_extent->start, 970 async_extent->start + 971 async_extent->ram_size - 1, 972 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 973 EXTENT_DELALLOC_NEW | 974 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 975 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 976 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 977 PAGE_SET_ERROR); 978 free_async_extent_pages(async_extent); 979 kfree(async_extent); 980 goto again; 981 } 982 983 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 984 u64 num_bytes) 985 { 986 struct extent_map_tree *em_tree = &inode->extent_tree; 987 struct extent_map *em; 988 u64 alloc_hint = 0; 989 990 read_lock(&em_tree->lock); 991 em = search_extent_mapping(em_tree, start, num_bytes); 992 if (em) { 993 /* 994 * if block start isn't an actual block number then find the 995 * first block in this inode and use that as a hint. If that 996 * block is also bogus then just don't worry about it. 997 */ 998 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 999 free_extent_map(em); 1000 em = search_extent_mapping(em_tree, 0, 0); 1001 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1002 alloc_hint = em->block_start; 1003 if (em) 1004 free_extent_map(em); 1005 } else { 1006 alloc_hint = em->block_start; 1007 free_extent_map(em); 1008 } 1009 } 1010 read_unlock(&em_tree->lock); 1011 1012 return alloc_hint; 1013 } 1014 1015 /* 1016 * when extent_io.c finds a delayed allocation range in the file, 1017 * the call backs end up in this code. The basic idea is to 1018 * allocate extents on disk for the range, and create ordered data structs 1019 * in ram to track those extents. 1020 * 1021 * locked_page is the page that writepage had locked already. We use 1022 * it to make sure we don't do extra locks or unlocks. 1023 * 1024 * *page_started is set to one if we unlock locked_page and do everything 1025 * required to start IO on it. It may be clean and already done with 1026 * IO when we return. 1027 */ 1028 static noinline int cow_file_range(struct btrfs_inode *inode, 1029 struct page *locked_page, 1030 u64 start, u64 end, int *page_started, 1031 unsigned long *nr_written, int unlock) 1032 { 1033 struct btrfs_root *root = inode->root; 1034 struct btrfs_fs_info *fs_info = root->fs_info; 1035 u64 alloc_hint = 0; 1036 u64 num_bytes; 1037 unsigned long ram_size; 1038 u64 cur_alloc_size = 0; 1039 u64 min_alloc_size; 1040 u64 blocksize = fs_info->sectorsize; 1041 struct btrfs_key ins; 1042 struct extent_map *em; 1043 unsigned clear_bits; 1044 unsigned long page_ops; 1045 bool extent_reserved = false; 1046 int ret = 0; 1047 1048 if (btrfs_is_free_space_inode(inode)) { 1049 WARN_ON_ONCE(1); 1050 ret = -EINVAL; 1051 goto out_unlock; 1052 } 1053 1054 num_bytes = ALIGN(end - start + 1, blocksize); 1055 num_bytes = max(blocksize, num_bytes); 1056 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1057 1058 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1059 1060 if (start == 0) { 1061 /* lets try to make an inline extent */ 1062 ret = cow_file_range_inline(inode, start, end, 0, 1063 BTRFS_COMPRESS_NONE, NULL); 1064 if (ret == 0) { 1065 /* 1066 * We use DO_ACCOUNTING here because we need the 1067 * delalloc_release_metadata to be run _after_ we drop 1068 * our outstanding extent for clearing delalloc for this 1069 * range. 1070 */ 1071 extent_clear_unlock_delalloc(inode, start, end, NULL, 1072 EXTENT_LOCKED | EXTENT_DELALLOC | 1073 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1074 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1075 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1076 PAGE_END_WRITEBACK); 1077 *nr_written = *nr_written + 1078 (end - start + PAGE_SIZE) / PAGE_SIZE; 1079 *page_started = 1; 1080 goto out; 1081 } else if (ret < 0) { 1082 goto out_unlock; 1083 } 1084 } 1085 1086 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1087 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1088 1089 /* 1090 * Relocation relies on the relocated extents to have exactly the same 1091 * size as the original extents. Normally writeback for relocation data 1092 * extents follows a NOCOW path because relocation preallocates the 1093 * extents. However, due to an operation such as scrub turning a block 1094 * group to RO mode, it may fallback to COW mode, so we must make sure 1095 * an extent allocated during COW has exactly the requested size and can 1096 * not be split into smaller extents, otherwise relocation breaks and 1097 * fails during the stage where it updates the bytenr of file extent 1098 * items. 1099 */ 1100 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1101 min_alloc_size = num_bytes; 1102 else 1103 min_alloc_size = fs_info->sectorsize; 1104 1105 while (num_bytes > 0) { 1106 cur_alloc_size = num_bytes; 1107 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1108 min_alloc_size, 0, alloc_hint, 1109 &ins, 1, 1); 1110 if (ret < 0) 1111 goto out_unlock; 1112 cur_alloc_size = ins.offset; 1113 extent_reserved = true; 1114 1115 ram_size = ins.offset; 1116 em = create_io_em(inode, start, ins.offset, /* len */ 1117 start, /* orig_start */ 1118 ins.objectid, /* block_start */ 1119 ins.offset, /* block_len */ 1120 ins.offset, /* orig_block_len */ 1121 ram_size, /* ram_bytes */ 1122 BTRFS_COMPRESS_NONE, /* compress_type */ 1123 BTRFS_ORDERED_REGULAR /* type */); 1124 if (IS_ERR(em)) { 1125 ret = PTR_ERR(em); 1126 goto out_reserve; 1127 } 1128 free_extent_map(em); 1129 1130 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1131 ram_size, cur_alloc_size, 0); 1132 if (ret) 1133 goto out_drop_extent_cache; 1134 1135 if (root->root_key.objectid == 1136 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1137 ret = btrfs_reloc_clone_csums(inode, start, 1138 cur_alloc_size); 1139 /* 1140 * Only drop cache here, and process as normal. 1141 * 1142 * We must not allow extent_clear_unlock_delalloc() 1143 * at out_unlock label to free meta of this ordered 1144 * extent, as its meta should be freed by 1145 * btrfs_finish_ordered_io(). 1146 * 1147 * So we must continue until @start is increased to 1148 * skip current ordered extent. 1149 */ 1150 if (ret) 1151 btrfs_drop_extent_cache(inode, start, 1152 start + ram_size - 1, 0); 1153 } 1154 1155 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1156 1157 /* we're not doing compressed IO, don't unlock the first 1158 * page (which the caller expects to stay locked), don't 1159 * clear any dirty bits and don't set any writeback bits 1160 * 1161 * Do set the Private2 bit so we know this page was properly 1162 * setup for writepage 1163 */ 1164 page_ops = unlock ? PAGE_UNLOCK : 0; 1165 page_ops |= PAGE_SET_PRIVATE2; 1166 1167 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1168 locked_page, 1169 EXTENT_LOCKED | EXTENT_DELALLOC, 1170 page_ops); 1171 if (num_bytes < cur_alloc_size) 1172 num_bytes = 0; 1173 else 1174 num_bytes -= cur_alloc_size; 1175 alloc_hint = ins.objectid + ins.offset; 1176 start += cur_alloc_size; 1177 extent_reserved = false; 1178 1179 /* 1180 * btrfs_reloc_clone_csums() error, since start is increased 1181 * extent_clear_unlock_delalloc() at out_unlock label won't 1182 * free metadata of current ordered extent, we're OK to exit. 1183 */ 1184 if (ret) 1185 goto out_unlock; 1186 } 1187 out: 1188 return ret; 1189 1190 out_drop_extent_cache: 1191 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1192 out_reserve: 1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1195 out_unlock: 1196 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1197 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1198 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1199 PAGE_END_WRITEBACK; 1200 /* 1201 * If we reserved an extent for our delalloc range (or a subrange) and 1202 * failed to create the respective ordered extent, then it means that 1203 * when we reserved the extent we decremented the extent's size from 1204 * the data space_info's bytes_may_use counter and incremented the 1205 * space_info's bytes_reserved counter by the same amount. We must make 1206 * sure extent_clear_unlock_delalloc() does not try to decrement again 1207 * the data space_info's bytes_may_use counter, therefore we do not pass 1208 * it the flag EXTENT_CLEAR_DATA_RESV. 1209 */ 1210 if (extent_reserved) { 1211 extent_clear_unlock_delalloc(inode, start, 1212 start + cur_alloc_size - 1, 1213 locked_page, 1214 clear_bits, 1215 page_ops); 1216 start += cur_alloc_size; 1217 if (start >= end) 1218 goto out; 1219 } 1220 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1221 clear_bits | EXTENT_CLEAR_DATA_RESV, 1222 page_ops); 1223 goto out; 1224 } 1225 1226 /* 1227 * work queue call back to started compression on a file and pages 1228 */ 1229 static noinline void async_cow_start(struct btrfs_work *work) 1230 { 1231 struct async_chunk *async_chunk; 1232 int compressed_extents; 1233 1234 async_chunk = container_of(work, struct async_chunk, work); 1235 1236 compressed_extents = compress_file_range(async_chunk); 1237 if (compressed_extents == 0) { 1238 btrfs_add_delayed_iput(async_chunk->inode); 1239 async_chunk->inode = NULL; 1240 } 1241 } 1242 1243 /* 1244 * work queue call back to submit previously compressed pages 1245 */ 1246 static noinline void async_cow_submit(struct btrfs_work *work) 1247 { 1248 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1249 work); 1250 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1251 unsigned long nr_pages; 1252 1253 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1254 PAGE_SHIFT; 1255 1256 /* atomic_sub_return implies a barrier */ 1257 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1258 5 * SZ_1M) 1259 cond_wake_up_nomb(&fs_info->async_submit_wait); 1260 1261 /* 1262 * ->inode could be NULL if async_chunk_start has failed to compress, 1263 * in which case we don't have anything to submit, yet we need to 1264 * always adjust ->async_delalloc_pages as its paired with the init 1265 * happening in cow_file_range_async 1266 */ 1267 if (async_chunk->inode) 1268 submit_compressed_extents(async_chunk); 1269 } 1270 1271 static noinline void async_cow_free(struct btrfs_work *work) 1272 { 1273 struct async_chunk *async_chunk; 1274 1275 async_chunk = container_of(work, struct async_chunk, work); 1276 if (async_chunk->inode) 1277 btrfs_add_delayed_iput(async_chunk->inode); 1278 if (async_chunk->blkcg_css) 1279 css_put(async_chunk->blkcg_css); 1280 /* 1281 * Since the pointer to 'pending' is at the beginning of the array of 1282 * async_chunk's, freeing it ensures the whole array has been freed. 1283 */ 1284 if (atomic_dec_and_test(async_chunk->pending)) 1285 kvfree(async_chunk->pending); 1286 } 1287 1288 static int cow_file_range_async(struct btrfs_inode *inode, 1289 struct writeback_control *wbc, 1290 struct page *locked_page, 1291 u64 start, u64 end, int *page_started, 1292 unsigned long *nr_written) 1293 { 1294 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1295 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1296 struct async_cow *ctx; 1297 struct async_chunk *async_chunk; 1298 unsigned long nr_pages; 1299 u64 cur_end; 1300 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1301 int i; 1302 bool should_compress; 1303 unsigned nofs_flag; 1304 const unsigned int write_flags = wbc_to_write_flags(wbc); 1305 1306 unlock_extent(&inode->io_tree, start, end); 1307 1308 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1309 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1310 num_chunks = 1; 1311 should_compress = false; 1312 } else { 1313 should_compress = true; 1314 } 1315 1316 nofs_flag = memalloc_nofs_save(); 1317 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1318 memalloc_nofs_restore(nofs_flag); 1319 1320 if (!ctx) { 1321 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1322 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1323 EXTENT_DO_ACCOUNTING; 1324 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1325 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1326 PAGE_SET_ERROR; 1327 1328 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1329 clear_bits, page_ops); 1330 return -ENOMEM; 1331 } 1332 1333 async_chunk = ctx->chunks; 1334 atomic_set(&ctx->num_chunks, num_chunks); 1335 1336 for (i = 0; i < num_chunks; i++) { 1337 if (should_compress) 1338 cur_end = min(end, start + SZ_512K - 1); 1339 else 1340 cur_end = end; 1341 1342 /* 1343 * igrab is called higher up in the call chain, take only the 1344 * lightweight reference for the callback lifetime 1345 */ 1346 ihold(&inode->vfs_inode); 1347 async_chunk[i].pending = &ctx->num_chunks; 1348 async_chunk[i].inode = &inode->vfs_inode; 1349 async_chunk[i].start = start; 1350 async_chunk[i].end = cur_end; 1351 async_chunk[i].write_flags = write_flags; 1352 INIT_LIST_HEAD(&async_chunk[i].extents); 1353 1354 /* 1355 * The locked_page comes all the way from writepage and its 1356 * the original page we were actually given. As we spread 1357 * this large delalloc region across multiple async_chunk 1358 * structs, only the first struct needs a pointer to locked_page 1359 * 1360 * This way we don't need racey decisions about who is supposed 1361 * to unlock it. 1362 */ 1363 if (locked_page) { 1364 /* 1365 * Depending on the compressibility, the pages might or 1366 * might not go through async. We want all of them to 1367 * be accounted against wbc once. Let's do it here 1368 * before the paths diverge. wbc accounting is used 1369 * only for foreign writeback detection and doesn't 1370 * need full accuracy. Just account the whole thing 1371 * against the first page. 1372 */ 1373 wbc_account_cgroup_owner(wbc, locked_page, 1374 cur_end - start); 1375 async_chunk[i].locked_page = locked_page; 1376 locked_page = NULL; 1377 } else { 1378 async_chunk[i].locked_page = NULL; 1379 } 1380 1381 if (blkcg_css != blkcg_root_css) { 1382 css_get(blkcg_css); 1383 async_chunk[i].blkcg_css = blkcg_css; 1384 } else { 1385 async_chunk[i].blkcg_css = NULL; 1386 } 1387 1388 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1389 async_cow_submit, async_cow_free); 1390 1391 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1392 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1393 1394 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1395 1396 *nr_written += nr_pages; 1397 start = cur_end + 1; 1398 } 1399 *page_started = 1; 1400 return 0; 1401 } 1402 1403 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1404 u64 bytenr, u64 num_bytes) 1405 { 1406 int ret; 1407 struct btrfs_ordered_sum *sums; 1408 LIST_HEAD(list); 1409 1410 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1411 bytenr + num_bytes - 1, &list, 0); 1412 if (ret == 0 && list_empty(&list)) 1413 return 0; 1414 1415 while (!list_empty(&list)) { 1416 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1417 list_del(&sums->list); 1418 kfree(sums); 1419 } 1420 if (ret < 0) 1421 return ret; 1422 return 1; 1423 } 1424 1425 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1426 const u64 start, const u64 end, 1427 int *page_started, unsigned long *nr_written) 1428 { 1429 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1430 const bool is_reloc_ino = (inode->root->root_key.objectid == 1431 BTRFS_DATA_RELOC_TREE_OBJECTID); 1432 const u64 range_bytes = end + 1 - start; 1433 struct extent_io_tree *io_tree = &inode->io_tree; 1434 u64 range_start = start; 1435 u64 count; 1436 1437 /* 1438 * If EXTENT_NORESERVE is set it means that when the buffered write was 1439 * made we had not enough available data space and therefore we did not 1440 * reserve data space for it, since we though we could do NOCOW for the 1441 * respective file range (either there is prealloc extent or the inode 1442 * has the NOCOW bit set). 1443 * 1444 * However when we need to fallback to COW mode (because for example the 1445 * block group for the corresponding extent was turned to RO mode by a 1446 * scrub or relocation) we need to do the following: 1447 * 1448 * 1) We increment the bytes_may_use counter of the data space info. 1449 * If COW succeeds, it allocates a new data extent and after doing 1450 * that it decrements the space info's bytes_may_use counter and 1451 * increments its bytes_reserved counter by the same amount (we do 1452 * this at btrfs_add_reserved_bytes()). So we need to increment the 1453 * bytes_may_use counter to compensate (when space is reserved at 1454 * buffered write time, the bytes_may_use counter is incremented); 1455 * 1456 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1457 * that if the COW path fails for any reason, it decrements (through 1458 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1459 * data space info, which we incremented in the step above. 1460 * 1461 * If we need to fallback to cow and the inode corresponds to a free 1462 * space cache inode or an inode of the data relocation tree, we must 1463 * also increment bytes_may_use of the data space_info for the same 1464 * reason. Space caches and relocated data extents always get a prealloc 1465 * extent for them, however scrub or balance may have set the block 1466 * group that contains that extent to RO mode and therefore force COW 1467 * when starting writeback. 1468 */ 1469 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1470 EXTENT_NORESERVE, 0); 1471 if (count > 0 || is_space_ino || is_reloc_ino) { 1472 u64 bytes = count; 1473 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1474 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1475 1476 if (is_space_ino || is_reloc_ino) 1477 bytes = range_bytes; 1478 1479 spin_lock(&sinfo->lock); 1480 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1481 spin_unlock(&sinfo->lock); 1482 1483 if (count > 0) 1484 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1485 0, 0, NULL); 1486 } 1487 1488 return cow_file_range(inode, locked_page, start, end, page_started, 1489 nr_written, 1); 1490 } 1491 1492 /* 1493 * when nowcow writeback call back. This checks for snapshots or COW copies 1494 * of the extents that exist in the file, and COWs the file as required. 1495 * 1496 * If no cow copies or snapshots exist, we write directly to the existing 1497 * blocks on disk 1498 */ 1499 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1500 struct page *locked_page, 1501 const u64 start, const u64 end, 1502 int *page_started, int force, 1503 unsigned long *nr_written) 1504 { 1505 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1506 struct btrfs_root *root = inode->root; 1507 struct btrfs_path *path; 1508 u64 cow_start = (u64)-1; 1509 u64 cur_offset = start; 1510 int ret; 1511 bool check_prev = true; 1512 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1513 u64 ino = btrfs_ino(inode); 1514 bool nocow = false; 1515 u64 disk_bytenr = 0; 1516 1517 path = btrfs_alloc_path(); 1518 if (!path) { 1519 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1520 EXTENT_LOCKED | EXTENT_DELALLOC | 1521 EXTENT_DO_ACCOUNTING | 1522 EXTENT_DEFRAG, PAGE_UNLOCK | 1523 PAGE_CLEAR_DIRTY | 1524 PAGE_SET_WRITEBACK | 1525 PAGE_END_WRITEBACK); 1526 return -ENOMEM; 1527 } 1528 1529 while (1) { 1530 struct btrfs_key found_key; 1531 struct btrfs_file_extent_item *fi; 1532 struct extent_buffer *leaf; 1533 u64 extent_end; 1534 u64 extent_offset; 1535 u64 num_bytes = 0; 1536 u64 disk_num_bytes; 1537 u64 ram_bytes; 1538 int extent_type; 1539 1540 nocow = false; 1541 1542 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1543 cur_offset, 0); 1544 if (ret < 0) 1545 goto error; 1546 1547 /* 1548 * If there is no extent for our range when doing the initial 1549 * search, then go back to the previous slot as it will be the 1550 * one containing the search offset 1551 */ 1552 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1553 leaf = path->nodes[0]; 1554 btrfs_item_key_to_cpu(leaf, &found_key, 1555 path->slots[0] - 1); 1556 if (found_key.objectid == ino && 1557 found_key.type == BTRFS_EXTENT_DATA_KEY) 1558 path->slots[0]--; 1559 } 1560 check_prev = false; 1561 next_slot: 1562 /* Go to next leaf if we have exhausted the current one */ 1563 leaf = path->nodes[0]; 1564 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1565 ret = btrfs_next_leaf(root, path); 1566 if (ret < 0) { 1567 if (cow_start != (u64)-1) 1568 cur_offset = cow_start; 1569 goto error; 1570 } 1571 if (ret > 0) 1572 break; 1573 leaf = path->nodes[0]; 1574 } 1575 1576 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1577 1578 /* Didn't find anything for our INO */ 1579 if (found_key.objectid > ino) 1580 break; 1581 /* 1582 * Keep searching until we find an EXTENT_ITEM or there are no 1583 * more extents for this inode 1584 */ 1585 if (WARN_ON_ONCE(found_key.objectid < ino) || 1586 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1587 path->slots[0]++; 1588 goto next_slot; 1589 } 1590 1591 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1592 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1593 found_key.offset > end) 1594 break; 1595 1596 /* 1597 * If the found extent starts after requested offset, then 1598 * adjust extent_end to be right before this extent begins 1599 */ 1600 if (found_key.offset > cur_offset) { 1601 extent_end = found_key.offset; 1602 extent_type = 0; 1603 goto out_check; 1604 } 1605 1606 /* 1607 * Found extent which begins before our range and potentially 1608 * intersect it 1609 */ 1610 fi = btrfs_item_ptr(leaf, path->slots[0], 1611 struct btrfs_file_extent_item); 1612 extent_type = btrfs_file_extent_type(leaf, fi); 1613 1614 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1615 if (extent_type == BTRFS_FILE_EXTENT_REG || 1616 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1617 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1618 extent_offset = btrfs_file_extent_offset(leaf, fi); 1619 extent_end = found_key.offset + 1620 btrfs_file_extent_num_bytes(leaf, fi); 1621 disk_num_bytes = 1622 btrfs_file_extent_disk_num_bytes(leaf, fi); 1623 /* 1624 * If the extent we got ends before our current offset, 1625 * skip to the next extent. 1626 */ 1627 if (extent_end <= cur_offset) { 1628 path->slots[0]++; 1629 goto next_slot; 1630 } 1631 /* Skip holes */ 1632 if (disk_bytenr == 0) 1633 goto out_check; 1634 /* Skip compressed/encrypted/encoded extents */ 1635 if (btrfs_file_extent_compression(leaf, fi) || 1636 btrfs_file_extent_encryption(leaf, fi) || 1637 btrfs_file_extent_other_encoding(leaf, fi)) 1638 goto out_check; 1639 /* 1640 * If extent is created before the last volume's snapshot 1641 * this implies the extent is shared, hence we can't do 1642 * nocow. This is the same check as in 1643 * btrfs_cross_ref_exist but without calling 1644 * btrfs_search_slot. 1645 */ 1646 if (!freespace_inode && 1647 btrfs_file_extent_generation(leaf, fi) <= 1648 btrfs_root_last_snapshot(&root->root_item)) 1649 goto out_check; 1650 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1651 goto out_check; 1652 1653 /* 1654 * The following checks can be expensive, as they need to 1655 * take other locks and do btree or rbtree searches, so 1656 * release the path to avoid blocking other tasks for too 1657 * long. 1658 */ 1659 btrfs_release_path(path); 1660 1661 /* If extent is RO, we must COW it */ 1662 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1663 goto out_check; 1664 ret = btrfs_cross_ref_exist(root, ino, 1665 found_key.offset - 1666 extent_offset, disk_bytenr, false); 1667 if (ret) { 1668 /* 1669 * ret could be -EIO if the above fails to read 1670 * metadata. 1671 */ 1672 if (ret < 0) { 1673 if (cow_start != (u64)-1) 1674 cur_offset = cow_start; 1675 goto error; 1676 } 1677 1678 WARN_ON_ONCE(freespace_inode); 1679 goto out_check; 1680 } 1681 disk_bytenr += extent_offset; 1682 disk_bytenr += cur_offset - found_key.offset; 1683 num_bytes = min(end + 1, extent_end) - cur_offset; 1684 /* 1685 * If there are pending snapshots for this root, we 1686 * fall into common COW way 1687 */ 1688 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1689 goto out_check; 1690 /* 1691 * force cow if csum exists in the range. 1692 * this ensure that csum for a given extent are 1693 * either valid or do not exist. 1694 */ 1695 ret = csum_exist_in_range(fs_info, disk_bytenr, 1696 num_bytes); 1697 if (ret) { 1698 /* 1699 * ret could be -EIO if the above fails to read 1700 * metadata. 1701 */ 1702 if (ret < 0) { 1703 if (cow_start != (u64)-1) 1704 cur_offset = cow_start; 1705 goto error; 1706 } 1707 WARN_ON_ONCE(freespace_inode); 1708 goto out_check; 1709 } 1710 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1711 goto out_check; 1712 nocow = true; 1713 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1714 extent_end = found_key.offset + ram_bytes; 1715 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1716 /* Skip extents outside of our requested range */ 1717 if (extent_end <= start) { 1718 path->slots[0]++; 1719 goto next_slot; 1720 } 1721 } else { 1722 /* If this triggers then we have a memory corruption */ 1723 BUG(); 1724 } 1725 out_check: 1726 /* 1727 * If nocow is false then record the beginning of the range 1728 * that needs to be COWed 1729 */ 1730 if (!nocow) { 1731 if (cow_start == (u64)-1) 1732 cow_start = cur_offset; 1733 cur_offset = extent_end; 1734 if (cur_offset > end) 1735 break; 1736 if (!path->nodes[0]) 1737 continue; 1738 path->slots[0]++; 1739 goto next_slot; 1740 } 1741 1742 /* 1743 * COW range from cow_start to found_key.offset - 1. As the key 1744 * will contain the beginning of the first extent that can be 1745 * NOCOW, following one which needs to be COW'ed 1746 */ 1747 if (cow_start != (u64)-1) { 1748 ret = fallback_to_cow(inode, locked_page, 1749 cow_start, found_key.offset - 1, 1750 page_started, nr_written); 1751 if (ret) 1752 goto error; 1753 cow_start = (u64)-1; 1754 } 1755 1756 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1757 u64 orig_start = found_key.offset - extent_offset; 1758 struct extent_map *em; 1759 1760 em = create_io_em(inode, cur_offset, num_bytes, 1761 orig_start, 1762 disk_bytenr, /* block_start */ 1763 num_bytes, /* block_len */ 1764 disk_num_bytes, /* orig_block_len */ 1765 ram_bytes, BTRFS_COMPRESS_NONE, 1766 BTRFS_ORDERED_PREALLOC); 1767 if (IS_ERR(em)) { 1768 ret = PTR_ERR(em); 1769 goto error; 1770 } 1771 free_extent_map(em); 1772 ret = btrfs_add_ordered_extent(inode, cur_offset, 1773 disk_bytenr, num_bytes, 1774 num_bytes, 1775 BTRFS_ORDERED_PREALLOC); 1776 if (ret) { 1777 btrfs_drop_extent_cache(inode, cur_offset, 1778 cur_offset + num_bytes - 1, 1779 0); 1780 goto error; 1781 } 1782 } else { 1783 ret = btrfs_add_ordered_extent(inode, cur_offset, 1784 disk_bytenr, num_bytes, 1785 num_bytes, 1786 BTRFS_ORDERED_NOCOW); 1787 if (ret) 1788 goto error; 1789 } 1790 1791 if (nocow) 1792 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1793 nocow = false; 1794 1795 if (root->root_key.objectid == 1796 BTRFS_DATA_RELOC_TREE_OBJECTID) 1797 /* 1798 * Error handled later, as we must prevent 1799 * extent_clear_unlock_delalloc() in error handler 1800 * from freeing metadata of created ordered extent. 1801 */ 1802 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1803 num_bytes); 1804 1805 extent_clear_unlock_delalloc(inode, cur_offset, 1806 cur_offset + num_bytes - 1, 1807 locked_page, EXTENT_LOCKED | 1808 EXTENT_DELALLOC | 1809 EXTENT_CLEAR_DATA_RESV, 1810 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1811 1812 cur_offset = extent_end; 1813 1814 /* 1815 * btrfs_reloc_clone_csums() error, now we're OK to call error 1816 * handler, as metadata for created ordered extent will only 1817 * be freed by btrfs_finish_ordered_io(). 1818 */ 1819 if (ret) 1820 goto error; 1821 if (cur_offset > end) 1822 break; 1823 } 1824 btrfs_release_path(path); 1825 1826 if (cur_offset <= end && cow_start == (u64)-1) 1827 cow_start = cur_offset; 1828 1829 if (cow_start != (u64)-1) { 1830 cur_offset = end; 1831 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1832 page_started, nr_written); 1833 if (ret) 1834 goto error; 1835 } 1836 1837 error: 1838 if (nocow) 1839 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1840 1841 if (ret && cur_offset < end) 1842 extent_clear_unlock_delalloc(inode, cur_offset, end, 1843 locked_page, EXTENT_LOCKED | 1844 EXTENT_DELALLOC | EXTENT_DEFRAG | 1845 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1846 PAGE_CLEAR_DIRTY | 1847 PAGE_SET_WRITEBACK | 1848 PAGE_END_WRITEBACK); 1849 btrfs_free_path(path); 1850 return ret; 1851 } 1852 1853 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end) 1854 { 1855 1856 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1857 !(inode->flags & BTRFS_INODE_PREALLOC)) 1858 return 0; 1859 1860 /* 1861 * @defrag_bytes is a hint value, no spinlock held here, 1862 * if is not zero, it means the file is defragging. 1863 * Force cow if given extent needs to be defragged. 1864 */ 1865 if (inode->defrag_bytes && 1866 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL)) 1867 return 1; 1868 1869 return 0; 1870 } 1871 1872 /* 1873 * Function to process delayed allocation (create CoW) for ranges which are 1874 * being touched for the first time. 1875 */ 1876 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1877 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1878 struct writeback_control *wbc) 1879 { 1880 int ret; 1881 int force_cow = need_force_cow(inode, start, end); 1882 1883 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1884 ret = run_delalloc_nocow(inode, locked_page, start, end, 1885 page_started, 1, nr_written); 1886 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1887 ret = run_delalloc_nocow(inode, locked_page, start, end, 1888 page_started, 0, nr_written); 1889 } else if (!inode_can_compress(inode) || 1890 !inode_need_compress(inode, start, end)) { 1891 ret = cow_file_range(inode, locked_page, start, end, 1892 page_started, nr_written, 1); 1893 } else { 1894 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1895 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1896 page_started, nr_written); 1897 } 1898 if (ret) 1899 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1900 end - start + 1); 1901 return ret; 1902 } 1903 1904 void btrfs_split_delalloc_extent(struct inode *inode, 1905 struct extent_state *orig, u64 split) 1906 { 1907 u64 size; 1908 1909 /* not delalloc, ignore it */ 1910 if (!(orig->state & EXTENT_DELALLOC)) 1911 return; 1912 1913 size = orig->end - orig->start + 1; 1914 if (size > BTRFS_MAX_EXTENT_SIZE) { 1915 u32 num_extents; 1916 u64 new_size; 1917 1918 /* 1919 * See the explanation in btrfs_merge_delalloc_extent, the same 1920 * applies here, just in reverse. 1921 */ 1922 new_size = orig->end - split + 1; 1923 num_extents = count_max_extents(new_size); 1924 new_size = split - orig->start; 1925 num_extents += count_max_extents(new_size); 1926 if (count_max_extents(size) >= num_extents) 1927 return; 1928 } 1929 1930 spin_lock(&BTRFS_I(inode)->lock); 1931 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1932 spin_unlock(&BTRFS_I(inode)->lock); 1933 } 1934 1935 /* 1936 * Handle merged delayed allocation extents so we can keep track of new extents 1937 * that are just merged onto old extents, such as when we are doing sequential 1938 * writes, so we can properly account for the metadata space we'll need. 1939 */ 1940 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1941 struct extent_state *other) 1942 { 1943 u64 new_size, old_size; 1944 u32 num_extents; 1945 1946 /* not delalloc, ignore it */ 1947 if (!(other->state & EXTENT_DELALLOC)) 1948 return; 1949 1950 if (new->start > other->start) 1951 new_size = new->end - other->start + 1; 1952 else 1953 new_size = other->end - new->start + 1; 1954 1955 /* we're not bigger than the max, unreserve the space and go */ 1956 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1957 spin_lock(&BTRFS_I(inode)->lock); 1958 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1959 spin_unlock(&BTRFS_I(inode)->lock); 1960 return; 1961 } 1962 1963 /* 1964 * We have to add up either side to figure out how many extents were 1965 * accounted for before we merged into one big extent. If the number of 1966 * extents we accounted for is <= the amount we need for the new range 1967 * then we can return, otherwise drop. Think of it like this 1968 * 1969 * [ 4k][MAX_SIZE] 1970 * 1971 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1972 * need 2 outstanding extents, on one side we have 1 and the other side 1973 * we have 1 so they are == and we can return. But in this case 1974 * 1975 * [MAX_SIZE+4k][MAX_SIZE+4k] 1976 * 1977 * Each range on their own accounts for 2 extents, but merged together 1978 * they are only 3 extents worth of accounting, so we need to drop in 1979 * this case. 1980 */ 1981 old_size = other->end - other->start + 1; 1982 num_extents = count_max_extents(old_size); 1983 old_size = new->end - new->start + 1; 1984 num_extents += count_max_extents(old_size); 1985 if (count_max_extents(new_size) >= num_extents) 1986 return; 1987 1988 spin_lock(&BTRFS_I(inode)->lock); 1989 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1990 spin_unlock(&BTRFS_I(inode)->lock); 1991 } 1992 1993 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1994 struct inode *inode) 1995 { 1996 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1997 1998 spin_lock(&root->delalloc_lock); 1999 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2000 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2001 &root->delalloc_inodes); 2002 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2003 &BTRFS_I(inode)->runtime_flags); 2004 root->nr_delalloc_inodes++; 2005 if (root->nr_delalloc_inodes == 1) { 2006 spin_lock(&fs_info->delalloc_root_lock); 2007 BUG_ON(!list_empty(&root->delalloc_root)); 2008 list_add_tail(&root->delalloc_root, 2009 &fs_info->delalloc_roots); 2010 spin_unlock(&fs_info->delalloc_root_lock); 2011 } 2012 } 2013 spin_unlock(&root->delalloc_lock); 2014 } 2015 2016 2017 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2018 struct btrfs_inode *inode) 2019 { 2020 struct btrfs_fs_info *fs_info = root->fs_info; 2021 2022 if (!list_empty(&inode->delalloc_inodes)) { 2023 list_del_init(&inode->delalloc_inodes); 2024 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2025 &inode->runtime_flags); 2026 root->nr_delalloc_inodes--; 2027 if (!root->nr_delalloc_inodes) { 2028 ASSERT(list_empty(&root->delalloc_inodes)); 2029 spin_lock(&fs_info->delalloc_root_lock); 2030 BUG_ON(list_empty(&root->delalloc_root)); 2031 list_del_init(&root->delalloc_root); 2032 spin_unlock(&fs_info->delalloc_root_lock); 2033 } 2034 } 2035 } 2036 2037 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2038 struct btrfs_inode *inode) 2039 { 2040 spin_lock(&root->delalloc_lock); 2041 __btrfs_del_delalloc_inode(root, inode); 2042 spin_unlock(&root->delalloc_lock); 2043 } 2044 2045 /* 2046 * Properly track delayed allocation bytes in the inode and to maintain the 2047 * list of inodes that have pending delalloc work to be done. 2048 */ 2049 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2050 unsigned *bits) 2051 { 2052 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2053 2054 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2055 WARN_ON(1); 2056 /* 2057 * set_bit and clear bit hooks normally require _irqsave/restore 2058 * but in this case, we are only testing for the DELALLOC 2059 * bit, which is only set or cleared with irqs on 2060 */ 2061 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2062 struct btrfs_root *root = BTRFS_I(inode)->root; 2063 u64 len = state->end + 1 - state->start; 2064 u32 num_extents = count_max_extents(len); 2065 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2066 2067 spin_lock(&BTRFS_I(inode)->lock); 2068 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2069 spin_unlock(&BTRFS_I(inode)->lock); 2070 2071 /* For sanity tests */ 2072 if (btrfs_is_testing(fs_info)) 2073 return; 2074 2075 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2076 fs_info->delalloc_batch); 2077 spin_lock(&BTRFS_I(inode)->lock); 2078 BTRFS_I(inode)->delalloc_bytes += len; 2079 if (*bits & EXTENT_DEFRAG) 2080 BTRFS_I(inode)->defrag_bytes += len; 2081 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2082 &BTRFS_I(inode)->runtime_flags)) 2083 btrfs_add_delalloc_inodes(root, inode); 2084 spin_unlock(&BTRFS_I(inode)->lock); 2085 } 2086 2087 if (!