xref: /linux/fs/btrfs/inode.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 
74 struct btrfs_iget_args {
75 	u64 ino;
76 	struct btrfs_root *root;
77 };
78 
79 struct btrfs_dio_data {
80 	ssize_t submitted;
81 	struct extent_changeset *data_reserved;
82 	struct btrfs_ordered_extent *ordered;
83 	bool data_space_reserved;
84 	bool nocow_done;
85 };
86 
87 struct btrfs_dio_private {
88 	/* Range of I/O */
89 	u64 file_offset;
90 	u32 bytes;
91 
92 	/* This must be last */
93 	struct btrfs_bio bbio;
94 };
95 
96 static struct bio_set btrfs_dio_bioset;
97 
98 struct btrfs_rename_ctx {
99 	/* Output field. Stores the index number of the old directory entry. */
100 	u64 index;
101 };
102 
103 /*
104  * Used by data_reloc_print_warning_inode() to pass needed info for filename
105  * resolution and output of error message.
106  */
107 struct data_reloc_warn {
108 	struct btrfs_path path;
109 	struct btrfs_fs_info *fs_info;
110 	u64 extent_item_size;
111 	u64 logical;
112 	int mirror_num;
113 };
114 
115 /*
116  * For the file_extent_tree, we want to hold the inode lock when we lookup and
117  * update the disk_i_size, but lockdep will complain because our io_tree we hold
118  * the tree lock and get the inode lock when setting delalloc. These two things
119  * are unrelated, so make a class for the file_extent_tree so we don't get the
120  * two locking patterns mixed up.
121  */
122 static struct lock_class_key file_extent_tree_class;
123 
124 static const struct inode_operations btrfs_dir_inode_operations;
125 static const struct inode_operations btrfs_symlink_inode_operations;
126 static const struct inode_operations btrfs_special_inode_operations;
127 static const struct inode_operations btrfs_file_inode_operations;
128 static const struct address_space_operations btrfs_aops;
129 static const struct file_operations btrfs_dir_file_operations;
130 
131 static struct kmem_cache *btrfs_inode_cachep;
132 
133 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
134 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
135 
136 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
137 				     struct page *locked_page, u64 start,
138 				     u64 end, struct writeback_control *wbc,
139 				     bool pages_dirty);
140 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
141 				       u64 len, u64 orig_start, u64 block_start,
142 				       u64 block_len, u64 orig_block_len,
143 				       u64 ram_bytes, int compress_type,
144 				       int type);
145 
146 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
147 					  u64 root, void *warn_ctx)
148 {
149 	struct data_reloc_warn *warn = warn_ctx;
150 	struct btrfs_fs_info *fs_info = warn->fs_info;
151 	struct extent_buffer *eb;
152 	struct btrfs_inode_item *inode_item;
153 	struct inode_fs_paths *ipath = NULL;
154 	struct btrfs_root *local_root;
155 	struct btrfs_key key;
156 	unsigned int nofs_flag;
157 	u32 nlink;
158 	int ret;
159 
160 	local_root = btrfs_get_fs_root(fs_info, root, true);
161 	if (IS_ERR(local_root)) {
162 		ret = PTR_ERR(local_root);
163 		goto err;
164 	}
165 
166 	/* This makes the path point to (inum INODE_ITEM ioff). */
167 	key.objectid = inum;
168 	key.type = BTRFS_INODE_ITEM_KEY;
169 	key.offset = 0;
170 
171 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
172 	if (ret) {
173 		btrfs_put_root(local_root);
174 		btrfs_release_path(&warn->path);
175 		goto err;
176 	}
177 
178 	eb = warn->path.nodes[0];
179 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
180 	nlink = btrfs_inode_nlink(eb, inode_item);
181 	btrfs_release_path(&warn->path);
182 
183 	nofs_flag = memalloc_nofs_save();
184 	ipath = init_ipath(4096, local_root, &warn->path);
185 	memalloc_nofs_restore(nofs_flag);
186 	if (IS_ERR(ipath)) {
187 		btrfs_put_root(local_root);
188 		ret = PTR_ERR(ipath);
189 		ipath = NULL;
190 		/*
191 		 * -ENOMEM, not a critical error, just output an generic error
192 		 * without filename.
193 		 */
194 		btrfs_warn(fs_info,
195 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
196 			   warn->logical, warn->mirror_num, root, inum, offset);
197 		return ret;
198 	}
199 	ret = paths_from_inode(inum, ipath);
200 	if (ret < 0)
201 		goto err;
202 
203 	/*
204 	 * We deliberately ignore the bit ipath might have been too small to
205 	 * hold all of the paths here
206 	 */
207 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
208 		btrfs_warn(fs_info,
209 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
210 			   warn->logical, warn->mirror_num, root, inum, offset,
211 			   fs_info->sectorsize, nlink,
212 			   (char *)(unsigned long)ipath->fspath->val[i]);
213 	}
214 
215 	btrfs_put_root(local_root);
216 	free_ipath(ipath);
217 	return 0;
218 
219 err:
220 	btrfs_warn(fs_info,
221 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
222 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
223 
224 	free_ipath(ipath);
225 	return ret;
226 }
227 
228 /*
229  * Do extra user-friendly error output (e.g. lookup all the affected files).
230  *
231  * Return true if we succeeded doing the backref lookup.
232  * Return false if such lookup failed, and has to fallback to the old error message.
233  */
234 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
235 				   const u8 *csum, const u8 *csum_expected,
236 				   int mirror_num)
237 {
238 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
239 	struct btrfs_path path = { 0 };
240 	struct btrfs_key found_key = { 0 };
241 	struct extent_buffer *eb;
242 	struct btrfs_extent_item *ei;
243 	const u32 csum_size = fs_info->csum_size;
244 	u64 logical;
245 	u64 flags;
246 	u32 item_size;
247 	int ret;
248 
249 	mutex_lock(&fs_info->reloc_mutex);
250 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
251 	mutex_unlock(&fs_info->reloc_mutex);
252 
253 	if (logical == U64_MAX) {
254 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
255 		btrfs_warn_rl(fs_info,
256 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
257 			btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
258 			CSUM_FMT_VALUE(csum_size, csum),
259 			CSUM_FMT_VALUE(csum_size, csum_expected),
260 			mirror_num);
261 		return;
262 	}
263 
264 	logical += file_off;
265 	btrfs_warn_rl(fs_info,
266 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
267 			btrfs_root_id(inode->root),
268 			btrfs_ino(inode), file_off, logical,
269 			CSUM_FMT_VALUE(csum_size, csum),
270 			CSUM_FMT_VALUE(csum_size, csum_expected),
271 			mirror_num);
272 
273 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
274 	if (ret < 0) {
275 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
276 			     logical, ret);
277 		return;
278 	}
279 	eb = path.nodes[0];
280 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
281 	item_size = btrfs_item_size(eb, path.slots[0]);
282 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
283 		unsigned long ptr = 0;
284 		u64 ref_root;
285 		u8 ref_level;
286 
287 		while (true) {
288 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
289 						      item_size, &ref_root,
290 						      &ref_level);
291 			if (ret < 0) {
292 				btrfs_warn_rl(fs_info,
293 				"failed to resolve tree backref for logical %llu: %d",
294 					      logical, ret);
295 				break;
296 			}
297 			if (ret > 0)
298 				break;
299 
300 			btrfs_warn_rl(fs_info,
301 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
302 				logical, mirror_num,
303 				(ref_level ? "node" : "leaf"),
304 				ref_level, ref_root);
305 		}
306 		btrfs_release_path(&path);
307 	} else {
308 		struct btrfs_backref_walk_ctx ctx = { 0 };
309 		struct data_reloc_warn reloc_warn = { 0 };
310 
311 		btrfs_release_path(&path);
312 
313 		ctx.bytenr = found_key.objectid;
314 		ctx.extent_item_pos = logical - found_key.objectid;
315 		ctx.fs_info = fs_info;
316 
317 		reloc_warn.logical = logical;
318 		reloc_warn.extent_item_size = found_key.offset;
319 		reloc_warn.mirror_num = mirror_num;
320 		reloc_warn.fs_info = fs_info;
321 
322 		iterate_extent_inodes(&ctx, true,
323 				      data_reloc_print_warning_inode, &reloc_warn);
324 	}
325 }
326 
327 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
328 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
329 {
330 	struct btrfs_root *root = inode->root;
331 	const u32 csum_size = root->fs_info->csum_size;
332 
333 	/* For data reloc tree, it's better to do a backref lookup instead. */
334 	if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
335 		return print_data_reloc_error(inode, logical_start, csum,
336 					      csum_expected, mirror_num);
337 
338 	/* Output without objectid, which is more meaningful */
339 	if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			btrfs_root_id(root), btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	} else {
348 		btrfs_warn_rl(root->fs_info,
349 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
350 			btrfs_root_id(root), btrfs_ino(inode),
351 			logical_start,
352 			CSUM_FMT_VALUE(csum_size, csum),
353 			CSUM_FMT_VALUE(csum_size, csum_expected),
354 			mirror_num);
355 	}
356 }
357 
358 /*
359  * Lock inode i_rwsem based on arguments passed.
360  *
361  * ilock_flags can have the following bit set:
362  *
363  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
364  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
365  *		     return -EAGAIN
366  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
367  */
368 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
369 {
370 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock_shared(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock_shared(&inode->vfs_inode);
378 	} else {
379 		if (ilock_flags & BTRFS_ILOCK_TRY) {
380 			if (!inode_trylock(&inode->vfs_inode))
381 				return -EAGAIN;
382 			else
383 				return 0;
384 		}
385 		inode_lock(&inode->vfs_inode);
386 	}
387 	if (ilock_flags & BTRFS_ILOCK_MMAP)
388 		down_write(&inode->i_mmap_lock);
389 	return 0;
390 }
391 
392 /*
393  * Unock inode i_rwsem.
394  *
395  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
396  * to decide whether the lock acquired is shared or exclusive.
397  */
398 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
399 {
400 	if (ilock_flags & BTRFS_ILOCK_MMAP)
401 		up_write(&inode->i_mmap_lock);
402 	if (ilock_flags & BTRFS_ILOCK_SHARED)
403 		inode_unlock_shared(&inode->vfs_inode);
404 	else
405 		inode_unlock(&inode->vfs_inode);
406 }
407 
408 /*
409  * Cleanup all submitted ordered extents in specified range to handle errors
410  * from the btrfs_run_delalloc_range() callback.
411  *
412  * NOTE: caller must ensure that when an error happens, it can not call
413  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
414  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
415  * to be released, which we want to happen only when finishing the ordered
416  * extent (btrfs_finish_ordered_io()).
417  */
418 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
419 						 struct page *locked_page,
420 						 u64 offset, u64 bytes)
421 {
422 	unsigned long index = offset >> PAGE_SHIFT;
423 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
424 	u64 page_start = 0, page_end = 0;
425 	struct page *page;
426 
427 	if (locked_page) {
428 		page_start = page_offset(locked_page);
429 		page_end = page_start + PAGE_SIZE - 1;
430 	}
431 
432 	while (index <= end_index) {
433 		/*
434 		 * For locked page, we will call btrfs_mark_ordered_io_finished
435 		 * through btrfs_mark_ordered_io_finished() on it
436 		 * in run_delalloc_range() for the error handling, which will
437 		 * clear page Ordered and run the ordered extent accounting.
438 		 *
439 		 * Here we can't just clear the Ordered bit, or
440 		 * btrfs_mark_ordered_io_finished() would skip the accounting
441 		 * for the page range, and the ordered extent will never finish.
442 		 */
443 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
444 			index++;
445 			continue;
446 		}
447 		page = find_get_page(inode->vfs_inode.i_mapping, index);
448 		index++;
449 		if (!page)
450 			continue;
451 
452 		/*
453 		 * Here we just clear all Ordered bits for every page in the
454 		 * range, then btrfs_mark_ordered_io_finished() will handle
455 		 * the ordered extent accounting for the range.
456 		 */
457 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
458 						page_folio(page), offset, bytes);
459 		put_page(page);
460 	}
461 
462 	if (locked_page) {
463 		/* The locked page covers the full range, nothing needs to be done */
464 		if (bytes + offset <= page_start + PAGE_SIZE)
465 			return;
466 		/*
467 		 * In case this page belongs to the delalloc range being
468 		 * instantiated then skip it, since the first page of a range is
469 		 * going to be properly cleaned up by the caller of
470 		 * run_delalloc_range
471 		 */
472 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
473 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
474 			offset = page_offset(locked_page) + PAGE_SIZE;
475 		}
476 	}
477 
478 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
479 }
480 
481 static int btrfs_dirty_inode(struct btrfs_inode *inode);
482 
483 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
484 				     struct btrfs_new_inode_args *args)
485 {
486 	int err;
487 
488 	if (args->default_acl) {
489 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
490 				      ACL_TYPE_DEFAULT);
491 		if (err)
492 			return err;
493 	}
494 	if (args->acl) {
495 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
496 		if (err)
497 			return err;
498 	}
499 	if (!args->default_acl && !args->acl)
500 		cache_no_acl(args->inode);
501 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
502 					 &args->dentry->d_name);
503 }
504 
505 /*
506  * this does all the hard work for inserting an inline extent into
507  * the btree.  The caller should have done a btrfs_drop_extents so that
508  * no overlapping inline items exist in the btree
509  */
510 static int insert_inline_extent(struct btrfs_trans_handle *trans,
511 				struct btrfs_path *path,
512 				struct btrfs_inode *inode, bool extent_inserted,
513 				size_t size, size_t compressed_size,
514 				int compress_type,
515 				struct folio *compressed_folio,
516 				bool update_i_size)
517 {
518 	struct btrfs_root *root = inode->root;
519 	struct extent_buffer *leaf;
520 	struct page *page = NULL;
521 	const u32 sectorsize = trans->fs_info->sectorsize;
522 	char *kaddr;
523 	unsigned long ptr;
524 	struct btrfs_file_extent_item *ei;
525 	int ret;
526 	size_t cur_size = size;
527 	u64 i_size;
528 
529 	/*
530 	 * The decompressed size must still be no larger than a sector.  Under
531 	 * heavy race, we can have size == 0 passed in, but that shouldn't be a
532 	 * big deal and we can continue the insertion.
533 	 */
534 	ASSERT(size <= sectorsize);
535 
536 	/*
537 	 * The compressed size also needs to be no larger than a sector.
538 	 * That's also why we only need one page as the parameter.
539 	 */
540 	if (compressed_folio)
541 		ASSERT(compressed_size <= sectorsize);
542 	else
543 		ASSERT(compressed_size == 0);
544 
545 	if (compressed_size && compressed_folio)
546 		cur_size = compressed_size;
547 
548 	if (!extent_inserted) {
549 		struct btrfs_key key;
550 		size_t datasize;
551 
552 		key.objectid = btrfs_ino(inode);
553 		key.offset = 0;
554 		key.type = BTRFS_EXTENT_DATA_KEY;
555 
556 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
557 		ret = btrfs_insert_empty_item(trans, root, path, &key,
558 					      datasize);
559 		if (ret)
560 			goto fail;
561 	}
562 	leaf = path->nodes[0];
563 	ei = btrfs_item_ptr(leaf, path->slots[0],
564 			    struct btrfs_file_extent_item);
565 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
566 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
567 	btrfs_set_file_extent_encryption(leaf, ei, 0);
568 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
569 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
570 	ptr = btrfs_file_extent_inline_start(ei);
571 
572 	if (compress_type != BTRFS_COMPRESS_NONE) {
573 		kaddr = kmap_local_folio(compressed_folio, 0);
574 		write_extent_buffer(leaf, kaddr, ptr, compressed_size);
575 		kunmap_local(kaddr);
576 
577 		btrfs_set_file_extent_compression(leaf, ei,
578 						  compress_type);
579 	} else {
580 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
581 		btrfs_set_file_extent_compression(leaf, ei, 0);
582 		kaddr = kmap_local_page(page);
583 		write_extent_buffer(leaf, kaddr, ptr, size);
584 		kunmap_local(kaddr);
585 		put_page(page);
586 	}
587 	btrfs_mark_buffer_dirty(trans, leaf);
588 	btrfs_release_path(path);
589 
590 	/*
591 	 * We align size to sectorsize for inline extents just for simplicity
592 	 * sake.
593 	 */
594 	ret = btrfs_inode_set_file_extent_range(inode, 0,
595 					ALIGN(size, root->fs_info->sectorsize));
596 	if (ret)
597 		goto fail;
598 
599 	/*
600 	 * We're an inline extent, so nobody can extend the file past i_size
601 	 * without locking a page we already have locked.
602 	 *
603 	 * We must do any i_size and inode updates before we unlock the pages.
604 	 * Otherwise we could end up racing with unlink.
605 	 */
606 	i_size = i_size_read(&inode->vfs_inode);
607 	if (update_i_size && size > i_size) {
608 		i_size_write(&inode->vfs_inode, size);
609 		i_size = size;
610 	}
611 	inode->disk_i_size = i_size;
612 
613 fail:
614 	return ret;
615 }
616 
617 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
618 				      u64 offset, u64 size,
619 				      size_t compressed_size)
620 {
621 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
622 	u64 data_len = (compressed_size ?: size);
623 
624 	/* Inline extents must start at offset 0. */
625 	if (offset != 0)
626 		return false;
627 
628 	/*
629 	 * Due to the page size limit, for subpage we can only trigger the
630 	 * writeback for the dirty sectors of page, that means data writeback
631 	 * is doing more writeback than what we want.
632 	 *
633 	 * This is especially unexpected for some call sites like fallocate,
634 	 * where we only increase i_size after everything is done.
635 	 * This means we can trigger inline extent even if we didn't want to.
636 	 * So here we skip inline extent creation completely.
637 	 */
638 	if (fs_info->sectorsize != PAGE_SIZE)
639 		return false;
640 
641 	/* Inline extents are limited to sectorsize. */
642 	if (size > fs_info->sectorsize)
643 		return false;
644 
645 	/* We cannot exceed the maximum inline data size. */
646 	if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
647 		return false;
648 
649 	/* We cannot exceed the user specified max_inline size. */
650 	if (data_len > fs_info->max_inline)
651 		return false;
652 
653 	/* Inline extents must be the entirety of the file. */
654 	if (size < i_size_read(&inode->vfs_inode))
655 		return false;
656 
657 	return true;
658 }
659 
660 /*
661  * conditionally insert an inline extent into the file.  This
662  * does the checks required to make sure the data is small enough
663  * to fit as an inline extent.
664  *
665  * If being used directly, you must have already checked we're allowed to cow
666  * the range by getting true from can_cow_file_range_inline().
667  */
668 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
669 					    u64 size, size_t compressed_size,
670 					    int compress_type,
671 					    struct folio *compressed_folio,
672 					    bool update_i_size)
673 {
674 	struct btrfs_drop_extents_args drop_args = { 0 };
675 	struct btrfs_root *root = inode->root;
676 	struct btrfs_fs_info *fs_info = root->fs_info;
677 	struct btrfs_trans_handle *trans;
678 	u64 data_len = (compressed_size ?: size);
679 	int ret;
680 	struct btrfs_path *path;
681 
682 	path = btrfs_alloc_path();
683 	if (!path)
684 		return -ENOMEM;
685 
686 	trans = btrfs_join_transaction(root);
687 	if (IS_ERR(trans)) {
688 		btrfs_free_path(path);
689 		return PTR_ERR(trans);
690 	}
691 	trans->block_rsv = &inode->block_rsv;
692 
693 	drop_args.path = path;
694 	drop_args.start = 0;
695 	drop_args.end = fs_info->sectorsize;
696 	drop_args.drop_cache = true;
697 	drop_args.replace_extent = true;
698 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
699 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
700 	if (ret) {
701 		btrfs_abort_transaction(trans, ret);
702 		goto out;
703 	}
704 
705 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
706 				   size, compressed_size, compress_type,
707 				   compressed_folio, update_i_size);
708 	if (ret && ret != -ENOSPC) {
709 		btrfs_abort_transaction(trans, ret);
710 		goto out;
711 	} else if (ret == -ENOSPC) {
712 		ret = 1;
713 		goto out;
714 	}
715 
716 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
717 	ret = btrfs_update_inode(trans, inode);
718 	if (ret && ret != -ENOSPC) {
719 		btrfs_abort_transaction(trans, ret);
720 		goto out;
721 	} else if (ret == -ENOSPC) {
722 		ret = 1;
723 		goto out;
724 	}
725 
726 	btrfs_set_inode_full_sync(inode);
727 out:
728 	/*
729 	 * Don't forget to free the reserved space, as for inlined extent
730 	 * it won't count as data extent, free them directly here.
731 	 * And at reserve time, it's always aligned to page size, so
732 	 * just free one page here.
733 	 */
734 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
735 	btrfs_free_path(path);
736 	btrfs_end_transaction(trans);
737 	return ret;
738 }
739 
740 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
741 					  u64 end,
742 					  size_t compressed_size,
743 					  int compress_type,
744 					  struct folio *compressed_folio,
745 					  bool update_i_size)
746 {
747 	struct extent_state *cached = NULL;
748 	unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
749 		EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
750 	u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
751 	int ret;
752 
753 	if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
754 		return 1;
755 
756 	lock_extent(&inode->io_tree, offset, end, &cached);
757 	ret = __cow_file_range_inline(inode, offset, size, compressed_size,
758 				      compress_type, compressed_folio,
759 				      update_i_size);
760 	if (ret > 0) {
761 		unlock_extent(&inode->io_tree, offset, end, &cached);
762 		return ret;
763 	}
764 
765 	extent_clear_unlock_delalloc(inode, offset, end, NULL, &cached,
766 				     clear_flags,
767 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
768 				     PAGE_END_WRITEBACK);
769 	return ret;
770 }
771 
772 struct async_extent {
773 	u64 start;
774 	u64 ram_size;
775 	u64 compressed_size;
776 	struct folio **folios;
777 	unsigned long nr_folios;
778 	int compress_type;
779 	struct list_head list;
780 };
781 
782 struct async_chunk {
783 	struct btrfs_inode *inode;
784 	struct page *locked_page;
785 	u64 start;
786 	u64 end;
787 	blk_opf_t write_flags;
788 	struct list_head extents;
789 	struct cgroup_subsys_state *blkcg_css;
790 	struct btrfs_work work;
791 	struct async_cow *async_cow;
792 };
793 
794 struct async_cow {
795 	atomic_t num_chunks;
796 	struct async_chunk chunks[];
797 };
798 
799 static noinline int add_async_extent(struct async_chunk *cow,
800 				     u64 start, u64 ram_size,
801 				     u64 compressed_size,
802 				     struct folio **folios,
803 				     unsigned long nr_folios,
804 				     int compress_type)
805 {
806 	struct async_extent *async_extent;
807 
808 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
809 	if (!async_extent)
810 		return -ENOMEM;
811 	async_extent->start = start;
812 	async_extent->ram_size = ram_size;
813 	async_extent->compressed_size = compressed_size;
814 	async_extent->folios = folios;
815 	async_extent->nr_folios = nr_folios;
816 	async_extent->compress_type = compress_type;
817 	list_add_tail(&async_extent->list, &cow->extents);
818 	return 0;
819 }
820 
821 /*
822  * Check if the inode needs to be submitted to compression, based on mount
823  * options, defragmentation, properties or heuristics.
824  */
825 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
826 				      u64 end)
827 {
828 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
829 
830 	if (!btrfs_inode_can_compress(inode)) {
831 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
832 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
833 			btrfs_ino(inode));
834 		return 0;
835 	}
836 	/*
837 	 * Special check for subpage.
838 	 *
839 	 * We lock the full page then run each delalloc range in the page, thus
840 	 * for the following case, we will hit some subpage specific corner case:
841 	 *
842 	 * 0		32K		64K
843 	 * |	|///////|	|///////|
844 	 *		\- A		\- B
845 	 *
846 	 * In above case, both range A and range B will try to unlock the full
847 	 * page [0, 64K), causing the one finished later will have page
848 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
849 	 *
850 	 * So here we add an artificial limit that subpage compression can only
851 	 * if the range is fully page aligned.
852 	 *
853 	 * In theory we only need to ensure the first page is fully covered, but
854 	 * the tailing partial page will be locked until the full compression
855 	 * finishes, delaying the write of other range.
856 	 *
857 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
858 	 * first to prevent any submitted async extent to unlock the full page.
859 	 * By this, we can ensure for subpage case that only the last async_cow
860 	 * will unlock the full page.
861 	 */
862 	if (fs_info->sectorsize < PAGE_SIZE) {
863 		if (!PAGE_ALIGNED(start) ||
864 		    !PAGE_ALIGNED(end + 1))
865 			return 0;
866 	}
867 
868 	/* force compress */
869 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
870 		return 1;
871 	/* defrag ioctl */
872 	if (inode->defrag_compress)
873 		return 1;
874 	/* bad compression ratios */
875 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
876 		return 0;
877 	if (btrfs_test_opt(fs_info, COMPRESS) ||
878 	    inode->flags & BTRFS_INODE_COMPRESS ||
879 	    inode->prop_compress)
880 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
881 	return 0;
882 }
883 
884 static inline void inode_should_defrag(struct btrfs_inode *inode,
885 		u64 start, u64 end, u64 num_bytes, u32 small_write)
886 {
887 	/* If this is a small write inside eof, kick off a defrag */
888 	if (num_bytes < small_write &&
889 	    (start > 0 || end + 1 < inode->disk_i_size))
890 		btrfs_add_inode_defrag(NULL, inode, small_write);
891 }
892 
893 /*
894  * Work queue call back to started compression on a file and pages.
895  *
896  * This is done inside an ordered work queue, and the compression is spread
897  * across many cpus.  The actual IO submission is step two, and the ordered work
898  * queue takes care of making sure that happens in the same order things were
899  * put onto the queue by writepages and friends.
900  *
901  * If this code finds it can't get good compression, it puts an entry onto the
902  * work queue to write the uncompressed bytes.  This makes sure that both
903  * compressed inodes and uncompressed inodes are written in the same order that
904  * the flusher thread sent them down.
905  */
906 static void compress_file_range(struct btrfs_work *work)
907 {
908 	struct async_chunk *async_chunk =
909 		container_of(work, struct async_chunk, work);
910 	struct btrfs_inode *inode = async_chunk->inode;
911 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
912 	struct address_space *mapping = inode->vfs_inode.i_mapping;
913 	u64 blocksize = fs_info->sectorsize;
914 	u64 start = async_chunk->start;
915 	u64 end = async_chunk->end;
916 	u64 actual_end;
917 	u64 i_size;
918 	int ret = 0;
919 	struct folio **folios;
920 	unsigned long nr_folios;
921 	unsigned long total_compressed = 0;
922 	unsigned long total_in = 0;
923 	unsigned int poff;
924 	int i;
925 	int compress_type = fs_info->compress_type;
926 
927 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
928 
929 	/*
930 	 * We need to call clear_page_dirty_for_io on each page in the range.
931 	 * Otherwise applications with the file mmap'd can wander in and change
932 	 * the page contents while we are compressing them.
933 	 */
934 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
935 
936 	/*
937 	 * We need to save i_size before now because it could change in between
938 	 * us evaluating the size and assigning it.  This is because we lock and
939 	 * unlock the page in truncate and fallocate, and then modify the i_size
940 	 * later on.
941 	 *
942 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
943 	 * does that for us.
944 	 */
945 	barrier();
946 	i_size = i_size_read(&inode->vfs_inode);
947 	barrier();
948 	actual_end = min_t(u64, i_size, end + 1);
949 again:
950 	folios = NULL;
951 	nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
952 	nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
953 
954 	/*
955 	 * we don't want to send crud past the end of i_size through
956 	 * compression, that's just a waste of CPU time.  So, if the
957 	 * end of the file is before the start of our current
958 	 * requested range of bytes, we bail out to the uncompressed
959 	 * cleanup code that can deal with all of this.
960 	 *
961 	 * It isn't really the fastest way to fix things, but this is a
962 	 * very uncommon corner.
963 	 */
964 	if (actual_end <= start)
965 		goto cleanup_and_bail_uncompressed;
966 
967 	total_compressed = actual_end - start;
968 
969 	/*
970 	 * Skip compression for a small file range(<=blocksize) that
971 	 * isn't an inline extent, since it doesn't save disk space at all.
972 	 */
973 	if (total_compressed <= blocksize &&
974 	   (start > 0 || end + 1 < inode->disk_i_size))
975 		goto cleanup_and_bail_uncompressed;
976 
977 	/*
978 	 * For subpage case, we require full page alignment for the sector
979 	 * aligned range.
980 	 * Thus we must also check against @actual_end, not just @end.
981 	 */
982 	if (blocksize < PAGE_SIZE) {
983 		if (!PAGE_ALIGNED(start) ||
984 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
985 			goto cleanup_and_bail_uncompressed;
986 	}
987 
988 	total_compressed = min_t(unsigned long, total_compressed,
989 			BTRFS_MAX_UNCOMPRESSED);
990 	total_in = 0;
991 	ret = 0;
992 
993 	/*
994 	 * We do compression for mount -o compress and when the inode has not
995 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
996 	 * discover bad compression ratios.
997 	 */
998 	if (!inode_need_compress(inode, start, end))
999 		goto cleanup_and_bail_uncompressed;
1000 
1001 	folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1002 	if (!folios) {
1003 		/*
1004 		 * Memory allocation failure is not a fatal error, we can fall
1005 		 * back to uncompressed code.
1006 		 */
1007 		goto cleanup_and_bail_uncompressed;
1008 	}
1009 
1010 	if (inode->defrag_compress)
1011 		compress_type = inode->defrag_compress;
1012 	else if (inode->prop_compress)
1013 		compress_type = inode->prop_compress;
1014 
1015 	/* Compression level is applied here. */
1016 	ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1017 				    mapping, start, folios, &nr_folios, &total_in,
1018 				    &total_compressed);
1019 	if (ret)
1020 		goto mark_incompressible;
1021 
1022 	/*
1023 	 * Zero the tail end of the last page, as we might be sending it down
1024 	 * to disk.
1025 	 */
1026 	poff = offset_in_page(total_compressed);
1027 	if (poff)
1028 		folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1029 
1030 	/*
1031 	 * Try to create an inline extent.
1032 	 *
1033 	 * If we didn't compress the entire range, try to create an uncompressed
1034 	 * inline extent, else a compressed one.
1035 	 *
1036 	 * Check cow_file_range() for why we don't even try to create inline
1037 	 * extent for the subpage case.
1038 	 */
1039 	if (total_in < actual_end)
1040 		ret = cow_file_range_inline(inode, start, end, 0,
1041 					    BTRFS_COMPRESS_NONE, NULL, false);
1042 	else
1043 		ret = cow_file_range_inline(inode, start, end, total_compressed,
1044 					    compress_type, folios[0], false);
1045 	if (ret <= 0) {
1046 		if (ret < 0)
1047 			mapping_set_error(mapping, -EIO);
1048 		goto free_pages;
1049 	}
1050 
1051 	/*
1052 	 * We aren't doing an inline extent. Round the compressed size up to a
1053 	 * block size boundary so the allocator does sane things.
1054 	 */
1055 	total_compressed = ALIGN(total_compressed, blocksize);
1056 
1057 	/*
1058 	 * One last check to make sure the compression is really a win, compare
1059 	 * the page count read with the blocks on disk, compression must free at
1060 	 * least one sector.
1061 	 */
1062 	total_in = round_up(total_in, fs_info->sectorsize);
1063 	if (total_compressed + blocksize > total_in)
1064 		goto mark_incompressible;
1065 
1066 	/*
1067 	 * The async work queues will take care of doing actual allocation on
1068 	 * disk for these compressed pages, and will submit the bios.
1069 	 */
1070 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1071 			       nr_folios, compress_type);
1072 	BUG_ON(ret);
1073 	if (start + total_in < end) {
1074 		start += total_in;
1075 		cond_resched();
1076 		goto again;
1077 	}
1078 	return;
1079 
1080 mark_incompressible:
1081 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1082 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1083 cleanup_and_bail_uncompressed:
1084 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1085 			       BTRFS_COMPRESS_NONE);
1086 	BUG_ON(ret);
1087 free_pages:
1088 	if (folios) {
1089 		for (i = 0; i < nr_folios; i++) {
1090 			WARN_ON(folios[i]->mapping);
1091 			btrfs_free_compr_folio(folios[i]);
1092 		}
1093 		kfree(folios);
1094 	}
1095 }
1096 
1097 static void free_async_extent_pages(struct async_extent *async_extent)
1098 {
1099 	int i;
1100 
1101 	if (!async_extent->folios)
1102 		return;
1103 
1104 	for (i = 0; i < async_extent->nr_folios; i++) {
1105 		WARN_ON(async_extent->folios[i]->mapping);
1106 		btrfs_free_compr_folio(async_extent->folios[i]);
1107 	}
1108 	kfree(async_extent->folios);
1109 	async_extent->nr_folios = 0;
1110 	async_extent->folios = NULL;
1111 }
1112 
1113 static void submit_uncompressed_range(struct btrfs_inode *inode,
1114 				      struct async_extent *async_extent,
1115 				      struct page *locked_page)
1116 {
1117 	u64 start = async_extent->start;
1118 	u64 end = async_extent->start + async_extent->ram_size - 1;
1119 	int ret;
1120 	struct writeback_control wbc = {
1121 		.sync_mode		= WB_SYNC_ALL,
1122 		.range_start		= start,
1123 		.range_end		= end,
1124 		.no_cgroup_owner	= 1,
1125 	};
1126 
1127 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1128 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1129 	wbc_detach_inode(&wbc);
1130 	if (ret < 0) {
1131 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1132 		if (locked_page) {
1133 			const u64 page_start = page_offset(locked_page);
1134 
1135 			set_page_writeback(locked_page);
1136 			end_page_writeback(locked_page);
1137 			btrfs_mark_ordered_io_finished(inode, locked_page,
1138 						       page_start, PAGE_SIZE,
1139 						       !ret);
1140 			mapping_set_error(locked_page->mapping, ret);
1141 			unlock_page(locked_page);
1142 		}
1143 	}
1144 }
1145 
1146 static void submit_one_async_extent(struct async_chunk *async_chunk,
1147 				    struct async_extent *async_extent,
1148 				    u64 *alloc_hint)
1149 {
1150 	struct btrfs_inode *inode = async_chunk->inode;
1151 	struct extent_io_tree *io_tree = &inode->io_tree;
1152 	struct btrfs_root *root = inode->root;
1153 	struct btrfs_fs_info *fs_info = root->fs_info;
1154 	struct btrfs_ordered_extent *ordered;
1155 	struct btrfs_key ins;
1156 	struct page *locked_page = NULL;
1157 	struct extent_state *cached = NULL;
1158 	struct extent_map *em;
1159 	int ret = 0;
1160 	u64 start = async_extent->start;
1161 	u64 end = async_extent->start + async_extent->ram_size - 1;
1162 
1163 	if (async_chunk->blkcg_css)
1164 		kthread_associate_blkcg(async_chunk->blkcg_css);
1165 
1166 	/*
1167 	 * If async_chunk->locked_page is in the async_extent range, we need to
1168 	 * handle it.
1169 	 */
1170 	if (async_chunk->locked_page) {
1171 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1172 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1173 
1174 		if (!(start >= locked_page_end || end <= locked_page_start))
1175 			locked_page = async_chunk->locked_page;
1176 	}
1177 
1178 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1179 		submit_uncompressed_range(inode, async_extent, locked_page);
1180 		goto done;
1181 	}
1182 
1183 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1184 				   async_extent->compressed_size,
1185 				   async_extent->compressed_size,
1186 				   0, *alloc_hint, &ins, 1, 1);
1187 	if (ret) {
1188 		/*
1189 		 * We can't reserve contiguous space for the compressed size.
1190 		 * Unlikely, but it's possible that we could have enough
1191 		 * non-contiguous space for the uncompressed size instead.  So
1192 		 * fall back to uncompressed.
1193 		 */
1194 		submit_uncompressed_range(inode, async_extent, locked_page);
1195 		goto done;
1196 	}
1197 
1198 	lock_extent(io_tree, start, end, &cached);
1199 
1200 	/* Here we're doing allocation and writeback of the compressed pages */
1201 	em = create_io_em(inode, start,
1202 			  async_extent->ram_size,	/* len */
1203 			  start,			/* orig_start */
1204 			  ins.objectid,			/* block_start */
1205 			  ins.offset,			/* block_len */
1206 			  ins.offset,			/* orig_block_len */
1207 			  async_extent->ram_size,	/* ram_bytes */
1208 			  async_extent->compress_type,
1209 			  BTRFS_ORDERED_COMPRESSED);
1210 	if (IS_ERR(em)) {
1211 		ret = PTR_ERR(em);
1212 		goto out_free_reserve;
1213 	}
1214 	free_extent_map(em);
1215 
1216 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1217 				       async_extent->ram_size,	/* num_bytes */
1218 				       async_extent->ram_size,	/* ram_bytes */
1219 				       ins.objectid,		/* disk_bytenr */
1220 				       ins.offset,		/* disk_num_bytes */
1221 				       0,			/* offset */
1222 				       1 << BTRFS_ORDERED_COMPRESSED,
1223 				       async_extent->compress_type);
1224 	if (IS_ERR(ordered)) {
1225 		btrfs_drop_extent_map_range(inode, start, end, false);
1226 		ret = PTR_ERR(ordered);
1227 		goto out_free_reserve;
1228 	}
1229 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1230 
1231 	/* Clear dirty, set writeback and unlock the pages. */
1232 	extent_clear_unlock_delalloc(inode, start, end,
1233 			NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1234 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1235 	btrfs_submit_compressed_write(ordered,
1236 			    async_extent->folios,	/* compressed_folios */
1237 			    async_extent->nr_folios,
1238 			    async_chunk->write_flags, true);
1239 	*alloc_hint = ins.objectid + ins.offset;
1240 done:
1241 	if (async_chunk->blkcg_css)
1242 		kthread_associate_blkcg(NULL);
1243 	kfree(async_extent);
1244 	return;
1245 
1246 out_free_reserve:
1247 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1248 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1249 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1250 	extent_clear_unlock_delalloc(inode, start, end,
1251 				     NULL, &cached,
1252 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1253 				     EXTENT_DELALLOC_NEW |
1254 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1255 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1256 				     PAGE_END_WRITEBACK);
1257 	free_async_extent_pages(async_extent);
1258 	if (async_chunk->blkcg_css)
1259 		kthread_associate_blkcg(NULL);
1260 	btrfs_debug(fs_info,
1261 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1262 		    btrfs_root_id(root), btrfs_ino(inode), start,
1263 		    async_extent->ram_size, ret);
1264 	kfree(async_extent);
1265 }
1266 
1267 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1268 				      u64 num_bytes)
1269 {
1270 	struct extent_map_tree *em_tree = &inode->extent_tree;
1271 	struct extent_map *em;
1272 	u64 alloc_hint = 0;
1273 
1274 	read_lock(&em_tree->lock);
1275 	em = search_extent_mapping(em_tree, start, num_bytes);
1276 	if (em) {
1277 		/*
1278 		 * if block start isn't an actual block number then find the
1279 		 * first block in this inode and use that as a hint.  If that
1280 		 * block is also bogus then just don't worry about it.
1281 		 */
1282 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1283 			free_extent_map(em);
1284 			em = search_extent_mapping(em_tree, 0, 0);
1285 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1286 				alloc_hint = em->block_start;
1287 			if (em)
1288 				free_extent_map(em);
1289 		} else {
1290 			alloc_hint = em->block_start;
1291 			free_extent_map(em);
1292 		}
1293 	}
1294 	read_unlock(&em_tree->lock);
1295 
1296 	return alloc_hint;
1297 }
1298 
1299 /*
1300  * when extent_io.c finds a delayed allocation range in the file,
1301  * the call backs end up in this code.  The basic idea is to
1302  * allocate extents on disk for the range, and create ordered data structs
1303  * in ram to track those extents.
1304  *
1305  * locked_page is the page that writepage had locked already.  We use
1306  * it to make sure we don't do extra locks or unlocks.
1307  *
1308  * When this function fails, it unlocks all pages except @locked_page.
1309  *
1310  * When this function successfully creates an inline extent, it returns 1 and
1311  * unlocks all pages including locked_page and starts I/O on them.
1312  * (In reality inline extents are limited to a single page, so locked_page is
1313  * the only page handled anyway).
1314  *
1315  * When this function succeed and creates a normal extent, the page locking
1316  * status depends on the passed in flags:
1317  *
1318  * - If @keep_locked is set, all pages are kept locked.
1319  * - Else all pages except for @locked_page are unlocked.
1320  *
1321  * When a failure happens in the second or later iteration of the
1322  * while-loop, the ordered extents created in previous iterations are kept
1323  * intact. So, the caller must clean them up by calling
1324  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1325  * example.
1326  */
1327 static noinline int cow_file_range(struct btrfs_inode *inode,
1328 				   struct page *locked_page, u64 start, u64 end,
1329 				   u64 *done_offset,
1330 				   bool keep_locked, bool no_inline)
1331 {
1332 	struct btrfs_root *root = inode->root;
1333 	struct btrfs_fs_info *fs_info = root->fs_info;
1334 	struct extent_state *cached = NULL;
1335 	u64 alloc_hint = 0;
1336 	u64 orig_start = start;
1337 	u64 num_bytes;
1338 	unsigned long ram_size;
1339 	u64 cur_alloc_size = 0;
1340 	u64 min_alloc_size;
1341 	u64 blocksize = fs_info->sectorsize;
1342 	struct btrfs_key ins;
1343 	struct extent_map *em;
1344 	unsigned clear_bits;
1345 	unsigned long page_ops;
1346 	bool extent_reserved = false;
1347 	int ret = 0;
1348 
1349 	if (btrfs_is_free_space_inode(inode)) {
1350 		ret = -EINVAL;
1351 		goto out_unlock;
1352 	}
1353 
1354 	num_bytes = ALIGN(end - start + 1, blocksize);
1355 	num_bytes = max(blocksize,  num_bytes);
1356 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1357 
1358 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1359 
1360 	if (!no_inline) {
1361 		/* lets try to make an inline extent */
1362 		ret = cow_file_range_inline(inode, start, end, 0,
1363 					    BTRFS_COMPRESS_NONE, NULL, false);
1364 		if (ret <= 0) {
1365 			/*
1366 			 * We succeeded, return 1 so the caller knows we're done
1367 			 * with this page and already handled the IO.
1368 			 *
1369 			 * If there was an error then cow_file_range_inline() has
1370 			 * already done the cleanup.
1371 			 */
1372 			if (ret == 0)
1373 				ret = 1;
1374 			goto done;
1375 		}
1376 	}
1377 
1378 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1379 
1380 	/*
1381 	 * Relocation relies on the relocated extents to have exactly the same
1382 	 * size as the original extents. Normally writeback for relocation data
1383 	 * extents follows a NOCOW path because relocation preallocates the
1384 	 * extents. However, due to an operation such as scrub turning a block
1385 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1386 	 * an extent allocated during COW has exactly the requested size and can
1387 	 * not be split into smaller extents, otherwise relocation breaks and
1388 	 * fails during the stage where it updates the bytenr of file extent
1389 	 * items.
1390 	 */
1391 	if (btrfs_is_data_reloc_root(root))
1392 		min_alloc_size = num_bytes;
1393 	else
1394 		min_alloc_size = fs_info->sectorsize;
1395 
1396 	while (num_bytes > 0) {
1397 		struct btrfs_ordered_extent *ordered;
1398 
1399 		cur_alloc_size = num_bytes;
1400 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1401 					   min_alloc_size, 0, alloc_hint,
1402 					   &ins, 1, 1);
1403 		if (ret == -EAGAIN) {
1404 			/*
1405 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1406 			 * file systems, which is an indication that there are
1407 			 * no active zones to allocate from at the moment.
1408 			 *
1409 			 * If this is the first loop iteration, wait for at
1410 			 * least one zone to finish before retrying the
1411 			 * allocation.  Otherwise ask the caller to write out
1412 			 * the already allocated blocks before coming back to
1413 			 * us, or return -ENOSPC if it can't handle retries.
