xref: /linux/fs/btrfs/inode.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 static const struct inode_operations btrfs_dir_inode_operations;
70 static const struct inode_operations btrfs_symlink_inode_operations;
71 static const struct inode_operations btrfs_dir_ro_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct address_space_operations btrfs_symlink_aops;
76 static const struct file_operations btrfs_dir_file_operations;
77 static struct extent_io_ops btrfs_extent_io_ops;
78 
79 static struct kmem_cache *btrfs_inode_cachep;
80 static struct kmem_cache *btrfs_delalloc_work_cachep;
81 struct kmem_cache *btrfs_trans_handle_cachep;
82 struct kmem_cache *btrfs_transaction_cachep;
83 struct kmem_cache *btrfs_path_cachep;
84 struct kmem_cache *btrfs_free_space_cachep;
85 
86 #define S_SHIFT 12
87 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
89 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
90 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
91 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
92 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
93 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
94 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
95 };
96 
97 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98 static int btrfs_truncate(struct inode *inode);
99 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100 static noinline int cow_file_range(struct inode *inode,
101 				   struct page *locked_page,
102 				   u64 start, u64 end, int *page_started,
103 				   unsigned long *nr_written, int unlock);
104 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 					   u64 len, u64 orig_start,
106 					   u64 block_start, u64 block_len,
107 					   u64 orig_block_len, u64 ram_bytes,
108 					   int type);
109 
110 static int btrfs_dirty_inode(struct inode *inode);
111 
112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113 void btrfs_test_inode_set_ops(struct inode *inode)
114 {
115 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116 }
117 #endif
118 
119 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120 				     struct inode *inode,  struct inode *dir,
121 				     const struct qstr *qstr)
122 {
123 	int err;
124 
125 	err = btrfs_init_acl(trans, inode, dir);
126 	if (!err)
127 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128 	return err;
129 }
130 
131 /*
132  * this does all the hard work for inserting an inline extent into
133  * the btree.  The caller should have done a btrfs_drop_extents so that
134  * no overlapping inline items exist in the btree
135  */
136 static int insert_inline_extent(struct btrfs_trans_handle *trans,
137 				struct btrfs_path *path, int extent_inserted,
138 				struct btrfs_root *root, struct inode *inode,
139 				u64 start, size_t size, size_t compressed_size,
140 				int compress_type,
141 				struct page **compressed_pages)
142 {
143 	struct extent_buffer *leaf;
144 	struct page *page = NULL;
145 	char *kaddr;
146 	unsigned long ptr;
147 	struct btrfs_file_extent_item *ei;
148 	int err = 0;
149 	int ret;
150 	size_t cur_size = size;
151 	unsigned long offset;
152 
153 	if (compressed_size && compressed_pages)
154 		cur_size = compressed_size;
155 
156 	inode_add_bytes(inode, size);
157 
158 	if (!extent_inserted) {
159 		struct btrfs_key key;
160 		size_t datasize;
161 
162 		key.objectid = btrfs_ino(inode);
163 		key.offset = start;
164 		key.type = BTRFS_EXTENT_DATA_KEY;
165 
166 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 		path->leave_spinning = 1;
168 		ret = btrfs_insert_empty_item(trans, root, path, &key,
169 					      datasize);
170 		if (ret) {
171 			err = ret;
172 			goto fail;
173 		}
174 	}
175 	leaf = path->nodes[0];
176 	ei = btrfs_item_ptr(leaf, path->slots[0],
177 			    struct btrfs_file_extent_item);
178 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 	btrfs_set_file_extent_encryption(leaf, ei, 0);
181 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 	ptr = btrfs_file_extent_inline_start(ei);
184 
185 	if (compress_type != BTRFS_COMPRESS_NONE) {
186 		struct page *cpage;
187 		int i = 0;
188 		while (compressed_size > 0) {
189 			cpage = compressed_pages[i];
190 			cur_size = min_t(unsigned long, compressed_size,
191 				       PAGE_CACHE_SIZE);
192 
193 			kaddr = kmap_atomic(cpage);
194 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
195 			kunmap_atomic(kaddr);
196 
197 			i++;
198 			ptr += cur_size;
199 			compressed_size -= cur_size;
200 		}
201 		btrfs_set_file_extent_compression(leaf, ei,
202 						  compress_type);
203 	} else {
204 		page = find_get_page(inode->i_mapping,
205 				     start >> PAGE_CACHE_SHIFT);
206 		btrfs_set_file_extent_compression(leaf, ei, 0);
207 		kaddr = kmap_atomic(page);
208 		offset = start & (PAGE_CACHE_SIZE - 1);
209 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
210 		kunmap_atomic(kaddr);
211 		page_cache_release(page);
212 	}
213 	btrfs_mark_buffer_dirty(leaf);
214 	btrfs_release_path(path);
215 
216 	/*
217 	 * we're an inline extent, so nobody can
218 	 * extend the file past i_size without locking
219 	 * a page we already have locked.
220 	 *
221 	 * We must do any isize and inode updates
222 	 * before we unlock the pages.  Otherwise we
223 	 * could end up racing with unlink.
224 	 */
225 	BTRFS_I(inode)->disk_i_size = inode->i_size;
226 	ret = btrfs_update_inode(trans, root, inode);
227 
228 	return ret;
229 fail:
230 	return err;
231 }
232 
233 
234 /*
235  * conditionally insert an inline extent into the file.  This
236  * does the checks required to make sure the data is small enough
237  * to fit as an inline extent.
238  */
239 static noinline int cow_file_range_inline(struct btrfs_root *root,
240 					  struct inode *inode, u64 start,
241 					  u64 end, size_t compressed_size,
242 					  int compress_type,
243 					  struct page **compressed_pages)
244 {
245 	struct btrfs_trans_handle *trans;
246 	u64 isize = i_size_read(inode);
247 	u64 actual_end = min(end + 1, isize);
248 	u64 inline_len = actual_end - start;
249 	u64 aligned_end = ALIGN(end, root->sectorsize);
250 	u64 data_len = inline_len;
251 	int ret;
252 	struct btrfs_path *path;
253 	int extent_inserted = 0;
254 	u32 extent_item_size;
255 
256 	if (compressed_size)
257 		data_len = compressed_size;
258 
259 	if (start > 0 ||
260 	    actual_end > PAGE_CACHE_SIZE ||
261 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262 	    (!compressed_size &&
263 	    (actual_end & (root->sectorsize - 1)) == 0) ||
264 	    end + 1 < isize ||
265 	    data_len > root->fs_info->max_inline) {
266 		return 1;
267 	}
268 
269 	path = btrfs_alloc_path();
270 	if (!path)
271 		return -ENOMEM;
272 
273 	trans = btrfs_join_transaction(root);
274 	if (IS_ERR(trans)) {
275 		btrfs_free_path(path);
276 		return PTR_ERR(trans);
277 	}
278 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279 
280 	if (compressed_size && compressed_pages)
281 		extent_item_size = btrfs_file_extent_calc_inline_size(
282 		   compressed_size);
283 	else
284 		extent_item_size = btrfs_file_extent_calc_inline_size(
285 		    inline_len);
286 
287 	ret = __btrfs_drop_extents(trans, root, inode, path,
288 				   start, aligned_end, NULL,
289 				   1, 1, extent_item_size, &extent_inserted);
290 	if (ret) {
291 		btrfs_abort_transaction(trans, root, ret);
292 		goto out;
293 	}
294 
295 	if (isize > actual_end)
296 		inline_len = min_t(u64, isize, actual_end);
297 	ret = insert_inline_extent(trans, path, extent_inserted,
298 				   root, inode, start,
299 				   inline_len, compressed_size,
300 				   compress_type, compressed_pages);
301 	if (ret && ret != -ENOSPC) {
302 		btrfs_abort_transaction(trans, root, ret);
303 		goto out;
304 	} else if (ret == -ENOSPC) {
305 		ret = 1;
306 		goto out;
307 	}
308 
309 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
311 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312 out:
313 	/*
314 	 * Don't forget to free the reserved space, as for inlined extent
315 	 * it won't count as data extent, free them directly here.
316 	 * And at reserve time, it's always aligned to page size, so
317 	 * just free one page here.
318 	 */
319 	btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
320 	btrfs_free_path(path);
321 	btrfs_end_transaction(trans, root);
322 	return ret;
323 }
324 
325 struct async_extent {
326 	u64 start;
327 	u64 ram_size;
328 	u64 compressed_size;
329 	struct page **pages;
330 	unsigned long nr_pages;
331 	int compress_type;
332 	struct list_head list;
333 };
334 
335 struct async_cow {
336 	struct inode *inode;
337 	struct btrfs_root *root;
338 	struct page *locked_page;
339 	u64 start;
340 	u64 end;
341 	struct list_head extents;
342 	struct btrfs_work work;
343 };
344 
345 static noinline int add_async_extent(struct async_cow *cow,
346 				     u64 start, u64 ram_size,
347 				     u64 compressed_size,
348 				     struct page **pages,
349 				     unsigned long nr_pages,
350 				     int compress_type)
351 {
352 	struct async_extent *async_extent;
353 
354 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
355 	BUG_ON(!async_extent); /* -ENOMEM */
356 	async_extent->start = start;
357 	async_extent->ram_size = ram_size;
358 	async_extent->compressed_size = compressed_size;
359 	async_extent->pages = pages;
360 	async_extent->nr_pages = nr_pages;
361 	async_extent->compress_type = compress_type;
362 	list_add_tail(&async_extent->list, &cow->extents);
363 	return 0;
364 }
365 
366 static inline int inode_need_compress(struct inode *inode)
367 {
368 	struct btrfs_root *root = BTRFS_I(inode)->root;
369 
370 	/* force compress */
371 	if (btrfs_test_opt(root, FORCE_COMPRESS))
372 		return 1;
373 	/* bad compression ratios */
374 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 		return 0;
376 	if (btrfs_test_opt(root, COMPRESS) ||
377 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 	    BTRFS_I(inode)->force_compress)
379 		return 1;
380 	return 0;
381 }
382 
383 /*
384  * we create compressed extents in two phases.  The first
385  * phase compresses a range of pages that have already been
386  * locked (both pages and state bits are locked).
387  *
388  * This is done inside an ordered work queue, and the compression
389  * is spread across many cpus.  The actual IO submission is step
390  * two, and the ordered work queue takes care of making sure that
391  * happens in the same order things were put onto the queue by
392  * writepages and friends.
393  *
394  * If this code finds it can't get good compression, it puts an
395  * entry onto the work queue to write the uncompressed bytes.  This
396  * makes sure that both compressed inodes and uncompressed inodes
397  * are written in the same order that the flusher thread sent them
398  * down.
399  */
400 static noinline void compress_file_range(struct inode *inode,
401 					struct page *locked_page,
402 					u64 start, u64 end,
403 					struct async_cow *async_cow,
404 					int *num_added)
405 {
406 	struct btrfs_root *root = BTRFS_I(inode)->root;
407 	u64 num_bytes;
408 	u64 blocksize = root->sectorsize;
409 	u64 actual_end;
410 	u64 isize = i_size_read(inode);
411 	int ret = 0;
412 	struct page **pages = NULL;
413 	unsigned long nr_pages;
414 	unsigned long nr_pages_ret = 0;
415 	unsigned long total_compressed = 0;
416 	unsigned long total_in = 0;
417 	unsigned long max_compressed = 128 * 1024;
418 	unsigned long max_uncompressed = 128 * 1024;
419 	int i;
420 	int will_compress;
421 	int compress_type = root->fs_info->compress_type;
422 	int redirty = 0;
423 
424 	/* if this is a small write inside eof, kick off a defrag */
425 	if ((end - start + 1) < 16 * 1024 &&
426 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
427 		btrfs_add_inode_defrag(NULL, inode);
428 
429 	actual_end = min_t(u64, isize, end + 1);
430 again:
431 	will_compress = 0;
432 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
434 
435 	/*
436 	 * we don't want to send crud past the end of i_size through
437 	 * compression, that's just a waste of CPU time.  So, if the
438 	 * end of the file is before the start of our current
439 	 * requested range of bytes, we bail out to the uncompressed
440 	 * cleanup code that can deal with all of this.
441 	 *
442 	 * It isn't really the fastest way to fix things, but this is a
443 	 * very uncommon corner.
444 	 */
445 	if (actual_end <= start)
446 		goto cleanup_and_bail_uncompressed;
447 
448 	total_compressed = actual_end - start;
449 
450 	/*
451 	 * skip compression for a small file range(<=blocksize) that
452 	 * isn't an inline extent, since it dosen't save disk space at all.
453 	 */
454 	if (total_compressed <= blocksize &&
455 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 		goto cleanup_and_bail_uncompressed;
457 
458 	/* we want to make sure that amount of ram required to uncompress
459 	 * an extent is reasonable, so we limit the total size in ram
460 	 * of a compressed extent to 128k.  This is a crucial number
461 	 * because it also controls how easily we can spread reads across
462 	 * cpus for decompression.
463 	 *
464 	 * We also want to make sure the amount of IO required to do
465 	 * a random read is reasonably small, so we limit the size of
466 	 * a compressed extent to 128k.
467 	 */
468 	total_compressed = min(total_compressed, max_uncompressed);
469 	num_bytes = ALIGN(end - start + 1, blocksize);
470 	num_bytes = max(blocksize,  num_bytes);
471 	total_in = 0;
472 	ret = 0;
473 
474 	/*
475 	 * we do compression for mount -o compress and when the
476 	 * inode has not been flagged as nocompress.  This flag can
477 	 * change at any time if we discover bad compression ratios.
478 	 */
479 	if (inode_need_compress(inode)) {
480 		WARN_ON(pages);
481 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
482 		if (!pages) {
483 			/* just bail out to the uncompressed code */
484 			goto cont;
485 		}
486 
487 		if (BTRFS_I(inode)->force_compress)
488 			compress_type = BTRFS_I(inode)->force_compress;
489 
490 		/*
491 		 * we need to call clear_page_dirty_for_io on each
492 		 * page in the range.  Otherwise applications with the file
493 		 * mmap'd can wander in and change the page contents while
494 		 * we are compressing them.
495 		 *
496 		 * If the compression fails for any reason, we set the pages
497 		 * dirty again later on.
498 		 */
499 		extent_range_clear_dirty_for_io(inode, start, end);
500 		redirty = 1;
501 		ret = btrfs_compress_pages(compress_type,
502 					   inode->i_mapping, start,
503 					   total_compressed, pages,
504 					   nr_pages, &nr_pages_ret,
505 					   &total_in,
506 					   &total_compressed,
507 					   max_compressed);
508 
509 		if (!ret) {
510 			unsigned long offset = total_compressed &
511 				(PAGE_CACHE_SIZE - 1);
512 			struct page *page = pages[nr_pages_ret - 1];
513 			char *kaddr;
514 
515 			/* zero the tail end of the last page, we might be
516 			 * sending it down to disk
517 			 */
518 			if (offset) {
519 				kaddr = kmap_atomic(page);
520 				memset(kaddr + offset, 0,
521 				       PAGE_CACHE_SIZE - offset);
522 				kunmap_atomic(kaddr);
523 			}
524 			will_compress = 1;
525 		}
526 	}
527 cont:
528 	if (start == 0) {
529 		/* lets try to make an inline extent */
530 		if (ret || total_in < (actual_end - start)) {
531 			/* we didn't compress the entire range, try
532 			 * to make an uncompressed inline extent.
533 			 */
534 			ret = cow_file_range_inline(root, inode, start, end,
535 						    0, 0, NULL);
536 		} else {
537 			/* try making a compressed inline extent */
538 			ret = cow_file_range_inline(root, inode, start, end,
539 						    total_compressed,
540 						    compress_type, pages);
541 		}
542 		if (ret <= 0) {
543 			unsigned long clear_flags = EXTENT_DELALLOC |
544 				EXTENT_DEFRAG;
545 			unsigned long page_error_op;
546 
547 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
548 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
549 
550 			/*
551 			 * inline extent creation worked or returned error,
552 			 * we don't need to create any more async work items.
553 			 * Unlock and free up our temp pages.
554 			 */
555 			extent_clear_unlock_delalloc(inode, start, end, NULL,
556 						     clear_flags, PAGE_UNLOCK |
557 						     PAGE_CLEAR_DIRTY |
558 						     PAGE_SET_WRITEBACK |
559 						     page_error_op |
560 						     PAGE_END_WRITEBACK);
561 			goto free_pages_out;
562 		}
563 	}
564 
565 	if (will_compress) {
566 		/*
567 		 * we aren't doing an inline extent round the compressed size
568 		 * up to a block size boundary so the allocator does sane
569 		 * things
570 		 */
571 		total_compressed = ALIGN(total_compressed, blocksize);
572 
573 		/*
574 		 * one last check to make sure the compression is really a
575 		 * win, compare the page count read with the blocks on disk
576 		 */
577 		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
578 		if (total_compressed >= total_in) {
579 			will_compress = 0;
580 		} else {
581 			num_bytes = total_in;
582 		}
583 	}
584 	if (!will_compress && pages) {
585 		/*
586 		 * the compression code ran but failed to make things smaller,
587 		 * free any pages it allocated and our page pointer array
588 		 */
589 		for (i = 0; i < nr_pages_ret; i++) {
590 			WARN_ON(pages[i]->mapping);
591 			page_cache_release(pages[i]);
592 		}
593 		kfree(pages);
594 		pages = NULL;
595 		total_compressed = 0;
596 		nr_pages_ret = 0;
597 
598 		/* flag the file so we don't compress in the future */
599 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 		    !(BTRFS_I(inode)->force_compress)) {
601 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
602 		}
603 	}
604 	if (will_compress) {
605 		*num_added += 1;
606 
607 		/* the async work queues will take care of doing actual
608 		 * allocation on disk for these compressed pages,
609 		 * and will submit them to the elevator.
610 		 */
611 		add_async_extent(async_cow, start, num_bytes,
612 				 total_compressed, pages, nr_pages_ret,
613 				 compress_type);
614 
615 		if (start + num_bytes < end) {
616 			start += num_bytes;
617 			pages = NULL;
618 			cond_resched();
619 			goto again;
620 		}
621 	} else {
622 cleanup_and_bail_uncompressed:
623 		/*
624 		 * No compression, but we still need to write the pages in
625 		 * the file we've been given so far.  redirty the locked
626 		 * page if it corresponds to our extent and set things up
627 		 * for the async work queue to run cow_file_range to do
628 		 * the normal delalloc dance
629 		 */
630 		if (page_offset(locked_page) >= start &&
631 		    page_offset(locked_page) <= end) {
632 			__set_page_dirty_nobuffers(locked_page);
633 			/* unlocked later on in the async handlers */
634 		}
635 		if (redirty)
636 			extent_range_redirty_for_io(inode, start, end);
637 		add_async_extent(async_cow, start, end - start + 1,
638 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
639 		*num_added += 1;
640 	}
641 
642 	return;
643 
644 free_pages_out:
645 	for (i = 0; i < nr_pages_ret; i++) {
646 		WARN_ON(pages[i]->mapping);
647 		page_cache_release(pages[i]);
648 	}
649 	kfree(pages);
650 }
651 
652 static void free_async_extent_pages(struct async_extent *async_extent)
653 {
654 	int i;
655 
656 	if (!async_extent->pages)
657 		return;
658 
659 	for (i = 0; i < async_extent->nr_pages; i++) {
660 		WARN_ON(async_extent->pages[i]->mapping);
661 		page_cache_release(async_extent->pages[i]);
662 	}
663 	kfree(async_extent->pages);
664 	async_extent->nr_pages = 0;
665 	async_extent->pages = NULL;
666 }
667 
668 /*
669  * phase two of compressed writeback.  This is the ordered portion
670  * of the code, which only gets called in the order the work was
671  * queued.  We walk all the async extents created by compress_file_range
672  * and send them down to the disk.
673  */
674 static noinline void submit_compressed_extents(struct inode *inode,
675 					      struct async_cow *async_cow)
676 {
677 	struct async_extent *async_extent;
678 	u64 alloc_hint = 0;
679 	struct btrfs_key ins;
680 	struct extent_map *em;
681 	struct btrfs_root *root = BTRFS_I(inode)->root;
682 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 	struct extent_io_tree *io_tree;
684 	int ret = 0;
685 
686 again:
687 	while (!list_empty(&async_cow->extents)) {
688 		async_extent = list_entry(async_cow->extents.next,
689 					  struct async_extent, list);
690 		list_del(&async_extent->list);
691 
692 		io_tree = &BTRFS_I(inode)->io_tree;
693 
694 retry:
695 		/* did the compression code fall back to uncompressed IO? */
696 		if (!async_extent->pages) {
697 			int page_started = 0;
698 			unsigned long nr_written = 0;
699 
700 			lock_extent(io_tree, async_extent->start,
701 					 async_extent->start +
702 					 async_extent->ram_size - 1);
703 
704 			/* allocate blocks */
705 			ret = cow_file_range(inode, async_cow->locked_page,
706 					     async_extent->start,
707 					     async_extent->start +
708 					     async_extent->ram_size - 1,
709 					     &page_started, &nr_written, 0);
710 
711 			/* JDM XXX */
712 
713 			/*
714 			 * if page_started, cow_file_range inserted an
715 			 * inline extent and took care of all the unlocking
716 			 * and IO for us.  Otherwise, we need to submit
717 			 * all those pages down to the drive.
718 			 */
719 			if (!page_started && !ret)
720 				extent_write_locked_range(io_tree,
721 						  inode, async_extent->start,
722 						  async_extent->start +
723 						  async_extent->ram_size - 1,
724 						  btrfs_get_extent,
725 						  WB_SYNC_ALL);
726 			else if (ret)
727 				unlock_page(async_cow->locked_page);
728 			kfree(async_extent);
729 			cond_resched();
730 			continue;
731 		}
732 
733 		lock_extent(io_tree, async_extent->start,
734 			    async_extent->start + async_extent->ram_size - 1);
735 
736 		ret = btrfs_reserve_extent(root,
737 					   async_extent->compressed_size,
738 					   async_extent->compressed_size,
739 					   0, alloc_hint, &ins, 1, 1);
740 		if (ret) {
741 			free_async_extent_pages(async_extent);
742 
743 			if (ret == -ENOSPC) {
744 				unlock_extent(io_tree, async_extent->start,
745 					      async_extent->start +
746 					      async_extent->ram_size - 1);
747 
748 				/*
749 				 * we need to redirty the pages if we decide to
750 				 * fallback to uncompressed IO, otherwise we
751 				 * will not submit these pages down to lower
752 				 * layers.
753 				 */
754 				extent_range_redirty_for_io(inode,
755 						async_extent->start,
756 						async_extent->start +
757 						async_extent->ram_size - 1);
758 
759 				goto retry;
760 			}
761 			goto out_free;
762 		}
763 		/*
764 		 * here we're doing allocation and writeback of the
765 		 * compressed pages
766 		 */
767 		btrfs_drop_extent_cache(inode, async_extent->start,
768 					async_extent->start +
769 					async_extent->ram_size - 1, 0);
770 
771 		em = alloc_extent_map();
772 		if (!em) {
773 			ret = -ENOMEM;
774 			goto out_free_reserve;
775 		}
776 		em->start = async_extent->start;
777 		em->len = async_extent->ram_size;
778 		em->orig_start = em->start;
779 		em->mod_start = em->start;
780 		em->mod_len = em->len;
781 
782 		em->block_start = ins.objectid;
783 		em->block_len = ins.offset;
784 		em->orig_block_len = ins.offset;
785 		em->ram_bytes = async_extent->ram_size;
786 		em->bdev = root->fs_info->fs_devices->latest_bdev;
787 		em->compress_type = async_extent->compress_type;
788 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
790 		em->generation = -1;
791 
792 		while (1) {
793 			write_lock(&em_tree->lock);
794 			ret = add_extent_mapping(em_tree, em, 1);
795 			write_unlock(&em_tree->lock);
796 			if (ret != -EEXIST) {
797 				free_extent_map(em);
798 				break;
799 			}
800 			btrfs_drop_extent_cache(inode, async_extent->start,
801 						async_extent->start +
802 						async_extent->ram_size - 1, 0);
803 		}
804 
805 		if (ret)
806 			goto out_free_reserve;
807 
808 		ret = btrfs_add_ordered_extent_compress(inode,
809 						async_extent->start,
810 						ins.objectid,
811 						async_extent->ram_size,
812 						ins.offset,
813 						BTRFS_ORDERED_COMPRESSED,
814 						async_extent->compress_type);
815 		if (ret) {
816 			btrfs_drop_extent_cache(inode, async_extent->start,
817 						async_extent->start +
818 						async_extent->ram_size - 1, 0);
819 			goto out_free_reserve;
820 		}
821 
822 		/*
823 		 * clear dirty, set writeback and unlock the pages.
824 		 */
825 		extent_clear_unlock_delalloc(inode, async_extent->start,
826 				async_extent->start +
827 				async_extent->ram_size - 1,
828 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
830 				PAGE_SET_WRITEBACK);
831 		ret = btrfs_submit_compressed_write(inode,
832 				    async_extent->start,
833 				    async_extent->ram_size,
834 				    ins.objectid,
835 				    ins.offset, async_extent->pages,
836 				    async_extent->nr_pages);
837 		if (ret) {
838 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 			struct page *p = async_extent->pages[0];
840 			const u64 start = async_extent->start;
841 			const u64 end = start + async_extent->ram_size - 1;
842 
843 			p->mapping = inode->i_mapping;
844 			tree->ops->writepage_end_io_hook(p, start, end,
845 							 NULL, 0);
846 			p->mapping = NULL;
847 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 						     PAGE_END_WRITEBACK |
849 						     PAGE_SET_ERROR);
850 			free_async_extent_pages(async_extent);
851 		}
852 		alloc_hint = ins.objectid + ins.offset;
853 		kfree(async_extent);
854 		cond_resched();
855 	}
856 	return;
857 out_free_reserve:
858 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
859 out_free:
860 	extent_clear_unlock_delalloc(inode, async_extent->start,
861 				     async_extent->start +
862 				     async_extent->ram_size - 1,
863 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
864 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
866 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 				     PAGE_SET_ERROR);
868 	free_async_extent_pages(async_extent);
869 	kfree(async_extent);
870 	goto again;
871 }
872 
873 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 				      u64 num_bytes)
875 {
876 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 	struct extent_map *em;
878 	u64 alloc_hint = 0;
879 
880 	read_lock(&em_tree->lock);
881 	em = search_extent_mapping(em_tree, start, num_bytes);
882 	if (em) {
883 		/*
884 		 * if block start isn't an actual block number then find the
885 		 * first block in this inode and use that as a hint.  If that
886 		 * block is also bogus then just don't worry about it.
887 		 */
888 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 			free_extent_map(em);
890 			em = search_extent_mapping(em_tree, 0, 0);
891 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 				alloc_hint = em->block_start;
893 			if (em)
894 				free_extent_map(em);
895 		} else {
896 			alloc_hint = em->block_start;
897 			free_extent_map(em);
898 		}
899 	}
900 	read_unlock(&em_tree->lock);
901 
902 	return alloc_hint;
903 }
904 
905 /*
906  * when extent_io.c finds a delayed allocation range in the file,
907  * the call backs end up in this code.  The basic idea is to
908  * allocate extents on disk for the range, and create ordered data structs
909  * in ram to track those extents.
910  *
911  * locked_page is the page that writepage had locked already.  We use
912  * it to make sure we don't do extra locks or unlocks.
913  *
914  * *page_started is set to one if we unlock locked_page and do everything
915  * required to start IO on it.  It may be clean and already done with
916  * IO when we return.
917  */
918 static noinline int cow_file_range(struct inode *inode,
919 				   struct page *locked_page,
920 				   u64 start, u64 end, int *page_started,
921 				   unsigned long *nr_written,
922 				   int unlock)
923 {
924 	struct btrfs_root *root = BTRFS_I(inode)->root;
925 	u64 alloc_hint = 0;
926 	u64 num_bytes;
927 	unsigned long ram_size;
928 	u64 disk_num_bytes;
929 	u64 cur_alloc_size;
930 	u64 blocksize = root->sectorsize;
931 	struct btrfs_key ins;
932 	struct extent_map *em;
933 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 	int ret = 0;
935 
936 	if (btrfs_is_free_space_inode(inode)) {
937 		WARN_ON_ONCE(1);
938 		ret = -EINVAL;
939 		goto out_unlock;
940 	}
941 
942 	num_bytes = ALIGN(end - start + 1, blocksize);
943 	num_bytes = max(blocksize,  num_bytes);
944 	disk_num_bytes = num_bytes;
945 
946 	/* if this is a small write inside eof, kick off defrag */
947 	if (num_bytes < 64 * 1024 &&
948 	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
949 		btrfs_add_inode_defrag(NULL, inode);
950 
951 	if (start == 0) {
952 		/* lets try to make an inline extent */
953 		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 					    NULL);
955 		if (ret == 0) {
956 			extent_clear_unlock_delalloc(inode, start, end, NULL,
957 				     EXTENT_LOCKED | EXTENT_DELALLOC |
958 				     EXTENT_DEFRAG, PAGE_UNLOCK |
959 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 				     PAGE_END_WRITEBACK);
961 
962 			*nr_written = *nr_written +
963 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 			*page_started = 1;
965 			goto out;
966 		} else if (ret < 0) {
967 			goto out_unlock;
968 		}
969 	}
970 
971 	BUG_ON(disk_num_bytes >
972 	       btrfs_super_total_bytes(root->fs_info->super_copy));
973 
974 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
975 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976 
977 	while (disk_num_bytes > 0) {
978 		unsigned long op;
979 
980 		cur_alloc_size = disk_num_bytes;
981 		ret = btrfs_reserve_extent(root, cur_alloc_size,
982 					   root->sectorsize, 0, alloc_hint,
983 					   &ins, 1, 1);
984 		if (ret < 0)
985 			goto out_unlock;
986 
987 		em = alloc_extent_map();
988 		if (!em) {
989 			ret = -ENOMEM;
990 			goto out_reserve;
991 		}
992 		em->start = start;
993 		em->orig_start = em->start;
994 		ram_size = ins.offset;
995 		em->len = ins.offset;
996 		em->mod_start = em->start;
997 		em->mod_len = em->len;
998 
999 		em->block_start = ins.objectid;
1000 		em->block_len = ins.offset;
1001 		em->orig_block_len = ins.offset;
1002 		em->ram_bytes = ram_size;
1003 		em->bdev = root->fs_info->fs_devices->latest_bdev;
1004 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
1005 		em->generation = -1;
1006 
1007 		while (1) {
1008 			write_lock(&em_tree->lock);
1009 			ret = add_extent_mapping(em_tree, em, 1);
1010 			write_unlock(&em_tree->lock);
1011 			if (ret != -EEXIST) {
1012 				free_extent_map(em);
1013 				break;
1014 			}
1015 			btrfs_drop_extent_cache(inode, start,
1016 						start + ram_size - 1, 0);
1017 		}
1018 		if (ret)
1019 			goto out_reserve;
1020 
1021 		cur_alloc_size = ins.offset;
1022 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1023 					       ram_size, cur_alloc_size, 0);
1024 		if (ret)
1025 			goto out_drop_extent_cache;
1026 
1027 		if (root->root_key.objectid ==
1028 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 			ret = btrfs_reloc_clone_csums(inode, start,
1030 						      cur_alloc_size);
1031 			if (ret)
1032 				goto out_drop_extent_cache;
1033 		}
1034 
1035 		if (disk_num_bytes < cur_alloc_size)
1036 			break;
1037 
1038 		/* we're not doing compressed IO, don't unlock the first
1039 		 * page (which the caller expects to stay locked), don't
1040 		 * clear any dirty bits and don't set any writeback bits
1041 		 *
1042 		 * Do set the Private2 bit so we know this page was properly
1043 		 * setup for writepage
1044 		 */
1045 		op = unlock ? PAGE_UNLOCK : 0;
1046 		op |= PAGE_SET_PRIVATE2;
1047 
1048 		extent_clear_unlock_delalloc(inode, start,
1049 					     start + ram_size - 1, locked_page,
1050 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1051 					     op);
1052 		disk_num_bytes -= cur_alloc_size;
1053 		num_bytes -= cur_alloc_size;
1054 		alloc_hint = ins.objectid + ins.offset;
1055 		start += cur_alloc_size;
1056 	}
1057 out:
1058 	return ret;
1059 
1060 out_drop_extent_cache:
1061 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1062 out_reserve:
1063 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1064 out_unlock:
1065 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1066 				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1070 	goto out;
1071 }
1072 
1073 /*
1074  * work queue call back to started compression on a file and pages
1075  */
1076 static noinline void async_cow_start(struct btrfs_work *work)
1077 {
1078 	struct async_cow *async_cow;
1079 	int num_added = 0;
1080 	async_cow = container_of(work, struct async_cow, work);
1081 
1082 	compress_file_range(async_cow->inode, async_cow->locked_page,
1083 			    async_cow->start, async_cow->end, async_cow,
1084 			    &num_added);
1085 	if (num_added == 0) {
1086 		btrfs_add_delayed_iput(async_cow->inode);
1087 		async_cow->inode = NULL;
1088 	}
1089 }
1090 
1091 /*
1092  * work queue call back to submit previously compressed pages
1093  */
1094 static noinline void async_cow_submit(struct btrfs_work *work)
1095 {
1096 	struct async_cow *async_cow;
1097 	struct btrfs_root *root;
1098 	unsigned long nr_pages;
1099 
1100 	async_cow = container_of(work, struct async_cow, work);
1101 
1102 	root = async_cow->root;
1103 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 		PAGE_CACHE_SHIFT;
1105 
1106 	/*
1107 	 * atomic_sub_return implies a barrier for waitqueue_active
1108 	 */
1109 	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1110 	    5 * 1024 * 1024 &&
1111 	    waitqueue_active(&root->fs_info->async_submit_wait))
1112 		wake_up(&root->fs_info->async_submit_wait);
1113 
1114 	if (async_cow->inode)
1115 		submit_compressed_extents(async_cow->inode, async_cow);
1116 }
1117 
1118 static noinline void async_cow_free(struct btrfs_work *work)
1119 {
1120 	struct async_cow *async_cow;
1121 	async_cow = container_of(work, struct async_cow, work);
1122 	if (async_cow->inode)
1123 		btrfs_add_delayed_iput(async_cow->inode);
1124 	kfree(async_cow);
1125 }
1126 
1127 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 				u64 start, u64 end, int *page_started,
1129 				unsigned long *nr_written)
1130 {
1131 	struct async_cow *async_cow;
1132 	struct btrfs_root *root = BTRFS_I(inode)->root;
1133 	unsigned long nr_pages;
1134 	u64 cur_end;
1135 	int limit = 10 * 1024 * 1024;
1136 
1137 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 			 1, 0, NULL, GFP_NOFS);
1139 	while (start < end) {
1140 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1141 		BUG_ON(!async_cow); /* -ENOMEM */
1142 		async_cow->inode = igrab(inode);
1143 		async_cow->root = root;
1144 		async_cow->locked_page = locked_page;
1145 		async_cow->start = start;
1146 
1147 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 		    !btrfs_test_opt(root, FORCE_COMPRESS))
1149 			cur_end = end;
1150 		else
1151 			cur_end = min(end, start + 512 * 1024 - 1);
1152 
1153 		async_cow->end = cur_end;
1154 		INIT_LIST_HEAD(&async_cow->extents);
1155 
1156 		btrfs_init_work(&async_cow->work,
1157 				btrfs_delalloc_helper,
1158 				async_cow_start, async_cow_submit,
1159 				async_cow_free);
1160 
1161 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 			PAGE_CACHE_SHIFT;
1163 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164 
1165 		btrfs_queue_work(root->fs_info->delalloc_workers,
1166 				 &async_cow->work);
1167 
1168 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 			wait_event(root->fs_info->async_submit_wait,
1170 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 			    limit));
1172 		}
1173 
1174 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1175 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 			wait_event(root->fs_info->async_submit_wait,
1177 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 			   0));
1179 		}
1180 
1181 		*nr_written += nr_pages;
1182 		start = cur_end + 1;
1183 	}
1184 	*page_started = 1;
1185 	return 0;
1186 }
1187 
1188 static noinline int csum_exist_in_range(struct btrfs_root *root,
1189 					u64 bytenr, u64 num_bytes)
1190 {
1191 	int ret;
1192 	struct btrfs_ordered_sum *sums;
1193 	LIST_HEAD(list);
1194 
1195 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1196 				       bytenr + num_bytes - 1, &list, 0);
1197 	if (ret == 0 && list_empty(&list))
1198 		return 0;
1199 
1200 	while (!list_empty(&list)) {
1201 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 		list_del(&sums->list);
1203 		kfree(sums);
1204 	}
1205 	return 1;
1206 }
1207 
1208 /*
1209  * when nowcow writeback call back.  This checks for snapshots or COW copies
1210  * of the extents that exist in the file, and COWs the file as required.
1211  *
1212  * If no cow copies or snapshots exist, we write directly to the existing
1213  * blocks on disk
1214  */
1215 static noinline int run_delalloc_nocow(struct inode *inode,
1216 				       struct page *locked_page,
1217 			      u64 start, u64 end, int *page_started, int force,
1218 			      unsigned long *nr_written)
1219 {
1220 	struct btrfs_root *root = BTRFS_I(inode)->root;
1221 	struct btrfs_trans_handle *trans;
1222 	struct extent_buffer *leaf;
1223 	struct btrfs_path *path;
1224 	struct btrfs_file_extent_item *fi;
1225 	struct btrfs_key found_key;
1226 	u64 cow_start;
1227 	u64 cur_offset;
1228 	u64 extent_end;
1229 	u64 extent_offset;
1230 	u64 disk_bytenr;
1231 	u64 num_bytes;
1232 	u64 disk_num_bytes;
1233 	u64 ram_bytes;
1234 	int extent_type;
1235 	int ret, err;
1236 	int type;
1237 	int nocow;
1238 	int check_prev = 1;
1239 	bool nolock;
1240 	u64 ino = btrfs_ino(inode);
1241 
1242 	path = btrfs_alloc_path();
1243 	if (!path) {
1244 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1246 					     EXTENT_DO_ACCOUNTING |
1247 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1248 					     PAGE_CLEAR_DIRTY |
1249 					     PAGE_SET_WRITEBACK |
1250 					     PAGE_END_WRITEBACK);
1251 		return -ENOMEM;
1252 	}
1253 
1254 	nolock = btrfs_is_free_space_inode(inode);
1255 
1256 	if (nolock)
1257 		trans = btrfs_join_transaction_nolock(root);
1258 	else
1259 		trans = btrfs_join_transaction(root);
1260 
1261 	if (IS_ERR(trans)) {
1262 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1264 					     EXTENT_DO_ACCOUNTING |
1265 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1266 					     PAGE_CLEAR_DIRTY |
1267 					     PAGE_SET_WRITEBACK |
1268 					     PAGE_END_WRITEBACK);
1269 		btrfs_free_path(path);
1270 		return PTR_ERR(trans);
1271 	}
1272 
1273 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1274 
1275 	cow_start = (u64)-1;
1276 	cur_offset = start;
1277 	while (1) {
1278 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1279 					       cur_offset, 0);
1280 		if (ret < 0)
1281 			goto error;
1282 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 			leaf = path->nodes[0];
1284 			btrfs_item_key_to_cpu(leaf, &found_key,
1285 					      path->slots[0] - 1);
1286 			if (found_key.objectid == ino &&
1287 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 				path->slots[0]--;
1289 		}
1290 		check_prev = 0;
1291 next_slot:
1292 		leaf = path->nodes[0];
1293 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 			ret = btrfs_next_leaf(root, path);
1295 			if (ret < 0)
1296 				goto error;
1297 			if (ret > 0)
1298 				break;
1299 			leaf = path->nodes[0];
1300 		}
1301 
1302 		nocow = 0;
1303 		disk_bytenr = 0;
1304 		num_bytes = 0;
1305 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306 
1307 		if (found_key.objectid > ino)
1308 			break;
1309 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1310 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1311 			path->slots[0]++;
1312 			goto next_slot;
1313 		}
1314 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1315 		    found_key.offset > end)
1316 			break;
1317 
1318 		if (found_key.offset > cur_offset) {
1319 			extent_end = found_key.offset;
1320 			extent_type = 0;
1321 			goto out_check;
1322 		}
1323 
1324 		fi = btrfs_item_ptr(leaf, path->slots[0],
1325 				    struct btrfs_file_extent_item);
1326 		extent_type = btrfs_file_extent_type(leaf, fi);
1327 
1328 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1329 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1330 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1331 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1332 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1333 			extent_end = found_key.offset +
1334 				btrfs_file_extent_num_bytes(leaf, fi);
1335 			disk_num_bytes =
1336 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1337 			if (extent_end <= start) {
1338 				path->slots[0]++;
1339 				goto next_slot;
1340 			}
1341 			if (disk_bytenr == 0)
1342 				goto out_check;
1343 			if (btrfs_file_extent_compression(leaf, fi) ||
1344 			    btrfs_file_extent_encryption(leaf, fi) ||
1345 			    btrfs_file_extent_other_encoding(leaf, fi))
1346 				goto out_check;
1347 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1348 				goto out_check;
1349 			if (btrfs_extent_readonly(root, disk_bytenr))
1350 				goto out_check;
1351 			if (btrfs_cross_ref_exist(trans, root, ino,
1352 						  found_key.offset -
1353 						  extent_offset, disk_bytenr))
1354 				goto out_check;
1355 			disk_bytenr += extent_offset;
1356 			disk_bytenr += cur_offset - found_key.offset;
1357 			num_bytes = min(end + 1, extent_end) - cur_offset;
1358 			/*
1359 			 * if there are pending snapshots for this root,
1360 			 * we fall into common COW way.
