1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct page *locked_page, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 struct page *locked_page, 397 u64 offset, u64 bytes) 398 { 399 unsigned long index = offset >> PAGE_SHIFT; 400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 401 u64 page_start = 0, page_end = 0; 402 struct page *page; 403 404 if (locked_page) { 405 page_start = page_offset(locked_page); 406 page_end = page_start + PAGE_SIZE - 1; 407 } 408 409 while (index <= end_index) { 410 /* 411 * For locked page, we will call btrfs_mark_ordered_io_finished 412 * through btrfs_mark_ordered_io_finished() on it 413 * in run_delalloc_range() for the error handling, which will 414 * clear page Ordered and run the ordered extent accounting. 415 * 416 * Here we can't just clear the Ordered bit, or 417 * btrfs_mark_ordered_io_finished() would skip the accounting 418 * for the page range, and the ordered extent will never finish. 419 */ 420 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 421 index++; 422 continue; 423 } 424 page = find_get_page(inode->vfs_inode.i_mapping, index); 425 index++; 426 if (!page) 427 continue; 428 429 /* 430 * Here we just clear all Ordered bits for every page in the 431 * range, then btrfs_mark_ordered_io_finished() will handle 432 * the ordered extent accounting for the range. 433 */ 434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, 435 page_folio(page), offset, bytes); 436 put_page(page); 437 } 438 439 if (locked_page) { 440 /* The locked page covers the full range, nothing needs to be done */ 441 if (bytes + offset <= page_start + PAGE_SIZE) 442 return; 443 /* 444 * In case this page belongs to the delalloc range being 445 * instantiated then skip it, since the first page of a range is 446 * going to be properly cleaned up by the caller of 447 * run_delalloc_range 448 */ 449 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 450 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 451 offset = page_offset(locked_page) + PAGE_SIZE; 452 } 453 } 454 455 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 456 } 457 458 static int btrfs_dirty_inode(struct btrfs_inode *inode); 459 460 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 461 struct btrfs_new_inode_args *args) 462 { 463 int err; 464 465 if (args->default_acl) { 466 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 467 ACL_TYPE_DEFAULT); 468 if (err) 469 return err; 470 } 471 if (args->acl) { 472 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 473 if (err) 474 return err; 475 } 476 if (!args->default_acl && !args->acl) 477 cache_no_acl(args->inode); 478 return btrfs_xattr_security_init(trans, args->inode, args->dir, 479 &args->dentry->d_name); 480 } 481 482 /* 483 * this does all the hard work for inserting an inline extent into 484 * the btree. The caller should have done a btrfs_drop_extents so that 485 * no overlapping inline items exist in the btree 486 */ 487 static int insert_inline_extent(struct btrfs_trans_handle *trans, 488 struct btrfs_path *path, 489 struct btrfs_inode *inode, bool extent_inserted, 490 size_t size, size_t compressed_size, 491 int compress_type, 492 struct folio *compressed_folio, 493 bool update_i_size) 494 { 495 struct btrfs_root *root = inode->root; 496 struct extent_buffer *leaf; 497 struct page *page = NULL; 498 const u32 sectorsize = trans->fs_info->sectorsize; 499 char *kaddr; 500 unsigned long ptr; 501 struct btrfs_file_extent_item *ei; 502 int ret; 503 size_t cur_size = size; 504 u64 i_size; 505 506 /* 507 * The decompressed size must still be no larger than a sector. Under 508 * heavy race, we can have size == 0 passed in, but that shouldn't be a 509 * big deal and we can continue the insertion. 510 */ 511 ASSERT(size <= sectorsize); 512 513 /* 514 * The compressed size also needs to be no larger than a sector. 515 * That's also why we only need one page as the parameter. 516 */ 517 if (compressed_folio) 518 ASSERT(compressed_size <= sectorsize); 519 else 520 ASSERT(compressed_size == 0); 521 522 if (compressed_size && compressed_folio) 523 cur_size = compressed_size; 524 525 if (!extent_inserted) { 526 struct btrfs_key key; 527 size_t datasize; 528 529 key.objectid = btrfs_ino(inode); 530 key.offset = 0; 531 key.type = BTRFS_EXTENT_DATA_KEY; 532 533 datasize = btrfs_file_extent_calc_inline_size(cur_size); 534 ret = btrfs_insert_empty_item(trans, root, path, &key, 535 datasize); 536 if (ret) 537 goto fail; 538 } 539 leaf = path->nodes[0]; 540 ei = btrfs_item_ptr(leaf, path->slots[0], 541 struct btrfs_file_extent_item); 542 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 544 btrfs_set_file_extent_encryption(leaf, ei, 0); 545 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 546 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 547 ptr = btrfs_file_extent_inline_start(ei); 548 549 if (compress_type != BTRFS_COMPRESS_NONE) { 550 kaddr = kmap_local_folio(compressed_folio, 0); 551 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 552 kunmap_local(kaddr); 553 554 btrfs_set_file_extent_compression(leaf, ei, 555 compress_type); 556 } else { 557 page = find_get_page(inode->vfs_inode.i_mapping, 0); 558 btrfs_set_file_extent_compression(leaf, ei, 0); 559 kaddr = kmap_local_page(page); 560 write_extent_buffer(leaf, kaddr, ptr, size); 561 kunmap_local(kaddr); 562 put_page(page); 563 } 564 btrfs_mark_buffer_dirty(trans, leaf); 565 btrfs_release_path(path); 566 567 /* 568 * We align size to sectorsize for inline extents just for simplicity 569 * sake. 570 */ 571 ret = btrfs_inode_set_file_extent_range(inode, 0, 572 ALIGN(size, root->fs_info->sectorsize)); 573 if (ret) 574 goto fail; 575 576 /* 577 * We're an inline extent, so nobody can extend the file past i_size 578 * without locking a page we already have locked. 579 * 580 * We must do any i_size and inode updates before we unlock the pages. 581 * Otherwise we could end up racing with unlink. 582 */ 583 i_size = i_size_read(&inode->vfs_inode); 584 if (update_i_size && size > i_size) { 585 i_size_write(&inode->vfs_inode, size); 586 i_size = size; 587 } 588 inode->disk_i_size = i_size; 589 590 fail: 591 return ret; 592 } 593 594 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 595 u64 offset, u64 size, 596 size_t compressed_size) 597 { 598 struct btrfs_fs_info *fs_info = inode->root->fs_info; 599 u64 data_len = (compressed_size ?: size); 600 601 /* Inline extents must start at offset 0. */ 602 if (offset != 0) 603 return false; 604 605 /* 606 * Due to the page size limit, for subpage we can only trigger the 607 * writeback for the dirty sectors of page, that means data writeback 608 * is doing more writeback than what we want. 609 * 610 * This is especially unexpected for some call sites like fallocate, 611 * where we only increase i_size after everything is done. 612 * This means we can trigger inline extent even if we didn't want to. 613 * So here we skip inline extent creation completely. 614 */ 615 if (fs_info->sectorsize != PAGE_SIZE) 616 return false; 617 618 /* Inline extents are limited to sectorsize. */ 619 if (size > fs_info->sectorsize) 620 return false; 621 622 /* We cannot exceed the maximum inline data size. */ 623 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 624 return false; 625 626 /* We cannot exceed the user specified max_inline size. */ 627 if (data_len > fs_info->max_inline) 628 return false; 629 630 /* Inline extents must be the entirety of the file. */ 631 if (size < i_size_read(&inode->vfs_inode)) 632 return false; 633 634 return true; 635 } 636 637 /* 638 * conditionally insert an inline extent into the file. This 639 * does the checks required to make sure the data is small enough 640 * to fit as an inline extent. 641 * 642 * If being used directly, you must have already checked we're allowed to cow 643 * the range by getting true from can_cow_file_range_inline(). 644 */ 645 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset, 646 u64 size, size_t compressed_size, 647 int compress_type, 648 struct folio *compressed_folio, 649 bool update_i_size) 650 { 651 struct btrfs_drop_extents_args drop_args = { 0 }; 652 struct btrfs_root *root = inode->root; 653 struct btrfs_fs_info *fs_info = root->fs_info; 654 struct btrfs_trans_handle *trans; 655 u64 data_len = (compressed_size ?: size); 656 int ret; 657 struct btrfs_path *path; 658 659 path = btrfs_alloc_path(); 660 if (!path) 661 return -ENOMEM; 662 663 trans = btrfs_join_transaction(root); 664 if (IS_ERR(trans)) { 665 btrfs_free_path(path); 666 return PTR_ERR(trans); 667 } 668 trans->block_rsv = &inode->block_rsv; 669 670 drop_args.path = path; 671 drop_args.start = 0; 672 drop_args.end = fs_info->sectorsize; 673 drop_args.drop_cache = true; 674 drop_args.replace_extent = true; 675 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 676 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 677 if (ret) { 678 btrfs_abort_transaction(trans, ret); 679 goto out; 680 } 681 682 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 683 size, compressed_size, compress_type, 684 compressed_folio, update_i_size); 685 if (ret && ret != -ENOSPC) { 686 btrfs_abort_transaction(trans, ret); 687 goto out; 688 } else if (ret == -ENOSPC) { 689 ret = 1; 690 goto out; 691 } 692 693 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 694 ret = btrfs_update_inode(trans, inode); 695 if (ret && ret != -ENOSPC) { 696 btrfs_abort_transaction(trans, ret); 697 goto out; 698 } else if (ret == -ENOSPC) { 699 ret = 1; 700 goto out; 701 } 702 703 btrfs_set_inode_full_sync(inode); 704 out: 705 /* 706 * Don't forget to free the reserved space, as for inlined extent 707 * it won't count as data extent, free them directly here. 708 * And at reserve time, it's always aligned to page size, so 709 * just free one page here. 710 */ 711 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 712 btrfs_free_path(path); 713 btrfs_end_transaction(trans); 714 return ret; 715 } 716 717 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 718 struct page *locked_page, 719 u64 offset, u64 end, 720 size_t compressed_size, 721 int compress_type, 722 struct folio *compressed_folio, 723 bool update_i_size) 724 { 725 struct extent_state *cached = NULL; 726 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 727 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 728 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 729 int ret; 730 731 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 732 return 1; 733 734 lock_extent(&inode->io_tree, offset, end, &cached); 735 ret = __cow_file_range_inline(inode, offset, size, compressed_size, 736 compress_type, compressed_folio, 737 update_i_size); 738 if (ret > 0) { 739 unlock_extent(&inode->io_tree, offset, end, &cached); 740 return ret; 741 } 742 743 if (ret == 0) 744 locked_page = NULL; 745 746 extent_clear_unlock_delalloc(inode, offset, end, locked_page, &cached, 747 clear_flags, 748 PAGE_UNLOCK | PAGE_START_WRITEBACK | 749 PAGE_END_WRITEBACK); 750 return ret; 751 } 752 753 struct async_extent { 754 u64 start; 755 u64 ram_size; 756 u64 compressed_size; 757 struct folio **folios; 758 unsigned long nr_folios; 759 int compress_type; 760 struct list_head list; 761 }; 762 763 struct async_chunk { 764 struct btrfs_inode *inode; 765 struct page *locked_page; 766 u64 start; 767 u64 end; 768 blk_opf_t write_flags; 769 struct list_head extents; 770 struct cgroup_subsys_state *blkcg_css; 771 struct btrfs_work work; 772 struct async_cow *async_cow; 773 }; 774 775 struct async_cow { 776 atomic_t num_chunks; 777 struct async_chunk chunks[]; 778 }; 779 780 static noinline int add_async_extent(struct async_chunk *cow, 781 u64 start, u64 ram_size, 782 u64 compressed_size, 783 struct folio **folios, 784 unsigned long nr_folios, 785 int compress_type) 786 { 787 struct async_extent *async_extent; 788 789 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 790 if (!async_extent) 791 return -ENOMEM; 792 async_extent->start = start; 793 async_extent->ram_size = ram_size; 794 async_extent->compressed_size = compressed_size; 795 async_extent->folios = folios; 796 async_extent->nr_folios = nr_folios; 797 async_extent->compress_type = compress_type; 798 list_add_tail(&async_extent->list, &cow->extents); 799 return 0; 800 } 801 802 /* 803 * Check if the inode needs to be submitted to compression, based on mount 804 * options, defragmentation, properties or heuristics. 805 */ 806 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 807 u64 end) 808 { 809 struct btrfs_fs_info *fs_info = inode->root->fs_info; 810 811 if (!btrfs_inode_can_compress(inode)) { 812 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 813 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 814 btrfs_ino(inode)); 815 return 0; 816 } 817 /* 818 * Special check for subpage. 819 * 820 * We lock the full page then run each delalloc range in the page, thus 821 * for the following case, we will hit some subpage specific corner case: 822 * 823 * 0 32K 64K 824 * | |///////| |///////| 825 * \- A \- B 826 * 827 * In above case, both range A and range B will try to unlock the full 828 * page [0, 64K), causing the one finished later will have page 829 * unlocked already, triggering various page lock requirement BUG_ON()s. 830 * 831 * So here we add an artificial limit that subpage compression can only 832 * if the range is fully page aligned. 833 * 834 * In theory we only need to ensure the first page is fully covered, but 835 * the tailing partial page will be locked until the full compression 836 * finishes, delaying the write of other range. 837 * 838 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 839 * first to prevent any submitted async extent to unlock the full page. 840 * By this, we can ensure for subpage case that only the last async_cow 841 * will unlock the full page. 842 */ 843 if (fs_info->sectorsize < PAGE_SIZE) { 844 if (!PAGE_ALIGNED(start) || 845 !PAGE_ALIGNED(end + 1)) 846 return 0; 847 } 848 849 /* force compress */ 850 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 851 return 1; 852 /* defrag ioctl */ 853 if (inode->defrag_compress) 854 return 1; 855 /* bad compression ratios */ 856 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 857 return 0; 858 if (btrfs_test_opt(fs_info, COMPRESS) || 859 inode->flags & BTRFS_INODE_COMPRESS || 860 inode->prop_compress) 861 return btrfs_compress_heuristic(inode, start, end); 862 return 0; 863 } 864 865 static inline void inode_should_defrag(struct btrfs_inode *inode, 866 u64 start, u64 end, u64 num_bytes, u32 small_write) 867 { 868 /* If this is a small write inside eof, kick off a defrag */ 869 if (num_bytes < small_write && 870 (start > 0 || end + 1 < inode->disk_i_size)) 871 btrfs_add_inode_defrag(NULL, inode, small_write); 872 } 873 874 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 875 { 876 unsigned long end_index = end >> PAGE_SHIFT; 877 struct page *page; 878 int ret = 0; 879 880 for (unsigned long index = start >> PAGE_SHIFT; 881 index <= end_index; index++) { 882 page = find_get_page(inode->i_mapping, index); 883 if (unlikely(!page)) { 884 if (!ret) 885 ret = -ENOENT; 886 continue; 887 } 888 clear_page_dirty_for_io(page); 889 put_page(page); 890 } 891 return ret; 892 } 893 894 /* 895 * Work queue call back to started compression on a file and pages. 896 * 897 * This is done inside an ordered work queue, and the compression is spread 898 * across many cpus. The actual IO submission is step two, and the ordered work 899 * queue takes care of making sure that happens in the same order things were 900 * put onto the queue by writepages and friends. 901 * 902 * If this code finds it can't get good compression, it puts an entry onto the 903 * work queue to write the uncompressed bytes. This makes sure that both 904 * compressed inodes and uncompressed inodes are written in the same order that 905 * the flusher thread sent them down. 906 */ 907 static void compress_file_range(struct btrfs_work *work) 908 { 909 struct async_chunk *async_chunk = 910 container_of(work, struct async_chunk, work); 911 struct btrfs_inode *inode = async_chunk->inode; 912 struct btrfs_fs_info *fs_info = inode->root->fs_info; 913 struct address_space *mapping = inode->vfs_inode.i_mapping; 914 u64 blocksize = fs_info->sectorsize; 915 u64 start = async_chunk->start; 916 u64 end = async_chunk->end; 917 u64 actual_end; 918 u64 i_size; 919 int ret = 0; 920 struct folio **folios; 921 unsigned long nr_folios; 922 unsigned long total_compressed = 0; 923 unsigned long total_in = 0; 924 unsigned int poff; 925 int i; 926 int compress_type = fs_info->compress_type; 927 928 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 929 930 /* 931 * We need to call clear_page_dirty_for_io on each page in the range. 932 * Otherwise applications with the file mmap'd can wander in and change 933 * the page contents while we are compressing them. 934 */ 935 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 936 937 /* 938 * All the folios should have been locked thus no failure. 939 * 940 * And even if some folios are missing, btrfs_compress_folios() 941 * would handle them correctly, so here just do an ASSERT() check for 942 * early logic errors. 943 */ 944 ASSERT(ret == 0); 945 946 /* 947 * We need to save i_size before now because it could change in between 948 * us evaluating the size and assigning it. This is because we lock and 949 * unlock the page in truncate and fallocate, and then modify the i_size 950 * later on. 951 * 952 * The barriers are to emulate READ_ONCE, remove that once i_size_read 953 * does that for us. 954 */ 955 barrier(); 956 i_size = i_size_read(&inode->vfs_inode); 957 barrier(); 958 actual_end = min_t(u64, i_size, end + 1); 959 again: 960 folios = NULL; 961 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 962 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 963 964 /* 965 * we don't want to send crud past the end of i_size through 966 * compression, that's just a waste of CPU time. So, if the 967 * end of the file is before the start of our current 968 * requested range of bytes, we bail out to the uncompressed 969 * cleanup code that can deal with all of this. 970 * 971 * It isn't really the fastest way to fix things, but this is a 972 * very uncommon corner. 973 */ 974 if (actual_end <= start) 975 goto cleanup_and_bail_uncompressed; 976 977 total_compressed = actual_end - start; 978 979 /* 980 * Skip compression for a small file range(<=blocksize) that 981 * isn't an inline extent, since it doesn't save disk space at all. 982 */ 983 if (total_compressed <= blocksize && 984 (start > 0 || end + 1 < inode->disk_i_size)) 985 goto cleanup_and_bail_uncompressed; 986 987 /* 988 * For subpage case, we require full page alignment for the sector 989 * aligned range. 990 * Thus we must also check against @actual_end, not just @end. 991 */ 992 if (blocksize < PAGE_SIZE) { 993 if (!PAGE_ALIGNED(start) || 994 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 995 goto cleanup_and_bail_uncompressed; 996 } 997 998 total_compressed = min_t(unsigned long, total_compressed, 999 BTRFS_MAX_UNCOMPRESSED); 1000 total_in = 0; 1001 ret = 0; 1002 1003 /* 1004 * We do compression for mount -o compress and when the inode has not 1005 * been flagged as NOCOMPRESS. This flag can change at any time if we 1006 * discover bad compression ratios. 1007 */ 1008 if (!inode_need_compress(inode, start, end)) 1009 goto cleanup_and_bail_uncompressed; 1010 1011 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 1012 if (!folios) { 1013 /* 1014 * Memory allocation failure is not a fatal error, we can fall 1015 * back to uncompressed code. 1016 */ 1017 goto cleanup_and_bail_uncompressed; 1018 } 1019 1020 if (inode->defrag_compress) 1021 compress_type = inode->defrag_compress; 1022 else if (inode->prop_compress) 1023 compress_type = inode->prop_compress; 1024 1025 /* Compression level is applied here. */ 1026 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4), 1027 mapping, start, folios, &nr_folios, &total_in, 1028 &total_compressed); 1029 if (ret) 1030 goto mark_incompressible; 1031 1032 /* 1033 * Zero the tail end of the last page, as we might be sending it down 1034 * to disk. 1035 */ 1036 poff = offset_in_page(total_compressed); 1037 if (poff) 1038 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 1039 1040 /* 1041 * Try to create an inline extent. 1042 * 1043 * If we didn't compress the entire range, try to create an uncompressed 1044 * inline extent, else a compressed one. 1045 * 1046 * Check cow_file_range() for why we don't even try to create inline 1047 * extent for the subpage case. 1048 */ 1049 if (total_in < actual_end) 1050 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1051 BTRFS_COMPRESS_NONE, NULL, false); 1052 else 1053 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1054 compress_type, folios[0], false); 1055 if (ret <= 0) { 1056 if (ret < 0) 1057 mapping_set_error(mapping, -EIO); 1058 goto free_pages; 1059 } 1060 1061 /* 1062 * We aren't doing an inline extent. Round the compressed size up to a 1063 * block size boundary so the allocator does sane things. 1064 */ 1065 total_compressed = ALIGN(total_compressed, blocksize); 1066 1067 /* 1068 * One last check to make sure the compression is really a win, compare 1069 * the page count read with the blocks on disk, compression must free at 1070 * least one sector. 1071 */ 1072 total_in = round_up(total_in, fs_info->sectorsize); 1073 if (total_compressed + blocksize > total_in) 1074 goto mark_incompressible; 1075 1076 /* 1077 * The async work queues will take care of doing actual allocation on 1078 * disk for these compressed pages, and will submit the bios. 1079 */ 1080 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1081 nr_folios, compress_type); 1082 BUG_ON(ret); 1083 if (start + total_in < end) { 1084 start += total_in; 1085 cond_resched(); 1086 goto again; 1087 } 1088 return; 1089 1090 mark_incompressible: 1091 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1092 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1093 cleanup_and_bail_uncompressed: 1094 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1095 BTRFS_COMPRESS_NONE); 1096 BUG_ON(ret); 1097 free_pages: 1098 if (folios) { 1099 for (i = 0; i < nr_folios; i++) { 1100 WARN_ON(folios[i]->mapping); 1101 btrfs_free_compr_folio(folios[i]); 1102 } 1103 kfree(folios); 1104 } 1105 } 1106 1107 static void free_async_extent_pages(struct async_extent *async_extent) 1108 { 1109 int i; 1110 1111 if (!async_extent->folios) 1112 return; 1113 1114 for (i = 0; i < async_extent->nr_folios; i++) { 1115 WARN_ON(async_extent->folios[i]->mapping); 1116 btrfs_free_compr_folio(async_extent->folios[i]); 1117 } 1118 kfree(async_extent->folios); 1119 async_extent->nr_folios = 0; 1120 async_extent->folios = NULL; 1121 } 1122 1123 static void submit_uncompressed_range(struct btrfs_inode *inode, 1124 struct async_extent *async_extent, 1125 struct page *locked_page) 1126 { 1127 u64 start = async_extent->start; 1128 u64 end = async_extent->start + async_extent->ram_size - 1; 1129 int ret; 1130 struct writeback_control wbc = { 1131 .sync_mode = WB_SYNC_ALL, 1132 .range_start = start, 1133 .range_end = end, 1134 .no_cgroup_owner = 1, 1135 }; 1136 1137 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1138 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1139 wbc_detach_inode(&wbc); 1140 if (ret < 0) { 1141 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1142 if (locked_page) { 1143 const u64 page_start = page_offset(locked_page); 1144 1145 set_page_writeback(locked_page); 1146 end_page_writeback(locked_page); 1147 btrfs_mark_ordered_io_finished(inode, locked_page, 1148 page_start, PAGE_SIZE, 1149 !ret); 1150 mapping_set_error(locked_page->mapping, ret); 1151 unlock_page(locked_page); 1152 } 1153 } 1154 } 1155 1156 static void submit_one_async_extent(struct async_chunk *async_chunk, 1157 struct async_extent *async_extent, 1158 u64 *alloc_hint) 1159 { 1160 struct btrfs_inode *inode = async_chunk->inode; 1161 struct extent_io_tree *io_tree = &inode->io_tree; 1162 struct btrfs_root *root = inode->root; 1163 struct btrfs_fs_info *fs_info = root->fs_info; 1164 struct btrfs_ordered_extent *ordered; 1165 struct btrfs_file_extent file_extent; 1166 struct btrfs_key ins; 1167 struct page *locked_page = NULL; 1168 struct extent_state *cached = NULL; 1169 struct extent_map *em; 1170 int ret = 0; 1171 u64 start = async_extent->start; 1172 u64 end = async_extent->start + async_extent->ram_size - 1; 1173 1174 if (async_chunk->blkcg_css) 1175 kthread_associate_blkcg(async_chunk->blkcg_css); 1176 1177 /* 1178 * If async_chunk->locked_page is in the async_extent range, we need to 1179 * handle it. 1180 */ 1181 if (async_chunk->locked_page) { 1182 u64 locked_page_start = page_offset(async_chunk->locked_page); 1183 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1184 1185 if (!(start >= locked_page_end || end <= locked_page_start)) 1186 locked_page = async_chunk->locked_page; 1187 } 1188 1189 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1190 submit_uncompressed_range(inode, async_extent, locked_page); 1191 goto done; 1192 } 1193 1194 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1195 async_extent->compressed_size, 1196 async_extent->compressed_size, 1197 0, *alloc_hint, &ins, 1, 1); 1198 if (ret) { 1199 /* 1200 * We can't reserve contiguous space for the compressed size. 1201 * Unlikely, but it's possible that we could have enough 1202 * non-contiguous space for the uncompressed size instead. So 1203 * fall back to uncompressed. 1204 */ 1205 submit_uncompressed_range(inode, async_extent, locked_page); 1206 goto done; 1207 } 1208 1209 lock_extent(io_tree, start, end, &cached); 1210 1211 /* Here we're doing allocation and writeback of the compressed pages */ 1212 file_extent.disk_bytenr = ins.objectid; 1213 file_extent.disk_num_bytes = ins.offset; 1214 file_extent.ram_bytes = async_extent->ram_size; 1215 file_extent.num_bytes = async_extent->ram_size; 1216 file_extent.offset = 0; 1217 file_extent.compression = async_extent->compress_type; 1218 1219 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1220 if (IS_ERR(em)) { 1221 ret = PTR_ERR(em); 1222 goto out_free_reserve; 1223 } 1224 free_extent_map(em); 1225 1226 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1227 1 << BTRFS_ORDERED_COMPRESSED); 1228 if (IS_ERR(ordered)) { 1229 btrfs_drop_extent_map_range(inode, start, end, false); 1230 ret = PTR_ERR(ordered); 1231 goto out_free_reserve; 1232 } 1233 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1234 1235 /* Clear dirty, set writeback and unlock the pages. */ 1236 extent_clear_unlock_delalloc(inode, start, end, 1237 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1238 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1239 btrfs_submit_compressed_write(ordered, 1240 async_extent->folios, /* compressed_folios */ 1241 async_extent->nr_folios, 1242 async_chunk->write_flags, true); 1243 *alloc_hint = ins.objectid + ins.offset; 1244 done: 1245 if (async_chunk->blkcg_css) 1246 kthread_associate_blkcg(NULL); 1247 kfree(async_extent); 1248 return; 1249 1250 out_free_reserve: 1251 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1252 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1253 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1254 extent_clear_unlock_delalloc(inode, start, end, 1255 NULL, &cached, 1256 EXTENT_LOCKED | EXTENT_DELALLOC | 1257 EXTENT_DELALLOC_NEW | 1258 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1259 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1260 PAGE_END_WRITEBACK); 1261 free_async_extent_pages(async_extent); 1262 if (async_chunk->blkcg_css) 1263 kthread_associate_blkcg(NULL); 1264 btrfs_debug(fs_info, 1265 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1266 btrfs_root_id(root), btrfs_ino(inode), start, 1267 async_extent->ram_size, ret); 1268 kfree(async_extent); 1269 } 1270 1271 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1272 u64 num_bytes) 1273 { 1274 struct extent_map_tree *em_tree = &inode->extent_tree; 1275 struct extent_map *em; 1276 u64 alloc_hint = 0; 1277 1278 read_lock(&em_tree->lock); 1279 em = search_extent_mapping(em_tree, start, num_bytes); 1280 if (em) { 1281 /* 1282 * if block start isn't an actual block number then find the 1283 * first block in this inode and use that as a hint. If that 1284 * block is also bogus then just don't worry about it. 1285 */ 1286 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1287 free_extent_map(em); 1288 em = search_extent_mapping(em_tree, 0, 0); 1289 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1290 alloc_hint = extent_map_block_start(em); 1291 if (em) 1292 free_extent_map(em); 1293 } else { 1294 alloc_hint = extent_map_block_start(em); 1295 free_extent_map(em); 1296 } 1297 } 1298 read_unlock(&em_tree->lock); 1299 1300 return alloc_hint; 1301 } 1302 1303 /* 1304 * when extent_io.c finds a delayed allocation range in the file, 1305 * the call backs end up in this code. The basic idea is to 1306 * allocate extents on disk for the range, and create ordered data structs 1307 * in ram to track those extents. 1308 * 1309 * locked_page is the page that writepage had locked already. We use 1310 * it to make sure we don't do extra locks or unlocks. 1311 * 1312 * When this function fails, it unlocks all pages except @locked_page. 1313 * 1314 * When this function successfully creates an inline extent, it returns 1 and 1315 * unlocks all pages including locked_page and starts I/O on them. 1316 * (In reality inline extents are limited to a single page, so locked_page is 1317 * the only page handled anyway). 1318 * 1319 * When this function succeed and creates a normal extent, the page locking 1320 * status depends on the passed in flags: 1321 * 1322 * - If @keep_locked is set, all pages are kept locked. 1323 * - Else all pages except for @locked_page are unlocked. 1324 * 1325 * When a failure happens in the second or later iteration of the 1326 * while-loop, the ordered extents created in previous iterations are kept 1327 * intact. So, the caller must clean them up by calling 1328 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1329 * example. 1330 */ 1331 static noinline int cow_file_range(struct btrfs_inode *inode, 1332 struct page *locked_page, u64 start, u64 end, 1333 u64 *done_offset, 1334 bool keep_locked, bool no_inline) 1335 { 1336 struct btrfs_root *root = inode->root; 1337 struct btrfs_fs_info *fs_info = root->fs_info; 1338 struct extent_state *cached = NULL; 1339 u64 alloc_hint = 0; 1340 u64 orig_start = start; 1341 u64 num_bytes; 1342 unsigned long ram_size; 1343 u64 cur_alloc_size = 0; 1344 u64 min_alloc_size; 1345 u64 blocksize = fs_info->sectorsize; 1346 struct btrfs_key ins; 1347 struct extent_map *em; 1348 unsigned clear_bits; 1349 unsigned long page_ops; 1350 bool extent_reserved = false; 1351 int ret = 0; 1352 1353 if (btrfs_is_free_space_inode(inode)) { 1354 ret = -EINVAL; 1355 goto out_unlock; 1356 } 1357 1358 num_bytes = ALIGN(end - start + 1, blocksize); 1359 num_bytes = max(blocksize, num_bytes); 1360 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1361 1362 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1363 1364 if (!no_inline) { 1365 /* lets try to make an inline extent */ 1366 ret = cow_file_range_inline(inode, locked_page, start, end, 0, 1367 BTRFS_COMPRESS_NONE, NULL, false); 1368 if (ret <= 0) { 1369 /* 1370 * We succeeded, return 1 so the caller knows we're done 1371 * with this page and already handled the IO. 1372 * 1373 * If there was an error then cow_file_range_inline() has 1374 * already done the cleanup. 1375 */ 1376 if (ret == 0) 1377 ret = 1; 1378 goto done; 1379 } 1380 } 1381 1382 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1383 1384 /* 1385 * Relocation relies on the relocated extents to have exactly the same 1386 * size as the original extents. Normally writeback for relocation data 1387 * extents follows a NOCOW path because relocation preallocates the 1388 * extents. However, due to an operation such as scrub turning a block 1389 * group to RO mode, it may fallback to COW mode, so we must make sure 1390 * an extent allocated during COW has exactly the requested size and can 1391 * not be split into smaller extents, otherwise relocation breaks and 1392 * fails during the stage where it updates the bytenr of file extent 1393 * items. 1394 */ 1395 if (btrfs_is_data_reloc_root(root)) 1396 min_alloc_size = num_bytes; 1397 else 1398 min_alloc_size = fs_info->sectorsize; 1399 1400 while (num_bytes > 0) { 1401 struct btrfs_ordered_extent *ordered; 1402 struct btrfs_file_extent file_extent; 1403 1404 cur_alloc_size = num_bytes; 1405 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1406 min_alloc_size, 0, alloc_hint, 1407 &ins, 1, 1); 1408 if (ret == -EAGAIN) { 1409 /* 1410 * btrfs_reserve_extent only returns -EAGAIN for zoned 1411 * file systems, which is an indication that there are 1412 * no active zones to allocate from at the moment. 1413 * 1414 * If this is the first loop iteration, wait for at 1415 * least one zone to finish before retrying the 1416 * allocation. Otherwise ask the caller to write out 1417 * the already allocated blocks before coming back to 1418 * us, or return -ENOSPC if it can't handle retries. 1419 */ 1420 ASSERT(btrfs_is_zoned(fs_info)); 1421 if (start == orig_start) { 1422 wait_on_bit_io(&inode->root->fs_info->flags, 1423 BTRFS_FS_NEED_ZONE_FINISH, 1424 TASK_UNINTERRUPTIBLE); 1425 continue; 1426 } 1427 if (done_offset) { 1428 *done_offset = start - 1; 1429 return 0; 1430 } 1431 ret = -ENOSPC; 1432 } 1433 if (ret < 0) 1434 goto out_unlock; 1435 cur_alloc_size = ins.offset; 1436 extent_reserved = true; 1437 1438 ram_size = ins.offset; 1439 file_extent.disk_bytenr = ins.objectid; 1440 file_extent.disk_num_bytes = ins.offset; 1441 file_extent.num_bytes = ins.offset; 1442 file_extent.ram_bytes = ins.offset; 1443 file_extent.offset = 0; 1444 file_extent.compression = BTRFS_COMPRESS_NONE; 1445 1446 lock_extent(&inode->io_tree, start, start + ram_size - 1, 1447 &cached); 1448 1449 em = btrfs_create_io_em(inode, start, &file_extent, 1450 BTRFS_ORDERED_REGULAR); 1451 if (IS_ERR(em)) { 1452 unlock_extent(&inode->io_tree, start, 1453 start + ram_size - 1, &cached); 1454 ret = PTR_ERR(em); 1455 goto out_reserve; 1456 } 1457 free_extent_map(em); 1458 1459 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1460 1 << BTRFS_ORDERED_REGULAR); 1461 if (IS_ERR(ordered)) { 1462 unlock_extent(&inode->io_tree, start, 1463 start + ram_size - 1, &cached); 1464 ret = PTR_ERR(ordered); 1465 goto out_drop_extent_cache; 1466 } 1467 1468 if (btrfs_is_data_reloc_root(root)) { 1469 ret = btrfs_reloc_clone_csums(ordered); 1470 1471 /* 1472 * Only drop cache here, and process as normal. 1473 * 1474 * We must not allow extent_clear_unlock_delalloc() 1475 * at out_unlock label to free meta of this ordered 1476 * extent, as its meta should be freed by 1477 * btrfs_finish_ordered_io(). 1478 * 1479 * So we must continue until @start is increased to 1480 * skip current ordered extent. 1481 */ 1482 if (ret) 1483 btrfs_drop_extent_map_range(inode, start, 1484 start + ram_size - 1, 1485 false); 1486 } 1487 btrfs_put_ordered_extent(ordered); 1488 1489 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1490 1491 /* 1492 * We're not doing compressed IO, don't unlock the first page 1493 * (which the caller expects to stay locked), don't clear any 1494 * dirty bits and don't set any writeback bits 1495 * 1496 * Do set the Ordered (Private2) bit so we know this page was 1497 * properly setup for writepage. 1498 */ 1499 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1500 page_ops |= PAGE_SET_ORDERED; 1501 1502 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1503 locked_page, &cached, 1504 EXTENT_LOCKED | EXTENT_DELALLOC, 1505 page_ops); 1506 if (num_bytes < cur_alloc_size) 1507 num_bytes = 0; 1508 else 1509 num_bytes -= cur_alloc_size; 1510 alloc_hint = ins.objectid + ins.offset; 1511 start += cur_alloc_size; 1512 extent_reserved = false; 1513 1514 /* 1515 * btrfs_reloc_clone_csums() error, since start is increased 1516 * extent_clear_unlock_delalloc() at out_unlock label won't 1517 * free metadata of current ordered extent, we're OK to exit. 1518 */ 1519 if (ret) 1520 goto out_unlock; 1521 } 1522 done: 1523 if (done_offset) 1524 *done_offset = end; 1525 return ret; 1526 1527 out_drop_extent_cache: 1528 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1529 out_reserve: 1530 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1531 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1532 out_unlock: 1533 /* 1534 * Now, we have three regions to clean up: 1535 * 1536 * |-------(1)----|---(2)---|-------------(3)----------| 1537 * `- orig_start `- start `- start + cur_alloc_size `- end 1538 * 1539 * We process each region below. 1540 */ 1541 1542 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1543 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1544 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1545 1546 /* 1547 * For the range (1). We have already instantiated the ordered extents 1548 * for this region. They are cleaned up by 1549 * btrfs_cleanup_ordered_extents() in e.g, 1550 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1551 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1552 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1553 * function. 1554 * 1555 * However, in case of @keep_locked, we still need to unlock the pages 1556 * (except @locked_page) to ensure all the pages are unlocked. 1557 */ 1558 if (keep_locked && orig_start < start) { 1559 if (!locked_page) 1560 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1561 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1562 locked_page, NULL, 0, page_ops); 1563 } 1564 1565 /* 1566 * At this point we're unlocked, we want to make sure we're only 1567 * clearing these flags under the extent lock, so lock the rest of the 1568 * range and clear everything up. 1569 */ 1570 lock_extent(&inode->io_tree, start, end, NULL); 1571 1572 /* 1573 * For the range (2). If we reserved an extent for our delalloc range 1574 * (or a subrange) and failed to create the respective ordered extent, 1575 * then it means that when we reserved the extent we decremented the 1576 * extent's size from the data space_info's bytes_may_use counter and 1577 * incremented the space_info's bytes_reserved counter by the same 1578 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1579 * to decrement again the data space_info's bytes_may_use counter, 1580 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1581 */ 1582 if (extent_reserved) { 1583 extent_clear_unlock_delalloc(inode, start, 1584 start + cur_alloc_size - 1, 1585 locked_page, &cached, 1586 clear_bits, 1587 page_ops); 1588 start += cur_alloc_size; 1589 } 1590 1591 /* 1592 * For the range (3). We never touched the region. In addition to the 1593 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1594 * space_info's bytes_may_use counter, reserved in 1595 * btrfs_check_data_free_space(). 