(state->state & EXTENT_DELALLOC_NEW) && 2088 (*bits & EXTENT_DELALLOC_NEW)) { 2089 spin_lock(&BTRFS_I(inode)->lock); 2090 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2091 state->start; 2092 spin_unlock(&BTRFS_I(inode)->lock); 2093 } 2094 } 2095 2096 /* 2097 * Once a range is no longer delalloc this function ensures that proper 2098 * accounting happens. 2099 */ 2100 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2101 struct extent_state *state, unsigned *bits) 2102 { 2103 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2104 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2105 u64 len = state->end + 1 - state->start; 2106 u32 num_extents = count_max_extents(len); 2107 2108 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2109 spin_lock(&inode->lock); 2110 inode->defrag_bytes -= len; 2111 spin_unlock(&inode->lock); 2112 } 2113 2114 /* 2115 * set_bit and clear bit hooks normally require _irqsave/restore 2116 * but in this case, we are only testing for the DELALLOC 2117 * bit, which is only set or cleared with irqs on 2118 */ 2119 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2120 struct btrfs_root *root = inode->root; 2121 bool do_list = !btrfs_is_free_space_inode(inode); 2122 2123 spin_lock(&inode->lock); 2124 btrfs_mod_outstanding_extents(inode, -num_extents); 2125 spin_unlock(&inode->lock); 2126 2127 /* 2128 * We don't reserve metadata space for space cache inodes so we 2129 * don't need to call delalloc_release_metadata if there is an 2130 * error. 2131 */ 2132 if (*bits & EXTENT_CLEAR_META_RESV && 2133 root != fs_info->tree_root) 2134 btrfs_delalloc_release_metadata(inode, len, false); 2135 2136 /* For sanity tests. */ 2137 if (btrfs_is_testing(fs_info)) 2138 return; 2139 2140 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2141 do_list && !(state->state & EXTENT_NORESERVE) && 2142 (*bits & EXTENT_CLEAR_DATA_RESV)) 2143 btrfs_free_reserved_data_space_noquota(fs_info, len); 2144 2145 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2146 fs_info->delalloc_batch); 2147 spin_lock(&inode->lock); 2148 inode->delalloc_bytes -= len; 2149 if (do_list && inode->delalloc_bytes == 0 && 2150 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2151 &inode->runtime_flags)) 2152 btrfs_del_delalloc_inode(root, inode); 2153 spin_unlock(&inode->lock); 2154 } 2155 2156 if ((state->state & EXTENT_DELALLOC_NEW) && 2157 (*bits & EXTENT_DELALLOC_NEW)) { 2158 spin_lock(&inode->lock); 2159 ASSERT(inode->new_delalloc_bytes >= len); 2160 inode->new_delalloc_bytes -= len; 2161 if (*bits & EXTENT_ADD_INODE_BYTES) 2162 inode_add_bytes(&inode->vfs_inode, len); 2163 spin_unlock(&inode->lock); 2164 } 2165 } 2166 2167 /* 2168 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2169 * in a chunk's stripe. This function ensures that bios do not span a 2170 * stripe/chunk 2171 * 2172 * @page - The page we are about to add to the bio 2173 * @size - size we want to add to the bio 2174 * @bio - bio we want to ensure is smaller than a stripe 2175 * @bio_flags - flags of the bio 2176 * 2177 * return 1 if page cannot be added to the bio 2178 * return 0 if page can be added to the bio 2179 * return error otherwise 2180 */ 2181 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2182 unsigned long bio_flags) 2183 { 2184 struct inode *inode = page->mapping->host; 2185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2186 u64 logical = bio->bi_iter.bi_sector << 9; 2187 u64 length = 0; 2188 u64 map_length; 2189 int ret; 2190 struct btrfs_io_geometry geom; 2191 2192 if (bio_flags & EXTENT_BIO_COMPRESSED) 2193 return 0; 2194 2195 length = bio->bi_iter.bi_size; 2196 map_length = length; 2197 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2198 &geom); 2199 if (ret < 0) 2200 return ret; 2201 2202 if (geom.len < length + size) 2203 return 1; 2204 return 0; 2205 } 2206 2207 /* 2208 * in order to insert checksums into the metadata in large chunks, 2209 * we wait until bio submission time. All the pages in the bio are 2210 * checksummed and sums are attached onto the ordered extent record. 2211 * 2212 * At IO completion time the cums attached on the ordered extent record 2213 * are inserted into the btree 2214 */ 2215 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2216 u64 bio_offset) 2217 { 2218 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2219 } 2220 2221 /* 2222 * extent_io.c submission hook. This does the right thing for csum calculation 2223 * on write, or reading the csums from the tree before a read. 2224 * 2225 * Rules about async/sync submit, 2226 * a) read: sync submit 2227 * 2228 * b) write without checksum: sync submit 2229 * 2230 * c) write with checksum: 2231 * c-1) if bio is issued by fsync: sync submit 2232 * (sync_writers != 0) 2233 * 2234 * c-2) if root is reloc root: sync submit 2235 * (only in case of buffered IO) 2236 * 2237 * c-3) otherwise: async submit 2238 */ 2239 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2240 int mirror_num, unsigned long bio_flags) 2241 2242 { 2243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2244 struct btrfs_root *root = BTRFS_I(inode)->root; 2245 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2246 blk_status_t ret = 0; 2247 int skip_sum; 2248 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2249 2250 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2251 !fs_info->csum_root; 2252 2253 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2254 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2255 2256 if (bio_op(bio) != REQ_OP_WRITE) { 2257 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2258 if (ret) 2259 goto out; 2260 2261 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2262 ret = btrfs_submit_compressed_read(inode, bio, 2263 mirror_num, 2264 bio_flags); 2265 goto out; 2266 } else { 2267 /* 2268 * Lookup bio sums does extra checks around whether we 2269 * need to csum or not, which is why we ignore skip_sum 2270 * here. 2271 */ 2272 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2273 if (ret) 2274 goto out; 2275 } 2276 goto mapit; 2277 } else if (async && !skip_sum) { 2278 /* csum items have already been cloned */ 2279 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2280 goto mapit; 2281 /* we're doing a write, do the async checksumming */ 2282 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2283 0, btrfs_submit_bio_start); 2284 goto out; 2285 } else if (!skip_sum) { 2286 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2287 if (ret) 2288 goto out; 2289 } 2290 2291 mapit: 2292 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2293 2294 out: 2295 if (ret) { 2296 bio->bi_status = ret; 2297 bio_endio(bio); 2298 } 2299 return ret; 2300 } 2301 2302 /* 2303 * given a list of ordered sums record them in the inode. This happens 2304 * at IO completion time based on sums calculated at bio submission time. 2305 */ 2306 static int add_pending_csums(struct btrfs_trans_handle *trans, 2307 struct list_head *list) 2308 { 2309 struct btrfs_ordered_sum *sum; 2310 int ret; 2311 2312 list_for_each_entry(sum, list, list) { 2313 trans->adding_csums = true; 2314 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2315 trans->adding_csums = false; 2316 if (ret) 2317 return ret; 2318 } 2319 return 0; 2320 } 2321 2322 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2323 const u64 start, 2324 const u64 len, 2325 struct extent_state **cached_state) 2326 { 2327 u64 search_start = start; 2328 const u64 end = start + len - 1; 2329 2330 while (search_start < end) { 2331 const u64 search_len = end - search_start + 1; 2332 struct extent_map *em; 2333 u64 em_len; 2334 int ret = 0; 2335 2336 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2337 if (IS_ERR(em)) 2338 return PTR_ERR(em); 2339 2340 if (em->block_start != EXTENT_MAP_HOLE) 2341 goto next; 2342 2343 em_len = em->len; 2344 if (em->start < search_start) 2345 em_len -= search_start - em->start; 2346 if (em_len > search_len) 2347 em_len = search_len; 2348 2349 ret = set_extent_bit(&inode->io_tree, search_start, 2350 search_start + em_len - 1, 2351 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2352 GFP_NOFS, NULL); 2353 next: 2354 search_start = extent_map_end(em); 2355 free_extent_map(em); 2356 if (ret) 2357 return ret; 2358 } 2359 return 0; 2360 } 2361 2362 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2363 unsigned int extra_bits, 2364 struct extent_state **cached_state) 2365 { 2366 WARN_ON(PAGE_ALIGNED(end)); 2367 2368 if (start >= i_size_read(&inode->vfs_inode) && 2369 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2370 /* 2371 * There can't be any extents following eof in this case so just 2372 * set the delalloc new bit for the range directly. 2373 */ 2374 extra_bits |= EXTENT_DELALLOC_NEW; 2375 } else { 2376 int ret; 2377 2378 ret = btrfs_find_new_delalloc_bytes(inode, start, 2379 end + 1 - start, 2380 cached_state); 2381 if (ret) 2382 return ret; 2383 } 2384 2385 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2386 cached_state); 2387 } 2388 2389 /* see btrfs_writepage_start_hook for details on why this is required */ 2390 struct btrfs_writepage_fixup { 2391 struct page *page; 2392 struct inode *inode; 2393 struct btrfs_work work; 2394 }; 2395 2396 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2397 { 2398 struct btrfs_writepage_fixup *fixup; 2399 struct btrfs_ordered_extent *ordered; 2400 struct extent_state *cached_state = NULL; 2401 struct extent_changeset *data_reserved = NULL; 2402 struct page *page; 2403 struct btrfs_inode *inode; 2404 u64 page_start; 2405 u64 page_end; 2406 int ret = 0; 2407 bool free_delalloc_space = true; 2408 2409 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2410 page = fixup->page; 2411 inode = BTRFS_I(fixup->inode); 2412 page_start = page_offset(page); 2413 page_end = page_offset(page) + PAGE_SIZE - 1; 2414 2415 /* 2416 * This is similar to page_mkwrite, we need to reserve the space before 2417 * we take the page lock. 2418 */ 2419 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2420 PAGE_SIZE); 2421 again: 2422 lock_page(page); 2423 2424 /* 2425 * Before we queued this fixup, we took a reference on the page. 2426 * page->mapping may go NULL, but it shouldn't be moved to a different 2427 * address space. 2428 */ 2429 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2430 /* 2431 * Unfortunately this is a little tricky, either 2432 * 2433 * 1) We got here and our page had already been dealt with and 2434 * we reserved our space, thus ret == 0, so we need to just 2435 * drop our space reservation and bail. This can happen the 2436 * first time we come into the fixup worker, or could happen 2437 * while waiting for the ordered extent. 2438 * 2) Our page was already dealt with, but we happened to get an 2439 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2440 * this case we obviously don't have anything to release, but 2441 * because the page was already dealt with we don't want to 2442 * mark the page with an error, so make sure we're resetting 2443 * ret to 0. This is why we have this check _before_ the ret 2444 * check, because we do not want to have a surprise ENOSPC 2445 * when the page was already properly dealt with. 2446 */ 2447 if (!ret) { 2448 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2449 btrfs_delalloc_release_space(inode, data_reserved, 2450 page_start, PAGE_SIZE, 2451 true); 2452 } 2453 ret = 0; 2454 goto out_page; 2455 } 2456 2457 /* 2458 * We can't mess with the page state unless it is locked, so now that 2459 * it is locked bail if we failed to make our space reservation. 2460 */ 2461 if (ret) 2462 goto out_page; 2463 2464 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2465 2466 /* already ordered? We're done */ 2467 if (PagePrivate2(page)) 2468 goto out_reserved; 2469 2470 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2471 if (ordered) { 2472 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2473 &cached_state); 2474 unlock_page(page); 2475 btrfs_start_ordered_extent(ordered, 1); 2476 btrfs_put_ordered_extent(ordered); 2477 goto again; 2478 } 2479 2480 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2481 &cached_state); 2482 if (ret) 2483 goto out_reserved; 2484 2485 /* 2486 * Everything went as planned, we're now the owner of a dirty page with 2487 * delayed allocation bits set and space reserved for our COW 2488 * destination. 2489 * 2490 * The page was dirty when we started, nothing should have cleaned it. 2491 */ 2492 BUG_ON(!PageDirty(page)); 2493 free_delalloc_space = false; 2494 out_reserved: 2495 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2496 if (free_delalloc_space) 2497 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2498 PAGE_SIZE, true); 2499 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2500 &cached_state); 2501 out_page: 2502 if (ret) { 2503 /* 2504 * We hit ENOSPC or other errors. Update the mapping and page 2505 * to reflect the errors and clean the page. 2506 */ 2507 mapping_set_error(page->mapping, ret); 2508 end_extent_writepage(page, ret, page_start, page_end); 2509 clear_page_dirty_for_io(page); 2510 SetPageError(page); 2511 } 2512 ClearPageChecked(page); 2513 unlock_page(page); 2514 put_page(page); 2515 kfree(fixup); 2516 extent_changeset_free(data_reserved); 2517 /* 2518 * As a precaution, do a delayed iput in case it would be the last iput 2519 * that could need flushing space. Recursing back to fixup worker would 2520 * deadlock. 2521 */ 2522 btrfs_add_delayed_iput(&inode->vfs_inode); 2523 } 2524 2525 /* 2526 * There are a few paths in the higher layers of the kernel that directly 2527 * set the page dirty bit without asking the filesystem if it is a 2528 * good idea. This causes problems because we want to make sure COW 2529 * properly happens and the data=ordered rules are followed. 2530 * 2531 * In our case any range that doesn't have the ORDERED bit set 2532 * hasn't been properly setup for IO. We kick off an async process 2533 * to fix it up. The async helper will wait for ordered extents, set 2534 * the delalloc bit and make it safe to write the page. 2535 */ 2536 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2537 { 2538 struct inode *inode = page->mapping->host; 2539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2540 struct btrfs_writepage_fixup *fixup; 2541 2542 /* this page is properly in the ordered list */ 2543 if (TestClearPagePrivate2(page)) 2544 return 0; 2545 2546 /* 2547 * PageChecked is set below when we create a fixup worker for this page, 2548 * don't try to create another one if we're already PageChecked() 2549 * 2550 * The extent_io writepage code will redirty the page if we send back 2551 * EAGAIN. 2552 */ 2553 if (PageChecked(page)) 2554 return -EAGAIN; 2555 2556 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2557 if (!fixup) 2558 return -EAGAIN; 2559 2560 /* 2561 * We are already holding a reference to this inode from 2562 * write_cache_pages. We need to hold it because the space reservation 2563 * takes place outside of the page lock, and we can't trust 2564 * page->mapping outside of the page lock. 2565 */ 2566 ihold(inode); 2567 SetPageChecked(page); 2568 get_page(page); 2569 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2570 fixup->page = page; 2571 fixup->inode = inode; 2572 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2573 2574 return -EAGAIN; 2575 } 2576 2577 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2578 struct btrfs_inode *inode, u64 file_pos, 2579 struct btrfs_file_extent_item *stack_fi, 2580 const bool update_inode_bytes, 2581 u64 qgroup_reserved) 2582 { 2583 struct btrfs_root *root = inode->root; 2584 const u64 sectorsize = root->fs_info->sectorsize; 2585 struct btrfs_path *path; 2586 struct extent_buffer *leaf; 2587 struct btrfs_key ins; 2588 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2589 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2590 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2591 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2592 struct btrfs_drop_extents_args drop_args = { 0 }; 2593 int ret; 2594 2595 path = btrfs_alloc_path(); 2596 if (!path) 2597 return -ENOMEM; 2598 2599 /* 2600 * we may be replacing one extent in the tree with another. 2601 * The new extent is pinned in the extent map, and we don't want 2602 * to drop it from the cache until it is completely in the btree. 2603 * 2604 * So, tell btrfs_drop_extents to leave this extent in the cache. 2605 * the caller is expected to unpin it and allow it to be merged 2606 * with the others. 2607 */ 2608 drop_args.path = path; 2609 drop_args.start = file_pos; 2610 drop_args.end = file_pos + num_bytes; 2611 drop_args.replace_extent = true; 2612 drop_args.extent_item_size = sizeof(*stack_fi); 2613 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2614 if (ret) 2615 goto out; 2616 2617 if (!drop_args.extent_inserted) { 2618 ins.objectid = btrfs_ino(inode); 2619 ins.offset = file_pos; 2620 ins.type = BTRFS_EXTENT_DATA_KEY; 2621 2622 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2623 sizeof(*stack_fi)); 2624 if (ret) 2625 goto out; 2626 } 2627 leaf = path->nodes[0]; 2628 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2629 write_extent_buffer(leaf, stack_fi, 2630 btrfs_item_ptr_offset(leaf, path->slots[0]), 2631 sizeof(struct btrfs_file_extent_item)); 2632 2633 btrfs_mark_buffer_dirty(leaf); 2634 btrfs_release_path(path); 2635 2636 /* 2637 * If we dropped an inline extent here, we know the range where it is 2638 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2639 * number of bytes only for that range contaning the inline extent. 2640 * The remaining of the range will be processed when clearning the 2641 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2642 */ 2643 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2644 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2645 2646 inline_size = drop_args.bytes_found - inline_size; 2647 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2648 drop_args.bytes_found -= inline_size; 2649 num_bytes -= sectorsize; 2650 } 2651 2652 if (update_inode_bytes) 2653 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2654 2655 ins.objectid = disk_bytenr; 2656 ins.offset = disk_num_bytes; 2657 ins.type = BTRFS_EXTENT_ITEM_KEY; 2658 2659 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2660 if (ret) 2661 goto out; 2662 2663 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2664 file_pos, qgroup_reserved, &ins); 2665 out: 2666 btrfs_free_path(path); 2667 2668 return ret; 2669 } 2670 2671 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2672 u64 start, u64 len) 2673 { 2674 struct btrfs_block_group *cache; 2675 2676 cache = btrfs_lookup_block_group(fs_info, start); 2677 ASSERT(cache); 2678 2679 spin_lock(&cache->lock); 2680 cache->delalloc_bytes -= len; 2681 spin_unlock(&cache->lock); 2682 2683 btrfs_put_block_group(cache); 2684 } 2685 2686 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2687 struct btrfs_ordered_extent *oe) 2688 { 2689 struct btrfs_file_extent_item stack_fi; 2690 u64 logical_len; 2691 bool update_inode_bytes; 2692 2693 memset(&stack_fi, 0, sizeof(stack_fi)); 2694 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2695 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2696 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2697 oe->disk_num_bytes); 2698 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2699 logical_len = oe->truncated_len; 2700 else 2701 logical_len = oe->num_bytes; 2702 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2703 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2704 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2705 /* Encryption and other encoding is reserved and all 0 */ 2706 2707 /* 2708 * For delalloc, when completing an ordered extent we update the inode's 2709 * bytes when clearing the range in the inode's io tree, so pass false 2710 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2711 * except if the ordered extent was truncated. 2712 */ 2713 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2714 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2715 2716 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2717 oe->file_offset, &stack_fi, 2718 update_inode_bytes, oe->qgroup_rsv); 2719 } 2720 2721 /* 2722 * As ordered data IO finishes, this gets called so we can finish 2723 * an ordered extent if the range of bytes in the file it covers are 2724 * fully written. 2725 */ 2726 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2727 { 2728 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2729 struct btrfs_root *root = inode->root; 2730 struct btrfs_fs_info *fs_info = root->fs_info; 2731 struct btrfs_trans_handle *trans = NULL; 2732 struct extent_io_tree *io_tree = &inode->io_tree; 2733 struct extent_state *cached_state = NULL; 2734 u64 start, end; 2735 int compress_type = 0; 2736 int ret = 0; 2737 u64 logical_len = ordered_extent->num_bytes; 2738 bool freespace_inode; 2739 bool truncated = false; 2740 bool clear_reserved_extent = true; 2741 unsigned int clear_bits = EXTENT_DEFRAG; 2742 2743 start = ordered_extent->file_offset; 2744 end = start + ordered_extent->num_bytes - 1; 2745 2746 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2747 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2748 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2749 clear_bits |= EXTENT_DELALLOC_NEW; 2750 2751 freespace_inode = btrfs_is_free_space_inode(inode); 2752 2753 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2754 ret = -EIO; 2755 goto out; 2756 } 2757 2758 btrfs_free_io_failure_record(inode, start, end); 2759 2760 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2761 truncated = true; 2762 logical_len = ordered_extent->truncated_len; 2763 /* Truncated the entire extent, don't bother adding */ 2764 if (!logical_len) 2765 goto out; 2766 } 2767 2768 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2769 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2770 2771 btrfs_inode_safe_disk_i_size_write(inode, 0); 2772 if (freespace_inode) 2773 trans = btrfs_join_transaction_spacecache(root); 2774 else 2775 trans = btrfs_join_transaction(root); 2776 if (IS_ERR(trans)) { 2777 ret = PTR_ERR(trans); 2778 trans = NULL; 2779 goto out; 2780 } 2781 trans->block_rsv = &inode->block_rsv; 2782 ret = btrfs_update_inode_fallback(trans, root, inode); 2783 if (ret) /* -ENOMEM or corruption */ 2784 btrfs_abort_transaction(trans, ret); 2785 goto out; 2786 } 2787 2788 clear_bits |= EXTENT_LOCKED; 2789 lock_extent_bits(io_tree, start, end, &cached_state); 2790 2791 if (freespace_inode) 2792 trans = btrfs_join_transaction_spacecache(root); 2793 else 2794 trans = btrfs_join_transaction(root); 2795 if (IS_ERR(trans)) { 2796 ret = PTR_ERR(trans); 2797 trans = NULL; 2798 goto out; 2799 } 2800 2801 trans->block_rsv = &inode->block_rsv; 2802 2803 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2804 compress_type = ordered_extent->compress_type; 2805 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2806 BUG_ON(compress_type); 2807 ret = btrfs_mark_extent_written(trans, inode, 2808 ordered_extent->file_offset, 2809 ordered_extent->file_offset + 2810 logical_len); 2811 } else { 2812 BUG_ON(root == fs_info->tree_root); 2813 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2814 if (!ret) { 2815 clear_reserved_extent = false; 2816 btrfs_release_delalloc_bytes(fs_info, 2817 ordered_extent->disk_bytenr, 2818 ordered_extent->disk_num_bytes); 2819 } 2820 } 2821 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 2822 ordered_extent->num_bytes, trans->transid); 2823 if (ret < 0) { 2824 btrfs_abort_transaction(trans, ret); 2825 goto out; 2826 } 2827 2828 ret = add_pending_csums(trans, &ordered_extent->list); 2829 if (ret) { 2830 btrfs_abort_transaction(trans, ret); 2831 goto out; 2832 } 2833 2834 /* 2835 * If this is a new delalloc range, clear its new delalloc flag to 2836 * update the inode's number of bytes. This needs to be done first 2837 * before updating the inode item. 2838 */ 2839 if ((clear_bits & EXTENT_DELALLOC_NEW) && 2840 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 2841 clear_extent_bit(&inode->io_tree, start, end, 2842 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 2843 0, 0, &cached_state); 2844 2845 btrfs_inode_safe_disk_i_size_write(inode, 0); 2846 ret = btrfs_update_inode_fallback(trans, root, inode); 2847 if (ret) { /* -ENOMEM or corruption */ 2848 btrfs_abort_transaction(trans, ret); 2849 goto out; 2850 } 2851 ret = 0; 2852 out: 2853 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 2854 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2855 &cached_state); 2856 2857 if (trans) 2858 btrfs_end_transaction(trans); 2859 2860 if (ret || truncated) { 2861 u64 unwritten_start = start; 2862 2863 if (truncated) 2864 unwritten_start += logical_len; 2865 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2866 2867 /* Drop the cache for the part of the extent we didn't write. */ 2868 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 2869 2870 /* 2871 * If the ordered extent had an IOERR or something else went 2872 * wrong we need to return the space for this ordered extent 2873 * back to the allocator. We only free the extent in the 2874 * truncated case if we didn't write out the extent at all. 2875 * 2876 * If we made it past insert_reserved_file_extent before we 2877 * errored out then we don't need to do this as the accounting 2878 * has already been done. 2879 */ 2880 if ((ret || !logical_len) && 2881 clear_reserved_extent && 2882 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2883 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2884 /* 2885 * Discard the range before returning it back to the 2886 * free space pool 2887 */ 2888 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2889 btrfs_discard_extent(fs_info, 2890 ordered_extent->disk_bytenr, 2891 ordered_extent->disk_num_bytes, 2892 NULL); 2893 btrfs_free_reserved_extent(fs_info, 2894 ordered_extent->disk_bytenr, 2895 ordered_extent->disk_num_bytes, 1); 2896 } 2897 } 2898 2899 /* 2900 * This needs to be done to make sure anybody waiting knows we are done 2901 * updating everything for this ordered extent. 2902 */ 2903 btrfs_remove_ordered_extent(inode, ordered_extent); 2904 2905 /* once for us */ 2906 btrfs_put_ordered_extent(ordered_extent); 2907 /* once for the tree */ 2908 btrfs_put_ordered_extent(ordered_extent); 2909 2910 return ret; 2911 } 2912 2913 static void finish_ordered_fn(struct btrfs_work *work) 2914 { 2915 struct btrfs_ordered_extent *ordered_extent; 2916 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2917 btrfs_finish_ordered_io(ordered_extent); 2918 } 2919 2920 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2921 u64 end, int uptodate) 2922 { 2923 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2924 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2925 struct btrfs_ordered_extent *ordered_extent = NULL; 2926 struct btrfs_workqueue *wq; 2927 2928 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2929 2930 ClearPagePrivate2(page); 2931 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2932 end - start + 1, uptodate)) 2933 return; 2934 2935 if (btrfs_is_free_space_inode(inode)) 2936 wq = fs_info->endio_freespace_worker; 2937 else 2938 wq = fs_info->endio_write_workers; 2939 2940 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2941 btrfs_queue_work(wq, &ordered_extent->work); 2942 } 2943 2944 /* 2945 * check_data_csum - verify checksum of one sector of uncompressed data 2946 * @inode: the inode 2947 * @io_bio: btrfs_io_bio which contains the csum 2948 * @icsum: checksum index in the io_bio->csum array, size of csum_size 2949 * @page: page where is the data to be verified 2950 * @pgoff: offset inside the page 2951 * 2952 * The length of such check is always one sector size. 2953 */ 2954 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 2955 int icsum, struct page *page, int pgoff) 2956 { 2957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2958 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2959 char *kaddr; 2960 u32 len = fs_info->sectorsize; 2961 const u32 csum_size = fs_info->csum_size; 2962 u8 *csum_expected; 2963 u8 csum[BTRFS_CSUM_SIZE]; 2964 2965 ASSERT(pgoff + len <= PAGE_SIZE); 2966 2967 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2968 2969 kaddr = kmap_atomic(page); 2970 shash->tfm = fs_info->csum_shash; 2971 2972 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 2973 2974 if (memcmp(csum, csum_expected, csum_size)) 2975 goto zeroit; 2976 2977 kunmap_atomic(kaddr); 2978 return 0; 2979 zeroit: 2980 btrfs_print_data_csum_error(BTRFS_I(inode), page_offset(page) + pgoff, 2981 csum, csum_expected, io_bio->mirror_num); 2982 if (io_bio->device) 2983 btrfs_dev_stat_inc_and_print(io_bio->device, 2984 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2985 memset(kaddr + pgoff, 1, len); 2986 flush_dcache_page(page); 2987 kunmap_atomic(kaddr); 2988 return -EIO; 2989 } 2990 2991 /* 2992 * when reads are done, we need to check csums to verify the data is correct 2993 * if there's a match, we allow the bio to finish. If not, the code in 2994 * extent_io.c will try to find good copies for us. 2995 */ 2996 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset, 2997 struct page *page, u64 start, u64 end, int mirror) 2998 { 2999 size_t offset = start - page_offset(page); 3000 struct inode *inode = page->mapping->host; 3001 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3002 struct btrfs_root *root = BTRFS_I(inode)->root; 3003 3004 if (PageChecked(page)) { 3005 ClearPageChecked(page); 3006 return 0; 3007 } 3008 3009 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3010 return 0; 3011 3012 if (!root->fs_info->csum_root) 3013 return 0; 3014 3015 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3016 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3017 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3018 return 0; 3019 } 3020 3021 phy_offset >>= root->fs_info->sectorsize_bits; 3022 return check_data_csum(inode, io_bio, phy_offset, page, offset); 3023 } 3024 3025 /* 3026 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3027 * 3028 * @inode: The inode we want to perform iput on 3029 * 3030 * This function uses the generic vfs_inode::i_count to track whether we should 3031 * just decrement it (in case it's > 1) or if this is the last iput then link 3032 * the inode to the delayed iput machinery. Delayed iputs are processed at 3033 * transaction commit time/superblock commit/cleaner kthread. 3034 */ 3035 void btrfs_add_delayed_iput(struct inode *inode) 3036 { 3037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3038 struct btrfs_inode *binode = BTRFS_I(inode); 3039 3040 if (atomic_add_unless(&inode->i_count, -1, 1)) 3041 return; 3042 3043 atomic_inc(&fs_info->nr_delayed_iputs); 3044 spin_lock(&fs_info->delayed_iput_lock); 3045 ASSERT(list_empty(&binode->delayed_iput)); 3046 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3047 spin_unlock(&fs_info->delayed_iput_lock); 3048 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3049 wake_up_process(fs_info->cleaner_kthread); 3050 } 3051 3052 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3053 struct btrfs_inode *inode) 3054 { 3055 list_del_init(&inode->delayed_iput); 3056 spin_unlock(&fs_info->delayed_iput_lock); 3057 iput(&inode->vfs_inode); 3058 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3059 wake_up(&fs_info->delayed_iputs_wait); 3060 spin_lock(&fs_info->delayed_iput_lock); 3061 } 3062 3063 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3064 struct btrfs_inode *inode) 3065 { 3066 if (!list_empty(&inode->delayed_iput)) { 3067 spin_lock(&fs_info->delayed_iput_lock); 3068 if (!list_empty(&inode->delayed_iput)) 3069 run_delayed_iput_locked(fs_info, inode); 3070 spin_unlock(&fs_info->delayed_iput_lock); 3071 } 3072 } 3073 3074 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3075 { 3076 3077 spin_lock(&fs_info->delayed_iput_lock); 3078 while (!list_empty(&fs_info->delayed_iputs)) { 3079 struct btrfs_inode *inode; 3080 3081 inode = list_first_entry(&fs_info->delayed_iputs, 3082 struct btrfs_inode, delayed_iput); 3083 run_delayed_iput_locked(fs_info, inode); 3084 } 3085 spin_unlock(&fs_info->delayed_iput_lock); 3086 } 3087 3088 /** 3089 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 3090 * @fs_info - the fs_info for this fs 3091 * @return - EINTR if we were killed, 0 if nothing's pending 3092 * 3093 * This will wait on any delayed iputs that are currently running with KILLABLE 3094 * set. Once they are all done running we will return, unless we are killed in 3095 * which case we return EINTR. This helps in user operations like fallocate etc 3096 * that might get blocked on the iputs. 3097 */ 3098 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3099 { 3100 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3101 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3102 if (ret) 3103 return -EINTR; 3104 return 0; 3105 } 3106 3107 /* 3108 * This creates an orphan entry for the given inode in case something goes wrong 3109 * in the middle of an unlink. 3110 */ 3111 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3112 struct btrfs_inode *inode) 3113 { 3114 int ret; 3115 3116 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3117 if (ret && ret != -EEXIST) { 3118 btrfs_abort_transaction(trans, ret); 3119 return ret; 3120 } 3121 3122 return 0; 3123 } 3124 3125 /* 3126 * We have done the delete so we can go ahead and remove the orphan item for 3127 * this particular inode. 3128 */ 3129 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3130 struct btrfs_inode *inode) 3131 { 3132 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3133 } 3134 3135 /* 3136 * this cleans up any orphans that may be left on the list from the last use 3137 * of this root. 3138 */ 3139 int btrfs_orphan_cleanup(struct btrfs_root *root) 3140 { 3141 struct btrfs_fs_info *fs_info = root->fs_info; 3142 struct btrfs_path *path; 3143 struct extent_buffer *leaf; 3144 struct btrfs_key key, found_key; 3145 struct btrfs_trans_handle *trans; 3146 struct inode *inode; 3147 u64 last_objectid = 0; 3148 int ret = 0, nr_unlink = 0; 3149 3150 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3151 return 0; 3152 3153 path = btrfs_alloc_path(); 3154 if (!path) { 3155 ret = -ENOMEM; 3156 goto out; 3157 } 3158 path->reada = READA_BACK; 3159 3160 key.objectid = BTRFS_ORPHAN_OBJECTID; 3161 key.type = BTRFS_ORPHAN_ITEM_KEY; 3162 key.offset = (u64)-1; 3163 3164 while (1) { 3165 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3166 if (ret < 0) 3167 goto out; 3168 3169 /* 3170 * if ret == 0 means we found what we were searching for, which 3171 * is weird, but possible, so only screw with path if we didn't 3172 * find the key and see if we have stuff that matches 3173 */ 3174 if (ret > 0) { 3175 ret = 0; 3176 if (path->slots[0] == 0) 3177 break; 3178 path->slots[0]--; 3179 } 3180 3181 /* pull out the item */ 3182 leaf = path->nodes[0]; 3183 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3184 3185 /* make sure the item matches what we want */ 3186 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3187 break; 3188 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3189 break; 3190 3191 /* release the path since we're done with it */ 3192 btrfs_release_path(path); 3193 3194 /* 3195 * this is where we are basically btrfs_lookup, without the 3196 * crossing root thing. we store the inode number in the 3197 * offset of the orphan item. 3198 */ 3199 3200 if (found_key.offset == last_objectid) { 3201 btrfs_err(fs_info, 3202 "Error removing orphan entry, stopping orphan cleanup"); 3203 ret = -EINVAL; 3204 goto out; 3205 } 3206 3207 last_objectid = found_key.offset; 3208 3209 found_key.objectid = found_key.offset; 3210 found_key.type = BTRFS_INODE_ITEM_KEY; 3211 found_key.offset = 0; 3212 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3213 ret = PTR_ERR_OR_ZERO(inode); 3214 if (ret && ret != -ENOENT) 3215 goto out; 3216 3217 if (ret == -ENOENT && root == fs_info->tree_root) { 3218 struct btrfs_root *dead_root; 3219 int is_dead_root = 0; 3220 3221 /* 3222 * this is an orphan in the tree root. Currently these 3223 * could come from 2 sources: 3224 * a) a snapshot deletion in progress 3225 * b) a free space cache inode 3226 * We need to distinguish those two, as the snapshot 3227 * orphan must not get deleted. 