1361 			 */
1362 			if (!nolock) {
1363 				err = btrfs_start_write_no_snapshoting(root);
1364 				if (!err)
1365 					goto out_check;
1366 			}
1367 			/*
1368 			 * force cow if csum exists in the range.
1369 			 * this ensure that csum for a given extent are
1370 			 * either valid or do not exist.
1371 			 */
1372 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1373 				goto out_check;
1374 			nocow = 1;
1375 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1376 			extent_end = found_key.offset +
1377 				btrfs_file_extent_inline_len(leaf,
1378 						     path->slots[0], fi);
1379 			extent_end = ALIGN(extent_end, root->sectorsize);
1380 		} else {
1381 			BUG_ON(1);
1382 		}
1383 out_check:
1384 		if (extent_end <= start) {
1385 			path->slots[0]++;
1386 			if (!nolock && nocow)
1387 				btrfs_end_write_no_snapshoting(root);
1388 			goto next_slot;
1389 		}
1390 		if (!nocow) {
1391 			if (cow_start == (u64)-1)
1392 				cow_start = cur_offset;
1393 			cur_offset = extent_end;
1394 			if (cur_offset > end)
1395 				break;
1396 			path->slots[0]++;
1397 			goto next_slot;
1398 		}
1399 
1400 		btrfs_release_path(path);
1401 		if (cow_start != (u64)-1) {
1402 			ret = cow_file_range(inode, locked_page,
1403 					     cow_start, found_key.offset - 1,
1404 					     page_started, nr_written, 1);
1405 			if (ret) {
1406 				if (!nolock && nocow)
1407 					btrfs_end_write_no_snapshoting(root);
1408 				goto error;
1409 			}
1410 			cow_start = (u64)-1;
1411 		}
1412 
1413 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1414 			struct extent_map *em;
1415 			struct extent_map_tree *em_tree;
1416 			em_tree = &BTRFS_I(inode)->extent_tree;
1417 			em = alloc_extent_map();
1418 			BUG_ON(!em); /* -ENOMEM */
1419 			em->start = cur_offset;
1420 			em->orig_start = found_key.offset - extent_offset;
1421 			em->len = num_bytes;
1422 			em->block_len = num_bytes;
1423 			em->block_start = disk_bytenr;
1424 			em->orig_block_len = disk_num_bytes;
1425 			em->ram_bytes = ram_bytes;
1426 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1427 			em->mod_start = em->start;
1428 			em->mod_len = em->len;
1429 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1430 			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1431 			em->generation = -1;
1432 			while (1) {
1433 				write_lock(&em_tree->lock);
1434 				ret = add_extent_mapping(em_tree, em, 1);
1435 				write_unlock(&em_tree->lock);
1436 				if (ret != -EEXIST) {
1437 					free_extent_map(em);
1438 					break;
1439 				}
1440 				btrfs_drop_extent_cache(inode, em->start,
1441 						em->start + em->len - 1, 0);
1442 			}
1443 			type = BTRFS_ORDERED_PREALLOC;
1444 		} else {
1445 			type = BTRFS_ORDERED_NOCOW;
1446 		}
1447 
1448 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1449 					       num_bytes, num_bytes, type);
1450 		BUG_ON(ret); /* -ENOMEM */
1451 
1452 		if (root->root_key.objectid ==
1453 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1454 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1455 						      num_bytes);
1456 			if (ret) {
1457 				if (!nolock && nocow)
1458 					btrfs_end_write_no_snapshoting(root);
1459 				goto error;
1460 			}
1461 		}
1462 
1463 		extent_clear_unlock_delalloc(inode, cur_offset,
1464 					     cur_offset + num_bytes - 1,
1465 					     locked_page, EXTENT_LOCKED |
1466 					     EXTENT_DELALLOC, PAGE_UNLOCK |
1467 					     PAGE_SET_PRIVATE2);
1468 		if (!nolock && nocow)
1469 			btrfs_end_write_no_snapshoting(root);
1470 		cur_offset = extent_end;
1471 		if (cur_offset > end)
1472 			break;
1473 	}
1474 	btrfs_release_path(path);
1475 
1476 	if (cur_offset <= end && cow_start == (u64)-1) {
1477 		cow_start = cur_offset;
1478 		cur_offset = end;
1479 	}
1480 
1481 	if (cow_start != (u64)-1) {
1482 		ret = cow_file_range(inode, locked_page, cow_start, end,
1483 				     page_started, nr_written, 1);
1484 		if (ret)
1485 			goto error;
1486 	}
1487 
1488 error:
1489 	err = btrfs_end_transaction(trans, root);
1490 	if (!ret)
1491 		ret = err;
1492 
1493 	if (ret && cur_offset < end)
1494 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1495 					     locked_page, EXTENT_LOCKED |
1496 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1497 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1498 					     PAGE_CLEAR_DIRTY |
1499 					     PAGE_SET_WRITEBACK |
1500 					     PAGE_END_WRITEBACK);
1501 	btrfs_free_path(path);
1502 	return ret;
1503 }
1504 
1505 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1506 {
1507 
1508 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1509 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1510 		return 0;
1511 
1512 	/*
1513 	 * @defrag_bytes is a hint value, no spinlock held here,
1514 	 * if is not zero, it means the file is defragging.
1515 	 * Force cow if given extent needs to be defragged.
1516 	 */
1517 	if (BTRFS_I(inode)->defrag_bytes &&
1518 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1519 			   EXTENT_DEFRAG, 0, NULL))
1520 		return 1;
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * extent_io.c call back to do delayed allocation processing
1527  */
1528 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1529 			      u64 start, u64 end, int *page_started,
1530 			      unsigned long *nr_written)
1531 {
1532 	int ret;
1533 	int force_cow = need_force_cow(inode, start, end);
1534 
1535 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1536 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1537 					 page_started, 1, nr_written);
1538 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1539 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1540 					 page_started, 0, nr_written);
1541 	} else if (!inode_need_compress(inode)) {
1542 		ret = cow_file_range(inode, locked_page, start, end,
1543 				      page_started, nr_written, 1);
1544 	} else {
1545 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1546 			&BTRFS_I(inode)->runtime_flags);
1547 		ret = cow_file_range_async(inode, locked_page, start, end,
1548 					   page_started, nr_written);
1549 	}
1550 	return ret;
1551 }
1552 
1553 static void btrfs_split_extent_hook(struct inode *inode,
1554 				    struct extent_state *orig, u64 split)
1555 {
1556 	u64 size;
1557 
1558 	/* not delalloc, ignore it */
1559 	if (!(orig->state & EXTENT_DELALLOC))
1560 		return;
1561 
1562 	size = orig->end - orig->start + 1;
1563 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1564 		u64 num_extents;
1565 		u64 new_size;
1566 
1567 		/*
1568 		 * See the explanation in btrfs_merge_extent_hook, the same
1569 		 * applies here, just in reverse.
1570 		 */
1571 		new_size = orig->end - split + 1;
1572 		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1573 					BTRFS_MAX_EXTENT_SIZE);
1574 		new_size = split - orig->start;
1575 		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1576 					BTRFS_MAX_EXTENT_SIZE);
1577 		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1578 			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1579 			return;
1580 	}
1581 
1582 	spin_lock(&BTRFS_I(inode)->lock);
1583 	BTRFS_I(inode)->outstanding_extents++;
1584 	spin_unlock(&BTRFS_I(inode)->lock);
1585 }
1586 
1587 /*
1588  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1589  * extents so we can keep track of new extents that are just merged onto old
1590  * extents, such as when we are doing sequential writes, so we can properly
1591  * account for the metadata space we'll need.
1592  */
1593 static void btrfs_merge_extent_hook(struct inode *inode,
1594 				    struct extent_state *new,
1595 				    struct extent_state *other)
1596 {
1597 	u64 new_size, old_size;
1598 	u64 num_extents;
1599 
1600 	/* not delalloc, ignore it */
1601 	if (!(other->state & EXTENT_DELALLOC))
1602 		return;
1603 
1604 	if (new->start > other->start)
1605 		new_size = new->end - other->start + 1;
1606 	else
1607 		new_size = other->end - new->start + 1;
1608 
1609 	/* we're not bigger than the max, unreserve the space and go */
1610 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1611 		spin_lock(&BTRFS_I(inode)->lock);
1612 		BTRFS_I(inode)->outstanding_extents--;
1613 		spin_unlock(&BTRFS_I(inode)->lock);
1614 		return;
1615 	}
1616 
1617 	/*
1618 	 * We have to add up either side to figure out how many extents were
1619 	 * accounted for before we merged into one big extent.  If the number of
1620 	 * extents we accounted for is <= the amount we need for the new range
1621 	 * then we can return, otherwise drop.  Think of it like this
1622 	 *
1623 	 * [ 4k][MAX_SIZE]
1624 	 *
1625 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1626 	 * need 2 outstanding extents, on one side we have 1 and the other side
1627 	 * we have 1 so they are == and we can return.  But in this case
1628 	 *
1629 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1630 	 *
1631 	 * Each range on their own accounts for 2 extents, but merged together
1632 	 * they are only 3 extents worth of accounting, so we need to drop in
1633 	 * this case.
1634 	 */
1635 	old_size = other->end - other->start + 1;
1636 	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1637 				BTRFS_MAX_EXTENT_SIZE);
1638 	old_size = new->end - new->start + 1;
1639 	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1640 				 BTRFS_MAX_EXTENT_SIZE);
1641 
1642 	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1644 		return;
1645 
1646 	spin_lock(&BTRFS_I(inode)->lock);
1647 	BTRFS_I(inode)->outstanding_extents--;
1648 	spin_unlock(&BTRFS_I(inode)->lock);
1649 }
1650 
1651 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1652 				      struct inode *inode)
1653 {
1654 	spin_lock(&root->delalloc_lock);
1655 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1656 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1657 			      &root->delalloc_inodes);
1658 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1659 			&BTRFS_I(inode)->runtime_flags);
1660 		root->nr_delalloc_inodes++;
1661 		if (root->nr_delalloc_inodes == 1) {
1662 			spin_lock(&root->fs_info->delalloc_root_lock);
1663 			BUG_ON(!list_empty(&root->delalloc_root));
1664 			list_add_tail(&root->delalloc_root,
1665 				      &root->fs_info->delalloc_roots);
1666 			spin_unlock(&root->fs_info->delalloc_root_lock);
1667 		}
1668 	}
1669 	spin_unlock(&root->delalloc_lock);
1670 }
1671 
1672 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1673 				     struct inode *inode)
1674 {
1675 	spin_lock(&root->delalloc_lock);
1676 	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1677 		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1678 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1679 			  &BTRFS_I(inode)->runtime_flags);
1680 		root->nr_delalloc_inodes--;
1681 		if (!root->nr_delalloc_inodes) {
1682 			spin_lock(&root->fs_info->delalloc_root_lock);
1683 			BUG_ON(list_empty(&root->delalloc_root));
1684 			list_del_init(&root->delalloc_root);
1685 			spin_unlock(&root->fs_info->delalloc_root_lock);
1686 		}
1687 	}
1688 	spin_unlock(&root->delalloc_lock);
1689 }
1690 
1691 /*
1692  * extent_io.c set_bit_hook, used to track delayed allocation
1693  * bytes in this file, and to maintain the list of inodes that
1694  * have pending delalloc work to be done.
1695  */
1696 static void btrfs_set_bit_hook(struct inode *inode,
1697 			       struct extent_state *state, unsigned *bits)
1698 {
1699 
1700 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1701 		WARN_ON(1);
1702 	/*
1703 	 * set_bit and clear bit hooks normally require _irqsave/restore
1704 	 * but in this case, we are only testing for the DELALLOC
1705 	 * bit, which is only set or cleared with irqs on
1706 	 */
1707 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1708 		struct btrfs_root *root = BTRFS_I(inode)->root;
1709 		u64 len = state->end + 1 - state->start;
1710 		bool do_list = !btrfs_is_free_space_inode(inode);
1711 
1712 		if (*bits & EXTENT_FIRST_DELALLOC) {
1713 			*bits &= ~EXTENT_FIRST_DELALLOC;
1714 		} else {
1715 			spin_lock(&BTRFS_I(inode)->lock);
1716 			BTRFS_I(inode)->outstanding_extents++;
1717 			spin_unlock(&BTRFS_I(inode)->lock);
1718 		}
1719 
1720 		/* For sanity tests */
1721 		if (btrfs_test_is_dummy_root(root))
1722 			return;
1723 
1724 		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1725 				     root->fs_info->delalloc_batch);
1726 		spin_lock(&BTRFS_I(inode)->lock);
1727 		BTRFS_I(inode)->delalloc_bytes += len;
1728 		if (*bits & EXTENT_DEFRAG)
1729 			BTRFS_I(inode)->defrag_bytes += len;
1730 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1731 					 &BTRFS_I(inode)->runtime_flags))
1732 			btrfs_add_delalloc_inodes(root, inode);
1733 		spin_unlock(&BTRFS_I(inode)->lock);
1734 	}
1735 }
1736 
1737 /*
1738  * extent_io.c clear_bit_hook, see set_bit_hook for why
1739  */
1740 static void btrfs_clear_bit_hook(struct inode *inode,
1741 				 struct extent_state *state,
1742 				 unsigned *bits)
1743 {
1744 	u64 len = state->end + 1 - state->start;
1745 	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1746 				    BTRFS_MAX_EXTENT_SIZE);
1747 
1748 	spin_lock(&BTRFS_I(inode)->lock);
1749 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1750 		BTRFS_I(inode)->defrag_bytes -= len;
1751 	spin_unlock(&BTRFS_I(inode)->lock);
1752 
1753 	/*
1754 	 * set_bit and clear bit hooks normally require _irqsave/restore
1755 	 * but in this case, we are only testing for the DELALLOC
1756 	 * bit, which is only set or cleared with irqs on
1757 	 */
1758 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1759 		struct btrfs_root *root = BTRFS_I(inode)->root;
1760 		bool do_list = !btrfs_is_free_space_inode(inode);
1761 
1762 		if (*bits & EXTENT_FIRST_DELALLOC) {
1763 			*bits &= ~EXTENT_FIRST_DELALLOC;
1764 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1765 			spin_lock(&BTRFS_I(inode)->lock);
1766 			BTRFS_I(inode)->outstanding_extents -= num_extents;
1767 			spin_unlock(&BTRFS_I(inode)->lock);
1768 		}
1769 
1770 		/*
1771 		 * We don't reserve metadata space for space cache inodes so we
1772 		 * don't need to call dellalloc_release_metadata if there is an
1773 		 * error.
1774 		 */
1775 		if (*bits & EXTENT_DO_ACCOUNTING &&
1776 		    root != root->fs_info->tree_root)
1777 			btrfs_delalloc_release_metadata(inode, len);
1778 
1779 		/* For sanity tests. */
1780 		if (btrfs_test_is_dummy_root(root))
1781 			return;
1782 
1783 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1784 		    && do_list && !(state->state & EXTENT_NORESERVE))
1785 			btrfs_free_reserved_data_space_noquota(inode,
1786 					state->start, len);
1787 
1788 		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1789 				     root->fs_info->delalloc_batch);
1790 		spin_lock(&BTRFS_I(inode)->lock);
1791 		BTRFS_I(inode)->delalloc_bytes -= len;
1792 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1793 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1794 			     &BTRFS_I(inode)->runtime_flags))
1795 			btrfs_del_delalloc_inode(root, inode);
1796 		spin_unlock(&BTRFS_I(inode)->lock);
1797 	}
1798 }
1799 
1800 /*
1801  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1802  * we don't create bios that span stripes or chunks
1803  */
1804 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1805 			 size_t size, struct bio *bio,
1806 			 unsigned long bio_flags)
1807 {
1808 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1809 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1810 	u64 length = 0;
1811 	u64 map_length;
1812 	int ret;
1813 
1814 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1815 		return 0;
1816 
1817 	length = bio->bi_iter.bi_size;
1818 	map_length = length;
1819 	ret = btrfs_map_block(root->fs_info, rw, logical,
1820 			      &map_length, NULL, 0);
1821 	/* Will always return 0 with map_multi == NULL */
1822 	BUG_ON(ret < 0);
1823 	if (map_length < length + size)
1824 		return 1;
1825 	return 0;
1826 }
1827 
1828 /*
1829  * in order to insert checksums into the metadata in large chunks,
1830  * we wait until bio submission time.   All the pages in the bio are
1831  * checksummed and sums are attached onto the ordered extent record.
1832  *
1833  * At IO completion time the cums attached on the ordered extent record
1834  * are inserted into the btree
1835  */
1836 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1837 				    struct bio *bio, int mirror_num,
1838 				    unsigned long bio_flags,
1839 				    u64 bio_offset)
1840 {
1841 	struct btrfs_root *root = BTRFS_I(inode)->root;
1842 	int ret = 0;
1843 
1844 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1845 	BUG_ON(ret); /* -ENOMEM */
1846 	return 0;
1847 }
1848 
1849 /*
1850  * in order to insert checksums into the metadata in large chunks,
1851  * we wait until bio submission time.   All the pages in the bio are
1852  * checksummed and sums are attached onto the ordered extent record.
1853  *
1854  * At IO completion time the cums attached on the ordered extent record
1855  * are inserted into the btree
1856  */
1857 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1858 			  int mirror_num, unsigned long bio_flags,
1859 			  u64 bio_offset)
1860 {
1861 	struct btrfs_root *root = BTRFS_I(inode)->root;
1862 	int ret;
1863 
1864 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1865 	if (ret) {
1866 		bio->bi_error = ret;
1867 		bio_endio(bio);
1868 	}
1869 	return ret;
1870 }
1871 
1872 /*
1873  * extent_io.c submission hook. This does the right thing for csum calculation
1874  * on write, or reading the csums from the tree before a read
1875  */
1876 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1877 			  int mirror_num, unsigned long bio_flags,
1878 			  u64 bio_offset)
1879 {
1880 	struct btrfs_root *root = BTRFS_I(inode)->root;
1881 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1882 	int ret = 0;
1883 	int skip_sum;
1884 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1885 
1886 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1887 
1888 	if (btrfs_is_free_space_inode(inode))
1889 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1890 
1891 	if (!(rw & REQ_WRITE)) {
1892 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1893 		if (ret)
1894 			goto out;
1895 
1896 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1897 			ret = btrfs_submit_compressed_read(inode, bio,
1898 							   mirror_num,
1899 							   bio_flags);
1900 			goto out;
1901 		} else if (!skip_sum) {
1902 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1903 			if (ret)
1904 				goto out;
1905 		}
1906 		goto mapit;
1907 	} else if (async && !skip_sum) {
1908 		/* csum items have already been cloned */
1909 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1910 			goto mapit;
1911 		/* we're doing a write, do the async checksumming */
1912 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1913 				   inode, rw, bio, mirror_num,
1914 				   bio_flags, bio_offset,
1915 				   __btrfs_submit_bio_start,
1916 				   __btrfs_submit_bio_done);
1917 		goto out;
1918 	} else if (!skip_sum) {
1919 		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1920 		if (ret)
1921 			goto out;
1922 	}
1923 
1924 mapit:
1925 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1926 
1927 out:
1928 	if (ret < 0) {
1929 		bio->bi_error = ret;
1930 		bio_endio(bio);
1931 	}
1932 	return ret;
1933 }
1934 
1935 /*
1936  * given a list of ordered sums record them in the inode.  This happens
1937  * at IO completion time based on sums calculated at bio submission time.
1938  */
1939 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1940 			     struct inode *inode, u64 file_offset,
1941 			     struct list_head *list)
1942 {
1943 	struct btrfs_ordered_sum *sum;
1944 
1945 	list_for_each_entry(sum, list, list) {
1946 		trans->adding_csums = 1;
1947 		btrfs_csum_file_blocks(trans,
1948 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1949 		trans->adding_csums = 0;
1950 	}
1951 	return 0;
1952 }
1953 
1954 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1955 			      struct extent_state **cached_state)
1956 {
1957 	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1958 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1959 				   cached_state, GFP_NOFS);
1960 }
1961 
1962 /* see btrfs_writepage_start_hook for details on why this is required */
1963 struct btrfs_writepage_fixup {
1964 	struct page *page;
1965 	struct btrfs_work work;
1966 };
1967 
1968 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1969 {
1970 	struct btrfs_writepage_fixup *fixup;
1971 	struct btrfs_ordered_extent *ordered;
1972 	struct extent_state *cached_state = NULL;
1973 	struct page *page;
1974 	struct inode *inode;
1975 	u64 page_start;
1976 	u64 page_end;
1977 	int ret;
1978 
1979 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1980 	page = fixup->page;
1981 again:
1982 	lock_page(page);
1983 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1984 		ClearPageChecked(page);
1985 		goto out_page;
1986 	}
1987 
1988 	inode = page->mapping->host;
1989 	page_start = page_offset(page);
1990 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1991 
1992 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1993 			 &cached_state);
1994 
1995 	/* already ordered? We're done */
1996 	if (PagePrivate2(page))
1997 		goto out;
1998 
1999 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2000 	if (ordered) {
2001 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2002 				     page_end, &cached_state, GFP_NOFS);
2003 		unlock_page(page);
2004 		btrfs_start_ordered_extent(inode, ordered, 1);
2005 		btrfs_put_ordered_extent(ordered);
2006 		goto again;
2007 	}
2008 
2009 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2010 					   PAGE_CACHE_SIZE);
2011 	if (ret) {
2012 		mapping_set_error(page->mapping, ret);
2013 		end_extent_writepage(page, ret, page_start, page_end);
2014 		ClearPageChecked(page);
2015 		goto out;
2016 	 }
2017 
2018 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2019 	ClearPageChecked(page);
2020 	set_page_dirty(page);
2021 out:
2022 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2023 			     &cached_state, GFP_NOFS);
2024 out_page:
2025 	unlock_page(page);
2026 	page_cache_release(page);
2027 	kfree(fixup);
2028 }
2029 
2030 /*
2031  * There are a few paths in the higher layers of the kernel that directly
2032  * set the page dirty bit without asking the filesystem if it is a
2033  * good idea.  This causes problems because we want to make sure COW
2034  * properly happens and the data=ordered rules are followed.
2035  *
2036  * In our case any range that doesn't have the ORDERED bit set
2037  * hasn't been properly setup for IO.  We kick off an async process
2038  * to fix it up.  The async helper will wait for ordered extents, set
2039  * the delalloc bit and make it safe to write the page.
2040  */
2041 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2042 {
2043 	struct inode *inode = page->mapping->host;
2044 	struct btrfs_writepage_fixup *fixup;
2045 	struct btrfs_root *root = BTRFS_I(inode)->root;
2046 
2047 	/* this page is properly in the ordered list */
2048 	if (TestClearPagePrivate2(page))
2049 		return 0;
2050 
2051 	if (PageChecked(page))
2052 		return -EAGAIN;
2053 
2054 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2055 	if (!fixup)
2056 		return -EAGAIN;
2057 
2058 	SetPageChecked(page);
2059 	page_cache_get(page);
2060 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2061 			btrfs_writepage_fixup_worker, NULL, NULL);
2062 	fixup->page = page;
2063 	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2064 	return -EBUSY;
2065 }
2066 
2067 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2068 				       struct inode *inode, u64 file_pos,
2069 				       u64 disk_bytenr, u64 disk_num_bytes,
2070 				       u64 num_bytes, u64 ram_bytes,
2071 				       u8 compression, u8 encryption,
2072 				       u16 other_encoding, int extent_type)
2073 {
2074 	struct btrfs_root *root = BTRFS_I(inode)->root;
2075 	struct btrfs_file_extent_item *fi;
2076 	struct btrfs_path *path;
2077 	struct extent_buffer *leaf;
2078 	struct btrfs_key ins;
2079 	int extent_inserted = 0;
2080 	int ret;
2081 
2082 	path = btrfs_alloc_path();
2083 	if (!path)
2084 		return -ENOMEM;
2085 
2086 	/*
2087 	 * we may be replacing one extent in the tree with another.
2088 	 * The new extent is pinned in the extent map, and we don't want
2089 	 * to drop it from the cache until it is completely in the btree.
2090 	 *
2091 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2092 	 * the caller is expected to unpin it and allow it to be merged
2093 	 * with the others.
2094 	 */
2095 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2096 				   file_pos + num_bytes, NULL, 0,
2097 				   1, sizeof(*fi), &extent_inserted);
2098 	if (ret)
2099 		goto out;
2100 
2101 	if (!extent_inserted) {
2102 		ins.objectid = btrfs_ino(inode);
2103 		ins.offset = file_pos;
2104 		ins.type = BTRFS_EXTENT_DATA_KEY;
2105 
2106 		path->leave_spinning = 1;
2107 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2108 					      sizeof(*fi));
2109 		if (ret)
2110 			goto out;
2111 	}
2112 	leaf = path->nodes[0];
2113 	fi = btrfs_item_ptr(leaf, path->slots[0],
2114 			    struct btrfs_file_extent_item);
2115 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2116 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2117 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2118 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2119 	btrfs_set_file_extent_offset(leaf, fi, 0);
2120 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2121 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2122 	btrfs_set_file_extent_compression(leaf, fi, compression);
2123 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2124 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2125 
2126 	btrfs_mark_buffer_dirty(leaf);
2127 	btrfs_release_path(path);
2128 
2129 	inode_add_bytes(inode, num_bytes);
2130 
2131 	ins.objectid = disk_bytenr;
2132 	ins.offset = disk_num_bytes;
2133 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2134 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2135 					root->root_key.objectid,
2136 					btrfs_ino(inode), file_pos,
2137 					ram_bytes, &ins);
2138 	/*
2139 	 * Release the reserved range from inode dirty range map, as it is
2140 	 * already moved into delayed_ref_head
2141 	 */
2142 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2143 out:
2144 	btrfs_free_path(path);
2145 
2146 	return ret;
2147 }
2148 
2149 /* snapshot-aware defrag */
2150 struct sa_defrag_extent_backref {
2151 	struct rb_node node;
2152 	struct old_sa_defrag_extent *old;
2153 	u64 root_id;
2154 	u64 inum;
2155 	u64 file_pos;
2156 	u64 extent_offset;
2157 	u64 num_bytes;
2158 	u64 generation;
2159 };
2160 
2161 struct old_sa_defrag_extent {
2162 	struct list_head list;
2163 	struct new_sa_defrag_extent *new;
2164 
2165 	u64 extent_offset;
2166 	u64 bytenr;
2167 	u64 offset;
2168 	u64 len;
2169 	int count;
2170 };
2171 
2172 struct new_sa_defrag_extent {
2173 	struct rb_root root;
2174 	struct list_head head;
2175 	struct btrfs_path *path;
2176 	struct inode *inode;
2177 	u64 file_pos;
2178 	u64 len;
2179 	u64 bytenr;
2180 	u64 disk_len;
2181 	u8 compress_type;
2182 };
2183 
2184 static int backref_comp(struct sa_defrag_extent_backref *b1,
2185 			struct sa_defrag_extent_backref *b2)
2186 {
2187 	if (b1->root_id < b2->root_id)
2188 		return -1;
2189 	else if (b1->root_id > b2->root_id)
2190 		return 1;
2191 
2192 	if (b1->inum < b2->inum)
2193 		return -1;
2194 	else if (b1->inum > b2->inum)
2195 		return 1;
2196 
2197 	if (b1->file_pos < b2->file_pos)
2198 		return -1;
2199 	else if (b1->file_pos > b2->file_pos)
2200 		return 1;
2201 
2202 	/*
2203 	 * [------------------------------] ===> (a range of space)
2204 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2205 	 * |<---------------------------->| ===> (fs/file tree B)
2206 	 *
2207 	 * A range of space can refer to two file extents in one tree while
2208 	 * refer to only one file extent in another tree.
2209 	 *
2210 	 * So we may process a disk offset more than one time(two extents in A)
2211 	 * and locate at the same extent(one extent in B), then insert two same
2212 	 * backrefs(both refer to the extent in B).
2213 	 */
2214 	return 0;
2215 }
2216 
2217 static void backref_insert(struct rb_root *root,
2218 			   struct sa_defrag_extent_backref *backref)
2219 {
2220 	struct rb_node **p = &root->rb_node;
2221 	struct rb_node *parent = NULL;
2222 	struct sa_defrag_extent_backref *entry;
2223 	int ret;
2224 
2225 	while (*p) {
2226 		parent = *p;
2227 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2228 
2229 		ret = backref_comp(backref, entry);
2230 		if (ret < 0)
2231 			p = &(*p)->rb_left;
2232 		else
2233 			p = &(*p)->rb_right;
2234 	}
2235 
2236 	rb_link_node(&backref->node, parent, p);
2237 	rb_insert_color(&backref->node, root);
2238 }
2239 
2240 /*
2241  * Note the backref might has changed, and in this case we just return 0.
2242  */
2243 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2244 				       void *ctx)
2245 {
2246 	struct btrfs_file_extent_item *extent;
2247 	struct btrfs_fs_info *fs_info;
2248 	struct old_sa_defrag_extent *old = ctx;
2249 	struct new_sa_defrag_extent *new = old->new;
2250 	struct btrfs_path *path = new->path;
2251 	struct btrfs_key key;
2252 	struct btrfs_root *root;
2253 	struct sa_defrag_extent_backref *backref;
2254 	struct extent_buffer *leaf;
2255 	struct inode *inode = new->inode;
2256 	int slot;
2257 	int ret;
2258 	u64 extent_offset;
2259 	u64 num_bytes;
2260 
2261 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2262 	    inum == btrfs_ino(inode))
2263 		return 0;
2264 
2265 	key.objectid = root_id;
2266 	key.type = BTRFS_ROOT_ITEM_KEY;
2267 	key.offset = (u64)-1;
2268 
2269 	fs_info = BTRFS_I(inode)->root->fs_info;
2270 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2271 	if (IS_ERR(root)) {
2272 		if (PTR_ERR(root) == -ENOENT)
2273 			return 0;
2274 		WARN_ON(1);
2275 		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2276 			 inum, offset, root_id);
2277 		return PTR_ERR(root);
2278 	}
2279 
2280 	key.objectid = inum;
2281 	key.type = BTRFS_EXTENT_DATA_KEY;
2282 	if (offset > (u64)-1 << 32)
2283 		key.offset = 0;
2284 	else
2285 		key.offset = offset;
2286 
2287 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2288 	if (WARN_ON(ret < 0))
2289 		return ret;
2290 	ret = 0;
2291 
2292 	while (1) {
2293 		cond_resched();
2294 
2295 		leaf = path->nodes[0];
2296 		slot = path->slots[0];
2297 
2298 		if (slot >= btrfs_header_nritems(leaf)) {
2299 			ret = btrfs_next_leaf(root, path);
2300 			if (ret < 0) {
2301 				goto out;
2302 			} else if (ret > 0) {
2303 				ret = 0;
2304 				goto out;
2305 			}
2306 			continue;
2307 		}
2308 
2309 		path->slots[0]++;
2310 
2311 		btrfs_item_key_to_cpu(leaf, &key, slot);
2312 
2313 		if (key.objectid > inum)
2314 			goto out;
2315 
2316 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2317 			continue;
2318 
2319 		extent = btrfs_item_ptr(leaf, slot,
2320 					struct btrfs_file_extent_item);
2321 
2322 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2323 			continue;
2324 
2325 		/*
2326 		 * 'offset' refers to the exact key.offset,
2327 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2328 		 * (key.offset - extent_offset).
2329 		 */
2330 		if (key.offset != offset)
2331 			continue;
2332 
2333 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2334 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2335 
2336 		if (extent_offset >= old->extent_offset + old->offset +
2337 		    old->len || extent_offset + num_bytes <=
2338 		    old->extent_offset + old->offset)
2339 			continue;
2340 		break;
2341 	}
2342 
2343 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2344 	if (!backref) {
2345 		ret = -ENOENT;
2346 		goto out;
2347 	}
2348 
2349 	backref->root_id = root_id;
2350 	backref->inum = inum;
2351 	backref->file_pos = offset;
2352 	backref->num_bytes = num_bytes;
2353 	backref->extent_offset = extent_offset;
2354 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2355 	backref->old = old;
2356 	backref_insert(&new->root, backref);
2357 	old->count++;
2358 out:
2359 	btrfs_release_path(path);
2360 	WARN_ON(ret);
2361 	return ret;
2362 }
2363 
2364 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2365 				   struct new_sa_defrag_extent *new)
2366 {
2367 	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2368 	struct old_sa_defrag_extent *old, *tmp;
2369 	int ret;
2370 
2371 	new->path = path;
2372 
2373 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2374 		ret = iterate_inodes_from_logical(old->bytenr +
2375 						  old->extent_offset, fs_info,
2376 						  path, record_one_backref,
2377 						  old);
2378 		if (ret < 0 && ret != -ENOENT)
2379 			return false;
2380 
2381 		/* no backref to be processed for this extent */
2382 		if (!old->count) {
2383 			list_del(&old->list);
2384 			kfree(old);
2385 		}
2386 	}
2387 
2388 	if (list_empty(&new->head))
2389 		return false;
2390 
2391 	return true;
2392 }
2393 
2394 static int relink_is_mergable(struct extent_buffer *leaf,
2395 			      struct btrfs_file_extent_item *fi,
2396 			      struct new_sa_defrag_extent *new)
2397 {
2398 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2399 		return 0;
2400 
2401 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2402 		return 0;
2403 
2404 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2405 		return 0;
2406 
2407 	if (btrfs_file_extent_encryption(leaf, fi) ||
2408 	    btrfs_file_extent_other_encoding(leaf, fi))
2409 		return 0;
2410 
2411 	return 1;
2412 }
2413 
2414 /*
2415  * Note the backref might has changed, and in this case we just return 0.
