1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include "compat.h" 43 #include "ctree.h" 44 #include "disk-io.h" 45 #include "transaction.h" 46 #include "btrfs_inode.h" 47 #include "ioctl.h" 48 #include "print-tree.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "volumes.h" 53 #include "compression.h" 54 #include "locking.h" 55 #include "free-space-cache.h" 56 #include "inode-map.h" 57 58 struct btrfs_iget_args { 59 u64 ino; 60 struct btrfs_root *root; 61 }; 62 63 static const struct inode_operations btrfs_dir_inode_operations; 64 static const struct inode_operations btrfs_symlink_inode_operations; 65 static const struct inode_operations btrfs_dir_ro_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct address_space_operations btrfs_symlink_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_transaction_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 79 #define S_SHIFT 12 80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 88 }; 89 90 static int btrfs_setsize(struct inode *inode, loff_t newsize); 91 static int btrfs_truncate(struct inode *inode); 92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 93 static noinline int cow_file_range(struct inode *inode, 94 struct page *locked_page, 95 u64 start, u64 end, int *page_started, 96 unsigned long *nr_written, int unlock); 97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, struct inode *inode); 99 100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 101 struct inode *inode, struct inode *dir, 102 const struct qstr *qstr) 103 { 104 int err; 105 106 err = btrfs_init_acl(trans, inode, dir); 107 if (!err) 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 109 return err; 110 } 111 112 /* 113 * this does all the hard work for inserting an inline extent into 114 * the btree. The caller should have done a btrfs_drop_extents so that 115 * no overlapping inline items exist in the btree 116 */ 117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 118 struct btrfs_root *root, struct inode *inode, 119 u64 start, size_t size, size_t compressed_size, 120 int compress_type, 121 struct page **compressed_pages) 122 { 123 struct btrfs_key key; 124 struct btrfs_path *path; 125 struct extent_buffer *leaf; 126 struct page *page = NULL; 127 char *kaddr; 128 unsigned long ptr; 129 struct btrfs_file_extent_item *ei; 130 int err = 0; 131 int ret; 132 size_t cur_size = size; 133 size_t datasize; 134 unsigned long offset; 135 136 if (compressed_size && compressed_pages) 137 cur_size = compressed_size; 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 path->leave_spinning = 1; 144 145 key.objectid = btrfs_ino(inode); 146 key.offset = start; 147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 148 datasize = btrfs_file_extent_calc_inline_size(cur_size); 149 150 inode_add_bytes(inode, size); 151 ret = btrfs_insert_empty_item(trans, root, path, &key, 152 datasize); 153 BUG_ON(ret); 154 if (ret) { 155 err = ret; 156 goto fail; 157 } 158 leaf = path->nodes[0]; 159 ei = btrfs_item_ptr(leaf, path->slots[0], 160 struct btrfs_file_extent_item); 161 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 163 btrfs_set_file_extent_encryption(leaf, ei, 0); 164 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 165 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 166 ptr = btrfs_file_extent_inline_start(ei); 167 168 if (compress_type != BTRFS_COMPRESS_NONE) { 169 struct page *cpage; 170 int i = 0; 171 while (compressed_size > 0) { 172 cpage = compressed_pages[i]; 173 cur_size = min_t(unsigned long, compressed_size, 174 PAGE_CACHE_SIZE); 175 176 kaddr = kmap_atomic(cpage, KM_USER0); 177 write_extent_buffer(leaf, kaddr, ptr, cur_size); 178 kunmap_atomic(kaddr, KM_USER0); 179 180 i++; 181 ptr += cur_size; 182 compressed_size -= cur_size; 183 } 184 btrfs_set_file_extent_compression(leaf, ei, 185 compress_type); 186 } else { 187 page = find_get_page(inode->i_mapping, 188 start >> PAGE_CACHE_SHIFT); 189 btrfs_set_file_extent_compression(leaf, ei, 0); 190 kaddr = kmap_atomic(page, KM_USER0); 191 offset = start & (PAGE_CACHE_SIZE - 1); 192 write_extent_buffer(leaf, kaddr + offset, ptr, size); 193 kunmap_atomic(kaddr, KM_USER0); 194 page_cache_release(page); 195 } 196 btrfs_mark_buffer_dirty(leaf); 197 btrfs_free_path(path); 198 199 /* 200 * we're an inline extent, so nobody can 201 * extend the file past i_size without locking 202 * a page we already have locked. 203 * 204 * We must do any isize and inode updates 205 * before we unlock the pages. Otherwise we 206 * could end up racing with unlink. 207 */ 208 BTRFS_I(inode)->disk_i_size = inode->i_size; 209 btrfs_update_inode(trans, root, inode); 210 211 return 0; 212 fail: 213 btrfs_free_path(path); 214 return err; 215 } 216 217 218 /* 219 * conditionally insert an inline extent into the file. This 220 * does the checks required to make sure the data is small enough 221 * to fit as an inline extent. 222 */ 223 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 224 struct btrfs_root *root, 225 struct inode *inode, u64 start, u64 end, 226 size_t compressed_size, int compress_type, 227 struct page **compressed_pages) 228 { 229 u64 isize = i_size_read(inode); 230 u64 actual_end = min(end + 1, isize); 231 u64 inline_len = actual_end - start; 232 u64 aligned_end = (end + root->sectorsize - 1) & 233 ~((u64)root->sectorsize - 1); 234 u64 hint_byte; 235 u64 data_len = inline_len; 236 int ret; 237 238 if (compressed_size) 239 data_len = compressed_size; 240 241 if (start > 0 || 242 actual_end >= PAGE_CACHE_SIZE || 243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 244 (!compressed_size && 245 (actual_end & (root->sectorsize - 1)) == 0) || 246 end + 1 < isize || 247 data_len > root->fs_info->max_inline) { 248 return 1; 249 } 250 251 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 252 &hint_byte, 1); 253 BUG_ON(ret); 254 255 if (isize > actual_end) 256 inline_len = min_t(u64, isize, actual_end); 257 ret = insert_inline_extent(trans, root, inode, start, 258 inline_len, compressed_size, 259 compress_type, compressed_pages); 260 BUG_ON(ret); 261 btrfs_delalloc_release_metadata(inode, end + 1 - start); 262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 263 return 0; 264 } 265 266 struct async_extent { 267 u64 start; 268 u64 ram_size; 269 u64 compressed_size; 270 struct page **pages; 271 unsigned long nr_pages; 272 int compress_type; 273 struct list_head list; 274 }; 275 276 struct async_cow { 277 struct inode *inode; 278 struct btrfs_root *root; 279 struct page *locked_page; 280 u64 start; 281 u64 end; 282 struct list_head extents; 283 struct btrfs_work work; 284 }; 285 286 static noinline int add_async_extent(struct async_cow *cow, 287 u64 start, u64 ram_size, 288 u64 compressed_size, 289 struct page **pages, 290 unsigned long nr_pages, 291 int compress_type) 292 { 293 struct async_extent *async_extent; 294 295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 296 BUG_ON(!async_extent); 297 async_extent->start = start; 298 async_extent->ram_size = ram_size; 299 async_extent->compressed_size = compressed_size; 300 async_extent->pages = pages; 301 async_extent->nr_pages = nr_pages; 302 async_extent->compress_type = compress_type; 303 list_add_tail(&async_extent->list, &cow->extents); 304 return 0; 305 } 306 307 /* 308 * we create compressed extents in two phases. The first 309 * phase compresses a range of pages that have already been 310 * locked (both pages and state bits are locked). 311 * 312 * This is done inside an ordered work queue, and the compression 313 * is spread across many cpus. The actual IO submission is step 314 * two, and the ordered work queue takes care of making sure that 315 * happens in the same order things were put onto the queue by 316 * writepages and friends. 317 * 318 * If this code finds it can't get good compression, it puts an 319 * entry onto the work queue to write the uncompressed bytes. This 320 * makes sure that both compressed inodes and uncompressed inodes 321 * are written in the same order that pdflush sent them down. 322 */ 323 static noinline int compress_file_range(struct inode *inode, 324 struct page *locked_page, 325 u64 start, u64 end, 326 struct async_cow *async_cow, 327 int *num_added) 328 { 329 struct btrfs_root *root = BTRFS_I(inode)->root; 330 struct btrfs_trans_handle *trans; 331 u64 num_bytes; 332 u64 blocksize = root->sectorsize; 333 u64 actual_end; 334 u64 isize = i_size_read(inode); 335 int ret = 0; 336 struct page **pages = NULL; 337 unsigned long nr_pages; 338 unsigned long nr_pages_ret = 0; 339 unsigned long total_compressed = 0; 340 unsigned long total_in = 0; 341 unsigned long max_compressed = 128 * 1024; 342 unsigned long max_uncompressed = 128 * 1024; 343 int i; 344 int will_compress; 345 int compress_type = root->fs_info->compress_type; 346 347 /* if this is a small write inside eof, kick off a defragbot */ 348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024) 349 btrfs_add_inode_defrag(NULL, inode); 350 351 actual_end = min_t(u64, isize, end + 1); 352 again: 353 will_compress = 0; 354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 356 357 /* 358 * we don't want to send crud past the end of i_size through 359 * compression, that's just a waste of CPU time. So, if the 360 * end of the file is before the start of our current 361 * requested range of bytes, we bail out to the uncompressed 362 * cleanup code that can deal with all of this. 363 * 364 * It isn't really the fastest way to fix things, but this is a 365 * very uncommon corner. 366 */ 367 if (actual_end <= start) 368 goto cleanup_and_bail_uncompressed; 369 370 total_compressed = actual_end - start; 371 372 /* we want to make sure that amount of ram required to uncompress 373 * an extent is reasonable, so we limit the total size in ram 374 * of a compressed extent to 128k. This is a crucial number 375 * because it also controls how easily we can spread reads across 376 * cpus for decompression. 377 * 378 * We also want to make sure the amount of IO required to do 379 * a random read is reasonably small, so we limit the size of 380 * a compressed extent to 128k. 381 */ 382 total_compressed = min(total_compressed, max_uncompressed); 383 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 384 num_bytes = max(blocksize, num_bytes); 385 total_in = 0; 386 ret = 0; 387 388 /* 389 * we do compression for mount -o compress and when the 390 * inode has not been flagged as nocompress. This flag can 391 * change at any time if we discover bad compression ratios. 392 */ 393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 394 (btrfs_test_opt(root, COMPRESS) || 395 (BTRFS_I(inode)->force_compress) || 396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 397 WARN_ON(pages); 398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 399 if (!pages) { 400 /* just bail out to the uncompressed code */ 401 goto cont; 402 } 403 404 if (BTRFS_I(inode)->force_compress) 405 compress_type = BTRFS_I(inode)->force_compress; 406 407 ret = btrfs_compress_pages(compress_type, 408 inode->i_mapping, start, 409 total_compressed, pages, 410 nr_pages, &nr_pages_ret, 411 &total_in, 412 &total_compressed, 413 max_compressed); 414 415 if (!ret) { 416 unsigned long offset = total_compressed & 417 (PAGE_CACHE_SIZE - 1); 418 struct page *page = pages[nr_pages_ret - 1]; 419 char *kaddr; 420 421 /* zero the tail end of the last page, we might be 422 * sending it down to disk 423 */ 424 if (offset) { 425 kaddr = kmap_atomic(page, KM_USER0); 426 memset(kaddr + offset, 0, 427 PAGE_CACHE_SIZE - offset); 428 kunmap_atomic(kaddr, KM_USER0); 429 } 430 will_compress = 1; 431 } 432 } 433 cont: 434 if (start == 0) { 435 trans = btrfs_join_transaction(root); 436 BUG_ON(IS_ERR(trans)); 437 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 438 439 /* lets try to make an inline extent */ 440 if (ret || total_in < (actual_end - start)) { 441 /* we didn't compress the entire range, try 442 * to make an uncompressed inline extent. 443 */ 444 ret = cow_file_range_inline(trans, root, inode, 445 start, end, 0, 0, NULL); 446 } else { 447 /* try making a compressed inline extent */ 448 ret = cow_file_range_inline(trans, root, inode, 449 start, end, 450 total_compressed, 451 compress_type, pages); 452 } 453 if (ret == 0) { 454 /* 455 * inline extent creation worked, we don't need 456 * to create any more async work items. Unlock 457 * and free up our temp pages. 458 */ 459 extent_clear_unlock_delalloc(inode, 460 &BTRFS_I(inode)->io_tree, 461 start, end, NULL, 462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 463 EXTENT_CLEAR_DELALLOC | 464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 465 466 btrfs_end_transaction(trans, root); 467 goto free_pages_out; 468 } 469 btrfs_end_transaction(trans, root); 470 } 471 472 if (will_compress) { 473 /* 474 * we aren't doing an inline extent round the compressed size 475 * up to a block size boundary so the allocator does sane 476 * things 477 */ 478 total_compressed = (total_compressed + blocksize - 1) & 479 ~(blocksize - 1); 480 481 /* 482 * one last check to make sure the compression is really a 483 * win, compare the page count read with the blocks on disk 484 */ 485 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 486 ~(PAGE_CACHE_SIZE - 1); 487 if (total_compressed >= total_in) { 488 will_compress = 0; 489 } else { 490 num_bytes = total_in; 491 } 492 } 493 if (!will_compress && pages) { 494 /* 495 * the compression code ran but failed to make things smaller, 496 * free any pages it allocated and our page pointer array 497 */ 498 for (i = 0; i < nr_pages_ret; i++) { 499 WARN_ON(pages[i]->mapping); 500 page_cache_release(pages[i]); 501 } 502 kfree(pages); 503 pages = NULL; 504 total_compressed = 0; 505 nr_pages_ret = 0; 506 507 /* flag the file so we don't compress in the future */ 508 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 509 !(BTRFS_I(inode)->force_compress)) { 510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 511 } 512 } 513 if (will_compress) { 514 *num_added += 1; 515 516 /* the async work queues will take care of doing actual 517 * allocation on disk for these compressed pages, 518 * and will submit them to the elevator. 519 */ 520 add_async_extent(async_cow, start, num_bytes, 521 total_compressed, pages, nr_pages_ret, 522 compress_type); 523 524 if (start + num_bytes < end) { 525 start += num_bytes; 526 pages = NULL; 527 cond_resched(); 528 goto again; 529 } 530 } else { 531 cleanup_and_bail_uncompressed: 532 /* 533 * No compression, but we still need to write the pages in 534 * the file we've been given so far. redirty the locked 535 * page if it corresponds to our extent and set things up 536 * for the async work queue to run cow_file_range to do 537 * the normal delalloc dance 538 */ 539 if (page_offset(locked_page) >= start && 540 page_offset(locked_page) <= end) { 541 __set_page_dirty_nobuffers(locked_page); 542 /* unlocked later on in the async handlers */ 543 } 544 add_async_extent(async_cow, start, end - start + 1, 545 0, NULL, 0, BTRFS_COMPRESS_NONE); 546 *num_added += 1; 547 } 548 549 out: 550 return 0; 551 552 free_pages_out: 553 for (i = 0; i < nr_pages_ret; i++) { 554 WARN_ON(pages[i]->mapping); 555 page_cache_release(pages[i]); 556 } 557 kfree(pages); 558 559 goto out; 560 } 561 562 /* 563 * phase two of compressed writeback. This is the ordered portion 564 * of the code, which only gets called in the order the work was 565 * queued. We walk all the async extents created by compress_file_range 566 * and send them down to the disk. 567 */ 568 static noinline int submit_compressed_extents(struct inode *inode, 569 struct async_cow *async_cow) 570 { 571 struct async_extent *async_extent; 572 u64 alloc_hint = 0; 573 struct btrfs_trans_handle *trans; 574 struct btrfs_key ins; 575 struct extent_map *em; 576 struct btrfs_root *root = BTRFS_I(inode)->root; 577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 578 struct extent_io_tree *io_tree; 579 int ret = 0; 580 581 if (list_empty(&async_cow->extents)) 582 return 0; 583 584 585 while (!list_empty(&async_cow->extents)) { 586 async_extent = list_entry(async_cow->extents.next, 587 struct async_extent, list); 588 list_del(&async_extent->list); 589 590 io_tree = &BTRFS_I(inode)->io_tree; 591 592 retry: 593 /* did the compression code fall back to uncompressed IO? */ 594 if (!async_extent->pages) { 595 int page_started = 0; 596 unsigned long nr_written = 0; 597 598 lock_extent(io_tree, async_extent->start, 599 async_extent->start + 600 async_extent->ram_size - 1, GFP_NOFS); 601 602 /* allocate blocks */ 603 ret = cow_file_range(inode, async_cow->locked_page, 604 async_extent->start, 605 async_extent->start + 606 async_extent->ram_size - 1, 607 &page_started, &nr_written, 0); 608 609 /* 610 * if page_started, cow_file_range inserted an 611 * inline extent and took care of all the unlocking 612 * and IO for us. Otherwise, we need to submit 613 * all those pages down to the drive. 614 */ 615 if (!page_started && !ret) 616 extent_write_locked_range(io_tree, 617 inode, async_extent->start, 618 async_extent->start + 619 async_extent->ram_size - 1, 620 btrfs_get_extent, 621 WB_SYNC_ALL); 622 kfree(async_extent); 623 cond_resched(); 624 continue; 625 } 626 627 lock_extent(io_tree, async_extent->start, 628 async_extent->start + async_extent->ram_size - 1, 629 GFP_NOFS); 630 631 trans = btrfs_join_transaction(root); 632 BUG_ON(IS_ERR(trans)); 633 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 634 ret = btrfs_reserve_extent(trans, root, 635 async_extent->compressed_size, 636 async_extent->compressed_size, 637 0, alloc_hint, 638 (u64)-1, &ins, 1); 639 btrfs_end_transaction(trans, root); 640 641 if (ret) { 642 int i; 643 for (i = 0; i < async_extent->nr_pages; i++) { 644 WARN_ON(async_extent->pages[i]->mapping); 645 page_cache_release(async_extent->pages[i]); 646 } 647 kfree(async_extent->pages); 648 async_extent->nr_pages = 0; 649 async_extent->pages = NULL; 650 unlock_extent(io_tree, async_extent->start, 651 async_extent->start + 652 async_extent->ram_size - 1, GFP_NOFS); 653 goto retry; 654 } 655 656 /* 657 * here we're doing allocation and writeback of the 658 * compressed pages 659 */ 660 btrfs_drop_extent_cache(inode, async_extent->start, 661 async_extent->start + 662 async_extent->ram_size - 1, 0); 663 664 em = alloc_extent_map(); 665 BUG_ON(!em); 666 em->start = async_extent->start; 667 em->len = async_extent->ram_size; 668 em->orig_start = em->start; 669 670 em->block_start = ins.objectid; 671 em->block_len = ins.offset; 672 em->bdev = root->fs_info->fs_devices->latest_bdev; 673 em->compress_type = async_extent->compress_type; 674 set_bit(EXTENT_FLAG_PINNED, &em->flags); 675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 676 677 while (1) { 678 write_lock(&em_tree->lock); 679 ret = add_extent_mapping(em_tree, em); 680 write_unlock(&em_tree->lock); 681 if (ret != -EEXIST) { 682 free_extent_map(em); 683 break; 684 } 685 btrfs_drop_extent_cache(inode, async_extent->start, 686 async_extent->start + 687 async_extent->ram_size - 1, 0); 688 } 689 690 ret = btrfs_add_ordered_extent_compress(inode, 691 async_extent->start, 692 ins.objectid, 693 async_extent->ram_size, 694 ins.offset, 695 BTRFS_ORDERED_COMPRESSED, 696 async_extent->compress_type); 697 BUG_ON(ret); 698 699 /* 700 * clear dirty, set writeback and unlock the pages. 701 */ 702 extent_clear_unlock_delalloc(inode, 703 &BTRFS_I(inode)->io_tree, 704 async_extent->start, 705 async_extent->start + 706 async_extent->ram_size - 1, 707 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 708 EXTENT_CLEAR_UNLOCK | 709 EXTENT_CLEAR_DELALLOC | 710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 711 712 ret = btrfs_submit_compressed_write(inode, 713 async_extent->start, 714 async_extent->ram_size, 715 ins.objectid, 716 ins.offset, async_extent->pages, 717 async_extent->nr_pages); 718 719 BUG_ON(ret); 720 alloc_hint = ins.objectid + ins.offset; 721 kfree(async_extent); 722 cond_resched(); 723 } 724 725 return 0; 726 } 727 728 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 729 u64 num_bytes) 730 { 731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 732 struct extent_map *em; 733 u64 alloc_hint = 0; 734 735 read_lock(&em_tree->lock); 736 em = search_extent_mapping(em_tree, start, num_bytes); 737 if (em) { 738 /* 739 * if block start isn't an actual block number then find the 740 * first block in this inode and use that as a hint. If that 741 * block is also bogus then just don't worry about it. 742 */ 743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 744 free_extent_map(em); 745 em = search_extent_mapping(em_tree, 0, 0); 746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 747 alloc_hint = em->block_start; 748 if (em) 749 free_extent_map(em); 750 } else { 751 alloc_hint = em->block_start; 752 free_extent_map(em); 753 } 754 } 755 read_unlock(&em_tree->lock); 756 757 return alloc_hint; 758 } 759 760 /* 761 * when extent_io.c finds a delayed allocation range in the file, 762 * the call backs end up in this code. The basic idea is to 763 * allocate extents on disk for the range, and create ordered data structs 764 * in ram to track those extents. 765 * 766 * locked_page is the page that writepage had locked already. We use 767 * it to make sure we don't do extra locks or unlocks. 768 * 769 * *page_started is set to one if we unlock locked_page and do everything 770 * required to start IO on it. It may be clean and already done with 771 * IO when we return. 772 */ 773 static noinline int cow_file_range(struct inode *inode, 774 struct page *locked_page, 775 u64 start, u64 end, int *page_started, 776 unsigned long *nr_written, 777 int unlock) 778 { 779 struct btrfs_root *root = BTRFS_I(inode)->root; 780 struct btrfs_trans_handle *trans; 781 u64 alloc_hint = 0; 782 u64 num_bytes; 783 unsigned long ram_size; 784 u64 disk_num_bytes; 785 u64 cur_alloc_size; 786 u64 blocksize = root->sectorsize; 787 struct btrfs_key ins; 788 struct extent_map *em; 789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 790 int ret = 0; 791 792 BUG_ON(btrfs_is_free_space_inode(root, inode)); 793 trans = btrfs_join_transaction(root); 794 BUG_ON(IS_ERR(trans)); 795 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 796 797 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 798 num_bytes = max(blocksize, num_bytes); 799 disk_num_bytes = num_bytes; 800 ret = 0; 801 802 /* if this is a small write inside eof, kick off defrag */ 803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024) 804 btrfs_add_inode_defrag(trans, inode); 805 806 if (start == 0) { 807 /* lets try to make an inline extent */ 808 ret = cow_file_range_inline(trans, root, inode, 809 start, end, 0, 0, NULL); 810 if (ret == 0) { 811 extent_clear_unlock_delalloc(inode, 812 &BTRFS_I(inode)->io_tree, 813 start, end, NULL, 814 EXTENT_CLEAR_UNLOCK_PAGE | 815 EXTENT_CLEAR_UNLOCK | 816 EXTENT_CLEAR_DELALLOC | 817 EXTENT_CLEAR_DIRTY | 818 EXTENT_SET_WRITEBACK | 819 EXTENT_END_WRITEBACK); 820 821 *nr_written = *nr_written + 822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 823 *page_started = 1; 824 ret = 0; 825 goto out; 826 } 827 } 828 829 BUG_ON(disk_num_bytes > 830 btrfs_super_total_bytes(root->fs_info->super_copy)); 831 832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 834 835 while (disk_num_bytes > 0) { 836 unsigned long op; 837 838 cur_alloc_size = disk_num_bytes; 839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 840 root->sectorsize, 0, alloc_hint, 841 (u64)-1, &ins, 1); 842 BUG_ON(ret); 843 844 em = alloc_extent_map(); 845 BUG_ON(!em); 846 em->start = start; 847 em->orig_start = em->start; 848 ram_size = ins.offset; 849 em->len = ins.offset; 850 851 em->block_start = ins.objectid; 852 em->block_len = ins.offset; 853 em->bdev = root->fs_info->fs_devices->latest_bdev; 854 set_bit(EXTENT_FLAG_PINNED, &em->flags); 855 856 while (1) { 857 write_lock(&em_tree->lock); 858 ret = add_extent_mapping(em_tree, em); 859 write_unlock(&em_tree->lock); 860 if (ret != -EEXIST) { 861 free_extent_map(em); 862 break; 863 } 864 btrfs_drop_extent_cache(inode, start, 865 start + ram_size - 1, 0); 866 } 867 868 cur_alloc_size = ins.offset; 869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 870 ram_size, cur_alloc_size, 0); 871 BUG_ON(ret); 872 873 if (root->root_key.objectid == 874 BTRFS_DATA_RELOC_TREE_OBJECTID) { 875 ret = btrfs_reloc_clone_csums(inode, start, 876 cur_alloc_size); 877 BUG_ON(ret); 878 } 879 880 if (disk_num_bytes < cur_alloc_size) 881 break; 882 883 /* we're not doing compressed IO, don't unlock the first 884 * page (which the caller expects to stay locked), don't 885 * clear any dirty bits and don't set any writeback bits 886 * 887 * Do set the Private2 bit so we know this page was properly 888 * setup for writepage 889 */ 890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 892 EXTENT_SET_PRIVATE2; 893 894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 895 start, start + ram_size - 1, 896 locked_page, op); 897 disk_num_bytes -= cur_alloc_size; 898 num_bytes -= cur_alloc_size; 899 alloc_hint = ins.objectid + ins.offset; 900 start += cur_alloc_size; 901 } 902 out: 903 ret = 0; 904 btrfs_end_transaction(trans, root); 905 906 return ret; 907 } 908 909 /* 910 * work queue call back to started compression on a file and pages 911 */ 912 static noinline void async_cow_start(struct btrfs_work *work) 913 { 914 struct async_cow *async_cow; 915 int num_added = 0; 916 async_cow = container_of(work, struct async_cow, work); 917 918 compress_file_range(async_cow->inode, async_cow->locked_page, 919 async_cow->start, async_cow->end, async_cow, 920 &num_added); 921 if (num_added == 0) 922 async_cow->inode = NULL; 923 } 924 925 /* 926 * work queue call back to submit previously compressed pages 927 */ 928 static noinline void async_cow_submit(struct btrfs_work *work) 929 { 930 struct async_cow *async_cow; 931 struct btrfs_root *root; 932 unsigned long nr_pages; 933 934 async_cow = container_of(work, struct async_cow, work); 935 936 root = async_cow->root; 937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 938 PAGE_CACHE_SHIFT; 939 940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 941 942 if (atomic_read(&root->fs_info->async_delalloc_pages) < 943 5 * 1042 * 1024 && 944 waitqueue_active(&root->fs_info->async_submit_wait)) 945 wake_up(&root->fs_info->async_submit_wait); 946 947 if (async_cow->inode) 948 submit_compressed_extents(async_cow->inode, async_cow); 949 } 950 951 static noinline void async_cow_free(struct btrfs_work *work) 952 { 953 struct async_cow *async_cow; 954 async_cow = container_of(work, struct async_cow, work); 955 kfree(async_cow); 956 } 957 958 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 959 u64 start, u64 end, int *page_started, 960 unsigned long *nr_written) 961 { 962 struct async_cow *async_cow; 963 struct btrfs_root *root = BTRFS_I(inode)->root; 964 unsigned long nr_pages; 965 u64 cur_end; 966 int limit = 10 * 1024 * 1042; 967 968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 969 1, 0, NULL, GFP_NOFS); 970 while (start < end) { 971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 972 BUG_ON(!async_cow); 973 async_cow->inode = inode; 974 async_cow->root = root; 975 async_cow->locked_page = locked_page; 976 async_cow->start = start; 977 978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 979 cur_end = end; 980 else 981 cur_end = min(end, start + 512 * 1024 - 1); 982 983 async_cow->end = cur_end; 984 INIT_LIST_HEAD(&async_cow->extents); 985 986 async_cow->work.func = async_cow_start; 987 async_cow->work.ordered_func = async_cow_submit; 988 async_cow->work.ordered_free = async_cow_free; 989 async_cow->work.flags = 0; 990 991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 992 PAGE_CACHE_SHIFT; 993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 994 995 btrfs_queue_worker(&root->fs_info->delalloc_workers, 996 &async_cow->work); 997 998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 999 wait_event(root->fs_info->async_submit_wait, 1000 (atomic_read(&root->fs_info->async_delalloc_pages) < 1001 limit)); 1002 } 1003 1004 while (atomic_read(&root->fs_info->async_submit_draining) && 1005 atomic_read(&root->fs_info->async_delalloc_pages)) { 1006 wait_event(root->fs_info->async_submit_wait, 1007 (atomic_read(&root->fs_info->async_delalloc_pages) == 1008 0)); 1009 } 1010 1011 *nr_written += nr_pages; 1012 start = cur_end + 1; 1013 } 1014 *page_started = 1; 1015 return 0; 1016 } 1017 1018 static noinline int csum_exist_in_range(struct btrfs_root *root, 1019 u64 bytenr, u64 num_bytes) 1020 { 1021 int ret; 1022 struct btrfs_ordered_sum *sums; 1023 LIST_HEAD(list); 1024 1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1026 bytenr + num_bytes - 1, &list, 0); 1027 if (ret == 0 && list_empty(&list)) 1028 return 0; 1029 1030 while (!list_empty(&list)) { 1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1032 list_del(&sums->list); 1033 kfree(sums); 1034 } 1035 return 1; 1036 } 1037 1038 /* 1039 * when nowcow writeback call back. This checks for snapshots or COW copies 1040 * of the extents that exist in the file, and COWs the file as required. 