3228 * find_dead_roots already ran before us, so if this 3229 * is a snapshot deletion, we should find the root 3230 * in the fs_roots radix tree. 3231 */ 3232 3233 spin_lock(&fs_info->fs_roots_radix_lock); 3234 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3235 (unsigned long)found_key.objectid); 3236 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3237 is_dead_root = 1; 3238 spin_unlock(&fs_info->fs_roots_radix_lock); 3239 3240 if (is_dead_root) { 3241 /* prevent this orphan from being found again */ 3242 key.offset = found_key.objectid - 1; 3243 continue; 3244 } 3245 3246 } 3247 3248 /* 3249 * If we have an inode with links, there are a couple of 3250 * possibilities. Old kernels (before v3.12) used to create an 3251 * orphan item for truncate indicating that there were possibly 3252 * extent items past i_size that needed to be deleted. In v3.12, 3253 * truncate was changed to update i_size in sync with the extent 3254 * items, but the (useless) orphan item was still created. Since 3255 * v4.18, we don't create the orphan item for truncate at all. 3256 * 3257 * So, this item could mean that we need to do a truncate, but 3258 * only if this filesystem was last used on a pre-v3.12 kernel 3259 * and was not cleanly unmounted. The odds of that are quite 3260 * slim, and it's a pain to do the truncate now, so just delete 3261 * the orphan item. 3262 * 3263 * It's also possible that this orphan item was supposed to be 3264 * deleted but wasn't. The inode number may have been reused, 3265 * but either way, we can delete the orphan item. 3266 */ 3267 if (ret == -ENOENT || inode->i_nlink) { 3268 if (!ret) 3269 iput(inode); 3270 trans = btrfs_start_transaction(root, 1); 3271 if (IS_ERR(trans)) { 3272 ret = PTR_ERR(trans); 3273 goto out; 3274 } 3275 btrfs_debug(fs_info, "auto deleting %Lu", 3276 found_key.objectid); 3277 ret = btrfs_del_orphan_item(trans, root, 3278 found_key.objectid); 3279 btrfs_end_transaction(trans); 3280 if (ret) 3281 goto out; 3282 continue; 3283 } 3284 3285 nr_unlink++; 3286 3287 /* this will do delete_inode and everything for us */ 3288 iput(inode); 3289 } 3290 /* release the path since we're done with it */ 3291 btrfs_release_path(path); 3292 3293 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3294 3295 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3296 trans = btrfs_join_transaction(root); 3297 if (!IS_ERR(trans)) 3298 btrfs_end_transaction(trans); 3299 } 3300 3301 if (nr_unlink) 3302 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3303 3304 out: 3305 if (ret) 3306 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3307 btrfs_free_path(path); 3308 return ret; 3309 } 3310 3311 /* 3312 * very simple check to peek ahead in the leaf looking for xattrs. If we 3313 * don't find any xattrs, we know there can't be any acls. 3314 * 3315 * slot is the slot the inode is in, objectid is the objectid of the inode 3316 */ 3317 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3318 int slot, u64 objectid, 3319 int *first_xattr_slot) 3320 { 3321 u32 nritems = btrfs_header_nritems(leaf); 3322 struct btrfs_key found_key; 3323 static u64 xattr_access = 0; 3324 static u64 xattr_default = 0; 3325 int scanned = 0; 3326 3327 if (!xattr_access) { 3328 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3329 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3330 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3331 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3332 } 3333 3334 slot++; 3335 *first_xattr_slot = -1; 3336 while (slot < nritems) { 3337 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3338 3339 /* we found a different objectid, there must not be acls */ 3340 if (found_key.objectid != objectid) 3341 return 0; 3342 3343 /* we found an xattr, assume we've got an acl */ 3344 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3345 if (*first_xattr_slot == -1) 3346 *first_xattr_slot = slot; 3347 if (found_key.offset == xattr_access || 3348 found_key.offset == xattr_default) 3349 return 1; 3350 } 3351 3352 /* 3353 * we found a key greater than an xattr key, there can't 3354 * be any acls later on 3355 */ 3356 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3357 return 0; 3358 3359 slot++; 3360 scanned++; 3361 3362 /* 3363 * it goes inode, inode backrefs, xattrs, extents, 3364 * so if there are a ton of hard links to an inode there can 3365 * be a lot of backrefs. Don't waste time searching too hard, 3366 * this is just an optimization 3367 */ 3368 if (scanned >= 8) 3369 break; 3370 } 3371 /* we hit the end of the leaf before we found an xattr or 3372 * something larger than an xattr. We have to assume the inode 3373 * has acls 3374 */ 3375 if (*first_xattr_slot == -1) 3376 *first_xattr_slot = slot; 3377 return 1; 3378 } 3379 3380 /* 3381 * read an inode from the btree into the in-memory inode 3382 */ 3383 static int btrfs_read_locked_inode(struct inode *inode, 3384 struct btrfs_path *in_path) 3385 { 3386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3387 struct btrfs_path *path = in_path; 3388 struct extent_buffer *leaf; 3389 struct btrfs_inode_item *inode_item; 3390 struct btrfs_root *root = BTRFS_I(inode)->root; 3391 struct btrfs_key location; 3392 unsigned long ptr; 3393 int maybe_acls; 3394 u32 rdev; 3395 int ret; 3396 bool filled = false; 3397 int first_xattr_slot; 3398 3399 ret = btrfs_fill_inode(inode, &rdev); 3400 if (!ret) 3401 filled = true; 3402 3403 if (!path) { 3404 path = btrfs_alloc_path(); 3405 if (!path) 3406 return -ENOMEM; 3407 } 3408 3409 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3410 3411 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3412 if (ret) { 3413 if (path != in_path) 3414 btrfs_free_path(path); 3415 return ret; 3416 } 3417 3418 leaf = path->nodes[0]; 3419 3420 if (filled) 3421 goto cache_index; 3422 3423 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3424 struct btrfs_inode_item); 3425 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3426 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3427 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3428 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3429 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3430 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3431 round_up(i_size_read(inode), fs_info->sectorsize)); 3432 3433 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3434 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3435 3436 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3437 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3438 3439 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3440 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3441 3442 BTRFS_I(inode)->i_otime.tv_sec = 3443 btrfs_timespec_sec(leaf, &inode_item->otime); 3444 BTRFS_I(inode)->i_otime.tv_nsec = 3445 btrfs_timespec_nsec(leaf, &inode_item->otime); 3446 3447 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3448 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3449 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3450 3451 inode_set_iversion_queried(inode, 3452 btrfs_inode_sequence(leaf, inode_item)); 3453 inode->i_generation = BTRFS_I(inode)->generation; 3454 inode->i_rdev = 0; 3455 rdev = btrfs_inode_rdev(leaf, inode_item); 3456 3457 BTRFS_I(inode)->index_cnt = (u64)-1; 3458 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3459 3460 cache_index: 3461 /* 3462 * If we were modified in the current generation and evicted from memory 3463 * and then re-read we need to do a full sync since we don't have any 3464 * idea about which extents were modified before we were evicted from 3465 * cache. 3466 * 3467 * This is required for both inode re-read from disk and delayed inode 3468 * in delayed_nodes_tree. 3469 */ 3470 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3471 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3472 &BTRFS_I(inode)->runtime_flags); 3473 3474 /* 3475 * We don't persist the id of the transaction where an unlink operation 3476 * against the inode was last made. So here we assume the inode might 3477 * have been evicted, and therefore the exact value of last_unlink_trans 3478 * lost, and set it to last_trans to avoid metadata inconsistencies 3479 * between the inode and its parent if the inode is fsync'ed and the log 3480 * replayed. For example, in the scenario: 3481 * 3482 * touch mydir/foo 3483 * ln mydir/foo mydir/bar 3484 * sync 3485 * unlink mydir/bar 3486 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3487 * xfs_io -c fsync mydir/foo 3488 * <power failure> 3489 * mount fs, triggers fsync log replay 3490 * 3491 * We must make sure that when we fsync our inode foo we also log its 3492 * parent inode, otherwise after log replay the parent still has the 3493 * dentry with the "bar" name but our inode foo has a link count of 1 3494 * and doesn't have an inode ref with the name "bar" anymore. 3495 * 3496 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3497 * but it guarantees correctness at the expense of occasional full 3498 * transaction commits on fsync if our inode is a directory, or if our 3499 * inode is not a directory, logging its parent unnecessarily. 3500 */ 3501 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3502 3503 /* 3504 * Same logic as for last_unlink_trans. We don't persist the generation 3505 * of the last transaction where this inode was used for a reflink 3506 * operation, so after eviction and reloading the inode we must be 3507 * pessimistic and assume the last transaction that modified the inode. 3508 */ 3509 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3510 3511 path->slots[0]++; 3512 if (inode->i_nlink != 1 || 3513 path->slots[0] >= btrfs_header_nritems(leaf)) 3514 goto cache_acl; 3515 3516 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3517 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3518 goto cache_acl; 3519 3520 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3521 if (location.type == BTRFS_INODE_REF_KEY) { 3522 struct btrfs_inode_ref *ref; 3523 3524 ref = (struct btrfs_inode_ref *)ptr; 3525 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3526 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3527 struct btrfs_inode_extref *extref; 3528 3529 extref = (struct btrfs_inode_extref *)ptr; 3530 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3531 extref); 3532 } 3533 cache_acl: 3534 /* 3535 * try to precache a NULL acl entry for files that don't have 3536 * any xattrs or acls 3537 */ 3538 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3539 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3540 if (first_xattr_slot != -1) { 3541 path->slots[0] = first_xattr_slot; 3542 ret = btrfs_load_inode_props(inode, path); 3543 if (ret) 3544 btrfs_err(fs_info, 3545 "error loading props for ino %llu (root %llu): %d", 3546 btrfs_ino(BTRFS_I(inode)), 3547 root->root_key.objectid, ret); 3548 } 3549 if (path != in_path) 3550 btrfs_free_path(path); 3551 3552 if (!maybe_acls) 3553 cache_no_acl(inode); 3554 3555 switch (inode->i_mode & S_IFMT) { 3556 case S_IFREG: 3557 inode->i_mapping->a_ops = &btrfs_aops; 3558 inode->i_fop = &btrfs_file_operations; 3559 inode->i_op = &btrfs_file_inode_operations; 3560 break; 3561 case S_IFDIR: 3562 inode->i_fop = &btrfs_dir_file_operations; 3563 inode->i_op = &btrfs_dir_inode_operations; 3564 break; 3565 case S_IFLNK: 3566 inode->i_op = &btrfs_symlink_inode_operations; 3567 inode_nohighmem(inode); 3568 inode->i_mapping->a_ops = &btrfs_aops; 3569 break; 3570 default: 3571 inode->i_op = &btrfs_special_inode_operations; 3572 init_special_inode(inode, inode->i_mode, rdev); 3573 break; 3574 } 3575 3576 btrfs_sync_inode_flags_to_i_flags(inode); 3577 return 0; 3578 } 3579 3580 /* 3581 * given a leaf and an inode, copy the inode fields into the leaf 3582 */ 3583 static void fill_inode_item(struct btrfs_trans_handle *trans, 3584 struct extent_buffer *leaf, 3585 struct btrfs_inode_item *item, 3586 struct inode *inode) 3587 { 3588 struct btrfs_map_token token; 3589 3590 btrfs_init_map_token(&token, leaf); 3591 3592 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3593 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3594 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3595 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3596 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3597 3598 btrfs_set_token_timespec_sec(&token, &item->atime, 3599 inode->i_atime.tv_sec); 3600 btrfs_set_token_timespec_nsec(&token, &item->atime, 3601 inode->i_atime.tv_nsec); 3602 3603 btrfs_set_token_timespec_sec(&token, &item->mtime, 3604 inode->i_mtime.tv_sec); 3605 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3606 inode->i_mtime.tv_nsec); 3607 3608 btrfs_set_token_timespec_sec(&token, &item->ctime, 3609 inode->i_ctime.tv_sec); 3610 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3611 inode->i_ctime.tv_nsec); 3612 3613 btrfs_set_token_timespec_sec(&token, &item->otime, 3614 BTRFS_I(inode)->i_otime.tv_sec); 3615 btrfs_set_token_timespec_nsec(&token, &item->otime, 3616 BTRFS_I(inode)->i_otime.tv_nsec); 3617 3618 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3619 btrfs_set_token_inode_generation(&token, item, 3620 BTRFS_I(inode)->generation); 3621 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3622 btrfs_set_token_inode_transid(&token, item, trans->transid); 3623 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3624 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3625 btrfs_set_token_inode_block_group(&token, item, 0); 3626 } 3627 3628 /* 3629 * copy everything in the in-memory inode into the btree. 3630 */ 3631 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3632 struct btrfs_root *root, 3633 struct btrfs_inode *inode) 3634 { 3635 struct btrfs_inode_item *inode_item; 3636 struct btrfs_path *path; 3637 struct extent_buffer *leaf; 3638 int ret; 3639 3640 path = btrfs_alloc_path(); 3641 if (!path) 3642 return -ENOMEM; 3643 3644 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3645 if (ret) { 3646 if (ret > 0) 3647 ret = -ENOENT; 3648 goto failed; 3649 } 3650 3651 leaf = path->nodes[0]; 3652 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3653 struct btrfs_inode_item); 3654 3655 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3656 btrfs_mark_buffer_dirty(leaf); 3657 btrfs_set_inode_last_trans(trans, inode); 3658 ret = 0; 3659 failed: 3660 btrfs_free_path(path); 3661 return ret; 3662 } 3663 3664 /* 3665 * copy everything in the in-memory inode into the btree. 3666 */ 3667 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3668 struct btrfs_root *root, 3669 struct btrfs_inode *inode) 3670 { 3671 struct btrfs_fs_info *fs_info = root->fs_info; 3672 int ret; 3673 3674 /* 3675 * If the inode is a free space inode, we can deadlock during commit 3676 * if we put it into the delayed code. 3677 * 3678 * The data relocation inode should also be directly updated 3679 * without delay 3680 */ 3681 if (!btrfs_is_free_space_inode(inode) 3682 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3683 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3684 btrfs_update_root_times(trans, root); 3685 3686 ret = btrfs_delayed_update_inode(trans, root, inode); 3687 if (!ret) 3688 btrfs_set_inode_last_trans(trans, inode); 3689 return ret; 3690 } 3691 3692 return btrfs_update_inode_item(trans, root, inode); 3693 } 3694 3695 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3696 struct btrfs_root *root, struct btrfs_inode *inode) 3697 { 3698 int ret; 3699 3700 ret = btrfs_update_inode(trans, root, inode); 3701 if (ret == -ENOSPC) 3702 return btrfs_update_inode_item(trans, root, inode); 3703 return ret; 3704 } 3705 3706 /* 3707 * unlink helper that gets used here in inode.c and in the tree logging 3708 * recovery code. It remove a link in a directory with a given name, and 3709 * also drops the back refs in the inode to the directory 3710 */ 3711 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3712 struct btrfs_root *root, 3713 struct btrfs_inode *dir, 3714 struct btrfs_inode *inode, 3715 const char *name, int name_len) 3716 { 3717 struct btrfs_fs_info *fs_info = root->fs_info; 3718 struct btrfs_path *path; 3719 int ret = 0; 3720 struct btrfs_dir_item *di; 3721 u64 index; 3722 u64 ino = btrfs_ino(inode); 3723 u64 dir_ino = btrfs_ino(dir); 3724 3725 path = btrfs_alloc_path(); 3726 if (!path) { 3727 ret = -ENOMEM; 3728 goto out; 3729 } 3730 3731 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3732 name, name_len, -1); 3733 if (IS_ERR_OR_NULL(di)) { 3734 ret = di ? PTR_ERR(di) : -ENOENT; 3735 goto err; 3736 } 3737 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3738 if (ret) 3739 goto err; 3740 btrfs_release_path(path); 3741 3742 /* 3743 * If we don't have dir index, we have to get it by looking up 3744 * the inode ref, since we get the inode ref, remove it directly, 3745 * it is unnecessary to do delayed deletion. 3746 * 3747 * But if we have dir index, needn't search inode ref to get it. 3748 * Since the inode ref is close to the inode item, it is better 3749 * that we delay to delete it, and just do this deletion when 3750 * we update the inode item. 3751 */ 3752 if (inode->dir_index) { 3753 ret = btrfs_delayed_delete_inode_ref(inode); 3754 if (!ret) { 3755 index = inode->dir_index; 3756 goto skip_backref; 3757 } 3758 } 3759 3760 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3761 dir_ino, &index); 3762 if (ret) { 3763 btrfs_info(fs_info, 3764 "failed to delete reference to %.*s, inode %llu parent %llu", 3765 name_len, name, ino, dir_ino); 3766 btrfs_abort_transaction(trans, ret); 3767 goto err; 3768 } 3769 skip_backref: 3770 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3771 if (ret) { 3772 btrfs_abort_transaction(trans, ret); 3773 goto err; 3774 } 3775 3776 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3777 dir_ino); 3778 if (ret != 0 && ret != -ENOENT) { 3779 btrfs_abort_transaction(trans, ret); 3780 goto err; 3781 } 3782 3783 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3784 index); 3785 if (ret == -ENOENT) 3786 ret = 0; 3787 else if (ret) 3788 btrfs_abort_transaction(trans, ret); 3789 3790 /* 3791 * If we have a pending delayed iput we could end up with the final iput 3792 * being run in btrfs-cleaner context. If we have enough of these built 3793 * up we can end up burning a lot of time in btrfs-cleaner without any 3794 * way to throttle the unlinks. Since we're currently holding a ref on 3795 * the inode we can run the delayed iput here without any issues as the 3796 * final iput won't be done until after we drop the ref we're currently 3797 * holding. 3798 */ 3799 btrfs_run_delayed_iput(fs_info, inode); 3800 err: 3801 btrfs_free_path(path); 3802 if (ret) 3803 goto out; 3804 3805 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3806 inode_inc_iversion(&inode->vfs_inode); 3807 inode_inc_iversion(&dir->vfs_inode); 3808 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3809 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3810 ret = btrfs_update_inode(trans, root, dir); 3811 out: 3812 return ret; 3813 } 3814 3815 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3816 struct btrfs_root *root, 3817 struct btrfs_inode *dir, struct btrfs_inode *inode, 3818 const char *name, int name_len) 3819 { 3820 int ret; 3821 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3822 if (!ret) { 3823 drop_nlink(&inode->vfs_inode); 3824 ret = btrfs_update_inode(trans, root, inode); 3825 } 3826 return ret; 3827 } 3828 3829 /* 3830 * helper to start transaction for unlink and rmdir. 3831 * 3832 * unlink and rmdir are special in btrfs, they do not always free space, so 3833 * if we cannot make our reservations the normal way try and see if there is 3834 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3835 * allow the unlink to occur. 3836 */ 3837 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3838 { 3839 struct btrfs_root *root = BTRFS_I(dir)->root; 3840 3841 /* 3842 * 1 for the possible orphan item 3843 * 1 for the dir item 3844 * 1 for the dir index 3845 * 1 for the inode ref 3846 * 1 for the inode 3847 */ 3848 return btrfs_start_transaction_fallback_global_rsv(root, 5); 3849 } 3850 3851 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3852 { 3853 struct btrfs_root *root = BTRFS_I(dir)->root; 3854 struct btrfs_trans_handle *trans; 3855 struct inode *inode = d_inode(dentry); 3856 int ret; 3857 3858 trans = __unlink_start_trans(dir); 3859 if (IS_ERR(trans)) 3860 return PTR_ERR(trans); 3861 3862 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3863 0); 3864 3865 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3866 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3867 dentry->d_name.len); 3868 if (ret) 3869 goto out; 3870 3871 if (inode->i_nlink == 0) { 3872 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3873 if (ret) 3874 goto out; 3875 } 3876 3877 out: 3878 btrfs_end_transaction(trans); 3879 btrfs_btree_balance_dirty(root->fs_info); 3880 return ret; 3881 } 3882 3883 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3884 struct inode *dir, struct dentry *dentry) 3885 { 3886 struct btrfs_root *root = BTRFS_I(dir)->root; 3887 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3888 struct btrfs_path *path; 3889 struct extent_buffer *leaf; 3890 struct btrfs_dir_item *di; 3891 struct btrfs_key key; 3892 const char *name = dentry->d_name.name; 3893 int name_len = dentry->d_name.len; 3894 u64 index; 3895 int ret; 3896 u64 objectid; 3897 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3898 3899 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3900 objectid = inode->root->root_key.objectid; 3901 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3902 objectid = inode->location.objectid; 3903 } else { 3904 WARN_ON(1); 3905 return -EINVAL; 3906 } 3907 3908 path = btrfs_alloc_path(); 3909 if (!path) 3910 return -ENOMEM; 3911 3912 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3913 name, name_len, -1); 3914 if (IS_ERR_OR_NULL(di)) { 3915 ret = di ? PTR_ERR(di) : -ENOENT; 3916 goto out; 3917 } 3918 3919 leaf = path->nodes[0]; 3920 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3921 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3922 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3923 if (ret) { 3924 btrfs_abort_transaction(trans, ret); 3925 goto out; 3926 } 3927 btrfs_release_path(path); 3928 3929 /* 3930 * This is a placeholder inode for a subvolume we didn't have a 3931 * reference to at the time of the snapshot creation. In the meantime 3932 * we could have renamed the real subvol link into our snapshot, so 3933 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3934 * Instead simply lookup the dir_index_item for this entry so we can 3935 * remove it. Otherwise we know we have a ref to the root and we can 3936 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3937 */ 3938 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3939 di = btrfs_search_dir_index_item(root, path, dir_ino, 3940 name, name_len); 3941 if (IS_ERR_OR_NULL(di)) { 3942 if (!di) 3943 ret = -ENOENT; 3944 else 3945 ret = PTR_ERR(di); 3946 btrfs_abort_transaction(trans, ret); 3947 goto out; 3948 } 3949 3950 leaf = path->nodes[0]; 3951 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3952 index = key.offset; 3953 btrfs_release_path(path); 3954 } else { 3955 ret = btrfs_del_root_ref(trans, objectid, 3956 root->root_key.objectid, dir_ino, 3957 &index, name, name_len); 3958 if (ret) { 3959 btrfs_abort_transaction(trans, ret); 3960 goto out; 3961 } 3962 } 3963 3964 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3965 if (ret) { 3966 btrfs_abort_transaction(trans, ret); 3967 goto out; 3968 } 3969 3970 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3971 inode_inc_iversion(dir); 3972 dir->i_mtime = dir->i_ctime = current_time(dir); 3973 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 3974 if (ret) 3975 btrfs_abort_transaction(trans, ret); 3976 out: 3977 btrfs_free_path(path); 3978 return ret; 3979 } 3980 3981 /* 3982 * Helper to check if the subvolume references other subvolumes or if it's 3983 * default. 3984 */ 3985 static noinline int may_destroy_subvol(struct btrfs_root *root) 3986 { 3987 struct btrfs_fs_info *fs_info = root->fs_info; 3988 struct btrfs_path *path; 3989 struct btrfs_dir_item *di; 3990 struct btrfs_key key; 3991 u64 dir_id; 3992 int ret; 3993 3994 path = btrfs_alloc_path(); 3995 if (!path) 3996 return -ENOMEM; 3997 3998 /* Make sure this root isn't set as the default subvol */ 3999 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4000 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4001 dir_id, "default", 7, 0); 4002 if (di && !IS_ERR(di)) { 4003 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4004 if (key.objectid == root->root_key.objectid) { 4005 ret = -EPERM; 4006 btrfs_err(fs_info, 4007 "deleting default subvolume %llu is not allowed", 4008 key.objectid); 4009 goto out; 4010 } 4011 btrfs_release_path(path); 4012 } 4013 4014 key.objectid = root->root_key.objectid; 4015 key.type = BTRFS_ROOT_REF_KEY; 4016 key.offset = (u64)-1; 4017 4018 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4019 if (ret < 0) 4020 goto out; 4021 BUG_ON(ret == 0); 4022 4023 ret = 0; 4024 if (path->slots[0] > 0) { 4025 path->slots[0]--; 4026 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4027 if (key.objectid == root->root_key.objectid && 4028 key.type == BTRFS_ROOT_REF_KEY) 4029 ret = -ENOTEMPTY; 4030 } 4031 out: 4032 btrfs_free_path(path); 4033 return ret; 4034 } 4035 4036 /* Delete all dentries for inodes belonging to the root */ 4037 static void btrfs_prune_dentries(struct btrfs_root *root) 4038 { 4039 struct btrfs_fs_info *fs_info = root->fs_info; 4040 struct rb_node *node; 4041 struct rb_node *prev; 4042 struct btrfs_inode *entry; 4043 struct inode *inode; 4044 u64 objectid = 0; 4045 4046 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4047 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4048 4049 spin_lock(&root->inode_lock); 4050 again: 4051 node = root->inode_tree.rb_node; 4052 prev = NULL; 4053 while (node) { 4054 prev = node; 4055 entry = rb_entry(node, struct btrfs_inode, rb_node); 4056 4057 if (objectid < btrfs_ino(entry)) 4058 node = node->rb_left; 4059 else if (objectid > btrfs_ino(entry)) 4060 node = node->rb_right; 4061 else 4062 break; 4063 } 4064 if (!node) { 4065 while (prev) { 4066 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4067 if (objectid <= btrfs_ino(entry)) { 4068 node = prev; 4069 break; 4070 } 4071 prev = rb_next(prev); 4072 } 4073 } 4074 while (node) { 4075 entry = rb_entry(node, struct btrfs_inode, rb_node); 4076 objectid = btrfs_ino(entry) + 1; 4077 inode = igrab(&entry->vfs_inode); 4078 if (inode) { 4079 spin_unlock(&root->inode_lock); 4080 if (atomic_read(&inode->i_count) > 1) 4081 d_prune_aliases(inode); 4082 /* 4083 * btrfs_drop_inode will have it removed from the inode 4084 * cache when its usage count hits zero. 4085 */ 4086 iput(inode); 4087 cond_resched(); 4088 spin_lock(&root->inode_lock); 4089 goto again; 4090 } 4091 4092 if (cond_resched_lock(&root->inode_lock)) 4093 goto again; 4094 4095 node = rb_next(node); 4096 } 4097 spin_unlock(&root->inode_lock); 4098 } 4099 4100 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4101 { 4102 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4103 struct btrfs_root *root = BTRFS_I(dir)->root; 4104 struct inode *inode = d_inode(dentry); 4105 struct btrfs_root *dest = BTRFS_I(inode)->root; 4106 struct btrfs_trans_handle *trans; 4107 struct btrfs_block_rsv block_rsv; 4108 u64 root_flags; 4109 int ret; 4110 4111 /* 4112 * Don't allow to delete a subvolume with send in progress. This is 4113 * inside the inode lock so the error handling that has to drop the bit 4114 * again is not run concurrently. 4115 */ 4116 spin_lock(&dest->root_item_lock); 4117 if (dest->send_in_progress) { 4118 spin_unlock(&dest->root_item_lock); 4119 btrfs_warn(fs_info, 4120 "attempt to delete subvolume %llu during send", 4121 dest->root_key.objectid); 4122 return -EPERM; 4123 } 4124 root_flags = btrfs_root_flags(&dest->root_item); 4125 btrfs_set_root_flags(&dest->root_item, 4126 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4127 spin_unlock(&dest->root_item_lock); 4128 4129 down_write(&fs_info->subvol_sem); 4130 4131 ret = may_destroy_subvol(dest); 4132 if (ret) 4133 goto out_up_write; 4134 4135 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4136 /* 4137 * One for dir inode, 4138 * two for dir entries, 4139 * two for root ref/backref. 4140 */ 4141 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4142 if (ret) 4143 goto out_up_write; 4144 4145 trans = btrfs_start_transaction(root, 0); 4146 if (IS_ERR(trans)) { 4147 ret = PTR_ERR(trans); 4148 goto out_release; 4149 } 4150 trans->block_rsv = &block_rsv; 4151 trans->bytes_reserved = block_rsv.size; 4152 4153 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4154 4155 ret = btrfs_unlink_subvol(trans, dir, dentry); 4156 if (ret) { 4157 btrfs_abort_transaction(trans, ret); 4158 goto out_end_trans; 4159 } 4160 4161 btrfs_record_root_in_trans(trans, dest); 4162 4163 memset(&dest->root_item.drop_progress, 0, 4164 sizeof(dest->root_item.drop_progress)); 4165 btrfs_set_root_drop_level(&dest->root_item, 0); 4166 btrfs_set_root_refs(&dest->root_item, 0); 4167 4168 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4169 ret = btrfs_insert_orphan_item(trans, 4170 fs_info->tree_root, 4171 dest->root_key.objectid); 4172 if (ret) { 4173 btrfs_abort_transaction(trans, ret); 4174 goto out_end_trans; 4175 } 4176 } 4177 4178 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4179 BTRFS_UUID_KEY_SUBVOL, 4180 dest->root_key.objectid); 4181 if (ret && ret != -ENOENT) { 4182 btrfs_abort_transaction(trans, ret); 4183 goto out_end_trans; 4184 } 4185 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4186 ret = btrfs_uuid_tree_remove(trans, 4187 dest->root_item.received_uuid, 4188 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4189 dest->root_key.objectid); 4190 if (ret && ret != -ENOENT) { 4191 btrfs_abort_transaction(trans, ret); 4192 goto out_end_trans; 4193 } 4194 } 4195 4196 free_anon_bdev(dest->anon_dev); 4197 dest->anon_dev = 0; 4198 out_end_trans: 4199 trans->block_rsv = NULL; 4200 trans->bytes_reserved = 0; 4201 ret = btrfs_end_transaction(trans); 4202 inode->i_flags |= S_DEAD; 4203 out_release: 4204 btrfs_subvolume_release_metadata(root, &block_rsv); 4205 out_up_write: 4206 up_write(&fs_info->subvol_sem); 4207 if (ret) { 4208 spin_lock(&dest->root_item_lock); 4209 root_flags = btrfs_root_flags(&dest->root_item); 4210 btrfs_set_root_flags(&dest->root_item, 4211 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4212 spin_unlock(&dest->root_item_lock); 4213 } else { 4214 d_invalidate(dentry); 4215 btrfs_prune_dentries(dest); 4216 ASSERT(dest->send_in_progress == 0); 4217 4218 /* the last ref */ 4219 if (dest->ino_cache_inode) { 4220 iput(dest->ino_cache_inode); 4221 dest->ino_cache_inode = NULL; 4222 } 4223 } 4224 4225 return ret; 4226 } 4227 4228 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4229 { 4230 struct inode *inode = d_inode(dentry); 4231 int err = 0; 4232 struct btrfs_root *root = BTRFS_I(dir)->root; 4233 struct btrfs_trans_handle *trans; 4234 u64 last_unlink_trans; 4235 4236 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4237 return -ENOTEMPTY; 4238 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4239 return btrfs_delete_subvolume(dir, dentry); 4240 4241 trans = __unlink_start_trans(dir); 4242 if (IS_ERR(trans)) 4243 return PTR_ERR(trans); 4244 4245 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4246 err = btrfs_unlink_subvol(trans, dir, dentry); 4247 goto out; 4248 } 4249 4250 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4251 if (err) 4252 goto out; 4253 4254 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4255 4256 /* now the directory is empty */ 4257 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4258 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4259 dentry->d_name.len); 4260 if (!err) { 4261 btrfs_i_size_write(BTRFS_I(inode), 0); 4262 /* 4263 * Propagate the last_unlink_trans value of the deleted dir to 4264 * its parent directory. This is to prevent an unrecoverable 4265 * log tree in the case we do something like this: 4266 * 1) create dir foo 4267 * 2) create snapshot under dir foo 4268 * 3) delete the snapshot 4269 * 4) rmdir foo 4270 * 5) mkdir foo 4271 * 6) fsync foo or some file inside foo 4272 */ 4273 if (last_unlink_trans >= trans->transid) 4274 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4275 } 4276 out: 4277 btrfs_end_transaction(trans); 4278 btrfs_btree_balance_dirty(root->fs_info); 4279 4280 return err; 4281 } 4282 4283 /* 4284 * Return this if we need to call truncate_block for the last bit of the 4285 * truncate. 4286 */ 4287 #define NEED_TRUNCATE_BLOCK 1 4288 4289 /* 4290 * this can truncate away extent items, csum items and directory items. 4291 * It starts at a high offset and removes keys until it can't find 4292 * any higher than new_size 4293 * 4294 * csum items that cross the new i_size are truncated to the new size 4295 * as well. 4296 * 4297 * min_type is the minimum key type to truncate down to. If set to 0, this 4298 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4299 */ 4300 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4301 struct btrfs_root *root, 4302 struct btrfs_inode *inode, 4303 u64 new_size, u32 min_type) 4304 { 4305 struct btrfs_fs_info *fs_info = root->fs_info; 4306 struct btrfs_path *path; 4307 struct extent_buffer *leaf; 4308 struct btrfs_file_extent_item *fi; 4309 struct btrfs_key key; 4310 struct btrfs_key found_key; 4311 u64 extent_start = 0; 4312 u64 extent_num_bytes = 0; 4313 u64 extent_offset = 0; 4314 u64 item_end = 0; 4315 u64 last_size = new_size; 4316 u32 found_type = (u8)-1; 4317 int found_extent; 4318 int del_item; 4319 int pending_del_nr = 0; 4320 int pending_del_slot = 0; 4321 int extent_type = -1; 4322 int ret; 4323 u64 ino = btrfs_ino(inode); 4324 u64 bytes_deleted = 0; 4325 bool be_nice = false; 4326 bool should_throttle = false; 4327 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4328 struct extent_state *cached_state = NULL; 4329 4330 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4331 4332 /* 4333 * For non-free space inodes and non-shareable roots, we want to back 4334 * off from time to time. This means all inodes in subvolume roots, 4335 * reloc roots, and data reloc roots. 4336 */ 4337 if (!btrfs_is_free_space_inode(inode) && 4338 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4339 be_nice = true; 4340 4341 path = btrfs_alloc_path(); 4342 if (!path) 4343 return -ENOMEM; 4344 path->reada = READA_BACK; 4345 4346 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4347 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4348 &cached_state); 4349 4350 /* 4351 * We want to drop from the next block forward in case this 4352 * new size is not block aligned since we will be keeping the 4353 * last block of the extent just the way it is. 4354 */ 4355 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4356 fs_info->sectorsize), 4357 (u64)-1, 0); 4358 } 4359 4360 /* 4361 * This function is also used to drop the items in the log tree before 4362 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4363 * it is used to drop the logged items. So we shouldn't kill the delayed 4364 * items. 