1414 			 */
1415 			ASSERT(btrfs_is_zoned(fs_info));
1416 			if (start == orig_start) {
1417 				wait_on_bit_io(&inode->root->fs_info->flags,
1418 					       BTRFS_FS_NEED_ZONE_FINISH,
1419 					       TASK_UNINTERRUPTIBLE);
1420 				continue;
1421 			}
1422 			if (done_offset) {
1423 				*done_offset = start - 1;
1424 				return 0;
1425 			}
1426 			ret = -ENOSPC;
1427 		}
1428 		if (ret < 0)
1429 			goto out_unlock;
1430 		cur_alloc_size = ins.offset;
1431 		extent_reserved = true;
1432 
1433 		ram_size = ins.offset;
1434 
1435 		lock_extent(&inode->io_tree, start, start + ram_size - 1,
1436 			    &cached);
1437 
1438 		em = create_io_em(inode, start, ins.offset, /* len */
1439 				  start, /* orig_start */
1440 				  ins.objectid, /* block_start */
1441 				  ins.offset, /* block_len */
1442 				  ins.offset, /* orig_block_len */
1443 				  ram_size, /* ram_bytes */
1444 				  BTRFS_COMPRESS_NONE, /* compress_type */
1445 				  BTRFS_ORDERED_REGULAR /* type */);
1446 		if (IS_ERR(em)) {
1447 			unlock_extent(&inode->io_tree, start,
1448 				      start + ram_size - 1, &cached);
1449 			ret = PTR_ERR(em);
1450 			goto out_reserve;
1451 		}
1452 		free_extent_map(em);
1453 
1454 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1455 					ram_size, ins.objectid, cur_alloc_size,
1456 					0, 1 << BTRFS_ORDERED_REGULAR,
1457 					BTRFS_COMPRESS_NONE);
1458 		if (IS_ERR(ordered)) {
1459 			unlock_extent(&inode->io_tree, start,
1460 				      start + ram_size - 1, &cached);
1461 			ret = PTR_ERR(ordered);
1462 			goto out_drop_extent_cache;
1463 		}
1464 
1465 		if (btrfs_is_data_reloc_root(root)) {
1466 			ret = btrfs_reloc_clone_csums(ordered);
1467 
1468 			/*
1469 			 * Only drop cache here, and process as normal.
1470 			 *
1471 			 * We must not allow extent_clear_unlock_delalloc()
1472 			 * at out_unlock label to free meta of this ordered
1473 			 * extent, as its meta should be freed by
1474 			 * btrfs_finish_ordered_io().
1475 			 *
1476 			 * So we must continue until @start is increased to
1477 			 * skip current ordered extent.
1478 			 */
1479 			if (ret)
1480 				btrfs_drop_extent_map_range(inode, start,
1481 							    start + ram_size - 1,
1482 							    false);
1483 		}
1484 		btrfs_put_ordered_extent(ordered);
1485 
1486 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1487 
1488 		/*
1489 		 * We're not doing compressed IO, don't unlock the first page
1490 		 * (which the caller expects to stay locked), don't clear any
1491 		 * dirty bits and don't set any writeback bits
1492 		 *
1493 		 * Do set the Ordered (Private2) bit so we know this page was
1494 		 * properly setup for writepage.
1495 		 */
1496 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1497 		page_ops |= PAGE_SET_ORDERED;
1498 
1499 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1500 					     locked_page, &cached,
1501 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1502 					     page_ops);
1503 		if (num_bytes < cur_alloc_size)
1504 			num_bytes = 0;
1505 		else
1506 			num_bytes -= cur_alloc_size;
1507 		alloc_hint = ins.objectid + ins.offset;
1508 		start += cur_alloc_size;
1509 		extent_reserved = false;
1510 
1511 		/*
1512 		 * btrfs_reloc_clone_csums() error, since start is increased
1513 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1514 		 * free metadata of current ordered extent, we're OK to exit.
1515 		 */
1516 		if (ret)
1517 			goto out_unlock;
1518 	}
1519 done:
1520 	if (done_offset)
1521 		*done_offset = end;
1522 	return ret;
1523 
1524 out_drop_extent_cache:
1525 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1526 out_reserve:
1527 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1528 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1529 out_unlock:
1530 	/*
1531 	 * Now, we have three regions to clean up:
1532 	 *
1533 	 * |-------(1)----|---(2)---|-------------(3)----------|
1534 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1535 	 *
1536 	 * We process each region below.
1537 	 */
1538 
1539 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1540 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1541 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1542 
1543 	/*
1544 	 * For the range (1). We have already instantiated the ordered extents
1545 	 * for this region. They are cleaned up by
1546 	 * btrfs_cleanup_ordered_extents() in e.g,
1547 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1548 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1549 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1550 	 * function.
1551 	 *
1552 	 * However, in case of @keep_locked, we still need to unlock the pages
1553 	 * (except @locked_page) to ensure all the pages are unlocked.
1554 	 */
1555 	if (keep_locked && orig_start < start) {
1556 		if (!locked_page)
1557 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1558 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1559 					     locked_page, NULL, 0, page_ops);
1560 	}
1561 
1562 	/*
1563 	 * At this point we're unlocked, we want to make sure we're only
1564 	 * clearing these flags under the extent lock, so lock the rest of the
1565 	 * range and clear everything up.
1566 	 */
1567 	lock_extent(&inode->io_tree, start, end, NULL);
1568 
1569 	/*
1570 	 * For the range (2). If we reserved an extent for our delalloc range
1571 	 * (or a subrange) and failed to create the respective ordered extent,
1572 	 * then it means that when we reserved the extent we decremented the
1573 	 * extent's size from the data space_info's bytes_may_use counter and
1574 	 * incremented the space_info's bytes_reserved counter by the same
1575 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1576 	 * to decrement again the data space_info's bytes_may_use counter,
1577 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1578 	 */
1579 	if (extent_reserved) {
1580 		extent_clear_unlock_delalloc(inode, start,
1581 					     start + cur_alloc_size - 1,
1582 					     locked_page, &cached,
1583 					     clear_bits,
1584 					     page_ops);
1585 		start += cur_alloc_size;
1586 	}
1587 
1588 	/*
1589 	 * For the range (3). We never touched the region. In addition to the
1590 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1591 	 * space_info's bytes_may_use counter, reserved in
1592 	 * btrfs_check_data_free_space().
1593 	 */
1594 	if (start < end) {
1595 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1596 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1597 					     &cached, clear_bits, page_ops);
1598 	}
1599 	return ret;
1600 }
1601 
1602 /*
1603  * Phase two of compressed writeback.  This is the ordered portion of the code,
1604  * which only gets called in the order the work was queued.  We walk all the
1605  * async extents created by compress_file_range and send them down to the disk.
1606  *
1607  * If called with @do_free == true then it'll try to finish the work and free
1608  * the work struct eventually.
1609  */
1610 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1611 {
1612 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1613 						     work);
1614 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1615 	struct async_extent *async_extent;
1616 	unsigned long nr_pages;
1617 	u64 alloc_hint = 0;
1618 
1619 	if (do_free) {
1620 		struct async_chunk *async_chunk;
1621 		struct async_cow *async_cow;
1622 
1623 		async_chunk = container_of(work, struct async_chunk, work);
1624 		btrfs_add_delayed_iput(async_chunk->inode);
1625 		if (async_chunk->blkcg_css)
1626 			css_put(async_chunk->blkcg_css);
1627 
1628 		async_cow = async_chunk->async_cow;
1629 		if (atomic_dec_and_test(&async_cow->num_chunks))
1630 			kvfree(async_cow);
1631 		return;
1632 	}
1633 
1634 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1635 		PAGE_SHIFT;
1636 
1637 	while (!list_empty(&async_chunk->extents)) {
1638 		async_extent = list_entry(async_chunk->extents.next,
1639 					  struct async_extent, list);
1640 		list_del(&async_extent->list);
1641 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1642 	}
1643 
1644 	/* atomic_sub_return implies a barrier */
1645 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1646 	    5 * SZ_1M)
1647 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1648 }
1649 
1650 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1651 				    struct page *locked_page, u64 start,
1652 				    u64 end, struct writeback_control *wbc)
1653 {
1654 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1655 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1656 	struct async_cow *ctx;
1657 	struct async_chunk *async_chunk;
1658 	unsigned long nr_pages;
1659 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1660 	int i;
1661 	unsigned nofs_flag;
1662 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1663 
1664 	nofs_flag = memalloc_nofs_save();
1665 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1666 	memalloc_nofs_restore(nofs_flag);
1667 	if (!ctx)
1668 		return false;
1669 
1670 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1671 
1672 	async_chunk = ctx->chunks;
1673 	atomic_set(&ctx->num_chunks, num_chunks);
1674 
1675 	for (i = 0; i < num_chunks; i++) {
1676 		u64 cur_end = min(end, start + SZ_512K - 1);
1677 
1678 		/*
1679 		 * igrab is called higher up in the call chain, take only the
1680 		 * lightweight reference for the callback lifetime
1681 		 */
1682 		ihold(&inode->vfs_inode);
1683 		async_chunk[i].async_cow = ctx;
1684 		async_chunk[i].inode = inode;
1685 		async_chunk[i].start = start;
1686 		async_chunk[i].end = cur_end;
1687 		async_chunk[i].write_flags = write_flags;
1688 		INIT_LIST_HEAD(&async_chunk[i].extents);
1689 
1690 		/*
1691 		 * The locked_page comes all the way from writepage and its
1692 		 * the original page we were actually given.  As we spread
1693 		 * this large delalloc region across multiple async_chunk
1694 		 * structs, only the first struct needs a pointer to locked_page
1695 		 *
1696 		 * This way we don't need racey decisions about who is supposed
1697 		 * to unlock it.
1698 		 */
1699 		if (locked_page) {
1700 			/*
1701 			 * Depending on the compressibility, the pages might or
1702 			 * might not go through async.  We want all of them to
1703 			 * be accounted against wbc once.  Let's do it here
1704 			 * before the paths diverge.  wbc accounting is used
1705 			 * only for foreign writeback detection and doesn't
1706 			 * need full accuracy.  Just account the whole thing
1707 			 * against the first page.
1708 			 */
1709 			wbc_account_cgroup_owner(wbc, locked_page,
1710 						 cur_end - start);
1711 			async_chunk[i].locked_page = locked_page;
1712 			locked_page = NULL;
1713 		} else {
1714 			async_chunk[i].locked_page = NULL;
1715 		}
1716 
1717 		if (blkcg_css != blkcg_root_css) {
1718 			css_get(blkcg_css);
1719 			async_chunk[i].blkcg_css = blkcg_css;
1720 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1721 		} else {
1722 			async_chunk[i].blkcg_css = NULL;
1723 		}
1724 
1725 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1726 				submit_compressed_extents);
1727 
1728 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1729 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1730 
1731 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1732 
1733 		start = cur_end + 1;
1734 	}
1735 	return true;
1736 }
1737 
1738 /*
1739  * Run the delalloc range from start to end, and write back any dirty pages
1740  * covered by the range.
1741  */
1742 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1743 				     struct page *locked_page, u64 start,
1744 				     u64 end, struct writeback_control *wbc,
1745 				     bool pages_dirty)
1746 {
1747 	u64 done_offset = end;
1748 	int ret;
1749 
1750 	while (start <= end) {
1751 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1752 				     true, false);
1753 		if (ret)
1754 			return ret;
1755 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1756 					  done_offset, wbc, pages_dirty);
1757 		start = done_offset + 1;
1758 	}
1759 
1760 	return 1;
1761 }
1762 
1763 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1764 			   const u64 start, const u64 end)
1765 {
1766 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1767 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1768 	const u64 range_bytes = end + 1 - start;
1769 	struct extent_io_tree *io_tree = &inode->io_tree;
1770 	struct extent_state *cached_state = NULL;
1771 	u64 range_start = start;
1772 	u64 count;
1773 	int ret;
1774 
1775 	/*
1776 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1777 	 * made we had not enough available data space and therefore we did not
1778 	 * reserve data space for it, since we though we could do NOCOW for the
1779 	 * respective file range (either there is prealloc extent or the inode
1780 	 * has the NOCOW bit set).
1781 	 *
1782 	 * However when we need to fallback to COW mode (because for example the
1783 	 * block group for the corresponding extent was turned to RO mode by a
1784 	 * scrub or relocation) we need to do the following:
1785 	 *
1786 	 * 1) We increment the bytes_may_use counter of the data space info.
1787 	 *    If COW succeeds, it allocates a new data extent and after doing
1788 	 *    that it decrements the space info's bytes_may_use counter and
1789 	 *    increments its bytes_reserved counter by the same amount (we do
1790 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1791 	 *    bytes_may_use counter to compensate (when space is reserved at
1792 	 *    buffered write time, the bytes_may_use counter is incremented);
1793 	 *
1794 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1795 	 *    that if the COW path fails for any reason, it decrements (through
1796 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1797 	 *    data space info, which we incremented in the step above.
1798 	 *
1799 	 * If we need to fallback to cow and the inode corresponds to a free
1800 	 * space cache inode or an inode of the data relocation tree, we must
1801 	 * also increment bytes_may_use of the data space_info for the same
1802 	 * reason. Space caches and relocated data extents always get a prealloc
1803 	 * extent for them, however scrub or balance may have set the block
1804 	 * group that contains that extent to RO mode and therefore force COW
1805 	 * when starting writeback.
1806 	 */
1807 	lock_extent(io_tree, start, end, &cached_state);
1808 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1809 				 EXTENT_NORESERVE, 0, NULL);
1810 	if (count > 0 || is_space_ino || is_reloc_ino) {
1811 		u64 bytes = count;
1812 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1813 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1814 
1815 		if (is_space_ino || is_reloc_ino)
1816 			bytes = range_bytes;
1817 
1818 		spin_lock(&sinfo->lock);
1819 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1820 		spin_unlock(&sinfo->lock);
1821 
1822 		if (count > 0)
1823 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1824 					 NULL);
1825 	}
1826 	unlock_extent(io_tree, start, end, &cached_state);
1827 
1828 	/*
1829 	 * Don't try to create inline extents, as a mix of inline extent that
1830 	 * is written out and unlocked directly and a normal NOCOW extent
1831 	 * doesn't work.
1832 	 */
1833 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1834 	ASSERT(ret != 1);
1835 	return ret;
1836 }
1837 
1838 struct can_nocow_file_extent_args {
1839 	/* Input fields. */
1840 
1841 	/* Start file offset of the range we want to NOCOW. */
1842 	u64 start;
1843 	/* End file offset (inclusive) of the range we want to NOCOW. */
1844 	u64 end;
1845 	bool writeback_path;
1846 	bool strict;
1847 	/*
1848 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1849 	 * anymore.
1850 	 */
1851 	bool free_path;
1852 
1853 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1854 
1855 	u64 disk_bytenr;
1856 	u64 disk_num_bytes;
1857 	u64 extent_offset;
1858 	/* Number of bytes that can be written to in NOCOW mode. */
1859 	u64 num_bytes;
1860 };
1861 
1862 /*
1863  * Check if we can NOCOW the file extent that the path points to.
1864  * This function may return with the path released, so the caller should check
1865  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1866  *
1867  * Returns: < 0 on error
1868  *            0 if we can not NOCOW
1869  *            1 if we can NOCOW
1870  */
1871 static int can_nocow_file_extent(struct btrfs_path *path,
1872 				 struct btrfs_key *key,
1873 				 struct btrfs_inode *inode,
1874 				 struct can_nocow_file_extent_args *args)
1875 {
1876 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1877 	struct extent_buffer *leaf = path->nodes[0];
1878 	struct btrfs_root *root = inode->root;
1879 	struct btrfs_file_extent_item *fi;
1880 	struct btrfs_root *csum_root;
1881 	u64 extent_end;
1882 	u8 extent_type;
1883 	int can_nocow = 0;
1884 	int ret = 0;
1885 	bool nowait = path->nowait;
1886 
1887 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1888 	extent_type = btrfs_file_extent_type(leaf, fi);
1889 
1890 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1891 		goto out;
1892 
1893 	/* Can't access these fields unless we know it's not an inline extent. */
1894 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1895 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1896 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1897 
1898 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1899 	    extent_type == BTRFS_FILE_EXTENT_REG)
1900 		goto out;
1901 
1902 	/*
1903 	 * If the extent was created before the generation where the last snapshot
1904 	 * for its subvolume was created, then this implies the extent is shared,
1905 	 * hence we must COW.
1906 	 */
1907 	if (!args->strict &&
1908 	    btrfs_file_extent_generation(leaf, fi) <=
1909 	    btrfs_root_last_snapshot(&root->root_item))
1910 		goto out;
1911 
1912 	/* An explicit hole, must COW. */
1913 	if (args->disk_bytenr == 0)
1914 		goto out;
1915 
1916 	/* Compressed/encrypted/encoded extents must be COWed. */
1917 	if (btrfs_file_extent_compression(leaf, fi) ||
1918 	    btrfs_file_extent_encryption(leaf, fi) ||
1919 	    btrfs_file_extent_other_encoding(leaf, fi))
1920 		goto out;
1921 
1922 	extent_end = btrfs_file_extent_end(path);
1923 
1924 	/*
1925 	 * The following checks can be expensive, as they need to take other
1926 	 * locks and do btree or rbtree searches, so release the path to avoid
1927 	 * blocking other tasks for too long.
1928 	 */
1929 	btrfs_release_path(path);
1930 
1931 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1932 				    key->offset - args->extent_offset,
1933 				    args->disk_bytenr, args->strict, path);
1934 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1935 	if (ret != 0)
1936 		goto out;
1937 
1938 	if (args->free_path) {
1939 		/*
1940 		 * We don't need the path anymore, plus through the
1941 		 * btrfs_lookup_csums_list() call below we will end up allocating
1942 		 * another path. So free the path to avoid unnecessary extra
1943 		 * memory usage.
1944 		 */
1945 		btrfs_free_path(path);
1946 		path = NULL;
1947 	}
1948 
1949 	/* If there are pending snapshots for this root, we must COW. */
1950 	if (args->writeback_path && !is_freespace_inode &&
1951 	    atomic_read(&root->snapshot_force_cow))
1952 		goto out;
1953 
1954 	args->disk_bytenr += args->extent_offset;
1955 	args->disk_bytenr += args->start - key->offset;
1956 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1957 
1958 	/*
1959 	 * Force COW if csums exist in the range. This ensures that csums for a
1960 	 * given extent are either valid or do not exist.
1961 	 */
1962 
1963 	csum_root = btrfs_csum_root(root->fs_info, args->disk_bytenr);
1964 	ret = btrfs_lookup_csums_list(csum_root, args->disk_bytenr,
1965 				      args->disk_bytenr + args->num_bytes - 1,
1966 				      NULL, nowait);
1967 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1968 	if (ret != 0)
1969 		goto out;
1970 
1971 	can_nocow = 1;
1972  out:
1973 	if (args->free_path && path)
1974 		btrfs_free_path(path);
1975 
1976 	return ret < 0 ? ret : can_nocow;
1977 }
1978 
1979 /*
1980  * when nowcow writeback call back.  This checks for snapshots or COW copies
1981  * of the extents that exist in the file, and COWs the file as required.
1982  *
1983  * If no cow copies or snapshots exist, we write directly to the existing
1984  * blocks on disk
1985  */
1986 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1987 				       struct page *locked_page,
1988 				       const u64 start, const u64 end)
1989 {
1990 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1991 	struct btrfs_root *root = inode->root;
1992 	struct btrfs_path *path;
1993 	u64 cow_start = (u64)-1;
1994 	u64 cur_offset = start;
1995 	int ret;
1996 	bool check_prev = true;
1997 	u64 ino = btrfs_ino(inode);
1998 	struct can_nocow_file_extent_args nocow_args = { 0 };
1999 
2000 	/*
2001 	 * Normally on a zoned device we're only doing COW writes, but in case
2002 	 * of relocation on a zoned filesystem serializes I/O so that we're only
2003 	 * writing sequentially and can end up here as well.
2004 	 */
2005 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2006 
2007 	path = btrfs_alloc_path();
2008 	if (!path) {
2009 		ret = -ENOMEM;
2010 		goto error;
2011 	}
2012 
2013 	nocow_args.end = end;
2014 	nocow_args.writeback_path = true;
2015 
2016 	while (cur_offset <= end) {
2017 		struct btrfs_block_group *nocow_bg = NULL;
2018 		struct btrfs_ordered_extent *ordered;
2019 		struct btrfs_key found_key;
2020 		struct btrfs_file_extent_item *fi;
2021 		struct extent_buffer *leaf;
2022 		struct extent_state *cached_state = NULL;
2023 		u64 extent_end;
2024 		u64 ram_bytes;
2025 		u64 nocow_end;
2026 		int extent_type;
2027 		bool is_prealloc;
2028 
2029 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2030 					       cur_offset, 0);
2031 		if (ret < 0)
2032 			goto error;
2033 
2034 		/*
2035 		 * If there is no extent for our range when doing the initial
2036 		 * search, then go back to the previous slot as it will be the
2037 		 * one containing the search offset
2038 		 */
2039 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2040 			leaf = path->nodes[0];
2041 			btrfs_item_key_to_cpu(leaf, &found_key,
2042 					      path->slots[0] - 1);
2043 			if (found_key.objectid == ino &&
2044 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2045 				path->slots[0]--;
2046 		}
2047 		check_prev = false;
2048 next_slot:
2049 		/* Go to next leaf if we have exhausted the current one */
2050 		leaf = path->nodes[0];
2051 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2052 			ret = btrfs_next_leaf(root, path);
2053 			if (ret < 0)
2054 				goto error;
2055 			if (ret > 0)
2056 				break;
2057 			leaf = path->nodes[0];
2058 		}
2059 
2060 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2061 
2062 		/* Didn't find anything for our INO */
2063 		if (found_key.objectid > ino)
2064 			break;
2065 		/*
2066 		 * Keep searching until we find an EXTENT_ITEM or there are no
2067 		 * more extents for this inode
2068 		 */
2069 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2070 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2071 			path->slots[0]++;
2072 			goto next_slot;
2073 		}
2074 
2075 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2076 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2077 		    found_key.offset > end)
2078 			break;
2079 
2080 		/*
2081 		 * If the found extent starts after requested offset, then
2082 		 * adjust extent_end to be right before this extent begins
2083 		 */
2084 		if (found_key.offset > cur_offset) {
2085 			extent_end = found_key.offset;
2086 			extent_type = 0;
2087 			goto must_cow;
2088 		}
2089 
2090 		/*
2091 		 * Found extent which begins before our range and potentially
2092 		 * intersect it
2093 		 */
2094 		fi = btrfs_item_ptr(leaf, path->slots[0],
2095 				    struct btrfs_file_extent_item);
2096 		extent_type = btrfs_file_extent_type(leaf, fi);
2097 		/* If this is triggered then we have a memory corruption. */
2098 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2099 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2100 			ret = -EUCLEAN;
2101 			goto error;
2102 		}
2103 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2104 		extent_end = btrfs_file_extent_end(path);
2105 
2106 		/*
2107 		 * If the extent we got ends before our current offset, skip to
2108 		 * the next extent.
2109 		 */
2110 		if (extent_end <= cur_offset) {
2111 			path->slots[0]++;
2112 			goto next_slot;
2113 		}
2114 
2115 		nocow_args.start = cur_offset;
2116 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2117 		if (ret < 0)
2118 			goto error;
2119 		if (ret == 0)
2120 			goto must_cow;
2121 
2122 		ret = 0;
2123 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2124 		if (!nocow_bg) {
2125 must_cow:
2126 			/*
2127 			 * If we can't perform NOCOW writeback for the range,
2128 			 * then record the beginning of the range that needs to
2129 			 * be COWed.  It will be written out before the next
2130 			 * NOCOW range if we find one, or when exiting this
2131 			 * loop.
2132 			 */
2133 			if (cow_start == (u64)-1)
2134 				cow_start = cur_offset;
2135 			cur_offset = extent_end;
2136 			if (cur_offset > end)
2137 				break;
2138 			if (!path->nodes[0])
2139 				continue;
2140 			path->slots[0]++;
2141 			goto next_slot;
2142 		}
2143 
2144 		/*
2145 		 * COW range from cow_start to found_key.offset - 1. As the key
2146 		 * will contain the beginning of the first extent that can be
2147 		 * NOCOW, following one which needs to be COW'ed
2148 		 */
2149 		if (cow_start != (u64)-1) {
2150 			ret = fallback_to_cow(inode, locked_page,
2151 					      cow_start, found_key.offset - 1);
2152 			cow_start = (u64)-1;
2153 			if (ret) {
2154 				btrfs_dec_nocow_writers(nocow_bg);
2155 				goto error;
2156 			}
2157 		}
2158 
2159 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2160 		lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2161 
2162 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2163 		if (is_prealloc) {
2164 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2165 			struct extent_map *em;
2166 
2167 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2168 					  orig_start,
2169 					  nocow_args.disk_bytenr, /* block_start */
2170 					  nocow_args.num_bytes, /* block_len */
2171 					  nocow_args.disk_num_bytes, /* orig_block_len */
2172 					  ram_bytes, BTRFS_COMPRESS_NONE,
2173 					  BTRFS_ORDERED_PREALLOC);
2174 			if (IS_ERR(em)) {
2175 				unlock_extent(&inode->io_tree, cur_offset,
2176 					      nocow_end, &cached_state);
2177 				btrfs_dec_nocow_writers(nocow_bg);
2178 				ret = PTR_ERR(em);
2179 				goto error;
2180 			}
2181 			free_extent_map(em);
2182 		}
2183 
2184 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2185 				nocow_args.num_bytes, nocow_args.num_bytes,
2186 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2187 				is_prealloc
2188 				? (1 << BTRFS_ORDERED_PREALLOC)
2189 				: (1 << BTRFS_ORDERED_NOCOW),
2190 				BTRFS_COMPRESS_NONE);
2191 		btrfs_dec_nocow_writers(nocow_bg);
2192 		if (IS_ERR(ordered)) {
2193 			if (is_prealloc) {
2194 				btrfs_drop_extent_map_range(inode, cur_offset,
2195 							    nocow_end, false);
2196 			}
2197 			unlock_extent(&inode->io_tree, cur_offset,
2198 				      nocow_end, &cached_state);
2199 			ret = PTR_ERR(ordered);
2200 			goto error;
2201 		}
2202 
2203 		if (btrfs_is_data_reloc_root(root))
2204 			/*
2205 			 * Error handled later, as we must prevent
2206 			 * extent_clear_unlock_delalloc() in error handler
2207 			 * from freeing metadata of created ordered extent.
2208 			 */
2209 			ret = btrfs_reloc_clone_csums(ordered);
2210 		btrfs_put_ordered_extent(ordered);
2211 
2212 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2213 					     locked_page, &cached_state,
2214 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2215 					     EXTENT_CLEAR_DATA_RESV,
2216 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2217 
2218 		cur_offset = extent_end;
2219 
2220 		/*
2221 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2222 		 * handler, as metadata for created ordered extent will only
2223 		 * be freed by btrfs_finish_ordered_io().
2224 		 */
2225 		if (ret)
2226 			goto error;
2227 	}
2228 	btrfs_release_path(path);
2229 
2230 	if (cur_offset <= end && cow_start == (u64)-1)
2231 		cow_start = cur_offset;
2232 
2233 	if (cow_start != (u64)-1) {
2234 		cur_offset = end;
2235 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2236 		cow_start = (u64)-1;
2237 		if (ret)
2238 			goto error;
2239 	}
2240 
2241 	btrfs_free_path(path);
2242 	return 0;
2243 
2244 error:
2245 	/*
2246 	 * If an error happened while a COW region is outstanding, cur_offset
2247 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2248 	 * as well.
2249 	 */
2250 	if (cow_start != (u64)-1)
2251 		cur_offset = cow_start;
2252 
2253 	/*
2254 	 * We need to lock the extent here because we're clearing DELALLOC and
2255 	 * we're not locked at this point.
2256 	 */
2257 	if (cur_offset < end) {
2258 		struct extent_state *cached = NULL;
2259 
2260 		lock_extent(&inode->io_tree, cur_offset, end, &cached);
2261 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2262 					     locked_page, &cached,
2263 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2264 					     EXTENT_DEFRAG |
2265 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2266 					     PAGE_START_WRITEBACK |
2267 					     PAGE_END_WRITEBACK);
2268 	}
2269 	btrfs_free_path(path);
2270 	return ret;
2271 }
2272 
2273 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2274 {
2275 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2276 		if (inode->defrag_bytes &&
2277 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2278 			return false;
2279 		return true;
2280 	}
2281 	return false;
2282 }
2283 
2284 /*
2285  * Function to process delayed allocation (create CoW) for ranges which are
2286  * being touched for the first time.
2287  */
2288 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2289 			     u64 start, u64 end, struct writeback_control *wbc)
2290 {
2291 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2292 	int ret;
2293 
2294 	/*
2295 	 * The range must cover part of the @locked_page, or a return of 1
2296 	 * can confuse the caller.
2297 	 */
2298 	ASSERT(!(end <= page_offset(locked_page) ||
2299 		 start >= page_offset(locked_page) + PAGE_SIZE));
2300 
2301 	if (should_nocow(inode, start, end)) {
2302 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2303 		goto out;
2304 	}
2305 
2306 	if (btrfs_inode_can_compress(inode) &&
2307 	    inode_need_compress(inode, start, end) &&
2308 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2309 		return 1;
2310 
2311 	if (zoned)
2312 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2313 				       true);
2314 	else
2315 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2316 				     false, false);
2317 
2318 out:
2319 	if (ret < 0)
2320 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2321 					      end - start + 1);
2322 	return ret;
2323 }
2324 
2325 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2326 				 struct extent_state *orig, u64 split)
2327 {
2328 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2329 	u64 size;
2330 
2331 	lockdep_assert_held(&inode->io_tree.lock);
2332 
2333 	/* not delalloc, ignore it */
2334 	if (!(orig->state & EXTENT_DELALLOC))
2335 		return;
2336 
2337 	size = orig->end - orig->start + 1;
2338 	if (size > fs_info->max_extent_size) {
2339 		u32 num_extents;
2340 		u64 new_size;
2341 
2342 		/*
2343 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2344 		 * applies here, just in reverse.
2345 		 */
2346 		new_size = orig->end - split + 1;
2347 		num_extents = count_max_extents(fs_info, new_size);
2348 		new_size = split - orig->start;
2349 		num_extents += count_max_extents(fs_info, new_size);
2350 		if (count_max_extents(fs_info, size) >= num_extents)
2351 			return;
2352 	}
2353 
2354 	spin_lock(&inode->lock);
2355 	btrfs_mod_outstanding_extents(inode, 1);
2356 	spin_unlock(&inode->lock);
2357 }
2358 
2359 /*
2360  * Handle merged delayed allocation extents so we can keep track of new extents
2361  * that are just merged onto old extents, such as when we are doing sequential
2362  * writes, so we can properly account for the metadata space we'll need.
2363  */
2364 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2365 				 struct extent_state *other)
2366 {
2367 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2368 	u64 new_size, old_size;
2369 	u32 num_extents;
2370 
2371 	lockdep_assert_held(&inode->io_tree.lock);
2372 
2373 	/* not delalloc, ignore it */
2374 	if (!(other->state & EXTENT_DELALLOC))
2375 		return;
2376 
2377 	if (new->start > other->start)
2378 		new_size = new->end - other->start + 1;
2379 	else
2380 		new_size = other->end - new->start + 1;
2381 
2382 	/* we're not bigger than the max, unreserve the space and go */
2383 	if (new_size <= fs_info->max_extent_size) {
2384 		spin_lock(&inode->lock);
2385 		btrfs_mod_outstanding_extents(inode, -1);
2386 		spin_unlock(&inode->lock);
2387 		return;
2388 	}
2389 
2390 	/*
2391 	 * We have to add up either side to figure out how many extents were
2392 	 * accounted for before we merged into one big extent.  If the number of
2393 	 * extents we accounted for is <= the amount we need for the new range
2394 	 * then we can return, otherwise drop.  Think of it like this
2395 	 *
2396 	 * [ 4k][MAX_SIZE]
2397 	 *
2398 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2399 	 * need 2 outstanding extents, on one side we have 1 and the other side
2400 	 * we have 1 so they are == and we can return.  But in this case
2401 	 *
2402 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2403 	 *
2404 	 * Each range on their own accounts for 2 extents, but merged together
2405 	 * they are only 3 extents worth of accounting, so we need to drop in
2406 	 * this case.
2407 	 */
2408 	old_size = other->end - other->start + 1;
2409 	num_extents = count_max_extents(fs_info, old_size);
2410 	old_size = new->end - new->start + 1;
2411 	num_extents += count_max_extents(fs_info, old_size);
2412 	if (count_max_extents(fs_info, new_size) >= num_extents)
2413 		return;
2414 
2415 	spin_lock(&inode->lock);
2416 	btrfs_mod_outstanding_extents(inode, -1);
2417 	spin_unlock(&inode->lock);
2418 }
2419 
2420 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2421 {
2422 	struct btrfs_root *root = inode->root;
2423 	struct btrfs_fs_info *fs_info = root->fs_info;
2424 
2425 	spin_lock(&root->delalloc_lock);
2426 	ASSERT(list_empty(&inode->delalloc_inodes));
2427 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2428 	root->nr_delalloc_inodes++;
2429 	if (root->nr_delalloc_inodes == 1) {
2430 		spin_lock(&fs_info->delalloc_root_lock);
2431 		ASSERT(list_empty(&root->delalloc_root));
2432 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2433 		spin_unlock(&fs_info->delalloc_root_lock);
2434 	}
2435 	spin_unlock(&root->delalloc_lock);
2436 }
2437 
2438 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2439 {
2440 	struct btrfs_root *root = inode->root;
2441 	struct btrfs_fs_info *fs_info = root->fs_info;
2442 
2443 	lockdep_assert_held(&root->delalloc_lock);
2444 
2445 	/*
2446 	 * We may be called after the inode was already deleted from the list,
2447 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2448 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2449 	 * still has ->delalloc_bytes > 0.
2450 	 */
2451 	if (!list_empty(&inode->delalloc_inodes)) {
2452 		list_del_init(&inode->delalloc_inodes);
2453 		root->nr_delalloc_inodes--;
2454 		if (!root->nr_delalloc_inodes) {
2455 			ASSERT(list_empty(&root->delalloc_inodes));
2456 			spin_lock(&fs_info->delalloc_root_lock);
2457 			ASSERT(!list_empty(&root->delalloc_root));
2458 			list_del_init(&root->delalloc_root);
2459 			spin_unlock(&fs_info->delalloc_root_lock);
2460 		}
2461 	}
2462 }
2463 
2464 /*
2465  * Properly track delayed allocation bytes in the inode and to maintain the
2466  * list of inodes that have pending delalloc work to be done.
2467  */
2468 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2469 			       u32 bits)
2470 {
2471 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2472 
2473 	lockdep_assert_held(&inode->io_tree.lock);
2474 
2475 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2476 		WARN_ON(1);
2477 	/*
2478 	 * set_bit and clear bit hooks normally require _irqsave/restore
2479 	 * but in this case, we are only testing for the DELALLOC
2480 	 * bit, which is only set or cleared with irqs on
2481 	 */
2482 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2483 		u64 len = state->end + 1 - state->start;
2484 		u64 prev_delalloc_bytes;
2485 		u32 num_extents = count_max_extents(fs_info, len);
2486 
2487 		spin_lock(&inode->lock);
2488 		btrfs_mod_outstanding_extents(inode, num_extents);
2489 		spin_unlock(&inode->lock);
2490 
2491 		/* For sanity tests */
2492 		if (btrfs_is_testing(fs_info))
2493 			return;
2494 
2495 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2496 					 fs_info->delalloc_batch);
2497 		spin_lock(&inode->lock);
2498 		prev_delalloc_bytes = inode->delalloc_bytes;
2499 		inode->delalloc_bytes += len;
2500 		if (bits & EXTENT_DEFRAG)
2501 			inode->defrag_bytes += len;
2502 		spin_unlock(&inode->lock);
2503 
2504 		/*
2505 		 * We don't need to be under the protection of the inode's lock,
2506 		 * because we are called while holding the inode's io_tree lock
2507 		 * and are therefore protected against concurrent calls of this
2508 		 * function and btrfs_clear_delalloc_extent().
2509 		 */
2510 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2511 			btrfs_add_delalloc_inode(inode);
2512 	}
2513 
2514 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2515 	    (bits & EXTENT_DELALLOC_NEW)) {
2516 		spin_lock(&inode->lock);
2517 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2518 		spin_unlock(&inode->lock);
2519 	}
2520 }
2521 
2522 /*
2523  * Once a range is no longer delalloc this function ensures that proper
2524  * accounting happens.
2525  */
2526 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2527 				 struct extent_state *state, u32 bits)
2528 {
2529 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2530 	u64 len = state->end + 1 - state->start;
2531 	u32 num_extents = count_max_extents(fs_info, len);
2532 
2533 	lockdep_assert_held(&inode->io_tree.lock);
2534 
2535 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2536 		spin_lock(&inode->lock);
2537 		inode->defrag_bytes -= len;
2538 		spin_unlock(&inode->lock);
2539 	}
2540 
2541 	/*
2542 	 * set_bit and clear bit hooks normally require _irqsave/restore
2543 	 * but in this case, we are only testing for the DELALLOC
2544 	 * bit, which is only set or cleared with irqs on
2545 	 */
2546 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2547 		struct btrfs_root *root = inode->root;
2548 		u64 new_delalloc_bytes;
2549 
2550 		spin_lock(&inode->lock);
2551 		btrfs_mod_outstanding_extents(inode, -num_extents);
2552 		spin_unlock(&inode->lock);
2553 
2554 		/*
2555 		 * We don't reserve metadata space for space cache inodes so we
2556 		 * don't need to call delalloc_release_metadata if there is an
2557 		 * error.
2558 		 */
2559 		if (bits & EXTENT_CLEAR_META_RESV &&
2560 		    root != fs_info->tree_root)
2561 			btrfs_delalloc_release_metadata(inode, len, true);
2562 
2563 		/* For sanity tests. */
2564 		if (btrfs_is_testing(fs_info))
2565 			return;
2566 
2567 		if (!btrfs_is_data_reloc_root(root) &&
2568 		    !btrfs_is_free_space_inode(inode) &&
2569 		    !(state->state & EXTENT_NORESERVE) &&
2570 		    (bits & EXTENT_CLEAR_DATA_RESV))
2571 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2572 
2573 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2574 					 fs_info->delalloc_batch);
2575 		spin_lock(&inode->lock);
2576 		inode->delalloc_bytes -= len;
2577 		new_delalloc_bytes = inode->delalloc_bytes;
2578 		spin_unlock(&inode->lock);
2579 
2580 		/*
2581 		 * We don't need to be under the protection of the inode's lock,
2582 		 * because we are called while holding the inode's io_tree lock
2583 		 * and are therefore protected against concurrent calls of this
2584 		 * function and btrfs_set_delalloc_extent().
2585 		 */
2586 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2587 			spin_lock(&root->delalloc_lock);
2588 			btrfs_del_delalloc_inode(inode);
2589 			spin_unlock(&root->delalloc_lock);
2590 		}
2591 	}
2592 
2593 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2594 	    (bits & EXTENT_DELALLOC_NEW)) {
2595 		spin_lock(&inode->lock);
2596 		ASSERT(inode->new_delalloc_bytes >= len);
2597 		inode->new_delalloc_bytes -= len;
2598 		if (bits & EXTENT_ADD_INODE_BYTES)
2599 			inode_add_bytes(&inode->vfs_inode, len);
2600 		spin_unlock(&inode->lock);
2601 	}
2602 }
2603 
2604 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2605 					struct btrfs_ordered_extent *ordered)
2606 {
2607 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2608 	u64 len = bbio->bio.bi_iter.bi_size;
2609 	struct btrfs_ordered_extent *new;
2610 	int ret;
2611 
2612 	/* Must always be called for the beginning of an ordered extent. */
2613 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2614 		return -EINVAL;
2615 
2616 	/* No need to split if the ordered extent covers the entire bio. */
2617 	if (ordered->disk_num_bytes == len) {
2618 		refcount_inc(&ordered->refs);
2619 		bbio->ordered = ordered;
2620 		return 0;
2621 	}
2622 
2623 	/*
2624 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2625 	 * a pre-existing one.
2626 	 */
2627 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2628 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2629 				       ordered->num_bytes, len,
2630 				       ordered->disk_bytenr);
2631 		if (ret)
2632 			return ret;
2633 	}
2634 
2635 	new = btrfs_split_ordered_extent(ordered, len);
2636 	if (IS_ERR(new))
2637 		return PTR_ERR(new);
2638 	bbio->ordered = new;
2639 	return 0;
2640 }
2641 
2642 /*
2643  * given a list of ordered sums record them in the inode.  This happens
2644  * at IO completion time based on sums calculated at bio submission time.
2645  */
2646 static int add_pending_csums(struct btrfs_trans_handle *trans,
2647 			     struct list_head *list)
2648 {
2649 	struct btrfs_ordered_sum *sum;
2650 	struct btrfs_root *csum_root = NULL;
2651 	int ret;
2652 
2653 	list_for_each_entry(sum, list, list) {
2654 		trans->adding_csums = true;
2655 		if (!csum_root)
2656 			csum_root = btrfs_csum_root(trans->fs_info,
2657 						    sum->logical);
2658 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2659 		trans->adding_csums = false;
2660 		if (ret)
2661 			return ret;
2662 	}
2663 	return 0;
2664 }
2665 
2666 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2667 					 const u64 start,
2668 					 const u64 len,
2669 					 struct extent_state **cached_state)
2670 {
2671 	u64 search_start = start;
2672 	const u64 end = start + len - 1;
2673 
2674 	while (search_start < end) {
2675 		const u64 search_len = end - search_start + 1;
2676 		struct extent_map *em;
2677 		u64 em_len;
2678 		int ret = 0;
2679 
2680 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2681 		if (IS_ERR(em))
2682 			return PTR_ERR(em);
2683 
2684 		if (em->block_start != EXTENT_MAP_HOLE)
2685 			goto next;
2686 
2687 		em_len = em->len;
2688 		if (em->start < search_start)
2689 			em_len -= search_start - em->start;
2690 		if (em_len > search_len)
2691 			em_len = search_len;
2692 
2693 		ret = set_extent_bit(&inode->io_tree, search_start,
2694 				     search_start + em_len - 1,
2695 				     EXTENT_DELALLOC_NEW, cached_state);
2696 next:
2697 		search_start = extent_map_end(em);
2698 		free_extent_map(em);
2699 		if (ret)
2700 			return ret;
2701 	}
2702 	return 0;
2703 }
2704 
2705 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2706 			      unsigned int extra_bits,
2707 			      struct extent_state **cached_state)
2708 {
2709 	WARN_ON(PAGE_ALIGNED(end));
2710 
2711 	if (start >= i_size_read(&inode->vfs_inode) &&
2712 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2713 		/*
2714 		 * There can't be any extents following eof in this case so just
2715 		 * set the delalloc new bit for the range directly.
2716 		 */
2717 		extra_bits |= EXTENT_DELALLOC_NEW;
2718 	} else {
2719 		int ret;
2720 
2721 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2722 						    end + 1 - start,
2723 						    cached_state);
2724 		if (ret)
2725 			return ret;
2726 	}
2727 
2728 	return set_extent_bit(&inode->io_tree, start, end,
2729 			      EXTENT_DELALLOC | extra_bits, cached_state);
2730 }
2731 
2732 /* see btrfs_writepage_start_hook for details on why this is required */
2733 struct btrfs_writepage_fixup {
2734 	struct page *page;
2735 	struct btrfs_inode *inode;
2736 	struct btrfs_work work;
2737 };
2738 
2739 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2740 {
2741 	struct btrfs_writepage_fixup *fixup =
2742 		container_of(work, struct btrfs_writepage_fixup, work);
2743 	struct btrfs_ordered_extent *ordered;
2744 	struct extent_state *cached_state = NULL;
2745 	struct extent_changeset *data_reserved = NULL;
2746 	struct page *page = fixup->page;
2747 	struct btrfs_inode *inode = fixup->inode;
2748 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2749 	u64 page_start = page_offset(page);
2750 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2751 	int ret = 0;
2752 	bool free_delalloc_space = true;
2753 
2754 	/*
2755 	 * This is similar to page_mkwrite, we need to reserve the space before
2756 	 * we take the page lock.
