xref: /linux/fs/btrfs/inode.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57 
58 struct btrfs_iget_args {
59 	u64 ino;
60 	struct btrfs_root *root;
61 };
62 
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72 
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
82 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
83 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
84 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
85 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
86 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
87 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
88 };
89 
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
93 static noinline int cow_file_range(struct inode *inode,
94 				   struct page *locked_page,
95 				   u64 start, u64 end, int *page_started,
96 				   unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 				struct btrfs_root *root, struct inode *inode);
99 
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 				     struct inode *inode,  struct inode *dir,
102 				     const struct qstr *qstr)
103 {
104 	int err;
105 
106 	err = btrfs_init_acl(trans, inode, dir);
107 	if (!err)
108 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109 	return err;
110 }
111 
112 /*
113  * this does all the hard work for inserting an inline extent into
114  * the btree.  The caller should have done a btrfs_drop_extents so that
115  * no overlapping inline items exist in the btree
116  */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 				struct btrfs_root *root, struct inode *inode,
119 				u64 start, size_t size, size_t compressed_size,
120 				int compress_type,
121 				struct page **compressed_pages)
122 {
123 	struct btrfs_key key;
124 	struct btrfs_path *path;
125 	struct extent_buffer *leaf;
126 	struct page *page = NULL;
127 	char *kaddr;
128 	unsigned long ptr;
129 	struct btrfs_file_extent_item *ei;
130 	int err = 0;
131 	int ret;
132 	size_t cur_size = size;
133 	size_t datasize;
134 	unsigned long offset;
135 
136 	if (compressed_size && compressed_pages)
137 		cur_size = compressed_size;
138 
139 	path = btrfs_alloc_path();
140 	if (!path)
141 		return -ENOMEM;
142 
143 	path->leave_spinning = 1;
144 
145 	key.objectid = btrfs_ino(inode);
146 	key.offset = start;
147 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
149 
150 	inode_add_bytes(inode, size);
151 	ret = btrfs_insert_empty_item(trans, root, path, &key,
152 				      datasize);
153 	BUG_ON(ret);
154 	if (ret) {
155 		err = ret;
156 		goto fail;
157 	}
158 	leaf = path->nodes[0];
159 	ei = btrfs_item_ptr(leaf, path->slots[0],
160 			    struct btrfs_file_extent_item);
161 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 	btrfs_set_file_extent_encryption(leaf, ei, 0);
164 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 	ptr = btrfs_file_extent_inline_start(ei);
167 
168 	if (compress_type != BTRFS_COMPRESS_NONE) {
169 		struct page *cpage;
170 		int i = 0;
171 		while (compressed_size > 0) {
172 			cpage = compressed_pages[i];
173 			cur_size = min_t(unsigned long, compressed_size,
174 				       PAGE_CACHE_SIZE);
175 
176 			kaddr = kmap_atomic(cpage, KM_USER0);
177 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
178 			kunmap_atomic(kaddr, KM_USER0);
179 
180 			i++;
181 			ptr += cur_size;
182 			compressed_size -= cur_size;
183 		}
184 		btrfs_set_file_extent_compression(leaf, ei,
185 						  compress_type);
186 	} else {
187 		page = find_get_page(inode->i_mapping,
188 				     start >> PAGE_CACHE_SHIFT);
189 		btrfs_set_file_extent_compression(leaf, ei, 0);
190 		kaddr = kmap_atomic(page, KM_USER0);
191 		offset = start & (PAGE_CACHE_SIZE - 1);
192 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 		kunmap_atomic(kaddr, KM_USER0);
194 		page_cache_release(page);
195 	}
196 	btrfs_mark_buffer_dirty(leaf);
197 	btrfs_free_path(path);
198 
199 	/*
200 	 * we're an inline extent, so nobody can
201 	 * extend the file past i_size without locking
202 	 * a page we already have locked.
203 	 *
204 	 * We must do any isize and inode updates
205 	 * before we unlock the pages.  Otherwise we
206 	 * could end up racing with unlink.
207 	 */
208 	BTRFS_I(inode)->disk_i_size = inode->i_size;
209 	btrfs_update_inode(trans, root, inode);
210 
211 	return 0;
212 fail:
213 	btrfs_free_path(path);
214 	return err;
215 }
216 
217 
218 /*
219  * conditionally insert an inline extent into the file.  This
220  * does the checks required to make sure the data is small enough
221  * to fit as an inline extent.
222  */
223 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
224 				 struct btrfs_root *root,
225 				 struct inode *inode, u64 start, u64 end,
226 				 size_t compressed_size, int compress_type,
227 				 struct page **compressed_pages)
228 {
229 	u64 isize = i_size_read(inode);
230 	u64 actual_end = min(end + 1, isize);
231 	u64 inline_len = actual_end - start;
232 	u64 aligned_end = (end + root->sectorsize - 1) &
233 			~((u64)root->sectorsize - 1);
234 	u64 hint_byte;
235 	u64 data_len = inline_len;
236 	int ret;
237 
238 	if (compressed_size)
239 		data_len = compressed_size;
240 
241 	if (start > 0 ||
242 	    actual_end >= PAGE_CACHE_SIZE ||
243 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244 	    (!compressed_size &&
245 	    (actual_end & (root->sectorsize - 1)) == 0) ||
246 	    end + 1 < isize ||
247 	    data_len > root->fs_info->max_inline) {
248 		return 1;
249 	}
250 
251 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
252 				 &hint_byte, 1);
253 	BUG_ON(ret);
254 
255 	if (isize > actual_end)
256 		inline_len = min_t(u64, isize, actual_end);
257 	ret = insert_inline_extent(trans, root, inode, start,
258 				   inline_len, compressed_size,
259 				   compress_type, compressed_pages);
260 	BUG_ON(ret);
261 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
262 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
263 	return 0;
264 }
265 
266 struct async_extent {
267 	u64 start;
268 	u64 ram_size;
269 	u64 compressed_size;
270 	struct page **pages;
271 	unsigned long nr_pages;
272 	int compress_type;
273 	struct list_head list;
274 };
275 
276 struct async_cow {
277 	struct inode *inode;
278 	struct btrfs_root *root;
279 	struct page *locked_page;
280 	u64 start;
281 	u64 end;
282 	struct list_head extents;
283 	struct btrfs_work work;
284 };
285 
286 static noinline int add_async_extent(struct async_cow *cow,
287 				     u64 start, u64 ram_size,
288 				     u64 compressed_size,
289 				     struct page **pages,
290 				     unsigned long nr_pages,
291 				     int compress_type)
292 {
293 	struct async_extent *async_extent;
294 
295 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
296 	BUG_ON(!async_extent);
297 	async_extent->start = start;
298 	async_extent->ram_size = ram_size;
299 	async_extent->compressed_size = compressed_size;
300 	async_extent->pages = pages;
301 	async_extent->nr_pages = nr_pages;
302 	async_extent->compress_type = compress_type;
303 	list_add_tail(&async_extent->list, &cow->extents);
304 	return 0;
305 }
306 
307 /*
308  * we create compressed extents in two phases.  The first
309  * phase compresses a range of pages that have already been
310  * locked (both pages and state bits are locked).
311  *
312  * This is done inside an ordered work queue, and the compression
313  * is spread across many cpus.  The actual IO submission is step
314  * two, and the ordered work queue takes care of making sure that
315  * happens in the same order things were put onto the queue by
316  * writepages and friends.
317  *
318  * If this code finds it can't get good compression, it puts an
319  * entry onto the work queue to write the uncompressed bytes.  This
320  * makes sure that both compressed inodes and uncompressed inodes
321  * are written in the same order that pdflush sent them down.
322  */
323 static noinline int compress_file_range(struct inode *inode,
324 					struct page *locked_page,
325 					u64 start, u64 end,
326 					struct async_cow *async_cow,
327 					int *num_added)
328 {
329 	struct btrfs_root *root = BTRFS_I(inode)->root;
330 	struct btrfs_trans_handle *trans;
331 	u64 num_bytes;
332 	u64 blocksize = root->sectorsize;
333 	u64 actual_end;
334 	u64 isize = i_size_read(inode);
335 	int ret = 0;
336 	struct page **pages = NULL;
337 	unsigned long nr_pages;
338 	unsigned long nr_pages_ret = 0;
339 	unsigned long total_compressed = 0;
340 	unsigned long total_in = 0;
341 	unsigned long max_compressed = 128 * 1024;
342 	unsigned long max_uncompressed = 128 * 1024;
343 	int i;
344 	int will_compress;
345 	int compress_type = root->fs_info->compress_type;
346 
347 	/* if this is a small write inside eof, kick off a defragbot */
348 	if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 		btrfs_add_inode_defrag(NULL, inode);
350 
351 	actual_end = min_t(u64, isize, end + 1);
352 again:
353 	will_compress = 0;
354 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
356 
357 	/*
358 	 * we don't want to send crud past the end of i_size through
359 	 * compression, that's just a waste of CPU time.  So, if the
360 	 * end of the file is before the start of our current
361 	 * requested range of bytes, we bail out to the uncompressed
362 	 * cleanup code that can deal with all of this.
363 	 *
364 	 * It isn't really the fastest way to fix things, but this is a
365 	 * very uncommon corner.
366 	 */
367 	if (actual_end <= start)
368 		goto cleanup_and_bail_uncompressed;
369 
370 	total_compressed = actual_end - start;
371 
372 	/* we want to make sure that amount of ram required to uncompress
373 	 * an extent is reasonable, so we limit the total size in ram
374 	 * of a compressed extent to 128k.  This is a crucial number
375 	 * because it also controls how easily we can spread reads across
376 	 * cpus for decompression.
377 	 *
378 	 * We also want to make sure the amount of IO required to do
379 	 * a random read is reasonably small, so we limit the size of
380 	 * a compressed extent to 128k.
381 	 */
382 	total_compressed = min(total_compressed, max_uncompressed);
383 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
384 	num_bytes = max(blocksize,  num_bytes);
385 	total_in = 0;
386 	ret = 0;
387 
388 	/*
389 	 * we do compression for mount -o compress and when the
390 	 * inode has not been flagged as nocompress.  This flag can
391 	 * change at any time if we discover bad compression ratios.
392 	 */
393 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
394 	    (btrfs_test_opt(root, COMPRESS) ||
395 	     (BTRFS_I(inode)->force_compress) ||
396 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
397 		WARN_ON(pages);
398 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
399 		if (!pages) {
400 			/* just bail out to the uncompressed code */
401 			goto cont;
402 		}
403 
404 		if (BTRFS_I(inode)->force_compress)
405 			compress_type = BTRFS_I(inode)->force_compress;
406 
407 		ret = btrfs_compress_pages(compress_type,
408 					   inode->i_mapping, start,
409 					   total_compressed, pages,
410 					   nr_pages, &nr_pages_ret,
411 					   &total_in,
412 					   &total_compressed,
413 					   max_compressed);
414 
415 		if (!ret) {
416 			unsigned long offset = total_compressed &
417 				(PAGE_CACHE_SIZE - 1);
418 			struct page *page = pages[nr_pages_ret - 1];
419 			char *kaddr;
420 
421 			/* zero the tail end of the last page, we might be
422 			 * sending it down to disk
423 			 */
424 			if (offset) {
425 				kaddr = kmap_atomic(page, KM_USER0);
426 				memset(kaddr + offset, 0,
427 				       PAGE_CACHE_SIZE - offset);
428 				kunmap_atomic(kaddr, KM_USER0);
429 			}
430 			will_compress = 1;
431 		}
432 	}
433 cont:
434 	if (start == 0) {
435 		trans = btrfs_join_transaction(root);
436 		BUG_ON(IS_ERR(trans));
437 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
438 
439 		/* lets try to make an inline extent */
440 		if (ret || total_in < (actual_end - start)) {
441 			/* we didn't compress the entire range, try
442 			 * to make an uncompressed inline extent.
443 			 */
444 			ret = cow_file_range_inline(trans, root, inode,
445 						    start, end, 0, 0, NULL);
446 		} else {
447 			/* try making a compressed inline extent */
448 			ret = cow_file_range_inline(trans, root, inode,
449 						    start, end,
450 						    total_compressed,
451 						    compress_type, pages);
452 		}
453 		if (ret == 0) {
454 			/*
455 			 * inline extent creation worked, we don't need
456 			 * to create any more async work items.  Unlock
457 			 * and free up our temp pages.
458 			 */
459 			extent_clear_unlock_delalloc(inode,
460 			     &BTRFS_I(inode)->io_tree,
461 			     start, end, NULL,
462 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
463 			     EXTENT_CLEAR_DELALLOC |
464 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
465 
466 			btrfs_end_transaction(trans, root);
467 			goto free_pages_out;
468 		}
469 		btrfs_end_transaction(trans, root);
470 	}
471 
472 	if (will_compress) {
473 		/*
474 		 * we aren't doing an inline extent round the compressed size
475 		 * up to a block size boundary so the allocator does sane
476 		 * things
477 		 */
478 		total_compressed = (total_compressed + blocksize - 1) &
479 			~(blocksize - 1);
480 
481 		/*
482 		 * one last check to make sure the compression is really a
483 		 * win, compare the page count read with the blocks on disk
484 		 */
485 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 			~(PAGE_CACHE_SIZE - 1);
487 		if (total_compressed >= total_in) {
488 			will_compress = 0;
489 		} else {
490 			num_bytes = total_in;
491 		}
492 	}
493 	if (!will_compress && pages) {
494 		/*
495 		 * the compression code ran but failed to make things smaller,
496 		 * free any pages it allocated and our page pointer array
497 		 */
498 		for (i = 0; i < nr_pages_ret; i++) {
499 			WARN_ON(pages[i]->mapping);
500 			page_cache_release(pages[i]);
501 		}
502 		kfree(pages);
503 		pages = NULL;
504 		total_compressed = 0;
505 		nr_pages_ret = 0;
506 
507 		/* flag the file so we don't compress in the future */
508 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 		    !(BTRFS_I(inode)->force_compress)) {
510 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
511 		}
512 	}
513 	if (will_compress) {
514 		*num_added += 1;
515 
516 		/* the async work queues will take care of doing actual
517 		 * allocation on disk for these compressed pages,
518 		 * and will submit them to the elevator.
519 		 */
520 		add_async_extent(async_cow, start, num_bytes,
521 				 total_compressed, pages, nr_pages_ret,
522 				 compress_type);
523 
524 		if (start + num_bytes < end) {
525 			start += num_bytes;
526 			pages = NULL;
527 			cond_resched();
528 			goto again;
529 		}
530 	} else {
531 cleanup_and_bail_uncompressed:
532 		/*
533 		 * No compression, but we still need to write the pages in
534 		 * the file we've been given so far.  redirty the locked
535 		 * page if it corresponds to our extent and set things up
536 		 * for the async work queue to run cow_file_range to do
537 		 * the normal delalloc dance
538 		 */
539 		if (page_offset(locked_page) >= start &&
540 		    page_offset(locked_page) <= end) {
541 			__set_page_dirty_nobuffers(locked_page);
542 			/* unlocked later on in the async handlers */
543 		}
544 		add_async_extent(async_cow, start, end - start + 1,
545 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
546 		*num_added += 1;
547 	}
548 
549 out:
550 	return 0;
551 
552 free_pages_out:
553 	for (i = 0; i < nr_pages_ret; i++) {
554 		WARN_ON(pages[i]->mapping);
555 		page_cache_release(pages[i]);
556 	}
557 	kfree(pages);
558 
559 	goto out;
560 }
561 
562 /*
563  * phase two of compressed writeback.  This is the ordered portion
564  * of the code, which only gets called in the order the work was
565  * queued.  We walk all the async extents created by compress_file_range
566  * and send them down to the disk.
567  */
568 static noinline int submit_compressed_extents(struct inode *inode,
569 					      struct async_cow *async_cow)
570 {
571 	struct async_extent *async_extent;
572 	u64 alloc_hint = 0;
573 	struct btrfs_trans_handle *trans;
574 	struct btrfs_key ins;
575 	struct extent_map *em;
576 	struct btrfs_root *root = BTRFS_I(inode)->root;
577 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 	struct extent_io_tree *io_tree;
579 	int ret = 0;
580 
581 	if (list_empty(&async_cow->extents))
582 		return 0;
583 
584 
585 	while (!list_empty(&async_cow->extents)) {
586 		async_extent = list_entry(async_cow->extents.next,
587 					  struct async_extent, list);
588 		list_del(&async_extent->list);
589 
590 		io_tree = &BTRFS_I(inode)->io_tree;
591 
592 retry:
593 		/* did the compression code fall back to uncompressed IO? */
594 		if (!async_extent->pages) {
595 			int page_started = 0;
596 			unsigned long nr_written = 0;
597 
598 			lock_extent(io_tree, async_extent->start,
599 					 async_extent->start +
600 					 async_extent->ram_size - 1, GFP_NOFS);
601 
602 			/* allocate blocks */
603 			ret = cow_file_range(inode, async_cow->locked_page,
604 					     async_extent->start,
605 					     async_extent->start +
606 					     async_extent->ram_size - 1,
607 					     &page_started, &nr_written, 0);
608 
609 			/*
610 			 * if page_started, cow_file_range inserted an
611 			 * inline extent and took care of all the unlocking
612 			 * and IO for us.  Otherwise, we need to submit
613 			 * all those pages down to the drive.
614 			 */
615 			if (!page_started && !ret)
616 				extent_write_locked_range(io_tree,
617 						  inode, async_extent->start,
618 						  async_extent->start +
619 						  async_extent->ram_size - 1,
620 						  btrfs_get_extent,
621 						  WB_SYNC_ALL);
622 			kfree(async_extent);
623 			cond_resched();
624 			continue;
625 		}
626 
627 		lock_extent(io_tree, async_extent->start,
628 			    async_extent->start + async_extent->ram_size - 1,
629 			    GFP_NOFS);
630 
631 		trans = btrfs_join_transaction(root);
632 		BUG_ON(IS_ERR(trans));
633 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
634 		ret = btrfs_reserve_extent(trans, root,
635 					   async_extent->compressed_size,
636 					   async_extent->compressed_size,
637 					   0, alloc_hint,
638 					   (u64)-1, &ins, 1);
639 		btrfs_end_transaction(trans, root);
640 
641 		if (ret) {
642 			int i;
643 			for (i = 0; i < async_extent->nr_pages; i++) {
644 				WARN_ON(async_extent->pages[i]->mapping);
645 				page_cache_release(async_extent->pages[i]);
646 			}
647 			kfree(async_extent->pages);
648 			async_extent->nr_pages = 0;
649 			async_extent->pages = NULL;
650 			unlock_extent(io_tree, async_extent->start,
651 				      async_extent->start +
652 				      async_extent->ram_size - 1, GFP_NOFS);
653 			goto retry;
654 		}
655 
656 		/*
657 		 * here we're doing allocation and writeback of the
658 		 * compressed pages
659 		 */
660 		btrfs_drop_extent_cache(inode, async_extent->start,
661 					async_extent->start +
662 					async_extent->ram_size - 1, 0);
663 
664 		em = alloc_extent_map();
665 		BUG_ON(!em);
666 		em->start = async_extent->start;
667 		em->len = async_extent->ram_size;
668 		em->orig_start = em->start;
669 
670 		em->block_start = ins.objectid;
671 		em->block_len = ins.offset;
672 		em->bdev = root->fs_info->fs_devices->latest_bdev;
673 		em->compress_type = async_extent->compress_type;
674 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
675 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
676 
677 		while (1) {
678 			write_lock(&em_tree->lock);
679 			ret = add_extent_mapping(em_tree, em);
680 			write_unlock(&em_tree->lock);
681 			if (ret != -EEXIST) {
682 				free_extent_map(em);
683 				break;
684 			}
685 			btrfs_drop_extent_cache(inode, async_extent->start,
686 						async_extent->start +
687 						async_extent->ram_size - 1, 0);
688 		}
689 
690 		ret = btrfs_add_ordered_extent_compress(inode,
691 						async_extent->start,
692 						ins.objectid,
693 						async_extent->ram_size,
694 						ins.offset,
695 						BTRFS_ORDERED_COMPRESSED,
696 						async_extent->compress_type);
697 		BUG_ON(ret);
698 
699 		/*
700 		 * clear dirty, set writeback and unlock the pages.
701 		 */
702 		extent_clear_unlock_delalloc(inode,
703 				&BTRFS_I(inode)->io_tree,
704 				async_extent->start,
705 				async_extent->start +
706 				async_extent->ram_size - 1,
707 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
708 				EXTENT_CLEAR_UNLOCK |
709 				EXTENT_CLEAR_DELALLOC |
710 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
711 
712 		ret = btrfs_submit_compressed_write(inode,
713 				    async_extent->start,
714 				    async_extent->ram_size,
715 				    ins.objectid,
716 				    ins.offset, async_extent->pages,
717 				    async_extent->nr_pages);
718 
719 		BUG_ON(ret);
720 		alloc_hint = ins.objectid + ins.offset;
721 		kfree(async_extent);
722 		cond_resched();
723 	}
724 
725 	return 0;
726 }
727 
728 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
729 				      u64 num_bytes)
730 {
731 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 	struct extent_map *em;
733 	u64 alloc_hint = 0;
734 
735 	read_lock(&em_tree->lock);
736 	em = search_extent_mapping(em_tree, start, num_bytes);
737 	if (em) {
738 		/*
739 		 * if block start isn't an actual block number then find the
740 		 * first block in this inode and use that as a hint.  If that
741 		 * block is also bogus then just don't worry about it.
742 		 */
743 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
744 			free_extent_map(em);
745 			em = search_extent_mapping(em_tree, 0, 0);
746 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
747 				alloc_hint = em->block_start;
748 			if (em)
749 				free_extent_map(em);
750 		} else {
751 			alloc_hint = em->block_start;
752 			free_extent_map(em);
753 		}
754 	}
755 	read_unlock(&em_tree->lock);
756 
757 	return alloc_hint;
758 }
759 
760 /*
761  * when extent_io.c finds a delayed allocation range in the file,
762  * the call backs end up in this code.  The basic idea is to
763  * allocate extents on disk for the range, and create ordered data structs
764  * in ram to track those extents.
765  *
766  * locked_page is the page that writepage had locked already.  We use
767  * it to make sure we don't do extra locks or unlocks.
768  *
769  * *page_started is set to one if we unlock locked_page and do everything
770  * required to start IO on it.  It may be clean and already done with
771  * IO when we return.
772  */
773 static noinline int cow_file_range(struct inode *inode,
774 				   struct page *locked_page,
775 				   u64 start, u64 end, int *page_started,
776 				   unsigned long *nr_written,
777 				   int unlock)
778 {
779 	struct btrfs_root *root = BTRFS_I(inode)->root;
780 	struct btrfs_trans_handle *trans;
781 	u64 alloc_hint = 0;
782 	u64 num_bytes;
783 	unsigned long ram_size;
784 	u64 disk_num_bytes;
785 	u64 cur_alloc_size;
786 	u64 blocksize = root->sectorsize;
787 	struct btrfs_key ins;
788 	struct extent_map *em;
789 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
790 	int ret = 0;
791 
792 	BUG_ON(btrfs_is_free_space_inode(root, inode));
793 	trans = btrfs_join_transaction(root);
794 	BUG_ON(IS_ERR(trans));
795 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
796 
797 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
798 	num_bytes = max(blocksize,  num_bytes);
799 	disk_num_bytes = num_bytes;
800 	ret = 0;
801 
802 	/* if this is a small write inside eof, kick off defrag */
803 	if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
804 		btrfs_add_inode_defrag(trans, inode);
805 
806 	if (start == 0) {
807 		/* lets try to make an inline extent */
808 		ret = cow_file_range_inline(trans, root, inode,
809 					    start, end, 0, 0, NULL);
810 		if (ret == 0) {
811 			extent_clear_unlock_delalloc(inode,
812 				     &BTRFS_I(inode)->io_tree,
813 				     start, end, NULL,
814 				     EXTENT_CLEAR_UNLOCK_PAGE |
815 				     EXTENT_CLEAR_UNLOCK |
816 				     EXTENT_CLEAR_DELALLOC |
817 				     EXTENT_CLEAR_DIRTY |
818 				     EXTENT_SET_WRITEBACK |
819 				     EXTENT_END_WRITEBACK);
820 
821 			*nr_written = *nr_written +
822 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
823 			*page_started = 1;
824 			ret = 0;
825 			goto out;
826 		}
827 	}
828 
829 	BUG_ON(disk_num_bytes >
830 	       btrfs_super_total_bytes(root->fs_info->super_copy));
831 
832 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
833 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
834 
835 	while (disk_num_bytes > 0) {
836 		unsigned long op;
837 
838 		cur_alloc_size = disk_num_bytes;
839 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
840 					   root->sectorsize, 0, alloc_hint,
841 					   (u64)-1, &ins, 1);
842 		BUG_ON(ret);
843 
844 		em = alloc_extent_map();
845 		BUG_ON(!em);
846 		em->start = start;
847 		em->orig_start = em->start;
848 		ram_size = ins.offset;
849 		em->len = ins.offset;
850 
851 		em->block_start = ins.objectid;
852 		em->block_len = ins.offset;
853 		em->bdev = root->fs_info->fs_devices->latest_bdev;
854 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
855 
856 		while (1) {
857 			write_lock(&em_tree->lock);
858 			ret = add_extent_mapping(em_tree, em);
859 			write_unlock(&em_tree->lock);
860 			if (ret != -EEXIST) {
861 				free_extent_map(em);
862 				break;
863 			}
864 			btrfs_drop_extent_cache(inode, start,
865 						start + ram_size - 1, 0);
866 		}
867 
868 		cur_alloc_size = ins.offset;
869 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
870 					       ram_size, cur_alloc_size, 0);
871 		BUG_ON(ret);
872 
873 		if (root->root_key.objectid ==
874 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
875 			ret = btrfs_reloc_clone_csums(inode, start,
876 						      cur_alloc_size);
877 			BUG_ON(ret);
878 		}
879 
880 		if (disk_num_bytes < cur_alloc_size)
881 			break;
882 
883 		/* we're not doing compressed IO, don't unlock the first
884 		 * page (which the caller expects to stay locked), don't
885 		 * clear any dirty bits and don't set any writeback bits
886 		 *
887 		 * Do set the Private2 bit so we know this page was properly
888 		 * setup for writepage
889 		 */
890 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
891 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
892 			EXTENT_SET_PRIVATE2;
893 
894 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
895 					     start, start + ram_size - 1,
896 					     locked_page, op);
897 		disk_num_bytes -= cur_alloc_size;
898 		num_bytes -= cur_alloc_size;
899 		alloc_hint = ins.objectid + ins.offset;
900 		start += cur_alloc_size;
901 	}
902 out:
903 	ret = 0;
904 	btrfs_end_transaction(trans, root);
905 
906 	return ret;
907 }
908 
909 /*
910  * work queue call back to started compression on a file and pages
911  */
912 static noinline void async_cow_start(struct btrfs_work *work)
913 {
914 	struct async_cow *async_cow;
915 	int num_added = 0;
916 	async_cow = container_of(work, struct async_cow, work);
917 
918 	compress_file_range(async_cow->inode, async_cow->locked_page,
919 			    async_cow->start, async_cow->end, async_cow,
920 			    &num_added);
921 	if (num_added == 0)
922 		async_cow->inode = NULL;
923 }
924 
925 /*
926  * work queue call back to submit previously compressed pages
927  */
928 static noinline void async_cow_submit(struct btrfs_work *work)
929 {
930 	struct async_cow *async_cow;
931 	struct btrfs_root *root;
932 	unsigned long nr_pages;
933 
934 	async_cow = container_of(work, struct async_cow, work);
935 
936 	root = async_cow->root;
937 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
938 		PAGE_CACHE_SHIFT;
939 
940 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
941 
942 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
943 	    5 * 1042 * 1024 &&
944 	    waitqueue_active(&root->fs_info->async_submit_wait))
945 		wake_up(&root->fs_info->async_submit_wait);
946 
947 	if (async_cow->inode)
948 		submit_compressed_extents(async_cow->inode, async_cow);
949 }
950 
951 static noinline void async_cow_free(struct btrfs_work *work)
952 {
953 	struct async_cow *async_cow;
954 	async_cow = container_of(work, struct async_cow, work);
955 	kfree(async_cow);
956 }
957 
958 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
959 				u64 start, u64 end, int *page_started,
960 				unsigned long *nr_written)
961 {
962 	struct async_cow *async_cow;
963 	struct btrfs_root *root = BTRFS_I(inode)->root;
964 	unsigned long nr_pages;
965 	u64 cur_end;
966 	int limit = 10 * 1024 * 1042;
967 
968 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
969 			 1, 0, NULL, GFP_NOFS);
970 	while (start < end) {
971 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
972 		BUG_ON(!async_cow);
973 		async_cow->inode = inode;
974 		async_cow->root = root;
975 		async_cow->locked_page = locked_page;
976 		async_cow->start = start;
977 
978 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
979 			cur_end = end;
980 		else
981 			cur_end = min(end, start + 512 * 1024 - 1);
982 
983 		async_cow->end = cur_end;
984 		INIT_LIST_HEAD(&async_cow->extents);
985 
986 		async_cow->work.func = async_cow_start;
987 		async_cow->work.ordered_func = async_cow_submit;
988 		async_cow->work.ordered_free = async_cow_free;
989 		async_cow->work.flags = 0;
990 
991 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
992 			PAGE_CACHE_SHIFT;
993 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
994 
995 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
996 				   &async_cow->work);
997 
998 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
999 			wait_event(root->fs_info->async_submit_wait,
1000 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1001 			    limit));
1002 		}
1003 
1004 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1005 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1006 			wait_event(root->fs_info->async_submit_wait,
1007 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1008 			   0));
1009 		}
1010 
1011 		*nr_written += nr_pages;
1012 		start = cur_end + 1;
1013 	}
1014 	*page_started = 1;
1015 	return 0;
1016 }
1017 
1018 static noinline int csum_exist_in_range(struct btrfs_root *root,
1019 					u64 bytenr, u64 num_bytes)
1020 {
1021 	int ret;
1022 	struct btrfs_ordered_sum *sums;
1023 	LIST_HEAD(list);
1024 
1025 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1026 				       bytenr + num_bytes - 1, &list, 0);
1027 	if (ret == 0 && list_empty(&list))
1028 		return 0;
1029 
1030 	while (!list_empty(&list)) {
1031 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1032 		list_del(&sums->list);
1033 		kfree(sums);
1034 	}
1035 	return 1;
1036 }
1037 
1038 /*
1039  * when nowcow writeback call back.  This checks for snapshots or COW copies
1040  * of the extents that exist in the file, and COWs the file as required.
