1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include "compat.h" 43 #include "ctree.h" 44 #include "disk-io.h" 45 #include "transaction.h" 46 #include "btrfs_inode.h" 47 #include "ioctl.h" 48 #include "print-tree.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "volumes.h" 53 #include "compression.h" 54 #include "locking.h" 55 #include "free-space-cache.h" 56 #include "inode-map.h" 57 58 struct btrfs_iget_args { 59 u64 ino; 60 struct btrfs_root *root; 61 }; 62 63 static const struct inode_operations btrfs_dir_inode_operations; 64 static const struct inode_operations btrfs_symlink_inode_operations; 65 static const struct inode_operations btrfs_dir_ro_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct address_space_operations btrfs_symlink_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_transaction_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 79 #define S_SHIFT 12 80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 88 }; 89 90 static int btrfs_setsize(struct inode *inode, loff_t newsize); 91 static int btrfs_truncate(struct inode *inode); 92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 93 static noinline int cow_file_range(struct inode *inode, 94 struct page *locked_page, 95 u64 start, u64 end, int *page_started, 96 unsigned long *nr_written, int unlock); 97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, struct inode *inode); 99 100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 101 struct inode *inode, struct inode *dir, 102 const struct qstr *qstr) 103 { 104 int err; 105 106 err = btrfs_init_acl(trans, inode, dir); 107 if (!err) 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 109 return err; 110 } 111 112 /* 113 * this does all the hard work for inserting an inline extent into 114 * the btree. The caller should have done a btrfs_drop_extents so that 115 * no overlapping inline items exist in the btree 116 */ 117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 118 struct btrfs_root *root, struct inode *inode, 119 u64 start, size_t size, size_t compressed_size, 120 int compress_type, 121 struct page **compressed_pages) 122 { 123 struct btrfs_key key; 124 struct btrfs_path *path; 125 struct extent_buffer *leaf; 126 struct page *page = NULL; 127 char *kaddr; 128 unsigned long ptr; 129 struct btrfs_file_extent_item *ei; 130 int err = 0; 131 int ret; 132 size_t cur_size = size; 133 size_t datasize; 134 unsigned long offset; 135 136 if (compressed_size && compressed_pages) 137 cur_size = compressed_size; 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 path->leave_spinning = 1; 144 145 key.objectid = btrfs_ino(inode); 146 key.offset = start; 147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 148 datasize = btrfs_file_extent_calc_inline_size(cur_size); 149 150 inode_add_bytes(inode, size); 151 ret = btrfs_insert_empty_item(trans, root, path, &key, 152 datasize); 153 BUG_ON(ret); 154 if (ret) { 155 err = ret; 156 goto fail; 157 } 158 leaf = path->nodes[0]; 159 ei = btrfs_item_ptr(leaf, path->slots[0], 160 struct btrfs_file_extent_item); 161 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 163 btrfs_set_file_extent_encryption(leaf, ei, 0); 164 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 165 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 166 ptr = btrfs_file_extent_inline_start(ei); 167 168 if (compress_type != BTRFS_COMPRESS_NONE) { 169 struct page *cpage; 170 int i = 0; 171 while (compressed_size > 0) { 172 cpage = compressed_pages[i]; 173 cur_size = min_t(unsigned long, compressed_size, 174 PAGE_CACHE_SIZE); 175 176 kaddr = kmap_atomic(cpage, KM_USER0); 177 write_extent_buffer(leaf, kaddr, ptr, cur_size); 178 kunmap_atomic(kaddr, KM_USER0); 179 180 i++; 181 ptr += cur_size; 182 compressed_size -= cur_size; 183 } 184 btrfs_set_file_extent_compression(leaf, ei, 185 compress_type); 186 } else { 187 page = find_get_page(inode->i_mapping, 188 start >> PAGE_CACHE_SHIFT); 189 btrfs_set_file_extent_compression(leaf, ei, 0); 190 kaddr = kmap_atomic(page, KM_USER0); 191 offset = start & (PAGE_CACHE_SIZE - 1); 192 write_extent_buffer(leaf, kaddr + offset, ptr, size); 193 kunmap_atomic(kaddr, KM_USER0); 194 page_cache_release(page); 195 } 196 btrfs_mark_buffer_dirty(leaf); 197 btrfs_free_path(path); 198 199 /* 200 * we're an inline extent, so nobody can 201 * extend the file past i_size without locking 202 * a page we already have locked. 203 * 204 * We must do any isize and inode updates 205 * before we unlock the pages. Otherwise we 206 * could end up racing with unlink. 207 */ 208 BTRFS_I(inode)->disk_i_size = inode->i_size; 209 btrfs_update_inode(trans, root, inode); 210 211 return 0; 212 fail: 213 btrfs_free_path(path); 214 return err; 215 } 216 217 218 /* 219 * conditionally insert an inline extent into the file. This 220 * does the checks required to make sure the data is small enough 221 * to fit as an inline extent. 222 */ 223 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 224 struct btrfs_root *root, 225 struct inode *inode, u64 start, u64 end, 226 size_t compressed_size, int compress_type, 227 struct page **compressed_pages) 228 { 229 u64 isize = i_size_read(inode); 230 u64 actual_end = min(end + 1, isize); 231 u64 inline_len = actual_end - start; 232 u64 aligned_end = (end + root->sectorsize - 1) & 233 ~((u64)root->sectorsize - 1); 234 u64 hint_byte; 235 u64 data_len = inline_len; 236 int ret; 237 238 if (compressed_size) 239 data_len = compressed_size; 240 241 if (start > 0 || 242 actual_end >= PAGE_CACHE_SIZE || 243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 244 (!compressed_size && 245 (actual_end & (root->sectorsize - 1)) == 0) || 246 end + 1 < isize || 247 data_len > root->fs_info->max_inline) { 248 return 1; 249 } 250 251 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 252 &hint_byte, 1); 253 BUG_ON(ret); 254 255 if (isize > actual_end) 256 inline_len = min_t(u64, isize, actual_end); 257 ret = insert_inline_extent(trans, root, inode, start, 258 inline_len, compressed_size, 259 compress_type, compressed_pages); 260 BUG_ON(ret); 261 btrfs_delalloc_release_metadata(inode, end + 1 - start); 262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 263 return 0; 264 } 265 266 struct async_extent { 267 u64 start; 268 u64 ram_size; 269 u64 compressed_size; 270 struct page **pages; 271 unsigned long nr_pages; 272 int compress_type; 273 struct list_head list; 274 }; 275 276 struct async_cow { 277 struct inode *inode; 278 struct btrfs_root *root; 279 struct page *locked_page; 280 u64 start; 281 u64 end; 282 struct list_head extents; 283 struct btrfs_work work; 284 }; 285 286 static noinline int add_async_extent(struct async_cow *cow, 287 u64 start, u64 ram_size, 288 u64 compressed_size, 289 struct page **pages, 290 unsigned long nr_pages, 291 int compress_type) 292 { 293 struct async_extent *async_extent; 294 295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 296 BUG_ON(!async_extent); 297 async_extent->start = start; 298 async_extent->ram_size = ram_size; 299 async_extent->compressed_size = compressed_size; 300 async_extent->pages = pages; 301 async_extent->nr_pages = nr_pages; 302 async_extent->compress_type = compress_type; 303 list_add_tail(&async_extent->list, &cow->extents); 304 return 0; 305 } 306 307 /* 308 * we create compressed extents in two phases. The first 309 * phase compresses a range of pages that have already been 310 * locked (both pages and state bits are locked). 311 * 312 * This is done inside an ordered work queue, and the compression 313 * is spread across many cpus. The actual IO submission is step 314 * two, and the ordered work queue takes care of making sure that 315 * happens in the same order things were put onto the queue by 316 * writepages and friends. 317 * 318 * If this code finds it can't get good compression, it puts an 319 * entry onto the work queue to write the uncompressed bytes. This 320 * makes sure that both compressed inodes and uncompressed inodes 321 * are written in the same order that pdflush sent them down. 322 */ 323 static noinline int compress_file_range(struct inode *inode, 324 struct page *locked_page, 325 u64 start, u64 end, 326 struct async_cow *async_cow, 327 int *num_added) 328 { 329 struct btrfs_root *root = BTRFS_I(inode)->root; 330 struct btrfs_trans_handle *trans; 331 u64 num_bytes; 332 u64 blocksize = root->sectorsize; 333 u64 actual_end; 334 u64 isize = i_size_read(inode); 335 int ret = 0; 336 struct page **pages = NULL; 337 unsigned long nr_pages; 338 unsigned long nr_pages_ret = 0; 339 unsigned long total_compressed = 0; 340 unsigned long total_in = 0; 341 unsigned long max_compressed = 128 * 1024; 342 unsigned long max_uncompressed = 128 * 1024; 343 int i; 344 int will_compress; 345 int compress_type = root->fs_info->compress_type; 346 347 /* if this is a small write inside eof, kick off a defragbot */ 348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024) 349 btrfs_add_inode_defrag(NULL, inode); 350 351 actual_end = min_t(u64, isize, end + 1); 352 again: 353 will_compress = 0; 354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 356 357 /* 358 * we don't want to send crud past the end of i_size through 359 * compression, that's just a waste of CPU time. So, if the 360 * end of the file is before the start of our current 361 * requested range of bytes, we bail out to the uncompressed 362 * cleanup code that can deal with all of this. 363 * 364 * It isn't really the fastest way to fix things, but this is a 365 * very uncommon corner. 366 */ 367 if (actual_end <= start) 368 goto cleanup_and_bail_uncompressed; 369 370 total_compressed = actual_end - start; 371 372 /* we want to make sure that amount of ram required to uncompress 373 * an extent is reasonable, so we limit the total size in ram 374 * of a compressed extent to 128k. This is a crucial number 375 * because it also controls how easily we can spread reads across 376 * cpus for decompression. 377 * 378 * We also want to make sure the amount of IO required to do 379 * a random read is reasonably small, so we limit the size of 380 * a compressed extent to 128k. 381 */ 382 total_compressed = min(total_compressed, max_uncompressed); 383 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 384 num_bytes = max(blocksize, num_bytes); 385 total_in = 0; 386 ret = 0; 387 388 /* 389 * we do compression for mount -o compress and when the 390 * inode has not been flagged as nocompress. This flag can 391 * change at any time if we discover bad compression ratios. 392 */ 393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 394 (btrfs_test_opt(root, COMPRESS) || 395 (BTRFS_I(inode)->force_compress) || 396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 397 WARN_ON(pages); 398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 399 if (!pages) { 400 /* just bail out to the uncompressed code */ 401 goto cont; 402 } 403 404 if (BTRFS_I(inode)->force_compress) 405 compress_type = BTRFS_I(inode)->force_compress; 406 407 ret = btrfs_compress_pages(compress_type, 408 inode->i_mapping, start, 409 total_compressed, pages, 410 nr_pages, &nr_pages_ret, 411 &total_in, 412 &total_compressed, 413 max_compressed); 414 415 if (!ret) { 416 unsigned long offset = total_compressed & 417 (PAGE_CACHE_SIZE - 1); 418 struct page *page = pages[nr_pages_ret - 1]; 419 char *kaddr; 420 421 /* zero the tail end of the last page, we might be 422 * sending it down to disk 423 */ 424 if (offset) { 425 kaddr = kmap_atomic(page, KM_USER0); 426 memset(kaddr + offset, 0, 427 PAGE_CACHE_SIZE - offset); 428 kunmap_atomic(kaddr, KM_USER0); 429 } 430 will_compress = 1; 431 } 432 } 433 cont: 434 if (start == 0) { 435 trans = btrfs_join_transaction(root); 436 BUG_ON(IS_ERR(trans)); 437 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 438 439 /* lets try to make an inline extent */ 440 if (ret || total_in < (actual_end - start)) { 441 /* we didn't compress the entire range, try 442 * to make an uncompressed inline extent. 443 */ 444 ret = cow_file_range_inline(trans, root, inode, 445 start, end, 0, 0, NULL); 446 } else { 447 /* try making a compressed inline extent */ 448 ret = cow_file_range_inline(trans, root, inode, 449 start, end, 450 total_compressed, 451 compress_type, pages); 452 } 453 if (ret == 0) { 454 /* 455 * inline extent creation worked, we don't need 456 * to create any more async work items. Unlock 457 * and free up our temp pages. 458 */ 459 extent_clear_unlock_delalloc(inode, 460 &BTRFS_I(inode)->io_tree, 461 start, end, NULL, 462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 463 EXTENT_CLEAR_DELALLOC | 464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 465 466 btrfs_end_transaction(trans, root); 467 goto free_pages_out; 468 } 469 btrfs_end_transaction(trans, root); 470 } 471 472 if (will_compress) { 473 /* 474 * we aren't doing an inline extent round the compressed size 475 * up to a block size boundary so the allocator does sane 476 * things 477 */ 478 total_compressed = (total_compressed + blocksize - 1) & 479 ~(blocksize - 1); 480 481 /* 482 * one last check to make sure the compression is really a 483 * win, compare the page count read with the blocks on disk 484 */ 485 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 486 ~(PAGE_CACHE_SIZE - 1); 487 if (total_compressed >= total_in) { 488 will_compress = 0; 489 } else { 490 num_bytes = total_in; 491 } 492 } 493 if (!will_compress && pages) { 494 /* 495 * the compression code ran but failed to make things smaller, 496 * free any pages it allocated and our page pointer array 497 */ 498 for (i = 0; i < nr_pages_ret; i++) { 499 WARN_ON(pages[i]->mapping); 500 page_cache_release(pages[i]); 501 } 502 kfree(pages); 503 pages = NULL; 504 total_compressed = 0; 505 nr_pages_ret = 0; 506 507 /* flag the file so we don't compress in the future */ 508 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 509 !(BTRFS_I(inode)->force_compress)) { 510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 511 } 512 } 513 if (will_compress) { 514 *num_added += 1; 515 516 /* the async work queues will take care of doing actual 517 * allocation on disk for these compressed pages, 518 * and will submit them to the elevator. 519 */ 520 add_async_extent(async_cow, start, num_bytes, 521 total_compressed, pages, nr_pages_ret, 522 compress_type); 523 524 if (start + num_bytes < end) { 525 start += num_bytes; 526 pages = NULL; 527 cond_resched(); 528 goto again; 529 } 530 } else { 531 cleanup_and_bail_uncompressed: 532 /* 533 * No compression, but we still need to write the pages in 534 * the file we've been given so far. redirty the locked 535 * page if it corresponds to our extent and set things up 536 * for the async work queue to run cow_file_range to do 537 * the normal delalloc dance 538 */ 539 if (page_offset(locked_page) >= start && 540 page_offset(locked_page) <= end) { 541 __set_page_dirty_nobuffers(locked_page); 542 /* unlocked later on in the async handlers */ 543 } 544 add_async_extent(async_cow, start, end - start + 1, 545 0, NULL, 0, BTRFS_COMPRESS_NONE); 546 *num_added += 1; 547 } 548 549 out: 550 return 0; 551 552 free_pages_out: 553 for (i = 0; i < nr_pages_ret; i++) { 554 WARN_ON(pages[i]->mapping); 555 page_cache_release(pages[i]); 556 } 557 kfree(pages); 558 559 goto out; 560 } 561 562 /* 563 * phase two of compressed writeback. This is the ordered portion 564 * of the code, which only gets called in the order the work was 565 * queued. We walk all the async extents created by compress_file_range 566 * and send them down to the disk. 567 */ 568 static noinline int submit_compressed_extents(struct inode *inode, 569 struct async_cow *async_cow) 570 { 571 struct async_extent *async_extent; 572 u64 alloc_hint = 0; 573 struct btrfs_trans_handle *trans; 574 struct btrfs_key ins; 575 struct extent_map *em; 576 struct btrfs_root *root = BTRFS_I(inode)->root; 577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 578 struct extent_io_tree *io_tree; 579 int ret = 0; 580 581 if (list_empty(&async_cow->extents)) 582 return 0; 583 584 585 while (!list_empty(&async_cow->extents)) { 586 async_extent = list_entry(async_cow->extents.next, 587 struct async_extent, list); 588 list_del(&async_extent->list); 589 590 io_tree = &BTRFS_I(inode)->io_tree; 591 592 retry: 593 /* did the compression code fall back to uncompressed IO? */ 594 if (!async_extent->pages) { 595 int page_started = 0; 596 unsigned long nr_written = 0; 597 598 lock_extent(io_tree, async_extent->start, 599 async_extent->start + 600 async_extent->ram_size - 1, GFP_NOFS); 601 602 /* allocate blocks */ 603 ret = cow_file_range(inode, async_cow->locked_page, 604 async_extent->start, 605 async_extent->start + 606 async_extent->ram_size - 1, 607 &page_started, &nr_written, 0); 608 609 /* 610 * if page_started, cow_file_range inserted an 611 * inline extent and took care of all the unlocking 612 * and IO for us. Otherwise, we need to submit 613 * all those pages down to the drive. 614 */ 615 if (!page_started && !ret) 616 extent_write_locked_range(io_tree, 617 inode, async_extent->start, 618 async_extent->start + 619 async_extent->ram_size - 1, 620 btrfs_get_extent, 621 WB_SYNC_ALL); 622 kfree(async_extent); 623 cond_resched(); 624 continue; 625 } 626 627 lock_extent(io_tree, async_extent->start, 628 async_extent->start + async_extent->ram_size - 1, 629 GFP_NOFS); 630 631 trans = btrfs_join_transaction(root); 632 BUG_ON(IS_ERR(trans)); 633 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 634 ret = btrfs_reserve_extent(trans, root, 635 async_extent->compressed_size, 636 async_extent->compressed_size, 637 0, alloc_hint, 638 (u64)-1, &ins, 1); 639 btrfs_end_transaction(trans, root); 640 641 if (ret) { 642 int i; 643 for (i = 0; i < async_extent->nr_pages; i++) { 644 WARN_ON(async_extent->pages[i]->mapping); 645 page_cache_release(async_extent->pages[i]); 646 } 647 kfree(async_extent->pages); 648 async_extent->nr_pages = 0; 649 async_extent->pages = NULL; 650 unlock_extent(io_tree, async_extent->start, 651 async_extent->start + 652 async_extent->ram_size - 1, GFP_NOFS); 653 goto retry; 654 } 655 656 /* 657 * here we're doing allocation and writeback of the 658 * compressed pages 659 */ 660 btrfs_drop_extent_cache(inode, async_extent->start, 661 async_extent->start + 662 async_extent->ram_size - 1, 0); 663 664 em = alloc_extent_map(); 665 BUG_ON(!em); 666 em->start = async_extent->start; 667 em->len = async_extent->ram_size; 668 em->orig_start = em->start; 669 670 em->block_start = ins.objectid; 671 em->block_len = ins.offset; 672 em->bdev = root->fs_info->fs_devices->latest_bdev; 673 em->compress_type = async_extent->compress_type; 674 set_bit(EXTENT_FLAG_PINNED, &em->flags); 675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 676 677 while (1) { 678 write_lock(&em_tree->lock); 679 ret = add_extent_mapping(em_tree, em); 680 write_unlock(&em_tree->lock); 681 if (ret != -EEXIST) { 682 free_extent_map(em); 683 break; 684 } 685 btrfs_drop_extent_cache(inode, async_extent->start, 686 async_extent->start + 687 async_extent->ram_size - 1, 0); 688 } 689 690 ret = btrfs_add_ordered_extent_compress(inode, 691 async_extent->start, 692 ins.objectid, 693 async_extent->ram_size, 694 ins.offset, 695 BTRFS_ORDERED_COMPRESSED, 696 async_extent->compress_type); 697 BUG_ON(ret); 698 699 /* 700 * clear dirty, set writeback and unlock the pages. 701 */ 702 extent_clear_unlock_delalloc(inode, 703 &BTRFS_I(inode)->io_tree, 704 async_extent->start, 705 async_extent->start + 706 async_extent->ram_size - 1, 707 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 708 EXTENT_CLEAR_UNLOCK | 709 EXTENT_CLEAR_DELALLOC | 710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 711 712 ret = btrfs_submit_compressed_write(inode, 713 async_extent->start, 714 async_extent->ram_size, 715 ins.objectid, 716 ins.offset, async_extent->pages, 717 async_extent->nr_pages); 718 719 BUG_ON(ret); 720 alloc_hint = ins.objectid + ins.offset; 721 kfree(async_extent); 722 cond_resched(); 723 } 724 725 return 0; 726 } 727 728 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 729 u64 num_bytes) 730 { 731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 732 struct extent_map *em; 733 u64 alloc_hint = 0; 734 735 read_lock(&em_tree->lock); 736 em = search_extent_mapping(em_tree, start, num_bytes); 737 if (em) { 738 /* 739 * if block start isn't an actual block number then find the 740 * first block in this inode and use that as a hint. If that 741 * block is also bogus then just don't worry about it. 742 */ 743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 744 free_extent_map(em); 745 em = search_extent_mapping(em_tree, 0, 0); 746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 747 alloc_hint = em->block_start; 748 if (em) 749 free_extent_map(em); 750 } else { 751 alloc_hint = em->block_start; 752 free_extent_map(em); 753 } 754 } 755 read_unlock(&em_tree->lock); 756 757 return alloc_hint; 758 } 759 760 /* 761 * when extent_io.c finds a delayed allocation range in the file, 762 * the call backs end up in this code. The basic idea is to 763 * allocate extents on disk for the range, and create ordered data structs 764 * in ram to track those extents. 765 * 766 * locked_page is the page that writepage had locked already. We use 767 * it to make sure we don't do extra locks or unlocks. 768 * 769 * *page_started is set to one if we unlock locked_page and do everything 770 * required to start IO on it. It may be clean and already done with 771 * IO when we return. 772 */ 773 static noinline int cow_file_range(struct inode *inode, 774 struct page *locked_page, 775 u64 start, u64 end, int *page_started, 776 unsigned long *nr_written, 777 int unlock) 778 { 779 struct btrfs_root *root = BTRFS_I(inode)->root; 780 struct btrfs_trans_handle *trans; 781 u64 alloc_hint = 0; 782 u64 num_bytes; 783 unsigned long ram_size; 784 u64 disk_num_bytes; 785 u64 cur_alloc_size; 786 u64 blocksize = root->sectorsize; 787 struct btrfs_key ins; 788 struct extent_map *em; 789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 790 int ret = 0; 791 792 BUG_ON(btrfs_is_free_space_inode(root, inode)); 793 trans = btrfs_join_transaction(root); 794 BUG_ON(IS_ERR(trans)); 795 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 796 797 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 798 num_bytes = max(blocksize, num_bytes); 799 disk_num_bytes = num_bytes; 800 ret = 0; 801 802 /* if this is a small write inside eof, kick off defrag */ 803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024) 804 btrfs_add_inode_defrag(trans, inode); 805 806 if (start == 0) { 807 /* lets try to make an inline extent */ 808 ret = cow_file_range_inline(trans, root, inode, 809 start, end, 0, 0, NULL); 810 if (ret == 0) { 811 extent_clear_unlock_delalloc(inode, 812 &BTRFS_I(inode)->io_tree, 813 start, end, NULL, 814 EXTENT_CLEAR_UNLOCK_PAGE | 815 EXTENT_CLEAR_UNLOCK | 816 EXTENT_CLEAR_DELALLOC | 817 EXTENT_CLEAR_DIRTY | 818 EXTENT_SET_WRITEBACK | 819 EXTENT_END_WRITEBACK); 820 821 *nr_written = *nr_written + 822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 823 *page_started = 1; 824 ret = 0; 825 goto out; 826 } 827 } 828 829 BUG_ON(disk_num_bytes > 830 btrfs_super_total_bytes(root->fs_info->super_copy)); 831 832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 834 835 while (disk_num_bytes > 0) { 836 unsigned long op; 837 838 cur_alloc_size = disk_num_bytes; 839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 840 root->sectorsize, 0, alloc_hint, 841 (u64)-1, &ins, 1); 842 BUG_ON(ret); 843 844 em = alloc_extent_map(); 845 BUG_ON(!em); 846 em->start = start; 847 em->orig_start = em->start; 848 ram_size = ins.offset; 849 em->len = ins.offset; 850 851 em->block_start = ins.objectid; 852 em->block_len = ins.offset; 853 em->bdev = root->fs_info->fs_devices->latest_bdev; 854 set_bit(EXTENT_FLAG_PINNED, &em->flags); 855 856 while (1) { 857 write_lock(&em_tree->lock); 858 ret = add_extent_mapping(em_tree, em); 859 write_unlock(&em_tree->lock); 860 if (ret != -EEXIST) { 861 free_extent_map(em); 862 break; 863 } 864 btrfs_drop_extent_cache(inode, start, 865 start + ram_size - 1, 0); 866 } 867 868 cur_alloc_size = ins.offset; 869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 870 ram_size, cur_alloc_size, 0); 871 BUG_ON(ret); 872 873 if (root->root_key.objectid == 874 BTRFS_DATA_RELOC_TREE_OBJECTID) { 875 ret = btrfs_reloc_clone_csums(inode, start, 876 cur_alloc_size); 877 BUG_ON(ret); 878 } 879 880 if (disk_num_bytes < cur_alloc_size) 881 break; 882 883 /* we're not doing compressed IO, don't unlock the first 884 * page (which the caller expects to stay locked), don't 885 * clear any dirty bits and don't set any writeback bits 886 * 887 * Do set the Private2 bit so we know this page was properly 888 * setup for writepage 889 */ 890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 892 EXTENT_SET_PRIVATE2; 893 894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 895 start, start + ram_size - 1, 896 locked_page, op); 897 disk_num_bytes -= cur_alloc_size; 898 num_bytes -= cur_alloc_size; 899 alloc_hint = ins.objectid + ins.offset; 900 start += cur_alloc_size; 901 } 902 out: 903 ret = 0; 904 btrfs_end_transaction(trans, root); 905 906 return ret; 907 } 908 909 /* 910 * work queue call back to started compression on a file and pages 911 */ 912 static noinline void async_cow_start(struct btrfs_work *work) 913 { 914 struct async_cow *async_cow; 915 int num_added = 0; 916 async_cow = container_of(work, struct async_cow, work); 917 918 compress_file_range(async_cow->inode, async_cow->locked_page, 919 async_cow->start, async_cow->end, async_cow, 920 &num_added); 921 if (num_added == 0) 922 async_cow->inode = NULL; 923 } 924 925 /* 926 * work queue call back to submit previously compressed pages 927 */ 928 static noinline void async_cow_submit(struct btrfs_work *work) 929 { 930 struct async_cow *async_cow; 931 struct btrfs_root *root; 932 unsigned long nr_pages; 933 934 async_cow = container_of(work, struct async_cow, work); 935 936 root = async_cow->root; 937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 938 PAGE_CACHE_SHIFT; 939 940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 941 942 if (atomic_read(&root->fs_info->async_delalloc_pages) < 943 5 * 1042 * 1024 && 944 waitqueue_active(&root->fs_info->async_submit_wait)) 945 wake_up(&root->fs_info->async_submit_wait); 946 947 if (async_cow->inode) 948 submit_compressed_extents(async_cow->inode, async_cow); 949 } 950 951 static noinline void async_cow_free(struct btrfs_work *work) 952 { 953 struct async_cow *async_cow; 954 async_cow = container_of(work, struct async_cow, work); 955 kfree(async_cow); 956 } 957 958 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 959 u64 start, u64 end, int *page_started, 960 unsigned long *nr_written) 961 { 962 struct async_cow *async_cow; 963 struct btrfs_root *root = BTRFS_I(inode)->root; 964 unsigned long nr_pages; 965 u64 cur_end; 966 int limit = 10 * 1024 * 1042; 967 968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 969 1, 0, NULL, GFP_NOFS); 970 while (start < end) { 971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 972 BUG_ON(!async_cow); 973 async_cow->inode = inode; 974 async_cow->root = root; 975 async_cow->locked_page = locked_page; 976 async_cow->start = start; 977 978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 979 cur_end = end; 980 else 981 cur_end = min(end, start + 512 * 1024 - 1); 982 983 async_cow->end = cur_end; 984 INIT_LIST_HEAD(&async_cow->extents); 985 986 async_cow->work.func = async_cow_start; 987 async_cow->work.ordered_func = async_cow_submit; 988 async_cow->work.ordered_free = async_cow_free; 989 async_cow->work.flags = 0; 990 991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 992 PAGE_CACHE_SHIFT; 993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 994 995 btrfs_queue_worker(&root->fs_info->delalloc_workers, 996 &async_cow->work); 997 998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 999 wait_event(root->fs_info->async_submit_wait, 1000 (atomic_read(&root->fs_info->async_delalloc_pages) < 1001 limit)); 1002 } 1003 1004 while (atomic_read(&root->fs_info->async_submit_draining) && 1005 atomic_read(&root->fs_info->async_delalloc_pages)) { 1006 wait_event(root->fs_info->async_submit_wait, 1007 (atomic_read(&root->fs_info->async_delalloc_pages) == 1008 0)); 1009 } 1010 1011 *nr_written += nr_pages; 1012 start = cur_end + 1; 1013 } 1014 *page_started = 1; 1015 return 0; 1016 } 1017 1018 static noinline int csum_exist_in_range(struct btrfs_root *root, 1019 u64 bytenr, u64 num_bytes) 1020 { 1021 int ret; 1022 struct btrfs_ordered_sum *sums; 1023 LIST_HEAD(list); 1024 1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1026 bytenr + num_bytes - 1, &list, 0); 1027 if (ret == 0 && list_empty(&list)) 1028 return 0; 1029 1030 while (!list_empty(&list)) { 1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1032 list_del(&sums->list); 1033 kfree(sums); 1034 } 1035 return 1; 1036 } 1037 1038 /* 1039 * when nowcow writeback call back. This checks for snapshots or COW copies 1040 * of the extents that exist in the file, and COWs the file as required. 