2416  */
2417 static noinline int relink_extent_backref(struct btrfs_path *path,
2418 				 struct sa_defrag_extent_backref *prev,
2419 				 struct sa_defrag_extent_backref *backref)
2420 {
2421 	struct btrfs_file_extent_item *extent;
2422 	struct btrfs_file_extent_item *item;
2423 	struct btrfs_ordered_extent *ordered;
2424 	struct btrfs_trans_handle *trans;
2425 	struct btrfs_fs_info *fs_info;
2426 	struct btrfs_root *root;
2427 	struct btrfs_key key;
2428 	struct extent_buffer *leaf;
2429 	struct old_sa_defrag_extent *old = backref->old;
2430 	struct new_sa_defrag_extent *new = old->new;
2431 	struct inode *src_inode = new->inode;
2432 	struct inode *inode;
2433 	struct extent_state *cached = NULL;
2434 	int ret = 0;
2435 	u64 start;
2436 	u64 len;
2437 	u64 lock_start;
2438 	u64 lock_end;
2439 	bool merge = false;
2440 	int index;
2441 
2442 	if (prev && prev->root_id == backref->root_id &&
2443 	    prev->inum == backref->inum &&
2444 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2445 		merge = true;
2446 
2447 	/* step 1: get root */
2448 	key.objectid = backref->root_id;
2449 	key.type = BTRFS_ROOT_ITEM_KEY;
2450 	key.offset = (u64)-1;
2451 
2452 	fs_info = BTRFS_I(src_inode)->root->fs_info;
2453 	index = srcu_read_lock(&fs_info->subvol_srcu);
2454 
2455 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2456 	if (IS_ERR(root)) {
2457 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2458 		if (PTR_ERR(root) == -ENOENT)
2459 			return 0;
2460 		return PTR_ERR(root);
2461 	}
2462 
2463 	if (btrfs_root_readonly(root)) {
2464 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2465 		return 0;
2466 	}
2467 
2468 	/* step 2: get inode */
2469 	key.objectid = backref->inum;
2470 	key.type = BTRFS_INODE_ITEM_KEY;
2471 	key.offset = 0;
2472 
2473 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2474 	if (IS_ERR(inode)) {
2475 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2476 		return 0;
2477 	}
2478 
2479 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2480 
2481 	/* step 3: relink backref */
2482 	lock_start = backref->file_pos;
2483 	lock_end = backref->file_pos + backref->num_bytes - 1;
2484 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2485 			 0, &cached);
2486 
2487 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2488 	if (ordered) {
2489 		btrfs_put_ordered_extent(ordered);
2490 		goto out_unlock;
2491 	}
2492 
2493 	trans = btrfs_join_transaction(root);
2494 	if (IS_ERR(trans)) {
2495 		ret = PTR_ERR(trans);
2496 		goto out_unlock;
2497 	}
2498 
2499 	key.objectid = backref->inum;
2500 	key.type = BTRFS_EXTENT_DATA_KEY;
2501 	key.offset = backref->file_pos;
2502 
2503 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2504 	if (ret < 0) {
2505 		goto out_free_path;
2506 	} else if (ret > 0) {
2507 		ret = 0;
2508 		goto out_free_path;
2509 	}
2510 
2511 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2512 				struct btrfs_file_extent_item);
2513 
2514 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2515 	    backref->generation)
2516 		goto out_free_path;
2517 
2518 	btrfs_release_path(path);
2519 
2520 	start = backref->file_pos;
2521 	if (backref->extent_offset < old->extent_offset + old->offset)
2522 		start += old->extent_offset + old->offset -
2523 			 backref->extent_offset;
2524 
2525 	len = min(backref->extent_offset + backref->num_bytes,
2526 		  old->extent_offset + old->offset + old->len);
2527 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2528 
2529 	ret = btrfs_drop_extents(trans, root, inode, start,
2530 				 start + len, 1);
2531 	if (ret)
2532 		goto out_free_path;
2533 again:
2534 	key.objectid = btrfs_ino(inode);
2535 	key.type = BTRFS_EXTENT_DATA_KEY;
2536 	key.offset = start;
2537 
2538 	path->leave_spinning = 1;
2539 	if (merge) {
2540 		struct btrfs_file_extent_item *fi;
2541 		u64 extent_len;
2542 		struct btrfs_key found_key;
2543 
2544 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2545 		if (ret < 0)
2546 			goto out_free_path;
2547 
2548 		path->slots[0]--;
2549 		leaf = path->nodes[0];
2550 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2551 
2552 		fi = btrfs_item_ptr(leaf, path->slots[0],
2553 				    struct btrfs_file_extent_item);
2554 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2555 
2556 		if (extent_len + found_key.offset == start &&
2557 		    relink_is_mergable(leaf, fi, new)) {
2558 			btrfs_set_file_extent_num_bytes(leaf, fi,
2559 							extent_len + len);
2560 			btrfs_mark_buffer_dirty(leaf);
2561 			inode_add_bytes(inode, len);
2562 
2563 			ret = 1;
2564 			goto out_free_path;
2565 		} else {
2566 			merge = false;
2567 			btrfs_release_path(path);
2568 			goto again;
2569 		}
2570 	}
2571 
2572 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2573 					sizeof(*extent));
2574 	if (ret) {
2575 		btrfs_abort_transaction(trans, root, ret);
2576 		goto out_free_path;
2577 	}
2578 
2579 	leaf = path->nodes[0];
2580 	item = btrfs_item_ptr(leaf, path->slots[0],
2581 				struct btrfs_file_extent_item);
2582 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2583 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2584 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2585 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2586 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2587 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2588 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2589 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2590 	btrfs_set_file_extent_encryption(leaf, item, 0);
2591 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2592 
2593 	btrfs_mark_buffer_dirty(leaf);
2594 	inode_add_bytes(inode, len);
2595 	btrfs_release_path(path);
2596 
2597 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2598 			new->disk_len, 0,
2599 			backref->root_id, backref->inum,
2600 			new->file_pos);	/* start - extent_offset */
2601 	if (ret) {
2602 		btrfs_abort_transaction(trans, root, ret);
2603 		goto out_free_path;
2604 	}
2605 
2606 	ret = 1;
2607 out_free_path:
2608 	btrfs_release_path(path);
2609 	path->leave_spinning = 0;
2610 	btrfs_end_transaction(trans, root);
2611 out_unlock:
2612 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2613 			     &cached, GFP_NOFS);
2614 	iput(inode);
2615 	return ret;
2616 }
2617 
2618 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2619 {
2620 	struct old_sa_defrag_extent *old, *tmp;
2621 
2622 	if (!new)
2623 		return;
2624 
2625 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2626 		kfree(old);
2627 	}
2628 	kfree(new);
2629 }
2630 
2631 static void relink_file_extents(struct new_sa_defrag_extent *new)
2632 {
2633 	struct btrfs_path *path;
2634 	struct sa_defrag_extent_backref *backref;
2635 	struct sa_defrag_extent_backref *prev = NULL;
2636 	struct inode *inode;
2637 	struct btrfs_root *root;
2638 	struct rb_node *node;
2639 	int ret;
2640 
2641 	inode = new->inode;
2642 	root = BTRFS_I(inode)->root;
2643 
2644 	path = btrfs_alloc_path();
2645 	if (!path)
2646 		return;
2647 
2648 	if (!record_extent_backrefs(path, new)) {
2649 		btrfs_free_path(path);
2650 		goto out;
2651 	}
2652 	btrfs_release_path(path);
2653 
2654 	while (1) {
2655 		node = rb_first(&new->root);
2656 		if (!node)
2657 			break;
2658 		rb_erase(node, &new->root);
2659 
2660 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2661 
2662 		ret = relink_extent_backref(path, prev, backref);
2663 		WARN_ON(ret < 0);
2664 
2665 		kfree(prev);
2666 
2667 		if (ret == 1)
2668 			prev = backref;
2669 		else
2670 			prev = NULL;
2671 		cond_resched();
2672 	}
2673 	kfree(prev);
2674 
2675 	btrfs_free_path(path);
2676 out:
2677 	free_sa_defrag_extent(new);
2678 
2679 	atomic_dec(&root->fs_info->defrag_running);
2680 	wake_up(&root->fs_info->transaction_wait);
2681 }
2682 
2683 static struct new_sa_defrag_extent *
2684 record_old_file_extents(struct inode *inode,
2685 			struct btrfs_ordered_extent *ordered)
2686 {
2687 	struct btrfs_root *root = BTRFS_I(inode)->root;
2688 	struct btrfs_path *path;
2689 	struct btrfs_key key;
2690 	struct old_sa_defrag_extent *old;
2691 	struct new_sa_defrag_extent *new;
2692 	int ret;
2693 
2694 	new = kmalloc(sizeof(*new), GFP_NOFS);
2695 	if (!new)
2696 		return NULL;
2697 
2698 	new->inode = inode;
2699 	new->file_pos = ordered->file_offset;
2700 	new->len = ordered->len;
2701 	new->bytenr = ordered->start;
2702 	new->disk_len = ordered->disk_len;
2703 	new->compress_type = ordered->compress_type;
2704 	new->root = RB_ROOT;
2705 	INIT_LIST_HEAD(&new->head);
2706 
2707 	path = btrfs_alloc_path();
2708 	if (!path)
2709 		goto out_kfree;
2710 
2711 	key.objectid = btrfs_ino(inode);
2712 	key.type = BTRFS_EXTENT_DATA_KEY;
2713 	key.offset = new->file_pos;
2714 
2715 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2716 	if (ret < 0)
2717 		goto out_free_path;
2718 	if (ret > 0 && path->slots[0] > 0)
2719 		path->slots[0]--;
2720 
2721 	/* find out all the old extents for the file range */
2722 	while (1) {
2723 		struct btrfs_file_extent_item *extent;
2724 		struct extent_buffer *l;
2725 		int slot;
2726 		u64 num_bytes;
2727 		u64 offset;
2728 		u64 end;
2729 		u64 disk_bytenr;
2730 		u64 extent_offset;
2731 
2732 		l = path->nodes[0];
2733 		slot = path->slots[0];
2734 
2735 		if (slot >= btrfs_header_nritems(l)) {
2736 			ret = btrfs_next_leaf(root, path);
2737 			if (ret < 0)
2738 				goto out_free_path;
2739 			else if (ret > 0)
2740 				break;
2741 			continue;
2742 		}
2743 
2744 		btrfs_item_key_to_cpu(l, &key, slot);
2745 
2746 		if (key.objectid != btrfs_ino(inode))
2747 			break;
2748 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2749 			break;
2750 		if (key.offset >= new->file_pos + new->len)
2751 			break;
2752 
2753 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2754 
2755 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2756 		if (key.offset + num_bytes < new->file_pos)
2757 			goto next;
2758 
2759 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2760 		if (!disk_bytenr)
2761 			goto next;
2762 
2763 		extent_offset = btrfs_file_extent_offset(l, extent);
2764 
2765 		old = kmalloc(sizeof(*old), GFP_NOFS);
2766 		if (!old)
2767 			goto out_free_path;
2768 
2769 		offset = max(new->file_pos, key.offset);
2770 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2771 
2772 		old->bytenr = disk_bytenr;
2773 		old->extent_offset = extent_offset;
2774 		old->offset = offset - key.offset;
2775 		old->len = end - offset;
2776 		old->new = new;
2777 		old->count = 0;
2778 		list_add_tail(&old->list, &new->head);
2779 next:
2780 		path->slots[0]++;
2781 		cond_resched();
2782 	}
2783 
2784 	btrfs_free_path(path);
2785 	atomic_inc(&root->fs_info->defrag_running);
2786 
2787 	return new;
2788 
2789 out_free_path:
2790 	btrfs_free_path(path);
2791 out_kfree:
2792 	free_sa_defrag_extent(new);
2793 	return NULL;
2794 }
2795 
2796 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2797 					 u64 start, u64 len)
2798 {
2799 	struct btrfs_block_group_cache *cache;
2800 
2801 	cache = btrfs_lookup_block_group(root->fs_info, start);
2802 	ASSERT(cache);
2803 
2804 	spin_lock(&cache->lock);
2805 	cache->delalloc_bytes -= len;
2806 	spin_unlock(&cache->lock);
2807 
2808 	btrfs_put_block_group(cache);
2809 }
2810 
2811 /* as ordered data IO finishes, this gets called so we can finish
2812  * an ordered extent if the range of bytes in the file it covers are
2813  * fully written.
2814  */
2815 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2816 {
2817 	struct inode *inode = ordered_extent->inode;
2818 	struct btrfs_root *root = BTRFS_I(inode)->root;
2819 	struct btrfs_trans_handle *trans = NULL;
2820 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2821 	struct extent_state *cached_state = NULL;
2822 	struct new_sa_defrag_extent *new = NULL;
2823 	int compress_type = 0;
2824 	int ret = 0;
2825 	u64 logical_len = ordered_extent->len;
2826 	bool nolock;
2827 	bool truncated = false;
2828 
2829 	nolock = btrfs_is_free_space_inode(inode);
2830 
2831 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2832 		ret = -EIO;
2833 		goto out;
2834 	}
2835 
2836 	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2837 				     ordered_extent->file_offset +
2838 				     ordered_extent->len - 1);
2839 
2840 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2841 		truncated = true;
2842 		logical_len = ordered_extent->truncated_len;
2843 		/* Truncated the entire extent, don't bother adding */
2844 		if (!logical_len)
2845 			goto out;
2846 	}
2847 
2848 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2849 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2850 
2851 		/*
2852 		 * For mwrite(mmap + memset to write) case, we still reserve
2853 		 * space for NOCOW range.
2854 		 * As NOCOW won't cause a new delayed ref, just free the space
2855 		 */
2856 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2857 				       ordered_extent->len);
2858 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2859 		if (nolock)
2860 			trans = btrfs_join_transaction_nolock(root);
2861 		else
2862 			trans = btrfs_join_transaction(root);
2863 		if (IS_ERR(trans)) {
2864 			ret = PTR_ERR(trans);
2865 			trans = NULL;
2866 			goto out;
2867 		}
2868 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2869 		ret = btrfs_update_inode_fallback(trans, root, inode);
2870 		if (ret) /* -ENOMEM or corruption */
2871 			btrfs_abort_transaction(trans, root, ret);
2872 		goto out;
2873 	}
2874 
2875 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2876 			 ordered_extent->file_offset + ordered_extent->len - 1,
2877 			 0, &cached_state);
2878 
2879 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2880 			ordered_extent->file_offset + ordered_extent->len - 1,
2881 			EXTENT_DEFRAG, 1, cached_state);
2882 	if (ret) {
2883 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2884 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2885 			/* the inode is shared */
2886 			new = record_old_file_extents(inode, ordered_extent);
2887 
2888 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2889 			ordered_extent->file_offset + ordered_extent->len - 1,
2890 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2891 	}
2892 
2893 	if (nolock)
2894 		trans = btrfs_join_transaction_nolock(root);
2895 	else
2896 		trans = btrfs_join_transaction(root);
2897 	if (IS_ERR(trans)) {
2898 		ret = PTR_ERR(trans);
2899 		trans = NULL;
2900 		goto out_unlock;
2901 	}
2902 
2903 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2904 
2905 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2906 		compress_type = ordered_extent->compress_type;
2907 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2908 		BUG_ON(compress_type);
2909 		ret = btrfs_mark_extent_written(trans, inode,
2910 						ordered_extent->file_offset,
2911 						ordered_extent->file_offset +
2912 						logical_len);
2913 	} else {
2914 		BUG_ON(root == root->fs_info->tree_root);
2915 		ret = insert_reserved_file_extent(trans, inode,
2916 						ordered_extent->file_offset,
2917 						ordered_extent->start,
2918 						ordered_extent->disk_len,
2919 						logical_len, logical_len,
2920 						compress_type, 0, 0,
2921 						BTRFS_FILE_EXTENT_REG);
2922 		if (!ret)
2923 			btrfs_release_delalloc_bytes(root,
2924 						     ordered_extent->start,
2925 						     ordered_extent->disk_len);
2926 	}
2927 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2928 			   ordered_extent->file_offset, ordered_extent->len,
2929 			   trans->transid);
2930 	if (ret < 0) {
2931 		btrfs_abort_transaction(trans, root, ret);
2932 		goto out_unlock;
2933 	}
2934 
2935 	add_pending_csums(trans, inode, ordered_extent->file_offset,
2936 			  &ordered_extent->list);
2937 
2938 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2939 	ret = btrfs_update_inode_fallback(trans, root, inode);
2940 	if (ret) { /* -ENOMEM or corruption */
2941 		btrfs_abort_transaction(trans, root, ret);
2942 		goto out_unlock;
2943 	}
2944 	ret = 0;
2945 out_unlock:
2946 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2947 			     ordered_extent->file_offset +
2948 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2949 out:
2950 	if (root != root->fs_info->tree_root)
2951 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2952 	if (trans)
2953 		btrfs_end_transaction(trans, root);
2954 
2955 	if (ret || truncated) {
2956 		u64 start, end;
2957 
2958 		if (truncated)
2959 			start = ordered_extent->file_offset + logical_len;
2960 		else
2961 			start = ordered_extent->file_offset;
2962 		end = ordered_extent->file_offset + ordered_extent->len - 1;
2963 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2964 
2965 		/* Drop the cache for the part of the extent we didn't write. */
2966 		btrfs_drop_extent_cache(inode, start, end, 0);
2967 
2968 		/*
2969 		 * If the ordered extent had an IOERR or something else went
2970 		 * wrong we need to return the space for this ordered extent
2971 		 * back to the allocator.  We only free the extent in the
2972 		 * truncated case if we didn't write out the extent at all.
2973 		 */
2974 		if ((ret || !logical_len) &&
2975 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2976 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2977 			btrfs_free_reserved_extent(root, ordered_extent->start,
2978 						   ordered_extent->disk_len, 1);
2979 	}
2980 
2981 
2982 	/*
2983 	 * This needs to be done to make sure anybody waiting knows we are done
2984 	 * updating everything for this ordered extent.
2985 	 */
2986 	btrfs_remove_ordered_extent(inode, ordered_extent);
2987 
2988 	/* for snapshot-aware defrag */
2989 	if (new) {
2990 		if (ret) {
2991 			free_sa_defrag_extent(new);
2992 			atomic_dec(&root->fs_info->defrag_running);
2993 		} else {
2994 			relink_file_extents(new);
2995 		}
2996 	}
2997 
2998 	/* once for us */
2999 	btrfs_put_ordered_extent(ordered_extent);
3000 	/* once for the tree */
3001 	btrfs_put_ordered_extent(ordered_extent);
3002 
3003 	return ret;
3004 }
3005 
3006 static void finish_ordered_fn(struct btrfs_work *work)
3007 {
3008 	struct btrfs_ordered_extent *ordered_extent;
3009 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3010 	btrfs_finish_ordered_io(ordered_extent);
3011 }
3012 
3013 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3014 				struct extent_state *state, int uptodate)
3015 {
3016 	struct inode *inode = page->mapping->host;
3017 	struct btrfs_root *root = BTRFS_I(inode)->root;
3018 	struct btrfs_ordered_extent *ordered_extent = NULL;
3019 	struct btrfs_workqueue *wq;
3020 	btrfs_work_func_t func;
3021 
3022 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3023 
3024 	ClearPagePrivate2(page);
3025 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3026 					    end - start + 1, uptodate))
3027 		return 0;
3028 
3029 	if (btrfs_is_free_space_inode(inode)) {
3030 		wq = root->fs_info->endio_freespace_worker;
3031 		func = btrfs_freespace_write_helper;
3032 	} else {
3033 		wq = root->fs_info->endio_write_workers;
3034 		func = btrfs_endio_write_helper;
3035 	}
3036 
3037 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3038 			NULL);
3039 	btrfs_queue_work(wq, &ordered_extent->work);
3040 
3041 	return 0;
3042 }
3043 
3044 static int __readpage_endio_check(struct inode *inode,
3045 				  struct btrfs_io_bio *io_bio,
3046 				  int icsum, struct page *page,
3047 				  int pgoff, u64 start, size_t len)
3048 {
3049 	char *kaddr;
3050 	u32 csum_expected;
3051 	u32 csum = ~(u32)0;
3052 
3053 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3054 
3055 	kaddr = kmap_atomic(page);
3056 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3057 	btrfs_csum_final(csum, (char *)&csum);
3058 	if (csum != csum_expected)
3059 		goto zeroit;
3060 
3061 	kunmap_atomic(kaddr);
3062 	return 0;
3063 zeroit:
3064 	btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3065 		"csum failed ino %llu off %llu csum %u expected csum %u",
3066 			   btrfs_ino(inode), start, csum, csum_expected);
3067 	memset(kaddr + pgoff, 1, len);
3068 	flush_dcache_page(page);
3069 	kunmap_atomic(kaddr);
3070 	if (csum_expected == 0)
3071 		return 0;
3072 	return -EIO;
3073 }
3074 
3075 /*
3076  * when reads are done, we need to check csums to verify the data is correct
3077  * if there's a match, we allow the bio to finish.  If not, the code in
3078  * extent_io.c will try to find good copies for us.
3079  */
3080 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3081 				      u64 phy_offset, struct page *page,
3082 				      u64 start, u64 end, int mirror)
3083 {
3084 	size_t offset = start - page_offset(page);
3085 	struct inode *inode = page->mapping->host;
3086 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3087 	struct btrfs_root *root = BTRFS_I(inode)->root;
3088 
3089 	if (PageChecked(page)) {
3090 		ClearPageChecked(page);
3091 		return 0;
3092 	}
3093 
3094 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3095 		return 0;
3096 
3097 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3098 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3099 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3100 				  GFP_NOFS);
3101 		return 0;
3102 	}
3103 
3104 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3105 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3106 				      start, (size_t)(end - start + 1));
3107 }
3108 
3109 struct delayed_iput {
3110 	struct list_head list;
3111 	struct inode *inode;
3112 };
3113 
3114 /* JDM: If this is fs-wide, why can't we add a pointer to
3115  * btrfs_inode instead and avoid the allocation? */
3116 void btrfs_add_delayed_iput(struct inode *inode)
3117 {
3118 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3119 	struct delayed_iput *delayed;
3120 
3121 	if (atomic_add_unless(&inode->i_count, -1, 1))
3122 		return;
3123 
3124 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3125 	delayed->inode = inode;
3126 
3127 	spin_lock(&fs_info->delayed_iput_lock);
3128 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3129 	spin_unlock(&fs_info->delayed_iput_lock);
3130 }
3131 
3132 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3133 {
3134 	LIST_HEAD(list);
3135 	struct btrfs_fs_info *fs_info = root->fs_info;
3136 	struct delayed_iput *delayed;
3137 	int empty;
3138 
3139 	spin_lock(&fs_info->delayed_iput_lock);
3140 	empty = list_empty(&fs_info->delayed_iputs);
3141 	spin_unlock(&fs_info->delayed_iput_lock);
3142 	if (empty)
3143 		return;
3144 
3145 	down_read(&fs_info->delayed_iput_sem);
3146 
3147 	spin_lock(&fs_info->delayed_iput_lock);
3148 	list_splice_init(&fs_info->delayed_iputs, &list);
3149 	spin_unlock(&fs_info->delayed_iput_lock);
3150 
3151 	while (!list_empty(&list)) {
3152 		delayed = list_entry(list.next, struct delayed_iput, list);
3153 		list_del(&delayed->list);
3154 		iput(delayed->inode);
3155 		kfree(delayed);
3156 	}
3157 
3158 	up_read(&root->fs_info->delayed_iput_sem);
3159 }
3160 
3161 /*
3162  * This is called in transaction commit time. If there are no orphan
3163  * files in the subvolume, it removes orphan item and frees block_rsv
3164  * structure.
3165  */
3166 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3167 			      struct btrfs_root *root)
3168 {
3169 	struct btrfs_block_rsv *block_rsv;
3170 	int ret;
3171 
3172 	if (atomic_read(&root->orphan_inodes) ||
3173 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3174 		return;
3175 
3176 	spin_lock(&root->orphan_lock);
3177 	if (atomic_read(&root->orphan_inodes)) {
3178 		spin_unlock(&root->orphan_lock);
3179 		return;
3180 	}
3181 
3182 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3183 		spin_unlock(&root->orphan_lock);
3184 		return;
3185 	}
3186 
3187 	block_rsv = root->orphan_block_rsv;
3188 	root->orphan_block_rsv = NULL;
3189 	spin_unlock(&root->orphan_lock);
3190 
3191 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3192 	    btrfs_root_refs(&root->root_item) > 0) {
3193 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3194 					    root->root_key.objectid);
3195 		if (ret)
3196 			btrfs_abort_transaction(trans, root, ret);
3197 		else
3198 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3199 				  &root->state);
3200 	}
3201 
3202 	if (block_rsv) {
3203 		WARN_ON(block_rsv->size > 0);
3204 		btrfs_free_block_rsv(root, block_rsv);
3205 	}
3206 }
3207 
3208 /*
3209  * This creates an orphan entry for the given inode in case something goes
3210  * wrong in the middle of an unlink/truncate.
3211  *
3212  * NOTE: caller of this function should reserve 5 units of metadata for
3213  *	 this function.
3214  */
3215 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3216 {
3217 	struct btrfs_root *root = BTRFS_I(inode)->root;
3218 	struct btrfs_block_rsv *block_rsv = NULL;
3219 	int reserve = 0;
3220 	int insert = 0;
3221 	int ret;
3222 
3223 	if (!root->orphan_block_rsv) {
3224 		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3225 		if (!block_rsv)
3226 			return -ENOMEM;
3227 	}
3228 
3229 	spin_lock(&root->orphan_lock);
3230 	if (!root->orphan_block_rsv) {
3231 		root->orphan_block_rsv = block_rsv;
3232 	} else if (block_rsv) {
3233 		btrfs_free_block_rsv(root, block_rsv);
3234 		block_rsv = NULL;
3235 	}
3236 
3237 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3238 			      &BTRFS_I(inode)->runtime_flags)) {
3239 #if 0
3240 		/*
3241 		 * For proper ENOSPC handling, we should do orphan
3242 		 * cleanup when mounting. But this introduces backward
3243 		 * compatibility issue.
3244 		 */
3245 		if (!xchg(&root->orphan_item_inserted, 1))
3246 			insert = 2;
3247 		else
3248 			insert = 1;
3249 #endif
3250 		insert = 1;
3251 		atomic_inc(&root->orphan_inodes);
3252 	}
3253 
3254 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3255 			      &BTRFS_I(inode)->runtime_flags))
3256 		reserve = 1;
3257 	spin_unlock(&root->orphan_lock);
3258 
3259 	/* grab metadata reservation from transaction handle */
3260 	if (reserve) {
3261 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3262 		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3263 	}
3264 
3265 	/* insert an orphan item to track this unlinked/truncated file */
3266 	if (insert >= 1) {
3267 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3268 		if (ret) {
3269 			atomic_dec(&root->orphan_inodes);
3270 			if (reserve) {
3271 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3272 					  &BTRFS_I(inode)->runtime_flags);
3273 				btrfs_orphan_release_metadata(inode);
3274 			}
3275 			if (ret != -EEXIST) {
3276 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3277 					  &BTRFS_I(inode)->runtime_flags);
3278 				btrfs_abort_transaction(trans, root, ret);
3279 				return ret;
3280 			}
3281 		}
3282 		ret = 0;
3283 	}
3284 
3285 	/* insert an orphan item to track subvolume contains orphan files */
3286 	if (insert >= 2) {
3287 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3288 					       root->root_key.objectid);
3289 		if (ret && ret != -EEXIST) {
3290 			btrfs_abort_transaction(trans, root, ret);
3291 			return ret;
3292 		}
3293 	}
3294 	return 0;
3295 }
3296 
3297 /*
3298  * We have done the truncate/delete so we can go ahead and remove the orphan
3299  * item for this particular inode.
3300  */
3301 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3302 			    struct inode *inode)
3303 {
3304 	struct btrfs_root *root = BTRFS_I(inode)->root;
3305 	int delete_item = 0;
3306 	int release_rsv = 0;
3307 	int ret = 0;
3308 
3309 	spin_lock(&root->orphan_lock);
3310 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3311 			       &BTRFS_I(inode)->runtime_flags))
3312 		delete_item = 1;
3313 
3314 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3315 			       &BTRFS_I(inode)->runtime_flags))
3316 		release_rsv = 1;
3317 	spin_unlock(&root->orphan_lock);
3318 
3319 	if (delete_item) {
3320 		atomic_dec(&root->orphan_inodes);
3321 		if (trans)
3322 			ret = btrfs_del_orphan_item(trans, root,
3323 						    btrfs_ino(inode));
3324 	}
3325 
3326 	if (release_rsv)
3327 		btrfs_orphan_release_metadata(inode);
3328 
3329 	return ret;
3330 }
3331 
3332 /*
3333  * this cleans up any orphans that may be left on the list from the last use
3334  * of this root.
3335  */
3336 int btrfs_orphan_cleanup(struct btrfs_root *root)
3337 {
3338 	struct btrfs_path *path;
3339 	struct extent_buffer *leaf;
3340 	struct btrfs_key key, found_key;
3341 	struct btrfs_trans_handle *trans;
3342 	struct inode *inode;
3343 	u64 last_objectid = 0;
3344 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3345 
3346 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3347 		return 0;
3348 
3349 	path = btrfs_alloc_path();
3350 	if (!path) {
3351 		ret = -ENOMEM;
3352 		goto out;
3353 	}
3354 	path->reada = -1;
3355 
3356 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3357 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3358 	key.offset = (u64)-1;
3359 
3360 	while (1) {
3361 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3362 		if (ret < 0)
3363 			goto out;
3364 
3365 		/*
3366 		 * if ret == 0 means we found what we were searching for, which
3367 		 * is weird, but possible, so only screw with path if we didn't
3368 		 * find the key and see if we have stuff that matches
3369 		 */
3370 		if (ret > 0) {
3371 			ret = 0;
3372 			if (path->slots[0] == 0)
3373 				break;
3374 			path->slots[0]--;
3375 		}
3376 
3377 		/* pull out the item */
3378 		leaf = path->nodes[0];
3379 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3380 
3381 		/* make sure the item matches what we want */
3382 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3383 			break;
3384 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3385 			break;
3386 
3387 		/* release the path since we're done with it */
3388 		btrfs_release_path(path);
3389 
3390 		/*
3391 		 * this is where we are basically btrfs_lookup, without the
3392 		 * crossing root thing.  we store the inode number in the
3393 		 * offset of the orphan item.
3394 		 */
3395 
3396 		if (found_key.offset == last_objectid) {
3397 			btrfs_err(root->fs_info,
3398 				"Error removing orphan entry, stopping orphan cleanup");
3399 			ret = -EINVAL;
3400 			goto out;
3401 		}
3402 
3403 		last_objectid = found_key.offset;
3404 
3405 		found_key.objectid = found_key.offset;
3406 		found_key.type = BTRFS_INODE_ITEM_KEY;
3407 		found_key.offset = 0;
3408 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3409 		ret = PTR_ERR_OR_ZERO(inode);
3410 		if (ret && ret != -ESTALE)
3411 			goto out;
3412 
3413 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3414 			struct btrfs_root *dead_root;
3415 			struct btrfs_fs_info *fs_info = root->fs_info;
3416 			int is_dead_root = 0;
3417 
3418 			/*
3419 			 * this is an orphan in the tree root. Currently these
3420 			 * could come from 2 sources:
3421 			 *  a) a snapshot deletion in progress
3422 			 *  b) a free space cache inode
3423 			 * We need to distinguish those two, as the snapshot
3424 			 * orphan must not get deleted.
3425 			 * find_dead_roots already ran before us, so if this
3426 			 * is a snapshot deletion, we should find the root
3427 			 * in the dead_roots list
3428 			 */
3429 			spin_lock(&fs_info->trans_lock);
3430 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3431 					    root_list) {
3432 				if (dead_root->root_key.objectid ==
3433 				    found_key.objectid) {
3434 					is_dead_root = 1;
3435 					break;
3436 				}
3437 			}
3438 			spin_unlock(&fs_info->trans_lock);
3439 			if (is_dead_root) {
3440 				/* prevent this orphan from being found again */
3441 				key.offset = found_key.objectid - 1;
3442 				continue;
3443 			}
3444 		}
3445 		/*
3446 		 * Inode is already gone but the orphan item is still there,
3447 		 * kill the orphan item.
3448 		 */
3449 		if (ret == -ESTALE) {
3450 			trans = btrfs_start_transaction(root, 1);
3451 			if (IS_ERR(trans)) {
3452 				ret = PTR_ERR(trans);
3453 				goto out;
3454 			}
3455 			btrfs_debug(root->fs_info, "auto deleting %Lu",
3456 				found_key.objectid);
3457 			ret = btrfs_del_orphan_item(trans, root,
3458 						    found_key.objectid);
3459 			btrfs_end_transaction(trans, root);
3460 			if (ret)
3461 				goto out;
3462 			continue;
3463 		}
3464 
3465 		/*
3466 		 * add this inode to the orphan list so btrfs_orphan_del does
3467 		 * the proper thing when we hit it
3468 		 */
3469 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3470 			&BTRFS_I(inode)->runtime_flags);
3471 		atomic_inc(&root->orphan_inodes);
3472 
3473 		/* if we have links, this was a truncate, lets do that */
3474 		if (inode->i_nlink) {
3475 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3476 				iput(inode);
3477 				continue;
3478 			}
3479 			nr_truncate++;
3480 
3481 			/* 1 for the orphan item deletion. */
3482 			trans = btrfs_start_transaction(root, 1);
3483 			if (IS_ERR(trans)) {
3484 				iput(inode);
3485 				ret = PTR_ERR(trans);
3486 				goto out;
3487 			}
3488 			ret = btrfs_orphan_add(trans, inode);
3489 			btrfs_end_transaction(trans, root);
3490 			if (ret) {
3491 				iput(inode);
3492 				goto out;
3493 			}
3494 
3495 			ret = btrfs_truncate(inode);
3496 			if (ret)
3497 				btrfs_orphan_del(NULL, inode);
3498 		} else {
3499 			nr_unlink++;
3500 		}
3501 
3502 		/* this will do delete_inode and everything for us */
3503 		iput(inode);
3504 		if (ret)
3505 			goto out;
3506 	}
3507 	/* release the path since we're done with it */
3508 	btrfs_release_path(path);
3509 
3510 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3511 
3512 	if (root->orphan_block_rsv)
3513 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3514 					(u64)-1);
3515 
3516 	if (root->orphan_block_rsv ||
3517 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3518 		trans = btrfs_join_transaction(root);
3519 		if (!IS_ERR(trans))
3520 			btrfs_end_transaction(trans, root);
3521 	}
3522 
3523 	if (nr_unlink)
3524 		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3525 	if (nr_truncate)
3526 		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3527 
3528 out:
3529 	if (ret)
3530 		btrfs_err(root->fs_info,
3531 			"could not do orphan cleanup %d", ret);
3532 	btrfs_free_path(path);
3533 	return ret;
3534 }
3535 
3536 /*
3537  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3538  * don't find any xattrs, we know there can't be any acls.
3539  *
3540  * slot is the slot the inode is in, objectid is the objectid of the inode
3541  */
3542 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3543 					  int slot, u64 objectid,
3544 					  int *first_xattr_slot)
3545 {
3546 	u32 nritems = btrfs_header_nritems(leaf);
3547 	struct btrfs_key found_key;
3548 	static u64 xattr_access = 0;
3549 	static u64 xattr_default = 0;
3550 	int scanned = 0;
3551 
3552 	if (!xattr_access) {
3553 		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3554 					strlen(POSIX_ACL_XATTR_ACCESS));
3555 		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3556 					strlen(POSIX_ACL_XATTR_DEFAULT));
3557 	}
3558 
3559 	slot++;
3560 	*first_xattr_slot = -1;
3561 	while (slot < nritems) {
3562 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3563 
3564 		/* we found a different objectid, there must not be acls */
3565 		if (found_key.objectid != objectid)
3566 			return 0;
3567 
3568 		/* we found an xattr, assume we've got an acl */
3569 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3570 			if (*first_xattr_slot == -1)
3571 				*first_xattr_slot = slot;
3572 			if (found_key.offset == xattr_access ||
3573 			    found_key.offset == xattr_default)
3574 				return 1;
3575 		}
3576 
3577 		/*
3578 		 * we found a key greater than an xattr key, there can't
3579 		 * be any acls later on
3580 		 */
3581 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3582 			return 0;
3583 
3584 		slot++;
3585 		scanned++;
3586 
3587 		/*
3588 		 * it goes inode, inode backrefs, xattrs, extents,
3589 		 * so if there are a ton of hard links to an inode there can
3590 		 * be a lot of backrefs.  Don't waste time searching too hard,
3591 		 * this is just an optimization
3592 		 */
3593 		if (scanned >= 8)
3594 			break;
3595 	}
3596 	/* we hit the end of the leaf before we found an xattr or
3597 	 * something larger than an xattr.  We have to assume the inode
3598 	 * has acls
3599 	 */
3600 	if (*first_xattr_slot == -1)
3601 		*first_xattr_slot = slot;
3602 	return 1;
3603 }
3604 
3605 /*
3606  * read an inode from the btree into the in-memory inode
3607  */
3608 static void btrfs_read_locked_inode(struct inode *inode)
3609 {
3610 	struct btrfs_path *path;
3611 	struct extent_buffer *leaf;
3612 	struct btrfs_inode_item *inode_item;
3613 	struct btrfs_root *root = BTRFS_I(inode)->root;
3614 	struct btrfs_key location;
3615 	unsigned long ptr;
3616 	int maybe_acls;
3617 	u32 rdev;
3618 	int ret;
3619 	bool filled = false;
3620 	int first_xattr_slot;
3621 
3622 	ret = btrfs_fill_inode(inode, &rdev);
3623 	if (!ret)
3624 		filled = true;
3625 
3626 	path = btrfs_alloc_path();
3627 	if (!path)
3628 		goto make_bad;
3629 
3630 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3631 
3632 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3633 	if (ret)
3634 		goto make_bad;
3635 
3636 	leaf = path->nodes[0];
3637 
3638 	if (filled)
3639 		goto cache_index;
3640 
3641 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3642 				    struct btrfs_inode_item);
3643 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3644 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3645 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3646 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3647 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3648 
3649 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3650 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3651 
3652 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3653 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3654 
3655 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3656 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3657 
3658 	BTRFS_I(inode)->i_otime.tv_sec =
3659 		btrfs_timespec_sec(leaf, &inode_item->otime);
3660 	BTRFS_I(inode)->i_otime.tv_nsec =
3661 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3662 
3663 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3664 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3665 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3666 
3667 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3668 	inode->i_generation = BTRFS_I(inode)->generation;
3669 	inode->i_rdev = 0;
3670 	rdev = btrfs_inode_rdev(leaf, inode_item);
3671 
3672 	BTRFS_I(inode)->index_cnt = (u64)-1;
3673 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3674 
3675 cache_index:
3676 	/*
3677 	 * If we were modified in the current generation and evicted from memory
3678 	 * and then re-read we need to do a full sync since we don't have any
3679 	 * idea about which extents were modified before we were evicted from
3680 	 * cache.
3681 	 *
3682 	 * This is required for both inode re-read from disk and delayed inode
3683 	 * in delayed_nodes_tree.
3684 	 */
3685 	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3686 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3687 			&BTRFS_I(inode)->runtime_flags);
3688 
3689 	/*
3690 	 * We don't persist the id of the transaction where an unlink operation
3691 	 * against the inode was last made. So here we assume the inode might
3692 	 * have been evicted, and therefore the exact value of last_unlink_trans
3693 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3694 	 * between the inode and its parent if the inode is fsync'ed and the log
3695 	 * replayed. For example, in the scenario:
3696 	 *
3697 	 * touch mydir/foo
3698 	 * ln mydir/foo mydir/bar
3699 	 * sync
3700 	 * unlink mydir/bar
3701 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3702 	 * xfs_io -c fsync mydir/foo
3703 	 * <power failure>
3704 	 * mount fs, triggers fsync log replay
3705 	 *
3706 	 * We must make sure that when we fsync our inode foo we also log its
3707 	 * parent inode, otherwise after log replay the parent still has the
3708 	 * dentry with the "bar" name but our inode foo has a link count of 1
3709 	 * and doesn't have an inode ref with the name "bar" anymore.
3710 	 *
3711 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3712 	 * but it guarantees correctness at the expense of ocassional full
3713 	 * transaction commits on fsync if our inode is a directory, or if our
3714 	 * inode is not a directory, logging its parent unnecessarily.
3715 	 */
3716 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3717 
3718 	path->slots[0]++;
3719 	if (inode->i_nlink != 1 ||
3720 	    path->slots[0] >= btrfs_header_nritems(leaf))
3721 		goto cache_acl;
3722 
3723 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3724 	if (location.objectid != btrfs_ino(inode))
3725 		goto cache_acl;
3726 
3727 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3728 	if (location.type == BTRFS_INODE_REF_KEY) {
3729 		struct btrfs_inode_ref *ref;
3730 
3731 		ref = (struct btrfs_inode_ref *)ptr;
3732 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3733 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3734 		struct btrfs_inode_extref *extref;
3735 
3736 		extref = (struct btrfs_inode_extref *)ptr;
3737 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3738 								     extref);
3739 	}
3740 cache_acl:
3741 	/*
3742 	 * try to precache a NULL acl entry for files that don't have
3743 	 * any xattrs or acls
3744 	 */
3745 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3746 					   btrfs_ino(inode), &first_xattr_slot);
3747 	if (first_xattr_slot != -1) {
3748 		path->slots[0] = first_xattr_slot;
3749 		ret = btrfs_load_inode_props(inode, path);
3750 		if (ret)
3751 			btrfs_err(root->fs_info,
3752 				  "error loading props for ino %llu (root %llu): %d",
3753 				  btrfs_ino(inode),
3754 				  root->root_key.objectid, ret);
3755 	}
3756 	btrfs_free_path(path);
3757 
3758 	if (!maybe_acls)
3759 		cache_no_acl(inode);
3760 
3761 	switch (inode->i_mode & S_IFMT) {
3762 	case S_IFREG:
3763 		inode->i_mapping->a_ops = &btrfs_aops;
3764 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3765 		inode->i_fop = &btrfs_file_operations;
3766 		inode->i_op = &btrfs_file_inode_operations;
3767 		break;
3768 	case S_IFDIR:
3769 		inode->i_fop = &btrfs_dir_file_operations;
3770 		if (root == root->fs_info->tree_root)
3771 			inode->i_op = &btrfs_dir_ro_inode_operations;
3772 		else
3773 			inode->i_op = &btrfs_dir_inode_operations;
3774 		break;
3775 	case S_IFLNK:
3776 		inode->i_op = &btrfs_symlink_inode_operations;
3777 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3778 		break;
3779 	default:
3780 		inode->i_op = &btrfs_special_inode_operations;
3781 		init_special_inode(inode, inode->i_mode, rdev);
3782 		break;
3783 	}
3784 
3785 	btrfs_update_iflags(inode);
3786 	return;
3787 
3788 make_bad:
3789 	btrfs_free_path(path);
3790 	make_bad_inode(inode);
3791 }
3792 
3793 /*
3794  * given a leaf and an inode, copy the inode fields into the leaf
3795  */
3796 static void fill_inode_item(struct btrfs_trans_handle *trans,
3797 			    struct extent_buffer *leaf,
3798 			    struct btrfs_inode_item *item,
3799 			    struct inode *inode)
3800 {
3801 	struct btrfs_map_token token;
3802 
3803 	btrfs_init_map_token(&token);
3804 
3805 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3806 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3807 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3808 				   &token);
3809 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3810 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3811 
3812 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3813 				     inode->i_atime.tv_sec, &token);
3814 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3815 				      inode->i_atime.tv_nsec, &token);
3816 
3817 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3818 				     inode->i_mtime.tv_sec, &token);
3819 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3820 				      inode->i_mtime.tv_nsec, &token);
3821 
3822 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3823 				     inode->i_ctime.tv_sec, &token);
3824 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3825 				      inode->i_ctime.tv_nsec, &token);
3826 
3827 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3828 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3829 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3830 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3831 
3832 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3833 				     &token);
3834 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3835 					 &token);
3836 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3837 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3838 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3839 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3840 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3841 }
3842 
3843 /*
3844  * copy everything in the in-memory inode into the btree.