1041  *
1042  * If no cow copies or snapshots exist, we write directly to the existing
1043  * blocks on disk
1044  */
1045 static noinline int run_delalloc_nocow(struct inode *inode,
1046 				       struct page *locked_page,
1047 			      u64 start, u64 end, int *page_started, int force,
1048 			      unsigned long *nr_written)
1049 {
1050 	struct btrfs_root *root = BTRFS_I(inode)->root;
1051 	struct btrfs_trans_handle *trans;
1052 	struct extent_buffer *leaf;
1053 	struct btrfs_path *path;
1054 	struct btrfs_file_extent_item *fi;
1055 	struct btrfs_key found_key;
1056 	u64 cow_start;
1057 	u64 cur_offset;
1058 	u64 extent_end;
1059 	u64 extent_offset;
1060 	u64 disk_bytenr;
1061 	u64 num_bytes;
1062 	int extent_type;
1063 	int ret;
1064 	int type;
1065 	int nocow;
1066 	int check_prev = 1;
1067 	bool nolock;
1068 	u64 ino = btrfs_ino(inode);
1069 
1070 	path = btrfs_alloc_path();
1071 	if (!path)
1072 		return -ENOMEM;
1073 
1074 	nolock = btrfs_is_free_space_inode(root, inode);
1075 
1076 	if (nolock)
1077 		trans = btrfs_join_transaction_nolock(root);
1078 	else
1079 		trans = btrfs_join_transaction(root);
1080 
1081 	BUG_ON(IS_ERR(trans));
1082 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1083 
1084 	cow_start = (u64)-1;
1085 	cur_offset = start;
1086 	while (1) {
1087 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1088 					       cur_offset, 0);
1089 		BUG_ON(ret < 0);
1090 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1091 			leaf = path->nodes[0];
1092 			btrfs_item_key_to_cpu(leaf, &found_key,
1093 					      path->slots[0] - 1);
1094 			if (found_key.objectid == ino &&
1095 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1096 				path->slots[0]--;
1097 		}
1098 		check_prev = 0;
1099 next_slot:
1100 		leaf = path->nodes[0];
1101 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1102 			ret = btrfs_next_leaf(root, path);
1103 			if (ret < 0)
1104 				BUG_ON(1);
1105 			if (ret > 0)
1106 				break;
1107 			leaf = path->nodes[0];
1108 		}
1109 
1110 		nocow = 0;
1111 		disk_bytenr = 0;
1112 		num_bytes = 0;
1113 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1114 
1115 		if (found_key.objectid > ino ||
1116 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1117 		    found_key.offset > end)
1118 			break;
1119 
1120 		if (found_key.offset > cur_offset) {
1121 			extent_end = found_key.offset;
1122 			extent_type = 0;
1123 			goto out_check;
1124 		}
1125 
1126 		fi = btrfs_item_ptr(leaf, path->slots[0],
1127 				    struct btrfs_file_extent_item);
1128 		extent_type = btrfs_file_extent_type(leaf, fi);
1129 
1130 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1131 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1132 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1133 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1134 			extent_end = found_key.offset +
1135 				btrfs_file_extent_num_bytes(leaf, fi);
1136 			if (extent_end <= start) {
1137 				path->slots[0]++;
1138 				goto next_slot;
1139 			}
1140 			if (disk_bytenr == 0)
1141 				goto out_check;
1142 			if (btrfs_file_extent_compression(leaf, fi) ||
1143 			    btrfs_file_extent_encryption(leaf, fi) ||
1144 			    btrfs_file_extent_other_encoding(leaf, fi))
1145 				goto out_check;
1146 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1147 				goto out_check;
1148 			if (btrfs_extent_readonly(root, disk_bytenr))
1149 				goto out_check;
1150 			if (btrfs_cross_ref_exist(trans, root, ino,
1151 						  found_key.offset -
1152 						  extent_offset, disk_bytenr))
1153 				goto out_check;
1154 			disk_bytenr += extent_offset;
1155 			disk_bytenr += cur_offset - found_key.offset;
1156 			num_bytes = min(end + 1, extent_end) - cur_offset;
1157 			/*
1158 			 * force cow if csum exists in the range.
1159 			 * this ensure that csum for a given extent are
1160 			 * either valid or do not exist.
1161 			 */
1162 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1163 				goto out_check;
1164 			nocow = 1;
1165 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1166 			extent_end = found_key.offset +
1167 				btrfs_file_extent_inline_len(leaf, fi);
1168 			extent_end = ALIGN(extent_end, root->sectorsize);
1169 		} else {
1170 			BUG_ON(1);
1171 		}
1172 out_check:
1173 		if (extent_end <= start) {
1174 			path->slots[0]++;
1175 			goto next_slot;
1176 		}
1177 		if (!nocow) {
1178 			if (cow_start == (u64)-1)
1179 				cow_start = cur_offset;
1180 			cur_offset = extent_end;
1181 			if (cur_offset > end)
1182 				break;
1183 			path->slots[0]++;
1184 			goto next_slot;
1185 		}
1186 
1187 		btrfs_release_path(path);
1188 		if (cow_start != (u64)-1) {
1189 			ret = cow_file_range(inode, locked_page, cow_start,
1190 					found_key.offset - 1, page_started,
1191 					nr_written, 1);
1192 			BUG_ON(ret);
1193 			cow_start = (u64)-1;
1194 		}
1195 
1196 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1197 			struct extent_map *em;
1198 			struct extent_map_tree *em_tree;
1199 			em_tree = &BTRFS_I(inode)->extent_tree;
1200 			em = alloc_extent_map();
1201 			BUG_ON(!em);
1202 			em->start = cur_offset;
1203 			em->orig_start = em->start;
1204 			em->len = num_bytes;
1205 			em->block_len = num_bytes;
1206 			em->block_start = disk_bytenr;
1207 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1208 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1209 			while (1) {
1210 				write_lock(&em_tree->lock);
1211 				ret = add_extent_mapping(em_tree, em);
1212 				write_unlock(&em_tree->lock);
1213 				if (ret != -EEXIST) {
1214 					free_extent_map(em);
1215 					break;
1216 				}
1217 				btrfs_drop_extent_cache(inode, em->start,
1218 						em->start + em->len - 1, 0);
1219 			}
1220 			type = BTRFS_ORDERED_PREALLOC;
1221 		} else {
1222 			type = BTRFS_ORDERED_NOCOW;
1223 		}
1224 
1225 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1226 					       num_bytes, num_bytes, type);
1227 		BUG_ON(ret);
1228 
1229 		if (root->root_key.objectid ==
1230 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1231 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1232 						      num_bytes);
1233 			BUG_ON(ret);
1234 		}
1235 
1236 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1237 				cur_offset, cur_offset + num_bytes - 1,
1238 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1239 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1240 				EXTENT_SET_PRIVATE2);
1241 		cur_offset = extent_end;
1242 		if (cur_offset > end)
1243 			break;
1244 	}
1245 	btrfs_release_path(path);
1246 
1247 	if (cur_offset <= end && cow_start == (u64)-1)
1248 		cow_start = cur_offset;
1249 	if (cow_start != (u64)-1) {
1250 		ret = cow_file_range(inode, locked_page, cow_start, end,
1251 				     page_started, nr_written, 1);
1252 		BUG_ON(ret);
1253 	}
1254 
1255 	if (nolock) {
1256 		ret = btrfs_end_transaction_nolock(trans, root);
1257 		BUG_ON(ret);
1258 	} else {
1259 		ret = btrfs_end_transaction(trans, root);
1260 		BUG_ON(ret);
1261 	}
1262 	btrfs_free_path(path);
1263 	return 0;
1264 }
1265 
1266 /*
1267  * extent_io.c call back to do delayed allocation processing
1268  */
1269 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1270 			      u64 start, u64 end, int *page_started,
1271 			      unsigned long *nr_written)
1272 {
1273 	int ret;
1274 	struct btrfs_root *root = BTRFS_I(inode)->root;
1275 
1276 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1277 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1278 					 page_started, 1, nr_written);
1279 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1280 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1281 					 page_started, 0, nr_written);
1282 	else if (!btrfs_test_opt(root, COMPRESS) &&
1283 		 !(BTRFS_I(inode)->force_compress) &&
1284 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1285 		ret = cow_file_range(inode, locked_page, start, end,
1286 				      page_started, nr_written, 1);
1287 	else
1288 		ret = cow_file_range_async(inode, locked_page, start, end,
1289 					   page_started, nr_written);
1290 	return ret;
1291 }
1292 
1293 static void btrfs_split_extent_hook(struct inode *inode,
1294 				    struct extent_state *orig, u64 split)
1295 {
1296 	/* not delalloc, ignore it */
1297 	if (!(orig->state & EXTENT_DELALLOC))
1298 		return;
1299 
1300 	spin_lock(&BTRFS_I(inode)->lock);
1301 	BTRFS_I(inode)->outstanding_extents++;
1302 	spin_unlock(&BTRFS_I(inode)->lock);
1303 }
1304 
1305 /*
1306  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307  * extents so we can keep track of new extents that are just merged onto old
1308  * extents, such as when we are doing sequential writes, so we can properly
1309  * account for the metadata space we'll need.
1310  */
1311 static void btrfs_merge_extent_hook(struct inode *inode,
1312 				    struct extent_state *new,
1313 				    struct extent_state *other)
1314 {
1315 	/* not delalloc, ignore it */
1316 	if (!(other->state & EXTENT_DELALLOC))
1317 		return;
1318 
1319 	spin_lock(&BTRFS_I(inode)->lock);
1320 	BTRFS_I(inode)->outstanding_extents--;
1321 	spin_unlock(&BTRFS_I(inode)->lock);
1322 }
1323 
1324 /*
1325  * extent_io.c set_bit_hook, used to track delayed allocation
1326  * bytes in this file, and to maintain the list of inodes that
1327  * have pending delalloc work to be done.
1328  */
1329 static void btrfs_set_bit_hook(struct inode *inode,
1330 			       struct extent_state *state, int *bits)
1331 {
1332 
1333 	/*
1334 	 * set_bit and clear bit hooks normally require _irqsave/restore
1335 	 * but in this case, we are only testing for the DELALLOC
1336 	 * bit, which is only set or cleared with irqs on
1337 	 */
1338 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1339 		struct btrfs_root *root = BTRFS_I(inode)->root;
1340 		u64 len = state->end + 1 - state->start;
1341 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1342 
1343 		if (*bits & EXTENT_FIRST_DELALLOC) {
1344 			*bits &= ~EXTENT_FIRST_DELALLOC;
1345 		} else {
1346 			spin_lock(&BTRFS_I(inode)->lock);
1347 			BTRFS_I(inode)->outstanding_extents++;
1348 			spin_unlock(&BTRFS_I(inode)->lock);
1349 		}
1350 
1351 		spin_lock(&root->fs_info->delalloc_lock);
1352 		BTRFS_I(inode)->delalloc_bytes += len;
1353 		root->fs_info->delalloc_bytes += len;
1354 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1355 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1356 				      &root->fs_info->delalloc_inodes);
1357 		}
1358 		spin_unlock(&root->fs_info->delalloc_lock);
1359 	}
1360 }
1361 
1362 /*
1363  * extent_io.c clear_bit_hook, see set_bit_hook for why
1364  */
1365 static void btrfs_clear_bit_hook(struct inode *inode,
1366 				 struct extent_state *state, int *bits)
1367 {
1368 	/*
1369 	 * set_bit and clear bit hooks normally require _irqsave/restore
1370 	 * but in this case, we are only testing for the DELALLOC
1371 	 * bit, which is only set or cleared with irqs on
1372 	 */
1373 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1374 		struct btrfs_root *root = BTRFS_I(inode)->root;
1375 		u64 len = state->end + 1 - state->start;
1376 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1377 
1378 		if (*bits & EXTENT_FIRST_DELALLOC) {
1379 			*bits &= ~EXTENT_FIRST_DELALLOC;
1380 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1381 			spin_lock(&BTRFS_I(inode)->lock);
1382 			BTRFS_I(inode)->outstanding_extents--;
1383 			spin_unlock(&BTRFS_I(inode)->lock);
1384 		}
1385 
1386 		if (*bits & EXTENT_DO_ACCOUNTING)
1387 			btrfs_delalloc_release_metadata(inode, len);
1388 
1389 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1390 		    && do_list)
1391 			btrfs_free_reserved_data_space(inode, len);
1392 
1393 		spin_lock(&root->fs_info->delalloc_lock);
1394 		root->fs_info->delalloc_bytes -= len;
1395 		BTRFS_I(inode)->delalloc_bytes -= len;
1396 
1397 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1398 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1399 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1400 		}
1401 		spin_unlock(&root->fs_info->delalloc_lock);
1402 	}
1403 }
1404 
1405 /*
1406  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407  * we don't create bios that span stripes or chunks
1408  */
1409 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1410 			 size_t size, struct bio *bio,
1411 			 unsigned long bio_flags)
1412 {
1413 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1414 	struct btrfs_mapping_tree *map_tree;
1415 	u64 logical = (u64)bio->bi_sector << 9;
1416 	u64 length = 0;
1417 	u64 map_length;
1418 	int ret;
1419 
1420 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1421 		return 0;
1422 
1423 	length = bio->bi_size;
1424 	map_tree = &root->fs_info->mapping_tree;
1425 	map_length = length;
1426 	ret = btrfs_map_block(map_tree, READ, logical,
1427 			      &map_length, NULL, 0);
1428 
1429 	if (map_length < length + size)
1430 		return 1;
1431 	return ret;
1432 }
1433 
1434 /*
1435  * in order to insert checksums into the metadata in large chunks,
1436  * we wait until bio submission time.   All the pages in the bio are
1437  * checksummed and sums are attached onto the ordered extent record.
1438  *
1439  * At IO completion time the cums attached on the ordered extent record
1440  * are inserted into the btree
1441  */
1442 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1443 				    struct bio *bio, int mirror_num,
1444 				    unsigned long bio_flags,
1445 				    u64 bio_offset)
1446 {
1447 	struct btrfs_root *root = BTRFS_I(inode)->root;
1448 	int ret = 0;
1449 
1450 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1451 	BUG_ON(ret);
1452 	return 0;
1453 }
1454 
1455 /*
1456  * in order to insert checksums into the metadata in large chunks,
1457  * we wait until bio submission time.   All the pages in the bio are
1458  * checksummed and sums are attached onto the ordered extent record.
1459  *
1460  * At IO completion time the cums attached on the ordered extent record
1461  * are inserted into the btree
1462  */
1463 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1464 			  int mirror_num, unsigned long bio_flags,
1465 			  u64 bio_offset)
1466 {
1467 	struct btrfs_root *root = BTRFS_I(inode)->root;
1468 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1469 }
1470 
1471 /*
1472  * extent_io.c submission hook. This does the right thing for csum calculation
1473  * on write, or reading the csums from the tree before a read
1474  */
1475 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1476 			  int mirror_num, unsigned long bio_flags,
1477 			  u64 bio_offset)
1478 {
1479 	struct btrfs_root *root = BTRFS_I(inode)->root;
1480 	int ret = 0;
1481 	int skip_sum;
1482 
1483 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1484 
1485 	if (btrfs_is_free_space_inode(root, inode))
1486 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1487 	else
1488 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1489 	BUG_ON(ret);
1490 
1491 	if (!(rw & REQ_WRITE)) {
1492 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1493 			return btrfs_submit_compressed_read(inode, bio,
1494 						    mirror_num, bio_flags);
1495 		} else if (!skip_sum) {
1496 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1497 			if (ret)
1498 				return ret;
1499 		}
1500 		goto mapit;
1501 	} else if (!skip_sum) {
1502 		/* csum items have already been cloned */
1503 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1504 			goto mapit;
1505 		/* we're doing a write, do the async checksumming */
1506 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1507 				   inode, rw, bio, mirror_num,
1508 				   bio_flags, bio_offset,
1509 				   __btrfs_submit_bio_start,
1510 				   __btrfs_submit_bio_done);
1511 	}
1512 
1513 mapit:
1514 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1515 }
1516 
1517 /*
1518  * given a list of ordered sums record them in the inode.  This happens
1519  * at IO completion time based on sums calculated at bio submission time.
1520  */
1521 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1522 			     struct inode *inode, u64 file_offset,
1523 			     struct list_head *list)
1524 {
1525 	struct btrfs_ordered_sum *sum;
1526 
1527 	list_for_each_entry(sum, list, list) {
1528 		btrfs_csum_file_blocks(trans,
1529 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1530 	}
1531 	return 0;
1532 }
1533 
1534 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1535 			      struct extent_state **cached_state)
1536 {
1537 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1538 		WARN_ON(1);
1539 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1540 				   cached_state, GFP_NOFS);
1541 }
1542 
1543 /* see btrfs_writepage_start_hook for details on why this is required */
1544 struct btrfs_writepage_fixup {
1545 	struct page *page;
1546 	struct btrfs_work work;
1547 };
1548 
1549 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1550 {
1551 	struct btrfs_writepage_fixup *fixup;
1552 	struct btrfs_ordered_extent *ordered;
1553 	struct extent_state *cached_state = NULL;
1554 	struct page *page;
1555 	struct inode *inode;
1556 	u64 page_start;
1557 	u64 page_end;
1558 
1559 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1560 	page = fixup->page;
1561 again:
1562 	lock_page(page);
1563 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1564 		ClearPageChecked(page);
1565 		goto out_page;
1566 	}
1567 
1568 	inode = page->mapping->host;
1569 	page_start = page_offset(page);
1570 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1571 
1572 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1573 			 &cached_state, GFP_NOFS);
1574 
1575 	/* already ordered? We're done */
1576 	if (PagePrivate2(page))
1577 		goto out;
1578 
1579 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1580 	if (ordered) {
1581 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1582 				     page_end, &cached_state, GFP_NOFS);
1583 		unlock_page(page);
1584 		btrfs_start_ordered_extent(inode, ordered, 1);
1585 		goto again;
1586 	}
1587 
1588 	BUG();
1589 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1590 	ClearPageChecked(page);
1591 out:
1592 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1593 			     &cached_state, GFP_NOFS);
1594 out_page:
1595 	unlock_page(page);
1596 	page_cache_release(page);
1597 	kfree(fixup);
1598 }
1599 
1600 /*
1601  * There are a few paths in the higher layers of the kernel that directly
1602  * set the page dirty bit without asking the filesystem if it is a
1603  * good idea.  This causes problems because we want to make sure COW
1604  * properly happens and the data=ordered rules are followed.
1605  *
1606  * In our case any range that doesn't have the ORDERED bit set
1607  * hasn't been properly setup for IO.  We kick off an async process
1608  * to fix it up.  The async helper will wait for ordered extents, set
1609  * the delalloc bit and make it safe to write the page.
1610  */
1611 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1612 {
1613 	struct inode *inode = page->mapping->host;
1614 	struct btrfs_writepage_fixup *fixup;
1615 	struct btrfs_root *root = BTRFS_I(inode)->root;
1616 
1617 	/* this page is properly in the ordered list */
1618 	if (TestClearPagePrivate2(page))
1619 		return 0;
1620 
1621 	if (PageChecked(page))
1622 		return -EAGAIN;
1623 
1624 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1625 	if (!fixup)
1626 		return -EAGAIN;
1627 
1628 	SetPageChecked(page);
1629 	page_cache_get(page);
1630 	fixup->work.func = btrfs_writepage_fixup_worker;
1631 	fixup->page = page;
1632 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1633 	return -EAGAIN;
1634 }
1635 
1636 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1637 				       struct inode *inode, u64 file_pos,
1638 				       u64 disk_bytenr, u64 disk_num_bytes,
1639 				       u64 num_bytes, u64 ram_bytes,
1640 				       u8 compression, u8 encryption,
1641 				       u16 other_encoding, int extent_type)
1642 {
1643 	struct btrfs_root *root = BTRFS_I(inode)->root;
1644 	struct btrfs_file_extent_item *fi;
1645 	struct btrfs_path *path;
1646 	struct extent_buffer *leaf;
1647 	struct btrfs_key ins;
1648 	u64 hint;
1649 	int ret;
1650 
1651 	path = btrfs_alloc_path();
1652 	if (!path)
1653 		return -ENOMEM;
1654 
1655 	path->leave_spinning = 1;
1656 
1657 	/*
1658 	 * we may be replacing one extent in the tree with another.
1659 	 * The new extent is pinned in the extent map, and we don't want
1660 	 * to drop it from the cache until it is completely in the btree.
1661 	 *
1662 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1663 	 * the caller is expected to unpin it and allow it to be merged
1664 	 * with the others.
1665 	 */
1666 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1667 				 &hint, 0);
1668 	BUG_ON(ret);
1669 
1670 	ins.objectid = btrfs_ino(inode);
1671 	ins.offset = file_pos;
1672 	ins.type = BTRFS_EXTENT_DATA_KEY;
1673 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1674 	BUG_ON(ret);
1675 	leaf = path->nodes[0];
1676 	fi = btrfs_item_ptr(leaf, path->slots[0],
1677 			    struct btrfs_file_extent_item);
1678 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1679 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1680 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1681 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1682 	btrfs_set_file_extent_offset(leaf, fi, 0);
1683 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1684 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1685 	btrfs_set_file_extent_compression(leaf, fi, compression);
1686 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1687 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1688 
1689 	btrfs_unlock_up_safe(path, 1);
1690 	btrfs_set_lock_blocking(leaf);
1691 
1692 	btrfs_mark_buffer_dirty(leaf);
1693 
1694 	inode_add_bytes(inode, num_bytes);
1695 
1696 	ins.objectid = disk_bytenr;
1697 	ins.offset = disk_num_bytes;
1698 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1699 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1700 					root->root_key.objectid,
1701 					btrfs_ino(inode), file_pos, &ins);
1702 	BUG_ON(ret);
1703 	btrfs_free_path(path);
1704 
1705 	return 0;
1706 }
1707 
1708 /*
1709  * helper function for btrfs_finish_ordered_io, this
1710  * just reads in some of the csum leaves to prime them into ram
1711  * before we start the transaction.  It limits the amount of btree
1712  * reads required while inside the transaction.
1713  */
1714 /* as ordered data IO finishes, this gets called so we can finish
1715  * an ordered extent if the range of bytes in the file it covers are
1716  * fully written.
1717  */
1718 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1719 {
1720 	struct btrfs_root *root = BTRFS_I(inode)->root;
1721 	struct btrfs_trans_handle *trans = NULL;
1722 	struct btrfs_ordered_extent *ordered_extent = NULL;
1723 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1724 	struct extent_state *cached_state = NULL;
1725 	int compress_type = 0;
1726 	int ret;
1727 	bool nolock;
1728 
1729 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1730 					     end - start + 1);
1731 	if (!ret)
1732 		return 0;
1733 	BUG_ON(!ordered_extent);
1734 
1735 	nolock = btrfs_is_free_space_inode(root, inode);
1736 
1737 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1738 		BUG_ON(!list_empty(&ordered_extent->list));
1739 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1740 		if (!ret) {
1741 			if (nolock)
1742 				trans = btrfs_join_transaction_nolock(root);
1743 			else
1744 				trans = btrfs_join_transaction(root);
1745 			BUG_ON(IS_ERR(trans));
1746 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1747 			ret = btrfs_update_inode_fallback(trans, root, inode);
1748 			BUG_ON(ret);
1749 		}
1750 		goto out;
1751 	}
1752 
1753 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1754 			 ordered_extent->file_offset + ordered_extent->len - 1,
1755 			 0, &cached_state, GFP_NOFS);
1756 
1757 	if (nolock)
1758 		trans = btrfs_join_transaction_nolock(root);
1759 	else
1760 		trans = btrfs_join_transaction(root);
1761 	BUG_ON(IS_ERR(trans));
1762 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1763 
1764 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1765 		compress_type = ordered_extent->compress_type;
1766 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1767 		BUG_ON(compress_type);
1768 		ret = btrfs_mark_extent_written(trans, inode,
1769 						ordered_extent->file_offset,
1770 						ordered_extent->file_offset +
1771 						ordered_extent->len);
1772 		BUG_ON(ret);
1773 	} else {
1774 		BUG_ON(root == root->fs_info->tree_root);
1775 		ret = insert_reserved_file_extent(trans, inode,
1776 						ordered_extent->file_offset,
1777 						ordered_extent->start,
1778 						ordered_extent->disk_len,
1779 						ordered_extent->len,
1780 						ordered_extent->len,
1781 						compress_type, 0, 0,
1782 						BTRFS_FILE_EXTENT_REG);
1783 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1784 				   ordered_extent->file_offset,
1785 				   ordered_extent->len);
1786 		BUG_ON(ret);
1787 	}
1788 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1789 			     ordered_extent->file_offset +
1790 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1791 
1792 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1793 			  &ordered_extent->list);
1794 
1795 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1796 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1797 		ret = btrfs_update_inode_fallback(trans, root, inode);
1798 		BUG_ON(ret);
1799 	}
1800 	ret = 0;
1801 out:
1802 	if (root != root->fs_info->tree_root)
1803 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1804 	if (trans) {
1805 		if (nolock)
1806 			btrfs_end_transaction_nolock(trans, root);
1807 		else
1808 			btrfs_end_transaction(trans, root);
1809 	}
1810 
1811 	/* once for us */
1812 	btrfs_put_ordered_extent(ordered_extent);
1813 	/* once for the tree */
1814 	btrfs_put_ordered_extent(ordered_extent);
1815 
1816 	return 0;
1817 }
1818 
1819 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1820 				struct extent_state *state, int uptodate)
1821 {
1822 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1823 
1824 	ClearPagePrivate2(page);
1825 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1826 }
1827 
1828 /*
1829  * when reads are done, we need to check csums to verify the data is correct
1830  * if there's a match, we allow the bio to finish.  If not, the code in
1831  * extent_io.c will try to find good copies for us.
1832  */
1833 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1834 			       struct extent_state *state)
1835 {
1836 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1837 	struct inode *inode = page->mapping->host;
1838 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1839 	char *kaddr;
1840 	u64 private = ~(u32)0;
1841 	int ret;
1842 	struct btrfs_root *root = BTRFS_I(inode)->root;
1843 	u32 csum = ~(u32)0;
1844 
1845 	if (PageChecked(page)) {
1846 		ClearPageChecked(page);
1847 		goto good;
1848 	}
1849 
1850 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1851 		goto good;
1852 
1853 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1854 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1855 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1856 				  GFP_NOFS);
1857 		return 0;
1858 	}
1859 
1860 	if (state && state->start == start) {
1861 		private = state->private;
1862 		ret = 0;
1863 	} else {
1864 		ret = get_state_private(io_tree, start, &private);
1865 	}
1866 	kaddr = kmap_atomic(page, KM_USER0);
1867 	if (ret)
1868 		goto zeroit;
1869 
1870 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1871 	btrfs_csum_final(csum, (char *)&csum);
1872 	if (csum != private)
1873 		goto zeroit;
1874 
1875 	kunmap_atomic(kaddr, KM_USER0);
1876 good:
1877 	return 0;
1878 
1879 zeroit:
1880 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1881 		       "private %llu\n",
1882 		       (unsigned long long)btrfs_ino(page->mapping->host),
1883 		       (unsigned long long)start, csum,
1884 		       (unsigned long long)private);
1885 	memset(kaddr + offset, 1, end - start + 1);
1886 	flush_dcache_page(page);
1887 	kunmap_atomic(kaddr, KM_USER0);
1888 	if (private == 0)
1889 		return 0;
1890 	return -EIO;
1891 }
1892 
1893 struct delayed_iput {
1894 	struct list_head list;
1895 	struct inode *inode;
1896 };
1897 
1898 void btrfs_add_delayed_iput(struct inode *inode)
1899 {
1900 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1901 	struct delayed_iput *delayed;
1902 
1903 	if (atomic_add_unless(&inode->i_count, -1, 1))
1904 		return;
1905 
1906 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1907 	delayed->inode = inode;
1908 
1909 	spin_lock(&fs_info->delayed_iput_lock);
1910 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1911 	spin_unlock(&fs_info->delayed_iput_lock);
1912 }
1913 
1914 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1915 {
1916 	LIST_HEAD(list);
1917 	struct btrfs_fs_info *fs_info = root->fs_info;
1918 	struct delayed_iput *delayed;
1919 	int empty;
1920 
1921 	spin_lock(&fs_info->delayed_iput_lock);
1922 	empty = list_empty(&fs_info->delayed_iputs);
1923 	spin_unlock(&fs_info->delayed_iput_lock);
1924 	if (empty)
1925 		return;
1926 
1927 	down_read(&root->fs_info->cleanup_work_sem);
1928 	spin_lock(&fs_info->delayed_iput_lock);
1929 	list_splice_init(&fs_info->delayed_iputs, &list);
1930 	spin_unlock(&fs_info->delayed_iput_lock);
1931 
1932 	while (!list_empty(&list)) {
1933 		delayed = list_entry(list.next, struct delayed_iput, list);
1934 		list_del(&delayed->list);
1935 		iput(delayed->inode);
1936 		kfree(delayed);
1937 	}
1938 	up_read(&root->fs_info->cleanup_work_sem);
1939 }
1940 
1941 enum btrfs_orphan_cleanup_state {
1942 	ORPHAN_CLEANUP_STARTED	= 1,
1943 	ORPHAN_CLEANUP_DONE	= 2,
1944 };
1945 
1946 /*
1947  * This is called in transaction commit time. If there are no orphan
1948  * files in the subvolume, it removes orphan item and frees block_rsv
1949  * structure.