1041 * 1042 * If no cow copies or snapshots exist, we write directly to the existing 1043 * blocks on disk 1044 */ 1045 static noinline int run_delalloc_nocow(struct inode *inode, 1046 struct page *locked_page, 1047 u64 start, u64 end, int *page_started, int force, 1048 unsigned long *nr_written) 1049 { 1050 struct btrfs_root *root = BTRFS_I(inode)->root; 1051 struct btrfs_trans_handle *trans; 1052 struct extent_buffer *leaf; 1053 struct btrfs_path *path; 1054 struct btrfs_file_extent_item *fi; 1055 struct btrfs_key found_key; 1056 u64 cow_start; 1057 u64 cur_offset; 1058 u64 extent_end; 1059 u64 extent_offset; 1060 u64 disk_bytenr; 1061 u64 num_bytes; 1062 int extent_type; 1063 int ret; 1064 int type; 1065 int nocow; 1066 int check_prev = 1; 1067 bool nolock; 1068 u64 ino = btrfs_ino(inode); 1069 1070 path = btrfs_alloc_path(); 1071 if (!path) 1072 return -ENOMEM; 1073 1074 nolock = btrfs_is_free_space_inode(root, inode); 1075 1076 if (nolock) 1077 trans = btrfs_join_transaction_nolock(root); 1078 else 1079 trans = btrfs_join_transaction(root); 1080 1081 BUG_ON(IS_ERR(trans)); 1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1083 1084 cow_start = (u64)-1; 1085 cur_offset = start; 1086 while (1) { 1087 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1088 cur_offset, 0); 1089 BUG_ON(ret < 0); 1090 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1091 leaf = path->nodes[0]; 1092 btrfs_item_key_to_cpu(leaf, &found_key, 1093 path->slots[0] - 1); 1094 if (found_key.objectid == ino && 1095 found_key.type == BTRFS_EXTENT_DATA_KEY) 1096 path->slots[0]--; 1097 } 1098 check_prev = 0; 1099 next_slot: 1100 leaf = path->nodes[0]; 1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1102 ret = btrfs_next_leaf(root, path); 1103 if (ret < 0) 1104 BUG_ON(1); 1105 if (ret > 0) 1106 break; 1107 leaf = path->nodes[0]; 1108 } 1109 1110 nocow = 0; 1111 disk_bytenr = 0; 1112 num_bytes = 0; 1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1114 1115 if (found_key.objectid > ino || 1116 found_key.type > BTRFS_EXTENT_DATA_KEY || 1117 found_key.offset > end) 1118 break; 1119 1120 if (found_key.offset > cur_offset) { 1121 extent_end = found_key.offset; 1122 extent_type = 0; 1123 goto out_check; 1124 } 1125 1126 fi = btrfs_item_ptr(leaf, path->slots[0], 1127 struct btrfs_file_extent_item); 1128 extent_type = btrfs_file_extent_type(leaf, fi); 1129 1130 if (extent_type == BTRFS_FILE_EXTENT_REG || 1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1133 extent_offset = btrfs_file_extent_offset(leaf, fi); 1134 extent_end = found_key.offset + 1135 btrfs_file_extent_num_bytes(leaf, fi); 1136 if (extent_end <= start) { 1137 path->slots[0]++; 1138 goto next_slot; 1139 } 1140 if (disk_bytenr == 0) 1141 goto out_check; 1142 if (btrfs_file_extent_compression(leaf, fi) || 1143 btrfs_file_extent_encryption(leaf, fi) || 1144 btrfs_file_extent_other_encoding(leaf, fi)) 1145 goto out_check; 1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1147 goto out_check; 1148 if (btrfs_extent_readonly(root, disk_bytenr)) 1149 goto out_check; 1150 if (btrfs_cross_ref_exist(trans, root, ino, 1151 found_key.offset - 1152 extent_offset, disk_bytenr)) 1153 goto out_check; 1154 disk_bytenr += extent_offset; 1155 disk_bytenr += cur_offset - found_key.offset; 1156 num_bytes = min(end + 1, extent_end) - cur_offset; 1157 /* 1158 * force cow if csum exists in the range. 1159 * this ensure that csum for a given extent are 1160 * either valid or do not exist. 1161 */ 1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1163 goto out_check; 1164 nocow = 1; 1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1166 extent_end = found_key.offset + 1167 btrfs_file_extent_inline_len(leaf, fi); 1168 extent_end = ALIGN(extent_end, root->sectorsize); 1169 } else { 1170 BUG_ON(1); 1171 } 1172 out_check: 1173 if (extent_end <= start) { 1174 path->slots[0]++; 1175 goto next_slot; 1176 } 1177 if (!nocow) { 1178 if (cow_start == (u64)-1) 1179 cow_start = cur_offset; 1180 cur_offset = extent_end; 1181 if (cur_offset > end) 1182 break; 1183 path->slots[0]++; 1184 goto next_slot; 1185 } 1186 1187 btrfs_release_path(path); 1188 if (cow_start != (u64)-1) { 1189 ret = cow_file_range(inode, locked_page, cow_start, 1190 found_key.offset - 1, page_started, 1191 nr_written, 1); 1192 BUG_ON(ret); 1193 cow_start = (u64)-1; 1194 } 1195 1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1197 struct extent_map *em; 1198 struct extent_map_tree *em_tree; 1199 em_tree = &BTRFS_I(inode)->extent_tree; 1200 em = alloc_extent_map(); 1201 BUG_ON(!em); 1202 em->start = cur_offset; 1203 em->orig_start = em->start; 1204 em->len = num_bytes; 1205 em->block_len = num_bytes; 1206 em->block_start = disk_bytenr; 1207 em->bdev = root->fs_info->fs_devices->latest_bdev; 1208 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1209 while (1) { 1210 write_lock(&em_tree->lock); 1211 ret = add_extent_mapping(em_tree, em); 1212 write_unlock(&em_tree->lock); 1213 if (ret != -EEXIST) { 1214 free_extent_map(em); 1215 break; 1216 } 1217 btrfs_drop_extent_cache(inode, em->start, 1218 em->start + em->len - 1, 0); 1219 } 1220 type = BTRFS_ORDERED_PREALLOC; 1221 } else { 1222 type = BTRFS_ORDERED_NOCOW; 1223 } 1224 1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1226 num_bytes, num_bytes, type); 1227 BUG_ON(ret); 1228 1229 if (root->root_key.objectid == 1230 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1231 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1232 num_bytes); 1233 BUG_ON(ret); 1234 } 1235 1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1237 cur_offset, cur_offset + num_bytes - 1, 1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1240 EXTENT_SET_PRIVATE2); 1241 cur_offset = extent_end; 1242 if (cur_offset > end) 1243 break; 1244 } 1245 btrfs_release_path(path); 1246 1247 if (cur_offset <= end && cow_start == (u64)-1) 1248 cow_start = cur_offset; 1249 if (cow_start != (u64)-1) { 1250 ret = cow_file_range(inode, locked_page, cow_start, end, 1251 page_started, nr_written, 1); 1252 BUG_ON(ret); 1253 } 1254 1255 if (nolock) { 1256 ret = btrfs_end_transaction_nolock(trans, root); 1257 BUG_ON(ret); 1258 } else { 1259 ret = btrfs_end_transaction(trans, root); 1260 BUG_ON(ret); 1261 } 1262 btrfs_free_path(path); 1263 return 0; 1264 } 1265 1266 /* 1267 * extent_io.c call back to do delayed allocation processing 1268 */ 1269 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1270 u64 start, u64 end, int *page_started, 1271 unsigned long *nr_written) 1272 { 1273 int ret; 1274 struct btrfs_root *root = BTRFS_I(inode)->root; 1275 1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1277 ret = run_delalloc_nocow(inode, locked_page, start, end, 1278 page_started, 1, nr_written); 1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1280 ret = run_delalloc_nocow(inode, locked_page, start, end, 1281 page_started, 0, nr_written); 1282 else if (!btrfs_test_opt(root, COMPRESS) && 1283 !(BTRFS_I(inode)->force_compress) && 1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) 1285 ret = cow_file_range(inode, locked_page, start, end, 1286 page_started, nr_written, 1); 1287 else 1288 ret = cow_file_range_async(inode, locked_page, start, end, 1289 page_started, nr_written); 1290 return ret; 1291 } 1292 1293 static void btrfs_split_extent_hook(struct inode *inode, 1294 struct extent_state *orig, u64 split) 1295 { 1296 /* not delalloc, ignore it */ 1297 if (!(orig->state & EXTENT_DELALLOC)) 1298 return; 1299 1300 spin_lock(&BTRFS_I(inode)->lock); 1301 BTRFS_I(inode)->outstanding_extents++; 1302 spin_unlock(&BTRFS_I(inode)->lock); 1303 } 1304 1305 /* 1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1307 * extents so we can keep track of new extents that are just merged onto old 1308 * extents, such as when we are doing sequential writes, so we can properly 1309 * account for the metadata space we'll need. 1310 */ 1311 static void btrfs_merge_extent_hook(struct inode *inode, 1312 struct extent_state *new, 1313 struct extent_state *other) 1314 { 1315 /* not delalloc, ignore it */ 1316 if (!(other->state & EXTENT_DELALLOC)) 1317 return; 1318 1319 spin_lock(&BTRFS_I(inode)->lock); 1320 BTRFS_I(inode)->outstanding_extents--; 1321 spin_unlock(&BTRFS_I(inode)->lock); 1322 } 1323 1324 /* 1325 * extent_io.c set_bit_hook, used to track delayed allocation 1326 * bytes in this file, and to maintain the list of inodes that 1327 * have pending delalloc work to be done. 1328 */ 1329 static void btrfs_set_bit_hook(struct inode *inode, 1330 struct extent_state *state, int *bits) 1331 { 1332 1333 /* 1334 * set_bit and clear bit hooks normally require _irqsave/restore 1335 * but in this case, we are only testing for the DELALLOC 1336 * bit, which is only set or cleared with irqs on 1337 */ 1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1339 struct btrfs_root *root = BTRFS_I(inode)->root; 1340 u64 len = state->end + 1 - state->start; 1341 bool do_list = !btrfs_is_free_space_inode(root, inode); 1342 1343 if (*bits & EXTENT_FIRST_DELALLOC) { 1344 *bits &= ~EXTENT_FIRST_DELALLOC; 1345 } else { 1346 spin_lock(&BTRFS_I(inode)->lock); 1347 BTRFS_I(inode)->outstanding_extents++; 1348 spin_unlock(&BTRFS_I(inode)->lock); 1349 } 1350 1351 spin_lock(&root->fs_info->delalloc_lock); 1352 BTRFS_I(inode)->delalloc_bytes += len; 1353 root->fs_info->delalloc_bytes += len; 1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1356 &root->fs_info->delalloc_inodes); 1357 } 1358 spin_unlock(&root->fs_info->delalloc_lock); 1359 } 1360 } 1361 1362 /* 1363 * extent_io.c clear_bit_hook, see set_bit_hook for why 1364 */ 1365 static void btrfs_clear_bit_hook(struct inode *inode, 1366 struct extent_state *state, int *bits) 1367 { 1368 /* 1369 * set_bit and clear bit hooks normally require _irqsave/restore 1370 * but in this case, we are only testing for the DELALLOC 1371 * bit, which is only set or cleared with irqs on 1372 */ 1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1374 struct btrfs_root *root = BTRFS_I(inode)->root; 1375 u64 len = state->end + 1 - state->start; 1376 bool do_list = !btrfs_is_free_space_inode(root, inode); 1377 1378 if (*bits & EXTENT_FIRST_DELALLOC) { 1379 *bits &= ~EXTENT_FIRST_DELALLOC; 1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1381 spin_lock(&BTRFS_I(inode)->lock); 1382 BTRFS_I(inode)->outstanding_extents--; 1383 spin_unlock(&BTRFS_I(inode)->lock); 1384 } 1385 1386 if (*bits & EXTENT_DO_ACCOUNTING) 1387 btrfs_delalloc_release_metadata(inode, len); 1388 1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1390 && do_list) 1391 btrfs_free_reserved_data_space(inode, len); 1392 1393 spin_lock(&root->fs_info->delalloc_lock); 1394 root->fs_info->delalloc_bytes -= len; 1395 BTRFS_I(inode)->delalloc_bytes -= len; 1396 1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1400 } 1401 spin_unlock(&root->fs_info->delalloc_lock); 1402 } 1403 } 1404 1405 /* 1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1407 * we don't create bios that span stripes or chunks 1408 */ 1409 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1410 size_t size, struct bio *bio, 1411 unsigned long bio_flags) 1412 { 1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1414 struct btrfs_mapping_tree *map_tree; 1415 u64 logical = (u64)bio->bi_sector << 9; 1416 u64 length = 0; 1417 u64 map_length; 1418 int ret; 1419 1420 if (bio_flags & EXTENT_BIO_COMPRESSED) 1421 return 0; 1422 1423 length = bio->bi_size; 1424 map_tree = &root->fs_info->mapping_tree; 1425 map_length = length; 1426 ret = btrfs_map_block(map_tree, READ, logical, 1427 &map_length, NULL, 0); 1428 1429 if (map_length < length + size) 1430 return 1; 1431 return ret; 1432 } 1433 1434 /* 1435 * in order to insert checksums into the metadata in large chunks, 1436 * we wait until bio submission time. All the pages in the bio are 1437 * checksummed and sums are attached onto the ordered extent record. 1438 * 1439 * At IO completion time the cums attached on the ordered extent record 1440 * are inserted into the btree 1441 */ 1442 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1443 struct bio *bio, int mirror_num, 1444 unsigned long bio_flags, 1445 u64 bio_offset) 1446 { 1447 struct btrfs_root *root = BTRFS_I(inode)->root; 1448 int ret = 0; 1449 1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1451 BUG_ON(ret); 1452 return 0; 1453 } 1454 1455 /* 1456 * in order to insert checksums into the metadata in large chunks, 1457 * we wait until bio submission time. All the pages in the bio are 1458 * checksummed and sums are attached onto the ordered extent record. 1459 * 1460 * At IO completion time the cums attached on the ordered extent record 1461 * are inserted into the btree 1462 */ 1463 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1464 int mirror_num, unsigned long bio_flags, 1465 u64 bio_offset) 1466 { 1467 struct btrfs_root *root = BTRFS_I(inode)->root; 1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1469 } 1470 1471 /* 1472 * extent_io.c submission hook. This does the right thing for csum calculation 1473 * on write, or reading the csums from the tree before a read 1474 */ 1475 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1476 int mirror_num, unsigned long bio_flags, 1477 u64 bio_offset) 1478 { 1479 struct btrfs_root *root = BTRFS_I(inode)->root; 1480 int ret = 0; 1481 int skip_sum; 1482 1483 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1484 1485 if (btrfs_is_free_space_inode(root, inode)) 1486 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1487 else 1488 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1489 BUG_ON(ret); 1490 1491 if (!(rw & REQ_WRITE)) { 1492 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1493 return btrfs_submit_compressed_read(inode, bio, 1494 mirror_num, bio_flags); 1495 } else if (!skip_sum) { 1496 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1497 if (ret) 1498 return ret; 1499 } 1500 goto mapit; 1501 } else if (!skip_sum) { 1502 /* csum items have already been cloned */ 1503 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1504 goto mapit; 1505 /* we're doing a write, do the async checksumming */ 1506 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1507 inode, rw, bio, mirror_num, 1508 bio_flags, bio_offset, 1509 __btrfs_submit_bio_start, 1510 __btrfs_submit_bio_done); 1511 } 1512 1513 mapit: 1514 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1515 } 1516 1517 /* 1518 * given a list of ordered sums record them in the inode. This happens 1519 * at IO completion time based on sums calculated at bio submission time. 1520 */ 1521 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1522 struct inode *inode, u64 file_offset, 1523 struct list_head *list) 1524 { 1525 struct btrfs_ordered_sum *sum; 1526 1527 list_for_each_entry(sum, list, list) { 1528 btrfs_csum_file_blocks(trans, 1529 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1530 } 1531 return 0; 1532 } 1533 1534 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1535 struct extent_state **cached_state) 1536 { 1537 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1538 WARN_ON(1); 1539 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1540 cached_state, GFP_NOFS); 1541 } 1542 1543 /* see btrfs_writepage_start_hook for details on why this is required */ 1544 struct btrfs_writepage_fixup { 1545 struct page *page; 1546 struct btrfs_work work; 1547 }; 1548 1549 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1550 { 1551 struct btrfs_writepage_fixup *fixup; 1552 struct btrfs_ordered_extent *ordered; 1553 struct extent_state *cached_state = NULL; 1554 struct page *page; 1555 struct inode *inode; 1556 u64 page_start; 1557 u64 page_end; 1558 1559 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1560 page = fixup->page; 1561 again: 1562 lock_page(page); 1563 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1564 ClearPageChecked(page); 1565 goto out_page; 1566 } 1567 1568 inode = page->mapping->host; 1569 page_start = page_offset(page); 1570 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1571 1572 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1573 &cached_state, GFP_NOFS); 1574 1575 /* already ordered? We're done */ 1576 if (PagePrivate2(page)) 1577 goto out; 1578 1579 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1580 if (ordered) { 1581 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1582 page_end, &cached_state, GFP_NOFS); 1583 unlock_page(page); 1584 btrfs_start_ordered_extent(inode, ordered, 1); 1585 goto again; 1586 } 1587 1588 BUG(); 1589 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1590 ClearPageChecked(page); 1591 out: 1592 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1593 &cached_state, GFP_NOFS); 1594 out_page: 1595 unlock_page(page); 1596 page_cache_release(page); 1597 kfree(fixup); 1598 } 1599 1600 /* 1601 * There are a few paths in the higher layers of the kernel that directly 1602 * set the page dirty bit without asking the filesystem if it is a 1603 * good idea. This causes problems because we want to make sure COW 1604 * properly happens and the data=ordered rules are followed. 1605 * 1606 * In our case any range that doesn't have the ORDERED bit set 1607 * hasn't been properly setup for IO. We kick off an async process 1608 * to fix it up. The async helper will wait for ordered extents, set 1609 * the delalloc bit and make it safe to write the page. 1610 */ 1611 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1612 { 1613 struct inode *inode = page->mapping->host; 1614 struct btrfs_writepage_fixup *fixup; 1615 struct btrfs_root *root = BTRFS_I(inode)->root; 1616 1617 /* this page is properly in the ordered list */ 1618 if (TestClearPagePrivate2(page)) 1619 return 0; 1620 1621 if (PageChecked(page)) 1622 return -EAGAIN; 1623 1624 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1625 if (!fixup) 1626 return -EAGAIN; 1627 1628 SetPageChecked(page); 1629 page_cache_get(page); 1630 fixup->work.func = btrfs_writepage_fixup_worker; 1631 fixup->page = page; 1632 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1633 return -EAGAIN; 1634 } 1635 1636 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1637 struct inode *inode, u64 file_pos, 1638 u64 disk_bytenr, u64 disk_num_bytes, 1639 u64 num_bytes, u64 ram_bytes, 1640 u8 compression, u8 encryption, 1641 u16 other_encoding, int extent_type) 1642 { 1643 struct btrfs_root *root = BTRFS_I(inode)->root; 1644 struct btrfs_file_extent_item *fi; 1645 struct btrfs_path *path; 1646 struct extent_buffer *leaf; 1647 struct btrfs_key ins; 1648 u64 hint; 1649 int ret; 1650 1651 path = btrfs_alloc_path(); 1652 if (!path) 1653 return -ENOMEM; 1654 1655 path->leave_spinning = 1; 1656 1657 /* 1658 * we may be replacing one extent in the tree with another. 1659 * The new extent is pinned in the extent map, and we don't want 1660 * to drop it from the cache until it is completely in the btree. 1661 * 1662 * So, tell btrfs_drop_extents to leave this extent in the cache. 1663 * the caller is expected to unpin it and allow it to be merged 1664 * with the others. 1665 */ 1666 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1667 &hint, 0); 1668 BUG_ON(ret); 1669 1670 ins.objectid = btrfs_ino(inode); 1671 ins.offset = file_pos; 1672 ins.type = BTRFS_EXTENT_DATA_KEY; 1673 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1674 BUG_ON(ret); 1675 leaf = path->nodes[0]; 1676 fi = btrfs_item_ptr(leaf, path->slots[0], 1677 struct btrfs_file_extent_item); 1678 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1679 btrfs_set_file_extent_type(leaf, fi, extent_type); 1680 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1681 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1682 btrfs_set_file_extent_offset(leaf, fi, 0); 1683 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1684 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1685 btrfs_set_file_extent_compression(leaf, fi, compression); 1686 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1687 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1688 1689 btrfs_unlock_up_safe(path, 1); 1690 btrfs_set_lock_blocking(leaf); 1691 1692 btrfs_mark_buffer_dirty(leaf); 1693 1694 inode_add_bytes(inode, num_bytes); 1695 1696 ins.objectid = disk_bytenr; 1697 ins.offset = disk_num_bytes; 1698 ins.type = BTRFS_EXTENT_ITEM_KEY; 1699 ret = btrfs_alloc_reserved_file_extent(trans, root, 1700 root->root_key.objectid, 1701 btrfs_ino(inode), file_pos, &ins); 1702 BUG_ON(ret); 1703 btrfs_free_path(path); 1704 1705 return 0; 1706 } 1707 1708 /* 1709 * helper function for btrfs_finish_ordered_io, this 1710 * just reads in some of the csum leaves to prime them into ram 1711 * before we start the transaction. It limits the amount of btree 1712 * reads required while inside the transaction. 1713 */ 1714 /* as ordered data IO finishes, this gets called so we can finish 1715 * an ordered extent if the range of bytes in the file it covers are 1716 * fully written. 1717 */ 1718 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1719 { 1720 struct btrfs_root *root = BTRFS_I(inode)->root; 1721 struct btrfs_trans_handle *trans = NULL; 1722 struct btrfs_ordered_extent *ordered_extent = NULL; 1723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1724 struct extent_state *cached_state = NULL; 1725 int compress_type = 0; 1726 int ret; 1727 bool nolock; 1728 1729 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1730 end - start + 1); 1731 if (!ret) 1732 return 0; 1733 BUG_ON(!ordered_extent); 1734 1735 nolock = btrfs_is_free_space_inode(root, inode); 1736 1737 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1738 BUG_ON(!list_empty(&ordered_extent->list)); 1739 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1740 if (!ret) { 1741 if (nolock) 1742 trans = btrfs_join_transaction_nolock(root); 1743 else 1744 trans = btrfs_join_transaction(root); 1745 BUG_ON(IS_ERR(trans)); 1746 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1747 ret = btrfs_update_inode_fallback(trans, root, inode); 1748 BUG_ON(ret); 1749 } 1750 goto out; 1751 } 1752 1753 lock_extent_bits(io_tree, ordered_extent->file_offset, 1754 ordered_extent->file_offset + ordered_extent->len - 1, 1755 0, &cached_state, GFP_NOFS); 1756 1757 if (nolock) 1758 trans = btrfs_join_transaction_nolock(root); 1759 else 1760 trans = btrfs_join_transaction(root); 1761 BUG_ON(IS_ERR(trans)); 1762 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1763 1764 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1765 compress_type = ordered_extent->compress_type; 1766 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1767 BUG_ON(compress_type); 1768 ret = btrfs_mark_extent_written(trans, inode, 1769 ordered_extent->file_offset, 1770 ordered_extent->file_offset + 1771 ordered_extent->len); 1772 BUG_ON(ret); 1773 } else { 1774 BUG_ON(root == root->fs_info->tree_root); 1775 ret = insert_reserved_file_extent(trans, inode, 1776 ordered_extent->file_offset, 1777 ordered_extent->start, 1778 ordered_extent->disk_len, 1779 ordered_extent->len, 1780 ordered_extent->len, 1781 compress_type, 0, 0, 1782 BTRFS_FILE_EXTENT_REG); 1783 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1784 ordered_extent->file_offset, 1785 ordered_extent->len); 1786 BUG_ON(ret); 1787 } 1788 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1789 ordered_extent->file_offset + 1790 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1791 1792 add_pending_csums(trans, inode, ordered_extent->file_offset, 1793 &ordered_extent->list); 1794 1795 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1796 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1797 ret = btrfs_update_inode_fallback(trans, root, inode); 1798 BUG_ON(ret); 1799 } 1800 ret = 0; 1801 out: 1802 if (root != root->fs_info->tree_root) 1803 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1804 if (trans) { 1805 if (nolock) 1806 btrfs_end_transaction_nolock(trans, root); 1807 else 1808 btrfs_end_transaction(trans, root); 1809 } 1810 1811 /* once for us */ 1812 btrfs_put_ordered_extent(ordered_extent); 1813 /* once for the tree */ 1814 btrfs_put_ordered_extent(ordered_extent); 1815 1816 return 0; 1817 } 1818 1819 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1820 struct extent_state *state, int uptodate) 1821 { 1822 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1823 1824 ClearPagePrivate2(page); 1825 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1826 } 1827 1828 /* 1829 * when reads are done, we need to check csums to verify the data is correct 1830 * if there's a match, we allow the bio to finish. If not, the code in 1831 * extent_io.c will try to find good copies for us. 1832 */ 1833 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1834 struct extent_state *state) 1835 { 1836 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1837 struct inode *inode = page->mapping->host; 1838 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1839 char *kaddr; 1840 u64 private = ~(u32)0; 1841 int ret; 1842 struct btrfs_root *root = BTRFS_I(inode)->root; 1843 u32 csum = ~(u32)0; 1844 1845 if (PageChecked(page)) { 1846 ClearPageChecked(page); 1847 goto good; 1848 } 1849 1850 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1851 goto good; 1852 1853 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1854 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1855 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1856 GFP_NOFS); 1857 return 0; 1858 } 1859 1860 if (state && state->start == start) { 1861 private = state->private; 1862 ret = 0; 1863 } else { 1864 ret = get_state_private(io_tree, start, &private); 1865 } 1866 kaddr = kmap_atomic(page, KM_USER0); 1867 if (ret) 1868 goto zeroit; 1869 1870 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1871 btrfs_csum_final(csum, (char *)&csum); 1872 if (csum != private) 1873 goto zeroit; 1874 1875 kunmap_atomic(kaddr, KM_USER0); 1876 good: 1877 return 0; 1878 1879 zeroit: 1880 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 1881 "private %llu\n", 1882 (unsigned long long)btrfs_ino(page->mapping->host), 1883 (unsigned long long)start, csum, 1884 (unsigned long long)private); 1885 memset(kaddr + offset, 1, end - start + 1); 1886 flush_dcache_page(page); 1887 kunmap_atomic(kaddr, KM_USER0); 1888 if (private == 0) 1889 return 0; 1890 return -EIO; 1891 } 1892 1893 struct delayed_iput { 1894 struct list_head list; 1895 struct inode *inode; 1896 }; 1897 1898 void btrfs_add_delayed_iput(struct inode *inode) 1899 { 1900 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1901 struct delayed_iput *delayed; 1902 1903 if (atomic_add_unless(&inode->i_count, -1, 1)) 1904 return; 1905 1906 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 1907 delayed->inode = inode; 1908 1909 spin_lock(&fs_info->delayed_iput_lock); 1910 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 1911 spin_unlock(&fs_info->delayed_iput_lock); 1912 } 1913 1914 void btrfs_run_delayed_iputs(struct btrfs_root *root) 1915 { 1916 LIST_HEAD(list); 1917 struct btrfs_fs_info *fs_info = root->fs_info; 1918 struct delayed_iput *delayed; 1919 int empty; 1920 1921 spin_lock(&fs_info->delayed_iput_lock); 1922 empty = list_empty(&fs_info->delayed_iputs); 1923 spin_unlock(&fs_info->delayed_iput_lock); 1924 if (empty) 1925 return; 1926 1927 down_read(&root->fs_info->cleanup_work_sem); 1928 spin_lock(&fs_info->delayed_iput_lock); 1929 list_splice_init(&fs_info->delayed_iputs, &list); 1930 spin_unlock(&fs_info->delayed_iput_lock); 1931 1932 while (!list_empty(&list)) { 1933 delayed = list_entry(list.next, struct delayed_iput, list); 1934 list_del(&delayed->list); 1935 iput(delayed->inode); 1936 kfree(delayed); 1937 } 1938 up_read(&root->fs_info->cleanup_work_sem); 1939 } 1940 1941 enum btrfs_orphan_cleanup_state { 1942 ORPHAN_CLEANUP_STARTED = 1, 1943 ORPHAN_CLEANUP_DONE = 2, 1944 }; 1945 1946 /* 1947 * This is called in transaction commit time. If there are no orphan 1948 * files in the subvolume, it removes orphan item and frees block_rsv 1949 * structure. 