4365 */ 4366 if (min_type == 0 && root == inode->root) 4367 btrfs_kill_delayed_inode_items(inode); 4368 4369 key.objectid = ino; 4370 key.offset = (u64)-1; 4371 key.type = (u8)-1; 4372 4373 search_again: 4374 /* 4375 * with a 16K leaf size and 128MB extents, you can actually queue 4376 * up a huge file in a single leaf. Most of the time that 4377 * bytes_deleted is > 0, it will be huge by the time we get here 4378 */ 4379 if (be_nice && bytes_deleted > SZ_32M && 4380 btrfs_should_end_transaction(trans)) { 4381 ret = -EAGAIN; 4382 goto out; 4383 } 4384 4385 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4386 if (ret < 0) 4387 goto out; 4388 4389 if (ret > 0) { 4390 ret = 0; 4391 /* there are no items in the tree for us to truncate, we're 4392 * done 4393 */ 4394 if (path->slots[0] == 0) 4395 goto out; 4396 path->slots[0]--; 4397 } 4398 4399 while (1) { 4400 u64 clear_start = 0, clear_len = 0; 4401 4402 fi = NULL; 4403 leaf = path->nodes[0]; 4404 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4405 found_type = found_key.type; 4406 4407 if (found_key.objectid != ino) 4408 break; 4409 4410 if (found_type < min_type) 4411 break; 4412 4413 item_end = found_key.offset; 4414 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4415 fi = btrfs_item_ptr(leaf, path->slots[0], 4416 struct btrfs_file_extent_item); 4417 extent_type = btrfs_file_extent_type(leaf, fi); 4418 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4419 item_end += 4420 btrfs_file_extent_num_bytes(leaf, fi); 4421 4422 trace_btrfs_truncate_show_fi_regular( 4423 inode, leaf, fi, found_key.offset); 4424 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4425 item_end += btrfs_file_extent_ram_bytes(leaf, 4426 fi); 4427 4428 trace_btrfs_truncate_show_fi_inline( 4429 inode, leaf, fi, path->slots[0], 4430 found_key.offset); 4431 } 4432 item_end--; 4433 } 4434 if (found_type > min_type) { 4435 del_item = 1; 4436 } else { 4437 if (item_end < new_size) 4438 break; 4439 if (found_key.offset >= new_size) 4440 del_item = 1; 4441 else 4442 del_item = 0; 4443 } 4444 found_extent = 0; 4445 /* FIXME, shrink the extent if the ref count is only 1 */ 4446 if (found_type != BTRFS_EXTENT_DATA_KEY) 4447 goto delete; 4448 4449 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4450 u64 num_dec; 4451 4452 clear_start = found_key.offset; 4453 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4454 if (!del_item) { 4455 u64 orig_num_bytes = 4456 btrfs_file_extent_num_bytes(leaf, fi); 4457 extent_num_bytes = ALIGN(new_size - 4458 found_key.offset, 4459 fs_info->sectorsize); 4460 clear_start = ALIGN(new_size, fs_info->sectorsize); 4461 btrfs_set_file_extent_num_bytes(leaf, fi, 4462 extent_num_bytes); 4463 num_dec = (orig_num_bytes - 4464 extent_num_bytes); 4465 if (test_bit(BTRFS_ROOT_SHAREABLE, 4466 &root->state) && 4467 extent_start != 0) 4468 inode_sub_bytes(&inode->vfs_inode, 4469 num_dec); 4470 btrfs_mark_buffer_dirty(leaf); 4471 } else { 4472 extent_num_bytes = 4473 btrfs_file_extent_disk_num_bytes(leaf, 4474 fi); 4475 extent_offset = found_key.offset - 4476 btrfs_file_extent_offset(leaf, fi); 4477 4478 /* FIXME blocksize != 4096 */ 4479 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4480 if (extent_start != 0) { 4481 found_extent = 1; 4482 if (test_bit(BTRFS_ROOT_SHAREABLE, 4483 &root->state)) 4484 inode_sub_bytes(&inode->vfs_inode, 4485 num_dec); 4486 } 4487 } 4488 clear_len = num_dec; 4489 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4490 /* 4491 * we can't truncate inline items that have had 4492 * special encodings 4493 */ 4494 if (!del_item && 4495 btrfs_file_extent_encryption(leaf, fi) == 0 && 4496 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4497 btrfs_file_extent_compression(leaf, fi) == 0) { 4498 u32 size = (u32)(new_size - found_key.offset); 4499 4500 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4501 size = btrfs_file_extent_calc_inline_size(size); 4502 btrfs_truncate_item(path, size, 1); 4503 } else if (!del_item) { 4504 /* 4505 * We have to bail so the last_size is set to 4506 * just before this extent. 4507 */ 4508 ret = NEED_TRUNCATE_BLOCK; 4509 break; 4510 } else { 4511 /* 4512 * Inline extents are special, we just treat 4513 * them as a full sector worth in the file 4514 * extent tree just for simplicity sake. 4515 */ 4516 clear_len = fs_info->sectorsize; 4517 } 4518 4519 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4520 inode_sub_bytes(&inode->vfs_inode, 4521 item_end + 1 - new_size); 4522 } 4523 delete: 4524 /* 4525 * We use btrfs_truncate_inode_items() to clean up log trees for 4526 * multiple fsyncs, and in this case we don't want to clear the 4527 * file extent range because it's just the log. 4528 */ 4529 if (root == inode->root) { 4530 ret = btrfs_inode_clear_file_extent_range(inode, 4531 clear_start, clear_len); 4532 if (ret) { 4533 btrfs_abort_transaction(trans, ret); 4534 break; 4535 } 4536 } 4537 4538 if (del_item) 4539 last_size = found_key.offset; 4540 else 4541 last_size = new_size; 4542 if (del_item) { 4543 if (!pending_del_nr) { 4544 /* no pending yet, add ourselves */ 4545 pending_del_slot = path->slots[0]; 4546 pending_del_nr = 1; 4547 } else if (pending_del_nr && 4548 path->slots[0] + 1 == pending_del_slot) { 4549 /* hop on the pending chunk */ 4550 pending_del_nr++; 4551 pending_del_slot = path->slots[0]; 4552 } else { 4553 BUG(); 4554 } 4555 } else { 4556 break; 4557 } 4558 should_throttle = false; 4559 4560 if (found_extent && 4561 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4562 struct btrfs_ref ref = { 0 }; 4563 4564 bytes_deleted += extent_num_bytes; 4565 4566 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4567 extent_start, extent_num_bytes, 0); 4568 ref.real_root = root->root_key.objectid; 4569 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4570 ino, extent_offset); 4571 ret = btrfs_free_extent(trans, &ref); 4572 if (ret) { 4573 btrfs_abort_transaction(trans, ret); 4574 break; 4575 } 4576 if (be_nice) { 4577 if (btrfs_should_throttle_delayed_refs(trans)) 4578 should_throttle = true; 4579 } 4580 } 4581 4582 if (found_type == BTRFS_INODE_ITEM_KEY) 4583 break; 4584 4585 if (path->slots[0] == 0 || 4586 path->slots[0] != pending_del_slot || 4587 should_throttle) { 4588 if (pending_del_nr) { 4589 ret = btrfs_del_items(trans, root, path, 4590 pending_del_slot, 4591 pending_del_nr); 4592 if (ret) { 4593 btrfs_abort_transaction(trans, ret); 4594 break; 4595 } 4596 pending_del_nr = 0; 4597 } 4598 btrfs_release_path(path); 4599 4600 /* 4601 * We can generate a lot of delayed refs, so we need to 4602 * throttle every once and a while and make sure we're 4603 * adding enough space to keep up with the work we are 4604 * generating. Since we hold a transaction here we 4605 * can't flush, and we don't want to FLUSH_LIMIT because 4606 * we could have generated too many delayed refs to 4607 * actually allocate, so just bail if we're short and 4608 * let the normal reservation dance happen higher up. 4609 */ 4610 if (should_throttle) { 4611 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4612 BTRFS_RESERVE_NO_FLUSH); 4613 if (ret) { 4614 ret = -EAGAIN; 4615 break; 4616 } 4617 } 4618 goto search_again; 4619 } else { 4620 path->slots[0]--; 4621 } 4622 } 4623 out: 4624 if (ret >= 0 && pending_del_nr) { 4625 int err; 4626 4627 err = btrfs_del_items(trans, root, path, pending_del_slot, 4628 pending_del_nr); 4629 if (err) { 4630 btrfs_abort_transaction(trans, err); 4631 ret = err; 4632 } 4633 } 4634 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4635 ASSERT(last_size >= new_size); 4636 if (!ret && last_size > new_size) 4637 last_size = new_size; 4638 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4639 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4640 &cached_state); 4641 } 4642 4643 btrfs_free_path(path); 4644 return ret; 4645 } 4646 4647 /* 4648 * btrfs_truncate_block - read, zero a chunk and write a block 4649 * @inode - inode that we're zeroing 4650 * @from - the offset to start zeroing 4651 * @len - the length to zero, 0 to zero the entire range respective to the 4652 * offset 4653 * @front - zero up to the offset instead of from the offset on 4654 * 4655 * This will find the block for the "from" offset and cow the block and zero the 4656 * part we want to zero. This is used with truncate and hole punching. 4657 */ 4658 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4659 int front) 4660 { 4661 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4662 struct address_space *mapping = inode->vfs_inode.i_mapping; 4663 struct extent_io_tree *io_tree = &inode->io_tree; 4664 struct btrfs_ordered_extent *ordered; 4665 struct extent_state *cached_state = NULL; 4666 struct extent_changeset *data_reserved = NULL; 4667 char *kaddr; 4668 bool only_release_metadata = false; 4669 u32 blocksize = fs_info->sectorsize; 4670 pgoff_t index = from >> PAGE_SHIFT; 4671 unsigned offset = from & (blocksize - 1); 4672 struct page *page; 4673 gfp_t mask = btrfs_alloc_write_mask(mapping); 4674 size_t write_bytes = blocksize; 4675 int ret = 0; 4676 u64 block_start; 4677 u64 block_end; 4678 4679 if (IS_ALIGNED(offset, blocksize) && 4680 (!len || IS_ALIGNED(len, blocksize))) 4681 goto out; 4682 4683 block_start = round_down(from, blocksize); 4684 block_end = block_start + blocksize - 1; 4685 4686 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4687 blocksize); 4688 if (ret < 0) { 4689 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4690 /* For nocow case, no need to reserve data space */ 4691 only_release_metadata = true; 4692 } else { 4693 goto out; 4694 } 4695 } 4696 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 4697 if (ret < 0) { 4698 if (!only_release_metadata) 4699 btrfs_free_reserved_data_space(inode, data_reserved, 4700 block_start, blocksize); 4701 goto out; 4702 } 4703 again: 4704 page = find_or_create_page(mapping, index, mask); 4705 if (!page) { 4706 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4707 blocksize, true); 4708 btrfs_delalloc_release_extents(inode, blocksize); 4709 ret = -ENOMEM; 4710 goto out; 4711 } 4712 4713 if (!PageUptodate(page)) { 4714 ret = btrfs_readpage(NULL, page); 4715 lock_page(page); 4716 if (page->mapping != mapping) { 4717 unlock_page(page); 4718 put_page(page); 4719 goto again; 4720 } 4721 if (!PageUptodate(page)) { 4722 ret = -EIO; 4723 goto out_unlock; 4724 } 4725 } 4726 wait_on_page_writeback(page); 4727 4728 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4729 set_page_extent_mapped(page); 4730 4731 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4732 if (ordered) { 4733 unlock_extent_cached(io_tree, block_start, block_end, 4734 &cached_state); 4735 unlock_page(page); 4736 put_page(page); 4737 btrfs_start_ordered_extent(ordered, 1); 4738 btrfs_put_ordered_extent(ordered); 4739 goto again; 4740 } 4741 4742 clear_extent_bit(&inode->io_tree, block_start, block_end, 4743 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4744 0, 0, &cached_state); 4745 4746 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4747 &cached_state); 4748 if (ret) { 4749 unlock_extent_cached(io_tree, block_start, block_end, 4750 &cached_state); 4751 goto out_unlock; 4752 } 4753 4754 if (offset != blocksize) { 4755 if (!len) 4756 len = blocksize - offset; 4757 kaddr = kmap(page); 4758 if (front) 4759 memset(kaddr + (block_start - page_offset(page)), 4760 0, offset); 4761 else 4762 memset(kaddr + (block_start - page_offset(page)) + offset, 4763 0, len); 4764 flush_dcache_page(page); 4765 kunmap(page); 4766 } 4767 ClearPageChecked(page); 4768 set_page_dirty(page); 4769 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4770 4771 if (only_release_metadata) 4772 set_extent_bit(&inode->io_tree, block_start, block_end, 4773 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4774 4775 out_unlock: 4776 if (ret) { 4777 if (only_release_metadata) 4778 btrfs_delalloc_release_metadata(inode, blocksize, true); 4779 else 4780 btrfs_delalloc_release_space(inode, data_reserved, 4781 block_start, blocksize, true); 4782 } 4783 btrfs_delalloc_release_extents(inode, blocksize); 4784 unlock_page(page); 4785 put_page(page); 4786 out: 4787 if (only_release_metadata) 4788 btrfs_check_nocow_unlock(inode); 4789 extent_changeset_free(data_reserved); 4790 return ret; 4791 } 4792 4793 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4794 u64 offset, u64 len) 4795 { 4796 struct btrfs_fs_info *fs_info = root->fs_info; 4797 struct btrfs_trans_handle *trans; 4798 struct btrfs_drop_extents_args drop_args = { 0 }; 4799 int ret; 4800 4801 /* 4802 * Still need to make sure the inode looks like it's been updated so 4803 * that any holes get logged if we fsync. 4804 */ 4805 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4806 inode->last_trans = fs_info->generation; 4807 inode->last_sub_trans = root->log_transid; 4808 inode->last_log_commit = root->last_log_commit; 4809 return 0; 4810 } 4811 4812 /* 4813 * 1 - for the one we're dropping 4814 * 1 - for the one we're adding 4815 * 1 - for updating the inode. 4816 */ 4817 trans = btrfs_start_transaction(root, 3); 4818 if (IS_ERR(trans)) 4819 return PTR_ERR(trans); 4820 4821 drop_args.start = offset; 4822 drop_args.end = offset + len; 4823 drop_args.drop_cache = true; 4824 4825 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4826 if (ret) { 4827 btrfs_abort_transaction(trans, ret); 4828 btrfs_end_transaction(trans); 4829 return ret; 4830 } 4831 4832 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 4833 offset, 0, 0, len, 0, len, 0, 0, 0); 4834 if (ret) { 4835 btrfs_abort_transaction(trans, ret); 4836 } else { 4837 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4838 btrfs_update_inode(trans, root, inode); 4839 } 4840 btrfs_end_transaction(trans); 4841 return ret; 4842 } 4843 4844 /* 4845 * This function puts in dummy file extents for the area we're creating a hole 4846 * for. So if we are truncating this file to a larger size we need to insert 4847 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4848 * the range between oldsize and size 4849 */ 4850 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4851 { 4852 struct btrfs_root *root = inode->root; 4853 struct btrfs_fs_info *fs_info = root->fs_info; 4854 struct extent_io_tree *io_tree = &inode->io_tree; 4855 struct extent_map *em = NULL; 4856 struct extent_state *cached_state = NULL; 4857 struct extent_map_tree *em_tree = &inode->extent_tree; 4858 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4859 u64 block_end = ALIGN(size, fs_info->sectorsize); 4860 u64 last_byte; 4861 u64 cur_offset; 4862 u64 hole_size; 4863 int err = 0; 4864 4865 /* 4866 * If our size started in the middle of a block we need to zero out the 4867 * rest of the block before we expand the i_size, otherwise we could 4868 * expose stale data. 4869 */ 4870 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4871 if (err) 4872 return err; 4873 4874 if (size <= hole_start) 4875 return 0; 4876 4877 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4878 &cached_state); 4879 cur_offset = hole_start; 4880 while (1) { 4881 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4882 block_end - cur_offset); 4883 if (IS_ERR(em)) { 4884 err = PTR_ERR(em); 4885 em = NULL; 4886 break; 4887 } 4888 last_byte = min(extent_map_end(em), block_end); 4889 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4890 hole_size = last_byte - cur_offset; 4891 4892 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4893 struct extent_map *hole_em; 4894 4895 err = maybe_insert_hole(root, inode, cur_offset, 4896 hole_size); 4897 if (err) 4898 break; 4899 4900 err = btrfs_inode_set_file_extent_range(inode, 4901 cur_offset, hole_size); 4902 if (err) 4903 break; 4904 4905 btrfs_drop_extent_cache(inode, cur_offset, 4906 cur_offset + hole_size - 1, 0); 4907 hole_em = alloc_extent_map(); 4908 if (!hole_em) { 4909 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4910 &inode->runtime_flags); 4911 goto next; 4912 } 4913 hole_em->start = cur_offset; 4914 hole_em->len = hole_size; 4915 hole_em->orig_start = cur_offset; 4916 4917 hole_em->block_start = EXTENT_MAP_HOLE; 4918 hole_em->block_len = 0; 4919 hole_em->orig_block_len = 0; 4920 hole_em->ram_bytes = hole_size; 4921 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4922 hole_em->generation = fs_info->generation; 4923 4924 while (1) { 4925 write_lock(&em_tree->lock); 4926 err = add_extent_mapping(em_tree, hole_em, 1); 4927 write_unlock(&em_tree->lock); 4928 if (err != -EEXIST) 4929 break; 4930 btrfs_drop_extent_cache(inode, cur_offset, 4931 cur_offset + 4932 hole_size - 1, 0); 4933 } 4934 free_extent_map(hole_em); 4935 } else { 4936 err = btrfs_inode_set_file_extent_range(inode, 4937 cur_offset, hole_size); 4938 if (err) 4939 break; 4940 } 4941 next: 4942 free_extent_map(em); 4943 em = NULL; 4944 cur_offset = last_byte; 4945 if (cur_offset >= block_end) 4946 break; 4947 } 4948 free_extent_map(em); 4949 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4950 return err; 4951 } 4952 4953 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4954 { 4955 struct btrfs_root *root = BTRFS_I(inode)->root; 4956 struct btrfs_trans_handle *trans; 4957 loff_t oldsize = i_size_read(inode); 4958 loff_t newsize = attr->ia_size; 4959 int mask = attr->ia_valid; 4960 int ret; 4961 4962 /* 4963 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4964 * special case where we need to update the times despite not having 4965 * these flags set. For all other operations the VFS set these flags 4966 * explicitly if it wants a timestamp update. 4967 */ 4968 if (newsize != oldsize) { 4969 inode_inc_iversion(inode); 4970 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4971 inode->i_ctime = inode->i_mtime = 4972 current_time(inode); 4973 } 4974 4975 if (newsize > oldsize) { 4976 /* 4977 * Don't do an expanding truncate while snapshotting is ongoing. 4978 * This is to ensure the snapshot captures a fully consistent 4979 * state of this file - if the snapshot captures this expanding 4980 * truncation, it must capture all writes that happened before 4981 * this truncation. 4982 */ 4983 btrfs_drew_write_lock(&root->snapshot_lock); 4984 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 4985 if (ret) { 4986 btrfs_drew_write_unlock(&root->snapshot_lock); 4987 return ret; 4988 } 4989 4990 trans = btrfs_start_transaction(root, 1); 4991 if (IS_ERR(trans)) { 4992 btrfs_drew_write_unlock(&root->snapshot_lock); 4993 return PTR_ERR(trans); 4994 } 4995 4996 i_size_write(inode, newsize); 4997 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 4998 pagecache_isize_extended(inode, oldsize, newsize); 4999 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5000 btrfs_drew_write_unlock(&root->snapshot_lock); 5001 btrfs_end_transaction(trans); 5002 } else { 5003 5004 /* 5005 * We're truncating a file that used to have good data down to 5006 * zero. Make sure any new writes to the file get on disk 5007 * on close. 5008 */ 5009 if (newsize == 0) 5010 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5011 &BTRFS_I(inode)->runtime_flags); 5012 5013 truncate_setsize(inode, newsize); 5014 5015 inode_dio_wait(inode); 5016 5017 ret = btrfs_truncate(inode, newsize == oldsize); 5018 if (ret && inode->i_nlink) { 5019 int err; 5020 5021 /* 5022 * Truncate failed, so fix up the in-memory size. We 5023 * adjusted disk_i_size down as we removed extents, so 5024 * wait for disk_i_size to be stable and then update the 5025 * in-memory size to match. 5026 */ 5027 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5028 if (err) 5029 return err; 5030 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5031 } 5032 } 5033 5034 return ret; 5035 } 5036 5037 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5038 { 5039 struct inode *inode = d_inode(dentry); 5040 struct btrfs_root *root = BTRFS_I(inode)->root; 5041 int err; 5042 5043 if (btrfs_root_readonly(root)) 5044 return -EROFS; 5045 5046 err = setattr_prepare(dentry, attr); 5047 if (err) 5048 return err; 5049 5050 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5051 err = btrfs_setsize(inode, attr); 5052 if (err) 5053 return err; 5054 } 5055 5056 if (attr->ia_valid) { 5057 setattr_copy(inode, attr); 5058 inode_inc_iversion(inode); 5059 err = btrfs_dirty_inode(inode); 5060 5061 if (!err && attr->ia_valid & ATTR_MODE) 5062 err = posix_acl_chmod(inode, inode->i_mode); 5063 } 5064 5065 return err; 5066 } 5067 5068 /* 5069 * While truncating the inode pages during eviction, we get the VFS calling 5070 * btrfs_invalidatepage() against each page of the inode. This is slow because 5071 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5072 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5073 * extent_state structures over and over, wasting lots of time. 5074 * 5075 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5076 * those expensive operations on a per page basis and do only the ordered io 5077 * finishing, while we release here the extent_map and extent_state structures, 5078 * without the excessive merging and splitting. 5079 */ 5080 static void evict_inode_truncate_pages(struct inode *inode) 5081 { 5082 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5083 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5084 struct rb_node *node; 5085 5086 ASSERT(inode->i_state & I_FREEING); 5087 truncate_inode_pages_final(&inode->i_data); 5088 5089 write_lock(&map_tree->lock); 5090 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5091 struct extent_map *em; 5092 5093 node = rb_first_cached(&map_tree->map); 5094 em = rb_entry(node, struct extent_map, rb_node); 5095 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5096 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5097 remove_extent_mapping(map_tree, em); 5098 free_extent_map(em); 5099 if (need_resched()) { 5100 write_unlock(&map_tree->lock); 5101 cond_resched(); 5102 write_lock(&map_tree->lock); 5103 } 5104 } 5105 write_unlock(&map_tree->lock); 5106 5107 /* 5108 * Keep looping until we have no more ranges in the io tree. 5109 * We can have ongoing bios started by readahead that have 5110 * their endio callback (extent_io.c:end_bio_extent_readpage) 5111 * still in progress (unlocked the pages in the bio but did not yet 5112 * unlocked the ranges in the io tree). Therefore this means some 5113 * ranges can still be locked and eviction started because before 5114 * submitting those bios, which are executed by a separate task (work 5115 * queue kthread), inode references (inode->i_count) were not taken 5116 * (which would be dropped in the end io callback of each bio). 5117 * Therefore here we effectively end up waiting for those bios and 5118 * anyone else holding locked ranges without having bumped the inode's 5119 * reference count - if we don't do it, when they access the inode's 5120 * io_tree to unlock a range it may be too late, leading to an 5121 * use-after-free issue. 5122 */ 5123 spin_lock(&io_tree->lock); 5124 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5125 struct extent_state *state; 5126 struct extent_state *cached_state = NULL; 5127 u64 start; 5128 u64 end; 5129 unsigned state_flags; 5130 5131 node = rb_first(&io_tree->state); 5132 state = rb_entry(node, struct extent_state, rb_node); 5133 start = state->start; 5134 end = state->end; 5135 state_flags = state->state; 5136 spin_unlock(&io_tree->lock); 5137 5138 lock_extent_bits(io_tree, start, end, &cached_state); 5139 5140 /* 5141 * If still has DELALLOC flag, the extent didn't reach disk, 5142 * and its reserved space won't be freed by delayed_ref. 5143 * So we need to free its reserved space here. 5144 * (Refer to comment in btrfs_invalidatepage, case 2) 5145 * 5146 * Note, end is the bytenr of last byte, so we need + 1 here. 5147 */ 5148 if (state_flags & EXTENT_DELALLOC) 5149 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5150 end - start + 1); 5151 5152 clear_extent_bit(io_tree, start, end, 5153 EXTENT_LOCKED | EXTENT_DELALLOC | 5154 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5155 &cached_state); 5156 5157 cond_resched(); 5158 spin_lock(&io_tree->lock); 5159 } 5160 spin_unlock(&io_tree->lock); 5161 } 5162 5163 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5164 struct btrfs_block_rsv *rsv) 5165 { 5166 struct btrfs_fs_info *fs_info = root->fs_info; 5167 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5168 struct btrfs_trans_handle *trans; 5169 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5170 int ret; 5171 5172 /* 5173 * Eviction should be taking place at some place safe because of our 5174 * delayed iputs. However the normal flushing code will run delayed 5175 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5176 * 5177 * We reserve the delayed_refs_extra here again because we can't use 5178 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5179 * above. We reserve our extra bit here because we generate a ton of 5180 * delayed refs activity by truncating. 5181 * 5182 * If we cannot make our reservation we'll attempt to steal from the 5183 * global reserve, because we really want to be able to free up space. 5184 */ 5185 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5186 BTRFS_RESERVE_FLUSH_EVICT); 5187 if (ret) { 5188 /* 5189 * Try to steal from the global reserve if there is space for 5190 * it. 5191 */ 5192 if (btrfs_check_space_for_delayed_refs(fs_info) || 5193 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5194 btrfs_warn(fs_info, 5195 "could not allocate space for delete; will truncate on mount"); 5196 return ERR_PTR(-ENOSPC); 5197 } 5198 delayed_refs_extra = 0; 5199 } 5200 5201 trans = btrfs_join_transaction(root); 5202 if (IS_ERR(trans)) 5203 return trans; 5204 5205 if (delayed_refs_extra) { 5206 trans->block_rsv = &fs_info->trans_block_rsv; 5207 trans->bytes_reserved = delayed_refs_extra; 5208 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5209 delayed_refs_extra, 1); 5210 } 5211 return trans; 5212 } 5213 5214 void btrfs_evict_inode(struct inode *inode) 5215 { 5216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5217 struct btrfs_trans_handle *trans; 5218 struct btrfs_root *root = BTRFS_I(inode)->root; 5219 struct btrfs_block_rsv *rsv; 5220 int ret; 5221 5222 trace_btrfs_inode_evict(inode); 5223 5224 if (!root) { 5225 clear_inode(inode); 5226 return; 5227 } 5228 5229 evict_inode_truncate_pages(inode); 5230 5231 if (inode->i_nlink && 5232 ((btrfs_root_refs(&root->root_item) != 0 && 5233 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5234 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5235 goto no_delete; 5236 5237 if (is_bad_inode(inode)) 5238 goto no_delete; 5239 5240 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5241 5242 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5243 goto no_delete; 5244 5245 if (inode->i_nlink > 0) { 5246 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5247 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5248 goto no_delete; 5249 } 5250 5251 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5252 if (ret) 5253 goto no_delete; 5254 5255 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5256 if (!rsv) 5257 goto no_delete; 5258 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5259 rsv->failfast = 1; 5260 5261 btrfs_i_size_write(BTRFS_I(inode), 0); 5262 5263 while (1) { 5264 trans = evict_refill_and_join(root, rsv); 5265 if (IS_ERR(trans)) 5266 goto free_rsv; 5267 5268 trans->block_rsv = rsv; 5269 5270 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5271 0, 0); 5272 trans->block_rsv = &fs_info->trans_block_rsv; 5273 btrfs_end_transaction(trans); 5274 btrfs_btree_balance_dirty(fs_info); 5275 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5276 goto free_rsv; 5277 else if (!ret) 5278 break; 5279 } 5280 5281 /* 5282 * Errors here aren't a big deal, it just means we leave orphan items in 5283 * the tree. They will be cleaned up on the next mount. If the inode 5284 * number gets reused, cleanup deletes the orphan item without doing 5285 * anything, and unlink reuses the existing orphan item. 5286 * 5287 * If it turns out that we are dropping too many of these, we might want 5288 * to add a mechanism for retrying these after a commit. 5289 */ 5290 trans = evict_refill_and_join(root, rsv); 5291 if (!IS_ERR(trans)) { 5292 trans->block_rsv = rsv; 5293 btrfs_orphan_del(trans, BTRFS_I(inode)); 5294 trans->block_rsv = &fs_info->trans_block_rsv; 5295 btrfs_end_transaction(trans); 5296 } 5297 5298 if (!(root == fs_info->tree_root || 5299 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5300 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5301 5302 free_rsv: 5303 btrfs_free_block_rsv(fs_info, rsv); 5304 no_delete: 5305 /* 5306 * If we didn't successfully delete, the orphan item will still be in 5307 * the tree and we'll retry on the next mount. Again, we might also want 5308 * to retry these periodically in the future. 5309 */ 5310 btrfs_remove_delayed_node(BTRFS_I(inode)); 5311 clear_inode(inode); 5312 } 5313 5314 /* 5315 * Return the key found in the dir entry in the location pointer, fill @type 5316 * with BTRFS_FT_*, and return 0. 5317 * 5318 * If no dir entries were found, returns -ENOENT. 5319 * If found a corrupted location in dir entry, returns -EUCLEAN. 5320 */ 5321 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5322 struct btrfs_key *location, u8 *type) 5323 { 5324 const char *name = dentry->d_name.name; 5325 int namelen = dentry->d_name.len; 5326 struct btrfs_dir_item *di; 5327 struct btrfs_path *path; 5328 struct btrfs_root *root = BTRFS_I(dir)->root; 5329 int ret = 0; 5330 5331 path = btrfs_alloc_path(); 5332 if (!path) 5333 return -ENOMEM; 5334 5335 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5336 name, namelen, 0); 5337 if (IS_ERR_OR_NULL(di)) { 5338 ret = di ? PTR_ERR(di) : -ENOENT; 5339 goto out; 5340 } 5341 5342 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5343 if (location->type != BTRFS_INODE_ITEM_KEY && 5344 location->type != BTRFS_ROOT_ITEM_KEY) { 5345 ret = -EUCLEAN; 5346 btrfs_warn(root->fs_info, 5347 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5348 __func__, name, btrfs_ino(BTRFS_I(dir)), 5349 location->objectid, location->type, location->offset); 5350 } 5351 if (!ret) 5352 *type = btrfs_dir_type(path->nodes[0], di); 5353 out: 5354 btrfs_free_path(path); 5355 return ret; 5356 } 5357 5358 /* 5359 * when we hit a tree root in a directory, the btrfs part of the inode 5360 * needs to be changed to reflect the root directory of the tree root. This 5361 * is kind of like crossing a mount point. 5362 */ 5363 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5364 struct inode *dir, 5365 struct dentry *dentry, 5366 struct btrfs_key *location, 5367 struct btrfs_root **sub_root) 5368 { 5369 struct btrfs_path *path; 5370 struct btrfs_root *new_root; 5371 struct btrfs_root_ref *ref; 5372 struct extent_buffer *leaf; 5373 struct btrfs_key key; 5374 int ret; 5375 int err = 0; 5376 5377 path = btrfs_alloc_path(); 5378 if (!path) { 5379 err = -ENOMEM; 5380 goto out; 5381 } 5382 5383 err = -ENOENT; 5384 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5385 key.type = BTRFS_ROOT_REF_KEY; 5386 key.offset = location->objectid; 5387 5388 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5389 if (ret) { 5390 if (ret < 0) 5391 err = ret; 5392 goto out; 5393 } 5394 5395 leaf = path->nodes[0]; 5396 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5397 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5398 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5399 goto out; 5400 5401 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5402 (unsigned long)(ref + 1), 5403 dentry->d_name.len); 5404 if (ret) 5405 goto out; 5406 5407 btrfs_release_path(path); 5408 5409 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5410 if (IS_ERR(new_root)) { 5411 err = PTR_ERR(new_root); 5412 goto out; 5413 } 5414 5415 *sub_root = new_root; 5416 location->objectid = btrfs_root_dirid(&new_root->root_item); 5417 location->type = BTRFS_INODE_ITEM_KEY; 5418 location->offset = 0; 5419 err = 0; 5420 out: 5421 btrfs_free_path(path); 5422 return err; 5423 } 5424 5425 static void inode_tree_add(struct inode *inode) 5426 { 5427 struct btrfs_root *root = BTRFS_I(inode)->root; 5428 struct btrfs_inode *entry; 5429 struct rb_node **p; 5430 struct rb_node *parent; 5431 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5432 u64 ino = btrfs_ino(BTRFS_I(inode)); 5433 5434 if (inode_unhashed(inode)) 5435 return; 5436 parent = NULL; 5437 spin_lock(&root->inode_lock); 5438 p = &root->inode_tree.rb_node; 5439 while (*p) { 5440 parent = *p; 5441 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5442 5443 if (ino < btrfs_ino(entry)) 5444 p = &parent->rb_left; 5445 else if (ino > btrfs_ino(entry)) 5446 p = &parent->rb_right; 5447 else { 5448 WARN_ON(!(entry->vfs_inode.i_state & 5449 (I_WILL_FREE | I_FREEING))); 5450 rb_replace_node(parent, new, &root->inode_tree); 5451 RB_CLEAR_NODE(parent); 5452 spin_unlock(&root->inode_lock); 5453 return; 5454 } 5455 } 5456 rb_link_node(new, parent, p); 5457 rb_insert_color(new, &root->inode_tree); 5458 spin_unlock(&root->inode_lock); 5459 } 5460 5461 static void inode_tree_del(struct btrfs_inode *inode) 5462 { 5463 struct btrfs_root *root = inode->root; 5464 int empty = 0; 5465 5466 spin_lock(&root->inode_lock); 5467 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5468 rb_erase(&inode->rb_node, &root->inode_tree); 5469 RB_CLEAR_NODE(&inode->rb_node); 5470 empty = RB_EMPTY_ROOT(&root->inode_tree); 5471 } 5472 spin_unlock(&root->inode_lock); 5473 5474 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5475 spin_lock(&root->inode_lock); 5476 empty = RB_EMPTY_ROOT(&root->inode_tree); 5477 spin_unlock(&root->inode_lock); 5478 if (empty) 5479 btrfs_add_dead_root(root); 5480 } 5481 } 5482 5483 5484 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5485 { 5486 struct btrfs_iget_args *args = p; 5487 5488 inode->i_ino = args->ino; 5489 BTRFS_I(inode)->location.objectid = args->ino; 5490 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5491 BTRFS_I(inode)->location.offset = 0; 5492 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5493 BUG_ON(args->root && !BTRFS_I(inode)->root); 5494 return 0; 5495 } 5496 5497 static int btrfs_find_actor(struct inode *inode, void *opaque) 5498 { 5499 struct btrfs_iget_args *args = opaque; 5500 5501 return args->ino == BTRFS_I(inode)->location.objectid && 5502 args->root == BTRFS_I(inode)->root; 5503 } 5504 5505 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5506 struct btrfs_root *root) 5507 { 5508 struct inode *inode; 5509 struct btrfs_iget_args args; 5510 unsigned long hashval = btrfs_inode_hash(ino, root); 5511 5512 args.ino = ino; 5513 args.root = root; 5514 5515 inode = iget5_locked(s, hashval, btrfs_find_actor, 5516 btrfs_init_locked_inode, 5517 (void *)&args); 5518 return inode; 5519 } 5520 5521 /* 5522 * Get an inode object given its inode number and corresponding root. 5523 * Path can be preallocated to prevent recursing back to iget through 5524 * allocator. NULL is also valid but may require an additional allocation 5525 * later. 5526 */ 5527 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5528 struct btrfs_root *root, struct btrfs_path *path) 5529 { 5530 struct inode *inode; 5531 5532 inode = btrfs_iget_locked(s, ino, root); 5533 if (!inode) 5534 return ERR_PTR(-ENOMEM); 5535 5536 if (inode->i_state & I_NEW) { 5537 int ret; 5538 5539 ret = btrfs_read_locked_inode(inode, path); 5540 if (!ret) { 5541 inode_tree_add(inode); 5542 unlock_new_inode(inode); 5543 } else { 5544 iget_failed(inode); 5545 /* 5546 * ret > 0 can come from btrfs_search_slot called by 5547 * btrfs_read_locked_inode, this means the inode item 5548 * was not found. 