1596 */ 1597 if (start < end) { 1598 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1599 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1600 &cached, clear_bits, page_ops); 1601 } 1602 return ret; 1603 } 1604 1605 /* 1606 * Phase two of compressed writeback. This is the ordered portion of the code, 1607 * which only gets called in the order the work was queued. We walk all the 1608 * async extents created by compress_file_range and send them down to the disk. 1609 * 1610 * If called with @do_free == true then it'll try to finish the work and free 1611 * the work struct eventually. 1612 */ 1613 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1614 { 1615 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1616 work); 1617 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1618 struct async_extent *async_extent; 1619 unsigned long nr_pages; 1620 u64 alloc_hint = 0; 1621 1622 if (do_free) { 1623 struct async_cow *async_cow; 1624 1625 btrfs_add_delayed_iput(async_chunk->inode); 1626 if (async_chunk->blkcg_css) 1627 css_put(async_chunk->blkcg_css); 1628 1629 async_cow = async_chunk->async_cow; 1630 if (atomic_dec_and_test(&async_cow->num_chunks)) 1631 kvfree(async_cow); 1632 return; 1633 } 1634 1635 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1636 PAGE_SHIFT; 1637 1638 while (!list_empty(&async_chunk->extents)) { 1639 async_extent = list_entry(async_chunk->extents.next, 1640 struct async_extent, list); 1641 list_del(&async_extent->list); 1642 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1643 } 1644 1645 /* atomic_sub_return implies a barrier */ 1646 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1647 5 * SZ_1M) 1648 cond_wake_up_nomb(&fs_info->async_submit_wait); 1649 } 1650 1651 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1652 struct page *locked_page, u64 start, 1653 u64 end, struct writeback_control *wbc) 1654 { 1655 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1656 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1657 struct async_cow *ctx; 1658 struct async_chunk *async_chunk; 1659 unsigned long nr_pages; 1660 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1661 int i; 1662 unsigned nofs_flag; 1663 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1664 1665 nofs_flag = memalloc_nofs_save(); 1666 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1667 memalloc_nofs_restore(nofs_flag); 1668 if (!ctx) 1669 return false; 1670 1671 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1672 1673 async_chunk = ctx->chunks; 1674 atomic_set(&ctx->num_chunks, num_chunks); 1675 1676 for (i = 0; i < num_chunks; i++) { 1677 u64 cur_end = min(end, start + SZ_512K - 1); 1678 1679 /* 1680 * igrab is called higher up in the call chain, take only the 1681 * lightweight reference for the callback lifetime 1682 */ 1683 ihold(&inode->vfs_inode); 1684 async_chunk[i].async_cow = ctx; 1685 async_chunk[i].inode = inode; 1686 async_chunk[i].start = start; 1687 async_chunk[i].end = cur_end; 1688 async_chunk[i].write_flags = write_flags; 1689 INIT_LIST_HEAD(&async_chunk[i].extents); 1690 1691 /* 1692 * The locked_page comes all the way from writepage and its 1693 * the original page we were actually given. As we spread 1694 * this large delalloc region across multiple async_chunk 1695 * structs, only the first struct needs a pointer to locked_page 1696 * 1697 * This way we don't need racey decisions about who is supposed 1698 * to unlock it. 1699 */ 1700 if (locked_page) { 1701 /* 1702 * Depending on the compressibility, the pages might or 1703 * might not go through async. We want all of them to 1704 * be accounted against wbc once. Let's do it here 1705 * before the paths diverge. wbc accounting is used 1706 * only for foreign writeback detection and doesn't 1707 * need full accuracy. Just account the whole thing 1708 * against the first page. 1709 */ 1710 wbc_account_cgroup_owner(wbc, locked_page, 1711 cur_end - start); 1712 async_chunk[i].locked_page = locked_page; 1713 locked_page = NULL; 1714 } else { 1715 async_chunk[i].locked_page = NULL; 1716 } 1717 1718 if (blkcg_css != blkcg_root_css) { 1719 css_get(blkcg_css); 1720 async_chunk[i].blkcg_css = blkcg_css; 1721 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1722 } else { 1723 async_chunk[i].blkcg_css = NULL; 1724 } 1725 1726 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1727 submit_compressed_extents); 1728 1729 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1730 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1731 1732 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1733 1734 start = cur_end + 1; 1735 } 1736 return true; 1737 } 1738 1739 /* 1740 * Run the delalloc range from start to end, and write back any dirty pages 1741 * covered by the range. 1742 */ 1743 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1744 struct page *locked_page, u64 start, 1745 u64 end, struct writeback_control *wbc, 1746 bool pages_dirty) 1747 { 1748 u64 done_offset = end; 1749 int ret; 1750 1751 while (start <= end) { 1752 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1753 true, false); 1754 if (ret) 1755 return ret; 1756 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1757 done_offset, wbc, pages_dirty); 1758 start = done_offset + 1; 1759 } 1760 1761 return 1; 1762 } 1763 1764 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1765 const u64 start, const u64 end) 1766 { 1767 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1768 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1769 const u64 range_bytes = end + 1 - start; 1770 struct extent_io_tree *io_tree = &inode->io_tree; 1771 struct extent_state *cached_state = NULL; 1772 u64 range_start = start; 1773 u64 count; 1774 int ret; 1775 1776 /* 1777 * If EXTENT_NORESERVE is set it means that when the buffered write was 1778 * made we had not enough available data space and therefore we did not 1779 * reserve data space for it, since we though we could do NOCOW for the 1780 * respective file range (either there is prealloc extent or the inode 1781 * has the NOCOW bit set). 1782 * 1783 * However when we need to fallback to COW mode (because for example the 1784 * block group for the corresponding extent was turned to RO mode by a 1785 * scrub or relocation) we need to do the following: 1786 * 1787 * 1) We increment the bytes_may_use counter of the data space info. 1788 * If COW succeeds, it allocates a new data extent and after doing 1789 * that it decrements the space info's bytes_may_use counter and 1790 * increments its bytes_reserved counter by the same amount (we do 1791 * this at btrfs_add_reserved_bytes()). So we need to increment the 1792 * bytes_may_use counter to compensate (when space is reserved at 1793 * buffered write time, the bytes_may_use counter is incremented); 1794 * 1795 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1796 * that if the COW path fails for any reason, it decrements (through 1797 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1798 * data space info, which we incremented in the step above. 1799 * 1800 * If we need to fallback to cow and the inode corresponds to a free 1801 * space cache inode or an inode of the data relocation tree, we must 1802 * also increment bytes_may_use of the data space_info for the same 1803 * reason. Space caches and relocated data extents always get a prealloc 1804 * extent for them, however scrub or balance may have set the block 1805 * group that contains that extent to RO mode and therefore force COW 1806 * when starting writeback. 1807 */ 1808 lock_extent(io_tree, start, end, &cached_state); 1809 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1810 EXTENT_NORESERVE, 0, NULL); 1811 if (count > 0 || is_space_ino || is_reloc_ino) { 1812 u64 bytes = count; 1813 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1814 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1815 1816 if (is_space_ino || is_reloc_ino) 1817 bytes = range_bytes; 1818 1819 spin_lock(&sinfo->lock); 1820 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1821 spin_unlock(&sinfo->lock); 1822 1823 if (count > 0) 1824 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1825 NULL); 1826 } 1827 unlock_extent(io_tree, start, end, &cached_state); 1828 1829 /* 1830 * Don't try to create inline extents, as a mix of inline extent that 1831 * is written out and unlocked directly and a normal NOCOW extent 1832 * doesn't work. 1833 */ 1834 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1835 ASSERT(ret != 1); 1836 return ret; 1837 } 1838 1839 struct can_nocow_file_extent_args { 1840 /* Input fields. */ 1841 1842 /* Start file offset of the range we want to NOCOW. */ 1843 u64 start; 1844 /* End file offset (inclusive) of the range we want to NOCOW. */ 1845 u64 end; 1846 bool writeback_path; 1847 bool strict; 1848 /* 1849 * Free the path passed to can_nocow_file_extent() once it's not needed 1850 * anymore. 1851 */ 1852 bool free_path; 1853 1854 /* 1855 * Output fields. Only set when can_nocow_file_extent() returns 1. 1856 * The expected file extent for the NOCOW write. 1857 */ 1858 struct btrfs_file_extent file_extent; 1859 }; 1860 1861 /* 1862 * Check if we can NOCOW the file extent that the path points to. 1863 * This function may return with the path released, so the caller should check 1864 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1865 * 1866 * Returns: < 0 on error 1867 * 0 if we can not NOCOW 1868 * 1 if we can NOCOW 1869 */ 1870 static int can_nocow_file_extent(struct btrfs_path *path, 1871 struct btrfs_key *key, 1872 struct btrfs_inode *inode, 1873 struct can_nocow_file_extent_args *args) 1874 { 1875 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1876 struct extent_buffer *leaf = path->nodes[0]; 1877 struct btrfs_root *root = inode->root; 1878 struct btrfs_file_extent_item *fi; 1879 struct btrfs_root *csum_root; 1880 u64 io_start; 1881 u64 extent_end; 1882 u8 extent_type; 1883 int can_nocow = 0; 1884 int ret = 0; 1885 bool nowait = path->nowait; 1886 1887 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1888 extent_type = btrfs_file_extent_type(leaf, fi); 1889 1890 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1891 goto out; 1892 1893 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1894 extent_type == BTRFS_FILE_EXTENT_REG) 1895 goto out; 1896 1897 /* 1898 * If the extent was created before the generation where the last snapshot 1899 * for its subvolume was created, then this implies the extent is shared, 1900 * hence we must COW. 1901 */ 1902 if (!args->strict && 1903 btrfs_file_extent_generation(leaf, fi) <= 1904 btrfs_root_last_snapshot(&root->root_item)) 1905 goto out; 1906 1907 /* An explicit hole, must COW. */ 1908 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1909 goto out; 1910 1911 /* Compressed/encrypted/encoded extents must be COWed. */ 1912 if (btrfs_file_extent_compression(leaf, fi) || 1913 btrfs_file_extent_encryption(leaf, fi) || 1914 btrfs_file_extent_other_encoding(leaf, fi)) 1915 goto out; 1916 1917 extent_end = btrfs_file_extent_end(path); 1918 1919 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1920 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1921 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1922 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1923 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1924 1925 /* 1926 * The following checks can be expensive, as they need to take other 1927 * locks and do btree or rbtree searches, so release the path to avoid 1928 * blocking other tasks for too long. 1929 */ 1930 btrfs_release_path(path); 1931 1932 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1933 key->offset - args->file_extent.offset, 1934 args->file_extent.disk_bytenr, args->strict, path); 1935 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1936 if (ret != 0) 1937 goto out; 1938 1939 if (args->free_path) { 1940 /* 1941 * We don't need the path anymore, plus through the 1942 * btrfs_lookup_csums_list() call below we will end up allocating 1943 * another path. So free the path to avoid unnecessary extra 1944 * memory usage. 1945 */ 1946 btrfs_free_path(path); 1947 path = NULL; 1948 } 1949 1950 /* If there are pending snapshots for this root, we must COW. */ 1951 if (args->writeback_path && !is_freespace_inode && 1952 atomic_read(&root->snapshot_force_cow)) 1953 goto out; 1954 1955 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1956 args->file_extent.offset += args->start - key->offset; 1957 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1958 1959 /* 1960 * Force COW if csums exist in the range. This ensures that csums for a 1961 * given extent are either valid or do not exist. 1962 */ 1963 1964 csum_root = btrfs_csum_root(root->fs_info, io_start); 1965 ret = btrfs_lookup_csums_list(csum_root, io_start, 1966 io_start + args->file_extent.num_bytes - 1, 1967 NULL, nowait); 1968 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1969 if (ret != 0) 1970 goto out; 1971 1972 can_nocow = 1; 1973 out: 1974 if (args->free_path && path) 1975 btrfs_free_path(path); 1976 1977 return ret < 0 ? ret : can_nocow; 1978 } 1979 1980 /* 1981 * when nowcow writeback call back. This checks for snapshots or COW copies 1982 * of the extents that exist in the file, and COWs the file as required. 1983 * 1984 * If no cow copies or snapshots exist, we write directly to the existing 1985 * blocks on disk 1986 */ 1987 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1988 struct page *locked_page, 1989 const u64 start, const u64 end) 1990 { 1991 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1992 struct btrfs_root *root = inode->root; 1993 struct btrfs_path *path; 1994 u64 cow_start = (u64)-1; 1995 u64 cur_offset = start; 1996 int ret; 1997 bool check_prev = true; 1998 u64 ino = btrfs_ino(inode); 1999 struct can_nocow_file_extent_args nocow_args = { 0 }; 2000 2001 /* 2002 * Normally on a zoned device we're only doing COW writes, but in case 2003 * of relocation on a zoned filesystem serializes I/O so that we're only 2004 * writing sequentially and can end up here as well. 2005 */ 2006 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2007 2008 path = btrfs_alloc_path(); 2009 if (!path) { 2010 ret = -ENOMEM; 2011 goto error; 2012 } 2013 2014 nocow_args.end = end; 2015 nocow_args.writeback_path = true; 2016 2017 while (cur_offset <= end) { 2018 struct btrfs_block_group *nocow_bg = NULL; 2019 struct btrfs_ordered_extent *ordered; 2020 struct btrfs_key found_key; 2021 struct btrfs_file_extent_item *fi; 2022 struct extent_buffer *leaf; 2023 struct extent_state *cached_state = NULL; 2024 u64 extent_end; 2025 u64 nocow_end; 2026 int extent_type; 2027 bool is_prealloc; 2028 2029 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2030 cur_offset, 0); 2031 if (ret < 0) 2032 goto error; 2033 2034 /* 2035 * If there is no extent for our range when doing the initial 2036 * search, then go back to the previous slot as it will be the 2037 * one containing the search offset 2038 */ 2039 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2040 leaf = path->nodes[0]; 2041 btrfs_item_key_to_cpu(leaf, &found_key, 2042 path->slots[0] - 1); 2043 if (found_key.objectid == ino && 2044 found_key.type == BTRFS_EXTENT_DATA_KEY) 2045 path->slots[0]--; 2046 } 2047 check_prev = false; 2048 next_slot: 2049 /* Go to next leaf if we have exhausted the current one */ 2050 leaf = path->nodes[0]; 2051 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2052 ret = btrfs_next_leaf(root, path); 2053 if (ret < 0) 2054 goto error; 2055 if (ret > 0) 2056 break; 2057 leaf = path->nodes[0]; 2058 } 2059 2060 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2061 2062 /* Didn't find anything for our INO */ 2063 if (found_key.objectid > ino) 2064 break; 2065 /* 2066 * Keep searching until we find an EXTENT_ITEM or there are no 2067 * more extents for this inode 2068 */ 2069 if (WARN_ON_ONCE(found_key.objectid < ino) || 2070 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2071 path->slots[0]++; 2072 goto next_slot; 2073 } 2074 2075 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2076 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2077 found_key.offset > end) 2078 break; 2079 2080 /* 2081 * If the found extent starts after requested offset, then 2082 * adjust extent_end to be right before this extent begins 2083 */ 2084 if (found_key.offset > cur_offset) { 2085 extent_end = found_key.offset; 2086 extent_type = 0; 2087 goto must_cow; 2088 } 2089 2090 /* 2091 * Found extent which begins before our range and potentially 2092 * intersect it 2093 */ 2094 fi = btrfs_item_ptr(leaf, path->slots[0], 2095 struct btrfs_file_extent_item); 2096 extent_type = btrfs_file_extent_type(leaf, fi); 2097 /* If this is triggered then we have a memory corruption. */ 2098 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2099 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2100 ret = -EUCLEAN; 2101 goto error; 2102 } 2103 extent_end = btrfs_file_extent_end(path); 2104 2105 /* 2106 * If the extent we got ends before our current offset, skip to 2107 * the next extent. 2108 */ 2109 if (extent_end <= cur_offset) { 2110 path->slots[0]++; 2111 goto next_slot; 2112 } 2113 2114 nocow_args.start = cur_offset; 2115 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2116 if (ret < 0) 2117 goto error; 2118 if (ret == 0) 2119 goto must_cow; 2120 2121 ret = 0; 2122 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2123 nocow_args.file_extent.disk_bytenr + 2124 nocow_args.file_extent.offset); 2125 if (!nocow_bg) { 2126 must_cow: 2127 /* 2128 * If we can't perform NOCOW writeback for the range, 2129 * then record the beginning of the range that needs to 2130 * be COWed. It will be written out before the next 2131 * NOCOW range if we find one, or when exiting this 2132 * loop. 2133 */ 2134 if (cow_start == (u64)-1) 2135 cow_start = cur_offset; 2136 cur_offset = extent_end; 2137 if (cur_offset > end) 2138 break; 2139 if (!path->nodes[0]) 2140 continue; 2141 path->slots[0]++; 2142 goto next_slot; 2143 } 2144 2145 /* 2146 * COW range from cow_start to found_key.offset - 1. As the key 2147 * will contain the beginning of the first extent that can be 2148 * NOCOW, following one which needs to be COW'ed 2149 */ 2150 if (cow_start != (u64)-1) { 2151 ret = fallback_to_cow(inode, locked_page, 2152 cow_start, found_key.offset - 1); 2153 cow_start = (u64)-1; 2154 if (ret) { 2155 btrfs_dec_nocow_writers(nocow_bg); 2156 goto error; 2157 } 2158 } 2159 2160 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2161 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state); 2162 2163 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2164 if (is_prealloc) { 2165 struct extent_map *em; 2166 2167 em = btrfs_create_io_em(inode, cur_offset, 2168 &nocow_args.file_extent, 2169 BTRFS_ORDERED_PREALLOC); 2170 if (IS_ERR(em)) { 2171 unlock_extent(&inode->io_tree, cur_offset, 2172 nocow_end, &cached_state); 2173 btrfs_dec_nocow_writers(nocow_bg); 2174 ret = PTR_ERR(em); 2175 goto error; 2176 } 2177 free_extent_map(em); 2178 } 2179 2180 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2181 &nocow_args.file_extent, 2182 is_prealloc 2183 ? (1 << BTRFS_ORDERED_PREALLOC) 2184 : (1 << BTRFS_ORDERED_NOCOW)); 2185 btrfs_dec_nocow_writers(nocow_bg); 2186 if (IS_ERR(ordered)) { 2187 if (is_prealloc) { 2188 btrfs_drop_extent_map_range(inode, cur_offset, 2189 nocow_end, false); 2190 } 2191 unlock_extent(&inode->io_tree, cur_offset, 2192 nocow_end, &cached_state); 2193 ret = PTR_ERR(ordered); 2194 goto error; 2195 } 2196 2197 if (btrfs_is_data_reloc_root(root)) 2198 /* 2199 * Error handled later, as we must prevent 2200 * extent_clear_unlock_delalloc() in error handler 2201 * from freeing metadata of created ordered extent. 2202 */ 2203 ret = btrfs_reloc_clone_csums(ordered); 2204 btrfs_put_ordered_extent(ordered); 2205 2206 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2207 locked_page, &cached_state, 2208 EXTENT_LOCKED | EXTENT_DELALLOC | 2209 EXTENT_CLEAR_DATA_RESV, 2210 PAGE_UNLOCK | PAGE_SET_ORDERED); 2211 2212 cur_offset = extent_end; 2213 2214 /* 2215 * btrfs_reloc_clone_csums() error, now we're OK to call error 2216 * handler, as metadata for created ordered extent will only 2217 * be freed by btrfs_finish_ordered_io(). 2218 */ 2219 if (ret) 2220 goto error; 2221 } 2222 btrfs_release_path(path); 2223 2224 if (cur_offset <= end && cow_start == (u64)-1) 2225 cow_start = cur_offset; 2226 2227 if (cow_start != (u64)-1) { 2228 cur_offset = end; 2229 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2230 cow_start = (u64)-1; 2231 if (ret) 2232 goto error; 2233 } 2234 2235 btrfs_free_path(path); 2236 return 0; 2237 2238 error: 2239 /* 2240 * If an error happened while a COW region is outstanding, cur_offset 2241 * needs to be reset to cow_start to ensure the COW region is unlocked 2242 * as well. 2243 */ 2244 if (cow_start != (u64)-1) 2245 cur_offset = cow_start; 2246 2247 /* 2248 * We need to lock the extent here because we're clearing DELALLOC and 2249 * we're not locked at this point. 2250 */ 2251 if (cur_offset < end) { 2252 struct extent_state *cached = NULL; 2253 2254 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2255 extent_clear_unlock_delalloc(inode, cur_offset, end, 2256 locked_page, &cached, 2257 EXTENT_LOCKED | EXTENT_DELALLOC | 2258 EXTENT_DEFRAG | 2259 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2260 PAGE_START_WRITEBACK | 2261 PAGE_END_WRITEBACK); 2262 } 2263 btrfs_free_path(path); 2264 return ret; 2265 } 2266 2267 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2268 { 2269 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2270 if (inode->defrag_bytes && 2271 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2272 return false; 2273 return true; 2274 } 2275 return false; 2276 } 2277 2278 /* 2279 * Function to process delayed allocation (create CoW) for ranges which are 2280 * being touched for the first time. 2281 */ 2282 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2283 u64 start, u64 end, struct writeback_control *wbc) 2284 { 2285 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2286 int ret; 2287 2288 /* 2289 * The range must cover part of the @locked_page, or a return of 1 2290 * can confuse the caller. 2291 */ 2292 ASSERT(!(end <= page_offset(locked_page) || 2293 start >= page_offset(locked_page) + PAGE_SIZE)); 2294 2295 if (should_nocow(inode, start, end)) { 2296 ret = run_delalloc_nocow(inode, locked_page, start, end); 2297 goto out; 2298 } 2299 2300 if (btrfs_inode_can_compress(inode) && 2301 inode_need_compress(inode, start, end) && 2302 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2303 return 1; 2304 2305 if (zoned) 2306 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2307 true); 2308 else 2309 ret = cow_file_range(inode, locked_page, start, end, NULL, 2310 false, false); 2311 2312 out: 2313 if (ret < 0) 2314 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2315 end - start + 1); 2316 return ret; 2317 } 2318 2319 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2320 struct extent_state *orig, u64 split) 2321 { 2322 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2323 u64 size; 2324 2325 lockdep_assert_held(&inode->io_tree.lock); 2326 2327 /* not delalloc, ignore it */ 2328 if (!(orig->state & EXTENT_DELALLOC)) 2329 return; 2330 2331 size = orig->end - orig->start + 1; 2332 if (size > fs_info->max_extent_size) { 2333 u32 num_extents; 2334 u64 new_size; 2335 2336 /* 2337 * See the explanation in btrfs_merge_delalloc_extent, the same 2338 * applies here, just in reverse. 2339 */ 2340 new_size = orig->end - split + 1; 2341 num_extents = count_max_extents(fs_info, new_size); 2342 new_size = split - orig->start; 2343 num_extents += count_max_extents(fs_info, new_size); 2344 if (count_max_extents(fs_info, size) >= num_extents) 2345 return; 2346 } 2347 2348 spin_lock(&inode->lock); 2349 btrfs_mod_outstanding_extents(inode, 1); 2350 spin_unlock(&inode->lock); 2351 } 2352 2353 /* 2354 * Handle merged delayed allocation extents so we can keep track of new extents 2355 * that are just merged onto old extents, such as when we are doing sequential 2356 * writes, so we can properly account for the metadata space we'll need. 2357 */ 2358 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2359 struct extent_state *other) 2360 { 2361 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2362 u64 new_size, old_size; 2363 u32 num_extents; 2364 2365 lockdep_assert_held(&inode->io_tree.lock); 2366 2367 /* not delalloc, ignore it */ 2368 if (!(other->state & EXTENT_DELALLOC)) 2369 return; 2370 2371 if (new->start > other->start) 2372 new_size = new->end - other->start + 1; 2373 else 2374 new_size = other->end - new->start + 1; 2375 2376 /* we're not bigger than the max, unreserve the space and go */ 2377 if (new_size <= fs_info->max_extent_size) { 2378 spin_lock(&inode->lock); 2379 btrfs_mod_outstanding_extents(inode, -1); 2380 spin_unlock(&inode->lock); 2381 return; 2382 } 2383 2384 /* 2385 * We have to add up either side to figure out how many extents were 2386 * accounted for before we merged into one big extent. If the number of 2387 * extents we accounted for is <= the amount we need for the new range 2388 * then we can return, otherwise drop. Think of it like this 2389 * 2390 * [ 4k][MAX_SIZE] 2391 * 2392 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2393 * need 2 outstanding extents, on one side we have 1 and the other side 2394 * we have 1 so they are == and we can return. But in this case 2395 * 2396 * [MAX_SIZE+4k][MAX_SIZE+4k] 2397 * 2398 * Each range on their own accounts for 2 extents, but merged together 2399 * they are only 3 extents worth of accounting, so we need to drop in 2400 * this case. 2401 */ 2402 old_size = other->end - other->start + 1; 2403 num_extents = count_max_extents(fs_info, old_size); 2404 old_size = new->end - new->start + 1; 2405 num_extents += count_max_extents(fs_info, old_size); 2406 if (count_max_extents(fs_info, new_size) >= num_extents) 2407 return; 2408 2409 spin_lock(&inode->lock); 2410 btrfs_mod_outstanding_extents(inode, -1); 2411 spin_unlock(&inode->lock); 2412 } 2413 2414 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2415 { 2416 struct btrfs_root *root = inode->root; 2417 struct btrfs_fs_info *fs_info = root->fs_info; 2418 2419 spin_lock(&root->delalloc_lock); 2420 ASSERT(list_empty(&inode->delalloc_inodes)); 2421 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2422 root->nr_delalloc_inodes++; 2423 if (root->nr_delalloc_inodes == 1) { 2424 spin_lock(&fs_info->delalloc_root_lock); 2425 ASSERT(list_empty(&root->delalloc_root)); 2426 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2427 spin_unlock(&fs_info->delalloc_root_lock); 2428 } 2429 spin_unlock(&root->delalloc_lock); 2430 } 2431 2432 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2433 { 2434 struct btrfs_root *root = inode->root; 2435 struct btrfs_fs_info *fs_info = root->fs_info; 2436 2437 lockdep_assert_held(&root->delalloc_lock); 2438 2439 /* 2440 * We may be called after the inode was already deleted from the list, 2441 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2442 * and then later through btrfs_clear_delalloc_extent() while the inode 2443 * still has ->delalloc_bytes > 0. 2444 */ 2445 if (!list_empty(&inode->delalloc_inodes)) { 2446 list_del_init(&inode->delalloc_inodes); 2447 root->nr_delalloc_inodes--; 2448 if (!root->nr_delalloc_inodes) { 2449 ASSERT(list_empty(&root->delalloc_inodes)); 2450 spin_lock(&fs_info->delalloc_root_lock); 2451 ASSERT(!list_empty(&root->delalloc_root)); 2452 list_del_init(&root->delalloc_root); 2453 spin_unlock(&fs_info->delalloc_root_lock); 2454 } 2455 } 2456 } 2457 2458 /* 2459 * Properly track delayed allocation bytes in the inode and to maintain the 2460 * list of inodes that have pending delalloc work to be done. 2461 */ 2462 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2463 u32 bits) 2464 { 2465 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2466 2467 lockdep_assert_held(&inode->io_tree.lock); 2468 2469 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2470 WARN_ON(1); 2471 /* 2472 * set_bit and clear bit hooks normally require _irqsave/restore 2473 * but in this case, we are only testing for the DELALLOC 2474 * bit, which is only set or cleared with irqs on 2475 */ 2476 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2477 u64 len = state->end + 1 - state->start; 2478 u64 prev_delalloc_bytes; 2479 u32 num_extents = count_max_extents(fs_info, len); 2480 2481 spin_lock(&inode->lock); 2482 btrfs_mod_outstanding_extents(inode, num_extents); 2483 spin_unlock(&inode->lock); 2484 2485 /* For sanity tests */ 2486 if (btrfs_is_testing(fs_info)) 2487 return; 2488 2489 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2490 fs_info->delalloc_batch); 2491 spin_lock(&inode->lock); 2492 prev_delalloc_bytes = inode->delalloc_bytes; 2493 inode->delalloc_bytes += len; 2494 if (bits & EXTENT_DEFRAG) 2495 inode->defrag_bytes += len; 2496 spin_unlock(&inode->lock); 2497 2498 /* 2499 * We don't need to be under the protection of the inode's lock, 2500 * because we are called while holding the inode's io_tree lock 2501 * and are therefore protected against concurrent calls of this 2502 * function and btrfs_clear_delalloc_extent(). 2503 */ 2504 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2505 btrfs_add_delalloc_inode(inode); 2506 } 2507 2508 if (!(state->state & EXTENT_DELALLOC_NEW) && 2509 (bits & EXTENT_DELALLOC_NEW)) { 2510 spin_lock(&inode->lock); 2511 inode->new_delalloc_bytes += state->end + 1 - state->start; 2512 spin_unlock(&inode->lock); 2513 } 2514 } 2515 2516 /* 2517 * Once a range is no longer delalloc this function ensures that proper 2518 * accounting happens. 2519 */ 2520 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2521 struct extent_state *state, u32 bits) 2522 { 2523 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2524 u64 len = state->end + 1 - state->start; 2525 u32 num_extents = count_max_extents(fs_info, len); 2526 2527 lockdep_assert_held(&inode->io_tree.lock); 2528 2529 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2530 spin_lock(&inode->lock); 2531 inode->defrag_bytes -= len; 2532 spin_unlock(&inode->lock); 2533 } 2534 2535 /* 2536 * set_bit and clear bit hooks normally require _irqsave/restore 2537 * but in this case, we are only testing for the DELALLOC 2538 * bit, which is only set or cleared with irqs on 2539 */ 2540 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2541 struct btrfs_root *root = inode->root; 2542 u64 new_delalloc_bytes; 2543 2544 spin_lock(&inode->lock); 2545 btrfs_mod_outstanding_extents(inode, -num_extents); 2546 spin_unlock(&inode->lock); 2547 2548 /* 2549 * We don't reserve metadata space for space cache inodes so we 2550 * don't need to call delalloc_release_metadata if there is an 2551 * error. 2552 */ 2553 if (bits & EXTENT_CLEAR_META_RESV && 2554 root != fs_info->tree_root) 2555 btrfs_delalloc_release_metadata(inode, len, true); 2556 2557 /* For sanity tests. */ 2558 if (btrfs_is_testing(fs_info)) 2559 return; 2560 2561 if (!btrfs_is_data_reloc_root(root) && 2562 !btrfs_is_free_space_inode(inode) && 2563 !(state->state & EXTENT_NORESERVE) && 2564 (bits & EXTENT_CLEAR_DATA_RESV)) 2565 btrfs_free_reserved_data_space_noquota(fs_info, len); 2566 2567 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2568 fs_info->delalloc_batch); 2569 spin_lock(&inode->lock); 2570 inode->delalloc_bytes -= len; 2571 new_delalloc_bytes = inode->delalloc_bytes; 2572 spin_unlock(&inode->lock); 2573 2574 /* 2575 * We don't need to be under the protection of the inode's lock, 2576 * because we are called while holding the inode's io_tree lock 2577 * and are therefore protected against concurrent calls of this 2578 * function and btrfs_set_delalloc_extent(). 2579 */ 2580 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2581 spin_lock(&root->delalloc_lock); 2582 btrfs_del_delalloc_inode(inode); 2583 spin_unlock(&root->delalloc_lock); 2584 } 2585 } 2586 2587 if ((state->state & EXTENT_DELALLOC_NEW) && 2588 (bits & EXTENT_DELALLOC_NEW)) { 2589 spin_lock(&inode->lock); 2590 ASSERT(inode->new_delalloc_bytes >= len); 2591 inode->new_delalloc_bytes -= len; 2592 if (bits & EXTENT_ADD_INODE_BYTES) 2593 inode_add_bytes(&inode->vfs_inode, len); 2594 spin_unlock(&inode->lock); 2595 } 2596 } 2597 2598 /* 2599 * given a list of ordered sums record them in the inode. This happens 2600 * at IO completion time based on sums calculated at bio submission time. 2601 */ 2602 static int add_pending_csums(struct btrfs_trans_handle *trans, 2603 struct list_head *list) 2604 { 2605 struct btrfs_ordered_sum *sum; 2606 struct btrfs_root *csum_root = NULL; 2607 int ret; 2608 2609 list_for_each_entry(sum, list, list) { 2610 trans->adding_csums = true; 2611 if (!csum_root) 2612 csum_root = btrfs_csum_root(trans->fs_info, 2613 sum->logical); 2614 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2615 trans->adding_csums = false; 2616 if (ret) 2617 return ret; 2618 } 2619 return 0; 2620 } 2621 2622 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2623 const u64 start, 2624 const u64 len, 2625 struct extent_state **cached_state) 2626 { 2627 u64 search_start = start; 2628 const u64 end = start + len - 1; 2629 2630 while (search_start < end) { 2631 const u64 search_len = end - search_start + 1; 2632 struct extent_map *em; 2633 u64 em_len; 2634 int ret = 0; 2635 2636 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2637 if (IS_ERR(em)) 2638 return PTR_ERR(em); 2639 2640 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2641 goto next; 2642 2643 em_len = em->len; 2644 if (em->start < search_start) 2645 em_len -= search_start - em->start; 2646 if (em_len > search_len) 2647 em_len = search_len; 2648 2649 ret = set_extent_bit(&inode->io_tree, search_start, 2650 search_start + em_len - 1, 2651 EXTENT_DELALLOC_NEW, cached_state); 2652 next: 2653 search_start = extent_map_end(em); 2654 free_extent_map(em); 2655 if (ret) 2656 return ret; 2657 } 2658 return 0; 2659 } 2660 2661 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2662 unsigned int extra_bits, 2663 struct extent_state **cached_state) 2664 { 2665 WARN_ON(PAGE_ALIGNED(end)); 2666 2667 if (start >= i_size_read(&inode->vfs_inode) && 2668 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2669 /* 2670 * There can't be any extents following eof in this case so just 2671 * set the delalloc new bit for the range directly. 2672 */ 2673 extra_bits |= EXTENT_DELALLOC_NEW; 2674 } else { 2675 int ret; 2676 2677 ret = btrfs_find_new_delalloc_bytes(inode, start, 2678 end + 1 - start, 2679 cached_state); 2680 if (ret) 2681 return ret; 2682 } 2683 2684 return set_extent_bit(&inode->io_tree, start, end, 2685 EXTENT_DELALLOC | extra_bits, cached_state); 2686 } 2687 2688 /* see btrfs_writepage_start_hook for details on why this is required */ 2689 struct btrfs_writepage_fixup { 2690 struct page *page; 2691 struct btrfs_inode *inode; 2692 struct btrfs_work work; 2693 }; 2694 2695 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2696 { 2697 struct btrfs_writepage_fixup *fixup = 2698 container_of(work, struct btrfs_writepage_fixup, work); 2699 struct btrfs_ordered_extent *ordered; 2700 struct extent_state *cached_state = NULL; 2701 struct extent_changeset *data_reserved = NULL; 2702 struct page *page = fixup->page; 2703 struct btrfs_inode *inode = fixup->inode; 2704 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2705 u64 page_start = page_offset(page); 2706 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2707 int ret = 0; 2708 bool free_delalloc_space = true; 2709 2710 /* 2711 * This is similar to page_mkwrite, we need to reserve the space before 2712 * we take the page lock. 2713 */ 2714 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2715 PAGE_SIZE); 2716 again: 2717 lock_page(page); 2718 2719 /* 2720 * Before we queued this fixup, we took a reference on the page. 2721 * page->mapping may go NULL, but it shouldn't be moved to a different 2722 * address space. 2723 */ 2724 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2725 /* 2726 * Unfortunately this is a little tricky, either 2727 * 2728 * 1) We got here and our page had already been dealt with and 2729 * we reserved our space, thus ret == 0, so we need to just 2730 * drop our space reservation and bail. This can happen the 2731 * first time we come into the fixup worker, or could happen 2732 * while waiting for the ordered extent. 2733 * 2) Our page was already dealt with, but we happened to get an 2734 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2735 * this case we obviously don't have anything to release, but 2736 * because the page was already dealt with we don't want to 2737 * mark the page with an error, so make sure we're resetting 2738 * ret to 0. This is why we have this check _before_ the ret 2739 * check, because we do not want to have a surprise ENOSPC 2740 * when the page was already properly dealt with. 2741 */ 2742 if (!ret) { 2743 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2744 btrfs_delalloc_release_space(inode, data_reserved, 2745 page_start, PAGE_SIZE, 2746 true); 2747 } 2748 ret = 0; 2749 goto out_page; 2750 } 2751 2752 /* 2753 * We can't mess with the page state unless it is locked, so now that 2754 * it is locked bail if we failed to make our space reservation. 