1950 */ 1951 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 1952 struct btrfs_root *root) 1953 { 1954 struct btrfs_block_rsv *block_rsv; 1955 int ret; 1956 1957 if (!list_empty(&root->orphan_list) || 1958 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 1959 return; 1960 1961 spin_lock(&root->orphan_lock); 1962 if (!list_empty(&root->orphan_list)) { 1963 spin_unlock(&root->orphan_lock); 1964 return; 1965 } 1966 1967 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 1968 spin_unlock(&root->orphan_lock); 1969 return; 1970 } 1971 1972 block_rsv = root->orphan_block_rsv; 1973 root->orphan_block_rsv = NULL; 1974 spin_unlock(&root->orphan_lock); 1975 1976 if (root->orphan_item_inserted && 1977 btrfs_root_refs(&root->root_item) > 0) { 1978 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 1979 root->root_key.objectid); 1980 BUG_ON(ret); 1981 root->orphan_item_inserted = 0; 1982 } 1983 1984 if (block_rsv) { 1985 WARN_ON(block_rsv->size > 0); 1986 btrfs_free_block_rsv(root, block_rsv); 1987 } 1988 } 1989 1990 /* 1991 * This creates an orphan entry for the given inode in case something goes 1992 * wrong in the middle of an unlink/truncate. 1993 * 1994 * NOTE: caller of this function should reserve 5 units of metadata for 1995 * this function. 1996 */ 1997 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1998 { 1999 struct btrfs_root *root = BTRFS_I(inode)->root; 2000 struct btrfs_block_rsv *block_rsv = NULL; 2001 int reserve = 0; 2002 int insert = 0; 2003 int ret; 2004 2005 if (!root->orphan_block_rsv) { 2006 block_rsv = btrfs_alloc_block_rsv(root); 2007 if (!block_rsv) 2008 return -ENOMEM; 2009 } 2010 2011 spin_lock(&root->orphan_lock); 2012 if (!root->orphan_block_rsv) { 2013 root->orphan_block_rsv = block_rsv; 2014 } else if (block_rsv) { 2015 btrfs_free_block_rsv(root, block_rsv); 2016 block_rsv = NULL; 2017 } 2018 2019 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2020 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2021 #if 0 2022 /* 2023 * For proper ENOSPC handling, we should do orphan 2024 * cleanup when mounting. But this introduces backward 2025 * compatibility issue. 2026 */ 2027 if (!xchg(&root->orphan_item_inserted, 1)) 2028 insert = 2; 2029 else 2030 insert = 1; 2031 #endif 2032 insert = 1; 2033 } 2034 2035 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2036 BTRFS_I(inode)->orphan_meta_reserved = 1; 2037 reserve = 1; 2038 } 2039 spin_unlock(&root->orphan_lock); 2040 2041 /* grab metadata reservation from transaction handle */ 2042 if (reserve) { 2043 ret = btrfs_orphan_reserve_metadata(trans, inode); 2044 BUG_ON(ret); 2045 } 2046 2047 /* insert an orphan item to track this unlinked/truncated file */ 2048 if (insert >= 1) { 2049 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2050 BUG_ON(ret && ret != -EEXIST); 2051 } 2052 2053 /* insert an orphan item to track subvolume contains orphan files */ 2054 if (insert >= 2) { 2055 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2056 root->root_key.objectid); 2057 BUG_ON(ret); 2058 } 2059 return 0; 2060 } 2061 2062 /* 2063 * We have done the truncate/delete so we can go ahead and remove the orphan 2064 * item for this particular inode. 2065 */ 2066 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2067 { 2068 struct btrfs_root *root = BTRFS_I(inode)->root; 2069 int delete_item = 0; 2070 int release_rsv = 0; 2071 int ret = 0; 2072 2073 spin_lock(&root->orphan_lock); 2074 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2075 list_del_init(&BTRFS_I(inode)->i_orphan); 2076 delete_item = 1; 2077 } 2078 2079 if (BTRFS_I(inode)->orphan_meta_reserved) { 2080 BTRFS_I(inode)->orphan_meta_reserved = 0; 2081 release_rsv = 1; 2082 } 2083 spin_unlock(&root->orphan_lock); 2084 2085 if (trans && delete_item) { 2086 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2087 BUG_ON(ret); 2088 } 2089 2090 if (release_rsv) 2091 btrfs_orphan_release_metadata(inode); 2092 2093 return 0; 2094 } 2095 2096 /* 2097 * this cleans up any orphans that may be left on the list from the last use 2098 * of this root. 2099 */ 2100 int btrfs_orphan_cleanup(struct btrfs_root *root) 2101 { 2102 struct btrfs_path *path; 2103 struct extent_buffer *leaf; 2104 struct btrfs_key key, found_key; 2105 struct btrfs_trans_handle *trans; 2106 struct inode *inode; 2107 u64 last_objectid = 0; 2108 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2109 2110 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2111 return 0; 2112 2113 path = btrfs_alloc_path(); 2114 if (!path) { 2115 ret = -ENOMEM; 2116 goto out; 2117 } 2118 path->reada = -1; 2119 2120 key.objectid = BTRFS_ORPHAN_OBJECTID; 2121 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2122 key.offset = (u64)-1; 2123 2124 while (1) { 2125 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2126 if (ret < 0) 2127 goto out; 2128 2129 /* 2130 * if ret == 0 means we found what we were searching for, which 2131 * is weird, but possible, so only screw with path if we didn't 2132 * find the key and see if we have stuff that matches 2133 */ 2134 if (ret > 0) { 2135 ret = 0; 2136 if (path->slots[0] == 0) 2137 break; 2138 path->slots[0]--; 2139 } 2140 2141 /* pull out the item */ 2142 leaf = path->nodes[0]; 2143 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2144 2145 /* make sure the item matches what we want */ 2146 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2147 break; 2148 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2149 break; 2150 2151 /* release the path since we're done with it */ 2152 btrfs_release_path(path); 2153 2154 /* 2155 * this is where we are basically btrfs_lookup, without the 2156 * crossing root thing. we store the inode number in the 2157 * offset of the orphan item. 2158 */ 2159 2160 if (found_key.offset == last_objectid) { 2161 printk(KERN_ERR "btrfs: Error removing orphan entry, " 2162 "stopping orphan cleanup\n"); 2163 ret = -EINVAL; 2164 goto out; 2165 } 2166 2167 last_objectid = found_key.offset; 2168 2169 found_key.objectid = found_key.offset; 2170 found_key.type = BTRFS_INODE_ITEM_KEY; 2171 found_key.offset = 0; 2172 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2173 ret = PTR_RET(inode); 2174 if (ret && ret != -ESTALE) 2175 goto out; 2176 2177 if (ret == -ESTALE && root == root->fs_info->tree_root) { 2178 struct btrfs_root *dead_root; 2179 struct btrfs_fs_info *fs_info = root->fs_info; 2180 int is_dead_root = 0; 2181 2182 /* 2183 * this is an orphan in the tree root. Currently these 2184 * could come from 2 sources: 2185 * a) a snapshot deletion in progress 2186 * b) a free space cache inode 2187 * We need to distinguish those two, as the snapshot 2188 * orphan must not get deleted. 2189 * find_dead_roots already ran before us, so if this 2190 * is a snapshot deletion, we should find the root 2191 * in the dead_roots list 2192 */ 2193 spin_lock(&fs_info->trans_lock); 2194 list_for_each_entry(dead_root, &fs_info->dead_roots, 2195 root_list) { 2196 if (dead_root->root_key.objectid == 2197 found_key.objectid) { 2198 is_dead_root = 1; 2199 break; 2200 } 2201 } 2202 spin_unlock(&fs_info->trans_lock); 2203 if (is_dead_root) { 2204 /* prevent this orphan from being found again */ 2205 key.offset = found_key.objectid - 1; 2206 continue; 2207 } 2208 } 2209 /* 2210 * Inode is already gone but the orphan item is still there, 2211 * kill the orphan item. 2212 */ 2213 if (ret == -ESTALE) { 2214 trans = btrfs_start_transaction(root, 1); 2215 if (IS_ERR(trans)) { 2216 ret = PTR_ERR(trans); 2217 goto out; 2218 } 2219 ret = btrfs_del_orphan_item(trans, root, 2220 found_key.objectid); 2221 BUG_ON(ret); 2222 btrfs_end_transaction(trans, root); 2223 continue; 2224 } 2225 2226 /* 2227 * add this inode to the orphan list so btrfs_orphan_del does 2228 * the proper thing when we hit it 2229 */ 2230 spin_lock(&root->orphan_lock); 2231 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2232 spin_unlock(&root->orphan_lock); 2233 2234 /* if we have links, this was a truncate, lets do that */ 2235 if (inode->i_nlink) { 2236 if (!S_ISREG(inode->i_mode)) { 2237 WARN_ON(1); 2238 iput(inode); 2239 continue; 2240 } 2241 nr_truncate++; 2242 ret = btrfs_truncate(inode); 2243 } else { 2244 nr_unlink++; 2245 } 2246 2247 /* this will do delete_inode and everything for us */ 2248 iput(inode); 2249 if (ret) 2250 goto out; 2251 } 2252 /* release the path since we're done with it */ 2253 btrfs_release_path(path); 2254 2255 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2256 2257 if (root->orphan_block_rsv) 2258 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2259 (u64)-1); 2260 2261 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2262 trans = btrfs_join_transaction(root); 2263 if (!IS_ERR(trans)) 2264 btrfs_end_transaction(trans, root); 2265 } 2266 2267 if (nr_unlink) 2268 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2269 if (nr_truncate) 2270 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2271 2272 out: 2273 if (ret) 2274 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2275 btrfs_free_path(path); 2276 return ret; 2277 } 2278 2279 /* 2280 * very simple check to peek ahead in the leaf looking for xattrs. If we 2281 * don't find any xattrs, we know there can't be any acls. 2282 * 2283 * slot is the slot the inode is in, objectid is the objectid of the inode 2284 */ 2285 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2286 int slot, u64 objectid) 2287 { 2288 u32 nritems = btrfs_header_nritems(leaf); 2289 struct btrfs_key found_key; 2290 int scanned = 0; 2291 2292 slot++; 2293 while (slot < nritems) { 2294 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2295 2296 /* we found a different objectid, there must not be acls */ 2297 if (found_key.objectid != objectid) 2298 return 0; 2299 2300 /* we found an xattr, assume we've got an acl */ 2301 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2302 return 1; 2303 2304 /* 2305 * we found a key greater than an xattr key, there can't 2306 * be any acls later on 2307 */ 2308 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2309 return 0; 2310 2311 slot++; 2312 scanned++; 2313 2314 /* 2315 * it goes inode, inode backrefs, xattrs, extents, 2316 * so if there are a ton of hard links to an inode there can 2317 * be a lot of backrefs. Don't waste time searching too hard, 2318 * this is just an optimization 2319 */ 2320 if (scanned >= 8) 2321 break; 2322 } 2323 /* we hit the end of the leaf before we found an xattr or 2324 * something larger than an xattr. We have to assume the inode 2325 * has acls 2326 */ 2327 return 1; 2328 } 2329 2330 /* 2331 * read an inode from the btree into the in-memory inode 2332 */ 2333 static void btrfs_read_locked_inode(struct inode *inode) 2334 { 2335 struct btrfs_path *path; 2336 struct extent_buffer *leaf; 2337 struct btrfs_inode_item *inode_item; 2338 struct btrfs_timespec *tspec; 2339 struct btrfs_root *root = BTRFS_I(inode)->root; 2340 struct btrfs_key location; 2341 int maybe_acls; 2342 u32 rdev; 2343 int ret; 2344 bool filled = false; 2345 2346 ret = btrfs_fill_inode(inode, &rdev); 2347 if (!ret) 2348 filled = true; 2349 2350 path = btrfs_alloc_path(); 2351 if (!path) 2352 goto make_bad; 2353 2354 path->leave_spinning = 1; 2355 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2356 2357 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2358 if (ret) 2359 goto make_bad; 2360 2361 leaf = path->nodes[0]; 2362 2363 if (filled) 2364 goto cache_acl; 2365 2366 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2367 struct btrfs_inode_item); 2368 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2369 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 2370 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2371 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2372 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2373 2374 tspec = btrfs_inode_atime(inode_item); 2375 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2376 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2377 2378 tspec = btrfs_inode_mtime(inode_item); 2379 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2380 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2381 2382 tspec = btrfs_inode_ctime(inode_item); 2383 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2384 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2385 2386 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2387 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2388 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2389 inode->i_generation = BTRFS_I(inode)->generation; 2390 inode->i_rdev = 0; 2391 rdev = btrfs_inode_rdev(leaf, inode_item); 2392 2393 BTRFS_I(inode)->index_cnt = (u64)-1; 2394 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2395 cache_acl: 2396 /* 2397 * try to precache a NULL acl entry for files that don't have 2398 * any xattrs or acls 2399 */ 2400 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2401 btrfs_ino(inode)); 2402 if (!maybe_acls) 2403 cache_no_acl(inode); 2404 2405 btrfs_free_path(path); 2406 2407 switch (inode->i_mode & S_IFMT) { 2408 case S_IFREG: 2409 inode->i_mapping->a_ops = &btrfs_aops; 2410 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2411 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2412 inode->i_fop = &btrfs_file_operations; 2413 inode->i_op = &btrfs_file_inode_operations; 2414 break; 2415 case S_IFDIR: 2416 inode->i_fop = &btrfs_dir_file_operations; 2417 if (root == root->fs_info->tree_root) 2418 inode->i_op = &btrfs_dir_ro_inode_operations; 2419 else 2420 inode->i_op = &btrfs_dir_inode_operations; 2421 break; 2422 case S_IFLNK: 2423 inode->i_op = &btrfs_symlink_inode_operations; 2424 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2425 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2426 break; 2427 default: 2428 inode->i_op = &btrfs_special_inode_operations; 2429 init_special_inode(inode, inode->i_mode, rdev); 2430 break; 2431 } 2432 2433 btrfs_update_iflags(inode); 2434 return; 2435 2436 make_bad: 2437 btrfs_free_path(path); 2438 make_bad_inode(inode); 2439 } 2440 2441 /* 2442 * given a leaf and an inode, copy the inode fields into the leaf 2443 */ 2444 static void fill_inode_item(struct btrfs_trans_handle *trans, 2445 struct extent_buffer *leaf, 2446 struct btrfs_inode_item *item, 2447 struct inode *inode) 2448 { 2449 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2450 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2451 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2452 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2453 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2454 2455 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2456 inode->i_atime.tv_sec); 2457 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2458 inode->i_atime.tv_nsec); 2459 2460 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2461 inode->i_mtime.tv_sec); 2462 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2463 inode->i_mtime.tv_nsec); 2464 2465 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2466 inode->i_ctime.tv_sec); 2467 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2468 inode->i_ctime.tv_nsec); 2469 2470 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2471 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2472 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2473 btrfs_set_inode_transid(leaf, item, trans->transid); 2474 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2475 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2476 btrfs_set_inode_block_group(leaf, item, 0); 2477 } 2478 2479 /* 2480 * copy everything in the in-memory inode into the btree. 2481 */ 2482 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 2483 struct btrfs_root *root, struct inode *inode) 2484 { 2485 struct btrfs_inode_item *inode_item; 2486 struct btrfs_path *path; 2487 struct extent_buffer *leaf; 2488 int ret; 2489 2490 path = btrfs_alloc_path(); 2491 if (!path) 2492 return -ENOMEM; 2493 2494 path->leave_spinning = 1; 2495 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2496 1); 2497 if (ret) { 2498 if (ret > 0) 2499 ret = -ENOENT; 2500 goto failed; 2501 } 2502 2503 btrfs_unlock_up_safe(path, 1); 2504 leaf = path->nodes[0]; 2505 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2506 struct btrfs_inode_item); 2507 2508 fill_inode_item(trans, leaf, inode_item, inode); 2509 btrfs_mark_buffer_dirty(leaf); 2510 btrfs_set_inode_last_trans(trans, inode); 2511 ret = 0; 2512 failed: 2513 btrfs_free_path(path); 2514 return ret; 2515 } 2516 2517 /* 2518 * copy everything in the in-memory inode into the btree. 2519 */ 2520 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2521 struct btrfs_root *root, struct inode *inode) 2522 { 2523 int ret; 2524 2525 /* 2526 * If the inode is a free space inode, we can deadlock during commit 2527 * if we put it into the delayed code. 2528 * 2529 * The data relocation inode should also be directly updated 2530 * without delay 2531 */ 2532 if (!btrfs_is_free_space_inode(root, inode) 2533 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2534 ret = btrfs_delayed_update_inode(trans, root, inode); 2535 if (!ret) 2536 btrfs_set_inode_last_trans(trans, inode); 2537 return ret; 2538 } 2539 2540 return btrfs_update_inode_item(trans, root, inode); 2541 } 2542 2543 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 2544 struct btrfs_root *root, struct inode *inode) 2545 { 2546 int ret; 2547 2548 ret = btrfs_update_inode(trans, root, inode); 2549 if (ret == -ENOSPC) 2550 return btrfs_update_inode_item(trans, root, inode); 2551 return ret; 2552 } 2553 2554 /* 2555 * unlink helper that gets used here in inode.c and in the tree logging 2556 * recovery code. It remove a link in a directory with a given name, and 2557 * also drops the back refs in the inode to the directory 2558 */ 2559 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2560 struct btrfs_root *root, 2561 struct inode *dir, struct inode *inode, 2562 const char *name, int name_len) 2563 { 2564 struct btrfs_path *path; 2565 int ret = 0; 2566 struct extent_buffer *leaf; 2567 struct btrfs_dir_item *di; 2568 struct btrfs_key key; 2569 u64 index; 2570 u64 ino = btrfs_ino(inode); 2571 u64 dir_ino = btrfs_ino(dir); 2572 2573 path = btrfs_alloc_path(); 2574 if (!path) { 2575 ret = -ENOMEM; 2576 goto out; 2577 } 2578 2579 path->leave_spinning = 1; 2580 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2581 name, name_len, -1); 2582 if (IS_ERR(di)) { 2583 ret = PTR_ERR(di); 2584 goto err; 2585 } 2586 if (!di) { 2587 ret = -ENOENT; 2588 goto err; 2589 } 2590 leaf = path->nodes[0]; 2591 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2592 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2593 if (ret) 2594 goto err; 2595 btrfs_release_path(path); 2596 2597 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2598 dir_ino, &index); 2599 if (ret) { 2600 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2601 "inode %llu parent %llu\n", name_len, name, 2602 (unsigned long long)ino, (unsigned long long)dir_ino); 2603 goto err; 2604 } 2605 2606 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2607 if (ret) 2608 goto err; 2609 2610 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2611 inode, dir_ino); 2612 BUG_ON(ret != 0 && ret != -ENOENT); 2613 2614 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2615 dir, index); 2616 if (ret == -ENOENT) 2617 ret = 0; 2618 err: 2619 btrfs_free_path(path); 2620 if (ret) 2621 goto out; 2622 2623 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2624 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2625 btrfs_update_inode(trans, root, dir); 2626 out: 2627 return ret; 2628 } 2629 2630 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2631 struct btrfs_root *root, 2632 struct inode *dir, struct inode *inode, 2633 const char *name, int name_len) 2634 { 2635 int ret; 2636 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2637 if (!ret) { 2638 btrfs_drop_nlink(inode); 2639 ret = btrfs_update_inode(trans, root, inode); 2640 } 2641 return ret; 2642 } 2643 2644 2645 /* helper to check if there is any shared block in the path */ 2646 static int check_path_shared(struct btrfs_root *root, 2647 struct btrfs_path *path) 2648 { 2649 struct extent_buffer *eb; 2650 int level; 2651 u64 refs = 1; 2652 2653 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2654 int ret; 2655 2656 if (!path->nodes[level]) 2657 break; 2658 eb = path->nodes[level]; 2659 if (!btrfs_block_can_be_shared(root, eb)) 2660 continue; 2661 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2662 &refs, NULL); 2663 if (refs > 1) 2664 return 1; 2665 } 2666 return 0; 2667 } 2668 2669 /* 2670 * helper to start transaction for unlink and rmdir. 2671 * 2672 * unlink and rmdir are special in btrfs, they do not always free space. 2673 * so in enospc case, we should make sure they will free space before 2674 * allowing them to use the global metadata reservation. 