1041 * 1042 * If no cow copies or snapshots exist, we write directly to the existing 1043 * blocks on disk 1044 */ 1045 static noinline int run_delalloc_nocow(struct inode *inode, 1046 struct page *locked_page, 1047 u64 start, u64 end, int *page_started, int force, 1048 unsigned long *nr_written) 1049 { 1050 struct btrfs_root *root = BTRFS_I(inode)->root; 1051 struct btrfs_trans_handle *trans; 1052 struct extent_buffer *leaf; 1053 struct btrfs_path *path; 1054 struct btrfs_file_extent_item *fi; 1055 struct btrfs_key found_key; 1056 u64 cow_start; 1057 u64 cur_offset; 1058 u64 extent_end; 1059 u64 extent_offset; 1060 u64 disk_bytenr; 1061 u64 num_bytes; 1062 int extent_type; 1063 int ret; 1064 int type; 1065 int nocow; 1066 int check_prev = 1; 1067 bool nolock; 1068 u64 ino = btrfs_ino(inode); 1069 1070 path = btrfs_alloc_path(); 1071 if (!path) 1072 return -ENOMEM; 1073 1074 nolock = btrfs_is_free_space_inode(root, inode); 1075 1076 if (nolock) 1077 trans = btrfs_join_transaction_nolock(root); 1078 else 1079 trans = btrfs_join_transaction(root); 1080 1081 BUG_ON(IS_ERR(trans)); 1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1083 1084 cow_start = (u64)-1; 1085 cur_offset = start; 1086 while (1) { 1087 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1088 cur_offset, 0); 1089 BUG_ON(ret < 0); 1090 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1091 leaf = path->nodes[0]; 1092 btrfs_item_key_to_cpu(leaf, &found_key, 1093 path->slots[0] - 1); 1094 if (found_key.objectid == ino && 1095 found_key.type == BTRFS_EXTENT_DATA_KEY) 1096 path->slots[0]--; 1097 } 1098 check_prev = 0; 1099 next_slot: 1100 leaf = path->nodes[0]; 1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1102 ret = btrfs_next_leaf(root, path); 1103 if (ret < 0) 1104 BUG_ON(1); 1105 if (ret > 0) 1106 break; 1107 leaf = path->nodes[0]; 1108 } 1109 1110 nocow = 0; 1111 disk_bytenr = 0; 1112 num_bytes = 0; 1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1114 1115 if (found_key.objectid > ino || 1116 found_key.type > BTRFS_EXTENT_DATA_KEY || 1117 found_key.offset > end) 1118 break; 1119 1120 if (found_key.offset > cur_offset) { 1121 extent_end = found_key.offset; 1122 extent_type = 0; 1123 goto out_check; 1124 } 1125 1126 fi = btrfs_item_ptr(leaf, path->slots[0], 1127 struct btrfs_file_extent_item); 1128 extent_type = btrfs_file_extent_type(leaf, fi); 1129 1130 if (extent_type == BTRFS_FILE_EXTENT_REG || 1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1133 extent_offset = btrfs_file_extent_offset(leaf, fi); 1134 extent_end = found_key.offset + 1135 btrfs_file_extent_num_bytes(leaf, fi); 1136 if (extent_end <= start) { 1137 path->slots[0]++; 1138 goto next_slot; 1139 } 1140 if (disk_bytenr == 0) 1141 goto out_check; 1142 if (btrfs_file_extent_compression(leaf, fi) || 1143 btrfs_file_extent_encryption(leaf, fi) || 1144 btrfs_file_extent_other_encoding(leaf, fi)) 1145 goto out_check; 1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1147 goto out_check; 1148 if (btrfs_extent_readonly(root, disk_bytenr)) 1149 goto out_check; 1150 if (btrfs_cross_ref_exist(trans, root, ino, 1151 found_key.offset - 1152 extent_offset, disk_bytenr)) 1153 goto out_check; 1154 disk_bytenr += extent_offset; 1155 disk_bytenr += cur_offset - found_key.offset; 1156 num_bytes = min(end + 1, extent_end) - cur_offset; 1157 /* 1158 * force cow if csum exists in the range. 1159 * this ensure that csum for a given extent are 1160 * either valid or do not exist. 1161 */ 1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1163 goto out_check; 1164 nocow = 1; 1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1166 extent_end = found_key.offset + 1167 btrfs_file_extent_inline_len(leaf, fi); 1168 extent_end = ALIGN(extent_end, root->sectorsize); 1169 } else { 1170 BUG_ON(1); 1171 } 1172 out_check: 1173 if (extent_end <= start) { 1174 path->slots[0]++; 1175 goto next_slot; 1176 } 1177 if (!nocow) { 1178 if (cow_start == (u64)-1) 1179 cow_start = cur_offset; 1180 cur_offset = extent_end; 1181 if (cur_offset > end) 1182 break; 1183 path->slots[0]++; 1184 goto next_slot; 1185 } 1186 1187 btrfs_release_path(path); 1188 if (cow_start != (u64)-1) { 1189 ret = cow_file_range(inode, locked_page, cow_start, 1190 found_key.offset - 1, page_started, 1191 nr_written, 1); 1192 BUG_ON(ret); 1193 cow_start = (u64)-1; 1194 } 1195 1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1197 struct extent_map *em; 1198 struct extent_map_tree *em_tree; 1199 em_tree = &BTRFS_I(inode)->extent_tree; 1200 em = alloc_extent_map(); 1201 BUG_ON(!em); 1202 em->start = cur_offset; 1203 em->orig_start = em->start; 1204 em->len = num_bytes; 1205 em->block_len = num_bytes; 1206 em->block_start = disk_bytenr; 1207 em->bdev = root->fs_info->fs_devices->latest_bdev; 1208 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1209 while (1) { 1210 write_lock(&em_tree->lock); 1211 ret = add_extent_mapping(em_tree, em); 1212 write_unlock(&em_tree->lock); 1213 if (ret != -EEXIST) { 1214 free_extent_map(em); 1215 break; 1216 } 1217 btrfs_drop_extent_cache(inode, em->start, 1218 em->start + em->len - 1, 0); 1219 } 1220 type = BTRFS_ORDERED_PREALLOC; 1221 } else { 1222 type = BTRFS_ORDERED_NOCOW; 1223 } 1224 1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1226 num_bytes, num_bytes, type); 1227 BUG_ON(ret); 1228 1229 if (root->root_key.objectid == 1230 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1231 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1232 num_bytes); 1233 BUG_ON(ret); 1234 } 1235 1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1237 cur_offset, cur_offset + num_bytes - 1, 1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1240 EXTENT_SET_PRIVATE2); 1241 cur_offset = extent_end; 1242 if (cur_offset > end) 1243 break; 1244 } 1245 btrfs_release_path(path); 1246 1247 if (cur_offset <= end && cow_start == (u64)-1) 1248 cow_start = cur_offset; 1249 if (cow_start != (u64)-1) { 1250 ret = cow_file_range(inode, locked_page, cow_start, end, 1251 page_started, nr_written, 1); 1252 BUG_ON(ret); 1253 } 1254 1255 if (nolock) { 1256 ret = btrfs_end_transaction_nolock(trans, root); 1257 BUG_ON(ret); 1258 } else { 1259 ret = btrfs_end_transaction(trans, root); 1260 BUG_ON(ret); 1261 } 1262 btrfs_free_path(path); 1263 return 0; 1264 } 1265 1266 /* 1267 * extent_io.c call back to do delayed allocation processing 1268 */ 1269 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1270 u64 start, u64 end, int *page_started, 1271 unsigned long *nr_written) 1272 { 1273 int ret; 1274 struct btrfs_root *root = BTRFS_I(inode)->root; 1275 1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1277 ret = run_delalloc_nocow(inode, locked_page, start, end, 1278 page_started, 1, nr_written); 1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1280 ret = run_delalloc_nocow(inode, locked_page, start, end, 1281 page_started, 0, nr_written); 1282 else if (!btrfs_test_opt(root, COMPRESS) && 1283 !(BTRFS_I(inode)->force_compress) && 1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) 1285 ret = cow_file_range(inode, locked_page, start, end, 1286 page_started, nr_written, 1); 1287 else 1288 ret = cow_file_range_async(inode, locked_page, start, end, 1289 page_started, nr_written); 1290 return ret; 1291 } 1292 1293 static void btrfs_split_extent_hook(struct inode *inode, 1294 struct extent_state *orig, u64 split) 1295 { 1296 /* not delalloc, ignore it */ 1297 if (!(orig->state & EXTENT_DELALLOC)) 1298 return; 1299 1300 spin_lock(&BTRFS_I(inode)->lock); 1301 BTRFS_I(inode)->outstanding_extents++; 1302 spin_unlock(&BTRFS_I(inode)->lock); 1303 } 1304 1305 /* 1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1307 * extents so we can keep track of new extents that are just merged onto old 1308 * extents, such as when we are doing sequential writes, so we can properly 1309 * account for the metadata space we'll need. 1310 */ 1311 static void btrfs_merge_extent_hook(struct inode *inode, 1312 struct extent_state *new, 1313 struct extent_state *other) 1314 { 1315 /* not delalloc, ignore it */ 1316 if (!(other->state & EXTENT_DELALLOC)) 1317 return; 1318 1319 spin_lock(&BTRFS_I(inode)->lock); 1320 BTRFS_I(inode)->outstanding_extents--; 1321 spin_unlock(&BTRFS_I(inode)->lock); 1322 } 1323 1324 /* 1325 * extent_io.c set_bit_hook, used to track delayed allocation 1326 * bytes in this file, and to maintain the list of inodes that 1327 * have pending delalloc work to be done. 1328 */ 1329 static void btrfs_set_bit_hook(struct inode *inode, 1330 struct extent_state *state, int *bits) 1331 { 1332 1333 /* 1334 * set_bit and clear bit hooks normally require _irqsave/restore 1335 * but in this case, we are only testing for the DELALLOC 1336 * bit, which is only set or cleared with irqs on 1337 */ 1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1339 struct btrfs_root *root = BTRFS_I(inode)->root; 1340 u64 len = state->end + 1 - state->start; 1341 bool do_list = !btrfs_is_free_space_inode(root, inode); 1342 1343 if (*bits & EXTENT_FIRST_DELALLOC) { 1344 *bits &= ~EXTENT_FIRST_DELALLOC; 1345 } else { 1346 spin_lock(&BTRFS_I(inode)->lock); 1347 BTRFS_I(inode)->outstanding_extents++; 1348 spin_unlock(&BTRFS_I(inode)->lock); 1349 } 1350 1351 spin_lock(&root->fs_info->delalloc_lock); 1352 BTRFS_I(inode)->delalloc_bytes += len; 1353 root->fs_info->delalloc_bytes += len; 1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1356 &root->fs_info->delalloc_inodes); 1357 } 1358 spin_unlock(&root->fs_info->delalloc_lock); 1359 } 1360 } 1361 1362 /* 1363 * extent_io.c clear_bit_hook, see set_bit_hook for why 1364 */ 1365 static void btrfs_clear_bit_hook(struct inode *inode, 1366 struct extent_state *state, int *bits) 1367 { 1368 /* 1369 * set_bit and clear bit hooks normally require _irqsave/restore 1370 * but in this case, we are only testing for the DELALLOC 1371 * bit, which is only set or cleared with irqs on 1372 */ 1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1374 struct btrfs_root *root = BTRFS_I(inode)->root; 1375 u64 len = state->end + 1 - state->start; 1376 bool do_list = !btrfs_is_free_space_inode(root, inode); 1377 1378 if (*bits & EXTENT_FIRST_DELALLOC) { 1379 *bits &= ~EXTENT_FIRST_DELALLOC; 1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1381 spin_lock(&BTRFS_I(inode)->lock); 1382 BTRFS_I(inode)->outstanding_extents--; 1383 spin_unlock(&BTRFS_I(inode)->lock); 1384 } 1385 1386 if (*bits & EXTENT_DO_ACCOUNTING) 1387 btrfs_delalloc_release_metadata(inode, len); 1388 1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1390 && do_list) 1391 btrfs_free_reserved_data_space(inode, len); 1392 1393 spin_lock(&root->fs_info->delalloc_lock); 1394 root->fs_info->delalloc_bytes -= len; 1395 BTRFS_I(inode)->delalloc_bytes -= len; 1396 1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1400 } 1401 spin_unlock(&root->fs_info->delalloc_lock); 1402 } 1403 } 1404 1405 /* 1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1407 * we don't create bios that span stripes or chunks 1408 */ 1409 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1410 size_t size, struct bio *bio, 1411 unsigned long bio_flags) 1412 { 1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1414 struct btrfs_mapping_tree *map_tree; 1415 u64 logical = (u64)bio->bi_sector << 9; 1416 u64 length = 0; 1417 u64 map_length; 1418 int ret; 1419 1420 if (bio_flags & EXTENT_BIO_COMPRESSED) 1421 return 0; 1422 1423 length = bio->bi_size; 1424 map_tree = &root->fs_info->mapping_tree; 1425 map_length = length; 1426 ret = btrfs_map_block(map_tree, READ, logical, 1427 &map_length, NULL, 0); 1428 1429 if (map_length < length + size) 1430 return 1; 1431 return ret; 1432 } 1433 1434 /* 1435 * in order to insert checksums into the metadata in large chunks, 1436 * we wait until bio submission time. All the pages in the bio are 1437 * checksummed and sums are attached onto the ordered extent record. 1438 * 1439 * At IO completion time the cums attached on the ordered extent record 1440 * are inserted into the btree 1441 */ 1442 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1443 struct bio *bio, int mirror_num, 1444 unsigned long bio_flags, 1445 u64 bio_offset) 1446 { 1447 struct btrfs_root *root = BTRFS_I(inode)->root; 1448 int ret = 0; 1449 1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1451 BUG_ON(ret); 1452 return 0; 1453 } 1454 1455 /* 1456 * in order to insert checksums into the metadata in large chunks, 1457 * we wait until bio submission time. All the pages in the bio are 1458 * checksummed and sums are attached onto the ordered extent record. 1459 * 1460 * At IO completion time the cums attached on the ordered extent record 1461 * are inserted into the btree 1462 */ 1463 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1464 int mirror_num, unsigned long bio_flags, 1465 u64 bio_offset) 1466 { 1467 struct btrfs_root *root = BTRFS_I(inode)->root; 1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1469 } 1470 1471 /* 1472 * extent_io.c submission hook. This does the right thing for csum calculation 1473 * on write, or reading the csums from the tree before a read 1474 */ 1475 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1476 int mirror_num, unsigned long bio_flags, 1477 u64 bio_offset) 1478 { 1479 struct btrfs_root *root = BTRFS_I(inode)->root; 1480 int ret = 0; 1481 int skip_sum; 1482 1483 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1484 1485 if (btrfs_is_free_space_inode(root, inode)) 1486 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1487 else 1488 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1489 BUG_ON(ret); 1490 1491 if (!(rw & REQ_WRITE)) { 1492 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1493 return btrfs_submit_compressed_read(inode, bio, 1494 mirror_num, bio_flags); 1495 } else if (!skip_sum) { 1496 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1497 if (ret) 1498 return ret; 1499 } 1500 goto mapit; 1501 } else if (!skip_sum) { 1502 /* csum items have already been cloned */ 1503 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1504 goto mapit; 1505 /* we're doing a write, do the async checksumming */ 1506 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1507 inode, rw, bio, mirror_num, 1508 bio_flags, bio_offset, 1509 __btrfs_submit_bio_start, 1510 __btrfs_submit_bio_done); 1511 } 1512 1513 mapit: 1514 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1515 } 1516 1517 /* 1518 * given a list of ordered sums record them in the inode. This happens 1519 * at IO completion time based on sums calculated at bio submission time. 1520 */ 1521 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1522 struct inode *inode, u64 file_offset, 1523 struct list_head *list) 1524 { 1525 struct btrfs_ordered_sum *sum; 1526 1527 list_for_each_entry(sum, list, list) { 1528 btrfs_csum_file_blocks(trans, 1529 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1530 } 1531 return 0; 1532 } 1533 1534 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1535 struct extent_state **cached_state) 1536 { 1537 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1538 WARN_ON(1); 1539 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1540 cached_state, GFP_NOFS); 1541 } 1542 1543 /* see btrfs_writepage_start_hook for details on why this is required */ 1544 struct btrfs_writepage_fixup { 1545 struct page *page; 1546 struct btrfs_work work; 1547 }; 1548 1549 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1550 { 1551 struct btrfs_writepage_fixup *fixup; 1552 struct btrfs_ordered_extent *ordered; 1553 struct extent_state *cached_state = NULL; 1554 struct page *page; 1555 struct inode *inode; 1556 u64 page_start; 1557 u64 page_end; 1558 1559 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1560 page = fixup->page; 1561 again: 1562 lock_page(page); 1563 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1564 ClearPageChecked(page); 1565 goto out_page; 1566 } 1567 1568 inode = page->mapping->host; 1569 page_start = page_offset(page); 1570 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1571 1572 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1573 &cached_state, GFP_NOFS); 1574 1575 /* already ordered? We're done */ 1576 if (PagePrivate2(page)) 1577 goto out; 1578 1579 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1580 if (ordered) { 1581 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1582 page_end, &cached_state, GFP_NOFS); 1583 unlock_page(page); 1584 btrfs_start_ordered_extent(inode, ordered, 1); 1585 goto again; 1586 } 1587 1588 BUG(); 1589 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1590 ClearPageChecked(page); 1591 out: 1592 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1593 &cached_state, GFP_NOFS); 1594 out_page: 1595 unlock_page(page); 1596 page_cache_release(page); 1597 kfree(fixup); 1598 } 1599 1600 /* 1601 * There are a few paths in the higher layers of the kernel that directly 1602 * set the page dirty bit without asking the filesystem if it is a 1603 * good idea. This causes problems because we want to make sure COW 1604 * properly happens and the data=ordered rules are followed. 1605 * 1606 * In our case any range that doesn't have the ORDERED bit set 1607 * hasn't been properly setup for IO. We kick off an async process 1608 * to fix it up. The async helper will wait for ordered extents, set 1609 * the delalloc bit and make it safe to write the page. 1610 */ 1611 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1612 { 1613 struct inode *inode = page->mapping->host; 1614 struct btrfs_writepage_fixup *fixup; 1615 struct btrfs_root *root = BTRFS_I(inode)->root; 1616 1617 /* this page is properly in the ordered list */ 1618 if (TestClearPagePrivate2(page)) 1619 return 0; 1620 1621 if (PageChecked(page)) 1622 return -EAGAIN; 1623 1624 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1625 if (!fixup) 1626 return -EAGAIN; 1627 1628 SetPageChecked(page); 1629 page_cache_get(page); 1630 fixup->work.func = btrfs_writepage_fixup_worker; 1631 fixup->page = page; 1632 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1633 return -EAGAIN; 1634 } 1635 1636 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1637 struct inode *inode, u64 file_pos, 1638 u64 disk_bytenr, u64 disk_num_bytes, 1639 u64 num_bytes, u64 ram_bytes, 1640 u8 compression, u8 encryption, 1641 u16 other_encoding, int extent_type) 1642 { 1643 struct btrfs_root *root = BTRFS_I(inode)->root; 1644 struct btrfs_file_extent_item *fi; 1645 struct btrfs_path *path; 1646 struct extent_buffer *leaf; 1647 struct btrfs_key ins; 1648 u64 hint; 1649 int ret; 1650 1651 path = btrfs_alloc_path(); 1652 if (!path) 1653 return -ENOMEM; 1654 1655 path->leave_spinning = 1; 1656 1657 /* 1658 * we may be replacing one extent in the tree with another. 1659 * The new extent is pinned in the extent map, and we don't want 1660 * to drop it from the cache until it is completely in the btree. 1661 * 1662 * So, tell btrfs_drop_extents to leave this extent in the cache. 1663 * the caller is expected to unpin it and allow it to be merged 1664 * with the others. 1665 */ 1666 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1667 &hint, 0); 1668 BUG_ON(ret); 1669 1670 ins.objectid = btrfs_ino(inode); 1671 ins.offset = file_pos; 1672 ins.type = BTRFS_EXTENT_DATA_KEY; 1673 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1674 BUG_ON(ret); 1675 leaf = path->nodes[0]; 1676 fi = btrfs_item_ptr(leaf, path->slots[0], 1677 struct btrfs_file_extent_item); 1678 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1679 btrfs_set_file_extent_type(leaf, fi, extent_type); 1680 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1681 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1682 btrfs_set_file_extent_offset(leaf, fi, 0); 1683 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1684 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1685 btrfs_set_file_extent_compression(leaf, fi, compression); 1686 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1687 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1688 1689 btrfs_unlock_up_safe(path, 1); 1690 btrfs_set_lock_blocking(leaf); 1691 1692 btrfs_mark_buffer_dirty(leaf); 1693 1694 inode_add_bytes(inode, num_bytes); 1695 1696 ins.objectid = disk_bytenr; 1697 ins.offset = disk_num_bytes; 1698 ins.type = BTRFS_EXTENT_ITEM_KEY; 1699 ret = btrfs_alloc_reserved_file_extent(trans, root, 1700 root->root_key.objectid, 1701 btrfs_ino(inode), file_pos, &ins); 1702 BUG_ON(ret); 1703 btrfs_free_path(path); 1704 1705 return 0; 1706 } 1707 1708 /* 1709 * helper function for btrfs_finish_ordered_io, this 1710 * just reads in some of the csum leaves to prime them into ram 1711 * before we start the transaction. It limits the amount of btree 1712 * reads required while inside the transaction. 1713 */ 1714 /* as ordered data IO finishes, this gets called so we can finish 1715 * an ordered extent if the range of bytes in the file it covers are 1716 * fully written. 1717 */ 1718 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1719 { 1720 struct btrfs_root *root = BTRFS_I(inode)->root; 1721 struct btrfs_trans_handle *trans = NULL; 1722 struct btrfs_ordered_extent *ordered_extent = NULL; 1723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1724 struct extent_state *cached_state = NULL; 1725 int compress_type = 0; 1726 int ret; 1727 bool nolock; 1728 1729 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1730 end - start + 1); 1731 if (!ret) 1732 return 0; 1733 BUG_ON(!ordered_extent); 1734 1735 nolock = btrfs_is_free_space_inode(root, inode); 1736 1737 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1738 BUG_ON(!list_empty(&ordered_extent->list)); 1739 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1740 if (!ret) { 1741 if (nolock) 1742 trans = btrfs_join_transaction_nolock(root); 1743 else 1744 trans = btrfs_join_transaction(root); 1745 BUG_ON(IS_ERR(trans)); 1746 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1747 ret = btrfs_update_inode_fallback(trans, root, inode); 1748 BUG_ON(ret); 1749 } 1750 goto out; 1751 } 1752 1753 lock_extent_bits(io_tree, ordered_extent->file_offset, 1754 ordered_extent->file_offset + ordered_extent->len - 1, 1755 0, &cached_state, GFP_NOFS); 1756 1757 if (nolock) 1758 trans = btrfs_join_transaction_nolock(root); 1759 else 1760 trans = btrfs_join_transaction(root); 1761 BUG_ON(IS_ERR(trans)); 1762 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1763 1764 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1765 compress_type = ordered_extent->compress_type; 1766 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1767 BUG_ON(compress_type); 1768 ret = btrfs_mark_extent_written(trans, inode, 1769 ordered_extent->file_offset, 1770 ordered_extent->file_offset + 1771 ordered_extent->len); 1772 BUG_ON(ret); 1773 } else { 1774 BUG_ON(root == root->fs_info->tree_root); 1775 ret = insert_reserved_file_extent(trans, inode, 1776 ordered_extent->file_offset, 1777 ordered_extent->start, 1778 ordered_extent->disk_len, 1779 ordered_extent->len, 1780 ordered_extent->len, 1781 compress_type, 0, 0, 1782 BTRFS_FILE_EXTENT_REG); 1783 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1784 ordered_extent->file_offset, 1785 ordered_extent->len); 1786 BUG_ON(ret); 1787 } 1788 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1789 ordered_extent->file_offset + 1790 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1791 1792 add_pending_csums(trans, inode, ordered_extent->file_offset, 1793 &ordered_extent->list); 1794 1795 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1796 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1797 ret = btrfs_update_inode_fallback(trans, root, inode); 1798 BUG_ON(ret); 1799 } 1800 ret = 0; 1801 out: 1802 if (root != root->fs_info->tree_root) 1803 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1804 if (trans) { 1805 if (nolock) 1806 btrfs_end_transaction_nolock(trans, root); 1807 else 1808 btrfs_end_transaction(trans, root); 1809 } 1810 1811 /* once for us */ 1812 btrfs_put_ordered_extent(ordered_extent); 1813 /* once for the tree */ 1814 btrfs_put_ordered_extent(ordered_extent); 1815 1816 return 0; 1817 } 1818 1819 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1820 struct extent_state *state, int uptodate) 1821 { 1822 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1823 1824 ClearPagePrivate2(page); 1825 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1826 } 1827 1828 /* 1829 * when reads are done, we need to check csums to verify the data is correct 1830 * if there's a match, we allow the bio to finish. If not, the code in 1831 * extent_io.c will try to find good copies for us. 1832 */ 1833 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1834 struct extent_state *state) 1835 { 1836 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1837 struct inode *inode = page->mapping->host; 1838 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1839 char *kaddr; 1840 u64 private = ~(u32)0; 1841 int ret; 1842 struct btrfs_root *root = BTRFS_I(inode)->root; 1843 u32 csum = ~(u32)0; 1844 1845 if (PageChecked(page)) { 1846 ClearPageChecked(page); 1847 goto good; 1848 } 1849 1850 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1851 goto good; 1852 1853 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1854 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1855 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1856 GFP_NOFS); 1857 return 0; 1858 } 1859 1860 if (state && state->start == start) { 1861 private = state->private; 1862 ret = 0; 1863 } else { 1864 ret = get_state_private(io_tree, start, &private); 1865 } 1866 kaddr = kmap_atomic(page, KM_USER0); 1867 if (ret) 1868 goto zeroit; 1869 1870 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1871 btrfs_csum_final(csum, (char *)&csum); 1872 if (csum != private) 1873 goto zeroit; 1874 1875 kunmap_atomic(kaddr, KM_USER0); 1876 good: 1877 return 0; 1878 1879 zeroit: 1880 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 1881 "private %llu\n", 1882 (unsigned long long)btrfs_ino(page->mapping->host), 1883 (unsigned long long)start, csum, 1884 (unsigned long long)private); 1885 memset(kaddr + offset, 1, end - start + 1); 1886 flush_dcache_page(page); 1887 kunmap_atomic(kaddr, KM_USER0); 1888 if (private == 0) 1889 return 0; 1890 return -EIO; 1891 } 1892 1893 struct delayed_iput { 1894 struct list_head list; 1895 struct inode *inode; 1896 }; 1897 1898 void btrfs_add_delayed_iput(struct inode *inode) 1899 { 1900 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1901 struct delayed_iput *delayed; 1902 1903 if (atomic_add_unless(&inode->i_count, -1, 1)) 1904 return; 1905 1906 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 1907 delayed->inode = inode; 1908 1909 spin_lock(&fs_info->delayed_iput_lock); 1910 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 1911 spin_unlock(&fs_info->delayed_iput_lock); 1912 } 1913 1914 void btrfs_run_delayed_iputs(struct btrfs_root *root) 1915 { 1916 LIST_HEAD(list); 1917 struct btrfs_fs_info *fs_info = root->fs_info; 1918 struct delayed_iput *delayed; 1919 int empty; 1920 1921 spin_lock(&fs_info->delayed_iput_lock); 1922 empty = list_empty(&fs_info->delayed_iputs); 1923 spin_unlock(&fs_info->delayed_iput_lock); 1924 if (empty) 1925 return; 1926 1927 down_read(&root->fs_info->cleanup_work_sem); 1928 spin_lock(&fs_info->delayed_iput_lock); 1929 list_splice_init(&fs_info->delayed_iputs, &list); 1930 spin_unlock(&fs_info->delayed_iput_lock); 1931 1932 while (!list_empty(&list)) { 1933 delayed = list_entry(list.next, struct delayed_iput, list); 1934 list_del(&delayed->list); 1935 iput(delayed->inode); 1936 kfree(delayed); 1937 } 1938 up_read(&root->fs_info->cleanup_work_sem); 1939 } 1940 1941 enum btrfs_orphan_cleanup_state { 1942 ORPHAN_CLEANUP_STARTED = 1, 1943 ORPHAN_CLEANUP_DONE = 2, 1944 }; 1945 1946 /* 1947 * This is called in transaction commit time. If there are no orphan 1948 * files in the subvolume, it removes orphan item and frees block_rsv 1949 * structure. 