3845  */
3846 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3847 				struct btrfs_root *root, struct inode *inode)
3848 {
3849 	struct btrfs_inode_item *inode_item;
3850 	struct btrfs_path *path;
3851 	struct extent_buffer *leaf;
3852 	int ret;
3853 
3854 	path = btrfs_alloc_path();
3855 	if (!path)
3856 		return -ENOMEM;
3857 
3858 	path->leave_spinning = 1;
3859 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3860 				 1);
3861 	if (ret) {
3862 		if (ret > 0)
3863 			ret = -ENOENT;
3864 		goto failed;
3865 	}
3866 
3867 	leaf = path->nodes[0];
3868 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3869 				    struct btrfs_inode_item);
3870 
3871 	fill_inode_item(trans, leaf, inode_item, inode);
3872 	btrfs_mark_buffer_dirty(leaf);
3873 	btrfs_set_inode_last_trans(trans, inode);
3874 	ret = 0;
3875 failed:
3876 	btrfs_free_path(path);
3877 	return ret;
3878 }
3879 
3880 /*
3881  * copy everything in the in-memory inode into the btree.
3882  */
3883 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3884 				struct btrfs_root *root, struct inode *inode)
3885 {
3886 	int ret;
3887 
3888 	/*
3889 	 * If the inode is a free space inode, we can deadlock during commit
3890 	 * if we put it into the delayed code.
3891 	 *
3892 	 * The data relocation inode should also be directly updated
3893 	 * without delay
3894 	 */
3895 	if (!btrfs_is_free_space_inode(inode)
3896 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3897 	    && !root->fs_info->log_root_recovering) {
3898 		btrfs_update_root_times(trans, root);
3899 
3900 		ret = btrfs_delayed_update_inode(trans, root, inode);
3901 		if (!ret)
3902 			btrfs_set_inode_last_trans(trans, inode);
3903 		return ret;
3904 	}
3905 
3906 	return btrfs_update_inode_item(trans, root, inode);
3907 }
3908 
3909 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3910 					 struct btrfs_root *root,
3911 					 struct inode *inode)
3912 {
3913 	int ret;
3914 
3915 	ret = btrfs_update_inode(trans, root, inode);
3916 	if (ret == -ENOSPC)
3917 		return btrfs_update_inode_item(trans, root, inode);
3918 	return ret;
3919 }
3920 
3921 /*
3922  * unlink helper that gets used here in inode.c and in the tree logging
3923  * recovery code.  It remove a link in a directory with a given name, and
3924  * also drops the back refs in the inode to the directory
3925  */
3926 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3927 				struct btrfs_root *root,
3928 				struct inode *dir, struct inode *inode,
3929 				const char *name, int name_len)
3930 {
3931 	struct btrfs_path *path;
3932 	int ret = 0;
3933 	struct extent_buffer *leaf;
3934 	struct btrfs_dir_item *di;
3935 	struct btrfs_key key;
3936 	u64 index;
3937 	u64 ino = btrfs_ino(inode);
3938 	u64 dir_ino = btrfs_ino(dir);
3939 
3940 	path = btrfs_alloc_path();
3941 	if (!path) {
3942 		ret = -ENOMEM;
3943 		goto out;
3944 	}
3945 
3946 	path->leave_spinning = 1;
3947 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3948 				    name, name_len, -1);
3949 	if (IS_ERR(di)) {
3950 		ret = PTR_ERR(di);
3951 		goto err;
3952 	}
3953 	if (!di) {
3954 		ret = -ENOENT;
3955 		goto err;
3956 	}
3957 	leaf = path->nodes[0];
3958 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3959 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3960 	if (ret)
3961 		goto err;
3962 	btrfs_release_path(path);
3963 
3964 	/*
3965 	 * If we don't have dir index, we have to get it by looking up
3966 	 * the inode ref, since we get the inode ref, remove it directly,
3967 	 * it is unnecessary to do delayed deletion.
3968 	 *
3969 	 * But if we have dir index, needn't search inode ref to get it.
3970 	 * Since the inode ref is close to the inode item, it is better
3971 	 * that we delay to delete it, and just do this deletion when
3972 	 * we update the inode item.
3973 	 */
3974 	if (BTRFS_I(inode)->dir_index) {
3975 		ret = btrfs_delayed_delete_inode_ref(inode);
3976 		if (!ret) {
3977 			index = BTRFS_I(inode)->dir_index;
3978 			goto skip_backref;
3979 		}
3980 	}
3981 
3982 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3983 				  dir_ino, &index);
3984 	if (ret) {
3985 		btrfs_info(root->fs_info,
3986 			"failed to delete reference to %.*s, inode %llu parent %llu",
3987 			name_len, name, ino, dir_ino);
3988 		btrfs_abort_transaction(trans, root, ret);
3989 		goto err;
3990 	}
3991 skip_backref:
3992 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3993 	if (ret) {
3994 		btrfs_abort_transaction(trans, root, ret);
3995 		goto err;
3996 	}
3997 
3998 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3999 					 inode, dir_ino);
4000 	if (ret != 0 && ret != -ENOENT) {
4001 		btrfs_abort_transaction(trans, root, ret);
4002 		goto err;
4003 	}
4004 
4005 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4006 					   dir, index);
4007 	if (ret == -ENOENT)
4008 		ret = 0;
4009 	else if (ret)
4010 		btrfs_abort_transaction(trans, root, ret);
4011 err:
4012 	btrfs_free_path(path);
4013 	if (ret)
4014 		goto out;
4015 
4016 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4017 	inode_inc_iversion(inode);
4018 	inode_inc_iversion(dir);
4019 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4020 	ret = btrfs_update_inode(trans, root, dir);
4021 out:
4022 	return ret;
4023 }
4024 
4025 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4026 		       struct btrfs_root *root,
4027 		       struct inode *dir, struct inode *inode,
4028 		       const char *name, int name_len)
4029 {
4030 	int ret;
4031 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4032 	if (!ret) {
4033 		drop_nlink(inode);
4034 		ret = btrfs_update_inode(trans, root, inode);
4035 	}
4036 	return ret;
4037 }
4038 
4039 /*
4040  * helper to start transaction for unlink and rmdir.
4041  *
4042  * unlink and rmdir are special in btrfs, they do not always free space, so
4043  * if we cannot make our reservations the normal way try and see if there is
4044  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4045  * allow the unlink to occur.
4046  */
4047 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4048 {
4049 	struct btrfs_trans_handle *trans;
4050 	struct btrfs_root *root = BTRFS_I(dir)->root;
4051 	int ret;
4052 
4053 	/*
4054 	 * 1 for the possible orphan item
4055 	 * 1 for the dir item
4056 	 * 1 for the dir index
4057 	 * 1 for the inode ref
4058 	 * 1 for the inode
4059 	 */
4060 	trans = btrfs_start_transaction(root, 5);
4061 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4062 		return trans;
4063 
4064 	if (PTR_ERR(trans) == -ENOSPC) {
4065 		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4066 
4067 		trans = btrfs_start_transaction(root, 0);
4068 		if (IS_ERR(trans))
4069 			return trans;
4070 		ret = btrfs_cond_migrate_bytes(root->fs_info,
4071 					       &root->fs_info->trans_block_rsv,
4072 					       num_bytes, 5);
4073 		if (ret) {
4074 			btrfs_end_transaction(trans, root);
4075 			return ERR_PTR(ret);
4076 		}
4077 		trans->block_rsv = &root->fs_info->trans_block_rsv;
4078 		trans->bytes_reserved = num_bytes;
4079 	}
4080 	return trans;
4081 }
4082 
4083 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4084 {
4085 	struct btrfs_root *root = BTRFS_I(dir)->root;
4086 	struct btrfs_trans_handle *trans;
4087 	struct inode *inode = d_inode(dentry);
4088 	int ret;
4089 
4090 	trans = __unlink_start_trans(dir);
4091 	if (IS_ERR(trans))
4092 		return PTR_ERR(trans);
4093 
4094 	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4095 
4096 	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4097 				 dentry->d_name.name, dentry->d_name.len);
4098 	if (ret)
4099 		goto out;
4100 
4101 	if (inode->i_nlink == 0) {
4102 		ret = btrfs_orphan_add(trans, inode);
4103 		if (ret)
4104 			goto out;
4105 	}
4106 
4107 out:
4108 	btrfs_end_transaction(trans, root);
4109 	btrfs_btree_balance_dirty(root);
4110 	return ret;
4111 }
4112 
4113 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4114 			struct btrfs_root *root,
4115 			struct inode *dir, u64 objectid,
4116 			const char *name, int name_len)
4117 {
4118 	struct btrfs_path *path;
4119 	struct extent_buffer *leaf;
4120 	struct btrfs_dir_item *di;
4121 	struct btrfs_key key;
4122 	u64 index;
4123 	int ret;
4124 	u64 dir_ino = btrfs_ino(dir);
4125 
4126 	path = btrfs_alloc_path();
4127 	if (!path)
4128 		return -ENOMEM;
4129 
4130 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4131 				   name, name_len, -1);
4132 	if (IS_ERR_OR_NULL(di)) {
4133 		if (!di)
4134 			ret = -ENOENT;
4135 		else
4136 			ret = PTR_ERR(di);
4137 		goto out;
4138 	}
4139 
4140 	leaf = path->nodes[0];
4141 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4142 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4143 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4144 	if (ret) {
4145 		btrfs_abort_transaction(trans, root, ret);
4146 		goto out;
4147 	}
4148 	btrfs_release_path(path);
4149 
4150 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4151 				 objectid, root->root_key.objectid,
4152 				 dir_ino, &index, name, name_len);
4153 	if (ret < 0) {
4154 		if (ret != -ENOENT) {
4155 			btrfs_abort_transaction(trans, root, ret);
4156 			goto out;
4157 		}
4158 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4159 						 name, name_len);
4160 		if (IS_ERR_OR_NULL(di)) {
4161 			if (!di)
4162 				ret = -ENOENT;
4163 			else
4164 				ret = PTR_ERR(di);
4165 			btrfs_abort_transaction(trans, root, ret);
4166 			goto out;
4167 		}
4168 
4169 		leaf = path->nodes[0];
4170 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4171 		btrfs_release_path(path);
4172 		index = key.offset;
4173 	}
4174 	btrfs_release_path(path);
4175 
4176 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4177 	if (ret) {
4178 		btrfs_abort_transaction(trans, root, ret);
4179 		goto out;
4180 	}
4181 
4182 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4183 	inode_inc_iversion(dir);
4184 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4185 	ret = btrfs_update_inode_fallback(trans, root, dir);
4186 	if (ret)
4187 		btrfs_abort_transaction(trans, root, ret);
4188 out:
4189 	btrfs_free_path(path);
4190 	return ret;
4191 }
4192 
4193 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4194 {
4195 	struct inode *inode = d_inode(dentry);
4196 	int err = 0;
4197 	struct btrfs_root *root = BTRFS_I(dir)->root;
4198 	struct btrfs_trans_handle *trans;
4199 
4200 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4201 		return -ENOTEMPTY;
4202 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4203 		return -EPERM;
4204 
4205 	trans = __unlink_start_trans(dir);
4206 	if (IS_ERR(trans))
4207 		return PTR_ERR(trans);
4208 
4209 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4210 		err = btrfs_unlink_subvol(trans, root, dir,
4211 					  BTRFS_I(inode)->location.objectid,
4212 					  dentry->d_name.name,
4213 					  dentry->d_name.len);
4214 		goto out;
4215 	}
4216 
4217 	err = btrfs_orphan_add(trans, inode);
4218 	if (err)
4219 		goto out;
4220 
4221 	/* now the directory is empty */
4222 	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4223 				 dentry->d_name.name, dentry->d_name.len);
4224 	if (!err)
4225 		btrfs_i_size_write(inode, 0);
4226 out:
4227 	btrfs_end_transaction(trans, root);
4228 	btrfs_btree_balance_dirty(root);
4229 
4230 	return err;
4231 }
4232 
4233 static int truncate_space_check(struct btrfs_trans_handle *trans,
4234 				struct btrfs_root *root,
4235 				u64 bytes_deleted)
4236 {
4237 	int ret;
4238 
4239 	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4240 	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4241 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4242 	if (!ret)
4243 		trans->bytes_reserved += bytes_deleted;
4244 	return ret;
4245 
4246 }
4247 
4248 static int truncate_inline_extent(struct inode *inode,
4249 				  struct btrfs_path *path,
4250 				  struct btrfs_key *found_key,
4251 				  const u64 item_end,
4252 				  const u64 new_size)
4253 {
4254 	struct extent_buffer *leaf = path->nodes[0];
4255 	int slot = path->slots[0];
4256 	struct btrfs_file_extent_item *fi;
4257 	u32 size = (u32)(new_size - found_key->offset);
4258 	struct btrfs_root *root = BTRFS_I(inode)->root;
4259 
4260 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4261 
4262 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4263 		loff_t offset = new_size;
4264 		loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4265 
4266 		/*
4267 		 * Zero out the remaining of the last page of our inline extent,
4268 		 * instead of directly truncating our inline extent here - that
4269 		 * would be much more complex (decompressing all the data, then
4270 		 * compressing the truncated data, which might be bigger than
4271 		 * the size of the inline extent, resize the extent, etc).
4272 		 * We release the path because to get the page we might need to
4273 		 * read the extent item from disk (data not in the page cache).
4274 		 */
4275 		btrfs_release_path(path);
4276 		return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4277 	}
4278 
4279 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4280 	size = btrfs_file_extent_calc_inline_size(size);
4281 	btrfs_truncate_item(root, path, size, 1);
4282 
4283 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4284 		inode_sub_bytes(inode, item_end + 1 - new_size);
4285 
4286 	return 0;
4287 }
4288 
4289 /*
4290  * this can truncate away extent items, csum items and directory items.
4291  * It starts at a high offset and removes keys until it can't find
4292  * any higher than new_size
4293  *
4294  * csum items that cross the new i_size are truncated to the new size
4295  * as well.
4296  *
4297  * min_type is the minimum key type to truncate down to.  If set to 0, this
4298  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4299  */
4300 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4301 			       struct btrfs_root *root,
4302 			       struct inode *inode,
4303 			       u64 new_size, u32 min_type)
4304 {
4305 	struct btrfs_path *path;
4306 	struct extent_buffer *leaf;
4307 	struct btrfs_file_extent_item *fi;
4308 	struct btrfs_key key;
4309 	struct btrfs_key found_key;
4310 	u64 extent_start = 0;
4311 	u64 extent_num_bytes = 0;
4312 	u64 extent_offset = 0;
4313 	u64 item_end = 0;
4314 	u64 last_size = new_size;
4315 	u32 found_type = (u8)-1;
4316 	int found_extent;
4317 	int del_item;
4318 	int pending_del_nr = 0;
4319 	int pending_del_slot = 0;
4320 	int extent_type = -1;
4321 	int ret;
4322 	int err = 0;
4323 	u64 ino = btrfs_ino(inode);
4324 	u64 bytes_deleted = 0;
4325 	bool be_nice = 0;
4326 	bool should_throttle = 0;
4327 	bool should_end = 0;
4328 
4329 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4330 
4331 	/*
4332 	 * for non-free space inodes and ref cows, we want to back off from
4333 	 * time to time
4334 	 */
4335 	if (!btrfs_is_free_space_inode(inode) &&
4336 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4337 		be_nice = 1;
4338 
4339 	path = btrfs_alloc_path();
4340 	if (!path)
4341 		return -ENOMEM;
4342 	path->reada = -1;
4343 
4344 	/*
4345 	 * We want to drop from the next block forward in case this new size is
4346 	 * not block aligned since we will be keeping the last block of the
4347 	 * extent just the way it is.
4348 	 */
4349 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4350 	    root == root->fs_info->tree_root)
4351 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4352 					root->sectorsize), (u64)-1, 0);
4353 
4354 	/*
4355 	 * This function is also used to drop the items in the log tree before
4356 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4357 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4358 	 * items.
4359 	 */
4360 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4361 		btrfs_kill_delayed_inode_items(inode);
4362 
4363 	key.objectid = ino;
4364 	key.offset = (u64)-1;
4365 	key.type = (u8)-1;
4366 
4367 search_again:
4368 	/*
4369 	 * with a 16K leaf size and 128MB extents, you can actually queue
4370 	 * up a huge file in a single leaf.  Most of the time that
4371 	 * bytes_deleted is > 0, it will be huge by the time we get here
4372 	 */
4373 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4374 		if (btrfs_should_end_transaction(trans, root)) {
4375 			err = -EAGAIN;
4376 			goto error;
4377 		}
4378 	}
4379 
4380 
4381 	path->leave_spinning = 1;
4382 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4383 	if (ret < 0) {
4384 		err = ret;
4385 		goto out;
4386 	}
4387 
4388 	if (ret > 0) {
4389 		/* there are no items in the tree for us to truncate, we're
4390 		 * done
4391 		 */
4392 		if (path->slots[0] == 0)
4393 			goto out;
4394 		path->slots[0]--;
4395 	}
4396 
4397 	while (1) {
4398 		fi = NULL;
4399 		leaf = path->nodes[0];
4400 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4401 		found_type = found_key.type;
4402 
4403 		if (found_key.objectid != ino)
4404 			break;
4405 
4406 		if (found_type < min_type)
4407 			break;
4408 
4409 		item_end = found_key.offset;
4410 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4411 			fi = btrfs_item_ptr(leaf, path->slots[0],
4412 					    struct btrfs_file_extent_item);
4413 			extent_type = btrfs_file_extent_type(leaf, fi);
4414 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4415 				item_end +=
4416 				    btrfs_file_extent_num_bytes(leaf, fi);
4417 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4418 				item_end += btrfs_file_extent_inline_len(leaf,
4419 							 path->slots[0], fi);
4420 			}
4421 			item_end--;
4422 		}
4423 		if (found_type > min_type) {
4424 			del_item = 1;
4425 		} else {
4426 			if (item_end < new_size)
4427 				break;
4428 			if (found_key.offset >= new_size)
4429 				del_item = 1;
4430 			else
4431 				del_item = 0;
4432 		}
4433 		found_extent = 0;
4434 		/* FIXME, shrink the extent if the ref count is only 1 */
4435 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4436 			goto delete;
4437 
4438 		if (del_item)
4439 			last_size = found_key.offset;
4440 		else
4441 			last_size = new_size;
4442 
4443 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4444 			u64 num_dec;
4445 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4446 			if (!del_item) {
4447 				u64 orig_num_bytes =
4448 					btrfs_file_extent_num_bytes(leaf, fi);
4449 				extent_num_bytes = ALIGN(new_size -
4450 						found_key.offset,
4451 						root->sectorsize);
4452 				btrfs_set_file_extent_num_bytes(leaf, fi,
4453 							 extent_num_bytes);
4454 				num_dec = (orig_num_bytes -
4455 					   extent_num_bytes);
4456 				if (test_bit(BTRFS_ROOT_REF_COWS,
4457 					     &root->state) &&
4458 				    extent_start != 0)
4459 					inode_sub_bytes(inode, num_dec);
4460 				btrfs_mark_buffer_dirty(leaf);
4461 			} else {
4462 				extent_num_bytes =
4463 					btrfs_file_extent_disk_num_bytes(leaf,
4464 									 fi);
4465 				extent_offset = found_key.offset -
4466 					btrfs_file_extent_offset(leaf, fi);
4467 
4468 				/* FIXME blocksize != 4096 */
4469 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4470 				if (extent_start != 0) {
4471 					found_extent = 1;
4472 					if (test_bit(BTRFS_ROOT_REF_COWS,
4473 						     &root->state))
4474 						inode_sub_bytes(inode, num_dec);
4475 				}
4476 			}
4477 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4478 			/*
4479 			 * we can't truncate inline items that have had
4480 			 * special encodings
4481 			 */
4482 			if (!del_item &&
4483 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4484 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4485 
4486 				/*
4487 				 * Need to release path in order to truncate a
4488 				 * compressed extent. So delete any accumulated
4489 				 * extent items so far.
4490 				 */
4491 				if (btrfs_file_extent_compression(leaf, fi) !=
4492 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4493 					err = btrfs_del_items(trans, root, path,
4494 							      pending_del_slot,
4495 							      pending_del_nr);
4496 					if (err) {
4497 						btrfs_abort_transaction(trans,
4498 									root,
4499 									err);
4500 						goto error;
4501 					}
4502 					pending_del_nr = 0;
4503 				}
4504 
4505 				err = truncate_inline_extent(inode, path,
4506 							     &found_key,
4507 							     item_end,
4508 							     new_size);
4509 				if (err) {
4510 					btrfs_abort_transaction(trans,
4511 								root, err);
4512 					goto error;
4513 				}
4514 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4515 					    &root->state)) {
4516 				inode_sub_bytes(inode, item_end + 1 - new_size);
4517 			}
4518 		}
4519 delete:
4520 		if (del_item) {
4521 			if (!pending_del_nr) {
4522 				/* no pending yet, add ourselves */
4523 				pending_del_slot = path->slots[0];
4524 				pending_del_nr = 1;
4525 			} else if (pending_del_nr &&
4526 				   path->slots[0] + 1 == pending_del_slot) {
4527 				/* hop on the pending chunk */
4528 				pending_del_nr++;
4529 				pending_del_slot = path->slots[0];
4530 			} else {
4531 				BUG();
4532 			}
4533 		} else {
4534 			break;
4535 		}
4536 		should_throttle = 0;
4537 
4538 		if (found_extent &&
4539 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4540 		     root == root->fs_info->tree_root)) {
4541 			btrfs_set_path_blocking(path);
4542 			bytes_deleted += extent_num_bytes;
4543 			ret = btrfs_free_extent(trans, root, extent_start,
4544 						extent_num_bytes, 0,
4545 						btrfs_header_owner(leaf),
4546 						ino, extent_offset);
4547 			BUG_ON(ret);
4548 			if (btrfs_should_throttle_delayed_refs(trans, root))
4549 				btrfs_async_run_delayed_refs(root,
4550 					trans->delayed_ref_updates * 2, 0);
4551 			if (be_nice) {
4552 				if (truncate_space_check(trans, root,
4553 							 extent_num_bytes)) {
4554 					should_end = 1;
4555 				}
4556 				if (btrfs_should_throttle_delayed_refs(trans,
4557 								       root)) {
4558 					should_throttle = 1;
4559 				}
4560 			}
4561 		}
4562 
4563 		if (found_type == BTRFS_INODE_ITEM_KEY)
4564 			break;
4565 
4566 		if (path->slots[0] == 0 ||
4567 		    path->slots[0] != pending_del_slot ||
4568 		    should_throttle || should_end) {
4569 			if (pending_del_nr) {
4570 				ret = btrfs_del_items(trans, root, path,
4571 						pending_del_slot,
4572 						pending_del_nr);
4573 				if (ret) {
4574 					btrfs_abort_transaction(trans,
4575 								root, ret);
4576 					goto error;
4577 				}
4578 				pending_del_nr = 0;
4579 			}
4580 			btrfs_release_path(path);
4581 			if (should_throttle) {
4582 				unsigned long updates = trans->delayed_ref_updates;
4583 				if (updates) {
4584 					trans->delayed_ref_updates = 0;
4585 					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4586 					if (ret && !err)
4587 						err = ret;
4588 				}
4589 			}
4590 			/*
4591 			 * if we failed to refill our space rsv, bail out
4592 			 * and let the transaction restart
4593 			 */
4594 			if (should_end) {
4595 				err = -EAGAIN;
4596 				goto error;
4597 			}
4598 			goto search_again;
4599 		} else {
4600 			path->slots[0]--;
4601 		}
4602 	}
4603 out:
4604 	if (pending_del_nr) {
4605 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4606 				      pending_del_nr);
4607 		if (ret)
4608 			btrfs_abort_transaction(trans, root, ret);
4609 	}
4610 error:
4611 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4612 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4613 
4614 	btrfs_free_path(path);
4615 
4616 	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4617 		unsigned long updates = trans->delayed_ref_updates;
4618 		if (updates) {
4619 			trans->delayed_ref_updates = 0;
4620 			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4621 			if (ret && !err)
4622 				err = ret;
4623 		}
4624 	}
4625 	return err;
4626 }
4627 
4628 /*
4629  * btrfs_truncate_page - read, zero a chunk and write a page
4630  * @inode - inode that we're zeroing
4631  * @from - the offset to start zeroing
4632  * @len - the length to zero, 0 to zero the entire range respective to the
4633  *	offset
4634  * @front - zero up to the offset instead of from the offset on
4635  *
4636  * This will find the page for the "from" offset and cow the page and zero the
4637  * part we want to zero.  This is used with truncate and hole punching.
4638  */
4639 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4640 			int front)
4641 {
4642 	struct address_space *mapping = inode->i_mapping;
4643 	struct btrfs_root *root = BTRFS_I(inode)->root;
4644 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4645 	struct btrfs_ordered_extent *ordered;
4646 	struct extent_state *cached_state = NULL;
4647 	char *kaddr;
4648 	u32 blocksize = root->sectorsize;
4649 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4650 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4651 	struct page *page;
4652 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4653 	int ret = 0;
4654 	u64 page_start;
4655 	u64 page_end;
4656 
4657 	if ((offset & (blocksize - 1)) == 0 &&
4658 	    (!len || ((len & (blocksize - 1)) == 0)))
4659 		goto out;
4660 	ret = btrfs_delalloc_reserve_space(inode,
4661 			round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
4662 	if (ret)
4663 		goto out;
4664 
4665 again:
4666 	page = find_or_create_page(mapping, index, mask);
4667 	if (!page) {
4668 		btrfs_delalloc_release_space(inode,
4669 				round_down(from, PAGE_CACHE_SIZE),
4670 				PAGE_CACHE_SIZE);
4671 		ret = -ENOMEM;
4672 		goto out;
4673 	}
4674 
4675 	page_start = page_offset(page);
4676 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4677 
4678 	if (!PageUptodate(page)) {
4679 		ret = btrfs_readpage(NULL, page);
4680 		lock_page(page);
4681 		if (page->mapping != mapping) {
4682 			unlock_page(page);
4683 			page_cache_release(page);
4684 			goto again;
4685 		}
4686 		if (!PageUptodate(page)) {
4687 			ret = -EIO;
4688 			goto out_unlock;
4689 		}
4690 	}
4691 	wait_on_page_writeback(page);
4692 
4693 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4694 	set_page_extent_mapped(page);
4695 
4696 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4697 	if (ordered) {
4698 		unlock_extent_cached(io_tree, page_start, page_end,
4699 				     &cached_state, GFP_NOFS);
4700 		unlock_page(page);
4701 		page_cache_release(page);
4702 		btrfs_start_ordered_extent(inode, ordered, 1);
4703 		btrfs_put_ordered_extent(ordered);
4704 		goto again;
4705 	}
4706 
4707 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4708 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4709 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4710 			  0, 0, &cached_state, GFP_NOFS);
4711 
4712 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4713 					&cached_state);
4714 	if (ret) {
4715 		unlock_extent_cached(io_tree, page_start, page_end,
4716 				     &cached_state, GFP_NOFS);
4717 		goto out_unlock;
4718 	}
4719 
4720 	if (offset != PAGE_CACHE_SIZE) {
4721 		if (!len)
4722 			len = PAGE_CACHE_SIZE - offset;
4723 		kaddr = kmap(page);
4724 		if (front)
4725 			memset(kaddr, 0, offset);
4726 		else
4727 			memset(kaddr + offset, 0, len);
4728 		flush_dcache_page(page);
4729 		kunmap(page);
4730 	}
4731 	ClearPageChecked(page);
4732 	set_page_dirty(page);
4733 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4734 			     GFP_NOFS);
4735 
4736 out_unlock:
4737 	if (ret)
4738 		btrfs_delalloc_release_space(inode, page_start,
4739 					     PAGE_CACHE_SIZE);
4740 	unlock_page(page);
4741 	page_cache_release(page);
4742 out:
4743 	return ret;
4744 }
4745 
4746 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4747 			     u64 offset, u64 len)
4748 {
4749 	struct btrfs_trans_handle *trans;
4750 	int ret;
4751 
4752 	/*
4753 	 * Still need to make sure the inode looks like it's been updated so
4754 	 * that any holes get logged if we fsync.
4755 	 */
4756 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4757 		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4758 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4759 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4760 		return 0;
4761 	}
4762 
4763 	/*
4764 	 * 1 - for the one we're dropping
4765 	 * 1 - for the one we're adding
4766 	 * 1 - for updating the inode.
4767 	 */
4768 	trans = btrfs_start_transaction(root, 3);
4769 	if (IS_ERR(trans))
4770 		return PTR_ERR(trans);
4771 
4772 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4773 	if (ret) {
4774 		btrfs_abort_transaction(trans, root, ret);
4775 		btrfs_end_transaction(trans, root);
4776 		return ret;
4777 	}
4778 
4779 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4780 				       0, 0, len, 0, len, 0, 0, 0);
4781 	if (ret)
4782 		btrfs_abort_transaction(trans, root, ret);
4783 	else
4784 		btrfs_update_inode(trans, root, inode);
4785 	btrfs_end_transaction(trans, root);
4786 	return ret;
4787 }
4788 
4789 /*
4790  * This function puts in dummy file extents for the area we're creating a hole
4791  * for.  So if we are truncating this file to a larger size we need to insert
4792  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4793  * the range between oldsize and size
4794  */
4795 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4796 {
4797 	struct btrfs_root *root = BTRFS_I(inode)->root;
4798 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4799 	struct extent_map *em = NULL;
4800 	struct extent_state *cached_state = NULL;
4801 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4802 	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4803 	u64 block_end = ALIGN(size, root->sectorsize);
4804 	u64 last_byte;
4805 	u64 cur_offset;
4806 	u64 hole_size;
4807 	int err = 0;
4808 
4809 	/*
4810 	 * If our size started in the middle of a page we need to zero out the
4811 	 * rest of the page before we expand the i_size, otherwise we could
4812 	 * expose stale data.
4813 	 */
4814 	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4815 	if (err)
4816 		return err;
4817 
4818 	if (size <= hole_start)
4819 		return 0;
4820 
4821 	while (1) {
4822 		struct btrfs_ordered_extent *ordered;
4823 
4824 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4825 				 &cached_state);
4826 		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4827 						     block_end - hole_start);
4828 		if (!ordered)
4829 			break;
4830 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4831 				     &cached_state, GFP_NOFS);
4832 		btrfs_start_ordered_extent(inode, ordered, 1);
4833 		btrfs_put_ordered_extent(ordered);
4834 	}
4835 
4836 	cur_offset = hole_start;
4837 	while (1) {
4838 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4839 				block_end - cur_offset, 0);
4840 		if (IS_ERR(em)) {
4841 			err = PTR_ERR(em);
4842 			em = NULL;
4843 			break;
4844 		}
4845 		last_byte = min(extent_map_end(em), block_end);
4846 		last_byte = ALIGN(last_byte , root->sectorsize);
4847 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4848 			struct extent_map *hole_em;
4849 			hole_size = last_byte - cur_offset;
4850 
4851 			err = maybe_insert_hole(root, inode, cur_offset,
4852 						hole_size);
4853 			if (err)
4854 				break;
4855 			btrfs_drop_extent_cache(inode, cur_offset,
4856 						cur_offset + hole_size - 1, 0);
4857 			hole_em = alloc_extent_map();
4858 			if (!hole_em) {
4859 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4860 					&BTRFS_I(inode)->runtime_flags);
4861 				goto next;
4862 			}
4863 			hole_em->start = cur_offset;
4864 			hole_em->len = hole_size;
4865 			hole_em->orig_start = cur_offset;
4866 
4867 			hole_em->block_start = EXTENT_MAP_HOLE;
4868 			hole_em->block_len = 0;
4869 			hole_em->orig_block_len = 0;
4870 			hole_em->ram_bytes = hole_size;
4871 			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4872 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4873 			hole_em->generation = root->fs_info->generation;
4874 
4875 			while (1) {
4876 				write_lock(&em_tree->lock);
4877 				err = add_extent_mapping(em_tree, hole_em, 1);
4878 				write_unlock(&em_tree->lock);
4879 				if (err != -EEXIST)
4880 					break;
4881 				btrfs_drop_extent_cache(inode, cur_offset,
4882 							cur_offset +
4883 							hole_size - 1, 0);
4884 			}
4885 			free_extent_map(hole_em);
4886 		}
4887 next:
4888 		free_extent_map(em);
4889 		em = NULL;
4890 		cur_offset = last_byte;
4891 		if (cur_offset >= block_end)
4892 			break;
4893 	}
4894 	free_extent_map(em);
4895 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4896 			     GFP_NOFS);
4897 	return err;
4898 }
4899 
4900 static int wait_snapshoting_atomic_t(atomic_t *a)
4901 {
4902 	schedule();
4903 	return 0;
4904 }
4905 
4906 static void wait_for_snapshot_creation(struct btrfs_root *root)
4907 {
4908 	while (true) {
4909 		int ret;
4910 
4911 		ret = btrfs_start_write_no_snapshoting(root);
4912 		if (ret)
4913 			break;
4914 		wait_on_atomic_t(&root->will_be_snapshoted,
4915 				 wait_snapshoting_atomic_t,
4916 				 TASK_UNINTERRUPTIBLE);
4917 	}
4918 }
4919 
4920 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4921 {
4922 	struct btrfs_root *root = BTRFS_I(inode)->root;
4923 	struct btrfs_trans_handle *trans;
4924 	loff_t oldsize = i_size_read(inode);
4925 	loff_t newsize = attr->ia_size;
4926 	int mask = attr->ia_valid;
4927 	int ret;
4928 
4929 	/*
4930 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4931 	 * special case where we need to update the times despite not having
4932 	 * these flags set.  For all other operations the VFS set these flags
4933 	 * explicitly if it wants a timestamp update.
4934 	 */
4935 	if (newsize != oldsize) {
4936 		inode_inc_iversion(inode);
4937 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4938 			inode->i_ctime = inode->i_mtime =
4939 				current_fs_time(inode->i_sb);
4940 	}
4941 
4942 	if (newsize > oldsize) {
4943 		truncate_pagecache(inode, newsize);
4944 		/*
4945 		 * Don't do an expanding truncate while snapshoting is ongoing.
4946 		 * This is to ensure the snapshot captures a fully consistent
4947 		 * state of this file - if the snapshot captures this expanding
4948 		 * truncation, it must capture all writes that happened before
4949 		 * this truncation.
4950 		 */
4951 		wait_for_snapshot_creation(root);
4952 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4953 		if (ret) {
4954 			btrfs_end_write_no_snapshoting(root);
4955 			return ret;
4956 		}
4957 
4958 		trans = btrfs_start_transaction(root, 1);
4959 		if (IS_ERR(trans)) {
4960 			btrfs_end_write_no_snapshoting(root);
4961 			return PTR_ERR(trans);
4962 		}
4963 
4964 		i_size_write(inode, newsize);
4965 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4966 		ret = btrfs_update_inode(trans, root, inode);
4967 		btrfs_end_write_no_snapshoting(root);
4968 		btrfs_end_transaction(trans, root);
4969 	} else {
4970 
4971 		/*
4972 		 * We're truncating a file that used to have good data down to
4973 		 * zero. Make sure it gets into the ordered flush list so that
4974 		 * any new writes get down to disk quickly.
4975 		 */
4976 		if (newsize == 0)
4977 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4978 				&BTRFS_I(inode)->runtime_flags);
4979 
4980 		/*
4981 		 * 1 for the orphan item we're going to add
4982 		 * 1 for the orphan item deletion.
4983 		 */
4984 		trans = btrfs_start_transaction(root, 2);
4985 		if (IS_ERR(trans))
4986 			return PTR_ERR(trans);
4987 
4988 		/*
4989 		 * We need to do this in case we fail at _any_ point during the
4990 		 * actual truncate.  Once we do the truncate_setsize we could
4991 		 * invalidate pages which forces any outstanding ordered io to
4992 		 * be instantly completed which will give us extents that need
4993 		 * to be truncated.  If we fail to get an orphan inode down we
4994 		 * could have left over extents that were never meant to live,
4995 		 * so we need to garuntee from this point on that everything
4996 		 * will be consistent.
4997 		 */
4998 		ret = btrfs_orphan_add(trans, inode);
4999 		btrfs_end_transaction(trans, root);
5000 		if (ret)
5001 			return ret;
5002 
5003 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5004 		truncate_setsize(inode, newsize);
5005 
5006 		/* Disable nonlocked read DIO to avoid the end less truncate */
5007 		btrfs_inode_block_unlocked_dio(inode);
5008 		inode_dio_wait(inode);
5009 		btrfs_inode_resume_unlocked_dio(inode);
5010 
5011 		ret = btrfs_truncate(inode);
5012 		if (ret && inode->i_nlink) {
5013 			int err;
5014 
5015 			/*
5016 			 * failed to truncate, disk_i_size is only adjusted down
5017 			 * as we remove extents, so it should represent the true
5018 			 * size of the inode, so reset the in memory size and
5019 			 * delete our orphan entry.
5020 			 */
5021 			trans = btrfs_join_transaction(root);
5022 			if (IS_ERR(trans)) {
5023 				btrfs_orphan_del(NULL, inode);
5024 				return ret;
5025 			}
5026 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5027 			err = btrfs_orphan_del(trans, inode);
5028 			if (err)
5029 				btrfs_abort_transaction(trans, root, err);
5030 			btrfs_end_transaction(trans, root);
5031 		}
5032 	}
5033 
5034 	return ret;
5035 }
5036 
5037 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5038 {
5039 	struct inode *inode = d_inode(dentry);
5040 	struct btrfs_root *root = BTRFS_I(inode)->root;
5041 	int err;
5042 
5043 	if (btrfs_root_readonly(root))
5044 		return -EROFS;
5045 
5046 	err = inode_change_ok(inode, attr);
5047 	if (err)
5048 		return err;
5049 
5050 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5051 		err = btrfs_setsize(inode, attr);
5052 		if (err)
5053 			return err;
5054 	}
5055 
5056 	if (attr->ia_valid) {
5057 		setattr_copy(inode, attr);
5058 		inode_inc_iversion(inode);
5059 		err = btrfs_dirty_inode(inode);
5060 
5061 		if (!err && attr->ia_valid & ATTR_MODE)
5062 			err = posix_acl_chmod(inode, inode->i_mode);
5063 	}
5064 
5065 	return err;
5066 }
5067 
5068 /*
5069  * While truncating the inode pages during eviction, we get the VFS calling
5070  * btrfs_invalidatepage() against each page of the inode. This is slow because
5071  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5072  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5073  * extent_state structures over and over, wasting lots of time.
5074  *
5075  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5076  * those expensive operations on a per page basis and do only the ordered io
5077  * finishing, while we release here the extent_map and extent_state structures,
5078  * without the excessive merging and splitting.
5079  */
5080 static void evict_inode_truncate_pages(struct inode *inode)
5081 {
5082 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5083 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5084 	struct rb_node *node;
5085 
5086 	ASSERT(inode->i_state & I_FREEING);
5087 	truncate_inode_pages_final(&inode->i_data);
5088 
5089 	write_lock(&map_tree->lock);
5090 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5091 		struct extent_map *em;
5092 
5093 		node = rb_first(&map_tree->map);
5094 		em = rb_entry(node, struct extent_map, rb_node);
5095 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5096 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5097 		remove_extent_mapping(map_tree, em);
5098 		free_extent_map(em);
5099 		if (need_resched()) {
5100 			write_unlock(&map_tree->lock);
5101 			cond_resched();
5102 			write_lock(&map_tree->lock);
5103 		}
5104 	}
5105 	write_unlock(&map_tree->lock);
5106 
5107 	/*
5108 	 * Keep looping until we have no more ranges in the io tree.
5109 	 * We can have ongoing bios started by readpages (called from readahead)
5110 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5111 	 * still in progress (unlocked the pages in the bio but did not yet
5112 	 * unlocked the ranges in the io tree). Therefore this means some
5113 	 * ranges can still be locked and eviction started because before
5114 	 * submitting those bios, which are executed by a separate task (work
5115 	 * queue kthread), inode references (inode->i_count) were not taken
5116 	 * (which would be dropped in the end io callback of each bio).
5117 	 * Therefore here we effectively end up waiting for those bios and
5118 	 * anyone else holding locked ranges without having bumped the inode's
5119 	 * reference count - if we don't do it, when they access the inode's
5120 	 * io_tree to unlock a range it may be too late, leading to an
5121 	 * use-after-free issue.
