xref: /linux/fs/btrfs/inode.c (revision a514e6f8f5caa24413731bed54b322bd34d918dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_rename_ctx {
81 	/* Output field. Stores the index number of the old directory entry. */
82 	u64 index;
83 };
84 
85 /*
86  * Used by data_reloc_print_warning_inode() to pass needed info for filename
87  * resolution and output of error message.
88  */
89 struct data_reloc_warn {
90 	struct btrfs_path path;
91 	struct btrfs_fs_info *fs_info;
92 	u64 extent_item_size;
93 	u64 logical;
94 	int mirror_num;
95 };
96 
97 /*
98  * For the file_extent_tree, we want to hold the inode lock when we lookup and
99  * update the disk_i_size, but lockdep will complain because our io_tree we hold
100  * the tree lock and get the inode lock when setting delalloc. These two things
101  * are unrelated, so make a class for the file_extent_tree so we don't get the
102  * two locking patterns mixed up.
103  */
104 static struct lock_class_key file_extent_tree_class;
105 
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112 
113 static struct kmem_cache *btrfs_inode_cachep;
114 
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117 
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 				     struct folio *locked_folio, u64 start,
120 				     u64 end, struct writeback_control *wbc,
121 				     bool pages_dirty);
122 
123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 					  u64 root, void *warn_ctx)
125 {
126 	struct data_reloc_warn *warn = warn_ctx;
127 	struct btrfs_fs_info *fs_info = warn->fs_info;
128 	struct extent_buffer *eb;
129 	struct btrfs_inode_item *inode_item;
130 	struct inode_fs_paths *ipath = NULL;
131 	struct btrfs_root *local_root;
132 	struct btrfs_key key;
133 	unsigned int nofs_flag;
134 	u32 nlink;
135 	int ret;
136 
137 	local_root = btrfs_get_fs_root(fs_info, root, true);
138 	if (IS_ERR(local_root)) {
139 		ret = PTR_ERR(local_root);
140 		goto err;
141 	}
142 
143 	/* This makes the path point to (inum INODE_ITEM ioff). */
144 	key.objectid = inum;
145 	key.type = BTRFS_INODE_ITEM_KEY;
146 	key.offset = 0;
147 
148 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 	if (ret) {
150 		btrfs_put_root(local_root);
151 		btrfs_release_path(&warn->path);
152 		goto err;
153 	}
154 
155 	eb = warn->path.nodes[0];
156 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 	nlink = btrfs_inode_nlink(eb, inode_item);
158 	btrfs_release_path(&warn->path);
159 
160 	nofs_flag = memalloc_nofs_save();
161 	ipath = init_ipath(4096, local_root, &warn->path);
162 	memalloc_nofs_restore(nofs_flag);
163 	if (IS_ERR(ipath)) {
164 		btrfs_put_root(local_root);
165 		ret = PTR_ERR(ipath);
166 		ipath = NULL;
167 		/*
168 		 * -ENOMEM, not a critical error, just output an generic error
169 		 * without filename.
170 		 */
171 		btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 			   warn->logical, warn->mirror_num, root, inum, offset);
174 		return ret;
175 	}
176 	ret = paths_from_inode(inum, ipath);
177 	if (ret < 0)
178 		goto err;
179 
180 	/*
181 	 * We deliberately ignore the bit ipath might have been too small to
182 	 * hold all of the paths here
183 	 */
184 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 		btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 			   warn->logical, warn->mirror_num, root, inum, offset,
188 			   fs_info->sectorsize, nlink,
189 			   (char *)(unsigned long)ipath->fspath->val[i]);
190 	}
191 
192 	btrfs_put_root(local_root);
193 	free_ipath(ipath);
194 	return 0;
195 
196 err:
197 	btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
200 
201 	free_ipath(ipath);
202 	return ret;
203 }
204 
205 /*
206  * Do extra user-friendly error output (e.g. lookup all the affected files).
207  *
208  * Return true if we succeeded doing the backref lookup.
209  * Return false if such lookup failed, and has to fallback to the old error message.
210  */
211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 				   const u8 *csum, const u8 *csum_expected,
213 				   int mirror_num)
214 {
215 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 	struct btrfs_path path = { 0 };
217 	struct btrfs_key found_key = { 0 };
218 	struct extent_buffer *eb;
219 	struct btrfs_extent_item *ei;
220 	const u32 csum_size = fs_info->csum_size;
221 	u64 logical;
222 	u64 flags;
223 	u32 item_size;
224 	int ret;
225 
226 	mutex_lock(&fs_info->reloc_mutex);
227 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 	mutex_unlock(&fs_info->reloc_mutex);
229 
230 	if (logical == U64_MAX) {
231 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 		btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 			btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 			CSUM_FMT_VALUE(csum_size, csum),
236 			CSUM_FMT_VALUE(csum_size, csum_expected),
237 			mirror_num);
238 		return;
239 	}
240 
241 	logical += file_off;
242 	btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 			btrfs_root_id(inode->root),
245 			btrfs_ino(inode), file_off, logical,
246 			CSUM_FMT_VALUE(csum_size, csum),
247 			CSUM_FMT_VALUE(csum_size, csum_expected),
248 			mirror_num);
249 
250 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 	if (ret < 0) {
252 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 			     logical, ret);
254 		return;
255 	}
256 	eb = path.nodes[0];
257 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 	item_size = btrfs_item_size(eb, path.slots[0]);
259 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 		unsigned long ptr = 0;
261 		u64 ref_root;
262 		u8 ref_level;
263 
264 		while (true) {
265 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 						      item_size, &ref_root,
267 						      &ref_level);
268 			if (ret < 0) {
269 				btrfs_warn_rl(fs_info,
270 				"failed to resolve tree backref for logical %llu: %d",
271 					      logical, ret);
272 				break;
273 			}
274 			if (ret > 0)
275 				break;
276 
277 			btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 				logical, mirror_num,
280 				(ref_level ? "node" : "leaf"),
281 				ref_level, ref_root);
282 		}
283 		btrfs_release_path(&path);
284 	} else {
285 		struct btrfs_backref_walk_ctx ctx = { 0 };
286 		struct data_reloc_warn reloc_warn = { 0 };
287 
288 		btrfs_release_path(&path);
289 
290 		ctx.bytenr = found_key.objectid;
291 		ctx.extent_item_pos = logical - found_key.objectid;
292 		ctx.fs_info = fs_info;
293 
294 		reloc_warn.logical = logical;
295 		reloc_warn.extent_item_size = found_key.offset;
296 		reloc_warn.mirror_num = mirror_num;
297 		reloc_warn.fs_info = fs_info;
298 
299 		iterate_extent_inodes(&ctx, true,
300 				      data_reloc_print_warning_inode, &reloc_warn);
301 	}
302 }
303 
304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 	struct btrfs_root *root = inode->root;
308 	const u32 csum_size = root->fs_info->csum_size;
309 
310 	/* For data reloc tree, it's better to do a backref lookup instead. */
311 	if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 		return print_data_reloc_error(inode, logical_start, csum,
313 					      csum_expected, mirror_num);
314 
315 	/* Output without objectid, which is more meaningful */
316 	if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 		btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 			btrfs_root_id(root), btrfs_ino(inode),
320 			logical_start,
321 			CSUM_FMT_VALUE(csum_size, csum),
322 			CSUM_FMT_VALUE(csum_size, csum_expected),
323 			mirror_num);
324 	} else {
325 		btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 			btrfs_root_id(root), btrfs_ino(inode),
328 			logical_start,
329 			CSUM_FMT_VALUE(csum_size, csum),
330 			CSUM_FMT_VALUE(csum_size, csum_expected),
331 			mirror_num);
332 	}
333 }
334 
335 /*
336  * Lock inode i_rwsem based on arguments passed.
337  *
338  * ilock_flags can have the following bit set:
339  *
340  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342  *		     return -EAGAIN
343  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344  */
345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 		if (ilock_flags & BTRFS_ILOCK_TRY) {
349 			if (!inode_trylock_shared(&inode->vfs_inode))
350 				return -EAGAIN;
351 			else
352 				return 0;
353 		}
354 		inode_lock_shared(&inode->vfs_inode);
355 	} else {
356 		if (ilock_flags & BTRFS_ILOCK_TRY) {
357 			if (!inode_trylock(&inode->vfs_inode))
358 				return -EAGAIN;
359 			else
360 				return 0;
361 		}
362 		inode_lock(&inode->vfs_inode);
363 	}
364 	if (ilock_flags & BTRFS_ILOCK_MMAP)
365 		down_write(&inode->i_mmap_lock);
366 	return 0;
367 }
368 
369 /*
370  * Unock inode i_rwsem.
371  *
372  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373  * to decide whether the lock acquired is shared or exclusive.
374  */
375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 	if (ilock_flags & BTRFS_ILOCK_MMAP)
378 		up_write(&inode->i_mmap_lock);
379 	if (ilock_flags & BTRFS_ILOCK_SHARED)
380 		inode_unlock_shared(&inode->vfs_inode);
381 	else
382 		inode_unlock(&inode->vfs_inode);
383 }
384 
385 /*
386  * Cleanup all submitted ordered extents in specified range to handle errors
387  * from the btrfs_run_delalloc_range() callback.
388  *
389  * NOTE: caller must ensure that when an error happens, it can not call
390  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392  * to be released, which we want to happen only when finishing the ordered
393  * extent (btrfs_finish_ordered_io()).
394  */
395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 						 struct folio *locked_folio,
397 						 u64 offset, u64 bytes)
398 {
399 	unsigned long index = offset >> PAGE_SHIFT;
400 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 	u64 page_start = 0, page_end = 0;
402 	struct folio *folio;
403 
404 	if (locked_folio) {
405 		page_start = folio_pos(locked_folio);
406 		page_end = page_start + folio_size(locked_folio) - 1;
407 	}
408 
409 	while (index <= end_index) {
410 		/*
411 		 * For locked page, we will call btrfs_mark_ordered_io_finished
412 		 * through btrfs_mark_ordered_io_finished() on it
413 		 * in run_delalloc_range() for the error handling, which will
414 		 * clear page Ordered and run the ordered extent accounting.
415 		 *
416 		 * Here we can't just clear the Ordered bit, or
417 		 * btrfs_mark_ordered_io_finished() would skip the accounting
418 		 * for the page range, and the ordered extent will never finish.
419 		 */
420 		if (locked_folio && index == (page_start >> PAGE_SHIFT)) {
421 			index++;
422 			continue;
423 		}
424 		folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
425 		index++;
426 		if (IS_ERR(folio))
427 			continue;
428 
429 		/*
430 		 * Here we just clear all Ordered bits for every page in the
431 		 * range, then btrfs_mark_ordered_io_finished() will handle
432 		 * the ordered extent accounting for the range.
433 		 */
434 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
435 						offset, bytes);
436 		folio_put(folio);
437 	}
438 
439 	if (locked_folio) {
440 		/* The locked page covers the full range, nothing needs to be done */
441 		if (bytes + offset <= page_start + folio_size(locked_folio))
442 			return;
443 		/*
444 		 * In case this page belongs to the delalloc range being
445 		 * instantiated then skip it, since the first page of a range is
446 		 * going to be properly cleaned up by the caller of
447 		 * run_delalloc_range
448 		 */
449 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 			bytes = offset + bytes - folio_pos(locked_folio) -
451 				folio_size(locked_folio);
452 			offset = folio_pos(locked_folio) + folio_size(locked_folio);
453 		}
454 	}
455 
456 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
457 }
458 
459 static int btrfs_dirty_inode(struct btrfs_inode *inode);
460 
461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
462 				     struct btrfs_new_inode_args *args)
463 {
464 	int err;
465 
466 	if (args->default_acl) {
467 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
468 				      ACL_TYPE_DEFAULT);
469 		if (err)
470 			return err;
471 	}
472 	if (args->acl) {
473 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
474 		if (err)
475 			return err;
476 	}
477 	if (!args->default_acl && !args->acl)
478 		cache_no_acl(args->inode);
479 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
480 					 &args->dentry->d_name);
481 }
482 
483 /*
484  * this does all the hard work for inserting an inline extent into
485  * the btree.  The caller should have done a btrfs_drop_extents so that
486  * no overlapping inline items exist in the btree
487  */
488 static int insert_inline_extent(struct btrfs_trans_handle *trans,
489 				struct btrfs_path *path,
490 				struct btrfs_inode *inode, bool extent_inserted,
491 				size_t size, size_t compressed_size,
492 				int compress_type,
493 				struct folio *compressed_folio,
494 				bool update_i_size)
495 {
496 	struct btrfs_root *root = inode->root;
497 	struct extent_buffer *leaf;
498 	const u32 sectorsize = trans->fs_info->sectorsize;
499 	char *kaddr;
500 	unsigned long ptr;
501 	struct btrfs_file_extent_item *ei;
502 	int ret;
503 	size_t cur_size = size;
504 	u64 i_size;
505 
506 	/*
507 	 * The decompressed size must still be no larger than a sector.  Under
508 	 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 	 * big deal and we can continue the insertion.
510 	 */
511 	ASSERT(size <= sectorsize);
512 
513 	/*
514 	 * The compressed size also needs to be no larger than a sector.
515 	 * That's also why we only need one page as the parameter.
516 	 */
517 	if (compressed_folio)
518 		ASSERT(compressed_size <= sectorsize);
519 	else
520 		ASSERT(compressed_size == 0);
521 
522 	if (compressed_size && compressed_folio)
523 		cur_size = compressed_size;
524 
525 	if (!extent_inserted) {
526 		struct btrfs_key key;
527 		size_t datasize;
528 
529 		key.objectid = btrfs_ino(inode);
530 		key.offset = 0;
531 		key.type = BTRFS_EXTENT_DATA_KEY;
532 
533 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 		ret = btrfs_insert_empty_item(trans, root, path, &key,
535 					      datasize);
536 		if (ret)
537 			goto fail;
538 	}
539 	leaf = path->nodes[0];
540 	ei = btrfs_item_ptr(leaf, path->slots[0],
541 			    struct btrfs_file_extent_item);
542 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 	btrfs_set_file_extent_encryption(leaf, ei, 0);
545 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 	ptr = btrfs_file_extent_inline_start(ei);
548 
549 	if (compress_type != BTRFS_COMPRESS_NONE) {
550 		kaddr = kmap_local_folio(compressed_folio, 0);
551 		write_extent_buffer(leaf, kaddr, ptr, compressed_size);
552 		kunmap_local(kaddr);
553 
554 		btrfs_set_file_extent_compression(leaf, ei,
555 						  compress_type);
556 	} else {
557 		struct folio *folio;
558 
559 		folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
560 		ASSERT(!IS_ERR(folio));
561 		btrfs_set_file_extent_compression(leaf, ei, 0);
562 		kaddr = kmap_local_folio(folio, 0);
563 		write_extent_buffer(leaf, kaddr, ptr, size);
564 		kunmap_local(kaddr);
565 		folio_put(folio);
566 	}
567 	btrfs_mark_buffer_dirty(trans, leaf);
568 	btrfs_release_path(path);
569 
570 	/*
571 	 * We align size to sectorsize for inline extents just for simplicity
572 	 * sake.
573 	 */
574 	ret = btrfs_inode_set_file_extent_range(inode, 0,
575 					ALIGN(size, root->fs_info->sectorsize));
576 	if (ret)
577 		goto fail;
578 
579 	/*
580 	 * We're an inline extent, so nobody can extend the file past i_size
581 	 * without locking a page we already have locked.
582 	 *
583 	 * We must do any i_size and inode updates before we unlock the pages.
584 	 * Otherwise we could end up racing with unlink.
585 	 */
586 	i_size = i_size_read(&inode->vfs_inode);
587 	if (update_i_size && size > i_size) {
588 		i_size_write(&inode->vfs_inode, size);
589 		i_size = size;
590 	}
591 	inode->disk_i_size = i_size;
592 
593 fail:
594 	return ret;
595 }
596 
597 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
598 				      u64 offset, u64 size,
599 				      size_t compressed_size)
600 {
601 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
602 	u64 data_len = (compressed_size ?: size);
603 
604 	/* Inline extents must start at offset 0. */
605 	if (offset != 0)
606 		return false;
607 
608 	/*
609 	 * Due to the page size limit, for subpage we can only trigger the
610 	 * writeback for the dirty sectors of page, that means data writeback
611 	 * is doing more writeback than what we want.
612 	 *
613 	 * This is especially unexpected for some call sites like fallocate,
614 	 * where we only increase i_size after everything is done.
615 	 * This means we can trigger inline extent even if we didn't want to.
616 	 * So here we skip inline extent creation completely.
617 	 */
618 	if (fs_info->sectorsize != PAGE_SIZE)
619 		return false;
620 
621 	/* Inline extents are limited to sectorsize. */
622 	if (size > fs_info->sectorsize)
623 		return false;
624 
625 	/* We cannot exceed the maximum inline data size. */
626 	if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
627 		return false;
628 
629 	/* We cannot exceed the user specified max_inline size. */
630 	if (data_len > fs_info->max_inline)
631 		return false;
632 
633 	/* Inline extents must be the entirety of the file. */
634 	if (size < i_size_read(&inode->vfs_inode))
635 		return false;
636 
637 	return true;
638 }
639 
640 /*
641  * conditionally insert an inline extent into the file.  This
642  * does the checks required to make sure the data is small enough
643  * to fit as an inline extent.
644  *
645  * If being used directly, you must have already checked we're allowed to cow
646  * the range by getting true from can_cow_file_range_inline().
647  */
648 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
649 					    u64 size, size_t compressed_size,
650 					    int compress_type,
651 					    struct folio *compressed_folio,
652 					    bool update_i_size)
653 {
654 	struct btrfs_drop_extents_args drop_args = { 0 };
655 	struct btrfs_root *root = inode->root;
656 	struct btrfs_fs_info *fs_info = root->fs_info;
657 	struct btrfs_trans_handle *trans;
658 	u64 data_len = (compressed_size ?: size);
659 	int ret;
660 	struct btrfs_path *path;
661 
662 	path = btrfs_alloc_path();
663 	if (!path)
664 		return -ENOMEM;
665 
666 	trans = btrfs_join_transaction(root);
667 	if (IS_ERR(trans)) {
668 		btrfs_free_path(path);
669 		return PTR_ERR(trans);
670 	}
671 	trans->block_rsv = &inode->block_rsv;
672 
673 	drop_args.path = path;
674 	drop_args.start = 0;
675 	drop_args.end = fs_info->sectorsize;
676 	drop_args.drop_cache = true;
677 	drop_args.replace_extent = true;
678 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
679 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
680 	if (ret) {
681 		btrfs_abort_transaction(trans, ret);
682 		goto out;
683 	}
684 
685 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
686 				   size, compressed_size, compress_type,
687 				   compressed_folio, update_i_size);
688 	if (ret && ret != -ENOSPC) {
689 		btrfs_abort_transaction(trans, ret);
690 		goto out;
691 	} else if (ret == -ENOSPC) {
692 		ret = 1;
693 		goto out;
694 	}
695 
696 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
697 	ret = btrfs_update_inode(trans, inode);
698 	if (ret && ret != -ENOSPC) {
699 		btrfs_abort_transaction(trans, ret);
700 		goto out;
701 	} else if (ret == -ENOSPC) {
702 		ret = 1;
703 		goto out;
704 	}
705 
706 	btrfs_set_inode_full_sync(inode);
707 out:
708 	/*
709 	 * Don't forget to free the reserved space, as for inlined extent
710 	 * it won't count as data extent, free them directly here.
711 	 * And at reserve time, it's always aligned to page size, so
712 	 * just free one page here.
713 	 */
714 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
715 	btrfs_free_path(path);
716 	btrfs_end_transaction(trans);
717 	return ret;
718 }
719 
720 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
721 					  struct folio *locked_folio,
722 					  u64 offset, u64 end,
723 					  size_t compressed_size,
724 					  int compress_type,
725 					  struct folio *compressed_folio,
726 					  bool update_i_size)
727 {
728 	struct extent_state *cached = NULL;
729 	unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
730 		EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
731 	u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
732 	int ret;
733 
734 	if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
735 		return 1;
736 
737 	lock_extent(&inode->io_tree, offset, end, &cached);
738 	ret = __cow_file_range_inline(inode, size, compressed_size,
739 				      compress_type, compressed_folio,
740 				      update_i_size);
741 	if (ret > 0) {
742 		unlock_extent(&inode->io_tree, offset, end, &cached);
743 		return ret;
744 	}
745 
746 	/*
747 	 * In the successful case (ret == 0 here), cow_file_range will return 1.
748 	 *
749 	 * Quite a bit further up the callstack in extent_writepage(), ret == 1
750 	 * is treated as a short circuited success and does not unlock the folio,
751 	 * so we must do it here.
752 	 *
753 	 * In the failure case, the locked_folio does get unlocked by
754 	 * btrfs_folio_end_all_writers, which asserts that it is still locked
755 	 * at that point, so we must *not* unlock it here.
756 	 *
757 	 * The other two callsites in compress_file_range do not have a
758 	 * locked_folio, so they are not relevant to this logic.
759 	 */
760 	if (ret == 0)
761 		locked_folio = NULL;
762 
763 	extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
764 				     clear_flags, PAGE_UNLOCK |
765 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
766 	return ret;
767 }
768 
769 struct async_extent {
770 	u64 start;
771 	u64 ram_size;
772 	u64 compressed_size;
773 	struct folio **folios;
774 	unsigned long nr_folios;
775 	int compress_type;
776 	struct list_head list;
777 };
778 
779 struct async_chunk {
780 	struct btrfs_inode *inode;
781 	struct folio *locked_folio;
782 	u64 start;
783 	u64 end;
784 	blk_opf_t write_flags;
785 	struct list_head extents;
786 	struct cgroup_subsys_state *blkcg_css;
787 	struct btrfs_work work;
788 	struct async_cow *async_cow;
789 };
790 
791 struct async_cow {
792 	atomic_t num_chunks;
793 	struct async_chunk chunks[];
794 };
795 
796 static noinline int add_async_extent(struct async_chunk *cow,
797 				     u64 start, u64 ram_size,
798 				     u64 compressed_size,
799 				     struct folio **folios,
800 				     unsigned long nr_folios,
801 				     int compress_type)
802 {
803 	struct async_extent *async_extent;
804 
805 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
806 	if (!async_extent)
807 		return -ENOMEM;
808 	async_extent->start = start;
809 	async_extent->ram_size = ram_size;
810 	async_extent->compressed_size = compressed_size;
811 	async_extent->folios = folios;
812 	async_extent->nr_folios = nr_folios;
813 	async_extent->compress_type = compress_type;
814 	list_add_tail(&async_extent->list, &cow->extents);
815 	return 0;
816 }
817 
818 /*
819  * Check if the inode needs to be submitted to compression, based on mount
820  * options, defragmentation, properties or heuristics.
821  */
822 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
823 				      u64 end)
824 {
825 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
826 
827 	if (!btrfs_inode_can_compress(inode)) {
828 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
829 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
830 			btrfs_ino(inode));
831 		return 0;
832 	}
833 	/*
834 	 * Only enable sector perfect compression for experimental builds.
835 	 *
836 	 * This is a big feature change for subpage cases, and can hit
837 	 * different corner cases, so only limit this feature for
838 	 * experimental build for now.
839 	 *
840 	 * ETA for moving this out of experimental builds is 6.15.
841 	 */
842 	if (fs_info->sectorsize < PAGE_SIZE &&
843 	    !IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
844 		if (!PAGE_ALIGNED(start) ||
845 		    !PAGE_ALIGNED(end + 1))
846 			return 0;
847 	}
848 
849 	/* force compress */
850 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
851 		return 1;
852 	/* defrag ioctl */
853 	if (inode->defrag_compress)
854 		return 1;
855 	/* bad compression ratios */
856 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
857 		return 0;
858 	if (btrfs_test_opt(fs_info, COMPRESS) ||
859 	    inode->flags & BTRFS_INODE_COMPRESS ||
860 	    inode->prop_compress)
861 		return btrfs_compress_heuristic(inode, start, end);
862 	return 0;
863 }
864 
865 static inline void inode_should_defrag(struct btrfs_inode *inode,
866 		u64 start, u64 end, u64 num_bytes, u32 small_write)
867 {
868 	/* If this is a small write inside eof, kick off a defrag */
869 	if (num_bytes < small_write &&
870 	    (start > 0 || end + 1 < inode->disk_i_size))
871 		btrfs_add_inode_defrag(inode, small_write);
872 }
873 
874 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
875 {
876 	unsigned long end_index = end >> PAGE_SHIFT;
877 	struct folio *folio;
878 	int ret = 0;
879 
880 	for (unsigned long index = start >> PAGE_SHIFT;
881 	     index <= end_index; index++) {
882 		folio = filemap_get_folio(inode->i_mapping, index);
883 		if (IS_ERR(folio)) {
884 			if (!ret)
885 				ret = PTR_ERR(folio);
886 			continue;
887 		}
888 		btrfs_folio_clamp_clear_dirty(inode_to_fs_info(inode), folio, start,
889 					      end + 1 - start);
890 		folio_put(folio);
891 	}
892 	return ret;
893 }
894 
895 /*
896  * Work queue call back to started compression on a file and pages.
897  *
898  * This is done inside an ordered work queue, and the compression is spread
899  * across many cpus.  The actual IO submission is step two, and the ordered work
900  * queue takes care of making sure that happens in the same order things were
901  * put onto the queue by writepages and friends.
902  *
903  * If this code finds it can't get good compression, it puts an entry onto the
904  * work queue to write the uncompressed bytes.  This makes sure that both
905  * compressed inodes and uncompressed inodes are written in the same order that
906  * the flusher thread sent them down.
907  */
908 static void compress_file_range(struct btrfs_work *work)
909 {
910 	struct async_chunk *async_chunk =
911 		container_of(work, struct async_chunk, work);
912 	struct btrfs_inode *inode = async_chunk->inode;
913 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
914 	struct address_space *mapping = inode->vfs_inode.i_mapping;
915 	u64 blocksize = fs_info->sectorsize;
916 	u64 start = async_chunk->start;
917 	u64 end = async_chunk->end;
918 	u64 actual_end;
919 	u64 i_size;
920 	int ret = 0;
921 	struct folio **folios;
922 	unsigned long nr_folios;
923 	unsigned long total_compressed = 0;
924 	unsigned long total_in = 0;
925 	unsigned int poff;
926 	int i;
927 	int compress_type = fs_info->compress_type;
928 
929 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
930 
931 	/*
932 	 * We need to call clear_page_dirty_for_io on each page in the range.
933 	 * Otherwise applications with the file mmap'd can wander in and change
934 	 * the page contents while we are compressing them.
935 	 */
936 	ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
937 
938 	/*
939 	 * All the folios should have been locked thus no failure.
940 	 *
941 	 * And even if some folios are missing, btrfs_compress_folios()
942 	 * would handle them correctly, so here just do an ASSERT() check for
943 	 * early logic errors.
944 	 */
945 	ASSERT(ret == 0);
946 
947 	/*
948 	 * We need to save i_size before now because it could change in between
949 	 * us evaluating the size and assigning it.  This is because we lock and
950 	 * unlock the page in truncate and fallocate, and then modify the i_size
951 	 * later on.
952 	 *
953 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
954 	 * does that for us.
955 	 */
956 	barrier();
957 	i_size = i_size_read(&inode->vfs_inode);
958 	barrier();
959 	actual_end = min_t(u64, i_size, end + 1);
960 again:
961 	folios = NULL;
962 	nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
963 	nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
964 
965 	/*
966 	 * we don't want to send crud past the end of i_size through
967 	 * compression, that's just a waste of CPU time.  So, if the
968 	 * end of the file is before the start of our current
969 	 * requested range of bytes, we bail out to the uncompressed
970 	 * cleanup code that can deal with all of this.
971 	 *
972 	 * It isn't really the fastest way to fix things, but this is a
973 	 * very uncommon corner.
974 	 */
975 	if (actual_end <= start)
976 		goto cleanup_and_bail_uncompressed;
977 
978 	total_compressed = actual_end - start;
979 
980 	/*
981 	 * Skip compression for a small file range(<=blocksize) that
982 	 * isn't an inline extent, since it doesn't save disk space at all.
983 	 */
984 	if (total_compressed <= blocksize &&
985 	   (start > 0 || end + 1 < inode->disk_i_size))
986 		goto cleanup_and_bail_uncompressed;
987 
988 	total_compressed = min_t(unsigned long, total_compressed,
989 			BTRFS_MAX_UNCOMPRESSED);
990 	total_in = 0;
991 	ret = 0;
992 
993 	/*
994 	 * We do compression for mount -o compress and when the inode has not
995 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
996 	 * discover bad compression ratios.
997 	 */
998 	if (!inode_need_compress(inode, start, end))
999 		goto cleanup_and_bail_uncompressed;
1000 
1001 	folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1002 	if (!folios) {
1003 		/*
1004 		 * Memory allocation failure is not a fatal error, we can fall
1005 		 * back to uncompressed code.
1006 		 */
1007 		goto cleanup_and_bail_uncompressed;
1008 	}
1009 
1010 	if (inode->defrag_compress)
1011 		compress_type = inode->defrag_compress;
1012 	else if (inode->prop_compress)
1013 		compress_type = inode->prop_compress;
1014 
1015 	/* Compression level is applied here. */
1016 	ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1017 				    mapping, start, folios, &nr_folios, &total_in,
1018 				    &total_compressed);
1019 	if (ret)
1020 		goto mark_incompressible;
1021 
1022 	/*
1023 	 * Zero the tail end of the last page, as we might be sending it down
1024 	 * to disk.
1025 	 */
1026 	poff = offset_in_page(total_compressed);
1027 	if (poff)
1028 		folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1029 
1030 	/*
1031 	 * Try to create an inline extent.
1032 	 *
1033 	 * If we didn't compress the entire range, try to create an uncompressed
1034 	 * inline extent, else a compressed one.
1035 	 *
1036 	 * Check cow_file_range() for why we don't even try to create inline
1037 	 * extent for the subpage case.
1038 	 */
1039 	if (total_in < actual_end)
1040 		ret = cow_file_range_inline(inode, NULL, start, end, 0,
1041 					    BTRFS_COMPRESS_NONE, NULL, false);
1042 	else
1043 		ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1044 					    compress_type, folios[0], false);
1045 	if (ret <= 0) {
1046 		if (ret < 0)
1047 			mapping_set_error(mapping, -EIO);
1048 		goto free_pages;
1049 	}
1050 
1051 	/*
1052 	 * We aren't doing an inline extent. Round the compressed size up to a
1053 	 * block size boundary so the allocator does sane things.
1054 	 */
1055 	total_compressed = ALIGN(total_compressed, blocksize);
1056 
1057 	/*
1058 	 * One last check to make sure the compression is really a win, compare
1059 	 * the page count read with the blocks on disk, compression must free at
1060 	 * least one sector.
1061 	 */
1062 	total_in = round_up(total_in, fs_info->sectorsize);
1063 	if (total_compressed + blocksize > total_in)
1064 		goto mark_incompressible;
1065 
1066 	/*
1067 	 * The async work queues will take care of doing actual allocation on
1068 	 * disk for these compressed pages, and will submit the bios.
1069 	 */
1070 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1071 			       nr_folios, compress_type);
1072 	BUG_ON(ret);
1073 	if (start + total_in < end) {
1074 		start += total_in;
1075 		cond_resched();
1076 		goto again;
1077 	}
1078 	return;
1079 
1080 mark_incompressible:
1081 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1082 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1083 cleanup_and_bail_uncompressed:
1084 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1085 			       BTRFS_COMPRESS_NONE);
1086 	BUG_ON(ret);
1087 free_pages:
1088 	if (folios) {
1089 		for (i = 0; i < nr_folios; i++) {
1090 			WARN_ON(folios[i]->mapping);
1091 			btrfs_free_compr_folio(folios[i]);
1092 		}
1093 		kfree(folios);
1094 	}
1095 }
1096 
1097 static void free_async_extent_pages(struct async_extent *async_extent)
1098 {
1099 	int i;
1100 
1101 	if (!async_extent->folios)
1102 		return;
1103 
1104 	for (i = 0; i < async_extent->nr_folios; i++) {
1105 		WARN_ON(async_extent->folios[i]->mapping);
1106 		btrfs_free_compr_folio(async_extent->folios[i]);
1107 	}
1108 	kfree(async_extent->folios);
1109 	async_extent->nr_folios = 0;
1110 	async_extent->folios = NULL;
1111 }
1112 
1113 static void submit_uncompressed_range(struct btrfs_inode *inode,
1114 				      struct async_extent *async_extent,
1115 				      struct folio *locked_folio)
1116 {
1117 	u64 start = async_extent->start;
1118 	u64 end = async_extent->start + async_extent->ram_size - 1;
1119 	int ret;
1120 	struct writeback_control wbc = {
1121 		.sync_mode		= WB_SYNC_ALL,
1122 		.range_start		= start,
1123 		.range_end		= end,
1124 		.no_cgroup_owner	= 1,
1125 	};
1126 
1127 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1128 	ret = run_delalloc_cow(inode, locked_folio, start, end,
1129 			       &wbc, false);
1130 	wbc_detach_inode(&wbc);
1131 	if (ret < 0) {
1132 		btrfs_cleanup_ordered_extents(inode, locked_folio,
1133 					      start, end - start + 1);
1134 		if (locked_folio) {
1135 			const u64 page_start = folio_pos(locked_folio);
1136 
1137 			folio_start_writeback(locked_folio);
1138 			folio_end_writeback(locked_folio);
1139 			btrfs_mark_ordered_io_finished(inode, locked_folio,
1140 						       page_start, PAGE_SIZE,
1141 						       !ret);
1142 			mapping_set_error(locked_folio->mapping, ret);
1143 			folio_unlock(locked_folio);
1144 		}
1145 	}
1146 }
1147 
1148 static void submit_one_async_extent(struct async_chunk *async_chunk,
1149 				    struct async_extent *async_extent,
1150 				    u64 *alloc_hint)
1151 {
1152 	struct btrfs_inode *inode = async_chunk->inode;
1153 	struct extent_io_tree *io_tree = &inode->io_tree;
1154 	struct btrfs_root *root = inode->root;
1155 	struct btrfs_fs_info *fs_info = root->fs_info;
1156 	struct btrfs_ordered_extent *ordered;
1157 	struct btrfs_file_extent file_extent;
1158 	struct btrfs_key ins;
1159 	struct folio *locked_folio = NULL;
1160 	struct extent_state *cached = NULL;
1161 	struct extent_map *em;
1162 	int ret = 0;
1163 	u64 start = async_extent->start;
1164 	u64 end = async_extent->start + async_extent->ram_size - 1;
1165 
1166 	if (async_chunk->blkcg_css)
1167 		kthread_associate_blkcg(async_chunk->blkcg_css);
1168 
1169 	/*
1170 	 * If async_chunk->locked_folio is in the async_extent range, we need to
1171 	 * handle it.
1172 	 */
1173 	if (async_chunk->locked_folio) {
1174 		u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1175 		u64 locked_folio_end = locked_folio_start +
1176 			folio_size(async_chunk->locked_folio) - 1;
1177 
1178 		if (!(start >= locked_folio_end || end <= locked_folio_start))
1179 			locked_folio = async_chunk->locked_folio;
1180 	}
1181 
1182 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1183 		submit_uncompressed_range(inode, async_extent, locked_folio);
1184 		goto done;
1185 	}
1186 
1187 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1188 				   async_extent->compressed_size,
1189 				   async_extent->compressed_size,
1190 				   0, *alloc_hint, &ins, 1, 1);
1191 	if (ret) {
1192 		/*
1193 		 * We can't reserve contiguous space for the compressed size.
1194 		 * Unlikely, but it's possible that we could have enough
1195 		 * non-contiguous space for the uncompressed size instead.  So
1196 		 * fall back to uncompressed.
1197 		 */
1198 		submit_uncompressed_range(inode, async_extent, locked_folio);
1199 		goto done;
1200 	}
1201 
1202 	lock_extent(io_tree, start, end, &cached);
1203 
1204 	/* Here we're doing allocation and writeback of the compressed pages */
1205 	file_extent.disk_bytenr = ins.objectid;
1206 	file_extent.disk_num_bytes = ins.offset;
1207 	file_extent.ram_bytes = async_extent->ram_size;
1208 	file_extent.num_bytes = async_extent->ram_size;
1209 	file_extent.offset = 0;
1210 	file_extent.compression = async_extent->compress_type;
1211 
1212 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1213 	if (IS_ERR(em)) {
1214 		ret = PTR_ERR(em);
1215 		goto out_free_reserve;
1216 	}
1217 	free_extent_map(em);
1218 
1219 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1220 					     1 << BTRFS_ORDERED_COMPRESSED);
1221 	if (IS_ERR(ordered)) {
1222 		btrfs_drop_extent_map_range(inode, start, end, false);
1223 		ret = PTR_ERR(ordered);
1224 		goto out_free_reserve;
1225 	}
1226 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1227 
1228 	/* Clear dirty, set writeback and unlock the pages. */
1229 	extent_clear_unlock_delalloc(inode, start, end,
1230 			NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1231 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1232 	btrfs_submit_compressed_write(ordered,
1233 			    async_extent->folios,	/* compressed_folios */
1234 			    async_extent->nr_folios,
1235 			    async_chunk->write_flags, true);
1236 	*alloc_hint = ins.objectid + ins.offset;
1237 done:
1238 	if (async_chunk->blkcg_css)
1239 		kthread_associate_blkcg(NULL);
1240 	kfree(async_extent);
1241 	return;
1242 
1243 out_free_reserve:
1244 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1245 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1246 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1247 	extent_clear_unlock_delalloc(inode, start, end,
1248 				     NULL, &cached,
1249 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1250 				     EXTENT_DELALLOC_NEW |
1251 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1252 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1253 				     PAGE_END_WRITEBACK);
1254 	free_async_extent_pages(async_extent);
1255 	if (async_chunk->blkcg_css)
1256 		kthread_associate_blkcg(NULL);
1257 	btrfs_debug(fs_info,
1258 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1259 		    btrfs_root_id(root), btrfs_ino(inode), start,
1260 		    async_extent->ram_size, ret);
1261 	kfree(async_extent);
1262 }
1263 
1264 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1265 				     u64 num_bytes)
1266 {
1267 	struct extent_map_tree *em_tree = &inode->extent_tree;
1268 	struct extent_map *em;
1269 	u64 alloc_hint = 0;
1270 
1271 	read_lock(&em_tree->lock);
1272 	em = search_extent_mapping(em_tree, start, num_bytes);
1273 	if (em) {
1274 		/*
1275 		 * if block start isn't an actual block number then find the
1276 		 * first block in this inode and use that as a hint.  If that
1277 		 * block is also bogus then just don't worry about it.
1278 		 */
1279 		if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1280 			free_extent_map(em);
1281 			em = search_extent_mapping(em_tree, 0, 0);
1282 			if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1283 				alloc_hint = extent_map_block_start(em);
1284 			if (em)
1285 				free_extent_map(em);
1286 		} else {
1287 			alloc_hint = extent_map_block_start(em);
1288 			free_extent_map(em);
1289 		}
1290 	}
1291 	read_unlock(&em_tree->lock);
1292 
1293 	return alloc_hint;
1294 }
1295 
1296 /*
1297  * when extent_io.c finds a delayed allocation range in the file,
1298  * the call backs end up in this code.  The basic idea is to
1299  * allocate extents on disk for the range, and create ordered data structs
1300  * in ram to track those extents.
1301  *
1302  * locked_folio is the folio that writepage had locked already.  We use
1303  * it to make sure we don't do extra locks or unlocks.
1304  *
1305  * When this function fails, it unlocks all pages except @locked_folio.
1306  *
1307  * When this function successfully creates an inline extent, it returns 1 and
1308  * unlocks all pages including locked_folio and starts I/O on them.
1309  * (In reality inline extents are limited to a single page, so locked_folio is
1310  * the only page handled anyway).
1311  *
1312  * When this function succeed and creates a normal extent, the page locking
1313  * status depends on the passed in flags:
1314  *
1315  * - If @keep_locked is set, all pages are kept locked.
1316  * - Else all pages except for @locked_folio are unlocked.
1317  *
1318  * When a failure happens in the second or later iteration of the
1319  * while-loop, the ordered extents created in previous iterations are kept
1320  * intact. So, the caller must clean them up by calling
1321  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1322  * example.