1950  */
1951 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1952 			      struct btrfs_root *root)
1953 {
1954 	int ret;
1955 
1956 	if (!list_empty(&root->orphan_list) ||
1957 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1958 		return;
1959 
1960 	if (root->orphan_item_inserted &&
1961 	    btrfs_root_refs(&root->root_item) > 0) {
1962 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1963 					    root->root_key.objectid);
1964 		BUG_ON(ret);
1965 		root->orphan_item_inserted = 0;
1966 	}
1967 
1968 	if (root->orphan_block_rsv) {
1969 		WARN_ON(root->orphan_block_rsv->size > 0);
1970 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
1971 		root->orphan_block_rsv = NULL;
1972 	}
1973 }
1974 
1975 /*
1976  * This creates an orphan entry for the given inode in case something goes
1977  * wrong in the middle of an unlink/truncate.
1978  *
1979  * NOTE: caller of this function should reserve 5 units of metadata for
1980  *	 this function.
1981  */
1982 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1983 {
1984 	struct btrfs_root *root = BTRFS_I(inode)->root;
1985 	struct btrfs_block_rsv *block_rsv = NULL;
1986 	int reserve = 0;
1987 	int insert = 0;
1988 	int ret;
1989 
1990 	if (!root->orphan_block_rsv) {
1991 		block_rsv = btrfs_alloc_block_rsv(root);
1992 		if (!block_rsv)
1993 			return -ENOMEM;
1994 	}
1995 
1996 	spin_lock(&root->orphan_lock);
1997 	if (!root->orphan_block_rsv) {
1998 		root->orphan_block_rsv = block_rsv;
1999 	} else if (block_rsv) {
2000 		btrfs_free_block_rsv(root, block_rsv);
2001 		block_rsv = NULL;
2002 	}
2003 
2004 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2005 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2006 #if 0
2007 		/*
2008 		 * For proper ENOSPC handling, we should do orphan
2009 		 * cleanup when mounting. But this introduces backward
2010 		 * compatibility issue.
2011 		 */
2012 		if (!xchg(&root->orphan_item_inserted, 1))
2013 			insert = 2;
2014 		else
2015 			insert = 1;
2016 #endif
2017 		insert = 1;
2018 	}
2019 
2020 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2021 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2022 		reserve = 1;
2023 	}
2024 	spin_unlock(&root->orphan_lock);
2025 
2026 	/* grab metadata reservation from transaction handle */
2027 	if (reserve) {
2028 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2029 		BUG_ON(ret);
2030 	}
2031 
2032 	/* insert an orphan item to track this unlinked/truncated file */
2033 	if (insert >= 1) {
2034 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2035 		BUG_ON(ret && ret != -EEXIST);
2036 	}
2037 
2038 	/* insert an orphan item to track subvolume contains orphan files */
2039 	if (insert >= 2) {
2040 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2041 					       root->root_key.objectid);
2042 		BUG_ON(ret);
2043 	}
2044 	return 0;
2045 }
2046 
2047 /*
2048  * We have done the truncate/delete so we can go ahead and remove the orphan
2049  * item for this particular inode.
2050  */
2051 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2052 {
2053 	struct btrfs_root *root = BTRFS_I(inode)->root;
2054 	int delete_item = 0;
2055 	int release_rsv = 0;
2056 	int ret = 0;
2057 
2058 	spin_lock(&root->orphan_lock);
2059 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2060 		list_del_init(&BTRFS_I(inode)->i_orphan);
2061 		delete_item = 1;
2062 	}
2063 
2064 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2065 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2066 		release_rsv = 1;
2067 	}
2068 	spin_unlock(&root->orphan_lock);
2069 
2070 	if (trans && delete_item) {
2071 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2072 		BUG_ON(ret);
2073 	}
2074 
2075 	if (release_rsv)
2076 		btrfs_orphan_release_metadata(inode);
2077 
2078 	return 0;
2079 }
2080 
2081 /*
2082  * this cleans up any orphans that may be left on the list from the last use
2083  * of this root.
2084  */
2085 int btrfs_orphan_cleanup(struct btrfs_root *root)
2086 {
2087 	struct btrfs_path *path;
2088 	struct extent_buffer *leaf;
2089 	struct btrfs_key key, found_key;
2090 	struct btrfs_trans_handle *trans;
2091 	struct inode *inode;
2092 	u64 last_objectid = 0;
2093 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2094 
2095 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2096 		return 0;
2097 
2098 	path = btrfs_alloc_path();
2099 	if (!path) {
2100 		ret = -ENOMEM;
2101 		goto out;
2102 	}
2103 	path->reada = -1;
2104 
2105 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2106 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2107 	key.offset = (u64)-1;
2108 
2109 	while (1) {
2110 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2111 		if (ret < 0)
2112 			goto out;
2113 
2114 		/*
2115 		 * if ret == 0 means we found what we were searching for, which
2116 		 * is weird, but possible, so only screw with path if we didn't
2117 		 * find the key and see if we have stuff that matches
2118 		 */
2119 		if (ret > 0) {
2120 			ret = 0;
2121 			if (path->slots[0] == 0)
2122 				break;
2123 			path->slots[0]--;
2124 		}
2125 
2126 		/* pull out the item */
2127 		leaf = path->nodes[0];
2128 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2129 
2130 		/* make sure the item matches what we want */
2131 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2132 			break;
2133 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2134 			break;
2135 
2136 		/* release the path since we're done with it */
2137 		btrfs_release_path(path);
2138 
2139 		/*
2140 		 * this is where we are basically btrfs_lookup, without the
2141 		 * crossing root thing.  we store the inode number in the
2142 		 * offset of the orphan item.
2143 		 */
2144 
2145 		if (found_key.offset == last_objectid) {
2146 			printk(KERN_ERR "btrfs: Error removing orphan entry, "
2147 			       "stopping orphan cleanup\n");
2148 			ret = -EINVAL;
2149 			goto out;
2150 		}
2151 
2152 		last_objectid = found_key.offset;
2153 
2154 		found_key.objectid = found_key.offset;
2155 		found_key.type = BTRFS_INODE_ITEM_KEY;
2156 		found_key.offset = 0;
2157 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2158 		ret = PTR_RET(inode);
2159 		if (ret && ret != -ESTALE)
2160 			goto out;
2161 
2162 		if (ret == -ESTALE && root == root->fs_info->tree_root) {
2163 			struct btrfs_root *dead_root;
2164 			struct btrfs_fs_info *fs_info = root->fs_info;
2165 			int is_dead_root = 0;
2166 
2167 			/*
2168 			 * this is an orphan in the tree root. Currently these
2169 			 * could come from 2 sources:
2170 			 *  a) a snapshot deletion in progress
2171 			 *  b) a free space cache inode
2172 			 * We need to distinguish those two, as the snapshot
2173 			 * orphan must not get deleted.
2174 			 * find_dead_roots already ran before us, so if this
2175 			 * is a snapshot deletion, we should find the root
2176 			 * in the dead_roots list
2177 			 */
2178 			spin_lock(&fs_info->trans_lock);
2179 			list_for_each_entry(dead_root, &fs_info->dead_roots,
2180 					    root_list) {
2181 				if (dead_root->root_key.objectid ==
2182 				    found_key.objectid) {
2183 					is_dead_root = 1;
2184 					break;
2185 				}
2186 			}
2187 			spin_unlock(&fs_info->trans_lock);
2188 			if (is_dead_root) {
2189 				/* prevent this orphan from being found again */
2190 				key.offset = found_key.objectid - 1;
2191 				continue;
2192 			}
2193 		}
2194 		/*
2195 		 * Inode is already gone but the orphan item is still there,
2196 		 * kill the orphan item.
2197 		 */
2198 		if (ret == -ESTALE) {
2199 			trans = btrfs_start_transaction(root, 1);
2200 			if (IS_ERR(trans)) {
2201 				ret = PTR_ERR(trans);
2202 				goto out;
2203 			}
2204 			ret = btrfs_del_orphan_item(trans, root,
2205 						    found_key.objectid);
2206 			BUG_ON(ret);
2207 			btrfs_end_transaction(trans, root);
2208 			continue;
2209 		}
2210 
2211 		/*
2212 		 * add this inode to the orphan list so btrfs_orphan_del does
2213 		 * the proper thing when we hit it
2214 		 */
2215 		spin_lock(&root->orphan_lock);
2216 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2217 		spin_unlock(&root->orphan_lock);
2218 
2219 		/* if we have links, this was a truncate, lets do that */
2220 		if (inode->i_nlink) {
2221 			if (!S_ISREG(inode->i_mode)) {
2222 				WARN_ON(1);
2223 				iput(inode);
2224 				continue;
2225 			}
2226 			nr_truncate++;
2227 			/*
2228 			 * Need to hold the imutex for reservation purposes, not
2229 			 * a huge deal here but I have a WARN_ON in
2230 			 * btrfs_delalloc_reserve_space to catch offenders.
2231 			 */
2232 			mutex_lock(&inode->i_mutex);
2233 			ret = btrfs_truncate(inode);
2234 			mutex_unlock(&inode->i_mutex);
2235 		} else {
2236 			nr_unlink++;
2237 		}
2238 
2239 		/* this will do delete_inode and everything for us */
2240 		iput(inode);
2241 		if (ret)
2242 			goto out;
2243 	}
2244 	/* release the path since we're done with it */
2245 	btrfs_release_path(path);
2246 
2247 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2248 
2249 	if (root->orphan_block_rsv)
2250 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2251 					(u64)-1);
2252 
2253 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2254 		trans = btrfs_join_transaction(root);
2255 		if (!IS_ERR(trans))
2256 			btrfs_end_transaction(trans, root);
2257 	}
2258 
2259 	if (nr_unlink)
2260 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2261 	if (nr_truncate)
2262 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2263 
2264 out:
2265 	if (ret)
2266 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2267 	btrfs_free_path(path);
2268 	return ret;
2269 }
2270 
2271 /*
2272  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2273  * don't find any xattrs, we know there can't be any acls.
2274  *
2275  * slot is the slot the inode is in, objectid is the objectid of the inode
2276  */
2277 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2278 					  int slot, u64 objectid)
2279 {
2280 	u32 nritems = btrfs_header_nritems(leaf);
2281 	struct btrfs_key found_key;
2282 	int scanned = 0;
2283 
2284 	slot++;
2285 	while (slot < nritems) {
2286 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2287 
2288 		/* we found a different objectid, there must not be acls */
2289 		if (found_key.objectid != objectid)
2290 			return 0;
2291 
2292 		/* we found an xattr, assume we've got an acl */
2293 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2294 			return 1;
2295 
2296 		/*
2297 		 * we found a key greater than an xattr key, there can't
2298 		 * be any acls later on
2299 		 */
2300 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2301 			return 0;
2302 
2303 		slot++;
2304 		scanned++;
2305 
2306 		/*
2307 		 * it goes inode, inode backrefs, xattrs, extents,
2308 		 * so if there are a ton of hard links to an inode there can
2309 		 * be a lot of backrefs.  Don't waste time searching too hard,
2310 		 * this is just an optimization
2311 		 */
2312 		if (scanned >= 8)
2313 			break;
2314 	}
2315 	/* we hit the end of the leaf before we found an xattr or
2316 	 * something larger than an xattr.  We have to assume the inode
2317 	 * has acls
2318 	 */
2319 	return 1;
2320 }
2321 
2322 /*
2323  * read an inode from the btree into the in-memory inode
2324  */
2325 static void btrfs_read_locked_inode(struct inode *inode)
2326 {
2327 	struct btrfs_path *path;
2328 	struct extent_buffer *leaf;
2329 	struct btrfs_inode_item *inode_item;
2330 	struct btrfs_timespec *tspec;
2331 	struct btrfs_root *root = BTRFS_I(inode)->root;
2332 	struct btrfs_key location;
2333 	int maybe_acls;
2334 	u32 rdev;
2335 	int ret;
2336 	bool filled = false;
2337 
2338 	ret = btrfs_fill_inode(inode, &rdev);
2339 	if (!ret)
2340 		filled = true;
2341 
2342 	path = btrfs_alloc_path();
2343 	if (!path)
2344 		goto make_bad;
2345 
2346 	path->leave_spinning = 1;
2347 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2348 
2349 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2350 	if (ret)
2351 		goto make_bad;
2352 
2353 	leaf = path->nodes[0];
2354 
2355 	if (filled)
2356 		goto cache_acl;
2357 
2358 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2359 				    struct btrfs_inode_item);
2360 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2361 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2362 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2363 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2364 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2365 
2366 	tspec = btrfs_inode_atime(inode_item);
2367 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2368 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2369 
2370 	tspec = btrfs_inode_mtime(inode_item);
2371 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2372 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2373 
2374 	tspec = btrfs_inode_ctime(inode_item);
2375 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2376 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2377 
2378 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2379 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2380 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2381 	inode->i_generation = BTRFS_I(inode)->generation;
2382 	inode->i_rdev = 0;
2383 	rdev = btrfs_inode_rdev(leaf, inode_item);
2384 
2385 	BTRFS_I(inode)->index_cnt = (u64)-1;
2386 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2387 cache_acl:
2388 	/*
2389 	 * try to precache a NULL acl entry for files that don't have
2390 	 * any xattrs or acls
2391 	 */
2392 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2393 					   btrfs_ino(inode));
2394 	if (!maybe_acls)
2395 		cache_no_acl(inode);
2396 
2397 	btrfs_free_path(path);
2398 
2399 	switch (inode->i_mode & S_IFMT) {
2400 	case S_IFREG:
2401 		inode->i_mapping->a_ops = &btrfs_aops;
2402 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2403 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2404 		inode->i_fop = &btrfs_file_operations;
2405 		inode->i_op = &btrfs_file_inode_operations;
2406 		break;
2407 	case S_IFDIR:
2408 		inode->i_fop = &btrfs_dir_file_operations;
2409 		if (root == root->fs_info->tree_root)
2410 			inode->i_op = &btrfs_dir_ro_inode_operations;
2411 		else
2412 			inode->i_op = &btrfs_dir_inode_operations;
2413 		break;
2414 	case S_IFLNK:
2415 		inode->i_op = &btrfs_symlink_inode_operations;
2416 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2417 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2418 		break;
2419 	default:
2420 		inode->i_op = &btrfs_special_inode_operations;
2421 		init_special_inode(inode, inode->i_mode, rdev);
2422 		break;
2423 	}
2424 
2425 	btrfs_update_iflags(inode);
2426 	return;
2427 
2428 make_bad:
2429 	btrfs_free_path(path);
2430 	make_bad_inode(inode);
2431 }
2432 
2433 /*
2434  * given a leaf and an inode, copy the inode fields into the leaf
2435  */
2436 static void fill_inode_item(struct btrfs_trans_handle *trans,
2437 			    struct extent_buffer *leaf,
2438 			    struct btrfs_inode_item *item,
2439 			    struct inode *inode)
2440 {
2441 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2442 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2443 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2444 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2445 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2446 
2447 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2448 			       inode->i_atime.tv_sec);
2449 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2450 				inode->i_atime.tv_nsec);
2451 
2452 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2453 			       inode->i_mtime.tv_sec);
2454 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2455 				inode->i_mtime.tv_nsec);
2456 
2457 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2458 			       inode->i_ctime.tv_sec);
2459 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2460 				inode->i_ctime.tv_nsec);
2461 
2462 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2463 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2464 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2465 	btrfs_set_inode_transid(leaf, item, trans->transid);
2466 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2467 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2468 	btrfs_set_inode_block_group(leaf, item, 0);
2469 }
2470 
2471 /*
2472  * copy everything in the in-memory inode into the btree.
2473  */
2474 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2475 				struct btrfs_root *root, struct inode *inode)
2476 {
2477 	struct btrfs_inode_item *inode_item;
2478 	struct btrfs_path *path;
2479 	struct extent_buffer *leaf;
2480 	int ret;
2481 
2482 	path = btrfs_alloc_path();
2483 	if (!path)
2484 		return -ENOMEM;
2485 
2486 	path->leave_spinning = 1;
2487 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2488 				 1);
2489 	if (ret) {
2490 		if (ret > 0)
2491 			ret = -ENOENT;
2492 		goto failed;
2493 	}
2494 
2495 	btrfs_unlock_up_safe(path, 1);
2496 	leaf = path->nodes[0];
2497 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2498 				    struct btrfs_inode_item);
2499 
2500 	fill_inode_item(trans, leaf, inode_item, inode);
2501 	btrfs_mark_buffer_dirty(leaf);
2502 	btrfs_set_inode_last_trans(trans, inode);
2503 	ret = 0;
2504 failed:
2505 	btrfs_free_path(path);
2506 	return ret;
2507 }
2508 
2509 /*
2510  * copy everything in the in-memory inode into the btree.
2511  */
2512 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2513 				struct btrfs_root *root, struct inode *inode)
2514 {
2515 	int ret;
2516 
2517 	/*
2518 	 * If the inode is a free space inode, we can deadlock during commit
2519 	 * if we put it into the delayed code.
2520 	 *
2521 	 * The data relocation inode should also be directly updated
2522 	 * without delay
2523 	 */
2524 	if (!btrfs_is_free_space_inode(root, inode)
2525 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2526 		ret = btrfs_delayed_update_inode(trans, root, inode);
2527 		if (!ret)
2528 			btrfs_set_inode_last_trans(trans, inode);
2529 		return ret;
2530 	}
2531 
2532 	return btrfs_update_inode_item(trans, root, inode);
2533 }
2534 
2535 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2536 				struct btrfs_root *root, struct inode *inode)
2537 {
2538 	int ret;
2539 
2540 	ret = btrfs_update_inode(trans, root, inode);
2541 	if (ret == -ENOSPC)
2542 		return btrfs_update_inode_item(trans, root, inode);
2543 	return ret;
2544 }
2545 
2546 /*
2547  * unlink helper that gets used here in inode.c and in the tree logging
2548  * recovery code.  It remove a link in a directory with a given name, and
2549  * also drops the back refs in the inode to the directory
2550  */
2551 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2552 				struct btrfs_root *root,
2553 				struct inode *dir, struct inode *inode,
2554 				const char *name, int name_len)
2555 {
2556 	struct btrfs_path *path;
2557 	int ret = 0;
2558 	struct extent_buffer *leaf;
2559 	struct btrfs_dir_item *di;
2560 	struct btrfs_key key;
2561 	u64 index;
2562 	u64 ino = btrfs_ino(inode);
2563 	u64 dir_ino = btrfs_ino(dir);
2564 
2565 	path = btrfs_alloc_path();
2566 	if (!path) {
2567 		ret = -ENOMEM;
2568 		goto out;
2569 	}
2570 
2571 	path->leave_spinning = 1;
2572 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2573 				    name, name_len, -1);
2574 	if (IS_ERR(di)) {
2575 		ret = PTR_ERR(di);
2576 		goto err;
2577 	}
2578 	if (!di) {
2579 		ret = -ENOENT;
2580 		goto err;
2581 	}
2582 	leaf = path->nodes[0];
2583 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2584 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2585 	if (ret)
2586 		goto err;
2587 	btrfs_release_path(path);
2588 
2589 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2590 				  dir_ino, &index);
2591 	if (ret) {
2592 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2593 		       "inode %llu parent %llu\n", name_len, name,
2594 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2595 		goto err;
2596 	}
2597 
2598 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2599 	if (ret)
2600 		goto err;
2601 
2602 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2603 					 inode, dir_ino);
2604 	BUG_ON(ret != 0 && ret != -ENOENT);
2605 
2606 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2607 					   dir, index);
2608 	if (ret == -ENOENT)
2609 		ret = 0;
2610 err:
2611 	btrfs_free_path(path);
2612 	if (ret)
2613 		goto out;
2614 
2615 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2616 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2617 	btrfs_update_inode(trans, root, dir);
2618 out:
2619 	return ret;
2620 }
2621 
2622 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2623 		       struct btrfs_root *root,
2624 		       struct inode *dir, struct inode *inode,
2625 		       const char *name, int name_len)
2626 {
2627 	int ret;
2628 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2629 	if (!ret) {
2630 		btrfs_drop_nlink(inode);
2631 		ret = btrfs_update_inode(trans, root, inode);
2632 	}
2633 	return ret;
2634 }
2635 
2636 
2637 /* helper to check if there is any shared block in the path */
2638 static int check_path_shared(struct btrfs_root *root,
2639 			     struct btrfs_path *path)
2640 {
2641 	struct extent_buffer *eb;
2642 	int level;
2643 	u64 refs = 1;
2644 
2645 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2646 		int ret;
2647 
2648 		if (!path->nodes[level])
2649 			break;
2650 		eb = path->nodes[level];
2651 		if (!btrfs_block_can_be_shared(root, eb))
2652 			continue;
2653 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2654 					       &refs, NULL);
2655 		if (refs > 1)
2656 			return 1;
2657 	}
2658 	return 0;
2659 }
2660 
2661 /*
2662  * helper to start transaction for unlink and rmdir.
2663  *
2664  * unlink and rmdir are special in btrfs, they do not always free space.
2665  * so in enospc case, we should make sure they will free space before
2666  * allowing them to use the global metadata reservation.
2667  */
2668 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2669 						       struct dentry *dentry)
2670 {
2671 	struct btrfs_trans_handle *trans;
2672 	struct btrfs_root *root = BTRFS_I(dir)->root;
2673 	struct btrfs_path *path;
2674 	struct btrfs_inode_ref *ref;
2675 	struct btrfs_dir_item *di;
2676 	struct inode *inode = dentry->d_inode;
2677 	u64 index;
2678 	int check_link = 1;
2679 	int err = -ENOSPC;
2680 	int ret;
2681 	u64 ino = btrfs_ino(inode);
2682 	u64 dir_ino = btrfs_ino(dir);
2683 
2684 	/*
2685 	 * 1 for the possible orphan item
2686 	 * 1 for the dir item
2687 	 * 1 for the dir index
2688 	 * 1 for the inode ref
2689 	 * 1 for the inode ref in the tree log
2690 	 * 2 for the dir entries in the log
2691 	 * 1 for the inode
2692 	 */
2693 	trans = btrfs_start_transaction(root, 8);
2694 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2695 		return trans;
2696 
2697 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2698 		return ERR_PTR(-ENOSPC);
2699 
2700 	/* check if there is someone else holds reference */
2701 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2702 		return ERR_PTR(-ENOSPC);
2703 
2704 	if (atomic_read(&inode->i_count) > 2)
2705 		return ERR_PTR(-ENOSPC);
2706 
2707 	if (xchg(&root->fs_info->enospc_unlink, 1))
2708 		return ERR_PTR(-ENOSPC);
2709 
2710 	path = btrfs_alloc_path();
2711 	if (!path) {
2712 		root->fs_info->enospc_unlink = 0;
2713 		return ERR_PTR(-ENOMEM);
2714 	}
2715 
2716 	/* 1 for the orphan item */
2717 	trans = btrfs_start_transaction(root, 1);
2718 	if (IS_ERR(trans)) {
2719 		btrfs_free_path(path);
2720 		root->fs_info->enospc_unlink = 0;
2721 		return trans;
2722 	}
2723 
2724 	path->skip_locking = 1;
2725 	path->search_commit_root = 1;
2726 
2727 	ret = btrfs_lookup_inode(trans, root, path,
2728 				&BTRFS_I(dir)->location, 0);
2729 	if (ret < 0) {
2730 		err = ret;
2731 		goto out;
2732 	}
2733 	if (ret == 0) {
2734 		if (check_path_shared(root, path))
2735 			goto out;
2736 	} else {
2737 		check_link = 0;
2738 	}
2739 	btrfs_release_path(path);
2740 
2741 	ret = btrfs_lookup_inode(trans, root, path,
2742 				&BTRFS_I(inode)->location, 0);
2743 	if (ret < 0) {
2744 		err = ret;
2745 		goto out;
2746 	}
2747 	if (ret == 0) {
2748 		if (check_path_shared(root, path))
2749 			goto out;
2750 	} else {
2751 		check_link = 0;
2752 	}
2753 	btrfs_release_path(path);
2754 
2755 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2756 		ret = btrfs_lookup_file_extent(trans, root, path,
2757 					       ino, (u64)-1, 0);
2758 		if (ret < 0) {
2759 			err = ret;
2760 			goto out;
2761 		}
2762 		BUG_ON(ret == 0);
2763 		if (check_path_shared(root, path))
2764 			goto out;
2765 		btrfs_release_path(path);
2766 	}
2767 
2768 	if (!check_link) {
2769 		err = 0;
2770 		goto out;
2771 	}
2772 
2773 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2774 				dentry->d_name.name, dentry->d_name.len, 0);
2775 	if (IS_ERR(di)) {
2776 		err = PTR_ERR(di);
2777 		goto out;
2778 	}
2779 	if (di) {
2780 		if (check_path_shared(root, path))
2781 			goto out;
2782 	} else {
2783 		err = 0;
2784 		goto out;
2785 	}
2786 	btrfs_release_path(path);
2787 
2788 	ref = btrfs_lookup_inode_ref(trans, root, path,
2789 				dentry->d_name.name, dentry->d_name.len,
2790 				ino, dir_ino, 0);
2791 	if (IS_ERR(ref)) {
2792 		err = PTR_ERR(ref);
2793 		goto out;
2794 	}
2795 	BUG_ON(!ref);
2796 	if (check_path_shared(root, path))
2797 		goto out;
2798 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2799 	btrfs_release_path(path);
2800 
2801 	/*
2802 	 * This is a commit root search, if we can lookup inode item and other
2803 	 * relative items in the commit root, it means the transaction of
2804 	 * dir/file creation has been committed, and the dir index item that we
2805 	 * delay to insert has also been inserted into the commit root. So
2806 	 * we needn't worry about the delayed insertion of the dir index item
2807 	 * here.