5122 	 */
5123 	spin_lock(&io_tree->lock);
5124 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5125 		struct extent_state *state;
5126 		struct extent_state *cached_state = NULL;
5127 		u64 start;
5128 		u64 end;
5129 
5130 		node = rb_first(&io_tree->state);
5131 		state = rb_entry(node, struct extent_state, rb_node);
5132 		start = state->start;
5133 		end = state->end;
5134 		spin_unlock(&io_tree->lock);
5135 
5136 		lock_extent_bits(io_tree, start, end, 0, &cached_state);
5137 
5138 		/*
5139 		 * If still has DELALLOC flag, the extent didn't reach disk,
5140 		 * and its reserved space won't be freed by delayed_ref.
5141 		 * So we need to free its reserved space here.
5142 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5143 		 *
5144 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5145 		 */
5146 		if (state->state & EXTENT_DELALLOC)
5147 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5148 
5149 		clear_extent_bit(io_tree, start, end,
5150 				 EXTENT_LOCKED | EXTENT_DIRTY |
5151 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5152 				 EXTENT_DEFRAG, 1, 1,
5153 				 &cached_state, GFP_NOFS);
5154 
5155 		cond_resched();
5156 		spin_lock(&io_tree->lock);
5157 	}
5158 	spin_unlock(&io_tree->lock);
5159 }
5160 
5161 void btrfs_evict_inode(struct inode *inode)
5162 {
5163 	struct btrfs_trans_handle *trans;
5164 	struct btrfs_root *root = BTRFS_I(inode)->root;
5165 	struct btrfs_block_rsv *rsv, *global_rsv;
5166 	int steal_from_global = 0;
5167 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5168 	int ret;
5169 
5170 	trace_btrfs_inode_evict(inode);
5171 
5172 	evict_inode_truncate_pages(inode);
5173 
5174 	if (inode->i_nlink &&
5175 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5176 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5177 	     btrfs_is_free_space_inode(inode)))
5178 		goto no_delete;
5179 
5180 	if (is_bad_inode(inode)) {
5181 		btrfs_orphan_del(NULL, inode);
5182 		goto no_delete;
5183 	}
5184 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5185 	if (!special_file(inode->i_mode))
5186 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5187 
5188 	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5189 
5190 	if (root->fs_info->log_root_recovering) {
5191 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5192 				 &BTRFS_I(inode)->runtime_flags));
5193 		goto no_delete;
5194 	}
5195 
5196 	if (inode->i_nlink > 0) {
5197 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5198 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5199 		goto no_delete;
5200 	}
5201 
5202 	ret = btrfs_commit_inode_delayed_inode(inode);
5203 	if (ret) {
5204 		btrfs_orphan_del(NULL, inode);
5205 		goto no_delete;
5206 	}
5207 
5208 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5209 	if (!rsv) {
5210 		btrfs_orphan_del(NULL, inode);
5211 		goto no_delete;
5212 	}
5213 	rsv->size = min_size;
5214 	rsv->failfast = 1;
5215 	global_rsv = &root->fs_info->global_block_rsv;
5216 
5217 	btrfs_i_size_write(inode, 0);
5218 
5219 	/*
5220 	 * This is a bit simpler than btrfs_truncate since we've already
5221 	 * reserved our space for our orphan item in the unlink, so we just
5222 	 * need to reserve some slack space in case we add bytes and update
5223 	 * inode item when doing the truncate.
5224 	 */
5225 	while (1) {
5226 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5227 					     BTRFS_RESERVE_FLUSH_LIMIT);
5228 
5229 		/*
5230 		 * Try and steal from the global reserve since we will
5231 		 * likely not use this space anyway, we want to try as
5232 		 * hard as possible to get this to work.
5233 		 */
5234 		if (ret)
5235 			steal_from_global++;
5236 		else
5237 			steal_from_global = 0;
5238 		ret = 0;
5239 
5240 		/*
5241 		 * steal_from_global == 0: we reserved stuff, hooray!
5242 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5243 		 * steal_from_global == 2: we've committed, still not a lot of
5244 		 * room but maybe we'll have room in the global reserve this
5245 		 * time.
5246 		 * steal_from_global == 3: abandon all hope!
5247 		 */
5248 		if (steal_from_global > 2) {
5249 			btrfs_warn(root->fs_info,
5250 				"Could not get space for a delete, will truncate on mount %d",
5251 				ret);
5252 			btrfs_orphan_del(NULL, inode);
5253 			btrfs_free_block_rsv(root, rsv);
5254 			goto no_delete;
5255 		}
5256 
5257 		trans = btrfs_join_transaction(root);
5258 		if (IS_ERR(trans)) {
5259 			btrfs_orphan_del(NULL, inode);
5260 			btrfs_free_block_rsv(root, rsv);
5261 			goto no_delete;
5262 		}
5263 
5264 		/*
5265 		 * We can't just steal from the global reserve, we need tomake
5266 		 * sure there is room to do it, if not we need to commit and try
5267 		 * again.
5268 		 */
5269 		if (steal_from_global) {
5270 			if (!btrfs_check_space_for_delayed_refs(trans, root))
5271 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5272 							      min_size);
5273 			else
5274 				ret = -ENOSPC;
5275 		}
5276 
5277 		/*
5278 		 * Couldn't steal from the global reserve, we have too much
5279 		 * pending stuff built up, commit the transaction and try it
5280 		 * again.
5281 		 */
5282 		if (ret) {
5283 			ret = btrfs_commit_transaction(trans, root);
5284 			if (ret) {
5285 				btrfs_orphan_del(NULL, inode);
5286 				btrfs_free_block_rsv(root, rsv);
5287 				goto no_delete;
5288 			}
5289 			continue;
5290 		} else {
5291 			steal_from_global = 0;
5292 		}
5293 
5294 		trans->block_rsv = rsv;
5295 
5296 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5297 		if (ret != -ENOSPC && ret != -EAGAIN)
5298 			break;
5299 
5300 		trans->block_rsv = &root->fs_info->trans_block_rsv;
5301 		btrfs_end_transaction(trans, root);
5302 		trans = NULL;
5303 		btrfs_btree_balance_dirty(root);
5304 	}
5305 
5306 	btrfs_free_block_rsv(root, rsv);
5307 
5308 	/*
5309 	 * Errors here aren't a big deal, it just means we leave orphan items
5310 	 * in the tree.  They will be cleaned up on the next mount.
5311 	 */
5312 	if (ret == 0) {
5313 		trans->block_rsv = root->orphan_block_rsv;
5314 		btrfs_orphan_del(trans, inode);
5315 	} else {
5316 		btrfs_orphan_del(NULL, inode);
5317 	}
5318 
5319 	trans->block_rsv = &root->fs_info->trans_block_rsv;
5320 	if (!(root == root->fs_info->tree_root ||
5321 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5322 		btrfs_return_ino(root, btrfs_ino(inode));
5323 
5324 	btrfs_end_transaction(trans, root);
5325 	btrfs_btree_balance_dirty(root);
5326 no_delete:
5327 	btrfs_remove_delayed_node(inode);
5328 	clear_inode(inode);
5329 	return;
5330 }
5331 
5332 /*
5333  * this returns the key found in the dir entry in the location pointer.
5334  * If no dir entries were found, location->objectid is 0.
5335  */
5336 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5337 			       struct btrfs_key *location)
5338 {
5339 	const char *name = dentry->d_name.name;
5340 	int namelen = dentry->d_name.len;
5341 	struct btrfs_dir_item *di;
5342 	struct btrfs_path *path;
5343 	struct btrfs_root *root = BTRFS_I(dir)->root;
5344 	int ret = 0;
5345 
5346 	path = btrfs_alloc_path();
5347 	if (!path)
5348 		return -ENOMEM;
5349 
5350 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5351 				    namelen, 0);
5352 	if (IS_ERR(di))
5353 		ret = PTR_ERR(di);
5354 
5355 	if (IS_ERR_OR_NULL(di))
5356 		goto out_err;
5357 
5358 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5359 out:
5360 	btrfs_free_path(path);
5361 	return ret;
5362 out_err:
5363 	location->objectid = 0;
5364 	goto out;
5365 }
5366 
5367 /*
5368  * when we hit a tree root in a directory, the btrfs part of the inode
5369  * needs to be changed to reflect the root directory of the tree root.  This
5370  * is kind of like crossing a mount point.
5371  */
5372 static int fixup_tree_root_location(struct btrfs_root *root,
5373 				    struct inode *dir,
5374 				    struct dentry *dentry,
5375 				    struct btrfs_key *location,
5376 				    struct btrfs_root **sub_root)
5377 {
5378 	struct btrfs_path *path;
5379 	struct btrfs_root *new_root;
5380 	struct btrfs_root_ref *ref;
5381 	struct extent_buffer *leaf;
5382 	struct btrfs_key key;
5383 	int ret;
5384 	int err = 0;
5385 
5386 	path = btrfs_alloc_path();
5387 	if (!path) {
5388 		err = -ENOMEM;
5389 		goto out;
5390 	}
5391 
5392 	err = -ENOENT;
5393 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5394 	key.type = BTRFS_ROOT_REF_KEY;
5395 	key.offset = location->objectid;
5396 
5397 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5398 				0, 0);
5399 	if (ret) {
5400 		if (ret < 0)
5401 			err = ret;
5402 		goto out;
5403 	}
5404 
5405 	leaf = path->nodes[0];
5406 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5407 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5408 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5409 		goto out;
5410 
5411 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5412 				   (unsigned long)(ref + 1),
5413 				   dentry->d_name.len);
5414 	if (ret)
5415 		goto out;
5416 
5417 	btrfs_release_path(path);
5418 
5419 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5420 	if (IS_ERR(new_root)) {
5421 		err = PTR_ERR(new_root);
5422 		goto out;
5423 	}
5424 
5425 	*sub_root = new_root;
5426 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5427 	location->type = BTRFS_INODE_ITEM_KEY;
5428 	location->offset = 0;
5429 	err = 0;
5430 out:
5431 	btrfs_free_path(path);
5432 	return err;
5433 }
5434 
5435 static void inode_tree_add(struct inode *inode)
5436 {
5437 	struct btrfs_root *root = BTRFS_I(inode)->root;
5438 	struct btrfs_inode *entry;
5439 	struct rb_node **p;
5440 	struct rb_node *parent;
5441 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5442 	u64 ino = btrfs_ino(inode);
5443 
5444 	if (inode_unhashed(inode))
5445 		return;
5446 	parent = NULL;
5447 	spin_lock(&root->inode_lock);
5448 	p = &root->inode_tree.rb_node;
5449 	while (*p) {
5450 		parent = *p;
5451 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5452 
5453 		if (ino < btrfs_ino(&entry->vfs_inode))
5454 			p = &parent->rb_left;
5455 		else if (ino > btrfs_ino(&entry->vfs_inode))
5456 			p = &parent->rb_right;
5457 		else {
5458 			WARN_ON(!(entry->vfs_inode.i_state &
5459 				  (I_WILL_FREE | I_FREEING)));
5460 			rb_replace_node(parent, new, &root->inode_tree);
5461 			RB_CLEAR_NODE(parent);
5462 			spin_unlock(&root->inode_lock);
5463 			return;
5464 		}
5465 	}
5466 	rb_link_node(new, parent, p);
5467 	rb_insert_color(new, &root->inode_tree);
5468 	spin_unlock(&root->inode_lock);
5469 }
5470 
5471 static void inode_tree_del(struct inode *inode)
5472 {
5473 	struct btrfs_root *root = BTRFS_I(inode)->root;
5474 	int empty = 0;
5475 
5476 	spin_lock(&root->inode_lock);
5477 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5478 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5479 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5480 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5481 	}
5482 	spin_unlock(&root->inode_lock);
5483 
5484 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5485 		synchronize_srcu(&root->fs_info->subvol_srcu);
5486 		spin_lock(&root->inode_lock);
5487 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5488 		spin_unlock(&root->inode_lock);
5489 		if (empty)
5490 			btrfs_add_dead_root(root);
5491 	}
5492 }
5493 
5494 void btrfs_invalidate_inodes(struct btrfs_root *root)
5495 {
5496 	struct rb_node *node;
5497 	struct rb_node *prev;
5498 	struct btrfs_inode *entry;
5499 	struct inode *inode;
5500 	u64 objectid = 0;
5501 
5502 	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5503 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5504 
5505 	spin_lock(&root->inode_lock);
5506 again:
5507 	node = root->inode_tree.rb_node;
5508 	prev = NULL;
5509 	while (node) {
5510 		prev = node;
5511 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5512 
5513 		if (objectid < btrfs_ino(&entry->vfs_inode))
5514 			node = node->rb_left;
5515 		else if (objectid > btrfs_ino(&entry->vfs_inode))
5516 			node = node->rb_right;
5517 		else
5518 			break;
5519 	}
5520 	if (!node) {
5521 		while (prev) {
5522 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5523 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5524 				node = prev;
5525 				break;
5526 			}
5527 			prev = rb_next(prev);
5528 		}
5529 	}
5530 	while (node) {
5531 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5532 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5533 		inode = igrab(&entry->vfs_inode);
5534 		if (inode) {
5535 			spin_unlock(&root->inode_lock);
5536 			if (atomic_read(&inode->i_count) > 1)
5537 				d_prune_aliases(inode);
5538 			/*
5539 			 * btrfs_drop_inode will have it removed from
5540 			 * the inode cache when its usage count
5541 			 * hits zero.
5542 			 */
5543 			iput(inode);
5544 			cond_resched();
5545 			spin_lock(&root->inode_lock);
5546 			goto again;
5547 		}
5548 
5549 		if (cond_resched_lock(&root->inode_lock))
5550 			goto again;
5551 
5552 		node = rb_next(node);
5553 	}
5554 	spin_unlock(&root->inode_lock);
5555 }
5556 
5557 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5558 {
5559 	struct btrfs_iget_args *args = p;
5560 	inode->i_ino = args->location->objectid;
5561 	memcpy(&BTRFS_I(inode)->location, args->location,
5562 	       sizeof(*args->location));
5563 	BTRFS_I(inode)->root = args->root;
5564 	return 0;
5565 }
5566 
5567 static int btrfs_find_actor(struct inode *inode, void *opaque)
5568 {
5569 	struct btrfs_iget_args *args = opaque;
5570 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5571 		args->root == BTRFS_I(inode)->root;
5572 }
5573 
5574 static struct inode *btrfs_iget_locked(struct super_block *s,
5575 				       struct btrfs_key *location,
5576 				       struct btrfs_root *root)
5577 {
5578 	struct inode *inode;
5579 	struct btrfs_iget_args args;
5580 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5581 
5582 	args.location = location;
5583 	args.root = root;
5584 
5585 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5586 			     btrfs_init_locked_inode,
5587 			     (void *)&args);
5588 	return inode;
5589 }
5590 
5591 /* Get an inode object given its location and corresponding root.
5592  * Returns in *is_new if the inode was read from disk
5593  */
5594 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5595 			 struct btrfs_root *root, int *new)
5596 {
5597 	struct inode *inode;
5598 
5599 	inode = btrfs_iget_locked(s, location, root);
5600 	if (!inode)
5601 		return ERR_PTR(-ENOMEM);
5602 
5603 	if (inode->i_state & I_NEW) {
5604 		btrfs_read_locked_inode(inode);
5605 		if (!is_bad_inode(inode)) {
5606 			inode_tree_add(inode);
5607 			unlock_new_inode(inode);
5608 			if (new)
5609 				*new = 1;
5610 		} else {
5611 			unlock_new_inode(inode);
5612 			iput(inode);
5613 			inode = ERR_PTR(-ESTALE);
5614 		}
5615 	}
5616 
5617 	return inode;
5618 }
5619 
5620 static struct inode *new_simple_dir(struct super_block *s,
5621 				    struct btrfs_key *key,
5622 				    struct btrfs_root *root)
5623 {
5624 	struct inode *inode = new_inode(s);
5625 
5626 	if (!inode)
5627 		return ERR_PTR(-ENOMEM);
5628 
5629 	BTRFS_I(inode)->root = root;
5630 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5631 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5632 
5633 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5634 	inode->i_op = &btrfs_dir_ro_inode_operations;
5635 	inode->i_fop = &simple_dir_operations;
5636 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5637 	inode->i_mtime = CURRENT_TIME;
5638 	inode->i_atime = inode->i_mtime;
5639 	inode->i_ctime = inode->i_mtime;
5640 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5641 
5642 	return inode;
5643 }
5644 
5645 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5646 {
5647 	struct inode *inode;
5648 	struct btrfs_root *root = BTRFS_I(dir)->root;
5649 	struct btrfs_root *sub_root = root;
5650 	struct btrfs_key location;
5651 	int index;
5652 	int ret = 0;
5653 
5654 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5655 		return ERR_PTR(-ENAMETOOLONG);
5656 
5657 	ret = btrfs_inode_by_name(dir, dentry, &location);
5658 	if (ret < 0)
5659 		return ERR_PTR(ret);
5660 
5661 	if (location.objectid == 0)
5662 		return ERR_PTR(-ENOENT);
5663 
5664 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5665 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5666 		return inode;
5667 	}
5668 
5669 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5670 
5671 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5672 	ret = fixup_tree_root_location(root, dir, dentry,
5673 				       &location, &sub_root);
5674 	if (ret < 0) {
5675 		if (ret != -ENOENT)
5676 			inode = ERR_PTR(ret);
5677 		else
5678 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5679 	} else {
5680 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5681 	}
5682 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5683 
5684 	if (!IS_ERR(inode) && root != sub_root) {
5685 		down_read(&root->fs_info->cleanup_work_sem);
5686 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5687 			ret = btrfs_orphan_cleanup(sub_root);
5688 		up_read(&root->fs_info->cleanup_work_sem);
5689 		if (ret) {
5690 			iput(inode);
5691 			inode = ERR_PTR(ret);
5692 		}
5693 	}
5694 
5695 	return inode;
5696 }
5697 
5698 static int btrfs_dentry_delete(const struct dentry *dentry)
5699 {
5700 	struct btrfs_root *root;
5701 	struct inode *inode = d_inode(dentry);
5702 
5703 	if (!inode && !IS_ROOT(dentry))
5704 		inode = d_inode(dentry->d_parent);
5705 
5706 	if (inode) {
5707 		root = BTRFS_I(inode)->root;
5708 		if (btrfs_root_refs(&root->root_item) == 0)
5709 			return 1;
5710 
5711 		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5712 			return 1;
5713 	}
5714 	return 0;
5715 }
5716 
5717 static void btrfs_dentry_release(struct dentry *dentry)
5718 {
5719 	kfree(dentry->d_fsdata);
5720 }
5721 
5722 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5723 				   unsigned int flags)
5724 {
5725 	struct inode *inode;
5726 
5727 	inode = btrfs_lookup_dentry(dir, dentry);
5728 	if (IS_ERR(inode)) {
5729 		if (PTR_ERR(inode) == -ENOENT)
5730 			inode = NULL;
5731 		else
5732 			return ERR_CAST(inode);
5733 	}
5734 
5735 	return d_splice_alias(inode, dentry);
5736 }
5737 
5738 unsigned char btrfs_filetype_table[] = {
5739 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5740 };
5741 
5742 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5743 {
5744 	struct inode *inode = file_inode(file);
5745 	struct btrfs_root *root = BTRFS_I(inode)->root;
5746 	struct btrfs_item *item;
5747 	struct btrfs_dir_item *di;
5748 	struct btrfs_key key;
5749 	struct btrfs_key found_key;
5750 	struct btrfs_path *path;
5751 	struct list_head ins_list;
5752 	struct list_head del_list;
5753 	int ret;
5754 	struct extent_buffer *leaf;
5755 	int slot;
5756 	unsigned char d_type;
5757 	int over = 0;
5758 	u32 di_cur;
5759 	u32 di_total;
5760 	u32 di_len;
5761 	int key_type = BTRFS_DIR_INDEX_KEY;
5762 	char tmp_name[32];
5763 	char *name_ptr;
5764 	int name_len;
5765 	int is_curr = 0;	/* ctx->pos points to the current index? */
5766 
5767 	/* FIXME, use a real flag for deciding about the key type */
5768 	if (root->fs_info->tree_root == root)
5769 		key_type = BTRFS_DIR_ITEM_KEY;
5770 
5771 	if (!dir_emit_dots(file, ctx))
5772 		return 0;
5773 
5774 	path = btrfs_alloc_path();
5775 	if (!path)
5776 		return -ENOMEM;
5777 
5778 	path->reada = 1;
5779 
5780 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5781 		INIT_LIST_HEAD(&ins_list);
5782 		INIT_LIST_HEAD(&del_list);
5783 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5784 	}
5785 
5786 	key.type = key_type;
5787 	key.offset = ctx->pos;
5788 	key.objectid = btrfs_ino(inode);
5789 
5790 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5791 	if (ret < 0)
5792 		goto err;
5793 
5794 	while (1) {
5795 		leaf = path->nodes[0];
5796 		slot = path->slots[0];
5797 		if (slot >= btrfs_header_nritems(leaf)) {
5798 			ret = btrfs_next_leaf(root, path);
5799 			if (ret < 0)
5800 				goto err;
5801 			else if (ret > 0)
5802 				break;
5803 			continue;
5804 		}
5805 
5806 		item = btrfs_item_nr(slot);
5807 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5808 
5809 		if (found_key.objectid != key.objectid)
5810 			break;
5811 		if (found_key.type != key_type)
5812 			break;
5813 		if (found_key.offset < ctx->pos)
5814 			goto next;
5815 		if (key_type == BTRFS_DIR_INDEX_KEY &&
5816 		    btrfs_should_delete_dir_index(&del_list,
5817 						  found_key.offset))
5818 			goto next;
5819 
5820 		ctx->pos = found_key.offset;
5821 		is_curr = 1;
5822 
5823 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5824 		di_cur = 0;
5825 		di_total = btrfs_item_size(leaf, item);
5826 
5827 		while (di_cur < di_total) {
5828 			struct btrfs_key location;
5829 
5830 			if (verify_dir_item(root, leaf, di))
5831 				break;
5832 
5833 			name_len = btrfs_dir_name_len(leaf, di);
5834 			if (name_len <= sizeof(tmp_name)) {
5835 				name_ptr = tmp_name;
5836 			} else {
5837 				name_ptr = kmalloc(name_len, GFP_NOFS);
5838 				if (!name_ptr) {
5839 					ret = -ENOMEM;
5840 					goto err;
5841 				}
5842 			}
5843 			read_extent_buffer(leaf, name_ptr,
5844 					   (unsigned long)(di + 1), name_len);
5845 
5846 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5847 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5848 
5849 
5850 			/* is this a reference to our own snapshot? If so
5851 			 * skip it.
5852 			 *
5853 			 * In contrast to old kernels, we insert the snapshot's
5854 			 * dir item and dir index after it has been created, so
5855 			 * we won't find a reference to our own snapshot. We
5856 			 * still keep the following code for backward
5857 			 * compatibility.
5858 			 */
5859 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5860 			    location.objectid == root->root_key.objectid) {
5861 				over = 0;
5862 				goto skip;
5863 			}
5864 			over = !dir_emit(ctx, name_ptr, name_len,
5865 				       location.objectid, d_type);
5866 
5867 skip:
5868 			if (name_ptr != tmp_name)
5869 				kfree(name_ptr);
5870 
5871 			if (over)
5872 				goto nopos;
5873 			di_len = btrfs_dir_name_len(leaf, di) +
5874 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5875 			di_cur += di_len;
5876 			di = (struct btrfs_dir_item *)((char *)di + di_len);
5877 		}
5878 next:
5879 		path->slots[0]++;
5880 	}
5881 
5882 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5883 		if (is_curr)
5884 			ctx->pos++;
5885 		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5886 		if (ret)
5887 			goto nopos;
5888 	}
5889 
5890 	/* Reached end of directory/root. Bump pos past the last item. */
5891 	ctx->pos++;
5892 
5893 	/*
5894 	 * Stop new entries from being returned after we return the last
5895 	 * entry.
5896 	 *
5897 	 * New directory entries are assigned a strictly increasing
5898 	 * offset.  This means that new entries created during readdir
5899 	 * are *guaranteed* to be seen in the future by that readdir.
5900 	 * This has broken buggy programs which operate on names as
5901 	 * they're returned by readdir.  Until we re-use freed offsets
5902 	 * we have this hack to stop new entries from being returned
5903 	 * under the assumption that they'll never reach this huge
5904 	 * offset.
5905 	 *
5906 	 * This is being careful not to overflow 32bit loff_t unless the
5907 	 * last entry requires it because doing so has broken 32bit apps
5908 	 * in the past.
5909 	 */
5910 	if (key_type == BTRFS_DIR_INDEX_KEY) {
5911 		if (ctx->pos >= INT_MAX)
5912 			ctx->pos = LLONG_MAX;
5913 		else
5914 			ctx->pos = INT_MAX;
5915 	}
5916 nopos:
5917 	ret = 0;
5918 err:
5919 	if (key_type == BTRFS_DIR_INDEX_KEY)
5920 		btrfs_put_delayed_items(&ins_list, &del_list);
5921 	btrfs_free_path(path);
5922 	return ret;
5923 }
5924 
5925 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5926 {
5927 	struct btrfs_root *root = BTRFS_I(inode)->root;
5928 	struct btrfs_trans_handle *trans;
5929 	int ret = 0;
5930 	bool nolock = false;
5931 
5932 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5933 		return 0;
5934 
5935 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5936 		nolock = true;
5937 
5938 	if (wbc->sync_mode == WB_SYNC_ALL) {
5939 		if (nolock)
5940 			trans = btrfs_join_transaction_nolock(root);
5941 		else
5942 			trans = btrfs_join_transaction(root);
5943 		if (IS_ERR(trans))
5944 			return PTR_ERR(trans);
5945 		ret = btrfs_commit_transaction(trans, root);
5946 	}
5947 	return ret;
5948 }
5949 
5950 /*
5951  * This is somewhat expensive, updating the tree every time the
5952  * inode changes.  But, it is most likely to find the inode in cache.
5953  * FIXME, needs more benchmarking...there are no reasons other than performance
5954  * to keep or drop this code.
5955  */
5956 static int btrfs_dirty_inode(struct inode *inode)
5957 {
5958 	struct btrfs_root *root = BTRFS_I(inode)->root;
5959 	struct btrfs_trans_handle *trans;
5960 	int ret;
5961 
5962 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5963 		return 0;
5964 
5965 	trans = btrfs_join_transaction(root);
5966 	if (IS_ERR(trans))
5967 		return PTR_ERR(trans);
5968 
5969 	ret = btrfs_update_inode(trans, root, inode);
5970 	if (ret && ret == -ENOSPC) {
5971 		/* whoops, lets try again with the full transaction */
5972 		btrfs_end_transaction(trans, root);
5973 		trans = btrfs_start_transaction(root, 1);
5974 		if (IS_ERR(trans))
5975 			return PTR_ERR(trans);
5976 
5977 		ret = btrfs_update_inode(trans, root, inode);
5978 	}
5979 	btrfs_end_transaction(trans, root);
5980 	if (BTRFS_I(inode)->delayed_node)
5981 		btrfs_balance_delayed_items(root);
5982 
5983 	return ret;
5984 }
5985 
5986 /*
5987  * This is a copy of file_update_time.  We need this so we can return error on
5988  * ENOSPC for updating the inode in the case of file write and mmap writes.
5989  */
5990 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5991 			     int flags)
5992 {
5993 	struct btrfs_root *root = BTRFS_I(inode)->root;
5994 
5995 	if (btrfs_root_readonly(root))
5996 		return -EROFS;
5997 
5998 	if (flags & S_VERSION)
5999 		inode_inc_iversion(inode);
6000 	if (flags & S_CTIME)
6001 		inode->i_ctime = *now;
6002 	if (flags & S_MTIME)
6003 		inode->i_mtime = *now;
6004 	if (flags & S_ATIME)
6005 		inode->i_atime = *now;
6006 	return btrfs_dirty_inode(inode);
6007 }
6008 
6009 /*
6010  * find the highest existing sequence number in a directory
6011  * and then set the in-memory index_cnt variable to reflect
6012  * free sequence numbers
6013  */
6014 static int btrfs_set_inode_index_count(struct inode *inode)
6015 {
6016 	struct btrfs_root *root = BTRFS_I(inode)->root;
6017 	struct btrfs_key key, found_key;
6018 	struct btrfs_path *path;
6019 	struct extent_buffer *leaf;
6020 	int ret;
6021 
6022 	key.objectid = btrfs_ino(inode);
6023 	key.type = BTRFS_DIR_INDEX_KEY;
6024 	key.offset = (u64)-1;
6025 
6026 	path = btrfs_alloc_path();
6027 	if (!path)
6028 		return -ENOMEM;
6029 
6030 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6031 	if (ret < 0)
6032 		goto out;
6033 	/* FIXME: we should be able to handle this */
6034 	if (ret == 0)
6035 		goto out;
6036 	ret = 0;
6037 
6038 	/*
6039 	 * MAGIC NUMBER EXPLANATION:
6040 	 * since we search a directory based on f_pos we have to start at 2
6041 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6042 	 * else has to start at 2
6043 	 */
6044 	if (path->slots[0] == 0) {
6045 		BTRFS_I(inode)->index_cnt = 2;
6046 		goto out;
6047 	}
6048 
6049 	path->slots[0]--;
6050 
6051 	leaf = path->nodes[0];
6052 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6053 
6054 	if (found_key.objectid != btrfs_ino(inode) ||
6055 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6056 		BTRFS_I(inode)->index_cnt = 2;
6057 		goto out;
6058 	}
6059 
6060 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6061 out:
6062 	btrfs_free_path(path);
6063 	return ret;
6064 }
6065 
6066 /*
6067  * helper to find a free sequence number in a given directory.  This current
6068  * code is very simple, later versions will do smarter things in the btree
6069  */
6070 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6071 {
6072 	int ret = 0;
6073 
6074 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6075 		ret = btrfs_inode_delayed_dir_index_count(dir);
6076 		if (ret) {
6077 			ret = btrfs_set_inode_index_count(dir);
6078 			if (ret)
6079 				return ret;
6080 		}
6081 	}
6082 
6083 	*index = BTRFS_I(dir)->index_cnt;
6084 	BTRFS_I(dir)->index_cnt++;
6085 
6086 	return ret;
6087 }
6088 
6089 static int btrfs_insert_inode_locked(struct inode *inode)
6090 {
6091 	struct btrfs_iget_args args;
6092 	args.location = &BTRFS_I(inode)->location;
6093 	args.root = BTRFS_I(inode)->root;
6094 
6095 	return insert_inode_locked4(inode,
6096 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6097 		   btrfs_find_actor, &args);
6098 }
6099 
6100 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6101 				     struct btrfs_root *root,
6102 				     struct inode *dir,
6103 				     const char *name, int name_len,
6104 				     u64 ref_objectid, u64 objectid,
6105 				     umode_t mode, u64 *index)
6106 {
6107 	struct inode *inode;
6108 	struct btrfs_inode_item *inode_item;
6109 	struct btrfs_key *location;
6110 	struct btrfs_path *path;
6111 	struct btrfs_inode_ref *ref;
6112 	struct btrfs_key key[2];
6113 	u32 sizes[2];
6114 	int nitems = name ? 2 : 1;
6115 	unsigned long ptr;
6116 	int ret;
6117 
6118 	path = btrfs_alloc_path();
6119 	if (!path)
6120 		return ERR_PTR(-ENOMEM);
6121 
6122 	inode = new_inode(root->fs_info->sb);
6123 	if (!inode) {
6124 		btrfs_free_path(path);
6125 		return ERR_PTR(-ENOMEM);
6126 	}
6127 
6128 	/*
6129 	 * O_TMPFILE, set link count to 0, so that after this point,
6130 	 * we fill in an inode item with the correct link count.
6131 	 */
6132 	if (!name)
6133 		set_nlink(inode, 0);
6134 
6135 	/*
6136 	 * we have to initialize this early, so we can reclaim the inode
6137 	 * number if we fail afterwards in this function.
6138 	 */
6139 	inode->i_ino = objectid;
6140 
6141 	if (dir && name) {
6142 		trace_btrfs_inode_request(dir);
6143 
6144 		ret = btrfs_set_inode_index(dir, index);
6145 		if (ret) {
6146 			btrfs_free_path(path);
6147 			iput(inode);
6148 			return ERR_PTR(ret);
6149 		}
6150 	} else if (dir) {
6151 		*index = 0;
6152 	}
6153 	/*
6154 	 * index_cnt is ignored for everything but a dir,
6155 	 * btrfs_get_inode_index_count has an explanation for the magic
6156 	 * number
6157 	 */
6158 	BTRFS_I(inode)->index_cnt = 2;
6159 	BTRFS_I(inode)->dir_index = *index;
6160 	BTRFS_I(inode)->root = root;
6161 	BTRFS_I(inode)->generation = trans->transid;
6162 	inode->i_generation = BTRFS_I(inode)->generation;
6163 
6164 	/*
6165 	 * We could have gotten an inode number from somebody who was fsynced
6166 	 * and then removed in this same transaction, so let's just set full
6167 	 * sync since it will be a full sync anyway and this will blow away the
6168 	 * old info in the log.
6169 	 */
6170 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6171 
6172 	key[0].objectid = objectid;
6173 	key[0].type = BTRFS_INODE_ITEM_KEY;
6174 	key[0].offset = 0;
6175 
6176 	sizes[0] = sizeof(struct btrfs_inode_item);
6177 
6178 	if (name) {
6179 		/*
6180 		 * Start new inodes with an inode_ref. This is slightly more
6181 		 * efficient for small numbers of hard links since they will
6182 		 * be packed into one item. Extended refs will kick in if we
6183 		 * add more hard links than can fit in the ref item.
6184 		 */
6185 		key[1].objectid = objectid;
6186 		key[1].type = BTRFS_INODE_REF_KEY;
6187 		key[1].offset = ref_objectid;
6188 
6189 		sizes[1] = name_len + sizeof(*ref);
6190 	}
6191 
6192 	location = &BTRFS_I(inode)->location;
6193 	location->objectid = objectid;
6194 	location->offset = 0;
6195 	location->type = BTRFS_INODE_ITEM_KEY;
6196 
6197 	ret = btrfs_insert_inode_locked(inode);
6198 	if (ret < 0)
6199 		goto fail;
6200 
6201 	path->leave_spinning = 1;
6202 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6203 	if (ret != 0)
6204 		goto fail_unlock;
6205 
6206 	inode_init_owner(inode, dir, mode);
6207 	inode_set_bytes(inode, 0);
6208 
6209 	inode->i_mtime = CURRENT_TIME;
6210 	inode->i_atime = inode->i_mtime;
6211 	inode->i_ctime = inode->i_mtime;
6212 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6213 
6214 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6215 				  struct btrfs_inode_item);
6216 	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6217 			     sizeof(*inode_item));
6218 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6219 
6220 	if (name) {
6221 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6222 				     struct btrfs_inode_ref);
6223 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6224 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6225 		ptr = (unsigned long)(ref + 1);
6226 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6227 	}
6228 
6229 	btrfs_mark_buffer_dirty(path->nodes[0]);
6230 	btrfs_free_path(path);
6231 
6232 	btrfs_inherit_iflags(inode, dir);
6233 
6234 	if (S_ISREG(mode)) {
6235 		if (btrfs_test_opt(root, NODATASUM))
6236 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6237 		if (btrfs_test_opt(root, NODATACOW))
6238 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6239 				BTRFS_INODE_NODATASUM;
6240 	}
6241 
6242 	inode_tree_add(inode);
6243 
6244 	trace_btrfs_inode_new(inode);
6245 	btrfs_set_inode_last_trans(trans, inode);
6246 
6247 	btrfs_update_root_times(trans, root);
6248 
6249 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6250 	if (ret)
6251 		btrfs_err(root->fs_info,
6252 			  "error inheriting props for ino %llu (root %llu): %d",
6253 			  btrfs_ino(inode), root->root_key.objectid, ret);
6254 
6255 	return inode;
6256 
6257 fail_unlock:
6258 	unlock_new_inode(inode);
6259 fail:
6260 	if (dir && name)
6261 		BTRFS_I(dir)->index_cnt--;
6262 	btrfs_free_path(path);
6263 	iput(inode);
6264 	return ERR_PTR(ret);
6265 }
6266 
6267 static inline u8 btrfs_inode_type(struct inode *inode)
6268 {
6269 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6270 }
6271 
6272 /*
6273  * utility function to add 'inode' into 'parent_inode' with
6274  * a give name and a given sequence number.
6275  * if 'add_backref' is true, also insert a backref from the
6276  * inode to the parent directory.
6277  */
6278 int btrfs_add_link(struct btrfs_trans_handle *trans,
6279 		   struct inode *parent_inode, struct inode *inode,
6280 		   const char *name, int name_len, int add_backref, u64 index)
6281 {
6282 	int ret = 0;
6283 	struct btrfs_key key;
6284 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6285 	u64 ino = btrfs_ino(inode);
6286 	u64 parent_ino = btrfs_ino(parent_inode);
6287 
6288 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6289 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6290 	} else {
6291 		key.objectid = ino;
6292 		key.type = BTRFS_INODE_ITEM_KEY;
6293 		key.offset = 0;
6294 	}
6295 
6296 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6297 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6298 					 key.objectid, root->root_key.objectid,
6299 					 parent_ino, index, name, name_len);
6300 	} else if (add_backref) {
6301 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6302 					     parent_ino, index);
6303 	}
6304 
6305 	/* Nothing to clean up yet */
6306 	if (ret)
6307 		return ret;
6308 
6309 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6310 				    parent_inode, &key,
6311 				    btrfs_inode_type(inode), index);
6312 	if (ret == -EEXIST || ret == -EOVERFLOW)
6313 		goto fail_dir_item;
6314 	else if (ret) {
6315 		btrfs_abort_transaction(trans, root, ret);
6316 		return ret;
6317 	}
6318 
6319 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6320 			   name_len * 2);
6321 	inode_inc_iversion(parent_inode);
6322 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6323 	ret = btrfs_update_inode(trans, root, parent_inode);
6324 	if (ret)
6325 		btrfs_abort_transaction(trans, root, ret);
6326 	return ret;
6327 
6328 fail_dir_item:
6329 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6330 		u64 local_index;
6331 		int err;
6332 		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6333 				 key.objectid, root->root_key.objectid,
6334 				 parent_ino, &local_index, name, name_len);
6335 
6336 	} else if (add_backref) {
6337 		u64 local_index;
6338 		int err;
6339 
6340 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6341 					  ino, parent_ino, &local_index);
6342 	}
6343 	return ret;
6344 }
6345 
6346 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6347 			    struct inode *dir, struct dentry *dentry,
6348 			    struct inode *inode, int backref, u64 index)
6349 {
6350 	int err = btrfs_add_link(trans, dir, inode,
6351 				 dentry->d_name.name, dentry->d_name.len,
6352 				 backref, index);
6353 	if (err > 0)
6354 		err = -EEXIST;
6355 	return err;
6356 }
6357 
6358 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6359 			umode_t mode, dev_t rdev)
6360 {
6361 	struct btrfs_trans_handle *trans;
6362 	struct btrfs_root *root = BTRFS_I(dir)->root;
6363 	struct inode *inode = NULL;
6364 	int err;
6365 	int drop_inode = 0;
6366 	u64 objectid;
6367 	u64 index = 0;
6368 
6369 	/*
6370 	 * 2 for inode item and ref
6371 	 * 2 for dir items
6372 	 * 1 for xattr if selinux is on
6373 	 */
6374 	trans = btrfs_start_transaction(root, 5);
6375 	if (IS_ERR(trans))
6376 		return PTR_ERR(trans);
6377 
6378 	err = btrfs_find_free_ino(root, &objectid);
6379 	if (err)
6380 		goto out_unlock;
6381 
6382 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6383 				dentry->d_name.len, btrfs_ino(dir), objectid,
6384 				mode, &index);
6385 	if (IS_ERR(inode)) {
6386 		err = PTR_ERR(inode);
6387 		goto out_unlock;
6388 	}
6389 
6390 	/*
6391 	* If the active LSM wants to access the inode during
6392 	* d_instantiate it needs these. Smack checks to see
6393 	* if the filesystem supports xattrs by looking at the
6394 	* ops vector.