2757 	 */
2758 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2759 					   PAGE_SIZE);
2760 again:
2761 	lock_page(page);
2762 
2763 	/*
2764 	 * Before we queued this fixup, we took a reference on the page.
2765 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2766 	 * address space.
2767 	 */
2768 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2769 		/*
2770 		 * Unfortunately this is a little tricky, either
2771 		 *
2772 		 * 1) We got here and our page had already been dealt with and
2773 		 *    we reserved our space, thus ret == 0, so we need to just
2774 		 *    drop our space reservation and bail.  This can happen the
2775 		 *    first time we come into the fixup worker, or could happen
2776 		 *    while waiting for the ordered extent.
2777 		 * 2) Our page was already dealt with, but we happened to get an
2778 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2779 		 *    this case we obviously don't have anything to release, but
2780 		 *    because the page was already dealt with we don't want to
2781 		 *    mark the page with an error, so make sure we're resetting
2782 		 *    ret to 0.  This is why we have this check _before_ the ret
2783 		 *    check, because we do not want to have a surprise ENOSPC
2784 		 *    when the page was already properly dealt with.
2785 		 */
2786 		if (!ret) {
2787 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2788 			btrfs_delalloc_release_space(inode, data_reserved,
2789 						     page_start, PAGE_SIZE,
2790 						     true);
2791 		}
2792 		ret = 0;
2793 		goto out_page;
2794 	}
2795 
2796 	/*
2797 	 * We can't mess with the page state unless it is locked, so now that
2798 	 * it is locked bail if we failed to make our space reservation.
2799 	 */
2800 	if (ret)
2801 		goto out_page;
2802 
2803 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2804 
2805 	/* already ordered? We're done */
2806 	if (PageOrdered(page))
2807 		goto out_reserved;
2808 
2809 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2810 	if (ordered) {
2811 		unlock_extent(&inode->io_tree, page_start, page_end,
2812 			      &cached_state);
2813 		unlock_page(page);
2814 		btrfs_start_ordered_extent(ordered);
2815 		btrfs_put_ordered_extent(ordered);
2816 		goto again;
2817 	}
2818 
2819 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2820 					&cached_state);
2821 	if (ret)
2822 		goto out_reserved;
2823 
2824 	/*
2825 	 * Everything went as planned, we're now the owner of a dirty page with
2826 	 * delayed allocation bits set and space reserved for our COW
2827 	 * destination.
2828 	 *
2829 	 * The page was dirty when we started, nothing should have cleaned it.
2830 	 */
2831 	BUG_ON(!PageDirty(page));
2832 	free_delalloc_space = false;
2833 out_reserved:
2834 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2835 	if (free_delalloc_space)
2836 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2837 					     PAGE_SIZE, true);
2838 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2839 out_page:
2840 	if (ret) {
2841 		/*
2842 		 * We hit ENOSPC or other errors.  Update the mapping and page
2843 		 * to reflect the errors and clean the page.
2844 		 */
2845 		mapping_set_error(page->mapping, ret);
2846 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2847 					       PAGE_SIZE, !ret);
2848 		clear_page_dirty_for_io(page);
2849 	}
2850 	btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2851 	unlock_page(page);
2852 	put_page(page);
2853 	kfree(fixup);
2854 	extent_changeset_free(data_reserved);
2855 	/*
2856 	 * As a precaution, do a delayed iput in case it would be the last iput
2857 	 * that could need flushing space. Recursing back to fixup worker would
2858 	 * deadlock.
2859 	 */
2860 	btrfs_add_delayed_iput(inode);
2861 }
2862 
2863 /*
2864  * There are a few paths in the higher layers of the kernel that directly
2865  * set the page dirty bit without asking the filesystem if it is a
2866  * good idea.  This causes problems because we want to make sure COW
2867  * properly happens and the data=ordered rules are followed.
2868  *
2869  * In our case any range that doesn't have the ORDERED bit set
2870  * hasn't been properly setup for IO.  We kick off an async process
2871  * to fix it up.  The async helper will wait for ordered extents, set
2872  * the delalloc bit and make it safe to write the page.
2873  */
2874 int btrfs_writepage_cow_fixup(struct page *page)
2875 {
2876 	struct inode *inode = page->mapping->host;
2877 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2878 	struct btrfs_writepage_fixup *fixup;
2879 
2880 	/* This page has ordered extent covering it already */
2881 	if (PageOrdered(page))
2882 		return 0;
2883 
2884 	/*
2885 	 * PageChecked is set below when we create a fixup worker for this page,
2886 	 * don't try to create another one if we're already PageChecked()
2887 	 *
2888 	 * The extent_io writepage code will redirty the page if we send back
2889 	 * EAGAIN.
2890 	 */
2891 	if (PageChecked(page))
2892 		return -EAGAIN;
2893 
2894 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2895 	if (!fixup)
2896 		return -EAGAIN;
2897 
2898 	/*
2899 	 * We are already holding a reference to this inode from
2900 	 * write_cache_pages.  We need to hold it because the space reservation
2901 	 * takes place outside of the page lock, and we can't trust
2902 	 * page->mapping outside of the page lock.
2903 	 */
2904 	ihold(inode);
2905 	btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2906 	get_page(page);
2907 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2908 	fixup->page = page;
2909 	fixup->inode = BTRFS_I(inode);
2910 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2911 
2912 	return -EAGAIN;
2913 }
2914 
2915 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2916 				       struct btrfs_inode *inode, u64 file_pos,
2917 				       struct btrfs_file_extent_item *stack_fi,
2918 				       const bool update_inode_bytes,
2919 				       u64 qgroup_reserved)
2920 {
2921 	struct btrfs_root *root = inode->root;
2922 	const u64 sectorsize = root->fs_info->sectorsize;
2923 	struct btrfs_path *path;
2924 	struct extent_buffer *leaf;
2925 	struct btrfs_key ins;
2926 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2927 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2928 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2929 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2930 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2931 	struct btrfs_drop_extents_args drop_args = { 0 };
2932 	int ret;
2933 
2934 	path = btrfs_alloc_path();
2935 	if (!path)
2936 		return -ENOMEM;
2937 
2938 	/*
2939 	 * we may be replacing one extent in the tree with another.
2940 	 * The new extent is pinned in the extent map, and we don't want
2941 	 * to drop it from the cache until it is completely in the btree.
2942 	 *
2943 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2944 	 * the caller is expected to unpin it and allow it to be merged
2945 	 * with the others.
2946 	 */
2947 	drop_args.path = path;
2948 	drop_args.start = file_pos;
2949 	drop_args.end = file_pos + num_bytes;
2950 	drop_args.replace_extent = true;
2951 	drop_args.extent_item_size = sizeof(*stack_fi);
2952 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2953 	if (ret)
2954 		goto out;
2955 
2956 	if (!drop_args.extent_inserted) {
2957 		ins.objectid = btrfs_ino(inode);
2958 		ins.offset = file_pos;
2959 		ins.type = BTRFS_EXTENT_DATA_KEY;
2960 
2961 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2962 					      sizeof(*stack_fi));
2963 		if (ret)
2964 			goto out;
2965 	}
2966 	leaf = path->nodes[0];
2967 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2968 	write_extent_buffer(leaf, stack_fi,
2969 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2970 			sizeof(struct btrfs_file_extent_item));
2971 
2972 	btrfs_mark_buffer_dirty(trans, leaf);
2973 	btrfs_release_path(path);
2974 
2975 	/*
2976 	 * If we dropped an inline extent here, we know the range where it is
2977 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2978 	 * number of bytes only for that range containing the inline extent.
2979 	 * The remaining of the range will be processed when clearning the
2980 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2981 	 */
2982 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2983 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2984 
2985 		inline_size = drop_args.bytes_found - inline_size;
2986 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2987 		drop_args.bytes_found -= inline_size;
2988 		num_bytes -= sectorsize;
2989 	}
2990 
2991 	if (update_inode_bytes)
2992 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2993 
2994 	ins.objectid = disk_bytenr;
2995 	ins.offset = disk_num_bytes;
2996 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2997 
2998 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2999 	if (ret)
3000 		goto out;
3001 
3002 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3003 					       file_pos - offset,
3004 					       qgroup_reserved, &ins);
3005 out:
3006 	btrfs_free_path(path);
3007 
3008 	return ret;
3009 }
3010 
3011 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3012 					 u64 start, u64 len)
3013 {
3014 	struct btrfs_block_group *cache;
3015 
3016 	cache = btrfs_lookup_block_group(fs_info, start);
3017 	ASSERT(cache);
3018 
3019 	spin_lock(&cache->lock);
3020 	cache->delalloc_bytes -= len;
3021 	spin_unlock(&cache->lock);
3022 
3023 	btrfs_put_block_group(cache);
3024 }
3025 
3026 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3027 					     struct btrfs_ordered_extent *oe)
3028 {
3029 	struct btrfs_file_extent_item stack_fi;
3030 	bool update_inode_bytes;
3031 	u64 num_bytes = oe->num_bytes;
3032 	u64 ram_bytes = oe->ram_bytes;
3033 
3034 	memset(&stack_fi, 0, sizeof(stack_fi));
3035 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3036 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3037 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3038 						   oe->disk_num_bytes);
3039 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3040 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3041 		num_bytes = oe->truncated_len;
3042 		ram_bytes = num_bytes;
3043 	}
3044 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3045 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3046 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3047 	/* Encryption and other encoding is reserved and all 0 */
3048 
3049 	/*
3050 	 * For delalloc, when completing an ordered extent we update the inode's
3051 	 * bytes when clearing the range in the inode's io tree, so pass false
3052 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3053 	 * except if the ordered extent was truncated.
3054 	 */
3055 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3056 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3057 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3058 
3059 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3060 					   oe->file_offset, &stack_fi,
3061 					   update_inode_bytes, oe->qgroup_rsv);
3062 }
3063 
3064 /*
3065  * As ordered data IO finishes, this gets called so we can finish
3066  * an ordered extent if the range of bytes in the file it covers are
3067  * fully written.
3068  */
3069 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3070 {
3071 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3072 	struct btrfs_root *root = inode->root;
3073 	struct btrfs_fs_info *fs_info = root->fs_info;
3074 	struct btrfs_trans_handle *trans = NULL;
3075 	struct extent_io_tree *io_tree = &inode->io_tree;
3076 	struct extent_state *cached_state = NULL;
3077 	u64 start, end;
3078 	int compress_type = 0;
3079 	int ret = 0;
3080 	u64 logical_len = ordered_extent->num_bytes;
3081 	bool freespace_inode;
3082 	bool truncated = false;
3083 	bool clear_reserved_extent = true;
3084 	unsigned int clear_bits = EXTENT_DEFRAG;
3085 
3086 	start = ordered_extent->file_offset;
3087 	end = start + ordered_extent->num_bytes - 1;
3088 
3089 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3090 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3091 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3092 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3093 		clear_bits |= EXTENT_DELALLOC_NEW;
3094 
3095 	freespace_inode = btrfs_is_free_space_inode(inode);
3096 	if (!freespace_inode)
3097 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3098 
3099 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3100 		ret = -EIO;
3101 		goto out;
3102 	}
3103 
3104 	if (btrfs_is_zoned(fs_info))
3105 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3106 					ordered_extent->disk_num_bytes);
3107 
3108 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3109 		truncated = true;
3110 		logical_len = ordered_extent->truncated_len;
3111 		/* Truncated the entire extent, don't bother adding */
3112 		if (!logical_len)
3113 			goto out;
3114 	}
3115 
3116 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3117 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3118 
3119 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3120 		if (freespace_inode)
3121 			trans = btrfs_join_transaction_spacecache(root);
3122 		else
3123 			trans = btrfs_join_transaction(root);
3124 		if (IS_ERR(trans)) {
3125 			ret = PTR_ERR(trans);
3126 			trans = NULL;
3127 			goto out;
3128 		}
3129 		trans->block_rsv = &inode->block_rsv;
3130 		ret = btrfs_update_inode_fallback(trans, inode);
3131 		if (ret) /* -ENOMEM or corruption */
3132 			btrfs_abort_transaction(trans, ret);
3133 		goto out;
3134 	}
3135 
3136 	clear_bits |= EXTENT_LOCKED;
3137 	lock_extent(io_tree, start, end, &cached_state);
3138 
3139 	if (freespace_inode)
3140 		trans = btrfs_join_transaction_spacecache(root);
3141 	else
3142 		trans = btrfs_join_transaction(root);
3143 	if (IS_ERR(trans)) {
3144 		ret = PTR_ERR(trans);
3145 		trans = NULL;
3146 		goto out;
3147 	}
3148 
3149 	trans->block_rsv = &inode->block_rsv;
3150 
3151 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3152 	if (ret)
3153 		goto out;
3154 
3155 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3156 		compress_type = ordered_extent->compress_type;
3157 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3158 		BUG_ON(compress_type);
3159 		ret = btrfs_mark_extent_written(trans, inode,
3160 						ordered_extent->file_offset,
3161 						ordered_extent->file_offset +
3162 						logical_len);
3163 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3164 						  ordered_extent->disk_num_bytes);
3165 	} else {
3166 		BUG_ON(root == fs_info->tree_root);
3167 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3168 		if (!ret) {
3169 			clear_reserved_extent = false;
3170 			btrfs_release_delalloc_bytes(fs_info,
3171 						ordered_extent->disk_bytenr,
3172 						ordered_extent->disk_num_bytes);
3173 		}
3174 	}
3175 	if (ret < 0) {
3176 		btrfs_abort_transaction(trans, ret);
3177 		goto out;
3178 	}
3179 
3180 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3181 				 ordered_extent->num_bytes, trans->transid);
3182 	if (ret < 0) {
3183 		btrfs_abort_transaction(trans, ret);
3184 		goto out;
3185 	}
3186 
3187 	ret = add_pending_csums(trans, &ordered_extent->list);
3188 	if (ret) {
3189 		btrfs_abort_transaction(trans, ret);
3190 		goto out;
3191 	}
3192 
3193 	/*
3194 	 * If this is a new delalloc range, clear its new delalloc flag to
3195 	 * update the inode's number of bytes. This needs to be done first
3196 	 * before updating the inode item.
3197 	 */
3198 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3199 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3200 		clear_extent_bit(&inode->io_tree, start, end,
3201 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3202 				 &cached_state);
3203 
3204 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3205 	ret = btrfs_update_inode_fallback(trans, inode);
3206 	if (ret) { /* -ENOMEM or corruption */
3207 		btrfs_abort_transaction(trans, ret);
3208 		goto out;
3209 	}
3210 out:
3211 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3212 			 &cached_state);
3213 
3214 	if (trans)
3215 		btrfs_end_transaction(trans);
3216 
3217 	if (ret || truncated) {
3218 		u64 unwritten_start = start;
3219 
3220 		/*
3221 		 * If we failed to finish this ordered extent for any reason we
3222 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3223 		 * extent, and mark the inode with the error if it wasn't
3224 		 * already set.  Any error during writeback would have already
3225 		 * set the mapping error, so we need to set it if we're the ones
3226 		 * marking this ordered extent as failed.
3227 		 */
3228 		if (ret)
3229 			btrfs_mark_ordered_extent_error(ordered_extent);
3230 
3231 		if (truncated)
3232 			unwritten_start += logical_len;
3233 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3234 
3235 		/*
3236 		 * Drop extent maps for the part of the extent we didn't write.
3237 		 *
3238 		 * We have an exception here for the free_space_inode, this is
3239 		 * because when we do btrfs_get_extent() on the free space inode
3240 		 * we will search the commit root.  If this is a new block group
3241 		 * we won't find anything, and we will trip over the assert in
3242 		 * writepage where we do ASSERT(em->block_start !=
3243 		 * EXTENT_MAP_HOLE).
3244 		 *
3245 		 * Theoretically we could also skip this for any NOCOW extent as
3246 		 * we don't mess with the extent map tree in the NOCOW case, but
3247 		 * for now simply skip this if we are the free space inode.
3248 		 */
3249 		if (!btrfs_is_free_space_inode(inode))
3250 			btrfs_drop_extent_map_range(inode, unwritten_start,
3251 						    end, false);
3252 
3253 		/*
3254 		 * If the ordered extent had an IOERR or something else went
3255 		 * wrong we need to return the space for this ordered extent
3256 		 * back to the allocator.  We only free the extent in the
3257 		 * truncated case if we didn't write out the extent at all.
3258 		 *
3259 		 * If we made it past insert_reserved_file_extent before we
3260 		 * errored out then we don't need to do this as the accounting
3261 		 * has already been done.
3262 		 */
3263 		if ((ret || !logical_len) &&
3264 		    clear_reserved_extent &&
3265 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3266 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3267 			/*
3268 			 * Discard the range before returning it back to the
3269 			 * free space pool
3270 			 */
3271 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3272 				btrfs_discard_extent(fs_info,
3273 						ordered_extent->disk_bytenr,
3274 						ordered_extent->disk_num_bytes,
3275 						NULL);
3276 			btrfs_free_reserved_extent(fs_info,
3277 					ordered_extent->disk_bytenr,
3278 					ordered_extent->disk_num_bytes, 1);
3279 			/*
3280 			 * Actually free the qgroup rsv which was released when
3281 			 * the ordered extent was created.
3282 			 */
3283 			btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3284 						  ordered_extent->qgroup_rsv,
3285 						  BTRFS_QGROUP_RSV_DATA);
3286 		}
3287 	}
3288 
3289 	/*
3290 	 * This needs to be done to make sure anybody waiting knows we are done
3291 	 * updating everything for this ordered extent.
3292 	 */
3293 	btrfs_remove_ordered_extent(inode, ordered_extent);
3294 
3295 	/* once for us */
3296 	btrfs_put_ordered_extent(ordered_extent);
3297 	/* once for the tree */
3298 	btrfs_put_ordered_extent(ordered_extent);
3299 
3300 	return ret;
3301 }
3302 
3303 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3304 {
3305 	if (btrfs_is_zoned(inode_to_fs_info(ordered->inode)) &&
3306 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3307 	    list_empty(&ordered->bioc_list))
3308 		btrfs_finish_ordered_zoned(ordered);
3309 	return btrfs_finish_one_ordered(ordered);
3310 }
3311 
3312 /*
3313  * Verify the checksum for a single sector without any extra action that depend
3314  * on the type of I/O.
3315  */
3316 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3317 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3318 {
3319 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3320 	char *kaddr;
3321 
3322 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3323 
3324 	shash->tfm = fs_info->csum_shash;
3325 
3326 	kaddr = kmap_local_page(page) + pgoff;
3327 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3328 	kunmap_local(kaddr);
3329 
3330 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3331 		return -EIO;
3332 	return 0;
3333 }
3334 
3335 /*
3336  * Verify the checksum of a single data sector.
3337  *
3338  * @bbio:	btrfs_io_bio which contains the csum
3339  * @dev:	device the sector is on
3340  * @bio_offset:	offset to the beginning of the bio (in bytes)
3341  * @bv:		bio_vec to check
3342  *
3343  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3344  * detected, report the error and fill the corrupted range with zero.
3345  *
3346  * Return %true if the sector is ok or had no checksum to start with, else %false.
3347  */
3348 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3349 			u32 bio_offset, struct bio_vec *bv)
3350 {
3351 	struct btrfs_inode *inode = bbio->inode;
3352 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3353 	u64 file_offset = bbio->file_offset + bio_offset;
3354 	u64 end = file_offset + bv->bv_len - 1;
3355 	u8 *csum_expected;
3356 	u8 csum[BTRFS_CSUM_SIZE];
3357 
3358 	ASSERT(bv->bv_len == fs_info->sectorsize);
3359 
3360 	if (!bbio->csum)
3361 		return true;
3362 
3363 	if (btrfs_is_data_reloc_root(inode->root) &&
3364 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3365 			   NULL)) {
3366 		/* Skip the range without csum for data reloc inode */
3367 		clear_extent_bits(&inode->io_tree, file_offset, end,
3368 				  EXTENT_NODATASUM);
3369 		return true;
3370 	}
3371 
3372 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3373 				fs_info->csum_size;
3374 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3375 				    csum_expected))
3376 		goto zeroit;
3377 	return true;
3378 
3379 zeroit:
3380 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3381 				    bbio->mirror_num);
3382 	if (dev)
3383 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3384 	memzero_bvec(bv);
3385 	return false;
3386 }
3387 
3388 /*
3389  * Perform a delayed iput on @inode.
3390  *
3391  * @inode: The inode we want to perform iput on
3392  *
3393  * This function uses the generic vfs_inode::i_count to track whether we should
3394  * just decrement it (in case it's > 1) or if this is the last iput then link
3395  * the inode to the delayed iput machinery. Delayed iputs are processed at
3396  * transaction commit time/superblock commit/cleaner kthread.
3397  */
3398 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3399 {
3400 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3401 	unsigned long flags;
3402 
3403 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3404 		return;
3405 
3406 	atomic_inc(&fs_info->nr_delayed_iputs);
3407 	/*
3408 	 * Need to be irq safe here because we can be called from either an irq
3409 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3410 	 * context.
3411 	 */
3412 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3413 	ASSERT(list_empty(&inode->delayed_iput));
3414 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3415 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3416 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3417 		wake_up_process(fs_info->cleaner_kthread);
3418 }
3419 
3420 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3421 				    struct btrfs_inode *inode)
3422 {
3423 	list_del_init(&inode->delayed_iput);
3424 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3425 	iput(&inode->vfs_inode);
3426 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3427 		wake_up(&fs_info->delayed_iputs_wait);
3428 	spin_lock_irq(&fs_info->delayed_iput_lock);
3429 }
3430 
3431 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3432 				   struct btrfs_inode *inode)
3433 {
3434 	if (!list_empty(&inode->delayed_iput)) {
3435 		spin_lock_irq(&fs_info->delayed_iput_lock);
3436 		if (!list_empty(&inode->delayed_iput))
3437 			run_delayed_iput_locked(fs_info, inode);
3438 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3439 	}
3440 }
3441 
3442 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3443 {
3444 	/*
3445 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3446 	 * calls btrfs_add_delayed_iput() and that needs to lock
3447 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3448 	 * prevent a deadlock.
3449 	 */
3450 	spin_lock_irq(&fs_info->delayed_iput_lock);
3451 	while (!list_empty(&fs_info->delayed_iputs)) {
3452 		struct btrfs_inode *inode;
3453 
3454 		inode = list_first_entry(&fs_info->delayed_iputs,
3455 				struct btrfs_inode, delayed_iput);
3456 		run_delayed_iput_locked(fs_info, inode);
3457 		if (need_resched()) {
3458 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3459 			cond_resched();
3460 			spin_lock_irq(&fs_info->delayed_iput_lock);
3461 		}
3462 	}
3463 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3464 }
3465 
3466 /*
3467  * Wait for flushing all delayed iputs
3468  *
3469  * @fs_info:  the filesystem
3470  *
3471  * This will wait on any delayed iputs that are currently running with KILLABLE
3472  * set.  Once they are all done running we will return, unless we are killed in
3473  * which case we return EINTR. This helps in user operations like fallocate etc
3474  * that might get blocked on the iputs.
3475  *
3476  * Return EINTR if we were killed, 0 if nothing's pending
3477  */
3478 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3479 {
3480 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3481 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3482 	if (ret)
3483 		return -EINTR;
3484 	return 0;
3485 }
3486 
3487 /*
3488  * This creates an orphan entry for the given inode in case something goes wrong
3489  * in the middle of an unlink.
3490  */
3491 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3492 		     struct btrfs_inode *inode)
3493 {
3494 	int ret;
3495 
3496 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3497 	if (ret && ret != -EEXIST) {
3498 		btrfs_abort_transaction(trans, ret);
3499 		return ret;
3500 	}
3501 
3502 	return 0;
3503 }
3504 
3505 /*
3506  * We have done the delete so we can go ahead and remove the orphan item for
3507  * this particular inode.
3508  */
3509 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3510 			    struct btrfs_inode *inode)
3511 {
3512 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3513 }
3514 
3515 /*
3516  * this cleans up any orphans that may be left on the list from the last use
3517  * of this root.
3518  */
3519 int btrfs_orphan_cleanup(struct btrfs_root *root)
3520 {
3521 	struct btrfs_fs_info *fs_info = root->fs_info;
3522 	struct btrfs_path *path;
3523 	struct extent_buffer *leaf;
3524 	struct btrfs_key key, found_key;
3525 	struct btrfs_trans_handle *trans;
3526 	struct inode *inode;
3527 	u64 last_objectid = 0;
3528 	int ret = 0, nr_unlink = 0;
3529 
3530 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3531 		return 0;
3532 
3533 	path = btrfs_alloc_path();
3534 	if (!path) {
3535 		ret = -ENOMEM;
3536 		goto out;
3537 	}
3538 	path->reada = READA_BACK;
3539 
3540 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3541 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3542 	key.offset = (u64)-1;
3543 
3544 	while (1) {
3545 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3546 		if (ret < 0)
3547 			goto out;
3548 
3549 		/*
3550 		 * if ret == 0 means we found what we were searching for, which
3551 		 * is weird, but possible, so only screw with path if we didn't
3552 		 * find the key and see if we have stuff that matches
3553 		 */
3554 		if (ret > 0) {
3555 			ret = 0;
3556 			if (path->slots[0] == 0)
3557 				break;
3558 			path->slots[0]--;
3559 		}
3560 
3561 		/* pull out the item */
3562 		leaf = path->nodes[0];
3563 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3564 
3565 		/* make sure the item matches what we want */
3566 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3567 			break;
3568 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3569 			break;
3570 
3571 		/* release the path since we're done with it */
3572 		btrfs_release_path(path);
3573 
3574 		/*
3575 		 * this is where we are basically btrfs_lookup, without the
3576 		 * crossing root thing.  we store the inode number in the
3577 		 * offset of the orphan item.
3578 		 */
3579 
3580 		if (found_key.offset == last_objectid) {
3581 			/*
3582 			 * We found the same inode as before. This means we were
3583 			 * not able to remove its items via eviction triggered
3584 			 * by an iput(). A transaction abort may have happened,
3585 			 * due to -ENOSPC for example, so try to grab the error
3586 			 * that lead to a transaction abort, if any.
3587 			 */
3588 			btrfs_err(fs_info,
3589 				  "Error removing orphan entry, stopping orphan cleanup");
3590 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3591 			goto out;
3592 		}
3593 
3594 		last_objectid = found_key.offset;
3595 
3596 		found_key.objectid = found_key.offset;
3597 		found_key.type = BTRFS_INODE_ITEM_KEY;
3598 		found_key.offset = 0;
3599 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3600 		if (IS_ERR(inode)) {
3601 			ret = PTR_ERR(inode);
3602 			inode = NULL;
3603 			if (ret != -ENOENT)
3604 				goto out;
3605 		}
3606 
3607 		if (!inode && root == fs_info->tree_root) {
3608 			struct btrfs_root *dead_root;
3609 			int is_dead_root = 0;
3610 
3611 			/*
3612 			 * This is an orphan in the tree root. Currently these
3613 			 * could come from 2 sources:
3614 			 *  a) a root (snapshot/subvolume) deletion in progress
3615 			 *  b) a free space cache inode
3616 			 * We need to distinguish those two, as the orphan item
3617 			 * for a root must not get deleted before the deletion
3618 			 * of the snapshot/subvolume's tree completes.
3619 			 *
3620 			 * btrfs_find_orphan_roots() ran before us, which has
3621 			 * found all deleted roots and loaded them into
3622 			 * fs_info->fs_roots_radix. So here we can find if an
3623 			 * orphan item corresponds to a deleted root by looking
3624 			 * up the root from that radix tree.
3625 			 */
3626 
3627 			spin_lock(&fs_info->fs_roots_radix_lock);
3628 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3629 							 (unsigned long)found_key.objectid);
3630 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3631 				is_dead_root = 1;
3632 			spin_unlock(&fs_info->fs_roots_radix_lock);
3633 
3634 			if (is_dead_root) {
3635 				/* prevent this orphan from being found again */
3636 				key.offset = found_key.objectid - 1;
3637 				continue;
3638 			}
3639 
3640 		}
3641 
3642 		/*
3643 		 * If we have an inode with links, there are a couple of
3644 		 * possibilities:
3645 		 *
3646 		 * 1. We were halfway through creating fsverity metadata for the
3647 		 * file. In that case, the orphan item represents incomplete
3648 		 * fsverity metadata which must be cleaned up with
3649 		 * btrfs_drop_verity_items and deleting the orphan item.
3650 
3651 		 * 2. Old kernels (before v3.12) used to create an
3652 		 * orphan item for truncate indicating that there were possibly
3653 		 * extent items past i_size that needed to be deleted. In v3.12,
3654 		 * truncate was changed to update i_size in sync with the extent
3655 		 * items, but the (useless) orphan item was still created. Since
3656 		 * v4.18, we don't create the orphan item for truncate at all.
3657 		 *
3658 		 * So, this item could mean that we need to do a truncate, but
3659 		 * only if this filesystem was last used on a pre-v3.12 kernel
3660 		 * and was not cleanly unmounted. The odds of that are quite
3661 		 * slim, and it's a pain to do the truncate now, so just delete
3662 		 * the orphan item.
3663 		 *
3664 		 * It's also possible that this orphan item was supposed to be
3665 		 * deleted but wasn't. The inode number may have been reused,
3666 		 * but either way, we can delete the orphan item.
3667 		 */
3668 		if (!inode || inode->i_nlink) {
3669 			if (inode) {
3670 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3671 				iput(inode);
3672 				inode = NULL;
3673 				if (ret)
3674 					goto out;
3675 			}
3676 			trans = btrfs_start_transaction(root, 1);
3677 			if (IS_ERR(trans)) {
3678 				ret = PTR_ERR(trans);
3679 				goto out;
3680 			}
3681 			btrfs_debug(fs_info, "auto deleting %Lu",
3682 				    found_key.objectid);
3683 			ret = btrfs_del_orphan_item(trans, root,
3684 						    found_key.objectid);
3685 			btrfs_end_transaction(trans);
3686 			if (ret)
3687 				goto out;
3688 			continue;
3689 		}
3690 
3691 		nr_unlink++;
3692 
3693 		/* this will do delete_inode and everything for us */
3694 		iput(inode);
3695 	}
3696 	/* release the path since we're done with it */
3697 	btrfs_release_path(path);
3698 
3699 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3700 		trans = btrfs_join_transaction(root);
3701 		if (!IS_ERR(trans))
3702 			btrfs_end_transaction(trans);
3703 	}
3704 
3705 	if (nr_unlink)
3706 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3707 
3708 out:
3709 	if (ret)
3710 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3711 	btrfs_free_path(path);
3712 	return ret;
3713 }
3714 
3715 /*
3716  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3717  * don't find any xattrs, we know there can't be any acls.
3718  *
3719  * slot is the slot the inode is in, objectid is the objectid of the inode
3720  */
3721 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3722 					  int slot, u64 objectid,
3723 					  int *first_xattr_slot)
3724 {
3725 	u32 nritems = btrfs_header_nritems(leaf);
3726 	struct btrfs_key found_key;
3727 	static u64 xattr_access = 0;
3728 	static u64 xattr_default = 0;
3729 	int scanned = 0;
3730 
3731 	if (!xattr_access) {
3732 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3733 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3734 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3735 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3736 	}
3737 
3738 	slot++;
3739 	*first_xattr_slot = -1;
3740 	while (slot < nritems) {
3741 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3742 
3743 		/* we found a different objectid, there must not be acls */
3744 		if (found_key.objectid != objectid)
3745 			return 0;
3746 
3747 		/* we found an xattr, assume we've got an acl */
3748 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3749 			if (*first_xattr_slot == -1)
3750 				*first_xattr_slot = slot;
3751 			if (found_key.offset == xattr_access ||
3752 			    found_key.offset == xattr_default)
3753 				return 1;
3754 		}
3755 
3756 		/*
3757 		 * we found a key greater than an xattr key, there can't
3758 		 * be any acls later on
3759 		 */
3760 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3761 			return 0;
3762 
3763 		slot++;
3764 		scanned++;
3765 
3766 		/*
3767 		 * it goes inode, inode backrefs, xattrs, extents,
3768 		 * so if there are a ton of hard links to an inode there can
3769 		 * be a lot of backrefs.  Don't waste time searching too hard,
3770 		 * this is just an optimization
3771 		 */
3772 		if (scanned >= 8)
3773 			break;
3774 	}
3775 	/* we hit the end of the leaf before we found an xattr or
3776 	 * something larger than an xattr.  We have to assume the inode
3777 	 * has acls
3778 	 */
3779 	if (*first_xattr_slot == -1)
3780 		*first_xattr_slot = slot;
3781 	return 1;
3782 }
3783 
3784 /*
3785  * read an inode from the btree into the in-memory inode
3786  */
3787 static int btrfs_read_locked_inode(struct inode *inode,
3788 				   struct btrfs_path *in_path)
3789 {
3790 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3791 	struct btrfs_path *path = in_path;
3792 	struct extent_buffer *leaf;
3793 	struct btrfs_inode_item *inode_item;
3794 	struct btrfs_root *root = BTRFS_I(inode)->root;
3795 	struct btrfs_key location;
3796 	unsigned long ptr;
3797 	int maybe_acls;
3798 	u32 rdev;
3799 	int ret;
3800 	bool filled = false;
3801 	int first_xattr_slot;
3802 
3803 	ret = btrfs_fill_inode(inode, &rdev);
3804 	if (!ret)
3805 		filled = true;
3806 
3807 	if (!path) {
3808 		path = btrfs_alloc_path();
3809 		if (!path)
3810 			return -ENOMEM;
3811 	}
3812 
3813 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3814 
3815 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3816 	if (ret) {
3817 		if (path != in_path)
3818 			btrfs_free_path(path);
3819 		return ret;
3820 	}
3821 
3822 	leaf = path->nodes[0];
3823 
3824 	if (filled)
3825 		goto cache_index;
3826 
3827 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3828 				    struct btrfs_inode_item);
3829 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3830 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3831 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3832 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3833 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3834 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3835 			round_up(i_size_read(inode), fs_info->sectorsize));
3836 
3837 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3838 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3839 
3840 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3841 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3842 
3843 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3844 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3845 
3846 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3847 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3848 
3849 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3850 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3851 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3852 
3853 	inode_set_iversion_queried(inode,
3854 				   btrfs_inode_sequence(leaf, inode_item));
3855 	inode->i_generation = BTRFS_I(inode)->generation;
3856 	inode->i_rdev = 0;
3857 	rdev = btrfs_inode_rdev(leaf, inode_item);
3858 
3859 	BTRFS_I(inode)->index_cnt = (u64)-1;
3860 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3861 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3862 
3863 cache_index:
3864 	/*
3865 	 * If we were modified in the current generation and evicted from memory
3866 	 * and then re-read we need to do a full sync since we don't have any
3867 	 * idea about which extents were modified before we were evicted from
3868 	 * cache.
3869 	 *
3870 	 * This is required for both inode re-read from disk and delayed inode
3871 	 * in the delayed_nodes xarray.
3872 	 */
3873 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3874 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3875 			&BTRFS_I(inode)->runtime_flags);
3876 
3877 	/*
3878 	 * We don't persist the id of the transaction where an unlink operation
3879 	 * against the inode was last made. So here we assume the inode might
3880 	 * have been evicted, and therefore the exact value of last_unlink_trans
3881 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3882 	 * between the inode and its parent if the inode is fsync'ed and the log
3883 	 * replayed. For example, in the scenario:
3884 	 *
3885 	 * touch mydir/foo
3886 	 * ln mydir/foo mydir/bar
3887 	 * sync
3888 	 * unlink mydir/bar
3889 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3890 	 * xfs_io -c fsync mydir/foo
3891 	 * <power failure>
3892 	 * mount fs, triggers fsync log replay
3893 	 *
3894 	 * We must make sure that when we fsync our inode foo we also log its
3895 	 * parent inode, otherwise after log replay the parent still has the
3896 	 * dentry with the "bar" name but our inode foo has a link count of 1
3897 	 * and doesn't have an inode ref with the name "bar" anymore.
3898 	 *
3899 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3900 	 * but it guarantees correctness at the expense of occasional full
3901 	 * transaction commits on fsync if our inode is a directory, or if our
3902 	 * inode is not a directory, logging its parent unnecessarily.
3903 	 */
3904 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3905 
3906 	/*
3907 	 * Same logic as for last_unlink_trans. We don't persist the generation
3908 	 * of the last transaction where this inode was used for a reflink
3909 	 * operation, so after eviction and reloading the inode we must be
3910 	 * pessimistic and assume the last transaction that modified the inode.
3911 	 */
3912 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3913 
3914 	path->slots[0]++;
3915 	if (inode->i_nlink != 1 ||
3916 	    path->slots[0] >= btrfs_header_nritems(leaf))
3917 		goto cache_acl;
3918 
3919 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3920 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3921 		goto cache_acl;
3922 
3923 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3924 	if (location.type == BTRFS_INODE_REF_KEY) {
3925 		struct btrfs_inode_ref *ref;
3926 
3927 		ref = (struct btrfs_inode_ref *)ptr;
3928 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3929 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3930 		struct btrfs_inode_extref *extref;
3931 
3932 		extref = (struct btrfs_inode_extref *)ptr;
3933 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3934 								     extref);
3935 	}
3936 cache_acl:
3937 	/*
3938 	 * try to precache a NULL acl entry for files that don't have
3939 	 * any xattrs or acls
3940 	 */
3941 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3942 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3943 	if (first_xattr_slot != -1) {
3944 		path->slots[0] = first_xattr_slot;
3945 		ret = btrfs_load_inode_props(inode, path);
3946 		if (ret)
3947 			btrfs_err(fs_info,
3948 				  "error loading props for ino %llu (root %llu): %d",
3949 				  btrfs_ino(BTRFS_I(inode)),
3950 				  btrfs_root_id(root), ret);
3951 	}
3952 	if (path != in_path)
3953 		btrfs_free_path(path);
3954 
3955 	if (!maybe_acls)
3956 		cache_no_acl(inode);
3957 
3958 	switch (inode->i_mode & S_IFMT) {
3959 	case S_IFREG:
3960 		inode->i_mapping->a_ops = &btrfs_aops;
3961 		inode->i_fop = &btrfs_file_operations;
3962 		inode->i_op = &btrfs_file_inode_operations;
3963 		break;
3964 	case S_IFDIR:
3965 		inode->i_fop = &btrfs_dir_file_operations;
3966 		inode->i_op = &btrfs_dir_inode_operations;
3967 		break;
3968 	case S_IFLNK:
3969 		inode->i_op = &btrfs_symlink_inode_operations;
3970 		inode_nohighmem(inode);
3971 		inode->i_mapping->a_ops = &btrfs_aops;
3972 		break;
3973 	default:
3974 		inode->i_op = &btrfs_special_inode_operations;
3975 		init_special_inode(inode, inode->i_mode, rdev);
3976 		break;
3977 	}
3978 
3979 	btrfs_sync_inode_flags_to_i_flags(inode);
3980 	return 0;
3981 }
3982 
3983 /*
3984  * given a leaf and an inode, copy the inode fields into the leaf
3985  */
3986 static void fill_inode_item(struct btrfs_trans_handle *trans,
3987 			    struct extent_buffer *leaf,
3988 			    struct btrfs_inode_item *item,
3989 			    struct inode *inode)
3990 {
3991 	struct btrfs_map_token token;
3992 	u64 flags;
3993 
3994 	btrfs_init_map_token(&token, leaf);
3995 
3996 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3997 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3998 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3999 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4000 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4001 
4002 	btrfs_set_token_timespec_sec(&token, &item->atime,
4003 				     inode_get_atime_sec(inode));
4004 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4005 				      inode_get_atime_nsec(inode));
4006 
4007 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4008 				     inode_get_mtime_sec(inode));
4009 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4010 				      inode_get_mtime_nsec(inode));
4011 
4012 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4013 				     inode_get_ctime_sec(inode));
4014 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4015 				      inode_get_ctime_nsec(inode));
4016 
4017 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4018 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4019 
4020 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4021 	btrfs_set_token_inode_generation(&token, item,
4022 					 BTRFS_I(inode)->generation);
4023 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4024 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4025 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4026 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4027 					  BTRFS_I(inode)->ro_flags);
4028 	btrfs_set_token_inode_flags(&token, item, flags);
4029 	btrfs_set_token_inode_block_group(&token, item, 0);
4030 }
4031 
4032 /*
4033  * copy everything in the in-memory inode into the btree.
4034  */
4035 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4036 					    struct btrfs_inode *inode)
4037 {
4038 	struct btrfs_inode_item *inode_item;
4039 	struct btrfs_path *path;
4040 	struct extent_buffer *leaf;
4041 	int ret;
4042 
4043 	path = btrfs_alloc_path();
4044 	if (!path)
4045 		return -ENOMEM;
4046 
4047 	ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
4048 	if (ret) {
4049 		if (ret > 0)
4050 			ret = -ENOENT;
4051 		goto failed;
4052 	}
4053 
4054 	leaf = path->nodes[0];
4055 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4056 				    struct btrfs_inode_item);
4057 
4058 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4059 	btrfs_mark_buffer_dirty(trans, leaf);
4060 	btrfs_set_inode_last_trans(trans, inode);
4061 	ret = 0;
4062 failed:
4063 	btrfs_free_path(path);
4064 	return ret;
4065 }
4066 
4067 /*
4068  * copy everything in the in-memory inode into the btree.
4069  */
4070 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4071 		       struct btrfs_inode *inode)
4072 {
4073 	struct btrfs_root *root = inode->root;
4074 	struct btrfs_fs_info *fs_info = root->fs_info;
4075 	int ret;
4076 
4077 	/*
4078 	 * If the inode is a free space inode, we can deadlock during commit
4079 	 * if we put it into the delayed code.
4080 	 *
4081 	 * The data relocation inode should also be directly updated
4082 	 * without delay
4083 	 */
4084 	if (!btrfs_is_free_space_inode(inode)
4085 	    && !btrfs_is_data_reloc_root(root)
4086 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4087 		btrfs_update_root_times(trans, root);
4088 
4089 		ret = btrfs_delayed_update_inode(trans, inode);
4090 		if (!ret)
4091 			btrfs_set_inode_last_trans(trans, inode);
4092 		return ret;
4093 	}
4094 
4095 	return btrfs_update_inode_item(trans, inode);
4096 }
4097 
4098 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4099 				struct btrfs_inode *inode)
4100 {
4101 	int ret;
4102 
4103 	ret = btrfs_update_inode(trans, inode);
4104 	if (ret == -ENOSPC)
4105 		return btrfs_update_inode_item(trans, inode);
4106 	return ret;
4107 }
4108 
4109 /*
4110  * unlink helper that gets used here in inode.c and in the tree logging
4111  * recovery code.  It remove a link in a directory with a given name, and
4112  * also drops the back refs in the inode to the directory
4113  */
4114 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4115 				struct btrfs_inode *dir,
4116 				struct btrfs_inode *inode,
4117 				const struct fscrypt_str *name,
4118 				struct btrfs_rename_ctx *rename_ctx)
4119 {
4120 	struct btrfs_root *root = dir->root;
4121 	struct btrfs_fs_info *fs_info = root->fs_info;
4122 	struct btrfs_path *path;
4123 	int ret = 0;
4124 	struct btrfs_dir_item *di;
4125 	u64 index;
4126 	u64 ino = btrfs_ino(inode);
4127 	u64 dir_ino = btrfs_ino(dir);
4128 
4129 	path = btrfs_alloc_path();
4130 	if (!path) {
4131 		ret = -ENOMEM;
4132 		goto out;
4133 	}
4134 
4135 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4136 	if (IS_ERR_OR_NULL(di)) {
4137 		ret = di ? PTR_ERR(di) : -ENOENT;
4138 		goto err;
4139 	}
4140 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4141 	if (ret)
4142 		goto err;
4143 	btrfs_release_path(path);
4144 
4145 	/*
4146 	 * If we don't have dir index, we have to get it by looking up
4147 	 * the inode ref, since we get the inode ref, remove it directly,
4148 	 * it is unnecessary to do delayed deletion.