2808 	 */
2809 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2810 				dentry->d_name.name, dentry->d_name.len, 0);
2811 	if (IS_ERR(di)) {
2812 		err = PTR_ERR(di);
2813 		goto out;
2814 	}
2815 	BUG_ON(ret == -ENOENT);
2816 	if (check_path_shared(root, path))
2817 		goto out;
2818 
2819 	err = 0;
2820 out:
2821 	btrfs_free_path(path);
2822 	/* Migrate the orphan reservation over */
2823 	if (!err)
2824 		err = btrfs_block_rsv_migrate(trans->block_rsv,
2825 				&root->fs_info->global_block_rsv,
2826 				trans->bytes_reserved);
2827 
2828 	if (err) {
2829 		btrfs_end_transaction(trans, root);
2830 		root->fs_info->enospc_unlink = 0;
2831 		return ERR_PTR(err);
2832 	}
2833 
2834 	trans->block_rsv = &root->fs_info->global_block_rsv;
2835 	return trans;
2836 }
2837 
2838 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2839 			       struct btrfs_root *root)
2840 {
2841 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2842 		btrfs_block_rsv_release(root, trans->block_rsv,
2843 					trans->bytes_reserved);
2844 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2845 		BUG_ON(!root->fs_info->enospc_unlink);
2846 		root->fs_info->enospc_unlink = 0;
2847 	}
2848 	btrfs_end_transaction_throttle(trans, root);
2849 }
2850 
2851 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2852 {
2853 	struct btrfs_root *root = BTRFS_I(dir)->root;
2854 	struct btrfs_trans_handle *trans;
2855 	struct inode *inode = dentry->d_inode;
2856 	int ret;
2857 	unsigned long nr = 0;
2858 
2859 	trans = __unlink_start_trans(dir, dentry);
2860 	if (IS_ERR(trans))
2861 		return PTR_ERR(trans);
2862 
2863 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2864 
2865 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2866 				 dentry->d_name.name, dentry->d_name.len);
2867 	if (ret)
2868 		goto out;
2869 
2870 	if (inode->i_nlink == 0) {
2871 		ret = btrfs_orphan_add(trans, inode);
2872 		if (ret)
2873 			goto out;
2874 	}
2875 
2876 out:
2877 	nr = trans->blocks_used;
2878 	__unlink_end_trans(trans, root);
2879 	btrfs_btree_balance_dirty(root, nr);
2880 	return ret;
2881 }
2882 
2883 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2884 			struct btrfs_root *root,
2885 			struct inode *dir, u64 objectid,
2886 			const char *name, int name_len)
2887 {
2888 	struct btrfs_path *path;
2889 	struct extent_buffer *leaf;
2890 	struct btrfs_dir_item *di;
2891 	struct btrfs_key key;
2892 	u64 index;
2893 	int ret;
2894 	u64 dir_ino = btrfs_ino(dir);
2895 
2896 	path = btrfs_alloc_path();
2897 	if (!path)
2898 		return -ENOMEM;
2899 
2900 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2901 				   name, name_len, -1);
2902 	BUG_ON(IS_ERR_OR_NULL(di));
2903 
2904 	leaf = path->nodes[0];
2905 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2906 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2907 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2908 	BUG_ON(ret);
2909 	btrfs_release_path(path);
2910 
2911 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2912 				 objectid, root->root_key.objectid,
2913 				 dir_ino, &index, name, name_len);
2914 	if (ret < 0) {
2915 		BUG_ON(ret != -ENOENT);
2916 		di = btrfs_search_dir_index_item(root, path, dir_ino,
2917 						 name, name_len);
2918 		BUG_ON(IS_ERR_OR_NULL(di));
2919 
2920 		leaf = path->nodes[0];
2921 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2922 		btrfs_release_path(path);
2923 		index = key.offset;
2924 	}
2925 	btrfs_release_path(path);
2926 
2927 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2928 	BUG_ON(ret);
2929 
2930 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2931 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2932 	ret = btrfs_update_inode(trans, root, dir);
2933 	BUG_ON(ret);
2934 
2935 	btrfs_free_path(path);
2936 	return 0;
2937 }
2938 
2939 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2940 {
2941 	struct inode *inode = dentry->d_inode;
2942 	int err = 0;
2943 	struct btrfs_root *root = BTRFS_I(dir)->root;
2944 	struct btrfs_trans_handle *trans;
2945 	unsigned long nr = 0;
2946 
2947 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2948 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
2949 		return -ENOTEMPTY;
2950 
2951 	trans = __unlink_start_trans(dir, dentry);
2952 	if (IS_ERR(trans))
2953 		return PTR_ERR(trans);
2954 
2955 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2956 		err = btrfs_unlink_subvol(trans, root, dir,
2957 					  BTRFS_I(inode)->location.objectid,
2958 					  dentry->d_name.name,
2959 					  dentry->d_name.len);
2960 		goto out;
2961 	}
2962 
2963 	err = btrfs_orphan_add(trans, inode);
2964 	if (err)
2965 		goto out;
2966 
2967 	/* now the directory is empty */
2968 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2969 				 dentry->d_name.name, dentry->d_name.len);
2970 	if (!err)
2971 		btrfs_i_size_write(inode, 0);
2972 out:
2973 	nr = trans->blocks_used;
2974 	__unlink_end_trans(trans, root);
2975 	btrfs_btree_balance_dirty(root, nr);
2976 
2977 	return err;
2978 }
2979 
2980 /*
2981  * this can truncate away extent items, csum items and directory items.
2982  * It starts at a high offset and removes keys until it can't find
2983  * any higher than new_size
2984  *
2985  * csum items that cross the new i_size are truncated to the new size
2986  * as well.
2987  *
2988  * min_type is the minimum key type to truncate down to.  If set to 0, this
2989  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2990  */
2991 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2992 			       struct btrfs_root *root,
2993 			       struct inode *inode,
2994 			       u64 new_size, u32 min_type)
2995 {
2996 	struct btrfs_path *path;
2997 	struct extent_buffer *leaf;
2998 	struct btrfs_file_extent_item *fi;
2999 	struct btrfs_key key;
3000 	struct btrfs_key found_key;
3001 	u64 extent_start = 0;
3002 	u64 extent_num_bytes = 0;
3003 	u64 extent_offset = 0;
3004 	u64 item_end = 0;
3005 	u64 mask = root->sectorsize - 1;
3006 	u32 found_type = (u8)-1;
3007 	int found_extent;
3008 	int del_item;
3009 	int pending_del_nr = 0;
3010 	int pending_del_slot = 0;
3011 	int extent_type = -1;
3012 	int encoding;
3013 	int ret;
3014 	int err = 0;
3015 	u64 ino = btrfs_ino(inode);
3016 
3017 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3018 
3019 	path = btrfs_alloc_path();
3020 	if (!path)
3021 		return -ENOMEM;
3022 	path->reada = -1;
3023 
3024 	if (root->ref_cows || root == root->fs_info->tree_root)
3025 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3026 
3027 	/*
3028 	 * This function is also used to drop the items in the log tree before
3029 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3030 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3031 	 * items.
3032 	 */
3033 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3034 		btrfs_kill_delayed_inode_items(inode);
3035 
3036 	key.objectid = ino;
3037 	key.offset = (u64)-1;
3038 	key.type = (u8)-1;
3039 
3040 search_again:
3041 	path->leave_spinning = 1;
3042 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3043 	if (ret < 0) {
3044 		err = ret;
3045 		goto out;
3046 	}
3047 
3048 	if (ret > 0) {
3049 		/* there are no items in the tree for us to truncate, we're
3050 		 * done
3051 		 */
3052 		if (path->slots[0] == 0)
3053 			goto out;
3054 		path->slots[0]--;
3055 	}
3056 
3057 	while (1) {
3058 		fi = NULL;
3059 		leaf = path->nodes[0];
3060 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3061 		found_type = btrfs_key_type(&found_key);
3062 		encoding = 0;
3063 
3064 		if (found_key.objectid != ino)
3065 			break;
3066 
3067 		if (found_type < min_type)
3068 			break;
3069 
3070 		item_end = found_key.offset;
3071 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3072 			fi = btrfs_item_ptr(leaf, path->slots[0],
3073 					    struct btrfs_file_extent_item);
3074 			extent_type = btrfs_file_extent_type(leaf, fi);
3075 			encoding = btrfs_file_extent_compression(leaf, fi);
3076 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3077 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3078 
3079 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3080 				item_end +=
3081 				    btrfs_file_extent_num_bytes(leaf, fi);
3082 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3083 				item_end += btrfs_file_extent_inline_len(leaf,
3084 									 fi);
3085 			}
3086 			item_end--;
3087 		}
3088 		if (found_type > min_type) {
3089 			del_item = 1;
3090 		} else {
3091 			if (item_end < new_size)
3092 				break;
3093 			if (found_key.offset >= new_size)
3094 				del_item = 1;
3095 			else
3096 				del_item = 0;
3097 		}
3098 		found_extent = 0;
3099 		/* FIXME, shrink the extent if the ref count is only 1 */
3100 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3101 			goto delete;
3102 
3103 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3104 			u64 num_dec;
3105 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3106 			if (!del_item && !encoding) {
3107 				u64 orig_num_bytes =
3108 					btrfs_file_extent_num_bytes(leaf, fi);
3109 				extent_num_bytes = new_size -
3110 					found_key.offset + root->sectorsize - 1;
3111 				extent_num_bytes = extent_num_bytes &
3112 					~((u64)root->sectorsize - 1);
3113 				btrfs_set_file_extent_num_bytes(leaf, fi,
3114 							 extent_num_bytes);
3115 				num_dec = (orig_num_bytes -
3116 					   extent_num_bytes);
3117 				if (root->ref_cows && extent_start != 0)
3118 					inode_sub_bytes(inode, num_dec);
3119 				btrfs_mark_buffer_dirty(leaf);
3120 			} else {
3121 				extent_num_bytes =
3122 					btrfs_file_extent_disk_num_bytes(leaf,
3123 									 fi);
3124 				extent_offset = found_key.offset -
3125 					btrfs_file_extent_offset(leaf, fi);
3126 
3127 				/* FIXME blocksize != 4096 */
3128 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3129 				if (extent_start != 0) {
3130 					found_extent = 1;
3131 					if (root->ref_cows)
3132 						inode_sub_bytes(inode, num_dec);
3133 				}
3134 			}
3135 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3136 			/*
3137 			 * we can't truncate inline items that have had
3138 			 * special encodings
3139 			 */
3140 			if (!del_item &&
3141 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3142 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3143 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3144 				u32 size = new_size - found_key.offset;
3145 
3146 				if (root->ref_cows) {
3147 					inode_sub_bytes(inode, item_end + 1 -
3148 							new_size);
3149 				}
3150 				size =
3151 				    btrfs_file_extent_calc_inline_size(size);
3152 				ret = btrfs_truncate_item(trans, root, path,
3153 							  size, 1);
3154 			} else if (root->ref_cows) {
3155 				inode_sub_bytes(inode, item_end + 1 -
3156 						found_key.offset);
3157 			}
3158 		}
3159 delete:
3160 		if (del_item) {
3161 			if (!pending_del_nr) {
3162 				/* no pending yet, add ourselves */
3163 				pending_del_slot = path->slots[0];
3164 				pending_del_nr = 1;
3165 			} else if (pending_del_nr &&
3166 				   path->slots[0] + 1 == pending_del_slot) {
3167 				/* hop on the pending chunk */
3168 				pending_del_nr++;
3169 				pending_del_slot = path->slots[0];
3170 			} else {
3171 				BUG();
3172 			}
3173 		} else {
3174 			break;
3175 		}
3176 		if (found_extent && (root->ref_cows ||
3177 				     root == root->fs_info->tree_root)) {
3178 			btrfs_set_path_blocking(path);
3179 			ret = btrfs_free_extent(trans, root, extent_start,
3180 						extent_num_bytes, 0,
3181 						btrfs_header_owner(leaf),
3182 						ino, extent_offset);
3183 			BUG_ON(ret);
3184 		}
3185 
3186 		if (found_type == BTRFS_INODE_ITEM_KEY)
3187 			break;
3188 
3189 		if (path->slots[0] == 0 ||
3190 		    path->slots[0] != pending_del_slot) {
3191 			if (root->ref_cows &&
3192 			    BTRFS_I(inode)->location.objectid !=
3193 						BTRFS_FREE_INO_OBJECTID) {
3194 				err = -EAGAIN;
3195 				goto out;
3196 			}
3197 			if (pending_del_nr) {
3198 				ret = btrfs_del_items(trans, root, path,
3199 						pending_del_slot,
3200 						pending_del_nr);
3201 				BUG_ON(ret);
3202 				pending_del_nr = 0;
3203 			}
3204 			btrfs_release_path(path);
3205 			goto search_again;
3206 		} else {
3207 			path->slots[0]--;
3208 		}
3209 	}
3210 out:
3211 	if (pending_del_nr) {
3212 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3213 				      pending_del_nr);
3214 		BUG_ON(ret);
3215 	}
3216 	btrfs_free_path(path);
3217 	return err;
3218 }
3219 
3220 /*
3221  * taken from block_truncate_page, but does cow as it zeros out
3222  * any bytes left in the last page in the file.
3223  */
3224 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3225 {
3226 	struct inode *inode = mapping->host;
3227 	struct btrfs_root *root = BTRFS_I(inode)->root;
3228 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3229 	struct btrfs_ordered_extent *ordered;
3230 	struct extent_state *cached_state = NULL;
3231 	char *kaddr;
3232 	u32 blocksize = root->sectorsize;
3233 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3234 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3235 	struct page *page;
3236 	gfp_t mask = btrfs_alloc_write_mask(mapping);
3237 	int ret = 0;
3238 	u64 page_start;
3239 	u64 page_end;
3240 
3241 	if ((offset & (blocksize - 1)) == 0)
3242 		goto out;
3243 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3244 	if (ret)
3245 		goto out;
3246 
3247 	ret = -ENOMEM;
3248 again:
3249 	page = find_or_create_page(mapping, index, mask);
3250 	if (!page) {
3251 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3252 		goto out;
3253 	}
3254 
3255 	page_start = page_offset(page);
3256 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3257 
3258 	if (!PageUptodate(page)) {
3259 		ret = btrfs_readpage(NULL, page);
3260 		lock_page(page);
3261 		if (page->mapping != mapping) {
3262 			unlock_page(page);
3263 			page_cache_release(page);
3264 			goto again;
3265 		}
3266 		if (!PageUptodate(page)) {
3267 			ret = -EIO;
3268 			goto out_unlock;
3269 		}
3270 	}
3271 	wait_on_page_writeback(page);
3272 
3273 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3274 			 GFP_NOFS);
3275 	set_page_extent_mapped(page);
3276 
3277 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3278 	if (ordered) {
3279 		unlock_extent_cached(io_tree, page_start, page_end,
3280 				     &cached_state, GFP_NOFS);
3281 		unlock_page(page);
3282 		page_cache_release(page);
3283 		btrfs_start_ordered_extent(inode, ordered, 1);
3284 		btrfs_put_ordered_extent(ordered);
3285 		goto again;
3286 	}
3287 
3288 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3289 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3290 			  0, 0, &cached_state, GFP_NOFS);
3291 
3292 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3293 					&cached_state);
3294 	if (ret) {
3295 		unlock_extent_cached(io_tree, page_start, page_end,
3296 				     &cached_state, GFP_NOFS);
3297 		goto out_unlock;
3298 	}
3299 
3300 	ret = 0;
3301 	if (offset != PAGE_CACHE_SIZE) {
3302 		kaddr = kmap(page);
3303 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3304 		flush_dcache_page(page);
3305 		kunmap(page);
3306 	}
3307 	ClearPageChecked(page);
3308 	set_page_dirty(page);
3309 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3310 			     GFP_NOFS);
3311 
3312 out_unlock:
3313 	if (ret)
3314 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3315 	unlock_page(page);
3316 	page_cache_release(page);
3317 out:
3318 	return ret;
3319 }
3320 
3321 /*
3322  * This function puts in dummy file extents for the area we're creating a hole
3323  * for.  So if we are truncating this file to a larger size we need to insert
3324  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3325  * the range between oldsize and size
3326  */
3327 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3328 {
3329 	struct btrfs_trans_handle *trans;
3330 	struct btrfs_root *root = BTRFS_I(inode)->root;
3331 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3332 	struct extent_map *em = NULL;
3333 	struct extent_state *cached_state = NULL;
3334 	u64 mask = root->sectorsize - 1;
3335 	u64 hole_start = (oldsize + mask) & ~mask;
3336 	u64 block_end = (size + mask) & ~mask;
3337 	u64 last_byte;
3338 	u64 cur_offset;
3339 	u64 hole_size;
3340 	int err = 0;
3341 
3342 	if (size <= hole_start)
3343 		return 0;
3344 
3345 	while (1) {
3346 		struct btrfs_ordered_extent *ordered;
3347 		btrfs_wait_ordered_range(inode, hole_start,
3348 					 block_end - hole_start);
3349 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3350 				 &cached_state, GFP_NOFS);
3351 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3352 		if (!ordered)
3353 			break;
3354 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3355 				     &cached_state, GFP_NOFS);
3356 		btrfs_put_ordered_extent(ordered);
3357 	}
3358 
3359 	cur_offset = hole_start;
3360 	while (1) {
3361 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3362 				block_end - cur_offset, 0);
3363 		BUG_ON(IS_ERR_OR_NULL(em));
3364 		last_byte = min(extent_map_end(em), block_end);
3365 		last_byte = (last_byte + mask) & ~mask;
3366 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3367 			u64 hint_byte = 0;
3368 			hole_size = last_byte - cur_offset;
3369 
3370 			trans = btrfs_start_transaction(root, 3);
3371 			if (IS_ERR(trans)) {
3372 				err = PTR_ERR(trans);
3373 				break;
3374 			}
3375 
3376 			err = btrfs_drop_extents(trans, inode, cur_offset,
3377 						 cur_offset + hole_size,
3378 						 &hint_byte, 1);
3379 			if (err) {
3380 				btrfs_update_inode(trans, root, inode);
3381 				btrfs_end_transaction(trans, root);
3382 				break;
3383 			}
3384 
3385 			err = btrfs_insert_file_extent(trans, root,
3386 					btrfs_ino(inode), cur_offset, 0,
3387 					0, hole_size, 0, hole_size,
3388 					0, 0, 0);
3389 			if (err) {
3390 				btrfs_update_inode(trans, root, inode);
3391 				btrfs_end_transaction(trans, root);
3392 				break;
3393 			}
3394 
3395 			btrfs_drop_extent_cache(inode, hole_start,
3396 					last_byte - 1, 0);
3397 
3398 			btrfs_update_inode(trans, root, inode);
3399 			btrfs_end_transaction(trans, root);
3400 		}
3401 		free_extent_map(em);
3402 		em = NULL;
3403 		cur_offset = last_byte;
3404 		if (cur_offset >= block_end)
3405 			break;
3406 	}
3407 
3408 	free_extent_map(em);
3409 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3410 			     GFP_NOFS);
3411 	return err;
3412 }
3413 
3414 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3415 {
3416 	struct btrfs_root *root = BTRFS_I(inode)->root;
3417 	struct btrfs_trans_handle *trans;
3418 	loff_t oldsize = i_size_read(inode);
3419 	int ret;
3420 
3421 	if (newsize == oldsize)
3422 		return 0;
3423 
3424 	if (newsize > oldsize) {
3425 		truncate_pagecache(inode, oldsize, newsize);
3426 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3427 		if (ret)
3428 			return ret;
3429 
3430 		trans = btrfs_start_transaction(root, 1);
3431 		if (IS_ERR(trans))
3432 			return PTR_ERR(trans);
3433 
3434 		i_size_write(inode, newsize);
3435 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3436 		ret = btrfs_update_inode(trans, root, inode);
3437 		btrfs_end_transaction_throttle(trans, root);
3438 	} else {
3439 
3440 		/*
3441 		 * We're truncating a file that used to have good data down to
3442 		 * zero. Make sure it gets into the ordered flush list so that
3443 		 * any new writes get down to disk quickly.
3444 		 */
3445 		if (newsize == 0)
3446 			BTRFS_I(inode)->ordered_data_close = 1;
3447 
3448 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3449 		truncate_setsize(inode, newsize);
3450 		ret = btrfs_truncate(inode);
3451 	}
3452 
3453 	return ret;
3454 }
3455 
3456 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3457 {
3458 	struct inode *inode = dentry->d_inode;
3459 	struct btrfs_root *root = BTRFS_I(inode)->root;
3460 	int err;
3461 
3462 	if (btrfs_root_readonly(root))
3463 		return -EROFS;
3464 
3465 	err = inode_change_ok(inode, attr);
3466 	if (err)
3467 		return err;
3468 
3469 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3470 		err = btrfs_setsize(inode, attr->ia_size);
3471 		if (err)
3472 			return err;
3473 	}
3474 
3475 	if (attr->ia_valid) {
3476 		setattr_copy(inode, attr);
3477 		err = btrfs_dirty_inode(inode);
3478 
3479 		if (!err && attr->ia_valid & ATTR_MODE)
3480 			err = btrfs_acl_chmod(inode);
3481 	}
3482 
3483 	return err;
3484 }
3485 
3486 void btrfs_evict_inode(struct inode *inode)
3487 {
3488 	struct btrfs_trans_handle *trans;
3489 	struct btrfs_root *root = BTRFS_I(inode)->root;
3490 	struct btrfs_block_rsv *rsv, *global_rsv;
3491 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3492 	unsigned long nr;
3493 	int ret;
3494 
3495 	trace_btrfs_inode_evict(inode);
3496 
3497 	truncate_inode_pages(&inode->i_data, 0);
3498 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3499 			       btrfs_is_free_space_inode(root, inode)))
3500 		goto no_delete;
3501 
3502 	if (is_bad_inode(inode)) {
3503 		btrfs_orphan_del(NULL, inode);
3504 		goto no_delete;
3505 	}
3506 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3507 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3508 
3509 	if (root->fs_info->log_root_recovering) {
3510 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3511 		goto no_delete;
3512 	}
3513 
3514 	if (inode->i_nlink > 0) {
3515 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3516 		goto no_delete;
3517 	}
3518 
3519 	rsv = btrfs_alloc_block_rsv(root);
3520 	if (!rsv) {
3521 		btrfs_orphan_del(NULL, inode);
3522 		goto no_delete;
3523 	}
3524 	rsv->size = min_size;
3525 	global_rsv = &root->fs_info->global_block_rsv;
3526 
3527 	btrfs_i_size_write(inode, 0);
3528 
3529 	/*
3530 	 * This is a bit simpler than btrfs_truncate since
3531 	 *
3532 	 * 1) We've already reserved our space for our orphan item in the
3533 	 *    unlink.
3534 	 * 2) We're going to delete the inode item, so we don't need to update
3535 	 *    it at all.
3536 	 *
3537 	 * So we just need to reserve some slack space in case we add bytes when
3538 	 * doing the truncate.
3539 	 */
3540 	while (1) {
3541 		ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3542 
3543 		/*
3544 		 * Try and steal from the global reserve since we will
3545 		 * likely not use this space anyway, we want to try as
3546 		 * hard as possible to get this to work.
3547 		 */
3548 		if (ret)
3549 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3550 
3551 		if (ret) {
3552 			printk(KERN_WARNING "Could not get space for a "
3553 			       "delete, will truncate on mount %d\n", ret);
3554 			btrfs_orphan_del(NULL, inode);
3555 			btrfs_free_block_rsv(root, rsv);
3556 			goto no_delete;
3557 		}
3558 
3559 		trans = btrfs_start_transaction(root, 0);
3560 		if (IS_ERR(trans)) {
3561 			btrfs_orphan_del(NULL, inode);
3562 			btrfs_free_block_rsv(root, rsv);
3563 			goto no_delete;
3564 		}
3565 
3566 		trans->block_rsv = rsv;
3567 
3568 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3569 		if (ret != -EAGAIN)
3570 			break;
3571 
3572 		nr = trans->blocks_used;
3573 		btrfs_end_transaction(trans, root);
3574 		trans = NULL;
3575 		btrfs_btree_balance_dirty(root, nr);
3576 	}
3577 
3578 	btrfs_free_block_rsv(root, rsv);
3579 
3580 	if (ret == 0) {
3581 		trans->block_rsv = root->orphan_block_rsv;
3582 		ret = btrfs_orphan_del(trans, inode);
3583 		BUG_ON(ret);
3584 	}
3585 
3586 	trans->block_rsv = &root->fs_info->trans_block_rsv;
3587 	if (!(root == root->fs_info->tree_root ||
3588 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3589 		btrfs_return_ino(root, btrfs_ino(inode));
3590 
3591 	nr = trans->blocks_used;
3592 	btrfs_end_transaction(trans, root);
3593 	btrfs_btree_balance_dirty(root, nr);
3594 no_delete:
3595 	end_writeback(inode);
3596 	return;
3597 }
3598 
3599 /*
3600  * this returns the key found in the dir entry in the location pointer.
3601  * If no dir entries were found, location->objectid is 0.
3602  */
3603 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3604 			       struct btrfs_key *location)
3605 {
3606 	const char *name = dentry->d_name.name;
3607 	int namelen = dentry->d_name.len;
3608 	struct btrfs_dir_item *di;
3609 	struct btrfs_path *path;
3610 	struct btrfs_root *root = BTRFS_I(dir)->root;
3611 	int ret = 0;
3612 
3613 	path = btrfs_alloc_path();
3614 	if (!path)
3615 		return -ENOMEM;
3616 
3617 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3618 				    namelen, 0);
3619 	if (IS_ERR(di))
3620 		ret = PTR_ERR(di);
3621 
3622 	if (IS_ERR_OR_NULL(di))
3623 		goto out_err;
3624 
3625 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3626 out:
3627 	btrfs_free_path(path);
3628 	return ret;
3629 out_err:
3630 	location->objectid = 0;
3631 	goto out;
3632 }
3633 
3634 /*
3635  * when we hit a tree root in a directory, the btrfs part of the inode
3636  * needs to be changed to reflect the root directory of the tree root.  This
3637  * is kind of like crossing a mount point.
3638  */
3639 static int fixup_tree_root_location(struct btrfs_root *root,
3640 				    struct inode *dir,
3641 				    struct dentry *dentry,
3642 				    struct btrfs_key *location,
3643 				    struct btrfs_root **sub_root)
3644 {
3645 	struct btrfs_path *path;
3646 	struct btrfs_root *new_root;
3647 	struct btrfs_root_ref *ref;
3648 	struct extent_buffer *leaf;
3649 	int ret;
3650 	int err = 0;
3651 
3652 	path = btrfs_alloc_path();
3653 	if (!path) {
3654 		err = -ENOMEM;
3655 		goto out;
3656 	}
3657 
3658 	err = -ENOENT;
3659 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3660 				  BTRFS_I(dir)->root->root_key.objectid,
3661 				  location->objectid);
3662 	if (ret) {
3663 		if (ret < 0)
3664 			err = ret;
3665 		goto out;
3666 	}
3667 
3668 	leaf = path->nodes[0];
3669 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3670 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3671 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3672 		goto out;
3673 
3674 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3675 				   (unsigned long)(ref + 1),
3676 				   dentry->d_name.len);
3677 	if (ret)
3678 		goto out;
3679 
3680 	btrfs_release_path(path);
3681 
3682 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3683 	if (IS_ERR(new_root)) {
3684 		err = PTR_ERR(new_root);
3685 		goto out;
3686 	}
3687 
3688 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3689 		err = -ENOENT;
3690 		goto out;
3691 	}
3692 
3693 	*sub_root = new_root;
3694 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3695 	location->type = BTRFS_INODE_ITEM_KEY;
3696 	location->offset = 0;
3697 	err = 0;
3698 out:
3699 	btrfs_free_path(path);
3700 	return err;
3701 }
3702 
3703 static void inode_tree_add(struct inode *inode)
3704 {
3705 	struct btrfs_root *root = BTRFS_I(inode)->root;
3706 	struct btrfs_inode *entry;
3707 	struct rb_node **p;
3708 	struct rb_node *parent;
3709 	u64 ino = btrfs_ino(inode);
3710 again:
3711 	p = &root->inode_tree.rb_node;
3712 	parent = NULL;
3713 
3714 	if (inode_unhashed(inode))
3715 		return;
3716 
3717 	spin_lock(&root->inode_lock);
3718 	while (*p) {
3719 		parent = *p;
3720 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3721 
3722 		if (ino < btrfs_ino(&entry->vfs_inode))
3723 			p = &parent->rb_left;
3724 		else if (ino > btrfs_ino(&entry->vfs_inode))
3725 			p = &parent->rb_right;
3726 		else {
3727 			WARN_ON(!(entry->vfs_inode.i_state &
3728 				  (I_WILL_FREE | I_FREEING)));
3729 			rb_erase(parent, &root->inode_tree);
3730 			RB_CLEAR_NODE(parent);
3731 			spin_unlock(&root->inode_lock);
3732 			goto again;
3733 		}
3734 	}
3735 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3736 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3737 	spin_unlock(&root->inode_lock);
3738 }
3739 
3740 static void inode_tree_del(struct inode *inode)
3741 {
3742 	struct btrfs_root *root = BTRFS_I(inode)->root;
3743 	int empty = 0;
3744 
3745 	spin_lock(&root->inode_lock);
3746 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3747 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3748 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3749 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3750 	}
3751 	spin_unlock(&root->inode_lock);
3752 
3753 	/*
3754 	 * Free space cache has inodes in the tree root, but the tree root has a
3755 	 * root_refs of 0, so this could end up dropping the tree root as a
3756 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3757 	 * make sure we don't drop it.
3758 	 */
3759 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3760 	    root != root->fs_info->tree_root) {
3761 		synchronize_srcu(&root->fs_info->subvol_srcu);
3762 		spin_lock(&root->inode_lock);
3763 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3764 		spin_unlock(&root->inode_lock);
3765 		if (empty)
3766 			btrfs_add_dead_root(root);
3767 	}
3768 }
3769 
3770 int btrfs_invalidate_inodes(struct btrfs_root *root)
3771 {
3772 	struct rb_node *node;
3773 	struct rb_node *prev;
3774 	struct btrfs_inode *entry;
3775 	struct inode *inode;
3776 	u64 objectid = 0;
3777 
3778 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3779 
3780 	spin_lock(&root->inode_lock);
3781 again:
3782 	node = root->inode_tree.rb_node;
3783 	prev = NULL;
3784 	while (node) {
3785 		prev = node;
3786 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3787 
3788 		if (objectid < btrfs_ino(&entry->vfs_inode))
3789 			node = node->rb_left;
3790 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3791 			node = node->rb_right;
3792 		else
3793 			break;
3794 	}
3795 	if (!node) {
3796 		while (prev) {
3797 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3798 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3799 				node = prev;
3800 				break;
3801 			}
3802 			prev = rb_next(prev);
3803 		}
3804 	}
3805 	while (node) {
3806 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3807 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3808 		inode = igrab(&entry->vfs_inode);
3809 		if (inode) {
3810 			spin_unlock(&root->inode_lock);
3811 			if (atomic_read(&inode->i_count) > 1)
3812 				d_prune_aliases(inode);
3813 			/*
3814 			 * btrfs_drop_inode will have it removed from
3815 			 * the inode cache when its usage count
3816 			 * hits zero.
