1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 struct btrfs_dio_data { 61 u64 reserve; 62 loff_t length; 63 ssize_t submitted; 64 struct extent_changeset *data_reserved; 65 }; 66 67 static const struct inode_operations btrfs_dir_inode_operations; 68 static const struct inode_operations btrfs_symlink_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct btrfs_inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 88 u64 len, u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct btrfs_inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 99 * 100 * ilock_flags can have the following bit set: 101 * 102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 104 * return -EAGAIN 105 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 106 */ 107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 108 { 109 if (ilock_flags & BTRFS_ILOCK_SHARED) { 110 if (ilock_flags & BTRFS_ILOCK_TRY) { 111 if (!inode_trylock_shared(inode)) 112 return -EAGAIN; 113 else 114 return 0; 115 } 116 inode_lock_shared(inode); 117 } else { 118 if (ilock_flags & BTRFS_ILOCK_TRY) { 119 if (!inode_trylock(inode)) 120 return -EAGAIN; 121 else 122 return 0; 123 } 124 inode_lock(inode); 125 } 126 if (ilock_flags & BTRFS_ILOCK_MMAP) 127 down_write(&BTRFS_I(inode)->i_mmap_lock); 128 return 0; 129 } 130 131 /* 132 * btrfs_inode_unlock - unock inode i_rwsem 133 * 134 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 135 * to decide whether the lock acquired is shared or exclusive. 136 */ 137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 138 { 139 if (ilock_flags & BTRFS_ILOCK_MMAP) 140 up_write(&BTRFS_I(inode)->i_mmap_lock); 141 if (ilock_flags & BTRFS_ILOCK_SHARED) 142 inode_unlock_shared(inode); 143 else 144 inode_unlock(inode); 145 } 146 147 /* 148 * Cleanup all submitted ordered extents in specified range to handle errors 149 * from the btrfs_run_delalloc_range() callback. 150 * 151 * NOTE: caller must ensure that when an error happens, it can not call 152 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 153 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 154 * to be released, which we want to happen only when finishing the ordered 155 * extent (btrfs_finish_ordered_io()). 156 */ 157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 158 struct page *locked_page, 159 u64 offset, u64 bytes) 160 { 161 unsigned long index = offset >> PAGE_SHIFT; 162 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 163 u64 page_start = page_offset(locked_page); 164 u64 page_end = page_start + PAGE_SIZE - 1; 165 166 struct page *page; 167 168 while (index <= end_index) { 169 page = find_get_page(inode->vfs_inode.i_mapping, index); 170 index++; 171 if (!page) 172 continue; 173 ClearPagePrivate2(page); 174 put_page(page); 175 } 176 177 /* 178 * In case this page belongs to the delalloc range being instantiated 179 * then skip it, since the first page of a range is going to be 180 * properly cleaned up by the caller of run_delalloc_range 181 */ 182 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 183 offset += PAGE_SIZE; 184 bytes -= PAGE_SIZE; 185 } 186 187 return __endio_write_update_ordered(inode, offset, bytes, false); 188 } 189 190 static int btrfs_dirty_inode(struct inode *inode); 191 192 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 193 struct inode *inode, struct inode *dir, 194 const struct qstr *qstr) 195 { 196 int err; 197 198 err = btrfs_init_acl(trans, inode, dir); 199 if (!err) 200 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 201 return err; 202 } 203 204 /* 205 * this does all the hard work for inserting an inline extent into 206 * the btree. The caller should have done a btrfs_drop_extents so that 207 * no overlapping inline items exist in the btree 208 */ 209 static int insert_inline_extent(struct btrfs_trans_handle *trans, 210 struct btrfs_path *path, bool extent_inserted, 211 struct btrfs_root *root, struct inode *inode, 212 u64 start, size_t size, size_t compressed_size, 213 int compress_type, 214 struct page **compressed_pages) 215 { 216 struct extent_buffer *leaf; 217 struct page *page = NULL; 218 char *kaddr; 219 unsigned long ptr; 220 struct btrfs_file_extent_item *ei; 221 int ret; 222 size_t cur_size = size; 223 unsigned long offset; 224 225 ASSERT((compressed_size > 0 && compressed_pages) || 226 (compressed_size == 0 && !compressed_pages)); 227 228 if (compressed_size && compressed_pages) 229 cur_size = compressed_size; 230 231 if (!extent_inserted) { 232 struct btrfs_key key; 233 size_t datasize; 234 235 key.objectid = btrfs_ino(BTRFS_I(inode)); 236 key.offset = start; 237 key.type = BTRFS_EXTENT_DATA_KEY; 238 239 datasize = btrfs_file_extent_calc_inline_size(cur_size); 240 ret = btrfs_insert_empty_item(trans, root, path, &key, 241 datasize); 242 if (ret) 243 goto fail; 244 } 245 leaf = path->nodes[0]; 246 ei = btrfs_item_ptr(leaf, path->slots[0], 247 struct btrfs_file_extent_item); 248 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 249 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 250 btrfs_set_file_extent_encryption(leaf, ei, 0); 251 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 252 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 253 ptr = btrfs_file_extent_inline_start(ei); 254 255 if (compress_type != BTRFS_COMPRESS_NONE) { 256 struct page *cpage; 257 int i = 0; 258 while (compressed_size > 0) { 259 cpage = compressed_pages[i]; 260 cur_size = min_t(unsigned long, compressed_size, 261 PAGE_SIZE); 262 263 kaddr = kmap_atomic(cpage); 264 write_extent_buffer(leaf, kaddr, ptr, cur_size); 265 kunmap_atomic(kaddr); 266 267 i++; 268 ptr += cur_size; 269 compressed_size -= cur_size; 270 } 271 btrfs_set_file_extent_compression(leaf, ei, 272 compress_type); 273 } else { 274 page = find_get_page(inode->i_mapping, 275 start >> PAGE_SHIFT); 276 btrfs_set_file_extent_compression(leaf, ei, 0); 277 kaddr = kmap_atomic(page); 278 offset = offset_in_page(start); 279 write_extent_buffer(leaf, kaddr + offset, ptr, size); 280 kunmap_atomic(kaddr); 281 put_page(page); 282 } 283 btrfs_mark_buffer_dirty(leaf); 284 btrfs_release_path(path); 285 286 /* 287 * We align size to sectorsize for inline extents just for simplicity 288 * sake. 289 */ 290 size = ALIGN(size, root->fs_info->sectorsize); 291 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 292 if (ret) 293 goto fail; 294 295 /* 296 * we're an inline extent, so nobody can 297 * extend the file past i_size without locking 298 * a page we already have locked. 299 * 300 * We must do any isize and inode updates 301 * before we unlock the pages. Otherwise we 302 * could end up racing with unlink. 303 */ 304 BTRFS_I(inode)->disk_i_size = inode->i_size; 305 fail: 306 return ret; 307 } 308 309 310 /* 311 * conditionally insert an inline extent into the file. This 312 * does the checks required to make sure the data is small enough 313 * to fit as an inline extent. 314 */ 315 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 316 u64 end, size_t compressed_size, 317 int compress_type, 318 struct page **compressed_pages) 319 { 320 struct btrfs_drop_extents_args drop_args = { 0 }; 321 struct btrfs_root *root = inode->root; 322 struct btrfs_fs_info *fs_info = root->fs_info; 323 struct btrfs_trans_handle *trans; 324 u64 isize = i_size_read(&inode->vfs_inode); 325 u64 actual_end = min(end + 1, isize); 326 u64 inline_len = actual_end - start; 327 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 328 u64 data_len = inline_len; 329 int ret; 330 struct btrfs_path *path; 331 332 if (compressed_size) 333 data_len = compressed_size; 334 335 if (start > 0 || 336 actual_end > fs_info->sectorsize || 337 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 338 (!compressed_size && 339 (actual_end & (fs_info->sectorsize - 1)) == 0) || 340 end + 1 < isize || 341 data_len > fs_info->max_inline) { 342 return 1; 343 } 344 345 path = btrfs_alloc_path(); 346 if (!path) 347 return -ENOMEM; 348 349 trans = btrfs_join_transaction(root); 350 if (IS_ERR(trans)) { 351 btrfs_free_path(path); 352 return PTR_ERR(trans); 353 } 354 trans->block_rsv = &inode->block_rsv; 355 356 drop_args.path = path; 357 drop_args.start = start; 358 drop_args.end = aligned_end; 359 drop_args.drop_cache = true; 360 drop_args.replace_extent = true; 361 362 if (compressed_size && compressed_pages) 363 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 364 compressed_size); 365 else 366 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 367 inline_len); 368 369 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out; 373 } 374 375 if (isize > actual_end) 376 inline_len = min_t(u64, isize, actual_end); 377 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 378 root, &inode->vfs_inode, start, 379 inline_len, compressed_size, 380 compress_type, compressed_pages); 381 if (ret && ret != -ENOSPC) { 382 btrfs_abort_transaction(trans, ret); 383 goto out; 384 } else if (ret == -ENOSPC) { 385 ret = 1; 386 goto out; 387 } 388 389 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 390 ret = btrfs_update_inode(trans, root, inode); 391 if (ret && ret != -ENOSPC) { 392 btrfs_abort_transaction(trans, ret); 393 goto out; 394 } else if (ret == -ENOSPC) { 395 ret = 1; 396 goto out; 397 } 398 399 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 400 out: 401 /* 402 * Don't forget to free the reserved space, as for inlined extent 403 * it won't count as data extent, free them directly here. 404 * And at reserve time, it's always aligned to page size, so 405 * just free one page here. 406 */ 407 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 408 btrfs_free_path(path); 409 btrfs_end_transaction(trans); 410 return ret; 411 } 412 413 struct async_extent { 414 u64 start; 415 u64 ram_size; 416 u64 compressed_size; 417 struct page **pages; 418 unsigned long nr_pages; 419 int compress_type; 420 struct list_head list; 421 }; 422 423 struct async_chunk { 424 struct inode *inode; 425 struct page *locked_page; 426 u64 start; 427 u64 end; 428 unsigned int write_flags; 429 struct list_head extents; 430 struct cgroup_subsys_state *blkcg_css; 431 struct btrfs_work work; 432 atomic_t *pending; 433 }; 434 435 struct async_cow { 436 /* Number of chunks in flight; must be first in the structure */ 437 atomic_t num_chunks; 438 struct async_chunk chunks[]; 439 }; 440 441 static noinline int add_async_extent(struct async_chunk *cow, 442 u64 start, u64 ram_size, 443 u64 compressed_size, 444 struct page **pages, 445 unsigned long nr_pages, 446 int compress_type) 447 { 448 struct async_extent *async_extent; 449 450 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 451 BUG_ON(!async_extent); /* -ENOMEM */ 452 async_extent->start = start; 453 async_extent->ram_size = ram_size; 454 async_extent->compressed_size = compressed_size; 455 async_extent->pages = pages; 456 async_extent->nr_pages = nr_pages; 457 async_extent->compress_type = compress_type; 458 list_add_tail(&async_extent->list, &cow->extents); 459 return 0; 460 } 461 462 /* 463 * Check if the inode has flags compatible with compression 464 */ 465 static inline bool inode_can_compress(struct btrfs_inode *inode) 466 { 467 if (inode->flags & BTRFS_INODE_NODATACOW || 468 inode->flags & BTRFS_INODE_NODATASUM) 469 return false; 470 return true; 471 } 472 473 /* 474 * Check if the inode needs to be submitted to compression, based on mount 475 * options, defragmentation, properties or heuristics. 476 */ 477 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 478 u64 end) 479 { 480 struct btrfs_fs_info *fs_info = inode->root->fs_info; 481 482 if (!inode_can_compress(inode)) { 483 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 484 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 485 btrfs_ino(inode)); 486 return 0; 487 } 488 /* force compress */ 489 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 490 return 1; 491 /* defrag ioctl */ 492 if (inode->defrag_compress) 493 return 1; 494 /* bad compression ratios */ 495 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 496 return 0; 497 if (btrfs_test_opt(fs_info, COMPRESS) || 498 inode->flags & BTRFS_INODE_COMPRESS || 499 inode->prop_compress) 500 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 501 return 0; 502 } 503 504 static inline void inode_should_defrag(struct btrfs_inode *inode, 505 u64 start, u64 end, u64 num_bytes, u64 small_write) 506 { 507 /* If this is a small write inside eof, kick off a defrag */ 508 if (num_bytes < small_write && 509 (start > 0 || end + 1 < inode->disk_i_size)) 510 btrfs_add_inode_defrag(NULL, inode); 511 } 512 513 /* 514 * we create compressed extents in two phases. The first 515 * phase compresses a range of pages that have already been 516 * locked (both pages and state bits are locked). 517 * 518 * This is done inside an ordered work queue, and the compression 519 * is spread across many cpus. The actual IO submission is step 520 * two, and the ordered work queue takes care of making sure that 521 * happens in the same order things were put onto the queue by 522 * writepages and friends. 523 * 524 * If this code finds it can't get good compression, it puts an 525 * entry onto the work queue to write the uncompressed bytes. This 526 * makes sure that both compressed inodes and uncompressed inodes 527 * are written in the same order that the flusher thread sent them 528 * down. 529 */ 530 static noinline int compress_file_range(struct async_chunk *async_chunk) 531 { 532 struct inode *inode = async_chunk->inode; 533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 534 u64 blocksize = fs_info->sectorsize; 535 u64 start = async_chunk->start; 536 u64 end = async_chunk->end; 537 u64 actual_end; 538 u64 i_size; 539 int ret = 0; 540 struct page **pages = NULL; 541 unsigned long nr_pages; 542 unsigned long total_compressed = 0; 543 unsigned long total_in = 0; 544 int i; 545 int will_compress; 546 int compress_type = fs_info->compress_type; 547 int compressed_extents = 0; 548 int redirty = 0; 549 550 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 551 SZ_16K); 552 553 /* 554 * We need to save i_size before now because it could change in between 555 * us evaluating the size and assigning it. This is because we lock and 556 * unlock the page in truncate and fallocate, and then modify the i_size 557 * later on. 558 * 559 * The barriers are to emulate READ_ONCE, remove that once i_size_read 560 * does that for us. 561 */ 562 barrier(); 563 i_size = i_size_read(inode); 564 barrier(); 565 actual_end = min_t(u64, i_size, end + 1); 566 again: 567 will_compress = 0; 568 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 569 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 570 nr_pages = min_t(unsigned long, nr_pages, 571 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 572 573 /* 574 * we don't want to send crud past the end of i_size through 575 * compression, that's just a waste of CPU time. So, if the 576 * end of the file is before the start of our current 577 * requested range of bytes, we bail out to the uncompressed 578 * cleanup code that can deal with all of this. 579 * 580 * It isn't really the fastest way to fix things, but this is a 581 * very uncommon corner. 582 */ 583 if (actual_end <= start) 584 goto cleanup_and_bail_uncompressed; 585 586 total_compressed = actual_end - start; 587 588 /* 589 * skip compression for a small file range(<=blocksize) that 590 * isn't an inline extent, since it doesn't save disk space at all. 591 */ 592 if (total_compressed <= blocksize && 593 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 594 goto cleanup_and_bail_uncompressed; 595 596 total_compressed = min_t(unsigned long, total_compressed, 597 BTRFS_MAX_UNCOMPRESSED); 598 total_in = 0; 599 ret = 0; 600 601 /* 602 * we do compression for mount -o compress and when the 603 * inode has not been flagged as nocompress. This flag can 604 * change at any time if we discover bad compression ratios. 605 */ 606 if (inode_need_compress(BTRFS_I(inode), start, end)) { 607 WARN_ON(pages); 608 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 609 if (!pages) { 610 /* just bail out to the uncompressed code */ 611 nr_pages = 0; 612 goto cont; 613 } 614 615 if (BTRFS_I(inode)->defrag_compress) 616 compress_type = BTRFS_I(inode)->defrag_compress; 617 else if (BTRFS_I(inode)->prop_compress) 618 compress_type = BTRFS_I(inode)->prop_compress; 619 620 /* 621 * we need to call clear_page_dirty_for_io on each 622 * page in the range. Otherwise applications with the file 623 * mmap'd can wander in and change the page contents while 624 * we are compressing them. 625 * 626 * If the compression fails for any reason, we set the pages 627 * dirty again later on. 628 * 629 * Note that the remaining part is redirtied, the start pointer 630 * has moved, the end is the original one. 631 */ 632 if (!redirty) { 633 extent_range_clear_dirty_for_io(inode, start, end); 634 redirty = 1; 635 } 636 637 /* Compression level is applied here and only here */ 638 ret = btrfs_compress_pages( 639 compress_type | (fs_info->compress_level << 4), 640 inode->i_mapping, start, 641 pages, 642 &nr_pages, 643 &total_in, 644 &total_compressed); 645 646 if (!ret) { 647 unsigned long offset = offset_in_page(total_compressed); 648 struct page *page = pages[nr_pages - 1]; 649 650 /* zero the tail end of the last page, we might be 651 * sending it down to disk 652 */ 653 if (offset) 654 memzero_page(page, offset, PAGE_SIZE - offset); 655 will_compress = 1; 656 } 657 } 658 cont: 659 if (start == 0) { 660 /* lets try to make an inline extent */ 661 if (ret || total_in < actual_end) { 662 /* we didn't compress the entire range, try 663 * to make an uncompressed inline extent. 664 */ 665 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 666 0, BTRFS_COMPRESS_NONE, 667 NULL); 668 } else { 669 /* try making a compressed inline extent */ 670 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 671 total_compressed, 672 compress_type, pages); 673 } 674 if (ret <= 0) { 675 unsigned long clear_flags = EXTENT_DELALLOC | 676 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 677 EXTENT_DO_ACCOUNTING; 678 unsigned long page_error_op; 679 680 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 681 682 /* 683 * inline extent creation worked or returned error, 684 * we don't need to create any more async work items. 685 * Unlock and free up our temp pages. 686 * 687 * We use DO_ACCOUNTING here because we need the 688 * delalloc_release_metadata to be done _after_ we drop 689 * our outstanding extent for clearing delalloc for this 690 * range. 691 */ 692 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 693 NULL, 694 clear_flags, 695 PAGE_UNLOCK | 696 PAGE_START_WRITEBACK | 697 page_error_op | 698 PAGE_END_WRITEBACK); 699 700 /* 701 * Ensure we only free the compressed pages if we have 702 * them allocated, as we can still reach here with 703 * inode_need_compress() == false. 704 */ 705 if (pages) { 706 for (i = 0; i < nr_pages; i++) { 707 WARN_ON(pages[i]->mapping); 708 put_page(pages[i]); 709 } 710 kfree(pages); 711 } 712 return 0; 713 } 714 } 715 716 if (will_compress) { 717 /* 718 * we aren't doing an inline extent round the compressed size 719 * up to a block size boundary so the allocator does sane 720 * things 721 */ 722 total_compressed = ALIGN(total_compressed, blocksize); 723 724 /* 725 * one last check to make sure the compression is really a 726 * win, compare the page count read with the blocks on disk, 727 * compression must free at least one sector size 728 */ 729 total_in = ALIGN(total_in, PAGE_SIZE); 730 if (total_compressed + blocksize <= total_in) { 731 compressed_extents++; 732 733 /* 734 * The async work queues will take care of doing actual 735 * allocation on disk for these compressed pages, and 736 * will submit them to the elevator. 737 */ 738 add_async_extent(async_chunk, start, total_in, 739 total_compressed, pages, nr_pages, 740 compress_type); 741 742 if (start + total_in < end) { 743 start += total_in; 744 pages = NULL; 745 cond_resched(); 746 goto again; 747 } 748 return compressed_extents; 749 } 750 } 751 if (pages) { 752 /* 753 * the compression code ran but failed to make things smaller, 754 * free any pages it allocated and our page pointer array 755 */ 756 for (i = 0; i < nr_pages; i++) { 757 WARN_ON(pages[i]->mapping); 758 put_page(pages[i]); 759 } 760 kfree(pages); 761 pages = NULL; 762 total_compressed = 0; 763 nr_pages = 0; 764 765 /* flag the file so we don't compress in the future */ 766 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 767 !(BTRFS_I(inode)->prop_compress)) { 768 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 769 } 770 } 771 cleanup_and_bail_uncompressed: 772 /* 773 * No compression, but we still need to write the pages in the file 774 * we've been given so far. redirty the locked page if it corresponds 775 * to our extent and set things up for the async work queue to run 776 * cow_file_range to do the normal delalloc dance. 777 */ 778 if (async_chunk->locked_page && 779 (page_offset(async_chunk->locked_page) >= start && 780 page_offset(async_chunk->locked_page)) <= end) { 781 __set_page_dirty_nobuffers(async_chunk->locked_page); 782 /* unlocked later on in the async handlers */ 783 } 784 785 if (redirty) 786 extent_range_redirty_for_io(inode, start, end); 787 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 788 BTRFS_COMPRESS_NONE); 789 compressed_extents++; 790 791 return compressed_extents; 792 } 793 794 static void free_async_extent_pages(struct async_extent *async_extent) 795 { 796 int i; 797 798 if (!async_extent->pages) 799 return; 800 801 for (i = 0; i < async_extent->nr_pages; i++) { 802 WARN_ON(async_extent->pages[i]->mapping); 803 put_page(async_extent->pages[i]); 804 } 805 kfree(async_extent->pages); 806 async_extent->nr_pages = 0; 807 async_extent->pages = NULL; 808 } 809 810 /* 811 * phase two of compressed writeback. This is the ordered portion 812 * of the code, which only gets called in the order the work was 813 * queued. We walk all the async extents created by compress_file_range 814 * and send them down to the disk. 815 */ 816 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 817 { 818 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 819 struct btrfs_fs_info *fs_info = inode->root->fs_info; 820 struct async_extent *async_extent; 821 u64 alloc_hint = 0; 822 struct btrfs_key ins; 823 struct extent_map *em; 824 struct btrfs_root *root = inode->root; 825 struct extent_io_tree *io_tree = &inode->io_tree; 826 int ret = 0; 827 828 again: 829 while (!list_empty(&async_chunk->extents)) { 830 async_extent = list_entry(async_chunk->extents.next, 831 struct async_extent, list); 832 list_del(&async_extent->list); 833 834 retry: 835 lock_extent(io_tree, async_extent->start, 836 async_extent->start + async_extent->ram_size - 1); 837 /* did the compression code fall back to uncompressed IO? */ 838 if (!async_extent->pages) { 839 int page_started = 0; 840 unsigned long nr_written = 0; 841 842 /* allocate blocks */ 843 ret = cow_file_range(inode, async_chunk->locked_page, 844 async_extent->start, 845 async_extent->start + 846 async_extent->ram_size - 1, 847 &page_started, &nr_written, 0); 848 849 /* JDM XXX */ 850 851 /* 852 * if page_started, cow_file_range inserted an 853 * inline extent and took care of all the unlocking 854 * and IO for us. Otherwise, we need to submit 855 * all those pages down to the drive. 856 */ 857 if (!page_started && !ret) 858 extent_write_locked_range(&inode->vfs_inode, 859 async_extent->start, 860 async_extent->start + 861 async_extent->ram_size - 1, 862 WB_SYNC_ALL); 863 else if (ret && async_chunk->locked_page) 864 unlock_page(async_chunk->locked_page); 865 kfree(async_extent); 866 cond_resched(); 867 continue; 868 } 869 870 ret = btrfs_reserve_extent(root, async_extent->ram_size, 871 async_extent->compressed_size, 872 async_extent->compressed_size, 873 0, alloc_hint, &ins, 1, 1); 874 if (ret) { 875 free_async_extent_pages(async_extent); 876 877 if (ret == -ENOSPC) { 878 unlock_extent(io_tree, async_extent->start, 879 async_extent->start + 880 async_extent->ram_size - 1); 881 882 /* 883 * we need to redirty the pages if we decide to 884 * fallback to uncompressed IO, otherwise we 885 * will not submit these pages down to lower 886 * layers. 887 */ 888 extent_range_redirty_for_io(&inode->vfs_inode, 889 async_extent->start, 890 async_extent->start + 891 async_extent->ram_size - 1); 892 893 goto retry; 894 } 895 goto out_free; 896 } 897 /* 898 * here we're doing allocation and writeback of the 899 * compressed pages 900 */ 901 em = create_io_em(inode, async_extent->start, 902 async_extent->ram_size, /* len */ 903 async_extent->start, /* orig_start */ 904 ins.objectid, /* block_start */ 905 ins.offset, /* block_len */ 906 ins.offset, /* orig_block_len */ 907 async_extent->ram_size, /* ram_bytes */ 908 async_extent->compress_type, 909 BTRFS_ORDERED_COMPRESSED); 910 if (IS_ERR(em)) 911 /* ret value is not necessary due to void function */ 912 goto out_free_reserve; 913 free_extent_map(em); 914 915 ret = btrfs_add_ordered_extent_compress(inode, 916 async_extent->start, 917 ins.objectid, 918 async_extent->ram_size, 919 ins.offset, 920 async_extent->compress_type); 921 if (ret) { 922 btrfs_drop_extent_cache(inode, async_extent->start, 923 async_extent->start + 924 async_extent->ram_size - 1, 0); 925 goto out_free_reserve; 926 } 927 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 928 929 /* 930 * clear dirty, set writeback and unlock the pages. 931 */ 932 extent_clear_unlock_delalloc(inode, async_extent->start, 933 async_extent->start + 934 async_extent->ram_size - 1, 935 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 936 PAGE_UNLOCK | PAGE_START_WRITEBACK); 937 if (btrfs_submit_compressed_write(inode, async_extent->start, 938 async_extent->ram_size, 939 ins.objectid, 940 ins.offset, async_extent->pages, 941 async_extent->nr_pages, 942 async_chunk->write_flags, 943 async_chunk->blkcg_css)) { 944 struct page *p = async_extent->pages[0]; 945 const u64 start = async_extent->start; 946 const u64 end = start + async_extent->ram_size - 1; 947 948 p->mapping = inode->vfs_inode.i_mapping; 949 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 950 951 p->mapping = NULL; 952 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 953 PAGE_END_WRITEBACK | 954 PAGE_SET_ERROR); 955 free_async_extent_pages(async_extent); 956 } 957 alloc_hint = ins.objectid + ins.offset; 958 kfree(async_extent); 959 cond_resched(); 960 } 961 return; 962 out_free_reserve: 963 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 964 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 965 out_free: 966 extent_clear_unlock_delalloc(inode, async_extent->start, 967 async_extent->start + 968 async_extent->ram_size - 1, 969 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 970 EXTENT_DELALLOC_NEW | 971 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 972 PAGE_UNLOCK | PAGE_START_WRITEBACK | 973 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 974 free_async_extent_pages(async_extent); 975 kfree(async_extent); 976 goto again; 977 } 978 979 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 980 u64 num_bytes) 981 { 982 struct extent_map_tree *em_tree = &inode->extent_tree; 983 struct extent_map *em; 984 u64 alloc_hint = 0; 985 986 read_lock(&em_tree->lock); 987 em = search_extent_mapping(em_tree, start, num_bytes); 988 if (em) { 989 /* 990 * if block start isn't an actual block number then find the 991 * first block in this inode and use that as a hint. If that 992 * block is also bogus then just don't worry about it. 993 */ 994 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 995 free_extent_map(em); 996 em = search_extent_mapping(em_tree, 0, 0); 997 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 998 alloc_hint = em->block_start; 999 if (em) 1000 free_extent_map(em); 1001 } else { 1002 alloc_hint = em->block_start; 1003 free_extent_map(em); 1004 } 1005 } 1006 read_unlock(&em_tree->lock); 1007 1008 return alloc_hint; 1009 } 1010 1011 /* 1012 * when extent_io.c finds a delayed allocation range in the file, 1013 * the call backs end up in this code. The basic idea is to 1014 * allocate extents on disk for the range, and create ordered data structs 1015 * in ram to track those extents. 1016 * 1017 * locked_page is the page that writepage had locked already. We use 1018 * it to make sure we don't do extra locks or unlocks. 1019 * 1020 * *page_started is set to one if we unlock locked_page and do everything 1021 * required to start IO on it. It may be clean and already done with 1022 * IO when we return. 1023 */ 1024 static noinline int cow_file_range(struct btrfs_inode *inode, 1025 struct page *locked_page, 1026 u64 start, u64 end, int *page_started, 1027 unsigned long *nr_written, int unlock) 1028 { 1029 struct btrfs_root *root = inode->root; 1030 struct btrfs_fs_info *fs_info = root->fs_info; 1031 u64 alloc_hint = 0; 1032 u64 num_bytes; 1033 unsigned long ram_size; 1034 u64 cur_alloc_size = 0; 1035 u64 min_alloc_size; 1036 u64 blocksize = fs_info->sectorsize; 1037 struct btrfs_key ins; 1038 struct extent_map *em; 1039 unsigned clear_bits; 1040 unsigned long page_ops; 1041 bool extent_reserved = false; 1042 int ret = 0; 1043 1044 if (btrfs_is_free_space_inode(inode)) { 1045 WARN_ON_ONCE(1); 1046 ret = -EINVAL; 1047 goto out_unlock; 1048 } 1049 1050 num_bytes = ALIGN(end - start + 1, blocksize); 1051 num_bytes = max(blocksize, num_bytes); 1052 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1053 1054 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1055 1056 if (start == 0) { 1057 /* lets try to make an inline extent */ 1058 ret = cow_file_range_inline(inode, start, end, 0, 1059 BTRFS_COMPRESS_NONE, NULL); 1060 if (ret == 0) { 1061 /* 1062 * We use DO_ACCOUNTING here because we need the 1063 * delalloc_release_metadata to be run _after_ we drop 1064 * our outstanding extent for clearing delalloc for this 1065 * range. 1066 */ 1067 extent_clear_unlock_delalloc(inode, start, end, NULL, 1068 EXTENT_LOCKED | EXTENT_DELALLOC | 1069 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1070 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1071 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1072 *nr_written = *nr_written + 1073 (end - start + PAGE_SIZE) / PAGE_SIZE; 1074 *page_started = 1; 1075 goto out; 1076 } else if (ret < 0) { 1077 goto out_unlock; 1078 } 1079 } 1080 1081 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1082 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1083 1084 /* 1085 * Relocation relies on the relocated extents to have exactly the same 1086 * size as the original extents. Normally writeback for relocation data 1087 * extents follows a NOCOW path because relocation preallocates the 1088 * extents. However, due to an operation such as scrub turning a block 1089 * group to RO mode, it may fallback to COW mode, so we must make sure 1090 * an extent allocated during COW has exactly the requested size and can 1091 * not be split into smaller extents, otherwise relocation breaks and 1092 * fails during the stage where it updates the bytenr of file extent 1093 * items. 1094 */ 1095 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1096 min_alloc_size = num_bytes; 1097 else 1098 min_alloc_size = fs_info->sectorsize; 1099 1100 while (num_bytes > 0) { 1101 cur_alloc_size = num_bytes; 1102 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1103 min_alloc_size, 0, alloc_hint, 1104 &ins, 1, 1); 1105 if (ret < 0) 1106 goto out_unlock; 1107 cur_alloc_size = ins.offset; 1108 extent_reserved = true; 1109 1110 ram_size = ins.offset; 1111 em = create_io_em(inode, start, ins.offset, /* len */ 1112 start, /* orig_start */ 1113 ins.objectid, /* block_start */ 1114 ins.offset, /* block_len */ 1115 ins.offset, /* orig_block_len */ 1116 ram_size, /* ram_bytes */ 1117 BTRFS_COMPRESS_NONE, /* compress_type */ 1118 BTRFS_ORDERED_REGULAR /* type */); 1119 if (IS_ERR(em)) { 1120 ret = PTR_ERR(em); 1121 goto out_reserve; 1122 } 1123 free_extent_map(em); 1124 1125 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1126 ram_size, cur_alloc_size, 1127 BTRFS_ORDERED_REGULAR); 1128 if (ret) 1129 goto out_drop_extent_cache; 1130 1131 if (root->root_key.objectid == 1132 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1133 ret = btrfs_reloc_clone_csums(inode, start, 1134 cur_alloc_size); 1135 /* 1136 * Only drop cache here, and process as normal. 1137 * 1138 * We must not allow extent_clear_unlock_delalloc() 1139 * at out_unlock label to free meta of this ordered 1140 * extent, as its meta should be freed by 1141 * btrfs_finish_ordered_io(). 1142 * 1143 * So we must continue until @start is increased to 1144 * skip current ordered extent. 1145 */ 1146 if (ret) 1147 btrfs_drop_extent_cache(inode, start, 1148 start + ram_size - 1, 0); 1149 } 1150 1151 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1152 1153 /* we're not doing compressed IO, don't unlock the first 1154 * page (which the caller expects to stay locked), don't 1155 * clear any dirty bits and don't set any writeback bits 1156 * 1157 * Do set the Private2 bit so we know this page was properly 1158 * setup for writepage 1159 */ 1160 page_ops = unlock ? PAGE_UNLOCK : 0; 1161 page_ops |= PAGE_SET_PRIVATE2; 1162 1163 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1164 locked_page, 1165 EXTENT_LOCKED | EXTENT_DELALLOC, 1166 page_ops); 1167 if (num_bytes < cur_alloc_size) 1168 num_bytes = 0; 1169 else 1170 num_bytes -= cur_alloc_size; 1171 alloc_hint = ins.objectid + ins.offset; 1172 start += cur_alloc_size; 1173 extent_reserved = false; 1174 1175 /* 1176 * btrfs_reloc_clone_csums() error, since start is increased 1177 * extent_clear_unlock_delalloc() at out_unlock label won't 1178 * free metadata of current ordered extent, we're OK to exit. 1179 */ 1180 if (ret) 1181 goto out_unlock; 1182 } 1183 out: 1184 return ret; 1185 1186 out_drop_extent_cache: 1187 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1188 out_reserve: 1189 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1191 out_unlock: 1192 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1193 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1194 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1195 /* 1196 * If we reserved an extent for our delalloc range (or a subrange) and 1197 * failed to create the respective ordered extent, then it means that 1198 * when we reserved the extent we decremented the extent's size from 1199 * the data space_info's bytes_may_use counter and incremented the 1200 * space_info's bytes_reserved counter by the same amount. We must make 1201 * sure extent_clear_unlock_delalloc() does not try to decrement again 1202 * the data space_info's bytes_may_use counter, therefore we do not pass 1203 * it the flag EXTENT_CLEAR_DATA_RESV. 1204 */ 1205 if (extent_reserved) { 1206 extent_clear_unlock_delalloc(inode, start, 1207 start + cur_alloc_size - 1, 1208 locked_page, 1209 clear_bits, 1210 page_ops); 1211 start += cur_alloc_size; 1212 if (start >= end) 1213 goto out; 1214 } 1215 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1216 clear_bits | EXTENT_CLEAR_DATA_RESV, 1217 page_ops); 1218 goto out; 1219 } 1220 1221 /* 1222 * work queue call back to started compression on a file and pages 1223 */ 1224 static noinline void async_cow_start(struct btrfs_work *work) 1225 { 1226 struct async_chunk *async_chunk; 1227 int compressed_extents; 1228 1229 async_chunk = container_of(work, struct async_chunk, work); 1230 1231 compressed_extents = compress_file_range(async_chunk); 1232 if (compressed_extents == 0) { 1233 btrfs_add_delayed_iput(async_chunk->inode); 1234 async_chunk->inode = NULL; 1235 } 1236 } 1237 1238 /* 1239 * work queue call back to submit previously compressed pages 1240 */ 1241 static noinline void async_cow_submit(struct btrfs_work *work) 1242 { 1243 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1244 work); 1245 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1246 unsigned long nr_pages; 1247 1248 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1249 PAGE_SHIFT; 1250 1251 /* atomic_sub_return implies a barrier */ 1252 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1253 5 * SZ_1M) 1254 cond_wake_up_nomb(&fs_info->async_submit_wait); 1255 1256 /* 1257 * ->inode could be NULL if async_chunk_start has failed to compress, 1258 * in which case we don't have anything to submit, yet we need to 1259 * always adjust ->async_delalloc_pages as its paired with the init 1260 * happening in cow_file_range_async 1261 */ 1262 if (async_chunk->inode) 1263 submit_compressed_extents(async_chunk); 1264 } 1265 1266 static noinline void async_cow_free(struct btrfs_work *work) 1267 { 1268 struct async_chunk *async_chunk; 1269 1270 async_chunk = container_of(work, struct async_chunk, work); 1271 if (async_chunk->inode) 1272 btrfs_add_delayed_iput(async_chunk->inode); 1273 if (async_chunk->blkcg_css) 1274 css_put(async_chunk->blkcg_css); 1275 /* 1276 * Since the pointer to 'pending' is at the beginning of the array of 1277 * async_chunk's, freeing it ensures the whole array has been freed. 1278 */ 1279 if (atomic_dec_and_test(async_chunk->pending)) 1280 kvfree(async_chunk->pending); 1281 } 1282 1283 static int cow_file_range_async(struct btrfs_inode *inode, 1284 struct writeback_control *wbc, 1285 struct page *locked_page, 1286 u64 start, u64 end, int *page_started, 1287 unsigned long *nr_written) 1288 { 1289 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1290 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1291 struct async_cow *ctx; 1292 struct async_chunk *async_chunk; 1293 unsigned long nr_pages; 1294 u64 cur_end; 1295 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1296 int i; 1297 bool should_compress; 1298 unsigned nofs_flag; 1299 const unsigned int write_flags = wbc_to_write_flags(wbc); 1300 1301 unlock_extent(&inode->io_tree, start, end); 1302 1303 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1304 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1305 num_chunks = 1; 1306 should_compress = false; 1307 } else { 1308 should_compress = true; 1309 } 1310 1311 nofs_flag = memalloc_nofs_save(); 1312 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1313 memalloc_nofs_restore(nofs_flag); 1314 1315 if (!ctx) { 1316 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1317 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1318 EXTENT_DO_ACCOUNTING; 1319 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1320 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1321 1322 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1323 clear_bits, page_ops); 1324 return -ENOMEM; 1325 } 1326 1327 async_chunk = ctx->chunks; 1328 atomic_set(&ctx->num_chunks, num_chunks); 1329 1330 for (i = 0; i < num_chunks; i++) { 1331 if (should_compress) 1332 cur_end = min(end, start + SZ_512K - 1); 1333 else 1334 cur_end = end; 1335 1336 /* 1337 * igrab is called higher up in the call chain, take only the 1338 * lightweight reference for the callback lifetime 1339 */ 1340 ihold(&inode->vfs_inode); 1341 async_chunk[i].pending = &ctx->num_chunks; 1342 async_chunk[i].inode = &inode->vfs_inode; 1343 async_chunk[i].start = start; 1344 async_chunk[i].end = cur_end; 1345 async_chunk[i].write_flags = write_flags; 1346 INIT_LIST_HEAD(&async_chunk[i].extents); 1347 1348 /* 1349 * The locked_page comes all the way from writepage and its 1350 * the original page we were actually given. As we spread 1351 * this large delalloc region across multiple async_chunk 1352 * structs, only the first struct needs a pointer to locked_page 1353 * 1354 * This way we don't need racey decisions about who is supposed 1355 * to unlock it. 1356 */ 1357 if (locked_page) { 1358 /* 1359 * Depending on the compressibility, the pages might or 1360 * might not go through async. We want all of them to 1361 * be accounted against wbc once. Let's do it here 1362 * before the paths diverge. wbc accounting is used 1363 * only for foreign writeback detection and doesn't 1364 * need full accuracy. Just account the whole thing 1365 * against the first page. 1366 */ 1367 wbc_account_cgroup_owner(wbc, locked_page, 1368 cur_end - start); 1369 async_chunk[i].locked_page = locked_page; 1370 locked_page = NULL; 1371 } else { 1372 async_chunk[i].locked_page = NULL; 1373 } 1374 1375 if (blkcg_css != blkcg_root_css) { 1376 css_get(blkcg_css); 1377 async_chunk[i].blkcg_css = blkcg_css; 1378 } else { 1379 async_chunk[i].blkcg_css = NULL; 1380 } 1381 1382 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1383 async_cow_submit, async_cow_free); 1384 1385 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1386 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1387 1388 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1389 1390 *nr_written += nr_pages; 1391 start = cur_end + 1; 1392 } 1393 *page_started = 1; 1394 return 0; 1395 } 1396 1397 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1398 struct page *locked_page, u64 start, 1399 u64 end, int *page_started, 1400 unsigned long *nr_written) 1401 { 1402 int ret; 1403 1404 ret = cow_file_range(inode, locked_page, start, end, page_started, 1405 nr_written, 0); 1406 if (ret) 1407 return ret; 1408 1409 if (*page_started) 1410 return 0; 1411 1412 __set_page_dirty_nobuffers(locked_page); 1413 account_page_redirty(locked_page); 1414 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); 1415 *page_started = 1; 1416 1417 return 0; 1418 } 1419 1420 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1421 u64 bytenr, u64 num_bytes) 1422 { 1423 int ret; 1424 struct btrfs_ordered_sum *sums; 1425 LIST_HEAD(list); 1426 1427 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1428 bytenr + num_bytes - 1, &list, 0); 1429 if (ret == 0 && list_empty(&list)) 1430 return 0; 1431 1432 while (!list_empty(&list)) { 1433 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1434 list_del(&sums->list); 1435 kfree(sums); 1436 } 1437 if (ret < 0) 1438 return ret; 1439 return 1; 1440 } 1441 1442 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1443 const u64 start, const u64 end, 1444 int *page_started, unsigned long *nr_written) 1445 { 1446 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1447 const bool is_reloc_ino = (inode->root->root_key.objectid == 1448 BTRFS_DATA_RELOC_TREE_OBJECTID); 1449 const u64 range_bytes = end + 1 - start; 1450 struct extent_io_tree *io_tree = &inode->io_tree; 1451 u64 range_start = start; 1452 u64 count; 1453 1454 /* 1455 * If EXTENT_NORESERVE is set it means that when the buffered write was 1456 * made we had not enough available data space and therefore we did not 1457 * reserve data space for it, since we though we could do NOCOW for the 1458 * respective file range (either there is prealloc extent or the inode 1459 * has the NOCOW bit set). 