1323  */
1324 static noinline int cow_file_range(struct btrfs_inode *inode,
1325 				   struct folio *locked_folio, u64 start,
1326 				   u64 end, u64 *done_offset,
1327 				   bool keep_locked, bool no_inline)
1328 {
1329 	struct btrfs_root *root = inode->root;
1330 	struct btrfs_fs_info *fs_info = root->fs_info;
1331 	struct extent_state *cached = NULL;
1332 	u64 alloc_hint = 0;
1333 	u64 orig_start = start;
1334 	u64 num_bytes;
1335 	u64 cur_alloc_size = 0;
1336 	u64 min_alloc_size;
1337 	u64 blocksize = fs_info->sectorsize;
1338 	struct btrfs_key ins;
1339 	struct extent_map *em;
1340 	unsigned clear_bits;
1341 	unsigned long page_ops;
1342 	int ret = 0;
1343 
1344 	if (btrfs_is_free_space_inode(inode)) {
1345 		ret = -EINVAL;
1346 		goto out_unlock;
1347 	}
1348 
1349 	num_bytes = ALIGN(end - start + 1, blocksize);
1350 	num_bytes = max(blocksize,  num_bytes);
1351 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1352 
1353 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1354 
1355 	if (!no_inline) {
1356 		/* lets try to make an inline extent */
1357 		ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1358 					    BTRFS_COMPRESS_NONE, NULL, false);
1359 		if (ret <= 0) {
1360 			/*
1361 			 * We succeeded, return 1 so the caller knows we're done
1362 			 * with this page and already handled the IO.
1363 			 *
1364 			 * If there was an error then cow_file_range_inline() has
1365 			 * already done the cleanup.
1366 			 */
1367 			if (ret == 0)
1368 				ret = 1;
1369 			goto done;
1370 		}
1371 	}
1372 
1373 	alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1374 
1375 	/*
1376 	 * Relocation relies on the relocated extents to have exactly the same
1377 	 * size as the original extents. Normally writeback for relocation data
1378 	 * extents follows a NOCOW path because relocation preallocates the
1379 	 * extents. However, due to an operation such as scrub turning a block
1380 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1381 	 * an extent allocated during COW has exactly the requested size and can
1382 	 * not be split into smaller extents, otherwise relocation breaks and
1383 	 * fails during the stage where it updates the bytenr of file extent
1384 	 * items.
1385 	 */
1386 	if (btrfs_is_data_reloc_root(root))
1387 		min_alloc_size = num_bytes;
1388 	else
1389 		min_alloc_size = fs_info->sectorsize;
1390 
1391 	while (num_bytes > 0) {
1392 		struct btrfs_ordered_extent *ordered;
1393 		struct btrfs_file_extent file_extent;
1394 
1395 		ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1396 					   min_alloc_size, 0, alloc_hint,
1397 					   &ins, 1, 1);
1398 		if (ret == -EAGAIN) {
1399 			/*
1400 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1401 			 * file systems, which is an indication that there are
1402 			 * no active zones to allocate from at the moment.
1403 			 *
1404 			 * If this is the first loop iteration, wait for at
1405 			 * least one zone to finish before retrying the
1406 			 * allocation.  Otherwise ask the caller to write out
1407 			 * the already allocated blocks before coming back to
1408 			 * us, or return -ENOSPC if it can't handle retries.
1409 			 */
1410 			ASSERT(btrfs_is_zoned(fs_info));
1411 			if (start == orig_start) {
1412 				wait_on_bit_io(&inode->root->fs_info->flags,
1413 					       BTRFS_FS_NEED_ZONE_FINISH,
1414 					       TASK_UNINTERRUPTIBLE);
1415 				continue;
1416 			}
1417 			if (done_offset) {
1418 				*done_offset = start - 1;
1419 				return 0;
1420 			}
1421 			ret = -ENOSPC;
1422 		}
1423 		if (ret < 0)
1424 			goto out_unlock;
1425 		cur_alloc_size = ins.offset;
1426 
1427 		file_extent.disk_bytenr = ins.objectid;
1428 		file_extent.disk_num_bytes = ins.offset;
1429 		file_extent.num_bytes = ins.offset;
1430 		file_extent.ram_bytes = ins.offset;
1431 		file_extent.offset = 0;
1432 		file_extent.compression = BTRFS_COMPRESS_NONE;
1433 
1434 		lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1435 			    &cached);
1436 
1437 		em = btrfs_create_io_em(inode, start, &file_extent,
1438 					BTRFS_ORDERED_REGULAR);
1439 		if (IS_ERR(em)) {
1440 			unlock_extent(&inode->io_tree, start,
1441 				      start + cur_alloc_size - 1, &cached);
1442 			ret = PTR_ERR(em);
1443 			goto out_reserve;
1444 		}
1445 		free_extent_map(em);
1446 
1447 		ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1448 						     1 << BTRFS_ORDERED_REGULAR);
1449 		if (IS_ERR(ordered)) {
1450 			unlock_extent(&inode->io_tree, start,
1451 				      start + cur_alloc_size - 1, &cached);
1452 			ret = PTR_ERR(ordered);
1453 			goto out_drop_extent_cache;
1454 		}
1455 
1456 		if (btrfs_is_data_reloc_root(root)) {
1457 			ret = btrfs_reloc_clone_csums(ordered);
1458 
1459 			/*
1460 			 * Only drop cache here, and process as normal.
1461 			 *
1462 			 * We must not allow extent_clear_unlock_delalloc()
1463 			 * at out_unlock label to free meta of this ordered
1464 			 * extent, as its meta should be freed by
1465 			 * btrfs_finish_ordered_io().
1466 			 *
1467 			 * So we must continue until @start is increased to
1468 			 * skip current ordered extent.
1469 			 */
1470 			if (ret)
1471 				btrfs_drop_extent_map_range(inode, start,
1472 							    start + cur_alloc_size - 1,
1473 							    false);
1474 		}
1475 		btrfs_put_ordered_extent(ordered);
1476 
1477 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1478 
1479 		/*
1480 		 * We're not doing compressed IO, don't unlock the first page
1481 		 * (which the caller expects to stay locked), don't clear any
1482 		 * dirty bits and don't set any writeback bits
1483 		 *
1484 		 * Do set the Ordered flag so we know this page was
1485 		 * properly setup for writepage.
1486 		 */
1487 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1488 		page_ops |= PAGE_SET_ORDERED;
1489 
1490 		extent_clear_unlock_delalloc(inode, start, start + cur_alloc_size - 1,
1491 					     locked_folio, &cached,
1492 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1493 					     page_ops);
1494 		if (num_bytes < cur_alloc_size)
1495 			num_bytes = 0;
1496 		else
1497 			num_bytes -= cur_alloc_size;
1498 		alloc_hint = ins.objectid + ins.offset;
1499 		start += cur_alloc_size;
1500 		cur_alloc_size = 0;
1501 
1502 		/*
1503 		 * btrfs_reloc_clone_csums() error, since start is increased
1504 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1505 		 * free metadata of current ordered extent, we're OK to exit.
1506 		 */
1507 		if (ret)
1508 			goto out_unlock;
1509 	}
1510 done:
1511 	if (done_offset)
1512 		*done_offset = end;
1513 	return ret;
1514 
1515 out_drop_extent_cache:
1516 	btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1517 out_reserve:
1518 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1519 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1520 out_unlock:
1521 	/*
1522 	 * Now, we have three regions to clean up:
1523 	 *
1524 	 * |-------(1)----|---(2)---|-------------(3)----------|
1525 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1526 	 *
1527 	 * We process each region below.
1528 	 */
1529 
1530 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1531 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1532 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1533 
1534 	/*
1535 	 * For the range (1). We have already instantiated the ordered extents
1536 	 * for this region. They are cleaned up by
1537 	 * btrfs_cleanup_ordered_extents() in e.g,
1538 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1539 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1540 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1541 	 * function.
1542 	 *
1543 	 * However, in case of @keep_locked, we still need to unlock the pages
1544 	 * (except @locked_folio) to ensure all the pages are unlocked.
1545 	 */
1546 	if (keep_locked && orig_start < start) {
1547 		if (!locked_folio)
1548 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1549 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1550 					     locked_folio, NULL, 0, page_ops);
1551 	}
1552 
1553 	/*
1554 	 * At this point we're unlocked, we want to make sure we're only
1555 	 * clearing these flags under the extent lock, so lock the rest of the
1556 	 * range and clear everything up.
1557 	 */
1558 	lock_extent(&inode->io_tree, start, end, NULL);
1559 
1560 	/*
1561 	 * For the range (2). If we reserved an extent for our delalloc range
1562 	 * (or a subrange) and failed to create the respective ordered extent,
1563 	 * then it means that when we reserved the extent we decremented the
1564 	 * extent's size from the data space_info's bytes_may_use counter and
1565 	 * incremented the space_info's bytes_reserved counter by the same
1566 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1567 	 * to decrement again the data space_info's bytes_may_use counter,
1568 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1569 	 */
1570 	if (cur_alloc_size) {
1571 		extent_clear_unlock_delalloc(inode, start,
1572 					     start + cur_alloc_size - 1,
1573 					     locked_folio, &cached, clear_bits,
1574 					     page_ops);
1575 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1576 	}
1577 
1578 	/*
1579 	 * For the range (3). We never touched the region. In addition to the
1580 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1581 	 * space_info's bytes_may_use counter, reserved in
1582 	 * btrfs_check_data_free_space().
1583 	 */
1584 	if (start + cur_alloc_size < end) {
1585 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1586 		extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1587 					     end, locked_folio,
1588 					     &cached, clear_bits, page_ops);
1589 		btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1590 				       end - start - cur_alloc_size + 1, NULL);
1591 	}
1592 	return ret;
1593 }
1594 
1595 /*
1596  * Phase two of compressed writeback.  This is the ordered portion of the code,
1597  * which only gets called in the order the work was queued.  We walk all the
1598  * async extents created by compress_file_range and send them down to the disk.
1599  *
1600  * If called with @do_free == true then it'll try to finish the work and free
1601  * the work struct eventually.
1602  */
1603 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1604 {
1605 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1606 						     work);
1607 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1608 	struct async_extent *async_extent;
1609 	unsigned long nr_pages;
1610 	u64 alloc_hint = 0;
1611 
1612 	if (do_free) {
1613 		struct async_cow *async_cow;
1614 
1615 		btrfs_add_delayed_iput(async_chunk->inode);
1616 		if (async_chunk->blkcg_css)
1617 			css_put(async_chunk->blkcg_css);
1618 
1619 		async_cow = async_chunk->async_cow;
1620 		if (atomic_dec_and_test(&async_cow->num_chunks))
1621 			kvfree(async_cow);
1622 		return;
1623 	}
1624 
1625 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1626 		PAGE_SHIFT;
1627 
1628 	while (!list_empty(&async_chunk->extents)) {
1629 		async_extent = list_entry(async_chunk->extents.next,
1630 					  struct async_extent, list);
1631 		list_del(&async_extent->list);
1632 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1633 	}
1634 
1635 	/* atomic_sub_return implies a barrier */
1636 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1637 	    5 * SZ_1M)
1638 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1639 }
1640 
1641 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1642 				    struct folio *locked_folio, u64 start,
1643 				    u64 end, struct writeback_control *wbc)
1644 {
1645 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1646 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1647 	struct async_cow *ctx;
1648 	struct async_chunk *async_chunk;
1649 	unsigned long nr_pages;
1650 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1651 	int i;
1652 	unsigned nofs_flag;
1653 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1654 
1655 	nofs_flag = memalloc_nofs_save();
1656 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1657 	memalloc_nofs_restore(nofs_flag);
1658 	if (!ctx)
1659 		return false;
1660 
1661 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1662 
1663 	async_chunk = ctx->chunks;
1664 	atomic_set(&ctx->num_chunks, num_chunks);
1665 
1666 	for (i = 0; i < num_chunks; i++) {
1667 		u64 cur_end = min(end, start + SZ_512K - 1);
1668 
1669 		/*
1670 		 * igrab is called higher up in the call chain, take only the
1671 		 * lightweight reference for the callback lifetime
1672 		 */
1673 		ihold(&inode->vfs_inode);
1674 		async_chunk[i].async_cow = ctx;
1675 		async_chunk[i].inode = inode;
1676 		async_chunk[i].start = start;
1677 		async_chunk[i].end = cur_end;
1678 		async_chunk[i].write_flags = write_flags;
1679 		INIT_LIST_HEAD(&async_chunk[i].extents);
1680 
1681 		/*
1682 		 * The locked_folio comes all the way from writepage and its
1683 		 * the original folio we were actually given.  As we spread
1684 		 * this large delalloc region across multiple async_chunk
1685 		 * structs, only the first struct needs a pointer to
1686 		 * locked_folio.
1687 		 *
1688 		 * This way we don't need racey decisions about who is supposed
1689 		 * to unlock it.
1690 		 */
1691 		if (locked_folio) {
1692 			/*
1693 			 * Depending on the compressibility, the pages might or
1694 			 * might not go through async.  We want all of them to
1695 			 * be accounted against wbc once.  Let's do it here
1696 			 * before the paths diverge.  wbc accounting is used
1697 			 * only for foreign writeback detection and doesn't
1698 			 * need full accuracy.  Just account the whole thing
1699 			 * against the first page.
1700 			 */
1701 			wbc_account_cgroup_owner(wbc, locked_folio,
1702 						 cur_end - start);
1703 			async_chunk[i].locked_folio = locked_folio;
1704 			locked_folio = NULL;
1705 		} else {
1706 			async_chunk[i].locked_folio = NULL;
1707 		}
1708 
1709 		if (blkcg_css != blkcg_root_css) {
1710 			css_get(blkcg_css);
1711 			async_chunk[i].blkcg_css = blkcg_css;
1712 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1713 		} else {
1714 			async_chunk[i].blkcg_css = NULL;
1715 		}
1716 
1717 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1718 				submit_compressed_extents);
1719 
1720 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1721 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1722 
1723 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1724 
1725 		start = cur_end + 1;
1726 	}
1727 	return true;
1728 }
1729 
1730 /*
1731  * Run the delalloc range from start to end, and write back any dirty pages
1732  * covered by the range.
1733  */
1734 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1735 				     struct folio *locked_folio, u64 start,
1736 				     u64 end, struct writeback_control *wbc,
1737 				     bool pages_dirty)
1738 {
1739 	u64 done_offset = end;
1740 	int ret;
1741 
1742 	while (start <= end) {
1743 		ret = cow_file_range(inode, locked_folio, start, end,
1744 				     &done_offset, true, false);
1745 		if (ret)
1746 			return ret;
1747 		extent_write_locked_range(&inode->vfs_inode, locked_folio,
1748 					  start, done_offset, wbc, pages_dirty);
1749 		start = done_offset + 1;
1750 	}
1751 
1752 	return 1;
1753 }
1754 
1755 static int fallback_to_cow(struct btrfs_inode *inode,
1756 			   struct folio *locked_folio, const u64 start,
1757 			   const u64 end)
1758 {
1759 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1760 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1761 	const u64 range_bytes = end + 1 - start;
1762 	struct extent_io_tree *io_tree = &inode->io_tree;
1763 	struct extent_state *cached_state = NULL;
1764 	u64 range_start = start;
1765 	u64 count;
1766 	int ret;
1767 
1768 	/*
1769 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1770 	 * made we had not enough available data space and therefore we did not
1771 	 * reserve data space for it, since we though we could do NOCOW for the
1772 	 * respective file range (either there is prealloc extent or the inode
1773 	 * has the NOCOW bit set).
1774 	 *
1775 	 * However when we need to fallback to COW mode (because for example the
1776 	 * block group for the corresponding extent was turned to RO mode by a
1777 	 * scrub or relocation) we need to do the following:
1778 	 *
1779 	 * 1) We increment the bytes_may_use counter of the data space info.
1780 	 *    If COW succeeds, it allocates a new data extent and after doing
1781 	 *    that it decrements the space info's bytes_may_use counter and
1782 	 *    increments its bytes_reserved counter by the same amount (we do
1783 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1784 	 *    bytes_may_use counter to compensate (when space is reserved at
1785 	 *    buffered write time, the bytes_may_use counter is incremented);
1786 	 *
1787 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1788 	 *    that if the COW path fails for any reason, it decrements (through
1789 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1790 	 *    data space info, which we incremented in the step above.
1791 	 *
1792 	 * If we need to fallback to cow and the inode corresponds to a free
1793 	 * space cache inode or an inode of the data relocation tree, we must
1794 	 * also increment bytes_may_use of the data space_info for the same
1795 	 * reason. Space caches and relocated data extents always get a prealloc
1796 	 * extent for them, however scrub or balance may have set the block
1797 	 * group that contains that extent to RO mode and therefore force COW
1798 	 * when starting writeback.
1799 	 */
1800 	lock_extent(io_tree, start, end, &cached_state);
1801 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1802 				 EXTENT_NORESERVE, 0, NULL);
1803 	if (count > 0 || is_space_ino || is_reloc_ino) {
1804 		u64 bytes = count;
1805 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1806 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1807 
1808 		if (is_space_ino || is_reloc_ino)
1809 			bytes = range_bytes;
1810 
1811 		spin_lock(&sinfo->lock);
1812 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1813 		spin_unlock(&sinfo->lock);
1814 
1815 		if (count > 0)
1816 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1817 					 NULL);
1818 	}
1819 	unlock_extent(io_tree, start, end, &cached_state);
1820 
1821 	/*
1822 	 * Don't try to create inline extents, as a mix of inline extent that
1823 	 * is written out and unlocked directly and a normal NOCOW extent
1824 	 * doesn't work.
1825 	 */
1826 	ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1827 			     true);
1828 	ASSERT(ret != 1);
1829 	return ret;
1830 }
1831 
1832 struct can_nocow_file_extent_args {
1833 	/* Input fields. */
1834 
1835 	/* Start file offset of the range we want to NOCOW. */
1836 	u64 start;
1837 	/* End file offset (inclusive) of the range we want to NOCOW. */
1838 	u64 end;
1839 	bool writeback_path;
1840 	bool strict;
1841 	/*
1842 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1843 	 * anymore.
1844 	 */
1845 	bool free_path;
1846 
1847 	/*
1848 	 * Output fields. Only set when can_nocow_file_extent() returns 1.
1849 	 * The expected file extent for the NOCOW write.
1850 	 */
1851 	struct btrfs_file_extent file_extent;
1852 };
1853 
1854 /*
1855  * Check if we can NOCOW the file extent that the path points to.
1856  * This function may return with the path released, so the caller should check
1857  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1858  *
1859  * Returns: < 0 on error
1860  *            0 if we can not NOCOW
1861  *            1 if we can NOCOW
1862  */
1863 static int can_nocow_file_extent(struct btrfs_path *path,
1864 				 struct btrfs_key *key,
1865 				 struct btrfs_inode *inode,
1866 				 struct can_nocow_file_extent_args *args)
1867 {
1868 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1869 	struct extent_buffer *leaf = path->nodes[0];
1870 	struct btrfs_root *root = inode->root;
1871 	struct btrfs_file_extent_item *fi;
1872 	struct btrfs_root *csum_root;
1873 	u64 io_start;
1874 	u64 extent_end;
1875 	u8 extent_type;
1876 	int can_nocow = 0;
1877 	int ret = 0;
1878 	bool nowait = path->nowait;
1879 
1880 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1881 	extent_type = btrfs_file_extent_type(leaf, fi);
1882 
1883 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1884 		goto out;
1885 
1886 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1887 	    extent_type == BTRFS_FILE_EXTENT_REG)
1888 		goto out;
1889 
1890 	/*
1891 	 * If the extent was created before the generation where the last snapshot
1892 	 * for its subvolume was created, then this implies the extent is shared,
1893 	 * hence we must COW.
1894 	 */
1895 	if (!args->strict &&
1896 	    btrfs_file_extent_generation(leaf, fi) <=
1897 	    btrfs_root_last_snapshot(&root->root_item))
1898 		goto out;
1899 
1900 	/* An explicit hole, must COW. */
1901 	if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1902 		goto out;
1903 
1904 	/* Compressed/encrypted/encoded extents must be COWed. */
1905 	if (btrfs_file_extent_compression(leaf, fi) ||
1906 	    btrfs_file_extent_encryption(leaf, fi) ||
1907 	    btrfs_file_extent_other_encoding(leaf, fi))
1908 		goto out;
1909 
1910 	extent_end = btrfs_file_extent_end(path);
1911 
1912 	args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1913 	args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1914 	args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1915 	args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1916 	args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1917 
1918 	/*
1919 	 * The following checks can be expensive, as they need to take other
1920 	 * locks and do btree or rbtree searches, so release the path to avoid
1921 	 * blocking other tasks for too long.
1922 	 */
1923 	btrfs_release_path(path);
1924 
1925 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1926 				    key->offset - args->file_extent.offset,
1927 				    args->file_extent.disk_bytenr, args->strict, path);
1928 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1929 	if (ret != 0)
1930 		goto out;
1931 
1932 	if (args->free_path) {
1933 		/*
1934 		 * We don't need the path anymore, plus through the
1935 		 * btrfs_lookup_csums_list() call below we will end up allocating
1936 		 * another path. So free the path to avoid unnecessary extra
1937 		 * memory usage.
1938 		 */
1939 		btrfs_free_path(path);
1940 		path = NULL;
1941 	}
1942 
1943 	/* If there are pending snapshots for this root, we must COW. */
1944 	if (args->writeback_path && !is_freespace_inode &&
1945 	    atomic_read(&root->snapshot_force_cow))
1946 		goto out;
1947 
1948 	args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1949 	args->file_extent.offset += args->start - key->offset;
1950 	io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1951 
1952 	/*
1953 	 * Force COW if csums exist in the range. This ensures that csums for a
1954 	 * given extent are either valid or do not exist.
1955 	 */
1956 
1957 	csum_root = btrfs_csum_root(root->fs_info, io_start);
1958 	ret = btrfs_lookup_csums_list(csum_root, io_start,
1959 				      io_start + args->file_extent.num_bytes - 1,
1960 				      NULL, nowait);
1961 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1962 	if (ret != 0)
1963 		goto out;
1964 
1965 	can_nocow = 1;
1966  out:
1967 	if (args->free_path && path)
1968 		btrfs_free_path(path);
1969 
1970 	return ret < 0 ? ret : can_nocow;
1971 }
1972 
1973 /*
1974  * when nowcow writeback call back.  This checks for snapshots or COW copies
1975  * of the extents that exist in the file, and COWs the file as required.
1976  *
1977  * If no cow copies or snapshots exist, we write directly to the existing
1978  * blocks on disk
1979  */
1980 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1981 				       struct folio *locked_folio,
1982 				       const u64 start, const u64 end)
1983 {
1984 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1985 	struct btrfs_root *root = inode->root;
1986 	struct btrfs_path *path;
1987 	u64 cow_start = (u64)-1;
1988 	u64 cur_offset = start;
1989 	int ret;
1990 	bool check_prev = true;
1991 	u64 ino = btrfs_ino(inode);
1992 	struct can_nocow_file_extent_args nocow_args = { 0 };
1993 
1994 	/*
1995 	 * Normally on a zoned device we're only doing COW writes, but in case
1996 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1997 	 * writing sequentially and can end up here as well.
1998 	 */
1999 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2000 
2001 	path = btrfs_alloc_path();
2002 	if (!path) {
2003 		ret = -ENOMEM;
2004 		goto error;
2005 	}
2006 
2007 	nocow_args.end = end;
2008 	nocow_args.writeback_path = true;
2009 
2010 	while (cur_offset <= end) {
2011 		struct btrfs_block_group *nocow_bg = NULL;
2012 		struct btrfs_ordered_extent *ordered;
2013 		struct btrfs_key found_key;
2014 		struct btrfs_file_extent_item *fi;
2015 		struct extent_buffer *leaf;
2016 		struct extent_state *cached_state = NULL;
2017 		u64 extent_end;
2018 		u64 nocow_end;
2019 		int extent_type;
2020 		bool is_prealloc;
2021 
2022 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2023 					       cur_offset, 0);
2024 		if (ret < 0)
2025 			goto error;
2026 
2027 		/*
2028 		 * If there is no extent for our range when doing the initial
2029 		 * search, then go back to the previous slot as it will be the
2030 		 * one containing the search offset
2031 		 */
2032 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2033 			leaf = path->nodes[0];
2034 			btrfs_item_key_to_cpu(leaf, &found_key,
2035 					      path->slots[0] - 1);
2036 			if (found_key.objectid == ino &&
2037 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2038 				path->slots[0]--;
2039 		}
2040 		check_prev = false;
2041 next_slot:
2042 		/* Go to next leaf if we have exhausted the current one */
2043 		leaf = path->nodes[0];
2044 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2045 			ret = btrfs_next_leaf(root, path);
2046 			if (ret < 0)
2047 				goto error;
2048 			if (ret > 0)
2049 				break;
2050 			leaf = path->nodes[0];
2051 		}
2052 
2053 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2054 
2055 		/* Didn't find anything for our INO */
2056 		if (found_key.objectid > ino)
2057 			break;
2058 		/*
2059 		 * Keep searching until we find an EXTENT_ITEM or there are no
2060 		 * more extents for this inode
2061 		 */
2062 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2063 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2064 			path->slots[0]++;
2065 			goto next_slot;
2066 		}
2067 
2068 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2069 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2070 		    found_key.offset > end)
2071 			break;
2072 
2073 		/*
2074 		 * If the found extent starts after requested offset, then
2075 		 * adjust extent_end to be right before this extent begins
2076 		 */
2077 		if (found_key.offset > cur_offset) {
2078 			extent_end = found_key.offset;
2079 			extent_type = 0;
2080 			goto must_cow;
2081 		}
2082 
2083 		/*
2084 		 * Found extent which begins before our range and potentially
2085 		 * intersect it
2086 		 */
2087 		fi = btrfs_item_ptr(leaf, path->slots[0],
2088 				    struct btrfs_file_extent_item);
2089 		extent_type = btrfs_file_extent_type(leaf, fi);
2090 		/* If this is triggered then we have a memory corruption. */
2091 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2092 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2093 			ret = -EUCLEAN;
2094 			goto error;
2095 		}
2096 		extent_end = btrfs_file_extent_end(path);
2097 
2098 		/*
2099 		 * If the extent we got ends before our current offset, skip to
2100 		 * the next extent.
2101 		 */
2102 		if (extent_end <= cur_offset) {
2103 			path->slots[0]++;
2104 			goto next_slot;
2105 		}
2106 
2107 		nocow_args.start = cur_offset;
2108 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2109 		if (ret < 0)
2110 			goto error;
2111 		if (ret == 0)
2112 			goto must_cow;
2113 
2114 		ret = 0;
2115 		nocow_bg = btrfs_inc_nocow_writers(fs_info,
2116 				nocow_args.file_extent.disk_bytenr +
2117 				nocow_args.file_extent.offset);
2118 		if (!nocow_bg) {
2119 must_cow:
2120 			/*
2121 			 * If we can't perform NOCOW writeback for the range,
2122 			 * then record the beginning of the range that needs to
2123 			 * be COWed.  It will be written out before the next
2124 			 * NOCOW range if we find one, or when exiting this
2125 			 * loop.
2126 			 */
2127 			if (cow_start == (u64)-1)
2128 				cow_start = cur_offset;
2129 			cur_offset = extent_end;
2130 			if (cur_offset > end)
2131 				break;
2132 			if (!path->nodes[0])
2133 				continue;
2134 			path->slots[0]++;
2135 			goto next_slot;
2136 		}
2137 
2138 		/*
2139 		 * COW range from cow_start to found_key.offset - 1. As the key
2140 		 * will contain the beginning of the first extent that can be
2141 		 * NOCOW, following one which needs to be COW'ed
2142 		 */
2143 		if (cow_start != (u64)-1) {
2144 			ret = fallback_to_cow(inode, locked_folio, cow_start,
2145 					      found_key.offset - 1);
2146 			cow_start = (u64)-1;
2147 			if (ret) {
2148 				btrfs_dec_nocow_writers(nocow_bg);
2149 				goto error;
2150 			}
2151 		}
2152 
2153 		nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2154 		lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2155 
2156 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2157 		if (is_prealloc) {
2158 			struct extent_map *em;
2159 
2160 			em = btrfs_create_io_em(inode, cur_offset,
2161 						&nocow_args.file_extent,
2162 						BTRFS_ORDERED_PREALLOC);
2163 			if (IS_ERR(em)) {
2164 				unlock_extent(&inode->io_tree, cur_offset,
2165 					      nocow_end, &cached_state);
2166 				btrfs_dec_nocow_writers(nocow_bg);
2167 				ret = PTR_ERR(em);
2168 				goto error;
2169 			}
2170 			free_extent_map(em);
2171 		}
2172 
2173 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2174 				&nocow_args.file_extent,
2175 				is_prealloc
2176 				? (1 << BTRFS_ORDERED_PREALLOC)
2177 				: (1 << BTRFS_ORDERED_NOCOW));
2178 		btrfs_dec_nocow_writers(nocow_bg);
2179 		if (IS_ERR(ordered)) {
2180 			if (is_prealloc) {
2181 				btrfs_drop_extent_map_range(inode, cur_offset,
2182 							    nocow_end, false);
2183 			}
2184 			unlock_extent(&inode->io_tree, cur_offset,
2185 				      nocow_end, &cached_state);
2186 			ret = PTR_ERR(ordered);
2187 			goto error;
2188 		}
2189 
2190 		if (btrfs_is_data_reloc_root(root))
2191 			/*
2192 			 * Error handled later, as we must prevent
2193 			 * extent_clear_unlock_delalloc() in error handler
2194 			 * from freeing metadata of created ordered extent.
2195 			 */
2196 			ret = btrfs_reloc_clone_csums(ordered);
2197 		btrfs_put_ordered_extent(ordered);
2198 
2199 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2200 					     locked_folio, &cached_state,
2201 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2202 					     EXTENT_CLEAR_DATA_RESV,
2203 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2204 
2205 		cur_offset = extent_end;
2206 
2207 		/*
2208 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2209 		 * handler, as metadata for created ordered extent will only
2210 		 * be freed by btrfs_finish_ordered_io().
2211 		 */
2212 		if (ret)
2213 			goto error;
2214 	}
2215 	btrfs_release_path(path);
2216 
2217 	if (cur_offset <= end && cow_start == (u64)-1)
2218 		cow_start = cur_offset;
2219 
2220 	if (cow_start != (u64)-1) {
2221 		cur_offset = end;
2222 		ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2223 		cow_start = (u64)-1;
2224 		if (ret)
2225 			goto error;
2226 	}
2227 
2228 	btrfs_free_path(path);
2229 	return 0;
2230 
2231 error:
2232 	/*
2233 	 * If an error happened while a COW region is outstanding, cur_offset
2234 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2235 	 * as well.
2236 	 */
2237 	if (cow_start != (u64)-1)
2238 		cur_offset = cow_start;
2239 
2240 	/*
2241 	 * We need to lock the extent here because we're clearing DELALLOC and
2242 	 * we're not locked at this point.
2243 	 */
2244 	if (cur_offset < end) {
2245 		struct extent_state *cached = NULL;
2246 
2247 		lock_extent(&inode->io_tree, cur_offset, end, &cached);
2248 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2249 					     locked_folio, &cached,
2250 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2251 					     EXTENT_DEFRAG |
2252 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2253 					     PAGE_START_WRITEBACK |
2254 					     PAGE_END_WRITEBACK);
2255 		btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2256 	}
2257 	btrfs_free_path(path);
2258 	return ret;
2259 }
2260 
2261 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2262 {
2263 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2264 		if (inode->defrag_bytes &&
2265 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2266 			return false;
2267 		return true;
2268 	}
2269 	return false;
2270 }
2271 
2272 /*
2273  * Function to process delayed allocation (create CoW) for ranges which are
2274  * being touched for the first time.
2275  */
2276 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2277 			     u64 start, u64 end, struct writeback_control *wbc)
2278 {
2279 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2280 	int ret;
2281 
2282 	/*
2283 	 * The range must cover part of the @locked_folio, or a return of 1
2284 	 * can confuse the caller.
2285 	 */
2286 	ASSERT(!(end <= folio_pos(locked_folio) ||
2287 		 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2288 
2289 	if (should_nocow(inode, start, end)) {
2290 		ret = run_delalloc_nocow(inode, locked_folio, start, end);
2291 		goto out;
2292 	}
2293 
2294 	if (btrfs_inode_can_compress(inode) &&
2295 	    inode_need_compress(inode, start, end) &&
2296 	    run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2297 		return 1;
2298 
2299 	if (zoned)
2300 		ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2301 				       true);
2302 	else
2303 		ret = cow_file_range(inode, locked_folio, start, end, NULL,
2304 				     false, false);
2305 
2306 out:
2307 	if (ret < 0)
2308 		btrfs_cleanup_ordered_extents(inode, locked_folio, start,
2309 					      end - start + 1);
2310 	return ret;
2311 }
2312 
2313 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2314 				 struct extent_state *orig, u64 split)
2315 {
2316 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2317 	u64 size;
2318 
2319 	lockdep_assert_held(&inode->io_tree.lock);
2320 
2321 	/* not delalloc, ignore it */
2322 	if (!(orig->state & EXTENT_DELALLOC))
2323 		return;
2324 
2325 	size = orig->end - orig->start + 1;
2326 	if (size > fs_info->max_extent_size) {
2327 		u32 num_extents;
2328 		u64 new_size;
2329 
2330 		/*
2331 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2332 		 * applies here, just in reverse.
2333 		 */
2334 		new_size = orig->end - split + 1;
2335 		num_extents = count_max_extents(fs_info, new_size);
2336 		new_size = split - orig->start;
2337 		num_extents += count_max_extents(fs_info, new_size);
2338 		if (count_max_extents(fs_info, size) >= num_extents)
2339 			return;
2340 	}
2341 
2342 	spin_lock(&inode->lock);
2343 	btrfs_mod_outstanding_extents(inode, 1);
2344 	spin_unlock(&inode->lock);
2345 }
2346 
2347 /*
2348  * Handle merged delayed allocation extents so we can keep track of new extents
2349  * that are just merged onto old extents, such as when we are doing sequential
2350  * writes, so we can properly account for the metadata space we'll need.
2351  */
2352 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2353 				 struct extent_state *other)
2354 {
2355 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2356 	u64 new_size, old_size;
2357 	u32 num_extents;
2358 
2359 	lockdep_assert_held(&inode->io_tree.lock);
2360 
2361 	/* not delalloc, ignore it */
2362 	if (!(other->state & EXTENT_DELALLOC))
2363 		return;
2364 
2365 	if (new->start > other->start)
2366 		new_size = new->end - other->start + 1;
2367 	else
2368 		new_size = other->end - new->start + 1;
2369 
2370 	/* we're not bigger than the max, unreserve the space and go */
2371 	if (new_size <= fs_info->max_extent_size) {
2372 		spin_lock(&inode->lock);
2373 		btrfs_mod_outstanding_extents(inode, -1);
2374 		spin_unlock(&inode->lock);
2375 		return;
2376 	}
2377 
2378 	/*
2379 	 * We have to add up either side to figure out how many extents were
2380 	 * accounted for before we merged into one big extent.  If the number of
2381 	 * extents we accounted for is <= the amount we need for the new range
2382 	 * then we can return, otherwise drop.  Think of it like this
2383 	 *
2384 	 * [ 4k][MAX_SIZE]
2385 	 *
2386 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2387 	 * need 2 outstanding extents, on one side we have 1 and the other side
2388 	 * we have 1 so they are == and we can return.  But in this case
2389 	 *
2390 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2391 	 *
2392 	 * Each range on their own accounts for 2 extents, but merged together
2393 	 * they are only 3 extents worth of accounting, so we need to drop in
2394 	 * this case.
2395 	 */
2396 	old_size = other->end - other->start + 1;
2397 	num_extents = count_max_extents(fs_info, old_size);
2398 	old_size = new->end - new->start + 1;
2399 	num_extents += count_max_extents(fs_info, old_size);
2400 	if (count_max_extents(fs_info, new_size) >= num_extents)
2401 		return;
2402 
2403 	spin_lock(&inode->lock);
2404 	btrfs_mod_outstanding_extents(inode, -1);
2405 	spin_unlock(&inode->lock);
2406 }
2407 
2408 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2409 {
2410 	struct btrfs_root *root = inode->root;
2411 	struct btrfs_fs_info *fs_info = root->fs_info;
2412 
2413 	spin_lock(&root->delalloc_lock);
2414 	ASSERT(list_empty(&inode->delalloc_inodes));
2415 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2416 	root->nr_delalloc_inodes++;
2417 	if (root->nr_delalloc_inodes == 1) {
2418 		spin_lock(&fs_info->delalloc_root_lock);
2419 		ASSERT(list_empty(&root->delalloc_root));
2420 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2421 		spin_unlock(&fs_info->delalloc_root_lock);
2422 	}
2423 	spin_unlock(&root->delalloc_lock);
2424 }
2425 
2426 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2427 {
2428 	struct btrfs_root *root = inode->root;
2429 	struct btrfs_fs_info *fs_info = root->fs_info;
2430 
2431 	lockdep_assert_held(&root->delalloc_lock);
2432 
2433 	/*
2434 	 * We may be called after the inode was already deleted from the list,
2435 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2436 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2437 	 * still has ->delalloc_bytes > 0.
2438 	 */
2439 	if (!list_empty(&inode->delalloc_inodes)) {
2440 		list_del_init(&inode->delalloc_inodes);
2441 		root->nr_delalloc_inodes--;
2442 		if (!root->nr_delalloc_inodes) {
2443 			ASSERT(list_empty(&root->delalloc_inodes));
2444 			spin_lock(&fs_info->delalloc_root_lock);
2445 			ASSERT(!list_empty(&root->delalloc_root));
2446 			list_del_init(&root->delalloc_root);
2447 			spin_unlock(&fs_info->delalloc_root_lock);
2448 		}
2449 	}
2450 }
2451 
2452 /*
2453  * Properly track delayed allocation bytes in the inode and to maintain the
2454  * list of inodes that have pending delalloc work to be done.
2455  */
2456 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2457 			       u32 bits)
2458 {
2459 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2460 
2461 	lockdep_assert_held(&inode->io_tree.lock);
2462 
2463 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2464 		WARN_ON(1);
2465 	/*
2466 	 * set_bit and clear bit hooks normally require _irqsave/restore
2467 	 * but in this case, we are only testing for the DELALLOC
2468 	 * bit, which is only set or cleared with irqs on
2469 	 */
2470 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2471 		u64 len = state->end + 1 - state->start;
2472 		u64 prev_delalloc_bytes;
2473 		u32 num_extents = count_max_extents(fs_info, len);
2474 
2475 		spin_lock(&inode->lock);
2476 		btrfs_mod_outstanding_extents(inode, num_extents);
2477 		spin_unlock(&inode->lock);
2478 
2479 		/* For sanity tests */
2480 		if (btrfs_is_testing(fs_info))
2481 			return;
2482 
2483 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2484 					 fs_info->delalloc_batch);
2485 		spin_lock(&inode->lock);
2486 		prev_delalloc_bytes = inode->delalloc_bytes;
2487 		inode->delalloc_bytes += len;
2488 		if (bits & EXTENT_DEFRAG)
2489 			inode->defrag_bytes += len;
2490 		spin_unlock(&inode->lock);
2491 
2492 		/*
2493 		 * We don't need to be under the protection of the inode's lock,
2494 		 * because we are called while holding the inode's io_tree lock
2495 		 * and are therefore protected against concurrent calls of this
2496 		 * function and btrfs_clear_delalloc_extent().
2497 		 */
2498 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2499 			btrfs_add_delalloc_inode(inode);
2500 	}
2501 
2502 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2503 	    (bits & EXTENT_DELALLOC_NEW)) {
2504 		spin_lock(&inode->lock);
2505 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2506 		spin_unlock(&inode->lock);
2507 	}
2508 }
2509 
2510 /*
2511  * Once a range is no longer delalloc this function ensures that proper
2512  * accounting happens.
2513  */
2514 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2515 				 struct extent_state *state, u32 bits)
2516 {
2517 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2518 	u64 len = state->end + 1 - state->start;
2519 	u32 num_extents = count_max_extents(fs_info, len);
2520 
2521 	lockdep_assert_held(&inode->io_tree.lock);
2522 
2523 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2524 		spin_lock(&inode->lock);
2525 		inode->defrag_bytes -= len;
2526 		spin_unlock(&inode->lock);
2527 	}
2528 
2529 	/*
2530 	 * set_bit and clear bit hooks normally require _irqsave/restore
2531 	 * but in this case, we are only testing for the DELALLOC
2532 	 * bit, which is only set or cleared with irqs on
2533 	 */
2534 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2535 		struct btrfs_root *root = inode->root;
2536 		u64 new_delalloc_bytes;
2537 
2538 		spin_lock(&inode->lock);
2539 		btrfs_mod_outstanding_extents(inode, -num_extents);
2540 		spin_unlock(&inode->lock);
2541 
2542 		/*
2543 		 * We don't reserve metadata space for space cache inodes so we
2544 		 * don't need to call delalloc_release_metadata if there is an
2545 		 * error.