3817 			 */
3818 			iput(inode);
3819 			cond_resched();
3820 			spin_lock(&root->inode_lock);
3821 			goto again;
3822 		}
3823 
3824 		if (cond_resched_lock(&root->inode_lock))
3825 			goto again;
3826 
3827 		node = rb_next(node);
3828 	}
3829 	spin_unlock(&root->inode_lock);
3830 	return 0;
3831 }
3832 
3833 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3834 {
3835 	struct btrfs_iget_args *args = p;
3836 	inode->i_ino = args->ino;
3837 	BTRFS_I(inode)->root = args->root;
3838 	btrfs_set_inode_space_info(args->root, inode);
3839 	return 0;
3840 }
3841 
3842 static int btrfs_find_actor(struct inode *inode, void *opaque)
3843 {
3844 	struct btrfs_iget_args *args = opaque;
3845 	return args->ino == btrfs_ino(inode) &&
3846 		args->root == BTRFS_I(inode)->root;
3847 }
3848 
3849 static struct inode *btrfs_iget_locked(struct super_block *s,
3850 				       u64 objectid,
3851 				       struct btrfs_root *root)
3852 {
3853 	struct inode *inode;
3854 	struct btrfs_iget_args args;
3855 	args.ino = objectid;
3856 	args.root = root;
3857 
3858 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3859 			     btrfs_init_locked_inode,
3860 			     (void *)&args);
3861 	return inode;
3862 }
3863 
3864 /* Get an inode object given its location and corresponding root.
3865  * Returns in *is_new if the inode was read from disk
3866  */
3867 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3868 			 struct btrfs_root *root, int *new)
3869 {
3870 	struct inode *inode;
3871 
3872 	inode = btrfs_iget_locked(s, location->objectid, root);
3873 	if (!inode)
3874 		return ERR_PTR(-ENOMEM);
3875 
3876 	if (inode->i_state & I_NEW) {
3877 		BTRFS_I(inode)->root = root;
3878 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3879 		btrfs_read_locked_inode(inode);
3880 		if (!is_bad_inode(inode)) {
3881 			inode_tree_add(inode);
3882 			unlock_new_inode(inode);
3883 			if (new)
3884 				*new = 1;
3885 		} else {
3886 			unlock_new_inode(inode);
3887 			iput(inode);
3888 			inode = ERR_PTR(-ESTALE);
3889 		}
3890 	}
3891 
3892 	return inode;
3893 }
3894 
3895 static struct inode *new_simple_dir(struct super_block *s,
3896 				    struct btrfs_key *key,
3897 				    struct btrfs_root *root)
3898 {
3899 	struct inode *inode = new_inode(s);
3900 
3901 	if (!inode)
3902 		return ERR_PTR(-ENOMEM);
3903 
3904 	BTRFS_I(inode)->root = root;
3905 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3906 	BTRFS_I(inode)->dummy_inode = 1;
3907 
3908 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3909 	inode->i_op = &simple_dir_inode_operations;
3910 	inode->i_fop = &simple_dir_operations;
3911 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3912 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3913 
3914 	return inode;
3915 }
3916 
3917 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3918 {
3919 	struct inode *inode;
3920 	struct btrfs_root *root = BTRFS_I(dir)->root;
3921 	struct btrfs_root *sub_root = root;
3922 	struct btrfs_key location;
3923 	int index;
3924 	int ret = 0;
3925 
3926 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3927 		return ERR_PTR(-ENAMETOOLONG);
3928 
3929 	if (unlikely(d_need_lookup(dentry))) {
3930 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3931 		kfree(dentry->d_fsdata);
3932 		dentry->d_fsdata = NULL;
3933 		/* This thing is hashed, drop it for now */
3934 		d_drop(dentry);
3935 	} else {
3936 		ret = btrfs_inode_by_name(dir, dentry, &location);
3937 	}
3938 
3939 	if (ret < 0)
3940 		return ERR_PTR(ret);
3941 
3942 	if (location.objectid == 0)
3943 		return NULL;
3944 
3945 	if (location.type == BTRFS_INODE_ITEM_KEY) {
3946 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3947 		return inode;
3948 	}
3949 
3950 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3951 
3952 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
3953 	ret = fixup_tree_root_location(root, dir, dentry,
3954 				       &location, &sub_root);
3955 	if (ret < 0) {
3956 		if (ret != -ENOENT)
3957 			inode = ERR_PTR(ret);
3958 		else
3959 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
3960 	} else {
3961 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3962 	}
3963 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3964 
3965 	if (!IS_ERR(inode) && root != sub_root) {
3966 		down_read(&root->fs_info->cleanup_work_sem);
3967 		if (!(inode->i_sb->s_flags & MS_RDONLY))
3968 			ret = btrfs_orphan_cleanup(sub_root);
3969 		up_read(&root->fs_info->cleanup_work_sem);
3970 		if (ret)
3971 			inode = ERR_PTR(ret);
3972 	}
3973 
3974 	return inode;
3975 }
3976 
3977 static int btrfs_dentry_delete(const struct dentry *dentry)
3978 {
3979 	struct btrfs_root *root;
3980 
3981 	if (!dentry->d_inode && !IS_ROOT(dentry))
3982 		dentry = dentry->d_parent;
3983 
3984 	if (dentry->d_inode) {
3985 		root = BTRFS_I(dentry->d_inode)->root;
3986 		if (btrfs_root_refs(&root->root_item) == 0)
3987 			return 1;
3988 	}
3989 	return 0;
3990 }
3991 
3992 static void btrfs_dentry_release(struct dentry *dentry)
3993 {
3994 	if (dentry->d_fsdata)
3995 		kfree(dentry->d_fsdata);
3996 }
3997 
3998 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3999 				   struct nameidata *nd)
4000 {
4001 	struct dentry *ret;
4002 
4003 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4004 	if (unlikely(d_need_lookup(dentry))) {
4005 		spin_lock(&dentry->d_lock);
4006 		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4007 		spin_unlock(&dentry->d_lock);
4008 	}
4009 	return ret;
4010 }
4011 
4012 unsigned char btrfs_filetype_table[] = {
4013 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4014 };
4015 
4016 static int btrfs_real_readdir(struct file *filp, void *dirent,
4017 			      filldir_t filldir)
4018 {
4019 	struct inode *inode = filp->f_dentry->d_inode;
4020 	struct btrfs_root *root = BTRFS_I(inode)->root;
4021 	struct btrfs_item *item;
4022 	struct btrfs_dir_item *di;
4023 	struct btrfs_key key;
4024 	struct btrfs_key found_key;
4025 	struct btrfs_path *path;
4026 	struct list_head ins_list;
4027 	struct list_head del_list;
4028 	struct qstr q;
4029 	int ret;
4030 	struct extent_buffer *leaf;
4031 	int slot;
4032 	unsigned char d_type;
4033 	int over = 0;
4034 	u32 di_cur;
4035 	u32 di_total;
4036 	u32 di_len;
4037 	int key_type = BTRFS_DIR_INDEX_KEY;
4038 	char tmp_name[32];
4039 	char *name_ptr;
4040 	int name_len;
4041 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4042 
4043 	/* FIXME, use a real flag for deciding about the key type */
4044 	if (root->fs_info->tree_root == root)
4045 		key_type = BTRFS_DIR_ITEM_KEY;
4046 
4047 	/* special case for "." */
4048 	if (filp->f_pos == 0) {
4049 		over = filldir(dirent, ".", 1,
4050 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
4051 		if (over)
4052 			return 0;
4053 		filp->f_pos = 1;
4054 	}
4055 	/* special case for .., just use the back ref */
4056 	if (filp->f_pos == 1) {
4057 		u64 pino = parent_ino(filp->f_path.dentry);
4058 		over = filldir(dirent, "..", 2,
4059 			       filp->f_pos, pino, DT_DIR);
4060 		if (over)
4061 			return 0;
4062 		filp->f_pos = 2;
4063 	}
4064 	path = btrfs_alloc_path();
4065 	if (!path)
4066 		return -ENOMEM;
4067 
4068 	path->reada = 1;
4069 
4070 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4071 		INIT_LIST_HEAD(&ins_list);
4072 		INIT_LIST_HEAD(&del_list);
4073 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4074 	}
4075 
4076 	btrfs_set_key_type(&key, key_type);
4077 	key.offset = filp->f_pos;
4078 	key.objectid = btrfs_ino(inode);
4079 
4080 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4081 	if (ret < 0)
4082 		goto err;
4083 
4084 	while (1) {
4085 		leaf = path->nodes[0];
4086 		slot = path->slots[0];
4087 		if (slot >= btrfs_header_nritems(leaf)) {
4088 			ret = btrfs_next_leaf(root, path);
4089 			if (ret < 0)
4090 				goto err;
4091 			else if (ret > 0)
4092 				break;
4093 			continue;
4094 		}
4095 
4096 		item = btrfs_item_nr(leaf, slot);
4097 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4098 
4099 		if (found_key.objectid != key.objectid)
4100 			break;
4101 		if (btrfs_key_type(&found_key) != key_type)
4102 			break;
4103 		if (found_key.offset < filp->f_pos)
4104 			goto next;
4105 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4106 		    btrfs_should_delete_dir_index(&del_list,
4107 						  found_key.offset))
4108 			goto next;
4109 
4110 		filp->f_pos = found_key.offset;
4111 		is_curr = 1;
4112 
4113 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4114 		di_cur = 0;
4115 		di_total = btrfs_item_size(leaf, item);
4116 
4117 		while (di_cur < di_total) {
4118 			struct btrfs_key location;
4119 			struct dentry *tmp;
4120 
4121 			if (verify_dir_item(root, leaf, di))
4122 				break;
4123 
4124 			name_len = btrfs_dir_name_len(leaf, di);
4125 			if (name_len <= sizeof(tmp_name)) {
4126 				name_ptr = tmp_name;
4127 			} else {
4128 				name_ptr = kmalloc(name_len, GFP_NOFS);
4129 				if (!name_ptr) {
4130 					ret = -ENOMEM;
4131 					goto err;
4132 				}
4133 			}
4134 			read_extent_buffer(leaf, name_ptr,
4135 					   (unsigned long)(di + 1), name_len);
4136 
4137 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4138 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4139 
4140 			q.name = name_ptr;
4141 			q.len = name_len;
4142 			q.hash = full_name_hash(q.name, q.len);
4143 			tmp = d_lookup(filp->f_dentry, &q);
4144 			if (!tmp) {
4145 				struct btrfs_key *newkey;
4146 
4147 				newkey = kzalloc(sizeof(struct btrfs_key),
4148 						 GFP_NOFS);
4149 				if (!newkey)
4150 					goto no_dentry;
4151 				tmp = d_alloc(filp->f_dentry, &q);
4152 				if (!tmp) {
4153 					kfree(newkey);
4154 					dput(tmp);
4155 					goto no_dentry;
4156 				}
4157 				memcpy(newkey, &location,
4158 				       sizeof(struct btrfs_key));
4159 				tmp->d_fsdata = newkey;
4160 				tmp->d_flags |= DCACHE_NEED_LOOKUP;
4161 				d_rehash(tmp);
4162 				dput(tmp);
4163 			} else {
4164 				dput(tmp);
4165 			}
4166 no_dentry:
4167 			/* is this a reference to our own snapshot? If so
4168 			 * skip it
4169 			 */
4170 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4171 			    location.objectid == root->root_key.objectid) {
4172 				over = 0;
4173 				goto skip;
4174 			}
4175 			over = filldir(dirent, name_ptr, name_len,
4176 				       found_key.offset, location.objectid,
4177 				       d_type);
4178 
4179 skip:
4180 			if (name_ptr != tmp_name)
4181 				kfree(name_ptr);
4182 
4183 			if (over)
4184 				goto nopos;
4185 			di_len = btrfs_dir_name_len(leaf, di) +
4186 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4187 			di_cur += di_len;
4188 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4189 		}
4190 next:
4191 		path->slots[0]++;
4192 	}
4193 
4194 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4195 		if (is_curr)
4196 			filp->f_pos++;
4197 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4198 						      &ins_list);
4199 		if (ret)
4200 			goto nopos;
4201 	}
4202 
4203 	/* Reached end of directory/root. Bump pos past the last item. */
4204 	if (key_type == BTRFS_DIR_INDEX_KEY)
4205 		/*
4206 		 * 32-bit glibc will use getdents64, but then strtol -
4207 		 * so the last number we can serve is this.
4208 		 */
4209 		filp->f_pos = 0x7fffffff;
4210 	else
4211 		filp->f_pos++;
4212 nopos:
4213 	ret = 0;
4214 err:
4215 	if (key_type == BTRFS_DIR_INDEX_KEY)
4216 		btrfs_put_delayed_items(&ins_list, &del_list);
4217 	btrfs_free_path(path);
4218 	return ret;
4219 }
4220 
4221 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4222 {
4223 	struct btrfs_root *root = BTRFS_I(inode)->root;
4224 	struct btrfs_trans_handle *trans;
4225 	int ret = 0;
4226 	bool nolock = false;
4227 
4228 	if (BTRFS_I(inode)->dummy_inode)
4229 		return 0;
4230 
4231 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4232 		nolock = true;
4233 
4234 	if (wbc->sync_mode == WB_SYNC_ALL) {
4235 		if (nolock)
4236 			trans = btrfs_join_transaction_nolock(root);
4237 		else
4238 			trans = btrfs_join_transaction(root);
4239 		if (IS_ERR(trans))
4240 			return PTR_ERR(trans);
4241 		if (nolock)
4242 			ret = btrfs_end_transaction_nolock(trans, root);
4243 		else
4244 			ret = btrfs_commit_transaction(trans, root);
4245 	}
4246 	return ret;
4247 }
4248 
4249 /*
4250  * This is somewhat expensive, updating the tree every time the
4251  * inode changes.  But, it is most likely to find the inode in cache.
4252  * FIXME, needs more benchmarking...there are no reasons other than performance
4253  * to keep or drop this code.
4254  */
4255 int btrfs_dirty_inode(struct inode *inode)
4256 {
4257 	struct btrfs_root *root = BTRFS_I(inode)->root;
4258 	struct btrfs_trans_handle *trans;
4259 	int ret;
4260 
4261 	if (BTRFS_I(inode)->dummy_inode)
4262 		return 0;
4263 
4264 	trans = btrfs_join_transaction(root);
4265 	if (IS_ERR(trans))
4266 		return PTR_ERR(trans);
4267 
4268 	ret = btrfs_update_inode(trans, root, inode);
4269 	if (ret && ret == -ENOSPC) {
4270 		/* whoops, lets try again with the full transaction */
4271 		btrfs_end_transaction(trans, root);
4272 		trans = btrfs_start_transaction(root, 1);
4273 		if (IS_ERR(trans))
4274 			return PTR_ERR(trans);
4275 
4276 		ret = btrfs_update_inode(trans, root, inode);
4277 	}
4278 	btrfs_end_transaction(trans, root);
4279 	if (BTRFS_I(inode)->delayed_node)
4280 		btrfs_balance_delayed_items(root);
4281 
4282 	return ret;
4283 }
4284 
4285 /*
4286  * This is a copy of file_update_time.  We need this so we can return error on
4287  * ENOSPC for updating the inode in the case of file write and mmap writes.
4288  */
4289 int btrfs_update_time(struct file *file)
4290 {
4291 	struct inode *inode = file->f_path.dentry->d_inode;
4292 	struct timespec now;
4293 	int ret;
4294 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4295 
4296 	/* First try to exhaust all avenues to not sync */
4297 	if (IS_NOCMTIME(inode))
4298 		return 0;
4299 
4300 	now = current_fs_time(inode->i_sb);
4301 	if (!timespec_equal(&inode->i_mtime, &now))
4302 		sync_it = S_MTIME;
4303 
4304 	if (!timespec_equal(&inode->i_ctime, &now))
4305 		sync_it |= S_CTIME;
4306 
4307 	if (IS_I_VERSION(inode))
4308 		sync_it |= S_VERSION;
4309 
4310 	if (!sync_it)
4311 		return 0;
4312 
4313 	/* Finally allowed to write? Takes lock. */
4314 	if (mnt_want_write_file(file))
4315 		return 0;
4316 
4317 	/* Only change inode inside the lock region */
4318 	if (sync_it & S_VERSION)
4319 		inode_inc_iversion(inode);
4320 	if (sync_it & S_CTIME)
4321 		inode->i_ctime = now;
4322 	if (sync_it & S_MTIME)
4323 		inode->i_mtime = now;
4324 	ret = btrfs_dirty_inode(inode);
4325 	if (!ret)
4326 		mark_inode_dirty_sync(inode);
4327 	mnt_drop_write(file->f_path.mnt);
4328 	return ret;
4329 }
4330 
4331 /*
4332  * find the highest existing sequence number in a directory
4333  * and then set the in-memory index_cnt variable to reflect
4334  * free sequence numbers
4335  */
4336 static int btrfs_set_inode_index_count(struct inode *inode)
4337 {
4338 	struct btrfs_root *root = BTRFS_I(inode)->root;
4339 	struct btrfs_key key, found_key;
4340 	struct btrfs_path *path;
4341 	struct extent_buffer *leaf;
4342 	int ret;
4343 
4344 	key.objectid = btrfs_ino(inode);
4345 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4346 	key.offset = (u64)-1;
4347 
4348 	path = btrfs_alloc_path();
4349 	if (!path)
4350 		return -ENOMEM;
4351 
4352 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4353 	if (ret < 0)
4354 		goto out;
4355 	/* FIXME: we should be able to handle this */
4356 	if (ret == 0)
4357 		goto out;
4358 	ret = 0;
4359 
4360 	/*
4361 	 * MAGIC NUMBER EXPLANATION:
4362 	 * since we search a directory based on f_pos we have to start at 2
4363 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4364 	 * else has to start at 2
4365 	 */
4366 	if (path->slots[0] == 0) {
4367 		BTRFS_I(inode)->index_cnt = 2;
4368 		goto out;
4369 	}
4370 
4371 	path->slots[0]--;
4372 
4373 	leaf = path->nodes[0];
4374 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4375 
4376 	if (found_key.objectid != btrfs_ino(inode) ||
4377 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4378 		BTRFS_I(inode)->index_cnt = 2;
4379 		goto out;
4380 	}
4381 
4382 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4383 out:
4384 	btrfs_free_path(path);
4385 	return ret;
4386 }
4387 
4388 /*
4389  * helper to find a free sequence number in a given directory.  This current
4390  * code is very simple, later versions will do smarter things in the btree
4391  */
4392 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4393 {
4394 	int ret = 0;
4395 
4396 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4397 		ret = btrfs_inode_delayed_dir_index_count(dir);
4398 		if (ret) {
4399 			ret = btrfs_set_inode_index_count(dir);
4400 			if (ret)
4401 				return ret;
4402 		}
4403 	}
4404 
4405 	*index = BTRFS_I(dir)->index_cnt;
4406 	BTRFS_I(dir)->index_cnt++;
4407 
4408 	return ret;
4409 }
4410 
4411 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4412 				     struct btrfs_root *root,
4413 				     struct inode *dir,
4414 				     const char *name, int name_len,
4415 				     u64 ref_objectid, u64 objectid,
4416 				     umode_t mode, u64 *index)
4417 {
4418 	struct inode *inode;
4419 	struct btrfs_inode_item *inode_item;
4420 	struct btrfs_key *location;
4421 	struct btrfs_path *path;
4422 	struct btrfs_inode_ref *ref;
4423 	struct btrfs_key key[2];
4424 	u32 sizes[2];
4425 	unsigned long ptr;
4426 	int ret;
4427 	int owner;
4428 
4429 	path = btrfs_alloc_path();
4430 	if (!path)
4431 		return ERR_PTR(-ENOMEM);
4432 
4433 	inode = new_inode(root->fs_info->sb);
4434 	if (!inode) {
4435 		btrfs_free_path(path);
4436 		return ERR_PTR(-ENOMEM);
4437 	}
4438 
4439 	/*
4440 	 * we have to initialize this early, so we can reclaim the inode
4441 	 * number if we fail afterwards in this function.
4442 	 */
4443 	inode->i_ino = objectid;
4444 
4445 	if (dir) {
4446 		trace_btrfs_inode_request(dir);
4447 
4448 		ret = btrfs_set_inode_index(dir, index);
4449 		if (ret) {
4450 			btrfs_free_path(path);
4451 			iput(inode);
4452 			return ERR_PTR(ret);
4453 		}
4454 	}
4455 	/*
4456 	 * index_cnt is ignored for everything but a dir,
4457 	 * btrfs_get_inode_index_count has an explanation for the magic
4458 	 * number
4459 	 */
4460 	BTRFS_I(inode)->index_cnt = 2;
4461 	BTRFS_I(inode)->root = root;
4462 	BTRFS_I(inode)->generation = trans->transid;
4463 	inode->i_generation = BTRFS_I(inode)->generation;
4464 	btrfs_set_inode_space_info(root, inode);
4465 
4466 	if (S_ISDIR(mode))
4467 		owner = 0;
4468 	else
4469 		owner = 1;
4470 
4471 	key[0].objectid = objectid;
4472 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4473 	key[0].offset = 0;
4474 
4475 	key[1].objectid = objectid;
4476 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4477 	key[1].offset = ref_objectid;
4478 
4479 	sizes[0] = sizeof(struct btrfs_inode_item);
4480 	sizes[1] = name_len + sizeof(*ref);
4481 
4482 	path->leave_spinning = 1;
4483 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4484 	if (ret != 0)
4485 		goto fail;
4486 
4487 	inode_init_owner(inode, dir, mode);
4488 	inode_set_bytes(inode, 0);
4489 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4490 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4491 				  struct btrfs_inode_item);
4492 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4493 
4494 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4495 			     struct btrfs_inode_ref);
4496 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4497 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4498 	ptr = (unsigned long)(ref + 1);
4499 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4500 
4501 	btrfs_mark_buffer_dirty(path->nodes[0]);
4502 	btrfs_free_path(path);
4503 
4504 	location = &BTRFS_I(inode)->location;
4505 	location->objectid = objectid;
4506 	location->offset = 0;
4507 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4508 
4509 	btrfs_inherit_iflags(inode, dir);
4510 
4511 	if (S_ISREG(mode)) {
4512 		if (btrfs_test_opt(root, NODATASUM))
4513 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4514 		if (btrfs_test_opt(root, NODATACOW) ||
4515 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4516 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4517 	}
4518 
4519 	insert_inode_hash(inode);
4520 	inode_tree_add(inode);
4521 
4522 	trace_btrfs_inode_new(inode);
4523 	btrfs_set_inode_last_trans(trans, inode);
4524 
4525 	return inode;
4526 fail:
4527 	if (dir)
4528 		BTRFS_I(dir)->index_cnt--;
4529 	btrfs_free_path(path);
4530 	iput(inode);
4531 	return ERR_PTR(ret);
4532 }
4533 
4534 static inline u8 btrfs_inode_type(struct inode *inode)
4535 {
4536 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4537 }
4538 
4539 /*
4540  * utility function to add 'inode' into 'parent_inode' with
4541  * a give name and a given sequence number.
4542  * if 'add_backref' is true, also insert a backref from the
4543  * inode to the parent directory.
4544  */
4545 int btrfs_add_link(struct btrfs_trans_handle *trans,
4546 		   struct inode *parent_inode, struct inode *inode,
4547 		   const char *name, int name_len, int add_backref, u64 index)
4548 {
4549 	int ret = 0;
4550 	struct btrfs_key key;
4551 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4552 	u64 ino = btrfs_ino(inode);
4553 	u64 parent_ino = btrfs_ino(parent_inode);
4554 
4555 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4556 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4557 	} else {
4558 		key.objectid = ino;
4559 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4560 		key.offset = 0;
4561 	}
4562 
4563 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4564 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4565 					 key.objectid, root->root_key.objectid,
4566 					 parent_ino, index, name, name_len);
4567 	} else if (add_backref) {
4568 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4569 					     parent_ino, index);
4570 	}
4571 
4572 	if (ret == 0) {
4573 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4574 					    parent_inode, &key,
4575 					    btrfs_inode_type(inode), index);
4576 		BUG_ON(ret);
4577 
4578 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4579 				   name_len * 2);
4580 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4581 		ret = btrfs_update_inode(trans, root, parent_inode);
4582 	}
4583 	return ret;
4584 }
4585 
4586 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4587 			    struct inode *dir, struct dentry *dentry,
4588 			    struct inode *inode, int backref, u64 index)
4589 {
4590 	int err = btrfs_add_link(trans, dir, inode,
4591 				 dentry->d_name.name, dentry->d_name.len,
4592 				 backref, index);
4593 	if (err > 0)
4594 		err = -EEXIST;
4595 	return err;
4596 }
4597 
4598 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4599 			umode_t mode, dev_t rdev)
4600 {
4601 	struct btrfs_trans_handle *trans;
4602 	struct btrfs_root *root = BTRFS_I(dir)->root;
4603 	struct inode *inode = NULL;
4604 	int err;
4605 	int drop_inode = 0;
4606 	u64 objectid;
4607 	unsigned long nr = 0;
4608 	u64 index = 0;
4609 
4610 	if (!new_valid_dev(rdev))
4611 		return -EINVAL;
4612 
4613 	/*
4614 	 * 2 for inode item and ref
4615 	 * 2 for dir items
4616 	 * 1 for xattr if selinux is on
4617 	 */
4618 	trans = btrfs_start_transaction(root, 5);
4619 	if (IS_ERR(trans))
4620 		return PTR_ERR(trans);
4621 
4622 	err = btrfs_find_free_ino(root, &objectid);
4623 	if (err)
4624 		goto out_unlock;
4625 
4626 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4627 				dentry->d_name.len, btrfs_ino(dir), objectid,
4628 				mode, &index);
4629 	if (IS_ERR(inode)) {
4630 		err = PTR_ERR(inode);
4631 		goto out_unlock;
4632 	}
4633 
4634 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4635 	if (err) {
4636 		drop_inode = 1;
4637 		goto out_unlock;
4638 	}
4639 
4640 	/*
4641 	* If the active LSM wants to access the inode during
4642 	* d_instantiate it needs these. Smack checks to see
4643 	* if the filesystem supports xattrs by looking at the
4644 	* ops vector.
4645 	*/
4646 
4647 	inode->i_op = &btrfs_special_inode_operations;
4648 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4649 	if (err)
4650 		drop_inode = 1;
4651 	else {
4652 		init_special_inode(inode, inode->i_mode, rdev);
4653 		btrfs_update_inode(trans, root, inode);
4654 		d_instantiate(dentry, inode);
4655 	}
4656 out_unlock:
4657 	nr = trans->blocks_used;
4658 	btrfs_end_transaction_throttle(trans, root);
4659 	btrfs_btree_balance_dirty(root, nr);
4660 	if (drop_inode) {
4661 		inode_dec_link_count(inode);
4662 		iput(inode);
4663 	}
4664 	return err;
4665 }
4666 
4667 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4668 			umode_t mode, struct nameidata *nd)
4669 {
4670 	struct btrfs_trans_handle *trans;
4671 	struct btrfs_root *root = BTRFS_I(dir)->root;
4672 	struct inode *inode = NULL;
4673 	int drop_inode = 0;
4674 	int err;
4675 	unsigned long nr = 0;
4676 	u64 objectid;
4677 	u64 index = 0;
4678 
4679 	/*
4680 	 * 2 for inode item and ref
4681 	 * 2 for dir items
4682 	 * 1 for xattr if selinux is on
4683 	 */
4684 	trans = btrfs_start_transaction(root, 5);
4685 	if (IS_ERR(trans))
4686 		return PTR_ERR(trans);
4687 
4688 	err = btrfs_find_free_ino(root, &objectid);
4689 	if (err)
4690 		goto out_unlock;
4691 
4692 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4693 				dentry->d_name.len, btrfs_ino(dir), objectid,
4694 				mode, &index);
4695 	if (IS_ERR(inode)) {
4696 		err = PTR_ERR(inode);
4697 		goto out_unlock;
4698 	}
4699 
4700 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4701 	if (err) {
4702 		drop_inode = 1;
4703 		goto out_unlock;
4704 	}
4705 
4706 	/*
4707 	* If the active LSM wants to access the inode during
4708 	* d_instantiate it needs these. Smack checks to see
4709 	* if the filesystem supports xattrs by looking at the
4710 	* ops vector.