1460 * 1461 * However when we need to fallback to COW mode (because for example the 1462 * block group for the corresponding extent was turned to RO mode by a 1463 * scrub or relocation) we need to do the following: 1464 * 1465 * 1) We increment the bytes_may_use counter of the data space info. 1466 * If COW succeeds, it allocates a new data extent and after doing 1467 * that it decrements the space info's bytes_may_use counter and 1468 * increments its bytes_reserved counter by the same amount (we do 1469 * this at btrfs_add_reserved_bytes()). So we need to increment the 1470 * bytes_may_use counter to compensate (when space is reserved at 1471 * buffered write time, the bytes_may_use counter is incremented); 1472 * 1473 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1474 * that if the COW path fails for any reason, it decrements (through 1475 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1476 * data space info, which we incremented in the step above. 1477 * 1478 * If we need to fallback to cow and the inode corresponds to a free 1479 * space cache inode or an inode of the data relocation tree, we must 1480 * also increment bytes_may_use of the data space_info for the same 1481 * reason. Space caches and relocated data extents always get a prealloc 1482 * extent for them, however scrub or balance may have set the block 1483 * group that contains that extent to RO mode and therefore force COW 1484 * when starting writeback. 1485 */ 1486 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1487 EXTENT_NORESERVE, 0); 1488 if (count > 0 || is_space_ino || is_reloc_ino) { 1489 u64 bytes = count; 1490 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1491 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1492 1493 if (is_space_ino || is_reloc_ino) 1494 bytes = range_bytes; 1495 1496 spin_lock(&sinfo->lock); 1497 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1498 spin_unlock(&sinfo->lock); 1499 1500 if (count > 0) 1501 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1502 0, 0, NULL); 1503 } 1504 1505 return cow_file_range(inode, locked_page, start, end, page_started, 1506 nr_written, 1); 1507 } 1508 1509 /* 1510 * when nowcow writeback call back. This checks for snapshots or COW copies 1511 * of the extents that exist in the file, and COWs the file as required. 1512 * 1513 * If no cow copies or snapshots exist, we write directly to the existing 1514 * blocks on disk 1515 */ 1516 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1517 struct page *locked_page, 1518 const u64 start, const u64 end, 1519 int *page_started, 1520 unsigned long *nr_written) 1521 { 1522 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1523 struct btrfs_root *root = inode->root; 1524 struct btrfs_path *path; 1525 u64 cow_start = (u64)-1; 1526 u64 cur_offset = start; 1527 int ret; 1528 bool check_prev = true; 1529 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1530 u64 ino = btrfs_ino(inode); 1531 bool nocow = false; 1532 u64 disk_bytenr = 0; 1533 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1534 1535 path = btrfs_alloc_path(); 1536 if (!path) { 1537 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1538 EXTENT_LOCKED | EXTENT_DELALLOC | 1539 EXTENT_DO_ACCOUNTING | 1540 EXTENT_DEFRAG, PAGE_UNLOCK | 1541 PAGE_START_WRITEBACK | 1542 PAGE_END_WRITEBACK); 1543 return -ENOMEM; 1544 } 1545 1546 while (1) { 1547 struct btrfs_key found_key; 1548 struct btrfs_file_extent_item *fi; 1549 struct extent_buffer *leaf; 1550 u64 extent_end; 1551 u64 extent_offset; 1552 u64 num_bytes = 0; 1553 u64 disk_num_bytes; 1554 u64 ram_bytes; 1555 int extent_type; 1556 1557 nocow = false; 1558 1559 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1560 cur_offset, 0); 1561 if (ret < 0) 1562 goto error; 1563 1564 /* 1565 * If there is no extent for our range when doing the initial 1566 * search, then go back to the previous slot as it will be the 1567 * one containing the search offset 1568 */ 1569 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1570 leaf = path->nodes[0]; 1571 btrfs_item_key_to_cpu(leaf, &found_key, 1572 path->slots[0] - 1); 1573 if (found_key.objectid == ino && 1574 found_key.type == BTRFS_EXTENT_DATA_KEY) 1575 path->slots[0]--; 1576 } 1577 check_prev = false; 1578 next_slot: 1579 /* Go to next leaf if we have exhausted the current one */ 1580 leaf = path->nodes[0]; 1581 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1582 ret = btrfs_next_leaf(root, path); 1583 if (ret < 0) { 1584 if (cow_start != (u64)-1) 1585 cur_offset = cow_start; 1586 goto error; 1587 } 1588 if (ret > 0) 1589 break; 1590 leaf = path->nodes[0]; 1591 } 1592 1593 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1594 1595 /* Didn't find anything for our INO */ 1596 if (found_key.objectid > ino) 1597 break; 1598 /* 1599 * Keep searching until we find an EXTENT_ITEM or there are no 1600 * more extents for this inode 1601 */ 1602 if (WARN_ON_ONCE(found_key.objectid < ino) || 1603 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1604 path->slots[0]++; 1605 goto next_slot; 1606 } 1607 1608 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1609 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1610 found_key.offset > end) 1611 break; 1612 1613 /* 1614 * If the found extent starts after requested offset, then 1615 * adjust extent_end to be right before this extent begins 1616 */ 1617 if (found_key.offset > cur_offset) { 1618 extent_end = found_key.offset; 1619 extent_type = 0; 1620 goto out_check; 1621 } 1622 1623 /* 1624 * Found extent which begins before our range and potentially 1625 * intersect it 1626 */ 1627 fi = btrfs_item_ptr(leaf, path->slots[0], 1628 struct btrfs_file_extent_item); 1629 extent_type = btrfs_file_extent_type(leaf, fi); 1630 1631 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1632 if (extent_type == BTRFS_FILE_EXTENT_REG || 1633 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1634 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1635 extent_offset = btrfs_file_extent_offset(leaf, fi); 1636 extent_end = found_key.offset + 1637 btrfs_file_extent_num_bytes(leaf, fi); 1638 disk_num_bytes = 1639 btrfs_file_extent_disk_num_bytes(leaf, fi); 1640 /* 1641 * If the extent we got ends before our current offset, 1642 * skip to the next extent. 1643 */ 1644 if (extent_end <= cur_offset) { 1645 path->slots[0]++; 1646 goto next_slot; 1647 } 1648 /* Skip holes */ 1649 if (disk_bytenr == 0) 1650 goto out_check; 1651 /* Skip compressed/encrypted/encoded extents */ 1652 if (btrfs_file_extent_compression(leaf, fi) || 1653 btrfs_file_extent_encryption(leaf, fi) || 1654 btrfs_file_extent_other_encoding(leaf, fi)) 1655 goto out_check; 1656 /* 1657 * If extent is created before the last volume's snapshot 1658 * this implies the extent is shared, hence we can't do 1659 * nocow. This is the same check as in 1660 * btrfs_cross_ref_exist but without calling 1661 * btrfs_search_slot. 1662 */ 1663 if (!freespace_inode && 1664 btrfs_file_extent_generation(leaf, fi) <= 1665 btrfs_root_last_snapshot(&root->root_item)) 1666 goto out_check; 1667 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1668 goto out_check; 1669 1670 /* 1671 * The following checks can be expensive, as they need to 1672 * take other locks and do btree or rbtree searches, so 1673 * release the path to avoid blocking other tasks for too 1674 * long. 1675 */ 1676 btrfs_release_path(path); 1677 1678 ret = btrfs_cross_ref_exist(root, ino, 1679 found_key.offset - 1680 extent_offset, disk_bytenr, false); 1681 if (ret) { 1682 /* 1683 * ret could be -EIO if the above fails to read 1684 * metadata. 1685 */ 1686 if (ret < 0) { 1687 if (cow_start != (u64)-1) 1688 cur_offset = cow_start; 1689 goto error; 1690 } 1691 1692 WARN_ON_ONCE(freespace_inode); 1693 goto out_check; 1694 } 1695 disk_bytenr += extent_offset; 1696 disk_bytenr += cur_offset - found_key.offset; 1697 num_bytes = min(end + 1, extent_end) - cur_offset; 1698 /* 1699 * If there are pending snapshots for this root, we 1700 * fall into common COW way 1701 */ 1702 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1703 goto out_check; 1704 /* 1705 * force cow if csum exists in the range. 1706 * this ensure that csum for a given extent are 1707 * either valid or do not exist. 1708 */ 1709 ret = csum_exist_in_range(fs_info, disk_bytenr, 1710 num_bytes); 1711 if (ret) { 1712 /* 1713 * ret could be -EIO if the above fails to read 1714 * metadata. 1715 */ 1716 if (ret < 0) { 1717 if (cow_start != (u64)-1) 1718 cur_offset = cow_start; 1719 goto error; 1720 } 1721 WARN_ON_ONCE(freespace_inode); 1722 goto out_check; 1723 } 1724 /* If the extent's block group is RO, we must COW */ 1725 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1726 goto out_check; 1727 nocow = true; 1728 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1729 extent_end = found_key.offset + ram_bytes; 1730 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1731 /* Skip extents outside of our requested range */ 1732 if (extent_end <= start) { 1733 path->slots[0]++; 1734 goto next_slot; 1735 } 1736 } else { 1737 /* If this triggers then we have a memory corruption */ 1738 BUG(); 1739 } 1740 out_check: 1741 /* 1742 * If nocow is false then record the beginning of the range 1743 * that needs to be COWed 1744 */ 1745 if (!nocow) { 1746 if (cow_start == (u64)-1) 1747 cow_start = cur_offset; 1748 cur_offset = extent_end; 1749 if (cur_offset > end) 1750 break; 1751 if (!path->nodes[0]) 1752 continue; 1753 path->slots[0]++; 1754 goto next_slot; 1755 } 1756 1757 /* 1758 * COW range from cow_start to found_key.offset - 1. As the key 1759 * will contain the beginning of the first extent that can be 1760 * NOCOW, following one which needs to be COW'ed 1761 */ 1762 if (cow_start != (u64)-1) { 1763 ret = fallback_to_cow(inode, locked_page, 1764 cow_start, found_key.offset - 1, 1765 page_started, nr_written); 1766 if (ret) 1767 goto error; 1768 cow_start = (u64)-1; 1769 } 1770 1771 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1772 u64 orig_start = found_key.offset - extent_offset; 1773 struct extent_map *em; 1774 1775 em = create_io_em(inode, cur_offset, num_bytes, 1776 orig_start, 1777 disk_bytenr, /* block_start */ 1778 num_bytes, /* block_len */ 1779 disk_num_bytes, /* orig_block_len */ 1780 ram_bytes, BTRFS_COMPRESS_NONE, 1781 BTRFS_ORDERED_PREALLOC); 1782 if (IS_ERR(em)) { 1783 ret = PTR_ERR(em); 1784 goto error; 1785 } 1786 free_extent_map(em); 1787 ret = btrfs_add_ordered_extent(inode, cur_offset, 1788 disk_bytenr, num_bytes, 1789 num_bytes, 1790 BTRFS_ORDERED_PREALLOC); 1791 if (ret) { 1792 btrfs_drop_extent_cache(inode, cur_offset, 1793 cur_offset + num_bytes - 1, 1794 0); 1795 goto error; 1796 } 1797 } else { 1798 ret = btrfs_add_ordered_extent(inode, cur_offset, 1799 disk_bytenr, num_bytes, 1800 num_bytes, 1801 BTRFS_ORDERED_NOCOW); 1802 if (ret) 1803 goto error; 1804 } 1805 1806 if (nocow) 1807 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1808 nocow = false; 1809 1810 if (root->root_key.objectid == 1811 BTRFS_DATA_RELOC_TREE_OBJECTID) 1812 /* 1813 * Error handled later, as we must prevent 1814 * extent_clear_unlock_delalloc() in error handler 1815 * from freeing metadata of created ordered extent. 1816 */ 1817 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1818 num_bytes); 1819 1820 extent_clear_unlock_delalloc(inode, cur_offset, 1821 cur_offset + num_bytes - 1, 1822 locked_page, EXTENT_LOCKED | 1823 EXTENT_DELALLOC | 1824 EXTENT_CLEAR_DATA_RESV, 1825 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1826 1827 cur_offset = extent_end; 1828 1829 /* 1830 * btrfs_reloc_clone_csums() error, now we're OK to call error 1831 * handler, as metadata for created ordered extent will only 1832 * be freed by btrfs_finish_ordered_io(). 1833 */ 1834 if (ret) 1835 goto error; 1836 if (cur_offset > end) 1837 break; 1838 } 1839 btrfs_release_path(path); 1840 1841 if (cur_offset <= end && cow_start == (u64)-1) 1842 cow_start = cur_offset; 1843 1844 if (cow_start != (u64)-1) { 1845 cur_offset = end; 1846 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1847 page_started, nr_written); 1848 if (ret) 1849 goto error; 1850 } 1851 1852 error: 1853 if (nocow) 1854 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1855 1856 if (ret && cur_offset < end) 1857 extent_clear_unlock_delalloc(inode, cur_offset, end, 1858 locked_page, EXTENT_LOCKED | 1859 EXTENT_DELALLOC | EXTENT_DEFRAG | 1860 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1861 PAGE_START_WRITEBACK | 1862 PAGE_END_WRITEBACK); 1863 btrfs_free_path(path); 1864 return ret; 1865 } 1866 1867 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1868 { 1869 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1870 if (inode->defrag_bytes && 1871 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1872 0, NULL)) 1873 return false; 1874 return true; 1875 } 1876 return false; 1877 } 1878 1879 /* 1880 * Function to process delayed allocation (create CoW) for ranges which are 1881 * being touched for the first time. 1882 */ 1883 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1884 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1885 struct writeback_control *wbc) 1886 { 1887 int ret; 1888 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1889 1890 if (should_nocow(inode, start, end)) { 1891 ASSERT(!zoned); 1892 ret = run_delalloc_nocow(inode, locked_page, start, end, 1893 page_started, nr_written); 1894 } else if (!inode_can_compress(inode) || 1895 !inode_need_compress(inode, start, end)) { 1896 if (zoned) 1897 ret = run_delalloc_zoned(inode, locked_page, start, end, 1898 page_started, nr_written); 1899 else 1900 ret = cow_file_range(inode, locked_page, start, end, 1901 page_started, nr_written, 1); 1902 } else { 1903 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1904 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1905 page_started, nr_written); 1906 } 1907 if (ret) 1908 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1909 end - start + 1); 1910 return ret; 1911 } 1912 1913 void btrfs_split_delalloc_extent(struct inode *inode, 1914 struct extent_state *orig, u64 split) 1915 { 1916 u64 size; 1917 1918 /* not delalloc, ignore it */ 1919 if (!(orig->state & EXTENT_DELALLOC)) 1920 return; 1921 1922 size = orig->end - orig->start + 1; 1923 if (size > BTRFS_MAX_EXTENT_SIZE) { 1924 u32 num_extents; 1925 u64 new_size; 1926 1927 /* 1928 * See the explanation in btrfs_merge_delalloc_extent, the same 1929 * applies here, just in reverse. 1930 */ 1931 new_size = orig->end - split + 1; 1932 num_extents = count_max_extents(new_size); 1933 new_size = split - orig->start; 1934 num_extents += count_max_extents(new_size); 1935 if (count_max_extents(size) >= num_extents) 1936 return; 1937 } 1938 1939 spin_lock(&BTRFS_I(inode)->lock); 1940 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1941 spin_unlock(&BTRFS_I(inode)->lock); 1942 } 1943 1944 /* 1945 * Handle merged delayed allocation extents so we can keep track of new extents 1946 * that are just merged onto old extents, such as when we are doing sequential 1947 * writes, so we can properly account for the metadata space we'll need. 1948 */ 1949 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1950 struct extent_state *other) 1951 { 1952 u64 new_size, old_size; 1953 u32 num_extents; 1954 1955 /* not delalloc, ignore it */ 1956 if (!(other->state & EXTENT_DELALLOC)) 1957 return; 1958 1959 if (new->start > other->start) 1960 new_size = new->end - other->start + 1; 1961 else 1962 new_size = other->end - new->start + 1; 1963 1964 /* we're not bigger than the max, unreserve the space and go */ 1965 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1966 spin_lock(&BTRFS_I(inode)->lock); 1967 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1968 spin_unlock(&BTRFS_I(inode)->lock); 1969 return; 1970 } 1971 1972 /* 1973 * We have to add up either side to figure out how many extents were 1974 * accounted for before we merged into one big extent. If the number of 1975 * extents we accounted for is <= the amount we need for the new range 1976 * then we can return, otherwise drop. Think of it like this 1977 * 1978 * [ 4k][MAX_SIZE] 1979 * 1980 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1981 * need 2 outstanding extents, on one side we have 1 and the other side 1982 * we have 1 so they are == and we can return. But in this case 1983 * 1984 * [MAX_SIZE+4k][MAX_SIZE+4k] 1985 * 1986 * Each range on their own accounts for 2 extents, but merged together 1987 * they are only 3 extents worth of accounting, so we need to drop in 1988 * this case. 1989 */ 1990 old_size = other->end - other->start + 1; 1991 num_extents = count_max_extents(old_size); 1992 old_size = new->end - new->start + 1; 1993 num_extents += count_max_extents(old_size); 1994 if (count_max_extents(new_size) >= num_extents) 1995 return; 1996 1997 spin_lock(&BTRFS_I(inode)->lock); 1998 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1999 spin_unlock(&BTRFS_I(inode)->lock); 2000 } 2001 2002 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2003 struct inode *inode) 2004 { 2005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2006 2007 spin_lock(&root->delalloc_lock); 2008 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2009 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2010 &root->delalloc_inodes); 2011 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2012 &BTRFS_I(inode)->runtime_flags); 2013 root->nr_delalloc_inodes++; 2014 if (root->nr_delalloc_inodes == 1) { 2015 spin_lock(&fs_info->delalloc_root_lock); 2016 BUG_ON(!list_empty(&root->delalloc_root)); 2017 list_add_tail(&root->delalloc_root, 2018 &fs_info->delalloc_roots); 2019 spin_unlock(&fs_info->delalloc_root_lock); 2020 } 2021 } 2022 spin_unlock(&root->delalloc_lock); 2023 } 2024 2025 2026 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2027 struct btrfs_inode *inode) 2028 { 2029 struct btrfs_fs_info *fs_info = root->fs_info; 2030 2031 if (!list_empty(&inode->delalloc_inodes)) { 2032 list_del_init(&inode->delalloc_inodes); 2033 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2034 &inode->runtime_flags); 2035 root->nr_delalloc_inodes--; 2036 if (!root->nr_delalloc_inodes) { 2037 ASSERT(list_empty(&root->delalloc_inodes)); 2038 spin_lock(&fs_info->delalloc_root_lock); 2039 BUG_ON(list_empty(&root->delalloc_root)); 2040 list_del_init(&root->delalloc_root); 2041 spin_unlock(&fs_info->delalloc_root_lock); 2042 } 2043 } 2044 } 2045 2046 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2047 struct btrfs_inode *inode) 2048 { 2049 spin_lock(&root->delalloc_lock); 2050 __btrfs_del_delalloc_inode(root, inode); 2051 spin_unlock(&root->delalloc_lock); 2052 } 2053 2054 /* 2055 * Properly track delayed allocation bytes in the inode and to maintain the 2056 * list of inodes that have pending delalloc work to be done. 2057 */ 2058 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2059 unsigned *bits) 2060 { 2061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2062 2063 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2064 WARN_ON(1); 2065 /* 2066 * set_bit and clear bit hooks normally require _irqsave/restore 2067 * but in this case, we are only testing for the DELALLOC 2068 * bit, which is only set or cleared with irqs on 2069 */ 2070 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2071 struct btrfs_root *root = BTRFS_I(inode)->root; 2072 u64 len = state->end + 1 - state->start; 2073 u32 num_extents = count_max_extents(len); 2074 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2075 2076 spin_lock(&BTRFS_I(inode)->lock); 2077 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2078 spin_unlock(&BTRFS_I(inode)->lock); 2079 2080 /* For sanity tests */ 2081 if (btrfs_is_testing(fs_info)) 2082 return; 2083 2084 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2085 fs_info->delalloc_batch); 2086 spin_lock(&BTRFS_I(inode)->lock); 2087 BTRFS_I(inode)->delalloc_bytes += len; 2088 if (*bits & EXTENT_DEFRAG) 2089 BTRFS_I(inode)->defrag_bytes += len; 2090 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2091 &BTRFS_I(inode)->runtime_flags)) 2092 btrfs_add_delalloc_inodes(root, inode); 2093 spin_unlock(&BTRFS_I(inode)->lock); 2094 } 2095 2096 if (!(state->state & EXTENT_DELALLOC_NEW) && 2097 (*bits & EXTENT_DELALLOC_NEW)) { 2098 spin_lock(&BTRFS_I(inode)->lock); 2099 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2100 state->start; 2101 spin_unlock(&BTRFS_I(inode)->lock); 2102 } 2103 } 2104 2105 /* 2106 * Once a range is no longer delalloc this function ensures that proper 2107 * accounting happens. 2108 */ 2109 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2110 struct extent_state *state, unsigned *bits) 2111 { 2112 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2113 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2114 u64 len = state->end + 1 - state->start; 2115 u32 num_extents = count_max_extents(len); 2116 2117 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2118 spin_lock(&inode->lock); 2119 inode->defrag_bytes -= len; 2120 spin_unlock(&inode->lock); 2121 } 2122 2123 /* 2124 * set_bit and clear bit hooks normally require _irqsave/restore 2125 * but in this case, we are only testing for the DELALLOC 2126 * bit, which is only set or cleared with irqs on 2127 */ 2128 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2129 struct btrfs_root *root = inode->root; 2130 bool do_list = !btrfs_is_free_space_inode(inode); 2131 2132 spin_lock(&inode->lock); 2133 btrfs_mod_outstanding_extents(inode, -num_extents); 2134 spin_unlock(&inode->lock); 2135 2136 /* 2137 * We don't reserve metadata space for space cache inodes so we 2138 * don't need to call delalloc_release_metadata if there is an 2139 * error. 2140 */ 2141 if (*bits & EXTENT_CLEAR_META_RESV && 2142 root != fs_info->tree_root) 2143 btrfs_delalloc_release_metadata(inode, len, false); 2144 2145 /* For sanity tests. */ 2146 if (btrfs_is_testing(fs_info)) 2147 return; 2148 2149 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2150 do_list && !(state->state & EXTENT_NORESERVE) && 2151 (*bits & EXTENT_CLEAR_DATA_RESV)) 2152 btrfs_free_reserved_data_space_noquota(fs_info, len); 2153 2154 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2155 fs_info->delalloc_batch); 2156 spin_lock(&inode->lock); 2157 inode->delalloc_bytes -= len; 2158 if (do_list && inode->delalloc_bytes == 0 && 2159 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2160 &inode->runtime_flags)) 2161 btrfs_del_delalloc_inode(root, inode); 2162 spin_unlock(&inode->lock); 2163 } 2164 2165 if ((state->state & EXTENT_DELALLOC_NEW) && 2166 (*bits & EXTENT_DELALLOC_NEW)) { 2167 spin_lock(&inode->lock); 2168 ASSERT(inode->new_delalloc_bytes >= len); 2169 inode->new_delalloc_bytes -= len; 2170 if (*bits & EXTENT_ADD_INODE_BYTES) 2171 inode_add_bytes(&inode->vfs_inode, len); 2172 spin_unlock(&inode->lock); 2173 } 2174 } 2175 2176 /* 2177 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2178 * in a chunk's stripe. This function ensures that bios do not span a 2179 * stripe/chunk 2180 * 2181 * @page - The page we are about to add to the bio 2182 * @size - size we want to add to the bio 2183 * @bio - bio we want to ensure is smaller than a stripe 2184 * @bio_flags - flags of the bio 2185 * 2186 * return 1 if page cannot be added to the bio 2187 * return 0 if page can be added to the bio 2188 * return error otherwise 2189 */ 2190 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2191 unsigned long bio_flags) 2192 { 2193 struct inode *inode = page->mapping->host; 2194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2195 u64 logical = bio->bi_iter.bi_sector << 9; 2196 struct extent_map *em; 2197 u64 length = 0; 2198 u64 map_length; 2199 int ret = 0; 2200 struct btrfs_io_geometry geom; 2201 2202 if (bio_flags & EXTENT_BIO_COMPRESSED) 2203 return 0; 2204 2205 length = bio->bi_iter.bi_size; 2206 map_length = length; 2207 em = btrfs_get_chunk_map(fs_info, logical, map_length); 2208 if (IS_ERR(em)) 2209 return PTR_ERR(em); 2210 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, 2211 map_length, &geom); 2212 if (ret < 0) 2213 goto out; 2214 2215 if (geom.len < length + size) 2216 ret = 1; 2217 out: 2218 free_extent_map(em); 2219 return ret; 2220 } 2221 2222 /* 2223 * in order to insert checksums into the metadata in large chunks, 2224 * we wait until bio submission time. All the pages in the bio are 2225 * checksummed and sums are attached onto the ordered extent record. 2226 * 2227 * At IO completion time the cums attached on the ordered extent record 2228 * are inserted into the btree 2229 */ 2230 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2231 u64 dio_file_offset) 2232 { 2233 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2234 } 2235 2236 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio, 2237 unsigned int size) 2238 { 2239 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2240 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2241 struct btrfs_ordered_extent *ordered; 2242 u64 len = bio->bi_iter.bi_size + size; 2243 bool ret = true; 2244 2245 ASSERT(btrfs_is_zoned(fs_info)); 2246 ASSERT(fs_info->max_zone_append_size > 0); 2247 ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND); 2248 2249 /* Ordered extent not yet created, so we're good */ 2250 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 2251 if (!ordered) 2252 return ret; 2253 2254 if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len > 2255 ordered->disk_bytenr + ordered->disk_num_bytes) 2256 ret = false; 2257 2258 btrfs_put_ordered_extent(ordered); 2259 2260 return ret; 2261 } 2262 2263 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2264 struct bio *bio, loff_t file_offset) 2265 { 2266 struct btrfs_ordered_extent *ordered; 2267 struct extent_map *em = NULL, *em_new = NULL; 2268 struct extent_map_tree *em_tree = &inode->extent_tree; 2269 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2270 u64 len = bio->bi_iter.bi_size; 2271 u64 end = start + len; 2272 u64 ordered_end; 2273 u64 pre, post; 2274 int ret = 0; 2275 2276 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2277 if (WARN_ON_ONCE(!ordered)) 2278 return BLK_STS_IOERR; 2279 2280 /* No need to split */ 2281 if (ordered->disk_num_bytes == len) 2282 goto out; 2283 2284 /* We cannot split once end_bio'd ordered extent */ 2285 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2286 ret = -EINVAL; 2287 goto out; 2288 } 2289 2290 /* We cannot split a compressed ordered extent */ 2291 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2292 ret = -EINVAL; 2293 goto out; 2294 } 2295 2296 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2297 /* bio must be in one ordered extent */ 2298 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2299 ret = -EINVAL; 2300 goto out; 2301 } 2302 2303 /* Checksum list should be empty */ 2304 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2305 ret = -EINVAL; 2306 goto out; 2307 } 2308 2309 pre = start - ordered->disk_bytenr; 2310 post = ordered_end - end; 2311 2312 ret = btrfs_split_ordered_extent(ordered, pre, post); 2313 if (ret) 2314 goto out; 2315 2316 read_lock(&em_tree->lock); 2317 em = lookup_extent_mapping(em_tree, ordered->file_offset, len); 2318 if (!em) { 2319 read_unlock(&em_tree->lock); 2320 ret = -EIO; 2321 goto out; 2322 } 2323 read_unlock(&em_tree->lock); 2324 2325 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2326 /* 2327 * We cannot reuse em_new here but have to create a new one, as 2328 * unpin_extent_cache() expects the start of the extent map to be the 2329 * logical offset of the file, which does not hold true anymore after 2330 * splitting. 2331 */ 2332 em_new = create_io_em(inode, em->start + pre, len, 2333 em->start + pre, em->block_start + pre, len, 2334 len, len, BTRFS_COMPRESS_NONE, 2335 BTRFS_ORDERED_REGULAR); 2336 if (IS_ERR(em_new)) { 2337 ret = PTR_ERR(em_new); 2338 goto out; 2339 } 2340 free_extent_map(em_new); 2341 2342 out: 2343 free_extent_map(em); 2344 btrfs_put_ordered_extent(ordered); 2345 2346 return errno_to_blk_status(ret); 2347 } 2348 2349 /* 2350 * extent_io.c submission hook. This does the right thing for csum calculation 2351 * on write, or reading the csums from the tree before a read. 2352 * 2353 * Rules about async/sync submit, 2354 * a) read: sync submit 2355 * 2356 * b) write without checksum: sync submit 2357 * 2358 * c) write with checksum: 2359 * c-1) if bio is issued by fsync: sync submit 2360 * (sync_writers != 0) 2361 * 2362 * c-2) if root is reloc root: sync submit 2363 * (only in case of buffered IO) 2364 * 2365 * c-3) otherwise: async submit 2366 */ 2367 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2368 int mirror_num, unsigned long bio_flags) 2369 2370 { 2371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2372 struct btrfs_root *root = BTRFS_I(inode)->root; 2373 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2374 blk_status_t ret = 0; 2375 int skip_sum; 2376 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2377 2378 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2379 !fs_info->csum_root; 2380 2381 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2382 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2383 2384 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2385 struct page *page = bio_first_bvec_all(bio)->bv_page; 2386 loff_t file_offset = page_offset(page); 2387 2388 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2389 if (ret) 2390 goto out; 2391 } 2392 2393 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2394 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2395 if (ret) 2396 goto out; 2397 2398 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2399 ret = btrfs_submit_compressed_read(inode, bio, 2400 mirror_num, 2401 bio_flags); 2402 goto out; 2403 } else { 2404 /* 2405 * Lookup bio sums does extra checks around whether we 2406 * need to csum or not, which is why we ignore skip_sum 2407 * here. 2408 */ 2409 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2410 if (ret) 2411 goto out; 2412 } 2413 goto mapit; 2414 } else if (async && !skip_sum) { 2415 /* csum items have already been cloned */ 2416 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2417 goto mapit; 2418 /* we're doing a write, do the async checksumming */ 2419 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2420 0, btrfs_submit_bio_start); 2421 goto out; 2422 } else if (!skip_sum) { 2423 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2424 if (ret) 2425 goto out; 2426 } 2427 2428 mapit: 2429 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2430 2431 out: 2432 if (ret) { 2433 bio->bi_status = ret; 2434 bio_endio(bio); 2435 } 2436 return ret; 2437 } 2438 2439 /* 2440 * given a list of ordered sums record them in the inode. This happens 2441 * at IO completion time based on sums calculated at bio submission time. 2442 */ 2443 static int add_pending_csums(struct btrfs_trans_handle *trans, 2444 struct list_head *list) 2445 { 2446 struct btrfs_ordered_sum *sum; 2447 int ret; 2448 2449 list_for_each_entry(sum, list, list) { 2450 trans->adding_csums = true; 2451 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2452 trans->adding_csums = false; 2453 if (ret) 2454 return ret; 2455 } 2456 return 0; 2457 } 2458 2459 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2460 const u64 start, 2461 const u64 len, 2462 struct extent_state **cached_state) 2463 { 2464 u64 search_start = start; 2465 const u64 end = start + len - 1; 2466 2467 while (search_start < end) { 2468 const u64 search_len = end - search_start + 1; 2469 struct extent_map *em; 2470 u64 em_len; 2471 int ret = 0; 2472 2473 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2474 if (IS_ERR(em)) 2475 return PTR_ERR(em); 2476 2477 if (em->block_start != EXTENT_MAP_HOLE) 2478 goto next; 2479 2480 em_len = em->len; 2481 if (em->start < search_start) 2482 em_len -= search_start - em->start; 2483 if (em_len > search_len) 2484 em_len = search_len; 2485 2486 ret = set_extent_bit(&inode->io_tree, search_start, 2487 search_start + em_len - 1, 2488 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2489 GFP_NOFS, NULL); 2490 next: 2491 search_start = extent_map_end(em); 2492 free_extent_map(em); 2493 if (ret) 2494 return ret; 2495 } 2496 return 0; 2497 } 2498 2499 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2500 unsigned int extra_bits, 2501 struct extent_state **cached_state) 2502 { 2503 WARN_ON(PAGE_ALIGNED(end)); 2504 2505 if (start >= i_size_read(&inode->vfs_inode) && 2506 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2507 /* 2508 * There can't be any extents following eof in this case so just 2509 * set the delalloc new bit for the range directly. 2510 */ 2511 extra_bits |= EXTENT_DELALLOC_NEW; 2512 } else { 2513 int ret; 2514 2515 ret = btrfs_find_new_delalloc_bytes(inode, start, 2516 end + 1 - start, 2517 cached_state); 2518 if (ret) 2519 return ret; 2520 } 2521 2522 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2523 cached_state); 2524 } 2525 2526 /* see btrfs_writepage_start_hook for details on why this is required */ 2527 struct btrfs_writepage_fixup { 2528 struct page *page; 2529 struct inode *inode; 2530 struct btrfs_work work; 2531 }; 2532 2533 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2534 { 2535 struct btrfs_writepage_fixup *fixup; 2536 struct btrfs_ordered_extent *ordered; 2537 struct extent_state *cached_state = NULL; 2538 struct extent_changeset *data_reserved = NULL; 2539 struct page *page; 2540 struct btrfs_inode *inode; 2541 u64 page_start; 2542 u64 page_end; 2543 int ret = 0; 2544 bool free_delalloc_space = true; 2545 2546 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2547 page = fixup->page; 2548 inode = BTRFS_I(fixup->inode); 2549 page_start = page_offset(page); 2550 page_end = page_offset(page) + PAGE_SIZE - 1; 2551 2552 /* 2553 * This is similar to page_mkwrite, we need to reserve the space before 2554 * we take the page lock. 2555 */ 2556 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2557 PAGE_SIZE); 2558 again: 2559 lock_page(page); 2560 2561 /* 2562 * Before we queued this fixup, we took a reference on the page. 2563 * page->mapping may go NULL, but it shouldn't be moved to a different 2564 * address space. 2565 */ 2566 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2567 /* 2568 * Unfortunately this is a little tricky, either 2569 * 2570 * 1) We got here and our page had already been dealt with and 2571 * we reserved our space, thus ret == 0, so we need to just 2572 * drop our space reservation and bail. This can happen the 2573 * first time we come into the fixup worker, or could happen 2574 * while waiting for the ordered extent. 2575 * 2) Our page was already dealt with, but we happened to get an 2576 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2577 * this case we obviously don't have anything to release, but 2578 * because the page was already dealt with we don't want to 2579 * mark the page with an error, so make sure we're resetting 2580 * ret to 0. This is why we have this check _before_ the ret 2581 * check, because we do not want to have a surprise ENOSPC 2582 * when the page was already properly dealt with. 2583 */ 2584 if (!ret) { 2585 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2586 btrfs_delalloc_release_space(inode, data_reserved, 2587 page_start, PAGE_SIZE, 2588 true); 2589 } 2590 ret = 0; 2591 goto out_page; 2592 } 2593 2594 /* 2595 * We can't mess with the page state unless it is locked, so now that 2596 * it is locked bail if we failed to make our space reservation. 2597 */ 2598 if (ret) 2599 goto out_page; 2600 2601 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2602 2603 /* already ordered? We're done */ 2604 if (PagePrivate2(page)) 2605 goto out_reserved; 2606 2607 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2608 if (ordered) { 2609 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2610 &cached_state); 2611 unlock_page(page); 2612 btrfs_start_ordered_extent(ordered, 1); 2613 btrfs_put_ordered_extent(ordered); 2614 goto again; 2615 } 2616 2617 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2618 &cached_state); 2619 if (ret) 2620 goto out_reserved; 2621 2622 /* 2623 * Everything went as planned, we're now the owner of a dirty page with 2624 * delayed allocation bits set and space reserved for our COW 2625 * destination. 2626 * 2627 * The page was dirty when we started, nothing should have cleaned it. 2628 */ 2629 BUG_ON(!PageDirty(page)); 2630 free_delalloc_space = false; 2631 out_reserved: 2632 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2633 if (free_delalloc_space) 2634 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2635 PAGE_SIZE, true); 2636 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2637 &cached_state); 2638 out_page: 2639 if (ret) { 2640 /* 2641 * We hit ENOSPC or other errors. Update the mapping and page 2642 * to reflect the errors and clean the page. 2643 */ 2644 mapping_set_error(page->mapping, ret); 2645 end_extent_writepage(page, ret, page_start, page_end); 2646 clear_page_dirty_for_io(page); 2647 SetPageError(page); 2648 } 2649 ClearPageChecked(page); 2650 unlock_page(page); 2651 put_page(page); 2652 kfree(fixup); 2653 extent_changeset_free(data_reserved); 2654 /* 2655 * As a precaution, do a delayed iput in case it would be the last iput 2656 * that could need flushing space. Recursing back to fixup worker would 2657 * deadlock. 2658 */ 2659 btrfs_add_delayed_iput(&inode->vfs_inode); 2660 } 2661 2662 /* 2663 * There are a few paths in the higher layers of the kernel that directly 2664 * set the page dirty bit without asking the filesystem if it is a 2665 * good idea. This causes problems because we want to make sure COW 2666 * properly happens and the data=ordered rules are followed. 2667 * 2668 * In our case any range that doesn't have the ORDERED bit set 2669 * hasn't been properly setup for IO. We kick off an async process 2670 * to fix it up. The async helper will wait for ordered extents, set 2671 * the delalloc bit and make it safe to write the page. 2672 */ 2673 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2674 { 2675 struct inode *inode = page->mapping->host; 2676 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2677 struct btrfs_writepage_fixup *fixup; 2678 2679 /* this page is properly in the ordered list */ 2680 if (TestClearPagePrivate2(page)) 2681 return 0; 2682 2683 /* 2684 * PageChecked is set below when we create a fixup worker for this page, 2685 * don't try to create another one if we're already PageChecked() 2686 * 2687 * The extent_io writepage code will redirty the page if we send back 2688 * EAGAIN. 