5549 */ 5550 if (ret > 0) 5551 ret = -ENOENT; 5552 inode = ERR_PTR(ret); 5553 } 5554 } 5555 5556 return inode; 5557 } 5558 5559 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5560 { 5561 return btrfs_iget_path(s, ino, root, NULL); 5562 } 5563 5564 static struct inode *new_simple_dir(struct super_block *s, 5565 struct btrfs_key *key, 5566 struct btrfs_root *root) 5567 { 5568 struct inode *inode = new_inode(s); 5569 5570 if (!inode) 5571 return ERR_PTR(-ENOMEM); 5572 5573 BTRFS_I(inode)->root = btrfs_grab_root(root); 5574 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5575 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5576 5577 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5578 /* 5579 * We only need lookup, the rest is read-only and there's no inode 5580 * associated with the dentry 5581 */ 5582 inode->i_op = &simple_dir_inode_operations; 5583 inode->i_opflags &= ~IOP_XATTR; 5584 inode->i_fop = &simple_dir_operations; 5585 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5586 inode->i_mtime = current_time(inode); 5587 inode->i_atime = inode->i_mtime; 5588 inode->i_ctime = inode->i_mtime; 5589 BTRFS_I(inode)->i_otime = inode->i_mtime; 5590 5591 return inode; 5592 } 5593 5594 static inline u8 btrfs_inode_type(struct inode *inode) 5595 { 5596 /* 5597 * Compile-time asserts that generic FT_* types still match 5598 * BTRFS_FT_* types 5599 */ 5600 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5601 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5602 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5603 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5604 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5605 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5606 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5607 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5608 5609 return fs_umode_to_ftype(inode->i_mode); 5610 } 5611 5612 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5613 { 5614 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5615 struct inode *inode; 5616 struct btrfs_root *root = BTRFS_I(dir)->root; 5617 struct btrfs_root *sub_root = root; 5618 struct btrfs_key location; 5619 u8 di_type = 0; 5620 int ret = 0; 5621 5622 if (dentry->d_name.len > BTRFS_NAME_LEN) 5623 return ERR_PTR(-ENAMETOOLONG); 5624 5625 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5626 if (ret < 0) 5627 return ERR_PTR(ret); 5628 5629 if (location.type == BTRFS_INODE_ITEM_KEY) { 5630 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5631 if (IS_ERR(inode)) 5632 return inode; 5633 5634 /* Do extra check against inode mode with di_type */ 5635 if (btrfs_inode_type(inode) != di_type) { 5636 btrfs_crit(fs_info, 5637 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5638 inode->i_mode, btrfs_inode_type(inode), 5639 di_type); 5640 iput(inode); 5641 return ERR_PTR(-EUCLEAN); 5642 } 5643 return inode; 5644 } 5645 5646 ret = fixup_tree_root_location(fs_info, dir, dentry, 5647 &location, &sub_root); 5648 if (ret < 0) { 5649 if (ret != -ENOENT) 5650 inode = ERR_PTR(ret); 5651 else 5652 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5653 } else { 5654 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5655 } 5656 if (root != sub_root) 5657 btrfs_put_root(sub_root); 5658 5659 if (!IS_ERR(inode) && root != sub_root) { 5660 down_read(&fs_info->cleanup_work_sem); 5661 if (!sb_rdonly(inode->i_sb)) 5662 ret = btrfs_orphan_cleanup(sub_root); 5663 up_read(&fs_info->cleanup_work_sem); 5664 if (ret) { 5665 iput(inode); 5666 inode = ERR_PTR(ret); 5667 } 5668 } 5669 5670 return inode; 5671 } 5672 5673 static int btrfs_dentry_delete(const struct dentry *dentry) 5674 { 5675 struct btrfs_root *root; 5676 struct inode *inode = d_inode(dentry); 5677 5678 if (!inode && !IS_ROOT(dentry)) 5679 inode = d_inode(dentry->d_parent); 5680 5681 if (inode) { 5682 root = BTRFS_I(inode)->root; 5683 if (btrfs_root_refs(&root->root_item) == 0) 5684 return 1; 5685 5686 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5687 return 1; 5688 } 5689 return 0; 5690 } 5691 5692 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5693 unsigned int flags) 5694 { 5695 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5696 5697 if (inode == ERR_PTR(-ENOENT)) 5698 inode = NULL; 5699 return d_splice_alias(inode, dentry); 5700 } 5701 5702 /* 5703 * All this infrastructure exists because dir_emit can fault, and we are holding 5704 * the tree lock when doing readdir. For now just allocate a buffer and copy 5705 * our information into that, and then dir_emit from the buffer. This is 5706 * similar to what NFS does, only we don't keep the buffer around in pagecache 5707 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5708 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5709 * tree lock. 5710 */ 5711 static int btrfs_opendir(struct inode *inode, struct file *file) 5712 { 5713 struct btrfs_file_private *private; 5714 5715 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5716 if (!private) 5717 return -ENOMEM; 5718 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5719 if (!private->filldir_buf) { 5720 kfree(private); 5721 return -ENOMEM; 5722 } 5723 file->private_data = private; 5724 return 0; 5725 } 5726 5727 struct dir_entry { 5728 u64 ino; 5729 u64 offset; 5730 unsigned type; 5731 int name_len; 5732 }; 5733 5734 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5735 { 5736 while (entries--) { 5737 struct dir_entry *entry = addr; 5738 char *name = (char *)(entry + 1); 5739 5740 ctx->pos = get_unaligned(&entry->offset); 5741 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5742 get_unaligned(&entry->ino), 5743 get_unaligned(&entry->type))) 5744 return 1; 5745 addr += sizeof(struct dir_entry) + 5746 get_unaligned(&entry->name_len); 5747 ctx->pos++; 5748 } 5749 return 0; 5750 } 5751 5752 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5753 { 5754 struct inode *inode = file_inode(file); 5755 struct btrfs_root *root = BTRFS_I(inode)->root; 5756 struct btrfs_file_private *private = file->private_data; 5757 struct btrfs_dir_item *di; 5758 struct btrfs_key key; 5759 struct btrfs_key found_key; 5760 struct btrfs_path *path; 5761 void *addr; 5762 struct list_head ins_list; 5763 struct list_head del_list; 5764 int ret; 5765 struct extent_buffer *leaf; 5766 int slot; 5767 char *name_ptr; 5768 int name_len; 5769 int entries = 0; 5770 int total_len = 0; 5771 bool put = false; 5772 struct btrfs_key location; 5773 5774 if (!dir_emit_dots(file, ctx)) 5775 return 0; 5776 5777 path = btrfs_alloc_path(); 5778 if (!path) 5779 return -ENOMEM; 5780 5781 addr = private->filldir_buf; 5782 path->reada = READA_FORWARD; 5783 5784 INIT_LIST_HEAD(&ins_list); 5785 INIT_LIST_HEAD(&del_list); 5786 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5787 5788 again: 5789 key.type = BTRFS_DIR_INDEX_KEY; 5790 key.offset = ctx->pos; 5791 key.objectid = btrfs_ino(BTRFS_I(inode)); 5792 5793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5794 if (ret < 0) 5795 goto err; 5796 5797 while (1) { 5798 struct dir_entry *entry; 5799 5800 leaf = path->nodes[0]; 5801 slot = path->slots[0]; 5802 if (slot >= btrfs_header_nritems(leaf)) { 5803 ret = btrfs_next_leaf(root, path); 5804 if (ret < 0) 5805 goto err; 5806 else if (ret > 0) 5807 break; 5808 continue; 5809 } 5810 5811 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5812 5813 if (found_key.objectid != key.objectid) 5814 break; 5815 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5816 break; 5817 if (found_key.offset < ctx->pos) 5818 goto next; 5819 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5820 goto next; 5821 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5822 name_len = btrfs_dir_name_len(leaf, di); 5823 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5824 PAGE_SIZE) { 5825 btrfs_release_path(path); 5826 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5827 if (ret) 5828 goto nopos; 5829 addr = private->filldir_buf; 5830 entries = 0; 5831 total_len = 0; 5832 goto again; 5833 } 5834 5835 entry = addr; 5836 put_unaligned(name_len, &entry->name_len); 5837 name_ptr = (char *)(entry + 1); 5838 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5839 name_len); 5840 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5841 &entry->type); 5842 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5843 put_unaligned(location.objectid, &entry->ino); 5844 put_unaligned(found_key.offset, &entry->offset); 5845 entries++; 5846 addr += sizeof(struct dir_entry) + name_len; 5847 total_len += sizeof(struct dir_entry) + name_len; 5848 next: 5849 path->slots[0]++; 5850 } 5851 btrfs_release_path(path); 5852 5853 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5854 if (ret) 5855 goto nopos; 5856 5857 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5858 if (ret) 5859 goto nopos; 5860 5861 /* 5862 * Stop new entries from being returned after we return the last 5863 * entry. 5864 * 5865 * New directory entries are assigned a strictly increasing 5866 * offset. This means that new entries created during readdir 5867 * are *guaranteed* to be seen in the future by that readdir. 5868 * This has broken buggy programs which operate on names as 5869 * they're returned by readdir. Until we re-use freed offsets 5870 * we have this hack to stop new entries from being returned 5871 * under the assumption that they'll never reach this huge 5872 * offset. 5873 * 5874 * This is being careful not to overflow 32bit loff_t unless the 5875 * last entry requires it because doing so has broken 32bit apps 5876 * in the past. 5877 */ 5878 if (ctx->pos >= INT_MAX) 5879 ctx->pos = LLONG_MAX; 5880 else 5881 ctx->pos = INT_MAX; 5882 nopos: 5883 ret = 0; 5884 err: 5885 if (put) 5886 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5887 btrfs_free_path(path); 5888 return ret; 5889 } 5890 5891 /* 5892 * This is somewhat expensive, updating the tree every time the 5893 * inode changes. But, it is most likely to find the inode in cache. 5894 * FIXME, needs more benchmarking...there are no reasons other than performance 5895 * to keep or drop this code. 5896 */ 5897 static int btrfs_dirty_inode(struct inode *inode) 5898 { 5899 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5900 struct btrfs_root *root = BTRFS_I(inode)->root; 5901 struct btrfs_trans_handle *trans; 5902 int ret; 5903 5904 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5905 return 0; 5906 5907 trans = btrfs_join_transaction(root); 5908 if (IS_ERR(trans)) 5909 return PTR_ERR(trans); 5910 5911 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5912 if (ret && ret == -ENOSPC) { 5913 /* whoops, lets try again with the full transaction */ 5914 btrfs_end_transaction(trans); 5915 trans = btrfs_start_transaction(root, 1); 5916 if (IS_ERR(trans)) 5917 return PTR_ERR(trans); 5918 5919 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5920 } 5921 btrfs_end_transaction(trans); 5922 if (BTRFS_I(inode)->delayed_node) 5923 btrfs_balance_delayed_items(fs_info); 5924 5925 return ret; 5926 } 5927 5928 /* 5929 * This is a copy of file_update_time. We need this so we can return error on 5930 * ENOSPC for updating the inode in the case of file write and mmap writes. 5931 */ 5932 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5933 int flags) 5934 { 5935 struct btrfs_root *root = BTRFS_I(inode)->root; 5936 bool dirty = flags & ~S_VERSION; 5937 5938 if (btrfs_root_readonly(root)) 5939 return -EROFS; 5940 5941 if (flags & S_VERSION) 5942 dirty |= inode_maybe_inc_iversion(inode, dirty); 5943 if (flags & S_CTIME) 5944 inode->i_ctime = *now; 5945 if (flags & S_MTIME) 5946 inode->i_mtime = *now; 5947 if (flags & S_ATIME) 5948 inode->i_atime = *now; 5949 return dirty ? btrfs_dirty_inode(inode) : 0; 5950 } 5951 5952 /* 5953 * find the highest existing sequence number in a directory 5954 * and then set the in-memory index_cnt variable to reflect 5955 * free sequence numbers 5956 */ 5957 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5958 { 5959 struct btrfs_root *root = inode->root; 5960 struct btrfs_key key, found_key; 5961 struct btrfs_path *path; 5962 struct extent_buffer *leaf; 5963 int ret; 5964 5965 key.objectid = btrfs_ino(inode); 5966 key.type = BTRFS_DIR_INDEX_KEY; 5967 key.offset = (u64)-1; 5968 5969 path = btrfs_alloc_path(); 5970 if (!path) 5971 return -ENOMEM; 5972 5973 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5974 if (ret < 0) 5975 goto out; 5976 /* FIXME: we should be able to handle this */ 5977 if (ret == 0) 5978 goto out; 5979 ret = 0; 5980 5981 /* 5982 * MAGIC NUMBER EXPLANATION: 5983 * since we search a directory based on f_pos we have to start at 2 5984 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5985 * else has to start at 2 5986 */ 5987 if (path->slots[0] == 0) { 5988 inode->index_cnt = 2; 5989 goto out; 5990 } 5991 5992 path->slots[0]--; 5993 5994 leaf = path->nodes[0]; 5995 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5996 5997 if (found_key.objectid != btrfs_ino(inode) || 5998 found_key.type != BTRFS_DIR_INDEX_KEY) { 5999 inode->index_cnt = 2; 6000 goto out; 6001 } 6002 6003 inode->index_cnt = found_key.offset + 1; 6004 out: 6005 btrfs_free_path(path); 6006 return ret; 6007 } 6008 6009 /* 6010 * helper to find a free sequence number in a given directory. This current 6011 * code is very simple, later versions will do smarter things in the btree 6012 */ 6013 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6014 { 6015 int ret = 0; 6016 6017 if (dir->index_cnt == (u64)-1) { 6018 ret = btrfs_inode_delayed_dir_index_count(dir); 6019 if (ret) { 6020 ret = btrfs_set_inode_index_count(dir); 6021 if (ret) 6022 return ret; 6023 } 6024 } 6025 6026 *index = dir->index_cnt; 6027 dir->index_cnt++; 6028 6029 return ret; 6030 } 6031 6032 static int btrfs_insert_inode_locked(struct inode *inode) 6033 { 6034 struct btrfs_iget_args args; 6035 6036 args.ino = BTRFS_I(inode)->location.objectid; 6037 args.root = BTRFS_I(inode)->root; 6038 6039 return insert_inode_locked4(inode, 6040 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6041 btrfs_find_actor, &args); 6042 } 6043 6044 /* 6045 * Inherit flags from the parent inode. 6046 * 6047 * Currently only the compression flags and the cow flags are inherited. 6048 */ 6049 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6050 { 6051 unsigned int flags; 6052 6053 if (!dir) 6054 return; 6055 6056 flags = BTRFS_I(dir)->flags; 6057 6058 if (flags & BTRFS_INODE_NOCOMPRESS) { 6059 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6060 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6061 } else if (flags & BTRFS_INODE_COMPRESS) { 6062 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6063 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6064 } 6065 6066 if (flags & BTRFS_INODE_NODATACOW) { 6067 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6068 if (S_ISREG(inode->i_mode)) 6069 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6070 } 6071 6072 btrfs_sync_inode_flags_to_i_flags(inode); 6073 } 6074 6075 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6076 struct btrfs_root *root, 6077 struct inode *dir, 6078 const char *name, int name_len, 6079 u64 ref_objectid, u64 objectid, 6080 umode_t mode, u64 *index) 6081 { 6082 struct btrfs_fs_info *fs_info = root->fs_info; 6083 struct inode *inode; 6084 struct btrfs_inode_item *inode_item; 6085 struct btrfs_key *location; 6086 struct btrfs_path *path; 6087 struct btrfs_inode_ref *ref; 6088 struct btrfs_key key[2]; 6089 u32 sizes[2]; 6090 int nitems = name ? 2 : 1; 6091 unsigned long ptr; 6092 unsigned int nofs_flag; 6093 int ret; 6094 6095 path = btrfs_alloc_path(); 6096 if (!path) 6097 return ERR_PTR(-ENOMEM); 6098 6099 nofs_flag = memalloc_nofs_save(); 6100 inode = new_inode(fs_info->sb); 6101 memalloc_nofs_restore(nofs_flag); 6102 if (!inode) { 6103 btrfs_free_path(path); 6104 return ERR_PTR(-ENOMEM); 6105 } 6106 6107 /* 6108 * O_TMPFILE, set link count to 0, so that after this point, 6109 * we fill in an inode item with the correct link count. 6110 */ 6111 if (!name) 6112 set_nlink(inode, 0); 6113 6114 /* 6115 * we have to initialize this early, so we can reclaim the inode 6116 * number if we fail afterwards in this function. 6117 */ 6118 inode->i_ino = objectid; 6119 6120 if (dir && name) { 6121 trace_btrfs_inode_request(dir); 6122 6123 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6124 if (ret) { 6125 btrfs_free_path(path); 6126 iput(inode); 6127 return ERR_PTR(ret); 6128 } 6129 } else if (dir) { 6130 *index = 0; 6131 } 6132 /* 6133 * index_cnt is ignored for everything but a dir, 6134 * btrfs_set_inode_index_count has an explanation for the magic 6135 * number 6136 */ 6137 BTRFS_I(inode)->index_cnt = 2; 6138 BTRFS_I(inode)->dir_index = *index; 6139 BTRFS_I(inode)->root = btrfs_grab_root(root); 6140 BTRFS_I(inode)->generation = trans->transid; 6141 inode->i_generation = BTRFS_I(inode)->generation; 6142 6143 /* 6144 * We could have gotten an inode number from somebody who was fsynced 6145 * and then removed in this same transaction, so let's just set full 6146 * sync since it will be a full sync anyway and this will blow away the 6147 * old info in the log. 6148 */ 6149 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6150 6151 key[0].objectid = objectid; 6152 key[0].type = BTRFS_INODE_ITEM_KEY; 6153 key[0].offset = 0; 6154 6155 sizes[0] = sizeof(struct btrfs_inode_item); 6156 6157 if (name) { 6158 /* 6159 * Start new inodes with an inode_ref. This is slightly more 6160 * efficient for small numbers of hard links since they will 6161 * be packed into one item. Extended refs will kick in if we 6162 * add more hard links than can fit in the ref item. 6163 */ 6164 key[1].objectid = objectid; 6165 key[1].type = BTRFS_INODE_REF_KEY; 6166 key[1].offset = ref_objectid; 6167 6168 sizes[1] = name_len + sizeof(*ref); 6169 } 6170 6171 location = &BTRFS_I(inode)->location; 6172 location->objectid = objectid; 6173 location->offset = 0; 6174 location->type = BTRFS_INODE_ITEM_KEY; 6175 6176 ret = btrfs_insert_inode_locked(inode); 6177 if (ret < 0) { 6178 iput(inode); 6179 goto fail; 6180 } 6181 6182 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6183 if (ret != 0) 6184 goto fail_unlock; 6185 6186 inode_init_owner(inode, dir, mode); 6187 inode_set_bytes(inode, 0); 6188 6189 inode->i_mtime = current_time(inode); 6190 inode->i_atime = inode->i_mtime; 6191 inode->i_ctime = inode->i_mtime; 6192 BTRFS_I(inode)->i_otime = inode->i_mtime; 6193 6194 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6195 struct btrfs_inode_item); 6196 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6197 sizeof(*inode_item)); 6198 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6199 6200 if (name) { 6201 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6202 struct btrfs_inode_ref); 6203 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6204 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6205 ptr = (unsigned long)(ref + 1); 6206 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6207 } 6208 6209 btrfs_mark_buffer_dirty(path->nodes[0]); 6210 btrfs_free_path(path); 6211 6212 btrfs_inherit_iflags(inode, dir); 6213 6214 if (S_ISREG(mode)) { 6215 if (btrfs_test_opt(fs_info, NODATASUM)) 6216 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6217 if (btrfs_test_opt(fs_info, NODATACOW)) 6218 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6219 BTRFS_INODE_NODATASUM; 6220 } 6221 6222 inode_tree_add(inode); 6223 6224 trace_btrfs_inode_new(inode); 6225 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6226 6227 btrfs_update_root_times(trans, root); 6228 6229 ret = btrfs_inode_inherit_props(trans, inode, dir); 6230 if (ret) 6231 btrfs_err(fs_info, 6232 "error inheriting props for ino %llu (root %llu): %d", 6233 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6234 6235 return inode; 6236 6237 fail_unlock: 6238 discard_new_inode(inode); 6239 fail: 6240 if (dir && name) 6241 BTRFS_I(dir)->index_cnt--; 6242 btrfs_free_path(path); 6243 return ERR_PTR(ret); 6244 } 6245 6246 /* 6247 * utility function to add 'inode' into 'parent_inode' with 6248 * a give name and a given sequence number. 6249 * if 'add_backref' is true, also insert a backref from the 6250 * inode to the parent directory. 6251 */ 6252 int btrfs_add_link(struct btrfs_trans_handle *trans, 6253 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6254 const char *name, int name_len, int add_backref, u64 index) 6255 { 6256 int ret = 0; 6257 struct btrfs_key key; 6258 struct btrfs_root *root = parent_inode->root; 6259 u64 ino = btrfs_ino(inode); 6260 u64 parent_ino = btrfs_ino(parent_inode); 6261 6262 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6263 memcpy(&key, &inode->root->root_key, sizeof(key)); 6264 } else { 6265 key.objectid = ino; 6266 key.type = BTRFS_INODE_ITEM_KEY; 6267 key.offset = 0; 6268 } 6269 6270 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6271 ret = btrfs_add_root_ref(trans, key.objectid, 6272 root->root_key.objectid, parent_ino, 6273 index, name, name_len); 6274 } else if (add_backref) { 6275 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6276 parent_ino, index); 6277 } 6278 6279 /* Nothing to clean up yet */ 6280 if (ret) 6281 return ret; 6282 6283 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6284 btrfs_inode_type(&inode->vfs_inode), index); 6285 if (ret == -EEXIST || ret == -EOVERFLOW) 6286 goto fail_dir_item; 6287 else if (ret) { 6288 btrfs_abort_transaction(trans, ret); 6289 return ret; 6290 } 6291 6292 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6293 name_len * 2); 6294 inode_inc_iversion(&parent_inode->vfs_inode); 6295 /* 6296 * If we are replaying a log tree, we do not want to update the mtime 6297 * and ctime of the parent directory with the current time, since the 6298 * log replay procedure is responsible for setting them to their correct 6299 * values (the ones it had when the fsync was done). 6300 */ 6301 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6302 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6303 6304 parent_inode->vfs_inode.i_mtime = now; 6305 parent_inode->vfs_inode.i_ctime = now; 6306 } 6307 ret = btrfs_update_inode(trans, root, parent_inode); 6308 if (ret) 6309 btrfs_abort_transaction(trans, ret); 6310 return ret; 6311 6312 fail_dir_item: 6313 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6314 u64 local_index; 6315 int err; 6316 err = btrfs_del_root_ref(trans, key.objectid, 6317 root->root_key.objectid, parent_ino, 6318 &local_index, name, name_len); 6319 if (err) 6320 btrfs_abort_transaction(trans, err); 6321 } else if (add_backref) { 6322 u64 local_index; 6323 int err; 6324 6325 err = btrfs_del_inode_ref(trans, root, name, name_len, 6326 ino, parent_ino, &local_index); 6327 if (err) 6328 btrfs_abort_transaction(trans, err); 6329 } 6330 6331 /* Return the original error code */ 6332 return ret; 6333 } 6334 6335 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6336 struct btrfs_inode *dir, struct dentry *dentry, 6337 struct btrfs_inode *inode, int backref, u64 index) 6338 { 6339 int err = btrfs_add_link(trans, dir, inode, 6340 dentry->d_name.name, dentry->d_name.len, 6341 backref, index); 6342 if (err > 0) 6343 err = -EEXIST; 6344 return err; 6345 } 6346 6347 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6348 umode_t mode, dev_t rdev) 6349 { 6350 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6351 struct btrfs_trans_handle *trans; 6352 struct btrfs_root *root = BTRFS_I(dir)->root; 6353 struct inode *inode = NULL; 6354 int err; 6355 u64 objectid; 6356 u64 index = 0; 6357 6358 /* 6359 * 2 for inode item and ref 6360 * 2 for dir items 6361 * 1 for xattr if selinux is on 6362 */ 6363 trans = btrfs_start_transaction(root, 5); 6364 if (IS_ERR(trans)) 6365 return PTR_ERR(trans); 6366 6367 err = btrfs_find_free_objectid(root, &objectid); 6368 if (err) 6369 goto out_unlock; 6370 6371 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6372 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6373 mode, &index); 6374 if (IS_ERR(inode)) { 6375 err = PTR_ERR(inode); 6376 inode = NULL; 6377 goto out_unlock; 6378 } 6379 6380 /* 6381 * If the active LSM wants to access the inode during 6382 * d_instantiate it needs these. Smack checks to see 6383 * if the filesystem supports xattrs by looking at the 6384 * ops vector. 6385 */ 6386 inode->i_op = &btrfs_special_inode_operations; 6387 init_special_inode(inode, inode->i_mode, rdev); 6388 6389 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6390 if (err) 6391 goto out_unlock; 6392 6393 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6394 0, index); 6395 if (err) 6396 goto out_unlock; 6397 6398 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6399 d_instantiate_new(dentry, inode); 6400 6401 out_unlock: 6402 btrfs_end_transaction(trans); 6403 btrfs_btree_balance_dirty(fs_info); 6404 if (err && inode) { 6405 inode_dec_link_count(inode); 6406 discard_new_inode(inode); 6407 } 6408 return err; 6409 } 6410 6411 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6412 umode_t mode, bool excl) 6413 { 6414 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6415 struct btrfs_trans_handle *trans; 6416 struct btrfs_root *root = BTRFS_I(dir)->root; 6417 struct inode *inode = NULL; 6418 int err; 6419 u64 objectid; 6420 u64 index = 0; 6421 6422 /* 6423 * 2 for inode item and ref 6424 * 2 for dir items 6425 * 1 for xattr if selinux is on 6426 */ 6427 trans = btrfs_start_transaction(root, 5); 6428 if (IS_ERR(trans)) 6429 return PTR_ERR(trans); 6430 6431 err = btrfs_find_free_objectid(root, &objectid); 6432 if (err) 6433 goto out_unlock; 6434 6435 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6436 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6437 mode, &index); 6438 if (IS_ERR(inode)) { 6439 err = PTR_ERR(inode); 6440 inode = NULL; 6441 goto out_unlock; 6442 } 6443 /* 6444 * If the active LSM wants to access the inode during 6445 * d_instantiate it needs these. Smack checks to see 6446 * if the filesystem supports xattrs by looking at the 6447 * ops vector. 6448 */ 6449 inode->i_fop = &btrfs_file_operations; 6450 inode->i_op = &btrfs_file_inode_operations; 6451 inode->i_mapping->a_ops = &btrfs_aops; 6452 6453 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6454 if (err) 6455 goto out_unlock; 6456 6457 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6458 if (err) 6459 goto out_unlock; 6460 6461 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6462 0, index); 6463 if (err) 6464 goto out_unlock; 6465 6466 d_instantiate_new(dentry, inode); 6467 6468 out_unlock: 6469 btrfs_end_transaction(trans); 6470 if (err && inode) { 6471 inode_dec_link_count(inode); 6472 discard_new_inode(inode); 6473 } 6474 btrfs_btree_balance_dirty(fs_info); 6475 return err; 6476 } 6477 6478 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6479 struct dentry *dentry) 6480 { 6481 struct btrfs_trans_handle *trans = NULL; 6482 struct btrfs_root *root = BTRFS_I(dir)->root; 6483 struct inode *inode = d_inode(old_dentry); 6484 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6485 u64 index; 6486 int err; 6487 int drop_inode = 0; 6488 6489 /* do not allow sys_link's with other subvols of the same device */ 6490 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6491 return -EXDEV; 6492 6493 if (inode->i_nlink >= BTRFS_LINK_MAX) 6494 return -EMLINK; 6495 6496 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6497 if (err) 6498 goto fail; 6499 6500 /* 6501 * 2 items for inode and inode ref 6502 * 2 items for dir items 6503 * 1 item for parent inode 6504 * 1 item for orphan item deletion if O_TMPFILE 6505 */ 6506 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6507 if (IS_ERR(trans)) { 6508 err = PTR_ERR(trans); 6509 trans = NULL; 6510 goto fail; 6511 } 6512 6513 /* There are several dir indexes for this inode, clear the cache. */ 6514 BTRFS_I(inode)->dir_index = 0ULL; 6515 inc_nlink(inode); 6516 inode_inc_iversion(inode); 6517 inode->i_ctime = current_time(inode); 6518 ihold(inode); 6519 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6520 6521 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6522 1, index); 6523 6524 if (err) { 6525 drop_inode = 1; 6526 } else { 6527 struct dentry *parent = dentry->d_parent; 6528 6529 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6530 if (err) 6531 goto fail; 6532 if (inode->i_nlink == 1) { 6533 /* 6534 * If new hard link count is 1, it's a file created 6535 * with open(2) O_TMPFILE flag. 6536 */ 6537 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6538 if (err) 6539 goto fail; 6540 } 6541 d_instantiate(dentry, inode); 6542 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6543 } 6544 6545 fail: 6546 if (trans) 6547 btrfs_end_transaction(trans); 6548 if (drop_inode) { 6549 inode_dec_link_count(inode); 6550 iput(inode); 6551 } 6552 btrfs_btree_balance_dirty(fs_info); 6553 return err; 6554 } 6555 6556 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6557 { 6558 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6559 struct inode *inode = NULL; 6560 struct btrfs_trans_handle *trans; 6561 struct btrfs_root *root = BTRFS_I(dir)->root; 6562 int err = 0; 6563 u64 objectid = 0; 6564 u64 index = 0; 6565 6566 /* 6567 * 2 items for inode and ref 6568 * 2 items for dir items 6569 * 1 for xattr if selinux is on 6570 */ 6571 trans = btrfs_start_transaction(root, 5); 6572 if (IS_ERR(trans)) 6573 return PTR_ERR(trans); 6574 6575 err = btrfs_find_free_objectid(root, &objectid); 6576 if (err) 6577 goto out_fail; 6578 6579 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6580 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6581 S_IFDIR | mode, &index); 6582 if (IS_ERR(inode)) { 6583 err = PTR_ERR(inode); 6584 inode = NULL; 6585 goto out_fail; 6586 } 6587 6588 /* these must be set before we unlock the inode */ 6589 inode->i_op = &btrfs_dir_inode_operations; 6590 inode->i_fop = &btrfs_dir_file_operations; 6591 6592 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6593 if (err) 6594 goto out_fail; 6595 6596 btrfs_i_size_write(BTRFS_I(inode), 0); 6597 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6598 if (err) 6599 goto out_fail; 6600 6601 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6602 dentry->d_name.name, 6603 dentry->d_name.len, 0, index); 6604 if (err) 6605 goto out_fail; 6606 6607 d_instantiate_new(dentry, inode); 6608 6609 out_fail: 6610 btrfs_end_transaction(trans); 6611 if (err && inode) { 6612 inode_dec_link_count(inode); 6613 discard_new_inode(inode); 6614 } 6615 btrfs_btree_balance_dirty(fs_info); 6616 return err; 6617 } 6618 6619 static noinline int uncompress_inline(struct btrfs_path *path, 6620 struct page *page, 6621 size_t pg_offset, u64 extent_offset, 6622 struct btrfs_file_extent_item *item) 6623 { 6624 int ret; 6625 struct extent_buffer *leaf = path->nodes[0]; 6626 char *tmp; 6627 size_t max_size; 6628 unsigned long inline_size; 6629 unsigned long ptr; 6630 int compress_type; 6631 6632 WARN_ON(pg_offset != 0); 6633 compress_type = btrfs_file_extent_compression(leaf, item); 6634 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6635 inline_size = btrfs_file_extent_inline_item_len(leaf, 6636 btrfs_item_nr(path->slots[0])); 6637 tmp = kmalloc(inline_size, GFP_NOFS); 6638 if (!tmp) 6639 return -ENOMEM; 6640 ptr = btrfs_file_extent_inline_start(item); 6641 6642 read_extent_buffer(leaf, tmp, ptr, inline_size); 6643 6644 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6645 ret = btrfs_decompress(compress_type, tmp, page, 6646 extent_offset, inline_size, max_size); 6647 6648 /* 6649 * decompression code contains a memset to fill in any space between the end 6650 * of the uncompressed data and the end of max_size in case the decompressed 6651 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6652 * the end of an inline extent and the beginning of the next block, so we 6653 * cover that region here. 6654 */ 6655 6656 if (max_size + pg_offset < PAGE_SIZE) { 6657 char *map = kmap(page); 6658 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6659 kunmap(page); 6660 } 6661 kfree(tmp); 6662 return ret; 6663 } 6664 6665 /** 6666 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6667 * @inode: file to search in 6668 * @page: page to read extent data into if the extent is inline 6669 * @pg_offset: offset into @page to copy to 6670 * @start: file offset 6671 * @len: length of range starting at @start 6672 * 6673 * This returns the first &struct extent_map which overlaps with the given 6674 * range, reading it from the B-tree and caching it if necessary. Note that 6675 * there may be more extents which overlap the given range after the returned 6676 * extent_map. 6677 * 6678 * If @page is not NULL and the extent is inline, this also reads the extent 6679 * data directly into the page and marks the extent up to date in the io_tree. 6680 * 6681 * Return: ERR_PTR on error, non-NULL extent_map on success. 6682 */ 6683 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6684 struct page *page, size_t pg_offset, 6685 u64 start, u64 len) 6686 { 6687 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6688 int ret = 0; 6689 u64 extent_start = 0; 6690 u64 extent_end = 0; 6691 u64 objectid = btrfs_ino(inode); 6692 int extent_type = -1; 6693 struct btrfs_path *path = NULL; 6694 struct btrfs_root *root = inode->root; 6695 struct btrfs_file_extent_item *item; 6696 struct extent_buffer *leaf; 6697 struct btrfs_key found_key; 6698 struct extent_map *em = NULL; 6699 struct extent_map_tree *em_tree = &inode->extent_tree; 6700 struct extent_io_tree *io_tree = &inode->io_tree; 6701 6702 read_lock(&em_tree->lock); 6703 em = lookup_extent_mapping(em_tree, start, len); 6704 read_unlock(&em_tree->lock); 6705 6706 if (em) { 6707 if (em->start > start || em->start + em->len <= start) 6708 free_extent_map(em); 6709 else if (em->block_start == EXTENT_MAP_INLINE && page) 6710 free_extent_map(em); 6711 else 6712 goto out; 6713 } 6714 em = alloc_extent_map(); 6715 if (!em) { 6716 ret = -ENOMEM; 6717 goto out; 6718 } 6719 em->start = EXTENT_MAP_HOLE; 6720 em->orig_start = EXTENT_MAP_HOLE; 6721 em->len = (u64)-1; 6722 em->block_len = (u64)-1; 6723 6724 path = btrfs_alloc_path(); 6725 if (!path) { 6726 ret = -ENOMEM; 6727 goto out; 6728 } 6729 6730 /* Chances are we'll be called again, so go ahead and do readahead */ 6731 path->reada = READA_FORWARD; 6732 6733 /* 6734 * The same explanation in load_free_space_cache applies here as well, 6735 * we only read when we're loading the free space cache, and at that 6736 * point the commit_root has everything we need. 6737 */ 6738 if (btrfs_is_free_space_inode(inode)) { 6739 path->search_commit_root = 1; 6740 path->skip_locking = 1; 6741 } 6742 6743 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6744 if (ret < 0) { 6745 goto out; 6746 } else if (ret > 0) { 6747 if (path->slots[0] == 0) 6748 goto not_found; 6749 path->slots[0]--; 6750 ret = 0; 6751 } 6752 6753 leaf = path->nodes[0]; 6754 item = btrfs_item_ptr(leaf, path->slots[0], 6755 struct btrfs_file_extent_item); 6756 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6757 if (found_key.objectid != objectid || 6758 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6759 /* 6760 * If we backup past the first extent we want to move forward 6761 * and see if there is an extent in front of us, otherwise we'll 6762 * say there is a hole for our whole search range which can 6763 * cause problems. 