2675 */ 2676 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2677 struct dentry *dentry) 2678 { 2679 struct btrfs_trans_handle *trans; 2680 struct btrfs_root *root = BTRFS_I(dir)->root; 2681 struct btrfs_path *path; 2682 struct btrfs_inode_ref *ref; 2683 struct btrfs_dir_item *di; 2684 struct inode *inode = dentry->d_inode; 2685 u64 index; 2686 int check_link = 1; 2687 int err = -ENOSPC; 2688 int ret; 2689 u64 ino = btrfs_ino(inode); 2690 u64 dir_ino = btrfs_ino(dir); 2691 2692 /* 2693 * 1 for the possible orphan item 2694 * 1 for the dir item 2695 * 1 for the dir index 2696 * 1 for the inode ref 2697 * 1 for the inode ref in the tree log 2698 * 2 for the dir entries in the log 2699 * 1 for the inode 2700 */ 2701 trans = btrfs_start_transaction(root, 8); 2702 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2703 return trans; 2704 2705 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2706 return ERR_PTR(-ENOSPC); 2707 2708 /* check if there is someone else holds reference */ 2709 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2710 return ERR_PTR(-ENOSPC); 2711 2712 if (atomic_read(&inode->i_count) > 2) 2713 return ERR_PTR(-ENOSPC); 2714 2715 if (xchg(&root->fs_info->enospc_unlink, 1)) 2716 return ERR_PTR(-ENOSPC); 2717 2718 path = btrfs_alloc_path(); 2719 if (!path) { 2720 root->fs_info->enospc_unlink = 0; 2721 return ERR_PTR(-ENOMEM); 2722 } 2723 2724 /* 1 for the orphan item */ 2725 trans = btrfs_start_transaction(root, 1); 2726 if (IS_ERR(trans)) { 2727 btrfs_free_path(path); 2728 root->fs_info->enospc_unlink = 0; 2729 return trans; 2730 } 2731 2732 path->skip_locking = 1; 2733 path->search_commit_root = 1; 2734 2735 ret = btrfs_lookup_inode(trans, root, path, 2736 &BTRFS_I(dir)->location, 0); 2737 if (ret < 0) { 2738 err = ret; 2739 goto out; 2740 } 2741 if (ret == 0) { 2742 if (check_path_shared(root, path)) 2743 goto out; 2744 } else { 2745 check_link = 0; 2746 } 2747 btrfs_release_path(path); 2748 2749 ret = btrfs_lookup_inode(trans, root, path, 2750 &BTRFS_I(inode)->location, 0); 2751 if (ret < 0) { 2752 err = ret; 2753 goto out; 2754 } 2755 if (ret == 0) { 2756 if (check_path_shared(root, path)) 2757 goto out; 2758 } else { 2759 check_link = 0; 2760 } 2761 btrfs_release_path(path); 2762 2763 if (ret == 0 && S_ISREG(inode->i_mode)) { 2764 ret = btrfs_lookup_file_extent(trans, root, path, 2765 ino, (u64)-1, 0); 2766 if (ret < 0) { 2767 err = ret; 2768 goto out; 2769 } 2770 BUG_ON(ret == 0); 2771 if (check_path_shared(root, path)) 2772 goto out; 2773 btrfs_release_path(path); 2774 } 2775 2776 if (!check_link) { 2777 err = 0; 2778 goto out; 2779 } 2780 2781 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2782 dentry->d_name.name, dentry->d_name.len, 0); 2783 if (IS_ERR(di)) { 2784 err = PTR_ERR(di); 2785 goto out; 2786 } 2787 if (di) { 2788 if (check_path_shared(root, path)) 2789 goto out; 2790 } else { 2791 err = 0; 2792 goto out; 2793 } 2794 btrfs_release_path(path); 2795 2796 ref = btrfs_lookup_inode_ref(trans, root, path, 2797 dentry->d_name.name, dentry->d_name.len, 2798 ino, dir_ino, 0); 2799 if (IS_ERR(ref)) { 2800 err = PTR_ERR(ref); 2801 goto out; 2802 } 2803 BUG_ON(!ref); 2804 if (check_path_shared(root, path)) 2805 goto out; 2806 index = btrfs_inode_ref_index(path->nodes[0], ref); 2807 btrfs_release_path(path); 2808 2809 /* 2810 * This is a commit root search, if we can lookup inode item and other 2811 * relative items in the commit root, it means the transaction of 2812 * dir/file creation has been committed, and the dir index item that we 2813 * delay to insert has also been inserted into the commit root. So 2814 * we needn't worry about the delayed insertion of the dir index item 2815 * here. 2816 */ 2817 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 2818 dentry->d_name.name, dentry->d_name.len, 0); 2819 if (IS_ERR(di)) { 2820 err = PTR_ERR(di); 2821 goto out; 2822 } 2823 BUG_ON(ret == -ENOENT); 2824 if (check_path_shared(root, path)) 2825 goto out; 2826 2827 err = 0; 2828 out: 2829 btrfs_free_path(path); 2830 /* Migrate the orphan reservation over */ 2831 if (!err) 2832 err = btrfs_block_rsv_migrate(trans->block_rsv, 2833 &root->fs_info->global_block_rsv, 2834 trans->bytes_reserved); 2835 2836 if (err) { 2837 btrfs_end_transaction(trans, root); 2838 root->fs_info->enospc_unlink = 0; 2839 return ERR_PTR(err); 2840 } 2841 2842 trans->block_rsv = &root->fs_info->global_block_rsv; 2843 return trans; 2844 } 2845 2846 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2847 struct btrfs_root *root) 2848 { 2849 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2850 btrfs_block_rsv_release(root, trans->block_rsv, 2851 trans->bytes_reserved); 2852 trans->block_rsv = &root->fs_info->trans_block_rsv; 2853 BUG_ON(!root->fs_info->enospc_unlink); 2854 root->fs_info->enospc_unlink = 0; 2855 } 2856 btrfs_end_transaction(trans, root); 2857 } 2858 2859 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2860 { 2861 struct btrfs_root *root = BTRFS_I(dir)->root; 2862 struct btrfs_trans_handle *trans; 2863 struct inode *inode = dentry->d_inode; 2864 int ret; 2865 unsigned long nr = 0; 2866 2867 trans = __unlink_start_trans(dir, dentry); 2868 if (IS_ERR(trans)) 2869 return PTR_ERR(trans); 2870 2871 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2872 2873 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2874 dentry->d_name.name, dentry->d_name.len); 2875 if (ret) 2876 goto out; 2877 2878 if (inode->i_nlink == 0) { 2879 ret = btrfs_orphan_add(trans, inode); 2880 if (ret) 2881 goto out; 2882 } 2883 2884 out: 2885 nr = trans->blocks_used; 2886 __unlink_end_trans(trans, root); 2887 btrfs_btree_balance_dirty(root, nr); 2888 return ret; 2889 } 2890 2891 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2892 struct btrfs_root *root, 2893 struct inode *dir, u64 objectid, 2894 const char *name, int name_len) 2895 { 2896 struct btrfs_path *path; 2897 struct extent_buffer *leaf; 2898 struct btrfs_dir_item *di; 2899 struct btrfs_key key; 2900 u64 index; 2901 int ret; 2902 u64 dir_ino = btrfs_ino(dir); 2903 2904 path = btrfs_alloc_path(); 2905 if (!path) 2906 return -ENOMEM; 2907 2908 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2909 name, name_len, -1); 2910 BUG_ON(IS_ERR_OR_NULL(di)); 2911 2912 leaf = path->nodes[0]; 2913 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2914 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2915 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2916 BUG_ON(ret); 2917 btrfs_release_path(path); 2918 2919 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2920 objectid, root->root_key.objectid, 2921 dir_ino, &index, name, name_len); 2922 if (ret < 0) { 2923 BUG_ON(ret != -ENOENT); 2924 di = btrfs_search_dir_index_item(root, path, dir_ino, 2925 name, name_len); 2926 BUG_ON(IS_ERR_OR_NULL(di)); 2927 2928 leaf = path->nodes[0]; 2929 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2930 btrfs_release_path(path); 2931 index = key.offset; 2932 } 2933 btrfs_release_path(path); 2934 2935 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2936 BUG_ON(ret); 2937 2938 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2939 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2940 ret = btrfs_update_inode(trans, root, dir); 2941 BUG_ON(ret); 2942 2943 btrfs_free_path(path); 2944 return 0; 2945 } 2946 2947 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2948 { 2949 struct inode *inode = dentry->d_inode; 2950 int err = 0; 2951 struct btrfs_root *root = BTRFS_I(dir)->root; 2952 struct btrfs_trans_handle *trans; 2953 unsigned long nr = 0; 2954 2955 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2956 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 2957 return -ENOTEMPTY; 2958 2959 trans = __unlink_start_trans(dir, dentry); 2960 if (IS_ERR(trans)) 2961 return PTR_ERR(trans); 2962 2963 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2964 err = btrfs_unlink_subvol(trans, root, dir, 2965 BTRFS_I(inode)->location.objectid, 2966 dentry->d_name.name, 2967 dentry->d_name.len); 2968 goto out; 2969 } 2970 2971 err = btrfs_orphan_add(trans, inode); 2972 if (err) 2973 goto out; 2974 2975 /* now the directory is empty */ 2976 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2977 dentry->d_name.name, dentry->d_name.len); 2978 if (!err) 2979 btrfs_i_size_write(inode, 0); 2980 out: 2981 nr = trans->blocks_used; 2982 __unlink_end_trans(trans, root); 2983 btrfs_btree_balance_dirty(root, nr); 2984 2985 return err; 2986 } 2987 2988 /* 2989 * this can truncate away extent items, csum items and directory items. 2990 * It starts at a high offset and removes keys until it can't find 2991 * any higher than new_size 2992 * 2993 * csum items that cross the new i_size are truncated to the new size 2994 * as well. 2995 * 2996 * min_type is the minimum key type to truncate down to. If set to 0, this 2997 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2998 */ 2999 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3000 struct btrfs_root *root, 3001 struct inode *inode, 3002 u64 new_size, u32 min_type) 3003 { 3004 struct btrfs_path *path; 3005 struct extent_buffer *leaf; 3006 struct btrfs_file_extent_item *fi; 3007 struct btrfs_key key; 3008 struct btrfs_key found_key; 3009 u64 extent_start = 0; 3010 u64 extent_num_bytes = 0; 3011 u64 extent_offset = 0; 3012 u64 item_end = 0; 3013 u64 mask = root->sectorsize - 1; 3014 u32 found_type = (u8)-1; 3015 int found_extent; 3016 int del_item; 3017 int pending_del_nr = 0; 3018 int pending_del_slot = 0; 3019 int extent_type = -1; 3020 int ret; 3021 int err = 0; 3022 u64 ino = btrfs_ino(inode); 3023 3024 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3025 3026 path = btrfs_alloc_path(); 3027 if (!path) 3028 return -ENOMEM; 3029 path->reada = -1; 3030 3031 if (root->ref_cows || root == root->fs_info->tree_root) 3032 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3033 3034 /* 3035 * This function is also used to drop the items in the log tree before 3036 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3037 * it is used to drop the loged items. So we shouldn't kill the delayed 3038 * items. 3039 */ 3040 if (min_type == 0 && root == BTRFS_I(inode)->root) 3041 btrfs_kill_delayed_inode_items(inode); 3042 3043 key.objectid = ino; 3044 key.offset = (u64)-1; 3045 key.type = (u8)-1; 3046 3047 search_again: 3048 path->leave_spinning = 1; 3049 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3050 if (ret < 0) { 3051 err = ret; 3052 goto out; 3053 } 3054 3055 if (ret > 0) { 3056 /* there are no items in the tree for us to truncate, we're 3057 * done 3058 */ 3059 if (path->slots[0] == 0) 3060 goto out; 3061 path->slots[0]--; 3062 } 3063 3064 while (1) { 3065 fi = NULL; 3066 leaf = path->nodes[0]; 3067 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3068 found_type = btrfs_key_type(&found_key); 3069 3070 if (found_key.objectid != ino) 3071 break; 3072 3073 if (found_type < min_type) 3074 break; 3075 3076 item_end = found_key.offset; 3077 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3078 fi = btrfs_item_ptr(leaf, path->slots[0], 3079 struct btrfs_file_extent_item); 3080 extent_type = btrfs_file_extent_type(leaf, fi); 3081 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3082 item_end += 3083 btrfs_file_extent_num_bytes(leaf, fi); 3084 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3085 item_end += btrfs_file_extent_inline_len(leaf, 3086 fi); 3087 } 3088 item_end--; 3089 } 3090 if (found_type > min_type) { 3091 del_item = 1; 3092 } else { 3093 if (item_end < new_size) 3094 break; 3095 if (found_key.offset >= new_size) 3096 del_item = 1; 3097 else 3098 del_item = 0; 3099 } 3100 found_extent = 0; 3101 /* FIXME, shrink the extent if the ref count is only 1 */ 3102 if (found_type != BTRFS_EXTENT_DATA_KEY) 3103 goto delete; 3104 3105 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3106 u64 num_dec; 3107 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3108 if (!del_item) { 3109 u64 orig_num_bytes = 3110 btrfs_file_extent_num_bytes(leaf, fi); 3111 extent_num_bytes = new_size - 3112 found_key.offset + root->sectorsize - 1; 3113 extent_num_bytes = extent_num_bytes & 3114 ~((u64)root->sectorsize - 1); 3115 btrfs_set_file_extent_num_bytes(leaf, fi, 3116 extent_num_bytes); 3117 num_dec = (orig_num_bytes - 3118 extent_num_bytes); 3119 if (root->ref_cows && extent_start != 0) 3120 inode_sub_bytes(inode, num_dec); 3121 btrfs_mark_buffer_dirty(leaf); 3122 } else { 3123 extent_num_bytes = 3124 btrfs_file_extent_disk_num_bytes(leaf, 3125 fi); 3126 extent_offset = found_key.offset - 3127 btrfs_file_extent_offset(leaf, fi); 3128 3129 /* FIXME blocksize != 4096 */ 3130 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3131 if (extent_start != 0) { 3132 found_extent = 1; 3133 if (root->ref_cows) 3134 inode_sub_bytes(inode, num_dec); 3135 } 3136 } 3137 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3138 /* 3139 * we can't truncate inline items that have had 3140 * special encodings 3141 */ 3142 if (!del_item && 3143 btrfs_file_extent_compression(leaf, fi) == 0 && 3144 btrfs_file_extent_encryption(leaf, fi) == 0 && 3145 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3146 u32 size = new_size - found_key.offset; 3147 3148 if (root->ref_cows) { 3149 inode_sub_bytes(inode, item_end + 1 - 3150 new_size); 3151 } 3152 size = 3153 btrfs_file_extent_calc_inline_size(size); 3154 ret = btrfs_truncate_item(trans, root, path, 3155 size, 1); 3156 } else if (root->ref_cows) { 3157 inode_sub_bytes(inode, item_end + 1 - 3158 found_key.offset); 3159 } 3160 } 3161 delete: 3162 if (del_item) { 3163 if (!pending_del_nr) { 3164 /* no pending yet, add ourselves */ 3165 pending_del_slot = path->slots[0]; 3166 pending_del_nr = 1; 3167 } else if (pending_del_nr && 3168 path->slots[0] + 1 == pending_del_slot) { 3169 /* hop on the pending chunk */ 3170 pending_del_nr++; 3171 pending_del_slot = path->slots[0]; 3172 } else { 3173 BUG(); 3174 } 3175 } else { 3176 break; 3177 } 3178 if (found_extent && (root->ref_cows || 3179 root == root->fs_info->tree_root)) { 3180 btrfs_set_path_blocking(path); 3181 ret = btrfs_free_extent(trans, root, extent_start, 3182 extent_num_bytes, 0, 3183 btrfs_header_owner(leaf), 3184 ino, extent_offset, 0); 3185 BUG_ON(ret); 3186 } 3187 3188 if (found_type == BTRFS_INODE_ITEM_KEY) 3189 break; 3190 3191 if (path->slots[0] == 0 || 3192 path->slots[0] != pending_del_slot) { 3193 if (root->ref_cows && 3194 BTRFS_I(inode)->location.objectid != 3195 BTRFS_FREE_INO_OBJECTID) { 3196 err = -EAGAIN; 3197 goto out; 3198 } 3199 if (pending_del_nr) { 3200 ret = btrfs_del_items(trans, root, path, 3201 pending_del_slot, 3202 pending_del_nr); 3203 BUG_ON(ret); 3204 pending_del_nr = 0; 3205 } 3206 btrfs_release_path(path); 3207 goto search_again; 3208 } else { 3209 path->slots[0]--; 3210 } 3211 } 3212 out: 3213 if (pending_del_nr) { 3214 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3215 pending_del_nr); 3216 BUG_ON(ret); 3217 } 3218 btrfs_free_path(path); 3219 return err; 3220 } 3221 3222 /* 3223 * taken from block_truncate_page, but does cow as it zeros out 3224 * any bytes left in the last page in the file. 3225 */ 3226 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3227 { 3228 struct inode *inode = mapping->host; 3229 struct btrfs_root *root = BTRFS_I(inode)->root; 3230 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3231 struct btrfs_ordered_extent *ordered; 3232 struct extent_state *cached_state = NULL; 3233 char *kaddr; 3234 u32 blocksize = root->sectorsize; 3235 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3236 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3237 struct page *page; 3238 gfp_t mask = btrfs_alloc_write_mask(mapping); 3239 int ret = 0; 3240 u64 page_start; 3241 u64 page_end; 3242 3243 if ((offset & (blocksize - 1)) == 0) 3244 goto out; 3245 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3246 if (ret) 3247 goto out; 3248 3249 ret = -ENOMEM; 3250 again: 3251 page = find_or_create_page(mapping, index, mask); 3252 if (!page) { 3253 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3254 goto out; 3255 } 3256 3257 page_start = page_offset(page); 3258 page_end = page_start + PAGE_CACHE_SIZE - 1; 3259 3260 if (!PageUptodate(page)) { 3261 ret = btrfs_readpage(NULL, page); 3262 lock_page(page); 3263 if (page->mapping != mapping) { 3264 unlock_page(page); 3265 page_cache_release(page); 3266 goto again; 3267 } 3268 if (!PageUptodate(page)) { 3269 ret = -EIO; 3270 goto out_unlock; 3271 } 3272 } 3273 wait_on_page_writeback(page); 3274 3275 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3276 GFP_NOFS); 3277 set_page_extent_mapped(page); 3278 3279 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3280 if (ordered) { 3281 unlock_extent_cached(io_tree, page_start, page_end, 3282 &cached_state, GFP_NOFS); 3283 unlock_page(page); 3284 page_cache_release(page); 3285 btrfs_start_ordered_extent(inode, ordered, 1); 3286 btrfs_put_ordered_extent(ordered); 3287 goto again; 3288 } 3289 3290 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3291 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3292 0, 0, &cached_state, GFP_NOFS); 3293 3294 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3295 &cached_state); 3296 if (ret) { 3297 unlock_extent_cached(io_tree, page_start, page_end, 3298 &cached_state, GFP_NOFS); 3299 goto out_unlock; 3300 } 3301 3302 ret = 0; 3303 if (offset != PAGE_CACHE_SIZE) { 3304 kaddr = kmap(page); 3305 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3306 flush_dcache_page(page); 3307 kunmap(page); 3308 } 3309 ClearPageChecked(page); 3310 set_page_dirty(page); 3311 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3312 GFP_NOFS); 3313 3314 out_unlock: 3315 if (ret) 3316 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3317 unlock_page(page); 3318 page_cache_release(page); 3319 out: 3320 return ret; 3321 } 3322 3323 /* 3324 * This function puts in dummy file extents for the area we're creating a hole 3325 * for. So if we are truncating this file to a larger size we need to insert 3326 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3327 * the range between oldsize and size 3328 */ 3329 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3330 { 3331 struct btrfs_trans_handle *trans; 3332 struct btrfs_root *root = BTRFS_I(inode)->root; 3333 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3334 struct extent_map *em = NULL; 3335 struct extent_state *cached_state = NULL; 3336 u64 mask = root->sectorsize - 1; 3337 u64 hole_start = (oldsize + mask) & ~mask; 3338 u64 block_end = (size + mask) & ~mask; 3339 u64 last_byte; 3340 u64 cur_offset; 3341 u64 hole_size; 3342 int err = 0; 3343 3344 if (size <= hole_start) 3345 return 0; 3346 3347 while (1) { 3348 struct btrfs_ordered_extent *ordered; 3349 btrfs_wait_ordered_range(inode, hole_start, 3350 block_end - hole_start); 3351 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3352 &cached_state, GFP_NOFS); 3353 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3354 if (!ordered) 3355 break; 3356 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3357 &cached_state, GFP_NOFS); 3358 btrfs_put_ordered_extent(ordered); 3359 } 3360 3361 cur_offset = hole_start; 3362 while (1) { 3363 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3364 block_end - cur_offset, 0); 3365 BUG_ON(IS_ERR_OR_NULL(em)); 3366 last_byte = min(extent_map_end(em), block_end); 3367 last_byte = (last_byte + mask) & ~mask; 3368 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3369 u64 hint_byte = 0; 3370 hole_size = last_byte - cur_offset; 3371 3372 trans = btrfs_start_transaction(root, 3); 3373 if (IS_ERR(trans)) { 3374 err = PTR_ERR(trans); 3375 break; 3376 } 3377 3378 err = btrfs_drop_extents(trans, inode, cur_offset, 3379 cur_offset + hole_size, 3380 &hint_byte, 1); 3381 if (err) { 3382 btrfs_update_inode(trans, root, inode); 3383 btrfs_end_transaction(trans, root); 3384 break; 3385 } 3386 3387 err = btrfs_insert_file_extent(trans, root, 3388 btrfs_ino(inode), cur_offset, 0, 3389 0, hole_size, 0, hole_size, 3390 0, 0, 0); 3391 if (err) { 3392 btrfs_update_inode(trans, root, inode); 3393 btrfs_end_transaction(trans, root); 3394 break; 3395 } 3396 3397 btrfs_drop_extent_cache(inode, hole_start, 3398 last_byte - 1, 0); 3399 3400 btrfs_update_inode(trans, root, inode); 3401 btrfs_end_transaction(trans, root); 3402 } 3403 free_extent_map(em); 3404 em = NULL; 3405 cur_offset = last_byte; 3406 if (cur_offset >= block_end) 3407 break; 3408 } 3409 3410 free_extent_map(em); 3411 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3412 GFP_NOFS); 3413 return err; 3414 } 3415 3416 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3417 { 3418 struct btrfs_root *root = BTRFS_I(inode)->root; 3419 struct btrfs_trans_handle *trans; 3420 loff_t oldsize = i_size_read(inode); 3421 int ret; 3422 3423 if (newsize == oldsize) 3424 return 0; 3425 3426 if (newsize > oldsize) { 3427 truncate_pagecache(inode, oldsize, newsize); 3428 ret = btrfs_cont_expand(inode, oldsize, newsize); 3429 if (ret) 3430 return ret; 3431 3432 trans = btrfs_start_transaction(root, 1); 3433 if (IS_ERR(trans)) 3434 return PTR_ERR(trans); 3435 3436 i_size_write(inode, newsize); 3437 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3438 ret = btrfs_update_inode(trans, root, inode); 3439 btrfs_end_transaction(trans, root); 3440 } else { 3441 3442 /* 3443 * We're truncating a file that used to have good data down to 3444 * zero. Make sure it gets into the ordered flush list so that 3445 * any new writes get down to disk quickly. 3446 */ 3447 if (newsize == 0) 3448 BTRFS_I(inode)->ordered_data_close = 1; 3449 3450 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3451 truncate_setsize(inode, newsize); 3452 ret = btrfs_truncate(inode); 3453 } 3454 3455 return ret; 3456 } 3457 3458 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3459 { 3460 struct inode *inode = dentry->d_inode; 3461 struct btrfs_root *root = BTRFS_I(inode)->root; 3462 int err; 3463 3464 if (btrfs_root_readonly(root)) 3465 return -EROFS; 3466 3467 err = inode_change_ok(inode, attr); 3468 if (err) 3469 return err; 3470 3471 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3472 err = btrfs_setsize(inode, attr->ia_size); 3473 if (err) 3474 return err; 3475 } 3476 3477 if (attr->ia_valid) { 3478 setattr_copy(inode, attr); 3479 err = btrfs_dirty_inode(inode); 3480 3481 if (!err && attr->ia_valid & ATTR_MODE) 3482 err = btrfs_acl_chmod(inode); 3483 } 3484 3485 return err; 3486 } 3487 3488 void btrfs_evict_inode(struct inode *inode) 3489 { 3490 struct btrfs_trans_handle *trans; 3491 struct btrfs_root *root = BTRFS_I(inode)->root; 3492 struct btrfs_block_rsv *rsv, *global_rsv; 3493 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 3494 unsigned long nr; 3495 int ret; 3496 3497 trace_btrfs_inode_evict(inode); 3498 3499 truncate_inode_pages(&inode->i_data, 0); 3500 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3501 btrfs_is_free_space_inode(root, inode))) 3502 goto no_delete; 3503 3504 if (is_bad_inode(inode)) { 3505 btrfs_orphan_del(NULL, inode); 3506 goto no_delete; 3507 } 3508 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3509 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3510 3511 if (root->fs_info->log_root_recovering) { 3512 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3513 goto no_delete; 3514 } 3515 3516 if (inode->i_nlink > 0) { 3517 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3518 goto no_delete; 3519 } 3520 3521 rsv = btrfs_alloc_block_rsv(root); 3522 if (!rsv) { 3523 btrfs_orphan_del(NULL, inode); 3524 goto no_delete; 3525 } 3526 rsv->size = min_size; 3527 global_rsv = &root->fs_info->global_block_rsv; 3528 3529 btrfs_i_size_write(inode, 0); 3530 3531 /* 3532 * This is a bit simpler than btrfs_truncate since 3533 * 3534 * 1) We've already reserved our space for our orphan item in the 3535 * unlink. 3536 * 2) We're going to delete the inode item, so we don't need to update 3537 * it at all. 3538 * 3539 * So we just need to reserve some slack space in case we add bytes when 3540 * doing the truncate. 3541 */ 3542 while (1) { 3543 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size); 3544 3545 /* 3546 * Try and steal from the global reserve since we will 3547 * likely not use this space anyway, we want to try as 3548 * hard as possible to get this to work. 3549 */ 3550 if (ret) 3551 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 3552 3553 if (ret) { 3554 printk(KERN_WARNING "Could not get space for a " 3555 "delete, will truncate on mount %d\n", ret); 3556 btrfs_orphan_del(NULL, inode); 3557 btrfs_free_block_rsv(root, rsv); 3558 goto no_delete; 3559 } 3560 3561 trans = btrfs_start_transaction(root, 0); 3562 if (IS_ERR(trans)) { 3563 btrfs_orphan_del(NULL, inode); 3564 btrfs_free_block_rsv(root, rsv); 3565 goto no_delete; 3566 } 3567 3568 trans->block_rsv = rsv; 3569 3570 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3571 if (ret != -EAGAIN) 3572 break; 3573 3574 nr = trans->blocks_used; 3575 btrfs_end_transaction(trans, root); 3576 trans = NULL; 3577 btrfs_btree_balance_dirty(root, nr); 3578 } 3579 3580 btrfs_free_block_rsv(root, rsv); 3581 3582 if (ret == 0) { 3583 trans->block_rsv = root->orphan_block_rsv; 3584 ret = btrfs_orphan_del(trans, inode); 3585 BUG_ON(ret); 3586 } 3587 3588 trans->block_rsv = &root->fs_info->trans_block_rsv; 3589 if (!(root == root->fs_info->tree_root || 3590 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3591 btrfs_return_ino(root, btrfs_ino(inode)); 3592 3593 nr = trans->blocks_used; 3594 btrfs_end_transaction(trans, root); 3595 btrfs_btree_balance_dirty(root, nr); 3596 no_delete: 3597 end_writeback(inode); 3598 return; 3599 } 3600 3601 /* 3602 * this returns the key found in the dir entry in the location pointer. 3603 * If no dir entries were found, location->objectid is 0. 3604 */ 3605 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3606 struct btrfs_key *location) 3607 { 3608 const char *name = dentry->d_name.name; 3609 int namelen = dentry->d_name.len; 3610 struct btrfs_dir_item *di; 3611 struct btrfs_path *path; 3612 struct btrfs_root *root = BTRFS_I(dir)->root; 3613 int ret = 0; 3614 3615 path = btrfs_alloc_path(); 3616 if (!path) 3617 return -ENOMEM; 3618 3619 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3620 namelen, 0); 3621 if (IS_ERR(di)) 3622 ret = PTR_ERR(di); 3623 3624 if (IS_ERR_OR_NULL(di)) 3625 goto out_err; 3626 3627 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3628 out: 3629 btrfs_free_path(path); 3630 return ret; 3631 out_err: 3632 location->objectid = 0; 3633 goto out; 3634 } 3635 3636 /* 3637 * when we hit a tree root in a directory, the btrfs part of the inode 3638 * needs to be changed to reflect the root directory of the tree root. This 3639 * is kind of like crossing a mount point. 3640 */ 3641 static int fixup_tree_root_location(struct btrfs_root *root, 3642 struct inode *dir, 3643 struct dentry *dentry, 3644 struct btrfs_key *location, 3645 struct btrfs_root **sub_root) 3646 { 3647 struct btrfs_path *path; 3648 struct btrfs_root *new_root; 3649 struct btrfs_root_ref *ref; 3650 struct extent_buffer *leaf; 3651 int ret; 3652 int err = 0; 3653 3654 path = btrfs_alloc_path(); 3655 if (!path) { 3656 err = -ENOMEM; 3657 goto out; 3658 } 3659 3660 err = -ENOENT; 3661 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3662 BTRFS_I(dir)->root->root_key.objectid, 3663 location->objectid); 3664 if (ret) { 3665 if (ret < 0) 3666 err = ret; 3667 goto out; 3668 } 3669 3670 leaf = path->nodes[0]; 3671 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3672 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3673 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3674 goto out; 3675 3676 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3677 (unsigned long)(ref + 1), 3678 dentry->d_name.len); 3679 if (ret) 3680 goto out; 3681 3682 btrfs_release_path(path); 3683 3684 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3685 if (IS_ERR(new_root)) { 3686 err = PTR_ERR(new_root); 3687 goto out; 3688 } 3689 3690 if (btrfs_root_refs(&new_root->root_item) == 0) { 3691 err = -ENOENT; 3692 goto out; 3693 } 3694 3695 *sub_root = new_root; 3696 location->objectid = btrfs_root_dirid(&new_root->root_item); 3697 location->type = BTRFS_INODE_ITEM_KEY; 3698 location->offset = 0; 3699 err = 0; 3700 out: 3701 btrfs_free_path(path); 3702 return err; 3703 } 3704 3705 static void inode_tree_add(struct inode *inode) 3706 { 3707 struct btrfs_root *root = BTRFS_I(inode)->root; 3708 struct btrfs_inode *entry; 3709 struct rb_node **p; 3710 struct rb_node *parent; 3711 u64 ino = btrfs_ino(inode); 3712 again: 3713 p = &root->inode_tree.rb_node; 3714 parent = NULL; 3715 3716 if (inode_unhashed(inode)) 3717 return; 3718 3719 spin_lock(&root->inode_lock); 3720 while (*p) { 3721 parent = *p; 3722 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3723 3724 if (ino < btrfs_ino(&entry->vfs_inode)) 3725 p = &parent->rb_left; 3726 else if (ino > btrfs_ino(&entry->vfs_inode)) 3727 p = &parent->rb_right; 3728 else { 3729 WARN_ON(!