2689 */ 2690 if (PageChecked(page)) 2691 return -EAGAIN; 2692 2693 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2694 if (!fixup) 2695 return -EAGAIN; 2696 2697 /* 2698 * We are already holding a reference to this inode from 2699 * write_cache_pages. We need to hold it because the space reservation 2700 * takes place outside of the page lock, and we can't trust 2701 * page->mapping outside of the page lock. 2702 */ 2703 ihold(inode); 2704 SetPageChecked(page); 2705 get_page(page); 2706 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2707 fixup->page = page; 2708 fixup->inode = inode; 2709 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2710 2711 return -EAGAIN; 2712 } 2713 2714 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2715 struct btrfs_inode *inode, u64 file_pos, 2716 struct btrfs_file_extent_item *stack_fi, 2717 const bool update_inode_bytes, 2718 u64 qgroup_reserved) 2719 { 2720 struct btrfs_root *root = inode->root; 2721 const u64 sectorsize = root->fs_info->sectorsize; 2722 struct btrfs_path *path; 2723 struct extent_buffer *leaf; 2724 struct btrfs_key ins; 2725 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2726 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2727 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2728 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2729 struct btrfs_drop_extents_args drop_args = { 0 }; 2730 int ret; 2731 2732 path = btrfs_alloc_path(); 2733 if (!path) 2734 return -ENOMEM; 2735 2736 /* 2737 * we may be replacing one extent in the tree with another. 2738 * The new extent is pinned in the extent map, and we don't want 2739 * to drop it from the cache until it is completely in the btree. 2740 * 2741 * So, tell btrfs_drop_extents to leave this extent in the cache. 2742 * the caller is expected to unpin it and allow it to be merged 2743 * with the others. 2744 */ 2745 drop_args.path = path; 2746 drop_args.start = file_pos; 2747 drop_args.end = file_pos + num_bytes; 2748 drop_args.replace_extent = true; 2749 drop_args.extent_item_size = sizeof(*stack_fi); 2750 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2751 if (ret) 2752 goto out; 2753 2754 if (!drop_args.extent_inserted) { 2755 ins.objectid = btrfs_ino(inode); 2756 ins.offset = file_pos; 2757 ins.type = BTRFS_EXTENT_DATA_KEY; 2758 2759 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2760 sizeof(*stack_fi)); 2761 if (ret) 2762 goto out; 2763 } 2764 leaf = path->nodes[0]; 2765 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2766 write_extent_buffer(leaf, stack_fi, 2767 btrfs_item_ptr_offset(leaf, path->slots[0]), 2768 sizeof(struct btrfs_file_extent_item)); 2769 2770 btrfs_mark_buffer_dirty(leaf); 2771 btrfs_release_path(path); 2772 2773 /* 2774 * If we dropped an inline extent here, we know the range where it is 2775 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2776 * number of bytes only for that range contaning the inline extent. 2777 * The remaining of the range will be processed when clearning the 2778 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2779 */ 2780 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2781 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2782 2783 inline_size = drop_args.bytes_found - inline_size; 2784 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2785 drop_args.bytes_found -= inline_size; 2786 num_bytes -= sectorsize; 2787 } 2788 2789 if (update_inode_bytes) 2790 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2791 2792 ins.objectid = disk_bytenr; 2793 ins.offset = disk_num_bytes; 2794 ins.type = BTRFS_EXTENT_ITEM_KEY; 2795 2796 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2797 if (ret) 2798 goto out; 2799 2800 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2801 file_pos, qgroup_reserved, &ins); 2802 out: 2803 btrfs_free_path(path); 2804 2805 return ret; 2806 } 2807 2808 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2809 u64 start, u64 len) 2810 { 2811 struct btrfs_block_group *cache; 2812 2813 cache = btrfs_lookup_block_group(fs_info, start); 2814 ASSERT(cache); 2815 2816 spin_lock(&cache->lock); 2817 cache->delalloc_bytes -= len; 2818 spin_unlock(&cache->lock); 2819 2820 btrfs_put_block_group(cache); 2821 } 2822 2823 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2824 struct btrfs_ordered_extent *oe) 2825 { 2826 struct btrfs_file_extent_item stack_fi; 2827 u64 logical_len; 2828 bool update_inode_bytes; 2829 2830 memset(&stack_fi, 0, sizeof(stack_fi)); 2831 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2832 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2833 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2834 oe->disk_num_bytes); 2835 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2836 logical_len = oe->truncated_len; 2837 else 2838 logical_len = oe->num_bytes; 2839 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2840 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2841 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2842 /* Encryption and other encoding is reserved and all 0 */ 2843 2844 /* 2845 * For delalloc, when completing an ordered extent we update the inode's 2846 * bytes when clearing the range in the inode's io tree, so pass false 2847 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2848 * except if the ordered extent was truncated. 2849 */ 2850 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2851 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2852 2853 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2854 oe->file_offset, &stack_fi, 2855 update_inode_bytes, oe->qgroup_rsv); 2856 } 2857 2858 /* 2859 * As ordered data IO finishes, this gets called so we can finish 2860 * an ordered extent if the range of bytes in the file it covers are 2861 * fully written. 2862 */ 2863 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2864 { 2865 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2866 struct btrfs_root *root = inode->root; 2867 struct btrfs_fs_info *fs_info = root->fs_info; 2868 struct btrfs_trans_handle *trans = NULL; 2869 struct extent_io_tree *io_tree = &inode->io_tree; 2870 struct extent_state *cached_state = NULL; 2871 u64 start, end; 2872 int compress_type = 0; 2873 int ret = 0; 2874 u64 logical_len = ordered_extent->num_bytes; 2875 bool freespace_inode; 2876 bool truncated = false; 2877 bool clear_reserved_extent = true; 2878 unsigned int clear_bits = EXTENT_DEFRAG; 2879 2880 start = ordered_extent->file_offset; 2881 end = start + ordered_extent->num_bytes - 1; 2882 2883 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2884 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2885 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2886 clear_bits |= EXTENT_DELALLOC_NEW; 2887 2888 freespace_inode = btrfs_is_free_space_inode(inode); 2889 2890 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2891 ret = -EIO; 2892 goto out; 2893 } 2894 2895 if (ordered_extent->disk) 2896 btrfs_rewrite_logical_zoned(ordered_extent); 2897 2898 btrfs_free_io_failure_record(inode, start, end); 2899 2900 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2901 truncated = true; 2902 logical_len = ordered_extent->truncated_len; 2903 /* Truncated the entire extent, don't bother adding */ 2904 if (!logical_len) 2905 goto out; 2906 } 2907 2908 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2909 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2910 2911 btrfs_inode_safe_disk_i_size_write(inode, 0); 2912 if (freespace_inode) 2913 trans = btrfs_join_transaction_spacecache(root); 2914 else 2915 trans = btrfs_join_transaction(root); 2916 if (IS_ERR(trans)) { 2917 ret = PTR_ERR(trans); 2918 trans = NULL; 2919 goto out; 2920 } 2921 trans->block_rsv = &inode->block_rsv; 2922 ret = btrfs_update_inode_fallback(trans, root, inode); 2923 if (ret) /* -ENOMEM or corruption */ 2924 btrfs_abort_transaction(trans, ret); 2925 goto out; 2926 } 2927 2928 clear_bits |= EXTENT_LOCKED; 2929 lock_extent_bits(io_tree, start, end, &cached_state); 2930 2931 if (freespace_inode) 2932 trans = btrfs_join_transaction_spacecache(root); 2933 else 2934 trans = btrfs_join_transaction(root); 2935 if (IS_ERR(trans)) { 2936 ret = PTR_ERR(trans); 2937 trans = NULL; 2938 goto out; 2939 } 2940 2941 trans->block_rsv = &inode->block_rsv; 2942 2943 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2944 compress_type = ordered_extent->compress_type; 2945 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2946 BUG_ON(compress_type); 2947 ret = btrfs_mark_extent_written(trans, inode, 2948 ordered_extent->file_offset, 2949 ordered_extent->file_offset + 2950 logical_len); 2951 } else { 2952 BUG_ON(root == fs_info->tree_root); 2953 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2954 if (!ret) { 2955 clear_reserved_extent = false; 2956 btrfs_release_delalloc_bytes(fs_info, 2957 ordered_extent->disk_bytenr, 2958 ordered_extent->disk_num_bytes); 2959 } 2960 } 2961 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 2962 ordered_extent->num_bytes, trans->transid); 2963 if (ret < 0) { 2964 btrfs_abort_transaction(trans, ret); 2965 goto out; 2966 } 2967 2968 ret = add_pending_csums(trans, &ordered_extent->list); 2969 if (ret) { 2970 btrfs_abort_transaction(trans, ret); 2971 goto out; 2972 } 2973 2974 /* 2975 * If this is a new delalloc range, clear its new delalloc flag to 2976 * update the inode's number of bytes. This needs to be done first 2977 * before updating the inode item. 2978 */ 2979 if ((clear_bits & EXTENT_DELALLOC_NEW) && 2980 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 2981 clear_extent_bit(&inode->io_tree, start, end, 2982 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 2983 0, 0, &cached_state); 2984 2985 btrfs_inode_safe_disk_i_size_write(inode, 0); 2986 ret = btrfs_update_inode_fallback(trans, root, inode); 2987 if (ret) { /* -ENOMEM or corruption */ 2988 btrfs_abort_transaction(trans, ret); 2989 goto out; 2990 } 2991 ret = 0; 2992 out: 2993 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 2994 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2995 &cached_state); 2996 2997 if (trans) 2998 btrfs_end_transaction(trans); 2999 3000 if (ret || truncated) { 3001 u64 unwritten_start = start; 3002 3003 if (truncated) 3004 unwritten_start += logical_len; 3005 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3006 3007 /* Drop the cache for the part of the extent we didn't write. */ 3008 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3009 3010 /* 3011 * If the ordered extent had an IOERR or something else went 3012 * wrong we need to return the space for this ordered extent 3013 * back to the allocator. We only free the extent in the 3014 * truncated case if we didn't write out the extent at all. 3015 * 3016 * If we made it past insert_reserved_file_extent before we 3017 * errored out then we don't need to do this as the accounting 3018 * has already been done. 3019 */ 3020 if ((ret || !logical_len) && 3021 clear_reserved_extent && 3022 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3023 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3024 /* 3025 * Discard the range before returning it back to the 3026 * free space pool 3027 */ 3028 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3029 btrfs_discard_extent(fs_info, 3030 ordered_extent->disk_bytenr, 3031 ordered_extent->disk_num_bytes, 3032 NULL); 3033 btrfs_free_reserved_extent(fs_info, 3034 ordered_extent->disk_bytenr, 3035 ordered_extent->disk_num_bytes, 1); 3036 } 3037 } 3038 3039 /* 3040 * This needs to be done to make sure anybody waiting knows we are done 3041 * updating everything for this ordered extent. 3042 */ 3043 btrfs_remove_ordered_extent(inode, ordered_extent); 3044 3045 /* once for us */ 3046 btrfs_put_ordered_extent(ordered_extent); 3047 /* once for the tree */ 3048 btrfs_put_ordered_extent(ordered_extent); 3049 3050 return ret; 3051 } 3052 3053 static void finish_ordered_fn(struct btrfs_work *work) 3054 { 3055 struct btrfs_ordered_extent *ordered_extent; 3056 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3057 btrfs_finish_ordered_io(ordered_extent); 3058 } 3059 3060 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3061 u64 end, int uptodate) 3062 { 3063 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3065 struct btrfs_ordered_extent *ordered_extent = NULL; 3066 struct btrfs_workqueue *wq; 3067 3068 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3069 3070 ClearPagePrivate2(page); 3071 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3072 end - start + 1, uptodate)) 3073 return; 3074 3075 if (btrfs_is_free_space_inode(inode)) 3076 wq = fs_info->endio_freespace_worker; 3077 else 3078 wq = fs_info->endio_write_workers; 3079 3080 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 3081 btrfs_queue_work(wq, &ordered_extent->work); 3082 } 3083 3084 /* 3085 * check_data_csum - verify checksum of one sector of uncompressed data 3086 * @inode: inode 3087 * @io_bio: btrfs_io_bio which contains the csum 3088 * @bio_offset: offset to the beginning of the bio (in bytes) 3089 * @page: page where is the data to be verified 3090 * @pgoff: offset inside the page 3091 * @start: logical offset in the file 3092 * 3093 * The length of such check is always one sector size. 3094 */ 3095 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 3096 u32 bio_offset, struct page *page, u32 pgoff, 3097 u64 start) 3098 { 3099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3100 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3101 char *kaddr; 3102 u32 len = fs_info->sectorsize; 3103 const u32 csum_size = fs_info->csum_size; 3104 unsigned int offset_sectors; 3105 u8 *csum_expected; 3106 u8 csum[BTRFS_CSUM_SIZE]; 3107 3108 ASSERT(pgoff + len <= PAGE_SIZE); 3109 3110 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3111 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; 3112 3113 kaddr = kmap_atomic(page); 3114 shash->tfm = fs_info->csum_shash; 3115 3116 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3117 3118 if (memcmp(csum, csum_expected, csum_size)) 3119 goto zeroit; 3120 3121 kunmap_atomic(kaddr); 3122 return 0; 3123 zeroit: 3124 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3125 io_bio->mirror_num); 3126 if (io_bio->device) 3127 btrfs_dev_stat_inc_and_print(io_bio->device, 3128 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3129 memset(kaddr + pgoff, 1, len); 3130 flush_dcache_page(page); 3131 kunmap_atomic(kaddr); 3132 return -EIO; 3133 } 3134 3135 /* 3136 * When reads are done, we need to check csums to verify the data is correct. 3137 * if there's a match, we allow the bio to finish. If not, the code in 3138 * extent_io.c will try to find good copies for us. 3139 * 3140 * @bio_offset: offset to the beginning of the bio (in bytes) 3141 * @start: file offset of the range start 3142 * @end: file offset of the range end (inclusive) 3143 */ 3144 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3145 struct page *page, u64 start, u64 end) 3146 { 3147 struct inode *inode = page->mapping->host; 3148 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3149 struct btrfs_root *root = BTRFS_I(inode)->root; 3150 const u32 sectorsize = root->fs_info->sectorsize; 3151 u32 pg_off; 3152 3153 if (PageChecked(page)) { 3154 ClearPageChecked(page); 3155 return 0; 3156 } 3157 3158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3159 return 0; 3160 3161 if (!root->fs_info->csum_root) 3162 return 0; 3163 3164 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3165 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3166 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3167 return 0; 3168 } 3169 3170 ASSERT(page_offset(page) <= start && 3171 end <= page_offset(page) + PAGE_SIZE - 1); 3172 for (pg_off = offset_in_page(start); 3173 pg_off < offset_in_page(end); 3174 pg_off += sectorsize, bio_offset += sectorsize) { 3175 int ret; 3176 3177 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off, 3178 page_offset(page) + pg_off); 3179 if (ret < 0) 3180 return -EIO; 3181 } 3182 return 0; 3183 } 3184 3185 /* 3186 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3187 * 3188 * @inode: The inode we want to perform iput on 3189 * 3190 * This function uses the generic vfs_inode::i_count to track whether we should 3191 * just decrement it (in case it's > 1) or if this is the last iput then link 3192 * the inode to the delayed iput machinery. Delayed iputs are processed at 3193 * transaction commit time/superblock commit/cleaner kthread. 3194 */ 3195 void btrfs_add_delayed_iput(struct inode *inode) 3196 { 3197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3198 struct btrfs_inode *binode = BTRFS_I(inode); 3199 3200 if (atomic_add_unless(&inode->i_count, -1, 1)) 3201 return; 3202 3203 atomic_inc(&fs_info->nr_delayed_iputs); 3204 spin_lock(&fs_info->delayed_iput_lock); 3205 ASSERT(list_empty(&binode->delayed_iput)); 3206 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3207 spin_unlock(&fs_info->delayed_iput_lock); 3208 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3209 wake_up_process(fs_info->cleaner_kthread); 3210 } 3211 3212 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3213 struct btrfs_inode *inode) 3214 { 3215 list_del_init(&inode->delayed_iput); 3216 spin_unlock(&fs_info->delayed_iput_lock); 3217 iput(&inode->vfs_inode); 3218 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3219 wake_up(&fs_info->delayed_iputs_wait); 3220 spin_lock(&fs_info->delayed_iput_lock); 3221 } 3222 3223 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3224 struct btrfs_inode *inode) 3225 { 3226 if (!list_empty(&inode->delayed_iput)) { 3227 spin_lock(&fs_info->delayed_iput_lock); 3228 if (!list_empty(&inode->delayed_iput)) 3229 run_delayed_iput_locked(fs_info, inode); 3230 spin_unlock(&fs_info->delayed_iput_lock); 3231 } 3232 } 3233 3234 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3235 { 3236 3237 spin_lock(&fs_info->delayed_iput_lock); 3238 while (!list_empty(&fs_info->delayed_iputs)) { 3239 struct btrfs_inode *inode; 3240 3241 inode = list_first_entry(&fs_info->delayed_iputs, 3242 struct btrfs_inode, delayed_iput); 3243 run_delayed_iput_locked(fs_info, inode); 3244 cond_resched_lock(&fs_info->delayed_iput_lock); 3245 } 3246 spin_unlock(&fs_info->delayed_iput_lock); 3247 } 3248 3249 /** 3250 * Wait for flushing all delayed iputs 3251 * 3252 * @fs_info: the filesystem 3253 * 3254 * This will wait on any delayed iputs that are currently running with KILLABLE 3255 * set. Once they are all done running we will return, unless we are killed in 3256 * which case we return EINTR. This helps in user operations like fallocate etc 3257 * that might get blocked on the iputs. 3258 * 3259 * Return EINTR if we were killed, 0 if nothing's pending 3260 */ 3261 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3262 { 3263 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3264 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3265 if (ret) 3266 return -EINTR; 3267 return 0; 3268 } 3269 3270 /* 3271 * This creates an orphan entry for the given inode in case something goes wrong 3272 * in the middle of an unlink. 3273 */ 3274 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3275 struct btrfs_inode *inode) 3276 { 3277 int ret; 3278 3279 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3280 if (ret && ret != -EEXIST) { 3281 btrfs_abort_transaction(trans, ret); 3282 return ret; 3283 } 3284 3285 return 0; 3286 } 3287 3288 /* 3289 * We have done the delete so we can go ahead and remove the orphan item for 3290 * this particular inode. 3291 */ 3292 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3293 struct btrfs_inode *inode) 3294 { 3295 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3296 } 3297 3298 /* 3299 * this cleans up any orphans that may be left on the list from the last use 3300 * of this root. 3301 */ 3302 int btrfs_orphan_cleanup(struct btrfs_root *root) 3303 { 3304 struct btrfs_fs_info *fs_info = root->fs_info; 3305 struct btrfs_path *path; 3306 struct extent_buffer *leaf; 3307 struct btrfs_key key, found_key; 3308 struct btrfs_trans_handle *trans; 3309 struct inode *inode; 3310 u64 last_objectid = 0; 3311 int ret = 0, nr_unlink = 0; 3312 3313 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3314 return 0; 3315 3316 path = btrfs_alloc_path(); 3317 if (!path) { 3318 ret = -ENOMEM; 3319 goto out; 3320 } 3321 path->reada = READA_BACK; 3322 3323 key.objectid = BTRFS_ORPHAN_OBJECTID; 3324 key.type = BTRFS_ORPHAN_ITEM_KEY; 3325 key.offset = (u64)-1; 3326 3327 while (1) { 3328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3329 if (ret < 0) 3330 goto out; 3331 3332 /* 3333 * if ret == 0 means we found what we were searching for, which 3334 * is weird, but possible, so only screw with path if we didn't 3335 * find the key and see if we have stuff that matches 3336 */ 3337 if (ret > 0) { 3338 ret = 0; 3339 if (path->slots[0] == 0) 3340 break; 3341 path->slots[0]--; 3342 } 3343 3344 /* pull out the item */ 3345 leaf = path->nodes[0]; 3346 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3347 3348 /* make sure the item matches what we want */ 3349 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3350 break; 3351 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3352 break; 3353 3354 /* release the path since we're done with it */ 3355 btrfs_release_path(path); 3356 3357 /* 3358 * this is where we are basically btrfs_lookup, without the 3359 * crossing root thing. we store the inode number in the 3360 * offset of the orphan item. 3361 */ 3362 3363 if (found_key.offset == last_objectid) { 3364 btrfs_err(fs_info, 3365 "Error removing orphan entry, stopping orphan cleanup"); 3366 ret = -EINVAL; 3367 goto out; 3368 } 3369 3370 last_objectid = found_key.offset; 3371 3372 found_key.objectid = found_key.offset; 3373 found_key.type = BTRFS_INODE_ITEM_KEY; 3374 found_key.offset = 0; 3375 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3376 ret = PTR_ERR_OR_ZERO(inode); 3377 if (ret && ret != -ENOENT) 3378 goto out; 3379 3380 if (ret == -ENOENT && root == fs_info->tree_root) { 3381 struct btrfs_root *dead_root; 3382 int is_dead_root = 0; 3383 3384 /* 3385 * This is an orphan in the tree root. Currently these 3386 * could come from 2 sources: 3387 * a) a root (snapshot/subvolume) deletion in progress 3388 * b) a free space cache inode 3389 * We need to distinguish those two, as the orphan item 3390 * for a root must not get deleted before the deletion 3391 * of the snapshot/subvolume's tree completes. 3392 * 3393 * btrfs_find_orphan_roots() ran before us, which has 3394 * found all deleted roots and loaded them into 3395 * fs_info->fs_roots_radix. So here we can find if an 3396 * orphan item corresponds to a deleted root by looking 3397 * up the root from that radix tree. 3398 */ 3399 3400 spin_lock(&fs_info->fs_roots_radix_lock); 3401 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3402 (unsigned long)found_key.objectid); 3403 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3404 is_dead_root = 1; 3405 spin_unlock(&fs_info->fs_roots_radix_lock); 3406 3407 if (is_dead_root) { 3408 /* prevent this orphan from being found again */ 3409 key.offset = found_key.objectid - 1; 3410 continue; 3411 } 3412 3413 } 3414 3415 /* 3416 * If we have an inode with links, there are a couple of 3417 * possibilities. Old kernels (before v3.12) used to create an 3418 * orphan item for truncate indicating that there were possibly 3419 * extent items past i_size that needed to be deleted. In v3.12, 3420 * truncate was changed to update i_size in sync with the extent 3421 * items, but the (useless) orphan item was still created. Since 3422 * v4.18, we don't create the orphan item for truncate at all. 3423 * 3424 * So, this item could mean that we need to do a truncate, but 3425 * only if this filesystem was last used on a pre-v3.12 kernel 3426 * and was not cleanly unmounted. The odds of that are quite 3427 * slim, and it's a pain to do the truncate now, so just delete 3428 * the orphan item. 3429 * 3430 * It's also possible that this orphan item was supposed to be 3431 * deleted but wasn't. The inode number may have been reused, 3432 * but either way, we can delete the orphan item. 3433 */ 3434 if (ret == -ENOENT || inode->i_nlink) { 3435 if (!ret) 3436 iput(inode); 3437 trans = btrfs_start_transaction(root, 1); 3438 if (IS_ERR(trans)) { 3439 ret = PTR_ERR(trans); 3440 goto out; 3441 } 3442 btrfs_debug(fs_info, "auto deleting %Lu", 3443 found_key.objectid); 3444 ret = btrfs_del_orphan_item(trans, root, 3445 found_key.objectid); 3446 btrfs_end_transaction(trans); 3447 if (ret) 3448 goto out; 3449 continue; 3450 } 3451 3452 nr_unlink++; 3453 3454 /* this will do delete_inode and everything for us */ 3455 iput(inode); 3456 } 3457 /* release the path since we're done with it */ 3458 btrfs_release_path(path); 3459 3460 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3461 3462 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3463 trans = btrfs_join_transaction(root); 3464 if (!IS_ERR(trans)) 3465 btrfs_end_transaction(trans); 3466 } 3467 3468 if (nr_unlink) 3469 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3470 3471 out: 3472 if (ret) 3473 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3474 btrfs_free_path(path); 3475 return ret; 3476 } 3477 3478 /* 3479 * very simple check to peek ahead in the leaf looking for xattrs. If we 3480 * don't find any xattrs, we know there can't be any acls. 3481 * 3482 * slot is the slot the inode is in, objectid is the objectid of the inode 3483 */ 3484 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3485 int slot, u64 objectid, 3486 int *first_xattr_slot) 3487 { 3488 u32 nritems = btrfs_header_nritems(leaf); 3489 struct btrfs_key found_key; 3490 static u64 xattr_access = 0; 3491 static u64 xattr_default = 0; 3492 int scanned = 0; 3493 3494 if (!xattr_access) { 3495 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3496 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3497 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3498 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3499 } 3500 3501 slot++; 3502 *first_xattr_slot = -1; 3503 while (slot < nritems) { 3504 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3505 3506 /* we found a different objectid, there must not be acls */ 3507 if (found_key.objectid != objectid) 3508 return 0; 3509 3510 /* we found an xattr, assume we've got an acl */ 3511 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3512 if (*first_xattr_slot == -1) 3513 *first_xattr_slot = slot; 3514 if (found_key.offset == xattr_access || 3515 found_key.offset == xattr_default) 3516 return 1; 3517 } 3518 3519 /* 3520 * we found a key greater than an xattr key, there can't 3521 * be any acls later on 3522 */ 3523 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3524 return 0; 3525 3526 slot++; 3527 scanned++; 3528 3529 /* 3530 * it goes inode, inode backrefs, xattrs, extents, 3531 * so if there are a ton of hard links to an inode there can 3532 * be a lot of backrefs. Don't waste time searching too hard, 3533 * this is just an optimization 3534 */ 3535 if (scanned >= 8) 3536 break; 3537 } 3538 /* we hit the end of the leaf before we found an xattr or 3539 * something larger than an xattr. We have to assume the inode 3540 * has acls 3541 */ 3542 if (*first_xattr_slot == -1) 3543 *first_xattr_slot = slot; 3544 return 1; 3545 } 3546 3547 /* 3548 * read an inode from the btree into the in-memory inode 3549 */ 3550 static int btrfs_read_locked_inode(struct inode *inode, 3551 struct btrfs_path *in_path) 3552 { 3553 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3554 struct btrfs_path *path = in_path; 3555 struct extent_buffer *leaf; 3556 struct btrfs_inode_item *inode_item; 3557 struct btrfs_root *root = BTRFS_I(inode)->root; 3558 struct btrfs_key location; 3559 unsigned long ptr; 3560 int maybe_acls; 3561 u32 rdev; 3562 int ret; 3563 bool filled = false; 3564 int first_xattr_slot; 3565 3566 ret = btrfs_fill_inode(inode, &rdev); 3567 if (!ret) 3568 filled = true; 3569 3570 if (!path) { 3571 path = btrfs_alloc_path(); 3572 if (!path) 3573 return -ENOMEM; 3574 } 3575 3576 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3577 3578 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3579 if (ret) { 3580 if (path != in_path) 3581 btrfs_free_path(path); 3582 return ret; 3583 } 3584 3585 leaf = path->nodes[0]; 3586 3587 if (filled) 3588 goto cache_index; 3589 3590 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3591 struct btrfs_inode_item); 3592 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3593 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3594 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3595 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3596 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3597 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3598 round_up(i_size_read(inode), fs_info->sectorsize)); 3599 3600 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3601 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3602 3603 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3604 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3605 3606 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3607 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3608 3609 BTRFS_I(inode)->i_otime.tv_sec = 3610 btrfs_timespec_sec(leaf, &inode_item->otime); 3611 BTRFS_I(inode)->i_otime.tv_nsec = 3612 btrfs_timespec_nsec(leaf, &inode_item->otime); 3613 3614 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3615 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3616 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3617 3618 inode_set_iversion_queried(inode, 3619 btrfs_inode_sequence(leaf, inode_item)); 3620 inode->i_generation = BTRFS_I(inode)->generation; 3621 inode->i_rdev = 0; 3622 rdev = btrfs_inode_rdev(leaf, inode_item); 3623 3624 BTRFS_I(inode)->index_cnt = (u64)-1; 3625 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3626 3627 cache_index: 3628 /* 3629 * If we were modified in the current generation and evicted from memory 3630 * and then re-read we need to do a full sync since we don't have any 3631 * idea about which extents were modified before we were evicted from 3632 * cache. 3633 * 3634 * This is required for both inode re-read from disk and delayed inode 3635 * in delayed_nodes_tree. 3636 */ 3637 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3638 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3639 &BTRFS_I(inode)->runtime_flags); 3640 3641 /* 3642 * We don't persist the id of the transaction where an unlink operation 3643 * against the inode was last made. So here we assume the inode might 3644 * have been evicted, and therefore the exact value of last_unlink_trans 3645 * lost, and set it to last_trans to avoid metadata inconsistencies 3646 * between the inode and its parent if the inode is fsync'ed and the log 3647 * replayed. For example, in the scenario: 3648 * 3649 * touch mydir/foo 3650 * ln mydir/foo mydir/bar 3651 * sync 3652 * unlink mydir/bar 3653 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3654 * xfs_io -c fsync mydir/foo 3655 * <power failure> 3656 * mount fs, triggers fsync log replay 3657 * 3658 * We must make sure that when we fsync our inode foo we also log its 3659 * parent inode, otherwise after log replay the parent still has the 3660 * dentry with the "bar" name but our inode foo has a link count of 1 3661 * and doesn't have an inode ref with the name "bar" anymore. 3662 * 3663 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3664 * but it guarantees correctness at the expense of occasional full 3665 * transaction commits on fsync if our inode is a directory, or if our 3666 * inode is not a directory, logging its parent unnecessarily. 3667 */ 3668 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3669 3670 /* 3671 * Same logic as for last_unlink_trans. We don't persist the generation 3672 * of the last transaction where this inode was used for a reflink 3673 * operation, so after eviction and reloading the inode we must be 3674 * pessimistic and assume the last transaction that modified the inode. 3675 */ 3676 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3677 3678 path->slots[0]++; 3679 if (inode->i_nlink != 1 || 3680 path->slots[0] >= btrfs_header_nritems(leaf)) 3681 goto cache_acl; 3682 3683 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3684 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3685 goto cache_acl; 3686 3687 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3688 if (location.type == BTRFS_INODE_REF_KEY) { 3689 struct btrfs_inode_ref *ref; 3690 3691 ref = (struct btrfs_inode_ref *)ptr; 3692 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3693 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3694 struct btrfs_inode_extref *extref; 3695 3696 extref = (struct btrfs_inode_extref *)ptr; 3697 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3698 extref); 3699 } 3700 cache_acl: 3701 /* 3702 * try to precache a NULL acl entry for files that don't have 3703 * any xattrs or acls 3704 */ 3705 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3706 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3707 if (first_xattr_slot != -1) { 3708 path->slots[0] = first_xattr_slot; 3709 ret = btrfs_load_inode_props(inode, path); 3710 if (ret) 3711 btrfs_err(fs_info, 3712 "error loading props for ino %llu (root %llu): %d", 3713 btrfs_ino(BTRFS_I(inode)), 3714 root->root_key.objectid, ret); 3715 } 3716 if (path != in_path) 3717 btrfs_free_path(path); 3718 3719 if (!maybe_acls) 3720 cache_no_acl(inode); 3721 3722 switch (inode->i_mode & S_IFMT) { 3723 case S_IFREG: 3724 inode->i_mapping->a_ops = &btrfs_aops; 3725 inode->i_fop = &btrfs_file_operations; 3726 inode->i_op = &btrfs_file_inode_operations; 3727 break; 3728 case S_IFDIR: 3729 inode->i_fop = &btrfs_dir_file_operations; 3730 inode->i_op = &btrfs_dir_inode_operations; 3731 break; 3732 case S_IFLNK: 3733 inode->i_op = &btrfs_symlink_inode_operations; 3734 inode_nohighmem(inode); 3735 inode->i_mapping->a_ops = &btrfs_aops; 3736 break; 3737 default: 3738 inode->i_op = &btrfs_special_inode_operations; 3739 init_special_inode(inode, inode->i_mode, rdev); 3740 break; 3741 } 3742 3743 btrfs_sync_inode_flags_to_i_flags(inode); 3744 return 0; 3745 } 3746 3747 /* 3748 * given a leaf and an inode, copy the inode fields into the leaf 3749 */ 3750 static void fill_inode_item(struct btrfs_trans_handle *trans, 3751 struct extent_buffer *leaf, 3752 struct btrfs_inode_item *item, 3753 struct inode *inode) 3754 { 3755 struct btrfs_map_token token; 3756 3757 btrfs_init_map_token(&token, leaf); 3758 3759 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3760 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3761 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3762 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3763 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3764 3765 btrfs_set_token_timespec_sec(&token, &item->atime, 3766 inode->i_atime.tv_sec); 3767 btrfs_set_token_timespec_nsec(&token, &item->atime, 3768 inode->i_atime.tv_nsec); 3769 3770 btrfs_set_token_timespec_sec(&token, &item->mtime, 3771 inode->i_mtime.tv_sec); 3772 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3773 inode->i_mtime.tv_nsec); 3774 3775 btrfs_set_token_timespec_sec(&token, &item->ctime, 3776 inode->i_ctime.tv_sec); 3777 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3778 inode->i_ctime.tv_nsec); 3779 3780 btrfs_set_token_timespec_sec(&token, &item->otime, 3781 BTRFS_I(inode)->i_otime.tv_sec); 3782 btrfs_set_token_timespec_nsec(&token, &item->otime, 3783 BTRFS_I(inode)->i_otime.tv_nsec); 3784 3785 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3786 btrfs_set_token_inode_generation(&token, item, 3787 BTRFS_I(inode)->generation); 3788 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3789 btrfs_set_token_inode_transid(&token, item, trans->transid); 3790 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3791 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3792 btrfs_set_token_inode_block_group(&token, item, 0); 3793 } 3794 3795 /* 3796 * copy everything in the in-memory inode into the btree. 3797 */ 3798 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3799 struct btrfs_root *root, 3800 struct btrfs_inode *inode) 3801 { 3802 struct btrfs_inode_item *inode_item; 3803 struct btrfs_path *path; 3804 struct extent_buffer *leaf; 3805 int ret; 3806 3807 path = btrfs_alloc_path(); 3808 if (!path) 3809 return -ENOMEM; 3810 3811 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3812 if (ret) { 3813 if (ret > 0) 3814 ret = -ENOENT; 3815 goto failed; 3816 } 3817 3818 leaf = path->nodes[0]; 3819 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3820 struct btrfs_inode_item); 3821 3822 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3823 btrfs_mark_buffer_dirty(leaf); 3824 btrfs_set_inode_last_trans(trans, inode); 3825 ret = 0; 3826 failed: 3827 btrfs_free_path(path); 3828 return ret; 3829 } 3830 3831 /* 3832 * copy everything in the in-memory inode into the btree. 3833 */ 3834 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3835 struct btrfs_root *root, 3836 struct btrfs_inode *inode) 3837 { 3838 struct btrfs_fs_info *fs_info = root->fs_info; 3839 int ret; 3840 3841 /* 3842 * If the inode is a free space inode, we can deadlock during commit 3843 * if we put it into the delayed code. 3844 * 3845 * The data relocation inode should also be directly updated 3846 * without delay 3847 */ 3848 if (!btrfs_is_free_space_inode(inode) 3849 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3850 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3851 btrfs_update_root_times(trans, root); 3852 3853 ret = btrfs_delayed_update_inode(trans, root, inode); 3854 if (!ret) 3855 btrfs_set_inode_last_trans(trans, inode); 3856 return ret; 3857 } 3858 3859 return btrfs_update_inode_item(trans, root, inode); 3860 } 3861 3862 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3863 struct btrfs_root *root, struct btrfs_inode *inode) 3864 { 3865 int ret; 3866 3867 ret = btrfs_update_inode(trans, root, inode); 3868 if (ret == -ENOSPC) 3869 return btrfs_update_inode_item(trans, root, inode); 3870 return ret; 3871 } 3872 3873 /* 3874 * unlink helper that gets used here in inode.c and in the tree logging 3875 * recovery code. It remove a link in a directory with a given name, and 3876 * also drops the back refs in the inode to the directory 3877 */ 3878 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3879 struct btrfs_root *root, 3880 struct btrfs_inode *dir, 3881 struct btrfs_inode *inode, 3882 const char *name, int name_len) 3883 { 3884 struct btrfs_fs_info *fs_info = root->fs_info; 3885 struct btrfs_path *path; 3886 int ret = 0; 3887 struct btrfs_dir_item *di; 3888 u64 index; 3889 u64 ino = btrfs_ino(inode); 3890 u64 dir_ino = btrfs_ino(dir); 3891 3892 path = btrfs_alloc_path(); 3893 if (!path) { 3894 ret = -ENOMEM; 3895 goto out; 3896 } 3897 3898 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3899 name, name_len, -1); 3900 if (IS_ERR_OR_NULL(di)) { 3901 ret = di ? PTR_ERR(di) : -ENOENT; 3902 goto err; 3903 } 3904 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3905 if (ret) 3906 goto err; 3907 btrfs_release_path(path); 3908 3909 /* 3910 * If we don't have dir index, we have to get it by looking up 3911 * the inode ref, since we get the inode ref, remove it directly, 3912 * it is unnecessary to do delayed deletion. 3913 * 3914 * But if we have dir index, needn't search inode ref to get it. 3915 * Since the inode ref is close to the inode item, it is better 3916 * that we delay to delete it, and just do this deletion when 3917 * we update the inode item. 3918 */ 3919 if (inode->dir_index) { 3920 ret = btrfs_delayed_delete_inode_ref(inode); 3921 if (!ret) { 3922 index = inode->dir_index; 3923 goto skip_backref; 3924 } 3925 } 3926 3927 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3928 dir_ino, &index); 3929 if (ret) { 3930 btrfs_info(fs_info, 3931 "failed to delete reference to %.