1950 */ 1951 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 1952 struct btrfs_root *root) 1953 { 1954 int ret; 1955 1956 if (!list_empty(&root->orphan_list) || 1957 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 1958 return; 1959 1960 if (root->orphan_item_inserted && 1961 btrfs_root_refs(&root->root_item) > 0) { 1962 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 1963 root->root_key.objectid); 1964 BUG_ON(ret); 1965 root->orphan_item_inserted = 0; 1966 } 1967 1968 if (root->orphan_block_rsv) { 1969 WARN_ON(root->orphan_block_rsv->size > 0); 1970 btrfs_free_block_rsv(root, root->orphan_block_rsv); 1971 root->orphan_block_rsv = NULL; 1972 } 1973 } 1974 1975 /* 1976 * This creates an orphan entry for the given inode in case something goes 1977 * wrong in the middle of an unlink/truncate. 1978 * 1979 * NOTE: caller of this function should reserve 5 units of metadata for 1980 * this function. 1981 */ 1982 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 1983 { 1984 struct btrfs_root *root = BTRFS_I(inode)->root; 1985 struct btrfs_block_rsv *block_rsv = NULL; 1986 int reserve = 0; 1987 int insert = 0; 1988 int ret; 1989 1990 if (!root->orphan_block_rsv) { 1991 block_rsv = btrfs_alloc_block_rsv(root); 1992 if (!block_rsv) 1993 return -ENOMEM; 1994 } 1995 1996 spin_lock(&root->orphan_lock); 1997 if (!root->orphan_block_rsv) { 1998 root->orphan_block_rsv = block_rsv; 1999 } else if (block_rsv) { 2000 btrfs_free_block_rsv(root, block_rsv); 2001 block_rsv = NULL; 2002 } 2003 2004 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2005 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2006 #if 0 2007 /* 2008 * For proper ENOSPC handling, we should do orphan 2009 * cleanup when mounting. But this introduces backward 2010 * compatibility issue. 2011 */ 2012 if (!xchg(&root->orphan_item_inserted, 1)) 2013 insert = 2; 2014 else 2015 insert = 1; 2016 #endif 2017 insert = 1; 2018 } 2019 2020 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2021 BTRFS_I(inode)->orphan_meta_reserved = 1; 2022 reserve = 1; 2023 } 2024 spin_unlock(&root->orphan_lock); 2025 2026 /* grab metadata reservation from transaction handle */ 2027 if (reserve) { 2028 ret = btrfs_orphan_reserve_metadata(trans, inode); 2029 BUG_ON(ret); 2030 } 2031 2032 /* insert an orphan item to track this unlinked/truncated file */ 2033 if (insert >= 1) { 2034 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2035 BUG_ON(ret && ret != -EEXIST); 2036 } 2037 2038 /* insert an orphan item to track subvolume contains orphan files */ 2039 if (insert >= 2) { 2040 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2041 root->root_key.objectid); 2042 BUG_ON(ret); 2043 } 2044 return 0; 2045 } 2046 2047 /* 2048 * We have done the truncate/delete so we can go ahead and remove the orphan 2049 * item for this particular inode. 2050 */ 2051 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2052 { 2053 struct btrfs_root *root = BTRFS_I(inode)->root; 2054 int delete_item = 0; 2055 int release_rsv = 0; 2056 int ret = 0; 2057 2058 spin_lock(&root->orphan_lock); 2059 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2060 list_del_init(&BTRFS_I(inode)->i_orphan); 2061 delete_item = 1; 2062 } 2063 2064 if (BTRFS_I(inode)->orphan_meta_reserved) { 2065 BTRFS_I(inode)->orphan_meta_reserved = 0; 2066 release_rsv = 1; 2067 } 2068 spin_unlock(&root->orphan_lock); 2069 2070 if (trans && delete_item) { 2071 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2072 BUG_ON(ret); 2073 } 2074 2075 if (release_rsv) 2076 btrfs_orphan_release_metadata(inode); 2077 2078 return 0; 2079 } 2080 2081 /* 2082 * this cleans up any orphans that may be left on the list from the last use 2083 * of this root. 2084 */ 2085 int btrfs_orphan_cleanup(struct btrfs_root *root) 2086 { 2087 struct btrfs_path *path; 2088 struct extent_buffer *leaf; 2089 struct btrfs_key key, found_key; 2090 struct btrfs_trans_handle *trans; 2091 struct inode *inode; 2092 u64 last_objectid = 0; 2093 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2094 2095 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2096 return 0; 2097 2098 path = btrfs_alloc_path(); 2099 if (!path) { 2100 ret = -ENOMEM; 2101 goto out; 2102 } 2103 path->reada = -1; 2104 2105 key.objectid = BTRFS_ORPHAN_OBJECTID; 2106 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2107 key.offset = (u64)-1; 2108 2109 while (1) { 2110 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2111 if (ret < 0) 2112 goto out; 2113 2114 /* 2115 * if ret == 0 means we found what we were searching for, which 2116 * is weird, but possible, so only screw with path if we didn't 2117 * find the key and see if we have stuff that matches 2118 */ 2119 if (ret > 0) { 2120 ret = 0; 2121 if (path->slots[0] == 0) 2122 break; 2123 path->slots[0]--; 2124 } 2125 2126 /* pull out the item */ 2127 leaf = path->nodes[0]; 2128 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2129 2130 /* make sure the item matches what we want */ 2131 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2132 break; 2133 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2134 break; 2135 2136 /* release the path since we're done with it */ 2137 btrfs_release_path(path); 2138 2139 /* 2140 * this is where we are basically btrfs_lookup, without the 2141 * crossing root thing. we store the inode number in the 2142 * offset of the orphan item. 2143 */ 2144 2145 if (found_key.offset == last_objectid) { 2146 printk(KERN_ERR "btrfs: Error removing orphan entry, " 2147 "stopping orphan cleanup\n"); 2148 ret = -EINVAL; 2149 goto out; 2150 } 2151 2152 last_objectid = found_key.offset; 2153 2154 found_key.objectid = found_key.offset; 2155 found_key.type = BTRFS_INODE_ITEM_KEY; 2156 found_key.offset = 0; 2157 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2158 ret = PTR_RET(inode); 2159 if (ret && ret != -ESTALE) 2160 goto out; 2161 2162 if (ret == -ESTALE && root == root->fs_info->tree_root) { 2163 struct btrfs_root *dead_root; 2164 struct btrfs_fs_info *fs_info = root->fs_info; 2165 int is_dead_root = 0; 2166 2167 /* 2168 * this is an orphan in the tree root. Currently these 2169 * could come from 2 sources: 2170 * a) a snapshot deletion in progress 2171 * b) a free space cache inode 2172 * We need to distinguish those two, as the snapshot 2173 * orphan must not get deleted. 2174 * find_dead_roots already ran before us, so if this 2175 * is a snapshot deletion, we should find the root 2176 * in the dead_roots list 2177 */ 2178 spin_lock(&fs_info->trans_lock); 2179 list_for_each_entry(dead_root, &fs_info->dead_roots, 2180 root_list) { 2181 if (dead_root->root_key.objectid == 2182 found_key.objectid) { 2183 is_dead_root = 1; 2184 break; 2185 } 2186 } 2187 spin_unlock(&fs_info->trans_lock); 2188 if (is_dead_root) { 2189 /* prevent this orphan from being found again */ 2190 key.offset = found_key.objectid - 1; 2191 continue; 2192 } 2193 } 2194 /* 2195 * Inode is already gone but the orphan item is still there, 2196 * kill the orphan item. 2197 */ 2198 if (ret == -ESTALE) { 2199 trans = btrfs_start_transaction(root, 1); 2200 if (IS_ERR(trans)) { 2201 ret = PTR_ERR(trans); 2202 goto out; 2203 } 2204 ret = btrfs_del_orphan_item(trans, root, 2205 found_key.objectid); 2206 BUG_ON(ret); 2207 btrfs_end_transaction(trans, root); 2208 continue; 2209 } 2210 2211 /* 2212 * add this inode to the orphan list so btrfs_orphan_del does 2213 * the proper thing when we hit it 2214 */ 2215 spin_lock(&root->orphan_lock); 2216 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2217 spin_unlock(&root->orphan_lock); 2218 2219 /* if we have links, this was a truncate, lets do that */ 2220 if (inode->i_nlink) { 2221 if (!S_ISREG(inode->i_mode)) { 2222 WARN_ON(1); 2223 iput(inode); 2224 continue; 2225 } 2226 nr_truncate++; 2227 /* 2228 * Need to hold the imutex for reservation purposes, not 2229 * a huge deal here but I have a WARN_ON in 2230 * btrfs_delalloc_reserve_space to catch offenders. 2231 */ 2232 mutex_lock(&inode->i_mutex); 2233 ret = btrfs_truncate(inode); 2234 mutex_unlock(&inode->i_mutex); 2235 } else { 2236 nr_unlink++; 2237 } 2238 2239 /* this will do delete_inode and everything for us */ 2240 iput(inode); 2241 if (ret) 2242 goto out; 2243 } 2244 /* release the path since we're done with it */ 2245 btrfs_release_path(path); 2246 2247 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2248 2249 if (root->orphan_block_rsv) 2250 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2251 (u64)-1); 2252 2253 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2254 trans = btrfs_join_transaction(root); 2255 if (!IS_ERR(trans)) 2256 btrfs_end_transaction(trans, root); 2257 } 2258 2259 if (nr_unlink) 2260 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2261 if (nr_truncate) 2262 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2263 2264 out: 2265 if (ret) 2266 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2267 btrfs_free_path(path); 2268 return ret; 2269 } 2270 2271 /* 2272 * very simple check to peek ahead in the leaf looking for xattrs. If we 2273 * don't find any xattrs, we know there can't be any acls. 2274 * 2275 * slot is the slot the inode is in, objectid is the objectid of the inode 2276 */ 2277 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2278 int slot, u64 objectid) 2279 { 2280 u32 nritems = btrfs_header_nritems(leaf); 2281 struct btrfs_key found_key; 2282 int scanned = 0; 2283 2284 slot++; 2285 while (slot < nritems) { 2286 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2287 2288 /* we found a different objectid, there must not be acls */ 2289 if (found_key.objectid != objectid) 2290 return 0; 2291 2292 /* we found an xattr, assume we've got an acl */ 2293 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2294 return 1; 2295 2296 /* 2297 * we found a key greater than an xattr key, there can't 2298 * be any acls later on 2299 */ 2300 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2301 return 0; 2302 2303 slot++; 2304 scanned++; 2305 2306 /* 2307 * it goes inode, inode backrefs, xattrs, extents, 2308 * so if there are a ton of hard links to an inode there can 2309 * be a lot of backrefs. Don't waste time searching too hard, 2310 * this is just an optimization 2311 */ 2312 if (scanned >= 8) 2313 break; 2314 } 2315 /* we hit the end of the leaf before we found an xattr or 2316 * something larger than an xattr. We have to assume the inode 2317 * has acls 2318 */ 2319 return 1; 2320 } 2321 2322 /* 2323 * read an inode from the btree into the in-memory inode 2324 */ 2325 static void btrfs_read_locked_inode(struct inode *inode) 2326 { 2327 struct btrfs_path *path; 2328 struct extent_buffer *leaf; 2329 struct btrfs_inode_item *inode_item; 2330 struct btrfs_timespec *tspec; 2331 struct btrfs_root *root = BTRFS_I(inode)->root; 2332 struct btrfs_key location; 2333 int maybe_acls; 2334 u32 rdev; 2335 int ret; 2336 bool filled = false; 2337 2338 ret = btrfs_fill_inode(inode, &rdev); 2339 if (!ret) 2340 filled = true; 2341 2342 path = btrfs_alloc_path(); 2343 if (!path) 2344 goto make_bad; 2345 2346 path->leave_spinning = 1; 2347 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2348 2349 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2350 if (ret) 2351 goto make_bad; 2352 2353 leaf = path->nodes[0]; 2354 2355 if (filled) 2356 goto cache_acl; 2357 2358 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2359 struct btrfs_inode_item); 2360 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2361 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 2362 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2363 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2364 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2365 2366 tspec = btrfs_inode_atime(inode_item); 2367 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2368 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2369 2370 tspec = btrfs_inode_mtime(inode_item); 2371 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2372 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2373 2374 tspec = btrfs_inode_ctime(inode_item); 2375 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2376 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2377 2378 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2379 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2380 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2381 inode->i_generation = BTRFS_I(inode)->generation; 2382 inode->i_rdev = 0; 2383 rdev = btrfs_inode_rdev(leaf, inode_item); 2384 2385 BTRFS_I(inode)->index_cnt = (u64)-1; 2386 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2387 cache_acl: 2388 /* 2389 * try to precache a NULL acl entry for files that don't have 2390 * any xattrs or acls 2391 */ 2392 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2393 btrfs_ino(inode)); 2394 if (!maybe_acls) 2395 cache_no_acl(inode); 2396 2397 btrfs_free_path(path); 2398 2399 switch (inode->i_mode & S_IFMT) { 2400 case S_IFREG: 2401 inode->i_mapping->a_ops = &btrfs_aops; 2402 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2403 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2404 inode->i_fop = &btrfs_file_operations; 2405 inode->i_op = &btrfs_file_inode_operations; 2406 break; 2407 case S_IFDIR: 2408 inode->i_fop = &btrfs_dir_file_operations; 2409 if (root == root->fs_info->tree_root) 2410 inode->i_op = &btrfs_dir_ro_inode_operations; 2411 else 2412 inode->i_op = &btrfs_dir_inode_operations; 2413 break; 2414 case S_IFLNK: 2415 inode->i_op = &btrfs_symlink_inode_operations; 2416 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2417 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2418 break; 2419 default: 2420 inode->i_op = &btrfs_special_inode_operations; 2421 init_special_inode(inode, inode->i_mode, rdev); 2422 break; 2423 } 2424 2425 btrfs_update_iflags(inode); 2426 return; 2427 2428 make_bad: 2429 btrfs_free_path(path); 2430 make_bad_inode(inode); 2431 } 2432 2433 /* 2434 * given a leaf and an inode, copy the inode fields into the leaf 2435 */ 2436 static void fill_inode_item(struct btrfs_trans_handle *trans, 2437 struct extent_buffer *leaf, 2438 struct btrfs_inode_item *item, 2439 struct inode *inode) 2440 { 2441 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2442 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2443 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2444 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2445 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2446 2447 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2448 inode->i_atime.tv_sec); 2449 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2450 inode->i_atime.tv_nsec); 2451 2452 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2453 inode->i_mtime.tv_sec); 2454 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2455 inode->i_mtime.tv_nsec); 2456 2457 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2458 inode->i_ctime.tv_sec); 2459 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2460 inode->i_ctime.tv_nsec); 2461 2462 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2463 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2464 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2465 btrfs_set_inode_transid(leaf, item, trans->transid); 2466 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2467 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2468 btrfs_set_inode_block_group(leaf, item, 0); 2469 } 2470 2471 /* 2472 * copy everything in the in-memory inode into the btree. 2473 */ 2474 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 2475 struct btrfs_root *root, struct inode *inode) 2476 { 2477 struct btrfs_inode_item *inode_item; 2478 struct btrfs_path *path; 2479 struct extent_buffer *leaf; 2480 int ret; 2481 2482 path = btrfs_alloc_path(); 2483 if (!path) 2484 return -ENOMEM; 2485 2486 path->leave_spinning = 1; 2487 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2488 1); 2489 if (ret) { 2490 if (ret > 0) 2491 ret = -ENOENT; 2492 goto failed; 2493 } 2494 2495 btrfs_unlock_up_safe(path, 1); 2496 leaf = path->nodes[0]; 2497 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2498 struct btrfs_inode_item); 2499 2500 fill_inode_item(trans, leaf, inode_item, inode); 2501 btrfs_mark_buffer_dirty(leaf); 2502 btrfs_set_inode_last_trans(trans, inode); 2503 ret = 0; 2504 failed: 2505 btrfs_free_path(path); 2506 return ret; 2507 } 2508 2509 /* 2510 * copy everything in the in-memory inode into the btree. 2511 */ 2512 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2513 struct btrfs_root *root, struct inode *inode) 2514 { 2515 int ret; 2516 2517 /* 2518 * If the inode is a free space inode, we can deadlock during commit 2519 * if we put it into the delayed code. 2520 * 2521 * The data relocation inode should also be directly updated 2522 * without delay 2523 */ 2524 if (!btrfs_is_free_space_inode(root, inode) 2525 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2526 ret = btrfs_delayed_update_inode(trans, root, inode); 2527 if (!ret) 2528 btrfs_set_inode_last_trans(trans, inode); 2529 return ret; 2530 } 2531 2532 return btrfs_update_inode_item(trans, root, inode); 2533 } 2534 2535 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 2536 struct btrfs_root *root, struct inode *inode) 2537 { 2538 int ret; 2539 2540 ret = btrfs_update_inode(trans, root, inode); 2541 if (ret == -ENOSPC) 2542 return btrfs_update_inode_item(trans, root, inode); 2543 return ret; 2544 } 2545 2546 /* 2547 * unlink helper that gets used here in inode.c and in the tree logging 2548 * recovery code. It remove a link in a directory with a given name, and 2549 * also drops the back refs in the inode to the directory 2550 */ 2551 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2552 struct btrfs_root *root, 2553 struct inode *dir, struct inode *inode, 2554 const char *name, int name_len) 2555 { 2556 struct btrfs_path *path; 2557 int ret = 0; 2558 struct extent_buffer *leaf; 2559 struct btrfs_dir_item *di; 2560 struct btrfs_key key; 2561 u64 index; 2562 u64 ino = btrfs_ino(inode); 2563 u64 dir_ino = btrfs_ino(dir); 2564 2565 path = btrfs_alloc_path(); 2566 if (!path) { 2567 ret = -ENOMEM; 2568 goto out; 2569 } 2570 2571 path->leave_spinning = 1; 2572 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2573 name, name_len, -1); 2574 if (IS_ERR(di)) { 2575 ret = PTR_ERR(di); 2576 goto err; 2577 } 2578 if (!di) { 2579 ret = -ENOENT; 2580 goto err; 2581 } 2582 leaf = path->nodes[0]; 2583 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2584 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2585 if (ret) 2586 goto err; 2587 btrfs_release_path(path); 2588 2589 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2590 dir_ino, &index); 2591 if (ret) { 2592 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2593 "inode %llu parent %llu\n", name_len, name, 2594 (unsigned long long)ino, (unsigned long long)dir_ino); 2595 goto err; 2596 } 2597 2598 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2599 if (ret) 2600 goto err; 2601 2602 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2603 inode, dir_ino); 2604 BUG_ON(ret != 0 && ret != -ENOENT); 2605 2606 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2607 dir, index); 2608 if (ret == -ENOENT) 2609 ret = 0; 2610 err: 2611 btrfs_free_path(path); 2612 if (ret) 2613 goto out; 2614 2615 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2616 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2617 btrfs_update_inode(trans, root, dir); 2618 out: 2619 return ret; 2620 } 2621 2622 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2623 struct btrfs_root *root, 2624 struct inode *dir, struct inode *inode, 2625 const char *name, int name_len) 2626 { 2627 int ret; 2628 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2629 if (!ret) { 2630 btrfs_drop_nlink(inode); 2631 ret = btrfs_update_inode(trans, root, inode); 2632 } 2633 return ret; 2634 } 2635 2636 2637 /* helper to check if there is any shared block in the path */ 2638 static int check_path_shared(struct btrfs_root *root, 2639 struct btrfs_path *path) 2640 { 2641 struct extent_buffer *eb; 2642 int level; 2643 u64 refs = 1; 2644 2645 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2646 int ret; 2647 2648 if (!path->nodes[level]) 2649 break; 2650 eb = path->nodes[level]; 2651 if (!btrfs_block_can_be_shared(root, eb)) 2652 continue; 2653 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2654 &refs, NULL); 2655 if (refs > 1) 2656 return 1; 2657 } 2658 return 0; 2659 } 2660 2661 /* 2662 * helper to start transaction for unlink and rmdir. 2663 * 2664 * unlink and rmdir are special in btrfs, they do not always free space. 2665 * so in enospc case, we should make sure they will free space before 2666 * allowing them to use the global metadata reservation. 