(entry->vfs_inode.i_state & 3730 (I_WILL_FREE | I_FREEING))); 3731 rb_erase(parent, &root->inode_tree); 3732 RB_CLEAR_NODE(parent); 3733 spin_unlock(&root->inode_lock); 3734 goto again; 3735 } 3736 } 3737 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3738 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3739 spin_unlock(&root->inode_lock); 3740 } 3741 3742 static void inode_tree_del(struct inode *inode) 3743 { 3744 struct btrfs_root *root = BTRFS_I(inode)->root; 3745 int empty = 0; 3746 3747 spin_lock(&root->inode_lock); 3748 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3749 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3750 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3751 empty = RB_EMPTY_ROOT(&root->inode_tree); 3752 } 3753 spin_unlock(&root->inode_lock); 3754 3755 /* 3756 * Free space cache has inodes in the tree root, but the tree root has a 3757 * root_refs of 0, so this could end up dropping the tree root as a 3758 * snapshot, so we need the extra !root->fs_info->tree_root check to 3759 * make sure we don't drop it. 3760 */ 3761 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3762 root != root->fs_info->tree_root) { 3763 synchronize_srcu(&root->fs_info->subvol_srcu); 3764 spin_lock(&root->inode_lock); 3765 empty = RB_EMPTY_ROOT(&root->inode_tree); 3766 spin_unlock(&root->inode_lock); 3767 if (empty) 3768 btrfs_add_dead_root(root); 3769 } 3770 } 3771 3772 int btrfs_invalidate_inodes(struct btrfs_root *root) 3773 { 3774 struct rb_node *node; 3775 struct rb_node *prev; 3776 struct btrfs_inode *entry; 3777 struct inode *inode; 3778 u64 objectid = 0; 3779 3780 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3781 3782 spin_lock(&root->inode_lock); 3783 again: 3784 node = root->inode_tree.rb_node; 3785 prev = NULL; 3786 while (node) { 3787 prev = node; 3788 entry = rb_entry(node, struct btrfs_inode, rb_node); 3789 3790 if (objectid < btrfs_ino(&entry->vfs_inode)) 3791 node = node->rb_left; 3792 else if (objectid > btrfs_ino(&entry->vfs_inode)) 3793 node = node->rb_right; 3794 else 3795 break; 3796 } 3797 if (!node) { 3798 while (prev) { 3799 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3800 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 3801 node = prev; 3802 break; 3803 } 3804 prev = rb_next(prev); 3805 } 3806 } 3807 while (node) { 3808 entry = rb_entry(node, struct btrfs_inode, rb_node); 3809 objectid = btrfs_ino(&entry->vfs_inode) + 1; 3810 inode = igrab(&entry->vfs_inode); 3811 if (inode) { 3812 spin_unlock(&root->inode_lock); 3813 if (atomic_read(&inode->i_count) > 1) 3814 d_prune_aliases(inode); 3815 /* 3816 * btrfs_drop_inode will have it removed from 3817 * the inode cache when its usage count 3818 * hits zero. 3819 */ 3820 iput(inode); 3821 cond_resched(); 3822 spin_lock(&root->inode_lock); 3823 goto again; 3824 } 3825 3826 if (cond_resched_lock(&root->inode_lock)) 3827 goto again; 3828 3829 node = rb_next(node); 3830 } 3831 spin_unlock(&root->inode_lock); 3832 return 0; 3833 } 3834 3835 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3836 { 3837 struct btrfs_iget_args *args = p; 3838 inode->i_ino = args->ino; 3839 BTRFS_I(inode)->root = args->root; 3840 btrfs_set_inode_space_info(args->root, inode); 3841 return 0; 3842 } 3843 3844 static int btrfs_find_actor(struct inode *inode, void *opaque) 3845 { 3846 struct btrfs_iget_args *args = opaque; 3847 return args->ino == btrfs_ino(inode) && 3848 args->root == BTRFS_I(inode)->root; 3849 } 3850 3851 static struct inode *btrfs_iget_locked(struct super_block *s, 3852 u64 objectid, 3853 struct btrfs_root *root) 3854 { 3855 struct inode *inode; 3856 struct btrfs_iget_args args; 3857 args.ino = objectid; 3858 args.root = root; 3859 3860 inode = iget5_locked(s, objectid, btrfs_find_actor, 3861 btrfs_init_locked_inode, 3862 (void *)&args); 3863 return inode; 3864 } 3865 3866 /* Get an inode object given its location and corresponding root. 3867 * Returns in *is_new if the inode was read from disk 3868 */ 3869 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3870 struct btrfs_root *root, int *new) 3871 { 3872 struct inode *inode; 3873 3874 inode = btrfs_iget_locked(s, location->objectid, root); 3875 if (!inode) 3876 return ERR_PTR(-ENOMEM); 3877 3878 if (inode->i_state & I_NEW) { 3879 BTRFS_I(inode)->root = root; 3880 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3881 btrfs_read_locked_inode(inode); 3882 if (!is_bad_inode(inode)) { 3883 inode_tree_add(inode); 3884 unlock_new_inode(inode); 3885 if (new) 3886 *new = 1; 3887 } else { 3888 unlock_new_inode(inode); 3889 iput(inode); 3890 inode = ERR_PTR(-ESTALE); 3891 } 3892 } 3893 3894 return inode; 3895 } 3896 3897 static struct inode *new_simple_dir(struct super_block *s, 3898 struct btrfs_key *key, 3899 struct btrfs_root *root) 3900 { 3901 struct inode *inode = new_inode(s); 3902 3903 if (!inode) 3904 return ERR_PTR(-ENOMEM); 3905 3906 BTRFS_I(inode)->root = root; 3907 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3908 BTRFS_I(inode)->dummy_inode = 1; 3909 3910 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3911 inode->i_op = &simple_dir_inode_operations; 3912 inode->i_fop = &simple_dir_operations; 3913 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 3914 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3915 3916 return inode; 3917 } 3918 3919 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3920 { 3921 struct inode *inode; 3922 struct btrfs_root *root = BTRFS_I(dir)->root; 3923 struct btrfs_root *sub_root = root; 3924 struct btrfs_key location; 3925 int index; 3926 int ret = 0; 3927 3928 if (dentry->d_name.len > BTRFS_NAME_LEN) 3929 return ERR_PTR(-ENAMETOOLONG); 3930 3931 if (unlikely(d_need_lookup(dentry))) { 3932 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key)); 3933 kfree(dentry->d_fsdata); 3934 dentry->d_fsdata = NULL; 3935 /* This thing is hashed, drop it for now */ 3936 d_drop(dentry); 3937 } else { 3938 ret = btrfs_inode_by_name(dir, dentry, &location); 3939 } 3940 3941 if (ret < 0) 3942 return ERR_PTR(ret); 3943 3944 if (location.objectid == 0) 3945 return NULL; 3946 3947 if (location.type == BTRFS_INODE_ITEM_KEY) { 3948 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 3949 return inode; 3950 } 3951 3952 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 3953 3954 index = srcu_read_lock(&root->fs_info->subvol_srcu); 3955 ret = fixup_tree_root_location(root, dir, dentry, 3956 &location, &sub_root); 3957 if (ret < 0) { 3958 if (ret != -ENOENT) 3959 inode = ERR_PTR(ret); 3960 else 3961 inode = new_simple_dir(dir->i_sb, &location, sub_root); 3962 } else { 3963 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 3964 } 3965 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 3966 3967 if (!IS_ERR(inode) && root != sub_root) { 3968 down_read(&root->fs_info->cleanup_work_sem); 3969 if (!(inode->i_sb->s_flags & MS_RDONLY)) 3970 ret = btrfs_orphan_cleanup(sub_root); 3971 up_read(&root->fs_info->cleanup_work_sem); 3972 if (ret) 3973 inode = ERR_PTR(ret); 3974 } 3975 3976 return inode; 3977 } 3978 3979 static int btrfs_dentry_delete(const struct dentry *dentry) 3980 { 3981 struct btrfs_root *root; 3982 3983 if (!dentry->d_inode && !IS_ROOT(dentry)) 3984 dentry = dentry->d_parent; 3985 3986 if (dentry->d_inode) { 3987 root = BTRFS_I(dentry->d_inode)->root; 3988 if (btrfs_root_refs(&root->root_item) == 0) 3989 return 1; 3990 } 3991 return 0; 3992 } 3993 3994 static void btrfs_dentry_release(struct dentry *dentry) 3995 { 3996 if (dentry->d_fsdata) 3997 kfree(dentry->d_fsdata); 3998 } 3999 4000 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4001 struct nameidata *nd) 4002 { 4003 struct dentry *ret; 4004 4005 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4006 if (unlikely(d_need_lookup(dentry))) { 4007 spin_lock(&dentry->d_lock); 4008 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 4009 spin_unlock(&dentry->d_lock); 4010 } 4011 return ret; 4012 } 4013 4014 unsigned char btrfs_filetype_table[] = { 4015 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4016 }; 4017 4018 static int btrfs_real_readdir(struct file *filp, void *dirent, 4019 filldir_t filldir) 4020 { 4021 struct inode *inode = filp->f_dentry->d_inode; 4022 struct btrfs_root *root = BTRFS_I(inode)->root; 4023 struct btrfs_item *item; 4024 struct btrfs_dir_item *di; 4025 struct btrfs_key key; 4026 struct btrfs_key found_key; 4027 struct btrfs_path *path; 4028 struct list_head ins_list; 4029 struct list_head del_list; 4030 struct qstr q; 4031 int ret; 4032 struct extent_buffer *leaf; 4033 int slot; 4034 unsigned char d_type; 4035 int over = 0; 4036 u32 di_cur; 4037 u32 di_total; 4038 u32 di_len; 4039 int key_type = BTRFS_DIR_INDEX_KEY; 4040 char tmp_name[32]; 4041 char *name_ptr; 4042 int name_len; 4043 int is_curr = 0; /* filp->f_pos points to the current index? */ 4044 4045 /* FIXME, use a real flag for deciding about the key type */ 4046 if (root->fs_info->tree_root == root) 4047 key_type = BTRFS_DIR_ITEM_KEY; 4048 4049 /* special case for "." */ 4050 if (filp->f_pos == 0) { 4051 over = filldir(dirent, ".", 1, 4052 filp->f_pos, btrfs_ino(inode), DT_DIR); 4053 if (over) 4054 return 0; 4055 filp->f_pos = 1; 4056 } 4057 /* special case for .., just use the back ref */ 4058 if (filp->f_pos == 1) { 4059 u64 pino = parent_ino(filp->f_path.dentry); 4060 over = filldir(dirent, "..", 2, 4061 filp->f_pos, pino, DT_DIR); 4062 if (over) 4063 return 0; 4064 filp->f_pos = 2; 4065 } 4066 path = btrfs_alloc_path(); 4067 if (!path) 4068 return -ENOMEM; 4069 4070 path->reada = 1; 4071 4072 if (key_type == BTRFS_DIR_INDEX_KEY) { 4073 INIT_LIST_HEAD(&ins_list); 4074 INIT_LIST_HEAD(&del_list); 4075 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4076 } 4077 4078 btrfs_set_key_type(&key, key_type); 4079 key.offset = filp->f_pos; 4080 key.objectid = btrfs_ino(inode); 4081 4082 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4083 if (ret < 0) 4084 goto err; 4085 4086 while (1) { 4087 leaf = path->nodes[0]; 4088 slot = path->slots[0]; 4089 if (slot >= btrfs_header_nritems(leaf)) { 4090 ret = btrfs_next_leaf(root, path); 4091 if (ret < 0) 4092 goto err; 4093 else if (ret > 0) 4094 break; 4095 continue; 4096 } 4097 4098 item = btrfs_item_nr(leaf, slot); 4099 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4100 4101 if (found_key.objectid != key.objectid) 4102 break; 4103 if (btrfs_key_type(&found_key) != key_type) 4104 break; 4105 if (found_key.offset < filp->f_pos) 4106 goto next; 4107 if (key_type == BTRFS_DIR_INDEX_KEY && 4108 btrfs_should_delete_dir_index(&del_list, 4109 found_key.offset)) 4110 goto next; 4111 4112 filp->f_pos = found_key.offset; 4113 is_curr = 1; 4114 4115 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4116 di_cur = 0; 4117 di_total = btrfs_item_size(leaf, item); 4118 4119 while (di_cur < di_total) { 4120 struct btrfs_key location; 4121 struct dentry *tmp; 4122 4123 if (verify_dir_item(root, leaf, di)) 4124 break; 4125 4126 name_len = btrfs_dir_name_len(leaf, di); 4127 if (name_len <= sizeof(tmp_name)) { 4128 name_ptr = tmp_name; 4129 } else { 4130 name_ptr = kmalloc(name_len, GFP_NOFS); 4131 if (!name_ptr) { 4132 ret = -ENOMEM; 4133 goto err; 4134 } 4135 } 4136 read_extent_buffer(leaf, name_ptr, 4137 (unsigned long)(di + 1), name_len); 4138 4139 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4140 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4141 4142 q.name = name_ptr; 4143 q.len = name_len; 4144 q.hash = full_name_hash(q.name, q.len); 4145 tmp = d_lookup(filp->f_dentry, &q); 4146 if (!tmp) { 4147 struct btrfs_key *newkey; 4148 4149 newkey = kzalloc(sizeof(struct btrfs_key), 4150 GFP_NOFS); 4151 if (!newkey) 4152 goto no_dentry; 4153 tmp = d_alloc(filp->f_dentry, &q); 4154 if (!tmp) { 4155 kfree(newkey); 4156 dput(tmp); 4157 goto no_dentry; 4158 } 4159 memcpy(newkey, &location, 4160 sizeof(struct btrfs_key)); 4161 tmp->d_fsdata = newkey; 4162 tmp->d_flags |= DCACHE_NEED_LOOKUP; 4163 d_rehash(tmp); 4164 dput(tmp); 4165 } else { 4166 dput(tmp); 4167 } 4168 no_dentry: 4169 /* is this a reference to our own snapshot? If so 4170 * skip it 4171 */ 4172 if (location.type == BTRFS_ROOT_ITEM_KEY && 4173 location.objectid == root->root_key.objectid) { 4174 over = 0; 4175 goto skip; 4176 } 4177 over = filldir(dirent, name_ptr, name_len, 4178 found_key.offset, location.objectid, 4179 d_type); 4180 4181 skip: 4182 if (name_ptr != tmp_name) 4183 kfree(name_ptr); 4184 4185 if (over) 4186 goto nopos; 4187 di_len = btrfs_dir_name_len(leaf, di) + 4188 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4189 di_cur += di_len; 4190 di = (struct btrfs_dir_item *)((char *)di + di_len); 4191 } 4192 next: 4193 path->slots[0]++; 4194 } 4195 4196 if (key_type == BTRFS_DIR_INDEX_KEY) { 4197 if (is_curr) 4198 filp->f_pos++; 4199 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4200 &ins_list); 4201 if (ret) 4202 goto nopos; 4203 } 4204 4205 /* Reached end of directory/root. Bump pos past the last item. */ 4206 if (key_type == BTRFS_DIR_INDEX_KEY) 4207 /* 4208 * 32-bit glibc will use getdents64, but then strtol - 4209 * so the last number we can serve is this. 4210 */ 4211 filp->f_pos = 0x7fffffff; 4212 else 4213 filp->f_pos++; 4214 nopos: 4215 ret = 0; 4216 err: 4217 if (key_type == BTRFS_DIR_INDEX_KEY) 4218 btrfs_put_delayed_items(&ins_list, &del_list); 4219 btrfs_free_path(path); 4220 return ret; 4221 } 4222 4223 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4224 { 4225 struct btrfs_root *root = BTRFS_I(inode)->root; 4226 struct btrfs_trans_handle *trans; 4227 int ret = 0; 4228 bool nolock = false; 4229 4230 if (BTRFS_I(inode)->dummy_inode) 4231 return 0; 4232 4233 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode)) 4234 nolock = true; 4235 4236 if (wbc->sync_mode == WB_SYNC_ALL) { 4237 if (nolock) 4238 trans = btrfs_join_transaction_nolock(root); 4239 else 4240 trans = btrfs_join_transaction(root); 4241 if (IS_ERR(trans)) 4242 return PTR_ERR(trans); 4243 if (nolock) 4244 ret = btrfs_end_transaction_nolock(trans, root); 4245 else 4246 ret = btrfs_commit_transaction(trans, root); 4247 } 4248 return ret; 4249 } 4250 4251 /* 4252 * This is somewhat expensive, updating the tree every time the 4253 * inode changes. But, it is most likely to find the inode in cache. 4254 * FIXME, needs more benchmarking...there are no reasons other than performance 4255 * to keep or drop this code. 4256 */ 4257 int btrfs_dirty_inode(struct inode *inode) 4258 { 4259 struct btrfs_root *root = BTRFS_I(inode)->root; 4260 struct btrfs_trans_handle *trans; 4261 int ret; 4262 4263 if (BTRFS_I(inode)->dummy_inode) 4264 return 0; 4265 4266 trans = btrfs_join_transaction(root); 4267 if (IS_ERR(trans)) 4268 return PTR_ERR(trans); 4269 4270 ret = btrfs_update_inode(trans, root, inode); 4271 if (ret && ret == -ENOSPC) { 4272 /* whoops, lets try again with the full transaction */ 4273 btrfs_end_transaction(trans, root); 4274 trans = btrfs_start_transaction(root, 1); 4275 if (IS_ERR(trans)) 4276 return PTR_ERR(trans); 4277 4278 ret = btrfs_update_inode(trans, root, inode); 4279 } 4280 btrfs_end_transaction(trans, root); 4281 if (BTRFS_I(inode)->delayed_node) 4282 btrfs_balance_delayed_items(root); 4283 4284 return ret; 4285 } 4286 4287 /* 4288 * This is a copy of file_update_time. We need this so we can return error on 4289 * ENOSPC for updating the inode in the case of file write and mmap writes. 4290 */ 4291 int btrfs_update_time(struct file *file) 4292 { 4293 struct inode *inode = file->f_path.dentry->d_inode; 4294 struct timespec now; 4295 int ret; 4296 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 4297 4298 /* First try to exhaust all avenues to not sync */ 4299 if (IS_NOCMTIME(inode)) 4300 return 0; 4301 4302 now = current_fs_time(inode->i_sb); 4303 if (!timespec_equal(&inode->i_mtime, &now)) 4304 sync_it = S_MTIME; 4305 4306 if (!timespec_equal(&inode->i_ctime, &now)) 4307 sync_it |= S_CTIME; 4308 4309 if (IS_I_VERSION(inode)) 4310 sync_it |= S_VERSION; 4311 4312 if (!sync_it) 4313 return 0; 4314 4315 /* Finally allowed to write? Takes lock. */ 4316 if (mnt_want_write_file(file)) 4317 return 0; 4318 4319 /* Only change inode inside the lock region */ 4320 if (sync_it & S_VERSION) 4321 inode_inc_iversion(inode); 4322 if (sync_it & S_CTIME) 4323 inode->i_ctime = now; 4324 if (sync_it & S_MTIME) 4325 inode->i_mtime = now; 4326 ret = btrfs_dirty_inode(inode); 4327 if (!ret) 4328 mark_inode_dirty_sync(inode); 4329 mnt_drop_write(file->f_path.mnt); 4330 return ret; 4331 } 4332 4333 /* 4334 * find the highest existing sequence number in a directory 4335 * and then set the in-memory index_cnt variable to reflect 4336 * free sequence numbers 4337 */ 4338 static int btrfs_set_inode_index_count(struct inode *inode) 4339 { 4340 struct btrfs_root *root = BTRFS_I(inode)->root; 4341 struct btrfs_key key, found_key; 4342 struct btrfs_path *path; 4343 struct extent_buffer *leaf; 4344 int ret; 4345 4346 key.objectid = btrfs_ino(inode); 4347 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4348 key.offset = (u64)-1; 4349 4350 path = btrfs_alloc_path(); 4351 if (!path) 4352 return -ENOMEM; 4353 4354 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4355 if (ret < 0) 4356 goto out; 4357 /* FIXME: we should be able to handle this */ 4358 if (ret == 0) 4359 goto out; 4360 ret = 0; 4361 4362 /* 4363 * MAGIC NUMBER EXPLANATION: 4364 * since we search a directory based on f_pos we have to start at 2 4365 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4366 * else has to start at 2 4367 */ 4368 if (path->slots[0] == 0) { 4369 BTRFS_I(inode)->index_cnt = 2; 4370 goto out; 4371 } 4372 4373 path->slots[0]--; 4374 4375 leaf = path->nodes[0]; 4376 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4377 4378 if (found_key.objectid != btrfs_ino(inode) || 4379 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4380 BTRFS_I(inode)->index_cnt = 2; 4381 goto out; 4382 } 4383 4384 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4385 out: 4386 btrfs_free_path(path); 4387 return ret; 4388 } 4389 4390 /* 4391 * helper to find a free sequence number in a given directory. This current 4392 * code is very simple, later versions will do smarter things in the btree 4393 */ 4394 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4395 { 4396 int ret = 0; 4397 4398 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4399 ret = btrfs_inode_delayed_dir_index_count(dir); 4400 if (ret) { 4401 ret = btrfs_set_inode_index_count(dir); 4402 if (ret) 4403 return ret; 4404 } 4405 } 4406 4407 *index = BTRFS_I(dir)->index_cnt; 4408 BTRFS_I(dir)->index_cnt++; 4409 4410 return ret; 4411 } 4412 4413 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4414 struct btrfs_root *root, 4415 struct inode *dir, 4416 const char *name, int name_len, 4417 u64 ref_objectid, u64 objectid, 4418 umode_t mode, u64 *index) 4419 { 4420 struct inode *inode; 4421 struct btrfs_inode_item *inode_item; 4422 struct btrfs_key *location; 4423 struct btrfs_path *path; 4424 struct btrfs_inode_ref *ref; 4425 struct btrfs_key key[2]; 4426 u32 sizes[2]; 4427 unsigned long ptr; 4428 int ret; 4429 int owner; 4430 4431 path = btrfs_alloc_path(); 4432 if (!path) 4433 return ERR_PTR(-ENOMEM); 4434 4435 inode = new_inode(root->fs_info->sb); 4436 if (!inode) { 4437 btrfs_free_path(path); 4438 return ERR_PTR(-ENOMEM); 4439 } 4440 4441 /* 4442 * we have to initialize this early, so we can reclaim the inode 4443 * number if we fail afterwards in this function. 4444 */ 4445 inode->i_ino = objectid; 4446 4447 if (dir) { 4448 trace_btrfs_inode_request(dir); 4449 4450 ret = btrfs_set_inode_index(dir, index); 4451 if (ret) { 4452 btrfs_free_path(path); 4453 iput(inode); 4454 return ERR_PTR(ret); 4455 } 4456 } 4457 /* 4458 * index_cnt is ignored for everything but a dir, 4459 * btrfs_get_inode_index_count has an explanation for the magic 4460 * number 4461 */ 4462 BTRFS_I(inode)->index_cnt = 2; 4463 BTRFS_I(inode)->root = root; 4464 BTRFS_I(inode)->generation = trans->transid; 4465 inode->i_generation = BTRFS_I(inode)->generation; 4466 btrfs_set_inode_space_info(root, inode); 4467 4468 if (S_ISDIR(mode)) 4469 owner = 0; 4470 else 4471 owner = 1; 4472 4473 key[0].objectid = objectid; 4474 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4475 key[0].offset = 0; 4476 4477 key[1].objectid = objectid; 4478 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4479 key[1].offset = ref_objectid; 4480 4481 sizes[0] = sizeof(struct btrfs_inode_item); 4482 sizes[1] = name_len + sizeof(*ref); 4483 4484 path->leave_spinning = 1; 4485 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4486 if (ret != 0) 4487 goto fail; 4488 4489 inode_init_owner(inode, dir, mode); 4490 inode_set_bytes(inode, 0); 4491 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4492 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4493 struct btrfs_inode_item); 4494 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4495 4496 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4497 struct btrfs_inode_ref); 4498 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4499 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4500 ptr = (unsigned long)(ref + 1); 4501 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4502 4503 btrfs_mark_buffer_dirty(path->nodes[0]); 4504 btrfs_free_path(path); 4505 4506 location = &BTRFS_I(inode)->location; 4507 location->objectid = objectid; 4508 location->offset = 0; 4509 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4510 4511 btrfs_inherit_iflags(inode, dir); 4512 4513 if (S_ISREG(mode)) { 4514 if (btrfs_test_opt(root, NODATASUM)) 4515 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4516 if (btrfs_test_opt(root, NODATACOW) || 4517 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4518 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4519 } 4520 4521 insert_inode_hash(inode); 4522 inode_tree_add(inode); 4523 4524 trace_btrfs_inode_new(inode); 4525 btrfs_set_inode_last_trans(trans, inode); 4526 4527 return inode; 4528 fail: 4529 if (dir) 4530 BTRFS_I(dir)->index_cnt--; 4531 btrfs_free_path(path); 4532 iput(inode); 4533 return ERR_PTR(ret); 4534 } 4535 4536 static inline u8 btrfs_inode_type(struct inode *inode) 4537 { 4538 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4539 } 4540 4541 /* 4542 * utility function to add 'inode' into 'parent_inode' with 4543 * a give name and a given sequence number. 4544 * if 'add_backref' is true, also insert a backref from the 4545 * inode to the parent directory. 4546 */ 4547 int btrfs_add_link(struct btrfs_trans_handle *trans, 4548 struct inode *parent_inode, struct inode *inode, 4549 const char *name, int name_len, int add_backref, u64 index) 4550 { 4551 int ret = 0; 4552 struct btrfs_key key; 4553 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4554 u64 ino = btrfs_ino(inode); 4555 u64 parent_ino = btrfs_ino(parent_inode); 4556 4557 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4558 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4559 } else { 4560 key.objectid = ino; 4561 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4562 key.offset = 0; 4563 } 4564 4565 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4566 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4567 key.objectid, root->root_key.objectid, 4568 parent_ino, index, name, name_len); 4569 } else if (add_backref) { 4570 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4571 parent_ino, index); 4572 } 4573 4574 if (ret == 0) { 4575 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4576 parent_inode, &key, 4577 btrfs_inode_type(inode), index); 4578 BUG_ON(ret); 4579 4580 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4581 name_len * 2); 4582 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4583 ret = btrfs_update_inode(trans, root, parent_inode); 4584 } 4585 return ret; 4586 } 4587 4588 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4589 struct inode *dir, struct dentry *dentry, 4590 struct inode *inode, int backref, u64 index) 4591 { 4592 int err = btrfs_add_link(trans, dir, inode, 4593 dentry->d_name.name, dentry->d_name.len, 4594 backref, index); 4595 if (err > 0) 4596 err = -EEXIST; 4597 return err; 4598 } 4599 4600 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4601 umode_t mode, dev_t rdev) 4602 { 4603 struct btrfs_trans_handle *trans; 4604 struct btrfs_root *root = BTRFS_I(dir)->root; 4605 struct inode *inode = NULL; 4606 int err; 4607 int drop_inode = 0; 4608 u64 objectid; 4609 unsigned long nr = 0; 4610 u64 index = 0; 4611 4612 if (!new_valid_dev(rdev)) 4613 return -EINVAL; 4614 4615 /* 4616 * 2 for inode item and ref 4617 * 2 for dir items 4618 * 1 for xattr if selinux is on 4619 */ 4620 trans = btrfs_start_transaction(root, 5); 4621 if (IS_ERR(trans)) 4622 return PTR_ERR(trans); 4623 4624 err = btrfs_find_free_ino(root, &objectid); 4625 if (err) 4626 goto out_unlock; 4627 4628 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4629 dentry->d_name.len, btrfs_ino(dir), objectid, 4630 mode, &index); 4631 if (IS_ERR(inode)) { 4632 err = PTR_ERR(inode); 4633 goto out_unlock; 4634 } 4635 4636 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4637 if (err) { 4638 drop_inode = 1; 4639 goto out_unlock; 4640 } 4641 4642 /* 4643 * If the active LSM wants to access the inode during 4644 * d_instantiate it needs these. Smack checks to see 4645 * if the filesystem supports xattrs by looking at the 4646 * ops vector. 4647 */ 4648 4649 inode->i_op = &btrfs_special_inode_operations; 4650 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4651 if (err) 4652 drop_inode = 1; 4653 else { 4654 init_special_inode(inode, inode->i_mode, rdev); 4655 btrfs_update_inode(trans, root, inode); 4656 d_instantiate(dentry, inode); 4657 } 4658 out_unlock: 4659 nr = trans->blocks_used; 4660 btrfs_end_transaction(trans, root); 4661 btrfs_btree_balance_dirty(root, nr); 4662 if (drop_inode) { 4663 inode_dec_link_count(inode); 4664 iput(inode); 4665 } 4666 return err; 4667 } 4668 4669 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4670 umode_t mode, struct nameidata *nd) 4671 { 4672 struct btrfs_trans_handle *trans; 4673 struct btrfs_root *root = BTRFS_I(dir)->root; 4674 struct inode *inode = NULL; 4675 int drop_inode = 0; 4676 int err; 4677 unsigned long nr = 0; 4678 u64 objectid; 4679 u64 index = 0; 4680 4681 /* 4682 * 2 for inode item and ref 4683 * 2 for dir items 4684 * 1 for xattr if selinux is on 4685 */ 4686 trans = btrfs_start_transaction(root, 5); 4687 if (IS_ERR(trans)) 4688 return PTR_ERR(trans); 4689 4690 err = btrfs_find_free_ino(root, &objectid); 4691 if (err) 4692 goto out_unlock; 4693 4694 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4695 dentry->d_name.len, btrfs_ino(dir), objectid, 4696 mode, &index); 4697 if (IS_ERR(inode)) { 4698 err = PTR_ERR(inode); 4699 goto out_unlock; 4700 } 4701 4702 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4703 if (err) { 4704 drop_inode = 1; 4705 goto out_unlock; 4706 } 4707 4708 /* 4709 * If the active LSM wants to access the inode during 4710 * d_instantiate it needs these. Smack checks to see 4711 * if the filesystem supports xattrs by looking at the 4712 * ops vector. 