*s, inode %llu parent %llu", 3932 name_len, name, ino, dir_ino); 3933 btrfs_abort_transaction(trans, ret); 3934 goto err; 3935 } 3936 skip_backref: 3937 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3938 if (ret) { 3939 btrfs_abort_transaction(trans, ret); 3940 goto err; 3941 } 3942 3943 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3944 dir_ino); 3945 if (ret != 0 && ret != -ENOENT) { 3946 btrfs_abort_transaction(trans, ret); 3947 goto err; 3948 } 3949 3950 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3951 index); 3952 if (ret == -ENOENT) 3953 ret = 0; 3954 else if (ret) 3955 btrfs_abort_transaction(trans, ret); 3956 3957 /* 3958 * If we have a pending delayed iput we could end up with the final iput 3959 * being run in btrfs-cleaner context. If we have enough of these built 3960 * up we can end up burning a lot of time in btrfs-cleaner without any 3961 * way to throttle the unlinks. Since we're currently holding a ref on 3962 * the inode we can run the delayed iput here without any issues as the 3963 * final iput won't be done until after we drop the ref we're currently 3964 * holding. 3965 */ 3966 btrfs_run_delayed_iput(fs_info, inode); 3967 err: 3968 btrfs_free_path(path); 3969 if (ret) 3970 goto out; 3971 3972 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3973 inode_inc_iversion(&inode->vfs_inode); 3974 inode_inc_iversion(&dir->vfs_inode); 3975 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3976 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3977 ret = btrfs_update_inode(trans, root, dir); 3978 out: 3979 return ret; 3980 } 3981 3982 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3983 struct btrfs_root *root, 3984 struct btrfs_inode *dir, struct btrfs_inode *inode, 3985 const char *name, int name_len) 3986 { 3987 int ret; 3988 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3989 if (!ret) { 3990 drop_nlink(&inode->vfs_inode); 3991 ret = btrfs_update_inode(trans, root, inode); 3992 } 3993 return ret; 3994 } 3995 3996 /* 3997 * helper to start transaction for unlink and rmdir. 3998 * 3999 * unlink and rmdir are special in btrfs, they do not always free space, so 4000 * if we cannot make our reservations the normal way try and see if there is 4001 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4002 * allow the unlink to occur. 4003 */ 4004 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4005 { 4006 struct btrfs_root *root = BTRFS_I(dir)->root; 4007 4008 /* 4009 * 1 for the possible orphan item 4010 * 1 for the dir item 4011 * 1 for the dir index 4012 * 1 for the inode ref 4013 * 1 for the inode 4014 */ 4015 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4016 } 4017 4018 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4019 { 4020 struct btrfs_root *root = BTRFS_I(dir)->root; 4021 struct btrfs_trans_handle *trans; 4022 struct inode *inode = d_inode(dentry); 4023 int ret; 4024 4025 trans = __unlink_start_trans(dir); 4026 if (IS_ERR(trans)) 4027 return PTR_ERR(trans); 4028 4029 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4030 0); 4031 4032 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4033 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4034 dentry->d_name.len); 4035 if (ret) 4036 goto out; 4037 4038 if (inode->i_nlink == 0) { 4039 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4040 if (ret) 4041 goto out; 4042 } 4043 4044 out: 4045 btrfs_end_transaction(trans); 4046 btrfs_btree_balance_dirty(root->fs_info); 4047 return ret; 4048 } 4049 4050 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4051 struct inode *dir, struct dentry *dentry) 4052 { 4053 struct btrfs_root *root = BTRFS_I(dir)->root; 4054 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4055 struct btrfs_path *path; 4056 struct extent_buffer *leaf; 4057 struct btrfs_dir_item *di; 4058 struct btrfs_key key; 4059 const char *name = dentry->d_name.name; 4060 int name_len = dentry->d_name.len; 4061 u64 index; 4062 int ret; 4063 u64 objectid; 4064 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4065 4066 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4067 objectid = inode->root->root_key.objectid; 4068 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4069 objectid = inode->location.objectid; 4070 } else { 4071 WARN_ON(1); 4072 return -EINVAL; 4073 } 4074 4075 path = btrfs_alloc_path(); 4076 if (!path) 4077 return -ENOMEM; 4078 4079 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4080 name, name_len, -1); 4081 if (IS_ERR_OR_NULL(di)) { 4082 ret = di ? PTR_ERR(di) : -ENOENT; 4083 goto out; 4084 } 4085 4086 leaf = path->nodes[0]; 4087 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4088 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4089 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4090 if (ret) { 4091 btrfs_abort_transaction(trans, ret); 4092 goto out; 4093 } 4094 btrfs_release_path(path); 4095 4096 /* 4097 * This is a placeholder inode for a subvolume we didn't have a 4098 * reference to at the time of the snapshot creation. In the meantime 4099 * we could have renamed the real subvol link into our snapshot, so 4100 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 4101 * Instead simply lookup the dir_index_item for this entry so we can 4102 * remove it. Otherwise we know we have a ref to the root and we can 4103 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4104 */ 4105 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4106 di = btrfs_search_dir_index_item(root, path, dir_ino, 4107 name, name_len); 4108 if (IS_ERR_OR_NULL(di)) { 4109 if (!di) 4110 ret = -ENOENT; 4111 else 4112 ret = PTR_ERR(di); 4113 btrfs_abort_transaction(trans, ret); 4114 goto out; 4115 } 4116 4117 leaf = path->nodes[0]; 4118 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4119 index = key.offset; 4120 btrfs_release_path(path); 4121 } else { 4122 ret = btrfs_del_root_ref(trans, objectid, 4123 root->root_key.objectid, dir_ino, 4124 &index, name, name_len); 4125 if (ret) { 4126 btrfs_abort_transaction(trans, ret); 4127 goto out; 4128 } 4129 } 4130 4131 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4132 if (ret) { 4133 btrfs_abort_transaction(trans, ret); 4134 goto out; 4135 } 4136 4137 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4138 inode_inc_iversion(dir); 4139 dir->i_mtime = dir->i_ctime = current_time(dir); 4140 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4141 if (ret) 4142 btrfs_abort_transaction(trans, ret); 4143 out: 4144 btrfs_free_path(path); 4145 return ret; 4146 } 4147 4148 /* 4149 * Helper to check if the subvolume references other subvolumes or if it's 4150 * default. 4151 */ 4152 static noinline int may_destroy_subvol(struct btrfs_root *root) 4153 { 4154 struct btrfs_fs_info *fs_info = root->fs_info; 4155 struct btrfs_path *path; 4156 struct btrfs_dir_item *di; 4157 struct btrfs_key key; 4158 u64 dir_id; 4159 int ret; 4160 4161 path = btrfs_alloc_path(); 4162 if (!path) 4163 return -ENOMEM; 4164 4165 /* Make sure this root isn't set as the default subvol */ 4166 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4167 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4168 dir_id, "default", 7, 0); 4169 if (di && !IS_ERR(di)) { 4170 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4171 if (key.objectid == root->root_key.objectid) { 4172 ret = -EPERM; 4173 btrfs_err(fs_info, 4174 "deleting default subvolume %llu is not allowed", 4175 key.objectid); 4176 goto out; 4177 } 4178 btrfs_release_path(path); 4179 } 4180 4181 key.objectid = root->root_key.objectid; 4182 key.type = BTRFS_ROOT_REF_KEY; 4183 key.offset = (u64)-1; 4184 4185 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4186 if (ret < 0) 4187 goto out; 4188 BUG_ON(ret == 0); 4189 4190 ret = 0; 4191 if (path->slots[0] > 0) { 4192 path->slots[0]--; 4193 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4194 if (key.objectid == root->root_key.objectid && 4195 key.type == BTRFS_ROOT_REF_KEY) 4196 ret = -ENOTEMPTY; 4197 } 4198 out: 4199 btrfs_free_path(path); 4200 return ret; 4201 } 4202 4203 /* Delete all dentries for inodes belonging to the root */ 4204 static void btrfs_prune_dentries(struct btrfs_root *root) 4205 { 4206 struct btrfs_fs_info *fs_info = root->fs_info; 4207 struct rb_node *node; 4208 struct rb_node *prev; 4209 struct btrfs_inode *entry; 4210 struct inode *inode; 4211 u64 objectid = 0; 4212 4213 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4214 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4215 4216 spin_lock(&root->inode_lock); 4217 again: 4218 node = root->inode_tree.rb_node; 4219 prev = NULL; 4220 while (node) { 4221 prev = node; 4222 entry = rb_entry(node, struct btrfs_inode, rb_node); 4223 4224 if (objectid < btrfs_ino(entry)) 4225 node = node->rb_left; 4226 else if (objectid > btrfs_ino(entry)) 4227 node = node->rb_right; 4228 else 4229 break; 4230 } 4231 if (!node) { 4232 while (prev) { 4233 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4234 if (objectid <= btrfs_ino(entry)) { 4235 node = prev; 4236 break; 4237 } 4238 prev = rb_next(prev); 4239 } 4240 } 4241 while (node) { 4242 entry = rb_entry(node, struct btrfs_inode, rb_node); 4243 objectid = btrfs_ino(entry) + 1; 4244 inode = igrab(&entry->vfs_inode); 4245 if (inode) { 4246 spin_unlock(&root->inode_lock); 4247 if (atomic_read(&inode->i_count) > 1) 4248 d_prune_aliases(inode); 4249 /* 4250 * btrfs_drop_inode will have it removed from the inode 4251 * cache when its usage count hits zero. 4252 */ 4253 iput(inode); 4254 cond_resched(); 4255 spin_lock(&root->inode_lock); 4256 goto again; 4257 } 4258 4259 if (cond_resched_lock(&root->inode_lock)) 4260 goto again; 4261 4262 node = rb_next(node); 4263 } 4264 spin_unlock(&root->inode_lock); 4265 } 4266 4267 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4268 { 4269 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4270 struct btrfs_root *root = BTRFS_I(dir)->root; 4271 struct inode *inode = d_inode(dentry); 4272 struct btrfs_root *dest = BTRFS_I(inode)->root; 4273 struct btrfs_trans_handle *trans; 4274 struct btrfs_block_rsv block_rsv; 4275 u64 root_flags; 4276 int ret; 4277 4278 /* 4279 * Don't allow to delete a subvolume with send in progress. This is 4280 * inside the inode lock so the error handling that has to drop the bit 4281 * again is not run concurrently. 4282 */ 4283 spin_lock(&dest->root_item_lock); 4284 if (dest->send_in_progress) { 4285 spin_unlock(&dest->root_item_lock); 4286 btrfs_warn(fs_info, 4287 "attempt to delete subvolume %llu during send", 4288 dest->root_key.objectid); 4289 return -EPERM; 4290 } 4291 root_flags = btrfs_root_flags(&dest->root_item); 4292 btrfs_set_root_flags(&dest->root_item, 4293 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4294 spin_unlock(&dest->root_item_lock); 4295 4296 down_write(&fs_info->subvol_sem); 4297 4298 ret = may_destroy_subvol(dest); 4299 if (ret) 4300 goto out_up_write; 4301 4302 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4303 /* 4304 * One for dir inode, 4305 * two for dir entries, 4306 * two for root ref/backref. 4307 */ 4308 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4309 if (ret) 4310 goto out_up_write; 4311 4312 trans = btrfs_start_transaction(root, 0); 4313 if (IS_ERR(trans)) { 4314 ret = PTR_ERR(trans); 4315 goto out_release; 4316 } 4317 trans->block_rsv = &block_rsv; 4318 trans->bytes_reserved = block_rsv.size; 4319 4320 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4321 4322 ret = btrfs_unlink_subvol(trans, dir, dentry); 4323 if (ret) { 4324 btrfs_abort_transaction(trans, ret); 4325 goto out_end_trans; 4326 } 4327 4328 ret = btrfs_record_root_in_trans(trans, dest); 4329 if (ret) { 4330 btrfs_abort_transaction(trans, ret); 4331 goto out_end_trans; 4332 } 4333 4334 memset(&dest->root_item.drop_progress, 0, 4335 sizeof(dest->root_item.drop_progress)); 4336 btrfs_set_root_drop_level(&dest->root_item, 0); 4337 btrfs_set_root_refs(&dest->root_item, 0); 4338 4339 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4340 ret = btrfs_insert_orphan_item(trans, 4341 fs_info->tree_root, 4342 dest->root_key.objectid); 4343 if (ret) { 4344 btrfs_abort_transaction(trans, ret); 4345 goto out_end_trans; 4346 } 4347 } 4348 4349 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4350 BTRFS_UUID_KEY_SUBVOL, 4351 dest->root_key.objectid); 4352 if (ret && ret != -ENOENT) { 4353 btrfs_abort_transaction(trans, ret); 4354 goto out_end_trans; 4355 } 4356 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4357 ret = btrfs_uuid_tree_remove(trans, 4358 dest->root_item.received_uuid, 4359 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4360 dest->root_key.objectid); 4361 if (ret && ret != -ENOENT) { 4362 btrfs_abort_transaction(trans, ret); 4363 goto out_end_trans; 4364 } 4365 } 4366 4367 free_anon_bdev(dest->anon_dev); 4368 dest->anon_dev = 0; 4369 out_end_trans: 4370 trans->block_rsv = NULL; 4371 trans->bytes_reserved = 0; 4372 ret = btrfs_end_transaction(trans); 4373 inode->i_flags |= S_DEAD; 4374 out_release: 4375 btrfs_subvolume_release_metadata(root, &block_rsv); 4376 out_up_write: 4377 up_write(&fs_info->subvol_sem); 4378 if (ret) { 4379 spin_lock(&dest->root_item_lock); 4380 root_flags = btrfs_root_flags(&dest->root_item); 4381 btrfs_set_root_flags(&dest->root_item, 4382 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4383 spin_unlock(&dest->root_item_lock); 4384 } else { 4385 d_invalidate(dentry); 4386 btrfs_prune_dentries(dest); 4387 ASSERT(dest->send_in_progress == 0); 4388 } 4389 4390 return ret; 4391 } 4392 4393 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4394 { 4395 struct inode *inode = d_inode(dentry); 4396 int err = 0; 4397 struct btrfs_root *root = BTRFS_I(dir)->root; 4398 struct btrfs_trans_handle *trans; 4399 u64 last_unlink_trans; 4400 4401 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4402 return -ENOTEMPTY; 4403 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4404 return btrfs_delete_subvolume(dir, dentry); 4405 4406 trans = __unlink_start_trans(dir); 4407 if (IS_ERR(trans)) 4408 return PTR_ERR(trans); 4409 4410 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4411 err = btrfs_unlink_subvol(trans, dir, dentry); 4412 goto out; 4413 } 4414 4415 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4416 if (err) 4417 goto out; 4418 4419 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4420 4421 /* now the directory is empty */ 4422 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4423 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4424 dentry->d_name.len); 4425 if (!err) { 4426 btrfs_i_size_write(BTRFS_I(inode), 0); 4427 /* 4428 * Propagate the last_unlink_trans value of the deleted dir to 4429 * its parent directory. This is to prevent an unrecoverable 4430 * log tree in the case we do something like this: 4431 * 1) create dir foo 4432 * 2) create snapshot under dir foo 4433 * 3) delete the snapshot 4434 * 4) rmdir foo 4435 * 5) mkdir foo 4436 * 6) fsync foo or some file inside foo 4437 */ 4438 if (last_unlink_trans >= trans->transid) 4439 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4440 } 4441 out: 4442 btrfs_end_transaction(trans); 4443 btrfs_btree_balance_dirty(root->fs_info); 4444 4445 return err; 4446 } 4447 4448 /* 4449 * Return this if we need to call truncate_block for the last bit of the 4450 * truncate. 4451 */ 4452 #define NEED_TRUNCATE_BLOCK 1 4453 4454 /* 4455 * this can truncate away extent items, csum items and directory items. 4456 * It starts at a high offset and removes keys until it can't find 4457 * any higher than new_size 4458 * 4459 * csum items that cross the new i_size are truncated to the new size 4460 * as well. 4461 * 4462 * min_type is the minimum key type to truncate down to. If set to 0, this 4463 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4464 */ 4465 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4466 struct btrfs_root *root, 4467 struct btrfs_inode *inode, 4468 u64 new_size, u32 min_type) 4469 { 4470 struct btrfs_fs_info *fs_info = root->fs_info; 4471 struct btrfs_path *path; 4472 struct extent_buffer *leaf; 4473 struct btrfs_file_extent_item *fi; 4474 struct btrfs_key key; 4475 struct btrfs_key found_key; 4476 u64 extent_start = 0; 4477 u64 extent_num_bytes = 0; 4478 u64 extent_offset = 0; 4479 u64 item_end = 0; 4480 u64 last_size = new_size; 4481 u32 found_type = (u8)-1; 4482 int found_extent; 4483 int del_item; 4484 int pending_del_nr = 0; 4485 int pending_del_slot = 0; 4486 int extent_type = -1; 4487 int ret; 4488 u64 ino = btrfs_ino(inode); 4489 u64 bytes_deleted = 0; 4490 bool be_nice = false; 4491 bool should_throttle = false; 4492 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4493 struct extent_state *cached_state = NULL; 4494 4495 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4496 4497 /* 4498 * For non-free space inodes and non-shareable roots, we want to back 4499 * off from time to time. This means all inodes in subvolume roots, 4500 * reloc roots, and data reloc roots. 4501 */ 4502 if (!btrfs_is_free_space_inode(inode) && 4503 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4504 be_nice = true; 4505 4506 path = btrfs_alloc_path(); 4507 if (!path) 4508 return -ENOMEM; 4509 path->reada = READA_BACK; 4510 4511 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4512 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4513 &cached_state); 4514 4515 /* 4516 * We want to drop from the next block forward in case this 4517 * new size is not block aligned since we will be keeping the 4518 * last block of the extent just the way it is. 4519 */ 4520 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4521 fs_info->sectorsize), 4522 (u64)-1, 0); 4523 } 4524 4525 /* 4526 * This function is also used to drop the items in the log tree before 4527 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4528 * it is used to drop the logged items. So we shouldn't kill the delayed 4529 * items. 4530 */ 4531 if (min_type == 0 && root == inode->root) 4532 btrfs_kill_delayed_inode_items(inode); 4533 4534 key.objectid = ino; 4535 key.offset = (u64)-1; 4536 key.type = (u8)-1; 4537 4538 search_again: 4539 /* 4540 * with a 16K leaf size and 128MB extents, you can actually queue 4541 * up a huge file in a single leaf. Most of the time that 4542 * bytes_deleted is > 0, it will be huge by the time we get here 4543 */ 4544 if (be_nice && bytes_deleted > SZ_32M && 4545 btrfs_should_end_transaction(trans)) { 4546 ret = -EAGAIN; 4547 goto out; 4548 } 4549 4550 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4551 if (ret < 0) 4552 goto out; 4553 4554 if (ret > 0) { 4555 ret = 0; 4556 /* there are no items in the tree for us to truncate, we're 4557 * done 4558 */ 4559 if (path->slots[0] == 0) 4560 goto out; 4561 path->slots[0]--; 4562 } 4563 4564 while (1) { 4565 u64 clear_start = 0, clear_len = 0; 4566 4567 fi = NULL; 4568 leaf = path->nodes[0]; 4569 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4570 found_type = found_key.type; 4571 4572 if (found_key.objectid != ino) 4573 break; 4574 4575 if (found_type < min_type) 4576 break; 4577 4578 item_end = found_key.offset; 4579 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4580 fi = btrfs_item_ptr(leaf, path->slots[0], 4581 struct btrfs_file_extent_item); 4582 extent_type = btrfs_file_extent_type(leaf, fi); 4583 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4584 item_end += 4585 btrfs_file_extent_num_bytes(leaf, fi); 4586 4587 trace_btrfs_truncate_show_fi_regular( 4588 inode, leaf, fi, found_key.offset); 4589 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4590 item_end += btrfs_file_extent_ram_bytes(leaf, 4591 fi); 4592 4593 trace_btrfs_truncate_show_fi_inline( 4594 inode, leaf, fi, path->slots[0], 4595 found_key.offset); 4596 } 4597 item_end--; 4598 } 4599 if (found_type > min_type) { 4600 del_item = 1; 4601 } else { 4602 if (item_end < new_size) 4603 break; 4604 if (found_key.offset >= new_size) 4605 del_item = 1; 4606 else 4607 del_item = 0; 4608 } 4609 found_extent = 0; 4610 /* FIXME, shrink the extent if the ref count is only 1 */ 4611 if (found_type != BTRFS_EXTENT_DATA_KEY) 4612 goto delete; 4613 4614 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4615 u64 num_dec; 4616 4617 clear_start = found_key.offset; 4618 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4619 if (!del_item) { 4620 u64 orig_num_bytes = 4621 btrfs_file_extent_num_bytes(leaf, fi); 4622 extent_num_bytes = ALIGN(new_size - 4623 found_key.offset, 4624 fs_info->sectorsize); 4625 clear_start = ALIGN(new_size, fs_info->sectorsize); 4626 btrfs_set_file_extent_num_bytes(leaf, fi, 4627 extent_num_bytes); 4628 num_dec = (orig_num_bytes - 4629 extent_num_bytes); 4630 if (test_bit(BTRFS_ROOT_SHAREABLE, 4631 &root->state) && 4632 extent_start != 0) 4633 inode_sub_bytes(&inode->vfs_inode, 4634 num_dec); 4635 btrfs_mark_buffer_dirty(leaf); 4636 } else { 4637 extent_num_bytes = 4638 btrfs_file_extent_disk_num_bytes(leaf, 4639 fi); 4640 extent_offset = found_key.offset - 4641 btrfs_file_extent_offset(leaf, fi); 4642 4643 /* FIXME blocksize != 4096 */ 4644 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4645 if (extent_start != 0) { 4646 found_extent = 1; 4647 if (test_bit(BTRFS_ROOT_SHAREABLE, 4648 &root->state)) 4649 inode_sub_bytes(&inode->vfs_inode, 4650 num_dec); 4651 } 4652 } 4653 clear_len = num_dec; 4654 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4655 /* 4656 * we can't truncate inline items that have had 4657 * special encodings 4658 */ 4659 if (!del_item && 4660 btrfs_file_extent_encryption(leaf, fi) == 0 && 4661 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4662 btrfs_file_extent_compression(leaf, fi) == 0) { 4663 u32 size = (u32)(new_size - found_key.offset); 4664 4665 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4666 size = btrfs_file_extent_calc_inline_size(size); 4667 btrfs_truncate_item(path, size, 1); 4668 } else if (!del_item) { 4669 /* 4670 * We have to bail so the last_size is set to 4671 * just before this extent. 4672 */ 4673 ret = NEED_TRUNCATE_BLOCK; 4674 break; 4675 } else { 4676 /* 4677 * Inline extents are special, we just treat 4678 * them as a full sector worth in the file 4679 * extent tree just for simplicity sake. 4680 */ 4681 clear_len = fs_info->sectorsize; 4682 } 4683 4684 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4685 inode_sub_bytes(&inode->vfs_inode, 4686 item_end + 1 - new_size); 4687 } 4688 delete: 4689 /* 4690 * We use btrfs_truncate_inode_items() to clean up log trees for 4691 * multiple fsyncs, and in this case we don't want to clear the 4692 * file extent range because it's just the log. 4693 */ 4694 if (root == inode->root) { 4695 ret = btrfs_inode_clear_file_extent_range(inode, 4696 clear_start, clear_len); 4697 if (ret) { 4698 btrfs_abort_transaction(trans, ret); 4699 break; 4700 } 4701 } 4702 4703 if (del_item) 4704 last_size = found_key.offset; 4705 else 4706 last_size = new_size; 4707 if (del_item) { 4708 if (!pending_del_nr) { 4709 /* no pending yet, add ourselves */ 4710 pending_del_slot = path->slots[0]; 4711 pending_del_nr = 1; 4712 } else if (pending_del_nr && 4713 path->slots[0] + 1 == pending_del_slot) { 4714 /* hop on the pending chunk */ 4715 pending_del_nr++; 4716 pending_del_slot = path->slots[0]; 4717 } else { 4718 BUG(); 4719 } 4720 } else { 4721 break; 4722 } 4723 should_throttle = false; 4724 4725 if (found_extent && 4726 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4727 struct btrfs_ref ref = { 0 }; 4728 4729 bytes_deleted += extent_num_bytes; 4730 4731 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4732 extent_start, extent_num_bytes, 0); 4733 ref.real_root = root->root_key.objectid; 4734 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4735 ino, extent_offset); 4736 ret = btrfs_free_extent(trans, &ref); 4737 if (ret) { 4738 btrfs_abort_transaction(trans, ret); 4739 break; 4740 } 4741 if (be_nice) { 4742 if (btrfs_should_throttle_delayed_refs(trans)) 4743 should_throttle = true; 4744 } 4745 } 4746 4747 if (found_type == BTRFS_INODE_ITEM_KEY) 4748 break; 4749 4750 if (path->slots[0] == 0 || 4751 path->slots[0] != pending_del_slot || 4752 should_throttle) { 4753 if (pending_del_nr) { 4754 ret = btrfs_del_items(trans, root, path, 4755 pending_del_slot, 4756 pending_del_nr); 4757 if (ret) { 4758 btrfs_abort_transaction(trans, ret); 4759 break; 4760 } 4761 pending_del_nr = 0; 4762 } 4763 btrfs_release_path(path); 4764 4765 /* 4766 * We can generate a lot of delayed refs, so we need to 4767 * throttle every once and a while and make sure we're 4768 * adding enough space to keep up with the work we are 4769 * generating. Since we hold a transaction here we 4770 * can't flush, and we don't want to FLUSH_LIMIT because 4771 * we could have generated too many delayed refs to 4772 * actually allocate, so just bail if we're short and 4773 * let the normal reservation dance happen higher up. 4774 */ 4775 if (should_throttle) { 4776 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4777 BTRFS_RESERVE_NO_FLUSH); 4778 if (ret) { 4779 ret = -EAGAIN; 4780 break; 4781 } 4782 } 4783 goto search_again; 4784 } else { 4785 path->slots[0]--; 4786 } 4787 } 4788 out: 4789 if (ret >= 0 && pending_del_nr) { 4790 int err; 4791 4792 err = btrfs_del_items(trans, root, path, pending_del_slot, 4793 pending_del_nr); 4794 if (err) { 4795 btrfs_abort_transaction(trans, err); 4796 ret = err; 4797 } 4798 } 4799 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4800 ASSERT(last_size >= new_size); 4801 if (!ret && last_size > new_size) 4802 last_size = new_size; 4803 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4804 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4805 &cached_state); 4806 } 4807 4808 btrfs_free_path(path); 4809 return ret; 4810 } 4811 4812 /* 4813 * btrfs_truncate_block - read, zero a chunk and write a block 4814 * @inode - inode that we're zeroing 4815 * @from - the offset to start zeroing 4816 * @len - the length to zero, 0 to zero the entire range respective to the 4817 * offset 4818 * @front - zero up to the offset instead of from the offset on 4819 * 4820 * This will find the block for the "from" offset and cow the block and zero the 4821 * part we want to zero. This is used with truncate and hole punching. 4822 */ 4823 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4824 int front) 4825 { 4826 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4827 struct address_space *mapping = inode->vfs_inode.i_mapping; 4828 struct extent_io_tree *io_tree = &inode->io_tree; 4829 struct btrfs_ordered_extent *ordered; 4830 struct extent_state *cached_state = NULL; 4831 struct extent_changeset *data_reserved = NULL; 4832 bool only_release_metadata = false; 4833 u32 blocksize = fs_info->sectorsize; 4834 pgoff_t index = from >> PAGE_SHIFT; 4835 unsigned offset = from & (blocksize - 1); 4836 struct page *page; 4837 gfp_t mask = btrfs_alloc_write_mask(mapping); 4838 size_t write_bytes = blocksize; 4839 int ret = 0; 4840 u64 block_start; 4841 u64 block_end; 4842 4843 if (IS_ALIGNED(offset, blocksize) && 4844 (!len || IS_ALIGNED(len, blocksize))) 4845 goto out; 4846 4847 block_start = round_down(from, blocksize); 4848 block_end = block_start + blocksize - 1; 4849 4850 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4851 blocksize); 4852 if (ret < 0) { 4853 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4854 /* For nocow case, no need to reserve data space */ 4855 only_release_metadata = true; 4856 } else { 4857 goto out; 4858 } 4859 } 4860 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 4861 if (ret < 0) { 4862 if (!only_release_metadata) 4863 btrfs_free_reserved_data_space(inode, data_reserved, 4864 block_start, blocksize); 4865 goto out; 4866 } 4867 again: 4868 page = find_or_create_page(mapping, index, mask); 4869 if (!page) { 4870 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4871 blocksize, true); 4872 btrfs_delalloc_release_extents(inode, blocksize); 4873 ret = -ENOMEM; 4874 goto out; 4875 } 4876 ret = set_page_extent_mapped(page); 4877 if (ret < 0) 4878 goto out_unlock; 4879 4880 if (!PageUptodate(page)) { 4881 ret = btrfs_readpage(NULL, page); 4882 lock_page(page); 4883 if (page->mapping != mapping) { 4884 unlock_page(page); 4885 put_page(page); 4886 goto again; 4887 } 4888 if (!PageUptodate(page)) { 4889 ret = -EIO; 4890 goto out_unlock; 4891 } 4892 } 4893 wait_on_page_writeback(page); 4894 4895 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4896 4897 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4898 if (ordered) { 4899 unlock_extent_cached(io_tree, block_start, block_end, 4900 &cached_state); 4901 unlock_page(page); 4902 put_page(page); 4903 btrfs_start_ordered_extent(ordered, 1); 4904 btrfs_put_ordered_extent(ordered); 4905 goto again; 4906 } 4907 4908 clear_extent_bit(&inode->io_tree, block_start, block_end, 4909 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4910 0, 0, &cached_state); 4911 4912 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4913 &cached_state); 4914 if (ret) { 4915 unlock_extent_cached(io_tree, block_start, block_end, 4916 &cached_state); 4917 goto out_unlock; 4918 } 4919 4920 if (offset != blocksize) { 4921 if (!len) 4922 len = blocksize - offset; 4923 if (front) 4924 memzero_page(page, (block_start - page_offset(page)), 4925 offset); 4926 else 4927 memzero_page(page, (block_start - page_offset(page)) + offset, 4928 len); 4929 flush_dcache_page(page); 4930 } 4931 ClearPageChecked(page); 4932 set_page_dirty(page); 4933 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4934 4935 if (only_release_metadata) 4936 set_extent_bit(&inode->io_tree, block_start, block_end, 4937 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4938 4939 out_unlock: 4940 if (ret) { 4941 if (only_release_metadata) 4942 btrfs_delalloc_release_metadata(inode, blocksize, true); 4943 else 4944 btrfs_delalloc_release_space(inode, data_reserved, 4945 block_start, blocksize, true); 4946 } 4947 btrfs_delalloc_release_extents(inode, blocksize); 4948 unlock_page(page); 4949 put_page(page); 4950 out: 4951 if (only_release_metadata) 4952 btrfs_check_nocow_unlock(inode); 4953 extent_changeset_free(data_reserved); 4954 return ret; 4955 } 4956 4957 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4958 u64 offset, u64 len) 4959 { 4960 struct btrfs_fs_info *fs_info = root->fs_info; 4961 struct btrfs_trans_handle *trans; 4962 struct btrfs_drop_extents_args drop_args = { 0 }; 4963 int ret; 4964 4965 /* 4966 * Still need to make sure the inode looks like it's been updated so 4967 * that any holes get logged if we fsync. 4968 */ 4969 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4970 inode->last_trans = fs_info->generation; 4971 inode->last_sub_trans = root->log_transid; 4972 inode->last_log_commit = root->last_log_commit; 4973 return 0; 4974 } 4975 4976 /* 4977 * 1 - for the one we're dropping 4978 * 1 - for the one we're adding 4979 * 1 - for updating the inode. 4980 */ 4981 trans = btrfs_start_transaction(root, 3); 4982 if (IS_ERR(trans)) 4983 return PTR_ERR(trans); 4984 4985 drop_args.start = offset; 4986 drop_args.end = offset + len; 4987 drop_args.drop_cache = true; 4988 4989 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4990 if (ret) { 4991 btrfs_abort_transaction(trans, ret); 4992 btrfs_end_transaction(trans); 4993 return ret; 4994 } 4995 4996 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 4997 offset, 0, 0, len, 0, len, 0, 0, 0); 4998 if (ret) { 4999 btrfs_abort_transaction(trans, ret); 5000 } else { 5001 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5002 btrfs_update_inode(trans, root, inode); 5003 } 5004 btrfs_end_transaction(trans); 5005 return ret; 5006 } 5007 5008 /* 5009 * This function puts in dummy file extents for the area we're creating a hole 5010 * for. So if we are truncating this file to a larger size we need to insert 5011 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5012 * the range between oldsize and size 5013 */ 5014 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5015 { 5016 struct btrfs_root *root = inode->root; 5017 struct btrfs_fs_info *fs_info = root->fs_info; 5018 struct extent_io_tree *io_tree = &inode->io_tree; 5019 struct extent_map *em = NULL; 5020 struct extent_state *cached_state = NULL; 5021 struct extent_map_tree *em_tree = &inode->extent_tree; 5022 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5023 u64 block_end = ALIGN(size, fs_info->sectorsize); 5024 u64 last_byte; 5025 u64 cur_offset; 5026 u64 hole_size; 5027 int err = 0; 5028 5029 /* 5030 * If our size started in the middle of a block we need to zero out the 5031 * rest of the block before we expand the i_size, otherwise we could 5032 * expose stale data. 5033 */ 5034 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5035 if (err) 5036 return err; 5037 5038 if (size <= hole_start) 5039 return 0; 5040 5041 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5042 &cached_state); 5043 cur_offset = hole_start; 5044 while (1) { 5045 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5046 block_end - cur_offset); 5047 if (IS_ERR(em)) { 5048 err = PTR_ERR(em); 5049 em = NULL; 5050 break; 5051 } 5052 last_byte = min(extent_map_end(em), block_end); 5053 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5054 hole_size = last_byte - cur_offset; 5055 5056 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5057 struct extent_map *hole_em; 5058 5059 err = maybe_insert_hole(root, inode, cur_offset, 5060 hole_size); 5061 if (err) 5062 break; 5063 5064 err = btrfs_inode_set_file_extent_range(inode, 5065 cur_offset, hole_size); 5066 if (err) 5067 break; 5068 5069 btrfs_drop_extent_cache(inode, cur_offset, 5070 cur_offset + hole_size - 1, 0); 5071 hole_em = alloc_extent_map(); 5072 if (!hole_em) { 5073 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5074 &inode->runtime_flags); 5075 goto next; 5076 } 5077 hole_em->start = cur_offset; 5078 hole_em->len = hole_size; 5079 hole_em->orig_start = cur_offset; 5080 5081 hole_em->block_start = EXTENT_MAP_HOLE; 5082 hole_em->block_len = 0; 5083 hole_em->orig_block_len = 0; 5084 hole_em->ram_bytes = hole_size; 5085 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5086 hole_em->generation = fs_info->generation; 5087 5088 while (1) { 5089 write_lock(&em_tree->lock); 5090 err = add_extent_mapping(em_tree, hole_em, 1); 5091 write_unlock(&em_tree->lock); 5092 if (err != -EEXIST) 5093 break; 5094 btrfs_drop_extent_cache(inode, cur_offset, 5095 cur_offset + 5096 hole_size - 1, 0); 5097 } 5098 free_extent_map(hole_em); 5099 } else { 5100 err = btrfs_inode_set_file_extent_range(inode, 5101 cur_offset, hole_size); 5102 if (err) 5103 break; 5104 } 5105 next: 5106 free_extent_map(em); 5107 em = NULL; 5108 cur_offset = last_byte; 5109 if (cur_offset >= block_end) 5110 break; 5111 } 5112 free_extent_map(em); 5113 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5114 return err; 5115 } 5116 5117 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5118 { 5119 struct btrfs_root *root = BTRFS_I(inode)->root; 5120 struct btrfs_trans_handle *trans; 5121 loff_t oldsize = i_size_read(inode); 5122 loff_t newsize = attr->ia_size; 5123 int mask = attr->ia_valid; 5124 int ret; 5125 5126 /* 5127 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5128 * special case where we need to update the times despite not having 5129 * these flags set. For all other operations the VFS set these flags 5130 * explicitly if it wants a timestamp update. 5131 */ 5132 if (newsize != oldsize) { 5133 inode_inc_iversion(inode); 5134 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5135 inode->i_ctime = inode->i_mtime = 5136 current_time(inode); 5137 } 5138 5139 if (newsize > oldsize) { 5140 /* 5141 * Don't do an expanding truncate while snapshotting is ongoing. 5142 * This is to ensure the snapshot captures a fully consistent 5143 * state of this file - if the snapshot captures this expanding 5144 * truncation, it must capture all writes that happened before 5145 * this truncation. 5146 */ 5147 btrfs_drew_write_lock(&root->snapshot_lock); 5148 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5149 if (ret) { 5150 btrfs_drew_write_unlock(&root->snapshot_lock); 5151 return ret; 5152 } 5153 5154 trans = btrfs_start_transaction(root, 1); 5155 if (IS_ERR(trans)) { 5156 btrfs_drew_write_unlock(&root->snapshot_lock); 5157 return PTR_ERR(trans); 5158 } 5159 5160 i_size_write(inode, newsize); 5161 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5162 pagecache_isize_extended(inode, oldsize, newsize); 5163 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5164 btrfs_drew_write_unlock(&root->snapshot_lock); 5165 btrfs_end_transaction(trans); 5166 } else { 5167 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5168 5169 if (btrfs_is_zoned(fs_info)) { 5170 ret = btrfs_wait_ordered_range(inode, 5171 ALIGN(newsize, fs_info->sectorsize), 5172 (u64)-1); 5173 if (ret) 5174 return ret; 5175 } 5176 5177 /* 5178 * We're truncating a file that used to have good data down to 5179 * zero. Make sure any new writes to the file get on disk 5180 * on close. 5181 */ 5182 if (newsize == 0) 5183 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5184 &BTRFS_I(inode)->runtime_flags); 5185 5186 truncate_setsize(inode, newsize); 5187 5188 inode_dio_wait(inode); 5189 5190 ret = btrfs_truncate(inode, newsize == oldsize); 5191 if (ret && inode->i_nlink) { 5192 int err; 5193 5194 /* 5195 * Truncate failed, so fix up the in-memory size. We 5196 * adjusted disk_i_size down as we removed extents, so 5197 * wait for disk_i_size to be stable and then update the 5198 * in-memory size to match. 5199 */ 5200 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5201 if (err) 5202 return err; 5203 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5204 } 5205 } 5206 5207 return ret; 5208 } 5209 5210 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5211 struct iattr *attr) 5212 { 5213 struct inode *inode = d_inode(dentry); 5214 struct btrfs_root *root = BTRFS_I(inode)->root; 5215 int err; 5216 5217 if (btrfs_root_readonly(root)) 5218 return -EROFS; 5219 5220 err = setattr_prepare(&init_user_ns, dentry, attr); 5221 if (err) 5222 return err; 5223 5224 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5225 err = btrfs_setsize(inode, attr); 5226 if (err) 5227 return err; 5228 } 5229 5230 if (attr->ia_valid) { 5231 setattr_copy(&init_user_ns, inode, attr); 5232 inode_inc_iversion(inode); 5233 err = btrfs_dirty_inode(inode); 5234 5235 if (!err && attr->ia_valid & ATTR_MODE) 5236 err = posix_acl_chmod(&init_user_ns, inode, 5237 inode->i_mode); 5238 } 5239 5240 return err; 5241 } 5242 5243 /* 5244 * While truncating the inode pages during eviction, we get the VFS calling 5245 * btrfs_invalidatepage() against each page of the inode. This is slow because 5246 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5247 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5248 * extent_state structures over and over, wasting lots of time. 5249 * 5250 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5251 * those expensive operations on a per page basis and do only the ordered io 5252 * finishing, while we release here the extent_map and extent_state structures, 5253 * without the excessive merging and splitting. 5254 */ 5255 static void evict_inode_truncate_pages(struct inode *inode) 5256 { 5257 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5258 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5259 struct rb_node *node; 5260 5261 ASSERT(inode->i_state & I_FREEING); 5262 truncate_inode_pages_final(&inode->i_data); 5263 5264 write_lock(&map_tree->lock); 5265 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5266 struct extent_map *em; 5267 5268 node = rb_first_cached(&map_tree->map); 5269 em = rb_entry(node, struct extent_map, rb_node); 5270 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5271 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5272 remove_extent_mapping(map_tree, em); 5273 free_extent_map(em); 5274 if (need_resched()) { 5275 write_unlock(&map_tree->lock); 5276 cond_resched(); 5277 write_lock(&map_tree->lock); 5278 } 5279 } 5280 write_unlock(&map_tree->lock); 5281 5282 /* 5283 * Keep looping until we have no more ranges in the io tree. 5284 * We can have ongoing bios started by readahead that have 5285 * their endio callback (extent_io.c:end_bio_extent_readpage) 5286 * still in progress (unlocked the pages in the bio but did not yet 5287 * unlocked the ranges in the io tree). Therefore this means some 5288 * ranges can still be locked and eviction started because before 5289 * submitting those bios, which are executed by a separate task (work 5290 * queue kthread), inode references (inode->i_count) were not taken 5291 * (which would be dropped in the end io callback of each bio). 5292 * Therefore here we effectively end up waiting for those bios and 5293 * anyone else holding locked ranges without having bumped the inode's 5294 * reference count - if we don't do it, when they access the inode's 5295 * io_tree to unlock a range it may be too late, leading to an 5296 * use-after-free issue. 