2755 */ 2756 if (ret) 2757 goto out_page; 2758 2759 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2760 2761 /* already ordered? We're done */ 2762 if (PageOrdered(page)) 2763 goto out_reserved; 2764 2765 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2766 if (ordered) { 2767 unlock_extent(&inode->io_tree, page_start, page_end, 2768 &cached_state); 2769 unlock_page(page); 2770 btrfs_start_ordered_extent(ordered); 2771 btrfs_put_ordered_extent(ordered); 2772 goto again; 2773 } 2774 2775 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2776 &cached_state); 2777 if (ret) 2778 goto out_reserved; 2779 2780 /* 2781 * Everything went as planned, we're now the owner of a dirty page with 2782 * delayed allocation bits set and space reserved for our COW 2783 * destination. 2784 * 2785 * The page was dirty when we started, nothing should have cleaned it. 2786 */ 2787 BUG_ON(!PageDirty(page)); 2788 free_delalloc_space = false; 2789 out_reserved: 2790 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2791 if (free_delalloc_space) 2792 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2793 PAGE_SIZE, true); 2794 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2795 out_page: 2796 if (ret) { 2797 /* 2798 * We hit ENOSPC or other errors. Update the mapping and page 2799 * to reflect the errors and clean the page. 2800 */ 2801 mapping_set_error(page->mapping, ret); 2802 btrfs_mark_ordered_io_finished(inode, page, page_start, 2803 PAGE_SIZE, !ret); 2804 clear_page_dirty_for_io(page); 2805 } 2806 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE); 2807 unlock_page(page); 2808 put_page(page); 2809 kfree(fixup); 2810 extent_changeset_free(data_reserved); 2811 /* 2812 * As a precaution, do a delayed iput in case it would be the last iput 2813 * that could need flushing space. Recursing back to fixup worker would 2814 * deadlock. 2815 */ 2816 btrfs_add_delayed_iput(inode); 2817 } 2818 2819 /* 2820 * There are a few paths in the higher layers of the kernel that directly 2821 * set the page dirty bit without asking the filesystem if it is a 2822 * good idea. This causes problems because we want to make sure COW 2823 * properly happens and the data=ordered rules are followed. 2824 * 2825 * In our case any range that doesn't have the ORDERED bit set 2826 * hasn't been properly setup for IO. We kick off an async process 2827 * to fix it up. The async helper will wait for ordered extents, set 2828 * the delalloc bit and make it safe to write the page. 2829 */ 2830 int btrfs_writepage_cow_fixup(struct page *page) 2831 { 2832 struct inode *inode = page->mapping->host; 2833 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2834 struct btrfs_writepage_fixup *fixup; 2835 2836 /* This page has ordered extent covering it already */ 2837 if (PageOrdered(page)) 2838 return 0; 2839 2840 /* 2841 * PageChecked is set below when we create a fixup worker for this page, 2842 * don't try to create another one if we're already PageChecked() 2843 * 2844 * The extent_io writepage code will redirty the page if we send back 2845 * EAGAIN. 2846 */ 2847 if (PageChecked(page)) 2848 return -EAGAIN; 2849 2850 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2851 if (!fixup) 2852 return -EAGAIN; 2853 2854 /* 2855 * We are already holding a reference to this inode from 2856 * write_cache_pages. We need to hold it because the space reservation 2857 * takes place outside of the page lock, and we can't trust 2858 * page->mapping outside of the page lock. 2859 */ 2860 ihold(inode); 2861 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE); 2862 get_page(page); 2863 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2864 fixup->page = page; 2865 fixup->inode = BTRFS_I(inode); 2866 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2867 2868 return -EAGAIN; 2869 } 2870 2871 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2872 struct btrfs_inode *inode, u64 file_pos, 2873 struct btrfs_file_extent_item *stack_fi, 2874 const bool update_inode_bytes, 2875 u64 qgroup_reserved) 2876 { 2877 struct btrfs_root *root = inode->root; 2878 const u64 sectorsize = root->fs_info->sectorsize; 2879 struct btrfs_path *path; 2880 struct extent_buffer *leaf; 2881 struct btrfs_key ins; 2882 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2883 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2884 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2885 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2886 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2887 struct btrfs_drop_extents_args drop_args = { 0 }; 2888 int ret; 2889 2890 path = btrfs_alloc_path(); 2891 if (!path) 2892 return -ENOMEM; 2893 2894 /* 2895 * we may be replacing one extent in the tree with another. 2896 * The new extent is pinned in the extent map, and we don't want 2897 * to drop it from the cache until it is completely in the btree. 2898 * 2899 * So, tell btrfs_drop_extents to leave this extent in the cache. 2900 * the caller is expected to unpin it and allow it to be merged 2901 * with the others. 2902 */ 2903 drop_args.path = path; 2904 drop_args.start = file_pos; 2905 drop_args.end = file_pos + num_bytes; 2906 drop_args.replace_extent = true; 2907 drop_args.extent_item_size = sizeof(*stack_fi); 2908 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2909 if (ret) 2910 goto out; 2911 2912 if (!drop_args.extent_inserted) { 2913 ins.objectid = btrfs_ino(inode); 2914 ins.offset = file_pos; 2915 ins.type = BTRFS_EXTENT_DATA_KEY; 2916 2917 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2918 sizeof(*stack_fi)); 2919 if (ret) 2920 goto out; 2921 } 2922 leaf = path->nodes[0]; 2923 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2924 write_extent_buffer(leaf, stack_fi, 2925 btrfs_item_ptr_offset(leaf, path->slots[0]), 2926 sizeof(struct btrfs_file_extent_item)); 2927 2928 btrfs_mark_buffer_dirty(trans, leaf); 2929 btrfs_release_path(path); 2930 2931 /* 2932 * If we dropped an inline extent here, we know the range where it is 2933 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2934 * number of bytes only for that range containing the inline extent. 2935 * The remaining of the range will be processed when clearning the 2936 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2937 */ 2938 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2939 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2940 2941 inline_size = drop_args.bytes_found - inline_size; 2942 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2943 drop_args.bytes_found -= inline_size; 2944 num_bytes -= sectorsize; 2945 } 2946 2947 if (update_inode_bytes) 2948 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2949 2950 ins.objectid = disk_bytenr; 2951 ins.offset = disk_num_bytes; 2952 ins.type = BTRFS_EXTENT_ITEM_KEY; 2953 2954 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2955 if (ret) 2956 goto out; 2957 2958 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2959 file_pos - offset, 2960 qgroup_reserved, &ins); 2961 out: 2962 btrfs_free_path(path); 2963 2964 return ret; 2965 } 2966 2967 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2968 u64 start, u64 len) 2969 { 2970 struct btrfs_block_group *cache; 2971 2972 cache = btrfs_lookup_block_group(fs_info, start); 2973 ASSERT(cache); 2974 2975 spin_lock(&cache->lock); 2976 cache->delalloc_bytes -= len; 2977 spin_unlock(&cache->lock); 2978 2979 btrfs_put_block_group(cache); 2980 } 2981 2982 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2983 struct btrfs_ordered_extent *oe) 2984 { 2985 struct btrfs_file_extent_item stack_fi; 2986 bool update_inode_bytes; 2987 u64 num_bytes = oe->num_bytes; 2988 u64 ram_bytes = oe->ram_bytes; 2989 2990 memset(&stack_fi, 0, sizeof(stack_fi)); 2991 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2992 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2993 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2994 oe->disk_num_bytes); 2995 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2996 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2997 num_bytes = oe->truncated_len; 2998 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2999 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3000 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3001 /* Encryption and other encoding is reserved and all 0 */ 3002 3003 /* 3004 * For delalloc, when completing an ordered extent we update the inode's 3005 * bytes when clearing the range in the inode's io tree, so pass false 3006 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3007 * except if the ordered extent was truncated. 3008 */ 3009 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3010 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3011 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3012 3013 return insert_reserved_file_extent(trans, oe->inode, 3014 oe->file_offset, &stack_fi, 3015 update_inode_bytes, oe->qgroup_rsv); 3016 } 3017 3018 /* 3019 * As ordered data IO finishes, this gets called so we can finish 3020 * an ordered extent if the range of bytes in the file it covers are 3021 * fully written. 3022 */ 3023 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3024 { 3025 struct btrfs_inode *inode = ordered_extent->inode; 3026 struct btrfs_root *root = inode->root; 3027 struct btrfs_fs_info *fs_info = root->fs_info; 3028 struct btrfs_trans_handle *trans = NULL; 3029 struct extent_io_tree *io_tree = &inode->io_tree; 3030 struct extent_state *cached_state = NULL; 3031 u64 start, end; 3032 int compress_type = 0; 3033 int ret = 0; 3034 u64 logical_len = ordered_extent->num_bytes; 3035 bool freespace_inode; 3036 bool truncated = false; 3037 bool clear_reserved_extent = true; 3038 unsigned int clear_bits = EXTENT_DEFRAG; 3039 3040 start = ordered_extent->file_offset; 3041 end = start + ordered_extent->num_bytes - 1; 3042 3043 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3044 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3045 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3046 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3047 clear_bits |= EXTENT_DELALLOC_NEW; 3048 3049 freespace_inode = btrfs_is_free_space_inode(inode); 3050 if (!freespace_inode) 3051 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3052 3053 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3054 ret = -EIO; 3055 goto out; 3056 } 3057 3058 if (btrfs_is_zoned(fs_info)) 3059 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3060 ordered_extent->disk_num_bytes); 3061 3062 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3063 truncated = true; 3064 logical_len = ordered_extent->truncated_len; 3065 /* Truncated the entire extent, don't bother adding */ 3066 if (!logical_len) 3067 goto out; 3068 } 3069 3070 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3071 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3072 3073 btrfs_inode_safe_disk_i_size_write(inode, 0); 3074 if (freespace_inode) 3075 trans = btrfs_join_transaction_spacecache(root); 3076 else 3077 trans = btrfs_join_transaction(root); 3078 if (IS_ERR(trans)) { 3079 ret = PTR_ERR(trans); 3080 trans = NULL; 3081 goto out; 3082 } 3083 trans->block_rsv = &inode->block_rsv; 3084 ret = btrfs_update_inode_fallback(trans, inode); 3085 if (ret) /* -ENOMEM or corruption */ 3086 btrfs_abort_transaction(trans, ret); 3087 goto out; 3088 } 3089 3090 clear_bits |= EXTENT_LOCKED; 3091 lock_extent(io_tree, start, end, &cached_state); 3092 3093 if (freespace_inode) 3094 trans = btrfs_join_transaction_spacecache(root); 3095 else 3096 trans = btrfs_join_transaction(root); 3097 if (IS_ERR(trans)) { 3098 ret = PTR_ERR(trans); 3099 trans = NULL; 3100 goto out; 3101 } 3102 3103 trans->block_rsv = &inode->block_rsv; 3104 3105 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3106 if (ret) 3107 goto out; 3108 3109 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3110 compress_type = ordered_extent->compress_type; 3111 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3112 BUG_ON(compress_type); 3113 ret = btrfs_mark_extent_written(trans, inode, 3114 ordered_extent->file_offset, 3115 ordered_extent->file_offset + 3116 logical_len); 3117 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3118 ordered_extent->disk_num_bytes); 3119 } else { 3120 BUG_ON(root == fs_info->tree_root); 3121 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3122 if (!ret) { 3123 clear_reserved_extent = false; 3124 btrfs_release_delalloc_bytes(fs_info, 3125 ordered_extent->disk_bytenr, 3126 ordered_extent->disk_num_bytes); 3127 } 3128 } 3129 if (ret < 0) { 3130 btrfs_abort_transaction(trans, ret); 3131 goto out; 3132 } 3133 3134 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3135 ordered_extent->num_bytes, trans->transid); 3136 if (ret < 0) { 3137 btrfs_abort_transaction(trans, ret); 3138 goto out; 3139 } 3140 3141 ret = add_pending_csums(trans, &ordered_extent->list); 3142 if (ret) { 3143 btrfs_abort_transaction(trans, ret); 3144 goto out; 3145 } 3146 3147 /* 3148 * If this is a new delalloc range, clear its new delalloc flag to 3149 * update the inode's number of bytes. This needs to be done first 3150 * before updating the inode item. 3151 */ 3152 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3153 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3154 clear_extent_bit(&inode->io_tree, start, end, 3155 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3156 &cached_state); 3157 3158 btrfs_inode_safe_disk_i_size_write(inode, 0); 3159 ret = btrfs_update_inode_fallback(trans, inode); 3160 if (ret) { /* -ENOMEM or corruption */ 3161 btrfs_abort_transaction(trans, ret); 3162 goto out; 3163 } 3164 out: 3165 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3166 &cached_state); 3167 3168 if (trans) 3169 btrfs_end_transaction(trans); 3170 3171 if (ret || truncated) { 3172 u64 unwritten_start = start; 3173 3174 /* 3175 * If we failed to finish this ordered extent for any reason we 3176 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3177 * extent, and mark the inode with the error if it wasn't 3178 * already set. Any error during writeback would have already 3179 * set the mapping error, so we need to set it if we're the ones 3180 * marking this ordered extent as failed. 3181 */ 3182 if (ret) 3183 btrfs_mark_ordered_extent_error(ordered_extent); 3184 3185 if (truncated) 3186 unwritten_start += logical_len; 3187 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3188 3189 /* 3190 * Drop extent maps for the part of the extent we didn't write. 3191 * 3192 * We have an exception here for the free_space_inode, this is 3193 * because when we do btrfs_get_extent() on the free space inode 3194 * we will search the commit root. If this is a new block group 3195 * we won't find anything, and we will trip over the assert in 3196 * writepage where we do ASSERT(em->block_start != 3197 * EXTENT_MAP_HOLE). 3198 * 3199 * Theoretically we could also skip this for any NOCOW extent as 3200 * we don't mess with the extent map tree in the NOCOW case, but 3201 * for now simply skip this if we are the free space inode. 3202 */ 3203 if (!btrfs_is_free_space_inode(inode)) 3204 btrfs_drop_extent_map_range(inode, unwritten_start, 3205 end, false); 3206 3207 /* 3208 * If the ordered extent had an IOERR or something else went 3209 * wrong we need to return the space for this ordered extent 3210 * back to the allocator. We only free the extent in the 3211 * truncated case if we didn't write out the extent at all. 3212 * 3213 * If we made it past insert_reserved_file_extent before we 3214 * errored out then we don't need to do this as the accounting 3215 * has already been done. 3216 */ 3217 if ((ret || !logical_len) && 3218 clear_reserved_extent && 3219 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3220 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3221 /* 3222 * Discard the range before returning it back to the 3223 * free space pool 3224 */ 3225 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3226 btrfs_discard_extent(fs_info, 3227 ordered_extent->disk_bytenr, 3228 ordered_extent->disk_num_bytes, 3229 NULL); 3230 btrfs_free_reserved_extent(fs_info, 3231 ordered_extent->disk_bytenr, 3232 ordered_extent->disk_num_bytes, 1); 3233 /* 3234 * Actually free the qgroup rsv which was released when 3235 * the ordered extent was created. 3236 */ 3237 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3238 ordered_extent->qgroup_rsv, 3239 BTRFS_QGROUP_RSV_DATA); 3240 } 3241 } 3242 3243 /* 3244 * This needs to be done to make sure anybody waiting knows we are done 3245 * updating everything for this ordered extent. 3246 */ 3247 btrfs_remove_ordered_extent(inode, ordered_extent); 3248 3249 /* once for us */ 3250 btrfs_put_ordered_extent(ordered_extent); 3251 /* once for the tree */ 3252 btrfs_put_ordered_extent(ordered_extent); 3253 3254 return ret; 3255 } 3256 3257 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3258 { 3259 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3260 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3261 list_empty(&ordered->bioc_list)) 3262 btrfs_finish_ordered_zoned(ordered); 3263 return btrfs_finish_one_ordered(ordered); 3264 } 3265 3266 /* 3267 * Verify the checksum for a single sector without any extra action that depend 3268 * on the type of I/O. 3269 */ 3270 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3271 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3272 { 3273 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3274 char *kaddr; 3275 3276 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3277 3278 shash->tfm = fs_info->csum_shash; 3279 3280 kaddr = kmap_local_page(page) + pgoff; 3281 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3282 kunmap_local(kaddr); 3283 3284 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3285 return -EIO; 3286 return 0; 3287 } 3288 3289 /* 3290 * Verify the checksum of a single data sector. 3291 * 3292 * @bbio: btrfs_io_bio which contains the csum 3293 * @dev: device the sector is on 3294 * @bio_offset: offset to the beginning of the bio (in bytes) 3295 * @bv: bio_vec to check 3296 * 3297 * Check if the checksum on a data block is valid. When a checksum mismatch is 3298 * detected, report the error and fill the corrupted range with zero. 3299 * 3300 * Return %true if the sector is ok or had no checksum to start with, else %false. 3301 */ 3302 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3303 u32 bio_offset, struct bio_vec *bv) 3304 { 3305 struct btrfs_inode *inode = bbio->inode; 3306 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3307 u64 file_offset = bbio->file_offset + bio_offset; 3308 u64 end = file_offset + bv->bv_len - 1; 3309 u8 *csum_expected; 3310 u8 csum[BTRFS_CSUM_SIZE]; 3311 3312 ASSERT(bv->bv_len == fs_info->sectorsize); 3313 3314 if (!bbio->csum) 3315 return true; 3316 3317 if (btrfs_is_data_reloc_root(inode->root) && 3318 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3319 NULL)) { 3320 /* Skip the range without csum for data reloc inode */ 3321 clear_extent_bits(&inode->io_tree, file_offset, end, 3322 EXTENT_NODATASUM); 3323 return true; 3324 } 3325 3326 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3327 fs_info->csum_size; 3328 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3329 csum_expected)) 3330 goto zeroit; 3331 return true; 3332 3333 zeroit: 3334 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3335 bbio->mirror_num); 3336 if (dev) 3337 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3338 memzero_bvec(bv); 3339 return false; 3340 } 3341 3342 /* 3343 * Perform a delayed iput on @inode. 3344 * 3345 * @inode: The inode we want to perform iput on 3346 * 3347 * This function uses the generic vfs_inode::i_count to track whether we should 3348 * just decrement it (in case it's > 1) or if this is the last iput then link 3349 * the inode to the delayed iput machinery. Delayed iputs are processed at 3350 * transaction commit time/superblock commit/cleaner kthread. 3351 */ 3352 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3353 { 3354 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3355 unsigned long flags; 3356 3357 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3358 return; 3359 3360 atomic_inc(&fs_info->nr_delayed_iputs); 3361 /* 3362 * Need to be irq safe here because we can be called from either an irq 3363 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3364 * context. 3365 */ 3366 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3367 ASSERT(list_empty(&inode->delayed_iput)); 3368 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3369 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3370 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3371 wake_up_process(fs_info->cleaner_kthread); 3372 } 3373 3374 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3375 struct btrfs_inode *inode) 3376 { 3377 list_del_init(&inode->delayed_iput); 3378 spin_unlock_irq(&fs_info->delayed_iput_lock); 3379 iput(&inode->vfs_inode); 3380 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3381 wake_up(&fs_info->delayed_iputs_wait); 3382 spin_lock_irq(&fs_info->delayed_iput_lock); 3383 } 3384 3385 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3386 struct btrfs_inode *inode) 3387 { 3388 if (!list_empty(&inode->delayed_iput)) { 3389 spin_lock_irq(&fs_info->delayed_iput_lock); 3390 if (!list_empty(&inode->delayed_iput)) 3391 run_delayed_iput_locked(fs_info, inode); 3392 spin_unlock_irq(&fs_info->delayed_iput_lock); 3393 } 3394 } 3395 3396 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3397 { 3398 /* 3399 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3400 * calls btrfs_add_delayed_iput() and that needs to lock 3401 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3402 * prevent a deadlock. 3403 */ 3404 spin_lock_irq(&fs_info->delayed_iput_lock); 3405 while (!list_empty(&fs_info->delayed_iputs)) { 3406 struct btrfs_inode *inode; 3407 3408 inode = list_first_entry(&fs_info->delayed_iputs, 3409 struct btrfs_inode, delayed_iput); 3410 run_delayed_iput_locked(fs_info, inode); 3411 if (need_resched()) { 3412 spin_unlock_irq(&fs_info->delayed_iput_lock); 3413 cond_resched(); 3414 spin_lock_irq(&fs_info->delayed_iput_lock); 3415 } 3416 } 3417 spin_unlock_irq(&fs_info->delayed_iput_lock); 3418 } 3419 3420 /* 3421 * Wait for flushing all delayed iputs 3422 * 3423 * @fs_info: the filesystem 3424 * 3425 * This will wait on any delayed iputs that are currently running with KILLABLE 3426 * set. Once they are all done running we will return, unless we are killed in 3427 * which case we return EINTR. This helps in user operations like fallocate etc 3428 * that might get blocked on the iputs. 3429 * 3430 * Return EINTR if we were killed, 0 if nothing's pending 3431 */ 3432 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3433 { 3434 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3435 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3436 if (ret) 3437 return -EINTR; 3438 return 0; 3439 } 3440 3441 /* 3442 * This creates an orphan entry for the given inode in case something goes wrong 3443 * in the middle of an unlink. 3444 */ 3445 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3446 struct btrfs_inode *inode) 3447 { 3448 int ret; 3449 3450 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3451 if (ret && ret != -EEXIST) { 3452 btrfs_abort_transaction(trans, ret); 3453 return ret; 3454 } 3455 3456 return 0; 3457 } 3458 3459 /* 3460 * We have done the delete so we can go ahead and remove the orphan item for 3461 * this particular inode. 3462 */ 3463 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3464 struct btrfs_inode *inode) 3465 { 3466 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3467 } 3468 3469 /* 3470 * this cleans up any orphans that may be left on the list from the last use 3471 * of this root. 3472 */ 3473 int btrfs_orphan_cleanup(struct btrfs_root *root) 3474 { 3475 struct btrfs_fs_info *fs_info = root->fs_info; 3476 struct btrfs_path *path; 3477 struct extent_buffer *leaf; 3478 struct btrfs_key key, found_key; 3479 struct btrfs_trans_handle *trans; 3480 struct inode *inode; 3481 u64 last_objectid = 0; 3482 int ret = 0, nr_unlink = 0; 3483 3484 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3485 return 0; 3486 3487 path = btrfs_alloc_path(); 3488 if (!path) { 3489 ret = -ENOMEM; 3490 goto out; 3491 } 3492 path->reada = READA_BACK; 3493 3494 key.objectid = BTRFS_ORPHAN_OBJECTID; 3495 key.type = BTRFS_ORPHAN_ITEM_KEY; 3496 key.offset = (u64)-1; 3497 3498 while (1) { 3499 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3500 if (ret < 0) 3501 goto out; 3502 3503 /* 3504 * if ret == 0 means we found what we were searching for, which 3505 * is weird, but possible, so only screw with path if we didn't 3506 * find the key and see if we have stuff that matches 3507 */ 3508 if (ret > 0) { 3509 ret = 0; 3510 if (path->slots[0] == 0) 3511 break; 3512 path->slots[0]--; 3513 } 3514 3515 /* pull out the item */ 3516 leaf = path->nodes[0]; 3517 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3518 3519 /* make sure the item matches what we want */ 3520 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3521 break; 3522 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3523 break; 3524 3525 /* release the path since we're done with it */ 3526 btrfs_release_path(path); 3527 3528 /* 3529 * this is where we are basically btrfs_lookup, without the 3530 * crossing root thing. we store the inode number in the 3531 * offset of the orphan item. 3532 */ 3533 3534 if (found_key.offset == last_objectid) { 3535 /* 3536 * We found the same inode as before. This means we were 3537 * not able to remove its items via eviction triggered 3538 * by an iput(). A transaction abort may have happened, 3539 * due to -ENOSPC for example, so try to grab the error 3540 * that lead to a transaction abort, if any. 3541 */ 3542 btrfs_err(fs_info, 3543 "Error removing orphan entry, stopping orphan cleanup"); 3544 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3545 goto out; 3546 } 3547 3548 last_objectid = found_key.offset; 3549 3550 found_key.objectid = found_key.offset; 3551 found_key.type = BTRFS_INODE_ITEM_KEY; 3552 found_key.offset = 0; 3553 inode = btrfs_iget(last_objectid, root); 3554 if (IS_ERR(inode)) { 3555 ret = PTR_ERR(inode); 3556 inode = NULL; 3557 if (ret != -ENOENT) 3558 goto out; 3559 } 3560 3561 if (!inode && root == fs_info->tree_root) { 3562 struct btrfs_root *dead_root; 3563 int is_dead_root = 0; 3564 3565 /* 3566 * This is an orphan in the tree root. Currently these 3567 * could come from 2 sources: 3568 * a) a root (snapshot/subvolume) deletion in progress 3569 * b) a free space cache inode 3570 * We need to distinguish those two, as the orphan item 3571 * for a root must not get deleted before the deletion 3572 * of the snapshot/subvolume's tree completes. 3573 * 3574 * btrfs_find_orphan_roots() ran before us, which has 3575 * found all deleted roots and loaded them into 3576 * fs_info->fs_roots_radix. So here we can find if an 3577 * orphan item corresponds to a deleted root by looking 3578 * up the root from that radix tree. 3579 */ 3580 3581 spin_lock(&fs_info->fs_roots_radix_lock); 3582 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3583 (unsigned long)found_key.objectid); 3584 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3585 is_dead_root = 1; 3586 spin_unlock(&fs_info->fs_roots_radix_lock); 3587 3588 if (is_dead_root) { 3589 /* prevent this orphan from being found again */ 3590 key.offset = found_key.objectid - 1; 3591 continue; 3592 } 3593 3594 } 3595 3596 /* 3597 * If we have an inode with links, there are a couple of 3598 * possibilities: 3599 * 3600 * 1. We were halfway through creating fsverity metadata for the 3601 * file. In that case, the orphan item represents incomplete 3602 * fsverity metadata which must be cleaned up with 3603 * btrfs_drop_verity_items and deleting the orphan item. 3604 3605 * 2. Old kernels (before v3.12) used to create an 3606 * orphan item for truncate indicating that there were possibly 3607 * extent items past i_size that needed to be deleted. In v3.12, 3608 * truncate was changed to update i_size in sync with the extent 3609 * items, but the (useless) orphan item was still created. Since 3610 * v4.18, we don't create the orphan item for truncate at all. 3611 * 3612 * So, this item could mean that we need to do a truncate, but 3613 * only if this filesystem was last used on a pre-v3.12 kernel 3614 * and was not cleanly unmounted. The odds of that are quite 3615 * slim, and it's a pain to do the truncate now, so just delete 3616 * the orphan item. 3617 * 3618 * It's also possible that this orphan item was supposed to be 3619 * deleted but wasn't. The inode number may have been reused, 3620 * but either way, we can delete the orphan item. 3621 */ 3622 if (!inode || inode->i_nlink) { 3623 if (inode) { 3624 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3625 iput(inode); 3626 inode = NULL; 3627 if (ret) 3628 goto out; 3629 } 3630 trans = btrfs_start_transaction(root, 1); 3631 if (IS_ERR(trans)) { 3632 ret = PTR_ERR(trans); 3633 goto out; 3634 } 3635 btrfs_debug(fs_info, "auto deleting %Lu", 3636 found_key.objectid); 3637 ret = btrfs_del_orphan_item(trans, root, 3638 found_key.objectid); 3639 btrfs_end_transaction(trans); 3640 if (ret) 3641 goto out; 3642 continue; 3643 } 3644 3645 nr_unlink++; 3646 3647 /* this will do delete_inode and everything for us */ 3648 iput(inode); 3649 } 3650 /* release the path since we're done with it */ 3651 btrfs_release_path(path); 3652 3653 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3654 trans = btrfs_join_transaction(root); 3655 if (!IS_ERR(trans)) 3656 btrfs_end_transaction(trans); 3657 } 3658 3659 if (nr_unlink) 3660 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3661 3662 out: 3663 if (ret) 3664 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3665 btrfs_free_path(path); 3666 return ret; 3667 } 3668 3669 /* 3670 * very simple check to peek ahead in the leaf looking for xattrs. If we 3671 * don't find any xattrs, we know there can't be any acls. 3672 * 3673 * slot is the slot the inode is in, objectid is the objectid of the inode 3674 */ 3675 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3676 int slot, u64 objectid, 3677 int *first_xattr_slot) 3678 { 3679 u32 nritems = btrfs_header_nritems(leaf); 3680 struct btrfs_key found_key; 3681 static u64 xattr_access = 0; 3682 static u64 xattr_default = 0; 3683 int scanned = 0; 3684 3685 if (!xattr_access) { 3686 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3687 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3688 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3689 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3690 } 3691 3692 slot++; 3693 *first_xattr_slot = -1; 3694 while (slot < nritems) { 3695 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3696 3697 /* we found a different objectid, there must not be acls */ 3698 if (found_key.objectid != objectid) 3699 return 0; 3700 3701 /* we found an xattr, assume we've got an acl */ 3702 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3703 if (*first_xattr_slot == -1) 3704 *first_xattr_slot = slot; 3705 if (found_key.offset == xattr_access || 3706 found_key.offset == xattr_default) 3707 return 1; 3708 } 3709 3710 /* 3711 * we found a key greater than an xattr key, there can't 3712 * be any acls later on 3713 */ 3714 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3715 return 0; 3716 3717 slot++; 3718 scanned++; 3719 3720 /* 3721 * it goes inode, inode backrefs, xattrs, extents, 3722 * so if there are a ton of hard links to an inode there can 3723 * be a lot of backrefs. Don't waste time searching too hard, 3724 * this is just an optimization 3725 */ 3726 if (scanned >= 8) 3727 break; 3728 } 3729 /* we hit the end of the leaf before we found an xattr or 3730 * something larger than an xattr. We have to assume the inode 3731 * has acls 3732 */ 3733 if (*first_xattr_slot == -1) 3734 *first_xattr_slot = slot; 3735 return 1; 3736 } 3737 3738 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3739 { 3740 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3741 3742 if (WARN_ON_ONCE(inode->file_extent_tree)) 3743 return 0; 3744 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3745 return 0; 3746 if (!S_ISREG(inode->vfs_inode.i_mode)) 3747 return 0; 3748 if (btrfs_is_free_space_inode(inode)) 3749 return 0; 3750 3751 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3752 if (!inode->file_extent_tree) 3753 return -ENOMEM; 3754 3755 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3756 /* Lockdep class is set only for the file extent tree. */ 3757 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3758 3759 return 0; 3760 } 3761 3762 /* 3763 * read an inode from the btree into the in-memory inode 3764 */ 3765 static int btrfs_read_locked_inode(struct inode *inode, 3766 struct btrfs_path *in_path) 3767 { 3768 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3769 struct btrfs_path *path = in_path; 3770 struct extent_buffer *leaf; 3771 struct btrfs_inode_item *inode_item; 3772 struct btrfs_root *root = BTRFS_I(inode)->root; 3773 struct btrfs_key location; 3774 unsigned long ptr; 3775 int maybe_acls; 3776 u32 rdev; 3777 int ret; 3778 bool filled = false; 3779 int first_xattr_slot; 3780 3781 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 3782 if (ret) 3783 return ret; 3784 3785 ret = btrfs_fill_inode(inode, &rdev); 3786 if (!ret) 3787 filled = true; 3788 3789 if (!path) { 3790 path = btrfs_alloc_path(); 3791 if (!path) 3792 return -ENOMEM; 3793 } 3794 3795 btrfs_get_inode_key(BTRFS_I(inode), &location); 3796 3797 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3798 if (ret) { 3799 if (path != in_path) 3800 btrfs_free_path(path); 3801 return ret; 3802 } 3803 3804 leaf = path->nodes[0]; 3805 3806 if (filled) 3807 goto cache_index; 3808 3809 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3810 struct btrfs_inode_item); 3811 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3812 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3813 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3814 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3815 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3816 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3817 round_up(i_size_read(inode), fs_info->sectorsize)); 3818 3819 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3820 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3821 3822 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3823 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3824 3825 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3826 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3827 3828 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3829 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3830 3831 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3832 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3833 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3834 3835 inode_set_iversion_queried(inode, 3836 btrfs_inode_sequence(leaf, inode_item)); 3837 inode->i_generation = BTRFS_I(inode)->generation; 3838 inode->i_rdev = 0; 3839 rdev = btrfs_inode_rdev(leaf, inode_item); 3840 3841 if (S_ISDIR(inode->i_mode)) 3842 BTRFS_I(inode)->index_cnt = (u64)-1; 3843 3844 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3845 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3846 3847 cache_index: 3848 /* 3849 * If we were modified in the current generation and evicted from memory 3850 * and then re-read we need to do a full sync since we don't have any 3851 * idea about which extents were modified before we were evicted from 3852 * cache. 3853 * 3854 * This is required for both inode re-read from disk and delayed inode 3855 * in the delayed_nodes xarray. 3856 */ 3857 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3858 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3859 &BTRFS_I(inode)->runtime_flags); 3860 3861 /* 3862 * We don't persist the id of the transaction where an unlink operation 3863 * against the inode was last made. So here we assume the inode might 3864 * have been evicted, and therefore the exact value of last_unlink_trans 3865 * lost, and set it to last_trans to avoid metadata inconsistencies 3866 * between the inode and its parent if the inode is fsync'ed and the log 3867 * replayed. For example, in the scenario: 3868 * 3869 * touch mydir/foo 3870 * ln mydir/foo mydir/bar 3871 * sync 3872 * unlink mydir/bar 3873 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3874 * xfs_io -c fsync mydir/foo 3875 * <power failure> 3876 * mount fs, triggers fsync log replay 3877 * 3878 * We must make sure that when we fsync our inode foo we also log its 3879 * parent inode, otherwise after log replay the parent still has the 3880 * dentry with the "bar" name but our inode foo has a link count of 1 3881 * and doesn't have an inode ref with the name "bar" anymore. 3882 * 3883 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3884 * but it guarantees correctness at the expense of occasional full 3885 * transaction commits on fsync if our inode is a directory, or if our 3886 * inode is not a directory, logging its parent unnecessarily. 3887 */ 3888 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3889 3890 /* 3891 * Same logic as for last_unlink_trans. We don't persist the generation 3892 * of the last transaction where this inode was used for a reflink 3893 * operation, so after eviction and reloading the inode we must be 3894 * pessimistic and assume the last transaction that modified the inode. 