4713 */ 4714 inode->i_fop = &btrfs_file_operations; 4715 inode->i_op = &btrfs_file_inode_operations; 4716 4717 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4718 if (err) 4719 drop_inode = 1; 4720 else { 4721 inode->i_mapping->a_ops = &btrfs_aops; 4722 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4723 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4724 d_instantiate(dentry, inode); 4725 } 4726 out_unlock: 4727 nr = trans->blocks_used; 4728 btrfs_end_transaction(trans, root); 4729 if (drop_inode) { 4730 inode_dec_link_count(inode); 4731 iput(inode); 4732 } 4733 btrfs_btree_balance_dirty(root, nr); 4734 return err; 4735 } 4736 4737 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4738 struct dentry *dentry) 4739 { 4740 struct btrfs_trans_handle *trans; 4741 struct btrfs_root *root = BTRFS_I(dir)->root; 4742 struct inode *inode = old_dentry->d_inode; 4743 u64 index; 4744 unsigned long nr = 0; 4745 int err; 4746 int drop_inode = 0; 4747 4748 /* do not allow sys_link's with other subvols of the same device */ 4749 if (root->objectid != BTRFS_I(inode)->root->objectid) 4750 return -EXDEV; 4751 4752 if (inode->i_nlink == ~0U) 4753 return -EMLINK; 4754 4755 err = btrfs_set_inode_index(dir, &index); 4756 if (err) 4757 goto fail; 4758 4759 /* 4760 * 2 items for inode and inode ref 4761 * 2 items for dir items 4762 * 1 item for parent inode 4763 */ 4764 trans = btrfs_start_transaction(root, 5); 4765 if (IS_ERR(trans)) { 4766 err = PTR_ERR(trans); 4767 goto fail; 4768 } 4769 4770 btrfs_inc_nlink(inode); 4771 inode->i_ctime = CURRENT_TIME; 4772 ihold(inode); 4773 4774 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4775 4776 if (err) { 4777 drop_inode = 1; 4778 } else { 4779 struct dentry *parent = dentry->d_parent; 4780 err = btrfs_update_inode(trans, root, inode); 4781 BUG_ON(err); 4782 d_instantiate(dentry, inode); 4783 btrfs_log_new_name(trans, inode, NULL, parent); 4784 } 4785 4786 nr = trans->blocks_used; 4787 btrfs_end_transaction(trans, root); 4788 fail: 4789 if (drop_inode) { 4790 inode_dec_link_count(inode); 4791 iput(inode); 4792 } 4793 btrfs_btree_balance_dirty(root, nr); 4794 return err; 4795 } 4796 4797 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 4798 { 4799 struct inode *inode = NULL; 4800 struct btrfs_trans_handle *trans; 4801 struct btrfs_root *root = BTRFS_I(dir)->root; 4802 int err = 0; 4803 int drop_on_err = 0; 4804 u64 objectid = 0; 4805 u64 index = 0; 4806 unsigned long nr = 1; 4807 4808 /* 4809 * 2 items for inode and ref 4810 * 2 items for dir items 4811 * 1 for xattr if selinux is on 4812 */ 4813 trans = btrfs_start_transaction(root, 5); 4814 if (IS_ERR(trans)) 4815 return PTR_ERR(trans); 4816 4817 err = btrfs_find_free_ino(root, &objectid); 4818 if (err) 4819 goto out_fail; 4820 4821 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4822 dentry->d_name.len, btrfs_ino(dir), objectid, 4823 S_IFDIR | mode, &index); 4824 if (IS_ERR(inode)) { 4825 err = PTR_ERR(inode); 4826 goto out_fail; 4827 } 4828 4829 drop_on_err = 1; 4830 4831 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4832 if (err) 4833 goto out_fail; 4834 4835 inode->i_op = &btrfs_dir_inode_operations; 4836 inode->i_fop = &btrfs_dir_file_operations; 4837 4838 btrfs_i_size_write(inode, 0); 4839 err = btrfs_update_inode(trans, root, inode); 4840 if (err) 4841 goto out_fail; 4842 4843 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4844 dentry->d_name.len, 0, index); 4845 if (err) 4846 goto out_fail; 4847 4848 d_instantiate(dentry, inode); 4849 drop_on_err = 0; 4850 4851 out_fail: 4852 nr = trans->blocks_used; 4853 btrfs_end_transaction(trans, root); 4854 if (drop_on_err) 4855 iput(inode); 4856 btrfs_btree_balance_dirty(root, nr); 4857 return err; 4858 } 4859 4860 /* helper for btfs_get_extent. Given an existing extent in the tree, 4861 * and an extent that you want to insert, deal with overlap and insert 4862 * the new extent into the tree. 4863 */ 4864 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4865 struct extent_map *existing, 4866 struct extent_map *em, 4867 u64 map_start, u64 map_len) 4868 { 4869 u64 start_diff; 4870 4871 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4872 start_diff = map_start - em->start; 4873 em->start = map_start; 4874 em->len = map_len; 4875 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4876 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4877 em->block_start += start_diff; 4878 em->block_len -= start_diff; 4879 } 4880 return add_extent_mapping(em_tree, em); 4881 } 4882 4883 static noinline int uncompress_inline(struct btrfs_path *path, 4884 struct inode *inode, struct page *page, 4885 size_t pg_offset, u64 extent_offset, 4886 struct btrfs_file_extent_item *item) 4887 { 4888 int ret; 4889 struct extent_buffer *leaf = path->nodes[0]; 4890 char *tmp; 4891 size_t max_size; 4892 unsigned long inline_size; 4893 unsigned long ptr; 4894 int compress_type; 4895 4896 WARN_ON(pg_offset != 0); 4897 compress_type = btrfs_file_extent_compression(leaf, item); 4898 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4899 inline_size = btrfs_file_extent_inline_item_len(leaf, 4900 btrfs_item_nr(leaf, path->slots[0])); 4901 tmp = kmalloc(inline_size, GFP_NOFS); 4902 if (!tmp) 4903 return -ENOMEM; 4904 ptr = btrfs_file_extent_inline_start(item); 4905 4906 read_extent_buffer(leaf, tmp, ptr, inline_size); 4907 4908 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4909 ret = btrfs_decompress(compress_type, tmp, page, 4910 extent_offset, inline_size, max_size); 4911 if (ret) { 4912 char *kaddr = kmap_atomic(page, KM_USER0); 4913 unsigned long copy_size = min_t(u64, 4914 PAGE_CACHE_SIZE - pg_offset, 4915 max_size - extent_offset); 4916 memset(kaddr + pg_offset, 0, copy_size); 4917 kunmap_atomic(kaddr, KM_USER0); 4918 } 4919 kfree(tmp); 4920 return 0; 4921 } 4922 4923 /* 4924 * a bit scary, this does extent mapping from logical file offset to the disk. 4925 * the ugly parts come from merging extents from the disk with the in-ram 4926 * representation. This gets more complex because of the data=ordered code, 4927 * where the in-ram extents might be locked pending data=ordered completion. 4928 * 4929 * This also copies inline extents directly into the page. 4930 */ 4931 4932 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4933 size_t pg_offset, u64 start, u64 len, 4934 int create) 4935 { 4936 int ret; 4937 int err = 0; 4938 u64 bytenr; 4939 u64 extent_start = 0; 4940 u64 extent_end = 0; 4941 u64 objectid = btrfs_ino(inode); 4942 u32 found_type; 4943 struct btrfs_path *path = NULL; 4944 struct btrfs_root *root = BTRFS_I(inode)->root; 4945 struct btrfs_file_extent_item *item; 4946 struct extent_buffer *leaf; 4947 struct btrfs_key found_key; 4948 struct extent_map *em = NULL; 4949 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4950 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4951 struct btrfs_trans_handle *trans = NULL; 4952 int compress_type; 4953 4954 again: 4955 read_lock(&em_tree->lock); 4956 em = lookup_extent_mapping(em_tree, start, len); 4957 if (em) 4958 em->bdev = root->fs_info->fs_devices->latest_bdev; 4959 read_unlock(&em_tree->lock); 4960 4961 if (em) { 4962 if (em->start > start || em->start + em->len <= start) 4963 free_extent_map(em); 4964 else if (em->block_start == EXTENT_MAP_INLINE && page) 4965 free_extent_map(em); 4966 else 4967 goto out; 4968 } 4969 em = alloc_extent_map(); 4970 if (!em) { 4971 err = -ENOMEM; 4972 goto out; 4973 } 4974 em->bdev = root->fs_info->fs_devices->latest_bdev; 4975 em->start = EXTENT_MAP_HOLE; 4976 em->orig_start = EXTENT_MAP_HOLE; 4977 em->len = (u64)-1; 4978 em->block_len = (u64)-1; 4979 4980 if (!path) { 4981 path = btrfs_alloc_path(); 4982 if (!path) { 4983 err = -ENOMEM; 4984 goto out; 4985 } 4986 /* 4987 * Chances are we'll be called again, so go ahead and do 4988 * readahead 4989 */ 4990 path->reada = 1; 4991 } 4992 4993 ret = btrfs_lookup_file_extent(trans, root, path, 4994 objectid, start, trans != NULL); 4995 if (ret < 0) { 4996 err = ret; 4997 goto out; 4998 } 4999 5000 if (ret != 0) { 5001 if (path->slots[0] == 0) 5002 goto not_found; 5003 path->slots[0]--; 5004 } 5005 5006 leaf = path->nodes[0]; 5007 item = btrfs_item_ptr(leaf, path->slots[0], 5008 struct btrfs_file_extent_item); 5009 /* are we inside the extent that was found? */ 5010 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5011 found_type = btrfs_key_type(&found_key); 5012 if (found_key.objectid != objectid || 5013 found_type != BTRFS_EXTENT_DATA_KEY) { 5014 goto not_found; 5015 } 5016 5017 found_type = btrfs_file_extent_type(leaf, item); 5018 extent_start = found_key.offset; 5019 compress_type = btrfs_file_extent_compression(leaf, item); 5020 if (found_type == BTRFS_FILE_EXTENT_REG || 5021 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5022 extent_end = extent_start + 5023 btrfs_file_extent_num_bytes(leaf, item); 5024 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5025 size_t size; 5026 size = btrfs_file_extent_inline_len(leaf, item); 5027 extent_end = (extent_start + size + root->sectorsize - 1) & 5028 ~((u64)root->sectorsize - 1); 5029 } 5030 5031 if (start >= extent_end) { 5032 path->slots[0]++; 5033 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5034 ret = btrfs_next_leaf(root, path); 5035 if (ret < 0) { 5036 err = ret; 5037 goto out; 5038 } 5039 if (ret > 0) 5040 goto not_found; 5041 leaf = path->nodes[0]; 5042 } 5043 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5044 if (found_key.objectid != objectid || 5045 found_key.type != BTRFS_EXTENT_DATA_KEY) 5046 goto not_found; 5047 if (start + len <= found_key.offset) 5048 goto not_found; 5049 em->start = start; 5050 em->len = found_key.offset - start; 5051 goto not_found_em; 5052 } 5053 5054 if (found_type == BTRFS_FILE_EXTENT_REG || 5055 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5056 em->start = extent_start; 5057 em->len = extent_end - extent_start; 5058 em->orig_start = extent_start - 5059 btrfs_file_extent_offset(leaf, item); 5060 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5061 if (bytenr == 0) { 5062 em->block_start = EXTENT_MAP_HOLE; 5063 goto insert; 5064 } 5065 if (compress_type != BTRFS_COMPRESS_NONE) { 5066 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5067 em->compress_type = compress_type; 5068 em->block_start = bytenr; 5069 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5070 item); 5071 } else { 5072 bytenr += btrfs_file_extent_offset(leaf, item); 5073 em->block_start = bytenr; 5074 em->block_len = em->len; 5075 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5076 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5077 } 5078 goto insert; 5079 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5080 unsigned long ptr; 5081 char *map; 5082 size_t size; 5083 size_t extent_offset; 5084 size_t copy_size; 5085 5086 em->block_start = EXTENT_MAP_INLINE; 5087 if (!page || create) { 5088 em->start = extent_start; 5089 em->len = extent_end - extent_start; 5090 goto out; 5091 } 5092 5093 size = btrfs_file_extent_inline_len(leaf, item); 5094 extent_offset = page_offset(page) + pg_offset - extent_start; 5095 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5096 size - extent_offset); 5097 em->start = extent_start + extent_offset; 5098 em->len = (copy_size + root->sectorsize - 1) & 5099 ~((u64)root->sectorsize - 1); 5100 em->orig_start = EXTENT_MAP_INLINE; 5101 if (compress_type) { 5102 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5103 em->compress_type = compress_type; 5104 } 5105 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5106 if (create == 0 && !PageUptodate(page)) { 5107 if (btrfs_file_extent_compression(leaf, item) != 5108 BTRFS_COMPRESS_NONE) { 5109 ret = uncompress_inline(path, inode, page, 5110 pg_offset, 5111 extent_offset, item); 5112 BUG_ON(ret); 5113 } else { 5114 map = kmap(page); 5115 read_extent_buffer(leaf, map + pg_offset, ptr, 5116 copy_size); 5117 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5118 memset(map + pg_offset + copy_size, 0, 5119 PAGE_CACHE_SIZE - pg_offset - 5120 copy_size); 5121 } 5122 kunmap(page); 5123 } 5124 flush_dcache_page(page); 5125 } else if (create && PageUptodate(page)) { 5126 BUG(); 5127 if (!trans) { 5128 kunmap(page); 5129 free_extent_map(em); 5130 em = NULL; 5131 5132 btrfs_release_path(path); 5133 trans = btrfs_join_transaction(root); 5134 5135 if (IS_ERR(trans)) 5136 return ERR_CAST(trans); 5137 goto again; 5138 } 5139 map = kmap(page); 5140 write_extent_buffer(leaf, map + pg_offset, ptr, 5141 copy_size); 5142 kunmap(page); 5143 btrfs_mark_buffer_dirty(leaf); 5144 } 5145 set_extent_uptodate(io_tree, em->start, 5146 extent_map_end(em) - 1, NULL, GFP_NOFS); 5147 goto insert; 5148 } else { 5149 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5150 WARN_ON(1); 5151 } 5152 not_found: 5153 em->start = start; 5154 em->len = len; 5155 not_found_em: 5156 em->block_start = EXTENT_MAP_HOLE; 5157 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5158 insert: 5159 btrfs_release_path(path); 5160 if (em->start > start || extent_map_end(em) <= start) { 5161 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5162 "[%llu %llu]\n", (unsigned long long)em->start, 5163 (unsigned long long)em->len, 5164 (unsigned long long)start, 5165 (unsigned long long)len); 5166 err = -EIO; 5167 goto out; 5168 } 5169 5170 err = 0; 5171 write_lock(&em_tree->lock); 5172 ret = add_extent_mapping(em_tree, em); 5173 /* it is possible that someone inserted the extent into the tree 5174 * while we had the lock dropped. It is also possible that 5175 * an overlapping map exists in the tree 5176 */ 5177 if (ret == -EEXIST) { 5178 struct extent_map *existing; 5179 5180 ret = 0; 5181 5182 existing = lookup_extent_mapping(em_tree, start, len); 5183 if (existing && (existing->start > start || 5184 existing->start + existing->len <= start)) { 5185 free_extent_map(existing); 5186 existing = NULL; 5187 } 5188 if (!existing) { 5189 existing = lookup_extent_mapping(em_tree, em->start, 5190 em->len); 5191 if (existing) { 5192 err = merge_extent_mapping(em_tree, existing, 5193 em, start, 5194 root->sectorsize); 5195 free_extent_map(existing); 5196 if (err) { 5197 free_extent_map(em); 5198 em = NULL; 5199 } 5200 } else { 5201 err = -EIO; 5202 free_extent_map(em); 5203 em = NULL; 5204 } 5205 } else { 5206 free_extent_map(em); 5207 em = existing; 5208 err = 0; 5209 } 5210 } 5211 write_unlock(&em_tree->lock); 5212 out: 5213 5214 trace_btrfs_get_extent(root, em); 5215 5216 if (path) 5217 btrfs_free_path(path); 5218 if (trans) { 5219 ret = btrfs_end_transaction(trans, root); 5220 if (!err) 5221 err = ret; 5222 } 5223 if (err) { 5224 free_extent_map(em); 5225 return ERR_PTR(err); 5226 } 5227 return em; 5228 } 5229 5230 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5231 size_t pg_offset, u64 start, u64 len, 5232 int create) 5233 { 5234 struct extent_map *em; 5235 struct extent_map *hole_em = NULL; 5236 u64 range_start = start; 5237 u64 end; 5238 u64 found; 5239 u64 found_end; 5240 int err = 0; 5241 5242 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5243 if (IS_ERR(em)) 5244 return em; 5245 if (em) { 5246 /* 5247 * if our em maps to a hole, there might 5248 * actually be delalloc bytes behind it 5249 */ 5250 if (em->block_start != EXTENT_MAP_HOLE) 5251 return em; 5252 else 5253 hole_em = em; 5254 } 5255 5256 /* check to see if we've wrapped (len == -1 or similar) */ 5257 end = start + len; 5258 if (end < start) 5259 end = (u64)-1; 5260 else 5261 end -= 1; 5262 5263 em = NULL; 5264 5265 /* ok, we didn't find anything, lets look for delalloc */ 5266 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5267 end, len, EXTENT_DELALLOC, 1); 5268 found_end = range_start + found; 5269 if (found_end < range_start) 5270 found_end = (u64)-1; 5271 5272 /* 5273 * we didn't find anything useful, return 5274 * the original results from get_extent() 5275 */ 5276 if (range_start > end || found_end <= start) { 5277 em = hole_em; 5278 hole_em = NULL; 5279 goto out; 5280 } 5281 5282 /* adjust the range_start to make sure it doesn't 5283 * go backwards from the start they passed in 5284 */ 5285 range_start = max(start,range_start); 5286 found = found_end - range_start; 5287 5288 if (found > 0) { 5289 u64 hole_start = start; 5290 u64 hole_len = len; 5291 5292 em = alloc_extent_map(); 5293 if (!em) { 5294 err = -ENOMEM; 5295 goto out; 5296 } 5297 /* 5298 * when btrfs_get_extent can't find anything it 5299 * returns one huge hole 5300 * 5301 * make sure what it found really fits our range, and 5302 * adjust to make sure it is based on the start from 5303 * the caller 5304 */ 5305 if (hole_em) { 5306 u64 calc_end = extent_map_end(hole_em); 5307 5308 if (calc_end <= start || (hole_em->start > end)) { 5309 free_extent_map(hole_em); 5310 hole_em = NULL; 5311 } else { 5312 hole_start = max(hole_em->start, start); 5313 hole_len = calc_end - hole_start; 5314 } 5315 } 5316 em->bdev = NULL; 5317 if (hole_em && range_start > hole_start) { 5318 /* our hole starts before our delalloc, so we 5319 * have to return just the parts of the hole 5320 * that go until the delalloc starts 5321 */ 5322 em->len = min(hole_len, 5323 range_start - hole_start); 5324 em->start = hole_start; 5325 em->orig_start = hole_start; 5326 /* 5327 * don't adjust block start at all, 5328 * it is fixed at EXTENT_MAP_HOLE 5329 */ 5330 em->block_start = hole_em->block_start; 5331 em->block_len = hole_len; 5332 } else { 5333 em->start = range_start; 5334 em->len = found; 5335 em->orig_start = range_start; 5336 em->block_start = EXTENT_MAP_DELALLOC; 5337 em->block_len = found; 5338 } 5339 } else if (hole_em) { 5340 return hole_em; 5341 } 5342 out: 5343 5344 free_extent_map(hole_em); 5345 if (err) { 5346 free_extent_map(em); 5347 return ERR_PTR(err); 5348 } 5349 return em; 5350 } 5351 5352 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5353 struct extent_map *em, 5354 u64 start, u64 len) 5355 { 5356 struct btrfs_root *root = BTRFS_I(inode)->root; 5357 struct btrfs_trans_handle *trans; 5358 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5359 struct btrfs_key ins; 5360 u64 alloc_hint; 5361 int ret; 5362 bool insert = false; 5363 5364 /* 5365 * Ok if the extent map we looked up is a hole and is for the exact 5366 * range we want, there is no reason to allocate a new one, however if 5367 * it is not right then we need to free this one and drop the cache for 5368 * our range. 5369 */ 5370 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5371 em->len != len) { 5372 free_extent_map(em); 5373 em = NULL; 5374 insert = true; 5375 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5376 } 5377 5378 trans = btrfs_join_transaction(root); 5379 if (IS_ERR(trans)) 5380 return ERR_CAST(trans); 5381 5382 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5383 btrfs_add_inode_defrag(trans, inode); 5384 5385 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5386 5387 alloc_hint = get_extent_allocation_hint(inode, start, len); 5388 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5389 alloc_hint, (u64)-1, &ins, 1); 5390 if (ret) { 5391 em = ERR_PTR(ret); 5392 goto out; 5393 } 5394 5395 if (!em) { 5396 em = alloc_extent_map(); 5397 if (!em) { 5398 em = ERR_PTR(-ENOMEM); 5399 goto out; 5400 } 5401 } 5402 5403 em->start = start; 5404 em->orig_start = em->start; 5405 em->len = ins.offset; 5406 5407 em->block_start = ins.objectid; 5408 em->block_len = ins.offset; 5409 em->bdev = root->fs_info->fs_devices->latest_bdev; 5410 5411 /* 5412 * We need to do this because if we're using the original em we searched 5413 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5414 */ 5415 em->flags = 0; 5416 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5417 5418 while (insert) { 5419 write_lock(&em_tree->lock); 5420 ret = add_extent_mapping(em_tree, em); 5421 write_unlock(&em_tree->lock); 5422 if (ret != -EEXIST) 5423 break; 5424 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5425 } 5426 5427 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5428 ins.offset, ins.offset, 0); 5429 if (ret) { 5430 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5431 em = ERR_PTR(ret); 5432 } 5433 out: 5434 btrfs_end_transaction(trans, root); 5435 return em; 5436 } 5437 5438 /* 5439 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5440 * block must be cow'd 5441 */ 5442 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5443 struct inode *inode, u64 offset, u64 len) 5444 { 5445 struct btrfs_path *path; 5446 int ret; 5447 struct extent_buffer *leaf; 5448 struct btrfs_root *root = BTRFS_I(inode)->root; 5449 struct btrfs_file_extent_item *fi; 5450 struct btrfs_key key; 5451 u64 disk_bytenr; 5452 u64 backref_offset; 5453 u64 extent_end; 5454 u64 num_bytes; 5455 int slot; 5456 int found_type; 5457 5458 path = btrfs_alloc_path(); 5459 if (!path) 5460 return -ENOMEM; 5461 5462 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5463 offset, 0); 5464 if (ret < 0) 5465 goto out; 5466 5467 slot = path->slots[0]; 5468 if (ret == 1) { 5469 if (slot == 0) { 5470 /* can't find the item, must cow */ 5471 ret = 0; 5472 goto out; 5473 } 5474 slot--; 5475 } 5476 ret = 0; 5477 leaf = path->nodes[0]; 5478 btrfs_item_key_to_cpu(leaf, &key, slot); 5479 if (key.objectid != btrfs_ino(inode) || 5480 key.type != BTRFS_EXTENT_DATA_KEY) { 5481 /* not our file or wrong item type, must cow */ 5482 goto out; 5483 } 5484 5485 if (key.offset > offset) { 5486 /* Wrong offset, must cow */ 5487 goto out; 5488 } 5489 5490 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5491 found_type = btrfs_file_extent_type(leaf, fi); 5492 if (found_type != BTRFS_FILE_EXTENT_REG && 5493 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5494 /* not a regular extent, must cow */ 5495 goto out; 5496 } 5497 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5498 backref_offset = btrfs_file_extent_offset(leaf, fi); 5499 5500 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5501 if (extent_end < offset + len) { 5502 /* extent doesn't include our full range, must cow */ 5503 goto out; 5504 } 5505 5506 if (btrfs_extent_readonly(root, disk_bytenr)) 5507 goto out; 5508 5509 /* 5510 * look for other files referencing this extent, if we 5511 * find any we must cow 5512 */ 5513 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5514 key.offset - backref_offset, disk_bytenr)) 5515 goto out; 5516 5517 /* 5518 * adjust disk_bytenr and num_bytes to cover just the bytes 5519 * in this extent we are about to write. If there 5520 * are any csums in that range we have to cow in order 5521 * to keep the csums correct 5522 */ 5523 disk_bytenr += backref_offset; 5524 disk_bytenr += offset - key.offset; 5525 num_bytes = min(offset + len, extent_end) - offset; 5526 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5527 goto out; 5528 /* 5529 * all of the above have passed, it is safe to overwrite this extent 5530 * without cow 5531 */ 5532 ret = 1; 5533 out: 5534 btrfs_free_path(path); 5535 return ret; 5536 } 5537 5538 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5539 struct buffer_head *bh_result, int create) 5540 { 5541 struct extent_map *em; 5542 struct btrfs_root *root = BTRFS_I(inode)->root; 5543 u64 start = iblock << inode->i_blkbits; 5544 u64 len = bh_result->b_size; 5545 struct btrfs_trans_handle *trans; 5546 5547 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5548 if (IS_ERR(em)) 5549 return PTR_ERR(em); 5550 5551 /* 5552 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5553 * io. INLINE is special, and we could probably kludge it in here, but 5554 * it's still buffered so for safety lets just fall back to the generic 5555 * buffered path. 5556 * 5557 * For COMPRESSED we _have_ to read the entire extent in so we can 5558 * decompress it, so there will be buffering required no matter what we 5559 * do, so go ahead and fallback to buffered. 5560 * 5561 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5562 * to buffered IO. Don't blame me, this is the price we pay for using 5563 * the generic code. 5564 */ 5565 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5566 em->block_start == EXTENT_MAP_INLINE) { 5567 free_extent_map(em); 5568 return -ENOTBLK; 5569 } 5570 5571 /* Just a good old fashioned hole, return */ 5572 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5573 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5574 free_extent_map(em); 5575 /* DIO will do one hole at a time, so just unlock a sector */ 5576 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5577 start + root->sectorsize - 1, GFP_NOFS); 5578 return 0; 5579 } 5580 5581 /* 5582 * We don't allocate a new extent in the following cases 5583 * 5584 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5585 * existing extent. 5586 * 2) The extent is marked as PREALLOC. We're good to go here and can 5587 * just use the extent. 