5297 */ 5298 spin_lock(&io_tree->lock); 5299 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5300 struct extent_state *state; 5301 struct extent_state *cached_state = NULL; 5302 u64 start; 5303 u64 end; 5304 unsigned state_flags; 5305 5306 node = rb_first(&io_tree->state); 5307 state = rb_entry(node, struct extent_state, rb_node); 5308 start = state->start; 5309 end = state->end; 5310 state_flags = state->state; 5311 spin_unlock(&io_tree->lock); 5312 5313 lock_extent_bits(io_tree, start, end, &cached_state); 5314 5315 /* 5316 * If still has DELALLOC flag, the extent didn't reach disk, 5317 * and its reserved space won't be freed by delayed_ref. 5318 * So we need to free its reserved space here. 5319 * (Refer to comment in btrfs_invalidatepage, case 2) 5320 * 5321 * Note, end is the bytenr of last byte, so we need + 1 here. 5322 */ 5323 if (state_flags & EXTENT_DELALLOC) 5324 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5325 end - start + 1); 5326 5327 clear_extent_bit(io_tree, start, end, 5328 EXTENT_LOCKED | EXTENT_DELALLOC | 5329 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5330 &cached_state); 5331 5332 cond_resched(); 5333 spin_lock(&io_tree->lock); 5334 } 5335 spin_unlock(&io_tree->lock); 5336 } 5337 5338 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5339 struct btrfs_block_rsv *rsv) 5340 { 5341 struct btrfs_fs_info *fs_info = root->fs_info; 5342 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5343 struct btrfs_trans_handle *trans; 5344 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5345 int ret; 5346 5347 /* 5348 * Eviction should be taking place at some place safe because of our 5349 * delayed iputs. However the normal flushing code will run delayed 5350 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5351 * 5352 * We reserve the delayed_refs_extra here again because we can't use 5353 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5354 * above. We reserve our extra bit here because we generate a ton of 5355 * delayed refs activity by truncating. 5356 * 5357 * If we cannot make our reservation we'll attempt to steal from the 5358 * global reserve, because we really want to be able to free up space. 5359 */ 5360 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5361 BTRFS_RESERVE_FLUSH_EVICT); 5362 if (ret) { 5363 /* 5364 * Try to steal from the global reserve if there is space for 5365 * it. 5366 */ 5367 if (btrfs_check_space_for_delayed_refs(fs_info) || 5368 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5369 btrfs_warn(fs_info, 5370 "could not allocate space for delete; will truncate on mount"); 5371 return ERR_PTR(-ENOSPC); 5372 } 5373 delayed_refs_extra = 0; 5374 } 5375 5376 trans = btrfs_join_transaction(root); 5377 if (IS_ERR(trans)) 5378 return trans; 5379 5380 if (delayed_refs_extra) { 5381 trans->block_rsv = &fs_info->trans_block_rsv; 5382 trans->bytes_reserved = delayed_refs_extra; 5383 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5384 delayed_refs_extra, 1); 5385 } 5386 return trans; 5387 } 5388 5389 void btrfs_evict_inode(struct inode *inode) 5390 { 5391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5392 struct btrfs_trans_handle *trans; 5393 struct btrfs_root *root = BTRFS_I(inode)->root; 5394 struct btrfs_block_rsv *rsv; 5395 int ret; 5396 5397 trace_btrfs_inode_evict(inode); 5398 5399 if (!root) { 5400 clear_inode(inode); 5401 return; 5402 } 5403 5404 evict_inode_truncate_pages(inode); 5405 5406 if (inode->i_nlink && 5407 ((btrfs_root_refs(&root->root_item) != 0 && 5408 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5409 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5410 goto no_delete; 5411 5412 if (is_bad_inode(inode)) 5413 goto no_delete; 5414 5415 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5416 5417 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5418 goto no_delete; 5419 5420 if (inode->i_nlink > 0) { 5421 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5422 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5423 goto no_delete; 5424 } 5425 5426 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5427 if (ret) 5428 goto no_delete; 5429 5430 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5431 if (!rsv) 5432 goto no_delete; 5433 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5434 rsv->failfast = 1; 5435 5436 btrfs_i_size_write(BTRFS_I(inode), 0); 5437 5438 while (1) { 5439 trans = evict_refill_and_join(root, rsv); 5440 if (IS_ERR(trans)) 5441 goto free_rsv; 5442 5443 trans->block_rsv = rsv; 5444 5445 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5446 0, 0); 5447 trans->block_rsv = &fs_info->trans_block_rsv; 5448 btrfs_end_transaction(trans); 5449 btrfs_btree_balance_dirty(fs_info); 5450 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5451 goto free_rsv; 5452 else if (!ret) 5453 break; 5454 } 5455 5456 /* 5457 * Errors here aren't a big deal, it just means we leave orphan items in 5458 * the tree. They will be cleaned up on the next mount. If the inode 5459 * number gets reused, cleanup deletes the orphan item without doing 5460 * anything, and unlink reuses the existing orphan item. 5461 * 5462 * If it turns out that we are dropping too many of these, we might want 5463 * to add a mechanism for retrying these after a commit. 5464 */ 5465 trans = evict_refill_and_join(root, rsv); 5466 if (!IS_ERR(trans)) { 5467 trans->block_rsv = rsv; 5468 btrfs_orphan_del(trans, BTRFS_I(inode)); 5469 trans->block_rsv = &fs_info->trans_block_rsv; 5470 btrfs_end_transaction(trans); 5471 } 5472 5473 free_rsv: 5474 btrfs_free_block_rsv(fs_info, rsv); 5475 no_delete: 5476 /* 5477 * If we didn't successfully delete, the orphan item will still be in 5478 * the tree and we'll retry on the next mount. Again, we might also want 5479 * to retry these periodically in the future. 5480 */ 5481 btrfs_remove_delayed_node(BTRFS_I(inode)); 5482 clear_inode(inode); 5483 } 5484 5485 /* 5486 * Return the key found in the dir entry in the location pointer, fill @type 5487 * with BTRFS_FT_*, and return 0. 5488 * 5489 * If no dir entries were found, returns -ENOENT. 5490 * If found a corrupted location in dir entry, returns -EUCLEAN. 5491 */ 5492 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5493 struct btrfs_key *location, u8 *type) 5494 { 5495 const char *name = dentry->d_name.name; 5496 int namelen = dentry->d_name.len; 5497 struct btrfs_dir_item *di; 5498 struct btrfs_path *path; 5499 struct btrfs_root *root = BTRFS_I(dir)->root; 5500 int ret = 0; 5501 5502 path = btrfs_alloc_path(); 5503 if (!path) 5504 return -ENOMEM; 5505 5506 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5507 name, namelen, 0); 5508 if (IS_ERR_OR_NULL(di)) { 5509 ret = di ? PTR_ERR(di) : -ENOENT; 5510 goto out; 5511 } 5512 5513 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5514 if (location->type != BTRFS_INODE_ITEM_KEY && 5515 location->type != BTRFS_ROOT_ITEM_KEY) { 5516 ret = -EUCLEAN; 5517 btrfs_warn(root->fs_info, 5518 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5519 __func__, name, btrfs_ino(BTRFS_I(dir)), 5520 location->objectid, location->type, location->offset); 5521 } 5522 if (!ret) 5523 *type = btrfs_dir_type(path->nodes[0], di); 5524 out: 5525 btrfs_free_path(path); 5526 return ret; 5527 } 5528 5529 /* 5530 * when we hit a tree root in a directory, the btrfs part of the inode 5531 * needs to be changed to reflect the root directory of the tree root. This 5532 * is kind of like crossing a mount point. 5533 */ 5534 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5535 struct inode *dir, 5536 struct dentry *dentry, 5537 struct btrfs_key *location, 5538 struct btrfs_root **sub_root) 5539 { 5540 struct btrfs_path *path; 5541 struct btrfs_root *new_root; 5542 struct btrfs_root_ref *ref; 5543 struct extent_buffer *leaf; 5544 struct btrfs_key key; 5545 int ret; 5546 int err = 0; 5547 5548 path = btrfs_alloc_path(); 5549 if (!path) { 5550 err = -ENOMEM; 5551 goto out; 5552 } 5553 5554 err = -ENOENT; 5555 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5556 key.type = BTRFS_ROOT_REF_KEY; 5557 key.offset = location->objectid; 5558 5559 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5560 if (ret) { 5561 if (ret < 0) 5562 err = ret; 5563 goto out; 5564 } 5565 5566 leaf = path->nodes[0]; 5567 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5568 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5569 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5570 goto out; 5571 5572 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5573 (unsigned long)(ref + 1), 5574 dentry->d_name.len); 5575 if (ret) 5576 goto out; 5577 5578 btrfs_release_path(path); 5579 5580 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5581 if (IS_ERR(new_root)) { 5582 err = PTR_ERR(new_root); 5583 goto out; 5584 } 5585 5586 *sub_root = new_root; 5587 location->objectid = btrfs_root_dirid(&new_root->root_item); 5588 location->type = BTRFS_INODE_ITEM_KEY; 5589 location->offset = 0; 5590 err = 0; 5591 out: 5592 btrfs_free_path(path); 5593 return err; 5594 } 5595 5596 static void inode_tree_add(struct inode *inode) 5597 { 5598 struct btrfs_root *root = BTRFS_I(inode)->root; 5599 struct btrfs_inode *entry; 5600 struct rb_node **p; 5601 struct rb_node *parent; 5602 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5603 u64 ino = btrfs_ino(BTRFS_I(inode)); 5604 5605 if (inode_unhashed(inode)) 5606 return; 5607 parent = NULL; 5608 spin_lock(&root->inode_lock); 5609 p = &root->inode_tree.rb_node; 5610 while (*p) { 5611 parent = *p; 5612 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5613 5614 if (ino < btrfs_ino(entry)) 5615 p = &parent->rb_left; 5616 else if (ino > btrfs_ino(entry)) 5617 p = &parent->rb_right; 5618 else { 5619 WARN_ON(!(entry->vfs_inode.i_state & 5620 (I_WILL_FREE | I_FREEING))); 5621 rb_replace_node(parent, new, &root->inode_tree); 5622 RB_CLEAR_NODE(parent); 5623 spin_unlock(&root->inode_lock); 5624 return; 5625 } 5626 } 5627 rb_link_node(new, parent, p); 5628 rb_insert_color(new, &root->inode_tree); 5629 spin_unlock(&root->inode_lock); 5630 } 5631 5632 static void inode_tree_del(struct btrfs_inode *inode) 5633 { 5634 struct btrfs_root *root = inode->root; 5635 int empty = 0; 5636 5637 spin_lock(&root->inode_lock); 5638 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5639 rb_erase(&inode->rb_node, &root->inode_tree); 5640 RB_CLEAR_NODE(&inode->rb_node); 5641 empty = RB_EMPTY_ROOT(&root->inode_tree); 5642 } 5643 spin_unlock(&root->inode_lock); 5644 5645 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5646 spin_lock(&root->inode_lock); 5647 empty = RB_EMPTY_ROOT(&root->inode_tree); 5648 spin_unlock(&root->inode_lock); 5649 if (empty) 5650 btrfs_add_dead_root(root); 5651 } 5652 } 5653 5654 5655 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5656 { 5657 struct btrfs_iget_args *args = p; 5658 5659 inode->i_ino = args->ino; 5660 BTRFS_I(inode)->location.objectid = args->ino; 5661 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5662 BTRFS_I(inode)->location.offset = 0; 5663 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5664 BUG_ON(args->root && !BTRFS_I(inode)->root); 5665 return 0; 5666 } 5667 5668 static int btrfs_find_actor(struct inode *inode, void *opaque) 5669 { 5670 struct btrfs_iget_args *args = opaque; 5671 5672 return args->ino == BTRFS_I(inode)->location.objectid && 5673 args->root == BTRFS_I(inode)->root; 5674 } 5675 5676 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5677 struct btrfs_root *root) 5678 { 5679 struct inode *inode; 5680 struct btrfs_iget_args args; 5681 unsigned long hashval = btrfs_inode_hash(ino, root); 5682 5683 args.ino = ino; 5684 args.root = root; 5685 5686 inode = iget5_locked(s, hashval, btrfs_find_actor, 5687 btrfs_init_locked_inode, 5688 (void *)&args); 5689 return inode; 5690 } 5691 5692 /* 5693 * Get an inode object given its inode number and corresponding root. 5694 * Path can be preallocated to prevent recursing back to iget through 5695 * allocator. NULL is also valid but may require an additional allocation 5696 * later. 5697 */ 5698 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5699 struct btrfs_root *root, struct btrfs_path *path) 5700 { 5701 struct inode *inode; 5702 5703 inode = btrfs_iget_locked(s, ino, root); 5704 if (!inode) 5705 return ERR_PTR(-ENOMEM); 5706 5707 if (inode->i_state & I_NEW) { 5708 int ret; 5709 5710 ret = btrfs_read_locked_inode(inode, path); 5711 if (!ret) { 5712 inode_tree_add(inode); 5713 unlock_new_inode(inode); 5714 } else { 5715 iget_failed(inode); 5716 /* 5717 * ret > 0 can come from btrfs_search_slot called by 5718 * btrfs_read_locked_inode, this means the inode item 5719 * was not found. 5720 */ 5721 if (ret > 0) 5722 ret = -ENOENT; 5723 inode = ERR_PTR(ret); 5724 } 5725 } 5726 5727 return inode; 5728 } 5729 5730 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5731 { 5732 return btrfs_iget_path(s, ino, root, NULL); 5733 } 5734 5735 static struct inode *new_simple_dir(struct super_block *s, 5736 struct btrfs_key *key, 5737 struct btrfs_root *root) 5738 { 5739 struct inode *inode = new_inode(s); 5740 5741 if (!inode) 5742 return ERR_PTR(-ENOMEM); 5743 5744 BTRFS_I(inode)->root = btrfs_grab_root(root); 5745 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5746 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5747 5748 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5749 /* 5750 * We only need lookup, the rest is read-only and there's no inode 5751 * associated with the dentry 5752 */ 5753 inode->i_op = &simple_dir_inode_operations; 5754 inode->i_opflags &= ~IOP_XATTR; 5755 inode->i_fop = &simple_dir_operations; 5756 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5757 inode->i_mtime = current_time(inode); 5758 inode->i_atime = inode->i_mtime; 5759 inode->i_ctime = inode->i_mtime; 5760 BTRFS_I(inode)->i_otime = inode->i_mtime; 5761 5762 return inode; 5763 } 5764 5765 static inline u8 btrfs_inode_type(struct inode *inode) 5766 { 5767 /* 5768 * Compile-time asserts that generic FT_* types still match 5769 * BTRFS_FT_* types 5770 */ 5771 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5772 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5773 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5774 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5775 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5776 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5777 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5778 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5779 5780 return fs_umode_to_ftype(inode->i_mode); 5781 } 5782 5783 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5784 { 5785 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5786 struct inode *inode; 5787 struct btrfs_root *root = BTRFS_I(dir)->root; 5788 struct btrfs_root *sub_root = root; 5789 struct btrfs_key location; 5790 u8 di_type = 0; 5791 int ret = 0; 5792 5793 if (dentry->d_name.len > BTRFS_NAME_LEN) 5794 return ERR_PTR(-ENAMETOOLONG); 5795 5796 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5797 if (ret < 0) 5798 return ERR_PTR(ret); 5799 5800 if (location.type == BTRFS_INODE_ITEM_KEY) { 5801 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5802 if (IS_ERR(inode)) 5803 return inode; 5804 5805 /* Do extra check against inode mode with di_type */ 5806 if (btrfs_inode_type(inode) != di_type) { 5807 btrfs_crit(fs_info, 5808 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5809 inode->i_mode, btrfs_inode_type(inode), 5810 di_type); 5811 iput(inode); 5812 return ERR_PTR(-EUCLEAN); 5813 } 5814 return inode; 5815 } 5816 5817 ret = fixup_tree_root_location(fs_info, dir, dentry, 5818 &location, &sub_root); 5819 if (ret < 0) { 5820 if (ret != -ENOENT) 5821 inode = ERR_PTR(ret); 5822 else 5823 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5824 } else { 5825 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5826 } 5827 if (root != sub_root) 5828 btrfs_put_root(sub_root); 5829 5830 if (!IS_ERR(inode) && root != sub_root) { 5831 down_read(&fs_info->cleanup_work_sem); 5832 if (!sb_rdonly(inode->i_sb)) 5833 ret = btrfs_orphan_cleanup(sub_root); 5834 up_read(&fs_info->cleanup_work_sem); 5835 if (ret) { 5836 iput(inode); 5837 inode = ERR_PTR(ret); 5838 } 5839 } 5840 5841 return inode; 5842 } 5843 5844 static int btrfs_dentry_delete(const struct dentry *dentry) 5845 { 5846 struct btrfs_root *root; 5847 struct inode *inode = d_inode(dentry); 5848 5849 if (!inode && !IS_ROOT(dentry)) 5850 inode = d_inode(dentry->d_parent); 5851 5852 if (inode) { 5853 root = BTRFS_I(inode)->root; 5854 if (btrfs_root_refs(&root->root_item) == 0) 5855 return 1; 5856 5857 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5858 return 1; 5859 } 5860 return 0; 5861 } 5862 5863 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5864 unsigned int flags) 5865 { 5866 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5867 5868 if (inode == ERR_PTR(-ENOENT)) 5869 inode = NULL; 5870 return d_splice_alias(inode, dentry); 5871 } 5872 5873 /* 5874 * All this infrastructure exists because dir_emit can fault, and we are holding 5875 * the tree lock when doing readdir. For now just allocate a buffer and copy 5876 * our information into that, and then dir_emit from the buffer. This is 5877 * similar to what NFS does, only we don't keep the buffer around in pagecache 5878 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5879 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5880 * tree lock. 5881 */ 5882 static int btrfs_opendir(struct inode *inode, struct file *file) 5883 { 5884 struct btrfs_file_private *private; 5885 5886 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5887 if (!private) 5888 return -ENOMEM; 5889 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5890 if (!private->filldir_buf) { 5891 kfree(private); 5892 return -ENOMEM; 5893 } 5894 file->private_data = private; 5895 return 0; 5896 } 5897 5898 struct dir_entry { 5899 u64 ino; 5900 u64 offset; 5901 unsigned type; 5902 int name_len; 5903 }; 5904 5905 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5906 { 5907 while (entries--) { 5908 struct dir_entry *entry = addr; 5909 char *name = (char *)(entry + 1); 5910 5911 ctx->pos = get_unaligned(&entry->offset); 5912 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5913 get_unaligned(&entry->ino), 5914 get_unaligned(&entry->type))) 5915 return 1; 5916 addr += sizeof(struct dir_entry) + 5917 get_unaligned(&entry->name_len); 5918 ctx->pos++; 5919 } 5920 return 0; 5921 } 5922 5923 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5924 { 5925 struct inode *inode = file_inode(file); 5926 struct btrfs_root *root = BTRFS_I(inode)->root; 5927 struct btrfs_file_private *private = file->private_data; 5928 struct btrfs_dir_item *di; 5929 struct btrfs_key key; 5930 struct btrfs_key found_key; 5931 struct btrfs_path *path; 5932 void *addr; 5933 struct list_head ins_list; 5934 struct list_head del_list; 5935 int ret; 5936 struct extent_buffer *leaf; 5937 int slot; 5938 char *name_ptr; 5939 int name_len; 5940 int entries = 0; 5941 int total_len = 0; 5942 bool put = false; 5943 struct btrfs_key location; 5944 5945 if (!dir_emit_dots(file, ctx)) 5946 return 0; 5947 5948 path = btrfs_alloc_path(); 5949 if (!path) 5950 return -ENOMEM; 5951 5952 addr = private->filldir_buf; 5953 path->reada = READA_FORWARD; 5954 5955 INIT_LIST_HEAD(&ins_list); 5956 INIT_LIST_HEAD(&del_list); 5957 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5958 5959 again: 5960 key.type = BTRFS_DIR_INDEX_KEY; 5961 key.offset = ctx->pos; 5962 key.objectid = btrfs_ino(BTRFS_I(inode)); 5963 5964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5965 if (ret < 0) 5966 goto err; 5967 5968 while (1) { 5969 struct dir_entry *entry; 5970 5971 leaf = path->nodes[0]; 5972 slot = path->slots[0]; 5973 if (slot >= btrfs_header_nritems(leaf)) { 5974 ret = btrfs_next_leaf(root, path); 5975 if (ret < 0) 5976 goto err; 5977 else if (ret > 0) 5978 break; 5979 continue; 5980 } 5981 5982 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5983 5984 if (found_key.objectid != key.objectid) 5985 break; 5986 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5987 break; 5988 if (found_key.offset < ctx->pos) 5989 goto next; 5990 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5991 goto next; 5992 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5993 name_len = btrfs_dir_name_len(leaf, di); 5994 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5995 PAGE_SIZE) { 5996 btrfs_release_path(path); 5997 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5998 if (ret) 5999 goto nopos; 6000 addr = private->filldir_buf; 6001 entries = 0; 6002 total_len = 0; 6003 goto again; 6004 } 6005 6006 entry = addr; 6007 put_unaligned(name_len, &entry->name_len); 6008 name_ptr = (char *)(entry + 1); 6009 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6010 name_len); 6011 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6012 &entry->type); 6013 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6014 put_unaligned(location.objectid, &entry->ino); 6015 put_unaligned(found_key.offset, &entry->offset); 6016 entries++; 6017 addr += sizeof(struct dir_entry) + name_len; 6018 total_len += sizeof(struct dir_entry) + name_len; 6019 next: 6020 path->slots[0]++; 6021 } 6022 btrfs_release_path(path); 6023 6024 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6025 if (ret) 6026 goto nopos; 6027 6028 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6029 if (ret) 6030 goto nopos; 6031 6032 /* 6033 * Stop new entries from being returned after we return the last 6034 * entry. 6035 * 6036 * New directory entries are assigned a strictly increasing 6037 * offset. This means that new entries created during readdir 6038 * are *guaranteed* to be seen in the future by that readdir. 6039 * This has broken buggy programs which operate on names as 6040 * they're returned by readdir. Until we re-use freed offsets 6041 * we have this hack to stop new entries from being returned 6042 * under the assumption that they'll never reach this huge 6043 * offset. 6044 * 6045 * This is being careful not to overflow 32bit loff_t unless the 6046 * last entry requires it because doing so has broken 32bit apps 6047 * in the past. 6048 */ 6049 if (ctx->pos >= INT_MAX) 6050 ctx->pos = LLONG_MAX; 6051 else 6052 ctx->pos = INT_MAX; 6053 nopos: 6054 ret = 0; 6055 err: 6056 if (put) 6057 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6058 btrfs_free_path(path); 6059 return ret; 6060 } 6061 6062 /* 6063 * This is somewhat expensive, updating the tree every time the 6064 * inode changes. But, it is most likely to find the inode in cache. 6065 * FIXME, needs more benchmarking...there are no reasons other than performance 6066 * to keep or drop this code. 6067 */ 6068 static int btrfs_dirty_inode(struct inode *inode) 6069 { 6070 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6071 struct btrfs_root *root = BTRFS_I(inode)->root; 6072 struct btrfs_trans_handle *trans; 6073 int ret; 6074 6075 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6076 return 0; 6077 6078 trans = btrfs_join_transaction(root); 6079 if (IS_ERR(trans)) 6080 return PTR_ERR(trans); 6081 6082 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6083 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6084 /* whoops, lets try again with the full transaction */ 6085 btrfs_end_transaction(trans); 6086 trans = btrfs_start_transaction(root, 1); 6087 if (IS_ERR(trans)) 6088 return PTR_ERR(trans); 6089 6090 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6091 } 6092 btrfs_end_transaction(trans); 6093 if (BTRFS_I(inode)->delayed_node) 6094 btrfs_balance_delayed_items(fs_info); 6095 6096 return ret; 6097 } 6098 6099 /* 6100 * This is a copy of file_update_time. We need this so we can return error on 6101 * ENOSPC for updating the inode in the case of file write and mmap writes. 6102 */ 6103 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6104 int flags) 6105 { 6106 struct btrfs_root *root = BTRFS_I(inode)->root; 6107 bool dirty = flags & ~S_VERSION; 6108 6109 if (btrfs_root_readonly(root)) 6110 return -EROFS; 6111 6112 if (flags & S_VERSION) 6113 dirty |= inode_maybe_inc_iversion(inode, dirty); 6114 if (flags & S_CTIME) 6115 inode->i_ctime = *now; 6116 if (flags & S_MTIME) 6117 inode->i_mtime = *now; 6118 if (flags & S_ATIME) 6119 inode->i_atime = *now; 6120 return dirty ? btrfs_dirty_inode(inode) : 0; 6121 } 6122 6123 /* 6124 * find the highest existing sequence number in a directory 6125 * and then set the in-memory index_cnt variable to reflect 6126 * free sequence numbers 6127 */ 6128 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6129 { 6130 struct btrfs_root *root = inode->root; 6131 struct btrfs_key key, found_key; 6132 struct btrfs_path *path; 6133 struct extent_buffer *leaf; 6134 int ret; 6135 6136 key.objectid = btrfs_ino(inode); 6137 key.type = BTRFS_DIR_INDEX_KEY; 6138 key.offset = (u64)-1; 6139 6140 path = btrfs_alloc_path(); 6141 if (!path) 6142 return -ENOMEM; 6143 6144 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6145 if (ret < 0) 6146 goto out; 6147 /* FIXME: we should be able to handle this */ 6148 if (ret == 0) 6149 goto out; 6150 ret = 0; 6151 6152 /* 6153 * MAGIC NUMBER EXPLANATION: 6154 * since we search a directory based on f_pos we have to start at 2 6155 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6156 * else has to start at 2 6157 */ 6158 if (path->slots[0] == 0) { 6159 inode->index_cnt = 2; 6160 goto out; 6161 } 6162 6163 path->slots[0]--; 6164 6165 leaf = path->nodes[0]; 6166 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6167 6168 if (found_key.objectid != btrfs_ino(inode) || 6169 found_key.type != BTRFS_DIR_INDEX_KEY) { 6170 inode->index_cnt = 2; 6171 goto out; 6172 } 6173 6174 inode->index_cnt = found_key.offset + 1; 6175 out: 6176 btrfs_free_path(path); 6177 return ret; 6178 } 6179 6180 /* 6181 * helper to find a free sequence number in a given directory. This current 6182 * code is very simple, later versions will do smarter things in the btree 6183 */ 6184 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6185 { 6186 int ret = 0; 6187 6188 if (dir->index_cnt == (u64)-1) { 6189 ret = btrfs_inode_delayed_dir_index_count(dir); 6190 if (ret) { 6191 ret = btrfs_set_inode_index_count(dir); 6192 if (ret) 6193 return ret; 6194 } 6195 } 6196 6197 *index = dir->index_cnt; 6198 dir->index_cnt++; 6199 6200 return ret; 6201 } 6202 6203 static int btrfs_insert_inode_locked(struct inode *inode) 6204 { 6205 struct btrfs_iget_args args; 6206 6207 args.ino = BTRFS_I(inode)->location.objectid; 6208 args.root = BTRFS_I(inode)->root; 6209 6210 return insert_inode_locked4(inode, 6211 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6212 btrfs_find_actor, &args); 6213 } 6214 6215 /* 6216 * Inherit flags from the parent inode. 6217 * 6218 * Currently only the compression flags and the cow flags are inherited. 6219 */ 6220 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6221 { 6222 unsigned int flags; 6223 6224 if (!dir) 6225 return; 6226 6227 flags = BTRFS_I(dir)->flags; 6228 6229 if (flags & BTRFS_INODE_NOCOMPRESS) { 6230 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6231 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6232 } else if (flags & BTRFS_INODE_COMPRESS) { 6233 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6234 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6235 } 6236 6237 if (flags & BTRFS_INODE_NODATACOW) { 6238 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6239 if (S_ISREG(inode->i_mode)) 6240 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6241 } 6242 6243 btrfs_sync_inode_flags_to_i_flags(inode); 6244 } 6245 6246 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6247 struct btrfs_root *root, 6248 struct inode *dir, 6249 const char *name, int name_len, 6250 u64 ref_objectid, u64 objectid, 6251 umode_t mode, u64 *index) 6252 { 6253 struct btrfs_fs_info *fs_info = root->fs_info; 6254 struct inode *inode; 6255 struct btrfs_inode_item *inode_item; 6256 struct btrfs_key *location; 6257 struct btrfs_path *path; 6258 struct btrfs_inode_ref *ref; 6259 struct btrfs_key key[2]; 6260 u32 sizes[2]; 6261 int nitems = name ? 2 : 1; 6262 unsigned long ptr; 6263 unsigned int nofs_flag; 6264 int ret; 6265 6266 path = btrfs_alloc_path(); 6267 if (!path) 6268 return ERR_PTR(-ENOMEM); 6269 6270 nofs_flag = memalloc_nofs_save(); 6271 inode = new_inode(fs_info->sb); 6272 memalloc_nofs_restore(nofs_flag); 6273 if (!inode) { 6274 btrfs_free_path(path); 6275 return ERR_PTR(-ENOMEM); 6276 } 6277 6278 /* 6279 * O_TMPFILE, set link count to 0, so that after this point, 6280 * we fill in an inode item with the correct link count. 6281 */ 6282 if (!name) 6283 set_nlink(inode, 0); 6284 6285 /* 6286 * we have to initialize this early, so we can reclaim the inode 6287 * number if we fail afterwards in this function. 6288 */ 6289 inode->i_ino = objectid; 6290 6291 if (dir && name) { 6292 trace_btrfs_inode_request(dir); 6293 6294 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6295 if (ret) { 6296 btrfs_free_path(path); 6297 iput(inode); 6298 return ERR_PTR(ret); 6299 } 6300 } else if (dir) { 6301 *index = 0; 6302 } 6303 /* 6304 * index_cnt is ignored for everything but a dir, 6305 * btrfs_set_inode_index_count has an explanation for the magic 6306 * number 6307 */ 6308 BTRFS_I(inode)->index_cnt = 2; 6309 BTRFS_I(inode)->dir_index = *index; 6310 BTRFS_I(inode)->root = btrfs_grab_root(root); 6311 BTRFS_I(inode)->generation = trans->transid; 6312 inode->i_generation = BTRFS_I(inode)->generation; 6313 6314 /* 6315 * We could have gotten an inode number from somebody who was fsynced 6316 * and then removed in this same transaction, so let's just set full 6317 * sync since it will be a full sync anyway and this will blow away the 6318 * old info in the log. 6319 */ 6320 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6321 6322 key[0].objectid = objectid; 6323 key[0].type = BTRFS_INODE_ITEM_KEY; 6324 key[0].offset = 0; 6325 6326 sizes[0] = sizeof(struct btrfs_inode_item); 6327 6328 if (name) { 6329 /* 6330 * Start new inodes with an inode_ref. This is slightly more 6331 * efficient for small numbers of hard links since they will 6332 * be packed into one item. Extended refs will kick in if we 6333 * add more hard links than can fit in the ref item. 6334 */ 6335 key[1].objectid = objectid; 6336 key[1].type = BTRFS_INODE_REF_KEY; 6337 key[1].offset = ref_objectid; 6338 6339 sizes[1] = name_len + sizeof(*ref); 6340 } 6341 6342 location = &BTRFS_I(inode)->location; 6343 location->objectid = objectid; 6344 location->offset = 0; 6345 location->type = BTRFS_INODE_ITEM_KEY; 6346 6347 ret = btrfs_insert_inode_locked(inode); 6348 if (ret < 0) { 6349 iput(inode); 6350 goto fail; 6351 } 6352 6353 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6354 if (ret != 0) 6355 goto fail_unlock; 6356 6357 inode_init_owner(&init_user_ns, inode, dir, mode); 6358 inode_set_bytes(inode, 0); 6359 6360 inode->i_mtime = current_time(inode); 6361 inode->i_atime = inode->i_mtime; 6362 inode->i_ctime = inode->i_mtime; 6363 BTRFS_I(inode)->i_otime = inode->i_mtime; 6364 6365 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6366 struct btrfs_inode_item); 6367 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6368 sizeof(*inode_item)); 6369 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6370 6371 if (name) { 6372 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6373 struct btrfs_inode_ref); 6374 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6375 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6376 ptr = (unsigned long)(ref + 1); 6377 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6378 } 6379 6380 btrfs_mark_buffer_dirty(path->nodes[0]); 6381 btrfs_free_path(path); 6382 6383 btrfs_inherit_iflags(inode, dir); 6384 6385 if (S_ISREG(mode)) { 6386 if (btrfs_test_opt(fs_info, NODATASUM)) 6387 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6388 if (btrfs_test_opt(fs_info, NODATACOW)) 6389 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6390 BTRFS_INODE_NODATASUM; 6391 } 6392 6393 inode_tree_add(inode); 6394 6395 trace_btrfs_inode_new(inode); 6396 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6397 6398 btrfs_update_root_times(trans, root); 6399 6400 ret = btrfs_inode_inherit_props(trans, inode, dir); 6401 if (ret) 6402 btrfs_err(fs_info, 6403 "error inheriting props for ino %llu (root %llu): %d", 6404 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6405 6406 return inode; 6407 6408 fail_unlock: 6409 discard_new_inode(inode); 6410 fail: 6411 if (dir && name) 6412 BTRFS_I(dir)->index_cnt--; 6413 btrfs_free_path(path); 6414 return ERR_PTR(ret); 6415 } 6416 6417 /* 6418 * utility function to add 'inode' into 'parent_inode' with 6419 * a give name and a given sequence number. 6420 * if 'add_backref' is true, also insert a backref from the 6421 * inode to the parent directory. 6422 */ 6423 int btrfs_add_link(struct btrfs_trans_handle *trans, 6424 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6425 const char *name, int name_len, int add_backref, u64 index) 6426 { 6427 int ret = 0; 6428 struct btrfs_key key; 6429 struct btrfs_root *root = parent_inode->root; 6430 u64 ino = btrfs_ino(inode); 6431 u64 parent_ino = btrfs_ino(parent_inode); 6432 6433 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6434 memcpy(&key, &inode->root->root_key, sizeof(key)); 6435 } else { 6436 key.objectid = ino; 6437 key.type = BTRFS_INODE_ITEM_KEY; 6438 key.offset = 0; 6439 } 6440 6441 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6442 ret = btrfs_add_root_ref(trans, key.objectid, 6443 root->root_key.objectid, parent_ino, 6444 index, name, name_len); 6445 } else if (add_backref) { 6446 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6447 parent_ino, index); 6448 } 6449 6450 /* Nothing to clean up yet */ 6451 if (ret) 6452 return ret; 6453 6454 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6455 btrfs_inode_type(&inode->vfs_inode), index); 6456 if (ret == -EEXIST || ret == -EOVERFLOW) 6457 goto fail_dir_item; 6458 else if (ret) { 6459 btrfs_abort_transaction(trans, ret); 6460 return ret; 6461 } 6462 6463 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6464 name_len * 2); 6465 inode_inc_iversion(&parent_inode->vfs_inode); 6466 /* 6467 * If we are replaying a log tree, we do not want to update the mtime 6468 * and ctime of the parent directory with the current time, since the 6469 * log replay procedure is responsible for setting them to their correct 6470 * values (the ones it had when the fsync was done). 6471 */ 6472 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6473 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6474 6475 parent_inode->vfs_inode.i_mtime = now; 6476 parent_inode->vfs_inode.i_ctime = now; 6477 } 6478 ret = btrfs_update_inode(trans, root, parent_inode); 6479 if (ret) 6480 btrfs_abort_transaction(trans, ret); 6481 return ret; 6482 6483 fail_dir_item: 6484 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6485 u64 local_index; 6486 int err; 6487 err = btrfs_del_root_ref(trans, key.objectid, 6488 root->root_key.objectid, parent_ino, 6489 &local_index, name, name_len); 6490 if (err) 6491 btrfs_abort_transaction(trans, err); 6492 } else if (add_backref) { 6493 u64 local_index; 6494 int err; 6495 6496 err = btrfs_del_inode_ref(trans, root, name, name_len, 6497 ino, parent_ino, &local_index); 6498 if (err) 6499 btrfs_abort_transaction(trans, err); 6500 } 6501 6502 /* Return the original error code */ 6503 return ret; 6504 } 6505 6506 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6507 struct btrfs_inode *dir, struct dentry *dentry, 6508 struct btrfs_inode *inode, int backref, u64 index) 6509 { 6510 int err = btrfs_add_link(trans, dir, inode, 6511 dentry->d_name.name, dentry->d_name.len, 6512 backref, index); 6513 if (err > 0) 6514 err = -EEXIST; 6515 return err; 6516 } 6517 6518 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6519 struct dentry *dentry, umode_t mode, dev_t rdev) 6520 { 6521 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6522 struct btrfs_trans_handle *trans; 6523 struct btrfs_root *root = BTRFS_I(dir)->root; 6524 struct inode *inode = NULL; 6525 int err; 6526 u64 objectid; 6527 u64 index = 0; 6528 6529 /* 6530 * 2 for inode item and ref 6531 * 2 for dir items 6532 * 1 for xattr if selinux is on 6533 */ 6534 trans = btrfs_start_transaction(root, 5); 6535 if (IS_ERR(trans)) 6536 return PTR_ERR(trans); 6537 6538 err = btrfs_get_free_objectid(root, &objectid); 6539 if (err) 6540 goto out_unlock; 6541 6542 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6543 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6544 mode, &index); 6545 if (IS_ERR(inode)) { 6546 err = PTR_ERR(inode); 6547 inode = NULL; 6548 goto out_unlock; 6549 } 6550 6551 /* 6552 * If the active LSM wants to access the inode during 6553 * d_instantiate it needs these. Smack checks to see 6554 * if the filesystem supports xattrs by looking at the 6555 * ops vector. 6556 */ 6557 inode->i_op = &btrfs_special_inode_operations; 6558 init_special_inode(inode, inode->i_mode, rdev); 6559 6560 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6561 if (err) 6562 goto out_unlock; 6563 6564 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6565 0, index); 6566 if (err) 6567 goto out_unlock; 6568 6569 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6570 d_instantiate_new(dentry, inode); 6571 6572 out_unlock: 6573 btrfs_end_transaction(trans); 6574 btrfs_btree_balance_dirty(fs_info); 6575 if (err && inode) { 6576 inode_dec_link_count(inode); 6577 discard_new_inode(inode); 6578 } 6579 return err; 6580 } 6581 6582 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6583 struct dentry *dentry, umode_t mode, bool excl) 6584 { 6585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6586 struct btrfs_trans_handle *trans; 6587 struct btrfs_root *root = BTRFS_I(dir)->root; 6588 struct inode *inode = NULL; 6589 int err; 6590 u64 objectid; 6591 u64 index = 0; 6592 6593 /* 6594 * 2 for inode item and ref 6595 * 2 for dir items 6596 * 1 for xattr if selinux is on 6597 */ 6598 trans = btrfs_start_transaction(root, 5); 6599 if (IS_ERR(trans)) 6600 return PTR_ERR(trans); 6601 6602 err = btrfs_get_free_objectid(root, &objectid); 6603 if (err) 6604 goto out_unlock; 6605 6606 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6607 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6608 mode, &index); 6609 if (IS_ERR(inode)) { 6610 err = PTR_ERR(inode); 6611 inode = NULL; 6612 goto out_unlock; 6613 } 6614 /* 6615 * If the active LSM wants to access the inode during 6616 * d_instantiate it needs these. Smack checks to see 6617 * if the filesystem supports xattrs by looking at the 6618 * ops vector. 