4711 	*/
4712 	inode->i_fop = &btrfs_file_operations;
4713 	inode->i_op = &btrfs_file_inode_operations;
4714 
4715 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4716 	if (err)
4717 		drop_inode = 1;
4718 	else {
4719 		inode->i_mapping->a_ops = &btrfs_aops;
4720 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4721 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4722 		d_instantiate(dentry, inode);
4723 	}
4724 out_unlock:
4725 	nr = trans->blocks_used;
4726 	btrfs_end_transaction_throttle(trans, root);
4727 	if (drop_inode) {
4728 		inode_dec_link_count(inode);
4729 		iput(inode);
4730 	}
4731 	btrfs_btree_balance_dirty(root, nr);
4732 	return err;
4733 }
4734 
4735 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4736 		      struct dentry *dentry)
4737 {
4738 	struct btrfs_trans_handle *trans;
4739 	struct btrfs_root *root = BTRFS_I(dir)->root;
4740 	struct inode *inode = old_dentry->d_inode;
4741 	u64 index;
4742 	unsigned long nr = 0;
4743 	int err;
4744 	int drop_inode = 0;
4745 
4746 	/* do not allow sys_link's with other subvols of the same device */
4747 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4748 		return -EXDEV;
4749 
4750 	if (inode->i_nlink == ~0U)
4751 		return -EMLINK;
4752 
4753 	err = btrfs_set_inode_index(dir, &index);
4754 	if (err)
4755 		goto fail;
4756 
4757 	/*
4758 	 * 2 items for inode and inode ref
4759 	 * 2 items for dir items
4760 	 * 1 item for parent inode
4761 	 */
4762 	trans = btrfs_start_transaction(root, 5);
4763 	if (IS_ERR(trans)) {
4764 		err = PTR_ERR(trans);
4765 		goto fail;
4766 	}
4767 
4768 	btrfs_inc_nlink(inode);
4769 	inode->i_ctime = CURRENT_TIME;
4770 	ihold(inode);
4771 
4772 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4773 
4774 	if (err) {
4775 		drop_inode = 1;
4776 	} else {
4777 		struct dentry *parent = dentry->d_parent;
4778 		err = btrfs_update_inode(trans, root, inode);
4779 		BUG_ON(err);
4780 		d_instantiate(dentry, inode);
4781 		btrfs_log_new_name(trans, inode, NULL, parent);
4782 	}
4783 
4784 	nr = trans->blocks_used;
4785 	btrfs_end_transaction_throttle(trans, root);
4786 fail:
4787 	if (drop_inode) {
4788 		inode_dec_link_count(inode);
4789 		iput(inode);
4790 	}
4791 	btrfs_btree_balance_dirty(root, nr);
4792 	return err;
4793 }
4794 
4795 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4796 {
4797 	struct inode *inode = NULL;
4798 	struct btrfs_trans_handle *trans;
4799 	struct btrfs_root *root = BTRFS_I(dir)->root;
4800 	int err = 0;
4801 	int drop_on_err = 0;
4802 	u64 objectid = 0;
4803 	u64 index = 0;
4804 	unsigned long nr = 1;
4805 
4806 	/*
4807 	 * 2 items for inode and ref
4808 	 * 2 items for dir items
4809 	 * 1 for xattr if selinux is on
4810 	 */
4811 	trans = btrfs_start_transaction(root, 5);
4812 	if (IS_ERR(trans))
4813 		return PTR_ERR(trans);
4814 
4815 	err = btrfs_find_free_ino(root, &objectid);
4816 	if (err)
4817 		goto out_fail;
4818 
4819 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4820 				dentry->d_name.len, btrfs_ino(dir), objectid,
4821 				S_IFDIR | mode, &index);
4822 	if (IS_ERR(inode)) {
4823 		err = PTR_ERR(inode);
4824 		goto out_fail;
4825 	}
4826 
4827 	drop_on_err = 1;
4828 
4829 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4830 	if (err)
4831 		goto out_fail;
4832 
4833 	inode->i_op = &btrfs_dir_inode_operations;
4834 	inode->i_fop = &btrfs_dir_file_operations;
4835 
4836 	btrfs_i_size_write(inode, 0);
4837 	err = btrfs_update_inode(trans, root, inode);
4838 	if (err)
4839 		goto out_fail;
4840 
4841 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4842 			     dentry->d_name.len, 0, index);
4843 	if (err)
4844 		goto out_fail;
4845 
4846 	d_instantiate(dentry, inode);
4847 	drop_on_err = 0;
4848 
4849 out_fail:
4850 	nr = trans->blocks_used;
4851 	btrfs_end_transaction_throttle(trans, root);
4852 	if (drop_on_err)
4853 		iput(inode);
4854 	btrfs_btree_balance_dirty(root, nr);
4855 	return err;
4856 }
4857 
4858 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4859  * and an extent that you want to insert, deal with overlap and insert
4860  * the new extent into the tree.
4861  */
4862 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4863 				struct extent_map *existing,
4864 				struct extent_map *em,
4865 				u64 map_start, u64 map_len)
4866 {
4867 	u64 start_diff;
4868 
4869 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4870 	start_diff = map_start - em->start;
4871 	em->start = map_start;
4872 	em->len = map_len;
4873 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4874 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4875 		em->block_start += start_diff;
4876 		em->block_len -= start_diff;
4877 	}
4878 	return add_extent_mapping(em_tree, em);
4879 }
4880 
4881 static noinline int uncompress_inline(struct btrfs_path *path,
4882 				      struct inode *inode, struct page *page,
4883 				      size_t pg_offset, u64 extent_offset,
4884 				      struct btrfs_file_extent_item *item)
4885 {
4886 	int ret;
4887 	struct extent_buffer *leaf = path->nodes[0];
4888 	char *tmp;
4889 	size_t max_size;
4890 	unsigned long inline_size;
4891 	unsigned long ptr;
4892 	int compress_type;
4893 
4894 	WARN_ON(pg_offset != 0);
4895 	compress_type = btrfs_file_extent_compression(leaf, item);
4896 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4897 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4898 					btrfs_item_nr(leaf, path->slots[0]));
4899 	tmp = kmalloc(inline_size, GFP_NOFS);
4900 	if (!tmp)
4901 		return -ENOMEM;
4902 	ptr = btrfs_file_extent_inline_start(item);
4903 
4904 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4905 
4906 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4907 	ret = btrfs_decompress(compress_type, tmp, page,
4908 			       extent_offset, inline_size, max_size);
4909 	if (ret) {
4910 		char *kaddr = kmap_atomic(page, KM_USER0);
4911 		unsigned long copy_size = min_t(u64,
4912 				  PAGE_CACHE_SIZE - pg_offset,
4913 				  max_size - extent_offset);
4914 		memset(kaddr + pg_offset, 0, copy_size);
4915 		kunmap_atomic(kaddr, KM_USER0);
4916 	}
4917 	kfree(tmp);
4918 	return 0;
4919 }
4920 
4921 /*
4922  * a bit scary, this does extent mapping from logical file offset to the disk.
4923  * the ugly parts come from merging extents from the disk with the in-ram
4924  * representation.  This gets more complex because of the data=ordered code,
4925  * where the in-ram extents might be locked pending data=ordered completion.
4926  *
4927  * This also copies inline extents directly into the page.
4928  */
4929 
4930 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4931 				    size_t pg_offset, u64 start, u64 len,
4932 				    int create)
4933 {
4934 	int ret;
4935 	int err = 0;
4936 	u64 bytenr;
4937 	u64 extent_start = 0;
4938 	u64 extent_end = 0;
4939 	u64 objectid = btrfs_ino(inode);
4940 	u32 found_type;
4941 	struct btrfs_path *path = NULL;
4942 	struct btrfs_root *root = BTRFS_I(inode)->root;
4943 	struct btrfs_file_extent_item *item;
4944 	struct extent_buffer *leaf;
4945 	struct btrfs_key found_key;
4946 	struct extent_map *em = NULL;
4947 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4948 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4949 	struct btrfs_trans_handle *trans = NULL;
4950 	int compress_type;
4951 
4952 again:
4953 	read_lock(&em_tree->lock);
4954 	em = lookup_extent_mapping(em_tree, start, len);
4955 	if (em)
4956 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4957 	read_unlock(&em_tree->lock);
4958 
4959 	if (em) {
4960 		if (em->start > start || em->start + em->len <= start)
4961 			free_extent_map(em);
4962 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4963 			free_extent_map(em);
4964 		else
4965 			goto out;
4966 	}
4967 	em = alloc_extent_map();
4968 	if (!em) {
4969 		err = -ENOMEM;
4970 		goto out;
4971 	}
4972 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4973 	em->start = EXTENT_MAP_HOLE;
4974 	em->orig_start = EXTENT_MAP_HOLE;
4975 	em->len = (u64)-1;
4976 	em->block_len = (u64)-1;
4977 
4978 	if (!path) {
4979 		path = btrfs_alloc_path();
4980 		if (!path) {
4981 			err = -ENOMEM;
4982 			goto out;
4983 		}
4984 		/*
4985 		 * Chances are we'll be called again, so go ahead and do
4986 		 * readahead
4987 		 */
4988 		path->reada = 1;
4989 	}
4990 
4991 	ret = btrfs_lookup_file_extent(trans, root, path,
4992 				       objectid, start, trans != NULL);
4993 	if (ret < 0) {
4994 		err = ret;
4995 		goto out;
4996 	}
4997 
4998 	if (ret != 0) {
4999 		if (path->slots[0] == 0)
5000 			goto not_found;
5001 		path->slots[0]--;
5002 	}
5003 
5004 	leaf = path->nodes[0];
5005 	item = btrfs_item_ptr(leaf, path->slots[0],
5006 			      struct btrfs_file_extent_item);
5007 	/* are we inside the extent that was found? */
5008 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5009 	found_type = btrfs_key_type(&found_key);
5010 	if (found_key.objectid != objectid ||
5011 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5012 		goto not_found;
5013 	}
5014 
5015 	found_type = btrfs_file_extent_type(leaf, item);
5016 	extent_start = found_key.offset;
5017 	compress_type = btrfs_file_extent_compression(leaf, item);
5018 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5019 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5020 		extent_end = extent_start +
5021 		       btrfs_file_extent_num_bytes(leaf, item);
5022 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5023 		size_t size;
5024 		size = btrfs_file_extent_inline_len(leaf, item);
5025 		extent_end = (extent_start + size + root->sectorsize - 1) &
5026 			~((u64)root->sectorsize - 1);
5027 	}
5028 
5029 	if (start >= extent_end) {
5030 		path->slots[0]++;
5031 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5032 			ret = btrfs_next_leaf(root, path);
5033 			if (ret < 0) {
5034 				err = ret;
5035 				goto out;
5036 			}
5037 			if (ret > 0)
5038 				goto not_found;
5039 			leaf = path->nodes[0];
5040 		}
5041 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5042 		if (found_key.objectid != objectid ||
5043 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5044 			goto not_found;
5045 		if (start + len <= found_key.offset)
5046 			goto not_found;
5047 		em->start = start;
5048 		em->len = found_key.offset - start;
5049 		goto not_found_em;
5050 	}
5051 
5052 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5053 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5054 		em->start = extent_start;
5055 		em->len = extent_end - extent_start;
5056 		em->orig_start = extent_start -
5057 				 btrfs_file_extent_offset(leaf, item);
5058 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5059 		if (bytenr == 0) {
5060 			em->block_start = EXTENT_MAP_HOLE;
5061 			goto insert;
5062 		}
5063 		if (compress_type != BTRFS_COMPRESS_NONE) {
5064 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5065 			em->compress_type = compress_type;
5066 			em->block_start = bytenr;
5067 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5068 									 item);
5069 		} else {
5070 			bytenr += btrfs_file_extent_offset(leaf, item);
5071 			em->block_start = bytenr;
5072 			em->block_len = em->len;
5073 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5074 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5075 		}
5076 		goto insert;
5077 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5078 		unsigned long ptr;
5079 		char *map;
5080 		size_t size;
5081 		size_t extent_offset;
5082 		size_t copy_size;
5083 
5084 		em->block_start = EXTENT_MAP_INLINE;
5085 		if (!page || create) {
5086 			em->start = extent_start;
5087 			em->len = extent_end - extent_start;
5088 			goto out;
5089 		}
5090 
5091 		size = btrfs_file_extent_inline_len(leaf, item);
5092 		extent_offset = page_offset(page) + pg_offset - extent_start;
5093 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5094 				size - extent_offset);
5095 		em->start = extent_start + extent_offset;
5096 		em->len = (copy_size + root->sectorsize - 1) &
5097 			~((u64)root->sectorsize - 1);
5098 		em->orig_start = EXTENT_MAP_INLINE;
5099 		if (compress_type) {
5100 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5101 			em->compress_type = compress_type;
5102 		}
5103 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5104 		if (create == 0 && !PageUptodate(page)) {
5105 			if (btrfs_file_extent_compression(leaf, item) !=
5106 			    BTRFS_COMPRESS_NONE) {
5107 				ret = uncompress_inline(path, inode, page,
5108 							pg_offset,
5109 							extent_offset, item);
5110 				BUG_ON(ret);
5111 			} else {
5112 				map = kmap(page);
5113 				read_extent_buffer(leaf, map + pg_offset, ptr,
5114 						   copy_size);
5115 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5116 					memset(map + pg_offset + copy_size, 0,
5117 					       PAGE_CACHE_SIZE - pg_offset -
5118 					       copy_size);
5119 				}
5120 				kunmap(page);
5121 			}
5122 			flush_dcache_page(page);
5123 		} else if (create && PageUptodate(page)) {
5124 			WARN_ON(1);
5125 			if (!trans) {
5126 				kunmap(page);
5127 				free_extent_map(em);
5128 				em = NULL;
5129 
5130 				btrfs_release_path(path);
5131 				trans = btrfs_join_transaction(root);
5132 
5133 				if (IS_ERR(trans))
5134 					return ERR_CAST(trans);
5135 				goto again;
5136 			}
5137 			map = kmap(page);
5138 			write_extent_buffer(leaf, map + pg_offset, ptr,
5139 					    copy_size);
5140 			kunmap(page);
5141 			btrfs_mark_buffer_dirty(leaf);
5142 		}
5143 		set_extent_uptodate(io_tree, em->start,
5144 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5145 		goto insert;
5146 	} else {
5147 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5148 		WARN_ON(1);
5149 	}
5150 not_found:
5151 	em->start = start;
5152 	em->len = len;
5153 not_found_em:
5154 	em->block_start = EXTENT_MAP_HOLE;
5155 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5156 insert:
5157 	btrfs_release_path(path);
5158 	if (em->start > start || extent_map_end(em) <= start) {
5159 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5160 		       "[%llu %llu]\n", (unsigned long long)em->start,
5161 		       (unsigned long long)em->len,
5162 		       (unsigned long long)start,
5163 		       (unsigned long long)len);
5164 		err = -EIO;
5165 		goto out;
5166 	}
5167 
5168 	err = 0;
5169 	write_lock(&em_tree->lock);
5170 	ret = add_extent_mapping(em_tree, em);
5171 	/* it is possible that someone inserted the extent into the tree
5172 	 * while we had the lock dropped.  It is also possible that
5173 	 * an overlapping map exists in the tree
5174 	 */
5175 	if (ret == -EEXIST) {
5176 		struct extent_map *existing;
5177 
5178 		ret = 0;
5179 
5180 		existing = lookup_extent_mapping(em_tree, start, len);
5181 		if (existing && (existing->start > start ||
5182 		    existing->start + existing->len <= start)) {
5183 			free_extent_map(existing);
5184 			existing = NULL;
5185 		}
5186 		if (!existing) {
5187 			existing = lookup_extent_mapping(em_tree, em->start,
5188 							 em->len);
5189 			if (existing) {
5190 				err = merge_extent_mapping(em_tree, existing,
5191 							   em, start,
5192 							   root->sectorsize);
5193 				free_extent_map(existing);
5194 				if (err) {
5195 					free_extent_map(em);
5196 					em = NULL;
5197 				}
5198 			} else {
5199 				err = -EIO;
5200 				free_extent_map(em);
5201 				em = NULL;
5202 			}
5203 		} else {
5204 			free_extent_map(em);
5205 			em = existing;
5206 			err = 0;
5207 		}
5208 	}
5209 	write_unlock(&em_tree->lock);
5210 out:
5211 
5212 	trace_btrfs_get_extent(root, em);
5213 
5214 	if (path)
5215 		btrfs_free_path(path);
5216 	if (trans) {
5217 		ret = btrfs_end_transaction(trans, root);
5218 		if (!err)
5219 			err = ret;
5220 	}
5221 	if (err) {
5222 		free_extent_map(em);
5223 		return ERR_PTR(err);
5224 	}
5225 	return em;
5226 }
5227 
5228 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5229 					   size_t pg_offset, u64 start, u64 len,
5230 					   int create)
5231 {
5232 	struct extent_map *em;
5233 	struct extent_map *hole_em = NULL;
5234 	u64 range_start = start;
5235 	u64 end;
5236 	u64 found;
5237 	u64 found_end;
5238 	int err = 0;
5239 
5240 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5241 	if (IS_ERR(em))
5242 		return em;
5243 	if (em) {
5244 		/*
5245 		 * if our em maps to a hole, there might
5246 		 * actually be delalloc bytes behind it
5247 		 */
5248 		if (em->block_start != EXTENT_MAP_HOLE)
5249 			return em;
5250 		else
5251 			hole_em = em;
5252 	}
5253 
5254 	/* check to see if we've wrapped (len == -1 or similar) */
5255 	end = start + len;
5256 	if (end < start)
5257 		end = (u64)-1;
5258 	else
5259 		end -= 1;
5260 
5261 	em = NULL;
5262 
5263 	/* ok, we didn't find anything, lets look for delalloc */
5264 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5265 				 end, len, EXTENT_DELALLOC, 1);
5266 	found_end = range_start + found;
5267 	if (found_end < range_start)
5268 		found_end = (u64)-1;
5269 
5270 	/*
5271 	 * we didn't find anything useful, return
5272 	 * the original results from get_extent()
5273 	 */
5274 	if (range_start > end || found_end <= start) {
5275 		em = hole_em;
5276 		hole_em = NULL;
5277 		goto out;
5278 	}
5279 
5280 	/* adjust the range_start to make sure it doesn't
5281 	 * go backwards from the start they passed in
5282 	 */
5283 	range_start = max(start,range_start);
5284 	found = found_end - range_start;
5285 
5286 	if (found > 0) {
5287 		u64 hole_start = start;
5288 		u64 hole_len = len;
5289 
5290 		em = alloc_extent_map();
5291 		if (!em) {
5292 			err = -ENOMEM;
5293 			goto out;
5294 		}
5295 		/*
5296 		 * when btrfs_get_extent can't find anything it
5297 		 * returns one huge hole
5298 		 *
5299 		 * make sure what it found really fits our range, and
5300 		 * adjust to make sure it is based on the start from
5301 		 * the caller
5302 		 */
5303 		if (hole_em) {
5304 			u64 calc_end = extent_map_end(hole_em);
5305 
5306 			if (calc_end <= start || (hole_em->start > end)) {
5307 				free_extent_map(hole_em);
5308 				hole_em = NULL;
5309 			} else {
5310 				hole_start = max(hole_em->start, start);
5311 				hole_len = calc_end - hole_start;
5312 			}
5313 		}
5314 		em->bdev = NULL;
5315 		if (hole_em && range_start > hole_start) {
5316 			/* our hole starts before our delalloc, so we
5317 			 * have to return just the parts of the hole
5318 			 * that go until  the delalloc starts
5319 			 */
5320 			em->len = min(hole_len,
5321 				      range_start - hole_start);
5322 			em->start = hole_start;
5323 			em->orig_start = hole_start;
5324 			/*
5325 			 * don't adjust block start at all,
5326 			 * it is fixed at EXTENT_MAP_HOLE
5327 			 */
5328 			em->block_start = hole_em->block_start;
5329 			em->block_len = hole_len;
5330 		} else {
5331 			em->start = range_start;
5332 			em->len = found;
5333 			em->orig_start = range_start;
5334 			em->block_start = EXTENT_MAP_DELALLOC;
5335 			em->block_len = found;
5336 		}
5337 	} else if (hole_em) {
5338 		return hole_em;
5339 	}
5340 out:
5341 
5342 	free_extent_map(hole_em);
5343 	if (err) {
5344 		free_extent_map(em);
5345 		return ERR_PTR(err);
5346 	}
5347 	return em;
5348 }
5349 
5350 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5351 						  struct extent_map *em,
5352 						  u64 start, u64 len)
5353 {
5354 	struct btrfs_root *root = BTRFS_I(inode)->root;
5355 	struct btrfs_trans_handle *trans;
5356 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5357 	struct btrfs_key ins;
5358 	u64 alloc_hint;
5359 	int ret;
5360 	bool insert = false;
5361 
5362 	/*
5363 	 * Ok if the extent map we looked up is a hole and is for the exact
5364 	 * range we want, there is no reason to allocate a new one, however if
5365 	 * it is not right then we need to free this one and drop the cache for
5366 	 * our range.
5367 	 */
5368 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5369 	    em->len != len) {
5370 		free_extent_map(em);
5371 		em = NULL;
5372 		insert = true;
5373 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5374 	}
5375 
5376 	trans = btrfs_join_transaction(root);
5377 	if (IS_ERR(trans))
5378 		return ERR_CAST(trans);
5379 
5380 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5381 		btrfs_add_inode_defrag(trans, inode);
5382 
5383 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5384 
5385 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5386 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5387 				   alloc_hint, (u64)-1, &ins, 1);
5388 	if (ret) {
5389 		em = ERR_PTR(ret);
5390 		goto out;
5391 	}
5392 
5393 	if (!em) {
5394 		em = alloc_extent_map();
5395 		if (!em) {
5396 			em = ERR_PTR(-ENOMEM);
5397 			goto out;
5398 		}
5399 	}
5400 
5401 	em->start = start;
5402 	em->orig_start = em->start;
5403 	em->len = ins.offset;
5404 
5405 	em->block_start = ins.objectid;
5406 	em->block_len = ins.offset;
5407 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5408 
5409 	/*
5410 	 * We need to do this because if we're using the original em we searched
5411 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5412 	 */
5413 	em->flags = 0;
5414 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5415 
5416 	while (insert) {
5417 		write_lock(&em_tree->lock);
5418 		ret = add_extent_mapping(em_tree, em);
5419 		write_unlock(&em_tree->lock);
5420 		if (ret != -EEXIST)
5421 			break;
5422 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5423 	}
5424 
5425 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5426 					   ins.offset, ins.offset, 0);
5427 	if (ret) {
5428 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5429 		em = ERR_PTR(ret);
5430 	}
5431 out:
5432 	btrfs_end_transaction(trans, root);
5433 	return em;
5434 }
5435 
5436 /*
5437  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5438  * block must be cow'd
5439  */
5440 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5441 				      struct inode *inode, u64 offset, u64 len)
5442 {
5443 	struct btrfs_path *path;
5444 	int ret;
5445 	struct extent_buffer *leaf;
5446 	struct btrfs_root *root = BTRFS_I(inode)->root;
5447 	struct btrfs_file_extent_item *fi;
5448 	struct btrfs_key key;
5449 	u64 disk_bytenr;
5450 	u64 backref_offset;
5451 	u64 extent_end;
5452 	u64 num_bytes;
5453 	int slot;
5454 	int found_type;
5455 
5456 	path = btrfs_alloc_path();
5457 	if (!path)
5458 		return -ENOMEM;
5459 
5460 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5461 				       offset, 0);
5462 	if (ret < 0)
5463 		goto out;
5464 
5465 	slot = path->slots[0];
5466 	if (ret == 1) {
5467 		if (slot == 0) {
5468 			/* can't find the item, must cow */
5469 			ret = 0;
5470 			goto out;
5471 		}
5472 		slot--;
5473 	}
5474 	ret = 0;
5475 	leaf = path->nodes[0];
5476 	btrfs_item_key_to_cpu(leaf, &key, slot);
5477 	if (key.objectid != btrfs_ino(inode) ||
5478 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5479 		/* not our file or wrong item type, must cow */
5480 		goto out;
5481 	}
5482 
5483 	if (key.offset > offset) {
5484 		/* Wrong offset, must cow */
5485 		goto out;
5486 	}
5487 
5488 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5489 	found_type = btrfs_file_extent_type(leaf, fi);
5490 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5491 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5492 		/* not a regular extent, must cow */
5493 		goto out;
5494 	}
5495 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5496 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5497 
5498 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5499 	if (extent_end < offset + len) {
5500 		/* extent doesn't include our full range, must cow */
5501 		goto out;
5502 	}
5503 
5504 	if (btrfs_extent_readonly(root, disk_bytenr))
5505 		goto out;
5506 
5507 	/*
5508 	 * look for other files referencing this extent, if we
5509 	 * find any we must cow
5510 	 */
5511 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5512 				  key.offset - backref_offset, disk_bytenr))
5513 		goto out;
5514 
5515 	/*
5516 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5517 	 * in this extent we are about to write.  If there
5518 	 * are any csums in that range we have to cow in order
5519 	 * to keep the csums correct
5520 	 */
5521 	disk_bytenr += backref_offset;
5522 	disk_bytenr += offset - key.offset;
5523 	num_bytes = min(offset + len, extent_end) - offset;
5524 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5525 				goto out;
5526 	/*
5527 	 * all of the above have passed, it is safe to overwrite this extent
5528 	 * without cow
5529 	 */
5530 	ret = 1;
5531 out:
5532 	btrfs_free_path(path);
5533 	return ret;
5534 }
5535 
5536 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5537 				   struct buffer_head *bh_result, int create)
5538 {
5539 	struct extent_map *em;
5540 	struct btrfs_root *root = BTRFS_I(inode)->root;
5541 	u64 start = iblock << inode->i_blkbits;
5542 	u64 len = bh_result->b_size;
5543 	struct btrfs_trans_handle *trans;
5544 
5545 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5546 	if (IS_ERR(em))
5547 		return PTR_ERR(em);
5548 
5549 	/*
5550 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5551 	 * io.  INLINE is special, and we could probably kludge it in here, but
5552 	 * it's still buffered so for safety lets just fall back to the generic
5553 	 * buffered path.
5554 	 *
5555 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5556 	 * decompress it, so there will be buffering required no matter what we
5557 	 * do, so go ahead and fallback to buffered.
5558 	 *
5559 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5560 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5561 	 * the generic code.
5562 	 */
5563 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5564 	    em->block_start == EXTENT_MAP_INLINE) {
5565 		free_extent_map(em);
5566 		return -ENOTBLK;
5567 	}
5568 
5569 	/* Just a good old fashioned hole, return */
5570 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5571 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5572 		free_extent_map(em);
5573 		/* DIO will do one hole at a time, so just unlock a sector */
5574 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5575 			      start + root->sectorsize - 1, GFP_NOFS);
5576 		return 0;
5577 	}
5578 
5579 	/*
5580 	 * We don't allocate a new extent in the following cases
5581 	 *
5582 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5583 	 * existing extent.
5584 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5585 	 * just use the extent.