3895 */ 3896 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3897 3898 path->slots[0]++; 3899 if (inode->i_nlink != 1 || 3900 path->slots[0] >= btrfs_header_nritems(leaf)) 3901 goto cache_acl; 3902 3903 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3904 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3905 goto cache_acl; 3906 3907 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3908 if (location.type == BTRFS_INODE_REF_KEY) { 3909 struct btrfs_inode_ref *ref; 3910 3911 ref = (struct btrfs_inode_ref *)ptr; 3912 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3913 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3914 struct btrfs_inode_extref *extref; 3915 3916 extref = (struct btrfs_inode_extref *)ptr; 3917 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3918 extref); 3919 } 3920 cache_acl: 3921 /* 3922 * try to precache a NULL acl entry for files that don't have 3923 * any xattrs or acls 3924 */ 3925 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3926 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3927 if (first_xattr_slot != -1) { 3928 path->slots[0] = first_xattr_slot; 3929 ret = btrfs_load_inode_props(inode, path); 3930 if (ret) 3931 btrfs_err(fs_info, 3932 "error loading props for ino %llu (root %llu): %d", 3933 btrfs_ino(BTRFS_I(inode)), 3934 btrfs_root_id(root), ret); 3935 } 3936 if (path != in_path) 3937 btrfs_free_path(path); 3938 3939 if (!maybe_acls) 3940 cache_no_acl(inode); 3941 3942 switch (inode->i_mode & S_IFMT) { 3943 case S_IFREG: 3944 inode->i_mapping->a_ops = &btrfs_aops; 3945 inode->i_fop = &btrfs_file_operations; 3946 inode->i_op = &btrfs_file_inode_operations; 3947 break; 3948 case S_IFDIR: 3949 inode->i_fop = &btrfs_dir_file_operations; 3950 inode->i_op = &btrfs_dir_inode_operations; 3951 break; 3952 case S_IFLNK: 3953 inode->i_op = &btrfs_symlink_inode_operations; 3954 inode_nohighmem(inode); 3955 inode->i_mapping->a_ops = &btrfs_aops; 3956 break; 3957 default: 3958 inode->i_op = &btrfs_special_inode_operations; 3959 init_special_inode(inode, inode->i_mode, rdev); 3960 break; 3961 } 3962 3963 btrfs_sync_inode_flags_to_i_flags(inode); 3964 return 0; 3965 } 3966 3967 /* 3968 * given a leaf and an inode, copy the inode fields into the leaf 3969 */ 3970 static void fill_inode_item(struct btrfs_trans_handle *trans, 3971 struct extent_buffer *leaf, 3972 struct btrfs_inode_item *item, 3973 struct inode *inode) 3974 { 3975 struct btrfs_map_token token; 3976 u64 flags; 3977 3978 btrfs_init_map_token(&token, leaf); 3979 3980 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3981 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3982 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3983 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3984 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3985 3986 btrfs_set_token_timespec_sec(&token, &item->atime, 3987 inode_get_atime_sec(inode)); 3988 btrfs_set_token_timespec_nsec(&token, &item->atime, 3989 inode_get_atime_nsec(inode)); 3990 3991 btrfs_set_token_timespec_sec(&token, &item->mtime, 3992 inode_get_mtime_sec(inode)); 3993 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3994 inode_get_mtime_nsec(inode)); 3995 3996 btrfs_set_token_timespec_sec(&token, &item->ctime, 3997 inode_get_ctime_sec(inode)); 3998 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3999 inode_get_ctime_nsec(inode)); 4000 4001 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4002 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4003 4004 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4005 btrfs_set_token_inode_generation(&token, item, 4006 BTRFS_I(inode)->generation); 4007 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4008 btrfs_set_token_inode_transid(&token, item, trans->transid); 4009 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4010 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4011 BTRFS_I(inode)->ro_flags); 4012 btrfs_set_token_inode_flags(&token, item, flags); 4013 btrfs_set_token_inode_block_group(&token, item, 0); 4014 } 4015 4016 /* 4017 * copy everything in the in-memory inode into the btree. 4018 */ 4019 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4020 struct btrfs_inode *inode) 4021 { 4022 struct btrfs_inode_item *inode_item; 4023 struct btrfs_path *path; 4024 struct extent_buffer *leaf; 4025 struct btrfs_key key; 4026 int ret; 4027 4028 path = btrfs_alloc_path(); 4029 if (!path) 4030 return -ENOMEM; 4031 4032 btrfs_get_inode_key(inode, &key); 4033 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4034 if (ret) { 4035 if (ret > 0) 4036 ret = -ENOENT; 4037 goto failed; 4038 } 4039 4040 leaf = path->nodes[0]; 4041 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4042 struct btrfs_inode_item); 4043 4044 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4045 btrfs_mark_buffer_dirty(trans, leaf); 4046 btrfs_set_inode_last_trans(trans, inode); 4047 ret = 0; 4048 failed: 4049 btrfs_free_path(path); 4050 return ret; 4051 } 4052 4053 /* 4054 * copy everything in the in-memory inode into the btree. 4055 */ 4056 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4057 struct btrfs_inode *inode) 4058 { 4059 struct btrfs_root *root = inode->root; 4060 struct btrfs_fs_info *fs_info = root->fs_info; 4061 int ret; 4062 4063 /* 4064 * If the inode is a free space inode, we can deadlock during commit 4065 * if we put it into the delayed code. 4066 * 4067 * The data relocation inode should also be directly updated 4068 * without delay 4069 */ 4070 if (!btrfs_is_free_space_inode(inode) 4071 && !btrfs_is_data_reloc_root(root) 4072 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4073 btrfs_update_root_times(trans, root); 4074 4075 ret = btrfs_delayed_update_inode(trans, inode); 4076 if (!ret) 4077 btrfs_set_inode_last_trans(trans, inode); 4078 return ret; 4079 } 4080 4081 return btrfs_update_inode_item(trans, inode); 4082 } 4083 4084 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4085 struct btrfs_inode *inode) 4086 { 4087 int ret; 4088 4089 ret = btrfs_update_inode(trans, inode); 4090 if (ret == -ENOSPC) 4091 return btrfs_update_inode_item(trans, inode); 4092 return ret; 4093 } 4094 4095 /* 4096 * unlink helper that gets used here in inode.c and in the tree logging 4097 * recovery code. It remove a link in a directory with a given name, and 4098 * also drops the back refs in the inode to the directory 4099 */ 4100 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4101 struct btrfs_inode *dir, 4102 struct btrfs_inode *inode, 4103 const struct fscrypt_str *name, 4104 struct btrfs_rename_ctx *rename_ctx) 4105 { 4106 struct btrfs_root *root = dir->root; 4107 struct btrfs_fs_info *fs_info = root->fs_info; 4108 struct btrfs_path *path; 4109 int ret = 0; 4110 struct btrfs_dir_item *di; 4111 u64 index; 4112 u64 ino = btrfs_ino(inode); 4113 u64 dir_ino = btrfs_ino(dir); 4114 4115 path = btrfs_alloc_path(); 4116 if (!path) { 4117 ret = -ENOMEM; 4118 goto out; 4119 } 4120 4121 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4122 if (IS_ERR_OR_NULL(di)) { 4123 ret = di ? PTR_ERR(di) : -ENOENT; 4124 goto err; 4125 } 4126 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4127 if (ret) 4128 goto err; 4129 btrfs_release_path(path); 4130 4131 /* 4132 * If we don't have dir index, we have to get it by looking up 4133 * the inode ref, since we get the inode ref, remove it directly, 4134 * it is unnecessary to do delayed deletion. 4135 * 4136 * But if we have dir index, needn't search inode ref to get it. 4137 * Since the inode ref is close to the inode item, it is better 4138 * that we delay to delete it, and just do this deletion when 4139 * we update the inode item. 4140 */ 4141 if (inode->dir_index) { 4142 ret = btrfs_delayed_delete_inode_ref(inode); 4143 if (!ret) { 4144 index = inode->dir_index; 4145 goto skip_backref; 4146 } 4147 } 4148 4149 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4150 if (ret) { 4151 btrfs_info(fs_info, 4152 "failed to delete reference to %.*s, inode %llu parent %llu", 4153 name->len, name->name, ino, dir_ino); 4154 btrfs_abort_transaction(trans, ret); 4155 goto err; 4156 } 4157 skip_backref: 4158 if (rename_ctx) 4159 rename_ctx->index = index; 4160 4161 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4162 if (ret) { 4163 btrfs_abort_transaction(trans, ret); 4164 goto err; 4165 } 4166 4167 /* 4168 * If we are in a rename context, we don't need to update anything in the 4169 * log. That will be done later during the rename by btrfs_log_new_name(). 4170 * Besides that, doing it here would only cause extra unnecessary btree 4171 * operations on the log tree, increasing latency for applications. 4172 */ 4173 if (!rename_ctx) { 4174 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4175 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4176 } 4177 4178 /* 4179 * If we have a pending delayed iput we could end up with the final iput 4180 * being run in btrfs-cleaner context. If we have enough of these built 4181 * up we can end up burning a lot of time in btrfs-cleaner without any 4182 * way to throttle the unlinks. Since we're currently holding a ref on 4183 * the inode we can run the delayed iput here without any issues as the 4184 * final iput won't be done until after we drop the ref we're currently 4185 * holding. 4186 */ 4187 btrfs_run_delayed_iput(fs_info, inode); 4188 err: 4189 btrfs_free_path(path); 4190 if (ret) 4191 goto out; 4192 4193 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4194 inode_inc_iversion(&inode->vfs_inode); 4195 inode_inc_iversion(&dir->vfs_inode); 4196 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4197 ret = btrfs_update_inode(trans, dir); 4198 out: 4199 return ret; 4200 } 4201 4202 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4203 struct btrfs_inode *dir, struct btrfs_inode *inode, 4204 const struct fscrypt_str *name) 4205 { 4206 int ret; 4207 4208 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4209 if (!ret) { 4210 drop_nlink(&inode->vfs_inode); 4211 ret = btrfs_update_inode(trans, inode); 4212 } 4213 return ret; 4214 } 4215 4216 /* 4217 * helper to start transaction for unlink and rmdir. 4218 * 4219 * unlink and rmdir are special in btrfs, they do not always free space, so 4220 * if we cannot make our reservations the normal way try and see if there is 4221 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4222 * allow the unlink to occur. 4223 */ 4224 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4225 { 4226 struct btrfs_root *root = dir->root; 4227 4228 return btrfs_start_transaction_fallback_global_rsv(root, 4229 BTRFS_UNLINK_METADATA_UNITS); 4230 } 4231 4232 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4233 { 4234 struct btrfs_trans_handle *trans; 4235 struct inode *inode = d_inode(dentry); 4236 int ret; 4237 struct fscrypt_name fname; 4238 4239 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4240 if (ret) 4241 return ret; 4242 4243 /* This needs to handle no-key deletions later on */ 4244 4245 trans = __unlink_start_trans(BTRFS_I(dir)); 4246 if (IS_ERR(trans)) { 4247 ret = PTR_ERR(trans); 4248 goto fscrypt_free; 4249 } 4250 4251 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4252 false); 4253 4254 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4255 &fname.disk_name); 4256 if (ret) 4257 goto end_trans; 4258 4259 if (inode->i_nlink == 0) { 4260 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4261 if (ret) 4262 goto end_trans; 4263 } 4264 4265 end_trans: 4266 btrfs_end_transaction(trans); 4267 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4268 fscrypt_free: 4269 fscrypt_free_filename(&fname); 4270 return ret; 4271 } 4272 4273 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4274 struct btrfs_inode *dir, struct dentry *dentry) 4275 { 4276 struct btrfs_root *root = dir->root; 4277 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4278 struct btrfs_path *path; 4279 struct extent_buffer *leaf; 4280 struct btrfs_dir_item *di; 4281 struct btrfs_key key; 4282 u64 index; 4283 int ret; 4284 u64 objectid; 4285 u64 dir_ino = btrfs_ino(dir); 4286 struct fscrypt_name fname; 4287 4288 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4289 if (ret) 4290 return ret; 4291 4292 /* This needs to handle no-key deletions later on */ 4293 4294 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4295 objectid = btrfs_root_id(inode->root); 4296 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4297 objectid = inode->ref_root_id; 4298 } else { 4299 WARN_ON(1); 4300 fscrypt_free_filename(&fname); 4301 return -EINVAL; 4302 } 4303 4304 path = btrfs_alloc_path(); 4305 if (!path) { 4306 ret = -ENOMEM; 4307 goto out; 4308 } 4309 4310 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4311 &fname.disk_name, -1); 4312 if (IS_ERR_OR_NULL(di)) { 4313 ret = di ? PTR_ERR(di) : -ENOENT; 4314 goto out; 4315 } 4316 4317 leaf = path->nodes[0]; 4318 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4319 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4320 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4321 if (ret) { 4322 btrfs_abort_transaction(trans, ret); 4323 goto out; 4324 } 4325 btrfs_release_path(path); 4326 4327 /* 4328 * This is a placeholder inode for a subvolume we didn't have a 4329 * reference to at the time of the snapshot creation. In the meantime 4330 * we could have renamed the real subvol link into our snapshot, so 4331 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4332 * Instead simply lookup the dir_index_item for this entry so we can 4333 * remove it. Otherwise we know we have a ref to the root and we can 4334 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4335 */ 4336 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4337 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4338 if (IS_ERR_OR_NULL(di)) { 4339 if (!di) 4340 ret = -ENOENT; 4341 else 4342 ret = PTR_ERR(di); 4343 btrfs_abort_transaction(trans, ret); 4344 goto out; 4345 } 4346 4347 leaf = path->nodes[0]; 4348 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4349 index = key.offset; 4350 btrfs_release_path(path); 4351 } else { 4352 ret = btrfs_del_root_ref(trans, objectid, 4353 btrfs_root_id(root), dir_ino, 4354 &index, &fname.disk_name); 4355 if (ret) { 4356 btrfs_abort_transaction(trans, ret); 4357 goto out; 4358 } 4359 } 4360 4361 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4362 if (ret) { 4363 btrfs_abort_transaction(trans, ret); 4364 goto out; 4365 } 4366 4367 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4368 inode_inc_iversion(&dir->vfs_inode); 4369 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4370 ret = btrfs_update_inode_fallback(trans, dir); 4371 if (ret) 4372 btrfs_abort_transaction(trans, ret); 4373 out: 4374 btrfs_free_path(path); 4375 fscrypt_free_filename(&fname); 4376 return ret; 4377 } 4378 4379 /* 4380 * Helper to check if the subvolume references other subvolumes or if it's 4381 * default. 4382 */ 4383 static noinline int may_destroy_subvol(struct btrfs_root *root) 4384 { 4385 struct btrfs_fs_info *fs_info = root->fs_info; 4386 struct btrfs_path *path; 4387 struct btrfs_dir_item *di; 4388 struct btrfs_key key; 4389 struct fscrypt_str name = FSTR_INIT("default", 7); 4390 u64 dir_id; 4391 int ret; 4392 4393 path = btrfs_alloc_path(); 4394 if (!path) 4395 return -ENOMEM; 4396 4397 /* Make sure this root isn't set as the default subvol */ 4398 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4399 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4400 dir_id, &name, 0); 4401 if (di && !IS_ERR(di)) { 4402 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4403 if (key.objectid == btrfs_root_id(root)) { 4404 ret = -EPERM; 4405 btrfs_err(fs_info, 4406 "deleting default subvolume %llu is not allowed", 4407 key.objectid); 4408 goto out; 4409 } 4410 btrfs_release_path(path); 4411 } 4412 4413 key.objectid = btrfs_root_id(root); 4414 key.type = BTRFS_ROOT_REF_KEY; 4415 key.offset = (u64)-1; 4416 4417 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4418 if (ret < 0) 4419 goto out; 4420 if (ret == 0) { 4421 /* 4422 * Key with offset -1 found, there would have to exist a root 4423 * with such id, but this is out of valid range. 4424 */ 4425 ret = -EUCLEAN; 4426 goto out; 4427 } 4428 4429 ret = 0; 4430 if (path->slots[0] > 0) { 4431 path->slots[0]--; 4432 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4433 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4434 ret = -ENOTEMPTY; 4435 } 4436 out: 4437 btrfs_free_path(path); 4438 return ret; 4439 } 4440 4441 /* Delete all dentries for inodes belonging to the root */ 4442 static void btrfs_prune_dentries(struct btrfs_root *root) 4443 { 4444 struct btrfs_fs_info *fs_info = root->fs_info; 4445 struct btrfs_inode *inode; 4446 u64 min_ino = 0; 4447 4448 if (!BTRFS_FS_ERROR(fs_info)) 4449 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4450 4451 inode = btrfs_find_first_inode(root, min_ino); 4452 while (inode) { 4453 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4454 d_prune_aliases(&inode->vfs_inode); 4455 4456 min_ino = btrfs_ino(inode) + 1; 4457 /* 4458 * btrfs_drop_inode() will have it removed from the inode 4459 * cache when its usage count hits zero. 4460 */ 4461 iput(&inode->vfs_inode); 4462 cond_resched(); 4463 inode = btrfs_find_first_inode(root, min_ino); 4464 } 4465 } 4466 4467 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4468 { 4469 struct btrfs_root *root = dir->root; 4470 struct btrfs_fs_info *fs_info = root->fs_info; 4471 struct inode *inode = d_inode(dentry); 4472 struct btrfs_root *dest = BTRFS_I(inode)->root; 4473 struct btrfs_trans_handle *trans; 4474 struct btrfs_block_rsv block_rsv; 4475 u64 root_flags; 4476 u64 qgroup_reserved = 0; 4477 int ret; 4478 4479 down_write(&fs_info->subvol_sem); 4480 4481 /* 4482 * Don't allow to delete a subvolume with send in progress. This is 4483 * inside the inode lock so the error handling that has to drop the bit 4484 * again is not run concurrently. 4485 */ 4486 spin_lock(&dest->root_item_lock); 4487 if (dest->send_in_progress) { 4488 spin_unlock(&dest->root_item_lock); 4489 btrfs_warn(fs_info, 4490 "attempt to delete subvolume %llu during send", 4491 btrfs_root_id(dest)); 4492 ret = -EPERM; 4493 goto out_up_write; 4494 } 4495 if (atomic_read(&dest->nr_swapfiles)) { 4496 spin_unlock(&dest->root_item_lock); 4497 btrfs_warn(fs_info, 4498 "attempt to delete subvolume %llu with active swapfile", 4499 btrfs_root_id(root)); 4500 ret = -EPERM; 4501 goto out_up_write; 4502 } 4503 root_flags = btrfs_root_flags(&dest->root_item); 4504 btrfs_set_root_flags(&dest->root_item, 4505 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4506 spin_unlock(&dest->root_item_lock); 4507 4508 ret = may_destroy_subvol(dest); 4509 if (ret) 4510 goto out_undead; 4511 4512 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4513 /* 4514 * One for dir inode, 4515 * two for dir entries, 4516 * two for root ref/backref. 4517 */ 4518 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4519 if (ret) 4520 goto out_undead; 4521 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4522 4523 trans = btrfs_start_transaction(root, 0); 4524 if (IS_ERR(trans)) { 4525 ret = PTR_ERR(trans); 4526 goto out_release; 4527 } 4528 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4529 qgroup_reserved = 0; 4530 trans->block_rsv = &block_rsv; 4531 trans->bytes_reserved = block_rsv.size; 4532 4533 btrfs_record_snapshot_destroy(trans, dir); 4534 4535 ret = btrfs_unlink_subvol(trans, dir, dentry); 4536 if (ret) { 4537 btrfs_abort_transaction(trans, ret); 4538 goto out_end_trans; 4539 } 4540 4541 ret = btrfs_record_root_in_trans(trans, dest); 4542 if (ret) { 4543 btrfs_abort_transaction(trans, ret); 4544 goto out_end_trans; 4545 } 4546 4547 memset(&dest->root_item.drop_progress, 0, 4548 sizeof(dest->root_item.drop_progress)); 4549 btrfs_set_root_drop_level(&dest->root_item, 0); 4550 btrfs_set_root_refs(&dest->root_item, 0); 4551 4552 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4553 ret = btrfs_insert_orphan_item(trans, 4554 fs_info->tree_root, 4555 btrfs_root_id(dest)); 4556 if (ret) { 4557 btrfs_abort_transaction(trans, ret); 4558 goto out_end_trans; 4559 } 4560 } 4561 4562 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4563 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4564 if (ret && ret != -ENOENT) { 4565 btrfs_abort_transaction(trans, ret); 4566 goto out_end_trans; 4567 } 4568 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4569 ret = btrfs_uuid_tree_remove(trans, 4570 dest->root_item.received_uuid, 4571 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4572 btrfs_root_id(dest)); 4573 if (ret && ret != -ENOENT) { 4574 btrfs_abort_transaction(trans, ret); 4575 goto out_end_trans; 4576 } 4577 } 4578 4579 free_anon_bdev(dest->anon_dev); 4580 dest->anon_dev = 0; 4581 out_end_trans: 4582 trans->block_rsv = NULL; 4583 trans->bytes_reserved = 0; 4584 ret = btrfs_end_transaction(trans); 4585 inode->i_flags |= S_DEAD; 4586 out_release: 4587 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4588 if (qgroup_reserved) 4589 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4590 out_undead: 4591 if (ret) { 4592 spin_lock(&dest->root_item_lock); 4593 root_flags = btrfs_root_flags(&dest->root_item); 4594 btrfs_set_root_flags(&dest->root_item, 4595 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4596 spin_unlock(&dest->root_item_lock); 4597 } 4598 out_up_write: 4599 up_write(&fs_info->subvol_sem); 4600 if (!ret) { 4601 d_invalidate(dentry); 4602 btrfs_prune_dentries(dest); 4603 ASSERT(dest->send_in_progress == 0); 4604 } 4605 4606 return ret; 4607 } 4608 4609 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4610 { 4611 struct inode *inode = d_inode(dentry); 4612 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4613 int ret = 0; 4614 struct btrfs_trans_handle *trans; 4615 u64 last_unlink_trans; 4616 struct fscrypt_name fname; 4617 4618 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4619 return -ENOTEMPTY; 4620 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4621 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4622 btrfs_err(fs_info, 4623 "extent tree v2 doesn't support snapshot deletion yet"); 4624 return -EOPNOTSUPP; 4625 } 4626 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4627 } 4628 4629 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4630 if (ret) 4631 return ret; 4632 4633 /* This needs to handle no-key deletions later on */ 4634 4635 trans = __unlink_start_trans(BTRFS_I(dir)); 4636 if (IS_ERR(trans)) { 4637 ret = PTR_ERR(trans); 4638 goto out_notrans; 4639 } 4640 4641 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4642 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4643 goto out; 4644 } 4645 4646 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4647 if (ret) 4648 goto out; 4649 4650 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4651 4652 /* now the directory is empty */ 4653 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4654 &fname.disk_name); 4655 if (!ret) { 4656 btrfs_i_size_write(BTRFS_I(inode), 0); 4657 /* 4658 * Propagate the last_unlink_trans value of the deleted dir to 4659 * its parent directory. This is to prevent an unrecoverable 4660 * log tree in the case we do something like this: 4661 * 1) create dir foo 4662 * 2) create snapshot under dir foo 4663 * 3) delete the snapshot 4664 * 4) rmdir foo 4665 * 5) mkdir foo 4666 * 6) fsync foo or some file inside foo 4667 */ 4668 if (last_unlink_trans >= trans->transid) 4669 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4670 } 4671 out: 4672 btrfs_end_transaction(trans); 4673 out_notrans: 4674 btrfs_btree_balance_dirty(fs_info); 4675 fscrypt_free_filename(&fname); 4676 4677 return ret; 4678 } 4679 4680 /* 4681 * Read, zero a chunk and write a block. 4682 * 4683 * @inode - inode that we're zeroing 4684 * @from - the offset to start zeroing 4685 * @len - the length to zero, 0 to zero the entire range respective to the 4686 * offset 4687 * @front - zero up to the offset instead of from the offset on 4688 * 4689 * This will find the block for the "from" offset and cow the block and zero the 4690 * part we want to zero. This is used with truncate and hole punching. 4691 */ 4692 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4693 int front) 4694 { 4695 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4696 struct address_space *mapping = inode->vfs_inode.i_mapping; 4697 struct extent_io_tree *io_tree = &inode->io_tree; 4698 struct btrfs_ordered_extent *ordered; 4699 struct extent_state *cached_state = NULL; 4700 struct extent_changeset *data_reserved = NULL; 4701 bool only_release_metadata = false; 4702 u32 blocksize = fs_info->sectorsize; 4703 pgoff_t index = from >> PAGE_SHIFT; 4704 unsigned offset = from & (blocksize - 1); 4705 struct folio *folio; 4706 gfp_t mask = btrfs_alloc_write_mask(mapping); 4707 size_t write_bytes = blocksize; 4708 int ret = 0; 4709 u64 block_start; 4710 u64 block_end; 4711 4712 if (IS_ALIGNED(offset, blocksize) && 4713 (!len || IS_ALIGNED(len, blocksize))) 4714 goto out; 4715 4716 block_start = round_down(from, blocksize); 4717 block_end = block_start + blocksize - 1; 4718 4719 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4720 blocksize, false); 4721 if (ret < 0) { 4722 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4723 /* For nocow case, no need to reserve data space */ 4724 only_release_metadata = true; 4725 } else { 4726 goto out; 4727 } 4728 } 4729 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4730 if (ret < 0) { 4731 if (!only_release_metadata) 4732 btrfs_free_reserved_data_space(inode, data_reserved, 4733 block_start, blocksize); 4734 goto out; 4735 } 4736 again: 4737 folio = __filemap_get_folio(mapping, index, 4738 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4739 if (IS_ERR(folio)) { 4740 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4741 blocksize, true); 4742 btrfs_delalloc_release_extents(inode, blocksize); 4743 ret = -ENOMEM; 4744 goto out; 4745 } 4746 4747 if (!folio_test_uptodate(folio)) { 4748 ret = btrfs_read_folio(NULL, folio); 4749 folio_lock(folio); 4750 if (folio->mapping != mapping) { 4751 folio_unlock(folio); 4752 folio_put(folio); 4753 goto again; 4754 } 4755 if (!folio_test_uptodate(folio)) { 4756 ret = -EIO; 4757 goto out_unlock; 4758 } 4759 } 4760 4761 /* 4762 * We unlock the page after the io is completed and then re-lock it 4763 * above. release_folio() could have come in between that and cleared 4764 * folio private, but left the page in the mapping. Set the page mapped 4765 * here to make sure it's properly set for the subpage stuff. 4766 */ 4767 ret = set_folio_extent_mapped(folio); 4768 if (ret < 0) 4769 goto out_unlock; 4770 4771 folio_wait_writeback(folio); 4772 4773 lock_extent(io_tree, block_start, block_end, &cached_state); 4774 4775 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4776 if (ordered) { 4777 unlock_extent(io_tree, block_start, block_end, &cached_state); 4778 folio_unlock(folio); 4779 folio_put(folio); 4780 btrfs_start_ordered_extent(ordered); 4781 btrfs_put_ordered_extent(ordered); 4782 goto again; 4783 } 4784 4785 clear_extent_bit(&inode->io_tree, block_start, block_end, 4786 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4787 &cached_state); 4788 4789 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4790 &cached_state); 4791 if (ret) { 4792 unlock_extent(io_tree, block_start, block_end, &cached_state); 4793 goto out_unlock; 4794 } 4795 4796 if (offset != blocksize) { 4797 if (!len) 4798 len = blocksize - offset; 4799 if (front) 4800 folio_zero_range(folio, block_start - folio_pos(folio), 4801 offset); 4802 else 4803 folio_zero_range(folio, 4804 (block_start - folio_pos(folio)) + offset, 4805 len); 4806 } 4807 btrfs_folio_clear_checked(fs_info, folio, block_start, 4808 block_end + 1 - block_start); 4809 btrfs_folio_set_dirty(fs_info, folio, block_start, 4810 block_end + 1 - block_start); 4811 unlock_extent(io_tree, block_start, block_end, &cached_state); 4812 4813 if (only_release_metadata) 4814 set_extent_bit(&inode->io_tree, block_start, block_end, 4815 EXTENT_NORESERVE, NULL); 4816 4817 out_unlock: 4818 if (ret) { 4819 if (only_release_metadata) 4820 btrfs_delalloc_release_metadata(inode, blocksize, true); 4821 else 4822 btrfs_delalloc_release_space(inode, data_reserved, 4823 block_start, blocksize, true); 4824 } 4825 btrfs_delalloc_release_extents(inode, blocksize); 4826 folio_unlock(folio); 4827 folio_put(folio); 4828 out: 4829 if (only_release_metadata) 4830 btrfs_check_nocow_unlock(inode); 4831 extent_changeset_free(data_reserved); 4832 return ret; 4833 } 4834 4835 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4836 { 4837 struct btrfs_root *root = inode->root; 4838 struct btrfs_fs_info *fs_info = root->fs_info; 4839 struct btrfs_trans_handle *trans; 4840 struct btrfs_drop_extents_args drop_args = { 0 }; 4841 int ret; 4842 4843 /* 4844 * If NO_HOLES is enabled, we don't need to do anything. 4845 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4846 * or btrfs_update_inode() will be called, which guarantee that the next 4847 * fsync will know this inode was changed and needs to be logged. 4848 */ 4849 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4850 return 0; 4851 4852 /* 4853 * 1 - for the one we're dropping 4854 * 1 - for the one we're adding 4855 * 1 - for updating the inode. 4856 */ 4857 trans = btrfs_start_transaction(root, 3); 4858 if (IS_ERR(trans)) 4859 return PTR_ERR(trans); 4860 4861 drop_args.start = offset; 4862 drop_args.end = offset + len; 4863 drop_args.drop_cache = true; 4864 4865 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4866 if (ret) { 4867 btrfs_abort_transaction(trans, ret); 4868 btrfs_end_transaction(trans); 4869 return ret; 4870 } 4871 4872 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4873 if (ret) { 4874 btrfs_abort_transaction(trans, ret); 4875 } else { 4876 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4877 btrfs_update_inode(trans, inode); 4878 } 4879 btrfs_end_transaction(trans); 4880 return ret; 4881 } 4882 4883 /* 4884 * This function puts in dummy file extents for the area we're creating a hole 4885 * for. So if we are truncating this file to a larger size we need to insert 4886 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4887 * the range between oldsize and size 4888 */ 4889 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4890 { 4891 struct btrfs_root *root = inode->root; 4892 struct btrfs_fs_info *fs_info = root->fs_info; 4893 struct extent_io_tree *io_tree = &inode->io_tree; 4894 struct extent_map *em = NULL; 4895 struct extent_state *cached_state = NULL; 4896 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4897 u64 block_end = ALIGN(size, fs_info->sectorsize); 4898 u64 last_byte; 4899 u64 cur_offset; 4900 u64 hole_size; 4901 int ret = 0; 4902 4903 /* 4904 * If our size started in the middle of a block we need to zero out the 4905 * rest of the block before we expand the i_size, otherwise we could 4906 * expose stale data. 4907 */ 4908 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 4909 if (ret) 4910 return ret; 4911 4912 if (size <= hole_start) 4913 return 0; 4914 4915 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4916 &cached_state); 4917 cur_offset = hole_start; 4918 while (1) { 4919 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 4920 if (IS_ERR(em)) { 4921 ret = PTR_ERR(em); 4922 em = NULL; 4923 break; 4924 } 4925 last_byte = min(extent_map_end(em), block_end); 4926 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4927 hole_size = last_byte - cur_offset; 4928 4929 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4930 struct extent_map *hole_em; 4931 4932 ret = maybe_insert_hole(inode, cur_offset, hole_size); 4933 if (ret) 4934 break; 4935 4936 ret = btrfs_inode_set_file_extent_range(inode, 4937 cur_offset, hole_size); 4938 if (ret) 4939 break; 4940 4941 hole_em = alloc_extent_map(); 4942 if (!hole_em) { 4943 btrfs_drop_extent_map_range(inode, cur_offset, 4944 cur_offset + hole_size - 1, 4945 false); 4946 btrfs_set_inode_full_sync(inode); 4947 goto next; 4948 } 4949 hole_em->start = cur_offset; 4950 hole_em->len = hole_size; 4951 4952 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 4953 hole_em->disk_num_bytes = 0; 4954 hole_em->ram_bytes = hole_size; 4955 hole_em->generation = btrfs_get_fs_generation(fs_info); 4956 4957 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 4958 free_extent_map(hole_em); 4959 } else { 4960 ret = btrfs_inode_set_file_extent_range(inode, 4961 cur_offset, hole_size); 4962 if (ret) 4963 break; 4964 } 4965 next: 4966 free_extent_map(em); 4967 em = NULL; 4968 cur_offset = last_byte; 4969 if (cur_offset >= block_end) 4970 break; 4971 } 4972 free_extent_map(em); 4973 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4974 return ret; 4975 } 4976 4977 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4978 { 4979 struct btrfs_root *root = BTRFS_I(inode)->root; 4980 struct btrfs_trans_handle *trans; 4981 loff_t oldsize = i_size_read(inode); 4982 loff_t newsize = attr->ia_size; 4983 int mask = attr->ia_valid; 4984 int ret; 4985 4986 /* 4987 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4988 * special case where we need to update the times despite not having 4989 * these flags set. For all other operations the VFS set these flags 4990 * explicitly if it wants a timestamp update. 4991 */ 4992 if (newsize != oldsize) { 4993 inode_inc_iversion(inode); 4994 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4995 inode_set_mtime_to_ts(inode, 4996 inode_set_ctime_current(inode)); 4997 } 4998 } 4999 5000 if (newsize > oldsize) { 5001 /* 5002 * Don't do an expanding truncate while snapshotting is ongoing. 5003 * This is to ensure the snapshot captures a fully consistent 5004 * state of this file - if the snapshot captures this expanding 5005 * truncation, it must capture all writes that happened before 5006 * this truncation. 5007 */ 5008 btrfs_drew_write_lock(&root->snapshot_lock); 5009 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5010 if (ret) { 5011 btrfs_drew_write_unlock(&root->snapshot_lock); 5012 return ret; 5013 } 5014 5015 trans = btrfs_start_transaction(root, 1); 5016 if (IS_ERR(trans)) { 5017 btrfs_drew_write_unlock(&root->snapshot_lock); 5018 return PTR_ERR(trans); 5019 } 5020 5021 i_size_write(inode, newsize); 5022 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5023 pagecache_isize_extended(inode, oldsize, newsize); 5024 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5025 btrfs_drew_write_unlock(&root->snapshot_lock); 5026 btrfs_end_transaction(trans); 5027 } else { 5028 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5029 5030 if (btrfs_is_zoned(fs_info)) { 5031 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5032 ALIGN(newsize, fs_info->sectorsize), 5033 (u64)-1); 5034 if (ret) 5035 return ret; 5036 } 5037 5038 /* 5039 * We're truncating a file that used to have good data down to 5040 * zero. Make sure any new writes to the file get on disk 5041 * on close. 5042 */ 5043 if (newsize == 0) 5044 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5045 &BTRFS_I(inode)->runtime_flags); 5046 5047 truncate_setsize(inode, newsize); 5048 5049 inode_dio_wait(inode); 5050 5051 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5052 if (ret && inode->i_nlink) { 5053 int err; 5054 5055 /* 5056 * Truncate failed, so fix up the in-memory size. We 5057 * adjusted disk_i_size down as we removed extents, so 5058 * wait for disk_i_size to be stable and then update the 5059 * in-memory size to match. 5060 */ 5061 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5062 if (err) 5063 return err; 5064 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5065 } 5066 } 5067 5068 return ret; 5069 } 5070 5071 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5072 struct iattr *attr) 5073 { 5074 struct inode *inode = d_inode(dentry); 5075 struct btrfs_root *root = BTRFS_I(inode)->root; 5076 int err; 5077 5078 if (btrfs_root_readonly(root)) 5079 return -EROFS; 5080 5081 err = setattr_prepare(idmap, dentry, attr); 5082 if (err) 5083 return err; 5084 5085 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5086 err = btrfs_setsize(inode, attr); 5087 if (err) 5088 return err; 5089 } 5090 5091 if (attr->ia_valid) { 5092 setattr_copy(idmap, inode, attr); 5093 inode_inc_iversion(inode); 5094 err = btrfs_dirty_inode(BTRFS_I(inode)); 5095 5096 if (!err && attr->ia_valid & ATTR_MODE) 5097 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5098 } 5099 5100 return err; 5101 } 5102 5103 /* 5104 * While truncating the inode pages during eviction, we get the VFS 5105 * calling btrfs_invalidate_folio() against each folio of the inode. This 5106 * is slow because the calls to btrfs_invalidate_folio() result in a 5107 * huge amount of calls to lock_extent() and clear_extent_bit(), 5108 * which keep merging and splitting extent_state structures over and over, 5109 * wasting lots of time. 5110 * 5111 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5112 * skip all those expensive operations on a per folio basis and do only 5113 * the ordered io finishing, while we release here the extent_map and 5114 * extent_state structures, without the excessive merging and splitting. 5115 */ 5116 static void evict_inode_truncate_pages(struct inode *inode) 5117 { 5118 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5119 struct rb_node *node; 5120 5121 ASSERT(inode->i_state & I_FREEING); 5122 truncate_inode_pages_final(&inode->i_data); 5123 5124 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5125 5126 /* 5127 * Keep looping until we have no more ranges in the io tree. 5128 * We can have ongoing bios started by readahead that have 5129 * their endio callback (extent_io.c:end_bio_extent_readpage) 5130 * still in progress (unlocked the pages in the bio but did not yet 5131 * unlocked the ranges in the io tree). Therefore this means some 5132 * ranges can still be locked and eviction started because before 5133 * submitting those bios, which are executed by a separate task (work 5134 * queue kthread), inode references (inode->i_count) were not taken 5135 * (which would be dropped in the end io callback of each bio). 5136 * Therefore here we effectively end up waiting for those bios and 5137 * anyone else holding locked ranges without having bumped the inode's 5138 * reference count - if we don't do it, when they access the inode's 5139 * io_tree to unlock a range it may be too late, leading to an 5140 * use-after-free issue. 