5588 * 5589 */ 5590 if (!create) { 5591 len = em->len - (start - em->start); 5592 goto map; 5593 } 5594 5595 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5596 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5597 em->block_start != EXTENT_MAP_HOLE)) { 5598 int type; 5599 int ret; 5600 u64 block_start; 5601 5602 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5603 type = BTRFS_ORDERED_PREALLOC; 5604 else 5605 type = BTRFS_ORDERED_NOCOW; 5606 len = min(len, em->len - (start - em->start)); 5607 block_start = em->block_start + (start - em->start); 5608 5609 /* 5610 * we're not going to log anything, but we do need 5611 * to make sure the current transaction stays open 5612 * while we look for nocow cross refs 5613 */ 5614 trans = btrfs_join_transaction(root); 5615 if (IS_ERR(trans)) 5616 goto must_cow; 5617 5618 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5619 ret = btrfs_add_ordered_extent_dio(inode, start, 5620 block_start, len, len, type); 5621 btrfs_end_transaction(trans, root); 5622 if (ret) { 5623 free_extent_map(em); 5624 return ret; 5625 } 5626 goto unlock; 5627 } 5628 btrfs_end_transaction(trans, root); 5629 } 5630 must_cow: 5631 /* 5632 * this will cow the extent, reset the len in case we changed 5633 * it above 5634 */ 5635 len = bh_result->b_size; 5636 em = btrfs_new_extent_direct(inode, em, start, len); 5637 if (IS_ERR(em)) 5638 return PTR_ERR(em); 5639 len = min(len, em->len - (start - em->start)); 5640 unlock: 5641 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5642 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5643 0, NULL, GFP_NOFS); 5644 map: 5645 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5646 inode->i_blkbits; 5647 bh_result->b_size = len; 5648 bh_result->b_bdev = em->bdev; 5649 set_buffer_mapped(bh_result); 5650 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5651 set_buffer_new(bh_result); 5652 5653 free_extent_map(em); 5654 5655 return 0; 5656 } 5657 5658 struct btrfs_dio_private { 5659 struct inode *inode; 5660 u64 logical_offset; 5661 u64 disk_bytenr; 5662 u64 bytes; 5663 u32 *csums; 5664 void *private; 5665 5666 /* number of bios pending for this dio */ 5667 atomic_t pending_bios; 5668 5669 /* IO errors */ 5670 int errors; 5671 5672 struct bio *orig_bio; 5673 }; 5674 5675 static void btrfs_endio_direct_read(struct bio *bio, int err) 5676 { 5677 struct btrfs_dio_private *dip = bio->bi_private; 5678 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5679 struct bio_vec *bvec = bio->bi_io_vec; 5680 struct inode *inode = dip->inode; 5681 struct btrfs_root *root = BTRFS_I(inode)->root; 5682 u64 start; 5683 u32 *private = dip->csums; 5684 5685 start = dip->logical_offset; 5686 do { 5687 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5688 struct page *page = bvec->bv_page; 5689 char *kaddr; 5690 u32 csum = ~(u32)0; 5691 unsigned long flags; 5692 5693 local_irq_save(flags); 5694 kaddr = kmap_atomic(page, KM_IRQ0); 5695 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5696 csum, bvec->bv_len); 5697 btrfs_csum_final(csum, (char *)&csum); 5698 kunmap_atomic(kaddr, KM_IRQ0); 5699 local_irq_restore(flags); 5700 5701 flush_dcache_page(bvec->bv_page); 5702 if (csum != *private) { 5703 printk(KERN_ERR "btrfs csum failed ino %llu off" 5704 " %llu csum %u private %u\n", 5705 (unsigned long long)btrfs_ino(inode), 5706 (unsigned long long)start, 5707 csum, *private); 5708 err = -EIO; 5709 } 5710 } 5711 5712 start += bvec->bv_len; 5713 private++; 5714 bvec++; 5715 } while (bvec <= bvec_end); 5716 5717 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5718 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5719 bio->bi_private = dip->private; 5720 5721 kfree(dip->csums); 5722 kfree(dip); 5723 5724 /* If we had a csum failure make sure to clear the uptodate flag */ 5725 if (err) 5726 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5727 dio_end_io(bio, err); 5728 } 5729 5730 static void btrfs_endio_direct_write(struct bio *bio, int err) 5731 { 5732 struct btrfs_dio_private *dip = bio->bi_private; 5733 struct inode *inode = dip->inode; 5734 struct btrfs_root *root = BTRFS_I(inode)->root; 5735 struct btrfs_trans_handle *trans; 5736 struct btrfs_ordered_extent *ordered = NULL; 5737 struct extent_state *cached_state = NULL; 5738 u64 ordered_offset = dip->logical_offset; 5739 u64 ordered_bytes = dip->bytes; 5740 int ret; 5741 5742 if (err) 5743 goto out_done; 5744 again: 5745 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5746 &ordered_offset, 5747 ordered_bytes); 5748 if (!ret) 5749 goto out_test; 5750 5751 BUG_ON(!ordered); 5752 5753 trans = btrfs_join_transaction(root); 5754 if (IS_ERR(trans)) { 5755 err = -ENOMEM; 5756 goto out; 5757 } 5758 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5759 5760 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5761 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5762 if (!ret) 5763 err = btrfs_update_inode_fallback(trans, root, inode); 5764 goto out; 5765 } 5766 5767 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5768 ordered->file_offset + ordered->len - 1, 0, 5769 &cached_state, GFP_NOFS); 5770 5771 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5772 ret = btrfs_mark_extent_written(trans, inode, 5773 ordered->file_offset, 5774 ordered->file_offset + 5775 ordered->len); 5776 if (ret) { 5777 err = ret; 5778 goto out_unlock; 5779 } 5780 } else { 5781 ret = insert_reserved_file_extent(trans, inode, 5782 ordered->file_offset, 5783 ordered->start, 5784 ordered->disk_len, 5785 ordered->len, 5786 ordered->len, 5787 0, 0, 0, 5788 BTRFS_FILE_EXTENT_REG); 5789 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5790 ordered->file_offset, ordered->len); 5791 if (ret) { 5792 err = ret; 5793 WARN_ON(1); 5794 goto out_unlock; 5795 } 5796 } 5797 5798 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5799 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5800 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 5801 btrfs_update_inode_fallback(trans, root, inode); 5802 ret = 0; 5803 out_unlock: 5804 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5805 ordered->file_offset + ordered->len - 1, 5806 &cached_state, GFP_NOFS); 5807 out: 5808 btrfs_delalloc_release_metadata(inode, ordered->len); 5809 btrfs_end_transaction(trans, root); 5810 ordered_offset = ordered->file_offset + ordered->len; 5811 btrfs_put_ordered_extent(ordered); 5812 btrfs_put_ordered_extent(ordered); 5813 5814 out_test: 5815 /* 5816 * our bio might span multiple ordered extents. If we haven't 5817 * completed the accounting for the whole dio, go back and try again 5818 */ 5819 if (ordered_offset < dip->logical_offset + dip->bytes) { 5820 ordered_bytes = dip->logical_offset + dip->bytes - 5821 ordered_offset; 5822 goto again; 5823 } 5824 out_done: 5825 bio->bi_private = dip->private; 5826 5827 kfree(dip->csums); 5828 kfree(dip); 5829 5830 /* If we had an error make sure to clear the uptodate flag */ 5831 if (err) 5832 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5833 dio_end_io(bio, err); 5834 } 5835 5836 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5837 struct bio *bio, int mirror_num, 5838 unsigned long bio_flags, u64 offset) 5839 { 5840 int ret; 5841 struct btrfs_root *root = BTRFS_I(inode)->root; 5842 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5843 BUG_ON(ret); 5844 return 0; 5845 } 5846 5847 static void btrfs_end_dio_bio(struct bio *bio, int err) 5848 { 5849 struct btrfs_dio_private *dip = bio->bi_private; 5850 5851 if (err) { 5852 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 5853 "sector %#Lx len %u err no %d\n", 5854 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 5855 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5856 dip->errors = 1; 5857 5858 /* 5859 * before atomic variable goto zero, we must make sure 5860 * dip->errors is perceived to be set. 5861 */ 5862 smp_mb__before_atomic_dec(); 5863 } 5864 5865 /* if there are more bios still pending for this dio, just exit */ 5866 if (!atomic_dec_and_test(&dip->pending_bios)) 5867 goto out; 5868 5869 if (dip->errors) 5870 bio_io_error(dip->orig_bio); 5871 else { 5872 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5873 bio_endio(dip->orig_bio, 0); 5874 } 5875 out: 5876 bio_put(bio); 5877 } 5878 5879 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5880 u64 first_sector, gfp_t gfp_flags) 5881 { 5882 int nr_vecs = bio_get_nr_vecs(bdev); 5883 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5884 } 5885 5886 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5887 int rw, u64 file_offset, int skip_sum, 5888 u32 *csums, int async_submit) 5889 { 5890 int write = rw & REQ_WRITE; 5891 struct btrfs_root *root = BTRFS_I(inode)->root; 5892 int ret; 5893 5894 bio_get(bio); 5895 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5896 if (ret) 5897 goto err; 5898 5899 if (skip_sum) 5900 goto map; 5901 5902 if (write && async_submit) { 5903 ret = btrfs_wq_submit_bio(root->fs_info, 5904 inode, rw, bio, 0, 0, 5905 file_offset, 5906 __btrfs_submit_bio_start_direct_io, 5907 __btrfs_submit_bio_done); 5908 goto err; 5909 } else if (write) { 5910 /* 5911 * If we aren't doing async submit, calculate the csum of the 5912 * bio now. 5913 */ 5914 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 5915 if (ret) 5916 goto err; 5917 } else if (!skip_sum) { 5918 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 5919 file_offset, csums); 5920 if (ret) 5921 goto err; 5922 } 5923 5924 map: 5925 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 5926 err: 5927 bio_put(bio); 5928 return ret; 5929 } 5930 5931 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5932 int skip_sum) 5933 { 5934 struct inode *inode = dip->inode; 5935 struct btrfs_root *root = BTRFS_I(inode)->root; 5936 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5937 struct bio *bio; 5938 struct bio *orig_bio = dip->orig_bio; 5939 struct bio_vec *bvec = orig_bio->bi_io_vec; 5940 u64 start_sector = orig_bio->bi_sector; 5941 u64 file_offset = dip->logical_offset; 5942 u64 submit_len = 0; 5943 u64 map_length; 5944 int nr_pages = 0; 5945 u32 *csums = dip->csums; 5946 int ret = 0; 5947 int async_submit = 0; 5948 int write = rw & REQ_WRITE; 5949 5950 map_length = orig_bio->bi_size; 5951 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5952 &map_length, NULL, 0); 5953 if (ret) { 5954 bio_put(orig_bio); 5955 return -EIO; 5956 } 5957 5958 if (map_length >= orig_bio->bi_size) { 5959 bio = orig_bio; 5960 goto submit; 5961 } 5962 5963 async_submit = 1; 5964 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5965 if (!bio) 5966 return -ENOMEM; 5967 bio->bi_private = dip; 5968 bio->bi_end_io = btrfs_end_dio_bio; 5969 atomic_inc(&dip->pending_bios); 5970 5971 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5972 if (unlikely(map_length < submit_len + bvec->bv_len || 5973 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5974 bvec->bv_offset) < bvec->bv_len)) { 5975 /* 5976 * inc the count before we submit the bio so 5977 * we know the end IO handler won't happen before 5978 * we inc the count. Otherwise, the dip might get freed 5979 * before we're done setting it up 5980 */ 5981 atomic_inc(&dip->pending_bios); 5982 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5983 file_offset, skip_sum, 5984 csums, async_submit); 5985 if (ret) { 5986 bio_put(bio); 5987 atomic_dec(&dip->pending_bios); 5988 goto out_err; 5989 } 5990 5991 /* Write's use the ordered csums */ 5992 if (!write && !skip_sum) 5993 csums = csums + nr_pages; 5994 start_sector += submit_len >> 9; 5995 file_offset += submit_len; 5996 5997 submit_len = 0; 5998 nr_pages = 0; 5999 6000 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6001 start_sector, GFP_NOFS); 6002 if (!bio) 6003 goto out_err; 6004 bio->bi_private = dip; 6005 bio->bi_end_io = btrfs_end_dio_bio; 6006 6007 map_length = orig_bio->bi_size; 6008 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6009 &map_length, NULL, 0); 6010 if (ret) { 6011 bio_put(bio); 6012 goto out_err; 6013 } 6014 } else { 6015 submit_len += bvec->bv_len; 6016 nr_pages ++; 6017 bvec++; 6018 } 6019 } 6020 6021 submit: 6022 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6023 csums, async_submit); 6024 if (!ret) 6025 return 0; 6026 6027 bio_put(bio); 6028 out_err: 6029 dip->errors = 1; 6030 /* 6031 * before atomic variable goto zero, we must 6032 * make sure dip->errors is perceived to be set. 6033 */ 6034 smp_mb__before_atomic_dec(); 6035 if (atomic_dec_and_test(&dip->pending_bios)) 6036 bio_io_error(dip->orig_bio); 6037 6038 /* bio_end_io() will handle error, so we needn't return it */ 6039 return 0; 6040 } 6041 6042 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6043 loff_t file_offset) 6044 { 6045 struct btrfs_root *root = BTRFS_I(inode)->root; 6046 struct btrfs_dio_private *dip; 6047 struct bio_vec *bvec = bio->bi_io_vec; 6048 int skip_sum; 6049 int write = rw & REQ_WRITE; 6050 int ret = 0; 6051 6052 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6053 6054 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6055 if (!dip) { 6056 ret = -ENOMEM; 6057 goto free_ordered; 6058 } 6059 dip->csums = NULL; 6060 6061 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 6062 if (!write && !skip_sum) { 6063 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6064 if (!dip->csums) { 6065 kfree(dip); 6066 ret = -ENOMEM; 6067 goto free_ordered; 6068 } 6069 } 6070 6071 dip->private = bio->bi_private; 6072 dip->inode = inode; 6073 dip->logical_offset = file_offset; 6074 6075 dip->bytes = 0; 6076 do { 6077 dip->bytes += bvec->bv_len; 6078 bvec++; 6079 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6080 6081 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6082 bio->bi_private = dip; 6083 dip->errors = 0; 6084 dip->orig_bio = bio; 6085 atomic_set(&dip->pending_bios, 0); 6086 6087 if (write) 6088 bio->bi_end_io = btrfs_endio_direct_write; 6089 else 6090 bio->bi_end_io = btrfs_endio_direct_read; 6091 6092 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6093 if (!ret) 6094 return; 6095 free_ordered: 6096 /* 6097 * If this is a write, we need to clean up the reserved space and kill 6098 * the ordered extent. 6099 */ 6100 if (write) { 6101 struct btrfs_ordered_extent *ordered; 6102 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6103 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6104 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6105 btrfs_free_reserved_extent(root, ordered->start, 6106 ordered->disk_len); 6107 btrfs_put_ordered_extent(ordered); 6108 btrfs_put_ordered_extent(ordered); 6109 } 6110 bio_endio(bio, ret); 6111 } 6112 6113 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6114 const struct iovec *iov, loff_t offset, 6115 unsigned long nr_segs) 6116 { 6117 int seg; 6118 int i; 6119 size_t size; 6120 unsigned long addr; 6121 unsigned blocksize_mask = root->sectorsize - 1; 6122 ssize_t retval = -EINVAL; 6123 loff_t end = offset; 6124 6125 if (offset & blocksize_mask) 6126 goto out; 6127 6128 /* Check the memory alignment. Blocks cannot straddle pages */ 6129 for (seg = 0; seg < nr_segs; seg++) { 6130 addr = (unsigned long)iov[seg].iov_base; 6131 size = iov[seg].iov_len; 6132 end += size; 6133 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6134 goto out; 6135 6136 /* If this is a write we don't need to check anymore */ 6137 if (rw & WRITE) 6138 continue; 6139 6140 /* 6141 * Check to make sure we don't have duplicate iov_base's in this 6142 * iovec, if so return EINVAL, otherwise we'll get csum errors 6143 * when reading back. 6144 */ 6145 for (i = seg + 1; i < nr_segs; i++) { 6146 if (iov[seg].iov_base == iov[i].iov_base) 6147 goto out; 6148 } 6149 } 6150 retval = 0; 6151 out: 6152 return retval; 6153 } 6154 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6155 const struct iovec *iov, loff_t offset, 6156 unsigned long nr_segs) 6157 { 6158 struct file *file = iocb->ki_filp; 6159 struct inode *inode = file->f_mapping->host; 6160 struct btrfs_ordered_extent *ordered; 6161 struct extent_state *cached_state = NULL; 6162 u64 lockstart, lockend; 6163 ssize_t ret; 6164 int writing = rw & WRITE; 6165 int write_bits = 0; 6166 size_t count = iov_length(iov, nr_segs); 6167 6168 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6169 offset, nr_segs)) { 6170 return 0; 6171 } 6172 6173 lockstart = offset; 6174 lockend = offset + count - 1; 6175 6176 if (writing) { 6177 ret = btrfs_delalloc_reserve_space(inode, count); 6178 if (ret) 6179 goto out; 6180 } 6181 6182 while (1) { 6183 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6184 0, &cached_state, GFP_NOFS); 6185 /* 6186 * We're concerned with the entire range that we're going to be 6187 * doing DIO to, so we need to make sure theres no ordered 6188 * extents in this range. 6189 */ 6190 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6191 lockend - lockstart + 1); 6192 if (!ordered) 6193 break; 6194 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6195 &cached_state, GFP_NOFS); 6196 btrfs_start_ordered_extent(inode, ordered, 1); 6197 btrfs_put_ordered_extent(ordered); 6198 cond_resched(); 6199 } 6200 6201 /* 6202 * we don't use btrfs_set_extent_delalloc because we don't want 6203 * the dirty or uptodate bits 6204 */ 6205 if (writing) { 6206 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6207 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6208 EXTENT_DELALLOC, 0, NULL, &cached_state, 6209 GFP_NOFS); 6210 if (ret) { 6211 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6212 lockend, EXTENT_LOCKED | write_bits, 6213 1, 0, &cached_state, GFP_NOFS); 6214 goto out; 6215 } 6216 } 6217 6218 free_extent_state(cached_state); 6219 cached_state = NULL; 6220 6221 ret = __blockdev_direct_IO(rw, iocb, inode, 6222 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6223 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6224 btrfs_submit_direct, 0); 6225 6226 if (ret < 0 && ret != -EIOCBQUEUED) { 6227 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6228 offset + iov_length(iov, nr_segs) - 1, 6229 EXTENT_LOCKED | write_bits, 1, 0, 6230 &cached_state, GFP_NOFS); 6231 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6232 /* 6233 * We're falling back to buffered, unlock the section we didn't 6234 * do IO on. 6235 */ 6236 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6237 offset + iov_length(iov, nr_segs) - 1, 6238 EXTENT_LOCKED | write_bits, 1, 0, 6239 &cached_state, GFP_NOFS); 6240 } 6241 out: 6242 free_extent_state(cached_state); 6243 return ret; 6244 } 6245 6246 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6247 __u64 start, __u64 len) 6248 { 6249 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6250 } 6251 6252 int btrfs_readpage(struct file *file, struct page *page) 6253 { 6254 struct extent_io_tree *tree; 6255 tree = &BTRFS_I(page->mapping->host)->io_tree; 6256 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 6257 } 6258 6259 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6260 { 6261 struct extent_io_tree *tree; 6262 6263 6264 if (current->flags & PF_MEMALLOC) { 6265 redirty_page_for_writepage(wbc, page); 6266 unlock_page(page); 6267 return 0; 6268 } 6269 tree = &BTRFS_I(page->mapping->host)->io_tree; 6270 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6271 } 6272 6273 int btrfs_writepages(struct address_space *mapping, 6274 struct writeback_control *wbc) 6275 { 6276 struct extent_io_tree *tree; 6277 6278 tree = &BTRFS_I(mapping->host)->io_tree; 6279 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6280 } 6281 6282 static int 6283 btrfs_readpages(struct file *file, struct address_space *mapping, 6284 struct list_head *pages, unsigned nr_pages) 6285 { 6286 struct extent_io_tree *tree; 6287 tree = &BTRFS_I(mapping->host)->io_tree; 6288 return extent_readpages(tree, mapping, pages, nr_pages, 6289 btrfs_get_extent); 6290 } 6291 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6292 { 6293 struct extent_io_tree *tree; 6294 struct extent_map_tree *map; 6295 int ret; 6296 6297 tree = &BTRFS_I(page->mapping->host)->io_tree; 6298 map = &BTRFS_I(page->mapping->host)->extent_tree; 6299 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6300 if (ret == 1) { 6301 ClearPagePrivate(page); 6302 set_page_private(page, 0); 6303 page_cache_release(page); 6304 } 6305 return ret; 6306 } 6307 6308 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6309 { 6310 if (PageWriteback(page) || PageDirty(page)) 6311 return 0; 6312 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6313 } 6314 6315 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6316 { 6317 struct extent_io_tree *tree; 6318 struct btrfs_ordered_extent *ordered; 6319 struct extent_state *cached_state = NULL; 6320 u64 page_start = page_offset(page); 6321 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6322 6323 6324 /* 6325 * we have the page locked, so new writeback can't start, 6326 * and the dirty bit won't be cleared while we are here. 6327 * 6328 * Wait for IO on this page so that we can safely clear 6329 * the PagePrivate2 bit and do ordered accounting 6330 */ 6331 wait_on_page_writeback(page); 6332 6333 tree = &BTRFS_I(page->mapping->host)->io_tree; 6334 if (offset) { 6335 btrfs_releasepage(page, GFP_NOFS); 6336 return; 6337 } 6338 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6339 GFP_NOFS); 6340 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6341 page_offset(page)); 6342 if (ordered) { 6343 /* 6344 * IO on this page will never be started, so we need 6345 * to account for any ordered extents now 6346 */ 6347 clear_extent_bit(tree, page_start, page_end, 6348 EXTENT_DIRTY | EXTENT_DELALLOC | 6349 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6350 &cached_state, GFP_NOFS); 6351 /* 6352 * whoever cleared the private bit is responsible 6353 * for the finish_ordered_io 6354 */ 6355 if (TestClearPagePrivate2(page)) { 6356 btrfs_finish_ordered_io(page->mapping->host, 6357 page_start, page_end); 6358 } 6359 btrfs_put_ordered_extent(ordered); 6360 cached_state = NULL; 6361 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6362 GFP_NOFS); 6363 } 6364 clear_extent_bit(tree, page_start, page_end, 6365 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6366 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6367 __btrfs_releasepage(page, GFP_NOFS); 6368 6369 ClearPageChecked(page); 6370 if (PagePrivate(page)) { 6371 ClearPagePrivate(page); 6372 set_page_private(page, 0); 6373 page_cache_release(page); 6374 } 6375 } 6376 6377 /* 6378 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6379 * called from a page fault handler when a page is first dirtied. Hence we must 6380 * be careful to check for EOF conditions here. We set the page up correctly 6381 * for a written page which means we get ENOSPC checking when writing into 6382 * holes and correct delalloc and unwritten extent mapping on filesystems that 6383 * support these features. 6384 * 6385 * We are not allowed to take the i_mutex here so we have to play games to 6386 * protect against truncate races as the page could now be beyond EOF. Because 6387 * vmtruncate() writes the inode size before removing pages, once we have the 6388 * page lock we can determine safely if the page is beyond EOF. If it is not 6389 * beyond EOF, then the page is guaranteed safe against truncation until we 6390 * unlock the page. 6391 */ 6392 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6393 { 6394 struct page *page = vmf->page; 6395 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6396 struct btrfs_root *root = BTRFS_I(inode)->root; 6397 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6398 struct btrfs_ordered_extent *ordered; 6399 struct extent_state *cached_state = NULL; 6400 char *kaddr; 6401 unsigned long zero_start; 6402 loff_t size; 6403 int ret; 6404 u64 page_start; 6405 u64 page_end; 6406 6407 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6408 if (!ret) 6409 ret = btrfs_update_time(vma->vm_file); 6410 if (ret) { 6411 if (ret == -ENOMEM) 6412 ret = VM_FAULT_OOM; 6413 else /* -ENOSPC, -EIO, etc */ 6414 ret = VM_FAULT_SIGBUS; 6415 goto out; 6416 } 6417 6418 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6419 again: 6420 lock_page(page); 6421 size = i_size_read(inode); 6422 page_start = page_offset(page); 6423 page_end = page_start + PAGE_CACHE_SIZE - 1; 6424 6425 if ((page->mapping != inode->i_mapping) || 6426 (page_start >= size)) { 6427 /* page got truncated out from underneath us */ 6428 goto out_unlock; 6429 } 6430 wait_on_page_writeback(page); 6431 6432 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6433 GFP_NOFS); 6434 set_page_extent_mapped(page); 6435 6436 /* 6437 * we can't set the delalloc bits if there are pending ordered 6438 * extents. Drop our locks and wait for them to finish 6439 */ 6440 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6441 if (ordered) { 6442 unlock_extent_cached(io_tree, page_start, page_end, 6443 &cached_state, GFP_NOFS); 6444 unlock_page(page); 6445 btrfs_start_ordered_extent(inode, ordered, 1); 6446 btrfs_put_ordered_extent(ordered); 6447 goto again; 6448 } 6449 6450 /* 6451 * XXX - page_mkwrite gets called every time the page is dirtied, even 6452 * if it was already dirty, so for space accounting reasons we need to 6453 * clear any delalloc bits for the range we are fixing to save. There 6454 * is probably a better way to do this, but for now keep consistent with 6455 * prepare_pages in the normal write path. 6456 */ 6457 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6458 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6459 0, 0, &cached_state, GFP_NOFS); 6460 6461 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6462 &cached_state); 6463 if (ret) { 6464 unlock_extent_cached(io_tree, page_start, page_end, 6465 &cached_state, GFP_NOFS); 6466 ret = VM_FAULT_SIGBUS; 6467 goto out_unlock; 6468 } 6469 ret = 0; 6470 6471 /* page is wholly or partially inside EOF */ 6472 if (page_start + PAGE_CACHE_SIZE > size) 6473 zero_start = size & ~PAGE_CACHE_MASK; 6474 else 6475 zero_start = PAGE_CACHE_SIZE; 6476 6477 if (zero_start != PAGE_CACHE_SIZE) { 6478 kaddr = kmap(page); 6479 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6480 flush_dcache_page(page); 6481 kunmap(page); 6482 } 6483 ClearPageChecked(page); 6484 set_page_dirty(page); 6485 SetPageUptodate(page); 6486 6487 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6488 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6489 6490 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6491 6492 out_unlock: 6493 if (!ret) 6494 return VM_FAULT_LOCKED; 6495 unlock_page(page); 6496 out: 6497 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6498 return ret; 6499 } 6500 6501 static int btrfs_truncate(struct inode *inode) 6502 { 6503 struct btrfs_root *root = BTRFS_I(inode)->root; 6504 struct btrfs_block_rsv *rsv; 6505 int ret; 6506 int err = 0; 6507 struct btrfs_trans_handle *trans; 6508 unsigned long nr; 6509 u64 mask = root->sectorsize - 1; 6510 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 6511 6512 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6513 if (ret) 6514 return ret; 6515 6516 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6517 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6518 6519 /* 6520 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6521 * 3 things going on here 6522 * 6523 * 1) We need to reserve space for our orphan item and the space to 6524 * delete our orphan item. Lord knows we don't want to have a dangling 6525 * orphan item because we didn't reserve space to remove it. 6526 * 6527 * 2) We need to reserve space to update our inode. 6528 * 6529 * 3) We need to have something to cache all the space that is going to 6530 * be free'd up by the truncate operation, but also have some slack 6531 * space reserved in case it uses space during the truncate (thank you 6532 * very much snapshotting). 6533 * 6534 * And we need these to all be seperate. The fact is we can use alot of 6535 * space doing the truncate, and we have no earthly idea how much space 6536 * we will use, so we need the truncate reservation to be seperate so it 6537 * doesn't end up using space reserved for updating the inode or 6538 * removing the orphan item. We also need to be able to stop the 6539 * transaction and start a new one, which means we need to be able to 6540 * update the inode several times, and we have no idea of knowing how 6541 * many times that will be, so we can't just reserve 1 item for the 6542 * entirety of the opration, so that has to be done seperately as well. 6543 * Then there is the orphan item, which does indeed need to be held on 6544 * to for the whole operation, and we need nobody to touch this reserved 6545 * space except the orphan code. 6546 * 6547 * So that leaves us with 6548 * 6549 * 1) root->orphan_block_rsv - for the orphan deletion. 6550 * 2) rsv - for the truncate reservation, which we will steal from the 6551 * transaction reservation. 6552 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6553 * updating the inode. 6554 */ 6555 rsv = btrfs_alloc_block_rsv(root); 6556 if (!rsv) 6557 return -ENOMEM; 6558 rsv->size = min_size; 6559 6560 /* 6561 * 1 for the truncate slack space 6562 * 1 for the orphan item we're going to add 6563 * 1 for the orphan item deletion 6564 * 1 for updating the inode. 6565 */ 6566 trans = btrfs_start_transaction(root, 4); 6567 if (IS_ERR(trans)) { 6568 err = PTR_ERR(trans); 6569 goto out; 6570 } 6571 6572 /* Migrate the slack space for the truncate to our reserve */ 6573 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 6574 min_size); 6575 BUG_ON(ret); 6576 6577 ret = btrfs_orphan_add(trans, inode); 6578 if (ret) { 6579 btrfs_end_transaction(trans, root); 6580 goto out; 6581 } 6582 6583 /* 6584 * setattr is responsible for setting the ordered_data_close flag, 6585 * but that is only tested during the last file release. That 6586 * could happen well after the next commit, leaving a great big 6587 * window where new writes may get lost if someone chooses to write 6588 * to this file after truncating to zero 6589 * 6590 * The inode doesn't have any dirty data here, and so if we commit 6591 * this is a noop. If someone immediately starts writing to the inode 6592 * it is very likely we'll catch some of their writes in this 6593 * transaction, and the commit will find this file on the ordered 6594 * data list with good things to send down. 6595 * 6596 * This is a best effort solution, there is still a window where 6597 * using truncate to replace the contents of the file will 6598 * end up with a zero length file after a crash. 