5586 	 *
5587 	 */
5588 	if (!create) {
5589 		len = em->len - (start - em->start);
5590 		goto map;
5591 	}
5592 
5593 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5594 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5595 	     em->block_start != EXTENT_MAP_HOLE)) {
5596 		int type;
5597 		int ret;
5598 		u64 block_start;
5599 
5600 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5601 			type = BTRFS_ORDERED_PREALLOC;
5602 		else
5603 			type = BTRFS_ORDERED_NOCOW;
5604 		len = min(len, em->len - (start - em->start));
5605 		block_start = em->block_start + (start - em->start);
5606 
5607 		/*
5608 		 * we're not going to log anything, but we do need
5609 		 * to make sure the current transaction stays open
5610 		 * while we look for nocow cross refs
5611 		 */
5612 		trans = btrfs_join_transaction(root);
5613 		if (IS_ERR(trans))
5614 			goto must_cow;
5615 
5616 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5617 			ret = btrfs_add_ordered_extent_dio(inode, start,
5618 					   block_start, len, len, type);
5619 			btrfs_end_transaction(trans, root);
5620 			if (ret) {
5621 				free_extent_map(em);
5622 				return ret;
5623 			}
5624 			goto unlock;
5625 		}
5626 		btrfs_end_transaction(trans, root);
5627 	}
5628 must_cow:
5629 	/*
5630 	 * this will cow the extent, reset the len in case we changed
5631 	 * it above
5632 	 */
5633 	len = bh_result->b_size;
5634 	em = btrfs_new_extent_direct(inode, em, start, len);
5635 	if (IS_ERR(em))
5636 		return PTR_ERR(em);
5637 	len = min(len, em->len - (start - em->start));
5638 unlock:
5639 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5640 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5641 			  0, NULL, GFP_NOFS);
5642 map:
5643 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5644 		inode->i_blkbits;
5645 	bh_result->b_size = len;
5646 	bh_result->b_bdev = em->bdev;
5647 	set_buffer_mapped(bh_result);
5648 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5649 		set_buffer_new(bh_result);
5650 
5651 	free_extent_map(em);
5652 
5653 	return 0;
5654 }
5655 
5656 struct btrfs_dio_private {
5657 	struct inode *inode;
5658 	u64 logical_offset;
5659 	u64 disk_bytenr;
5660 	u64 bytes;
5661 	u32 *csums;
5662 	void *private;
5663 
5664 	/* number of bios pending for this dio */
5665 	atomic_t pending_bios;
5666 
5667 	/* IO errors */
5668 	int errors;
5669 
5670 	struct bio *orig_bio;
5671 };
5672 
5673 static void btrfs_endio_direct_read(struct bio *bio, int err)
5674 {
5675 	struct btrfs_dio_private *dip = bio->bi_private;
5676 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5677 	struct bio_vec *bvec = bio->bi_io_vec;
5678 	struct inode *inode = dip->inode;
5679 	struct btrfs_root *root = BTRFS_I(inode)->root;
5680 	u64 start;
5681 	u32 *private = dip->csums;
5682 
5683 	start = dip->logical_offset;
5684 	do {
5685 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5686 			struct page *page = bvec->bv_page;
5687 			char *kaddr;
5688 			u32 csum = ~(u32)0;
5689 			unsigned long flags;
5690 
5691 			local_irq_save(flags);
5692 			kaddr = kmap_atomic(page, KM_IRQ0);
5693 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5694 					       csum, bvec->bv_len);
5695 			btrfs_csum_final(csum, (char *)&csum);
5696 			kunmap_atomic(kaddr, KM_IRQ0);
5697 			local_irq_restore(flags);
5698 
5699 			flush_dcache_page(bvec->bv_page);
5700 			if (csum != *private) {
5701 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5702 				      " %llu csum %u private %u\n",
5703 				      (unsigned long long)btrfs_ino(inode),
5704 				      (unsigned long long)start,
5705 				      csum, *private);
5706 				err = -EIO;
5707 			}
5708 		}
5709 
5710 		start += bvec->bv_len;
5711 		private++;
5712 		bvec++;
5713 	} while (bvec <= bvec_end);
5714 
5715 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5716 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5717 	bio->bi_private = dip->private;
5718 
5719 	kfree(dip->csums);
5720 	kfree(dip);
5721 
5722 	/* If we had a csum failure make sure to clear the uptodate flag */
5723 	if (err)
5724 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5725 	dio_end_io(bio, err);
5726 }
5727 
5728 static void btrfs_endio_direct_write(struct bio *bio, int err)
5729 {
5730 	struct btrfs_dio_private *dip = bio->bi_private;
5731 	struct inode *inode = dip->inode;
5732 	struct btrfs_root *root = BTRFS_I(inode)->root;
5733 	struct btrfs_trans_handle *trans;
5734 	struct btrfs_ordered_extent *ordered = NULL;
5735 	struct extent_state *cached_state = NULL;
5736 	u64 ordered_offset = dip->logical_offset;
5737 	u64 ordered_bytes = dip->bytes;
5738 	int ret;
5739 
5740 	if (err)
5741 		goto out_done;
5742 again:
5743 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5744 						   &ordered_offset,
5745 						   ordered_bytes);
5746 	if (!ret)
5747 		goto out_test;
5748 
5749 	BUG_ON(!ordered);
5750 
5751 	trans = btrfs_join_transaction(root);
5752 	if (IS_ERR(trans)) {
5753 		err = -ENOMEM;
5754 		goto out;
5755 	}
5756 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5757 
5758 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5759 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5760 		if (!ret)
5761 			err = btrfs_update_inode_fallback(trans, root, inode);
5762 		goto out;
5763 	}
5764 
5765 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5766 			 ordered->file_offset + ordered->len - 1, 0,
5767 			 &cached_state, GFP_NOFS);
5768 
5769 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5770 		ret = btrfs_mark_extent_written(trans, inode,
5771 						ordered->file_offset,
5772 						ordered->file_offset +
5773 						ordered->len);
5774 		if (ret) {
5775 			err = ret;
5776 			goto out_unlock;
5777 		}
5778 	} else {
5779 		ret = insert_reserved_file_extent(trans, inode,
5780 						  ordered->file_offset,
5781 						  ordered->start,
5782 						  ordered->disk_len,
5783 						  ordered->len,
5784 						  ordered->len,
5785 						  0, 0, 0,
5786 						  BTRFS_FILE_EXTENT_REG);
5787 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5788 				   ordered->file_offset, ordered->len);
5789 		if (ret) {
5790 			err = ret;
5791 			WARN_ON(1);
5792 			goto out_unlock;
5793 		}
5794 	}
5795 
5796 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5797 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5798 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5799 		btrfs_update_inode_fallback(trans, root, inode);
5800 	ret = 0;
5801 out_unlock:
5802 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5803 			     ordered->file_offset + ordered->len - 1,
5804 			     &cached_state, GFP_NOFS);
5805 out:
5806 	btrfs_delalloc_release_metadata(inode, ordered->len);
5807 	btrfs_end_transaction(trans, root);
5808 	ordered_offset = ordered->file_offset + ordered->len;
5809 	btrfs_put_ordered_extent(ordered);
5810 	btrfs_put_ordered_extent(ordered);
5811 
5812 out_test:
5813 	/*
5814 	 * our bio might span multiple ordered extents.  If we haven't
5815 	 * completed the accounting for the whole dio, go back and try again
5816 	 */
5817 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5818 		ordered_bytes = dip->logical_offset + dip->bytes -
5819 			ordered_offset;
5820 		goto again;
5821 	}
5822 out_done:
5823 	bio->bi_private = dip->private;
5824 
5825 	kfree(dip->csums);
5826 	kfree(dip);
5827 
5828 	/* If we had an error make sure to clear the uptodate flag */
5829 	if (err)
5830 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5831 	dio_end_io(bio, err);
5832 }
5833 
5834 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5835 				    struct bio *bio, int mirror_num,
5836 				    unsigned long bio_flags, u64 offset)
5837 {
5838 	int ret;
5839 	struct btrfs_root *root = BTRFS_I(inode)->root;
5840 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5841 	BUG_ON(ret);
5842 	return 0;
5843 }
5844 
5845 static void btrfs_end_dio_bio(struct bio *bio, int err)
5846 {
5847 	struct btrfs_dio_private *dip = bio->bi_private;
5848 
5849 	if (err) {
5850 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5851 		      "sector %#Lx len %u err no %d\n",
5852 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5853 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5854 		dip->errors = 1;
5855 
5856 		/*
5857 		 * before atomic variable goto zero, we must make sure
5858 		 * dip->errors is perceived to be set.
5859 		 */
5860 		smp_mb__before_atomic_dec();
5861 	}
5862 
5863 	/* if there are more bios still pending for this dio, just exit */
5864 	if (!atomic_dec_and_test(&dip->pending_bios))
5865 		goto out;
5866 
5867 	if (dip->errors)
5868 		bio_io_error(dip->orig_bio);
5869 	else {
5870 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5871 		bio_endio(dip->orig_bio, 0);
5872 	}
5873 out:
5874 	bio_put(bio);
5875 }
5876 
5877 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5878 				       u64 first_sector, gfp_t gfp_flags)
5879 {
5880 	int nr_vecs = bio_get_nr_vecs(bdev);
5881 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5882 }
5883 
5884 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5885 					 int rw, u64 file_offset, int skip_sum,
5886 					 u32 *csums, int async_submit)
5887 {
5888 	int write = rw & REQ_WRITE;
5889 	struct btrfs_root *root = BTRFS_I(inode)->root;
5890 	int ret;
5891 
5892 	bio_get(bio);
5893 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5894 	if (ret)
5895 		goto err;
5896 
5897 	if (skip_sum)
5898 		goto map;
5899 
5900 	if (write && async_submit) {
5901 		ret = btrfs_wq_submit_bio(root->fs_info,
5902 				   inode, rw, bio, 0, 0,
5903 				   file_offset,
5904 				   __btrfs_submit_bio_start_direct_io,
5905 				   __btrfs_submit_bio_done);
5906 		goto err;
5907 	} else if (write) {
5908 		/*
5909 		 * If we aren't doing async submit, calculate the csum of the
5910 		 * bio now.
5911 		 */
5912 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5913 		if (ret)
5914 			goto err;
5915 	} else if (!skip_sum) {
5916 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5917 					  file_offset, csums);
5918 		if (ret)
5919 			goto err;
5920 	}
5921 
5922 map:
5923 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5924 err:
5925 	bio_put(bio);
5926 	return ret;
5927 }
5928 
5929 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5930 				    int skip_sum)
5931 {
5932 	struct inode *inode = dip->inode;
5933 	struct btrfs_root *root = BTRFS_I(inode)->root;
5934 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5935 	struct bio *bio;
5936 	struct bio *orig_bio = dip->orig_bio;
5937 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5938 	u64 start_sector = orig_bio->bi_sector;
5939 	u64 file_offset = dip->logical_offset;
5940 	u64 submit_len = 0;
5941 	u64 map_length;
5942 	int nr_pages = 0;
5943 	u32 *csums = dip->csums;
5944 	int ret = 0;
5945 	int async_submit = 0;
5946 	int write = rw & REQ_WRITE;
5947 
5948 	map_length = orig_bio->bi_size;
5949 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5950 			      &map_length, NULL, 0);
5951 	if (ret) {
5952 		bio_put(orig_bio);
5953 		return -EIO;
5954 	}
5955 
5956 	if (map_length >= orig_bio->bi_size) {
5957 		bio = orig_bio;
5958 		goto submit;
5959 	}
5960 
5961 	async_submit = 1;
5962 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5963 	if (!bio)
5964 		return -ENOMEM;
5965 	bio->bi_private = dip;
5966 	bio->bi_end_io = btrfs_end_dio_bio;
5967 	atomic_inc(&dip->pending_bios);
5968 
5969 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5970 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5971 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5972 				 bvec->bv_offset) < bvec->bv_len)) {
5973 			/*
5974 			 * inc the count before we submit the bio so
5975 			 * we know the end IO handler won't happen before
5976 			 * we inc the count. Otherwise, the dip might get freed
5977 			 * before we're done setting it up
5978 			 */
5979 			atomic_inc(&dip->pending_bios);
5980 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5981 						     file_offset, skip_sum,
5982 						     csums, async_submit);
5983 			if (ret) {
5984 				bio_put(bio);
5985 				atomic_dec(&dip->pending_bios);
5986 				goto out_err;
5987 			}
5988 
5989 			/* Write's use the ordered csums */
5990 			if (!write && !skip_sum)
5991 				csums = csums + nr_pages;
5992 			start_sector += submit_len >> 9;
5993 			file_offset += submit_len;
5994 
5995 			submit_len = 0;
5996 			nr_pages = 0;
5997 
5998 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5999 						  start_sector, GFP_NOFS);
6000 			if (!bio)
6001 				goto out_err;
6002 			bio->bi_private = dip;
6003 			bio->bi_end_io = btrfs_end_dio_bio;
6004 
6005 			map_length = orig_bio->bi_size;
6006 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6007 					      &map_length, NULL, 0);
6008 			if (ret) {
6009 				bio_put(bio);
6010 				goto out_err;
6011 			}
6012 		} else {
6013 			submit_len += bvec->bv_len;
6014 			nr_pages ++;
6015 			bvec++;
6016 		}
6017 	}
6018 
6019 submit:
6020 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6021 				     csums, async_submit);
6022 	if (!ret)
6023 		return 0;
6024 
6025 	bio_put(bio);
6026 out_err:
6027 	dip->errors = 1;
6028 	/*
6029 	 * before atomic variable goto zero, we must
6030 	 * make sure dip->errors is perceived to be set.
6031 	 */
6032 	smp_mb__before_atomic_dec();
6033 	if (atomic_dec_and_test(&dip->pending_bios))
6034 		bio_io_error(dip->orig_bio);
6035 
6036 	/* bio_end_io() will handle error, so we needn't return it */
6037 	return 0;
6038 }
6039 
6040 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6041 				loff_t file_offset)
6042 {
6043 	struct btrfs_root *root = BTRFS_I(inode)->root;
6044 	struct btrfs_dio_private *dip;
6045 	struct bio_vec *bvec = bio->bi_io_vec;
6046 	int skip_sum;
6047 	int write = rw & REQ_WRITE;
6048 	int ret = 0;
6049 
6050 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6051 
6052 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6053 	if (!dip) {
6054 		ret = -ENOMEM;
6055 		goto free_ordered;
6056 	}
6057 	dip->csums = NULL;
6058 
6059 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
6060 	if (!write && !skip_sum) {
6061 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6062 		if (!dip->csums) {
6063 			kfree(dip);
6064 			ret = -ENOMEM;
6065 			goto free_ordered;
6066 		}
6067 	}
6068 
6069 	dip->private = bio->bi_private;
6070 	dip->inode = inode;
6071 	dip->logical_offset = file_offset;
6072 
6073 	dip->bytes = 0;
6074 	do {
6075 		dip->bytes += bvec->bv_len;
6076 		bvec++;
6077 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6078 
6079 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6080 	bio->bi_private = dip;
6081 	dip->errors = 0;
6082 	dip->orig_bio = bio;
6083 	atomic_set(&dip->pending_bios, 0);
6084 
6085 	if (write)
6086 		bio->bi_end_io = btrfs_endio_direct_write;
6087 	else
6088 		bio->bi_end_io = btrfs_endio_direct_read;
6089 
6090 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6091 	if (!ret)
6092 		return;
6093 free_ordered:
6094 	/*
6095 	 * If this is a write, we need to clean up the reserved space and kill
6096 	 * the ordered extent.
6097 	 */
6098 	if (write) {
6099 		struct btrfs_ordered_extent *ordered;
6100 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6101 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6102 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6103 			btrfs_free_reserved_extent(root, ordered->start,
6104 						   ordered->disk_len);
6105 		btrfs_put_ordered_extent(ordered);
6106 		btrfs_put_ordered_extent(ordered);
6107 	}
6108 	bio_endio(bio, ret);
6109 }
6110 
6111 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6112 			const struct iovec *iov, loff_t offset,
6113 			unsigned long nr_segs)
6114 {
6115 	int seg;
6116 	int i;
6117 	size_t size;
6118 	unsigned long addr;
6119 	unsigned blocksize_mask = root->sectorsize - 1;
6120 	ssize_t retval = -EINVAL;
6121 	loff_t end = offset;
6122 
6123 	if (offset & blocksize_mask)
6124 		goto out;
6125 
6126 	/* Check the memory alignment.  Blocks cannot straddle pages */
6127 	for (seg = 0; seg < nr_segs; seg++) {
6128 		addr = (unsigned long)iov[seg].iov_base;
6129 		size = iov[seg].iov_len;
6130 		end += size;
6131 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6132 			goto out;
6133 
6134 		/* If this is a write we don't need to check anymore */
6135 		if (rw & WRITE)
6136 			continue;
6137 
6138 		/*
6139 		 * Check to make sure we don't have duplicate iov_base's in this
6140 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6141 		 * when reading back.
6142 		 */
6143 		for (i = seg + 1; i < nr_segs; i++) {
6144 			if (iov[seg].iov_base == iov[i].iov_base)
6145 				goto out;
6146 		}
6147 	}
6148 	retval = 0;
6149 out:
6150 	return retval;
6151 }
6152 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6153 			const struct iovec *iov, loff_t offset,
6154 			unsigned long nr_segs)
6155 {
6156 	struct file *file = iocb->ki_filp;
6157 	struct inode *inode = file->f_mapping->host;
6158 	struct btrfs_ordered_extent *ordered;
6159 	struct extent_state *cached_state = NULL;
6160 	u64 lockstart, lockend;
6161 	ssize_t ret;
6162 	int writing = rw & WRITE;
6163 	int write_bits = 0;
6164 	size_t count = iov_length(iov, nr_segs);
6165 
6166 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6167 			    offset, nr_segs)) {
6168 		return 0;
6169 	}
6170 
6171 	lockstart = offset;
6172 	lockend = offset + count - 1;
6173 
6174 	if (writing) {
6175 		ret = btrfs_delalloc_reserve_space(inode, count);
6176 		if (ret)
6177 			goto out;
6178 	}
6179 
6180 	while (1) {
6181 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6182 				 0, &cached_state, GFP_NOFS);
6183 		/*
6184 		 * We're concerned with the entire range that we're going to be
6185 		 * doing DIO to, so we need to make sure theres no ordered
6186 		 * extents in this range.
6187 		 */
6188 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6189 						     lockend - lockstart + 1);
6190 		if (!ordered)
6191 			break;
6192 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6193 				     &cached_state, GFP_NOFS);
6194 		btrfs_start_ordered_extent(inode, ordered, 1);
6195 		btrfs_put_ordered_extent(ordered);
6196 		cond_resched();
6197 	}
6198 
6199 	/*
6200 	 * we don't use btrfs_set_extent_delalloc because we don't want
6201 	 * the dirty or uptodate bits
6202 	 */
6203 	if (writing) {
6204 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6205 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6206 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6207 				     GFP_NOFS);
6208 		if (ret) {
6209 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6210 					 lockend, EXTENT_LOCKED | write_bits,
6211 					 1, 0, &cached_state, GFP_NOFS);
6212 			goto out;
6213 		}
6214 	}
6215 
6216 	free_extent_state(cached_state);
6217 	cached_state = NULL;
6218 
6219 	ret = __blockdev_direct_IO(rw, iocb, inode,
6220 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6221 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6222 		   btrfs_submit_direct, 0);
6223 
6224 	if (ret < 0 && ret != -EIOCBQUEUED) {
6225 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6226 			      offset + iov_length(iov, nr_segs) - 1,
6227 			      EXTENT_LOCKED | write_bits, 1, 0,
6228 			      &cached_state, GFP_NOFS);
6229 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6230 		/*
6231 		 * We're falling back to buffered, unlock the section we didn't
6232 		 * do IO on.
6233 		 */
6234 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6235 			      offset + iov_length(iov, nr_segs) - 1,
6236 			      EXTENT_LOCKED | write_bits, 1, 0,
6237 			      &cached_state, GFP_NOFS);
6238 	}
6239 out:
6240 	free_extent_state(cached_state);
6241 	return ret;
6242 }
6243 
6244 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6245 		__u64 start, __u64 len)
6246 {
6247 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6248 }
6249 
6250 int btrfs_readpage(struct file *file, struct page *page)
6251 {
6252 	struct extent_io_tree *tree;
6253 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6254 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6255 }
6256 
6257 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6258 {
6259 	struct extent_io_tree *tree;
6260 
6261 
6262 	if (current->flags & PF_MEMALLOC) {
6263 		redirty_page_for_writepage(wbc, page);
6264 		unlock_page(page);
6265 		return 0;
6266 	}
6267 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6268 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6269 }
6270 
6271 int btrfs_writepages(struct address_space *mapping,
6272 		     struct writeback_control *wbc)
6273 {
6274 	struct extent_io_tree *tree;
6275 
6276 	tree = &BTRFS_I(mapping->host)->io_tree;
6277 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6278 }
6279 
6280 static int
6281 btrfs_readpages(struct file *file, struct address_space *mapping,
6282 		struct list_head *pages, unsigned nr_pages)
6283 {
6284 	struct extent_io_tree *tree;
6285 	tree = &BTRFS_I(mapping->host)->io_tree;
6286 	return extent_readpages(tree, mapping, pages, nr_pages,
6287 				btrfs_get_extent);
6288 }
6289 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6290 {
6291 	struct extent_io_tree *tree;
6292 	struct extent_map_tree *map;
6293 	int ret;
6294 
6295 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6296 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6297 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6298 	if (ret == 1) {
6299 		ClearPagePrivate(page);
6300 		set_page_private(page, 0);
6301 		page_cache_release(page);
6302 	}
6303 	return ret;
6304 }
6305 
6306 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6307 {
6308 	if (PageWriteback(page) || PageDirty(page))
6309 		return 0;
6310 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6311 }
6312 
6313 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6314 {
6315 	struct extent_io_tree *tree;
6316 	struct btrfs_ordered_extent *ordered;
6317 	struct extent_state *cached_state = NULL;
6318 	u64 page_start = page_offset(page);
6319 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6320 
6321 
6322 	/*
6323 	 * we have the page locked, so new writeback can't start,
6324 	 * and the dirty bit won't be cleared while we are here.
6325 	 *
6326 	 * Wait for IO on this page so that we can safely clear
6327 	 * the PagePrivate2 bit and do ordered accounting
6328 	 */
6329 	wait_on_page_writeback(page);
6330 
6331 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6332 	if (offset) {
6333 		btrfs_releasepage(page, GFP_NOFS);
6334 		return;
6335 	}
6336 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6337 			 GFP_NOFS);
6338 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6339 					   page_offset(page));
6340 	if (ordered) {
6341 		/*
6342 		 * IO on this page will never be started, so we need
6343 		 * to account for any ordered extents now
6344 		 */
6345 		clear_extent_bit(tree, page_start, page_end,
6346 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6347 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6348 				 &cached_state, GFP_NOFS);
6349 		/*
6350 		 * whoever cleared the private bit is responsible
6351 		 * for the finish_ordered_io
6352 		 */
6353 		if (TestClearPagePrivate2(page)) {
6354 			btrfs_finish_ordered_io(page->mapping->host,
6355 						page_start, page_end);
6356 		}
6357 		btrfs_put_ordered_extent(ordered);
6358 		cached_state = NULL;
6359 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6360 				 GFP_NOFS);
6361 	}
6362 	clear_extent_bit(tree, page_start, page_end,
6363 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6364 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6365 	__btrfs_releasepage(page, GFP_NOFS);
6366 
6367 	ClearPageChecked(page);
6368 	if (PagePrivate(page)) {
6369 		ClearPagePrivate(page);
6370 		set_page_private(page, 0);
6371 		page_cache_release(page);
6372 	}
6373 }
6374 
6375 /*
6376  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6377  * called from a page fault handler when a page is first dirtied. Hence we must
6378  * be careful to check for EOF conditions here. We set the page up correctly
6379  * for a written page which means we get ENOSPC checking when writing into
6380  * holes and correct delalloc and unwritten extent mapping on filesystems that
6381  * support these features.
6382  *
6383  * We are not allowed to take the i_mutex here so we have to play games to
6384  * protect against truncate races as the page could now be beyond EOF.  Because
6385  * vmtruncate() writes the inode size before removing pages, once we have the
6386  * page lock we can determine safely if the page is beyond EOF. If it is not
6387  * beyond EOF, then the page is guaranteed safe against truncation until we
6388  * unlock the page.
6389  */
6390 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6391 {
6392 	struct page *page = vmf->page;
6393 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6394 	struct btrfs_root *root = BTRFS_I(inode)->root;
6395 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6396 	struct btrfs_ordered_extent *ordered;
6397 	struct extent_state *cached_state = NULL;
6398 	char *kaddr;
6399 	unsigned long zero_start;
6400 	loff_t size;
6401 	int ret;
6402 	u64 page_start;
6403 	u64 page_end;
6404 
6405 	/* Need this to keep space reservations serialized */
6406 	mutex_lock(&inode->i_mutex);
6407 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6408 	mutex_unlock(&inode->i_mutex);
6409 	if (!ret)
6410 		ret = btrfs_update_time(vma->vm_file);
6411 	if (ret) {
6412 		if (ret == -ENOMEM)
6413 			ret = VM_FAULT_OOM;
6414 		else /* -ENOSPC, -EIO, etc */
6415 			ret = VM_FAULT_SIGBUS;
6416 		goto out;
6417 	}
6418 
6419 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6420 again:
6421 	lock_page(page);
6422 	size = i_size_read(inode);
6423 	page_start = page_offset(page);
6424 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6425 
6426 	if ((page->mapping != inode->i_mapping) ||
6427 	    (page_start >= size)) {
6428 		/* page got truncated out from underneath us */
6429 		goto out_unlock;
6430 	}
6431 	wait_on_page_writeback(page);
6432 
6433 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6434 			 GFP_NOFS);
6435 	set_page_extent_mapped(page);
6436 
6437 	/*
6438 	 * we can't set the delalloc bits if there are pending ordered
6439 	 * extents.  Drop our locks and wait for them to finish
6440 	 */
6441 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6442 	if (ordered) {
6443 		unlock_extent_cached(io_tree, page_start, page_end,
6444 				     &cached_state, GFP_NOFS);
6445 		unlock_page(page);
6446 		btrfs_start_ordered_extent(inode, ordered, 1);
6447 		btrfs_put_ordered_extent(ordered);
6448 		goto again;
6449 	}
6450 
6451 	/*
6452 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6453 	 * if it was already dirty, so for space accounting reasons we need to
6454 	 * clear any delalloc bits for the range we are fixing to save.  There
6455 	 * is probably a better way to do this, but for now keep consistent with
6456 	 * prepare_pages in the normal write path.
6457 	 */
6458 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6459 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6460 			  0, 0, &cached_state, GFP_NOFS);
6461 
6462 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6463 					&cached_state);
6464 	if (ret) {
6465 		unlock_extent_cached(io_tree, page_start, page_end,
6466 				     &cached_state, GFP_NOFS);
6467 		ret = VM_FAULT_SIGBUS;
6468 		goto out_unlock;
6469 	}
6470 	ret = 0;
6471 
6472 	/* page is wholly or partially inside EOF */
6473 	if (page_start + PAGE_CACHE_SIZE > size)
6474 		zero_start = size & ~PAGE_CACHE_MASK;
6475 	else
6476 		zero_start = PAGE_CACHE_SIZE;
6477 
6478 	if (zero_start != PAGE_CACHE_SIZE) {
6479 		kaddr = kmap(page);
6480 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6481 		flush_dcache_page(page);
6482 		kunmap(page);
6483 	}
6484 	ClearPageChecked(page);
6485 	set_page_dirty(page);
6486 	SetPageUptodate(page);
6487 
6488 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6489 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6490 
6491 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6492 
6493 out_unlock:
6494 	if (!ret)
6495 		return VM_FAULT_LOCKED;
6496 	unlock_page(page);
6497 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6498 out:
6499 	return ret;
6500 }
6501 
6502 static int btrfs_truncate(struct inode *inode)
6503 {
6504 	struct btrfs_root *root = BTRFS_I(inode)->root;
6505 	struct btrfs_block_rsv *rsv;
6506 	int ret;
6507 	int err = 0;
6508 	struct btrfs_trans_handle *trans;
6509 	unsigned long nr;
6510 	u64 mask = root->sectorsize - 1;
6511 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6512 
6513 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6514 	if (ret)
6515 		return ret;
6516 
6517 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6518 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6519 
6520 	/*
6521 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6522 	 * 3 things going on here
6523 	 *
6524 	 * 1) We need to reserve space for our orphan item and the space to
6525 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6526 	 * orphan item because we didn't reserve space to remove it.
6527 	 *
6528 	 * 2) We need to reserve space to update our inode.
6529 	 *
6530 	 * 3) We need to have something to cache all the space that is going to
6531 	 * be free'd up by the truncate operation, but also have some slack
6532 	 * space reserved in case it uses space during the truncate (thank you
6533 	 * very much snapshotting).
6534 	 *
6535 	 * And we need these to all be seperate.  The fact is we can use alot of
6536 	 * space doing the truncate, and we have no earthly idea how much space
6537 	 * we will use, so we need the truncate reservation to be seperate so it
6538 	 * doesn't end up using space reserved for updating the inode or
6539 	 * removing the orphan item.  We also need to be able to stop the
6540 	 * transaction and start a new one, which means we need to be able to
6541 	 * update the inode several times, and we have no idea of knowing how
6542 	 * many times that will be, so we can't just reserve 1 item for the
6543 	 * entirety of the opration, so that has to be done seperately as well.
6544 	 * Then there is the orphan item, which does indeed need to be held on
6545 	 * to for the whole operation, and we need nobody to touch this reserved
6546 	 * space except the orphan code.
6547 	 *
6548 	 * So that leaves us with
6549 	 *
6550 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6551 	 * 2) rsv - for the truncate reservation, which we will steal from the
6552 	 * transaction reservation.
6553 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6554 	 * updating the inode.
6555 	 */
6556 	rsv = btrfs_alloc_block_rsv(root);
6557 	if (!rsv)
6558 		return -ENOMEM;
6559 	rsv->size = min_size;
6560 
6561 	/*
6562 	 * 1 for the truncate slack space
6563 	 * 1 for the orphan item we're going to add
6564 	 * 1 for the orphan item deletion
6565 	 * 1 for updating the inode.
6566 	 */
6567 	trans = btrfs_start_transaction(root, 4);
6568 	if (IS_ERR(trans)) {
6569 		err = PTR_ERR(trans);
6570 		goto out;
6571 	}
6572 
6573 	/* Migrate the slack space for the truncate to our reserve */
6574 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6575 				      min_size);
6576 	BUG_ON(ret);
6577 
6578 	ret = btrfs_orphan_add(trans, inode);
6579 	if (ret) {
6580 		btrfs_end_transaction(trans, root);
6581 		goto out;
6582 	}
6583 
6584 	/*
6585 	 * setattr is responsible for setting the ordered_data_close flag,
6586 	 * but that is only tested during the last file release.  That
6587 	 * could happen well after the next commit, leaving a great big
6588 	 * window where new writes may get lost if someone chooses to write
6589 	 * to this file after truncating to zero
6590 	 *
6591 	 * The inode doesn't have any dirty data here, and so if we commit
6592 	 * this is a noop.  If someone immediately starts writing to the inode
6593 	 * it is very likely we'll catch some of their writes in this
6594 	 * transaction, and the commit will find this file on the ordered
6595 	 * data list with good things to send down.
6596 	 *
6597 	 * This is a best effort solution, there is still a window where
6598 	 * using truncate to replace the contents of the file will
6599 	 * end up with a zero length file after a crash.
6600 	 */
6601 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6602 		btrfs_add_ordered_operation(trans, root, inode);
6603 
6604 	while (1) {
6605 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
6606 		if (ret) {
6607 			/*
6608 			 * This can only happen with the original transaction we
6609 			 * started above, every other time we shouldn't have a
6610 			 * transaction started yet.
6611 			 */
6612 			if (ret == -EAGAIN)
6613 				goto end_trans;
6614 			err = ret;
6615 			break;
6616 		}
6617 
6618 		if (!trans) {
6619 			/* Just need the 1 for updating the inode */
6620 			trans = btrfs_start_transaction(root, 1);
6621 			if (IS_ERR(trans)) {
6622 				ret = err = PTR_ERR(trans);
6623 				trans = NULL;
6624 				break;
6625 			}
6626 		}
6627 
6628 		trans->block_rsv = rsv;
6629 
6630 		ret = btrfs_truncate_inode_items(trans, root, inode,
6631 						 inode->i_size,
6632 						 BTRFS_EXTENT_DATA_KEY);
6633 		if (ret != -EAGAIN) {
6634 			err = ret;
6635 			break;
6636 		}
6637 
6638 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6639 		ret = btrfs_update_inode(trans, root, inode);
6640 		if (ret) {
6641 			err = ret;
6642 			break;
6643 		}
6644 end_trans:
6645 		nr = trans->blocks_used;
6646 		btrfs_end_transaction(trans, root);
6647 		trans = NULL;
6648 		btrfs_btree_balance_dirty(root, nr);
6649 	}
6650 
6651 	if (ret == 0 && inode->i_nlink > 0) {
6652 		trans->block_rsv = root->orphan_block_rsv;
6653 		ret = btrfs_orphan_del(trans, inode);
6654 		if (ret)
6655 			err = ret;
6656 	} else if (ret && inode->i_nlink > 0) {
6657 		/*
6658 		 * Failed to do the truncate, remove us from the in memory
6659 		 * orphan list.