5141 */ 5142 spin_lock(&io_tree->lock); 5143 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5144 struct extent_state *state; 5145 struct extent_state *cached_state = NULL; 5146 u64 start; 5147 u64 end; 5148 unsigned state_flags; 5149 5150 node = rb_first(&io_tree->state); 5151 state = rb_entry(node, struct extent_state, rb_node); 5152 start = state->start; 5153 end = state->end; 5154 state_flags = state->state; 5155 spin_unlock(&io_tree->lock); 5156 5157 lock_extent(io_tree, start, end, &cached_state); 5158 5159 /* 5160 * If still has DELALLOC flag, the extent didn't reach disk, 5161 * and its reserved space won't be freed by delayed_ref. 5162 * So we need to free its reserved space here. 5163 * (Refer to comment in btrfs_invalidate_folio, case 2) 5164 * 5165 * Note, end is the bytenr of last byte, so we need + 1 here. 5166 */ 5167 if (state_flags & EXTENT_DELALLOC) 5168 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5169 end - start + 1, NULL); 5170 5171 clear_extent_bit(io_tree, start, end, 5172 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5173 &cached_state); 5174 5175 cond_resched(); 5176 spin_lock(&io_tree->lock); 5177 } 5178 spin_unlock(&io_tree->lock); 5179 } 5180 5181 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5182 struct btrfs_block_rsv *rsv) 5183 { 5184 struct btrfs_fs_info *fs_info = root->fs_info; 5185 struct btrfs_trans_handle *trans; 5186 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5187 int ret; 5188 5189 /* 5190 * Eviction should be taking place at some place safe because of our 5191 * delayed iputs. However the normal flushing code will run delayed 5192 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5193 * 5194 * We reserve the delayed_refs_extra here again because we can't use 5195 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5196 * above. We reserve our extra bit here because we generate a ton of 5197 * delayed refs activity by truncating. 5198 * 5199 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5200 * if we fail to make this reservation we can re-try without the 5201 * delayed_refs_extra so we can make some forward progress. 5202 */ 5203 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5204 BTRFS_RESERVE_FLUSH_EVICT); 5205 if (ret) { 5206 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5207 BTRFS_RESERVE_FLUSH_EVICT); 5208 if (ret) { 5209 btrfs_warn(fs_info, 5210 "could not allocate space for delete; will truncate on mount"); 5211 return ERR_PTR(-ENOSPC); 5212 } 5213 delayed_refs_extra = 0; 5214 } 5215 5216 trans = btrfs_join_transaction(root); 5217 if (IS_ERR(trans)) 5218 return trans; 5219 5220 if (delayed_refs_extra) { 5221 trans->block_rsv = &fs_info->trans_block_rsv; 5222 trans->bytes_reserved = delayed_refs_extra; 5223 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5224 delayed_refs_extra, true); 5225 } 5226 return trans; 5227 } 5228 5229 void btrfs_evict_inode(struct inode *inode) 5230 { 5231 struct btrfs_fs_info *fs_info; 5232 struct btrfs_trans_handle *trans; 5233 struct btrfs_root *root = BTRFS_I(inode)->root; 5234 struct btrfs_block_rsv *rsv = NULL; 5235 int ret; 5236 5237 trace_btrfs_inode_evict(inode); 5238 5239 if (!root) { 5240 fsverity_cleanup_inode(inode); 5241 clear_inode(inode); 5242 return; 5243 } 5244 5245 fs_info = inode_to_fs_info(inode); 5246 evict_inode_truncate_pages(inode); 5247 5248 if (inode->i_nlink && 5249 ((btrfs_root_refs(&root->root_item) != 0 && 5250 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5251 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5252 goto out; 5253 5254 if (is_bad_inode(inode)) 5255 goto out; 5256 5257 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5258 goto out; 5259 5260 if (inode->i_nlink > 0) { 5261 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5262 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5263 goto out; 5264 } 5265 5266 /* 5267 * This makes sure the inode item in tree is uptodate and the space for 5268 * the inode update is released. 5269 */ 5270 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5271 if (ret) 5272 goto out; 5273 5274 /* 5275 * This drops any pending insert or delete operations we have for this 5276 * inode. We could have a delayed dir index deletion queued up, but 5277 * we're removing the inode completely so that'll be taken care of in 5278 * the truncate. 5279 */ 5280 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5281 5282 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5283 if (!rsv) 5284 goto out; 5285 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5286 rsv->failfast = true; 5287 5288 btrfs_i_size_write(BTRFS_I(inode), 0); 5289 5290 while (1) { 5291 struct btrfs_truncate_control control = { 5292 .inode = BTRFS_I(inode), 5293 .ino = btrfs_ino(BTRFS_I(inode)), 5294 .new_size = 0, 5295 .min_type = 0, 5296 }; 5297 5298 trans = evict_refill_and_join(root, rsv); 5299 if (IS_ERR(trans)) 5300 goto out; 5301 5302 trans->block_rsv = rsv; 5303 5304 ret = btrfs_truncate_inode_items(trans, root, &control); 5305 trans->block_rsv = &fs_info->trans_block_rsv; 5306 btrfs_end_transaction(trans); 5307 /* 5308 * We have not added new delayed items for our inode after we 5309 * have flushed its delayed items, so no need to throttle on 5310 * delayed items. However we have modified extent buffers. 5311 */ 5312 btrfs_btree_balance_dirty_nodelay(fs_info); 5313 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5314 goto out; 5315 else if (!ret) 5316 break; 5317 } 5318 5319 /* 5320 * Errors here aren't a big deal, it just means we leave orphan items in 5321 * the tree. They will be cleaned up on the next mount. If the inode 5322 * number gets reused, cleanup deletes the orphan item without doing 5323 * anything, and unlink reuses the existing orphan item. 5324 * 5325 * If it turns out that we are dropping too many of these, we might want 5326 * to add a mechanism for retrying these after a commit. 5327 */ 5328 trans = evict_refill_and_join(root, rsv); 5329 if (!IS_ERR(trans)) { 5330 trans->block_rsv = rsv; 5331 btrfs_orphan_del(trans, BTRFS_I(inode)); 5332 trans->block_rsv = &fs_info->trans_block_rsv; 5333 btrfs_end_transaction(trans); 5334 } 5335 5336 out: 5337 btrfs_free_block_rsv(fs_info, rsv); 5338 /* 5339 * If we didn't successfully delete, the orphan item will still be in 5340 * the tree and we'll retry on the next mount. Again, we might also want 5341 * to retry these periodically in the future. 5342 */ 5343 btrfs_remove_delayed_node(BTRFS_I(inode)); 5344 fsverity_cleanup_inode(inode); 5345 clear_inode(inode); 5346 } 5347 5348 /* 5349 * Return the key found in the dir entry in the location pointer, fill @type 5350 * with BTRFS_FT_*, and return 0. 5351 * 5352 * If no dir entries were found, returns -ENOENT. 5353 * If found a corrupted location in dir entry, returns -EUCLEAN. 5354 */ 5355 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5356 struct btrfs_key *location, u8 *type) 5357 { 5358 struct btrfs_dir_item *di; 5359 struct btrfs_path *path; 5360 struct btrfs_root *root = dir->root; 5361 int ret = 0; 5362 struct fscrypt_name fname; 5363 5364 path = btrfs_alloc_path(); 5365 if (!path) 5366 return -ENOMEM; 5367 5368 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5369 if (ret < 0) 5370 goto out; 5371 /* 5372 * fscrypt_setup_filename() should never return a positive value, but 5373 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5374 */ 5375 ASSERT(ret == 0); 5376 5377 /* This needs to handle no-key deletions later on */ 5378 5379 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5380 &fname.disk_name, 0); 5381 if (IS_ERR_OR_NULL(di)) { 5382 ret = di ? PTR_ERR(di) : -ENOENT; 5383 goto out; 5384 } 5385 5386 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5387 if (location->type != BTRFS_INODE_ITEM_KEY && 5388 location->type != BTRFS_ROOT_ITEM_KEY) { 5389 ret = -EUCLEAN; 5390 btrfs_warn(root->fs_info, 5391 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5392 __func__, fname.disk_name.name, btrfs_ino(dir), 5393 location->objectid, location->type, location->offset); 5394 } 5395 if (!ret) 5396 *type = btrfs_dir_ftype(path->nodes[0], di); 5397 out: 5398 fscrypt_free_filename(&fname); 5399 btrfs_free_path(path); 5400 return ret; 5401 } 5402 5403 /* 5404 * when we hit a tree root in a directory, the btrfs part of the inode 5405 * needs to be changed to reflect the root directory of the tree root. This 5406 * is kind of like crossing a mount point. 5407 */ 5408 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5409 struct btrfs_inode *dir, 5410 struct dentry *dentry, 5411 struct btrfs_key *location, 5412 struct btrfs_root **sub_root) 5413 { 5414 struct btrfs_path *path; 5415 struct btrfs_root *new_root; 5416 struct btrfs_root_ref *ref; 5417 struct extent_buffer *leaf; 5418 struct btrfs_key key; 5419 int ret; 5420 int err = 0; 5421 struct fscrypt_name fname; 5422 5423 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5424 if (ret) 5425 return ret; 5426 5427 path = btrfs_alloc_path(); 5428 if (!path) { 5429 err = -ENOMEM; 5430 goto out; 5431 } 5432 5433 err = -ENOENT; 5434 key.objectid = btrfs_root_id(dir->root); 5435 key.type = BTRFS_ROOT_REF_KEY; 5436 key.offset = location->objectid; 5437 5438 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5439 if (ret) { 5440 if (ret < 0) 5441 err = ret; 5442 goto out; 5443 } 5444 5445 leaf = path->nodes[0]; 5446 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5447 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5448 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5449 goto out; 5450 5451 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5452 (unsigned long)(ref + 1), fname.disk_name.len); 5453 if (ret) 5454 goto out; 5455 5456 btrfs_release_path(path); 5457 5458 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5459 if (IS_ERR(new_root)) { 5460 err = PTR_ERR(new_root); 5461 goto out; 5462 } 5463 5464 *sub_root = new_root; 5465 location->objectid = btrfs_root_dirid(&new_root->root_item); 5466 location->type = BTRFS_INODE_ITEM_KEY; 5467 location->offset = 0; 5468 err = 0; 5469 out: 5470 btrfs_free_path(path); 5471 fscrypt_free_filename(&fname); 5472 return err; 5473 } 5474 5475 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 5476 { 5477 struct btrfs_root *root = inode->root; 5478 struct btrfs_inode *existing; 5479 const u64 ino = btrfs_ino(inode); 5480 int ret; 5481 5482 if (inode_unhashed(&inode->vfs_inode)) 5483 return 0; 5484 5485 if (prealloc) { 5486 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 5487 if (ret) 5488 return ret; 5489 } 5490 5491 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 5492 5493 if (xa_is_err(existing)) { 5494 ret = xa_err(existing); 5495 ASSERT(ret != -EINVAL); 5496 ASSERT(ret != -ENOMEM); 5497 return ret; 5498 } else if (existing) { 5499 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 5500 } 5501 5502 return 0; 5503 } 5504 5505 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5506 { 5507 struct btrfs_root *root = inode->root; 5508 struct btrfs_inode *entry; 5509 bool empty = false; 5510 5511 xa_lock(&root->inodes); 5512 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5513 if (entry == inode) 5514 empty = xa_empty(&root->inodes); 5515 xa_unlock(&root->inodes); 5516 5517 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5518 xa_lock(&root->inodes); 5519 empty = xa_empty(&root->inodes); 5520 xa_unlock(&root->inodes); 5521 if (empty) 5522 btrfs_add_dead_root(root); 5523 } 5524 } 5525 5526 5527 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5528 { 5529 struct btrfs_iget_args *args = p; 5530 5531 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5532 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5533 5534 if (args->root && args->root == args->root->fs_info->tree_root && 5535 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5536 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5537 &BTRFS_I(inode)->runtime_flags); 5538 return 0; 5539 } 5540 5541 static int btrfs_find_actor(struct inode *inode, void *opaque) 5542 { 5543 struct btrfs_iget_args *args = opaque; 5544 5545 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5546 args->root == BTRFS_I(inode)->root; 5547 } 5548 5549 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5550 { 5551 struct inode *inode; 5552 struct btrfs_iget_args args; 5553 unsigned long hashval = btrfs_inode_hash(ino, root); 5554 5555 args.ino = ino; 5556 args.root = root; 5557 5558 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5559 btrfs_init_locked_inode, 5560 (void *)&args); 5561 return inode; 5562 } 5563 5564 /* 5565 * Get an inode object given its inode number and corresponding root. 5566 * Path can be preallocated to prevent recursing back to iget through 5567 * allocator. NULL is also valid but may require an additional allocation 5568 * later. 5569 */ 5570 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5571 struct btrfs_path *path) 5572 { 5573 struct inode *inode; 5574 int ret; 5575 5576 inode = btrfs_iget_locked(ino, root); 5577 if (!inode) 5578 return ERR_PTR(-ENOMEM); 5579 5580 if (!(inode->i_state & I_NEW)) 5581 return inode; 5582 5583 ret = btrfs_read_locked_inode(inode, path); 5584 /* 5585 * ret > 0 can come from btrfs_search_slot called by 5586 * btrfs_read_locked_inode(), this means the inode item was not found. 5587 */ 5588 if (ret > 0) 5589 ret = -ENOENT; 5590 if (ret < 0) 5591 goto error; 5592 5593 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true); 5594 if (ret < 0) 5595 goto error; 5596 5597 unlock_new_inode(inode); 5598 5599 return inode; 5600 error: 5601 iget_failed(inode); 5602 return ERR_PTR(ret); 5603 } 5604 5605 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5606 { 5607 return btrfs_iget_path(ino, root, NULL); 5608 } 5609 5610 static struct inode *new_simple_dir(struct inode *dir, 5611 struct btrfs_key *key, 5612 struct btrfs_root *root) 5613 { 5614 struct timespec64 ts; 5615 struct inode *inode = new_inode(dir->i_sb); 5616 5617 if (!inode) 5618 return ERR_PTR(-ENOMEM); 5619 5620 BTRFS_I(inode)->root = btrfs_grab_root(root); 5621 BTRFS_I(inode)->ref_root_id = key->objectid; 5622 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags); 5623 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5624 5625 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5626 /* 5627 * We only need lookup, the rest is read-only and there's no inode 5628 * associated with the dentry 5629 */ 5630 inode->i_op = &simple_dir_inode_operations; 5631 inode->i_opflags &= ~IOP_XATTR; 5632 inode->i_fop = &simple_dir_operations; 5633 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5634 5635 ts = inode_set_ctime_current(inode); 5636 inode_set_mtime_to_ts(inode, ts); 5637 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5638 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5639 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5640 5641 inode->i_uid = dir->i_uid; 5642 inode->i_gid = dir->i_gid; 5643 5644 return inode; 5645 } 5646 5647 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5648 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5649 static_assert(BTRFS_FT_DIR == FT_DIR); 5650 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5651 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5652 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5653 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5654 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5655 5656 static inline u8 btrfs_inode_type(struct inode *inode) 5657 { 5658 return fs_umode_to_ftype(inode->i_mode); 5659 } 5660 5661 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5662 { 5663 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5664 struct inode *inode; 5665 struct btrfs_root *root = BTRFS_I(dir)->root; 5666 struct btrfs_root *sub_root = root; 5667 struct btrfs_key location = { 0 }; 5668 u8 di_type = 0; 5669 int ret = 0; 5670 5671 if (dentry->d_name.len > BTRFS_NAME_LEN) 5672 return ERR_PTR(-ENAMETOOLONG); 5673 5674 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5675 if (ret < 0) 5676 return ERR_PTR(ret); 5677 5678 if (location.type == BTRFS_INODE_ITEM_KEY) { 5679 inode = btrfs_iget(location.objectid, root); 5680 if (IS_ERR(inode)) 5681 return inode; 5682 5683 /* Do extra check against inode mode with di_type */ 5684 if (btrfs_inode_type(inode) != di_type) { 5685 btrfs_crit(fs_info, 5686 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5687 inode->i_mode, btrfs_inode_type(inode), 5688 di_type); 5689 iput(inode); 5690 return ERR_PTR(-EUCLEAN); 5691 } 5692 return inode; 5693 } 5694 5695 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5696 &location, &sub_root); 5697 if (ret < 0) { 5698 if (ret != -ENOENT) 5699 inode = ERR_PTR(ret); 5700 else 5701 inode = new_simple_dir(dir, &location, root); 5702 } else { 5703 inode = btrfs_iget(location.objectid, sub_root); 5704 btrfs_put_root(sub_root); 5705 5706 if (IS_ERR(inode)) 5707 return inode; 5708 5709 down_read(&fs_info->cleanup_work_sem); 5710 if (!sb_rdonly(inode->i_sb)) 5711 ret = btrfs_orphan_cleanup(sub_root); 5712 up_read(&fs_info->cleanup_work_sem); 5713 if (ret) { 5714 iput(inode); 5715 inode = ERR_PTR(ret); 5716 } 5717 } 5718 5719 return inode; 5720 } 5721 5722 static int btrfs_dentry_delete(const struct dentry *dentry) 5723 { 5724 struct btrfs_root *root; 5725 struct inode *inode = d_inode(dentry); 5726 5727 if (!inode && !IS_ROOT(dentry)) 5728 inode = d_inode(dentry->d_parent); 5729 5730 if (inode) { 5731 root = BTRFS_I(inode)->root; 5732 if (btrfs_root_refs(&root->root_item) == 0) 5733 return 1; 5734 5735 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5736 return 1; 5737 } 5738 return 0; 5739 } 5740 5741 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5742 unsigned int flags) 5743 { 5744 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5745 5746 if (inode == ERR_PTR(-ENOENT)) 5747 inode = NULL; 5748 return d_splice_alias(inode, dentry); 5749 } 5750 5751 /* 5752 * Find the highest existing sequence number in a directory and then set the 5753 * in-memory index_cnt variable to the first free sequence number. 5754 */ 5755 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5756 { 5757 struct btrfs_root *root = inode->root; 5758 struct btrfs_key key, found_key; 5759 struct btrfs_path *path; 5760 struct extent_buffer *leaf; 5761 int ret; 5762 5763 key.objectid = btrfs_ino(inode); 5764 key.type = BTRFS_DIR_INDEX_KEY; 5765 key.offset = (u64)-1; 5766 5767 path = btrfs_alloc_path(); 5768 if (!path) 5769 return -ENOMEM; 5770 5771 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5772 if (ret < 0) 5773 goto out; 5774 /* FIXME: we should be able to handle this */ 5775 if (ret == 0) 5776 goto out; 5777 ret = 0; 5778 5779 if (path->slots[0] == 0) { 5780 inode->index_cnt = BTRFS_DIR_START_INDEX; 5781 goto out; 5782 } 5783 5784 path->slots[0]--; 5785 5786 leaf = path->nodes[0]; 5787 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5788 5789 if (found_key.objectid != btrfs_ino(inode) || 5790 found_key.type != BTRFS_DIR_INDEX_KEY) { 5791 inode->index_cnt = BTRFS_DIR_START_INDEX; 5792 goto out; 5793 } 5794 5795 inode->index_cnt = found_key.offset + 1; 5796 out: 5797 btrfs_free_path(path); 5798 return ret; 5799 } 5800 5801 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5802 { 5803 int ret = 0; 5804 5805 btrfs_inode_lock(dir, 0); 5806 if (dir->index_cnt == (u64)-1) { 5807 ret = btrfs_inode_delayed_dir_index_count(dir); 5808 if (ret) { 5809 ret = btrfs_set_inode_index_count(dir); 5810 if (ret) 5811 goto out; 5812 } 5813 } 5814 5815 /* index_cnt is the index number of next new entry, so decrement it. */ 5816 *index = dir->index_cnt - 1; 5817 out: 5818 btrfs_inode_unlock(dir, 0); 5819 5820 return ret; 5821 } 5822 5823 /* 5824 * All this infrastructure exists because dir_emit can fault, and we are holding 5825 * the tree lock when doing readdir. For now just allocate a buffer and copy 5826 * our information into that, and then dir_emit from the buffer. This is 5827 * similar to what NFS does, only we don't keep the buffer around in pagecache 5828 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5829 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5830 * tree lock. 5831 */ 5832 static int btrfs_opendir(struct inode *inode, struct file *file) 5833 { 5834 struct btrfs_file_private *private; 5835 u64 last_index; 5836 int ret; 5837 5838 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5839 if (ret) 5840 return ret; 5841 5842 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5843 if (!private) 5844 return -ENOMEM; 5845 private->last_index = last_index; 5846 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5847 if (!private->filldir_buf) { 5848 kfree(private); 5849 return -ENOMEM; 5850 } 5851 file->private_data = private; 5852 return 0; 5853 } 5854 5855 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5856 { 5857 struct btrfs_file_private *private = file->private_data; 5858 int ret; 5859 5860 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5861 &private->last_index); 5862 if (ret) 5863 return ret; 5864 5865 return generic_file_llseek(file, offset, whence); 5866 } 5867 5868 struct dir_entry { 5869 u64 ino; 5870 u64 offset; 5871 unsigned type; 5872 int name_len; 5873 }; 5874 5875 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5876 { 5877 while (entries--) { 5878 struct dir_entry *entry = addr; 5879 char *name = (char *)(entry + 1); 5880 5881 ctx->pos = get_unaligned(&entry->offset); 5882 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5883 get_unaligned(&entry->ino), 5884 get_unaligned(&entry->type))) 5885 return 1; 5886 addr += sizeof(struct dir_entry) + 5887 get_unaligned(&entry->name_len); 5888 ctx->pos++; 5889 } 5890 return 0; 5891 } 5892 5893 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5894 { 5895 struct inode *inode = file_inode(file); 5896 struct btrfs_root *root = BTRFS_I(inode)->root; 5897 struct btrfs_file_private *private = file->private_data; 5898 struct btrfs_dir_item *di; 5899 struct btrfs_key key; 5900 struct btrfs_key found_key; 5901 struct btrfs_path *path; 5902 void *addr; 5903 LIST_HEAD(ins_list); 5904 LIST_HEAD(del_list); 5905 int ret; 5906 char *name_ptr; 5907 int name_len; 5908 int entries = 0; 5909 int total_len = 0; 5910 bool put = false; 5911 struct btrfs_key location; 5912 5913 if (!dir_emit_dots(file, ctx)) 5914 return 0; 5915 5916 path = btrfs_alloc_path(); 5917 if (!path) 5918 return -ENOMEM; 5919 5920 addr = private->filldir_buf; 5921 path->reada = READA_FORWARD; 5922 5923 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 5924 &ins_list, &del_list); 5925 5926 again: 5927 key.type = BTRFS_DIR_INDEX_KEY; 5928 key.offset = ctx->pos; 5929 key.objectid = btrfs_ino(BTRFS_I(inode)); 5930 5931 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5932 struct dir_entry *entry; 5933 struct extent_buffer *leaf = path->nodes[0]; 5934 u8 ftype; 5935 5936 if (found_key.objectid != key.objectid) 5937 break; 5938 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5939 break; 5940 if (found_key.offset < ctx->pos) 5941 continue; 5942 if (found_key.offset > private->last_index) 5943 break; 5944 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5945 continue; 5946 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5947 name_len = btrfs_dir_name_len(leaf, di); 5948 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5949 PAGE_SIZE) { 5950 btrfs_release_path(path); 5951 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5952 if (ret) 5953 goto nopos; 5954 addr = private->filldir_buf; 5955 entries = 0; 5956 total_len = 0; 5957 goto again; 5958 } 5959 5960 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5961 entry = addr; 5962 name_ptr = (char *)(entry + 1); 5963 read_extent_buffer(leaf, name_ptr, 5964 (unsigned long)(di + 1), name_len); 5965 put_unaligned(name_len, &entry->name_len); 5966 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5967 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5968 put_unaligned(location.objectid, &entry->ino); 5969 put_unaligned(found_key.offset, &entry->offset); 5970 entries++; 5971 addr += sizeof(struct dir_entry) + name_len; 5972 total_len += sizeof(struct dir_entry) + name_len; 5973 } 5974 /* Catch error encountered during iteration */ 5975 if (ret < 0) 5976 goto err; 5977 5978 btrfs_release_path(path); 5979 5980 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5981 if (ret) 5982 goto nopos; 5983 5984 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5985 if (ret) 5986 goto nopos; 5987 5988 /* 5989 * Stop new entries from being returned after we return the last 5990 * entry. 5991 * 5992 * New directory entries are assigned a strictly increasing 5993 * offset. This means that new entries created during readdir 5994 * are *guaranteed* to be seen in the future by that readdir. 5995 * This has broken buggy programs which operate on names as 5996 * they're returned by readdir. Until we re-use freed offsets 5997 * we have this hack to stop new entries from being returned 5998 * under the assumption that they'll never reach this huge 5999 * offset. 6000 * 6001 * This is being careful not to overflow 32bit loff_t unless the 6002 * last entry requires it because doing so has broken 32bit apps 6003 * in the past. 6004 */ 6005 if (ctx->pos >= INT_MAX) 6006 ctx->pos = LLONG_MAX; 6007 else 6008 ctx->pos = INT_MAX; 6009 nopos: 6010 ret = 0; 6011 err: 6012 if (put) 6013 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6014 btrfs_free_path(path); 6015 return ret; 6016 } 6017 6018 /* 6019 * This is somewhat expensive, updating the tree every time the 6020 * inode changes. But, it is most likely to find the inode in cache. 6021 * FIXME, needs more benchmarking...there are no reasons other than performance 6022 * to keep or drop this code. 6023 */ 6024 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6025 { 6026 struct btrfs_root *root = inode->root; 6027 struct btrfs_fs_info *fs_info = root->fs_info; 6028 struct btrfs_trans_handle *trans; 6029 int ret; 6030 6031 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6032 return 0; 6033 6034 trans = btrfs_join_transaction(root); 6035 if (IS_ERR(trans)) 6036 return PTR_ERR(trans); 6037 6038 ret = btrfs_update_inode(trans, inode); 6039 if (ret == -ENOSPC || ret == -EDQUOT) { 6040 /* whoops, lets try again with the full transaction */ 6041 btrfs_end_transaction(trans); 6042 trans = btrfs_start_transaction(root, 1); 6043 if (IS_ERR(trans)) 6044 return PTR_ERR(trans); 6045 6046 ret = btrfs_update_inode(trans, inode); 6047 } 6048 btrfs_end_transaction(trans); 6049 if (inode->delayed_node) 6050 btrfs_balance_delayed_items(fs_info); 6051 6052 return ret; 6053 } 6054 6055 /* 6056 * This is a copy of file_update_time. We need this so we can return error on 6057 * ENOSPC for updating the inode in the case of file write and mmap writes. 6058 */ 6059 static int btrfs_update_time(struct inode *inode, int flags) 6060 { 6061 struct btrfs_root *root = BTRFS_I(inode)->root; 6062 bool dirty; 6063 6064 if (btrfs_root_readonly(root)) 6065 return -EROFS; 6066 6067 dirty = inode_update_timestamps(inode, flags); 6068 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6069 } 6070 6071 /* 6072 * helper to find a free sequence number in a given directory. This current 6073 * code is very simple, later versions will do smarter things in the btree 6074 */ 6075 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6076 { 6077 int ret = 0; 6078 6079 if (dir->index_cnt == (u64)-1) { 6080 ret = btrfs_inode_delayed_dir_index_count(dir); 6081 if (ret) { 6082 ret = btrfs_set_inode_index_count(dir); 6083 if (ret) 6084 return ret; 6085 } 6086 } 6087 6088 *index = dir->index_cnt; 6089 dir->index_cnt++; 6090 6091 return ret; 6092 } 6093 6094 static int btrfs_insert_inode_locked(struct inode *inode) 6095 { 6096 struct btrfs_iget_args args; 6097 6098 args.ino = btrfs_ino(BTRFS_I(inode)); 6099 args.root = BTRFS_I(inode)->root; 6100 6101 return insert_inode_locked4(inode, 6102 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6103 btrfs_find_actor, &args); 6104 } 6105 6106 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6107 unsigned int *trans_num_items) 6108 { 6109 struct inode *dir = args->dir; 6110 struct inode *inode = args->inode; 6111 int ret; 6112 6113 if (!args->orphan) { 6114 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6115 &args->fname); 6116 if (ret) 6117 return ret; 6118 } 6119 6120 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6121 if (ret) { 6122 fscrypt_free_filename(&args->fname); 6123 return ret; 6124 } 6125 6126 /* 1 to add inode item */ 6127 *trans_num_items = 1; 6128 /* 1 to add compression property */ 6129 if (BTRFS_I(dir)->prop_compress) 6130 (*trans_num_items)++; 6131 /* 1 to add default ACL xattr */ 6132 if (args->default_acl) 6133 (*trans_num_items)++; 6134 /* 1 to add access ACL xattr */ 6135 if (args->acl) 6136 (*trans_num_items)++; 6137 #ifdef CONFIG_SECURITY 6138 /* 1 to add LSM xattr */ 6139 if (dir->i_security) 6140 (*trans_num_items)++; 6141 #endif 6142 if (args->orphan) { 6143 /* 1 to add orphan item */ 6144 (*trans_num_items)++; 6145 } else { 6146 /* 6147 * 1 to add dir item 6148 * 1 to add dir index 6149 * 1 to update parent inode item 6150 * 6151 * No need for 1 unit for the inode ref item because it is 6152 * inserted in a batch together with the inode item at 6153 * btrfs_create_new_inode(). 6154 */ 6155 *trans_num_items += 3; 6156 } 6157 return 0; 6158 } 6159 6160 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6161 { 6162 posix_acl_release(args->acl); 6163 posix_acl_release(args->default_acl); 6164 fscrypt_free_filename(&args->fname); 6165 } 6166 6167 /* 6168 * Inherit flags from the parent inode. 6169 * 6170 * Currently only the compression flags and the cow flags are inherited. 6171 */ 6172 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6173 { 6174 unsigned int flags; 6175 6176 flags = dir->flags; 6177 6178 if (flags & BTRFS_INODE_NOCOMPRESS) { 6179 inode->flags &= ~BTRFS_INODE_COMPRESS; 6180 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6181 } else if (flags & BTRFS_INODE_COMPRESS) { 6182 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6183 inode->flags |= BTRFS_INODE_COMPRESS; 6184 } 6185 6186 if (flags & BTRFS_INODE_NODATACOW) { 6187 inode->flags |= BTRFS_INODE_NODATACOW; 6188 if (S_ISREG(inode->vfs_inode.i_mode)) 6189 inode->flags |= BTRFS_INODE_NODATASUM; 6190 } 6191 6192 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6193 } 6194 6195 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6196 struct btrfs_new_inode_args *args) 6197 { 6198 struct timespec64 ts; 6199 struct inode *dir = args->dir; 6200 struct inode *inode = args->inode; 6201 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6202 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6203 struct btrfs_root *root; 6204 struct btrfs_inode_item *inode_item; 6205 struct btrfs_path *path; 6206 u64 objectid; 6207 struct btrfs_inode_ref *ref; 6208 struct btrfs_key key[2]; 6209 u32 sizes[2]; 6210 struct btrfs_item_batch batch; 6211 unsigned long ptr; 6212 int ret; 6213 bool xa_reserved = false; 6214 6215 path = btrfs_alloc_path(); 6216 if (!path) 6217 return -ENOMEM; 6218 6219 if (!args->subvol) 6220 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6221 root = BTRFS_I(inode)->root; 6222 6223 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6224 if (ret) 6225 goto out; 6226 6227 ret = btrfs_get_free_objectid(root, &objectid); 6228 if (ret) 6229 goto out; 6230 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6231 6232 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6233 if (ret) 6234 goto out; 6235 xa_reserved = true; 6236 6237 if (args->orphan) { 6238 /* 6239 * O_TMPFILE, set link count to 0, so that after this point, we 6240 * fill in an inode item with the correct link count. 6241 */ 6242 set_nlink(inode, 0); 6243 } else { 6244 trace_btrfs_inode_request(dir); 6245 6246 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6247 if (ret) 6248 goto out; 6249 } 6250 6251 if (S_ISDIR(inode->i_mode)) 6252 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6253 6254 BTRFS_I(inode)->generation = trans->transid; 6255 inode->i_generation = BTRFS_I(inode)->generation; 6256 6257 /* 6258 * We don't have any capability xattrs set here yet, shortcut any 6259 * queries for the xattrs here. If we add them later via the inode 6260 * security init path or any other path this flag will be cleared. 6261 */ 6262 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6263 6264 /* 6265 * Subvolumes don't inherit flags from their parent directory. 6266 * Originally this was probably by accident, but we probably can't 6267 * change it now without compatibility issues. 6268 */ 6269 if (!args->subvol) 6270 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6271 6272 if (S_ISREG(inode->i_mode)) { 6273 if (btrfs_test_opt(fs_info, NODATASUM)) 6274 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6275 if (btrfs_test_opt(fs_info, NODATACOW)) 6276 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6277 BTRFS_INODE_NODATASUM; 6278 } 6279 6280 ret = btrfs_insert_inode_locked(inode); 6281 if (ret < 0) { 6282 if (!args->orphan) 6283 BTRFS_I(dir)->index_cnt--; 6284 goto out; 6285 } 6286 6287 /* 6288 * We could have gotten an inode number from somebody who was fsynced 6289 * and then removed in this same transaction, so let's just set full 6290 * sync since it will be a full sync anyway and this will blow away the 6291 * old info in the log. 6292 */ 6293 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6294 6295 key[0].objectid = objectid; 6296 key[0].type = BTRFS_INODE_ITEM_KEY; 6297 key[0].offset = 0; 6298 6299 sizes[0] = sizeof(struct btrfs_inode_item); 6300 6301 if (!args->orphan) { 6302 /* 6303 * Start new inodes with an inode_ref. This is slightly more 6304 * efficient for small numbers of hard links since they will 6305 * be packed into one item. Extended refs will kick in if we 6306 * add more hard links than can fit in the ref item. 6307 */ 6308 key[1].objectid = objectid; 6309 key[1].type = BTRFS_INODE_REF_KEY; 6310 if (args->subvol) { 6311 key[1].offset = objectid; 6312 sizes[1] = 2 + sizeof(*ref); 6313 } else { 6314 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6315 sizes[1] = name->len + sizeof(*ref); 6316 } 6317 } 6318 6319 batch.keys = &key[0]; 6320 batch.data_sizes = &sizes[0]; 6321 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6322 batch.nr = args->orphan ? 1 : 2; 6323 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6324 if (ret != 0) { 6325 btrfs_abort_transaction(trans, ret); 6326 goto discard; 6327 } 6328 6329 ts = simple_inode_init_ts(inode); 6330 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6331 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6332 6333 /* 6334 * We're going to fill the inode item now, so at this point the inode 6335 * must be fully initialized. 6336 */ 6337 6338 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6339 struct btrfs_inode_item); 6340 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6341 sizeof(*inode_item)); 6342 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6343 6344 if (!args->orphan) { 6345 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6346 struct btrfs_inode_ref); 6347 ptr = (unsigned long)(ref + 1); 6348 if (args->subvol) { 6349 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6350 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6351 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6352 } else { 6353 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6354 name->len); 6355 btrfs_set_inode_ref_index(path->nodes[0], ref, 6356 BTRFS_I(inode)->dir_index); 6357 write_extent_buffer(path->nodes[0], name->name, ptr, 6358 name->len); 6359 } 6360 } 6361 6362 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6363 /* 6364 * We don't need the path anymore, plus inheriting properties, adding 6365 * ACLs, security xattrs, orphan item or adding the link, will result in 6366 * allocating yet another path. So just free our path. 6367 */ 6368 btrfs_free_path(path); 6369 path = NULL; 6370 6371 if (args->subvol) { 6372 struct inode *parent; 6373 6374 /* 6375 * Subvolumes inherit properties from their parent subvolume, 6376 * not the directory they were created in. 6377 */ 6378 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6379 if (IS_ERR(parent)) { 6380 ret = PTR_ERR(parent); 6381 } else { 6382 ret = btrfs_inode_inherit_props(trans, inode, parent); 6383 iput(parent); 6384 } 6385 } else { 6386 ret = btrfs_inode_inherit_props(trans, inode, dir); 6387 } 6388 if (ret) { 6389 btrfs_err(fs_info, 6390 "error inheriting props for ino %llu (root %llu): %d", 6391 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6392 } 6393 6394 /* 6395 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6396 * probably a bug. 6397 */ 6398 if (!args->subvol) { 6399 ret = btrfs_init_inode_security(trans, args); 6400 if (ret) { 6401 btrfs_abort_transaction(trans, ret); 6402 goto discard; 6403 } 6404 } 6405 6406 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6407 if (WARN_ON(ret)) { 6408 /* Shouldn't happen, we used xa_reserve() before. */ 6409 btrfs_abort_transaction(trans, ret); 6410 goto discard; 6411 } 6412 6413 trace_btrfs_inode_new(inode); 6414 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6415 6416 btrfs_update_root_times(trans, root); 6417 6418 if (args->orphan) { 6419 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6420 } else { 6421 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6422 0, BTRFS_I(inode)->dir_index); 6423 } 6424 if (ret) { 6425 btrfs_abort_transaction(trans, ret); 6426 goto discard; 6427 } 6428 6429 return 0; 6430 6431 discard: 6432 /* 6433 * discard_new_inode() calls iput(), but the caller owns the reference 6434 * to the inode. 6435 */ 6436 ihold(inode); 6437 discard_new_inode(inode); 6438 out: 6439 if (xa_reserved) 6440 xa_release(&root->inodes, objectid); 6441 6442 btrfs_free_path(path); 6443 return ret; 6444 } 6445 6446 /* 6447 * utility function to add 'inode' into 'parent_inode' with 6448 * a give name and a given sequence number. 6449 * if 'add_backref' is true, also insert a backref from the 6450 * inode to the parent directory. 