6619 */ 6620 inode->i_fop = &btrfs_file_operations; 6621 inode->i_op = &btrfs_file_inode_operations; 6622 inode->i_mapping->a_ops = &btrfs_aops; 6623 6624 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6625 if (err) 6626 goto out_unlock; 6627 6628 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6629 if (err) 6630 goto out_unlock; 6631 6632 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6633 0, index); 6634 if (err) 6635 goto out_unlock; 6636 6637 d_instantiate_new(dentry, inode); 6638 6639 out_unlock: 6640 btrfs_end_transaction(trans); 6641 if (err && inode) { 6642 inode_dec_link_count(inode); 6643 discard_new_inode(inode); 6644 } 6645 btrfs_btree_balance_dirty(fs_info); 6646 return err; 6647 } 6648 6649 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6650 struct dentry *dentry) 6651 { 6652 struct btrfs_trans_handle *trans = NULL; 6653 struct btrfs_root *root = BTRFS_I(dir)->root; 6654 struct inode *inode = d_inode(old_dentry); 6655 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6656 u64 index; 6657 int err; 6658 int drop_inode = 0; 6659 6660 /* do not allow sys_link's with other subvols of the same device */ 6661 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6662 return -EXDEV; 6663 6664 if (inode->i_nlink >= BTRFS_LINK_MAX) 6665 return -EMLINK; 6666 6667 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6668 if (err) 6669 goto fail; 6670 6671 /* 6672 * 2 items for inode and inode ref 6673 * 2 items for dir items 6674 * 1 item for parent inode 6675 * 1 item for orphan item deletion if O_TMPFILE 6676 */ 6677 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6678 if (IS_ERR(trans)) { 6679 err = PTR_ERR(trans); 6680 trans = NULL; 6681 goto fail; 6682 } 6683 6684 /* There are several dir indexes for this inode, clear the cache. */ 6685 BTRFS_I(inode)->dir_index = 0ULL; 6686 inc_nlink(inode); 6687 inode_inc_iversion(inode); 6688 inode->i_ctime = current_time(inode); 6689 ihold(inode); 6690 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6691 6692 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6693 1, index); 6694 6695 if (err) { 6696 drop_inode = 1; 6697 } else { 6698 struct dentry *parent = dentry->d_parent; 6699 6700 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6701 if (err) 6702 goto fail; 6703 if (inode->i_nlink == 1) { 6704 /* 6705 * If new hard link count is 1, it's a file created 6706 * with open(2) O_TMPFILE flag. 6707 */ 6708 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6709 if (err) 6710 goto fail; 6711 } 6712 d_instantiate(dentry, inode); 6713 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6714 } 6715 6716 fail: 6717 if (trans) 6718 btrfs_end_transaction(trans); 6719 if (drop_inode) { 6720 inode_dec_link_count(inode); 6721 iput(inode); 6722 } 6723 btrfs_btree_balance_dirty(fs_info); 6724 return err; 6725 } 6726 6727 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6728 struct dentry *dentry, umode_t mode) 6729 { 6730 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6731 struct inode *inode = NULL; 6732 struct btrfs_trans_handle *trans; 6733 struct btrfs_root *root = BTRFS_I(dir)->root; 6734 int err = 0; 6735 u64 objectid = 0; 6736 u64 index = 0; 6737 6738 /* 6739 * 2 items for inode and ref 6740 * 2 items for dir items 6741 * 1 for xattr if selinux is on 6742 */ 6743 trans = btrfs_start_transaction(root, 5); 6744 if (IS_ERR(trans)) 6745 return PTR_ERR(trans); 6746 6747 err = btrfs_get_free_objectid(root, &objectid); 6748 if (err) 6749 goto out_fail; 6750 6751 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6752 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6753 S_IFDIR | mode, &index); 6754 if (IS_ERR(inode)) { 6755 err = PTR_ERR(inode); 6756 inode = NULL; 6757 goto out_fail; 6758 } 6759 6760 /* these must be set before we unlock the inode */ 6761 inode->i_op = &btrfs_dir_inode_operations; 6762 inode->i_fop = &btrfs_dir_file_operations; 6763 6764 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6765 if (err) 6766 goto out_fail; 6767 6768 btrfs_i_size_write(BTRFS_I(inode), 0); 6769 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6770 if (err) 6771 goto out_fail; 6772 6773 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6774 dentry->d_name.name, 6775 dentry->d_name.len, 0, index); 6776 if (err) 6777 goto out_fail; 6778 6779 d_instantiate_new(dentry, inode); 6780 6781 out_fail: 6782 btrfs_end_transaction(trans); 6783 if (err && inode) { 6784 inode_dec_link_count(inode); 6785 discard_new_inode(inode); 6786 } 6787 btrfs_btree_balance_dirty(fs_info); 6788 return err; 6789 } 6790 6791 static noinline int uncompress_inline(struct btrfs_path *path, 6792 struct page *page, 6793 size_t pg_offset, u64 extent_offset, 6794 struct btrfs_file_extent_item *item) 6795 { 6796 int ret; 6797 struct extent_buffer *leaf = path->nodes[0]; 6798 char *tmp; 6799 size_t max_size; 6800 unsigned long inline_size; 6801 unsigned long ptr; 6802 int compress_type; 6803 6804 WARN_ON(pg_offset != 0); 6805 compress_type = btrfs_file_extent_compression(leaf, item); 6806 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6807 inline_size = btrfs_file_extent_inline_item_len(leaf, 6808 btrfs_item_nr(path->slots[0])); 6809 tmp = kmalloc(inline_size, GFP_NOFS); 6810 if (!tmp) 6811 return -ENOMEM; 6812 ptr = btrfs_file_extent_inline_start(item); 6813 6814 read_extent_buffer(leaf, tmp, ptr, inline_size); 6815 6816 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6817 ret = btrfs_decompress(compress_type, tmp, page, 6818 extent_offset, inline_size, max_size); 6819 6820 /* 6821 * decompression code contains a memset to fill in any space between the end 6822 * of the uncompressed data and the end of max_size in case the decompressed 6823 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6824 * the end of an inline extent and the beginning of the next block, so we 6825 * cover that region here. 6826 */ 6827 6828 if (max_size + pg_offset < PAGE_SIZE) 6829 memzero_page(page, pg_offset + max_size, 6830 PAGE_SIZE - max_size - pg_offset); 6831 kfree(tmp); 6832 return ret; 6833 } 6834 6835 /** 6836 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6837 * @inode: file to search in 6838 * @page: page to read extent data into if the extent is inline 6839 * @pg_offset: offset into @page to copy to 6840 * @start: file offset 6841 * @len: length of range starting at @start 6842 * 6843 * This returns the first &struct extent_map which overlaps with the given 6844 * range, reading it from the B-tree and caching it if necessary. Note that 6845 * there may be more extents which overlap the given range after the returned 6846 * extent_map. 6847 * 6848 * If @page is not NULL and the extent is inline, this also reads the extent 6849 * data directly into the page and marks the extent up to date in the io_tree. 6850 * 6851 * Return: ERR_PTR on error, non-NULL extent_map on success. 6852 */ 6853 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6854 struct page *page, size_t pg_offset, 6855 u64 start, u64 len) 6856 { 6857 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6858 int ret = 0; 6859 u64 extent_start = 0; 6860 u64 extent_end = 0; 6861 u64 objectid = btrfs_ino(inode); 6862 int extent_type = -1; 6863 struct btrfs_path *path = NULL; 6864 struct btrfs_root *root = inode->root; 6865 struct btrfs_file_extent_item *item; 6866 struct extent_buffer *leaf; 6867 struct btrfs_key found_key; 6868 struct extent_map *em = NULL; 6869 struct extent_map_tree *em_tree = &inode->extent_tree; 6870 struct extent_io_tree *io_tree = &inode->io_tree; 6871 6872 read_lock(&em_tree->lock); 6873 em = lookup_extent_mapping(em_tree, start, len); 6874 read_unlock(&em_tree->lock); 6875 6876 if (em) { 6877 if (em->start > start || em->start + em->len <= start) 6878 free_extent_map(em); 6879 else if (em->block_start == EXTENT_MAP_INLINE && page) 6880 free_extent_map(em); 6881 else 6882 goto out; 6883 } 6884 em = alloc_extent_map(); 6885 if (!em) { 6886 ret = -ENOMEM; 6887 goto out; 6888 } 6889 em->start = EXTENT_MAP_HOLE; 6890 em->orig_start = EXTENT_MAP_HOLE; 6891 em->len = (u64)-1; 6892 em->block_len = (u64)-1; 6893 6894 path = btrfs_alloc_path(); 6895 if (!path) { 6896 ret = -ENOMEM; 6897 goto out; 6898 } 6899 6900 /* Chances are we'll be called again, so go ahead and do readahead */ 6901 path->reada = READA_FORWARD; 6902 6903 /* 6904 * The same explanation in load_free_space_cache applies here as well, 6905 * we only read when we're loading the free space cache, and at that 6906 * point the commit_root has everything we need. 6907 */ 6908 if (btrfs_is_free_space_inode(inode)) { 6909 path->search_commit_root = 1; 6910 path->skip_locking = 1; 6911 } 6912 6913 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6914 if (ret < 0) { 6915 goto out; 6916 } else if (ret > 0) { 6917 if (path->slots[0] == 0) 6918 goto not_found; 6919 path->slots[0]--; 6920 ret = 0; 6921 } 6922 6923 leaf = path->nodes[0]; 6924 item = btrfs_item_ptr(leaf, path->slots[0], 6925 struct btrfs_file_extent_item); 6926 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6927 if (found_key.objectid != objectid || 6928 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6929 /* 6930 * If we backup past the first extent we want to move forward 6931 * and see if there is an extent in front of us, otherwise we'll 6932 * say there is a hole for our whole search range which can 6933 * cause problems. 6934 */ 6935 extent_end = start; 6936 goto next; 6937 } 6938 6939 extent_type = btrfs_file_extent_type(leaf, item); 6940 extent_start = found_key.offset; 6941 extent_end = btrfs_file_extent_end(path); 6942 if (extent_type == BTRFS_FILE_EXTENT_REG || 6943 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6944 /* Only regular file could have regular/prealloc extent */ 6945 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6946 ret = -EUCLEAN; 6947 btrfs_crit(fs_info, 6948 "regular/prealloc extent found for non-regular inode %llu", 6949 btrfs_ino(inode)); 6950 goto out; 6951 } 6952 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6953 extent_start); 6954 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6955 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6956 path->slots[0], 6957 extent_start); 6958 } 6959 next: 6960 if (start >= extent_end) { 6961 path->slots[0]++; 6962 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6963 ret = btrfs_next_leaf(root, path); 6964 if (ret < 0) 6965 goto out; 6966 else if (ret > 0) 6967 goto not_found; 6968 6969 leaf = path->nodes[0]; 6970 } 6971 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6972 if (found_key.objectid != objectid || 6973 found_key.type != BTRFS_EXTENT_DATA_KEY) 6974 goto not_found; 6975 if (start + len <= found_key.offset) 6976 goto not_found; 6977 if (start > found_key.offset) 6978 goto next; 6979 6980 /* New extent overlaps with existing one */ 6981 em->start = start; 6982 em->orig_start = start; 6983 em->len = found_key.offset - start; 6984 em->block_start = EXTENT_MAP_HOLE; 6985 goto insert; 6986 } 6987 6988 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6989 6990 if (extent_type == BTRFS_FILE_EXTENT_REG || 6991 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6992 goto insert; 6993 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6994 unsigned long ptr; 6995 char *map; 6996 size_t size; 6997 size_t extent_offset; 6998 size_t copy_size; 6999 7000 if (!page) 7001 goto out; 7002 7003 size = btrfs_file_extent_ram_bytes(leaf, item); 7004 extent_offset = page_offset(page) + pg_offset - extent_start; 7005 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7006 size - extent_offset); 7007 em->start = extent_start + extent_offset; 7008 em->len = ALIGN(copy_size, fs_info->sectorsize); 7009 em->orig_block_len = em->len; 7010 em->orig_start = em->start; 7011 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7012 7013 if (!PageUptodate(page)) { 7014 if (btrfs_file_extent_compression(leaf, item) != 7015 BTRFS_COMPRESS_NONE) { 7016 ret = uncompress_inline(path, page, pg_offset, 7017 extent_offset, item); 7018 if (ret) 7019 goto out; 7020 } else { 7021 map = kmap_local_page(page); 7022 read_extent_buffer(leaf, map + pg_offset, ptr, 7023 copy_size); 7024 if (pg_offset + copy_size < PAGE_SIZE) { 7025 memset(map + pg_offset + copy_size, 0, 7026 PAGE_SIZE - pg_offset - 7027 copy_size); 7028 } 7029 kunmap_local(map); 7030 } 7031 flush_dcache_page(page); 7032 } 7033 set_extent_uptodate(io_tree, em->start, 7034 extent_map_end(em) - 1, NULL, GFP_NOFS); 7035 goto insert; 7036 } 7037 not_found: 7038 em->start = start; 7039 em->orig_start = start; 7040 em->len = len; 7041 em->block_start = EXTENT_MAP_HOLE; 7042 insert: 7043 ret = 0; 7044 btrfs_release_path(path); 7045 if (em->start > start || extent_map_end(em) <= start) { 7046 btrfs_err(fs_info, 7047 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7048 em->start, em->len, start, len); 7049 ret = -EIO; 7050 goto out; 7051 } 7052 7053 write_lock(&em_tree->lock); 7054 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7055 write_unlock(&em_tree->lock); 7056 out: 7057 btrfs_free_path(path); 7058 7059 trace_btrfs_get_extent(root, inode, em); 7060 7061 if (ret) { 7062 free_extent_map(em); 7063 return ERR_PTR(ret); 7064 } 7065 return em; 7066 } 7067 7068 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7069 u64 start, u64 len) 7070 { 7071 struct extent_map *em; 7072 struct extent_map *hole_em = NULL; 7073 u64 delalloc_start = start; 7074 u64 end; 7075 u64 delalloc_len; 7076 u64 delalloc_end; 7077 int err = 0; 7078 7079 em = btrfs_get_extent(inode, NULL, 0, start, len); 7080 if (IS_ERR(em)) 7081 return em; 7082 /* 7083 * If our em maps to: 7084 * - a hole or 7085 * - a pre-alloc extent, 7086 * there might actually be delalloc bytes behind it. 7087 */ 7088 if (em->block_start != EXTENT_MAP_HOLE && 7089 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7090 return em; 7091 else 7092 hole_em = em; 7093 7094 /* check to see if we've wrapped (len == -1 or similar) */ 7095 end = start + len; 7096 if (end < start) 7097 end = (u64)-1; 7098 else 7099 end -= 1; 7100 7101 em = NULL; 7102 7103 /* ok, we didn't find anything, lets look for delalloc */ 7104 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7105 end, len, EXTENT_DELALLOC, 1); 7106 delalloc_end = delalloc_start + delalloc_len; 7107 if (delalloc_end < delalloc_start) 7108 delalloc_end = (u64)-1; 7109 7110 /* 7111 * We didn't find anything useful, return the original results from 7112 * get_extent() 7113 */ 7114 if (delalloc_start > end || delalloc_end <= start) { 7115 em = hole_em; 7116 hole_em = NULL; 7117 goto out; 7118 } 7119 7120 /* 7121 * Adjust the delalloc_start to make sure it doesn't go backwards from 7122 * the start they passed in 7123 */ 7124 delalloc_start = max(start, delalloc_start); 7125 delalloc_len = delalloc_end - delalloc_start; 7126 7127 if (delalloc_len > 0) { 7128 u64 hole_start; 7129 u64 hole_len; 7130 const u64 hole_end = extent_map_end(hole_em); 7131 7132 em = alloc_extent_map(); 7133 if (!em) { 7134 err = -ENOMEM; 7135 goto out; 7136 } 7137 7138 ASSERT(hole_em); 7139 /* 7140 * When btrfs_get_extent can't find anything it returns one 7141 * huge hole 7142 * 7143 * Make sure what it found really fits our range, and adjust to 7144 * make sure it is based on the start from the caller 7145 */ 7146 if (hole_end <= start || hole_em->start > end) { 7147 free_extent_map(hole_em); 7148 hole_em = NULL; 7149 } else { 7150 hole_start = max(hole_em->start, start); 7151 hole_len = hole_end - hole_start; 7152 } 7153 7154 if (hole_em && delalloc_start > hole_start) { 7155 /* 7156 * Our hole starts before our delalloc, so we have to 7157 * return just the parts of the hole that go until the 7158 * delalloc starts 7159 */ 7160 em->len = min(hole_len, delalloc_start - hole_start); 7161 em->start = hole_start; 7162 em->orig_start = hole_start; 7163 /* 7164 * Don't adjust block start at all, it is fixed at 7165 * EXTENT_MAP_HOLE 7166 */ 7167 em->block_start = hole_em->block_start; 7168 em->block_len = hole_len; 7169 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7170 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7171 } else { 7172 /* 7173 * Hole is out of passed range or it starts after 7174 * delalloc range 7175 */ 7176 em->start = delalloc_start; 7177 em->len = delalloc_len; 7178 em->orig_start = delalloc_start; 7179 em->block_start = EXTENT_MAP_DELALLOC; 7180 em->block_len = delalloc_len; 7181 } 7182 } else { 7183 return hole_em; 7184 } 7185 out: 7186 7187 free_extent_map(hole_em); 7188 if (err) { 7189 free_extent_map(em); 7190 return ERR_PTR(err); 7191 } 7192 return em; 7193 } 7194 7195 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7196 const u64 start, 7197 const u64 len, 7198 const u64 orig_start, 7199 const u64 block_start, 7200 const u64 block_len, 7201 const u64 orig_block_len, 7202 const u64 ram_bytes, 7203 const int type) 7204 { 7205 struct extent_map *em = NULL; 7206 int ret; 7207 7208 if (type != BTRFS_ORDERED_NOCOW) { 7209 em = create_io_em(inode, start, len, orig_start, block_start, 7210 block_len, orig_block_len, ram_bytes, 7211 BTRFS_COMPRESS_NONE, /* compress_type */ 7212 type); 7213 if (IS_ERR(em)) 7214 goto out; 7215 } 7216 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7217 block_len, type); 7218 if (ret) { 7219 if (em) { 7220 free_extent_map(em); 7221 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7222 } 7223 em = ERR_PTR(ret); 7224 } 7225 out: 7226 7227 return em; 7228 } 7229 7230 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7231 u64 start, u64 len) 7232 { 7233 struct btrfs_root *root = inode->root; 7234 struct btrfs_fs_info *fs_info = root->fs_info; 7235 struct extent_map *em; 7236 struct btrfs_key ins; 7237 u64 alloc_hint; 7238 int ret; 7239 7240 alloc_hint = get_extent_allocation_hint(inode, start, len); 7241 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7242 0, alloc_hint, &ins, 1, 1); 7243 if (ret) 7244 return ERR_PTR(ret); 7245 7246 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7247 ins.objectid, ins.offset, ins.offset, 7248 ins.offset, BTRFS_ORDERED_REGULAR); 7249 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7250 if (IS_ERR(em)) 7251 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7252 1); 7253 7254 return em; 7255 } 7256 7257 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7258 { 7259 struct btrfs_block_group *block_group; 7260 bool readonly = false; 7261 7262 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7263 if (!block_group || block_group->ro) 7264 readonly = true; 7265 if (block_group) 7266 btrfs_put_block_group(block_group); 7267 return readonly; 7268 } 7269 7270 /* 7271 * Check if we can do nocow write into the range [@offset, @offset + @len) 7272 * 7273 * @offset: File offset 7274 * @len: The length to write, will be updated to the nocow writeable 7275 * range 7276 * @orig_start: (optional) Return the original file offset of the file extent 7277 * @orig_len: (optional) Return the original on-disk length of the file extent 7278 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7279 * @strict: if true, omit optimizations that might force us into unnecessary 7280 * cow. e.g., don't trust generation number. 7281 * 7282 * Return: 7283 * >0 and update @len if we can do nocow write 7284 * 0 if we can't do nocow write 7285 * <0 if error happened 7286 * 7287 * NOTE: This only checks the file extents, caller is responsible to wait for 7288 * any ordered extents. 7289 */ 7290 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7291 u64 *orig_start, u64 *orig_block_len, 7292 u64 *ram_bytes, bool strict) 7293 { 7294 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7295 struct btrfs_path *path; 7296 int ret; 7297 struct extent_buffer *leaf; 7298 struct btrfs_root *root = BTRFS_I(inode)->root; 7299 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7300 struct btrfs_file_extent_item *fi; 7301 struct btrfs_key key; 7302 u64 disk_bytenr; 7303 u64 backref_offset; 7304 u64 extent_end; 7305 u64 num_bytes; 7306 int slot; 7307 int found_type; 7308 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7309 7310 path = btrfs_alloc_path(); 7311 if (!path) 7312 return -ENOMEM; 7313 7314 ret = btrfs_lookup_file_extent(NULL, root, path, 7315 btrfs_ino(BTRFS_I(inode)), offset, 0); 7316 if (ret < 0) 7317 goto out; 7318 7319 slot = path->slots[0]; 7320 if (ret == 1) { 7321 if (slot == 0) { 7322 /* can't find the item, must cow */ 7323 ret = 0; 7324 goto out; 7325 } 7326 slot--; 7327 } 7328 ret = 0; 7329 leaf = path->nodes[0]; 7330 btrfs_item_key_to_cpu(leaf, &key, slot); 7331 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7332 key.type != BTRFS_EXTENT_DATA_KEY) { 7333 /* not our file or wrong item type, must cow */ 7334 goto out; 7335 } 7336 7337 if (key.offset > offset) { 7338 /* Wrong offset, must cow */ 7339 goto out; 7340 } 7341 7342 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7343 found_type = btrfs_file_extent_type(leaf, fi); 7344 if (found_type != BTRFS_FILE_EXTENT_REG && 7345 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7346 /* not a regular extent, must cow */ 7347 goto out; 7348 } 7349 7350 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7351 goto out; 7352 7353 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7354 if (extent_end <= offset) 7355 goto out; 7356 7357 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7358 if (disk_bytenr == 0) 7359 goto out; 7360 7361 if (btrfs_file_extent_compression(leaf, fi) || 7362 btrfs_file_extent_encryption(leaf, fi) || 7363 btrfs_file_extent_other_encoding(leaf, fi)) 7364 goto out; 7365 7366 /* 7367 * Do the same check as in btrfs_cross_ref_exist but without the 7368 * unnecessary search. 7369 */ 7370 if (!strict && 7371 (btrfs_file_extent_generation(leaf, fi) <= 7372 btrfs_root_last_snapshot(&root->root_item))) 7373 goto out; 7374 7375 backref_offset = btrfs_file_extent_offset(leaf, fi); 7376 7377 if (orig_start) { 7378 *orig_start = key.offset - backref_offset; 7379 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7380 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7381 } 7382 7383 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7384 goto out; 7385 7386 num_bytes = min(offset + *len, extent_end) - offset; 7387 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7388 u64 range_end; 7389 7390 range_end = round_up(offset + num_bytes, 7391 root->fs_info->sectorsize) - 1; 7392 ret = test_range_bit(io_tree, offset, range_end, 7393 EXTENT_DELALLOC, 0, NULL); 7394 if (ret) { 7395 ret = -EAGAIN; 7396 goto out; 7397 } 7398 } 7399 7400 btrfs_release_path(path); 7401 7402 /* 7403 * look for other files referencing this extent, if we 7404 * find any we must cow 7405 */ 7406 7407 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7408 key.offset - backref_offset, disk_bytenr, 7409 strict); 7410 if (ret) { 7411 ret = 0; 7412 goto out; 7413 } 7414 7415 /* 7416 * adjust disk_bytenr and num_bytes to cover just the bytes 7417 * in this extent we are about to write. If there 7418 * are any csums in that range we have to cow in order 7419 * to keep the csums correct 7420 */ 7421 disk_bytenr += backref_offset; 7422 disk_bytenr += offset - key.offset; 7423 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7424 goto out; 7425 /* 7426 * all of the above have passed, it is safe to overwrite this extent 7427 * without cow 7428 */ 7429 *len = num_bytes; 7430 ret = 1; 7431 out: 7432 btrfs_free_path(path); 7433 return ret; 7434 } 7435 7436 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7437 struct extent_state **cached_state, bool writing) 7438 { 7439 struct btrfs_ordered_extent *ordered; 7440 int ret = 0; 7441 7442 while (1) { 7443 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7444 cached_state); 7445 /* 7446 * We're concerned with the entire range that we're going to be 7447 * doing DIO to, so we need to make sure there's no ordered 7448 * extents in this range. 7449 */ 7450 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7451 lockend - lockstart + 1); 7452 7453 /* 7454 * We need to make sure there are no buffered pages in this 7455 * range either, we could have raced between the invalidate in 7456 * generic_file_direct_write and locking the extent. The 7457 * invalidate needs to happen so that reads after a write do not 7458 * get stale data. 7459 */ 7460 if (!ordered && 7461 (!writing || !filemap_range_has_page(inode->i_mapping, 7462 lockstart, lockend))) 7463 break; 7464 7465 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7466 cached_state); 7467 7468 if (ordered) { 7469 /* 7470 * If we are doing a DIO read and the ordered extent we 7471 * found is for a buffered write, we can not wait for it 7472 * to complete and retry, because if we do so we can 7473 * deadlock with concurrent buffered writes on page 7474 * locks. This happens only if our DIO read covers more 7475 * than one extent map, if at this point has already 7476 * created an ordered extent for a previous extent map 7477 * and locked its range in the inode's io tree, and a 7478 * concurrent write against that previous extent map's 7479 * range and this range started (we unlock the ranges 7480 * in the io tree only when the bios complete and 7481 * buffered writes always lock pages before attempting 7482 * to lock range in the io tree). 7483 */ 7484 if (writing || 7485 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7486 btrfs_start_ordered_extent(ordered, 1); 7487 else 7488 ret = -ENOTBLK; 7489 btrfs_put_ordered_extent(ordered); 7490 } else { 7491 /* 7492 * We could trigger writeback for this range (and wait 7493 * for it to complete) and then invalidate the pages for 7494 * this range (through invalidate_inode_pages2_range()), 7495 * but that can lead us to a deadlock with a concurrent 7496 * call to readahead (a buffered read or a defrag call 7497 * triggered a readahead) on a page lock due to an 7498 * ordered dio extent we created before but did not have 7499 * yet a corresponding bio submitted (whence it can not 7500 * complete), which makes readahead wait for that 7501 * ordered extent to complete while holding a lock on 7502 * that page. 7503 */ 7504 ret = -ENOTBLK; 7505 } 7506 7507 if (ret) 7508 break; 7509 7510 cond_resched(); 7511 } 7512 7513 return ret; 7514 } 7515 7516 /* The callers of this must take lock_extent() */ 7517 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7518 u64 len, u64 orig_start, u64 block_start, 7519 u64 block_len, u64 orig_block_len, 7520 u64 ram_bytes, int compress_type, 7521 int type) 7522 { 7523 struct extent_map_tree *em_tree; 7524 struct extent_map *em; 7525 int ret; 7526 7527 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7528 type == BTRFS_ORDERED_COMPRESSED || 7529 type == BTRFS_ORDERED_NOCOW || 7530 type == BTRFS_ORDERED_REGULAR); 7531 7532 em_tree = &inode->extent_tree; 7533 em = alloc_extent_map(); 7534 if (!em) 7535 return ERR_PTR(-ENOMEM); 7536 7537 em->start = start; 7538 em->orig_start = orig_start; 7539 em->len = len; 7540 em->block_len = block_len; 7541 em->block_start = block_start; 7542 em->orig_block_len = orig_block_len; 7543 em->ram_bytes = ram_bytes; 7544 em->generation = -1; 7545 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7546 if (type == BTRFS_ORDERED_PREALLOC) { 7547 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7548 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7549 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7550 em->compress_type = compress_type; 7551 } 7552 7553 do { 7554 btrfs_drop_extent_cache(inode, em->start, 7555 em->start + em->len - 1, 0); 7556 write_lock(&em_tree->lock); 7557 ret = add_extent_mapping(em_tree, em, 1); 7558 write_unlock(&em_tree->lock); 7559 /* 7560 * The caller has taken lock_extent(), who could race with us 7561 * to add em? 7562 */ 7563 } while (ret == -EEXIST); 7564 7565 if (ret) { 7566 free_extent_map(em); 7567 return ERR_PTR(ret); 7568 } 7569 7570 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7571 return em; 7572 } 7573 7574 7575 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7576 struct inode *inode, 7577 struct btrfs_dio_data *dio_data, 7578 u64 start, u64 len) 7579 { 7580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7581 struct extent_map *em = *map; 7582 int ret = 0; 7583 7584 /* 7585 * We don't allocate a new extent in the following cases 7586 * 7587 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7588 * existing extent. 7589 * 2) The extent is marked as PREALLOC. We're good to go here and can 7590 * just use the extent. 7591 * 7592 */ 7593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7594 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7595 em->block_start != EXTENT_MAP_HOLE)) { 7596 int type; 7597 u64 block_start, orig_start, orig_block_len, ram_bytes; 7598 7599 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7600 type = BTRFS_ORDERED_PREALLOC; 7601 else 7602 type = BTRFS_ORDERED_NOCOW; 7603 len = min(len, em->len - (start - em->start)); 7604 block_start = em->block_start + (start - em->start); 7605 7606 if (can_nocow_extent(inode, start, &len, &orig_start, 7607 &orig_block_len, &ram_bytes, false) == 1 && 7608 btrfs_inc_nocow_writers(fs_info, block_start)) { 7609 struct extent_map *em2; 7610 7611 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7612 orig_start, block_start, 7613 len, orig_block_len, 7614 ram_bytes, type); 7615 btrfs_dec_nocow_writers(fs_info, block_start); 7616 if (type == BTRFS_ORDERED_PREALLOC) { 7617 free_extent_map(em); 7618 *map = em = em2; 7619 } 7620 7621 if (em2 && IS_ERR(em2)) { 7622 ret = PTR_ERR(em2); 7623 goto out; 7624 } 7625 /* 7626 * For inode marked NODATACOW or extent marked PREALLOC, 7627 * use the existing or preallocated extent, so does not 7628 * need to adjust btrfs_space_info's bytes_may_use. 7629 */ 7630 btrfs_free_reserved_data_space_noquota(fs_info, len); 7631 goto skip_cow; 7632 } 7633 } 7634 7635 /* this will cow the extent */ 7636 free_extent_map(em); 7637 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7638 if (IS_ERR(em)) { 7639 ret = PTR_ERR(em); 7640 goto out; 7641 } 7642 7643 len = min(len, em->len - (start - em->start)); 7644 7645 skip_cow: 7646 /* 7647 * Need to update the i_size under the extent lock so buffered 7648 * readers will get the updated i_size when we unlock. 7649 */ 7650 if (start + len > i_size_read(inode)) 7651 i_size_write(inode, start + len); 7652 7653 dio_data->reserve -= len; 7654 out: 7655 return ret; 7656 } 7657 7658 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7659 loff_t length, unsigned int flags, struct iomap *iomap, 7660 struct iomap *srcmap) 7661 { 7662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7663 struct extent_map *em; 7664 struct extent_state *cached_state = NULL; 7665 struct btrfs_dio_data *dio_data = NULL; 7666 u64 lockstart, lockend; 7667 const bool write = !!(flags & IOMAP_WRITE); 7668 int ret = 0; 7669 u64 len = length; 7670 bool unlock_extents = false; 7671 7672 if (!write) 7673 len = min_t(u64, len, fs_info->sectorsize); 7674 7675 lockstart = start; 7676 lockend = start + len - 1; 7677 7678 /* 7679 * The generic stuff only does filemap_write_and_wait_range, which 7680 * isn't enough if we've written compressed pages to this area, so we 7681 * need to flush the dirty pages again to make absolutely sure that any 7682 * outstanding dirty pages are on disk. 7683 */ 7684 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7685 &BTRFS_I(inode)->runtime_flags)) { 7686 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7687 start + length - 1); 7688 if (ret) 7689 return ret; 7690 } 7691 7692 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7693 if (!dio_data) 7694 return -ENOMEM; 7695 7696 dio_data->length = length; 7697 if (write) { 7698 dio_data->reserve = round_up(length, fs_info->sectorsize); 7699 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7700 &dio_data->data_reserved, 7701 start, dio_data->reserve); 7702 if (ret) { 7703 extent_changeset_free(dio_data->data_reserved); 7704 kfree(dio_data); 7705 return ret; 7706 } 7707 } 7708 iomap->private = dio_data; 7709 7710 7711 /* 7712 * If this errors out it's because we couldn't invalidate pagecache for 7713 * this range and we need to fallback to buffered. 7714 */ 7715 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7716 ret = -ENOTBLK; 7717 goto err; 7718 } 7719 7720 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7721 if (IS_ERR(em)) { 7722 ret = PTR_ERR(em); 7723 goto unlock_err; 7724 } 7725 7726 /* 7727 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7728 * io. INLINE is special, and we could probably kludge it in here, but 7729 * it's still buffered so for safety lets just fall back to the generic 7730 * buffered path. 7731 * 7732 * For COMPRESSED we _have_ to read the entire extent in so we can 7733 * decompress it, so there will be buffering required no matter what we 7734 * do, so go ahead and fallback to buffered. 7735 * 7736 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7737 * to buffered IO. Don't blame me, this is the price we pay for using 7738 * the generic code. 7739 */ 7740 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7741 em->block_start == EXTENT_MAP_INLINE) { 7742 free_extent_map(em); 7743 ret = -ENOTBLK; 7744 goto unlock_err; 7745 } 7746 7747 len = min(len, em->len - (start - em->start)); 7748 if (write) { 7749 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7750 start, len); 7751 if (ret < 0) 7752 goto unlock_err; 7753 unlock_extents = true; 7754 /* Recalc len in case the new em is smaller than requested */ 7755 len = min(len, em->len - (start - em->start)); 7756 } else { 7757 /* 7758 * We need to unlock only the end area that we aren't using. 7759 * The rest is going to be unlocked by the endio routine. 7760 */ 7761 lockstart = start + len; 7762 if (lockstart < lockend) 7763 unlock_extents = true; 7764 } 7765 7766 if (unlock_extents) 7767 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7768 lockstart, lockend, &cached_state); 7769 else 7770 free_extent_state(cached_state); 7771 7772 /* 7773 * Translate extent map information to iomap. 7774 * We trim the extents (and move the addr) even though iomap code does 7775 * that, since we have locked only the parts we are performing I/O in. 7776 */ 7777 if ((em->block_start == EXTENT_MAP_HOLE) || 7778 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7779 iomap->addr = IOMAP_NULL_ADDR; 7780 iomap->type = IOMAP_HOLE; 7781 } else { 7782 iomap->addr = em->block_start + (start - em->start); 7783 iomap->type = IOMAP_MAPPED; 7784 } 7785 iomap->offset = start; 7786 iomap->bdev = fs_info->fs_devices->latest_bdev; 7787 iomap->length = len; 7788 7789 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7790 iomap->flags |= IOMAP_F_ZONE_APPEND; 7791 7792 free_extent_map(em); 7793 7794 return 0; 7795 7796 unlock_err: 7797 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7798 &cached_state); 7799 err: 7800 if (dio_data) { 7801 btrfs_delalloc_release_space(BTRFS_I(inode), 7802 dio_data->data_reserved, start, 7803 dio_data->reserve, true); 7804 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7805 extent_changeset_free(dio_data->data_reserved); 7806 kfree(dio_data); 7807 } 7808 return ret; 7809 } 7810 7811 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7812 ssize_t written, unsigned int flags, struct iomap *iomap) 7813 { 7814 int ret = 0; 7815 struct btrfs_dio_data *dio_data = iomap->private; 7816 size_t submitted = dio_data->submitted; 7817 const bool write = !!(flags & IOMAP_WRITE); 7818 7819 if (!write && (iomap->type == IOMAP_HOLE)) { 7820 /* If reading from a hole, unlock and return */ 7821 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7822 goto out; 7823 } 7824 7825 if (submitted < length) { 7826 pos += submitted; 7827 length -= submitted; 7828 if (write) 7829 __endio_write_update_ordered(BTRFS_I(inode), pos, 7830 length, false); 7831 else 7832 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7833 pos + length - 1); 7834 ret = -ENOTBLK; 7835 } 7836 7837 if (write) { 7838 if (dio_data->reserve) 7839 btrfs_delalloc_release_space(BTRFS_I(inode), 7840 dio_data->data_reserved, pos, 7841 dio_data->reserve, true); 7842 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7843 extent_changeset_free(dio_data->data_reserved); 7844 } 7845 out: 7846 kfree(dio_data); 7847 iomap->private = NULL; 7848 7849 return ret; 7850 } 7851 7852 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7853 { 7854 /* 7855 * This implies a barrier so that stores to dio_bio->bi_status before 7856 * this and loads of dio_bio->bi_status after this are fully ordered. 7857 */ 7858 if (!refcount_dec_and_test(&dip->refs)) 7859 return; 7860 7861 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7862 __endio_write_update_ordered(BTRFS_I(dip->inode), 7863 dip->logical_offset, 7864 dip->bytes, 7865 !dip->dio_bio->bi_status); 7866 } else { 7867 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7868 dip->logical_offset, 7869 dip->logical_offset + dip->bytes - 1); 7870 } 7871 7872 bio_endio(dip->dio_bio); 7873 kfree(dip); 7874 } 7875 7876 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7877 int mirror_num, 7878 unsigned long bio_flags) 7879 { 7880 struct btrfs_dio_private *dip = bio->bi_private; 7881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7882 blk_status_t ret; 7883 7884 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7885 7886 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7887 if (ret) 7888 return ret; 7889 7890 refcount_inc(&dip->refs); 7891 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7892 if (ret) 7893 refcount_dec(&dip->refs); 7894 return ret; 7895 } 7896 7897 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7898 struct btrfs_io_bio *io_bio, 7899 const bool uptodate) 7900 { 7901 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7902 const u32 sectorsize = fs_info->sectorsize; 7903 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7904 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7905 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7906 struct bio_vec bvec; 7907 struct bvec_iter iter; 7908 u64 start = io_bio->logical; 7909 u32 bio_offset = 0; 7910 blk_status_t err = BLK_STS_OK; 7911 7912 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7913 unsigned int i, nr_sectors, pgoff; 7914 7915 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7916 pgoff = bvec.bv_offset; 7917 for (i = 0; i < nr_sectors; i++) { 7918 ASSERT(pgoff < PAGE_SIZE); 7919 if (uptodate && 7920 (!csum || !check_data_csum(inode, io_bio, 7921 bio_offset, bvec.bv_page, 7922 pgoff, start))) { 7923 clean_io_failure(fs_info, failure_tree, io_tree, 7924 start, bvec.bv_page, 7925 btrfs_ino(BTRFS_I(inode)), 7926 pgoff); 7927 } else { 7928 blk_status_t status; 7929 7930 ASSERT((start - io_bio->logical) < UINT_MAX); 7931 status = btrfs_submit_read_repair(inode, 7932 &io_bio->bio, 7933 start - io_bio->logical, 7934 bvec.bv_page, pgoff, 7935 start, 7936 start + sectorsize - 1, 7937 io_bio->mirror_num, 7938 submit_dio_repair_bio); 7939 if (status) 7940 err = status; 7941 } 7942 start += sectorsize; 7943 ASSERT(bio_offset + sectorsize > bio_offset); 7944 bio_offset += sectorsize; 7945 pgoff += sectorsize; 7946 } 7947 } 7948 return err; 7949 } 7950 7951 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7952 const u64 offset, const u64 bytes, 7953 const bool uptodate) 7954 { 7955 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7956 struct btrfs_ordered_extent *ordered = NULL; 7957 struct btrfs_workqueue *wq; 7958 u64 ordered_offset = offset; 7959 u64 ordered_bytes = bytes; 7960 u64 last_offset; 7961 7962 if (btrfs_is_free_space_inode(inode)) 7963 wq = fs_info->endio_freespace_worker; 7964 else 7965 wq = fs_info->endio_write_workers; 7966 7967 while (ordered_offset < offset + bytes) { 7968 last_offset = ordered_offset; 7969 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7970 &ordered_offset, 7971 ordered_bytes, 7972 uptodate)) { 7973 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7974 NULL); 7975 btrfs_queue_work(wq, &ordered->work); 7976 } 7977 7978 /* No ordered extent found in the range, exit */ 7979 if (ordered_offset == last_offset) 7980 return; 7981 /* 7982 * Our bio might span multiple ordered extents. In this case 7983 * we keep going until we have accounted the whole dio. 7984 */ 7985 if (ordered_offset < offset + bytes) { 7986 ordered_bytes = offset + bytes - ordered_offset; 7987 ordered = NULL; 7988 } 7989 } 7990 } 7991 7992 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7993 struct bio *bio, 7994 u64 dio_file_offset) 7995 { 7996 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); 7997 } 7998 7999 static void btrfs_end_dio_bio(struct bio *bio) 8000 { 8001 struct btrfs_dio_private *dip = bio->bi_private; 8002 blk_status_t err = bio->bi_status; 8003 8004 if (err) 8005 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8006 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8007 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8008 bio->bi_opf, bio->bi_iter.bi_sector, 8009 bio->bi_iter.bi_size, err); 8010 8011 if (bio_op(bio) == REQ_OP_READ) { 8012 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 8013 !err); 8014 } 8015 8016 if (err) 8017 dip->dio_bio->bi_status = err; 8018 8019 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); 8020 8021 bio_put(bio); 8022 btrfs_dio_private_put(dip); 8023 } 8024 8025 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8026 struct inode *inode, u64 file_offset, int async_submit) 8027 { 8028 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8029 struct btrfs_dio_private *dip = bio->bi_private; 8030 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 8031 blk_status_t ret; 8032 8033 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8034 if (async_submit) 8035 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8036 8037 if (!write) { 8038 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8039 if (ret) 8040 goto err; 8041 } 8042 8043 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8044 goto map; 8045 8046 if (write && async_submit) { 8047 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 8048 btrfs_submit_bio_start_direct_io); 8049 goto err; 8050 } else if (write) { 8051 /* 8052 * If we aren't doing async submit, calculate the csum of the 8053 * bio now. 8054 */ 8055 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 8056 if (ret) 8057 goto err; 8058 } else { 8059 u64 csum_offset; 8060 8061 csum_offset = file_offset - dip->logical_offset; 8062 csum_offset >>= fs_info->sectorsize_bits; 8063 csum_offset *= fs_info->csum_size; 8064 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 8065 } 8066 map: 8067 ret = btrfs_map_bio(fs_info, bio, 0); 8068 err: 8069 return ret; 8070 } 8071 8072 /* 8073 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 8074 * or ordered extents whether or not we submit any bios. 8075 */ 8076 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 8077 struct inode *inode, 8078 loff_t file_offset) 8079 { 8080 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8081 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8082 size_t dip_size; 8083 struct btrfs_dio_private *dip; 8084 8085 dip_size = sizeof(*dip); 8086 if (!write && csum) { 8087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8088 size_t nblocks; 8089 8090 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 8091 dip_size += fs_info->csum_size * nblocks; 8092 } 8093 8094 dip = kzalloc(dip_size, GFP_NOFS); 8095 if (!dip) 8096 return NULL; 8097 8098 dip->inode = inode; 8099 dip->logical_offset = file_offset; 8100 dip->bytes = dio_bio->bi_iter.bi_size; 8101 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 8102 dip->dio_bio = dio_bio; 8103 refcount_set(&dip->refs, 1); 8104 return dip; 8105 } 8106 8107 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 8108 struct bio *dio_bio, loff_t file_offset) 8109 { 8110 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8111 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8112 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8113 BTRFS_BLOCK_GROUP_RAID56_MASK); 8114 struct btrfs_dio_private *dip; 8115 struct bio *bio; 8116 u64 start_sector; 8117 int async_submit = 0; 8118 u64 submit_len; 8119 int clone_offset = 0; 8120 int clone_len; 8121 u64 logical; 8122 int ret; 8123 blk_status_t status; 8124 struct btrfs_io_geometry geom; 8125 struct btrfs_dio_data *dio_data = iomap->private; 8126 struct extent_map *em = NULL; 8127 8128 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 8129 if (!dip) { 8130 if (!write) { 8131 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8132 file_offset + dio_bio->bi_iter.bi_size - 1); 8133 } 8134 dio_bio->bi_status = BLK_STS_RESOURCE; 8135 bio_endio(dio_bio); 8136 return BLK_QC_T_NONE; 8137 } 8138 8139 if (!write) { 8140 /* 8141 * Load the csums up front to reduce csum tree searches and 8142 * contention when submitting bios. 8143 * 8144 * If we have csums disabled this will do nothing. 