2546 		 */
2547 		if (bits & EXTENT_CLEAR_META_RESV &&
2548 		    root != fs_info->tree_root)
2549 			btrfs_delalloc_release_metadata(inode, len, true);
2550 
2551 		/* For sanity tests. */
2552 		if (btrfs_is_testing(fs_info))
2553 			return;
2554 
2555 		if (!btrfs_is_data_reloc_root(root) &&
2556 		    !btrfs_is_free_space_inode(inode) &&
2557 		    !(state->state & EXTENT_NORESERVE) &&
2558 		    (bits & EXTENT_CLEAR_DATA_RESV))
2559 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2560 
2561 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2562 					 fs_info->delalloc_batch);
2563 		spin_lock(&inode->lock);
2564 		inode->delalloc_bytes -= len;
2565 		new_delalloc_bytes = inode->delalloc_bytes;
2566 		spin_unlock(&inode->lock);
2567 
2568 		/*
2569 		 * We don't need to be under the protection of the inode's lock,
2570 		 * because we are called while holding the inode's io_tree lock
2571 		 * and are therefore protected against concurrent calls of this
2572 		 * function and btrfs_set_delalloc_extent().
2573 		 */
2574 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2575 			spin_lock(&root->delalloc_lock);
2576 			btrfs_del_delalloc_inode(inode);
2577 			spin_unlock(&root->delalloc_lock);
2578 		}
2579 	}
2580 
2581 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2582 	    (bits & EXTENT_DELALLOC_NEW)) {
2583 		spin_lock(&inode->lock);
2584 		ASSERT(inode->new_delalloc_bytes >= len);
2585 		inode->new_delalloc_bytes -= len;
2586 		if (bits & EXTENT_ADD_INODE_BYTES)
2587 			inode_add_bytes(&inode->vfs_inode, len);
2588 		spin_unlock(&inode->lock);
2589 	}
2590 }
2591 
2592 /*
2593  * given a list of ordered sums record them in the inode.  This happens
2594  * at IO completion time based on sums calculated at bio submission time.
2595  */
2596 static int add_pending_csums(struct btrfs_trans_handle *trans,
2597 			     struct list_head *list)
2598 {
2599 	struct btrfs_ordered_sum *sum;
2600 	struct btrfs_root *csum_root = NULL;
2601 	int ret;
2602 
2603 	list_for_each_entry(sum, list, list) {
2604 		trans->adding_csums = true;
2605 		if (!csum_root)
2606 			csum_root = btrfs_csum_root(trans->fs_info,
2607 						    sum->logical);
2608 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2609 		trans->adding_csums = false;
2610 		if (ret)
2611 			return ret;
2612 	}
2613 	return 0;
2614 }
2615 
2616 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2617 					 const u64 start,
2618 					 const u64 len,
2619 					 struct extent_state **cached_state)
2620 {
2621 	u64 search_start = start;
2622 	const u64 end = start + len - 1;
2623 
2624 	while (search_start < end) {
2625 		const u64 search_len = end - search_start + 1;
2626 		struct extent_map *em;
2627 		u64 em_len;
2628 		int ret = 0;
2629 
2630 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2631 		if (IS_ERR(em))
2632 			return PTR_ERR(em);
2633 
2634 		if (em->disk_bytenr != EXTENT_MAP_HOLE)
2635 			goto next;
2636 
2637 		em_len = em->len;
2638 		if (em->start < search_start)
2639 			em_len -= search_start - em->start;
2640 		if (em_len > search_len)
2641 			em_len = search_len;
2642 
2643 		ret = set_extent_bit(&inode->io_tree, search_start,
2644 				     search_start + em_len - 1,
2645 				     EXTENT_DELALLOC_NEW, cached_state);
2646 next:
2647 		search_start = extent_map_end(em);
2648 		free_extent_map(em);
2649 		if (ret)
2650 			return ret;
2651 	}
2652 	return 0;
2653 }
2654 
2655 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2656 			      unsigned int extra_bits,
2657 			      struct extent_state **cached_state)
2658 {
2659 	WARN_ON(PAGE_ALIGNED(end));
2660 
2661 	if (start >= i_size_read(&inode->vfs_inode) &&
2662 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2663 		/*
2664 		 * There can't be any extents following eof in this case so just
2665 		 * set the delalloc new bit for the range directly.
2666 		 */
2667 		extra_bits |= EXTENT_DELALLOC_NEW;
2668 	} else {
2669 		int ret;
2670 
2671 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2672 						    end + 1 - start,
2673 						    cached_state);
2674 		if (ret)
2675 			return ret;
2676 	}
2677 
2678 	return set_extent_bit(&inode->io_tree, start, end,
2679 			      EXTENT_DELALLOC | extra_bits, cached_state);
2680 }
2681 
2682 /* see btrfs_writepage_start_hook for details on why this is required */
2683 struct btrfs_writepage_fixup {
2684 	struct folio *folio;
2685 	struct btrfs_inode *inode;
2686 	struct btrfs_work work;
2687 };
2688 
2689 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2690 {
2691 	struct btrfs_writepage_fixup *fixup =
2692 		container_of(work, struct btrfs_writepage_fixup, work);
2693 	struct btrfs_ordered_extent *ordered;
2694 	struct extent_state *cached_state = NULL;
2695 	struct extent_changeset *data_reserved = NULL;
2696 	struct folio *folio = fixup->folio;
2697 	struct btrfs_inode *inode = fixup->inode;
2698 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2699 	u64 page_start = folio_pos(folio);
2700 	u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2701 	int ret = 0;
2702 	bool free_delalloc_space = true;
2703 
2704 	/*
2705 	 * This is similar to page_mkwrite, we need to reserve the space before
2706 	 * we take the folio lock.
2707 	 */
2708 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2709 					   folio_size(folio));
2710 again:
2711 	folio_lock(folio);
2712 
2713 	/*
2714 	 * Before we queued this fixup, we took a reference on the folio.
2715 	 * folio->mapping may go NULL, but it shouldn't be moved to a different
2716 	 * address space.
2717 	 */
2718 	if (!folio->mapping || !folio_test_dirty(folio) ||
2719 	    !folio_test_checked(folio)) {
2720 		/*
2721 		 * Unfortunately this is a little tricky, either
2722 		 *
2723 		 * 1) We got here and our folio had already been dealt with and
2724 		 *    we reserved our space, thus ret == 0, so we need to just
2725 		 *    drop our space reservation and bail.  This can happen the
2726 		 *    first time we come into the fixup worker, or could happen
2727 		 *    while waiting for the ordered extent.
2728 		 * 2) Our folio was already dealt with, but we happened to get an
2729 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2730 		 *    this case we obviously don't have anything to release, but
2731 		 *    because the folio was already dealt with we don't want to
2732 		 *    mark the folio with an error, so make sure we're resetting
2733 		 *    ret to 0.  This is why we have this check _before_ the ret
2734 		 *    check, because we do not want to have a surprise ENOSPC
2735 		 *    when the folio was already properly dealt with.
2736 		 */
2737 		if (!ret) {
2738 			btrfs_delalloc_release_extents(inode, folio_size(folio));
2739 			btrfs_delalloc_release_space(inode, data_reserved,
2740 						     page_start, folio_size(folio),
2741 						     true);
2742 		}
2743 		ret = 0;
2744 		goto out_page;
2745 	}
2746 
2747 	/*
2748 	 * We can't mess with the folio state unless it is locked, so now that
2749 	 * it is locked bail if we failed to make our space reservation.
2750 	 */
2751 	if (ret)
2752 		goto out_page;
2753 
2754 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2755 
2756 	/* already ordered? We're done */
2757 	if (folio_test_ordered(folio))
2758 		goto out_reserved;
2759 
2760 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2761 	if (ordered) {
2762 		unlock_extent(&inode->io_tree, page_start, page_end,
2763 			      &cached_state);
2764 		folio_unlock(folio);
2765 		btrfs_start_ordered_extent(ordered);
2766 		btrfs_put_ordered_extent(ordered);
2767 		goto again;
2768 	}
2769 
2770 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2771 					&cached_state);
2772 	if (ret)
2773 		goto out_reserved;
2774 
2775 	/*
2776 	 * Everything went as planned, we're now the owner of a dirty page with
2777 	 * delayed allocation bits set and space reserved for our COW
2778 	 * destination.
2779 	 *
2780 	 * The page was dirty when we started, nothing should have cleaned it.
2781 	 */
2782 	BUG_ON(!folio_test_dirty(folio));
2783 	free_delalloc_space = false;
2784 out_reserved:
2785 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2786 	if (free_delalloc_space)
2787 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2788 					     PAGE_SIZE, true);
2789 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2790 out_page:
2791 	if (ret) {
2792 		/*
2793 		 * We hit ENOSPC or other errors.  Update the mapping and page
2794 		 * to reflect the errors and clean the page.
2795 		 */
2796 		mapping_set_error(folio->mapping, ret);
2797 		btrfs_mark_ordered_io_finished(inode, folio, page_start,
2798 					       folio_size(folio), !ret);
2799 		folio_clear_dirty_for_io(folio);
2800 	}
2801 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2802 	folio_unlock(folio);
2803 	folio_put(folio);
2804 	kfree(fixup);
2805 	extent_changeset_free(data_reserved);
2806 	/*
2807 	 * As a precaution, do a delayed iput in case it would be the last iput
2808 	 * that could need flushing space. Recursing back to fixup worker would
2809 	 * deadlock.
2810 	 */
2811 	btrfs_add_delayed_iput(inode);
2812 }
2813 
2814 /*
2815  * There are a few paths in the higher layers of the kernel that directly
2816  * set the folio dirty bit without asking the filesystem if it is a
2817  * good idea.  This causes problems because we want to make sure COW
2818  * properly happens and the data=ordered rules are followed.
2819  *
2820  * In our case any range that doesn't have the ORDERED bit set
2821  * hasn't been properly setup for IO.  We kick off an async process
2822  * to fix it up.  The async helper will wait for ordered extents, set
2823  * the delalloc bit and make it safe to write the folio.
2824  */
2825 int btrfs_writepage_cow_fixup(struct folio *folio)
2826 {
2827 	struct inode *inode = folio->mapping->host;
2828 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2829 	struct btrfs_writepage_fixup *fixup;
2830 
2831 	/* This folio has ordered extent covering it already */
2832 	if (folio_test_ordered(folio))
2833 		return 0;
2834 
2835 	/*
2836 	 * folio_checked is set below when we create a fixup worker for this
2837 	 * folio, don't try to create another one if we're already
2838 	 * folio_test_checked.
2839 	 *
2840 	 * The extent_io writepage code will redirty the foio if we send back
2841 	 * EAGAIN.
2842 	 */
2843 	if (folio_test_checked(folio))
2844 		return -EAGAIN;
2845 
2846 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2847 	if (!fixup)
2848 		return -EAGAIN;
2849 
2850 	/*
2851 	 * We are already holding a reference to this inode from
2852 	 * write_cache_pages.  We need to hold it because the space reservation
2853 	 * takes place outside of the folio lock, and we can't trust
2854 	 * page->mapping outside of the folio lock.
2855 	 */
2856 	ihold(inode);
2857 	btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2858 	folio_get(folio);
2859 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2860 	fixup->folio = folio;
2861 	fixup->inode = BTRFS_I(inode);
2862 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2863 
2864 	return -EAGAIN;
2865 }
2866 
2867 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2868 				       struct btrfs_inode *inode, u64 file_pos,
2869 				       struct btrfs_file_extent_item *stack_fi,
2870 				       const bool update_inode_bytes,
2871 				       u64 qgroup_reserved)
2872 {
2873 	struct btrfs_root *root = inode->root;
2874 	const u64 sectorsize = root->fs_info->sectorsize;
2875 	struct btrfs_path *path;
2876 	struct extent_buffer *leaf;
2877 	struct btrfs_key ins;
2878 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2879 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2880 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2881 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2882 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2883 	struct btrfs_drop_extents_args drop_args = { 0 };
2884 	int ret;
2885 
2886 	path = btrfs_alloc_path();
2887 	if (!path)
2888 		return -ENOMEM;
2889 
2890 	/*
2891 	 * we may be replacing one extent in the tree with another.
2892 	 * The new extent is pinned in the extent map, and we don't want
2893 	 * to drop it from the cache until it is completely in the btree.
2894 	 *
2895 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2896 	 * the caller is expected to unpin it and allow it to be merged
2897 	 * with the others.
2898 	 */
2899 	drop_args.path = path;
2900 	drop_args.start = file_pos;
2901 	drop_args.end = file_pos + num_bytes;
2902 	drop_args.replace_extent = true;
2903 	drop_args.extent_item_size = sizeof(*stack_fi);
2904 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2905 	if (ret)
2906 		goto out;
2907 
2908 	if (!drop_args.extent_inserted) {
2909 		ins.objectid = btrfs_ino(inode);
2910 		ins.offset = file_pos;
2911 		ins.type = BTRFS_EXTENT_DATA_KEY;
2912 
2913 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2914 					      sizeof(*stack_fi));
2915 		if (ret)
2916 			goto out;
2917 	}
2918 	leaf = path->nodes[0];
2919 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2920 	write_extent_buffer(leaf, stack_fi,
2921 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2922 			sizeof(struct btrfs_file_extent_item));
2923 
2924 	btrfs_mark_buffer_dirty(trans, leaf);
2925 	btrfs_release_path(path);
2926 
2927 	/*
2928 	 * If we dropped an inline extent here, we know the range where it is
2929 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2930 	 * number of bytes only for that range containing the inline extent.
2931 	 * The remaining of the range will be processed when clearning the
2932 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2933 	 */
2934 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2935 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2936 
2937 		inline_size = drop_args.bytes_found - inline_size;
2938 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2939 		drop_args.bytes_found -= inline_size;
2940 		num_bytes -= sectorsize;
2941 	}
2942 
2943 	if (update_inode_bytes)
2944 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2945 
2946 	ins.objectid = disk_bytenr;
2947 	ins.offset = disk_num_bytes;
2948 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2949 
2950 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2951 	if (ret)
2952 		goto out;
2953 
2954 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2955 					       file_pos - offset,
2956 					       qgroup_reserved, &ins);
2957 out:
2958 	btrfs_free_path(path);
2959 
2960 	return ret;
2961 }
2962 
2963 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2964 					 u64 start, u64 len)
2965 {
2966 	struct btrfs_block_group *cache;
2967 
2968 	cache = btrfs_lookup_block_group(fs_info, start);
2969 	ASSERT(cache);
2970 
2971 	spin_lock(&cache->lock);
2972 	cache->delalloc_bytes -= len;
2973 	spin_unlock(&cache->lock);
2974 
2975 	btrfs_put_block_group(cache);
2976 }
2977 
2978 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2979 					     struct btrfs_ordered_extent *oe)
2980 {
2981 	struct btrfs_file_extent_item stack_fi;
2982 	bool update_inode_bytes;
2983 	u64 num_bytes = oe->num_bytes;
2984 	u64 ram_bytes = oe->ram_bytes;
2985 
2986 	memset(&stack_fi, 0, sizeof(stack_fi));
2987 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2988 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2989 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2990 						   oe->disk_num_bytes);
2991 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2992 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2993 		num_bytes = oe->truncated_len;
2994 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2995 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2996 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2997 	/* Encryption and other encoding is reserved and all 0 */
2998 
2999 	/*
3000 	 * For delalloc, when completing an ordered extent we update the inode's
3001 	 * bytes when clearing the range in the inode's io tree, so pass false
3002 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3003 	 * except if the ordered extent was truncated.
3004 	 */
3005 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3006 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3007 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3008 
3009 	return insert_reserved_file_extent(trans, oe->inode,
3010 					   oe->file_offset, &stack_fi,
3011 					   update_inode_bytes, oe->qgroup_rsv);
3012 }
3013 
3014 /*
3015  * As ordered data IO finishes, this gets called so we can finish
3016  * an ordered extent if the range of bytes in the file it covers are
3017  * fully written.
3018  */
3019 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3020 {
3021 	struct btrfs_inode *inode = ordered_extent->inode;
3022 	struct btrfs_root *root = inode->root;
3023 	struct btrfs_fs_info *fs_info = root->fs_info;
3024 	struct btrfs_trans_handle *trans = NULL;
3025 	struct extent_io_tree *io_tree = &inode->io_tree;
3026 	struct extent_state *cached_state = NULL;
3027 	u64 start, end;
3028 	int compress_type = 0;
3029 	int ret = 0;
3030 	u64 logical_len = ordered_extent->num_bytes;
3031 	bool freespace_inode;
3032 	bool truncated = false;
3033 	bool clear_reserved_extent = true;
3034 	unsigned int clear_bits = EXTENT_DEFRAG;
3035 
3036 	start = ordered_extent->file_offset;
3037 	end = start + ordered_extent->num_bytes - 1;
3038 
3039 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3040 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3041 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3042 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3043 		clear_bits |= EXTENT_DELALLOC_NEW;
3044 
3045 	freespace_inode = btrfs_is_free_space_inode(inode);
3046 	if (!freespace_inode)
3047 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3048 
3049 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3050 		ret = -EIO;
3051 		goto out;
3052 	}
3053 
3054 	if (btrfs_is_zoned(fs_info))
3055 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3056 					ordered_extent->disk_num_bytes);
3057 
3058 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3059 		truncated = true;
3060 		logical_len = ordered_extent->truncated_len;
3061 		/* Truncated the entire extent, don't bother adding */
3062 		if (!logical_len)
3063 			goto out;
3064 	}
3065 
3066 	if (freespace_inode)
3067 		trans = btrfs_join_transaction_spacecache(root);
3068 	else
3069 		trans = btrfs_join_transaction(root);
3070 	if (IS_ERR(trans)) {
3071 		ret = PTR_ERR(trans);
3072 		trans = NULL;
3073 		goto out;
3074 	}
3075 
3076 	trans->block_rsv = &inode->block_rsv;
3077 
3078 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3079 	if (ret) {
3080 		btrfs_abort_transaction(trans, ret);
3081 		goto out;
3082 	}
3083 
3084 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3085 		/* Logic error */
3086 		ASSERT(list_empty(&ordered_extent->list));
3087 		if (!list_empty(&ordered_extent->list)) {
3088 			ret = -EINVAL;
3089 			btrfs_abort_transaction(trans, ret);
3090 			goto out;
3091 		}
3092 
3093 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3094 		ret = btrfs_update_inode_fallback(trans, inode);
3095 		if (ret) {
3096 			/* -ENOMEM or corruption */
3097 			btrfs_abort_transaction(trans, ret);
3098 		}
3099 		goto out;
3100 	}
3101 
3102 	clear_bits |= EXTENT_LOCKED;
3103 	lock_extent(io_tree, start, end, &cached_state);
3104 
3105 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3106 		compress_type = ordered_extent->compress_type;
3107 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3108 		BUG_ON(compress_type);
3109 		ret = btrfs_mark_extent_written(trans, inode,
3110 						ordered_extent->file_offset,
3111 						ordered_extent->file_offset +
3112 						logical_len);
3113 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3114 						  ordered_extent->disk_num_bytes);
3115 	} else {
3116 		BUG_ON(root == fs_info->tree_root);
3117 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3118 		if (!ret) {
3119 			clear_reserved_extent = false;
3120 			btrfs_release_delalloc_bytes(fs_info,
3121 						ordered_extent->disk_bytenr,
3122 						ordered_extent->disk_num_bytes);
3123 		}
3124 	}
3125 	if (ret < 0) {
3126 		btrfs_abort_transaction(trans, ret);
3127 		goto out;
3128 	}
3129 
3130 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3131 				 ordered_extent->num_bytes, trans->transid);
3132 	if (ret < 0) {
3133 		btrfs_abort_transaction(trans, ret);
3134 		goto out;
3135 	}
3136 
3137 	ret = add_pending_csums(trans, &ordered_extent->list);
3138 	if (ret) {
3139 		btrfs_abort_transaction(trans, ret);
3140 		goto out;
3141 	}
3142 
3143 	/*
3144 	 * If this is a new delalloc range, clear its new delalloc flag to
3145 	 * update the inode's number of bytes. This needs to be done first
3146 	 * before updating the inode item.
3147 	 */
3148 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3149 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3150 		clear_extent_bit(&inode->io_tree, start, end,
3151 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3152 				 &cached_state);
3153 
3154 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3155 	ret = btrfs_update_inode_fallback(trans, inode);
3156 	if (ret) { /* -ENOMEM or corruption */
3157 		btrfs_abort_transaction(trans, ret);
3158 		goto out;
3159 	}
3160 out:
3161 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3162 			 &cached_state);
3163 
3164 	if (trans)
3165 		btrfs_end_transaction(trans);
3166 
3167 	if (ret || truncated) {
3168 		u64 unwritten_start = start;
3169 
3170 		/*
3171 		 * If we failed to finish this ordered extent for any reason we
3172 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3173 		 * extent, and mark the inode with the error if it wasn't
3174 		 * already set.  Any error during writeback would have already
3175 		 * set the mapping error, so we need to set it if we're the ones
3176 		 * marking this ordered extent as failed.
3177 		 */
3178 		if (ret)
3179 			btrfs_mark_ordered_extent_error(ordered_extent);
3180 
3181 		if (truncated)
3182 			unwritten_start += logical_len;
3183 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3184 
3185 		/*
3186 		 * Drop extent maps for the part of the extent we didn't write.
3187 		 *
3188 		 * We have an exception here for the free_space_inode, this is
3189 		 * because when we do btrfs_get_extent() on the free space inode
3190 		 * we will search the commit root.  If this is a new block group
3191 		 * we won't find anything, and we will trip over the assert in
3192 		 * writepage where we do ASSERT(em->block_start !=
3193 		 * EXTENT_MAP_HOLE).
3194 		 *
3195 		 * Theoretically we could also skip this for any NOCOW extent as
3196 		 * we don't mess with the extent map tree in the NOCOW case, but
3197 		 * for now simply skip this if we are the free space inode.
3198 		 */
3199 		if (!btrfs_is_free_space_inode(inode))
3200 			btrfs_drop_extent_map_range(inode, unwritten_start,
3201 						    end, false);
3202 
3203 		/*
3204 		 * If the ordered extent had an IOERR or something else went
3205 		 * wrong we need to return the space for this ordered extent
3206 		 * back to the allocator.  We only free the extent in the
3207 		 * truncated case if we didn't write out the extent at all.
3208 		 *
3209 		 * If we made it past insert_reserved_file_extent before we
3210 		 * errored out then we don't need to do this as the accounting
3211 		 * has already been done.
3212 		 */
3213 		if ((ret || !logical_len) &&
3214 		    clear_reserved_extent &&
3215 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3216 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3217 			/*
3218 			 * Discard the range before returning it back to the
3219 			 * free space pool
3220 			 */
3221 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3222 				btrfs_discard_extent(fs_info,
3223 						ordered_extent->disk_bytenr,
3224 						ordered_extent->disk_num_bytes,
3225 						NULL);
3226 			btrfs_free_reserved_extent(fs_info,
3227 					ordered_extent->disk_bytenr,
3228 					ordered_extent->disk_num_bytes, 1);
3229 			/*
3230 			 * Actually free the qgroup rsv which was released when
3231 			 * the ordered extent was created.
3232 			 */
3233 			btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3234 						  ordered_extent->qgroup_rsv,
3235 						  BTRFS_QGROUP_RSV_DATA);
3236 		}
3237 	}
3238 
3239 	/*
3240 	 * This needs to be done to make sure anybody waiting knows we are done
3241 	 * updating everything for this ordered extent.
3242 	 */
3243 	btrfs_remove_ordered_extent(inode, ordered_extent);
3244 
3245 	/* once for us */
3246 	btrfs_put_ordered_extent(ordered_extent);
3247 	/* once for the tree */
3248 	btrfs_put_ordered_extent(ordered_extent);
3249 
3250 	return ret;
3251 }
3252 
3253 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3254 {
3255 	if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3256 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3257 	    list_empty(&ordered->bioc_list))
3258 		btrfs_finish_ordered_zoned(ordered);
3259 	return btrfs_finish_one_ordered(ordered);
3260 }
3261 
3262 /*
3263  * Verify the checksum for a single sector without any extra action that depend
3264  * on the type of I/O.
3265  */
3266 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3267 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3268 {
3269 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3270 	char *kaddr;
3271 
3272 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3273 
3274 	shash->tfm = fs_info->csum_shash;
3275 
3276 	kaddr = kmap_local_page(page) + pgoff;
3277 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3278 	kunmap_local(kaddr);
3279 
3280 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3281 		return -EIO;
3282 	return 0;
3283 }
3284 
3285 /*
3286  * Verify the checksum of a single data sector.
3287  *
3288  * @bbio:	btrfs_io_bio which contains the csum
3289  * @dev:	device the sector is on
3290  * @bio_offset:	offset to the beginning of the bio (in bytes)
3291  * @bv:		bio_vec to check
3292  *
3293  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3294  * detected, report the error and fill the corrupted range with zero.
3295  *
3296  * Return %true if the sector is ok or had no checksum to start with, else %false.
3297  */
3298 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3299 			u32 bio_offset, struct bio_vec *bv)
3300 {
3301 	struct btrfs_inode *inode = bbio->inode;
3302 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3303 	u64 file_offset = bbio->file_offset + bio_offset;
3304 	u64 end = file_offset + bv->bv_len - 1;
3305 	u8 *csum_expected;
3306 	u8 csum[BTRFS_CSUM_SIZE];
3307 
3308 	ASSERT(bv->bv_len == fs_info->sectorsize);
3309 
3310 	if (!bbio->csum)
3311 		return true;
3312 
3313 	if (btrfs_is_data_reloc_root(inode->root) &&
3314 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3315 			   NULL)) {
3316 		/* Skip the range without csum for data reloc inode */
3317 		clear_extent_bits(&inode->io_tree, file_offset, end,
3318 				  EXTENT_NODATASUM);
3319 		return true;
3320 	}
3321 
3322 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3323 				fs_info->csum_size;
3324 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3325 				    csum_expected))
3326 		goto zeroit;
3327 	return true;
3328 
3329 zeroit:
3330 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3331 				    bbio->mirror_num);
3332 	if (dev)
3333 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3334 	memzero_bvec(bv);
3335 	return false;
3336 }
3337 
3338 /*
3339  * Perform a delayed iput on @inode.
3340  *
3341  * @inode: The inode we want to perform iput on
3342  *
3343  * This function uses the generic vfs_inode::i_count to track whether we should
3344  * just decrement it (in case it's > 1) or if this is the last iput then link
3345  * the inode to the delayed iput machinery. Delayed iputs are processed at
3346  * transaction commit time/superblock commit/cleaner kthread.
3347  */
3348 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3349 {
3350 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3351 	unsigned long flags;
3352 
3353 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3354 		return;
3355 
3356 	atomic_inc(&fs_info->nr_delayed_iputs);
3357 	/*
3358 	 * Need to be irq safe here because we can be called from either an irq
3359 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3360 	 * context.
3361 	 */
3362 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3363 	ASSERT(list_empty(&inode->delayed_iput));
3364 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3365 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3366 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3367 		wake_up_process(fs_info->cleaner_kthread);
3368 }
3369 
3370 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3371 				    struct btrfs_inode *inode)
3372 {
3373 	list_del_init(&inode->delayed_iput);
3374 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3375 	iput(&inode->vfs_inode);
3376 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3377 		wake_up(&fs_info->delayed_iputs_wait);
3378 	spin_lock_irq(&fs_info->delayed_iput_lock);
3379 }
3380 
3381 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3382 				   struct btrfs_inode *inode)
3383 {
3384 	if (!list_empty(&inode->delayed_iput)) {
3385 		spin_lock_irq(&fs_info->delayed_iput_lock);
3386 		if (!list_empty(&inode->delayed_iput))
3387 			run_delayed_iput_locked(fs_info, inode);
3388 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3389 	}
3390 }
3391 
3392 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3393 {
3394 	/*
3395 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3396 	 * calls btrfs_add_delayed_iput() and that needs to lock
3397 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3398 	 * prevent a deadlock.
3399 	 */
3400 	spin_lock_irq(&fs_info->delayed_iput_lock);
3401 	while (!list_empty(&fs_info->delayed_iputs)) {
3402 		struct btrfs_inode *inode;
3403 
3404 		inode = list_first_entry(&fs_info->delayed_iputs,
3405 				struct btrfs_inode, delayed_iput);
3406 		run_delayed_iput_locked(fs_info, inode);
3407 		if (need_resched()) {
3408 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3409 			cond_resched();
3410 			spin_lock_irq(&fs_info->delayed_iput_lock);
3411 		}
3412 	}
3413 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3414 }
3415 
3416 /*
3417  * Wait for flushing all delayed iputs
3418  *
3419  * @fs_info:  the filesystem
3420  *
3421  * This will wait on any delayed iputs that are currently running with KILLABLE
3422  * set.  Once they are all done running we will return, unless we are killed in
3423  * which case we return EINTR. This helps in user operations like fallocate etc
3424  * that might get blocked on the iputs.
3425  *
3426  * Return EINTR if we were killed, 0 if nothing's pending
3427  */
3428 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3429 {
3430 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3431 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3432 	if (ret)
3433 		return -EINTR;
3434 	return 0;
3435 }
3436 
3437 /*
3438  * This creates an orphan entry for the given inode in case something goes wrong
3439  * in the middle of an unlink.
3440  */
3441 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3442 		     struct btrfs_inode *inode)
3443 {
3444 	int ret;
3445 
3446 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3447 	if (ret && ret != -EEXIST) {
3448 		btrfs_abort_transaction(trans, ret);
3449 		return ret;
3450 	}
3451 
3452 	return 0;
3453 }
3454 
3455 /*
3456  * We have done the delete so we can go ahead and remove the orphan item for
3457  * this particular inode.
3458  */
3459 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3460 			    struct btrfs_inode *inode)
3461 {
3462 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3463 }
3464 
3465 /*
3466  * this cleans up any orphans that may be left on the list from the last use
3467  * of this root.
3468  */
3469 int btrfs_orphan_cleanup(struct btrfs_root *root)
3470 {
3471 	struct btrfs_fs_info *fs_info = root->fs_info;
3472 	struct btrfs_path *path;
3473 	struct extent_buffer *leaf;
3474 	struct btrfs_key key, found_key;
3475 	struct btrfs_trans_handle *trans;
3476 	struct inode *inode;
3477 	u64 last_objectid = 0;
3478 	int ret = 0, nr_unlink = 0;
3479 
3480 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3481 		return 0;
3482 
3483 	path = btrfs_alloc_path();
3484 	if (!path) {
3485 		ret = -ENOMEM;
3486 		goto out;
3487 	}
3488 	path->reada = READA_BACK;
3489 
3490 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3491 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3492 	key.offset = (u64)-1;
3493 
3494 	while (1) {
3495 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3496 		if (ret < 0)
3497 			goto out;
3498 
3499 		/*
3500 		 * if ret == 0 means we found what we were searching for, which
3501 		 * is weird, but possible, so only screw with path if we didn't
3502 		 * find the key and see if we have stuff that matches
3503 		 */
3504 		if (ret > 0) {
3505 			ret = 0;
3506 			if (path->slots[0] == 0)
3507 				break;
3508 			path->slots[0]--;
3509 		}
3510 
3511 		/* pull out the item */
3512 		leaf = path->nodes[0];
3513 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3514 
3515 		/* make sure the item matches what we want */
3516 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3517 			break;
3518 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3519 			break;
3520 
3521 		/* release the path since we're done with it */
3522 		btrfs_release_path(path);
3523 
3524 		/*
3525 		 * this is where we are basically btrfs_lookup, without the
3526 		 * crossing root thing.  we store the inode number in the
3527 		 * offset of the orphan item.
3528 		 */
3529 
3530 		if (found_key.offset == last_objectid) {
3531 			/*
3532 			 * We found the same inode as before. This means we were
3533 			 * not able to remove its items via eviction triggered
3534 			 * by an iput(). A transaction abort may have happened,
3535 			 * due to -ENOSPC for example, so try to grab the error
3536 			 * that lead to a transaction abort, if any.
3537 			 */
3538 			btrfs_err(fs_info,
3539 				  "Error removing orphan entry, stopping orphan cleanup");
3540 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3541 			goto out;
3542 		}
3543 
3544 		last_objectid = found_key.offset;
3545 
3546 		found_key.objectid = found_key.offset;
3547 		found_key.type = BTRFS_INODE_ITEM_KEY;
3548 		found_key.offset = 0;
3549 		inode = btrfs_iget(last_objectid, root);
3550 		if (IS_ERR(inode)) {
3551 			ret = PTR_ERR(inode);
3552 			inode = NULL;
3553 			if (ret != -ENOENT)
3554 				goto out;
3555 		}
3556 
3557 		if (!inode && root == fs_info->tree_root) {
3558 			struct btrfs_root *dead_root;
3559 			int is_dead_root = 0;
3560 
3561 			/*
3562 			 * This is an orphan in the tree root. Currently these
3563 			 * could come from 2 sources:
3564 			 *  a) a root (snapshot/subvolume) deletion in progress
3565 			 *  b) a free space cache inode
3566 			 * We need to distinguish those two, as the orphan item
3567 			 * for a root must not get deleted before the deletion
3568 			 * of the snapshot/subvolume's tree completes.
3569 			 *
3570 			 * btrfs_find_orphan_roots() ran before us, which has
3571 			 * found all deleted roots and loaded them into
3572 			 * fs_info->fs_roots_radix. So here we can find if an
3573 			 * orphan item corresponds to a deleted root by looking
3574 			 * up the root from that radix tree.
3575 			 */
3576 
3577 			spin_lock(&fs_info->fs_roots_radix_lock);
3578 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3579 							 (unsigned long)found_key.objectid);
3580 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3581 				is_dead_root = 1;
3582 			spin_unlock(&fs_info->fs_roots_radix_lock);
3583 
3584 			if (is_dead_root) {
3585 				/* prevent this orphan from being found again */
3586 				key.offset = found_key.objectid - 1;
3587 				continue;
3588 			}
3589 
3590 		}
3591 
3592 		/*
3593 		 * If we have an inode with links, there are a couple of
3594 		 * possibilities:
3595 		 *
3596 		 * 1. We were halfway through creating fsverity metadata for the
3597 		 * file. In that case, the orphan item represents incomplete
3598 		 * fsverity metadata which must be cleaned up with
3599 		 * btrfs_drop_verity_items and deleting the orphan item.
3600 
3601 		 * 2. Old kernels (before v3.12) used to create an
3602 		 * orphan item for truncate indicating that there were possibly
3603 		 * extent items past i_size that needed to be deleted. In v3.12,
3604 		 * truncate was changed to update i_size in sync with the extent
3605 		 * items, but the (useless) orphan item was still created. Since
3606 		 * v4.18, we don't create the orphan item for truncate at all.
3607 		 *
3608 		 * So, this item could mean that we need to do a truncate, but
3609 		 * only if this filesystem was last used on a pre-v3.12 kernel
3610 		 * and was not cleanly unmounted. The odds of that are quite
3611 		 * slim, and it's a pain to do the truncate now, so just delete
3612 		 * the orphan item.
3613 		 *
3614 		 * It's also possible that this orphan item was supposed to be
3615 		 * deleted but wasn't. The inode number may have been reused,
3616 		 * but either way, we can delete the orphan item.
3617 		 */
3618 		if (!inode || inode->i_nlink) {
3619 			if (inode) {
3620 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3621 				iput(inode);
3622 				inode = NULL;
3623 				if (ret)
3624 					goto out;
3625 			}
3626 			trans = btrfs_start_transaction(root, 1);
3627 			if (IS_ERR(trans)) {
3628 				ret = PTR_ERR(trans);
3629 				goto out;
3630 			}
3631 			btrfs_debug(fs_info, "auto deleting %Lu",
3632 				    found_key.objectid);
3633 			ret = btrfs_del_orphan_item(trans, root,
3634 						    found_key.objectid);
3635 			btrfs_end_transaction(trans);
3636 			if (ret)
3637 				goto out;
3638 			continue;
3639 		}
3640 
3641 		nr_unlink++;
3642 
3643 		/* this will do delete_inode and everything for us */
3644 		iput(inode);
3645 	}
3646 	/* release the path since we're done with it */
3647 	btrfs_release_path(path);
3648 
3649 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3650 		trans = btrfs_join_transaction(root);
3651 		if (!IS_ERR(trans))
3652 			btrfs_end_transaction(trans);
3653 	}
3654 
3655 	if (nr_unlink)
3656 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3657 
3658 out:
3659 	if (ret)
3660 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3661 	btrfs_free_path(path);
3662 	return ret;
3663 }
3664 
3665 /*
3666  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3667  * don't find any xattrs, we know there can't be any acls.
3668  *
3669  * slot is the slot the inode is in, objectid is the objectid of the inode
3670  */
3671 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3672 					  int slot, u64 objectid,
3673 					  int *first_xattr_slot)
3674 {
3675 	u32 nritems = btrfs_header_nritems(leaf);
3676 	struct btrfs_key found_key;
3677 	static u64 xattr_access = 0;
3678 	static u64 xattr_default = 0;
3679 	int scanned = 0;
3680 
3681 	if (!xattr_access) {
3682 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3683 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3684 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3685 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3686 	}
3687 
3688 	slot++;
3689 	*first_xattr_slot = -1;
3690 	while (slot < nritems) {
3691 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3692 
3693 		/* we found a different objectid, there must not be acls */
3694 		if (found_key.objectid != objectid)
3695 			return 0;
3696 
3697 		/* we found an xattr, assume we've got an acl */
3698 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3699 			if (*first_xattr_slot == -1)
3700 				*first_xattr_slot = slot;
3701 			if (found_key.offset == xattr_access ||
3702 			    found_key.offset == xattr_default)
3703 				return 1;
3704 		}
3705 
3706 		/*
3707 		 * we found a key greater than an xattr key, there can't
3708 		 * be any acls later on
3709 		 */
3710 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3711 			return 0;
3712 
3713 		slot++;
3714 		scanned++;
3715 
3716 		/*
3717 		 * it goes inode, inode backrefs, xattrs, extents,
3718 		 * so if there are a ton of hard links to an inode there can
3719 		 * be a lot of backrefs.  Don't waste time searching too hard,
3720 		 * this is just an optimization
3721 		 */
3722 		if (scanned >= 8)
3723 			break;
3724 	}
3725 	/* we hit the end of the leaf before we found an xattr or
3726 	 * something larger than an xattr.  We have to assume the inode
3727 	 * has acls
3728 	 */
3729 	if (*first_xattr_slot == -1)
3730 		*first_xattr_slot = slot;
3731 	return 1;
3732 }
3733 
3734 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3735 {
3736 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3737 
3738 	if (WARN_ON_ONCE(inode->file_extent_tree))
3739 		return 0;
3740 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
3741 		return 0;
3742 	if (!S_ISREG(inode->vfs_inode.i_mode))
3743 		return 0;
3744 	if (btrfs_is_free_space_inode(inode))
3745 		return 0;
3746 
3747 	inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3748 	if (!inode->file_extent_tree)
3749 		return -ENOMEM;
3750 
3751 	extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3752 	/* Lockdep class is set only for the file extent tree. */
3753 	lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3754 
3755 	return 0;
3756 }
3757 
3758 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3759 {
3760 	struct btrfs_root *root = inode->root;
3761 	struct btrfs_inode *existing;
3762 	const u64 ino = btrfs_ino(inode);
3763 	int ret;
3764 
3765 	if (inode_unhashed(&inode->vfs_inode))
3766 		return 0;
3767 
3768 	if (prealloc) {
3769 		ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3770 		if (ret)
3771 			return ret;
3772 	}
3773 
3774 	existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3775 
3776 	if (xa_is_err(existing)) {
3777 		ret = xa_err(existing);
3778 		ASSERT(ret != -EINVAL);
3779 		ASSERT(ret != -ENOMEM);
3780 		return ret;
3781 	} else if (existing) {
3782 		WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 /*
3789  * Read a locked inode from the btree into the in-memory inode and add it to
3790  * its root list/tree.
3791  *
3792  * On failure clean up the inode.
3793  */
3794 static int btrfs_read_locked_inode(struct inode *inode, struct btrfs_path *path)
3795 {
3796 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3797 	struct extent_buffer *leaf;
3798 	struct btrfs_inode_item *inode_item;
3799 	struct btrfs_root *root = BTRFS_I(inode)->root;
3800 	struct btrfs_key location;
3801 	unsigned long ptr;
3802 	int maybe_acls;
3803 	u32 rdev;
3804 	int ret;
3805 	bool filled = false;
3806 	int first_xattr_slot;
3807 
3808 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3809 	if (ret)
3810 		goto out;
3811 
3812 	ret = btrfs_fill_inode(inode, &rdev);
3813 	if (!ret)
3814 		filled = true;
3815 
3816 	ASSERT(path);
3817 
3818 	btrfs_get_inode_key(BTRFS_I(inode), &location);
3819 
3820 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3821 	if (ret) {
3822 		/*
3823 		 * ret > 0 can come from btrfs_search_slot called by
3824 		 * btrfs_lookup_inode(), this means the inode was not found.