2667 */ 2668 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2669 struct dentry *dentry) 2670 { 2671 struct btrfs_trans_handle *trans; 2672 struct btrfs_root *root = BTRFS_I(dir)->root; 2673 struct btrfs_path *path; 2674 struct btrfs_inode_ref *ref; 2675 struct btrfs_dir_item *di; 2676 struct inode *inode = dentry->d_inode; 2677 u64 index; 2678 int check_link = 1; 2679 int err = -ENOSPC; 2680 int ret; 2681 u64 ino = btrfs_ino(inode); 2682 u64 dir_ino = btrfs_ino(dir); 2683 2684 /* 2685 * 1 for the possible orphan item 2686 * 1 for the dir item 2687 * 1 for the dir index 2688 * 1 for the inode ref 2689 * 1 for the inode ref in the tree log 2690 * 2 for the dir entries in the log 2691 * 1 for the inode 2692 */ 2693 trans = btrfs_start_transaction(root, 8); 2694 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2695 return trans; 2696 2697 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2698 return ERR_PTR(-ENOSPC); 2699 2700 /* check if there is someone else holds reference */ 2701 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2702 return ERR_PTR(-ENOSPC); 2703 2704 if (atomic_read(&inode->i_count) > 2) 2705 return ERR_PTR(-ENOSPC); 2706 2707 if (xchg(&root->fs_info->enospc_unlink, 1)) 2708 return ERR_PTR(-ENOSPC); 2709 2710 path = btrfs_alloc_path(); 2711 if (!path) { 2712 root->fs_info->enospc_unlink = 0; 2713 return ERR_PTR(-ENOMEM); 2714 } 2715 2716 /* 1 for the orphan item */ 2717 trans = btrfs_start_transaction(root, 1); 2718 if (IS_ERR(trans)) { 2719 btrfs_free_path(path); 2720 root->fs_info->enospc_unlink = 0; 2721 return trans; 2722 } 2723 2724 path->skip_locking = 1; 2725 path->search_commit_root = 1; 2726 2727 ret = btrfs_lookup_inode(trans, root, path, 2728 &BTRFS_I(dir)->location, 0); 2729 if (ret < 0) { 2730 err = ret; 2731 goto out; 2732 } 2733 if (ret == 0) { 2734 if (check_path_shared(root, path)) 2735 goto out; 2736 } else { 2737 check_link = 0; 2738 } 2739 btrfs_release_path(path); 2740 2741 ret = btrfs_lookup_inode(trans, root, path, 2742 &BTRFS_I(inode)->location, 0); 2743 if (ret < 0) { 2744 err = ret; 2745 goto out; 2746 } 2747 if (ret == 0) { 2748 if (check_path_shared(root, path)) 2749 goto out; 2750 } else { 2751 check_link = 0; 2752 } 2753 btrfs_release_path(path); 2754 2755 if (ret == 0 && S_ISREG(inode->i_mode)) { 2756 ret = btrfs_lookup_file_extent(trans, root, path, 2757 ino, (u64)-1, 0); 2758 if (ret < 0) { 2759 err = ret; 2760 goto out; 2761 } 2762 BUG_ON(ret == 0); 2763 if (check_path_shared(root, path)) 2764 goto out; 2765 btrfs_release_path(path); 2766 } 2767 2768 if (!check_link) { 2769 err = 0; 2770 goto out; 2771 } 2772 2773 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2774 dentry->d_name.name, dentry->d_name.len, 0); 2775 if (IS_ERR(di)) { 2776 err = PTR_ERR(di); 2777 goto out; 2778 } 2779 if (di) { 2780 if (check_path_shared(root, path)) 2781 goto out; 2782 } else { 2783 err = 0; 2784 goto out; 2785 } 2786 btrfs_release_path(path); 2787 2788 ref = btrfs_lookup_inode_ref(trans, root, path, 2789 dentry->d_name.name, dentry->d_name.len, 2790 ino, dir_ino, 0); 2791 if (IS_ERR(ref)) { 2792 err = PTR_ERR(ref); 2793 goto out; 2794 } 2795 BUG_ON(!ref); 2796 if (check_path_shared(root, path)) 2797 goto out; 2798 index = btrfs_inode_ref_index(path->nodes[0], ref); 2799 btrfs_release_path(path); 2800 2801 /* 2802 * This is a commit root search, if we can lookup inode item and other 2803 * relative items in the commit root, it means the transaction of 2804 * dir/file creation has been committed, and the dir index item that we 2805 * delay to insert has also been inserted into the commit root. So 2806 * we needn't worry about the delayed insertion of the dir index item 2807 * here. 2808 */ 2809 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 2810 dentry->d_name.name, dentry->d_name.len, 0); 2811 if (IS_ERR(di)) { 2812 err = PTR_ERR(di); 2813 goto out; 2814 } 2815 BUG_ON(ret == -ENOENT); 2816 if (check_path_shared(root, path)) 2817 goto out; 2818 2819 err = 0; 2820 out: 2821 btrfs_free_path(path); 2822 /* Migrate the orphan reservation over */ 2823 if (!err) 2824 err = btrfs_block_rsv_migrate(trans->block_rsv, 2825 &root->fs_info->global_block_rsv, 2826 trans->bytes_reserved); 2827 2828 if (err) { 2829 btrfs_end_transaction(trans, root); 2830 root->fs_info->enospc_unlink = 0; 2831 return ERR_PTR(err); 2832 } 2833 2834 trans->block_rsv = &root->fs_info->global_block_rsv; 2835 return trans; 2836 } 2837 2838 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2839 struct btrfs_root *root) 2840 { 2841 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2842 btrfs_block_rsv_release(root, trans->block_rsv, 2843 trans->bytes_reserved); 2844 trans->block_rsv = &root->fs_info->trans_block_rsv; 2845 BUG_ON(!root->fs_info->enospc_unlink); 2846 root->fs_info->enospc_unlink = 0; 2847 } 2848 btrfs_end_transaction_throttle(trans, root); 2849 } 2850 2851 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2852 { 2853 struct btrfs_root *root = BTRFS_I(dir)->root; 2854 struct btrfs_trans_handle *trans; 2855 struct inode *inode = dentry->d_inode; 2856 int ret; 2857 unsigned long nr = 0; 2858 2859 trans = __unlink_start_trans(dir, dentry); 2860 if (IS_ERR(trans)) 2861 return PTR_ERR(trans); 2862 2863 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2864 2865 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2866 dentry->d_name.name, dentry->d_name.len); 2867 if (ret) 2868 goto out; 2869 2870 if (inode->i_nlink == 0) { 2871 ret = btrfs_orphan_add(trans, inode); 2872 if (ret) 2873 goto out; 2874 } 2875 2876 out: 2877 nr = trans->blocks_used; 2878 __unlink_end_trans(trans, root); 2879 btrfs_btree_balance_dirty(root, nr); 2880 return ret; 2881 } 2882 2883 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2884 struct btrfs_root *root, 2885 struct inode *dir, u64 objectid, 2886 const char *name, int name_len) 2887 { 2888 struct btrfs_path *path; 2889 struct extent_buffer *leaf; 2890 struct btrfs_dir_item *di; 2891 struct btrfs_key key; 2892 u64 index; 2893 int ret; 2894 u64 dir_ino = btrfs_ino(dir); 2895 2896 path = btrfs_alloc_path(); 2897 if (!path) 2898 return -ENOMEM; 2899 2900 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2901 name, name_len, -1); 2902 BUG_ON(IS_ERR_OR_NULL(di)); 2903 2904 leaf = path->nodes[0]; 2905 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2906 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2907 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2908 BUG_ON(ret); 2909 btrfs_release_path(path); 2910 2911 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2912 objectid, root->root_key.objectid, 2913 dir_ino, &index, name, name_len); 2914 if (ret < 0) { 2915 BUG_ON(ret != -ENOENT); 2916 di = btrfs_search_dir_index_item(root, path, dir_ino, 2917 name, name_len); 2918 BUG_ON(IS_ERR_OR_NULL(di)); 2919 2920 leaf = path->nodes[0]; 2921 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2922 btrfs_release_path(path); 2923 index = key.offset; 2924 } 2925 btrfs_release_path(path); 2926 2927 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2928 BUG_ON(ret); 2929 2930 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2931 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2932 ret = btrfs_update_inode(trans, root, dir); 2933 BUG_ON(ret); 2934 2935 btrfs_free_path(path); 2936 return 0; 2937 } 2938 2939 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2940 { 2941 struct inode *inode = dentry->d_inode; 2942 int err = 0; 2943 struct btrfs_root *root = BTRFS_I(dir)->root; 2944 struct btrfs_trans_handle *trans; 2945 unsigned long nr = 0; 2946 2947 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2948 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 2949 return -ENOTEMPTY; 2950 2951 trans = __unlink_start_trans(dir, dentry); 2952 if (IS_ERR(trans)) 2953 return PTR_ERR(trans); 2954 2955 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2956 err = btrfs_unlink_subvol(trans, root, dir, 2957 BTRFS_I(inode)->location.objectid, 2958 dentry->d_name.name, 2959 dentry->d_name.len); 2960 goto out; 2961 } 2962 2963 err = btrfs_orphan_add(trans, inode); 2964 if (err) 2965 goto out; 2966 2967 /* now the directory is empty */ 2968 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2969 dentry->d_name.name, dentry->d_name.len); 2970 if (!err) 2971 btrfs_i_size_write(inode, 0); 2972 out: 2973 nr = trans->blocks_used; 2974 __unlink_end_trans(trans, root); 2975 btrfs_btree_balance_dirty(root, nr); 2976 2977 return err; 2978 } 2979 2980 /* 2981 * this can truncate away extent items, csum items and directory items. 2982 * It starts at a high offset and removes keys until it can't find 2983 * any higher than new_size 2984 * 2985 * csum items that cross the new i_size are truncated to the new size 2986 * as well. 2987 * 2988 * min_type is the minimum key type to truncate down to. If set to 0, this 2989 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2990 */ 2991 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2992 struct btrfs_root *root, 2993 struct inode *inode, 2994 u64 new_size, u32 min_type) 2995 { 2996 struct btrfs_path *path; 2997 struct extent_buffer *leaf; 2998 struct btrfs_file_extent_item *fi; 2999 struct btrfs_key key; 3000 struct btrfs_key found_key; 3001 u64 extent_start = 0; 3002 u64 extent_num_bytes = 0; 3003 u64 extent_offset = 0; 3004 u64 item_end = 0; 3005 u64 mask = root->sectorsize - 1; 3006 u32 found_type = (u8)-1; 3007 int found_extent; 3008 int del_item; 3009 int pending_del_nr = 0; 3010 int pending_del_slot = 0; 3011 int extent_type = -1; 3012 int encoding; 3013 int ret; 3014 int err = 0; 3015 u64 ino = btrfs_ino(inode); 3016 3017 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3018 3019 path = btrfs_alloc_path(); 3020 if (!path) 3021 return -ENOMEM; 3022 path->reada = -1; 3023 3024 if (root->ref_cows || root == root->fs_info->tree_root) 3025 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3026 3027 /* 3028 * This function is also used to drop the items in the log tree before 3029 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3030 * it is used to drop the loged items. So we shouldn't kill the delayed 3031 * items. 3032 */ 3033 if (min_type == 0 && root == BTRFS_I(inode)->root) 3034 btrfs_kill_delayed_inode_items(inode); 3035 3036 key.objectid = ino; 3037 key.offset = (u64)-1; 3038 key.type = (u8)-1; 3039 3040 search_again: 3041 path->leave_spinning = 1; 3042 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3043 if (ret < 0) { 3044 err = ret; 3045 goto out; 3046 } 3047 3048 if (ret > 0) { 3049 /* there are no items in the tree for us to truncate, we're 3050 * done 3051 */ 3052 if (path->slots[0] == 0) 3053 goto out; 3054 path->slots[0]--; 3055 } 3056 3057 while (1) { 3058 fi = NULL; 3059 leaf = path->nodes[0]; 3060 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3061 found_type = btrfs_key_type(&found_key); 3062 encoding = 0; 3063 3064 if (found_key.objectid != ino) 3065 break; 3066 3067 if (found_type < min_type) 3068 break; 3069 3070 item_end = found_key.offset; 3071 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3072 fi = btrfs_item_ptr(leaf, path->slots[0], 3073 struct btrfs_file_extent_item); 3074 extent_type = btrfs_file_extent_type(leaf, fi); 3075 encoding = btrfs_file_extent_compression(leaf, fi); 3076 encoding |= btrfs_file_extent_encryption(leaf, fi); 3077 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3078 3079 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3080 item_end += 3081 btrfs_file_extent_num_bytes(leaf, fi); 3082 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3083 item_end += btrfs_file_extent_inline_len(leaf, 3084 fi); 3085 } 3086 item_end--; 3087 } 3088 if (found_type > min_type) { 3089 del_item = 1; 3090 } else { 3091 if (item_end < new_size) 3092 break; 3093 if (found_key.offset >= new_size) 3094 del_item = 1; 3095 else 3096 del_item = 0; 3097 } 3098 found_extent = 0; 3099 /* FIXME, shrink the extent if the ref count is only 1 */ 3100 if (found_type != BTRFS_EXTENT_DATA_KEY) 3101 goto delete; 3102 3103 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3104 u64 num_dec; 3105 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3106 if (!del_item && !encoding) { 3107 u64 orig_num_bytes = 3108 btrfs_file_extent_num_bytes(leaf, fi); 3109 extent_num_bytes = new_size - 3110 found_key.offset + root->sectorsize - 1; 3111 extent_num_bytes = extent_num_bytes & 3112 ~((u64)root->sectorsize - 1); 3113 btrfs_set_file_extent_num_bytes(leaf, fi, 3114 extent_num_bytes); 3115 num_dec = (orig_num_bytes - 3116 extent_num_bytes); 3117 if (root->ref_cows && extent_start != 0) 3118 inode_sub_bytes(inode, num_dec); 3119 btrfs_mark_buffer_dirty(leaf); 3120 } else { 3121 extent_num_bytes = 3122 btrfs_file_extent_disk_num_bytes(leaf, 3123 fi); 3124 extent_offset = found_key.offset - 3125 btrfs_file_extent_offset(leaf, fi); 3126 3127 /* FIXME blocksize != 4096 */ 3128 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3129 if (extent_start != 0) { 3130 found_extent = 1; 3131 if (root->ref_cows) 3132 inode_sub_bytes(inode, num_dec); 3133 } 3134 } 3135 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3136 /* 3137 * we can't truncate inline items that have had 3138 * special encodings 3139 */ 3140 if (!del_item && 3141 btrfs_file_extent_compression(leaf, fi) == 0 && 3142 btrfs_file_extent_encryption(leaf, fi) == 0 && 3143 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3144 u32 size = new_size - found_key.offset; 3145 3146 if (root->ref_cows) { 3147 inode_sub_bytes(inode, item_end + 1 - 3148 new_size); 3149 } 3150 size = 3151 btrfs_file_extent_calc_inline_size(size); 3152 ret = btrfs_truncate_item(trans, root, path, 3153 size, 1); 3154 } else if (root->ref_cows) { 3155 inode_sub_bytes(inode, item_end + 1 - 3156 found_key.offset); 3157 } 3158 } 3159 delete: 3160 if (del_item) { 3161 if (!pending_del_nr) { 3162 /* no pending yet, add ourselves */ 3163 pending_del_slot = path->slots[0]; 3164 pending_del_nr = 1; 3165 } else if (pending_del_nr && 3166 path->slots[0] + 1 == pending_del_slot) { 3167 /* hop on the pending chunk */ 3168 pending_del_nr++; 3169 pending_del_slot = path->slots[0]; 3170 } else { 3171 BUG(); 3172 } 3173 } else { 3174 break; 3175 } 3176 if (found_extent && (root->ref_cows || 3177 root == root->fs_info->tree_root)) { 3178 btrfs_set_path_blocking(path); 3179 ret = btrfs_free_extent(trans, root, extent_start, 3180 extent_num_bytes, 0, 3181 btrfs_header_owner(leaf), 3182 ino, extent_offset); 3183 BUG_ON(ret); 3184 } 3185 3186 if (found_type == BTRFS_INODE_ITEM_KEY) 3187 break; 3188 3189 if (path->slots[0] == 0 || 3190 path->slots[0] != pending_del_slot) { 3191 if (root->ref_cows && 3192 BTRFS_I(inode)->location.objectid != 3193 BTRFS_FREE_INO_OBJECTID) { 3194 err = -EAGAIN; 3195 goto out; 3196 } 3197 if (pending_del_nr) { 3198 ret = btrfs_del_items(trans, root, path, 3199 pending_del_slot, 3200 pending_del_nr); 3201 BUG_ON(ret); 3202 pending_del_nr = 0; 3203 } 3204 btrfs_release_path(path); 3205 goto search_again; 3206 } else { 3207 path->slots[0]--; 3208 } 3209 } 3210 out: 3211 if (pending_del_nr) { 3212 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3213 pending_del_nr); 3214 BUG_ON(ret); 3215 } 3216 btrfs_free_path(path); 3217 return err; 3218 } 3219 3220 /* 3221 * taken from block_truncate_page, but does cow as it zeros out 3222 * any bytes left in the last page in the file. 3223 */ 3224 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3225 { 3226 struct inode *inode = mapping->host; 3227 struct btrfs_root *root = BTRFS_I(inode)->root; 3228 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3229 struct btrfs_ordered_extent *ordered; 3230 struct extent_state *cached_state = NULL; 3231 char *kaddr; 3232 u32 blocksize = root->sectorsize; 3233 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3234 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3235 struct page *page; 3236 gfp_t mask = btrfs_alloc_write_mask(mapping); 3237 int ret = 0; 3238 u64 page_start; 3239 u64 page_end; 3240 3241 if ((offset & (blocksize - 1)) == 0) 3242 goto out; 3243 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3244 if (ret) 3245 goto out; 3246 3247 ret = -ENOMEM; 3248 again: 3249 page = find_or_create_page(mapping, index, mask); 3250 if (!page) { 3251 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3252 goto out; 3253 } 3254 3255 page_start = page_offset(page); 3256 page_end = page_start + PAGE_CACHE_SIZE - 1; 3257 3258 if (!PageUptodate(page)) { 3259 ret = btrfs_readpage(NULL, page); 3260 lock_page(page); 3261 if (page->mapping != mapping) { 3262 unlock_page(page); 3263 page_cache_release(page); 3264 goto again; 3265 } 3266 if (!PageUptodate(page)) { 3267 ret = -EIO; 3268 goto out_unlock; 3269 } 3270 } 3271 wait_on_page_writeback(page); 3272 3273 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3274 GFP_NOFS); 3275 set_page_extent_mapped(page); 3276 3277 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3278 if (ordered) { 3279 unlock_extent_cached(io_tree, page_start, page_end, 3280 &cached_state, GFP_NOFS); 3281 unlock_page(page); 3282 page_cache_release(page); 3283 btrfs_start_ordered_extent(inode, ordered, 1); 3284 btrfs_put_ordered_extent(ordered); 3285 goto again; 3286 } 3287 3288 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3289 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3290 0, 0, &cached_state, GFP_NOFS); 3291 3292 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3293 &cached_state); 3294 if (ret) { 3295 unlock_extent_cached(io_tree, page_start, page_end, 3296 &cached_state, GFP_NOFS); 3297 goto out_unlock; 3298 } 3299 3300 ret = 0; 3301 if (offset != PAGE_CACHE_SIZE) { 3302 kaddr = kmap(page); 3303 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3304 flush_dcache_page(page); 3305 kunmap(page); 3306 } 3307 ClearPageChecked(page); 3308 set_page_dirty(page); 3309 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3310 GFP_NOFS); 3311 3312 out_unlock: 3313 if (ret) 3314 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3315 unlock_page(page); 3316 page_cache_release(page); 3317 out: 3318 return ret; 3319 } 3320 3321 /* 3322 * This function puts in dummy file extents for the area we're creating a hole 3323 * for. So if we are truncating this file to a larger size we need to insert 3324 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3325 * the range between oldsize and size 3326 */ 3327 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3328 { 3329 struct btrfs_trans_handle *trans; 3330 struct btrfs_root *root = BTRFS_I(inode)->root; 3331 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3332 struct extent_map *em = NULL; 3333 struct extent_state *cached_state = NULL; 3334 u64 mask = root->sectorsize - 1; 3335 u64 hole_start = (oldsize + mask) & ~mask; 3336 u64 block_end = (size + mask) & ~mask; 3337 u64 last_byte; 3338 u64 cur_offset; 3339 u64 hole_size; 3340 int err = 0; 3341 3342 if (size <= hole_start) 3343 return 0; 3344 3345 while (1) { 3346 struct btrfs_ordered_extent *ordered; 3347 btrfs_wait_ordered_range(inode, hole_start, 3348 block_end - hole_start); 3349 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3350 &cached_state, GFP_NOFS); 3351 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3352 if (!ordered) 3353 break; 3354 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3355 &cached_state, GFP_NOFS); 3356 btrfs_put_ordered_extent(ordered); 3357 } 3358 3359 cur_offset = hole_start; 3360 while (1) { 3361 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3362 block_end - cur_offset, 0); 3363 BUG_ON(IS_ERR_OR_NULL(em)); 3364 last_byte = min(extent_map_end(em), block_end); 3365 last_byte = (last_byte + mask) & ~mask; 3366 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3367 u64 hint_byte = 0; 3368 hole_size = last_byte - cur_offset; 3369 3370 trans = btrfs_start_transaction(root, 3); 3371 if (IS_ERR(trans)) { 3372 err = PTR_ERR(trans); 3373 break; 3374 } 3375 3376 err = btrfs_drop_extents(trans, inode, cur_offset, 3377 cur_offset + hole_size, 3378 &hint_byte, 1); 3379 if (err) { 3380 btrfs_update_inode(trans, root, inode); 3381 btrfs_end_transaction(trans, root); 3382 break; 3383 } 3384 3385 err = btrfs_insert_file_extent(trans, root, 3386 btrfs_ino(inode), cur_offset, 0, 3387 0, hole_size, 0, hole_size, 3388 0, 0, 0); 3389 if (err) { 3390 btrfs_update_inode(trans, root, inode); 3391 btrfs_end_transaction(trans, root); 3392 break; 3393 } 3394 3395 btrfs_drop_extent_cache(inode, hole_start, 3396 last_byte - 1, 0); 3397 3398 btrfs_update_inode(trans, root, inode); 3399 btrfs_end_transaction(trans, root); 3400 } 3401 free_extent_map(em); 3402 em = NULL; 3403 cur_offset = last_byte; 3404 if (cur_offset >= block_end) 3405 break; 3406 } 3407 3408 free_extent_map(em); 3409 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3410 GFP_NOFS); 3411 return err; 3412 } 3413 3414 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3415 { 3416 struct btrfs_root *root = BTRFS_I(inode)->root; 3417 struct btrfs_trans_handle *trans; 3418 loff_t oldsize = i_size_read(inode); 3419 int ret; 3420 3421 if (newsize == oldsize) 3422 return 0; 3423 3424 if (newsize > oldsize) { 3425 truncate_pagecache(inode, oldsize, newsize); 3426 ret = btrfs_cont_expand(inode, oldsize, newsize); 3427 if (ret) 3428 return ret; 3429 3430 trans = btrfs_start_transaction(root, 1); 3431 if (IS_ERR(trans)) 3432 return PTR_ERR(trans); 3433 3434 i_size_write(inode, newsize); 3435 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3436 ret = btrfs_update_inode(trans, root, inode); 3437 btrfs_end_transaction_throttle(trans, root); 3438 } else { 3439 3440 /* 3441 * We're truncating a file that used to have good data down to 3442 * zero. Make sure it gets into the ordered flush list so that 3443 * any new writes get down to disk quickly. 3444 */ 3445 if (newsize == 0) 3446 BTRFS_I(inode)->ordered_data_close = 1; 3447 3448 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3449 truncate_setsize(inode, newsize); 3450 ret = btrfs_truncate(inode); 3451 } 3452 3453 return ret; 3454 } 3455 3456 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3457 { 3458 struct inode *inode = dentry->d_inode; 3459 struct btrfs_root *root = BTRFS_I(inode)->root; 3460 int err; 3461 3462 if (btrfs_root_readonly(root)) 3463 return -EROFS; 3464 3465 err = inode_change_ok(inode, attr); 3466 if (err) 3467 return err; 3468 3469 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3470 err = btrfs_setsize(inode, attr->ia_size); 3471 if (err) 3472 return err; 3473 } 3474 3475 if (attr->ia_valid) { 3476 setattr_copy(inode, attr); 3477 err = btrfs_dirty_inode(inode); 3478 3479 if (!err && attr->ia_valid & ATTR_MODE) 3480 err = btrfs_acl_chmod(inode); 3481 } 3482 3483 return err; 3484 } 3485 3486 void btrfs_evict_inode(struct inode *inode) 3487 { 3488 struct btrfs_trans_handle *trans; 3489 struct btrfs_root *root = BTRFS_I(inode)->root; 3490 struct btrfs_block_rsv *rsv, *global_rsv; 3491 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 3492 unsigned long nr; 3493 int ret; 3494 3495 trace_btrfs_inode_evict(inode); 3496 3497 truncate_inode_pages(&inode->i_data, 0); 3498 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3499 btrfs_is_free_space_inode(root, inode))) 3500 goto no_delete; 3501 3502 if (is_bad_inode(inode)) { 3503 btrfs_orphan_del(NULL, inode); 3504 goto no_delete; 3505 } 3506 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3507 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3508 3509 if (root->fs_info->log_root_recovering) { 3510 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3511 goto no_delete; 3512 } 3513 3514 if (inode->i_nlink > 0) { 3515 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3516 goto no_delete; 3517 } 3518 3519 rsv = btrfs_alloc_block_rsv(root); 3520 if (!rsv) { 3521 btrfs_orphan_del(NULL, inode); 3522 goto no_delete; 3523 } 3524 rsv->size = min_size; 3525 global_rsv = &root->fs_info->global_block_rsv; 3526 3527 btrfs_i_size_write(inode, 0); 3528 3529 /* 3530 * This is a bit simpler than btrfs_truncate since 3531 * 3532 * 1) We've already reserved our space for our orphan item in the 3533 * unlink. 3534 * 2) We're going to delete the inode item, so we don't need to update 3535 * it at all. 3536 * 3537 * So we just need to reserve some slack space in case we add bytes when 3538 * doing the truncate. 3539 */ 3540 while (1) { 3541 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size); 3542 3543 /* 3544 * Try and steal from the global reserve since we will 3545 * likely not use this space anyway, we want to try as 3546 * hard as possible to get this to work. 3547 */ 3548 if (ret) 3549 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 3550 3551 if (ret) { 3552 printk(KERN_WARNING "Could not get space for a " 3553 "delete, will truncate on mount %d\n", ret); 3554 btrfs_orphan_del(NULL, inode); 3555 btrfs_free_block_rsv(root, rsv); 3556 goto no_delete; 3557 } 3558 3559 trans = btrfs_start_transaction(root, 0); 3560 if (IS_ERR(trans)) { 3561 btrfs_orphan_del(NULL, inode); 3562 btrfs_free_block_rsv(root, rsv); 3563 goto no_delete; 3564 } 3565 3566 trans->block_rsv = rsv; 3567 3568 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3569 if (ret != -EAGAIN) 3570 break; 3571 3572 nr = trans->blocks_used; 3573 btrfs_end_transaction(trans, root); 3574 trans = NULL; 3575 btrfs_btree_balance_dirty(root, nr); 3576 } 3577 3578 btrfs_free_block_rsv(root, rsv); 3579 3580 if (ret == 0) { 3581 trans->block_rsv = root->orphan_block_rsv; 3582 ret = btrfs_orphan_del(trans, inode); 3583 BUG_ON(ret); 3584 } 3585 3586 trans->block_rsv = &root->fs_info->trans_block_rsv; 3587 if (!(root == root->fs_info->tree_root || 3588 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3589 btrfs_return_ino(root, btrfs_ino(inode)); 3590 3591 nr = trans->blocks_used; 3592 btrfs_end_transaction(trans, root); 3593 btrfs_btree_balance_dirty(root, nr); 3594 no_delete: 3595 end_writeback(inode); 3596 return; 3597 } 3598 3599 /* 3600 * this returns the key found in the dir entry in the location pointer. 3601 * If no dir entries were found, location->objectid is 0. 3602 */ 3603 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3604 struct btrfs_key *location) 3605 { 3606 const char *name = dentry->d_name.name; 3607 int namelen = dentry->d_name.len; 3608 struct btrfs_dir_item *di; 3609 struct btrfs_path *path; 3610 struct btrfs_root *root = BTRFS_I(dir)->root; 3611 int ret = 0; 3612 3613 path = btrfs_alloc_path(); 3614 if (!path) 3615 return -ENOMEM; 3616 3617 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3618 namelen, 0); 3619 if (IS_ERR(di)) 3620 ret = PTR_ERR(di); 3621 3622 if (IS_ERR_OR_NULL(di)) 3623 goto out_err; 3624 3625 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3626 out: 3627 btrfs_free_path(path); 3628 return ret; 3629 out_err: 3630 location->objectid = 0; 3631 goto out; 3632 } 3633 3634 /* 3635 * when we hit a tree root in a directory, the btrfs part of the inode 3636 * needs to be changed to reflect the root directory of the tree root. This 3637 * is kind of like crossing a mount point. 3638 */ 3639 static int fixup_tree_root_location(struct btrfs_root *root, 3640 struct inode *dir, 3641 struct dentry *dentry, 3642 struct btrfs_key *location, 3643 struct btrfs_root **sub_root) 3644 { 3645 struct btrfs_path *path; 3646 struct btrfs_root *new_root; 3647 struct btrfs_root_ref *ref; 3648 struct extent_buffer *leaf; 3649 int ret; 3650 int err = 0; 3651 3652 path = btrfs_alloc_path(); 3653 if (!path) { 3654 err = -ENOMEM; 3655 goto out; 3656 } 3657 3658 err = -ENOENT; 3659 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3660 BTRFS_I(dir)->root->root_key.objectid, 3661 location->objectid); 3662 if (ret) { 3663 if (ret < 0) 3664 err = ret; 3665 goto out; 3666 } 3667 3668 leaf = path->nodes[0]; 3669 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3670 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3671 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3672 goto out; 3673 3674 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3675 (unsigned long)(ref + 1), 3676 dentry->d_name.len); 3677 if (ret) 3678 goto out; 3679 3680 btrfs_release_path(path); 3681 3682 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3683 if (IS_ERR(new_root)) { 3684 err = PTR_ERR(new_root); 3685 goto out; 3686 } 3687 3688 if (btrfs_root_refs(&new_root->root_item) == 0) { 3689 err = -ENOENT; 3690 goto out; 3691 } 3692 3693 *sub_root = new_root; 3694 location->objectid = btrfs_root_dirid(&new_root->root_item); 3695 location->type = BTRFS_INODE_ITEM_KEY; 3696 location->offset = 0; 3697 err = 0; 3698 out: 3699 btrfs_free_path(path); 3700 return err; 3701 } 3702 3703 static void inode_tree_add(struct inode *inode) 3704 { 3705 struct btrfs_root *root = BTRFS_I(inode)->root; 3706 struct btrfs_inode *entry; 3707 struct rb_node **p; 3708 struct rb_node *parent; 3709 u64 ino = btrfs_ino(inode); 3710 again: 3711 p = &root->inode_tree.rb_node; 3712 parent = NULL; 3713 3714 if (inode_unhashed(inode)) 3715 return; 3716 3717 spin_lock(&root->inode_lock); 3718 while (*p) { 3719 parent = *p; 3720 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3721 3722 if (ino < btrfs_ino(&entry->vfs_inode)) 3723 p = &parent->rb_left; 3724 else if (ino > btrfs_ino(&entry->vfs_inode)) 3725 p = &parent->rb_right; 3726 else { 3727 WARN_ON(!