6451 */ 6452 int btrfs_add_link(struct btrfs_trans_handle *trans, 6453 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6454 const struct fscrypt_str *name, int add_backref, u64 index) 6455 { 6456 int ret = 0; 6457 struct btrfs_key key; 6458 struct btrfs_root *root = parent_inode->root; 6459 u64 ino = btrfs_ino(inode); 6460 u64 parent_ino = btrfs_ino(parent_inode); 6461 6462 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6463 memcpy(&key, &inode->root->root_key, sizeof(key)); 6464 } else { 6465 key.objectid = ino; 6466 key.type = BTRFS_INODE_ITEM_KEY; 6467 key.offset = 0; 6468 } 6469 6470 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6471 ret = btrfs_add_root_ref(trans, key.objectid, 6472 btrfs_root_id(root), parent_ino, 6473 index, name); 6474 } else if (add_backref) { 6475 ret = btrfs_insert_inode_ref(trans, root, name, 6476 ino, parent_ino, index); 6477 } 6478 6479 /* Nothing to clean up yet */ 6480 if (ret) 6481 return ret; 6482 6483 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6484 btrfs_inode_type(&inode->vfs_inode), index); 6485 if (ret == -EEXIST || ret == -EOVERFLOW) 6486 goto fail_dir_item; 6487 else if (ret) { 6488 btrfs_abort_transaction(trans, ret); 6489 return ret; 6490 } 6491 6492 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6493 name->len * 2); 6494 inode_inc_iversion(&parent_inode->vfs_inode); 6495 /* 6496 * If we are replaying a log tree, we do not want to update the mtime 6497 * and ctime of the parent directory with the current time, since the 6498 * log replay procedure is responsible for setting them to their correct 6499 * values (the ones it had when the fsync was done). 6500 */ 6501 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6502 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6503 inode_set_ctime_current(&parent_inode->vfs_inode)); 6504 6505 ret = btrfs_update_inode(trans, parent_inode); 6506 if (ret) 6507 btrfs_abort_transaction(trans, ret); 6508 return ret; 6509 6510 fail_dir_item: 6511 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6512 u64 local_index; 6513 int err; 6514 err = btrfs_del_root_ref(trans, key.objectid, 6515 btrfs_root_id(root), parent_ino, 6516 &local_index, name); 6517 if (err) 6518 btrfs_abort_transaction(trans, err); 6519 } else if (add_backref) { 6520 u64 local_index; 6521 int err; 6522 6523 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6524 &local_index); 6525 if (err) 6526 btrfs_abort_transaction(trans, err); 6527 } 6528 6529 /* Return the original error code */ 6530 return ret; 6531 } 6532 6533 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6534 struct inode *inode) 6535 { 6536 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6537 struct btrfs_root *root = BTRFS_I(dir)->root; 6538 struct btrfs_new_inode_args new_inode_args = { 6539 .dir = dir, 6540 .dentry = dentry, 6541 .inode = inode, 6542 }; 6543 unsigned int trans_num_items; 6544 struct btrfs_trans_handle *trans; 6545 int err; 6546 6547 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6548 if (err) 6549 goto out_inode; 6550 6551 trans = btrfs_start_transaction(root, trans_num_items); 6552 if (IS_ERR(trans)) { 6553 err = PTR_ERR(trans); 6554 goto out_new_inode_args; 6555 } 6556 6557 err = btrfs_create_new_inode(trans, &new_inode_args); 6558 if (!err) 6559 d_instantiate_new(dentry, inode); 6560 6561 btrfs_end_transaction(trans); 6562 btrfs_btree_balance_dirty(fs_info); 6563 out_new_inode_args: 6564 btrfs_new_inode_args_destroy(&new_inode_args); 6565 out_inode: 6566 if (err) 6567 iput(inode); 6568 return err; 6569 } 6570 6571 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6572 struct dentry *dentry, umode_t mode, dev_t rdev) 6573 { 6574 struct inode *inode; 6575 6576 inode = new_inode(dir->i_sb); 6577 if (!inode) 6578 return -ENOMEM; 6579 inode_init_owner(idmap, inode, dir, mode); 6580 inode->i_op = &btrfs_special_inode_operations; 6581 init_special_inode(inode, inode->i_mode, rdev); 6582 return btrfs_create_common(dir, dentry, inode); 6583 } 6584 6585 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6586 struct dentry *dentry, umode_t mode, bool excl) 6587 { 6588 struct inode *inode; 6589 6590 inode = new_inode(dir->i_sb); 6591 if (!inode) 6592 return -ENOMEM; 6593 inode_init_owner(idmap, inode, dir, mode); 6594 inode->i_fop = &btrfs_file_operations; 6595 inode->i_op = &btrfs_file_inode_operations; 6596 inode->i_mapping->a_ops = &btrfs_aops; 6597 return btrfs_create_common(dir, dentry, inode); 6598 } 6599 6600 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6601 struct dentry *dentry) 6602 { 6603 struct btrfs_trans_handle *trans = NULL; 6604 struct btrfs_root *root = BTRFS_I(dir)->root; 6605 struct inode *inode = d_inode(old_dentry); 6606 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6607 struct fscrypt_name fname; 6608 u64 index; 6609 int err; 6610 int drop_inode = 0; 6611 6612 /* do not allow sys_link's with other subvols of the same device */ 6613 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6614 return -EXDEV; 6615 6616 if (inode->i_nlink >= BTRFS_LINK_MAX) 6617 return -EMLINK; 6618 6619 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6620 if (err) 6621 goto fail; 6622 6623 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6624 if (err) 6625 goto fail; 6626 6627 /* 6628 * 2 items for inode and inode ref 6629 * 2 items for dir items 6630 * 1 item for parent inode 6631 * 1 item for orphan item deletion if O_TMPFILE 6632 */ 6633 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6634 if (IS_ERR(trans)) { 6635 err = PTR_ERR(trans); 6636 trans = NULL; 6637 goto fail; 6638 } 6639 6640 /* There are several dir indexes for this inode, clear the cache. */ 6641 BTRFS_I(inode)->dir_index = 0ULL; 6642 inc_nlink(inode); 6643 inode_inc_iversion(inode); 6644 inode_set_ctime_current(inode); 6645 ihold(inode); 6646 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6647 6648 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6649 &fname.disk_name, 1, index); 6650 6651 if (err) { 6652 drop_inode = 1; 6653 } else { 6654 struct dentry *parent = dentry->d_parent; 6655 6656 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6657 if (err) 6658 goto fail; 6659 if (inode->i_nlink == 1) { 6660 /* 6661 * If new hard link count is 1, it's a file created 6662 * with open(2) O_TMPFILE flag. 6663 */ 6664 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6665 if (err) 6666 goto fail; 6667 } 6668 d_instantiate(dentry, inode); 6669 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6670 } 6671 6672 fail: 6673 fscrypt_free_filename(&fname); 6674 if (trans) 6675 btrfs_end_transaction(trans); 6676 if (drop_inode) { 6677 inode_dec_link_count(inode); 6678 iput(inode); 6679 } 6680 btrfs_btree_balance_dirty(fs_info); 6681 return err; 6682 } 6683 6684 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6685 struct dentry *dentry, umode_t mode) 6686 { 6687 struct inode *inode; 6688 6689 inode = new_inode(dir->i_sb); 6690 if (!inode) 6691 return -ENOMEM; 6692 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6693 inode->i_op = &btrfs_dir_inode_operations; 6694 inode->i_fop = &btrfs_dir_file_operations; 6695 return btrfs_create_common(dir, dentry, inode); 6696 } 6697 6698 static noinline int uncompress_inline(struct btrfs_path *path, 6699 struct page *page, 6700 struct btrfs_file_extent_item *item) 6701 { 6702 int ret; 6703 struct extent_buffer *leaf = path->nodes[0]; 6704 char *tmp; 6705 size_t max_size; 6706 unsigned long inline_size; 6707 unsigned long ptr; 6708 int compress_type; 6709 6710 compress_type = btrfs_file_extent_compression(leaf, item); 6711 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6712 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6713 tmp = kmalloc(inline_size, GFP_NOFS); 6714 if (!tmp) 6715 return -ENOMEM; 6716 ptr = btrfs_file_extent_inline_start(item); 6717 6718 read_extent_buffer(leaf, tmp, ptr, inline_size); 6719 6720 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6721 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6722 6723 /* 6724 * decompression code contains a memset to fill in any space between the end 6725 * of the uncompressed data and the end of max_size in case the decompressed 6726 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6727 * the end of an inline extent and the beginning of the next block, so we 6728 * cover that region here. 6729 */ 6730 6731 if (max_size < PAGE_SIZE) 6732 memzero_page(page, max_size, PAGE_SIZE - max_size); 6733 kfree(tmp); 6734 return ret; 6735 } 6736 6737 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6738 struct page *page) 6739 { 6740 struct btrfs_file_extent_item *fi; 6741 void *kaddr; 6742 size_t copy_size; 6743 6744 if (!page || PageUptodate(page)) 6745 return 0; 6746 6747 ASSERT(page_offset(page) == 0); 6748 6749 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6750 struct btrfs_file_extent_item); 6751 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6752 return uncompress_inline(path, page, fi); 6753 6754 copy_size = min_t(u64, PAGE_SIZE, 6755 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6756 kaddr = kmap_local_page(page); 6757 read_extent_buffer(path->nodes[0], kaddr, 6758 btrfs_file_extent_inline_start(fi), copy_size); 6759 kunmap_local(kaddr); 6760 if (copy_size < PAGE_SIZE) 6761 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6762 return 0; 6763 } 6764 6765 /* 6766 * Lookup the first extent overlapping a range in a file. 6767 * 6768 * @inode: file to search in 6769 * @page: page to read extent data into if the extent is inline 6770 * @start: file offset 6771 * @len: length of range starting at @start 6772 * 6773 * Return the first &struct extent_map which overlaps the given range, reading 6774 * it from the B-tree and caching it if necessary. Note that there may be more 6775 * extents which overlap the given range after the returned extent_map. 6776 * 6777 * If @page is not NULL and the extent is inline, this also reads the extent 6778 * data directly into the page and marks the extent up to date in the io_tree. 6779 * 6780 * Return: ERR_PTR on error, non-NULL extent_map on success. 6781 */ 6782 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6783 struct page *page, u64 start, u64 len) 6784 { 6785 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6786 int ret = 0; 6787 u64 extent_start = 0; 6788 u64 extent_end = 0; 6789 u64 objectid = btrfs_ino(inode); 6790 int extent_type = -1; 6791 struct btrfs_path *path = NULL; 6792 struct btrfs_root *root = inode->root; 6793 struct btrfs_file_extent_item *item; 6794 struct extent_buffer *leaf; 6795 struct btrfs_key found_key; 6796 struct extent_map *em = NULL; 6797 struct extent_map_tree *em_tree = &inode->extent_tree; 6798 6799 read_lock(&em_tree->lock); 6800 em = lookup_extent_mapping(em_tree, start, len); 6801 read_unlock(&em_tree->lock); 6802 6803 if (em) { 6804 if (em->start > start || em->start + em->len <= start) 6805 free_extent_map(em); 6806 else if (em->disk_bytenr == EXTENT_MAP_INLINE && page) 6807 free_extent_map(em); 6808 else 6809 goto out; 6810 } 6811 em = alloc_extent_map(); 6812 if (!em) { 6813 ret = -ENOMEM; 6814 goto out; 6815 } 6816 em->start = EXTENT_MAP_HOLE; 6817 em->disk_bytenr = EXTENT_MAP_HOLE; 6818 em->len = (u64)-1; 6819 6820 path = btrfs_alloc_path(); 6821 if (!path) { 6822 ret = -ENOMEM; 6823 goto out; 6824 } 6825 6826 /* Chances are we'll be called again, so go ahead and do readahead */ 6827 path->reada = READA_FORWARD; 6828 6829 /* 6830 * The same explanation in load_free_space_cache applies here as well, 6831 * we only read when we're loading the free space cache, and at that 6832 * point the commit_root has everything we need. 6833 */ 6834 if (btrfs_is_free_space_inode(inode)) { 6835 path->search_commit_root = 1; 6836 path->skip_locking = 1; 6837 } 6838 6839 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6840 if (ret < 0) { 6841 goto out; 6842 } else if (ret > 0) { 6843 if (path->slots[0] == 0) 6844 goto not_found; 6845 path->slots[0]--; 6846 ret = 0; 6847 } 6848 6849 leaf = path->nodes[0]; 6850 item = btrfs_item_ptr(leaf, path->slots[0], 6851 struct btrfs_file_extent_item); 6852 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6853 if (found_key.objectid != objectid || 6854 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6855 /* 6856 * If we backup past the first extent we want to move forward 6857 * and see if there is an extent in front of us, otherwise we'll 6858 * say there is a hole for our whole search range which can 6859 * cause problems. 6860 */ 6861 extent_end = start; 6862 goto next; 6863 } 6864 6865 extent_type = btrfs_file_extent_type(leaf, item); 6866 extent_start = found_key.offset; 6867 extent_end = btrfs_file_extent_end(path); 6868 if (extent_type == BTRFS_FILE_EXTENT_REG || 6869 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6870 /* Only regular file could have regular/prealloc extent */ 6871 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6872 ret = -EUCLEAN; 6873 btrfs_crit(fs_info, 6874 "regular/prealloc extent found for non-regular inode %llu", 6875 btrfs_ino(inode)); 6876 goto out; 6877 } 6878 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6879 extent_start); 6880 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6881 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6882 path->slots[0], 6883 extent_start); 6884 } 6885 next: 6886 if (start >= extent_end) { 6887 path->slots[0]++; 6888 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6889 ret = btrfs_next_leaf(root, path); 6890 if (ret < 0) 6891 goto out; 6892 else if (ret > 0) 6893 goto not_found; 6894 6895 leaf = path->nodes[0]; 6896 } 6897 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6898 if (found_key.objectid != objectid || 6899 found_key.type != BTRFS_EXTENT_DATA_KEY) 6900 goto not_found; 6901 if (start + len <= found_key.offset) 6902 goto not_found; 6903 if (start > found_key.offset) 6904 goto next; 6905 6906 /* New extent overlaps with existing one */ 6907 em->start = start; 6908 em->len = found_key.offset - start; 6909 em->disk_bytenr = EXTENT_MAP_HOLE; 6910 goto insert; 6911 } 6912 6913 btrfs_extent_item_to_extent_map(inode, path, item, em); 6914 6915 if (extent_type == BTRFS_FILE_EXTENT_REG || 6916 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6917 goto insert; 6918 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6919 /* 6920 * Inline extent can only exist at file offset 0. This is 6921 * ensured by tree-checker and inline extent creation path. 6922 * Thus all members representing file offsets should be zero. 6923 */ 6924 ASSERT(extent_start == 0); 6925 ASSERT(em->start == 0); 6926 6927 /* 6928 * btrfs_extent_item_to_extent_map() should have properly 6929 * initialized em members already. 6930 * 6931 * Other members are not utilized for inline extents. 6932 */ 6933 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 6934 ASSERT(em->len == fs_info->sectorsize); 6935 6936 ret = read_inline_extent(inode, path, page); 6937 if (ret < 0) 6938 goto out; 6939 goto insert; 6940 } 6941 not_found: 6942 em->start = start; 6943 em->len = len; 6944 em->disk_bytenr = EXTENT_MAP_HOLE; 6945 insert: 6946 ret = 0; 6947 btrfs_release_path(path); 6948 if (em->start > start || extent_map_end(em) <= start) { 6949 btrfs_err(fs_info, 6950 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6951 em->start, em->len, start, len); 6952 ret = -EIO; 6953 goto out; 6954 } 6955 6956 write_lock(&em_tree->lock); 6957 ret = btrfs_add_extent_mapping(inode, &em, start, len); 6958 write_unlock(&em_tree->lock); 6959 out: 6960 btrfs_free_path(path); 6961 6962 trace_btrfs_get_extent(root, inode, em); 6963 6964 if (ret) { 6965 free_extent_map(em); 6966 return ERR_PTR(ret); 6967 } 6968 return em; 6969 } 6970 6971 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 6972 { 6973 struct btrfs_block_group *block_group; 6974 bool readonly = false; 6975 6976 block_group = btrfs_lookup_block_group(fs_info, bytenr); 6977 if (!block_group || block_group->ro) 6978 readonly = true; 6979 if (block_group) 6980 btrfs_put_block_group(block_group); 6981 return readonly; 6982 } 6983 6984 /* 6985 * Check if we can do nocow write into the range [@offset, @offset + @len) 6986 * 6987 * @offset: File offset 6988 * @len: The length to write, will be updated to the nocow writeable 6989 * range 6990 * @orig_start: (optional) Return the original file offset of the file extent 6991 * @orig_len: (optional) Return the original on-disk length of the file extent 6992 * @ram_bytes: (optional) Return the ram_bytes of the file extent 6993 * @strict: if true, omit optimizations that might force us into unnecessary 6994 * cow. e.g., don't trust generation number. 6995 * 6996 * Return: 6997 * >0 and update @len if we can do nocow write 6998 * 0 if we can't do nocow write 6999 * <0 if error happened 7000 * 7001 * NOTE: This only checks the file extents, caller is responsible to wait for 7002 * any ordered extents. 7003 */ 7004 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7005 struct btrfs_file_extent *file_extent, 7006 bool nowait, bool strict) 7007 { 7008 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7009 struct can_nocow_file_extent_args nocow_args = { 0 }; 7010 struct btrfs_path *path; 7011 int ret; 7012 struct extent_buffer *leaf; 7013 struct btrfs_root *root = BTRFS_I(inode)->root; 7014 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7015 struct btrfs_file_extent_item *fi; 7016 struct btrfs_key key; 7017 int found_type; 7018 7019 path = btrfs_alloc_path(); 7020 if (!path) 7021 return -ENOMEM; 7022 path->nowait = nowait; 7023 7024 ret = btrfs_lookup_file_extent(NULL, root, path, 7025 btrfs_ino(BTRFS_I(inode)), offset, 0); 7026 if (ret < 0) 7027 goto out; 7028 7029 if (ret == 1) { 7030 if (path->slots[0] == 0) { 7031 /* can't find the item, must cow */ 7032 ret = 0; 7033 goto out; 7034 } 7035 path->slots[0]--; 7036 } 7037 ret = 0; 7038 leaf = path->nodes[0]; 7039 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7040 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7041 key.type != BTRFS_EXTENT_DATA_KEY) { 7042 /* not our file or wrong item type, must cow */ 7043 goto out; 7044 } 7045 7046 if (key.offset > offset) { 7047 /* Wrong offset, must cow */ 7048 goto out; 7049 } 7050 7051 if (btrfs_file_extent_end(path) <= offset) 7052 goto out; 7053 7054 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7055 found_type = btrfs_file_extent_type(leaf, fi); 7056 7057 nocow_args.start = offset; 7058 nocow_args.end = offset + *len - 1; 7059 nocow_args.strict = strict; 7060 nocow_args.free_path = true; 7061 7062 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7063 /* can_nocow_file_extent() has freed the path. */ 7064 path = NULL; 7065 7066 if (ret != 1) { 7067 /* Treat errors as not being able to NOCOW. */ 7068 ret = 0; 7069 goto out; 7070 } 7071 7072 ret = 0; 7073 if (btrfs_extent_readonly(fs_info, 7074 nocow_args.file_extent.disk_bytenr + 7075 nocow_args.file_extent.offset)) 7076 goto out; 7077 7078 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7079 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7080 u64 range_end; 7081 7082 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7083 root->fs_info->sectorsize) - 1; 7084 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7085 if (ret) { 7086 ret = -EAGAIN; 7087 goto out; 7088 } 7089 } 7090 7091 if (file_extent) 7092 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7093 7094 *len = nocow_args.file_extent.num_bytes; 7095 ret = 1; 7096 out: 7097 btrfs_free_path(path); 7098 return ret; 7099 } 7100 7101 /* The callers of this must take lock_extent() */ 7102 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7103 const struct btrfs_file_extent *file_extent, 7104 int type) 7105 { 7106 struct extent_map *em; 7107 int ret; 7108 7109 /* 7110 * Note the missing NOCOW type. 7111 * 7112 * For pure NOCOW writes, we should not create an io extent map, but 7113 * just reusing the existing one. 7114 * Only PREALLOC writes (NOCOW write into preallocated range) can 7115 * create an io extent map. 7116 */ 7117 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7118 type == BTRFS_ORDERED_COMPRESSED || 7119 type == BTRFS_ORDERED_REGULAR); 7120 7121 switch (type) { 7122 case BTRFS_ORDERED_PREALLOC: 7123 /* We're only referring part of a larger preallocated extent. */ 7124 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7125 break; 7126 case BTRFS_ORDERED_REGULAR: 7127 /* COW results a new extent matching our file extent size. */ 7128 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7129 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7130 7131 /* Since it's a new extent, we should not have any offset. */ 7132 ASSERT(file_extent->offset == 0); 7133 break; 7134 case BTRFS_ORDERED_COMPRESSED: 7135 /* Must be compressed. */ 7136 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7137 7138 /* 7139 * Encoded write can make us to refer to part of the 7140 * uncompressed extent. 7141 */ 7142 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7143 break; 7144 } 7145 7146 em = alloc_extent_map(); 7147 if (!em) 7148 return ERR_PTR(-ENOMEM); 7149 7150 em->start = start; 7151 em->len = file_extent->num_bytes; 7152 em->disk_bytenr = file_extent->disk_bytenr; 7153 em->disk_num_bytes = file_extent->disk_num_bytes; 7154 em->ram_bytes = file_extent->ram_bytes; 7155 em->generation = -1; 7156 em->offset = file_extent->offset; 7157 em->flags |= EXTENT_FLAG_PINNED; 7158 if (type == BTRFS_ORDERED_COMPRESSED) 7159 extent_map_set_compression(em, file_extent->compression); 7160 7161 ret = btrfs_replace_extent_map_range(inode, em, true); 7162 if (ret) { 7163 free_extent_map(em); 7164 return ERR_PTR(ret); 7165 } 7166 7167 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7168 return em; 7169 } 7170 7171 /* 7172 * For release_folio() and invalidate_folio() we have a race window where 7173 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7174 * If we continue to release/invalidate the page, we could cause use-after-free 7175 * for subpage spinlock. So this function is to spin and wait for subpage 7176 * spinlock. 7177 */ 7178 static void wait_subpage_spinlock(struct page *page) 7179 { 7180 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 7181 struct folio *folio = page_folio(page); 7182 struct btrfs_subpage *subpage; 7183 7184 if (!btrfs_is_subpage(fs_info, page->mapping)) 7185 return; 7186 7187 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7188 subpage = folio_get_private(folio); 7189 7190 /* 7191 * This may look insane as we just acquire the spinlock and release it, 7192 * without doing anything. But we just want to make sure no one is 7193 * still holding the subpage spinlock. 7194 * And since the page is not dirty nor writeback, and we have page 7195 * locked, the only possible way to hold a spinlock is from the endio 7196 * function to clear page writeback. 7197 * 7198 * Here we just acquire the spinlock so that all existing callers 7199 * should exit and we're safe to release/invalidate the page. 7200 */ 7201 spin_lock_irq(&subpage->lock); 7202 spin_unlock_irq(&subpage->lock); 7203 } 7204 7205 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7206 { 7207 if (try_release_extent_mapping(&folio->page, gfp_flags)) { 7208 wait_subpage_spinlock(&folio->page); 7209 clear_page_extent_mapped(&folio->page); 7210 return true; 7211 } 7212 return false; 7213 } 7214 7215 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7216 { 7217 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7218 return false; 7219 return __btrfs_release_folio(folio, gfp_flags); 7220 } 7221 7222 #ifdef CONFIG_MIGRATION 7223 static int btrfs_migrate_folio(struct address_space *mapping, 7224 struct folio *dst, struct folio *src, 7225 enum migrate_mode mode) 7226 { 7227 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7228 7229 if (ret != MIGRATEPAGE_SUCCESS) 7230 return ret; 7231 7232 if (folio_test_ordered(src)) { 7233 folio_clear_ordered(src); 7234 folio_set_ordered(dst); 7235 } 7236 7237 return MIGRATEPAGE_SUCCESS; 7238 } 7239 #else 7240 #define btrfs_migrate_folio NULL 7241 #endif 7242 7243 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7244 size_t length) 7245 { 7246 struct btrfs_inode *inode = folio_to_inode(folio); 7247 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7248 struct extent_io_tree *tree = &inode->io_tree; 7249 struct extent_state *cached_state = NULL; 7250 u64 page_start = folio_pos(folio); 7251 u64 page_end = page_start + folio_size(folio) - 1; 7252 u64 cur; 7253 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7254 7255 /* 7256 * We have folio locked so no new ordered extent can be created on this 7257 * page, nor bio can be submitted for this folio. 7258 * 7259 * But already submitted bio can still be finished on this folio. 7260 * Furthermore, endio function won't skip folio which has Ordered 7261 * (Private2) already cleared, so it's possible for endio and 7262 * invalidate_folio to do the same ordered extent accounting twice 7263 * on one folio. 7264 * 7265 * So here we wait for any submitted bios to finish, so that we won't 7266 * do double ordered extent accounting on the same folio. 7267 */ 7268 folio_wait_writeback(folio); 7269 wait_subpage_spinlock(&folio->page); 7270 7271 /* 7272 * For subpage case, we have call sites like 7273 * btrfs_punch_hole_lock_range() which passes range not aligned to 7274 * sectorsize. 7275 * If the range doesn't cover the full folio, we don't need to and 7276 * shouldn't clear page extent mapped, as folio->private can still 7277 * record subpage dirty bits for other part of the range. 7278 * 7279 * For cases that invalidate the full folio even the range doesn't 7280 * cover the full folio, like invalidating the last folio, we're 7281 * still safe to wait for ordered extent to finish. 7282 */ 7283 if (!(offset == 0 && length == folio_size(folio))) { 7284 btrfs_release_folio(folio, GFP_NOFS); 7285 return; 7286 } 7287 7288 if (!inode_evicting) 7289 lock_extent(tree, page_start, page_end, &cached_state); 7290 7291 cur = page_start; 7292 while (cur < page_end) { 7293 struct btrfs_ordered_extent *ordered; 7294 u64 range_end; 7295 u32 range_len; 7296 u32 extra_flags = 0; 7297 7298 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7299 page_end + 1 - cur); 7300 if (!ordered) { 7301 range_end = page_end; 7302 /* 7303 * No ordered extent covering this range, we are safe 7304 * to delete all extent states in the range. 7305 */ 7306 extra_flags = EXTENT_CLEAR_ALL_BITS; 7307 goto next; 7308 } 7309 if (ordered->file_offset > cur) { 7310 /* 7311 * There is a range between [cur, oe->file_offset) not 7312 * covered by any ordered extent. 7313 * We are safe to delete all extent states, and handle 7314 * the ordered extent in the next iteration. 7315 */ 7316 range_end = ordered->file_offset - 1; 7317 extra_flags = EXTENT_CLEAR_ALL_BITS; 7318 goto next; 7319 } 7320 7321 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7322 page_end); 7323 ASSERT(range_end + 1 - cur < U32_MAX); 7324 range_len = range_end + 1 - cur; 7325 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7326 /* 7327 * If Ordered (Private2) is cleared, it means endio has 7328 * already been executed for the range. 7329 * We can't delete the extent states as 7330 * btrfs_finish_ordered_io() may still use some of them. 7331 */ 7332 goto next; 7333 } 7334 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7335 7336 /* 7337 * IO on this page will never be started, so we need to account 7338 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7339 * here, must leave that up for the ordered extent completion. 7340 * 7341 * This will also unlock the range for incoming 7342 * btrfs_finish_ordered_io(). 7343 */ 7344 if (!inode_evicting) 7345 clear_extent_bit(tree, cur, range_end, 7346 EXTENT_DELALLOC | 7347 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7348 EXTENT_DEFRAG, &cached_state); 7349 7350 spin_lock_irq(&inode->ordered_tree_lock); 7351 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7352 ordered->truncated_len = min(ordered->truncated_len, 7353 cur - ordered->file_offset); 7354 spin_unlock_irq(&inode->ordered_tree_lock); 7355 7356 /* 7357 * If the ordered extent has finished, we're safe to delete all 7358 * the extent states of the range, otherwise 7359 * btrfs_finish_ordered_io() will get executed by endio for 7360 * other pages, so we can't delete extent states. 7361 */ 7362 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7363 cur, range_end + 1 - cur)) { 7364 btrfs_finish_ordered_io(ordered); 7365 /* 7366 * The ordered extent has finished, now we're again 7367 * safe to delete all extent states of the range. 7368 */ 7369 extra_flags = EXTENT_CLEAR_ALL_BITS; 7370 } 7371 next: 7372 if (ordered) 7373 btrfs_put_ordered_extent(ordered); 7374 /* 7375 * Qgroup reserved space handler 7376 * Sector(s) here will be either: 7377 * 7378 * 1) Already written to disk or bio already finished 7379 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7380 * Qgroup will be handled by its qgroup_record then. 7381 * btrfs_qgroup_free_data() call will do nothing here. 7382 * 7383 * 2) Not written to disk yet 7384 * Then btrfs_qgroup_free_data() call will clear the 7385 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7386 * reserved data space. 7387 * Since the IO will never happen for this page. 7388 */ 7389 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7390 if (!inode_evicting) { 7391 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7392 EXTENT_DELALLOC | EXTENT_UPTODATE | 7393 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7394 extra_flags, &cached_state); 7395 } 7396 cur = range_end + 1; 7397 } 7398 /* 7399 * We have iterated through all ordered extents of the page, the page 7400 * should not have Ordered (Private2) anymore, or the above iteration 7401 * did something wrong. 7402 */ 7403 ASSERT(!folio_test_ordered(folio)); 7404 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7405 if (!inode_evicting) 7406 __btrfs_release_folio(folio, GFP_NOFS); 7407 clear_page_extent_mapped(&folio->page); 7408 } 7409 7410 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7411 { 7412 struct btrfs_truncate_control control = { 7413 .inode = inode, 7414 .ino = btrfs_ino(inode), 7415 .min_type = BTRFS_EXTENT_DATA_KEY, 7416 .clear_extent_range = true, 7417 }; 7418 struct btrfs_root *root = inode->root; 7419 struct btrfs_fs_info *fs_info = root->fs_info; 7420 struct btrfs_block_rsv *rsv; 7421 int ret; 7422 struct btrfs_trans_handle *trans; 7423 u64 mask = fs_info->sectorsize - 1; 7424 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7425 7426 if (!skip_writeback) { 7427 ret = btrfs_wait_ordered_range(inode, 7428 inode->vfs_inode.i_size & (~mask), 7429 (u64)-1); 7430 if (ret) 7431 return ret; 7432 } 7433 7434 /* 7435 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7436 * things going on here: 7437 * 7438 * 1) We need to reserve space to update our inode. 7439 * 7440 * 2) We need to have something to cache all the space that is going to 7441 * be free'd up by the truncate operation, but also have some slack 7442 * space reserved in case it uses space during the truncate (thank you 7443 * very much snapshotting). 7444 * 7445 * And we need these to be separate. The fact is we can use a lot of 7446 * space doing the truncate, and we have no earthly idea how much space 7447 * we will use, so we need the truncate reservation to be separate so it 7448 * doesn't end up using space reserved for updating the inode. We also 7449 * need to be able to stop the transaction and start a new one, which 7450 * means we need to be able to update the inode several times, and we 7451 * have no idea of knowing how many times that will be, so we can't just 7452 * reserve 1 item for the entirety of the operation, so that has to be 7453 * done separately as well. 7454 * 7455 * So that leaves us with 7456 * 7457 * 1) rsv - for the truncate reservation, which we will steal from the 7458 * transaction reservation. 7459 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7460 * updating the inode. 7461 */ 7462 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7463 if (!rsv) 7464 return -ENOMEM; 7465 rsv->size = min_size; 7466 rsv->failfast = true; 7467 7468 /* 7469 * 1 for the truncate slack space 7470 * 1 for updating the inode. 7471 */ 7472 trans = btrfs_start_transaction(root, 2); 7473 if (IS_ERR(trans)) { 7474 ret = PTR_ERR(trans); 7475 goto out; 7476 } 7477 7478 /* Migrate the slack space for the truncate to our reserve */ 7479 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7480 min_size, false); 7481 /* 7482 * We have reserved 2 metadata units when we started the transaction and 7483 * min_size matches 1 unit, so this should never fail, but if it does, 7484 * it's not critical we just fail truncation. 7485 */ 7486 if (WARN_ON(ret)) { 7487 btrfs_end_transaction(trans); 7488 goto out; 7489 } 7490 7491 trans->block_rsv = rsv; 7492 7493 while (1) { 7494 struct extent_state *cached_state = NULL; 7495 const u64 new_size = inode->vfs_inode.i_size; 7496 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7497 7498 control.new_size = new_size; 7499 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7500 /* 7501 * We want to drop from the next block forward in case this new 7502 * size is not block aligned since we will be keeping the last 7503 * block of the extent just the way it is. 7504 */ 7505 btrfs_drop_extent_map_range(inode, 7506 ALIGN(new_size, fs_info->sectorsize), 7507 (u64)-1, false); 7508 7509 ret = btrfs_truncate_inode_items(trans, root, &control); 7510 7511 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7512 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7513 7514 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7515 7516 trans->block_rsv = &fs_info->trans_block_rsv; 7517 if (ret != -ENOSPC && ret != -EAGAIN) 7518 break; 7519 7520 ret = btrfs_update_inode(trans, inode); 7521 if (ret) 7522 break; 7523 7524 btrfs_end_transaction(trans); 7525 btrfs_btree_balance_dirty(fs_info); 7526 7527 trans = btrfs_start_transaction(root, 2); 7528 if (IS_ERR(trans)) { 7529 ret = PTR_ERR(trans); 7530 trans = NULL; 7531 break; 7532 } 7533 7534 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7535 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7536 rsv, min_size, false); 7537 /* 7538 * We have reserved 2 metadata units when we started the 7539 * transaction and min_size matches 1 unit, so this should never 7540 * fail, but if it does, it's not critical we just fail truncation. 7541 */ 7542 if (WARN_ON(ret)) 7543 break; 7544 7545 trans->block_rsv = rsv; 7546 } 7547 7548 /* 7549 * We can't call btrfs_truncate_block inside a trans handle as we could 7550 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7551 * know we've truncated everything except the last little bit, and can 7552 * do btrfs_truncate_block and then update the disk_i_size. 7553 */ 7554 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7555 btrfs_end_transaction(trans); 7556 btrfs_btree_balance_dirty(fs_info); 7557 7558 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7559 if (ret) 7560 goto out; 7561 trans = btrfs_start_transaction(root, 1); 7562 if (IS_ERR(trans)) { 7563 ret = PTR_ERR(trans); 7564 goto out; 7565 } 7566 btrfs_inode_safe_disk_i_size_write(inode, 0); 7567 } 7568 7569 if (trans) { 7570 int ret2; 7571 7572 trans->block_rsv = &fs_info->trans_block_rsv; 7573 ret2 = btrfs_update_inode(trans, inode); 7574 if (ret2 && !ret) 7575 ret = ret2; 7576 7577 ret2 = btrfs_end_transaction(trans); 7578 if (ret2 && !ret) 7579 ret = ret2; 7580 btrfs_btree_balance_dirty(fs_info); 7581 } 7582 out: 7583 btrfs_free_block_rsv(fs_info, rsv); 7584 /* 7585 * So if we truncate and then write and fsync we normally would just 7586 * write the extents that changed, which is a problem if we need to 7587 * first truncate that entire inode. So set this flag so we write out 7588 * all of the extents in the inode to the sync log so we're completely 7589 * safe. 7590 * 7591 * If no extents were dropped or trimmed we don't need to force the next 7592 * fsync to truncate all the inode's items from the log and re-log them 7593 * all. This means the truncate operation did not change the file size, 7594 * or changed it to a smaller size but there was only an implicit hole 7595 * between the old i_size and the new i_size, and there were no prealloc 7596 * extents beyond i_size to drop. 7597 */ 7598 if (control.extents_found > 0) 7599 btrfs_set_inode_full_sync(inode); 7600 7601 return ret; 7602 } 7603 7604 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7605 struct inode *dir) 7606 { 7607 struct inode *inode; 7608 7609 inode = new_inode(dir->i_sb); 7610 if (inode) { 7611 /* 7612 * Subvolumes don't inherit the sgid bit or the parent's gid if 7613 * the parent's sgid bit is set. This is probably a bug. 7614 */ 7615 inode_init_owner(idmap, inode, NULL, 7616 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7617 inode->i_op = &btrfs_dir_inode_operations; 7618 inode->i_fop = &btrfs_dir_file_operations; 7619 } 7620 return inode; 7621 } 7622 7623 struct inode *btrfs_alloc_inode(struct super_block *sb) 7624 { 7625 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7626 struct btrfs_inode *ei; 7627 struct inode *inode; 7628 7629 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7630 if (!ei) 7631 return NULL; 7632 7633 ei->root = NULL; 7634 ei->generation = 0; 7635 ei->last_trans = 0; 7636 ei->last_sub_trans = 0; 7637 ei->logged_trans = 0; 7638 ei->delalloc_bytes = 0; 7639 ei->new_delalloc_bytes = 0; 7640 ei->defrag_bytes = 0; 7641 ei->disk_i_size = 0; 7642 ei->flags = 0; 7643 ei->ro_flags = 0; 7644 /* 7645 * ->index_cnt will be properly initialized later when creating a new 7646 * inode (btrfs_create_new_inode()) or when reading an existing inode 7647 * from disk (btrfs_read_locked_inode()). 7648 */ 7649 ei->csum_bytes = 0; 7650 ei->dir_index = 0; 7651 ei->last_unlink_trans = 0; 7652 ei->last_reflink_trans = 0; 7653 ei->last_log_commit = 0; 7654 7655 spin_lock_init(&ei->lock); 7656 ei->outstanding_extents = 0; 7657 if (sb->s_magic != BTRFS_TEST_MAGIC) 7658 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7659 BTRFS_BLOCK_RSV_DELALLOC); 7660 ei->runtime_flags = 0; 7661 ei->prop_compress = BTRFS_COMPRESS_NONE; 7662 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7663 7664 ei->delayed_node = NULL; 7665 7666 ei->i_otime_sec = 0; 7667 ei->i_otime_nsec = 0; 7668 7669 inode = &ei->vfs_inode; 7670 extent_map_tree_init(&ei->extent_tree); 7671 7672 /* This io tree sets the valid inode. */ 7673 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7674 ei->io_tree.inode = ei; 7675 7676 ei->file_extent_tree = NULL; 7677 7678 mutex_init(&ei->log_mutex); 7679 spin_lock_init(&ei->ordered_tree_lock); 7680 ei->ordered_tree = RB_ROOT; 7681 ei->ordered_tree_last = NULL; 7682 INIT_LIST_HEAD(&ei->delalloc_inodes); 7683 INIT_LIST_HEAD(&ei->delayed_iput); 7684 init_rwsem(&ei->i_mmap_lock); 7685 7686 return inode; 7687 } 7688 7689 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7690 void btrfs_test_destroy_inode(struct inode *inode) 7691 { 7692 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7693 kfree(BTRFS_I(inode)->file_extent_tree); 7694 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7695 } 7696 #endif 7697 7698 void btrfs_free_inode(struct inode *inode) 7699 { 7700 kfree(BTRFS_I(inode)->file_extent_tree); 7701 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7702 } 7703 7704 void btrfs_destroy_inode(struct inode *vfs_inode) 7705 { 7706 struct btrfs_ordered_extent *ordered; 7707 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7708 struct btrfs_root *root = inode->root; 7709 bool freespace_inode; 7710 7711 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7712 WARN_ON(vfs_inode->i_data.nrpages); 7713 WARN_ON(inode->block_rsv.reserved); 7714 WARN_ON(inode->block_rsv.size); 7715 WARN_ON(inode->outstanding_extents); 7716 if (!S_ISDIR(vfs_inode->i_mode)) { 7717 WARN_ON(inode->delalloc_bytes); 7718 WARN_ON(inode->new_delalloc_bytes); 7719 WARN_ON(inode->csum_bytes); 7720 } 7721 if (!root || !btrfs_is_data_reloc_root(root)) 7722 WARN_ON(inode->defrag_bytes); 7723 7724 /* 7725 * This can happen where we create an inode, but somebody else also 7726 * created the same inode and we need to destroy the one we already 7727 * created. 