8145 */ 8146 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8147 if (status != BLK_STS_OK) 8148 goto out_err; 8149 } 8150 8151 start_sector = dio_bio->bi_iter.bi_sector; 8152 submit_len = dio_bio->bi_iter.bi_size; 8153 8154 do { 8155 logical = start_sector << 9; 8156 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8157 if (IS_ERR(em)) { 8158 status = errno_to_blk_status(PTR_ERR(em)); 8159 em = NULL; 8160 goto out_err_em; 8161 } 8162 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8163 logical, submit_len, &geom); 8164 if (ret) { 8165 status = errno_to_blk_status(ret); 8166 goto out_err_em; 8167 } 8168 ASSERT(geom.len <= INT_MAX); 8169 8170 clone_len = min_t(int, submit_len, geom.len); 8171 8172 /* 8173 * This will never fail as it's passing GPF_NOFS and 8174 * the allocation is backed by btrfs_bioset. 8175 */ 8176 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8177 bio->bi_private = dip; 8178 bio->bi_end_io = btrfs_end_dio_bio; 8179 btrfs_io_bio(bio)->logical = file_offset; 8180 8181 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8182 status = extract_ordered_extent(BTRFS_I(inode), bio, 8183 file_offset); 8184 if (status) { 8185 bio_put(bio); 8186 goto out_err; 8187 } 8188 } 8189 8190 ASSERT(submit_len >= clone_len); 8191 submit_len -= clone_len; 8192 8193 /* 8194 * Increase the count before we submit the bio so we know 8195 * the end IO handler won't happen before we increase the 8196 * count. Otherwise, the dip might get freed before we're 8197 * done setting it up. 8198 * 8199 * We transfer the initial reference to the last bio, so we 8200 * don't need to increment the reference count for the last one. 8201 */ 8202 if (submit_len > 0) { 8203 refcount_inc(&dip->refs); 8204 /* 8205 * If we are submitting more than one bio, submit them 8206 * all asynchronously. The exception is RAID 5 or 6, as 8207 * asynchronous checksums make it difficult to collect 8208 * full stripe writes. 8209 */ 8210 if (!raid56) 8211 async_submit = 1; 8212 } 8213 8214 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8215 async_submit); 8216 if (status) { 8217 bio_put(bio); 8218 if (submit_len > 0) 8219 refcount_dec(&dip->refs); 8220 goto out_err_em; 8221 } 8222 8223 dio_data->submitted += clone_len; 8224 clone_offset += clone_len; 8225 start_sector += clone_len >> 9; 8226 file_offset += clone_len; 8227 8228 free_extent_map(em); 8229 } while (submit_len > 0); 8230 return BLK_QC_T_NONE; 8231 8232 out_err_em: 8233 free_extent_map(em); 8234 out_err: 8235 dip->dio_bio->bi_status = status; 8236 btrfs_dio_private_put(dip); 8237 8238 return BLK_QC_T_NONE; 8239 } 8240 8241 const struct iomap_ops btrfs_dio_iomap_ops = { 8242 .iomap_begin = btrfs_dio_iomap_begin, 8243 .iomap_end = btrfs_dio_iomap_end, 8244 }; 8245 8246 const struct iomap_dio_ops btrfs_dio_ops = { 8247 .submit_io = btrfs_submit_direct, 8248 }; 8249 8250 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8251 u64 start, u64 len) 8252 { 8253 int ret; 8254 8255 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8256 if (ret) 8257 return ret; 8258 8259 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8260 } 8261 8262 int btrfs_readpage(struct file *file, struct page *page) 8263 { 8264 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8265 u64 start = page_offset(page); 8266 u64 end = start + PAGE_SIZE - 1; 8267 unsigned long bio_flags = 0; 8268 struct bio *bio = NULL; 8269 int ret; 8270 8271 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8272 8273 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); 8274 if (bio) 8275 ret = submit_one_bio(bio, 0, bio_flags); 8276 return ret; 8277 } 8278 8279 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8280 { 8281 struct inode *inode = page->mapping->host; 8282 int ret; 8283 8284 if (current->flags & PF_MEMALLOC) { 8285 redirty_page_for_writepage(wbc, page); 8286 unlock_page(page); 8287 return 0; 8288 } 8289 8290 /* 8291 * If we are under memory pressure we will call this directly from the 8292 * VM, we need to make sure we have the inode referenced for the ordered 8293 * extent. If not just return like we didn't do anything. 8294 */ 8295 if (!igrab(inode)) { 8296 redirty_page_for_writepage(wbc, page); 8297 return AOP_WRITEPAGE_ACTIVATE; 8298 } 8299 ret = extent_write_full_page(page, wbc); 8300 btrfs_add_delayed_iput(inode); 8301 return ret; 8302 } 8303 8304 static int btrfs_writepages(struct address_space *mapping, 8305 struct writeback_control *wbc) 8306 { 8307 return extent_writepages(mapping, wbc); 8308 } 8309 8310 static void btrfs_readahead(struct readahead_control *rac) 8311 { 8312 extent_readahead(rac); 8313 } 8314 8315 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8316 { 8317 int ret = try_release_extent_mapping(page, gfp_flags); 8318 if (ret == 1) 8319 clear_page_extent_mapped(page); 8320 return ret; 8321 } 8322 8323 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8324 { 8325 if (PageWriteback(page) || PageDirty(page)) 8326 return 0; 8327 return __btrfs_releasepage(page, gfp_flags); 8328 } 8329 8330 #ifdef CONFIG_MIGRATION 8331 static int btrfs_migratepage(struct address_space *mapping, 8332 struct page *newpage, struct page *page, 8333 enum migrate_mode mode) 8334 { 8335 int ret; 8336 8337 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8338 if (ret != MIGRATEPAGE_SUCCESS) 8339 return ret; 8340 8341 if (page_has_private(page)) 8342 attach_page_private(newpage, detach_page_private(page)); 8343 8344 if (PagePrivate2(page)) { 8345 ClearPagePrivate2(page); 8346 SetPagePrivate2(newpage); 8347 } 8348 8349 if (mode != MIGRATE_SYNC_NO_COPY) 8350 migrate_page_copy(newpage, page); 8351 else 8352 migrate_page_states(newpage, page); 8353 return MIGRATEPAGE_SUCCESS; 8354 } 8355 #endif 8356 8357 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8358 unsigned int length) 8359 { 8360 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8361 struct extent_io_tree *tree = &inode->io_tree; 8362 struct btrfs_ordered_extent *ordered; 8363 struct extent_state *cached_state = NULL; 8364 u64 page_start = page_offset(page); 8365 u64 page_end = page_start + PAGE_SIZE - 1; 8366 u64 start; 8367 u64 end; 8368 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8369 bool found_ordered = false; 8370 bool completed_ordered = false; 8371 8372 /* 8373 * we have the page locked, so new writeback can't start, 8374 * and the dirty bit won't be cleared while we are here. 8375 * 8376 * Wait for IO on this page so that we can safely clear 8377 * the PagePrivate2 bit and do ordered accounting 8378 */ 8379 wait_on_page_writeback(page); 8380 8381 if (offset) { 8382 btrfs_releasepage(page, GFP_NOFS); 8383 return; 8384 } 8385 8386 if (!inode_evicting) 8387 lock_extent_bits(tree, page_start, page_end, &cached_state); 8388 8389 start = page_start; 8390 again: 8391 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); 8392 if (ordered) { 8393 found_ordered = true; 8394 end = min(page_end, 8395 ordered->file_offset + ordered->num_bytes - 1); 8396 /* 8397 * IO on this page will never be started, so we need to account 8398 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8399 * here, must leave that up for the ordered extent completion. 8400 */ 8401 if (!inode_evicting) 8402 clear_extent_bit(tree, start, end, 8403 EXTENT_DELALLOC | 8404 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8405 EXTENT_DEFRAG, 1, 0, &cached_state); 8406 /* 8407 * whoever cleared the private bit is responsible 8408 * for the finish_ordered_io 8409 */ 8410 if (TestClearPagePrivate2(page)) { 8411 spin_lock_irq(&inode->ordered_tree.lock); 8412 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8413 ordered->truncated_len = min(ordered->truncated_len, 8414 start - ordered->file_offset); 8415 spin_unlock_irq(&inode->ordered_tree.lock); 8416 8417 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8418 start, 8419 end - start + 1, 1)) { 8420 btrfs_finish_ordered_io(ordered); 8421 completed_ordered = true; 8422 } 8423 } 8424 btrfs_put_ordered_extent(ordered); 8425 if (!inode_evicting) { 8426 cached_state = NULL; 8427 lock_extent_bits(tree, start, end, 8428 &cached_state); 8429 } 8430 8431 start = end + 1; 8432 if (start < page_end) 8433 goto again; 8434 } 8435 8436 /* 8437 * Qgroup reserved space handler 8438 * Page here will be either 8439 * 1) Already written to disk or ordered extent already submitted 8440 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8441 * Qgroup will be handled by its qgroup_record then. 8442 * btrfs_qgroup_free_data() call will do nothing here. 8443 * 8444 * 2) Not written to disk yet 8445 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8446 * bit of its io_tree, and free the qgroup reserved data space. 8447 * Since the IO will never happen for this page. 8448 */ 8449 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8450 if (!inode_evicting) { 8451 bool delete = true; 8452 8453 /* 8454 * If there's an ordered extent for this range and we have not 8455 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set 8456 * in the range for the ordered extent completion. We must also 8457 * not delete the range, otherwise we would lose that bit (and 8458 * any other bits set in the range). Make sure EXTENT_UPTODATE 8459 * is cleared if we don't delete, otherwise it can lead to 8460 * corruptions if the i_size is extented later. 8461 */ 8462 if (found_ordered && !completed_ordered) 8463 delete = false; 8464 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8465 EXTENT_DELALLOC | EXTENT_UPTODATE | 8466 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8467 delete, &cached_state); 8468 8469 __btrfs_releasepage(page, GFP_NOFS); 8470 } 8471 8472 ClearPageChecked(page); 8473 clear_page_extent_mapped(page); 8474 } 8475 8476 /* 8477 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8478 * called from a page fault handler when a page is first dirtied. Hence we must 8479 * be careful to check for EOF conditions here. We set the page up correctly 8480 * for a written page which means we get ENOSPC checking when writing into 8481 * holes and correct delalloc and unwritten extent mapping on filesystems that 8482 * support these features. 8483 * 8484 * We are not allowed to take the i_mutex here so we have to play games to 8485 * protect against truncate races as the page could now be beyond EOF. Because 8486 * truncate_setsize() writes the inode size before removing pages, once we have 8487 * the page lock we can determine safely if the page is beyond EOF. If it is not 8488 * beyond EOF, then the page is guaranteed safe against truncation until we 8489 * unlock the page. 8490 */ 8491 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8492 { 8493 struct page *page = vmf->page; 8494 struct inode *inode = file_inode(vmf->vma->vm_file); 8495 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8496 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8497 struct btrfs_ordered_extent *ordered; 8498 struct extent_state *cached_state = NULL; 8499 struct extent_changeset *data_reserved = NULL; 8500 unsigned long zero_start; 8501 loff_t size; 8502 vm_fault_t ret; 8503 int ret2; 8504 int reserved = 0; 8505 u64 reserved_space; 8506 u64 page_start; 8507 u64 page_end; 8508 u64 end; 8509 8510 reserved_space = PAGE_SIZE; 8511 8512 sb_start_pagefault(inode->i_sb); 8513 page_start = page_offset(page); 8514 page_end = page_start + PAGE_SIZE - 1; 8515 end = page_end; 8516 8517 /* 8518 * Reserving delalloc space after obtaining the page lock can lead to 8519 * deadlock. For example, if a dirty page is locked by this function 8520 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8521 * dirty page write out, then the btrfs_writepage() function could 8522 * end up waiting indefinitely to get a lock on the page currently 8523 * being processed by btrfs_page_mkwrite() function. 8524 */ 8525 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8526 page_start, reserved_space); 8527 if (!ret2) { 8528 ret2 = file_update_time(vmf->vma->vm_file); 8529 reserved = 1; 8530 } 8531 if (ret2) { 8532 ret = vmf_error(ret2); 8533 if (reserved) 8534 goto out; 8535 goto out_noreserve; 8536 } 8537 8538 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8539 again: 8540 down_read(&BTRFS_I(inode)->i_mmap_lock); 8541 lock_page(page); 8542 size = i_size_read(inode); 8543 8544 if ((page->mapping != inode->i_mapping) || 8545 (page_start >= size)) { 8546 /* page got truncated out from underneath us */ 8547 goto out_unlock; 8548 } 8549 wait_on_page_writeback(page); 8550 8551 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8552 ret2 = set_page_extent_mapped(page); 8553 if (ret2 < 0) { 8554 ret = vmf_error(ret2); 8555 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8556 goto out_unlock; 8557 } 8558 8559 /* 8560 * we can't set the delalloc bits if there are pending ordered 8561 * extents. Drop our locks and wait for them to finish 8562 */ 8563 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8564 PAGE_SIZE); 8565 if (ordered) { 8566 unlock_extent_cached(io_tree, page_start, page_end, 8567 &cached_state); 8568 unlock_page(page); 8569 up_read(&BTRFS_I(inode)->i_mmap_lock); 8570 btrfs_start_ordered_extent(ordered, 1); 8571 btrfs_put_ordered_extent(ordered); 8572 goto again; 8573 } 8574 8575 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8576 reserved_space = round_up(size - page_start, 8577 fs_info->sectorsize); 8578 if (reserved_space < PAGE_SIZE) { 8579 end = page_start + reserved_space - 1; 8580 btrfs_delalloc_release_space(BTRFS_I(inode), 8581 data_reserved, page_start, 8582 PAGE_SIZE - reserved_space, true); 8583 } 8584 } 8585 8586 /* 8587 * page_mkwrite gets called when the page is firstly dirtied after it's 8588 * faulted in, but write(2) could also dirty a page and set delalloc 8589 * bits, thus in this case for space account reason, we still need to 8590 * clear any delalloc bits within this page range since we have to 8591 * reserve data&meta space before lock_page() (see above comments). 8592 */ 8593 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8594 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8595 EXTENT_DEFRAG, 0, 0, &cached_state); 8596 8597 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8598 &cached_state); 8599 if (ret2) { 8600 unlock_extent_cached(io_tree, page_start, page_end, 8601 &cached_state); 8602 ret = VM_FAULT_SIGBUS; 8603 goto out_unlock; 8604 } 8605 8606 /* page is wholly or partially inside EOF */ 8607 if (page_start + PAGE_SIZE > size) 8608 zero_start = offset_in_page(size); 8609 else 8610 zero_start = PAGE_SIZE; 8611 8612 if (zero_start != PAGE_SIZE) { 8613 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8614 flush_dcache_page(page); 8615 } 8616 ClearPageChecked(page); 8617 set_page_dirty(page); 8618 SetPageUptodate(page); 8619 8620 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8621 8622 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8623 up_read(&BTRFS_I(inode)->i_mmap_lock); 8624 8625 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8626 sb_end_pagefault(inode->i_sb); 8627 extent_changeset_free(data_reserved); 8628 return VM_FAULT_LOCKED; 8629 8630 out_unlock: 8631 unlock_page(page); 8632 up_read(&BTRFS_I(inode)->i_mmap_lock); 8633 out: 8634 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8635 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8636 reserved_space, (ret != 0)); 8637 out_noreserve: 8638 sb_end_pagefault(inode->i_sb); 8639 extent_changeset_free(data_reserved); 8640 return ret; 8641 } 8642 8643 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8644 { 8645 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8646 struct btrfs_root *root = BTRFS_I(inode)->root; 8647 struct btrfs_block_rsv *rsv; 8648 int ret; 8649 struct btrfs_trans_handle *trans; 8650 u64 mask = fs_info->sectorsize - 1; 8651 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8652 8653 if (!skip_writeback) { 8654 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8655 (u64)-1); 8656 if (ret) 8657 return ret; 8658 } 8659 8660 /* 8661 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8662 * things going on here: 8663 * 8664 * 1) We need to reserve space to update our inode. 8665 * 8666 * 2) We need to have something to cache all the space that is going to 8667 * be free'd up by the truncate operation, but also have some slack 8668 * space reserved in case it uses space during the truncate (thank you 8669 * very much snapshotting). 8670 * 8671 * And we need these to be separate. The fact is we can use a lot of 8672 * space doing the truncate, and we have no earthly idea how much space 8673 * we will use, so we need the truncate reservation to be separate so it 8674 * doesn't end up using space reserved for updating the inode. We also 8675 * need to be able to stop the transaction and start a new one, which 8676 * means we need to be able to update the inode several times, and we 8677 * have no idea of knowing how many times that will be, so we can't just 8678 * reserve 1 item for the entirety of the operation, so that has to be 8679 * done separately as well. 8680 * 8681 * So that leaves us with 8682 * 8683 * 1) rsv - for the truncate reservation, which we will steal from the 8684 * transaction reservation. 8685 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8686 * updating the inode. 8687 */ 8688 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8689 if (!rsv) 8690 return -ENOMEM; 8691 rsv->size = min_size; 8692 rsv->failfast = 1; 8693 8694 /* 8695 * 1 for the truncate slack space 8696 * 1 for updating the inode. 8697 */ 8698 trans = btrfs_start_transaction(root, 2); 8699 if (IS_ERR(trans)) { 8700 ret = PTR_ERR(trans); 8701 goto out; 8702 } 8703 8704 /* Migrate the slack space for the truncate to our reserve */ 8705 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8706 min_size, false); 8707 BUG_ON(ret); 8708 8709 /* 8710 * So if we truncate and then write and fsync we normally would just 8711 * write the extents that changed, which is a problem if we need to 8712 * first truncate that entire inode. So set this flag so we write out 8713 * all of the extents in the inode to the sync log so we're completely 8714 * safe. 8715 */ 8716 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8717 trans->block_rsv = rsv; 8718 8719 while (1) { 8720 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8721 inode->i_size, 8722 BTRFS_EXTENT_DATA_KEY); 8723 trans->block_rsv = &fs_info->trans_block_rsv; 8724 if (ret != -ENOSPC && ret != -EAGAIN) 8725 break; 8726 8727 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8728 if (ret) 8729 break; 8730 8731 btrfs_end_transaction(trans); 8732 btrfs_btree_balance_dirty(fs_info); 8733 8734 trans = btrfs_start_transaction(root, 2); 8735 if (IS_ERR(trans)) { 8736 ret = PTR_ERR(trans); 8737 trans = NULL; 8738 break; 8739 } 8740 8741 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8742 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8743 rsv, min_size, false); 8744 BUG_ON(ret); /* shouldn't happen */ 8745 trans->block_rsv = rsv; 8746 } 8747 8748 /* 8749 * We can't call btrfs_truncate_block inside a trans handle as we could 8750 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8751 * we've truncated everything except the last little bit, and can do 8752 * btrfs_truncate_block and then update the disk_i_size. 8753 */ 8754 if (ret == NEED_TRUNCATE_BLOCK) { 8755 btrfs_end_transaction(trans); 8756 btrfs_btree_balance_dirty(fs_info); 8757 8758 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8759 if (ret) 8760 goto out; 8761 trans = btrfs_start_transaction(root, 1); 8762 if (IS_ERR(trans)) { 8763 ret = PTR_ERR(trans); 8764 goto out; 8765 } 8766 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8767 } 8768 8769 if (trans) { 8770 int ret2; 8771 8772 trans->block_rsv = &fs_info->trans_block_rsv; 8773 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8774 if (ret2 && !ret) 8775 ret = ret2; 8776 8777 ret2 = btrfs_end_transaction(trans); 8778 if (ret2 && !ret) 8779 ret = ret2; 8780 btrfs_btree_balance_dirty(fs_info); 8781 } 8782 out: 8783 btrfs_free_block_rsv(fs_info, rsv); 8784 8785 return ret; 8786 } 8787 8788 /* 8789 * create a new subvolume directory/inode (helper for the ioctl). 8790 */ 8791 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8792 struct btrfs_root *new_root, 8793 struct btrfs_root *parent_root) 8794 { 8795 struct inode *inode; 8796 int err; 8797 u64 index = 0; 8798 u64 ino; 8799 8800 err = btrfs_get_free_objectid(new_root, &ino); 8801 if (err < 0) 8802 return err; 8803 8804 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino, 8805 S_IFDIR | (~current_umask() & S_IRWXUGO), 8806 &index); 8807 if (IS_ERR(inode)) 8808 return PTR_ERR(inode); 8809 inode->i_op = &btrfs_dir_inode_operations; 8810 inode->i_fop = &btrfs_dir_file_operations; 8811 8812 set_nlink(inode, 1); 8813 btrfs_i_size_write(BTRFS_I(inode), 0); 8814 unlock_new_inode(inode); 8815 8816 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8817 if (err) 8818 btrfs_err(new_root->fs_info, 8819 "error inheriting subvolume %llu properties: %d", 8820 new_root->root_key.objectid, err); 8821 8822 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8823 8824 iput(inode); 8825 return err; 8826 } 8827 8828 struct inode *btrfs_alloc_inode(struct super_block *sb) 8829 { 8830 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8831 struct btrfs_inode *ei; 8832 struct inode *inode; 8833 8834 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8835 if (!ei) 8836 return NULL; 8837 8838 ei->root = NULL; 8839 ei->generation = 0; 8840 ei->last_trans = 0; 8841 ei->last_sub_trans = 0; 8842 ei->logged_trans = 0; 8843 ei->delalloc_bytes = 0; 8844 ei->new_delalloc_bytes = 0; 8845 ei->defrag_bytes = 0; 8846 ei->disk_i_size = 0; 8847 ei->flags = 0; 8848 ei->csum_bytes = 0; 8849 ei->index_cnt = (u64)-1; 8850 ei->dir_index = 0; 8851 ei->last_unlink_trans = 0; 8852 ei->last_reflink_trans = 0; 8853 ei->last_log_commit = 0; 8854 8855 spin_lock_init(&ei->lock); 8856 ei->outstanding_extents = 0; 8857 if (sb->s_magic != BTRFS_TEST_MAGIC) 8858 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8859 BTRFS_BLOCK_RSV_DELALLOC); 8860 ei->runtime_flags = 0; 8861 ei->prop_compress = BTRFS_COMPRESS_NONE; 8862 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8863 8864 ei->delayed_node = NULL; 8865 8866 ei->i_otime.tv_sec = 0; 8867 ei->i_otime.tv_nsec = 0; 8868 8869 inode = &ei->vfs_inode; 8870 extent_map_tree_init(&ei->extent_tree); 8871 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8872 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8873 IO_TREE_INODE_IO_FAILURE, inode); 8874 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8875 IO_TREE_INODE_FILE_EXTENT, inode); 8876 ei->io_tree.track_uptodate = true; 8877 ei->io_failure_tree.track_uptodate = true; 8878 atomic_set(&ei->sync_writers, 0); 8879 mutex_init(&ei->log_mutex); 8880 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8881 INIT_LIST_HEAD(&ei->delalloc_inodes); 8882 INIT_LIST_HEAD(&ei->delayed_iput); 8883 RB_CLEAR_NODE(&ei->rb_node); 8884 init_rwsem(&ei->i_mmap_lock); 8885 8886 return inode; 8887 } 8888 8889 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8890 void btrfs_test_destroy_inode(struct inode *inode) 8891 { 8892 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8893 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8894 } 8895 #endif 8896 8897 void btrfs_free_inode(struct inode *inode) 8898 { 8899 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8900 } 8901 8902 void btrfs_destroy_inode(struct inode *vfs_inode) 8903 { 8904 struct btrfs_ordered_extent *ordered; 8905 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8906 struct btrfs_root *root = inode->root; 8907 8908 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8909 WARN_ON(vfs_inode->i_data.nrpages); 8910 WARN_ON(inode->block_rsv.reserved); 8911 WARN_ON(inode->block_rsv.size); 8912 WARN_ON(inode->outstanding_extents); 8913 WARN_ON(inode->delalloc_bytes); 8914 WARN_ON(inode->new_delalloc_bytes); 8915 WARN_ON(inode->csum_bytes); 8916 WARN_ON(inode->defrag_bytes); 8917 8918 /* 8919 * This can happen where we create an inode, but somebody else also 8920 * created the same inode and we need to destroy the one we already 8921 * created. 8922 */ 8923 if (!root) 8924 return; 8925 8926 while (1) { 8927 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8928 if (!ordered) 8929 break; 8930 else { 8931 btrfs_err(root->fs_info, 8932 "found ordered extent %llu %llu on inode cleanup", 8933 ordered->file_offset, ordered->num_bytes); 8934 btrfs_remove_ordered_extent(inode, ordered); 8935 btrfs_put_ordered_extent(ordered); 8936 btrfs_put_ordered_extent(ordered); 8937 } 8938 } 8939 btrfs_qgroup_check_reserved_leak(inode); 8940 inode_tree_del(inode); 8941 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8942 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8943 btrfs_put_root(inode->root); 8944 } 8945 8946 int btrfs_drop_inode(struct inode *inode) 8947 { 8948 struct btrfs_root *root = BTRFS_I(inode)->root; 8949 8950 if (root == NULL) 8951 return 1; 8952 8953 /* the snap/subvol tree is on deleting */ 8954 if (btrfs_root_refs(&root->root_item) == 0) 8955 return 1; 8956 else 8957 return generic_drop_inode(inode); 8958 } 8959 8960 static void init_once(void *foo) 8961 { 8962 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8963 8964 inode_init_once(&ei->vfs_inode); 8965 } 8966 8967 void __cold btrfs_destroy_cachep(void) 8968 { 8969 /* 8970 * Make sure all delayed rcu free inodes are flushed before we 8971 * destroy cache. 8972 */ 8973 rcu_barrier(); 8974 kmem_cache_destroy(btrfs_inode_cachep); 8975 kmem_cache_destroy(btrfs_trans_handle_cachep); 8976 kmem_cache_destroy(btrfs_path_cachep); 8977 kmem_cache_destroy(btrfs_free_space_cachep); 8978 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8979 } 8980 8981 int __init btrfs_init_cachep(void) 8982 { 8983 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8984 sizeof(struct btrfs_inode), 0, 8985 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8986 init_once); 8987 if (!btrfs_inode_cachep) 8988 goto fail; 8989 8990 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8991 sizeof(struct btrfs_trans_handle), 0, 8992 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8993 if (!btrfs_trans_handle_cachep) 8994 goto fail; 8995 8996 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8997 sizeof(struct btrfs_path), 0, 8998 SLAB_MEM_SPREAD, NULL); 8999 if (!btrfs_path_cachep) 9000 goto fail; 9001 9002 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9003 sizeof(struct btrfs_free_space), 0, 9004 SLAB_MEM_SPREAD, NULL); 9005 if (!btrfs_free_space_cachep) 9006 goto fail; 9007 9008 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9009 PAGE_SIZE, PAGE_SIZE, 9010 SLAB_MEM_SPREAD, NULL); 9011 if (!btrfs_free_space_bitmap_cachep) 9012 goto fail; 9013 9014 return 0; 9015 fail: 9016 btrfs_destroy_cachep(); 9017 return -ENOMEM; 9018 } 9019 9020 static int btrfs_getattr(struct user_namespace *mnt_userns, 9021 const struct path *path, struct kstat *stat, 9022 u32 request_mask, unsigned int flags) 9023 { 9024 u64 delalloc_bytes; 9025 u64 inode_bytes; 9026 struct inode *inode = d_inode(path->dentry); 9027 u32 blocksize = inode->i_sb->s_blocksize; 9028 u32 bi_flags = BTRFS_I(inode)->flags; 9029 9030 stat->result_mask |= STATX_BTIME; 9031 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9032 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9033 if (bi_flags & BTRFS_INODE_APPEND) 9034 stat->attributes |= STATX_ATTR_APPEND; 9035 if (bi_flags & BTRFS_INODE_COMPRESS) 9036 stat->attributes |= STATX_ATTR_COMPRESSED; 9037 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9038 stat->attributes |= STATX_ATTR_IMMUTABLE; 9039 if (bi_flags & BTRFS_INODE_NODUMP) 9040 stat->attributes |= STATX_ATTR_NODUMP; 9041 9042 stat->attributes_mask |= (STATX_ATTR_APPEND | 9043 STATX_ATTR_COMPRESSED | 9044 STATX_ATTR_IMMUTABLE | 9045 STATX_ATTR_NODUMP); 9046 9047 generic_fillattr(&init_user_ns, inode, stat); 9048 stat->dev = BTRFS_I(inode)->root->anon_dev; 9049 9050 spin_lock(&BTRFS_I(inode)->lock); 9051 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9052 inode_bytes = inode_get_bytes(inode); 9053 spin_unlock(&BTRFS_I(inode)->lock); 9054 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9055 ALIGN(delalloc_bytes, blocksize)) >> 9; 9056 return 0; 9057 } 9058 9059 static int btrfs_rename_exchange(struct inode *old_dir, 9060 struct dentry *old_dentry, 9061 struct inode *new_dir, 9062 struct dentry *new_dentry) 9063 { 9064 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9065 struct btrfs_trans_handle *trans; 9066 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9067 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9068 struct inode *new_inode = new_dentry->d_inode; 9069 struct inode *old_inode = old_dentry->d_inode; 9070 struct timespec64 ctime = current_time(old_inode); 9071 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9072 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9073 u64 old_idx = 0; 9074 u64 new_idx = 0; 9075 int ret; 9076 int ret2; 9077 bool root_log_pinned = false; 9078 bool dest_log_pinned = false; 9079 9080 /* we only allow rename subvolume link between subvolumes */ 9081 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9082 return -EXDEV; 9083 9084 /* close the race window with snapshot create/destroy ioctl */ 9085 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9086 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9087 down_read(&fs_info->subvol_sem); 9088 9089 /* 9090 * We want to reserve the absolute worst case amount of items. So if 9091 * both inodes are subvols and we need to unlink them then that would 9092 * require 4 item modifications, but if they are both normal inodes it 9093 * would require 5 item modifications, so we'll assume their normal 9094 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9095 * should cover the worst case number of items we'll modify. 9096 */ 9097 trans = btrfs_start_transaction(root, 12); 9098 if (IS_ERR(trans)) { 9099 ret = PTR_ERR(trans); 9100 goto out_notrans; 9101 } 9102 9103 if (dest != root) { 9104 ret = btrfs_record_root_in_trans(trans, dest); 9105 if (ret) 9106 goto out_fail; 9107 } 9108 9109 /* 9110 * We need to find a free sequence number both in the source and 9111 * in the destination directory for the exchange. 9112 */ 9113 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9114 if (ret) 9115 goto out_fail; 9116 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9117 if (ret) 9118 goto out_fail; 9119 9120 BTRFS_I(old_inode)->dir_index = 0ULL; 9121 BTRFS_I(new_inode)->dir_index = 0ULL; 9122 9123 /* Reference for the source. */ 9124 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9125 /* force full log commit if subvolume involved. */ 9126 btrfs_set_log_full_commit(trans); 9127 } else { 9128 btrfs_pin_log_trans(root); 9129 root_log_pinned = true; 9130 ret = btrfs_insert_inode_ref(trans, dest, 9131 new_dentry->d_name.name, 9132 new_dentry->d_name.len, 9133 old_ino, 9134 btrfs_ino(BTRFS_I(new_dir)), 9135 old_idx); 9136 if (ret) 9137 goto out_fail; 9138 } 9139 9140 /* And now for the dest. */ 9141 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9142 /* force full log commit if subvolume involved. */ 9143 btrfs_set_log_full_commit(trans); 9144 } else { 9145 btrfs_pin_log_trans(dest); 9146 dest_log_pinned = true; 9147 ret = btrfs_insert_inode_ref(trans, root, 9148 old_dentry->d_name.name, 9149 old_dentry->d_name.len, 9150 new_ino, 9151 btrfs_ino(BTRFS_I(old_dir)), 9152 new_idx); 9153 if (ret) 9154 goto out_fail; 9155 } 9156 9157 /* Update inode version and ctime/mtime. */ 9158 inode_inc_iversion(old_dir); 9159 inode_inc_iversion(new_dir); 9160 inode_inc_iversion(old_inode); 9161 inode_inc_iversion(new_inode); 9162 old_dir->i_ctime = old_dir->i_mtime = ctime; 9163 new_dir->i_ctime = new_dir->i_mtime = ctime; 9164 old_inode->i_ctime = ctime; 9165 new_inode->i_ctime = ctime; 9166 9167 if (old_dentry->d_parent != new_dentry->d_parent) { 9168 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9169 BTRFS_I(old_inode), 1); 9170 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9171 BTRFS_I(new_inode), 1); 9172 } 9173 9174 /* src is a subvolume */ 9175 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9176 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9177 } else { /* src is an inode */ 9178 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9179 BTRFS_I(old_dentry->d_inode), 9180 old_dentry->d_name.name, 9181 old_dentry->d_name.len); 9182 if (!ret) 9183 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9184 } 9185 if (ret) { 9186 btrfs_abort_transaction(trans, ret); 9187 goto out_fail; 9188 } 9189 9190 /* dest is a subvolume */ 9191 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9192 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9193 } else { /* dest is an inode */ 9194 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9195 BTRFS_I(new_dentry->d_inode), 9196 new_dentry->d_name.name, 9197 new_dentry->d_name.len); 9198 if (!ret) 9199 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9200 } 9201 if (ret) { 9202 btrfs_abort_transaction(trans, ret); 9203 goto out_fail; 9204 } 9205 9206 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9207 new_dentry->d_name.name, 9208 new_dentry->d_name.len, 0, old_idx); 9209 if (ret) { 9210 btrfs_abort_transaction(trans, ret); 9211 goto out_fail; 9212 } 9213 9214 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9215 old_dentry->d_name.name, 9216 old_dentry->d_name.len, 0, new_idx); 9217 if (ret) { 9218 btrfs_abort_transaction(trans, ret); 9219 goto out_fail; 9220 } 9221 9222 if (old_inode->i_nlink == 1) 9223 BTRFS_I(old_inode)->dir_index = old_idx; 9224 if (new_inode->i_nlink == 1) 9225 BTRFS_I(new_inode)->dir_index = new_idx; 9226 9227 if (root_log_pinned) { 9228 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9229 new_dentry->d_parent); 9230 btrfs_end_log_trans(root); 9231 root_log_pinned = false; 9232 } 9233 if (dest_log_pinned) { 9234 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9235 old_dentry->d_parent); 9236 btrfs_end_log_trans(dest); 9237 dest_log_pinned = false; 9238 } 9239 out_fail: 9240 /* 9241 * If we have pinned a log and an error happened, we unpin tasks 9242 * trying to sync the log and force them to fallback to a transaction 9243 * commit if the log currently contains any of the inodes involved in 9244 * this rename operation (to ensure we do not persist a log with an 9245 * inconsistent state for any of these inodes or leading to any 9246 * inconsistencies when replayed). If the transaction was aborted, the 9247 * abortion reason is propagated to userspace when attempting to commit 9248 * the transaction. If the log does not contain any of these inodes, we 9249 * allow the tasks to sync it. 9250 */ 9251 if (ret && (root_log_pinned || dest_log_pinned)) { 9252 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9253 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9254 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9255 (new_inode && 9256 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9257 btrfs_set_log_full_commit(trans); 9258 9259 if (root_log_pinned) { 9260 btrfs_end_log_trans(root); 9261 root_log_pinned = false; 9262 } 9263 if (dest_log_pinned) { 9264 btrfs_end_log_trans(dest); 9265 dest_log_pinned = false; 9266 } 9267 } 9268 ret2 = btrfs_end_transaction(trans); 9269 ret = ret ? ret : ret2; 9270 out_notrans: 9271 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9272 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9273 up_read(&fs_info->subvol_sem); 9274 9275 return ret; 9276 } 9277 9278 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9279 struct btrfs_root *root, 9280 struct inode *dir, 9281 struct dentry *dentry) 9282 { 9283 int ret; 9284 struct inode *inode; 9285 u64 objectid; 9286 u64 index; 9287 9288 ret = btrfs_get_free_objectid(root, &objectid); 9289 if (ret) 9290 return ret; 9291 9292 inode = btrfs_new_inode(trans, root, dir, 9293 dentry->d_name.name, 9294 dentry->d_name.len, 9295 btrfs_ino(BTRFS_I(dir)), 9296 objectid, 9297 S_IFCHR | WHITEOUT_MODE, 9298 &index); 9299 9300 if (IS_ERR(inode)) { 9301 ret = PTR_ERR(inode); 9302 return ret; 9303 } 9304 9305 inode->i_op = &btrfs_special_inode_operations; 9306 init_special_inode(inode, inode->i_mode, 9307 WHITEOUT_DEV); 9308 9309 ret = btrfs_init_inode_security(trans, inode, dir, 9310 &dentry->d_name); 9311 if (ret) 9312 goto out; 9313 9314 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9315 BTRFS_I(inode), 0, index); 9316 if (ret) 9317 goto out; 9318 9319 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9320 out: 9321 unlock_new_inode(inode); 9322 if (ret) 9323 inode_dec_link_count(inode); 9324 iput(inode); 9325 9326 return ret; 9327 } 9328 9329 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9330 struct inode *new_dir, struct dentry *new_dentry, 9331 unsigned int flags) 9332 { 9333 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9334 struct btrfs_trans_handle *trans; 9335 unsigned int trans_num_items; 9336 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9337 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9338 struct inode *new_inode = d_inode(new_dentry); 9339 struct inode *old_inode = d_inode(old_dentry); 9340 u64 index = 0; 9341 int ret; 9342 int ret2; 9343 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9344 bool log_pinned = false; 9345 9346 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9347 return -EPERM; 9348 9349 /* we only allow rename subvolume link between subvolumes */ 9350 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9351 return -EXDEV; 9352 9353 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9354 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9355 return -ENOTEMPTY; 9356 9357 if (S_ISDIR(old_inode->i_mode) && new_inode && 9358 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9359 return -ENOTEMPTY; 9360 9361 9362 /* check for collisions, even if the name isn't there */ 9363 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9364 new_dentry->d_name.name, 9365 new_dentry->d_name.len); 9366 9367 if (ret) { 9368 if (ret == -EEXIST) { 9369 /* we shouldn't get 9370 * eexist without a new_inode */ 9371 if (WARN_ON(!new_inode)) { 9372 return ret; 9373 } 9374 } else { 9375 /* maybe -EOVERFLOW */ 9376 return ret; 9377 } 9378 } 9379 ret = 0; 9380 9381 /* 9382 * we're using rename to replace one file with another. Start IO on it 9383 * now so we don't add too much work to the end of the transaction 9384 */ 9385 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9386 filemap_flush(old_inode->i_mapping); 9387 9388 /* close the racy window with snapshot create/destroy ioctl */ 9389 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9390 down_read(&fs_info->subvol_sem); 9391 /* 9392 * We want to reserve the absolute worst case amount of items. So if 9393 * both inodes are subvols and we need to unlink them then that would 9394 * require 4 item modifications, but if they are both normal inodes it 9395 * would require 5 item modifications, so we'll assume they are normal 9396 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9397 * should cover the worst case number of items we'll modify. 