6395 	*/
6396 	inode->i_op = &btrfs_special_inode_operations;
6397 	init_special_inode(inode, inode->i_mode, rdev);
6398 
6399 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6400 	if (err)
6401 		goto out_unlock_inode;
6402 
6403 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6404 	if (err) {
6405 		goto out_unlock_inode;
6406 	} else {
6407 		btrfs_update_inode(trans, root, inode);
6408 		unlock_new_inode(inode);
6409 		d_instantiate(dentry, inode);
6410 	}
6411 
6412 out_unlock:
6413 	btrfs_end_transaction(trans, root);
6414 	btrfs_balance_delayed_items(root);
6415 	btrfs_btree_balance_dirty(root);
6416 	if (drop_inode) {
6417 		inode_dec_link_count(inode);
6418 		iput(inode);
6419 	}
6420 	return err;
6421 
6422 out_unlock_inode:
6423 	drop_inode = 1;
6424 	unlock_new_inode(inode);
6425 	goto out_unlock;
6426 
6427 }
6428 
6429 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6430 			umode_t mode, bool excl)
6431 {
6432 	struct btrfs_trans_handle *trans;
6433 	struct btrfs_root *root = BTRFS_I(dir)->root;
6434 	struct inode *inode = NULL;
6435 	int drop_inode_on_err = 0;
6436 	int err;
6437 	u64 objectid;
6438 	u64 index = 0;
6439 
6440 	/*
6441 	 * 2 for inode item and ref
6442 	 * 2 for dir items
6443 	 * 1 for xattr if selinux is on
6444 	 */
6445 	trans = btrfs_start_transaction(root, 5);
6446 	if (IS_ERR(trans))
6447 		return PTR_ERR(trans);
6448 
6449 	err = btrfs_find_free_ino(root, &objectid);
6450 	if (err)
6451 		goto out_unlock;
6452 
6453 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6454 				dentry->d_name.len, btrfs_ino(dir), objectid,
6455 				mode, &index);
6456 	if (IS_ERR(inode)) {
6457 		err = PTR_ERR(inode);
6458 		goto out_unlock;
6459 	}
6460 	drop_inode_on_err = 1;
6461 	/*
6462 	* If the active LSM wants to access the inode during
6463 	* d_instantiate it needs these. Smack checks to see
6464 	* if the filesystem supports xattrs by looking at the
6465 	* ops vector.
6466 	*/
6467 	inode->i_fop = &btrfs_file_operations;
6468 	inode->i_op = &btrfs_file_inode_operations;
6469 	inode->i_mapping->a_ops = &btrfs_aops;
6470 
6471 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6472 	if (err)
6473 		goto out_unlock_inode;
6474 
6475 	err = btrfs_update_inode(trans, root, inode);
6476 	if (err)
6477 		goto out_unlock_inode;
6478 
6479 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6480 	if (err)
6481 		goto out_unlock_inode;
6482 
6483 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6484 	unlock_new_inode(inode);
6485 	d_instantiate(dentry, inode);
6486 
6487 out_unlock:
6488 	btrfs_end_transaction(trans, root);
6489 	if (err && drop_inode_on_err) {
6490 		inode_dec_link_count(inode);
6491 		iput(inode);
6492 	}
6493 	btrfs_balance_delayed_items(root);
6494 	btrfs_btree_balance_dirty(root);
6495 	return err;
6496 
6497 out_unlock_inode:
6498 	unlock_new_inode(inode);
6499 	goto out_unlock;
6500 
6501 }
6502 
6503 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6504 		      struct dentry *dentry)
6505 {
6506 	struct btrfs_trans_handle *trans;
6507 	struct btrfs_root *root = BTRFS_I(dir)->root;
6508 	struct inode *inode = d_inode(old_dentry);
6509 	u64 index;
6510 	int err;
6511 	int drop_inode = 0;
6512 
6513 	/* do not allow sys_link's with other subvols of the same device */
6514 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6515 		return -EXDEV;
6516 
6517 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6518 		return -EMLINK;
6519 
6520 	err = btrfs_set_inode_index(dir, &index);
6521 	if (err)
6522 		goto fail;
6523 
6524 	/*
6525 	 * 2 items for inode and inode ref
6526 	 * 2 items for dir items
6527 	 * 1 item for parent inode
6528 	 */
6529 	trans = btrfs_start_transaction(root, 5);
6530 	if (IS_ERR(trans)) {
6531 		err = PTR_ERR(trans);
6532 		goto fail;
6533 	}
6534 
6535 	/* There are several dir indexes for this inode, clear the cache. */
6536 	BTRFS_I(inode)->dir_index = 0ULL;
6537 	inc_nlink(inode);
6538 	inode_inc_iversion(inode);
6539 	inode->i_ctime = CURRENT_TIME;
6540 	ihold(inode);
6541 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6542 
6543 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6544 
6545 	if (err) {
6546 		drop_inode = 1;
6547 	} else {
6548 		struct dentry *parent = dentry->d_parent;
6549 		err = btrfs_update_inode(trans, root, inode);
6550 		if (err)
6551 			goto fail;
6552 		if (inode->i_nlink == 1) {
6553 			/*
6554 			 * If new hard link count is 1, it's a file created
6555 			 * with open(2) O_TMPFILE flag.
6556 			 */
6557 			err = btrfs_orphan_del(trans, inode);
6558 			if (err)
6559 				goto fail;
6560 		}
6561 		d_instantiate(dentry, inode);
6562 		btrfs_log_new_name(trans, inode, NULL, parent);
6563 	}
6564 
6565 	btrfs_end_transaction(trans, root);
6566 	btrfs_balance_delayed_items(root);
6567 fail:
6568 	if (drop_inode) {
6569 		inode_dec_link_count(inode);
6570 		iput(inode);
6571 	}
6572 	btrfs_btree_balance_dirty(root);
6573 	return err;
6574 }
6575 
6576 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6577 {
6578 	struct inode *inode = NULL;
6579 	struct btrfs_trans_handle *trans;
6580 	struct btrfs_root *root = BTRFS_I(dir)->root;
6581 	int err = 0;
6582 	int drop_on_err = 0;
6583 	u64 objectid = 0;
6584 	u64 index = 0;
6585 
6586 	/*
6587 	 * 2 items for inode and ref
6588 	 * 2 items for dir items
6589 	 * 1 for xattr if selinux is on
6590 	 */
6591 	trans = btrfs_start_transaction(root, 5);
6592 	if (IS_ERR(trans))
6593 		return PTR_ERR(trans);
6594 
6595 	err = btrfs_find_free_ino(root, &objectid);
6596 	if (err)
6597 		goto out_fail;
6598 
6599 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6600 				dentry->d_name.len, btrfs_ino(dir), objectid,
6601 				S_IFDIR | mode, &index);
6602 	if (IS_ERR(inode)) {
6603 		err = PTR_ERR(inode);
6604 		goto out_fail;
6605 	}
6606 
6607 	drop_on_err = 1;
6608 	/* these must be set before we unlock the inode */
6609 	inode->i_op = &btrfs_dir_inode_operations;
6610 	inode->i_fop = &btrfs_dir_file_operations;
6611 
6612 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6613 	if (err)
6614 		goto out_fail_inode;
6615 
6616 	btrfs_i_size_write(inode, 0);
6617 	err = btrfs_update_inode(trans, root, inode);
6618 	if (err)
6619 		goto out_fail_inode;
6620 
6621 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6622 			     dentry->d_name.len, 0, index);
6623 	if (err)
6624 		goto out_fail_inode;
6625 
6626 	d_instantiate(dentry, inode);
6627 	/*
6628 	 * mkdir is special.  We're unlocking after we call d_instantiate
6629 	 * to avoid a race with nfsd calling d_instantiate.
6630 	 */
6631 	unlock_new_inode(inode);
6632 	drop_on_err = 0;
6633 
6634 out_fail:
6635 	btrfs_end_transaction(trans, root);
6636 	if (drop_on_err) {
6637 		inode_dec_link_count(inode);
6638 		iput(inode);
6639 	}
6640 	btrfs_balance_delayed_items(root);
6641 	btrfs_btree_balance_dirty(root);
6642 	return err;
6643 
6644 out_fail_inode:
6645 	unlock_new_inode(inode);
6646 	goto out_fail;
6647 }
6648 
6649 /* Find next extent map of a given extent map, caller needs to ensure locks */
6650 static struct extent_map *next_extent_map(struct extent_map *em)
6651 {
6652 	struct rb_node *next;
6653 
6654 	next = rb_next(&em->rb_node);
6655 	if (!next)
6656 		return NULL;
6657 	return container_of(next, struct extent_map, rb_node);
6658 }
6659 
6660 static struct extent_map *prev_extent_map(struct extent_map *em)
6661 {
6662 	struct rb_node *prev;
6663 
6664 	prev = rb_prev(&em->rb_node);
6665 	if (!prev)
6666 		return NULL;
6667 	return container_of(prev, struct extent_map, rb_node);
6668 }
6669 
6670 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6671  * the existing extent is the nearest extent to map_start,
6672  * and an extent that you want to insert, deal with overlap and insert
6673  * the best fitted new extent into the tree.
6674  */
6675 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6676 				struct extent_map *existing,
6677 				struct extent_map *em,
6678 				u64 map_start)
6679 {
6680 	struct extent_map *prev;
6681 	struct extent_map *next;
6682 	u64 start;
6683 	u64 end;
6684 	u64 start_diff;
6685 
6686 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6687 
6688 	if (existing->start > map_start) {
6689 		next = existing;
6690 		prev = prev_extent_map(next);
6691 	} else {
6692 		prev = existing;
6693 		next = next_extent_map(prev);
6694 	}
6695 
6696 	start = prev ? extent_map_end(prev) : em->start;
6697 	start = max_t(u64, start, em->start);
6698 	end = next ? next->start : extent_map_end(em);
6699 	end = min_t(u64, end, extent_map_end(em));
6700 	start_diff = start - em->start;
6701 	em->start = start;
6702 	em->len = end - start;
6703 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6704 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6705 		em->block_start += start_diff;
6706 		em->block_len -= start_diff;
6707 	}
6708 	return add_extent_mapping(em_tree, em, 0);
6709 }
6710 
6711 static noinline int uncompress_inline(struct btrfs_path *path,
6712 				      struct inode *inode, struct page *page,
6713 				      size_t pg_offset, u64 extent_offset,
6714 				      struct btrfs_file_extent_item *item)
6715 {
6716 	int ret;
6717 	struct extent_buffer *leaf = path->nodes[0];
6718 	char *tmp;
6719 	size_t max_size;
6720 	unsigned long inline_size;
6721 	unsigned long ptr;
6722 	int compress_type;
6723 
6724 	WARN_ON(pg_offset != 0);
6725 	compress_type = btrfs_file_extent_compression(leaf, item);
6726 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6727 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6728 					btrfs_item_nr(path->slots[0]));
6729 	tmp = kmalloc(inline_size, GFP_NOFS);
6730 	if (!tmp)
6731 		return -ENOMEM;
6732 	ptr = btrfs_file_extent_inline_start(item);
6733 
6734 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6735 
6736 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6737 	ret = btrfs_decompress(compress_type, tmp, page,
6738 			       extent_offset, inline_size, max_size);
6739 	kfree(tmp);
6740 	return ret;
6741 }
6742 
6743 /*
6744  * a bit scary, this does extent mapping from logical file offset to the disk.
6745  * the ugly parts come from merging extents from the disk with the in-ram
6746  * representation.  This gets more complex because of the data=ordered code,
6747  * where the in-ram extents might be locked pending data=ordered completion.
6748  *
6749  * This also copies inline extents directly into the page.
6750  */
6751 
6752 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6753 				    size_t pg_offset, u64 start, u64 len,
6754 				    int create)
6755 {
6756 	int ret;
6757 	int err = 0;
6758 	u64 extent_start = 0;
6759 	u64 extent_end = 0;
6760 	u64 objectid = btrfs_ino(inode);
6761 	u32 found_type;
6762 	struct btrfs_path *path = NULL;
6763 	struct btrfs_root *root = BTRFS_I(inode)->root;
6764 	struct btrfs_file_extent_item *item;
6765 	struct extent_buffer *leaf;
6766 	struct btrfs_key found_key;
6767 	struct extent_map *em = NULL;
6768 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6769 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6770 	struct btrfs_trans_handle *trans = NULL;
6771 	const bool new_inline = !page || create;
6772 
6773 again:
6774 	read_lock(&em_tree->lock);
6775 	em = lookup_extent_mapping(em_tree, start, len);
6776 	if (em)
6777 		em->bdev = root->fs_info->fs_devices->latest_bdev;
6778 	read_unlock(&em_tree->lock);
6779 
6780 	if (em) {
6781 		if (em->start > start || em->start + em->len <= start)
6782 			free_extent_map(em);
6783 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6784 			free_extent_map(em);
6785 		else
6786 			goto out;
6787 	}
6788 	em = alloc_extent_map();
6789 	if (!em) {
6790 		err = -ENOMEM;
6791 		goto out;
6792 	}
6793 	em->bdev = root->fs_info->fs_devices->latest_bdev;
6794 	em->start = EXTENT_MAP_HOLE;
6795 	em->orig_start = EXTENT_MAP_HOLE;
6796 	em->len = (u64)-1;
6797 	em->block_len = (u64)-1;
6798 
6799 	if (!path) {
6800 		path = btrfs_alloc_path();
6801 		if (!path) {
6802 			err = -ENOMEM;
6803 			goto out;
6804 		}
6805 		/*
6806 		 * Chances are we'll be called again, so go ahead and do
6807 		 * readahead
6808 		 */
6809 		path->reada = 1;
6810 	}
6811 
6812 	ret = btrfs_lookup_file_extent(trans, root, path,
6813 				       objectid, start, trans != NULL);
6814 	if (ret < 0) {
6815 		err = ret;
6816 		goto out;
6817 	}
6818 
6819 	if (ret != 0) {
6820 		if (path->slots[0] == 0)
6821 			goto not_found;
6822 		path->slots[0]--;
6823 	}
6824 
6825 	leaf = path->nodes[0];
6826 	item = btrfs_item_ptr(leaf, path->slots[0],
6827 			      struct btrfs_file_extent_item);
6828 	/* are we inside the extent that was found? */
6829 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6830 	found_type = found_key.type;
6831 	if (found_key.objectid != objectid ||
6832 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6833 		/*
6834 		 * If we backup past the first extent we want to move forward
6835 		 * and see if there is an extent in front of us, otherwise we'll
6836 		 * say there is a hole for our whole search range which can
6837 		 * cause problems.
6838 		 */
6839 		extent_end = start;
6840 		goto next;
6841 	}
6842 
6843 	found_type = btrfs_file_extent_type(leaf, item);
6844 	extent_start = found_key.offset;
6845 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6846 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6847 		extent_end = extent_start +
6848 		       btrfs_file_extent_num_bytes(leaf, item);
6849 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6850 		size_t size;
6851 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6852 		extent_end = ALIGN(extent_start + size, root->sectorsize);
6853 	}
6854 next:
6855 	if (start >= extent_end) {
6856 		path->slots[0]++;
6857 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6858 			ret = btrfs_next_leaf(root, path);
6859 			if (ret < 0) {
6860 				err = ret;
6861 				goto out;
6862 			}
6863 			if (ret > 0)
6864 				goto not_found;
6865 			leaf = path->nodes[0];
6866 		}
6867 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6868 		if (found_key.objectid != objectid ||
6869 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6870 			goto not_found;
6871 		if (start + len <= found_key.offset)
6872 			goto not_found;
6873 		if (start > found_key.offset)
6874 			goto next;
6875 		em->start = start;
6876 		em->orig_start = start;
6877 		em->len = found_key.offset - start;
6878 		goto not_found_em;
6879 	}
6880 
6881 	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6882 
6883 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6884 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6885 		goto insert;
6886 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6887 		unsigned long ptr;
6888 		char *map;
6889 		size_t size;
6890 		size_t extent_offset;
6891 		size_t copy_size;
6892 
6893 		if (new_inline)
6894 			goto out;
6895 
6896 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6897 		extent_offset = page_offset(page) + pg_offset - extent_start;
6898 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6899 				size - extent_offset);
6900 		em->start = extent_start + extent_offset;
6901 		em->len = ALIGN(copy_size, root->sectorsize);
6902 		em->orig_block_len = em->len;
6903 		em->orig_start = em->start;
6904 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6905 		if (create == 0 && !PageUptodate(page)) {
6906 			if (btrfs_file_extent_compression(leaf, item) !=
6907 			    BTRFS_COMPRESS_NONE) {
6908 				ret = uncompress_inline(path, inode, page,
6909 							pg_offset,
6910 							extent_offset, item);
6911 				if (ret) {
6912 					err = ret;
6913 					goto out;
6914 				}
6915 			} else {
6916 				map = kmap(page);
6917 				read_extent_buffer(leaf, map + pg_offset, ptr,
6918 						   copy_size);
6919 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6920 					memset(map + pg_offset + copy_size, 0,
6921 					       PAGE_CACHE_SIZE - pg_offset -
6922 					       copy_size);
6923 				}
6924 				kunmap(page);
6925 			}
6926 			flush_dcache_page(page);
6927 		} else if (create && PageUptodate(page)) {
6928 			BUG();
6929 			if (!trans) {
6930 				kunmap(page);
6931 				free_extent_map(em);
6932 				em = NULL;
6933 
6934 				btrfs_release_path(path);
6935 				trans = btrfs_join_transaction(root);
6936 
6937 				if (IS_ERR(trans))
6938 					return ERR_CAST(trans);
6939 				goto again;
6940 			}
6941 			map = kmap(page);
6942 			write_extent_buffer(leaf, map + pg_offset, ptr,
6943 					    copy_size);
6944 			kunmap(page);
6945 			btrfs_mark_buffer_dirty(leaf);
6946 		}
6947 		set_extent_uptodate(io_tree, em->start,
6948 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6949 		goto insert;
6950 	}
6951 not_found:
6952 	em->start = start;
6953 	em->orig_start = start;
6954 	em->len = len;
6955 not_found_em:
6956 	em->block_start = EXTENT_MAP_HOLE;
6957 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6958 insert:
6959 	btrfs_release_path(path);
6960 	if (em->start > start || extent_map_end(em) <= start) {
6961 		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6962 			em->start, em->len, start, len);
6963 		err = -EIO;
6964 		goto out;
6965 	}
6966 
6967 	err = 0;
6968 	write_lock(&em_tree->lock);
6969 	ret = add_extent_mapping(em_tree, em, 0);
6970 	/* it is possible that someone inserted the extent into the tree
6971 	 * while we had the lock dropped.  It is also possible that
6972 	 * an overlapping map exists in the tree
6973 	 */
6974 	if (ret == -EEXIST) {
6975 		struct extent_map *existing;
6976 
6977 		ret = 0;
6978 
6979 		existing = search_extent_mapping(em_tree, start, len);
6980 		/*
6981 		 * existing will always be non-NULL, since there must be
6982 		 * extent causing the -EEXIST.
6983 		 */
6984 		if (start >= extent_map_end(existing) ||
6985 		    start <= existing->start) {
6986 			/*
6987 			 * The existing extent map is the one nearest to
6988 			 * the [start, start + len) range which overlaps
6989 			 */
6990 			err = merge_extent_mapping(em_tree, existing,
6991 						   em, start);
6992 			free_extent_map(existing);
6993 			if (err) {
6994 				free_extent_map(em);
6995 				em = NULL;
6996 			}
6997 		} else {
6998 			free_extent_map(em);
6999 			em = existing;
7000 			err = 0;
7001 		}
7002 	}
7003 	write_unlock(&em_tree->lock);
7004 out:
7005 
7006 	trace_btrfs_get_extent(root, em);
7007 
7008 	btrfs_free_path(path);
7009 	if (trans) {
7010 		ret = btrfs_end_transaction(trans, root);
7011 		if (!err)
7012 			err = ret;
7013 	}
7014 	if (err) {
7015 		free_extent_map(em);
7016 		return ERR_PTR(err);
7017 	}
7018 	BUG_ON(!em); /* Error is always set */
7019 	return em;
7020 }
7021 
7022 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7023 					   size_t pg_offset, u64 start, u64 len,
7024 					   int create)
7025 {
7026 	struct extent_map *em;
7027 	struct extent_map *hole_em = NULL;
7028 	u64 range_start = start;
7029 	u64 end;
7030 	u64 found;
7031 	u64 found_end;
7032 	int err = 0;
7033 
7034 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7035 	if (IS_ERR(em))
7036 		return em;
7037 	if (em) {
7038 		/*
7039 		 * if our em maps to
7040 		 * -  a hole or
7041 		 * -  a pre-alloc extent,
7042 		 * there might actually be delalloc bytes behind it.
7043 		 */
7044 		if (em->block_start != EXTENT_MAP_HOLE &&
7045 		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7046 			return em;
7047 		else
7048 			hole_em = em;
7049 	}
7050 
7051 	/* check to see if we've wrapped (len == -1 or similar) */
7052 	end = start + len;
7053 	if (end < start)
7054 		end = (u64)-1;
7055 	else
7056 		end -= 1;
7057 
7058 	em = NULL;
7059 
7060 	/* ok, we didn't find anything, lets look for delalloc */
7061 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7062 				 end, len, EXTENT_DELALLOC, 1);
7063 	found_end = range_start + found;
7064 	if (found_end < range_start)
7065 		found_end = (u64)-1;
7066 
7067 	/*
7068 	 * we didn't find anything useful, return
7069 	 * the original results from get_extent()
7070 	 */
7071 	if (range_start > end || found_end <= start) {
7072 		em = hole_em;
7073 		hole_em = NULL;
7074 		goto out;
7075 	}
7076 
7077 	/* adjust the range_start to make sure it doesn't
7078 	 * go backwards from the start they passed in
7079 	 */
7080 	range_start = max(start, range_start);
7081 	found = found_end - range_start;
7082 
7083 	if (found > 0) {
7084 		u64 hole_start = start;
7085 		u64 hole_len = len;
7086 
7087 		em = alloc_extent_map();
7088 		if (!em) {
7089 			err = -ENOMEM;
7090 			goto out;
7091 		}
7092 		/*
7093 		 * when btrfs_get_extent can't find anything it
7094 		 * returns one huge hole
7095 		 *
7096 		 * make sure what it found really fits our range, and
7097 		 * adjust to make sure it is based on the start from
7098 		 * the caller
7099 		 */
7100 		if (hole_em) {
7101 			u64 calc_end = extent_map_end(hole_em);
7102 
7103 			if (calc_end <= start || (hole_em->start > end)) {
7104 				free_extent_map(hole_em);
7105 				hole_em = NULL;
7106 			} else {
7107 				hole_start = max(hole_em->start, start);
7108 				hole_len = calc_end - hole_start;
7109 			}
7110 		}
7111 		em->bdev = NULL;
7112 		if (hole_em && range_start > hole_start) {
7113 			/* our hole starts before our delalloc, so we
7114 			 * have to return just the parts of the hole
7115 			 * that go until  the delalloc starts
7116 			 */
7117 			em->len = min(hole_len,
7118 				      range_start - hole_start);
7119 			em->start = hole_start;
7120 			em->orig_start = hole_start;
7121 			/*
7122 			 * don't adjust block start at all,
7123 			 * it is fixed at EXTENT_MAP_HOLE
7124 			 */
7125 			em->block_start = hole_em->block_start;
7126 			em->block_len = hole_len;
7127 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7128 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7129 		} else {
7130 			em->start = range_start;
7131 			em->len = found;
7132 			em->orig_start = range_start;
7133 			em->block_start = EXTENT_MAP_DELALLOC;
7134 			em->block_len = found;
7135 		}
7136 	} else if (hole_em) {
7137 		return hole_em;
7138 	}
7139 out:
7140 
7141 	free_extent_map(hole_em);
7142 	if (err) {
7143 		free_extent_map(em);
7144 		return ERR_PTR(err);
7145 	}
7146 	return em;
7147 }
7148 
7149 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7150 						  u64 start, u64 len)
7151 {
7152 	struct btrfs_root *root = BTRFS_I(inode)->root;
7153 	struct extent_map *em;
7154 	struct btrfs_key ins;
7155 	u64 alloc_hint;
7156 	int ret;
7157 
7158 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7159 	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7160 				   alloc_hint, &ins, 1, 1);
7161 	if (ret)
7162 		return ERR_PTR(ret);
7163 
7164 	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7165 			      ins.offset, ins.offset, ins.offset, 0);
7166 	if (IS_ERR(em)) {
7167 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7168 		return em;
7169 	}
7170 
7171 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7172 					   ins.offset, ins.offset, 0);
7173 	if (ret) {
7174 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7175 		free_extent_map(em);
7176 		return ERR_PTR(ret);
7177 	}
7178 
7179 	return em;
7180 }
7181 
7182 /*
7183  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7184  * block must be cow'd
7185  */
7186 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7187 			      u64 *orig_start, u64 *orig_block_len,
7188 			      u64 *ram_bytes)
7189 {
7190 	struct btrfs_trans_handle *trans;
7191 	struct btrfs_path *path;
7192 	int ret;
7193 	struct extent_buffer *leaf;
7194 	struct btrfs_root *root = BTRFS_I(inode)->root;
7195 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7196 	struct btrfs_file_extent_item *fi;
7197 	struct btrfs_key key;
7198 	u64 disk_bytenr;
7199 	u64 backref_offset;
7200 	u64 extent_end;
7201 	u64 num_bytes;
7202 	int slot;
7203 	int found_type;
7204 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7205 
7206 	path = btrfs_alloc_path();
7207 	if (!path)
7208 		return -ENOMEM;
7209 
7210 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7211 				       offset, 0);
7212 	if (ret < 0)
7213 		goto out;
7214 
7215 	slot = path->slots[0];
7216 	if (ret == 1) {
7217 		if (slot == 0) {
7218 			/* can't find the item, must cow */
7219 			ret = 0;
7220 			goto out;
7221 		}
7222 		slot--;
7223 	}
7224 	ret = 0;
7225 	leaf = path->nodes[0];
7226 	btrfs_item_key_to_cpu(leaf, &key, slot);
7227 	if (key.objectid != btrfs_ino(inode) ||
7228 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7229 		/* not our file or wrong item type, must cow */
7230 		goto out;
7231 	}
7232 
7233 	if (key.offset > offset) {
7234 		/* Wrong offset, must cow */
7235 		goto out;
7236 	}
7237 
7238 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7239 	found_type = btrfs_file_extent_type(leaf, fi);
7240 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7241 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7242 		/* not a regular extent, must cow */
7243 		goto out;
7244 	}
7245 
7246 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7247 		goto out;
7248 
7249 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7250 	if (extent_end <= offset)
7251 		goto out;
7252 
7253 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7254 	if (disk_bytenr == 0)
7255 		goto out;
7256 
7257 	if (btrfs_file_extent_compression(leaf, fi) ||
7258 	    btrfs_file_extent_encryption(leaf, fi) ||
7259 	    btrfs_file_extent_other_encoding(leaf, fi))
7260 		goto out;
7261 
7262 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7263 
7264 	if (orig_start) {
7265 		*orig_start = key.offset - backref_offset;
7266 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7267 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7268 	}
7269 
7270 	if (btrfs_extent_readonly(root, disk_bytenr))
7271 		goto out;
7272 
7273 	num_bytes = min(offset + *len, extent_end) - offset;
7274 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7275 		u64 range_end;
7276 
7277 		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7278 		ret = test_range_bit(io_tree, offset, range_end,
7279 				     EXTENT_DELALLOC, 0, NULL);
7280 		if (ret) {
7281 			ret = -EAGAIN;
7282 			goto out;
7283 		}
7284 	}
7285 
7286 	btrfs_release_path(path);
7287 
7288 	/*
7289 	 * look for other files referencing this extent, if we
7290 	 * find any we must cow
7291 	 */
7292 	trans = btrfs_join_transaction(root);
7293 	if (IS_ERR(trans)) {
7294 		ret = 0;
7295 		goto out;
7296 	}
7297 
7298 	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7299 				    key.offset - backref_offset, disk_bytenr);
7300 	btrfs_end_transaction(trans, root);
7301 	if (ret) {
7302 		ret = 0;
7303 		goto out;
7304 	}
7305 
7306 	/*
7307 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7308 	 * in this extent we are about to write.  If there
7309 	 * are any csums in that range we have to cow in order
7310 	 * to keep the csums correct
7311 	 */
7312 	disk_bytenr += backref_offset;
7313 	disk_bytenr += offset - key.offset;
7314 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7315 				goto out;
7316 	/*
7317 	 * all of the above have passed, it is safe to overwrite this extent
7318 	 * without cow
7319 	 */
7320 	*len = num_bytes;
7321 	ret = 1;
7322 out:
7323 	btrfs_free_path(path);
7324 	return ret;
7325 }
7326 
7327 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7328 {
7329 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7330 	int found = false;
7331 	void **pagep = NULL;
7332 	struct page *page = NULL;
7333 	int start_idx;
7334 	int end_idx;
7335 
7336 	start_idx = start >> PAGE_CACHE_SHIFT;
7337 
7338 	/*
7339 	 * end is the last byte in the last page.  end == start is legal
7340 	 */
7341 	end_idx = end >> PAGE_CACHE_SHIFT;
7342 
7343 	rcu_read_lock();
7344 
7345 	/* Most of the code in this while loop is lifted from
7346 	 * find_get_page.  It's been modified to begin searching from a
7347 	 * page and return just the first page found in that range.  If the
7348 	 * found idx is less than or equal to the end idx then we know that
7349 	 * a page exists.  If no pages are found or if those pages are
7350 	 * outside of the range then we're fine (yay!) */
7351 	while (page == NULL &&
7352 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7353 		page = radix_tree_deref_slot(pagep);
7354 		if (unlikely(!page))
7355 			break;
7356 
7357 		if (radix_tree_exception(page)) {
7358 			if (radix_tree_deref_retry(page)) {
7359 				page = NULL;
7360 				continue;
7361 			}
7362 			/*
7363 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7364 			 * here as an exceptional entry: so return it without
7365 			 * attempting to raise page count.
7366 			 */
7367 			page = NULL;
7368 			break; /* TODO: Is this relevant for this use case? */
7369 		}
7370 
7371 		if (!page_cache_get_speculative(page)) {
7372 			page = NULL;
7373 			continue;
7374 		}
7375 
7376 		/*
7377 		 * Has the page moved?
7378 		 * This is part of the lockless pagecache protocol. See
7379 		 * include/linux/pagemap.h for details.
7380 		 */
7381 		if (unlikely(page != *pagep)) {
7382 			page_cache_release(page);
7383 			page = NULL;
7384 		}
7385 	}
7386 
7387 	if (page) {
7388 		if (page->index <= end_idx)
7389 			found = true;
7390 		page_cache_release(page);
7391 	}
7392 
7393 	rcu_read_unlock();
7394 	return found;
7395 }
7396 
7397 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7398 			      struct extent_state **cached_state, int writing)
7399 {
7400 	struct btrfs_ordered_extent *ordered;
7401 	int ret = 0;
7402 
7403 	while (1) {
7404 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7405 				 0, cached_state);
7406 		/*
7407 		 * We're concerned with the entire range that we're going to be
7408 		 * doing DIO to, so we need to make sure theres no ordered
7409 		 * extents in this range.
7410 		 */
7411 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7412 						     lockend - lockstart + 1);
7413 
7414 		/*
7415 		 * We need to make sure there are no buffered pages in this
7416 		 * range either, we could have raced between the invalidate in
7417 		 * generic_file_direct_write and locking the extent.  The
7418 		 * invalidate needs to happen so that reads after a write do not
7419 		 * get stale data.
7420 		 */
7421 		if (!ordered &&
7422 		    (!writing ||
7423 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7424 			break;
7425 
7426 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7427 				     cached_state, GFP_NOFS);
7428 
7429 		if (ordered) {
7430 			btrfs_start_ordered_extent(inode, ordered, 1);
7431 			btrfs_put_ordered_extent(ordered);
7432 		} else {
7433 			/* Screw you mmap */
7434 			ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7435 			if (ret)
7436 				break;
7437 			ret = filemap_fdatawait_range(inode->i_mapping,
7438 						      lockstart,
7439 						      lockend);
7440 			if (ret)
7441 				break;
7442 
7443 			/*
7444 			 * If we found a page that couldn't be invalidated just
7445 			 * fall back to buffered.
7446 			 */
7447 			ret = invalidate_inode_pages2_range(inode->i_mapping,
7448 					lockstart >> PAGE_CACHE_SHIFT,
7449 					lockend >> PAGE_CACHE_SHIFT);
7450 			if (ret)
7451 				break;
7452 		}
7453 
7454 		cond_resched();
7455 	}
7456 
7457 	return ret;
7458 }
7459 
7460 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7461 					   u64 len, u64 orig_start,
7462 					   u64 block_start, u64 block_len,
7463 					   u64 orig_block_len, u64 ram_bytes,
7464 					   int type)
7465 {
7466 	struct extent_map_tree *em_tree;
7467 	struct extent_map *em;
7468 	struct btrfs_root *root = BTRFS_I(inode)->root;
7469 	int ret;
7470 
7471 	em_tree = &BTRFS_I(inode)->extent_tree;
7472 	em = alloc_extent_map();
7473 	if (!em)
7474 		return ERR_PTR(-ENOMEM);
7475 
7476 	em->start = start;
7477 	em->orig_start = orig_start;
7478 	em->mod_start = start;
7479 	em->mod_len = len;
7480 	em->len = len;
7481 	em->block_len = block_len;
7482 	em->block_start = block_start;
7483 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7484 	em->orig_block_len = orig_block_len;
7485 	em->ram_bytes = ram_bytes;
7486 	em->generation = -1;
7487 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7488 	if (type == BTRFS_ORDERED_PREALLOC)
7489 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7490 
7491 	do {
7492 		btrfs_drop_extent_cache(inode, em->start,
7493 				em->start + em->len - 1, 0);
7494 		write_lock(&em_tree->lock);
7495 		ret = add_extent_mapping(em_tree, em, 1);
7496 		write_unlock(&em_tree->lock);
7497 	} while (ret == -EEXIST);
7498 
7499 	if (ret) {
7500 		free_extent_map(em);
7501 		return ERR_PTR(ret);
7502 	}
7503 
7504 	return em;
7505 }
7506 
7507 struct btrfs_dio_data {
7508 	u64 outstanding_extents;
7509 	u64 reserve;
7510 };
7511 
7512 static void adjust_dio_outstanding_extents(struct inode *inode,
7513 					   struct btrfs_dio_data *dio_data,
7514 					   const u64 len)
7515 {
7516 	unsigned num_extents;
7517 
7518 	num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7519 					   BTRFS_MAX_EXTENT_SIZE);
7520 	/*
7521 	 * If we have an outstanding_extents count still set then we're
7522 	 * within our reservation, otherwise we need to adjust our inode
7523 	 * counter appropriately.
7524 	 */
7525 	if (dio_data->outstanding_extents) {
7526 		dio_data->outstanding_extents -= num_extents;
7527 	} else {
7528 		spin_lock(&BTRFS_I(inode)->lock);
7529 		BTRFS_I(inode)->outstanding_extents += num_extents;
7530 		spin_unlock(&BTRFS_I(inode)->lock);
7531 	}
7532 }
7533 
7534 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7535 				   struct buffer_head *bh_result, int create)
7536 {
7537 	struct extent_map *em;
7538 	struct btrfs_root *root = BTRFS_I(inode)->root;
7539 	struct extent_state *cached_state = NULL;
7540 	struct btrfs_dio_data *dio_data = NULL;
7541 	u64 start = iblock << inode->i_blkbits;
7542 	u64 lockstart, lockend;
7543 	u64 len = bh_result->b_size;
7544 	int unlock_bits = EXTENT_LOCKED;
7545 	int ret = 0;
7546 
7547 	if (create)
7548 		unlock_bits |= EXTENT_DIRTY;
7549 	else
7550 		len = min_t(u64, len, root->sectorsize);
7551 
7552 	lockstart = start;
7553 	lockend = start + len - 1;
7554 
7555 	if (current->journal_info) {
7556 		/*
7557 		 * Need to pull our outstanding extents and set journal_info to NULL so
7558 		 * that anything that needs to check if there's a transction doesn't get
7559 		 * confused.
7560 		 */
7561 		dio_data = current->journal_info;
7562 		current->journal_info = NULL;
7563 	}
7564 
7565 	/*
7566 	 * If this errors out it's because we couldn't invalidate pagecache for
7567 	 * this range and we need to fallback to buffered.
7568 	 */
7569 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7570 			       create)) {
7571 		ret = -ENOTBLK;
7572 		goto err;
7573 	}
7574 
7575 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7576 	if (IS_ERR(em)) {
7577 		ret = PTR_ERR(em);
7578 		goto unlock_err;
7579 	}
7580 
7581 	/*
7582 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7583 	 * io.  INLINE is special, and we could probably kludge it in here, but
7584 	 * it's still buffered so for safety lets just fall back to the generic
7585 	 * buffered path.
7586 	 *
7587 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7588 	 * decompress it, so there will be buffering required no matter what we
7589 	 * do, so go ahead and fallback to buffered.
7590 	 *
7591 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7592 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7593 	 * the generic code.
7594 	 */
7595 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7596 	    em->block_start == EXTENT_MAP_INLINE) {
7597 		free_extent_map(em);
7598 		ret = -ENOTBLK;
7599 		goto unlock_err;
7600 	}
7601 
7602 	/* Just a good old fashioned hole, return */
7603 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7604 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7605 		free_extent_map(em);
7606 		goto unlock_err;
7607 	}
7608 
7609 	/*
7610 	 * We don't allocate a new extent in the following cases
7611 	 *
7612 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7613 	 * existing extent.
7614 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7615 	 * just use the extent.
7616 	 *
7617 	 */
7618 	if (!create) {
7619 		len = min(len, em->len - (start - em->start));
7620 		lockstart = start + len;
7621 		goto unlock;
7622 	}
7623 
7624 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7625 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7626 	     em->block_start != EXTENT_MAP_HOLE)) {
7627 		int type;
7628 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7629 
7630 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7631 			type = BTRFS_ORDERED_PREALLOC;
7632 		else
7633 			type = BTRFS_ORDERED_NOCOW;
7634 		len = min(len, em->len - (start - em->start));
7635 		block_start = em->block_start + (start - em->start);
7636 
7637 		if (can_nocow_extent(inode, start, &len, &orig_start,
7638 				     &orig_block_len, &ram_bytes) == 1) {
7639 			if (type == BTRFS_ORDERED_PREALLOC) {
7640 				free_extent_map(em);
7641 				em = create_pinned_em(inode, start, len,
7642 						       orig_start,
7643 						       block_start, len,
7644 						       orig_block_len,
7645 						       ram_bytes, type);
7646 				if (IS_ERR(em)) {
7647 					ret = PTR_ERR(em);
7648 					goto unlock_err;
7649 				}
7650 			}
7651 
7652 			ret = btrfs_add_ordered_extent_dio(inode, start,
7653 					   block_start, len, len, type);
7654 			if (ret) {
7655 				free_extent_map(em);
7656 				goto unlock_err;
7657 			}
7658 			goto unlock;
7659 		}
7660 	}
7661 
7662 	/*
7663 	 * this will cow the extent, reset the len in case we changed
7664 	 * it above
7665 	 */
7666 	len = bh_result->b_size;
7667 	free_extent_map(em);
7668 	em = btrfs_new_extent_direct(inode, start, len);
7669 	if (IS_ERR(em)) {
7670 		ret = PTR_ERR(em);
7671 		goto unlock_err;
7672 	}
7673 	len = min(len, em->len - (start - em->start));
7674 unlock:
7675 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7676 		inode->i_blkbits;
7677 	bh_result->b_size = len;
7678 	bh_result->b_bdev = em->bdev;
7679 	set_buffer_mapped(bh_result);
7680 	if (create) {
7681 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7682 			set_buffer_new(bh_result);
7683 
7684 		/*
7685 		 * Need to update the i_size under the extent lock so buffered
7686 		 * readers will get the updated i_size when we unlock.