4149 	 *
4150 	 * But if we have dir index, needn't search inode ref to get it.
4151 	 * Since the inode ref is close to the inode item, it is better
4152 	 * that we delay to delete it, and just do this deletion when
4153 	 * we update the inode item.
4154 	 */
4155 	if (inode->dir_index) {
4156 		ret = btrfs_delayed_delete_inode_ref(inode);
4157 		if (!ret) {
4158 			index = inode->dir_index;
4159 			goto skip_backref;
4160 		}
4161 	}
4162 
4163 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4164 	if (ret) {
4165 		btrfs_info(fs_info,
4166 			"failed to delete reference to %.*s, inode %llu parent %llu",
4167 			name->len, name->name, ino, dir_ino);
4168 		btrfs_abort_transaction(trans, ret);
4169 		goto err;
4170 	}
4171 skip_backref:
4172 	if (rename_ctx)
4173 		rename_ctx->index = index;
4174 
4175 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4176 	if (ret) {
4177 		btrfs_abort_transaction(trans, ret);
4178 		goto err;
4179 	}
4180 
4181 	/*
4182 	 * If we are in a rename context, we don't need to update anything in the
4183 	 * log. That will be done later during the rename by btrfs_log_new_name().
4184 	 * Besides that, doing it here would only cause extra unnecessary btree
4185 	 * operations on the log tree, increasing latency for applications.
4186 	 */
4187 	if (!rename_ctx) {
4188 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4189 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4190 	}
4191 
4192 	/*
4193 	 * If we have a pending delayed iput we could end up with the final iput
4194 	 * being run in btrfs-cleaner context.  If we have enough of these built
4195 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4196 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4197 	 * the inode we can run the delayed iput here without any issues as the
4198 	 * final iput won't be done until after we drop the ref we're currently
4199 	 * holding.
4200 	 */
4201 	btrfs_run_delayed_iput(fs_info, inode);
4202 err:
4203 	btrfs_free_path(path);
4204 	if (ret)
4205 		goto out;
4206 
4207 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4208 	inode_inc_iversion(&inode->vfs_inode);
4209 	inode_inc_iversion(&dir->vfs_inode);
4210  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4211 	ret = btrfs_update_inode(trans, dir);
4212 out:
4213 	return ret;
4214 }
4215 
4216 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4217 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4218 		       const struct fscrypt_str *name)
4219 {
4220 	int ret;
4221 
4222 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4223 	if (!ret) {
4224 		drop_nlink(&inode->vfs_inode);
4225 		ret = btrfs_update_inode(trans, inode);
4226 	}
4227 	return ret;
4228 }
4229 
4230 /*
4231  * helper to start transaction for unlink and rmdir.
4232  *
4233  * unlink and rmdir are special in btrfs, they do not always free space, so
4234  * if we cannot make our reservations the normal way try and see if there is
4235  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4236  * allow the unlink to occur.
4237  */
4238 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4239 {
4240 	struct btrfs_root *root = dir->root;
4241 
4242 	return btrfs_start_transaction_fallback_global_rsv(root,
4243 						   BTRFS_UNLINK_METADATA_UNITS);
4244 }
4245 
4246 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4247 {
4248 	struct btrfs_trans_handle *trans;
4249 	struct inode *inode = d_inode(dentry);
4250 	int ret;
4251 	struct fscrypt_name fname;
4252 
4253 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4254 	if (ret)
4255 		return ret;
4256 
4257 	/* This needs to handle no-key deletions later on */
4258 
4259 	trans = __unlink_start_trans(BTRFS_I(dir));
4260 	if (IS_ERR(trans)) {
4261 		ret = PTR_ERR(trans);
4262 		goto fscrypt_free;
4263 	}
4264 
4265 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4266 				false);
4267 
4268 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4269 				 &fname.disk_name);
4270 	if (ret)
4271 		goto end_trans;
4272 
4273 	if (inode->i_nlink == 0) {
4274 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4275 		if (ret)
4276 			goto end_trans;
4277 	}
4278 
4279 end_trans:
4280 	btrfs_end_transaction(trans);
4281 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4282 fscrypt_free:
4283 	fscrypt_free_filename(&fname);
4284 	return ret;
4285 }
4286 
4287 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4288 			       struct btrfs_inode *dir, struct dentry *dentry)
4289 {
4290 	struct btrfs_root *root = dir->root;
4291 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4292 	struct btrfs_path *path;
4293 	struct extent_buffer *leaf;
4294 	struct btrfs_dir_item *di;
4295 	struct btrfs_key key;
4296 	u64 index;
4297 	int ret;
4298 	u64 objectid;
4299 	u64 dir_ino = btrfs_ino(dir);
4300 	struct fscrypt_name fname;
4301 
4302 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4303 	if (ret)
4304 		return ret;
4305 
4306 	/* This needs to handle no-key deletions later on */
4307 
4308 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4309 		objectid = btrfs_root_id(inode->root);
4310 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4311 		objectid = inode->location.objectid;
4312 	} else {
4313 		WARN_ON(1);
4314 		fscrypt_free_filename(&fname);
4315 		return -EINVAL;
4316 	}
4317 
4318 	path = btrfs_alloc_path();
4319 	if (!path) {
4320 		ret = -ENOMEM;
4321 		goto out;
4322 	}
4323 
4324 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4325 				   &fname.disk_name, -1);
4326 	if (IS_ERR_OR_NULL(di)) {
4327 		ret = di ? PTR_ERR(di) : -ENOENT;
4328 		goto out;
4329 	}
4330 
4331 	leaf = path->nodes[0];
4332 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4333 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4334 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4335 	if (ret) {
4336 		btrfs_abort_transaction(trans, ret);
4337 		goto out;
4338 	}
4339 	btrfs_release_path(path);
4340 
4341 	/*
4342 	 * This is a placeholder inode for a subvolume we didn't have a
4343 	 * reference to at the time of the snapshot creation.  In the meantime
4344 	 * we could have renamed the real subvol link into our snapshot, so
4345 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4346 	 * Instead simply lookup the dir_index_item for this entry so we can
4347 	 * remove it.  Otherwise we know we have a ref to the root and we can
4348 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4349 	 */
4350 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4351 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4352 		if (IS_ERR_OR_NULL(di)) {
4353 			if (!di)
4354 				ret = -ENOENT;
4355 			else
4356 				ret = PTR_ERR(di);
4357 			btrfs_abort_transaction(trans, ret);
4358 			goto out;
4359 		}
4360 
4361 		leaf = path->nodes[0];
4362 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4363 		index = key.offset;
4364 		btrfs_release_path(path);
4365 	} else {
4366 		ret = btrfs_del_root_ref(trans, objectid,
4367 					 btrfs_root_id(root), dir_ino,
4368 					 &index, &fname.disk_name);
4369 		if (ret) {
4370 			btrfs_abort_transaction(trans, ret);
4371 			goto out;
4372 		}
4373 	}
4374 
4375 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4376 	if (ret) {
4377 		btrfs_abort_transaction(trans, ret);
4378 		goto out;
4379 	}
4380 
4381 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4382 	inode_inc_iversion(&dir->vfs_inode);
4383 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4384 	ret = btrfs_update_inode_fallback(trans, dir);
4385 	if (ret)
4386 		btrfs_abort_transaction(trans, ret);
4387 out:
4388 	btrfs_free_path(path);
4389 	fscrypt_free_filename(&fname);
4390 	return ret;
4391 }
4392 
4393 /*
4394  * Helper to check if the subvolume references other subvolumes or if it's
4395  * default.
4396  */
4397 static noinline int may_destroy_subvol(struct btrfs_root *root)
4398 {
4399 	struct btrfs_fs_info *fs_info = root->fs_info;
4400 	struct btrfs_path *path;
4401 	struct btrfs_dir_item *di;
4402 	struct btrfs_key key;
4403 	struct fscrypt_str name = FSTR_INIT("default", 7);
4404 	u64 dir_id;
4405 	int ret;
4406 
4407 	path = btrfs_alloc_path();
4408 	if (!path)
4409 		return -ENOMEM;
4410 
4411 	/* Make sure this root isn't set as the default subvol */
4412 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4413 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4414 				   dir_id, &name, 0);
4415 	if (di && !IS_ERR(di)) {
4416 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4417 		if (key.objectid == btrfs_root_id(root)) {
4418 			ret = -EPERM;
4419 			btrfs_err(fs_info,
4420 				  "deleting default subvolume %llu is not allowed",
4421 				  key.objectid);
4422 			goto out;
4423 		}
4424 		btrfs_release_path(path);
4425 	}
4426 
4427 	key.objectid = btrfs_root_id(root);
4428 	key.type = BTRFS_ROOT_REF_KEY;
4429 	key.offset = (u64)-1;
4430 
4431 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4432 	if (ret < 0)
4433 		goto out;
4434 	if (ret == 0) {
4435 		/*
4436 		 * Key with offset -1 found, there would have to exist a root
4437 		 * with such id, but this is out of valid range.
4438 		 */
4439 		ret = -EUCLEAN;
4440 		goto out;
4441 	}
4442 
4443 	ret = 0;
4444 	if (path->slots[0] > 0) {
4445 		path->slots[0]--;
4446 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4447 		if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4448 			ret = -ENOTEMPTY;
4449 	}
4450 out:
4451 	btrfs_free_path(path);
4452 	return ret;
4453 }
4454 
4455 /* Delete all dentries for inodes belonging to the root */
4456 static void btrfs_prune_dentries(struct btrfs_root *root)
4457 {
4458 	struct btrfs_fs_info *fs_info = root->fs_info;
4459 	struct btrfs_inode *inode;
4460 	u64 min_ino = 0;
4461 
4462 	if (!BTRFS_FS_ERROR(fs_info))
4463 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4464 
4465 	inode = btrfs_find_first_inode(root, min_ino);
4466 	while (inode) {
4467 		if (atomic_read(&inode->vfs_inode.i_count) > 1)
4468 			d_prune_aliases(&inode->vfs_inode);
4469 
4470 		min_ino = btrfs_ino(inode) + 1;
4471 		/*
4472 		 * btrfs_drop_inode() will have it removed from the inode
4473 		 * cache when its usage count hits zero.
4474 		 */
4475 		iput(&inode->vfs_inode);
4476 		cond_resched();
4477 		inode = btrfs_find_first_inode(root, min_ino);
4478 	}
4479 }
4480 
4481 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4482 {
4483 	struct btrfs_root *root = dir->root;
4484 	struct btrfs_fs_info *fs_info = root->fs_info;
4485 	struct inode *inode = d_inode(dentry);
4486 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4487 	struct btrfs_trans_handle *trans;
4488 	struct btrfs_block_rsv block_rsv;
4489 	u64 root_flags;
4490 	u64 qgroup_reserved = 0;
4491 	int ret;
4492 
4493 	down_write(&fs_info->subvol_sem);
4494 
4495 	/*
4496 	 * Don't allow to delete a subvolume with send in progress. This is
4497 	 * inside the inode lock so the error handling that has to drop the bit
4498 	 * again is not run concurrently.
4499 	 */
4500 	spin_lock(&dest->root_item_lock);
4501 	if (dest->send_in_progress) {
4502 		spin_unlock(&dest->root_item_lock);
4503 		btrfs_warn(fs_info,
4504 			   "attempt to delete subvolume %llu during send",
4505 			   btrfs_root_id(dest));
4506 		ret = -EPERM;
4507 		goto out_up_write;
4508 	}
4509 	if (atomic_read(&dest->nr_swapfiles)) {
4510 		spin_unlock(&dest->root_item_lock);
4511 		btrfs_warn(fs_info,
4512 			   "attempt to delete subvolume %llu with active swapfile",
4513 			   btrfs_root_id(root));
4514 		ret = -EPERM;
4515 		goto out_up_write;
4516 	}
4517 	root_flags = btrfs_root_flags(&dest->root_item);
4518 	btrfs_set_root_flags(&dest->root_item,
4519 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4520 	spin_unlock(&dest->root_item_lock);
4521 
4522 	ret = may_destroy_subvol(dest);
4523 	if (ret)
4524 		goto out_undead;
4525 
4526 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4527 	/*
4528 	 * One for dir inode,
4529 	 * two for dir entries,
4530 	 * two for root ref/backref.
4531 	 */
4532 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4533 	if (ret)
4534 		goto out_undead;
4535 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4536 
4537 	trans = btrfs_start_transaction(root, 0);
4538 	if (IS_ERR(trans)) {
4539 		ret = PTR_ERR(trans);
4540 		goto out_release;
4541 	}
4542 	ret = btrfs_record_root_in_trans(trans, root);
4543 	if (ret) {
4544 		btrfs_abort_transaction(trans, ret);
4545 		goto out_end_trans;
4546 	}
4547 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4548 	qgroup_reserved = 0;
4549 	trans->block_rsv = &block_rsv;
4550 	trans->bytes_reserved = block_rsv.size;
4551 
4552 	btrfs_record_snapshot_destroy(trans, dir);
4553 
4554 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4555 	if (ret) {
4556 		btrfs_abort_transaction(trans, ret);
4557 		goto out_end_trans;
4558 	}
4559 
4560 	ret = btrfs_record_root_in_trans(trans, dest);
4561 	if (ret) {
4562 		btrfs_abort_transaction(trans, ret);
4563 		goto out_end_trans;
4564 	}
4565 
4566 	memset(&dest->root_item.drop_progress, 0,
4567 		sizeof(dest->root_item.drop_progress));
4568 	btrfs_set_root_drop_level(&dest->root_item, 0);
4569 	btrfs_set_root_refs(&dest->root_item, 0);
4570 
4571 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4572 		ret = btrfs_insert_orphan_item(trans,
4573 					fs_info->tree_root,
4574 					btrfs_root_id(dest));
4575 		if (ret) {
4576 			btrfs_abort_transaction(trans, ret);
4577 			goto out_end_trans;
4578 		}
4579 	}
4580 
4581 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4582 				     BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4583 	if (ret && ret != -ENOENT) {
4584 		btrfs_abort_transaction(trans, ret);
4585 		goto out_end_trans;
4586 	}
4587 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4588 		ret = btrfs_uuid_tree_remove(trans,
4589 					  dest->root_item.received_uuid,
4590 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4591 					  btrfs_root_id(dest));
4592 		if (ret && ret != -ENOENT) {
4593 			btrfs_abort_transaction(trans, ret);
4594 			goto out_end_trans;
4595 		}
4596 	}
4597 
4598 	free_anon_bdev(dest->anon_dev);
4599 	dest->anon_dev = 0;
4600 out_end_trans:
4601 	trans->block_rsv = NULL;
4602 	trans->bytes_reserved = 0;
4603 	ret = btrfs_end_transaction(trans);
4604 	inode->i_flags |= S_DEAD;
4605 out_release:
4606 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4607 	if (qgroup_reserved)
4608 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4609 out_undead:
4610 	if (ret) {
4611 		spin_lock(&dest->root_item_lock);
4612 		root_flags = btrfs_root_flags(&dest->root_item);
4613 		btrfs_set_root_flags(&dest->root_item,
4614 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4615 		spin_unlock(&dest->root_item_lock);
4616 	}
4617 out_up_write:
4618 	up_write(&fs_info->subvol_sem);
4619 	if (!ret) {
4620 		d_invalidate(dentry);
4621 		btrfs_prune_dentries(dest);
4622 		ASSERT(dest->send_in_progress == 0);
4623 	}
4624 
4625 	return ret;
4626 }
4627 
4628 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4629 {
4630 	struct inode *inode = d_inode(dentry);
4631 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4632 	int ret = 0;
4633 	struct btrfs_trans_handle *trans;
4634 	u64 last_unlink_trans;
4635 	struct fscrypt_name fname;
4636 
4637 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4638 		return -ENOTEMPTY;
4639 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4640 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4641 			btrfs_err(fs_info,
4642 			"extent tree v2 doesn't support snapshot deletion yet");
4643 			return -EOPNOTSUPP;
4644 		}
4645 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4646 	}
4647 
4648 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4649 	if (ret)
4650 		return ret;
4651 
4652 	/* This needs to handle no-key deletions later on */
4653 
4654 	trans = __unlink_start_trans(BTRFS_I(dir));
4655 	if (IS_ERR(trans)) {
4656 		ret = PTR_ERR(trans);
4657 		goto out_notrans;
4658 	}
4659 
4660 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4661 		ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4662 		goto out;
4663 	}
4664 
4665 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4666 	if (ret)
4667 		goto out;
4668 
4669 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4670 
4671 	/* now the directory is empty */
4672 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4673 				 &fname.disk_name);
4674 	if (!ret) {
4675 		btrfs_i_size_write(BTRFS_I(inode), 0);
4676 		/*
4677 		 * Propagate the last_unlink_trans value of the deleted dir to
4678 		 * its parent directory. This is to prevent an unrecoverable
4679 		 * log tree in the case we do something like this:
4680 		 * 1) create dir foo
4681 		 * 2) create snapshot under dir foo
4682 		 * 3) delete the snapshot
4683 		 * 4) rmdir foo
4684 		 * 5) mkdir foo
4685 		 * 6) fsync foo or some file inside foo
4686 		 */
4687 		if (last_unlink_trans >= trans->transid)
4688 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4689 	}
4690 out:
4691 	btrfs_end_transaction(trans);
4692 out_notrans:
4693 	btrfs_btree_balance_dirty(fs_info);
4694 	fscrypt_free_filename(&fname);
4695 
4696 	return ret;
4697 }
4698 
4699 /*
4700  * Read, zero a chunk and write a block.
4701  *
4702  * @inode - inode that we're zeroing
4703  * @from - the offset to start zeroing
4704  * @len - the length to zero, 0 to zero the entire range respective to the
4705  *	offset
4706  * @front - zero up to the offset instead of from the offset on
4707  *
4708  * This will find the block for the "from" offset and cow the block and zero the
4709  * part we want to zero.  This is used with truncate and hole punching.
4710  */
4711 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4712 			 int front)
4713 {
4714 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4715 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4716 	struct extent_io_tree *io_tree = &inode->io_tree;
4717 	struct btrfs_ordered_extent *ordered;
4718 	struct extent_state *cached_state = NULL;
4719 	struct extent_changeset *data_reserved = NULL;
4720 	bool only_release_metadata = false;
4721 	u32 blocksize = fs_info->sectorsize;
4722 	pgoff_t index = from >> PAGE_SHIFT;
4723 	unsigned offset = from & (blocksize - 1);
4724 	struct folio *folio;
4725 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4726 	size_t write_bytes = blocksize;
4727 	int ret = 0;
4728 	u64 block_start;
4729 	u64 block_end;
4730 
4731 	if (IS_ALIGNED(offset, blocksize) &&
4732 	    (!len || IS_ALIGNED(len, blocksize)))
4733 		goto out;
4734 
4735 	block_start = round_down(from, blocksize);
4736 	block_end = block_start + blocksize - 1;
4737 
4738 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4739 					  blocksize, false);
4740 	if (ret < 0) {
4741 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4742 			/* For nocow case, no need to reserve data space */
4743 			only_release_metadata = true;
4744 		} else {
4745 			goto out;
4746 		}
4747 	}
4748 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4749 	if (ret < 0) {
4750 		if (!only_release_metadata)
4751 			btrfs_free_reserved_data_space(inode, data_reserved,
4752 						       block_start, blocksize);
4753 		goto out;
4754 	}
4755 again:
4756 	folio = __filemap_get_folio(mapping, index,
4757 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4758 	if (IS_ERR(folio)) {
4759 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4760 					     blocksize, true);
4761 		btrfs_delalloc_release_extents(inode, blocksize);
4762 		ret = -ENOMEM;
4763 		goto out;
4764 	}
4765 
4766 	if (!folio_test_uptodate(folio)) {
4767 		ret = btrfs_read_folio(NULL, folio);
4768 		folio_lock(folio);
4769 		if (folio->mapping != mapping) {
4770 			folio_unlock(folio);
4771 			folio_put(folio);
4772 			goto again;
4773 		}
4774 		if (!folio_test_uptodate(folio)) {
4775 			ret = -EIO;
4776 			goto out_unlock;
4777 		}
4778 	}
4779 
4780 	/*
4781 	 * We unlock the page after the io is completed and then re-lock it
4782 	 * above.  release_folio() could have come in between that and cleared
4783 	 * folio private, but left the page in the mapping.  Set the page mapped
4784 	 * here to make sure it's properly set for the subpage stuff.
4785 	 */
4786 	ret = set_folio_extent_mapped(folio);
4787 	if (ret < 0)
4788 		goto out_unlock;
4789 
4790 	folio_wait_writeback(folio);
4791 
4792 	lock_extent(io_tree, block_start, block_end, &cached_state);
4793 
4794 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4795 	if (ordered) {
4796 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4797 		folio_unlock(folio);
4798 		folio_put(folio);
4799 		btrfs_start_ordered_extent(ordered);
4800 		btrfs_put_ordered_extent(ordered);
4801 		goto again;
4802 	}
4803 
4804 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4805 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4806 			 &cached_state);
4807 
4808 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4809 					&cached_state);
4810 	if (ret) {
4811 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4812 		goto out_unlock;
4813 	}
4814 
4815 	if (offset != blocksize) {
4816 		if (!len)
4817 			len = blocksize - offset;
4818 		if (front)
4819 			folio_zero_range(folio, block_start - folio_pos(folio),
4820 					 offset);
4821 		else
4822 			folio_zero_range(folio,
4823 					 (block_start - folio_pos(folio)) + offset,
4824 					 len);
4825 	}
4826 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4827 				  block_end + 1 - block_start);
4828 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4829 			      block_end + 1 - block_start);
4830 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4831 
4832 	if (only_release_metadata)
4833 		set_extent_bit(&inode->io_tree, block_start, block_end,
4834 			       EXTENT_NORESERVE, NULL);
4835 
4836 out_unlock:
4837 	if (ret) {
4838 		if (only_release_metadata)
4839 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4840 		else
4841 			btrfs_delalloc_release_space(inode, data_reserved,
4842 					block_start, blocksize, true);
4843 	}
4844 	btrfs_delalloc_release_extents(inode, blocksize);
4845 	folio_unlock(folio);
4846 	folio_put(folio);
4847 out:
4848 	if (only_release_metadata)
4849 		btrfs_check_nocow_unlock(inode);
4850 	extent_changeset_free(data_reserved);
4851 	return ret;
4852 }
4853 
4854 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4855 {
4856 	struct btrfs_root *root = inode->root;
4857 	struct btrfs_fs_info *fs_info = root->fs_info;
4858 	struct btrfs_trans_handle *trans;
4859 	struct btrfs_drop_extents_args drop_args = { 0 };
4860 	int ret;
4861 
4862 	/*
4863 	 * If NO_HOLES is enabled, we don't need to do anything.
4864 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4865 	 * or btrfs_update_inode() will be called, which guarantee that the next
4866 	 * fsync will know this inode was changed and needs to be logged.
4867 	 */
4868 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4869 		return 0;
4870 
4871 	/*
4872 	 * 1 - for the one we're dropping
4873 	 * 1 - for the one we're adding
4874 	 * 1 - for updating the inode.
4875 	 */
4876 	trans = btrfs_start_transaction(root, 3);
4877 	if (IS_ERR(trans))
4878 		return PTR_ERR(trans);
4879 
4880 	drop_args.start = offset;
4881 	drop_args.end = offset + len;
4882 	drop_args.drop_cache = true;
4883 
4884 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4885 	if (ret) {
4886 		btrfs_abort_transaction(trans, ret);
4887 		btrfs_end_transaction(trans);
4888 		return ret;
4889 	}
4890 
4891 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4892 	if (ret) {
4893 		btrfs_abort_transaction(trans, ret);
4894 	} else {
4895 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4896 		btrfs_update_inode(trans, inode);
4897 	}
4898 	btrfs_end_transaction(trans);
4899 	return ret;
4900 }
4901 
4902 /*
4903  * This function puts in dummy file extents for the area we're creating a hole
4904  * for.  So if we are truncating this file to a larger size we need to insert
4905  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4906  * the range between oldsize and size
4907  */
4908 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4909 {
4910 	struct btrfs_root *root = inode->root;
4911 	struct btrfs_fs_info *fs_info = root->fs_info;
4912 	struct extent_io_tree *io_tree = &inode->io_tree;
4913 	struct extent_map *em = NULL;
4914 	struct extent_state *cached_state = NULL;
4915 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4916 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4917 	u64 last_byte;
4918 	u64 cur_offset;
4919 	u64 hole_size;
4920 	int ret = 0;
4921 
4922 	/*
4923 	 * If our size started in the middle of a block we need to zero out the
4924 	 * rest of the block before we expand the i_size, otherwise we could
4925 	 * expose stale data.
4926 	 */
4927 	ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4928 	if (ret)
4929 		return ret;
4930 
4931 	if (size <= hole_start)
4932 		return 0;
4933 
4934 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4935 					   &cached_state);
4936 	cur_offset = hole_start;
4937 	while (1) {
4938 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4939 		if (IS_ERR(em)) {
4940 			ret = PTR_ERR(em);
4941 			em = NULL;
4942 			break;
4943 		}
4944 		last_byte = min(extent_map_end(em), block_end);
4945 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4946 		hole_size = last_byte - cur_offset;
4947 
4948 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4949 			struct extent_map *hole_em;
4950 
4951 			ret = maybe_insert_hole(inode, cur_offset, hole_size);
4952 			if (ret)
4953 				break;
4954 
4955 			ret = btrfs_inode_set_file_extent_range(inode,
4956 							cur_offset, hole_size);
4957 			if (ret)
4958 				break;
4959 
4960 			hole_em = alloc_extent_map();
4961 			if (!hole_em) {
4962 				btrfs_drop_extent_map_range(inode, cur_offset,
4963 						    cur_offset + hole_size - 1,
4964 						    false);
4965 				btrfs_set_inode_full_sync(inode);
4966 				goto next;
4967 			}
4968 			hole_em->start = cur_offset;
4969 			hole_em->len = hole_size;
4970 			hole_em->orig_start = cur_offset;
4971 
4972 			hole_em->block_start = EXTENT_MAP_HOLE;
4973 			hole_em->block_len = 0;
4974 			hole_em->orig_block_len = 0;
4975 			hole_em->ram_bytes = hole_size;
4976 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4977 
4978 			ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4979 			free_extent_map(hole_em);
4980 		} else {
4981 			ret = btrfs_inode_set_file_extent_range(inode,
4982 							cur_offset, hole_size);
4983 			if (ret)
4984 				break;
4985 		}
4986 next:
4987 		free_extent_map(em);
4988 		em = NULL;
4989 		cur_offset = last_byte;
4990 		if (cur_offset >= block_end)
4991 			break;
4992 	}
4993 	free_extent_map(em);
4994 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4995 	return ret;
4996 }
4997 
4998 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4999 {
5000 	struct btrfs_root *root = BTRFS_I(inode)->root;
5001 	struct btrfs_trans_handle *trans;
5002 	loff_t oldsize = i_size_read(inode);
5003 	loff_t newsize = attr->ia_size;
5004 	int mask = attr->ia_valid;
5005 	int ret;
5006 
5007 	/*
5008 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5009 	 * special case where we need to update the times despite not having
5010 	 * these flags set.  For all other operations the VFS set these flags
5011 	 * explicitly if it wants a timestamp update.
5012 	 */
5013 	if (newsize != oldsize) {
5014 		inode_inc_iversion(inode);
5015 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5016 			inode_set_mtime_to_ts(inode,
5017 					      inode_set_ctime_current(inode));
5018 		}
5019 	}
5020 
5021 	if (newsize > oldsize) {
5022 		/*
5023 		 * Don't do an expanding truncate while snapshotting is ongoing.
5024 		 * This is to ensure the snapshot captures a fully consistent
5025 		 * state of this file - if the snapshot captures this expanding
5026 		 * truncation, it must capture all writes that happened before
5027 		 * this truncation.
5028 		 */
5029 		btrfs_drew_write_lock(&root->snapshot_lock);
5030 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5031 		if (ret) {
5032 			btrfs_drew_write_unlock(&root->snapshot_lock);
5033 			return ret;
5034 		}
5035 
5036 		trans = btrfs_start_transaction(root, 1);
5037 		if (IS_ERR(trans)) {
5038 			btrfs_drew_write_unlock(&root->snapshot_lock);
5039 			return PTR_ERR(trans);
5040 		}
5041 
5042 		i_size_write(inode, newsize);
5043 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5044 		pagecache_isize_extended(inode, oldsize, newsize);
5045 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5046 		btrfs_drew_write_unlock(&root->snapshot_lock);
5047 		btrfs_end_transaction(trans);
5048 	} else {
5049 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5050 
5051 		if (btrfs_is_zoned(fs_info)) {
5052 			ret = btrfs_wait_ordered_range(inode,
5053 					ALIGN(newsize, fs_info->sectorsize),
5054 					(u64)-1);
5055 			if (ret)
5056 				return ret;
5057 		}
5058 
5059 		/*
5060 		 * We're truncating a file that used to have good data down to
5061 		 * zero. Make sure any new writes to the file get on disk
5062 		 * on close.
5063 		 */
5064 		if (newsize == 0)
5065 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5066 				&BTRFS_I(inode)->runtime_flags);
5067 
5068 		truncate_setsize(inode, newsize);
5069 
5070 		inode_dio_wait(inode);
5071 
5072 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5073 		if (ret && inode->i_nlink) {
5074 			int err;
5075 
5076 			/*
5077 			 * Truncate failed, so fix up the in-memory size. We
5078 			 * adjusted disk_i_size down as we removed extents, so
5079 			 * wait for disk_i_size to be stable and then update the
5080 			 * in-memory size to match.
5081 			 */
5082 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5083 			if (err)
5084 				return err;
5085 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5086 		}
5087 	}
5088 
5089 	return ret;
5090 }
5091 
5092 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5093 			 struct iattr *attr)
5094 {
5095 	struct inode *inode = d_inode(dentry);
5096 	struct btrfs_root *root = BTRFS_I(inode)->root;
5097 	int err;
5098 
5099 	if (btrfs_root_readonly(root))
5100 		return -EROFS;
5101 
5102 	err = setattr_prepare(idmap, dentry, attr);
5103 	if (err)
5104 		return err;
5105 
5106 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5107 		err = btrfs_setsize(inode, attr);
5108 		if (err)
5109 			return err;
5110 	}
5111 
5112 	if (attr->ia_valid) {
5113 		setattr_copy(idmap, inode, attr);
5114 		inode_inc_iversion(inode);
5115 		err = btrfs_dirty_inode(BTRFS_I(inode));
5116 
5117 		if (!err && attr->ia_valid & ATTR_MODE)
5118 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5119 	}
5120 
5121 	return err;
5122 }
5123 
5124 /*
5125  * While truncating the inode pages during eviction, we get the VFS
5126  * calling btrfs_invalidate_folio() against each folio of the inode. This
5127  * is slow because the calls to btrfs_invalidate_folio() result in a
5128  * huge amount of calls to lock_extent() and clear_extent_bit(),
5129  * which keep merging and splitting extent_state structures over and over,
5130  * wasting lots of time.
5131  *
5132  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5133  * skip all those expensive operations on a per folio basis and do only
5134  * the ordered io finishing, while we release here the extent_map and
5135  * extent_state structures, without the excessive merging and splitting.
5136  */
5137 static void evict_inode_truncate_pages(struct inode *inode)
5138 {
5139 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5140 	struct rb_node *node;
5141 
5142 	ASSERT(inode->i_state & I_FREEING);
5143 	truncate_inode_pages_final(&inode->i_data);
5144 
5145 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5146 
5147 	/*
5148 	 * Keep looping until we have no more ranges in the io tree.
5149 	 * We can have ongoing bios started by readahead that have
5150 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5151 	 * still in progress (unlocked the pages in the bio but did not yet
5152 	 * unlocked the ranges in the io tree). Therefore this means some
5153 	 * ranges can still be locked and eviction started because before
5154 	 * submitting those bios, which are executed by a separate task (work
5155 	 * queue kthread), inode references (inode->i_count) were not taken
5156 	 * (which would be dropped in the end io callback of each bio).
5157 	 * Therefore here we effectively end up waiting for those bios and
5158 	 * anyone else holding locked ranges without having bumped the inode's
5159 	 * reference count - if we don't do it, when they access the inode's
5160 	 * io_tree to unlock a range it may be too late, leading to an
5161 	 * use-after-free issue.
5162 	 */
5163 	spin_lock(&io_tree->lock);
5164 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5165 		struct extent_state *state;
5166 		struct extent_state *cached_state = NULL;
5167 		u64 start;
5168 		u64 end;
5169 		unsigned state_flags;
5170 
5171 		node = rb_first(&io_tree->state);
5172 		state = rb_entry(node, struct extent_state, rb_node);
5173 		start = state->start;
5174 		end = state->end;
5175 		state_flags = state->state;
5176 		spin_unlock(&io_tree->lock);
5177 
5178 		lock_extent(io_tree, start, end, &cached_state);
5179 
5180 		/*
5181 		 * If still has DELALLOC flag, the extent didn't reach disk,
5182 		 * and its reserved space won't be freed by delayed_ref.
5183 		 * So we need to free its reserved space here.
5184 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5185 		 *
5186 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5187 		 */
5188 		if (state_flags & EXTENT_DELALLOC)
5189 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5190 					       end - start + 1, NULL);
5191 
5192 		clear_extent_bit(io_tree, start, end,
5193 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5194 				 &cached_state);
5195 
5196 		cond_resched();
5197 		spin_lock(&io_tree->lock);
5198 	}
5199 	spin_unlock(&io_tree->lock);
5200 }
5201 
5202 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5203 							struct btrfs_block_rsv *rsv)
5204 {
5205 	struct btrfs_fs_info *fs_info = root->fs_info;
5206 	struct btrfs_trans_handle *trans;
5207 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5208 	int ret;
5209 
5210 	/*
5211 	 * Eviction should be taking place at some place safe because of our
5212 	 * delayed iputs.  However the normal flushing code will run delayed
5213 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5214 	 *
5215 	 * We reserve the delayed_refs_extra here again because we can't use
5216 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5217 	 * above.  We reserve our extra bit here because we generate a ton of
5218 	 * delayed refs activity by truncating.
5219 	 *
5220 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5221 	 * if we fail to make this reservation we can re-try without the
5222 	 * delayed_refs_extra so we can make some forward progress.
5223 	 */
5224 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5225 				     BTRFS_RESERVE_FLUSH_EVICT);
5226 	if (ret) {
5227 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5228 					     BTRFS_RESERVE_FLUSH_EVICT);
5229 		if (ret) {
5230 			btrfs_warn(fs_info,
5231 				   "could not allocate space for delete; will truncate on mount");
5232 			return ERR_PTR(-ENOSPC);
5233 		}
5234 		delayed_refs_extra = 0;
5235 	}
5236 
5237 	trans = btrfs_join_transaction(root);
5238 	if (IS_ERR(trans))
5239 		return trans;
5240 
5241 	if (delayed_refs_extra) {
5242 		trans->block_rsv = &fs_info->trans_block_rsv;
5243 		trans->bytes_reserved = delayed_refs_extra;
5244 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5245 					delayed_refs_extra, true);
5246 	}
5247 	return trans;
5248 }
5249 
5250 void btrfs_evict_inode(struct inode *inode)
5251 {
5252 	struct btrfs_fs_info *fs_info;
5253 	struct btrfs_trans_handle *trans;
5254 	struct btrfs_root *root = BTRFS_I(inode)->root;
5255 	struct btrfs_block_rsv *rsv = NULL;
5256 	int ret;
5257 
5258 	trace_btrfs_inode_evict(inode);
5259 
5260 	if (!root) {
5261 		fsverity_cleanup_inode(inode);
5262 		clear_inode(inode);
5263 		return;
5264 	}
5265 
5266 	fs_info = inode_to_fs_info(inode);
5267 	evict_inode_truncate_pages(inode);
5268 
5269 	if (inode->i_nlink &&
5270 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5271 	      btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5272 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5273 		goto out;
5274 
5275 	if (is_bad_inode(inode))
5276 		goto out;
5277 
5278 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5279 		goto out;
5280 
5281 	if (inode->i_nlink > 0) {
5282 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5283 		       btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5284 		goto out;
5285 	}
5286 
5287 	/*
5288 	 * This makes sure the inode item in tree is uptodate and the space for
5289 	 * the inode update is released.
5290 	 */
5291 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5292 	if (ret)
5293 		goto out;
5294 
5295 	/*
5296 	 * This drops any pending insert or delete operations we have for this
5297 	 * inode.  We could have a delayed dir index deletion queued up, but
5298 	 * we're removing the inode completely so that'll be taken care of in
5299 	 * the truncate.
5300 	 */
5301 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5302 
5303 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5304 	if (!rsv)
5305 		goto out;
5306 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5307 	rsv->failfast = true;
5308 
5309 	btrfs_i_size_write(BTRFS_I(inode), 0);
5310 
5311 	while (1) {
5312 		struct btrfs_truncate_control control = {
5313 			.inode = BTRFS_I(inode),
5314 			.ino = btrfs_ino(BTRFS_I(inode)),
5315 			.new_size = 0,
5316 			.min_type = 0,
5317 		};
5318 
5319 		trans = evict_refill_and_join(root, rsv);
5320 		if (IS_ERR(trans))
5321 			goto out;
5322 
5323 		trans->block_rsv = rsv;
5324 
5325 		ret = btrfs_truncate_inode_items(trans, root, &control);
5326 		trans->block_rsv = &fs_info->trans_block_rsv;
5327 		btrfs_end_transaction(trans);
5328 		/*
5329 		 * We have not added new delayed items for our inode after we
5330 		 * have flushed its delayed items, so no need to throttle on
5331 		 * delayed items. However we have modified extent buffers.
5332 		 */
5333 		btrfs_btree_balance_dirty_nodelay(fs_info);
5334 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5335 			goto out;
5336 		else if (!ret)
5337 			break;
5338 	}
5339 
5340 	/*
5341 	 * Errors here aren't a big deal, it just means we leave orphan items in
5342 	 * the tree. They will be cleaned up on the next mount. If the inode
5343 	 * number gets reused, cleanup deletes the orphan item without doing
5344 	 * anything, and unlink reuses the existing orphan item.
5345 	 *
5346 	 * If it turns out that we are dropping too many of these, we might want
5347 	 * to add a mechanism for retrying these after a commit.
5348 	 */
5349 	trans = evict_refill_and_join(root, rsv);
5350 	if (!IS_ERR(trans)) {
5351 		trans->block_rsv = rsv;
5352 		btrfs_orphan_del(trans, BTRFS_I(inode));
5353 		trans->block_rsv = &fs_info->trans_block_rsv;
5354 		btrfs_end_transaction(trans);
5355 	}
5356 
5357 out:
5358 	btrfs_free_block_rsv(fs_info, rsv);
5359 	/*
5360 	 * If we didn't successfully delete, the orphan item will still be in
5361 	 * the tree and we'll retry on the next mount. Again, we might also want
5362 	 * to retry these periodically in the future.
5363 	 */
5364 	btrfs_remove_delayed_node(BTRFS_I(inode));
5365 	fsverity_cleanup_inode(inode);
5366 	clear_inode(inode);
5367 }
5368 
5369 /*
5370  * Return the key found in the dir entry in the location pointer, fill @type
5371  * with BTRFS_FT_*, and return 0.
5372  *
5373  * If no dir entries were found, returns -ENOENT.
5374  * If found a corrupted location in dir entry, returns -EUCLEAN.
5375  */
5376 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5377 			       struct btrfs_key *location, u8 *type)
5378 {
5379 	struct btrfs_dir_item *di;
5380 	struct btrfs_path *path;
5381 	struct btrfs_root *root = dir->root;
5382 	int ret = 0;
5383 	struct fscrypt_name fname;
5384 
5385 	path = btrfs_alloc_path();
5386 	if (!path)
5387 		return -ENOMEM;
5388 
5389 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5390 	if (ret < 0)
5391 		goto out;
5392 	/*
5393 	 * fscrypt_setup_filename() should never return a positive value, but
5394 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5395 	 */
5396 	ASSERT(ret == 0);
5397 
5398 	/* This needs to handle no-key deletions later on */
5399 
5400 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5401 				   &fname.disk_name, 0);
5402 	if (IS_ERR_OR_NULL(di)) {
5403 		ret = di ? PTR_ERR(di) : -ENOENT;
5404 		goto out;
5405 	}
5406 
5407 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5408 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5409 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5410 		ret = -EUCLEAN;
5411 		btrfs_warn(root->fs_info,
5412 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5413 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5414 			   location->objectid, location->type, location->offset);
5415 	}
5416 	if (!ret)
5417 		*type = btrfs_dir_ftype(path->nodes[0], di);
5418 out:
5419 	fscrypt_free_filename(&fname);
5420 	btrfs_free_path(path);
5421 	return ret;
5422 }
5423 
5424 /*
5425  * when we hit a tree root in a directory, the btrfs part of the inode
5426  * needs to be changed to reflect the root directory of the tree root.  This
5427  * is kind of like crossing a mount point.