3825 		 */
3826 		if (ret > 0)
3827 			ret = -ENOENT;
3828 		goto out;
3829 	}
3830 
3831 	leaf = path->nodes[0];
3832 
3833 	if (filled)
3834 		goto cache_index;
3835 
3836 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3837 				    struct btrfs_inode_item);
3838 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3839 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3840 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3841 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3842 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3843 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3844 			round_up(i_size_read(inode), fs_info->sectorsize));
3845 
3846 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3847 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3848 
3849 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3850 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3851 
3852 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3853 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3854 
3855 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3856 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3857 
3858 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3859 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3860 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3861 
3862 	inode_set_iversion_queried(inode,
3863 				   btrfs_inode_sequence(leaf, inode_item));
3864 	inode->i_generation = BTRFS_I(inode)->generation;
3865 	inode->i_rdev = 0;
3866 	rdev = btrfs_inode_rdev(leaf, inode_item);
3867 
3868 	if (S_ISDIR(inode->i_mode))
3869 		BTRFS_I(inode)->index_cnt = (u64)-1;
3870 
3871 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3872 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3873 
3874 cache_index:
3875 	/*
3876 	 * If we were modified in the current generation and evicted from memory
3877 	 * and then re-read we need to do a full sync since we don't have any
3878 	 * idea about which extents were modified before we were evicted from
3879 	 * cache.
3880 	 *
3881 	 * This is required for both inode re-read from disk and delayed inode
3882 	 * in the delayed_nodes xarray.
3883 	 */
3884 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3885 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3886 			&BTRFS_I(inode)->runtime_flags);
3887 
3888 	/*
3889 	 * We don't persist the id of the transaction where an unlink operation
3890 	 * against the inode was last made. So here we assume the inode might
3891 	 * have been evicted, and therefore the exact value of last_unlink_trans
3892 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3893 	 * between the inode and its parent if the inode is fsync'ed and the log
3894 	 * replayed. For example, in the scenario:
3895 	 *
3896 	 * touch mydir/foo
3897 	 * ln mydir/foo mydir/bar
3898 	 * sync
3899 	 * unlink mydir/bar
3900 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3901 	 * xfs_io -c fsync mydir/foo
3902 	 * <power failure>
3903 	 * mount fs, triggers fsync log replay
3904 	 *
3905 	 * We must make sure that when we fsync our inode foo we also log its
3906 	 * parent inode, otherwise after log replay the parent still has the
3907 	 * dentry with the "bar" name but our inode foo has a link count of 1
3908 	 * and doesn't have an inode ref with the name "bar" anymore.
3909 	 *
3910 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3911 	 * but it guarantees correctness at the expense of occasional full
3912 	 * transaction commits on fsync if our inode is a directory, or if our
3913 	 * inode is not a directory, logging its parent unnecessarily.
3914 	 */
3915 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3916 
3917 	/*
3918 	 * Same logic as for last_unlink_trans. We don't persist the generation
3919 	 * of the last transaction where this inode was used for a reflink
3920 	 * operation, so after eviction and reloading the inode we must be
3921 	 * pessimistic and assume the last transaction that modified the inode.
3922 	 */
3923 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3924 
3925 	path->slots[0]++;
3926 	if (inode->i_nlink != 1 ||
3927 	    path->slots[0] >= btrfs_header_nritems(leaf))
3928 		goto cache_acl;
3929 
3930 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3931 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3932 		goto cache_acl;
3933 
3934 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3935 	if (location.type == BTRFS_INODE_REF_KEY) {
3936 		struct btrfs_inode_ref *ref;
3937 
3938 		ref = (struct btrfs_inode_ref *)ptr;
3939 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3940 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3941 		struct btrfs_inode_extref *extref;
3942 
3943 		extref = (struct btrfs_inode_extref *)ptr;
3944 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3945 								     extref);
3946 	}
3947 cache_acl:
3948 	/*
3949 	 * try to precache a NULL acl entry for files that don't have
3950 	 * any xattrs or acls
3951 	 */
3952 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3953 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3954 	if (first_xattr_slot != -1) {
3955 		path->slots[0] = first_xattr_slot;
3956 		ret = btrfs_load_inode_props(inode, path);
3957 		if (ret)
3958 			btrfs_err(fs_info,
3959 				  "error loading props for ino %llu (root %llu): %d",
3960 				  btrfs_ino(BTRFS_I(inode)),
3961 				  btrfs_root_id(root), ret);
3962 	}
3963 
3964 	if (!maybe_acls)
3965 		cache_no_acl(inode);
3966 
3967 	switch (inode->i_mode & S_IFMT) {
3968 	case S_IFREG:
3969 		inode->i_mapping->a_ops = &btrfs_aops;
3970 		inode->i_fop = &btrfs_file_operations;
3971 		inode->i_op = &btrfs_file_inode_operations;
3972 		break;
3973 	case S_IFDIR:
3974 		inode->i_fop = &btrfs_dir_file_operations;
3975 		inode->i_op = &btrfs_dir_inode_operations;
3976 		break;
3977 	case S_IFLNK:
3978 		inode->i_op = &btrfs_symlink_inode_operations;
3979 		inode_nohighmem(inode);
3980 		inode->i_mapping->a_ops = &btrfs_aops;
3981 		break;
3982 	default:
3983 		inode->i_op = &btrfs_special_inode_operations;
3984 		init_special_inode(inode, inode->i_mode, rdev);
3985 		break;
3986 	}
3987 
3988 	btrfs_sync_inode_flags_to_i_flags(inode);
3989 
3990 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
3991 	if (ret)
3992 		goto out;
3993 
3994 	return 0;
3995 out:
3996 	iget_failed(inode);
3997 	return ret;
3998 }
3999 
4000 /*
4001  * given a leaf and an inode, copy the inode fields into the leaf
4002  */
4003 static void fill_inode_item(struct btrfs_trans_handle *trans,
4004 			    struct extent_buffer *leaf,
4005 			    struct btrfs_inode_item *item,
4006 			    struct inode *inode)
4007 {
4008 	struct btrfs_map_token token;
4009 	u64 flags;
4010 
4011 	btrfs_init_map_token(&token, leaf);
4012 
4013 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4014 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4015 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4016 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4017 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4018 
4019 	btrfs_set_token_timespec_sec(&token, &item->atime,
4020 				     inode_get_atime_sec(inode));
4021 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4022 				      inode_get_atime_nsec(inode));
4023 
4024 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4025 				     inode_get_mtime_sec(inode));
4026 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4027 				      inode_get_mtime_nsec(inode));
4028 
4029 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4030 				     inode_get_ctime_sec(inode));
4031 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4032 				      inode_get_ctime_nsec(inode));
4033 
4034 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4035 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4036 
4037 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4038 	btrfs_set_token_inode_generation(&token, item,
4039 					 BTRFS_I(inode)->generation);
4040 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4041 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4042 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4043 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4044 					  BTRFS_I(inode)->ro_flags);
4045 	btrfs_set_token_inode_flags(&token, item, flags);
4046 	btrfs_set_token_inode_block_group(&token, item, 0);
4047 }
4048 
4049 /*
4050  * copy everything in the in-memory inode into the btree.
4051  */
4052 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4053 					    struct btrfs_inode *inode)
4054 {
4055 	struct btrfs_inode_item *inode_item;
4056 	struct btrfs_path *path;
4057 	struct extent_buffer *leaf;
4058 	struct btrfs_key key;
4059 	int ret;
4060 
4061 	path = btrfs_alloc_path();
4062 	if (!path)
4063 		return -ENOMEM;
4064 
4065 	btrfs_get_inode_key(inode, &key);
4066 	ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4067 	if (ret) {
4068 		if (ret > 0)
4069 			ret = -ENOENT;
4070 		goto failed;
4071 	}
4072 
4073 	leaf = path->nodes[0];
4074 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4075 				    struct btrfs_inode_item);
4076 
4077 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4078 	btrfs_mark_buffer_dirty(trans, leaf);
4079 	btrfs_set_inode_last_trans(trans, inode);
4080 	ret = 0;
4081 failed:
4082 	btrfs_free_path(path);
4083 	return ret;
4084 }
4085 
4086 /*
4087  * copy everything in the in-memory inode into the btree.
4088  */
4089 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4090 		       struct btrfs_inode *inode)
4091 {
4092 	struct btrfs_root *root = inode->root;
4093 	struct btrfs_fs_info *fs_info = root->fs_info;
4094 	int ret;
4095 
4096 	/*
4097 	 * If the inode is a free space inode, we can deadlock during commit
4098 	 * if we put it into the delayed code.
4099 	 *
4100 	 * The data relocation inode should also be directly updated
4101 	 * without delay
4102 	 */
4103 	if (!btrfs_is_free_space_inode(inode)
4104 	    && !btrfs_is_data_reloc_root(root)
4105 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4106 		btrfs_update_root_times(trans, root);
4107 
4108 		ret = btrfs_delayed_update_inode(trans, inode);
4109 		if (!ret)
4110 			btrfs_set_inode_last_trans(trans, inode);
4111 		return ret;
4112 	}
4113 
4114 	return btrfs_update_inode_item(trans, inode);
4115 }
4116 
4117 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4118 				struct btrfs_inode *inode)
4119 {
4120 	int ret;
4121 
4122 	ret = btrfs_update_inode(trans, inode);
4123 	if (ret == -ENOSPC)
4124 		return btrfs_update_inode_item(trans, inode);
4125 	return ret;
4126 }
4127 
4128 /*
4129  * unlink helper that gets used here in inode.c and in the tree logging
4130  * recovery code.  It remove a link in a directory with a given name, and
4131  * also drops the back refs in the inode to the directory
4132  */
4133 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4134 				struct btrfs_inode *dir,
4135 				struct btrfs_inode *inode,
4136 				const struct fscrypt_str *name,
4137 				struct btrfs_rename_ctx *rename_ctx)
4138 {
4139 	struct btrfs_root *root = dir->root;
4140 	struct btrfs_fs_info *fs_info = root->fs_info;
4141 	struct btrfs_path *path;
4142 	int ret = 0;
4143 	struct btrfs_dir_item *di;
4144 	u64 index;
4145 	u64 ino = btrfs_ino(inode);
4146 	u64 dir_ino = btrfs_ino(dir);
4147 
4148 	path = btrfs_alloc_path();
4149 	if (!path) {
4150 		ret = -ENOMEM;
4151 		goto out;
4152 	}
4153 
4154 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4155 	if (IS_ERR_OR_NULL(di)) {
4156 		ret = di ? PTR_ERR(di) : -ENOENT;
4157 		goto err;
4158 	}
4159 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4160 	if (ret)
4161 		goto err;
4162 	btrfs_release_path(path);
4163 
4164 	/*
4165 	 * If we don't have dir index, we have to get it by looking up
4166 	 * the inode ref, since we get the inode ref, remove it directly,
4167 	 * it is unnecessary to do delayed deletion.
4168 	 *
4169 	 * But if we have dir index, needn't search inode ref to get it.
4170 	 * Since the inode ref is close to the inode item, it is better
4171 	 * that we delay to delete it, and just do this deletion when
4172 	 * we update the inode item.
4173 	 */
4174 	if (inode->dir_index) {
4175 		ret = btrfs_delayed_delete_inode_ref(inode);
4176 		if (!ret) {
4177 			index = inode->dir_index;
4178 			goto skip_backref;
4179 		}
4180 	}
4181 
4182 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4183 	if (ret) {
4184 		btrfs_info(fs_info,
4185 			"failed to delete reference to %.*s, inode %llu parent %llu",
4186 			name->len, name->name, ino, dir_ino);
4187 		btrfs_abort_transaction(trans, ret);
4188 		goto err;
4189 	}
4190 skip_backref:
4191 	if (rename_ctx)
4192 		rename_ctx->index = index;
4193 
4194 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4195 	if (ret) {
4196 		btrfs_abort_transaction(trans, ret);
4197 		goto err;
4198 	}
4199 
4200 	/*
4201 	 * If we are in a rename context, we don't need to update anything in the
4202 	 * log. That will be done later during the rename by btrfs_log_new_name().
4203 	 * Besides that, doing it here would only cause extra unnecessary btree
4204 	 * operations on the log tree, increasing latency for applications.
4205 	 */
4206 	if (!rename_ctx) {
4207 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4208 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4209 	}
4210 
4211 	/*
4212 	 * If we have a pending delayed iput we could end up with the final iput
4213 	 * being run in btrfs-cleaner context.  If we have enough of these built
4214 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4215 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4216 	 * the inode we can run the delayed iput here without any issues as the
4217 	 * final iput won't be done until after we drop the ref we're currently
4218 	 * holding.
4219 	 */
4220 	btrfs_run_delayed_iput(fs_info, inode);
4221 err:
4222 	btrfs_free_path(path);
4223 	if (ret)
4224 		goto out;
4225 
4226 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4227 	inode_inc_iversion(&inode->vfs_inode);
4228 	inode_set_ctime_current(&inode->vfs_inode);
4229 	inode_inc_iversion(&dir->vfs_inode);
4230  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4231 	ret = btrfs_update_inode(trans, dir);
4232 out:
4233 	return ret;
4234 }
4235 
4236 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4237 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4238 		       const struct fscrypt_str *name)
4239 {
4240 	int ret;
4241 
4242 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4243 	if (!ret) {
4244 		drop_nlink(&inode->vfs_inode);
4245 		ret = btrfs_update_inode(trans, inode);
4246 	}
4247 	return ret;
4248 }
4249 
4250 /*
4251  * helper to start transaction for unlink and rmdir.
4252  *
4253  * unlink and rmdir are special in btrfs, they do not always free space, so
4254  * if we cannot make our reservations the normal way try and see if there is
4255  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4256  * allow the unlink to occur.
4257  */
4258 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4259 {
4260 	struct btrfs_root *root = dir->root;
4261 
4262 	return btrfs_start_transaction_fallback_global_rsv(root,
4263 						   BTRFS_UNLINK_METADATA_UNITS);
4264 }
4265 
4266 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4267 {
4268 	struct btrfs_trans_handle *trans;
4269 	struct inode *inode = d_inode(dentry);
4270 	int ret;
4271 	struct fscrypt_name fname;
4272 
4273 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4274 	if (ret)
4275 		return ret;
4276 
4277 	/* This needs to handle no-key deletions later on */
4278 
4279 	trans = __unlink_start_trans(BTRFS_I(dir));
4280 	if (IS_ERR(trans)) {
4281 		ret = PTR_ERR(trans);
4282 		goto fscrypt_free;
4283 	}
4284 
4285 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4286 				false);
4287 
4288 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4289 				 &fname.disk_name);
4290 	if (ret)
4291 		goto end_trans;
4292 
4293 	if (inode->i_nlink == 0) {
4294 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4295 		if (ret)
4296 			goto end_trans;
4297 	}
4298 
4299 end_trans:
4300 	btrfs_end_transaction(trans);
4301 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4302 fscrypt_free:
4303 	fscrypt_free_filename(&fname);
4304 	return ret;
4305 }
4306 
4307 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4308 			       struct btrfs_inode *dir, struct dentry *dentry)
4309 {
4310 	struct btrfs_root *root = dir->root;
4311 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4312 	struct btrfs_path *path;
4313 	struct extent_buffer *leaf;
4314 	struct btrfs_dir_item *di;
4315 	struct btrfs_key key;
4316 	u64 index;
4317 	int ret;
4318 	u64 objectid;
4319 	u64 dir_ino = btrfs_ino(dir);
4320 	struct fscrypt_name fname;
4321 
4322 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4323 	if (ret)
4324 		return ret;
4325 
4326 	/* This needs to handle no-key deletions later on */
4327 
4328 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4329 		objectid = btrfs_root_id(inode->root);
4330 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4331 		objectid = inode->ref_root_id;
4332 	} else {
4333 		WARN_ON(1);
4334 		fscrypt_free_filename(&fname);
4335 		return -EINVAL;
4336 	}
4337 
4338 	path = btrfs_alloc_path();
4339 	if (!path) {
4340 		ret = -ENOMEM;
4341 		goto out;
4342 	}
4343 
4344 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4345 				   &fname.disk_name, -1);
4346 	if (IS_ERR_OR_NULL(di)) {
4347 		ret = di ? PTR_ERR(di) : -ENOENT;
4348 		goto out;
4349 	}
4350 
4351 	leaf = path->nodes[0];
4352 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4353 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4354 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4355 	if (ret) {
4356 		btrfs_abort_transaction(trans, ret);
4357 		goto out;
4358 	}
4359 	btrfs_release_path(path);
4360 
4361 	/*
4362 	 * This is a placeholder inode for a subvolume we didn't have a
4363 	 * reference to at the time of the snapshot creation.  In the meantime
4364 	 * we could have renamed the real subvol link into our snapshot, so
4365 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4366 	 * Instead simply lookup the dir_index_item for this entry so we can
4367 	 * remove it.  Otherwise we know we have a ref to the root and we can
4368 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4369 	 */
4370 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4371 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4372 		if (IS_ERR(di)) {
4373 			ret = PTR_ERR(di);
4374 			btrfs_abort_transaction(trans, ret);
4375 			goto out;
4376 		}
4377 
4378 		leaf = path->nodes[0];
4379 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4380 		index = key.offset;
4381 		btrfs_release_path(path);
4382 	} else {
4383 		ret = btrfs_del_root_ref(trans, objectid,
4384 					 btrfs_root_id(root), dir_ino,
4385 					 &index, &fname.disk_name);
4386 		if (ret) {
4387 			btrfs_abort_transaction(trans, ret);
4388 			goto out;
4389 		}
4390 	}
4391 
4392 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4393 	if (ret) {
4394 		btrfs_abort_transaction(trans, ret);
4395 		goto out;
4396 	}
4397 
4398 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4399 	inode_inc_iversion(&dir->vfs_inode);
4400 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4401 	ret = btrfs_update_inode_fallback(trans, dir);
4402 	if (ret)
4403 		btrfs_abort_transaction(trans, ret);
4404 out:
4405 	btrfs_free_path(path);
4406 	fscrypt_free_filename(&fname);
4407 	return ret;
4408 }
4409 
4410 /*
4411  * Helper to check if the subvolume references other subvolumes or if it's
4412  * default.
4413  */
4414 static noinline int may_destroy_subvol(struct btrfs_root *root)
4415 {
4416 	struct btrfs_fs_info *fs_info = root->fs_info;
4417 	struct btrfs_path *path;
4418 	struct btrfs_dir_item *di;
4419 	struct btrfs_key key;
4420 	struct fscrypt_str name = FSTR_INIT("default", 7);
4421 	u64 dir_id;
4422 	int ret;
4423 
4424 	path = btrfs_alloc_path();
4425 	if (!path)
4426 		return -ENOMEM;
4427 
4428 	/* Make sure this root isn't set as the default subvol */
4429 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4430 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4431 				   dir_id, &name, 0);
4432 	if (di && !IS_ERR(di)) {
4433 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4434 		if (key.objectid == btrfs_root_id(root)) {
4435 			ret = -EPERM;
4436 			btrfs_err(fs_info,
4437 				  "deleting default subvolume %llu is not allowed",
4438 				  key.objectid);
4439 			goto out;
4440 		}
4441 		btrfs_release_path(path);
4442 	}
4443 
4444 	key.objectid = btrfs_root_id(root);
4445 	key.type = BTRFS_ROOT_REF_KEY;
4446 	key.offset = (u64)-1;
4447 
4448 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4449 	if (ret < 0)
4450 		goto out;
4451 	if (ret == 0) {
4452 		/*
4453 		 * Key with offset -1 found, there would have to exist a root
4454 		 * with such id, but this is out of valid range.
4455 		 */
4456 		ret = -EUCLEAN;
4457 		goto out;
4458 	}
4459 
4460 	ret = 0;
4461 	if (path->slots[0] > 0) {
4462 		path->slots[0]--;
4463 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4464 		if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4465 			ret = -ENOTEMPTY;
4466 	}
4467 out:
4468 	btrfs_free_path(path);
4469 	return ret;
4470 }
4471 
4472 /* Delete all dentries for inodes belonging to the root */
4473 static void btrfs_prune_dentries(struct btrfs_root *root)
4474 {
4475 	struct btrfs_fs_info *fs_info = root->fs_info;
4476 	struct btrfs_inode *inode;
4477 	u64 min_ino = 0;
4478 
4479 	if (!BTRFS_FS_ERROR(fs_info))
4480 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4481 
4482 	inode = btrfs_find_first_inode(root, min_ino);
4483 	while (inode) {
4484 		if (atomic_read(&inode->vfs_inode.i_count) > 1)
4485 			d_prune_aliases(&inode->vfs_inode);
4486 
4487 		min_ino = btrfs_ino(inode) + 1;
4488 		/*
4489 		 * btrfs_drop_inode() will have it removed from the inode
4490 		 * cache when its usage count hits zero.
4491 		 */
4492 		iput(&inode->vfs_inode);
4493 		cond_resched();
4494 		inode = btrfs_find_first_inode(root, min_ino);
4495 	}
4496 }
4497 
4498 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4499 {
4500 	struct btrfs_root *root = dir->root;
4501 	struct btrfs_fs_info *fs_info = root->fs_info;
4502 	struct inode *inode = d_inode(dentry);
4503 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4504 	struct btrfs_trans_handle *trans;
4505 	struct btrfs_block_rsv block_rsv;
4506 	u64 root_flags;
4507 	u64 qgroup_reserved = 0;
4508 	int ret;
4509 
4510 	down_write(&fs_info->subvol_sem);
4511 
4512 	/*
4513 	 * Don't allow to delete a subvolume with send in progress. This is
4514 	 * inside the inode lock so the error handling that has to drop the bit
4515 	 * again is not run concurrently.
4516 	 */
4517 	spin_lock(&dest->root_item_lock);
4518 	if (dest->send_in_progress) {
4519 		spin_unlock(&dest->root_item_lock);
4520 		btrfs_warn(fs_info,
4521 			   "attempt to delete subvolume %llu during send",
4522 			   btrfs_root_id(dest));
4523 		ret = -EPERM;
4524 		goto out_up_write;
4525 	}
4526 	if (atomic_read(&dest->nr_swapfiles)) {
4527 		spin_unlock(&dest->root_item_lock);
4528 		btrfs_warn(fs_info,
4529 			   "attempt to delete subvolume %llu with active swapfile",
4530 			   btrfs_root_id(root));
4531 		ret = -EPERM;
4532 		goto out_up_write;
4533 	}
4534 	root_flags = btrfs_root_flags(&dest->root_item);
4535 	btrfs_set_root_flags(&dest->root_item,
4536 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4537 	spin_unlock(&dest->root_item_lock);
4538 
4539 	ret = may_destroy_subvol(dest);
4540 	if (ret)
4541 		goto out_undead;
4542 
4543 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4544 	/*
4545 	 * One for dir inode,
4546 	 * two for dir entries,
4547 	 * two for root ref/backref.
4548 	 */
4549 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4550 	if (ret)
4551 		goto out_undead;
4552 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4553 
4554 	trans = btrfs_start_transaction(root, 0);
4555 	if (IS_ERR(trans)) {
4556 		ret = PTR_ERR(trans);
4557 		goto out_release;
4558 	}
4559 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4560 	qgroup_reserved = 0;
4561 	trans->block_rsv = &block_rsv;
4562 	trans->bytes_reserved = block_rsv.size;
4563 
4564 	btrfs_record_snapshot_destroy(trans, dir);
4565 
4566 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4567 	if (ret) {
4568 		btrfs_abort_transaction(trans, ret);
4569 		goto out_end_trans;
4570 	}
4571 
4572 	ret = btrfs_record_root_in_trans(trans, dest);
4573 	if (ret) {
4574 		btrfs_abort_transaction(trans, ret);
4575 		goto out_end_trans;
4576 	}
4577 
4578 	memset(&dest->root_item.drop_progress, 0,
4579 		sizeof(dest->root_item.drop_progress));
4580 	btrfs_set_root_drop_level(&dest->root_item, 0);
4581 	btrfs_set_root_refs(&dest->root_item, 0);
4582 
4583 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4584 		ret = btrfs_insert_orphan_item(trans,
4585 					fs_info->tree_root,
4586 					btrfs_root_id(dest));
4587 		if (ret) {
4588 			btrfs_abort_transaction(trans, ret);
4589 			goto out_end_trans;
4590 		}
4591 	}
4592 
4593 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4594 				     BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4595 	if (ret && ret != -ENOENT) {
4596 		btrfs_abort_transaction(trans, ret);
4597 		goto out_end_trans;
4598 	}
4599 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4600 		ret = btrfs_uuid_tree_remove(trans,
4601 					  dest->root_item.received_uuid,
4602 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4603 					  btrfs_root_id(dest));
4604 		if (ret && ret != -ENOENT) {
4605 			btrfs_abort_transaction(trans, ret);
4606 			goto out_end_trans;
4607 		}
4608 	}
4609 
4610 	free_anon_bdev(dest->anon_dev);
4611 	dest->anon_dev = 0;
4612 out_end_trans:
4613 	trans->block_rsv = NULL;
4614 	trans->bytes_reserved = 0;
4615 	ret = btrfs_end_transaction(trans);
4616 	inode->i_flags |= S_DEAD;
4617 out_release:
4618 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4619 	if (qgroup_reserved)
4620 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4621 out_undead:
4622 	if (ret) {
4623 		spin_lock(&dest->root_item_lock);
4624 		root_flags = btrfs_root_flags(&dest->root_item);
4625 		btrfs_set_root_flags(&dest->root_item,
4626 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4627 		spin_unlock(&dest->root_item_lock);
4628 	}
4629 out_up_write:
4630 	up_write(&fs_info->subvol_sem);
4631 	if (!ret) {
4632 		d_invalidate(dentry);
4633 		btrfs_prune_dentries(dest);
4634 		ASSERT(dest->send_in_progress == 0);
4635 	}
4636 
4637 	return ret;
4638 }
4639 
4640 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4641 {
4642 	struct inode *inode = d_inode(dentry);
4643 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4644 	int ret = 0;
4645 	struct btrfs_trans_handle *trans;
4646 	u64 last_unlink_trans;
4647 	struct fscrypt_name fname;
4648 
4649 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4650 		return -ENOTEMPTY;
4651 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4652 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4653 			btrfs_err(fs_info,
4654 			"extent tree v2 doesn't support snapshot deletion yet");
4655 			return -EOPNOTSUPP;
4656 		}
4657 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4658 	}
4659 
4660 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4661 	if (ret)
4662 		return ret;
4663 
4664 	/* This needs to handle no-key deletions later on */
4665 
4666 	trans = __unlink_start_trans(BTRFS_I(dir));
4667 	if (IS_ERR(trans)) {
4668 		ret = PTR_ERR(trans);
4669 		goto out_notrans;
4670 	}
4671 
4672 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4673 		ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4674 		goto out;
4675 	}
4676 
4677 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4678 	if (ret)
4679 		goto out;
4680 
4681 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4682 
4683 	/* now the directory is empty */
4684 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4685 				 &fname.disk_name);
4686 	if (!ret) {
4687 		btrfs_i_size_write(BTRFS_I(inode), 0);
4688 		/*
4689 		 * Propagate the last_unlink_trans value of the deleted dir to
4690 		 * its parent directory. This is to prevent an unrecoverable
4691 		 * log tree in the case we do something like this:
4692 		 * 1) create dir foo
4693 		 * 2) create snapshot under dir foo
4694 		 * 3) delete the snapshot
4695 		 * 4) rmdir foo
4696 		 * 5) mkdir foo
4697 		 * 6) fsync foo or some file inside foo
4698 		 */
4699 		if (last_unlink_trans >= trans->transid)
4700 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4701 	}
4702 out:
4703 	btrfs_end_transaction(trans);
4704 out_notrans:
4705 	btrfs_btree_balance_dirty(fs_info);
4706 	fscrypt_free_filename(&fname);
4707 
4708 	return ret;
4709 }
4710 
4711 /*
4712  * Read, zero a chunk and write a block.
4713  *
4714  * @inode - inode that we're zeroing
4715  * @from - the offset to start zeroing
4716  * @len - the length to zero, 0 to zero the entire range respective to the
4717  *	offset
4718  * @front - zero up to the offset instead of from the offset on
4719  *
4720  * This will find the block for the "from" offset and cow the block and zero the
4721  * part we want to zero.  This is used with truncate and hole punching.
4722  */
4723 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4724 			 int front)
4725 {
4726 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4727 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4728 	struct extent_io_tree *io_tree = &inode->io_tree;
4729 	struct btrfs_ordered_extent *ordered;
4730 	struct extent_state *cached_state = NULL;
4731 	struct extent_changeset *data_reserved = NULL;
4732 	bool only_release_metadata = false;
4733 	u32 blocksize = fs_info->sectorsize;
4734 	pgoff_t index = from >> PAGE_SHIFT;
4735 	unsigned offset = from & (blocksize - 1);
4736 	struct folio *folio;
4737 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4738 	size_t write_bytes = blocksize;
4739 	int ret = 0;
4740 	u64 block_start;
4741 	u64 block_end;
4742 
4743 	if (IS_ALIGNED(offset, blocksize) &&
4744 	    (!len || IS_ALIGNED(len, blocksize)))
4745 		goto out;
4746 
4747 	block_start = round_down(from, blocksize);
4748 	block_end = block_start + blocksize - 1;
4749 
4750 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4751 					  blocksize, false);
4752 	if (ret < 0) {
4753 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4754 			/* For nocow case, no need to reserve data space */
4755 			only_release_metadata = true;
4756 		} else {
4757 			goto out;
4758 		}
4759 	}
4760 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4761 	if (ret < 0) {
4762 		if (!only_release_metadata)
4763 			btrfs_free_reserved_data_space(inode, data_reserved,
4764 						       block_start, blocksize);
4765 		goto out;
4766 	}
4767 again:
4768 	folio = __filemap_get_folio(mapping, index,
4769 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4770 	if (IS_ERR(folio)) {
4771 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4772 					     blocksize, true);
4773 		btrfs_delalloc_release_extents(inode, blocksize);
4774 		ret = -ENOMEM;
4775 		goto out;
4776 	}
4777 
4778 	if (!folio_test_uptodate(folio)) {
4779 		ret = btrfs_read_folio(NULL, folio);
4780 		folio_lock(folio);
4781 		if (folio->mapping != mapping) {
4782 			folio_unlock(folio);
4783 			folio_put(folio);
4784 			goto again;
4785 		}
4786 		if (!folio_test_uptodate(folio)) {
4787 			ret = -EIO;
4788 			goto out_unlock;
4789 		}
4790 	}
4791 
4792 	/*
4793 	 * We unlock the page after the io is completed and then re-lock it
4794 	 * above.  release_folio() could have come in between that and cleared
4795 	 * folio private, but left the page in the mapping.  Set the page mapped
4796 	 * here to make sure it's properly set for the subpage stuff.
4797 	 */
4798 	ret = set_folio_extent_mapped(folio);
4799 	if (ret < 0)
4800 		goto out_unlock;
4801 
4802 	folio_wait_writeback(folio);
4803 
4804 	lock_extent(io_tree, block_start, block_end, &cached_state);
4805 
4806 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4807 	if (ordered) {
4808 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4809 		folio_unlock(folio);
4810 		folio_put(folio);
4811 		btrfs_start_ordered_extent(ordered);
4812 		btrfs_put_ordered_extent(ordered);
4813 		goto again;
4814 	}
4815 
4816 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4817 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4818 			 &cached_state);
4819 
4820 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4821 					&cached_state);
4822 	if (ret) {
4823 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4824 		goto out_unlock;
4825 	}
4826 
4827 	if (offset != blocksize) {
4828 		if (!len)
4829 			len = blocksize - offset;
4830 		if (front)
4831 			folio_zero_range(folio, block_start - folio_pos(folio),
4832 					 offset);
4833 		else
4834 			folio_zero_range(folio,
4835 					 (block_start - folio_pos(folio)) + offset,
4836 					 len);
4837 	}
4838 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4839 				  block_end + 1 - block_start);
4840 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4841 			      block_end + 1 - block_start);
4842 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4843 
4844 	if (only_release_metadata)
4845 		set_extent_bit(&inode->io_tree, block_start, block_end,
4846 			       EXTENT_NORESERVE, NULL);
4847 
4848 out_unlock:
4849 	if (ret) {
4850 		if (only_release_metadata)
4851 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4852 		else
4853 			btrfs_delalloc_release_space(inode, data_reserved,
4854 					block_start, blocksize, true);
4855 	}
4856 	btrfs_delalloc_release_extents(inode, blocksize);
4857 	folio_unlock(folio);
4858 	folio_put(folio);
4859 out:
4860 	if (only_release_metadata)
4861 		btrfs_check_nocow_unlock(inode);
4862 	extent_changeset_free(data_reserved);
4863 	return ret;
4864 }
4865 
4866 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4867 {
4868 	struct btrfs_root *root = inode->root;
4869 	struct btrfs_fs_info *fs_info = root->fs_info;
4870 	struct btrfs_trans_handle *trans;
4871 	struct btrfs_drop_extents_args drop_args = { 0 };
4872 	int ret;
4873 
4874 	/*
4875 	 * If NO_HOLES is enabled, we don't need to do anything.
4876 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4877 	 * or btrfs_update_inode() will be called, which guarantee that the next
4878 	 * fsync will know this inode was changed and needs to be logged.
4879 	 */
4880 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4881 		return 0;
4882 
4883 	/*
4884 	 * 1 - for the one we're dropping
4885 	 * 1 - for the one we're adding
4886 	 * 1 - for updating the inode.
4887 	 */
4888 	trans = btrfs_start_transaction(root, 3);
4889 	if (IS_ERR(trans))
4890 		return PTR_ERR(trans);
4891 
4892 	drop_args.start = offset;
4893 	drop_args.end = offset + len;
4894 	drop_args.drop_cache = true;
4895 
4896 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4897 	if (ret) {
4898 		btrfs_abort_transaction(trans, ret);
4899 		btrfs_end_transaction(trans);
4900 		return ret;
4901 	}
4902 
4903 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4904 	if (ret) {
4905 		btrfs_abort_transaction(trans, ret);
4906 	} else {
4907 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4908 		btrfs_update_inode(trans, inode);
4909 	}
4910 	btrfs_end_transaction(trans);
4911 	return ret;
4912 }
4913 
4914 /*
4915  * This function puts in dummy file extents for the area we're creating a hole
4916  * for.  So if we are truncating this file to a larger size we need to insert
4917  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4918  * the range between oldsize and size
4919  */
4920 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4921 {
4922 	struct btrfs_root *root = inode->root;
4923 	struct btrfs_fs_info *fs_info = root->fs_info;
4924 	struct extent_io_tree *io_tree = &inode->io_tree;
4925 	struct extent_map *em = NULL;
4926 	struct extent_state *cached_state = NULL;
4927 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4928 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4929 	u64 last_byte;
4930 	u64 cur_offset;
4931 	u64 hole_size;
4932 	int ret = 0;
4933 
4934 	/*
4935 	 * If our size started in the middle of a block we need to zero out the
4936 	 * rest of the block before we expand the i_size, otherwise we could
4937 	 * expose stale data.
4938 	 */
4939 	ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4940 	if (ret)
4941 		return ret;
4942 
4943 	if (size <= hole_start)
4944 		return 0;
4945 
4946 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4947 					   &cached_state);
4948 	cur_offset = hole_start;
4949 	while (1) {
4950 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4951 		if (IS_ERR(em)) {
4952 			ret = PTR_ERR(em);
4953 			em = NULL;
4954 			break;
4955 		}
4956 		last_byte = min(extent_map_end(em), block_end);
4957 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4958 		hole_size = last_byte - cur_offset;
4959 
4960 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4961 			struct extent_map *hole_em;
4962 
4963 			ret = maybe_insert_hole(inode, cur_offset, hole_size);
4964 			if (ret)
4965 				break;
4966 
4967 			ret = btrfs_inode_set_file_extent_range(inode,
4968 							cur_offset, hole_size);
4969 			if (ret)
4970 				break;
4971 
4972 			hole_em = alloc_extent_map();
4973 			if (!hole_em) {
4974 				btrfs_drop_extent_map_range(inode, cur_offset,
4975 						    cur_offset + hole_size - 1,
4976 						    false);
4977 				btrfs_set_inode_full_sync(inode);
4978 				goto next;
4979 			}
4980 			hole_em->start = cur_offset;
4981 			hole_em->len = hole_size;
4982 
4983 			hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4984 			hole_em->disk_num_bytes = 0;
4985 			hole_em->ram_bytes = hole_size;
4986 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4987 
4988 			ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4989 			free_extent_map(hole_em);
4990 		} else {
4991 			ret = btrfs_inode_set_file_extent_range(inode,
4992 							cur_offset, hole_size);
4993 			if (ret)
4994 				break;
4995 		}
4996 next:
4997 		free_extent_map(em);
4998 		em = NULL;
4999 		cur_offset = last_byte;
5000 		if (cur_offset >= block_end)
5001 			break;
5002 	}
5003 	free_extent_map(em);
5004 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5005 	return ret;
5006 }
5007 
5008 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5009 {
5010 	struct btrfs_root *root = BTRFS_I(inode)->root;
5011 	struct btrfs_trans_handle *trans;
5012 	loff_t oldsize = i_size_read(inode);
5013 	loff_t newsize = attr->ia_size;
5014 	int mask = attr->ia_valid;
5015 	int ret;
5016 
5017 	/*
5018 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5019 	 * special case where we need to update the times despite not having
5020 	 * these flags set.  For all other operations the VFS set these flags
5021 	 * explicitly if it wants a timestamp update.
5022 	 */
5023 	if (newsize != oldsize) {
5024 		inode_inc_iversion(inode);
5025 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5026 			inode_set_mtime_to_ts(inode,
5027 					      inode_set_ctime_current(inode));
5028 		}
5029 	}
5030 
5031 	if (newsize > oldsize) {
5032 		/*
5033 		 * Don't do an expanding truncate while snapshotting is ongoing.
5034 		 * This is to ensure the snapshot captures a fully consistent
5035 		 * state of this file - if the snapshot captures this expanding
5036 		 * truncation, it must capture all writes that happened before
5037 		 * this truncation.
5038 		 */
5039 		btrfs_drew_write_lock(&root->snapshot_lock);
5040 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5041 		if (ret) {
5042 			btrfs_drew_write_unlock(&root->snapshot_lock);
5043 			return ret;
5044 		}
5045 
5046 		trans = btrfs_start_transaction(root, 1);
5047 		if (IS_ERR(trans)) {
5048 			btrfs_drew_write_unlock(&root->snapshot_lock);
5049 			return PTR_ERR(trans);
5050 		}
5051 
5052 		i_size_write(inode, newsize);
5053 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5054 		pagecache_isize_extended(inode, oldsize, newsize);
5055 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5056 		btrfs_drew_write_unlock(&root->snapshot_lock);
5057 		btrfs_end_transaction(trans);
5058 	} else {
5059 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5060 
5061 		if (btrfs_is_zoned(fs_info)) {
5062 			ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5063 					ALIGN(newsize, fs_info->sectorsize),
5064 					(u64)-1);
5065 			if (ret)
5066 				return ret;
5067 		}
5068 
5069 		/*
5070 		 * We're truncating a file that used to have good data down to
5071 		 * zero. Make sure any new writes to the file get on disk
5072 		 * on close.
5073 		 */
5074 		if (newsize == 0)
5075 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5076 				&BTRFS_I(inode)->runtime_flags);
5077 
5078 		truncate_setsize(inode, newsize);
5079 
5080 		inode_dio_wait(inode);
5081 
5082 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5083 		if (ret && inode->i_nlink) {
5084 			int err;
5085 
5086 			/*
5087 			 * Truncate failed, so fix up the in-memory size. We
5088 			 * adjusted disk_i_size down as we removed extents, so
5089 			 * wait for disk_i_size to be stable and then update the
5090 			 * in-memory size to match.
5091 			 */
5092 			err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5093 			if (err)
5094 				return err;
5095 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5096 		}
5097 	}
5098 
5099 	return ret;
5100 }
5101 
5102 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5103 			 struct iattr *attr)
5104 {
5105 	struct inode *inode = d_inode(dentry);
5106 	struct btrfs_root *root = BTRFS_I(inode)->root;
5107 	int err;
5108 
5109 	if (btrfs_root_readonly(root))
5110 		return -EROFS;
5111 
5112 	err = setattr_prepare(idmap, dentry, attr);
5113 	if (err)
5114 		return err;
5115 
5116 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5117 		err = btrfs_setsize(inode, attr);
5118 		if (err)
5119 			return err;
5120 	}
5121 
5122 	if (attr->ia_valid) {
5123 		setattr_copy(idmap, inode, attr);
5124 		inode_inc_iversion(inode);
5125 		err = btrfs_dirty_inode(BTRFS_I(inode));
5126 
5127 		if (!err && attr->ia_valid & ATTR_MODE)
5128 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5129 	}
5130 
5131 	return err;
5132 }
5133 
5134 /*
5135  * While truncating the inode pages during eviction, we get the VFS
5136  * calling btrfs_invalidate_folio() against each folio of the inode. This
5137  * is slow because the calls to btrfs_invalidate_folio() result in a
5138  * huge amount of calls to lock_extent() and clear_extent_bit(),
5139  * which keep merging and splitting extent_state structures over and over,
5140  * wasting lots of time.
5141  *
5142  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5143  * skip all those expensive operations on a per folio basis and do only
5144  * the ordered io finishing, while we release here the extent_map and
5145  * extent_state structures, without the excessive merging and splitting.