(entry->vfs_inode.i_state & 3728 (I_WILL_FREE | I_FREEING))); 3729 rb_erase(parent, &root->inode_tree); 3730 RB_CLEAR_NODE(parent); 3731 spin_unlock(&root->inode_lock); 3732 goto again; 3733 } 3734 } 3735 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3736 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3737 spin_unlock(&root->inode_lock); 3738 } 3739 3740 static void inode_tree_del(struct inode *inode) 3741 { 3742 struct btrfs_root *root = BTRFS_I(inode)->root; 3743 int empty = 0; 3744 3745 spin_lock(&root->inode_lock); 3746 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3747 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3748 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3749 empty = RB_EMPTY_ROOT(&root->inode_tree); 3750 } 3751 spin_unlock(&root->inode_lock); 3752 3753 /* 3754 * Free space cache has inodes in the tree root, but the tree root has a 3755 * root_refs of 0, so this could end up dropping the tree root as a 3756 * snapshot, so we need the extra !root->fs_info->tree_root check to 3757 * make sure we don't drop it. 3758 */ 3759 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3760 root != root->fs_info->tree_root) { 3761 synchronize_srcu(&root->fs_info->subvol_srcu); 3762 spin_lock(&root->inode_lock); 3763 empty = RB_EMPTY_ROOT(&root->inode_tree); 3764 spin_unlock(&root->inode_lock); 3765 if (empty) 3766 btrfs_add_dead_root(root); 3767 } 3768 } 3769 3770 int btrfs_invalidate_inodes(struct btrfs_root *root) 3771 { 3772 struct rb_node *node; 3773 struct rb_node *prev; 3774 struct btrfs_inode *entry; 3775 struct inode *inode; 3776 u64 objectid = 0; 3777 3778 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3779 3780 spin_lock(&root->inode_lock); 3781 again: 3782 node = root->inode_tree.rb_node; 3783 prev = NULL; 3784 while (node) { 3785 prev = node; 3786 entry = rb_entry(node, struct btrfs_inode, rb_node); 3787 3788 if (objectid < btrfs_ino(&entry->vfs_inode)) 3789 node = node->rb_left; 3790 else if (objectid > btrfs_ino(&entry->vfs_inode)) 3791 node = node->rb_right; 3792 else 3793 break; 3794 } 3795 if (!node) { 3796 while (prev) { 3797 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3798 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 3799 node = prev; 3800 break; 3801 } 3802 prev = rb_next(prev); 3803 } 3804 } 3805 while (node) { 3806 entry = rb_entry(node, struct btrfs_inode, rb_node); 3807 objectid = btrfs_ino(&entry->vfs_inode) + 1; 3808 inode = igrab(&entry->vfs_inode); 3809 if (inode) { 3810 spin_unlock(&root->inode_lock); 3811 if (atomic_read(&inode->i_count) > 1) 3812 d_prune_aliases(inode); 3813 /* 3814 * btrfs_drop_inode will have it removed from 3815 * the inode cache when its usage count 3816 * hits zero. 3817 */ 3818 iput(inode); 3819 cond_resched(); 3820 spin_lock(&root->inode_lock); 3821 goto again; 3822 } 3823 3824 if (cond_resched_lock(&root->inode_lock)) 3825 goto again; 3826 3827 node = rb_next(node); 3828 } 3829 spin_unlock(&root->inode_lock); 3830 return 0; 3831 } 3832 3833 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3834 { 3835 struct btrfs_iget_args *args = p; 3836 inode->i_ino = args->ino; 3837 BTRFS_I(inode)->root = args->root; 3838 btrfs_set_inode_space_info(args->root, inode); 3839 return 0; 3840 } 3841 3842 static int btrfs_find_actor(struct inode *inode, void *opaque) 3843 { 3844 struct btrfs_iget_args *args = opaque; 3845 return args->ino == btrfs_ino(inode) && 3846 args->root == BTRFS_I(inode)->root; 3847 } 3848 3849 static struct inode *btrfs_iget_locked(struct super_block *s, 3850 u64 objectid, 3851 struct btrfs_root *root) 3852 { 3853 struct inode *inode; 3854 struct btrfs_iget_args args; 3855 args.ino = objectid; 3856 args.root = root; 3857 3858 inode = iget5_locked(s, objectid, btrfs_find_actor, 3859 btrfs_init_locked_inode, 3860 (void *)&args); 3861 return inode; 3862 } 3863 3864 /* Get an inode object given its location and corresponding root. 3865 * Returns in *is_new if the inode was read from disk 3866 */ 3867 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3868 struct btrfs_root *root, int *new) 3869 { 3870 struct inode *inode; 3871 3872 inode = btrfs_iget_locked(s, location->objectid, root); 3873 if (!inode) 3874 return ERR_PTR(-ENOMEM); 3875 3876 if (inode->i_state & I_NEW) { 3877 BTRFS_I(inode)->root = root; 3878 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3879 btrfs_read_locked_inode(inode); 3880 if (!is_bad_inode(inode)) { 3881 inode_tree_add(inode); 3882 unlock_new_inode(inode); 3883 if (new) 3884 *new = 1; 3885 } else { 3886 unlock_new_inode(inode); 3887 iput(inode); 3888 inode = ERR_PTR(-ESTALE); 3889 } 3890 } 3891 3892 return inode; 3893 } 3894 3895 static struct inode *new_simple_dir(struct super_block *s, 3896 struct btrfs_key *key, 3897 struct btrfs_root *root) 3898 { 3899 struct inode *inode = new_inode(s); 3900 3901 if (!inode) 3902 return ERR_PTR(-ENOMEM); 3903 3904 BTRFS_I(inode)->root = root; 3905 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3906 BTRFS_I(inode)->dummy_inode = 1; 3907 3908 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3909 inode->i_op = &simple_dir_inode_operations; 3910 inode->i_fop = &simple_dir_operations; 3911 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 3912 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3913 3914 return inode; 3915 } 3916 3917 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3918 { 3919 struct inode *inode; 3920 struct btrfs_root *root = BTRFS_I(dir)->root; 3921 struct btrfs_root *sub_root = root; 3922 struct btrfs_key location; 3923 int index; 3924 int ret = 0; 3925 3926 if (dentry->d_name.len > BTRFS_NAME_LEN) 3927 return ERR_PTR(-ENAMETOOLONG); 3928 3929 if (unlikely(d_need_lookup(dentry))) { 3930 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key)); 3931 kfree(dentry->d_fsdata); 3932 dentry->d_fsdata = NULL; 3933 /* This thing is hashed, drop it for now */ 3934 d_drop(dentry); 3935 } else { 3936 ret = btrfs_inode_by_name(dir, dentry, &location); 3937 } 3938 3939 if (ret < 0) 3940 return ERR_PTR(ret); 3941 3942 if (location.objectid == 0) 3943 return NULL; 3944 3945 if (location.type == BTRFS_INODE_ITEM_KEY) { 3946 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 3947 return inode; 3948 } 3949 3950 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 3951 3952 index = srcu_read_lock(&root->fs_info->subvol_srcu); 3953 ret = fixup_tree_root_location(root, dir, dentry, 3954 &location, &sub_root); 3955 if (ret < 0) { 3956 if (ret != -ENOENT) 3957 inode = ERR_PTR(ret); 3958 else 3959 inode = new_simple_dir(dir->i_sb, &location, sub_root); 3960 } else { 3961 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 3962 } 3963 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 3964 3965 if (!IS_ERR(inode) && root != sub_root) { 3966 down_read(&root->fs_info->cleanup_work_sem); 3967 if (!(inode->i_sb->s_flags & MS_RDONLY)) 3968 ret = btrfs_orphan_cleanup(sub_root); 3969 up_read(&root->fs_info->cleanup_work_sem); 3970 if (ret) 3971 inode = ERR_PTR(ret); 3972 } 3973 3974 return inode; 3975 } 3976 3977 static int btrfs_dentry_delete(const struct dentry *dentry) 3978 { 3979 struct btrfs_root *root; 3980 3981 if (!dentry->d_inode && !IS_ROOT(dentry)) 3982 dentry = dentry->d_parent; 3983 3984 if (dentry->d_inode) { 3985 root = BTRFS_I(dentry->d_inode)->root; 3986 if (btrfs_root_refs(&root->root_item) == 0) 3987 return 1; 3988 } 3989 return 0; 3990 } 3991 3992 static void btrfs_dentry_release(struct dentry *dentry) 3993 { 3994 if (dentry->d_fsdata) 3995 kfree(dentry->d_fsdata); 3996 } 3997 3998 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3999 struct nameidata *nd) 4000 { 4001 struct dentry *ret; 4002 4003 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4004 if (unlikely(d_need_lookup(dentry))) { 4005 spin_lock(&dentry->d_lock); 4006 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 4007 spin_unlock(&dentry->d_lock); 4008 } 4009 return ret; 4010 } 4011 4012 unsigned char btrfs_filetype_table[] = { 4013 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4014 }; 4015 4016 static int btrfs_real_readdir(struct file *filp, void *dirent, 4017 filldir_t filldir) 4018 { 4019 struct inode *inode = filp->f_dentry->d_inode; 4020 struct btrfs_root *root = BTRFS_I(inode)->root; 4021 struct btrfs_item *item; 4022 struct btrfs_dir_item *di; 4023 struct btrfs_key key; 4024 struct btrfs_key found_key; 4025 struct btrfs_path *path; 4026 struct list_head ins_list; 4027 struct list_head del_list; 4028 struct qstr q; 4029 int ret; 4030 struct extent_buffer *leaf; 4031 int slot; 4032 unsigned char d_type; 4033 int over = 0; 4034 u32 di_cur; 4035 u32 di_total; 4036 u32 di_len; 4037 int key_type = BTRFS_DIR_INDEX_KEY; 4038 char tmp_name[32]; 4039 char *name_ptr; 4040 int name_len; 4041 int is_curr = 0; /* filp->f_pos points to the current index? */ 4042 4043 /* FIXME, use a real flag for deciding about the key type */ 4044 if (root->fs_info->tree_root == root) 4045 key_type = BTRFS_DIR_ITEM_KEY; 4046 4047 /* special case for "." */ 4048 if (filp->f_pos == 0) { 4049 over = filldir(dirent, ".", 1, 4050 filp->f_pos, btrfs_ino(inode), DT_DIR); 4051 if (over) 4052 return 0; 4053 filp->f_pos = 1; 4054 } 4055 /* special case for .., just use the back ref */ 4056 if (filp->f_pos == 1) { 4057 u64 pino = parent_ino(filp->f_path.dentry); 4058 over = filldir(dirent, "..", 2, 4059 filp->f_pos, pino, DT_DIR); 4060 if (over) 4061 return 0; 4062 filp->f_pos = 2; 4063 } 4064 path = btrfs_alloc_path(); 4065 if (!path) 4066 return -ENOMEM; 4067 4068 path->reada = 1; 4069 4070 if (key_type == BTRFS_DIR_INDEX_KEY) { 4071 INIT_LIST_HEAD(&ins_list); 4072 INIT_LIST_HEAD(&del_list); 4073 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4074 } 4075 4076 btrfs_set_key_type(&key, key_type); 4077 key.offset = filp->f_pos; 4078 key.objectid = btrfs_ino(inode); 4079 4080 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4081 if (ret < 0) 4082 goto err; 4083 4084 while (1) { 4085 leaf = path->nodes[0]; 4086 slot = path->slots[0]; 4087 if (slot >= btrfs_header_nritems(leaf)) { 4088 ret = btrfs_next_leaf(root, path); 4089 if (ret < 0) 4090 goto err; 4091 else if (ret > 0) 4092 break; 4093 continue; 4094 } 4095 4096 item = btrfs_item_nr(leaf, slot); 4097 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4098 4099 if (found_key.objectid != key.objectid) 4100 break; 4101 if (btrfs_key_type(&found_key) != key_type) 4102 break; 4103 if (found_key.offset < filp->f_pos) 4104 goto next; 4105 if (key_type == BTRFS_DIR_INDEX_KEY && 4106 btrfs_should_delete_dir_index(&del_list, 4107 found_key.offset)) 4108 goto next; 4109 4110 filp->f_pos = found_key.offset; 4111 is_curr = 1; 4112 4113 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4114 di_cur = 0; 4115 di_total = btrfs_item_size(leaf, item); 4116 4117 while (di_cur < di_total) { 4118 struct btrfs_key location; 4119 struct dentry *tmp; 4120 4121 if (verify_dir_item(root, leaf, di)) 4122 break; 4123 4124 name_len = btrfs_dir_name_len(leaf, di); 4125 if (name_len <= sizeof(tmp_name)) { 4126 name_ptr = tmp_name; 4127 } else { 4128 name_ptr = kmalloc(name_len, GFP_NOFS); 4129 if (!name_ptr) { 4130 ret = -ENOMEM; 4131 goto err; 4132 } 4133 } 4134 read_extent_buffer(leaf, name_ptr, 4135 (unsigned long)(di + 1), name_len); 4136 4137 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4138 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4139 4140 q.name = name_ptr; 4141 q.len = name_len; 4142 q.hash = full_name_hash(q.name, q.len); 4143 tmp = d_lookup(filp->f_dentry, &q); 4144 if (!tmp) { 4145 struct btrfs_key *newkey; 4146 4147 newkey = kzalloc(sizeof(struct btrfs_key), 4148 GFP_NOFS); 4149 if (!newkey) 4150 goto no_dentry; 4151 tmp = d_alloc(filp->f_dentry, &q); 4152 if (!tmp) { 4153 kfree(newkey); 4154 dput(tmp); 4155 goto no_dentry; 4156 } 4157 memcpy(newkey, &location, 4158 sizeof(struct btrfs_key)); 4159 tmp->d_fsdata = newkey; 4160 tmp->d_flags |= DCACHE_NEED_LOOKUP; 4161 d_rehash(tmp); 4162 dput(tmp); 4163 } else { 4164 dput(tmp); 4165 } 4166 no_dentry: 4167 /* is this a reference to our own snapshot? If so 4168 * skip it 4169 */ 4170 if (location.type == BTRFS_ROOT_ITEM_KEY && 4171 location.objectid == root->root_key.objectid) { 4172 over = 0; 4173 goto skip; 4174 } 4175 over = filldir(dirent, name_ptr, name_len, 4176 found_key.offset, location.objectid, 4177 d_type); 4178 4179 skip: 4180 if (name_ptr != tmp_name) 4181 kfree(name_ptr); 4182 4183 if (over) 4184 goto nopos; 4185 di_len = btrfs_dir_name_len(leaf, di) + 4186 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4187 di_cur += di_len; 4188 di = (struct btrfs_dir_item *)((char *)di + di_len); 4189 } 4190 next: 4191 path->slots[0]++; 4192 } 4193 4194 if (key_type == BTRFS_DIR_INDEX_KEY) { 4195 if (is_curr) 4196 filp->f_pos++; 4197 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4198 &ins_list); 4199 if (ret) 4200 goto nopos; 4201 } 4202 4203 /* Reached end of directory/root. Bump pos past the last item. */ 4204 if (key_type == BTRFS_DIR_INDEX_KEY) 4205 /* 4206 * 32-bit glibc will use getdents64, but then strtol - 4207 * so the last number we can serve is this. 4208 */ 4209 filp->f_pos = 0x7fffffff; 4210 else 4211 filp->f_pos++; 4212 nopos: 4213 ret = 0; 4214 err: 4215 if (key_type == BTRFS_DIR_INDEX_KEY) 4216 btrfs_put_delayed_items(&ins_list, &del_list); 4217 btrfs_free_path(path); 4218 return ret; 4219 } 4220 4221 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4222 { 4223 struct btrfs_root *root = BTRFS_I(inode)->root; 4224 struct btrfs_trans_handle *trans; 4225 int ret = 0; 4226 bool nolock = false; 4227 4228 if (BTRFS_I(inode)->dummy_inode) 4229 return 0; 4230 4231 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode)) 4232 nolock = true; 4233 4234 if (wbc->sync_mode == WB_SYNC_ALL) { 4235 if (nolock) 4236 trans = btrfs_join_transaction_nolock(root); 4237 else 4238 trans = btrfs_join_transaction(root); 4239 if (IS_ERR(trans)) 4240 return PTR_ERR(trans); 4241 if (nolock) 4242 ret = btrfs_end_transaction_nolock(trans, root); 4243 else 4244 ret = btrfs_commit_transaction(trans, root); 4245 } 4246 return ret; 4247 } 4248 4249 /* 4250 * This is somewhat expensive, updating the tree every time the 4251 * inode changes. But, it is most likely to find the inode in cache. 4252 * FIXME, needs more benchmarking...there are no reasons other than performance 4253 * to keep or drop this code. 4254 */ 4255 int btrfs_dirty_inode(struct inode *inode) 4256 { 4257 struct btrfs_root *root = BTRFS_I(inode)->root; 4258 struct btrfs_trans_handle *trans; 4259 int ret; 4260 4261 if (BTRFS_I(inode)->dummy_inode) 4262 return 0; 4263 4264 trans = btrfs_join_transaction(root); 4265 if (IS_ERR(trans)) 4266 return PTR_ERR(trans); 4267 4268 ret = btrfs_update_inode(trans, root, inode); 4269 if (ret && ret == -ENOSPC) { 4270 /* whoops, lets try again with the full transaction */ 4271 btrfs_end_transaction(trans, root); 4272 trans = btrfs_start_transaction(root, 1); 4273 if (IS_ERR(trans)) 4274 return PTR_ERR(trans); 4275 4276 ret = btrfs_update_inode(trans, root, inode); 4277 } 4278 btrfs_end_transaction(trans, root); 4279 if (BTRFS_I(inode)->delayed_node) 4280 btrfs_balance_delayed_items(root); 4281 4282 return ret; 4283 } 4284 4285 /* 4286 * This is a copy of file_update_time. We need this so we can return error on 4287 * ENOSPC for updating the inode in the case of file write and mmap writes. 4288 */ 4289 int btrfs_update_time(struct file *file) 4290 { 4291 struct inode *inode = file->f_path.dentry->d_inode; 4292 struct timespec now; 4293 int ret; 4294 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 4295 4296 /* First try to exhaust all avenues to not sync */ 4297 if (IS_NOCMTIME(inode)) 4298 return 0; 4299 4300 now = current_fs_time(inode->i_sb); 4301 if (!timespec_equal(&inode->i_mtime, &now)) 4302 sync_it = S_MTIME; 4303 4304 if (!timespec_equal(&inode->i_ctime, &now)) 4305 sync_it |= S_CTIME; 4306 4307 if (IS_I_VERSION(inode)) 4308 sync_it |= S_VERSION; 4309 4310 if (!sync_it) 4311 return 0; 4312 4313 /* Finally allowed to write? Takes lock. */ 4314 if (mnt_want_write_file(file)) 4315 return 0; 4316 4317 /* Only change inode inside the lock region */ 4318 if (sync_it & S_VERSION) 4319 inode_inc_iversion(inode); 4320 if (sync_it & S_CTIME) 4321 inode->i_ctime = now; 4322 if (sync_it & S_MTIME) 4323 inode->i_mtime = now; 4324 ret = btrfs_dirty_inode(inode); 4325 if (!ret) 4326 mark_inode_dirty_sync(inode); 4327 mnt_drop_write(file->f_path.mnt); 4328 return ret; 4329 } 4330 4331 /* 4332 * find the highest existing sequence number in a directory 4333 * and then set the in-memory index_cnt variable to reflect 4334 * free sequence numbers 4335 */ 4336 static int btrfs_set_inode_index_count(struct inode *inode) 4337 { 4338 struct btrfs_root *root = BTRFS_I(inode)->root; 4339 struct btrfs_key key, found_key; 4340 struct btrfs_path *path; 4341 struct extent_buffer *leaf; 4342 int ret; 4343 4344 key.objectid = btrfs_ino(inode); 4345 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4346 key.offset = (u64)-1; 4347 4348 path = btrfs_alloc_path(); 4349 if (!path) 4350 return -ENOMEM; 4351 4352 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4353 if (ret < 0) 4354 goto out; 4355 /* FIXME: we should be able to handle this */ 4356 if (ret == 0) 4357 goto out; 4358 ret = 0; 4359 4360 /* 4361 * MAGIC NUMBER EXPLANATION: 4362 * since we search a directory based on f_pos we have to start at 2 4363 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4364 * else has to start at 2 4365 */ 4366 if (path->slots[0] == 0) { 4367 BTRFS_I(inode)->index_cnt = 2; 4368 goto out; 4369 } 4370 4371 path->slots[0]--; 4372 4373 leaf = path->nodes[0]; 4374 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4375 4376 if (found_key.objectid != btrfs_ino(inode) || 4377 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4378 BTRFS_I(inode)->index_cnt = 2; 4379 goto out; 4380 } 4381 4382 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4383 out: 4384 btrfs_free_path(path); 4385 return ret; 4386 } 4387 4388 /* 4389 * helper to find a free sequence number in a given directory. This current 4390 * code is very simple, later versions will do smarter things in the btree 4391 */ 4392 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4393 { 4394 int ret = 0; 4395 4396 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4397 ret = btrfs_inode_delayed_dir_index_count(dir); 4398 if (ret) { 4399 ret = btrfs_set_inode_index_count(dir); 4400 if (ret) 4401 return ret; 4402 } 4403 } 4404 4405 *index = BTRFS_I(dir)->index_cnt; 4406 BTRFS_I(dir)->index_cnt++; 4407 4408 return ret; 4409 } 4410 4411 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4412 struct btrfs_root *root, 4413 struct inode *dir, 4414 const char *name, int name_len, 4415 u64 ref_objectid, u64 objectid, 4416 umode_t mode, u64 *index) 4417 { 4418 struct inode *inode; 4419 struct btrfs_inode_item *inode_item; 4420 struct btrfs_key *location; 4421 struct btrfs_path *path; 4422 struct btrfs_inode_ref *ref; 4423 struct btrfs_key key[2]; 4424 u32 sizes[2]; 4425 unsigned long ptr; 4426 int ret; 4427 int owner; 4428 4429 path = btrfs_alloc_path(); 4430 if (!path) 4431 return ERR_PTR(-ENOMEM); 4432 4433 inode = new_inode(root->fs_info->sb); 4434 if (!inode) { 4435 btrfs_free_path(path); 4436 return ERR_PTR(-ENOMEM); 4437 } 4438 4439 /* 4440 * we have to initialize this early, so we can reclaim the inode 4441 * number if we fail afterwards in this function. 4442 */ 4443 inode->i_ino = objectid; 4444 4445 if (dir) { 4446 trace_btrfs_inode_request(dir); 4447 4448 ret = btrfs_set_inode_index(dir, index); 4449 if (ret) { 4450 btrfs_free_path(path); 4451 iput(inode); 4452 return ERR_PTR(ret); 4453 } 4454 } 4455 /* 4456 * index_cnt is ignored for everything but a dir, 4457 * btrfs_get_inode_index_count has an explanation for the magic 4458 * number 4459 */ 4460 BTRFS_I(inode)->index_cnt = 2; 4461 BTRFS_I(inode)->root = root; 4462 BTRFS_I(inode)->generation = trans->transid; 4463 inode->i_generation = BTRFS_I(inode)->generation; 4464 btrfs_set_inode_space_info(root, inode); 4465 4466 if (S_ISDIR(mode)) 4467 owner = 0; 4468 else 4469 owner = 1; 4470 4471 key[0].objectid = objectid; 4472 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4473 key[0].offset = 0; 4474 4475 key[1].objectid = objectid; 4476 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4477 key[1].offset = ref_objectid; 4478 4479 sizes[0] = sizeof(struct btrfs_inode_item); 4480 sizes[1] = name_len + sizeof(*ref); 4481 4482 path->leave_spinning = 1; 4483 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4484 if (ret != 0) 4485 goto fail; 4486 4487 inode_init_owner(inode, dir, mode); 4488 inode_set_bytes(inode, 0); 4489 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4490 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4491 struct btrfs_inode_item); 4492 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4493 4494 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4495 struct btrfs_inode_ref); 4496 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4497 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4498 ptr = (unsigned long)(ref + 1); 4499 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4500 4501 btrfs_mark_buffer_dirty(path->nodes[0]); 4502 btrfs_free_path(path); 4503 4504 location = &BTRFS_I(inode)->location; 4505 location->objectid = objectid; 4506 location->offset = 0; 4507 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4508 4509 btrfs_inherit_iflags(inode, dir); 4510 4511 if (S_ISREG(mode)) { 4512 if (btrfs_test_opt(root, NODATASUM)) 4513 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4514 if (btrfs_test_opt(root, NODATACOW) || 4515 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4516 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4517 } 4518 4519 insert_inode_hash(inode); 4520 inode_tree_add(inode); 4521 4522 trace_btrfs_inode_new(inode); 4523 btrfs_set_inode_last_trans(trans, inode); 4524 4525 return inode; 4526 fail: 4527 if (dir) 4528 BTRFS_I(dir)->index_cnt--; 4529 btrfs_free_path(path); 4530 iput(inode); 4531 return ERR_PTR(ret); 4532 } 4533 4534 static inline u8 btrfs_inode_type(struct inode *inode) 4535 { 4536 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4537 } 4538 4539 /* 4540 * utility function to add 'inode' into 'parent_inode' with 4541 * a give name and a given sequence number. 4542 * if 'add_backref' is true, also insert a backref from the 4543 * inode to the parent directory. 4544 */ 4545 int btrfs_add_link(struct btrfs_trans_handle *trans, 4546 struct inode *parent_inode, struct inode *inode, 4547 const char *name, int name_len, int add_backref, u64 index) 4548 { 4549 int ret = 0; 4550 struct btrfs_key key; 4551 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4552 u64 ino = btrfs_ino(inode); 4553 u64 parent_ino = btrfs_ino(parent_inode); 4554 4555 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4556 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4557 } else { 4558 key.objectid = ino; 4559 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4560 key.offset = 0; 4561 } 4562 4563 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4564 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4565 key.objectid, root->root_key.objectid, 4566 parent_ino, index, name, name_len); 4567 } else if (add_backref) { 4568 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4569 parent_ino, index); 4570 } 4571 4572 if (ret == 0) { 4573 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4574 parent_inode, &key, 4575 btrfs_inode_type(inode), index); 4576 BUG_ON(ret); 4577 4578 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4579 name_len * 2); 4580 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4581 ret = btrfs_update_inode(trans, root, parent_inode); 4582 } 4583 return ret; 4584 } 4585 4586 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4587 struct inode *dir, struct dentry *dentry, 4588 struct inode *inode, int backref, u64 index) 4589 { 4590 int err = btrfs_add_link(trans, dir, inode, 4591 dentry->d_name.name, dentry->d_name.len, 4592 backref, index); 4593 if (err > 0) 4594 err = -EEXIST; 4595 return err; 4596 } 4597 4598 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4599 umode_t mode, dev_t rdev) 4600 { 4601 struct btrfs_trans_handle *trans; 4602 struct btrfs_root *root = BTRFS_I(dir)->root; 4603 struct inode *inode = NULL; 4604 int err; 4605 int drop_inode = 0; 4606 u64 objectid; 4607 unsigned long nr = 0; 4608 u64 index = 0; 4609 4610 if (!new_valid_dev(rdev)) 4611 return -EINVAL; 4612 4613 /* 4614 * 2 for inode item and ref 4615 * 2 for dir items 4616 * 1 for xattr if selinux is on 4617 */ 4618 trans = btrfs_start_transaction(root, 5); 4619 if (IS_ERR(trans)) 4620 return PTR_ERR(trans); 4621 4622 err = btrfs_find_free_ino(root, &objectid); 4623 if (err) 4624 goto out_unlock; 4625 4626 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4627 dentry->d_name.len, btrfs_ino(dir), objectid, 4628 mode, &index); 4629 if (IS_ERR(inode)) { 4630 err = PTR_ERR(inode); 4631 goto out_unlock; 4632 } 4633 4634 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4635 if (err) { 4636 drop_inode = 1; 4637 goto out_unlock; 4638 } 4639 4640 /* 4641 * If the active LSM wants to access the inode during 4642 * d_instantiate it needs these. Smack checks to see 4643 * if the filesystem supports xattrs by looking at the 4644 * ops vector. 4645 */ 4646 4647 inode->i_op = &btrfs_special_inode_operations; 4648 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4649 if (err) 4650 drop_inode = 1; 4651 else { 4652 init_special_inode(inode, inode->i_mode, rdev); 4653 btrfs_update_inode(trans, root, inode); 4654 d_instantiate(dentry, inode); 4655 } 4656 out_unlock: 4657 nr = trans->blocks_used; 4658 btrfs_end_transaction_throttle(trans, root); 4659 btrfs_btree_balance_dirty(root, nr); 4660 if (drop_inode) { 4661 inode_dec_link_count(inode); 4662 iput(inode); 4663 } 4664 return err; 4665 } 4666 4667 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4668 umode_t mode, struct nameidata *nd) 4669 { 4670 struct btrfs_trans_handle *trans; 4671 struct btrfs_root *root = BTRFS_I(dir)->root; 4672 struct inode *inode = NULL; 4673 int drop_inode = 0; 4674 int err; 4675 unsigned long nr = 0; 4676 u64 objectid; 4677 u64 index = 0; 4678 4679 /* 4680 * 2 for inode item and ref 4681 * 2 for dir items 4682 * 1 for xattr if selinux is on 4683 */ 4684 trans = btrfs_start_transaction(root, 5); 4685 if (IS_ERR(trans)) 4686 return PTR_ERR(trans); 4687 4688 err = btrfs_find_free_ino(root, &objectid); 4689 if (err) 4690 goto out_unlock; 4691 4692 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4693 dentry->d_name.len, btrfs_ino(dir), objectid, 4694 mode, &index); 4695 if (IS_ERR(inode)) { 4696 err = PTR_ERR(inode); 4697 goto out_unlock; 4698 } 4699 4700 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4701 if (err) { 4702 drop_inode = 1; 4703 goto out_unlock; 4704 } 4705 4706 /* 4707 * If the active LSM wants to access the inode during 4708 * d_instantiate it needs these. Smack checks to see 4709 * if the filesystem supports xattrs by looking at the 4710 * ops vector. 