5428  */
5429 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5430 				    struct btrfs_inode *dir,
5431 				    struct dentry *dentry,
5432 				    struct btrfs_key *location,
5433 				    struct btrfs_root **sub_root)
5434 {
5435 	struct btrfs_path *path;
5436 	struct btrfs_root *new_root;
5437 	struct btrfs_root_ref *ref;
5438 	struct extent_buffer *leaf;
5439 	struct btrfs_key key;
5440 	int ret;
5441 	int err = 0;
5442 	struct fscrypt_name fname;
5443 
5444 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5445 	if (ret)
5446 		return ret;
5447 
5448 	path = btrfs_alloc_path();
5449 	if (!path) {
5450 		err = -ENOMEM;
5451 		goto out;
5452 	}
5453 
5454 	err = -ENOENT;
5455 	key.objectid = btrfs_root_id(dir->root);
5456 	key.type = BTRFS_ROOT_REF_KEY;
5457 	key.offset = location->objectid;
5458 
5459 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5460 	if (ret) {
5461 		if (ret < 0)
5462 			err = ret;
5463 		goto out;
5464 	}
5465 
5466 	leaf = path->nodes[0];
5467 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5468 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5469 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5470 		goto out;
5471 
5472 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5473 				   (unsigned long)(ref + 1), fname.disk_name.len);
5474 	if (ret)
5475 		goto out;
5476 
5477 	btrfs_release_path(path);
5478 
5479 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5480 	if (IS_ERR(new_root)) {
5481 		err = PTR_ERR(new_root);
5482 		goto out;
5483 	}
5484 
5485 	*sub_root = new_root;
5486 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5487 	location->type = BTRFS_INODE_ITEM_KEY;
5488 	location->offset = 0;
5489 	err = 0;
5490 out:
5491 	btrfs_free_path(path);
5492 	fscrypt_free_filename(&fname);
5493 	return err;
5494 }
5495 
5496 static void inode_tree_add(struct btrfs_inode *inode)
5497 {
5498 	struct btrfs_root *root = inode->root;
5499 	struct btrfs_inode *entry;
5500 	struct rb_node **p;
5501 	struct rb_node *parent;
5502 	struct rb_node *new = &inode->rb_node;
5503 	u64 ino = btrfs_ino(inode);
5504 
5505 	if (inode_unhashed(&inode->vfs_inode))
5506 		return;
5507 	parent = NULL;
5508 	spin_lock(&root->inode_lock);
5509 	p = &root->inode_tree.rb_node;
5510 	while (*p) {
5511 		parent = *p;
5512 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5513 
5514 		if (ino < btrfs_ino(entry))
5515 			p = &parent->rb_left;
5516 		else if (ino > btrfs_ino(entry))
5517 			p = &parent->rb_right;
5518 		else {
5519 			WARN_ON(!(entry->vfs_inode.i_state &
5520 				  (I_WILL_FREE | I_FREEING)));
5521 			rb_replace_node(parent, new, &root->inode_tree);
5522 			RB_CLEAR_NODE(parent);
5523 			spin_unlock(&root->inode_lock);
5524 			return;
5525 		}
5526 	}
5527 	rb_link_node(new, parent, p);
5528 	rb_insert_color(new, &root->inode_tree);
5529 	spin_unlock(&root->inode_lock);
5530 }
5531 
5532 static void inode_tree_del(struct btrfs_inode *inode)
5533 {
5534 	struct btrfs_root *root = inode->root;
5535 	int empty = 0;
5536 
5537 	spin_lock(&root->inode_lock);
5538 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5539 		rb_erase(&inode->rb_node, &root->inode_tree);
5540 		RB_CLEAR_NODE(&inode->rb_node);
5541 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5542 	}
5543 	spin_unlock(&root->inode_lock);
5544 
5545 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5546 		spin_lock(&root->inode_lock);
5547 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5548 		spin_unlock(&root->inode_lock);
5549 		if (empty)
5550 			btrfs_add_dead_root(root);
5551 	}
5552 }
5553 
5554 
5555 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5556 {
5557 	struct btrfs_iget_args *args = p;
5558 
5559 	inode->i_ino = args->ino;
5560 	BTRFS_I(inode)->location.objectid = args->ino;
5561 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5562 	BTRFS_I(inode)->location.offset = 0;
5563 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5564 
5565 	if (args->root && args->root == args->root->fs_info->tree_root &&
5566 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5567 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5568 			&BTRFS_I(inode)->runtime_flags);
5569 	return 0;
5570 }
5571 
5572 static int btrfs_find_actor(struct inode *inode, void *opaque)
5573 {
5574 	struct btrfs_iget_args *args = opaque;
5575 
5576 	return args->ino == BTRFS_I(inode)->location.objectid &&
5577 		args->root == BTRFS_I(inode)->root;
5578 }
5579 
5580 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5581 				       struct btrfs_root *root)
5582 {
5583 	struct inode *inode;
5584 	struct btrfs_iget_args args;
5585 	unsigned long hashval = btrfs_inode_hash(ino, root);
5586 
5587 	args.ino = ino;
5588 	args.root = root;
5589 
5590 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5591 			     btrfs_init_locked_inode,
5592 			     (void *)&args);
5593 	return inode;
5594 }
5595 
5596 /*
5597  * Get an inode object given its inode number and corresponding root.
5598  * Path can be preallocated to prevent recursing back to iget through
5599  * allocator. NULL is also valid but may require an additional allocation
5600  * later.
5601  */
5602 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5603 			      struct btrfs_root *root, struct btrfs_path *path)
5604 {
5605 	struct inode *inode;
5606 
5607 	inode = btrfs_iget_locked(s, ino, root);
5608 	if (!inode)
5609 		return ERR_PTR(-ENOMEM);
5610 
5611 	if (inode->i_state & I_NEW) {
5612 		int ret;
5613 
5614 		ret = btrfs_read_locked_inode(inode, path);
5615 		if (!ret) {
5616 			inode_tree_add(BTRFS_I(inode));
5617 			unlock_new_inode(inode);
5618 		} else {
5619 			iget_failed(inode);
5620 			/*
5621 			 * ret > 0 can come from btrfs_search_slot called by
5622 			 * btrfs_read_locked_inode, this means the inode item
5623 			 * was not found.
5624 			 */
5625 			if (ret > 0)
5626 				ret = -ENOENT;
5627 			inode = ERR_PTR(ret);
5628 		}
5629 	}
5630 
5631 	return inode;
5632 }
5633 
5634 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5635 {
5636 	return btrfs_iget_path(s, ino, root, NULL);
5637 }
5638 
5639 static struct inode *new_simple_dir(struct inode *dir,
5640 				    struct btrfs_key *key,
5641 				    struct btrfs_root *root)
5642 {
5643 	struct timespec64 ts;
5644 	struct inode *inode = new_inode(dir->i_sb);
5645 
5646 	if (!inode)
5647 		return ERR_PTR(-ENOMEM);
5648 
5649 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5650 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5651 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5652 
5653 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5654 	/*
5655 	 * We only need lookup, the rest is read-only and there's no inode
5656 	 * associated with the dentry
5657 	 */
5658 	inode->i_op = &simple_dir_inode_operations;
5659 	inode->i_opflags &= ~IOP_XATTR;
5660 	inode->i_fop = &simple_dir_operations;
5661 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5662 
5663 	ts = inode_set_ctime_current(inode);
5664 	inode_set_mtime_to_ts(inode, ts);
5665 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5666 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5667 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5668 
5669 	inode->i_uid = dir->i_uid;
5670 	inode->i_gid = dir->i_gid;
5671 
5672 	return inode;
5673 }
5674 
5675 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5676 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5677 static_assert(BTRFS_FT_DIR == FT_DIR);
5678 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5679 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5680 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5681 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5682 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5683 
5684 static inline u8 btrfs_inode_type(struct inode *inode)
5685 {
5686 	return fs_umode_to_ftype(inode->i_mode);
5687 }
5688 
5689 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5690 {
5691 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5692 	struct inode *inode;
5693 	struct btrfs_root *root = BTRFS_I(dir)->root;
5694 	struct btrfs_root *sub_root = root;
5695 	struct btrfs_key location;
5696 	u8 di_type = 0;
5697 	int ret = 0;
5698 
5699 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5700 		return ERR_PTR(-ENAMETOOLONG);
5701 
5702 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5703 	if (ret < 0)
5704 		return ERR_PTR(ret);
5705 
5706 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5707 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5708 		if (IS_ERR(inode))
5709 			return inode;
5710 
5711 		/* Do extra check against inode mode with di_type */
5712 		if (btrfs_inode_type(inode) != di_type) {
5713 			btrfs_crit(fs_info,
5714 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5715 				  inode->i_mode, btrfs_inode_type(inode),
5716 				  di_type);
5717 			iput(inode);
5718 			return ERR_PTR(-EUCLEAN);
5719 		}
5720 		return inode;
5721 	}
5722 
5723 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5724 				       &location, &sub_root);
5725 	if (ret < 0) {
5726 		if (ret != -ENOENT)
5727 			inode = ERR_PTR(ret);
5728 		else
5729 			inode = new_simple_dir(dir, &location, root);
5730 	} else {
5731 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5732 		btrfs_put_root(sub_root);
5733 
5734 		if (IS_ERR(inode))
5735 			return inode;
5736 
5737 		down_read(&fs_info->cleanup_work_sem);
5738 		if (!sb_rdonly(inode->i_sb))
5739 			ret = btrfs_orphan_cleanup(sub_root);
5740 		up_read(&fs_info->cleanup_work_sem);
5741 		if (ret) {
5742 			iput(inode);
5743 			inode = ERR_PTR(ret);
5744 		}
5745 	}
5746 
5747 	return inode;
5748 }
5749 
5750 static int btrfs_dentry_delete(const struct dentry *dentry)
5751 {
5752 	struct btrfs_root *root;
5753 	struct inode *inode = d_inode(dentry);
5754 
5755 	if (!inode && !IS_ROOT(dentry))
5756 		inode = d_inode(dentry->d_parent);
5757 
5758 	if (inode) {
5759 		root = BTRFS_I(inode)->root;
5760 		if (btrfs_root_refs(&root->root_item) == 0)
5761 			return 1;
5762 
5763 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5764 			return 1;
5765 	}
5766 	return 0;
5767 }
5768 
5769 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5770 				   unsigned int flags)
5771 {
5772 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5773 
5774 	if (inode == ERR_PTR(-ENOENT))
5775 		inode = NULL;
5776 	return d_splice_alias(inode, dentry);
5777 }
5778 
5779 /*
5780  * Find the highest existing sequence number in a directory and then set the
5781  * in-memory index_cnt variable to the first free sequence number.
5782  */
5783 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5784 {
5785 	struct btrfs_root *root = inode->root;
5786 	struct btrfs_key key, found_key;
5787 	struct btrfs_path *path;
5788 	struct extent_buffer *leaf;
5789 	int ret;
5790 
5791 	key.objectid = btrfs_ino(inode);
5792 	key.type = BTRFS_DIR_INDEX_KEY;
5793 	key.offset = (u64)-1;
5794 
5795 	path = btrfs_alloc_path();
5796 	if (!path)
5797 		return -ENOMEM;
5798 
5799 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5800 	if (ret < 0)
5801 		goto out;
5802 	/* FIXME: we should be able to handle this */
5803 	if (ret == 0)
5804 		goto out;
5805 	ret = 0;
5806 
5807 	if (path->slots[0] == 0) {
5808 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5809 		goto out;
5810 	}
5811 
5812 	path->slots[0]--;
5813 
5814 	leaf = path->nodes[0];
5815 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5816 
5817 	if (found_key.objectid != btrfs_ino(inode) ||
5818 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5819 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5820 		goto out;
5821 	}
5822 
5823 	inode->index_cnt = found_key.offset + 1;
5824 out:
5825 	btrfs_free_path(path);
5826 	return ret;
5827 }
5828 
5829 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5830 {
5831 	int ret = 0;
5832 
5833 	btrfs_inode_lock(dir, 0);
5834 	if (dir->index_cnt == (u64)-1) {
5835 		ret = btrfs_inode_delayed_dir_index_count(dir);
5836 		if (ret) {
5837 			ret = btrfs_set_inode_index_count(dir);
5838 			if (ret)
5839 				goto out;
5840 		}
5841 	}
5842 
5843 	/* index_cnt is the index number of next new entry, so decrement it. */
5844 	*index = dir->index_cnt - 1;
5845 out:
5846 	btrfs_inode_unlock(dir, 0);
5847 
5848 	return ret;
5849 }
5850 
5851 /*
5852  * All this infrastructure exists because dir_emit can fault, and we are holding
5853  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5854  * our information into that, and then dir_emit from the buffer.  This is
5855  * similar to what NFS does, only we don't keep the buffer around in pagecache
5856  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5857  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5858  * tree lock.
5859  */
5860 static int btrfs_opendir(struct inode *inode, struct file *file)
5861 {
5862 	struct btrfs_file_private *private;
5863 	u64 last_index;
5864 	int ret;
5865 
5866 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5867 	if (ret)
5868 		return ret;
5869 
5870 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5871 	if (!private)
5872 		return -ENOMEM;
5873 	private->last_index = last_index;
5874 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5875 	if (!private->filldir_buf) {
5876 		kfree(private);
5877 		return -ENOMEM;
5878 	}
5879 	file->private_data = private;
5880 	return 0;
5881 }
5882 
5883 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5884 {
5885 	struct btrfs_file_private *private = file->private_data;
5886 	int ret;
5887 
5888 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5889 				       &private->last_index);
5890 	if (ret)
5891 		return ret;
5892 
5893 	return generic_file_llseek(file, offset, whence);
5894 }
5895 
5896 struct dir_entry {
5897 	u64 ino;
5898 	u64 offset;
5899 	unsigned type;
5900 	int name_len;
5901 };
5902 
5903 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5904 {
5905 	while (entries--) {
5906 		struct dir_entry *entry = addr;
5907 		char *name = (char *)(entry + 1);
5908 
5909 		ctx->pos = get_unaligned(&entry->offset);
5910 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5911 					 get_unaligned(&entry->ino),
5912 					 get_unaligned(&entry->type)))
5913 			return 1;
5914 		addr += sizeof(struct dir_entry) +
5915 			get_unaligned(&entry->name_len);
5916 		ctx->pos++;
5917 	}
5918 	return 0;
5919 }
5920 
5921 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5922 {
5923 	struct inode *inode = file_inode(file);
5924 	struct btrfs_root *root = BTRFS_I(inode)->root;
5925 	struct btrfs_file_private *private = file->private_data;
5926 	struct btrfs_dir_item *di;
5927 	struct btrfs_key key;
5928 	struct btrfs_key found_key;
5929 	struct btrfs_path *path;
5930 	void *addr;
5931 	LIST_HEAD(ins_list);
5932 	LIST_HEAD(del_list);
5933 	int ret;
5934 	char *name_ptr;
5935 	int name_len;
5936 	int entries = 0;
5937 	int total_len = 0;
5938 	bool put = false;
5939 	struct btrfs_key location;
5940 
5941 	if (!dir_emit_dots(file, ctx))
5942 		return 0;
5943 
5944 	path = btrfs_alloc_path();
5945 	if (!path)
5946 		return -ENOMEM;
5947 
5948 	addr = private->filldir_buf;
5949 	path->reada = READA_FORWARD;
5950 
5951 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5952 					      &ins_list, &del_list);
5953 
5954 again:
5955 	key.type = BTRFS_DIR_INDEX_KEY;
5956 	key.offset = ctx->pos;
5957 	key.objectid = btrfs_ino(BTRFS_I(inode));
5958 
5959 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5960 		struct dir_entry *entry;
5961 		struct extent_buffer *leaf = path->nodes[0];
5962 		u8 ftype;
5963 
5964 		if (found_key.objectid != key.objectid)
5965 			break;
5966 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5967 			break;
5968 		if (found_key.offset < ctx->pos)
5969 			continue;
5970 		if (found_key.offset > private->last_index)
5971 			break;
5972 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5973 			continue;
5974 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5975 		name_len = btrfs_dir_name_len(leaf, di);
5976 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5977 		    PAGE_SIZE) {
5978 			btrfs_release_path(path);
5979 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5980 			if (ret)
5981 				goto nopos;
5982 			addr = private->filldir_buf;
5983 			entries = 0;
5984 			total_len = 0;
5985 			goto again;
5986 		}
5987 
5988 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5989 		entry = addr;
5990 		name_ptr = (char *)(entry + 1);
5991 		read_extent_buffer(leaf, name_ptr,
5992 				   (unsigned long)(di + 1), name_len);
5993 		put_unaligned(name_len, &entry->name_len);
5994 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5995 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5996 		put_unaligned(location.objectid, &entry->ino);
5997 		put_unaligned(found_key.offset, &entry->offset);
5998 		entries++;
5999 		addr += sizeof(struct dir_entry) + name_len;
6000 		total_len += sizeof(struct dir_entry) + name_len;
6001 	}
6002 	/* Catch error encountered during iteration */
6003 	if (ret < 0)
6004 		goto err;
6005 
6006 	btrfs_release_path(path);
6007 
6008 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6009 	if (ret)
6010 		goto nopos;
6011 
6012 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6013 	if (ret)
6014 		goto nopos;
6015 
6016 	/*
6017 	 * Stop new entries from being returned after we return the last
6018 	 * entry.
6019 	 *
6020 	 * New directory entries are assigned a strictly increasing
6021 	 * offset.  This means that new entries created during readdir
6022 	 * are *guaranteed* to be seen in the future by that readdir.
6023 	 * This has broken buggy programs which operate on names as
6024 	 * they're returned by readdir.  Until we re-use freed offsets
6025 	 * we have this hack to stop new entries from being returned
6026 	 * under the assumption that they'll never reach this huge
6027 	 * offset.
6028 	 *
6029 	 * This is being careful not to overflow 32bit loff_t unless the
6030 	 * last entry requires it because doing so has broken 32bit apps
6031 	 * in the past.
6032 	 */
6033 	if (ctx->pos >= INT_MAX)
6034 		ctx->pos = LLONG_MAX;
6035 	else
6036 		ctx->pos = INT_MAX;
6037 nopos:
6038 	ret = 0;
6039 err:
6040 	if (put)
6041 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6042 	btrfs_free_path(path);
6043 	return ret;
6044 }
6045 
6046 /*
6047  * This is somewhat expensive, updating the tree every time the
6048  * inode changes.  But, it is most likely to find the inode in cache.
6049  * FIXME, needs more benchmarking...there are no reasons other than performance
6050  * to keep or drop this code.
6051  */
6052 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6053 {
6054 	struct btrfs_root *root = inode->root;
6055 	struct btrfs_fs_info *fs_info = root->fs_info;
6056 	struct btrfs_trans_handle *trans;
6057 	int ret;
6058 
6059 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6060 		return 0;
6061 
6062 	trans = btrfs_join_transaction(root);
6063 	if (IS_ERR(trans))
6064 		return PTR_ERR(trans);
6065 
6066 	ret = btrfs_update_inode(trans, inode);
6067 	if (ret == -ENOSPC || ret == -EDQUOT) {
6068 		/* whoops, lets try again with the full transaction */
6069 		btrfs_end_transaction(trans);
6070 		trans = btrfs_start_transaction(root, 1);
6071 		if (IS_ERR(trans))
6072 			return PTR_ERR(trans);
6073 
6074 		ret = btrfs_update_inode(trans, inode);
6075 	}
6076 	btrfs_end_transaction(trans);
6077 	if (inode->delayed_node)
6078 		btrfs_balance_delayed_items(fs_info);
6079 
6080 	return ret;
6081 }
6082 
6083 /*
6084  * This is a copy of file_update_time.  We need this so we can return error on
6085  * ENOSPC for updating the inode in the case of file write and mmap writes.
6086  */
6087 static int btrfs_update_time(struct inode *inode, int flags)
6088 {
6089 	struct btrfs_root *root = BTRFS_I(inode)->root;
6090 	bool dirty;
6091 
6092 	if (btrfs_root_readonly(root))
6093 		return -EROFS;
6094 
6095 	dirty = inode_update_timestamps(inode, flags);
6096 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6097 }
6098 
6099 /*
6100  * helper to find a free sequence number in a given directory.  This current
6101  * code is very simple, later versions will do smarter things in the btree
6102  */
6103 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6104 {
6105 	int ret = 0;
6106 
6107 	if (dir->index_cnt == (u64)-1) {
6108 		ret = btrfs_inode_delayed_dir_index_count(dir);
6109 		if (ret) {
6110 			ret = btrfs_set_inode_index_count(dir);
6111 			if (ret)
6112 				return ret;
6113 		}
6114 	}
6115 
6116 	*index = dir->index_cnt;
6117 	dir->index_cnt++;
6118 
6119 	return ret;
6120 }
6121 
6122 static int btrfs_insert_inode_locked(struct inode *inode)
6123 {
6124 	struct btrfs_iget_args args;
6125 
6126 	args.ino = BTRFS_I(inode)->location.objectid;
6127 	args.root = BTRFS_I(inode)->root;
6128 
6129 	return insert_inode_locked4(inode,
6130 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6131 		   btrfs_find_actor, &args);
6132 }
6133 
6134 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6135 			    unsigned int *trans_num_items)
6136 {
6137 	struct inode *dir = args->dir;
6138 	struct inode *inode = args->inode;
6139 	int ret;
6140 
6141 	if (!args->orphan) {
6142 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6143 					     &args->fname);
6144 		if (ret)
6145 			return ret;
6146 	}
6147 
6148 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6149 	if (ret) {
6150 		fscrypt_free_filename(&args->fname);
6151 		return ret;
6152 	}
6153 
6154 	/* 1 to add inode item */
6155 	*trans_num_items = 1;
6156 	/* 1 to add compression property */
6157 	if (BTRFS_I(dir)->prop_compress)
6158 		(*trans_num_items)++;
6159 	/* 1 to add default ACL xattr */
6160 	if (args->default_acl)
6161 		(*trans_num_items)++;
6162 	/* 1 to add access ACL xattr */
6163 	if (args->acl)
6164 		(*trans_num_items)++;
6165 #ifdef CONFIG_SECURITY
6166 	/* 1 to add LSM xattr */
6167 	if (dir->i_security)
6168 		(*trans_num_items)++;
6169 #endif
6170 	if (args->orphan) {
6171 		/* 1 to add orphan item */
6172 		(*trans_num_items)++;
6173 	} else {
6174 		/*
6175 		 * 1 to add dir item
6176 		 * 1 to add dir index
6177 		 * 1 to update parent inode item
6178 		 *
6179 		 * No need for 1 unit for the inode ref item because it is
6180 		 * inserted in a batch together with the inode item at
6181 		 * btrfs_create_new_inode().
6182 		 */
6183 		*trans_num_items += 3;
6184 	}
6185 	return 0;
6186 }
6187 
6188 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6189 {
6190 	posix_acl_release(args->acl);
6191 	posix_acl_release(args->default_acl);
6192 	fscrypt_free_filename(&args->fname);
6193 }
6194 
6195 /*
6196  * Inherit flags from the parent inode.
6197  *
6198  * Currently only the compression flags and the cow flags are inherited.
6199  */
6200 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6201 {
6202 	unsigned int flags;
6203 
6204 	flags = dir->flags;
6205 
6206 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6207 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6208 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6209 	} else if (flags & BTRFS_INODE_COMPRESS) {
6210 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6211 		inode->flags |= BTRFS_INODE_COMPRESS;
6212 	}
6213 
6214 	if (flags & BTRFS_INODE_NODATACOW) {
6215 		inode->flags |= BTRFS_INODE_NODATACOW;
6216 		if (S_ISREG(inode->vfs_inode.i_mode))
6217 			inode->flags |= BTRFS_INODE_NODATASUM;
6218 	}
6219 
6220 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6221 }
6222 
6223 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6224 			   struct btrfs_new_inode_args *args)
6225 {
6226 	struct timespec64 ts;
6227 	struct inode *dir = args->dir;
6228 	struct inode *inode = args->inode;
6229 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6230 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6231 	struct btrfs_root *root;
6232 	struct btrfs_inode_item *inode_item;
6233 	struct btrfs_key *location;
6234 	struct btrfs_path *path;
6235 	u64 objectid;
6236 	struct btrfs_inode_ref *ref;
6237 	struct btrfs_key key[2];
6238 	u32 sizes[2];
6239 	struct btrfs_item_batch batch;
6240 	unsigned long ptr;
6241 	int ret;
6242 
6243 	path = btrfs_alloc_path();
6244 	if (!path)
6245 		return -ENOMEM;
6246 
6247 	if (!args->subvol)
6248 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6249 	root = BTRFS_I(inode)->root;
6250 
6251 	ret = btrfs_get_free_objectid(root, &objectid);
6252 	if (ret)
6253 		goto out;
6254 	inode->i_ino = objectid;
6255 
6256 	if (args->orphan) {
6257 		/*
6258 		 * O_TMPFILE, set link count to 0, so that after this point, we
6259 		 * fill in an inode item with the correct link count.
6260 		 */
6261 		set_nlink(inode, 0);
6262 	} else {
6263 		trace_btrfs_inode_request(dir);
6264 
6265 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6266 		if (ret)
6267 			goto out;
6268 	}
6269 	/* index_cnt is ignored for everything but a dir. */
6270 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6271 	BTRFS_I(inode)->generation = trans->transid;
6272 	inode->i_generation = BTRFS_I(inode)->generation;
6273 
6274 	/*
6275 	 * We don't have any capability xattrs set here yet, shortcut any
6276 	 * queries for the xattrs here.  If we add them later via the inode
6277 	 * security init path or any other path this flag will be cleared.
6278 	 */
6279 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6280 
6281 	/*
6282 	 * Subvolumes don't inherit flags from their parent directory.
6283 	 * Originally this was probably by accident, but we probably can't
6284 	 * change it now without compatibility issues.
6285 	 */
6286 	if (!args->subvol)
6287 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6288 
6289 	if (S_ISREG(inode->i_mode)) {
6290 		if (btrfs_test_opt(fs_info, NODATASUM))
6291 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6292 		if (btrfs_test_opt(fs_info, NODATACOW))
6293 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6294 				BTRFS_INODE_NODATASUM;
6295 	}
6296 
6297 	location = &BTRFS_I(inode)->location;
6298 	location->objectid = objectid;
6299 	location->offset = 0;
6300 	location->type = BTRFS_INODE_ITEM_KEY;
6301 
6302 	ret = btrfs_insert_inode_locked(inode);
6303 	if (ret < 0) {
6304 		if (!args->orphan)
6305 			BTRFS_I(dir)->index_cnt--;
6306 		goto out;
6307 	}
6308 
6309 	/*
6310 	 * We could have gotten an inode number from somebody who was fsynced
6311 	 * and then removed in this same transaction, so let's just set full
6312 	 * sync since it will be a full sync anyway and this will blow away the
6313 	 * old info in the log.
6314 	 */
6315 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6316 
6317 	key[0].objectid = objectid;
6318 	key[0].type = BTRFS_INODE_ITEM_KEY;
6319 	key[0].offset = 0;
6320 
6321 	sizes[0] = sizeof(struct btrfs_inode_item);
6322 
6323 	if (!args->orphan) {
6324 		/*
6325 		 * Start new inodes with an inode_ref. This is slightly more
6326 		 * efficient for small numbers of hard links since they will
6327 		 * be packed into one item. Extended refs will kick in if we
6328 		 * add more hard links than can fit in the ref item.
6329 		 */
6330 		key[1].objectid = objectid;
6331 		key[1].type = BTRFS_INODE_REF_KEY;
6332 		if (args->subvol) {
6333 			key[1].offset = objectid;
6334 			sizes[1] = 2 + sizeof(*ref);
6335 		} else {
6336 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6337 			sizes[1] = name->len + sizeof(*ref);
6338 		}
6339 	}
6340 
6341 	batch.keys = &key[0];
6342 	batch.data_sizes = &sizes[0];
6343 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6344 	batch.nr = args->orphan ? 1 : 2;
6345 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6346 	if (ret != 0) {
6347 		btrfs_abort_transaction(trans, ret);
6348 		goto discard;
6349 	}
6350 
6351 	ts = simple_inode_init_ts(inode);
6352 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6353 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6354 
6355 	/*
6356 	 * We're going to fill the inode item now, so at this point the inode
6357 	 * must be fully initialized.
6358 	 */
6359 
6360 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6361 				  struct btrfs_inode_item);
6362 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6363 			     sizeof(*inode_item));
6364 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6365 
6366 	if (!args->orphan) {
6367 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6368 				     struct btrfs_inode_ref);
6369 		ptr = (unsigned long)(ref + 1);
6370 		if (args->subvol) {
6371 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6372 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6373 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6374 		} else {
6375 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6376 						     name->len);
6377 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6378 						  BTRFS_I(inode)->dir_index);
6379 			write_extent_buffer(path->nodes[0], name->name, ptr,
6380 					    name->len);
6381 		}
6382 	}
6383 
6384 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6385 	/*
6386 	 * We don't need the path anymore, plus inheriting properties, adding
6387 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6388 	 * allocating yet another path. So just free our path.
6389 	 */
6390 	btrfs_free_path(path);
6391 	path = NULL;
6392 
6393 	if (args->subvol) {
6394 		struct inode *parent;
6395 
6396 		/*
6397 		 * Subvolumes inherit properties from their parent subvolume,
6398 		 * not the directory they were created in.
6399 		 */
6400 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6401 				    BTRFS_I(dir)->root);
6402 		if (IS_ERR(parent)) {
6403 			ret = PTR_ERR(parent);
6404 		} else {
6405 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6406 			iput(parent);
6407 		}
6408 	} else {
6409 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6410 	}
6411 	if (ret) {
6412 		btrfs_err(fs_info,
6413 			  "error inheriting props for ino %llu (root %llu): %d",
6414 			  btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6415 	}
6416 
6417 	/*
6418 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6419 	 * probably a bug.
6420 	 */
6421 	if (!args->subvol) {
6422 		ret = btrfs_init_inode_security(trans, args);
6423 		if (ret) {
6424 			btrfs_abort_transaction(trans, ret);
6425 			goto discard;
6426 		}
6427 	}
6428 
6429 	inode_tree_add(BTRFS_I(inode));
6430 
6431 	trace_btrfs_inode_new(inode);
6432 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6433 
6434 	btrfs_update_root_times(trans, root);
6435 
6436 	if (args->orphan) {
6437 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6438 	} else {
6439 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6440 				     0, BTRFS_I(inode)->dir_index);
6441 	}
6442 	if (ret) {
6443 		btrfs_abort_transaction(trans, ret);
6444 		goto discard;
6445 	}
6446 
6447 	return 0;
6448 
6449 discard:
6450 	/*
6451 	 * discard_new_inode() calls iput(), but the caller owns the reference
6452 	 * to the inode.
6453 	 */
6454 	ihold(inode);
6455 	discard_new_inode(inode);
6456 out:
6457 	btrfs_free_path(path);
6458 	return ret;
6459 }
6460 
6461 /*
6462  * utility function to add 'inode' into 'parent_inode' with
6463  * a give name and a given sequence number.
6464  * if 'add_backref' is true, also insert a backref from the
6465  * inode to the parent directory.
6466  */
6467 int btrfs_add_link(struct btrfs_trans_handle *trans,
6468 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6469 		   const struct fscrypt_str *name, int add_backref, u64 index)
6470 {
6471 	int ret = 0;
6472 	struct btrfs_key key;
6473 	struct btrfs_root *root = parent_inode->root;
6474 	u64 ino = btrfs_ino(inode);
6475 	u64 parent_ino = btrfs_ino(parent_inode);
6476 
6477 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6478 		memcpy(&key, &inode->root->root_key, sizeof(key));
6479 	} else {
6480 		key.objectid = ino;
6481 		key.type = BTRFS_INODE_ITEM_KEY;
6482 		key.offset = 0;
6483 	}
6484 
6485 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6486 		ret = btrfs_add_root_ref(trans, key.objectid,
6487 					 btrfs_root_id(root), parent_ino,
6488 					 index, name);
6489 	} else if (add_backref) {
6490 		ret = btrfs_insert_inode_ref(trans, root, name,
6491 					     ino, parent_ino, index);
6492 	}
6493 
6494 	/* Nothing to clean up yet */
6495 	if (ret)
6496 		return ret;
6497 
6498 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6499 				    btrfs_inode_type(&inode->vfs_inode), index);
6500 	if (ret == -EEXIST || ret == -EOVERFLOW)
6501 		goto fail_dir_item;
6502 	else if (ret) {
6503 		btrfs_abort_transaction(trans, ret);
6504 		return ret;
6505 	}
6506 
6507 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6508 			   name->len * 2);
6509 	inode_inc_iversion(&parent_inode->vfs_inode);
6510 	/*
6511 	 * If we are replaying a log tree, we do not want to update the mtime
6512 	 * and ctime of the parent directory with the current time, since the
6513 	 * log replay procedure is responsible for setting them to their correct
6514 	 * values (the ones it had when the fsync was done).
6515 	 */
6516 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6517 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6518 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6519 
6520 	ret = btrfs_update_inode(trans, parent_inode);
6521 	if (ret)
6522 		btrfs_abort_transaction(trans, ret);
6523 	return ret;
6524 
6525 fail_dir_item:
6526 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6527 		u64 local_index;
6528 		int err;
6529 		err = btrfs_del_root_ref(trans, key.objectid,
6530 					 btrfs_root_id(root), parent_ino,
6531 					 &local_index, name);
6532 		if (err)
6533 			btrfs_abort_transaction(trans, err);
6534 	} else if (add_backref) {
6535 		u64 local_index;
6536 		int err;
6537 
6538 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6539 					  &local_index);
6540 		if (err)
6541 			btrfs_abort_transaction(trans, err);
6542 	}
6543 
6544 	/* Return the original error code */
6545 	return ret;
6546 }
6547 
6548 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6549 			       struct inode *inode)
6550 {
6551 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6552 	struct btrfs_root *root = BTRFS_I(dir)->root;
6553 	struct btrfs_new_inode_args new_inode_args = {
6554 		.dir = dir,
6555 		.dentry = dentry,
6556 		.inode = inode,
6557 	};
6558 	unsigned int trans_num_items;
6559 	struct btrfs_trans_handle *trans;
6560 	int err;
6561 
6562 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6563 	if (err)
6564 		goto out_inode;
6565 
6566 	trans = btrfs_start_transaction(root, trans_num_items);
6567 	if (IS_ERR(trans)) {
6568 		err = PTR_ERR(trans);
6569 		goto out_new_inode_args;
6570 	}
6571 
6572 	err = btrfs_create_new_inode(trans, &new_inode_args);
6573 	if (!err)
6574 		d_instantiate_new(dentry, inode);
6575 
6576 	btrfs_end_transaction(trans);
6577 	btrfs_btree_balance_dirty(fs_info);
6578 out_new_inode_args:
6579 	btrfs_new_inode_args_destroy(&new_inode_args);
6580 out_inode:
6581 	if (err)
6582 		iput(inode);
6583 	return err;
6584 }
6585 
6586 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6587 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6588 {
6589 	struct inode *inode;
6590 
6591 	inode = new_inode(dir->i_sb);
6592 	if (!inode)
6593 		return -ENOMEM;
6594 	inode_init_owner(idmap, inode, dir, mode);
6595 	inode->i_op = &btrfs_special_inode_operations;
6596 	init_special_inode(inode, inode->i_mode, rdev);
6597 	return btrfs_create_common(dir, dentry, inode);
6598 }
6599 
6600 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6601 			struct dentry *dentry, umode_t mode, bool excl)
6602 {
6603 	struct inode *inode;
6604 
6605 	inode = new_inode(dir->i_sb);
6606 	if (!inode)
6607 		return -ENOMEM;
6608 	inode_init_owner(idmap, inode, dir, mode);
6609 	inode->i_fop = &btrfs_file_operations;
6610 	inode->i_op = &btrfs_file_inode_operations;
6611 	inode->i_mapping->a_ops = &btrfs_aops;
6612 	return btrfs_create_common(dir, dentry, inode);
6613 }
6614 
6615 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6616 		      struct dentry *dentry)
6617 {
6618 	struct btrfs_trans_handle *trans = NULL;
6619 	struct btrfs_root *root = BTRFS_I(dir)->root;
6620 	struct inode *inode = d_inode(old_dentry);
6621 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6622 	struct fscrypt_name fname;
6623 	u64 index;
6624 	int err;
6625 	int drop_inode = 0;
6626 
6627 	/* do not allow sys_link's with other subvols of the same device */
6628 	if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6629 		return -EXDEV;
6630 
6631 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6632 		return -EMLINK;
6633 
6634 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6635 	if (err)
6636 		goto fail;
6637 
6638 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6639 	if (err)
6640 		goto fail;
6641 
6642 	/*
6643 	 * 2 items for inode and inode ref
6644 	 * 2 items for dir items
6645 	 * 1 item for parent inode
6646 	 * 1 item for orphan item deletion if O_TMPFILE
6647 	 */
6648 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6649 	if (IS_ERR(trans)) {
6650 		err = PTR_ERR(trans);
6651 		trans = NULL;
6652 		goto fail;
6653 	}
6654 
6655 	/* There are several dir indexes for this inode, clear the cache. */
6656 	BTRFS_I(inode)->dir_index = 0ULL;
6657 	inc_nlink(inode);
6658 	inode_inc_iversion(inode);
6659 	inode_set_ctime_current(inode);
6660 	ihold(inode);
6661 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6662 
6663 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6664 			     &fname.disk_name, 1, index);
6665 
6666 	if (err) {
6667 		drop_inode = 1;
6668 	} else {
6669 		struct dentry *parent = dentry->d_parent;
6670 
6671 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6672 		if (err)
6673 			goto fail;
6674 		if (inode->i_nlink == 1) {
6675 			/*
6676 			 * If new hard link count is 1, it's a file created
6677 			 * with open(2) O_TMPFILE flag.
6678 			 */
6679 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6680 			if (err)
6681 				goto fail;
6682 		}
6683 		d_instantiate(dentry, inode);
6684 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6685 	}
6686 
6687 fail:
6688 	fscrypt_free_filename(&fname);
6689 	if (trans)
6690 		btrfs_end_transaction(trans);
6691 	if (drop_inode) {
6692 		inode_dec_link_count(inode);
6693 		iput(inode);
6694 	}
6695 	btrfs_btree_balance_dirty(fs_info);
6696 	return err;
6697 }
6698 
6699 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6700 		       struct dentry *dentry, umode_t mode)
6701 {
6702 	struct inode *inode;
6703 
6704 	inode = new_inode(dir->i_sb);
6705 	if (!inode)
6706 		return -ENOMEM;
6707 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6708 	inode->i_op = &btrfs_dir_inode_operations;
6709 	inode->i_fop = &btrfs_dir_file_operations;
6710 	return btrfs_create_common(dir, dentry, inode);
6711 }
6712 
6713 static noinline int uncompress_inline(struct btrfs_path *path,
6714 				      struct page *page,
6715 				      struct btrfs_file_extent_item *item)
6716 {
6717 	int ret;
6718 	struct extent_buffer *leaf = path->nodes[0];
6719 	char *tmp;
6720 	size_t max_size;
6721 	unsigned long inline_size;
6722 	unsigned long ptr;
6723 	int compress_type;
6724 
6725 	compress_type = btrfs_file_extent_compression(leaf, item);
6726 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6727 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6728 	tmp = kmalloc(inline_size, GFP_NOFS);
6729 	if (!tmp)
6730 		return -ENOMEM;
6731 	ptr = btrfs_file_extent_inline_start(item);
6732 
6733 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6734 
6735 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6736 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6737 
6738 	/*
6739 	 * decompression code contains a memset to fill in any space between the end
6740 	 * of the uncompressed data and the end of max_size in case the decompressed
6741 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6742 	 * the end of an inline extent and the beginning of the next block, so we
6743 	 * cover that region here.
6744 	 */
6745 
6746 	if (max_size < PAGE_SIZE)
6747 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6748 	kfree(tmp);
6749 	return ret;
6750 }
6751 
6752 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6753 			      struct page *page)
6754 {
6755 	struct btrfs_file_extent_item *fi;
6756 	void *kaddr;
6757 	size_t copy_size;
6758 
6759 	if (!page || PageUptodate(page))
6760 		return 0;
6761 
6762 	ASSERT(page_offset(page) == 0);
6763 
6764 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6765 			    struct btrfs_file_extent_item);
6766 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6767 		return uncompress_inline(path, page, fi);
6768 
6769 	copy_size = min_t(u64, PAGE_SIZE,
6770 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6771 	kaddr = kmap_local_page(page);
6772 	read_extent_buffer(path->nodes[0], kaddr,
6773 			   btrfs_file_extent_inline_start(fi), copy_size);
6774 	kunmap_local(kaddr);
6775 	if (copy_size < PAGE_SIZE)
6776 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6777 	return 0;
6778 }
6779 
6780 /*
6781  * Lookup the first extent overlapping a range in a file.
6782  *
6783  * @inode:	file to search in
6784  * @page:	page to read extent data into if the extent is inline
6785  * @start:	file offset
6786  * @len:	length of range starting at @start
6787  *
6788  * Return the first &struct extent_map which overlaps the given range, reading
6789  * it from the B-tree and caching it if necessary. Note that there may be more
6790  * extents which overlap the given range after the returned extent_map.
6791  *
6792  * If @page is not NULL and the extent is inline, this also reads the extent
6793  * data directly into the page and marks the extent up to date in the io_tree.
6794  *
6795  * Return: ERR_PTR on error, non-NULL extent_map on success.
6796  */
6797 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6798 				    struct page *page, u64 start, u64 len)
6799 {
6800 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6801 	int ret = 0;
6802 	u64 extent_start = 0;
6803 	u64 extent_end = 0;
6804 	u64 objectid = btrfs_ino(inode);
6805 	int extent_type = -1;
6806 	struct btrfs_path *path = NULL;
6807 	struct btrfs_root *root = inode->root;
6808 	struct btrfs_file_extent_item *item;
6809 	struct extent_buffer *leaf;
6810 	struct btrfs_key found_key;
6811 	struct extent_map *em = NULL;
6812 	struct extent_map_tree *em_tree = &inode->extent_tree;
6813 
6814 	read_lock(&em_tree->lock);
6815 	em = lookup_extent_mapping(em_tree, start, len);
6816 	read_unlock(&em_tree->lock);
6817 
6818 	if (em) {
6819 		if (em->start > start || em->start + em->len <= start)
6820 			free_extent_map(em);
6821 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6822 			free_extent_map(em);
6823 		else
6824 			goto out;
6825 	}
6826 	em = alloc_extent_map();
6827 	if (!em) {
6828 		ret = -ENOMEM;
6829 		goto out;
6830 	}
6831 	em->start = EXTENT_MAP_HOLE;
6832 	em->orig_start = EXTENT_MAP_HOLE;
6833 	em->len = (u64)-1;
6834 	em->block_len = (u64)-1;
6835 
6836 	path = btrfs_alloc_path();
6837 	if (!path) {
6838 		ret = -ENOMEM;
6839 		goto out;
6840 	}
6841 
6842 	/* Chances are we'll be called again, so go ahead and do readahead */
6843 	path->reada = READA_FORWARD;
6844 
6845 	/*
6846 	 * The same explanation in load_free_space_cache applies here as well,
6847 	 * we only read when we're loading the free space cache, and at that
6848 	 * point the commit_root has everything we need.
6849 	 */
6850 	if (btrfs_is_free_space_inode(inode)) {
6851 		path->search_commit_root = 1;
6852 		path->skip_locking = 1;
6853 	}
6854 
6855 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6856 	if (ret < 0) {
6857 		goto out;
6858 	} else if (ret > 0) {
6859 		if (path->slots[0] == 0)
6860 			goto not_found;
6861 		path->slots[0]--;
6862 		ret = 0;
6863 	}
6864 
6865 	leaf = path->nodes[0];
6866 	item = btrfs_item_ptr(leaf, path->slots[0],
6867 			      struct btrfs_file_extent_item);
6868 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6869 	if (found_key.objectid != objectid ||
6870 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6871 		/*
6872 		 * If we backup past the first extent we want to move forward
6873 		 * and see if there is an extent in front of us, otherwise we'll
6874 		 * say there is a hole for our whole search range which can
6875 		 * cause problems.
6876 		 */
6877 		extent_end = start;
6878 		goto next;
6879 	}
6880 
6881 	extent_type = btrfs_file_extent_type(leaf, item);
6882 	extent_start = found_key.offset;
6883 	extent_end = btrfs_file_extent_end(path);
6884 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6885 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6886 		/* Only regular file could have regular/prealloc extent */
6887 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6888 			ret = -EUCLEAN;
6889 			btrfs_crit(fs_info,
6890 		"regular/prealloc extent found for non-regular inode %llu",
6891 				   btrfs_ino(inode));
6892 			goto out;
6893 		}
6894 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6895 						       extent_start);
6896 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6897 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6898 						      path->slots[0],
6899 						      extent_start);
6900 	}
6901 next:
6902 	if (start >= extent_end) {
6903 		path->slots[0]++;
6904 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6905 			ret = btrfs_next_leaf(root, path);
6906 			if (ret < 0)
6907 				goto out;
6908 			else if (ret > 0)
6909 				goto not_found;
6910 
6911 			leaf = path->nodes[0];
6912 		}
6913 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6914 		if (found_key.objectid != objectid ||
6915 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6916 			goto not_found;
6917 		if (start + len <= found_key.offset)
6918 			goto not_found;
6919 		if (start > found_key.offset)
6920 			goto next;
6921 
6922 		/* New extent overlaps with existing one */
6923 		em->start = start;
6924 		em->orig_start = start;
6925 		em->len = found_key.offset - start;
6926 		em->block_start = EXTENT_MAP_HOLE;
6927 		goto insert;
6928 	}
6929 
6930 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6931 
6932 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6933 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6934 		goto insert;
6935 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6936 		/*
6937 		 * Inline extent can only exist at file offset 0. This is
6938 		 * ensured by tree-checker and inline extent creation path.
6939 		 * Thus all members representing file offsets should be zero.
6940 		 */
6941 		ASSERT(extent_start == 0);
6942 		ASSERT(em->start == 0);
6943 
6944 		/*
6945 		 * btrfs_extent_item_to_extent_map() should have properly
6946 		 * initialized em members already.