7728 */ 7729 if (!root) 7730 return; 7731 7732 /* 7733 * If this is a free space inode do not take the ordered extents lockdep 7734 * map. 7735 */ 7736 freespace_inode = btrfs_is_free_space_inode(inode); 7737 7738 while (1) { 7739 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7740 if (!ordered) 7741 break; 7742 else { 7743 btrfs_err(root->fs_info, 7744 "found ordered extent %llu %llu on inode cleanup", 7745 ordered->file_offset, ordered->num_bytes); 7746 7747 if (!freespace_inode) 7748 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7749 7750 btrfs_remove_ordered_extent(inode, ordered); 7751 btrfs_put_ordered_extent(ordered); 7752 btrfs_put_ordered_extent(ordered); 7753 } 7754 } 7755 btrfs_qgroup_check_reserved_leak(inode); 7756 btrfs_del_inode_from_root(inode); 7757 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7758 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7759 btrfs_put_root(inode->root); 7760 } 7761 7762 int btrfs_drop_inode(struct inode *inode) 7763 { 7764 struct btrfs_root *root = BTRFS_I(inode)->root; 7765 7766 if (root == NULL) 7767 return 1; 7768 7769 /* the snap/subvol tree is on deleting */ 7770 if (btrfs_root_refs(&root->root_item) == 0) 7771 return 1; 7772 else 7773 return generic_drop_inode(inode); 7774 } 7775 7776 static void init_once(void *foo) 7777 { 7778 struct btrfs_inode *ei = foo; 7779 7780 inode_init_once(&ei->vfs_inode); 7781 } 7782 7783 void __cold btrfs_destroy_cachep(void) 7784 { 7785 /* 7786 * Make sure all delayed rcu free inodes are flushed before we 7787 * destroy cache. 7788 */ 7789 rcu_barrier(); 7790 kmem_cache_destroy(btrfs_inode_cachep); 7791 } 7792 7793 int __init btrfs_init_cachep(void) 7794 { 7795 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7796 sizeof(struct btrfs_inode), 0, 7797 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7798 init_once); 7799 if (!btrfs_inode_cachep) 7800 return -ENOMEM; 7801 7802 return 0; 7803 } 7804 7805 static int btrfs_getattr(struct mnt_idmap *idmap, 7806 const struct path *path, struct kstat *stat, 7807 u32 request_mask, unsigned int flags) 7808 { 7809 u64 delalloc_bytes; 7810 u64 inode_bytes; 7811 struct inode *inode = d_inode(path->dentry); 7812 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7813 u32 bi_flags = BTRFS_I(inode)->flags; 7814 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7815 7816 stat->result_mask |= STATX_BTIME; 7817 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7818 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7819 if (bi_flags & BTRFS_INODE_APPEND) 7820 stat->attributes |= STATX_ATTR_APPEND; 7821 if (bi_flags & BTRFS_INODE_COMPRESS) 7822 stat->attributes |= STATX_ATTR_COMPRESSED; 7823 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7824 stat->attributes |= STATX_ATTR_IMMUTABLE; 7825 if (bi_flags & BTRFS_INODE_NODUMP) 7826 stat->attributes |= STATX_ATTR_NODUMP; 7827 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7828 stat->attributes |= STATX_ATTR_VERITY; 7829 7830 stat->attributes_mask |= (STATX_ATTR_APPEND | 7831 STATX_ATTR_COMPRESSED | 7832 STATX_ATTR_IMMUTABLE | 7833 STATX_ATTR_NODUMP); 7834 7835 generic_fillattr(idmap, request_mask, inode, stat); 7836 stat->dev = BTRFS_I(inode)->root->anon_dev; 7837 7838 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7839 stat->result_mask |= STATX_SUBVOL; 7840 7841 spin_lock(&BTRFS_I(inode)->lock); 7842 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7843 inode_bytes = inode_get_bytes(inode); 7844 spin_unlock(&BTRFS_I(inode)->lock); 7845 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7846 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7847 return 0; 7848 } 7849 7850 static int btrfs_rename_exchange(struct inode *old_dir, 7851 struct dentry *old_dentry, 7852 struct inode *new_dir, 7853 struct dentry *new_dentry) 7854 { 7855 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7856 struct btrfs_trans_handle *trans; 7857 unsigned int trans_num_items; 7858 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7859 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7860 struct inode *new_inode = new_dentry->d_inode; 7861 struct inode *old_inode = old_dentry->d_inode; 7862 struct btrfs_rename_ctx old_rename_ctx; 7863 struct btrfs_rename_ctx new_rename_ctx; 7864 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7865 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7866 u64 old_idx = 0; 7867 u64 new_idx = 0; 7868 int ret; 7869 int ret2; 7870 bool need_abort = false; 7871 struct fscrypt_name old_fname, new_fname; 7872 struct fscrypt_str *old_name, *new_name; 7873 7874 /* 7875 * For non-subvolumes allow exchange only within one subvolume, in the 7876 * same inode namespace. Two subvolumes (represented as directory) can 7877 * be exchanged as they're a logical link and have a fixed inode number. 7878 */ 7879 if (root != dest && 7880 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7881 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7882 return -EXDEV; 7883 7884 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7885 if (ret) 7886 return ret; 7887 7888 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7889 if (ret) { 7890 fscrypt_free_filename(&old_fname); 7891 return ret; 7892 } 7893 7894 old_name = &old_fname.disk_name; 7895 new_name = &new_fname.disk_name; 7896 7897 /* close the race window with snapshot create/destroy ioctl */ 7898 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 7899 new_ino == BTRFS_FIRST_FREE_OBJECTID) 7900 down_read(&fs_info->subvol_sem); 7901 7902 /* 7903 * For each inode: 7904 * 1 to remove old dir item 7905 * 1 to remove old dir index 7906 * 1 to add new dir item 7907 * 1 to add new dir index 7908 * 1 to update parent inode 7909 * 7910 * If the parents are the same, we only need to account for one 7911 */ 7912 trans_num_items = (old_dir == new_dir ? 9 : 10); 7913 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7914 /* 7915 * 1 to remove old root ref 7916 * 1 to remove old root backref 7917 * 1 to add new root ref 7918 * 1 to add new root backref 7919 */ 7920 trans_num_items += 4; 7921 } else { 7922 /* 7923 * 1 to update inode item 7924 * 1 to remove old inode ref 7925 * 1 to add new inode ref 7926 */ 7927 trans_num_items += 3; 7928 } 7929 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 7930 trans_num_items += 4; 7931 else 7932 trans_num_items += 3; 7933 trans = btrfs_start_transaction(root, trans_num_items); 7934 if (IS_ERR(trans)) { 7935 ret = PTR_ERR(trans); 7936 goto out_notrans; 7937 } 7938 7939 if (dest != root) { 7940 ret = btrfs_record_root_in_trans(trans, dest); 7941 if (ret) 7942 goto out_fail; 7943 } 7944 7945 /* 7946 * We need to find a free sequence number both in the source and 7947 * in the destination directory for the exchange. 7948 */ 7949 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 7950 if (ret) 7951 goto out_fail; 7952 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 7953 if (ret) 7954 goto out_fail; 7955 7956 BTRFS_I(old_inode)->dir_index = 0ULL; 7957 BTRFS_I(new_inode)->dir_index = 0ULL; 7958 7959 /* Reference for the source. */ 7960 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7961 /* force full log commit if subvolume involved. */ 7962 btrfs_set_log_full_commit(trans); 7963 } else { 7964 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 7965 btrfs_ino(BTRFS_I(new_dir)), 7966 old_idx); 7967 if (ret) 7968 goto out_fail; 7969 need_abort = true; 7970 } 7971 7972 /* And now for the dest. */ 7973 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 7974 /* force full log commit if subvolume involved. */ 7975 btrfs_set_log_full_commit(trans); 7976 } else { 7977 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 7978 btrfs_ino(BTRFS_I(old_dir)), 7979 new_idx); 7980 if (ret) { 7981 if (need_abort) 7982 btrfs_abort_transaction(trans, ret); 7983 goto out_fail; 7984 } 7985 } 7986 7987 /* Update inode version and ctime/mtime. */ 7988 inode_inc_iversion(old_dir); 7989 inode_inc_iversion(new_dir); 7990 inode_inc_iversion(old_inode); 7991 inode_inc_iversion(new_inode); 7992 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 7993 7994 if (old_dentry->d_parent != new_dentry->d_parent) { 7995 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 7996 BTRFS_I(old_inode), true); 7997 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 7998 BTRFS_I(new_inode), true); 7999 } 8000 8001 /* src is a subvolume */ 8002 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8003 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8004 } else { /* src is an inode */ 8005 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8006 BTRFS_I(old_dentry->d_inode), 8007 old_name, &old_rename_ctx); 8008 if (!ret) 8009 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8010 } 8011 if (ret) { 8012 btrfs_abort_transaction(trans, ret); 8013 goto out_fail; 8014 } 8015 8016 /* dest is a subvolume */ 8017 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8018 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8019 } else { /* dest is an inode */ 8020 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8021 BTRFS_I(new_dentry->d_inode), 8022 new_name, &new_rename_ctx); 8023 if (!ret) 8024 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8025 } 8026 if (ret) { 8027 btrfs_abort_transaction(trans, ret); 8028 goto out_fail; 8029 } 8030 8031 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8032 new_name, 0, old_idx); 8033 if (ret) { 8034 btrfs_abort_transaction(trans, ret); 8035 goto out_fail; 8036 } 8037 8038 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8039 old_name, 0, new_idx); 8040 if (ret) { 8041 btrfs_abort_transaction(trans, ret); 8042 goto out_fail; 8043 } 8044 8045 if (old_inode->i_nlink == 1) 8046 BTRFS_I(old_inode)->dir_index = old_idx; 8047 if (new_inode->i_nlink == 1) 8048 BTRFS_I(new_inode)->dir_index = new_idx; 8049 8050 /* 8051 * Now pin the logs of the roots. We do it to ensure that no other task 8052 * can sync the logs while we are in progress with the rename, because 8053 * that could result in an inconsistency in case any of the inodes that 8054 * are part of this rename operation were logged before. 8055 */ 8056 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8057 btrfs_pin_log_trans(root); 8058 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8059 btrfs_pin_log_trans(dest); 8060 8061 /* Do the log updates for all inodes. */ 8062 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8063 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8064 old_rename_ctx.index, new_dentry->d_parent); 8065 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8066 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8067 new_rename_ctx.index, old_dentry->d_parent); 8068 8069 /* Now unpin the logs. */ 8070 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8071 btrfs_end_log_trans(root); 8072 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8073 btrfs_end_log_trans(dest); 8074 out_fail: 8075 ret2 = btrfs_end_transaction(trans); 8076 ret = ret ? ret : ret2; 8077 out_notrans: 8078 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8079 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8080 up_read(&fs_info->subvol_sem); 8081 8082 fscrypt_free_filename(&new_fname); 8083 fscrypt_free_filename(&old_fname); 8084 return ret; 8085 } 8086 8087 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8088 struct inode *dir) 8089 { 8090 struct inode *inode; 8091 8092 inode = new_inode(dir->i_sb); 8093 if (inode) { 8094 inode_init_owner(idmap, inode, dir, 8095 S_IFCHR | WHITEOUT_MODE); 8096 inode->i_op = &btrfs_special_inode_operations; 8097 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8098 } 8099 return inode; 8100 } 8101 8102 static int btrfs_rename(struct mnt_idmap *idmap, 8103 struct inode *old_dir, struct dentry *old_dentry, 8104 struct inode *new_dir, struct dentry *new_dentry, 8105 unsigned int flags) 8106 { 8107 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8108 struct btrfs_new_inode_args whiteout_args = { 8109 .dir = old_dir, 8110 .dentry = old_dentry, 8111 }; 8112 struct btrfs_trans_handle *trans; 8113 unsigned int trans_num_items; 8114 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8115 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8116 struct inode *new_inode = d_inode(new_dentry); 8117 struct inode *old_inode = d_inode(old_dentry); 8118 struct btrfs_rename_ctx rename_ctx; 8119 u64 index = 0; 8120 int ret; 8121 int ret2; 8122 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8123 struct fscrypt_name old_fname, new_fname; 8124 8125 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8126 return -EPERM; 8127 8128 /* we only allow rename subvolume link between subvolumes */ 8129 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8130 return -EXDEV; 8131 8132 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8133 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8134 return -ENOTEMPTY; 8135 8136 if (S_ISDIR(old_inode->i_mode) && new_inode && 8137 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8138 return -ENOTEMPTY; 8139 8140 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8141 if (ret) 8142 return ret; 8143 8144 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8145 if (ret) { 8146 fscrypt_free_filename(&old_fname); 8147 return ret; 8148 } 8149 8150 /* check for collisions, even if the name isn't there */ 8151 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8152 if (ret) { 8153 if (ret == -EEXIST) { 8154 /* we shouldn't get 8155 * eexist without a new_inode */ 8156 if (WARN_ON(!new_inode)) { 8157 goto out_fscrypt_names; 8158 } 8159 } else { 8160 /* maybe -EOVERFLOW */ 8161 goto out_fscrypt_names; 8162 } 8163 } 8164 ret = 0; 8165 8166 /* 8167 * we're using rename to replace one file with another. Start IO on it 8168 * now so we don't add too much work to the end of the transaction 8169 */ 8170 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8171 filemap_flush(old_inode->i_mapping); 8172 8173 if (flags & RENAME_WHITEOUT) { 8174 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8175 if (!whiteout_args.inode) { 8176 ret = -ENOMEM; 8177 goto out_fscrypt_names; 8178 } 8179 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8180 if (ret) 8181 goto out_whiteout_inode; 8182 } else { 8183 /* 1 to update the old parent inode. */ 8184 trans_num_items = 1; 8185 } 8186 8187 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8188 /* Close the race window with snapshot create/destroy ioctl */ 8189 down_read(&fs_info->subvol_sem); 8190 /* 8191 * 1 to remove old root ref 8192 * 1 to remove old root backref 8193 * 1 to add new root ref 8194 * 1 to add new root backref 8195 */ 8196 trans_num_items += 4; 8197 } else { 8198 /* 8199 * 1 to update inode 8200 * 1 to remove old inode ref 8201 * 1 to add new inode ref 8202 */ 8203 trans_num_items += 3; 8204 } 8205 /* 8206 * 1 to remove old dir item 8207 * 1 to remove old dir index 8208 * 1 to add new dir item 8209 * 1 to add new dir index 8210 */ 8211 trans_num_items += 4; 8212 /* 1 to update new parent inode if it's not the same as the old parent */ 8213 if (new_dir != old_dir) 8214 trans_num_items++; 8215 if (new_inode) { 8216 /* 8217 * 1 to update inode 8218 * 1 to remove inode ref 8219 * 1 to remove dir item 8220 * 1 to remove dir index 8221 * 1 to possibly add orphan item 8222 */ 8223 trans_num_items += 5; 8224 } 8225 trans = btrfs_start_transaction(root, trans_num_items); 8226 if (IS_ERR(trans)) { 8227 ret = PTR_ERR(trans); 8228 goto out_notrans; 8229 } 8230 8231 if (dest != root) { 8232 ret = btrfs_record_root_in_trans(trans, dest); 8233 if (ret) 8234 goto out_fail; 8235 } 8236 8237 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8238 if (ret) 8239 goto out_fail; 8240 8241 BTRFS_I(old_inode)->dir_index = 0ULL; 8242 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8243 /* force full log commit if subvolume involved. */ 8244 btrfs_set_log_full_commit(trans); 8245 } else { 8246 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8247 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8248 index); 8249 if (ret) 8250 goto out_fail; 8251 } 8252 8253 inode_inc_iversion(old_dir); 8254 inode_inc_iversion(new_dir); 8255 inode_inc_iversion(old_inode); 8256 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8257 8258 if (old_dentry->d_parent != new_dentry->d_parent) 8259 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8260 BTRFS_I(old_inode), true); 8261 8262 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8263 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8264 } else { 8265 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8266 BTRFS_I(d_inode(old_dentry)), 8267 &old_fname.disk_name, &rename_ctx); 8268 if (!ret) 8269 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8270 } 8271 if (ret) { 8272 btrfs_abort_transaction(trans, ret); 8273 goto out_fail; 8274 } 8275 8276 if (new_inode) { 8277 inode_inc_iversion(new_inode); 8278 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8279 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8280 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8281 BUG_ON(new_inode->i_nlink == 0); 8282 } else { 8283 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8284 BTRFS_I(d_inode(new_dentry)), 8285 &new_fname.disk_name); 8286 } 8287 if (!ret && new_inode->i_nlink == 0) 8288 ret = btrfs_orphan_add(trans, 8289 BTRFS_I(d_inode(new_dentry))); 8290 if (ret) { 8291 btrfs_abort_transaction(trans, ret); 8292 goto out_fail; 8293 } 8294 } 8295 8296 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8297 &new_fname.disk_name, 0, index); 8298 if (ret) { 8299 btrfs_abort_transaction(trans, ret); 8300 goto out_fail; 8301 } 8302 8303 if (old_inode->i_nlink == 1) 8304 BTRFS_I(old_inode)->dir_index = index; 8305 8306 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8307 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8308 rename_ctx.index, new_dentry->d_parent); 8309 8310 if (flags & RENAME_WHITEOUT) { 8311 ret = btrfs_create_new_inode(trans, &whiteout_args); 8312 if (ret) { 8313 btrfs_abort_transaction(trans, ret); 8314 goto out_fail; 8315 } else { 8316 unlock_new_inode(whiteout_args.inode); 8317 iput(whiteout_args.inode); 8318 whiteout_args.inode = NULL; 8319 } 8320 } 8321 out_fail: 8322 ret2 = btrfs_end_transaction(trans); 8323 ret = ret ? ret : ret2; 8324 out_notrans: 8325 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8326 up_read(&fs_info->subvol_sem); 8327 if (flags & RENAME_WHITEOUT) 8328 btrfs_new_inode_args_destroy(&whiteout_args); 8329 out_whiteout_inode: 8330 if (flags & RENAME_WHITEOUT) 8331 iput(whiteout_args.inode); 8332 out_fscrypt_names: 8333 fscrypt_free_filename(&old_fname); 8334 fscrypt_free_filename(&new_fname); 8335 return ret; 8336 } 8337 8338 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8339 struct dentry *old_dentry, struct inode *new_dir, 8340 struct dentry *new_dentry, unsigned int flags) 8341 { 8342 int ret; 8343 8344 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8345 return -EINVAL; 8346 8347 if (flags & RENAME_EXCHANGE) 8348 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8349 new_dentry); 8350 else 8351 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8352 new_dentry, flags); 8353 8354 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8355 8356 return ret; 8357 } 8358 8359 struct btrfs_delalloc_work { 8360 struct inode *inode; 8361 struct completion completion; 8362 struct list_head list; 8363 struct btrfs_work work; 8364 }; 8365 8366 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8367 { 8368 struct btrfs_delalloc_work *delalloc_work; 8369 struct inode *inode; 8370 8371 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8372 work); 8373 inode = delalloc_work->inode; 8374 filemap_flush(inode->i_mapping); 8375 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8376 &BTRFS_I(inode)->runtime_flags)) 8377 filemap_flush(inode->i_mapping); 8378 8379 iput(inode); 8380 complete(&delalloc_work->completion); 8381 } 8382 8383 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8384 { 8385 struct btrfs_delalloc_work *work; 8386 8387 work = kmalloc(sizeof(*work), GFP_NOFS); 8388 if (!work) 8389 return NULL; 8390 8391 init_completion(&work->completion); 8392 INIT_LIST_HEAD(&work->list); 8393 work->inode = inode; 8394 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8395 8396 return work; 8397 } 8398 8399 /* 8400 * some fairly slow code that needs optimization. This walks the list 8401 * of all the inodes with pending delalloc and forces them to disk. 8402 */ 8403 static int start_delalloc_inodes(struct btrfs_root *root, 8404 struct writeback_control *wbc, bool snapshot, 8405 bool in_reclaim_context) 8406 { 8407 struct btrfs_inode *binode; 8408 struct inode *inode; 8409 struct btrfs_delalloc_work *work, *next; 8410 LIST_HEAD(works); 8411 LIST_HEAD(splice); 8412 int ret = 0; 8413 bool full_flush = wbc->nr_to_write == LONG_MAX; 8414 8415 mutex_lock(&root->delalloc_mutex); 8416 spin_lock(&root->delalloc_lock); 8417 list_splice_init(&root->delalloc_inodes, &splice); 8418 while (!list_empty(&splice)) { 8419 binode = list_entry(splice.next, struct btrfs_inode, 8420 delalloc_inodes); 8421 8422 list_move_tail(&binode->delalloc_inodes, 8423 &root->delalloc_inodes); 8424 8425 if (in_reclaim_context && 8426 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 8427 continue; 8428 8429 inode = igrab(&binode->vfs_inode); 8430 if (!inode) { 8431 cond_resched_lock(&root->delalloc_lock); 8432 continue; 8433 } 8434 spin_unlock(&root->delalloc_lock); 8435 8436 if (snapshot) 8437 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 8438 &binode->runtime_flags); 8439 if (full_flush) { 8440 work = btrfs_alloc_delalloc_work(inode); 8441 if (!work) { 8442 iput(inode); 8443 ret = -ENOMEM; 8444 goto out; 8445 } 8446 list_add_tail(&work->list, &works); 8447 btrfs_queue_work(root->fs_info->flush_workers, 8448 &work->work); 8449 } else { 8450 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 8451 btrfs_add_delayed_iput(BTRFS_I(inode)); 8452 if (ret || wbc->nr_to_write <= 0) 8453 goto out; 8454 } 8455 cond_resched(); 8456 spin_lock(&root->delalloc_lock); 8457 } 8458 spin_unlock(&root->delalloc_lock); 8459 8460 out: 8461 list_for_each_entry_safe(work, next, &works, list) { 8462 list_del_init(&work->list); 8463 wait_for_completion(&work->completion); 8464 kfree(work); 8465 } 8466 8467 if (!list_empty(&splice)) { 8468 spin_lock(&root->delalloc_lock); 8469 list_splice_tail(&splice, &root->delalloc_inodes); 8470 spin_unlock(&root->delalloc_lock); 8471 } 8472 mutex_unlock(&root->delalloc_mutex); 8473 return ret; 8474 } 8475 8476 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8477 { 8478 struct writeback_control wbc = { 8479 .nr_to_write = LONG_MAX, 8480 .sync_mode = WB_SYNC_NONE, 8481 .range_start = 0, 8482 .range_end = LLONG_MAX, 8483 }; 8484 struct btrfs_fs_info *fs_info = root->fs_info; 8485 8486 if (BTRFS_FS_ERROR(fs_info)) 8487 return -EROFS; 8488 8489 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8490 } 8491 8492 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8493 bool in_reclaim_context) 8494 { 8495 struct writeback_control wbc = { 8496 .nr_to_write = nr, 8497 .sync_mode = WB_SYNC_NONE, 8498 .range_start = 0, 8499 .range_end = LLONG_MAX, 8500 }; 8501 struct btrfs_root *root; 8502 LIST_HEAD(splice); 8503 int ret; 8504 8505 if (BTRFS_FS_ERROR(fs_info)) 8506 return -EROFS; 8507 8508 mutex_lock(&fs_info->delalloc_root_mutex); 8509 spin_lock(&fs_info->delalloc_root_lock); 8510 list_splice_init(&fs_info->delalloc_roots, &splice); 8511 while (!list_empty(&splice)) { 8512 /* 8513 * Reset nr_to_write here so we know that we're doing a full 8514 * flush. 8515 */ 8516 if (nr == LONG_MAX) 8517 wbc.nr_to_write = LONG_MAX; 8518 8519 root = list_first_entry(&splice, struct btrfs_root, 8520 delalloc_root); 8521 root = btrfs_grab_root(root); 8522 BUG_ON(!root); 8523 list_move_tail(&root->delalloc_root, 8524 &fs_info->delalloc_roots); 8525 spin_unlock(&fs_info->delalloc_root_lock); 8526 8527 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8528 btrfs_put_root(root); 8529 if (ret < 0 || wbc.nr_to_write <= 0) 8530 goto out; 8531 spin_lock(&fs_info->delalloc_root_lock); 8532 } 8533 spin_unlock(&fs_info->delalloc_root_lock); 8534 8535 ret = 0; 8536 out: 8537 if (!list_empty(&splice)) { 8538 spin_lock(&fs_info->delalloc_root_lock); 8539 list_splice_tail(&splice, &fs_info->delalloc_roots); 8540 spin_unlock(&fs_info->delalloc_root_lock); 8541 } 8542 mutex_unlock(&fs_info->delalloc_root_mutex); 8543 return ret; 8544 } 8545 8546 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8547 struct dentry *dentry, const char *symname) 8548 { 8549 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8550 struct btrfs_trans_handle *trans; 8551 struct btrfs_root *root = BTRFS_I(dir)->root; 8552 struct btrfs_path *path; 8553 struct btrfs_key key; 8554 struct inode *inode; 8555 struct btrfs_new_inode_args new_inode_args = { 8556 .dir = dir, 8557 .dentry = dentry, 8558 }; 8559 unsigned int trans_num_items; 8560 int err; 8561 int name_len; 8562 int datasize; 8563 unsigned long ptr; 8564 struct btrfs_file_extent_item *ei; 8565 struct extent_buffer *leaf; 8566 8567 name_len = strlen(symname); 8568 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 8569 return -ENAMETOOLONG; 8570 8571 inode = new_inode(dir->i_sb); 8572 if (!inode) 8573 return -ENOMEM; 8574 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8575 inode->i_op = &btrfs_symlink_inode_operations; 8576 inode_nohighmem(inode); 8577 inode->i_mapping->a_ops = &btrfs_aops; 8578 btrfs_i_size_write(BTRFS_I(inode), name_len); 8579 inode_set_bytes(inode, name_len); 8580 8581 new_inode_args.inode = inode; 8582 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8583 if (err) 8584 goto out_inode; 8585 /* 1 additional item for the inline extent */ 8586 trans_num_items++; 8587 8588 trans = btrfs_start_transaction(root, trans_num_items); 8589 if (IS_ERR(trans)) { 8590 err = PTR_ERR(trans); 8591 goto out_new_inode_args; 8592 } 8593 8594 err = btrfs_create_new_inode(trans, &new_inode_args); 8595 if (err) 8596 goto out; 8597 8598 path = btrfs_alloc_path(); 8599 if (!path) { 8600 err = -ENOMEM; 8601 btrfs_abort_transaction(trans, err); 8602 discard_new_inode(inode); 8603 inode = NULL; 8604 goto out; 8605 } 8606 key.objectid = btrfs_ino(BTRFS_I(inode)); 8607 key.offset = 0; 8608 key.type = BTRFS_EXTENT_DATA_KEY; 8609 datasize = btrfs_file_extent_calc_inline_size(name_len); 8610 err = btrfs_insert_empty_item(trans, root, path, &key, 8611 datasize); 8612 if (err) { 8613 btrfs_abort_transaction(trans, err); 8614 btrfs_free_path(path); 8615 discard_new_inode(inode); 8616 inode = NULL; 8617 goto out; 8618 } 8619 leaf = path->nodes[0]; 8620 ei = btrfs_item_ptr(leaf, path->slots[0], 8621 struct btrfs_file_extent_item); 8622 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8623 btrfs_set_file_extent_type(leaf, ei, 8624 BTRFS_FILE_EXTENT_INLINE); 8625 btrfs_set_file_extent_encryption(leaf, ei, 0); 8626 btrfs_set_file_extent_compression(leaf, ei, 0); 8627 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8628 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8629 8630 ptr = btrfs_file_extent_inline_start(ei); 8631 write_extent_buffer(leaf, symname, ptr, name_len); 8632 btrfs_mark_buffer_dirty(trans, leaf); 8633 btrfs_free_path(path); 8634 8635 d_instantiate_new(dentry, inode); 8636 err = 0; 8637 out: 8638 btrfs_end_transaction(trans); 8639 btrfs_btree_balance_dirty(fs_info); 8640 out_new_inode_args: 8641 btrfs_new_inode_args_destroy(&new_inode_args); 8642 out_inode: 8643 if (err) 8644 iput(inode); 8645 return err; 8646 } 8647 8648 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8649 struct btrfs_trans_handle *trans_in, 8650 struct btrfs_inode *inode, 8651 struct btrfs_key *ins, 8652 u64 file_offset) 8653 { 8654 struct btrfs_file_extent_item stack_fi; 8655 struct btrfs_replace_extent_info extent_info; 8656 struct btrfs_trans_handle *trans = trans_in; 8657 struct btrfs_path *path; 8658 u64 start = ins->objectid; 8659 u64 len = ins->offset; 8660 u64 qgroup_released = 0; 8661 int ret; 8662 8663 memset(&stack_fi, 0, sizeof(stack_fi)); 8664 8665 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8666 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8667 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8668 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8669 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8670 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8671 /* Encryption and other encoding is reserved and all 0 */ 8672 8673 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8674 if (ret < 0) 8675 return ERR_PTR(ret); 8676 8677 if (trans) { 8678 ret = insert_reserved_file_extent(trans, inode, 8679 file_offset, &stack_fi, 8680 true, qgroup_released); 8681 if (ret) 8682 goto free_qgroup; 8683 return trans; 8684 } 8685 8686 extent_info.disk_offset = start; 8687 extent_info.disk_len = len; 8688 extent_info.data_offset = 0; 8689 extent_info.data_len = len; 8690 extent_info.file_offset = file_offset; 8691 extent_info.extent_buf = (char *)&stack_fi; 8692 extent_info.is_new_extent = true; 8693 extent_info.update_times = true; 8694 extent_info.qgroup_reserved = qgroup_released; 8695 extent_info.insertions = 0; 8696 8697 path = btrfs_alloc_path(); 8698 if (!path) { 8699 ret = -ENOMEM; 8700 goto free_qgroup; 8701 } 8702 8703 ret = btrfs_replace_file_extents(inode, path, file_offset, 8704 file_offset + len - 1, &extent_info, 8705 &trans); 8706 btrfs_free_path(path); 8707 if (ret) 8708 goto free_qgroup; 8709 return trans; 8710 8711 free_qgroup: 8712 /* 8713 * We have released qgroup data range at the beginning of the function, 8714 * and normally qgroup_released bytes will be freed when committing 8715 * transaction. 8716 * But if we error out early, we have to free what we have released 8717 * or we leak qgroup data reservation. 8718 */ 8719 btrfs_qgroup_free_refroot(inode->root->fs_info, 8720 btrfs_root_id(inode->root), qgroup_released, 8721 BTRFS_QGROUP_RSV_DATA); 8722 return ERR_PTR(ret); 8723 } 8724 8725 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8726 u64 start, u64 num_bytes, u64 min_size, 8727 loff_t actual_len, u64 *alloc_hint, 8728 struct btrfs_trans_handle *trans) 8729 { 8730 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8731 struct extent_map *em; 8732 struct btrfs_root *root = BTRFS_I(inode)->root; 8733 struct btrfs_key ins; 8734 u64 cur_offset = start; 8735 u64 clear_offset = start; 8736 u64 i_size; 8737 u64 cur_bytes; 8738 u64 last_alloc = (u64)-1; 8739 int ret = 0; 8740 bool own_trans = true; 8741 u64 end = start + num_bytes - 1; 8742 8743 if (trans) 8744 own_trans = false; 8745 while (num_bytes > 0) { 8746 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8747 cur_bytes = max(cur_bytes, min_size); 8748 /* 8749 * If we are severely fragmented we could end up with really 8750 * small allocations, so if the allocator is returning small 8751 * chunks lets make its job easier by only searching for those 8752 * sized chunks. 8753 */ 8754 cur_bytes = min(cur_bytes, last_alloc); 8755 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8756 min_size, 0, *alloc_hint, &ins, 1, 0); 8757 if (ret) 8758 break; 8759 8760 /* 8761 * We've reserved this space, and thus converted it from 8762 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8763 * from here on out we will only need to clear our reservation 8764 * for the remaining unreserved area, so advance our 8765 * clear_offset by our extent size. 8766 */ 8767 clear_offset += ins.offset; 8768 8769 last_alloc = ins.offset; 8770 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8771 &ins, cur_offset); 8772 /* 8773 * Now that we inserted the prealloc extent we can finally 8774 * decrement the number of reservations in the block group. 8775 * If we did it before, we could race with relocation and have 8776 * relocation miss the reserved extent, making it fail later. 8777 */ 8778 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8779 if (IS_ERR(trans)) { 8780 ret = PTR_ERR(trans); 8781 btrfs_free_reserved_extent(fs_info, ins.objectid, 8782 ins.offset, 0); 8783 break; 8784 } 8785 8786 em = alloc_extent_map(); 8787 if (!em) { 8788 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8789 cur_offset + ins.offset - 1, false); 8790 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8791 goto next; 8792 } 8793 8794 em->start = cur_offset; 8795 em->len = ins.offset; 8796 em->disk_bytenr = ins.objectid; 8797 em->offset = 0; 8798 em->disk_num_bytes = ins.offset; 8799 em->ram_bytes = ins.offset; 8800 em->flags |= EXTENT_FLAG_PREALLOC; 8801 em->generation = trans->transid; 8802 8803 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8804 free_extent_map(em); 8805 next: 8806 num_bytes -= ins.offset; 8807 cur_offset += ins.offset; 8808 *alloc_hint = ins.objectid + ins.offset; 8809 8810 inode_inc_iversion(inode); 8811 inode_set_ctime_current(inode); 8812 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8813 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8814 (actual_len > inode->i_size) && 8815 (cur_offset > inode->i_size)) { 8816 if (cur_offset > actual_len) 8817 i_size = actual_len; 8818 else 8819 i_size = cur_offset; 8820 i_size_write(inode, i_size); 8821 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8822 } 8823 8824 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8825 8826 if (ret) { 8827 btrfs_abort_transaction(trans, ret); 8828 if (own_trans) 8829 btrfs_end_transaction(trans); 8830 break; 8831 } 8832 8833 if (own_trans) { 8834 btrfs_end_transaction(trans); 8835 trans = NULL; 8836 } 8837 } 8838 if (clear_offset < end) 8839 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8840 end - clear_offset + 1); 8841 return ret; 8842 } 8843 8844 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8845 u64 start, u64 num_bytes, u64 min_size, 8846 loff_t actual_len, u64 *alloc_hint) 8847 { 8848 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8849 min_size, actual_len, alloc_hint, 8850 NULL); 8851 } 8852 8853 int btrfs_prealloc_file_range_trans(struct inode *inode, 8854 struct btrfs_trans_handle *trans, int mode, 8855 u64 start, u64 num_bytes, u64 min_size, 8856 loff_t actual_len, u64 *alloc_hint) 8857 { 8858 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8859 min_size, actual_len, alloc_hint, trans); 8860 } 8861 8862 static int btrfs_permission(struct mnt_idmap *idmap, 8863 struct inode *inode, int mask) 8864 { 8865 struct btrfs_root *root = BTRFS_I(inode)->root; 8866 umode_t mode = inode->i_mode; 8867 8868 if (mask & MAY_WRITE && 8869 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8870 if (btrfs_root_readonly(root)) 8871 return -EROFS; 8872 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8873 return -EACCES; 8874 } 8875 return generic_permission(idmap, inode, mask); 8876 } 8877 8878 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 8879 struct file *file, umode_t mode) 8880 { 8881 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8882 struct btrfs_trans_handle *trans; 8883 struct btrfs_root *root = BTRFS_I(dir)->root; 8884 struct inode *inode; 8885 struct btrfs_new_inode_args new_inode_args = { 8886 .dir = dir, 8887 .dentry = file->f_path.dentry, 8888 .orphan = true, 8889 }; 8890 unsigned int trans_num_items; 8891 int ret; 8892 8893 inode = new_inode(dir->i_sb); 8894 if (!inode) 8895 return -ENOMEM; 8896 inode_init_owner(idmap, inode, dir, mode); 8897 inode->i_fop = &btrfs_file_operations; 8898 inode->i_op = &btrfs_file_inode_operations; 8899 inode->i_mapping->a_ops = &btrfs_aops; 8900 8901 new_inode_args.inode = inode; 8902 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8903 if (ret) 8904 goto out_inode; 8905 8906 trans = btrfs_start_transaction(root, trans_num_items); 8907 if (IS_ERR(trans)) { 8908 ret = PTR_ERR(trans); 8909 goto out_new_inode_args; 8910 } 8911 8912 ret = btrfs_create_new_inode(trans, &new_inode_args); 8913 8914 /* 8915 * We set number of links to 0 in btrfs_create_new_inode(), and here we 8916 * set it to 1 because d_tmpfile() will issue a warning if the count is 8917 * 0, through: 8918 * 8919 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 8920 */ 8921 set_nlink(inode, 1); 8922 8923 if (!ret) { 8924 d_tmpfile(file, inode); 8925 unlock_new_inode(inode); 8926 mark_inode_dirty(inode); 8927 } 8928 8929 btrfs_end_transaction(trans); 8930 btrfs_btree_balance_dirty(fs_info); 8931 out_new_inode_args: 8932 btrfs_new_inode_args_destroy(&new_inode_args); 8933 out_inode: 8934 if (ret) 8935 iput(inode); 8936 return finish_open_simple(file, ret); 8937 } 8938 8939 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 8940 { 8941 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8942 unsigned long index = start >> PAGE_SHIFT; 8943 unsigned long end_index = end >> PAGE_SHIFT; 8944 struct page *page; 8945 u32 len; 8946 8947 ASSERT(end + 1 - start <= U32_MAX); 8948 len = end + 1 - start; 8949 while (index <= end_index) { 8950 page = find_get_page(inode->vfs_inode.i_mapping, index); 8951 ASSERT(page); /* Pages should be in the extent_io_tree */ 8952 8953 /* This is for data, which doesn't yet support larger folio. */ 8954 ASSERT(folio_order(page_folio(page)) == 0); 8955 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len); 8956 put_page(page); 8957 index++; 8958 } 8959 } 8960 8961 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 8962 int compress_type) 8963 { 8964 switch (compress_type) { 8965 case BTRFS_COMPRESS_NONE: 8966 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 8967 case BTRFS_COMPRESS_ZLIB: 8968 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 8969 case BTRFS_COMPRESS_LZO: 8970 /* 8971 * The LZO format depends on the sector size. 64K is the maximum 8972 * sector size that we support. 