6599 */ 6600 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6601 btrfs_add_ordered_operation(trans, root, inode); 6602 6603 while (1) { 6604 ret = btrfs_block_rsv_refill(root, rsv, min_size); 6605 if (ret) { 6606 /* 6607 * This can only happen with the original transaction we 6608 * started above, every other time we shouldn't have a 6609 * transaction started yet. 6610 */ 6611 if (ret == -EAGAIN) 6612 goto end_trans; 6613 err = ret; 6614 break; 6615 } 6616 6617 if (!trans) { 6618 /* Just need the 1 for updating the inode */ 6619 trans = btrfs_start_transaction(root, 1); 6620 if (IS_ERR(trans)) { 6621 ret = err = PTR_ERR(trans); 6622 trans = NULL; 6623 break; 6624 } 6625 } 6626 6627 trans->block_rsv = rsv; 6628 6629 ret = btrfs_truncate_inode_items(trans, root, inode, 6630 inode->i_size, 6631 BTRFS_EXTENT_DATA_KEY); 6632 if (ret != -EAGAIN) { 6633 err = ret; 6634 break; 6635 } 6636 6637 trans->block_rsv = &root->fs_info->trans_block_rsv; 6638 ret = btrfs_update_inode(trans, root, inode); 6639 if (ret) { 6640 err = ret; 6641 break; 6642 } 6643 end_trans: 6644 nr = trans->blocks_used; 6645 btrfs_end_transaction(trans, root); 6646 trans = NULL; 6647 btrfs_btree_balance_dirty(root, nr); 6648 } 6649 6650 if (ret == 0 && inode->i_nlink > 0) { 6651 trans->block_rsv = root->orphan_block_rsv; 6652 ret = btrfs_orphan_del(trans, inode); 6653 if (ret) 6654 err = ret; 6655 } else if (ret && inode->i_nlink > 0) { 6656 /* 6657 * Failed to do the truncate, remove us from the in memory 6658 * orphan list. 6659 */ 6660 ret = btrfs_orphan_del(NULL, inode); 6661 } 6662 6663 if (trans) { 6664 trans->block_rsv = &root->fs_info->trans_block_rsv; 6665 ret = btrfs_update_inode(trans, root, inode); 6666 if (ret && !err) 6667 err = ret; 6668 6669 nr = trans->blocks_used; 6670 ret = btrfs_end_transaction(trans, root); 6671 btrfs_btree_balance_dirty(root, nr); 6672 } 6673 6674 out: 6675 btrfs_free_block_rsv(root, rsv); 6676 6677 if (ret && !err) 6678 err = ret; 6679 6680 return err; 6681 } 6682 6683 /* 6684 * create a new subvolume directory/inode (helper for the ioctl). 6685 */ 6686 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6687 struct btrfs_root *new_root, u64 new_dirid) 6688 { 6689 struct inode *inode; 6690 int err; 6691 u64 index = 0; 6692 6693 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6694 new_dirid, S_IFDIR | 0700, &index); 6695 if (IS_ERR(inode)) 6696 return PTR_ERR(inode); 6697 inode->i_op = &btrfs_dir_inode_operations; 6698 inode->i_fop = &btrfs_dir_file_operations; 6699 6700 set_nlink(inode, 1); 6701 btrfs_i_size_write(inode, 0); 6702 6703 err = btrfs_update_inode(trans, new_root, inode); 6704 BUG_ON(err); 6705 6706 iput(inode); 6707 return 0; 6708 } 6709 6710 struct inode *btrfs_alloc_inode(struct super_block *sb) 6711 { 6712 struct btrfs_inode *ei; 6713 struct inode *inode; 6714 6715 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6716 if (!ei) 6717 return NULL; 6718 6719 ei->root = NULL; 6720 ei->space_info = NULL; 6721 ei->generation = 0; 6722 ei->sequence = 0; 6723 ei->last_trans = 0; 6724 ei->last_sub_trans = 0; 6725 ei->logged_trans = 0; 6726 ei->delalloc_bytes = 0; 6727 ei->disk_i_size = 0; 6728 ei->flags = 0; 6729 ei->csum_bytes = 0; 6730 ei->index_cnt = (u64)-1; 6731 ei->last_unlink_trans = 0; 6732 6733 spin_lock_init(&ei->lock); 6734 ei->outstanding_extents = 0; 6735 ei->reserved_extents = 0; 6736 6737 ei->ordered_data_close = 0; 6738 ei->orphan_meta_reserved = 0; 6739 ei->dummy_inode = 0; 6740 ei->in_defrag = 0; 6741 ei->delalloc_meta_reserved = 0; 6742 ei->force_compress = BTRFS_COMPRESS_NONE; 6743 6744 ei->delayed_node = NULL; 6745 6746 inode = &ei->vfs_inode; 6747 extent_map_tree_init(&ei->extent_tree); 6748 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6749 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6750 mutex_init(&ei->log_mutex); 6751 mutex_init(&ei->delalloc_mutex); 6752 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6753 INIT_LIST_HEAD(&ei->i_orphan); 6754 INIT_LIST_HEAD(&ei->delalloc_inodes); 6755 INIT_LIST_HEAD(&ei->ordered_operations); 6756 RB_CLEAR_NODE(&ei->rb_node); 6757 6758 return inode; 6759 } 6760 6761 static void btrfs_i_callback(struct rcu_head *head) 6762 { 6763 struct inode *inode = container_of(head, struct inode, i_rcu); 6764 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6765 } 6766 6767 void btrfs_destroy_inode(struct inode *inode) 6768 { 6769 struct btrfs_ordered_extent *ordered; 6770 struct btrfs_root *root = BTRFS_I(inode)->root; 6771 6772 WARN_ON(!list_empty(&inode->i_dentry)); 6773 WARN_ON(inode->i_data.nrpages); 6774 WARN_ON(BTRFS_I(inode)->outstanding_extents); 6775 WARN_ON(BTRFS_I(inode)->reserved_extents); 6776 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 6777 WARN_ON(BTRFS_I(inode)->csum_bytes); 6778 6779 /* 6780 * This can happen where we create an inode, but somebody else also 6781 * created the same inode and we need to destroy the one we already 6782 * created. 6783 */ 6784 if (!root) 6785 goto free; 6786 6787 /* 6788 * Make sure we're properly removed from the ordered operation 6789 * lists. 6790 */ 6791 smp_mb(); 6792 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6793 spin_lock(&root->fs_info->ordered_extent_lock); 6794 list_del_init(&BTRFS_I(inode)->ordered_operations); 6795 spin_unlock(&root->fs_info->ordered_extent_lock); 6796 } 6797 6798 spin_lock(&root->orphan_lock); 6799 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6800 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 6801 (unsigned long long)btrfs_ino(inode)); 6802 list_del_init(&BTRFS_I(inode)->i_orphan); 6803 } 6804 spin_unlock(&root->orphan_lock); 6805 6806 while (1) { 6807 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6808 if (!ordered) 6809 break; 6810 else { 6811 printk(KERN_ERR "btrfs found ordered " 6812 "extent %llu %llu on inode cleanup\n", 6813 (unsigned long long)ordered->file_offset, 6814 (unsigned long long)ordered->len); 6815 btrfs_remove_ordered_extent(inode, ordered); 6816 btrfs_put_ordered_extent(ordered); 6817 btrfs_put_ordered_extent(ordered); 6818 } 6819 } 6820 inode_tree_del(inode); 6821 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6822 free: 6823 btrfs_remove_delayed_node(inode); 6824 call_rcu(&inode->i_rcu, btrfs_i_callback); 6825 } 6826 6827 int btrfs_drop_inode(struct inode *inode) 6828 { 6829 struct btrfs_root *root = BTRFS_I(inode)->root; 6830 6831 if (btrfs_root_refs(&root->root_item) == 0 && 6832 !btrfs_is_free_space_inode(root, inode)) 6833 return 1; 6834 else 6835 return generic_drop_inode(inode); 6836 } 6837 6838 static void init_once(void *foo) 6839 { 6840 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6841 6842 inode_init_once(&ei->vfs_inode); 6843 } 6844 6845 void btrfs_destroy_cachep(void) 6846 { 6847 if (btrfs_inode_cachep) 6848 kmem_cache_destroy(btrfs_inode_cachep); 6849 if (btrfs_trans_handle_cachep) 6850 kmem_cache_destroy(btrfs_trans_handle_cachep); 6851 if (btrfs_transaction_cachep) 6852 kmem_cache_destroy(btrfs_transaction_cachep); 6853 if (btrfs_path_cachep) 6854 kmem_cache_destroy(btrfs_path_cachep); 6855 if (btrfs_free_space_cachep) 6856 kmem_cache_destroy(btrfs_free_space_cachep); 6857 } 6858 6859 int btrfs_init_cachep(void) 6860 { 6861 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6862 sizeof(struct btrfs_inode), 0, 6863 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6864 if (!btrfs_inode_cachep) 6865 goto fail; 6866 6867 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6868 sizeof(struct btrfs_trans_handle), 0, 6869 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6870 if (!btrfs_trans_handle_cachep) 6871 goto fail; 6872 6873 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6874 sizeof(struct btrfs_transaction), 0, 6875 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6876 if (!btrfs_transaction_cachep) 6877 goto fail; 6878 6879 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6880 sizeof(struct btrfs_path), 0, 6881 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6882 if (!btrfs_path_cachep) 6883 goto fail; 6884 6885 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 6886 sizeof(struct btrfs_free_space), 0, 6887 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6888 if (!btrfs_free_space_cachep) 6889 goto fail; 6890 6891 return 0; 6892 fail: 6893 btrfs_destroy_cachep(); 6894 return -ENOMEM; 6895 } 6896 6897 static int btrfs_getattr(struct vfsmount *mnt, 6898 struct dentry *dentry, struct kstat *stat) 6899 { 6900 struct inode *inode = dentry->d_inode; 6901 u32 blocksize = inode->i_sb->s_blocksize; 6902 6903 generic_fillattr(inode, stat); 6904 stat->dev = BTRFS_I(inode)->root->anon_dev; 6905 stat->blksize = PAGE_CACHE_SIZE; 6906 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 6907 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9; 6908 return 0; 6909 } 6910 6911 /* 6912 * If a file is moved, it will inherit the cow and compression flags of the new 6913 * directory. 6914 */ 6915 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 6916 { 6917 struct btrfs_inode *b_dir = BTRFS_I(dir); 6918 struct btrfs_inode *b_inode = BTRFS_I(inode); 6919 6920 if (b_dir->flags & BTRFS_INODE_NODATACOW) 6921 b_inode->flags |= BTRFS_INODE_NODATACOW; 6922 else 6923 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 6924 6925 if (b_dir->flags & BTRFS_INODE_COMPRESS) 6926 b_inode->flags |= BTRFS_INODE_COMPRESS; 6927 else 6928 b_inode->flags &= ~BTRFS_INODE_COMPRESS; 6929 } 6930 6931 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6932 struct inode *new_dir, struct dentry *new_dentry) 6933 { 6934 struct btrfs_trans_handle *trans; 6935 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6936 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6937 struct inode *new_inode = new_dentry->d_inode; 6938 struct inode *old_inode = old_dentry->d_inode; 6939 struct timespec ctime = CURRENT_TIME; 6940 u64 index = 0; 6941 u64 root_objectid; 6942 int ret; 6943 u64 old_ino = btrfs_ino(old_inode); 6944 6945 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6946 return -EPERM; 6947 6948 /* we only allow rename subvolume link between subvolumes */ 6949 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6950 return -EXDEV; 6951 6952 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6953 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 6954 return -ENOTEMPTY; 6955 6956 if (S_ISDIR(old_inode->i_mode) && new_inode && 6957 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6958 return -ENOTEMPTY; 6959 /* 6960 * we're using rename to replace one file with another. 6961 * and the replacement file is large. Start IO on it now so 6962 * we don't add too much work to the end of the transaction 6963 */ 6964 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6965 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6966 filemap_flush(old_inode->i_mapping); 6967 6968 /* close the racy window with snapshot create/destroy ioctl */ 6969 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6970 down_read(&root->fs_info->subvol_sem); 6971 /* 6972 * We want to reserve the absolute worst case amount of items. So if 6973 * both inodes are subvols and we need to unlink them then that would 6974 * require 4 item modifications, but if they are both normal inodes it 6975 * would require 5 item modifications, so we'll assume their normal 6976 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6977 * should cover the worst case number of items we'll modify. 6978 */ 6979 trans = btrfs_start_transaction(root, 20); 6980 if (IS_ERR(trans)) { 6981 ret = PTR_ERR(trans); 6982 goto out_notrans; 6983 } 6984 6985 if (dest != root) 6986 btrfs_record_root_in_trans(trans, dest); 6987 6988 ret = btrfs_set_inode_index(new_dir, &index); 6989 if (ret) 6990 goto out_fail; 6991 6992 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6993 /* force full log commit if subvolume involved. */ 6994 root->fs_info->last_trans_log_full_commit = trans->transid; 6995 } else { 6996 ret = btrfs_insert_inode_ref(trans, dest, 6997 new_dentry->d_name.name, 6998 new_dentry->d_name.len, 6999 old_ino, 7000 btrfs_ino(new_dir), index); 7001 if (ret) 7002 goto out_fail; 7003 /* 7004 * this is an ugly little race, but the rename is required 7005 * to make sure that if we crash, the inode is either at the 7006 * old name or the new one. pinning the log transaction lets 7007 * us make sure we don't allow a log commit to come in after 7008 * we unlink the name but before we add the new name back in. 7009 */ 7010 btrfs_pin_log_trans(root); 7011 } 7012 /* 7013 * make sure the inode gets flushed if it is replacing 7014 * something. 7015 */ 7016 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7017 btrfs_add_ordered_operation(trans, root, old_inode); 7018 7019 old_dir->i_ctime = old_dir->i_mtime = ctime; 7020 new_dir->i_ctime = new_dir->i_mtime = ctime; 7021 old_inode->i_ctime = ctime; 7022 7023 if (old_dentry->d_parent != new_dentry->d_parent) 7024 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7025 7026 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7027 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7028 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7029 old_dentry->d_name.name, 7030 old_dentry->d_name.len); 7031 } else { 7032 ret = __btrfs_unlink_inode(trans, root, old_dir, 7033 old_dentry->d_inode, 7034 old_dentry->d_name.name, 7035 old_dentry->d_name.len); 7036 if (!ret) 7037 ret = btrfs_update_inode(trans, root, old_inode); 7038 } 7039 BUG_ON(ret); 7040 7041 if (new_inode) { 7042 new_inode->i_ctime = CURRENT_TIME; 7043 if (unlikely(btrfs_ino(new_inode) == 7044 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7045 root_objectid = BTRFS_I(new_inode)->location.objectid; 7046 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7047 root_objectid, 7048 new_dentry->d_name.name, 7049 new_dentry->d_name.len); 7050 BUG_ON(new_inode->i_nlink == 0); 7051 } else { 7052 ret = btrfs_unlink_inode(trans, dest, new_dir, 7053 new_dentry->d_inode, 7054 new_dentry->d_name.name, 7055 new_dentry->d_name.len); 7056 } 7057 BUG_ON(ret); 7058 if (new_inode->i_nlink == 0) { 7059 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7060 BUG_ON(ret); 7061 } 7062 } 7063 7064 fixup_inode_flags(new_dir, old_inode); 7065 7066 ret = btrfs_add_link(trans, new_dir, old_inode, 7067 new_dentry->d_name.name, 7068 new_dentry->d_name.len, 0, index); 7069 BUG_ON(ret); 7070 7071 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7072 struct dentry *parent = new_dentry->d_parent; 7073 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7074 btrfs_end_log_trans(root); 7075 } 7076 out_fail: 7077 btrfs_end_transaction(trans, root); 7078 out_notrans: 7079 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7080 up_read(&root->fs_info->subvol_sem); 7081 7082 return ret; 7083 } 7084 7085 /* 7086 * some fairly slow code that needs optimization. This walks the list 7087 * of all the inodes with pending delalloc and forces them to disk. 7088 */ 7089 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7090 { 7091 struct list_head *head = &root->fs_info->delalloc_inodes; 7092 struct btrfs_inode *binode; 7093 struct inode *inode; 7094 7095 if (root->fs_info->sb->s_flags & MS_RDONLY) 7096 return -EROFS; 7097 7098 spin_lock(&root->fs_info->delalloc_lock); 7099 while (!list_empty(head)) { 7100 binode = list_entry(head->next, struct btrfs_inode, 7101 delalloc_inodes); 7102 inode = igrab(&binode->vfs_inode); 7103 if (!inode) 7104 list_del_init(&binode->delalloc_inodes); 7105 spin_unlock(&root->fs_info->delalloc_lock); 7106 if (inode) { 7107 filemap_flush(inode->i_mapping); 7108 if (delay_iput) 7109 btrfs_add_delayed_iput(inode); 7110 else 7111 iput(inode); 7112 } 7113 cond_resched(); 7114 spin_lock(&root->fs_info->delalloc_lock); 7115 } 7116 spin_unlock(&root->fs_info->delalloc_lock); 7117 7118 /* the filemap_flush will queue IO into the worker threads, but 7119 * we have to make sure the IO is actually started and that 7120 * ordered extents get created before we return 7121 */ 7122 atomic_inc(&root->fs_info->async_submit_draining); 7123 while (atomic_read(&root->fs_info->nr_async_submits) || 7124 atomic_read(&root->fs_info->async_delalloc_pages)) { 7125 wait_event(root->fs_info->async_submit_wait, 7126 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7127 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7128 } 7129 atomic_dec(&root->fs_info->async_submit_draining); 7130 return 0; 7131 } 7132 7133 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7134 const char *symname) 7135 { 7136 struct btrfs_trans_handle *trans; 7137 struct btrfs_root *root = BTRFS_I(dir)->root; 7138 struct btrfs_path *path; 7139 struct btrfs_key key; 7140 struct inode *inode = NULL; 7141 int err; 7142 int drop_inode = 0; 7143 u64 objectid; 7144 u64 index = 0 ; 7145 int name_len; 7146 int datasize; 7147 unsigned long ptr; 7148 struct btrfs_file_extent_item *ei; 7149 struct extent_buffer *leaf; 7150 unsigned long nr = 0; 7151 7152 name_len = strlen(symname) + 1; 7153 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7154 return -ENAMETOOLONG; 7155 7156 /* 7157 * 2 items for inode item and ref 7158 * 2 items for dir items 7159 * 1 item for xattr if selinux is on 7160 */ 7161 trans = btrfs_start_transaction(root, 5); 7162 if (IS_ERR(trans)) 7163 return PTR_ERR(trans); 7164 7165 err = btrfs_find_free_ino(root, &objectid); 7166 if (err) 7167 goto out_unlock; 7168 7169 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7170 dentry->d_name.len, btrfs_ino(dir), objectid, 7171 S_IFLNK|S_IRWXUGO, &index); 7172 if (IS_ERR(inode)) { 7173 err = PTR_ERR(inode); 7174 goto out_unlock; 7175 } 7176 7177 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7178 if (err) { 7179 drop_inode = 1; 7180 goto out_unlock; 7181 } 7182 7183 /* 7184 * If the active LSM wants to access the inode during 7185 * d_instantiate it needs these. Smack checks to see 7186 * if the filesystem supports xattrs by looking at the 7187 * ops vector. 7188 */ 7189 inode->i_fop = &btrfs_file_operations; 7190 inode->i_op = &btrfs_file_inode_operations; 7191 7192 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7193 if (err) 7194 drop_inode = 1; 7195 else { 7196 inode->i_mapping->a_ops = &btrfs_aops; 7197 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7198 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7199 } 7200 if (drop_inode) 7201 goto out_unlock; 7202 7203 path = btrfs_alloc_path(); 7204 if (!path) { 7205 err = -ENOMEM; 7206 drop_inode = 1; 7207 goto out_unlock; 7208 } 7209 key.objectid = btrfs_ino(inode); 7210 key.offset = 0; 7211 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7212 datasize = btrfs_file_extent_calc_inline_size(name_len); 7213 err = btrfs_insert_empty_item(trans, root, path, &key, 7214 datasize); 7215 if (err) { 7216 drop_inode = 1; 7217 btrfs_free_path(path); 7218 goto out_unlock; 7219 } 7220 leaf = path->nodes[0]; 7221 ei = btrfs_item_ptr(leaf, path->slots[0], 7222 struct btrfs_file_extent_item); 7223 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7224 btrfs_set_file_extent_type(leaf, ei, 7225 BTRFS_FILE_EXTENT_INLINE); 7226 btrfs_set_file_extent_encryption(leaf, ei, 0); 7227 btrfs_set_file_extent_compression(leaf, ei, 0); 7228 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7229 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7230 7231 ptr = btrfs_file_extent_inline_start(ei); 7232 write_extent_buffer(leaf, symname, ptr, name_len); 7233 btrfs_mark_buffer_dirty(leaf); 7234 btrfs_free_path(path); 7235 7236 inode->i_op = &btrfs_symlink_inode_operations; 7237 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7238 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7239 inode_set_bytes(inode, name_len); 7240 btrfs_i_size_write(inode, name_len - 1); 7241 err = btrfs_update_inode(trans, root, inode); 7242 if (err) 7243 drop_inode = 1; 7244 7245 out_unlock: 7246 if (!err) 7247 d_instantiate(dentry, inode); 7248 nr = trans->blocks_used; 7249 btrfs_end_transaction(trans, root); 7250 if (drop_inode) { 7251 inode_dec_link_count(inode); 7252 iput(inode); 7253 } 7254 btrfs_btree_balance_dirty(root, nr); 7255 return err; 7256 } 7257 7258 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7259 u64 start, u64 num_bytes, u64 min_size, 7260 loff_t actual_len, u64 *alloc_hint, 7261 struct btrfs_trans_handle *trans) 7262 { 7263 struct btrfs_root *root = BTRFS_I(inode)->root; 7264 struct btrfs_key ins; 7265 u64 cur_offset = start; 7266 u64 i_size; 7267 int ret = 0; 7268 bool own_trans = true; 7269 7270 if (trans) 7271 own_trans = false; 7272 while (num_bytes > 0) { 7273 if (own_trans) { 7274 trans = btrfs_start_transaction(root, 3); 7275 if (IS_ERR(trans)) { 7276 ret = PTR_ERR(trans); 7277 break; 7278 } 7279 } 7280 7281 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7282 0, *alloc_hint, (u64)-1, &ins, 1); 7283 if (ret) { 7284 if (own_trans) 7285 btrfs_end_transaction(trans, root); 7286 break; 7287 } 7288 7289 ret = insert_reserved_file_extent(trans, inode, 7290 cur_offset, ins.objectid, 7291 ins.offset, ins.offset, 7292 ins.offset, 0, 0, 0, 7293 BTRFS_FILE_EXTENT_PREALLOC); 7294 BUG_ON(ret); 7295 btrfs_drop_extent_cache(inode, cur_offset, 7296 cur_offset + ins.offset -1, 0); 7297 7298 num_bytes -= ins.offset; 7299 cur_offset += ins.offset; 7300 *alloc_hint = ins.objectid + ins.offset; 7301 7302 inode->i_ctime = CURRENT_TIME; 7303 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7304 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7305 (actual_len > inode->i_size) && 7306 (cur_offset > inode->i_size)) { 7307 if (cur_offset > actual_len) 7308 i_size = actual_len; 7309 else 7310 i_size = cur_offset; 7311 i_size_write(inode, i_size); 7312 btrfs_ordered_update_i_size(inode, i_size, NULL); 7313 } 7314 7315 ret = btrfs_update_inode(trans, root, inode); 7316 BUG_ON(ret); 7317 7318 if (own_trans) 7319 btrfs_end_transaction(trans, root); 7320 } 7321 return ret; 7322 } 7323 7324 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7325 u64 start, u64 num_bytes, u64 min_size, 7326 loff_t actual_len, u64 *alloc_hint) 7327 { 7328 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7329 min_size, actual_len, alloc_hint, 7330 NULL); 7331 } 7332 7333 int btrfs_prealloc_file_range_trans(struct inode *inode, 7334 struct btrfs_trans_handle *trans, int mode, 7335 u64 start, u64 num_bytes, u64 min_size, 7336 loff_t actual_len, u64 *alloc_hint) 7337 { 7338 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7339 min_size, actual_len, alloc_hint, trans); 7340 } 7341 7342 static int btrfs_set_page_dirty(struct page *page) 7343 { 7344 return __set_page_dirty_nobuffers(page); 7345 } 7346 7347 static int btrfs_permission(struct inode *inode, int mask) 7348 { 7349 struct btrfs_root *root = BTRFS_I(inode)->root; 7350 umode_t mode = inode->i_mode; 7351 7352 if (mask & MAY_WRITE && 7353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7354 if (btrfs_root_readonly(root)) 7355 return -EROFS; 7356 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7357 return -EACCES; 7358 } 7359 return generic_permission(inode, mask); 7360 } 7361 7362 static const struct inode_operations btrfs_dir_inode_operations = { 7363 .getattr = btrfs_getattr, 7364 .lookup = btrfs_lookup, 7365 .create = btrfs_create, 7366 .unlink = btrfs_unlink, 7367 .link = btrfs_link, 7368 .mkdir = btrfs_mkdir, 7369 .rmdir = btrfs_rmdir, 7370 .rename = btrfs_rename, 7371 .symlink = btrfs_symlink, 7372 .setattr = btrfs_setattr, 7373 .mknod = btrfs_mknod, 7374 .setxattr = btrfs_setxattr, 7375 .getxattr = btrfs_getxattr, 7376 .listxattr = btrfs_listxattr, 7377 .removexattr = btrfs_removexattr, 7378 .permission = btrfs_permission, 7379 .get_acl = btrfs_get_acl, 7380 }; 7381 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7382 .lookup = btrfs_lookup, 7383 .permission = btrfs_permission, 7384 .get_acl = btrfs_get_acl, 7385 }; 7386 7387 static const struct file_operations btrfs_dir_file_operations = { 7388 .llseek = generic_file_llseek, 7389 .read = generic_read_dir, 7390 .readdir = btrfs_real_readdir, 7391 .unlocked_ioctl = btrfs_ioctl, 7392 #ifdef CONFIG_COMPAT 7393 .compat_ioctl = btrfs_ioctl, 7394 #endif 7395 .release = btrfs_release_file, 7396 .fsync = btrfs_sync_file, 7397 }; 7398 7399 static struct extent_io_ops btrfs_extent_io_ops = { 7400 .fill_delalloc = run_delalloc_range, 7401 .submit_bio_hook = btrfs_submit_bio_hook, 7402 .merge_bio_hook = btrfs_merge_bio_hook, 7403 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7404 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7405 .writepage_start_hook = btrfs_writepage_start_hook, 7406 .set_bit_hook = btrfs_set_bit_hook, 7407 .clear_bit_hook = btrfs_clear_bit_hook, 7408 .merge_extent_hook = btrfs_merge_extent_hook, 7409 .split_extent_hook = btrfs_split_extent_hook, 7410 }; 7411 7412 /* 7413 * btrfs doesn't support the bmap operation because swapfiles 7414 * use bmap to make a mapping of extents in the file. They assume 7415 * these extents won't change over the life of the file and they 7416 * use the bmap result to do IO directly to the drive. 7417 * 7418 * the btrfs bmap call would return logical addresses that aren't 7419 * suitable for IO and they also will change frequently as COW 7420 * operations happen. So, swapfile + btrfs == corruption. 7421 * 7422 * For now we're avoiding this by dropping bmap. 7423 */ 7424 static const struct address_space_operations btrfs_aops = { 7425 .readpage = btrfs_readpage, 7426 .writepage = btrfs_writepage, 7427 .writepages = btrfs_writepages, 7428 .readpages = btrfs_readpages, 7429 .direct_IO = btrfs_direct_IO, 7430 .invalidatepage = btrfs_invalidatepage, 7431 .releasepage = btrfs_releasepage, 7432 .set_page_dirty = btrfs_set_page_dirty, 7433 .error_remove_page = generic_error_remove_page, 7434 }; 7435 7436 static const struct address_space_operations btrfs_symlink_aops = { 7437 .readpage = btrfs_readpage, 7438 .writepage = btrfs_writepage, 7439 .invalidatepage = btrfs_invalidatepage, 7440 .releasepage = btrfs_releasepage, 7441 }; 7442 7443 static const struct inode_operations btrfs_file_inode_operations = { 7444 .getattr = btrfs_getattr, 7445 .setattr = btrfs_setattr, 7446 .setxattr = btrfs_setxattr, 7447 .getxattr = btrfs_getxattr, 7448 .listxattr = btrfs_listxattr, 7449 .removexattr = btrfs_removexattr, 7450 .permission = btrfs_permission, 7451 .fiemap = btrfs_fiemap, 7452 .get_acl = btrfs_get_acl, 7453 }; 7454 static const struct inode_operations btrfs_special_inode_operations = { 7455 .getattr = btrfs_getattr, 7456 .setattr = btrfs_setattr, 7457 .permission = btrfs_permission, 7458 .setxattr = btrfs_setxattr, 7459 .getxattr = btrfs_getxattr, 7460 .listxattr = btrfs_listxattr, 7461 .removexattr = btrfs_removexattr, 7462 .get_acl = btrfs_get_acl, 7463 }; 7464 static const struct inode_operations btrfs_symlink_inode_operations = { 7465 .readlink = generic_readlink, 7466 .follow_link = page_follow_link_light, 7467 .put_link = page_put_link, 7468 .getattr = btrfs_getattr, 7469 .setattr = btrfs_setattr, 7470 .permission = btrfs_permission, 7471 .setxattr = btrfs_setxattr, 7472 .getxattr = btrfs_getxattr, 7473 .listxattr = btrfs_listxattr, 7474 .removexattr = btrfs_removexattr, 7475 .get_acl = btrfs_get_acl, 7476 }; 7477 7478 const struct dentry_operations btrfs_dentry_operations = { 7479 .d_delete = btrfs_dentry_delete, 7480 .d_release = btrfs_dentry_release, 7481 }; 7482