6764 */ 6765 extent_end = start; 6766 goto next; 6767 } 6768 6769 extent_type = btrfs_file_extent_type(leaf, item); 6770 extent_start = found_key.offset; 6771 extent_end = btrfs_file_extent_end(path); 6772 if (extent_type == BTRFS_FILE_EXTENT_REG || 6773 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6774 /* Only regular file could have regular/prealloc extent */ 6775 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6776 ret = -EUCLEAN; 6777 btrfs_crit(fs_info, 6778 "regular/prealloc extent found for non-regular inode %llu", 6779 btrfs_ino(inode)); 6780 goto out; 6781 } 6782 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6783 extent_start); 6784 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6785 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6786 path->slots[0], 6787 extent_start); 6788 } 6789 next: 6790 if (start >= extent_end) { 6791 path->slots[0]++; 6792 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6793 ret = btrfs_next_leaf(root, path); 6794 if (ret < 0) 6795 goto out; 6796 else if (ret > 0) 6797 goto not_found; 6798 6799 leaf = path->nodes[0]; 6800 } 6801 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6802 if (found_key.objectid != objectid || 6803 found_key.type != BTRFS_EXTENT_DATA_KEY) 6804 goto not_found; 6805 if (start + len <= found_key.offset) 6806 goto not_found; 6807 if (start > found_key.offset) 6808 goto next; 6809 6810 /* New extent overlaps with existing one */ 6811 em->start = start; 6812 em->orig_start = start; 6813 em->len = found_key.offset - start; 6814 em->block_start = EXTENT_MAP_HOLE; 6815 goto insert; 6816 } 6817 6818 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6819 6820 if (extent_type == BTRFS_FILE_EXTENT_REG || 6821 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6822 goto insert; 6823 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6824 unsigned long ptr; 6825 char *map; 6826 size_t size; 6827 size_t extent_offset; 6828 size_t copy_size; 6829 6830 if (!page) 6831 goto out; 6832 6833 size = btrfs_file_extent_ram_bytes(leaf, item); 6834 extent_offset = page_offset(page) + pg_offset - extent_start; 6835 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6836 size - extent_offset); 6837 em->start = extent_start + extent_offset; 6838 em->len = ALIGN(copy_size, fs_info->sectorsize); 6839 em->orig_block_len = em->len; 6840 em->orig_start = em->start; 6841 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6842 6843 if (!PageUptodate(page)) { 6844 if (btrfs_file_extent_compression(leaf, item) != 6845 BTRFS_COMPRESS_NONE) { 6846 ret = uncompress_inline(path, page, pg_offset, 6847 extent_offset, item); 6848 if (ret) 6849 goto out; 6850 } else { 6851 map = kmap(page); 6852 read_extent_buffer(leaf, map + pg_offset, ptr, 6853 copy_size); 6854 if (pg_offset + copy_size < PAGE_SIZE) { 6855 memset(map + pg_offset + copy_size, 0, 6856 PAGE_SIZE - pg_offset - 6857 copy_size); 6858 } 6859 kunmap(page); 6860 } 6861 flush_dcache_page(page); 6862 } 6863 set_extent_uptodate(io_tree, em->start, 6864 extent_map_end(em) - 1, NULL, GFP_NOFS); 6865 goto insert; 6866 } 6867 not_found: 6868 em->start = start; 6869 em->orig_start = start; 6870 em->len = len; 6871 em->block_start = EXTENT_MAP_HOLE; 6872 insert: 6873 ret = 0; 6874 btrfs_release_path(path); 6875 if (em->start > start || extent_map_end(em) <= start) { 6876 btrfs_err(fs_info, 6877 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6878 em->start, em->len, start, len); 6879 ret = -EIO; 6880 goto out; 6881 } 6882 6883 write_lock(&em_tree->lock); 6884 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6885 write_unlock(&em_tree->lock); 6886 out: 6887 btrfs_free_path(path); 6888 6889 trace_btrfs_get_extent(root, inode, em); 6890 6891 if (ret) { 6892 free_extent_map(em); 6893 return ERR_PTR(ret); 6894 } 6895 return em; 6896 } 6897 6898 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6899 u64 start, u64 len) 6900 { 6901 struct extent_map *em; 6902 struct extent_map *hole_em = NULL; 6903 u64 delalloc_start = start; 6904 u64 end; 6905 u64 delalloc_len; 6906 u64 delalloc_end; 6907 int err = 0; 6908 6909 em = btrfs_get_extent(inode, NULL, 0, start, len); 6910 if (IS_ERR(em)) 6911 return em; 6912 /* 6913 * If our em maps to: 6914 * - a hole or 6915 * - a pre-alloc extent, 6916 * there might actually be delalloc bytes behind it. 6917 */ 6918 if (em->block_start != EXTENT_MAP_HOLE && 6919 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6920 return em; 6921 else 6922 hole_em = em; 6923 6924 /* check to see if we've wrapped (len == -1 or similar) */ 6925 end = start + len; 6926 if (end < start) 6927 end = (u64)-1; 6928 else 6929 end -= 1; 6930 6931 em = NULL; 6932 6933 /* ok, we didn't find anything, lets look for delalloc */ 6934 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6935 end, len, EXTENT_DELALLOC, 1); 6936 delalloc_end = delalloc_start + delalloc_len; 6937 if (delalloc_end < delalloc_start) 6938 delalloc_end = (u64)-1; 6939 6940 /* 6941 * We didn't find anything useful, return the original results from 6942 * get_extent() 6943 */ 6944 if (delalloc_start > end || delalloc_end <= start) { 6945 em = hole_em; 6946 hole_em = NULL; 6947 goto out; 6948 } 6949 6950 /* 6951 * Adjust the delalloc_start to make sure it doesn't go backwards from 6952 * the start they passed in 6953 */ 6954 delalloc_start = max(start, delalloc_start); 6955 delalloc_len = delalloc_end - delalloc_start; 6956 6957 if (delalloc_len > 0) { 6958 u64 hole_start; 6959 u64 hole_len; 6960 const u64 hole_end = extent_map_end(hole_em); 6961 6962 em = alloc_extent_map(); 6963 if (!em) { 6964 err = -ENOMEM; 6965 goto out; 6966 } 6967 6968 ASSERT(hole_em); 6969 /* 6970 * When btrfs_get_extent can't find anything it returns one 6971 * huge hole 6972 * 6973 * Make sure what it found really fits our range, and adjust to 6974 * make sure it is based on the start from the caller 6975 */ 6976 if (hole_end <= start || hole_em->start > end) { 6977 free_extent_map(hole_em); 6978 hole_em = NULL; 6979 } else { 6980 hole_start = max(hole_em->start, start); 6981 hole_len = hole_end - hole_start; 6982 } 6983 6984 if (hole_em && delalloc_start > hole_start) { 6985 /* 6986 * Our hole starts before our delalloc, so we have to 6987 * return just the parts of the hole that go until the 6988 * delalloc starts 6989 */ 6990 em->len = min(hole_len, delalloc_start - hole_start); 6991 em->start = hole_start; 6992 em->orig_start = hole_start; 6993 /* 6994 * Don't adjust block start at all, it is fixed at 6995 * EXTENT_MAP_HOLE 6996 */ 6997 em->block_start = hole_em->block_start; 6998 em->block_len = hole_len; 6999 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7000 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7001 } else { 7002 /* 7003 * Hole is out of passed range or it starts after 7004 * delalloc range 7005 */ 7006 em->start = delalloc_start; 7007 em->len = delalloc_len; 7008 em->orig_start = delalloc_start; 7009 em->block_start = EXTENT_MAP_DELALLOC; 7010 em->block_len = delalloc_len; 7011 } 7012 } else { 7013 return hole_em; 7014 } 7015 out: 7016 7017 free_extent_map(hole_em); 7018 if (err) { 7019 free_extent_map(em); 7020 return ERR_PTR(err); 7021 } 7022 return em; 7023 } 7024 7025 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7026 const u64 start, 7027 const u64 len, 7028 const u64 orig_start, 7029 const u64 block_start, 7030 const u64 block_len, 7031 const u64 orig_block_len, 7032 const u64 ram_bytes, 7033 const int type) 7034 { 7035 struct extent_map *em = NULL; 7036 int ret; 7037 7038 if (type != BTRFS_ORDERED_NOCOW) { 7039 em = create_io_em(inode, start, len, orig_start, block_start, 7040 block_len, orig_block_len, ram_bytes, 7041 BTRFS_COMPRESS_NONE, /* compress_type */ 7042 type); 7043 if (IS_ERR(em)) 7044 goto out; 7045 } 7046 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7047 block_len, type); 7048 if (ret) { 7049 if (em) { 7050 free_extent_map(em); 7051 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7052 } 7053 em = ERR_PTR(ret); 7054 } 7055 out: 7056 7057 return em; 7058 } 7059 7060 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7061 u64 start, u64 len) 7062 { 7063 struct btrfs_root *root = inode->root; 7064 struct btrfs_fs_info *fs_info = root->fs_info; 7065 struct extent_map *em; 7066 struct btrfs_key ins; 7067 u64 alloc_hint; 7068 int ret; 7069 7070 alloc_hint = get_extent_allocation_hint(inode, start, len); 7071 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7072 0, alloc_hint, &ins, 1, 1); 7073 if (ret) 7074 return ERR_PTR(ret); 7075 7076 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7077 ins.objectid, ins.offset, ins.offset, 7078 ins.offset, BTRFS_ORDERED_REGULAR); 7079 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7080 if (IS_ERR(em)) 7081 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7082 1); 7083 7084 return em; 7085 } 7086 7087 /* 7088 * Check if we can do nocow write into the range [@offset, @offset + @len) 7089 * 7090 * @offset: File offset 7091 * @len: The length to write, will be updated to the nocow writeable 7092 * range 7093 * @orig_start: (optional) Return the original file offset of the file extent 7094 * @orig_len: (optional) Return the original on-disk length of the file extent 7095 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7096 * @strict: if true, omit optimizations that might force us into unnecessary 7097 * cow. e.g., don't trust generation number. 7098 * 7099 * This function will flush ordered extents in the range to ensure proper 7100 * nocow checks for (nowait == false) case. 7101 * 7102 * Return: 7103 * >0 and update @len if we can do nocow write 7104 * 0 if we can't do nocow write 7105 * <0 if error happened 7106 * 7107 * NOTE: This only checks the file extents, caller is responsible to wait for 7108 * any ordered extents. 7109 */ 7110 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7111 u64 *orig_start, u64 *orig_block_len, 7112 u64 *ram_bytes, bool strict) 7113 { 7114 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7115 struct btrfs_path *path; 7116 int ret; 7117 struct extent_buffer *leaf; 7118 struct btrfs_root *root = BTRFS_I(inode)->root; 7119 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7120 struct btrfs_file_extent_item *fi; 7121 struct btrfs_key key; 7122 u64 disk_bytenr; 7123 u64 backref_offset; 7124 u64 extent_end; 7125 u64 num_bytes; 7126 int slot; 7127 int found_type; 7128 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7129 7130 path = btrfs_alloc_path(); 7131 if (!path) 7132 return -ENOMEM; 7133 7134 ret = btrfs_lookup_file_extent(NULL, root, path, 7135 btrfs_ino(BTRFS_I(inode)), offset, 0); 7136 if (ret < 0) 7137 goto out; 7138 7139 slot = path->slots[0]; 7140 if (ret == 1) { 7141 if (slot == 0) { 7142 /* can't find the item, must cow */ 7143 ret = 0; 7144 goto out; 7145 } 7146 slot--; 7147 } 7148 ret = 0; 7149 leaf = path->nodes[0]; 7150 btrfs_item_key_to_cpu(leaf, &key, slot); 7151 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7152 key.type != BTRFS_EXTENT_DATA_KEY) { 7153 /* not our file or wrong item type, must cow */ 7154 goto out; 7155 } 7156 7157 if (key.offset > offset) { 7158 /* Wrong offset, must cow */ 7159 goto out; 7160 } 7161 7162 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7163 found_type = btrfs_file_extent_type(leaf, fi); 7164 if (found_type != BTRFS_FILE_EXTENT_REG && 7165 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7166 /* not a regular extent, must cow */ 7167 goto out; 7168 } 7169 7170 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7171 goto out; 7172 7173 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7174 if (extent_end <= offset) 7175 goto out; 7176 7177 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7178 if (disk_bytenr == 0) 7179 goto out; 7180 7181 if (btrfs_file_extent_compression(leaf, fi) || 7182 btrfs_file_extent_encryption(leaf, fi) || 7183 btrfs_file_extent_other_encoding(leaf, fi)) 7184 goto out; 7185 7186 /* 7187 * Do the same check as in btrfs_cross_ref_exist but without the 7188 * unnecessary search. 7189 */ 7190 if (!strict && 7191 (btrfs_file_extent_generation(leaf, fi) <= 7192 btrfs_root_last_snapshot(&root->root_item))) 7193 goto out; 7194 7195 backref_offset = btrfs_file_extent_offset(leaf, fi); 7196 7197 if (orig_start) { 7198 *orig_start = key.offset - backref_offset; 7199 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7200 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7201 } 7202 7203 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7204 goto out; 7205 7206 num_bytes = min(offset + *len, extent_end) - offset; 7207 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7208 u64 range_end; 7209 7210 range_end = round_up(offset + num_bytes, 7211 root->fs_info->sectorsize) - 1; 7212 ret = test_range_bit(io_tree, offset, range_end, 7213 EXTENT_DELALLOC, 0, NULL); 7214 if (ret) { 7215 ret = -EAGAIN; 7216 goto out; 7217 } 7218 } 7219 7220 btrfs_release_path(path); 7221 7222 /* 7223 * look for other files referencing this extent, if we 7224 * find any we must cow 7225 */ 7226 7227 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7228 key.offset - backref_offset, disk_bytenr, 7229 strict); 7230 if (ret) { 7231 ret = 0; 7232 goto out; 7233 } 7234 7235 /* 7236 * adjust disk_bytenr and num_bytes to cover just the bytes 7237 * in this extent we are about to write. If there 7238 * are any csums in that range we have to cow in order 7239 * to keep the csums correct 7240 */ 7241 disk_bytenr += backref_offset; 7242 disk_bytenr += offset - key.offset; 7243 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7244 goto out; 7245 /* 7246 * all of the above have passed, it is safe to overwrite this extent 7247 * without cow 7248 */ 7249 *len = num_bytes; 7250 ret = 1; 7251 out: 7252 btrfs_free_path(path); 7253 return ret; 7254 } 7255 7256 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7257 struct extent_state **cached_state, bool writing) 7258 { 7259 struct btrfs_ordered_extent *ordered; 7260 int ret = 0; 7261 7262 while (1) { 7263 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7264 cached_state); 7265 /* 7266 * We're concerned with the entire range that we're going to be 7267 * doing DIO to, so we need to make sure there's no ordered 7268 * extents in this range. 7269 */ 7270 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7271 lockend - lockstart + 1); 7272 7273 /* 7274 * We need to make sure there are no buffered pages in this 7275 * range either, we could have raced between the invalidate in 7276 * generic_file_direct_write and locking the extent. The 7277 * invalidate needs to happen so that reads after a write do not 7278 * get stale data. 7279 */ 7280 if (!ordered && 7281 (!writing || !filemap_range_has_page(inode->i_mapping, 7282 lockstart, lockend))) 7283 break; 7284 7285 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7286 cached_state); 7287 7288 if (ordered) { 7289 /* 7290 * If we are doing a DIO read and the ordered extent we 7291 * found is for a buffered write, we can not wait for it 7292 * to complete and retry, because if we do so we can 7293 * deadlock with concurrent buffered writes on page 7294 * locks. This happens only if our DIO read covers more 7295 * than one extent map, if at this point has already 7296 * created an ordered extent for a previous extent map 7297 * and locked its range in the inode's io tree, and a 7298 * concurrent write against that previous extent map's 7299 * range and this range started (we unlock the ranges 7300 * in the io tree only when the bios complete and 7301 * buffered writes always lock pages before attempting 7302 * to lock range in the io tree). 7303 */ 7304 if (writing || 7305 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7306 btrfs_start_ordered_extent(ordered, 1); 7307 else 7308 ret = -ENOTBLK; 7309 btrfs_put_ordered_extent(ordered); 7310 } else { 7311 /* 7312 * We could trigger writeback for this range (and wait 7313 * for it to complete) and then invalidate the pages for 7314 * this range (through invalidate_inode_pages2_range()), 7315 * but that can lead us to a deadlock with a concurrent 7316 * call to readahead (a buffered read or a defrag call 7317 * triggered a readahead) on a page lock due to an 7318 * ordered dio extent we created before but did not have 7319 * yet a corresponding bio submitted (whence it can not 7320 * complete), which makes readahead wait for that 7321 * ordered extent to complete while holding a lock on 7322 * that page. 7323 */ 7324 ret = -ENOTBLK; 7325 } 7326 7327 if (ret) 7328 break; 7329 7330 cond_resched(); 7331 } 7332 7333 return ret; 7334 } 7335 7336 /* The callers of this must take lock_extent() */ 7337 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7338 u64 len, u64 orig_start, u64 block_start, 7339 u64 block_len, u64 orig_block_len, 7340 u64 ram_bytes, int compress_type, 7341 int type) 7342 { 7343 struct extent_map_tree *em_tree; 7344 struct extent_map *em; 7345 int ret; 7346 7347 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7348 type == BTRFS_ORDERED_COMPRESSED || 7349 type == BTRFS_ORDERED_NOCOW || 7350 type == BTRFS_ORDERED_REGULAR); 7351 7352 em_tree = &inode->extent_tree; 7353 em = alloc_extent_map(); 7354 if (!em) 7355 return ERR_PTR(-ENOMEM); 7356 7357 em->start = start; 7358 em->orig_start = orig_start; 7359 em->len = len; 7360 em->block_len = block_len; 7361 em->block_start = block_start; 7362 em->orig_block_len = orig_block_len; 7363 em->ram_bytes = ram_bytes; 7364 em->generation = -1; 7365 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7366 if (type == BTRFS_ORDERED_PREALLOC) { 7367 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7368 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7369 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7370 em->compress_type = compress_type; 7371 } 7372 7373 do { 7374 btrfs_drop_extent_cache(inode, em->start, 7375 em->start + em->len - 1, 0); 7376 write_lock(&em_tree->lock); 7377 ret = add_extent_mapping(em_tree, em, 1); 7378 write_unlock(&em_tree->lock); 7379 /* 7380 * The caller has taken lock_extent(), who could race with us 7381 * to add em? 7382 */ 7383 } while (ret == -EEXIST); 7384 7385 if (ret) { 7386 free_extent_map(em); 7387 return ERR_PTR(ret); 7388 } 7389 7390 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7391 return em; 7392 } 7393 7394 7395 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7396 struct inode *inode, 7397 struct btrfs_dio_data *dio_data, 7398 u64 start, u64 len) 7399 { 7400 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7401 struct extent_map *em = *map; 7402 int ret = 0; 7403 7404 /* 7405 * We don't allocate a new extent in the following cases 7406 * 7407 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7408 * existing extent. 7409 * 2) The extent is marked as PREALLOC. We're good to go here and can 7410 * just use the extent. 7411 * 7412 */ 7413 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7414 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7415 em->block_start != EXTENT_MAP_HOLE)) { 7416 int type; 7417 u64 block_start, orig_start, orig_block_len, ram_bytes; 7418 7419 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7420 type = BTRFS_ORDERED_PREALLOC; 7421 else 7422 type = BTRFS_ORDERED_NOCOW; 7423 len = min(len, em->len - (start - em->start)); 7424 block_start = em->block_start + (start - em->start); 7425 7426 if (can_nocow_extent(inode, start, &len, &orig_start, 7427 &orig_block_len, &ram_bytes, false) == 1 && 7428 btrfs_inc_nocow_writers(fs_info, block_start)) { 7429 struct extent_map *em2; 7430 7431 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7432 orig_start, block_start, 7433 len, orig_block_len, 7434 ram_bytes, type); 7435 btrfs_dec_nocow_writers(fs_info, block_start); 7436 if (type == BTRFS_ORDERED_PREALLOC) { 7437 free_extent_map(em); 7438 *map = em = em2; 7439 } 7440 7441 if (em2 && IS_ERR(em2)) { 7442 ret = PTR_ERR(em2); 7443 goto out; 7444 } 7445 /* 7446 * For inode marked NODATACOW or extent marked PREALLOC, 7447 * use the existing or preallocated extent, so does not 7448 * need to adjust btrfs_space_info's bytes_may_use. 7449 */ 7450 btrfs_free_reserved_data_space_noquota(fs_info, len); 7451 goto skip_cow; 7452 } 7453 } 7454 7455 /* this will cow the extent */ 7456 free_extent_map(em); 7457 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7458 if (IS_ERR(em)) { 7459 ret = PTR_ERR(em); 7460 goto out; 7461 } 7462 7463 len = min(len, em->len - (start - em->start)); 7464 7465 skip_cow: 7466 /* 7467 * Need to update the i_size under the extent lock so buffered 7468 * readers will get the updated i_size when we unlock. 7469 */ 7470 if (start + len > i_size_read(inode)) 7471 i_size_write(inode, start + len); 7472 7473 dio_data->reserve -= len; 7474 out: 7475 return ret; 7476 } 7477 7478 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7479 loff_t length, unsigned int flags, struct iomap *iomap, 7480 struct iomap *srcmap) 7481 { 7482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7483 struct extent_map *em; 7484 struct extent_state *cached_state = NULL; 7485 struct btrfs_dio_data *dio_data = NULL; 7486 u64 lockstart, lockend; 7487 const bool write = !!(flags & IOMAP_WRITE); 7488 int ret = 0; 7489 u64 len = length; 7490 bool unlock_extents = false; 7491 7492 if (!write) 7493 len = min_t(u64, len, fs_info->sectorsize); 7494 7495 lockstart = start; 7496 lockend = start + len - 1; 7497 7498 /* 7499 * The generic stuff only does filemap_write_and_wait_range, which 7500 * isn't enough if we've written compressed pages to this area, so we 7501 * need to flush the dirty pages again to make absolutely sure that any 7502 * outstanding dirty pages are on disk. 7503 */ 7504 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7505 &BTRFS_I(inode)->runtime_flags)) { 7506 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7507 start + length - 1); 7508 if (ret) 7509 return ret; 7510 } 7511 7512 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7513 if (!dio_data) 7514 return -ENOMEM; 7515 7516 dio_data->length = length; 7517 if (write) { 7518 dio_data->reserve = round_up(length, fs_info->sectorsize); 7519 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7520 &dio_data->data_reserved, 7521 start, dio_data->reserve); 7522 if (ret) { 7523 extent_changeset_free(dio_data->data_reserved); 7524 kfree(dio_data); 7525 return ret; 7526 } 7527 } 7528 iomap->private = dio_data; 7529 7530 7531 /* 7532 * If this errors out it's because we couldn't invalidate pagecache for 7533 * this range and we need to fallback to buffered. 7534 */ 7535 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7536 ret = -ENOTBLK; 7537 goto err; 7538 } 7539 7540 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7541 if (IS_ERR(em)) { 7542 ret = PTR_ERR(em); 7543 goto unlock_err; 7544 } 7545 7546 /* 7547 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7548 * io. INLINE is special, and we could probably kludge it in here, but 7549 * it's still buffered so for safety lets just fall back to the generic 7550 * buffered path. 7551 * 7552 * For COMPRESSED we _have_ to read the entire extent in so we can 7553 * decompress it, so there will be buffering required no matter what we 7554 * do, so go ahead and fallback to buffered. 7555 * 7556 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7557 * to buffered IO. Don't blame me, this is the price we pay for using 7558 * the generic code. 7559 */ 7560 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7561 em->block_start == EXTENT_MAP_INLINE) { 7562 free_extent_map(em); 7563 ret = -ENOTBLK; 7564 goto unlock_err; 7565 } 7566 7567 len = min(len, em->len - (start - em->start)); 7568 if (write) { 7569 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7570 start, len); 7571 if (ret < 0) 7572 goto unlock_err; 7573 unlock_extents = true; 7574 /* Recalc len in case the new em is smaller than requested */ 7575 len = min(len, em->len - (start - em->start)); 7576 } else { 7577 /* 7578 * We need to unlock only the end area that we aren't using. 7579 * The rest is going to be unlocked by the endio routine. 7580 */ 7581 lockstart = start + len; 7582 if (lockstart < lockend) 7583 unlock_extents = true; 7584 } 7585 7586 if (unlock_extents) 7587 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7588 lockstart, lockend, &cached_state); 7589 else 7590 free_extent_state(cached_state); 7591 7592 /* 7593 * Translate extent map information to iomap. 7594 * We trim the extents (and move the addr) even though iomap code does 7595 * that, since we have locked only the parts we are performing I/O in. 7596 */ 7597 if ((em->block_start == EXTENT_MAP_HOLE) || 7598 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7599 iomap->addr = IOMAP_NULL_ADDR; 7600 iomap->type = IOMAP_HOLE; 7601 } else { 7602 iomap->addr = em->block_start + (start - em->start); 7603 iomap->type = IOMAP_MAPPED; 7604 } 7605 iomap->offset = start; 7606 iomap->bdev = fs_info->fs_devices->latest_bdev; 7607 iomap->length = len; 7608 7609 free_extent_map(em); 7610 7611 return 0; 7612 7613 unlock_err: 7614 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7615 &cached_state); 7616 err: 7617 if (dio_data) { 7618 btrfs_delalloc_release_space(BTRFS_I(inode), 7619 dio_data->data_reserved, start, 7620 dio_data->reserve, true); 7621 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7622 extent_changeset_free(dio_data->data_reserved); 7623 kfree(dio_data); 7624 } 7625 return ret; 7626 } 7627 7628 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7629 ssize_t written, unsigned int flags, struct iomap *iomap) 7630 { 7631 int ret = 0; 7632 struct btrfs_dio_data *dio_data = iomap->private; 7633 size_t submitted = dio_data->submitted; 7634 const bool write = !!(flags & IOMAP_WRITE); 7635 7636 if (!write && (iomap->type == IOMAP_HOLE)) { 7637 /* If reading from a hole, unlock and return */ 7638 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7639 goto out; 7640 } 7641 7642 if (submitted < length) { 7643 pos += submitted; 7644 length -= submitted; 7645 if (write) 7646 __endio_write_update_ordered(BTRFS_I(inode), pos, 7647 length, false); 7648 else 7649 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7650 pos + length - 1); 7651 ret = -ENOTBLK; 7652 } 7653 7654 if (write) { 7655 if (dio_data->reserve) 7656 btrfs_delalloc_release_space(BTRFS_I(inode), 7657 dio_data->data_reserved, pos, 7658 dio_data->reserve, true); 7659 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7660 extent_changeset_free(dio_data->data_reserved); 7661 } 7662 out: 7663 kfree(dio_data); 7664 iomap->private = NULL; 7665 7666 return ret; 7667 } 7668 7669 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7670 { 7671 /* 7672 * This implies a barrier so that stores to dio_bio->bi_status before 7673 * this and loads of dio_bio->bi_status after this are fully ordered. 7674 */ 7675 if (!refcount_dec_and_test(&dip->refs)) 7676 return; 7677 7678 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { 7679 __endio_write_update_ordered(BTRFS_I(dip->inode), 7680 dip->logical_offset, 7681 dip->bytes, 7682 !dip->dio_bio->bi_status); 7683 } else { 7684 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7685 dip->logical_offset, 7686 dip->logical_offset + dip->bytes - 1); 7687 } 7688 7689 bio_endio(dip->dio_bio); 7690 kfree(dip); 7691 } 7692 7693 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7694 int mirror_num, 7695 unsigned long bio_flags) 7696 { 7697 struct btrfs_dio_private *dip = bio->bi_private; 7698 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7699 blk_status_t ret; 7700 7701 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7702 7703 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7704 if (ret) 7705 return ret; 7706 7707 refcount_inc(&dip->refs); 7708 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7709 if (ret) 7710 refcount_dec(&dip->refs); 7711 return ret; 7712 } 7713 7714 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7715 struct btrfs_io_bio *io_bio, 7716 const bool uptodate) 7717 { 7718 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7719 const u32 sectorsize = fs_info->sectorsize; 7720 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7721 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7722 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7723 struct bio_vec bvec; 7724 struct bvec_iter iter; 7725 u64 start = io_bio->logical; 7726 int icsum = 0; 7727 blk_status_t err = BLK_STS_OK; 7728 7729 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7730 unsigned int i, nr_sectors, pgoff; 7731 7732 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7733 pgoff = bvec.bv_offset; 7734 for (i = 0; i < nr_sectors; i++) { 7735 ASSERT(pgoff < PAGE_SIZE); 7736 if (uptodate && 7737 (!csum || !check_data_csum(inode, io_bio, icsum, 7738 bvec.bv_page, pgoff))) { 7739 clean_io_failure(fs_info, failure_tree, io_tree, 7740 start, bvec.bv_page, 7741 btrfs_ino(BTRFS_I(inode)), 7742 pgoff); 7743 } else { 7744 blk_status_t status; 7745 7746 status = btrfs_submit_read_repair(inode, 7747 &io_bio->bio, 7748 start - io_bio->logical, 7749 bvec.bv_page, pgoff, 7750 start, 7751 start + sectorsize - 1, 7752 io_bio->mirror_num, 7753 submit_dio_repair_bio); 7754 if (status) 7755 err = status; 7756 } 7757 start += sectorsize; 7758 icsum++; 7759 pgoff += sectorsize; 7760 } 7761 } 7762 return err; 7763 } 7764 7765 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7766 const u64 offset, const u64 bytes, 7767 const bool uptodate) 7768 { 7769 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7770 struct btrfs_ordered_extent *ordered = NULL; 7771 struct btrfs_workqueue *wq; 7772 u64 ordered_offset = offset; 7773 u64 ordered_bytes = bytes; 7774 u64 last_offset; 7775 7776 if (btrfs_is_free_space_inode(inode)) 7777 wq = fs_info->endio_freespace_worker; 7778 else 7779 wq = fs_info->endio_write_workers; 7780 7781 while (ordered_offset < offset + bytes) { 7782 last_offset = ordered_offset; 7783 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7784 &ordered_offset, 7785 ordered_bytes, 7786 uptodate)) { 7787 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7788 NULL); 7789 btrfs_queue_work(wq, &ordered->work); 7790 } 7791 /* 7792 * If btrfs_dec_test_ordered_pending does not find any ordered 7793 * extent in the range, we can exit. 7794 */ 7795 if (ordered_offset == last_offset) 7796 return; 7797 /* 7798 * Our bio might span multiple ordered extents. In this case 7799 * we keep going until we have accounted the whole dio. 7800 */ 7801 if (ordered_offset < offset + bytes) { 7802 ordered_bytes = offset + bytes - ordered_offset; 7803 ordered = NULL; 7804 } 7805 } 7806 } 7807 7808 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7809 struct bio *bio, u64 offset) 7810 { 7811 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1); 7812 } 7813 7814 static void btrfs_end_dio_bio(struct bio *bio) 7815 { 7816 struct btrfs_dio_private *dip = bio->bi_private; 7817 blk_status_t err = bio->bi_status; 7818 7819 if (err) 7820 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7821 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7822 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7823 bio->bi_opf, bio->bi_iter.bi_sector, 7824 bio->bi_iter.bi_size, err); 7825 7826 if (bio_op(bio) == REQ_OP_READ) { 7827 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 7828 !err); 7829 } 7830 7831 if (err) 7832 dip->dio_bio->bi_status = err; 7833 7834 bio_put(bio); 7835 btrfs_dio_private_put(dip); 7836 } 7837 7838 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7839 struct inode *inode, u64 file_offset, int async_submit) 7840 { 7841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7842 struct btrfs_dio_private *dip = bio->bi_private; 7843 bool write = bio_op(bio) == REQ_OP_WRITE; 7844 blk_status_t ret; 7845 7846 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7847 if (async_submit) 7848 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7849 7850 if (!write) { 7851 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7852 if (ret) 7853 goto err; 7854 } 7855 7856 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7857 goto map; 7858 7859 if (write && async_submit) { 7860 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, 7861 file_offset, 7862 btrfs_submit_bio_start_direct_io); 7863 goto err; 7864 } else if (write) { 7865 /* 7866 * If we aren't doing async submit, calculate the csum of the 7867 * bio now. 7868 */ 7869 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 7870 if (ret) 7871 goto err; 7872 } else { 7873 u64 csum_offset; 7874 7875 csum_offset = file_offset - dip->logical_offset; 7876 csum_offset >>= fs_info->sectorsize_bits; 7877 csum_offset *= fs_info->csum_size; 7878 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 7879 } 7880 map: 7881 ret = btrfs_map_bio(fs_info, bio, 0); 7882 err: 7883 return ret; 7884 } 7885 7886 /* 7887 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7888 * or ordered extents whether or not we submit any bios. 7889 */ 7890 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7891 struct inode *inode, 7892 loff_t file_offset) 7893 { 7894 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7895 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7896 size_t dip_size; 7897 struct btrfs_dio_private *dip; 7898 7899 dip_size = sizeof(*dip); 7900 if (!write && csum) { 7901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7902 size_t nblocks; 7903 7904 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 7905 dip_size += fs_info->csum_size * nblocks; 7906 } 7907 7908 dip = kzalloc(dip_size, GFP_NOFS); 7909 if (!dip) 7910 return NULL; 7911 7912 dip->inode = inode; 7913 dip->logical_offset = file_offset; 7914 dip->bytes = dio_bio->bi_iter.bi_size; 7915 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 7916 dip->dio_bio = dio_bio; 7917 refcount_set(&dip->refs, 1); 7918 return dip; 7919 } 7920 7921 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 7922 struct bio *dio_bio, loff_t file_offset) 7923 { 7924 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7925 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7926 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7927 BTRFS_BLOCK_GROUP_RAID56_MASK); 7928 struct btrfs_dio_private *dip; 7929 struct bio *bio; 7930 u64 start_sector; 7931 int async_submit = 0; 7932 u64 submit_len; 7933 int clone_offset = 0; 7934 int clone_len; 7935 int ret; 7936 blk_status_t status; 7937 struct btrfs_io_geometry geom; 7938 struct btrfs_dio_data *dio_data = iomap->private; 7939 7940 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7941 if (!dip) { 7942 if (!write) { 7943 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7944 file_offset + dio_bio->bi_iter.bi_size - 1); 7945 } 7946 dio_bio->bi_status = BLK_STS_RESOURCE; 7947 bio_endio(dio_bio); 7948 return BLK_QC_T_NONE; 7949 } 7950 7951 if (!write) { 7952 /* 7953 * Load the csums up front to reduce csum tree searches and 7954 * contention when submitting bios. 7955 * 7956 * If we have csums disabled this will do nothing. 7957 */ 7958 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, 7959 dip->csums); 7960 if (status != BLK_STS_OK) 7961 goto out_err; 7962 } 7963 7964 start_sector = dio_bio->bi_iter.bi_sector; 7965 submit_len = dio_bio->bi_iter.bi_size; 7966 7967 do { 7968 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), 7969 start_sector << 9, submit_len, 7970 &geom); 7971 if (ret) { 7972 status = errno_to_blk_status(ret); 7973 goto out_err; 7974 } 7975 ASSERT(geom.len <= INT_MAX); 7976 7977 clone_len = min_t(int, submit_len, geom.len); 7978 7979 /* 7980 * This will never fail as it's passing GPF_NOFS and 7981 * the allocation is backed by btrfs_bioset. 7982 */ 7983 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 7984 bio->bi_private = dip; 7985 bio->bi_end_io = btrfs_end_dio_bio; 7986 btrfs_io_bio(bio)->logical = file_offset; 7987 7988 ASSERT(submit_len >= clone_len); 7989 submit_len -= clone_len; 7990 7991 /* 7992 * Increase the count before we submit the bio so we know 7993 * the end IO handler won't happen before we increase the 7994 * count. Otherwise, the dip might get freed before we're 7995 * done setting it up. 7996 * 7997 * We transfer the initial reference to the last bio, so we 7998 * don't need to increment the reference count for the last one. 7999 */ 8000 if (submit_len > 0) { 8001 refcount_inc(&dip->refs); 8002 /* 8003 * If we are submitting more than one bio, submit them 8004 * all asynchronously. The exception is RAID 5 or 6, as 8005 * asynchronous checksums make it difficult to collect 8006 * full stripe writes. 8007 */ 8008 if (!raid56) 8009 async_submit = 1; 8010 } 8011 8012 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8013 async_submit); 8014 if (status) { 8015 bio_put(bio); 8016 if (submit_len > 0) 8017 refcount_dec(&dip->refs); 8018 goto out_err; 8019 } 8020 8021 dio_data->submitted += clone_len; 8022 clone_offset += clone_len; 8023 start_sector += clone_len >> 9; 8024 file_offset += clone_len; 8025 } while (submit_len > 0); 8026 return BLK_QC_T_NONE; 8027 8028 out_err: 8029 dip->dio_bio->bi_status = status; 8030 btrfs_dio_private_put(dip); 8031 return BLK_QC_T_NONE; 8032 } 8033 8034 const struct iomap_ops btrfs_dio_iomap_ops = { 8035 .iomap_begin = btrfs_dio_iomap_begin, 8036 .iomap_end = btrfs_dio_iomap_end, 8037 }; 8038 8039 const struct iomap_dio_ops btrfs_dio_ops = { 8040 .submit_io = btrfs_submit_direct, 8041 }; 8042 8043 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8044 u64 start, u64 len) 8045 { 8046 int ret; 8047 8048 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8049 if (ret) 8050 return ret; 8051 8052 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8053 } 8054 8055 int btrfs_readpage(struct file *file, struct page *page) 8056 { 8057 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8058 u64 start = page_offset(page); 8059 u64 end = start + PAGE_SIZE - 1; 8060 unsigned long bio_flags = 0; 8061 struct bio *bio = NULL; 8062 int ret; 8063 8064 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8065 8066 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); 8067 if (bio) 8068 ret = submit_one_bio(bio, 0, bio_flags); 8069 return ret; 8070 } 8071 8072 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8073 { 8074 struct inode *inode = page->mapping->host; 8075 int ret; 8076 8077 if (current->flags & PF_MEMALLOC) { 8078 redirty_page_for_writepage(wbc, page); 8079 unlock_page(page); 8080 return 0; 8081 } 8082 8083 /* 8084 * If we are under memory pressure we will call this directly from the 8085 * VM, we need to make sure we have the inode referenced for the ordered 8086 * extent. If not just return like we didn't do anything. 