7687 		 */
7688 		if (start + len > i_size_read(inode))
7689 			i_size_write(inode, start + len);
7690 
7691 		adjust_dio_outstanding_extents(inode, dio_data, len);
7692 		btrfs_free_reserved_data_space(inode, start, len);
7693 		WARN_ON(dio_data->reserve < len);
7694 		dio_data->reserve -= len;
7695 		current->journal_info = dio_data;
7696 	}
7697 
7698 	/*
7699 	 * In the case of write we need to clear and unlock the entire range,
7700 	 * in the case of read we need to unlock only the end area that we
7701 	 * aren't using if there is any left over space.
7702 	 */
7703 	if (lockstart < lockend) {
7704 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7705 				 lockend, unlock_bits, 1, 0,
7706 				 &cached_state, GFP_NOFS);
7707 	} else {
7708 		free_extent_state(cached_state);
7709 	}
7710 
7711 	free_extent_map(em);
7712 
7713 	return 0;
7714 
7715 unlock_err:
7716 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7717 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7718 err:
7719 	if (dio_data)
7720 		current->journal_info = dio_data;
7721 	/*
7722 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7723 	 * write less data then expected, so that we don't underflow our inode's
7724 	 * outstanding extents counter.
7725 	 */
7726 	if (create && dio_data)
7727 		adjust_dio_outstanding_extents(inode, dio_data, len);
7728 
7729 	return ret;
7730 }
7731 
7732 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7733 					int rw, int mirror_num)
7734 {
7735 	struct btrfs_root *root = BTRFS_I(inode)->root;
7736 	int ret;
7737 
7738 	BUG_ON(rw & REQ_WRITE);
7739 
7740 	bio_get(bio);
7741 
7742 	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7743 				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7744 	if (ret)
7745 		goto err;
7746 
7747 	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7748 err:
7749 	bio_put(bio);
7750 	return ret;
7751 }
7752 
7753 static int btrfs_check_dio_repairable(struct inode *inode,
7754 				      struct bio *failed_bio,
7755 				      struct io_failure_record *failrec,
7756 				      int failed_mirror)
7757 {
7758 	int num_copies;
7759 
7760 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7761 				      failrec->logical, failrec->len);
7762 	if (num_copies == 1) {
7763 		/*
7764 		 * we only have a single copy of the data, so don't bother with
7765 		 * all the retry and error correction code that follows. no
7766 		 * matter what the error is, it is very likely to persist.
7767 		 */
7768 		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7769 			 num_copies, failrec->this_mirror, failed_mirror);
7770 		return 0;
7771 	}
7772 
7773 	failrec->failed_mirror = failed_mirror;
7774 	failrec->this_mirror++;
7775 	if (failrec->this_mirror == failed_mirror)
7776 		failrec->this_mirror++;
7777 
7778 	if (failrec->this_mirror > num_copies) {
7779 		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7780 			 num_copies, failrec->this_mirror, failed_mirror);
7781 		return 0;
7782 	}
7783 
7784 	return 1;
7785 }
7786 
7787 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7788 			  struct page *page, u64 start, u64 end,
7789 			  int failed_mirror, bio_end_io_t *repair_endio,
7790 			  void *repair_arg)
7791 {
7792 	struct io_failure_record *failrec;
7793 	struct bio *bio;
7794 	int isector;
7795 	int read_mode;
7796 	int ret;
7797 
7798 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7799 
7800 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7801 	if (ret)
7802 		return ret;
7803 
7804 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7805 					 failed_mirror);
7806 	if (!ret) {
7807 		free_io_failure(inode, failrec);
7808 		return -EIO;
7809 	}
7810 
7811 	if (failed_bio->bi_vcnt > 1)
7812 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7813 	else
7814 		read_mode = READ_SYNC;
7815 
7816 	isector = start - btrfs_io_bio(failed_bio)->logical;
7817 	isector >>= inode->i_sb->s_blocksize_bits;
7818 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7819 				      0, isector, repair_endio, repair_arg);
7820 	if (!bio) {
7821 		free_io_failure(inode, failrec);
7822 		return -EIO;
7823 	}
7824 
7825 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7826 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7827 		    read_mode, failrec->this_mirror, failrec->in_validation);
7828 
7829 	ret = submit_dio_repair_bio(inode, bio, read_mode,
7830 				    failrec->this_mirror);
7831 	if (ret) {
7832 		free_io_failure(inode, failrec);
7833 		bio_put(bio);
7834 	}
7835 
7836 	return ret;
7837 }
7838 
7839 struct btrfs_retry_complete {
7840 	struct completion done;
7841 	struct inode *inode;
7842 	u64 start;
7843 	int uptodate;
7844 };
7845 
7846 static void btrfs_retry_endio_nocsum(struct bio *bio)
7847 {
7848 	struct btrfs_retry_complete *done = bio->bi_private;
7849 	struct bio_vec *bvec;
7850 	int i;
7851 
7852 	if (bio->bi_error)
7853 		goto end;
7854 
7855 	done->uptodate = 1;
7856 	bio_for_each_segment_all(bvec, bio, i)
7857 		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7858 end:
7859 	complete(&done->done);
7860 	bio_put(bio);
7861 }
7862 
7863 static int __btrfs_correct_data_nocsum(struct inode *inode,
7864 				       struct btrfs_io_bio *io_bio)
7865 {
7866 	struct bio_vec *bvec;
7867 	struct btrfs_retry_complete done;
7868 	u64 start;
7869 	int i;
7870 	int ret;
7871 
7872 	start = io_bio->logical;
7873 	done.inode = inode;
7874 
7875 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7876 try_again:
7877 		done.uptodate = 0;
7878 		done.start = start;
7879 		init_completion(&done.done);
7880 
7881 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7882 				     start + bvec->bv_len - 1,
7883 				     io_bio->mirror_num,
7884 				     btrfs_retry_endio_nocsum, &done);
7885 		if (ret)
7886 			return ret;
7887 
7888 		wait_for_completion(&done.done);
7889 
7890 		if (!done.uptodate) {
7891 			/* We might have another mirror, so try again */
7892 			goto try_again;
7893 		}
7894 
7895 		start += bvec->bv_len;
7896 	}
7897 
7898 	return 0;
7899 }
7900 
7901 static void btrfs_retry_endio(struct bio *bio)
7902 {
7903 	struct btrfs_retry_complete *done = bio->bi_private;
7904 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7905 	struct bio_vec *bvec;
7906 	int uptodate;
7907 	int ret;
7908 	int i;
7909 
7910 	if (bio->bi_error)
7911 		goto end;
7912 
7913 	uptodate = 1;
7914 	bio_for_each_segment_all(bvec, bio, i) {
7915 		ret = __readpage_endio_check(done->inode, io_bio, i,
7916 					     bvec->bv_page, 0,
7917 					     done->start, bvec->bv_len);
7918 		if (!ret)
7919 			clean_io_failure(done->inode, done->start,
7920 					 bvec->bv_page, 0);
7921 		else
7922 			uptodate = 0;
7923 	}
7924 
7925 	done->uptodate = uptodate;
7926 end:
7927 	complete(&done->done);
7928 	bio_put(bio);
7929 }
7930 
7931 static int __btrfs_subio_endio_read(struct inode *inode,
7932 				    struct btrfs_io_bio *io_bio, int err)
7933 {
7934 	struct bio_vec *bvec;
7935 	struct btrfs_retry_complete done;
7936 	u64 start;
7937 	u64 offset = 0;
7938 	int i;
7939 	int ret;
7940 
7941 	err = 0;
7942 	start = io_bio->logical;
7943 	done.inode = inode;
7944 
7945 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7946 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7947 					     0, start, bvec->bv_len);
7948 		if (likely(!ret))
7949 			goto next;
7950 try_again:
7951 		done.uptodate = 0;
7952 		done.start = start;
7953 		init_completion(&done.done);
7954 
7955 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7956 				     start + bvec->bv_len - 1,
7957 				     io_bio->mirror_num,
7958 				     btrfs_retry_endio, &done);
7959 		if (ret) {
7960 			err = ret;
7961 			goto next;
7962 		}
7963 
7964 		wait_for_completion(&done.done);
7965 
7966 		if (!done.uptodate) {
7967 			/* We might have another mirror, so try again */
7968 			goto try_again;
7969 		}
7970 next:
7971 		offset += bvec->bv_len;
7972 		start += bvec->bv_len;
7973 	}
7974 
7975 	return err;
7976 }
7977 
7978 static int btrfs_subio_endio_read(struct inode *inode,
7979 				  struct btrfs_io_bio *io_bio, int err)
7980 {
7981 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7982 
7983 	if (skip_csum) {
7984 		if (unlikely(err))
7985 			return __btrfs_correct_data_nocsum(inode, io_bio);
7986 		else
7987 			return 0;
7988 	} else {
7989 		return __btrfs_subio_endio_read(inode, io_bio, err);
7990 	}
7991 }
7992 
7993 static void btrfs_endio_direct_read(struct bio *bio)
7994 {
7995 	struct btrfs_dio_private *dip = bio->bi_private;
7996 	struct inode *inode = dip->inode;
7997 	struct bio *dio_bio;
7998 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7999 	int err = bio->bi_error;
8000 
8001 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8002 		err = btrfs_subio_endio_read(inode, io_bio, err);
8003 
8004 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8005 		      dip->logical_offset + dip->bytes - 1);
8006 	dio_bio = dip->dio_bio;
8007 
8008 	kfree(dip);
8009 
8010 	dio_end_io(dio_bio, bio->bi_error);
8011 
8012 	if (io_bio->end_io)
8013 		io_bio->end_io(io_bio, err);
8014 	bio_put(bio);
8015 }
8016 
8017 static void btrfs_endio_direct_write(struct bio *bio)
8018 {
8019 	struct btrfs_dio_private *dip = bio->bi_private;
8020 	struct inode *inode = dip->inode;
8021 	struct btrfs_root *root = BTRFS_I(inode)->root;
8022 	struct btrfs_ordered_extent *ordered = NULL;
8023 	u64 ordered_offset = dip->logical_offset;
8024 	u64 ordered_bytes = dip->bytes;
8025 	struct bio *dio_bio;
8026 	int ret;
8027 
8028 again:
8029 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8030 						   &ordered_offset,
8031 						   ordered_bytes,
8032 						   !bio->bi_error);
8033 	if (!ret)
8034 		goto out_test;
8035 
8036 	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8037 			finish_ordered_fn, NULL, NULL);
8038 	btrfs_queue_work(root->fs_info->endio_write_workers,
8039 			 &ordered->work);
8040 out_test:
8041 	/*
8042 	 * our bio might span multiple ordered extents.  If we haven't
8043 	 * completed the accounting for the whole dio, go back and try again
8044 	 */
8045 	if (ordered_offset < dip->logical_offset + dip->bytes) {
8046 		ordered_bytes = dip->logical_offset + dip->bytes -
8047 			ordered_offset;
8048 		ordered = NULL;
8049 		goto again;
8050 	}
8051 	dio_bio = dip->dio_bio;
8052 
8053 	kfree(dip);
8054 
8055 	dio_end_io(dio_bio, bio->bi_error);
8056 	bio_put(bio);
8057 }
8058 
8059 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8060 				    struct bio *bio, int mirror_num,
8061 				    unsigned long bio_flags, u64 offset)
8062 {
8063 	int ret;
8064 	struct btrfs_root *root = BTRFS_I(inode)->root;
8065 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8066 	BUG_ON(ret); /* -ENOMEM */
8067 	return 0;
8068 }
8069 
8070 static void btrfs_end_dio_bio(struct bio *bio)
8071 {
8072 	struct btrfs_dio_private *dip = bio->bi_private;
8073 	int err = bio->bi_error;
8074 
8075 	if (err)
8076 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8077 			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8078 			   btrfs_ino(dip->inode), bio->bi_rw,
8079 			   (unsigned long long)bio->bi_iter.bi_sector,
8080 			   bio->bi_iter.bi_size, err);
8081 
8082 	if (dip->subio_endio)
8083 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8084 
8085 	if (err) {
8086 		dip->errors = 1;
8087 
8088 		/*
8089 		 * before atomic variable goto zero, we must make sure
8090 		 * dip->errors is perceived to be set.
8091 		 */
8092 		smp_mb__before_atomic();
8093 	}
8094 
8095 	/* if there are more bios still pending for this dio, just exit */
8096 	if (!atomic_dec_and_test(&dip->pending_bios))
8097 		goto out;
8098 
8099 	if (dip->errors) {
8100 		bio_io_error(dip->orig_bio);
8101 	} else {
8102 		dip->dio_bio->bi_error = 0;
8103 		bio_endio(dip->orig_bio);
8104 	}
8105 out:
8106 	bio_put(bio);
8107 }
8108 
8109 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8110 				       u64 first_sector, gfp_t gfp_flags)
8111 {
8112 	struct bio *bio;
8113 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8114 	if (bio)
8115 		bio_associate_current(bio);
8116 	return bio;
8117 }
8118 
8119 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8120 						 struct inode *inode,
8121 						 struct btrfs_dio_private *dip,
8122 						 struct bio *bio,
8123 						 u64 file_offset)
8124 {
8125 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8126 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8127 	int ret;
8128 
8129 	/*
8130 	 * We load all the csum data we need when we submit
8131 	 * the first bio to reduce the csum tree search and
8132 	 * contention.
8133 	 */
8134 	if (dip->logical_offset == file_offset) {
8135 		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8136 						file_offset);
8137 		if (ret)
8138 			return ret;
8139 	}
8140 
8141 	if (bio == dip->orig_bio)
8142 		return 0;
8143 
8144 	file_offset -= dip->logical_offset;
8145 	file_offset >>= inode->i_sb->s_blocksize_bits;
8146 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8147 
8148 	return 0;
8149 }
8150 
8151 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8152 					 int rw, u64 file_offset, int skip_sum,
8153 					 int async_submit)
8154 {
8155 	struct btrfs_dio_private *dip = bio->bi_private;
8156 	int write = rw & REQ_WRITE;
8157 	struct btrfs_root *root = BTRFS_I(inode)->root;
8158 	int ret;
8159 
8160 	if (async_submit)
8161 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8162 
8163 	bio_get(bio);
8164 
8165 	if (!write) {
8166 		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8167 				BTRFS_WQ_ENDIO_DATA);
8168 		if (ret)
8169 			goto err;
8170 	}
8171 
8172 	if (skip_sum)
8173 		goto map;
8174 
8175 	if (write && async_submit) {
8176 		ret = btrfs_wq_submit_bio(root->fs_info,
8177 				   inode, rw, bio, 0, 0,
8178 				   file_offset,
8179 				   __btrfs_submit_bio_start_direct_io,
8180 				   __btrfs_submit_bio_done);
8181 		goto err;
8182 	} else if (write) {
8183 		/*
8184 		 * If we aren't doing async submit, calculate the csum of the
8185 		 * bio now.
8186 		 */
8187 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8188 		if (ret)
8189 			goto err;
8190 	} else {
8191 		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8192 						     file_offset);
8193 		if (ret)
8194 			goto err;
8195 	}
8196 map:
8197 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8198 err:
8199 	bio_put(bio);
8200 	return ret;
8201 }
8202 
8203 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8204 				    int skip_sum)
8205 {
8206 	struct inode *inode = dip->inode;
8207 	struct btrfs_root *root = BTRFS_I(inode)->root;
8208 	struct bio *bio;
8209 	struct bio *orig_bio = dip->orig_bio;
8210 	struct bio_vec *bvec = orig_bio->bi_io_vec;
8211 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8212 	u64 file_offset = dip->logical_offset;
8213 	u64 submit_len = 0;
8214 	u64 map_length;
8215 	int nr_pages = 0;
8216 	int ret;
8217 	int async_submit = 0;
8218 
8219 	map_length = orig_bio->bi_iter.bi_size;
8220 	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8221 			      &map_length, NULL, 0);
8222 	if (ret)
8223 		return -EIO;
8224 
8225 	if (map_length >= orig_bio->bi_iter.bi_size) {
8226 		bio = orig_bio;
8227 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8228 		goto submit;
8229 	}
8230 
8231 	/* async crcs make it difficult to collect full stripe writes. */
8232 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8233 		async_submit = 0;
8234 	else
8235 		async_submit = 1;
8236 
8237 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8238 	if (!bio)
8239 		return -ENOMEM;
8240 
8241 	bio->bi_private = dip;
8242 	bio->bi_end_io = btrfs_end_dio_bio;
8243 	btrfs_io_bio(bio)->logical = file_offset;
8244 	atomic_inc(&dip->pending_bios);
8245 
8246 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8247 		if (map_length < submit_len + bvec->bv_len ||
8248 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8249 				 bvec->bv_offset) < bvec->bv_len) {
8250 			/*
8251 			 * inc the count before we submit the bio so
8252 			 * we know the end IO handler won't happen before
8253 			 * we inc the count. Otherwise, the dip might get freed
8254 			 * before we're done setting it up
8255 			 */
8256 			atomic_inc(&dip->pending_bios);
8257 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8258 						     file_offset, skip_sum,
8259 						     async_submit);
8260 			if (ret) {
8261 				bio_put(bio);
8262 				atomic_dec(&dip->pending_bios);
8263 				goto out_err;
8264 			}
8265 
8266 			start_sector += submit_len >> 9;
8267 			file_offset += submit_len;
8268 
8269 			submit_len = 0;
8270 			nr_pages = 0;
8271 
8272 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8273 						  start_sector, GFP_NOFS);
8274 			if (!bio)
8275 				goto out_err;
8276 			bio->bi_private = dip;
8277 			bio->bi_end_io = btrfs_end_dio_bio;
8278 			btrfs_io_bio(bio)->logical = file_offset;
8279 
8280 			map_length = orig_bio->bi_iter.bi_size;
8281 			ret = btrfs_map_block(root->fs_info, rw,
8282 					      start_sector << 9,
8283 					      &map_length, NULL, 0);
8284 			if (ret) {
8285 				bio_put(bio);
8286 				goto out_err;
8287 			}
8288 		} else {
8289 			submit_len += bvec->bv_len;
8290 			nr_pages++;
8291 			bvec++;
8292 		}
8293 	}
8294 
8295 submit:
8296 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8297 				     async_submit);
8298 	if (!ret)
8299 		return 0;
8300 
8301 	bio_put(bio);
8302 out_err:
8303 	dip->errors = 1;
8304 	/*
8305 	 * before atomic variable goto zero, we must
8306 	 * make sure dip->errors is perceived to be set.
8307 	 */
8308 	smp_mb__before_atomic();
8309 	if (atomic_dec_and_test(&dip->pending_bios))
8310 		bio_io_error(dip->orig_bio);
8311 
8312 	/* bio_end_io() will handle error, so we needn't return it */
8313 	return 0;
8314 }
8315 
8316 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8317 				struct inode *inode, loff_t file_offset)
8318 {
8319 	struct btrfs_dio_private *dip = NULL;
8320 	struct bio *io_bio = NULL;
8321 	struct btrfs_io_bio *btrfs_bio;
8322 	int skip_sum;
8323 	int write = rw & REQ_WRITE;
8324 	int ret = 0;
8325 
8326 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8327 
8328 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8329 	if (!io_bio) {
8330 		ret = -ENOMEM;
8331 		goto free_ordered;
8332 	}
8333 
8334 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8335 	if (!dip) {
8336 		ret = -ENOMEM;
8337 		goto free_ordered;
8338 	}
8339 
8340 	dip->private = dio_bio->bi_private;
8341 	dip->inode = inode;
8342 	dip->logical_offset = file_offset;
8343 	dip->bytes = dio_bio->bi_iter.bi_size;
8344 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8345 	io_bio->bi_private = dip;
8346 	dip->orig_bio = io_bio;
8347 	dip->dio_bio = dio_bio;
8348 	atomic_set(&dip->pending_bios, 0);
8349 	btrfs_bio = btrfs_io_bio(io_bio);
8350 	btrfs_bio->logical = file_offset;
8351 
8352 	if (write) {
8353 		io_bio->bi_end_io = btrfs_endio_direct_write;
8354 	} else {
8355 		io_bio->bi_end_io = btrfs_endio_direct_read;
8356 		dip->subio_endio = btrfs_subio_endio_read;
8357 	}
8358 
8359 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8360 	if (!ret)
8361 		return;
8362 
8363 	if (btrfs_bio->end_io)
8364 		btrfs_bio->end_io(btrfs_bio, ret);
8365 
8366 free_ordered:
8367 	/*
8368 	 * If we arrived here it means either we failed to submit the dip
8369 	 * or we either failed to clone the dio_bio or failed to allocate the
8370 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8371 	 * call bio_endio against our io_bio so that we get proper resource
8372 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8373 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8374 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8375 	 */
8376 	if (io_bio && dip) {
8377 		io_bio->bi_error = -EIO;
8378 		bio_endio(io_bio);
8379 		/*
8380 		 * The end io callbacks free our dip, do the final put on io_bio
8381 		 * and all the cleanup and final put for dio_bio (through
8382 		 * dio_end_io()).
8383 		 */
8384 		dip = NULL;
8385 		io_bio = NULL;
8386 	} else {
8387 		if (write) {
8388 			struct btrfs_ordered_extent *ordered;
8389 
8390 			ordered = btrfs_lookup_ordered_extent(inode,
8391 							      file_offset);
8392 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8393 			/*
8394 			 * Decrements our ref on the ordered extent and removes
8395 			 * the ordered extent from the inode's ordered tree,
8396 			 * doing all the proper resource cleanup such as for the
8397 			 * reserved space and waking up any waiters for this
8398 			 * ordered extent (through btrfs_remove_ordered_extent).
8399 			 */
8400 			btrfs_finish_ordered_io(ordered);
8401 		} else {
8402 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8403 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8404 		}
8405 		dio_bio->bi_error = -EIO;
8406 		/*
8407 		 * Releases and cleans up our dio_bio, no need to bio_put()
8408 		 * nor bio_endio()/bio_io_error() against dio_bio.
8409 		 */
8410 		dio_end_io(dio_bio, ret);
8411 	}
8412 	if (io_bio)
8413 		bio_put(io_bio);
8414 	kfree(dip);
8415 }
8416 
8417 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8418 			const struct iov_iter *iter, loff_t offset)
8419 {
8420 	int seg;
8421 	int i;
8422 	unsigned blocksize_mask = root->sectorsize - 1;
8423 	ssize_t retval = -EINVAL;
8424 
8425 	if (offset & blocksize_mask)
8426 		goto out;
8427 
8428 	if (iov_iter_alignment(iter) & blocksize_mask)
8429 		goto out;
8430 
8431 	/* If this is a write we don't need to check anymore */
8432 	if (iov_iter_rw(iter) == WRITE)
8433 		return 0;
8434 	/*
8435 	 * Check to make sure we don't have duplicate iov_base's in this
8436 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8437 	 * when reading back.
8438 	 */
8439 	for (seg = 0; seg < iter->nr_segs; seg++) {
8440 		for (i = seg + 1; i < iter->nr_segs; i++) {
8441 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8442 				goto out;
8443 		}
8444 	}
8445 	retval = 0;
8446 out:
8447 	return retval;
8448 }
8449 
8450 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8451 			       loff_t offset)
8452 {
8453 	struct file *file = iocb->ki_filp;
8454 	struct inode *inode = file->f_mapping->host;
8455 	struct btrfs_root *root = BTRFS_I(inode)->root;
8456 	struct btrfs_dio_data dio_data = { 0 };
8457 	size_t count = 0;
8458 	int flags = 0;
8459 	bool wakeup = true;
8460 	bool relock = false;
8461 	ssize_t ret;
8462 
8463 	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8464 		return 0;
8465 
8466 	inode_dio_begin(inode);
8467 	smp_mb__after_atomic();
8468 
8469 	/*
8470 	 * The generic stuff only does filemap_write_and_wait_range, which
8471 	 * isn't enough if we've written compressed pages to this area, so
8472 	 * we need to flush the dirty pages again to make absolutely sure
8473 	 * that any outstanding dirty pages are on disk.
8474 	 */
8475 	count = iov_iter_count(iter);
8476 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8477 		     &BTRFS_I(inode)->runtime_flags))
8478 		filemap_fdatawrite_range(inode->i_mapping, offset,
8479 					 offset + count - 1);
8480 
8481 	if (iov_iter_rw(iter) == WRITE) {
8482 		/*
8483 		 * If the write DIO is beyond the EOF, we need update
8484 		 * the isize, but it is protected by i_mutex. So we can
8485 		 * not unlock the i_mutex at this case.
8486 		 */
8487 		if (offset + count <= inode->i_size) {
8488 			mutex_unlock(&inode->i_mutex);
8489 			relock = true;
8490 		}
8491 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8492 		if (ret)
8493 			goto out;
8494 		dio_data.outstanding_extents = div64_u64(count +
8495 						BTRFS_MAX_EXTENT_SIZE - 1,
8496 						BTRFS_MAX_EXTENT_SIZE);
8497 
8498 		/*
8499 		 * We need to know how many extents we reserved so that we can
8500 		 * do the accounting properly if we go over the number we
8501 		 * originally calculated.  Abuse current->journal_info for this.
8502 		 */
8503 		dio_data.reserve = round_up(count, root->sectorsize);
8504 		current->journal_info = &dio_data;
8505 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8506 				     &BTRFS_I(inode)->runtime_flags)) {
8507 		inode_dio_end(inode);
8508 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8509 		wakeup = false;
8510 	}
8511 
8512 	ret = __blockdev_direct_IO(iocb, inode,
8513 				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8514 				   iter, offset, btrfs_get_blocks_direct, NULL,
8515 				   btrfs_submit_direct, flags);
8516 	if (iov_iter_rw(iter) == WRITE) {
8517 		current->journal_info = NULL;
8518 		if (ret < 0 && ret != -EIOCBQUEUED) {
8519 			if (dio_data.reserve)
8520 				btrfs_delalloc_release_space(inode, offset,
8521 							     dio_data.reserve);
8522 		} else if (ret >= 0 && (size_t)ret < count)
8523 			btrfs_delalloc_release_space(inode, offset,
8524 						     count - (size_t)ret);
8525 	}
8526 out:
8527 	if (wakeup)
8528 		inode_dio_end(inode);
8529 	if (relock)
8530 		mutex_lock(&inode->i_mutex);
8531 
8532 	return ret;
8533 }
8534 
8535 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8536 
8537 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8538 		__u64 start, __u64 len)
8539 {
8540 	int	ret;
8541 
8542 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8543 	if (ret)
8544 		return ret;
8545 
8546 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8547 }
8548 
8549 int btrfs_readpage(struct file *file, struct page *page)
8550 {
8551 	struct extent_io_tree *tree;
8552 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8553 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8554 }
8555 
8556 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8557 {
8558 	struct extent_io_tree *tree;
8559 
8560 
8561 	if (current->flags & PF_MEMALLOC) {
8562 		redirty_page_for_writepage(wbc, page);
8563 		unlock_page(page);
8564 		return 0;
8565 	}
8566 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8567 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8568 }
8569 
8570 static int btrfs_writepages(struct address_space *mapping,
8571 			    struct writeback_control *wbc)
8572 {
8573 	struct extent_io_tree *tree;
8574 
8575 	tree = &BTRFS_I(mapping->host)->io_tree;
8576 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8577 }
8578 
8579 static int
8580 btrfs_readpages(struct file *file, struct address_space *mapping,
8581 		struct list_head *pages, unsigned nr_pages)
8582 {
8583 	struct extent_io_tree *tree;
8584 	tree = &BTRFS_I(mapping->host)->io_tree;
8585 	return extent_readpages(tree, mapping, pages, nr_pages,
8586 				btrfs_get_extent);
8587 }
8588 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8589 {
8590 	struct extent_io_tree *tree;
8591 	struct extent_map_tree *map;
8592 	int ret;
8593 
8594 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8595 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8596 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8597 	if (ret == 1) {
8598 		ClearPagePrivate(page);
8599 		set_page_private(page, 0);
8600 		page_cache_release(page);
8601 	}
8602 	return ret;
8603 }
8604 
8605 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8606 {
8607 	if (PageWriteback(page) || PageDirty(page))
8608 		return 0;
8609 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8610 }
8611 
8612 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8613 				 unsigned int length)
8614 {
8615 	struct inode *inode = page->mapping->host;
8616 	struct extent_io_tree *tree;
8617 	struct btrfs_ordered_extent *ordered;
8618 	struct extent_state *cached_state = NULL;
8619 	u64 page_start = page_offset(page);
8620 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8621 	int inode_evicting = inode->i_state & I_FREEING;
8622 
8623 	/*
8624 	 * we have the page locked, so new writeback can't start,
8625 	 * and the dirty bit won't be cleared while we are here.
8626 	 *
8627 	 * Wait for IO on this page so that we can safely clear
8628 	 * the PagePrivate2 bit and do ordered accounting
8629 	 */
8630 	wait_on_page_writeback(page);
8631 
8632 	tree = &BTRFS_I(inode)->io_tree;
8633 	if (offset) {
8634 		btrfs_releasepage(page, GFP_NOFS);
8635 		return;
8636 	}
8637 
8638 	if (!inode_evicting)
8639 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8640 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8641 	if (ordered) {
8642 		/*
8643 		 * IO on this page will never be started, so we need
8644 		 * to account for any ordered extents now
8645 		 */
8646 		if (!inode_evicting)
8647 			clear_extent_bit(tree, page_start, page_end,
8648 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8649 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8650 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8651 					 GFP_NOFS);
8652 		/*
8653 		 * whoever cleared the private bit is responsible
8654 		 * for the finish_ordered_io
8655 		 */
8656 		if (TestClearPagePrivate2(page)) {
8657 			struct btrfs_ordered_inode_tree *tree;
8658 			u64 new_len;
8659 
8660 			tree = &BTRFS_I(inode)->ordered_tree;
8661 
8662 			spin_lock_irq(&tree->lock);
8663 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8664 			new_len = page_start - ordered->file_offset;
8665 			if (new_len < ordered->truncated_len)
8666 				ordered->truncated_len = new_len;
8667 			spin_unlock_irq(&tree->lock);
8668 
8669 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8670 							   page_start,
8671 							   PAGE_CACHE_SIZE, 1))
8672 				btrfs_finish_ordered_io(ordered);
8673 		}
8674 		btrfs_put_ordered_extent(ordered);
8675 		if (!inode_evicting) {
8676 			cached_state = NULL;
8677 			lock_extent_bits(tree, page_start, page_end, 0,
8678 					 &cached_state);
8679 		}
8680 	}
8681 
8682 	/*
8683 	 * Qgroup reserved space handler
8684 	 * Page here will be either
8685 	 * 1) Already written to disk
8686 	 *    In this case, its reserved space is released from data rsv map
8687 	 *    and will be freed by delayed_ref handler finally.
8688 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8689 	 *    space.
8690 	 * 2) Not written to disk
8691 	 *    This means the reserved space should be freed here.
8692 	 */
8693 	btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
8694 	if (!inode_evicting) {
8695 		clear_extent_bit(tree, page_start, page_end,
8696 				 EXTENT_LOCKED | EXTENT_DIRTY |
8697 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8698 				 EXTENT_DEFRAG, 1, 1,
8699 				 &cached_state, GFP_NOFS);
8700 
8701 		__btrfs_releasepage(page, GFP_NOFS);
8702 	}
8703 
8704 	ClearPageChecked(page);
8705 	if (PagePrivate(page)) {
8706 		ClearPagePrivate(page);
8707 		set_page_private(page, 0);
8708 		page_cache_release(page);
8709 	}
8710 }
8711 
8712 /*
8713  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8714  * called from a page fault handler when a page is first dirtied. Hence we must
8715  * be careful to check for EOF conditions here. We set the page up correctly
8716  * for a written page which means we get ENOSPC checking when writing into
8717  * holes and correct delalloc and unwritten extent mapping on filesystems that
8718  * support these features.
8719  *
8720  * We are not allowed to take the i_mutex here so we have to play games to
8721  * protect against truncate races as the page could now be beyond EOF.  Because
8722  * vmtruncate() writes the inode size before removing pages, once we have the
8723  * page lock we can determine safely if the page is beyond EOF. If it is not
8724  * beyond EOF, then the page is guaranteed safe against truncation until we
8725  * unlock the page.
8726  */
8727 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8728 {
8729 	struct page *page = vmf->page;
8730 	struct inode *inode = file_inode(vma->vm_file);
8731 	struct btrfs_root *root = BTRFS_I(inode)->root;
8732 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8733 	struct btrfs_ordered_extent *ordered;
8734 	struct extent_state *cached_state = NULL;
8735 	char *kaddr;
8736 	unsigned long zero_start;
8737 	loff_t size;
8738 	int ret;
8739 	int reserved = 0;
8740 	u64 page_start;
8741 	u64 page_end;
8742 
8743 	sb_start_pagefault(inode->i_sb);
8744 	page_start = page_offset(page);
8745 	page_end = page_start + PAGE_CACHE_SIZE - 1;
8746 
8747 	ret = btrfs_delalloc_reserve_space(inode, page_start,
8748 					   PAGE_CACHE_SIZE);
8749 	if (!ret) {
8750 		ret = file_update_time(vma->vm_file);
8751 		reserved = 1;
8752 	}
8753 	if (ret) {
8754 		if (ret == -ENOMEM)
8755 			ret = VM_FAULT_OOM;
8756 		else /* -ENOSPC, -EIO, etc */
8757 			ret = VM_FAULT_SIGBUS;
8758 		if (reserved)
8759 			goto out;
8760 		goto out_noreserve;
8761 	}
8762 
8763 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8764 again:
8765 	lock_page(page);
8766 	size = i_size_read(inode);
8767 
8768 	if ((page->mapping != inode->i_mapping) ||
8769 	    (page_start >= size)) {
8770 		/* page got truncated out from underneath us */
8771 		goto out_unlock;
8772 	}
8773 	wait_on_page_writeback(page);
8774 
8775 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8776 	set_page_extent_mapped(page);
8777 
8778 	/*
8779 	 * we can't set the delalloc bits if there are pending ordered
8780 	 * extents.  Drop our locks and wait for them to finish
8781 	 */
8782 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8783 	if (ordered) {
8784 		unlock_extent_cached(io_tree, page_start, page_end,
8785 				     &cached_state, GFP_NOFS);
8786 		unlock_page(page);
8787 		btrfs_start_ordered_extent(inode, ordered, 1);
8788 		btrfs_put_ordered_extent(ordered);
8789 		goto again;
8790 	}
8791 
8792 	/*
8793 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8794 	 * if it was already dirty, so for space accounting reasons we need to
8795 	 * clear any delalloc bits for the range we are fixing to save.  There
8796 	 * is probably a better way to do this, but for now keep consistent with
8797 	 * prepare_pages in the normal write path.
8798 	 */
8799 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8800 			  EXTENT_DIRTY | EXTENT_DELALLOC |
8801 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8802 			  0, 0, &cached_state, GFP_NOFS);
8803 
8804 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8805 					&cached_state);
8806 	if (ret) {
8807 		unlock_extent_cached(io_tree, page_start, page_end,
8808 				     &cached_state, GFP_NOFS);
8809 		ret = VM_FAULT_SIGBUS;
8810 		goto out_unlock;
8811 	}
8812 	ret = 0;
8813 
8814 	/* page is wholly or partially inside EOF */
8815 	if (page_start + PAGE_CACHE_SIZE > size)
8816 		zero_start = size & ~PAGE_CACHE_MASK;
8817 	else
8818 		zero_start = PAGE_CACHE_SIZE;
8819 
8820 	if (zero_start != PAGE_CACHE_SIZE) {
8821 		kaddr = kmap(page);
8822 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8823 		flush_dcache_page(page);
8824 		kunmap(page);
8825 	}
8826 	ClearPageChecked(page);
8827 	set_page_dirty(page);
8828 	SetPageUptodate(page);
8829 
8830 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8831 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8832 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8833 
8834 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8835 
8836 out_unlock:
8837 	if (!ret) {
8838 		sb_end_pagefault(inode->i_sb);
8839 		return VM_FAULT_LOCKED;
8840 	}
8841 	unlock_page(page);
8842 out:
8843 	btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
8844 out_noreserve:
8845 	sb_end_pagefault(inode->i_sb);
8846 	return ret;
8847 }
8848 
8849 static int btrfs_truncate(struct inode *inode)
8850 {
8851 	struct btrfs_root *root = BTRFS_I(inode)->root;
8852 	struct btrfs_block_rsv *rsv;
8853 	int ret = 0;
8854 	int err = 0;
8855 	struct btrfs_trans_handle *trans;
8856 	u64 mask = root->sectorsize - 1;
8857 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8858 
8859 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8860 				       (u64)-1);
8861 	if (ret)
8862 		return ret;
8863 
8864 	/*
8865 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8866 	 * 3 things going on here
8867 	 *
8868 	 * 1) We need to reserve space for our orphan item and the space to
8869 	 * delete our orphan item.  Lord knows we don't want to have a dangling
8870 	 * orphan item because we didn't reserve space to remove it.
8871 	 *
8872 	 * 2) We need to reserve space to update our inode.
8873 	 *
8874 	 * 3) We need to have something to cache all the space that is going to
8875 	 * be free'd up by the truncate operation, but also have some slack
8876 	 * space reserved in case it uses space during the truncate (thank you
8877 	 * very much snapshotting).
8878 	 *
8879 	 * And we need these to all be seperate.  The fact is we can use alot of
8880 	 * space doing the truncate, and we have no earthly idea how much space
8881 	 * we will use, so we need the truncate reservation to be seperate so it
8882 	 * doesn't end up using space reserved for updating the inode or
8883 	 * removing the orphan item.  We also need to be able to stop the
8884 	 * transaction and start a new one, which means we need to be able to
8885 	 * update the inode several times, and we have no idea of knowing how
8886 	 * many times that will be, so we can't just reserve 1 item for the
8887 	 * entirety of the opration, so that has to be done seperately as well.
8888 	 * Then there is the orphan item, which does indeed need to be held on
8889 	 * to for the whole operation, and we need nobody to touch this reserved
8890 	 * space except the orphan code.
8891 	 *
8892 	 * So that leaves us with
8893 	 *
8894 	 * 1) root->orphan_block_rsv - for the orphan deletion.
8895 	 * 2) rsv - for the truncate reservation, which we will steal from the
8896 	 * transaction reservation.
8897 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8898 	 * updating the inode.
8899 	 */
8900 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8901 	if (!rsv)
8902 		return -ENOMEM;
8903 	rsv->size = min_size;
8904 	rsv->failfast = 1;
8905 
8906 	/*
8907 	 * 1 for the truncate slack space
8908 	 * 1 for updating the inode.
8909 	 */
8910 	trans = btrfs_start_transaction(root, 2);
8911 	if (IS_ERR(trans)) {
8912 		err = PTR_ERR(trans);
8913 		goto out;
8914 	}
8915 
8916 	/* Migrate the slack space for the truncate to our reserve */
8917 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8918 				      min_size);
8919 	BUG_ON(ret);
8920 
8921 	/*
8922 	 * So if we truncate and then write and fsync we normally would just
8923 	 * write the extents that changed, which is a problem if we need to
8924 	 * first truncate that entire inode.  So set this flag so we write out
8925 	 * all of the extents in the inode to the sync log so we're completely
8926 	 * safe.