4711 */ 4712 inode->i_fop = &btrfs_file_operations; 4713 inode->i_op = &btrfs_file_inode_operations; 4714 4715 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4716 if (err) 4717 drop_inode = 1; 4718 else { 4719 inode->i_mapping->a_ops = &btrfs_aops; 4720 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4721 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4722 d_instantiate(dentry, inode); 4723 } 4724 out_unlock: 4725 nr = trans->blocks_used; 4726 btrfs_end_transaction_throttle(trans, root); 4727 if (drop_inode) { 4728 inode_dec_link_count(inode); 4729 iput(inode); 4730 } 4731 btrfs_btree_balance_dirty(root, nr); 4732 return err; 4733 } 4734 4735 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4736 struct dentry *dentry) 4737 { 4738 struct btrfs_trans_handle *trans; 4739 struct btrfs_root *root = BTRFS_I(dir)->root; 4740 struct inode *inode = old_dentry->d_inode; 4741 u64 index; 4742 unsigned long nr = 0; 4743 int err; 4744 int drop_inode = 0; 4745 4746 /* do not allow sys_link's with other subvols of the same device */ 4747 if (root->objectid != BTRFS_I(inode)->root->objectid) 4748 return -EXDEV; 4749 4750 if (inode->i_nlink == ~0U) 4751 return -EMLINK; 4752 4753 err = btrfs_set_inode_index(dir, &index); 4754 if (err) 4755 goto fail; 4756 4757 /* 4758 * 2 items for inode and inode ref 4759 * 2 items for dir items 4760 * 1 item for parent inode 4761 */ 4762 trans = btrfs_start_transaction(root, 5); 4763 if (IS_ERR(trans)) { 4764 err = PTR_ERR(trans); 4765 goto fail; 4766 } 4767 4768 btrfs_inc_nlink(inode); 4769 inode->i_ctime = CURRENT_TIME; 4770 ihold(inode); 4771 4772 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4773 4774 if (err) { 4775 drop_inode = 1; 4776 } else { 4777 struct dentry *parent = dentry->d_parent; 4778 err = btrfs_update_inode(trans, root, inode); 4779 BUG_ON(err); 4780 d_instantiate(dentry, inode); 4781 btrfs_log_new_name(trans, inode, NULL, parent); 4782 } 4783 4784 nr = trans->blocks_used; 4785 btrfs_end_transaction_throttle(trans, root); 4786 fail: 4787 if (drop_inode) { 4788 inode_dec_link_count(inode); 4789 iput(inode); 4790 } 4791 btrfs_btree_balance_dirty(root, nr); 4792 return err; 4793 } 4794 4795 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 4796 { 4797 struct inode *inode = NULL; 4798 struct btrfs_trans_handle *trans; 4799 struct btrfs_root *root = BTRFS_I(dir)->root; 4800 int err = 0; 4801 int drop_on_err = 0; 4802 u64 objectid = 0; 4803 u64 index = 0; 4804 unsigned long nr = 1; 4805 4806 /* 4807 * 2 items for inode and ref 4808 * 2 items for dir items 4809 * 1 for xattr if selinux is on 4810 */ 4811 trans = btrfs_start_transaction(root, 5); 4812 if (IS_ERR(trans)) 4813 return PTR_ERR(trans); 4814 4815 err = btrfs_find_free_ino(root, &objectid); 4816 if (err) 4817 goto out_fail; 4818 4819 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4820 dentry->d_name.len, btrfs_ino(dir), objectid, 4821 S_IFDIR | mode, &index); 4822 if (IS_ERR(inode)) { 4823 err = PTR_ERR(inode); 4824 goto out_fail; 4825 } 4826 4827 drop_on_err = 1; 4828 4829 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4830 if (err) 4831 goto out_fail; 4832 4833 inode->i_op = &btrfs_dir_inode_operations; 4834 inode->i_fop = &btrfs_dir_file_operations; 4835 4836 btrfs_i_size_write(inode, 0); 4837 err = btrfs_update_inode(trans, root, inode); 4838 if (err) 4839 goto out_fail; 4840 4841 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4842 dentry->d_name.len, 0, index); 4843 if (err) 4844 goto out_fail; 4845 4846 d_instantiate(dentry, inode); 4847 drop_on_err = 0; 4848 4849 out_fail: 4850 nr = trans->blocks_used; 4851 btrfs_end_transaction_throttle(trans, root); 4852 if (drop_on_err) 4853 iput(inode); 4854 btrfs_btree_balance_dirty(root, nr); 4855 return err; 4856 } 4857 4858 /* helper for btfs_get_extent. Given an existing extent in the tree, 4859 * and an extent that you want to insert, deal with overlap and insert 4860 * the new extent into the tree. 4861 */ 4862 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4863 struct extent_map *existing, 4864 struct extent_map *em, 4865 u64 map_start, u64 map_len) 4866 { 4867 u64 start_diff; 4868 4869 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4870 start_diff = map_start - em->start; 4871 em->start = map_start; 4872 em->len = map_len; 4873 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4874 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4875 em->block_start += start_diff; 4876 em->block_len -= start_diff; 4877 } 4878 return add_extent_mapping(em_tree, em); 4879 } 4880 4881 static noinline int uncompress_inline(struct btrfs_path *path, 4882 struct inode *inode, struct page *page, 4883 size_t pg_offset, u64 extent_offset, 4884 struct btrfs_file_extent_item *item) 4885 { 4886 int ret; 4887 struct extent_buffer *leaf = path->nodes[0]; 4888 char *tmp; 4889 size_t max_size; 4890 unsigned long inline_size; 4891 unsigned long ptr; 4892 int compress_type; 4893 4894 WARN_ON(pg_offset != 0); 4895 compress_type = btrfs_file_extent_compression(leaf, item); 4896 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4897 inline_size = btrfs_file_extent_inline_item_len(leaf, 4898 btrfs_item_nr(leaf, path->slots[0])); 4899 tmp = kmalloc(inline_size, GFP_NOFS); 4900 if (!tmp) 4901 return -ENOMEM; 4902 ptr = btrfs_file_extent_inline_start(item); 4903 4904 read_extent_buffer(leaf, tmp, ptr, inline_size); 4905 4906 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4907 ret = btrfs_decompress(compress_type, tmp, page, 4908 extent_offset, inline_size, max_size); 4909 if (ret) { 4910 char *kaddr = kmap_atomic(page, KM_USER0); 4911 unsigned long copy_size = min_t(u64, 4912 PAGE_CACHE_SIZE - pg_offset, 4913 max_size - extent_offset); 4914 memset(kaddr + pg_offset, 0, copy_size); 4915 kunmap_atomic(kaddr, KM_USER0); 4916 } 4917 kfree(tmp); 4918 return 0; 4919 } 4920 4921 /* 4922 * a bit scary, this does extent mapping from logical file offset to the disk. 4923 * the ugly parts come from merging extents from the disk with the in-ram 4924 * representation. This gets more complex because of the data=ordered code, 4925 * where the in-ram extents might be locked pending data=ordered completion. 4926 * 4927 * This also copies inline extents directly into the page. 4928 */ 4929 4930 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4931 size_t pg_offset, u64 start, u64 len, 4932 int create) 4933 { 4934 int ret; 4935 int err = 0; 4936 u64 bytenr; 4937 u64 extent_start = 0; 4938 u64 extent_end = 0; 4939 u64 objectid = btrfs_ino(inode); 4940 u32 found_type; 4941 struct btrfs_path *path = NULL; 4942 struct btrfs_root *root = BTRFS_I(inode)->root; 4943 struct btrfs_file_extent_item *item; 4944 struct extent_buffer *leaf; 4945 struct btrfs_key found_key; 4946 struct extent_map *em = NULL; 4947 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4948 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4949 struct btrfs_trans_handle *trans = NULL; 4950 int compress_type; 4951 4952 again: 4953 read_lock(&em_tree->lock); 4954 em = lookup_extent_mapping(em_tree, start, len); 4955 if (em) 4956 em->bdev = root->fs_info->fs_devices->latest_bdev; 4957 read_unlock(&em_tree->lock); 4958 4959 if (em) { 4960 if (em->start > start || em->start + em->len <= start) 4961 free_extent_map(em); 4962 else if (em->block_start == EXTENT_MAP_INLINE && page) 4963 free_extent_map(em); 4964 else 4965 goto out; 4966 } 4967 em = alloc_extent_map(); 4968 if (!em) { 4969 err = -ENOMEM; 4970 goto out; 4971 } 4972 em->bdev = root->fs_info->fs_devices->latest_bdev; 4973 em->start = EXTENT_MAP_HOLE; 4974 em->orig_start = EXTENT_MAP_HOLE; 4975 em->len = (u64)-1; 4976 em->block_len = (u64)-1; 4977 4978 if (!path) { 4979 path = btrfs_alloc_path(); 4980 if (!path) { 4981 err = -ENOMEM; 4982 goto out; 4983 } 4984 /* 4985 * Chances are we'll be called again, so go ahead and do 4986 * readahead 4987 */ 4988 path->reada = 1; 4989 } 4990 4991 ret = btrfs_lookup_file_extent(trans, root, path, 4992 objectid, start, trans != NULL); 4993 if (ret < 0) { 4994 err = ret; 4995 goto out; 4996 } 4997 4998 if (ret != 0) { 4999 if (path->slots[0] == 0) 5000 goto not_found; 5001 path->slots[0]--; 5002 } 5003 5004 leaf = path->nodes[0]; 5005 item = btrfs_item_ptr(leaf, path->slots[0], 5006 struct btrfs_file_extent_item); 5007 /* are we inside the extent that was found? */ 5008 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5009 found_type = btrfs_key_type(&found_key); 5010 if (found_key.objectid != objectid || 5011 found_type != BTRFS_EXTENT_DATA_KEY) { 5012 goto not_found; 5013 } 5014 5015 found_type = btrfs_file_extent_type(leaf, item); 5016 extent_start = found_key.offset; 5017 compress_type = btrfs_file_extent_compression(leaf, item); 5018 if (found_type == BTRFS_FILE_EXTENT_REG || 5019 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5020 extent_end = extent_start + 5021 btrfs_file_extent_num_bytes(leaf, item); 5022 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5023 size_t size; 5024 size = btrfs_file_extent_inline_len(leaf, item); 5025 extent_end = (extent_start + size + root->sectorsize - 1) & 5026 ~((u64)root->sectorsize - 1); 5027 } 5028 5029 if (start >= extent_end) { 5030 path->slots[0]++; 5031 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5032 ret = btrfs_next_leaf(root, path); 5033 if (ret < 0) { 5034 err = ret; 5035 goto out; 5036 } 5037 if (ret > 0) 5038 goto not_found; 5039 leaf = path->nodes[0]; 5040 } 5041 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5042 if (found_key.objectid != objectid || 5043 found_key.type != BTRFS_EXTENT_DATA_KEY) 5044 goto not_found; 5045 if (start + len <= found_key.offset) 5046 goto not_found; 5047 em->start = start; 5048 em->len = found_key.offset - start; 5049 goto not_found_em; 5050 } 5051 5052 if (found_type == BTRFS_FILE_EXTENT_REG || 5053 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5054 em->start = extent_start; 5055 em->len = extent_end - extent_start; 5056 em->orig_start = extent_start - 5057 btrfs_file_extent_offset(leaf, item); 5058 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5059 if (bytenr == 0) { 5060 em->block_start = EXTENT_MAP_HOLE; 5061 goto insert; 5062 } 5063 if (compress_type != BTRFS_COMPRESS_NONE) { 5064 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5065 em->compress_type = compress_type; 5066 em->block_start = bytenr; 5067 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5068 item); 5069 } else { 5070 bytenr += btrfs_file_extent_offset(leaf, item); 5071 em->block_start = bytenr; 5072 em->block_len = em->len; 5073 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5074 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5075 } 5076 goto insert; 5077 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5078 unsigned long ptr; 5079 char *map; 5080 size_t size; 5081 size_t extent_offset; 5082 size_t copy_size; 5083 5084 em->block_start = EXTENT_MAP_INLINE; 5085 if (!page || create) { 5086 em->start = extent_start; 5087 em->len = extent_end - extent_start; 5088 goto out; 5089 } 5090 5091 size = btrfs_file_extent_inline_len(leaf, item); 5092 extent_offset = page_offset(page) + pg_offset - extent_start; 5093 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5094 size - extent_offset); 5095 em->start = extent_start + extent_offset; 5096 em->len = (copy_size + root->sectorsize - 1) & 5097 ~((u64)root->sectorsize - 1); 5098 em->orig_start = EXTENT_MAP_INLINE; 5099 if (compress_type) { 5100 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5101 em->compress_type = compress_type; 5102 } 5103 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5104 if (create == 0 && !PageUptodate(page)) { 5105 if (btrfs_file_extent_compression(leaf, item) != 5106 BTRFS_COMPRESS_NONE) { 5107 ret = uncompress_inline(path, inode, page, 5108 pg_offset, 5109 extent_offset, item); 5110 BUG_ON(ret); 5111 } else { 5112 map = kmap(page); 5113 read_extent_buffer(leaf, map + pg_offset, ptr, 5114 copy_size); 5115 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5116 memset(map + pg_offset + copy_size, 0, 5117 PAGE_CACHE_SIZE - pg_offset - 5118 copy_size); 5119 } 5120 kunmap(page); 5121 } 5122 flush_dcache_page(page); 5123 } else if (create && PageUptodate(page)) { 5124 WARN_ON(1); 5125 if (!trans) { 5126 kunmap(page); 5127 free_extent_map(em); 5128 em = NULL; 5129 5130 btrfs_release_path(path); 5131 trans = btrfs_join_transaction(root); 5132 5133 if (IS_ERR(trans)) 5134 return ERR_CAST(trans); 5135 goto again; 5136 } 5137 map = kmap(page); 5138 write_extent_buffer(leaf, map + pg_offset, ptr, 5139 copy_size); 5140 kunmap(page); 5141 btrfs_mark_buffer_dirty(leaf); 5142 } 5143 set_extent_uptodate(io_tree, em->start, 5144 extent_map_end(em) - 1, NULL, GFP_NOFS); 5145 goto insert; 5146 } else { 5147 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5148 WARN_ON(1); 5149 } 5150 not_found: 5151 em->start = start; 5152 em->len = len; 5153 not_found_em: 5154 em->block_start = EXTENT_MAP_HOLE; 5155 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5156 insert: 5157 btrfs_release_path(path); 5158 if (em->start > start || extent_map_end(em) <= start) { 5159 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5160 "[%llu %llu]\n", (unsigned long long)em->start, 5161 (unsigned long long)em->len, 5162 (unsigned long long)start, 5163 (unsigned long long)len); 5164 err = -EIO; 5165 goto out; 5166 } 5167 5168 err = 0; 5169 write_lock(&em_tree->lock); 5170 ret = add_extent_mapping(em_tree, em); 5171 /* it is possible that someone inserted the extent into the tree 5172 * while we had the lock dropped. It is also possible that 5173 * an overlapping map exists in the tree 5174 */ 5175 if (ret == -EEXIST) { 5176 struct extent_map *existing; 5177 5178 ret = 0; 5179 5180 existing = lookup_extent_mapping(em_tree, start, len); 5181 if (existing && (existing->start > start || 5182 existing->start + existing->len <= start)) { 5183 free_extent_map(existing); 5184 existing = NULL; 5185 } 5186 if (!existing) { 5187 existing = lookup_extent_mapping(em_tree, em->start, 5188 em->len); 5189 if (existing) { 5190 err = merge_extent_mapping(em_tree, existing, 5191 em, start, 5192 root->sectorsize); 5193 free_extent_map(existing); 5194 if (err) { 5195 free_extent_map(em); 5196 em = NULL; 5197 } 5198 } else { 5199 err = -EIO; 5200 free_extent_map(em); 5201 em = NULL; 5202 } 5203 } else { 5204 free_extent_map(em); 5205 em = existing; 5206 err = 0; 5207 } 5208 } 5209 write_unlock(&em_tree->lock); 5210 out: 5211 5212 trace_btrfs_get_extent(root, em); 5213 5214 if (path) 5215 btrfs_free_path(path); 5216 if (trans) { 5217 ret = btrfs_end_transaction(trans, root); 5218 if (!err) 5219 err = ret; 5220 } 5221 if (err) { 5222 free_extent_map(em); 5223 return ERR_PTR(err); 5224 } 5225 return em; 5226 } 5227 5228 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5229 size_t pg_offset, u64 start, u64 len, 5230 int create) 5231 { 5232 struct extent_map *em; 5233 struct extent_map *hole_em = NULL; 5234 u64 range_start = start; 5235 u64 end; 5236 u64 found; 5237 u64 found_end; 5238 int err = 0; 5239 5240 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5241 if (IS_ERR(em)) 5242 return em; 5243 if (em) { 5244 /* 5245 * if our em maps to a hole, there might 5246 * actually be delalloc bytes behind it 5247 */ 5248 if (em->block_start != EXTENT_MAP_HOLE) 5249 return em; 5250 else 5251 hole_em = em; 5252 } 5253 5254 /* check to see if we've wrapped (len == -1 or similar) */ 5255 end = start + len; 5256 if (end < start) 5257 end = (u64)-1; 5258 else 5259 end -= 1; 5260 5261 em = NULL; 5262 5263 /* ok, we didn't find anything, lets look for delalloc */ 5264 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5265 end, len, EXTENT_DELALLOC, 1); 5266 found_end = range_start + found; 5267 if (found_end < range_start) 5268 found_end = (u64)-1; 5269 5270 /* 5271 * we didn't find anything useful, return 5272 * the original results from get_extent() 5273 */ 5274 if (range_start > end || found_end <= start) { 5275 em = hole_em; 5276 hole_em = NULL; 5277 goto out; 5278 } 5279 5280 /* adjust the range_start to make sure it doesn't 5281 * go backwards from the start they passed in 5282 */ 5283 range_start = max(start,range_start); 5284 found = found_end - range_start; 5285 5286 if (found > 0) { 5287 u64 hole_start = start; 5288 u64 hole_len = len; 5289 5290 em = alloc_extent_map(); 5291 if (!em) { 5292 err = -ENOMEM; 5293 goto out; 5294 } 5295 /* 5296 * when btrfs_get_extent can't find anything it 5297 * returns one huge hole 5298 * 5299 * make sure what it found really fits our range, and 5300 * adjust to make sure it is based on the start from 5301 * the caller 5302 */ 5303 if (hole_em) { 5304 u64 calc_end = extent_map_end(hole_em); 5305 5306 if (calc_end <= start || (hole_em->start > end)) { 5307 free_extent_map(hole_em); 5308 hole_em = NULL; 5309 } else { 5310 hole_start = max(hole_em->start, start); 5311 hole_len = calc_end - hole_start; 5312 } 5313 } 5314 em->bdev = NULL; 5315 if (hole_em && range_start > hole_start) { 5316 /* our hole starts before our delalloc, so we 5317 * have to return just the parts of the hole 5318 * that go until the delalloc starts 5319 */ 5320 em->len = min(hole_len, 5321 range_start - hole_start); 5322 em->start = hole_start; 5323 em->orig_start = hole_start; 5324 /* 5325 * don't adjust block start at all, 5326 * it is fixed at EXTENT_MAP_HOLE 5327 */ 5328 em->block_start = hole_em->block_start; 5329 em->block_len = hole_len; 5330 } else { 5331 em->start = range_start; 5332 em->len = found; 5333 em->orig_start = range_start; 5334 em->block_start = EXTENT_MAP_DELALLOC; 5335 em->block_len = found; 5336 } 5337 } else if (hole_em) { 5338 return hole_em; 5339 } 5340 out: 5341 5342 free_extent_map(hole_em); 5343 if (err) { 5344 free_extent_map(em); 5345 return ERR_PTR(err); 5346 } 5347 return em; 5348 } 5349 5350 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5351 struct extent_map *em, 5352 u64 start, u64 len) 5353 { 5354 struct btrfs_root *root = BTRFS_I(inode)->root; 5355 struct btrfs_trans_handle *trans; 5356 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5357 struct btrfs_key ins; 5358 u64 alloc_hint; 5359 int ret; 5360 bool insert = false; 5361 5362 /* 5363 * Ok if the extent map we looked up is a hole and is for the exact 5364 * range we want, there is no reason to allocate a new one, however if 5365 * it is not right then we need to free this one and drop the cache for 5366 * our range. 5367 */ 5368 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5369 em->len != len) { 5370 free_extent_map(em); 5371 em = NULL; 5372 insert = true; 5373 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5374 } 5375 5376 trans = btrfs_join_transaction(root); 5377 if (IS_ERR(trans)) 5378 return ERR_CAST(trans); 5379 5380 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5381 btrfs_add_inode_defrag(trans, inode); 5382 5383 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5384 5385 alloc_hint = get_extent_allocation_hint(inode, start, len); 5386 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5387 alloc_hint, (u64)-1, &ins, 1); 5388 if (ret) { 5389 em = ERR_PTR(ret); 5390 goto out; 5391 } 5392 5393 if (!em) { 5394 em = alloc_extent_map(); 5395 if (!em) { 5396 em = ERR_PTR(-ENOMEM); 5397 goto out; 5398 } 5399 } 5400 5401 em->start = start; 5402 em->orig_start = em->start; 5403 em->len = ins.offset; 5404 5405 em->block_start = ins.objectid; 5406 em->block_len = ins.offset; 5407 em->bdev = root->fs_info->fs_devices->latest_bdev; 5408 5409 /* 5410 * We need to do this because if we're using the original em we searched 5411 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5412 */ 5413 em->flags = 0; 5414 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5415 5416 while (insert) { 5417 write_lock(&em_tree->lock); 5418 ret = add_extent_mapping(em_tree, em); 5419 write_unlock(&em_tree->lock); 5420 if (ret != -EEXIST) 5421 break; 5422 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5423 } 5424 5425 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5426 ins.offset, ins.offset, 0); 5427 if (ret) { 5428 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5429 em = ERR_PTR(ret); 5430 } 5431 out: 5432 btrfs_end_transaction(trans, root); 5433 return em; 5434 } 5435 5436 /* 5437 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5438 * block must be cow'd 5439 */ 5440 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5441 struct inode *inode, u64 offset, u64 len) 5442 { 5443 struct btrfs_path *path; 5444 int ret; 5445 struct extent_buffer *leaf; 5446 struct btrfs_root *root = BTRFS_I(inode)->root; 5447 struct btrfs_file_extent_item *fi; 5448 struct btrfs_key key; 5449 u64 disk_bytenr; 5450 u64 backref_offset; 5451 u64 extent_end; 5452 u64 num_bytes; 5453 int slot; 5454 int found_type; 5455 5456 path = btrfs_alloc_path(); 5457 if (!path) 5458 return -ENOMEM; 5459 5460 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5461 offset, 0); 5462 if (ret < 0) 5463 goto out; 5464 5465 slot = path->slots[0]; 5466 if (ret == 1) { 5467 if (slot == 0) { 5468 /* can't find the item, must cow */ 5469 ret = 0; 5470 goto out; 5471 } 5472 slot--; 5473 } 5474 ret = 0; 5475 leaf = path->nodes[0]; 5476 btrfs_item_key_to_cpu(leaf, &key, slot); 5477 if (key.objectid != btrfs_ino(inode) || 5478 key.type != BTRFS_EXTENT_DATA_KEY) { 5479 /* not our file or wrong item type, must cow */ 5480 goto out; 5481 } 5482 5483 if (key.offset > offset) { 5484 /* Wrong offset, must cow */ 5485 goto out; 5486 } 5487 5488 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5489 found_type = btrfs_file_extent_type(leaf, fi); 5490 if (found_type != BTRFS_FILE_EXTENT_REG && 5491 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5492 /* not a regular extent, must cow */ 5493 goto out; 5494 } 5495 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5496 backref_offset = btrfs_file_extent_offset(leaf, fi); 5497 5498 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5499 if (extent_end < offset + len) { 5500 /* extent doesn't include our full range, must cow */ 5501 goto out; 5502 } 5503 5504 if (btrfs_extent_readonly(root, disk_bytenr)) 5505 goto out; 5506 5507 /* 5508 * look for other files referencing this extent, if we 5509 * find any we must cow 5510 */ 5511 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5512 key.offset - backref_offset, disk_bytenr)) 5513 goto out; 5514 5515 /* 5516 * adjust disk_bytenr and num_bytes to cover just the bytes 5517 * in this extent we are about to write. If there 5518 * are any csums in that range we have to cow in order 5519 * to keep the csums correct 5520 */ 5521 disk_bytenr += backref_offset; 5522 disk_bytenr += offset - key.offset; 5523 num_bytes = min(offset + len, extent_end) - offset; 5524 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5525 goto out; 5526 /* 5527 * all of the above have passed, it is safe to overwrite this extent 5528 * without cow 5529 */ 5530 ret = 1; 5531 out: 5532 btrfs_free_path(path); 5533 return ret; 5534 } 5535 5536 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5537 struct buffer_head *bh_result, int create) 5538 { 5539 struct extent_map *em; 5540 struct btrfs_root *root = BTRFS_I(inode)->root; 5541 u64 start = iblock << inode->i_blkbits; 5542 u64 len = bh_result->b_size; 5543 struct btrfs_trans_handle *trans; 5544 5545 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5546 if (IS_ERR(em)) 5547 return PTR_ERR(em); 5548 5549 /* 5550 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5551 * io. INLINE is special, and we could probably kludge it in here, but 5552 * it's still buffered so for safety lets just fall back to the generic 5553 * buffered path. 5554 * 5555 * For COMPRESSED we _have_ to read the entire extent in so we can 5556 * decompress it, so there will be buffering required no matter what we 5557 * do, so go ahead and fallback to buffered. 5558 * 5559 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5560 * to buffered IO. Don't blame me, this is the price we pay for using 5561 * the generic code. 5562 */ 5563 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5564 em->block_start == EXTENT_MAP_INLINE) { 5565 free_extent_map(em); 5566 return -ENOTBLK; 5567 } 5568 5569 /* Just a good old fashioned hole, return */ 5570 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5571 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5572 free_extent_map(em); 5573 /* DIO will do one hole at a time, so just unlock a sector */ 5574 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5575 start + root->sectorsize - 1, GFP_NOFS); 5576 return 0; 5577 } 5578 5579 /* 5580 * We don't allocate a new extent in the following cases 5581 * 5582 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5583 * existing extent. 5584 * 2) The extent is marked as PREALLOC. We're good to go here and can 5585 * just use the extent. 