5146  */
5147 static void evict_inode_truncate_pages(struct inode *inode)
5148 {
5149 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5150 	struct rb_node *node;
5151 
5152 	ASSERT(inode->i_state & I_FREEING);
5153 	truncate_inode_pages_final(&inode->i_data);
5154 
5155 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5156 
5157 	/*
5158 	 * Keep looping until we have no more ranges in the io tree.
5159 	 * We can have ongoing bios started by readahead that have
5160 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5161 	 * still in progress (unlocked the pages in the bio but did not yet
5162 	 * unlocked the ranges in the io tree). Therefore this means some
5163 	 * ranges can still be locked and eviction started because before
5164 	 * submitting those bios, which are executed by a separate task (work
5165 	 * queue kthread), inode references (inode->i_count) were not taken
5166 	 * (which would be dropped in the end io callback of each bio).
5167 	 * Therefore here we effectively end up waiting for those bios and
5168 	 * anyone else holding locked ranges without having bumped the inode's
5169 	 * reference count - if we don't do it, when they access the inode's
5170 	 * io_tree to unlock a range it may be too late, leading to an
5171 	 * use-after-free issue.
5172 	 */
5173 	spin_lock(&io_tree->lock);
5174 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5175 		struct extent_state *state;
5176 		struct extent_state *cached_state = NULL;
5177 		u64 start;
5178 		u64 end;
5179 		unsigned state_flags;
5180 
5181 		node = rb_first(&io_tree->state);
5182 		state = rb_entry(node, struct extent_state, rb_node);
5183 		start = state->start;
5184 		end = state->end;
5185 		state_flags = state->state;
5186 		spin_unlock(&io_tree->lock);
5187 
5188 		lock_extent(io_tree, start, end, &cached_state);
5189 
5190 		/*
5191 		 * If still has DELALLOC flag, the extent didn't reach disk,
5192 		 * and its reserved space won't be freed by delayed_ref.
5193 		 * So we need to free its reserved space here.
5194 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5195 		 *
5196 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5197 		 */
5198 		if (state_flags & EXTENT_DELALLOC)
5199 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5200 					       end - start + 1, NULL);
5201 
5202 		clear_extent_bit(io_tree, start, end,
5203 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5204 				 &cached_state);
5205 
5206 		cond_resched();
5207 		spin_lock(&io_tree->lock);
5208 	}
5209 	spin_unlock(&io_tree->lock);
5210 }
5211 
5212 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5213 							struct btrfs_block_rsv *rsv)
5214 {
5215 	struct btrfs_fs_info *fs_info = root->fs_info;
5216 	struct btrfs_trans_handle *trans;
5217 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5218 	int ret;
5219 
5220 	/*
5221 	 * Eviction should be taking place at some place safe because of our
5222 	 * delayed iputs.  However the normal flushing code will run delayed
5223 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5224 	 *
5225 	 * We reserve the delayed_refs_extra here again because we can't use
5226 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5227 	 * above.  We reserve our extra bit here because we generate a ton of
5228 	 * delayed refs activity by truncating.
5229 	 *
5230 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5231 	 * if we fail to make this reservation we can re-try without the
5232 	 * delayed_refs_extra so we can make some forward progress.
5233 	 */
5234 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5235 				     BTRFS_RESERVE_FLUSH_EVICT);
5236 	if (ret) {
5237 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5238 					     BTRFS_RESERVE_FLUSH_EVICT);
5239 		if (ret) {
5240 			btrfs_warn(fs_info,
5241 				   "could not allocate space for delete; will truncate on mount");
5242 			return ERR_PTR(-ENOSPC);
5243 		}
5244 		delayed_refs_extra = 0;
5245 	}
5246 
5247 	trans = btrfs_join_transaction(root);
5248 	if (IS_ERR(trans))
5249 		return trans;
5250 
5251 	if (delayed_refs_extra) {
5252 		trans->block_rsv = &fs_info->trans_block_rsv;
5253 		trans->bytes_reserved = delayed_refs_extra;
5254 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5255 					delayed_refs_extra, true);
5256 	}
5257 	return trans;
5258 }
5259 
5260 void btrfs_evict_inode(struct inode *inode)
5261 {
5262 	struct btrfs_fs_info *fs_info;
5263 	struct btrfs_trans_handle *trans;
5264 	struct btrfs_root *root = BTRFS_I(inode)->root;
5265 	struct btrfs_block_rsv *rsv = NULL;
5266 	int ret;
5267 
5268 	trace_btrfs_inode_evict(inode);
5269 
5270 	if (!root) {
5271 		fsverity_cleanup_inode(inode);
5272 		clear_inode(inode);
5273 		return;
5274 	}
5275 
5276 	fs_info = inode_to_fs_info(inode);
5277 	evict_inode_truncate_pages(inode);
5278 
5279 	if (inode->i_nlink &&
5280 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5281 	      btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5282 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5283 		goto out;
5284 
5285 	if (is_bad_inode(inode))
5286 		goto out;
5287 
5288 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5289 		goto out;
5290 
5291 	if (inode->i_nlink > 0) {
5292 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5293 		       btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5294 		goto out;
5295 	}
5296 
5297 	/*
5298 	 * This makes sure the inode item in tree is uptodate and the space for
5299 	 * the inode update is released.
5300 	 */
5301 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5302 	if (ret)
5303 		goto out;
5304 
5305 	/*
5306 	 * This drops any pending insert or delete operations we have for this
5307 	 * inode.  We could have a delayed dir index deletion queued up, but
5308 	 * we're removing the inode completely so that'll be taken care of in
5309 	 * the truncate.
5310 	 */
5311 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5312 
5313 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5314 	if (!rsv)
5315 		goto out;
5316 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5317 	rsv->failfast = true;
5318 
5319 	btrfs_i_size_write(BTRFS_I(inode), 0);
5320 
5321 	while (1) {
5322 		struct btrfs_truncate_control control = {
5323 			.inode = BTRFS_I(inode),
5324 			.ino = btrfs_ino(BTRFS_I(inode)),
5325 			.new_size = 0,
5326 			.min_type = 0,
5327 		};
5328 
5329 		trans = evict_refill_and_join(root, rsv);
5330 		if (IS_ERR(trans))
5331 			goto out;
5332 
5333 		trans->block_rsv = rsv;
5334 
5335 		ret = btrfs_truncate_inode_items(trans, root, &control);
5336 		trans->block_rsv = &fs_info->trans_block_rsv;
5337 		btrfs_end_transaction(trans);
5338 		/*
5339 		 * We have not added new delayed items for our inode after we
5340 		 * have flushed its delayed items, so no need to throttle on
5341 		 * delayed items. However we have modified extent buffers.
5342 		 */
5343 		btrfs_btree_balance_dirty_nodelay(fs_info);
5344 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5345 			goto out;
5346 		else if (!ret)
5347 			break;
5348 	}
5349 
5350 	/*
5351 	 * Errors here aren't a big deal, it just means we leave orphan items in
5352 	 * the tree. They will be cleaned up on the next mount. If the inode
5353 	 * number gets reused, cleanup deletes the orphan item without doing
5354 	 * anything, and unlink reuses the existing orphan item.
5355 	 *
5356 	 * If it turns out that we are dropping too many of these, we might want
5357 	 * to add a mechanism for retrying these after a commit.
5358 	 */
5359 	trans = evict_refill_and_join(root, rsv);
5360 	if (!IS_ERR(trans)) {
5361 		trans->block_rsv = rsv;
5362 		btrfs_orphan_del(trans, BTRFS_I(inode));
5363 		trans->block_rsv = &fs_info->trans_block_rsv;
5364 		btrfs_end_transaction(trans);
5365 	}
5366 
5367 out:
5368 	btrfs_free_block_rsv(fs_info, rsv);
5369 	/*
5370 	 * If we didn't successfully delete, the orphan item will still be in
5371 	 * the tree and we'll retry on the next mount. Again, we might also want
5372 	 * to retry these periodically in the future.
5373 	 */
5374 	btrfs_remove_delayed_node(BTRFS_I(inode));
5375 	fsverity_cleanup_inode(inode);
5376 	clear_inode(inode);
5377 }
5378 
5379 /*
5380  * Return the key found in the dir entry in the location pointer, fill @type
5381  * with BTRFS_FT_*, and return 0.
5382  *
5383  * If no dir entries were found, returns -ENOENT.
5384  * If found a corrupted location in dir entry, returns -EUCLEAN.
5385  */
5386 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5387 			       struct btrfs_key *location, u8 *type)
5388 {
5389 	struct btrfs_dir_item *di;
5390 	struct btrfs_path *path;
5391 	struct btrfs_root *root = dir->root;
5392 	int ret = 0;
5393 	struct fscrypt_name fname;
5394 
5395 	path = btrfs_alloc_path();
5396 	if (!path)
5397 		return -ENOMEM;
5398 
5399 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5400 	if (ret < 0)
5401 		goto out;
5402 	/*
5403 	 * fscrypt_setup_filename() should never return a positive value, but
5404 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5405 	 */
5406 	ASSERT(ret == 0);
5407 
5408 	/* This needs to handle no-key deletions later on */
5409 
5410 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5411 				   &fname.disk_name, 0);
5412 	if (IS_ERR_OR_NULL(di)) {
5413 		ret = di ? PTR_ERR(di) : -ENOENT;
5414 		goto out;
5415 	}
5416 
5417 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5418 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5419 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5420 		ret = -EUCLEAN;
5421 		btrfs_warn(root->fs_info,
5422 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5423 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5424 			   location->objectid, location->type, location->offset);
5425 	}
5426 	if (!ret)
5427 		*type = btrfs_dir_ftype(path->nodes[0], di);
5428 out:
5429 	fscrypt_free_filename(&fname);
5430 	btrfs_free_path(path);
5431 	return ret;
5432 }
5433 
5434 /*
5435  * when we hit a tree root in a directory, the btrfs part of the inode
5436  * needs to be changed to reflect the root directory of the tree root.  This
5437  * is kind of like crossing a mount point.
5438  */
5439 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5440 				    struct btrfs_inode *dir,
5441 				    struct dentry *dentry,
5442 				    struct btrfs_key *location,
5443 				    struct btrfs_root **sub_root)
5444 {
5445 	struct btrfs_path *path;
5446 	struct btrfs_root *new_root;
5447 	struct btrfs_root_ref *ref;
5448 	struct extent_buffer *leaf;
5449 	struct btrfs_key key;
5450 	int ret;
5451 	int err = 0;
5452 	struct fscrypt_name fname;
5453 
5454 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5455 	if (ret)
5456 		return ret;
5457 
5458 	path = btrfs_alloc_path();
5459 	if (!path) {
5460 		err = -ENOMEM;
5461 		goto out;
5462 	}
5463 
5464 	err = -ENOENT;
5465 	key.objectid = btrfs_root_id(dir->root);
5466 	key.type = BTRFS_ROOT_REF_KEY;
5467 	key.offset = location->objectid;
5468 
5469 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5470 	if (ret) {
5471 		if (ret < 0)
5472 			err = ret;
5473 		goto out;
5474 	}
5475 
5476 	leaf = path->nodes[0];
5477 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5478 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5479 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5480 		goto out;
5481 
5482 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5483 				   (unsigned long)(ref + 1), fname.disk_name.len);
5484 	if (ret)
5485 		goto out;
5486 
5487 	btrfs_release_path(path);
5488 
5489 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5490 	if (IS_ERR(new_root)) {
5491 		err = PTR_ERR(new_root);
5492 		goto out;
5493 	}
5494 
5495 	*sub_root = new_root;
5496 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5497 	location->type = BTRFS_INODE_ITEM_KEY;
5498 	location->offset = 0;
5499 	err = 0;
5500 out:
5501 	btrfs_free_path(path);
5502 	fscrypt_free_filename(&fname);
5503 	return err;
5504 }
5505 
5506 
5507 
5508 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5509 {
5510 	struct btrfs_root *root = inode->root;
5511 	struct btrfs_inode *entry;
5512 	bool empty = false;
5513 
5514 	xa_lock(&root->inodes);
5515 	entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5516 	if (entry == inode)
5517 		empty = xa_empty(&root->inodes);
5518 	xa_unlock(&root->inodes);
5519 
5520 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5521 		xa_lock(&root->inodes);
5522 		empty = xa_empty(&root->inodes);
5523 		xa_unlock(&root->inodes);
5524 		if (empty)
5525 			btrfs_add_dead_root(root);
5526 	}
5527 }
5528 
5529 
5530 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5531 {
5532 	struct btrfs_iget_args *args = p;
5533 
5534 	btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5535 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5536 
5537 	if (args->root && args->root == args->root->fs_info->tree_root &&
5538 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5539 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5540 			&BTRFS_I(inode)->runtime_flags);
5541 	return 0;
5542 }
5543 
5544 static int btrfs_find_actor(struct inode *inode, void *opaque)
5545 {
5546 	struct btrfs_iget_args *args = opaque;
5547 
5548 	return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5549 		args->root == BTRFS_I(inode)->root;
5550 }
5551 
5552 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5553 {
5554 	struct inode *inode;
5555 	struct btrfs_iget_args args;
5556 	unsigned long hashval = btrfs_inode_hash(ino, root);
5557 
5558 	args.ino = ino;
5559 	args.root = root;
5560 
5561 	inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5562 			     btrfs_init_locked_inode,
5563 			     (void *)&args);
5564 	return inode;
5565 }
5566 
5567 /*
5568  * Get an inode object given its inode number and corresponding root.  Path is
5569  * preallocated to prevent recursing back to iget through allocator.
5570  */
5571 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5572 			      struct btrfs_path *path)
5573 {
5574 	struct inode *inode;
5575 	int ret;
5576 
5577 	inode = btrfs_iget_locked(ino, root);
5578 	if (!inode)
5579 		return ERR_PTR(-ENOMEM);
5580 
5581 	if (!(inode->i_state & I_NEW))
5582 		return inode;
5583 
5584 	ret = btrfs_read_locked_inode(inode, path);
5585 	if (ret)
5586 		return ERR_PTR(ret);
5587 
5588 	unlock_new_inode(inode);
5589 	return inode;
5590 }
5591 
5592 /*
5593  * Get an inode object given its inode number and corresponding root.
5594  */
5595 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5596 {
5597 	struct inode *inode;
5598 	struct btrfs_path *path;
5599 	int ret;
5600 
5601 	inode = btrfs_iget_locked(ino, root);
5602 	if (!inode)
5603 		return ERR_PTR(-ENOMEM);
5604 
5605 	if (!(inode->i_state & I_NEW))
5606 		return inode;
5607 
5608 	path = btrfs_alloc_path();
5609 	if (!path)
5610 		return ERR_PTR(-ENOMEM);
5611 
5612 	ret = btrfs_read_locked_inode(inode, path);
5613 	btrfs_free_path(path);
5614 	if (ret)
5615 		return ERR_PTR(ret);
5616 
5617 	unlock_new_inode(inode);
5618 	return inode;
5619 }
5620 
5621 static struct inode *new_simple_dir(struct inode *dir,
5622 				    struct btrfs_key *key,
5623 				    struct btrfs_root *root)
5624 {
5625 	struct timespec64 ts;
5626 	struct inode *inode = new_inode(dir->i_sb);
5627 
5628 	if (!inode)
5629 		return ERR_PTR(-ENOMEM);
5630 
5631 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5632 	BTRFS_I(inode)->ref_root_id = key->objectid;
5633 	set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5634 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5635 
5636 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5637 	/*
5638 	 * We only need lookup, the rest is read-only and there's no inode
5639 	 * associated with the dentry
5640 	 */
5641 	inode->i_op = &simple_dir_inode_operations;
5642 	inode->i_opflags &= ~IOP_XATTR;
5643 	inode->i_fop = &simple_dir_operations;
5644 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5645 
5646 	ts = inode_set_ctime_current(inode);
5647 	inode_set_mtime_to_ts(inode, ts);
5648 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5649 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5650 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5651 
5652 	inode->i_uid = dir->i_uid;
5653 	inode->i_gid = dir->i_gid;
5654 
5655 	return inode;
5656 }
5657 
5658 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5659 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5660 static_assert(BTRFS_FT_DIR == FT_DIR);
5661 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5662 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5663 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5664 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5665 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5666 
5667 static inline u8 btrfs_inode_type(struct inode *inode)
5668 {
5669 	return fs_umode_to_ftype(inode->i_mode);
5670 }
5671 
5672 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5673 {
5674 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5675 	struct inode *inode;
5676 	struct btrfs_root *root = BTRFS_I(dir)->root;
5677 	struct btrfs_root *sub_root = root;
5678 	struct btrfs_key location = { 0 };
5679 	u8 di_type = 0;
5680 	int ret = 0;
5681 
5682 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5683 		return ERR_PTR(-ENAMETOOLONG);
5684 
5685 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5686 	if (ret < 0)
5687 		return ERR_PTR(ret);
5688 
5689 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5690 		inode = btrfs_iget(location.objectid, root);
5691 		if (IS_ERR(inode))
5692 			return inode;
5693 
5694 		/* Do extra check against inode mode with di_type */
5695 		if (btrfs_inode_type(inode) != di_type) {
5696 			btrfs_crit(fs_info,
5697 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5698 				  inode->i_mode, btrfs_inode_type(inode),
5699 				  di_type);
5700 			iput(inode);
5701 			return ERR_PTR(-EUCLEAN);
5702 		}
5703 		return inode;
5704 	}
5705 
5706 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5707 				       &location, &sub_root);
5708 	if (ret < 0) {
5709 		if (ret != -ENOENT)
5710 			inode = ERR_PTR(ret);
5711 		else
5712 			inode = new_simple_dir(dir, &location, root);
5713 	} else {
5714 		inode = btrfs_iget(location.objectid, sub_root);
5715 		btrfs_put_root(sub_root);
5716 
5717 		if (IS_ERR(inode))
5718 			return inode;
5719 
5720 		down_read(&fs_info->cleanup_work_sem);
5721 		if (!sb_rdonly(inode->i_sb))
5722 			ret = btrfs_orphan_cleanup(sub_root);
5723 		up_read(&fs_info->cleanup_work_sem);
5724 		if (ret) {
5725 			iput(inode);
5726 			inode = ERR_PTR(ret);
5727 		}
5728 	}
5729 
5730 	return inode;
5731 }
5732 
5733 static int btrfs_dentry_delete(const struct dentry *dentry)
5734 {
5735 	struct btrfs_root *root;
5736 	struct inode *inode = d_inode(dentry);
5737 
5738 	if (!inode && !IS_ROOT(dentry))
5739 		inode = d_inode(dentry->d_parent);
5740 
5741 	if (inode) {
5742 		root = BTRFS_I(inode)->root;
5743 		if (btrfs_root_refs(&root->root_item) == 0)
5744 			return 1;
5745 
5746 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5747 			return 1;
5748 	}
5749 	return 0;
5750 }
5751 
5752 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5753 				   unsigned int flags)
5754 {
5755 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5756 
5757 	if (inode == ERR_PTR(-ENOENT))
5758 		inode = NULL;
5759 	return d_splice_alias(inode, dentry);
5760 }
5761 
5762 /*
5763  * Find the highest existing sequence number in a directory and then set the
5764  * in-memory index_cnt variable to the first free sequence number.
5765  */
5766 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5767 {
5768 	struct btrfs_root *root = inode->root;
5769 	struct btrfs_key key, found_key;
5770 	struct btrfs_path *path;
5771 	struct extent_buffer *leaf;
5772 	int ret;
5773 
5774 	key.objectid = btrfs_ino(inode);
5775 	key.type = BTRFS_DIR_INDEX_KEY;
5776 	key.offset = (u64)-1;
5777 
5778 	path = btrfs_alloc_path();
5779 	if (!path)
5780 		return -ENOMEM;
5781 
5782 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5783 	if (ret < 0)
5784 		goto out;
5785 	/* FIXME: we should be able to handle this */
5786 	if (ret == 0)
5787 		goto out;
5788 	ret = 0;
5789 
5790 	if (path->slots[0] == 0) {
5791 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5792 		goto out;
5793 	}
5794 
5795 	path->slots[0]--;
5796 
5797 	leaf = path->nodes[0];
5798 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5799 
5800 	if (found_key.objectid != btrfs_ino(inode) ||
5801 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5802 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5803 		goto out;
5804 	}
5805 
5806 	inode->index_cnt = found_key.offset + 1;
5807 out:
5808 	btrfs_free_path(path);
5809 	return ret;
5810 }
5811 
5812 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5813 {
5814 	int ret = 0;
5815 
5816 	btrfs_inode_lock(dir, 0);
5817 	if (dir->index_cnt == (u64)-1) {
5818 		ret = btrfs_inode_delayed_dir_index_count(dir);
5819 		if (ret) {
5820 			ret = btrfs_set_inode_index_count(dir);
5821 			if (ret)
5822 				goto out;
5823 		}
5824 	}
5825 
5826 	/* index_cnt is the index number of next new entry, so decrement it. */
5827 	*index = dir->index_cnt - 1;
5828 out:
5829 	btrfs_inode_unlock(dir, 0);
5830 
5831 	return ret;
5832 }
5833 
5834 /*
5835  * All this infrastructure exists because dir_emit can fault, and we are holding
5836  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5837  * our information into that, and then dir_emit from the buffer.  This is
5838  * similar to what NFS does, only we don't keep the buffer around in pagecache
5839  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5840  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5841  * tree lock.
5842  */
5843 static int btrfs_opendir(struct inode *inode, struct file *file)
5844 {
5845 	struct btrfs_file_private *private;
5846 	u64 last_index;
5847 	int ret;
5848 
5849 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5850 	if (ret)
5851 		return ret;
5852 
5853 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5854 	if (!private)
5855 		return -ENOMEM;
5856 	private->last_index = last_index;
5857 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5858 	if (!private->filldir_buf) {
5859 		kfree(private);
5860 		return -ENOMEM;
5861 	}
5862 	file->private_data = private;
5863 	return 0;
5864 }
5865 
5866 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5867 {
5868 	struct btrfs_file_private *private = file->private_data;
5869 	int ret;
5870 
5871 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5872 				       &private->last_index);
5873 	if (ret)
5874 		return ret;
5875 
5876 	return generic_file_llseek(file, offset, whence);
5877 }
5878 
5879 struct dir_entry {
5880 	u64 ino;
5881 	u64 offset;
5882 	unsigned type;
5883 	int name_len;
5884 };
5885 
5886 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5887 {
5888 	while (entries--) {
5889 		struct dir_entry *entry = addr;
5890 		char *name = (char *)(entry + 1);
5891 
5892 		ctx->pos = get_unaligned(&entry->offset);
5893 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5894 					 get_unaligned(&entry->ino),
5895 					 get_unaligned(&entry->type)))
5896 			return 1;
5897 		addr += sizeof(struct dir_entry) +
5898 			get_unaligned(&entry->name_len);
5899 		ctx->pos++;
5900 	}
5901 	return 0;
5902 }
5903 
5904 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5905 {
5906 	struct inode *inode = file_inode(file);
5907 	struct btrfs_root *root = BTRFS_I(inode)->root;
5908 	struct btrfs_file_private *private = file->private_data;
5909 	struct btrfs_dir_item *di;
5910 	struct btrfs_key key;
5911 	struct btrfs_key found_key;
5912 	struct btrfs_path *path;
5913 	void *addr;
5914 	LIST_HEAD(ins_list);
5915 	LIST_HEAD(del_list);
5916 	int ret;
5917 	char *name_ptr;
5918 	int name_len;
5919 	int entries = 0;
5920 	int total_len = 0;
5921 	bool put = false;
5922 	struct btrfs_key location;
5923 
5924 	if (!dir_emit_dots(file, ctx))
5925 		return 0;
5926 
5927 	path = btrfs_alloc_path();
5928 	if (!path)
5929 		return -ENOMEM;
5930 
5931 	addr = private->filldir_buf;
5932 	path->reada = READA_FORWARD;
5933 
5934 	put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5935 					      &ins_list, &del_list);
5936 
5937 again:
5938 	key.type = BTRFS_DIR_INDEX_KEY;
5939 	key.offset = ctx->pos;
5940 	key.objectid = btrfs_ino(BTRFS_I(inode));
5941 
5942 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5943 		struct dir_entry *entry;
5944 		struct extent_buffer *leaf = path->nodes[0];
5945 		u8 ftype;
5946 
5947 		if (found_key.objectid != key.objectid)
5948 			break;
5949 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5950 			break;
5951 		if (found_key.offset < ctx->pos)
5952 			continue;
5953 		if (found_key.offset > private->last_index)
5954 			break;
5955 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5956 			continue;
5957 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5958 		name_len = btrfs_dir_name_len(leaf, di);
5959 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5960 		    PAGE_SIZE) {
5961 			btrfs_release_path(path);
5962 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5963 			if (ret)
5964 				goto nopos;
5965 			addr = private->filldir_buf;
5966 			entries = 0;
5967 			total_len = 0;
5968 			goto again;
5969 		}
5970 
5971 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5972 		entry = addr;
5973 		name_ptr = (char *)(entry + 1);
5974 		read_extent_buffer(leaf, name_ptr,
5975 				   (unsigned long)(di + 1), name_len);
5976 		put_unaligned(name_len, &entry->name_len);
5977 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5978 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5979 		put_unaligned(location.objectid, &entry->ino);
5980 		put_unaligned(found_key.offset, &entry->offset);
5981 		entries++;
5982 		addr += sizeof(struct dir_entry) + name_len;
5983 		total_len += sizeof(struct dir_entry) + name_len;
5984 	}
5985 	/* Catch error encountered during iteration */
5986 	if (ret < 0)
5987 		goto err;
5988 
5989 	btrfs_release_path(path);
5990 
5991 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5992 	if (ret)
5993 		goto nopos;
5994 
5995 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5996 	if (ret)
5997 		goto nopos;
5998 
5999 	/*
6000 	 * Stop new entries from being returned after we return the last
6001 	 * entry.
6002 	 *
6003 	 * New directory entries are assigned a strictly increasing
6004 	 * offset.  This means that new entries created during readdir
6005 	 * are *guaranteed* to be seen in the future by that readdir.
6006 	 * This has broken buggy programs which operate on names as
6007 	 * they're returned by readdir.  Until we reuse freed offsets
6008 	 * we have this hack to stop new entries from being returned
6009 	 * under the assumption that they'll never reach this huge
6010 	 * offset.
6011 	 *
6012 	 * This is being careful not to overflow 32bit loff_t unless the
6013 	 * last entry requires it because doing so has broken 32bit apps
6014 	 * in the past.
6015 	 */
6016 	if (ctx->pos >= INT_MAX)
6017 		ctx->pos = LLONG_MAX;
6018 	else
6019 		ctx->pos = INT_MAX;
6020 nopos:
6021 	ret = 0;
6022 err:
6023 	if (put)
6024 		btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6025 	btrfs_free_path(path);
6026 	return ret;
6027 }
6028 
6029 /*
6030  * This is somewhat expensive, updating the tree every time the
6031  * inode changes.  But, it is most likely to find the inode in cache.
6032  * FIXME, needs more benchmarking...there are no reasons other than performance
6033  * to keep or drop this code.
6034  */
6035 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6036 {
6037 	struct btrfs_root *root = inode->root;
6038 	struct btrfs_fs_info *fs_info = root->fs_info;
6039 	struct btrfs_trans_handle *trans;
6040 	int ret;
6041 
6042 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6043 		return 0;
6044 
6045 	trans = btrfs_join_transaction(root);
6046 	if (IS_ERR(trans))
6047 		return PTR_ERR(trans);
6048 
6049 	ret = btrfs_update_inode(trans, inode);
6050 	if (ret == -ENOSPC || ret == -EDQUOT) {
6051 		/* whoops, lets try again with the full transaction */
6052 		btrfs_end_transaction(trans);
6053 		trans = btrfs_start_transaction(root, 1);
6054 		if (IS_ERR(trans))
6055 			return PTR_ERR(trans);
6056 
6057 		ret = btrfs_update_inode(trans, inode);
6058 	}
6059 	btrfs_end_transaction(trans);
6060 	if (inode->delayed_node)
6061 		btrfs_balance_delayed_items(fs_info);
6062 
6063 	return ret;
6064 }
6065 
6066 /*
6067  * This is a copy of file_update_time.  We need this so we can return error on
6068  * ENOSPC for updating the inode in the case of file write and mmap writes.
6069  */
6070 static int btrfs_update_time(struct inode *inode, int flags)
6071 {
6072 	struct btrfs_root *root = BTRFS_I(inode)->root;
6073 	bool dirty;
6074 
6075 	if (btrfs_root_readonly(root))
6076 		return -EROFS;
6077 
6078 	dirty = inode_update_timestamps(inode, flags);
6079 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6080 }
6081 
6082 /*
6083  * helper to find a free sequence number in a given directory.  This current
6084  * code is very simple, later versions will do smarter things in the btree
6085  */
6086 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6087 {
6088 	int ret = 0;
6089 
6090 	if (dir->index_cnt == (u64)-1) {
6091 		ret = btrfs_inode_delayed_dir_index_count(dir);
6092 		if (ret) {
6093 			ret = btrfs_set_inode_index_count(dir);
6094 			if (ret)
6095 				return ret;
6096 		}
6097 	}
6098 
6099 	*index = dir->index_cnt;
6100 	dir->index_cnt++;
6101 
6102 	return ret;
6103 }
6104 
6105 static int btrfs_insert_inode_locked(struct inode *inode)
6106 {
6107 	struct btrfs_iget_args args;
6108 
6109 	args.ino = btrfs_ino(BTRFS_I(inode));
6110 	args.root = BTRFS_I(inode)->root;
6111 
6112 	return insert_inode_locked4(inode,
6113 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6114 		   btrfs_find_actor, &args);
6115 }
6116 
6117 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6118 			    unsigned int *trans_num_items)
6119 {
6120 	struct inode *dir = args->dir;
6121 	struct inode *inode = args->inode;
6122 	int ret;
6123 
6124 	if (!args->orphan) {
6125 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6126 					     &args->fname);
6127 		if (ret)
6128 			return ret;
6129 	}
6130 
6131 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6132 	if (ret) {
6133 		fscrypt_free_filename(&args->fname);
6134 		return ret;
6135 	}
6136 
6137 	/* 1 to add inode item */
6138 	*trans_num_items = 1;
6139 	/* 1 to add compression property */
6140 	if (BTRFS_I(dir)->prop_compress)
6141 		(*trans_num_items)++;
6142 	/* 1 to add default ACL xattr */
6143 	if (args->default_acl)
6144 		(*trans_num_items)++;
6145 	/* 1 to add access ACL xattr */
6146 	if (args->acl)
6147 		(*trans_num_items)++;
6148 #ifdef CONFIG_SECURITY
6149 	/* 1 to add LSM xattr */
6150 	if (dir->i_security)
6151 		(*trans_num_items)++;
6152 #endif
6153 	if (args->orphan) {
6154 		/* 1 to add orphan item */
6155 		(*trans_num_items)++;
6156 	} else {
6157 		/*
6158 		 * 1 to add dir item
6159 		 * 1 to add dir index
6160 		 * 1 to update parent inode item
6161 		 *
6162 		 * No need for 1 unit for the inode ref item because it is
6163 		 * inserted in a batch together with the inode item at
6164 		 * btrfs_create_new_inode().
6165 		 */
6166 		*trans_num_items += 3;
6167 	}
6168 	return 0;
6169 }
6170 
6171 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6172 {
6173 	posix_acl_release(args->acl);
6174 	posix_acl_release(args->default_acl);
6175 	fscrypt_free_filename(&args->fname);
6176 }
6177 
6178 /*
6179  * Inherit flags from the parent inode.
6180  *
6181  * Currently only the compression flags and the cow flags are inherited.
6182  */
6183 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6184 {
6185 	unsigned int flags;
6186 
6187 	flags = dir->flags;
6188 
6189 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6190 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6191 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6192 	} else if (flags & BTRFS_INODE_COMPRESS) {
6193 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6194 		inode->flags |= BTRFS_INODE_COMPRESS;
6195 	}
6196 
6197 	if (flags & BTRFS_INODE_NODATACOW) {
6198 		inode->flags |= BTRFS_INODE_NODATACOW;
6199 		if (S_ISREG(inode->vfs_inode.i_mode))
6200 			inode->flags |= BTRFS_INODE_NODATASUM;
6201 	}
6202 
6203 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6204 }
6205 
6206 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6207 			   struct btrfs_new_inode_args *args)
6208 {
6209 	struct timespec64 ts;
6210 	struct inode *dir = args->dir;
6211 	struct inode *inode = args->inode;
6212 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6213 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6214 	struct btrfs_root *root;
6215 	struct btrfs_inode_item *inode_item;
6216 	struct btrfs_path *path;
6217 	u64 objectid;
6218 	struct btrfs_inode_ref *ref;
6219 	struct btrfs_key key[2];
6220 	u32 sizes[2];
6221 	struct btrfs_item_batch batch;
6222 	unsigned long ptr;
6223 	int ret;
6224 	bool xa_reserved = false;
6225 
6226 	path = btrfs_alloc_path();
6227 	if (!path)
6228 		return -ENOMEM;
6229 
6230 	if (!args->subvol)
6231 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6232 	root = BTRFS_I(inode)->root;
6233 
6234 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6235 	if (ret)
6236 		goto out;
6237 
6238 	ret = btrfs_get_free_objectid(root, &objectid);
6239 	if (ret)
6240 		goto out;
6241 	btrfs_set_inode_number(BTRFS_I(inode), objectid);
6242 
6243 	ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6244 	if (ret)
6245 		goto out;
6246 	xa_reserved = true;
6247 
6248 	if (args->orphan) {
6249 		/*
6250 		 * O_TMPFILE, set link count to 0, so that after this point, we
6251 		 * fill in an inode item with the correct link count.
6252 		 */
6253 		set_nlink(inode, 0);
6254 	} else {
6255 		trace_btrfs_inode_request(dir);
6256 
6257 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6258 		if (ret)
6259 			goto out;
6260 	}
6261 
6262 	if (S_ISDIR(inode->i_mode))
6263 		BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6264 
6265 	BTRFS_I(inode)->generation = trans->transid;
6266 	inode->i_generation = BTRFS_I(inode)->generation;
6267 
6268 	/*
6269 	 * We don't have any capability xattrs set here yet, shortcut any
6270 	 * queries for the xattrs here.  If we add them later via the inode
6271 	 * security init path or any other path this flag will be cleared.
6272 	 */
6273 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6274 
6275 	/*
6276 	 * Subvolumes don't inherit flags from their parent directory.
6277 	 * Originally this was probably by accident, but we probably can't
6278 	 * change it now without compatibility issues.
6279 	 */
6280 	if (!args->subvol)
6281 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6282 
6283 	if (S_ISREG(inode->i_mode)) {
6284 		if (btrfs_test_opt(fs_info, NODATASUM))
6285 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6286 		if (btrfs_test_opt(fs_info, NODATACOW))
6287 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6288 				BTRFS_INODE_NODATASUM;
6289 	}
6290 
6291 	ret = btrfs_insert_inode_locked(inode);
6292 	if (ret < 0) {
6293 		if (!args->orphan)
6294 			BTRFS_I(dir)->index_cnt--;
6295 		goto out;
6296 	}
6297 
6298 	/*
6299 	 * We could have gotten an inode number from somebody who was fsynced
6300 	 * and then removed in this same transaction, so let's just set full
6301 	 * sync since it will be a full sync anyway and this will blow away the
6302 	 * old info in the log.
6303 	 */
6304 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6305 
6306 	key[0].objectid = objectid;
6307 	key[0].type = BTRFS_INODE_ITEM_KEY;
6308 	key[0].offset = 0;
6309 
6310 	sizes[0] = sizeof(struct btrfs_inode_item);
6311 
6312 	if (!args->orphan) {
6313 		/*
6314 		 * Start new inodes with an inode_ref. This is slightly more
6315 		 * efficient for small numbers of hard links since they will
6316 		 * be packed into one item. Extended refs will kick in if we
6317 		 * add more hard links than can fit in the ref item.
6318 		 */
6319 		key[1].objectid = objectid;
6320 		key[1].type = BTRFS_INODE_REF_KEY;
6321 		if (args->subvol) {
6322 			key[1].offset = objectid;
6323 			sizes[1] = 2 + sizeof(*ref);
6324 		} else {
6325 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6326 			sizes[1] = name->len + sizeof(*ref);
6327 		}
6328 	}
6329 
6330 	batch.keys = &key[0];
6331 	batch.data_sizes = &sizes[0];
6332 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6333 	batch.nr = args->orphan ? 1 : 2;
6334 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6335 	if (ret != 0) {
6336 		btrfs_abort_transaction(trans, ret);
6337 		goto discard;
6338 	}
6339 
6340 	ts = simple_inode_init_ts(inode);
6341 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6342 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6343 
6344 	/*
6345 	 * We're going to fill the inode item now, so at this point the inode
6346 	 * must be fully initialized.
6347 	 */
6348 
6349 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6350 				  struct btrfs_inode_item);
6351 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6352 			     sizeof(*inode_item));
6353 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6354 
6355 	if (!args->orphan) {
6356 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6357 				     struct btrfs_inode_ref);
6358 		ptr = (unsigned long)(ref + 1);
6359 		if (args->subvol) {
6360 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6361 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6362 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6363 		} else {
6364 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6365 						     name->len);
6366 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6367 						  BTRFS_I(inode)->dir_index);
6368 			write_extent_buffer(path->nodes[0], name->name, ptr,
6369 					    name->len);
6370 		}
6371 	}
6372 
6373 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6374 	/*
6375 	 * We don't need the path anymore, plus inheriting properties, adding
6376 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6377 	 * allocating yet another path. So just free our path.
6378 	 */
6379 	btrfs_free_path(path);
6380 	path = NULL;
6381 
6382 	if (args->subvol) {
6383 		struct inode *parent;
6384 
6385 		/*
6386 		 * Subvolumes inherit properties from their parent subvolume,
6387 		 * not the directory they were created in.
6388 		 */
6389 		parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6390 		if (IS_ERR(parent)) {
6391 			ret = PTR_ERR(parent);
6392 		} else {
6393 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6394 			iput(parent);
6395 		}
6396 	} else {
6397 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6398 	}
6399 	if (ret) {
6400 		btrfs_err(fs_info,
6401 			  "error inheriting props for ino %llu (root %llu): %d",
6402 			  btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6403 	}
6404 
6405 	/*
6406 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6407 	 * probably a bug.
6408 	 */
6409 	if (!args->subvol) {
6410 		ret = btrfs_init_inode_security(trans, args);
6411 		if (ret) {
6412 			btrfs_abort_transaction(trans, ret);
6413 			goto discard;
6414 		}
6415 	}
6416 
6417 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6418 	if (WARN_ON(ret)) {
6419 		/* Shouldn't happen, we used xa_reserve() before. */
6420 		btrfs_abort_transaction(trans, ret);
6421 		goto discard;
6422 	}
6423 
6424 	trace_btrfs_inode_new(inode);
6425 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6426 
6427 	btrfs_update_root_times(trans, root);
6428 
6429 	if (args->orphan) {
6430 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6431 	} else {
6432 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6433 				     0, BTRFS_I(inode)->dir_index);
6434 	}
6435 	if (ret) {
6436 		btrfs_abort_transaction(trans, ret);
6437 		goto discard;
6438 	}
6439 
6440 	return 0;
6441 
6442 discard:
6443 	/*
6444 	 * discard_new_inode() calls iput(), but the caller owns the reference
6445 	 * to the inode.
6446 	 */
6447 	ihold(inode);
6448 	discard_new_inode(inode);
6449 out:
6450 	if (xa_reserved)
6451 		xa_release(&root->inodes, objectid);
6452 
6453 	btrfs_free_path(path);
6454 	return ret;
6455 }
6456 
6457 /*
6458  * utility function to add 'inode' into 'parent_inode' with
6459  * a give name and a given sequence number.
6460  * if 'add_backref' is true, also insert a backref from the
6461  * inode to the parent directory.
6462  */
6463 int btrfs_add_link(struct btrfs_trans_handle *trans,
6464 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6465 		   const struct fscrypt_str *name, int add_backref, u64 index)
6466 {
6467 	int ret = 0;
6468 	struct btrfs_key key;
6469 	struct btrfs_root *root = parent_inode->root;
6470 	u64 ino = btrfs_ino(inode);
6471 	u64 parent_ino = btrfs_ino(parent_inode);
6472 
6473 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6474 		memcpy(&key, &inode->root->root_key, sizeof(key));
6475 	} else {
6476 		key.objectid = ino;
6477 		key.type = BTRFS_INODE_ITEM_KEY;
6478 		key.offset = 0;
6479 	}
6480 
6481 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6482 		ret = btrfs_add_root_ref(trans, key.objectid,
6483 					 btrfs_root_id(root), parent_ino,
6484 					 index, name);
6485 	} else if (add_backref) {
6486 		ret = btrfs_insert_inode_ref(trans, root, name,
6487 					     ino, parent_ino, index);
6488 	}
6489 
6490 	/* Nothing to clean up yet */
6491 	if (ret)
6492 		return ret;
6493 
6494 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6495 				    btrfs_inode_type(&inode->vfs_inode), index);
6496 	if (ret == -EEXIST || ret == -EOVERFLOW)
6497 		goto fail_dir_item;
6498 	else if (ret) {
6499 		btrfs_abort_transaction(trans, ret);
6500 		return ret;
6501 	}
6502 
6503 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6504 			   name->len * 2);
6505 	inode_inc_iversion(&parent_inode->vfs_inode);
6506 	/*
6507 	 * If we are replaying a log tree, we do not want to update the mtime
6508 	 * and ctime of the parent directory with the current time, since the
6509 	 * log replay procedure is responsible for setting them to their correct
6510 	 * values (the ones it had when the fsync was done).