8927 	 */
8928 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8929 	trans->block_rsv = rsv;
8930 
8931 	while (1) {
8932 		ret = btrfs_truncate_inode_items(trans, root, inode,
8933 						 inode->i_size,
8934 						 BTRFS_EXTENT_DATA_KEY);
8935 		if (ret != -ENOSPC && ret != -EAGAIN) {
8936 			err = ret;
8937 			break;
8938 		}
8939 
8940 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8941 		ret = btrfs_update_inode(trans, root, inode);
8942 		if (ret) {
8943 			err = ret;
8944 			break;
8945 		}
8946 
8947 		btrfs_end_transaction(trans, root);
8948 		btrfs_btree_balance_dirty(root);
8949 
8950 		trans = btrfs_start_transaction(root, 2);
8951 		if (IS_ERR(trans)) {
8952 			ret = err = PTR_ERR(trans);
8953 			trans = NULL;
8954 			break;
8955 		}
8956 
8957 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8958 					      rsv, min_size);
8959 		BUG_ON(ret);	/* shouldn't happen */
8960 		trans->block_rsv = rsv;
8961 	}
8962 
8963 	if (ret == 0 && inode->i_nlink > 0) {
8964 		trans->block_rsv = root->orphan_block_rsv;
8965 		ret = btrfs_orphan_del(trans, inode);
8966 		if (ret)
8967 			err = ret;
8968 	}
8969 
8970 	if (trans) {
8971 		trans->block_rsv = &root->fs_info->trans_block_rsv;
8972 		ret = btrfs_update_inode(trans, root, inode);
8973 		if (ret && !err)
8974 			err = ret;
8975 
8976 		ret = btrfs_end_transaction(trans, root);
8977 		btrfs_btree_balance_dirty(root);
8978 	}
8979 
8980 out:
8981 	btrfs_free_block_rsv(root, rsv);
8982 
8983 	if (ret && !err)
8984 		err = ret;
8985 
8986 	return err;
8987 }
8988 
8989 /*
8990  * create a new subvolume directory/inode (helper for the ioctl).
8991  */
8992 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8993 			     struct btrfs_root *new_root,
8994 			     struct btrfs_root *parent_root,
8995 			     u64 new_dirid)
8996 {
8997 	struct inode *inode;
8998 	int err;
8999 	u64 index = 0;
9000 
9001 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9002 				new_dirid, new_dirid,
9003 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9004 				&index);
9005 	if (IS_ERR(inode))
9006 		return PTR_ERR(inode);
9007 	inode->i_op = &btrfs_dir_inode_operations;
9008 	inode->i_fop = &btrfs_dir_file_operations;
9009 
9010 	set_nlink(inode, 1);
9011 	btrfs_i_size_write(inode, 0);
9012 	unlock_new_inode(inode);
9013 
9014 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9015 	if (err)
9016 		btrfs_err(new_root->fs_info,
9017 			  "error inheriting subvolume %llu properties: %d",
9018 			  new_root->root_key.objectid, err);
9019 
9020 	err = btrfs_update_inode(trans, new_root, inode);
9021 
9022 	iput(inode);
9023 	return err;
9024 }
9025 
9026 struct inode *btrfs_alloc_inode(struct super_block *sb)
9027 {
9028 	struct btrfs_inode *ei;
9029 	struct inode *inode;
9030 
9031 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9032 	if (!ei)
9033 		return NULL;
9034 
9035 	ei->root = NULL;
9036 	ei->generation = 0;
9037 	ei->last_trans = 0;
9038 	ei->last_sub_trans = 0;
9039 	ei->logged_trans = 0;
9040 	ei->delalloc_bytes = 0;
9041 	ei->defrag_bytes = 0;
9042 	ei->disk_i_size = 0;
9043 	ei->flags = 0;
9044 	ei->csum_bytes = 0;
9045 	ei->index_cnt = (u64)-1;
9046 	ei->dir_index = 0;
9047 	ei->last_unlink_trans = 0;
9048 	ei->last_log_commit = 0;
9049 
9050 	spin_lock_init(&ei->lock);
9051 	ei->outstanding_extents = 0;
9052 	ei->reserved_extents = 0;
9053 
9054 	ei->runtime_flags = 0;
9055 	ei->force_compress = BTRFS_COMPRESS_NONE;
9056 
9057 	ei->delayed_node = NULL;
9058 
9059 	ei->i_otime.tv_sec = 0;
9060 	ei->i_otime.tv_nsec = 0;
9061 
9062 	inode = &ei->vfs_inode;
9063 	extent_map_tree_init(&ei->extent_tree);
9064 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9065 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9066 	ei->io_tree.track_uptodate = 1;
9067 	ei->io_failure_tree.track_uptodate = 1;
9068 	atomic_set(&ei->sync_writers, 0);
9069 	mutex_init(&ei->log_mutex);
9070 	mutex_init(&ei->delalloc_mutex);
9071 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9072 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9073 	RB_CLEAR_NODE(&ei->rb_node);
9074 
9075 	return inode;
9076 }
9077 
9078 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9079 void btrfs_test_destroy_inode(struct inode *inode)
9080 {
9081 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9082 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9083 }
9084 #endif
9085 
9086 static void btrfs_i_callback(struct rcu_head *head)
9087 {
9088 	struct inode *inode = container_of(head, struct inode, i_rcu);
9089 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9090 }
9091 
9092 void btrfs_destroy_inode(struct inode *inode)
9093 {
9094 	struct btrfs_ordered_extent *ordered;
9095 	struct btrfs_root *root = BTRFS_I(inode)->root;
9096 
9097 	WARN_ON(!hlist_empty(&inode->i_dentry));
9098 	WARN_ON(inode->i_data.nrpages);
9099 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9100 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9101 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9102 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9103 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9104 
9105 	/*
9106 	 * This can happen where we create an inode, but somebody else also
9107 	 * created the same inode and we need to destroy the one we already
9108 	 * created.
9109 	 */
9110 	if (!root)
9111 		goto free;
9112 
9113 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9114 		     &BTRFS_I(inode)->runtime_flags)) {
9115 		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9116 			btrfs_ino(inode));
9117 		atomic_dec(&root->orphan_inodes);
9118 	}
9119 
9120 	while (1) {
9121 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9122 		if (!ordered)
9123 			break;
9124 		else {
9125 			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9126 				ordered->file_offset, ordered->len);
9127 			btrfs_remove_ordered_extent(inode, ordered);
9128 			btrfs_put_ordered_extent(ordered);
9129 			btrfs_put_ordered_extent(ordered);
9130 		}
9131 	}
9132 	btrfs_qgroup_check_reserved_leak(inode);
9133 	inode_tree_del(inode);
9134 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9135 free:
9136 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9137 }
9138 
9139 int btrfs_drop_inode(struct inode *inode)
9140 {
9141 	struct btrfs_root *root = BTRFS_I(inode)->root;
9142 
9143 	if (root == NULL)
9144 		return 1;
9145 
9146 	/* the snap/subvol tree is on deleting */
9147 	if (btrfs_root_refs(&root->root_item) == 0)
9148 		return 1;
9149 	else
9150 		return generic_drop_inode(inode);
9151 }
9152 
9153 static void init_once(void *foo)
9154 {
9155 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9156 
9157 	inode_init_once(&ei->vfs_inode);
9158 }
9159 
9160 void btrfs_destroy_cachep(void)
9161 {
9162 	/*
9163 	 * Make sure all delayed rcu free inodes are flushed before we
9164 	 * destroy cache.
9165 	 */
9166 	rcu_barrier();
9167 	if (btrfs_inode_cachep)
9168 		kmem_cache_destroy(btrfs_inode_cachep);
9169 	if (btrfs_trans_handle_cachep)
9170 		kmem_cache_destroy(btrfs_trans_handle_cachep);
9171 	if (btrfs_transaction_cachep)
9172 		kmem_cache_destroy(btrfs_transaction_cachep);
9173 	if (btrfs_path_cachep)
9174 		kmem_cache_destroy(btrfs_path_cachep);
9175 	if (btrfs_free_space_cachep)
9176 		kmem_cache_destroy(btrfs_free_space_cachep);
9177 	if (btrfs_delalloc_work_cachep)
9178 		kmem_cache_destroy(btrfs_delalloc_work_cachep);
9179 }
9180 
9181 int btrfs_init_cachep(void)
9182 {
9183 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9184 			sizeof(struct btrfs_inode), 0,
9185 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9186 	if (!btrfs_inode_cachep)
9187 		goto fail;
9188 
9189 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9190 			sizeof(struct btrfs_trans_handle), 0,
9191 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9192 	if (!btrfs_trans_handle_cachep)
9193 		goto fail;
9194 
9195 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9196 			sizeof(struct btrfs_transaction), 0,
9197 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9198 	if (!btrfs_transaction_cachep)
9199 		goto fail;
9200 
9201 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9202 			sizeof(struct btrfs_path), 0,
9203 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9204 	if (!btrfs_path_cachep)
9205 		goto fail;
9206 
9207 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9208 			sizeof(struct btrfs_free_space), 0,
9209 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9210 	if (!btrfs_free_space_cachep)
9211 		goto fail;
9212 
9213 	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9214 			sizeof(struct btrfs_delalloc_work), 0,
9215 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9216 			NULL);
9217 	if (!btrfs_delalloc_work_cachep)
9218 		goto fail;
9219 
9220 	return 0;
9221 fail:
9222 	btrfs_destroy_cachep();
9223 	return -ENOMEM;
9224 }
9225 
9226 static int btrfs_getattr(struct vfsmount *mnt,
9227 			 struct dentry *dentry, struct kstat *stat)
9228 {
9229 	u64 delalloc_bytes;
9230 	struct inode *inode = d_inode(dentry);
9231 	u32 blocksize = inode->i_sb->s_blocksize;
9232 
9233 	generic_fillattr(inode, stat);
9234 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9235 	stat->blksize = PAGE_CACHE_SIZE;
9236 
9237 	spin_lock(&BTRFS_I(inode)->lock);
9238 	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9239 	spin_unlock(&BTRFS_I(inode)->lock);
9240 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9241 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9242 	return 0;
9243 }
9244 
9245 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9246 			   struct inode *new_dir, struct dentry *new_dentry)
9247 {
9248 	struct btrfs_trans_handle *trans;
9249 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9250 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9251 	struct inode *new_inode = d_inode(new_dentry);
9252 	struct inode *old_inode = d_inode(old_dentry);
9253 	struct timespec ctime = CURRENT_TIME;
9254 	u64 index = 0;
9255 	u64 root_objectid;
9256 	int ret;
9257 	u64 old_ino = btrfs_ino(old_inode);
9258 
9259 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9260 		return -EPERM;
9261 
9262 	/* we only allow rename subvolume link between subvolumes */
9263 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9264 		return -EXDEV;
9265 
9266 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9267 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9268 		return -ENOTEMPTY;
9269 
9270 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9271 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9272 		return -ENOTEMPTY;
9273 
9274 
9275 	/* check for collisions, even if the  name isn't there */
9276 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9277 			     new_dentry->d_name.name,
9278 			     new_dentry->d_name.len);
9279 
9280 	if (ret) {
9281 		if (ret == -EEXIST) {
9282 			/* we shouldn't get
9283 			 * eexist without a new_inode */
9284 			if (WARN_ON(!new_inode)) {
9285 				return ret;
9286 			}
9287 		} else {
9288 			/* maybe -EOVERFLOW */
9289 			return ret;
9290 		}
9291 	}
9292 	ret = 0;
9293 
9294 	/*
9295 	 * we're using rename to replace one file with another.  Start IO on it
9296 	 * now so  we don't add too much work to the end of the transaction
9297 	 */
9298 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9299 		filemap_flush(old_inode->i_mapping);
9300 
9301 	/* close the racy window with snapshot create/destroy ioctl */
9302 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9303 		down_read(&root->fs_info->subvol_sem);
9304 	/*
9305 	 * We want to reserve the absolute worst case amount of items.  So if
9306 	 * both inodes are subvols and we need to unlink them then that would
9307 	 * require 4 item modifications, but if they are both normal inodes it
9308 	 * would require 5 item modifications, so we'll assume their normal
9309 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9310 	 * should cover the worst case number of items we'll modify.
9311 	 */
9312 	trans = btrfs_start_transaction(root, 11);
9313 	if (IS_ERR(trans)) {
9314                 ret = PTR_ERR(trans);
9315                 goto out_notrans;
9316         }
9317 
9318 	if (dest != root)
9319 		btrfs_record_root_in_trans(trans, dest);
9320 
9321 	ret = btrfs_set_inode_index(new_dir, &index);
9322 	if (ret)
9323 		goto out_fail;
9324 
9325 	BTRFS_I(old_inode)->dir_index = 0ULL;
9326 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9327 		/* force full log commit if subvolume involved. */
9328 		btrfs_set_log_full_commit(root->fs_info, trans);
9329 	} else {
9330 		ret = btrfs_insert_inode_ref(trans, dest,
9331 					     new_dentry->d_name.name,
9332 					     new_dentry->d_name.len,
9333 					     old_ino,
9334 					     btrfs_ino(new_dir), index);
9335 		if (ret)
9336 			goto out_fail;
9337 		/*
9338 		 * this is an ugly little race, but the rename is required
9339 		 * to make sure that if we crash, the inode is either at the
9340 		 * old name or the new one.  pinning the log transaction lets
9341 		 * us make sure we don't allow a log commit to come in after
9342 		 * we unlink the name but before we add the new name back in.
9343 		 */
9344 		btrfs_pin_log_trans(root);
9345 	}
9346 
9347 	inode_inc_iversion(old_dir);
9348 	inode_inc_iversion(new_dir);
9349 	inode_inc_iversion(old_inode);
9350 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9351 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9352 	old_inode->i_ctime = ctime;
9353 
9354 	if (old_dentry->d_parent != new_dentry->d_parent)
9355 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9356 
9357 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9358 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9359 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9360 					old_dentry->d_name.name,
9361 					old_dentry->d_name.len);
9362 	} else {
9363 		ret = __btrfs_unlink_inode(trans, root, old_dir,
9364 					d_inode(old_dentry),
9365 					old_dentry->d_name.name,
9366 					old_dentry->d_name.len);
9367 		if (!ret)
9368 			ret = btrfs_update_inode(trans, root, old_inode);
9369 	}
9370 	if (ret) {
9371 		btrfs_abort_transaction(trans, root, ret);
9372 		goto out_fail;
9373 	}
9374 
9375 	if (new_inode) {
9376 		inode_inc_iversion(new_inode);
9377 		new_inode->i_ctime = CURRENT_TIME;
9378 		if (unlikely(btrfs_ino(new_inode) ==
9379 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9380 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9381 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9382 						root_objectid,
9383 						new_dentry->d_name.name,
9384 						new_dentry->d_name.len);
9385 			BUG_ON(new_inode->i_nlink == 0);
9386 		} else {
9387 			ret = btrfs_unlink_inode(trans, dest, new_dir,
9388 						 d_inode(new_dentry),
9389 						 new_dentry->d_name.name,
9390 						 new_dentry->d_name.len);
9391 		}
9392 		if (!ret && new_inode->i_nlink == 0)
9393 			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9394 		if (ret) {
9395 			btrfs_abort_transaction(trans, root, ret);
9396 			goto out_fail;
9397 		}
9398 	}
9399 
9400 	ret = btrfs_add_link(trans, new_dir, old_inode,
9401 			     new_dentry->d_name.name,
9402 			     new_dentry->d_name.len, 0, index);
9403 	if (ret) {
9404 		btrfs_abort_transaction(trans, root, ret);
9405 		goto out_fail;
9406 	}
9407 
9408 	if (old_inode->i_nlink == 1)
9409 		BTRFS_I(old_inode)->dir_index = index;
9410 
9411 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9412 		struct dentry *parent = new_dentry->d_parent;
9413 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9414 		btrfs_end_log_trans(root);
9415 	}
9416 out_fail:
9417 	btrfs_end_transaction(trans, root);
9418 out_notrans:
9419 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9420 		up_read(&root->fs_info->subvol_sem);
9421 
9422 	return ret;
9423 }
9424 
9425 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9426 			 struct inode *new_dir, struct dentry *new_dentry,
9427 			 unsigned int flags)
9428 {
9429 	if (flags & ~RENAME_NOREPLACE)
9430 		return -EINVAL;
9431 
9432 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9433 }
9434 
9435 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9436 {
9437 	struct btrfs_delalloc_work *delalloc_work;
9438 	struct inode *inode;
9439 
9440 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9441 				     work);
9442 	inode = delalloc_work->inode;
9443 	if (delalloc_work->wait) {
9444 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
9445 	} else {
9446 		filemap_flush(inode->i_mapping);
9447 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9448 			     &BTRFS_I(inode)->runtime_flags))
9449 			filemap_flush(inode->i_mapping);
9450 	}
9451 
9452 	if (delalloc_work->delay_iput)
9453 		btrfs_add_delayed_iput(inode);
9454 	else
9455 		iput(inode);
9456 	complete(&delalloc_work->completion);
9457 }
9458 
9459 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9460 						    int wait, int delay_iput)
9461 {
9462 	struct btrfs_delalloc_work *work;
9463 
9464 	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9465 	if (!work)
9466 		return NULL;
9467 
9468 	init_completion(&work->completion);
9469 	INIT_LIST_HEAD(&work->list);
9470 	work->inode = inode;
9471 	work->wait = wait;
9472 	work->delay_iput = delay_iput;
9473 	WARN_ON_ONCE(!inode);
9474 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9475 			btrfs_run_delalloc_work, NULL, NULL);
9476 
9477 	return work;
9478 }
9479 
9480 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9481 {
9482 	wait_for_completion(&work->completion);
9483 	kmem_cache_free(btrfs_delalloc_work_cachep, work);
9484 }
9485 
9486 /*
9487  * some fairly slow code that needs optimization. This walks the list
9488  * of all the inodes with pending delalloc and forces them to disk.
9489  */
9490 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9491 				   int nr)
9492 {
9493 	struct btrfs_inode *binode;
9494 	struct inode *inode;
9495 	struct btrfs_delalloc_work *work, *next;
9496 	struct list_head works;
9497 	struct list_head splice;
9498 	int ret = 0;
9499 
9500 	INIT_LIST_HEAD(&works);
9501 	INIT_LIST_HEAD(&splice);
9502 
9503 	mutex_lock(&root->delalloc_mutex);
9504 	spin_lock(&root->delalloc_lock);
9505 	list_splice_init(&root->delalloc_inodes, &splice);
9506 	while (!list_empty(&splice)) {
9507 		binode = list_entry(splice.next, struct btrfs_inode,
9508 				    delalloc_inodes);
9509 
9510 		list_move_tail(&binode->delalloc_inodes,
9511 			       &root->delalloc_inodes);
9512 		inode = igrab(&binode->vfs_inode);
9513 		if (!inode) {
9514 			cond_resched_lock(&root->delalloc_lock);
9515 			continue;
9516 		}
9517 		spin_unlock(&root->delalloc_lock);
9518 
9519 		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9520 		if (!work) {
9521 			if (delay_iput)
9522 				btrfs_add_delayed_iput(inode);
9523 			else
9524 				iput(inode);
9525 			ret = -ENOMEM;
9526 			goto out;
9527 		}
9528 		list_add_tail(&work->list, &works);
9529 		btrfs_queue_work(root->fs_info->flush_workers,
9530 				 &work->work);
9531 		ret++;
9532 		if (nr != -1 && ret >= nr)
9533 			goto out;
9534 		cond_resched();
9535 		spin_lock(&root->delalloc_lock);
9536 	}
9537 	spin_unlock(&root->delalloc_lock);
9538 
9539 out:
9540 	list_for_each_entry_safe(work, next, &works, list) {
9541 		list_del_init(&work->list);
9542 		btrfs_wait_and_free_delalloc_work(work);
9543 	}
9544 
9545 	if (!list_empty_careful(&splice)) {
9546 		spin_lock(&root->delalloc_lock);
9547 		list_splice_tail(&splice, &root->delalloc_inodes);
9548 		spin_unlock(&root->delalloc_lock);
9549 	}
9550 	mutex_unlock(&root->delalloc_mutex);
9551 	return ret;
9552 }
9553 
9554 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9555 {
9556 	int ret;
9557 
9558 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9559 		return -EROFS;
9560 
9561 	ret = __start_delalloc_inodes(root, delay_iput, -1);
9562 	if (ret > 0)
9563 		ret = 0;
9564 	/*
9565 	 * the filemap_flush will queue IO into the worker threads, but
9566 	 * we have to make sure the IO is actually started and that
9567 	 * ordered extents get created before we return
9568 	 */
9569 	atomic_inc(&root->fs_info->async_submit_draining);
9570 	while (atomic_read(&root->fs_info->nr_async_submits) ||
9571 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9572 		wait_event(root->fs_info->async_submit_wait,
9573 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9574 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9575 	}
9576 	atomic_dec(&root->fs_info->async_submit_draining);
9577 	return ret;
9578 }
9579 
9580 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9581 			       int nr)
9582 {
9583 	struct btrfs_root *root;
9584 	struct list_head splice;
9585 	int ret;
9586 
9587 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9588 		return -EROFS;
9589 
9590 	INIT_LIST_HEAD(&splice);
9591 
9592 	mutex_lock(&fs_info->delalloc_root_mutex);
9593 	spin_lock(&fs_info->delalloc_root_lock);
9594 	list_splice_init(&fs_info->delalloc_roots, &splice);
9595 	while (!list_empty(&splice) && nr) {
9596 		root = list_first_entry(&splice, struct btrfs_root,
9597 					delalloc_root);
9598 		root = btrfs_grab_fs_root(root);
9599 		BUG_ON(!root);
9600 		list_move_tail(&root->delalloc_root,
9601 			       &fs_info->delalloc_roots);
9602 		spin_unlock(&fs_info->delalloc_root_lock);
9603 
9604 		ret = __start_delalloc_inodes(root, delay_iput, nr);
9605 		btrfs_put_fs_root(root);
9606 		if (ret < 0)
9607 			goto out;
9608 
9609 		if (nr != -1) {
9610 			nr -= ret;
9611 			WARN_ON(nr < 0);
9612 		}
9613 		spin_lock(&fs_info->delalloc_root_lock);
9614 	}
9615 	spin_unlock(&fs_info->delalloc_root_lock);
9616 
9617 	ret = 0;
9618 	atomic_inc(&fs_info->async_submit_draining);
9619 	while (atomic_read(&fs_info->nr_async_submits) ||
9620 	      atomic_read(&fs_info->async_delalloc_pages)) {
9621 		wait_event(fs_info->async_submit_wait,
9622 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9623 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9624 	}
9625 	atomic_dec(&fs_info->async_submit_draining);
9626 out:
9627 	if (!list_empty_careful(&splice)) {
9628 		spin_lock(&fs_info->delalloc_root_lock);
9629 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9630 		spin_unlock(&fs_info->delalloc_root_lock);
9631 	}
9632 	mutex_unlock(&fs_info->delalloc_root_mutex);
9633 	return ret;
9634 }
9635 
9636 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9637 			 const char *symname)
9638 {
9639 	struct btrfs_trans_handle *trans;
9640 	struct btrfs_root *root = BTRFS_I(dir)->root;
9641 	struct btrfs_path *path;
9642 	struct btrfs_key key;
9643 	struct inode *inode = NULL;
9644 	int err;
9645 	int drop_inode = 0;
9646 	u64 objectid;
9647 	u64 index = 0;
9648 	int name_len;
9649 	int datasize;
9650 	unsigned long ptr;
9651 	struct btrfs_file_extent_item *ei;
9652 	struct extent_buffer *leaf;
9653 
9654 	name_len = strlen(symname);
9655 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9656 		return -ENAMETOOLONG;
9657 
9658 	/*
9659 	 * 2 items for inode item and ref
9660 	 * 2 items for dir items
9661 	 * 1 item for xattr if selinux is on
9662 	 */
9663 	trans = btrfs_start_transaction(root, 5);
9664 	if (IS_ERR(trans))
9665 		return PTR_ERR(trans);
9666 
9667 	err = btrfs_find_free_ino(root, &objectid);
9668 	if (err)
9669 		goto out_unlock;
9670 
9671 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9672 				dentry->d_name.len, btrfs_ino(dir), objectid,
9673 				S_IFLNK|S_IRWXUGO, &index);
9674 	if (IS_ERR(inode)) {
9675 		err = PTR_ERR(inode);
9676 		goto out_unlock;
9677 	}
9678 
9679 	/*
9680 	* If the active LSM wants to access the inode during
9681 	* d_instantiate it needs these. Smack checks to see
9682 	* if the filesystem supports xattrs by looking at the
9683 	* ops vector.
9684 	*/
9685 	inode->i_fop = &btrfs_file_operations;
9686 	inode->i_op = &btrfs_file_inode_operations;
9687 	inode->i_mapping->a_ops = &btrfs_aops;
9688 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9689 
9690 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9691 	if (err)
9692 		goto out_unlock_inode;
9693 
9694 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9695 	if (err)
9696 		goto out_unlock_inode;
9697 
9698 	path = btrfs_alloc_path();
9699 	if (!path) {
9700 		err = -ENOMEM;
9701 		goto out_unlock_inode;
9702 	}
9703 	key.objectid = btrfs_ino(inode);
9704 	key.offset = 0;
9705 	key.type = BTRFS_EXTENT_DATA_KEY;
9706 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9707 	err = btrfs_insert_empty_item(trans, root, path, &key,
9708 				      datasize);
9709 	if (err) {
9710 		btrfs_free_path(path);
9711 		goto out_unlock_inode;
9712 	}
9713 	leaf = path->nodes[0];
9714 	ei = btrfs_item_ptr(leaf, path->slots[0],
9715 			    struct btrfs_file_extent_item);
9716 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9717 	btrfs_set_file_extent_type(leaf, ei,
9718 				   BTRFS_FILE_EXTENT_INLINE);
9719 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9720 	btrfs_set_file_extent_compression(leaf, ei, 0);
9721 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9722 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9723 
9724 	ptr = btrfs_file_extent_inline_start(ei);
9725 	write_extent_buffer(leaf, symname, ptr, name_len);
9726 	btrfs_mark_buffer_dirty(leaf);
9727 	btrfs_free_path(path);
9728 
9729 	inode->i_op = &btrfs_symlink_inode_operations;
9730 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9731 	inode_set_bytes(inode, name_len);
9732 	btrfs_i_size_write(inode, name_len);
9733 	err = btrfs_update_inode(trans, root, inode);
9734 	if (err) {
9735 		drop_inode = 1;
9736 		goto out_unlock_inode;
9737 	}
9738 
9739 	unlock_new_inode(inode);
9740 	d_instantiate(dentry, inode);
9741 
9742 out_unlock:
9743 	btrfs_end_transaction(trans, root);
9744 	if (drop_inode) {
9745 		inode_dec_link_count(inode);
9746 		iput(inode);
9747 	}
9748 	btrfs_btree_balance_dirty(root);
9749 	return err;
9750 
9751 out_unlock_inode:
9752 	drop_inode = 1;
9753 	unlock_new_inode(inode);
9754 	goto out_unlock;
9755 }
9756 
9757 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9758 				       u64 start, u64 num_bytes, u64 min_size,
9759 				       loff_t actual_len, u64 *alloc_hint,
9760 				       struct btrfs_trans_handle *trans)
9761 {
9762 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9763 	struct extent_map *em;
9764 	struct btrfs_root *root = BTRFS_I(inode)->root;
9765 	struct btrfs_key ins;
9766 	u64 cur_offset = start;
9767 	u64 i_size;
9768 	u64 cur_bytes;
9769 	u64 last_alloc = (u64)-1;
9770 	int ret = 0;
9771 	bool own_trans = true;
9772 
9773 	if (trans)
9774 		own_trans = false;
9775 	while (num_bytes > 0) {
9776 		if (own_trans) {
9777 			trans = btrfs_start_transaction(root, 3);
9778 			if (IS_ERR(trans)) {
9779 				ret = PTR_ERR(trans);
9780 				break;
9781 			}
9782 		}
9783 
9784 		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9785 		cur_bytes = max(cur_bytes, min_size);
9786 		/*
9787 		 * If we are severely fragmented we could end up with really
9788 		 * small allocations, so if the allocator is returning small
9789 		 * chunks lets make its job easier by only searching for those
9790 		 * sized chunks.
9791 		 */
9792 		cur_bytes = min(cur_bytes, last_alloc);
9793 		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9794 					   *alloc_hint, &ins, 1, 0);
9795 		if (ret) {
9796 			if (own_trans)
9797 				btrfs_end_transaction(trans, root);
9798 			break;
9799 		}
9800 
9801 		last_alloc = ins.offset;
9802 		ret = insert_reserved_file_extent(trans, inode,
9803 						  cur_offset, ins.objectid,
9804 						  ins.offset, ins.offset,
9805 						  ins.offset, 0, 0, 0,
9806 						  BTRFS_FILE_EXTENT_PREALLOC);
9807 		if (ret) {
9808 			btrfs_free_reserved_extent(root, ins.objectid,
9809 						   ins.offset, 0);
9810 			btrfs_abort_transaction(trans, root, ret);
9811 			if (own_trans)
9812 				btrfs_end_transaction(trans, root);
9813 			break;
9814 		}
9815 
9816 		btrfs_drop_extent_cache(inode, cur_offset,
9817 					cur_offset + ins.offset -1, 0);
9818 
9819 		em = alloc_extent_map();
9820 		if (!em) {
9821 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9822 				&BTRFS_I(inode)->runtime_flags);
9823 			goto next;
9824 		}
9825 
9826 		em->start = cur_offset;
9827 		em->orig_start = cur_offset;
9828 		em->len = ins.offset;
9829 		em->block_start = ins.objectid;
9830 		em->block_len = ins.offset;
9831 		em->orig_block_len = ins.offset;
9832 		em->ram_bytes = ins.offset;
9833 		em->bdev = root->fs_info->fs_devices->latest_bdev;
9834 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9835 		em->generation = trans->transid;
9836 
9837 		while (1) {
9838 			write_lock(&em_tree->lock);
9839 			ret = add_extent_mapping(em_tree, em, 1);
9840 			write_unlock(&em_tree->lock);
9841 			if (ret != -EEXIST)
9842 				break;
9843 			btrfs_drop_extent_cache(inode, cur_offset,
9844 						cur_offset + ins.offset - 1,
9845 						0);
9846 		}
9847 		free_extent_map(em);
9848 next:
9849 		num_bytes -= ins.offset;
9850 		cur_offset += ins.offset;
9851 		*alloc_hint = ins.objectid + ins.offset;
9852 
9853 		inode_inc_iversion(inode);
9854 		inode->i_ctime = CURRENT_TIME;
9855 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9856 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9857 		    (actual_len > inode->i_size) &&
9858 		    (cur_offset > inode->i_size)) {
9859 			if (cur_offset > actual_len)
9860 				i_size = actual_len;
9861 			else
9862 				i_size = cur_offset;
9863 			i_size_write(inode, i_size);
9864 			btrfs_ordered_update_i_size(inode, i_size, NULL);
9865 		}
9866 
9867 		ret = btrfs_update_inode(trans, root, inode);
9868 
9869 		if (ret) {
9870 			btrfs_abort_transaction(trans, root, ret);
9871 			if (own_trans)
9872 				btrfs_end_transaction(trans, root);
9873 			break;
9874 		}
9875 
9876 		if (own_trans)
9877 			btrfs_end_transaction(trans, root);
9878 	}
9879 	return ret;
9880 }
9881 
9882 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9883 			      u64 start, u64 num_bytes, u64 min_size,
9884 			      loff_t actual_len, u64 *alloc_hint)
9885 {
9886 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9887 					   min_size, actual_len, alloc_hint,
9888 					   NULL);
9889 }
9890 
9891 int btrfs_prealloc_file_range_trans(struct inode *inode,
9892 				    struct btrfs_trans_handle *trans, int mode,
9893 				    u64 start, u64 num_bytes, u64 min_size,
9894 				    loff_t actual_len, u64 *alloc_hint)
9895 {
9896 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9897 					   min_size, actual_len, alloc_hint, trans);
9898 }
9899 
9900 static int btrfs_set_page_dirty(struct page *page)
9901 {
9902 	return __set_page_dirty_nobuffers(page);
9903 }
9904 
9905 static int btrfs_permission(struct inode *inode, int mask)
9906 {
9907 	struct btrfs_root *root = BTRFS_I(inode)->root;
9908 	umode_t mode = inode->i_mode;
9909 
9910 	if (mask & MAY_WRITE &&
9911 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9912 		if (btrfs_root_readonly(root))
9913 			return -EROFS;
9914 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9915 			return -EACCES;
9916 	}
9917 	return generic_permission(inode, mask);
9918 }
9919 
9920 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9921 {
9922 	struct btrfs_trans_handle *trans;
9923 	struct btrfs_root *root = BTRFS_I(dir)->root;
9924 	struct inode *inode = NULL;
9925 	u64 objectid;
9926 	u64 index;
9927 	int ret = 0;
9928 
9929 	/*
9930 	 * 5 units required for adding orphan entry
9931 	 */
9932 	trans = btrfs_start_transaction(root, 5);
9933 	if (IS_ERR(trans))
9934 		return PTR_ERR(trans);
9935 
9936 	ret = btrfs_find_free_ino(root, &objectid);
9937 	if (ret)
9938 		goto out;
9939 
9940 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9941 				btrfs_ino(dir), objectid, mode, &index);
9942 	if (IS_ERR(inode)) {
9943 		ret = PTR_ERR(inode);
9944 		inode = NULL;
9945 		goto out;
9946 	}
9947 
9948 	inode->i_fop = &btrfs_file_operations;
9949 	inode->i_op = &btrfs_file_inode_operations;
9950 
9951 	inode->i_mapping->a_ops = &btrfs_aops;
9952 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9953 
9954 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9955 	if (ret)
9956 		goto out_inode;
9957 
9958 	ret = btrfs_update_inode(trans, root, inode);
9959 	if (ret)
9960 		goto out_inode;
9961 	ret = btrfs_orphan_add(trans, inode);
9962 	if (ret)
9963 		goto out_inode;
9964 
9965 	/*
9966 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9967 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9968 	 * through:
9969 	 *
9970 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9971 	 */
9972 	set_nlink(inode, 1);
9973 	unlock_new_inode(inode);
9974 	d_tmpfile(dentry, inode);
9975 	mark_inode_dirty(inode);
9976 
9977 out:
9978 	btrfs_end_transaction(trans, root);
9979 	if (ret)
9980 		iput(inode);
9981 	btrfs_balance_delayed_items(root);
9982 	btrfs_btree_balance_dirty(root);
9983 	return ret;
9984 
9985 out_inode:
9986 	unlock_new_inode(inode);
9987 	goto out;
9988 
9989 }
9990 
9991 /* Inspired by filemap_check_errors() */
9992 int btrfs_inode_check_errors(struct inode *inode)
9993 {
9994 	int ret = 0;
9995 
9996 	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9997 	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9998 		ret = -ENOSPC;
9999 	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10000 	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10001 		ret = -EIO;
10002 
10003 	return ret;
10004 }
10005 
10006 static const struct inode_operations btrfs_dir_inode_operations = {
10007 	.getattr	= btrfs_getattr,
10008 	.lookup		= btrfs_lookup,
10009 	.create		= btrfs_create,
10010 	.unlink		= btrfs_unlink,
10011 	.link		= btrfs_link,
10012 	.mkdir		= btrfs_mkdir,
10013 	.rmdir		= btrfs_rmdir,
10014 	.rename2	= btrfs_rename2,
10015 	.symlink	= btrfs_symlink,
10016 	.setattr	= btrfs_setattr,
10017 	.mknod		= btrfs_mknod,
10018 	.setxattr	= btrfs_setxattr,
10019 	.getxattr	= btrfs_getxattr,
10020 	.listxattr	= btrfs_listxattr,
10021 	.removexattr	= btrfs_removexattr,
10022 	.permission	= btrfs_permission,
10023 	.get_acl	= btrfs_get_acl,
10024 	.set_acl	= btrfs_set_acl,
10025 	.update_time	= btrfs_update_time,
10026 	.tmpfile        = btrfs_tmpfile,
10027 };
10028 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10029 	.lookup		= btrfs_lookup,
10030 	.permission	= btrfs_permission,
10031 	.get_acl	= btrfs_get_acl,
10032 	.set_acl	= btrfs_set_acl,
10033 	.update_time	= btrfs_update_time,
10034 };
10035 
10036 static const struct file_operations btrfs_dir_file_operations = {
10037 	.llseek		= generic_file_llseek,
10038 	.read		= generic_read_dir,
10039 	.iterate	= btrfs_real_readdir,
10040 	.unlocked_ioctl	= btrfs_ioctl,
10041 #ifdef CONFIG_COMPAT
10042 	.compat_ioctl	= btrfs_ioctl,
10043 #endif
10044 	.release        = btrfs_release_file,
10045 	.fsync		= btrfs_sync_file,
10046 };
10047 
10048 static struct extent_io_ops btrfs_extent_io_ops = {
10049 	.fill_delalloc = run_delalloc_range,
10050 	.submit_bio_hook = btrfs_submit_bio_hook,
10051 	.merge_bio_hook = btrfs_merge_bio_hook,
10052 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10053 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10054 	.writepage_start_hook = btrfs_writepage_start_hook,
10055 	.set_bit_hook = btrfs_set_bit_hook,
10056 	.clear_bit_hook = btrfs_clear_bit_hook,
10057 	.merge_extent_hook = btrfs_merge_extent_hook,
10058 	.split_extent_hook = btrfs_split_extent_hook,
10059 };
10060 
10061 /*
10062  * btrfs doesn't support the bmap operation because swapfiles
10063  * use bmap to make a mapping of extents in the file.  They assume
10064  * these extents won't change over the life of the file and they
10065  * use the bmap result to do IO directly to the drive.
10066  *
10067  * the btrfs bmap call would return logical addresses that aren't
10068  * suitable for IO and they also will change frequently as COW
10069  * operations happen.  So, swapfile + btrfs == corruption.
10070  *
10071  * For now we're avoiding this by dropping bmap.
10072  */
10073 static const struct address_space_operations btrfs_aops = {
10074 	.readpage	= btrfs_readpage,
10075 	.writepage	= btrfs_writepage,
10076 	.writepages	= btrfs_writepages,
10077 	.readpages	= btrfs_readpages,
10078 	.direct_IO	= btrfs_direct_IO,
10079 	.invalidatepage = btrfs_invalidatepage,
10080 	.releasepage	= btrfs_releasepage,
10081 	.set_page_dirty	= btrfs_set_page_dirty,
10082 	.error_remove_page = generic_error_remove_page,
10083 };
10084 
10085 static const struct address_space_operations btrfs_symlink_aops = {
10086 	.readpage	= btrfs_readpage,
10087 	.writepage	= btrfs_writepage,
10088 	.invalidatepage = btrfs_invalidatepage,
10089 	.releasepage	= btrfs_releasepage,
10090 };
10091 
10092 static const struct inode_operations btrfs_file_inode_operations = {
10093 	.getattr	= btrfs_getattr,
10094 	.setattr	= btrfs_setattr,
10095 	.setxattr	= btrfs_setxattr,
10096 	.getxattr	= btrfs_getxattr,
10097 	.listxattr      = btrfs_listxattr,
10098 	.removexattr	= btrfs_removexattr,
10099 	.permission	= btrfs_permission,
10100 	.fiemap		= btrfs_fiemap,
10101 	.get_acl	= btrfs_get_acl,
10102 	.set_acl	= btrfs_set_acl,
10103 	.update_time	= btrfs_update_time,
10104 };
10105 static const struct inode_operations btrfs_special_inode_operations = {
10106 	.getattr	= btrfs_getattr,
10107 	.setattr	= btrfs_setattr,
10108 	.permission	= btrfs_permission,
10109 	.setxattr	= btrfs_setxattr,
10110 	.getxattr	= btrfs_getxattr,
10111 	.listxattr	= btrfs_listxattr,
10112 	.removexattr	= btrfs_removexattr,
10113 	.get_acl	= btrfs_get_acl,
10114 	.set_acl	= btrfs_set_acl,
10115 	.update_time	= btrfs_update_time,
10116 };
10117 static const struct inode_operations btrfs_symlink_inode_operations = {
10118 	.readlink	= generic_readlink,
10119 	.follow_link	= page_follow_link_light,
10120 	.put_link	= page_put_link,
10121 	.getattr	= btrfs_getattr,
10122 	.setattr	= btrfs_setattr,
10123 	.permission	= btrfs_permission,
10124 	.setxattr	= btrfs_setxattr,
10125 	.getxattr	= btrfs_getxattr,
10126 	.listxattr	= btrfs_listxattr,
10127 	.removexattr	= btrfs_removexattr,
10128 	.update_time	= btrfs_update_time,
10129 };
10130 
10131 const struct dentry_operations btrfs_dentry_operations = {
10132 	.d_delete	= btrfs_dentry_delete,
10133 	.d_release	= btrfs_dentry_release,
10134 };
10135