5586 * 5587 */ 5588 if (!create) { 5589 len = em->len - (start - em->start); 5590 goto map; 5591 } 5592 5593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5594 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5595 em->block_start != EXTENT_MAP_HOLE)) { 5596 int type; 5597 int ret; 5598 u64 block_start; 5599 5600 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5601 type = BTRFS_ORDERED_PREALLOC; 5602 else 5603 type = BTRFS_ORDERED_NOCOW; 5604 len = min(len, em->len - (start - em->start)); 5605 block_start = em->block_start + (start - em->start); 5606 5607 /* 5608 * we're not going to log anything, but we do need 5609 * to make sure the current transaction stays open 5610 * while we look for nocow cross refs 5611 */ 5612 trans = btrfs_join_transaction(root); 5613 if (IS_ERR(trans)) 5614 goto must_cow; 5615 5616 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5617 ret = btrfs_add_ordered_extent_dio(inode, start, 5618 block_start, len, len, type); 5619 btrfs_end_transaction(trans, root); 5620 if (ret) { 5621 free_extent_map(em); 5622 return ret; 5623 } 5624 goto unlock; 5625 } 5626 btrfs_end_transaction(trans, root); 5627 } 5628 must_cow: 5629 /* 5630 * this will cow the extent, reset the len in case we changed 5631 * it above 5632 */ 5633 len = bh_result->b_size; 5634 em = btrfs_new_extent_direct(inode, em, start, len); 5635 if (IS_ERR(em)) 5636 return PTR_ERR(em); 5637 len = min(len, em->len - (start - em->start)); 5638 unlock: 5639 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5640 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5641 0, NULL, GFP_NOFS); 5642 map: 5643 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5644 inode->i_blkbits; 5645 bh_result->b_size = len; 5646 bh_result->b_bdev = em->bdev; 5647 set_buffer_mapped(bh_result); 5648 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5649 set_buffer_new(bh_result); 5650 5651 free_extent_map(em); 5652 5653 return 0; 5654 } 5655 5656 struct btrfs_dio_private { 5657 struct inode *inode; 5658 u64 logical_offset; 5659 u64 disk_bytenr; 5660 u64 bytes; 5661 u32 *csums; 5662 void *private; 5663 5664 /* number of bios pending for this dio */ 5665 atomic_t pending_bios; 5666 5667 /* IO errors */ 5668 int errors; 5669 5670 struct bio *orig_bio; 5671 }; 5672 5673 static void btrfs_endio_direct_read(struct bio *bio, int err) 5674 { 5675 struct btrfs_dio_private *dip = bio->bi_private; 5676 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5677 struct bio_vec *bvec = bio->bi_io_vec; 5678 struct inode *inode = dip->inode; 5679 struct btrfs_root *root = BTRFS_I(inode)->root; 5680 u64 start; 5681 u32 *private = dip->csums; 5682 5683 start = dip->logical_offset; 5684 do { 5685 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5686 struct page *page = bvec->bv_page; 5687 char *kaddr; 5688 u32 csum = ~(u32)0; 5689 unsigned long flags; 5690 5691 local_irq_save(flags); 5692 kaddr = kmap_atomic(page, KM_IRQ0); 5693 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5694 csum, bvec->bv_len); 5695 btrfs_csum_final(csum, (char *)&csum); 5696 kunmap_atomic(kaddr, KM_IRQ0); 5697 local_irq_restore(flags); 5698 5699 flush_dcache_page(bvec->bv_page); 5700 if (csum != *private) { 5701 printk(KERN_ERR "btrfs csum failed ino %llu off" 5702 " %llu csum %u private %u\n", 5703 (unsigned long long)btrfs_ino(inode), 5704 (unsigned long long)start, 5705 csum, *private); 5706 err = -EIO; 5707 } 5708 } 5709 5710 start += bvec->bv_len; 5711 private++; 5712 bvec++; 5713 } while (bvec <= bvec_end); 5714 5715 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5716 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5717 bio->bi_private = dip->private; 5718 5719 kfree(dip->csums); 5720 kfree(dip); 5721 5722 /* If we had a csum failure make sure to clear the uptodate flag */ 5723 if (err) 5724 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5725 dio_end_io(bio, err); 5726 } 5727 5728 static void btrfs_endio_direct_write(struct bio *bio, int err) 5729 { 5730 struct btrfs_dio_private *dip = bio->bi_private; 5731 struct inode *inode = dip->inode; 5732 struct btrfs_root *root = BTRFS_I(inode)->root; 5733 struct btrfs_trans_handle *trans; 5734 struct btrfs_ordered_extent *ordered = NULL; 5735 struct extent_state *cached_state = NULL; 5736 u64 ordered_offset = dip->logical_offset; 5737 u64 ordered_bytes = dip->bytes; 5738 int ret; 5739 5740 if (err) 5741 goto out_done; 5742 again: 5743 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5744 &ordered_offset, 5745 ordered_bytes); 5746 if (!ret) 5747 goto out_test; 5748 5749 BUG_ON(!ordered); 5750 5751 trans = btrfs_join_transaction(root); 5752 if (IS_ERR(trans)) { 5753 err = -ENOMEM; 5754 goto out; 5755 } 5756 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5757 5758 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5759 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5760 if (!ret) 5761 err = btrfs_update_inode_fallback(trans, root, inode); 5762 goto out; 5763 } 5764 5765 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5766 ordered->file_offset + ordered->len - 1, 0, 5767 &cached_state, GFP_NOFS); 5768 5769 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5770 ret = btrfs_mark_extent_written(trans, inode, 5771 ordered->file_offset, 5772 ordered->file_offset + 5773 ordered->len); 5774 if (ret) { 5775 err = ret; 5776 goto out_unlock; 5777 } 5778 } else { 5779 ret = insert_reserved_file_extent(trans, inode, 5780 ordered->file_offset, 5781 ordered->start, 5782 ordered->disk_len, 5783 ordered->len, 5784 ordered->len, 5785 0, 0, 0, 5786 BTRFS_FILE_EXTENT_REG); 5787 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5788 ordered->file_offset, ordered->len); 5789 if (ret) { 5790 err = ret; 5791 WARN_ON(1); 5792 goto out_unlock; 5793 } 5794 } 5795 5796 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5797 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5798 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) 5799 btrfs_update_inode_fallback(trans, root, inode); 5800 ret = 0; 5801 out_unlock: 5802 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5803 ordered->file_offset + ordered->len - 1, 5804 &cached_state, GFP_NOFS); 5805 out: 5806 btrfs_delalloc_release_metadata(inode, ordered->len); 5807 btrfs_end_transaction(trans, root); 5808 ordered_offset = ordered->file_offset + ordered->len; 5809 btrfs_put_ordered_extent(ordered); 5810 btrfs_put_ordered_extent(ordered); 5811 5812 out_test: 5813 /* 5814 * our bio might span multiple ordered extents. If we haven't 5815 * completed the accounting for the whole dio, go back and try again 5816 */ 5817 if (ordered_offset < dip->logical_offset + dip->bytes) { 5818 ordered_bytes = dip->logical_offset + dip->bytes - 5819 ordered_offset; 5820 goto again; 5821 } 5822 out_done: 5823 bio->bi_private = dip->private; 5824 5825 kfree(dip->csums); 5826 kfree(dip); 5827 5828 /* If we had an error make sure to clear the uptodate flag */ 5829 if (err) 5830 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5831 dio_end_io(bio, err); 5832 } 5833 5834 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5835 struct bio *bio, int mirror_num, 5836 unsigned long bio_flags, u64 offset) 5837 { 5838 int ret; 5839 struct btrfs_root *root = BTRFS_I(inode)->root; 5840 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5841 BUG_ON(ret); 5842 return 0; 5843 } 5844 5845 static void btrfs_end_dio_bio(struct bio *bio, int err) 5846 { 5847 struct btrfs_dio_private *dip = bio->bi_private; 5848 5849 if (err) { 5850 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 5851 "sector %#Lx len %u err no %d\n", 5852 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 5853 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5854 dip->errors = 1; 5855 5856 /* 5857 * before atomic variable goto zero, we must make sure 5858 * dip->errors is perceived to be set. 5859 */ 5860 smp_mb__before_atomic_dec(); 5861 } 5862 5863 /* if there are more bios still pending for this dio, just exit */ 5864 if (!atomic_dec_and_test(&dip->pending_bios)) 5865 goto out; 5866 5867 if (dip->errors) 5868 bio_io_error(dip->orig_bio); 5869 else { 5870 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5871 bio_endio(dip->orig_bio, 0); 5872 } 5873 out: 5874 bio_put(bio); 5875 } 5876 5877 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5878 u64 first_sector, gfp_t gfp_flags) 5879 { 5880 int nr_vecs = bio_get_nr_vecs(bdev); 5881 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5882 } 5883 5884 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5885 int rw, u64 file_offset, int skip_sum, 5886 u32 *csums, int async_submit) 5887 { 5888 int write = rw & REQ_WRITE; 5889 struct btrfs_root *root = BTRFS_I(inode)->root; 5890 int ret; 5891 5892 bio_get(bio); 5893 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5894 if (ret) 5895 goto err; 5896 5897 if (skip_sum) 5898 goto map; 5899 5900 if (write && async_submit) { 5901 ret = btrfs_wq_submit_bio(root->fs_info, 5902 inode, rw, bio, 0, 0, 5903 file_offset, 5904 __btrfs_submit_bio_start_direct_io, 5905 __btrfs_submit_bio_done); 5906 goto err; 5907 } else if (write) { 5908 /* 5909 * If we aren't doing async submit, calculate the csum of the 5910 * bio now. 5911 */ 5912 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 5913 if (ret) 5914 goto err; 5915 } else if (!skip_sum) { 5916 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 5917 file_offset, csums); 5918 if (ret) 5919 goto err; 5920 } 5921 5922 map: 5923 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 5924 err: 5925 bio_put(bio); 5926 return ret; 5927 } 5928 5929 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5930 int skip_sum) 5931 { 5932 struct inode *inode = dip->inode; 5933 struct btrfs_root *root = BTRFS_I(inode)->root; 5934 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5935 struct bio *bio; 5936 struct bio *orig_bio = dip->orig_bio; 5937 struct bio_vec *bvec = orig_bio->bi_io_vec; 5938 u64 start_sector = orig_bio->bi_sector; 5939 u64 file_offset = dip->logical_offset; 5940 u64 submit_len = 0; 5941 u64 map_length; 5942 int nr_pages = 0; 5943 u32 *csums = dip->csums; 5944 int ret = 0; 5945 int async_submit = 0; 5946 int write = rw & REQ_WRITE; 5947 5948 map_length = orig_bio->bi_size; 5949 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5950 &map_length, NULL, 0); 5951 if (ret) { 5952 bio_put(orig_bio); 5953 return -EIO; 5954 } 5955 5956 if (map_length >= orig_bio->bi_size) { 5957 bio = orig_bio; 5958 goto submit; 5959 } 5960 5961 async_submit = 1; 5962 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5963 if (!bio) 5964 return -ENOMEM; 5965 bio->bi_private = dip; 5966 bio->bi_end_io = btrfs_end_dio_bio; 5967 atomic_inc(&dip->pending_bios); 5968 5969 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5970 if (unlikely(map_length < submit_len + bvec->bv_len || 5971 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5972 bvec->bv_offset) < bvec->bv_len)) { 5973 /* 5974 * inc the count before we submit the bio so 5975 * we know the end IO handler won't happen before 5976 * we inc the count. Otherwise, the dip might get freed 5977 * before we're done setting it up 5978 */ 5979 atomic_inc(&dip->pending_bios); 5980 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5981 file_offset, skip_sum, 5982 csums, async_submit); 5983 if (ret) { 5984 bio_put(bio); 5985 atomic_dec(&dip->pending_bios); 5986 goto out_err; 5987 } 5988 5989 /* Write's use the ordered csums */ 5990 if (!write && !skip_sum) 5991 csums = csums + nr_pages; 5992 start_sector += submit_len >> 9; 5993 file_offset += submit_len; 5994 5995 submit_len = 0; 5996 nr_pages = 0; 5997 5998 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 5999 start_sector, GFP_NOFS); 6000 if (!bio) 6001 goto out_err; 6002 bio->bi_private = dip; 6003 bio->bi_end_io = btrfs_end_dio_bio; 6004 6005 map_length = orig_bio->bi_size; 6006 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6007 &map_length, NULL, 0); 6008 if (ret) { 6009 bio_put(bio); 6010 goto out_err; 6011 } 6012 } else { 6013 submit_len += bvec->bv_len; 6014 nr_pages ++; 6015 bvec++; 6016 } 6017 } 6018 6019 submit: 6020 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6021 csums, async_submit); 6022 if (!ret) 6023 return 0; 6024 6025 bio_put(bio); 6026 out_err: 6027 dip->errors = 1; 6028 /* 6029 * before atomic variable goto zero, we must 6030 * make sure dip->errors is perceived to be set. 6031 */ 6032 smp_mb__before_atomic_dec(); 6033 if (atomic_dec_and_test(&dip->pending_bios)) 6034 bio_io_error(dip->orig_bio); 6035 6036 /* bio_end_io() will handle error, so we needn't return it */ 6037 return 0; 6038 } 6039 6040 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6041 loff_t file_offset) 6042 { 6043 struct btrfs_root *root = BTRFS_I(inode)->root; 6044 struct btrfs_dio_private *dip; 6045 struct bio_vec *bvec = bio->bi_io_vec; 6046 int skip_sum; 6047 int write = rw & REQ_WRITE; 6048 int ret = 0; 6049 6050 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6051 6052 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6053 if (!dip) { 6054 ret = -ENOMEM; 6055 goto free_ordered; 6056 } 6057 dip->csums = NULL; 6058 6059 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 6060 if (!write && !skip_sum) { 6061 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6062 if (!dip->csums) { 6063 kfree(dip); 6064 ret = -ENOMEM; 6065 goto free_ordered; 6066 } 6067 } 6068 6069 dip->private = bio->bi_private; 6070 dip->inode = inode; 6071 dip->logical_offset = file_offset; 6072 6073 dip->bytes = 0; 6074 do { 6075 dip->bytes += bvec->bv_len; 6076 bvec++; 6077 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6078 6079 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6080 bio->bi_private = dip; 6081 dip->errors = 0; 6082 dip->orig_bio = bio; 6083 atomic_set(&dip->pending_bios, 0); 6084 6085 if (write) 6086 bio->bi_end_io = btrfs_endio_direct_write; 6087 else 6088 bio->bi_end_io = btrfs_endio_direct_read; 6089 6090 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6091 if (!ret) 6092 return; 6093 free_ordered: 6094 /* 6095 * If this is a write, we need to clean up the reserved space and kill 6096 * the ordered extent. 6097 */ 6098 if (write) { 6099 struct btrfs_ordered_extent *ordered; 6100 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6101 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6102 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6103 btrfs_free_reserved_extent(root, ordered->start, 6104 ordered->disk_len); 6105 btrfs_put_ordered_extent(ordered); 6106 btrfs_put_ordered_extent(ordered); 6107 } 6108 bio_endio(bio, ret); 6109 } 6110 6111 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6112 const struct iovec *iov, loff_t offset, 6113 unsigned long nr_segs) 6114 { 6115 int seg; 6116 int i; 6117 size_t size; 6118 unsigned long addr; 6119 unsigned blocksize_mask = root->sectorsize - 1; 6120 ssize_t retval = -EINVAL; 6121 loff_t end = offset; 6122 6123 if (offset & blocksize_mask) 6124 goto out; 6125 6126 /* Check the memory alignment. Blocks cannot straddle pages */ 6127 for (seg = 0; seg < nr_segs; seg++) { 6128 addr = (unsigned long)iov[seg].iov_base; 6129 size = iov[seg].iov_len; 6130 end += size; 6131 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6132 goto out; 6133 6134 /* If this is a write we don't need to check anymore */ 6135 if (rw & WRITE) 6136 continue; 6137 6138 /* 6139 * Check to make sure we don't have duplicate iov_base's in this 6140 * iovec, if so return EINVAL, otherwise we'll get csum errors 6141 * when reading back. 6142 */ 6143 for (i = seg + 1; i < nr_segs; i++) { 6144 if (iov[seg].iov_base == iov[i].iov_base) 6145 goto out; 6146 } 6147 } 6148 retval = 0; 6149 out: 6150 return retval; 6151 } 6152 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6153 const struct iovec *iov, loff_t offset, 6154 unsigned long nr_segs) 6155 { 6156 struct file *file = iocb->ki_filp; 6157 struct inode *inode = file->f_mapping->host; 6158 struct btrfs_ordered_extent *ordered; 6159 struct extent_state *cached_state = NULL; 6160 u64 lockstart, lockend; 6161 ssize_t ret; 6162 int writing = rw & WRITE; 6163 int write_bits = 0; 6164 size_t count = iov_length(iov, nr_segs); 6165 6166 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6167 offset, nr_segs)) { 6168 return 0; 6169 } 6170 6171 lockstart = offset; 6172 lockend = offset + count - 1; 6173 6174 if (writing) { 6175 ret = btrfs_delalloc_reserve_space(inode, count); 6176 if (ret) 6177 goto out; 6178 } 6179 6180 while (1) { 6181 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6182 0, &cached_state, GFP_NOFS); 6183 /* 6184 * We're concerned with the entire range that we're going to be 6185 * doing DIO to, so we need to make sure theres no ordered 6186 * extents in this range. 6187 */ 6188 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6189 lockend - lockstart + 1); 6190 if (!ordered) 6191 break; 6192 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6193 &cached_state, GFP_NOFS); 6194 btrfs_start_ordered_extent(inode, ordered, 1); 6195 btrfs_put_ordered_extent(ordered); 6196 cond_resched(); 6197 } 6198 6199 /* 6200 * we don't use btrfs_set_extent_delalloc because we don't want 6201 * the dirty or uptodate bits 6202 */ 6203 if (writing) { 6204 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6205 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6206 EXTENT_DELALLOC, 0, NULL, &cached_state, 6207 GFP_NOFS); 6208 if (ret) { 6209 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6210 lockend, EXTENT_LOCKED | write_bits, 6211 1, 0, &cached_state, GFP_NOFS); 6212 goto out; 6213 } 6214 } 6215 6216 free_extent_state(cached_state); 6217 cached_state = NULL; 6218 6219 ret = __blockdev_direct_IO(rw, iocb, inode, 6220 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6221 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6222 btrfs_submit_direct, 0); 6223 6224 if (ret < 0 && ret != -EIOCBQUEUED) { 6225 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6226 offset + iov_length(iov, nr_segs) - 1, 6227 EXTENT_LOCKED | write_bits, 1, 0, 6228 &cached_state, GFP_NOFS); 6229 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6230 /* 6231 * We're falling back to buffered, unlock the section we didn't 6232 * do IO on. 6233 */ 6234 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6235 offset + iov_length(iov, nr_segs) - 1, 6236 EXTENT_LOCKED | write_bits, 1, 0, 6237 &cached_state, GFP_NOFS); 6238 } 6239 out: 6240 free_extent_state(cached_state); 6241 return ret; 6242 } 6243 6244 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6245 __u64 start, __u64 len) 6246 { 6247 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6248 } 6249 6250 int btrfs_readpage(struct file *file, struct page *page) 6251 { 6252 struct extent_io_tree *tree; 6253 tree = &BTRFS_I(page->mapping->host)->io_tree; 6254 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 6255 } 6256 6257 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6258 { 6259 struct extent_io_tree *tree; 6260 6261 6262 if (current->flags & PF_MEMALLOC) { 6263 redirty_page_for_writepage(wbc, page); 6264 unlock_page(page); 6265 return 0; 6266 } 6267 tree = &BTRFS_I(page->mapping->host)->io_tree; 6268 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6269 } 6270 6271 int btrfs_writepages(struct address_space *mapping, 6272 struct writeback_control *wbc) 6273 { 6274 struct extent_io_tree *tree; 6275 6276 tree = &BTRFS_I(mapping->host)->io_tree; 6277 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6278 } 6279 6280 static int 6281 btrfs_readpages(struct file *file, struct address_space *mapping, 6282 struct list_head *pages, unsigned nr_pages) 6283 { 6284 struct extent_io_tree *tree; 6285 tree = &BTRFS_I(mapping->host)->io_tree; 6286 return extent_readpages(tree, mapping, pages, nr_pages, 6287 btrfs_get_extent); 6288 } 6289 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6290 { 6291 struct extent_io_tree *tree; 6292 struct extent_map_tree *map; 6293 int ret; 6294 6295 tree = &BTRFS_I(page->mapping->host)->io_tree; 6296 map = &BTRFS_I(page->mapping->host)->extent_tree; 6297 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6298 if (ret == 1) { 6299 ClearPagePrivate(page); 6300 set_page_private(page, 0); 6301 page_cache_release(page); 6302 } 6303 return ret; 6304 } 6305 6306 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6307 { 6308 if (PageWriteback(page) || PageDirty(page)) 6309 return 0; 6310 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6311 } 6312 6313 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6314 { 6315 struct extent_io_tree *tree; 6316 struct btrfs_ordered_extent *ordered; 6317 struct extent_state *cached_state = NULL; 6318 u64 page_start = page_offset(page); 6319 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6320 6321 6322 /* 6323 * we have the page locked, so new writeback can't start, 6324 * and the dirty bit won't be cleared while we are here. 6325 * 6326 * Wait for IO on this page so that we can safely clear 6327 * the PagePrivate2 bit and do ordered accounting 6328 */ 6329 wait_on_page_writeback(page); 6330 6331 tree = &BTRFS_I(page->mapping->host)->io_tree; 6332 if (offset) { 6333 btrfs_releasepage(page, GFP_NOFS); 6334 return; 6335 } 6336 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6337 GFP_NOFS); 6338 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6339 page_offset(page)); 6340 if (ordered) { 6341 /* 6342 * IO on this page will never be started, so we need 6343 * to account for any ordered extents now 6344 */ 6345 clear_extent_bit(tree, page_start, page_end, 6346 EXTENT_DIRTY | EXTENT_DELALLOC | 6347 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6348 &cached_state, GFP_NOFS); 6349 /* 6350 * whoever cleared the private bit is responsible 6351 * for the finish_ordered_io 6352 */ 6353 if (TestClearPagePrivate2(page)) { 6354 btrfs_finish_ordered_io(page->mapping->host, 6355 page_start, page_end); 6356 } 6357 btrfs_put_ordered_extent(ordered); 6358 cached_state = NULL; 6359 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6360 GFP_NOFS); 6361 } 6362 clear_extent_bit(tree, page_start, page_end, 6363 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6364 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6365 __btrfs_releasepage(page, GFP_NOFS); 6366 6367 ClearPageChecked(page); 6368 if (PagePrivate(page)) { 6369 ClearPagePrivate(page); 6370 set_page_private(page, 0); 6371 page_cache_release(page); 6372 } 6373 } 6374 6375 /* 6376 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6377 * called from a page fault handler when a page is first dirtied. Hence we must 6378 * be careful to check for EOF conditions here. We set the page up correctly 6379 * for a written page which means we get ENOSPC checking when writing into 6380 * holes and correct delalloc and unwritten extent mapping on filesystems that 6381 * support these features. 6382 * 6383 * We are not allowed to take the i_mutex here so we have to play games to 6384 * protect against truncate races as the page could now be beyond EOF. Because 6385 * vmtruncate() writes the inode size before removing pages, once we have the 6386 * page lock we can determine safely if the page is beyond EOF. If it is not 6387 * beyond EOF, then the page is guaranteed safe against truncation until we 6388 * unlock the page. 6389 */ 6390 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6391 { 6392 struct page *page = vmf->page; 6393 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6394 struct btrfs_root *root = BTRFS_I(inode)->root; 6395 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6396 struct btrfs_ordered_extent *ordered; 6397 struct extent_state *cached_state = NULL; 6398 char *kaddr; 6399 unsigned long zero_start; 6400 loff_t size; 6401 int ret; 6402 u64 page_start; 6403 u64 page_end; 6404 6405 /* Need this to keep space reservations serialized */ 6406 mutex_lock(&inode->i_mutex); 6407 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6408 mutex_unlock(&inode->i_mutex); 6409 if (!ret) 6410 ret = btrfs_update_time(vma->vm_file); 6411 if (ret) { 6412 if (ret == -ENOMEM) 6413 ret = VM_FAULT_OOM; 6414 else /* -ENOSPC, -EIO, etc */ 6415 ret = VM_FAULT_SIGBUS; 6416 goto out; 6417 } 6418 6419 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6420 again: 6421 lock_page(page); 6422 size = i_size_read(inode); 6423 page_start = page_offset(page); 6424 page_end = page_start + PAGE_CACHE_SIZE - 1; 6425 6426 if ((page->mapping != inode->i_mapping) || 6427 (page_start >= size)) { 6428 /* page got truncated out from underneath us */ 6429 goto out_unlock; 6430 } 6431 wait_on_page_writeback(page); 6432 6433 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6434 GFP_NOFS); 6435 set_page_extent_mapped(page); 6436 6437 /* 6438 * we can't set the delalloc bits if there are pending ordered 6439 * extents. Drop our locks and wait for them to finish 6440 */ 6441 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6442 if (ordered) { 6443 unlock_extent_cached(io_tree, page_start, page_end, 6444 &cached_state, GFP_NOFS); 6445 unlock_page(page); 6446 btrfs_start_ordered_extent(inode, ordered, 1); 6447 btrfs_put_ordered_extent(ordered); 6448 goto again; 6449 } 6450 6451 /* 6452 * XXX - page_mkwrite gets called every time the page is dirtied, even 6453 * if it was already dirty, so for space accounting reasons we need to 6454 * clear any delalloc bits for the range we are fixing to save. There 6455 * is probably a better way to do this, but for now keep consistent with 6456 * prepare_pages in the normal write path. 6457 */ 6458 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6459 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6460 0, 0, &cached_state, GFP_NOFS); 6461 6462 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6463 &cached_state); 6464 if (ret) { 6465 unlock_extent_cached(io_tree, page_start, page_end, 6466 &cached_state, GFP_NOFS); 6467 ret = VM_FAULT_SIGBUS; 6468 goto out_unlock; 6469 } 6470 ret = 0; 6471 6472 /* page is wholly or partially inside EOF */ 6473 if (page_start + PAGE_CACHE_SIZE > size) 6474 zero_start = size & ~PAGE_CACHE_MASK; 6475 else 6476 zero_start = PAGE_CACHE_SIZE; 6477 6478 if (zero_start != PAGE_CACHE_SIZE) { 6479 kaddr = kmap(page); 6480 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6481 flush_dcache_page(page); 6482 kunmap(page); 6483 } 6484 ClearPageChecked(page); 6485 set_page_dirty(page); 6486 SetPageUptodate(page); 6487 6488 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6489 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6490 6491 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6492 6493 out_unlock: 6494 if (!ret) 6495 return VM_FAULT_LOCKED; 6496 unlock_page(page); 6497 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6498 out: 6499 return ret; 6500 } 6501 6502 static int btrfs_truncate(struct inode *inode) 6503 { 6504 struct btrfs_root *root = BTRFS_I(inode)->root; 6505 struct btrfs_block_rsv *rsv; 6506 int ret; 6507 int err = 0; 6508 struct btrfs_trans_handle *trans; 6509 unsigned long nr; 6510 u64 mask = root->sectorsize - 1; 6511 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 6512 6513 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6514 if (ret) 6515 return ret; 6516 6517 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6518 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6519 6520 /* 6521 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6522 * 3 things going on here 6523 * 6524 * 1) We need to reserve space for our orphan item and the space to 6525 * delete our orphan item. Lord knows we don't want to have a dangling 6526 * orphan item because we didn't reserve space to remove it. 6527 * 6528 * 2) We need to reserve space to update our inode. 6529 * 6530 * 3) We need to have something to cache all the space that is going to 6531 * be free'd up by the truncate operation, but also have some slack 6532 * space reserved in case it uses space during the truncate (thank you 6533 * very much snapshotting). 6534 * 6535 * And we need these to all be seperate. The fact is we can use alot of 6536 * space doing the truncate, and we have no earthly idea how much space 6537 * we will use, so we need the truncate reservation to be seperate so it 6538 * doesn't end up using space reserved for updating the inode or 6539 * removing the orphan item. We also need to be able to stop the 6540 * transaction and start a new one, which means we need to be able to 6541 * update the inode several times, and we have no idea of knowing how 6542 * many times that will be, so we can't just reserve 1 item for the 6543 * entirety of the opration, so that has to be done seperately as well. 6544 * Then there is the orphan item, which does indeed need to be held on 6545 * to for the whole operation, and we need nobody to touch this reserved 6546 * space except the orphan code. 6547 * 6548 * So that leaves us with 6549 * 6550 * 1) root->orphan_block_rsv - for the orphan deletion. 6551 * 2) rsv - for the truncate reservation, which we will steal from the 6552 * transaction reservation. 6553 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6554 * updating the inode. 6555 */ 6556 rsv = btrfs_alloc_block_rsv(root); 6557 if (!rsv) 6558 return -ENOMEM; 6559 rsv->size = min_size; 6560 6561 /* 6562 * 1 for the truncate slack space 6563 * 1 for the orphan item we're going to add 6564 * 1 for the orphan item deletion 6565 * 1 for updating the inode. 6566 */ 6567 trans = btrfs_start_transaction(root, 4); 6568 if (IS_ERR(trans)) { 6569 err = PTR_ERR(trans); 6570 goto out; 6571 } 6572 6573 /* Migrate the slack space for the truncate to our reserve */ 6574 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 6575 min_size); 6576 BUG_ON(ret); 6577 6578 ret = btrfs_orphan_add(trans, inode); 6579 if (ret) { 6580 btrfs_end_transaction(trans, root); 6581 goto out; 6582 } 6583 6584 /* 6585 * setattr is responsible for setting the ordered_data_close flag, 6586 * but that is only tested during the last file release. That 6587 * could happen well after the next commit, leaving a great big 6588 * window where new writes may get lost if someone chooses to write 6589 * to this file after truncating to zero 6590 * 6591 * The inode doesn't have any dirty data here, and so if we commit 6592 * this is a noop. If someone immediately starts writing to the inode 6593 * it is very likely we'll catch some of their writes in this 6594 * transaction, and the commit will find this file on the ordered 6595 * data list with good things to send down. 6596 * 6597 * This is a best effort solution, there is still a window where 6598 * using truncate to replace the contents of the file will 6599 * end up with a zero length file after a crash. 