6511 	 */
6512 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6513 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6514 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6515 
6516 	ret = btrfs_update_inode(trans, parent_inode);
6517 	if (ret)
6518 		btrfs_abort_transaction(trans, ret);
6519 	return ret;
6520 
6521 fail_dir_item:
6522 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6523 		u64 local_index;
6524 		int err;
6525 		err = btrfs_del_root_ref(trans, key.objectid,
6526 					 btrfs_root_id(root), parent_ino,
6527 					 &local_index, name);
6528 		if (err)
6529 			btrfs_abort_transaction(trans, err);
6530 	} else if (add_backref) {
6531 		u64 local_index;
6532 		int err;
6533 
6534 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6535 					  &local_index);
6536 		if (err)
6537 			btrfs_abort_transaction(trans, err);
6538 	}
6539 
6540 	/* Return the original error code */
6541 	return ret;
6542 }
6543 
6544 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6545 			       struct inode *inode)
6546 {
6547 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6548 	struct btrfs_root *root = BTRFS_I(dir)->root;
6549 	struct btrfs_new_inode_args new_inode_args = {
6550 		.dir = dir,
6551 		.dentry = dentry,
6552 		.inode = inode,
6553 	};
6554 	unsigned int trans_num_items;
6555 	struct btrfs_trans_handle *trans;
6556 	int err;
6557 
6558 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6559 	if (err)
6560 		goto out_inode;
6561 
6562 	trans = btrfs_start_transaction(root, trans_num_items);
6563 	if (IS_ERR(trans)) {
6564 		err = PTR_ERR(trans);
6565 		goto out_new_inode_args;
6566 	}
6567 
6568 	err = btrfs_create_new_inode(trans, &new_inode_args);
6569 	if (!err)
6570 		d_instantiate_new(dentry, inode);
6571 
6572 	btrfs_end_transaction(trans);
6573 	btrfs_btree_balance_dirty(fs_info);
6574 out_new_inode_args:
6575 	btrfs_new_inode_args_destroy(&new_inode_args);
6576 out_inode:
6577 	if (err)
6578 		iput(inode);
6579 	return err;
6580 }
6581 
6582 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6583 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6584 {
6585 	struct inode *inode;
6586 
6587 	inode = new_inode(dir->i_sb);
6588 	if (!inode)
6589 		return -ENOMEM;
6590 	inode_init_owner(idmap, inode, dir, mode);
6591 	inode->i_op = &btrfs_special_inode_operations;
6592 	init_special_inode(inode, inode->i_mode, rdev);
6593 	return btrfs_create_common(dir, dentry, inode);
6594 }
6595 
6596 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6597 			struct dentry *dentry, umode_t mode, bool excl)
6598 {
6599 	struct inode *inode;
6600 
6601 	inode = new_inode(dir->i_sb);
6602 	if (!inode)
6603 		return -ENOMEM;
6604 	inode_init_owner(idmap, inode, dir, mode);
6605 	inode->i_fop = &btrfs_file_operations;
6606 	inode->i_op = &btrfs_file_inode_operations;
6607 	inode->i_mapping->a_ops = &btrfs_aops;
6608 	return btrfs_create_common(dir, dentry, inode);
6609 }
6610 
6611 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6612 		      struct dentry *dentry)
6613 {
6614 	struct btrfs_trans_handle *trans = NULL;
6615 	struct btrfs_root *root = BTRFS_I(dir)->root;
6616 	struct inode *inode = d_inode(old_dentry);
6617 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6618 	struct fscrypt_name fname;
6619 	u64 index;
6620 	int err;
6621 	int drop_inode = 0;
6622 
6623 	/* do not allow sys_link's with other subvols of the same device */
6624 	if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6625 		return -EXDEV;
6626 
6627 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6628 		return -EMLINK;
6629 
6630 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6631 	if (err)
6632 		goto fail;
6633 
6634 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6635 	if (err)
6636 		goto fail;
6637 
6638 	/*
6639 	 * 2 items for inode and inode ref
6640 	 * 2 items for dir items
6641 	 * 1 item for parent inode
6642 	 * 1 item for orphan item deletion if O_TMPFILE
6643 	 */
6644 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6645 	if (IS_ERR(trans)) {
6646 		err = PTR_ERR(trans);
6647 		trans = NULL;
6648 		goto fail;
6649 	}
6650 
6651 	/* There are several dir indexes for this inode, clear the cache. */
6652 	BTRFS_I(inode)->dir_index = 0ULL;
6653 	inc_nlink(inode);
6654 	inode_inc_iversion(inode);
6655 	inode_set_ctime_current(inode);
6656 	ihold(inode);
6657 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6658 
6659 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6660 			     &fname.disk_name, 1, index);
6661 
6662 	if (err) {
6663 		drop_inode = 1;
6664 	} else {
6665 		struct dentry *parent = dentry->d_parent;
6666 
6667 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6668 		if (err)
6669 			goto fail;
6670 		if (inode->i_nlink == 1) {
6671 			/*
6672 			 * If new hard link count is 1, it's a file created
6673 			 * with open(2) O_TMPFILE flag.
6674 			 */
6675 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6676 			if (err)
6677 				goto fail;
6678 		}
6679 		d_instantiate(dentry, inode);
6680 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6681 	}
6682 
6683 fail:
6684 	fscrypt_free_filename(&fname);
6685 	if (trans)
6686 		btrfs_end_transaction(trans);
6687 	if (drop_inode) {
6688 		inode_dec_link_count(inode);
6689 		iput(inode);
6690 	}
6691 	btrfs_btree_balance_dirty(fs_info);
6692 	return err;
6693 }
6694 
6695 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6696 		       struct dentry *dentry, umode_t mode)
6697 {
6698 	struct inode *inode;
6699 
6700 	inode = new_inode(dir->i_sb);
6701 	if (!inode)
6702 		return -ENOMEM;
6703 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6704 	inode->i_op = &btrfs_dir_inode_operations;
6705 	inode->i_fop = &btrfs_dir_file_operations;
6706 	return btrfs_create_common(dir, dentry, inode);
6707 }
6708 
6709 static noinline int uncompress_inline(struct btrfs_path *path,
6710 				      struct folio *folio,
6711 				      struct btrfs_file_extent_item *item)
6712 {
6713 	int ret;
6714 	struct extent_buffer *leaf = path->nodes[0];
6715 	char *tmp;
6716 	size_t max_size;
6717 	unsigned long inline_size;
6718 	unsigned long ptr;
6719 	int compress_type;
6720 
6721 	compress_type = btrfs_file_extent_compression(leaf, item);
6722 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6723 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6724 	tmp = kmalloc(inline_size, GFP_NOFS);
6725 	if (!tmp)
6726 		return -ENOMEM;
6727 	ptr = btrfs_file_extent_inline_start(item);
6728 
6729 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6730 
6731 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6732 	ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6733 			       max_size);
6734 
6735 	/*
6736 	 * decompression code contains a memset to fill in any space between the end
6737 	 * of the uncompressed data and the end of max_size in case the decompressed
6738 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6739 	 * the end of an inline extent and the beginning of the next block, so we
6740 	 * cover that region here.
6741 	 */
6742 
6743 	if (max_size < PAGE_SIZE)
6744 		folio_zero_range(folio, max_size, PAGE_SIZE - max_size);
6745 	kfree(tmp);
6746 	return ret;
6747 }
6748 
6749 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
6750 {
6751 	struct btrfs_file_extent_item *fi;
6752 	void *kaddr;
6753 	size_t copy_size;
6754 
6755 	if (!folio || folio_test_uptodate(folio))
6756 		return 0;
6757 
6758 	ASSERT(folio_pos(folio) == 0);
6759 
6760 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6761 			    struct btrfs_file_extent_item);
6762 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6763 		return uncompress_inline(path, folio, fi);
6764 
6765 	copy_size = min_t(u64, PAGE_SIZE,
6766 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6767 	kaddr = kmap_local_folio(folio, 0);
6768 	read_extent_buffer(path->nodes[0], kaddr,
6769 			   btrfs_file_extent_inline_start(fi), copy_size);
6770 	kunmap_local(kaddr);
6771 	if (copy_size < PAGE_SIZE)
6772 		folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size);
6773 	return 0;
6774 }
6775 
6776 /*
6777  * Lookup the first extent overlapping a range in a file.
6778  *
6779  * @inode:	file to search in
6780  * @page:	page to read extent data into if the extent is inline
6781  * @start:	file offset
6782  * @len:	length of range starting at @start
6783  *
6784  * Return the first &struct extent_map which overlaps the given range, reading
6785  * it from the B-tree and caching it if necessary. Note that there may be more
6786  * extents which overlap the given range after the returned extent_map.
6787  *
6788  * If @page is not NULL and the extent is inline, this also reads the extent
6789  * data directly into the page and marks the extent up to date in the io_tree.
6790  *
6791  * Return: ERR_PTR on error, non-NULL extent_map on success.
6792  */
6793 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6794 				    struct folio *folio, u64 start, u64 len)
6795 {
6796 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6797 	int ret = 0;
6798 	u64 extent_start = 0;
6799 	u64 extent_end = 0;
6800 	u64 objectid = btrfs_ino(inode);
6801 	int extent_type = -1;
6802 	struct btrfs_path *path = NULL;
6803 	struct btrfs_root *root = inode->root;
6804 	struct btrfs_file_extent_item *item;
6805 	struct extent_buffer *leaf;
6806 	struct btrfs_key found_key;
6807 	struct extent_map *em = NULL;
6808 	struct extent_map_tree *em_tree = &inode->extent_tree;
6809 
6810 	read_lock(&em_tree->lock);
6811 	em = lookup_extent_mapping(em_tree, start, len);
6812 	read_unlock(&em_tree->lock);
6813 
6814 	if (em) {
6815 		if (em->start > start || em->start + em->len <= start)
6816 			free_extent_map(em);
6817 		else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6818 			free_extent_map(em);
6819 		else
6820 			goto out;
6821 	}
6822 	em = alloc_extent_map();
6823 	if (!em) {
6824 		ret = -ENOMEM;
6825 		goto out;
6826 	}
6827 	em->start = EXTENT_MAP_HOLE;
6828 	em->disk_bytenr = EXTENT_MAP_HOLE;
6829 	em->len = (u64)-1;
6830 
6831 	path = btrfs_alloc_path();
6832 	if (!path) {
6833 		ret = -ENOMEM;
6834 		goto out;
6835 	}
6836 
6837 	/* Chances are we'll be called again, so go ahead and do readahead */
6838 	path->reada = READA_FORWARD;
6839 
6840 	/*
6841 	 * The same explanation in load_free_space_cache applies here as well,
6842 	 * we only read when we're loading the free space cache, and at that
6843 	 * point the commit_root has everything we need.
6844 	 */
6845 	if (btrfs_is_free_space_inode(inode)) {
6846 		path->search_commit_root = 1;
6847 		path->skip_locking = 1;
6848 	}
6849 
6850 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6851 	if (ret < 0) {
6852 		goto out;
6853 	} else if (ret > 0) {
6854 		if (path->slots[0] == 0)
6855 			goto not_found;
6856 		path->slots[0]--;
6857 		ret = 0;
6858 	}
6859 
6860 	leaf = path->nodes[0];
6861 	item = btrfs_item_ptr(leaf, path->slots[0],
6862 			      struct btrfs_file_extent_item);
6863 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6864 	if (found_key.objectid != objectid ||
6865 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6866 		/*
6867 		 * If we backup past the first extent we want to move forward
6868 		 * and see if there is an extent in front of us, otherwise we'll
6869 		 * say there is a hole for our whole search range which can
6870 		 * cause problems.
6871 		 */
6872 		extent_end = start;
6873 		goto next;
6874 	}
6875 
6876 	extent_type = btrfs_file_extent_type(leaf, item);
6877 	extent_start = found_key.offset;
6878 	extent_end = btrfs_file_extent_end(path);
6879 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6880 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6881 		/* Only regular file could have regular/prealloc extent */
6882 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6883 			ret = -EUCLEAN;
6884 			btrfs_crit(fs_info,
6885 		"regular/prealloc extent found for non-regular inode %llu",
6886 				   btrfs_ino(inode));
6887 			goto out;
6888 		}
6889 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6890 						       extent_start);
6891 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6892 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6893 						      path->slots[0],
6894 						      extent_start);
6895 	}
6896 next:
6897 	if (start >= extent_end) {
6898 		path->slots[0]++;
6899 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6900 			ret = btrfs_next_leaf(root, path);
6901 			if (ret < 0)
6902 				goto out;
6903 			else if (ret > 0)
6904 				goto not_found;
6905 
6906 			leaf = path->nodes[0];
6907 		}
6908 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6909 		if (found_key.objectid != objectid ||
6910 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6911 			goto not_found;
6912 		if (start + len <= found_key.offset)
6913 			goto not_found;
6914 		if (start > found_key.offset)
6915 			goto next;
6916 
6917 		/* New extent overlaps with existing one */
6918 		em->start = start;
6919 		em->len = found_key.offset - start;
6920 		em->disk_bytenr = EXTENT_MAP_HOLE;
6921 		goto insert;
6922 	}
6923 
6924 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6925 
6926 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6927 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6928 		goto insert;
6929 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6930 		/*
6931 		 * Inline extent can only exist at file offset 0. This is
6932 		 * ensured by tree-checker and inline extent creation path.
6933 		 * Thus all members representing file offsets should be zero.
6934 		 */
6935 		ASSERT(extent_start == 0);
6936 		ASSERT(em->start == 0);
6937 
6938 		/*
6939 		 * btrfs_extent_item_to_extent_map() should have properly
6940 		 * initialized em members already.
6941 		 *
6942 		 * Other members are not utilized for inline extents.
6943 		 */
6944 		ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6945 		ASSERT(em->len == fs_info->sectorsize);
6946 
6947 		ret = read_inline_extent(path, folio);
6948 		if (ret < 0)
6949 			goto out;
6950 		goto insert;
6951 	}
6952 not_found:
6953 	em->start = start;
6954 	em->len = len;
6955 	em->disk_bytenr = EXTENT_MAP_HOLE;
6956 insert:
6957 	ret = 0;
6958 	btrfs_release_path(path);
6959 	if (em->start > start || extent_map_end(em) <= start) {
6960 		btrfs_err(fs_info,
6961 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6962 			  em->start, em->len, start, len);
6963 		ret = -EIO;
6964 		goto out;
6965 	}
6966 
6967 	write_lock(&em_tree->lock);
6968 	ret = btrfs_add_extent_mapping(inode, &em, start, len);
6969 	write_unlock(&em_tree->lock);
6970 out:
6971 	btrfs_free_path(path);
6972 
6973 	trace_btrfs_get_extent(root, inode, em);
6974 
6975 	if (ret) {
6976 		free_extent_map(em);
6977 		return ERR_PTR(ret);
6978 	}
6979 	return em;
6980 }
6981 
6982 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6983 {
6984 	struct btrfs_block_group *block_group;
6985 	bool readonly = false;
6986 
6987 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
6988 	if (!block_group || block_group->ro)
6989 		readonly = true;
6990 	if (block_group)
6991 		btrfs_put_block_group(block_group);
6992 	return readonly;
6993 }
6994 
6995 /*
6996  * Check if we can do nocow write into the range [@offset, @offset + @len)
6997  *
6998  * @offset:	File offset
6999  * @len:	The length to write, will be updated to the nocow writeable
7000  *		range
7001  * @orig_start:	(optional) Return the original file offset of the file extent
7002  * @orig_len:	(optional) Return the original on-disk length of the file extent
7003  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7004  * @strict:	if true, omit optimizations that might force us into unnecessary
7005  *		cow. e.g., don't trust generation number.
7006  *
7007  * Return:
7008  * >0	and update @len if we can do nocow write
7009  *  0	if we can't do nocow write
7010  * <0	if error happened
7011  *
7012  * NOTE: This only checks the file extents, caller is responsible to wait for
7013  *	 any ordered extents.
7014  */
7015 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7016 			      struct btrfs_file_extent *file_extent,
7017 			      bool nowait, bool strict)
7018 {
7019 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7020 	struct can_nocow_file_extent_args nocow_args = { 0 };
7021 	struct btrfs_path *path;
7022 	int ret;
7023 	struct extent_buffer *leaf;
7024 	struct btrfs_root *root = BTRFS_I(inode)->root;
7025 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7026 	struct btrfs_file_extent_item *fi;
7027 	struct btrfs_key key;
7028 	int found_type;
7029 
7030 	path = btrfs_alloc_path();
7031 	if (!path)
7032 		return -ENOMEM;
7033 	path->nowait = nowait;
7034 
7035 	ret = btrfs_lookup_file_extent(NULL, root, path,
7036 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7037 	if (ret < 0)
7038 		goto out;
7039 
7040 	if (ret == 1) {
7041 		if (path->slots[0] == 0) {
7042 			/* can't find the item, must cow */
7043 			ret = 0;
7044 			goto out;
7045 		}
7046 		path->slots[0]--;
7047 	}
7048 	ret = 0;
7049 	leaf = path->nodes[0];
7050 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7051 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7052 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7053 		/* not our file or wrong item type, must cow */
7054 		goto out;
7055 	}
7056 
7057 	if (key.offset > offset) {
7058 		/* Wrong offset, must cow */
7059 		goto out;
7060 	}
7061 
7062 	if (btrfs_file_extent_end(path) <= offset)
7063 		goto out;
7064 
7065 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7066 	found_type = btrfs_file_extent_type(leaf, fi);
7067 
7068 	nocow_args.start = offset;
7069 	nocow_args.end = offset + *len - 1;
7070 	nocow_args.strict = strict;
7071 	nocow_args.free_path = true;
7072 
7073 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7074 	/* can_nocow_file_extent() has freed the path. */
7075 	path = NULL;
7076 
7077 	if (ret != 1) {
7078 		/* Treat errors as not being able to NOCOW. */
7079 		ret = 0;
7080 		goto out;
7081 	}
7082 
7083 	ret = 0;
7084 	if (btrfs_extent_readonly(fs_info,
7085 				  nocow_args.file_extent.disk_bytenr +
7086 				  nocow_args.file_extent.offset))
7087 		goto out;
7088 
7089 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7090 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7091 		u64 range_end;
7092 
7093 		range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7094 				     root->fs_info->sectorsize) - 1;
7095 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7096 		if (ret) {
7097 			ret = -EAGAIN;
7098 			goto out;
7099 		}
7100 	}
7101 
7102 	if (file_extent)
7103 		memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7104 
7105 	*len = nocow_args.file_extent.num_bytes;
7106 	ret = 1;
7107 out:
7108 	btrfs_free_path(path);
7109 	return ret;
7110 }
7111 
7112 /* The callers of this must take lock_extent() */
7113 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7114 				      const struct btrfs_file_extent *file_extent,
7115 				      int type)
7116 {
7117 	struct extent_map *em;
7118 	int ret;
7119 
7120 	/*
7121 	 * Note the missing NOCOW type.
7122 	 *
7123 	 * For pure NOCOW writes, we should not create an io extent map, but
7124 	 * just reusing the existing one.
7125 	 * Only PREALLOC writes (NOCOW write into preallocated range) can
7126 	 * create an io extent map.
7127 	 */
7128 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7129 	       type == BTRFS_ORDERED_COMPRESSED ||
7130 	       type == BTRFS_ORDERED_REGULAR);
7131 
7132 	switch (type) {
7133 	case BTRFS_ORDERED_PREALLOC:
7134 		/* We're only referring part of a larger preallocated extent. */
7135 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7136 		break;
7137 	case BTRFS_ORDERED_REGULAR:
7138 		/* COW results a new extent matching our file extent size. */
7139 		ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7140 		ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7141 
7142 		/* Since it's a new extent, we should not have any offset. */
7143 		ASSERT(file_extent->offset == 0);
7144 		break;
7145 	case BTRFS_ORDERED_COMPRESSED:
7146 		/* Must be compressed. */
7147 		ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7148 
7149 		/*
7150 		 * Encoded write can make us to refer to part of the
7151 		 * uncompressed extent.
7152 		 */
7153 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7154 		break;
7155 	}
7156 
7157 	em = alloc_extent_map();
7158 	if (!em)
7159 		return ERR_PTR(-ENOMEM);
7160 
7161 	em->start = start;
7162 	em->len = file_extent->num_bytes;
7163 	em->disk_bytenr = file_extent->disk_bytenr;
7164 	em->disk_num_bytes = file_extent->disk_num_bytes;
7165 	em->ram_bytes = file_extent->ram_bytes;
7166 	em->generation = -1;
7167 	em->offset = file_extent->offset;
7168 	em->flags |= EXTENT_FLAG_PINNED;
7169 	if (type == BTRFS_ORDERED_COMPRESSED)
7170 		extent_map_set_compression(em, file_extent->compression);
7171 
7172 	ret = btrfs_replace_extent_map_range(inode, em, true);
7173 	if (ret) {
7174 		free_extent_map(em);
7175 		return ERR_PTR(ret);
7176 	}
7177 
7178 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7179 	return em;
7180 }
7181 
7182 /*
7183  * For release_folio() and invalidate_folio() we have a race window where
7184  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7185  * If we continue to release/invalidate the page, we could cause use-after-free
7186  * for subpage spinlock.  So this function is to spin and wait for subpage
7187  * spinlock.
7188  */
7189 static void wait_subpage_spinlock(struct folio *folio)
7190 {
7191 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7192 	struct btrfs_subpage *subpage;
7193 
7194 	if (!btrfs_is_subpage(fs_info, folio->mapping))
7195 		return;
7196 
7197 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7198 	subpage = folio_get_private(folio);
7199 
7200 	/*
7201 	 * This may look insane as we just acquire the spinlock and release it,
7202 	 * without doing anything.  But we just want to make sure no one is
7203 	 * still holding the subpage spinlock.
7204 	 * And since the page is not dirty nor writeback, and we have page
7205 	 * locked, the only possible way to hold a spinlock is from the endio
7206 	 * function to clear page writeback.
7207 	 *
7208 	 * Here we just acquire the spinlock so that all existing callers
7209 	 * should exit and we're safe to release/invalidate the page.
7210 	 */
7211 	spin_lock_irq(&subpage->lock);
7212 	spin_unlock_irq(&subpage->lock);
7213 }
7214 
7215 static int btrfs_launder_folio(struct folio *folio)
7216 {
7217 	return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7218 				      PAGE_SIZE, NULL);
7219 }
7220 
7221 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7222 {
7223 	if (try_release_extent_mapping(folio, gfp_flags)) {
7224 		wait_subpage_spinlock(folio);
7225 		clear_folio_extent_mapped(folio);
7226 		return true;
7227 	}
7228 	return false;
7229 }
7230 
7231 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7232 {
7233 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7234 		return false;
7235 	return __btrfs_release_folio(folio, gfp_flags);
7236 }
7237 
7238 #ifdef CONFIG_MIGRATION
7239 static int btrfs_migrate_folio(struct address_space *mapping,
7240 			     struct folio *dst, struct folio *src,
7241 			     enum migrate_mode mode)
7242 {
7243 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7244 
7245 	if (ret != MIGRATEPAGE_SUCCESS)
7246 		return ret;
7247 
7248 	if (folio_test_ordered(src)) {
7249 		folio_clear_ordered(src);
7250 		folio_set_ordered(dst);
7251 	}
7252 
7253 	return MIGRATEPAGE_SUCCESS;
7254 }
7255 #else
7256 #define btrfs_migrate_folio NULL
7257 #endif
7258 
7259 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7260 				 size_t length)
7261 {
7262 	struct btrfs_inode *inode = folio_to_inode(folio);
7263 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7264 	struct extent_io_tree *tree = &inode->io_tree;
7265 	struct extent_state *cached_state = NULL;
7266 	u64 page_start = folio_pos(folio);
7267 	u64 page_end = page_start + folio_size(folio) - 1;
7268 	u64 cur;
7269 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7270 
7271 	/*
7272 	 * We have folio locked so no new ordered extent can be created on this
7273 	 * page, nor bio can be submitted for this folio.
7274 	 *
7275 	 * But already submitted bio can still be finished on this folio.
7276 	 * Furthermore, endio function won't skip folio which has Ordered
7277 	 * already cleared, so it's possible for endio and
7278 	 * invalidate_folio to do the same ordered extent accounting twice
7279 	 * on one folio.
7280 	 *
7281 	 * So here we wait for any submitted bios to finish, so that we won't
7282 	 * do double ordered extent accounting on the same folio.
7283 	 */
7284 	folio_wait_writeback(folio);
7285 	wait_subpage_spinlock(folio);
7286 
7287 	/*
7288 	 * For subpage case, we have call sites like
7289 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7290 	 * sectorsize.
7291 	 * If the range doesn't cover the full folio, we don't need to and
7292 	 * shouldn't clear page extent mapped, as folio->private can still
7293 	 * record subpage dirty bits for other part of the range.
7294 	 *
7295 	 * For cases that invalidate the full folio even the range doesn't
7296 	 * cover the full folio, like invalidating the last folio, we're
7297 	 * still safe to wait for ordered extent to finish.
7298 	 */
7299 	if (!(offset == 0 && length == folio_size(folio))) {
7300 		btrfs_release_folio(folio, GFP_NOFS);
7301 		return;
7302 	}
7303 
7304 	if (!inode_evicting)
7305 		lock_extent(tree, page_start, page_end, &cached_state);
7306 
7307 	cur = page_start;
7308 	while (cur < page_end) {
7309 		struct btrfs_ordered_extent *ordered;
7310 		u64 range_end;
7311 		u32 range_len;
7312 		u32 extra_flags = 0;
7313 
7314 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7315 							   page_end + 1 - cur);
7316 		if (!ordered) {
7317 			range_end = page_end;
7318 			/*
7319 			 * No ordered extent covering this range, we are safe
7320 			 * to delete all extent states in the range.
7321 			 */
7322 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7323 			goto next;
7324 		}
7325 		if (ordered->file_offset > cur) {
7326 			/*
7327 			 * There is a range between [cur, oe->file_offset) not
7328 			 * covered by any ordered extent.
7329 			 * We are safe to delete all extent states, and handle
7330 			 * the ordered extent in the next iteration.
7331 			 */
7332 			range_end = ordered->file_offset - 1;
7333 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7334 			goto next;
7335 		}
7336 
7337 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7338 				page_end);
7339 		ASSERT(range_end + 1 - cur < U32_MAX);
7340 		range_len = range_end + 1 - cur;
7341 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7342 			/*
7343 			 * If Ordered is cleared, it means endio has
7344 			 * already been executed for the range.
7345 			 * We can't delete the extent states as
7346 			 * btrfs_finish_ordered_io() may still use some of them.
7347 			 */
7348 			goto next;
7349 		}
7350 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7351 
7352 		/*
7353 		 * IO on this page will never be started, so we need to account
7354 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7355 		 * here, must leave that up for the ordered extent completion.
7356 		 *
7357 		 * This will also unlock the range for incoming
7358 		 * btrfs_finish_ordered_io().
7359 		 */
7360 		if (!inode_evicting)
7361 			clear_extent_bit(tree, cur, range_end,
7362 					 EXTENT_DELALLOC |
7363 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7364 					 EXTENT_DEFRAG, &cached_state);
7365 
7366 		spin_lock_irq(&inode->ordered_tree_lock);
7367 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7368 		ordered->truncated_len = min(ordered->truncated_len,
7369 					     cur - ordered->file_offset);
7370 		spin_unlock_irq(&inode->ordered_tree_lock);
7371 
7372 		/*
7373 		 * If the ordered extent has finished, we're safe to delete all
7374 		 * the extent states of the range, otherwise
7375 		 * btrfs_finish_ordered_io() will get executed by endio for
7376 		 * other pages, so we can't delete extent states.
7377 		 */
7378 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
7379 						   cur, range_end + 1 - cur)) {
7380 			btrfs_finish_ordered_io(ordered);
7381 			/*
7382 			 * The ordered extent has finished, now we're again
7383 			 * safe to delete all extent states of the range.
7384 			 */
7385 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7386 		}
7387 next:
7388 		if (ordered)
7389 			btrfs_put_ordered_extent(ordered);
7390 		/*
7391 		 * Qgroup reserved space handler
7392 		 * Sector(s) here will be either:
7393 		 *
7394 		 * 1) Already written to disk or bio already finished
7395 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
7396 		 *    Qgroup will be handled by its qgroup_record then.
7397 		 *    btrfs_qgroup_free_data() call will do nothing here.
7398 		 *
7399 		 * 2) Not written to disk yet
7400 		 *    Then btrfs_qgroup_free_data() call will clear the
7401 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
7402 		 *    reserved data space.
7403 		 *    Since the IO will never happen for this page.
7404 		 */
7405 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7406 		if (!inode_evicting) {
7407 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7408 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
7409 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7410 				 extra_flags, &cached_state);
7411 		}
7412 		cur = range_end + 1;
7413 	}
7414 	/*
7415 	 * We have iterated through all ordered extents of the page, the page
7416 	 * should not have Ordered anymore, or the above iteration
7417 	 * did something wrong.
7418 	 */
7419 	ASSERT(!folio_test_ordered(folio));
7420 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7421 	if (!inode_evicting)
7422 		__btrfs_release_folio(folio, GFP_NOFS);
7423 	clear_folio_extent_mapped(folio);
7424 }
7425 
7426 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7427 {
7428 	struct btrfs_truncate_control control = {
7429 		.inode = inode,
7430 		.ino = btrfs_ino(inode),
7431 		.min_type = BTRFS_EXTENT_DATA_KEY,
7432 		.clear_extent_range = true,
7433 	};
7434 	struct btrfs_root *root = inode->root;
7435 	struct btrfs_fs_info *fs_info = root->fs_info;
7436 	struct btrfs_block_rsv *rsv;
7437 	int ret;
7438 	struct btrfs_trans_handle *trans;
7439 	u64 mask = fs_info->sectorsize - 1;
7440 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7441 
7442 	if (!skip_writeback) {
7443 		ret = btrfs_wait_ordered_range(inode,
7444 					       inode->vfs_inode.i_size & (~mask),
7445 					       (u64)-1);
7446 		if (ret)
7447 			return ret;
7448 	}
7449 
7450 	/*
7451 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
7452 	 * things going on here:
7453 	 *
7454 	 * 1) We need to reserve space to update our inode.
7455 	 *
7456 	 * 2) We need to have something to cache all the space that is going to
7457 	 * be free'd up by the truncate operation, but also have some slack
7458 	 * space reserved in case it uses space during the truncate (thank you
7459 	 * very much snapshotting).
7460 	 *
7461 	 * And we need these to be separate.  The fact is we can use a lot of
7462 	 * space doing the truncate, and we have no earthly idea how much space
7463 	 * we will use, so we need the truncate reservation to be separate so it
7464 	 * doesn't end up using space reserved for updating the inode.  We also
7465 	 * need to be able to stop the transaction and start a new one, which
7466 	 * means we need to be able to update the inode several times, and we
7467 	 * have no idea of knowing how many times that will be, so we can't just
7468 	 * reserve 1 item for the entirety of the operation, so that has to be
7469 	 * done separately as well.
7470 	 *
7471 	 * So that leaves us with
7472 	 *
7473 	 * 1) rsv - for the truncate reservation, which we will steal from the
7474 	 * transaction reservation.
7475 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7476 	 * updating the inode.
7477 	 */
7478 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7479 	if (!rsv)
7480 		return -ENOMEM;
7481 	rsv->size = min_size;
7482 	rsv->failfast = true;
7483 
7484 	/*
7485 	 * 1 for the truncate slack space
7486 	 * 1 for updating the inode.
7487 	 */
7488 	trans = btrfs_start_transaction(root, 2);
7489 	if (IS_ERR(trans)) {
7490 		ret = PTR_ERR(trans);
7491 		goto out;
7492 	}
7493 
7494 	/* Migrate the slack space for the truncate to our reserve */
7495 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7496 				      min_size, false);
7497 	/*
7498 	 * We have reserved 2 metadata units when we started the transaction and
7499 	 * min_size matches 1 unit, so this should never fail, but if it does,
7500 	 * it's not critical we just fail truncation.
7501 	 */
7502 	if (WARN_ON(ret)) {
7503 		btrfs_end_transaction(trans);
7504 		goto out;
7505 	}
7506 
7507 	trans->block_rsv = rsv;
7508 
7509 	while (1) {
7510 		struct extent_state *cached_state = NULL;
7511 		const u64 new_size = inode->vfs_inode.i_size;
7512 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7513 
7514 		control.new_size = new_size;
7515 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7516 		/*
7517 		 * We want to drop from the next block forward in case this new
7518 		 * size is not block aligned since we will be keeping the last
7519 		 * block of the extent just the way it is.
7520 		 */
7521 		btrfs_drop_extent_map_range(inode,
7522 					    ALIGN(new_size, fs_info->sectorsize),
7523 					    (u64)-1, false);
7524 
7525 		ret = btrfs_truncate_inode_items(trans, root, &control);
7526 
7527 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7528 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7529 
7530 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7531 
7532 		trans->block_rsv = &fs_info->trans_block_rsv;
7533 		if (ret != -ENOSPC && ret != -EAGAIN)
7534 			break;
7535 
7536 		ret = btrfs_update_inode(trans, inode);
7537 		if (ret)
7538 			break;
7539 
7540 		btrfs_end_transaction(trans);
7541 		btrfs_btree_balance_dirty(fs_info);
7542 
7543 		trans = btrfs_start_transaction(root, 2);
7544 		if (IS_ERR(trans)) {
7545 			ret = PTR_ERR(trans);
7546 			trans = NULL;
7547 			break;
7548 		}
7549 
7550 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7551 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7552 					      rsv, min_size, false);
7553 		/*
7554 		 * We have reserved 2 metadata units when we started the
7555 		 * transaction and min_size matches 1 unit, so this should never
7556 		 * fail, but if it does, it's not critical we just fail truncation.
7557 		 */
7558 		if (WARN_ON(ret))
7559 			break;
7560 
7561 		trans->block_rsv = rsv;
7562 	}
7563 
7564 	/*
7565 	 * We can't call btrfs_truncate_block inside a trans handle as we could
7566 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7567 	 * know we've truncated everything except the last little bit, and can
7568 	 * do btrfs_truncate_block and then update the disk_i_size.
7569 	 */
7570 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7571 		btrfs_end_transaction(trans);
7572 		btrfs_btree_balance_dirty(fs_info);
7573 
7574 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7575 		if (ret)
7576 			goto out;
7577 		trans = btrfs_start_transaction(root, 1);
7578 		if (IS_ERR(trans)) {
7579 			ret = PTR_ERR(trans);
7580 			goto out;
7581 		}
7582 		btrfs_inode_safe_disk_i_size_write(inode, 0);
7583 	}
7584 
7585 	if (trans) {
7586 		int ret2;
7587 
7588 		trans->block_rsv = &fs_info->trans_block_rsv;
7589 		ret2 = btrfs_update_inode(trans, inode);
7590 		if (ret2 && !ret)
7591 			ret = ret2;
7592 
7593 		ret2 = btrfs_end_transaction(trans);
7594 		if (ret2 && !ret)
7595 			ret = ret2;
7596 		btrfs_btree_balance_dirty(fs_info);
7597 	}
7598 out:
7599 	btrfs_free_block_rsv(fs_info, rsv);
7600 	/*
7601 	 * So if we truncate and then write and fsync we normally would just
7602 	 * write the extents that changed, which is a problem if we need to
7603 	 * first truncate that entire inode.  So set this flag so we write out
7604 	 * all of the extents in the inode to the sync log so we're completely
7605 	 * safe.
7606 	 *
7607 	 * If no extents were dropped or trimmed we don't need to force the next
7608 	 * fsync to truncate all the inode's items from the log and re-log them
7609 	 * all. This means the truncate operation did not change the file size,
7610 	 * or changed it to a smaller size but there was only an implicit hole
7611 	 * between the old i_size and the new i_size, and there were no prealloc
7612 	 * extents beyond i_size to drop.
7613 	 */
7614 	if (control.extents_found > 0)
7615 		btrfs_set_inode_full_sync(inode);
7616 
7617 	return ret;
7618 }
7619 
7620 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7621 				     struct inode *dir)
7622 {
7623 	struct inode *inode;
7624 
7625 	inode = new_inode(dir->i_sb);
7626 	if (inode) {
7627 		/*
7628 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
7629 		 * the parent's sgid bit is set. This is probably a bug.
7630 		 */
7631 		inode_init_owner(idmap, inode, NULL,
7632 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
7633 		inode->i_op = &btrfs_dir_inode_operations;
7634 		inode->i_fop = &btrfs_dir_file_operations;
7635 	}
7636 	return inode;
7637 }
7638 
7639 struct inode *btrfs_alloc_inode(struct super_block *sb)
7640 {
7641 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7642 	struct btrfs_inode *ei;
7643 	struct inode *inode;
7644 
7645 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7646 	if (!ei)
7647 		return NULL;
7648 
7649 	ei->root = NULL;
7650 	ei->generation = 0;
7651 	ei->last_trans = 0;
7652 	ei->last_sub_trans = 0;
7653 	ei->logged_trans = 0;
7654 	ei->delalloc_bytes = 0;
7655 	ei->new_delalloc_bytes = 0;
7656 	ei->defrag_bytes = 0;
7657 	ei->disk_i_size = 0;
7658 	ei->flags = 0;
7659 	ei->ro_flags = 0;
7660 	/*
7661 	 * ->index_cnt will be properly initialized later when creating a new
7662 	 * inode (btrfs_create_new_inode()) or when reading an existing inode
7663 	 * from disk (btrfs_read_locked_inode()).
7664 	 */
7665 	ei->csum_bytes = 0;
7666 	ei->dir_index = 0;
7667 	ei->last_unlink_trans = 0;
7668 	ei->last_reflink_trans = 0;
7669 	ei->last_log_commit = 0;
7670 
7671 	spin_lock_init(&ei->lock);
7672 	ei->outstanding_extents = 0;
7673 	if (sb->s_magic != BTRFS_TEST_MAGIC)
7674 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7675 					      BTRFS_BLOCK_RSV_DELALLOC);
7676 	ei->runtime_flags = 0;
7677 	ei->prop_compress = BTRFS_COMPRESS_NONE;
7678 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
7679 
7680 	ei->delayed_node = NULL;
7681 
7682 	ei->i_otime_sec = 0;
7683 	ei->i_otime_nsec = 0;
7684 
7685 	inode = &ei->vfs_inode;
7686 	extent_map_tree_init(&ei->extent_tree);
7687 
7688 	/* This io tree sets the valid inode. */
7689 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7690 	ei->io_tree.inode = ei;
7691 
7692 	ei->file_extent_tree = NULL;
7693 
7694 	mutex_init(&ei->log_mutex);
7695 	spin_lock_init(&ei->ordered_tree_lock);
7696 	ei->ordered_tree = RB_ROOT;
7697 	ei->ordered_tree_last = NULL;
7698 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7699 	INIT_LIST_HEAD(&ei->delayed_iput);
7700 	init_rwsem(&ei->i_mmap_lock);
7701 
7702 	return inode;
7703 }
7704 
7705 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7706 void btrfs_test_destroy_inode(struct inode *inode)
7707 {
7708 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7709 	kfree(BTRFS_I(inode)->file_extent_tree);
7710 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7711 }
7712 #endif
7713 
7714 void btrfs_free_inode(struct inode *inode)
7715 {
7716 	kfree(BTRFS_I(inode)->file_extent_tree);
7717 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7718 }
7719 
7720 void btrfs_destroy_inode(struct inode *vfs_inode)
7721 {
7722 	struct btrfs_ordered_extent *ordered;
7723 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7724 	struct btrfs_root *root = inode->root;
7725 	bool freespace_inode;
7726 
7727 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7728 	WARN_ON(vfs_inode->i_data.nrpages);
7729 	WARN_ON(inode->block_rsv.reserved);
7730 	WARN_ON(inode->block_rsv.size);
7731 	WARN_ON(inode->outstanding_extents);
7732 	if (!S_ISDIR(vfs_inode->i_mode)) {
7733 		WARN_ON(inode->delalloc_bytes);
7734 		WARN_ON(inode->new_delalloc_bytes);
7735 		WARN_ON(inode->csum_bytes);
7736 	}
7737 	if (!root || !btrfs_is_data_reloc_root(root))
7738 		WARN_ON(inode->defrag_bytes);
7739 
7740 	/*
7741 	 * This can happen where we create an inode, but somebody else also
7742 	 * created the same inode and we need to destroy the one we already
7743 	 * created.