6947 		 *
6948 		 * Other members are not utilized for inline extents.
6949 		 */
6950 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6951 		ASSERT(em->len == fs_info->sectorsize);
6952 
6953 		ret = read_inline_extent(inode, path, page);
6954 		if (ret < 0)
6955 			goto out;
6956 		goto insert;
6957 	}
6958 not_found:
6959 	em->start = start;
6960 	em->orig_start = start;
6961 	em->len = len;
6962 	em->block_start = EXTENT_MAP_HOLE;
6963 insert:
6964 	ret = 0;
6965 	btrfs_release_path(path);
6966 	if (em->start > start || extent_map_end(em) <= start) {
6967 		btrfs_err(fs_info,
6968 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6969 			  em->start, em->len, start, len);
6970 		ret = -EIO;
6971 		goto out;
6972 	}
6973 
6974 	write_lock(&em_tree->lock);
6975 	ret = btrfs_add_extent_mapping(inode, &em, start, len);
6976 	write_unlock(&em_tree->lock);
6977 out:
6978 	btrfs_free_path(path);
6979 
6980 	trace_btrfs_get_extent(root, inode, em);
6981 
6982 	if (ret) {
6983 		free_extent_map(em);
6984 		return ERR_PTR(ret);
6985 	}
6986 	return em;
6987 }
6988 
6989 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6990 						  struct btrfs_dio_data *dio_data,
6991 						  const u64 start,
6992 						  const u64 len,
6993 						  const u64 orig_start,
6994 						  const u64 block_start,
6995 						  const u64 block_len,
6996 						  const u64 orig_block_len,
6997 						  const u64 ram_bytes,
6998 						  const int type)
6999 {
7000 	struct extent_map *em = NULL;
7001 	struct btrfs_ordered_extent *ordered;
7002 
7003 	if (type != BTRFS_ORDERED_NOCOW) {
7004 		em = create_io_em(inode, start, len, orig_start, block_start,
7005 				  block_len, orig_block_len, ram_bytes,
7006 				  BTRFS_COMPRESS_NONE, /* compress_type */
7007 				  type);
7008 		if (IS_ERR(em))
7009 			goto out;
7010 	}
7011 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
7012 					     block_start, block_len, 0,
7013 					     (1 << type) |
7014 					     (1 << BTRFS_ORDERED_DIRECT),
7015 					     BTRFS_COMPRESS_NONE);
7016 	if (IS_ERR(ordered)) {
7017 		if (em) {
7018 			free_extent_map(em);
7019 			btrfs_drop_extent_map_range(inode, start,
7020 						    start + len - 1, false);
7021 		}
7022 		em = ERR_CAST(ordered);
7023 	} else {
7024 		ASSERT(!dio_data->ordered);
7025 		dio_data->ordered = ordered;
7026 	}
7027  out:
7028 
7029 	return em;
7030 }
7031 
7032 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7033 						  struct btrfs_dio_data *dio_data,
7034 						  u64 start, u64 len)
7035 {
7036 	struct btrfs_root *root = inode->root;
7037 	struct btrfs_fs_info *fs_info = root->fs_info;
7038 	struct extent_map *em;
7039 	struct btrfs_key ins;
7040 	u64 alloc_hint;
7041 	int ret;
7042 
7043 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7044 again:
7045 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7046 				   0, alloc_hint, &ins, 1, 1);
7047 	if (ret == -EAGAIN) {
7048 		ASSERT(btrfs_is_zoned(fs_info));
7049 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7050 			       TASK_UNINTERRUPTIBLE);
7051 		goto again;
7052 	}
7053 	if (ret)
7054 		return ERR_PTR(ret);
7055 
7056 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7057 				     ins.objectid, ins.offset, ins.offset,
7058 				     ins.offset, BTRFS_ORDERED_REGULAR);
7059 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7060 	if (IS_ERR(em))
7061 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7062 					   1);
7063 
7064 	return em;
7065 }
7066 
7067 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7068 {
7069 	struct btrfs_block_group *block_group;
7070 	bool readonly = false;
7071 
7072 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7073 	if (!block_group || block_group->ro)
7074 		readonly = true;
7075 	if (block_group)
7076 		btrfs_put_block_group(block_group);
7077 	return readonly;
7078 }
7079 
7080 /*
7081  * Check if we can do nocow write into the range [@offset, @offset + @len)
7082  *
7083  * @offset:	File offset
7084  * @len:	The length to write, will be updated to the nocow writeable
7085  *		range
7086  * @orig_start:	(optional) Return the original file offset of the file extent
7087  * @orig_len:	(optional) Return the original on-disk length of the file extent
7088  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7089  * @strict:	if true, omit optimizations that might force us into unnecessary
7090  *		cow. e.g., don't trust generation number.
7091  *
7092  * Return:
7093  * >0	and update @len if we can do nocow write
7094  *  0	if we can't do nocow write
7095  * <0	if error happened
7096  *
7097  * NOTE: This only checks the file extents, caller is responsible to wait for
7098  *	 any ordered extents.
7099  */
7100 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7101 			      u64 *orig_start, u64 *orig_block_len,
7102 			      u64 *ram_bytes, bool nowait, bool strict)
7103 {
7104 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7105 	struct can_nocow_file_extent_args nocow_args = { 0 };
7106 	struct btrfs_path *path;
7107 	int ret;
7108 	struct extent_buffer *leaf;
7109 	struct btrfs_root *root = BTRFS_I(inode)->root;
7110 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7111 	struct btrfs_file_extent_item *fi;
7112 	struct btrfs_key key;
7113 	int found_type;
7114 
7115 	path = btrfs_alloc_path();
7116 	if (!path)
7117 		return -ENOMEM;
7118 	path->nowait = nowait;
7119 
7120 	ret = btrfs_lookup_file_extent(NULL, root, path,
7121 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7122 	if (ret < 0)
7123 		goto out;
7124 
7125 	if (ret == 1) {
7126 		if (path->slots[0] == 0) {
7127 			/* can't find the item, must cow */
7128 			ret = 0;
7129 			goto out;
7130 		}
7131 		path->slots[0]--;
7132 	}
7133 	ret = 0;
7134 	leaf = path->nodes[0];
7135 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7136 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7137 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7138 		/* not our file or wrong item type, must cow */
7139 		goto out;
7140 	}
7141 
7142 	if (key.offset > offset) {
7143 		/* Wrong offset, must cow */
7144 		goto out;
7145 	}
7146 
7147 	if (btrfs_file_extent_end(path) <= offset)
7148 		goto out;
7149 
7150 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7151 	found_type = btrfs_file_extent_type(leaf, fi);
7152 	if (ram_bytes)
7153 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7154 
7155 	nocow_args.start = offset;
7156 	nocow_args.end = offset + *len - 1;
7157 	nocow_args.strict = strict;
7158 	nocow_args.free_path = true;
7159 
7160 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7161 	/* can_nocow_file_extent() has freed the path. */
7162 	path = NULL;
7163 
7164 	if (ret != 1) {
7165 		/* Treat errors as not being able to NOCOW. */
7166 		ret = 0;
7167 		goto out;
7168 	}
7169 
7170 	ret = 0;
7171 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7172 		goto out;
7173 
7174 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7175 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7176 		u64 range_end;
7177 
7178 		range_end = round_up(offset + nocow_args.num_bytes,
7179 				     root->fs_info->sectorsize) - 1;
7180 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7181 		if (ret) {
7182 			ret = -EAGAIN;
7183 			goto out;
7184 		}
7185 	}
7186 
7187 	if (orig_start)
7188 		*orig_start = key.offset - nocow_args.extent_offset;
7189 	if (orig_block_len)
7190 		*orig_block_len = nocow_args.disk_num_bytes;
7191 
7192 	*len = nocow_args.num_bytes;
7193 	ret = 1;
7194 out:
7195 	btrfs_free_path(path);
7196 	return ret;
7197 }
7198 
7199 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7200 			      struct extent_state **cached_state,
7201 			      unsigned int iomap_flags)
7202 {
7203 	const bool writing = (iomap_flags & IOMAP_WRITE);
7204 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7205 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7206 	struct btrfs_ordered_extent *ordered;
7207 	int ret = 0;
7208 
7209 	while (1) {
7210 		if (nowait) {
7211 			if (!try_lock_extent(io_tree, lockstart, lockend,
7212 					     cached_state))
7213 				return -EAGAIN;
7214 		} else {
7215 			lock_extent(io_tree, lockstart, lockend, cached_state);
7216 		}
7217 		/*
7218 		 * We're concerned with the entire range that we're going to be
7219 		 * doing DIO to, so we need to make sure there's no ordered
7220 		 * extents in this range.
7221 		 */
7222 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7223 						     lockend - lockstart + 1);
7224 
7225 		/*
7226 		 * We need to make sure there are no buffered pages in this
7227 		 * range either, we could have raced between the invalidate in
7228 		 * generic_file_direct_write and locking the extent.  The
7229 		 * invalidate needs to happen so that reads after a write do not
7230 		 * get stale data.
7231 		 */
7232 		if (!ordered &&
7233 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7234 							 lockstart, lockend)))
7235 			break;
7236 
7237 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7238 
7239 		if (ordered) {
7240 			if (nowait) {
7241 				btrfs_put_ordered_extent(ordered);
7242 				ret = -EAGAIN;
7243 				break;
7244 			}
7245 			/*
7246 			 * If we are doing a DIO read and the ordered extent we
7247 			 * found is for a buffered write, we can not wait for it
7248 			 * to complete and retry, because if we do so we can
7249 			 * deadlock with concurrent buffered writes on page
7250 			 * locks. This happens only if our DIO read covers more
7251 			 * than one extent map, if at this point has already
7252 			 * created an ordered extent for a previous extent map
7253 			 * and locked its range in the inode's io tree, and a
7254 			 * concurrent write against that previous extent map's
7255 			 * range and this range started (we unlock the ranges
7256 			 * in the io tree only when the bios complete and
7257 			 * buffered writes always lock pages before attempting
7258 			 * to lock range in the io tree).
7259 			 */
7260 			if (writing ||
7261 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7262 				btrfs_start_ordered_extent(ordered);
7263 			else
7264 				ret = nowait ? -EAGAIN : -ENOTBLK;
7265 			btrfs_put_ordered_extent(ordered);
7266 		} else {
7267 			/*
7268 			 * We could trigger writeback for this range (and wait
7269 			 * for it to complete) and then invalidate the pages for
7270 			 * this range (through invalidate_inode_pages2_range()),
7271 			 * but that can lead us to a deadlock with a concurrent
7272 			 * call to readahead (a buffered read or a defrag call
7273 			 * triggered a readahead) on a page lock due to an
7274 			 * ordered dio extent we created before but did not have
7275 			 * yet a corresponding bio submitted (whence it can not
7276 			 * complete), which makes readahead wait for that
7277 			 * ordered extent to complete while holding a lock on
7278 			 * that page.
7279 			 */
7280 			ret = nowait ? -EAGAIN : -ENOTBLK;
7281 		}
7282 
7283 		if (ret)
7284 			break;
7285 
7286 		cond_resched();
7287 	}
7288 
7289 	return ret;
7290 }
7291 
7292 /* The callers of this must take lock_extent() */
7293 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7294 				       u64 len, u64 orig_start, u64 block_start,
7295 				       u64 block_len, u64 orig_block_len,
7296 				       u64 ram_bytes, int compress_type,
7297 				       int type)
7298 {
7299 	struct extent_map *em;
7300 	int ret;
7301 
7302 	/*
7303 	 * Note the missing NOCOW type.
7304 	 *
7305 	 * For pure NOCOW writes, we should not create an io extent map, but
7306 	 * just reusing the existing one.
7307 	 * Only PREALLOC writes (NOCOW write into preallocated range) can
7308 	 * create an io extent map.
7309 	 */
7310 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7311 	       type == BTRFS_ORDERED_COMPRESSED ||
7312 	       type == BTRFS_ORDERED_REGULAR);
7313 
7314 	switch (type) {
7315 	case BTRFS_ORDERED_PREALLOC:
7316 		/* Uncompressed extents. */
7317 		ASSERT(block_len == len);
7318 
7319 		/* We're only referring part of a larger preallocated extent. */
7320 		ASSERT(block_len <= ram_bytes);
7321 		break;
7322 	case BTRFS_ORDERED_REGULAR:
7323 		/* Uncompressed extents. */
7324 		ASSERT(block_len == len);
7325 
7326 		/* COW results a new extent matching our file extent size. */
7327 		ASSERT(orig_block_len == len);
7328 		ASSERT(ram_bytes == len);
7329 
7330 		/* Since it's a new extent, we should not have any offset. */
7331 		ASSERT(orig_start == start);
7332 		break;
7333 	case BTRFS_ORDERED_COMPRESSED:
7334 		/* Must be compressed. */
7335 		ASSERT(compress_type != BTRFS_COMPRESS_NONE);
7336 
7337 		/*
7338 		 * Encoded write can make us to refer to part of the
7339 		 * uncompressed extent.
7340 		 */
7341 		ASSERT(len <= ram_bytes);
7342 		break;
7343 	}
7344 
7345 	em = alloc_extent_map();
7346 	if (!em)
7347 		return ERR_PTR(-ENOMEM);
7348 
7349 	em->start = start;
7350 	em->orig_start = orig_start;
7351 	em->len = len;
7352 	em->block_len = block_len;
7353 	em->block_start = block_start;
7354 	em->orig_block_len = orig_block_len;
7355 	em->ram_bytes = ram_bytes;
7356 	em->generation = -1;
7357 	em->flags |= EXTENT_FLAG_PINNED;
7358 	if (type == BTRFS_ORDERED_COMPRESSED)
7359 		extent_map_set_compression(em, compress_type);
7360 
7361 	ret = btrfs_replace_extent_map_range(inode, em, true);
7362 	if (ret) {
7363 		free_extent_map(em);
7364 		return ERR_PTR(ret);
7365 	}
7366 
7367 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7368 	return em;
7369 }
7370 
7371 
7372 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7373 					 struct inode *inode,
7374 					 struct btrfs_dio_data *dio_data,
7375 					 u64 start, u64 *lenp,
7376 					 unsigned int iomap_flags)
7377 {
7378 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7379 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7380 	struct extent_map *em = *map;
7381 	int type;
7382 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7383 	struct btrfs_block_group *bg;
7384 	bool can_nocow = false;
7385 	bool space_reserved = false;
7386 	u64 len = *lenp;
7387 	u64 prev_len;
7388 	int ret = 0;
7389 
7390 	/*
7391 	 * We don't allocate a new extent in the following cases
7392 	 *
7393 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7394 	 * existing extent.
7395 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7396 	 * just use the extent.
7397 	 *
7398 	 */
7399 	if ((em->flags & EXTENT_FLAG_PREALLOC) ||
7400 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7401 	     em->block_start != EXTENT_MAP_HOLE)) {
7402 		if (em->flags & EXTENT_FLAG_PREALLOC)
7403 			type = BTRFS_ORDERED_PREALLOC;
7404 		else
7405 			type = BTRFS_ORDERED_NOCOW;
7406 		len = min(len, em->len - (start - em->start));
7407 		block_start = em->block_start + (start - em->start);
7408 
7409 		if (can_nocow_extent(inode, start, &len, &orig_start,
7410 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7411 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7412 			if (bg)
7413 				can_nocow = true;
7414 		}
7415 	}
7416 
7417 	prev_len = len;
7418 	if (can_nocow) {
7419 		struct extent_map *em2;
7420 
7421 		/* We can NOCOW, so only need to reserve metadata space. */
7422 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7423 						      nowait);
7424 		if (ret < 0) {
7425 			/* Our caller expects us to free the input extent map. */
7426 			free_extent_map(em);
7427 			*map = NULL;
7428 			btrfs_dec_nocow_writers(bg);
7429 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7430 				ret = -EAGAIN;
7431 			goto out;
7432 		}
7433 		space_reserved = true;
7434 
7435 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7436 					      orig_start, block_start,
7437 					      len, orig_block_len,
7438 					      ram_bytes, type);
7439 		btrfs_dec_nocow_writers(bg);
7440 		if (type == BTRFS_ORDERED_PREALLOC) {
7441 			free_extent_map(em);
7442 			*map = em2;
7443 			em = em2;
7444 		}
7445 
7446 		if (IS_ERR(em2)) {
7447 			ret = PTR_ERR(em2);
7448 			goto out;
7449 		}
7450 
7451 		dio_data->nocow_done = true;
7452 	} else {
7453 		/* Our caller expects us to free the input extent map. */
7454 		free_extent_map(em);
7455 		*map = NULL;
7456 
7457 		if (nowait) {
7458 			ret = -EAGAIN;
7459 			goto out;
7460 		}
7461 
7462 		/*
7463 		 * If we could not allocate data space before locking the file
7464 		 * range and we can't do a NOCOW write, then we have to fail.
7465 		 */
7466 		if (!dio_data->data_space_reserved) {
7467 			ret = -ENOSPC;
7468 			goto out;
7469 		}
7470 
7471 		/*
7472 		 * We have to COW and we have already reserved data space before,
7473 		 * so now we reserve only metadata.
7474 		 */
7475 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7476 						      false);
7477 		if (ret < 0)
7478 			goto out;
7479 		space_reserved = true;
7480 
7481 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7482 		if (IS_ERR(em)) {
7483 			ret = PTR_ERR(em);
7484 			goto out;
7485 		}
7486 		*map = em;
7487 		len = min(len, em->len - (start - em->start));
7488 		if (len < prev_len)
7489 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7490 							prev_len - len, true);
7491 	}
7492 
7493 	/*
7494 	 * We have created our ordered extent, so we can now release our reservation
7495 	 * for an outstanding extent.
7496 	 */
7497 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7498 
7499 	/*
7500 	 * Need to update the i_size under the extent lock so buffered
7501 	 * readers will get the updated i_size when we unlock.
7502 	 */
7503 	if (start + len > i_size_read(inode))
7504 		i_size_write(inode, start + len);
7505 out:
7506 	if (ret && space_reserved) {
7507 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7508 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7509 	}
7510 	*lenp = len;
7511 	return ret;
7512 }
7513 
7514 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7515 		loff_t length, unsigned int flags, struct iomap *iomap,
7516 		struct iomap *srcmap)
7517 {
7518 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7519 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7520 	struct extent_map *em;
7521 	struct extent_state *cached_state = NULL;
7522 	struct btrfs_dio_data *dio_data = iter->private;
7523 	u64 lockstart, lockend;
7524 	const bool write = !!(flags & IOMAP_WRITE);
7525 	int ret = 0;
7526 	u64 len = length;
7527 	const u64 data_alloc_len = length;
7528 	bool unlock_extents = false;
7529 
7530 	/*
7531 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7532 	 * we're NOWAIT we may submit a bio for a partial range and return
7533 	 * EIOCBQUEUED, which would result in an errant short read.
7534 	 *
7535 	 * The best way to handle this would be to allow for partial completions
7536 	 * of iocb's, so we could submit the partial bio, return and fault in
7537 	 * the rest of the pages, and then submit the io for the rest of the
7538 	 * range.  However we don't have that currently, so simply return
7539 	 * -EAGAIN at this point so that the normal path is used.
7540 	 */
7541 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7542 		return -EAGAIN;
7543 
7544 	/*
7545 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7546 	 * to allocate a contiguous array for the checksums.
7547 	 */
7548 	if (!write)
7549 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7550 
7551 	lockstart = start;
7552 	lockend = start + len - 1;
7553 
7554 	/*
7555 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7556 	 * enough if we've written compressed pages to this area, so we need to
7557 	 * flush the dirty pages again to make absolutely sure that any
7558 	 * outstanding dirty pages are on disk - the first flush only starts
7559 	 * compression on the data, while keeping the pages locked, so by the
7560 	 * time the second flush returns we know bios for the compressed pages
7561 	 * were submitted and finished, and the pages no longer under writeback.
7562 	 *
7563 	 * If we have a NOWAIT request and we have any pages in the range that
7564 	 * are locked, likely due to compression still in progress, we don't want
7565 	 * to block on page locks. We also don't want to block on pages marked as
7566 	 * dirty or under writeback (same as for the non-compression case).
7567 	 * iomap_dio_rw() did the same check, but after that and before we got
7568 	 * here, mmap'ed writes may have happened or buffered reads started
7569 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7570 	 * the file range yet.
7571 	 */
7572 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7573 		     &BTRFS_I(inode)->runtime_flags)) {
7574 		if (flags & IOMAP_NOWAIT) {
7575 			if (filemap_range_needs_writeback(inode->i_mapping,
7576 							  lockstart, lockend))
7577 				return -EAGAIN;
7578 		} else {
7579 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7580 						       start + length - 1);
7581 			if (ret)
7582 				return ret;
7583 		}
7584 	}
7585 
7586 	memset(dio_data, 0, sizeof(*dio_data));
7587 
7588 	/*
7589 	 * We always try to allocate data space and must do it before locking
7590 	 * the file range, to avoid deadlocks with concurrent writes to the same
7591 	 * range if the range has several extents and the writes don't expand the
7592 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7593 	 * allocate data space here we continue and later, after locking the
7594 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7595 	 * NOCOW write.
7596 	 */
7597 	if (write && !(flags & IOMAP_NOWAIT)) {
7598 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7599 						  &dio_data->data_reserved,
7600 						  start, data_alloc_len, false);
7601 		if (!ret)
7602 			dio_data->data_space_reserved = true;
7603 		else if (ret && !(BTRFS_I(inode)->flags &
7604 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7605 			goto err;
7606 	}
7607 
7608 	/*
7609 	 * If this errors out it's because we couldn't invalidate pagecache for
7610 	 * this range and we need to fallback to buffered IO, or we are doing a
7611 	 * NOWAIT read/write and we need to block.
7612 	 */
7613 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7614 	if (ret < 0)
7615 		goto err;
7616 
7617 	em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
7618 	if (IS_ERR(em)) {
7619 		ret = PTR_ERR(em);
7620 		goto unlock_err;
7621 	}
7622 
7623 	/*
7624 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7625 	 * io.  INLINE is special, and we could probably kludge it in here, but
7626 	 * it's still buffered so for safety lets just fall back to the generic
7627 	 * buffered path.
7628 	 *
7629 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7630 	 * decompress it, so there will be buffering required no matter what we
7631 	 * do, so go ahead and fallback to buffered.
7632 	 *
7633 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7634 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7635 	 * the generic code.
7636 	 */
7637 	if (extent_map_is_compressed(em) ||
7638 	    em->block_start == EXTENT_MAP_INLINE) {
7639 		free_extent_map(em);
7640 		/*
7641 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7642 		 * fallback to buffered IO. This is not only because we can
7643 		 * block with buffered IO (no support for NOWAIT semantics at
7644 		 * the moment) but also to avoid returning short reads to user
7645 		 * space - this happens if we were able to read some data from
7646 		 * previous non-compressed extents and then when we fallback to
7647 		 * buffered IO, at btrfs_file_read_iter() by calling
7648 		 * filemap_read(), we fail to fault in pages for the read buffer,
7649 		 * in which case filemap_read() returns a short read (the number
7650 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7651 		 */
7652 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7653 		goto unlock_err;
7654 	}
7655 
7656 	len = min(len, em->len - (start - em->start));
7657 
7658 	/*
7659 	 * If we have a NOWAIT request and the range contains multiple extents
7660 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7661 	 * caller fallback to a context where it can do a blocking (without
7662 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7663 	 * success to the caller, which is not optimal for writes and for reads
7664 	 * it can result in unexpected behaviour for an application.
7665 	 *
7666 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7667 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7668 	 * asked for, resulting in an unexpected, and incorrect, short read.
7669 	 * That is, the caller asked to read N bytes and we return less than that,
7670 	 * which is wrong unless we are crossing EOF. This happens if we get a
7671 	 * page fault error when trying to fault in pages for the buffer that is
7672 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7673 	 * have previously submitted bios for other extents in the range, in
7674 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7675 	 * those bios have completed by the time we get the page fault error,
7676 	 * which we return back to our caller - we should only return EIOCBQUEUED
7677 	 * after we have submitted bios for all the extents in the range.
7678 	 */
7679 	if ((flags & IOMAP_NOWAIT) && len < length) {
7680 		free_extent_map(em);
7681 		ret = -EAGAIN;
7682 		goto unlock_err;
7683 	}
7684 
7685 	if (write) {
7686 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7687 						    start, &len, flags);
7688 		if (ret < 0)
7689 			goto unlock_err;
7690 		unlock_extents = true;
7691 		/* Recalc len in case the new em is smaller than requested */
7692 		len = min(len, em->len - (start - em->start));
7693 		if (dio_data->data_space_reserved) {
7694 			u64 release_offset;
7695 			u64 release_len = 0;
7696 
7697 			if (dio_data->nocow_done) {
7698 				release_offset = start;
7699 				release_len = data_alloc_len;
7700 			} else if (len < data_alloc_len) {
7701 				release_offset = start + len;
7702 				release_len = data_alloc_len - len;
7703 			}
7704 
7705 			if (release_len > 0)
7706 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7707 							       dio_data->data_reserved,
7708 							       release_offset,
7709 							       release_len);
7710 		}
7711 	} else {
7712 		/*
7713 		 * We need to unlock only the end area that we aren't using.
7714 		 * The rest is going to be unlocked by the endio routine.
7715 		 */
7716 		lockstart = start + len;
7717 		if (lockstart < lockend)
7718 			unlock_extents = true;
7719 	}
7720 
7721 	if (unlock_extents)
7722 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7723 			      &cached_state);
7724 	else
7725 		free_extent_state(cached_state);
7726 
7727 	/*
7728 	 * Translate extent map information to iomap.
7729 	 * We trim the extents (and move the addr) even though iomap code does
7730 	 * that, since we have locked only the parts we are performing I/O in.
7731 	 */
7732 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7733 	    ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
7734 		iomap->addr = IOMAP_NULL_ADDR;
7735 		iomap->type = IOMAP_HOLE;
7736 	} else {
7737 		iomap->addr = em->block_start + (start - em->start);
7738 		iomap->type = IOMAP_MAPPED;
7739 	}
7740 	iomap->offset = start;
7741 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7742 	iomap->length = len;
7743 	free_extent_map(em);
7744 
7745 	return 0;
7746 
7747 unlock_err:
7748 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7749 		      &cached_state);
7750 err:
7751 	if (dio_data->data_space_reserved) {
7752 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7753 					       dio_data->data_reserved,
7754 					       start, data_alloc_len);
7755 		extent_changeset_free(dio_data->data_reserved);
7756 	}
7757 
7758 	return ret;
7759 }
7760 
7761 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7762 		ssize_t written, unsigned int flags, struct iomap *iomap)
7763 {
7764 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7765 	struct btrfs_dio_data *dio_data = iter->private;
7766 	size_t submitted = dio_data->submitted;
7767 	const bool write = !!(flags & IOMAP_WRITE);
7768 	int ret = 0;
7769 
7770 	if (!write && (iomap->type == IOMAP_HOLE)) {
7771 		/* If reading from a hole, unlock and return */
7772 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7773 			      NULL);
7774 		return 0;
7775 	}
7776 
7777 	if (submitted < length) {
7778 		pos += submitted;
7779 		length -= submitted;
7780 		if (write)
7781 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7782 						    pos, length, false);
7783 		else
7784 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7785 				      pos + length - 1, NULL);
7786 		ret = -ENOTBLK;
7787 	}
7788 	if (write) {
7789 		btrfs_put_ordered_extent(dio_data->ordered);
7790 		dio_data->ordered = NULL;
7791 	}
7792 
7793 	if (write)
7794 		extent_changeset_free(dio_data->data_reserved);
7795 	return ret;
7796 }
7797 
7798 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7799 {
7800 	struct btrfs_dio_private *dip =
7801 		container_of(bbio, struct btrfs_dio_private, bbio);
7802 	struct btrfs_inode *inode = bbio->inode;
7803 	struct bio *bio = &bbio->bio;
7804 
7805 	if (bio->bi_status) {
7806 		btrfs_warn(inode->root->fs_info,
7807 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7808 			   btrfs_ino(inode), bio->bi_opf,
7809 			   dip->file_offset, dip->bytes, bio->bi_status);
7810 	}
7811 
7812 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7813 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7814 					    dip->file_offset, dip->bytes,
7815 					    !bio->bi_status);
7816 	} else {
7817 		unlock_extent(&inode->io_tree, dip->file_offset,
7818 			      dip->file_offset + dip->bytes - 1, NULL);
7819 	}
7820 
7821 	bbio->bio.bi_private = bbio->private;
7822 	iomap_dio_bio_end_io(bio);
7823 }
7824 
7825 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7826 				loff_t file_offset)
7827 {
7828 	struct btrfs_bio *bbio = btrfs_bio(bio);
7829 	struct btrfs_dio_private *dip =
7830 		container_of(bbio, struct btrfs_dio_private, bbio);
7831 	struct btrfs_dio_data *dio_data = iter->private;
7832 
7833 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7834 		       btrfs_dio_end_io, bio->bi_private);
7835 	bbio->inode = BTRFS_I(iter->inode);
7836 	bbio->file_offset = file_offset;
7837 
7838 	dip->file_offset = file_offset;
7839 	dip->bytes = bio->bi_iter.bi_size;
7840 
7841 	dio_data->submitted += bio->bi_iter.bi_size;
7842 
7843 	/*
7844 	 * Check if we are doing a partial write.  If we are, we need to split
7845 	 * the ordered extent to match the submitted bio.  Hang on to the
7846 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7847 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7848 	 * remaining pages is blocked on the outstanding ordered extent.
7849 	 */
7850 	if (iter->flags & IOMAP_WRITE) {
7851 		int ret;
7852 
7853 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7854 		if (ret) {
7855 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7856 						    file_offset, dip->bytes,
7857 						    !ret);
7858 			bio->bi_status = errno_to_blk_status(ret);
7859 			iomap_dio_bio_end_io(bio);
7860 			return;
7861 		}
7862 	}
7863 
7864 	btrfs_submit_bio(bbio, 0);
7865 }
7866 
7867 static const struct iomap_ops btrfs_dio_iomap_ops = {
7868 	.iomap_begin            = btrfs_dio_iomap_begin,
7869 	.iomap_end              = btrfs_dio_iomap_end,
7870 };
7871 
7872 static const struct iomap_dio_ops btrfs_dio_ops = {
7873 	.submit_io		= btrfs_dio_submit_io,
7874 	.bio_set		= &btrfs_dio_bioset,
7875 };
7876 
7877 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7878 {
7879 	struct btrfs_dio_data data = { 0 };
7880 
7881 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7882 			    IOMAP_DIO_PARTIAL, &data, done_before);
7883 }
7884 
7885 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7886 				  size_t done_before)
7887 {
7888 	struct btrfs_dio_data data = { 0 };
7889 
7890 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7891 			    IOMAP_DIO_PARTIAL, &data, done_before);
7892 }
7893 
7894 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7895 			u64 start, u64 len)
7896 {
7897 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7898 	int	ret;
7899 
7900 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7901 	if (ret)
7902 		return ret;
7903 
7904 	/*
7905 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7906 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7907 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7908 	 * in the compression of data (in an async thread) and will return
7909 	 * before the compression is done and writeback is started. A second
7910 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7911 	 * complete and writeback to start. We also need to wait for ordered
7912 	 * extents to complete, because our fiemap implementation uses mainly
7913 	 * file extent items to list the extents, searching for extent maps
7914 	 * only for file ranges with holes or prealloc extents to figure out
7915 	 * if we have delalloc in those ranges.
7916 	 */
7917 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7918 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7919 		if (ret)
7920 			return ret;
7921 	}
7922 
7923 	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7924 
7925 	/*
7926 	 * We did an initial flush to avoid holding the inode's lock while
7927 	 * triggering writeback and waiting for the completion of IO and ordered
7928 	 * extents. Now after we locked the inode we do it again, because it's
7929 	 * possible a new write may have happened in between those two steps.
7930 	 */
7931 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7932 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7933 		if (ret) {
7934 			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7935 			return ret;
7936 		}
7937 	}
7938 
7939 	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7940 	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7941 
7942 	return ret;
7943 }
7944 
7945 /*
7946  * For release_folio() and invalidate_folio() we have a race window where
7947  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7948  * If we continue to release/invalidate the page, we could cause use-after-free
7949  * for subpage spinlock.  So this function is to spin and wait for subpage
7950  * spinlock.
7951  */
7952 static void wait_subpage_spinlock(struct page *page)
7953 {
7954 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
7955 	struct folio *folio = page_folio(page);
7956 	struct btrfs_subpage *subpage;
7957 
7958 	if (!btrfs_is_subpage(fs_info, page->mapping))
7959 		return;
7960 
7961 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7962 	subpage = folio_get_private(folio);
7963 
7964 	/*
7965 	 * This may look insane as we just acquire the spinlock and release it,
7966 	 * without doing anything.  But we just want to make sure no one is
7967 	 * still holding the subpage spinlock.
7968 	 * And since the page is not dirty nor writeback, and we have page
7969 	 * locked, the only possible way to hold a spinlock is from the endio
7970 	 * function to clear page writeback.
7971 	 *
7972 	 * Here we just acquire the spinlock so that all existing callers
7973 	 * should exit and we're safe to release/invalidate the page.
7974 	 */
7975 	spin_lock_irq(&subpage->lock);
7976 	spin_unlock_irq(&subpage->lock);
7977 }
7978 
7979 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7980 {
7981 	if (try_release_extent_mapping(&folio->page, gfp_flags)) {
7982 		wait_subpage_spinlock(&folio->page);
7983 		clear_page_extent_mapped(&folio->page);
7984 		return true;
7985 	}
7986 	return false;
7987 }
7988 
7989 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7990 {
7991 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7992 		return false;
7993 	return __btrfs_release_folio(folio, gfp_flags);
7994 }
7995 
7996 #ifdef CONFIG_MIGRATION
7997 static int btrfs_migrate_folio(struct address_space *mapping,
7998 			     struct folio *dst, struct folio *src,
7999 			     enum migrate_mode mode)
8000 {
8001 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
8002 
8003 	if (ret != MIGRATEPAGE_SUCCESS)
8004 		return ret;
8005 
8006 	if (folio_test_ordered(src)) {
8007 		folio_clear_ordered(src);
8008 		folio_set_ordered(dst);
8009 	}
8010 
8011 	return MIGRATEPAGE_SUCCESS;
8012 }
8013 #else
8014 #define btrfs_migrate_folio NULL
8015 #endif
8016 
8017 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8018 				 size_t length)
8019 {
8020 	struct btrfs_inode *inode = folio_to_inode(folio);
8021 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8022 	struct extent_io_tree *tree = &inode->io_tree;
8023 	struct extent_state *cached_state = NULL;
8024 	u64 page_start = folio_pos(folio);
8025 	u64 page_end = page_start + folio_size(folio) - 1;
8026 	u64 cur;
8027 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8028 
8029 	/*
8030 	 * We have folio locked so no new ordered extent can be created on this
8031 	 * page, nor bio can be submitted for this folio.
8032 	 *
8033 	 * But already submitted bio can still be finished on this folio.
8034 	 * Furthermore, endio function won't skip folio which has Ordered
8035 	 * (Private2) already cleared, so it's possible for endio and
8036 	 * invalidate_folio to do the same ordered extent accounting twice
8037 	 * on one folio.
8038 	 *
8039 	 * So here we wait for any submitted bios to finish, so that we won't
8040 	 * do double ordered extent accounting on the same folio.
8041 	 */
8042 	folio_wait_writeback(folio);
8043 	wait_subpage_spinlock(&folio->page);
8044 
8045 	/*
8046 	 * For subpage case, we have call sites like
8047 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8048 	 * sectorsize.
8049 	 * If the range doesn't cover the full folio, we don't need to and
8050 	 * shouldn't clear page extent mapped, as folio->private can still
8051 	 * record subpage dirty bits for other part of the range.
8052 	 *
8053 	 * For cases that invalidate the full folio even the range doesn't
8054 	 * cover the full folio, like invalidating the last folio, we're
8055 	 * still safe to wait for ordered extent to finish.
8056 	 */
8057 	if (!(offset == 0 && length == folio_size(folio))) {
8058 		btrfs_release_folio(folio, GFP_NOFS);
8059 		return;
8060 	}
8061 
8062 	if (!inode_evicting)
8063 		lock_extent(tree, page_start, page_end, &cached_state);
8064 
8065 	cur = page_start;
8066 	while (cur < page_end) {
8067 		struct btrfs_ordered_extent *ordered;
8068 		u64 range_end;
8069 		u32 range_len;
8070 		u32 extra_flags = 0;
8071 
8072 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8073 							   page_end + 1 - cur);
8074 		if (!ordered) {
8075 			range_end = page_end;
8076 			/*
8077 			 * No ordered extent covering this range, we are safe
8078 			 * to delete all extent states in the range.
8079 			 */
8080 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8081 			goto next;
8082 		}
8083 		if (ordered->file_offset > cur) {
8084 			/*
8085 			 * There is a range between [cur, oe->file_offset) not
8086 			 * covered by any ordered extent.
8087 			 * We are safe to delete all extent states, and handle
8088 			 * the ordered extent in the next iteration.
8089 			 */
8090 			range_end = ordered->file_offset - 1;
8091 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8092 			goto next;
8093 		}
8094 
8095 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8096 				page_end);
8097 		ASSERT(range_end + 1 - cur < U32_MAX);
8098 		range_len = range_end + 1 - cur;
8099 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
8100 			/*
8101 			 * If Ordered (Private2) is cleared, it means endio has
8102 			 * already been executed for the range.
8103 			 * We can't delete the extent states as
8104 			 * btrfs_finish_ordered_io() may still use some of them.
8105 			 */
8106 			goto next;
8107 		}
8108 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
8109 
8110 		/*
8111 		 * IO on this page will never be started, so we need to account
8112 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8113 		 * here, must leave that up for the ordered extent completion.
8114 		 *
8115 		 * This will also unlock the range for incoming
8116 		 * btrfs_finish_ordered_io().
8117 		 */
8118 		if (!inode_evicting)
8119 			clear_extent_bit(tree, cur, range_end,
8120 					 EXTENT_DELALLOC |
8121 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8122 					 EXTENT_DEFRAG, &cached_state);
8123 
8124 		spin_lock_irq(&inode->ordered_tree_lock);
8125 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8126 		ordered->truncated_len = min(ordered->truncated_len,
8127 					     cur - ordered->file_offset);
8128 		spin_unlock_irq(&inode->ordered_tree_lock);
8129 
8130 		/*
8131 		 * If the ordered extent has finished, we're safe to delete all
8132 		 * the extent states of the range, otherwise
8133 		 * btrfs_finish_ordered_io() will get executed by endio for
8134 		 * other pages, so we can't delete extent states.
8135 		 */
8136 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8137 						   cur, range_end + 1 - cur)) {
8138 			btrfs_finish_ordered_io(ordered);
8139 			/*
8140 			 * The ordered extent has finished, now we're again
8141 			 * safe to delete all extent states of the range.
8142 			 */
8143 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8144 		}
8145 next:
8146 		if (ordered)
8147 			btrfs_put_ordered_extent(ordered);
8148 		/*
8149 		 * Qgroup reserved space handler
8150 		 * Sector(s) here will be either:
8151 		 *
8152 		 * 1) Already written to disk or bio already finished
8153 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8154 		 *    Qgroup will be handled by its qgroup_record then.
8155 		 *    btrfs_qgroup_free_data() call will do nothing here.
8156 		 *
8157 		 * 2) Not written to disk yet
8158 		 *    Then btrfs_qgroup_free_data() call will clear the
8159 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8160 		 *    reserved data space.
8161 		 *    Since the IO will never happen for this page.
8162 		 */
8163 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8164 		if (!inode_evicting) {
8165 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8166 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8167 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8168 				 extra_flags, &cached_state);
8169 		}
8170 		cur = range_end + 1;
8171 	}
8172 	/*
8173 	 * We have iterated through all ordered extents of the page, the page
8174 	 * should not have Ordered (Private2) anymore, or the above iteration
8175 	 * did something wrong.
8176 	 */
8177 	ASSERT(!folio_test_ordered(folio));
8178 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
8179 	if (!inode_evicting)
8180 		__btrfs_release_folio(folio, GFP_NOFS);
8181 	clear_page_extent_mapped(&folio->page);
8182 }
8183 
8184 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8185 {
8186 	struct btrfs_truncate_control control = {
8187 		.inode = inode,
8188 		.ino = btrfs_ino(inode),
8189 		.min_type = BTRFS_EXTENT_DATA_KEY,
8190 		.clear_extent_range = true,
8191 	};
8192 	struct btrfs_root *root = inode->root;
8193 	struct btrfs_fs_info *fs_info = root->fs_info;
8194 	struct btrfs_block_rsv *rsv;
8195 	int ret;
8196 	struct btrfs_trans_handle *trans;
8197 	u64 mask = fs_info->sectorsize - 1;
8198 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8199 
8200 	if (!skip_writeback) {
8201 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8202 					       inode->vfs_inode.i_size & (~mask),
8203 					       (u64)-1);
8204 		if (ret)
8205 			return ret;
8206 	}
8207 
8208 	/*
8209 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8210 	 * things going on here:
8211 	 *
8212 	 * 1) We need to reserve space to update our inode.
8213 	 *
8214 	 * 2) We need to have something to cache all the space that is going to
8215 	 * be free'd up by the truncate operation, but also have some slack
8216 	 * space reserved in case it uses space during the truncate (thank you
8217 	 * very much snapshotting).
8218 	 *
8219 	 * And we need these to be separate.  The fact is we can use a lot of
8220 	 * space doing the truncate, and we have no earthly idea how much space
8221 	 * we will use, so we need the truncate reservation to be separate so it
8222 	 * doesn't end up using space reserved for updating the inode.  We also
8223 	 * need to be able to stop the transaction and start a new one, which
8224 	 * means we need to be able to update the inode several times, and we
8225 	 * have no idea of knowing how many times that will be, so we can't just
8226 	 * reserve 1 item for the entirety of the operation, so that has to be
8227 	 * done separately as well.
8228 	 *
8229 	 * So that leaves us with
8230 	 *
8231 	 * 1) rsv - for the truncate reservation, which we will steal from the
8232 	 * transaction reservation.
8233 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8234 	 * updating the inode.
8235 	 */
8236 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8237 	if (!rsv)
8238 		return -ENOMEM;
8239 	rsv->size = min_size;
8240 	rsv->failfast = true;
8241 
8242 	/*
8243 	 * 1 for the truncate slack space
8244 	 * 1 for updating the inode.
8245 	 */
8246 	trans = btrfs_start_transaction(root, 2);
8247 	if (IS_ERR(trans)) {
8248 		ret = PTR_ERR(trans);
8249 		goto out;
8250 	}
8251 
8252 	/* Migrate the slack space for the truncate to our reserve */
8253 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8254 				      min_size, false);
8255 	/*
8256 	 * We have reserved 2 metadata units when we started the transaction and
8257 	 * min_size matches 1 unit, so this should never fail, but if it does,
8258 	 * it's not critical we just fail truncation.
8259 	 */
8260 	if (WARN_ON(ret)) {
8261 		btrfs_end_transaction(trans);
8262 		goto out;
8263 	}
8264 
8265 	trans->block_rsv = rsv;
8266 
8267 	while (1) {
8268 		struct extent_state *cached_state = NULL;
8269 		const u64 new_size = inode->vfs_inode.i_size;
8270 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8271 
8272 		control.new_size = new_size;
8273 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8274 		/*
8275 		 * We want to drop from the next block forward in case this new
8276 		 * size is not block aligned since we will be keeping the last
8277 		 * block of the extent just the way it is.