8087 */ 8088 if (!igrab(inode)) { 8089 redirty_page_for_writepage(wbc, page); 8090 return AOP_WRITEPAGE_ACTIVATE; 8091 } 8092 ret = extent_write_full_page(page, wbc); 8093 btrfs_add_delayed_iput(inode); 8094 return ret; 8095 } 8096 8097 static int btrfs_writepages(struct address_space *mapping, 8098 struct writeback_control *wbc) 8099 { 8100 return extent_writepages(mapping, wbc); 8101 } 8102 8103 static void btrfs_readahead(struct readahead_control *rac) 8104 { 8105 extent_readahead(rac); 8106 } 8107 8108 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8109 { 8110 int ret = try_release_extent_mapping(page, gfp_flags); 8111 if (ret == 1) 8112 detach_page_private(page); 8113 return ret; 8114 } 8115 8116 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8117 { 8118 if (PageWriteback(page) || PageDirty(page)) 8119 return 0; 8120 return __btrfs_releasepage(page, gfp_flags); 8121 } 8122 8123 #ifdef CONFIG_MIGRATION 8124 static int btrfs_migratepage(struct address_space *mapping, 8125 struct page *newpage, struct page *page, 8126 enum migrate_mode mode) 8127 { 8128 int ret; 8129 8130 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8131 if (ret != MIGRATEPAGE_SUCCESS) 8132 return ret; 8133 8134 if (page_has_private(page)) 8135 attach_page_private(newpage, detach_page_private(page)); 8136 8137 if (PagePrivate2(page)) { 8138 ClearPagePrivate2(page); 8139 SetPagePrivate2(newpage); 8140 } 8141 8142 if (mode != MIGRATE_SYNC_NO_COPY) 8143 migrate_page_copy(newpage, page); 8144 else 8145 migrate_page_states(newpage, page); 8146 return MIGRATEPAGE_SUCCESS; 8147 } 8148 #endif 8149 8150 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8151 unsigned int length) 8152 { 8153 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8154 struct extent_io_tree *tree = &inode->io_tree; 8155 struct btrfs_ordered_extent *ordered; 8156 struct extent_state *cached_state = NULL; 8157 u64 page_start = page_offset(page); 8158 u64 page_end = page_start + PAGE_SIZE - 1; 8159 u64 start; 8160 u64 end; 8161 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8162 bool found_ordered = false; 8163 bool completed_ordered = false; 8164 8165 /* 8166 * we have the page locked, so new writeback can't start, 8167 * and the dirty bit won't be cleared while we are here. 8168 * 8169 * Wait for IO on this page so that we can safely clear 8170 * the PagePrivate2 bit and do ordered accounting 8171 */ 8172 wait_on_page_writeback(page); 8173 8174 if (offset) { 8175 btrfs_releasepage(page, GFP_NOFS); 8176 return; 8177 } 8178 8179 if (!inode_evicting) 8180 lock_extent_bits(tree, page_start, page_end, &cached_state); 8181 again: 8182 start = page_start; 8183 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); 8184 if (ordered) { 8185 found_ordered = true; 8186 end = min(page_end, 8187 ordered->file_offset + ordered->num_bytes - 1); 8188 /* 8189 * IO on this page will never be started, so we need to account 8190 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8191 * here, must leave that up for the ordered extent completion. 8192 */ 8193 if (!inode_evicting) 8194 clear_extent_bit(tree, start, end, 8195 EXTENT_DELALLOC | 8196 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8197 EXTENT_DEFRAG, 1, 0, &cached_state); 8198 /* 8199 * whoever cleared the private bit is responsible 8200 * for the finish_ordered_io 8201 */ 8202 if (TestClearPagePrivate2(page)) { 8203 struct btrfs_ordered_inode_tree *tree; 8204 u64 new_len; 8205 8206 tree = &inode->ordered_tree; 8207 8208 spin_lock_irq(&tree->lock); 8209 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8210 new_len = start - ordered->file_offset; 8211 if (new_len < ordered->truncated_len) 8212 ordered->truncated_len = new_len; 8213 spin_unlock_irq(&tree->lock); 8214 8215 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8216 start, 8217 end - start + 1, 1)) { 8218 btrfs_finish_ordered_io(ordered); 8219 completed_ordered = true; 8220 } 8221 } 8222 btrfs_put_ordered_extent(ordered); 8223 if (!inode_evicting) { 8224 cached_state = NULL; 8225 lock_extent_bits(tree, start, end, 8226 &cached_state); 8227 } 8228 8229 start = end + 1; 8230 if (start < page_end) 8231 goto again; 8232 } 8233 8234 /* 8235 * Qgroup reserved space handler 8236 * Page here will be either 8237 * 1) Already written to disk or ordered extent already submitted 8238 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8239 * Qgroup will be handled by its qgroup_record then. 8240 * btrfs_qgroup_free_data() call will do nothing here. 8241 * 8242 * 2) Not written to disk yet 8243 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8244 * bit of its io_tree, and free the qgroup reserved data space. 8245 * Since the IO will never happen for this page. 8246 */ 8247 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8248 if (!inode_evicting) { 8249 bool delete = true; 8250 8251 /* 8252 * If there's an ordered extent for this range and we have not 8253 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set 8254 * in the range for the ordered extent completion. We must also 8255 * not delete the range, otherwise we would lose that bit (and 8256 * any other bits set in the range). Make sure EXTENT_UPTODATE 8257 * is cleared if we don't delete, otherwise it can lead to 8258 * corruptions if the i_size is extented later. 8259 */ 8260 if (found_ordered && !completed_ordered) 8261 delete = false; 8262 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8263 EXTENT_DELALLOC | EXTENT_UPTODATE | 8264 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8265 delete, &cached_state); 8266 8267 __btrfs_releasepage(page, GFP_NOFS); 8268 } 8269 8270 ClearPageChecked(page); 8271 detach_page_private(page); 8272 } 8273 8274 /* 8275 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8276 * called from a page fault handler when a page is first dirtied. Hence we must 8277 * be careful to check for EOF conditions here. We set the page up correctly 8278 * for a written page which means we get ENOSPC checking when writing into 8279 * holes and correct delalloc and unwritten extent mapping on filesystems that 8280 * support these features. 8281 * 8282 * We are not allowed to take the i_mutex here so we have to play games to 8283 * protect against truncate races as the page could now be beyond EOF. Because 8284 * truncate_setsize() writes the inode size before removing pages, once we have 8285 * the page lock we can determine safely if the page is beyond EOF. If it is not 8286 * beyond EOF, then the page is guaranteed safe against truncation until we 8287 * unlock the page. 8288 */ 8289 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8290 { 8291 struct page *page = vmf->page; 8292 struct inode *inode = file_inode(vmf->vma->vm_file); 8293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8294 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8295 struct btrfs_ordered_extent *ordered; 8296 struct extent_state *cached_state = NULL; 8297 struct extent_changeset *data_reserved = NULL; 8298 char *kaddr; 8299 unsigned long zero_start; 8300 loff_t size; 8301 vm_fault_t ret; 8302 int ret2; 8303 int reserved = 0; 8304 u64 reserved_space; 8305 u64 page_start; 8306 u64 page_end; 8307 u64 end; 8308 8309 reserved_space = PAGE_SIZE; 8310 8311 sb_start_pagefault(inode->i_sb); 8312 page_start = page_offset(page); 8313 page_end = page_start + PAGE_SIZE - 1; 8314 end = page_end; 8315 8316 /* 8317 * Reserving delalloc space after obtaining the page lock can lead to 8318 * deadlock. For example, if a dirty page is locked by this function 8319 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8320 * dirty page write out, then the btrfs_writepage() function could 8321 * end up waiting indefinitely to get a lock on the page currently 8322 * being processed by btrfs_page_mkwrite() function. 8323 */ 8324 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8325 page_start, reserved_space); 8326 if (!ret2) { 8327 ret2 = file_update_time(vmf->vma->vm_file); 8328 reserved = 1; 8329 } 8330 if (ret2) { 8331 ret = vmf_error(ret2); 8332 if (reserved) 8333 goto out; 8334 goto out_noreserve; 8335 } 8336 8337 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8338 again: 8339 lock_page(page); 8340 size = i_size_read(inode); 8341 8342 if ((page->mapping != inode->i_mapping) || 8343 (page_start >= size)) { 8344 /* page got truncated out from underneath us */ 8345 goto out_unlock; 8346 } 8347 wait_on_page_writeback(page); 8348 8349 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8350 set_page_extent_mapped(page); 8351 8352 /* 8353 * we can't set the delalloc bits if there are pending ordered 8354 * extents. Drop our locks and wait for them to finish 8355 */ 8356 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8357 PAGE_SIZE); 8358 if (ordered) { 8359 unlock_extent_cached(io_tree, page_start, page_end, 8360 &cached_state); 8361 unlock_page(page); 8362 btrfs_start_ordered_extent(ordered, 1); 8363 btrfs_put_ordered_extent(ordered); 8364 goto again; 8365 } 8366 8367 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8368 reserved_space = round_up(size - page_start, 8369 fs_info->sectorsize); 8370 if (reserved_space < PAGE_SIZE) { 8371 end = page_start + reserved_space - 1; 8372 btrfs_delalloc_release_space(BTRFS_I(inode), 8373 data_reserved, page_start, 8374 PAGE_SIZE - reserved_space, true); 8375 } 8376 } 8377 8378 /* 8379 * page_mkwrite gets called when the page is firstly dirtied after it's 8380 * faulted in, but write(2) could also dirty a page and set delalloc 8381 * bits, thus in this case for space account reason, we still need to 8382 * clear any delalloc bits within this page range since we have to 8383 * reserve data&meta space before lock_page() (see above comments). 8384 */ 8385 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8386 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8387 EXTENT_DEFRAG, 0, 0, &cached_state); 8388 8389 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8390 &cached_state); 8391 if (ret2) { 8392 unlock_extent_cached(io_tree, page_start, page_end, 8393 &cached_state); 8394 ret = VM_FAULT_SIGBUS; 8395 goto out_unlock; 8396 } 8397 8398 /* page is wholly or partially inside EOF */ 8399 if (page_start + PAGE_SIZE > size) 8400 zero_start = offset_in_page(size); 8401 else 8402 zero_start = PAGE_SIZE; 8403 8404 if (zero_start != PAGE_SIZE) { 8405 kaddr = kmap(page); 8406 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8407 flush_dcache_page(page); 8408 kunmap(page); 8409 } 8410 ClearPageChecked(page); 8411 set_page_dirty(page); 8412 SetPageUptodate(page); 8413 8414 BTRFS_I(inode)->last_trans = fs_info->generation; 8415 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8416 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8417 8418 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8419 8420 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8421 sb_end_pagefault(inode->i_sb); 8422 extent_changeset_free(data_reserved); 8423 return VM_FAULT_LOCKED; 8424 8425 out_unlock: 8426 unlock_page(page); 8427 out: 8428 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8429 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8430 reserved_space, (ret != 0)); 8431 out_noreserve: 8432 sb_end_pagefault(inode->i_sb); 8433 extent_changeset_free(data_reserved); 8434 return ret; 8435 } 8436 8437 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8438 { 8439 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8440 struct btrfs_root *root = BTRFS_I(inode)->root; 8441 struct btrfs_block_rsv *rsv; 8442 int ret; 8443 struct btrfs_trans_handle *trans; 8444 u64 mask = fs_info->sectorsize - 1; 8445 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8446 8447 if (!skip_writeback) { 8448 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8449 (u64)-1); 8450 if (ret) 8451 return ret; 8452 } 8453 8454 /* 8455 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8456 * things going on here: 8457 * 8458 * 1) We need to reserve space to update our inode. 8459 * 8460 * 2) We need to have something to cache all the space that is going to 8461 * be free'd up by the truncate operation, but also have some slack 8462 * space reserved in case it uses space during the truncate (thank you 8463 * very much snapshotting). 8464 * 8465 * And we need these to be separate. The fact is we can use a lot of 8466 * space doing the truncate, and we have no earthly idea how much space 8467 * we will use, so we need the truncate reservation to be separate so it 8468 * doesn't end up using space reserved for updating the inode. We also 8469 * need to be able to stop the transaction and start a new one, which 8470 * means we need to be able to update the inode several times, and we 8471 * have no idea of knowing how many times that will be, so we can't just 8472 * reserve 1 item for the entirety of the operation, so that has to be 8473 * done separately as well. 8474 * 8475 * So that leaves us with 8476 * 8477 * 1) rsv - for the truncate reservation, which we will steal from the 8478 * transaction reservation. 8479 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8480 * updating the inode. 8481 */ 8482 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8483 if (!rsv) 8484 return -ENOMEM; 8485 rsv->size = min_size; 8486 rsv->failfast = 1; 8487 8488 /* 8489 * 1 for the truncate slack space 8490 * 1 for updating the inode. 8491 */ 8492 trans = btrfs_start_transaction(root, 2); 8493 if (IS_ERR(trans)) { 8494 ret = PTR_ERR(trans); 8495 goto out; 8496 } 8497 8498 /* Migrate the slack space for the truncate to our reserve */ 8499 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8500 min_size, false); 8501 BUG_ON(ret); 8502 8503 /* 8504 * So if we truncate and then write and fsync we normally would just 8505 * write the extents that changed, which is a problem if we need to 8506 * first truncate that entire inode. So set this flag so we write out 8507 * all of the extents in the inode to the sync log so we're completely 8508 * safe. 8509 */ 8510 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8511 trans->block_rsv = rsv; 8512 8513 while (1) { 8514 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8515 inode->i_size, 8516 BTRFS_EXTENT_DATA_KEY); 8517 trans->block_rsv = &fs_info->trans_block_rsv; 8518 if (ret != -ENOSPC && ret != -EAGAIN) 8519 break; 8520 8521 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8522 if (ret) 8523 break; 8524 8525 btrfs_end_transaction(trans); 8526 btrfs_btree_balance_dirty(fs_info); 8527 8528 trans = btrfs_start_transaction(root, 2); 8529 if (IS_ERR(trans)) { 8530 ret = PTR_ERR(trans); 8531 trans = NULL; 8532 break; 8533 } 8534 8535 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8536 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8537 rsv, min_size, false); 8538 BUG_ON(ret); /* shouldn't happen */ 8539 trans->block_rsv = rsv; 8540 } 8541 8542 /* 8543 * We can't call btrfs_truncate_block inside a trans handle as we could 8544 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8545 * we've truncated everything except the last little bit, and can do 8546 * btrfs_truncate_block and then update the disk_i_size. 8547 */ 8548 if (ret == NEED_TRUNCATE_BLOCK) { 8549 btrfs_end_transaction(trans); 8550 btrfs_btree_balance_dirty(fs_info); 8551 8552 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8553 if (ret) 8554 goto out; 8555 trans = btrfs_start_transaction(root, 1); 8556 if (IS_ERR(trans)) { 8557 ret = PTR_ERR(trans); 8558 goto out; 8559 } 8560 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8561 } 8562 8563 if (trans) { 8564 int ret2; 8565 8566 trans->block_rsv = &fs_info->trans_block_rsv; 8567 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8568 if (ret2 && !ret) 8569 ret = ret2; 8570 8571 ret2 = btrfs_end_transaction(trans); 8572 if (ret2 && !ret) 8573 ret = ret2; 8574 btrfs_btree_balance_dirty(fs_info); 8575 } 8576 out: 8577 btrfs_free_block_rsv(fs_info, rsv); 8578 8579 return ret; 8580 } 8581 8582 /* 8583 * create a new subvolume directory/inode (helper for the ioctl). 8584 */ 8585 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8586 struct btrfs_root *new_root, 8587 struct btrfs_root *parent_root, 8588 u64 new_dirid) 8589 { 8590 struct inode *inode; 8591 int err; 8592 u64 index = 0; 8593 8594 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8595 new_dirid, new_dirid, 8596 S_IFDIR | (~current_umask() & S_IRWXUGO), 8597 &index); 8598 if (IS_ERR(inode)) 8599 return PTR_ERR(inode); 8600 inode->i_op = &btrfs_dir_inode_operations; 8601 inode->i_fop = &btrfs_dir_file_operations; 8602 8603 set_nlink(inode, 1); 8604 btrfs_i_size_write(BTRFS_I(inode), 0); 8605 unlock_new_inode(inode); 8606 8607 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8608 if (err) 8609 btrfs_err(new_root->fs_info, 8610 "error inheriting subvolume %llu properties: %d", 8611 new_root->root_key.objectid, err); 8612 8613 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8614 8615 iput(inode); 8616 return err; 8617 } 8618 8619 struct inode *btrfs_alloc_inode(struct super_block *sb) 8620 { 8621 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8622 struct btrfs_inode *ei; 8623 struct inode *inode; 8624 8625 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8626 if (!ei) 8627 return NULL; 8628 8629 ei->root = NULL; 8630 ei->generation = 0; 8631 ei->last_trans = 0; 8632 ei->last_sub_trans = 0; 8633 ei->logged_trans = 0; 8634 ei->delalloc_bytes = 0; 8635 ei->new_delalloc_bytes = 0; 8636 ei->defrag_bytes = 0; 8637 ei->disk_i_size = 0; 8638 ei->flags = 0; 8639 ei->csum_bytes = 0; 8640 ei->index_cnt = (u64)-1; 8641 ei->dir_index = 0; 8642 ei->last_unlink_trans = 0; 8643 ei->last_reflink_trans = 0; 8644 ei->last_log_commit = 0; 8645 8646 spin_lock_init(&ei->lock); 8647 ei->outstanding_extents = 0; 8648 if (sb->s_magic != BTRFS_TEST_MAGIC) 8649 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8650 BTRFS_BLOCK_RSV_DELALLOC); 8651 ei->runtime_flags = 0; 8652 ei->prop_compress = BTRFS_COMPRESS_NONE; 8653 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8654 8655 ei->delayed_node = NULL; 8656 8657 ei->i_otime.tv_sec = 0; 8658 ei->i_otime.tv_nsec = 0; 8659 8660 inode = &ei->vfs_inode; 8661 extent_map_tree_init(&ei->extent_tree); 8662 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8663 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8664 IO_TREE_INODE_IO_FAILURE, inode); 8665 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8666 IO_TREE_INODE_FILE_EXTENT, inode); 8667 ei->io_tree.track_uptodate = true; 8668 ei->io_failure_tree.track_uptodate = true; 8669 atomic_set(&ei->sync_writers, 0); 8670 mutex_init(&ei->log_mutex); 8671 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8672 INIT_LIST_HEAD(&ei->delalloc_inodes); 8673 INIT_LIST_HEAD(&ei->delayed_iput); 8674 RB_CLEAR_NODE(&ei->rb_node); 8675 8676 return inode; 8677 } 8678 8679 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8680 void btrfs_test_destroy_inode(struct inode *inode) 8681 { 8682 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8683 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8684 } 8685 #endif 8686 8687 void btrfs_free_inode(struct inode *inode) 8688 { 8689 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8690 } 8691 8692 void btrfs_destroy_inode(struct inode *vfs_inode) 8693 { 8694 struct btrfs_ordered_extent *ordered; 8695 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8696 struct btrfs_root *root = inode->root; 8697 8698 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8699 WARN_ON(vfs_inode->i_data.nrpages); 8700 WARN_ON(inode->block_rsv.reserved); 8701 WARN_ON(inode->block_rsv.size); 8702 WARN_ON(inode->outstanding_extents); 8703 WARN_ON(inode->delalloc_bytes); 8704 WARN_ON(inode->new_delalloc_bytes); 8705 WARN_ON(inode->csum_bytes); 8706 WARN_ON(inode->defrag_bytes); 8707 8708 /* 8709 * This can happen where we create an inode, but somebody else also 8710 * created the same inode and we need to destroy the one we already 8711 * created. 8712 */ 8713 if (!root) 8714 return; 8715 8716 while (1) { 8717 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8718 if (!ordered) 8719 break; 8720 else { 8721 btrfs_err(root->fs_info, 8722 "found ordered extent %llu %llu on inode cleanup", 8723 ordered->file_offset, ordered->num_bytes); 8724 btrfs_remove_ordered_extent(inode, ordered); 8725 btrfs_put_ordered_extent(ordered); 8726 btrfs_put_ordered_extent(ordered); 8727 } 8728 } 8729 btrfs_qgroup_check_reserved_leak(inode); 8730 inode_tree_del(inode); 8731 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8732 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8733 btrfs_put_root(inode->root); 8734 } 8735 8736 int btrfs_drop_inode(struct inode *inode) 8737 { 8738 struct btrfs_root *root = BTRFS_I(inode)->root; 8739 8740 if (root == NULL) 8741 return 1; 8742 8743 /* the snap/subvol tree is on deleting */ 8744 if (btrfs_root_refs(&root->root_item) == 0) 8745 return 1; 8746 else 8747 return generic_drop_inode(inode); 8748 } 8749 8750 static void init_once(void *foo) 8751 { 8752 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8753 8754 inode_init_once(&ei->vfs_inode); 8755 } 8756 8757 void __cold btrfs_destroy_cachep(void) 8758 { 8759 /* 8760 * Make sure all delayed rcu free inodes are flushed before we 8761 * destroy cache. 8762 */ 8763 rcu_barrier(); 8764 kmem_cache_destroy(btrfs_inode_cachep); 8765 kmem_cache_destroy(btrfs_trans_handle_cachep); 8766 kmem_cache_destroy(btrfs_path_cachep); 8767 kmem_cache_destroy(btrfs_free_space_cachep); 8768 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8769 } 8770 8771 int __init btrfs_init_cachep(void) 8772 { 8773 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8774 sizeof(struct btrfs_inode), 0, 8775 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8776 init_once); 8777 if (!btrfs_inode_cachep) 8778 goto fail; 8779 8780 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8781 sizeof(struct btrfs_trans_handle), 0, 8782 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8783 if (!btrfs_trans_handle_cachep) 8784 goto fail; 8785 8786 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8787 sizeof(struct btrfs_path), 0, 8788 SLAB_MEM_SPREAD, NULL); 8789 if (!btrfs_path_cachep) 8790 goto fail; 8791 8792 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8793 sizeof(struct btrfs_free_space), 0, 8794 SLAB_MEM_SPREAD, NULL); 8795 if (!btrfs_free_space_cachep) 8796 goto fail; 8797 8798 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8799 PAGE_SIZE, PAGE_SIZE, 8800 SLAB_RED_ZONE, NULL); 8801 if (!btrfs_free_space_bitmap_cachep) 8802 goto fail; 8803 8804 return 0; 8805 fail: 8806 btrfs_destroy_cachep(); 8807 return -ENOMEM; 8808 } 8809 8810 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8811 u32 request_mask, unsigned int flags) 8812 { 8813 u64 delalloc_bytes; 8814 u64 inode_bytes; 8815 struct inode *inode = d_inode(path->dentry); 8816 u32 blocksize = inode->i_sb->s_blocksize; 8817 u32 bi_flags = BTRFS_I(inode)->flags; 8818 8819 stat->result_mask |= STATX_BTIME; 8820 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8821 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8822 if (bi_flags & BTRFS_INODE_APPEND) 8823 stat->attributes |= STATX_ATTR_APPEND; 8824 if (bi_flags & BTRFS_INODE_COMPRESS) 8825 stat->attributes |= STATX_ATTR_COMPRESSED; 8826 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8827 stat->attributes |= STATX_ATTR_IMMUTABLE; 8828 if (bi_flags & BTRFS_INODE_NODUMP) 8829 stat->attributes |= STATX_ATTR_NODUMP; 8830 8831 stat->attributes_mask |= (STATX_ATTR_APPEND | 8832 STATX_ATTR_COMPRESSED | 8833 STATX_ATTR_IMMUTABLE | 8834 STATX_ATTR_NODUMP); 8835 8836 generic_fillattr(inode, stat); 8837 stat->dev = BTRFS_I(inode)->root->anon_dev; 8838 8839 spin_lock(&BTRFS_I(inode)->lock); 8840 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8841 inode_bytes = inode_get_bytes(inode); 8842 spin_unlock(&BTRFS_I(inode)->lock); 8843 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8844 ALIGN(delalloc_bytes, blocksize)) >> 9; 8845 return 0; 8846 } 8847 8848 static int btrfs_rename_exchange(struct inode *old_dir, 8849 struct dentry *old_dentry, 8850 struct inode *new_dir, 8851 struct dentry *new_dentry) 8852 { 8853 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8854 struct btrfs_trans_handle *trans; 8855 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8856 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8857 struct inode *new_inode = new_dentry->d_inode; 8858 struct inode *old_inode = old_dentry->d_inode; 8859 struct timespec64 ctime = current_time(old_inode); 8860 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8861 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8862 u64 old_idx = 0; 8863 u64 new_idx = 0; 8864 int ret; 8865 int ret2; 8866 bool root_log_pinned = false; 8867 bool dest_log_pinned = false; 8868 8869 /* we only allow rename subvolume link between subvolumes */ 8870 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8871 return -EXDEV; 8872 8873 /* close the race window with snapshot create/destroy ioctl */ 8874 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8875 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8876 down_read(&fs_info->subvol_sem); 8877 8878 /* 8879 * We want to reserve the absolute worst case amount of items. So if 8880 * both inodes are subvols and we need to unlink them then that would 8881 * require 4 item modifications, but if they are both normal inodes it 8882 * would require 5 item modifications, so we'll assume their normal 8883 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8884 * should cover the worst case number of items we'll modify. 8885 */ 8886 trans = btrfs_start_transaction(root, 12); 8887 if (IS_ERR(trans)) { 8888 ret = PTR_ERR(trans); 8889 goto out_notrans; 8890 } 8891 8892 if (dest != root) 8893 btrfs_record_root_in_trans(trans, dest); 8894 8895 /* 8896 * We need to find a free sequence number both in the source and 8897 * in the destination directory for the exchange. 8898 */ 8899 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8900 if (ret) 8901 goto out_fail; 8902 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8903 if (ret) 8904 goto out_fail; 8905 8906 BTRFS_I(old_inode)->dir_index = 0ULL; 8907 BTRFS_I(new_inode)->dir_index = 0ULL; 8908 8909 /* Reference for the source. */ 8910 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8911 /* force full log commit if subvolume involved. */ 8912 btrfs_set_log_full_commit(trans); 8913 } else { 8914 btrfs_pin_log_trans(root); 8915 root_log_pinned = true; 8916 ret = btrfs_insert_inode_ref(trans, dest, 8917 new_dentry->d_name.name, 8918 new_dentry->d_name.len, 8919 old_ino, 8920 btrfs_ino(BTRFS_I(new_dir)), 8921 old_idx); 8922 if (ret) 8923 goto out_fail; 8924 } 8925 8926 /* And now for the dest. */ 8927 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8928 /* force full log commit if subvolume involved. */ 8929 btrfs_set_log_full_commit(trans); 8930 } else { 8931 btrfs_pin_log_trans(dest); 8932 dest_log_pinned = true; 8933 ret = btrfs_insert_inode_ref(trans, root, 8934 old_dentry->d_name.name, 8935 old_dentry->d_name.len, 8936 new_ino, 8937 btrfs_ino(BTRFS_I(old_dir)), 8938 new_idx); 8939 if (ret) 8940 goto out_fail; 8941 } 8942 8943 /* Update inode version and ctime/mtime. */ 8944 inode_inc_iversion(old_dir); 8945 inode_inc_iversion(new_dir); 8946 inode_inc_iversion(old_inode); 8947 inode_inc_iversion(new_inode); 8948 old_dir->i_ctime = old_dir->i_mtime = ctime; 8949 new_dir->i_ctime = new_dir->i_mtime = ctime; 8950 old_inode->i_ctime = ctime; 8951 new_inode->i_ctime = ctime; 8952 8953 if (old_dentry->d_parent != new_dentry->d_parent) { 8954 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8955 BTRFS_I(old_inode), 1); 8956 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8957 BTRFS_I(new_inode), 1); 8958 } 8959 8960 /* src is a subvolume */ 8961 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8962 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 8963 } else { /* src is an inode */ 8964 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 8965 BTRFS_I(old_dentry->d_inode), 8966 old_dentry->d_name.name, 8967 old_dentry->d_name.len); 8968 if (!ret) 8969 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 8970 } 8971 if (ret) { 8972 btrfs_abort_transaction(trans, ret); 8973 goto out_fail; 8974 } 8975 8976 /* dest is a subvolume */ 8977 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8978 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 8979 } else { /* dest is an inode */ 8980 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 8981 BTRFS_I(new_dentry->d_inode), 8982 new_dentry->d_name.name, 8983 new_dentry->d_name.len); 8984 if (!ret) 8985 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 8986 } 8987 if (ret) { 8988 btrfs_abort_transaction(trans, ret); 8989 goto out_fail; 8990 } 8991 8992 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8993 new_dentry->d_name.name, 8994 new_dentry->d_name.len, 0, old_idx); 8995 if (ret) { 8996 btrfs_abort_transaction(trans, ret); 8997 goto out_fail; 8998 } 8999 9000 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9001 old_dentry->d_name.name, 9002 old_dentry->d_name.len, 0, new_idx); 9003 if (ret) { 9004 btrfs_abort_transaction(trans, ret); 9005 goto out_fail; 9006 } 9007 9008 if (old_inode->i_nlink == 1) 9009 BTRFS_I(old_inode)->dir_index = old_idx; 9010 if (new_inode->i_nlink == 1) 9011 BTRFS_I(new_inode)->dir_index = new_idx; 9012 9013 if (root_log_pinned) { 9014 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9015 new_dentry->d_parent); 9016 btrfs_end_log_trans(root); 9017 root_log_pinned = false; 9018 } 9019 if (dest_log_pinned) { 9020 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9021 old_dentry->d_parent); 9022 btrfs_end_log_trans(dest); 9023 dest_log_pinned = false; 9024 } 9025 out_fail: 9026 /* 9027 * If we have pinned a log and an error happened, we unpin tasks 9028 * trying to sync the log and force them to fallback to a transaction 9029 * commit if the log currently contains any of the inodes involved in 9030 * this rename operation (to ensure we do not persist a log with an 9031 * inconsistent state for any of these inodes or leading to any 9032 * inconsistencies when replayed). If the transaction was aborted, the 9033 * abortion reason is propagated to userspace when attempting to commit 9034 * the transaction. If the log does not contain any of these inodes, we 9035 * allow the tasks to sync it. 9036 */ 9037 if (ret && (root_log_pinned || dest_log_pinned)) { 9038 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9039 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9040 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9041 (new_inode && 9042 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9043 btrfs_set_log_full_commit(trans); 9044 9045 if (root_log_pinned) { 9046 btrfs_end_log_trans(root); 9047 root_log_pinned = false; 9048 } 9049 if (dest_log_pinned) { 9050 btrfs_end_log_trans(dest); 9051 dest_log_pinned = false; 9052 } 9053 } 9054 ret2 = btrfs_end_transaction(trans); 9055 ret = ret ? ret : ret2; 9056 out_notrans: 9057 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9058 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9059 up_read(&fs_info->subvol_sem); 9060 9061 return ret; 9062 } 9063 9064 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9065 struct btrfs_root *root, 9066 struct inode *dir, 9067 struct dentry *dentry) 9068 { 9069 int ret; 9070 struct inode *inode; 9071 u64 objectid; 9072 u64 index; 9073 9074 ret = btrfs_find_free_objectid(root, &objectid); 9075 if (ret) 9076 return ret; 9077 9078 inode = btrfs_new_inode(trans, root, dir, 9079 dentry->d_name.name, 9080 dentry->d_name.len, 9081 btrfs_ino(BTRFS_I(dir)), 9082 objectid, 9083 S_IFCHR | WHITEOUT_MODE, 9084 &index); 9085 9086 if (IS_ERR(inode)) { 9087 ret = PTR_ERR(inode); 9088 return ret; 9089 } 9090 9091 inode->i_op = &btrfs_special_inode_operations; 9092 init_special_inode(inode, inode->i_mode, 9093 WHITEOUT_DEV); 9094 9095 ret = btrfs_init_inode_security(trans, inode, dir, 9096 &dentry->d_name); 9097 if (ret) 9098 goto out; 9099 9100 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9101 BTRFS_I(inode), 0, index); 9102 if (ret) 9103 goto out; 9104 9105 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9106 out: 9107 unlock_new_inode(inode); 9108 if (ret) 9109 inode_dec_link_count(inode); 9110 iput(inode); 9111 9112 return ret; 9113 } 9114 9115 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9116 struct inode *new_dir, struct dentry *new_dentry, 9117 unsigned int flags) 9118 { 9119 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9120 struct btrfs_trans_handle *trans; 9121 unsigned int trans_num_items; 9122 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9123 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9124 struct inode *new_inode = d_inode(new_dentry); 9125 struct inode *old_inode = d_inode(old_dentry); 9126 u64 index = 0; 9127 int ret; 9128 int ret2; 9129 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9130 bool log_pinned = false; 9131 9132 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9133 return -EPERM; 9134 9135 /* we only allow rename subvolume link between subvolumes */ 9136 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9137 return -EXDEV; 9138 9139 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9140 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9141 return -ENOTEMPTY; 9142 9143 if (S_ISDIR(old_inode->i_mode) && new_inode && 9144 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9145 return -ENOTEMPTY; 9146 9147 9148 /* check for collisions, even if the name isn't there */ 9149 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9150 new_dentry->d_name.name, 9151 new_dentry->d_name.len); 9152 9153 if (ret) { 9154 if (ret == -EEXIST) { 9155 /* we shouldn't get 9156 * eexist without a new_inode */ 9157 if (WARN_ON(!new_inode)) { 9158 return ret; 9159 } 9160 } else { 9161 /* maybe -EOVERFLOW */ 9162 return ret; 9163 } 9164 } 9165 ret = 0; 9166 9167 /* 9168 * we're using rename to replace one file with another. Start IO on it 9169 * now so we don't add too much work to the end of the transaction 9170 */ 9171 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9172 filemap_flush(old_inode->i_mapping); 9173 9174 /* close the racy window with snapshot create/destroy ioctl */ 9175 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9176 down_read(&fs_info->subvol_sem); 9177 /* 9178 * We want to reserve the absolute worst case amount of items. So if 9179 * both inodes are subvols and we need to unlink them then that would 9180 * require 4 item modifications, but if they are both normal inodes it 9181 * would require 5 item modifications, so we'll assume they are normal 9182 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9183 * should cover the worst case number of items we'll modify. 9184 * If our rename has the whiteout flag, we need more 5 units for the 9185 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9186 * when selinux is enabled). 