7744 	 */
7745 	if (!root)
7746 		return;
7747 
7748 	/*
7749 	 * If this is a free space inode do not take the ordered extents lockdep
7750 	 * map.
7751 	 */
7752 	freespace_inode = btrfs_is_free_space_inode(inode);
7753 
7754 	while (1) {
7755 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7756 		if (!ordered)
7757 			break;
7758 		else {
7759 			btrfs_err(root->fs_info,
7760 				  "found ordered extent %llu %llu on inode cleanup",
7761 				  ordered->file_offset, ordered->num_bytes);
7762 
7763 			if (!freespace_inode)
7764 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7765 
7766 			btrfs_remove_ordered_extent(inode, ordered);
7767 			btrfs_put_ordered_extent(ordered);
7768 			btrfs_put_ordered_extent(ordered);
7769 		}
7770 	}
7771 	btrfs_qgroup_check_reserved_leak(inode);
7772 	btrfs_del_inode_from_root(inode);
7773 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7774 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7775 	btrfs_put_root(inode->root);
7776 }
7777 
7778 int btrfs_drop_inode(struct inode *inode)
7779 {
7780 	struct btrfs_root *root = BTRFS_I(inode)->root;
7781 
7782 	if (root == NULL)
7783 		return 1;
7784 
7785 	/* the snap/subvol tree is on deleting */
7786 	if (btrfs_root_refs(&root->root_item) == 0)
7787 		return 1;
7788 	else
7789 		return generic_drop_inode(inode);
7790 }
7791 
7792 static void init_once(void *foo)
7793 {
7794 	struct btrfs_inode *ei = foo;
7795 
7796 	inode_init_once(&ei->vfs_inode);
7797 }
7798 
7799 void __cold btrfs_destroy_cachep(void)
7800 {
7801 	/*
7802 	 * Make sure all delayed rcu free inodes are flushed before we
7803 	 * destroy cache.
7804 	 */
7805 	rcu_barrier();
7806 	kmem_cache_destroy(btrfs_inode_cachep);
7807 }
7808 
7809 int __init btrfs_init_cachep(void)
7810 {
7811 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7812 			sizeof(struct btrfs_inode), 0,
7813 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7814 			init_once);
7815 	if (!btrfs_inode_cachep)
7816 		return -ENOMEM;
7817 
7818 	return 0;
7819 }
7820 
7821 static int btrfs_getattr(struct mnt_idmap *idmap,
7822 			 const struct path *path, struct kstat *stat,
7823 			 u32 request_mask, unsigned int flags)
7824 {
7825 	u64 delalloc_bytes;
7826 	u64 inode_bytes;
7827 	struct inode *inode = d_inode(path->dentry);
7828 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7829 	u32 bi_flags = BTRFS_I(inode)->flags;
7830 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7831 
7832 	stat->result_mask |= STATX_BTIME;
7833 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7834 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7835 	if (bi_flags & BTRFS_INODE_APPEND)
7836 		stat->attributes |= STATX_ATTR_APPEND;
7837 	if (bi_flags & BTRFS_INODE_COMPRESS)
7838 		stat->attributes |= STATX_ATTR_COMPRESSED;
7839 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
7840 		stat->attributes |= STATX_ATTR_IMMUTABLE;
7841 	if (bi_flags & BTRFS_INODE_NODUMP)
7842 		stat->attributes |= STATX_ATTR_NODUMP;
7843 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7844 		stat->attributes |= STATX_ATTR_VERITY;
7845 
7846 	stat->attributes_mask |= (STATX_ATTR_APPEND |
7847 				  STATX_ATTR_COMPRESSED |
7848 				  STATX_ATTR_IMMUTABLE |
7849 				  STATX_ATTR_NODUMP);
7850 
7851 	generic_fillattr(idmap, request_mask, inode, stat);
7852 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7853 
7854 	stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7855 	stat->result_mask |= STATX_SUBVOL;
7856 
7857 	spin_lock(&BTRFS_I(inode)->lock);
7858 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7859 	inode_bytes = inode_get_bytes(inode);
7860 	spin_unlock(&BTRFS_I(inode)->lock);
7861 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
7862 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7863 	return 0;
7864 }
7865 
7866 static int btrfs_rename_exchange(struct inode *old_dir,
7867 			      struct dentry *old_dentry,
7868 			      struct inode *new_dir,
7869 			      struct dentry *new_dentry)
7870 {
7871 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7872 	struct btrfs_trans_handle *trans;
7873 	unsigned int trans_num_items;
7874 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7875 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7876 	struct inode *new_inode = new_dentry->d_inode;
7877 	struct inode *old_inode = old_dentry->d_inode;
7878 	struct btrfs_rename_ctx old_rename_ctx;
7879 	struct btrfs_rename_ctx new_rename_ctx;
7880 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7881 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7882 	u64 old_idx = 0;
7883 	u64 new_idx = 0;
7884 	int ret;
7885 	int ret2;
7886 	bool need_abort = false;
7887 	struct fscrypt_name old_fname, new_fname;
7888 	struct fscrypt_str *old_name, *new_name;
7889 
7890 	/*
7891 	 * For non-subvolumes allow exchange only within one subvolume, in the
7892 	 * same inode namespace. Two subvolumes (represented as directory) can
7893 	 * be exchanged as they're a logical link and have a fixed inode number.
7894 	 */
7895 	if (root != dest &&
7896 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7897 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
7898 		return -EXDEV;
7899 
7900 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7901 	if (ret)
7902 		return ret;
7903 
7904 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7905 	if (ret) {
7906 		fscrypt_free_filename(&old_fname);
7907 		return ret;
7908 	}
7909 
7910 	old_name = &old_fname.disk_name;
7911 	new_name = &new_fname.disk_name;
7912 
7913 	/* close the race window with snapshot create/destroy ioctl */
7914 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7915 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
7916 		down_read(&fs_info->subvol_sem);
7917 
7918 	/*
7919 	 * For each inode:
7920 	 * 1 to remove old dir item
7921 	 * 1 to remove old dir index
7922 	 * 1 to add new dir item
7923 	 * 1 to add new dir index
7924 	 * 1 to update parent inode
7925 	 *
7926 	 * If the parents are the same, we only need to account for one
7927 	 */
7928 	trans_num_items = (old_dir == new_dir ? 9 : 10);
7929 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7930 		/*
7931 		 * 1 to remove old root ref
7932 		 * 1 to remove old root backref
7933 		 * 1 to add new root ref
7934 		 * 1 to add new root backref
7935 		 */
7936 		trans_num_items += 4;
7937 	} else {
7938 		/*
7939 		 * 1 to update inode item
7940 		 * 1 to remove old inode ref
7941 		 * 1 to add new inode ref
7942 		 */
7943 		trans_num_items += 3;
7944 	}
7945 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7946 		trans_num_items += 4;
7947 	else
7948 		trans_num_items += 3;
7949 	trans = btrfs_start_transaction(root, trans_num_items);
7950 	if (IS_ERR(trans)) {
7951 		ret = PTR_ERR(trans);
7952 		goto out_notrans;
7953 	}
7954 
7955 	if (dest != root) {
7956 		ret = btrfs_record_root_in_trans(trans, dest);
7957 		if (ret)
7958 			goto out_fail;
7959 	}
7960 
7961 	/*
7962 	 * We need to find a free sequence number both in the source and
7963 	 * in the destination directory for the exchange.
7964 	 */
7965 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7966 	if (ret)
7967 		goto out_fail;
7968 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7969 	if (ret)
7970 		goto out_fail;
7971 
7972 	BTRFS_I(old_inode)->dir_index = 0ULL;
7973 	BTRFS_I(new_inode)->dir_index = 0ULL;
7974 
7975 	/* Reference for the source. */
7976 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7977 		/* force full log commit if subvolume involved. */
7978 		btrfs_set_log_full_commit(trans);
7979 	} else {
7980 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
7981 					     btrfs_ino(BTRFS_I(new_dir)),
7982 					     old_idx);
7983 		if (ret)
7984 			goto out_fail;
7985 		need_abort = true;
7986 	}
7987 
7988 	/* And now for the dest. */
7989 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
7990 		/* force full log commit if subvolume involved. */
7991 		btrfs_set_log_full_commit(trans);
7992 	} else {
7993 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
7994 					     btrfs_ino(BTRFS_I(old_dir)),
7995 					     new_idx);
7996 		if (ret) {
7997 			if (need_abort)
7998 				btrfs_abort_transaction(trans, ret);
7999 			goto out_fail;
8000 		}
8001 	}
8002 
8003 	/* Update inode version and ctime/mtime. */
8004 	inode_inc_iversion(old_dir);
8005 	inode_inc_iversion(new_dir);
8006 	inode_inc_iversion(old_inode);
8007 	inode_inc_iversion(new_inode);
8008 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8009 
8010 	if (old_dentry->d_parent != new_dentry->d_parent) {
8011 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8012 					BTRFS_I(old_inode), true);
8013 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8014 					BTRFS_I(new_inode), true);
8015 	}
8016 
8017 	/* src is a subvolume */
8018 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8019 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8020 	} else { /* src is an inode */
8021 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8022 					   BTRFS_I(old_dentry->d_inode),
8023 					   old_name, &old_rename_ctx);
8024 		if (!ret)
8025 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8026 	}
8027 	if (ret) {
8028 		btrfs_abort_transaction(trans, ret);
8029 		goto out_fail;
8030 	}
8031 
8032 	/* dest is a subvolume */
8033 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8034 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8035 	} else { /* dest is an inode */
8036 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8037 					   BTRFS_I(new_dentry->d_inode),
8038 					   new_name, &new_rename_ctx);
8039 		if (!ret)
8040 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8041 	}
8042 	if (ret) {
8043 		btrfs_abort_transaction(trans, ret);
8044 		goto out_fail;
8045 	}
8046 
8047 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8048 			     new_name, 0, old_idx);
8049 	if (ret) {
8050 		btrfs_abort_transaction(trans, ret);
8051 		goto out_fail;
8052 	}
8053 
8054 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8055 			     old_name, 0, new_idx);
8056 	if (ret) {
8057 		btrfs_abort_transaction(trans, ret);
8058 		goto out_fail;
8059 	}
8060 
8061 	if (old_inode->i_nlink == 1)
8062 		BTRFS_I(old_inode)->dir_index = old_idx;
8063 	if (new_inode->i_nlink == 1)
8064 		BTRFS_I(new_inode)->dir_index = new_idx;
8065 
8066 	/*
8067 	 * Now pin the logs of the roots. We do it to ensure that no other task
8068 	 * can sync the logs while we are in progress with the rename, because
8069 	 * that could result in an inconsistency in case any of the inodes that
8070 	 * are part of this rename operation were logged before.
8071 	 */
8072 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8073 		btrfs_pin_log_trans(root);
8074 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8075 		btrfs_pin_log_trans(dest);
8076 
8077 	/* Do the log updates for all inodes. */
8078 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8079 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8080 				   old_rename_ctx.index, new_dentry->d_parent);
8081 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8082 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8083 				   new_rename_ctx.index, old_dentry->d_parent);
8084 
8085 	/* Now unpin the logs. */
8086 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8087 		btrfs_end_log_trans(root);
8088 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8089 		btrfs_end_log_trans(dest);
8090 out_fail:
8091 	ret2 = btrfs_end_transaction(trans);
8092 	ret = ret ? ret : ret2;
8093 out_notrans:
8094 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8095 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8096 		up_read(&fs_info->subvol_sem);
8097 
8098 	fscrypt_free_filename(&new_fname);
8099 	fscrypt_free_filename(&old_fname);
8100 	return ret;
8101 }
8102 
8103 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8104 					struct inode *dir)
8105 {
8106 	struct inode *inode;
8107 
8108 	inode = new_inode(dir->i_sb);
8109 	if (inode) {
8110 		inode_init_owner(idmap, inode, dir,
8111 				 S_IFCHR | WHITEOUT_MODE);
8112 		inode->i_op = &btrfs_special_inode_operations;
8113 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8114 	}
8115 	return inode;
8116 }
8117 
8118 static int btrfs_rename(struct mnt_idmap *idmap,
8119 			struct inode *old_dir, struct dentry *old_dentry,
8120 			struct inode *new_dir, struct dentry *new_dentry,
8121 			unsigned int flags)
8122 {
8123 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8124 	struct btrfs_new_inode_args whiteout_args = {
8125 		.dir = old_dir,
8126 		.dentry = old_dentry,
8127 	};
8128 	struct btrfs_trans_handle *trans;
8129 	unsigned int trans_num_items;
8130 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8131 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8132 	struct inode *new_inode = d_inode(new_dentry);
8133 	struct inode *old_inode = d_inode(old_dentry);
8134 	struct btrfs_rename_ctx rename_ctx;
8135 	u64 index = 0;
8136 	int ret;
8137 	int ret2;
8138 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8139 	struct fscrypt_name old_fname, new_fname;
8140 
8141 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8142 		return -EPERM;
8143 
8144 	/* we only allow rename subvolume link between subvolumes */
8145 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8146 		return -EXDEV;
8147 
8148 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8149 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8150 		return -ENOTEMPTY;
8151 
8152 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8153 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8154 		return -ENOTEMPTY;
8155 
8156 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8157 	if (ret)
8158 		return ret;
8159 
8160 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8161 	if (ret) {
8162 		fscrypt_free_filename(&old_fname);
8163 		return ret;
8164 	}
8165 
8166 	/* check for collisions, even if the  name isn't there */
8167 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8168 	if (ret) {
8169 		if (ret == -EEXIST) {
8170 			/* we shouldn't get
8171 			 * eexist without a new_inode */
8172 			if (WARN_ON(!new_inode)) {
8173 				goto out_fscrypt_names;
8174 			}
8175 		} else {
8176 			/* maybe -EOVERFLOW */
8177 			goto out_fscrypt_names;
8178 		}
8179 	}
8180 	ret = 0;
8181 
8182 	/*
8183 	 * we're using rename to replace one file with another.  Start IO on it
8184 	 * now so  we don't add too much work to the end of the transaction
8185 	 */
8186 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8187 		filemap_flush(old_inode->i_mapping);
8188 
8189 	if (flags & RENAME_WHITEOUT) {
8190 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8191 		if (!whiteout_args.inode) {
8192 			ret = -ENOMEM;
8193 			goto out_fscrypt_names;
8194 		}
8195 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8196 		if (ret)
8197 			goto out_whiteout_inode;
8198 	} else {
8199 		/* 1 to update the old parent inode. */
8200 		trans_num_items = 1;
8201 	}
8202 
8203 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8204 		/* Close the race window with snapshot create/destroy ioctl */
8205 		down_read(&fs_info->subvol_sem);
8206 		/*
8207 		 * 1 to remove old root ref
8208 		 * 1 to remove old root backref
8209 		 * 1 to add new root ref
8210 		 * 1 to add new root backref
8211 		 */
8212 		trans_num_items += 4;
8213 	} else {
8214 		/*
8215 		 * 1 to update inode
8216 		 * 1 to remove old inode ref
8217 		 * 1 to add new inode ref
8218 		 */
8219 		trans_num_items += 3;
8220 	}
8221 	/*
8222 	 * 1 to remove old dir item
8223 	 * 1 to remove old dir index
8224 	 * 1 to add new dir item
8225 	 * 1 to add new dir index
8226 	 */
8227 	trans_num_items += 4;
8228 	/* 1 to update new parent inode if it's not the same as the old parent */
8229 	if (new_dir != old_dir)
8230 		trans_num_items++;
8231 	if (new_inode) {
8232 		/*
8233 		 * 1 to update inode
8234 		 * 1 to remove inode ref
8235 		 * 1 to remove dir item
8236 		 * 1 to remove dir index
8237 		 * 1 to possibly add orphan item
8238 		 */
8239 		trans_num_items += 5;
8240 	}
8241 	trans = btrfs_start_transaction(root, trans_num_items);
8242 	if (IS_ERR(trans)) {
8243 		ret = PTR_ERR(trans);
8244 		goto out_notrans;
8245 	}
8246 
8247 	if (dest != root) {
8248 		ret = btrfs_record_root_in_trans(trans, dest);
8249 		if (ret)
8250 			goto out_fail;
8251 	}
8252 
8253 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8254 	if (ret)
8255 		goto out_fail;
8256 
8257 	BTRFS_I(old_inode)->dir_index = 0ULL;
8258 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8259 		/* force full log commit if subvolume involved. */
8260 		btrfs_set_log_full_commit(trans);
8261 	} else {
8262 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8263 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
8264 					     index);
8265 		if (ret)
8266 			goto out_fail;
8267 	}
8268 
8269 	inode_inc_iversion(old_dir);
8270 	inode_inc_iversion(new_dir);
8271 	inode_inc_iversion(old_inode);
8272 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8273 
8274 	if (old_dentry->d_parent != new_dentry->d_parent)
8275 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8276 					BTRFS_I(old_inode), true);
8277 
8278 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8279 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8280 	} else {
8281 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8282 					   BTRFS_I(d_inode(old_dentry)),
8283 					   &old_fname.disk_name, &rename_ctx);
8284 		if (!ret)
8285 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8286 	}
8287 	if (ret) {
8288 		btrfs_abort_transaction(trans, ret);
8289 		goto out_fail;
8290 	}
8291 
8292 	if (new_inode) {
8293 		inode_inc_iversion(new_inode);
8294 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8295 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8296 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8297 			BUG_ON(new_inode->i_nlink == 0);
8298 		} else {
8299 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8300 						 BTRFS_I(d_inode(new_dentry)),
8301 						 &new_fname.disk_name);
8302 		}
8303 		if (!ret && new_inode->i_nlink == 0)
8304 			ret = btrfs_orphan_add(trans,
8305 					BTRFS_I(d_inode(new_dentry)));
8306 		if (ret) {
8307 			btrfs_abort_transaction(trans, ret);
8308 			goto out_fail;
8309 		}
8310 	}
8311 
8312 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8313 			     &new_fname.disk_name, 0, index);
8314 	if (ret) {
8315 		btrfs_abort_transaction(trans, ret);
8316 		goto out_fail;
8317 	}
8318 
8319 	if (old_inode->i_nlink == 1)
8320 		BTRFS_I(old_inode)->dir_index = index;
8321 
8322 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8323 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8324 				   rename_ctx.index, new_dentry->d_parent);
8325 
8326 	if (flags & RENAME_WHITEOUT) {
8327 		ret = btrfs_create_new_inode(trans, &whiteout_args);
8328 		if (ret) {
8329 			btrfs_abort_transaction(trans, ret);
8330 			goto out_fail;
8331 		} else {
8332 			unlock_new_inode(whiteout_args.inode);
8333 			iput(whiteout_args.inode);
8334 			whiteout_args.inode = NULL;
8335 		}
8336 	}
8337 out_fail:
8338 	ret2 = btrfs_end_transaction(trans);
8339 	ret = ret ? ret : ret2;
8340 out_notrans:
8341 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8342 		up_read(&fs_info->subvol_sem);
8343 	if (flags & RENAME_WHITEOUT)
8344 		btrfs_new_inode_args_destroy(&whiteout_args);
8345 out_whiteout_inode:
8346 	if (flags & RENAME_WHITEOUT)
8347 		iput(whiteout_args.inode);
8348 out_fscrypt_names:
8349 	fscrypt_free_filename(&old_fname);
8350 	fscrypt_free_filename(&new_fname);
8351 	return ret;
8352 }
8353 
8354 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8355 			 struct dentry *old_dentry, struct inode *new_dir,
8356 			 struct dentry *new_dentry, unsigned int flags)
8357 {
8358 	int ret;
8359 
8360 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8361 		return -EINVAL;
8362 
8363 	if (flags & RENAME_EXCHANGE)
8364 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8365 					    new_dentry);
8366 	else
8367 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8368 				   new_dentry, flags);
8369 
8370 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8371 
8372 	return ret;
8373 }
8374 
8375 struct btrfs_delalloc_work {
8376 	struct inode *inode;
8377 	struct completion completion;
8378 	struct list_head list;
8379 	struct btrfs_work work;
8380 };
8381 
8382 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8383 {
8384 	struct btrfs_delalloc_work *delalloc_work;
8385 	struct inode *inode;
8386 
8387 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8388 				     work);
8389 	inode = delalloc_work->inode;
8390 	filemap_flush(inode->i_mapping);
8391 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8392 				&BTRFS_I(inode)->runtime_flags))
8393 		filemap_flush(inode->i_mapping);
8394 
8395 	iput(inode);
8396 	complete(&delalloc_work->completion);
8397 }
8398 
8399 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8400 {
8401 	struct btrfs_delalloc_work *work;
8402 
8403 	work = kmalloc(sizeof(*work), GFP_NOFS);
8404 	if (!work)
8405 		return NULL;
8406 
8407 	init_completion(&work->completion);
8408 	INIT_LIST_HEAD(&work->list);
8409 	work->inode = inode;
8410 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8411 
8412 	return work;
8413 }
8414 
8415 /*
8416  * some fairly slow code that needs optimization. This walks the list
8417  * of all the inodes with pending delalloc and forces them to disk.
8418  */
8419 static int start_delalloc_inodes(struct btrfs_root *root,
8420 				 struct writeback_control *wbc, bool snapshot,
8421 				 bool in_reclaim_context)
8422 {
8423 	struct btrfs_inode *binode;
8424 	struct inode *inode;
8425 	struct btrfs_delalloc_work *work, *next;
8426 	LIST_HEAD(works);
8427 	LIST_HEAD(splice);
8428 	int ret = 0;
8429 	bool full_flush = wbc->nr_to_write == LONG_MAX;
8430 
8431 	mutex_lock(&root->delalloc_mutex);
8432 	spin_lock(&root->delalloc_lock);
8433 	list_splice_init(&root->delalloc_inodes, &splice);
8434 	while (!list_empty(&splice)) {
8435 		binode = list_entry(splice.next, struct btrfs_inode,
8436 				    delalloc_inodes);
8437 
8438 		list_move_tail(&binode->delalloc_inodes,
8439 			       &root->delalloc_inodes);
8440 
8441 		if (in_reclaim_context &&
8442 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8443 			continue;
8444 
8445 		inode = igrab(&binode->vfs_inode);
8446 		if (!inode) {
8447 			cond_resched_lock(&root->delalloc_lock);
8448 			continue;
8449 		}
8450 		spin_unlock(&root->delalloc_lock);
8451 
8452 		if (snapshot)
8453 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8454 				&binode->runtime_flags);
8455 		if (full_flush) {
8456 			work = btrfs_alloc_delalloc_work(inode);
8457 			if (!work) {
8458 				iput(inode);
8459 				ret = -ENOMEM;
8460 				goto out;
8461 			}
8462 			list_add_tail(&work->list, &works);
8463 			btrfs_queue_work(root->fs_info->flush_workers,
8464 					 &work->work);
8465 		} else {
8466 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8467 			btrfs_add_delayed_iput(BTRFS_I(inode));
8468 			if (ret || wbc->nr_to_write <= 0)
8469 				goto out;
8470 		}
8471 		cond_resched();
8472 		spin_lock(&root->delalloc_lock);
8473 	}
8474 	spin_unlock(&root->delalloc_lock);
8475 
8476 out:
8477 	list_for_each_entry_safe(work, next, &works, list) {
8478 		list_del_init(&work->list);
8479 		wait_for_completion(&work->completion);
8480 		kfree(work);
8481 	}
8482 
8483 	if (!list_empty(&splice)) {
8484 		spin_lock(&root->delalloc_lock);
8485 		list_splice_tail(&splice, &root->delalloc_inodes);
8486 		spin_unlock(&root->delalloc_lock);
8487 	}
8488 	mutex_unlock(&root->delalloc_mutex);
8489 	return ret;
8490 }
8491 
8492 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8493 {
8494 	struct writeback_control wbc = {
8495 		.nr_to_write = LONG_MAX,
8496 		.sync_mode = WB_SYNC_NONE,
8497 		.range_start = 0,
8498 		.range_end = LLONG_MAX,
8499 	};
8500 	struct btrfs_fs_info *fs_info = root->fs_info;
8501 
8502 	if (BTRFS_FS_ERROR(fs_info))
8503 		return -EROFS;
8504 
8505 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8506 }
8507 
8508 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8509 			       bool in_reclaim_context)
8510 {
8511 	struct writeback_control wbc = {
8512 		.nr_to_write = nr,
8513 		.sync_mode = WB_SYNC_NONE,
8514 		.range_start = 0,
8515 		.range_end = LLONG_MAX,
8516 	};
8517 	struct btrfs_root *root;
8518 	LIST_HEAD(splice);
8519 	int ret;
8520 
8521 	if (BTRFS_FS_ERROR(fs_info))
8522 		return -EROFS;
8523 
8524 	mutex_lock(&fs_info->delalloc_root_mutex);
8525 	spin_lock(&fs_info->delalloc_root_lock);
8526 	list_splice_init(&fs_info->delalloc_roots, &splice);
8527 	while (!list_empty(&splice)) {
8528 		/*
8529 		 * Reset nr_to_write here so we know that we're doing a full
8530 		 * flush.
8531 		 */
8532 		if (nr == LONG_MAX)
8533 			wbc.nr_to_write = LONG_MAX;
8534 
8535 		root = list_first_entry(&splice, struct btrfs_root,
8536 					delalloc_root);
8537 		root = btrfs_grab_root(root);
8538 		BUG_ON(!root);
8539 		list_move_tail(&root->delalloc_root,
8540 			       &fs_info->delalloc_roots);
8541 		spin_unlock(&fs_info->delalloc_root_lock);
8542 
8543 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8544 		btrfs_put_root(root);
8545 		if (ret < 0 || wbc.nr_to_write <= 0)
8546 			goto out;
8547 		spin_lock(&fs_info->delalloc_root_lock);
8548 	}
8549 	spin_unlock(&fs_info->delalloc_root_lock);
8550 
8551 	ret = 0;
8552 out:
8553 	if (!list_empty(&splice)) {
8554 		spin_lock(&fs_info->delalloc_root_lock);
8555 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8556 		spin_unlock(&fs_info->delalloc_root_lock);
8557 	}
8558 	mutex_unlock(&fs_info->delalloc_root_mutex);
8559 	return ret;
8560 }
8561 
8562 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8563 			 struct dentry *dentry, const char *symname)
8564 {
8565 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8566 	struct btrfs_trans_handle *trans;
8567 	struct btrfs_root *root = BTRFS_I(dir)->root;
8568 	struct btrfs_path *path;
8569 	struct btrfs_key key;
8570 	struct inode *inode;
8571 	struct btrfs_new_inode_args new_inode_args = {
8572 		.dir = dir,
8573 		.dentry = dentry,
8574 	};
8575 	unsigned int trans_num_items;
8576 	int err;
8577 	int name_len;
8578 	int datasize;
8579 	unsigned long ptr;
8580 	struct btrfs_file_extent_item *ei;
8581 	struct extent_buffer *leaf;
8582 
8583 	name_len = strlen(symname);
8584 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8585 		return -ENAMETOOLONG;
8586 
8587 	inode = new_inode(dir->i_sb);
8588 	if (!inode)
8589 		return -ENOMEM;
8590 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8591 	inode->i_op = &btrfs_symlink_inode_operations;
8592 	inode_nohighmem(inode);
8593 	inode->i_mapping->a_ops = &btrfs_aops;
8594 	btrfs_i_size_write(BTRFS_I(inode), name_len);
8595 	inode_set_bytes(inode, name_len);
8596 
8597 	new_inode_args.inode = inode;
8598 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8599 	if (err)
8600 		goto out_inode;
8601 	/* 1 additional item for the inline extent */
8602 	trans_num_items++;
8603 
8604 	trans = btrfs_start_transaction(root, trans_num_items);
8605 	if (IS_ERR(trans)) {
8606 		err = PTR_ERR(trans);
8607 		goto out_new_inode_args;
8608 	}
8609 
8610 	err = btrfs_create_new_inode(trans, &new_inode_args);
8611 	if (err)
8612 		goto out;
8613 
8614 	path = btrfs_alloc_path();
8615 	if (!path) {
8616 		err = -ENOMEM;
8617 		btrfs_abort_transaction(trans, err);
8618 		discard_new_inode(inode);
8619 		inode = NULL;
8620 		goto out;
8621 	}
8622 	key.objectid = btrfs_ino(BTRFS_I(inode));
8623 	key.offset = 0;
8624 	key.type = BTRFS_EXTENT_DATA_KEY;
8625 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8626 	err = btrfs_insert_empty_item(trans, root, path, &key,
8627 				      datasize);
8628 	if (err) {
8629 		btrfs_abort_transaction(trans, err);
8630 		btrfs_free_path(path);
8631 		discard_new_inode(inode);
8632 		inode = NULL;
8633 		goto out;
8634 	}
8635 	leaf = path->nodes[0];
8636 	ei = btrfs_item_ptr(leaf, path->slots[0],
8637 			    struct btrfs_file_extent_item);
8638 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8639 	btrfs_set_file_extent_type(leaf, ei,
8640 				   BTRFS_FILE_EXTENT_INLINE);
8641 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8642 	btrfs_set_file_extent_compression(leaf, ei, 0);
8643 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8644 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8645 
8646 	ptr = btrfs_file_extent_inline_start(ei);
8647 	write_extent_buffer(leaf, symname, ptr, name_len);
8648 	btrfs_mark_buffer_dirty(trans, leaf);
8649 	btrfs_free_path(path);
8650 
8651 	d_instantiate_new(dentry, inode);
8652 	err = 0;
8653 out:
8654 	btrfs_end_transaction(trans);
8655 	btrfs_btree_balance_dirty(fs_info);
8656 out_new_inode_args:
8657 	btrfs_new_inode_args_destroy(&new_inode_args);
8658 out_inode:
8659 	if (err)
8660 		iput(inode);
8661 	return err;
8662 }
8663 
8664 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8665 				       struct btrfs_trans_handle *trans_in,
8666 				       struct btrfs_inode *inode,
8667 				       struct btrfs_key *ins,
8668 				       u64 file_offset)
8669 {
8670 	struct btrfs_file_extent_item stack_fi;
8671 	struct btrfs_replace_extent_info extent_info;
8672 	struct btrfs_trans_handle *trans = trans_in;
8673 	struct btrfs_path *path;
8674 	u64 start = ins->objectid;
8675 	u64 len = ins->offset;
8676 	u64 qgroup_released = 0;
8677 	int ret;
8678 
8679 	memset(&stack_fi, 0, sizeof(stack_fi));
8680 
8681 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8682 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8683 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8684 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8685 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8686 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8687 	/* Encryption and other encoding is reserved and all 0 */
8688 
8689 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8690 	if (ret < 0)
8691 		return ERR_PTR(ret);
8692 
8693 	if (trans) {
8694 		ret = insert_reserved_file_extent(trans, inode,
8695 						  file_offset, &stack_fi,
8696 						  true, qgroup_released);
8697 		if (ret)
8698 			goto free_qgroup;
8699 		return trans;
8700 	}
8701 
8702 	extent_info.disk_offset = start;
8703 	extent_info.disk_len = len;
8704 	extent_info.data_offset = 0;
8705 	extent_info.data_len = len;
8706 	extent_info.file_offset = file_offset;
8707 	extent_info.extent_buf = (char *)&stack_fi;
8708 	extent_info.is_new_extent = true;
8709 	extent_info.update_times = true;
8710 	extent_info.qgroup_reserved = qgroup_released;
8711 	extent_info.insertions = 0;
8712 
8713 	path = btrfs_alloc_path();
8714 	if (!path) {
8715 		ret = -ENOMEM;
8716 		goto free_qgroup;
8717 	}
8718 
8719 	ret = btrfs_replace_file_extents(inode, path, file_offset,
8720 				     file_offset + len - 1, &extent_info,
8721 				     &trans);
8722 	btrfs_free_path(path);
8723 	if (ret)
8724 		goto free_qgroup;
8725 	return trans;
8726 
8727 free_qgroup:
8728 	/*
8729 	 * We have released qgroup data range at the beginning of the function,
8730 	 * and normally qgroup_released bytes will be freed when committing
8731 	 * transaction.
8732 	 * But if we error out early, we have to free what we have released
8733 	 * or we leak qgroup data reservation.
8734 	 */
8735 	btrfs_qgroup_free_refroot(inode->root->fs_info,
8736 			btrfs_root_id(inode->root), qgroup_released,
8737 			BTRFS_QGROUP_RSV_DATA);
8738 	return ERR_PTR(ret);
8739 }
8740 
8741 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8742 				       u64 start, u64 num_bytes, u64 min_size,
8743 				       loff_t actual_len, u64 *alloc_hint,
8744 				       struct btrfs_trans_handle *trans)
8745 {
8746 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8747 	struct extent_map *em;
8748 	struct btrfs_root *root = BTRFS_I(inode)->root;
8749 	struct btrfs_key ins;
8750 	u64 cur_offset = start;
8751 	u64 clear_offset = start;
8752 	u64 i_size;
8753 	u64 cur_bytes;
8754 	u64 last_alloc = (u64)-1;
8755 	int ret = 0;
8756 	bool own_trans = true;
8757 	u64 end = start + num_bytes - 1;
8758 
8759 	if (trans)
8760 		own_trans = false;
8761 	while (num_bytes > 0) {
8762 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
8763 		cur_bytes = max(cur_bytes, min_size);
8764 		/*
8765 		 * If we are severely fragmented we could end up with really
8766 		 * small allocations, so if the allocator is returning small
8767 		 * chunks lets make its job easier by only searching for those
8768 		 * sized chunks.
8769 		 */
8770 		cur_bytes = min(cur_bytes, last_alloc);
8771 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8772 				min_size, 0, *alloc_hint, &ins, 1, 0);
8773 		if (ret)
8774 			break;
8775 
8776 		/*
8777 		 * We've reserved this space, and thus converted it from
8778 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
8779 		 * from here on out we will only need to clear our reservation
8780 		 * for the remaining unreserved area, so advance our
8781 		 * clear_offset by our extent size.
8782 		 */
8783 		clear_offset += ins.offset;
8784 
8785 		last_alloc = ins.offset;
8786 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8787 						    &ins, cur_offset);
8788 		/*
8789 		 * Now that we inserted the prealloc extent we can finally
8790 		 * decrement the number of reservations in the block group.
8791 		 * If we did it before, we could race with relocation and have
8792 		 * relocation miss the reserved extent, making it fail later.
8793 		 */
8794 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8795 		if (IS_ERR(trans)) {
8796 			ret = PTR_ERR(trans);
8797 			btrfs_free_reserved_extent(fs_info, ins.objectid,
8798 						   ins.offset, 0);
8799 			break;
8800 		}
8801 
8802 		em = alloc_extent_map();
8803 		if (!em) {
8804 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8805 					    cur_offset + ins.offset - 1, false);
8806 			btrfs_set_inode_full_sync(BTRFS_I(inode));
8807 			goto next;
8808 		}
8809 
8810 		em->start = cur_offset;
8811 		em->len = ins.offset;
8812 		em->disk_bytenr = ins.objectid;
8813 		em->offset = 0;
8814 		em->disk_num_bytes = ins.offset;
8815 		em->ram_bytes = ins.offset;
8816 		em->flags |= EXTENT_FLAG_PREALLOC;
8817 		em->generation = trans->transid;
8818 
8819 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8820 		free_extent_map(em);
8821 next:
8822 		num_bytes -= ins.offset;
8823 		cur_offset += ins.offset;
8824 		*alloc_hint = ins.objectid + ins.offset;
8825 
8826 		inode_inc_iversion(inode);
8827 		inode_set_ctime_current(inode);
8828 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8829 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8830 		    (actual_len > inode->i_size) &&
8831 		    (cur_offset > inode->i_size)) {
8832 			if (cur_offset > actual_len)
8833 				i_size = actual_len;
8834 			else
8835 				i_size = cur_offset;
8836 			i_size_write(inode, i_size);
8837 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8838 		}
8839 
8840 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
8841 
8842 		if (ret) {
8843 			btrfs_abort_transaction(trans, ret);
8844 			if (own_trans)
8845 				btrfs_end_transaction(trans);
8846 			break;
8847 		}
8848 
8849 		if (own_trans) {
8850 			btrfs_end_transaction(trans);
8851 			trans = NULL;
8852 		}
8853 	}
8854 	if (clear_offset < end)
8855 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8856 			end - clear_offset + 1);
8857 	return ret;
8858 }
8859 
8860 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8861 			      u64 start, u64 num_bytes, u64 min_size,
8862 			      loff_t actual_len, u64 *alloc_hint)
8863 {
8864 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8865 					   min_size, actual_len, alloc_hint,
8866 					   NULL);
8867 }
8868 
8869 int btrfs_prealloc_file_range_trans(struct inode *inode,
8870 				    struct btrfs_trans_handle *trans, int mode,
8871 				    u64 start, u64 num_bytes, u64 min_size,
8872 				    loff_t actual_len, u64 *alloc_hint)
8873 {
8874 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8875 					   min_size, actual_len, alloc_hint, trans);
8876 }
8877 
8878 static int btrfs_permission(struct mnt_idmap *idmap,
8879 			    struct inode *inode, int mask)
8880 {
8881 	struct btrfs_root *root = BTRFS_I(inode)->root;
8882 	umode_t mode = inode->i_mode;
8883 
8884 	if (mask & MAY_WRITE &&
8885 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8886 		if (btrfs_root_readonly(root))
8887 			return -EROFS;
8888 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8889 			return -EACCES;
8890 	}
8891 	return generic_permission(idmap, inode, mask);
8892 }
8893 
8894 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8895 			 struct file *file, umode_t mode)
8896 {
8897 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8898 	struct btrfs_trans_handle *trans;
8899 	struct btrfs_root *root = BTRFS_I(dir)->root;
8900 	struct inode *inode;
8901 	struct btrfs_new_inode_args new_inode_args = {
8902 		.dir = dir,
8903 		.dentry = file->f_path.dentry,
8904 		.orphan = true,
8905 	};
8906 	unsigned int trans_num_items;
8907 	int ret;
8908 
8909 	inode = new_inode(dir->i_sb);
8910 	if (!inode)
8911 		return -ENOMEM;
8912 	inode_init_owner(idmap, inode, dir, mode);
8913 	inode->i_fop = &btrfs_file_operations;
8914 	inode->i_op = &btrfs_file_inode_operations;
8915 	inode->i_mapping->a_ops = &btrfs_aops;
8916 
8917 	new_inode_args.inode = inode;
8918 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8919 	if (ret)
8920 		goto out_inode;
8921 
8922 	trans = btrfs_start_transaction(root, trans_num_items);
8923 	if (IS_ERR(trans)) {
8924 		ret = PTR_ERR(trans);
8925 		goto out_new_inode_args;
8926 	}
8927 
8928 	ret = btrfs_create_new_inode(trans, &new_inode_args);
8929 
8930 	/*
8931 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8932 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
8933 	 * 0, through:
8934 	 *
8935 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8936 	 */
8937 	set_nlink(inode, 1);
8938 
8939 	if (!ret) {
8940 		d_tmpfile(file, inode);
8941 		unlock_new_inode(inode);
8942 		mark_inode_dirty(inode);
8943 	}
8944 
8945 	btrfs_end_transaction(trans);
8946 	btrfs_btree_balance_dirty(fs_info);
8947 out_new_inode_args:
8948 	btrfs_new_inode_args_destroy(&new_inode_args);
8949 out_inode:
8950 	if (ret)
8951 		iput(inode);
8952 	return finish_open_simple(file, ret);
8953 }
8954 
8955 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
8956 					     int compress_type)
8957 {
8958 	switch (compress_type) {
8959 	case BTRFS_COMPRESS_NONE:
8960 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
8961 	case BTRFS_COMPRESS_ZLIB:
8962 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
8963 	case BTRFS_COMPRESS_LZO:
8964 		/*
8965 		 * The LZO format depends on the sector size. 64K is the maximum
8966 		 * sector size that we support.