8278 		 */
8279 		btrfs_drop_extent_map_range(inode,
8280 					    ALIGN(new_size, fs_info->sectorsize),
8281 					    (u64)-1, false);
8282 
8283 		ret = btrfs_truncate_inode_items(trans, root, &control);
8284 
8285 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8286 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8287 
8288 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8289 
8290 		trans->block_rsv = &fs_info->trans_block_rsv;
8291 		if (ret != -ENOSPC && ret != -EAGAIN)
8292 			break;
8293 
8294 		ret = btrfs_update_inode(trans, inode);
8295 		if (ret)
8296 			break;
8297 
8298 		btrfs_end_transaction(trans);
8299 		btrfs_btree_balance_dirty(fs_info);
8300 
8301 		trans = btrfs_start_transaction(root, 2);
8302 		if (IS_ERR(trans)) {
8303 			ret = PTR_ERR(trans);
8304 			trans = NULL;
8305 			break;
8306 		}
8307 
8308 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8309 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8310 					      rsv, min_size, false);
8311 		/*
8312 		 * We have reserved 2 metadata units when we started the
8313 		 * transaction and min_size matches 1 unit, so this should never
8314 		 * fail, but if it does, it's not critical we just fail truncation.
8315 		 */
8316 		if (WARN_ON(ret))
8317 			break;
8318 
8319 		trans->block_rsv = rsv;
8320 	}
8321 
8322 	/*
8323 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8324 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8325 	 * know we've truncated everything except the last little bit, and can
8326 	 * do btrfs_truncate_block and then update the disk_i_size.
8327 	 */
8328 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8329 		btrfs_end_transaction(trans);
8330 		btrfs_btree_balance_dirty(fs_info);
8331 
8332 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8333 		if (ret)
8334 			goto out;
8335 		trans = btrfs_start_transaction(root, 1);
8336 		if (IS_ERR(trans)) {
8337 			ret = PTR_ERR(trans);
8338 			goto out;
8339 		}
8340 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8341 	}
8342 
8343 	if (trans) {
8344 		int ret2;
8345 
8346 		trans->block_rsv = &fs_info->trans_block_rsv;
8347 		ret2 = btrfs_update_inode(trans, inode);
8348 		if (ret2 && !ret)
8349 			ret = ret2;
8350 
8351 		ret2 = btrfs_end_transaction(trans);
8352 		if (ret2 && !ret)
8353 			ret = ret2;
8354 		btrfs_btree_balance_dirty(fs_info);
8355 	}
8356 out:
8357 	btrfs_free_block_rsv(fs_info, rsv);
8358 	/*
8359 	 * So if we truncate and then write and fsync we normally would just
8360 	 * write the extents that changed, which is a problem if we need to
8361 	 * first truncate that entire inode.  So set this flag so we write out
8362 	 * all of the extents in the inode to the sync log so we're completely
8363 	 * safe.
8364 	 *
8365 	 * If no extents were dropped or trimmed we don't need to force the next
8366 	 * fsync to truncate all the inode's items from the log and re-log them
8367 	 * all. This means the truncate operation did not change the file size,
8368 	 * or changed it to a smaller size but there was only an implicit hole
8369 	 * between the old i_size and the new i_size, and there were no prealloc
8370 	 * extents beyond i_size to drop.
8371 	 */
8372 	if (control.extents_found > 0)
8373 		btrfs_set_inode_full_sync(inode);
8374 
8375 	return ret;
8376 }
8377 
8378 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8379 				     struct inode *dir)
8380 {
8381 	struct inode *inode;
8382 
8383 	inode = new_inode(dir->i_sb);
8384 	if (inode) {
8385 		/*
8386 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8387 		 * the parent's sgid bit is set. This is probably a bug.
8388 		 */
8389 		inode_init_owner(idmap, inode, NULL,
8390 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8391 		inode->i_op = &btrfs_dir_inode_operations;
8392 		inode->i_fop = &btrfs_dir_file_operations;
8393 	}
8394 	return inode;
8395 }
8396 
8397 struct inode *btrfs_alloc_inode(struct super_block *sb)
8398 {
8399 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8400 	struct btrfs_inode *ei;
8401 	struct inode *inode;
8402 	struct extent_io_tree *file_extent_tree = NULL;
8403 
8404 	/* Self tests may pass a NULL fs_info. */
8405 	if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8406 		file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8407 		if (!file_extent_tree)
8408 			return NULL;
8409 	}
8410 
8411 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8412 	if (!ei) {
8413 		kfree(file_extent_tree);
8414 		return NULL;
8415 	}
8416 
8417 	ei->root = NULL;
8418 	ei->generation = 0;
8419 	ei->last_trans = 0;
8420 	ei->last_sub_trans = 0;
8421 	ei->logged_trans = 0;
8422 	ei->delalloc_bytes = 0;
8423 	ei->new_delalloc_bytes = 0;
8424 	ei->defrag_bytes = 0;
8425 	ei->disk_i_size = 0;
8426 	ei->flags = 0;
8427 	ei->ro_flags = 0;
8428 	ei->csum_bytes = 0;
8429 	ei->index_cnt = (u64)-1;
8430 	ei->dir_index = 0;
8431 	ei->last_unlink_trans = 0;
8432 	ei->last_reflink_trans = 0;
8433 	ei->last_log_commit = 0;
8434 
8435 	spin_lock_init(&ei->lock);
8436 	ei->outstanding_extents = 0;
8437 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8438 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8439 					      BTRFS_BLOCK_RSV_DELALLOC);
8440 	ei->runtime_flags = 0;
8441 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8442 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8443 
8444 	ei->delayed_node = NULL;
8445 
8446 	ei->i_otime_sec = 0;
8447 	ei->i_otime_nsec = 0;
8448 
8449 	inode = &ei->vfs_inode;
8450 	extent_map_tree_init(&ei->extent_tree);
8451 
8452 	/* This io tree sets the valid inode. */
8453 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8454 	ei->io_tree.inode = ei;
8455 
8456 	ei->file_extent_tree = file_extent_tree;
8457 	if (file_extent_tree) {
8458 		extent_io_tree_init(fs_info, ei->file_extent_tree,
8459 				    IO_TREE_INODE_FILE_EXTENT);
8460 		/* Lockdep class is set only for the file extent tree. */
8461 		lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8462 	}
8463 	mutex_init(&ei->log_mutex);
8464 	spin_lock_init(&ei->ordered_tree_lock);
8465 	ei->ordered_tree = RB_ROOT;
8466 	ei->ordered_tree_last = NULL;
8467 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8468 	INIT_LIST_HEAD(&ei->delayed_iput);
8469 	RB_CLEAR_NODE(&ei->rb_node);
8470 	init_rwsem(&ei->i_mmap_lock);
8471 
8472 	return inode;
8473 }
8474 
8475 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8476 void btrfs_test_destroy_inode(struct inode *inode)
8477 {
8478 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8479 	kfree(BTRFS_I(inode)->file_extent_tree);
8480 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8481 }
8482 #endif
8483 
8484 void btrfs_free_inode(struct inode *inode)
8485 {
8486 	kfree(BTRFS_I(inode)->file_extent_tree);
8487 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8488 }
8489 
8490 void btrfs_destroy_inode(struct inode *vfs_inode)
8491 {
8492 	struct btrfs_ordered_extent *ordered;
8493 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8494 	struct btrfs_root *root = inode->root;
8495 	bool freespace_inode;
8496 
8497 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8498 	WARN_ON(vfs_inode->i_data.nrpages);
8499 	WARN_ON(inode->block_rsv.reserved);
8500 	WARN_ON(inode->block_rsv.size);
8501 	WARN_ON(inode->outstanding_extents);
8502 	if (!S_ISDIR(vfs_inode->i_mode)) {
8503 		WARN_ON(inode->delalloc_bytes);
8504 		WARN_ON(inode->new_delalloc_bytes);
8505 	}
8506 	WARN_ON(inode->csum_bytes);
8507 	WARN_ON(inode->defrag_bytes);
8508 
8509 	/*
8510 	 * This can happen where we create an inode, but somebody else also
8511 	 * created the same inode and we need to destroy the one we already
8512 	 * created.
8513 	 */
8514 	if (!root)
8515 		return;
8516 
8517 	/*
8518 	 * If this is a free space inode do not take the ordered extents lockdep
8519 	 * map.
8520 	 */
8521 	freespace_inode = btrfs_is_free_space_inode(inode);
8522 
8523 	while (1) {
8524 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8525 		if (!ordered)
8526 			break;
8527 		else {
8528 			btrfs_err(root->fs_info,
8529 				  "found ordered extent %llu %llu on inode cleanup",
8530 				  ordered->file_offset, ordered->num_bytes);
8531 
8532 			if (!freespace_inode)
8533 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8534 
8535 			btrfs_remove_ordered_extent(inode, ordered);
8536 			btrfs_put_ordered_extent(ordered);
8537 			btrfs_put_ordered_extent(ordered);
8538 		}
8539 	}
8540 	btrfs_qgroup_check_reserved_leak(inode);
8541 	inode_tree_del(inode);
8542 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8543 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8544 	btrfs_put_root(inode->root);
8545 }
8546 
8547 int btrfs_drop_inode(struct inode *inode)
8548 {
8549 	struct btrfs_root *root = BTRFS_I(inode)->root;
8550 
8551 	if (root == NULL)
8552 		return 1;
8553 
8554 	/* the snap/subvol tree is on deleting */
8555 	if (btrfs_root_refs(&root->root_item) == 0)
8556 		return 1;
8557 	else
8558 		return generic_drop_inode(inode);
8559 }
8560 
8561 static void init_once(void *foo)
8562 {
8563 	struct btrfs_inode *ei = foo;
8564 
8565 	inode_init_once(&ei->vfs_inode);
8566 }
8567 
8568 void __cold btrfs_destroy_cachep(void)
8569 {
8570 	/*
8571 	 * Make sure all delayed rcu free inodes are flushed before we
8572 	 * destroy cache.
8573 	 */
8574 	rcu_barrier();
8575 	bioset_exit(&btrfs_dio_bioset);
8576 	kmem_cache_destroy(btrfs_inode_cachep);
8577 }
8578 
8579 int __init btrfs_init_cachep(void)
8580 {
8581 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8582 			sizeof(struct btrfs_inode), 0,
8583 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8584 			init_once);
8585 	if (!btrfs_inode_cachep)
8586 		goto fail;
8587 
8588 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8589 			offsetof(struct btrfs_dio_private, bbio.bio),
8590 			BIOSET_NEED_BVECS))
8591 		goto fail;
8592 
8593 	return 0;
8594 fail:
8595 	btrfs_destroy_cachep();
8596 	return -ENOMEM;
8597 }
8598 
8599 static int btrfs_getattr(struct mnt_idmap *idmap,
8600 			 const struct path *path, struct kstat *stat,
8601 			 u32 request_mask, unsigned int flags)
8602 {
8603 	u64 delalloc_bytes;
8604 	u64 inode_bytes;
8605 	struct inode *inode = d_inode(path->dentry);
8606 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8607 	u32 bi_flags = BTRFS_I(inode)->flags;
8608 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8609 
8610 	stat->result_mask |= STATX_BTIME;
8611 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8612 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8613 	if (bi_flags & BTRFS_INODE_APPEND)
8614 		stat->attributes |= STATX_ATTR_APPEND;
8615 	if (bi_flags & BTRFS_INODE_COMPRESS)
8616 		stat->attributes |= STATX_ATTR_COMPRESSED;
8617 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8618 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8619 	if (bi_flags & BTRFS_INODE_NODUMP)
8620 		stat->attributes |= STATX_ATTR_NODUMP;
8621 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8622 		stat->attributes |= STATX_ATTR_VERITY;
8623 
8624 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8625 				  STATX_ATTR_COMPRESSED |
8626 				  STATX_ATTR_IMMUTABLE |
8627 				  STATX_ATTR_NODUMP);
8628 
8629 	generic_fillattr(idmap, request_mask, inode, stat);
8630 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8631 
8632 	stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
8633 	stat->result_mask |= STATX_SUBVOL;
8634 
8635 	spin_lock(&BTRFS_I(inode)->lock);
8636 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8637 	inode_bytes = inode_get_bytes(inode);
8638 	spin_unlock(&BTRFS_I(inode)->lock);
8639 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8640 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8641 	return 0;
8642 }
8643 
8644 static int btrfs_rename_exchange(struct inode *old_dir,
8645 			      struct dentry *old_dentry,
8646 			      struct inode *new_dir,
8647 			      struct dentry *new_dentry)
8648 {
8649 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8650 	struct btrfs_trans_handle *trans;
8651 	unsigned int trans_num_items;
8652 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8653 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8654 	struct inode *new_inode = new_dentry->d_inode;
8655 	struct inode *old_inode = old_dentry->d_inode;
8656 	struct btrfs_rename_ctx old_rename_ctx;
8657 	struct btrfs_rename_ctx new_rename_ctx;
8658 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8659 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8660 	u64 old_idx = 0;
8661 	u64 new_idx = 0;
8662 	int ret;
8663 	int ret2;
8664 	bool need_abort = false;
8665 	struct fscrypt_name old_fname, new_fname;
8666 	struct fscrypt_str *old_name, *new_name;
8667 
8668 	/*
8669 	 * For non-subvolumes allow exchange only within one subvolume, in the
8670 	 * same inode namespace. Two subvolumes (represented as directory) can
8671 	 * be exchanged as they're a logical link and have a fixed inode number.
8672 	 */
8673 	if (root != dest &&
8674 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8675 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8676 		return -EXDEV;
8677 
8678 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8679 	if (ret)
8680 		return ret;
8681 
8682 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8683 	if (ret) {
8684 		fscrypt_free_filename(&old_fname);
8685 		return ret;
8686 	}
8687 
8688 	old_name = &old_fname.disk_name;
8689 	new_name = &new_fname.disk_name;
8690 
8691 	/* close the race window with snapshot create/destroy ioctl */
8692 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8693 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8694 		down_read(&fs_info->subvol_sem);
8695 
8696 	/*
8697 	 * For each inode:
8698 	 * 1 to remove old dir item
8699 	 * 1 to remove old dir index
8700 	 * 1 to add new dir item
8701 	 * 1 to add new dir index
8702 	 * 1 to update parent inode
8703 	 *
8704 	 * If the parents are the same, we only need to account for one
8705 	 */
8706 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8707 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8708 		/*
8709 		 * 1 to remove old root ref
8710 		 * 1 to remove old root backref
8711 		 * 1 to add new root ref
8712 		 * 1 to add new root backref
8713 		 */
8714 		trans_num_items += 4;
8715 	} else {
8716 		/*
8717 		 * 1 to update inode item
8718 		 * 1 to remove old inode ref
8719 		 * 1 to add new inode ref
8720 		 */
8721 		trans_num_items += 3;
8722 	}
8723 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8724 		trans_num_items += 4;
8725 	else
8726 		trans_num_items += 3;
8727 	trans = btrfs_start_transaction(root, trans_num_items);
8728 	if (IS_ERR(trans)) {
8729 		ret = PTR_ERR(trans);
8730 		goto out_notrans;
8731 	}
8732 
8733 	if (dest != root) {
8734 		ret = btrfs_record_root_in_trans(trans, dest);
8735 		if (ret)
8736 			goto out_fail;
8737 	}
8738 
8739 	/*
8740 	 * We need to find a free sequence number both in the source and
8741 	 * in the destination directory for the exchange.
8742 	 */
8743 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8744 	if (ret)
8745 		goto out_fail;
8746 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8747 	if (ret)
8748 		goto out_fail;
8749 
8750 	BTRFS_I(old_inode)->dir_index = 0ULL;
8751 	BTRFS_I(new_inode)->dir_index = 0ULL;
8752 
8753 	/* Reference for the source. */
8754 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8755 		/* force full log commit if subvolume involved. */
8756 		btrfs_set_log_full_commit(trans);
8757 	} else {
8758 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8759 					     btrfs_ino(BTRFS_I(new_dir)),
8760 					     old_idx);
8761 		if (ret)
8762 			goto out_fail;
8763 		need_abort = true;
8764 	}
8765 
8766 	/* And now for the dest. */
8767 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8768 		/* force full log commit if subvolume involved. */
8769 		btrfs_set_log_full_commit(trans);
8770 	} else {
8771 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8772 					     btrfs_ino(BTRFS_I(old_dir)),
8773 					     new_idx);
8774 		if (ret) {
8775 			if (need_abort)
8776 				btrfs_abort_transaction(trans, ret);
8777 			goto out_fail;
8778 		}
8779 	}
8780 
8781 	/* Update inode version and ctime/mtime. */
8782 	inode_inc_iversion(old_dir);
8783 	inode_inc_iversion(new_dir);
8784 	inode_inc_iversion(old_inode);
8785 	inode_inc_iversion(new_inode);
8786 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8787 
8788 	if (old_dentry->d_parent != new_dentry->d_parent) {
8789 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8790 					BTRFS_I(old_inode), true);
8791 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8792 					BTRFS_I(new_inode), true);
8793 	}
8794 
8795 	/* src is a subvolume */
8796 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8797 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8798 	} else { /* src is an inode */
8799 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8800 					   BTRFS_I(old_dentry->d_inode),
8801 					   old_name, &old_rename_ctx);
8802 		if (!ret)
8803 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8804 	}
8805 	if (ret) {
8806 		btrfs_abort_transaction(trans, ret);
8807 		goto out_fail;
8808 	}
8809 
8810 	/* dest is a subvolume */
8811 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8812 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8813 	} else { /* dest is an inode */
8814 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8815 					   BTRFS_I(new_dentry->d_inode),
8816 					   new_name, &new_rename_ctx);
8817 		if (!ret)
8818 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8819 	}
8820 	if (ret) {
8821 		btrfs_abort_transaction(trans, ret);
8822 		goto out_fail;
8823 	}
8824 
8825 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8826 			     new_name, 0, old_idx);
8827 	if (ret) {
8828 		btrfs_abort_transaction(trans, ret);
8829 		goto out_fail;
8830 	}
8831 
8832 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8833 			     old_name, 0, new_idx);
8834 	if (ret) {
8835 		btrfs_abort_transaction(trans, ret);
8836 		goto out_fail;
8837 	}
8838 
8839 	if (old_inode->i_nlink == 1)
8840 		BTRFS_I(old_inode)->dir_index = old_idx;
8841 	if (new_inode->i_nlink == 1)
8842 		BTRFS_I(new_inode)->dir_index = new_idx;
8843 
8844 	/*
8845 	 * Now pin the logs of the roots. We do it to ensure that no other task
8846 	 * can sync the logs while we are in progress with the rename, because
8847 	 * that could result in an inconsistency in case any of the inodes that
8848 	 * are part of this rename operation were logged before.
8849 	 */
8850 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8851 		btrfs_pin_log_trans(root);
8852 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8853 		btrfs_pin_log_trans(dest);
8854 
8855 	/* Do the log updates for all inodes. */
8856 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8857 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8858 				   old_rename_ctx.index, new_dentry->d_parent);
8859 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8860 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8861 				   new_rename_ctx.index, old_dentry->d_parent);
8862 
8863 	/* Now unpin the logs. */
8864 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8865 		btrfs_end_log_trans(root);
8866 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8867 		btrfs_end_log_trans(dest);
8868 out_fail:
8869 	ret2 = btrfs_end_transaction(trans);
8870 	ret = ret ? ret : ret2;
8871 out_notrans:
8872 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8873 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8874 		up_read(&fs_info->subvol_sem);
8875 
8876 	fscrypt_free_filename(&new_fname);
8877 	fscrypt_free_filename(&old_fname);
8878 	return ret;
8879 }
8880 
8881 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8882 					struct inode *dir)
8883 {
8884 	struct inode *inode;
8885 
8886 	inode = new_inode(dir->i_sb);
8887 	if (inode) {
8888 		inode_init_owner(idmap, inode, dir,
8889 				 S_IFCHR | WHITEOUT_MODE);
8890 		inode->i_op = &btrfs_special_inode_operations;
8891 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8892 	}
8893 	return inode;
8894 }
8895 
8896 static int btrfs_rename(struct mnt_idmap *idmap,
8897 			struct inode *old_dir, struct dentry *old_dentry,
8898 			struct inode *new_dir, struct dentry *new_dentry,
8899 			unsigned int flags)
8900 {
8901 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8902 	struct btrfs_new_inode_args whiteout_args = {
8903 		.dir = old_dir,
8904 		.dentry = old_dentry,
8905 	};
8906 	struct btrfs_trans_handle *trans;
8907 	unsigned int trans_num_items;
8908 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8909 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8910 	struct inode *new_inode = d_inode(new_dentry);
8911 	struct inode *old_inode = d_inode(old_dentry);
8912 	struct btrfs_rename_ctx rename_ctx;
8913 	u64 index = 0;
8914 	int ret;
8915 	int ret2;
8916 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8917 	struct fscrypt_name old_fname, new_fname;
8918 
8919 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8920 		return -EPERM;
8921 
8922 	/* we only allow rename subvolume link between subvolumes */
8923 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8924 		return -EXDEV;
8925 
8926 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8927 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8928 		return -ENOTEMPTY;
8929 
8930 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8931 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8932 		return -ENOTEMPTY;
8933 
8934 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8935 	if (ret)
8936 		return ret;
8937 
8938 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8939 	if (ret) {
8940 		fscrypt_free_filename(&old_fname);
8941 		return ret;
8942 	}
8943 
8944 	/* check for collisions, even if the  name isn't there */
8945 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8946 	if (ret) {
8947 		if (ret == -EEXIST) {
8948 			/* we shouldn't get
8949 			 * eexist without a new_inode */
8950 			if (WARN_ON(!new_inode)) {
8951 				goto out_fscrypt_names;
8952 			}
8953 		} else {
8954 			/* maybe -EOVERFLOW */
8955 			goto out_fscrypt_names;
8956 		}
8957 	}
8958 	ret = 0;
8959 
8960 	/*
8961 	 * we're using rename to replace one file with another.  Start IO on it
8962 	 * now so  we don't add too much work to the end of the transaction
8963 	 */
8964 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8965 		filemap_flush(old_inode->i_mapping);
8966 
8967 	if (flags & RENAME_WHITEOUT) {
8968 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8969 		if (!whiteout_args.inode) {
8970 			ret = -ENOMEM;
8971 			goto out_fscrypt_names;
8972 		}
8973 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8974 		if (ret)
8975 			goto out_whiteout_inode;
8976 	} else {
8977 		/* 1 to update the old parent inode. */
8978 		trans_num_items = 1;
8979 	}
8980 
8981 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8982 		/* Close the race window with snapshot create/destroy ioctl */
8983 		down_read(&fs_info->subvol_sem);
8984 		/*
8985 		 * 1 to remove old root ref
8986 		 * 1 to remove old root backref
8987 		 * 1 to add new root ref
8988 		 * 1 to add new root backref
8989 		 */
8990 		trans_num_items += 4;
8991 	} else {
8992 		/*
8993 		 * 1 to update inode
8994 		 * 1 to remove old inode ref
8995 		 * 1 to add new inode ref
8996 		 */
8997 		trans_num_items += 3;
8998 	}
8999 	/*
9000 	 * 1 to remove old dir item
9001 	 * 1 to remove old dir index
9002 	 * 1 to add new dir item
9003 	 * 1 to add new dir index
9004 	 */
9005 	trans_num_items += 4;
9006 	/* 1 to update new parent inode if it's not the same as the old parent */
9007 	if (new_dir != old_dir)
9008 		trans_num_items++;
9009 	if (new_inode) {
9010 		/*
9011 		 * 1 to update inode
9012 		 * 1 to remove inode ref
9013 		 * 1 to remove dir item
9014 		 * 1 to remove dir index
9015 		 * 1 to possibly add orphan item
9016 		 */
9017 		trans_num_items += 5;
9018 	}
9019 	trans = btrfs_start_transaction(root, trans_num_items);
9020 	if (IS_ERR(trans)) {
9021 		ret = PTR_ERR(trans);
9022 		goto out_notrans;
9023 	}
9024 
9025 	if (dest != root) {
9026 		ret = btrfs_record_root_in_trans(trans, dest);
9027 		if (ret)
9028 			goto out_fail;
9029 	}
9030 
9031 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9032 	if (ret)
9033 		goto out_fail;
9034 
9035 	BTRFS_I(old_inode)->dir_index = 0ULL;
9036 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9037 		/* force full log commit if subvolume involved. */
9038 		btrfs_set_log_full_commit(trans);
9039 	} else {
9040 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9041 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9042 					     index);
9043 		if (ret)
9044 			goto out_fail;
9045 	}
9046 
9047 	inode_inc_iversion(old_dir);
9048 	inode_inc_iversion(new_dir);
9049 	inode_inc_iversion(old_inode);
9050 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9051 
9052 	if (old_dentry->d_parent != new_dentry->d_parent)
9053 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9054 					BTRFS_I(old_inode), true);
9055 
9056 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9057 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9058 	} else {
9059 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9060 					   BTRFS_I(d_inode(old_dentry)),
9061 					   &old_fname.disk_name, &rename_ctx);
9062 		if (!ret)
9063 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
9064 	}
9065 	if (ret) {
9066 		btrfs_abort_transaction(trans, ret);
9067 		goto out_fail;
9068 	}
9069 
9070 	if (new_inode) {
9071 		inode_inc_iversion(new_inode);
9072 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9073 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9074 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9075 			BUG_ON(new_inode->i_nlink == 0);
9076 		} else {
9077 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9078 						 BTRFS_I(d_inode(new_dentry)),
9079 						 &new_fname.disk_name);
9080 		}
9081 		if (!ret && new_inode->i_nlink == 0)
9082 			ret = btrfs_orphan_add(trans,
9083 					BTRFS_I(d_inode(new_dentry)));
9084 		if (ret) {
9085 			btrfs_abort_transaction(trans, ret);
9086 			goto out_fail;
9087 		}
9088 	}
9089 
9090 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9091 			     &new_fname.disk_name, 0, index);
9092 	if (ret) {
9093 		btrfs_abort_transaction(trans, ret);
9094 		goto out_fail;
9095 	}
9096 
9097 	if (old_inode->i_nlink == 1)
9098 		BTRFS_I(old_inode)->dir_index = index;
9099 
9100 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9101 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9102 				   rename_ctx.index, new_dentry->d_parent);
9103 
9104 	if (flags & RENAME_WHITEOUT) {
9105 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9106 		if (ret) {
9107 			btrfs_abort_transaction(trans, ret);
9108 			goto out_fail;
9109 		} else {
9110 			unlock_new_inode(whiteout_args.inode);
9111 			iput(whiteout_args.inode);
9112 			whiteout_args.inode = NULL;
9113 		}
9114 	}
9115 out_fail:
9116 	ret2 = btrfs_end_transaction(trans);
9117 	ret = ret ? ret : ret2;
9118 out_notrans:
9119 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9120 		up_read(&fs_info->subvol_sem);
9121 	if (flags & RENAME_WHITEOUT)
9122 		btrfs_new_inode_args_destroy(&whiteout_args);
9123 out_whiteout_inode:
9124 	if (flags & RENAME_WHITEOUT)
9125 		iput(whiteout_args.inode);
9126 out_fscrypt_names:
9127 	fscrypt_free_filename(&old_fname);
9128 	fscrypt_free_filename(&new_fname);
9129 	return ret;
9130 }
9131 
9132 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9133 			 struct dentry *old_dentry, struct inode *new_dir,
9134 			 struct dentry *new_dentry, unsigned int flags)
9135 {
9136 	int ret;
9137 
9138 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9139 		return -EINVAL;
9140 
9141 	if (flags & RENAME_EXCHANGE)
9142 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9143 					    new_dentry);
9144 	else
9145 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9146 				   new_dentry, flags);
9147 
9148 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9149 
9150 	return ret;
9151 }
9152 
9153 struct btrfs_delalloc_work {
9154 	struct inode *inode;
9155 	struct completion completion;
9156 	struct list_head list;
9157 	struct btrfs_work work;
9158 };
9159 
9160 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9161 {
9162 	struct btrfs_delalloc_work *delalloc_work;
9163 	struct inode *inode;
9164 
9165 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9166 				     work);
9167 	inode = delalloc_work->inode;
9168 	filemap_flush(inode->i_mapping);
9169 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9170 				&BTRFS_I(inode)->runtime_flags))
9171 		filemap_flush(inode->i_mapping);
9172 
9173 	iput(inode);
9174 	complete(&delalloc_work->completion);
9175 }
9176 
9177 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9178 {
9179 	struct btrfs_delalloc_work *work;
9180 
9181 	work = kmalloc(sizeof(*work), GFP_NOFS);
9182 	if (!work)
9183 		return NULL;
9184 
9185 	init_completion(&work->completion);
9186 	INIT_LIST_HEAD(&work->list);
9187 	work->inode = inode;
9188 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
9189 
9190 	return work;
9191 }
9192 
9193 /*
9194  * some fairly slow code that needs optimization. This walks the list
9195  * of all the inodes with pending delalloc and forces them to disk.
9196  */
9197 static int start_delalloc_inodes(struct btrfs_root *root,
9198 				 struct writeback_control *wbc, bool snapshot,
9199 				 bool in_reclaim_context)
9200 {
9201 	struct btrfs_inode *binode;
9202 	struct inode *inode;
9203 	struct btrfs_delalloc_work *work, *next;
9204 	LIST_HEAD(works);
9205 	LIST_HEAD(splice);
9206 	int ret = 0;
9207 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9208 
9209 	mutex_lock(&root->delalloc_mutex);
9210 	spin_lock(&root->delalloc_lock);
9211 	list_splice_init(&root->delalloc_inodes, &splice);
9212 	while (!list_empty(&splice)) {
9213 		binode = list_entry(splice.next, struct btrfs_inode,
9214 				    delalloc_inodes);
9215 
9216 		list_move_tail(&binode->delalloc_inodes,
9217 			       &root->delalloc_inodes);
9218 
9219 		if (in_reclaim_context &&
9220 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9221 			continue;
9222 
9223 		inode = igrab(&binode->vfs_inode);
9224 		if (!inode) {
9225 			cond_resched_lock(&root->delalloc_lock);
9226 			continue;
9227 		}
9228 		spin_unlock(&root->delalloc_lock);
9229 
9230 		if (snapshot)
9231 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9232 				&binode->runtime_flags);
9233 		if (full_flush) {
9234 			work = btrfs_alloc_delalloc_work(inode);
9235 			if (!work) {
9236 				iput(inode);
9237 				ret = -ENOMEM;
9238 				goto out;
9239 			}
9240 			list_add_tail(&work->list, &works);
9241 			btrfs_queue_work(root->fs_info->flush_workers,
9242 					 &work->work);
9243 		} else {
9244 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9245 			btrfs_add_delayed_iput(BTRFS_I(inode));
9246 			if (ret || wbc->nr_to_write <= 0)
9247 				goto out;
9248 		}
9249 		cond_resched();
9250 		spin_lock(&root->delalloc_lock);
9251 	}
9252 	spin_unlock(&root->delalloc_lock);
9253 
9254 out:
9255 	list_for_each_entry_safe(work, next, &works, list) {
9256 		list_del_init(&work->list);
9257 		wait_for_completion(&work->completion);
9258 		kfree(work);
9259 	}
9260 
9261 	if (!list_empty(&splice)) {
9262 		spin_lock(&root->delalloc_lock);
9263 		list_splice_tail(&splice, &root->delalloc_inodes);
9264 		spin_unlock(&root->delalloc_lock);
9265 	}
9266 	mutex_unlock(&root->delalloc_mutex);
9267 	return ret;
9268 }
9269 
9270 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9271 {
9272 	struct writeback_control wbc = {
9273 		.nr_to_write = LONG_MAX,
9274 		.sync_mode = WB_SYNC_NONE,
9275 		.range_start = 0,
9276 		.range_end = LLONG_MAX,
9277 	};
9278 	struct btrfs_fs_info *fs_info = root->fs_info;
9279 
9280 	if (BTRFS_FS_ERROR(fs_info))
9281 		return -EROFS;
9282 
9283 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9284 }
9285 
9286 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9287 			       bool in_reclaim_context)
9288 {
9289 	struct writeback_control wbc = {
9290 		.nr_to_write = nr,
9291 		.sync_mode = WB_SYNC_NONE,
9292 		.range_start = 0,
9293 		.range_end = LLONG_MAX,
9294 	};
9295 	struct btrfs_root *root;
9296 	LIST_HEAD(splice);
9297 	int ret;
9298 
9299 	if (BTRFS_FS_ERROR(fs_info))
9300 		return -EROFS;
9301 
9302 	mutex_lock(&fs_info->delalloc_root_mutex);
9303 	spin_lock(&fs_info->delalloc_root_lock);
9304 	list_splice_init(&fs_info->delalloc_roots, &splice);
9305 	while (!list_empty(&splice)) {
9306 		/*
9307 		 * Reset nr_to_write here so we know that we're doing a full
9308 		 * flush.
9309 		 */
9310 		if (nr == LONG_MAX)
9311 			wbc.nr_to_write = LONG_MAX;
9312 
9313 		root = list_first_entry(&splice, struct btrfs_root,
9314 					delalloc_root);
9315 		root = btrfs_grab_root(root);
9316 		BUG_ON(!root);
9317 		list_move_tail(&root->delalloc_root,
9318 			       &fs_info->delalloc_roots);
9319 		spin_unlock(&fs_info->delalloc_root_lock);
9320 
9321 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9322 		btrfs_put_root(root);
9323 		if (ret < 0 || wbc.nr_to_write <= 0)
9324 			goto out;
9325 		spin_lock(&fs_info->delalloc_root_lock);
9326 	}
9327 	spin_unlock(&fs_info->delalloc_root_lock);
9328 
9329 	ret = 0;
9330 out:
9331 	if (!list_empty(&splice)) {
9332 		spin_lock(&fs_info->delalloc_root_lock);
9333 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9334 		spin_unlock(&fs_info->delalloc_root_lock);
9335 	}
9336 	mutex_unlock(&fs_info->delalloc_root_mutex);
9337 	return ret;
9338 }
9339 
9340 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9341 			 struct dentry *dentry, const char *symname)
9342 {
9343 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9344 	struct btrfs_trans_handle *trans;
9345 	struct btrfs_root *root = BTRFS_I(dir)->root;
9346 	struct btrfs_path *path;
9347 	struct btrfs_key key;
9348 	struct inode *inode;
9349 	struct btrfs_new_inode_args new_inode_args = {
9350 		.dir = dir,
9351 		.dentry = dentry,
9352 	};
9353 	unsigned int trans_num_items;
9354 	int err;
9355 	int name_len;
9356 	int datasize;
9357 	unsigned long ptr;
9358 	struct btrfs_file_extent_item *ei;
9359 	struct extent_buffer *leaf;
9360 
9361 	name_len = strlen(symname);
9362 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9363 		return -ENAMETOOLONG;
9364 
9365 	inode = new_inode(dir->i_sb);
9366 	if (!inode)
9367 		return -ENOMEM;
9368 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9369 	inode->i_op = &btrfs_symlink_inode_operations;
9370 	inode_nohighmem(inode);
9371 	inode->i_mapping->a_ops = &btrfs_aops;
9372 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9373 	inode_set_bytes(inode, name_len);
9374 
9375 	new_inode_args.inode = inode;
9376 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9377 	if (err)
9378 		goto out_inode;
9379 	/* 1 additional item for the inline extent */
9380 	trans_num_items++;
9381 
9382 	trans = btrfs_start_transaction(root, trans_num_items);
9383 	if (IS_ERR(trans)) {
9384 		err = PTR_ERR(trans);
9385 		goto out_new_inode_args;
9386 	}
9387 
9388 	err = btrfs_create_new_inode(trans, &new_inode_args);
9389 	if (err)
9390 		goto out;
9391 
9392 	path = btrfs_alloc_path();
9393 	if (!path) {
9394 		err = -ENOMEM;
9395 		btrfs_abort_transaction(trans, err);
9396 		discard_new_inode(inode);
9397 		inode = NULL;
9398 		goto out;
9399 	}
9400 	key.objectid = btrfs_ino(BTRFS_I(inode));
9401 	key.offset = 0;
9402 	key.type = BTRFS_EXTENT_DATA_KEY;
9403 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9404 	err = btrfs_insert_empty_item(trans, root, path, &key,
9405 				      datasize);
9406 	if (err) {
9407 		btrfs_abort_transaction(trans, err);
9408 		btrfs_free_path(path);
9409 		discard_new_inode(inode);
9410 		inode = NULL;
9411 		goto out;
9412 	}
9413 	leaf = path->nodes[0];
9414 	ei = btrfs_item_ptr(leaf, path->slots[0],
9415 			    struct btrfs_file_extent_item);
9416 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9417 	btrfs_set_file_extent_type(leaf, ei,
9418 				   BTRFS_FILE_EXTENT_INLINE);
9419 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9420 	btrfs_set_file_extent_compression(leaf, ei, 0);
9421 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9422 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9423 
9424 	ptr = btrfs_file_extent_inline_start(ei);
9425 	write_extent_buffer(leaf, symname, ptr, name_len);
9426 	btrfs_mark_buffer_dirty(trans, leaf);
9427 	btrfs_free_path(path);
9428 
9429 	d_instantiate_new(dentry, inode);
9430 	err = 0;
9431 out:
9432 	btrfs_end_transaction(trans);
9433 	btrfs_btree_balance_dirty(fs_info);
9434 out_new_inode_args:
9435 	btrfs_new_inode_args_destroy(&new_inode_args);
9436 out_inode:
9437 	if (err)
9438 		iput(inode);
9439 	return err;
9440 }
9441 
9442 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9443 				       struct btrfs_trans_handle *trans_in,
9444 				       struct btrfs_inode *inode,
9445 				       struct btrfs_key *ins,
9446 				       u64 file_offset)
9447 {
9448 	struct btrfs_file_extent_item stack_fi;
9449 	struct btrfs_replace_extent_info extent_info;
9450 	struct btrfs_trans_handle *trans = trans_in;
9451 	struct btrfs_path *path;
9452 	u64 start = ins->objectid;
9453 	u64 len = ins->offset;
9454 	u64 qgroup_released = 0;
9455 	int ret;
9456 
9457 	memset(&stack_fi, 0, sizeof(stack_fi));
9458 
9459 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9460 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9461 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9462 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9463 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9464 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9465 	/* Encryption and other encoding is reserved and all 0 */
9466 
9467 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9468 	if (ret < 0)
9469 		return ERR_PTR(ret);
9470 
9471 	if (trans) {
9472 		ret = insert_reserved_file_extent(trans, inode,
9473 						  file_offset, &stack_fi,
9474 						  true, qgroup_released);
9475 		if (ret)
9476 			goto free_qgroup;
9477 		return trans;
9478 	}
9479 
9480 	extent_info.disk_offset = start;
9481 	extent_info.disk_len = len;
9482 	extent_info.data_offset = 0;
9483 	extent_info.data_len = len;
9484 	extent_info.file_offset = file_offset;
9485 	extent_info.extent_buf = (char *)&stack_fi;
9486 	extent_info.is_new_extent = true;
9487 	extent_info.update_times = true;
9488 	extent_info.qgroup_reserved = qgroup_released;
9489 	extent_info.insertions = 0;
9490 
9491 	path = btrfs_alloc_path();
9492 	if (!path) {
9493 		ret = -ENOMEM;
9494 		goto free_qgroup;
9495 	}
9496 
9497 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9498 				     file_offset + len - 1, &extent_info,
9499 				     &trans);
9500 	btrfs_free_path(path);
9501 	if (ret)
9502 		goto free_qgroup;
9503 	return trans;
9504 
9505 free_qgroup:
9506 	/*
9507 	 * We have released qgroup data range at the beginning of the function,
9508 	 * and normally qgroup_released bytes will be freed when committing
9509 	 * transaction.
9510 	 * But if we error out early, we have to free what we have released
9511 	 * or we leak qgroup data reservation.
9512 	 */
9513 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9514 			btrfs_root_id(inode->root), qgroup_released,
9515 			BTRFS_QGROUP_RSV_DATA);
9516 	return ERR_PTR(ret);
9517 }
9518 
9519 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9520 				       u64 start, u64 num_bytes, u64 min_size,
9521 				       loff_t actual_len, u64 *alloc_hint,
9522 				       struct btrfs_trans_handle *trans)
9523 {
9524 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9525 	struct extent_map *em;
9526 	struct btrfs_root *root = BTRFS_I(inode)->root;
9527 	struct btrfs_key ins;
9528 	u64 cur_offset = start;
9529 	u64 clear_offset = start;
9530 	u64 i_size;
9531 	u64 cur_bytes;
9532 	u64 last_alloc = (u64)-1;
9533 	int ret = 0;
9534 	bool own_trans = true;
9535 	u64 end = start + num_bytes - 1;
9536 
9537 	if (trans)
9538 		own_trans = false;
9539 	while (num_bytes > 0) {
9540 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9541 		cur_bytes = max(cur_bytes, min_size);
9542 		/*
9543 		 * If we are severely fragmented we could end up with really
9544 		 * small allocations, so if the allocator is returning small
9545 		 * chunks lets make its job easier by only searching for those
9546 		 * sized chunks.
9547 		 */
9548 		cur_bytes = min(cur_bytes, last_alloc);
9549 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9550 				min_size, 0, *alloc_hint, &ins, 1, 0);
9551 		if (ret)
9552 			break;
9553 
9554 		/*
9555 		 * We've reserved this space, and thus converted it from
9556 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9557 		 * from here on out we will only need to clear our reservation
9558 		 * for the remaining unreserved area, so advance our
9559 		 * clear_offset by our extent size.
9560 		 */
9561 		clear_offset += ins.offset;
9562 
9563 		last_alloc = ins.offset;
9564 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9565 						    &ins, cur_offset);
9566 		/*
9567 		 * Now that we inserted the prealloc extent we can finally
9568 		 * decrement the number of reservations in the block group.
9569 		 * If we did it before, we could race with relocation and have
9570 		 * relocation miss the reserved extent, making it fail later.