6600 */ 6601 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6602 btrfs_add_ordered_operation(trans, root, inode); 6603 6604 while (1) { 6605 ret = btrfs_block_rsv_refill(root, rsv, min_size); 6606 if (ret) { 6607 /* 6608 * This can only happen with the original transaction we 6609 * started above, every other time we shouldn't have a 6610 * transaction started yet. 6611 */ 6612 if (ret == -EAGAIN) 6613 goto end_trans; 6614 err = ret; 6615 break; 6616 } 6617 6618 if (!trans) { 6619 /* Just need the 1 for updating the inode */ 6620 trans = btrfs_start_transaction(root, 1); 6621 if (IS_ERR(trans)) { 6622 ret = err = PTR_ERR(trans); 6623 trans = NULL; 6624 break; 6625 } 6626 } 6627 6628 trans->block_rsv = rsv; 6629 6630 ret = btrfs_truncate_inode_items(trans, root, inode, 6631 inode->i_size, 6632 BTRFS_EXTENT_DATA_KEY); 6633 if (ret != -EAGAIN) { 6634 err = ret; 6635 break; 6636 } 6637 6638 trans->block_rsv = &root->fs_info->trans_block_rsv; 6639 ret = btrfs_update_inode(trans, root, inode); 6640 if (ret) { 6641 err = ret; 6642 break; 6643 } 6644 end_trans: 6645 nr = trans->blocks_used; 6646 btrfs_end_transaction(trans, root); 6647 trans = NULL; 6648 btrfs_btree_balance_dirty(root, nr); 6649 } 6650 6651 if (ret == 0 && inode->i_nlink > 0) { 6652 trans->block_rsv = root->orphan_block_rsv; 6653 ret = btrfs_orphan_del(trans, inode); 6654 if (ret) 6655 err = ret; 6656 } else if (ret && inode->i_nlink > 0) { 6657 /* 6658 * Failed to do the truncate, remove us from the in memory 6659 * orphan list. 6660 */ 6661 ret = btrfs_orphan_del(NULL, inode); 6662 } 6663 6664 if (trans) { 6665 trans->block_rsv = &root->fs_info->trans_block_rsv; 6666 ret = btrfs_update_inode(trans, root, inode); 6667 if (ret && !err) 6668 err = ret; 6669 6670 nr = trans->blocks_used; 6671 ret = btrfs_end_transaction_throttle(trans, root); 6672 btrfs_btree_balance_dirty(root, nr); 6673 } 6674 6675 out: 6676 btrfs_free_block_rsv(root, rsv); 6677 6678 if (ret && !err) 6679 err = ret; 6680 6681 return err; 6682 } 6683 6684 /* 6685 * create a new subvolume directory/inode (helper for the ioctl). 6686 */ 6687 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6688 struct btrfs_root *new_root, u64 new_dirid) 6689 { 6690 struct inode *inode; 6691 int err; 6692 u64 index = 0; 6693 6694 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6695 new_dirid, S_IFDIR | 0700, &index); 6696 if (IS_ERR(inode)) 6697 return PTR_ERR(inode); 6698 inode->i_op = &btrfs_dir_inode_operations; 6699 inode->i_fop = &btrfs_dir_file_operations; 6700 6701 set_nlink(inode, 1); 6702 btrfs_i_size_write(inode, 0); 6703 6704 err = btrfs_update_inode(trans, new_root, inode); 6705 BUG_ON(err); 6706 6707 iput(inode); 6708 return 0; 6709 } 6710 6711 struct inode *btrfs_alloc_inode(struct super_block *sb) 6712 { 6713 struct btrfs_inode *ei; 6714 struct inode *inode; 6715 6716 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6717 if (!ei) 6718 return NULL; 6719 6720 ei->root = NULL; 6721 ei->space_info = NULL; 6722 ei->generation = 0; 6723 ei->sequence = 0; 6724 ei->last_trans = 0; 6725 ei->last_sub_trans = 0; 6726 ei->logged_trans = 0; 6727 ei->delalloc_bytes = 0; 6728 ei->disk_i_size = 0; 6729 ei->flags = 0; 6730 ei->csum_bytes = 0; 6731 ei->index_cnt = (u64)-1; 6732 ei->last_unlink_trans = 0; 6733 6734 spin_lock_init(&ei->lock); 6735 ei->outstanding_extents = 0; 6736 ei->reserved_extents = 0; 6737 6738 ei->ordered_data_close = 0; 6739 ei->orphan_meta_reserved = 0; 6740 ei->dummy_inode = 0; 6741 ei->in_defrag = 0; 6742 ei->delalloc_meta_reserved = 0; 6743 ei->force_compress = BTRFS_COMPRESS_NONE; 6744 6745 ei->delayed_node = NULL; 6746 6747 inode = &ei->vfs_inode; 6748 extent_map_tree_init(&ei->extent_tree); 6749 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6750 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6751 mutex_init(&ei->log_mutex); 6752 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6753 INIT_LIST_HEAD(&ei->i_orphan); 6754 INIT_LIST_HEAD(&ei->delalloc_inodes); 6755 INIT_LIST_HEAD(&ei->ordered_operations); 6756 RB_CLEAR_NODE(&ei->rb_node); 6757 6758 return inode; 6759 } 6760 6761 static void btrfs_i_callback(struct rcu_head *head) 6762 { 6763 struct inode *inode = container_of(head, struct inode, i_rcu); 6764 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6765 } 6766 6767 void btrfs_destroy_inode(struct inode *inode) 6768 { 6769 struct btrfs_ordered_extent *ordered; 6770 struct btrfs_root *root = BTRFS_I(inode)->root; 6771 6772 WARN_ON(!list_empty(&inode->i_dentry)); 6773 WARN_ON(inode->i_data.nrpages); 6774 WARN_ON(BTRFS_I(inode)->outstanding_extents); 6775 WARN_ON(BTRFS_I(inode)->reserved_extents); 6776 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 6777 WARN_ON(BTRFS_I(inode)->csum_bytes); 6778 6779 /* 6780 * This can happen where we create an inode, but somebody else also 6781 * created the same inode and we need to destroy the one we already 6782 * created. 6783 */ 6784 if (!root) 6785 goto free; 6786 6787 /* 6788 * Make sure we're properly removed from the ordered operation 6789 * lists. 6790 */ 6791 smp_mb(); 6792 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6793 spin_lock(&root->fs_info->ordered_extent_lock); 6794 list_del_init(&BTRFS_I(inode)->ordered_operations); 6795 spin_unlock(&root->fs_info->ordered_extent_lock); 6796 } 6797 6798 spin_lock(&root->orphan_lock); 6799 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6800 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 6801 (unsigned long long)btrfs_ino(inode)); 6802 list_del_init(&BTRFS_I(inode)->i_orphan); 6803 } 6804 spin_unlock(&root->orphan_lock); 6805 6806 while (1) { 6807 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6808 if (!ordered) 6809 break; 6810 else { 6811 printk(KERN_ERR "btrfs found ordered " 6812 "extent %llu %llu on inode cleanup\n", 6813 (unsigned long long)ordered->file_offset, 6814 (unsigned long long)ordered->len); 6815 btrfs_remove_ordered_extent(inode, ordered); 6816 btrfs_put_ordered_extent(ordered); 6817 btrfs_put_ordered_extent(ordered); 6818 } 6819 } 6820 inode_tree_del(inode); 6821 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6822 free: 6823 btrfs_remove_delayed_node(inode); 6824 call_rcu(&inode->i_rcu, btrfs_i_callback); 6825 } 6826 6827 int btrfs_drop_inode(struct inode *inode) 6828 { 6829 struct btrfs_root *root = BTRFS_I(inode)->root; 6830 6831 if (btrfs_root_refs(&root->root_item) == 0 && 6832 !btrfs_is_free_space_inode(root, inode)) 6833 return 1; 6834 else 6835 return generic_drop_inode(inode); 6836 } 6837 6838 static void init_once(void *foo) 6839 { 6840 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6841 6842 inode_init_once(&ei->vfs_inode); 6843 } 6844 6845 void btrfs_destroy_cachep(void) 6846 { 6847 if (btrfs_inode_cachep) 6848 kmem_cache_destroy(btrfs_inode_cachep); 6849 if (btrfs_trans_handle_cachep) 6850 kmem_cache_destroy(btrfs_trans_handle_cachep); 6851 if (btrfs_transaction_cachep) 6852 kmem_cache_destroy(btrfs_transaction_cachep); 6853 if (btrfs_path_cachep) 6854 kmem_cache_destroy(btrfs_path_cachep); 6855 if (btrfs_free_space_cachep) 6856 kmem_cache_destroy(btrfs_free_space_cachep); 6857 } 6858 6859 int btrfs_init_cachep(void) 6860 { 6861 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6862 sizeof(struct btrfs_inode), 0, 6863 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6864 if (!btrfs_inode_cachep) 6865 goto fail; 6866 6867 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6868 sizeof(struct btrfs_trans_handle), 0, 6869 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6870 if (!btrfs_trans_handle_cachep) 6871 goto fail; 6872 6873 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6874 sizeof(struct btrfs_transaction), 0, 6875 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6876 if (!btrfs_transaction_cachep) 6877 goto fail; 6878 6879 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6880 sizeof(struct btrfs_path), 0, 6881 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6882 if (!btrfs_path_cachep) 6883 goto fail; 6884 6885 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 6886 sizeof(struct btrfs_free_space), 0, 6887 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6888 if (!btrfs_free_space_cachep) 6889 goto fail; 6890 6891 return 0; 6892 fail: 6893 btrfs_destroy_cachep(); 6894 return -ENOMEM; 6895 } 6896 6897 static int btrfs_getattr(struct vfsmount *mnt, 6898 struct dentry *dentry, struct kstat *stat) 6899 { 6900 struct inode *inode = dentry->d_inode; 6901 u32 blocksize = inode->i_sb->s_blocksize; 6902 6903 generic_fillattr(inode, stat); 6904 stat->dev = BTRFS_I(inode)->root->anon_dev; 6905 stat->blksize = PAGE_CACHE_SIZE; 6906 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 6907 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9; 6908 return 0; 6909 } 6910 6911 /* 6912 * If a file is moved, it will inherit the cow and compression flags of the new 6913 * directory. 6914 */ 6915 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 6916 { 6917 struct btrfs_inode *b_dir = BTRFS_I(dir); 6918 struct btrfs_inode *b_inode = BTRFS_I(inode); 6919 6920 if (b_dir->flags & BTRFS_INODE_NODATACOW) 6921 b_inode->flags |= BTRFS_INODE_NODATACOW; 6922 else 6923 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 6924 6925 if (b_dir->flags & BTRFS_INODE_COMPRESS) 6926 b_inode->flags |= BTRFS_INODE_COMPRESS; 6927 else 6928 b_inode->flags &= ~BTRFS_INODE_COMPRESS; 6929 } 6930 6931 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6932 struct inode *new_dir, struct dentry *new_dentry) 6933 { 6934 struct btrfs_trans_handle *trans; 6935 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6936 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6937 struct inode *new_inode = new_dentry->d_inode; 6938 struct inode *old_inode = old_dentry->d_inode; 6939 struct timespec ctime = CURRENT_TIME; 6940 u64 index = 0; 6941 u64 root_objectid; 6942 int ret; 6943 u64 old_ino = btrfs_ino(old_inode); 6944 6945 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6946 return -EPERM; 6947 6948 /* we only allow rename subvolume link between subvolumes */ 6949 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6950 return -EXDEV; 6951 6952 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6953 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 6954 return -ENOTEMPTY; 6955 6956 if (S_ISDIR(old_inode->i_mode) && new_inode && 6957 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6958 return -ENOTEMPTY; 6959 /* 6960 * we're using rename to replace one file with another. 6961 * and the replacement file is large. Start IO on it now so 6962 * we don't add too much work to the end of the transaction 6963 */ 6964 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6965 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6966 filemap_flush(old_inode->i_mapping); 6967 6968 /* close the racy window with snapshot create/destroy ioctl */ 6969 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6970 down_read(&root->fs_info->subvol_sem); 6971 /* 6972 * We want to reserve the absolute worst case amount of items. So if 6973 * both inodes are subvols and we need to unlink them then that would 6974 * require 4 item modifications, but if they are both normal inodes it 6975 * would require 5 item modifications, so we'll assume their normal 6976 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6977 * should cover the worst case number of items we'll modify. 6978 */ 6979 trans = btrfs_start_transaction(root, 20); 6980 if (IS_ERR(trans)) { 6981 ret = PTR_ERR(trans); 6982 goto out_notrans; 6983 } 6984 6985 if (dest != root) 6986 btrfs_record_root_in_trans(trans, dest); 6987 6988 ret = btrfs_set_inode_index(new_dir, &index); 6989 if (ret) 6990 goto out_fail; 6991 6992 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6993 /* force full log commit if subvolume involved. */ 6994 root->fs_info->last_trans_log_full_commit = trans->transid; 6995 } else { 6996 ret = btrfs_insert_inode_ref(trans, dest, 6997 new_dentry->d_name.name, 6998 new_dentry->d_name.len, 6999 old_ino, 7000 btrfs_ino(new_dir), index); 7001 if (ret) 7002 goto out_fail; 7003 /* 7004 * this is an ugly little race, but the rename is required 7005 * to make sure that if we crash, the inode is either at the 7006 * old name or the new one. pinning the log transaction lets 7007 * us make sure we don't allow a log commit to come in after 7008 * we unlink the name but before we add the new name back in. 7009 */ 7010 btrfs_pin_log_trans(root); 7011 } 7012 /* 7013 * make sure the inode gets flushed if it is replacing 7014 * something. 7015 */ 7016 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7017 btrfs_add_ordered_operation(trans, root, old_inode); 7018 7019 old_dir->i_ctime = old_dir->i_mtime = ctime; 7020 new_dir->i_ctime = new_dir->i_mtime = ctime; 7021 old_inode->i_ctime = ctime; 7022 7023 if (old_dentry->d_parent != new_dentry->d_parent) 7024 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7025 7026 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7027 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7028 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7029 old_dentry->d_name.name, 7030 old_dentry->d_name.len); 7031 } else { 7032 ret = __btrfs_unlink_inode(trans, root, old_dir, 7033 old_dentry->d_inode, 7034 old_dentry->d_name.name, 7035 old_dentry->d_name.len); 7036 if (!ret) 7037 ret = btrfs_update_inode(trans, root, old_inode); 7038 } 7039 BUG_ON(ret); 7040 7041 if (new_inode) { 7042 new_inode->i_ctime = CURRENT_TIME; 7043 if (unlikely(btrfs_ino(new_inode) == 7044 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7045 root_objectid = BTRFS_I(new_inode)->location.objectid; 7046 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7047 root_objectid, 7048 new_dentry->d_name.name, 7049 new_dentry->d_name.len); 7050 BUG_ON(new_inode->i_nlink == 0); 7051 } else { 7052 ret = btrfs_unlink_inode(trans, dest, new_dir, 7053 new_dentry->d_inode, 7054 new_dentry->d_name.name, 7055 new_dentry->d_name.len); 7056 } 7057 BUG_ON(ret); 7058 if (new_inode->i_nlink == 0) { 7059 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7060 BUG_ON(ret); 7061 } 7062 } 7063 7064 fixup_inode_flags(new_dir, old_inode); 7065 7066 ret = btrfs_add_link(trans, new_dir, old_inode, 7067 new_dentry->d_name.name, 7068 new_dentry->d_name.len, 0, index); 7069 BUG_ON(ret); 7070 7071 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7072 struct dentry *parent = new_dentry->d_parent; 7073 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7074 btrfs_end_log_trans(root); 7075 } 7076 out_fail: 7077 btrfs_end_transaction_throttle(trans, root); 7078 out_notrans: 7079 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7080 up_read(&root->fs_info->subvol_sem); 7081 7082 return ret; 7083 } 7084 7085 /* 7086 * some fairly slow code that needs optimization. This walks the list 7087 * of all the inodes with pending delalloc and forces them to disk. 7088 */ 7089 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7090 { 7091 struct list_head *head = &root->fs_info->delalloc_inodes; 7092 struct btrfs_inode *binode; 7093 struct inode *inode; 7094 7095 if (root->fs_info->sb->s_flags & MS_RDONLY) 7096 return -EROFS; 7097 7098 spin_lock(&root->fs_info->delalloc_lock); 7099 while (!list_empty(head)) { 7100 binode = list_entry(head->next, struct btrfs_inode, 7101 delalloc_inodes); 7102 inode = igrab(&binode->vfs_inode); 7103 if (!inode) 7104 list_del_init(&binode->delalloc_inodes); 7105 spin_unlock(&root->fs_info->delalloc_lock); 7106 if (inode) { 7107 filemap_flush(inode->i_mapping); 7108 if (delay_iput) 7109 btrfs_add_delayed_iput(inode); 7110 else 7111 iput(inode); 7112 } 7113 cond_resched(); 7114 spin_lock(&root->fs_info->delalloc_lock); 7115 } 7116 spin_unlock(&root->fs_info->delalloc_lock); 7117 7118 /* the filemap_flush will queue IO into the worker threads, but 7119 * we have to make sure the IO is actually started and that 7120 * ordered extents get created before we return 7121 */ 7122 atomic_inc(&root->fs_info->async_submit_draining); 7123 while (atomic_read(&root->fs_info->nr_async_submits) || 7124 atomic_read(&root->fs_info->async_delalloc_pages)) { 7125 wait_event(root->fs_info->async_submit_wait, 7126 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7127 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7128 } 7129 atomic_dec(&root->fs_info->async_submit_draining); 7130 return 0; 7131 } 7132 7133 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7134 const char *symname) 7135 { 7136 struct btrfs_trans_handle *trans; 7137 struct btrfs_root *root = BTRFS_I(dir)->root; 7138 struct btrfs_path *path; 7139 struct btrfs_key key; 7140 struct inode *inode = NULL; 7141 int err; 7142 int drop_inode = 0; 7143 u64 objectid; 7144 u64 index = 0 ; 7145 int name_len; 7146 int datasize; 7147 unsigned long ptr; 7148 struct btrfs_file_extent_item *ei; 7149 struct extent_buffer *leaf; 7150 unsigned long nr = 0; 7151 7152 name_len = strlen(symname) + 1; 7153 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7154 return -ENAMETOOLONG; 7155 7156 /* 7157 * 2 items for inode item and ref 7158 * 2 items for dir items 7159 * 1 item for xattr if selinux is on 7160 */ 7161 trans = btrfs_start_transaction(root, 5); 7162 if (IS_ERR(trans)) 7163 return PTR_ERR(trans); 7164 7165 err = btrfs_find_free_ino(root, &objectid); 7166 if (err) 7167 goto out_unlock; 7168 7169 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7170 dentry->d_name.len, btrfs_ino(dir), objectid, 7171 S_IFLNK|S_IRWXUGO, &index); 7172 if (IS_ERR(inode)) { 7173 err = PTR_ERR(inode); 7174 goto out_unlock; 7175 } 7176 7177 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7178 if (err) { 7179 drop_inode = 1; 7180 goto out_unlock; 7181 } 7182 7183 /* 7184 * If the active LSM wants to access the inode during 7185 * d_instantiate it needs these. Smack checks to see 7186 * if the filesystem supports xattrs by looking at the 7187 * ops vector. 7188 */ 7189 inode->i_fop = &btrfs_file_operations; 7190 inode->i_op = &btrfs_file_inode_operations; 7191 7192 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7193 if (err) 7194 drop_inode = 1; 7195 else { 7196 inode->i_mapping->a_ops = &btrfs_aops; 7197 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7198 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7199 } 7200 if (drop_inode) 7201 goto out_unlock; 7202 7203 path = btrfs_alloc_path(); 7204 if (!path) { 7205 err = -ENOMEM; 7206 drop_inode = 1; 7207 goto out_unlock; 7208 } 7209 key.objectid = btrfs_ino(inode); 7210 key.offset = 0; 7211 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7212 datasize = btrfs_file_extent_calc_inline_size(name_len); 7213 err = btrfs_insert_empty_item(trans, root, path, &key, 7214 datasize); 7215 if (err) { 7216 drop_inode = 1; 7217 btrfs_free_path(path); 7218 goto out_unlock; 7219 } 7220 leaf = path->nodes[0]; 7221 ei = btrfs_item_ptr(leaf, path->slots[0], 7222 struct btrfs_file_extent_item); 7223 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7224 btrfs_set_file_extent_type(leaf, ei, 7225 BTRFS_FILE_EXTENT_INLINE); 7226 btrfs_set_file_extent_encryption(leaf, ei, 0); 7227 btrfs_set_file_extent_compression(leaf, ei, 0); 7228 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7229 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7230 7231 ptr = btrfs_file_extent_inline_start(ei); 7232 write_extent_buffer(leaf, symname, ptr, name_len); 7233 btrfs_mark_buffer_dirty(leaf); 7234 btrfs_free_path(path); 7235 7236 inode->i_op = &btrfs_symlink_inode_operations; 7237 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7238 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7239 inode_set_bytes(inode, name_len); 7240 btrfs_i_size_write(inode, name_len - 1); 7241 err = btrfs_update_inode(trans, root, inode); 7242 if (err) 7243 drop_inode = 1; 7244 7245 out_unlock: 7246 if (!err) 7247 d_instantiate(dentry, inode); 7248 nr = trans->blocks_used; 7249 btrfs_end_transaction_throttle(trans, root); 7250 if (drop_inode) { 7251 inode_dec_link_count(inode); 7252 iput(inode); 7253 } 7254 btrfs_btree_balance_dirty(root, nr); 7255 return err; 7256 } 7257 7258 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7259 u64 start, u64 num_bytes, u64 min_size, 7260 loff_t actual_len, u64 *alloc_hint, 7261 struct btrfs_trans_handle *trans) 7262 { 7263 struct btrfs_root *root = BTRFS_I(inode)->root; 7264 struct btrfs_key ins; 7265 u64 cur_offset = start; 7266 u64 i_size; 7267 int ret = 0; 7268 bool own_trans = true; 7269 7270 if (trans) 7271 own_trans = false; 7272 while (num_bytes > 0) { 7273 if (own_trans) { 7274 trans = btrfs_start_transaction(root, 3); 7275 if (IS_ERR(trans)) { 7276 ret = PTR_ERR(trans); 7277 break; 7278 } 7279 } 7280 7281 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7282 0, *alloc_hint, (u64)-1, &ins, 1); 7283 if (ret) { 7284 if (own_trans) 7285 btrfs_end_transaction(trans, root); 7286 break; 7287 } 7288 7289 ret = insert_reserved_file_extent(trans, inode, 7290 cur_offset, ins.objectid, 7291 ins.offset, ins.offset, 7292 ins.offset, 0, 0, 0, 7293 BTRFS_FILE_EXTENT_PREALLOC); 7294 BUG_ON(ret); 7295 btrfs_drop_extent_cache(inode, cur_offset, 7296 cur_offset + ins.offset -1, 0); 7297 7298 num_bytes -= ins.offset; 7299 cur_offset += ins.offset; 7300 *alloc_hint = ins.objectid + ins.offset; 7301 7302 inode->i_ctime = CURRENT_TIME; 7303 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7304 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7305 (actual_len > inode->i_size) && 7306 (cur_offset > inode->i_size)) { 7307 if (cur_offset > actual_len) 7308 i_size = actual_len; 7309 else 7310 i_size = cur_offset; 7311 i_size_write(inode, i_size); 7312 btrfs_ordered_update_i_size(inode, i_size, NULL); 7313 } 7314 7315 ret = btrfs_update_inode(trans, root, inode); 7316 BUG_ON(ret); 7317 7318 if (own_trans) 7319 btrfs_end_transaction(trans, root); 7320 } 7321 return ret; 7322 } 7323 7324 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7325 u64 start, u64 num_bytes, u64 min_size, 7326 loff_t actual_len, u64 *alloc_hint) 7327 { 7328 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7329 min_size, actual_len, alloc_hint, 7330 NULL); 7331 } 7332 7333 int btrfs_prealloc_file_range_trans(struct inode *inode, 7334 struct btrfs_trans_handle *trans, int mode, 7335 u64 start, u64 num_bytes, u64 min_size, 7336 loff_t actual_len, u64 *alloc_hint) 7337 { 7338 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7339 min_size, actual_len, alloc_hint, trans); 7340 } 7341 7342 static int btrfs_set_page_dirty(struct page *page) 7343 { 7344 return __set_page_dirty_nobuffers(page); 7345 } 7346 7347 static int btrfs_permission(struct inode *inode, int mask) 7348 { 7349 struct btrfs_root *root = BTRFS_I(inode)->root; 7350 umode_t mode = inode->i_mode; 7351 7352 if (mask & MAY_WRITE && 7353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7354 if (btrfs_root_readonly(root)) 7355 return -EROFS; 7356 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7357 return -EACCES; 7358 } 7359 return generic_permission(inode, mask); 7360 } 7361 7362 static const struct inode_operations btrfs_dir_inode_operations = { 7363 .getattr = btrfs_getattr, 7364 .lookup = btrfs_lookup, 7365 .create = btrfs_create, 7366 .unlink = btrfs_unlink, 7367 .link = btrfs_link, 7368 .mkdir = btrfs_mkdir, 7369 .rmdir = btrfs_rmdir, 7370 .rename = btrfs_rename, 7371 .symlink = btrfs_symlink, 7372 .setattr = btrfs_setattr, 7373 .mknod = btrfs_mknod, 7374 .setxattr = btrfs_setxattr, 7375 .getxattr = btrfs_getxattr, 7376 .listxattr = btrfs_listxattr, 7377 .removexattr = btrfs_removexattr, 7378 .permission = btrfs_permission, 7379 .get_acl = btrfs_get_acl, 7380 }; 7381 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7382 .lookup = btrfs_lookup, 7383 .permission = btrfs_permission, 7384 .get_acl = btrfs_get_acl, 7385 }; 7386 7387 static const struct file_operations btrfs_dir_file_operations = { 7388 .llseek = generic_file_llseek, 7389 .read = generic_read_dir, 7390 .readdir = btrfs_real_readdir, 7391 .unlocked_ioctl = btrfs_ioctl, 7392 #ifdef CONFIG_COMPAT 7393 .compat_ioctl = btrfs_ioctl, 7394 #endif 7395 .release = btrfs_release_file, 7396 .fsync = btrfs_sync_file, 7397 }; 7398 7399 static struct extent_io_ops btrfs_extent_io_ops = { 7400 .fill_delalloc = run_delalloc_range, 7401 .submit_bio_hook = btrfs_submit_bio_hook, 7402 .merge_bio_hook = btrfs_merge_bio_hook, 7403 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7404 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7405 .writepage_start_hook = btrfs_writepage_start_hook, 7406 .set_bit_hook = btrfs_set_bit_hook, 7407 .clear_bit_hook = btrfs_clear_bit_hook, 7408 .merge_extent_hook = btrfs_merge_extent_hook, 7409 .split_extent_hook = btrfs_split_extent_hook, 7410 }; 7411 7412 /* 7413 * btrfs doesn't support the bmap operation because swapfiles 7414 * use bmap to make a mapping of extents in the file. They assume 7415 * these extents won't change over the life of the file and they 7416 * use the bmap result to do IO directly to the drive. 7417 * 7418 * the btrfs bmap call would return logical addresses that aren't 7419 * suitable for IO and they also will change frequently as COW 7420 * operations happen. So, swapfile + btrfs == corruption. 7421 * 7422 * For now we're avoiding this by dropping bmap. 7423 */ 7424 static const struct address_space_operations btrfs_aops = { 7425 .readpage = btrfs_readpage, 7426 .writepage = btrfs_writepage, 7427 .writepages = btrfs_writepages, 7428 .readpages = btrfs_readpages, 7429 .direct_IO = btrfs_direct_IO, 7430 .invalidatepage = btrfs_invalidatepage, 7431 .releasepage = btrfs_releasepage, 7432 .set_page_dirty = btrfs_set_page_dirty, 7433 .error_remove_page = generic_error_remove_page, 7434 }; 7435 7436 static const struct address_space_operations btrfs_symlink_aops = { 7437 .readpage = btrfs_readpage, 7438 .writepage = btrfs_writepage, 7439 .invalidatepage = btrfs_invalidatepage, 7440 .releasepage = btrfs_releasepage, 7441 }; 7442 7443 static const struct inode_operations btrfs_file_inode_operations = { 7444 .getattr = btrfs_getattr, 7445 .setattr = btrfs_setattr, 7446 .setxattr = btrfs_setxattr, 7447 .getxattr = btrfs_getxattr, 7448 .listxattr = btrfs_listxattr, 7449 .removexattr = btrfs_removexattr, 7450 .permission = btrfs_permission, 7451 .fiemap = btrfs_fiemap, 7452 .get_acl = btrfs_get_acl, 7453 }; 7454 static const struct inode_operations btrfs_special_inode_operations = { 7455 .getattr = btrfs_getattr, 7456 .setattr = btrfs_setattr, 7457 .permission = btrfs_permission, 7458 .setxattr = btrfs_setxattr, 7459 .getxattr = btrfs_getxattr, 7460 .listxattr = btrfs_listxattr, 7461 .removexattr = btrfs_removexattr, 7462 .get_acl = btrfs_get_acl, 7463 }; 7464 static const struct inode_operations btrfs_symlink_inode_operations = { 7465 .readlink = generic_readlink, 7466 .follow_link = page_follow_link_light, 7467 .put_link = page_put_link, 7468 .getattr = btrfs_getattr, 7469 .setattr = btrfs_setattr, 7470 .permission = btrfs_permission, 7471 .setxattr = btrfs_setxattr, 7472 .getxattr = btrfs_getxattr, 7473 .listxattr = btrfs_listxattr, 7474 .removexattr = btrfs_removexattr, 7475 .get_acl = btrfs_get_acl, 7476 }; 7477 7478 const struct dentry_operations btrfs_dentry_operations = { 7479 .d_delete = btrfs_dentry_delete, 7480 .d_release = btrfs_dentry_release, 7481 }; 7482