9398 * If our rename has the whiteout flag, we need more 5 units for the 9399 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9400 * when selinux is enabled). 9401 */ 9402 trans_num_items = 11; 9403 if (flags & RENAME_WHITEOUT) 9404 trans_num_items += 5; 9405 trans = btrfs_start_transaction(root, trans_num_items); 9406 if (IS_ERR(trans)) { 9407 ret = PTR_ERR(trans); 9408 goto out_notrans; 9409 } 9410 9411 if (dest != root) { 9412 ret = btrfs_record_root_in_trans(trans, dest); 9413 if (ret) 9414 goto out_fail; 9415 } 9416 9417 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9418 if (ret) 9419 goto out_fail; 9420 9421 BTRFS_I(old_inode)->dir_index = 0ULL; 9422 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9423 /* force full log commit if subvolume involved. */ 9424 btrfs_set_log_full_commit(trans); 9425 } else { 9426 btrfs_pin_log_trans(root); 9427 log_pinned = true; 9428 ret = btrfs_insert_inode_ref(trans, dest, 9429 new_dentry->d_name.name, 9430 new_dentry->d_name.len, 9431 old_ino, 9432 btrfs_ino(BTRFS_I(new_dir)), index); 9433 if (ret) 9434 goto out_fail; 9435 } 9436 9437 inode_inc_iversion(old_dir); 9438 inode_inc_iversion(new_dir); 9439 inode_inc_iversion(old_inode); 9440 old_dir->i_ctime = old_dir->i_mtime = 9441 new_dir->i_ctime = new_dir->i_mtime = 9442 old_inode->i_ctime = current_time(old_dir); 9443 9444 if (old_dentry->d_parent != new_dentry->d_parent) 9445 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9446 BTRFS_I(old_inode), 1); 9447 9448 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9449 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9450 } else { 9451 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9452 BTRFS_I(d_inode(old_dentry)), 9453 old_dentry->d_name.name, 9454 old_dentry->d_name.len); 9455 if (!ret) 9456 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9457 } 9458 if (ret) { 9459 btrfs_abort_transaction(trans, ret); 9460 goto out_fail; 9461 } 9462 9463 if (new_inode) { 9464 inode_inc_iversion(new_inode); 9465 new_inode->i_ctime = current_time(new_inode); 9466 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9467 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9468 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9469 BUG_ON(new_inode->i_nlink == 0); 9470 } else { 9471 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9472 BTRFS_I(d_inode(new_dentry)), 9473 new_dentry->d_name.name, 9474 new_dentry->d_name.len); 9475 } 9476 if (!ret && new_inode->i_nlink == 0) 9477 ret = btrfs_orphan_add(trans, 9478 BTRFS_I(d_inode(new_dentry))); 9479 if (ret) { 9480 btrfs_abort_transaction(trans, ret); 9481 goto out_fail; 9482 } 9483 } 9484 9485 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9486 new_dentry->d_name.name, 9487 new_dentry->d_name.len, 0, index); 9488 if (ret) { 9489 btrfs_abort_transaction(trans, ret); 9490 goto out_fail; 9491 } 9492 9493 if (old_inode->i_nlink == 1) 9494 BTRFS_I(old_inode)->dir_index = index; 9495 9496 if (log_pinned) { 9497 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9498 new_dentry->d_parent); 9499 btrfs_end_log_trans(root); 9500 log_pinned = false; 9501 } 9502 9503 if (flags & RENAME_WHITEOUT) { 9504 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9505 old_dentry); 9506 9507 if (ret) { 9508 btrfs_abort_transaction(trans, ret); 9509 goto out_fail; 9510 } 9511 } 9512 out_fail: 9513 /* 9514 * If we have pinned the log and an error happened, we unpin tasks 9515 * trying to sync the log and force them to fallback to a transaction 9516 * commit if the log currently contains any of the inodes involved in 9517 * this rename operation (to ensure we do not persist a log with an 9518 * inconsistent state for any of these inodes or leading to any 9519 * inconsistencies when replayed). If the transaction was aborted, the 9520 * abortion reason is propagated to userspace when attempting to commit 9521 * the transaction. If the log does not contain any of these inodes, we 9522 * allow the tasks to sync it. 9523 */ 9524 if (ret && log_pinned) { 9525 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9526 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9527 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9528 (new_inode && 9529 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9530 btrfs_set_log_full_commit(trans); 9531 9532 btrfs_end_log_trans(root); 9533 log_pinned = false; 9534 } 9535 ret2 = btrfs_end_transaction(trans); 9536 ret = ret ? ret : ret2; 9537 out_notrans: 9538 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9539 up_read(&fs_info->subvol_sem); 9540 9541 return ret; 9542 } 9543 9544 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9545 struct dentry *old_dentry, struct inode *new_dir, 9546 struct dentry *new_dentry, unsigned int flags) 9547 { 9548 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9549 return -EINVAL; 9550 9551 if (flags & RENAME_EXCHANGE) 9552 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9553 new_dentry); 9554 9555 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9556 } 9557 9558 struct btrfs_delalloc_work { 9559 struct inode *inode; 9560 struct completion completion; 9561 struct list_head list; 9562 struct btrfs_work work; 9563 }; 9564 9565 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9566 { 9567 struct btrfs_delalloc_work *delalloc_work; 9568 struct inode *inode; 9569 9570 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9571 work); 9572 inode = delalloc_work->inode; 9573 filemap_flush(inode->i_mapping); 9574 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9575 &BTRFS_I(inode)->runtime_flags)) 9576 filemap_flush(inode->i_mapping); 9577 9578 iput(inode); 9579 complete(&delalloc_work->completion); 9580 } 9581 9582 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9583 { 9584 struct btrfs_delalloc_work *work; 9585 9586 work = kmalloc(sizeof(*work), GFP_NOFS); 9587 if (!work) 9588 return NULL; 9589 9590 init_completion(&work->completion); 9591 INIT_LIST_HEAD(&work->list); 9592 work->inode = inode; 9593 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9594 9595 return work; 9596 } 9597 9598 /* 9599 * some fairly slow code that needs optimization. This walks the list 9600 * of all the inodes with pending delalloc and forces them to disk. 9601 */ 9602 static int start_delalloc_inodes(struct btrfs_root *root, 9603 struct writeback_control *wbc, bool snapshot, 9604 bool in_reclaim_context) 9605 { 9606 struct btrfs_inode *binode; 9607 struct inode *inode; 9608 struct btrfs_delalloc_work *work, *next; 9609 struct list_head works; 9610 struct list_head splice; 9611 int ret = 0; 9612 bool full_flush = wbc->nr_to_write == LONG_MAX; 9613 9614 INIT_LIST_HEAD(&works); 9615 INIT_LIST_HEAD(&splice); 9616 9617 mutex_lock(&root->delalloc_mutex); 9618 spin_lock(&root->delalloc_lock); 9619 list_splice_init(&root->delalloc_inodes, &splice); 9620 while (!list_empty(&splice)) { 9621 binode = list_entry(splice.next, struct btrfs_inode, 9622 delalloc_inodes); 9623 9624 list_move_tail(&binode->delalloc_inodes, 9625 &root->delalloc_inodes); 9626 9627 if (in_reclaim_context && 9628 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9629 continue; 9630 9631 inode = igrab(&binode->vfs_inode); 9632 if (!inode) { 9633 cond_resched_lock(&root->delalloc_lock); 9634 continue; 9635 } 9636 spin_unlock(&root->delalloc_lock); 9637 9638 if (snapshot) 9639 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9640 &binode->runtime_flags); 9641 if (full_flush) { 9642 work = btrfs_alloc_delalloc_work(inode); 9643 if (!work) { 9644 iput(inode); 9645 ret = -ENOMEM; 9646 goto out; 9647 } 9648 list_add_tail(&work->list, &works); 9649 btrfs_queue_work(root->fs_info->flush_workers, 9650 &work->work); 9651 } else { 9652 ret = sync_inode(inode, wbc); 9653 if (!ret && 9654 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9655 &BTRFS_I(inode)->runtime_flags)) 9656 ret = sync_inode(inode, wbc); 9657 btrfs_add_delayed_iput(inode); 9658 if (ret || wbc->nr_to_write <= 0) 9659 goto out; 9660 } 9661 cond_resched(); 9662 spin_lock(&root->delalloc_lock); 9663 } 9664 spin_unlock(&root->delalloc_lock); 9665 9666 out: 9667 list_for_each_entry_safe(work, next, &works, list) { 9668 list_del_init(&work->list); 9669 wait_for_completion(&work->completion); 9670 kfree(work); 9671 } 9672 9673 if (!list_empty(&splice)) { 9674 spin_lock(&root->delalloc_lock); 9675 list_splice_tail(&splice, &root->delalloc_inodes); 9676 spin_unlock(&root->delalloc_lock); 9677 } 9678 mutex_unlock(&root->delalloc_mutex); 9679 return ret; 9680 } 9681 9682 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9683 { 9684 struct writeback_control wbc = { 9685 .nr_to_write = LONG_MAX, 9686 .sync_mode = WB_SYNC_NONE, 9687 .range_start = 0, 9688 .range_end = LLONG_MAX, 9689 }; 9690 struct btrfs_fs_info *fs_info = root->fs_info; 9691 9692 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9693 return -EROFS; 9694 9695 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9696 } 9697 9698 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9699 bool in_reclaim_context) 9700 { 9701 struct writeback_control wbc = { 9702 .nr_to_write = nr, 9703 .sync_mode = WB_SYNC_NONE, 9704 .range_start = 0, 9705 .range_end = LLONG_MAX, 9706 }; 9707 struct btrfs_root *root; 9708 struct list_head splice; 9709 int ret; 9710 9711 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9712 return -EROFS; 9713 9714 INIT_LIST_HEAD(&splice); 9715 9716 mutex_lock(&fs_info->delalloc_root_mutex); 9717 spin_lock(&fs_info->delalloc_root_lock); 9718 list_splice_init(&fs_info->delalloc_roots, &splice); 9719 while (!list_empty(&splice)) { 9720 /* 9721 * Reset nr_to_write here so we know that we're doing a full 9722 * flush. 9723 */ 9724 if (nr == LONG_MAX) 9725 wbc.nr_to_write = LONG_MAX; 9726 9727 root = list_first_entry(&splice, struct btrfs_root, 9728 delalloc_root); 9729 root = btrfs_grab_root(root); 9730 BUG_ON(!root); 9731 list_move_tail(&root->delalloc_root, 9732 &fs_info->delalloc_roots); 9733 spin_unlock(&fs_info->delalloc_root_lock); 9734 9735 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9736 btrfs_put_root(root); 9737 if (ret < 0 || wbc.nr_to_write <= 0) 9738 goto out; 9739 spin_lock(&fs_info->delalloc_root_lock); 9740 } 9741 spin_unlock(&fs_info->delalloc_root_lock); 9742 9743 ret = 0; 9744 out: 9745 if (!list_empty(&splice)) { 9746 spin_lock(&fs_info->delalloc_root_lock); 9747 list_splice_tail(&splice, &fs_info->delalloc_roots); 9748 spin_unlock(&fs_info->delalloc_root_lock); 9749 } 9750 mutex_unlock(&fs_info->delalloc_root_mutex); 9751 return ret; 9752 } 9753 9754 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9755 struct dentry *dentry, const char *symname) 9756 { 9757 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9758 struct btrfs_trans_handle *trans; 9759 struct btrfs_root *root = BTRFS_I(dir)->root; 9760 struct btrfs_path *path; 9761 struct btrfs_key key; 9762 struct inode *inode = NULL; 9763 int err; 9764 u64 objectid; 9765 u64 index = 0; 9766 int name_len; 9767 int datasize; 9768 unsigned long ptr; 9769 struct btrfs_file_extent_item *ei; 9770 struct extent_buffer *leaf; 9771 9772 name_len = strlen(symname); 9773 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9774 return -ENAMETOOLONG; 9775 9776 /* 9777 * 2 items for inode item and ref 9778 * 2 items for dir items 9779 * 1 item for updating parent inode item 9780 * 1 item for the inline extent item 9781 * 1 item for xattr if selinux is on 9782 */ 9783 trans = btrfs_start_transaction(root, 7); 9784 if (IS_ERR(trans)) 9785 return PTR_ERR(trans); 9786 9787 err = btrfs_get_free_objectid(root, &objectid); 9788 if (err) 9789 goto out_unlock; 9790 9791 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9792 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9793 objectid, S_IFLNK|S_IRWXUGO, &index); 9794 if (IS_ERR(inode)) { 9795 err = PTR_ERR(inode); 9796 inode = NULL; 9797 goto out_unlock; 9798 } 9799 9800 /* 9801 * If the active LSM wants to access the inode during 9802 * d_instantiate it needs these. Smack checks to see 9803 * if the filesystem supports xattrs by looking at the 9804 * ops vector. 9805 */ 9806 inode->i_fop = &btrfs_file_operations; 9807 inode->i_op = &btrfs_file_inode_operations; 9808 inode->i_mapping->a_ops = &btrfs_aops; 9809 9810 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9811 if (err) 9812 goto out_unlock; 9813 9814 path = btrfs_alloc_path(); 9815 if (!path) { 9816 err = -ENOMEM; 9817 goto out_unlock; 9818 } 9819 key.objectid = btrfs_ino(BTRFS_I(inode)); 9820 key.offset = 0; 9821 key.type = BTRFS_EXTENT_DATA_KEY; 9822 datasize = btrfs_file_extent_calc_inline_size(name_len); 9823 err = btrfs_insert_empty_item(trans, root, path, &key, 9824 datasize); 9825 if (err) { 9826 btrfs_free_path(path); 9827 goto out_unlock; 9828 } 9829 leaf = path->nodes[0]; 9830 ei = btrfs_item_ptr(leaf, path->slots[0], 9831 struct btrfs_file_extent_item); 9832 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9833 btrfs_set_file_extent_type(leaf, ei, 9834 BTRFS_FILE_EXTENT_INLINE); 9835 btrfs_set_file_extent_encryption(leaf, ei, 0); 9836 btrfs_set_file_extent_compression(leaf, ei, 0); 9837 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9838 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9839 9840 ptr = btrfs_file_extent_inline_start(ei); 9841 write_extent_buffer(leaf, symname, ptr, name_len); 9842 btrfs_mark_buffer_dirty(leaf); 9843 btrfs_free_path(path); 9844 9845 inode->i_op = &btrfs_symlink_inode_operations; 9846 inode_nohighmem(inode); 9847 inode_set_bytes(inode, name_len); 9848 btrfs_i_size_write(BTRFS_I(inode), name_len); 9849 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9850 /* 9851 * Last step, add directory indexes for our symlink inode. This is the 9852 * last step to avoid extra cleanup of these indexes if an error happens 9853 * elsewhere above. 9854 */ 9855 if (!err) 9856 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9857 BTRFS_I(inode), 0, index); 9858 if (err) 9859 goto out_unlock; 9860 9861 d_instantiate_new(dentry, inode); 9862 9863 out_unlock: 9864 btrfs_end_transaction(trans); 9865 if (err && inode) { 9866 inode_dec_link_count(inode); 9867 discard_new_inode(inode); 9868 } 9869 btrfs_btree_balance_dirty(fs_info); 9870 return err; 9871 } 9872 9873 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9874 struct btrfs_trans_handle *trans_in, 9875 struct btrfs_inode *inode, 9876 struct btrfs_key *ins, 9877 u64 file_offset) 9878 { 9879 struct btrfs_file_extent_item stack_fi; 9880 struct btrfs_replace_extent_info extent_info; 9881 struct btrfs_trans_handle *trans = trans_in; 9882 struct btrfs_path *path; 9883 u64 start = ins->objectid; 9884 u64 len = ins->offset; 9885 int qgroup_released; 9886 int ret; 9887 9888 memset(&stack_fi, 0, sizeof(stack_fi)); 9889 9890 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9891 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9892 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9893 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9894 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9895 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9896 /* Encryption and other encoding is reserved and all 0 */ 9897 9898 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9899 if (qgroup_released < 0) 9900 return ERR_PTR(qgroup_released); 9901 9902 if (trans) { 9903 ret = insert_reserved_file_extent(trans, inode, 9904 file_offset, &stack_fi, 9905 true, qgroup_released); 9906 if (ret) 9907 goto free_qgroup; 9908 return trans; 9909 } 9910 9911 extent_info.disk_offset = start; 9912 extent_info.disk_len = len; 9913 extent_info.data_offset = 0; 9914 extent_info.data_len = len; 9915 extent_info.file_offset = file_offset; 9916 extent_info.extent_buf = (char *)&stack_fi; 9917 extent_info.is_new_extent = true; 9918 extent_info.qgroup_reserved = qgroup_released; 9919 extent_info.insertions = 0; 9920 9921 path = btrfs_alloc_path(); 9922 if (!path) { 9923 ret = -ENOMEM; 9924 goto free_qgroup; 9925 } 9926 9927 ret = btrfs_replace_file_extents(inode, path, file_offset, 9928 file_offset + len - 1, &extent_info, 9929 &trans); 9930 btrfs_free_path(path); 9931 if (ret) 9932 goto free_qgroup; 9933 return trans; 9934 9935 free_qgroup: 9936 /* 9937 * We have released qgroup data range at the beginning of the function, 9938 * and normally qgroup_released bytes will be freed when committing 9939 * transaction. 9940 * But if we error out early, we have to free what we have released 9941 * or we leak qgroup data reservation. 9942 */ 9943 btrfs_qgroup_free_refroot(inode->root->fs_info, 9944 inode->root->root_key.objectid, qgroup_released, 9945 BTRFS_QGROUP_RSV_DATA); 9946 return ERR_PTR(ret); 9947 } 9948 9949 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9950 u64 start, u64 num_bytes, u64 min_size, 9951 loff_t actual_len, u64 *alloc_hint, 9952 struct btrfs_trans_handle *trans) 9953 { 9954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9955 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9956 struct extent_map *em; 9957 struct btrfs_root *root = BTRFS_I(inode)->root; 9958 struct btrfs_key ins; 9959 u64 cur_offset = start; 9960 u64 clear_offset = start; 9961 u64 i_size; 9962 u64 cur_bytes; 9963 u64 last_alloc = (u64)-1; 9964 int ret = 0; 9965 bool own_trans = true; 9966 u64 end = start + num_bytes - 1; 9967 9968 if (trans) 9969 own_trans = false; 9970 while (num_bytes > 0) { 9971 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9972 cur_bytes = max(cur_bytes, min_size); 9973 /* 9974 * If we are severely fragmented we could end up with really 9975 * small allocations, so if the allocator is returning small 9976 * chunks lets make its job easier by only searching for those 9977 * sized chunks. 9978 */ 9979 cur_bytes = min(cur_bytes, last_alloc); 9980 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9981 min_size, 0, *alloc_hint, &ins, 1, 0); 9982 if (ret) 9983 break; 9984 9985 /* 9986 * We've reserved this space, and thus converted it from 9987 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9988 * from here on out we will only need to clear our reservation 9989 * for the remaining unreserved area, so advance our 9990 * clear_offset by our extent size. 9991 */ 9992 clear_offset += ins.offset; 9993 9994 last_alloc = ins.offset; 9995 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9996 &ins, cur_offset); 9997 /* 9998 * Now that we inserted the prealloc extent we can finally 9999 * decrement the number of reservations in the block group. 10000 * If we did it before, we could race with relocation and have 10001 * relocation miss the reserved extent, making it fail later. 10002 */ 10003 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10004 if (IS_ERR(trans)) { 10005 ret = PTR_ERR(trans); 10006 btrfs_free_reserved_extent(fs_info, ins.objectid, 10007 ins.offset, 0); 10008 break; 10009 } 10010 10011 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10012 cur_offset + ins.offset -1, 0); 10013 10014 em = alloc_extent_map(); 10015 if (!em) { 10016 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10017 &BTRFS_I(inode)->runtime_flags); 10018 goto next; 10019 } 10020 10021 em->start = cur_offset; 10022 em->orig_start = cur_offset; 10023 em->len = ins.offset; 10024 em->block_start = ins.objectid; 10025 em->block_len = ins.offset; 10026 em->orig_block_len = ins.offset; 10027 em->ram_bytes = ins.offset; 10028 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10029 em->generation = trans->transid; 10030 10031 while (1) { 10032 write_lock(&em_tree->lock); 10033 ret = add_extent_mapping(em_tree, em, 1); 10034 write_unlock(&em_tree->lock); 10035 if (ret != -EEXIST) 10036 break; 10037 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10038 cur_offset + ins.offset - 1, 10039 0); 10040 } 10041 free_extent_map(em); 10042 next: 10043 num_bytes -= ins.offset; 10044 cur_offset += ins.offset; 10045 *alloc_hint = ins.objectid + ins.offset; 10046 10047 inode_inc_iversion(inode); 10048 inode->i_ctime = current_time(inode); 10049 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10050 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10051 (actual_len > inode->i_size) && 10052 (cur_offset > inode->i_size)) { 10053 if (cur_offset > actual_len) 10054 i_size = actual_len; 10055 else 10056 i_size = cur_offset; 10057 i_size_write(inode, i_size); 10058 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10059 } 10060 10061 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10062 10063 if (ret) { 10064 btrfs_abort_transaction(trans, ret); 10065 if (own_trans) 10066 btrfs_end_transaction(trans); 10067 break; 10068 } 10069 10070 if (own_trans) { 10071 btrfs_end_transaction(trans); 10072 trans = NULL; 10073 } 10074 } 10075 if (clear_offset < end) 10076 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10077 end - clear_offset + 1); 10078 return ret; 10079 } 10080 10081 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10082 u64 start, u64 num_bytes, u64 min_size, 10083 loff_t actual_len, u64 *alloc_hint) 10084 { 10085 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10086 min_size, actual_len, alloc_hint, 10087 NULL); 10088 } 10089 10090 int btrfs_prealloc_file_range_trans(struct inode *inode, 10091 struct btrfs_trans_handle *trans, int mode, 10092 u64 start, u64 num_bytes, u64 min_size, 10093 loff_t actual_len, u64 *alloc_hint) 10094 { 10095 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10096 min_size, actual_len, alloc_hint, trans); 10097 } 10098 10099 static int btrfs_set_page_dirty(struct page *page) 10100 { 10101 return __set_page_dirty_nobuffers(page); 10102 } 10103 10104 static int btrfs_permission(struct user_namespace *mnt_userns, 10105 struct inode *inode, int mask) 10106 { 10107 struct btrfs_root *root = BTRFS_I(inode)->root; 10108 umode_t mode = inode->i_mode; 10109 10110 if (mask & MAY_WRITE && 10111 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10112 if (btrfs_root_readonly(root)) 10113 return -EROFS; 10114 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10115 return -EACCES; 10116 } 10117 return generic_permission(&init_user_ns, inode, mask); 10118 } 10119 10120 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10121 struct dentry *dentry, umode_t mode) 10122 { 10123 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10124 struct btrfs_trans_handle *trans; 10125 struct btrfs_root *root = BTRFS_I(dir)->root; 10126 struct inode *inode = NULL; 10127 u64 objectid; 10128 u64 index; 10129 int ret = 0; 10130 10131 /* 10132 * 5 units required for adding orphan entry 10133 */ 10134 trans = btrfs_start_transaction(root, 5); 10135 if (IS_ERR(trans)) 10136 return PTR_ERR(trans); 10137 10138 ret = btrfs_get_free_objectid(root, &objectid); 10139 if (ret) 10140 goto out; 10141 10142 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10143 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10144 if (IS_ERR(inode)) { 10145 ret = PTR_ERR(inode); 10146 inode = NULL; 10147 goto out; 10148 } 10149 10150 inode->i_fop = &btrfs_file_operations; 10151 inode->i_op = &btrfs_file_inode_operations; 10152 10153 inode->i_mapping->a_ops = &btrfs_aops; 10154 10155 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10156 if (ret) 10157 goto out; 10158 10159 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10160 if (ret) 10161 goto out; 10162 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10163 if (ret) 10164 goto out; 10165 10166 /* 10167 * We set number of links to 0 in btrfs_new_inode(), and here we set 10168 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10169 * through: 10170 * 10171 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10172 */ 10173 set_nlink(inode, 1); 10174 d_tmpfile(dentry, inode); 10175 unlock_new_inode(inode); 10176 mark_inode_dirty(inode); 10177 out: 10178 btrfs_end_transaction(trans); 10179 if (ret && inode) 10180 discard_new_inode(inode); 10181 btrfs_btree_balance_dirty(fs_info); 10182 return ret; 10183 } 10184 10185 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10186 { 10187 struct inode *inode = tree->private_data; 10188 unsigned long index = start >> PAGE_SHIFT; 10189 unsigned long end_index = end >> PAGE_SHIFT; 10190 struct page *page; 10191 10192 while (index <= end_index) { 10193 page = find_get_page(inode->i_mapping, index); 10194 ASSERT(page); /* Pages should be in the extent_io_tree */ 10195 set_page_writeback(page); 10196 put_page(page); 10197 index++; 10198 } 10199 } 10200 10201 #ifdef CONFIG_SWAP 10202 /* 10203 * Add an entry indicating a block group or device which is pinned by a 10204 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10205 * negative errno on failure. 10206 */ 10207 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10208 bool is_block_group) 10209 { 10210 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10211 struct btrfs_swapfile_pin *sp, *entry; 10212 struct rb_node **p; 10213 struct rb_node *parent = NULL; 10214 10215 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10216 if (!sp) 10217 return -ENOMEM; 10218 sp->ptr = ptr; 10219 sp->inode = inode; 10220 sp->is_block_group = is_block_group; 10221 sp->bg_extent_count = 1; 10222 10223 spin_lock(&fs_info->swapfile_pins_lock); 10224 p = &fs_info->swapfile_pins.rb_node; 10225 while (*p) { 10226 parent = *p; 10227 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10228 if (sp->ptr < entry->ptr || 10229 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10230 p = &(*p)->rb_left; 10231 } else if (sp->ptr > entry->ptr || 10232 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10233 p = &(*p)->rb_right; 10234 } else { 10235 if (is_block_group) 10236 entry->bg_extent_count++; 10237 spin_unlock(&fs_info->swapfile_pins_lock); 10238 kfree(sp); 10239 return 1; 10240 } 10241 } 10242 rb_link_node(&sp->node, parent, p); 10243 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10244 spin_unlock(&fs_info->swapfile_pins_lock); 10245 return 0; 10246 } 10247 10248 /* Free all of the entries pinned by this swapfile. */ 10249 static void btrfs_free_swapfile_pins(struct inode *inode) 10250 { 10251 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10252 struct btrfs_swapfile_pin *sp; 10253 struct rb_node *node, *next; 10254 10255 spin_lock(&fs_info->swapfile_pins_lock); 10256 node = rb_first(&fs_info->swapfile_pins); 10257 while (node) { 10258 next = rb_next(node); 10259 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10260 if (sp->inode == inode) { 10261 rb_erase(&sp->node, &fs_info->swapfile_pins); 10262 if (sp->is_block_group) { 10263 btrfs_dec_block_group_swap_extents(sp->ptr, 10264 sp->bg_extent_count); 10265 btrfs_put_block_group(sp->ptr); 10266 } 10267 kfree(sp); 10268 } 10269 node = next; 10270 } 10271 spin_unlock(&fs_info->swapfile_pins_lock); 10272 } 10273 10274 struct btrfs_swap_info { 10275 u64 start; 10276 u64 block_start; 10277 u64 block_len; 10278 u64 lowest_ppage; 10279 u64 highest_ppage; 10280 unsigned long nr_pages; 10281 int nr_extents; 10282 }; 10283 10284 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10285 struct btrfs_swap_info *bsi) 10286 { 10287 unsigned long nr_pages; 10288 u64 first_ppage, first_ppage_reported, next_ppage; 10289 int ret; 10290 10291 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10292 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10293 PAGE_SIZE) >> PAGE_SHIFT; 10294 10295 if (first_ppage >= next_ppage) 10296 return 0; 10297 nr_pages = next_ppage - first_ppage; 10298 10299 first_ppage_reported = first_ppage; 10300 if (bsi->start == 0) 10301 first_ppage_reported++; 10302 if (bsi->lowest_ppage > first_ppage_reported) 10303 bsi->lowest_ppage = first_ppage_reported; 10304 if (bsi->highest_ppage < (next_ppage - 1)) 10305 bsi->highest_ppage = next_ppage - 1; 10306 10307 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10308 if (ret < 0) 10309 return ret; 10310 bsi->nr_extents += ret; 10311 bsi->nr_pages += nr_pages; 10312 return 0; 10313 } 10314 10315 static void btrfs_swap_deactivate(struct file *file) 10316 { 10317 struct inode *inode = file_inode(file); 10318 10319 btrfs_free_swapfile_pins(inode); 10320 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10321 } 10322 10323 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10324 sector_t *span) 10325 { 10326 struct inode *inode = file_inode(file); 10327 struct btrfs_root *root = BTRFS_I(inode)->root; 10328 struct btrfs_fs_info *fs_info = root->fs_info; 10329 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10330 struct extent_state *cached_state = NULL; 10331 struct extent_map *em = NULL; 10332 struct btrfs_device *device = NULL; 10333 struct btrfs_swap_info bsi = { 10334 .lowest_ppage = (sector_t)-1ULL, 10335 }; 10336 int ret = 0; 10337 u64 isize; 10338 u64 start; 10339 10340 /* 10341 * If the swap file was just created, make sure delalloc is done. If the 10342 * file changes again after this, the user is doing something stupid and 10343 * we don't really care. 10344 */ 10345 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10346 if (ret) 10347 return ret; 10348 10349 /* 10350 * The inode is locked, so these flags won't change after we check them. 10351 */ 10352 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10353 btrfs_warn(fs_info, "swapfile must not be compressed"); 10354 return -EINVAL; 10355 } 10356 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10357 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10358 return -EINVAL; 10359 } 10360 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10361 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10362 return -EINVAL; 10363 } 10364 10365 /* 10366 * Balance or device remove/replace/resize can move stuff around from 10367 * under us. The exclop protection makes sure they aren't running/won't 10368 * run concurrently while we are mapping the swap extents, and 10369 * fs_info->swapfile_pins prevents them from running while the swap 10370 * file is active and moving the extents. Note that this also prevents 10371 * a concurrent device add which isn't actually necessary, but it's not 10372 * really worth the trouble to allow it. 10373 */ 10374 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10375 btrfs_warn(fs_info, 10376 "cannot activate swapfile while exclusive operation is running"); 10377 return -EBUSY; 10378 } 10379 10380 /* 10381 * Prevent snapshot creation while we are activating the swap file. 10382 * We do not want to race with snapshot creation. If snapshot creation 10383 * already started before we bumped nr_swapfiles from 0 to 1 and 10384 * completes before the first write into the swap file after it is 10385 * activated, than that write would fallback to COW. 10386 */ 10387 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10388 btrfs_exclop_finish(fs_info); 10389 btrfs_warn(fs_info, 10390 "cannot activate swapfile because snapshot creation is in progress"); 10391 return -EINVAL; 10392 } 10393 /* 10394 * Snapshots can create extents which require COW even if NODATACOW is 10395 * set. We use this counter to prevent snapshots. We must increment it 10396 * before walking the extents because we don't want a concurrent 10397 * snapshot to run after we've already checked the extents. 10398 */ 10399 atomic_inc(&root->nr_swapfiles); 10400 10401 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10402 10403 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10404 start = 0; 10405 while (start < isize) { 10406 u64 logical_block_start, physical_block_start; 10407 struct btrfs_block_group *bg; 10408 u64 len = isize - start; 10409 10410 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10411 if (IS_ERR(em)) { 10412 ret = PTR_ERR(em); 10413 goto out; 10414 } 10415 10416 if (em->block_start == EXTENT_MAP_HOLE) { 10417 btrfs_warn(fs_info, "swapfile must not have holes"); 10418 ret = -EINVAL; 10419 goto out; 10420 } 10421 if (em->block_start == EXTENT_MAP_INLINE) { 10422 /* 10423 * It's unlikely we'll ever actually find ourselves 10424 * here, as a file small enough to fit inline won't be 10425 * big enough to store more than the swap header, but in 10426 * case something changes in the future, let's catch it 10427 * here rather than later. 10428 */ 10429 btrfs_warn(fs_info, "swapfile must not be inline"); 10430 ret = -EINVAL; 10431 goto out; 10432 } 10433 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10434 btrfs_warn(fs_info, "swapfile must not be compressed"); 10435 ret = -EINVAL; 10436 goto out; 10437 } 10438 10439 logical_block_start = em->block_start + (start - em->start); 10440 len = min(len, em->len - (start - em->start)); 10441 free_extent_map(em); 10442 em = NULL; 10443 10444 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10445 if (ret < 0) { 10446 goto out; 10447 } else if (ret) { 10448 ret = 0; 10449 } else { 10450 btrfs_warn(fs_info, 10451 "swapfile must not be copy-on-write"); 10452 ret = -EINVAL; 10453 goto out; 10454 } 10455 10456 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10457 if (IS_ERR(em)) { 10458 ret = PTR_ERR(em); 10459 goto out; 10460 } 10461 10462 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10463 btrfs_warn(fs_info, 10464 "swapfile must have single data profile"); 10465 ret = -EINVAL; 10466 goto out; 10467 } 10468 10469 if (device == NULL) { 10470 device = em->map_lookup->stripes[0].dev; 10471 ret = btrfs_add_swapfile_pin(inode, device, false); 10472 if (ret == 1) 10473 ret = 0; 10474 else if (ret) 10475 goto out; 10476 } else if (device != em->map_lookup->stripes[0].dev) { 10477 btrfs_warn(fs_info, "swapfile must be on one device"); 10478 ret = -EINVAL; 10479 goto out; 10480 } 10481 10482 physical_block_start = (em->map_lookup->stripes[0].physical + 10483 (logical_block_start - em->start)); 10484 len = min(len, em->len - (logical_block_start - em->start)); 10485 free_extent_map(em); 10486 em = NULL; 10487 10488 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10489 if (!bg) { 10490 btrfs_warn(fs_info, 10491 "could not find block group containing swapfile"); 10492 ret = -EINVAL; 10493 goto out; 10494 } 10495 10496 if (!btrfs_inc_block_group_swap_extents(bg)) { 10497 btrfs_warn(fs_info, 10498 "block group for swapfile at %llu is read-only%s", 10499 bg->start, 10500 atomic_read(&fs_info->scrubs_running) ? 10501 " (scrub running)" : ""); 10502 btrfs_put_block_group(bg); 10503 ret = -EINVAL; 10504 goto out; 10505 } 10506 10507 ret = btrfs_add_swapfile_pin(inode, bg, true); 10508 if (ret) { 10509 btrfs_put_block_group(bg); 10510 if (ret == 1) 10511 ret = 0; 10512 else 10513 goto out; 10514 } 10515 10516 if (bsi.block_len && 10517 bsi.block_start + bsi.block_len == physical_block_start) { 10518 bsi.block_len += len; 10519 } else { 10520 if (bsi.block_len) { 10521 ret = btrfs_add_swap_extent(sis, &bsi); 10522 if (ret) 10523 goto out; 10524 } 10525 bsi.start = start; 10526 bsi.block_start = physical_block_start; 10527 bsi.block_len = len; 10528 } 10529 10530 start += len; 10531 } 10532 10533 if (bsi.block_len) 10534 ret = btrfs_add_swap_extent(sis, &bsi); 10535 10536 out: 10537 if (!IS_ERR_OR_NULL(em)) 10538 free_extent_map(em); 10539 10540 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10541 10542 if (ret) 10543 btrfs_swap_deactivate(file); 10544 10545 btrfs_drew_write_unlock(&root->snapshot_lock); 10546 10547 btrfs_exclop_finish(fs_info); 10548 10549 if (ret) 10550 return ret; 10551 10552 if (device) 10553 sis->bdev = device->bdev; 10554 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10555 sis->max = bsi.nr_pages; 10556 sis->pages = bsi.nr_pages - 1; 10557 sis->highest_bit = bsi.nr_pages - 1; 10558 return bsi.nr_extents; 10559 } 10560 #else 10561 static void btrfs_swap_deactivate(struct file *file) 10562 { 10563 } 10564 10565 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10566 sector_t *span) 10567 { 10568 return -EOPNOTSUPP; 10569 } 10570 #endif 10571 10572 /* 10573 * Update the number of bytes used in the VFS' inode. When we replace extents in 10574 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10575 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10576 * always get a correct value. 10577 */ 10578 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10579 const u64 add_bytes, 10580 const u64 del_bytes) 10581 { 10582 if (add_bytes == del_bytes) 10583 return; 10584 10585 spin_lock(&inode->lock); 10586 if (del_bytes > 0) 10587 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10588 if (add_bytes > 0) 10589 inode_add_bytes(&inode->vfs_inode, add_bytes); 10590 spin_unlock(&inode->lock); 10591 } 10592 10593 static const struct inode_operations btrfs_dir_inode_operations = { 10594 .getattr = btrfs_getattr, 10595 .lookup = btrfs_lookup, 10596 .create = btrfs_create, 10597 .unlink = btrfs_unlink, 10598 .link = btrfs_link, 10599 .mkdir = btrfs_mkdir, 10600 .rmdir = btrfs_rmdir, 10601 .rename = btrfs_rename2, 10602 .symlink = btrfs_symlink, 10603 .setattr = btrfs_setattr, 10604 .mknod = btrfs_mknod, 10605 .listxattr = btrfs_listxattr, 10606 .permission = btrfs_permission, 10607 .get_acl = btrfs_get_acl, 10608 .set_acl = btrfs_set_acl, 10609 .update_time = btrfs_update_time, 10610 .tmpfile = btrfs_tmpfile, 10611 .fileattr_get = btrfs_fileattr_get, 10612 .fileattr_set = btrfs_fileattr_set, 10613 }; 10614 10615 static const struct file_operations btrfs_dir_file_operations = { 10616 .llseek = generic_file_llseek, 10617 .read = generic_read_dir, 10618 .iterate_shared = btrfs_real_readdir, 10619 .open = btrfs_opendir, 10620 .unlocked_ioctl = btrfs_ioctl, 10621 #ifdef CONFIG_COMPAT 10622 .compat_ioctl = btrfs_compat_ioctl, 10623 #endif 10624 .release = btrfs_release_file, 10625 .fsync = btrfs_sync_file, 10626 }; 10627 10628 /* 10629 * btrfs doesn't support the bmap operation because swapfiles 10630 * use bmap to make a mapping of extents in the file. They assume 10631 * these extents won't change over the life of the file and they 10632 * use the bmap result to do IO directly to the drive. 10633 * 10634 * the btrfs bmap call would return logical addresses that aren't 10635 * suitable for IO and they also will change frequently as COW 10636 * operations happen. So, swapfile + btrfs == corruption. 10637 * 10638 * For now we're avoiding this by dropping bmap. 10639 */ 10640 static const struct address_space_operations btrfs_aops = { 10641 .readpage = btrfs_readpage, 10642 .writepage = btrfs_writepage, 10643 .writepages = btrfs_writepages, 10644 .readahead = btrfs_readahead, 10645 .direct_IO = noop_direct_IO, 10646 .invalidatepage = btrfs_invalidatepage, 10647 .releasepage = btrfs_releasepage, 10648 #ifdef CONFIG_MIGRATION 10649 .migratepage = btrfs_migratepage, 10650 #endif 10651 .set_page_dirty = btrfs_set_page_dirty, 10652 .error_remove_page = generic_error_remove_page, 10653 .swap_activate = btrfs_swap_activate, 10654 .swap_deactivate = btrfs_swap_deactivate, 10655 }; 10656 10657 static const struct inode_operations btrfs_file_inode_operations = { 10658 .getattr = btrfs_getattr, 10659 .setattr = btrfs_setattr, 10660 .listxattr = btrfs_listxattr, 10661 .permission = btrfs_permission, 10662 .fiemap = btrfs_fiemap, 10663 .get_acl = btrfs_get_acl, 10664 .set_acl = btrfs_set_acl, 10665 .update_time = btrfs_update_time, 10666 .fileattr_get = btrfs_fileattr_get, 10667 .fileattr_set = btrfs_fileattr_set, 10668 }; 10669 static const struct inode_operations btrfs_special_inode_operations = { 10670 .getattr = btrfs_getattr, 10671 .setattr = btrfs_setattr, 10672 .permission = btrfs_permission, 10673 .listxattr = btrfs_listxattr, 10674 .get_acl = btrfs_get_acl, 10675 .set_acl = btrfs_set_acl, 10676 .update_time = btrfs_update_time, 10677 }; 10678 static const struct inode_operations btrfs_symlink_inode_operations = { 10679 .get_link = page_get_link, 10680 .getattr = btrfs_getattr, 10681 .setattr = btrfs_setattr, 10682 .permission = btrfs_permission, 10683 .listxattr = btrfs_listxattr, 10684 .update_time = btrfs_update_time, 10685 }; 10686 10687 const struct dentry_operations btrfs_dentry_operations = { 10688 .d_delete = btrfs_dentry_delete, 10689 }; 10690