6660 		 */
6661 		ret = btrfs_orphan_del(NULL, inode);
6662 	}
6663 
6664 	if (trans) {
6665 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6666 		ret = btrfs_update_inode(trans, root, inode);
6667 		if (ret && !err)
6668 			err = ret;
6669 
6670 		nr = trans->blocks_used;
6671 		ret = btrfs_end_transaction_throttle(trans, root);
6672 		btrfs_btree_balance_dirty(root, nr);
6673 	}
6674 
6675 out:
6676 	btrfs_free_block_rsv(root, rsv);
6677 
6678 	if (ret && !err)
6679 		err = ret;
6680 
6681 	return err;
6682 }
6683 
6684 /*
6685  * create a new subvolume directory/inode (helper for the ioctl).
6686  */
6687 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6688 			     struct btrfs_root *new_root, u64 new_dirid)
6689 {
6690 	struct inode *inode;
6691 	int err;
6692 	u64 index = 0;
6693 
6694 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6695 				new_dirid, S_IFDIR | 0700, &index);
6696 	if (IS_ERR(inode))
6697 		return PTR_ERR(inode);
6698 	inode->i_op = &btrfs_dir_inode_operations;
6699 	inode->i_fop = &btrfs_dir_file_operations;
6700 
6701 	set_nlink(inode, 1);
6702 	btrfs_i_size_write(inode, 0);
6703 
6704 	err = btrfs_update_inode(trans, new_root, inode);
6705 	BUG_ON(err);
6706 
6707 	iput(inode);
6708 	return 0;
6709 }
6710 
6711 struct inode *btrfs_alloc_inode(struct super_block *sb)
6712 {
6713 	struct btrfs_inode *ei;
6714 	struct inode *inode;
6715 
6716 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6717 	if (!ei)
6718 		return NULL;
6719 
6720 	ei->root = NULL;
6721 	ei->space_info = NULL;
6722 	ei->generation = 0;
6723 	ei->sequence = 0;
6724 	ei->last_trans = 0;
6725 	ei->last_sub_trans = 0;
6726 	ei->logged_trans = 0;
6727 	ei->delalloc_bytes = 0;
6728 	ei->disk_i_size = 0;
6729 	ei->flags = 0;
6730 	ei->csum_bytes = 0;
6731 	ei->index_cnt = (u64)-1;
6732 	ei->last_unlink_trans = 0;
6733 
6734 	spin_lock_init(&ei->lock);
6735 	ei->outstanding_extents = 0;
6736 	ei->reserved_extents = 0;
6737 
6738 	ei->ordered_data_close = 0;
6739 	ei->orphan_meta_reserved = 0;
6740 	ei->dummy_inode = 0;
6741 	ei->in_defrag = 0;
6742 	ei->delalloc_meta_reserved = 0;
6743 	ei->force_compress = BTRFS_COMPRESS_NONE;
6744 
6745 	ei->delayed_node = NULL;
6746 
6747 	inode = &ei->vfs_inode;
6748 	extent_map_tree_init(&ei->extent_tree);
6749 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6750 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6751 	mutex_init(&ei->log_mutex);
6752 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6753 	INIT_LIST_HEAD(&ei->i_orphan);
6754 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6755 	INIT_LIST_HEAD(&ei->ordered_operations);
6756 	RB_CLEAR_NODE(&ei->rb_node);
6757 
6758 	return inode;
6759 }
6760 
6761 static void btrfs_i_callback(struct rcu_head *head)
6762 {
6763 	struct inode *inode = container_of(head, struct inode, i_rcu);
6764 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6765 }
6766 
6767 void btrfs_destroy_inode(struct inode *inode)
6768 {
6769 	struct btrfs_ordered_extent *ordered;
6770 	struct btrfs_root *root = BTRFS_I(inode)->root;
6771 
6772 	WARN_ON(!list_empty(&inode->i_dentry));
6773 	WARN_ON(inode->i_data.nrpages);
6774 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
6775 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6776 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6777 	WARN_ON(BTRFS_I(inode)->csum_bytes);
6778 
6779 	/*
6780 	 * This can happen where we create an inode, but somebody else also
6781 	 * created the same inode and we need to destroy the one we already
6782 	 * created.
6783 	 */
6784 	if (!root)
6785 		goto free;
6786 
6787 	/*
6788 	 * Make sure we're properly removed from the ordered operation
6789 	 * lists.
6790 	 */
6791 	smp_mb();
6792 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6793 		spin_lock(&root->fs_info->ordered_extent_lock);
6794 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6795 		spin_unlock(&root->fs_info->ordered_extent_lock);
6796 	}
6797 
6798 	spin_lock(&root->orphan_lock);
6799 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6800 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6801 		       (unsigned long long)btrfs_ino(inode));
6802 		list_del_init(&BTRFS_I(inode)->i_orphan);
6803 	}
6804 	spin_unlock(&root->orphan_lock);
6805 
6806 	while (1) {
6807 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6808 		if (!ordered)
6809 			break;
6810 		else {
6811 			printk(KERN_ERR "btrfs found ordered "
6812 			       "extent %llu %llu on inode cleanup\n",
6813 			       (unsigned long long)ordered->file_offset,
6814 			       (unsigned long long)ordered->len);
6815 			btrfs_remove_ordered_extent(inode, ordered);
6816 			btrfs_put_ordered_extent(ordered);
6817 			btrfs_put_ordered_extent(ordered);
6818 		}
6819 	}
6820 	inode_tree_del(inode);
6821 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6822 free:
6823 	btrfs_remove_delayed_node(inode);
6824 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6825 }
6826 
6827 int btrfs_drop_inode(struct inode *inode)
6828 {
6829 	struct btrfs_root *root = BTRFS_I(inode)->root;
6830 
6831 	if (btrfs_root_refs(&root->root_item) == 0 &&
6832 	    !btrfs_is_free_space_inode(root, inode))
6833 		return 1;
6834 	else
6835 		return generic_drop_inode(inode);
6836 }
6837 
6838 static void init_once(void *foo)
6839 {
6840 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6841 
6842 	inode_init_once(&ei->vfs_inode);
6843 }
6844 
6845 void btrfs_destroy_cachep(void)
6846 {
6847 	if (btrfs_inode_cachep)
6848 		kmem_cache_destroy(btrfs_inode_cachep);
6849 	if (btrfs_trans_handle_cachep)
6850 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6851 	if (btrfs_transaction_cachep)
6852 		kmem_cache_destroy(btrfs_transaction_cachep);
6853 	if (btrfs_path_cachep)
6854 		kmem_cache_destroy(btrfs_path_cachep);
6855 	if (btrfs_free_space_cachep)
6856 		kmem_cache_destroy(btrfs_free_space_cachep);
6857 }
6858 
6859 int btrfs_init_cachep(void)
6860 {
6861 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6862 			sizeof(struct btrfs_inode), 0,
6863 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6864 	if (!btrfs_inode_cachep)
6865 		goto fail;
6866 
6867 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6868 			sizeof(struct btrfs_trans_handle), 0,
6869 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6870 	if (!btrfs_trans_handle_cachep)
6871 		goto fail;
6872 
6873 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6874 			sizeof(struct btrfs_transaction), 0,
6875 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6876 	if (!btrfs_transaction_cachep)
6877 		goto fail;
6878 
6879 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6880 			sizeof(struct btrfs_path), 0,
6881 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6882 	if (!btrfs_path_cachep)
6883 		goto fail;
6884 
6885 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6886 			sizeof(struct btrfs_free_space), 0,
6887 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6888 	if (!btrfs_free_space_cachep)
6889 		goto fail;
6890 
6891 	return 0;
6892 fail:
6893 	btrfs_destroy_cachep();
6894 	return -ENOMEM;
6895 }
6896 
6897 static int btrfs_getattr(struct vfsmount *mnt,
6898 			 struct dentry *dentry, struct kstat *stat)
6899 {
6900 	struct inode *inode = dentry->d_inode;
6901 	u32 blocksize = inode->i_sb->s_blocksize;
6902 
6903 	generic_fillattr(inode, stat);
6904 	stat->dev = BTRFS_I(inode)->root->anon_dev;
6905 	stat->blksize = PAGE_CACHE_SIZE;
6906 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6907 		ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
6908 	return 0;
6909 }
6910 
6911 /*
6912  * If a file is moved, it will inherit the cow and compression flags of the new
6913  * directory.
6914  */
6915 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6916 {
6917 	struct btrfs_inode *b_dir = BTRFS_I(dir);
6918 	struct btrfs_inode *b_inode = BTRFS_I(inode);
6919 
6920 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
6921 		b_inode->flags |= BTRFS_INODE_NODATACOW;
6922 	else
6923 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6924 
6925 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
6926 		b_inode->flags |= BTRFS_INODE_COMPRESS;
6927 	else
6928 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6929 }
6930 
6931 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6932 			   struct inode *new_dir, struct dentry *new_dentry)
6933 {
6934 	struct btrfs_trans_handle *trans;
6935 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6936 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6937 	struct inode *new_inode = new_dentry->d_inode;
6938 	struct inode *old_inode = old_dentry->d_inode;
6939 	struct timespec ctime = CURRENT_TIME;
6940 	u64 index = 0;
6941 	u64 root_objectid;
6942 	int ret;
6943 	u64 old_ino = btrfs_ino(old_inode);
6944 
6945 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6946 		return -EPERM;
6947 
6948 	/* we only allow rename subvolume link between subvolumes */
6949 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6950 		return -EXDEV;
6951 
6952 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6953 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6954 		return -ENOTEMPTY;
6955 
6956 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6957 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6958 		return -ENOTEMPTY;
6959 	/*
6960 	 * we're using rename to replace one file with another.
6961 	 * and the replacement file is large.  Start IO on it now so
6962 	 * we don't add too much work to the end of the transaction
6963 	 */
6964 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6965 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6966 		filemap_flush(old_inode->i_mapping);
6967 
6968 	/* close the racy window with snapshot create/destroy ioctl */
6969 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6970 		down_read(&root->fs_info->subvol_sem);
6971 	/*
6972 	 * We want to reserve the absolute worst case amount of items.  So if
6973 	 * both inodes are subvols and we need to unlink them then that would
6974 	 * require 4 item modifications, but if they are both normal inodes it
6975 	 * would require 5 item modifications, so we'll assume their normal
6976 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6977 	 * should cover the worst case number of items we'll modify.
6978 	 */
6979 	trans = btrfs_start_transaction(root, 20);
6980 	if (IS_ERR(trans)) {
6981                 ret = PTR_ERR(trans);
6982                 goto out_notrans;
6983         }
6984 
6985 	if (dest != root)
6986 		btrfs_record_root_in_trans(trans, dest);
6987 
6988 	ret = btrfs_set_inode_index(new_dir, &index);
6989 	if (ret)
6990 		goto out_fail;
6991 
6992 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6993 		/* force full log commit if subvolume involved. */
6994 		root->fs_info->last_trans_log_full_commit = trans->transid;
6995 	} else {
6996 		ret = btrfs_insert_inode_ref(trans, dest,
6997 					     new_dentry->d_name.name,
6998 					     new_dentry->d_name.len,
6999 					     old_ino,
7000 					     btrfs_ino(new_dir), index);
7001 		if (ret)
7002 			goto out_fail;
7003 		/*
7004 		 * this is an ugly little race, but the rename is required
7005 		 * to make sure that if we crash, the inode is either at the
7006 		 * old name or the new one.  pinning the log transaction lets
7007 		 * us make sure we don't allow a log commit to come in after
7008 		 * we unlink the name but before we add the new name back in.
7009 		 */
7010 		btrfs_pin_log_trans(root);
7011 	}
7012 	/*
7013 	 * make sure the inode gets flushed if it is replacing
7014 	 * something.
7015 	 */
7016 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7017 		btrfs_add_ordered_operation(trans, root, old_inode);
7018 
7019 	old_dir->i_ctime = old_dir->i_mtime = ctime;
7020 	new_dir->i_ctime = new_dir->i_mtime = ctime;
7021 	old_inode->i_ctime = ctime;
7022 
7023 	if (old_dentry->d_parent != new_dentry->d_parent)
7024 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7025 
7026 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7027 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7028 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7029 					old_dentry->d_name.name,
7030 					old_dentry->d_name.len);
7031 	} else {
7032 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7033 					old_dentry->d_inode,
7034 					old_dentry->d_name.name,
7035 					old_dentry->d_name.len);
7036 		if (!ret)
7037 			ret = btrfs_update_inode(trans, root, old_inode);
7038 	}
7039 	BUG_ON(ret);
7040 
7041 	if (new_inode) {
7042 		new_inode->i_ctime = CURRENT_TIME;
7043 		if (unlikely(btrfs_ino(new_inode) ==
7044 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7045 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7046 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7047 						root_objectid,
7048 						new_dentry->d_name.name,
7049 						new_dentry->d_name.len);
7050 			BUG_ON(new_inode->i_nlink == 0);
7051 		} else {
7052 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7053 						 new_dentry->d_inode,
7054 						 new_dentry->d_name.name,
7055 						 new_dentry->d_name.len);
7056 		}
7057 		BUG_ON(ret);
7058 		if (new_inode->i_nlink == 0) {
7059 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7060 			BUG_ON(ret);
7061 		}
7062 	}
7063 
7064 	fixup_inode_flags(new_dir, old_inode);
7065 
7066 	ret = btrfs_add_link(trans, new_dir, old_inode,
7067 			     new_dentry->d_name.name,
7068 			     new_dentry->d_name.len, 0, index);
7069 	BUG_ON(ret);
7070 
7071 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7072 		struct dentry *parent = new_dentry->d_parent;
7073 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7074 		btrfs_end_log_trans(root);
7075 	}
7076 out_fail:
7077 	btrfs_end_transaction_throttle(trans, root);
7078 out_notrans:
7079 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7080 		up_read(&root->fs_info->subvol_sem);
7081 
7082 	return ret;
7083 }
7084 
7085 /*
7086  * some fairly slow code that needs optimization. This walks the list
7087  * of all the inodes with pending delalloc and forces them to disk.
7088  */
7089 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7090 {
7091 	struct list_head *head = &root->fs_info->delalloc_inodes;
7092 	struct btrfs_inode *binode;
7093 	struct inode *inode;
7094 
7095 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7096 		return -EROFS;
7097 
7098 	spin_lock(&root->fs_info->delalloc_lock);
7099 	while (!list_empty(head)) {
7100 		binode = list_entry(head->next, struct btrfs_inode,
7101 				    delalloc_inodes);
7102 		inode = igrab(&binode->vfs_inode);
7103 		if (!inode)
7104 			list_del_init(&binode->delalloc_inodes);
7105 		spin_unlock(&root->fs_info->delalloc_lock);
7106 		if (inode) {
7107 			filemap_flush(inode->i_mapping);
7108 			if (delay_iput)
7109 				btrfs_add_delayed_iput(inode);
7110 			else
7111 				iput(inode);
7112 		}
7113 		cond_resched();
7114 		spin_lock(&root->fs_info->delalloc_lock);
7115 	}
7116 	spin_unlock(&root->fs_info->delalloc_lock);
7117 
7118 	/* the filemap_flush will queue IO into the worker threads, but
7119 	 * we have to make sure the IO is actually started and that
7120 	 * ordered extents get created before we return
7121 	 */
7122 	atomic_inc(&root->fs_info->async_submit_draining);
7123 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7124 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7125 		wait_event(root->fs_info->async_submit_wait,
7126 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7127 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7128 	}
7129 	atomic_dec(&root->fs_info->async_submit_draining);
7130 	return 0;
7131 }
7132 
7133 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7134 			 const char *symname)
7135 {
7136 	struct btrfs_trans_handle *trans;
7137 	struct btrfs_root *root = BTRFS_I(dir)->root;
7138 	struct btrfs_path *path;
7139 	struct btrfs_key key;
7140 	struct inode *inode = NULL;
7141 	int err;
7142 	int drop_inode = 0;
7143 	u64 objectid;
7144 	u64 index = 0 ;
7145 	int name_len;
7146 	int datasize;
7147 	unsigned long ptr;
7148 	struct btrfs_file_extent_item *ei;
7149 	struct extent_buffer *leaf;
7150 	unsigned long nr = 0;
7151 
7152 	name_len = strlen(symname) + 1;
7153 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7154 		return -ENAMETOOLONG;
7155 
7156 	/*
7157 	 * 2 items for inode item and ref
7158 	 * 2 items for dir items
7159 	 * 1 item for xattr if selinux is on
7160 	 */
7161 	trans = btrfs_start_transaction(root, 5);
7162 	if (IS_ERR(trans))
7163 		return PTR_ERR(trans);
7164 
7165 	err = btrfs_find_free_ino(root, &objectid);
7166 	if (err)
7167 		goto out_unlock;
7168 
7169 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7170 				dentry->d_name.len, btrfs_ino(dir), objectid,
7171 				S_IFLNK|S_IRWXUGO, &index);
7172 	if (IS_ERR(inode)) {
7173 		err = PTR_ERR(inode);
7174 		goto out_unlock;
7175 	}
7176 
7177 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7178 	if (err) {
7179 		drop_inode = 1;
7180 		goto out_unlock;
7181 	}
7182 
7183 	/*
7184 	* If the active LSM wants to access the inode during
7185 	* d_instantiate it needs these. Smack checks to see
7186 	* if the filesystem supports xattrs by looking at the
7187 	* ops vector.
7188 	*/
7189 	inode->i_fop = &btrfs_file_operations;
7190 	inode->i_op = &btrfs_file_inode_operations;
7191 
7192 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7193 	if (err)
7194 		drop_inode = 1;
7195 	else {
7196 		inode->i_mapping->a_ops = &btrfs_aops;
7197 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7198 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7199 	}
7200 	if (drop_inode)
7201 		goto out_unlock;
7202 
7203 	path = btrfs_alloc_path();
7204 	if (!path) {
7205 		err = -ENOMEM;
7206 		drop_inode = 1;
7207 		goto out_unlock;
7208 	}
7209 	key.objectid = btrfs_ino(inode);
7210 	key.offset = 0;
7211 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7212 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7213 	err = btrfs_insert_empty_item(trans, root, path, &key,
7214 				      datasize);
7215 	if (err) {
7216 		drop_inode = 1;
7217 		btrfs_free_path(path);
7218 		goto out_unlock;
7219 	}
7220 	leaf = path->nodes[0];
7221 	ei = btrfs_item_ptr(leaf, path->slots[0],
7222 			    struct btrfs_file_extent_item);
7223 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7224 	btrfs_set_file_extent_type(leaf, ei,
7225 				   BTRFS_FILE_EXTENT_INLINE);
7226 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7227 	btrfs_set_file_extent_compression(leaf, ei, 0);
7228 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7229 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7230 
7231 	ptr = btrfs_file_extent_inline_start(ei);
7232 	write_extent_buffer(leaf, symname, ptr, name_len);
7233 	btrfs_mark_buffer_dirty(leaf);
7234 	btrfs_free_path(path);
7235 
7236 	inode->i_op = &btrfs_symlink_inode_operations;
7237 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7238 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7239 	inode_set_bytes(inode, name_len);
7240 	btrfs_i_size_write(inode, name_len - 1);
7241 	err = btrfs_update_inode(trans, root, inode);
7242 	if (err)
7243 		drop_inode = 1;
7244 
7245 out_unlock:
7246 	if (!err)
7247 		d_instantiate(dentry, inode);
7248 	nr = trans->blocks_used;
7249 	btrfs_end_transaction_throttle(trans, root);
7250 	if (drop_inode) {
7251 		inode_dec_link_count(inode);
7252 		iput(inode);
7253 	}
7254 	btrfs_btree_balance_dirty(root, nr);
7255 	return err;
7256 }
7257 
7258 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7259 				       u64 start, u64 num_bytes, u64 min_size,
7260 				       loff_t actual_len, u64 *alloc_hint,
7261 				       struct btrfs_trans_handle *trans)
7262 {
7263 	struct btrfs_root *root = BTRFS_I(inode)->root;
7264 	struct btrfs_key ins;
7265 	u64 cur_offset = start;
7266 	u64 i_size;
7267 	int ret = 0;
7268 	bool own_trans = true;
7269 
7270 	if (trans)
7271 		own_trans = false;
7272 	while (num_bytes > 0) {
7273 		if (own_trans) {
7274 			trans = btrfs_start_transaction(root, 3);
7275 			if (IS_ERR(trans)) {
7276 				ret = PTR_ERR(trans);
7277 				break;
7278 			}
7279 		}
7280 
7281 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7282 					   0, *alloc_hint, (u64)-1, &ins, 1);
7283 		if (ret) {
7284 			if (own_trans)
7285 				btrfs_end_transaction(trans, root);
7286 			break;
7287 		}
7288 
7289 		ret = insert_reserved_file_extent(trans, inode,
7290 						  cur_offset, ins.objectid,
7291 						  ins.offset, ins.offset,
7292 						  ins.offset, 0, 0, 0,
7293 						  BTRFS_FILE_EXTENT_PREALLOC);
7294 		BUG_ON(ret);
7295 		btrfs_drop_extent_cache(inode, cur_offset,
7296 					cur_offset + ins.offset -1, 0);
7297 
7298 		num_bytes -= ins.offset;
7299 		cur_offset += ins.offset;
7300 		*alloc_hint = ins.objectid + ins.offset;
7301 
7302 		inode->i_ctime = CURRENT_TIME;
7303 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7304 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7305 		    (actual_len > inode->i_size) &&
7306 		    (cur_offset > inode->i_size)) {
7307 			if (cur_offset > actual_len)
7308 				i_size = actual_len;
7309 			else
7310 				i_size = cur_offset;
7311 			i_size_write(inode, i_size);
7312 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7313 		}
7314 
7315 		ret = btrfs_update_inode(trans, root, inode);
7316 		BUG_ON(ret);
7317 
7318 		if (own_trans)
7319 			btrfs_end_transaction(trans, root);
7320 	}
7321 	return ret;
7322 }
7323 
7324 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7325 			      u64 start, u64 num_bytes, u64 min_size,
7326 			      loff_t actual_len, u64 *alloc_hint)
7327 {
7328 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7329 					   min_size, actual_len, alloc_hint,
7330 					   NULL);
7331 }
7332 
7333 int btrfs_prealloc_file_range_trans(struct inode *inode,
7334 				    struct btrfs_trans_handle *trans, int mode,
7335 				    u64 start, u64 num_bytes, u64 min_size,
7336 				    loff_t actual_len, u64 *alloc_hint)
7337 {
7338 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7339 					   min_size, actual_len, alloc_hint, trans);
7340 }
7341 
7342 static int btrfs_set_page_dirty(struct page *page)
7343 {
7344 	return __set_page_dirty_nobuffers(page);
7345 }
7346 
7347 static int btrfs_permission(struct inode *inode, int mask)
7348 {
7349 	struct btrfs_root *root = BTRFS_I(inode)->root;
7350 	umode_t mode = inode->i_mode;
7351 
7352 	if (mask & MAY_WRITE &&
7353 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7354 		if (btrfs_root_readonly(root))
7355 			return -EROFS;
7356 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7357 			return -EACCES;
7358 	}
7359 	return generic_permission(inode, mask);
7360 }
7361 
7362 static const struct inode_operations btrfs_dir_inode_operations = {
7363 	.getattr	= btrfs_getattr,
7364 	.lookup		= btrfs_lookup,
7365 	.create		= btrfs_create,
7366 	.unlink		= btrfs_unlink,
7367 	.link		= btrfs_link,
7368 	.mkdir		= btrfs_mkdir,
7369 	.rmdir		= btrfs_rmdir,
7370 	.rename		= btrfs_rename,
7371 	.symlink	= btrfs_symlink,
7372 	.setattr	= btrfs_setattr,
7373 	.mknod		= btrfs_mknod,
7374 	.setxattr	= btrfs_setxattr,
7375 	.getxattr	= btrfs_getxattr,
7376 	.listxattr	= btrfs_listxattr,
7377 	.removexattr	= btrfs_removexattr,
7378 	.permission	= btrfs_permission,
7379 	.get_acl	= btrfs_get_acl,
7380 };
7381 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7382 	.lookup		= btrfs_lookup,
7383 	.permission	= btrfs_permission,
7384 	.get_acl	= btrfs_get_acl,
7385 };
7386 
7387 static const struct file_operations btrfs_dir_file_operations = {
7388 	.llseek		= generic_file_llseek,
7389 	.read		= generic_read_dir,
7390 	.readdir	= btrfs_real_readdir,
7391 	.unlocked_ioctl	= btrfs_ioctl,
7392 #ifdef CONFIG_COMPAT
7393 	.compat_ioctl	= btrfs_ioctl,
7394 #endif
7395 	.release        = btrfs_release_file,
7396 	.fsync		= btrfs_sync_file,
7397 };
7398 
7399 static struct extent_io_ops btrfs_extent_io_ops = {
7400 	.fill_delalloc = run_delalloc_range,
7401 	.submit_bio_hook = btrfs_submit_bio_hook,
7402 	.merge_bio_hook = btrfs_merge_bio_hook,
7403 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7404 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7405 	.writepage_start_hook = btrfs_writepage_start_hook,
7406 	.set_bit_hook = btrfs_set_bit_hook,
7407 	.clear_bit_hook = btrfs_clear_bit_hook,
7408 	.merge_extent_hook = btrfs_merge_extent_hook,
7409 	.split_extent_hook = btrfs_split_extent_hook,
7410 };
7411 
7412 /*
7413  * btrfs doesn't support the bmap operation because swapfiles
7414  * use bmap to make a mapping of extents in the file.  They assume
7415  * these extents won't change over the life of the file and they
7416  * use the bmap result to do IO directly to the drive.
7417  *
7418  * the btrfs bmap call would return logical addresses that aren't
7419  * suitable for IO and they also will change frequently as COW
7420  * operations happen.  So, swapfile + btrfs == corruption.
7421  *
7422  * For now we're avoiding this by dropping bmap.
7423  */
7424 static const struct address_space_operations btrfs_aops = {
7425 	.readpage	= btrfs_readpage,
7426 	.writepage	= btrfs_writepage,
7427 	.writepages	= btrfs_writepages,
7428 	.readpages	= btrfs_readpages,
7429 	.direct_IO	= btrfs_direct_IO,
7430 	.invalidatepage = btrfs_invalidatepage,
7431 	.releasepage	= btrfs_releasepage,
7432 	.set_page_dirty	= btrfs_set_page_dirty,
7433 	.error_remove_page = generic_error_remove_page,
7434 };
7435 
7436 static const struct address_space_operations btrfs_symlink_aops = {
7437 	.readpage	= btrfs_readpage,
7438 	.writepage	= btrfs_writepage,
7439 	.invalidatepage = btrfs_invalidatepage,
7440 	.releasepage	= btrfs_releasepage,
7441 };
7442 
7443 static const struct inode_operations btrfs_file_inode_operations = {
7444 	.getattr	= btrfs_getattr,
7445 	.setattr	= btrfs_setattr,
7446 	.setxattr	= btrfs_setxattr,
7447 	.getxattr	= btrfs_getxattr,
7448 	.listxattr      = btrfs_listxattr,
7449 	.removexattr	= btrfs_removexattr,
7450 	.permission	= btrfs_permission,
7451 	.fiemap		= btrfs_fiemap,
7452 	.get_acl	= btrfs_get_acl,
7453 };
7454 static const struct inode_operations btrfs_special_inode_operations = {
7455 	.getattr	= btrfs_getattr,
7456 	.setattr	= btrfs_setattr,
7457 	.permission	= btrfs_permission,
7458 	.setxattr	= btrfs_setxattr,
7459 	.getxattr	= btrfs_getxattr,
7460 	.listxattr	= btrfs_listxattr,
7461 	.removexattr	= btrfs_removexattr,
7462 	.get_acl	= btrfs_get_acl,
7463 };
7464 static const struct inode_operations btrfs_symlink_inode_operations = {
7465 	.readlink	= generic_readlink,
7466 	.follow_link	= page_follow_link_light,
7467 	.put_link	= page_put_link,
7468 	.getattr	= btrfs_getattr,
7469 	.setattr	= btrfs_setattr,
7470 	.permission	= btrfs_permission,
7471 	.setxattr	= btrfs_setxattr,
7472 	.getxattr	= btrfs_getxattr,
7473 	.listxattr	= btrfs_listxattr,
7474 	.removexattr	= btrfs_removexattr,
7475 	.get_acl	= btrfs_get_acl,
7476 };
7477 
7478 const struct dentry_operations btrfs_dentry_operations = {
7479 	.d_delete	= btrfs_dentry_delete,
7480 	.d_release	= btrfs_dentry_release,
7481 };
7482