9187 */ 9188 trans_num_items = 11; 9189 if (flags & RENAME_WHITEOUT) 9190 trans_num_items += 5; 9191 trans = btrfs_start_transaction(root, trans_num_items); 9192 if (IS_ERR(trans)) { 9193 ret = PTR_ERR(trans); 9194 goto out_notrans; 9195 } 9196 9197 if (dest != root) 9198 btrfs_record_root_in_trans(trans, dest); 9199 9200 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9201 if (ret) 9202 goto out_fail; 9203 9204 BTRFS_I(old_inode)->dir_index = 0ULL; 9205 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9206 /* force full log commit if subvolume involved. */ 9207 btrfs_set_log_full_commit(trans); 9208 } else { 9209 btrfs_pin_log_trans(root); 9210 log_pinned = true; 9211 ret = btrfs_insert_inode_ref(trans, dest, 9212 new_dentry->d_name.name, 9213 new_dentry->d_name.len, 9214 old_ino, 9215 btrfs_ino(BTRFS_I(new_dir)), index); 9216 if (ret) 9217 goto out_fail; 9218 } 9219 9220 inode_inc_iversion(old_dir); 9221 inode_inc_iversion(new_dir); 9222 inode_inc_iversion(old_inode); 9223 old_dir->i_ctime = old_dir->i_mtime = 9224 new_dir->i_ctime = new_dir->i_mtime = 9225 old_inode->i_ctime = current_time(old_dir); 9226 9227 if (old_dentry->d_parent != new_dentry->d_parent) 9228 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9229 BTRFS_I(old_inode), 1); 9230 9231 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9232 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9233 } else { 9234 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9235 BTRFS_I(d_inode(old_dentry)), 9236 old_dentry->d_name.name, 9237 old_dentry->d_name.len); 9238 if (!ret) 9239 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9240 } 9241 if (ret) { 9242 btrfs_abort_transaction(trans, ret); 9243 goto out_fail; 9244 } 9245 9246 if (new_inode) { 9247 inode_inc_iversion(new_inode); 9248 new_inode->i_ctime = current_time(new_inode); 9249 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9250 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9251 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9252 BUG_ON(new_inode->i_nlink == 0); 9253 } else { 9254 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9255 BTRFS_I(d_inode(new_dentry)), 9256 new_dentry->d_name.name, 9257 new_dentry->d_name.len); 9258 } 9259 if (!ret && new_inode->i_nlink == 0) 9260 ret = btrfs_orphan_add(trans, 9261 BTRFS_I(d_inode(new_dentry))); 9262 if (ret) { 9263 btrfs_abort_transaction(trans, ret); 9264 goto out_fail; 9265 } 9266 } 9267 9268 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9269 new_dentry->d_name.name, 9270 new_dentry->d_name.len, 0, index); 9271 if (ret) { 9272 btrfs_abort_transaction(trans, ret); 9273 goto out_fail; 9274 } 9275 9276 if (old_inode->i_nlink == 1) 9277 BTRFS_I(old_inode)->dir_index = index; 9278 9279 if (log_pinned) { 9280 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9281 new_dentry->d_parent); 9282 btrfs_end_log_trans(root); 9283 log_pinned = false; 9284 } 9285 9286 if (flags & RENAME_WHITEOUT) { 9287 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9288 old_dentry); 9289 9290 if (ret) { 9291 btrfs_abort_transaction(trans, ret); 9292 goto out_fail; 9293 } 9294 } 9295 out_fail: 9296 /* 9297 * If we have pinned the log and an error happened, we unpin tasks 9298 * trying to sync the log and force them to fallback to a transaction 9299 * commit if the log currently contains any of the inodes involved in 9300 * this rename operation (to ensure we do not persist a log with an 9301 * inconsistent state for any of these inodes or leading to any 9302 * inconsistencies when replayed). If the transaction was aborted, the 9303 * abortion reason is propagated to userspace when attempting to commit 9304 * the transaction. If the log does not contain any of these inodes, we 9305 * allow the tasks to sync it. 9306 */ 9307 if (ret && log_pinned) { 9308 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9309 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9310 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9311 (new_inode && 9312 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9313 btrfs_set_log_full_commit(trans); 9314 9315 btrfs_end_log_trans(root); 9316 log_pinned = false; 9317 } 9318 ret2 = btrfs_end_transaction(trans); 9319 ret = ret ? ret : ret2; 9320 out_notrans: 9321 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9322 up_read(&fs_info->subvol_sem); 9323 9324 return ret; 9325 } 9326 9327 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9328 struct inode *new_dir, struct dentry *new_dentry, 9329 unsigned int flags) 9330 { 9331 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9332 return -EINVAL; 9333 9334 if (flags & RENAME_EXCHANGE) 9335 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9336 new_dentry); 9337 9338 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9339 } 9340 9341 struct btrfs_delalloc_work { 9342 struct inode *inode; 9343 struct completion completion; 9344 struct list_head list; 9345 struct btrfs_work work; 9346 }; 9347 9348 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9349 { 9350 struct btrfs_delalloc_work *delalloc_work; 9351 struct inode *inode; 9352 9353 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9354 work); 9355 inode = delalloc_work->inode; 9356 filemap_flush(inode->i_mapping); 9357 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9358 &BTRFS_I(inode)->runtime_flags)) 9359 filemap_flush(inode->i_mapping); 9360 9361 iput(inode); 9362 complete(&delalloc_work->completion); 9363 } 9364 9365 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9366 { 9367 struct btrfs_delalloc_work *work; 9368 9369 work = kmalloc(sizeof(*work), GFP_NOFS); 9370 if (!work) 9371 return NULL; 9372 9373 init_completion(&work->completion); 9374 INIT_LIST_HEAD(&work->list); 9375 work->inode = inode; 9376 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9377 9378 return work; 9379 } 9380 9381 /* 9382 * some fairly slow code that needs optimization. This walks the list 9383 * of all the inodes with pending delalloc and forces them to disk. 9384 */ 9385 static int start_delalloc_inodes(struct btrfs_root *root, u64 *nr, bool snapshot) 9386 { 9387 struct btrfs_inode *binode; 9388 struct inode *inode; 9389 struct btrfs_delalloc_work *work, *next; 9390 struct list_head works; 9391 struct list_head splice; 9392 int ret = 0; 9393 9394 INIT_LIST_HEAD(&works); 9395 INIT_LIST_HEAD(&splice); 9396 9397 mutex_lock(&root->delalloc_mutex); 9398 spin_lock(&root->delalloc_lock); 9399 list_splice_init(&root->delalloc_inodes, &splice); 9400 while (!list_empty(&splice)) { 9401 binode = list_entry(splice.next, struct btrfs_inode, 9402 delalloc_inodes); 9403 9404 list_move_tail(&binode->delalloc_inodes, 9405 &root->delalloc_inodes); 9406 inode = igrab(&binode->vfs_inode); 9407 if (!inode) { 9408 cond_resched_lock(&root->delalloc_lock); 9409 continue; 9410 } 9411 spin_unlock(&root->delalloc_lock); 9412 9413 if (snapshot) 9414 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9415 &binode->runtime_flags); 9416 work = btrfs_alloc_delalloc_work(inode); 9417 if (!work) { 9418 iput(inode); 9419 ret = -ENOMEM; 9420 goto out; 9421 } 9422 list_add_tail(&work->list, &works); 9423 btrfs_queue_work(root->fs_info->flush_workers, 9424 &work->work); 9425 if (*nr != U64_MAX) { 9426 (*nr)--; 9427 if (*nr == 0) 9428 goto out; 9429 } 9430 cond_resched(); 9431 spin_lock(&root->delalloc_lock); 9432 } 9433 spin_unlock(&root->delalloc_lock); 9434 9435 out: 9436 list_for_each_entry_safe(work, next, &works, list) { 9437 list_del_init(&work->list); 9438 wait_for_completion(&work->completion); 9439 kfree(work); 9440 } 9441 9442 if (!list_empty(&splice)) { 9443 spin_lock(&root->delalloc_lock); 9444 list_splice_tail(&splice, &root->delalloc_inodes); 9445 spin_unlock(&root->delalloc_lock); 9446 } 9447 mutex_unlock(&root->delalloc_mutex); 9448 return ret; 9449 } 9450 9451 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9452 { 9453 struct btrfs_fs_info *fs_info = root->fs_info; 9454 u64 nr = U64_MAX; 9455 9456 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9457 return -EROFS; 9458 9459 return start_delalloc_inodes(root, &nr, true); 9460 } 9461 9462 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr) 9463 { 9464 struct btrfs_root *root; 9465 struct list_head splice; 9466 int ret; 9467 9468 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9469 return -EROFS; 9470 9471 INIT_LIST_HEAD(&splice); 9472 9473 mutex_lock(&fs_info->delalloc_root_mutex); 9474 spin_lock(&fs_info->delalloc_root_lock); 9475 list_splice_init(&fs_info->delalloc_roots, &splice); 9476 while (!list_empty(&splice) && nr) { 9477 root = list_first_entry(&splice, struct btrfs_root, 9478 delalloc_root); 9479 root = btrfs_grab_root(root); 9480 BUG_ON(!root); 9481 list_move_tail(&root->delalloc_root, 9482 &fs_info->delalloc_roots); 9483 spin_unlock(&fs_info->delalloc_root_lock); 9484 9485 ret = start_delalloc_inodes(root, &nr, false); 9486 btrfs_put_root(root); 9487 if (ret < 0) 9488 goto out; 9489 spin_lock(&fs_info->delalloc_root_lock); 9490 } 9491 spin_unlock(&fs_info->delalloc_root_lock); 9492 9493 ret = 0; 9494 out: 9495 if (!list_empty(&splice)) { 9496 spin_lock(&fs_info->delalloc_root_lock); 9497 list_splice_tail(&splice, &fs_info->delalloc_roots); 9498 spin_unlock(&fs_info->delalloc_root_lock); 9499 } 9500 mutex_unlock(&fs_info->delalloc_root_mutex); 9501 return ret; 9502 } 9503 9504 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9505 const char *symname) 9506 { 9507 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9508 struct btrfs_trans_handle *trans; 9509 struct btrfs_root *root = BTRFS_I(dir)->root; 9510 struct btrfs_path *path; 9511 struct btrfs_key key; 9512 struct inode *inode = NULL; 9513 int err; 9514 u64 objectid; 9515 u64 index = 0; 9516 int name_len; 9517 int datasize; 9518 unsigned long ptr; 9519 struct btrfs_file_extent_item *ei; 9520 struct extent_buffer *leaf; 9521 9522 name_len = strlen(symname); 9523 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9524 return -ENAMETOOLONG; 9525 9526 /* 9527 * 2 items for inode item and ref 9528 * 2 items for dir items 9529 * 1 item for updating parent inode item 9530 * 1 item for the inline extent item 9531 * 1 item for xattr if selinux is on 9532 */ 9533 trans = btrfs_start_transaction(root, 7); 9534 if (IS_ERR(trans)) 9535 return PTR_ERR(trans); 9536 9537 err = btrfs_find_free_objectid(root, &objectid); 9538 if (err) 9539 goto out_unlock; 9540 9541 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9542 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9543 objectid, S_IFLNK|S_IRWXUGO, &index); 9544 if (IS_ERR(inode)) { 9545 err = PTR_ERR(inode); 9546 inode = NULL; 9547 goto out_unlock; 9548 } 9549 9550 /* 9551 * If the active LSM wants to access the inode during 9552 * d_instantiate it needs these. Smack checks to see 9553 * if the filesystem supports xattrs by looking at the 9554 * ops vector. 9555 */ 9556 inode->i_fop = &btrfs_file_operations; 9557 inode->i_op = &btrfs_file_inode_operations; 9558 inode->i_mapping->a_ops = &btrfs_aops; 9559 9560 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9561 if (err) 9562 goto out_unlock; 9563 9564 path = btrfs_alloc_path(); 9565 if (!path) { 9566 err = -ENOMEM; 9567 goto out_unlock; 9568 } 9569 key.objectid = btrfs_ino(BTRFS_I(inode)); 9570 key.offset = 0; 9571 key.type = BTRFS_EXTENT_DATA_KEY; 9572 datasize = btrfs_file_extent_calc_inline_size(name_len); 9573 err = btrfs_insert_empty_item(trans, root, path, &key, 9574 datasize); 9575 if (err) { 9576 btrfs_free_path(path); 9577 goto out_unlock; 9578 } 9579 leaf = path->nodes[0]; 9580 ei = btrfs_item_ptr(leaf, path->slots[0], 9581 struct btrfs_file_extent_item); 9582 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9583 btrfs_set_file_extent_type(leaf, ei, 9584 BTRFS_FILE_EXTENT_INLINE); 9585 btrfs_set_file_extent_encryption(leaf, ei, 0); 9586 btrfs_set_file_extent_compression(leaf, ei, 0); 9587 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9588 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9589 9590 ptr = btrfs_file_extent_inline_start(ei); 9591 write_extent_buffer(leaf, symname, ptr, name_len); 9592 btrfs_mark_buffer_dirty(leaf); 9593 btrfs_free_path(path); 9594 9595 inode->i_op = &btrfs_symlink_inode_operations; 9596 inode_nohighmem(inode); 9597 inode_set_bytes(inode, name_len); 9598 btrfs_i_size_write(BTRFS_I(inode), name_len); 9599 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9600 /* 9601 * Last step, add directory indexes for our symlink inode. This is the 9602 * last step to avoid extra cleanup of these indexes if an error happens 9603 * elsewhere above. 9604 */ 9605 if (!err) 9606 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9607 BTRFS_I(inode), 0, index); 9608 if (err) 9609 goto out_unlock; 9610 9611 d_instantiate_new(dentry, inode); 9612 9613 out_unlock: 9614 btrfs_end_transaction(trans); 9615 if (err && inode) { 9616 inode_dec_link_count(inode); 9617 discard_new_inode(inode); 9618 } 9619 btrfs_btree_balance_dirty(fs_info); 9620 return err; 9621 } 9622 9623 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9624 struct btrfs_trans_handle *trans_in, 9625 struct btrfs_inode *inode, 9626 struct btrfs_key *ins, 9627 u64 file_offset) 9628 { 9629 struct btrfs_file_extent_item stack_fi; 9630 struct btrfs_replace_extent_info extent_info; 9631 struct btrfs_trans_handle *trans = trans_in; 9632 struct btrfs_path *path; 9633 u64 start = ins->objectid; 9634 u64 len = ins->offset; 9635 int ret; 9636 9637 memset(&stack_fi, 0, sizeof(stack_fi)); 9638 9639 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9640 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9641 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9642 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9643 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9644 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9645 /* Encryption and other encoding is reserved and all 0 */ 9646 9647 ret = btrfs_qgroup_release_data(inode, file_offset, len); 9648 if (ret < 0) 9649 return ERR_PTR(ret); 9650 9651 if (trans) { 9652 ret = insert_reserved_file_extent(trans, inode, 9653 file_offset, &stack_fi, 9654 true, ret); 9655 if (ret) 9656 return ERR_PTR(ret); 9657 return trans; 9658 } 9659 9660 extent_info.disk_offset = start; 9661 extent_info.disk_len = len; 9662 extent_info.data_offset = 0; 9663 extent_info.data_len = len; 9664 extent_info.file_offset = file_offset; 9665 extent_info.extent_buf = (char *)&stack_fi; 9666 extent_info.is_new_extent = true; 9667 extent_info.qgroup_reserved = ret; 9668 extent_info.insertions = 0; 9669 9670 path = btrfs_alloc_path(); 9671 if (!path) 9672 return ERR_PTR(-ENOMEM); 9673 9674 ret = btrfs_replace_file_extents(&inode->vfs_inode, path, file_offset, 9675 file_offset + len - 1, &extent_info, 9676 &trans); 9677 btrfs_free_path(path); 9678 if (ret) 9679 return ERR_PTR(ret); 9680 9681 return trans; 9682 } 9683 9684 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9685 u64 start, u64 num_bytes, u64 min_size, 9686 loff_t actual_len, u64 *alloc_hint, 9687 struct btrfs_trans_handle *trans) 9688 { 9689 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9690 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9691 struct extent_map *em; 9692 struct btrfs_root *root = BTRFS_I(inode)->root; 9693 struct btrfs_key ins; 9694 u64 cur_offset = start; 9695 u64 clear_offset = start; 9696 u64 i_size; 9697 u64 cur_bytes; 9698 u64 last_alloc = (u64)-1; 9699 int ret = 0; 9700 bool own_trans = true; 9701 u64 end = start + num_bytes - 1; 9702 9703 if (trans) 9704 own_trans = false; 9705 while (num_bytes > 0) { 9706 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9707 cur_bytes = max(cur_bytes, min_size); 9708 /* 9709 * If we are severely fragmented we could end up with really 9710 * small allocations, so if the allocator is returning small 9711 * chunks lets make its job easier by only searching for those 9712 * sized chunks. 9713 */ 9714 cur_bytes = min(cur_bytes, last_alloc); 9715 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9716 min_size, 0, *alloc_hint, &ins, 1, 0); 9717 if (ret) 9718 break; 9719 9720 /* 9721 * We've reserved this space, and thus converted it from 9722 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9723 * from here on out we will only need to clear our reservation 9724 * for the remaining unreserved area, so advance our 9725 * clear_offset by our extent size. 9726 */ 9727 clear_offset += ins.offset; 9728 9729 last_alloc = ins.offset; 9730 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9731 &ins, cur_offset); 9732 /* 9733 * Now that we inserted the prealloc extent we can finally 9734 * decrement the number of reservations in the block group. 9735 * If we did it before, we could race with relocation and have 9736 * relocation miss the reserved extent, making it fail later. 9737 */ 9738 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9739 if (IS_ERR(trans)) { 9740 ret = PTR_ERR(trans); 9741 btrfs_free_reserved_extent(fs_info, ins.objectid, 9742 ins.offset, 0); 9743 break; 9744 } 9745 9746 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9747 cur_offset + ins.offset -1, 0); 9748 9749 em = alloc_extent_map(); 9750 if (!em) { 9751 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9752 &BTRFS_I(inode)->runtime_flags); 9753 goto next; 9754 } 9755 9756 em->start = cur_offset; 9757 em->orig_start = cur_offset; 9758 em->len = ins.offset; 9759 em->block_start = ins.objectid; 9760 em->block_len = ins.offset; 9761 em->orig_block_len = ins.offset; 9762 em->ram_bytes = ins.offset; 9763 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9764 em->generation = trans->transid; 9765 9766 while (1) { 9767 write_lock(&em_tree->lock); 9768 ret = add_extent_mapping(em_tree, em, 1); 9769 write_unlock(&em_tree->lock); 9770 if (ret != -EEXIST) 9771 break; 9772 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9773 cur_offset + ins.offset - 1, 9774 0); 9775 } 9776 free_extent_map(em); 9777 next: 9778 num_bytes -= ins.offset; 9779 cur_offset += ins.offset; 9780 *alloc_hint = ins.objectid + ins.offset; 9781 9782 inode_inc_iversion(inode); 9783 inode->i_ctime = current_time(inode); 9784 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9785 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9786 (actual_len > inode->i_size) && 9787 (cur_offset > inode->i_size)) { 9788 if (cur_offset > actual_len) 9789 i_size = actual_len; 9790 else 9791 i_size = cur_offset; 9792 i_size_write(inode, i_size); 9793 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9794 } 9795 9796 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9797 9798 if (ret) { 9799 btrfs_abort_transaction(trans, ret); 9800 if (own_trans) 9801 btrfs_end_transaction(trans); 9802 break; 9803 } 9804 9805 if (own_trans) { 9806 btrfs_end_transaction(trans); 9807 trans = NULL; 9808 } 9809 } 9810 if (clear_offset < end) 9811 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9812 end - clear_offset + 1); 9813 return ret; 9814 } 9815 9816 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9817 u64 start, u64 num_bytes, u64 min_size, 9818 loff_t actual_len, u64 *alloc_hint) 9819 { 9820 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9821 min_size, actual_len, alloc_hint, 9822 NULL); 9823 } 9824 9825 int btrfs_prealloc_file_range_trans(struct inode *inode, 9826 struct btrfs_trans_handle *trans, int mode, 9827 u64 start, u64 num_bytes, u64 min_size, 9828 loff_t actual_len, u64 *alloc_hint) 9829 { 9830 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9831 min_size, actual_len, alloc_hint, trans); 9832 } 9833 9834 static int btrfs_set_page_dirty(struct page *page) 9835 { 9836 return __set_page_dirty_nobuffers(page); 9837 } 9838 9839 static int btrfs_permission(struct inode *inode, int mask) 9840 { 9841 struct btrfs_root *root = BTRFS_I(inode)->root; 9842 umode_t mode = inode->i_mode; 9843 9844 if (mask & MAY_WRITE && 9845 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9846 if (btrfs_root_readonly(root)) 9847 return -EROFS; 9848 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9849 return -EACCES; 9850 } 9851 return generic_permission(inode, mask); 9852 } 9853 9854 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9855 { 9856 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9857 struct btrfs_trans_handle *trans; 9858 struct btrfs_root *root = BTRFS_I(dir)->root; 9859 struct inode *inode = NULL; 9860 u64 objectid; 9861 u64 index; 9862 int ret = 0; 9863 9864 /* 9865 * 5 units required for adding orphan entry 9866 */ 9867 trans = btrfs_start_transaction(root, 5); 9868 if (IS_ERR(trans)) 9869 return PTR_ERR(trans); 9870 9871 ret = btrfs_find_free_objectid(root, &objectid); 9872 if (ret) 9873 goto out; 9874 9875 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9876 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9877 if (IS_ERR(inode)) { 9878 ret = PTR_ERR(inode); 9879 inode = NULL; 9880 goto out; 9881 } 9882 9883 inode->i_fop = &btrfs_file_operations; 9884 inode->i_op = &btrfs_file_inode_operations; 9885 9886 inode->i_mapping->a_ops = &btrfs_aops; 9887 9888 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9889 if (ret) 9890 goto out; 9891 9892 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9893 if (ret) 9894 goto out; 9895 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9896 if (ret) 9897 goto out; 9898 9899 /* 9900 * We set number of links to 0 in btrfs_new_inode(), and here we set 9901 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9902 * through: 9903 * 9904 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9905 */ 9906 set_nlink(inode, 1); 9907 d_tmpfile(dentry, inode); 9908 unlock_new_inode(inode); 9909 mark_inode_dirty(inode); 9910 out: 9911 btrfs_end_transaction(trans); 9912 if (ret && inode) 9913 discard_new_inode(inode); 9914 btrfs_btree_balance_dirty(fs_info); 9915 return ret; 9916 } 9917 9918 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 9919 { 9920 struct inode *inode = tree->private_data; 9921 unsigned long index = start >> PAGE_SHIFT; 9922 unsigned long end_index = end >> PAGE_SHIFT; 9923 struct page *page; 9924 9925 while (index <= end_index) { 9926 page = find_get_page(inode->i_mapping, index); 9927 ASSERT(page); /* Pages should be in the extent_io_tree */ 9928 set_page_writeback(page); 9929 put_page(page); 9930 index++; 9931 } 9932 } 9933 9934 #ifdef CONFIG_SWAP 9935 /* 9936 * Add an entry indicating a block group or device which is pinned by a 9937 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9938 * negative errno on failure. 9939 */ 9940 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9941 bool is_block_group) 9942 { 9943 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9944 struct btrfs_swapfile_pin *sp, *entry; 9945 struct rb_node **p; 9946 struct rb_node *parent = NULL; 9947 9948 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9949 if (!sp) 9950 return -ENOMEM; 9951 sp->ptr = ptr; 9952 sp->inode = inode; 9953 sp->is_block_group = is_block_group; 9954 9955 spin_lock(&fs_info->swapfile_pins_lock); 9956 p = &fs_info->swapfile_pins.rb_node; 9957 while (*p) { 9958 parent = *p; 9959 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9960 if (sp->ptr < entry->ptr || 9961 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9962 p = &(*p)->rb_left; 9963 } else if (sp->ptr > entry->ptr || 9964 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9965 p = &(*p)->rb_right; 9966 } else { 9967 spin_unlock(&fs_info->swapfile_pins_lock); 9968 kfree(sp); 9969 return 1; 9970 } 9971 } 9972 rb_link_node(&sp->node, parent, p); 9973 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9974 spin_unlock(&fs_info->swapfile_pins_lock); 9975 return 0; 9976 } 9977 9978 /* Free all of the entries pinned by this swapfile. */ 9979 static void btrfs_free_swapfile_pins(struct inode *inode) 9980 { 9981 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9982 struct btrfs_swapfile_pin *sp; 9983 struct rb_node *node, *next; 9984 9985 spin_lock(&fs_info->swapfile_pins_lock); 9986 node = rb_first(&fs_info->swapfile_pins); 9987 while (node) { 9988 next = rb_next(node); 9989 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9990 if (sp->inode == inode) { 9991 rb_erase(&sp->node, &fs_info->swapfile_pins); 9992 if (sp->is_block_group) 9993 btrfs_put_block_group(sp->ptr); 9994 kfree(sp); 9995 } 9996 node = next; 9997 } 9998 spin_unlock(&fs_info->swapfile_pins_lock); 9999 } 10000 10001 struct btrfs_swap_info { 10002 u64 start; 10003 u64 block_start; 10004 u64 block_len; 10005 u64 lowest_ppage; 10006 u64 highest_ppage; 10007 unsigned long nr_pages; 10008 int nr_extents; 10009 }; 10010 10011 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10012 struct btrfs_swap_info *bsi) 10013 { 10014 unsigned long nr_pages; 10015 u64 first_ppage, first_ppage_reported, next_ppage; 10016 int ret; 10017 10018 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10019 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10020 PAGE_SIZE) >> PAGE_SHIFT; 10021 10022 if (first_ppage >= next_ppage) 10023 return 0; 10024 nr_pages = next_ppage - first_ppage; 10025 10026 first_ppage_reported = first_ppage; 10027 if (bsi->start == 0) 10028 first_ppage_reported++; 10029 if (bsi->lowest_ppage > first_ppage_reported) 10030 bsi->lowest_ppage = first_ppage_reported; 10031 if (bsi->highest_ppage < (next_ppage - 1)) 10032 bsi->highest_ppage = next_ppage - 1; 10033 10034 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10035 if (ret < 0) 10036 return ret; 10037 bsi->nr_extents += ret; 10038 bsi->nr_pages += nr_pages; 10039 return 0; 10040 } 10041 10042 static void btrfs_swap_deactivate(struct file *file) 10043 { 10044 struct inode *inode = file_inode(file); 10045 10046 btrfs_free_swapfile_pins(inode); 10047 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10048 } 10049 10050 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10051 sector_t *span) 10052 { 10053 struct inode *inode = file_inode(file); 10054 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10055 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10056 struct extent_state *cached_state = NULL; 10057 struct extent_map *em = NULL; 10058 struct btrfs_device *device = NULL; 10059 struct btrfs_swap_info bsi = { 10060 .lowest_ppage = (sector_t)-1ULL, 10061 }; 10062 int ret = 0; 10063 u64 isize; 10064 u64 start; 10065 10066 /* 10067 * If the swap file was just created, make sure delalloc is done. If the 10068 * file changes again after this, the user is doing something stupid and 10069 * we don't really care. 10070 */ 10071 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10072 if (ret) 10073 return ret; 10074 10075 /* 10076 * The inode is locked, so these flags won't change after we check them. 10077 */ 10078 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10079 btrfs_warn(fs_info, "swapfile must not be compressed"); 10080 return -EINVAL; 10081 } 10082 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10083 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10084 return -EINVAL; 10085 } 10086 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10087 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10088 return -EINVAL; 10089 } 10090 10091 /* 10092 * Balance or device remove/replace/resize can move stuff around from 10093 * under us. The exclop protection makes sure they aren't running/won't 10094 * run concurrently while we are mapping the swap extents, and 10095 * fs_info->swapfile_pins prevents them from running while the swap 10096 * file is active and moving the extents. Note that this also prevents 10097 * a concurrent device add which isn't actually necessary, but it's not 10098 * really worth the trouble to allow it. 10099 */ 10100 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10101 btrfs_warn(fs_info, 10102 "cannot activate swapfile while exclusive operation is running"); 10103 return -EBUSY; 10104 } 10105 /* 10106 * Snapshots can create extents which require COW even if NODATACOW is 10107 * set. We use this counter to prevent snapshots. We must increment it 10108 * before walking the extents because we don't want a concurrent 10109 * snapshot to run after we've already checked the extents. 10110 */ 10111 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10112 10113 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10114 10115 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10116 start = 0; 10117 while (start < isize) { 10118 u64 logical_block_start, physical_block_start; 10119 struct btrfs_block_group *bg; 10120 u64 len = isize - start; 10121 10122 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10123 if (IS_ERR(em)) { 10124 ret = PTR_ERR(em); 10125 goto out; 10126 } 10127 10128 if (em->block_start == EXTENT_MAP_HOLE) { 10129 btrfs_warn(fs_info, "swapfile must not have holes"); 10130 ret = -EINVAL; 10131 goto out; 10132 } 10133 if (em->block_start == EXTENT_MAP_INLINE) { 10134 /* 10135 * It's unlikely we'll ever actually find ourselves 10136 * here, as a file small enough to fit inline won't be 10137 * big enough to store more than the swap header, but in 10138 * case something changes in the future, let's catch it 10139 * here rather than later. 10140 */ 10141 btrfs_warn(fs_info, "swapfile must not be inline"); 10142 ret = -EINVAL; 10143 goto out; 10144 } 10145 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10146 btrfs_warn(fs_info, "swapfile must not be compressed"); 10147 ret = -EINVAL; 10148 goto out; 10149 } 10150 10151 logical_block_start = em->block_start + (start - em->start); 10152 len = min(len, em->len - (start - em->start)); 10153 free_extent_map(em); 10154 em = NULL; 10155 10156 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10157 if (ret < 0) { 10158 goto out; 10159 } else if (ret) { 10160 ret = 0; 10161 } else { 10162 btrfs_warn(fs_info, 10163 "swapfile must not be copy-on-write"); 10164 ret = -EINVAL; 10165 goto out; 10166 } 10167 10168 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10169 if (IS_ERR(em)) { 10170 ret = PTR_ERR(em); 10171 goto out; 10172 } 10173 10174 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10175 btrfs_warn(fs_info, 10176 "swapfile must have single data profile"); 10177 ret = -EINVAL; 10178 goto out; 10179 } 10180 10181 if (device == NULL) { 10182 device = em->map_lookup->stripes[0].dev; 10183 ret = btrfs_add_swapfile_pin(inode, device, false); 10184 if (ret == 1) 10185 ret = 0; 10186 else if (ret) 10187 goto out; 10188 } else if (device != em->map_lookup->stripes[0].dev) { 10189 btrfs_warn(fs_info, "swapfile must be on one device"); 10190 ret = -EINVAL; 10191 goto out; 10192 } 10193 10194 physical_block_start = (em->map_lookup->stripes[0].physical + 10195 (logical_block_start - em->start)); 10196 len = min(len, em->len - (logical_block_start - em->start)); 10197 free_extent_map(em); 10198 em = NULL; 10199 10200 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10201 if (!bg) { 10202 btrfs_warn(fs_info, 10203 "could not find block group containing swapfile"); 10204 ret = -EINVAL; 10205 goto out; 10206 } 10207 10208 ret = btrfs_add_swapfile_pin(inode, bg, true); 10209 if (ret) { 10210 btrfs_put_block_group(bg); 10211 if (ret == 1) 10212 ret = 0; 10213 else 10214 goto out; 10215 } 10216 10217 if (bsi.block_len && 10218 bsi.block_start + bsi.block_len == physical_block_start) { 10219 bsi.block_len += len; 10220 } else { 10221 if (bsi.block_len) { 10222 ret = btrfs_add_swap_extent(sis, &bsi); 10223 if (ret) 10224 goto out; 10225 } 10226 bsi.start = start; 10227 bsi.block_start = physical_block_start; 10228 bsi.block_len = len; 10229 } 10230 10231 start += len; 10232 } 10233 10234 if (bsi.block_len) 10235 ret = btrfs_add_swap_extent(sis, &bsi); 10236 10237 out: 10238 if (!IS_ERR_OR_NULL(em)) 10239 free_extent_map(em); 10240 10241 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10242 10243 if (ret) 10244 btrfs_swap_deactivate(file); 10245 10246 btrfs_exclop_finish(fs_info); 10247 10248 if (ret) 10249 return ret; 10250 10251 if (device) 10252 sis->bdev = device->bdev; 10253 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10254 sis->max = bsi.nr_pages; 10255 sis->pages = bsi.nr_pages - 1; 10256 sis->highest_bit = bsi.nr_pages - 1; 10257 return bsi.nr_extents; 10258 } 10259 #else 10260 static void btrfs_swap_deactivate(struct file *file) 10261 { 10262 } 10263 10264 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10265 sector_t *span) 10266 { 10267 return -EOPNOTSUPP; 10268 } 10269 #endif 10270 10271 /* 10272 * Update the number of bytes used in the VFS' inode. When we replace extents in 10273 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10274 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10275 * always get a correct value. 10276 */ 10277 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10278 const u64 add_bytes, 10279 const u64 del_bytes) 10280 { 10281 if (add_bytes == del_bytes) 10282 return; 10283 10284 spin_lock(&inode->lock); 10285 if (del_bytes > 0) 10286 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10287 if (add_bytes > 0) 10288 inode_add_bytes(&inode->vfs_inode, add_bytes); 10289 spin_unlock(&inode->lock); 10290 } 10291 10292 static const struct inode_operations btrfs_dir_inode_operations = { 10293 .getattr = btrfs_getattr, 10294 .lookup = btrfs_lookup, 10295 .create = btrfs_create, 10296 .unlink = btrfs_unlink, 10297 .link = btrfs_link, 10298 .mkdir = btrfs_mkdir, 10299 .rmdir = btrfs_rmdir, 10300 .rename = btrfs_rename2, 10301 .symlink = btrfs_symlink, 10302 .setattr = btrfs_setattr, 10303 .mknod = btrfs_mknod, 10304 .listxattr = btrfs_listxattr, 10305 .permission = btrfs_permission, 10306 .get_acl = btrfs_get_acl, 10307 .set_acl = btrfs_set_acl, 10308 .update_time = btrfs_update_time, 10309 .tmpfile = btrfs_tmpfile, 10310 }; 10311 10312 static const struct file_operations btrfs_dir_file_operations = { 10313 .llseek = generic_file_llseek, 10314 .read = generic_read_dir, 10315 .iterate_shared = btrfs_real_readdir, 10316 .open = btrfs_opendir, 10317 .unlocked_ioctl = btrfs_ioctl, 10318 #ifdef CONFIG_COMPAT 10319 .compat_ioctl = btrfs_compat_ioctl, 10320 #endif 10321 .release = btrfs_release_file, 10322 .fsync = btrfs_sync_file, 10323 }; 10324 10325 /* 10326 * btrfs doesn't support the bmap operation because swapfiles 10327 * use bmap to make a mapping of extents in the file. They assume 10328 * these extents won't change over the life of the file and they 10329 * use the bmap result to do IO directly to the drive. 10330 * 10331 * the btrfs bmap call would return logical addresses that aren't 10332 * suitable for IO and they also will change frequently as COW 10333 * operations happen. So, swapfile + btrfs == corruption. 10334 * 10335 * For now we're avoiding this by dropping bmap. 10336 */ 10337 static const struct address_space_operations btrfs_aops = { 10338 .readpage = btrfs_readpage, 10339 .writepage = btrfs_writepage, 10340 .writepages = btrfs_writepages, 10341 .readahead = btrfs_readahead, 10342 .direct_IO = noop_direct_IO, 10343 .invalidatepage = btrfs_invalidatepage, 10344 .releasepage = btrfs_releasepage, 10345 #ifdef CONFIG_MIGRATION 10346 .migratepage = btrfs_migratepage, 10347 #endif 10348 .set_page_dirty = btrfs_set_page_dirty, 10349 .error_remove_page = generic_error_remove_page, 10350 .swap_activate = btrfs_swap_activate, 10351 .swap_deactivate = btrfs_swap_deactivate, 10352 }; 10353 10354 static const struct inode_operations btrfs_file_inode_operations = { 10355 .getattr = btrfs_getattr, 10356 .setattr = btrfs_setattr, 10357 .listxattr = btrfs_listxattr, 10358 .permission = btrfs_permission, 10359 .fiemap = btrfs_fiemap, 10360 .get_acl = btrfs_get_acl, 10361 .set_acl = btrfs_set_acl, 10362 .update_time = btrfs_update_time, 10363 }; 10364 static const struct inode_operations btrfs_special_inode_operations = { 10365 .getattr = btrfs_getattr, 10366 .setattr = btrfs_setattr, 10367 .permission = btrfs_permission, 10368 .listxattr = btrfs_listxattr, 10369 .get_acl = btrfs_get_acl, 10370 .set_acl = btrfs_set_acl, 10371 .update_time = btrfs_update_time, 10372 }; 10373 static const struct inode_operations btrfs_symlink_inode_operations = { 10374 .get_link = page_get_link, 10375 .getattr = btrfs_getattr, 10376 .setattr = btrfs_setattr, 10377 .permission = btrfs_permission, 10378 .listxattr = btrfs_listxattr, 10379 .update_time = btrfs_update_time, 10380 }; 10381 10382 const struct dentry_operations btrfs_dentry_operations = { 10383 .d_delete = btrfs_dentry_delete, 10384 }; 10385