8973 */ 8974 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 8975 return -EINVAL; 8976 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 8977 (fs_info->sectorsize_bits - 12); 8978 case BTRFS_COMPRESS_ZSTD: 8979 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 8980 default: 8981 return -EUCLEAN; 8982 } 8983 } 8984 8985 static ssize_t btrfs_encoded_read_inline( 8986 struct kiocb *iocb, 8987 struct iov_iter *iter, u64 start, 8988 u64 lockend, 8989 struct extent_state **cached_state, 8990 u64 extent_start, size_t count, 8991 struct btrfs_ioctl_encoded_io_args *encoded, 8992 bool *unlocked) 8993 { 8994 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 8995 struct btrfs_root *root = inode->root; 8996 struct btrfs_fs_info *fs_info = root->fs_info; 8997 struct extent_io_tree *io_tree = &inode->io_tree; 8998 struct btrfs_path *path; 8999 struct extent_buffer *leaf; 9000 struct btrfs_file_extent_item *item; 9001 u64 ram_bytes; 9002 unsigned long ptr; 9003 void *tmp; 9004 ssize_t ret; 9005 9006 path = btrfs_alloc_path(); 9007 if (!path) { 9008 ret = -ENOMEM; 9009 goto out; 9010 } 9011 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9012 extent_start, 0); 9013 if (ret) { 9014 if (ret > 0) { 9015 /* The extent item disappeared? */ 9016 ret = -EIO; 9017 } 9018 goto out; 9019 } 9020 leaf = path->nodes[0]; 9021 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9022 9023 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9024 ptr = btrfs_file_extent_inline_start(item); 9025 9026 encoded->len = min_t(u64, extent_start + ram_bytes, 9027 inode->vfs_inode.i_size) - iocb->ki_pos; 9028 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9029 btrfs_file_extent_compression(leaf, item)); 9030 if (ret < 0) 9031 goto out; 9032 encoded->compression = ret; 9033 if (encoded->compression) { 9034 size_t inline_size; 9035 9036 inline_size = btrfs_file_extent_inline_item_len(leaf, 9037 path->slots[0]); 9038 if (inline_size > count) { 9039 ret = -ENOBUFS; 9040 goto out; 9041 } 9042 count = inline_size; 9043 encoded->unencoded_len = ram_bytes; 9044 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9045 } else { 9046 count = min_t(u64, count, encoded->len); 9047 encoded->len = count; 9048 encoded->unencoded_len = count; 9049 ptr += iocb->ki_pos - extent_start; 9050 } 9051 9052 tmp = kmalloc(count, GFP_NOFS); 9053 if (!tmp) { 9054 ret = -ENOMEM; 9055 goto out; 9056 } 9057 read_extent_buffer(leaf, tmp, ptr, count); 9058 btrfs_release_path(path); 9059 unlock_extent(io_tree, start, lockend, cached_state); 9060 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9061 *unlocked = true; 9062 9063 ret = copy_to_iter(tmp, count, iter); 9064 if (ret != count) 9065 ret = -EFAULT; 9066 kfree(tmp); 9067 out: 9068 btrfs_free_path(path); 9069 return ret; 9070 } 9071 9072 struct btrfs_encoded_read_private { 9073 wait_queue_head_t wait; 9074 atomic_t pending; 9075 blk_status_t status; 9076 }; 9077 9078 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9079 { 9080 struct btrfs_encoded_read_private *priv = bbio->private; 9081 9082 if (bbio->bio.bi_status) { 9083 /* 9084 * The memory barrier implied by the atomic_dec_return() here 9085 * pairs with the memory barrier implied by the 9086 * atomic_dec_return() or io_wait_event() in 9087 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9088 * write is observed before the load of status in 9089 * btrfs_encoded_read_regular_fill_pages(). 9090 */ 9091 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9092 } 9093 if (!atomic_dec_return(&priv->pending)) 9094 wake_up(&priv->wait); 9095 bio_put(&bbio->bio); 9096 } 9097 9098 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9099 u64 file_offset, u64 disk_bytenr, 9100 u64 disk_io_size, struct page **pages) 9101 { 9102 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9103 struct btrfs_encoded_read_private priv = { 9104 .pending = ATOMIC_INIT(1), 9105 }; 9106 unsigned long i = 0; 9107 struct btrfs_bio *bbio; 9108 9109 init_waitqueue_head(&priv.wait); 9110 9111 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9112 btrfs_encoded_read_endio, &priv); 9113 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9114 bbio->inode = inode; 9115 9116 do { 9117 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9118 9119 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9120 atomic_inc(&priv.pending); 9121 btrfs_submit_bio(bbio, 0); 9122 9123 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9124 btrfs_encoded_read_endio, &priv); 9125 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9126 bbio->inode = inode; 9127 continue; 9128 } 9129 9130 i++; 9131 disk_bytenr += bytes; 9132 disk_io_size -= bytes; 9133 } while (disk_io_size); 9134 9135 atomic_inc(&priv.pending); 9136 btrfs_submit_bio(bbio, 0); 9137 9138 if (atomic_dec_return(&priv.pending)) 9139 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 9140 /* See btrfs_encoded_read_endio() for ordering. */ 9141 return blk_status_to_errno(READ_ONCE(priv.status)); 9142 } 9143 9144 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 9145 struct iov_iter *iter, 9146 u64 start, u64 lockend, 9147 struct extent_state **cached_state, 9148 u64 disk_bytenr, u64 disk_io_size, 9149 size_t count, bool compressed, 9150 bool *unlocked) 9151 { 9152 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9153 struct extent_io_tree *io_tree = &inode->io_tree; 9154 struct page **pages; 9155 unsigned long nr_pages, i; 9156 u64 cur; 9157 size_t page_offset; 9158 ssize_t ret; 9159 9160 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9161 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9162 if (!pages) 9163 return -ENOMEM; 9164 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9165 if (ret) { 9166 ret = -ENOMEM; 9167 goto out; 9168 } 9169 9170 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 9171 disk_io_size, pages); 9172 if (ret) 9173 goto out; 9174 9175 unlock_extent(io_tree, start, lockend, cached_state); 9176 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9177 *unlocked = true; 9178 9179 if (compressed) { 9180 i = 0; 9181 page_offset = 0; 9182 } else { 9183 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9184 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9185 } 9186 cur = 0; 9187 while (cur < count) { 9188 size_t bytes = min_t(size_t, count - cur, 9189 PAGE_SIZE - page_offset); 9190 9191 if (copy_page_to_iter(pages[i], page_offset, bytes, 9192 iter) != bytes) { 9193 ret = -EFAULT; 9194 goto out; 9195 } 9196 i++; 9197 cur += bytes; 9198 page_offset = 0; 9199 } 9200 ret = count; 9201 out: 9202 for (i = 0; i < nr_pages; i++) { 9203 if (pages[i]) 9204 __free_page(pages[i]); 9205 } 9206 kfree(pages); 9207 return ret; 9208 } 9209 9210 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9211 struct btrfs_ioctl_encoded_io_args *encoded) 9212 { 9213 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9214 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9215 struct extent_io_tree *io_tree = &inode->io_tree; 9216 ssize_t ret; 9217 size_t count = iov_iter_count(iter); 9218 u64 start, lockend, disk_bytenr, disk_io_size; 9219 struct extent_state *cached_state = NULL; 9220 struct extent_map *em; 9221 bool unlocked = false; 9222 9223 file_accessed(iocb->ki_filp); 9224 9225 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 9226 9227 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9228 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9229 return 0; 9230 } 9231 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9232 /* 9233 * We don't know how long the extent containing iocb->ki_pos is, but if 9234 * it's compressed we know that it won't be longer than this. 9235 */ 9236 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9237 9238 for (;;) { 9239 struct btrfs_ordered_extent *ordered; 9240 9241 ret = btrfs_wait_ordered_range(inode, start, 9242 lockend - start + 1); 9243 if (ret) 9244 goto out_unlock_inode; 9245 lock_extent(io_tree, start, lockend, &cached_state); 9246 ordered = btrfs_lookup_ordered_range(inode, start, 9247 lockend - start + 1); 9248 if (!ordered) 9249 break; 9250 btrfs_put_ordered_extent(ordered); 9251 unlock_extent(io_tree, start, lockend, &cached_state); 9252 cond_resched(); 9253 } 9254 9255 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9256 if (IS_ERR(em)) { 9257 ret = PTR_ERR(em); 9258 goto out_unlock_extent; 9259 } 9260 9261 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9262 u64 extent_start = em->start; 9263 9264 /* 9265 * For inline extents we get everything we need out of the 9266 * extent item. 9267 */ 9268 free_extent_map(em); 9269 em = NULL; 9270 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9271 &cached_state, extent_start, 9272 count, encoded, &unlocked); 9273 goto out; 9274 } 9275 9276 /* 9277 * We only want to return up to EOF even if the extent extends beyond 9278 * that. 9279 */ 9280 encoded->len = min_t(u64, extent_map_end(em), 9281 inode->vfs_inode.i_size) - iocb->ki_pos; 9282 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9283 (em->flags & EXTENT_FLAG_PREALLOC)) { 9284 disk_bytenr = EXTENT_MAP_HOLE; 9285 count = min_t(u64, count, encoded->len); 9286 encoded->len = count; 9287 encoded->unencoded_len = count; 9288 } else if (extent_map_is_compressed(em)) { 9289 disk_bytenr = em->disk_bytenr; 9290 /* 9291 * Bail if the buffer isn't large enough to return the whole 9292 * compressed extent. 9293 */ 9294 if (em->disk_num_bytes > count) { 9295 ret = -ENOBUFS; 9296 goto out_em; 9297 } 9298 disk_io_size = em->disk_num_bytes; 9299 count = em->disk_num_bytes; 9300 encoded->unencoded_len = em->ram_bytes; 9301 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9302 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9303 extent_map_compression(em)); 9304 if (ret < 0) 9305 goto out_em; 9306 encoded->compression = ret; 9307 } else { 9308 disk_bytenr = extent_map_block_start(em) + (start - em->start); 9309 if (encoded->len > count) 9310 encoded->len = count; 9311 /* 9312 * Don't read beyond what we locked. This also limits the page 9313 * allocations that we'll do. 9314 */ 9315 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9316 count = start + disk_io_size - iocb->ki_pos; 9317 encoded->len = count; 9318 encoded->unencoded_len = count; 9319 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 9320 } 9321 free_extent_map(em); 9322 em = NULL; 9323 9324 if (disk_bytenr == EXTENT_MAP_HOLE) { 9325 unlock_extent(io_tree, start, lockend, &cached_state); 9326 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9327 unlocked = true; 9328 ret = iov_iter_zero(count, iter); 9329 if (ret != count) 9330 ret = -EFAULT; 9331 } else { 9332 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 9333 &cached_state, disk_bytenr, 9334 disk_io_size, count, 9335 encoded->compression, 9336 &unlocked); 9337 } 9338 9339 out: 9340 if (ret >= 0) 9341 iocb->ki_pos += encoded->len; 9342 out_em: 9343 free_extent_map(em); 9344 out_unlock_extent: 9345 if (!unlocked) 9346 unlock_extent(io_tree, start, lockend, &cached_state); 9347 out_unlock_inode: 9348 if (!unlocked) 9349 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9350 return ret; 9351 } 9352 9353 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9354 const struct btrfs_ioctl_encoded_io_args *encoded) 9355 { 9356 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9357 struct btrfs_root *root = inode->root; 9358 struct btrfs_fs_info *fs_info = root->fs_info; 9359 struct extent_io_tree *io_tree = &inode->io_tree; 9360 struct extent_changeset *data_reserved = NULL; 9361 struct extent_state *cached_state = NULL; 9362 struct btrfs_ordered_extent *ordered; 9363 struct btrfs_file_extent file_extent; 9364 int compression; 9365 size_t orig_count; 9366 u64 start, end; 9367 u64 num_bytes, ram_bytes, disk_num_bytes; 9368 unsigned long nr_folios, i; 9369 struct folio **folios; 9370 struct btrfs_key ins; 9371 bool extent_reserved = false; 9372 struct extent_map *em; 9373 ssize_t ret; 9374 9375 switch (encoded->compression) { 9376 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9377 compression = BTRFS_COMPRESS_ZLIB; 9378 break; 9379 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9380 compression = BTRFS_COMPRESS_ZSTD; 9381 break; 9382 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9383 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9384 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9385 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9386 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9387 /* The sector size must match for LZO. */ 9388 if (encoded->compression - 9389 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9390 fs_info->sectorsize_bits) 9391 return -EINVAL; 9392 compression = BTRFS_COMPRESS_LZO; 9393 break; 9394 default: 9395 return -EINVAL; 9396 } 9397 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9398 return -EINVAL; 9399 9400 /* 9401 * Compressed extents should always have checksums, so error out if we 9402 * have a NOCOW file or inode was created while mounted with NODATASUM. 9403 */ 9404 if (inode->flags & BTRFS_INODE_NODATASUM) 9405 return -EINVAL; 9406 9407 orig_count = iov_iter_count(from); 9408 9409 /* The extent size must be sane. */ 9410 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9411 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9412 return -EINVAL; 9413 9414 /* 9415 * The compressed data must be smaller than the decompressed data. 9416 * 9417 * It's of course possible for data to compress to larger or the same 9418 * size, but the buffered I/O path falls back to no compression for such 9419 * data, and we don't want to break any assumptions by creating these 9420 * extents. 9421 * 9422 * Note that this is less strict than the current check we have that the 9423 * compressed data must be at least one sector smaller than the 9424 * decompressed data. We only want to enforce the weaker requirement 9425 * from old kernels that it is at least one byte smaller. 9426 */ 9427 if (orig_count >= encoded->unencoded_len) 9428 return -EINVAL; 9429 9430 /* The extent must start on a sector boundary. */ 9431 start = iocb->ki_pos; 9432 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9433 return -EINVAL; 9434 9435 /* 9436 * The extent must end on a sector boundary. However, we allow a write 9437 * which ends at or extends i_size to have an unaligned length; we round 9438 * up the extent size and set i_size to the unaligned end. 9439 */ 9440 if (start + encoded->len < inode->vfs_inode.i_size && 9441 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9442 return -EINVAL; 9443 9444 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9445 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9446 return -EINVAL; 9447 9448 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9449 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9450 end = start + num_bytes - 1; 9451 9452 /* 9453 * If the extent cannot be inline, the compressed data on disk must be 9454 * sector-aligned. For convenience, we extend it with zeroes if it 9455 * isn't. 9456 */ 9457 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9458 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9459 folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 9460 if (!folios) 9461 return -ENOMEM; 9462 for (i = 0; i < nr_folios; i++) { 9463 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9464 char *kaddr; 9465 9466 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9467 if (!folios[i]) { 9468 ret = -ENOMEM; 9469 goto out_folios; 9470 } 9471 kaddr = kmap_local_folio(folios[i], 0); 9472 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9473 kunmap_local(kaddr); 9474 ret = -EFAULT; 9475 goto out_folios; 9476 } 9477 if (bytes < PAGE_SIZE) 9478 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9479 kunmap_local(kaddr); 9480 } 9481 9482 for (;;) { 9483 struct btrfs_ordered_extent *ordered; 9484 9485 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9486 if (ret) 9487 goto out_folios; 9488 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9489 start >> PAGE_SHIFT, 9490 end >> PAGE_SHIFT); 9491 if (ret) 9492 goto out_folios; 9493 lock_extent(io_tree, start, end, &cached_state); 9494 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9495 if (!ordered && 9496 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9497 break; 9498 if (ordered) 9499 btrfs_put_ordered_extent(ordered); 9500 unlock_extent(io_tree, start, end, &cached_state); 9501 cond_resched(); 9502 } 9503 9504 /* 9505 * We don't use the higher-level delalloc space functions because our 9506 * num_bytes and disk_num_bytes are different. 9507 */ 9508 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9509 if (ret) 9510 goto out_unlock; 9511 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9512 if (ret) 9513 goto out_free_data_space; 9514 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9515 false); 9516 if (ret) 9517 goto out_qgroup_free_data; 9518 9519 /* Try an inline extent first. */ 9520 if (encoded->unencoded_len == encoded->len && 9521 encoded->unencoded_offset == 0 && 9522 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9523 ret = __cow_file_range_inline(inode, start, encoded->len, 9524 orig_count, compression, folios[0], 9525 true); 9526 if (ret <= 0) { 9527 if (ret == 0) 9528 ret = orig_count; 9529 goto out_delalloc_release; 9530 } 9531 } 9532 9533 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9534 disk_num_bytes, 0, 0, &ins, 1, 1); 9535 if (ret) 9536 goto out_delalloc_release; 9537 extent_reserved = true; 9538 9539 file_extent.disk_bytenr = ins.objectid; 9540 file_extent.disk_num_bytes = ins.offset; 9541 file_extent.num_bytes = num_bytes; 9542 file_extent.ram_bytes = ram_bytes; 9543 file_extent.offset = encoded->unencoded_offset; 9544 file_extent.compression = compression; 9545 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9546 if (IS_ERR(em)) { 9547 ret = PTR_ERR(em); 9548 goto out_free_reserved; 9549 } 9550 free_extent_map(em); 9551 9552 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9553 (1 << BTRFS_ORDERED_ENCODED) | 9554 (1 << BTRFS_ORDERED_COMPRESSED)); 9555 if (IS_ERR(ordered)) { 9556 btrfs_drop_extent_map_range(inode, start, end, false); 9557 ret = PTR_ERR(ordered); 9558 goto out_free_reserved; 9559 } 9560 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9561 9562 if (start + encoded->len > inode->vfs_inode.i_size) 9563 i_size_write(&inode->vfs_inode, start + encoded->len); 9564 9565 unlock_extent(io_tree, start, end, &cached_state); 9566 9567 btrfs_delalloc_release_extents(inode, num_bytes); 9568 9569 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9570 ret = orig_count; 9571 goto out; 9572 9573 out_free_reserved: 9574 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9575 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9576 out_delalloc_release: 9577 btrfs_delalloc_release_extents(inode, num_bytes); 9578 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9579 out_qgroup_free_data: 9580 if (ret < 0) 9581 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9582 out_free_data_space: 9583 /* 9584 * If btrfs_reserve_extent() succeeded, then we already decremented 9585 * bytes_may_use. 9586 */ 9587 if (!extent_reserved) 9588 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9589 out_unlock: 9590 unlock_extent(io_tree, start, end, &cached_state); 9591 out_folios: 9592 for (i = 0; i < nr_folios; i++) { 9593 if (folios[i]) 9594 folio_put(folios[i]); 9595 } 9596 kvfree(folios); 9597 out: 9598 if (ret >= 0) 9599 iocb->ki_pos += encoded->len; 9600 return ret; 9601 } 9602 9603 #ifdef CONFIG_SWAP 9604 /* 9605 * Add an entry indicating a block group or device which is pinned by a 9606 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9607 * negative errno on failure. 9608 */ 9609 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9610 bool is_block_group) 9611 { 9612 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9613 struct btrfs_swapfile_pin *sp, *entry; 9614 struct rb_node **p; 9615 struct rb_node *parent = NULL; 9616 9617 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9618 if (!sp) 9619 return -ENOMEM; 9620 sp->ptr = ptr; 9621 sp->inode = inode; 9622 sp->is_block_group = is_block_group; 9623 sp->bg_extent_count = 1; 9624 9625 spin_lock(&fs_info->swapfile_pins_lock); 9626 p = &fs_info->swapfile_pins.rb_node; 9627 while (*p) { 9628 parent = *p; 9629 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9630 if (sp->ptr < entry->ptr || 9631 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9632 p = &(*p)->rb_left; 9633 } else if (sp->ptr > entry->ptr || 9634 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9635 p = &(*p)->rb_right; 9636 } else { 9637 if (is_block_group) 9638 entry->bg_extent_count++; 9639 spin_unlock(&fs_info->swapfile_pins_lock); 9640 kfree(sp); 9641 return 1; 9642 } 9643 } 9644 rb_link_node(&sp->node, parent, p); 9645 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9646 spin_unlock(&fs_info->swapfile_pins_lock); 9647 return 0; 9648 } 9649 9650 /* Free all of the entries pinned by this swapfile. */ 9651 static void btrfs_free_swapfile_pins(struct inode *inode) 9652 { 9653 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9654 struct btrfs_swapfile_pin *sp; 9655 struct rb_node *node, *next; 9656 9657 spin_lock(&fs_info->swapfile_pins_lock); 9658 node = rb_first(&fs_info->swapfile_pins); 9659 while (node) { 9660 next = rb_next(node); 9661 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9662 if (sp->inode == inode) { 9663 rb_erase(&sp->node, &fs_info->swapfile_pins); 9664 if (sp->is_block_group) { 9665 btrfs_dec_block_group_swap_extents(sp->ptr, 9666 sp->bg_extent_count); 9667 btrfs_put_block_group(sp->ptr); 9668 } 9669 kfree(sp); 9670 } 9671 node = next; 9672 } 9673 spin_unlock(&fs_info->swapfile_pins_lock); 9674 } 9675 9676 struct btrfs_swap_info { 9677 u64 start; 9678 u64 block_start; 9679 u64 block_len; 9680 u64 lowest_ppage; 9681 u64 highest_ppage; 9682 unsigned long nr_pages; 9683 int nr_extents; 9684 }; 9685 9686 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9687 struct btrfs_swap_info *bsi) 9688 { 9689 unsigned long nr_pages; 9690 unsigned long max_pages; 9691 u64 first_ppage, first_ppage_reported, next_ppage; 9692 int ret; 9693 9694 /* 9695 * Our swapfile may have had its size extended after the swap header was 9696 * written. In that case activating the swapfile should not go beyond 9697 * the max size set in the swap header. 9698 */ 9699 if (bsi->nr_pages >= sis->max) 9700 return 0; 9701 9702 max_pages = sis->max - bsi->nr_pages; 9703 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9704 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9705 9706 if (first_ppage >= next_ppage) 9707 return 0; 9708 nr_pages = next_ppage - first_ppage; 9709 nr_pages = min(nr_pages, max_pages); 9710 9711 first_ppage_reported = first_ppage; 9712 if (bsi->start == 0) 9713 first_ppage_reported++; 9714 if (bsi->lowest_ppage > first_ppage_reported) 9715 bsi->lowest_ppage = first_ppage_reported; 9716 if (bsi->highest_ppage < (next_ppage - 1)) 9717 bsi->highest_ppage = next_ppage - 1; 9718 9719 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9720 if (ret < 0) 9721 return ret; 9722 bsi->nr_extents += ret; 9723 bsi->nr_pages += nr_pages; 9724 return 0; 9725 } 9726 9727 static void btrfs_swap_deactivate(struct file *file) 9728 { 9729 struct inode *inode = file_inode(file); 9730 9731 btrfs_free_swapfile_pins(inode); 9732 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9733 } 9734 9735 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9736 sector_t *span) 9737 { 9738 struct inode *inode = file_inode(file); 9739 struct btrfs_root *root = BTRFS_I(inode)->root; 9740 struct btrfs_fs_info *fs_info = root->fs_info; 9741 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9742 struct extent_state *cached_state = NULL; 9743 struct extent_map *em = NULL; 9744 struct btrfs_chunk_map *map = NULL; 9745 struct btrfs_device *device = NULL; 9746 struct btrfs_swap_info bsi = { 9747 .lowest_ppage = (sector_t)-1ULL, 9748 }; 9749 int ret = 0; 9750 u64 isize; 9751 u64 start; 9752 9753 /* 9754 * If the swap file was just created, make sure delalloc is done. If the 9755 * file changes again after this, the user is doing something stupid and 9756 * we don't really care. 9757 */ 9758 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9759 if (ret) 9760 return ret; 9761 9762 /* 9763 * The inode is locked, so these flags won't change after we check them. 9764 */ 9765 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9766 btrfs_warn(fs_info, "swapfile must not be compressed"); 9767 return -EINVAL; 9768 } 9769 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9770 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9771 return -EINVAL; 9772 } 9773 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9774 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9775 return -EINVAL; 9776 } 9777 9778 /* 9779 * Balance or device remove/replace/resize can move stuff around from 9780 * under us. The exclop protection makes sure they aren't running/won't 9781 * run concurrently while we are mapping the swap extents, and 9782 * fs_info->swapfile_pins prevents them from running while the swap 9783 * file is active and moving the extents. Note that this also prevents 9784 * a concurrent device add which isn't actually necessary, but it's not 9785 * really worth the trouble to allow it. 9786 */ 9787 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9788 btrfs_warn(fs_info, 9789 "cannot activate swapfile while exclusive operation is running"); 9790 return -EBUSY; 9791 } 9792 9793 /* 9794 * Prevent snapshot creation while we are activating the swap file. 9795 * We do not want to race with snapshot creation. If snapshot creation 9796 * already started before we bumped nr_swapfiles from 0 to 1 and 9797 * completes before the first write into the swap file after it is 9798 * activated, than that write would fallback to COW. 9799 */ 9800 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9801 btrfs_exclop_finish(fs_info); 9802 btrfs_warn(fs_info, 9803 "cannot activate swapfile because snapshot creation is in progress"); 9804 return -EINVAL; 9805 } 9806 /* 9807 * Snapshots can create extents which require COW even if NODATACOW is 9808 * set. We use this counter to prevent snapshots. We must increment it 9809 * before walking the extents because we don't want a concurrent 9810 * snapshot to run after we've already checked the extents. 9811 * 9812 * It is possible that subvolume is marked for deletion but still not 9813 * removed yet. To prevent this race, we check the root status before 9814 * activating the swapfile. 9815 */ 9816 spin_lock(&root->root_item_lock); 9817 if (btrfs_root_dead(root)) { 9818 spin_unlock(&root->root_item_lock); 9819 9820 btrfs_exclop_finish(fs_info); 9821 btrfs_warn(fs_info, 9822 "cannot activate swapfile because subvolume %llu is being deleted", 9823 btrfs_root_id(root)); 9824 return -EPERM; 9825 } 9826 atomic_inc(&root->nr_swapfiles); 9827 spin_unlock(&root->root_item_lock); 9828 9829 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 9830 9831 lock_extent(io_tree, 0, isize - 1, &cached_state); 9832 start = 0; 9833 while (start < isize) { 9834 u64 logical_block_start, physical_block_start; 9835 struct btrfs_block_group *bg; 9836 u64 len = isize - start; 9837 9838 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 9839 if (IS_ERR(em)) { 9840 ret = PTR_ERR(em); 9841 goto out; 9842 } 9843 9844 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 9845 btrfs_warn(fs_info, "swapfile must not have holes"); 9846 ret = -EINVAL; 9847 goto out; 9848 } 9849 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9850 /* 9851 * It's unlikely we'll ever actually find ourselves 9852 * here, as a file small enough to fit inline won't be 9853 * big enough to store more than the swap header, but in 9854 * case something changes in the future, let's catch it 9855 * here rather than later. 9856 */ 9857 btrfs_warn(fs_info, "swapfile must not be inline"); 9858 ret = -EINVAL; 9859 goto out; 9860 } 9861 if (extent_map_is_compressed(em)) { 9862 btrfs_warn(fs_info, "swapfile must not be compressed"); 9863 ret = -EINVAL; 9864 goto out; 9865 } 9866 9867 logical_block_start = extent_map_block_start(em) + (start - em->start); 9868 len = min(len, em->len - (start - em->start)); 9869 free_extent_map(em); 9870 em = NULL; 9871 9872 ret = can_nocow_extent(inode, start, &len, NULL, false, true); 9873 if (ret < 0) { 9874 goto out; 9875 } else if (ret) { 9876 ret = 0; 9877 } else { 9878 btrfs_warn(fs_info, 9879 "swapfile must not be copy-on-write"); 9880 ret = -EINVAL; 9881 goto out; 9882 } 9883 9884 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 9885 if (IS_ERR(map)) { 9886 ret = PTR_ERR(map); 9887 goto out; 9888 } 9889 9890 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 9891 btrfs_warn(fs_info, 9892 "swapfile must have single data profile"); 9893 ret = -EINVAL; 9894 goto out; 9895 } 9896 9897 if (device == NULL) { 9898 device = map->stripes[0].dev; 9899 ret = btrfs_add_swapfile_pin(inode, device, false); 9900 if (ret == 1) 9901 ret = 0; 9902 else if (ret) 9903 goto out; 9904 } else if (device != map->stripes[0].dev) { 9905 btrfs_warn(fs_info, "swapfile must be on one device"); 9906 ret = -EINVAL; 9907 goto out; 9908 } 9909 9910 physical_block_start = (map->stripes[0].physical + 9911 (logical_block_start - map->start)); 9912 len = min(len, map->chunk_len - (logical_block_start - map->start)); 9913 btrfs_free_chunk_map(map); 9914 map = NULL; 9915 9916 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 9917 if (!bg) { 9918 btrfs_warn(fs_info, 9919 "could not find block group containing swapfile"); 9920 ret = -EINVAL; 9921 goto out; 9922 } 9923 9924 if (!btrfs_inc_block_group_swap_extents(bg)) { 9925 btrfs_warn(fs_info, 9926 "block group for swapfile at %llu is read-only%s", 9927 bg->start, 9928 atomic_read(&fs_info->scrubs_running) ? 9929 " (scrub running)" : ""); 9930 btrfs_put_block_group(bg); 9931 ret = -EINVAL; 9932 goto out; 9933 } 9934 9935 ret = btrfs_add_swapfile_pin(inode, bg, true); 9936 if (ret) { 9937 btrfs_put_block_group(bg); 9938 if (ret == 1) 9939 ret = 0; 9940 else 9941 goto out; 9942 } 9943 9944 if (bsi.block_len && 9945 bsi.block_start + bsi.block_len == physical_block_start) { 9946 bsi.block_len += len; 9947 } else { 9948 if (bsi.block_len) { 9949 ret = btrfs_add_swap_extent(sis, &bsi); 9950 if (ret) 9951 goto out; 9952 } 9953 bsi.start = start; 9954 bsi.block_start = physical_block_start; 9955 bsi.block_len = len; 9956 } 9957 9958 start += len; 9959 } 9960 9961 if (bsi.block_len) 9962 ret = btrfs_add_swap_extent(sis, &bsi); 9963 9964 out: 9965 if (!IS_ERR_OR_NULL(em)) 9966 free_extent_map(em); 9967 if (!IS_ERR_OR_NULL(map)) 9968 btrfs_free_chunk_map(map); 9969 9970 unlock_extent(io_tree, 0, isize - 1, &cached_state); 9971 9972 if (ret) 9973 btrfs_swap_deactivate(file); 9974 9975 btrfs_drew_write_unlock(&root->snapshot_lock); 9976 9977 btrfs_exclop_finish(fs_info); 9978 9979 if (ret) 9980 return ret; 9981 9982 if (device) 9983 sis->bdev = device->bdev; 9984 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 9985 sis->max = bsi.nr_pages; 9986 sis->pages = bsi.nr_pages - 1; 9987 sis->highest_bit = bsi.nr_pages - 1; 9988 return bsi.nr_extents; 9989 } 9990 #else 9991 static void btrfs_swap_deactivate(struct file *file) 9992 { 9993 } 9994 9995 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9996 sector_t *span) 9997 { 9998 return -EOPNOTSUPP; 9999 } 10000 #endif 10001 10002 /* 10003 * Update the number of bytes used in the VFS' inode. When we replace extents in 10004 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10005 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10006 * always get a correct value. 10007 */ 10008 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10009 const u64 add_bytes, 10010 const u64 del_bytes) 10011 { 10012 if (add_bytes == del_bytes) 10013 return; 10014 10015 spin_lock(&inode->lock); 10016 if (del_bytes > 0) 10017 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10018 if (add_bytes > 0) 10019 inode_add_bytes(&inode->vfs_inode, add_bytes); 10020 spin_unlock(&inode->lock); 10021 } 10022 10023 /* 10024 * Verify that there are no ordered extents for a given file range. 10025 * 10026 * @inode: The target inode. 10027 * @start: Start offset of the file range, should be sector size aligned. 10028 * @end: End offset (inclusive) of the file range, its value +1 should be 10029 * sector size aligned. 10030 * 10031 * This should typically be used for cases where we locked an inode's VFS lock in 10032 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10033 * we have flushed all delalloc in the range, we have waited for all ordered 10034 * extents in the range to complete and finally we have locked the file range in 10035 * the inode's io_tree. 10036 */ 10037 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10038 { 10039 struct btrfs_root *root = inode->root; 10040 struct btrfs_ordered_extent *ordered; 10041 10042 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10043 return; 10044 10045 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10046 if (ordered) { 10047 btrfs_err(root->fs_info, 10048 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10049 start, end, btrfs_ino(inode), btrfs_root_id(root), 10050 ordered->file_offset, 10051 ordered->file_offset + ordered->num_bytes - 1); 10052 btrfs_put_ordered_extent(ordered); 10053 } 10054 10055 ASSERT(ordered == NULL); 10056 } 10057 10058 /* 10059 * Find the first inode with a minimum number. 10060 * 10061 * @root: The root to search for. 10062 * @min_ino: The minimum inode number. 10063 * 10064 * Find the first inode in the @root with a number >= @min_ino and return it. 10065 * Returns NULL if no such inode found. 10066 */ 10067 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10068 { 10069 struct btrfs_inode *inode; 10070 unsigned long from = min_ino; 10071 10072 xa_lock(&root->inodes); 10073 while (true) { 10074 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10075 if (!inode) 10076 break; 10077 if (igrab(&inode->vfs_inode)) 10078 break; 10079 10080 from = btrfs_ino(inode) + 1; 10081 cond_resched_lock(&root->inodes.xa_lock); 10082 } 10083 xa_unlock(&root->inodes); 10084 10085 return inode; 10086 } 10087 10088 static const struct inode_operations btrfs_dir_inode_operations = { 10089 .getattr = btrfs_getattr, 10090 .lookup = btrfs_lookup, 10091 .create = btrfs_create, 10092 .unlink = btrfs_unlink, 10093 .link = btrfs_link, 10094 .mkdir = btrfs_mkdir, 10095 .rmdir = btrfs_rmdir, 10096 .rename = btrfs_rename2, 10097 .symlink = btrfs_symlink, 10098 .setattr = btrfs_setattr, 10099 .mknod = btrfs_mknod, 10100 .listxattr = btrfs_listxattr, 10101 .permission = btrfs_permission, 10102 .get_inode_acl = btrfs_get_acl, 10103 .set_acl = btrfs_set_acl, 10104 .update_time = btrfs_update_time, 10105 .tmpfile = btrfs_tmpfile, 10106 .fileattr_get = btrfs_fileattr_get, 10107 .fileattr_set = btrfs_fileattr_set, 10108 }; 10109 10110 static const struct file_operations btrfs_dir_file_operations = { 10111 .llseek = btrfs_dir_llseek, 10112 .read = generic_read_dir, 10113 .iterate_shared = btrfs_real_readdir, 10114 .open = btrfs_opendir, 10115 .unlocked_ioctl = btrfs_ioctl, 10116 #ifdef CONFIG_COMPAT 10117 .compat_ioctl = btrfs_compat_ioctl, 10118 #endif 10119 .release = btrfs_release_file, 10120 .fsync = btrfs_sync_file, 10121 }; 10122 10123 /* 10124 * btrfs doesn't support the bmap operation because swapfiles 10125 * use bmap to make a mapping of extents in the file. They assume 10126 * these extents won't change over the life of the file and they 10127 * use the bmap result to do IO directly to the drive. 10128 * 10129 * the btrfs bmap call would return logical addresses that aren't 10130 * suitable for IO and they also will change frequently as COW 10131 * operations happen. So, swapfile + btrfs == corruption. 10132 * 10133 * For now we're avoiding this by dropping bmap. 10134 */ 10135 static const struct address_space_operations btrfs_aops = { 10136 .read_folio = btrfs_read_folio, 10137 .writepages = btrfs_writepages, 10138 .readahead = btrfs_readahead, 10139 .invalidate_folio = btrfs_invalidate_folio, 10140 .release_folio = btrfs_release_folio, 10141 .migrate_folio = btrfs_migrate_folio, 10142 .dirty_folio = filemap_dirty_folio, 10143 .error_remove_folio = generic_error_remove_folio, 10144 .swap_activate = btrfs_swap_activate, 10145 .swap_deactivate = btrfs_swap_deactivate, 10146 }; 10147 10148 static const struct inode_operations btrfs_file_inode_operations = { 10149 .getattr = btrfs_getattr, 10150 .setattr = btrfs_setattr, 10151 .listxattr = btrfs_listxattr, 10152 .permission = btrfs_permission, 10153 .fiemap = btrfs_fiemap, 10154 .get_inode_acl = btrfs_get_acl, 10155 .set_acl = btrfs_set_acl, 10156 .update_time = btrfs_update_time, 10157 .fileattr_get = btrfs_fileattr_get, 10158 .fileattr_set = btrfs_fileattr_set, 10159 }; 10160 static const struct inode_operations btrfs_special_inode_operations = { 10161 .getattr = btrfs_getattr, 10162 .setattr = btrfs_setattr, 10163 .permission = btrfs_permission, 10164 .listxattr = btrfs_listxattr, 10165 .get_inode_acl = btrfs_get_acl, 10166 .set_acl = btrfs_set_acl, 10167 .update_time = btrfs_update_time, 10168 }; 10169 static const struct inode_operations btrfs_symlink_inode_operations = { 10170 .get_link = page_get_link, 10171 .getattr = btrfs_getattr, 10172 .setattr = btrfs_setattr, 10173 .permission = btrfs_permission, 10174 .listxattr = btrfs_listxattr, 10175 .update_time = btrfs_update_time, 10176 }; 10177 10178 const struct dentry_operations btrfs_dentry_operations = { 10179 .d_delete = btrfs_dentry_delete, 10180 }; 10181