9571 		 */
9572 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9573 		if (IS_ERR(trans)) {
9574 			ret = PTR_ERR(trans);
9575 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9576 						   ins.offset, 0);
9577 			break;
9578 		}
9579 
9580 		em = alloc_extent_map();
9581 		if (!em) {
9582 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9583 					    cur_offset + ins.offset - 1, false);
9584 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9585 			goto next;
9586 		}
9587 
9588 		em->start = cur_offset;
9589 		em->orig_start = cur_offset;
9590 		em->len = ins.offset;
9591 		em->block_start = ins.objectid;
9592 		em->block_len = ins.offset;
9593 		em->orig_block_len = ins.offset;
9594 		em->ram_bytes = ins.offset;
9595 		em->flags |= EXTENT_FLAG_PREALLOC;
9596 		em->generation = trans->transid;
9597 
9598 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9599 		free_extent_map(em);
9600 next:
9601 		num_bytes -= ins.offset;
9602 		cur_offset += ins.offset;
9603 		*alloc_hint = ins.objectid + ins.offset;
9604 
9605 		inode_inc_iversion(inode);
9606 		inode_set_ctime_current(inode);
9607 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9608 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9609 		    (actual_len > inode->i_size) &&
9610 		    (cur_offset > inode->i_size)) {
9611 			if (cur_offset > actual_len)
9612 				i_size = actual_len;
9613 			else
9614 				i_size = cur_offset;
9615 			i_size_write(inode, i_size);
9616 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9617 		}
9618 
9619 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
9620 
9621 		if (ret) {
9622 			btrfs_abort_transaction(trans, ret);
9623 			if (own_trans)
9624 				btrfs_end_transaction(trans);
9625 			break;
9626 		}
9627 
9628 		if (own_trans) {
9629 			btrfs_end_transaction(trans);
9630 			trans = NULL;
9631 		}
9632 	}
9633 	if (clear_offset < end)
9634 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9635 			end - clear_offset + 1);
9636 	return ret;
9637 }
9638 
9639 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9640 			      u64 start, u64 num_bytes, u64 min_size,
9641 			      loff_t actual_len, u64 *alloc_hint)
9642 {
9643 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9644 					   min_size, actual_len, alloc_hint,
9645 					   NULL);
9646 }
9647 
9648 int btrfs_prealloc_file_range_trans(struct inode *inode,
9649 				    struct btrfs_trans_handle *trans, int mode,
9650 				    u64 start, u64 num_bytes, u64 min_size,
9651 				    loff_t actual_len, u64 *alloc_hint)
9652 {
9653 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9654 					   min_size, actual_len, alloc_hint, trans);
9655 }
9656 
9657 static int btrfs_permission(struct mnt_idmap *idmap,
9658 			    struct inode *inode, int mask)
9659 {
9660 	struct btrfs_root *root = BTRFS_I(inode)->root;
9661 	umode_t mode = inode->i_mode;
9662 
9663 	if (mask & MAY_WRITE &&
9664 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9665 		if (btrfs_root_readonly(root))
9666 			return -EROFS;
9667 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9668 			return -EACCES;
9669 	}
9670 	return generic_permission(idmap, inode, mask);
9671 }
9672 
9673 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9674 			 struct file *file, umode_t mode)
9675 {
9676 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9677 	struct btrfs_trans_handle *trans;
9678 	struct btrfs_root *root = BTRFS_I(dir)->root;
9679 	struct inode *inode;
9680 	struct btrfs_new_inode_args new_inode_args = {
9681 		.dir = dir,
9682 		.dentry = file->f_path.dentry,
9683 		.orphan = true,
9684 	};
9685 	unsigned int trans_num_items;
9686 	int ret;
9687 
9688 	inode = new_inode(dir->i_sb);
9689 	if (!inode)
9690 		return -ENOMEM;
9691 	inode_init_owner(idmap, inode, dir, mode);
9692 	inode->i_fop = &btrfs_file_operations;
9693 	inode->i_op = &btrfs_file_inode_operations;
9694 	inode->i_mapping->a_ops = &btrfs_aops;
9695 
9696 	new_inode_args.inode = inode;
9697 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9698 	if (ret)
9699 		goto out_inode;
9700 
9701 	trans = btrfs_start_transaction(root, trans_num_items);
9702 	if (IS_ERR(trans)) {
9703 		ret = PTR_ERR(trans);
9704 		goto out_new_inode_args;
9705 	}
9706 
9707 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9708 
9709 	/*
9710 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9711 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9712 	 * 0, through:
9713 	 *
9714 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9715 	 */
9716 	set_nlink(inode, 1);
9717 
9718 	if (!ret) {
9719 		d_tmpfile(file, inode);
9720 		unlock_new_inode(inode);
9721 		mark_inode_dirty(inode);
9722 	}
9723 
9724 	btrfs_end_transaction(trans);
9725 	btrfs_btree_balance_dirty(fs_info);
9726 out_new_inode_args:
9727 	btrfs_new_inode_args_destroy(&new_inode_args);
9728 out_inode:
9729 	if (ret)
9730 		iput(inode);
9731 	return finish_open_simple(file, ret);
9732 }
9733 
9734 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9735 {
9736 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9737 	unsigned long index = start >> PAGE_SHIFT;
9738 	unsigned long end_index = end >> PAGE_SHIFT;
9739 	struct page *page;
9740 	u32 len;
9741 
9742 	ASSERT(end + 1 - start <= U32_MAX);
9743 	len = end + 1 - start;
9744 	while (index <= end_index) {
9745 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9746 		ASSERT(page); /* Pages should be in the extent_io_tree */
9747 
9748 		/* This is for data, which doesn't yet support larger folio. */
9749 		ASSERT(folio_order(page_folio(page)) == 0);
9750 		btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
9751 		put_page(page);
9752 		index++;
9753 	}
9754 }
9755 
9756 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9757 					     int compress_type)
9758 {
9759 	switch (compress_type) {
9760 	case BTRFS_COMPRESS_NONE:
9761 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9762 	case BTRFS_COMPRESS_ZLIB:
9763 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9764 	case BTRFS_COMPRESS_LZO:
9765 		/*
9766 		 * The LZO format depends on the sector size. 64K is the maximum
9767 		 * sector size that we support.
9768 		 */
9769 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9770 			return -EINVAL;
9771 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9772 		       (fs_info->sectorsize_bits - 12);
9773 	case BTRFS_COMPRESS_ZSTD:
9774 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9775 	default:
9776 		return -EUCLEAN;
9777 	}
9778 }
9779 
9780 static ssize_t btrfs_encoded_read_inline(
9781 				struct kiocb *iocb,
9782 				struct iov_iter *iter, u64 start,
9783 				u64 lockend,
9784 				struct extent_state **cached_state,
9785 				u64 extent_start, size_t count,
9786 				struct btrfs_ioctl_encoded_io_args *encoded,
9787 				bool *unlocked)
9788 {
9789 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9790 	struct btrfs_root *root = inode->root;
9791 	struct btrfs_fs_info *fs_info = root->fs_info;
9792 	struct extent_io_tree *io_tree = &inode->io_tree;
9793 	struct btrfs_path *path;
9794 	struct extent_buffer *leaf;
9795 	struct btrfs_file_extent_item *item;
9796 	u64 ram_bytes;
9797 	unsigned long ptr;
9798 	void *tmp;
9799 	ssize_t ret;
9800 
9801 	path = btrfs_alloc_path();
9802 	if (!path) {
9803 		ret = -ENOMEM;
9804 		goto out;
9805 	}
9806 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9807 				       extent_start, 0);
9808 	if (ret) {
9809 		if (ret > 0) {
9810 			/* The extent item disappeared? */
9811 			ret = -EIO;
9812 		}
9813 		goto out;
9814 	}
9815 	leaf = path->nodes[0];
9816 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9817 
9818 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9819 	ptr = btrfs_file_extent_inline_start(item);
9820 
9821 	encoded->len = min_t(u64, extent_start + ram_bytes,
9822 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9823 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9824 				 btrfs_file_extent_compression(leaf, item));
9825 	if (ret < 0)
9826 		goto out;
9827 	encoded->compression = ret;
9828 	if (encoded->compression) {
9829 		size_t inline_size;
9830 
9831 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9832 								path->slots[0]);
9833 		if (inline_size > count) {
9834 			ret = -ENOBUFS;
9835 			goto out;
9836 		}
9837 		count = inline_size;
9838 		encoded->unencoded_len = ram_bytes;
9839 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9840 	} else {
9841 		count = min_t(u64, count, encoded->len);
9842 		encoded->len = count;
9843 		encoded->unencoded_len = count;
9844 		ptr += iocb->ki_pos - extent_start;
9845 	}
9846 
9847 	tmp = kmalloc(count, GFP_NOFS);
9848 	if (!tmp) {
9849 		ret = -ENOMEM;
9850 		goto out;
9851 	}
9852 	read_extent_buffer(leaf, tmp, ptr, count);
9853 	btrfs_release_path(path);
9854 	unlock_extent(io_tree, start, lockend, cached_state);
9855 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9856 	*unlocked = true;
9857 
9858 	ret = copy_to_iter(tmp, count, iter);
9859 	if (ret != count)
9860 		ret = -EFAULT;
9861 	kfree(tmp);
9862 out:
9863 	btrfs_free_path(path);
9864 	return ret;
9865 }
9866 
9867 struct btrfs_encoded_read_private {
9868 	wait_queue_head_t wait;
9869 	atomic_t pending;
9870 	blk_status_t status;
9871 };
9872 
9873 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9874 {
9875 	struct btrfs_encoded_read_private *priv = bbio->private;
9876 
9877 	if (bbio->bio.bi_status) {
9878 		/*
9879 		 * The memory barrier implied by the atomic_dec_return() here
9880 		 * pairs with the memory barrier implied by the
9881 		 * atomic_dec_return() or io_wait_event() in
9882 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9883 		 * write is observed before the load of status in
9884 		 * btrfs_encoded_read_regular_fill_pages().
9885 		 */
9886 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9887 	}
9888 	if (!atomic_dec_return(&priv->pending))
9889 		wake_up(&priv->wait);
9890 	bio_put(&bbio->bio);
9891 }
9892 
9893 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9894 					  u64 file_offset, u64 disk_bytenr,
9895 					  u64 disk_io_size, struct page **pages)
9896 {
9897 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9898 	struct btrfs_encoded_read_private priv = {
9899 		.pending = ATOMIC_INIT(1),
9900 	};
9901 	unsigned long i = 0;
9902 	struct btrfs_bio *bbio;
9903 
9904 	init_waitqueue_head(&priv.wait);
9905 
9906 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9907 			       btrfs_encoded_read_endio, &priv);
9908 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9909 	bbio->inode = inode;
9910 
9911 	do {
9912 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9913 
9914 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9915 			atomic_inc(&priv.pending);
9916 			btrfs_submit_bio(bbio, 0);
9917 
9918 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9919 					       btrfs_encoded_read_endio, &priv);
9920 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9921 			bbio->inode = inode;
9922 			continue;
9923 		}
9924 
9925 		i++;
9926 		disk_bytenr += bytes;
9927 		disk_io_size -= bytes;
9928 	} while (disk_io_size);
9929 
9930 	atomic_inc(&priv.pending);
9931 	btrfs_submit_bio(bbio, 0);
9932 
9933 	if (atomic_dec_return(&priv.pending))
9934 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9935 	/* See btrfs_encoded_read_endio() for ordering. */
9936 	return blk_status_to_errno(READ_ONCE(priv.status));
9937 }
9938 
9939 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9940 					  struct iov_iter *iter,
9941 					  u64 start, u64 lockend,
9942 					  struct extent_state **cached_state,
9943 					  u64 disk_bytenr, u64 disk_io_size,
9944 					  size_t count, bool compressed,
9945 					  bool *unlocked)
9946 {
9947 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9948 	struct extent_io_tree *io_tree = &inode->io_tree;
9949 	struct page **pages;
9950 	unsigned long nr_pages, i;
9951 	u64 cur;
9952 	size_t page_offset;
9953 	ssize_t ret;
9954 
9955 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9956 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9957 	if (!pages)
9958 		return -ENOMEM;
9959 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
9960 	if (ret) {
9961 		ret = -ENOMEM;
9962 		goto out;
9963 		}
9964 
9965 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9966 						    disk_io_size, pages);
9967 	if (ret)
9968 		goto out;
9969 
9970 	unlock_extent(io_tree, start, lockend, cached_state);
9971 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9972 	*unlocked = true;
9973 
9974 	if (compressed) {
9975 		i = 0;
9976 		page_offset = 0;
9977 	} else {
9978 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9979 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9980 	}
9981 	cur = 0;
9982 	while (cur < count) {
9983 		size_t bytes = min_t(size_t, count - cur,
9984 				     PAGE_SIZE - page_offset);
9985 
9986 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9987 				      iter) != bytes) {
9988 			ret = -EFAULT;
9989 			goto out;
9990 		}
9991 		i++;
9992 		cur += bytes;
9993 		page_offset = 0;
9994 	}
9995 	ret = count;
9996 out:
9997 	for (i = 0; i < nr_pages; i++) {
9998 		if (pages[i])
9999 			__free_page(pages[i]);
10000 	}
10001 	kfree(pages);
10002 	return ret;
10003 }
10004 
10005 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10006 			   struct btrfs_ioctl_encoded_io_args *encoded)
10007 {
10008 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10009 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10010 	struct extent_io_tree *io_tree = &inode->io_tree;
10011 	ssize_t ret;
10012 	size_t count = iov_iter_count(iter);
10013 	u64 start, lockend, disk_bytenr, disk_io_size;
10014 	struct extent_state *cached_state = NULL;
10015 	struct extent_map *em;
10016 	bool unlocked = false;
10017 
10018 	file_accessed(iocb->ki_filp);
10019 
10020 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10021 
10022 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10023 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10024 		return 0;
10025 	}
10026 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10027 	/*
10028 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10029 	 * it's compressed we know that it won't be longer than this.
10030 	 */
10031 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10032 
10033 	for (;;) {
10034 		struct btrfs_ordered_extent *ordered;
10035 
10036 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10037 					       lockend - start + 1);
10038 		if (ret)
10039 			goto out_unlock_inode;
10040 		lock_extent(io_tree, start, lockend, &cached_state);
10041 		ordered = btrfs_lookup_ordered_range(inode, start,
10042 						     lockend - start + 1);
10043 		if (!ordered)
10044 			break;
10045 		btrfs_put_ordered_extent(ordered);
10046 		unlock_extent(io_tree, start, lockend, &cached_state);
10047 		cond_resched();
10048 	}
10049 
10050 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
10051 	if (IS_ERR(em)) {
10052 		ret = PTR_ERR(em);
10053 		goto out_unlock_extent;
10054 	}
10055 
10056 	if (em->block_start == EXTENT_MAP_INLINE) {
10057 		u64 extent_start = em->start;
10058 
10059 		/*
10060 		 * For inline extents we get everything we need out of the
10061 		 * extent item.
10062 		 */
10063 		free_extent_map(em);
10064 		em = NULL;
10065 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10066 						&cached_state, extent_start,
10067 						count, encoded, &unlocked);
10068 		goto out;
10069 	}
10070 
10071 	/*
10072 	 * We only want to return up to EOF even if the extent extends beyond
10073 	 * that.
10074 	 */
10075 	encoded->len = min_t(u64, extent_map_end(em),
10076 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10077 	if (em->block_start == EXTENT_MAP_HOLE ||
10078 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
10079 		disk_bytenr = EXTENT_MAP_HOLE;
10080 		count = min_t(u64, count, encoded->len);
10081 		encoded->len = count;
10082 		encoded->unencoded_len = count;
10083 	} else if (extent_map_is_compressed(em)) {
10084 		disk_bytenr = em->block_start;
10085 		/*
10086 		 * Bail if the buffer isn't large enough to return the whole
10087 		 * compressed extent.
10088 		 */
10089 		if (em->block_len > count) {
10090 			ret = -ENOBUFS;
10091 			goto out_em;
10092 		}
10093 		disk_io_size = em->block_len;
10094 		count = em->block_len;
10095 		encoded->unencoded_len = em->ram_bytes;
10096 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10097 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10098 							       extent_map_compression(em));
10099 		if (ret < 0)
10100 			goto out_em;
10101 		encoded->compression = ret;
10102 	} else {
10103 		disk_bytenr = em->block_start + (start - em->start);
10104 		if (encoded->len > count)
10105 			encoded->len = count;
10106 		/*
10107 		 * Don't read beyond what we locked. This also limits the page
10108 		 * allocations that we'll do.
10109 		 */
10110 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10111 		count = start + disk_io_size - iocb->ki_pos;
10112 		encoded->len = count;
10113 		encoded->unencoded_len = count;
10114 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10115 	}
10116 	free_extent_map(em);
10117 	em = NULL;
10118 
10119 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10120 		unlock_extent(io_tree, start, lockend, &cached_state);
10121 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10122 		unlocked = true;
10123 		ret = iov_iter_zero(count, iter);
10124 		if (ret != count)
10125 			ret = -EFAULT;
10126 	} else {
10127 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10128 						 &cached_state, disk_bytenr,
10129 						 disk_io_size, count,
10130 						 encoded->compression,
10131 						 &unlocked);
10132 	}
10133 
10134 out:
10135 	if (ret >= 0)
10136 		iocb->ki_pos += encoded->len;
10137 out_em:
10138 	free_extent_map(em);
10139 out_unlock_extent:
10140 	if (!unlocked)
10141 		unlock_extent(io_tree, start, lockend, &cached_state);
10142 out_unlock_inode:
10143 	if (!unlocked)
10144 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10145 	return ret;
10146 }
10147 
10148 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10149 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10150 {
10151 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10152 	struct btrfs_root *root = inode->root;
10153 	struct btrfs_fs_info *fs_info = root->fs_info;
10154 	struct extent_io_tree *io_tree = &inode->io_tree;
10155 	struct extent_changeset *data_reserved = NULL;
10156 	struct extent_state *cached_state = NULL;
10157 	struct btrfs_ordered_extent *ordered;
10158 	int compression;
10159 	size_t orig_count;
10160 	u64 start, end;
10161 	u64 num_bytes, ram_bytes, disk_num_bytes;
10162 	unsigned long nr_folios, i;
10163 	struct folio **folios;
10164 	struct btrfs_key ins;
10165 	bool extent_reserved = false;
10166 	struct extent_map *em;
10167 	ssize_t ret;
10168 
10169 	switch (encoded->compression) {
10170 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10171 		compression = BTRFS_COMPRESS_ZLIB;
10172 		break;
10173 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10174 		compression = BTRFS_COMPRESS_ZSTD;
10175 		break;
10176 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10177 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10178 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10179 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10180 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10181 		/* The sector size must match for LZO. */
10182 		if (encoded->compression -
10183 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10184 		    fs_info->sectorsize_bits)
10185 			return -EINVAL;
10186 		compression = BTRFS_COMPRESS_LZO;
10187 		break;
10188 	default:
10189 		return -EINVAL;
10190 	}
10191 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10192 		return -EINVAL;
10193 
10194 	/*
10195 	 * Compressed extents should always have checksums, so error out if we
10196 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10197 	 */
10198 	if (inode->flags & BTRFS_INODE_NODATASUM)
10199 		return -EINVAL;
10200 
10201 	orig_count = iov_iter_count(from);
10202 
10203 	/* The extent size must be sane. */
10204 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10205 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10206 		return -EINVAL;
10207 
10208 	/*
10209 	 * The compressed data must be smaller than the decompressed data.
10210 	 *
10211 	 * It's of course possible for data to compress to larger or the same
10212 	 * size, but the buffered I/O path falls back to no compression for such
10213 	 * data, and we don't want to break any assumptions by creating these
10214 	 * extents.
10215 	 *
10216 	 * Note that this is less strict than the current check we have that the
10217 	 * compressed data must be at least one sector smaller than the
10218 	 * decompressed data. We only want to enforce the weaker requirement
10219 	 * from old kernels that it is at least one byte smaller.
10220 	 */
10221 	if (orig_count >= encoded->unencoded_len)
10222 		return -EINVAL;
10223 
10224 	/* The extent must start on a sector boundary. */
10225 	start = iocb->ki_pos;
10226 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10227 		return -EINVAL;
10228 
10229 	/*
10230 	 * The extent must end on a sector boundary. However, we allow a write
10231 	 * which ends at or extends i_size to have an unaligned length; we round
10232 	 * up the extent size and set i_size to the unaligned end.
10233 	 */
10234 	if (start + encoded->len < inode->vfs_inode.i_size &&
10235 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10236 		return -EINVAL;
10237 
10238 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10239 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10240 		return -EINVAL;
10241 
10242 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10243 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10244 	end = start + num_bytes - 1;
10245 
10246 	/*
10247 	 * If the extent cannot be inline, the compressed data on disk must be
10248 	 * sector-aligned. For convenience, we extend it with zeroes if it
10249 	 * isn't.
10250 	 */
10251 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10252 	nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10253 	folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10254 	if (!folios)
10255 		return -ENOMEM;
10256 	for (i = 0; i < nr_folios; i++) {
10257 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10258 		char *kaddr;
10259 
10260 		folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
10261 		if (!folios[i]) {
10262 			ret = -ENOMEM;
10263 			goto out_folios;
10264 		}
10265 		kaddr = kmap_local_folio(folios[i], 0);
10266 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10267 			kunmap_local(kaddr);
10268 			ret = -EFAULT;
10269 			goto out_folios;
10270 		}
10271 		if (bytes < PAGE_SIZE)
10272 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10273 		kunmap_local(kaddr);
10274 	}
10275 
10276 	for (;;) {
10277 		struct btrfs_ordered_extent *ordered;
10278 
10279 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10280 		if (ret)
10281 			goto out_folios;
10282 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10283 						    start >> PAGE_SHIFT,
10284 						    end >> PAGE_SHIFT);
10285 		if (ret)
10286 			goto out_folios;
10287 		lock_extent(io_tree, start, end, &cached_state);
10288 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10289 		if (!ordered &&
10290 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10291 			break;
10292 		if (ordered)
10293 			btrfs_put_ordered_extent(ordered);
10294 		unlock_extent(io_tree, start, end, &cached_state);
10295 		cond_resched();
10296 	}
10297 
10298 	/*
10299 	 * We don't use the higher-level delalloc space functions because our
10300 	 * num_bytes and disk_num_bytes are different.
10301 	 */
10302 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10303 	if (ret)
10304 		goto out_unlock;
10305 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10306 	if (ret)
10307 		goto out_free_data_space;
10308 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10309 					      false);
10310 	if (ret)
10311 		goto out_qgroup_free_data;
10312 
10313 	/* Try an inline extent first. */
10314 	if (encoded->unencoded_len == encoded->len &&
10315 	    encoded->unencoded_offset == 0 &&
10316 	    can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
10317 		ret = __cow_file_range_inline(inode, start, encoded->len,
10318 					      orig_count, compression, folios[0],
10319 					      true);
10320 		if (ret <= 0) {
10321 			if (ret == 0)
10322 				ret = orig_count;
10323 			goto out_delalloc_release;
10324 		}
10325 	}
10326 
10327 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10328 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10329 	if (ret)
10330 		goto out_delalloc_release;
10331 	extent_reserved = true;
10332 
10333 	em = create_io_em(inode, start, num_bytes,
10334 			  start - encoded->unencoded_offset, ins.objectid,
10335 			  ins.offset, ins.offset, ram_bytes, compression,
10336 			  BTRFS_ORDERED_COMPRESSED);
10337 	if (IS_ERR(em)) {
10338 		ret = PTR_ERR(em);
10339 		goto out_free_reserved;
10340 	}
10341 	free_extent_map(em);
10342 
10343 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10344 				       ins.objectid, ins.offset,
10345 				       encoded->unencoded_offset,
10346 				       (1 << BTRFS_ORDERED_ENCODED) |
10347 				       (1 << BTRFS_ORDERED_COMPRESSED),
10348 				       compression);
10349 	if (IS_ERR(ordered)) {
10350 		btrfs_drop_extent_map_range(inode, start, end, false);
10351 		ret = PTR_ERR(ordered);
10352 		goto out_free_reserved;
10353 	}
10354 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10355 
10356 	if (start + encoded->len > inode->vfs_inode.i_size)
10357 		i_size_write(&inode->vfs_inode, start + encoded->len);
10358 
10359 	unlock_extent(io_tree, start, end, &cached_state);
10360 
10361 	btrfs_delalloc_release_extents(inode, num_bytes);
10362 
10363 	btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
10364 	ret = orig_count;
10365 	goto out;
10366 
10367 out_free_reserved:
10368 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10369 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10370 out_delalloc_release:
10371 	btrfs_delalloc_release_extents(inode, num_bytes);
10372 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10373 out_qgroup_free_data:
10374 	if (ret < 0)
10375 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10376 out_free_data_space:
10377 	/*
10378 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10379 	 * bytes_may_use.
10380 	 */
10381 	if (!extent_reserved)
10382 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10383 out_unlock:
10384 	unlock_extent(io_tree, start, end, &cached_state);
10385 out_folios:
10386 	for (i = 0; i < nr_folios; i++) {
10387 		if (folios[i])
10388 			__folio_put(folios[i]);
10389 	}
10390 	kvfree(folios);
10391 out:
10392 	if (ret >= 0)
10393 		iocb->ki_pos += encoded->len;
10394 	return ret;
10395 }
10396 
10397 #ifdef CONFIG_SWAP
10398 /*
10399  * Add an entry indicating a block group or device which is pinned by a
10400  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10401  * negative errno on failure.
10402  */
10403 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10404 				  bool is_block_group)
10405 {
10406 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10407 	struct btrfs_swapfile_pin *sp, *entry;
10408 	struct rb_node **p;
10409 	struct rb_node *parent = NULL;
10410 
10411 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10412 	if (!sp)
10413 		return -ENOMEM;
10414 	sp->ptr = ptr;
10415 	sp->inode = inode;
10416 	sp->is_block_group = is_block_group;
10417 	sp->bg_extent_count = 1;
10418 
10419 	spin_lock(&fs_info->swapfile_pins_lock);
10420 	p = &fs_info->swapfile_pins.rb_node;
10421 	while (*p) {
10422 		parent = *p;
10423 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10424 		if (sp->ptr < entry->ptr ||
10425 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10426 			p = &(*p)->rb_left;
10427 		} else if (sp->ptr > entry->ptr ||
10428 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10429 			p = &(*p)->rb_right;
10430 		} else {
10431 			if (is_block_group)
10432 				entry->bg_extent_count++;
10433 			spin_unlock(&fs_info->swapfile_pins_lock);
10434 			kfree(sp);
10435 			return 1;
10436 		}
10437 	}
10438 	rb_link_node(&sp->node, parent, p);
10439 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10440 	spin_unlock(&fs_info->swapfile_pins_lock);
10441 	return 0;
10442 }
10443 
10444 /* Free all of the entries pinned by this swapfile. */
10445 static void btrfs_free_swapfile_pins(struct inode *inode)
10446 {
10447 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10448 	struct btrfs_swapfile_pin *sp;
10449 	struct rb_node *node, *next;
10450 
10451 	spin_lock(&fs_info->swapfile_pins_lock);
10452 	node = rb_first(&fs_info->swapfile_pins);
10453 	while (node) {
10454 		next = rb_next(node);
10455 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10456 		if (sp->inode == inode) {
10457 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10458 			if (sp->is_block_group) {
10459 				btrfs_dec_block_group_swap_extents(sp->ptr,
10460 							   sp->bg_extent_count);
10461 				btrfs_put_block_group(sp->ptr);
10462 			}
10463 			kfree(sp);
10464 		}
10465 		node = next;
10466 	}
10467 	spin_unlock(&fs_info->swapfile_pins_lock);
10468 }
10469 
10470 struct btrfs_swap_info {
10471 	u64 start;
10472 	u64 block_start;
10473 	u64 block_len;
10474 	u64 lowest_ppage;
10475 	u64 highest_ppage;
10476 	unsigned long nr_pages;
10477 	int nr_extents;
10478 };
10479 
10480 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10481 				 struct btrfs_swap_info *bsi)
10482 {
10483 	unsigned long nr_pages;
10484 	unsigned long max_pages;
10485 	u64 first_ppage, first_ppage_reported, next_ppage;
10486 	int ret;
10487 
10488 	/*
10489 	 * Our swapfile may have had its size extended after the swap header was
10490 	 * written. In that case activating the swapfile should not go beyond
10491 	 * the max size set in the swap header.
10492 	 */
10493 	if (bsi->nr_pages >= sis->max)
10494 		return 0;
10495 
10496 	max_pages = sis->max - bsi->nr_pages;
10497 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10498 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10499 
10500 	if (first_ppage >= next_ppage)
10501 		return 0;
10502 	nr_pages = next_ppage - first_ppage;
10503 	nr_pages = min(nr_pages, max_pages);
10504 
10505 	first_ppage_reported = first_ppage;
10506 	if (bsi->start == 0)
10507 		first_ppage_reported++;
10508 	if (bsi->lowest_ppage > first_ppage_reported)
10509 		bsi->lowest_ppage = first_ppage_reported;
10510 	if (bsi->highest_ppage < (next_ppage - 1))
10511 		bsi->highest_ppage = next_ppage - 1;
10512 
10513 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10514 	if (ret < 0)
10515 		return ret;
10516 	bsi->nr_extents += ret;
10517 	bsi->nr_pages += nr_pages;
10518 	return 0;
10519 }
10520 
10521 static void btrfs_swap_deactivate(struct file *file)
10522 {
10523 	struct inode *inode = file_inode(file);
10524 
10525 	btrfs_free_swapfile_pins(inode);
10526 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10527 }
10528 
10529 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10530 			       sector_t *span)
10531 {
10532 	struct inode *inode = file_inode(file);
10533 	struct btrfs_root *root = BTRFS_I(inode)->root;
10534 	struct btrfs_fs_info *fs_info = root->fs_info;
10535 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10536 	struct extent_state *cached_state = NULL;
10537 	struct extent_map *em = NULL;
10538 	struct btrfs_chunk_map *map = NULL;
10539 	struct btrfs_device *device = NULL;
10540 	struct btrfs_swap_info bsi = {
10541 		.lowest_ppage = (sector_t)-1ULL,
10542 	};
10543 	int ret = 0;
10544 	u64 isize;
10545 	u64 start;
10546 
10547 	/*
10548 	 * If the swap file was just created, make sure delalloc is done. If the
10549 	 * file changes again after this, the user is doing something stupid and
10550 	 * we don't really care.
10551 	 */
10552 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10553 	if (ret)
10554 		return ret;
10555 
10556 	/*
10557 	 * The inode is locked, so these flags won't change after we check them.
10558 	 */
10559 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10560 		btrfs_warn(fs_info, "swapfile must not be compressed");
10561 		return -EINVAL;
10562 	}
10563 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10564 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10565 		return -EINVAL;
10566 	}
10567 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10568 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10569 		return -EINVAL;
10570 	}
10571 
10572 	/*
10573 	 * Balance or device remove/replace/resize can move stuff around from
10574 	 * under us. The exclop protection makes sure they aren't running/won't
10575 	 * run concurrently while we are mapping the swap extents, and
10576 	 * fs_info->swapfile_pins prevents them from running while the swap
10577 	 * file is active and moving the extents. Note that this also prevents
10578 	 * a concurrent device add which isn't actually necessary, but it's not
10579 	 * really worth the trouble to allow it.
10580 	 */
10581 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10582 		btrfs_warn(fs_info,
10583 	   "cannot activate swapfile while exclusive operation is running");
10584 		return -EBUSY;
10585 	}
10586 
10587 	/*
10588 	 * Prevent snapshot creation while we are activating the swap file.
10589 	 * We do not want to race with snapshot creation. If snapshot creation
10590 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10591 	 * completes before the first write into the swap file after it is
10592 	 * activated, than that write would fallback to COW.
10593 	 */
10594 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10595 		btrfs_exclop_finish(fs_info);
10596 		btrfs_warn(fs_info,
10597 	   "cannot activate swapfile because snapshot creation is in progress");
10598 		return -EINVAL;
10599 	}
10600 	/*
10601 	 * Snapshots can create extents which require COW even if NODATACOW is
10602 	 * set. We use this counter to prevent snapshots. We must increment it
10603 	 * before walking the extents because we don't want a concurrent
10604 	 * snapshot to run after we've already checked the extents.
10605 	 *
10606 	 * It is possible that subvolume is marked for deletion but still not
10607 	 * removed yet. To prevent this race, we check the root status before
10608 	 * activating the swapfile.
10609 	 */
10610 	spin_lock(&root->root_item_lock);
10611 	if (btrfs_root_dead(root)) {
10612 		spin_unlock(&root->root_item_lock);
10613 
10614 		btrfs_exclop_finish(fs_info);
10615 		btrfs_warn(fs_info,
10616 		"cannot activate swapfile because subvolume %llu is being deleted",
10617 			btrfs_root_id(root));
10618 		return -EPERM;
10619 	}
10620 	atomic_inc(&root->nr_swapfiles);
10621 	spin_unlock(&root->root_item_lock);
10622 
10623 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10624 
10625 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10626 	start = 0;
10627 	while (start < isize) {
10628 		u64 logical_block_start, physical_block_start;
10629 		struct btrfs_block_group *bg;
10630 		u64 len = isize - start;
10631 
10632 		em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
10633 		if (IS_ERR(em)) {
10634 			ret = PTR_ERR(em);
10635 			goto out;
10636 		}
10637 
10638 		if (em->block_start == EXTENT_MAP_HOLE) {
10639 			btrfs_warn(fs_info, "swapfile must not have holes");
10640 			ret = -EINVAL;
10641 			goto out;
10642 		}
10643 		if (em->block_start == EXTENT_MAP_INLINE) {
10644 			/*
10645 			 * It's unlikely we'll ever actually find ourselves
10646 			 * here, as a file small enough to fit inline won't be
10647 			 * big enough to store more than the swap header, but in
10648 			 * case something changes in the future, let's catch it
10649 			 * here rather than later.
10650 			 */
10651 			btrfs_warn(fs_info, "swapfile must not be inline");
10652 			ret = -EINVAL;
10653 			goto out;
10654 		}
10655 		if (extent_map_is_compressed(em)) {
10656 			btrfs_warn(fs_info, "swapfile must not be compressed");
10657 			ret = -EINVAL;
10658 			goto out;
10659 		}
10660 
10661 		logical_block_start = em->block_start + (start - em->start);
10662 		len = min(len, em->len - (start - em->start));
10663 		free_extent_map(em);
10664 		em = NULL;
10665 
10666 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10667 		if (ret < 0) {
10668 			goto out;
10669 		} else if (ret) {
10670 			ret = 0;
10671 		} else {
10672 			btrfs_warn(fs_info,
10673 				   "swapfile must not be copy-on-write");
10674 			ret = -EINVAL;
10675 			goto out;
10676 		}
10677 
10678 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10679 		if (IS_ERR(map)) {
10680 			ret = PTR_ERR(map);
10681 			goto out;
10682 		}
10683 
10684 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10685 			btrfs_warn(fs_info,
10686 				   "swapfile must have single data profile");
10687 			ret = -EINVAL;
10688 			goto out;
10689 		}
10690 
10691 		if (device == NULL) {
10692 			device = map->stripes[0].dev;
10693 			ret = btrfs_add_swapfile_pin(inode, device, false);
10694 			if (ret == 1)
10695 				ret = 0;
10696 			else if (ret)
10697 				goto out;
10698 		} else if (device != map->stripes[0].dev) {
10699 			btrfs_warn(fs_info, "swapfile must be on one device");
10700 			ret = -EINVAL;
10701 			goto out;
10702 		}
10703 
10704 		physical_block_start = (map->stripes[0].physical +
10705 					(logical_block_start - map->start));
10706 		len = min(len, map->chunk_len - (logical_block_start - map->start));
10707 		btrfs_free_chunk_map(map);
10708 		map = NULL;
10709 
10710 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10711 		if (!bg) {
10712 			btrfs_warn(fs_info,
10713 			   "could not find block group containing swapfile");
10714 			ret = -EINVAL;
10715 			goto out;
10716 		}
10717 
10718 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10719 			btrfs_warn(fs_info,
10720 			   "block group for swapfile at %llu is read-only%s",
10721 			   bg->start,
10722 			   atomic_read(&fs_info->scrubs_running) ?
10723 				       " (scrub running)" : "");
10724 			btrfs_put_block_group(bg);
10725 			ret = -EINVAL;
10726 			goto out;
10727 		}
10728 
10729 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10730 		if (ret) {
10731 			btrfs_put_block_group(bg);
10732 			if (ret == 1)
10733 				ret = 0;
10734 			else
10735 				goto out;
10736 		}
10737 
10738 		if (bsi.block_len &&
10739 		    bsi.block_start + bsi.block_len == physical_block_start) {
10740 			bsi.block_len += len;
10741 		} else {
10742 			if (bsi.block_len) {
10743 				ret = btrfs_add_swap_extent(sis, &bsi);
10744 				if (ret)
10745 					goto out;
10746 			}
10747 			bsi.start = start;
10748 			bsi.block_start = physical_block_start;
10749 			bsi.block_len = len;
10750 		}
10751 
10752 		start += len;
10753 	}
10754 
10755 	if (bsi.block_len)
10756 		ret = btrfs_add_swap_extent(sis, &bsi);
10757 
10758 out:
10759 	if (!IS_ERR_OR_NULL(em))
10760 		free_extent_map(em);
10761 	if (!IS_ERR_OR_NULL(map))
10762 		btrfs_free_chunk_map(map);
10763 
10764 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10765 
10766 	if (ret)
10767 		btrfs_swap_deactivate(file);
10768 
10769 	btrfs_drew_write_unlock(&root->snapshot_lock);
10770 
10771 	btrfs_exclop_finish(fs_info);
10772 
10773 	if (ret)
10774 		return ret;
10775 
10776 	if (device)
10777 		sis->bdev = device->bdev;
10778 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10779 	sis->max = bsi.nr_pages;
10780 	sis->pages = bsi.nr_pages - 1;
10781 	sis->highest_bit = bsi.nr_pages - 1;
10782 	return bsi.nr_extents;
10783 }
10784 #else
10785 static void btrfs_swap_deactivate(struct file *file)
10786 {
10787 }
10788 
10789 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10790 			       sector_t *span)
10791 {
10792 	return -EOPNOTSUPP;
10793 }
10794 #endif
10795 
10796 /*
10797  * Update the number of bytes used in the VFS' inode. When we replace extents in
10798  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10799  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10800  * always get a correct value.
10801  */
10802 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10803 			      const u64 add_bytes,
10804 			      const u64 del_bytes)
10805 {
10806 	if (add_bytes == del_bytes)
10807 		return;
10808 
10809 	spin_lock(&inode->lock);
10810 	if (del_bytes > 0)
10811 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10812 	if (add_bytes > 0)
10813 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10814 	spin_unlock(&inode->lock);
10815 }
10816 
10817 /*
10818  * Verify that there are no ordered extents for a given file range.
10819  *
10820  * @inode:   The target inode.
10821  * @start:   Start offset of the file range, should be sector size aligned.
10822  * @end:     End offset (inclusive) of the file range, its value +1 should be
10823  *           sector size aligned.
10824  *
10825  * This should typically be used for cases where we locked an inode's VFS lock in
10826  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10827  * we have flushed all delalloc in the range, we have waited for all ordered
10828  * extents in the range to complete and finally we have locked the file range in
10829  * the inode's io_tree.
10830  */
10831 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10832 {
10833 	struct btrfs_root *root = inode->root;
10834 	struct btrfs_ordered_extent *ordered;
10835 
10836 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10837 		return;
10838 
10839 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10840 	if (ordered) {
10841 		btrfs_err(root->fs_info,
10842 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10843 			  start, end, btrfs_ino(inode), btrfs_root_id(root),
10844 			  ordered->file_offset,
10845 			  ordered->file_offset + ordered->num_bytes - 1);
10846 		btrfs_put_ordered_extent(ordered);
10847 	}
10848 
10849 	ASSERT(ordered == NULL);
10850 }
10851 
10852 /*
10853  * Find the first inode with a minimum number.
10854  *
10855  * @root:	The root to search for.
10856  * @min_ino:	The minimum inode number.
10857  *
10858  * Find the first inode in the @root with a number >= @min_ino and return it.
10859  * Returns NULL if no such inode found.
10860  */
10861 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10862 {
10863 	struct rb_node *node;
10864 	struct rb_node *prev;
10865 	struct btrfs_inode *inode;
10866 
10867 	spin_lock(&root->inode_lock);
10868 again:
10869 	node = root->inode_tree.rb_node;
10870 	prev = NULL;
10871 	while (node) {
10872 		prev = node;
10873 		inode = rb_entry(node, struct btrfs_inode, rb_node);
10874 		if (min_ino < btrfs_ino(inode))
10875 			node = node->rb_left;
10876 		else if (min_ino > btrfs_ino(inode))
10877 			node = node->rb_right;
10878 		else
10879 			break;
10880 	}
10881 
10882 	if (!node) {
10883 		while (prev) {
10884 			inode = rb_entry(prev, struct btrfs_inode, rb_node);
10885 			if (min_ino <= btrfs_ino(inode)) {
10886 				node = prev;
10887 				break;
10888 			}
10889 			prev = rb_next(prev);
10890 		}
10891 	}
10892 
10893 	while (node) {
10894 		inode = rb_entry(prev, struct btrfs_inode, rb_node);
10895 		if (igrab(&inode->vfs_inode)) {
10896 			spin_unlock(&root->inode_lock);
10897 			return inode;
10898 		}
10899 
10900 		min_ino = btrfs_ino(inode) + 1;
10901 		if (cond_resched_lock(&root->inode_lock))
10902 			goto again;
10903 
10904 		node = rb_next(node);
10905 	}
10906 	spin_unlock(&root->inode_lock);
10907 
10908 	return NULL;
10909 }
10910 
10911 static const struct inode_operations btrfs_dir_inode_operations = {
10912 	.getattr	= btrfs_getattr,
10913 	.lookup		= btrfs_lookup,
10914 	.create		= btrfs_create,
10915 	.unlink		= btrfs_unlink,
10916 	.link		= btrfs_link,
10917 	.mkdir		= btrfs_mkdir,
10918 	.rmdir		= btrfs_rmdir,
10919 	.rename		= btrfs_rename2,
10920 	.symlink	= btrfs_symlink,
10921 	.setattr	= btrfs_setattr,
10922 	.mknod		= btrfs_mknod,
10923 	.listxattr	= btrfs_listxattr,
10924 	.permission	= btrfs_permission,
10925 	.get_inode_acl	= btrfs_get_acl,
10926 	.set_acl	= btrfs_set_acl,
10927 	.update_time	= btrfs_update_time,
10928 	.tmpfile        = btrfs_tmpfile,
10929 	.fileattr_get	= btrfs_fileattr_get,
10930 	.fileattr_set	= btrfs_fileattr_set,
10931 };
10932 
10933 static const struct file_operations btrfs_dir_file_operations = {
10934 	.llseek		= btrfs_dir_llseek,
10935 	.read		= generic_read_dir,
10936 	.iterate_shared	= btrfs_real_readdir,
10937 	.open		= btrfs_opendir,
10938 	.unlocked_ioctl	= btrfs_ioctl,
10939 #ifdef CONFIG_COMPAT
10940 	.compat_ioctl	= btrfs_compat_ioctl,
10941 #endif
10942 	.release        = btrfs_release_file,
10943 	.fsync		= btrfs_sync_file,
10944 };
10945 
10946 /*
10947  * btrfs doesn't support the bmap operation because swapfiles
10948  * use bmap to make a mapping of extents in the file.  They assume
10949  * these extents won't change over the life of the file and they
10950  * use the bmap result to do IO directly to the drive.
10951  *
10952  * the btrfs bmap call would return logical addresses that aren't
10953  * suitable for IO and they also will change frequently as COW
10954  * operations happen.  So, swapfile + btrfs == corruption.
10955  *
10956  * For now we're avoiding this by dropping bmap.
10957  */
10958 static const struct address_space_operations btrfs_aops = {
10959 	.read_folio	= btrfs_read_folio,
10960 	.writepages	= btrfs_writepages,
10961 	.readahead	= btrfs_readahead,
10962 	.invalidate_folio = btrfs_invalidate_folio,
10963 	.release_folio	= btrfs_release_folio,
10964 	.migrate_folio	= btrfs_migrate_folio,
10965 	.dirty_folio	= filemap_dirty_folio,
10966 	.error_remove_folio = generic_error_remove_folio,
10967 	.swap_activate	= btrfs_swap_activate,
10968 	.swap_deactivate = btrfs_swap_deactivate,
10969 };
10970 
10971 static const struct inode_operations btrfs_file_inode_operations = {
10972 	.getattr	= btrfs_getattr,
10973 	.setattr	= btrfs_setattr,
10974 	.listxattr      = btrfs_listxattr,
10975 	.permission	= btrfs_permission,
10976 	.fiemap		= btrfs_fiemap,
10977 	.get_inode_acl	= btrfs_get_acl,
10978 	.set_acl	= btrfs_set_acl,
10979 	.update_time	= btrfs_update_time,
10980 	.fileattr_get	= btrfs_fileattr_get,
10981 	.fileattr_set	= btrfs_fileattr_set,
10982 };
10983 static const struct inode_operations btrfs_special_inode_operations = {
10984 	.getattr	= btrfs_getattr,
10985 	.setattr	= btrfs_setattr,
10986 	.permission	= btrfs_permission,
10987 	.listxattr	= btrfs_listxattr,
10988 	.get_inode_acl	= btrfs_get_acl,
10989 	.set_acl	= btrfs_set_acl,
10990 	.update_time	= btrfs_update_time,
10991 };
10992 static const struct inode_operations btrfs_symlink_inode_operations = {
10993 	.get_link	= page_get_link,
10994 	.getattr	= btrfs_getattr,
10995 	.setattr	= btrfs_setattr,
10996 	.permission	= btrfs_permission,
10997 	.listxattr	= btrfs_listxattr,
10998 	.update_time	= btrfs_update_time,
10999 };
11000 
11001 const struct dentry_operations btrfs_dentry_operations = {
11002 	.d_delete	= btrfs_dentry_delete,
11003 };
11004