8967 		 */
8968 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
8969 			return -EINVAL;
8970 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
8971 		       (fs_info->sectorsize_bits - 12);
8972 	case BTRFS_COMPRESS_ZSTD:
8973 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
8974 	default:
8975 		return -EUCLEAN;
8976 	}
8977 }
8978 
8979 static ssize_t btrfs_encoded_read_inline(
8980 				struct kiocb *iocb,
8981 				struct iov_iter *iter, u64 start,
8982 				u64 lockend,
8983 				struct extent_state **cached_state,
8984 				u64 extent_start, size_t count,
8985 				struct btrfs_ioctl_encoded_io_args *encoded,
8986 				bool *unlocked)
8987 {
8988 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
8989 	struct btrfs_root *root = inode->root;
8990 	struct btrfs_fs_info *fs_info = root->fs_info;
8991 	struct extent_io_tree *io_tree = &inode->io_tree;
8992 	struct btrfs_path *path;
8993 	struct extent_buffer *leaf;
8994 	struct btrfs_file_extent_item *item;
8995 	u64 ram_bytes;
8996 	unsigned long ptr;
8997 	void *tmp;
8998 	ssize_t ret;
8999 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9000 
9001 	path = btrfs_alloc_path();
9002 	if (!path) {
9003 		ret = -ENOMEM;
9004 		goto out;
9005 	}
9006 
9007 	path->nowait = nowait;
9008 
9009 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9010 				       extent_start, 0);
9011 	if (ret) {
9012 		if (ret > 0) {
9013 			/* The extent item disappeared? */
9014 			ret = -EIO;
9015 		}
9016 		goto out;
9017 	}
9018 	leaf = path->nodes[0];
9019 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9020 
9021 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9022 	ptr = btrfs_file_extent_inline_start(item);
9023 
9024 	encoded->len = min_t(u64, extent_start + ram_bytes,
9025 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9026 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9027 				 btrfs_file_extent_compression(leaf, item));
9028 	if (ret < 0)
9029 		goto out;
9030 	encoded->compression = ret;
9031 	if (encoded->compression) {
9032 		size_t inline_size;
9033 
9034 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9035 								path->slots[0]);
9036 		if (inline_size > count) {
9037 			ret = -ENOBUFS;
9038 			goto out;
9039 		}
9040 		count = inline_size;
9041 		encoded->unencoded_len = ram_bytes;
9042 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9043 	} else {
9044 		count = min_t(u64, count, encoded->len);
9045 		encoded->len = count;
9046 		encoded->unencoded_len = count;
9047 		ptr += iocb->ki_pos - extent_start;
9048 	}
9049 
9050 	tmp = kmalloc(count, GFP_NOFS);
9051 	if (!tmp) {
9052 		ret = -ENOMEM;
9053 		goto out;
9054 	}
9055 	read_extent_buffer(leaf, tmp, ptr, count);
9056 	btrfs_release_path(path);
9057 	unlock_extent(io_tree, start, lockend, cached_state);
9058 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9059 	*unlocked = true;
9060 
9061 	ret = copy_to_iter(tmp, count, iter);
9062 	if (ret != count)
9063 		ret = -EFAULT;
9064 	kfree(tmp);
9065 out:
9066 	btrfs_free_path(path);
9067 	return ret;
9068 }
9069 
9070 struct btrfs_encoded_read_private {
9071 	wait_queue_head_t wait;
9072 	void *uring_ctx;
9073 	atomic_t pending;
9074 	blk_status_t status;
9075 };
9076 
9077 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9078 {
9079 	struct btrfs_encoded_read_private *priv = bbio->private;
9080 
9081 	if (bbio->bio.bi_status) {
9082 		/*
9083 		 * The memory barrier implied by the atomic_dec_return() here
9084 		 * pairs with the memory barrier implied by the
9085 		 * atomic_dec_return() or io_wait_event() in
9086 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9087 		 * write is observed before the load of status in
9088 		 * btrfs_encoded_read_regular_fill_pages().
9089 		 */
9090 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9091 	}
9092 	if (atomic_dec_return(&priv->pending) == 0) {
9093 		int err = blk_status_to_errno(READ_ONCE(priv->status));
9094 
9095 		if (priv->uring_ctx) {
9096 			btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9097 			kfree(priv);
9098 		} else {
9099 			wake_up(&priv->wait);
9100 		}
9101 	}
9102 	bio_put(&bbio->bio);
9103 }
9104 
9105 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9106 					  u64 disk_bytenr, u64 disk_io_size,
9107 					  struct page **pages, void *uring_ctx)
9108 {
9109 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9110 	struct btrfs_encoded_read_private *priv;
9111 	unsigned long i = 0;
9112 	struct btrfs_bio *bbio;
9113 	int ret;
9114 
9115 	priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9116 	if (!priv)
9117 		return -ENOMEM;
9118 
9119 	init_waitqueue_head(&priv->wait);
9120 	atomic_set(&priv->pending, 1);
9121 	priv->status = 0;
9122 	priv->uring_ctx = uring_ctx;
9123 
9124 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9125 			       btrfs_encoded_read_endio, priv);
9126 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9127 	bbio->inode = inode;
9128 
9129 	do {
9130 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9131 
9132 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9133 			atomic_inc(&priv->pending);
9134 			btrfs_submit_bbio(bbio, 0);
9135 
9136 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9137 					       btrfs_encoded_read_endio, priv);
9138 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9139 			bbio->inode = inode;
9140 			continue;
9141 		}
9142 
9143 		i++;
9144 		disk_bytenr += bytes;
9145 		disk_io_size -= bytes;
9146 	} while (disk_io_size);
9147 
9148 	atomic_inc(&priv->pending);
9149 	btrfs_submit_bbio(bbio, 0);
9150 
9151 	if (uring_ctx) {
9152 		if (atomic_dec_return(&priv->pending) == 0) {
9153 			ret = blk_status_to_errno(READ_ONCE(priv->status));
9154 			btrfs_uring_read_extent_endio(uring_ctx, ret);
9155 			kfree(priv);
9156 			return ret;
9157 		}
9158 
9159 		return -EIOCBQUEUED;
9160 	} else {
9161 		if (atomic_dec_return(&priv->pending) != 0)
9162 			io_wait_event(priv->wait, !atomic_read(&priv->pending));
9163 		/* See btrfs_encoded_read_endio() for ordering. */
9164 		ret = blk_status_to_errno(READ_ONCE(priv->status));
9165 		kfree(priv);
9166 		return ret;
9167 	}
9168 }
9169 
9170 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9171 				   u64 start, u64 lockend,
9172 				   struct extent_state **cached_state,
9173 				   u64 disk_bytenr, u64 disk_io_size,
9174 				   size_t count, bool compressed, bool *unlocked)
9175 {
9176 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9177 	struct extent_io_tree *io_tree = &inode->io_tree;
9178 	struct page **pages;
9179 	unsigned long nr_pages, i;
9180 	u64 cur;
9181 	size_t page_offset;
9182 	ssize_t ret;
9183 
9184 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9185 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9186 	if (!pages)
9187 		return -ENOMEM;
9188 	ret = btrfs_alloc_page_array(nr_pages, pages, false);
9189 	if (ret) {
9190 		ret = -ENOMEM;
9191 		goto out;
9192 		}
9193 
9194 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9195 						    disk_io_size, pages, NULL);
9196 	if (ret)
9197 		goto out;
9198 
9199 	unlock_extent(io_tree, start, lockend, cached_state);
9200 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9201 	*unlocked = true;
9202 
9203 	if (compressed) {
9204 		i = 0;
9205 		page_offset = 0;
9206 	} else {
9207 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9208 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9209 	}
9210 	cur = 0;
9211 	while (cur < count) {
9212 		size_t bytes = min_t(size_t, count - cur,
9213 				     PAGE_SIZE - page_offset);
9214 
9215 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9216 				      iter) != bytes) {
9217 			ret = -EFAULT;
9218 			goto out;
9219 		}
9220 		i++;
9221 		cur += bytes;
9222 		page_offset = 0;
9223 	}
9224 	ret = count;
9225 out:
9226 	for (i = 0; i < nr_pages; i++) {
9227 		if (pages[i])
9228 			__free_page(pages[i]);
9229 	}
9230 	kfree(pages);
9231 	return ret;
9232 }
9233 
9234 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9235 			   struct btrfs_ioctl_encoded_io_args *encoded,
9236 			   struct extent_state **cached_state,
9237 			   u64 *disk_bytenr, u64 *disk_io_size)
9238 {
9239 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9240 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9241 	struct extent_io_tree *io_tree = &inode->io_tree;
9242 	ssize_t ret;
9243 	size_t count = iov_iter_count(iter);
9244 	u64 start, lockend;
9245 	struct extent_map *em;
9246 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9247 	bool unlocked = false;
9248 
9249 	file_accessed(iocb->ki_filp);
9250 
9251 	ret = btrfs_inode_lock(inode,
9252 			       BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9253 	if (ret)
9254 		return ret;
9255 
9256 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9257 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9258 		return 0;
9259 	}
9260 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9261 	/*
9262 	 * We don't know how long the extent containing iocb->ki_pos is, but if
9263 	 * it's compressed we know that it won't be longer than this.
9264 	 */
9265 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9266 
9267 	if (nowait) {
9268 		struct btrfs_ordered_extent *ordered;
9269 
9270 		if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9271 						  start, lockend)) {
9272 			ret = -EAGAIN;
9273 			goto out_unlock_inode;
9274 		}
9275 
9276 		if (!try_lock_extent(io_tree, start, lockend, cached_state)) {
9277 			ret = -EAGAIN;
9278 			goto out_unlock_inode;
9279 		}
9280 
9281 		ordered = btrfs_lookup_ordered_range(inode, start,
9282 						     lockend - start + 1);
9283 		if (ordered) {
9284 			btrfs_put_ordered_extent(ordered);
9285 			unlock_extent(io_tree, start, lockend, cached_state);
9286 			ret = -EAGAIN;
9287 			goto out_unlock_inode;
9288 		}
9289 	} else {
9290 		for (;;) {
9291 			struct btrfs_ordered_extent *ordered;
9292 
9293 			ret = btrfs_wait_ordered_range(inode, start,
9294 						       lockend - start + 1);
9295 			if (ret)
9296 				goto out_unlock_inode;
9297 
9298 			lock_extent(io_tree, start, lockend, cached_state);
9299 			ordered = btrfs_lookup_ordered_range(inode, start,
9300 							     lockend - start + 1);
9301 			if (!ordered)
9302 				break;
9303 			btrfs_put_ordered_extent(ordered);
9304 			unlock_extent(io_tree, start, lockend, cached_state);
9305 			cond_resched();
9306 		}
9307 	}
9308 
9309 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9310 	if (IS_ERR(em)) {
9311 		ret = PTR_ERR(em);
9312 		goto out_unlock_extent;
9313 	}
9314 
9315 	if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9316 		u64 extent_start = em->start;
9317 
9318 		/*
9319 		 * For inline extents we get everything we need out of the
9320 		 * extent item.
9321 		 */
9322 		free_extent_map(em);
9323 		em = NULL;
9324 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9325 						cached_state, extent_start,
9326 						count, encoded, &unlocked);
9327 		goto out_unlock_extent;
9328 	}
9329 
9330 	/*
9331 	 * We only want to return up to EOF even if the extent extends beyond
9332 	 * that.
9333 	 */
9334 	encoded->len = min_t(u64, extent_map_end(em),
9335 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9336 	if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9337 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
9338 		*disk_bytenr = EXTENT_MAP_HOLE;
9339 		count = min_t(u64, count, encoded->len);
9340 		encoded->len = count;
9341 		encoded->unencoded_len = count;
9342 	} else if (extent_map_is_compressed(em)) {
9343 		*disk_bytenr = em->disk_bytenr;
9344 		/*
9345 		 * Bail if the buffer isn't large enough to return the whole
9346 		 * compressed extent.
9347 		 */
9348 		if (em->disk_num_bytes > count) {
9349 			ret = -ENOBUFS;
9350 			goto out_em;
9351 		}
9352 		*disk_io_size = em->disk_num_bytes;
9353 		count = em->disk_num_bytes;
9354 		encoded->unencoded_len = em->ram_bytes;
9355 		encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9356 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
9357 							       extent_map_compression(em));
9358 		if (ret < 0)
9359 			goto out_em;
9360 		encoded->compression = ret;
9361 	} else {
9362 		*disk_bytenr = extent_map_block_start(em) + (start - em->start);
9363 		if (encoded->len > count)
9364 			encoded->len = count;
9365 		/*
9366 		 * Don't read beyond what we locked. This also limits the page
9367 		 * allocations that we'll do.
9368 		 */
9369 		*disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9370 		count = start + *disk_io_size - iocb->ki_pos;
9371 		encoded->len = count;
9372 		encoded->unencoded_len = count;
9373 		*disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9374 	}
9375 	free_extent_map(em);
9376 	em = NULL;
9377 
9378 	if (*disk_bytenr == EXTENT_MAP_HOLE) {
9379 		unlock_extent(io_tree, start, lockend, cached_state);
9380 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9381 		unlocked = true;
9382 		ret = iov_iter_zero(count, iter);
9383 		if (ret != count)
9384 			ret = -EFAULT;
9385 	} else {
9386 		ret = -EIOCBQUEUED;
9387 		goto out_unlock_extent;
9388 	}
9389 
9390 out_em:
9391 	free_extent_map(em);
9392 out_unlock_extent:
9393 	/* Leave inode and extent locked if we need to do a read. */
9394 	if (!unlocked && ret != -EIOCBQUEUED)
9395 		unlock_extent(io_tree, start, lockend, cached_state);
9396 out_unlock_inode:
9397 	if (!unlocked && ret != -EIOCBQUEUED)
9398 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9399 	return ret;
9400 }
9401 
9402 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9403 			       const struct btrfs_ioctl_encoded_io_args *encoded)
9404 {
9405 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9406 	struct btrfs_root *root = inode->root;
9407 	struct btrfs_fs_info *fs_info = root->fs_info;
9408 	struct extent_io_tree *io_tree = &inode->io_tree;
9409 	struct extent_changeset *data_reserved = NULL;
9410 	struct extent_state *cached_state = NULL;
9411 	struct btrfs_ordered_extent *ordered;
9412 	struct btrfs_file_extent file_extent;
9413 	int compression;
9414 	size_t orig_count;
9415 	u64 start, end;
9416 	u64 num_bytes, ram_bytes, disk_num_bytes;
9417 	unsigned long nr_folios, i;
9418 	struct folio **folios;
9419 	struct btrfs_key ins;
9420 	bool extent_reserved = false;
9421 	struct extent_map *em;
9422 	ssize_t ret;
9423 
9424 	switch (encoded->compression) {
9425 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9426 		compression = BTRFS_COMPRESS_ZLIB;
9427 		break;
9428 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9429 		compression = BTRFS_COMPRESS_ZSTD;
9430 		break;
9431 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9432 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9433 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9434 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9435 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9436 		/* The sector size must match for LZO. */
9437 		if (encoded->compression -
9438 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9439 		    fs_info->sectorsize_bits)
9440 			return -EINVAL;
9441 		compression = BTRFS_COMPRESS_LZO;
9442 		break;
9443 	default:
9444 		return -EINVAL;
9445 	}
9446 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9447 		return -EINVAL;
9448 
9449 	/*
9450 	 * Compressed extents should always have checksums, so error out if we
9451 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
9452 	 */
9453 	if (inode->flags & BTRFS_INODE_NODATASUM)
9454 		return -EINVAL;
9455 
9456 	orig_count = iov_iter_count(from);
9457 
9458 	/* The extent size must be sane. */
9459 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9460 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9461 		return -EINVAL;
9462 
9463 	/*
9464 	 * The compressed data must be smaller than the decompressed data.
9465 	 *
9466 	 * It's of course possible for data to compress to larger or the same
9467 	 * size, but the buffered I/O path falls back to no compression for such
9468 	 * data, and we don't want to break any assumptions by creating these
9469 	 * extents.
9470 	 *
9471 	 * Note that this is less strict than the current check we have that the
9472 	 * compressed data must be at least one sector smaller than the
9473 	 * decompressed data. We only want to enforce the weaker requirement
9474 	 * from old kernels that it is at least one byte smaller.
9475 	 */
9476 	if (orig_count >= encoded->unencoded_len)
9477 		return -EINVAL;
9478 
9479 	/* The extent must start on a sector boundary. */
9480 	start = iocb->ki_pos;
9481 	if (!IS_ALIGNED(start, fs_info->sectorsize))
9482 		return -EINVAL;
9483 
9484 	/*
9485 	 * The extent must end on a sector boundary. However, we allow a write
9486 	 * which ends at or extends i_size to have an unaligned length; we round
9487 	 * up the extent size and set i_size to the unaligned end.
9488 	 */
9489 	if (start + encoded->len < inode->vfs_inode.i_size &&
9490 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9491 		return -EINVAL;
9492 
9493 	/* Finally, the offset in the unencoded data must be sector-aligned. */
9494 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9495 		return -EINVAL;
9496 
9497 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9498 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9499 	end = start + num_bytes - 1;
9500 
9501 	/*
9502 	 * If the extent cannot be inline, the compressed data on disk must be
9503 	 * sector-aligned. For convenience, we extend it with zeroes if it
9504 	 * isn't.
9505 	 */
9506 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9507 	nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9508 	folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9509 	if (!folios)
9510 		return -ENOMEM;
9511 	for (i = 0; i < nr_folios; i++) {
9512 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9513 		char *kaddr;
9514 
9515 		folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9516 		if (!folios[i]) {
9517 			ret = -ENOMEM;
9518 			goto out_folios;
9519 		}
9520 		kaddr = kmap_local_folio(folios[i], 0);
9521 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
9522 			kunmap_local(kaddr);
9523 			ret = -EFAULT;
9524 			goto out_folios;
9525 		}
9526 		if (bytes < PAGE_SIZE)
9527 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9528 		kunmap_local(kaddr);
9529 	}
9530 
9531 	for (;;) {
9532 		struct btrfs_ordered_extent *ordered;
9533 
9534 		ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9535 		if (ret)
9536 			goto out_folios;
9537 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9538 						    start >> PAGE_SHIFT,
9539 						    end >> PAGE_SHIFT);
9540 		if (ret)
9541 			goto out_folios;
9542 		lock_extent(io_tree, start, end, &cached_state);
9543 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9544 		if (!ordered &&
9545 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9546 			break;
9547 		if (ordered)
9548 			btrfs_put_ordered_extent(ordered);
9549 		unlock_extent(io_tree, start, end, &cached_state);
9550 		cond_resched();
9551 	}
9552 
9553 	/*
9554 	 * We don't use the higher-level delalloc space functions because our
9555 	 * num_bytes and disk_num_bytes are different.
9556 	 */
9557 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9558 	if (ret)
9559 		goto out_unlock;
9560 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9561 	if (ret)
9562 		goto out_free_data_space;
9563 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9564 					      false);
9565 	if (ret)
9566 		goto out_qgroup_free_data;
9567 
9568 	/* Try an inline extent first. */
9569 	if (encoded->unencoded_len == encoded->len &&
9570 	    encoded->unencoded_offset == 0 &&
9571 	    can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9572 		ret = __cow_file_range_inline(inode, encoded->len,
9573 					      orig_count, compression, folios[0],
9574 					      true);
9575 		if (ret <= 0) {
9576 			if (ret == 0)
9577 				ret = orig_count;
9578 			goto out_delalloc_release;
9579 		}
9580 	}
9581 
9582 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9583 				   disk_num_bytes, 0, 0, &ins, 1, 1);
9584 	if (ret)
9585 		goto out_delalloc_release;
9586 	extent_reserved = true;
9587 
9588 	file_extent.disk_bytenr = ins.objectid;
9589 	file_extent.disk_num_bytes = ins.offset;
9590 	file_extent.num_bytes = num_bytes;
9591 	file_extent.ram_bytes = ram_bytes;
9592 	file_extent.offset = encoded->unencoded_offset;
9593 	file_extent.compression = compression;
9594 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9595 	if (IS_ERR(em)) {
9596 		ret = PTR_ERR(em);
9597 		goto out_free_reserved;
9598 	}
9599 	free_extent_map(em);
9600 
9601 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9602 				       (1 << BTRFS_ORDERED_ENCODED) |
9603 				       (1 << BTRFS_ORDERED_COMPRESSED));
9604 	if (IS_ERR(ordered)) {
9605 		btrfs_drop_extent_map_range(inode, start, end, false);
9606 		ret = PTR_ERR(ordered);
9607 		goto out_free_reserved;
9608 	}
9609 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9610 
9611 	if (start + encoded->len > inode->vfs_inode.i_size)
9612 		i_size_write(&inode->vfs_inode, start + encoded->len);
9613 
9614 	unlock_extent(io_tree, start, end, &cached_state);
9615 
9616 	btrfs_delalloc_release_extents(inode, num_bytes);
9617 
9618 	btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9619 	ret = orig_count;
9620 	goto out;
9621 
9622 out_free_reserved:
9623 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9624 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9625 out_delalloc_release:
9626 	btrfs_delalloc_release_extents(inode, num_bytes);
9627 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9628 out_qgroup_free_data:
9629 	if (ret < 0)
9630 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9631 out_free_data_space:
9632 	/*
9633 	 * If btrfs_reserve_extent() succeeded, then we already decremented
9634 	 * bytes_may_use.
9635 	 */
9636 	if (!extent_reserved)
9637 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9638 out_unlock:
9639 	unlock_extent(io_tree, start, end, &cached_state);
9640 out_folios:
9641 	for (i = 0; i < nr_folios; i++) {
9642 		if (folios[i])
9643 			folio_put(folios[i]);
9644 	}
9645 	kvfree(folios);
9646 out:
9647 	if (ret >= 0)
9648 		iocb->ki_pos += encoded->len;
9649 	return ret;
9650 }
9651 
9652 #ifdef CONFIG_SWAP
9653 /*
9654  * Add an entry indicating a block group or device which is pinned by a
9655  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9656  * negative errno on failure.
9657  */
9658 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9659 				  bool is_block_group)
9660 {
9661 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9662 	struct btrfs_swapfile_pin *sp, *entry;
9663 	struct rb_node **p;
9664 	struct rb_node *parent = NULL;
9665 
9666 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9667 	if (!sp)
9668 		return -ENOMEM;
9669 	sp->ptr = ptr;
9670 	sp->inode = inode;
9671 	sp->is_block_group = is_block_group;
9672 	sp->bg_extent_count = 1;
9673 
9674 	spin_lock(&fs_info->swapfile_pins_lock);
9675 	p = &fs_info->swapfile_pins.rb_node;
9676 	while (*p) {
9677 		parent = *p;
9678 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9679 		if (sp->ptr < entry->ptr ||
9680 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9681 			p = &(*p)->rb_left;
9682 		} else if (sp->ptr > entry->ptr ||
9683 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9684 			p = &(*p)->rb_right;
9685 		} else {
9686 			if (is_block_group)
9687 				entry->bg_extent_count++;
9688 			spin_unlock(&fs_info->swapfile_pins_lock);
9689 			kfree(sp);
9690 			return 1;
9691 		}
9692 	}
9693 	rb_link_node(&sp->node, parent, p);
9694 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9695 	spin_unlock(&fs_info->swapfile_pins_lock);
9696 	return 0;
9697 }
9698 
9699 /* Free all of the entries pinned by this swapfile. */
9700 static void btrfs_free_swapfile_pins(struct inode *inode)
9701 {
9702 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9703 	struct btrfs_swapfile_pin *sp;
9704 	struct rb_node *node, *next;
9705 
9706 	spin_lock(&fs_info->swapfile_pins_lock);
9707 	node = rb_first(&fs_info->swapfile_pins);
9708 	while (node) {
9709 		next = rb_next(node);
9710 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9711 		if (sp->inode == inode) {
9712 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9713 			if (sp->is_block_group) {
9714 				btrfs_dec_block_group_swap_extents(sp->ptr,
9715 							   sp->bg_extent_count);
9716 				btrfs_put_block_group(sp->ptr);
9717 			}
9718 			kfree(sp);
9719 		}
9720 		node = next;
9721 	}
9722 	spin_unlock(&fs_info->swapfile_pins_lock);
9723 }
9724 
9725 struct btrfs_swap_info {
9726 	u64 start;
9727 	u64 block_start;
9728 	u64 block_len;
9729 	u64 lowest_ppage;
9730 	u64 highest_ppage;
9731 	unsigned long nr_pages;
9732 	int nr_extents;
9733 };
9734 
9735 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9736 				 struct btrfs_swap_info *bsi)
9737 {
9738 	unsigned long nr_pages;
9739 	unsigned long max_pages;
9740 	u64 first_ppage, first_ppage_reported, next_ppage;
9741 	int ret;
9742 
9743 	/*
9744 	 * Our swapfile may have had its size extended after the swap header was
9745 	 * written. In that case activating the swapfile should not go beyond
9746 	 * the max size set in the swap header.
9747 	 */
9748 	if (bsi->nr_pages >= sis->max)
9749 		return 0;
9750 
9751 	max_pages = sis->max - bsi->nr_pages;
9752 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9753 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9754 
9755 	if (first_ppage >= next_ppage)
9756 		return 0;
9757 	nr_pages = next_ppage - first_ppage;
9758 	nr_pages = min(nr_pages, max_pages);
9759 
9760 	first_ppage_reported = first_ppage;
9761 	if (bsi->start == 0)
9762 		first_ppage_reported++;
9763 	if (bsi->lowest_ppage > first_ppage_reported)
9764 		bsi->lowest_ppage = first_ppage_reported;
9765 	if (bsi->highest_ppage < (next_ppage - 1))
9766 		bsi->highest_ppage = next_ppage - 1;
9767 
9768 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9769 	if (ret < 0)
9770 		return ret;
9771 	bsi->nr_extents += ret;
9772 	bsi->nr_pages += nr_pages;
9773 	return 0;
9774 }
9775 
9776 static void btrfs_swap_deactivate(struct file *file)
9777 {
9778 	struct inode *inode = file_inode(file);
9779 
9780 	btrfs_free_swapfile_pins(inode);
9781 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9782 }
9783 
9784 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9785 			       sector_t *span)
9786 {
9787 	struct inode *inode = file_inode(file);
9788 	struct btrfs_root *root = BTRFS_I(inode)->root;
9789 	struct btrfs_fs_info *fs_info = root->fs_info;
9790 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9791 	struct extent_state *cached_state = NULL;
9792 	struct extent_map *em = NULL;
9793 	struct btrfs_chunk_map *map = NULL;
9794 	struct btrfs_device *device = NULL;
9795 	struct btrfs_swap_info bsi = {
9796 		.lowest_ppage = (sector_t)-1ULL,
9797 	};
9798 	int ret = 0;
9799 	u64 isize;
9800 	u64 start;
9801 
9802 	/*
9803 	 * If the swap file was just created, make sure delalloc is done. If the
9804 	 * file changes again after this, the user is doing something stupid and
9805 	 * we don't really care.
9806 	 */
9807 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9808 	if (ret)
9809 		return ret;
9810 
9811 	/*
9812 	 * The inode is locked, so these flags won't change after we check them.
9813 	 */
9814 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9815 		btrfs_warn(fs_info, "swapfile must not be compressed");
9816 		return -EINVAL;
9817 	}
9818 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9819 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9820 		return -EINVAL;
9821 	}
9822 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9823 		btrfs_warn(fs_info, "swapfile must not be checksummed");
9824 		return -EINVAL;
9825 	}
9826 
9827 	/*
9828 	 * Balance or device remove/replace/resize can move stuff around from
9829 	 * under us. The exclop protection makes sure they aren't running/won't
9830 	 * run concurrently while we are mapping the swap extents, and
9831 	 * fs_info->swapfile_pins prevents them from running while the swap
9832 	 * file is active and moving the extents. Note that this also prevents
9833 	 * a concurrent device add which isn't actually necessary, but it's not
9834 	 * really worth the trouble to allow it.
9835 	 */
9836 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9837 		btrfs_warn(fs_info,
9838 	   "cannot activate swapfile while exclusive operation is running");
9839 		return -EBUSY;
9840 	}
9841 
9842 	/*
9843 	 * Prevent snapshot creation while we are activating the swap file.
9844 	 * We do not want to race with snapshot creation. If snapshot creation
9845 	 * already started before we bumped nr_swapfiles from 0 to 1 and
9846 	 * completes before the first write into the swap file after it is
9847 	 * activated, than that write would fallback to COW.
9848 	 */
9849 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9850 		btrfs_exclop_finish(fs_info);
9851 		btrfs_warn(fs_info,
9852 	   "cannot activate swapfile because snapshot creation is in progress");
9853 		return -EINVAL;
9854 	}
9855 	/*
9856 	 * Snapshots can create extents which require COW even if NODATACOW is
9857 	 * set. We use this counter to prevent snapshots. We must increment it
9858 	 * before walking the extents because we don't want a concurrent
9859 	 * snapshot to run after we've already checked the extents.
9860 	 *
9861 	 * It is possible that subvolume is marked for deletion but still not
9862 	 * removed yet. To prevent this race, we check the root status before
9863 	 * activating the swapfile.
9864 	 */
9865 	spin_lock(&root->root_item_lock);
9866 	if (btrfs_root_dead(root)) {
9867 		spin_unlock(&root->root_item_lock);
9868 
9869 		btrfs_exclop_finish(fs_info);
9870 		btrfs_warn(fs_info,
9871 		"cannot activate swapfile because subvolume %llu is being deleted",
9872 			btrfs_root_id(root));
9873 		return -EPERM;
9874 	}
9875 	atomic_inc(&root->nr_swapfiles);
9876 	spin_unlock(&root->root_item_lock);
9877 
9878 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9879 
9880 	lock_extent(io_tree, 0, isize - 1, &cached_state);
9881 	start = 0;
9882 	while (start < isize) {
9883 		u64 logical_block_start, physical_block_start;
9884 		struct btrfs_block_group *bg;
9885 		u64 len = isize - start;
9886 
9887 		em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
9888 		if (IS_ERR(em)) {
9889 			ret = PTR_ERR(em);
9890 			goto out;
9891 		}
9892 
9893 		if (em->disk_bytenr == EXTENT_MAP_HOLE) {
9894 			btrfs_warn(fs_info, "swapfile must not have holes");
9895 			ret = -EINVAL;
9896 			goto out;
9897 		}
9898 		if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9899 			/*
9900 			 * It's unlikely we'll ever actually find ourselves
9901 			 * here, as a file small enough to fit inline won't be
9902 			 * big enough to store more than the swap header, but in
9903 			 * case something changes in the future, let's catch it
9904 			 * here rather than later.
9905 			 */
9906 			btrfs_warn(fs_info, "swapfile must not be inline");
9907 			ret = -EINVAL;
9908 			goto out;
9909 		}
9910 		if (extent_map_is_compressed(em)) {
9911 			btrfs_warn(fs_info, "swapfile must not be compressed");
9912 			ret = -EINVAL;
9913 			goto out;
9914 		}
9915 
9916 		logical_block_start = extent_map_block_start(em) + (start - em->start);
9917 		len = min(len, em->len - (start - em->start));
9918 		free_extent_map(em);
9919 		em = NULL;
9920 
9921 		ret = can_nocow_extent(inode, start, &len, NULL, false, true);
9922 		if (ret < 0) {
9923 			goto out;
9924 		} else if (ret) {
9925 			ret = 0;
9926 		} else {
9927 			btrfs_warn(fs_info,
9928 				   "swapfile must not be copy-on-write");
9929 			ret = -EINVAL;
9930 			goto out;
9931 		}
9932 
9933 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
9934 		if (IS_ERR(map)) {
9935 			ret = PTR_ERR(map);
9936 			goto out;
9937 		}
9938 
9939 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
9940 			btrfs_warn(fs_info,
9941 				   "swapfile must have single data profile");
9942 			ret = -EINVAL;
9943 			goto out;
9944 		}
9945 
9946 		if (device == NULL) {
9947 			device = map->stripes[0].dev;
9948 			ret = btrfs_add_swapfile_pin(inode, device, false);
9949 			if (ret == 1)
9950 				ret = 0;
9951 			else if (ret)
9952 				goto out;
9953 		} else if (device != map->stripes[0].dev) {
9954 			btrfs_warn(fs_info, "swapfile must be on one device");
9955 			ret = -EINVAL;
9956 			goto out;
9957 		}
9958 
9959 		physical_block_start = (map->stripes[0].physical +
9960 					(logical_block_start - map->start));
9961 		len = min(len, map->chunk_len - (logical_block_start - map->start));
9962 		btrfs_free_chunk_map(map);
9963 		map = NULL;
9964 
9965 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
9966 		if (!bg) {
9967 			btrfs_warn(fs_info,
9968 			   "could not find block group containing swapfile");
9969 			ret = -EINVAL;
9970 			goto out;
9971 		}
9972 
9973 		if (!btrfs_inc_block_group_swap_extents(bg)) {
9974 			btrfs_warn(fs_info,
9975 			   "block group for swapfile at %llu is read-only%s",
9976 			   bg->start,
9977 			   atomic_read(&fs_info->scrubs_running) ?
9978 				       " (scrub running)" : "");
9979 			btrfs_put_block_group(bg);
9980 			ret = -EINVAL;
9981 			goto out;
9982 		}
9983 
9984 		ret = btrfs_add_swapfile_pin(inode, bg, true);
9985 		if (ret) {
9986 			btrfs_put_block_group(bg);
9987 			if (ret == 1)
9988 				ret = 0;
9989 			else
9990 				goto out;
9991 		}
9992 
9993 		if (bsi.block_len &&
9994 		    bsi.block_start + bsi.block_len == physical_block_start) {
9995 			bsi.block_len += len;
9996 		} else {
9997 			if (bsi.block_len) {
9998 				ret = btrfs_add_swap_extent(sis, &bsi);
9999 				if (ret)
10000 					goto out;
10001 			}
10002 			bsi.start = start;
10003 			bsi.block_start = physical_block_start;
10004 			bsi.block_len = len;
10005 		}
10006 
10007 		start += len;
10008 	}
10009 
10010 	if (bsi.block_len)
10011 		ret = btrfs_add_swap_extent(sis, &bsi);
10012 
10013 out:
10014 	if (!IS_ERR_OR_NULL(em))
10015 		free_extent_map(em);
10016 	if (!IS_ERR_OR_NULL(map))
10017 		btrfs_free_chunk_map(map);
10018 
10019 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10020 
10021 	if (ret)
10022 		btrfs_swap_deactivate(file);
10023 
10024 	btrfs_drew_write_unlock(&root->snapshot_lock);
10025 
10026 	btrfs_exclop_finish(fs_info);
10027 
10028 	if (ret)
10029 		return ret;
10030 
10031 	if (device)
10032 		sis->bdev = device->bdev;
10033 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10034 	sis->max = bsi.nr_pages;
10035 	sis->pages = bsi.nr_pages - 1;
10036 	sis->highest_bit = bsi.nr_pages - 1;
10037 	return bsi.nr_extents;
10038 }
10039 #else
10040 static void btrfs_swap_deactivate(struct file *file)
10041 {
10042 }
10043 
10044 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10045 			       sector_t *span)
10046 {
10047 	return -EOPNOTSUPP;
10048 }
10049 #endif
10050 
10051 /*
10052  * Update the number of bytes used in the VFS' inode. When we replace extents in
10053  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10054  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10055  * always get a correct value.
10056  */
10057 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10058 			      const u64 add_bytes,
10059 			      const u64 del_bytes)
10060 {
10061 	if (add_bytes == del_bytes)
10062 		return;
10063 
10064 	spin_lock(&inode->lock);
10065 	if (del_bytes > 0)
10066 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10067 	if (add_bytes > 0)
10068 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10069 	spin_unlock(&inode->lock);
10070 }
10071 
10072 /*
10073  * Verify that there are no ordered extents for a given file range.
10074  *
10075  * @inode:   The target inode.
10076  * @start:   Start offset of the file range, should be sector size aligned.
10077  * @end:     End offset (inclusive) of the file range, its value +1 should be
10078  *           sector size aligned.
10079  *
10080  * This should typically be used for cases where we locked an inode's VFS lock in
10081  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10082  * we have flushed all delalloc in the range, we have waited for all ordered
10083  * extents in the range to complete and finally we have locked the file range in
10084  * the inode's io_tree.
10085  */
10086 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10087 {
10088 	struct btrfs_root *root = inode->root;
10089 	struct btrfs_ordered_extent *ordered;
10090 
10091 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10092 		return;
10093 
10094 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10095 	if (ordered) {
10096 		btrfs_err(root->fs_info,
10097 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10098 			  start, end, btrfs_ino(inode), btrfs_root_id(root),
10099 			  ordered->file_offset,
10100 			  ordered->file_offset + ordered->num_bytes - 1);
10101 		btrfs_put_ordered_extent(ordered);
10102 	}
10103 
10104 	ASSERT(ordered == NULL);
10105 }
10106 
10107 /*
10108  * Find the first inode with a minimum number.
10109  *
10110  * @root:	The root to search for.
10111  * @min_ino:	The minimum inode number.
10112  *
10113  * Find the first inode in the @root with a number >= @min_ino and return it.
10114  * Returns NULL if no such inode found.
10115  */
10116 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10117 {
10118 	struct btrfs_inode *inode;
10119 	unsigned long from = min_ino;
10120 
10121 	xa_lock(&root->inodes);
10122 	while (true) {
10123 		inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10124 		if (!inode)
10125 			break;
10126 		if (igrab(&inode->vfs_inode))
10127 			break;
10128 
10129 		from = btrfs_ino(inode) + 1;
10130 		cond_resched_lock(&root->inodes.xa_lock);
10131 	}
10132 	xa_unlock(&root->inodes);
10133 
10134 	return inode;
10135 }
10136 
10137 static const struct inode_operations btrfs_dir_inode_operations = {
10138 	.getattr	= btrfs_getattr,
10139 	.lookup		= btrfs_lookup,
10140 	.create		= btrfs_create,
10141 	.unlink		= btrfs_unlink,
10142 	.link		= btrfs_link,
10143 	.mkdir		= btrfs_mkdir,
10144 	.rmdir		= btrfs_rmdir,
10145 	.rename		= btrfs_rename2,
10146 	.symlink	= btrfs_symlink,
10147 	.setattr	= btrfs_setattr,
10148 	.mknod		= btrfs_mknod,
10149 	.listxattr	= btrfs_listxattr,
10150 	.permission	= btrfs_permission,
10151 	.get_inode_acl	= btrfs_get_acl,
10152 	.set_acl	= btrfs_set_acl,
10153 	.update_time	= btrfs_update_time,
10154 	.tmpfile        = btrfs_tmpfile,
10155 	.fileattr_get	= btrfs_fileattr_get,
10156 	.fileattr_set	= btrfs_fileattr_set,
10157 };
10158 
10159 static const struct file_operations btrfs_dir_file_operations = {
10160 	.llseek		= btrfs_dir_llseek,
10161 	.read		= generic_read_dir,
10162 	.iterate_shared	= btrfs_real_readdir,
10163 	.open		= btrfs_opendir,
10164 	.unlocked_ioctl	= btrfs_ioctl,
10165 #ifdef CONFIG_COMPAT
10166 	.compat_ioctl	= btrfs_compat_ioctl,
10167 #endif
10168 	.release        = btrfs_release_file,
10169 	.fsync		= btrfs_sync_file,
10170 };
10171 
10172 /*
10173  * btrfs doesn't support the bmap operation because swapfiles
10174  * use bmap to make a mapping of extents in the file.  They assume
10175  * these extents won't change over the life of the file and they
10176  * use the bmap result to do IO directly to the drive.
10177  *
10178  * the btrfs bmap call would return logical addresses that aren't
10179  * suitable for IO and they also will change frequently as COW
10180  * operations happen.  So, swapfile + btrfs == corruption.
10181  *
10182  * For now we're avoiding this by dropping bmap.
10183  */
10184 static const struct address_space_operations btrfs_aops = {
10185 	.read_folio	= btrfs_read_folio,
10186 	.writepages	= btrfs_writepages,
10187 	.readahead	= btrfs_readahead,
10188 	.invalidate_folio = btrfs_invalidate_folio,
10189 	.launder_folio	= btrfs_launder_folio,
10190 	.release_folio	= btrfs_release_folio,
10191 	.migrate_folio	= btrfs_migrate_folio,
10192 	.dirty_folio	= filemap_dirty_folio,
10193 	.error_remove_folio = generic_error_remove_folio,
10194 	.swap_activate	= btrfs_swap_activate,
10195 	.swap_deactivate = btrfs_swap_deactivate,
10196 };
10197 
10198 static const struct inode_operations btrfs_file_inode_operations = {
10199 	.getattr	= btrfs_getattr,
10200 	.setattr	= btrfs_setattr,
10201 	.listxattr      = btrfs_listxattr,
10202 	.permission	= btrfs_permission,
10203 	.fiemap		= btrfs_fiemap,
10204 	.get_inode_acl	= btrfs_get_acl,
10205 	.set_acl	= btrfs_set_acl,
10206 	.update_time	= btrfs_update_time,
10207 	.fileattr_get	= btrfs_fileattr_get,
10208 	.fileattr_set	= btrfs_fileattr_set,
10209 };
10210 static const struct inode_operations btrfs_special_inode_operations = {
10211 	.getattr	= btrfs_getattr,
10212 	.setattr	= btrfs_setattr,
10213 	.permission	= btrfs_permission,
10214 	.listxattr	= btrfs_listxattr,
10215 	.get_inode_acl	= btrfs_get_acl,
10216 	.set_acl	= btrfs_set_acl,
10217 	.update_time	= btrfs_update_time,
10218 };
10219 static const struct inode_operations btrfs_symlink_inode_operations = {
10220 	.get_link	= page_get_link,
10221 	.getattr	= btrfs_getattr,
10222 	.setattr	= btrfs_setattr,
10223 	.permission	= btrfs_permission,
10224 	.listxattr	= btrfs_listxattr,
10225 	.update_time	= btrfs_update_time,
10226 };
10227 
10228 const struct dentry_operations btrfs_dentry_operations = {
10229 	.d_delete	= btrfs_dentry_delete,
10230 };
10231